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Hepiinyn

H Teyvnm Nonpootvn (TN) av kot éxel mapovoiactei mg nedio to 1958 amd tov John
McCarthy, ftav poAg to 2006 6tav g GLVOVAGHO UE TV OWENCT TG VITOAOYIGTIKNG
10Y00G EREAVIOTNKOY VEEC €PUPLOYES 6TO medio TG Mryavikng Mdabnong (MM).
Qot6c0, N dvhion avt TpaypatdOnKe avtictoyo Kot 610 TESIo TV eMBEGEMY,
KafioTOVTOG TV avanTLEN cuatnudtev Tov Pacilovtal oto medio g TN emceain
YL TNV €QOPUOYN TOVG GE KPIGIUEG ONUOGLEC VITOOOUES, YOPIC TN ANYN aVoTNPOV

UETPOV OGPAAELOG.

H evndBsio TV dedopévev kol Ol OMENEG EVAVTIO GE OVTH, CLVICTOVV £val
EMOGTNUOVIKO TEGT0 avolKTO Yo Tepatépw e&epevvnon. Ewdwotepa, amd ) og fabog
HeAETN emBEcE®VY 01 OTTOIES OVOTTUGGOVTOL GE OAO TOV KOKAO (®NG TV CLGTNUATOV
Teyvnmcg Nonpoohvng (exmaidgvon, e£oywyn CUUTEPACULATMOV), OTMG Ol KAKOBOVAES
emBéoerg, o1 «ovTumapafeTikésy o1 omoieg VAOmOlOVVTOL UE  avemaicONTES
TPOTOTOGELS TV OESOUEVAOV €GOS0V, KABMG Kat GAAeg GVYYpPOVES, Ba NTav duvatd

VoL TPOKVYEL Pid VEQ OTTTIKT] GTOV TOUEN OVTO.

Emumiéov, ov embécelg avtég eivor appmkro ovvdedepéves pe v avamtudn
avTIGTOY®V HETP®V AUPAVVONC TOV EMTTOGEDY TOVGS, LLE ATOTEAEGLLO AVTOG O GUVEYNG
AVIOYOVICHOG Vo Onuovpyel  €val YOVIHO KOl TOWTOYPOVO  «avTUTOPAOETIKO
nepBdirov. Ta 10 Adyo owtd Kkpiveton okoOmipo vo  ovoeephovv  didpopot
OVTUTPOCMOTEVTIKOL UNYOVIGHOL GPUVOS, OCTE Vo emonuoavlel n pon mov €xet
KOAOLONGEL 1 EMGTNUOVIKY] KOWOTNTO KOl VO ONUIOVPYNOEL oTépeeg PAoelg ya

HEALOVTIKEG KaTeLOHVoELS.

Kpioyeg meployéc dmwg g vyeiog, g avtdOvoung 0dnynone, e taStvounong, g
aVayVOPLoNS POVNG, TNS OCPAIAELNS SIKTV®V, Ol OTOIEG £YOVV GTOV VPNV TOVS TNV
avBpomvn Lon, avripetonilovy avtictotya TpofAnuate. Xtnv tapodcsa epyacia, ov
kol Bo 500l Waitepn Eppaon oTov Topéa NG VYeiag, avtd dev cuvendyetor OTL Oa

OTOKAMVEL GNUOVTIKA Kol atd To VTOAOUTO TEG T EVOLAPEPOVTOG.

Aégerg Khewna: Poisonous Attacks, Backdoor Attacks, Adversarial Examples,

Defense Mechanisms, Healthcare Systems.






Abstract

Although Artificial Intelligence (Al) was introduced as a new discipline by John
McCarthy in 1958, it was not until 2006 along with computational power that new
applications ushered in the Machine Learning (ML) domain. This flourish went along
with counterpart attacks producing eventually uncertainties that set Al-related systems
precarious to deploy in crucial public infrastructure, without taking strict security

measures against them.

Data vulnerabilities and threats comprise a scientific area viable to further scrutiny in
terms of attacks deploying in all the gamut of the Artificial Intelligence systems pipeline
(training, inference, ai integration), such as poisonous attacks, imperceptible
perturbations namely adversarial examples as well as other contemporary ones, and

thus studying the latest topics could highlight a new insight.

Besides, these attacks are tightly coupled with corresponding mitigation measures,
continuously going back-and-forth creating an “adversarial” environment. Thus, latest
representative defense mechanisms will be presented in order to enlighten the

roadmap that research community follows, grasping the rhythm for future exploration.

Critical areas such as healthcare, autonomous driving, classification, speech
recognition, network security, where human life is of utmost importance, raise such
security issues. Though, special consideration is to be taken to the healthcare domain

in this thesis, it will still be attached no further than the other fields.

Keywords: Poisonous Attacks, Backdoor Attacks, Adversarial Examples, Defense

Mechanisms, Healthcare Systems.
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Extetapévn EAlnvin Ilepiinyn

H avénon g vmoAoy1oTikng 10(00¢ 6€ GLVILAGUO LLE TNV EVPELN ATOSOYT TOV LKPOV-
KWV TOV GLGKELAOV TPOGEdMOE 6TO MeEdio TG Mnyaviking Mabnong (MM) pia véa
duvapkn. H ypnon OAov ToV GUCKELOV OVTOV HE EVOOUOTOUEVES ADoeEl; MM,
onpovpyel TAEoV TEPAGTIO OYKO dEdOUEVDV, 0 0moiog amattel BEATIOTEG AVGEIS TOGO
WG TPog TNV emeEepyacio Tovg, 000 Kol G TPoc TNV eEaymyn YPNOUOV
ovunepacudtov. Tnv mpoéodo avt akolovOnoce kKot M OVATTVEN OVTIGTOVYWV
eMBEcEDV, e OKOTO KUPIMG OIKOVOLIKG KOl TOAITIKE OQEAT. AV Kot 1 avamTuén
EEumvav cvotnudtov cupPdidel ot Pedtioon Kabe avOp®OTIVIG TTUYNG, Ol CUVETELES
Kot o1 Kivouvol yevikdtepa omd Tig MOEGEIS EvavTioV TOVG, To KAGTOVV EMGOOAT Y10
TV EQOPUOYN TOVS G€ KPioeg ONUOGLEC VTOOOUES, YMPIS TNV EQOUPUOYN TOV

QLGTNPAOV UETPOV AGPOAELNGS.

H evndBerio Tov dgdopéveov Kot ol GmelAég €VAVTIOL GE OVTA, GLVIGTOOV £vol
EMGTNUOVIKO TTedio avolkTo Yo tepontépm eEepedivnon. Ewdwdtepa, and v o€ fabog
peAétn embécemv, ol Omoieg OVATTOGGOVTOL KATH TIG PACELS TOV KOKAOL oS TV
cvotnudtov Teyvmtig Nonpoovvig (cvAloynq kat mpo-enefepyoacio dedOUEVDV,
eKmaidgvoTn LOVTEAOV, EEAYMYT GUUTEPAGHATOV), Ba jTay SLuVaTO Vo TPOKOWYEL pia vE
otk otov topéa avtd. H avaykadmmra g peAémmg kdbe emiBeong kot tv
EOIKOTEPMOV YOPOUKTNPIOTIKAOV TNG EVICYVETOL OO TO YEYOVOS OTL dev vILApyeL pia Kot

puévov Abon, Tapd HOvo HETPO AMOTPOTT) TOLG Yo TNV KAOe mepintmon.

H 1010 tdiom KatadeikvdeTal Kot amd To EMGTNHOVIKO EVOLAPEPOV TO OTOT0 EKONAMVETOL
péca amd v paydaio adENCT TOV GLYYPAPIKAOV EPY®V, Yo TIG EMOEGEIS TAVD GTO
cvotipate MM. Meydlo e0pog embBécemv KataypaeeTol 6€ KAOE GTAS0 TOL KUKAOV
Long evog ovotnuotog MM kot avtiotolyeg €vEPYEIES YO TOV TEPLOPIGUO TOVG.
Qo1060, 6TV TAPOVCA EPYOUGIN POV TPAOTIGTMG avapepOBovv opiopéva cTotyeia Tov
ocvvBétovv to vtoPadpo Tov emBécewv (manifolf, norms, optimization), To evdiagépov
Oa eotidoel oTig KakoPovreg emOBéoerg (poisonous attacks), otig «aviiwapafeTikig»
(adversarial examples) ot omoiec vVAOTOOVVTOL UE OVETAIGONTES TPOTOTOMNGELS TV

dedopévav e106d0v, kKabmg kat otig backdoor attacks.
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To oOvolo TV eMBEGEOV OVTOV 0V Kol TOPOLGLALEL APKETA KOWVA YOPUKTNPLOTIKA,
TOVAGYIOTOV €K TPMOING OYEMC, €VIOLTOLS OlpEPEL ovolwdms. H PipAoypapio
Kataypaesl TAN00¢ d1dpopmv Tapaydviov Tagvounong Tov enBEcEmV aVT®OV, Ot
omoiot Tpocdidovv kabe Popd pia dtapopeTikn ontikn. H oproBénomn tovg avdioya pe
TOV TPOTO KOl TO 6TAS0 TOV KOKAOL (®NG GTO 0TO10 EKONAMVOVTOL, TNV YVAOGCT TOV
EMTIOEUEVOL Y10 TO CVLGTNLO KO TOVE 6TOYOVS TV BETEL, GLUPAALEL GTO HEYIGTO GTNV

OTOKPLGTAAAWDGT] TOVC, LE GKOTO TNV PEATIOTN AVTILETMOTICT TOVC.

Mio tétrola tagwounorn pmopel vo mpoypatomondel kot péco amd TO HOVTELO
Confidentiality (Epmotevtikotnta), Integrity (Axepaidtnta) war  Availability
(AwBeopotra) (CIA), To omoio cupfaiel GTNV O EVKOAN KOTAVON OGN TV S10LPOPDV.
Televtaio, oto poviélo avtd éyel mpootebei kot pio emmAéov mroyn, n Privacy
(ISwotikdémTa). Xy TEPINTOON NG EUMIOTEVTIKOTNTOS O OPAOTNG EMSUDKEL VO
amoKaAOYEL 6TOLXEID TOV GLOGTANOTOS (T.). VIEPTAPAUETPOL) 1] GTNV TEPIMTOOT TOL
ATOKOADTTOVTOL O0EOOUEVE EVOG GUGTHOTOC, OIS GTOLKElR 0GOEVDV, aVaPEPOLACTE
oe mopafioon ¢ [dwTikdTTag. ZYeTKG PE TNV aKEPAULOTNTO, O OPAGTNG GTOYEVEL
TNV TOPOY®YN UM OVOUEVOUEVOV OTOTEAEGUATOV Y10 CLYKEKPUEVA OElypaTo, EVO
avTiBETOG, OTaV O OPACTNG OTOXEVEL YEVIKAL GTN Agltovpyio €vOG GULGTHLATOC,

napofraletar 1 StwbesdTNTA QLVTOV.

‘Eva emmléov onpovtikd onueio odkpiong tov embéoewv, amotehel 1o onueio 610
omoio avomticsovton pe onueio avapopds tov KikAo (mng evdg cvotuatog MM.
Ewwotepa, o embBéceic mov B avapepBodv 610 TAAICIO TNG TapoVcas EPYUciog
OVOTTTUGGOVTOL KATO To 6TAO0L TNG EKTOIOEVONG Kol TNG EEAYMYNG GUUTEPACLATMV.
AMo otoyeio tov embécemv PUmOpovV OUOIG Vo OMUIOLPYNCOLY  CLVONKEG
TaSvounong avtov, OTMc 0 apliuog TOV ETAVOANYE®DV YO, TNV VAOTOINGM HOG
enifeong (one-shot, iterative), ot duvatdtnTeg TOL £YEl 0 EMTIOEUEVOC, KAOMG Kot GV M

enifeon Oétel kGmolo cuykekpyévo otdyo 1 un (targeted, indiscriminate).

Ot kakOPovreg embBéoelg ekdNAdvVOVIOL KOTE TO OTAO0 NG eKMOIdELONG €VOC
ocvoTnHatog MM Kot GTOYEVOVY YEVIKA GTN HElmoT TS EMIO00NG EVOG GLGTNLOTOG, TO
omoio umopei va e&opotwbei kou pe Denial of Service. O dpaotng e dtdpopeg pebddovg
(m.y. aAloyn eTkeT®V) pmopel va ewcaydyel AavBacpéva N poivopéva dedopéva
EKTOOEVONG LE OMOTEALEGLO TO GUOTNOL VO NV UTOPEL VO AEITOLPYNOEL 1] VO TTaPAyEL

ToL OVOUEVOUEVO amoTeEAéopoT. Baowkd petovéktnua tov embBécemy avtdv ivor M
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eOKOAN avayvoplon Tovg eEoutiag TG  YEVIKELONG TV UN  OVOUEVOUEVOV

OTOTEAECUATMOV KO TNG €V YEVEL UN S10OEGTULOTNTOG TOL GUGTILATOG.

Ta avtmapadetikd Tapoadeiypata eivar deiypato oto oroia £xel tpootedel Evag Hikpog
«B6pvPog» pe TETOO TPOTO MGTE VO PNV OAAOUDVETOL TO TEPLEYOUEVO TOVG. XTNV
TEPIMTOON TNG EIKOVOG OTNPEITOL 1 CNUACIOAOYIOL TOV TEPIEYOUEVOL TNG, EVM M
0TO10ONTOTE TaPOPiaion TOV GLGTHUATOG OEV EIVOL OVTIANTTTH OO TO AVOPOTIVO LLATL.
Ta polvopéva avtd otoryeio E164yovTot KOTA TO GTAS0 TG &0 Y®YNS CLUTEPACUATOV
evog cvatuatog MM kot mopdyovv EGQAAUEVA ATOTEAEGHOTA. AV amoTELOVV TUY LN
yeyovota, aAld dnpovpyovvton alyoplfukd AapBdvovtog Kupimwg veoyn v €icodo
TV dedopuévav. O dpacTtng eMOIOKEL KLpiwg TNV Tapafiocn g akepodTNTOS EVOC

GLOTNLOTOG,.

O1 Backdoor emibéoelg viomotovvtol Kot T0 6TASI0 EKTAIOEVOTG EVOG GUGTHOTOC
MM, ®ot6c0 ekdNAdvovior Kotd To oTtddo TG eE0y®yng GCLUTEPUCUATMV.
Ewdwotepa, o 0paotng eiodyet éva dstypo e ELEMAELIEVO Eva TPATLTO (TT.Y. KOTO0
oLVOLOCUO EIKOVOGTOLXEI®MV) Katd TO 6TAd10 NG ekmaidevons. Otav gupoviotel Eva
delypa pe autd T0 GLYKEKPUEVO TPOTLTO KATA TO GTASI0 TOV GUUTEPAGUATOV, o
napoyBodv to anoteAéopata mov embupel o dpdotnc. Térowov eidovg embéoelg elvan
apKETE OVGKOAO VA EVTOTIGHOVYV, dE00UEVOL OTL TO GUVOAO TV VTOAOW®V dETYUATOV
mopayel To avapevopeva aroteréopata. O opdotng PAGmnTEL pe aVTOV TOV TPOTO TNV

aKEPALOTNTO EVOG GUGTILLOTOG.

210 6VUVOAO TOVG Ol emBECELS OVTEG €ival APPNKTA CLUVOEOEUEVEG e TNV aVATTTUEY
avTIGTOY®V HETPOV OVTIUETOTIONG TOVG 1 GUPALVONG TOV EMATOCEOV TOVG. O
UTOPOVGOE VO 1GYLPICTOVUE OTL KVPIG AOYy® NG OUEIGPNATNONG TOV oTIOV
onuovpyiog T€Tolwv eMBECEDV, 1| EXIGTNUOVIKY KOWOTNTO OVOTTOGGEL TEPUTTMOGELS
emBécewv eviomilovtog advvopieg pe okomd v mPOKANGM UETPOV Ylo. TNV
OVTILETMOMIGN TOVG. £dG €K TOVTOL, TPOKAAEITOL £VOG GUVEXNG AVTAYOVIGUOG, O 000G

TEPAUTEP® OMNUIOVPYEL VAL YOVILO KOl TOVTOYPOVO «OvVTITOPaOETIKO» TEPPAALOV.

EmnAéov, oto miaiclo g mapovcag epyaciog kpivetor oKOmTUo vo ovoapepOovv
LIPOPOL AVTUTPOCMOTEVTIKOL UNYAVIGROL Apovac, KoODS Kol o1 EVTADELES TIG OTOTES
Bepanedovv, MoTE aPeVOS va emonaviel 1 por Tov £xEL AKOAOVONGEL 1] EMGTNUOVIKN

KOWOTNTA, OPETEPOVL VO, ONUIOVPYNOEL OTEPEEG PACES Yo TIG OMOEG UEALOVTIKEG
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TPOOTTIKEG. Xvykekpuéva, Ba avapepBodv V0 apvvTIKOl Unyavicpuol evavtio oto
adversarial examples kot tig backdoor enbéoeis. O pev TPOTOG YPNCIUOTOLEL EIKOVES
ot omoieg &xel eupwievbel éva mpotvmo (ocav Tic backdoor embécelg) wote va
onuovpyel o woyvp cLoYETION Kol vo. pnv ennpedletor to cHoTHO amd To
avTITopaTifEpEVa Tapadeiypata. X de0TEPN TEPIMTMOOT, O UNYAVICUOS GULVOS TMV
backdoor emBécewv ypnoiponolel S1APopeg TEYVIKES Yo TNV gVpecT TOL emPAaBovg
TPOTOTOV OV EYEL EMAEEEL €vag OpAoTNG, KaOmG Kot emmAéov dAhec Ommg machine

unlearning yio v enaveknoidevon TOV GLGTHLOTOC.

Kpiowec meproxés omwg g vyelag, g avtdvoung odonynons, e Ta&vounong
EIKOVOV, TNG avVayVOPIoNS POVNG, TNG ACPAAELNS OIKTV®V, Ol OMOIEC £YOLV GTOV
Topnva Toug Vv avlpomivn {on, avtipetonilovv TpokAncelg oe BEpaTo acPAAELNG
Kot 10TIKOTNTOC. TNV TTapovoa epyacio divetal 1dtaitepn EUPAoT GTOV TOUEN TNG
vyeiag, Vo 1o Tpicpa piag N TEXVIKNG TAPOVGINGTG TOV TPOKANGE®MYV, OEOOUEVOL OTL
arotelel Pacikn vrodoun o€ KaOe kpdtog dwkaiov. QoTdc0, AVTO dev GLVETAYETAL OTL

0o amokAivel onUAVTIKA Kol ad To VTOAOUTO TEG IO EVOLUPEPOVTOC.

Q¢ mpog o KivnTpa TV SpacT®V Vo PAAOYOLV GUOTAUOTO TETOLNG OLVOUIKNG Kot
oEEAELNS Yo TNV ovBpdmivn Lom, elvar onpavtikd va ovayvopisBolv, Tpokeévon va
viver capég to péyeBog ¢ amelvg mov avtd emdiwkovv. [Ipdcpateg peréteg
KaToypaeouy dtdpopa Kivntpa to omoio. umopel va TokiAovy KAMPOK®TE, omd amAn
TEPLEPYELD, OIKOVOUIKA OMEAN Asttovpydvtag Yo Tpitovg, €mog kol {nTuoto

TPOUOKPOTIOG.

SVUTEPACUATIKA, 1] EPYOGIO ALTY] OTOGKOTEL VO TAPOVGLACEL PAGIKES EVVOLES YO TNV
KaTavonomn g Asrtovpyiog Tov cvotnuatov MM, 11 embBéoelg mov Aapfavouv ympo
KOTA T oTAdWL NG EKMOidELONG Kot €EAYWYNG CUUTEPACUATOV, KOODG Kol TIg
TPOKANGELS TOV OVIUETMOMILEL 1) EMGTILOVIKY] KOWOTNTO Y10l TNV OVIILETOMTICY TOVG.
[Tepartépw, otoxevel va avadeibel v ovayKoOTNTo GUYKAMONG TMV dlpOpmV
EMOTNUOVIKAOV TTEOIOV TPOKEWEVOL Vo dlEpeuvNBoVVY T aitio TV EMBECEDV QLTOV,
KaB®OG Kot Vo, KIVNTOTOOEL OGOVG YPNGUYLOTOLOVV TETOLN GUGTILATO. (ETAYYEALOTIES
TOV OVTICTOLY®OV TOUEMVY, O1ELOVLVGELS OpYOVICU®YV), Vo AopuBdvouy avtictolyo Hétpa

ACPAUAELOG.
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Data Vulnerabilities and Adversarial Attacks against ML-Based Systems. The Adversarial Risk in the
Healthcare Domain.

1. Introduction and Background

Machine Learning (ML) made solutions possible for hard problems. They introduced a
new ability to acquire knowledge from their environment with less human intervention
suppressing the need for hard-coded problems. A further step took place eliminating
even more the human intervention allowing ML systems extracting features on their

own, and thus Deep Learning (DL) scientific field emerged.

Many terminologies have been appointed to these newly aged systems, such as Deep
feedforward Networks, Feedforward neural networks or multilayer perceptrons, but the
fact is that “network” derives from their representation and “deep” comes from the
depth of the hidden layers of the network. The depth and number of neurons allow

systems to automate the extraction of the desired number of features.

It has been almost a decade since convolutional networks, a special class of Neural
Networks, have achieved a significant performance on recognition of objects, matching
almost a human-level performance [1]. Thus, research communities and not only, have
drawn their attention to the field. However promising might be this development,

counter-attacks are also part and follow-up situation.

In our data-saturated era, big data hold a prominent position in almost every public and
private infrastructure. Along with the course of data, the technological advancements
(Machine Learning as a Service) and the expertise (data-driven approaches) offer new
harnessing methods. Therefore, the necessity of using specialized third-parties ML
services, in terms of pre-trained models, datasets, frameworks is skyrocketing. Thus,

studying the security risks and measures of mitigation is of utmost importance.

Most notably, a survey on the topic of ML security concerns in terms of tactical and
strategic tools to shelter their core business functionality unveils surprising findings [2].
In particular among twenty-eight organizations in their majority dealing with security-
sensitive data, only three of them declared affirmative on securing the Machine
Learning systems, whereas attacks such as poisoning and backdoor, as well as

adversarial examples are in the top five of most affective attacks.

The main scope of this thesis is to delve into the most representative and state-of-the-

art attacks taking place across the ML pipeline, emphasizing in the training and
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inference stages. Consequently, a cutting-edge defense mechanism will be presented,
in order to face the challenges, the research community deals with in this rival
environment. Finally, a reference to the healthcare domain will highlight the innermost
posing risks. Hopefully, a refreshing review of this topic will enlighten the feature
research directions, but most importantly it will raise awareness to the engaged

communities.

1.1. Delineation of Attacks

As we will clearly show in this thesis, three cornerstone types of attack reign over ML
based systems, and that is poisonous attacks, adversarial examples and backdoor
attacks. All of them have features in common, but they are inherently different in terms

of the adversary’s goals and deployment tactics.

Although literature often reports backdoor attacks as a branch of poisonous attacks, this
is obfuscated and a more meticulous view on this aspect will discern the differences
between them. Thus, we intentionally follow the literature that considers these two
attacks distinct, in order to provide a clearer aspect on the field of ML-based systems

attacks.

By and large poisonous attacks aim at a more general degradation of a system, causing
denial of service and hence availability issues are in concern. In contrast, backdoor
attacks remain idle for the benign samples, but the insidious trigger will be invoked
when he meets the specific pattern as an input to the ML-model and will cause its

malicious purpose. Thus, backdoor attacks aim to harm integrity of a system.

Adversarial examples have been thoroughly studied by the research community. They
are purely algorithmically produced based on the input and thus are considered barely
incidental facts. Beneath those crafted inputs, mathematical models stand for their

development.

Thus, it is important to present these attacks in a more concise view [Table 1], that will
help the reader of this thesis to better understand these attacks, how do they accomplish

their malicious purpose and their overall aim.
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Table 1: Comparison Table for Poisonous Attacks - Adversarial Examples - Backdoor Attacks

Type of Adversary’ Kind of Concealment Phase of ML-based Strong
Attack s Target Attack system pipeline abilities
Poisonous Availability ~ Untargeted Easy to be Training Phase No trigger
Attacks discovered
General low
degradation
Adversarial  Integrity Targeted Hard to be Inference Phase Imperceptible
Examples discovered crafted inputs
Preserve S
invisible to
benign
g human eye
samples
Backdoor Integrity Targeted Hard to be Training Phase Trigger
Attacks discovered invoked
Preserve
benign
samples

1.2. Threat Model

Causes of adversarial examples existence are long being debated, and thus delineating
their deployment into a model’s perspective produces proper guidance for the
researchers of the field. A meticulously illustrated study of this phenomenon in terms
of the attacker’s goals, capabilities and other features, is essential to be bound under
various disciplines. Thus, setting all these factors into a mold, namely threat model or
the attacker’s profile according to [3], provides an overview of security issues, as well

as the defensive mechanisms against them.

A great deal of work has been recorded on this issue. [4] introduced a threat model so
as to encapsulate a ML system’s components into a unity and thus ML-algorithm was
not considered apart. Security and privacy issues of their model has been examined
through the classical perspective of confidentiality, integrity and availability (CIA), and

the lifecycle of ML system -namely “machine learning pipeline”.

Confidentially is considered in respect to the model (model structure, architecture) and
its training data in which case privacy issues are also concerned. Integrity deals mostly

with the outcome of a ML-system. Violation of integrity may produce false positives
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or true negatives. Finally, expanding the notion of this violation into preventing totally

the access to system, availability concerns are raised.

Authors continue with the second perspective of “machine learning pipeline”, starting
from the training phase, ending up to the inference one. At each phase security issues
are mentioned in terms of the attacker’s goals and capabilities, under the view of CIA
model and with one more feature, that of “privacy”. Their threat model for ML systems

consists of: “The Attack Surface”, “Adversarial Capabilities”, “Adversarial Goals”.

1.2.1. The Attack Surface

The Attack Surface describes the places where an attack happens and generally is
efficiently depicted as a row containing all phases [Error! Reference source not
found.] of a ML system. That includes the data collection, the process of them, the
production of the output and finally the integration of outcome with an external actor.
At each phase an attacker may deploy an attack with different modus operandi [Figure
8]. Primary steps, such as collecting data are vulnerable to poisonous data, while the
last ones -at inference- may be affected to produce erroneous results.

Data .| Dataset ‘ Model A | Model System

collection | construction learning /| deployment operation
ML dataset Learning mechanism ML-based system

Hyperparameters
Training data

\T/alidgtion data m=ut> Training Test

=eh P program | | program | ="
Pre-trained Development
model software

1 additional learning
i i)

ML data
source

mathematical
representation

Figure 1:Basic Components in Supervised Learning and an ML-Based System's Lifecycle. Image Credited to [5]

1.2.2. Adversarial Capabilities

This aspect of threat model refers to the adversary and the knowledge have on their
side, with regards to the offensive system. The attacker may be familiar with internal
information of the system, such as the structure and the parameters of the network
architecture, with the intension to corrupt it (integrity attack). On the contrary, if the
adversary is an external actor, they will most probably try not to affect the system
directly, but to alter the outcomes.
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[6] classify an attacker’s capabilities in terms of training data and network architecture,
“oracle” and samples. Access to layers, activation functions of neurons, and weights
produced after the training phase, may be strong enough knowledge to replicate the
deep neural network. Creating a sub-dataset of the training data, with the same
distribution could result in an approximation of the model. Furthermore, observing the
outputs in accordance to the change of inputs, an attacker may create adversarial
attacks. Such pairs (inputs — outputs) could be also greatly helpful if exist in large
amounts, even without the possibility of altering the input.

1.2.3. Adversarial Goals

This view deals with the attacker’s behavior against the ML system. Confidentiality
and privacy aspects are violated if the attacker tries to extract information about the
system (e.g., architecture) or its training data (e.g., patient data). Otherwise, if the
attacker tries to cause the system to produce erroneous output (e.g., misclassification),
integrity issues are raised. Availability concerns raise when the system fails to respond

on some input.

From an attacker’s perspective fulfilling their adversarial goal, they manage to alter the
system’s behavior either by setting a specific label to an adversarial example (e.g.,
visually seen a dog, but tagged as a cat) (targeted misclassification), or setting any other
than the correct label (random misclassification), or reducing the system’s confidence

and thus introduce ambiguity (confidence reduction) [7].

1.3. The Manifold

An important notion of the ML field is the manifold. One may think of it as a
multidimensional surface in R™, where many points are connected, and the close ones
are found in context correlation. Due to the optical restrictions n dimensions set,
manifolds are better visualized as sub-manifolds. The points of interest (e.g., a specific
object in images) are located in a number of such surfaces.

A special behavior called manifold assumption, occurs when moving across manifolds,
denoting a change of class, while, moving in the same manifold the input is defining
variations of the class (rotations, translations, etc.). Furthermore, it is assumed that

moving into a sub-manifold or across others, improves the ML algorithm [7].
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Cat Manifold

Figure 2: Manifold in a High-Dimensional Space. Showing a cat depicting as Single Point in the Manifold. (Top

right: Leonardo da Vinci (c. 1513); bottom right, Paul Gauguin (c. 1890). Public Domain). Image Credited to [8].

Presenting the above image, where positive classes constitute the object cat, and
negative ones all the other objects [8] imagines walking inside the cat manifold from
one point to another -from one cat to another- where the first cat turns into another cat.
In the case of visiting coordinates outside the cat manifold, the object cat fades out to
another object or noise.

Another important notion closely related to the Manifold, namely ‘latent-space’ offers
a more approachable representation of data. Often many features of input data are
obfuscated at a higher dimensional representation. Thus, if they are represented in a
lower-dimension space they can be processed more easily, which is their main
advantage.

1.4. Optimization

Optimization is a process where a function gets its minimum or maximum value. This
function is called objective function and is substituted to constraints. In order to
adequately conceive the purpose of the optimization through the machine learning
perspective [9] defines the main steps of machine learning as (i) to build the model
hypothesis, (ii) to define the objective function and (iii) to solve the maximum or
minimum of the objective for the parameters to be determined, emphasizing the fact

that the last one belongs to the optimization field.
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By and large, deep learning algorithms use this kind of process to minimize a function,
namely loss or error function [10]. The value that minimizes the function is often

denoted as:
x* = argmin f(x)

According to [9] the family of Gradient Descent (Batch gradient descent — BGD,
stochastic gradient descent — SGD, mini-batch gradient descent) algorithms are among

the most used for optimal parameters to be determined.

The algorithm iteratively adjusts the variables of the objective function in the opposite
direction of the gradients, in order to minimize the cost function. The learning rate S
refers to the size of the step the algorithm takes in order to find the minimum. Choosing
S may be proved a demanding work, since if it is too small the algorithm will run slow,

else it may lose some accuracy.

\er Mt (1)Batch (2)Stochastic (3)Mini Batch
u‘\ Local Maileasiin Gradient Descent Gradient Descent Gradient Descent
\ p 4 e A B A A A NN A A A

/, \ : ; ;,ﬂ._,,,.‘b,*jf*- ) $ .- { “ I .:A V -2\
\ J =4 \ OS2\ NN AN S
\\4/ Local Minimum D e e B — NN
Global Minimum —— pe—— T

R R - B The Learning Rate 3% The M Value
Figure 3: A Demonstration of the o s e LY

Difference between the Local and
Global Maximum and Minimum Figure 4: An Illustration of the Differences between Training a Model
Values and the Learning Rate
(shown in red) that Determines the
Magnitude of the Updates to approaching the Minimum Value. Image Credited to [11].
Model’s Weights. Image Credited to
[11].

using BGD, SGD and Mini -Batch- Gradient with regarding to

1.5. Norms

In order to quantify the distance between two vectors, special functions -norms- are
used. There are many variants of norms, such as L, L,, L, and L, all of them widely
used by state-of-the-art adversarial algorithms [11]. Informally, norms are functions
that take a vector as input and return a non-negative scalar. They are of great importance

in the optimization of adversarial attacks and minimization of perturbations [11].

Norms are used to calculate the difference between the expected value and the actual
one, and thus estimate the value of loss function in a ML algorithm. Depending on the
specific problem (e.g., constraints, policies) an algorithm deals with an appropriate
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metric may be used. Furthermore, distance metrics may be used to calculate the
classification area of an object, or the minimum possible distance where an object may

be characterized as an adversarial.

x' = argmin D(x,x;) s.t. F(x") = Label

D(x, x;) : Distance between x and x;

// \\ . X1
/ \
{ X "
I
\ . * X4
\ Dlxx*) 7 X
/
N\ /
N 54
~————%
X2 . Xs
* X3

Figure 5: Distance Metrics. Image Credited to [82].

Formally the L, function of x can be defined as:

1/p
Iell, = (O lxlP) ~ 3:peRrp 21

Lo Norm: Although for p = 0 the requirements for a function to be characterized as a
norm are not fulfilled, L, Norm calculates the number of non-zero elements of the input
vector. In the context of the adversarial examples, it counts the number of pixels that
have been altered.

lIxllo = Cilx; # 0)

L, Norm (Manhattan Distance): L, is the sum of the magnitudes of the vectors in space.

In this case, all the components of the vector are weighted equally.

n

Ixlly = )

i=1
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s llxlly = [51 + [4] =9

(574) 0,4)

Figure 6: L2 Norm

L, Norm (Euclidian norm): measures the shortest distance between two points. That

could be interpreted as small changes in the pixels of an image.

n 1/2
Il = (2||x||2>
i=1

; lxll; = V52 + |42 = V41

0,4) (574)

Figure 7: Lo norm

Lo, Norm (maximum norm):

’

lx — x|l = max(|x; — X4| ... |x, — %

)

In this norm, only the largest element of input vector is taken into consideration. In the
context of an image that could be interpreted as the maximum change of a pixel. With

regards to the above example the result would be:

Ixlleo =5
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Dispute among researchers on the issue of choosing the most optimal norm is often the
case. Therefore, distance metrics according to [12] still remain an open issue for further

investigation.

1.6. Common Datasets used in Deep Learning

For reasons of fulness with regards to the data being tested for adversarial examples

and not only, most commonly used datasets in computer vision are mentioned below:

e MNIST: The MNIST dataset (Modified National Institute of Standards and
Technology database) is a database of handwritten numbers (0 to 9). It has a training
set of 60K examples and a test set of 10K examples [13].

e CIFAR-10: The CIFAR-10 dataset consists of 60K labeled tiny color images (32 x
32) with 10 classes, 50K of which are training images and 10K test images [14].

« ImageNet: ImageNet is a dataset organized according to the hierarchical structure
of WordNet. It consists of 1.4M images with 1K classes [15]
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2. Types of Attacks

Earliest security concerns have been reported in the work of [16], where the attackers
tried to change the attitude of a spam filter. Along with technological growth the
number of various attacks has also risen. Researchers many a time having to deal with
unknown security parameters of systems, attempt to violate one, in order to provoke a

reaction, and finally mitigate the impacts of such a breach.

Thus, the relevant bibliography tallies an enormous number of attacks, deploying at
every stage of ML system, all depending on the attacker’s strategy (e.g., aim
capability). The pipeline of Al based systems can be described in five steps as
previously mentioned: data collection, data pre-processing, model training, model
inference and system integration, each of which is prone to a specific set of threats and

ensued by the corresponding defense mechanisms [17].
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Attacks Attacks Gindient-based ntiack Attacks Attacks
é, [ Duabises ) [ Whiteboxauack | | [ Al confidentiality |
Sensor Image Clean label poisoning
T ([ rueon ) woorns || s |} =22 (Cotetor st “
attack attack Backdoor attack
Data breach S Code wlnerabllu)
GAN-based attack Gray-box attack
\ b yl | i \
&= s 1 3 X
v [ " v v { \
Data Collection Data Preprocessing Training Phase Inference Phase Integration Phase
0 11
@ - =V o M - 00 v X
Arllﬁcml
Intelligence m {3} @ @ (e o o] {5}
\Llfecycle , ) / }
P

[—]D e . N ‘ y N
erﬁlcel:—?: : : [ ROIN ] Modified networks / training Homomorphic || DP-differential
2 Image reconstruction process / input data Grenon i
Data Provenance . T v - -
icati iy Robusutaiing J Model Additional [ Model watermarkin ] Fuzzy test
Defensive | & Authentication [ ] [ enhancement network : [ i J

Technologies [ _ ] ified def L fai [—]
i;andardizectl Randomization e [ Validation network ] w}:amlﬂg s Bias diagnostic
k anagemen j

Figure 8: The Overall Framework of Attack and Defense Strategies for The Al Systems. Image Credited to [17]

Data collection stage is threatened mainly by malicious data, during their input
channels. That is, data receiving data from low-level apparatus (i.e., sensor capturing
raw data -camera, microphone-) that might be altered, or contain fake or biased data, in

the case of digital form (open libraries, e.tc.).

In the pre-processing stage data are analyzed, cleaned, processed in terms of

incompleteness, unfairness, anomaly and irregularity and transformed [18]. A basic
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vulnerability of this stage is the image scaling attack [19]. This attack method during
the downscaling phase of an image (input) to an ML system, produces a new and

irrelevant picture of the initial. The ML is then trained erroneously.

Model training stage contains the step of model selection and the evaluation of test
dataset (parameters evaluation). At this stage one of the most infamous category of
attacks in the pipeline of an Al based system takes place, namely causative [20] or
poisonous. Attacks of this kind try to degrade an ML system in terms of availability or

integrity depending on the side effects and the extent of the system’s failure.

At the inference phase, the trained model is applied. Adversaries that by no means have
access to the training phase, may conduct attacks, namely exploratory [20] or evasion.
This kind of attack is being deployed by crafting small imperceptible to the human eye
perturbations based on the input data (image, speech) or patches in the real world

(physical adversarial examples), causing the system to produce misclassifications.

The Al integration phase encompasses not only the risks of the Al technology per se,
but all the framework’s ones, where an application is based upon, such as network
attacks, software vulnerabilities, e.tc. where a broad variety of attacks could be
deployed.
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2.1. Attacks Deploying at the Training and Inference Stage

In the current thesis, we are particularly going to dive into three major attack categories
(poisoning-backdoor attacks and adversarial examples) that take place during the
training and inference phase of the Machine Learning model, due to severity of risks
posing to ML systems and their constantly development, following as well as the
emerging interest of the research community. Although we mentioned earlier a more
rigorous framework of the Al systems [Figure 1:Basic Components in Supervised Learning and
an ML-Based System's Lifecycle. Image Credited toFigure 1, Figure 8], we deem as a more
practical approach the concatenation of the many steps before inference phase at one,

namely training as the figure below [Figure 10].

2.1.1. Training Phase

Training phase is referring to the stages of collecting and preprocessing of data, model
training, validation and the deploying of the model [21]. The attack takes place before

the system produces the expected results.

Data collection Data preprocessing Learning & Modeling Model evaluation

LR SV CNN RL FL

el Sl

Learning Parameter Cross-
- Training set algoritms optimization validation
1 Data cleaning 30%
? 2 Data enhancement —pg > .
@ 3 Data transformation .
Data splitting Trained model
Ll | ) f
Preprocessed dataset Test data
o
Raw data 20% -

Test set Predictions

Figure 9: Machine Learning Training Phase. Image Credited to [18].

2.1.2. Inference Phase

Inference phase is referring to the stage where an ML model applies the trained model
and produces the outcomes, i.e., prediction, classification and recognition, based on the
task.
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Figure 10: Stages of Machine Learning Models. Image Credited to [21].

2.2. Further Taxonomy Features of Attacks

The taxonomy of attacks has been the subject of many researchers in their effort to
produce a clear image of the field and enlighten any new research direction. Most of
them have taken into consideration the various aspects of an adversary, such as means

of deployment, computational cost, time, and thus can be classified as follows.

2.2.1. Adversarial Falsification

False positive attacks are those producing an incorrect class to a correctly classified
sample. In the visual domain this means that an image containing an adversarial

example, imperceptible to human eye, will be classified as a class with high confidence.

False negative attacks are those producing a correct class to a misclassified sample. In
the context of visual learning an object fully recognizable to a human, cannot be

identified by the neural network.

2.2.2. Attack Frequency

Based on the circumstances the adversary conducts their attack, it may be necessary to
deploy only once their evasion (one-shot) -meaning to optimize their algorithm just
once- [22], especially when dealing with real time applications, or due to computational
costs. Alternatively, iterative attacks query the target more than once, so as to adjust

their parameters and achieve a better performance.
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2.2.3. Target Types

Healthcare Domain.

According to the aim of the attacker, either a targeted attack can be conducted if the

neural network outcomes a specific class, or a nontargeted attack may be conducted,

where the aim is to produce an arbitrary class, and generally raise of a matter of

reliability for the system [22].
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Figure 11: The Taxonomy of The Adversarial Threat Model. Image Credited to [11].

2.2.4. Knowledge of the Offensive System

According to the adversary’s knowledge of the targeted ML system -architecture,

training and testing set, features, parameters, weights, algorithms, loss functions-

attacks can be classified into three main categories: white-box, black-box and grey-box.

e White-Box Setting

In this category of attacks, the adversary has a full knowledge of the system. They

are fully aware of the training and testing set, as well as all the necessary

information to craft special inputs with the intention to produce erroneous

outcomes. Thus, being an internal actor of the target system with privilege access,

and the ability to expose vulnerable feature spaces [17] one may create adversarial

examples. The term white-box refers exactly to the amount of knowledge an

attacker has.
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Black-Box Setting

On the contrary, black-box attacks are developed with zero knowledge of the
targeted system. The adversaries, through sophisticated queries, try to analyze the
system and reveal its weaknesses. Black-box also refers to the level of knowledge
one has of the target system. In reality black-box attacks are more common to be
deployed, since an attacker usually targets a third system, fully unfamiliar with it,
however hard that might be proved.

Grey-Box Setting

Attacks of this category are deployed using partial knowledge of the system. In
practice attackers may prepare their invasion into a surrogate system of the training
set with similar features and then deploy it to the real one scale [11]. The name
grey-box also refers to the amount of knowledge someone owns for the target

system.
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Figure 12: Workflow of Adversarial Attack. Image Credited to [23].
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3. Adversarial Examples

3.1. The Very Existence of Adversarial Examples

Adversarial attacks emerged around 2004 [24]. Classifiers producing false negatives
due to alteration of the data, suffer degradation. Subsequently Lowd and Meek also
succeeded in tricking a classifier but questioning the assumption of Dalvi et al. work
with regards to the perfect knowledge of the classifier. Instead, they made the
hypothesis that adversaries must learn using prior knowledge, observation and
experimentation [25].

Although the trend “adversarial” appears in early works, only recently it gains a great
deal of attention. One might expect that state-of-the-art ML systems achieving high
performance in object recognition are robust to small changes of input, but this is hardly
the truth. Around 2014 [26] proved that many ML and deep learning systems are
susceptible to small imperceptible perturbations, causing the system to misclassify the

output category of the object. They termed these kind of inputs “adversarial examples”.

Adversarial examples are special crafted vectors added to the input images causing
minimal changes. Most of the produced images hardly differ from the original ones in
terms of semantic consistency, and thus changes are impossible to be traced with bare
eyes. But the peculiarity lies in the fact that ML systems classify the objects wrongly
and in many cases with high confidence. Systems receiving non anticipated results

introduce data vulnerabilities of great importance.

xo/ ——> ModelF —> Yo = F(Xo)

v

Attack: small perturbation

H

* A

v

Adversarial ysx ¢ ——> | ModelF |—> y* = F(x*)
example

Figure 13: An illustration of Adversarial Example.
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3.2. Formal Definition of Adversarial Examples

The authors provide a mathematic definition of the adversarial examples as follows:

Given a classifier f : R™ — {1 ...k} mapping image pixel values to a discrete label |
and n the minimal perturbation we apply to x input, we get an adversarial example x’,

so as the input x’ gets classified to a different label

x €[0,1]™

min 1 = xlly

st f(x) = U
fx)=1
[ #1

3.3. Causes of Adversarial Examples Existence

Even though a great deal of research has taken place to develop algorithms creating
adversarial examples and consequently the responding defense mechanisms, little is the
progress made in terms of their explanation. Partly this might be due to the lack of
strong mathematical tools, able to rigorously analyze an input to a high-dimensional
space. [27] set it more vivid - as if the research community is on the hold for an efficient
“telescope” to be developed, suitable to fully observe the geometry of the high-

dimensional universe.

On the other side though, Daniel Lowd and Cristopher Meek [25] are brilliantly
referring to this saying:

“If you know the enemy and know yourself, you need not fear the result of a hundred
battles. If you know yourself but not the enemy, for every victory gained you will also
suffer a defeat. If you know neither the enemy nor yourself, you will succumb in

every battle.”
—Sun Tzu, The Art of War

Nevertheless, researchers have made considerable efforts to explain the reasons of
adversarial examples existence [28]. Ironically, one might claim that there are
“adversarial” opinions of their origin, such as the non-linearity of the model, or the

linear behavior of the model in a high-dimensional space, non-robust features.
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However, the majority of the researchers argue that adversarial examples are features

of the systems and not bugs or accidental events.

Adversarial Examples have been studied through many perspectives [27]:

Low-Probability “Pockets” in the Manifold.

[26] explained the existence of adversarial attacks as an intriguing phenomenon. He
described these examples as low-probability (high-dimensional) “pockets” in the

manifold, that emerge after carefully crafted input around the given example.

[7] provided a further explanation of the theory that lies in “pockets” of data
manifold. They stated input transformations are highly correlated and drawn from
the same distribution across the training set, but adversarial examples differ in terms

of correlation or distribution.

Further explanations of the topic suggest that these blind-spots are actually
relatively large, in input space volume, and locally continuous [29]. What is more,
is that the authors conclude that these vulnerabilities are subject to “intrinsic

deficiencies in the training process and object function” that to model topology

Linearity of the Model.

Consequently, [30] provided a more rigorous explanation. They described

adversarial examples as a sort of accidental steganography.

With an input x and a perturbation n, with the constraint ||n||x<e, they suggested we

would have an adversarial example x = x +n

Furthermore, considering the dot product between a weight vector w and an

adversarial example x:
whx=w"x+w'n

So, by this equation we can see that the adversarial perturbation (w'n) causes the
activation to grow by w'n, and if we assign n = sign(w) we will maximize this
increase to the max norm constraint. Assuming that w has n dimensions and the
average magnitude of an element of the weight the vector is m, then the activation

will grow emn.
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Finally, the authors conclude that if x has sufficient dimensionality (n), a small

perturbation could provoke great changes.
e Test Error in Additive Noise:

The authors [31] suggest that adversarial examples are a consequence of the
nonzero test error in certain corrupted image distributions (gaussian noise) and there

is no need for newly coined terms to describe such features.
e Non-Robust Features

According to [32] non-robust features underly into adversarial examples. The
authors continue and define non-robust features as those derived from patterns in
data distribution and are highly predictive, but incomprehensible to human.
Simplifying this hypothesis is that in every dataset there are features that play a key
role in classification, but they are at a scale where cannot be directly understood by

a human.

They follow a method splitting an image into robust dataset and non-robust and then
train the model. The idea is that if one interferes an adversarial image, the robust
features will still remain as the initial class, but the non-robust ones will change to

the new false class.

Robust dataset

Training image Adversarial exsmple Relabel as cat
towards “cat”
good standard accuracy s -~
good robust accuracy
Robust Features: dog Robust Features: dog
m‘ Non-Robust Features: dog Non-Robust Features: cat

good standard accuracy
bad robust accuracy good accuracy

Training image

frog
Evaluate on

Non-robust dataset original test set

(a) (b)

Figure 14: A Conceptual Diagram. In (a) features are disentangled into combinations of robust/non-robust
features. In (b) a dataset which appears mislabelled to humans (via adversarial examples) but results in good
accuracy on the original test set. Image Credited to [32].

e Geometric Explanations

Other proposals include [33], who claim that adversarial examples exist when a

decision boundary is close to the submanifold of sampled data. With a more
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pictorial explanation as provided by the authors the explanation lies in the fact that
a class might not fit exactly to the boundaries of the data and thus data tilting to the

boundaries of the class may produce an adversarial example.

Submanifold of
sampled data T

~_ " / - =
[ / The boundary is

Tmage space “outside the box™

Figure 15: Adversarial Examples are Possible Because the Class Boundary Extends Beyond the Submanifold of
Sample Data and can be -Under Certain Circumstances- Lying Close to it. Image Credited to [33].

Furthermore, the authors suggest that adversarial examples are not likely to occur
in other directions of low variance in the data, and thus speculate that adversarial
examples can be caused due to the overfitting phenomenon that could be alleviated

through regularization [7].
e Further Views studying Adversarial Examples

In addition to the abovementioned explanation, studies in terms of adversarial
examples perspectives follow, with the latest one distinguishing the field under
three views: model, data and other [34]. The authors conduct a thorough research
in the field of adversarial examples with the aim to record the problems and

challenges of the topic, as well as, to highlight new research directions.

Each of the above perspectives is divided to further categories according to different
aspects with respect to different phases of ML systems (training, inference). All the
viewpoints attempt to explain the causes of adversarial examples, such as the
linearity, the boundary system, the loss function etc., are all titled into the model’ s
perspective. Taking into consideration the amount of data needed for ML systems,
they create a perspective of their own. Dimension of the data, distribution, features
are among the traits this perspective is concerned with. Further studies for the
origins of adversarial examples are falling into the Other perspective, since they get

inspiration from real human aspects and thus provide a promising field.
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The authors also make an attempt to record the literature under these perspectives
S0 as to point out the advantages and flaws of each underlying theory and to further
support new researchers to turn their lights into some view with little attention up
to a point.

Model Properties
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Figure 16: Three Main Perspectives of Related Works on
the Interpretability of Adversarial Examples. Image
Credited tn 1341
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Figure 17: Related Publications of Interpreting Adversarial
Examples from Three Perspectives. Image Credited to [34].

3.4. Perturbations

“Perturbation” comprises a cornerstone term that defines adversarial examples.
Currently no formal lexical definition has been found in the literature, whereas the term
is mentioned in circumlocution. By and large, one could claim that a perturbation is a
small, tiny distraction of the input data, in a way of not being realizable to the bear eye.
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That is, an Machine Learning based system would interpret the raw data, in an

inexplicable to the human notion way.

[35] scrutinized the “perturbation” term and classified it into categories, such as
individual and universal, whether it can be applied one or more clean input data, as well
as, optimized and constraint ones, depending on their goal. That is, minimizing it to the
extent that a perturbation will not be recognizable to humans, or for the latter category

to setting the perturbation as a constraint to optimize the problem.

Furthermore, the authors mentioned the £,, norms as a widely used metric tool, while

they referred also a new one, namely psychometric perceptual adversarial similarity
score (PASS) [36], consistent with human perception. Several other metrics have been

proposed to literature such as the semantic similarity [37] and dropping points [38].

At this point a distinction worth mentioning, that a perturbation takes place in the digital
form of adversarial examples. However, in the real world, patches replace the original
input in a selected space of the original picture.

3.5. Transferability

An important aspect of adversarial examples and with a major impact on every Al based
application, is their ability to be deployed on different ML systems causing erroneous
outputs. [26] were the first that showed that adversarial examples are shared among
different architecture ML systems, along with their own existence. Such ascertainment
was sufficient enough to raise security issues and provoke the research community’s

reaction.

[39] studied the transferability of adversarial examples more rigorously. They defined
“Adversarial sample transferability”, as the property of some adversarial samples that
may mislead besides a specific model f and other model f' - irrespectively of their
architecture. Furthermore, a taxonomy was proposed with respect to their technique:
Intra-technique and Cross-technique. The first one refers to those samples deploying
in the same machine learning system, but each time trained with different parameters
or datasets. The latest one refers to the different architecture machine learning systems

(neural network or decision tree).
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Further studies resulted in variant outcomes. Transferability has been analyzed in terms

of hyperparameters, model architectures (differentiable or non-differentiable), as an

inherent property, as well as in correlation to the input space and the algorithm design

of the ML system. Empirical evidence suggests this property is due to large spaces

instead of small pockets. As [7] survey the literature on this topic, they conclude that

transferability is not equally applicable for all ML systems highlighting the fact for

more research to be done on the field.

3.6. White-Box Attacks

Below we mention several of the most representative algorithms creating adversarial

examples in a white-box setting:

L-BFGS

[26] showed that small imperceptible perturbations (p) on a correctly classified
given input (x) -namely adversarial examples- were able to foolish a ML system,

enforcing it to misclassify that input into (1) class.

According to [11] the authors and tried to find these small perturbations calculating
the:

min|[pll;s.t.f(x +p) = Lx +p € [0,1]™

That proved to be a hard-problem, since there are many (p), besides zero (0) that

makes it trivial f(x) = L.

They overcame the problem by finding an approximation using the box-constrained
L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization algorithm, and thus the

complexity of their initial problem -finding a minimum perturbation- was reduced.
They calculated instead the loss function using line-search to find (c):

minc - |p| + Lg(x +p,Ds.t.x +p €[0,1]™
Fast Gradient Sign Method

[30] in order to prove that adversarial examples are a result of their linearity in deep
neural networks, they suggested an algorithm to create such, taking into

consideration the maximum direction of the gradient change, using
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backpropagation. They introduced the “fast gradient sign method” algorithm, which

is illustrated as an optimal max-norm constrain perturbation, of:

n = esign(V,J(6,x,y))

where J is the cost function, 0 the parameters of the models, x the input, y the target

associated with x and e a small scalar value to restrict the norm of the perturbation.

Furthermore, the authors find that using e = 0.25, they cause a shallow softmax
classifier to have an error rate of 99,9% with an average confidence of 79,3% on
the MNIST test set.

Additionally, they argue that rotating x by an angle in the direction of the

gradient, also creates adversarial examples.
e DeepFool

[40] proposed a new algorithm to create adversarial examples and measure the

robustness of a ML system. They define robustness as:

- A(x; k)
) = B~
padv( ) x ”x”2

where x is an image, k(x) is the estimated label and E, is the expectation over the

distribution data.

The authors continue by calculating the minimum perturbation (iteratively), as

above:

f(xo)

lIwll3

.(xo) := argmin||r||, subject to sign(f(xo)) = — w

The algorithm is based on the assumption that neural networks are linear, with a
hyperplane separating each class. Thereafter, the initial hypothesis of linearity is

expanded. Since neural networks are not linear and the process is repeated.
Consequently, the algorithm calculates:

arg min||r||, subject to f(x;) + Vf(x))Tr; =0
i
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The algorithm stops at iteration i + 1 when x;,; changes the sign of the classifier.
e Carlini & Wagner (C&W)

[12] proposed a family of three attacks (with constraints [, [,, ), namely C&W
attacks, that are able to exceed the distillation defense mechanism image
classification in a neural network. The problem to find adversarial samples,

according to the authors is formally expressed, as above:
minimize D(x,x + &)
Cx+6)=t
x+6 €[0,1]"
where x is an image, and the goal is to find & that minimizes D (x, x + &).

In order for this problem to be solved using an optimization algorithm the

aforementioned equation has been transformed, as:
minimize D(x,x +6) +c- f(x +8) s.t.x + 6 €[0,1]"

where D represents constraint paradigms, ¢ denotes the hyperparameter, and f
adopts a variety of objective functions.

+
The authors chose f(x') = (m%x(z ) -2 (x')t,—k) after an evaluation of
2

seven objective function, where e*is short hand for max(e, 0), Z denotes the

softmax function.

Furthermore, in order to avoid “box-constraint”, the authors introduced a new

variant w, where:
1
5i = E(tanhwi + 1) — X
They also provided three kinds of attacks base on the distance metrics [y, 1,,

[, attack: mvgn ”%tanh(w) + 1”2 +c-f Gtanhw + 1)
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As for the [, attack, since it is not differentiable, through an iterative process the
pixels that don’t have much effect on the classifier input are characterized stable.
The algorithm stays with the minimum of them that can be altered and create an
adversarial example. L, attack is used to identify the pixels with less effect on the
classifier.

L, attack is also an iterative process, where the [,term was replaced with a new

penalty in each iteration:

minc- f(x+n) + Z[(ni —17)7]

e Jacobian-Based Saliency Map

[6] introduced an algorithm where the output modifications are taken into
consideration, in an iterative way of producing new adversarial samples, and thus
achieve a misclassification. The authors are motivated by the forward derivative.
They evaluate the forward derivative:

VF(x) =

OF (x) [ﬁITj(X)

Ixq Ix;

x€1.M,jE€L.N

and define an adversarial saliency map -namely Jacobian- which highlights the
features with respect to the adversarial ‘s goal and the impact to the classification,
so0 as to be included in the next step. Consequently, the algorithm using optimization
techniques, simple heuristics, or even brute force, produces the next perturbation.
The next step and after the evaluation of the perturbed input, determines whether
the aim of the attack is accomplished and the output is misclassified, or the result
exceeds the maximum threshold and thus the distortion is obvious with the naked

eye.

Furthermore, the authors claim they achieved a misclassification with a 97%
success rate, by tampering with only 4,02% of the input features per sample.
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Figure 18: Jacobian-Based Saliency Map Algorithm (JSMA). Image Credited to [41].

e lterative Fast Gradient Sign Method

[42] enriched further the FGSM algorithm, developing two more versions of it:
Basic Iterative Method (BIM) and Iterative Least-Like Class Method (ICLM).

BIM works iteratively, using a step e and afterwards a function Clipy . {x'} crops
each pixel, so as to ensure the imperceptible character of the newly produced

examples x'. The algorithm is formally presented as follows:
ngv =X, XI(\IITi = Clipx,e{XI(\lldv + a- Sign(VX](XI%dv' ytrue))}

Furthermore, in order produce peculiar targeted adversarial examples in datasets
that samples are not so distinct among each other, the authors substituted the y,,,.

label, with the least-like class of the trained network, according to the formula:
yiL = arg myin{p(yIX )}

They maximized y;; using log{p(y|X)} iterative way in the direction of
sign(Vy log{p(y|X)}), which equals sign(—VxJ (X, y,.)) and finally the resulting

formulais:

X§% = X, X§% = Clipy o{X8% — a - sign(VxJ (X§%, y..))}
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e Universal Adversarial Perturbations

[43] proposed an algorithm that
seeks for a perturbation in datapoints
among a set of pictures with the same

data distribution. Their approach

differs on previous works, since the
adversarial sample applies to many
natural images and it is produced by
adding  universal  perturbations,
without requiring optimization or QR rooue

gradient calculation.

Lycaeoad

The problem is formulated as above:

Balloon

Let k be a classifier and v € R? a

vector of perturbations that fools the

classifier on almost all datapoints Figure 19: When Added to a Natural Image, a Universal
Perturbation Image Causes the Image to be

deriving from a distribution U Then Misclassified by the Neural Network with High
Confidence. Image Credited to [43]

we are looking for a vector v, such

that k(x +v) # k(x) for mostx — u

The algorithm iteratively finds perturbations (using £, metric) over the images and

builds the universal perturbation v with the following constraints:
lvll, < ¢

P (k(x+v) # k@) 21-6

XU

where &denotes the magnitude of the perturbation, and 1 — & the probability of

misclassification.

3.7. Black-Box Attacks

Below we mention procedures crafting adversarial examples in a black-box setting:

Dimitrios Papatsimpas Page | 48



Data Vulnerabilities and Adversarial Attacks against ML-Based Systems. The Adversarial Risk in the

Healthcare Domain.

ATNs

[44] proposed Adversarial Transformation Networks (ATNSs), which are
feedforward neural networks trained to produce adversarial examples. The network,

can be formally defined as:
Jroc): X EX - x'

where 9 is the parameter vector of g, f is the target network which outputs a
probability distribution across class labels, and x~x', but argmax f(x) #
argmax f(x"), which turns out to be a minimization problem of the joint Loss

functions L, (of the input space) and L,,(of the output space):

arg mﬁin Z BL(g70(x),x;) + L, (f (gf,ﬁ(xi))rf(xi)>
X;EX
Furthermore, authors proposed two methods for generating adversarial examples.
Perturbation ATN (P-ATN), which outputs the perturbation of x and Adversarial
Autoencoding (AAE), which results a new input based on the initial, taking into
consideration all the necessary constraints (weight decay or added noise, input

range).
Z00

Inspired by Carlini & Wagner (C&W) [45] proposed a black-box attack, which
exploits techniques from zeroth order optimization, and thus called ZOO, with no
training substitute models needed and directly being deployed. Authors modified
the (C&W) loss function, based on the output F of a DNN, as follows:

f(x, 1) = max {max log[F (x)]; — log[F ()], —k}

where k = 0 and log0 defined as —oo, and consequently, they compute an
approximate gradient, instead of back-propagation (since only the input and output
of a DNN is available), using symmetric difference quotient to estimate the gradient

2 ~
_agj(:)' and Hessian % defined as g; and h;, as follows:

of (x) - f(x+ he) — f(x — he;)
dx; 2h
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0°f(x) _ f(x+he) —2f(x) + f(x — he)
9x2 h?

il

where e; denotes the standard basis vector with the ith componentas 1 and h is a
small constant. Consequently, the attacker uses the ADAM or Newton methods to
calculate the adversarial example.

Furthermore, in order for ZOO attack to be efficient, in terms of computational cost
and number of queries, techniques such as space dimension reduction, hierarchical

attacks and importance sampling are in the scope of this general framework.
e Houdini

[46] introduced an algorithm, namely Houdini that is strongly connected with the
loss function of the problem in concern. Authors propose the following surrogated

lose function:

zH(H'x:y) = Py~N(0,1)[99(x:y) - ge(x'f’) < )/] f(y,y)

The function consists of two arguments. The first one is a stochastic margin, that
calculates the probability of the difference between the score of the actual target
and the predicted one, and is smaller than one, resulting in the confidence of the
model. The second argument is independent from the first one, and refers to the

target that will be maximized.

The authors report their algorithm is effective besides visual experiments, at speech

recognition and in the semantic field, as well as to targeted and un-targeted attacks.
e One Pixel

[47] proposed an attack called One-Pixel, optimized by differential evolution
algorithm, and thus makes no use of gradient information and needs no knowledge
of the objective function. One-pixel algorithm creates adversarial perturbations, and
then alters one or a small number of pixels so as to produce erroneous outcomes. It

is formally defined, as:

maez((ixr)rlize faav (x + e(x))

subject to |le(x)|| o < d
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where f is the target image classifier, x = (x4,..,x,) the n-dimensional input
original image, e(x) = (ey,..,e,) is an additive adversarial perturbation, & is a
small number and in the case of one pixel modification equals 1. The modification
of the one-pixel perturbation may be visualized as moving the data point along the

x-axis of one of the n-dimensions.

Furthermore, according to the authors the perturbations are encoded into arrays,
forming the candidate solutions. One candidate solution contains a fixed number of
perturbations. Each perturbation is a five tuple, including x and y coordinates and
RGB value, and alters one pixel. They are optimized and on each a child image is

produced, according to the follow formula:

xi(g +1) = x,1(9) + F(xr2(9)+x,3(9))
T * &) * 3

where x;is an element of the candidate solution ry, 7, 3 are random number, F is

the scale parameter, g the current index.

Each child candidate is compared to the parent and the better one proceeds to the
next iteration. The algorithm continues until the maximum number of iterations

reaches, or the target class is above or below a percentage, depending on the dataset.
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Table 2: Comparison Table for Adversarial Examples

Adversarial Attacks Attack Type Specificity Attack Perturbation  Perturbation  Attack strategy Year Strong Aspects
Frequency Type Norm
L-BFGS [26] White-Box Targeted One-shot Specific - Constrained 2017 Good mobility
optimization

Fast Gradient Sign White-Box Targeted One-shot Specific o Constrained 2015 Efficient algorithm

Method [30] optimization succeeding  good
results due to
iterations

DeepFool [40] White-Box Non- Iterative Specific Lotst 0 Gradient 2016 Limits in targeted

Targeted Optimization attacks

Carlini & Wagner White-Box Targeted Iterative Specific Lol2t o Constrained 2017 Successfully breaks

(C&W) [12] optimization state-of-the-art
defense

mechanisms, such

as defensive
distillation,
limitations on
efficiency
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Adversarial Attacks Attack Type Specificity Attack Perturbation  Perturbation  Attack strategy Year Strong Aspects
Frequency Type Norm
Jacobian-Based White-Box Targeted Iterative Specific 2, Sensitivity analysis 2015 Good ASR, but
Saliency Map [6] limits in mobility
Iterative Fast Gradient White-Box Targeted Iterative Specific e Constrained 2017 Applies the FGSM
Sign Method [42] optimization multiple times with
a small step
Universal Adversarial White-Box Non- Iterative Universal 450 Gradient 2017 Better
Perturbations [43] targeted optimization generalization,

good for  real

scenarios
ATNs [44] Black-Box and Targeted Iterative Specific 450 Gradient 2017 Effective training
White-Box optimization to generate

adversarial

examples
Z0O0 [45] Black-Box Targeted Iterative Specific £, Migration 2017 Mobility, efficient
mechanism techniques to

accomplish the
attack
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Adversarial Attacks Attack Type Specificity Attack Perturbation  Perturbation  Attack strategy Year Strong Aspects
Frequency Type Norm
Houdini [46] i Black-Box Targeted Iterative Specific 50 Generative model 2017 High Attack
and Success Rate /
Untargeted Tailored to
different  domain
applications
One Pixel [47] Black-Box Non- Iterative Specific 4o Differential 2019 One pixel offers a
targeted Evolution more concealed
and attacks, needs many
targeted iterations,

efficiency low

Does not require
the  optimization
problem to be

differentiable.
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3.8. Adversarial Examples in the Physical World — Physical Attacks

Adversarial attacks have exposed vulnerabilities of ML systems in a great extent.
Though many attacks until this point have presumed that the attacker has in their
possession the input data in a digital form, there is no doubt that this behavior can be
replicated in a real environment. Objects of interest (pictures, raw data from sensors,
etc.), can be the subject of malicious behavior and be intervened before their input is
transformed digitally. These kinds of attacks are considered to be deployed in the
physical world and are conducted at a different stage within the visual recognition

pipeline [48].

% Automomous car d
! [ (-]
& e Shoot b | ~ R Process Recognire @ 5 Predict
— — [ e
- \ b | 9.

Stop sign Cameras Tmages or Videos DNN model
in the real world

1

Manipulate real objects Disturb camern imaging l

M === L

ot

“Stop"

=

Physical attacks Digital attacks

Figure 20: The Comparison Between Digital Attacks and Physical Attacks In The Standard Visual Recognition
Pipeline. Image Credited to [48] .

[42] were the first who demonstrated that adversarial examples exist in the physical
domain and can fool a ML based system with tiny perturbations. They conducted a
series of experiments printing pictures on a paper and then using a cellphone modified
them. They further introduced new methods: Basic Iterative Method and Iterative least
likely to create adversarial examples, as well as a new metric: destruction rate, to define
the influence of arbitrary transformations (change of contrast, brightness, Gaussian blur
and noise, etc.) to these images. The results revealed that less was the effect to the
adversarial examples with the contrast and brightness transformations, but that did not

hold true for the blur and noise.

Physical world adversarial examples need to be robustified over challenges that exist
in the real environment. [49] mentions a subset of factors that affect their persistence.

Specifically, in terms of the environmental conditions, they refer that distance and
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angles should not be able to alter the erroneous nature of adversarial examples.
Imperceptibility is of great importance, keeping in balance the ability of the for the

sensor of input to capture the perturbation and not being exposed to the observer.

Furthermore, the authors make reference to [50] work, with regards to the reproduction
error and the sometimes-erroneous depiction of real-world colors, which might reduce
the strength of the attack. Another important category of physical attacks limitation is
that of perturbation. In the digital form the attacker has in their availability all the input
allowing to create small perturbations. In the physical world perturbation should be
created in a manner of not causing the attraction of an observer. This limitation

according to the authors is classified under spatial constraints.

Figure 21: Stop Sign in the Physical World. The left image shows real graffiti on a Stop sign, something that most
humans would not think is suspicious. The right image shows a physical perturbation applied to a Stop sign. Image
Credited to [49].

Dealing with the above challenges, Patch Attacks emerged [50], [51]. [52] termed the
patch as a patterned sub-image that is generally masked over the input image, turning

it into a feasible solution for attacker in physical environment, and with the further

privilege of being deployed with no previous knowledge of the attacked system.

In contrast to the norm-based attacks, as mentioned above, patch attacks craft

perturbations on a restricted area of the input data, and is formally defined as:
¥ =1-pOx+p0O6

where § is the adversarial patch noise and p represents the binary pixel block to mask
the patch area (location and area), familiar also as adversarial patch, while the symbol
O represents the Hadamard operator, which performs element-wise multiplication of

pixels from the input matrices.
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Figure 22: Adversarial Patch Attack Procedure (White is 1 and Black is 0). The Adversarial Example is
Generated by x” = (1 — p) x + p 6, where 6 and p are the Adversarial Patch Noise and the Adversarial Patch,

Respectively. Image Credited to [52].

Joining all these perturbations and printing them in the form of a sticker, the attack

applies in the real world, and it is known as Physical Attacks.

3.9. Al-Guardian — A Defense against Adversarial Examples

A novel approach, namely Al-Guardian [53] was recently introduced aiming to tackle
adversarial examples using backdoors, presenting remarkably results, with regards to
five popular adversarial examples generators. Their attack achieved to lessen the
success rate from 97,3% to 3,2%, with a slight decline on the clean accuracy data, and
still with no degradation on performance. In particular the algorithm is based on the

observation that injected backdoors reduce the functionality of adversarial examples.

A uniquely implemented backdoor, namely bijection backdoor is implanted to a deep
neural network, so as to shield it over adversarial examples. The newly emerged
backdoor is based on either the source (input) or the target label, creating a one-to-one
relationship, i.e., a source class corresponds to only one target. Thus, the model with

the injected backdoor exerts over the perturbation of the adversarial example.
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class 0. class 0 Original | Training Backdoored Training Robust
T
class ass 1 I DNN —_— 7 DNN T Backdoored
| T DNN
class n class n AEs+Trigger
Clean AE —
Image - + l — Reversed Correspondence
® o obu class 0 class 0
E —’ > —) Backdoored —»Predictions — j5c class 1
L] DNN
Class 0 € class n class n
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Figure 23: Overview of Al-Guardian. Image Credited to [53].
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Furthermore, authors urge the necessity of keeping a firm secret the trigger of the
backdoor, since it can used to bypass it, while they recognize the need to further develop

a theoretical guarantying the performance of the algorithm.
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4. Poisonous Attacks

Poisonous attacks emerge with significant importance in the field of Machine Learning.
The name comes from the work of [54] and are also referred as causatives. Their aim
is to produce misclassification or subvert the prediction of ML system, by tampering
with training data in the corresponding phase of ML based system pipeline. In terms of

the adversary’s capabilities, the ability to manipulate training data is considered as an

assumption.
Training phase Inference phase
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Figure 24: The Framework of Poisonous Attacks. Image Credited to [18]

Literature classifies poisonous attacks under various perspectives [55]. In terms of
privacy [56] poisoning attacks are classified as integrity where the system produces
misclassifications on specific classes, and availability where the system sustains a
general performance degradation, with regards to incorrect classifications or

predictions.

In terms of “Specificity”, attacks can be classified into targeted and indiscriminate (or
untargeted). The first one aims to produce erroneous outcomes in a specific set of
classes while the second one aims at no particular target, but rather intends to cause a
general declined success rate of ML systems. Another category is that of “Error
Specificity”, in which if the adversary’s target is to cause an erroneous outcome,

resulting a specific error class or any other.

Further classifications are reviewed with regards to the learning technique, such as
training-from-scratch (TS), fine-tuning (FT), and model-training (MT) [57]. In the first

two methods users have limited resources on the training dataset, and thus they address
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third-parties for support. Even though the training process is fully controlled by them,
malicious data may already be injected into the provided dataset. The two methods
differ in the training data they use. The first one trains the dataset from scratch, while

the second one uses a pre-trained set and adjusts the weights.
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Figure 25: Training and Test Pipeline. Image Credited to [57].

In the last method (MT) the opposite scenario takes place. The user has in their
possession the training dataset, but lacks the computational resources or the expertise.

Thus, the training method may be posed to vicious intentions.

Other taxonomy of poisonous attacks considers the point the attacker aims to exploit,
and thus data and model methods are arising. The first one acquires access to the
training dataset, while the second one points directly to the model per se (i.e., training

algorithm, modeling procedures) [18].
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Figure 26: The Taxonomy of Poisoning Attacks, Image Credited to [18].

Poisonous attacks have evolved since their first appearance, in order to correspond to
the constantly increasing complexity of the systems being deployed in the fields of

Machine and later on Deep Learning.
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4.1. Poisonous Attacks on Conventional Machine Learning Systems

One of the earliest techniques emerging is that of Label Poisoning. Its aim is to create
mismatched labels or modify them, so they do not correspond to the original data, and
thus an erroneous knowledge base is being built. As a consequence, the quality of the
contaminated data affects the overall system. The method is also called “label flipping”

deriving from the initial binary classifiers of 1 and 0.
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Figure 27: Instance of Label Manipulation. Image Credited to [55].

Consequently, label flipping algorithm enriched with optimization features, for the best
optimal choice of labels causing the maximum erroneous output. Thus, this algorithmic
development sets the ground for a mathematical problem to be formed and optimized

variously.

4.2. Formal Definition of Poisonous Attack — A Bilevel Approach

Formally a poisonous attack can be captured as follows:

D, € argDmaxT(Dp,w*) =L, (Dya,w") (1)

p

st.w* € argmin L, (Dtmin U Dp; W) (2)
w

where D, is a poisoned dataset, Di.q;, is the original one, and D, the validation
dataset. F is the attacker’s designed objective function to create poisonous samples and
maximize the loss £, in the validation dataset with w* parameters. The second function
updates the parameters w* -whenever the first function finds an optimal solution (best

local)- on the augmented poisoned dataset D¢y.q;n, U D, [18].

-Notably, according to [18] the aforementioned conceptual idea of bilevel optimization

formulating poisoning attack is officially reported for the first time in the work of [58].
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4.3. Poisonous Attacks on Deep Learning Systems

Taking a step further and adapting to the newly emerged deep learning systems the

research community introduces new methods of poisonous attacks, taking into

consideration all the limitations deriving from the complexity of these systems. Thus,

approximation of the bilevel optimization problem allows to create new attacks.

Gradient-Based Attacks

Gradient-Based Attacks present a challenge calculating the gradient of a poisoning
point toward the gradient of the objective function, until the poisoning point

achieves greater results.

Assuming that the F function is differentiable for parameters w and a point x, the

required gradient is calculated using the chain rule as follows:
owT
ij:' = VxLl + EVWLI (3)

where Z—V: denoted the dependence of the classifier parameters on the poisoned data.

Furthermore, due to the convexity assumption of £, [58] proposed an implicit
equation using the Karush-Kuhn-Tucker (KKT) conditions instead of the second

optimization [Eq. (2) — p.61] and thus [Eq. (3) — p. 62] converts, as follows:
Vi F = VL - (VxVWLZ)(V\%vLZ)TVwﬁl

and thus, a two-layer optimization problem transforms into a single-layer

constrained optimized problem [17].

On the gradient-base [59] introduced the reverse gradient optimization, that was the
first poisoning attack towards a deep learning model. The method computes the [Eq.

(2) — p.61] more efficiently and thus overcomes complexity issues.
Gan-based Attacks

[60] inspired by generative methods introduced a generator to produce poisoned
sample. Training a model so as to learn the probability distribution of adversarial
perturbations and then construct poised input is of great importance. The model

consists of two components: the generator and the classifier. A random input is
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selected from the clean data and the generator creates a poisonous sample. Then,
the sample is tested against the validation dataset to the classifier and the weights-
parameters are adapted. The results -obtained parameters- return to the generator.
The process repeats until the desired result is succeeded. According to the authors
a trade-off exists between the time of poisonous data generation and the slightly

lower accuracy.
e Clean-Label Attacks

[61] proposed a new strategy attack, namely clean-label, where the attacker knows
about the model and its parameters, but nothing with regards to the training data.
The attackers embed small imperceptible perturbations to the input data and then
feed them to the training data. Thus, the model is erroneously trained and
furthermore the poisoned data are unrecognizable from the human eye.

Authors with Feature Collision create poisonous data, as follows:
p = argmin||f(x) — f(O)II3 — Bllx — bli3
X

where f(x) is the representation of x is the penultimate layer (before the softmax
layer), namely feature space, ||f(x) — f(t)||5 the similarity measure between the
poisoned data and the target, and S is a parameter to the constraint ||x — b||3 of

poisoned data and to initial input data so as to be imperceptible to the human eye.
e Model Attacks

Model poisonous attacks need no knowledge of training data, instead the adversary
targets to the model parameters per se. Thus, confidentiality and privacy concerns
are raised. According to [18], [57] not much research has been conducted in this
nascent branch of attacks.
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5. Backdoor Attacks

An attack firstly appointed (as will be explained below) to the poisonous category,
namely backdoor attack or trojan [62], rapidly gains the interest of the research
community, as recent data reveal [Figure 28]. An attacker may deploy a backdoor attack
in a deep learning model by injecting malicious inputs in the training phase of the
system’s lifecycle, remaining in an idle situation, until it is invoked at the inference
stage. However, non-influenced samples will still behave as they should depending on

their nature (i.e., classification, recognition).

Figure 28: Number of Published Papers on the Topic of Backdoor Attacks to Deep Learning Models from 2018 to
2022 of Web of Science, Image Credited to [63].

At a higher level of view backdoor attacks and poisonous ones appear to have a close
affinity, but zeroing in on technical details, any similarity is fading out. In terms of
security aspect, backdoor attacks are considered to violate the integrity viewpoint, in
contrast to poisonous ones that aim at a general degradation and non-availability of the

system, equally termed as denial of service.

Besides, backdoor attacks are considered targeted attacks since the trigger causes the
system to misbehave according to the attacker’s target class base, while poisonous ones
aim to a system’s general performance decline irrelevantly of the result. Furthermore,
if the malicious trigger is related to the source class the attack may be classified as class-
specific, in contrast to class-agnostic where the trigger depends only on the nature of

the data (i.e., voice, text).
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Figure 29: An Illustration of Backdoor Attack. Image Credited to [64].
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Though initially the attack focused on the computer vision domain, it was sooner rather
than later that expanded to other critical fields (i.e., speech, text). They are further
present in variations depending on the trigger, whether it produces the same label or
acts separately targeting different labels, on the many arbitrary chosen by the attacker
factors, such as shape, position, size as well as on its transparency or invisibility [65].
Notably the trigger in the domain of sound and text, is figured in terms of amplitude of

the audio and semantically accordingly.

5.1. Formal Definition of Backdoor Attack

According to [66] for a benign model F: X — U, a selected malicious output prediction
result R, a backdoor attack is to generate (i) a backdoor model G: X — Y, (ii) a
backdoor trigger generator J: X’ — X, which alters a benign input to a malicious input
such that:

_(F), if x € {X = J(X)}
g(")_{ R, if x € J(X)

-Notably a backdoor attack is evaluated by the following ratios:

e Clean Data Accuracy (CDA): defines the proportion of the clean samples (with no
trigger) predicted to their ground-truth classes.

e Attack Success Rate (ASR): defines the proportion of the samples (with trigger)
that are predicted to the attacker targeted classes.

5.2. Taxonomy of Backdoor Attacks

Literature records a variety of backdoor attacks, striking at most of the phases of ML
lifecycle, through one or two vulnerable entry-points (attack surfaces or scenarios). A
comprehensive survey on this topic [65], reports and categorizes these scenarios into

six classes:

e Code poisoning refers to the adversary’s capability to exploit the tactic
practitioners follow, for developing their solutions on top of already released
frameworks. Malicious code can be injected into the initial framework, posing

severe security threats in terms of contamination and detrimental effects.
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e Outsourcing refers to the occasion where a practitioner lacks the computation
capacity to process a large volume of data and thus turns towards external service
providers (Machine Learning as a Service — MLaaS).

e Pretrained refers to practitioners who use a ‘teacher’ model to train their own. Data
acquisition and labeling are enormously challenging procedures that require
expertise and resources in terms of time and cost. Thus, an adversary can train
maliciously a model and then publish it, with all the consequences that entails.

e Data Collection refers to the stage of gathering data. Cutting-edge technologies
require constantly new data, mostly coming from open sources. Thus, malicious
data can be freely available feeding the models that make use of them.

e Collaborative Learning refers to the machine learning models with no access to
training set, but still input data from many participants, who many a time are not
benevolent. A typical example of this consists Google word prediction, that goes
through the end user’s data [67].

e Post-deployment refers to an occasion where an intruder has gained access to an
ML system with the aim of altering i.e., the weights of a model loaded in the

memory, and thus causing a degradation at the inference stage.
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Figure 30: Categorized Six Backdoor Attack Surfaces: Each Attack Surface Affects One or Two Stages of the ML
Pipeline. Image Credited to: [65].
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! Note that a collaborative learning attack surface is out of the scope of this thesis.
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Latest literature [68] classifies backdoor attacks into three main categories:

e Poisoning-only attacks where an adversary has access only to the training dataset.

e Training-controlled attacks where an attacker has privileged access to the training
procedure, including the training data and algorithm.

e Non-poisoning-based attacks that take place after the deployment, tampering with

the core data of ML model loaded directly in the memory, such as the weight values.

Thus, this newly classification clearly shifts away backdoor attacks from the classical
term of poisonous, thereafter the emergence of non-poisoning-based attacks.
Furthermore, backdoor attacks have extended their scope to almost every stage of ML

lifecycle, except the Model test.

Adversarial
Example

Selection

Universal
Adversarial
Patch

Figure 31:Possible Attacks in Each Stage of ML Pipeline. Image Credited to [65].
5.3. Poisoning-Only

e BadNets — Firstly emerged backdoor attack

BadNets [69] the most representative and firstly explored causative attack,
introduces a specific feature only known to the adversary, namely backdoor
trigger, associated to the target class, remaining idle until it’s being invoked. It

deploys in a white-box setting, where the adversary takes full responsibility over
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the training process and returns the according model or feeds the training data with

malicious samples (transfer learning) and then releases it to repositories.
e Targeted Poisonous Backdoor Attack

At around the same time [70] an attack termed as backdoor and more specifically
“backdoor poisoning” emerged on the scene. According to the authors, it differed
from the previous ones in terms of knowledge of the attacked model and thus firmly
was classified as a black-box attack. The attack takes place by inserting a small
number of poisonous samples (either with a specific class or more widely with a
key pattern) into the training dataset with a preeminent success rate and an ultimate

goal of not being distinguishable.
e Dynamic Backdoor Attack

The aforementioned attacks both refer to triggers that are statically stamped onto
the sample (in image classification), and thus the location and the place are
beforehand known. In [71] authors introduce a dynamic way to create triggers,
spotted randomly in the terrain of image with various patterns. They propose three
methods to succeed their goal: random backdoor, backdoor generating network
(BaN) and conditional backdoor generating network (c-BaN). All these methods

subsequently advance in terms of complexity and limitation exceeding.
e Clean-label Attack

Clean-label attack was proposed in [72] based on the observation that it is possible
to create a poisonous sample without corrupting its label. The attacker aims to
induce a machine learning model producing a specific class. Thus, it is a targeted
or multitargeted attack that provides flexibility with an additional vector to cause
misclassifications. The vector is stealthier to be recognized since no labels are
changed, and furthermore can be directed to the desired class, irrespectively of the
base class that it will be applied. However attractive this technique might be, it
comes not without drawbacks. A great deal of training samples is required to

persuade the model acting maliciously.
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5.4. Training-Controlled

Trojaning Attack

Another attack deploying in a grey-box setting, however more realistic than the
previous one, is introduced in [73], where the adversary has access to the target
model but not to training/testing data. The authors claim that this is often the case
since most Neural Networks are published partly in order to exhibit their supported
functionality. The attack consists of three phases: creating the trojan trigger, training
the data and retraining the model. Taking into advantage the neurons strongly
activated to a particular trigger and with reverse engineering techniques the attack
deploys in a real scenario.

Blind Code Poisoning Attack

Blind Code Poisoning attack proposed in [74] presupposes no access to training
data or the process as well as to the execution phase of the code and its results. Thus,
it is considered a black-box attack. The adversary implants the malicious code into
an ML system, and produces poisonous samples “on the fly”. The calculation of the
loss function for the legitimate training samples and the loss function for poisonous
ones follows, until they are united through an optimization (multi-objective)

process.

5.5. Non-Poisoning-Based

Live Trojan

Live Trojan is introduced in [75] and its basic notion rests in the knowledge and
techniques drawn from typical software attacks. The attack is tampering with a
system’s memory (randomizing parameters or setting them to zero) at the run-time,
or applying a more targeted patch (finding the parameters), with no further
knowledge of the target model, and thus, under this perspective, is considered to be
deployed in a black-box setting. Afterwards the attack uses a retraining method,
called masked and produces the new trojaned dataset. However, privileged access
to the system architecture as well to several other features such as weights and bias
parameters is a substantial prerequisite, without which the attack cannot take place,
and from that point of view the attack lies in the scope of white-box attack.
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e Adaptive Attack

A state-of-the-art adaptive attack, was recently published [76] urging the necessity
to revise the assertion that models trained on poisonous data tend to learn separable
latent representations for clean and malicious samples. That is forming different
clusters after projecting samples in the latent space, and therefore presenting a
tangible signature. This assumption has been deemed as a natural feature of
backdoor attacks and spurred the development of defense methods based on

clustering analysis.

Backdoored
Model Latent Separation
Clean
»
A Samples
Poisoned Dataset | <= Poison
Samples

Figure 32: Latent Separation. Image Credited to [76] in the virtual presentation
(https://iclr.cc/virtual/2023/poster/11430)

The newly emerged attack aims to refute this assumption with counterarguments
and thus put into question the many defense mechanisms. Specifically, the attack
effectively minimizes the gap in the latent space between the poisonous and the
benign samples, while retaining the attack success rate (ASR) at the same level,

with an insubstantial drop at clean accuracy.
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Figure 33: Visualization of Latent Separability Characteristic on CIFAR-10. Each Point in the Plots Corresponds
to a Training Sample from the Target Class. Caption of Each Subplot Specifies its Corresponding Poison Strategy.
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To Highlight the Separation, All Poison Samples are Denoted by Red Points, while Clean Samples Correspond to
Blue Points. Image Credited to [76].

The authors, in order to picture the attack, effectively embed the notions of
regularization, asymmetry and diversity into corresponding strategies in the training
stage. Data poisoning-based regularization strategy retains the ground truth label to
some of the poisonous samples (regularization samples). The trigger planting
strategy promotes asymmetry and diversity. Specifically random triggers are
implanted to the poisonous samples so as the latter ones are scattered in the latent
space. Besides, during the test-time only the original trigger will be used to invoke
the attack.
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Figure 34: An Overview of the Adaptive Backdoor Attack. Image Credited to [76].

Intuitively, in this framework authors have deployed two illustrations of the attack,
namely Adaptive-Blend and Adaptive-Patch to incorporate the projection of the

poisonous samples in the latent space to the clean ones.
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Table 3: Comparison Table for Backdoor Attacks

Backdoor Access Model Trigger ASR Attack Specificity Attack Strong Aspects
Attacks Architecture Classifica Surface
tion
BadNets [69] White-Box/ Static Very High / Poison- Targeted Outsourcing/ transfer Learning
only
Grey-Box Medium Pretrained
Targeted Black-Box Static Very High Poison- Targeted Outsourcing  Indistinguishable
Poisonous only samples
*[ater on Trigger Pattern 5 samples cause
Backdoor 9 P
mentioned  as 90%

Attack [70]
Grey-Box [66]

Dynamic White-Box Dynamic Very High Poison- Targeted Outsourcing i) Random
Backdoor [71] only /untargeted backdoors
Approximatel
PP y ii)Backdoor
100% .
Generating
network
iii) Conditional

Backdoor
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Backdoor Access Model Trigger ASR Attack Specificity Attack Strong Aspects
Attacks Architecture Classifica Surface
tion
Trojaning Grey-Box Non arbitary trigger — Medium Training-  Targeted Pretrained Transfer learning
Attack [73] based on the strongest controlled
activated neurons. Nearly 100%
Blind Code Black-Box On the fly poisonous High Training-  Targeted Code- Multi-task learning
Poisoning [74] triggers. controlled  /untargeted Poisoning for conflicting
variables — main task
and backdoor.
Live Trojan [75] Black-Box also Invisible since  Medium Non- Targeted Post- Run time attack
White-Box tampering with the poisoning- deployment  Randomizing or
(accessto model  data in memory, can be based zeroing parameters
architecture, uninterpretable. Less time
weights,  bias consuming.
parameters  of
the network.
Clean Label [72] Grey-Box More stealthiness Medium Poison- Single/multiple Data No need to identify
only targeted Collection beforehand the class

of the samples to be

attacked at test time
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Backdoor Access Model Trigger ASR Attack Specificity Attack Strong Aspects
Attacks Architecture Classifica Surface
tion
Adaptive Attack White-Box High Training-  Targeted Data State-of-the-art
[76] controlled Collection attack aiming to

bypass a family of
the latest defense

mechanisms
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5.6. BAERASER - A Defense Against Backdoor Attacks

A novel defense mechanism introduced by [77] succeeds a decline in attack-success-
rate against cutting-edge backdoor attacks by 99%. It consists of a two-stage procedure
and has been inspired by the law framework of General Data Protection Regulation

(GDPR), applying a technique, namely machine unlearning.
The defense mechanism is formulated, as below:

argeminL (FH (xb)' /y’real) + 1”9”

where Fy is the victim model, x;, the backdoored images, ¢,.q; the true labels, L the
loss function that estimates the prediction error of the victim model and A||8]] is
coefficient multiplied by a penalty to restrict the unlearning process. Overall, the
mechanism aims to minimize the loss function over the victim model while retaining

the accuracy of Fj.

The defense mechanism reverses the attack procedure as illustrated below and deploys
in two-stages. Initially, using a generative model will try to recover the trigger pattern,
while it overcomes performance degradation by using entropy maximization.
Consequently, using a technique called machine unlearning will eliminate malicious

samples and retrain the model.

Furthermore, according to the authors their mechanism is outdoing over previous
equivalent, due to the fact being able to deploy on a more realistic environment.
Specifically in order to surpass the necessity for a full training dataset, which is often
the case for laboratory experiments, they reverse gradient descent into gradient ascent,
with an additional weighted penalty parameter, to thwart the disastrous over unlearning.
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Figure 35: The Workflows of Backdoor Inject Attack and Backdoor Erasing Methodology. Image Credited to [77]

Dimitrios Papatsimpas Page | 76



Data Vulnerabilities and Adversarial Attacks against ML-Based Systems. The Adversarial Risk in the
Healthcare Domain.

6. Data Vulnerabilities and Threats in the Healthcare

Domain (a Non-Technical Approach).

Although it would be of great value to extend this thesis presenting various attacks, in
terms of adversarial examples and poisonous-backdoor attacks as well as adversarial
strategies, all targeting the healthcare domain in particular, no truly incentives would

then be unveiled to grasp the risk for embracing ML-based systems.

Machine Learning and Deep Learning in recent years integrate at a high rate into almost
every apparatus, facilitating our lives to a great extent and many a times proving a great
alliance in situations of emergency. The healthcare domain has been mostly affected by
these evolutions, in various aspects. Diagnostic predictions, image classification,
decision support, remote health care management, design proteins and drugs and many

more expertise fields lie on Al-based systems.
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Figure 36: Applications of DL in Medical Image Processing. Image Credited to [78].

But a question still remains unanswered: Why should anyone wish to degrade such

systems?
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Recent research [79] reveals one of the many truly motivations behind such behaviors
using as an example the United States’ health care model, that is not far ahead from
many others. In particular, it highlights the use of Al-based system in the insurance
claims approvals, where trillions of dollars are circulating, among the providers and
payers. At the crux of this research, financial motivations overwhelm both sides.
Providers are pursuing more claims while payers act in the opposite direction

(perturbing the input data such as minimizing the costs or denying medication).

Many types of attackers are mentioned, from novices who commit criminal activities
with regards to the Al-systems as a challenge, those who support other groups of
attackers, and those acting professionally in order to make profits [80]. Whatever the
category of the attacker is, targeting an ML-based system may cause severe impacts

and even human losses.

As such further motivations are reported in terms of terrorism attacks, targeting national
healthcare systems in order to satisfy their demands. An attack to such an extent may
cripple a whole city. The Healthcare domain is a primary infrastructure for every
society. It owns a considerable proportion of the market [Figure 37], revealing the
tremendous impacts in such scenarios. Whatever the motivation is, every aspirant

adversary will try to maximize the impacts of their attack.
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Figure 37 Global Generative Al Market Share, By Industry, 2022. Image Credited to [81]
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7. Conclusions

In this thesis we conducted a thorough research on attacks aiming at the training and
the inference stage of an ML-based system lifecycle. We introduced the necessary
background knowledge so as to better understand the attacks from a mathematical point
of view where needed. We mentioned the necessity to delineate the attacks under
models due to their extent with regards to the adversary’s capabilities, so as to be better

studied and tackle with all the proper measures.

We explored adversarial attacks, poisonous attacks and backdoor attacks. Each
category shares common features but they are inherently different. We mainly remained
focused on the technical aspect of these attacks in order to fully understand how they
are deploying, at which phase and under what circumstances. We should note that it is
not in our intention to create a comprehensive survey on attacks, based on the
taxonomies referenced, but rather to provide a roadmap to the evolvement of this topic.
In addition, a reference to the corresponding defense mechanisms was made, in order

to highlight the difficulties that research community faces.

Finally, a twofold attempt to raise awareness on this topic was made. On the one hand,
urging multidisciplinary research communities to make a joint effort to provide
adequate reasoning for the existence of many of the aforementioned attacks and so
countermeasures to be proposed. On the other hand, except the practitioners,
management should be fully aware of the risks using Al-based systems. This warning
should only urge all the decision makers to take all the necessary measures in order to

protect their systems and not be daunted by the risks.
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