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Περίληψη

Στην παρούσα διπλωματική μελετάμε το πρόβλημα της άμεσης χωροθέτησης υπηρεσιών (online
facility location). Η χωροθέτηση υπηρεσιών (facility location) είναι ένα από τα σημαντικότερα
προβλήματα στο πεδίο της επιστήμης υπολογιστών και επιχειρησιακής έρευνας με πληθώρα
πρακτικών εφαρμογών. Από θεωρητικής πλευράς το πρόβλημα παρέχει εύφορο έδαφος για την
ανάπτυξη και εφαρμογή προσεγγιστικών αλγορίθμων και οι αλγόριθμοι για το πρόβλημα αποτε-
λούν από τις σημαντικότερες κατακτήσεις στο πεδίο της θεωρίας προσεγγιστικών αλγορίθμων.
Σε πολλές από τις εφαρμογες η είσοδος δεν είναι απόλυτα γνωστή εκ των προτέρων και τα
αιτήματα ερχονται σε διακριτές χρονικές στιγμές και ο (άμεσος) αλγόριθμος πρεπει να τα εξυ-
πηρετεί την στιγμή της άφιξης τους. Το πολύ ενδιαφέρον αυτό πρόβλημα εχει μελετηθεί εκτενώς
στην βιβλιογραφία η οποία εχει καταλήξει στην πλήρη κατανόηση του απο θεωρητικής σκοπιάς.
Μελετάμε το πρόβλημα της άμεσης χωροθέτησης υπηρεσιών και παραθέτουμε μερικά από τα
σημαντικότερα αποτελέσματα σε αυτό.

Στην συνέχεια στρέφουμε την προσοχή μας στο πρόβλημα της άμεσης χωροθέτησης υπη-
ρεσιών με μετακινούμενες υπηρεσίες (online facility location with mobile facilities). Μελετάμε
τον ήδη γνωστό αλγόριθμο για το πρόβλημα και αποδεικνύουμε οτι είναι ασυμπτωτικά βέλτιστος
στην ευθεία των πραγματικών αριθμών. Υποδεικνύουμε ποιό είναι το εμπόδιο στην απόδειξη της
βελτιστότητας του αλγορίθμου σε Ευκλείδιους χώρους μεγαλύτερης διαστασης. Στο τελευταιό
κεφάλαιο, χρησιμοποιώντας τεχνικές από το κλασικό πρόβλημα της χωροθέτησης υπηρεσιών,
δείχνουμε οτι ο αλγόριθμος είναι πράγματι βέλτιστος σε Ευκλείδους χώρους μεγαλύτερης διά-
στασησ και αναπτύσουμε έναν καινούργιο αλγόριθμο για γενικούς μετρικούς χώρους. Τέλος
δείχνουμε ότι ο αλγόριθμος μας είναι ασυμπτωτικά βέλτιστος σε γενικούς μετρικόυς χώρους.

Λέξεις κλειδιά

Χωροθέτηση υπηρεσιών, Άμεση χωροθέτηση υπηρεσιών, Άμεσοι Αλγόριθμοι, Προσεγγι-
στικοί Αλγόριθμοι
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Abstract

In this diploma thesis we study the online variation of the classical facility location problem. Τhe
facility location problem is arguably one of the most important and extensively studied problem
in the fields of computer science and operations research. In many applications the demand
sequence is not known in advance, these applications create the need for the design of online
algorithms for the problem. We underline key results of the fascinating and important online
facility location problem and study the recent work of Feldkord et al. [22] on the online facility
location with mobile facilities problem. We give a new algorithm for the problem and apply tools
and techniques from the classical literature of the online facility location problem to show that
our algorithm is asymptotically optimal on general metric spaces.

Key words

Facility Location, Online Facility Location, Online Algorithms, Approximation Algorithms

7





Ευχαριστίες

Θα ήθελα πρωτίστως να ευχαριστήσω τον επιβλέποντα της διπλωματικής μου εργασίας κα-
θηγητή Δημήτρη Φωτάκη για τις συμβουλές του, την υποστήριξη του και για το οτι με εμπι-
στεύθηκε με ένα τόσο ενδιαφέρον θέμα, πίστεψε σε εμένα και ήταν πάντα δίπλα μου στα πρώτα
μου ερευνητικά βήματα. Χρησιμοποιώντας τις τεχνικές που ο ίδιος είχε αναπτύξει στο παρελ-
θόν καταφέραμε να λύσουμε ένα πολύ ενδιαφέρον ανοιχτό ερώτημα. Θα ήθελα επίσης να τον
ευχαριστήσω για την άψογη συνεργασία μας και γιατί αποτελεί πρότυπο για νέους επιστήμονε-
ς/ερευνητές σαν εμένα. Ένα μεγάλο ευχαριστώ οφείλω στον καθηγητή Άρη Παγουρτζή γιατί τα
μαθήματα του με ενέπνευσαν να ασχοληθώ και να ενδιαφερθώ με θέματα θεωρητικής πληρο-
φορικής τα οποία τελικά με κέρδισαν. Θέλω επίσης να ευχαριστήσω τον καθηγητή Στάθη Ζάχο
για τις όμορφες συζητήσεις μας, τις συμβουλές του και την αγάπη που δείχνει στους φοιτητές.
Ευχαριστώ επίσης τον καθηγητή της ΣΕΜΦΕ Αντώνη Συμβώνη που δέχτηκε να είναι μέλος της
επιτροπής αξιολόγησης μου. Πέρα από τα σύνορα του Πολυτεχνείου θέλω να ευχαριστήσω τους
καθηγητές Βάγγο Χατζηαφράτη και Δημήτρη Αχλιόπτα για τις συμβουλες τους και τα όμορφα
πραγματα που μου μάθανε. Ευχαριστώ όλα τα μέλη του εργαστηρίου corelab για το υπέροχο
κλίμα που δημιουργούν στο εργαστήριο, το κλίμα αυτό θέτει τις βάσεις για το σημαντικό ερευ-
νητικό και διδακτικό έργο που παράγει το εργαστήριο. Τους ευχαριστώ επίσης γιατί ήταν πάντα
πρόθυμοι να δώσουν συμβουλες και να συζητήσουν μαζί μου.

Θέλω επίσης να ευχαριστήσω τους φίλους μου από την σχολή, τον Ηλία, τον Δημήτρη και
τον Μάριο για τις ομορφες συζητήσεις μας, για τα πράγματα που μου έμαθαν, για την υποστή-
ριξη τους και γιατί αποτελούν έμπρακτα παραδείγματα του σημαντικότερου (κατα την γνώμη
μου) προτερήματος της σχολής ΗΜΜΥ, το οποίο είναι η ποιότητα των φοιτητών. Θέλω να ευ-
χαριστήσω επίσης τους φίλους μου που δεν είναι από την σχολή Ορέστη και Γιώργο για την
υποστήριξη τους και την βαθιά φιλία τους μαζί μου.

Στους πιο κοντινούς μου ανθρώπους οφείλω ίσως το μεγαλύτερο ευχαριστώ. Ευχαριστώ την
οικογένεια μου, τον πατέρα μου Αλέκο, για την αγάπη του, γιατί αυτός καλλιέργησε την αγάπη
μου για τα μαθηματικά και γιατί προσπαθούμε πάντα μαζί να αντιμετωπίσουμε οτιδήποτε με
προβληματίζει, την μητέρα μου Μαρία για την υποστήριξη της και γιατί είναι πάντα εκεί όταν
την χρειάζομαι και την αδερφή μου Μαρίνα γιατί με νοιάζεται και είναι δίπλα μου σε κάθε
μου βήμα. Ευχαριστώ από καρδιάς την Ευαγγελία γιατι με αγαπάει, με νοιάζεται, με βοηθάει να
γίνομαι καλύτερος και με στηρίζει από τα πρώτα βήματα μου στην σχολή μέχρι την ολοκλήρωση
των σπουδών μου. Η παρούσα διπλωματική είναι αφιερωμένη σε αυτούς.

Διονύσιος Αρβανιτάκης,

Αθήνα, 15η Ιουλίου 2023

9





Περιεχόμενα

Περίληψη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Ευχαριστίες . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Περιεχόμενα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Εκτεταμένη Ελληνική Περίληψη . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.1 Άμεση χωροθέτηση υπηρεσιών (Online Facility Location) . . . . . . . . . . . 13
0.2 Προυπάρχουσες εργασίες στην αμεση χωροθέτηση υπηρεσιών με μετακινούμε-

νες υπηρεσίες (Previous work on online facility location with mobile facilities) 15
0.3 Αμεση χωροθέτηση υπηρεσιών σε γενικούς μετρικούς . . . . . . . . . . . . . 18

Κείμενο στα αγγλικά 23

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1 The Uncapacitated Metric Facility Location problem (UMFL) . . . . . . . . . 23
1.2 The Online Facility Location Problem . . . . . . . . . . . . . . . . . . . . . . 25
1.3 Relaxed versions of the Online Facility Location Problem . . . . . . . . . . . . 26
1.4 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6.2 Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. Online Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 The lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 The randomized algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 The optimal deterministic algorithm . . . . . . . . . . . . . . . . . . . . . . . 39

11



3. Previous work on Online Facility Location with Mobile Facilities . . . . . . . . . 45
3.1 Problem Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 The costs of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 The analysis of outer demands . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 The analysis of inner demands . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. Online Facility Location with Mobile Facilities in general Metric Spaces . . . . . 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 An outline of the analysis and definitions . . . . . . . . . . . . . . . . 63
4.3.3 The costs of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.4 The analysis of outer demands . . . . . . . . . . . . . . . . . . . . . . 66
4.3.5 The analysis of inner demands . . . . . . . . . . . . . . . . . . . . . . 66
4.3.6 Putting everything together . . . . . . . . . . . . . . . . . . . . . . . . 74

12



Εκτεταμένη Ελληνική Περίληψη

Το βασικό σκέλος της παρούσας διπλωματικής εργασίας έχει αποδοθεί στην αγγλική γλώσσα.
Σε αυτό το κομμάτι, συνοψίζουμε το περιεχόμενό της, δίνοντας έμφαση στους βασικούς ορι-
σμούς, τις μεθοδολογίες και τα θεωρήματα, αλλά χωρίς τις μαθηματικές αποδείξεις. Η δομή της
ενότητας αυτής είναι σε ένα προς ένα αντιστοίχηση με το (αγγλικό) περιεχόμενο της διπλωμα-
τικής εργασίας. Να σημειωθεί ότι διπλά σε κάθε μετάφραση ενός αγγλικού όρου στα ελληνικά
θα αναγράφεται μέσα σε παρένθεση ο αντίστοιχος όρος στα αγγλικά.

0.1 Άμεση χωροθέτηση υπηρεσιών (Online Facility Location)

Στο κεφάλαιο αυτό της παρούσας διπλωματικής εργασίας μελετάμε το ιδιαίτερα ενδιαφέ-
ρον πρόβλημα της άμεσης χωροθέτησης υπηρεσιών το οποίο εισήγαγε ο Meyerson ([50]). Το
πρόβλημα χωροθέτησης υπηρεσιών είναι από τα σημαντικότερα και εκτενέστερα μελετημένα
προβλήματα στα πεδία της επιχειρησιακής έρευνας (operations research) και της επιστήμης υπο-
λογιστών (computer science). Η εκτενής μελέτη του προβλήματος οφείλεται αφενός στις ιδιαί-
τερα σημαντικές εφαρμογές του προβλήματος σε πρακτικά προβλήματα αφού αποτελεί φυσική
μοντελοποίηση σε πολλά πρακτικά προβλήματα μείζονος ενδιαφέροντος και αφετέρου στο ιδιαί-
τερο θεωρητικό του ενδιαφέρον υπό το πρίσμα των προσεγγιστικών αλγορίθμων (approximation
algorithms) και της ανάλυσης πέραν της χειρότερης περίπτωσης αλγορίθμων (beyond the worst
case analysis of algorithms).

Η είσοδος του προβλήματος αποτελείται από έναν υποκείμενο μετρικό χώρο (metric space)
(X , d), εναν πραγματικό αριθμό cf (i) για κάθε σημείο του μετρικού χώρου i που αντιπροσω-
πεύει το κόστος του να ανοίξει μια υπηρεσία (facility) σε αυτό το σημείο και ένα σύνολο από
αιτήματα (demands) D που είναι σημεία του μετρικού χώρου. Στόχος του προβλήματος είναι
να επιλεχθεί ένα σύνολο από σημεία του μετρικού χώρου στα οποία θα ανοίξουν υπηρεσίες ετσι
ώστε να ελαχιστοποιείται το ακόλουθο κριτήριο, το άθροισμα του κόστους για τις υπηρεσίες που
ανοιξαν συν την απόσταση του κάθε αιτήματος από την κοντινότερη σε αυτό ανοιχτή υπηρεσία.
Τυπικά το κριτήριο είναι το ακόλουθο:

min
F⊆X

∑
i∈F

cf (i) +
∑
j∈D

min
i∈F

d(i, j)

Σε πολλά πρακτικά προβλήματα η είσοδος του προβλήματος δεν είναι γνωστή εκ των προ-
τέρων, πιο συγκεκριμένα το σύνολο από αιτήματα δεν είναι γνωστο΄στον αλγόριθμο εξ αρχής
αλλά παρέχεται σε αυτόν σε μια ακόλουθία αιτημάτων, ένα κάθε στιγμή. Τη στιγμή που ένα αί-
τημα παρέχεται στον αλγόριθμο αυτός πρεπει να το αντιστοιχίσει σε μια ήδη ανοιχτή υπηρεσία
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ή να ανοίξει μια υπηρεσία και να το αντιστοιχίσει σε αυτή. Εφαρμογές που εφάπτονται στην
μοντελοποιήση αυτού το προβλήματος συμπεριλαμβάνουν την σχεδίαση ενός δικτύου υπολο-
γιστών (network design) και την συσταδοποίηση σελίδων στον παγκόσμιο ιστό (clustering web
pages). Αφορμώμενος από τέτοιες εφαρμογές ο Meyerson είσηγαγε το πρόβλημα της άμεσης
χωροθέτησης υπηρεσιών. Τυπικά το πρόβλημα αυτό αποτελείται και πάλι από έναν υποκείμενο
μετρικό χώρο (X , d) και ένα κόστος cf για κάθε σημείο του μετρικού χώρου (να σημειωθεί το
επικεντρονόμαστε στην ομοίομορφη εκδοχή (uniform case) του προβλήματος όπου κάθε σημείο
του μετρικού χώρου εχει το ίδιο κόστος για το άνοιγμα μιας υπηρεσίας). Τα αιτήματα ερχονται
σε μια ακολουθια σ και με ui συμβολίζουμε το αίτημα που ερχεται την χρονική στιγμή i. Σε
κάθε χρονική στιγμή ο αλγόριθμος διατηρεί ένα σύνολο από ανοιχτές υπηρεσίες και όποτε ενα
καινούργιο αίτημα παρεχεται στον αλγόριθμο αυτός πρεπει είτε να το αναθέσει σε μια ανοιχτή
υπηρεσία είτε να ανοίξει μια καινούργια υπηρεσία και να το αναθέσει σε αυτή. Η ανάθεση των
αιτημάτων σε υπηρεσίες είναι αμετάκλητη και οι ανοιχτές υπηρεσίες δεν μπορούν να κλείσουν
αφού ανοίξουν. Χρησιμοποιούμε το συμβολισμό Fi για τις υπηρεσίες που εχουν ανοίξει αφού
το αίτημα ui εχει εξυπηρετηθεί. Το κόστος του αλγορίθμου είναι:

n∑
i=1

d(Fi, ui) + cf |Fn|

Υπενθυμίζουμε ότι cf είναι τό κόστος για να ανοίξει μια υπηρεσία, το οποίο είναι το ίδιο για
κάθε σημείο του μετρικού χώρου.

Στο κεφάλαιο 2 της παρούσας διπλωματικής παραθέτουμε κάποια από τα βασικά αποτελέ-
σματα σε αυτό το πρόβλημα τα οποία προέρχονται από μια ακολουθία εργασίων που οδήγησε
στην πλήρη κατανόηση του προβλήματος, από θεωρητικής πλευράς τουλάχιστον.

Στην εργασία στην οποία είσηγαγε το πρόβληματα ο Meyerson, ο ίδιος πρότεινε έναν εναν
κομψό και διαισθητικό αλγόριθμο (RANDOFL) για το πρόβλημα και απέξειξε οτι αλγόριθμος
αυτός πετυχαίνει προσεγγιστικό λόγο O(log(n)) (competitive ratio) (να σημειωθεί οτι συνή-
θως ο όρος προσεγγιστικός λόγος χρησιμοποιείται για προσεγγιστικούς αλγορίθμους). Στην συ-
νέχεια στην εργασία [26] ο Φωτάκης απέδειξε ότι ο αλγόριθμος στην πραγματικότητα είναι
O( log(n)

log(log(n))) προσεγγιστικός και οτι κανένας αλγόριθμος δεν μπορεί να πετύχει ασυμπτωτικά
καλύτερο λόγο προσεγγισης ακόμα και σε απλούς μετρικούς χώρους όπως η ευθεία των πραγ-
ματικών αριθμών.

Ο αλγοριθμός RANDOFL παρουσιάζεται παρακάτω, η λειτουργία του είναι η εξής: κάθε
φορά που ένα καινούργιο αίτημα παρέχεται στον αλγόριθμο αυτός υπολογίζει την απόσταση του
αιτήματος από την κοντινότερη ανοιχτή υπηρεσία, έστω d, και ανοίγει μια νεα υπηρεσία πάνω
στο αίτημα, με πιθανότηταmin(1, d

cf
).

Algorithm 1:Meyerson’s algorithm (RANDOFL)
1 for i = 1 to n do
2 let d = d(ui,Fi−1)
3 w.p min(1, d

cf
) open a facility at ui

4 end
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Η ανάλυση του αλγορίθμου μας δίνει το ακόλουθο θεώρημα:

Theorem 0.1.1. Ο αλγόριθμος RANDOFL είναι O( log(n)
log(log(n))) προσεγγιστικός

Από την άλλη μεριά το ακόλουθο κάτω όριο στην επίδοση οποιουδήποτε αλγορίθμου μας
βεβαίωνει οτι η ανάλυση αυτή είναι εφαρμοστή και μάλιστα οτι ο αλγόριθμος είναι βέλτιστος:

Theorem 0.1.2. Κανένας τυχαιοποιημένος αλγόριθμος δεν μπορεί να πετύχει προσεγγστικό λόγο
καλύτερο από Ω( log(n)

log(log(n))) ακόμα και σε απλούς μετρικούς χώρους όπους η ευθεία των πραγμα-
τικών αριθμών

Η εργασία του Φωτάκη επίσης εισάγει και έναν ντετερμινιστικό αλγόριθμο ο οποίος είναι
επίσης ασυμπτωτικά βέλτιστος.

Ο αλγόριθμος αυτός, DETOFL, αποδεικνύεται οτι είναι επίσης ασυμπτωτικά βέλτιστος:

Theorem 0.1.3. Ο αλγόριθμος DETOFL πετυχαίνει προσεγγιστικό λόγο O( log(n)
log(log(n)))

Στην παρούσα διπλωματική παρουσιάζουμε την ανάλυση του RANDOFL καθώς και του
κάτω φράγματος (lower bound) του προβλήματος. Επίσης αποδεικνυούμε ότι ο αλγόριθμος
DETOFL είναι ασυμπτωτικά βέτλιστος στην περίπτωση που η βέλτιστη λύση αποτελείται από
μια μόνο υπηρεσία. Παραλείπουμε ωστόσο την απόδειξη της βελτιστότητας του αλγορίθμου
στην γενική περίπτωση που η βέλτιστη λύση αποτελέιται από περισσότερες υπηρεσίες.

0.2 Προυπάρχουσες εργασίες στην αμεση χωροθέτηση υπηρεσιών
με μετακινούμενες υπηρεσίες (Previous work on online facility
location with mobile facilities)

Το ενδεχομένως πεσιμιστικό κάτω φράγμα στους αλγορίθμους για το πρόβλημα της αμεσης
χωροθέτησης υπηρεσιών εχει ωθήσει τους ερευνητές να μελετήσουν διάφορες λίγοτερο ”αυ-
στηρες” παραλλαγές του προβλήματος με στόχο την βελτίωση της επίδοσης των αλγορίθμων. Η
προσπάθεια αυτή ανήκει σε ένα γενικότερο και ειδικά ενδιαφέρον και εξελισσόμενο πεδίο της
θεωρίας αλγορίθμων που ονομάζεται ανάλυση πέραν της χειρότερης περίπτωσης (beyond the
worst case analysis). Υπό αυτό το πρίσμα, εχουν προταθεί αρκετές παραλλαγές του προβλήμά-
τος και εχει γίνει εκτενής προσπάθεια προς αυτή την κατεύθυνση. Το πρώτο αποτέλεσμα ήταν
στην αρχική εργασία του Meyerson που μελετούσε την περίπτωση που ο αντίπαλος επιλέγει την
ακόλουθία από αιτήματα και στην συνέχεια αυτά ανακατεύονται τυχαία (randomly permuted)
πριν δοθούν στον αλγόριθμο. Σε αυτό το μοντέλο ο αλγόριθμος τουMeyerson δίνει σταθερό λόγο
προσεγγισης. Ένα από τα σημαντικότερα αποτελέσματα είναι αυτό του Φωτάκη στην αυξητική
χωροθέτηση υπηρεσιών (incremental facility location) [23] οπου παρουσιάζεται ένας σταθερού
λόγου προσέγγισης αλγόριθμος Μια άλλη τέτοια γενική κατεύθυνση είναι αυτή στην οποία οι
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Algorithm 2: Deterministic Algorithm (DETFL)
1 Let x be an appropriately chosen constant
2 F0 ← ∅
3 L← ∅
4 for i = 1 to n do
5 let d = d(ui,Fi−1)
6 L← L ∪ {ui}
7 rui ← d/x
8 Bui ← Ball(ui, rui) ∩ L
9 Pot(Bui)←

∑
u∈Bui

d(Fi−1, u)

10 if Pot(Bui) ≥ cf then
11 if d(Fi−1, ui) < cf then
12 Let ν ≥ 0 be the smallest integer such that:
13 Either there exists exactly one point u ∈ Bui , such that:
14 Pot(Bui ∩ Ball(u, rui/2

ν)) > Pot(Bui)/2
15 Or for every u ∈ Bui , Pot(Bui ∩ Ball(u, rui/2

ν+1)) ≤ Pot(Bui)/2
16 Let ŵ be any point in Bui such that:
17 Pot(Bui ∩ Ball(ŵ, rui/2

ν)) ≥ Pot(Bui)/2

18 end
19 else
20 ŵ ← ui
21 end
22 Fi = Fi−1 ∪ {ŵ}
23 L← L \Bui

24 end
25 Assign ui to the nearest facility in Fi

26 end

υπηρεσίες δεν μπορούν μεν να κλείσουν, μπορούν όμως να μετακινηθούν της οποίας αφετηρία
ήταν η δουλειά τον Diveki και Imreh [18].

Στην πρόσφατη εργασία τους οι Knollman et al. προτείνουν νέα μοντέλα για το πρόβλημα
χωροθέτησης υπηρεσιών με μετακινούμενες υπηρεσίες. Το ένα από αυτά τα μοντέλα είναι το
κύριο σημείο ενδιαφέροντος της παρούσας διπλωματικής. Σε αυτό το μοντέλο οι υπηρεσίες
μπορούν να μετακινηθούν πληρώνοντας ένα κόστος D επί την απόσταση κατα την οποία με-
τακινήθηκαν.

Ας δούμε τώρα ποιο είναι το κόστος ενός αλγορίθμου για το πρόβλημα χωροθέτησης υπη-
ρεσιών με μετακινούμενες υπηρεσίες. Το κόστος για να ανοίξει μια υπηρεσία και το κόστος
μετακίνησης είναι φυσικά το κόστος των ανοιχτών υπηρεσιών (ο αλγόριθμος δεν επιτρέπεται να
κλείνει ανοιχτές υπηρεσίες, μόνο να τις μετακινεί) και η συνολική απόσταση που έχουν μετακι-
νηθεί οι υπηρεσίες επί D. Ωστόσο, υπάρχουν 2 φυσικοί τρόποι για τον καθορισμό του κόστους
ανάθεσης. Kαι οι δύο λαμβάνονται υπόψη στο [22]:
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1. Το μοντέλο της άμεσης εξυπηρετησης (Instant service model): Το κόστος ανάθεσης για ένα
αίτημα ui είναι η απόστασή της από την πλησιέστερη υπηρεσία στο Fi. Σημειώστε ότι
αυτό θα μπορούσε και, στη γενική περίπτωση, θα είναι διαφορετικό από την απόστασή
του από την πλησιέστερη υπηρεσία στοFn (το σύνολο των υπηρεσιών στο τέλος της ακο-
λουθίας αιτημάτων). Αυτό το μοντέλο ταιριάζει σε εφαρμογές όπου τα αιτήματα έρχονται
με την πάροδο του χρόνου και εξυπηρετούνται κατά την άφιξή τους

2. Το μοντέλο εξυπηρέτησης με καθυστέρηση έως το τέλος (Delayed to end service model): Το
κόστος ανάθεσης για ένα αίτημα ui είναι η απόστασή της από την υπηρεσία στην οποία
είχε αρχικά ανατεθεί το αίτημα αλλά στο τέλος της ακολουθίας. Με άλλα λόγια, όταν
φτάνει ένα αίτημα, αντιστοιχίζεται αμετάκλητα σε μια υπηρεσία και το κόστος ανάθεσης
είναι η απόστασή του από την υπηρεσία αυτή αλλά στο τέλος της ακολουθίας αιτημάτων.
Αυτό το μοντέλο ταιριάζει καλύτερα στις εφαρμογές που σχετίζονται με την ομαδοποίηση
όπου θέλουμε να έχουμε μια καλή ομαδοποίηση των αιτημάτων στο τέλος της ακολουθίας.

Είναι σημαντικό να σημειωθεί ότι και στις δύο περιπτώσεις η απόδοση του αλγορίθμου με-
τριέται σε σύγκριση με τη στατική βέλτιστη λύση όπου η ακολουθία είναι γνωστή εκ των προτέ-
ρων, δηλαδή με την βέλτιστη λύση του αντίστοιχου offline προβλήματος χωροθέτησης. Αυτή εί-
ναι μια ισχυρή υπόθεση για το πρώτο μοντέλο, καθώς υπάρχουν περιπτώσεις όπου ο αλγόριθμος
μπορεί πράγματι να ξεπεράσει την βέλτιστη offline λύση. Ωστόσο, στην χειρότερη περίπτωση,
οποιοσδήποτε αμεσος αλγόριθμος είναι χειρότερος από τη στατική βέλτιστη offline λύση.

Στην διπλωματική αυτή επικεντρωνόμαστε στο πρώτο μοντέλο. Στο κεφάλαιο 3 της διπλω-
ματικής παρουσιάζουμε τα βασικά αποτελέσματα που ήταν γνωστά κατά την διεξαγωγή της
εργασίας αυτής. Έχει γίνει προσπάθεια αυτά να παρουσιαστούν υπό την οπτική πλευρά μας και
κάποιες αποδείξεις εχουν διαφορές από τις αντίστοιχες στο [22].

Το πρώτο ερώτημα που ερχεται στο μυαλό όταν μελετάμε αυτό το καινούργιο μοντέλο είναι
”πόσο καλύτερα μπορεί να τα πάει ενας αλγόριθμος σε αυτό το μοντέλο σε σχέση με το κλασικό
πρόβλημα αμεσης χωροθέτησης υπηρεσιών;”. Οι Knollman et al. χρησιμοποιώντας ιδέες παρό-
μοιες με αυτές για το κάτω φράγμα στο κλασικό πρόβλημα αμεσης χωροθέτησης υπηρεσιών
αποδεικνύουν το ακόλουθο αποτέλεσμα:

Theorem 0.2.1. Κανένας αλγόριθμος του οποίου ο λόγος προσεγγισης είναι ανεξάρτητος από τον
αριθμό των αιτημάτων δεν μπορεί να πετύχει λόγο προσέγγισης καλύτερο από Ω(compm), ακόμα
και σε απλούς μετρικούς χώρους όπως η ευθεία των πραγματικών αριθμών.

Έτσι αν θέλουμε να ξεπεράσουμε το κάτω φράγμα της αμεσης χωροθέτησης υπηρεσιών και
ο λόγος προσέγγισης να είναι ανεξάρτητος από τον αριθμό των αιτημάτων δεν μπορούμε να πε-
ριμένουμε έναν λόγο προσέγγισης καλύτερο από O( log(D)

log(log(D))). Οι ερευνητές που εισήγαγαν το
προβλημα το μελέτησαν αποκλειστικά σε ευκλείδιους χώρους. Παραθέτουμε τον αλγόριθμο τον
οποίο προτείνουν.

Είναι εύκολο να δει κανείς οτι ο αλγόριθμος αυτός λειτουργεί μόνο σε ευκλείδιους μετρικούς
χώρους. Η ανάλυση που παραθέτουν οι Knollman et al αποδεικνύει οτι ο παραπάνω αλγόριθμος
είναι πραγματι βέλτιστος στην ευθεία των πραγματικών.
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Algorithm 3: The algorithm for Euclidean metric spaces (EucOFLM)
1 Let β be an appropriately chosen constant
2 Fm

0 ← ∅
3 Fs

0 ← ∅
4 for i = 1 to n do
5 Let a = argmina′{d(ui, a′) : a′ ∈ Fs}
6 if d(a, ui) ≤

2cf
D then /* ui is a close demand */

7 Let z = mob(a)
8 w.p. d(z,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

9 move(z → D−1
D z + 1

Dui)
10 Assign ui to z
11 end
12 else /* ui is a far demand */
13 w.p. d(a,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

14 Assign ui to the facility opened at ui.
15 end
16 end

Theorem 0.2.2. O EucOFL είναι πετυχαίνει λόγο προσέγγισης O( log(D)
log(log(D))) στην ευθεία των

πραγματικών αριθμών, είναι επομένως ασυμπτωτικά βέλτιστος.

Ωστόσο, σε ευκλείδιους χώρους μεγαλύτερης διαστασης στην ανάλυση του αλγορίθμου
εμπεριεχεται και ένας όρος

√
k οπου k ο αριθμός των υπηρεσιών στην βέλτιστη λύση. Οι ερευ-

νητές αφησαν σαν ανοιχτό ερωτημα αν ο αλγόριθμος τους είναι πραγματι βελτιστος. Το κύριο
εμπόδιο για την απόδειξη αυτού του ισχυρισμού είναι η ανάλυση του κόστους των απαγορευ-
μένων αιτημάτων (prohibited demands) τα οποία είναι εύκολο να αναλυθουν στην ευθεία των
πραγματικών αριθμών αλλά οχι σε χωρους μεγαλύτερης διάστασης.

0.3 Αμεση χωροθέτηση υπηρεσιών σε γενικούς μετρικούς

Αυτή η παραγραφος αποτελεί περίληψη του τελευταίου κεφαλαίου της διπλωματικής εργα-
σίας και εμπεριέχει τα καινούργια αποτελέσματα που ειναι προϊοντα της διπλωματικής εργασίας.

Οπως αναφέρθηκε στην προηγούμενη παραγραφο το κύριο εμπόδιο για την ανάλυση του
αλγορίθμου EucOFLM είναι η ανάλυση του κόστους των απαγορευμένων αιτημάτων. Χρησι-
μοποιώντας τεχνικές του Φωτάκη για την ανάλυση του ντετερμινιστικού αλγορίθμου για το κλα-
σικό πρόβλημα της άμεσης χωροθέτησης υπηρεσιών καταφέρνουμε να φράξουμε το κόστος των
απαγορευμένων αιτημάτων. Αναλυτικότερα εχουμε το ακόλου λήμμα:

Lemma 0.3.1. Το αναμενόμενο κόστος των απαγορευμένων αιτημάτων (prohibited demands)
φράσσεται από το κόστος της βέλτιστης λύσης
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Η απόδειξη του παραπάνω λήμματος αποδεικνύει την βελτιστότητα του αλγόριθμου των
Knollman et al σε ευκλείδιους χώρους οποιασδήποτε διάστασης.

Στην συνέχεια μελετάμε το πρόβλημα της αμεσης χωροθέτησης υπηρεσιών με μετακινούμε-
νες υπηρεσίες σε γενικούς μετρικούς χώρους. Να σημειωθεί οτι το πρόβλμα αυτό δεν είχε, τουλά-
χιστον από όσο γνωρίζουμε, μελετηθεί στο παρελθόν. Για το πρόβλημα αυτό παραθέτουμε έναν
καινούργιο αλγόριθμο και αποδεικνύουμε ότι εχει ασυμπτωτικά βέλτιστο λόγο προσεγγισης σε
γενικούς μετρικούς χώρους.

Algorithm 4: The algorithm for general metric spaces GenOFLM
1 Let β be an appropriately chosen constant
2 Fm

0 ← ∅
3 Fs

0 ← ∅
4 for i = 1 to n do
5 Let a = argmina′{d(ui, a′) : a′ ∈ Fs}
6 if d(a, ui) ≤

2cf
D then /* ui is a close demand */

7 Let z = mob(a)
8 w.p. d(z,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

9 w.p 1
D :move(z → ui)

10 Assign ui to z
11 end
12 else /* ui is a far demand */
13 w.p. d(a,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

14 Assign ui to the facility opened at ui.
15 end
16 end

Για τον αλγόριθμο αυτόν αποδεικνύουμε το ακόλουθο θεώρημα:

Theorem 0.3.2. Ο αλγόριθμος GenOFLM είναι ασυμπτωτικά βέλτιστος σε γενικούς μετρικούς
χώρους. Πετυχαίνει δηλαδή λόγο προσέγγισης O( log(D)

log(log(D))).
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Κείμενο στα αγγλικά





Chapter 1

Introduction

1.1 The Uncapacitated Metric Facility Location problem (UMFL)

The metric uncapacitated facility location problem is one of the most extensively studied prob-
lems in the computer science and operations research literature and has been studied since the
second half of the previous century, dating back to the work of [5], [38], [45], [54]. This is, in
part, due to its substantial practical application and in part due to its theoretical interest (being
NP-hard) from the approximation algorithms and beyond the worst case analysis point of view.
The facility location problem is a natural and accurate abstraction to many practical problems
related to network design ([17], [47]) and clustering (techniques for facility location have been
applied to the closely related, and widely accepted as one of the main clustering objectives, the
k-median problem, for example in [33] and [12]). Facility location has also found applications in
healthcare ([1], [2]), supply chain ([48]), planning of warehouses and public transportation ter-
minals to name but a few. Despite its applicability it can be shown to be NP-hard (by a reduction
from set cover for example ([56])) and therefore much of the work on this problem focuses on
either finding exact solutions for special cases or on approximation algorithms for the problem.
The problem consists of a metric space (X , d), a subset of points in the metric space that are the
demands, D ⊆ X and a facility cost cf (i) for every point i in the metric space. The goal is to
open facilities on the metric space so as to minimize the sum of the facility cost (the sum of the
costs of the facilities opened) plus the assignment cost (the distance between any demand and
its closest open facility). In other words a set F ⊆ X must be selected in order to minimize∑

i∈F cf (i) +
∑

j∈D mini∈F d(i, j). As an integer program the problem can be formulated as
follows:

minimize
∑
i∈X

yicf (i) +
∑

i∈X ,j∈D
d(i, j)xij

subject to :
∑
i∈X

xij = 1, ∀i ∈ D

xij ≤ yi, ∀i ∈ X , j ∈ D
xij ∈ {0, 1}, ∀i ∈ X , j ∈ D
yi ∈ {0, 1}, ∀i ∈ X

The yi variables determine whether the facility at point i will open while the xij variables deter-
mine whether the demand at point j will be assigned to a facility at point i.
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The corresponding LP relaxation that is widely used in approximation algorithms for the
problem simply relaxes the conditions xij ∈ {0, 1} and yi ∈ {0, 1} to xij ≥ 0 and yi ≥ 0.:

minimize
∑
i∈X

yicf (i) +
∑

i∈X ,j∈D
d(i, j)xij

subject to :
∑
i∈X

xij = 1, ∀i ∈ D

xij ≤ yi, ∀i ∈ X , j ∈ D
xij ≥ 0, ∀i ∈ X , j ∈ D
yi ≥ 0, ∀i ∈ X

The facility location problem has been proven to be a very fruitful problem for the devel-
opment and application of approximation algorithms techniques. Virtually all techniques have
been successfully used to design approximation algorithms for the problem (see [58]) The first
approximation algorithm for the problem was an O(log(n)) approximation ([30]). Lin and Vit-
ter ([42]) used LP rounding and the filtering technique to get another O(log(n))-approximation
algorithm for the problem and for the more general non-metric case. The first constant factor
approximation algorithm for the problemwas due to Shmoys, Tardos and Aardal ([53]) and was a
3.16 approximation algorithm. The work of Guha and Khuller ([29] ) used LP rounding together
with local search/greedy techniques to improve the approximation ratio to 2.408. This paper also
gave the first (to our knowledge) complexity characterization of the problem with respect to its
approximability. It was proven that the problem is MAX-SNP-hard ([52]) via a reduction from
the B-vertex cover problem. It was also shown that if there is an approximation algorithm bet-
ter than 1.463 then this implies an algorithm with approximation ratio c ln |X| for the set cover
problem which would in turn imply that NP ⊆ DTIME(nO(log(log(n)))) by Feige ([20]).

The papers discussed thus far require the solution of a linear program which, while theoret-
ically requires polynomial time, is very costly in practice. Korupolu, Plaxton and Rajamaran
([37]) also analysed local search algorithms for the facility location problem and gave a 5 + ϵ
approximation ratio guarantee but with better running times that did not demand solving a linear
program. Jain and Vazirani ([33]) proposed an approximation algorithm for the problem based on
the primal dual schema that achieved a 3 approximation and had a running time ofO(m log(m))
where m is the number of edges in the underlying graph of the metric space. This paper not
only significantly improved the running time with only a marginal increase in the approximation
ratio but also laid the groundwork for further research on problems pertaining to facility location.
Their work also provided a 6 approximation for the k-median problem and the core ideas and
techniques were also used in variants of the facility location problem ([49], [13], [35])

To the best of our knowledge, currently the best approximation algorithm for the uncapac-
itated metric facility location problem is due to Li ([41]) building on work of Byrka [10] and
achieves an approximation ratio of 1.488. This is almost tight due to the result of Guha and
Khuller ([29]) (which was later strengthened by Sviridenko ([55]) who proved that no approxi-
mation algorithm can achieve a competitive ratio better than 1.463 unless P = NP )

24



1.2 The Online Facility Location Problem

This diploma thesis intents to study the online version of themetric uncapacitated facility location
problem. Before providing formal proofs for the Online Facility Location problem (Chapter 2)
we will provide a brief overview of the problem’s motivation and highlight key results. Consider
the case of designing a network, which is, as discussed earlier, a very fruitful application of the
Facility Location Problem. The designer should select the server locations in the underlying
metric space in order tominimize the cost. More often than not, the set of clients is not completely
known to the designer in advance, and therefore an online computation is involved. Another
example is that of clustering pages of the web, in that case new webpages are created in an
online fashion and the algorithm should maintain a good clustering of them over time. Motivated
by such applications Meyerson, [50], introduced the Online Facility Location problem, where
demands arrive one at a time and the goal is to design an online algorithm that minimizes the
competitive ratio of the online algorithm against the optimal offline solution.

Let’s now give a more formal definition of the Online Facility Location problem. Similarly
to the offline case we consider a metric space (X, d). At distinct points in time t = 1, 2, ...n,
(not necessarily distinct) demands u1, u2, ...un arrive as points in the metric spaceX . We denote
by Fi the set of facilities opened by the algorithm after demand ui is processed. It is important
to note that we will mainly study the uniform case where the cost of opening a facility is the
same for every point p ∈ X , another important thing to note is that the algorithm is not allowed
to close facilities, only to open them, therefore Fi−1 ⊆ Fi. The cost incurred to the algorithm
is, as in the offline case, the sum of the assignment cost and the facility opening cost. The key
difference from the offline case is that the assignment cost for a demand ui is the distance to the
closest open facility in Fi (i.e. the distance to the nearest facility after demand ui was processed).
The assignment cost on the other hand is naturally cf · |Fn|, where by cf we denote the cost of
opening a single facility. The cost of the algorithm is:

n∑
i=1

d(Fi, ui) + cf |Fn| (1.1)

The goal is to design online algorithms such that the competitive ratio between the online and
the offline optimal solution, where every demand is known in advance is minimized.

Meyerson proposed an elegant and intuitive algorithm for the problem and showed its com-
petitive ratio to be O(log(n)) where n is the number of demands. He also showed that the
competitive ratio can not be independent of the number of demands. Moreover, Meyerson’s al-
gorithm had the interesting property of being constant factor competitive in the random order
model where the adversary chooses the demand sequence, but it is randomly permuted before
it is provided to the algorithm. Fotakis ([26]) showed that the algorithm’s competitive ratio is
in fact O( log(n)

log(log(n))) and provided a matching lower bound for randomized algorithms against
oblivious adversaries. It is important to note that the lower bound holds even for very simple met-
ric spaces like tree metrics and the real line (where the offline problem can be solved optimally
in polynomial time). Fotakis ([26]) also proposed an asymptotically optimal derandomization of
Meyerson’s algorithm which led to the complete theoretical understanding of the Online Facility
Location problem. However, in order to achieve an asymptotically optimal competitive ratio the
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algorithm is fairly complicated and it is unlikely that it could be useful in practice. For practical
purposes the algorithms of [4] and the primal dual algorithm of [25] seem to outperform the al-
gorithm of [26] even though their theoretical guarantees are slightly worse. More specifically,
the primal dual algorithm is O(log(n))-competitive while the algorithm of Anagnostopoulos et
al. [4] works only for Euclidean metric spaces and its competitive ratio is O(2d log(n)), where
d is the dimension of the Euclidean space and n is the number of demands. The primal dual
algorithm on the other hand has a competitive ratio of O(log(n)) regardless of the underlying
metric space and works in the non-uniform case of the problem where different points of the
metric space have different costs of opening facilities. It is worth noting that the primal dual
algorithm has found application on other problems like the facility leasing problem [51]

1.3 Relaxed versions of the Online Facility Location Problem

It is evident from the lower bound that we will present in Chapter 2 that the lack of knowledge
about future demands forces any algorithm to open facilities that will be useless in the future.
It is therefore natural to study relaxed versions of the problem where the opening of a facility
at some point of the metric space is not completely irrevocable. There has been a particularly
interesting line of work on this direction.

To our knowledge, the first and perhaps the most outstanding work on this direction is that on
incremental facility location. On incremental facility location, the algorithm is allowed to merge
pairs of facilities (and clusters of demands) as time passes by closing one facility and reassigning
every demand to the other facility. The cost of the algorithm on that setting is the sum of distances
from demands to the facilities they are assigned to, plus the facility costs of the open facilities by
the end of the sequence. This problem can be viewed as an instance of the more general setting
of incremental clustering. The framework of incremental clustering was introduced by Charikar,
Chekuri, Feder and Motwani ([11]). Charikar and Panigrahy revisited the incremental clustering
problem ([15]) and presented a constant factor competitive incremental algorithm for the sum
k-radius problem using O(k) centers, they also proved that for the Incremental k-median any
algorithm that maintains at most k centers has a competitive ratio ofΩ(k). They left the following
question as an open problem: does a constant factor competitive algorithm for Incremental k-
median that maintains O(k) centers exist?. Fotakis ([23]) gave a deterministic constant factor
competitive algorithm using O(k) centers for the incremental k-median problem thus resolving
the problem posed in [15]. The algorithm of [14] can also be interpreted as an algorithm for
the incremental problem under certain conditions but opens O(k log2(n)) centers. The natural
problem of Incremental facility location was also introduced by Fotakis in [23] who surprisingly
showed that there exists a constant factor competitive algorithm for the problem (despite the fact
that the closely related problem of online facility location has a lower bound of Ω( log(n)

log(log(n)))).
The idea of facilities being able to move was introduced by Diveki and Imreh ([18]). In their

model the facilities are able to move with no extra cost. In [18] a constant factor competitive
ratio for the problem was provided by computing an approximation of the optimal clustering
at each time step and moving the facilities accordingly. In their recent work Feldkord et al.
([22]), motivated by the problem of page migration ([8], [7], [57]) introduced a new model for
the online facility location with mobile facilities problem. In their model, whenever a facility is
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moved by the algorithm from a point a to a point b a cost of Dd(a, b) is incurred. The constant
D ≥ 1measures how costly the movements are, in instances whereD is close to 1 in the optimal
solution the facilities are expected to move a lot while in instances whereD is large the problem
can be reduced to the classical online facility location problem.

Another particularly interesting line of work towards surpassing the pessimistic lower bounds
of online algorithms is that of learning augmented algorithms initiated (to our knowledge) in
[43] and [46]. The framework of learning augmented algorithms has been applied to the facility
location problem as well ([34], [28], [3])

It is important to note that that an effort to make the constraints of the algorithm less strict
was introduced in [50] by Meyerson, who considered the random order model for online facility
location where the sequence of demands is selected adversarially but is also randomly permuted
before being provided to the algorithm. In that model [50] gave a constant factor competitive
ratio of 8. Lang ([39]) strengthened this to show that against a t-bounded adversary the algorithm
achieves a competitive ratio of O(log(t)/ log(log(t))). The recent work of Kaplan, Naori and
Raz ([36]) showed that Meyerson’s algorithm is in fact 4 competitive in the random order model.

Let’s now see what the cost of an algorithm is on the setting of online facility location with
mobile facilities. The facility and movement cost is naturally the cost of the opened facilities (the
algorithm is not allowed to close open facilities, only to move them) and the total distance that
the facilities have moved times D. There are however 2 natural ways to define the assignment
cost and both are considered in [22]:

1. The instant service model: The assignment cost for a demand ui is its distance to the
closest facility in Fi. Note that this could and, in the general case will, be different from
its distance from the closest facility in Fn (the facility configuration at the end of the
demand sequence). This model captivates applications where clients arrive over time and
they are serviced at their arrival time

2. The delayed to end service model: The assignment cost for a demand ui is its distance
from the facility that the demand was initially assigned to but by the end of the demand
sequence. In other words when a demand arrives it is assigned irrevocably to a facility,
the assignment cost is its distance from that facility by the end of the demand sequence.
This model better captures applications related to clustering where we want to have a good
clustering of demands by the end of the demand sequence.

It is important to note that in both cases the performance of the algorithm is measured com-
pared to the static optimal offline solution, namely to the optimal facility location solution of the
demand sequence. This is a strong assumption for the first model since there are instances where
the algorithm can indeed outperform the offline benchmark. In worst case instances however
any offline algorithm is worse than the static offline optimal solution.

In this thesis we will focus more on the first model, the instant service model. In Chapter
3 we will present the algorithm of [22] for the problem. We will consider the case where the
metric space is a Euclidean space (this is essential for the algorithm presented in [22]) and we
will show that their algorithm, EucOFLM for short, is optimal for the real line and postulate what
needs to be proven in order for the algorithm to be asymptotically optimal for Euclidean spaces
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of arbitrary dimension. We will revisit the problem in Chapter 4 and show that the algorithm is
indeed optimal for Euclidean spaces of arbitrary dimension.

The online facility location with mobile facilities problem was not studied on general metric
space prior to this diploma thesis. In chapter 4 we provide an algorithm for that problem and
show that it is asymptotically optimal

1.4 Our contribution

In this diploma thesis we propose the first (to our knowledge) asymptotically optimal algorithm
for the online facility location with mobile facilities problem on general metric spaces. In our
effort to do so we also resolve the open question of [22] on whether their algorithm is asymp-
totically optimal on Euclidean spaces of arbitrary dimension. The barrier we have to overcome
in order to prove the optimality of the algorithm is that of analysing the cost of the prohibited
demands (see Chapters 3 and 4 for a formal definition of prohibited demands). Prior to our work,
the cost of the prohibited demands was shown to be O(kcf ) (where k is the number of facilities
in the optimal solution and cf is the cost of opening a facility) only for the case of the real line
and a weaker bound of O(k3/2cf ) was shown for Euclidean spaces of arbitrary dimension. We
use the hierarchical decomposition lemma of [26] to show that the cost of prohibited demands
is O(kcf ) for any euclidean space. Furthermore, we generalize the algorithm of [22] to general
metric spaces and show that the algorithm that we propose is asymptotically optimal for general
metric spaces.

1.5 Organization

We will explore the following in the Chapters 2,3 and 4 of this thesis:
Chapter 2: We present the main results on the online facility location problem. First we

present the lower bound of [26] and show that no randomized algorithm can achieve a competitive
ratio better than Ω( log(n)

log(log(n))) even on simple metric spaces like tree metrics and the real line
against an oblivious adversary. We continue to present Meyerson’s algorithm [50] and prove
that its competitive ratio matches the lower bound (up to constants). We introduce the optimal
deterministic algorithm of [26]. We prove that the algorithm achieves an optimal competitive
ratio (again up to constants) in the case that the optimal solution consists of a single facility.

Chapter 3: This chapter focuses on previous work on the online facility location with mobile
facilities problem. We discuss how the lower bound for the online facility location problem
can be adapted to show that in the model discussed no algorithm whose competitive ratio is
independent of the number of demands can achieve a competitive ratio better thanO( log(D)

log(log(D))).
We continue by presenting the algorithm of [22] and analyse its competitive ratio in the case
where the underlying metric space is the real line. In that case we can rather easily exploit the
structure of the real line to cope with the challenge of prohibited demands.

Chapter 4: This chapter contains our contribution to the online facility location with mobile
facilities problem. We prove that the cost of prohibited demands isO(kcf ) on any metric space,
thus, answering the open problem of [22]. We also consider the problem of online facility location
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with mobile facilities on general metric spaces. We introduce a new algorithm for the problem
and prove that our algorithm is asymptotically optimal for general metric spaces.

1.6 Preliminaries

1.6.1 Metric Spaces

We will introduce notions that will be useful throughout this diploma thesis. The first notion is
that of a metric space. A metric space is a set X equipped with a function d : X ×X → R such
that the following conditions hold for every x, y, z ∈ X :

1. Non-negativity: d(x, y) ≥ 0

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality d(x, y) ≤ d(x, z) + d(z, y)

4. d(x, y) = 0⇔ x = y.

The elements of X are called points of the metric space and the function d is called the distance
or metric function. It is often very important to consider sets for which the last condition does
not hold (a prime example is cut metrics, for example [40]). We call such spaces semi-metrics
or pseudometrics.

Let S be a subset of the metric space X . By d(S, u) we call the smallest possible distance
between points of S and point u:

d(S, u) = inf
s∈S
{d(s, u)}

If the metric space is finite then:

d(S, u) = min
s∈S
{d(s, u)}

For a set S we denote∆(S) the diameter of S:

∆(S) = sup
s,s′∈S

{d(s, s′)}

Again if the metric space is finite we can have max instead of sup and:

∆(S) = max
s,s′∈S

{d(s, s′)}

For a set S ⊆ we define the separation of S denoted by sep(S) as follows:

sep(S) = inf
s∈S,s′ ̸∈S

{d(s, s′)}

For finite metric spaces:

sep(S) = min
s∈S,s′ ̸∈S

{d(s, s′)}
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1.6.2 Online Algorithms

In this diploma thesis we will study online algorithms for the online facility location problem
(with and without mobile facilities). Before we concern ourselves with such algorithms lets
back up a little bit to see what online algorithms are and how we measure their performance in
the framework of competitive analysis.

In many practical problems the input is not known in advance but rather arrives in items,
one item at a time. In such scenarios the algorithm must make irrevocable decisions in an online
fashion every time a new ”item” of the input arrives. Consider as an example the following
situation. You have taken up skiing as a hobby. Whenever you go skiing you can either buy the
equipment for skiing or you can rent the equipment. Obviously buying the equipment is much
more expensive that renting it, once you buy it however you need never again pay for it. How
do you decide whether to buy the equipment or rent it when you go skiing. If someone knew
in advance the exact number of times he would go skiing it would be easy for him to deduce
whether the equipment needed to be bought or not. Without knowing the future however the
problem is not as trivial and an online algorithm is involved.

In online computation the input consist of a sequence σ of items arriving over time. When-
ever a new item arrives the algorithm must make an irrevocable decision without knowledge
of future demands. A natural question is ”how do we measure the quality of an online algo-
rithm?”. It is evident that in most interesting problems we cannot expect the algorithm to be
the best possible, but how much worse can it be from the optimal. This is exactly the measure
used in competitive analysis, the performance of the algorithm is compared to the offline opti-
mal algorithm that had access to the entire sequence in advance. Furthermore, we assume that
an adversary selects the input sequence in order to cause the algorithm to have a cost as high as
possible when compared to the offline optimal. This way of analysing the performance of online
algorithms falls under the category of worst case analysis.

Formally an online algorithm has a competitive ratio C = C(n) if on any demand sequence
the cost of the algorithm is at mostC times the cost of an offline optimal algorithm that knew the
entire sequence in advance. The goal is to design algorithmswith as small as possible competitive
ratio.
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Chapter 2

Online Facility Location

2.1 Problem definition

In the online version of the classical facility location problem we consider an underlying met-
ric space (X, d). At distinct points in time t = 1, 2, ..., n, (not necessarily distinct) demands
u1, u2, ..., un arrive as points of the metric spaceX . At every point in time the algorithm main-
tains a set of open facilities and whenever a new demand arrives the algorithm must either assign
the demand to an open facility or open a new facility and assign the demand to it. The assign-
ment of demands to facilities is irrevocable and open facilities cannot be closed once they are
opened. We use Fi to denote the set of facilities opened by the algorithm right after demand ui
was processed. The cost of the algorithm is:

n∑
i=1

d(Fi, ui) + cf |Fn|

Where cf is the (uniform) cost of opening a facility.

2.2 Notation

In this section we introduce some notation. We will usually use F∗ to denote the set of facilities
in the optimal solution and we will denote facilities in F∗ by f∗. Let u be a demand, then by
f∗
u we denote the facility in the optimal solution that u is assigned to, we use d∗u = d(u, fu)
to denote the assignment cost for a demand u in the optimal solution. Furthermore, we will use
Asg∗ to denote the optimal assignment cost and for a facility f∗ ∈ F∗ we use Asg∗(f∗) to denote
the cost of demands assigned to f∗ in the optimal solution, that is if by Sf∗ we denote the set of
demands u assigned to f∗ then:

Asg∗(f∗) =
∑

u∈Sf∗

d(u, f∗) =
∑

u∈Sf∗

d(u, f∗)

More generally if S is a set of demands then by Asg∗(S) we denote the assignment cost of the
demands in S in the optimal solution, that is:

Asg∗(S) =
∑
u∈S

d∗u
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2.3 The lower bound

We will now proceed to show the lower bound for the competitive ratio of the online facility
location problem. The metric space we employ for the construction of the lower bound is a
Hierarchically-well-separated tree (see for example [6], [19] ). More specifically, we consider
the metric space induced by a complete binary tree of height h, such that the root’s distance from
its children is l and it decreases by a factor ofm at every level, which means that at level j, the
distance between nodes at level j and their children (at level j + 1) is l

mj−1 (See figure ??). h,
l, and m will be determined later. We use Tu to denote the subtree that has vertex u as its root.
The adversary creates demands in phases. In the j−th phase , 0 ≤ j ≤ h, the adversary creates
a set of demands at level j. The total number of phases is h + 1, one phase for every level of
the tree. At every phase the adversary creates mj demands on vertex vj , meaning that the total
number of demands is:

h∑
i=0

mi =

mh+1 − 1

m− 1
=

Θ(mh)

l

l/m

l/m2

Figure 2.1: The hierarchically well separated tree

We will now specify how the vertices vj are selected. The first vertex v0 is the root of the
tree, subsequently every vertex vj+1 is either the left or the right child of vj . Specifically, vj+1

is the right child of vj if the algorithm does not have a facility on the right subtree of vj and the
left child otherwise. What we wish to show is that the algorithm pays at least min(cf ,ml) per
phase so that the total cost paid by the algorithm will be at least:

(h+ 1)min(cf ,ml)

32



In order to do so we will show that for every phase we can either charge the algorithm with
an assignment cost for the demands that is at leastml or we can charge it with a facility cost for
a facility that has not been charged so far. For the first phase (phase 0) our charging scheme is
simple: the algorithm has to open at least one facility to service the demands at v0 so we charge
the algorithm with the cost of opening that facility, cf . Our charging scheme for phases j ≥ 1
will be as follows:

1. If the algorithm does not have any facilities on the subtree Tvj then it either has to pay an
assignment cost that is at least:

mjd(uj−1, uj) =

mj · l

mj−1
=

ml

Or it opens a new facility to service the demands at vj in which case we charge the algo-
rithm with the cost of opening that facility

2. If the algorithm has an open facility on the subtree Tvj then because of the policy under
which we select the vertices vj , we have that vj = left(vj−1) and that there is also a
facility on the subtreeTright(vj−1). Wewill show that we have not charged the algorithm for
both facilities and therefore we can charge the cost of one of the facilities to the algorithm
for that phase. To show that we will show that at any phase j the algorithm is charged for
at most one facility on the subtree Tvj

We have the following lemma:

Lemma 2.3.1. At every phase j there is at most one facility of the algorithm charged to the
algorithm in the subtree Tuj

Proof. We will prove the lemma by induction on j. For j = 0 we have that only one facility is
charged to the algorithm. Suppose that the lemma holds for j. That is there is at most one facility
of the algorithm charged to the algorithm at the subtree Tuj . To prove that the lemma holds for
j + 1 we divide between cases:

• If the algorithm has a facility in both Tleft(vj) and Tright(vj) then without loss of generality
we can assume that the facility charged to the algorithm is the one on the right subtree (by
the induction hypothesis at most one of them is already charged to the algorithm). Then
vj+1 = left(vj) and there is no facility charged to the algorithm on Tvj+1 . We charge the
algorithm with the facility on the left subtree and the lemma holds.

• If the algorithm has a facility in only one of the two subtrees Tleft(vj), Tright(vj) then the
adversary will create the demands on the other subtree. In that case the algorithm either
opens a facility (we charge the algorithm for that facility) or does not open a facility on
that subtree and in both cases the lemma holds.
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With the above lemmawe conclude that any algorithm has a cost of at least (h+1)min(cf ,ml).
On the other hand, an algorithm that opens a single facility on vh pays a facility cost of cf and
an assignment cost for phase j:

mj
h−1∑
i=j

l

mi
≤

mjl

∞∑
i=j

1

mi
=

l

∞∑
i=0

1

mi
=

l
1

1−m−1
=

l
m

m− 1

The assignment cost over all phases is therefore at most (h+1)l m
m−1 . Combining the assignment

and the facility cost for the offline algorithm that opens a single facility on vh we get cf + (h+
1)l m

m−1 . We now determine the values of the parameters in order to get the lower bound. We set
m = h and l = cf

h . The total number of demands (Θ(mh) should not exceed n so we have that
m = h = Θ( log(n)

log(log(n)))). Comparing the cost of the online and offline algorithms we get that the

ratio of their costs isΩ(h) = Ω( log(n)
log log(n)). It is not hard to show that a similar lower bound holds

if the vertices vj are not chosen according to the policy described but uniformly at random from
the children of vj−1. Assuming that, we can apply Yao’s Principle (see for example [9], chapter 6,
[59]) to get the same lower bound for randomized algorithms against an oblivious adversary. The
metric space described above can be embedded to the real line with a small distortion, proving
that the lemma also holds for the very simple metric space of the real line.

2.4 The randomized algorithm

We will now present and analyze the algorithm of [50] and prove that the algorithm achieves an
asymptotically optimal competitive ratio ofO( log(n)

log(log(n))). The algorithm opens facilities accord-
ing to the following simple facility opening rule: whenever a new demand ui arrives it calculates
the distance of the demand to the nearest open facility, d = d(ui,Fi−1) (recall that by Fi we
denote the set of open facilities of the algorithm after demand ui was processed), and opens a
new facility at point ui with probability min(1, d

cf
).
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Algorithm 5:Meyerson’s algorithm (RANDOFL)
1 for i = 1 to n do
2 let d = d(ui,Fi−1)
3 w.p min(1, d

cf
) open a facility at ui

4 end

The analysis of the algorithm requires the following lemma, which essentially states that
the algorithm, on expectation, will pay at most assignment cost cf on a set S before opening
a facility on one of the points of S. There are various ways to prove this lemma, for example
using expected waiting time techniques, [50] or potential function arguments, [27]. We follow
the proof of [39]

Lemma 2.4.1. Let S be any subset of demands and X be the random variable denoting the
expected assignment cost until a facility is opened on one of the points of S. X is simply the
sum of the assignment costs if no facility is opened. Then E[X] ≤ cf . If we also account for the
facility cost then the cost is at most 2cf .

Proof. We prove the lemma by induction on the number of demands that S has. Let v1, v2, ..., vk
be the demands in S in the order that they appear and d1, d2, ..., dk their respective distances from
the nearest open facility at the time when they arrive, conditioned on the event that a facility is
not opened on one of the demands of S yet. Note that they do not need to be consecutive demands
since we want to prove the lemma for any set S. In the case where the set S has only one demand
the lemma is trivial. If d1 ≥ cf then a facility is opened on v1 deterministically, therefore the
assignment cost in that case is 0. On the other hand, if d1 < cf ,X is equal to 0 with probability
d1
cf

and d1 otherwise. Therefore:

E[X] = (1− d1
cf

)d1 ≤ d1 ≤ cf

Suppose now that the lemma holds for any set S with |S| = k. Then for a set S′ with |S′| = k+1
let O be the event that a facility is opened on v1, using conditional expectation we have:

E[X] = E[X|O]Pr[O] + E[X|O](1− Pr[O])

Again, we first divide between the cases that d1 ≥ cf and that d1 < cf . In the first case,
Pr[O] = 1 therefore E[X] = E[X|O], however E[X|O] = 0 and the lemma holds. In the more
interesting case that d1 < cf the expectation of X is:

E[X] =
d1
cf

E[X|O] + (1− d1
cf

)E[X|O] =

(1− d1
cf

)E[X|O]

Where we used the fact that by the definition of the random variableX if a facility is opened on
v1 then X = 0. Now to analyse the value E[X|O] we make the following simple observation,
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if a facility is not opened on v1 then the expected assignment cost for X is d1 plus the expected
assignment cost for the rest of the demands in the set S′ \ {v1}. Let S = S′ \ {v1} then |S| = k.
We now use the induction hypothesis. Let Y be the random variable that is equal to the expected
assignment cost for demands on the set S until a facility is opened on one of them (Y is equal to
the sum of the assignment costs if no facility is opened) using the induction hypothesis we have
that E[Y ] ≤ cf . Putting everything together:

E[X] =

(1− d1
cf

)(d1 + E[Y ]) ≤

(1− d1
cf

)(d1 + cf ) =

d1 − d1 +
d21
cf

+ cf ≤

cf

If we also account for the cost of opening the facility we have that the cost is at most 2cf

For the analysis of the algorithm we focus on a single center (facility) of the optimal solu-
tion and show that the RANDOFL pays at most O( log(n)

log(log(n))) times the optimal solution. The
first observation for the analysis is that for every demand that arrives the expected facility and
assignment cost is bounded by 2d(ui,Fi−1). This can easily be proven as follows: if a facility
is opened on ui then the algorithm pays cost cf for the facility and no assignment cost. If on the
other hand, a facility is not opened on ui then the algorithm pays cost d(ui,Fi−1). The expected
facility and assignment cost is:

d(ui,Fi−1)(1−
d(ui,Fi−1

cf
) + cf

d(ui,Fi−1)

cf
≤

2d(ui, Fi−1)

Note that this bound holds even in the case when d(Fi−1, ui) > cf . Therefore we only need to
bound the cost of d(ui, Fi−1). Letm,h be parameters such thatmh ≥ n. Similarly to the analysis
of the lower bound, we divide the operation of the algorithm in phases. More specifically, we
have h + 2 distinct phases. Let f∗ be the optimal center that we focus on (by f∗ we denote the
facility as well as the point in the metric spaces that the facility is opened). Let δ∗ be the average
assignment cost on the cluster of demands assigned to f∗ in the optimal solution. We make the
two following simple observations: there is no demand assigned to f∗ in distance greater than
nδ∗. To see this, let Sf∗ be the set of demands assigned to f∗ in the optimal solution and for the
sake of contradiction assume that there is a demand at distance greater that nδ∗ assigned to f∗

then:

nδ∗ ≤∑
ui∈Sf

d(ui, f) =
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δ∗|Sf | ≤
δ∗n

Where from the first to the second line we have used the fact that the assignment cost of a single
demand is less than or equal to the sum of assignment costs over all demands. And from the third
to the fourth line we have used the fact that the subset of demands assigned to f∗ in the optimal
solution is less than n. The second observation is that if a facility of RANDOFL is opened within
distance δ∗ from f∗ then from then on we can bound the assignment cost of every other demand
assigned to f∗ in the optimal solution by the optimal assignment cost for those demands plus
kδ∗ where k is the number of demands assigned to f∗ in the optimal solution that arrive after
a has opened. The proof of this is again fairly simple, let a be the facility of RANDOFL that
is within distance δ∗ from f∗. Let S = {v1, v2, ..., vk} be the demands assigned to f∗ in the
optimal solution that arrive after a has opened. The assignment cost of RANDOFL for those
demands is at most:

k∑
i=1

d(a, vi) ≤

k∑
i=1

d(a, f∗) + d(f∗, vi) ≤

kδ∗ +

k∑
i=1

d(f∗, vi) =

kδ∗ +
k∑

i=1

d∗vi ≤

2Asg∗(f∗)

Where from the first to the second line we have used the triangle inequality, from the second to
the third we have used that a is within distance δ∗ from f∗. It is evident that after RANDOFL
has opened a facility within distance δ∗ from f∗ it will pay at most twice Asg∗(f∗) therefore we
would like for the algorithm to open a facility within distance δ∗ from f∗ as soon as possible.
Note that this distance is the best we can hope for since the algorithm only opens facilities on
demands. Equipped with these two observations we proceed to analyse the algorithm, recall that
we are only focusing on a single facility.

We divide the state of the algorithm in phases with respect to the distance from the optimal
center f∗. There are h+2 phases, we say that the algorithm is in phase j if there is a facility of the
algorithm within distancemj+1δ∗ from f∗ and no facility of the algorithm within distancemjδ∗.
There is also a last phase −1 that starts after phase 0 and never ends. We divide demands while
the algorithm is in phase j in two categories, namely inner and outer demands. Inner demands
are demands that are at distance less than mjδ∗ from f∗ the rest of the demands are outer. In
the hth phase from our first observation there are only inner demands. We also consider every
demand arriving during the last phase of the algorithm to be outer.
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Figure 2.2: Inner and outer demands

It is easy to bound the assignment cost of outer demands using the triangle inequality, in-
tuitively these are the demands that are relatively far from the optimal center. We continue to
bound the assignment cost of RANDOFL for those demands. Let u be an outer demand then:

d(Fi−1, u) ≤
d(Fi−1, f) + d∗u ≤

md∗u + d∗u =

(m+ 1)d∗u

Then the assignment and facility cost for outer demands is at most 2(m+ 1)d∗u.
On the other hand for inner demands by lemma 2.2.2 we have that after expected cost at most

2cf a facility of RANDOFL will open within distancemjδ∗ and the phase will change. For the
last phase since the algorithm has a facility opened in distance at most δ∗ from f∗ by the second
observation the assignment cost for demands arriving in the last phase is at most 2Asg∗(f∗).
Summing over all phases we have that on expectation the algorithm pays at most:

2(m+ 1)Asg∗(f∗) + 2(h+ 1)cf + 4Asg∗(f∗) =

2(m+ 2)Asg∗(f) + 2(h+ 1)cf

We can now sum over all optimal facilities to get the upper bound for the algorithm:

2(m+ 2)Asg∗+2(h+ 1)|F∗|cf

We letm = h = Θ( log(n)
log(log(n))) and we get that the algorithm is O( log(n)

log(log(n))) competitive.
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2.5 The optimal deterministic algorithm

We will now present the deterministic algorithm of [26] that achieves the asymptotically optimal
competitive ratioO( log(n)

log(log(n))) and essentially closes the problem of online facility location. We
will present the analysis for the case that the optimal solution consists of a single facility f∗ and
discuss why the straightforward generalization of this analysis could only yield a competitive
ratio of O(log(n)). This will present the need for the hierarchical decomposition lemma of [26]
that we will explore further in Chapter 4.

The deterministic algorithm, DETFL for short, is a derandomization of RANDOFL. The
algorithm maintains at every point in time a facility configuration Fi−1 of the currently open
facilities as well as a set L of unsatisfied demands. Unsatisfied demands are demands whose
assignment cost has not yet contributed to the opening of a facility. Each unsatisfied demand
has a contribution to the opening of a facility equal to its distance from the closest open facility.
For an unsatisfied demand u we call this value the ”potential” of u, Pot(u) = d(F , u). For
a set S of unsatisfied demands we denote by Pot(S) the sum of the potentials of demands in
S, Pot(S) =

∑
u∈S Pot(u). Whenever a new demand ui arrives the algorithm calculates the

potential of unsatisfied demands in a small ball around ui, namely in a ball with center ui and
radius d(Fi−1,ui)

x for sufficiently large x. If the potential exceeds cf then the algorithm will open
a new facility on one of the unsatisfied demands in the aforementioned ball. All the demands
that contributed to the opening of a facility are removed from the set of unsatisfied demands,
therefore each demand can contribute to the opening of a facility at most once. Intuitively the
algorithm balances between the assignment and facility cost, whenever the assignment cost of
a set of demands close to each other (relative to the facilities of the algorithm) exceeds cf the
algorithm opens a new facility on one of them. Specifically the algorithm opens a facility on the
center of the smallest radius ball contributing at least half of the potential, if the distance to ui is
less than the cost of opening a facility and on ui otherwise.

Similarly to the analysis of RANDOFL we consider parameters m,h such that mh > n.
We will then take m = h = Θ( log(n))

log(log(n))) and divide the operation of the algorithm in h + 2
distinct phases, namely h, h−1, ..., 0,−1. We consider sufficiently large x ≥ 10 and sufficiently
larger λ ≥ 3x + 2. We again focus on the special case of a single optimal facility f∗, however
this time this is not without loss of generality since the straightforward generalization of the
analysis presented would only yield a suboptimal O(log(n)) competitive ratio. We define δ∗ to
be the average assignment cost. The divison of phases is similar to the one in the analysis of
RANDOFL. We say that the algorithm is in phase j ̸= −1 if there is a facility of the algorithm
within distance λmj+1δ∗ and no facility of the algorithm within distance λmjδ∗. We consider
a final phase that begins after phase 0 and never ends. The demands while the algorithm is in
phase j are divided between inner and outer demands. Inner demands u are demands such that
d(F , u) ≤ mjδ∗ and are denoted by In(f∗), the rest of the demands are outer. The first phase
only has inner demands (as established in the analysis of RANDOFL there are no demands at
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Algorithm 6: Deterministic Algorithm (DETFL)
1 Let x be an appropriately chosen constant
2 F0 ← ∅
3 L← ∅
4 for i = 1 to n do
5 let d = d(ui,Fi−1)
6 L← L ∪ {ui}
7 rui ← d/x
8 Bui ← Ball(ui, rui) ∩ L
9 Pot(Bui)←

∑
u∈Bui

d(Fi−1, u)

10 if Pot(Bui) ≥ cf then
11 if d(Fi−1, ui) < cf then
12 Let ν ≥ 0 be the smallest integer such that:
13 Either there exists exactly one point u ∈ Bui , such that:
14 Pot(Bui ∩ Ball(u, rui/2

ν)) > Pot(Bui)/2
15 Or for every u ∈ Bui , Pot(Bui ∩ Ball(u, rui/2

ν+1)) ≤ Pot(Bui)/2
16 Let ŵ be any point in Bui such that:
17 Pot(Bui ∩ Ball(ŵ, rui/2

ν)) ≥ Pot(Bui)/2

18 end
19 else
20 ŵ ← ui
21 end
22 Fi = Fi−1 ∪ {ŵ}
23 L← L \Bui

24 end
25 Assign ui to the nearest facility in Fi

26 end

distance greater than nδ∗). The last phase only has outer demands whose cost is at most 2- times
the optimal assignment cost. We let Λ be the set of inner unsatisfied demands. Demands in Λ
are much closer to the optimal solution and to each other than to the algorithms facilities. The
algorithm maintains the following invariant. The potential of demands in Λ never exceeds cf ,
that is Pot(Λ) ≤ cf . We have the following lemma:

Lemma 2.5.1. At any point in time the potential of inner unsatisfied demands Pot(Λ) does not
exceed cf . That is:

Pot(Λ) ≤ cf

Proof. In the last phase there are no inner demands, therefore Pot(Λ) = 0 ≤ cf . We consider
the case where the algorithm is in phase j ̸= −1. Suppose for the sake of contradiction that at
some point this was not the case, namely Pot(Λ) > cf and consider the last demand in Λ that
arrived, say ui. Since the potential of demands is non-increasing with time (the algorithm is not
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allowed to close facilities, only to open new ones) when ui arrived the potential of demands in
Λ exceeded cf . It suffices to show that Ball(ui, rui) contains every point in Λ because then the
potential Pot(Bui) would exceed cf and a new facility would open making the potential of Λ to
go to 0. In order to show that Λ ⊆ Ball(ui, rui) we have to show that rui ≥ 2mjδ∗ (the radius
of the ball must be greater than or equal to the diameter of the ball of inner demands). By the
definition of rui we have that:

rui = d(Fi−1, ui)/x ≥
(d(Fi−1, f

∗)− d(f∗, ui))/x ≥
(λmjδ∗ −mjδ)/x

Where from the first to the second line we have used the triangle inequality and from the second
to the third we have used that the algorithm is in phase j as well as that ui is an inner demand.
On the other hand the diameter of inner demands is at most 2mjδ∗. Substituting and using the
fact that λ ≥ 2x+ 1 we get the result.

The assignment cost of outer demands is the easiest to bound. The following lemma states
that the assignment cost of outer demands is at most within a factor O(λm) of the optimal as-
signment cost.

Lemma 2.5.2. Let j be the phase of the algorithm. Then the following hold:

• If the algorithm is in the last phase then the cost of outer demands is at most 2Asg∗(f∗)
(recall that all demands in the last phase are outer)

• If the algorithm is in a phase j with j ̸= −1 then the assignment cost for an outer demand
is at most (λm+ 1)d∗ui

Proof. For the first case where the algorithm is in the last phase let ui be a demand arriving in
the last phase of the algorithm. By our assumption that the algorithm is in the last phase we have
that d(Fi−1, f

∗) ≤ δ∗, therefore by the triangle inequality the assignment cost is at most:

d(Fi−1, ui) ≤
d(Fi−1, f

∗) + d∗ui
≤

δ∗ + d∗ui

Summing over all demands arriving in the last phase we get the bound.
For the second case consider a phase j ̸= −1 and let ui be an outer demand arriving while

the algorithm is at phase j. Using the triangle inequality the assignment cost is at most:

d(Fi−1, ui) ≤
d(Fi−1, f

∗) + d∗ui

However since ui is an outer demand its optimal assignment cost is at leastmjδ∗. Furthermore,
the algorithm is in phase j therefore d(Fi−1, f

∗) ≤ λmj+1δ∗. We can conclude that:

d(Fi−1, f
∗) ≤ λmd∗ui
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Hence:

d(Fi−1, ui) ≤ (λm+ 1)d∗ui

By the above lemma the contribution of outer demands to the opening of a facility can be
bounded by O(λm) times the optimal assignment cost. This is not entirely the case since outer
unsatisfied demands could have been inner at their assignment time and turned to outer when
the phase changed. We can however bound the contribution in that case as well. Since the
potential of Λ never exceeds cf and the potential of a demand is non-increasing with time, the
total contribution of outer demands that were initially inner is bounded by cf times the number
of phases. Ιn other words, the potential of any such demand when it contributes to the opening
of a facility is at most its potential when it turned from inner to outer. Since Pot(Λ) ≤ cf for
every phase the total contribution is at most cf (h+ 1).

Now we have to bound the cost for inner demands. Suppose that whenever the algorithm
opened a new facility it also changed phase. If that were the case then since the potential of
Λ never exceeds cf the assignment cost of inner demands would be bounded by (h + 1)cf .
Unfortunately this is not the case, a new facility might significantly decrease the potential of
demands in Λ without changing the phase of the algorithm and we have to account for this de-
crease as well. In order to circumvent this difficulty we will show that whenever a new facility
is opened either the phase changes or the contribution of outer demands in the opening of the
facility was at least cf/2. We have argued above that the contribution of outer demands to the
opening of facilities is within a factor O( log(n)

log(log(n))) of the optimal solution (this consists of an

O(λm) = O( log(n)
log(log(n))) contribution due to demands that were outer at their assignment time as

well as an h+ 1 = O( log(n)
log(log(n))) contribution due to outer demands that were initially inner)

Lets consider what are the costs the algorithm pays whenever a new facility is opened due to
the arrival of a demand ui. The total cost consist of the three following costs:

1. The assignment cost of demand ui. We will show this to be at most cf
x

2. The cost of opening the facility. This is obviously equal to cf .

3. The decrease in the potential of inner demands. Since the potential of inner demands is at
most cf this is again at most cf

Therefore ,the total cost paid by the algorithm whenever a new facility is opened is at most
2x+1
x cf . The proof that the assignment cost is at most cf/x is very simple. If d(ui,Fi−1) ≥ cf

then the new facility is opened at ui therefore the assignment cost is 0. If on the other hand
d(ui,Fi−1) < cf then the facility is opened on some point of a ball with center ui and radius
d(ui,Fi−1)

x therefore the assignment cost is at most cf/x. The following lemma formally states
that we can charge the above costs either to the change of the phase or to outer demands.

Lemma 2.5.3. Let ui be a demand opening a new facility and let ŵ be the point on which the
facility is opened. Then either this new facility changes the phase of the algorithm or the contri-
bution of outer demands to the opening of the facility is at least cf/2.
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Proof. First consider the case that d(Fi−1, ui) > cf . If that is the case then if ui is an inner
demand then because ŵ = ui the phase will change. If on the other hand ui is an outer demand
then its contribution to the opening of the facility is cf > cf/2 and the lemma holds as well.

We now focus on the most difficult case that d(Fi−1, ui) ≤ cf . The total contribution is
divided into the contribution of outer demands and inner demands, which means that at least one
of them must contribute at least half of the total contribution . If the outer demands contribute at
least half of the potential then since Pot(Bui) ≥ cf we are done. Therefore we can assume that
outer demands contribute less than half of the potential, which in turn means that inner demands
contribute at least half of the potential. We will assume that the phase does not change and this
will lead us to a contradiction by showing that outer demands must contribute at least half of the
potential (contrary to our assumption). Since every pair of inner demands are at distance at most
2mjδ∗ there is a ball of radius at most 2mjδ∗ that contributes at least half of the potential. In
order for the phase to not change however the location of ŵ must be at distance at least λmjδ∗

from f∗. Furthermore the radius of the ball with center ŵ containing at least half of the potential
cannot exceed 4mjδ∗ (Since otherwise the facility would open on one of the inner demands and
the phase would change)

ŵ f∗
λmjδ∗

Inner demands

What we want to show now is that the situation is as in the figure, namely that the ball with
center ŵ that contributes at least half of the potential has no intersection with the ball of inner
demands, this would in turn mean that outer demands contribute at least half of the potential and
would lead us to a contradiction. Here the fact that we have taken λ sufficiently large comes into
play, specifically we have that λ ≥ 32 therefore:

d(ŵ, f∗) ≥
λmjδ∗ ≥
32mjδ∗
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4mjδ∗ +mjδ∗

Where 4mjδ∗ is an upper bound for the radius of the ball around ŵ andmjδ∗ is the radius of the
ball of inner demands.

Now lets see more formally howwe can use this lemma to bound the assignment cost of inner
demands. Consider the set of inner demands S arriving between any two consecutive openings
of facilities. Since by our assumption no facility opened in between, the potential of Λ is greater
than or equal to the assignment cost of the demands in S and since the potential does not exceed
cf the assignment cost of the demands in S is at most cf . Now when the algorithm opens the new
facility the previous lemma assures us than one of two things happen, namely either the phase
changes or the outer demands contribute at least half of the potential. If the phase changes, this
can happen at most h+1 times and therefore the assignment cost for inner demands when this is
the case can be bounded by (h+1)cf which isO( log(n)

log(log(n))) times the optimal cost. On the other
hand if the phase does not change then the outer demands contribute at least cf/2 to the opening
of a facility. Since the total contribution of outer demands is itself bounded by O( log(n)

log(log(n)))
times the optimal solution we can also bound the assignment cost of inner demands when this is
the case by O( log(n)

log(log(n))) times the optimal solution.
Lets now see why this approach can not be generalised to the general case of multiple cen-

ters in the optimal solution. Let f∗
1 , f

∗
2 , ..., f

∗
k be the centers in the optimal solution. A careful

examination of the analysis presented above would lead to the conclusion that all the lemmas
proven above also hold for the case of multiple facilities. The difficulty in the analysis of the
case with multiple facilities lies in the fact that a new facility opened by the algorithm might
decrease the potential of inner demands belonging to multiple optimal centers. In that case while
we can certify that for the centers that the phase does not change the decrease in the potential is
at most cf and it is still the case that outer demands contribute at least cf/2 to the opening of
a facility this is not enough to bound the decrease in the potential of inner demands of multiple
centers that could be as much as Ω(kcf ).

One approach to circumvent that problem is to relax our requirement on the competitive ratio
and more specifically on the phases of the algorithm. We could be less strict on the requirement
of the phases beingO( log(n)

log(log(n))) and allowO(log(n)) phases. In order to do so we will say that
the algorithm changes phase, with respect to some optimal center f∗

j , whenever the distance of
the closest facility of the algorithm decreases by a constant factor, say 3. Then instead of having
O( log(n)

log(log(n))) phases with respect to every facility we would have O(log(n)) phases.
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Chapter 3

Previous work on Online Facility Location with Mobile
Facilities

3.1 Problem Definition and Notation

In this Chapter we explore already known results for the mobile facility location problem with
mobile facilities, we focus on the Instant Service Model. We again consider an underlying metric
space (X , d). Similarly to the classical online facility location problem at distinct points in time
(not necessarily distinct) demands arrive as points of the metric space. Whenever a new demand
arrives the algorithm can assign the demand to an already open facility, open a new facility or
move a facility from one point of the metric space to another. The cost of opening a new facility
is the same for every point of the metric space and the cost of moving the facility is a constant
times the distance moved. The cost incurred to the algorithm is the assignment cost, namely the
distance between every facility and its closest open facility at its service time, the facility cost,
namely the number of facilities opened times the cost of opening a facility and the movement
cost.

Lets recall some notation and also introduce some new notation. We will use cf to denote
the cost of opening a facility andD to denote the cost of moving a facility per unit distance, that
is if a facility is moved from point a to point b then the algorithm pays a cost of Dd(a, b). We
will use f∗ to denote centers (facilities) of the optimal solution. For a demand u we will use f∗

u

to denote the center that the demand is assigned to in the optimal solution, furthermore we will
use d∗u to denote the assignment cost of demand u in the optimal solution, that is d(f∗

u , u). If a
is a facility of the algorithm we will use f∗

a to denote the facility in the optimal solution that was
closest to a when the facility opened, we will say that a belongs to f∗

a . We will use Fi to denote
the set of facilities opened by the algorithm right after the demand ui was served (or right before
demand ui+1 arrived). We will use pi(a) to denote the point in the metric space of a facility a
after demand ui was processed. For the case of the real line we will call the interval of some
facility f∗ the set of points that are closer to f∗ than any other facility of the optimal solution.

As mentioned earlier, the cost paid by the algorithm by the end of the sequence is the sum of
three different ”types” of costs. The assignment cost, that is for every demand the distance to its
closest facility right after the demand was processed denoted by Asg, the movement cost that is
D times that total movement of the facilities. denoted by Mov and the facility cost that is |Fn|cf
and is denoted by Fac.

Essential to the analysis is the notion of prohibited and non-prohibited demands denoted by
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Proh and NProh respectively. Let y ≥ 8 be a constant and let f∗
i , f

∗
j be two facilities of the

optimal solution. We will say that a demand u is a prohibited request of f∗
i with respect to f∗

j if
the following hold:

1. The demand u is assigned to f∗
i in the optimal solution (f∗

u = f∗
i ) and is much closer to

f∗
i than to f∗

j . Specifically:

d(f∗
i , u) ≤

d(f∗
j , f

∗
i )

y

2. The demand u is assigned to some facility z of the algorithm belonging to f∗
j , (f∗

z = f∗
j ).

The importance of prohibited requests to the analysis will become clear later. The rest of
demands are non-prohibited. In order to understand how prohibited and non-prohibited will be
used in the analysis lets formulate what a non-prohibited demand is. Intuitively non-prohibited
demands are either assigned to the optimal facility that the facility of the algorithm serving them
belongs to or can be considered to be assigned to that optimal facility with only a constant factor
loss (this is very easy to verify)

As we will see it can be proven that no algorithm can achieve a competitive ratio better than
Ω( log(D)

log log(D)). The algorithm we will present was proven in [22] to achieve this ratio on the line
and we will present the proof of this in this chapter.

3.2 The lower bound

The proof of the lower bound is conceptually the same as in the lower bound for the online
facility location problem. We can take the parameterD to be approximately equal to the number
of demands and get the bound. Another intuitive way to view this lower bound is to consider the
hierarchically well separated tree in the construction of the lower bound in the previous chapter.
The first demand of the sequence is at distance approximately cf from the optimal facility. The
assignment cost for demands that are ”inner” is approximately the same as the distance between
the algorithms facilities and the optimal facility. In order to make sense for a facility to move,
the distance between the demand and the facility must be less than cf/D and it would take
log(D)/ log log(D) phases to get from distance cf to distance cf/D while paying cost for outer
demands approximately log(D)/ log log(D). We have the following theorem:

Theorem 3.2.1. No algorithm whose competitive ratio does not depend on n can be better than
Ω( log(D)

log(log(D))-competitive

Proof. We omit the proof. The reader is directed to [22] for a formal presentation of the argu-
ments described above.

The theorem presented states that if we want to improve upon the previous lower bound of
log(n)

log(log(n)) and be independent of the number of demands then we cannot hope for something

better than O( log(D)
log(log(D))). Surprisingly however, this exactly what we will achieve.
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3.3 The algorithm

The algorithm we will present combines ideas from the online facility location and the page mi-
gration problem. Consider for simplicity an instance where the optimal solution opens a single
facility f∗. The high level idea is to use RANDOFL ([50]) in order to get at distance approxi-
mately cf/D from the optimal facility and then use ideas from the page migration problem and
the ability of the facilities to move in order to converge to the optimal solution.

The algorithm is as follows. First of all the algorithm only opens facilities in pairs and
maintains two sets of facilities, namely the mobile and the static facilities denoted by Fm, Fs

respectively. Obviously it is the case that F = Fm ∪ Fs. Static facilities will never be moved
by the algorithm after they are opened. Mobile facilities on the other hand are moved towards
the current demand whenever the demand is sufficiently close. When the algorithm decides that
a new facility is to be opened at some point a (this decision is made randomly with a rule much
similar to the rule of RANDOFL) it in facts opens a pair of facilities on a, adding a both to
the set Fm and to the set Fs. For a facility a ∈ Fs we will use mob(a) to denote the mobile
facility in Fm corresponding to a. Whenever a new demand ui arrives the algorithm considers
the closest open static facility to the demand, say a, and divides between two cases. If the demand
is sufficiently close (distance less than or equal to 2cf/D) to the static facility then the algorithm
either opens a new pair of facilities on the demand or moves the facility towards the demand by
a fraction 1/D of their distance (or both). We call such demands close demands. This operation
of the algorithm makes it unsuitable for general metric spaces since it is essential that any point
between to points of the metric space is also on the metric space. On the other hand if the
demand is at distance greater than 2cf/D then the algorithm simply opens a pair of facilities on
ui with probability d(a,ui)

βcf
. We call such demands far demands. In pseudocode the algorithm is

Algorithm 7

3.4 The analysis

We will now present the analysis of the algorithm. We will begin our analysis by sketching the
case of a single facility f∗ in the optimal solution. Wewill first prove the bound on outer demands
(outer demands are demands that are distance at least cf/D from their optimal center). Then we
will describe the use of a potential function argument to bound the cost of the online algorithm
for the inner demands (inner demands are demands that are at distance at most cf/D from their
optimal center). This will lead us to describe what problems arise in the generalization of this
analysis, and this will lead us naturally to the notion of prohibited and non-prohibited demands
and as we will see it will suffice to show that the cost of prohibited demands is bounded in order
to generalize to more facilities in the optimal solution. This is easy to bound in the case of the
real line. A bound on the cost of prohibited demands permits us to consider only the case of a
single facility in the optimal solution for the rest of the analysis. Then we will again focus our
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Algorithm 7: The algorithm for Euclidean metric spaces (EucOFLM)
1 Let β be an appropriately chosen constant
2 Fm

0 ← ∅
3 Fs

0 ← ∅
4 for i = 1 to n do
5 Let a = argmina′{d(ui, a′) : a′ ∈ Fs}
6 if d(a, ui) ≤

2cf
D then /* ui is a close demand */

7 Let z = mob(a)
8 w.p. d(z,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

9 move(z → D−1
D z + 1

Dui)
10 Assign ui to z
11 end
12 else /* ui is a far demand */
13 w.p. d(a,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

14 Assign ui to the facility opened at ui.
15 end
16 end

attention on a single optimal center and present a formal proof of the potential function argument.
In order to make the analysis more clear we will present the notion of the upper assignment

cost denoted by Asg+. The upper assignment cost is useful because the other costs of the al-
gorithm can be bounded by a constant factor times the upper assignment cost of the algorithm.
This reduces the problem of bounding all the costs of the algorithm to only bounding the upper
assignment cost. The upper assignment cost of a demand ui (the upper assignment cost of the
algorithm is simply the upper assignment cost over all demands) is essentially the assignment
cost that the algorithm would have to pay if it took no action after the demand arrived and simply
maintained its previous configuration. More formally the upper assignment cost for a demand
ui is defined as follows. Let a = argmina′∈Fs

i−1
{d(a′, u)}, that is the closest open static facility

at the arrival time of ui. The upper assignment cost for demand ui is:

Asg+(ui) =

{
min{d(ui, a), βcf} If ui is a far demand
min{d(ui,mob(a)), βcf} If ui is a close demand

An important ingredient in the algorithm and its analysis is the basic lemma from Meyerson’s
algorithm. Using the ideas described in Chapter 2 we can easily prove the following lemma,
formulated in terms of the upper assignment cost:

Lemma 3.4.1. Let S be any subset of demands and X be the random variable denoting the
expected upper assignment cost until a facility is opened on one of the points of S. X is simply
the sum of the assignment costs if no facility is opened. Then E[X] ≤ 2βcf .

Using this lemma we can easily bound the cost of outer demands. For inner demands the
idea is to use a potential function argument to bound the cost of the solution. However as we will
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see the potential function charging cost will be a random variable depending on the algorithm’s
random choices. The constants of the algorithm are chosen in such a way so as to assure that
on expectation the potential function charging cost will be at most Asg+

2 . More specifically we
charge every mobile facility z of the algorithm at distance at most 2cf/D from the optimal
facility that it belongs to with a potential of ρd(z, f∗

z ). Since we only charge with a potential the
facilities of the algorithm that are at distance at most 2cf/D the potential initially charged to any
such facility is at most 2ρcf .

3.4.1 The costs of the algorithm

The costs of the algorithm consist of the assignment cost, the facility cost, the movement cost
and the potential function charging cost. We will now show that the costs of the algorithm can be
bounded by a constant factor times the upper assignment cost. We first show that the assignment
cost is bounded by the upper assignment cost.

Lemma 3.4.2. The assignment cost Asg is at most the upper assignment cost Asg+. That is:

Asg ≤ Asg+

Proof. Whenever a new demand ui arrives the algorithm might do one of the following things
if ui is a far demand:

1. It might open a facility on ui. In this case the assignment cost for the demand is 0 and
therefore the upper assignment cost is greater than or equal to the actual cost.

2. It might not open a new facility in which case the assignment cost is equal to the upper
assignment cost

On the other hand if the demand is a close demand then the algorithm might do one of the fol-
lowing things:

1. Open a facility on ui. Again if this is the case then the upper assignment cost is greater
than or equal to the actual assignment cost.

2. Not open a facility on ui but move the mobile facility serving ui towards ui. This also
makes the actual assignment cost greater than or equal to the actual assignment cost.

In every case the upper assignment cost of a demand ui is greater than or equal to the actual
assignment cost of the algorithm. Summing over all demand we get the result

Now we will continue with the facility cost of the algorithm.

Lemma 3.4.3. The expected facility cost of the algorithm E[Fac] is bounded by a constant factor
times the upper assignment cost, that is:

E[Fac] ≤ 2

β
Asg+

49



Proof. Whenever a demand, say ui, arrives being at distance d from the facility it is assigned
to a new pair of facilities is opened with probability min( d

βcf
, 1). The expected facility cost if

d < βcf is:

2cf
d

βcf
≤ 2

β
d =

2

β
Asg+(ui)

If on the other hand d ≥ βcf then the facility cost is:

2cf =

2βcf
β

=

2

β
Asg+(ui)

Summing over all demands ui we get the result.

Let Φ0 be the random variable denoting the total potential function charging cost of the
algorithm. The following lemma guarantees a bound on the expected value of Φ0 by the upper
assignment cost:

Lemma 3.4.4. E[Φ0] ≤ E[Asg+]
2

Proof. Every demand ui being at distance d from the facility it is assigned opens a new pair of
facilities with probability min( d

βcf
, 1). If d > βcf then a facility pair opens with probability 1

and the potential charging cost is:

2ρcf ≤
β

2
cf ≤

Asg+(ui)
2

On the other hand if d ≤ βcf then 2ρcf · d
βcf
≤ d

2 = Asg+(ui)
2 summing over all demands we

have that:

E[Φ0] ≤
Asg+

2

Finally for the movement cost of the algorithm:

Lemma 3.4.5. The expected movement cost is bounded by the upper assignment cost, that is:

E[Mov] ≤ Asg+
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Proof. Let ui be the demand arriving at round i, the algorithm will move a facility towards the
demand only if the demand is a close demand. Let z ∈ Fm be the mobile facility servicing the
demand ui. The movement cost whenever ui is a close demand is

D
d(z, ui)

D
=

d(z, ui) =

Asg+(ui)

Again summing over all demands we get the result.

It is evident that we only need to bound the upper assignment cost of the algorithm, then if
we manage to show that on expectation the upper assignment cost is O( log(D)

log(log(D)))OPT then a

competitive ratio of O( log(D)
log(log(D))) will easily follow.

3.4.2 The analysis of outer demands

We focus on a single optimal facility f∗. The idea is to use the guarantees of Meyerson’s algo-
rithm to prove that after cost O( log(D)

log(log(D)))OPT there will be a facility at distance at most cf/D
from f∗.

Inner and outer demands. Here the definition of inner and outer demands is different from the
definition of the online facility location problem. We say that a demand ui is outer if d(ui, f∗) >
cf/D. the rest of the demands are inner. Following the analysis of [27] we can easily bound the
assignment cost of outer demands by O( log(D)

log(log(D))) times the optimal solution.
A simple observation similar to the one we made in the analysis of RANDOFL and DETOFL

is that for every demand u the assignment cost for u in the optimal solution is at most cf . We
will use the technique we used for Meyerson’s algorithm to analyze the cost of outer demands.

There are outer demands that are also close demands, we will show that if an outer demand
ui is also a close demand, then the assignment cost for the demand if it is assigned to a mobile
facility instead of a static is increased by at most 2d∗ui

.

Lemma 3.4.6. The upper assignment cost of any outer demand that is assigned to a mobile
facility (is close) is at most 2d∗ui

greater than the upper assignment cost if it was assigned to the
corresponding static facility

Proof. Since ui is an outer demand d∗ui
≥ cf/D, therefore by the triangle inequality it suffices

to show that no mobile facility can be at distance greater than 2cf/D from its corresponding
static facility. Let a be a facility of the algorithm and z = mob(a) its corresponding mobile
facility. We will prove the statement by an induction on the number of demands served by z. If
no demands where served by the mobile facility then the mobile and the static facility are at the
same point and the statement holds. Assume that after l demands served by the mobile facility
d(a, z) ≤ 2cf/D. Let ui be the (l + 1)-th demand served by z. The point that z will be after
demand ui is served is:

pi(z) =
D − 1

D
pi−1(z) +

1

D
ui
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The distance between z after ui is processed will be:

d(a, pi(z)) =

||a− pi(z)|| =

||a− D − 1

D
pi−1(z)−

1

D
ui|| ≤

||D − 1

D
(a− pi−1(z)) +

1

D
(a− ui)|| ≤

D − 1

D
||a− pi−1(z)||+

1

D
||a− ui|| =

D − 1

D

2cf
D

+
1

D

2cf
D

=

2cf
D

Where from the fourth to the fifth line we have used the triangle inequality and from the fifth to
the sixth line we have used that d(a, pi−1(z)) ≤ 2cf/D (by the induction hypothesis) and that
d(a, ui) ≤ 2cf/D (because ui was served by a mobile facility which means that it is a close
demand)

The above lemma guarantees that assigning outer demands to mobile facilities instead of
static facilities is not too costly (in fact the algorithm would have asymptotically the same com-
petitive ratio if there were no static facilities). Since this is the case, for the proof of the following
lemma we will assume that every outer demand is assigned to the closest open static facility and
the actual upper assignment cost will be at most 2Asg∗ greater.

Lemma 3.4.7. The expected upper assignment cost for outer demands is O( log(D)
log(log(D)))OPT

Proof. We consider a single optimal facility of the algorithm f∗. We divide the points of the
metric space at distance greater than cf

D with respect to their distance from f∗. We consider
h + 1 zones, the 0 zone is consisted of the points that are at distance greater than cf from f∗.
For j ≥ 1 the j-th zone is consisted of all points p such that cf

mj < d(f∗, p) ≤ cf
mj−1 . We take

m = log(D)
log(log(D)) and h = Θ( log(D)

log log(D)) such thatm
h = D which means that every outer demand

belongs to some zone. We say that the algorithm is in phase j with respect to the facility f∗ if
there is a static facility of the algorithm in zone j and no static facility of the algorithm in any
zone j′ with j′ > j. Because there are no demands assigned to f∗ in zone 0 after expected upper
assignment cost O(cf ) a facility of the algorithm will open inside a zone j with j > 0.

We will bound the assignment cost of the algorithm while in phase j. Consider a demand
ui arriving while the algorithm is in phase j. If the demand belongs to a zone j′ with j′ ≤ j
then by the triangle inequality the upper assignment cost for ui is at most (m + 1)d∗ui

. On the
other hand for demands that belong to zone j′ > j after expected upper assignment cost at most
2βcf a facility will open on one of these points and phase j will end. If we sum over all optimal
centers and all phases it follows that the expected upper assignment cost of outer demands is at
most (m+ 1)Asg∗ + (h+ 1)Fac∗ = ( log(D)

log(log(D)))OPT .
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If we now take into consideration that the demands might not be assigned to a static facility
but rather to a mobile facility the cost grows only by at most 2Asg∗, therefore we can conclude
that the upper assignment cost on outer demands is again on expectationO( log(D)

log(log(D))OPT ).

3.4.3 The analysis of inner demands

Recall that an inner demand ui is a demand such that d(ui, f∗
ui
) ≤ cf/D. We wish to show that

for every optimal center the cost of the algorithm on inner demands assigned to f∗ is a constant
times the optimal assignment cost. We focus on a single facility center f∗. After expected cost
at most O(cf ) on inner demands a facility is opened within distance

cf
D from f∗. Thereafter any

inner demand will be assigned to a facility being at distance at most 2cf
D from f∗. Any such fa-

cility a is charged with a potential ϕa = ρDd(za, fa) ≤ 2ρcf . We call this the potential function
cost of a. We call the sum of the potential function costs over every facility opened by the algo-
rithm within distance 2cf

D the potential function charging cost of the algorithm, Φ0. We say that
a demand is close if it is within distance 2cf

D from its closest static facility. Note that by the time
that a facility is opened within distance cf

D from f∗ every inner demand is also a close demand
whose closest static facility is at distance at most 2cf/D. So it suffices to bound the cost of close
demands assigned to some mobile facility z whose corresponding static facility is at distance at
most 2cf/D from the optimal facility (and thus is charged with a potential ρDd(f∗

z , z)).
The high level idea is to use a potential function argument to balance between two cases.

The first case is that the inner demand ui that arrived is far from the optimal center. When this
is the case the algorithm pays approximately the same as the offline optimal solution, however
the potential function of the mobile facility serving this demand might increase, the optimal as-
signment cost being high however compensates for that increase as well. The second case is that
the inner demand ui is much closer to the optimal facility than to the algorithms facility. When
that is the case the upper assignment cost paid by the algorithm is much greater than the opti-
mal assignment cost. However, the facility of the algorithm will move towards the demand and
therefore towards the optimal facility (since those are very close) and the potential of the facility
will decrease. This decrease in the potential will be enough to compensate for the assignment
cost of the algorithm. Before we continue to formalize this proof sketch we will see why the
straightforward generalization of this analysis to multiple facilities in the optimal solution is not
enough to guarantee an asymptotically optimal competitive ratio.

There is a setback when considering multiple facilities in the optimal solution, a demand ui
assigned to a facility f∗

ui
in the optimal solutionmight be assigned to amobile facility z belonging

to some different facility of the optimal solution, f∗
z ̸= f∗

ui
. If this is the case but the demand is

non-prohibited then we can assume that the demand was assigned to f∗
z in the optimal solution,

this would only increase the cost of the ”optimal” solution by a constant factor and the same
arguments can be applied:

d(f∗
z , ui) ≤

d(f∗
z , f

∗
ui
) + d(f∗

ui
, ui) ≤

yd∗(ui) + d∗(ui) =

(y + 1)d∗(ui)
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Where we have used that ui is a non prohibited demand therefore d(ui, f∗
ui
) > d(f∗

z , f
∗
ui
)/y.

On the other hand prohibited demands are misleading for the algorithm: they direct the fa-
cilities of the algorithm towards a different center while they also have small assignment cost.
Consider however the simple case of two facilities in the optimal solution, f∗

1 and f∗
2 .

d(f∗
1 ,f

∗
2 )

y

Prohibited demands

f∗
1 f∗

2

Mobile facility belonging to f∗
2

Figure 3.1: Prohibited demands of f∗
1 with respect to f∗

2

Consider the prohibited demands of f∗
1 with respect to f∗

2 . After expected upper assignment
cost O(βcf ) on prohibited demands, a facility of the algorithm will open at distance at most
d(f∗

1 , f
∗
2 )/y from f∗

1 . Now consider a demand of f∗
1 that could potentially be prohibited, meaning

that it is at distance less than d(f∗
1 , f

∗
2 )/y. Every static facility a belonging to f∗

2 is at distance
at least d(f∗

1 , f
∗
2 )/2 from f∗

1 . This is easy to verify:

d(f∗
1 , f

∗
2 ) ≤

d(f∗
1 , a) + d(f∗

2 , a) ≤
2d(f∗

1 , a)

Where we have used that a belongs to f∗
2 therefore d(f∗

2 , a) ≤ d(f∗
1 , a). Rearranging we get

the result. However when a static facility a′ is opened at distance at most d(f∗
1 , f

∗
2 )/y from f∗

1

the distance of any new demand, say ui at distance at most d(f∗
1 , f

∗
2 )/y from f∗

1 (a potentially
prohibited demand) will not be assigned to a facility belonging to f∗

2 . Recall that the algorithm
finds the closest static facility to the new demand ui, we will show that a′ is closer from any
static facility belonging to f∗

2 . The distance between such a demand ui and any static facility a
belonging to f∗

2 is at least:

d(a, ui) ≥
d(a, f∗

1 )− d(ui, f
∗
1 ) ≥

d(f∗
1 , f

∗
2 )

2
− d(f∗

1 , f
∗
2 )

y
≥

3

8
d(f∗

1 , f
∗
2 )
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Where from the first to the second line we have used the triangle inequality, from the second
to the third line we have used that a facility belonging to f∗

2 is at distance at least d(f∗
1 , f

∗
2 )/2

from f∗
1 , finally from the third to the fourth line we have used that y ≥ 8. On the other hand the

distance of a′ from ui is, using the triangle inequality, at most 1
4d(f

∗
1 , f

∗
2 ).

This analysis guarantees us that the expected upper assignment cost for the case of two fa-
cilities is O(2βcf ). Furthermore it guarantees that if we select any pair of facilities f∗

i , f∗
j the

expected upper assignment cost of prohibited demands of f∗
i with respect to f∗

j is at mostO(cf ).
This analysis however does not immediately give us a good bound for the general case of k fa-
cilities in the optimal solution. If we naively used the same arguments the bound we would get
would be O(k2cf ) (this is constituted of an expected upper assignment cost of O(cf ) for every
pair of optimal facilities), this is somewhat natural, when we generalize this argument to more
facilities we make no use of the fact that the the optimal centers lie in an underlying metric space.
For the case where the metric space is the real line we can exploit the structure of R to improve
this to O(kcf ).

Lemma 3.4.8. The upper assignment cost of prohibited demands on the real line is O(kcf )

Proof. We let f∗
1 < f∗

2 < ... < f∗
k be the positions of the optimal facilities on the real line.

We follow the configuration of static facilities of the algorithm by a binary tree. Every node in
the tree will correspond to a subset of optimal facilities that are consecutive. The tree will grow
dynamically according to the openings of facilities of the algorithm. The root of the tree will
contain all facilities of the optimal solution and at first the tree only contains the root. Consider
a node u of the tree containing facilities f∗

i < ... < f∗
j . If a facility is opened at the interval of

some facility f∗
l (recall that the interval of a facility is the set of points for which the facility is

closer than any other facility in the optimal solution) with i < l < j then we create two children
for node u containing the facilities f∗

i < ... < f∗
l and f∗

l < ... < f∗
j . After this event happens

there will be no prohibited demands of f∗
m with respect to some facility f∗

m′ with m < l < m′.
Similarly there will be no prohibited demands of f∗

m′ with respect to f∗
m (withm < l < m′). If

on the other hand a leaf contains only two facilities, f∗
i , f

∗
j then the node is split after a facility

of the algorithm is opened at the prohibited area of f∗
i with respect to f∗

j (at distance at most
d(f∗

i ,f
∗
j )

8 from f∗
i ) and vice versa.
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f∗
1 f∗

2 f∗
3 f∗

4 f∗
5

f∗
1 f∗

2 f∗
3 f∗

3 f∗
4 f∗

5

Figure 3.2: How the tree splits nodes when a facility is opened (red rectangle)

Note that for every prohibited demand of some facility f∗
i with respect to some facility f∗

j

there is a unique leaf of the tree containing both f∗
i and f∗

j , therefore for any prohibited demand
there is a unique leaf containing the two optimal facilities involved. We only charge leaves of the
tree with the costs of prohibited demands. Our goal is to bound the cost on prohibited demands
until a node is split (is no more a leaf) while also showing that the number of nodes is O(k).
Lets see what is the expected upper assignment cost until a leaf is split. Let u be a leaf with the
facilities f∗

i < ... < f∗
j . We are only looking at prohibited demands from facilities within the

node. Since the node is not yet split there are no facilities of the algorithm belonging to f∗
l for

i < l < j. Therefore the only prohibited demands can be of f∗
i with respect to f∗

j or vice versa
or from f∗

l with respect to either f∗
i or f∗

j . The cost of prohibited demands involving f∗
i and

f∗
j is at most 2 · 2βcf (this accounts for 2βcf for prohibited demands of f∗

i with respect to f∗
j

and 2βcf for prohibited demands of f∗
j with respect to f∗

i ). On the other hand after expected
upper assignment cost 2βcf on prohibited demands of facilities f∗

l with respect to f∗
i and f∗

j

a facility will be opened on the interval of one of them and the node will be split (a perfectly
similar argument can show that after expected cost 4βcf a node with two facilities will be split).
We can conclude that the expected upper assignment cost on prohibited demands of every node
until it is split is at most 6βcf . The number of leaves at any point is at most 2k which means
that at any point the number of nodes of the tree is O(k). By the end of the demand sequence
the expected upper assignment cost on prohibited demands is O(k)6βcf = O(kcf )

Now that we have dealt with prohibited demands (at least on the real line) we are ready to
present the main analysis. The proof we will show will go according to the sketch we gave
at the beginning of the section. We will be able to show that when the upper assignment cost
is much greater than the the actual assignment cost the configuration of the algorithm is signifi-
cantly improved (the potential function is decreased). On the other hand when the algorithm pays
approximately the same as the offline optimal solution then this compensates for the potential
worsening of the configuration of the algorithm.

Lemma 3.4.9. For every close inner demand ui assigned to a mobile facility mob(a) the upper
assignment cost plus the potential function difference is at most a constant times the optimal
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assignment cost if the demand is non prohibited. That is:

d(ui,mob(a)) + ∆Φ ≤ (ρ+ 1)x · d∗ui

If the demand is prohibited the potential function difference is bounded by the upper assignment
cost (meaning that the assignment plus the potential difference on every prohibited demand is
bounded by the optimal facility cost)

Proof. We will focus on the simple case of the line (since our bound of prohibited demands also
works only for this case), the general case is similar but a bit more technical. Let ui be a close
inner demand and a = argmina′∈Fs{d(a, ui)}, let z = pi−1(mob(a)) and z′ the place of the
mobile facility after the movement (z′ = pi(mob(a))). We will first divide between the cases
that the demand ui is prohibited and the case that the demand ui is non-prohibited.

Lets focus first on the case that the demand is non-prohibited, this means that either ui is
assigned to f∗

a in the optimal solution or it can be considered to be assigned to f∗
a in the optimal

solution with only a constant factor increase of the cost. We will further divide between two
cases. The first case is that the assignment cost for the demand ui is much lower than its upper
assignment cost, namely for large enough x:

d(ui, f
∗
a ) ≤

d(z, ui)

x

What we wish to show when that is the case is that the expected upper assignment cost plus the
potential function difference is less than or equal to 0. Note that the only facility that is moved
is mob(a) therefore∆Φ = ρD(d(z′, f∗

a )− d(z, f∗
a )).

It is easy to verify that:

d(f∗
a , z

′) ≤ max{d(f∗
a , z)−

d(ui, z)

D
,
d(ui, f

∗
a )

x
}

If d(f∗
a , z

′) ≤ d(f∗
a , z)−

d(ui,z)
D holds then the potential function difference is:

∆Φ =

ρD(d(z′, f∗
a )− d(z, f∗

a )) ≤

−ρD(
d(ui, z)

D
=

−ρd(ui, z)

Note that d(ui, z) is precisely the upper assignment cost, meaning that for ρ ≥ 1:

d(ui, z) + ∆Φ ≤ 0

If on the other hand d(f∗
a , z

′) ≤ d(ui,f
∗
a )

x then the potential function difference is:

∆Φ =

ρD(d(z′, f∗
a )− d(f∗

a , z)) ≤
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ρD(d(u,f
∗
a )− d(f∗

a , z)) ≤
ρD(d(ui, f

∗
a )− d(z, ui) + d(u, f∗

a )) =

ρD(2d(ui, f
∗
a )− d(z, ui)) ≤

ρD(
2

x
d(z, ui)− d(z, ui)) =

ρD(
2− x

x
d(z, ui))

We take x > 2 therefore (because D ≥ 1):

ρD(
2− x

x
d(z, ui)) ≤

ρ
2− x

x
d(z, ui) =

−ρx− 2

x
d(z, ui)

We take ρ ≥ x−2
x and we have:

d(z, ui) + ∆Φ ≤ 0

Now lets focus on the case that the upper assignment cost of the demand is approximately
the same as the optimal assignment cost, namely:

d(z, ui) ≤ x · d(f∗
a , ui)

The increase in the potential function is:

∆Φ ≤

Dρ
d(z, ui)

D
=

ρxd(f∗
a , ui)

Therefore the upper assignment cost plus the potential function difference is:

d(z, ui) + ∆Φ ≤ (ρ+ 1)xd(ui, f
∗
a )

Since the demand is non-prohibited d(ui, f∗
a ) is within a constant factor of the optimal assignment

cost, meaning that d(z, ui)+∆Φ is also within a constant factor of the optimal assignment cost.
Now for the case that the demand is prohibited. Since the expected upper assignment cost for

prohibited demands is bounded by O(kcf ) it suffices to show that the increase in the potential
function is also bounded by the upper assignment cost. Then we can easily conclude that the
expected upper assignment cost plus the potential function difference over all prohibited demands
is O(kcf ). This is very simple:

∆Φ ≤ Dρ
d(z, ui)

D
≤ ρd(z, ui)
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3.4.4 The Theorem

We have now concluded the proof of the asymptotically optimal competitive ratio of the algo-
rithm on the real line. We will summarize and combine the lemmas in the following theorem to
conclude that the competitive ratio of the algorithm for the real line is O( log(D)

log(log(D))OPT ).

Theorem 3.4.10. The expected cost of EucOFLM on the real line is:

O(
log(D)

log(log(D))
)OPT

Proof. Recall that the expected costs of the algorithm are bounded by a constant factor times the
upper assignment cost of the algorithm. Let C denote the cost of the algorithm:

E[C] = E[Asg] + E[Fac] + E[Mov] ≤ O(Asg+)

The expected upper assignment cost is:

E[Asg+] =
E[Asg+inner] + E[Asg+outer] ≤

O(
log(D)

log(log(D))
OPT )O(kcf ) + (ρ+ 1)xAsg∗+E[Φ0]

We now use the fact that E[Φ0] ≤ E[Asg+] we can get the bound:

Asg+ ≤ O(
log(D)

log(log(D))
OPT )
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Chapter 4

Online Facility Location with Mobile Facilities in
general Metric Spaces

4.1 Introduction

In this section we present our work on the online facility location with mobile facilities problem.
Our results include a generalization of the algorithm of [22]. We analyse the algorithm using
the hierarchical decomposition lemma of [26] and prove that our algorithm is asymptotically
optimal on general metric spaces. Our analysis also proves the optimality of the algorithm of
[22] in Euclidean metric spaces of arbitrary dimension.

It is evident from the analysis of the EucOFLM algorithm that the main problem in general-
izing to dimensions higher than 1 is the analysis of the cost of prohibited demands. In Chapter 3
we exploited the structure of the real line to prove that in that case the expected cost of prohibited
demands is O(kcf ) where k is the number of facilities in the offline optimal solution and cf is
the cost of opening a single facility (recall that we are focusing on the uniform case where the
cost of opening a facility is the same for every point of the metric space). Our main result is the
use of the hierarchical decomposition lemma of [26] to analyse the cost of prohibited demands
in Euclidean spaces of arbitrary dimension and general metric spaces.

4.2 The algorithm

We will now present our algorithm that achieves the asymptotically optimal competitive ratio on
general metric spaces. Similarly to the EucOFLM algorithm our algorithm maintains to set of
facilities: the mobile facilities denoted by Fm and the static facilities Fs. The mobile facilities
will be moved by the algorithm with the goal to increase its configuration. The static facilities
on the other hand will never move. Whenever the algorithm decides to open a facility at some
point of the metric space (the decision will be made randomly according to the opening rule
of RANDOFL, Meyerson’s randomized algorithm [50]) it will instead open a pair of facilities
at the same point: a static facility, that will never be moved and a mobile facility that will be
moved throughout the execution of the algorithm. The way that the facilities are opened implies
a pairing between mobile and static facilities. For a static facility a we denote by mob(a) the
corresponding mobile facility, that is the mobile facility that was opened at the same time as a.

The algorithm classifies demands into two categories, close demands and far demands. Let
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ui be a demand, the algorithm calculates the closest open static facility to demand ui, a =
argmina′∈Fs{d(a′, ui)}. If it holds that d(a, ui) ≤ 2cf/D thenui is classified as a close demand.
If on the other hand d(a, ui) > 2cf/D then the demand is classified as a far demand. Far
demands are treated in exactly the same way as in Meyerson’s algorithm and are served by the
closest static facility. Close demands on the other hand are served by mobile facilities and they
might cause a facility to move.

Since we are trying to tackle the problem of general metric spaces, moving a facility to an
arbitrary point on the line between 2 points of the metric space is no longer an option (this is what
the algorithm of [22] does). We instead apply a very simple facility moving rule, we move the
mobile facility to the point of the demandwith probability 1

D . In other wordswhenever a close de-
mand ui arrives if z is the mobile facility serving that demand then the algorithm flips a coin and
with probability 1

D moves the facility on the point of the demand. In pseudocode the algorithm is
Algorithm 8.

Algorithm 8: The algorithm for general metric spaces GenOFLM
1 Let β be an appropriately chosen constant
2 Fm

0 ← ∅
3 Fs

0 ← ∅
4 for i = 1 to n do
5 Let a = argmina′{d(ui, a′) : a′ ∈ Fs}
6 if d(a, ui) ≤

2cf
D then /* ui is a close demand */

7 Let z = mob(a)
8 w.p. d(z,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

9 w.p 1
D : move(z → ui)

10 Assign ui to z
11 end
12 else /* ui is a far demand */
13 w.p. d(a,ui)

βcf
: Fs

i ← Fs
i−1 ∪ {ui}, Fm

i ← Fm
i−1 ∪ {ui}

14 Assign ui to the facility opened at ui.
15 end
16 end

4.3 The analysis

Wewill now proceed to analyze the algorithm and show that it achieves an asymptotically optimal
competitive ratio of O( log(D)

log(log(D))).
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4.3.1 Notation

Lets recall some notation that we also used on the previous chapter. We will use cf to denote
the cost of opening a facility and D to denote the cost of moving a facility per unit distance.
For the set of facilities of the optimal offline solution we use the notation F∗ and we use f∗ to
denote optimal facilities. Let u be a demand, we use f∗

u to denote the optimal facility that u is
assigned to in the optimal solution. More generally for a point p of the metric space we use f∗

p

to denote the closest facility of the optimal solution. For a demand u we use d∗u to denote the
optimal assignment cost of u (d∗u = d(u, f∗

u)).

4.3.2 An outline of the analysis and definitions

We again define the notion of upper assignment cost, let ui be a demand and a the closest open
static facility at the arrival time of ui. We define the upper assignment cost as:

Asg+(ui) =

{
min{d(ui, a), βcf} If ui is a far demand
min{d(ui,mob(a)), βcf} If ui is a close demand

We can bound the expected costs of the algorithm by a constant factor times the upper as-
signment cost, therefore if we show that the expected upper assignment cost is bounded by
O( log(D)

log(log(D))OPT ) then a bound of O( log(D)
log(log(D))OPT ) will easily follow (by OPT we denote

the optimal offline solution of the problem). Our analysis will go as follows. Lets focus our
attention on a single facility of the optimal solution f∗. We will first categorize the demands into
inner and outer. Inner demand are demands that are within a distance cf/D from the facility they
are assigned to in the optimal solution. The rest of the demands are outer. We will use the ideas
from the analysis of Meyerson’s algorithm [27] to show that the upper assignment cost of outer
demands is bounded by O( log(D)

log(log(D))OPT )

For inner demands we will show that after expected upper assignment cost O(cf ) a pair of
facilities will be opened at distance at most cf/D from f∗. Thereafter every inner demand will
be a close demand and furthermore every inner demand will be assigned to some mobile facility
whose corresponding static is at distance at most 2cf/D from f∗. We charge any such mobile
facility with a potential of ρd(f∗, z). For inner demands after a pair of facilities was opened at
distance at most cf/D we will show the following if a demand is much closer to f∗ than to the
mobile facility of the algorithm then the configuration of the algorithm is significantly improved
on expectation ( the expected potential function difference compensates for the large upper as-
signment cost). If on the other hand the upper assignment cost of the algorithm is comparable to
the optimal assignment cost then this also compensates for the (possible) increase of the potential
function.

As mentioned earlier every mobile facility initially opened at distance at most 2cf/D from
its nearest optimal facility is charged with a potential charging cost of ρd(z, f∗

z ). We call the sum
over all such facilities the potential function charging cost of the algorithm, denoted by Φ0. The
expected potential function cost is bounded by Asg+

2 . We will show that on expectation:

E[Asg+] = O(
log(D)

log(log(D))
)OPT+E[Φ0]⇒
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E[Asg+] = O(
log(D)

log(log(D))
)OPT+E[Asg+]/2⇒

E[Asg+] = O(
log(D)

log(log(D))
)OPT

The main technical difficulty in our analysis is the analysis of prohibited demands. We recall
now the definition of prohibited demands (denoted by Proh): Let y ≥ 8 be a constant and let
f∗
i , f

∗
j be two facilities of the optimal solution. We will say that a demand u is a prohibited

demand of f∗
i with respect to f∗

j if the following hold:

1. The demand u is assigned to f∗
i in the optimal solution f∗

u = f∗
i and is much closer to f∗

i

than to f∗
j . Specifically:

d(f∗
i , u) ≤

d(f∗
j , f

∗
i )

y

2. The demand u is assigned to some facility z of the algorithm belonging to f∗
j , (f∗

z = f∗
j ).

The rest of the demands are the non-prohibited demands, denoted by NProh. Let ui be a close
demand and z the mobile facility that serves ui, then either ui is assigned to f∗

z in the optimal
solution or it can be considered to be assigned to f∗

z in the optimal solution with only a constant
factor increase of the cost.

Our algorithm heavily relies on Meyerson’s algorithm to bound the cost of outer demands. It
is therefore natural that the following lemma is essential to our analysis. Its proof is very similar
to the one in lemma 2.4.1 presented in Chapter 2.

Lemma 4.3.1. Let S be a set of demands. The expected upper assignment cost until a facility is
opened at one of them is bounded by 2βcf .

4.3.3 The costs of the Algorithm

We will now prove that the expected costs of the algorithm are bounded by a constant factor
times the upper assignment cost, assuming that, we can only focus on the upper assignment cost
for the analysis of our algorithm. It is very easy to see that the actual assignment cost of the
algorithm is upper bounded by the upper assignment cost (for a formal proof see Lemma 3.4.2
from Chapter 3). For the facility cost of the algorithm:

Lemma 4.3.2. The expected facility cost of the algorithm E[Fac] is bounded by a constant factor
times the upper assignment cost, that is:

E[Fac] ≤ 2

β
Asg+

Proof. Whenever a demand, say u, arrives being at distance d from its serving facility (if the
demand is far then d is the distance from the nearest open static facility while if the demand is
close d is the distance from the mobile facility corresponding to the nearest open static facility).
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A new pair of facilities is opened with probability min( d
βcf

, 1) so the expected facility cost if
d < βcf is:

2cf
d

βcf
≤ 2

β
d =

2

β
Asg+(u)

If on the other hand d ≥ βcf then the facility cost is:

2cf =

2βcf
β

=

2

β
Asg+(u)

Summing over all demands u we get the result.

We now bound the potential function charging cost Φ0 by the upper assignment cost of the
algorithm:

Lemma 4.3.3. E[Φ0] ≤ E[Asg+]
2

Proof. Every demand u being at distance d from the facility it is assigned to opens a new pair
of facilities with probability min( d

βcf
, 1). If d > βcf then a facility pair opens with probability

1 and the potential charging cost is:

2ρcf ≤
β

2
cf ≤

Asg+(u)
2

On the other hand if d ≤ βcf then 2ρcf · d
βcf
≤ d

2 = Asg+(u)
2 . Summing over all demands we

have that:

E[Φ0] ≤
Asg+

2

Finally for the movement cost:

Lemma 4.3.4. The expected movement cost is bounded by the upper assignment cost, that is:

E[Mov] ≤ Asg+

Proof. Let u be a close demand, a the closest static facility to u and z be the mobile facility
serving u. The upper assignment cost for u is d(u, z) (Asg+(u) = d(u, z)). The facility z is
moved with probability 1

D making the expected moving cost:

1

D
Dd(u, z) = Asg+(u)

Summing over all demands we get the result.
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4.3.4 The analysis of outer demands

We will use the analysis of [27] of Meyerson’s algorithm to analyze the expected cost of outer
demands.

We say that a demand u is outer if d(f∗
u , u) >

cf
D . Following the analysis of [22] which in

turn follows the analysis of [27] for Meyerson’s algorithm we can easily prove that the expected
upper assignment cost on outer demands can be bounded by O( log(D)

log log(D)))OPT . First of all we
will show that for an outer demand u, the assignment cost if the demand is assigned to a mobile
facility instead of the closest static facility is increased only by at most 2d∗u, this is guaranteed
by the following lemma:
Lemma 4.3.5. Let u be an outer close demand and let a = argmina′Fs{d(a′, u)}. Then the
following inequality holds:

d(u,mob(a)) ≤ d(u, a) + d∗u

Proof. Since u is an outer demand we have that d∗u > cf/D, furthermore since the mobile
facility mob(a) only moves on close demands we have that d(mob(a), a) ≤ 2cf/D meaning
that d(mob(a), a) ≤ 2d∗u. Using the triangle inequality we get the result

In the following, for clarity, we will assume that every outer demand is also far. This, in fact,
is not necessarily the case. However the cost of the algorithm can increase by at most 2Asg∗ if
outer demands are assigned to mobile facilities.

We consider a single optimal facility of the algorithm f∗. We divide the points of the metric
space at distance greater than cf

D with respect to their distance from f∗. We consider h+1 zones.
The 0th zone is consisted of the points that are at distance greater than cf from f∗. For i ≥ 1 the
ith zone is consisted of all points p such that cf

mi < d(f∗, p) ≤ cf
mi−1 . We take m = log(D)

log(log(D))

and h = Θ( log(D)
log log(D)) such that mh = D which means that every outer demand belongs to

some zone. We say that the algorithm is in phase i with respect to facility f∗ if there is a static
facility of the algorithm in zone i and no static facility of the algorithm in any zone j with j > i.
Because there are no demands assigned to f∗ in zone 0 after expected upper assignment cost
O(cf ) a facility of the algorithm will open inside a zone i with i > 0.

We will bound the assignment cost of the algorithm while in phase j. Consider a demand
ui arriving while the algorithm is in phase j. Ιf the demand belongs to a zone j′ with j′ ≤ j
then by the triangle inequality the upper assignment cost for ui is at most (m + 1)d∗ui

. On the
other hand for demands that belong to a zone j′ > j by lemma 4.3.1 we have that after expected
upper assignment cost at most 2βcf a facility will open on one of these points and phase j will
end. From the above analysis if we sum over all optimal centers and all phases it follows that
the expected upper assignment cost on outer demands is at most (m+1)Asg∗+(h+1) Fac∗ =
( log(D)
log(log(D)))OPT

4.3.5 The analysis of inner demands

Now we will analyse the cost of inner demands. We will start by proving that the expected
upper assignment cost of prohibited demands is O(kcf ) where k is the number of facilities in
the optimal solution.
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We begin by giving some definitions related to prohibited demands. Let K be a set of fa-
cilities of the optimal solution. We call external prohibited demands of the setK the prohibited
demands that are assigned to some facility f∗

i ∈ K in the optimal solution but the algorithm
assigns them to some facility belonging to some optimal facility f∗

j not in K, f∗
j ̸∈ K. On the

other hand internal prohibited demands are prohibited demands that are assigned to some facility
f∗
i ∈ K in the optimal solution but they are assigned to some facility of the algorithm belonging
to some different optimal facility f∗

j ∈ K, f∗
i ̸= f∗

j .
We now present the main tool of our analysis, namely the hierarchical decomposition lemma

of [26]. A hierarchical decomposition is a complete laminar set system. A set system is laminar
if it has no intersecting sets. A pair of sets K,K ′ form an intersecting pair if neither K \ K ′,
K ′ \K, K ∩K ′ is empty. In other words a set system is laminar if for any pairs of sets K,K ′

the sets are either disjoint or related by containment. A complete set system is a set system
containing every singleton element {c}. We will think of this hierarchical decomposition as a
rooted tree where every node of the tree represents a subset of points of the metric space. The
root of the tree is the entire metric space and every node is either a leaf which means that it is a
singleton set or the union of its children is equal to the node it self, furthermore the intersection
between any pair of its children is the empty set. Formally, for a node u of the tree representing
a subsetK ⊆M of the metric space eitherK = {c} for some element c ∈M or u is not a leaf
and K = ∪li=1Ki, where K1, ...,Kl are the children of set K. It also holds that Ki ∩Kj = ∅
for 1 ≤ i < j ≤ l. It is easy to show that any complete laminar set system of a set S has at
most 2|S| − 1 sets. For a setK in the hierarchical decomposition other thanM we use par(K)
to denote the parent ofK in the corresponding tree representation.

Lemma 4.3.6. For every γ ≥ 16 every finite metric space (M, d) has a hierarchical decompo-
sition K such that for every K ∈ K which is notM one of the following hold:

1. Either ∆(K) > ∆(par(K))
γ2

2. Or sepM(K) > ∆(par(K))
4γ

We consider the metric space induced by the facilities in the optimal solution and apply
lemma 4.3.6 on it. This gives a hierarchical decomposition of the facilities of the optimal solution.
The idea is to charge every set of the hierarchical decomposition for the prohibited demandswhile
the set is active (we will define later what a set being active means). Since there areO(k) sets in
the hierarchical decomposition if we show that the expected upper assignment cost on prohibited
demands per set is O(cf ) we will have that the expected cost on prohibited demands is O(kcf )

We define two types of sets in the hierarchical decomposition. We call a setK ∈ K a set of
type A if the following holds:

∆(K) > min{∆(par(K)

γ2
,
∆(par(K))

64γ
}

We call a setK ∈ K a set of type B if:

sep(K) >
∆(par(K))

4γ
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and also:

sep(K)

16
> ∆(K)

Lemma 4.3.7. Consider the hierarchical decomposition K of optimal centers guaranteed by
lemma 4.3.6. For every K ∈ K and K ̸=M is either a set of type A or a set of type B

Proof. LetK ∈ K be a set different thanM. Note that by lemma 4.3.6 one of the two conditions
hold. If the first condition holds (∆(K) > ∆(par(K))

γ2 ) thenK is trivially a set of type A since:

∆(K) >
∆(par(K))

γ2
≥ min{∆(par(K))

γ2
,
∆(par(K)

64γ
}

If on the other hand the second condition holds (sep(K) > D(par(K))
4γ ) then we divide between

two cases. If sep(K) > D(par(K))
4γ then the set is of type B.

If not, then sep(K) ≤ ∆(par(K))
4γ which means that:

16 ·∆(K) ≥ sepM (K) >
∆(par(K))

4 · γ
⇔

∆(K) >
∆(par(K))

64 · γ

Which makesK a set of type A.

As mentioned earlier we will consider the metric space induced by the set of optimal facilities
F∗ and apply the lemma to this set. Let K be the hierarchical decomposition of F∗. For every
set K ∈ K we arbitrarily choose an optimal facility f∗

K ∈ K to be the representative of the set.
We say that a set K is active if d(Fs, f∗

K) > λ∆(K) while for every superset of K, K ′ ∈ K it
holds that d(Fs, f∗

K′) ≤ λ∆(K ′) where λ is a constant that is larger than 9
8 . Note that for every

prohibited request of some center f∗
i with respect to some other center f∗

j there exists some active
set K ∈ K such that f∗

i ∈ K. This holds because {f∗
i } ∈ K. If the algorithm has opened a

facility on f∗
i then a prohibited request of f∗

i with respect to some other facility can never occur. If
on the other hand the algorithm has not opened a facility on f∗

i then d(Fs, f∗
i ) > 0 = λ∆({f∗

i })
(∆({f∗

i }) = 0) which means that the only way for the set {f∗
i } to not be active is if a superset

K ′ of it is active which in turn means that there is an active set containing f∗
i .

If we manage to show that for every set K ∈ K the expected upper assignment cost of
prohibited demands assigned to some facility of K in the optimal solution while K is active is
O(cf ) then since |K| ≤ 2k − 1 the expected upper assignment cost of prohibited demands will
be at most O(kcf ) (recall that k is the number of facilities in the optimal solution). We have the
following main lemma:

Lemma 4.3.8. Let K be a set in K. The upper assignment cost of prohibited demands while K
is active that are assigned to a facility of K is O(cf ).
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Proof. Wedivide between three cases for the setK. IfK is the set of all optimal facilitiesF∗ then
since K is active we have that d(Fm, f∗

F∗) > λ∆(F∗). By lemma 4.3.1 after expected upper
assignment cost at most 2βcf on prohibited demands the algorithm opens a pair of facilities on
one of them. Let ui be the demand that caused this pair of facilities to open (both facilities are
opened on ui). Since ui is a prohibited demand we have that there exist optimal facilities f∗

j , f∗
l

such that:

d(ui, f
∗
j ) ≤

1

8
d(f∗

j , f
∗
l ) ≤ ∆(K)

We have that:

d(f∗
F∗ , ui) ≤ d(f∗

F∗ , f∗
j ) + d(f∗

j , ui) ≤ ∆(K)

The algorithm opens a pair of facilities on ui and since we have taken λ ≥ 9
8 the set F∗ stops

being active after expected upper assignment cost at most 2βcf . If K is not F∗ then by lemma
4.3.7 K is either of type A or of type B. Lets first consider the case that K is a set of type A.
By the definition of A sets:

∆(K) > min{∆(par(K))

γ2
∆(par(K))

64γ
} ⇔

max(γ2, 64γ)∆(K) > ∆(par(K))

We set for convenience Γ = max(γ2, 64γ) and we have:

Γ ·∆(K) > ∆(par(K))

BecauseK is active for par(K) we have that:

d(Fs, f∗
par(K)) ≤ λ∆(par(K))

Therefore:

d(Fs, f∗
K) ≤

d(Fs, f∗
par(K)) + d(f∗

K , f∗
par(K)) ≤

λ∆(par(K)) + ∆(par(K)) ≤
(λ+ 1)∆(par(K)) ≤

(λ+ 1)Γ ·∆(K)

Overall sinceK is still active we have:

λ∆(K) < d(Fs, f∗
K) ≤ (λ+ 1)Γ∆(K)

Let u be a prohibited demand assigned to some facility inK in the optimal solution and let a be
the static facility of the algorithm that is closest to u. Since u is a prohibited demand a does not
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belong to f∗
u ∈ K but to some other facility f∗

a . If for u it holds that d(u, f∗
K) > λ∆(K) then

its distance from f∗
u is by the triangle inequality:

d(u, f∗
u) ≥ d(u, f∗

K)− d(f∗
u , f

∗
K) ≥ (λ− 1)∆(K)

On the other hand the distance to the nearest open static facility can be upper bounded as follows:

d(a, u) ≤
d(Fs, f∗

K) + d(f∗
K , f∗

u) + d(f∗
u , u) ≤

(λ+ 1)Γ ·∆(K) + ∆(K) + d(f∗
u , u) ≤

((λ+ 1)Γ + 1)∆(K) + d(f∗
u , u) ≤

1

λ− 1
((λ+ 1)Γ + 1)d(f∗

u , u) + d(f∗
u , u) =

(
(λ+ 1)Γ + 1

λ− 1
+ 1)d(f∗

u , u)

If the demand is a far demand then the upper assignment cost for it is only a constant factor
greater than the optimal assignment cost. If on the other hand the demand is close this might not
hold since the mobile facility might have moved and significantly increased its distance from
the demand. We can show however that u can be considered to be assigned to f∗

a in the optimal
solution with only a constant factor increase in the cost. (meaning that essentially the demand is
non-prohibited only with a greater constant). In other words we will show that the distance from
u to f∗

a is only a constant factor greater than the optimal assignment cost. First of all since a is
a facility belonging to f∗

a , we have that:

d(f∗
u , f

∗
a ) ≤

d(f∗
u , a) + d(f∗

a , a) ≤
2d(f∗

u , a)

Now the distance between a and f∗
u is, by the triangle inequality, at most:

d(a, f∗
u) ≤

d(a, u) + d(u, f∗
u) ≤

(
(λ+ 1)Γ + 1

λ− 1
+ 2)d(f∗

u , u)

Combining these two inequalities together we get:

d(f∗
u , f

∗
a ) ≤ 2(

(λ+ 1)Γ + 1

λ− 1
+ 2)d(f∗

u , u)

Finally using the triangle inequality once again we can bound the distance from f∗
a to u by a

constant factor times the optimal assignment cost:

d(f∗
a , u) ≤
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d(f∗
u , f

∗
a ) + d(f∗

u , u) ≤

(2(
(λ+ 1)Γ + 1

λ− 1
+ 2) + 1)d(f∗

u , u)

Therefore assigning u to f∗
a can only increase the cost by a constant factor.

On the other hand if d(f∗
K , u) < λ∆(K) then after expected upper assignment cost at most

2βcf on such demands a facility will open on one of them and the setK will stop being active.
Now we focus our attention on sets of type B. There are two types of prohibited demands

that we have to consider for that case, namely external and internal prohibited demands. For
external prohibited demands we will show that after expected upper assignment cost O(cf ) the
set will be ”separated” and no more external prohibited demands will occur. On the other hand
after expected cost O(cf ) on internal prohibited demands the set will stop being active.

First of all sinceK is active we have that:

d(Fs, f∗
par(K)) ≤ λ∆(K)

Therefore, for the distance between the algorithms configuration and the optimal facility f∗
K we

have:

d(Fs, f∗
K) ≤

d(Fs, f∗
par(K)) + d(f∗

par(K), f
∗
K) ≤

λ∆(par(K)) + ∆(par(K)) ≤
(λ+ 1)∆(par(K)) ≤

(λ+ 1)4γ sep(K)

Lets start with external prohibited demands. Let u be an external prohibited demand of set
K and a the closest open static facility at the arrival time of u. If d(f∗

u , u) ≥ sep(K)/16 then
we have that:

d(a, u) ≤
d(Fs, f∗

K) + d(f∗
K , f∗

u) + d(f∗
u , u) ≤

(λ+ 1)∆(par(K)) + ∆(K) + d(u, f∗
u) ≤

(λ+ 1)4γ sep(K) +
sep(K)

16
+ d(f∗

u , u) ≤

64(λ+ 1)γd(f∗
u , u) + d(f∗

u , u) + d(f∗
u , u) =

(64(λ+ 1)γ + 2)d(f∗
u , u)

Similarly to the case of A sets if u is a far demand for the algorithm then the upper assignment
cost is within a constant factor of the optimal assignment cost. If on the other hand u is a close
demand assigned to a mobile facility then we can show that u can be considered to be assigned
to f∗

a with only a constant factor increase in the cost.
Lets now focus on the case that d(u, f∗

u) ≤
sep(K)

16 . After expected upper assignment cost
O(cf ) on such demands a pair of facilities of the algorithmwill open at distance atmost sep(K)/16
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from some optimal facility of K. Let r be the position of the opened facilities that are at dis-
tance at most sep(K)/16 from an optimal center of K. Let u′ be a prohibited demand after a
static facility at r was opened and a′ the closest open static facility at the arrival time of u′. If
d(f∗

u′ , u′) ≥ sep(K)/8 then similarly to the previous case we can either show that the upper
assignment cost is bounded by a constant factor times the optimal assignment cost (if u′ is a far
demand) or we can show that it can be considered to be assigned to f∗

a with only a constant factor
increase of the cost (if u′ is a close demand).

We have now to consider the case that d(u′, f∗
u′) ≤ sep(K)/8, however, as we will show

this can not be the case as long as u′ is an external prohibited demand. Assume for the sake of
contradiction that u′ was indeed an external prohibited demand. Again, let a′ be the closest open
static facility at the arrival time of u′, since u′ is an external prohibited demand we have that
f∗
a′ ̸∈ K. Since f∗

a′ ̸∈ K the distance between f∗
u′ and f∗

a′ is at least sep(K) meaning that the
distance between a′ and f∗

u′ can be bounded from below by sep(K)/2. By the triangle inequality,
the distance between a′ and u′ is at least:

d(u′, a′) ≥
d(f∗

u′ , a′)− d(f∗
u′ , u′) ≥

sep(K)/2− sep(K)/8 =

3 sep(K)

8

On the other hand the distance between r and u′ can be bounded from above as follows:

d(r, u′) ≤
d(r, f∗

r ) + d(f∗
r , f

∗
u′) + d(f∗

u′ , u′) ≤
sep(K)

16
+ ∆(K) +

sep(K)

8
≤

sep(K)

16
+

sep(K)

16

sep(K)

8
≤

sep(K)

4

Which means that the static facility opened at r is closer to u′ than a′ leading to a contradiction
since we assumed that a′ is the closest open static facility to u′.

The last case to consider is that of internal prohibited demands. After expected upper assign-
ment cost O(cf ) on internal prohibited demands a static facility will open on one of them. Let u
be the demand that caused the facility to open. We have assumed that u is a prohibited demand
meaning that there is a pair of facilities f∗

j ∈ K and f∗
l ∈ K with u being assigned to f∗

j in the
optimal solution but assigned to a facility of the algorithm belonging to f∗

l . By the definition of
prohibited demands the facility opened at u will be at distance at most d(f∗

j ,f
∗
l )

8 ≤ ∆(K)
8 from f∗

j .
If we recall that we have taken λ to be greater than or equal to 9

8 then:

d(f∗
K , u) ≤

d(f∗
K , f∗

u) + d(f∗
u , u) ≤
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∆(K) +
∆(K)

8
=

9

8
∆(K) ≤

λ∆(K)

MakingK no longer active.

Having proved that the expected upper assignment cost of prohibited demands is indeed
bounded byO(kcf )we can continue to analyse the cost of inner demands. We return our attention
to a single optimal facility f∗. Recall that after expected upper assignment cost at mostO(cf ) on
inner demands every inner demand is also a close demand assigned to some facility at distance
at most 2cf/D from the f∗. We will therefore focus our attention to close demands assigned to
a mobile facility whose corresponding static facility is at distance at most 2cf/D from f∗ (these
are the facilities charged with a potential).

We have the following lemma:

Lemma 4.3.9. Let u be a close demand assigned to a mobile facility z whose corresponding
static facility is at distance at most 2cf/D from f∗. Then the upper assignment cost plus the
expected potential function difference is at most a constant times the optimal assignment cost if
the demand is non prohibited. That is:

d(u, z) + E[∆Φ] ≤ (ρ+ 1)x · d∗u

If the demand is prohibited the expected potential function difference is bounded by the upper
assignment cost (meaning that the upper assignment cost plus the potential function difference
on every prohibited demand is bounded by the optimal facility cost)

Proof. Let u be a close demand and a = argmina′∈Fs(d(a′, r)) In the following by z we mean
the place of the mobile facility before the movement to distinguish between the place of the
mobile facility after the facilitymovement which is the place of the demand r (if such amovement
occurs). Because u is a close demand d(z, u) is the upper assignment cost of demand u. We first
analyse the value of E[∆Φ]. The only facility that might change its position is z in this iteration.
Since the facility is moved with probability 1

D , ∆Φ is a random variable with distribution:

∆Φ =

{
ρD(d(u, f∗)− d(z, f∗)) w.p 1

D

0 w.p D−1
D

So we can easily deduce that E[∆Φ] = ρ(d(u, f∗) − d(z, f∗)) We begin with the case that the
demand is prohibited. We have already shown that the expected cost on prohibited demands is
O(Fac∗) but we also have to account for the potential function difference due to those demands.
It suffices to show that the potential function difference is bounded by a constant factor times the
upper assignment cost of prohibited demands. Indeed using the triangle inequality:

E[∆Φ] = ρ(d(u, f∗)− d(z, f∗)) ≤ ρd(z, u)
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And thus the expected upper assignment cost as well as the expected potential function difference
for prohibited demands are bounded by O(Fac∗).

We now turn our attention to non prohibited demands. We divide between two cases. We
first consider the case that d(u, f∗) ≤ d(u,z)

x so that the demand is much closer to the optimal
center than it is to the mobile facility z. If that is the case then the expected potential function
difference will suffice to show that d(u, z) + E[∆Φ] ≤ 0. Specifically:

E[∆Φ] ≤ ρ(d(u, f∗)− d(z, f∗)) ≤
ρ(d(u, f∗)− d(z, u) + d(u, f∗)) ≤

ρ(2d(u, f∗)− d(z, u)) ≤

ρ
2− x

x
d(z, u) =

−ρx− 2

x
d(z, u)

Taking ρ ≥ x−2
x we have that:

d(z, u) + E[∆Φ] ≤ 0 ≤ (ρ+ 1)x · d∗u

On the other hand if d(u, f∗) > d(u,z)
x ⇔ d(u, z) < x · d(u, f∗) then we can use that, together

with the fact that E[∆Φ] ≤ ρd(z, u) to bound the algorithm’s assignment cost together with the
expected potential function difference:

d(u, z) + E[∆Φ] ≤
(ρ+ 1)d(u, z) ≤ (ρ+ 1)x · d(u, f∗) =

(ρ+ 1)x · d∗u

4.3.6 Putting everything together

We will now combine all the above lemmas to prove the theorem that our algorithm obtains an
asymptotically optimal competitive ratio.

Theorem 4.3.10. On Expectation the algorithm achieves a competitive ratio of O( log(D)
log(log(D)))

Proof. The cost of the algorithm is: (by Alg we denote the cost of the algorithm)

E[Alg] = E[Mov] + E[Fac] + E[Asg] ≤ O(Asg+)

Therefore as we also mentioned earlier we only need to bound the upper assignment cost of
the algorithm, furthermore it suffices to bound the upper assignment cost for inner and outer
demands:

E[Asg+] = E[Asg+inner] + E[Asg+outer] (4.1)
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As we have shown, the expected upper assignment cost of outer demands isO( log(D)
log(log(D)))OPT .

On the other hand the expected upper assignment cost of inner demands can be bounded by:

E[Asg+inner] ≤ O(Fac∗) + E[Asg+(Proh)] + E[Asg+(NProh)]

Where theO(Fac∗) term comes from theO(cf ) cost for every optimal facility until a static facility
is opened at distance at most cf/D from that facility. We can use lemma 4.3.9 and lemma 4.3.8
to bound the cost of the sum of prohibited and non prohibited demands:

E[Asg+(Proh)] + E[Asg+(NProh)] ≤
O(Fac∗) +O(Asg∗) + E[Φ0] ≤

O(Fac∗) +O(Asg∗) + E[Asg+]/2

Substituting into (4.1) we get:

E[Asg+] ≤ O(
log(D)

log(log(D))
)OPT +O(Fac∗) +O(Asg∗) + E[Asg+]/2⇔

E[Asg+] ≤ O(
log(D)

log(log(D))
)OPT
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