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Περίληψη 

Η Τεχνητή Νοημοσύνη (ΤΝ) αν και έχει παρουσιαστεί ως πεδίο το 1958 από τον John 

McCarthy, ήταν μόλις το 2006 όταν σε συνδυασμό με την αύξηση της υπολογιστικής 

ισχύος εμφανίστηκαν νέες εφαρμογές στο πεδίο της Μηχανικής Μάθησης (ΜΜ). 

Ωστόσο, η άνθιση αυτή πραγματώθηκε αντίστοιχα και στο πεδίο των επιθέσεων, 

καθιστώντας την ανάπτυξη συστημάτων που βασίζονται στο πεδίο της ΤΝ επισφαλή 

για την εφαρμογή τους σε κρίσιμες δημόσιες υποδομές, χωρίς τη λήψη αυστηρών 

μέτρων ασφάλειας. 

Η ευπάθεια των δεδομένων και οι απειλές ενάντια σε αυτά, συνιστούν ένα 

επιστημονικό πεδίο ανοικτό για περαιτέρω εξερεύνηση. Ειδικότερα, από τη σε βάθος 

μελέτη επιθέσεων οι οποίες αναπτύσσονται σε όλο τον κύκλο ζωής των συστημάτων 

Τεχνητής Νοημοσύνης (εκπαίδευση, εξαγωγή συμπερασμάτων), όπως οι κακόβουλες 

επιθέσεις, οι «αντιπαραθετικές» οι οποίες υλοποιούνται με ανεπαίσθητες 

τροποποιήσεις των δεδομένων εισόδου, καθώς και άλλες σύγχρονες, θα ήταν δυνατό 

να προκύψει μία νέα οπτική στον τομέα αυτό.  

Επιπλέον, οι επιθέσεις αυτές είναι άρρηκτα συνδεδεμένες με την ανάπτυξη 

αντίστοιχων μέτρων άμβλυνσης των επιπτώσεών τους, με αποτέλεσμα αυτός ο συνεχής 

ανταγωνισμός να δημιουργεί ένα γόνιμο και ταυτόχρονα «αντιπαραθετικό» 

περιβάλλον. Για το λόγο αυτό κρίνεται σκόπιμο να αναφερθούν διάφοροι 

αντιπροσωπευτικοί μηχανισμοί άμυνας, ώστε να επισημανθεί η ροή που έχει 

ακολουθήσει η επιστημονική κοινότητα και να δημιουργήσει στέρεες βάσεις για 

μελλοντικές κατευθύνσεις. 

Κρίσιμες περιοχές όπως της υγείας, της αυτόνομης οδήγησης, της ταξινόμησης, της 

αναγνώρισης φωνής, της ασφάλειας δικτύων, οι οποίες έχουν στον πυρήνα τους την 

ανθρώπινη ζωή, αντιμετωπίζουν αντίστοιχα προβλήματα. Στην παρούσα εργασία, αν 

και θα δοθεί ιδιαίτερη έμφαση στον τομέα της υγείας, αυτό δεν συνεπάγεται ότι θα 

αποκλίνει σημαντικά και από τα υπόλοιπα πεδία ενδιαφέροντος. 

Λέξεις Κλειδιά: Poisonous Attacks, Backdoor Attacks, Adversarial Examples, 

Defense Mechanisms, Healthcare Systems. 
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Abstract 

Although Artificial Intelligence (AI) was introduced as a new discipline by John 

McCarthy in 1958, it was not until 2006 along with computational power that new 

applications ushered in the Machine Learning (ML) domain. This flourish went along 

with counterpart attacks producing eventually uncertainties that set AI-related systems 

precarious to deploy in crucial public infrastructure, without taking strict security 

measures against them. 

Data vulnerabilities and threats comprise a scientific area viable to further scrutiny in 

terms of attacks deploying in all the gamut of the Artificial Intelligence systems pipeline 

(training, inference, ai integration), such as poisonous attacks, imperceptible 

perturbations namely adversarial examples as well as other contemporary ones, and 

thus studying the latest topics could highlight a new insight.  

Besides, these attacks are tightly coupled with corresponding mitigation measures, 

continuously going back-and-forth creating an “adversarial” environment. Thus, latest 

representative defense mechanisms will be presented in order to enlighten the 

roadmap that research community follows, grasping the rhythm for future exploration. 

Critical areas such as healthcare, autonomous driving, classification, speech 

recognition, network security, where human life is of utmost importance, raise such 

security issues. Though, special consideration is to be taken to the healthcare domain 

in this thesis, it will still be attached no further than the other fields. 

 

 

 

 

 

Keywords: Poisonous Attacks, Backdoor Attacks, Adversarial Examples, Defense 

Mechanisms, Healthcare Systems.
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Εκτεταμένη Ελληνική Περίληψη 

Η αύξηση της υπολογιστικής ισχύος σε συνδυασμό με την ευρεία αποδοχή των μικρών-

κινητών συσκευών προσέδωσε στο πεδίο της Μηχανικής Μάθησης (ΜΜ) μία νέα 

δυναμική. Η χρήση όλων των συσκευών αυτών με ενσωματωμένες λύσεις ΜΜ, 

δημιουργεί πλέον τεράστιο όγκο δεδομένων, ο οποίος απαιτεί βέλτιστες λύσεις τόσο 

ως προς την επεξεργασία τους, όσο και ως προς την εξαγωγή χρήσιμων 

συμπερασμάτων. Την πρόοδο αυτή ακολούθησε και η ανάπτυξη αντίστοιχων 

επιθέσεων, με σκοπό κυρίως οικονομικά και πολιτικά οφέλη. Αν και η ανάπτυξη 

έξυπνων συστημάτων συμβάλλει στη βελτίωση κάθε ανθρώπινης πτυχής, οι συνέπειες 

και οι κίνδυνοι γενικότερα από τις επιθέσεις εναντίον τους, τα καθιστούν επισφαλή για 

την εφαρμογή τους σε κρίσιμες δημόσιες υποδομές, χωρίς την εφαρμογή των 

αυστηρών μέτρων ασφαλείας. 

Η ευπάθεια των δεδομένων και οι απειλές ενάντια σε αυτά, συνιστούν ένα 

επιστημονικό πεδίο ανοικτό για περαιτέρω εξερεύνηση. Ειδικότερα, από την σε βάθος 

μελέτη επιθέσεων, οι οποίες αναπτύσσονται κατά τις φάσεις του κύκλου ζωής των 

συστημάτων Τεχνητής Νοημοσύνης (συλλογή και προ-επεξεργασία δεδομένων, 

εκπαίδευση μοντέλου, εξαγωγή συμπερασμάτων), θα ήταν δυνατό να προκύψει μία νέα 

οπτική στον τομέα αυτό. Η αναγκαιότητα της μελέτης κάθε επίθεσης και των 

ειδικότερων χαρακτηριστικών της ενισχύεται από το γεγονός ότι δεν υπάρχει μία και 

μόνον λύση, παρά μόνο μέτρα αποτροπή τους για την κάθε περίπτωση. 

Η ίδια τάση καταδεικνύεται και από το επιστημονικό ενδιαφέρον το οποίο εκδηλώνεται 

μέσα από την ραγδαία αύξηση των συγγραφικών έργων, για τις επιθέσεις πάνω στα 

συστήματα ΜΜ. Μεγάλο εύρος επιθέσεων καταγράφεται σε κάθε στάδιο του κύκλου 

ζωής ενός συστήματος ΜΜ και αντίστοιχες ενέργειες για τον περιορισμό τους. 

Ωστόσο, στην παρούσα εργασία αφού πρωτίστως αναφερθούν ορισμένα στοιχεία που 

συνθέτουν το υπόβαθρο των επιθέσεων (manifolf, norms, optimization), το ενδιαφέρον 

θα εστιάσει στις κακόβουλες επιθέσεις (poisonous attacks), στις «αντιπαραθετικές» 

(adversarial examples) οι οποίες υλοποιούνται με ανεπαίσθητες τροποποιήσεις των 

δεδομένων εισόδου, καθώς και στις backdoor attacks. 
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Το σύνολο των επιθέσεων αυτών αν και παρουσιάζει αρκετά κοινά χαρακτηριστικά, 

τουλάχιστον εκ πρώτης όψεως, εντούτοις διαφέρει ουσιωδώς. Η βιβλιογραφία 

καταγράφει πλήθος διάφορων παραγόντων ταξινόμησης των επιθέσεων αυτών, οι 

οποίοι προσδίδουν κάθε φορά μία διαφορετική οπτική. Η οριοθέτησή τους ανάλογα με 

τον τρόπο και το στάδιο του κύκλου ζωής στο οποίο εκδηλώνονται, την γνώση του 

επιτιθέμενου για το σύστημα και τους στόχους που θέτει, συμβάλλει στο μέγιστο στην 

αποκρυστάλλωσή τους, με σκοπό την βέλτιστη αντιμετώπισή τους. 

Μία τέτοια ταξινόμηση μπορεί να πραγματοποιηθεί και μέσα από το μοντέλο 

Confidentiality (Εμπιστευτικότητα), Integrity (Ακεραιότητα) και Availability 

(Διαθεσιμότητα) (CIA), το οποίο συμβάλει στην πιο εύκολη κατανόηση των διαφορών. 

Τελευταία, στο μοντέλο αυτό έχει προστεθεί και μία επιπλέον πτυχή, η Privacy 

(Ιδιωτικότητα). Στην περίπτωση της εμπιστευτικότητας ο δράστης επιδιώκει να 

αποκαλύψει στοιχεία του συστήματος (π.χ. υπερπαράμετροι) ή στην περίπτωση που 

αποκαλύπτονται δεδομένα ενός συστήματος, όπως στοιχεία ασθενών, αναφερόμαστε 

σε παραβίαση της Ιδιωτικότητας. Σχετικά με την ακεραιότητα, ο δράστης στοχεύει 

στην παραγωγή μη αναμενόμενων αποτελεσμάτων για συγκεκριμένα δείγματα, ενώ 

αντιθέτως, όταν ο δράστης στοχεύει γενικά στη λειτουργία ενός συστήματος, 

παραβιάζεται η διαθεσιμότητα αυτού. 

Ένα επιπλέον σημαντικό σημείο διάκρισης των επιθέσεων, αποτελεί το σημείο στο 

οποίο αναπτύσσονται με σημείο αναφοράς τον κύκλο ζωής ενός συστήματος ΜΜ. 

Ειδικότερα, οι επιθέσεις που θα αναφερθούν στο πλαίσιο της παρούσας εργασίας 

αναπτύσσονται κατά τα στάδια της εκπαίδευσης και της εξαγωγής συμπερασμάτων. 

Άλλα στοιχεία των επιθέσεων μπορούν ομοίως να δημιουργήσουν συνθήκες 

ταξινόμησης αυτών, όπως ο αριθμός των επαναλήψεων για την υλοποίηση μιας 

επίθεσης (one-shot, iterative), οι δυνατότητες που έχει ο επιτιθέμενος, καθώς και εάν η 

επίθεση θέτει κάποιο συγκεκριμένο στόχο ή μη (targeted, indiscriminate). 

Οι κακόβουλες επιθέσεις εκδηλώνονται κατά το στάδιο της εκπαίδευσης ενός 

συστήματος ΜΜ και στοχεύουν γενικά στη μείωση της επίδοσης ενός συστήματος, το 

οποίο μπορεί να εξομοιωθεί και με Denial of Service. Ο δράστης με διάφορες μεθόδους 

(π.χ. αλλαγή ετικετών) μπορεί να εισαγάγει λανθασμένα ή μολυσμένα δεδομένα 

εκπαίδευσης με αποτέλεσμα το σύστημα να μην μπορεί να λειτουργήσει ή να παράγει 

τα αναμενόμενα αποτελέσματα. Βασικό μειονέκτημα των επιθέσεων αυτών είναι η 
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εύκολη αναγνώρισή τους εξαιτίας της γενίκευσης των μη αναμενόμενων 

αποτελεσμάτων και της εν γένει μη διαθεσιμότητας του συστήματος. 

Τα αντιπαραθετικά παραδείγματα είναι δείγματα στα οποία έχει προστεθεί ένας μικρός 

«θόρυβος» με τέτοιο τρόπο ώστε να μην αλλοιώνεται το περιεχόμενο τους. Στην 

περίπτωση της εικόνας διατηρείται η σημασιολογία του περιεχομένου της, ενώ η 

οποιαδήποτε παραβίαση του συστήματος δεν είναι αντιληπτή από το ανθρώπινο μάτι. 

Τα μολυσμένα αυτά στοιχεία εισάγονται κατά το στάδιο της εξαγωγής συμπερασμάτων 

ενός συστήματος ΜΜ και παράγουν εσφαλμένα αποτελέσματα. Δεν αποτελούν τυχαία 

γεγονότα, αλλά δημιουργούνται αλγοριθμικά λαμβάνοντας κυρίως υπόψη την είσοδο 

των δεδομένων. Ο δράστης επιδιώκει κυρίως την παραβίαση της ακεραιότητας ενός 

συστήματος. 

Οι Backdoor επιθέσεις υλοποιούνται κατά το στάδιο εκπαίδευσης ενός συστήματος 

ΜΜ, ωστόσο εκδηλώνονται κατά το στάδιο της εξαγωγής συμπερασμάτων. 

Ειδικότερα, ο δράστης εισάγει ένα δείγμα με εμφωλευμένο ένα πρότυπο (π.χ. κάποιο 

συνδυασμό εικονοστοιχείων) κατά το στάδιο της εκπαίδευσης. Όταν εμφανιστεί ένα 

δείγμα με αυτό το συγκεκριμένο πρότυπο κατά το στάδιο των συμπερασμάτων, θα 

παραχθούν τα αποτελέσματα που επιθυμεί ο δράστης. Τέτοιου είδους επιθέσεις είναι 

αρκετά δύσκολο να εντοπισθούν, δεδομένου ότι το σύνολο των υπόλοιπων δειγμάτων 

παράγει τα αναμενόμενα αποτελέσματα. Ο δράστης βλάπτει με αυτόν τον τρόπο την 

ακεραιότητα ενός συστήματος. 

Στο σύνολό τους οι επιθέσεις αυτές είναι άρρηκτα συνδεδεμένες με την ανάπτυξη 

αντίστοιχων μέτρων αντιμετώπισής τους ή άμβλυνσης των επιπτώσεών τους. Θα 

μπορούσαμε να ισχυριστούμε ότι κυρίως λόγω της αμφισβήτησης των αιτιών 

δημιουργίας τέτοιων επιθέσεων, η επιστημονική κοινότητα αναπτύσσει περιπτώσεις 

επιθέσεων εντοπίζοντας αδυναμίες με σκοπό την πρόκληση μέτρων για την 

αντιμετώπισή τους. Ως εκ τούτου, προκαλείται ένας συνεχής ανταγωνισμός, ο οποίος 

περαιτέρω δημιουργεί ένα γόνιμο και ταυτόχρονα «αντιπαραθετικό» περιβάλλον. 

Επιπλέον, στο πλαίσιο της παρούσας εργασίας κρίνεται σκόπιμο να αναφερθούν 

διάφοροι αντιπροσωπευτικοί μηχανισμοί άμυνας, καθώς και οι ευπάθειες τις οποίες 

θεραπεύουν, ώστε αφενός να επισημανθεί η ροή που έχει ακολουθήσει η επιστημονική 

κοινότητα, αφετέρου να δημιουργήσει στέρεες βάσεις για τις όποιες μελλοντικές 
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προοπτικές. Συγκεκριμένα, θα αναφερθούν δύο αμυντικοί μηχανισμοί ενάντια στα 

adversarial examples και τις backdoor επιθέσεις. Ο μεν πρώτος χρησιμοποιεί εικόνες 

στις οποίες έχει εμφωλευθεί ένα πρότυπο (σαν τις backdoor επιθέσεις) ώστε να 

δημιουργεί μια ισχυρή συσχέτιση και να μην επηρεάζεται το σύστημα από τα 

αντιπαρατιθέμενα παραδείγματα. Στη δεύτερη περίπτωση, ο μηχανισμός άμυνας των 

backdoor επιθέσεων χρησιμοποιεί διάφορες τεχνικές για την εύρεση του επιβλαβούς 

προτύπου που έχει επιλέξει ένας δράστης, καθώς και επιπλέον άλλες όπως machine 

unlearning για την επανεκπαίδευση του συστήματος. 

Κρίσιμες περιοχές όπως της υγείας, της αυτόνομης οδήγησης, της ταξινόμησης 

εικόνων, της αναγνώρισης φωνής, της ασφάλειας δικτύων, οι οποίες έχουν στον 

πυρήνα τους την ανθρώπινη ζωή, αντιμετωπίζουν προκλήσεις σε θέματα ασφάλειας 

και ιδιωτικότητας. Στην παρούσα εργασία δίνεται ιδιαίτερη έμφαση στον τομέα της 

υγείας, υπό το πρίσμα μίας μη τεχνικής παρουσίασης των προκλήσεων, δεδομένου ότι 

αποτελεί βασική υποδομή σε κάθε κράτος δικαίου. Ωστόσο, αυτό δεν συνεπάγεται ότι 

θα αποκλίνει σημαντικά και από τα υπόλοιπα πεδία ενδιαφέροντος.  

Ως προς τα κίνητρα των δραστών να βλάψουν συστήματα τέτοιας δυναμικής και 

ωφέλειας για την ανθρώπινη ζωή, είναι σημαντικό να αναγνωρισθούν, προκειμένου να 

γίνει σαφές το μέγεθος της απειλής που αυτά επιδιώκουν. Πρόσφατες μελέτες 

καταγράφουν διάφορα κίνητρα τα οποία μπορεί να ποικίλουν κλιμακωτά, από απλή 

περιέργεια, οικονομικά οφέλη λειτουργώντας για τρίτους, έως και ζητήματα 

τρομοκρατίας.  

Συμπερασματικά, η εργασία αυτή αποσκοπεί να παρουσιάσει βασικές έννοιες για την 

κατανόηση της λειτουργίας των συστημάτων ΜΜ, τις επιθέσεις που λαμβάνουν χώρα 

κατά τα στάδια της εκπαίδευσης και εξαγωγής συμπερασμάτων, καθώς και τις 

προκλήσεις που αντιμετωπίζει η επιστημονική κοινότητα για την αντιμετώπισή τους. 

Περαιτέρω, στοχεύει να αναδείξει την αναγκαιότητα σύγκλισης των διαφόρων 

επιστημονικών πεδίων προκειμένου να διερευνηθούν τα αίτια των επιθέσεων αυτών, 

καθώς και να κινητοποιήσει όσους χρησιμοποιούν τέτοια συστήματα (επαγγελματίες 

των αντίστοιχων τομέων, διευθύνσεις οργανισμών), να λαμβάνουν αντίστοιχα μέτρα 

ασφάλειας.  
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1. Introduction and Background 

Machine Learning (ML) made solutions possible for hard problems. They introduced a 

new ability to acquire knowledge from their environment with less human intervention 

suppressing the need for hard-coded problems. A further step took place eliminating 

even more the human intervention allowing ML systems extracting features on their 

own, and thus Deep Learning (DL) scientific field emerged. 

Many terminologies have been appointed to these newly aged systems, such as Deep 

feedforward Networks, Feedforward neural networks or multilayer perceptrons, but the 

fact is that “network” derives from their representation and “deep” comes from the 

depth of the hidden layers of the network. The depth and number of neurons allow 

systems to automate the extraction of the desired number of features. 

It has been almost a decade since convolutional networks, a special class of Neural 

Networks, have achieved a significant performance on recognition of objects, matching 

almost a human-level performance [1]. Thus, research communities and not only, have 

drawn their attention to the field. However promising might be this development, 

counter-attacks are also part and follow-up situation. 

In our data-saturated era, big data hold a prominent position in almost every public and 

private infrastructure. Along with the course of data, the technological advancements 

(Machine Learning as a Service) and the expertise (data-driven approaches) offer new 

harnessing methods. Therefore, the necessity of using specialized third-parties ML 

services, in terms of pre-trained models, datasets, frameworks is skyrocketing. Thus, 

studying the security risks and measures of mitigation is of utmost importance. 

Most notably, a survey on the topic of ML security concerns in terms of tactical and 

strategic tools to shelter their core business functionality unveils surprising findings [2]. 

In particular among twenty-eight organizations in their majority dealing with security-

sensitive data, only three of them declared affirmative on securing the Machine 

Learning systems, whereas attacks such as poisoning and backdoor, as well as 

adversarial examples are in the top five of most affective attacks. 

The main scope of this thesis is to delve into the most representative and state-of-the-

art attacks taking place across the ML pipeline, emphasizing in the training and 
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inference stages. Consequently, a cutting-edge defense mechanism will be presented, 

in order to face the challenges, the research community deals with in this rival 

environment. Finally, a reference to the healthcare domain will highlight the innermost 

posing risks. Hopefully, a refreshing review of this topic will enlighten the feature 

research directions, but most importantly it will raise awareness to the engaged 

communities. 

1.1. Delineation of Attacks 

As we will clearly show in this thesis, three cornerstone types of attack reign over ML 

based systems, and that is poisonous attacks, adversarial examples and backdoor 

attacks. All of them have features in common, but they are inherently different in terms 

of the adversary’s goals and deployment tactics.  

Although literature often reports backdoor attacks as a branch of poisonous attacks, this 

is obfuscated and a more meticulous view on this aspect will discern the differences 

between them. Thus, we intentionally follow the literature that considers these two 

attacks distinct, in order to provide a clearer aspect on the field of ML-based systems 

attacks. 

By and large poisonous attacks aim at a more general degradation of a system, causing 

denial of service and hence availability issues are in concern. In contrast, backdoor 

attacks remain idle for the benign samples, but the insidious trigger will be invoked 

when he meets the specific pattern as an input to the ML-model and will cause its 

malicious purpose. Thus, backdoor attacks aim to harm integrity of a system. 

Adversarial examples have been thoroughly studied by the research community. They 

are purely algorithmically produced based on the input and thus are considered barely 

incidental facts. Beneath those crafted inputs, mathematical models stand for their 

development.  

Thus, it is important to present these attacks in a more concise view [Table 1], that will 

help the reader of this thesis to better understand these attacks, how do they accomplish 

their malicious purpose and their overall aim. 
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Table 1: Comparison Table for Poisonous Attacks - Adversarial Examples - Backdoor Attacks 

Type of 

Attack 

Adversary’

s Target  

Kind of 

Attack 

Concealment Phase of ML-based 

system pipeline 

Strong 

abilities 

Poisonous 

Attacks 

Availability 

General low 

degradation 

Untargeted Easy to be 

discovered 

Training Phase No trigger 

Adversarial 

Examples 

Integrity 

Preserve 

benign 

samples 

Targeted Hard to be 

discovered 

Inference Phase Imperceptible 

crafted inputs 

invisible to 

human eye 

Backdoor 

Attacks 

Integrity 

Preserve 

benign 

samples 

Targeted Hard to be 

discovered 

Training Phase Trigger 

invoked 

1.2. Threat Model 

Causes of adversarial examples existence are long being debated, and thus delineating 

their deployment into a model’s perspective produces proper guidance for the 

researchers of the field. A meticulously illustrated study of this phenomenon in terms 

of the attacker’s goals, capabilities and other features, is essential to be bound under 

various disciplines. Thus, setting all these factors into a mold, namely threat model or 

the attacker’s profile according to [3], provides an overview of security issues, as well 

as the defensive mechanisms against them. 

A great deal of work has been recorded on this issue. [4] introduced a threat model so 

as to encapsulate a ML system’s components into a unity and thus ML-algorithm was 

not considered apart. Security and privacy issues of their model has been examined 

through the classical perspective of confidentiality, integrity and availability (CIA), and 

the lifecycle of ML system -namely “machine learning pipeline”.  

Confidentially is considered in respect to the model (model structure, architecture) and 

its training data in which case privacy issues are also concerned. Integrity deals mostly 

with the outcome of a ML-system. Violation of integrity may produce false positives 
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or true negatives. Finally, expanding the notion of this violation into preventing totally 

the access to system, availability concerns are raised.  

Authors continue with the second perspective of “machine learning pipeline”, starting 

from the training phase, ending up to the inference one. At each phase security issues 

are mentioned in terms of the attacker’s goals and capabilities, under the view of CIA 

model and with one more feature, that of “privacy”. Their threat model for ML systems 

consists of: “The Attack Surface”, “Adversarial Capabilities”, “Adversarial Goals”. 

1.2.1. The Attack Surface 

The Attack Surface describes the places where an attack happens and generally is 

efficiently depicted as a row containing all phases [Error! Reference source not 

found.] of a ML system. That includes the data collection, the process of them, the 

production of the output and finally the integration of outcome with an external actor. 

At each phase an attacker may deploy an attack with different modus operandi [Figure 

8]. Primary steps, such as collecting data are vulnerable to poisonous data, while the 

last ones -at inference- may be affected to produce erroneous results. 

 

Figure 1:Basic Components in Supervised Learning and an ML-Based System's Lifecycle. Image Credited to [5] 

1.2.2. Adversarial Capabilities 

This aspect of threat model refers to the adversary and the knowledge have on their 

side, with regards to the offensive system. The attacker may be familiar with internal 

information of the system, such as the structure and the parameters of the network 

architecture, with the intension to corrupt it (integrity attack). On the contrary, if the 

adversary is an external actor, they will most probably try not to affect the system 

directly, but to alter the outcomes. 
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[6] classify an attacker’s capabilities in terms of training data and network architecture, 

“oracle” and samples. Access to layers, activation functions of neurons, and weights 

produced after the training phase, may be strong enough knowledge to replicate the 

deep neural network. Creating a sub-dataset of the training data, with the same 

distribution could result in an approximation of the model. Furthermore, observing the 

outputs in accordance to the change of inputs, an attacker may create adversarial 

attacks. Such pairs (inputs – outputs) could be also greatly helpful if exist in large 

amounts, even without the possibility of altering the input. 

1.2.3. Adversarial Goals 

This view deals with the attacker’s behavior against the ML system. Confidentiality 

and privacy aspects are violated if the attacker tries to extract information about the 

system (e.g., architecture) or its training data (e.g., patient data). Otherwise, if the 

attacker tries to cause the system to produce erroneous output (e.g., misclassification), 

integrity issues are raised. Availability concerns raise when the system fails to respond 

on some input.  

From an attacker’s perspective fulfilling their adversarial goal, they manage to alter the 

system’s behavior either by setting a specific label to an adversarial example (e.g., 

visually seen a dog, but tagged as a cat) (targeted misclassification), or setting any other 

than the correct label (random misclassification), or reducing the system’s confidence 

and thus introduce ambiguity (confidence reduction) [7]. 

1.3. The Manifold 

An important notion of the ML field is the manifold. One may think of it as a 

multidimensional surface in ℝ𝑛, where many points are connected, and the close ones 

are found in context correlation. Due to the optical restrictions 𝑛 dimensions set, 

manifolds are better visualized as sub-manifolds. The points of interest (e.g., a specific 

object in images) are located in a number of such surfaces. 

A special behavior called manifold assumption, occurs when moving across manifolds, 

denoting a change of class, while, moving in the same manifold the input is defining 

variations of the class (rotations, translations, etc.). Furthermore, it is assumed that 

moving into a sub-manifold or across others, improves the ML algorithm [7]. 
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Figure 2: Manifold in a High-Dimensional Space. Showing a cat depicting as Single Point in the Manifold. (Top 

right: Leonardo da Vinci (c. 1513); bottom right, Paul Gauguin (c. 1890). Public Domain). Image Credited to [8]. 

Presenting the above image, where positive classes constitute the object cat, and 

negative ones all the other objects [8] imagines walking inside the cat manifold from 

one point to another -from one cat to another- where the first cat turns into another cat. 

In the case of visiting coordinates outside the cat manifold, the object cat fades out to 

another object or noise. 

Another important notion closely related to the Manifold, namely ‘latent-space’ offers 

a more approachable representation of data. Often many features of input data are 

obfuscated at a higher dimensional representation. Thus, if they are represented in a 

lower-dimension space they can be processed more easily, which is their main 

advantage. 

1.4. Optimization 

Optimization is a process where a function gets its minimum or maximum value. This 

function is called objective function and is substituted to constraints. In order to 

adequately conceive the purpose of the optimization through the machine learning 

perspective [9] defines the main steps of machine learning as (i) to build the model 

hypothesis, (ii) to define the objective function and (iii) to solve the maximum or 

minimum of the objective for the parameters to be determined, emphasizing the fact 

that the last one belongs to the optimization field. 
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By and large, deep learning algorithms use this kind of process to minimize a function, 

namely loss or error function [10]. The value that minimizes the function is often 

denoted as: 

𝑥∗ = arg min 𝑓(𝑥) 

According to [9] the family of Gradient Descent (Batch gradient descent – BGD, 

stochastic gradient descent – SGD, mini-batch gradient descent) algorithms are among 

the most used for optimal parameters to be determined.  

The algorithm iteratively adjusts the variables of the objective function in the opposite 

direction of the gradients, in order to minimize the cost function. The learning rate β 

refers to the size of the step the algorithm takes in order to find the minimum. Choosing 

β may be proved a demanding work, since if it is too small the algorithm will run slow, 

else it may lose some accuracy. 

  

Figure 4: An Illustration of the Differences between Training a Model 

using BGD, SGD and Mini -Batch- Gradient with regarding to 

approaching the Minimum Value. Image Credited to [11]. 

 

 

1.5. Norms 

In order to quantify the distance between two vectors, special functions -norms- are 

used. There are many variants of norms, such as 𝐿0, 𝐿1, 𝐿2  and 𝐿∞ all of them widely 

used by state-of-the-art adversarial algorithms [11]. Informally, norms are functions 

that take a vector as input and return a non-negative scalar. They are of great importance 

in the optimization of adversarial attacks and minimization of perturbations [11]. 

Norms are used to calculate the difference between the expected value and the actual 

one, and thus estimate the value of loss function in a ML algorithm. Depending on the 

specific problem (e.g., constraints, policies) an algorithm deals with an appropriate 

Figure 3: A Demonstration of the 

Difference between the Local and 

Global Maximum and Minimum 

Values and the Learning Rate 

(shown in red) that Determines the 

Magnitude of the Updates to 

Model’s Weights. Image Credited to 

[11]. 
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metric may be used. Furthermore, distance metrics may be used to calculate the 

classification area of an object, or the minimum possible distance where an object may 

be characterized as an adversarial.  

 

Formally the 𝐿𝑝 function of x can be defined as:  

‖𝑥‖𝑝 =  (∑‖𝑥‖𝑝)
1/𝑝

 ∃∶ 𝑝 ∈ ℛ, 𝑝 ≥ 1  

𝐿0 Norm: Although for 𝑝 = 0 the requirements for a function to be characterized as a 

norm are not fulfilled, 𝐿0 Norm calculates the number of non-zero elements of the input 

vector. In the context of the adversarial examples, it counts the number of pixels that 

have been altered. 

‖𝑥‖0 =  (𝑖|𝑥𝑖  ≠ 0) 

𝐿1 Norm (Manhattan Distance): 𝐿1 is the sum of the magnitudes of the vectors in space. 

In this case, all the components of the vector are weighted equally. 

‖𝑥‖1 =  ∑ 𝑥𝑖

𝑛

𝑖=1

 

Figure 5: Distance Metrics. Image Credited to [82]. 
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‖𝑥‖1 = |5| +  |4|  = 9 

 

 

 

 

𝐿2 Norm (Euclidian norm): measures the shortest distance between two points. That 

could be interpreted as small changes in the pixels of an image.  

‖𝑥‖2 =  (∑‖𝑥‖2

𝑛

𝑖=1

)

1/2

 

 

‖𝑥‖2  =  √|52| + |42|
2

 =  √41
2

 

 

 

 

 

𝐿∞ Norm (maximum norm): 

‖𝑥 − 𝑥′‖∞ =  m𝑎𝑥(|𝑥1 − 𝑥1́| … |𝑥𝑛 − 𝑥𝑛́|) 

In this norm, only the largest element of input vector is taken into consideration. In the 

context of an image that could be interpreted as the maximum change of a pixel. With 

regards to the above example the result would be: 

‖𝑥‖∞  = 5 

Figure 6: L2 Norm 

Figure 7: 𝐿∞ norm 
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Dispute among researchers on the issue of choosing the most optimal norm is often the 

case. Therefore, distance metrics according to [12] still remain an open issue for further 

investigation. 

1.6. Common Datasets used in Deep Learning 

For reasons of fulness with regards to the data being tested for adversarial examples 

and not only, most commonly used datasets in computer vision are mentioned below: 

• MNIST: The MNIST dataset (Modified National Institute of Standards and 

Technology database) is a database of handwritten numbers (0 to 9). It has a training 

set of 60K examples and a test set of 10K examples [13]. 

• CIFAR-10: The CIFAR-10 dataset consists of 60K labeled tiny color images (32 × 

32) with 10 classes, 50K of which are training images and 10K test images [14]. 

• ImageNet: ImageNet is a dataset organized according to the hierarchical structure 

of WordNet. It consists of 1.4M images with 1K classes [15] 
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2. Types of Attacks 

Earliest security concerns have been reported in the work of [16], where the attackers 

tried to change the attitude of a spam filter. Along with technological growth the 

number of various attacks has also risen. Researchers many a time having to deal with 

unknown security parameters of systems, attempt to violate one, in order to provoke a 

reaction, and finally mitigate the impacts of such a breach. 

Thus, the relevant bibliography tallies an enormous number of attacks, deploying at 

every stage of ML system, all depending on the attacker’s strategy (e.g., aim, 

capability). The pipeline of AI based systems can be described in five steps as 

previously mentioned: data collection, data pre-processing, model training, model 

inference and system integration, each of which is prone to a specific set of threats and 

ensued by the corresponding defense mechanisms [17]. 

 

Figure 8: The Overall Framework of Attack and Defense Strategies for The AI Systems. Image Credited to [17] 

Data collection stage is threatened mainly by malicious data, during their input 

channels. That is, data receiving data from low-level apparatus (i.e., sensor capturing 

raw data -camera, microphone-) that might be altered, or contain fake or biased data, in 

the case of digital form (open libraries, e.tc.).  

In the pre-processing stage data are analyzed, cleaned, processed in terms of 

incompleteness, unfairness, anomaly and irregularity and transformed [18]. A basic 
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vulnerability of this stage is the image scaling attack [19]. This attack method during 

the downscaling phase of an image (input) to an ML system, produces a new and 

irrelevant picture of the initial. The ML is then trained erroneously. 

Model training stage contains the step of model selection and the evaluation of test 

dataset (parameters evaluation). At this stage one of the most infamous category of 

attacks in the pipeline of an AI based system takes place, namely causative [20] or 

poisonous. Attacks of this kind try to degrade an ML system in terms of availability or 

integrity depending on the side effects and the extent of the system’s failure.  

At the inference phase, the trained model is applied. Adversaries that by no means have 

access to the training phase, may conduct attacks, namely exploratory [20] or evasion. 

This kind of attack is being deployed by crafting small imperceptible to the human eye 

perturbations based on the input data (image, speech) or patches in the real world 

(physical adversarial examples), causing the system to produce misclassifications. 

The AI integration phase encompasses not only the risks of the AI technology per se, 

but all the framework’s ones, where an application is based upon, such as network 

attacks, software vulnerabilities, e.tc. where a broad variety of attacks could be 

deployed. 
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2.1. Attacks Deploying at the Training and Inference Stage 

In the current thesis, we are particularly going to dive into three major attack categories 

(poisoning-backdoor attacks and adversarial examples) that take place during the 

training and inference phase of the Machine Learning model, due to severity of risks 

posing to ML systems and their constantly development, following as well as the 

emerging interest of the research community. Although we mentioned earlier a more 

rigorous framework of the AI systems [Figure 1:Basic Components in Supervised Learning and 

an ML-Based System's Lifecycle. Image Credited toFigure 1, Figure 8], we deem as a more 

practical approach the concatenation of the many steps before inference phase at one, 

namely training as the figure below [Figure 10]. 

2.1.1. Training Phase 

Training phase is referring to the stages of collecting and preprocessing of data, model 

training, validation and the deploying of the model [21]. The attack takes place before 

the system produces the expected results.  

 

Figure 9: Machine Learning Training Phase. Image Credited to [18]. 

2.1.2. Inference Phase 

Inference phase is referring to the stage where an ML model applies the trained model 

and produces the outcomes, i.e., prediction, classification and recognition, based on the 

task. 
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Figure 10: Stages of Machine Learning Models. Image Credited to [21]. 

2.2. Further Taxonomy Features of Attacks 

The taxonomy of attacks has been the subject of many researchers in their effort to 

produce a clear image of the field and enlighten any new research direction. Most of 

them have taken into consideration the various aspects of an adversary, such as means 

of deployment, computational cost, time, and thus can be classified as follows. 

2.2.1. Adversarial Falsification 

False positive attacks are those producing an incorrect class to a correctly classified 

sample. In the visual domain this means that an image containing an adversarial 

example, imperceptible to human eye, will be classified as a class with high confidence. 

False negative attacks are those producing a correct class to a misclassified sample. In 

the context of visual learning an object fully recognizable to a human, cannot be 

identified by the neural network. 

2.2.2. Attack Frequency 

Based on the circumstances the adversary conducts their attack, it may be necessary to 

deploy only once their evasion (one-shot) -meaning to optimize their algorithm just 

once- [22], especially when dealing with real time applications, or due to computational 

costs. Alternatively, iterative attacks query the target more than once, so as to adjust 

their parameters and achieve a better performance. 
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2.2.3. Target Types 

According to the aim of the attacker, either a targeted attack can be conducted if the 

neural network outcomes a specific class, or a nontargeted attack may be conducted, 

where the aim is to produce an arbitrary class, and generally raise of a matter of 

reliability for the system [22].  

 

Figure 11: The Taxonomy of The Adversarial Threat Model. Image Credited to [11]. 

 

2.2.4. Knowledge of the Offensive System 

According to the adversary’s knowledge of the targeted ML system -architecture, 

training and testing set, features, parameters, weights, algorithms, loss functions- 

attacks can be classified into three main categories: white-box, black-box and grey-box. 

• White-Box Setting 

In this category of attacks, the adversary has a full knowledge of the system. They 

are fully aware of the training and testing set, as well as all the necessary 

information to craft special inputs with the intention to produce erroneous 

outcomes. Thus, being an internal actor of the target system with privilege access, 

and the ability to expose vulnerable feature spaces [17] one may create adversarial 

examples. The term white-box refers exactly to the amount of knowledge an 

attacker has. 
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• Black-Box Setting 

On the contrary, black-box attacks are developed with zero knowledge of the 

targeted system. The adversaries, through sophisticated queries, try to analyze the 

system and reveal its weaknesses. Black-box also refers to the level of knowledge 

one has of the target system. In reality black-box attacks are more common to be 

deployed, since an attacker usually targets a third system, fully unfamiliar with it, 

however hard that might be proved. 

• Grey-Box Setting 

Attacks of this category are deployed using partial knowledge of the system. In 

practice attackers may prepare their invasion into a surrogate system of the training 

set with similar features and then deploy it to the real one scale [11]. The name 

grey-box also refers to the amount of knowledge someone owns for the target 

system. 

 

Figure 12: Workflow of Adversarial Attack. Image Credited to [23]. 
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3. Adversarial Examples 

3.1. The Very Existence of Adversarial Examples 

Adversarial attacks emerged around 2004 [24]. Classifiers producing false negatives 

due to alteration of the data, suffer degradation. Subsequently Lowd and Meek also 

succeeded in tricking a classifier but questioning the assumption of Dalvi et al. work 

with regards to the perfect knowledge of the classifier. Instead, they made the 

hypothesis that adversaries must learn using prior knowledge, observation and 

experimentation [25]. 

Although the trend “adversarial” appears in early works, only recently it gains a great 

deal of attention. One might expect that state-of-the-art ML systems achieving high 

performance in object recognition are robust to small changes of input, but this is hardly 

the truth. Around 2014 [26] proved that many ML and deep learning systems are 

susceptible to small imperceptible perturbations, causing the system to misclassify the 

output category of the object. They termed these kind of inputs “adversarial examples”. 

Adversarial examples are special crafted vectors added to the input images causing 

minimal changes. Most of the produced images hardly differ from the original ones in 

terms of semantic consistency, and thus changes are impossible to be traced with bare 

eyes. But the peculiarity lies in the fact that ML systems classify the objects wrongly 

and in many cases with high confidence. Systems receiving non anticipated results 

introduce data vulnerabilities of great importance. 

 Figure 13: An illustration of Adversarial Example. 
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3.2. Formal Definition of Adversarial Examples 

The authors provide a mathematic definition of the adversarial examples as follows: 

Given a classifier 𝑓 ∶ 𝑅𝑚 → {1 … 𝑘} mapping image pixel values to a discrete label l 

and n the minimal perturbation we apply to x input, we get an adversarial example x’, 

so as the input x’ gets classified to a different label 

𝑥 ∈ [0, 1]𝑚 

min
𝑥′

||𝑥′ − 𝑥||
 
𝑝 

s.t.  𝑓(𝑥′) =  𝑙′ 

𝑓(𝑥) =  𝑙 

𝑙 ≠ 𝑙 

3.3. Causes of Adversarial Examples Existence 

Even though a great deal of research has taken place to develop algorithms creating 

adversarial examples and consequently the responding defense mechanisms, little is the 

progress made in terms of their explanation. Partly this might be due to the lack of 

strong mathematical tools, able to rigorously analyze an input to a high-dimensional 

space. [27] set it more vivid - as if the research community is on the hold for an efficient 

“telescope” to be developed, suitable to fully observe the geometry of the high-

dimensional universe. 

On the other side though, Daniel Lowd and Cristopher Meek [25] are brilliantly 

referring to this saying: 

“If you know the enemy and know yourself, you need not fear the result of a hundred 

battles. If you know yourself but not the enemy, for every victory gained you will also 

suffer a defeat. If you know neither the enemy nor yourself, you will succumb in 

every battle.” 

– Sun Tzu, The Art of War 

Nevertheless, researchers have made considerable efforts to explain the reasons of 

adversarial examples existence [28]. Ironically, one might claim that there are 

“adversarial” opinions of their origin, such as the non-linearity of the model, or the 

linear behavior of the model in a high-dimensional space, non-robust features. 
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However, the majority of the researchers argue that adversarial examples are features 

of the systems and not bugs or accidental events. 

Adversarial Examples have been studied through many perspectives [27]: 

• Low-Probability “Pockets” in the Manifold. 

[26] explained the existence of adversarial attacks as an intriguing phenomenon. He 

described these examples as low-probability (high-dimensional) “pockets” in the 

manifold, that emerge after carefully crafted input around the given example.  

[7] provided a further explanation of the theory that lies in “pockets” of data 

manifold. They stated input transformations are highly correlated and drawn from 

the same distribution across the training set, but adversarial examples differ in terms 

of correlation or distribution. 

Further explanations of the topic suggest that these blind-spots are actually 

relatively large, in input space volume, and locally continuous [29]. What is more, 

is that the authors conclude that these vulnerabilities are subject to “intrinsic 

deficiencies in the training process and object function” that to model topology  

• Linearity of the Model. 

Consequently, [30] provided a more rigorous explanation. They described 

adversarial examples as a sort of accidental steganography.  

With an input x and a perturbation n, with the constraint ||n||¥<e, they suggested we 

would have an adversarial example 𝑥̅  = 𝑥 + 𝑛 

Furthermore, considering the dot product between a weight vector w and an 

adversarial example 𝑥̅:  

wT 𝑥̅ = wT x + wTn 

So, by this equation we can see that the adversarial perturbation (wTn) causes the 

activation to grow by wTn, and if we assign n = sign(w) we will maximize this 

increase to the max norm constraint. Assuming that w has n dimensions and the 

average magnitude of an element of the weight the vector is m, then the activation 

will grow emn. 
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Finally, the authors conclude that if x has sufficient dimensionality (n), a small 

perturbation could provoke great changes. 

• Test Error in Additive Noise: 

The authors [31] suggest that adversarial examples are a consequence of the 

nonzero test error in certain corrupted image distributions (gaussian noise) and there 

is no need for newly coined terms to describe such features. 

• Non-Robust Features 

According to [32] non-robust features underly into adversarial examples. The 

authors continue and define non-robust features as those derived from patterns in 

data distribution and are highly predictive, but incomprehensible to human. 

Simplifying this hypothesis is that in every dataset there are features that play a key 

role in classification, but they are at a scale where cannot be directly understood by 

a human. 

They follow a method splitting an image into robust dataset and non-robust and then 

train the model. The idea is that if one interferes an adversarial image, the robust 

features will still remain as the initial class, but the non-robust ones will change to 

the new false class. 

 

Figure 14: A Conceptual Diagram. In (a) features are disentangled into combinations of robust/non-robust 

features. In (b) a dataset which appears mislabelled to humans (via adversarial examples) but results in good 

accuracy on the original test set. Image Credited to [32]. 

 

• Geometric Explanations 

Other proposals include [33], who claim that adversarial examples exist when a 

decision boundary is close to the submanifold of sampled data. With a more 
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pictorial explanation as provided by the authors the explanation lies in the fact that 

a class might not fit exactly to the boundaries of the data and thus data tilting to the 

boundaries of the class may produce an adversarial example.  

 

Figure 15: Adversarial Examples are Possible Because the Class Boundary Extends Beyond the Submanifold of 

Sample Data and can be -Under Certain Circumstances- Lying Close to it. Image Credited to [33]. 

Furthermore, the authors suggest that adversarial examples are not likely to occur 

in other directions of low variance in the data, and thus speculate that adversarial 

examples can be caused due to the overfitting phenomenon that could be alleviated 

through regularization [7]. 

• Further Views studying Adversarial Examples 

In addition to the abovementioned explanation, studies in terms of adversarial 

examples perspectives follow, with the latest one distinguishing the field under 

three views: model, data and other [34]. The authors conduct a thorough research 

in the field of adversarial examples with the aim to record the problems and 

challenges of the topic, as well as, to highlight new research directions. 

Each of the above perspectives is divided to further categories according to different 

aspects with respect to different phases of ML systems (training, inference). All the 

viewpoints attempt to explain the causes of adversarial examples, such as the 

linearity, the boundary system, the loss function etc., are all titled into the model’ s 

perspective. Taking into consideration the amount of data needed for ML systems, 

they create a perspective of their own. Dimension of the data, distribution, features 

are among the traits this perspective is concerned with. Further studies for the 

origins of adversarial examples are falling into the Other perspective, since they get 

inspiration from real human aspects and thus provide a promising field. 
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The authors also make an attempt to record the literature under these perspectives 

so as to point out the advantages and flaws of each underlying theory and to further 

support new researchers to turn their lights into some view with little attention up 

to a point.  

 

3.4. Perturbations 

“Perturbation” comprises a cornerstone term that defines adversarial examples. 

Currently no formal lexical definition has been found in the literature, whereas the term 

is mentioned in circumlocution. By and large, one could claim that a perturbation is a 

small, tiny distraction of the input data, in a way of not being realizable to the bear eye. 

Figure 16: Three Main Perspectives of Related Works on 

the Interpretability of Adversarial Examples. Image 

Credited to [34]. 

examples 

Figure 17: Related Publications of Interpreting Adversarial 

Examples from Three Perspectives. Image Credited to [34]. 
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That is, an Machine Learning based system would interpret the raw data, in an 

inexplicable to the human notion way. 

[35] scrutinized the “perturbation” term and classified it into categories, such as 

individual and universal, whether it can be applied one or more clean input data, as well 

as, optimized and constraint ones, depending on their goal. That is, minimizing it to the 

extent that a perturbation will not be recognizable to humans, or for the latter category 

to setting the perturbation as a constraint to optimize the problem. 

Furthermore, the authors mentioned the ℓ𝑝 norms as a widely used metric tool, while 

they referred also a new one, namely psychometric perceptual adversarial similarity 

score (PASS) [36], consistent with human perception. Several other metrics have been 

proposed to literature such as the semantic similarity [37] and dropping points [38]. 

At this point a distinction worth mentioning, that a perturbation takes place in the digital 

form of adversarial examples. However, in the real world, patches replace the original 

input in a selected space of the original picture. 

3.5. Transferability 

An important aspect of adversarial examples and with a major impact on every AI based 

application, is their ability to be deployed on different ML systems causing erroneous 

outputs. [26] were the first that showed that adversarial examples are shared among 

different architecture ML systems, along with their own existence. Such ascertainment 

was sufficient enough to raise security issues and provoke the research community’s 

reaction.  

[39] studied the transferability of adversarial examples more rigorously. They defined 

“Adversarial sample transferability”, as the property of some adversarial samples that 

may mislead besides a specific model 𝑓 and other model 𝑓′ - irrespectively of their 

architecture. Furthermore, a taxonomy was proposed with respect to their technique: 

Intra-technique and Cross-technique. The first one refers to those samples deploying 

in the same machine learning system, but each time trained with different parameters 

or datasets. The latest one refers to the different architecture machine learning systems 

(neural network or decision tree). 
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Further studies resulted in variant outcomes. Transferability has been analyzed in terms 

of hyperparameters, model architectures (differentiable or non-differentiable), as an 

inherent property, as well as in correlation to the input space and the algorithm design 

of the ML system. Empirical evidence suggests this property is due to large spaces 

instead of small pockets. As [7] survey the literature on this topic, they conclude that 

transferability is not equally applicable for all ML systems highlighting the fact for 

more research to be done on the field. 

3.6. White-Box Attacks 

Below we mention several of the most representative algorithms creating adversarial 

examples in a white-box setting: 

• L-BFGS 

[26] showed that small imperceptible perturbations (𝜌) on a correctly classified 

given input (𝑥) -namely adversarial examples- were able to foolish a ML system, 

enforcing it to misclassify that input into (𝑙) class.  

According to [11] the authors and tried to find these small perturbations calculating 

the: 

min‖𝜌‖2 𝑠. 𝑡. 𝑓(𝑥 + 𝜌) =  𝑙; 𝑥 + 𝜌 ∈ [0, 1]𝑚 

That proved to be a hard-problem, since there are many (𝜌), besides zero (0) that 

makes it trivial 𝑓(𝑥) =  𝑙. 

They overcame the problem by finding an approximation using the box-constrained 

L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization algorithm, and thus the 

complexity of their initial problem -finding a minimum perturbation- was reduced. 

They calculated instead the loss function using line-search to find (c): 

min 𝑐 ∙ |𝜌|  +  𝐿𝑓(𝑥 + 𝜌, 𝑙) 𝑠. 𝑡. 𝑥 + 𝜌  ∈ [0, 1]𝑚 

• Fast Gradient Sign Method 

[30] in order to prove that adversarial examples are a result of their linearity in deep 

neural networks, they suggested an algorithm to create such, taking into 

consideration the maximum direction of the gradient change, using 
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backpropagation. They introduced the “fast gradient sign method” algorithm, which 

is illustrated as an optimal max-norm constrain perturbation, of: 

𝑛 = 𝜖𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) 

where J is the cost function, θ the parameters of the models, 𝑥 the input, y the target 

associated with 𝑥 and 𝜖 a small scalar value to restrict the norm of the perturbation. 

Furthermore, the authors find that using 𝜖 = 0.25, they cause a shallow softmax 

classifier to have an error rate of 99,9% with an average confidence of 79,3% on 

the MNIST test set. 

Additionally, they argue that rotating 𝒙 by an angle in the direction of the 

gradient, also creates adversarial examples. 

• DeepFool 

[40] proposed a new algorithm to create adversarial examples and measure the 

robustness of a ML system. They define robustness as: 

𝜌𝑎𝑑𝑣(𝑘̂) =  𝔼𝑥

𝛥(𝑥; 𝑘̂)

‖𝑥‖2
 

where x is an image, 𝑘̂(𝑥) is the estimated label and 𝔼𝑥 is the expectation over the 

distribution data. 

The authors continue by calculating the minimum perturbation (iteratively), as 

above: 

𝑟∗(𝑥0) ∶= arg min‖𝑟‖2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑖𝑔𝑛(𝑓(𝑥0)) =  −
𝑓(𝑥0)

‖𝑤‖2
2  𝑤 

The algorithm is based on the assumption that neural networks are linear, with a 

hyperplane separating each class. Thereafter, the initial hypothesis of linearity is 

expanded. Since neural networks are not linear and the process is repeated. 

Consequently, the algorithm calculates: 

𝑎𝑟𝑔 min
𝑟𝑖

‖𝑟‖2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓(𝑥𝑖) + ∇𝑓(𝑥𝑖)
𝑇𝑟𝑖 = 0 
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The algorithm stops at iteration 𝑖 + 1 when 𝑥𝑖+1 changes the sign of the classifier. 

• Carlini & Wagner (C&W) 

[12] proposed a family of three attacks (with constraints 𝑙0, 𝑙2, 𝑙∞), namely C&W 

attacks, that are able to exceed the distillation defense mechanism image 

classification in a neural network. The problem to find adversarial samples, 

according to the authors is formally expressed, as above: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷(𝑥, 𝑥 + 𝛿) 

𝐶(𝑥 + 𝛿) = 𝑡 

 𝑥 + 𝛿 ∈ [0, 1]𝑛 

where 𝑥 is an image, and the goal is to find 𝛿 that minimizes 𝐷(𝑥, 𝑥 + 𝛿). 

In order for this problem to be solved using an optimization algorithm the 

aforementioned equation has been transformed, as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷(𝑥, 𝑥 + 𝛿) + 𝑐 ∙ 𝑓(𝑥 + 𝛿) 𝑠. 𝑡. 𝑥 + 𝛿 ∈ [0, 1]𝑛 

where D represents constraint paradigms, c denotes the hyperparameter, and 𝑓 

adopts a variety of objective functions. 

The authors chose 𝑓(𝑥′) = (max
𝑖≠𝑡

(𝑍(𝑥′)𝑖) − 𝑍(𝑥′)𝑡, −𝑘)
+

 after an evaluation of 

seven objective function, where 𝑒+is short hand for max(𝑒, 0), Z denotes the 

softmax function. 

Furthermore, in order to avoid “box-constraint”, the authors introduced a new 

variant w, where: 

𝛿𝑖 =  
1

2
(tanh 𝑤𝑖 + 1) − 𝑥𝑖 

They also provided three kinds of attacks base on the distance metrics 𝑙0, 𝑙2, 𝑙∞ 

𝑙2 attack: min
𝑤

‖
1

2
tanh(𝑤) + 1‖

2
+ 𝑐 ∙ 𝑓 (

1

2
tanh 𝑤 + 1) 
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As for the 𝑙0 attack, since it is not differentiable, through an iterative process the 

pixels that don’t have much effect on the classifier input are characterized stable. 

The algorithm stays with the minimum of them that can be altered and create an 

adversarial example. 𝐿2 attack is used to identify the pixels with less effect on the 

classifier. 

𝐿∞ attack is also an iterative process, where the 𝑙2term was replaced with a new 

penalty in each iteration: 

min 𝑐 ∙ 𝑓(𝑥 + 𝜂) +  ∑[(𝑛𝑖 − 𝜏)+]

𝑖

 

• Jacobian-Based Saliency Map 

[6] introduced an algorithm where the output modifications are taken into 

consideration, in an iterative way of producing new adversarial samples, and thus 

achieve a misclassification. The authors are motivated by the forward derivative. 

They evaluate the forward derivative: 

∇𝐹(𝑥) =  
𝜗𝐹(𝑥)

𝜗𝑥1
= [

𝜗𝐹𝑗(𝑋)

𝜗𝑥𝑖
]

𝑥∈1..𝑀,𝑗∈1..𝑁

 

and define an adversarial saliency map -namely Jacobian- which highlights the 

features with respect to the adversarial ‘s goal and the impact to the classification, 

so as to be included in the next step. Consequently, the algorithm using optimization 

techniques, simple heuristics, or even brute force, produces the next perturbation. 

The next step and after the evaluation of the perturbed input, determines whether 

the aim of the attack is accomplished and the output is misclassified, or the result 

exceeds the maximum threshold and thus the distortion is obvious with the naked 

eye. 

Furthermore, the authors claim they achieved a misclassification with a 97% 

success rate, by tampering with only 4,02% of the input features per sample. 
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Figure 18: Jacobian-Based Saliency Map Algorithm (JSMA). Image Credited to [41]. 

• Iterative Fast Gradient Sign Method 

[42] enriched further the FGSM algorithm, developing two more versions of it: 

Basic Iterative Method (BIM) and Iterative Least-Like Class Method (ICLM). 

BIM works iteratively, using a step 𝑒 and afterwards a function 𝐶𝑙𝑖𝑝𝑋,𝑒 {𝑥′} crops 

each pixel, so as to ensure the imperceptible character of the newly produced 

examples 𝑥′. The algorithm is formally presented as follows: 

𝑋0
𝑎𝑑𝑣 = 𝑋,  𝑋𝑁+1

𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑋,𝑒{𝑋𝑁
𝑎𝑑𝑣 +  𝛼 ∙ 𝑠𝑖𝑔𝑛(∇𝑋𝐽(𝑋𝑁

𝑎𝑑𝑣, 𝑦𝑡𝑟𝑢𝑒))}  

Furthermore, in order produce peculiar targeted adversarial examples in datasets 

that samples are not so distinct among each other, the authors substituted the 𝑦𝑡𝑟𝑢𝑒 

label, with the least-like class of the trained network, according to the formula: 

𝑦𝐿𝐿 = 𝑎𝑟𝑔 min
𝑦

{𝑝(𝑦|𝑋)} 

They maximized 𝑦𝐿𝐿 using log{𝑝(𝑦|𝑋)} iterative way in the direction of 

𝑠𝑖𝑔𝑛(∇𝑋 log{𝑝(𝑦|𝑋)}), which equals 𝑠𝑖𝑔𝑛(−∇𝑋𝐽(𝑋, 𝑦𝐿𝐿)) and finally the resulting 

formula is: 

𝑋0
𝑎𝑑𝑣 = 𝑋,  𝑋𝑁+1

𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑋,𝑒{𝑋𝑁
𝑎𝑑𝑣 −  𝛼 ∙ 𝑠𝑖𝑔𝑛(∇𝑋𝐽(𝑋𝑁

𝑎𝑑𝑣, 𝑦𝐿𝐿))} 
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• Universal Adversarial Perturbations 

 [43] proposed an algorithm that 

seeks for a perturbation in datapoints 

among a set of pictures with the same 

data distribution. Their approach 

differs on previous works, since the 

adversarial sample applies to many 

natural images and it is produced by 

adding universal perturbations, 

without requiring optimization or 

gradient calculation.  

The problem is formulated as above: 

Let 𝑘̂ be a classifier and 𝜐 ∈ ℝ𝑑 a 

vector of perturbations that fools the 

classifier on almost all datapoints 

deriving from a distribution 𝜇. Then 

we are looking for a vector 𝜐, such 

that 𝑘̂(𝑥 + 𝜐)  ≠  𝑘̂(𝑥) 𝑓𝑜𝑟 most 𝑥 ∽ 𝜇  

The algorithm iteratively finds perturbations (using ℓ𝑝metric) over the images and 

builds the universal perturbation 𝜐 with the following constraints: 

‖𝜐‖𝑝 ≤ 𝜉 

ℙ
𝑥∽𝜇

(𝑘̂(𝑥 + 𝜐)  ≠  𝑘̂(𝑥)) ≥ 1 −  𝛿 

where 𝜉denotes the magnitude of the perturbation, and 1 −  𝛿 the probability of 

misclassification. 

3.7. Black-Box Attacks 

Below we mention procedures crafting adversarial examples in a black-box setting: 

 

Figure 19: When Added to a Natural Image, a Universal 

Perturbation Image Causes the Image to be 

Misclassified by the Neural Network with High 

Confidence. Image Credited to [43] 
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• ATNs 

[44] proposed Adversarial Transformation Networks (ATNs), which are 

feedforward neural networks trained to produce adversarial examples. The network, 

can be formally defined as: 

𝑔𝑓,𝜗(𝑥): 𝑥 ∈ 𝒳 → 𝑥′ 

where 𝜗 is the parameter vector of 𝑔, 𝑓 is the target network which outputs a 

probability distribution across class labels, and 𝑥~𝑥′, but 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓(𝑥) ≠

𝑎𝑟𝑔𝑚𝑎𝑥 𝑓(𝑥′), which turns out to be a minimization problem of the joint Loss 

functions 𝐿𝑥(of the input space) and 𝐿𝑦(of the output space): 

𝑎𝑟𝑔 min
𝜗

∑ 𝛽𝐿𝑥(𝑔𝑓,𝜗(𝑥𝑖), 𝑥𝑖) + 𝐿𝑦 (𝑓 (𝑔𝑓,𝜗(𝑥𝑖)) , 𝑓(𝑥𝑖))

𝑥𝑖∈𝒳

 

Furthermore, authors proposed two methods for generating adversarial examples. 

Perturbation ATN (P-ATN), which outputs the perturbation of x and Adversarial 

Autoencoding (AAE), which results a new input based on the initial, taking into 

consideration all the necessary constraints (weight decay or added noise, input 

range).  

• ZOO 

Inspired by Carlini & Wagner (C&W) [45] proposed a black-box attack, which 

exploits techniques from zeroth order optimization, and thus called ZOO, with no 

training substitute models needed and directly being deployed. Authors modified 

the (C&W) loss function, based on the output F of a DNN, as follows: 

𝑓(𝑥, 𝑡) = max {max
𝑖≠𝑡

log[𝐹(𝑥)]𝑖 − log[𝐹(𝑥)]𝑡 , −𝑘} 

where 𝑘 ≥ 0 and log 0 defined as −∞, and consequently, they compute an 

approximate gradient, instead of back-propagation (since only the input and output 

of a DNN is available), using symmetric difference quotient to estimate the gradient 

𝜕𝑓(𝑥)

𝜕𝑥𝑖
, and Hessian 

𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝑖
2  defined as 𝑔̂𝑖 and ℎ̂𝑖, as follows: 

𝜕𝑓(𝑥)

𝜕𝑥𝑖
≈  

𝑓(𝑥 + ℎ𝑒𝑖) −  𝑓(𝑥 − ℎ𝑒𝑖)

2ℎ
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𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝑖
2  ≈  

𝑓(𝑥 + ℎ𝑒𝑖) − 2𝑓(𝑥) +  𝑓(𝑥 − ℎ𝑒𝑖)

ℎ2
 

where 𝑒𝑖 denotes the standard basis vector with the 𝑖𝑡ℎ component as 1 and ℎ is a 

small constant. Consequently, the attacker uses the ADAM or Newton methods to 

calculate the adversarial example. 

Furthermore, in order for ZOO attack to be efficient, in terms of computational cost 

and number of queries, techniques such as space dimension reduction, hierarchical 

attacks and importance sampling are in the scope of this general framework. 

• Houdini 

[46] introduced an algorithm, namely Houdini that is strongly connected with the 

loss function of the problem in concern. Authors propose the following surrogated 

lose function: 

ℓ̅𝐻(𝜃, 𝑥, 𝑦) =  ℙ𝛾~𝑁(0,1)[𝑔𝜃(𝑥, 𝑦) −  𝑔𝜃(𝑥, 𝑦̂) < 𝛾] ∙ ℓ(𝑦̂, 𝑦) 

The function consists of two arguments. The first one is a stochastic margin, that 

calculates the probability of the difference between the score of the actual target 

and the predicted one, and is smaller than one, resulting in the confidence of the 

model. The second argument is independent from the first one, and refers to the 

target that will be maximized. 

The authors report their algorithm is effective besides visual experiments, at speech 

recognition and in the semantic field, as well as to targeted and un-targeted attacks. 

• One Pixel 

[47] proposed an attack called One-Pixel, optimized by differential evolution 

algorithm, and thus makes no use of gradient information and needs no knowledge 

of the objective function. One-pixel algorithm creates adversarial perturbations, and 

then alters one or a small number of pixels so as to produce erroneous outcomes. It 

is formally defined, as: 

maximize
𝑒(𝑥)∗

𝑓𝑎𝑑𝑣(𝑥 + 𝑒(𝑥)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑒(𝑥)‖ 0 ≤  𝒹 
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where 𝑓 is the target image classifier, 𝑥 = (𝑥1, . . , 𝑥𝑛)  the n-dimensional input 

original image, 𝑒(𝑥) = (𝑒1, . . , 𝑒𝑛) is an additive adversarial perturbation, 𝒹 is a 

small number and in the case of one pixel modification equals 1. The modification 

of the one-pixel perturbation may be visualized as moving the data point along the 

x-axis of one of the n-dimensions. 

Furthermore, according to the authors the perturbations are encoded into arrays, 

forming the candidate solutions. One candidate solution contains a fixed number of 

perturbations. Each perturbation is a five tuple, including x and y coordinates and 

RGB value, and alters one pixel. They are optimized and on each a child image is 

produced, according to the follow formula: 

𝑥𝑖(𝑔 + 1) = 𝑥𝑟1(𝑔) + 𝐹(𝑥𝑟2(𝑔)+𝑥𝑟3(𝑔)) 

𝑟1 ≠ 𝑟2 ≠ 𝑟3 

where 𝑥𝑖is an element of the candidate solution 𝑟1, 𝑟2, 𝑟3 are random number, 𝐹 is 

the scale parameter, 𝑔 the current index. 

Each child candidate is compared to the parent and the better one proceeds to the 

next iteration. The algorithm continues until the maximum number of iterations 

reaches, or the target class is above or below a percentage, depending on the dataset. 
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Table 2: Comparison Table for Adversarial Examples 

Adversarial Attacks Attack Type Specificity Attack 

Frequency 

Perturbation 

Type 

Perturbation 

Norm 

Attack strategy Year Strong Aspects 

L-BFGS [26] White-Box Targeted One-shot Specific ℓ∞ Constrained 

optimization 

2017 Good mobility 

Fast Gradient Sign 

Method [30] 

White-Box Targeted One-shot Specific ℓ∞ Constrained 

optimization 

2015 Efficient algorithm 

succeeding good 

results due to 

iterations 

DeepFool [40] White-Box Non-

Targeted 

Iterative Specific ℓ0ℓ2ℓ∞ Gradient 

Optimization 

2016 Limits in targeted 

attacks 

Carlini & Wagner 

(C&W) [12] 

White-Box Targeted Iterative Specific ℓ0ℓ2ℓ∞ Constrained 

optimization 

2017 Successfully breaks 

state-of-the-art 

defense 

mechanisms, such 

as defensive 

distillation, 

limitations on 

efficiency 
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Adversarial Attacks Attack Type Specificity Attack 

Frequency 

Perturbation 

Type 

Perturbation 

Norm 

Attack strategy Year Strong Aspects 

Jacobian-Based 

Saliency Map [6] 

White-Box Targeted Iterative Specific ℓ2 Sensitivity analysis 2015 Good ASR, but 

limits in mobility 

Iterative Fast Gradient 

Sign Method [42] 

White-Box Targeted Iterative Specific ℓ∞ Constrained 

optimization 

2017 Applies the FGSM 

multiple times with 

a small step 

Universal Adversarial 

Perturbations [43] 

White-Box Non-

targeted 

Iterative Universal ℓ2ℓ∞ Gradient 

optimization 

2017 Better 

generalization, 

good for real 

scenarios 

ATNs [44] Black-Box and 

White-Box 

Targeted Iterative Specific ℓ2ℓ∞ Gradient 

optimization 

2017 Effective training 

to generate 

adversarial 

examples 

ZOO [45] Black-Box Targeted Iterative Specific ℓ2 Migration 

mechanism 

2017 Mobility, efficient 

techniques to 

accomplish the 

attack 
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Adversarial Attacks Attack Type Specificity Attack 

Frequency 

Perturbation 

Type 

Perturbation 

Norm 

Attack strategy Year Strong Aspects 

Houdini [46] i Black-Box Targeted 

and 

Untargeted 

Iterative Specific ℓ2ℓ∞ Generative model 2017 High Attack 

Success Rate / 

Tailored to 

different domain 

applications 

One Pixel [47]  Black-Box Non-

targeted 

and 

targeted 

Iterative Specific ℓ0 Differential 

Evolution 

2019 One pixel offers a 

more concealed 

attacks, needs many 

iterations, 

efficiency low 

Does not require 

the optimization 

problem to be 

differentiable. 
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3.8. Adversarial Examples in the Physical World – Physical Attacks 

Adversarial attacks have exposed vulnerabilities of ML systems in a great extent. 

Though many attacks until this point have presumed that the attacker has in their 

possession the input data in a digital form, there is no doubt that this behavior can be 

replicated in a real environment. Objects of interest (pictures, raw data from sensors, 

etc.), can be the subject of malicious behavior and be intervened before their input is 

transformed digitally. These kinds of attacks are considered to be deployed in the 

physical world and are conducted at a different stage within the visual recognition 

pipeline [48]. 

 

Figure 20: The Comparison Between Digital Attacks and Physical Attacks In The Standard Visual Recognition 

Pipeline. Image Credited to [48] . 

[42] were the first who demonstrated that adversarial examples exist in the physical 

domain and can fool a ML based system with tiny perturbations. They conducted a 

series of experiments printing pictures on a paper and then using a cellphone modified 

them. They further introduced new methods: Basic Iterative Method and Iterative least 

likely to create adversarial examples, as well as a new metric: destruction rate, to define 

the influence of arbitrary transformations (change of contrast, brightness, Gaussian blur 

and noise, etc.) to these images. The results revealed that less was the effect to the 

adversarial examples with the contrast and brightness transformations, but that did not 

hold true for the blur and noise.  

Physical world adversarial examples need to be robustified over challenges that exist 

in the real environment. [49] mentions a subset of factors that affect their persistence. 

Specifically, in terms of the environmental conditions, they refer that distance and 
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angles should not be able to alter the erroneous nature of adversarial examples. 

Imperceptibility is of great importance, keeping in balance the ability of the for the 

sensor of input to capture the perturbation and not being exposed to the observer.  

Furthermore, the authors make reference to [50] work, with regards to the reproduction 

error and the sometimes-erroneous depiction of real-world colors, which might reduce 

the strength of the attack. Another important category of physical attacks limitation is 

that of perturbation. In the digital form the attacker has in their availability all the input 

allowing to create small perturbations. In the physical world perturbation should be 

created in a manner of not causing the attraction of an observer. This limitation 

according to the authors is classified under spatial constraints. 

 

Figure 21: Stop Sign in the Physical World. The left image shows real graffiti on a Stop sign, something that most 

humans would not think is suspicious. The right image shows a physical perturbation applied to a Stop sign. Image 

Credited to [49]. 

Dealing with the above challenges, Patch Attacks emerged [50], [51]. [52] termed the 

patch as a patterned sub-image that is generally masked over the input image, turning 

it into a feasible solution for attacker in physical environment, and with the further 

privilege of being deployed with no previous knowledge of the attacked system.  

In contrast to the norm-based attacks, as mentioned above, patch attacks craft 

perturbations on a restricted area of the input data, and is formally defined as: 

𝑥′ = (1 − 𝑝) ⊙ 𝑥 + 𝑝 ⊙ 𝛿 

where 𝜹 is the adversarial patch noise and 𝒑 represents the binary pixel block to mask 

the patch area (location and area), familiar also as adversarial patch, while the symbol 

⊙ represents the Hadamard operator, which performs element-wise multiplication of 

pixels from the input matrices.  
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Figure 22: Adversarial Patch Attack Procedure (White is 1 and Black is 0). The Adversarial Example is 

Generated by x’ = (1 − p) x + p δ, where δ and p are the Adversarial Patch Noise and the Adversarial Patch, 

Respectively. Image Credited to [52]. 

Joining all these perturbations and printing them in the form of a sticker, the attack 

applies in the real world, and it is known as Physical Attacks. 

3.9. AI-Guardian – A Defense against Adversarial Examples 

A novel approach, namely AI-Guardian [53] was recently introduced aiming to tackle 

adversarial examples using backdoors, presenting remarkably results, with regards to 

five popular adversarial examples generators. Their attack achieved to lessen the 

success rate from 97,3% to 3,2%, with a slight decline on the clean accuracy data, and 

still with no degradation on performance. In particular the algorithm is based on the 

observation that injected backdoors reduce the functionality of adversarial examples.  

A uniquely implemented backdoor, namely bijection backdoor is implanted to a deep 

neural network, so as to shield it over adversarial examples. The newly emerged 

backdoor is based on either the source (input) or the target label, creating a one-to-one 

relationship, i.e., a source class corresponds to only one target. Thus, the model with 

the injected backdoor exerts over the perturbation of the adversarial example. 

 

Figure 23: Overview of AI-Guardian. Image Credited to [53]. 
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Furthermore, authors urge the necessity of keeping a firm secret the trigger of the 

backdoor, since it can used to bypass it, while they recognize the need to further develop 

a theoretical guarantying the performance of the algorithm. 
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4. Poisonous Attacks 

Poisonous attacks emerge with significant importance in the field of Machine Learning. 

The name comes from the work of [54] and are also referred as causatives. Their aim 

is to produce misclassification or subvert the prediction of ML system, by tampering 

with training data in the corresponding phase of ML based system pipeline. In terms of 

the adversary’s capabilities, the ability to manipulate training data is considered as an 

assumption. 

 

Figure 24: The Framework of Poisonous Attacks. Image Credited to [18] 

Literature classifies poisonous attacks under various perspectives [55]. In terms of 

privacy [56] poisoning attacks are classified as integrity where the system produces 

misclassifications on specific classes, and availability where the system sustains a 

general performance degradation, with regards to incorrect classifications or 

predictions. 

In terms of “Specificity”, attacks can be classified into targeted and indiscriminate (or 

untargeted). The first one aims to produce erroneous outcomes in a specific set of 

classes while the second one aims at no particular target, but rather intends to cause a 

general declined success rate of ML systems. Another category is that of “Error 

Specificity”, in which if the adversary’s target is to cause an erroneous outcome, 

resulting a specific error class or any other. 

Further classifications are reviewed with regards to the learning technique, such as 

training-from-scratch (TS), fine-tuning (FT), and model-training (MT) [57]. In the first 

two methods users have limited resources on the training dataset, and thus they address 
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third-parties for support. Even though the training process is fully controlled by them, 

malicious data may already be injected into the provided dataset. The two methods 

differ in the training data they use. The first one trains the dataset from scratch, while 

the second one uses a pre-trained set and adjusts the weights. 

 

Figure 25: Training and Test Pipeline. Image Credited to [57]. 

In the last method (MT) the opposite scenario takes place. The user has in their 

possession the training dataset, but lacks the computational resources or the expertise. 

Thus, the training method may be posed to vicious intentions. 

Other taxonomy of poisonous attacks considers the point the attacker aims to exploit, 

and thus data and model methods are arising. The first one acquires access to the 

training dataset, while the second one points directly to the model per se (i.e., training 

algorithm, modeling procedures) [18]. 

 

Figure 26: The Taxonomy of Poisoning Attacks, Image Credited to [18]. 

Poisonous attacks have evolved since their first appearance, in order to correspond to 

the constantly increasing complexity of the systems being deployed in the fields of 

Machine and later on Deep Learning.  
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4.1. Poisonous Attacks on Conventional Machine Learning Systems 

One of the earliest techniques emerging is that of Label Poisoning. Its aim is to create 

mismatched labels or modify them, so they do not correspond to the original data, and 

thus an erroneous knowledge base is being built. As a consequence, the quality of the 

contaminated data affects the overall system. The method is also called “label flipping” 

deriving from the initial binary classifiers of 1 and 0. 

 

Figure 27: Instance of Label Manipulation. Image Credited to [55]. 

Consequently, label flipping algorithm enriched with optimization features, for the best 

optimal choice of labels causing the maximum erroneous output. Thus, this algorithmic 

development sets the ground for a mathematical problem to be formed and optimized 

variously. 

4.2. Formal Definition of Poisonous Attack – A Bilevel Approach 

Formally a poisonous attack can be captured as follows: 

𝐷𝑝
∗ ∈ argmax

𝐷𝑝

ℱ(𝐷𝑝, 𝑤∗) = ℒ1 (𝐷𝑣𝑎𝑙 , 𝑤∗) (1) 

s.t. 𝑤∗ ∈ a𝑟𝑔𝑚𝑖𝑛
𝑤

ℒ2(𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑝; 𝑤) (2) 

where 𝐷𝑝 is a poisoned dataset, 𝐷𝑡𝑟𝑎𝑖𝑛 is the original one, and 𝐷𝑣𝑎𝑙 the validation 

dataset. ℱ is the attacker’s designed objective function to create poisonous samples and 

maximize the loss ℒ1 in the validation dataset with 𝑤∗ parameters. The second function 

updates the parameters 𝑤∗ -whenever the first function finds an optimal solution (best 

local)- on the augmented poisoned dataset 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑝 [18]. 

-Notably, according to [18] the aforementioned conceptual idea of bilevel optimization 

formulating poisoning attack is officially reported for the first time in the work of [58]. 
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4.3. Poisonous Attacks on Deep Learning Systems 

Taking a step further and adapting to the newly emerged deep learning systems the 

research community introduces new methods of poisonous attacks, taking into 

consideration all the limitations deriving from the complexity of these systems. Thus, 

approximation of the bilevel optimization problem allows to create new attacks. 

• Gradient-Based Attacks 

Gradient-Based Attacks present a challenge calculating the gradient of a poisoning 

point toward the gradient of the objective function, until the poisoning point 

achieves greater results. 

Assuming that the ℱ function is differentiable for parameters 𝑤 and a point 𝑥, the 

required gradient is calculated using the chain rule as follows: 

∇𝑥ℱ =  ∇𝑥ℒ1 +
𝜕𝑤𝑇

𝜕𝑥
∇𝑤ℒ1  (3) 

where 
𝜕𝑤

𝜕𝑥
 denoted the dependence of the classifier parameters on the poisoned data. 

Furthermore, due to the convexity assumption of ℒ2 [58] proposed an implicit 

equation using the Karush-Kuhn-Tucker (KKT) conditions instead of the second 

optimization [Eq. (2) – p.61] and thus [Eq. (3) – p. 62] converts, as follows: 

∇𝑥ℱ =  ∇𝑥ℒ1 − (∇𝑥∇𝑤ℒ2)(∇𝑤
2 ℒ2)𝑇∇𝑤ℒ1 

and thus, a two-layer optimization problem transforms into a single-layer 

constrained optimized problem [17].  

On the gradient-base [59] introduced the reverse gradient optimization, that was the 

first poisoning attack towards a deep learning model. The method computes the [Eq. 

(2) – p.61] more efficiently and thus overcomes complexity issues. 

• Gan-based Attacks 

[60] inspired by generative methods introduced a generator to produce poisoned 

sample. Training a model so as to learn the probability distribution of adversarial 

perturbations and then construct poised input is of great importance. The model 

consists of two components: the generator and the classifier. A random input is 
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selected from the clean data and the generator creates a poisonous sample. Then, 

the sample is tested against the validation dataset to the classifier and the weights-

parameters are adapted. The results -obtained parameters- return to the generator. 

The process repeats until the desired result is succeeded. According to the authors 

a trade-off exists between the time of poisonous data generation and the slightly 

lower accuracy. 

• Clean-Label Attacks 

[61] proposed a new strategy attack, namely clean-label, where the attacker knows 

about the model and its parameters, but nothing with regards to the training data. 

The attackers embed small imperceptible perturbations to the input data and then 

feed them to the training data. Thus, the model is erroneously trained and 

furthermore the poisoned data are unrecognizable from the human eye.  

Authors with Feature Collision create poisonous data, as follows: 

𝑝 =  argmin
𝑥

‖𝑓(𝑥) − 𝑓(𝑡)‖2
2 − 𝛽‖𝑥 − 𝑏‖2

2 

where 𝑓(𝑥) is the representation of 𝑥 is the penultimate layer (before the softmax 

layer), namely feature space, ‖𝑓(𝑥) − 𝑓(𝑡)‖2
2 the similarity measure between the 

poisoned data and the target, and 𝛽 is a parameter to the constraint ‖𝑥 − 𝑏‖2
2 of 

poisoned data and to initial input data so as to be imperceptible to the human eye. 

• Model Attacks 

Model poisonous attacks need no knowledge of training data, instead the adversary 

targets to the model parameters per se. Thus, confidentiality and privacy concerns 

are raised. According to [18], [57] not much research has been conducted in this 

nascent branch of attacks.  
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5. Backdoor Attacks 

An attack firstly appointed (as will be explained below) to the poisonous category, 

namely backdoor attack or trojan [62], rapidly gains the interest of the research 

community, as recent data reveal [Figure 28]. An attacker may deploy a backdoor attack 

in a deep learning model by injecting malicious inputs in the training phase of the 

system’s lifecycle, remaining in an idle situation, until it is invoked at the inference 

stage. However, non-influenced samples will still behave as they should depending on 

their nature (i.e., classification, recognition).  

 

Figure 28: Number of Published Papers on the Topic of Backdoor Attacks to Deep Learning Models from 2018 to 

2022 of Web of Science, Image Credited to [63]. 

At a higher level of view backdoor attacks and poisonous ones appear to have a close 

affinity, but zeroing in on technical details, any similarity is fading out. In terms of 

security aspect, backdoor attacks are considered to violate the integrity viewpoint, in 

contrast to poisonous ones that aim at a general degradation and non-availability of the 

system, equally termed as denial of service.  

Besides, backdoor attacks are considered targeted attacks since the trigger causes the 

system to misbehave according to the attacker’s target class base, while poisonous ones 

aim to a system’s general performance decline irrelevantly of the result. Furthermore, 

if the malicious trigger is related to the source class the attack may be classified as class-

specific, in contrast to class-agnostic where the trigger depends only on the nature of 

the data (i.e., voice, text). 

 

Figure 29: An Illustration of Backdoor Attack. Image Credited to [64]. 
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Though initially the attack focused on the computer vision domain, it was sooner rather 

than later that expanded to other critical fields (i.e., speech, text). They are further 

present in variations depending on the trigger, whether it produces the same label or 

acts separately targeting different labels, on the many arbitrary chosen by the attacker 

factors, such as shape, position, size as well as on its transparency or invisibility [65]. 

Notably the trigger in the domain of sound and text, is figured in terms of amplitude of 

the audio and semantically accordingly.  

5.1. Formal Definition of Backdoor Attack 

According to [66] for a benign model ℱ: 𝒳 → 𝒴, a selected malicious output prediction 

result ℛ, a backdoor attack is to generate (i) a backdoor model 𝒢: 𝒳 → 𝒴, (ii) a 

backdoor trigger generator 𝒥: 𝒳 → 𝒳, which alters a benign input to a malicious input 

such that: 

𝒢(𝑥) = {
ℱ(𝑥),   𝑖𝑓 𝑥 ∈ {𝒳 − 𝒥(𝒳)}

ℛ, 𝑖𝑓 𝑥 ∈ 𝒥(𝒳)
 

-Notably a backdoor attack is evaluated by the following ratios: 

• Clean Data Accuracy (CDA): defines the proportion of the clean samples (with no 

trigger) predicted to their ground-truth classes. 

• Attack Success Rate (ASR): defines the proportion of the samples (with trigger) 

that are predicted to the attacker targeted classes. 

5.2. Taxonomy of Backdoor Attacks 

Literature records a variety of backdoor attacks, striking at most of the phases of ML 

lifecycle, through one or two vulnerable entry-points (attack surfaces or scenarios). A 

comprehensive survey on this topic [65], reports and categorizes these scenarios into 

six classes: 

• Code poisoning refers to the adversary’s capability to exploit the tactic 

practitioners follow, for developing their solutions on top of already released 

frameworks. Malicious code can be injected into the initial framework, posing 

severe security threats in terms of contamination and detrimental effects. 
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• Outsourcing refers to the occasion where a practitioner lacks the computation 

capacity to process a large volume of data and thus turns towards external service 

providers (Machine Learning as a Service – MLaaS). 

• Pretrained refers to practitioners who use a ‘teacher’ model to train their own. Data 

acquisition and labeling are enormously challenging procedures that require 

expertise and resources in terms of time and cost. Thus, an adversary can train 

maliciously a model and then publish it, with all the consequences that entails. 

• Data Collection refers to the stage of gathering data. Cutting-edge technologies 

require constantly new data, mostly coming from open sources. Thus, malicious 

data can be freely available feeding the models that make use of them. 

• Collaborative Learning1 refers to the machine learning models with no access to 

training set, but still input data from many participants, who many a time are not 

benevolent. A typical example of this consists Google word prediction, that goes 

through the end user’s data [67]. 

• Post-deployment refers to an occasion where an intruder has gained access to an 

ML system with the aim of altering i.e., the weights of a model loaded in the 

memory, and thus causing a degradation at the inference stage. 

 

Figure 30: Categorized Six Backdoor Attack Surfaces: Each Attack Surface Affects One or Two Stages of the ML 

Pipeline. Image Credited to: [65]. 

 
1 Note that a collaborative learning attack surface is out of the scope of this thesis. 
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Latest literature [68] classifies backdoor attacks into three main categories: 

• Poisoning-only attacks where an adversary has access only to the training dataset. 

• Training-controlled attacks where an attacker has privileged access to the training 

procedure, including the training data and algorithm.  

• Non-poisoning-based attacks that take place after the deployment, tampering with 

the core data of ML model loaded directly in the memory, such as the weight values. 

Thus, this newly classification clearly shifts away backdoor attacks from the classical 

term of poisonous, thereafter the emergence of non-poisoning-based attacks. 

Furthermore, backdoor attacks have extended their scope to almost every stage of ML 

lifecycle, except the Model test. 

 

Figure 31:Possible Attacks in Each Stage of ML Pipeline. Image Credited to [65]. 

5.3. Poisoning-Only 

• BadNets – Firstly emerged backdoor attack 

BadNets [69] the most representative and firstly explored causative attack, 

introduces a specific feature only known to the adversary, namely backdoor 

trigger, associated to the target class, remaining idle until it’s being invoked. It 

deploys in a white-box setting, where the adversary takes full responsibility over 
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the training process and returns the according model or feeds the training data with 

malicious samples (transfer learning) and then releases it to repositories. 

• Targeted Poisonous Backdoor Attack 

At around the same time [70] an attack termed as backdoor and more specifically 

“backdoor poisoning” emerged on the scene. According to the authors, it differed 

from the previous ones in terms of knowledge of the attacked model and thus firmly 

was classified as a black-box attack. The attack takes place by inserting a small 

number of poisonous samples (either with a specific class or more widely with a 

key pattern) into the training dataset with a preeminent success rate and an ultimate 

goal of not being distinguishable. 

• Dynamic Backdoor Attack 

The aforementioned attacks both refer to triggers that are statically stamped onto 

the sample (in image classification), and thus the location and the place are 

beforehand known. In [71] authors introduce a dynamic way to create triggers, 

spotted randomly in the terrain of image with various patterns. They propose three 

methods to succeed their goal: random backdoor, backdoor generating network 

(BaN) and conditional backdoor generating network (c-BaN). All these methods 

subsequently advance in terms of complexity and limitation exceeding. 

• Clean-label Attack 

Clean-label attack was proposed in [72] based on the observation that it is possible 

to create a poisonous sample without corrupting its label. The attacker aims to 

induce a machine learning model producing a specific class. Thus, it is a targeted 

or multitargeted attack that provides flexibility with an additional vector to cause 

misclassifications. The vector is stealthier to be recognized since no labels are 

changed, and furthermore can be directed to the desired class, irrespectively of the 

base class that it will be applied. However attractive this technique might be, it 

comes not without drawbacks. A great deal of training samples is required to 

persuade the model acting maliciously. 
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5.4. Training-Controlled 

• Trojaning Attack 

Another attack deploying in a grey-box setting, however more realistic than the 

previous one, is introduced in [73], where the adversary has access to the target 

model but not to training/testing data. The authors claim that this is often the case 

since most Neural Networks are published partly in order to exhibit their supported 

functionality. The attack consists of three phases: creating the trojan trigger, training 

the data and retraining the model. Taking into advantage the neurons strongly 

activated to a particular trigger and with reverse engineering techniques the attack 

deploys in a real scenario. 

• Blind Code Poisoning Attack 

Blind Code Poisoning attack proposed in [74] presupposes no access to training 

data or the process as well as to the execution phase of the code and its results. Thus, 

it is considered a black-box attack. The adversary implants the malicious code into 

an ML system, and produces poisonous samples “on the fly”. The calculation of the 

loss function for the legitimate training samples and the loss function for poisonous 

ones follows, until they are united through an optimization (multi-objective) 

process. 

5.5. Non-Poisoning-Based 

• Live Trojan 

Live Trojan is introduced in [75] and its basic notion rests in the knowledge and 

techniques drawn from typical software attacks. The attack is tampering with a 

system’s memory (randomizing parameters or setting them to zero) at the run-time, 

or applying a more targeted patch (finding the parameters), with no further 

knowledge of the target model, and thus, under this perspective, is considered to be 

deployed in a black-box setting. Afterwards the attack uses a retraining method, 

called masked and produces the new trojaned dataset. However, privileged access 

to the system architecture as well to several other features such as weights and bias 

parameters is a substantial prerequisite, without which the attack cannot take place, 

and from that point of view the attack lies in the scope of white-box attack. 
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• Adaptive Attack 

A state-of-the-art adaptive attack, was recently published [76] urging the necessity 

to revise the assertion that models trained on poisonous data tend to learn separable 

latent representations for clean and malicious samples. That is forming different 

clusters after projecting samples in the latent space, and therefore presenting a 

tangible signature. This assumption has been deemed as a natural feature of 

backdoor attacks and spurred the development of defense methods based on 

clustering analysis. 

 

Figure 32: Latent Separation. Image Credited to [76] in the virtual presentation 

(https://iclr.cc/virtual/2023/poster/11430) 

The newly emerged attack aims to refute this assumption with counterarguments 

and thus put into question the many defense mechanisms. Specifically, the attack 

effectively minimizes the gap in the latent space between the poisonous and the 

benign samples, while retaining the attack success rate (ASR) at the same level, 

with an insubstantial drop at clean accuracy.  

 

Figure 33: Visualization of Latent Separability Characteristic on CIFAR-10. Each Point in the Plots Corresponds 

to a Training Sample from the Target Class. Caption of Each Subplot Specifies its Corresponding Poison Strategy. 
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To Highlight the Separation, All Poison Samples are Denoted by Red Points, while Clean Samples Correspond to 

Blue Points. Image Credited to [76]. 

The authors, in order to picture the attack, effectively embed the notions of 

regularization, asymmetry and diversity into corresponding strategies in the training 

stage. Data poisoning-based regularization strategy retains the ground truth label to 

some of the poisonous samples (regularization samples). Τhe trigger planting 

strategy promotes asymmetry and diversity. Specifically random triggers are 

implanted to the poisonous samples so as the latter ones are scattered in the latent 

space. Besides, during the test-time only the original trigger will be used to invoke 

the attack. 

 

Figure 34: An Overview of the Adaptive Backdoor Attack. Image Credited to [76]. 

Intuitively, in this framework authors have deployed two illustrations of the attack, 

namely Adaptive-Blend and Adaptive-Patch to incorporate the projection of the 

poisonous samples in the latent space to the clean ones. 
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Table 3: Comparison Table for Backdoor Attacks 

Backdoor 

Attacks 

Access Model 

Architecture 

Trigger ASR Attack 

Classifica

tion 

Specificity Attack 

Surface 

Strong Aspects 

BadNets [69] White-Box/ 

Grey-Box 

Static Very High / 

Medium 

Poison-

only 

Targeted Outsourcing/ 

Pretrained 

transfer Learning 

Targeted 

Poisonous 

Backdoor 

Attack [70] 

 

Black-Box 

*later on 

mentioned as 

Grey-Box [66]  

Static 

Trigger Pattern 

Very High 

5 samples cause 

90% 

Poison-

only 

Targeted Outsourcing Indistinguishable 

samples  

Dynamic 

Backdoor [71] 

White-Box Dynamic Very High 

Approximately 

100% 

Poison-

only 

Targeted 

/untargeted 

Outsourcing i) Random 

backdoors 

ii) Backdoor 

Generating 

network 

iii) Conditional 

Backdoor 
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Backdoor 

Attacks 

Access Model 

Architecture 

Trigger ASR Attack 

Classifica

tion 

Specificity Attack 

Surface 

Strong Aspects 

Trojaning 

Attack [73] 

Grey-Box Non arbitary trigger – 

based on the strongest 

activated neurons. 

Medium 

Nearly 100% 

Training-

controlled 

Targeted Pretrained Transfer learning  

 

Blind Code 

Poisoning [74] 

Black-Box On the fly poisonous 

triggers. 

High Training-

controlled 

Targeted 

/untargeted 

Code-

Poisoning 

Multi-task learning 

for conflicting 

variables – main task 

and backdoor. 

Live Trojan [75] Black-Box also 

White-Box 

(access to model 

architecture, 

weights, bias 

parameters of 

the network. 

Invisible since 

tampering with the 

data in memory, can be 

uninterpretable. 

Medium Non-

poisoning-

based 

Targeted Post-

deployment 

Run time attack 

Randomizing or 

zeroing parameters 

Less time 

consuming. 

Clean Label [72] Grey-Box More stealthiness 

 

Medium Poison-

only 

Single/multiple 

targeted 

Data 

Collection 

No need to identify 

beforehand the class 

of the samples to be 

attacked at test time 
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Backdoor 

Attacks 

Access Model 

Architecture 

Trigger ASR Attack 

Classifica

tion 

Specificity Attack 

Surface 

Strong Aspects 

Adaptive Attack 

[76] 

White-Box  High Training-

controlled 

Targeted Data 

Collection 

State-of-the-art 

attack aiming to 

bypass a family of 

the latest defense 

mechanisms 
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5.6. BAERASER – A Defense Against Backdoor Attacks 

A novel defense mechanism introduced by [77] succeeds a decline in attack-success-

rate against cutting-edge backdoor attacks by 99%. It consists of a two-stage procedure 

and has been inspired by the law framework of General Data Protection Regulation 

(GDPR), applying a technique, namely machine unlearning.  

The defense mechanism is formulated, as below: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

ℒ (𝐹𝜃(𝓍𝑏), 𝓎𝑟𝑒𝑎𝑙) + 𝜆‖𝜃‖ 

where 𝐹𝜃 is the victim model, 𝓍𝑏 the backdoored images, 𝓎𝑟𝑒𝑎𝑙 the true labels, ℒ the 

loss function that estimates the prediction error of the victim model and 𝜆‖𝜃‖ is 

coefficient multiplied by a penalty to restrict the unlearning process. Overall, the 

mechanism aims to minimize the loss function over the victim model while retaining 

the accuracy of 𝐹𝜃. 

The defense mechanism reverses the attack procedure as illustrated below and deploys 

in two-stages. Initially, using a generative model will try to recover the trigger pattern, 

while it overcomes performance degradation by using entropy maximization. 

Consequently, using a technique called machine unlearning will eliminate malicious 

samples and retrain the model.  

Furthermore, according to the authors their mechanism is outdoing over previous 

equivalent, due to the fact being able to deploy on a more realistic environment. 

Specifically in order to surpass the necessity for a full training dataset, which is often 

the case for laboratory experiments, they reverse gradient descent into gradient ascent, 

with an additional weighted penalty parameter, to thwart the disastrous over unlearning.  
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Figure 35: The Workflows of Backdoor Inject Attack and Backdoor Erasing Methodology. Image Credited to [77] 
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6. Data Vulnerabilities and Threats in the Healthcare 

Domain (a Non-Technical Approach). 

Although it would be of great value to extend this thesis presenting various attacks, in 

terms of adversarial examples and poisonous-backdoor attacks as well as adversarial 

strategies, all targeting the healthcare domain in particular, no truly incentives would 

then be unveiled to grasp the risk for embracing ML-based systems. 

Machine Learning and Deep Learning in recent years integrate at a high rate into almost 

every apparatus, facilitating our lives to a great extent and many a times proving a great 

alliance in situations of emergency. The healthcare domain has been mostly affected by 

these evolutions, in various aspects. Diagnostic predictions, image classification, 

decision support, remote health care management, design proteins and drugs and many 

more expertise fields lie on AI-based systems. 

 

Figure 36: Applications of DL in Medical Image Processing. Image Credited to [78]. 

 

But a question still remains unanswered: Why should anyone wish to degrade such 

systems? 
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Recent research [79] reveals one of the many truly motivations behind such behaviors 

using as an example the United States’ health care model, that is not far ahead from 

many others. In particular, it highlights the use of AI-based system in the insurance 

claims approvals, where trillions of dollars are circulating, among the providers and 

payers. At the crux of this research, financial motivations overwhelm both sides. 

Providers are pursuing more claims while payers act in the opposite direction 

(perturbing the input data such as minimizing the costs or denying medication). 

Many types of attackers are mentioned, from novices who commit criminal activities 

with regards to the AI-systems as a challenge, those who support other groups of 

attackers, and those acting professionally in order to make profits [80]. Whatever the 

category of the attacker is, targeting an ML-based system may cause severe impacts 

and even human losses. 

As such further motivations are reported in terms of terrorism attacks, targeting national 

healthcare systems in order to satisfy their demands. An attack to such an extent may 

cripple a whole city. The Healthcare domain is a primary infrastructure for every 

society. It owns a considerable proportion of the market [Figure 37], revealing the 

tremendous impacts in such scenarios. Whatever the motivation is, every aspirant 

adversary will try to maximize the impacts of their attack.  

 

Figure 37 Global Generative AI Market Share, By Industry, 2022. Image Credited to [81] 
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7. Conclusions 

In this thesis we conducted a thorough research on attacks aiming at the training and 

the inference stage of an ML-based system lifecycle. We introduced the necessary 

background knowledge so as to better understand the attacks from a mathematical point 

of view where needed. We mentioned the necessity to delineate the attacks under 

models due to their extent with regards to the adversary’s capabilities, so as to be better 

studied and tackle with all the proper measures. 

We explored adversarial attacks, poisonous attacks and backdoor attacks. Each 

category shares common features but they are inherently different. We mainly remained 

focused on the technical aspect of these attacks in order to fully understand how they 

are deploying, at which phase and under what circumstances. We should note that it is 

not in our intention to create a comprehensive survey on attacks, based on the 

taxonomies referenced, but rather to provide a roadmap to the evolvement of this topic. 

In addition, a reference to the corresponding defense mechanisms was made, in order 

to highlight the difficulties that research community faces. 

Finally, a twofold attempt to raise awareness on this topic was made. On the one hand, 

urging multidisciplinary research communities to make a joint effort to provide 

adequate reasoning for the existence of many of the aforementioned attacks and so 

countermeasures to be proposed. On the other hand, except the practitioners, 

management should be fully aware of the risks using AI-based systems. This warning 

should only urge all the decision makers to take all the necessary measures in order to 

protect their systems and not be daunted by the risks. 
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