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IHEPIAHVH

Hepidnyn

Me v €hevon TV aoVpUaTOV SIKTVOV TEUTTNG YeVIag (5G) kat Tou Awadiktiov Twv Ipayud-
twv (IoT), éva KPLOWO UEPOG TG EVEPYOTTIOLNOTG TWV GUYYPOVOY TEXVOLOYLMDV VAL 1) BEATLOTOTTOLON
™G ATOS00NG TWV U AVIoUmY MeTapdptmong YTohoyloTikdY ALEpYaoLMV Kol SUVOULKNG KOTAVOUNG
TOpwv. To TPEYOV VITOLOYLOTLKO TOPASELYUE. TOPO0YNG TPOCHETMV TOPWV 0E GUOKEVEG ELVOL TO SLKTVO
Yrohoywoudv Modhamdng [pdoBaong ota Akpae Multi-Accessed Edge Computing (MEC), to omolo yo.-
POKTNPLZETOL ATTO TNV TEPLOPLOUEVT] StadeotndtTa Topwv. Q¢ €K TOUTOV, Ol CUOKEVEG ML Ue Toug
drakouotég edge oymuatitovv éva KuBepvo-duoikd Svotua (Cyber-Physical System) to ooto mwpemel
VO, 0YESLOOTEL HOTE VO TALPLALEL 0TS OvayKeg KGOe epapuoyng kat oevaptov. ‘Etol, og vt ™ dio-
TPILPT), AVTLHETMOITILOVUE TO TPOBANUC TNG VAOTIONONG OITOTELECIOTIKMV CTPATI KDY HETAPOPTMONG
VITOAOYLOTIKMV SLEPYOOLDY TTOU WPEROVY TIG CUOKEVEG KL, AUPETEPOV, TOV TPOYPOUUUATIONO EPYAOLOV
Ka T Suvaiky Katovour Topmv yio BELTLOTN YP10N TWV TOPWYV, ETLTUYXAVOVTAG TOPGAANAa VYMAN
TOLOTNTOL EEVTINPETNONG KO EUTTELPLAG Y PNoT. Entiong og avt ) Sidaktopikt Siatpipn, eEetdoape To
EVOEYOUEVO VOl OYESLACOVUE TAALOLOL KOl VO GUV-0YEBLACOVLE QUTEG TLG S0 Bepemddelg mTuyEg Kab g
elval 0Teva ouvdedenévec,

SUYKEKPLUEVQ, OF CUTY TV EPYAOLA, KOTABAMETOL TPOCTTAOELR VO AVTIUETWITLOTOVV GUVOUCOTIKA
0L 0KOLOUDEG KPLOLIEG EPEVVITIKEG TTPOKANOELS: (1) BEATLOTOTOLNOT THG ATOPAOTG UETAPOPTWONG VITO-
AOYLOTLKMV SLEPYAOLDV AAUBAVOVTAG VTTOYPT TTTUXEG TTOV OXETLLOVIOL UE T1 OVOoKeLT] (TT.). LOYUG ONUo-
T0G, B£0m ovokevmv), (ii) PeATLoTOTOINON TG dLaELPLONG TOPWV UE ATTO KOLVOU OYESLOOUO TOU TPO-
YPOAUROTIONOU TV EPYUOLDY KO EVOG UNYAVIOUOD SUVOULKTG KATAVOUNG TOPMV, 0 0TToL0G £YYVATaL
OPLOUEVE KPLTNPLO, OTTOS00NG EVED TAVTOXPOVO. OL TTOPOL YPNoLHoTOLovVTOL BEATLOTA, (iii) Tov KaBopt-
OUO TOV KATAANAOU aplOon TOpwv yie. KaOE e@apuoy, (iv) 0 oYedLAoUOC TPAKTIKMY VITOMOYLOTIKMV
OTPATNYLIKMV UETAPOPTWONG, YL TV EAAPPUVOT TOU VTOAOYLOTLKO (POPTOV ot TG OUOKEVEG IUE TAV-
TOYPOVN ELVPEDT LOOPPOTTLOG UETOED TOV YPOVOU GITOKPLONG KL TG TTOLOTNTAG TNG EQOPUOYNG KO,
TEAOG, (V) 0 0%eSLAOUOG EAEYKTMV KAELOTOU BPOYOV AAUBAVOVTOG ETTLONG VIEOWYT TNV TPEXOVOA KOTA-
07001 TV OVOKEVMY, TO KOOTOG ETUKOLVWVING KOL TOUG SLaBETLUOVG TOPOUS 6T0 SIKTVO YTOAOYLOUMV
ToMasing [MpdoBaonc.

To To 0K0TT0 AUTO, 0%ESLATOVE ULOL OMOTLKT) CPYLTEKTOVLKT YL0L T BEATLOTOTOLN O TNG UTOPOONG
UETAQPOPTWONG TWV YPNOTDV, SNAAST), OL YPNOTEG UETAPOPTMOVOVY TO GLTNUA TOUG EAV TO KOOTOG ETULKOL-
VOVIOG ElVaL YAUNAO. T GLTHUOTO LLOG EQPOPUOYTG LWTOPEL ETTLOTG VO, ATTOPPLPOOTV 0Tt TOV SLUKOULOTY
AKUDOV €6V TO GUVOMKO TANO0G LTNUATWY, VITEPPALVEL TNV TPEXOVOT. YWPNTLKOTITO TWV TOPWY YLOL T1|
OUYKEKPLUEVT] EQUPUOYT]. ZTH OUVEYELD, WL KEVIPLKY OVIOTNTO EMAVEL 0ITO KOLVOU TO FTPOPANUAL TTPO-
YPOUUATIOHOU EPYOOLMV KL SUVOULKNG KOTOVOUNG TOPMY SLOTNPDOVTOG £V OVYKEKPLUEVO ETTLITESO
eEVTNPETNONG VLG TNV EQAPUOYT], OF SUVOULKD (POPTIO.

ST1 OUVEYELD, OE WULOL TTOPOUOLOL TTEPLRAALOV, BEATLOVOUUE TOV TTPOYPOUUUATLONO EPYAOLMV KL TOV
UNYOVIOUO SUVOULKTG KOTOVOUNG TOPMYV Y PN OLUOTTOLDVTOG LLOVTELOTTOIN O 0.7td T1) Bewplo, oupdv yiaeL vo.
TPooapUOCOUUE SUVOULKE TOV aptBud Tmv TopY yio o egpapuoyn. H Mon mov mipoteivouue opéxel
gyyunoelg otafepdTNTog Kat ammddoong Yo To TPOPANUe dtonEelpLong Topwy. AVt emTuyAveTaL Ue



HEPIAHVH

™ BEATLOTY KATAVOWY TV ELOEPYOUEVOY EPYOOLDV KOL T HOVIELOTOIN 0T arrddoong twv mopwv. Mo
OUYKEKPLUEVC, YPTOLUOTTONOOUE CAAYOPLOUOUG U AVLKNG WAONONG VL0 VO AVTLOTOLYLOOVUE UETPLKEG
amod00elg Hall pe OewpnTLKd VITOALOYLOUEVES TYLES VL0 TOV pLOUd emeEepynoiog Twv TOpmV.

Emumhéov, mpoTelveTal £vag VEOG Y AVIOUOG LETOQPOPTWOTNG VL0 POUTTOTIKEG EQAPUOYES. ZTO TACL-
oo g Biounyaviog 4.0 yio. KuBepvo-duotkd Suothuata, oL epapuoyeg Pactfoviol og Kivntovg po-
WITOTLKEG OVOKEVEG TTOU EKTEAOVV TOAAEG OVVOETEG EPYOOLEG TTOV £XOVV CUOTNPEG ATTALTIOELG 0LOPANELOG
KoL XpOvov. Ze eva TETOL0 TEPLBAANOV, TO LOVTERO TTapoyNg Vitnpeotmv Yroloyioudv TToAkaming Tpd-
opaong oto AKpo., ETLTPETEL OTLG POUTTOTIKEG CUOKEVEG VO UETOPOPTDVOLV TLG VITOALOYLOTIKG BOpPLEG
dlepyaoteg Tovg. SUYKEKPLUEVE, OYELALOVTOL TPUKTIKEG OTPUTNYIKEG UETOPOPTWONG VIO EQPOUPUOYES
0Y£8LAOLOV SLadPOUNG Kol eVTOmLoUoU BEoelg Twv poustot. H amdpaon petagpoptoong faoileton otnv
aBepordra g BE01G TOU PoUTTOT, 0T SLOOECLUOTITO TTOPWV TOU SLOKOWLOTI] TWV TOPWV, GTHV TTOL0-
T TG OVVOEDTG SIKTVOV KO 0T1 SUOKOALO, TG VITOAOYLOUEVTG SLadpoung.

IMapouoing, E0TLATOVTAG OTIG EYYUNOELG 0TAOEPOTNTAG KOl OTY] GUYKALOY TOU GUOGTHUOTOS, ELOG-
YOUHE £VOL TAALOLO UETAPOPTWONG EKTIUNONG BEONG BAOEL CUVOLOU, YLt T TAONYNON HOVOKUKAOU pO-
WIToT Ao pia O¢om tpog pior GARY. To poustdT vIEdKeLTaL 08 ABEBOLOTNTEG LOVTEAOTTOINOTG KOl LETPTONG
KOL TO OUVOLO EKTLUNONG VTOAOYILETOL YPNOLUOTOLDVTOG TEYVIKEG VITEPTTPOCEYYLONG TTOU UETPLALOVY
Toug TPOoOETOVG VITOAOYLOMOVG. 'Evag iy aviopnog eLéyyov mov BaciieTal 08 OET UETOYWYNG TOPEYEL
axpLpn Thonynon Kau evepyortolel o axpifeig akyopibuovg extiunong otav ypetdteton. Lo va eEa-
OQAMOTEL 1] GVYKALOT TOU GUOTNUATOG KoL VO BENTLOTOTTOMNOEL 1] PNOT] ATTOUAKPUOUEVOV TTOPWV, EXEL
0YESLOOTEL EVAG UNYAVIOUOG UETAPOPTMONG, O OTTOL0G AaUPBGVEL VITOYT TOOO TIg duvakEg ouvOnKeg

SLKTVOV 000 KoL ToUg SLAOECLIOVG VTOAOYLOTIKOUG TOPOUG 0TV GKPN TOU SLKTVOV.

TEhoG, UELETAUE TOV TPOYPAUUATIOUO TOMDY CUTHUATOV YL AVOYVADPLOT ELKOVOG OF TTPOYILOTLKO
¥pOVo ue Pondeta ota dkpa Tov Stktvov. H otdmnta tg avoyvdpLong eLkovag Kot 1 GUVolikt) Kadu-
OTEPNO1] TOV OUOTHILOTOG ELVOL TTPOPAVDG AVTAYWVLOTIKEG ueTpnoels. 'Etol, Siauoppmdvouus £va, Koo
TPOPANUA BEATLOTOTOLNONG YLO. VO, LEYLOTOTTOLICOUE TV JTOLOTNTA. TG SLOSLKAUOLOG AVOYVMDPLOTG, EACL-
YLOTOTOLDVTOG TRUTOYPOVE. TY] CUVOALKT] KaOUOTEPN O Yia: T ROLLKT] ETEEEPYAOIE TMV OLTUATWY %P1
OLUOTTOLMVTALG TTOPOVG TTOU YPNOLUOTOLOVY KAPTEG YPOPLKMV. [L0L VOL AVTLUETMITIGOVIE TV VTTOLOYLOTLKT)
TOAVTTAOKOTITO, TOU TTPOPANUATOG BEATLOTOTOMONG, VTTOLOYLLOVUE TPDTA, TIG PEATLOTEG TOMTIKEG OU-
UITLEONG YLOL TOL QLTNUOLTCL TTOU OTEAVOUV OL XPNOTEG YLOL VO, EAOLLOTOTOLNOOVUE TOV YPOVO UETASOOC.
EEetalovtog TPOoeKTIKA TO. OTTOTELECUATA TOV TPOBAUATOG CUIITIEOT|C, CUIITOLPEVOUNE OTL 1] GUWITL-
£01] TV EPYAOLOV UE TETOLO TPOTO MOTE VO PTAVOUY TAUTOYPOVE VL0, OITTOUCKPUOUEVY EmteEepyoola,
CQUEGVEL ONUOVTLKG TV atdd001 TG TAUTOXPOVNG ETEEEPYAOLAG OITO T UEPLAL TV OTTOUAKPUOUEVMV
TOPWV.

SuvoyiLovtag, o€ vt T SLatpiPt), LELETAUE TO TPOBANUA TG SUVOULKTG EVOPYNOTPWONG KoL SLoi-
xelprong Twv KuBepvogpuotkmv Zvotudtov. H 1epdotio mpdodog tmv o0yypovmv e@apuoymv noti te
TIG, CVOTNPEG OTTALTIOELG VIO, CUVEXMG SLEVPUVOUEVOUG TOPOUG GITTOLTOUV VEEG EEEMYUEVEG TPOOEYYL-
OELG YLO. TTOPOYNG VYNAOD TTOLOTNTO VITNPECLOV KO TOLOTITO, EWTTELPLOG OTOVG YPNOTEG. AV Kal TOMEG
VEEG OPYLTEKTOVIKEG £XOUV TTPOKVPEL TA TELEUTOLO, YPOVLAL, VITAPYOUV OKOUO TTOMEG TPOKANOELG TTOV
TPETEL VO AVTIUETOTLOTOVV YLOL TNV TTAPOYT] ATTPOOKOTTWV AELTOVPYLDY KOl EKTELEONG TOV TTOAVTAO-
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KoV aAyoplOuwmv o umopel va £xel va KuBepvoguotkod Zuotnua. O 810 kipLeg TPokANOELg ELVOL OL

OTPOTNYIKEG UETAPOPTWONG EPYUOLDV KO OL GUVOOEUTLKOL WY CVIOUOL SLOYELPLONG TTOPWV.
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Katavoun mopmv, Alayeiplon mopwv, Oswpia eLéyyov, AladIKTUO TV TpayudTov, Ocmpio Zvotnud-
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ABSTRACT

Abstract

With the advent of fifth-generation (5G) wireless networks and the Internet of Things (IoT),
a crucial part of enabling modern technologies is optimizing the performance of computational
offloading and resource allocation mechanisms. The current paradigm in providing additional re-
sources to devices is Multi-Accessed Edge Computing (MEC), which is characterized by the limited
availability of resources. Hence, the devices along with the edge servers form a Cyber-Physical Sys-
tem (CPS), which must be carefully designed to fit each application’s and scenario’s needs. Thus,
in this dissertation, we tackle the problem of realizing efficient offloading strategies that benefit the
devices and on the other hand, the task scheduling and dynamic resource allocation for optimal
utilization of the edge layer’s resources, while achieving high-quality of service and experience.
We considered designing holistic frameworks and co-designing these two fundamental aspects as
they are tightly coupled. Specifically, an effort is made to address the following crucial research
challenges: (i) optimizing the offloading decision taking into consideration device-specific aspects
(e.g., signal strength, the position of devices), (ii) optimizing the resource management of resources
by jointly designing task scheduling and dynamic resource allocation mechanism that guarantees
certain performance criteria while the resources are optimally utilized, (iii) the performance mod-
eling of dynamic workloads and application to assist in deciding the correct number of deployed
resources for each application, (iv) the design of practical computation offloading strategies in the
concept of approximate computing to alleviate the computational burden from the devices while
finding balance between duration and quality of operations, and finally, (v) the design of closed-
loop controllers taking also into account the current state of devices, the communication overhead
and the available resource on the edge side.

To this end, we design a holistic architecture to optimize the offloading decision of users, i.e.,
users offloading their requests if the communication overhead is low. The offloaded requests may
also be rejected by the edge server if the total amount exceeds the current capacity of the deployed
resources utilizing performance modeling for the specific application. Then a central entity jointly
solves the task scheduling and dynamic resource allocation problem keeping a certain QoS level
for the application under a dynamic workload.

Then, in a similar setting, we enhance the task scheduling and dynamic resource allocation
mechanism using modeling from queuing theory to dynamically adjust the number of deployed re-
sources for a computing-intensive application. The framework allows for stability and performance
guarantees for the resource management problem. This is achieved by optimally distributing the
incoming tasks and the performance modeling of resources. More specifically, we utilized machine
learning algorithms to map theoretically computed values for the processing rate of the deployed
resources along with various monitoring KPIs.

Additionally, a novel switching offloading mechanism for robotic applications is proposed. In
the context of Industry 4.0, applications rely on mobile robotic agents that execute many complex

tasks that have strict safety and time requirements. Under this setting, the Edge Computing
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service delivery model allows the robotic agents to offload their computationally intensive tasks.
In particular, practical offloading strategies for mobile robot path planning and localization tasks
are designed. The offloading decision is based on the uncertainty of the robot’s pose, the resource
availability of the edge server, the quality of the network connection, and the difficulty of path
planning.

Similarly, focusing on the stability guarantees and the convergence of the system, we introduce
a set-based estimation offloading framework, for the specific case of the navigation of a unicycle
robot towards a target position. The robot is subject to modeling and measurement uncertainties,
and the estimation set is calculated using overapproximation techniques that alleviate additional
computations. A switching set-based control mechanism provides accurate navigation and triggers
more precise estimation algorithms when needed. To guarantee the convergence of the system and
optimize the utilization of remote resources, a utility-based offloading mechanism is designed, which
takes into account both the dynamic network conditions and the available computing resources at
the network edge.

Finally, we study the case of real-time edge-assisted inference and batch scheduling. We find
out that the quality of the Edge-assisted inference process and the overall latency of the system
are competing metrics. So, we formulate a joint optimization problem to maximize the quality of
inference while minimizing the overall latency for the GPU-enabled batch processing of inference
applications. To deal with the computational complexity of the optimization problem, we first
compute the optimal compression policies for the inference tasks to minimize the transmission
time. By carefully examining the results of the compression problem, we identify that compressing
the tasks in such a way to arrive simultaneously for remote processing significantly increases the
performance of batch processing.

In summary, in this thesis, we study the problem of dynamic resource orchestration and man-
agement of loT-based Cyber-Physical Systems. The immense advancement of modern applications
along with the stringent requirements for ever-expanding resources requires new sophisticated ap-
proaches while providing high QoS and QoE to end-users. Although many new architectural
concepts have arisen in the past few years, there are still many challenges to be addressed to
provide seamless operations and execution of the complex algorithms a CPS may have. The two
major challenges are the task offloading strategies and the accompanied resource management

mechanisms.

Keywords: Computational Offloading, Task Scheduling, Dynamic Resource Allocation, Resource

Management, Control Theory, Internet of Things, Approximate Computing, Queuing Theory
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EKTETAMENH IIEPIAHVH

Abstract

Exterauévn Iepidnyn

Mopd TG aEonuelnTeg BEATUHOELG TOU VAKOD KL TOV VITOMOYLOTIKMV SUVATOTITWV
TWV GUOKEVMV TO. TELEUTOLA YPOVLO, OL GUYYPOVES EQUPUOYEG OTTALTOUV TEPAOTIOUG Y M-
pOVG aTodNKeLOoNG Ka duvaTdTnTeg emeSepyaoiag TOMITAOK®Y SLEPYOOLMDV OF TPOYLO-
TLKO YPOVO. ZTIG TEPLOGOTEPES TEPLTTDOELS, OL GVOKEVEG ToL Atadiktion twv [payudtwv
(ATIT) elvar OUVOKEVEG XOUNAMG EVEPYELOKNG KATAVAAWONG (TT.). CLoONTNPEG) Ue TEPLOPL-
OUEVEG VITOAOYLOTIKEG SUVATOTITEG KOL EVEPYELAKOVG TTOPOVG (UITOTAPLAL) KO OEV UTTOPOUV
vo, gyyun0olv THY amaltoVrevn VYPmAY atdd00m YLo TLG EQUPUOYES. AKOUTN KOL OL LOYU-
pEG OVOKEVEG (Tr.y. £EVTVAL KIVITE, POUTTOT) eV umopohv va eyyunBolv Ty amaitoduevn
VYN ardS00N 1/K0L THY EKTANPMOT] TWV YPOVIKMV TEPLOPLOUNDY, VL0, OVVOETES EQAPUIO-
VEG UE AVAYKEG YLO YPIYOP ITOKPLON 1] YLC: UEYOAT aKpPLBELa. ¢ ATOTELECIA, 1] UETAPOP-
TOOT EPOUPUOYDV UE CITOLTNTIKEG VITOAOYLOTIKG SLOEPYOOLEG KAl (e UEYOAEG EVEPYELOKES
AVAYKEG, O ULOL VITOLOYLOTLKY) UTTOSOLUT UE TAPATTAV® SUVOTOTNTES, VL0 TTEPALTEPW eTeEep-
ya.ole €lvol 0 BOOLKOG TAPAYOVTOG Yo TV VAOTTOLNOT TG VENG £moXNG TwV TeyvohoyLhv
IIinpogopikilg kKar Emkowvwvidv (TIIE). Avti 1 Mo, emutpénel T BEATIOoN TG EWTEL-
plag TOV YPNOTY TOPEXOVIOG YOUNAOTEPO YPOVO OTTOKPLOTG YL TLG EQAPUOYES, CUBNUEVT|
aELOTLOTICL KO BEATLUOUEVY) EVEPYELAKT] OTTODOO YLOL TLG GUOKEVEG TTOV TPOPOSOTOVVTOL (e
UITATAPLE. € EVO, TUTTLKO 0EVAPLO PETAQPOPTWOTG, T dedoueva uetadidoval HEowm aovp-
UOTOV OUVOEGEWY, (TT.)., KIVITIG TNAEPWVIAG 1] GOVPUOTWV SIKTVMV) KOL 1) TOLOTNTO TG
aovpuatng ouvdeong eEaptdtol oe ueydho Babud amd Ty Loyl TOU ONUATOC, TIG TTOPEL-
BoAEg, TNV eyKATAAELPY TAKETMV KoL GANEG TAPAUETPOUG TTOV OYETILOVTOL UE TO 0LOVPUOTO
TEPLPAILOV, OL OTTOLEG TPETEL VO, AABAVOVTaL VITOYN TNV amd@aon puetapoptmong. ‘Etot,
ELVOIL ONUOVTILKO 1) VITOSOLLN 1] OTTOLAL ELVAL GLPLEPWUEVT] OTO VO. SEXETOL SLEPYUOLEG OTTO TIG
VITOLOYLOTIK(L TTEPLOPLOUEVEG OVOKEVEG VO BPLOKETOL G KOVTLVY] OUTO0TAON 0TO SIKTUO (e
QUTEG,

IIpokMjcers Ko KiviTpo:

H uetagopd Tng OToKEVIPMUEVNG VITOMOYLOTLKNG VITOSOUNG OTNV GKPT TOU SIKTVOU (EP-
veL SLAPOoPO. TAEOVEKTNUATA. (TT.),. ETUKOLVOVIOL YAUNANG KABVOTEPNONG, EMEKTACLUOTITAL),
MG pEPVEL ETTLONG VEEG TTPOKAN OELG. Emtuhéov, 1) BEATLoT vitootpLEn Twv KuBepvo-Duoitkdv
Svotuatomyv (KOT) eEaptdatol og peydho fadud amd Ty £yKalpn TapoyT] TV 6woTol TUT-
LATOG SESOUEVWV GTH OWOTI] VTTOROYLOTLKY] OVIOTNTA. AUTO ELOGYEL VEEG TTPOKATOELG EPEV-
VOLG KOL OYESLAOUOU OXETIKG UE TNV ENEEEPYOAOLO OESOUEVMV, TIG ATTOPATELS LETUPOPTW-
oG, TNG OPYLTEKTOVIKNG, KaL THV SUVOULKT KaTavoun topwv. TIpogavade, vidpyet ovaykn
va. StepeuvnBolv oL BaoIKEG ATTALTNOELG KO OL TTLOOVEG EVKALPLEG YLO VO, KATA.OTEL SUVOT
N vtooTNPLEN Tou KD 010 dpapa tng Troroylotikng ota Akpo Tov Atktiov. H onuoviikn
TPOOS0G OTIG TTPOCPOTEG TEYVOLOYIKEG TAOELG KO TO EVOLOPEPOV YLO, EPEVVA QLYUNG TOOO

aTtO TOV AKOSNUAIKO Y DPo 600 Ko atd T BLopnyavicL, TPAKLVOUV TOUG EPEVVITEG VAL TTPO-



EKTETAMENH IIEPIAHVH

0£YYLOOUV KO Ve, TPOooTta.fdnoovy vo, MIsoUV evOLOQEPOVTA KL TIPOKANTIKA TPOPANUATA.
2t StoTpiP) pag, OEAAUE VO EKUETAMMEVTOVIE GLUTTH TV EVKOLPLOL KO VO, TIPOTELVOUUE AV-
O£LG 0€ OPLOUEVO, OVYYPOVE KO EVOLAPEPOVTA TPORINUATA AOUBAVOVTOG VTTOYN TG KO-

MOUDEG EPEVVNTLKEG TTPOKATOELG:

o ATOQAGELS UETAPOPTMONE TTOV C.POPOVY Tig 6VoKeVeg: To diktua AtIl yapaxtnpl-
Covtal Kuplog wg TayEmg petafailouevo diktva mpdoofaone. Exouévac, oL ouvBnkeg
duvoukol dikthov glvar £vo, ToAD SVOKOAO TPOBANUC. 0TO TAALOLO TG UETAPOPTW-
ONG SLEPYOOLDV. ATIOLTELTOL EVOG WY AVIOUOG MIYPNG ATTOPOONG YLOL TO TPOBANUA TOV
TPOYPUUUATIOUOD TWV EPYAOLDV KOL CUYKEKPLUEVO. YLO. TO EAV 1] EPYAOLO. TPETEL VO,
£KTENEOTEL TOTLKA (0TI OLOKEVN) 1) VO UETOPOPTMOEL 0F KAITOLOL OTTOULOLKPVOUEVT] VITO-
doun. Mo e0QaMLEVT] ATOQOOT] LETAPOPTMONG UITTOPEL VO, 0OONYTOEL OE YELPOTEPEVON
™G ATOd00NG TG EPAPUOYNG. BELTLOTOTOLMVTAG T1) GUVORLKY 0TtO8001], 1] LETAPOP-
TMOON ELVOL ETOPEMG LOVO €AV ELVAL SLABECLUT [ULOL ALOVPUETH GUVOEGLUOTITOL 1) OTTOLCL
glva agLomotn Kou pe yaunht kabuotépnon. Extog amd to diktuo, 1 emituyio e ue-
TOPOPTWONG KOl KOTA OUVETTELD. 1] AtO800T TV EQAPUOYDY eE0PTATOL 0TO TOAEG
GALEG TTAPOUETPOUG TTOU ALPOPOVV TNV GUOKEVN], TT.). TV KLVITLKOTNTO TOU YPNOTH KoL
TNV VITOAEWTOPEVT EVEPYELQ TG OVOKEVTG. H amdpaon mpoypappatiopod tmv epya-
oLV OYETILETOL ETTLONG UE TNV KAOVOTEPNOT EKTELEONG EPYAOLDV, TNV KaBVITEPTON
UETAS00TG KOL THV KOTOVAAMOT EVEPYELOG TNG CUOKEUNG. £2G AITOTEAEOILAL, 1] GTTOQAON
YL, TNV HETAPOPTMON EVOG QUTNUOTOG EQAPUOYNG M Oyl ELvaL 1) TPWTY TPOKANOT) TTOU

TPETEL VO AVTLUETWILOTEL.

o Behtioromoinon drayeipions mopmv: Autd ammotehel To KOPLO KIVITPO TLOW aItd auTh
™ SLaTpLPn, KaOmG M dLayELPLON TOV TOPWV elval 1 Aoty TPOKANOT TOV TPETEL VO,
AVTIUETOTLOTEL 0TO TPOTLTTO TG YTOMOYLOTIKNG 0T0 Akpa Tou ALkTou, Omov, Qu-
OLKd, oL topoL dev etvan agpbovol. 'ETot, TPETEL KOVELG VO AVTLOTOLYLOEL KATUAANAC,
TOV POPTO EPYOOLAG TWV EPAPUOYDY OTIG KATAAANAEG VITOSOUEG [E TOVG AVTLOTOL(OUG
TOPOUG Ue BAON TIG OTTOLTNOELG KAl TNV SLOOECLUOTNTO. ZTV ET0YT TOV TEYVIKMV EL-
KOVIKOTTIOIN0MG, €lval Tohv SLadedouévo yia Tig epapuoyeg tov ATl vo ektelotvral
o€ ELKOVIKEG unyaveg (VM) 1] KOVIELVEP 0TOVG eEVTINPETNTEG 0T AKPQ TOU ALKTUOU
(ATA). Avo KOpLeg AmOPAELg TPOKVITTOVY ATt TOUG TOPOYOVG VITOSOUNG TTOV ETTNPE-
ALouv Guesa ToV POVO aTtOKPLONG TOV EQYUPUOYDY, KoL OUYKEKPIUEVA: (i) TOUG VTTo-
AoyLoTLKOVG TTOPOVG Tov B0 ekYwPNOOUV OTLG ELKOVIKOTOIUEVEG OVTOTNTEG Ko (ii)
oV apLOUd TV avTlypapwv (PETAKOV) Yo, KGO eLKoVIKoTOIUEVT ovtotnta. Emi-
TAEOV, KAOMDG TOMES EPAPLOYES T/KOL GUOKEVEG EVOEYETAL VAL AVOLNTIOOUV TTPOGDE-
TOUG VITOAOYLOTIKOUG TTOPOUG OTOV 1810 EEURNPETNTH, ELVOL TOM) ONUOVTLKY 1) GITOTE-
AEOUATLKY Kl SUVOULKY EKYDPN0T TWV TOPWV TOV QLAoEevoiuevay epapuoymv. H
TAUTOYPOVY KA Twv arartnoewv Towdtntag g Yanpeoiag (ITTY) kow tov xpn-
OTMOV KL TWV TOPOYWV TOV VITOSOUNDY, €lvaL o ueydin Tpokinom, Kuplowg Aoym
£vOg OUVOLOL aVTaYWVIOTIKOV Baotkmv Aetktdmv Artddoong (BAA). M mapdderyua,

11
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LG, OTPOTIYLKT SLAXELPLONG TOPWY TTPETEL VA, EYYVATAL TLG OITALTNOELG OTOS00NG TWV
EQAPUOYDV, EVED TAVTOYPOVO. VO, EMOYLOTOTOLEL TO KOOTOG TV GVOITTUOOOUEVMYV TTO-
pwv. Emuméov, elvar ohvinBeg oL alyypoveg epapLloYES VO, ELVOL VITOAOYLOTLK OITOL-
TNTUKESG KOL VO, ATOLTOUV ONUAVTIKO aptOUd topwv yior Ty 0pLtOus) AELTOUPYLO TOUG.
Qg £k TOUTOV, OL TAPOYOL TV VITOSOUMV GUVIOMG YPNOLUOTOLOVY TTPOANITTIKEG 1] KO
AvTLOPOOTIKEG MDOELG YLOL VO OVTLUETOTLOOVY TN duvauKt) @Uon Tov gopTov epyo-
olaG KoL THV TIPOCAPUOYT] TWV TIAPEYOUEVMV TTOPWYV, EVE TAPAKOAOVO0TV SLApopoug
BAA. Antd v GAA TAEUPd, 1] ATTOTEAEOUOTIKT GELOTTOINOT TV SLdEcLU®Y TOPWV
glval o, onpavtkn Tpokinon. Eivar Totikng onuactag va fedtiotomomel 1 xpnon
TV TOPWV Y10, VO, emLtevyBel kKahhTepn amddoon yio OAEG TIG AVOTTUYUEVEG EQAPUO-
vég. H Behtiotomoinomn g xpNnong mopwv eivol SUOKOAT, Kabhg mpémet va Anghotv
VITOYPT) OL SLAPOPETIKEG OTTALTIOELG TWV EPAPUOYDV, OL KUUCULVOUEVES OITALTTOELS (POP-
TOV £PYAOLAG KO Ol FTETEPACUEVOL TOPOL TNG VITodoung. ¢ oA T PLpAoypagla, o
EPEVVITEG YPTOLUOTTOLOUV HOVIERD, A0 T BEMPLATMV CLOTNUATOV AVAUOVIG YLO. T
LOVTELOTTOLNON POPNTHOV GUOKEVMV KoL eEVTNPeTNThY ATA, Nall ue texvikeg Belti-
OTOTTOUONG YLOL VO, ATTOPACLOOVY T1| BEATLOTH TTOATLKT] UETAPOPTOONG. AVoTUY(G, OF
OPLOUEVEG TEPUTTMDOELG, VTTAPYEL VO ONUOVILKO LELOVEKTIILOL TTOU LWTOPEL VO, 0T YT OEL
0€ YEVIKT] TSV TNG 0TTOSOONG: 1] OTOTLKT] LOVTIELOTIOIN O TV TOPWYV TOV EEVTTN-
PETNTMV ATA TTOU 0NYEL OE AYPELALOTT TOPOYT] 1) VTTOTTOPOYT TOPWYV KOL OE UELWUEVN
YPNOLOTTOLN O 1] GUENUEVT PN OLUOTOL oY avTioToyo. TELog, akohovOhvTag T Sia-
dtkaota Topoyng TOpwY, vobeteital £vog alyopLBuog Tpoypaunoatiopol (1) eEoop-
POTNON POPTLOV) YLt TV ENEEEPYAOLO KOL T1 BELTLOTY OVTLOTOLXLON TV ELOEPYOUE-
VOV EPYAOLOV/EQPAPHOYDV (POPTOG EPYUOLAG) OTOVG ELKOVIKOTOWUEVOUG TTOpovG. Tt
TAPASELYIO, EAV LG ELKOVLKY WY CVY] Y PTOLUOTOLELTOL VITEPPOALKE, TOTE B0 TTPETEL
VO, OTTOKAELOTEL TTPOOMPLVA ATTO T SEEAUEVT] TOPWV TTOV AUPLEPMVOVTOL OTNV EKTEAEON
TV EPYACLOY TOV EQAPUOYDV. QOTO00, O TPOYPOULATIONOG EPYAOLOV TEPIAAUBAVEL
TTL0NG SLAPOPEG TPOKANOELG OTTWG 1) ETEPOYEVELL TWV LTNUATOV KO TOV TOPWV KA
1 afefardTTa TOU OPLOUOV TOV ELCEPYOUEVWV ALTNUATWY, T OTTOLC. SEV UTOPOVY Va,
emAVBOVV UE TN YPNOT] TOPASOCLUKDOV TPOOEYYLOEMV SLayelpLong opwv. Qg ek ToU-
Tov, 00 TTPETEL VoL SOOEL UEYANT EUPOOT KAl TPOTEPOUOTNTA OF GUTA YLOL VO Yivouv
OL VITNPEDLEG TTL0 OELOTLOTEG Ko Ue PeyahiTepn amddoon. Me dhha Adyia, 1) eEvmnpé-
TNOY) TOV POPTOV £PYAOLOG O TPETEL VO KATUAAUBAVEL TNV ELAYLOTY] TTOCOTNTO TOPWV

7ov Ba ypnopomomBolv BERTLoTa Yo T dLeThpon evog embuuntov emutédov ItY.

Movtelomoinon TS er6d001S EQUPUoYDVY He duvapkoé @opto artnuatmv: Onwg
AVOQEPONKE TPONYOUREVIGS, 1) EVALOYKOANON LE T SUVOULKY] QUON TOU POPTOV QY-
OlOG TWV EQAPIOYDV ELVOL TO KAEWDL YLOL TV ELTEVEN VYnMAdV EMIOOCEWY TOV CLOTI-
HOToG. 21 BRALOYPAPLO, TO TEPLOCOTEPC OTTO TO, VITAPYOVTO LOVTELX YLO. TNV OITO-
TOTWOT TOV TOLTNOEWV OF TOPOVG eapuoydv ATl glval eustelplkd Ko ouvnomg
CLOYOAOVVTOL UE LG OUYKEKPLUEVT] LETPT O aTtOS00MG, OTTWG 0 YPOVOG ATTOKPLONG K
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1 KaTavaAmon eveépyelag. H avTiuetdmion Tov Suvaukol gopTou epyaoiag, TmV ToL-
KIMDV OITOLTNOEWY TWV SLOPOPETIKMV epapuoydv ATIT kot g Suokollag Wovieho-
TONONG TG CUUTEPLPOPAS KOL TNG KATAOTAONG TOV TOPMV, ELVOL TTOAM) ONUAVTIKEG
TEPLOYEG EPEVVOG. G ATOTELEOUO, KATOLOG TTPETEL VO OYESLACEL LOVTEL. ATTOS00MG
TOMATADY £L0OSWV TOAMATAMV eEOSWV TOV UTOPOVV VA EPOUPUO0TOVV EVKOAL OF
£VOL LEYOLO OVVOAO EQPAPUOYMV YLO. VO ATOTUTTWOEL (oL TETOLO. Suvakn. Me autdv
TOV TPOTTO WITopohv vo. dMovpynBohy vEol ereYKTEG YLOL T POOULOT TWV TPOAVOPEP-
Béviov BAA. T tnv eitevEN TOU XOPUKTNPLOUOD TOU POPTOU EPYAOLAG KL TNV TTPO-
Breym amddoong, To TPWTO FUa ElVaL 1] TPOOTAOELD TPORANYNG TOL apLOUoD TwV &L
OEPYOUEVOV OULTNUATMVY. AUTH 1] TTPOPAEYY UITTOPEL VO OUVOVOOTEL UE EVOLV WY OVIOUO
KOTOVOUNG TOpmv, KABdG 1 TOGOTNTA TWV TOPMV IOV OTTALTOVVTCL YLOL TNV EKTENEO
™G EPYAOLOG EIVOL EVOEMG OVAAOYY LE TV TTOOOTNTO, TG KIVIONG TG EQAPUOYNG. =€
auTOV TOV Badud, Evag Paotkdg TOPAYOVTAG VLG THY KAUAK®MOT TV TOPWY OOUPOVAL
UE TNV KIVIOT) TOU POPTOV EPYAOLAG ELVOL O EVIOMLONOG TOU UEYLOTOU OpLtOUol autn-
UATOV TTOU UITOPOVV VOL ETEEEPYAOTOUVV OL TTAPEYOUEVOL TTOPOL YL EVOL CUYKEKPLUEVO

YPOVIKO SLA.oTNUC.

TyESLAOUOS TPOUKTIKAV GTPATYIKAOV UETAPOPTMONS diepyacidv Baon Tpooey-
ywotikg vrroroyotikic: Ta tedevtaia ypovia avadbovral ToAMTAOKES EQAUPUOYES,
7ov otoyevovy ueta&d arhov va v Texvnt Novuoolhvn oe ovokevég Atll, gopn-
TEG OUOKEVEG Ko poumot. Budukd, ou eqpapuoyég g Biounyaviag 4.0, ou omoieg Bo-
olfovral eldIKd 0g POUTOT OV EKTEMOVV TTOAAEG OVVOETEG EPYAOLEG TTOU £XOVV OU-
OTNPEG ATTOLTNOELG AOPAAELAG KOL XPOVOV, T.X. OAYOPLOUOVG TTOU OYETILOVTIOL e TNV
emeepyaoia ELKOVAG, TOV TPOYPOUUUATIONO LOVOLATLOU YLOL THV KLVI|OT), TOV EVIOTLOUO
BEoMG, TN XOPTOYPAPNOT) TOU XMPOU KoL TV duTtdvoun ekpdbnon yio OAa o Topa-
OV, AuTtol oL AYOPLOUOL ELVOL VITOAOYLOTLKG OUTALTITLKOL KO YLOL TOUG ETTEEEPYOL-
OTEG GAMGL KOL YLOL TH LWVIAUY] KdL OL TTOPOL TWV POUTTOT Kot Twv ovokevmv ATl dgv
ETAPKOVV TTAVTO YLOL TV SNULOVPYLOL ATTOTELECUATIKMV, AOPUAMY KOL GUTOVOLWY AEL-
tovpyumv. Katd ouvemela, TpokOmtouy vEo TPOBAUATA KOl TTPETEL KOVELG VO, GITO-
(POOLOEL TPOOEKTLKA TIG OTPOTIYIKEG OVATTTUENG UETAPOPTWONG SLEPYAOLDY, TT.. TTOV
vaL ToroBeTNoETE POPTO EPYAOLAG, TLG TOMTIKEG GVVOEONG, TTOTE VAL YPNOLUOTOLOETE
ToUG eEVTNPETNTEG ATA, 1) ETEPOYEVELD, 1] OKPLPELL TOAMTTAOK ™V 0AYOPLOUM®Y, TTMOG VO
£E0LKOVOUTOETE YPOVO QITOKPLONG UE OTTOSEKTI] ITMAELO 0TIV OKPIBEL EVOG 0UVOE-
Tov oAyoplOuov. Emimhéov, 600 KoL oV QULVETOL KATOAANAO, 1) XP1OT] OTTOKAELOTLKO.
ATOUOKPUOUEVAY VTOAOYLOTLKDY TOPMV UTOPEL VaL NV elvan apket. ‘Evag aptBuog
AVETLOVUNTOV PALVOUEVDV SUVITTIKA AAUBEVOUY Y MPO KOTO TH LETAS00T KOL TV ETTE-
Eepyaoia TmV TANPOQoPLOY, OTtwg 1 Kabuotépnon diktiou, 1 uetafint It ko o
¥POVOG SLoKomng Asttovpyiag Aoyw didgpopwv parvougvov. Ia avtols Toug Mdyoug,
VIO TTOPASELYILOL, OL GUTOVOUEG KIVITEG CUOKEVEG (TT.). POUITOT, U1 EXAVOPOUEV OY1)-
LOTO) €XOUV CUYVA KAITOLG, LKAVOTITA VIO, TOTILKT] ETEEEPYAOLO OTOV GTOYEVOUV O
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ATTOKPLOELG YeUNANG KaBUOTEPNONG Kat 0g TEPLOdoug OmTov 1) TPOoPaot 0To SiKTLOo
dev etval Srabeoun 1 avaElomotn. Katd ovvemela, o, onuaveiky tpokinon, amxo
VY ATOYN TOU 0%ESLAONOD, TNG EKTLUNONG KAl THG BELTLOTOTOINONG TOU SIKTVOV ELvoL
0 OVVOVAOUOG TOTILKMDY YPNYOPMY OAAG TOOVAG TEPLOPLOUEVIG akpLBELaG ahyoplO-
UV KOL GTTOUCKPUOUEVWYV, AKPLROV GALG VITOAOYLOTLKG, AITOLTNTIKOV aAyoplOumy ue

OTOTEAEOUATLKO TPOTTO.

Suvers@opés s Awtpifiis

Avti 1 SLoTpLp1) TPOOTAOEL VO, AVTLUETMITIOEL UEPLKC OTTO TO, TPOUVAPEPOEVTO TTPO-
BANUaT TTOV TPOKVITTOUV 0TV TITOALOYLOTLKT) OTO AKPO. TOU ALKTUOU KO TV VTTOAOYLOTIKY)
uetapopTwon Twv diepyoaotdv twv KO, Eotudoape ot Bertiatomolnon e amddoong
Twv KOT pe t BEATLOTN P10 TOV TOMTIKMOV UETOPOPTWONG KAl TOV TTPOOEKTIKO OYESLOL-
OUO OTPATIYLKMV SLoElpLoNG TOPwY. OL CUVELGQOPEG OTA TOPATAV® OEUOTO UITopohV va

OVVOYPLOTOVV 0TO akOhovOa:

o Movrehomoinon s duvapkis amodoons: Ot ueBodoloyieg YLo THV AVILUETOTLON
TOV TPOPANUOTOG TNG SUVOULKNG SLa ELPLONG TTOPWV OTTaLTtovv eEEMYUEVES ApPOLPE-
OELG LOVTEAOTTOINONG TG OTTOS00TG YLAL VO, ATTOTUTTDTOVY TLG SLAPOPES SUVOUKEG TV
ATTOLTOEMV TG EPAPUOYNG, TV KATACTUON TWV TOPMV KL TIG UTTALTIOELS TMV XP1)-
otMV. Mid ONUOVTLKT] KCGLVOTOULO GUTNG THG SLOTPLPRNG ELVOL 1] ELOAYMYY TOU OPOv
TPOPLA TOPWV YLOL TNV ETITEVEN OMWV TOV TAPATAV®. To TPOPIL TOPWV EKPPATOVY
TN OYE0N PHETAED TOV KOTAVEUNUEVOY TOPMV KL TOU UEYLOTOV aptOIol Tmv ELogpy0-
UEVOV OLTNUATWV (OGS OUYKEKPLUEVIG EPAPUOYTG TTOU TOPOVY Vo, EEVTTNPETIOOUV OL
OpOL SLaTnpdvTag Eva oVYKeKpLUEVo ertimedo ItY. To TALOVEKRTNUE TOV OYESLAOUOD
TPOQIL TOPWV elvar TPLThO. IIpdToV, £Va TPOPLL TOPWVY ELVAL TNV TPAYUATLKOTITO
£VOL EPLKTO ONUELD LOOPPOTTLOG KOL SLEVKOADVEL T SUVAULKT] SLaSLKOOLO KOTAVOUNG
TOPWV TAPEYOVTAG YVDOT] OYETLKA IUE TOV OPLOUO TWV SLOPOPETIKMV KATUOTAOEDY
(7T.%. we TV €vvola Tov aptBuol TV TUPNVOV ToU ETEEEPYOOTI) TOV ATTOLTOVVTOL YLOL
TOUG ELKOVIKOTTOLNUEVOUG TTOPOUS. ALVTEPOV, 0 CUVEVOOUOG AVTMOV TWV TPOPIA TOPWV
UE KATAMNAOUG EAEYKTEG ETITPETEL TOV OYESLAOUO OAYOPLOUY YLC: EQAPUOYES KPLOL-
UEG YLaL TO YpOVO N TNV akpifera. Tpltov, Ta TPo@ik TOPWV BEATLOTOTOLOUVV TV OUOAT|
AELTOVPYELDL TV TTOPWYV TTOV YP1OLUOTTOLEL I EQOPUOYY UELDVOVTUG TLG TTEPWTTMOELG
TTOV 0L TTOPOL, ELTE SEV YPNOLUOTOLOVVTOL ETAPKMG, ELTE SEV APKOVV YLOL VA, TETVYOUVY
™MV ovatnToUuevy oTOd00N TG EQAPUOYNG. 2 CUTH TV SLoTPLPT, TELPOUATLOTH-
Kape ue 0o Srapopetikeég neBodoroyieg LOVTEAOTTOINONG YIo. TV eE0ymYY TOV TTPO-
QL TOPwV. ATO ™ pla. TAEVPA, XPNOLLOTOoaUE TN Oewpio. SVOTHUATMY, 1) OTTOLA
diver v duvatdtnTa va. TEPLaUBAVEL SLApopE LETPNOELG arTtddoong (dniadn ueto-
BANTEG KATAOTA.ONG) KAl TOVG TTOPOUG WG TOPAUETPOUG ELEYYOU (LETUBANTEG ELGOSOU)
KO VO TEPLYPAPEL T1] OXE0T TOVG VIO SLAPOPEG GUVONKEG AELTOUPYLOG KOL EYYUTOELG
IItY. Az TV GAAN TAEVPQ, Y PTOLUOTTOOAUE OTTAOUG A YOPLOIOUG Uy aviKNG WaOn-
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ong, mov aELomolohy mAnpogopieg astd (i) TOV TPOYPOUUATIONO THG KATAVOUNG TWV
TOpwv, (ii) Toug Vo TapakoroVOnon BAA ko (iil) Tov akyoplOuo tpdpreyng @op-
TOU EPYOOLOG VL0 TNV EKTLUNOTN TOU Baotkol aplduot ovitypapmy yLo. To duvakd
apBpd artnudtov wo epapuoyns. O Baoitkds mapdyoviag Ko Yo TG d0o mpooey-
YLOELG ELVOL 1] LOVIELOTTOLNOT TOU POPTOV EPYOOLOG, SNAadN 1 eKTiuNoN Tov aptduo
TV ELOEPYOUEVOV CLTUATMV YLO. TV EQAPUOYH aEtomolmvTag nefddovg Tpofreymg

YPOVOOELPMV.

Ko drayeipion mépmv kot tpoypappatiopos epyocidv oty vrodoun: H ueyi-
OTOTTOLN 0N TG ATTOS00NG TWV GVYYPOVMV EPAPUOYDY OTTALTEL EYKOLPY EVOPYNOTPMON
TV ELKOVIKDV TOPWV GTNY VITOSOUT| 0TO. GKPO. TOV SIKTVOV. Q0TOCO, 1) TTPOATTTIKT)
AvAmTUEN TOPMV YLOL TV LKAVOTTOINGT) OUYKEKPLUEVMV OTTOLTHOEMV TOV EQPAPUOYDY
KATm ammd Suvaukd @opto epyaociag eivon eEopetikd dvokoro mpoPinua. T to
OKOTO CUTO, O GAAT ONUGVTLKT KOLVOTOWLG, OUTHG TG StatplPrg etvar ot To, Oe-
UEMDON TPOPANUATO TOU TPOYPOULATIONOD TWV EPYOOLDV KL TG QUTOUATNG KAL-
UAKMONG TOV TOPWOV AVTUETOILLOVTOL oo Kowvol. Katd cuvémela, patl ue v aso-
POLOT] LETAPOPTWONG, TPOTELVETAL EVOG SUVALKOG WY OVIOUOG KOTUVOUNG TOPMY KaiL
ehéyyov amodoync. Avtdg o unaviowdg elvar vitedBUVog Yo T dLavour| TmV UETO-
POPTMUEVWV OULTNUATMV HETOED TOV OVILYPAPMV THG EPAPUOYTG OTOUG ELKOVOTTOL-
UEVOUG TTOPOVG, TAPGAMNAC 1E TOV EAEYXO0 amodoyng (dnA. amodoyn 1 ardppLn TV
UETAQPOPTWUEVMV CLTNUATWV OVAAOYOL. e TN StodeotudTnTa TOPWY) KoL T SUVOULKT
Katavoun Topwv Yo KaOe epapuoyn (dnhodn, amopacifovtag Tov opliud Tov avTL-
YPAPOV VL0 KAOE EQOpUOYY Kat TPopik TOpwV). Emtiong, £Vog TpoBhemtig Tov popTou
£PYOOLOG KaL 1) SUVOLKT] LOVTELOTTOLNOT TWV TTOPMV KOL TNG CUVOALKNG KOTAOTAONG
TOU SIKTVOV/EEVTNPETTMV TOPEXOUV T BAOT TAV® GTIV OTTOLE AELTOVPYEL O OAYO-
pLOpog. O TPoTELVOUEVOG OAYOPLOLOG EYEL OYESLACTEL MOTE VO ELVOL TPAKTIKOG KOLL VO,
EYYLATOL TPOJLAYPAPES, OTMG TPOTUPUOTTIKOTNTO OE YPNYOPES OAAIYES GTOV POPTO
gpyootog Kar ot StafeoudTnTo TV TOPWV. AUTOG 0 TPMTOG U AVIOWOG 0T CUVE-
YEWO EUTAOVTILETAL PE TLG EYYUNOELG OTAOEPOTNTOG OV TPOEPKOVTAL atd T Dempiat
OUPAOV VL0, TV KATAOKEUT £VOG AITOKEVIPMUEVOU UIXOVLOUOD VLG TO TPOBANU TOU
TPOYPOUUATIOUOD EPYOOLDY KO KATAVOUNG TTOPWYV, TPOGTOOMVTAG VOL (PTLAEOULLE (Lot
OMOTUKY] KO KMUOKOUUEVT] OLPYLTEKTOVLKY).

"EVOg SL0KOTTIKOS pnevionos HeETa@oOpTmoNS TV EPYACLOV: ST, ETOUEVO KEPOL-
Ao TG dLaTpLpig Ao oAOVUAOTE te T O edLOON BEATIOTWV TOMTIKMV UETAPOPTW-
ong yioa KO, Apyicd, Sivetar £ugoon oty Kol ToldTTa ToU AoUpRatoy StKTHou
EILKOLVOVLOLG YLOL YPNOTEG KIWTAOV. 2y eSLALovUe EVOL unyovioud SVo PNUGTov Yo Ty
VITOOTNPLEN KOL TV VAOTIOWON THG aITOQOONG UETAPOPTWONG, AAUBAVOVTOG VoY
TOO0 TIG TANPOPOPLEG TTOV CLPOPOVV TIG FUOKEVEG OO0 KOl T1) SLOBECLUOTNTA TOV TOPWV
™G VITodopNg ot Akpa Tou Atktiou. TIo ouyKeKPLUEVA, OL YPNOTES UETAPOPTHOVOUV
TO QTNUGTE TOVG, AauBavovTag vitoyn ™ 0£0m TOug Kat TV Loy0 TOU ONUATOG YLC:
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Vo, EAOILOTOTTONOEL 1) XPOVIKT ETLBAPUVOT TG emtkovaviag. Emiong, n vitodoun ota.
Axpa TOU ALKTUOU UITOPEL VO ATTOPPLPEL VO alTtnuo (SMAadT), 0 XPNOTNG TPETEL VO.
TO eKTEAEOEL TOTLK() EGV OL SLOOECLUOL TOPOL BEV ETAPKOVV YLOL VO, SLOTIPNOOUV EVOL
oVYKeKpLUEVO emtitedo TItY. Se CuVEXELD TWV ETOUEVOV KEPOAAL®V TG StatpLpng,
VAOTTOLELTAL £VOG TAPOUOLOG SLOKOTTLKOG UNYaVIOUOG LETOQOPTOONG YLaL VO, Bon0m)-
0€L 0T1) BERTLOTOTONOT TNG UETAPOPTWONG ALYOPLBU®V ATTAUTHTIKGDY VTOAOYLOTIKA
UE EWPOOT OE OEVAPLO POWTOTIKNG. ZTOXOG ELVOL VO, HETPLOLOOVUE TNV VITOAOYLOTLKT|
TTLEOT) TTOU QITOLTEL O VITOAOYOOUOG TETOLWY OAYOPLOIWY 0TO POUTOT, TO OTTOLO EYEL G-
VO WG TEPLOPLOUEVOUG TOPOUG. TAomoloue AouTOV, SLAQOPETIKEG EKOOTELS TMV OAYO-
PLOUOY aKOLOUBMVTOG TNV LOE TNG TPOCEYYLOTIKNG VTOAOYOYLOTIKTG, Snhadi), Hew-
povue (i) pa €K800T TOV EKTEAELTOL TOTILKA (0TT) GUOKELT)), KL 1] OTTOLCL ELVOL YPTYOPN
aAMG Sev elvol emapkdg akpLpng kau (i) pia K800 oV EKTELELTOL ATOUOKPUOUEVAL
(ot vmodour ota AKpa Tov ALKTVOV), 1] 0TTOLCL VoL AKPLBNG UeV Al akpLpr amd
amoyn TOpmV H/KaL YpOvov. Te auTd To TAALOL0, VIOETOVUE EVOV SLAKOTTTLKO U)o
VIOUO UETOPOPTWONG TTOU AAUBAVOUY VITOYPT) TNV URERALOTITA TWV TOTLKMOY ahyoplo-
uwv. ‘Etol elpaote og 0£01 va SNULOVPYHOoUUE £VOL W aviopd tov Bondd £va Kivto
POUTOT OE ULOL GITAY] OITTOOTOAT TTAONYNONG, SNAadY V. PTAOEL OF EVa TEMKO ONUELD
oo o apyrkn 0£om. H ammouakpuouévn eKTELEOT GUTOV TV OAYOPLOU®WY EKTEAELTOL
UOVO O€ TEPUTTMOT TTOV 1) UETOPOPTWON ELVAL ETWPEIG, INAAST dTaV 1] EmBAPUVOT|
TG EMKOLVOVLOG ELVOL YAUNAY Kau oL SLaB£0LUoL TTOPOL THG VITOdOWG ETOPKOVY YIa:
TNV EKTELEOT] TWV £PYAOLDV. Emmthéov, Aaufavouue voyv Ty ovaykn yuo oKpLpe-
OTEPN TAOTYNO1] TOU KIVITOU POUTTOT, TV eYYUTNTA 08 EUITOSLOL KOL T1 SUOKOMA TG
TAONYNONG, DOTE Vo Staopalletal 1| ao@aiig honynon. Katd ovvémeio, autdg o
uNYoVIoROG dtevkolivel T PEATLOTY netagopTwon yio KD,

IMhaioro ektipnong Ko eEAéyyov yio poutotiko K®X: Sefouevol v avaykn yo
EYYUNOELG 0TAOEPOTNTOG KAL TNV OVAYKT Yio eheYKTEG KAELaTOU Bpdyov yia ta KD,
ETEKTELVOUULE TV] LOVTEAOTTOLI|ON YLOL TV TTAOT YN0 EVOG KIviTo popusot. yedidtovpe
£va, VEO TAOLOLO EKTLUNONG TG O£0MG TOU POUTTOT KOOMG Kal ELEYYOV TG KIVIONG, TO
0TTOL0 AVTLUETOIULLEL ATtO KOLVOU TO TPOPANUC THG OVYKALONG 0TV ETLOUVUITY TPOYLO
TAONYNONG UE TV OITOTEAEGUOTLKT] YPNOTG TV TOPWV ETUKOLVOVIOG Kot SLaBESLU®Y
TOPWV OTNV AITTOUAKPVOUEVT] VLTTOSOUY). XPNOLUOTOUDVTAG (Lo GUVAPTI O TTOV EVOM-
LOTAOVEL T SUVOULKT] TOU POUTTOT, TNG EMLKOLVIOVICG KOL TOUG VITOLOYLOTIKOUG TTOPOUG,
KOTAOKEVALOVIE £VA TTALOLO VLA VO XELPLoTOUIE V0 Oeuehdn TpofinuaTa: o.) ™)
0OVOEDT ELEYKTOV TTOV VITOYOPEVOUV TV KIVNOT TOU POUTOT GE GUTO TO TPOPATUC.
TAONYNONG KO B.) LLO OTPOTNYLKT UETAPOPTMONG YL0. TV OVTLOTAOMOoN TG afefatd-
TNTAG TWV TOMKDOV TEXVIKOVY EKTIMONG BE0NG IE TLG TLO UKPLPELG OTTOUAKPUOUEVEG.
Avtdg 10 TAALOLO AELTOUPYLEG BPLOKEL TNV LOOPPOTTLOL UETAED TG aKplBELOg TAOTY-
oNg KaL TG SLAPKELAG TNG OUYKEKPLUEVNG amtoatolng. To mmo onpaviikod eivar Ot to
TPOTELVOUEVO TTAGLOLO €YYVATAL TN OUYKALON ue T B£0m 0T0Y0, aveEapTnTa 0Tl TIg
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SLAPOPES TAPAUETPOVG TTOV ETLAEYOVTIOL, O QVTLOEON UE TO, CUOTNUATC TEPLOSLKNG
uetapoptwong. H OAn mpootyyLon mpocapuoleTol e0KoMe 0TI UVAYKES TV SLopo-

PETIKADV YOPAKTNPLOTIK®OV KBE LBVl 0evopiov aooToAG.

o AE0hoynon Ttpotetvopuevomv ahyopifumv pe yvootés Apyrrekrovikéis Evopyotpo-
ons ko Mporuma: AE0AOYNOT TPOTELVOUEVOV TAOLOLWV UE SYETLKG e APYLTEKTOVL-
Kég kou [pdtuma: TTopovolalovial EKTETAUEVO UPLBUNTIKG GTOTEAECUOTA, T OTTOLL
TPOKVIATOVY UECW TPAYUOTIKMV TELPAUATIOUDVY 1] TPOGOUOLDOEMV TPOKELUEVOU VO
ATOTUTTMOEL 1] ATOTEAEOUATIKOTITO KO 1] GTOS0TIKOTNTA TV TPOTELVOUEVOV TTACUL-
otwv. Edukd, yio kG0 Tpayuatikd TEPOUOTIONd Tov 00, TAPOUCLOOTEL 08 OUTH T
SLoTpLBn, emhéEaue vo okohovBNooUlE TIG EVPEWG VIOOETUEVEG MYOELS, dSnhadn Ta
spotuma tov Evpwmoikot Ivotitovtov Tnlemkowvmviakdv [potdmmv (ETSI) ko va.
TOL EPOPUOCOVIE UE EUTTOPLKA 1] AVOLYTOU KDSLKO EPYALELD, EVOPYNOTPWONG TOPWY,
OV EMLTPETOVV EMEKTOOLUOTITC, SLOAELTOUPYLKOTNTA KOl SLO(pOVIG OVATTTUEN TV
EQPOPUOYDY OF ETEPOYEVELG TEYVOROYIEG VALKOU KOL AOYLOWLKOV, TL.). EVPEMG YPNOLUO-

sooueva epyareio hoywopukol 6wg OpenStack, Kubernetes.

Kegahowo 2

210 Ke@dhato 2 mapouoLlaloviol oL OpLOUoL TmV BOOLKMV GTOLELWY OITd TOVG TOUELG
™G Oewplag Zvotnudtnv Avtouatov Eréyyov kot g Oewpiog Zvotnudtov Avauovig.
H yvron tov Baotkot pafnpotikol VooTpOUNTOS TTOU SIVETOL TEPLEKTIKA 0TO KEPALALO
QUTO, ELVOL KPLOLUT YLOL TV KOTOvVON o TV TTPOPANUATWV arld Kol TmV aAyoplOuwy ov

TOPOVOLALOVTAL 0TIV GUVEXELQ 0TV TIPOTELVOUEVT SLOTPLPY.
Kegaioro 3

10 Kepdhawo 3, tpotelvetarl po apyrtektovikn Yrohoyotikng Mapuganv (YIT) dvo -
TESWV YL VO TPOCPEPEL VITOAOYLOTLKOVG TTOPOUG YLCL TV OTTOUAKPUOUEVT] EKTELEDT ALG
EQapPUOYNG ue Baon ) O£01 Tov YPNOTN. ZTO EMLITESO TNG CUOKEVNG, EKTELELTOL LLOL OLP-
YLK ATTOQAOT LETOPOPTOONG AAUBAVOVTOG VITOYT) TNV EKTIUOUEVT OE0T) KoL TV TTOLOT T
™G aoVpRaTG oUVdEON G KAOE XPNOTH. ZTO EMLITESO TG ATOUAKPVOUEVNG VTTOSOUNG, TTPO-
TELVETAL £VOG WNYAVIOUOG SNUOVPYLOG TPOPIA TOPWY TOV GVTLOTOLYLLEL TOV ELOEPYOUEVO
POPTO EPYAOLAG O VITOLOYLOTIKOVG TTOPOUG UTTO GUYKEKPLUEVEG CTTALTIOELS ATTOS00NG TG
EQPAPLOYNG. AVIUETOTILOVIOG TO SUVOULKO (QOPTO EPYACLAG, EVAG WIYAVIOWOG KAUAK®-
oNg MUBAVEL TAVTOXPOVE TV OTTOPUOT HETAPOPTWONG KL KUTAVEUEL LOVO TOUG ATTUPOL-
TNTOUG TOPOUG UE BACT TA TPOPIA TOPWYV KOL TV EKTLUNOT WLOG TEXVIKTG TTPOPAEYNC pOp-
tov gpyootog. [a v aELoAdYNON TG TPOTELVOUEVIG CPYLTEKTOVIKNG, VAOTTOLBNKE Eva
EEVITVO 0EVAPLO TOUPLOTLKNG EQPOPUOYIG OF WLOL TTPOYUOTLKT] LEYUANG KALLOKAG vTodoung
5G. H mpotelvouevn opyLTeKTOVIKT] £XEL OYESLAOTEL LOLOLTEPQL YLO VOL ETTLTO(VVEL TV EKTE-
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LEON JLOLG UTTNPECLOG AVOYVIIPLONG OVILKELUEVAY YLOL YPTOTEG KIVNTMOV. ETO GUYKEKPLUEVO
0evapLo £EVTVNG TTOANG TTOV eEETALETOL OE QUTNY TNV EPYOOLA, OL ETLOKETTTEG OGS TTOAVOV-
YVOOTNG TOUPLOTLKTG TTEPLOYNG X PN OLUOTOLOVYV TLG OUOKEVEG TOUG JTOU ELVOLL EEOTMOUEVEG [IE
KAUEPO Y10 VAL TPANEOUV oTLydTLITo 1 Blveeo wkpng Stapkelag evog Enueiov Evaiagpépo-
v10G (7T.)., EKOEUATA £VOL LOVOELD) TTPOKELUEVOU VAL AABOVV TPOCOETEG TANPOPOPLEG OYETIKA
Le ouTd. AeSOUEVOU OTL 1] AVOYVOPLOT) ELKOVOG ELVOLL LLOL EPYALOLOL OTTOLTYTLKT] VITOLOYLOTLKG,
Ko evepyoBopa, wa, vrrodopn YT Tpoo@epeL ToUg ETTAEOV VITOAOYLOTLKOUG TTOPOUG YLOL TNV
KA TOV auoThpdv asoutnoewv xpovov. Emumiéov, vhomoteiton kor aElohoyeitol o
TEYVIKT evTomouol O£omg Twv xpnotdv. TrofTouue OTL 0L YPNOTES SPATTNPLOTOLOVVTOL
0€ LaL TTOAVOUYVAOTY TOUPLOTLKT TTEPLOYT]. G €K TOUTOV, TO KOLVO £V0p0og LhVIG KOl KUPLOG
1N TOPEUBOAT TOV ONUATOVY TOLLEL ONUAVTLKO PORO 0TV ETLRAPVVOT TNG UETADOONG TOV
UETOPOPTOUEVWV OLTNUATOV. QG OTOTELEOUA, YLO. VO, GVTLUETWITLOTEL GUT 1] SUVOULKT] OU-
UITEPLPOPQL, 1] ATOPOLOT] LETOPOPTWONG EVOG OUTNUATOG XPNOTOV Aaufdvel vroym ) Ogom
TOV XPNOTOV KoL emLTAéov TNV drabeoipdmta mopwv Twv eEumnpetntav YII. O kipleg
OUVELOQOPEG AUTOV TOV KEQPAAALOU GUVOPLLoVTaL WG eENG:
o "Evag unyoviopuog dnuovpyLag tpo@ik TOpmy ovTLOTOLYIEEL TLG OITALTHOELS 0TTOS00NG
™G EPAPUOYNG OF VTOAOYLOTIKOUG TTOPOVG 0TV Thevpd thg vrodomng TII. Avtdg o
WY OVIOUOG ETULTPETEL TOV OYEDLAOUO KO TNV Katovoun] Twv topmv g YTI mpokelueé-
VOU VO avTostokpLOel ot petaBaiiouevn Tnnon petagoptmong. To Tpogih Topwv
BaolZeTon o€ YpouKa HOVTELQ artd T Ompla. ZVOTNUATOV, TO OTTOLC. ATTOTUTTOVOUV

OTTOTELEOUATLKG, T SUVOULKT) TOU GUOTHUOTOG,

o Emwvononke évag unyoviopnog 8100 0Tadimv yLo TV vItooTHPLET KoL THV VAOTTOI o1 TG
ATOPOONG UETAPOPTWONG, AAUBAVOVTAG VoY TOOO TLG TANPOPOPLES TOV CLPOPOVV
TOUG YPNOTEG 000 Kat T SiabeoiudTnTo TV TOpwv ¢ vrodoung YII. Ilpog avth tnv
KatehBuvon), 1 amodPaoT HETAPOPTMONG YIVETOL BAOLKOG TOPAYOVTAG YIet TN SLath)-
PO TV UTOTELEOUATOV VYNADV ETSOCEWV, TPOG OPELOG TOOO TOU TAPOYOV VITO-
dopng 600 KaL TWV YPNOTMV.

o TMapovotdZetan wa apyrtektovikn YTI wov vmootneilel TNV avamtuEn, Ty evopym-

OTPWOT KO T SLOYELPLOT TG EQAPUOYNG e BAon T O€01 Tov ¥pNoT. AKOMOVOMVTOG

TG BaoLkEg apyEg TV 03N YLV Yo 5G SIKTVa, TAPOVOLALETAL 0L APYLTEKTOVIKT], Y PO1)-

OLUOTTOLMVTAG EPYORELR MOYLOWKOD TEAEUTOLOG TEXVOLOYIAG YO TNV EVOPYNOTPWON

Kau T Suaelplon g vtodouns. Mpoyuotomoleitar aEoAdynon yio vo, exainBev-

TEL 1) EYKUPOTNTA KO 1] EQAPLOOLUOTITO TG TTpoTeLvOuevng uebodohoyiag. Emiong, o

TPOTELVOUEVOG UMY OVLOUOG SNULOVPYLOG TTPOPIA TOPWV KAl 1) TTPOCEYYLOT EKTIUNONG

TOV POPTOV EPYAOLAG CUYKpIvovTaL Le Kablepmuéveg avtiotolyeg neBodohoyieg ot
BLproypaLa.

Me BAon T ovaAUTIKG ATOTEAECUOTOL TG TTELPAUATIKNG AELOAOYNONG, 1] LEBOSOG eKTi-

ong Torobeoiag amodelydnke oA aEWOMOTY Yo TO €EVITVO TOUPLOTIKO GEVAPLO TTOV £E¢-

TALETOL Me QUTNY TV EKTIUNON, 1 ATOQaAoT £EVTVNG UETAPOPTWONG SV0 PNUATWV €lye
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KUPLOPYO POLO 0TIV atd8001) TOU GUVORLKOU GUOTHUATOG KOL TG OPYLTEKTOVIKNG GUVO-
MKG. O pnyaviopog KMUGKmOoNG KoL To. TPOPIA TOPWV UTESWOV AELOoNUELMTA KEPST)
amO800NG 08 CVYKPLOT UE OYETIKEG EPEVVITIKEG EPYAOLES OTY BLBMOYPAPLAL, GYL LOVO OGOV
APOPAG. TNV LKAVOTTOINon Twv kprtnplov ItY tmv xpnotdv alld KoL TV OTOTELEOUATIKY
YPNOLLOTTIONON TWV TOPWV.

Kegdlowo 4
e aUTO TO KEPAAoO emeKkTelvouue TV gpyaoio tov Kepalalov 3 kal o avtifeon ue
HOVOTTAELPT] PLAOGOPLE TOV KAaoLKoU aAiyopiBuov avtokiudkwong (HPA) Touv KuBepvit
7OV AauBAvEL VTTOYN POVO TIG UETPTOELG ATTOS00NG, TPOTELVOUIE LG EVEAMKTY OPYLTEKTO-
VIKT Y100 T St elpLon Topmyv. Av Kow aEL0A0YOUUE TV TTPOTELVOUEVT] OPYLTEKTOVIKT| UE
e SLaSLKTUaKY) EQapuoyT, 1 AMoN oG UITTOPEL V. TPOCAPUOOTEL OTLG OVAYKES OTTOLOLO-
dnrote epapuoyne. Lo to TPOBANUO TPOYPUUUATIOUOD EPYAOLMYV, TIPOTELVETOL VO OYTUCL
7oV BaOIZETOL 0TV TOAOTAACLAOTIKY UELWON TG TPoobeTikng avEnong (AIMD). Exue-
TOAAEVOUEVOL TLG EYYUNOELG 0TAOEPOTNTOG QUTIG TNG VEAG AVONG TPOYPAUUATLONOY EPYOL-
oLV, avakoTevdHvoure SUVOILKG TO ELOEPYOUEVO. CUTNULOTC TTPOG TIG PETALKEG TG ELKO-
VOTTOUNUEVNG EQAPUOYNG. ‘OGS KAl TPLY, YLO VO AVTLUETOITIOOURE duvakols @opToug
EPYOOLOG, EVAG UNYOVIOUOG TPOPAEYNG UG ETTLTPETEL VO EKTLUINCOVUE TOV CpLlOUd TWV €L
0gpYOUEVOV artnUaTOV. ETUTAL0V, ELOGYETOL EVAG WY OVIOUOG TTPOPLL EPOUPUOYDV PBAOEL
W OVIKTG WAONONG Yo TNV GVTLUETAOTLON TG KAMUAK®MONG, ouv-oxedidlovrag tig Osm-
PNTUKG VITOMOYLOUEVEG UETPLKEG TTAPOYTG VITNPECLDOV TTOU AOUBAVOVTOL 0TO TOV ahyopLOuo
AIMD, pe Tig TpEX0VOEG UETPTOELG artOdoomc. H mtpotetvopevn Mo ouyKpivetal ue TG o0y-
YPOVEG TEYVIKEG OUTOUNTNG KMUAKWONG KATW 0ITO VO, PEAMOTIKO (POPTO EPYOOLAG OE ULOL
LK) LITOSOWT KO avOADETAL 1) OVYKPLOT] UETGED TG YPTONG TOPMV KOL TOV TAPAPLACEDV

[ItY. OL BAOIKEG CUVELGPOPEG CUTOD TOU KEPAAALOV CUVOPLLOVTOL G EENG:

o Muio OMOTUIKT] KAUOKOUUEVT 0PYLTEKTOVLKT] YL, TV OVILUETMOITLOT TOU KOLVOU TTPOPAT)-
UOITOG TOV TEPOYPAUUGTIOUON EPYAOLDV KO TG TPOANTTLKNG EVOPYHOTPOCMOONG TO-
pwv oe uia. vrrodoun YTI. To mpotewvduevo oxnuo AIMD mov £vepYOTOLELTAL OV OUU-
Bel kamoLo CVYKEKPLUEVO CUUBAY SLEVKOADVEL TNV TEPOMTTTLKT KAUAK®MOT TOV TOPWV.
AVTOG 0 UMY AVIOUOG ETLTPETEL TV ATOKEVTPWOUEVT] EVOPYNOTPMOT TOPWOV OTHV GKP)

,
TOV OLKTVOV.

o Eioayetal po S1apopeTiky) HOVIELOTONOT TPOQIA EQAPUOYNG TTOU AELOTTOLEL TTANPO-
popleg astod () T AOT TPOYPOUUATIONOD KoL KATAVOUNG TOPWV, () Ta TopoKolOU-
Bovpeva BAA kau () Tov akyoptbuo mtpoBAeyne @opTou pyaoiog Yo TV eKTiuon
TOV OPLOUOY AVILYPAP®Y TG ELKOVOTTOLNUEVNG EPAPUOYNG. SUALEYOVTOG £VOL OVVOLO
SLOKPLTOV TPOPLA TOPWYV, WTOPOVUE VO, BEATLOTOTOLCOVE T1] YO0 TWV TOPWV Yw-
plG Ve TOPABLACOVUE T1) GUVOMKY) OTABEPOTITA TOV GUOTNUOTOG. ZT1) CUVEXELQL, 1] OTTO-
QOO KMUAK®OTG EKTELELTOL XPTOLLOTTOLMVTOG L0, CTTAY TEYVLKT] WY OVIKNG udOnong
TOV UOLG ETUTPETEL VO, EVOWUOTDOOOUUE ETTLONG TLG HETPNOELG artddoong. O TpoTevo-
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UEVOG OYESLAOUOG ELVAL ETEKTAOLUOG KO EVKOAO, TPOTTOTTOLOLUOG,

H dukid pag AMom pag vreptepel GV ADOEMV TTOV YPNOLUOTOLOVVTOL GUVHOMG VLo oUTO-
Lot KMUAK®oT, Kabmg oL LESOL FTOPOL TG XPNONG TV SLUOEoLIWY ETEEEPYATTOV ELVOL
TOVAGYLOTOV 7% MYOTEPO, EXOVTAG UOVO Wa Wkpn avEnon otig apapidoeig IItY.

Kegahowo 5

To Kegdiowo 5 €0tidlel 0Tny avamTtuEn evog eVOAMAKTIKOD SLOUKOTTTLKOD Uy ovIouow
UETAPOPTWONG VITOLOYLOTIKDV SLEPYOOLDY OTA KT TOU SLKTVOU, Y10 EQUPUOYES TNG Blo-
unyoviag 4.0. OLepopuoyEg AUTEG, 0TevBVVOVTOL 0E POUTTOT TC. OTTOLN EKTEAOVY TTEPLITAOKEG
dLepyaoie, oL 0TOLEG TAPOVOLALOVY CUOTNPEG OITOLTNOELG TOOO O XPOVIKT] artOKpLoN 000
KOL 08 00QALeL. 2 ouTO T0 TAOLOLO, 1) LETAPOPTOOT] TWV SLEPYAOLDY 0T AKPO. TOU di-
KTUOV ETTLTPETEL OTO. POWTOT VA ELOPPUVOUV TOV VITOMOYLOTLKO TOUG (pOPTO, avafETOVTaG
TNV EKTELEOT] TMV TOPATAVD SLEPYUOUDV GE UL0L LOYUPY VITOAOYLOTLKT] UTTOSOWUT 08 KOVTLVY]
aTOOTAON. Z€ OUTO TO KEPALOLO, AOLTTOV, TPOTEIVETOL £VOG SLOUKOTTTLKOG UNYOVIONOG UE-
TOPOPTWONG dLEPYAOLOV, EVE OYESLALOVTOL EVKALPLOKES OTPUTNYIKEG UETOPOPTWONG VLo
EQPOPLOYES TTOU ALPOPOVV GTOV TTPOYPOULATIONO TG TOPELOG KOL TOV EVTOTLOWO TG B€omg
TV poustot. H amdgaon yia t petagpdptmon Aapufdveton faoet g afefatdttag wg tpog
TV TPEXOVOC, BE0T TOU POUTTOT KoL TV SLAOEGLUOTNTO VITOAOYLOTIKDY Kol SIKTUAKMV TT0-
pwV 0T, GKpo. Tou dtkthov, TNV dedouevn otryur]. To SLaKOmTTLKO autd VOTNUE VAOTTOLEL-
TOL KOl GELOAOYELTOL YPNOLUOTOLDVTOG EVOL TTPOYUOTIKO POUTTOT GE WLOL TTPOLYULOLTLKT| VITO-
doun oto GKpa TOU SIKTVOL- KOTA TNV AELOAOYNOT TOVIZETOL TO OVTLOTAOULOWO. OVAUIEDQL
070 YPOVO OAOKANPWONG TWV SLEPYAOLDVY KOL TNV ETLTUYY EKPAOT TG ATOOTOANG TOUG.

AvVOAUTIKA, TO GEVAPLO TTOV TTOPOVOLALETOL OF AUTO TO KEPALOLO TEPLYPAPEL EVO. POUTOT
£E0TMOUEVO IE ALOBNTNPEG KO VITOLOYLOTLKOVG KOL SIKTUAKOUG TTOPOUG, TO OTTOLO ETLYELPEL
VO, (PTAOEL ATTO £VOL OPYLIKO OE £VO, TEMKO OMUELD, EVTOG EVOG EPYOOTACLAKOD YMPOV, GV
UEOO. OF EUTOSLOL. AUTH 1 AELTOUPYLKOTNTA ElVOL BOOLKT] YLOL TV VAOTION O EQAPUOYDV TTOV
apopPoOVV OTOV EQPOSLOOUO KoL TV aobnkevon gumopegvudtov. ‘Eva olvvneg mpopinuo
TTOU OVTLUETMOTUTETOL OE TETOLOV ELSOVG 0EVapLAL glval 1] afefatdtnta YOpw 0td TNV axpLpn
«0TaoN» (0£01 Kol TPOCAVOTOMOUO) £VOG POWTTOT, 1] OTTOL0. GUEGIVETAL UE TOV YPOVO KT
TNV KIVN01), AOY® GUGCWPEVOUEVOY AVOKPLBELDV TV aLoONTNpwV, OMTOMUATOY TOV TPO-
YDV KOL AOTOXUDV 0TO VAMKO. ZUVETMG, 1] AvayKy Yo, (e akpLf), Suvoukd puBuiouevn
TEYVIKT EVTOTLONOU BEoNg eivan eugpoving. OL BAOLKEG CUVELGPOPESG GUTOV TOU KEPAAALOU
ouvvoyiZovtat, Aowtov, wg eEng:

o 0%edlOON KoL VAOTTOLNON EVOG TPOTOTUTOU WY OVIOUOU UETAPOPTWONG VITOLOYLOTL-
KOV SLEPYOOLMV VL0 POUTTOTIKEG EQPAPLOYES, O OTTOLOG YPNOLUOTOLEL (LKL VITOLOYLOTLKY
VITOSOUT OTA GKPE TOU SIKTVOV EVOG BLOUIYOVIKOD Y (DPOU, VL0 VO, BEATLOOEL THY aKpL-

Bewa Tou evromopon O£0mg KoL TG TOPELOG TOV POUTTOT.

o 0oYedlaoN Kau VAOTOINOT £VOG GAYOPLOROL aTtOPUONG UETOPOPTWONG VITOLOYLOTIKMOV
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SLEPYAOLDV, 0 0TTOLOG AAUBAVEL VITOYLY TV SUVOULKT] QUOT TWV KIVIOEDY TOU POUTOT
KOL OVILUETWITLEEL TV ABEPAUOTNTO TOV TPOKAAOVVE OTOV OKPLRY EVTOTLOUO TNg O¢-

01G TOUG OTO YPOVO.

o 0yedlOON KoL VAOTTOINOT KOLVOTOU®MY GAYOPLOU®Y EVIOTIONOD BE0MG KAl TPOOUVa-
TOMOUOU, OL OTTOLOL ETLTVYYAVOUY VYNAT OKPLBELL XPNOLUOTOLDVTCG TO ATAOVOTEPO
OVOTNUA KAUEPDY KaL TOV EAAYLOTO apLOUd EVIOMOUEVMV SLOUKPLTOV CTUELDY OTO TTE-
PLBANLOV.

SYETIKG e TV TEYVIKT] EVTOTLOUOD O£0MG, 0TV elkovo, 5.12 @aivetor 0Tt Tapdro Tou
M oTOKALON 0TTO TV TPAYUATLKT O£01 CvEGVETOL 000 AVEAVETOL 1] GTTOCTAON TOU POUTOT
amo To 0pOONUAL, 1] AKPLBEL TNG deV TEPTEL TOTE KATW 0td 93%. Zyetikd pe Tov oyedio-
OuoO TG TOPELAG TOU POUTOT, O OAYOPLOUOG UAG EYYVATOL TV £YYOTITA LWLOG VITOLOYLOWE-
VNG TPOYLGG UE TNV TPAYUATIKG BEATLOTH, 1) OTTOLA BPLOKETOL EVIOG ATTOSEKTMV TACLOLWOV
yio TV £@apuoy). Ipoympdviag 0to Baotkd Kouudtt g aELOAOYNoNG, AuTd Tov SLoKo-
TTUKOU UNYOVIOUOD UETAPOPTMONG VITOLOYLOTIKMV SLEPYAOLMV, YIVETAL 1] OVYKPLOY TOV [E
TG 800 aKpaieg aAG ATAOIKEG TTPOCEYYIOELS EKTEAEONG TWV VITOLOYLOTIKMV SLEPYAOLDV:
o) WOVO TOTLKT] EKTEAEON Kol B) LOVO VITOAOYLOTLKT] UETAPOPTWON. ATTO Ta. AToTELEOUATA,
YIVETOL EUPOVIG 1) VITEPOYY] TOV TPOTELVOUEVOU WY CVLOUOD, TOGO OTOV IEGO YPOVO EKTERE-
0MG 000 KL GTO TTOCOOTO EMLTVYOVG EKPAONG TV ATTOGTOAMY TOV KANONKE VO VAOTTOLOEL
T0 POWITOT. AVOAVTLIKOTEPQ, 0TI WOVO TOTTLKY EKTELEON TG O)edlooNG Stadpoung, 0 Xpovog
EKTELEONG TOV TELPAUOTOG ELVOL YPOUILKDG 0VAAOYOG TWV PNUATMV TTOU 0ITOPOOLLEL O Ax
aAYOPLOUOG TTOV eKTERELTAL, EVOD 1) ABERALOTNTA GTOV EVTOTLOUO TG OE0MG TOV poUTOT Sev
OTOUOTA TTOTE VO AVEGVETOL (Aol TO GVOTNUE KAUEPHDY BEV UELOTOLELTAL TTOTE. ZUVETMDG
dev AP EL KATTOLO, £YYONON OYETLKG IUE TNV ETLTUYY TEPATMOT TOU TELPAUATOG. STV TTE-
PLITTWON B), TG UETUPOPTOUEVNG EKTEAEONG UOVO, CTTO T1) LLOL EOVUE TNV €YYUNOT) YLC TNV
ETLTUYN TEPATWON TOV TELPAUOTOS, QPO TO GVOTNUO KOUEPHDY YPTOLUOTTOLELTAL YLOL TOV
evIomopo ™G BEoNg TOu poustdT KABE Popd, EovUe OUMG CVENUEVO UECO YPOVO EKTENE-
O1)G TNG GITOOTOANG, AOY® aKPLBMG CUTNG TNG ETAOYNG: 1) VTTOLOYLOTUKG, TTLO aKPLBY) TEYVLKT
EVTOLONOU O£0MG XPYOLUOTTOLELTOL AKPLTA, KAOE QOopd. TV Y PELGLETAL EVIOTIONOG, OKOUQL
Ko OTay 1) aBePALOTITO OYETLKA UE TNV OTAON ELVAL EAAYLOTY Kt SuviTikd To poumot Oo.
UTOPOVOE VO KIVIOEL YLOL KATTOLO YPOVIKO SLAOTNUA KO UE TO OTTOTEAEGUATO TOV TOTLKOY
evrommopoy 0gomg. H oyKpLon auth Katalnyel e To OTOTELEOUATA TOU SLOKOTTTIKOU un-
YOVIOULOU UETAPOPTOONG SLEPYAOLMV 0TA GKPA TOU SIKTVOV, O 0TTOLOG TO. KATAPEPVEL 01
HOVTLKG KOAUTEPX 08 OYEOT UE TLG GAAEG B0 TPOOEYYIOELS, TAPEYOVTAG TOOO EYYUNOELG YL
TNV ETUTUYT TEPATWON TOV TELPAUATOG, OO0 KL YAUNAITEPOUG UECOVG Y POVOUG EKTELEONG.

Kegdlowo 6

Avtd to Kedharo eotdlel Eava oty meplmtwon Twv powtotikmv KO, To kivntd

POUTTOT TTOV EEETALETAL ELVOL £VOG LOVOKUKAO, TTOU VITOKELTAL OE OBEROLOTITEG LOVTEAOTTOL-
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NONG KO HETPNONG. ZTO TPOTELVOUEVO OEVAPLO, TO POUTTOT TPETTEL VO MUOEL TO TTPOBANUA TOV
EVTOTLOWOD TG O£01C TOV, TPOPANULA KOL 0T OUVEXELS. TO TPOPANUO. TOPAKOAOVONONG KoL
VAOTTOLNONG ULOG OUYKEKPLUEVTG TPOYLAG. Katm ammd avtnv ) pvBuon, eivor dtabgoiuog
EVOLG UNYOVLOUOG UETAPOPTWONG YLOL TI) UETAS00T TWV SESOUEVMV EVTOTLOUOU BE0NG Lot
™ dradikaoia evromowov o o, virodoun YII yia mepartépm exeEepyaocia. Kuprog otodyog
ELVAL VO, TOPEYOUIE VIETEPULVLOTIKEG EYYUTOELG YLOL TNV EKTLUOUEVY BEON TOU POUTTOT Kot
0T oLVEXELD VO gyyunBolue T oUYKALOT TTPOG £va onuelo-0toxo. H evooudtwon uedo-
dwv ekTiunong BAoeL GUVOLOU GTOV GYESLAOIO TOV ELEYKTI] YLOL TNV TTO.P0YT TAONYNONG OF
TPOYUOTIKO Y POVO, ELVOL APKETO SVOKOAT).

Se €va EEVITVo £pY00TaoLaKO TEPLRAALOV, Ta POUTTOT elval eE0TALOUEVO ne ouoONTNPES
JTOU UTTOPOVY VO, TTOPEXOVV EKTUNOELG THG OTAONG ToU Pousot (dnhadt), Siodidotatn Ocon
KO TTPOCAVATOMOUO). AV KOL 1) XP101) EVOOUATOUEVNG TOTLKNG EKTLNOoNG BEong BAoeL -
0ONTNPOV ATOPEPEL YPNYOPQ ATTOTEAECUATA, ELVOL YVWOTO OTL ELVOL ETLPPETTNG O OVOOW-
PEVTLKCG GPAAIOTA, ELOLKE OTOV TTPOKELTOL VL0, WOKPLEG TPOYLES. 'EToL, amartotvton ouvnOmg
010 EEEALYUEVEG AAMGL VITOLOYLOTLKG QUTOLTITLKEG TEYVIKEG Yia. va, ovENDeL 1) akpiPeLa. evto-
TLOUOV. Mg 0TOY0 TNV AVAAVON TOV TOPATAV®D KAL TV TPOTAON VEOV OTPATYIKOY GUV-
OYEBLAOUOV ELEYYOV TTOU EYYVMVTOL T1) GWOTI) CUUTTEPLPOPE, EVOG TETOLOV OUOTHUATOG, OUTO
TO KEPAAALO TTAPOVOLALEL ULt LEOOSOMOYLA GUV-OYESLAOUON EAEYYOV YLOL TAONYNOT KLVNTOV
poumot. To poustdT, eE0TAMOUEVO e KAUEPES KoL oLoONTNPEg 080UETPLOG, TAOTYELTOL 0TTO
e Bgom exkivnong oe e B£01 GTOYo, VL0 VO OMOKANPMOEL Lt SESOUEVY] ATTOOTOAY (L.
(L. CCUTOULOLTOTIOLUEVT] OTTOBNKEVOT/AVAKTNOT). Z€ AUTO TO TEPLTAOKO OEVAPLO, SLEPEVVA-
Tow 1 OgueddONG ovalTNO L0OPPOTLAG UETOED 0TOB001G Kl KATAVAAMUEVWY TOP!V,
WOl UE TIg OUVONKEG TTOU EYYVMVTAL T OUYKALOT TOU GUOTIILOTOG. ZUVOMKAL, ETEKTELVOUNE
T wovtelomoinon Tov Kepakalov 5 Kol Tapéyovpe £yyunoelg KAeLoTol Bpdyou yio T ov-
YKAOT TOU POUTTOT Ko T1) BEATLOTY %P1OM TV TOPmV. O KUPLEG GUVELGPOPES TG EPYUOLAG
LOLG TTOU T1) SLOPOPOTTOLOVV 0Ttd TV VITOAOLTTH BLBAOYPAQLa oUVOPITOVTOL WG EENG:

1. Ewodyeton évag ouv-oyedloonog yio KO dmov £va popntd poustdt THmou HovoKuKAou
YPMOYLOTTOLEL TOGO TOUG TOTLKOVG TOPOUG OO0 KO CITOUOKPUOUEVOUG YLO. VO, EKTEAE-
O€L TLG VTTOAOYLOTIKGL GLTOULTTUKEG EPYOOLEG WLAG EQPOPUOYNG TG Bropmyaviag 4.0 wov
CLTTOULTEL TTAONYNOT] OF EPYOOTUOLUKO XMPO. AV0 OeuehddN TPOPANUOTO CVILUETMITL-
Covtan amd Kowov: (i) 1 oUVOEoN ELEYKTMV TTOV VTTAYOPEVOVY TV KIVIOT] TOU LOVO-
KUKMoV poustoT og auTd To TPOPANU o%edLaouol dtadpoung Kot (i) po oTpaTykn
UETOPOPTWONG YLOL TNV AVTLOTAOION TG ABERAOTNTOG TV TOTKMV TEYVIKMV EKTI-
UNONG € TIG TTLO OKPLPBELG CTTOUAKPUOUEVES.

2. O VEoL EAEYKTEG £YOUV OYESLAOTEL YL0L VO, LKAVOTTOLOUY TOV OgUehmdN 0TOXO0 TG OTto-
0ToMG, dNAAdN VO SLaooALovy T GUYKALON TNG TAONYNONG TOU KIVITOUY POUITOT
og £€va 00voho oTtoywv. Ta T duvaukn Tov pouwrtdt OEmPELTaL EVo KIVIUATIKO [o-
VIELO POVOKUKAOU, EVD 1) KIVIO1 TOU avadbeTon oe 810 uépn, dnhadn oe mepLotpo-
PLKO KO LETAPOPLKO. ZNUELDVOUUE OTL, TAPOAO TTOU UTTAPYOLY £pYa 0Th PLALoypapia
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TOV TOPEYOVY KOUYPOUG 0TLRAPOVG EAEYKTES TTAPOVOLA ABERALOTHTWY, 1) TPOTELVOUEV)
UEO0S0G UOG ETLTPETEL VO UVTLUETWITIOOVUE TPELG SLOKPLTEG TTPOKANOELS, OVYKEKPL-
uéva, (i) apepodTnrec/diatapayts Tou ennpedlovy T SUVALKY TG KOTAGTAONGS,
(il) ATOTELEOUATLKT] EQAPUOYY EKTIUNONG BAGEL GUVOLOU YPNOLUOTOLDVTOG UETPTOELG
odopetplag, (i) eyyimon olykiong Tov cuoTNUOTOG KAELOTOU BPOYou 08 £va. OUELD
avapopdc. Lo voL LETPLALOTEL TTEPALTEP® 1) VITOMOYLOTLKY] TLECY OITO TO POLLTTOT, XPT|OL-
UOTTOLOVVTOL KOTG TTPOOEYYLOT) VITOLOYLOUOL YLOL TNV TOTTLKY EKTLUNOT THG OTAOTG TOV
POWITOT. ZT1 OUVEXELQL, EQPOPUOTOVTIOL UIYOVIOUOL ELEYYXOV OTOOEPOTOLNONG TG AV~
dpaong kataotaong KoL otig Vo Kvnoels, yio vo eEaopoaliotel 1 oOyKhon oty

TEPLOYN] OTOYO.

3. Mo Sradikaoion Myng amopaoewv mov BaoifeTal 08 Ui GUVAPTNOT] ELVOL KOTOA-
Anha SLAUOPPMUEVT YL VO VAAGBEL TTPOTNYLIKT] UETAPOPTWONG. AUTH 1] OTPATIYLKY
VITaYoPEVEL TTOLEG OTTO TIG HV0 SLUPOPETIKES SLaOETIIES TEXVIKEG EVTOTILONOU O Y PN-
owomon0o0v. Extog asmd thv otdTnTa. TG TAOTYNONG, 1] OTTOL0. OTTOKTATOL Ul TIG
£E080UG TV gheyKTMV, quTh 1 Stadikacia hapfaver exiong voyn v dtabeoLud-

TNTA TOV SIKTVOKDY TOPWV Kol TOV SL0OE0LIWV TOPWV TNG VITOSoUNG.

EKTeleltol (e 0eLpd TEPOUATMV YL TV AELOAOYT01) TNG ATOS00TG TOV TPOTELVOUEVOU
K®Z 600v agopd v akpifela Thonynong kot ) didpKela g arrootoing. H aohdynon
deiyvel 0Tl 1 emOuuN T MO OYETIKG UE TV TPOTIUN O TV V0 GAYOPLOU®Y EVIOTLOUOV
€LVAL (L0, LLKTY) OTPOTIYLKT TTOU (PN OLUOTOLEL KoL Toug V0. H xpNo1 atoKAELoTIKG TOTILKG,
TAPAYOUEVNG EKTIUNONG SEV OPKEL YLOL VO TAPEYEL GPKETA VYNAT aKPIBELD, EVD 1) CUVE-
NG OvalNTNON OKPLBESTEPNG EKTLUNONG OITO TOV EE AITOOTAOEWG EKTEAOVUEVO ahyOPLOUO
TPOOOETEL ONUAVTLKO KOOTOG 0T SLAPKELD TNG 0TTO0TOMG. EmumAéov, wa hemropepng ou-
YKPLTLKT AELOAOYN 01 UE EVOAMAKTIKG OYNUOTO LETAPOPTWONG KATASELKVUEL TO, OQPEMT TOU
TAOLOLOV POG, KAOMG KO TV TPOCEPUOOTIKOTNTA TOU OTIG OUYKEKPLUEVES ATTOLTHOELS TG
epapuoyns. H alohdynon amddoong g TPOoTELVOUEVG TEXVIKNG VITodNAdVEL OTL 1) ADom
nog Eeepva To GALA TUTTLKG YPNOLUOTTOLOVUEVO, OYNUATO LETAPOPTMONG KOL ELVAL EVKOA,
TPOCAPUOOLUY OTIG AVAYKES SLOPOPETLKADV YOPAKTNPLOTIKMOV e@apuoyns. To mo onua-
VIUKO £LVaL OTL TO TTPOTELVOUEVO TTAOLOLO EYYUATOL TN OUYKALON Ue T1) O£0T 0TOY0 aveEdpTTa
aTto TLG SLAPOPES TAPAUETPOUG TTOV ETUAEYOVTCL, OF AVTLIOEDT] UE TOL CUOTIUALTA TTEPLODLKNG

UETAPOPTWOTNG.
Kegahoo 7

AT 10 KEPAAOLO EOTLALEL 0TIV TEPITTOON EQPAPUOYDY AVAYVDPLONG TPOTOTWV OF
TPAYUOTIKO YPOVO (SNAadY, aViXVEVOTg EIKOVOC) TTOU OVATTUCOOVTOL 08 OLAQOPT. GEVA-
pLa. TroBEToupe OTL OL BLEPYAOLES AVOYVADPLONG TTPOTUTTMV (TT.). ELKOVEG 1) POT| BLVTED) TTOV
SMNWOUPYOUVTAL 0TO GUOKEVEG YOUNATG KOTUVAA®ONG VToBdrlovTol og eneEepyaoio elte

TOTUKGL EITE UETAPOPTMOVOVTAL, YPNOLUOTOLDVTOG AaVPUATH GVOVOEDT YO TEPULTEPW ETTE-
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Eepyaoia. Ol UETOPOPTOUEVEG dLEPYOOLEG CUUTLELOVTOL TTPMTO OTLG CVOKEVEG YLOL VO, LELM-
Oet 0 xPOVOg UETASOONG. AVTIOTOLYO, OTAV WO, EPYAOLO. (PTAVEL 08 o vtodoun YTI, amwo-
KmOLKOTTOLELTOL KOL 0T GUVEXEL EKTEAELTOL 1] avaryvapLom etkovag,. 'Etol, diepguvoiue v
LOOPPOTTLC. UETOED TNG EAOYLOTOTTOINONG TOV YPOVOU UeTddoong (dnhadr, Tng ovumieong
TOL UeYEDOUG TG SLePYaolag) KoL TNG ATMAELLG AKPLRELOG TOU CUUTEPAOUATOG. Emumhioy,
Bempolue OTL KGO vrodoun £yl P SLBECL LOVASA KAPTOG YPOPLKDV TTov BonBd ne
TOUG VITOLOYLOUOVG. ATtO TNV TAEUPA TNG VITOSOUTNG, VTTOOETOVUE OTL OL SLEPYAOLEG EKTENOD-
viow TapdAnia, dni. o wa moptida. H opadikn emeEepyoaoio tTmv Slepyooudv Hethvel
dpaoTikd TN OUVOALKT KaOUOTEPNOT 08 OVYKPLON UE T SL0doYLKT] EKTEAEDT) TV EPYACLDV.
EmintAéov, 0 xpdvog AELTOUPYLAG TG KAPTOG YPOPLKMV UELMVETOL, EMOLOTOTOLOVTAG ETOL
TO KOOTOG KOl TNV EVEPYELQ 0TTO TV TAEVPE TG LITodoung. Qotdoo, Yia Vo, BelTLoTorTou)-
Oci 1 emeEepyaolo KaTd TOPTLOES, OL EPYACLEG TOV £X0UV UETAPOPTMOEL TPETEL VA PTAVOUY
0TIV VITOSOLUT TOVTOYPOVAL VLA, VO. LELWOEL 1] CUVOALKT] KOOUGTEPN ). SUVOALKE, OTOYEVOVUE
0€ L0 GTPOTNYLKT] UETAPOPTWONG SLEPYAOLDV VIO TPOYPALUOTIOUO TTapTIdAG oV (o) Steu-
KOMOVEL T GUVEPYAOLA HETAED OUOKEVMV KOl UTTOSOUNG YLOL TH UELWO THG UEOTG KOOVOTE-
pNong kot () SLATNPEL PLOL OPLOUEVT] TTOLOTNTA TNG AVAYVIPLONG ELKOVOGS. Ol GUVELTQOPEG
wog ouvoyitovral wg ENG:

o ALOTUTMOVOUULE EVO, KOLVO TTPOBANUC. BELTLOTOTOLNONG YLOL VO, UEYLOTOTTOLOOULE T1] LEOT
AKPIPELD KOL TAVTOYPOVA VO ELAYLOTOTOLOOUUE TOV UECO XPOVO amtdkpLong. Elod-
YOUpE £VO, TTAALOLO YLC. VO, TEPOOEYYLOOULE T1 ADOT| TOU TTPOPANUOTOG BEATLOTOTOINONG
YWPLLOVTAG TO 0g 80 VITOTPOPANUATA: (0) VO VITOAOYLOOUUE (Lol BEATLOTY CUUITTLED
TV SLEPYaoLdV Kol (B) VO ATOPOOLGOVIE ULOL TTOMTLKT] UETAPOPTOONG TWV SLEPYQ-

OLMV YL TOV TTPOYPOULOTIONO TWV TOPTIOMV.

o AKOAOUOMVTOG TO TUPASELYILOL TG TTPOCEYYLOTIKNG VITOMOYLOTLKNG, EEETALOVUE TTOM
800 £kdoyEG TOU 1810V alyopilBuov, ouykekplueva: (i) wio VITOAOYLOTIKG eEAAPPLA EX-
doyn oTig ovoKevEg (i) ko pio ekdoyn mov divel TOM) KAAG OTOTELEOUATE OTNY
ATOUAKPVOUEVY VTTOdOUN UE SUVATOTNTO AELOTOLONG TNG KAPTUG YPAPLKMV KO TT0i-
POAANAOL VTTOAOYLONOD. APYLKA VITOAOYLLOVUE Lo BEATLOTY OTPOTNYLKT) ovumieong. H
M0OT 070 TPOBAUCL TNG CUUTLEONG ELOGYEL LEPLKAL ONUAVTLKG OITTOTEAEGUOITOL TTOV VITO-
SMADVOUV OTL 0 TPOYPAUUATIONOG TAPTIONG PEATLOTOTOLELTAL OTAV OL EPYAOLES PTA-
VOUV TAUTOX POV, EAOYLOTOTOLDVTOG ETOL TH GUVOMKT Ka.OUOTEPNO TNG EQPOPUOYNG.

[poypLoTomoLoV e PLoL EKTEVY 0ELOAOYION TOU TPOTELVOUEVOU TTAOLGLOU UEGH WOVTELOTOL-
nong Ko tpocopoiwong. Ta amotehéopata delyvouv OTL 1] TPOTELVOUEVT] TEXVLKT] VTEPEYEL
OOV TV AV PEBOdWV avapopds, £X0vTog o oxedov BERTIOTH ADoT KoL emLTuYy G-
VOVTAG EMAYLOTO OUVOMKO KOOTOG. SUYKEKPLUEVE 1] AVMTEPT] GTTOSO0N THG TPOTELVOUEVTC
TPOCEYYLONG GTTOSELKVVETOL O CUYKPLTLKG TTELPAUATA, KAODG TO GUVOMKO KOOTOG ELVaL
ToVAALOTOV 50% AyOTEPO 0TTO OAEG TLG GAMEG TEYVIKEG AVAPOPAG KOl BEATLOVETAL OO
TepPLoodTEPo KaOhg avEdvetan o aplBuog Tov Siepyaocidv. TELog, Siepeuvovpe TV ei-
dpaon OV TV CNUAVIIKOV TOPAUETPMVY 0TI GUVOALKT] Gt08001 TOU TAQLOLOV O UL
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OELPA TELPOUATWY.

Kegahoo 8
210 TEMEVTOLO KEQPAAOLO TNG SLOTPLPNG EEGYOUIE CUUTEPUOUOTO CGVOQOPLKY, UE O TNV
SOVAELG LLOG KO TTPOTELVOUUE LEAMMOVTLKEG KatevOUvoelg. To GUITEPAOUGTO. 0TC, OTTOLCL KO-

ToMEape KaB' oM T SiipKeLa TG SLaTPLPNG CUVOPILOVTOL TAPAKATM:

o O Oewpnrikeg [pooeyyioelg Avtouatov EAEYyov umopoly vo TopExouy loyupd ep-
YOAELQL YL TNV VITOOTNPLEN TG SLOYELPLONG TOPWV KaL TNG UETAPOpTwong 0to, KDE.
ASYO TG AVAYKNG YL ATTOPAOELG O€ TTPOYUATLKO XPOVO OTOV TPOYPOUUATIOUO EPYOL-
oLV Ko TG artopaoels uetagoptoons. Mapéyxovrag wa akpifn Katavonon g ov-
WITEPLPOPAG TOV CUOTIUATOS, OUTEG OL TTPOCEYYLOELS TPOOPEPOUV TOMVAPLOUA OPET|
OO0V 0OPE TV KATAVOUT TOPWYV KOL TNV UETAPOPTWOT). MEC® TNG LaONUATIKNG Ho-
VIEAOTTONONG KO TNG AVAAVONG TNG SUVOULKNG TOU GUOTIUOTOG, CUTEG OL TTPOCEYYL-
OELG UITOPOVV VAL EVTOTLOOUY TOUELG OVOTTOTELEOUATLKOTNTOG 0T %P10T) TOPWV KO VaL
0YESLACOVY aAYOPLOUOUG EAEYYOV YL T PUOULOT| THG CUMITEPLPOPAG TOU CUOTHUATOG.
Avtol ot akyopLBpoL (LITopohv va TPOGAPUOGOVY SUVOULKE THY KOTOVOUT TOPOV Ue
Bdon TV TPEYOVOA KATAOTAON KOL TOUG 0TOXOUG ATOS00NG TOU GUOTHUATOS, 091y M-

VIOG 0¢ PEATLIOUEVT ATOd00T), KO 0TadEPOTNTA.

o O TpoYPaUUATIONOG TTOPMV KOL 1] SUVOULKT KOTOVOLUT TOPWV Eival BAOLKES TTPOKAT)-
OELG TTOU TTPETEL VO OVTLHETMIOTOVV atd kowol. H peyiotomoinon g amddoong
TV GVOYYPOVOV EQPUPUOYDV OITOLTEL EYKOLPY SLAXELPLON TTOPWY TWV ELKOVIKDY TTO-
pwv. QoTO00, 1 TPOANTTTLKT] OVATTUEY TOPWV VLG, TNV LKOVOTTOLNOT] OUYKEKPLUEVMDY
OTTOLTIOEMV EQPOPUOYDV TOU VITOKELVTOL 0F SUVOULKO POPTO EPYAOLAG ELOEPYOUEVOV
aTnuatomy eivor eEatpettkd dVokol. T mapaderyno, v 0 TPOYPAUUATIONOG TTO-
PWV dEV EPOPUOOTEL CWOTA, WTOPEL VO, 08N YNOEL OE CUUPOPN O 0TV ETEEEPYAOLA,

TPOKOADOVTOG KOHVOTEPNOELG KO HELWUEVT] ATTOS00T] TOU CUGTHUATOG.

o H otpotnyik SLoKOTTIKMV GUOTHUATOV ATtOQOONG TG UETAPOPTWONG IWITOPEL VAL €l

VaL ETWPERNG TOOO L0 TV ATtOS001) THG EPAPLOYNG OO0 KOL YLOL T XPNOT] TOV TTOPWV.

o H xotdhAnin ovioTtolylon Tov Topmv o8 EVav SUVOULKO (POPTO EPYOOLOG KOL 1) EV-
OWUATOOT TG SUVOULKTG KL TV SLopOpmV KPLTnplwv amd80omg NTav wa Baotkn
TpoKANon og aut ™ SatpPn. AElomolmvTog Toug Miyaviopoig Ipogih Egapuo-
YOV, TO TPOPANUATO. KATAVOUNG TOPWV KOl TPOYPUUUATIOUOD TOPWY UWITOPOVY VO
weAnBovv oA TapE ovTag amholoTtepes, WoTO00, oTafepic AMoels. Qg ek TovTov,
OTTALTOVVTOL OITOTEAECUOTIKOL KaiL AtoS0TLKOL 0AYOPLOUOL YOUNANG TTOMTAOKOTTOG,
KaOMOG 1 PAoN EKTALOEVONG TOU TPOPIA EQAPUOYNG UTOPEL VO, XPELAOTEL TOMD Y POVO

1] TTOMGL TTELPAUATAL.

o H £vomoinon oMOTIKOV 0pyLTEKTOVIKOV e TACLOLO, TPAYROTIKOD KOOUOU dnuovp-
vel véa mpoPinuata Kat TpokAnoels. TIoAhEg artd Tig PEVVNTIKEG TPOKATOELG TTOU
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oVVOVTHONKAVY 68 auTh] T SLatpLP avaKaAiEONKay KaTd TV Tpootadelo evomud-
TOONG TWV TPOTELVOUEVOV UNYOVIOUMV UE TACLOLO, TEAEVTOLOG TEYVOLOYLAG OTTWG TO
Kubernetes ko to OpenStack. H tpoomdfeia otkod0unong oAGTIKMV apYLTEKTOVIKDV
OUUBOTMV UE CUTA TO TRALOLOL KO EVOVYPOUULOUEVES UE TA TPEXOVTO, TPOTUTTOL KOLL TIG
EPEVVITIKEG TAOELG TOU AKASNUOIKOD YMPOU KAl TNG Plounyaviag Tay 1 KiviTnpLo
dUvaurn og O cvTh T SLoTELP.

OLOKANPMOVOVTOG auTh] TN SLaTpLPT), GUTH 1) TEAEUTOLC, EVOTITOL OTTOCOUQTVICEL OPLOUE-
veg Ao TIg TOAVEG HEAAOVTIKEG KOTEVOUVOELG EpEVVAG TTOV PTTOPOUV Vo akohovBnBov ue
BGOM T OTTOTELEGUATA TNG EPYOOLAG TTOU TTOPOVOLATETOL KO TIG TTPOKATOELG TTOU OVTLUETM-
wtier. Mo evdiapépovoa kateBuvon eivar 1) eE€taon Siagdpwv BAA amd v mhevpd g
VITOSOUNG YLOL TO TPOPANUA TNG SUVOULKNG KATAVOUTG TTOPWV. Q¢ £k TOUTOV, TO TPOPANUO.
BelTioTtomoinong ov KaBopilel Tov aptBud TV avaTTUYIEVOY TTOPMV TOV ELOAYOVTOL OTO
Kegdhawo 3, 0a uropovoe vo ehtiwbdel dhote va emikevipwbel 0t BEATLOTOTOINON LOYVOG
EMAYLOTOTOLMVTOG TOV apLBd TV evepydv eEvmnpeTNTdv. Mo GAAY eviLagépovoa. pya-
oloL ELVOL 1] CUUTTEPLANYPT] UT] VIETEPULVLOTIKDV/OTOYAOTIKMY TTPOOEYYLoEWV TTOV 00 Ltopov-
oav vo. a€ohoynBodv yia okomols eKTIUNONG KIVITLKOTITOG YPNOTOV KoL EKTLUNONG TOU
POPTOU WAG EPAPUOYNG. AUTO UITopEL va. emtevy 0l aELOTOLDVTOG TIG TEYVIKEG My aviKNG
MdaOnong Kar cuvSVALOVTAG TEG UE TTLO AETTTOUEPT) LOVTEAOTTOLNOT] TG TOPEWBOATG OTL-
T0G PHETAED TWV YPNOTOV, TPOKEWEVOU VO TPOCPEPOVIE TEMKC. (UG TTLO OITOTELECILOTLKY]

KO ATO80TLKT) AtOQAOT] LETAPOPTWONG.

AéEerg Kietdud: Metagpoptmon YTohoylotikmv Alepyaotmv, IIpoypopuuatiopog epyaoidy,
AVVOLKT Katavour Topmv, Aloyelplon topmv, Ocmpla eAEYY0V, ALaSIKTVO TOV TPayUd-

TV, Owpla. TVoTNUATOV AVOUOVNG
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H apotoo epyaoio eivor To amoTéAeapo, TG SLOAKTOPLKNG Lo dtotpiBig oto epyaotnpo NETMODE
TOL TEAEVTAULCL 5 YPOVLAL, OTO TAALOLO EVOG AVOLTOU KO SNUOGLOV TTAVETLOTHUOU. ZTO TOPUKATW KEPA-
AaLOL SEV (POLVETOL ETOPKDG TOCO ONUAVTLKOL NTAY KAITOLOL GvVOPMITOL TTOV GUVAVINGC OE QUTH TV
dradpoun). Omtdte £dm o TPOOTAONOW VO TOUG EVYAPLOTIOM, SVOTUYMG YWPLG VO YTAVOUY T AOYLL.

Oa N0gha vo. evyopLotnow Oepud tov emiBrémovra Kadnynm pwov k. Zvpenv Hamafooikeiov, yio.
TNV EUKOLPLE. KOL THV EUITLOTOOUVI JTOU Lo £8€1EE EMITPETOVTAG OV VA YV UEPOG TOV EPYAOTHPLOV
NETMODE. ITépa. 0710 TV EALPETIKT] GUVEPYAOLA, THY KAOOPLOTIKY] KGO0y O KO TNV ETLOTNUOVLKY
TOU KOTAPTLON OTTOTE YPELLOTaY, OEAW OLOLTEPT VO ETLONUAVE T1 OTNPEN Tou £8e1€e 0 OhoVG 1ag
Oha autd To pdvia. H kouBéva, 1 oulnmmon yio tpoBAnuatiopols aAkd KoL TO XTLOWO WLoG OXEONG
EUTTLOTOOVVIG, NTOV OAG KOOOPLOTIKG YO, TNV TTPOOMITIKT] UOV TTOPELD £V YEVEL GAMG KUPLWG YLOL TV
CPOCLWON OE QUTY] TNV TTOAAEG (POPEG ETLITOVT TTOPELX. TG SLaTpLfng.

Aev 0o, pmopovoa ed® va unv avagpepdm otov Kadnynt Niko AOavacomovio, Tov vinpse yio
UEVOL EVOG TTPAYLATIKOG §G0KAA0G. TIEPQ AT TNV EEALPETLKY] CUVEPYAOLO KOL TV CUUUETOXY] TOV OTLG
TEPLOOOTEPEG BOVAELEG QUTNG TG dLATPLPNG, TLg KABOAOU SESOUEVEG EUKALPLEG TTOV HOV £8WOE, TIG YV(-
O£LG TOV KOl GLYOUPQ TNV VITOUOVI] TOU KOL TNV 0Qootmon oov, OEhw va tm katt diho. O Nikog givor
Evag AvBPWITOG KOGUNUA YLCL TV OKASTULOIKT] KOLVOTITO KOL TO TTOVETLOTILO, TTOU e TNV OpeEn Tov,
TOV POUCVTLOUO YLOL TNV EPEUVE KO TNV CLPOCGLMOGT] YO TV ETLOTNLY, EUTTVEEL OTTOLOV £XEL TNV TUYT] VO
OUVEPYOOTEL ULl TOV.

"Bvag Kapeg ota vea KTipto HAEKTpohdywv Hetd amod £va, xpdvo STAmuatikng ue tov Anunten Ae-
YOUVLDTI HTOV APKETOG YLOL TNV ATOQaLoT] VoL EEKLVIom TO S18aKTOPLKO pov. O,TL Kol va Ypahm O QUTEG
TG YPOUUES VOl TTOMD Aiyo. Exw tnv Toym vo Bewpd Tov ANuntpt QLA Lov PETH 0IT0 GUTd TOL XPOVLO.
[T€pa. astd TV EEALPETIKT] OUVEPYOOL, TNV EWTLOTOCUVT, TO TTELPAYU, TO TOLYAPO., KGL TV UTOUOVT] TOU
- Kplowo Oha - Oa 0ghoL va, TOVIOW OTL 1] OPEEN POV TN YALVOVTAG 0TO YPOPELD NTOV ATOMTO OUVOE-
Seuévn e To OTL LoLpaLOUovY TV KaBnuePLVOTNTA LoV e avtdv Tov otoudaio avBpwmo. O Anuntpng
deV £XEL OVAYKT] VO AVTAYMVLOTEL KAVEVOLY KOL TOV EUYAPLOTH TTOV UV £8e1EE £va Sporo ovvadelpLkd
Kau topetotiko. MolpdLel amhdyepo. 0Toug avOpmdmovg ST TOU KaiL TOV EUYOPLOTM ELALKPLVE TTov e
gkave avBpwmo" (Kan Oyl MOV ETAYYEMLOTIKA) OTWG AEEL Kait 0 LOL0g Kal KOTL EEpEL.

TToALG €xouv oANGEEL TO TEAEVTALO XPOVLG OTO EPYAOTNPLO. AMG £va 1dLaLTEPO uyapLoTd OEAw
VL TTw 0TOVg PIAOUG KoL ouvepydteg Tidvvn Anuoritoa kaw Mdapo Awepove) yiott Egkivioope Kot
YEPAOUE TAPED, KO TEMK LLOLPAOTIKOUE TOOX TPAyRoTo. IStaitepa pe Tov Fidvvn kan tv eEaupetikn
OUVEPYAOLOL OE TTOAAEG OOUVAELEG, TOV EVYAPLOTM YLO. TNV VITOUOVI] TOU KO TNV KOTOVON 01 TOU KOl TLG
KOUBEVTEG YUYOAOYIKNG 0TNPLENG exaTEpmwBev. Kau atoug 0 edyopat 1) wopeia mov Ba axorovBnoovy
VO, GUVEXLOEL VO, ELVOL TO 1810 EVTUTTMOLOKT 000 NTAY 1G THOPO.

10, UEMT TOU EPYAOTNPLOV TTOV £LY0L TNV TUXN VO YVOPLow, Tov Baoiln Kapudtn yio v fondeio tov
OMCL CUTAL TOL Y POVLAL, TNV GLPOGLOGT] TOU 0TV ETLOTHUT KOL OTO TAAEVTO TOL 0TIV KaAmSimon, Tov [idpyo
Mijton mov £yLve KOAMNTOG LoV Ko AT vo. pe BAETEL Lo TdvTa oo 25 xpovdv, Tov Mdaplo Auyépn
YLOTL ELVOL KATOTTANKTIKOG EPEVVITIG KOL IE EROOE TTAPQ TTOMAG TTparyparta, Tov Xpnoto [ehékn yio OAn
™V GUVEPYAOLa Log, Tov Adap Iavkidn yiott etvar 0 Addp, Toug veapoig NIKOUG YLOL THY UTTOUOVT] TOUG
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KaL TV KOpoidio Toug (YLorth Lou ELELTTE TOAD), Ko OMOUG TOUG AAMOUG OUVASELPOUG, TO TTPOCMITIKO KOl
tovg muAdveg (Mo Kovdkn) tou NETMODE, 3pmoTtam Vo LeYIAO EVYOPLOTM YLO. TC, TTPAYUATC, TTOU
uov paBave, yio T BonOELd TOUG KO YLOL TV KOLVY] LOG TTOPELQL.

Se aUTO TO ONUELD OG OV ETUTPOTEL VO, EVYOPLOTIOW TPOCHILKG KOl KATOLOUG ONUAVTLKOUG (i~
AOUG/EG TTOV TTOU £X® TV TV VA £XO, YLO TV OUITAPAOTAOT TOVG KOL TV KOUTOTANKTLKY TOUG TTAPEQ,
OV TEPOOAV OA) TN SLadpout] TOU SISAKTOPLKOD HATL OV, XMPLG CUTOVG ELLLAL GLYOVPOG OTL 0UTH 1) Lo
PPN O NTay avépLkto va ohokAnpwOeil. Tov omovdaio kar abepdmevta dotikd Agvutépn Movhakdxkm,
TNV KOTOTANKTIKY KoL TtavTa yeudrn ekaangerg Eipnvn KoapBolivn v otabepn a&la kou (dvokoha
Kavelg va meprypdaper) vtootnprktiky Baievtivy Kaioldov kar mnv Katepiva Karvoupyou mov ekTium
POPEPQL TTOV OVTEYEL VAL UEYORMVOUUE TTAPEX. Oa 1BELA VOL EVYOPLOTIOW ETTLONG UEGA OTTO TV YUY LOU,
tov Opéotn Adyka, tov Hoavoydm Tovudon kat tov Koot Hamalagepdmovio. To w000 onuavtikd
YLC. LEVOL TAVY VO, £XW KOLVY TTOPELX 0TO SLOAKTOPLKO OO, OUTO TO YPOVLE. ILE AUTOVG TOUG (POVTOOTLKOUG
avOpMITOUG ELvoL KATL IOV eATICm vo EEpouy Kar va unv Eeyxvave. Kat av otn Com ueptkeég gopeg To
apdynaTe polaCouvv "orthogonal", Kamoleg 0Y£0ELG -OL TOGO KAOOPLOTIKES Yo T Cw) pag- Ba eivol td-
VIO, €KEL VO PeTPApE PNUaTa TTAGL-TAGL. 2T KOTOTANKTIKG 0déppia pov Kmaotr, Xpnoto, Baow olid
Kaw tov Xap), XpmoTam EMKPLVE EUYAPLOTM YLC TV OTNPLET TOUG TV ryGITy) TOUG 0L, GUTd, TO, YPOVLQL
OV T TEPVAUE UL, LEYOAMDVOUUE TTOPEC KOL ELUCOTE TTOVTIO EKEL 0 £VAG YL0. Tov ahhov. Na E€pouv
OTL KOULOL EVYOPLOTLOL OEV ELVOL UPKETH VO TEPLYPAYPEL TO TL ELVOL YLOL UEVAL. ZTOVG YOVELG LoV, OPEIA®M
£V, TEPAOTIO EVYOPLOTM YLOL TV AYGITY TOUG TNV OTNPLEN TOUG (VALKT Ue KoL GUVOLoOMUOTIKT), VLo OAOL
CUTA TTOV IOV £(OVV TTPOOPEPEL ATTAOYEPCL, TNV EUTLOTOOUVY TOUG Ko T Xopd Tovg. T'lo otdnmote dev
Stoheyelg oe auth T w1 podhov mpémel va aloBiveosor Tuyepog kKamov kamov. Kol Téhog ue oAhd
ONUAVTLKG OVOULATA VAL AELTTOVV KOl 00iG TNTH VO e GUYYMPETETE YU AuTO, BELM VO EUYAPLOTNOW OAOUG
0600Vg OAOL OVTA TO Y POVLO. oTaONKaUE TAGL. TTov HoLpaoTHKaE, THOGUE KOl YEAGOAUE, TTTLOUE TTOTA, KO
KOTIVIOOUE OF UTTaP 1) KAAOKOUPLVEG SLOKOTTES, EPWTEVTIKOUE, TEPACAUE KOG 1 KoL Aoy, GYKAALO-
oTNKOpE £Va TPWL EEM ATTO TO EPETELD, TOV KAAWPAUE HOTL OTLG HEYOLES TTPOCMTKES (1] Kait OxL) NTTEG
Ko YlopTdoope vikeg koL xopes. Towg 1 ohokAnpwon wag dtatpipig dev eEaptdtol duesa omd autd
Omwg AéeL 0 ayépaotog Kmotavtivog Swmnpdmoviog, alhd 1 Ton evog TA olyoupa.

Anprpng Zrabapdxng

The philosophers have only interpreted the world, in various ways.

The point, however, is to change it. - Karl Marx, Theses on Feuerbach - Thesis XI
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Structure

The thesis is organized in the following structure.

In Chapter m, a general introduction on the topics concerning the thesis is presented. We discuss
the environment and the research challenges that motivated our work and exhibit the main contri-
butions of this thesis. In Chapter E, some basic mathematical background is presented. Additional
information is provided in the main part of the thesis whenever required. The following chapters
are the main chapters of the thesis. Each chapter presents a specific problem with their general
setting, along with their related work found in the literature. The proposed framework is discussed,
the modeling is thoroughly analyzed, and the mathematical formulation of the problem and the
proposed solution are introduced. Finally, a thorough evaluation of the proposed framework is
presented. In particular, in Chapter E, we introduce a holistic framework to assist in the offloading
decision of a location-based service that is considered computing-intensive. Users offload their
requests to a nearby edge server only when beneficial, i.e., when the communication overhead is
minimized. Then, a resource scheduling and dynamic resource allocation mechanism is introduced
to tackle with the varying workload of requests, keeping a certain QoS for the response time of
requests. In Chapter H, we extend the previous setting by focusing on formal modeling utilizing con-
cepts from Queuing Theory. The task scheduling algorithm and accompanying resource allocation
mechanism provide stability guarantees for the offloaded requests. The evaluation is performed in
Kubernetes and we utilized machine learning algorithms to map theoretically-computed values for
the processing rate of the deployed resources along with various monitoring KPIs. In Chapter B, we
consider a robotic scenario as part of an Industrial Internet of Things application. A robot follows
the concept of approximate computing having two options for executing computing-intensive algo-
rithms, i.e., localization and path planning tasks, in a simple case of moving from one waypoint to
another. The locally-implemented algorithms are fast but prune to errors, while the remote ones
are precise but computationally intensive. Hence, a switching offloading strategy is realized to
optimize the performance of the agent and find a balance between mission duration and accuracy.
In Chapter E, we extend the previous work providing stability and closed-loop guarantees for the
robot. A utility-based offloading strategy is realized that can be easily tweaked to assist in various
mission scenarios. The overall framework is designed to be applicable to various design options.
The set-estimation analysis is presented thoroughly and acts as a hard constraint in the offloading
policy, providing guarantees for the safe navigation of the mobile agent. In Chapter H, we focus on
the case of real-time inference and rely on the Approximate Computing paradigm. An interesting
trade-off arises as the quality of the Edge-assisted inference process and the overall latency of the
system are competing metrics. We formulate a joint optimization problem to maximize the quality
of inference while minimizing the overall latency for the GPU-enabled batch processing of inference
applications. Finally, in Chapter E, we present the conclusions drawn from our observations, as
well as some propositions for current and future extensions of our work and future directions of

the related research.
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Chapter 1

Introduction

The proliferation of fifth-generation (5G) networks, the ever-expanding need for mobile or cloud
applications, and the Internet of Things (IoT) paradigm bring a new era in Information and Com-
munication Technology (ICT). Despite the remarkable improvements in hardware advances and
computing capabilities of the devices in recent years, modern applications require huge amounts of
storage, and more often real-time processing capabilities. In most cases, the IoT devices are low-
power devices (e.g., sensors, actuators) with limited computing capabilities, and insufficient battery
resources and can not guarantee the high performance required by the application [[]. Even, pow-
erful devices (e.g. smartphones, robots) cannot guarantee the required high performance and/or
fulfillment of time constraints, for time-critical and mission-critical ToT-enabled applications [2].
As a result, offloading compute-intensive and energy-intensive tasks to a more resilient computing
infrastructure for further processing is a key enabler to the realization of the new era of ICT.
This solution, called task offloading [B], allows for enhancing the user’s experience by providing
lower latency, better reliability, and improved energy efficiency for battery-powered devices. In
a typical offloading scenario, data are transmitted through wireless links, i.e., cellular or WiFi
and the quality of the wireless connection heavily depends on signal strength, interference, packet
dropouts, and other parameters related to the wireless environment, which must be considered
in the offloading decision. The computation offloading aims to save time and energy on the end

devices’ side.

However, as Fig. @ illustrates the global projection of Internet users. The Compound Annual
Growth Rate (CAGR) is expected to grow 6 percent, making the total number of users an immense
number of 5.3 billion by 2023, [4]. As studies show [5], [6], in a few years, one of the most anticipated
challenges will be the huge growth in data produced and devices connected since the majority of
the devices (sensors, wearables, etc.) will be interconnected. Moreover, new types of applications,
in the context of massive Machine to Machine (M2M) [[7], will be available to support every aspect
of everyday life, significantly affecting the way we perceive the world. Accordingly, the global

growth of devices is expected to grow to almost 30 billion in 2023 [4]. These connected devices will
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Figure 1.1: Global Internet user growth [@]

constitute the Internet of Things (IoT) and potentially generate a massive amount of data.

Naturally, a well-tested solution of where to seek increased availability of computational re-
sources lies in the Cloud. Cloud Computing (CC) a centralized computing model, has shown its
great power of infinite computing capability and on-demand resource provisioning [E], [B] There-
fore, to augment the power of mobile devices, the concept of Mobile Cloud Computing (MCC)
was introduced [@] MCC is still the state-of-practice service delivery paradigm that can extend
the resource capabilities of the end devices. Hence, it is common to offload computation-intensive
tasks of resource-intensive applications to a centralized Cloud Computing infrastructure speeding
up application execution and saving on energy consumption. In current implementations of IoT
applications, most data that needs storage, analysis, and decision-making is sent to the data cen-
ters in the Cloud [@] Generally, public cloud vendors have built large data centers in various
parts of the world. These large-scale, commodity-computer data centers have enough computing
resources to serve a very large number of users.

However, for this vision to become a reality, new demands arise from these large-scale infras-
tructures, such as the ability to manage and orchestrate massive amounts of data and devices,
while enabling automated instantiation and communication of the corresponding services [@] On
the other hand, as time-sensitive and location-aware applications emerge (such as patient monitor-
ing, real-time manufacturing, self-driving cars, drones, augmented reality (AR), or virtual reality
(VR)), the cloud will not be able to satisfy the ultra-low latency requirements of these applica-
tions, deliver location-aware services, or scale to the magnitude of the data that these applications
produce, as cloud services are not able to directly access local contextual information, such as
precise user location, local network conditions, or even information about users’ mobility behavior
[@] Therefore, the CC paradigm falls short to address all emerging scenarios due to its inherent
limitations [@] The benefits of the powerful computing resources that are available at a cloud
data center are counterbalanced by the increased network delay for sending data over the public
Internet. This is exactly how the term Edge Computing (EC) was coined [@] Coinciding with
some similar concepts such as “fog computing” [@} or “mist computing” [@], EC pushes the com-

puting from the centralized cloud towards the data source (e.g., mobile devices). Hence, lately,
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the computing paradigm that has drawn a lot of attention from researchers, and the Industry is
the concept of Multi-Access Edge Computing (MEC) [@] The core idea is to introduce a more
distributed infrastructure that will enhance performance and assist applications by bringing Cloud-
like capabilities closer to the end devices, at the edge of the network [@] This new infrastructural
layer between the end devices and the Cloud is able to reduce the increased communication delay
of the network, while keeping the computation power of servers to support applications with real-
time requirements. Therefore, end devices are now capable of offloading their resource-intensive

tasks to a proximate server of the Edge infrastructure, thus minimizing the overall execution time.

Fig @ shows the general architectural concept of EC. MEC deploys edge servers between
the device layer and the Cloud layer for providing distributed networking, computing, and storage
resources. Oftentimes, these edge servers are placed near a collection of selected base stations, that
is, every edge server should be co-located with a specific base station. Moreover, the MEC and
MCC servers are commonly interconnected with high-efficiency /high-throughput fiber connections
[@] In such an environment, a device can offload complicated tasks to an edge server via a given
base station within its proximity. The key difference between Cloud and Edge data centers is that
the latter has a finite amount of computing resources. As a result, edge servers may suffer from
overloaded workloads as the number of application requests is explosively growing. Therefore fine-
grained resource management solutions are required to meet the strict constraints of the deployed
time- and mission-critical applications. Another crucial point is the automatic orchestration of
virtualized applications both in terms of computing and network resources [@] To this extent,
Network Function Virtualization (NFV) [@] and Software-Defined Networking (SDN) [@] are the
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key enablers of the prominent 5G infrastructure facilitating the decoupling of software deployment
from hardware. By enabling 5G network slicing [24], NFV and SDN automatically orchestrate,
instantiate, and manage the computing and network resources of virtual networks over a single

physical infrastructure.

The synergetic combination of recent technological improvements redefines the way people live
in various societal domains. In the smart computing context, sensor networks, Edge Comput-
ing, IoT, and big data analytics are properly orchestrated to provide assisting applications for
human daily activities such as education, health, and transportation. Moreover, there are nu-
merous indicative scenarios of the new breeds of latency-sensitive applications that require the
joint consideration of IoT and MEC technologies. Indicative ones include smart homes and smart
cities, healthcare, autonomous vehicles, augmented reality and virtual reality applications, retail,

wearable IoT, ToT in mechanized agriculture, and the Industrial Internet of Things (ITIoT).

The MEC paradigm is currently more relevant than ever, especially in the context of (i) the
much-anticipated Industry 4.0 revolution [25] and (ii) the realization of Smart Things [26]. For
the first case, IIoT introduces the novel concepts of Edge/Fog [27] or Cloud Robotics [2§]. Both
concepts can be defined as the architecture that distributes computing, storage, and networking
functions at the Edge/Cloud continuum in a federated manner[29],[80], i.e., where robots and
automation systems rely on data or code from a proximate infrastructure to support their operation.
For the second case, we provide two indicative use cases. Smart Cities [B1], [32] envision a world
where sensors, devices, and citizens will seamlessly interact to assist in human activities [33]. As
smart applications are mainly based on portable devices, the location awareness of people and
devices is one key ingredient for enabling these services. Moreover, Smart Vehicles [34] allow
the development of vehicular applications, e.g., planning, navigation, and compression of data,
which will provide safe and comfortable services for drivers. Hence, the evolution of Location
Based Services (LBS) [35],[36] and their integration with MEC architecture is expected to play a
significant role in both scenarios of smart things [37].

Moreover, the convergence of Artificial Intelligence (AI) and IoT can redefine the way industries,
businesses, and economies function. Al-enabled IoT creates intelligent machines that simulate
smart behavior and supports decision-making with little or no human interference. Naturally, Edge
Intelligence is a new term that defines the confluence of AI and Edge Computing [3§]. Bringing

intelligence to devices (i.e., IIoT, Smart Things) is crucial in the emergence of new applications.

These novel technologies facilitate the formulation of Cyber-Physical Systems [39] (CPS) that
require automated decisions in the sense-compute-actuate cycle. CPS are systems where software
and hardware components are seamlessly integrated towards performing well-defined tasks. CPS
are characterized by seamlessly interweaving the physical world of infrastructure objects and the
virtual world of information processing [40]. As a research field, CPS are about the intersection, not
the union, of the physical and the virtualized worlds. Separately designing, analyzing, modeling,
and understanding the physical and computational components and then connecting them together

is not enough. To properly understand and design the optimal behavior of a CPS it is crucial to
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enable the integration of different components including computation, networking, and physical
processes. Moreover, CPS must execute complex algorithms that usually are computing-intensive
and can not be executed in resource-constrained devices.

To this end, the paradigm of approximate computing is introduced and widely used in CPS in
recent years [41]. Approximate computing follows the basic principle of reducing the number of
computations that an application must perform, thus reducing the applications’ execution time,
however producing a potential but acceptable loss in accuracy. Approximate computing is ap-
plied at different levels, including hardware acceleration (e.g., CPUs, GPUs, FPGAs, TDUs, etc.),

software, algorithms, and even programming languages.

1.1 Challenges and Motivation

As discussed previously, bringing the decentralized computing infrastructure to the edge of the net-
work brings various advantages (e.g., low latency communication, scalability), but it also brings
new challenges. Moreover, the optimal support of CPS depends heavily on the provisioning of the
right piece of data to the right computing entity in a timely manner [24],[42]. This introduces
new research and design challenges concerning data processing, offloading decisions, architecture
aspects, resource allocation, and controllers’ design [43]. Apparently, there is a need to investigate
the key requirements and potential opportunities for enabling the vision of edge computing to
support CPS. Thus, it can be concluded that in the emerging edge computing paradigm, several
problems arise, and innovative research is needed to address them. The significant advances in
recent technology trends, and interest in state-of-the-art research from both Academia and Indus-
try, motivate researchers for approaching and trying to solve interesting and challenging problems.
In this thesis, we wanted to take this opportunity and propose solutions to some modern and

interesting problems by taking into account the following subjects:

¢ Device-Specific Offloading Aspects: This is one key challenge in realizing the optimal
support of CPS in the edge computing ecosystem. To begin with, IoT networks are dom-
inantly characterized as rapidly varying access networks. Therefore, the dynamic network
conditions are a very challenging problem in the context of task offloading [44]. Estimating
the behavior of the network and predicting all of the phenomena (e.g., noise, interference,
fading, and signal deterioration) that heavily impact the overall throughput and communi-
cation delay adds an extra level of complexity. When new tasks are generated by a device, a
decision mechanism is required for the task partitioning problem namely; to decide whether
the task should be executed locally or be offloaded to a remote infrastructure. An incorrect
offloading decision may result in performance bottlenecks in the application. Optimizing the
overall performance, offloading is beneficial only if reliable and low-latency wireless connec-
tivity is available. Apart from the network, the success of the computation offloading, and
consequently the performance of IoT-enabled applications, depends on many contextual pa-

rameters, e.g., the user’s mobility, and residual energy of the device. This partition decision
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of the tasks is also associated with the task execution delay, the transmission delay, and the
energy consumption of the device. As a result, deciding whether to offload an application
request or not is the first challenge to address as it defines the core of the offloading problem

and the accompanied resource allocation on the edge.

Optimizing Resource Management: This constitutes the main motivation behind this
thesis, as resource management is the core challenge that has to be tackled in the edge
computing paradigm, where, naturally, resources are not abundant. In the decentralized edge
computing paradigm one must appropriately map the applications’ workloads to suitable host
nodes based on their resource requirements. Also, as said before the available resources on
the edge servers are limited compared to the cloud. Thus, resource management arises as an

important concern in the emerging computing paradigms [16].

In the age of virtualization techniques, it is typical for IoT workloads to run on Virtual
Machines (VMs) [45] or Containers [46] on the edge servers. Two main decisions arise by the
infrastructure providers that directly impact the response time of the applications, namely;
(i) the computing resources to assign to the virtualized resources and (ii) the number of
instances (replicas) for each virtualized entity. Furthermore, as multiple applications [47]
and/or devices may seek additional computing resources in the same edge datacenter, it
is of high importance the efficient and dynamic assignment of the resources of the hosted
applications. It is a major challenge to meet viral QoS requirements primarily due to a
set of competing Key Performance Indicators (KPIs). For instance, a resource management
strategy must guarantee the performance requirements of the applications, while at the same
time minimizing the cost of the deployed resources [48]. Moreover, it is common for modern
applications to be computationally intensive and require a significant amount of resources
for task execution. This imposes the design of dynamic resource allocation strategies for
the underlying edge and cloud infrastructure, which in turn facilitates the deployment of
industrial applications as network services that can be reconfigured on demand. Hence,
orchestrator providers usually realize proactive and reactive solutions to address the dynamic
nature of the workload and the adjustment of the provisioned resources, while monitoring

various KPIs.

On the other hand, efficiently utilizing the available resources is an important challenge. It
is crucial to optimize resource utilization to gain better performance for all the deployed
applications [49]. The optimization of resource utilization is a multi-objective task and very
exciting to tackle as one must consider the diverse requirements of applications, the fluc-
tuating workload demands, and the finite resources of the infrastructure. Throughout the
literature, researchers utilize queuing theory to model mobile devices and edge servers, along
with an optimization technique for deciding the optimal offloading policy [B9]. Unfortu-
nately, in some cases, there is a major drawback that can lead to overall performance dete-

rioration: the static modeling of the edge servers’ resources which leads to over-provisioning
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or under-provisioning of resources or to under-utilization and over-utilization respectively
[60]. Finally, following the resource provisioning process, a scheduling algorithm (or load
balancing) is adopted for processing and optimally mapping the incoming tasks/applications
(workload) to the virtualized resources. For instance, if a VM becomes overutilized then it
should be temporarily excluded from the pool of resources dedicated to executing the appli-
cations’ tasks. resources are temporarily excluded from any future allocation. However, task
scheduling also includes diverse challenges such as heterogeneity of requests and resources,
and uncertainty of the number of incoming requests, which cannot be resolved by using tra-
ditional resource management approaches [51]. Hence, a large focus, and priority should be
drawn to these to make services more reliable. In other words, serving the workload should
take up the minimal amount of resources that will be well utilized to maintain a desired QoS

level.

¢ Performance Modeling of Dynamic Workloads and Applications: As said before
dealing with the dynamic nature of the applications’ workloads is key to achieving high
system performance [52]. In the literature, most of the existing models for capturing the
requirements in resources of IoT applications are empirical and most commonly highlight a
specific performance metric such as response time, and energy consumption [63],[51]. Dealing
with the dynamic workload, the various requirements of different IoT applications, and the
unmodelled behavior of resources’ state, are not trivial tasks to handle. Hence, relying
on these simple may lead to either performance degradation or not optimal utilization of
resources. As a result, one must design multi-input multi-output performance models easily
applicable to a large subset of applications to capture such dynamics. In such a way novel
controllers can be realized for regulating the aforementioned KPIs. To achieve the highly-
anticipated workload characterization and performance prediction the first step is to try to
predict the number of incoming requests in the edge infrastructure [54]. This prediction can
be combined with a resource allocation mechanism since the amount of resources required for
the task execution is directly proportional to the amount of traffic (i.e., the request rate). To
this extent, a key enabler of scaling resources according to the workload traffic is identifying

the maximum number of requests that the provisioned resources can process.

¢ Designing Practical Approximate Computation Offloading Strategies: In recent
years complex applications are emerging, targeting among others to bring Edge Intelligence
to IoT devices, mobile agents, and robotics [65],[66]. Especially, Industry 4.0 applications
especially rely on mobile robotic agents that execute many complex tasks that have strict
safety and time requirements, e.g., algorithms related to image processing, planning, local-
ization, mapping, and autonomous learning. These algorithms are computing- and memory-
intensive and the resources of robots and IoT devices are not sufficient to build efficient,
safe, and autonomous robot operations [57]. Consequently, new problems arise and one

must carefully decide deployment strategies - where to place a workload, connection policies
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- when to use the edge nodes, heterogeneity - how to deal with different types of nodes,
the accuracy of complex algorithms - how much to save response time while the loss in
accuracy of a complex algorithm is acceptable. The execution of compute-intensive com-
ponents of IoT applications in edge computing infrastructures involves complex application
partitioning and application quality selection at different granularity levels and component
migration to the edge server node. Furthermore, suitable as it may seem, solely utilizing
remote computational resources might not be enough; a number of unwanted phenomena
potentially take place in the transmission and processing of the information, such as network
latency, variable QoS, and downtime. For these reasons, for example, autonomous mobile
agents (e.g., robots, unmanned vehicles) often have some capacity for local processing when
targeting low-latency responses and during periods where network access is unavailable or
unreliable. Consequently, a major challenge, from a control design, estimation, and network
optimization point of view is to combine local fast but possibly accuracy-limited algorithms

and remote, precise but computationally intensive ones in an efficient way.

Co-Design Closed Loop Controllers in the context of 3C: Finally, having said all
that, a key challenge in designing controllers for the optimal behavior of CPS is to provide
some guarantees on closed-loop performance [43]. Especially, in modern manufacturing, the
current trend is to remove IToT (e.g., mobile robots, actuators, etc.) from confined spaces
and allow them to roam freely around the production floor, improving collaboration and
collaboration with humans, thus increasing productivity and efficiency. Open challenges in
this area include the development of adaptive multi-robot/machine controllers, the detec-
tion, modeling, prediction, and forecasting of human-robot interactions, and the design of
distributed control and planning algorithms that provide flexible and safe working environ-
ments. Because most IIoT applications such as warehouse robotics, telesurgery, industrial
automation, and real-time data processing, are mission-critical and require real-time com-
munication and processing to function effectively in a closed loop, the IIoT requires the
joint design of control, computing, and communication (3C). However, most of the existing
IToT research focuses on just one aspect of the 3Cs. Such an independent design approach,
ignoring the close interaction between the 3Cs, has poor overall and system performance,
and consumes significant wireless and computational resources. To achieve safe reliable and
high-performance control with low latency in industrial environments the emerging approach
of co-design is mandatory. Towards successful closed-loop operations, the co-design of Con-
trol, Communication, and Computing (3C) is required to provide reliable, low-latency, and
high-performance control. Thus, an approach is to design a local controller that takes feed-
back from the remote controller. Then, one must derive the conditions under which such a
hybrid scheme might offer stability assurances and be beneficial. To this end, the controller
synthesis should provide formal closed-loop guarantees and stabilize the overall performance

leading to safe and optimal behaviors.
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1.2 Contributions

This thesis tries to tackle some of the aforementioned problems that arise in edge computing
and computational offloading of CPS. Our main focus lay on optimizing the performance of CPS
optimally utilizing offloading policies and carefully designing resource management strategies. The

contributions to the above topics can be summarized in the following:

1. Modeling the Performance Dynamics: New-generation resource management solutions
require sophisticated performance modeling abstractions to capture the various dynamics of
the application requirements, resources’ state, and users’ demands. A major novelty of this
thesis is the introduction of resource profiles (or flavors) to achieve all of the above. Resource
profiles express the relationship between the allocated resources and the maximum request of
incoming requests of a specific application that the resources can serve while keeping a cer-
tain QoS level. The advantage of the resource profiles design is three-fold. First, a resource
profile is actually a feasible operating point and facilitates the dynamic resource allocation
process by giving knowledge regarding the number of instances required for the virtualized
resources. Secondly, the combination of these resource profiles with controllers can enable
fine-grained scaling approaches for time- or mission-critical applications. Third, we optimize
the performance of the underlying resources solving the aspect of under/over-provisioning
while paving the way for tackling resource heterogeneity, as will be shown in the following
sections. In this thesis, we experimented with two different modeling methodologies to ex-
tract the resource profiles. On the one hand, we used System Theory, which has the capacity
to include several performance metrics (i.e., state variables) and resources as control param-
eters (input variables) and describe their relationship under various operating conditions and
QoS guarantees. On the other hand, we used simple ML algorithms that leverage information
from (i) the scheduling and resource allocation solution, (ii) the monitored KPIs, and (iii)
the workload prediction algorithm to estimate the essential number of replicas for meeting
the workload demand. The key enabler to both approaches is modeling the workload, i.e.,
estimating the number of incoming requests for the application leveraging time-series fore-
casting methods. The proposed designs aim to be easily re-configurable solutions that tackle

both the proactive and reactive aspects of the resource management problem.

2. Joint Resource Management and Task Scheduling in EC: Maximizing the perfor-
mance of modern applications requires timely resource management of the virtualized re-
sources in EC. However, proactively deploying resources for meeting specific application
requirements subject to a dynamic workload profile of incoming requests is extremely chal-
lenging. To this end, another major novelty of this thesis is that the fundamental problems
of task scheduling and resource autoscaling are jointly addressed. Consequently, together
with the offloading decision, a dynamic resource allocation and admission control mechanism
is proposed in this thesis, which is called Task Scheduling and Scaling Mechanism. This

mechanism is responsible for the distribution of offloaded requests among the application
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instances, alongside the admission control (i.e., accepting or rejecting the offloaded requests
according to resource availability) and dynamic resource allocation for each application (i.e.,
deciding the number of replicas for each resource profile). Again, a workload profile esti-
mator and the dynamic modeling of the resources and overall status of the network/servers
provide the foundation upon which the resource allocation algorithm works. Specifically, the
Task Scheduling and Scaling Mechanism is introduced for the resource management of the
constrained resources of an edge datacenter, utilizing the aforementioned resource profiles
to dynamically adjust the number of deployed resources and assign the incoming requests
of an application to them while keeping certain QoS levels. The proposed algorithm is de-
signed to be practicable, and guarantee feasibility and performance specifications, such as
adaptability to rapid changes in the workload and resource availability. This preliminary
mechanism is then enriched by exploiting stability guarantees derived from queuing theory
to provide a decentralized mechanism for the task scheduling and resource allocation prob-
lem, trying to build a holistic scalable architecture. The proposed event-triggered scheme
facilitates the proactive scaling of resources subject to a dynamic workload profile via a novel,
intuitively conceived locally identifiable triggering condition. This research addresses the so
far untouched challenge, of designing controllers that address a mixture of these unwanted
phenomena by changing in an event-based nature the provisioning of the resources to the
control algorithm, taking also into consideration various KPIs in both proactive and reactive

manner.

. A Switching Offloading Mechanism in the context of 3C: In all the settings of the next

chapters, we assume that devices seek additional computing resources at an edge server. As a
result, in this thesis, we design optimal offloading policies for CPS. Initially, the focus is placed
on pure wireless communication network quality for mobile users. A two-step mechanism to
support and realize the offloading decision is devised, considering both users’ contextual
information and the availability of the edge resources. More specifically, mobile users offload
their LBS requests taking into consideration their position and the signal strength of the
connection with a wireless access point to minimize the communication overhead. Also, the
edge infrastructure may reject a request (i.e., the user has to execute it locally) if the available
resources are not sufficient to keep a certain QoS level. Following in the next chapters of
the thesis, a similar switching offloading mechanism is realized to assist in optimizing the
offloading of computing-intensive algorithms in IIoT), i.e., a mobile robot. To further alleviate
the computational strain from the resource-constrained robot, we implement two different
versions of these algorithms following the approximate computing paradigm namely; (i) a
local (on the device), fast must not sufficiently accurate, and (ii) a remote (on the edge
server), precise but expensive in terms of resources and/or time. Hence, by adopting switching
offloading policies which consider the uncertainty of the local’s algorithms we are able to
build a framework that assists a mobile robot in a simple navigation mission, i.e., reaching

a waypoint from a starting position. Remotely executing these computing-intensive tasks is
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only performed in case offloading is beneficial i.e., when the communication overhead is low
and the available resources of the edge server are adequate to perform the tasks. Moreover,
embracing the concept of 3C, the switching offloading mechanisms also consider input from
a control perspective namely; the need for a more accurate estimation of the mobile robot,
the proximity to obstacles, and the difficulty of the navigation, to guarantee safe navigation.

Consequently, this mechanism facilitates optimal offloading for CPS.

4. A Resource-Aware Estimation and Control Framework for Edge Robotics: Re-
specting the need for stability guarantees and closed-loop controllers for CPS, we extend
the modeling for the navigation of a mobile robot. A novel resource-aware estimation and
control framework for edge robotics is realized, which jointly tackles the problem of conver-
gence in the trajectory navigation of a unicycle robot, and the problem of efficiently using
communication and computing resources is presented. Utilizing a utility function that in-
corporates the dynamics from respective control, communication, and available computing
resources, we build a framework to handle two fundamental problems: a) the synthesis of
controllers that dictate the motion of the unicycle robot in this path planning problem and
b) an offloading strategy to compensate the uncertainty of the local estimation techniques
with the more accurate remote ones while finding the balance between navigation accuracy
and mission duration. More importantly, the proposed framework guarantees convergence to
the target position independent of the various parameters chosen, in contrast to the periodic
offloading schemes. The whole approach is easily adjustable to the needs of different mission

characteristics.

5. Evaluation of proposed frameworks with Relevant to Architectures and Stan-
dards: Extensive numerical results are presented, which are obtained via real experimen-
tation or simulations in order to capture the effectiveness and efficiency of the proposed
frameworks. Especially, for every real experimentation that will be presented in this thesis,
we chose to follow the wide-adopted solutions, namely the European Telecommunications
Standards Institute (ETSI) MEC standards [58] and implement them with commercial or
open-source resource orchestration tools, that enable scalability, interoperability [59], and
transparent development of the applications [60] over heterogeneous hardware and software
technologies [61], i.e., NFV orchestration and widely used software tools (e.g., OpenStack
[62], Kubernetes [63]).

In the following, Chapter 2 introduces some preliminary notions and concepts pertaining to
the adopted scientific methodologies by this thesis. Then, each chapter focuses on one of the
aforementioned settings and use case scenarios, presenting the related work in this respective
field and introducing the developed solutions together with extended numerical evaluations

of their effectiveness and efficiency.
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Chapter 2

Background

In this chapter, the essential mathematical background necessary to understand the methods that
are used in the following work will be presented. Any additional information required will be

provided in the main part of the thesis, whenever it is needed.

2.1 Basic Definitions of Modeling and Control Theory

2.1.1 Linear Time Invariant State Space Models

A state space model of a system is the mathematical description of the relationship between the
cause and the effect or the inputs and the outputs of the system [64]. In this thesis, discrete time

state space models are solely utilised. The general form of a discrete time state space model is

2(k+1) = f(a(k), u(k)), f : R" x R™ — R, (2.1)

where z(k) € R, u(k) € R™ are the state and the input vector respectively and k € N. The most
widely used state space models are the linear time invariant (LTI) state space models, where the
function f(z(k),u(k)) of (@) is linearly dependent on x(k) and u(k),

z(k+1) = Az(k) + Bu(k), (2.2)
y(k) = Cz(k) + Du(k). (2.3)

Sy

Here, A € R™*"™ and B € R™*™ are constant, time invariant matrices that describe the system’s

dynamics and y(k) € R is the system’s output vector.
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2.1.2 Stability

In modern control theory, the notion of stability is strongly connected with the dynamic behavior
of a system. Many different kinds of stability are defined, i.e., input-output stability or stability
of an equilibrium point. In general, a stable system means that the state variables of the system
are driven to a specific equilibrium point or inside a desired area and they remain there despite
any insisting or momentary disturbances. In this chapter, the focus is put on the stability of an

equilibrium point (Zeq, teq). An equilibrium pointE satisfies the equality

Teq = AZeqg + Bueg. (2.4)

The most general type of equilibrium point stability is Lyapunov stability, which guarantees that
the system trajectories will remain close to g, if they start from a neighborhood in the equilibrium
point’s vicinity [65].

Furthermore, in the following sections, asymptotic stability is adopted, together with the set-
theoretic notions of stability analysis and control design problem, which identify and characterize
subsets of the state space, containing the desired equilibrium state with special properties: posi-
tively invariant sets are introduced here. In the forthcoming paragraphs, without loss of generality,

all the necessary definitions are given assuming that z., = 0.

Definition 1. A sphere Bs with radius s > 0 and the origin as its center, is denoted as

B, ={x e R" :||z| < s}, (2.5)
where ||| is any possible norm of vector x.

Definition 2. Assuming a discrete-time system of the following form

z(k+1) = f(x(k)), (2.6)

then the equilibrium point x.q = 0 is locally Lyapunov stable, if and only if Ve > 0,36 = 6(e) > 0.
Then,

To € Bg(e) = Qj(t;fﬁo) € B, Vt > 0. (27)

Definition 3. The zero equilibrium point of (@) is contractive in a region D C R™ if Vxg € D

and

lim x(t;zo) = 0. (2.8)

t—o0

The region D is called Domain of Attraction (DoA) of the equilibrium point.

11t should be noted here that, for the rest of this thesis, the terms “equilibrium point”, “operating point” and
“resource profile” will be used interchangeably.
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Definition 4. The zero equilibrium point of (@) is asymptotically stable if and only if it is

Lyapunov stable and contractive,

flggo x(t;20) = 0,20 € Bse) C D, (2.9)
where D is DoA.

In the following definitions, the essential results of the Lyapunov theory (second or direct
Lyapunov method), which connect the stability property with a specific type of functions, are

presented.

Definition 5. Assuming a continuous function V(z),V : D — R, where D contains the origin.
Then V(x) is positive (semi)definite in D if

V(z) > (2)0,Vz € D\{0}, (2.10)
V(0) = 0. (2.11)

Definition 6. Function V(x) is negative (semi)definite if —V (x) is positive (semi)definite.

Definition 7. For discrete time systems (@), the total difference of function V(z),V : R" = R,
respectively to system (@) is

AV (z)Ed) = V(f(2)) - V(z). (2.12)
Then, the Lyapunov theorem for discrete time system is formulated as,

Theorem 1. ([64, 165]) Assuming a positive definite function V(z),V : D — R, then

o If the total difference AV (z)Ed) of () is megative semidefinite Vo € D, the system is
locally Lyapunov stable.

o If the total difference AV (x)Egd) of () is negative definite Vo € D, the system is locally
asymptotically stable.

The function V (z), which satisfies the above theorem, is called Lyapunov Function (LF). From
the previous analysis, the stability problem is equal to finding a positive definite function that
is non-increasing or decreasing along the trajectories of the system (@) Finding an LF, allows
for defining sets with special properties respective to the equilibrium point. For example, if there
exists an LF V(x) that guarantees the stability or asymptotic stability in a region D and the sets
R(V;y)={x € R": V(z) <~} C D are close and contain the zero equilibrium point, then these
sets consist an estimation of the DoA. The essential definitions follow.

The most important benefits of the Lyapunov theory are the characterization of the stability of

the equilibrium point and the possibility of defining sets with interesting properties. For example, if
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an LF can be found, which ensures the asymptotic stability of the equilibrium point of a constrained
system z(t) € S, C R™, then any trajectory that begins from a point inside R(V;v) C S, will be

driven to the equilibrium point, without violating the system constraints.

2.2 Basic Definitions of Queuing Theory

We define a request as an individual demand for computing resources provided by a computing
node. A computing node is defined as the physical (or virtual) computing environment, consisting
of hardware, software, and network resources, where a request is executed. A queue is defined
as the waiting mechanism where a request arrives at a node and is temporarily put on hold until
it is selected for service from among other requests that are waiting. Here, we consider queues
consistent with the First Come First Served (FCFS) selection policy.

A queuing system [66], [67] is defined as the dynamic relationship that is developed between a
stream of request arrivals and a flow of request departures from a computing device, respectively,
in the presence of a queue. From a mathematical perspective, a queue acts as an integrator of
the difference between arrival and departure rates. A simple queuing system is consistent with
the following notation. Denoting by X (¢) and Y (¢) the arrivals and departures from a queue,
respectively, in the interval [0,¢], the number of queued requests at time ¢, Q(t), is defined as the
difference between arrivals and departures in intervals [0,¢]. Note that exact knowledge of X ()
and Y'(t) is difficult in real applications.

Furthermore, in the following chapters, we consider a set of n computing nodes represented by
a multi-queue system, where each node is modeled by a queue combined with a computing node.
We assume that a workload A from an application arrives at the system and the central batch
queue. The workload then must be scheduled or dispatched to n nodes according to an admission
control policy u;(t),7 = 1,...,n, with each node representing a virtualized computing unit. We
denote the number of queued requests that have not yet been admitted at time ¢ by §(¢), and the
number of admitted requests waiting to be selected for service by the i*" node at time ¢ by w;(t).
The service rate (processing) of the i*" node is denoted by 7;,i = 1,...,n. The described system

is depicted in Fig. EI

2.3 Basic Definitions of Set-Theoretic Estimation

In chapter B, we investigate the problem of Set-Theoretic Estimation for mobile robots. We first

need to find the Reachable Sets. Consider a dynamic system of the form

z(t) = f(x(t), u(t)) (2.13)

or of the form

z(t +1) = f((t), u(t)) (2.14)

47



2.3. BASIC DEFINITIONS OF SET-THEORETIC ESTIMATION BACKGROUND

- o)
w1 (t)

A — ﬂ o)
5(t) | wa(t)

n (t) . @
wp,(t)

Figure 2.1: A multi-queue system.

where u(t) € U. The following classical definition of reachability set is reported.

Definition 8. Reachability set. Given the set P, the reachability set Ry (P) from P in time T < +
is the set of all vectors x for which there exists x(0) € P and u(i) € U such that x(T) = .

Reachable sets are useful to describe the effects of a bounded disturbance on a dynamical system
or to describe the range of effectiveness of a bounded control. Unfortunately, the computation of
reachable sets is, in general, very hard even in the discrete-time case.

Now, let us formulate the problem of Set Estimation in a general framework. Here we mainly

consider discrete-time systems, although the concepts we present apply to continuous-time as well.
z(t+1) = f(z(t), u(t), d(t)) (2.15)

y(t) = g(a(t), w(t) (2.16)

where we assume d(t) € D and w(t) € W, with D and W are convex and compact subset of
R™. The control u(t) € U is always assumed to be known in the present context, for example,
determined by a respective control algorithm.

Together with the information given by equations ()—( ) we assume to have a priori
information regarding the initial state:

2(0) € Xo. (2.17)

Now we introduce two operators from set to set. Given a set X C R", define the set of all

reachable states in one step for all possible d(t) € D given the control action u(t) € U, according

to equation ()

Reach[X, D)(u) = z = f(z,u,d),z € X,d € D. (2.18)

Given a guess about the state in ¢, the previous equation propagates this information at ¢ + 1.
Clearly, in this way, the information about the actual state spreads. However, by means of ()7

48



BACKGROUND 2.4. SEMIDEFINITE RELAXATION

we can exclude a portion of the new guess region that is not compatible with measurements. Let

us introduce the set of all the states compatible with measurements as:

Comp[W](y) =« : g(x,w) =y, for some w € W. (2.19)

Besides, using (P ),() we can describe, the estimation set. Let us formally define the

concept.

Definition 9. Estimation region: The set X(t) is an estimation region (set) at time t given the
information (Ela),(Ela) and (El() over a prescribed horizon 0,1,....t, if the condition x(t) €
X (t) is assured for allw € W and d € D.

Now we present a common procedure to compute a Non-conservative state-membership esti-
mation. For the dynamic system described by (P ),(), given the initial estimation () let
X (k|k) be the set of estimated states at step k that are output compatible:

X (k|k) = X (k) N Comp[W](y(k))

. Then set t = k and perform the following steps.

1. Given the current value of the control u(t), propagate this set forward

Z(t +1|k) := Reach[X (t|k), D](u(t)).

2. Compute the new estimation set as the intersection with the compatible set

X(t+1|k) = ZZ(t + 1|k) N Comp[W](y(t + 1)).

3. Set t =t + 1 and go to Step 1.

The difficulty of iterating the method is apparent as we may encounter non-convex sets and com-

putations.

2.4 Semidefinite Relaxation

In this section, we will introduce the semidefinite relaxation (SDR) technique. In particular,
this technique can be applied to many nonconvex quadratically constrained quadratic programs
(QCQPs). Let us write the problem of interest, namely, the real-valued homogeneous QCQP: The
QCQP Problem is defined as follows:

min xT Cx (2.20a)
xXER™
st. xTAx2,b; i=1,...,m (2.20b)
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where £, represent either ” < ”,” > ” or ” = ” and the matrices C,Aq,...,Ay € S” are all
positive semidefinite, where S™ denotes the set of all real symmetric n x n matrices and b; € R.
A crucial first step in deriving an SDR of is to observe that

xTCx = Tr(xTCx) = Tr(CxxT) (2.21)
xTA;x = Tr(xTA;x) = Tr(A;xxT) (2.22)

T

We define a new variable X = xxT, where X is symmetric and noting that X = xx7T is equivalent

to X being a rank one PSD matrix, we obtain the equivalent to () formulation:

Jmin Tr(CX) (2.23a)
st Tr(AX) 2,6 i=1,...,m. (2.23b)
X >0 (2.23c)
rank(X) = 1. (2.23d)

The Tr() operator is the sum of elements of the main diagonal. The Rank operator refers to the
number of linearly independent rows or columns of a matrix.

Then, if we drop the rank(X) = 1 constraint then we get the relaxed problem:

i Tr(CX) (2.24a)
st Tr(AX) &b i=1,...,m. (2.24b)
X > 0. (2.24c)

Using convex optimization (e.g., Matlab CVX) we can obtain a solution.

Let X* be the optimal solution to () then if X* is of rank one then we have the optimal
solution for () Otherwise, we need a vector X that is feasible for ()

Let X € 8™ be an arbitrary symmetric positive semidefinite matrix. Consider a random vector
& € R™ drawn by the Gaussian distribution £ ~ A(0,X). Then we want to optimize the expected

value:

. T
ecin Fe o0 {€7CE) (2.25a)

st Beon{€TA}, i=1,...,m, (2.25b)

this stochastic interpretation can generate approximate solutions to () Given a solution X
we can generate & ~ N(0,X), A solutions and construct a QCQP-feasible point with a mapping
function, e.g., sgn(&y). Then from the computed feasible solutions, we choose the best.

This thesis will also provide more explanations on modeling and control theory-related concepts

whenever needed.
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Chapter 3

A Scalable Edge Computing
Architecture Enabling Smart
Offloading for Location-based

Services

3.1 General Setting

As mentioned in Chapter E], the ever-increasing amount of data produced, along with the emergence
of next-generation computationally intensive applications, requires new service delivery models.
Such models should capitalize on the Edge Computing (EC) paradigm for supporting the data
offloading process, by considering the user’s contextual information in the offloading decision along
with the infrastructure resource allocation operations, towards meeting the stringent performance
specifications. Despite the plethora of research works that have adopted and exploited the MEC
paradigm, there are still important challenges to be addressed, pertinent to the realization of
Location-based Services for a Smart City environment.

In this chapter, a two-level Edge Computing architecture is proposed to offer computing re-
sources for the remote execution of an LBS. At the Device layer, an initial offloading decision is
performed taking into consideration the estimated position and quality of the wireless connection
of each user. At the Edge layer, a resource profiling mechanism maps the incoming workload to
EC computing resources under specific performance requirements of the LBS. Dealing with the
dynamic workload, a scaling mechanism simultaneously takes the offloading decision and allocates
only the necessary resources based on the resource profiles and the estimation of a workload pre-
diction technique. For the evaluation of the proposed architecture, a smart touristic application

scenario was realized on a real large-scale 5G testbed, following the principles of NF'V orchestration.
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3.2 Related Work

This section presents the most relative studies of the literature to our proposed EC solution for
LBS. The following studies are classified based on three interdependent pillars; (i) Edge Computing,

(ii) Computation Offloading, and (iii) Location Estimation.
(i) Edge Computing

Puliafito et al. [68] presented a detailed survey for Fog Computing platforms for ToT-based
applications. In [69], a network slicing orchestration system was proposed for federated data
centers. The orchestration is based on Open Source MANO [[7(0], which is aligned with ETSI NFV
standard. Based on G/G/m queuing model, a heuristic scaling algorithm regulated the mean
overall processing time of the incoming slice orchestration requests. However, no further details
are given on how the network slice placement problem is addressed. MESON [71] focuses on
communication between slices deployed on edge data centers. The cross-slice communication aims
to alleviate the congestion of the core network, minimize the utilization of cloud resources and
meet the requirement of time-sensitive LBS.

Leivadeas et al. [72] proposed a meta-heuristic approach for the placement of network slices in
cloud and edge infrastructure aiming at the minimization of the deployment cost and the end-to-
end network delay. This approach considered that the resource demands of the slices are static and
it can be applied only for their initial placement. Sonmez et al. [73] proposed a fuzzy workload
orchestrator for various EC scenarios. For each offloaded request, a set of fuzzy rules decided
the destination computational unit within an hierarchical EC architecture. However, the authors
empirically defined the fuzzy rules sets, which might not be applicable for services with different
workload characteristics. In [74], the authors addressed jointly the problems of network selection
and service placement for MEC infrastructure. To reduce the complexity of the general problem,
they decomposed it into a series of sub-problems and solved them in an iterative fashion. However,
the proposed QoS model included only network parameters ignoring the processing delay of the
service.

Zenith et al. [75] proposed resource sharing contracts between edge infrastructure providers
and service providers. Specifically, an auction-based contract establishment and resource allocation
mechanism was introduced, focusing on ensuring the utility-maximization for both entities and
the latency constraints. However, the authors did not provide any details on how the tasks were
distributed among the containers of the established contracts. Wang et.al. [76] studied the problem
of VM placement along with the workload assignment for mobile cloud applications in MEC. A
MILP method was designed to minimize hardware consumption in order to deploy VMs, while
satisfying diverse latency requirements of different applications. In [7], the authors proposed
a novel solution to determine both the optimal number of the VMs to spawn, as well as their
placement. For VM spawning, a Mixed Integer Linear Program (MILP) was formulated, while a
game theoretic approach was employed (i.e., Coalition Formation Games), in order to treat the

latter problem.
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(i) Computation Offloading

The offloading decision is critical for guaranteeing the high QoS of LBS. In the literature,
most of the proposed studies focus on a single or group of performance criteria, i.e., latency or
energy, to decide whether the offloading is profitable or not. This paragraph illustrates the most
recent relative studies to our work. The interested reader can refer to [[7g8] for a comprehensive
detailed review of older studies on computation offloading. In [79] a mobility-aware offloading
mechanism (referred to as MAGA) was proposed, based on frequent moving patterns of the users
and a genetic algorithm. MAGA mechanism focused on partial task offloading to EC servers.
However, the dynamic resource allocation of these resources is not considered. Tang et al. [8(] and
Apostolopoulos et al. [81] proposed the adoption of Prospect Theory to design user behavior-aware
MEC offloading frameworks. In both works, the communication and the computation models for
the users were provided and Prospect Theory-based offloading games are formulated taking into
account, user risks, as well as weighting and framing effects. In [82], the authors proposed a task
offloading framework for Software Defined Ultra-Dense Networks that focused on the reduction of
the task duration and the energy saving. The offloading problem was split in two sub-problems;(i)
task placement problem and (ii) resource allocation. Lyu et al. [83] presented a collaborative
Cloud-MEC-IoT architecture and proposed a request modelling scheme and an admission control
framework to address the scalability problem of these platforms. Although the authors considered

heterogeneous edge resources, the computation model was not dynamic.
(i@i) Location Estimation

In the context of indoor localization, many approaches can be found in the literature that
addresses different scenarios and accuracy requirements. In [84], the authors proposed a mechanism
that takes advantage of the information by the WiFi signals and calculates the position of a
moving user with the fingerprinting technique. The mean estimation error of this mechanism
is about 0.85m, showing the advantages of the weighted K-Nearest Neighbor algorithm. Kang
et al. [85] proposed a method to track pedestrian movement in an indoor environment under
the existence of sensing inaccuracy. Similar to our work, they used a smartphone equipped with
accelerometer, magnetometer, and gyroscope sensors and exploited the characteristics of human
motion to estimate the position of a user. The proposed method reduces the influence of the
cumulative errors of the dead reckoning technique. In [86], exploiting Machine Learning techniques,
a tracking system was proposed, estimating again the position of a user, who moves in an indoor
place and interacts with a wireless sensor network. The classification of speed and heading of the
trajectory of the pedestrian was implemented offline supervised by Neural Networks. A different
approach to handle the challenges of indoor localization in a robotic scenario in the Industry 4.0
context was presented in [87]. The single vision-based method is landmark assisted, exploiting
natural features of the landmarks and the core principles of projective geometry, for the self-
localization of an indoor autonomous mobile robot agent. The results of the proposed algorithm

showed a significant accuracy in close range. However, as most of the vision-based methodologies,
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this method is heavily dependent on ambient conditions (e.g., light conditions). In a similar
vein, authors in [88], realized a novel unsupervised learning framework requiring video frames, to
extract pose estimation and introduce a Simultaneous Localization and Mapping (SLAM) system,
that could be also applicable in an indoor environment.

Most of the aforementioned studies usually proposed solutions addressing only one of the above
research problems in isolation, ignoring the rest dominant parameters, thus failing to allow the
design of a holistic solution that achieves both high performance of LBS and optimal utilization of
EC resources. To exactly fill this gap, in this article we propose an EC architecture for LBS that
considers the user’s contextual information on the offloading decision and the resource allocation
of the edge resources. Towards this direction, the proposed framework can meet the performance

requirements of both LBS and EC infrastructure.

3.3 Contributions and Outline

In this Chapter, we develop a two-layer architecture to support smart offloading of a location
based service from IoT or mobile devices to an EC infrastructure. The proposed architecture has
been particularly designed to accelerate the execution of an object identification service for mobile
users. However, it is generic and applicable to several types of EC environments and smart city
applications. In the particular smart city scenario under consideration in this work, the visitors of a
crowded touristic area use their camera-equipped devices to take snapshots or short-duration videos
of a Point of Interest (Pol) (e.g., exhibits of a museum) in order to receive additional information
about them. Since image recognition is a computational-intensive and energy-consuming task, a
cluster of proximate edge servers offer the essential computing resources to meet the strict time
requirements of massive users. Furthermore, a localization technique is realized and evaluated. We
assume that users are active in a crowded touristic area; hence, the shared bandwidth and foremost
the interference of signals plays an important role in the overhead of transmission of the offloaded
requests. As a result, to address this dynamic behavior, the offloading decision of a users’ request
takes into consideration the users’ position in addition to the available resources of the edge servers

at each time. The main contributions of this chapter are summarized, as follows:

e A resource profiling mechanism interprets the performance requirements of the application
to computing resources on the EC side. This mechanism enables the modular design and
allocation of the EC resources in order to meet the varying offloading demand. The resource
profiling of the LBS is based on linear models from System Theory, which effectively capture
the system dynamics of the service, and determines the essential resources for serving various

amounts of offloaded requests.

e A two-step mechanism to support and realize the offloading decision is devised, considering
both users’ contextual information and the availability of the edge resources. Towards this

direction, the offloading decision becomes a key-enabler for maintaining high performance
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results, benefiting both the infrastructure provider and the users.

¢ An Edge Computing architecture to support the deployment, orchestration and management
of LBS is introduced. Following the principles of 5G directives, an NF'V-based deployment of
the architecture is presented, using state-of-the-art software tools for the orchestration and

management of the infrastructure.

o A real-world evaluation over an open 5G infrastructure is conducted to verify the validity and
applicability of the proposed methodology. Also, the proposed resource profiling mechanism
and the workload estimation approach are compared against well-established counterpart

methodologies in the literature [89, 90].

3.4 System Architecture

As mentioned before, in the smart city scenario under consideration, visitors use an LBS to retrieve
information about Pols in a crowded touristic area. The LBS can be executed either on the user’s
mobile device or on the EC servers. Accordingly, the proposed EC architecture consists of two
layers: namely the Device layer and the Edge layer.

At the Device layer, portable IoT devices, e.g., Raspberry Pis and mobile phones, equipped with
sensors and camera modules provide location information and media content in order to identify
Pols e.g., museum exhibits) and retrieve information about them through an image recognition
service. Since image processing is a computationally-intensive task, the users forward their requests
to a cluster of edge servers for further processing in order to save energy and get the response in
a timely manner. At the Edge layer, a control mechanism is responsible for scaling the resources
of the instances of the virtualized image processing service and distributing the admitted requests
among them. However, as specific may the above scenario seems, as generic and versatile the
proposed architecture is, and it can be applied in any smart city application. To further elaborate
on the generic essence of this work, we have identified the following use-case requirements and

challenges.

e Every smart city application has specific dominant parameters that affect its performance.
Thus, it is essential to build a profile of the application to include all important features.
In this work, we focus on the user’s location and propose a generic resource profiling of
the application. The profiling mechanism provides accurate performance modeling under
varying conditions and application requirements and facilitates the design of effective resource
allocation strategies. It is an interpretation mechanism that translates the application’s QoS
requirements to EC computing resources and facilitate the interoperability in the case of

heterogeneous resources.

¢ A successful offloading decision of mMTC applications must consider both the user’s contex-
tual information and the availability of EC resources. With this capacity, the user should de-

cide whether the offloading is beneficial based on the location and the network/communication
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parameters (e.g., signal strength). Especially in crowded places, communication related as-
pects such as the transmission time of a request, may present a significant overhead in the
overall response time. Additionally, for applications of multiple users, the EC infrastructure
provider should accurately estimate the dynamic workload demand and admit the number of
requests that can be served with a guaranteed level of performance. Hence, we propose a two-
step offloading decision that takes into account both the user and the provider’s operating

conditions and perspectives.

e The focus of this chapter is placed on the challenging scenarios where the edge computing
infrastructure is receiving a great amount of incoming workload of offloaded tasks. This
workload also fluctuates during the day, for example following the traffic of visitors at the
place of interest. Hence, the scalability of EC infrastructure is a prerequisite for meeting
the performance requirements and the optimal resource utilization. Our proposed dynamic
resource allocation mechanism leverages the application’s resource profile and allocates only
the necessary resources in order to maximize the number of offloaded requests with response

time guarantee.

In this study, the response time is defined as the sum of the transmission and processing time
to serve an offloaded request. Figure @ illustrates an overview of all levels of the proposed
architecture. At the bottom level, the mobile device estimates the location of the user and originally
decides the local or remote execution of the generated request. At the upper level, the Controller
component realizes the intelligent functionalities of the proposed architecture, which includes the
resource profiling, the workload prediction and the scaling mechanism along with the necessary
monitoring service. Furthermore, the Virtual Machines (VMs) with specific computing resources
host the image recognition service. The proposed application is considered to be stateless with
stringent performance requirements. In the following sections, the individual components of the
architecture are described in more detail along with the intelligence of the mechanisms provided

at each layer.

3.4.1 Device Layer

At the Device layer, two fundamental mechanisms co-exist, providing the user’s contextual infor-

mation and the initial offloading decision.

3.4.1.1 Location Estimator

To estimate the user’s position, a step detection algorithm has been developed. The users’ motion
is measured by inertial measurement unit (IMU) sensors and the estimation is performed by dead
reckoning technique. This mechanism is classified in the category of Inertial based Systems, where
there is no need for external information by the physical infrastructure, and the position of the user

is estimated relative to a known starting point. This location estimation method is applicable in
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Figure 3.1: An overview of the EC architecture for LBS.

any end-device equipped with the appropriate IMU sensor. As thoroughly examined in [91], a step
detection algorithm is applied using an accelerometer based on the mechanics of human motion,
while the heading of the user is calculated by a gyroscope sensor. Consequently, given a starting
position, the step and heading mechanism grants users the capability to locate themselves in an
indoor environment and share this information with the infrastructure for an optimal offloading
decision. Hence, in the scope of this work, the Location Estimator plays a significant role in the

workflow of the offloaded requests, as shown in the next subsection.

3.4.1.2 Offloading Decision Mechanism

One of the main objectives of this chapter is the development of a smart dynamic offloading mecha-
nism that is based on contextual information and aims to satisfy both the QoS requirements of the
users and optimal utilization of resources of the underlying infrastructure. Therefore, we propose
a two-step offloading mechanism, involving both the Device and Edge layer of the architecture.
More specifically, whenever a new request is generated, the offloading decision is based on two
parameters; (a) the position of the user, and (b) the current measurement of the wireless signal
strength. On the one hand, we assume that the signal coverage is fluctuating in the territory of

this scenario. As a result, one’s position affects the quality of the wireless connection. Moreover,
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to facilitate automated offloading, the touristic area is divided into sections where offloading is
permitted based on offline metrics about the quality of the connection. Subsequently, a map is
constructed based on these metrics, hereinafter referred to as “offloading map”. On the other hand,
in crowded areas, signal interference is high due to the shared medium of the wireless connection
among the users. Considering that the transmission power of the antenna is bounded, the shared
bandwidth results in a maximum number of users, who can offload their requests with satisfying
transmission rate. Hence, the measured signal strength is adopted as an indication of the quality
of the wireless transmission rate, which heavily affects the performance of the system.

At the Device Layer, we assume a predefined signal strength threshold that the user must satisfy
in order to offload a request. If both the position and signal strength constraints are met, then
the device offloads its request for further processing at the Edge layer, where the final offloading
decision is taken. As a result, the user’s offloading decision is performed in both a proactive and
reactive manner, exploiting contextual information of the user’s status in terms of position and
connection quality. In case of a rejected request during this offloading decision phase, the image

recognition service is executed locally on the mobile device.

3.4.2 Edge Layer

The workload generated by the mobile users is directed to the Controller of the Edge layer through
a Wireless Access Point. As mentioned previously, the Controller is responsible for the allocation of
resources to the deployed VMs, which incorporates the second step of the offloading decision, and
the load balancing of the requests to the VMs. Initially, the monitoring service collects the necessary
data for the incoming requests, the performance of running VMs and the utilization of the EC
resources. The monitoring data is used by the rest components of the Controller. In particular, the
Resource Profiling component provides an offline training tool based on System Theory to extract
specific resource profiles of running VMs. A resource profile interprets the QoS requirements of
the service (i.e., response time) to EC computing resources (i.e., vCPUs, memory). These profiles
enable the Scaling Component (SC) of our approach. To better manage and orchestrate the EC
infrastructure, time is divided into discrete time intervals. At the beginning of a time interval,
based on Kalman Filtering approach and monitoring data, the Workload Predictor provides an
estimation of the expected number of requests within the next time interval. This estimation
and the computed resource profiles are used by the SC to determine the number and resources of
running VMs that host the object recognition application. Hence, to guarantee the QoS of the
the users, the SC accepts only up to a limit of incoming requests at each interval, derived from
the profiles of the operating VMs, while rejecting those exceeding it. Thus, the SC takes the final
offloading decision considering the overall performance of the EC infrastructure. Leveraging this
mechanism, the SC assures that for each request that is accepted for remote execution, the users’
QoS criteria are met, and for the remaining requests, users execute the object-recognition service
locally on their devices. Last but not least, within each time interval, the SC distributes each

accepted request to the corresponding operating VMs, via a REST-API operating at the latter.
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The activated VMs host the image recognition-based applications, which are trained off-line and
identify the candidate Pols.

3.4.2.1 Resource Profiling Component

In general, the resource profiling mechanism quantifies the relation between the application’s re-
quirements, the incoming requests and the computing resources at the EC side. Towards this
direction, the Resource Profiling component build various resource profiles of an application that
correspond to different operating conditions. In our scenario, the image processing service is CPU-
intensive, thus, for the rest of the chapter, the resource the profiling mechanism refers to vCPUs.
To extract the resource profiles, we adopt switching linear systems that can describe the perfor-
mance of an application under different operational conditions. For different numbers of allocated
vCPUs to a VM and varying incoming requests, we define a discrete linear system of the following

form,

x(t+1) = ax(t) + Pult)

where z(t), named as state variable, is the average response time in time interval ¢ and wu(¢),
named as input variable, is the admitted requests in time interval ¢. In such a way, we describe the
performance of the image recognition service under dynamic workload conditions. The Recursive
Least Square algorithm [92] is exploited to calculate an estimation for the parameters o and 3.
The main objective of the Resource Profiling component is to maximize the offloaded requests
and optimally allocate them the available computing resources. Towards this objective, for each
linear system and given the desired average response time x., we extract feasible resource profiles,
which maximizes the admitted requests and satisfies input constraints, by solving the following

optimization problem,

Inmxz\4rg%§m,uM Ue (3.1a)
subject to

Te = aZe + bug (3.1b)
Tm S e S TM (3.1¢)
Um S Ue S U (3.1d)

First of all, the resource profile must be an equilibrium point of the linear system as defined by
the first constraint. The second constraint implies that there is a minimum (u,,) and the maximum
value (ups) for the offloaded requests. Similarly, the last constraint refers to the state variables and
means that the average response time varies between the minimum (z,,) and the maximum values

(xar). In such a way, the resource profiles actually translate the QoS requirements of the object
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recognition-based service to EC computing resources. Within the scope of this work, the resource
profiles actually correspond to a VM with specific computing resources that serves a predefined
number (u,) of offloaded requests with a predefined average response time per interval (z.). The
value of z. can be selected as a percentage of the maximum acceptable response time, which is
implied by a Service Level Agreement (SLA) and it represents the strictness of the underlying
QoS constraints. In our use case, the average response time of the resource profiles are set for
demonstration only purposes, at the half of the maximum acceptable response time by the user.
The benefits of above resource profiles’ design are manifold. Initially, it is a generic process that
is applicable for any type of IoT-based application and edge/cloud infrastructure. The utilization
of switched linear systems allows to model any operating condition and the design of the resource
profiles according to the specific QoS requirements of the LBS. Contrary to queue models [90, 93]
that are valid only in steady state, the linear systems can capture transient phenomena and do not
provide only static information such as mean service and arrival rate. Additionally, although out
of the scope of this chapter, the linear systems enable the design of feedback controllers, which can
guarantee valuable system properties such as stability and reachability apart from the satisfaction
of the QoS constraints. The latter cannot be accomplished with queue models. Finally, resource
profiles enables the interoperability of heterogeneous infrastructure. In the case of edge-to-edge or
edge-to-cloud collaboration, the computation of resource profiles for the different types of hardware
simplifies the load distribution between sites, because the number of exchanged requests can be

automatically translated into resources of each site through the resource profiles.

3.4.2.2 Workload Predictor

Due to the mobility of the users, the amount of offloaded requests changes significantly. In order
to enable optimal scaling and resource allocation, an accurate workload prediction methodology
is necessary to estimate future incoming requests. For this purpose, we adopt Kalman Filtering
[94], which is a well-known estimation methodology for dynamic systems. We further assume that
the offloaded requests can be modeled as a system with process and measurement uncertainties,

as follows,

L(t+1) = L(t) + w(?) (3.2)
Z(t) = L(t) + v(t) (3.3)

where L is the number of offloaded requests of the image recognition service at time interval t.
At interval ¢t + 1, the value of the workload is defined as the sum of the current value and the
process noise w, which models the generation of requests by the users. The covariance matrix
of the process noise is defined as ). The variable Z denotes the measurement of the offloaded
request and equals the actual number of requests L plus a measurement noise value v(¢), which
follows a normal distribution with zero mean, while R is its covariance matrix. The estimation of

the request at the next time interval L~ can be computed by applying the following Kalman filter
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equations.

L= (k) =L(k—1) 3.4a

P (k)=P (k-1 +Q (3.4b)
_ P (k)

K(k) P h)+ B (3.4c)

L(k) = L™ (k) + K(k)(Z(k) — L™ (k)) 3.4d

P(k) = (1 - K(k))P~ (k) (3.4e)

The term L~ is the update state value based on the measured value of Z and the extrapolated
state value of the previous step. The term K is called Kalman gain and is a number between zero
and one which expresses the importance of the measurement. The term P is the error covariance.
In every step, we use the first equation to estimate the forthcoming requests for the next interval
based on the previous extrapolated values. The estimation of the incoming request is used by the

SC for the scaling decision.

3.4.2.3 Scaling Component

Based on the resource profiles of the application and the estimation of the offloaded requests, the
SC aims to meet the dynamic workload demands and avoid over- or under-provisioning of EC
resources. We formulate a mixed integer linear optimization problem (MILP), which minimizes
the amount of the allocated EC resources. We define n binary variables ¢;,i = 1,...,n that
correspond to the n different resource profiles of a VM. Furthermore, for each ¢;, we define the
weight w;, i = 1,...,n, which is proportional to the number of the vCPUs, ¢, dedicated to a specific

VM flavor. The optimization problem is formulated as follows:

n

ngn{Z(wici)} (3.5a)

i=1
subject to:

D (cw) =L, i=1,...,n (3.5b)
i=1

¢ =0,1, Vie[0,...,n], (3.5¢)
d e <TV (3.5d)
i=1

where the first constraint indicates that the estimated offloaded requests L~ must be served by

the activated VMs in the following time interval. The second constraint indicates that a VM with
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Figure 3.2: System Orchestration overview.

specific flavor can be either running or closed. This constraint implies that multiple instances of a
VM with specific resource profile are not allowed in the same server. The last constraints guarantees
that the resources of the running VMs do not exceed the total amount of available EC resources
(TV) in terms of vCPUs. As a result, solving this optimization problem at each time interval,
the SC ensures that the predicted workload will be served based on the corresponding resource
demands with the minimum allocated resources. Nevertheless the overall cost of the flavors to be
implemented is minimized. It is worth mentioning that the resource profiling mechanism allows to

solve the problem for both cases of homogeneous and heterogeneous resources.

3.5 System Orchestration and Implementation

The aforementioned architecture was implemented in Bristol’s University 5G testbed [@], which
provides NFV orchestration and management solutions, bearing in mind that a real-world expe-
rience evaluation is of imperative importance when testing a system architecture. The System
Orchestration overview is illustrated in Figure @ Open Source MANOEI (OSM) operates as an
NFV management and orchestration (MANO) tool, in the context of the NFV MANO reference
architecture, as defined by the ETSI NFV Standard. Thus, independently of the underlying Virtual

Infrastructure Managers (VIM), OSM allows performing resource and service orchestration. In the

Thttps://osm.etsi.org/
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proposed orchestration mechanism, OSM interacts with OpenstackE, which operates as the VIM.
Openstack is a well-known open-source software for realizing Infrastructure as a Service (IaaS),
structured by a stack of software tools used to build and manage cloud computing platforms for
public and private clouds. Moreover, it is responsible for controlling and managing the Network
Function Virtualized Infrastructure (NFVI) resources.

The proposed system orchestration has a twofold aim; to meet the system architecture re-
quirements, and to provide a scalable virtualization solution, enabling the basic aspects of a
next-generation LBS-enabled architecture. Hence, the respective services are deployed as Vir-
tual Network Functions (VNFs). Subsequently, two different VNFs have been deployed; namely
the Controller, and the LBS-enabled object recognition application. The Controller VNF imple-
ments the intelligence mechanisms of the proposed Edge architecture as thoroughly presented in
Section 7 while the Object Recognition application is used for the identification of Pols in
the Bristol’s Millennium Square. Both VNFs are managed and orchestrated by OSM as depicted
in Figure @ Similar to the system’s architecture, the NFV implementation follows a top-down
design. At the top layer lies the Controller VNF', which dictates the decisions needed for the scaling
of the operating application-VNFs and the load balancing of the incoming workload, while, at the
bottom layer, three VNFs are facilitating with the object recognition application. Moreover, the
Network Service (NS) of the architecture is defined, to deploy an automated service chain between
those VNFs. Furthermore, the NS is broken down into two parts, namely; data and management
network, for the connection of VNFs, following the standards of NFV and SDN .

In this section, we present the necessary procedure for the realization of the system orchestra-
tion. Initially, we created the appropriate system images comprised of an operating system and the
corresponding services. The functionalities of the Controller are deployed as the first system image,
while the second one involves the object recognition service alongside with the REST-API service.
These two images have been onboarded in the Openstack of Bristol’s 5G testbed. Furthermore,
the appropriate VNF Descriptor (VNFD) files for both images are realized. These descriptors con-
tain all the necessary information for the VIM to instantiate Virtual Deployment Units (VDUs),
which are the VMs that host the network functions. To be more specific, these descriptors de-
fine the flavors of virtual resources (vCPUs, RAM and storage) and virtual network connection
points between the VDUs. Similarly, the Network Service Descriptor (NSD) specifies the Net-
work Service (NS), which is the top-level structure that includes all the VNFs and implements
the network topology of the experiment, associating respectively the connection points defined in
VNFDs. Those descriptors have to be onboarded in OSM too. After this onboarding phase, OSM
instantiates the NS and consequently the VNFs. Additionally, OSM dictates Openstack to realize
the corresponding VDUs and the virtual network of the experiment. In our case, four VDUs are
instantiated in Bristol’s Openstack compute node. As explained in Section , three VDUs
of different flavors were deployed hosting the object recognition service. Based on them, the SC

decides at the beginning of each interval the running VDUs and directs the incoming traffic of

2https:/ /www.openstack.org/
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offloaded requests accordingly, solving the optimization problem in Section .

3.6 Experimental Evaluation

In this section, the experimental set-up and corresponding results of the proposed EC framework
realization and deployment are presented and discussed in detail. The proposed framework was
deployed in a real large-scale experimental facility of University of Bristol 5G testbed [95], that
exploited OpenStack and OSM for NFV orchestration. To highlight the validity of the proposed
location-aware EC architecture, a smart touristic application for crowded indoor areas was de-
ployed. The considered experimental set-up provided realistic conditions to evaluate the proposed
EC architecture for LBS from the perspective of: (i) location estimation accuracy, (ii) success of
the offloading decision and the application performance, and (iii) effectiveness of the scaling mech-
anism, (iv) a comparative evaluation with well established studies [89, 90]. Before proceeding with
the illustration and analysis of the the obtained results in terms of the aforementioned directions,

a detailed description of the experimental set-up and considered scenario is provided.

3.6.1 Experimental Set-up and Scenario

In the experimental scenario under consideration, the visitors of Millennium Square of Bristol
University testbed were scattered in a crowded touristic area, where several Pols exist. Leveraging
an object-recognition service, the visitors were able to retrieve interesting information about these
Pols. Google-powered TensorFlow [96] framework was deployed as the object-recognition service.
Tensorflow is an open-source machine learning platform that can be easily retrained to classify
the Pols. For the retraining phase, a data set containing real pictures of the Pols was used to
build an object detection model for our LBS. At the Device layer, the visitors were emulated
by Raspberry Pi devices equipped with the IMU sensor SparkFun MPU-9250 IMU Breakouta,
which contains a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. The Pi
devices offloaded requests to the proximate edge computing infrastructure using a wireless local
area network (WLAN) via an AC400 Nokia access point. Additionally, a laptop generated a large
number of requests in order to create a dynamic realistic workload. As explained in Section @,
the Edge layer of the proposed architecture deployment was achieved exploiting the OpenStack
and OSM for NFV orchestration, of the utilized tedbed facility. A powerful Dell PowerEdge T630
server with 32 vCPUs, 64GB RAM and 1TB storage was used to deploy all the necessary VDUs.
Initially, in order to compute various resource profiles of the application we created a measurement
data set and inferred three different types of VDUs. Table @ provides the computing resources
and the number of requests to be served per time interval for each resource profile. For every
flavor, the average response time is set to 5sec. The control time interval was set to 30 sec. At the
beginning of each interval, a workload estimation was computed according to Section and
subsequently the SC determined the combination of the running VDUs.

3https://www.sparkfun.com/products/13762
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Table 3.1: VDU flavors based on the Resource Profiling.

Flavor | vCPUs | RAM | Requests served per Interval | Average Response Time

Small 2 2GB 3 Ssec
Medium 4 4GB 14 bsec
Large 8 8GB 27 bsec

Table 3.2: Maximum error of estimation at each point of the trajectory of the user.

Point Maximum Error of Estimations (m)
0(0,0) 0

A(10,0) 0.08

B(IO,IO) 0.1131

C(10,20) 0.1789

D(18,20) 0.394

E(18,30) 0.4861

3.6.2 Evaluation of User’s Location Estimation

The purpose of this experiment is to demonstrate the accuracy of the location estimation technique.
Figure @ presents a sketch of Millennium Square topology. The wireless access point was located at
point A(10,0) and enabled the users to offload their requests to the EC infrastructure. Furthermore,
Figure @ illustrates the “offloading” map of the Millennium Square. In the green-colored area, the
wireless signal strength was high and the users were encouraged to offload requests, while the signal
strength was poor in the white-colored areas. The strength of the wireless signal was measured
using the Wavemon softwareE, and the areas were divided by setting the threshold for a good quality
signal to the value of —70dB. With respect to the differentiation in terms of signal strength in
these areas, please note that in the specific square in the “white areas,” physical obstacles exist
(e.g., metallic constructions), which cause high interference resulting in wireless “dead zones”.
However, these metrics were performed by a single user while in a real-world scenario, the users’
signal interference may heavily affect signal strength. To address this issue the offloading decision
considers both the location-based classification of a user according to the “offloading map” and the
contemporary signal strength of a user to specify his transmission capability in an online manner.
This procedure is fundamental for the proposed architecture since the object recognition service
is CPU-intensive. In such a way, we ensure that the transmission time is negligible relative to the
processing time of an offloaded request.

In order to evaluate the location estimation accuracy, the user repeatedly (i.e., five times)
followed a path of six already known points, starting from point O and finishing at point E, while
holding a Raspberry PI device mounted with the aforesaid IMU sensor. In Figure @7 for each
point, the real position is marked with a star, while the cross symbol refers to the estimated

position. At each point, the drawn circle represents the maximum estimation error. Additionally,

4https://github.com/uoaerg/wavemon

65



3.6. EXPERIMENTAL EVALUATION SCALABLE EC ARCHITECTURE

Bristol Millenium Square

35
30 e=F
25
20 + C D
15
10 +B
[ IPoor Signal
5 [ IGood Signal
+ Real Position
+ Estimated Position
V) LA — Distance Error
0 5 10 15 20 25

Figure 3.3: The “offloading map” and the user trajectory scenario at the Millennium Square of
Bristol’s 5G testbed.

Table @ summarizes the estimation of maximum error at each predefined point. It is obvious
that the location estimation approach is very precise and the error is less than 0.5 meters in all
cases, which is acceptable in our scenario. It is also worth mentioning that the estimation error is

cumulative, thus, the error becomes higher at the last point.

3.6.3 Evaluation of Offloading Decision

Based on the experimental setup described previously, an experiment of one hour duration, was
conducted to validate the success of the two-step offloading decision mechanism and the perfor-
mance of the LBS on the edge infrastructure. A set of photos captured in Millennium Square were
used to generate requests, whose inter-arrival time follows a Poisson distribution. As depicted
in Figure @, the black-colored line represents the magnitude of requests that were offloaded by
the mobile devices based on the first step of the offloading mechanism. At the beginning of each
time interval, the estimation of these requests (green-colored line) was computed by the Kalman
Filter and was forwarded for further processing by the EC infrastructure. The blue-colored line
corresponds to the number of executed requests on the deployed VDUs after the final offloading
decision on the EC side, while the red-colored line represents the requests that were rejected by the
EC servers and were executed locally on the users’ devices. Two useful remarks can be discussed
here. First, the workload predictor can accurately follow the fluctuation of requests. It fails only

when a sudden change occurs (e.g., at 200sec). Therefore, the number of rejected requests is high
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only at these intervals, and until the prediction is properly and timely adapted, as shown in this
figure. Secondly, 91.37% of total requests were successfully offloaded and executed on the EC side,
while only 8.63% were executed locally on the devices, which evinces the success of the two-step
offloading strategy.

The proposed workload predictor is compared with an autoregressive integrated moving average
(ARIMA) model [89] which is widely used for time-series forecasting. For comparison purposes,
two well-known accuracy metrics are used, namely the percentage average error (PAE) and the
Best Fit Rate (BFR) [97], which are defined respecitvely,

PAE =100/ 21— 98] [yE’“[y_ ]@’“] |
k
El(yr — 9r)?]

BFR = 100% 1-—
emar(l =\ e g,

;0)

The lower the PAE score is the more accurate the predictor is. However the PAE metric is sensitive
to the values of large absolute error. Thus, we utilize the BFR metric which is more robust to the
effect of small set of values. Contrary to PAE, high score of BFR indicates precise estimation.Table
@ shows the score of Kalman-based and ARIMA-based workload predictors. As it shown, the
PAE score is very low for both predictors and ARIMA-based predictor is slightly better than
Kalman-based. On the other hand, the proposed workload predictors achieves significantly higher
BFR score than the ARIMA-based. These remarks indicate that both predictors provide successful
estimation, which is acceptable for the scaling and offloading decisions.

The key performance indicator of the object recognition service is the response time of the
requests. The execution time of a request by the mobile device varies between 30 to 60 sec.
Following the design principles of Section , the extracted resource profiles were selected
to have an average response time of 5sec, half of the maximum acceptance value by the users.
As it is shown in Figure @, the average response time of the offloaded requests throughout the
experiment is 4.75sec (below the aforesaid threshold), subdivided into processing time (with an
average of 4.02sec) and transmission time (with an average of 0.73sec). The average response
time of the offloaded requests is at least five times lower than the local execution, which indicates
that the resource profiling models effectively the performance of the application and motivates its
necessity for properly meeting the QoS requirements. This also demonstrates that the second step
of the offloading decision on the EC side becomes more of a requirement rather than a desire.
Finally, the low transmission time implies that the first step of the offloading decision benefits the

fulfillment of the user’s requirement.

Table 3.3: Comparison of the Workload Predictors.

Accuracy Metric | Kalman-based Predictor (%) | ARIMA-based Predictor (%)
PAE 3.72 0.25
BFR 73.81 63.38
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Figure 3.6: VDU flavors selected to operate at each interval according to the scaling mechanism.

3.6.4 Evaluation of Scaling Mechanism

The evaluation of the scaling mechanism was conducted based on the one-hour experiment de-
scribed in the previous subsection. In particular, Figure @ depicts the selected combination of
operating VDUs at each time interval. Each combination of operating flavors is illustrated with a
distinct color. Having in mind the prediction of requests in Figure @ and corresponding trend, at
the first intervals of the experiment only a few visitors offloaded their requests on the EC infras-
tructure. This workload was handled by a small or medium flavor VDUs. At the 600th simulation
second, more visitors swarmed in the Square interested in Pols, resulting in the gradual increase of
the workload, which peaked at 50 requests per interval at the 1200th second. During this period,
the full functionality of the scaling mechanism is clearly demonstrated. Specifically, to deal with
the rising traffic, the SC determined the appropriate combination of active VDUs in order to avoid
performance degradation. Moreover, even when the maximum number of requests occurred, the
average response time remained below 4secs. When the number of users began to decrease again,
the scaling mechanism adapted timely and released resources from the operating VDUs, to follow
the course. After the 2000th second of the experiment, the amount of requests fluctuates between
20 and 30 per interval. As it is shown, the scaling mechanism efficiently adapted the resources
of running VDUs towards the workload fluctuation. The success of this mechanism is further

strengthened by the performance of each VDU, as explained in detail below.
In Figure @, for each VDU, the average response time of the offloaded requests is depicted in

the respective subfigure. The information derived from these subfigures complements the operation
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Figure 3.7: Processing time of requests at each VDU per time interval

of the scaling mechanism, and elucidates the periods of time that each VDU is active or not. During
the whole experiment, there is only one time interval that the user’s maximum acceptable response
time is violated in the medium VDU. This implies that the scaling decision based on the resource
profiles and the estimation of requests can guarantee the QoS requirements and the success of the

final offloading decision.

3.6.5 Comparison of the Scaling Mechanism

In this section, we present a comparative evaluation of the proposed framework with the work
presented in [90]. Similarly to the proposed EC architecture, this work presented a set of intercon-
nected clusters forming a wireless metropolitan area network. Each cluster of computers; namely
cloudlet, has a static resource provisioning to serve the offloaded requests. The main goal of this
study is to redirect part of the incoming traffic of the overutilized cloudlets toward the underutilized
ones. In [90], the average response time for each cloudlet is calculated by a queueing model. Utiliz-
ing the M/M/c queue model, the maximum offloaded workload served at each cloudlet is bounded
by the corresponding service rate capabilities. The rest is considered rejected and redirected back
to the user to perform local execution of the request. The service rate of a cloudlet is defined as
the average number of requests that can be executed throughout a time interval. Following, the
results of a comparative evaluation between the two methods, are presented. Moreover, to ensure
an unbiased comparison, we deployed, the method presented in [90] in the same manner as the
system orchestration and experiment setup presented in Sections @,@ and we used the exact
same workload of requests for both setups. Following the design, in subsection the thresh-
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Figure 3.8: Comparative Experiment

old of the QoS violations is set at 10sec. In one hour of experimentation, as depicted in Figure
the resource profiles mechanism reported only 2.88% QoS violations contrary to 6.9% of the
queuing theory modeling proposed in [90]. The static placement of the three flavors discussed in
Section has a total of 14 vCPUs. On the other hand, our approach utilized 35% less or an
average of 9 vCPUs, throughout the experiment, as shown in Figure . More specifically when
the offloaded workload can be served the medium flavor VDU, as in the end of this experiment,
the static placement results in a waste of resources that could be used for another application.
Finally, to achieve all of the above, our framework had to reject 9.3% of the incoming requests,
while in [90] 1.21% was rejected. To sum up, a dynamic resource allocation mechanism along with
the resource profiles, are able to guarantee the QoS requirements while the resources utilized are

minimized, sacrificing a small percent of requests rejected.

3.7 Summary

This chapter focused on the introduction, design, and experimental evaluation of a scalable two-
tier Edge Computing architecture to realize location-based services in a smart city context. The
scenario that motivated this work and was used for validation purposes, considers several users
located in the vicinity of a tourist place, moving around looking for Pols, and holding portable
devices. Exploiting media content they opt to get additional information for the Pols through an
object-recognition service. As such, their requests are offloaded via Wi-Fi to an EC infrastructure
in order to reduce power consumption and improve response time.

In particular, we proposed and evaluated a location estimation technique to assist with a smart

offloading decision at the Device Layer, using contextual information of the users’ state (i.e.,
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position and wireless signal strength). Furthermore, a mechanism for scaling and allocating the
resources of the underlying infrastructure is realized to support and accompany the realization of
the final offloading decision at the Edge layer, which depends on resource availability. This EC
architecture is applicable in various MEC environments and mMTC application scenarios. The
overall approach was implemented and evaluated in a real 5G testbed exploiting NF'V orchestration
and widely used software tools (e.g., OpenStack, OSM) for the execution of the experiment. Based
on the obtained detailed experimental evaluation results, the location estimation method proved
very reliable for the smart touristic scenario under consideration. With this valuable estimation,
the two-steps smart offloading decision had a dominant role in the performance of the overall
system and architecture. The scaling mechanism and the resource profiles yielded remarkable
performance gains when compared to relevant well-established research works in the literature,
not only in terms of meeting the user QoS criteria but also in eliminating the under-utilization of

resources. The results of this Chapter are also presented in [9§].
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Chapter 4

Distributed Resource Autoscaling

in Kubernetes Edge Clusters

4.1 General Setting

Maximizing the performance of modern applications requires timely resource management of the
virtualized resources. However, proactively deploying resources for meeting specific application
requirements subject to a dynamic workload profile of incoming requests is extremely challenging.
To this end, the fundamental problems of (i) the scheduling of the incoming requests and (ii)
the appropriate instantiation of resources for hosting the application must be jointly addressed.
Kubernetes [63] is a state-of-the-art resource orchestration platform for containerized applications.
The Horizontal Pod Autoscaler (HPA)[99] is widely used to implement the scaling of resources. The
HPA’s functionality mainly relies on stabilizing the utilization of the deployed resources towards
meeting a target value of a single or a set of performance metrics, e.g., CPU utilization. Therefore,
the HPA scales horizontally the number of deployed containers to meet these targets. However, 5G
applications require more sophisticated scaling techniques to incorporate the dynamic nature of
the incoming workload and the complex operation of modern applications [[L00]. Meeting vital QoS
requirements via dynamic resource scaling is a major challenge primarily due to a set of competing
Key Performance Indicators (KPIs), such as the utilization of deployed resources and the response
time of the underlying application. A key enabler of scaling resources according to the workload
traffic is the identification of the maximum number of requests that can be processed by the
provisioned resources. Moreover, many recent Machine Learning (ML) based studies investigate
extensively the challenging problem of resource management [101]. Nevertheless, the proposed
ML-based solutions usually have a very challenging training phase and their scalability is limited
[102].

In this chapter we extend the work of Chapter E and contrary to the one-sided philosophy of

the HPA that takes into account only performance metrics, we propose a versatile architecture for
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resource management in Kubernetes Edge Clusters (KEC). We consider a scenario where users
offload their requests to a KEC for further processing. Although we evaluate the proposed ar-
chitecture with a web application, our solution can be tailored to the needs of any use case. An
Additive Increase Multiplicative Decrease (AIMD) based scheme is proposed for the task schedul-
ing problem. Our approach to scheduling is inspired by the AIMD algorithm, a celebrated method
for congestion avoidance in the context of network management [103]. The proposed AIMD-based
algorithm has recently been introduced in [104] and provides a stabilizing decentralized solution
for parallel task scheduling and resource allocation of distributed computing systems. Exploiting
the stability guarantees of this novel AIMD-like task scheduling solution, we dynamically redirect
the incoming requests toward the containerized application. To cope with dynamic workloads,
a prediction mechanism allows us to estimate the number of incoming requests. Additionally, a
Machine Learning-based (ML) Application Profiling mechanism is introduced to address the scal-
ing, by co-designing the theoretically-computed service rates obtained from the AIMD algorithm
with the current performance metrics. The proposed solution is compared with the state-of-the-art
autoscaling techniques under a realistic dataset in a small edge infrastructure and the trade-off

between resource utilization and QoS violations is analyzed.

4.2 Related Work

In this Section, we review some of the most notable approaches in the literature for addressing the
challenging research problems of task scheduling and resource management.

Baresi et al. [[L05], introduce a discrete feedback controller for cloud applications. The proposed
controller assigns CPU cores to VMs or containers to meet the required average response time under
the time-varying request rate of incoming requests. The proposed framework suits well with the
concept of web microservices and outperforms Amazon’s autoscaling controller. However, the load
balancing in this work is considered static. Similarly in [98], the authors rely on VM flavors to build
a scaling and load balancing mechanism to serve the incoming workload by adapting the number
of replicas for each VM flavor. They formulate an optimization problem to determine the scaling
decision while guaranteeing the QoS of the application and taking into consideration the available
Edge Cluster resources. In both the previous works, the incoming requests are load-balanced
with a static scheduling policy. Authors in [106] propose a solution for resource management in
the cloud by clustering workload to meet the QoS requirements. They incorporate performance
metrics using a decision tree (K-means algorithm) to determine the scaling decision. They utilize
an imperialist competitive algorithm that assigns the workload to the closest cluster and then
the resource provisioning is dictated by a decision tree algorithm. Therein, unlike our work, the
scaling decision tries to balance the CPU utilization among the deployed resources without having
guarantees for the QoS level.

Additionally, various studies in the literature propose auto-scaling approaches based on Ma-

chine Learning techniques. Igbal et al., [107] tackle the issue of multi-tier application auto-scaling

74



DISTRIBUTED RESOURCE AUTOSCALING 4.3. CONTRIBUTIONS & OUTLINE

based on a supervised learning method. Specifically, they nominate, among others, the Random
Decision Forest classifier to identify the appropriate resource provisioning scheme. The method
features a specific workload, predicted via polynomial regression and the arrival request rate on
the last k intervals on varying VMs that host web-based applications. Authors in [10§], intro-
duce an auto-scaler engine for Kubernetes that takes into account additional parameters compared
to the default HPA. They integrate a parameter that sets a trade-off between over-provisioning
and under-provisioning of the allocated resources for a precise workload, while they propose an
ML-based forecasting approach for predicting the request arrival rate on Web server applications
deployed on Kubernetes. Four distinct ML methods are implemented and compete for the scaling
decision depending on their performance during a specific time window. Rossi et al., [109] present a
Reinforcement Learning approach towards both horizontal and vertical scaling for container-based
applications. Two distinct action models are proposed, where one acts either for horizontal or
vertical scaling, while the other can perform two-dimensional scaling (both horizontal and verti-
cal). However, the cost function used in the models does not contain any information regarding
the incoming workload. Compared to the discussed ML-based approaches, in this chapter we pro-
vide an Application Profiling Mechanism, which uses an ML-based classifier trained with features
gathered from workload estimation and monitoring performance metrics, taking also account of
the theoretical values of the service rates obtained form the AIMD mechanism. Moreover, most of
the aforementioned works provide centralized solutions for the resource management of resources.
Moreover, in most cases, the task scheduling is decoupled from the scaling decision. In addition,
determining the resource scaling decision typically falls in the order of seconds, which also adds

significant overhead to the overall performance and fails to adapt to rapid changes in the workload.

4.3 Contributions & Outline

The key contributions of this chapter are summarized as follows:

¢ A holistic scalable architecture to tackle the joint problem of task scheduling and proactive re-
source management in KEC. We exploit an AIMD-like solution for the scheduling problem of
incoming requests. The proposed event-triggered AIMD scheme facilitates proactive scaling
of resources subject to a dynamic workload profile via a novel, intuitively conceived triggering
locally identifiable condition. This mechanism enables decentralized resource orchestration

at the network edge.

e An Application Profiling Modeling component is introduced that leverages information from
(a) the scheduling and resource allocation solution, (b) the monitored KPIs, and (c) the
workload prediction algorithm to estimate the essential number of replicas for meeting the
workload demand. By collecting a set of distinct resource profiles, all associated with a
stabilising resource allocation solution obtained from the AIMD mechanism, we can optimize

resource utilization without violating the overall system stability. Then, the scaling decision
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is performed using a simple ML technique that allows us to also incorporate the performance
metrics. The proposed design is scalable and easily re-configurable solution for the autoscaling
problem in KECs.

e The proposed architecture is evaluated in a small-scale KEC using a real dataset of a touris-
tic web application. Our numerical results illustrate how to efficiently trade-off between
allocated resources and application performance, highlighting that the proposed framework
significantly outperforms various configurations of well-known autoscaling solutions in terms

of the utilization of resources.

4.4 System Architecture

In this Section, we present the core components of the proposed architecture deployed in the KEC.
We assume that IoT devices generate workload for a specific application that arrives at the edge
layer. We select Kubernetes as the Resource Orchestrator of the virtualized resources. Therefore,
the architecture relies on widely used open-source state-of-the-art software tools for resource man-
agement and monitoring. An example application could be but is not limited to a computationally
intensive algorithm, such as image classification. We should note that in most cases, Kubernetes
is mainly used for web applications that need to perform rapid scaling decisions according to the
ingress traffic. The proposed architecture operates in the same layer as the Resource Orchestrator
and has three main components, namely i) the Load and resource Controller, ii) the Application
Profiling Modeling, and iii) the Workload Estimator, as Figure @ depicts. These components are
responsible for incorporating the dynamics of the resource allocation mechanisms with the ones
of the time-varying workload. In particular, we attempt to propose a holistic solution that simul-
taneously optimizes well-defined metrics related to the infrastructure (computing resources), and
stabilizes the performance of the offloaded application, leading to safe, predictable, and optimal

behaviors. The main functionality of each component can be summarized as follows:

1. Load and Resource Controller: the objectives of this component are (i) task scheduling
and (ii) resource autoscaling. Regarding the first objective, this component is responsible for
dynamic task scheduling of the offloaded requests based on the output of the AIMD algorithm.
Secondly, using information from the Application Performance Modeling component, this
component dictates the resource allocation strategy, aiming at guaranteeing the application’s
performance requirement in terms of QoS metrics and concurrently guaranteeing various

system properties, such as stability.

2. Workload Modeling: this component is responsible for estimating the number of incoming
requests for the containerized application leveraging a time-series forecasting method. The

output of this component is used to take proactively scaling decisions.

3. Application Performance Modeling: this component aims at constructing representative

dynamic models that can be subsequently utilized for dynamic resource allocation operation
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Figure 4.1: The proposed System Architecture for KEC.

of KECs. Based on ML, various models are extracted to sufficiently express the dynamic
relationship between output (QoS) and control variables, respectively, i.e., allocated CPU

resources, admitted workload, and active requests.

Kubernetes is used in this work as a resource orchestration platform. In this ecosystem, (i) a
pod is the smallest deployment unit of computing resources for a containerized application, (ii)
a service is an abstract way to declare applications as a network service, and (iii) deployment
is a declarative way for the instantiation, configuration, and scaling of the pods that serve an
application. Typically, multiple containers co-exist in the same application pod, managed as the
same entity. Without loss of generality, we assume that each pod hosts exactly one container.

Next, we define the application Resource Profiles:

Theorem 2. An application Resource Profile @; is the relationship between the allocated resources
of a pod and the mazximum request rate of incoming requests that the pod serves while keeping a

certain QoS level.

For example, we assume that one container allocated with 1 vCPU and 1 GB of RAM, can
serve on average 2 requests per second without having QoS violations. We let m be the number
of the different resource profiles for a specific application. Therefore, a Kubernetes service and
deployment are realized for all resource profiles; ¢;, ¢ = 1,...,m. We define App Deployment
as the abstract way to refer to the network and the computing resources of each resource profile.

Then, each App Deployment has different available resource limits for the deployed pods. In the
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context of Kubernetes, the resource limits are used to enforce that the instantiated containers of
the pod will operate in predefined regions in terms of CPU and memory. Moreover, for each App
Deployment, r; denotes the number of identical pod replicas that are running. The upper replica
limit is considered to be the same for all deployments and expressed as T,4.- To identify the
resource profiles, extensive offline experimentation has been carried out involving three different
configurations regarding (i) the incoming request rate, (ii) the resource limits, and (iii) the number
of replicas. The aim was to empirically compute the maximum request rate before QoS violations
occur for different sets of resource limits and replicas.

Concerning the monitoring system, we rely on Prometheus [110] for collecting (i) the workload-
, (ii) performance- and (iii) application-, related metrics. The metrics are updated at each time
slot. Moreover, we utilized the Custom Pod Autoscaler (CPA)[111] as the controller that scales
the App Deployments. For each resource profile, a CPA instance is realized to scale in/out the
number of replicas, which varies from zero to 7,,4,. Contrary to CPA, HPA does not support zero
replicas. Hence, CPA enforces the scaling decision of the Load and Resource Controller, checking
for changes in the desired number of replicas at each time slot.

The core intelligence of the proposed framework is provided by the Load and Resource Con-
troller. The incoming requests are load-balanced between the App Deployments according to the
output of the scheduling algorithm, which is deployed on this component. The Workload Estima-
tor takes input from Prometheus to predict the incoming workload. At each time slot, given this
prediction, the performance metrics, and the output of the scheduling algorithm, the Application
Performance Modeling component computes the desired number of replicas for each App Deploy-
ment using an ML model. Then, the Load and Resource Controller exposes the scaling decision
for each App Deployment, via the Custom Metrics Adapter to be fed to the CPA’s Controller unit.
The complete architecture of the proposed solution is illustrated in Figure @ In the following
Sections, the above three components are analyzed in detail.

4.5 Load and Resource Controller

This Section provides all the necessary information for the operations of the Load and Resource
Controller. Initially, an overview of the AIMD-like task scheduling algorithm is described. Then,

the actual implementation of the algorithm for a KEC is presented.

4.5.1 AIMD-like Task Scheduling Algorithm

As Figure shows, a central task queue §(t) is defined as an aggregation point for the incoming
requests with an arrival rate A\(¢) and then served in a First Come First Served policy. An event is
generated whenever this queue empties, which is guaranteed to happen since the admission rates
u;(t) are piecewise increasing functions of time. At the time of the event, i.e., when the queue

empties, the admission rates drop instantaneously. Each request is processed via a multi-queue
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Figure 4.2: A multi-queue system with AIMD policy.

system with multiple processing nodes. Each processing node i = 1, ..., n has a service rate v;(t)
and the queued requests at each node are denoted with w;(¢).

The proposed algorithm has two phases, namely, (a) the Additive Increase (AI) phase and (b)
the Multiplicative Decrease (MD) phase. During the first phase, the admission rates towards the
processing units continuously increase aiming to admit all of the requests and drain the central
queue. Inevitably, an event is triggered, i.e., §(tx) = 0, where k is the number of events. At this
instant, the scheduling algorithm enters the MD phase, which enforces a rapid decrease in the
admission rates, and then reenters the first phase immediately.

The admission rate towards the i*" processing node is defined as:

where ¢ is the current time, ¢, is the time of the k' last event and o; > 0,0 < 3; <1, i=1, ..., n
are tuning AIMD parameters. Specifically, the «; is the growth rate of the admission rate of node %
and f; is the multiplicative decrease factor of the admission rate when an event is generated. Thus,
a request arriving at the aggregation point stalls at the central task queue until it is redirected to
a processing node. The rate of redirecting requests from the central task queue to the processing
nodes at each time is Y. u;(t). It is easy to show that the inter-event period between two events
is defined as: N

T(k) = max(0, Ak) = En:i:% Bius(k)

i1 30

where wu;(k) is the admission rate towards the i* node at time ¢t = t;. Under the scheduling
solution (@)—(@), results from [[L104] indicate that if we consider the following decentralized

resource allocation policy for the service rate of each node at the k** event:

), (4.2)

i(tk) = Biwi(tr) + v/2a:w; (tr), (4.3)

then, the overall systems is stable, in the sense that performance metrics, such as execution and
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response times, are bounded as more requests are added to the system. QoS requirements can
be attained by an efficient tuning of the AIMD parameters, see e.g., [112]. Moreover, individual
service rates are adjusted only when an event occurs via the decentralised feedback rule (@) which
requires only local information, namely, the local admission rate u; and queue length w;. To sum
up, requests arriving at the first queue are not served instantaneously by a processing node having
a slight increase in the total response time, however, they are placed in subsequent local queues in
a way guaranteeing the stability of the overall system. We should note that the AIMD parameters
can be selected individually for each processing node and remain constant. Thus, Eq. (@) is a
decentralized feedback resource allocation controller, scalable and locally configurable. Moreover,
in [[L04] it is shown that T'(k) also converges after a few steps of the algorithm. For the interested

reader, a survey on AIMD-like algorithms is presented in [113].

4.5.2 Integration with Kubernetes

In this section, we provide information about the integration in Kubernetes of the Load and
Resource Controller component that exploits the AIMD-like task scheduling policy and resource
allocation.

To develop the AIMD algorithm several open-source software tools and technologies are used.
In what follows we briefly explain the functionalities, as we believe it is important for understanding
the rest of the chapter. In Figure @ the main components are presented. The ingress traffic for
a specific application hits the exposed service of a Flask Rest API. This API is the aggregation
point that also performs the task scheduling policy. To implement the dynamic task scheduling
policy of the AIMD algorithm, we selected Python Celery, which is a software that suits well
with Flask and the main functionality is to create workers to implement asynchronous tasks. The
workers communicate via redis, a messaging broker, monitoring several events, e.g., the arrival
of a request, completion of a task, etc. The Queue Worker implements the central task queue
d(t). Celery can implement a rate limit for each worker, thus, the Queue Worker redirects tasks
with a rate of Y ! u;(t) at each time slot. Moreover, the Beat Worker is triggered every time slot
to update the admission rates and enforce the new rate limit to the Queue Worker. Hence, the
requests may hold in the aggregation point before being redirected to the processing nodes due
to the rate limit. We should note that the rate limit is a common practice at the production
level to enforce billing policies for the incoming traffic. The dynamic task scheduling policy serves
as a stabilizer for the processing nodes giving them time to process the requests and instantiate
new resources accordingly. All configuration and monitoring of these procedures are stored in a
Postgresql relational database.

As mentioned above, we consider ¢,,,7 = 1,...m, distinct resource profiles with different pro-
cessing capabilities as the processing nodes. For each resource profile, a separate Celery Worker is
created to redirect the HTTP traffic from the Queue Worker to the corresponding Application Pod
that serves the virtualized instance of the application. We consider that if a request is redirected

by a Celery Worker towards the " application pod then it belongs to the w; queue. Subsequently,
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Figure 4.3: AIMD integration with Kubernetes.

we dynamically load balance the incoming workload on the instantiated pods.

The proposed architecture is scalable and operates in a distributed manner as for each comput-
ing node, no knowledge of the state of other nodes is needed. We should also mention that in the
case of multiple applications is also possible having multiple aggregation points for the incoming
workload. However, a missing capability is to interpret, and subsequently enforce the computed
theoretical service rates to each processing node, in other words, decide the number of replicas
for each resource profile ¢; to guarantee at least a service rate of ;(k). In the next Section, we
provide a solution to this challenging problem.

In the following Sections, we present the last two components of the proposed system architec-
ture i.e., (a) the Workload Estimator, and (b) the Application Profiling Modeling.

4.6 Workload Estimator

To timely adjust the service rate of the deployed resources, it is of high importance to predict the
admission rates. Asthe AIMD algorithm dynamically changes the admitted workload u;(t) towards
the pods, the Workload Estimator tries to estimate the number of requests that will be admitted
since the next event under the dynamic workload. This is important as continuously applying
different service rates to the pods, i.e., scaling out/in the number of replicas may lead to per-
formance deterioration. Hence, we deploy an autoregressive integrated moving average (ARIMA)
model [] Such predictive techniques are very common for time-series forecasting. The model
is trained using offline information and retrains online as the workload varies. This information is
then used from the Application Profiling Modeling component to deploy the desirable number of

replicas for each resource profile.
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4.7 Application Profiling Modeling

The Application Profiling Modeling is based on machine learning (ML) techniques, which essen-
tially involve the classification of distinct combinations of computing resources concerning the
application’s service rate. The classification reflects the number of replicas r; of a resource profile
i, leveraging various metrics retrieved from the core components of the proposed framework. Tak-
ing into consideration the workflow followed by the Load and Resource Controller, separate ML
models-classifiers are implemented for each resource profile. Subsequently, the training process of
distinct models demands separate data that characterize the respective resource profile ¢;. Thus,
hereby, a description of the data collection process is initially given.

Data Generation: The appropriate scaling decision is directly related to the satisfaction of
the QoS constraints. Considering the discussed architecture, several features can be taken into
account to characterize the performance of a pod and of course, the dynamic conditions regarding
the pod’s resource utilization, the service and admission rates occurred by the task scheduling
solution. To acquire the data that contain mandatory metrics regarding the scaling decision, we
conducted offline experiments, utilizing the components of the proposed architecture for isolated
resource profiles. In detail, per experiment, only one resource profile is used for the corresponding
application. Different configuration schemes of (i) the incoming request rate, (ii) the resource limits,
and (iii) the number of replicas were applied to identify settings that meet the QoS constraints for
the underlying application. Subsequently, the collection of data, is categorized in the components
of the architecture as depicted in Table @ The data are filtered before the processing phase to
contain only valid training samples in terms of QoS guarantees based on the average response time
of the application occurring from node 7. The average response time of the requests in the last
inter-event period in node 7 is denoted as art;. Moreover, we utilize the ARIMA-based Workload
Predictor to get an estimation regarding the admission rate for each resource profile, denoted by

u? ed " This feature contributes to the Application Profiling Modeling component to consider a

pred

characterization of the workload in a specific time window. Specifically, u;

. is determined by a

real
)

specific range of previously gathered u values.

Dataset Pre-processing: The collected data from the aforementioned experiments are raw and
therefore not suitable for training machine learning models. The retrieved features are on a different
scale. To achieve faster training and improved classification accuracy, we perform feature scaling
with normalization by utilizing the MinMawScalerﬂ. Normalization of the features leads to values
that range between 0 and 1, and, so each feature contributes equally to the classification process,
especially to distance-based classification algorithms. Depending on the configuration of each
experiment, the distribution of samples across the known classes (i.e., number of replicas) might be
biased or skewed. Data imbalances can affect classification predictions when they are not properly
managed. Thus, balancing the dataset is mandatory before proceeding. One way to address this

issue is to generate new samples in the class which is under-represented. The most naive strategy

Lhttps://scikit-learn.org/stable/modules/generated /sklearn.preprocessing.
MinMaxScaler.html

82



DISTRIBUTED RESOURCE AUTOSCALING 4.7. APPLICATION PROFILING MODELING

Table 4.1: Dataset’s Features Specifications.

Feature \ Component \ Specification
i AIMD Algorithm The service rate of each node.
W; AIMD Algorithm The queued requests at each node.
Uu; AIMD Algorithm The admission rate to each node.
yreal Performance Metric Thfe actu.al admission rate to each node during
g a time window.
yPred Predicted Metric The' admission rate predicted by the Workload
v Estimator for each node.
art, Performance Metric The average response time obtained by each
node.
r Performance Metric The number of replicas for the underlying re-
source profile ;.

Application
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Figure 4.4: Data Generation Workflow for the Application Profiling Modeling,.

is to generate new samples by randomly sampling with the replacement of the currently available
samples. The RandomOwverSampler offers such a scheme, and we utilized this technique from
the sklearn python library. Another aspect of the pre-processing phase is the feature importance
computation, as well as the correlation between them. So, we calculate the feature importance using
Random Forest Algorithm [115], to identify the features that reflect more information regarding our
classification problem while reducing the dataset’s dimensions. Nevertheless, the dimensionality
reduction of the feature space will lead to a faster training process in general and specifically faster

prediction. In our case, the selected features after the normalization are the (i) ul®®, (i) ~, (iii)
w;, and (iv) u?".
ML-based Application Profiling: The Application Profiling Modeling component undertakes

the process of providing the CPA with the value of r;, at each event, leveraging the aforementioned

real

selected features, i.e., w;, vi, u;®", u

rred - Considering the fact that the sample points of the
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Table 4.2: Classifiers’ Accuracy on Test Dataset

. Accurac
Classifiers Small | Mediuni, | Large
Support Vector Machine 0.51 0.55 0.66
Logistic Regression 0.44 0.57 0.60
Random Forest 0.75 0.87 0.83
k-Nearest Neighbors 0.72 0.80 0.79
Random Forest - optimized 0.76 0.88 0.87
k-Nearest Neighbors - optimized | 0.76 0.90 0.87

dataset are labeled, as the class index is the number of replicas r;, we attempt to train and
evaluate several supervised learning algorithms to produce the profiles for each ;. In precise,
the following algorithms were trained and evaluated: Logistic Regression (LR) [116], k-Nearest
Neighbors (kNN) [117], Random Forest (RF) [115] and Support Vector Machines (SVM) [118§].
We perform benchmarks to nominate the algorithm that will be used in the Application Profiling
mechanism. As Table @ shows, three different resource profiles are used. For each resource profiles,
we generate a training and an evaluation dataset. Relying on the aforementioned pre-processing
techniques, dataset preparation is performed, prior to the training phase. The ratio between
training and test sample points is 70% to 30% of the initial dataset. Initially, the ML-algorithms
are trained with their default hyperparameter settings. The performance of the algorithms is
evaluated based on their accuracy score on the test set. Table @ illustrates the accuracy of
the ML algorithms for each resource profile. In general, the kNN and RF methods achieve the
highest accuracy score compared to the rest classifiers. Thus, we perform optimization for these two
algorithms via hyperparameter tuning, using grid search technique, where multiple hyperparameter
configurations are tested. This procedure significantly increased the accuracy of the optimized kNN
and RF algorithms. However, generating a large dataset to further increase or test the accuracy of
the proposed ML models is very challenging. In particular, in our case, the performance metrics
heavily rely on the infrastructure capabilities, the type of requests and the application. On the
other hand, working with small-scale datasets may lead to overfitting the ML models. As a result,
we select the kNN algorithm as it is an instance-based learning algorithm with fast training phase,
and it involves only storing feature vectors and class labels of the training samples. Also, it
suits multi-class problems like our and its non-parametric nature is appropriate for small datasets
since no assumptions on the data distribution is required. We note that the proposed scaling
decision runs in the order of ms, so the overall performance is not disrupted. More details on KNN

hyperparameter configuration are given in Section @

4.8 Experimental Evaluation

This Section presents the experiment setup and the experimental evaluation of the proposed ar-

chitecture with other autoscaling schemes for KECs. We deployed a Kubernetes cluster using 3
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Figure 4.5: Workload Trace used for training and experimentation.

Table 4.3: Resource Profile Setting.

’ Resource Profiles \ Small \ Medium \ Large ‘

CPU cores 1 2 4
RAM (GB) 2 1 8
[, Bi] 04,05 | [1,05] | [2.4,0.5]
Max Req 1.5 3.6 7.8
Rate (req/s)
i 1 2 3

Openstack VMs in two Intel Xeon Silver 4110 servers. We consider three different resource profiles,
m = 3, namely small, medium, and large, following the production standards, see, e.g., Azureﬂ.
The maximum number of replicas selected is 7,4, = 4. The resource limits and AIMD parameters
for each resource profile are presented in Table @ Also, in the same Table, the maximum request
rate that a pod can serve before noticing QoS violations is presented. The selected application
is a simple image classification application that uses OpenCV. We assume that if a request takes
three times more than expected to be processed then we have a QoS violation, and the request is
rejected by enforcing a connection timeout.

Every time slot of 0.1 sec, we scrape the Prometheus metrics and the Beat Worker operates.

For the offline training of the ML-based Application Profiles, we used a workload trace acquired

2https:/ /azure.microsoft.com/en-us/pricing/calculator/
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Figure 4.6: The performance of the proposed DRA method.

from Ferryhopper websiteE, which provides ferry booking services around Europe. Figure @
presents the per minute distribution of HTTP request rate spanning in six days. The data of the
first four days were used to train the Workload Estimator and the Application Profiling Modeling
components, i.e., the ARIMA model and the ML-based Application Profiles. The data of the last
day is used for the evaluation part. The ARIMA model was trained using the autoarima package,
which yielded a model of order (3,1,1).

Regarding the kNN models, used in the application profiling mechanism a hyperparameter
tuning is performed, using 10-fold cross-validation [], which is a typical ML modeling optimiza-
tion technique. The basic hyperparameters of kNN are (i) the k parameter, which determines the
number of neighbors that are taken into account to classify a new sample, (ii) the distance mea-
surement between the sample points (e.g. euclidean), and (iii) the weight for the distance. After
the optimization, the hyperparameters configuration is: (1) for the small resource profile: k = 2,
distance=euclidean and weight=1/distance, (ii) for the medium: k = 1, distance=euclidean and
weight=uniform and (iii) for the big k = 16, distance=manhattan and weight= 1/distance.

We compare the proposed architecture, hereinafter Distributed Resource Autoscaling (DRA),
with four different setups, namely (i) modified HPA (m-HPA), (ii) S-HPA (iii) M-HPA, and (iv)
L-HPA. The m-HPA, on the one hand, utilizes the three resource profiles by load balancing the
incoming requests with a constant ratio. On the other hand, the resource scaling decision is dictated
by an HPA instance for each resource profile by targeting 70% of CPU utilization. The last three
setups deploy only one resource profile at each time, i.e., only small (S-HPA), only medium (M-
HPA), or solely large (L-HPA) resource profiles, respectively. Moreover, the scaling is, again,
performed by HPA by targeting 70% of CPU utilization for the deployed replicas. These setups

3https://www.ferryhopper.com/
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Figure 4.7: The Total CPU cores utilized for each method throughout the experiment.

are all evaluated against a seventy-minutes workload taken from the test data of the Ferryhopper
trace. All HPA instances operate every lsec. The experiments were conducted ten times for each

method, and all the results are averaged.

In Figure @, we illustrate the performance of the proposed DRA method. The first diagram at

the top shows the incoming request rate A(t) and the admission rates u[®*(t), i = 1,2,3, towards

the small, medium, and large resource profile, respectively. at each time slot. As expected, A(t)
is distributed according to the AIMD-based scheduling solution Eq. (@), while the workload
o

share of each resource profile depends on the ratio —= e In particular, the average admission

k3

i=1
rates of the small, medium and large resource profile, respectively, for the entire experiment, are
calculated as 12%, 31% and 57%, which are consistent with the ratio —s“—. The lengths of

i

=1
individual queues of the application pods denoted by w;(t) are depicted in the second diagram.

Evidently, when the workload is peaked, individual queues grow reasonably indicating an increase
in local backlog. The AIMD-based service rates 7;(k) for each resource profile, as obtained from
Eq. (@), are shown in the third diagram from the top. Recall that ~;(k) is a strictly increasing
function of w;(t) as shown in Eq. (@) This coupling is clearly demonstrated in the second and

87



4.9. SUMMARY DISTRIBUTED RESOURCE AUTOSCALING

Table 4.4: Results for the five experiments.

Total Average

Setup QoS CPU

Violations cores
DRA 1.17% 13.1
m-HPA 0.52% 16.2
S-HPA 3.64% 14.8
M-HPA 0.93% 14.7
L-HPA 0.2% 14.2

third diagrams. The ML-based scaling decision is shown at the bottom diagram. The number
of deployed CPU cores for each resource profile, is illustrated at each time slot, and the scaling
decision takes into account the behavior of all previously shown metrics. The rest features of the
ML-based profiles are omitted as they do not add any value to the discussion of the results.

In Figure @, the utilized CPU cores needed to serve the incoming requests at each time slot are
illustrated, for all methods. The HPA-based solutions, i.e., S-HPA, M-HPA, and L-HPA utilize on
average 14.8, 14.6, and 14.1 CPU cores respectively, throughout the experiment. The M-HPA and
L-HPA provide negligible QoS violations, i.e., 0.2% and 0.9% respectively, however on the peak of
the workload both need at least 28 CPU cores to operate. This occurs because of the lack of a task
scheduling algorithm that leads to instantiating under-utilized cores. Nevertheless, for the S-HPA
solution, which intuitively could be the most fine-grained scaling solution, we can notice that it has
on average the same performance in terms of CPU cores, however, leading to a significant increase
in lost requests, namely, 3.64% of the total. This is reasonable as the small resource profile can
serve only 2.5 requests per second as shown in Table @ For the m-HPA, we can assume that
under the assistance of the task scheduling policy, the total QoS violations are minimized, however,
the average CPU cores are maximized, leading to 16.1 CPU cores. As one can notice, our method
outperforms all other setups, utilizing on average 12.6 CPU cores to handle the incoming varying
workload, having only 1.8% total QoS violations. Hence, the provided solution outperforms all
others, having at least 8% fewer CPU cores utilized throughout the experiment. It is evident,
that the task scheduling mechanism is key to handle the time-varying workload and optimizing

the utilization of the deployed resources. Table @ summarizes the results of the experiments.

4.9 Summary

This chapter presents a scalable architecture for resource management in KEC. The proposed
method provides a solution to the task scheduling problem. Also, based on the theoretical results
from the proposed AIMD-like algorithm and various performance metrics, we introduce an ML-
based Application Profiling mechanism that decides the number of replicas for the different resource
profiles to proactively and in a decentralized manner, scale the deployed resources to serve the

incoming workload. Our framework outperforms other commonly used solutions for autoscaling,
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as the average CPU resources are at least 7% less, having only a slight increase in QoS violations.

The results of this Chapter are also presented in [120].
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Chapter 5

A switching ofloading mechanism
for path planning and localization

in robotic applications

5.1 General Setting

For optimizing offloading the tradeoffs between computing and communication resources must be
investigated with a focus on control design, estimation, and implementation [565], [121]. Recently, a
specific effort is placed on exploring the offloading opportunities of the decision-making and mon-
itoring algorithms (control and estimation) in the path planning problem for autonomous agents
[29]. To this end, a control-based, computation offloading mechanism for robotic applications
in Edge Computing ecosystems are a convenient way to optimize offloading. Also, following the
paradigm of approximate computing, one may decide to reduce the computations of the specific
algorithm having as a return a slight decrease in the overall accuracy or quality.

In this chapter, we propose a computation offloading mechanism for robotic applications. In
particular, we realize an IoT-enabled localization and path planning framework and verify the
expected gains of computation offloading by utilizing a real Edge Computing setting. To achieve
this, we design and implement local and remote localization and path planning controllers, fol-
lowed by a scheduling mechanism. The offloading mechanisms are treated as switches, leading to
different dynamics of the resulting closed-loop system. Specifically, the algorithms involved in the
localization process are decided to run remotely, rather than locally, when the uncertainty of the
robot’s pose is high and at the same time the network and computing resources status at the Edge
is favorable. On the other hand, path planning is offloaded when the robot navigates in a part of a
map where better planning strategies can be achieved through involved algorithms that can only be

executed remotely. These switches compose a switching system that is adaptive and can operate
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under different scenarios and applications. This architecture perspective, which constitutes the
main contribution of this chapter, offers our framework a degree of contextual awareness; that is
the ability to sense and dynamically adapt to the robot’s environment, implicitly enhancing to an

extent the robustness of its operation, as well as improving the QoS of the supported applications.

5.2 Related Work

Computation offloading in current and next-generation networks is becoming increasingly im-
portant due to the proliferation of the Internet of Things (IoT) real-world applications [122].
These applications introduce a vast number of low-capability, low-energy devices to the network-
ing ecosystem, which regularly need to perform computationally intensive and/or energy-hungry
tasks. However, when latency and energy consumption minimization are required, the limited
resources of the IoT devices prove inadequate [123]. For example, in Industry 4.0 and especially
in collaborative robotics, where humans and robots work together in dynamic environments, com-
putationally heavy algorithms enable ToT devices in sensing and actuating[[124]. Consequently,
large amount of information has to be processed and complex algorithms need to be executed in
real-time.

The increasing availability of networking in the Edge and Cloud supports new approaches, where
processing is performed remotely, with access to extensive computing and memory resources. In
this direction, Edge Computing (EC) alongside Fog Computing (FC)[[125] constitutes a particularly
prominent way of dealing with the aforementioned shortcomings of IoT devices. FC offers an
attractive alternative providing low-latency and high energy-efficient operation, while maximizing
system performance. This paradigm is currently more relevant than ever, especially in the context
of the much-anticipated Industry 4.0 revolution [126] and Industrial IoT (IIoT), where Fog Robotics
(FR) is introduced. FR can be defined as the architecture that distributes computing, storage and
networking functions at the Edge/Cloud continuum in a federated manner[127], i.e., where robots
and automation systems rely on data or code from a network to support their operation.

Suitable as it may seem, solely utilizing remote computational resources is not enough; a number
of unwanted phenomena potentially take place in the transmission and processing of the informa-
tion, such as network latency, variable Quality of Service (QoS), and downtime. For these reasons,
autonomous mobile robots often have some capacity for local processing when targeting low-latency
responses, and during periods where network access is unavailable or unreliable. Consequently, a
major challenge, from a control design, estimation, and network optimization point of view is to
combine local and remote resources in an efficient way.

Open challenges in this area throughout the literature are concerned with developing adaptive
multi-robot /machine control, capturing, modeling, predicting, and anticipating the agent’s interac-
tions, and designing distributed control and path planning algorithms that deliver flexible and safe
working environments. Approaches similar to ours include [12§], where gesture-based semaphore

mirroring with a humanoid robot is split to remotely and locally executed functionality; [129], in
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which the authors identify a three-layered environment (Robot, Edge, and Cloud) to overcome the
challenges of network limits in a Deep Robot Learning application and [130] where Dew Robotics
is introduced; this concept posits that critical computations are executed locally so that the robot
can always react properly, while less critical tasks are moved to the Fog and Cloud, so to exploit the
larger availability in computing, storage, and power supply. However, none of the aforementioned

offloading decision schemes addresses the dynamic nature of the robot’s environment.

5.3 Contributions and Outline

The scenario addressed in this chapter involves a mobile robot equipped with sensing, computing,
and wireless communication capabilities, which makes its way from a starting position to a target
position in an operating ground (e.g., a factory floor), navigating through obstacles. This function-
ality is a key component to realizing autonomous robotic navigation in Industry 4.0 use cases, e.g.,
warehousing and logistic robots which automate the process of storing and moving supply chain
goods. Tracking the robot’s location is essential for robust and safe trajectory planning. However,
a common problem in such a scenario is that the uncertainty in estimating the exact pose (i.e.,
position and orientation) grows over time in motion, due to inaccuracies in sensing, wheel slips,
and hardware failures. Thus, the importance of an accurate, dynamically adjusted localization
technique is evident. The key contributions of this work that differentiate it from the rest of the

literature are summarized as follows:

e A novel computation offloading mechanism for robotic applications that utilizes an Edge

Computing setting to improve the accuracy of both the robot’s localization and trajectory.

¢ An offloading scheme, based on switched systems, that addresses the dynamic nature of the

robot’s movement and deals with the unpredictability in its exact pose over time.

e An innovative position and orientation estimation component that achieves high precision
while using the simplest camera system and the minimum amount of identified natural land-

marks.

5.4 Architecture Overview

The scenario addressed in this work involves a mobile robot equipped with sensing, computing,
and wireless communication capabilities, which makes its way from a starting position to a target
position in an operating ground (e.g. a factory floor), navigating through obstacles. This function-
ality is a key component to realizing autonomous robotic navigation in Industry 4.0 use cases, e.g.
warehousing and logistic robots which automate the process of storing and moving supply chain
goods. Tracking the robot location is essential for a robust and safe trajectory planning. How-
ever, a common problem in such a scenario is that the uncertainty in estimating the exact pose

(i.e., position and orientation) grows over time in motion, due to inaccuracies in sensing, wheel
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Figure 5.1: Architecture Overview. The locally executed components are highlighted with blue
color, while the remotely executed ones with green.
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slips, hardware failures, etc., [131]. Thus, the importance of an accurate, dynamically adjusted
localization technique is evident.

In our case self-localization through landmark assisted pose estimation is implemented; the
robots are equipped with a camera module, while in their proximity unique cylindrical beacons
are used as landmarks to assist in the pose estimation process. In the computationally demanding
involved algorithms, two offloading opportunities are revealed in, namely, pose estimation and path
planning. To this purpose, a small-scale network infrastructure is set up, connecting the robot to a
wireless LAN (WLAN) through an Access Point located within the robots’ network range, which in
turn connects via a wired connection (LAN) to a server in the robot’s proximity, the Edge Server.

Locally, the intangible assets include the (i) the Tracking Controller (TC), (ii) the Local
Odometry-Based Estimator (LOE), (iii) the Local Beacon-Based Estimator (LBE), (iv) the Local
Path Planner (LPP) and (v) the Offloading Decision Mechanism (ODM) components, all located
within the robot; component (i) is responsible for carrying out movement-related decisions, (ii),
(iii) and (iv) are the locally executed pose estimation and path planning applications respectively
and (v) encompasses the intelligence of our switching system by monitoring the offloading-related
metrics and realizing the offloading decisions. On the remote side, containerized counterparts of
the path planning and pose estimation applications are co-hosted on the Edge Server; these are
namely (vi) the Remote Beacon-Based Estimator (RBE) and (vii) the Remote Path Planner (RPP)
which are able to receive offloaded requests from the robot. A more detailed discussion on these

components follows in Sections @, @ and @

In order to outline the sequence of interactions between the main components of the architec-

ture, we showcase a representative scenario in which our solution applies successfully. Fig. EI
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depicts an overview of this scenario. Without loss of generality, we assume that only one robot
operates in the field. Also, its starting pose, the operating space dimensions and the obstacles’ and

beacons’ positions and shapes are considered known a priori.

A typical activity flow of our scenario, initiates with Local Path Planner component calculating
locally a trajectory from the starting position to the target position. This triggers the ODM for
the first time; should a quick analysis on the projected trajectory indicate room for significant
refinement of the selected path, the Remote Path Planner is invoked. This analysis is based on the
trajectory curvature and the degree in which the more elegant remote component is potentially
able to smooth it around obstacles; Section provides more insight on this process. Eventually,
the resulted trajectory dictates the intermediate positions the robot needs to reach. In order to
sequentially perform the transition to the each of them, the Tracking Controller component is

invoked.

After reaching the next position of its trajectory, an uncertainty indicator of the pose estima-
tion is calculated; this indicator is a scalar that grows with time and actually accumulates the error
between the estimated and the reference pose after each move, as explained thoroughly Section
. Here, the second decision occurs; if this indicator measures bellow a predefined threshold,
the robot continues to move based on the feedback coming from the Tracking Controller’s monitor-
ing process, i.e., the Local Odometry-Based Estimator, which leverages the robot’s photoelectric
sensors (encoders) attached to each wheel to measure the wheels’ angular velocities during a pe-
riod of time. Else, it invokes the more precise, but computationally heavy, Beacon-Based Pose
Estimator, leveraging information coming from the beacons in the environment. That triggers
the ODM once again; the Edge Server is queried to provide an estimation on the duration of the
potentially offloaded pose estimation task. As described by the mathematical modelling in Section
, this duration is proportional to the availability of the computational resources. Based on
this estimated duration, a decision is made on whether to offload the pose estimation task to the
Remote Beacon-Based Estimator, or execute it locally. The flow ends with the robot checking if

the target position is reached. If not, it reverts to first step.

It is worth highlighting that the tracking controller, as well as the path planning and pose

estimation, are aperiodic. The position of the robot on the operating ground is defined by the
T

state vector z* = {xl 332} . The robot has to move towards the next reference position zief =
(21 rer(ti) Taret(ti)]", generated by the path planning algorithms, to approach the target position.
Fig. @ gives a brief insight on the timing sequence in which the rest of the sections will refer to.
Let subscript ¢ correspond to the step during which the robot reaches the next reference position
in k; actuation steps, while simultaneously tracking its pose. In particular, at time ¢? the robot
is in the position z'. When the next reference position xfg]} is close, the uncertainty about the
current estimation is calculated. Thus, the time duration 7}' corresponds to the time spent for
localization. When the local odometry-based estimator is used, this time is equal to zero, while the
beacon-based estimation algorithm is time-consuming. The time duration T? corresponds to the

path planning algorithm running time either remote or local, which generates the next reference
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Figure 5.2: The timing sequence in the proposed scenario.

position. Similarly, the time to execute the local path planning algorithm is equal to zero.

5.5 System Dynamics

5.5.1 Robot dynamics

The differential drive robot used in this study has two wheels that can turn at different rates,
allowing motion by changing the orientation and the position (z1,x2) either separately or simulta-

neously. For the robot dynamics, the 2D coordinates, i.e., position, and the orientation of the robot
T

are denoted by the state variables z1, zo and z3. Hence we consider z = [zl 2o 23} = {xT 0} T.
The robot is controlled by the angular velocities wgr and wy,, accounting for the right and left wheel
respectively. The robot dynamics is defined by the following continuous time system, based on the
work in [132], using the aforesaid state-space representation. Specifically, we have for any ¢ > 0,

4(t) = %(wL(t) + wr(t)) cos z3(t), (5.1)
io(t) = %(wL(t) + wr(t)) sin z3(t), (5.2)
2a(t) = T (wi(t) — wa(D)), (5.3)

where [, 7 are the distance between the two wheels and the radius of each wheel respectively. The
odometry measurements wy, (t{),wR(tz) are taken at each time instant t{, 1=0,1,...,5=0,...,k;
of the timing sequence introduced in Section p.4. The corresponding discretized system using Euler
forward method is:

2167 = S (8]) + or(t]) cos 2(E) (6 — ) + 2 (), (5.4)
22(6) = S(@r(t]) + or(t)sin Z() (6] — ) + 22(8), (5.5)
2a(t) = Tn(t]) - Br())(E T — ) + 2(t). (5.6)

5.5.2 Tracking controller

As previously mentioned, the robot moves towards the next reference position xief to reach the
target position. For this actuation phase, given the specific robot dynamics, we propose a tracking
controller executed locally on the robot, by fixing the control inputs wr,, wg to be either equal or
opposite. Therefore, the control input is w, while |[w| =|wy| =|wg|. As a result, we restrict the
motion of the robot to a straight line, i.e., “translational motion”, or a rotation around the center
of the wheel axle, i.e., “rotational motion”, respectively. This control structure is chosen as it is
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Figure 5.3: The hybrid automaton of our system.
efficient for tracking purposes, leading to a simple structure of the closed-loop system. Specifically,
the closed-loop dynamics for the translational and rotational motion are

(w(t)) cos z3(t),
(w(t)) sin z3(t), (5.7)

21(t)

SlTran .

N
)
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S5 1 % za(t) = (5.8)

where Si"" is used for the translational motion and S3°" when the robot needs to rotate. Let

. Z tj ref(ti . . .
R(t]) = A Z.) e i(t:) be the distance between the robot’s current estimation and the
ZQ(tz) ZQ,ref(ti
2

reference position and let ¢(t/) = Z3(t) — tan~* % be the angle between the robot’s
current estimation of orientation and the line conn;ctiﬁg the robot and the reference position.
Here, % accounts for the estimation of its current pose calculated by Equations (@) - (@) at the
time period of the actuation ¢ = t{, 3=0,1,...,k;.

The closed-loop system with the tracking controller can be modeled by a discrete-event systems,

see, e.g., [133], as shown in Fig. @, where the control input can be calculated as follows:

LiR(t), #(t)) <ex AR(t)) > e1, Translational,
w(t]) = { Lag(t), () > e2 A R(#)) > 1, Rotational,
0, R(tf) < e, Stop.

The quantities €1, €2 are positive constants, while the gains Ly, Ly are constant control parameters.
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The reference position is reached when the estimation of its position is close, and in particular
is inside a ball of radius €; close to the reference, i.e., centered at B(mf,ef,z(tg)) ={z e R®:
|z — Z(t])|| < e1}. The effect of the uncertainty is taken into account explicitly in the offloading

decision that follows.

5.6 Localization and Path Planning

In what follows, we present the algorithms chosen for localization and path planning, with a varying

degree of complexity and accuracy, that are implemented locally and remotely accordingly.

5.6.1 Localization

The localization problem is equivalent to the pose estimation problem in our setting. Two algo-
rithms of different complexity are implemented, namely, (i) an odometry-based one, and (ii) a
camera-based estimation. The first estimation algorithm is light enough to run efficiently on the
robotic platform. Roughly, the robot’s on-board wheel encoder readings are fed to the motion
model (@) - (@) While this is a lightweight and fairly accurate localization technique when it
comes to short trajectories, odometry is known to be prone to accumulative errors [[134].

The second localization technique is the computationally heavier beacon-based estimator. De-
tails on the technical parts of the algorithm and its software and hardware implementation can be
found in [135]. Roughly, the technique is based on a bilateration method using principles of pro-
jective geometry. Distance calculation is based on feature extraction from pictures depicting the
landmarks, with the localization algorithm relying on a minimum of two strategically positioned
landmarks. To address this requirement, the attached camera scans the area in front of the robot,
capturing pictures and analyzing them until two landmarks are detected. Hence, computationally
intensive, real-time image processing is required to achieve highly accurate results. Relevant works
include [136] and [[137].

5.6.2 Path Planning

Many works exist in the literature addressing the path planning problem; realistic robot navigation
and smooth trajectory planning is a major challenge [138], [139]. Planning algorithms generate a
trajectory consisting of intermediate reference positions to reach the final target position. In this
work, we select and adapt graph-based methods of varying complexity, see, e.g., [132, Chapter 8].
As a result, the algorithms described below, take as input a graph that represents the real-space
grid space along with the target positions, the obstacles, and the starting position. This grid has
a predefined cell size, that depends on the length of the robot. Each cell corresponds to a possible
reference position. In our case, the obstacles are rectangular-shaped, in the sense of simplicity,

however, arbitrarily shaped obstacles could also be included.
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On the one hand, a lightweight implementation of the A* algorithm [[140] acts as the Local Path
Planner. Similar to [141], four directions of movement are allowed in the grid. The cells containing
obstacles are not connected with the neighboring cells. The A* algorithm returns a sequence of
positions to reach the target position, according to a heuristic cost function; in our case this is
the Manhattan Distance. The implementation is suitable for a robot with minimal computational

resources providing a solid and quick solution, however the generated trajectory is not smooth.

The computationally intensive algorithm acting as the Remote Path Planner is deployed on the
Edge Server. Similar to [142], the main process of the proposed algorithm is to locate a possible
move towards a node that is closer to the target given the aforesaid graph. To this purpose, a
multiple sources single destination problem is solved, utilising Dijkstra’s shortest path algorithm,
which calculates a path from each node towards the target position, offline. These precalculated
paths, along with the total cost to reach the desired destination, are stored in a database on the
server’s startup. When the Remote Path Planner is invoked, given the current location of the
robot, a neighbor pruning is performed similarly to [143]. A node of the graph is considered to be
a neighbor of the current position if (i) the distance between them is less than twice the specified
cell size and (ii) no obstacle is in the line of sight of the current position to that node. Consequently,
to retrieve the set of possible neighbors, it is sufficient to search for the avoidance of line clipping
(intersection) between the line connecting the current position to each of the adjacent cells and
the set of obstacles present in the real-space grid. The optimal path is chosen by comparing all
possible neighbors. In particular, the cost to reach each one of them from the current position is
added to the cost from each neighbor to reach the desired target. In this way, the algorithm allows

“shortcuts’ to the neighboring nodes, while any-angle trajectories are feasible.

5.7 Switching System

In this section, we present the switching mechanisms that are realizing the Offloading Decision
Mechanism of our framework. We assume that starting from a position g = [#1(0) 22(0)]T, the
closed-loop system converges asymptotically to a reference position Zpef = [Z1 ref(ti) :c27ref(t,-)]T
when exact measurements are available, i.e., when Z(¢) = z(t). We identify two offloading oppor-
tunities related to the pose estimation and the path planning problem. In Fig. @ the proposed
switching system is presented. In particular, switches S§; and S; relate to the estimation procedure,

and switch S3 concerns the path planning part.

5.7.1 Sensor Selection (Switch 1)

The measurements of the onboard sensors are imperfect, thus the pose estimation error is accu-
mulated. When the error becomes too large, the more precise, yet more computationally intensive
remote localization algorithm is invoked. In order to decide when to offload, we introduce the
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Figure 5.4: The block diagram of the switching system. Component abbreviations and colors follow
the pattern introduced in Section p.4.

variable d(-) that describes the uncertainty in estimation. We set

ST = 6(t)) + bo + bid(t),

j=1,...,k;, i € N, where § is the deviation between the measurements of the states Z, computed
by the Equations (@) - (@) and the model-based estimations Z, i.e.

where %(t]) consists of:

5(th) =

H(t) — 5(t)

)

(07 = G we (t]) +wa(t])) cos 55 (8 (1 — 1) + 21 (¢)),
%) = g(wL(tf) +wr(t]))sin () (1 — ) + Z(t]),
£(071) = Fwn(t]) —wr()) (6 — 6]) + 23(2)),
which are the model-based estimation of the dynamics at time instants t{ ,7=1,...,k; and wr,wg

are the outputs of the tracking controller. At the time tJ, the model-based estimation is equal to

a known initial position, i.e., Z1(t]) = #Y. As a result, § linearly depends on the deviation and gets

bigger as the robot actuates, especially when the actual motion of the robot differs from what the

model dictates.

The offloading mechanism, aiming to reset the uncertainty, is triggered when § becomes too
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large, namely larger than a prespecified threshold §*, i.e.,

OFF, if §(t¥") < 6%,
ON, else,

Si(ty') =

where k; refers to the time instant, when the robot’s position, calculated by Equations (@)
and (@), is close to the next reference position Trerx. Moreover, ON corresponds to using the
beacon-based localization and OFF to proceeding based on the local odometry estimation. In the
scope of this work, we assume that the uncertainty becomes equal to zero when the beacon-based
localization is used. Hence, when Sy (t¥) = ON, then 6(t?,1) = 0, which means we get a valid

measurement of the states z. Otherwise, 6(t9,,) = 5(15?).

5.7.2 Estimation Offloading (Switch 2)

Switch Sy decides whether the localization algorithm will be executed locally on the microcon-
troller mounted on the robot, or remotely on the Edge Server. Although the execution of such a
computationally heavy algorithm on a battery-powered IoT device is energy-consuming, it may be
preferable in some cases as offloading might result to larger response times due to lack of available

resources on the remote server and network congestion.

5.7.2.1 Resource modelling and estimation

We assume that the resources of the localization service on the Edge Server are managed by the
resource orchestrator of the infrastructure provider and we can only estimate the allocated resources
through measurements. Thus, we model the resource allocation strategy on the Edge Server as a
linear dynamical system subject to process and measurements uncertainty disturbances

c((k+ 1)Ts) = c(kTs) + w(kTs),
2(kTs) = c(kTs) + v(kTs),

where ¢ accounts for the virtual CPU cores of the container, z is the measurement of ¢ and Ty is
a constant sampling time. The terms w, v are the process and measurement noise respectively,
both following a normal distribution. Based on previous measurements, we compute a current
estimation of the virtual CPU cores allocated to the container, ¢, by applying a Kalman Filter

[144], which is a computationally light prediction method.

5.7.2.2 Processing time estimation

Having acquired the estimation of the available remote virtual CPU cores ¢, the estimated pro-
cessing time of the beacon-based localization algorithm can be calculated. To this purpose, the

processing time, t,, is modeled as a linear relationship of the available resources, ¢, = a¢ +b. The
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coefficients a,b are calculated using the least squares fitting method, on a set of pairs (¢,,¢) pro-
duced offline while experimenting with a dataset of pictures. Moreover, we consider the wireless

network induced delay t,e¢ to be constant as a standard network delay in a WLAN network.

5.7.2.3 Localization Offloading

The processing time is related directly to the CPU availability. The local beacon-based localization
has an average time t;,. to be executed based on the robot’s resources. Hence, Switch Sy is
formulated as:

ON, if tp + tnet < tioc,
OFF, else,

where k; refers to the time instant that the robot must decide whether to offload or not the
beacon-based localization algorithm. Moreover, ON corresponds to the remote execution of the

self-localization algorithm and OFF to the local execution.

5.7.3 Path Planning Offloading (Switch 3)

Two path planning algorithms are implemented. By default, the computationally light A* algo-
rithm presented in Section ,provides a reference trajectory on the robot. However, whenever
a prediction cost indicates a possible amelioration by choosing a more refined path, the remote
path planning algorithm is invoked. Both algorithms take as input the current estimation of the
position and the reference position and generate a reference trajectory.

The offloading decision for the path planning depends on a cost consisting of two parts; the
first part estimates the closeness of the generated reference trajectory to obstacles and the second
part evaluates the curvature of the trajectory. Both terms follow theoretical aspects from standard
works, e.g., [145]. We define the function D(z) that quantifies the “density” of obstacles according
to the estimation of the current position Z, either computed by the beacon-based localization or
the local odometry measurements.

D)= > exp(—|e—zonsl),
2obs €Xobs
and Xgps is the set of positions that correspond to the centers of the cells that are unreachable,
e.g., occupied by an obstacle.
Let {#(7) };=1,....,m be the part of the path sequence consisting of the first M positions, generated
by the local path planning algorithm.

The local path planning algorithm takes as input the current position estimation a?:(tf) at
t =T + T} and creates a reference trajectory sequence {#(i)}i—o.1... ar, with #(0) = 2(t¥ + 7).
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We define:

Toeal @ (" + T})) =
M-—1
S (H:Y;(i—&-l) —i'(i)H) -

as a cost describing the curvature of the reference local trajectory. The offloading strategy can be

(M) - £(0)||,

formulated as:

Sy(th + 1) =

OFF, if D(#(t¥ + T}1)) — Jocal (15 + T}1)) < J*,
ON, else,

where ¥ + T} indicates the time instant after the actuation and pose estimation. The constant
J* accounts for the degree of difficulty of the next moves in terms of proximity to obstacles and
curvature of the trajectory. When S5 in ON, the remote path planning provides the next step
to reach the target position. Otherwise, the robot relies on the local path planning trajectory.
It should be mentioned that, contrary to Switch 2, here, we do not include the CPU availability
in the offloading decision, as we noticed that the remote path planner chosen is mainly memory

intensive.

5.8 Experiments and Evaluation

The experiments were conducted in an operating space of 2.5x2.5 meters, divided by 25x25 cells,
with a cell size of 10x10cm. The robot chosen was the commercially available AlphaBotE7 equipped
with a Raspberry Pi 3 device as the control unit. The length of the AlphaBot is 22cm and the
radius of each wheel is 6.6cm. The coloured beacons were placed at the periphery of the grid
for the localization procedure described in Section @ The rectangular-shaped obstacles were
placed as depicted with grey colour in Fig. @ The map is considered known. The Access Point
used was a MikroTik wireless SOHO AP, providing up to 100Mbs LAN connection, Single Band
(2.4GHz). The Edge Server deployed on the NETMODE, testbed part of FedllFIREE initiative,
was equipped an Intel Atom CPU, up to 1Gbit Ethernet port and 8GB of RAM. The services
provided by the edge server were deployed as Docker containers. For each Docker container,
one can set constraints, to limit a given container’s access to the host machine’s CPU cores, by
provisioning a percentage of them as the virtual cores of the containers. Thus, containers can be
assigned with partial virtual CPUs using decimal values. Using a collection of pictures from the

actual experimentation room, from different positions and viewing angles, a dataset was created

Thttps://www.waveshare.com/wiki/AlphaBot
2https://www.fed4fire.eu/testbeds/netmode/
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Figure 5.5: The experiment setup and the trajectories produced by the three experiments.

Average Time per picture (sec), t, | Virtual Allocated Cores, é
241 0.25
1.06 0.5
0.56 0.75
0.39 1
0.30 1.25
0.26 1.5

Table 5.1: The average time for remote beacon-based estimation per virtual allocated core to the
container.

to estimate the time duration of the remote beacon-based localization. In Table @, the values of
the set of pairs (p, ¢), introduced in Section , are presented. Using the least squares fitting
method we calculated the coefficients a = —1.34 and b = 1.675. Hence, the estimated processing
time of the remote beacon-based localization is given by ¢, = —1.34¢ 4+ 1.675. Provisioning over
1.5 cores resulted in similar computation time, thus, the maximum CPU allocation was set to that
value. In our experiments, the allocated cores of the containerized application were updated every
10sec, following a Normal Distribution with a mean value of 0.75 and 0.5 variance. The following
values were used for the aforesaid constant values: by = 1; by = 0.2; ey = bem ey = 5°, L1 = 0.2,
Ly = 0.6, 0* =6 and J* = 3. Finally, the average network delay of the WLAN was empirically
measured to t,.s = 1sec per offloaded picture and the average time for each picture to be processed

locally on the AlphaBot was t;,. = 3sec.

Three experiments were conducted, namely, local only execution, remote only execution and the

proposed switching offloading scheme. In Table @ the average completion time and the average
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Experiment Average completion time (sec) | Success Rate
Local Only Execution 61 40%
Remote Only Execution 105 100%
Switching System 90 100%

Table 5.2: The average completion time and success rate of 10 experiments for each setting.

success rate for 10 experiments of each setting is presented. For the rest of the evaluation, we will
present the results of the best trials for each setting. Moreover, in Fig. @ the reference trajectories
of these trials for the three experiments, are illustrated, with green colour for local only execution,
red colour for remote only execution and purple colour for the switching system. As outlined in
Section @, the local A* algorithm allows only four directions of movement, while the remote path
planner allows any-angle movements. For better visualization, we uploaded timelapse videosE from
the conducted trials for each setting. In these experiments, the starting position for the AlphaBot
was the already known position A(3,14), while the desired target reference positions were B(10,5)
and C(14, 18) in sequence. The scale of uncertainty is illustrated as a percentage of §*, i.e., 6/,
which is the predefined quantity for Switch 1 to be ON.

5.8.1 Experiment A - Local Only Execution

In the first experiment Switches 1 and 3 were ON, throughout the experiment and Switch 2 was
never used. This setting results to a fast, although not precise navigation with §/6* growing
monotonically. The average duration was 61 seconds as the main time consuming process was the
actuation. The amount of successful trials was low. Consequently, without a more sophisticated
localization algorithm and a more precise path planning technique there is no guarantee the target

reference position is reached.

5.8.2 Experiment B - Remote Only Execution

In the second experiment, whenever the uncertainty about AlphaBot’s pose grew over the pre-
defined threshold 6*, beacon-based localization was invoked (Switches 1 and 2 ON) on the Edge
Server. Moreover, the reference trajectory was always generated by the remote path planning al-
gorithm (Switch 3 ON). In this setting, the robot always reached the target positions, as shown in
Table @, although the completion time was heavily affected, as shown in Fig. @ Beacon-based
localization was executed twice during this experiment and, as a result, §/6* became equal to 0.
The setup of the particular experiment underlines the importance of a slower but more precise

navigation.

3https://github.com/Dspatharakis/alphabot-ppl/tree/master/timelapsed-videos
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Figure 5.6: Experiment B - Remote Only Execution.
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Figure 5.7: Experiment C - Switching System.

5.8.3 Experiment C - Switching System

As described in Section , Switch 3 decides which path planning algorithm solution the Al-
phaBot will use to generate the next reference position. When, the curvature function of the
trajectory calculated by the A* algorithm and the obstacle density function exceeded the thresh-
old value J*, the remote path planning solution was selected; e.g., from the beginning of the
experiment until the 25th sec of the simulation and from the 43rd sec till the 67th sec, as illus-
trated with green dashed line in Fig. @ In the same figure, with red solid line, §/6* is depicted.
Two times during the experiment the more precise beacon-based estimation was invoked to reset
0/0*. The first estimation attempt, at the 25th sec of the experiment, was executed on the Edge
Server, because S2 was ON. The second one, at the 71st sec of the experiment, was executed locally,
as S2 dictated (OFF), because the estimation of the CPU availability of the Edge Server, provided
by the Kalman Filter, along with the network delay for each picture, at that time, would have
provided worse results than the local execution. This setup provided a very precise and robust
navigation for the robot, leading to a very high success rate of the experiments, achieving a balance

between execution time and trajectory accuracy.
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5.9 Summary

In this study, we introduced a switching offloading mechanism for localization and path planning
applications of mobile robots. The offloading decision for localization is based on pose uncertainty
and the availability of edge resources, while the offloading decision for path planning depends on the
difficulty of the trajectory. The proposed framework achieves more precise navigation than the case
of exclusive local execution of the applications, without paying the price of a slower execution time,
like in the case of remote only execution of the algorithms. Also, it is modular and applicable to
various scenarios, applications and objectives under the robot’s dynamic environment. Our future
work will focus on extending the proposed mechanism to more sophisticated control algorithms,
providing theoretical guarantees for stability and convergence of the proposed robot’s dynamics.
Furthermore, we plan to develop more precise estimation and planning algorithms in multi-robot
scenarios and more sophisticated control algorithms in the co-design setting that will take into
account the available resources on the infrastructure side. The results of this Chapter are also

presented in [146].
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Chapter 6

Resource-aware Estimation and
Control for Edge Robotics: a
Set-based Approach

6.1 General Setting

This chapter focuses again on the case of Edge Robotics [147], which is widely used in 5G industrial
verticals. Following the current trend in service delivery, Edge Robotics leverages the computing
capabilities of Edge Computing to achieve low-latency communication [[146]. In this chapter, the
mobile robot considered is a unicycle, subject to modeling and measurement uncertainties. In
the proposed scenario, the robot must solve a state estimation, also called localization, problem
and subsequently a trajectory tracking problem. Under this setting, an offloading mechanism
is available for transmitting the sensing data of the localization procedure to an edge server for
further processing. Following recent works in the literature, [14€], a set-based estimation approach
is considered, as our main concern is to provide deterministic guarantees on the robot’s estimated
pose and subsequently guarantee convergence towards a target waypoint. Although existing elegant
solutions for control of unicycle robots exist, e.g., [149], [150], incorporating set-based estimation
methods into the controller design to provide real-time navigation, is quite challenging. The
proposed algorithm aims to provide a set-based estimation offloading mechanism in the context
of Edge Robotics. Under this complex scenario, the fundamental trade-off between performance
and consumed resources is investigated, along with the conditions that guarantee the system’s
convergence. All in all, we extend the modeling of Chapter H, and provide closed-loop guarantees

for the convergence of the robot and optimal resource utilization.
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6.2 Related Work

This section presents the most recent related studies in the literature that discuss the deployment
of robotic applications, such as path planning, localization and obstacle avoidance. Depending on
whether local or remote resources are utilized, these studies are classified into two groups; (i) the
onboard sensor-based approaches and (ii) the offloading-based ones.

Due to limited computing resources, the onboard sensor-based approaches aim to provide
lightweight solutions for robotic applications. Bajcsy et al. [L51] proposed a safe navigation
framework for autonomous vehicles moving in a priory unknown static environments under the
assumption that the sensors work perfectly within their ranges. This framework was based on
Hamilton Jacobi reachability analysis. Due to the computationally expensive nature of this analy-
sis, the authors proposed an algorithm that uses only new measurements to update the safety set
and can be executed in an online fashion. On the other hand, the authors in [[152] focused on the
path planning of autonomous vehicles that are able to maneuver on the road. The path planning
problem was formulated as a nonlinear optimization problem and two Model Predictive Control
solutions were designed for the lane selection and collision avoidance problems respectively. Miller
et al. [[153] proposed a controller synthesis algorithm for path planning in dynamic and partially
unknown environments. The proposed vehicle system consisted of three subsystems: (i) a per-
ception subsystem that provided a free space prediction around the vehicle, (ii) a plant-controller
subsystem that guided the vehicle to specific waypoints and (iii) the planner subsystem that pro-
duced safe reference trajectories using Mixed Integer Linear Programming. Finally, the authors in
[154] proposed a multi-robot collaborative localization framework, where followers assisted the self-
localization of the leaders in a time-varying measurement topology. A binomial regulation function
was used to describe the loss or resurgence of an observation. Then, a centralized extended Kalman
filter was implemented for estimation purposes.

The offloading-based studies leverage the network and computing capabilities of edge servers
to execute remotely navigation or localization algorithms. The authors in [[155], similar to this
work, presented a two-layer architecture for the realization of a visual-based Simultaneous Local-
ization And Mapping application (SLAM) for tracking. They proposed a lightweight version of the
computationally-intensive visual SLAM algorithm that is more suitable for resource-constrained
mobile devices. On the other hand, a more precise variation of the visual SLAM is deployed on an
edge server in proximity. The mobile devices transfer keyframes of a video for further processing at
the edge side, only when necessary, i.e., when the feature points between two consecutive images
are not similar. The offloading decision also considers the network conditions.

Chinchali et al. [156] proposed network offloading for Cloud Robotics. The offloading problem
was formulated as a Markov Decision Process (MDP), where an autonomous system updated the
offloading decision at every time interval. Then, Deep Reinforcement Learning (DRL) was used for
solving the offloading problem taking into account the diverse network conditions and the trade-
off between local and remote computation. On the other hand, the authors in [157] focused on

data representation for task-centric communication rather than addressing the decision making
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problem of when to offload. Based on DRL, a robot encoder compressed and transmitted concise
representations instead of raw data, while a server decoder generated a reconstructed estimation
of the raw sensory input. Then, one of the pre-trained task modules was used to predict object
locations and classes. Spatharakis et al. [[146] proposed a switching offloading mechanism for robot
path planning and localization. In that work, both services could be executed either locally, on
the mobile robot, or remotely on an edge server. The offloading problem was formulated as a
switching model that balanced the trade-off between navigation accuracy and mission duration.
The offloading decision took into account both the robot pose uncertainties and the resource
availability at the server side. In a different manner, the authors in [[158] proposed a symbiotic
robotic network for task offloading in the factory floor. Based on their vicinity, the robots formed
clusters where members could offload tasks to each other. Additionally, a reward-based feedback
task offloading mechanism was proposed to support delay-sensitive applications. Based on these
rewards, each node had a social repute score which was used to select the appropriate node to
offload the tasks and for the election of the cluster head.

6.3 Contributions and Outline

In a smart factory environment, the robots are equipped with sensors that can provide estimations
of the robot’s pose (i.e., two-dimensional location and orientation) [[159]. Although employing on-
board sensor-based localization yields quick results, they are known to be prone to accumulative
errors, especially when it comes to long trajectories [160]. Thus, more sophisticated yet computa-
tionally intensive techniques are usually required to increase the localization accuracy. However,
as discussed in [147], mobile robotic agents have limited computing capabilities. To overcome these
limitations, an Edge Computing infrastructure in the robots’ proximity can be leveraged to under-
take the computationally intensive localization tasks. The communication between the robots and
the servers can be performed through wireless access points located also on the operating floor,
while 5G connectivity can be applied as well if available.

Aiming to analyze the above trade-offs and propose novel control co-design strategies that guar-
antee the correct behavior of such a system, this chapter presents a control co-design methodology
for mobile robot navigation. Specifically, we consider a unicycle operating on a smart factory floor
in an Industry 4.0 application, able to move independently without following predefined trajec-
tories. The robot, equipped with cameras and odometry sensors, navigates from a starting to a
target position, to complete a given mission (e.g., an automated storage/retrieval). In this con-
text, the trade-off between the accuracy of the navigation and the mission duration is investigated,
according to the mission’s characteristics.

The main contributions of our work that differentiate it from the rest of the literature, are

summarized as follows:

1. A 3C co-design for CPS is introduced where a unicycle-type mobile robot utilize both on-

board and remote resources to execute the computationally intensive tasks of an Industry 4.0
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application that requires navigation in a factory floor. Two fundamental problems are jointly
tackled: (i) the synthesis of controllers that dictate the motion of the unicycle robot in this
path planning problem and (ii) an offloading strategy to compensate the uncertainty of the
local estimation techniques with the more accurate remote ones, while finding the balance
between navigation accuracy and mission duration. In the context of event-triggered con-
trol and following well-acknowledged works, e.g., [161] and [[162], we introduce a framework
that incorporates the network and computation availability together with stability-preserving

conditions. To the best of our knowledge, this is the first work that introduces such a solution.

. Novel controllers are designed to satisfy the mission’s hard constraint, i.e., to ensure the

convergence of the mobile robot’s navigation to a target set. A unicycle kinematic model
is assumed for the robot’s dynamics, while its movement is broken down into two parts,
i.e., rotational and translational. We note that, although there are works in the literature
providing elegant robust controllers in the presence of uncertainties, e.g., [L50],[163], our
proposed method allows us to deal with three distinct challenges, namely, (i) uncertain-
ties/disturbances acting on the dynamics of the third state, (ii) efficiently applying set-based
estimation using odometry measurements, (iii) guaranteeing convergence of the closed-loop
system to a target waypoint. To further alleviate the computational strain from the resource-
constrained platform, approximate computations are employed to locally estimate the robot’s
pose. Subsequently, stabilizing state feedback control mechanisms are applied to both move-

ments, to guarantee convergence to the target region.

. A utility function-based decision making process is properly formulated to undertake the

computational offloading strategy. This strategy dictates which of the two different available
localization techniques are used; an error-prone, for example, odometry-based localization,
executed locally on the robot and the accurate vision-based localization method that requires
a significant amount of computing resources and is executed on the edge server. Apart
from the navigation’s quality, which is acquired by the controllers’ outputs, this process also
takes into consideration the networking and edge computing resource availability to regulate
the trade-off between navigation accuracy and mission duration, based on the performance

requirements of the deployed application.

. A series of experiments are performed to evaluate the performance of the proposed CPS in

terms of navigation precision and mission duration. The evaluation indicates that the desir-
able solution concerning the preference of the two localization algorithms is a mixed strategy
employing both of them. Using exclusively a locally produced estimation, is not sufficient to
provide high enough accuracy, while constantly seeking for a more precise estimation from the
remotely executed algorithm adds significant overhead in mission duration. Furthermore, a
detailed comparative evaluation with alternative offloading schemes demonstrates our frame-

work’s benefits, as well as its adaptability to the application’s specific requirements.
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6.4 Problem Definition

Formally introducing the overall problem, let 2 € R? be the pose (states) and u € R? the control
actions. Let us denote by X; C R3 the estimation set for z(¢) for each time instant ¢. Specifically,
AX; contains all the possible states the robot can reach starting from an initial state z(0) = xo €
R3, with an initial uncertainty X(0) = X, € R3. The problem of estimating a conservative
approximation of X is a rather challenging computational problem for general dynamics and
constrained environments [164, Chapter 10]. In our setting, we assume that two localization
algorithms are available; (i) a fast, locally-executed one, providing an unreliable estimation while
moving and (ii) a time-consuming, however more precise one, executed remotely on an edge server.
Furthermore, we consider we have the option of invoking either of the two algorithms above; in
fact, the challenge addressed in this chapter is to provide a stabilizing tracking controller and
the corresponding offloading decision mechanism. We let x(t) be a switching signal that denotes
which estimation algorithm is used at each time instant. Then, the twofold problem lies on the

specification of:

a. the robot’s respective control actions u(t), under the current estimation set, such that the
robot reaches and remains after finite time e-close to the target position z*, i.e., there exists
a ty such that ||z(t) — a*|| <, for all t >t and

b. the offloading control action O(t) = h(q,), where g, denotes a utility function that incorpo-
rates the current navigation quality, network conditions and the edge computing resources

availability.

Under this setting, a CPS is formulated by the mobile robot and the edge infrastructure, which
collaborate to satisfy the requirements of a navigation application.

In the context of this chapter, the target position is dictated by an external path planning
algorithm, for example as in [146], under a smart industry application. Moreover, this consideration
allows us to ignore the case of obstacles located in the factory floor, as the path planning algorithm

provides a safe trajectory. Table @ summarizes the key notation used throughout the chapter.

6.5 Dynamics and Approximation Analysis

In this section, we introduce our proposed method to estimate the robot’s pose under specific
robot dynamics and uncertainties, a problem which is considered to be challenging throughout the
literature [164].

6.5.1 System Dynamics

As mentioned before, for the robot’s movement, we consider the unicycle kinematic model, also

equivalent via an affine transformation to the differential drive dynamics. This model assumes
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Table 6.1: Summary of the key notation.

’ Symbol ‘Interpretation

x1(t), x2(t) | Robot’s position at time ¢
x3(t) Robot’s orientation at time ¢
up(t),uz(t) | Control actions at time ¢
T* Target position
T Time period - sampling time
o(t) Model switching signal
k(1) Offloading switching signal
o(t) Heading error - disturbance at time ¢
D Heading error domain
yi(t),y5(t) | Measurements at time ¢
wiq(t), wa(t) | Robot sensors’ errors at time ¢
W Measurement errors domain
X, Initial Estimation Set
X Estimation set at time ¢
Xl Estimation set of position at time ¢
X} Estimation set of orientation at time ¢
X Overapproximated Estimation set at time ¢
Vol(X) Volume of X, set at time ¢
Z4 One-step Reachable set at time ¢
Z Overapproximated One-step Reachable set at time ¢
Cy Compatibility set at time ¢
d(-,-) Euclidean distance between two points
V() Distance from a set to a point
b(-,-) Orientation-target orientation incline
M Set of states where translation motion is allowed
€ Acceptable distance from target position
g Goal set
P (t) Representative point of X; at time ¢
el (d) Transmission time of offloaded task at time ¢
€comp(t) Computation time of offloaded task at time ¢
qo(t) Utility function value at time ¢
O(t) Offloading strategy at time ¢
c1,Co Coefficients of the Utility function
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that the robot has two wheels that can rotate at different rates, allowing motion by changing the
orientation and the position either separately or simultaneously. More specifically, the unicycle

kinematics are given as follows, with the respective state space representation

$1(t) = U1 COS SCg(t),
Zo(t) = wuysinzs(t), (6.1)
fifg(t) = U2,

where 1, x5 refer to the position and z3 to the orientation of the robot. We consider the control
actions (u1(t),u2(t)) to be piecewise constant since the implementation of the control action is
digital and the sampling time 7' is considered also constant. Moreover, as noted before, in this
chapter, a path planning algorithm has already provided the target position the robot has to reach

to complete its mission.

One celebrated approach in the bibliography [165, p. 96] is to manipulate the unicycle model
by breaking down and discretizing the motion to two parts, i.e., rotate/adjust the orientation of

the robot (“rotational motion”) and move forward towards the target (“translational motion”).

Hence, two subsystems are defined. The signal o(¢) : R — {0, 1}, switches between a translation
(S1, o(t) = 0) and a rotation (Sq, o(t) = 1), respectively. The systems with the respective state

space representation are defined as:

@1(t) = ua(t) cos(ws(t)),

Sy an(t) = ua(t)sin(as(t), (6.2)
i3(t) =),
i1(t) =0,

Sy i in(t) =0, (6.3)
da(t) = us(t) + 5(0).

We assume that the effect the rotational motion has on the robot’s position is negligible, while
a bounded, however unknown, heading non-zero error 6(t) € D = [0min, Omaz] is applied to both
motions. We should note here that, for the simplified case of zero disturbance, we utilize directly
the dynamics derived by integrating both parts of Systems (@), (@), as in this case the x3
state is now a constant. The modeling of the controllers and the proof of convergence remain the
same. At each time step, the robot must decide whether to rotate or move forward to a straight
line, by choosing the corresponding model to reach to a target position z*. Further analysis on
the respective controllers is presented in Section @ Regardless, the estimation set A} for the
three states grows from the initial estimation Xy, as the robot moves. As in [164, Chapter 10],
U1 (t)
U9 t
1 =1,2. Then, for the selected piecewise-constant control action and for an unknown but constant

with uz(t) e U; C R,

we propagate this set forward, given the control action wu(t) = [
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disturbance § € D, we solve the two subsystems analytically over one time period T'

zi(t+1) = w1 (t) + S [sin(ws(t + 1)) — sin(ws(1))]
St q @2(t+1) = @a(t) + gt leos(ws (1)) — cos(as(t + 1)) (6.4)
w3t +1) = ws(t) + T8(t),

Il(t+1) :.T1(t),
So:§aa(t+1) =mxa(t), (6.5)
z3(t+1) =wxs(t) + T(u2 +9(t)),

where T is the constant sampling time. We define the following mapping functions gi, g2 which
consist of the dynamics of eq. (@),(@) respectively

x1 + %-[sin(zz + T9) — sin(x3)]

9’ ’5 = 7
g1(z,u,6) xy + %-[cos(zs) — cos(xs + T9)]

g2(z,u,0) = x3 + T(uz + )

The one-step reachable set 2.1 is defined next; that is, the set of states that the robot can reach
from the estimation set X;. To reduce complexity, the calculation of the one-step reachable set
Z41, is decoupled by first computing the one-step reachable set for each state and then calculating
the Cartesian product of these sets 2,11 = Z}3 x Z2, |, where:

x3 + T, ifo(t)=0
Zh,={zeR: (33636Xf,356D:23: : ® ) . (6.6)
g2(z3,u,0), ifo(t) =1

and Z}% is computed as the Cartesian product of the propagated states z1(t), z2(t), as follows

g1(x1,u(t),8) ,ifo(t)=0

fl o) O

T2

Z2 = {z €R?: (a lﬂ € X2 s e XP 6 ED 2=
2

Moreover, as the robot moves, the onboard sensors provide a local pose estimation, y*(¢ + 1).
Typically, these measurements come from odometry calculations and concern distance travelled
and changes in orientation [166, Chapter 5]. Hence, in the context of this chapter, we consider
that the local estimation is of the following form:

(6.8)

*

yit+ 1| fllere(t+1) — 212013 +wi (t)
ys(t+1) z3(t+ 1) — z3(t) + wa(t) ’

T
where w = [wl(t) Wo (t)} are the sensors’ errors for the distance and the shift in orientation

measurements respectively, that are unknown, however, bounded, i.e., w € W C R2. Then, the
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compatibility set, C¢;y1, which includes all the states compatible with the current measurements,
is introduced as,

Ciy1 = {UERS: (HwEW,HxEXt) :

yi(t+1) = [loise — 212213 cw b 6.9)
y5(t+1) —v3 + 3

Finally, to complete the calculation of the estimation set, we compute the intersection set of Cy4q

with Z;y1, X441, which comprises of the output compatible states

Xt—‘,—l = Ct+1 N Zt+1. (610)

6.5.2 Approximation Analysis

The exact calculations for the one-step reachable set and the compatibility set are challenging and
usually computationally intensive [164, Chapter 10]. To alleviate the computational strain from
the resource-constrained robot, we employ approximate computations, thus managing to provide
fast computations of the estimation set. Specifically, we employ parallelotope overapproximations
for the Z;,1 set, computed by eq. (@),(@) and for the Cyy1 set computed by eq. (@)

6.5.2.1 Approximation of the one-step reachable set

For the problem of computing the one-step reachable set for each state (eq. (@),(@)), a Taylor
Model (TM) approximation is invoked, as in [167]. TMs are used to represent flowpipes, i.e., a set of
states reachable by continuous dynamics from an initial set within a given time interval. As a result,
they can be used to provide guaranteed enclosures to the solutions of ordinary differential equations,
often involving non-linear functions, such as the model into consideration. The interested reader
may refer to [[L68] for further analysis of a TM flowpipe construction for non-linear hybrid systems.
In the scope of this chapter, given the non-linear continuous system defined in eq. (@),(@) and
the current estimation set X}, acting as the initial set at each time, we compute the TM flowpipes
for each state variable, such that a polynomial overapproximation is computed, given the respective
control action u(t). In this way, each overapproximated state variable lies on an interval. Next, to
acquire a guaranteed overapproximation of eq. (@)7 the Cartesian product of the three intervals
of the states is computed. As a result, Z;,, is overapproximated by a parallelotope in the 3-D
space, hereinafter, denoted as 22't+1 and computed by

B = By X B2 ) R = [ 4 1), 2PN (84 1)] x [P (E 1), 24 1)] X [ 4 1), 28+ 1),
(6.11)

The reachable sets for the remaining states are computed similarly. We should note here that
different approximation methods for the calculation of the one-step reachable set can be chosen,
using for example a Bernstein polynomial basis [169],[170]. Moreover, the exact calculation of
the one-step reachable set is known [L71] or can be approximated [172], however for recursive
calculations, the computation time rises. For our work particularly, we selected the TM approx-

imation due to its popularity and the fact that, as the initial set becomes smaller or the order
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of the polynomial used for approximation becomes larger [[168, Chapter 3.3], the overapproxima-
tion becomes more accurate. On the other hand, shorter sampling time results in more accurate
approximations, increasing, however, the complexity. The proposed technique is computationally
light and complexity-preserving. Hence, it is suitable for calculating the reachable set repeatedly
and providing real-time navigation to the resource-constrained mobile robot. The calculation of
the estimation set (eq. ()), i.e., the intersection of the reachable set with the compatibility set,
is in principle a non-convex problem. As a result, using a fixed-complexity polytope as a template
for the reachable set, alleviates the complexity and reduces computation time, as presented in the

next subsection.

6.5.2.2 Approximation of the estimation set

As stated in [[164, Chapter 10|, even more challenging is the calculation of the output compatible
states. These states are defined by eq. (@) Hence, an interval for where each state lies can
be found. Again, a parallelotope approximation X is used to provide an overapproximation of
the X set. Specifically, we aim to further reduce the overapproximation acquired with 2t+1, by
investigating the compatibility with the acquired measurements y*(¢t + 1). Thus, we formulate
two optimization problems for each state variable, to find the respective maximum and minimum
values of this interval. As a result, the calculation of the interval approximation of the output
compatible set can be achieved by solving generally nonlinear optimization problems. Specifically,

to find the maximum attainable value for x;, given a measurement y* € R?, we solve the following:

maximize v (6.12a)
V1,V2,W1,21,T2

subject to  y} — [[vi.2 — 71.2]|3 € W, (6.12b)

(z1,72) € X2, (6.12¢)

(v1,v9) € 213, (6.12d)

From the solution of the above problem, the maximum output-compatible value uj*** for the z;
state can be obtained. Similarly, to find the minimum output-compatible value for each state,
an equivalent optimization problem with different cost functions and the same constraint set, is
solved. All such problems are quadratically constrained linear programs. It should be noted that,
the output compatible values for z1,zo states must be positive, as we consider that the operating
ground corresponds to the first quadrant of a Cartesian plane. Since W = [w}® wi®] with

wiPit € R, wi"® > ( being an interval, relation () is equivalent to:

|vi:2 — 2123 < yF — wit™, (6.13)

[v1:2 — z122]13 > yF — wi™. (6.14)
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Ineq. () contributes with a convex constraint and () with a concave constraint respectively,
thus, the total constraint set of the optimization problem is non-convex. As a result, the problem
cannot be easily solved with efficient convex interior-point methods. Nevertheless, an optimal
solution can be found by exploiting the other interval constraints.
First, the solutions for the maximization problem without constraint () and the min-
imization problem without constraint ()7 are presented. Subsequently, using Proposition
, we showcase that the constraints for each problem are redundant. For example, regarding
Problem (), let us focus on constraint () The general solution of the inequality is:
VY1 — WP — (vg — 22)2 + 21 < vy < \yp — WP — (vg — 22)2 + 21, therefore the maximum

positive output-compatible value v1"** is attained in
v =min {Uinax,xﬁnax +  [yr — wmin - “min  (v2 — xg)?'}, (6.15)
v2€Z7, | w2 €X]

where min I (vg — x2)2 can be easily calculated, as both vy, xo have known values
t

v2E€ZE ),

in intervals. Analogously, for the minimization of vy, () has the following general solution:
v] € (—o0, f\/yl — WP — (g — x9)? 4 21|V [\/yl — WP — (g — x9)? 4 x1, 00) and therefore the
minimum positive output-compatible value is given by:

wM® = max {vf’i“, e Jyr — wmex — max  (vz — :1’2)2}, (6.16)
V€27 | wa €A
where, similarly, max _ (v2— x5)? can be easily calculated. We should note here that, in the
Va€Z} 4 ,w2€ X}

case where the quantities under the square root are negative for both problems, then they become
infeasible and, thus, the maximum and minimum value of v; becomes equal to the corresponding

value obtained by the one-step reachable set.

Proposition 1. Let v{"®* be a feasible solution of the mazimization problem () without
constraint () contributing to the problem and, similarly, let vI™™ be a feasible solution for
the respective minimization problem without () respectively. If v < oA then the two

constraints are redundant for solving the respective optimization problems.

Proof. Let vax pinin ¢ ZAtlfl be the two feasible solutions of the maximization problem ()
without constraint () and the corresponding minimization problem without constraint (),
respectively. Then, we want to show that v < v™8% By construction of the TM overapproxi-
mation, we know that 21" < 2%, As a result, proving v < v is equivalent to showing that

min * __ p,max __ _ 2 max * __ p,min __ s _ 2
P+ fyF —wh Inax AQ('UQ x2)? < P 4 Jyf —wi _Inin AQ(vg x9)2.
vzezt+1,$2€Xt Uzezt+l,ﬂf2€Xt

This is also equivalent of proving that yf — wi@* — max  (vy — x2)? < yb — wpit —
Va€ZE | w2 € X}
min (ve — x2)2 which is true as both vg, xa, w"**, y; are positive. As a result, the two

ﬂ2€zf+1712€2€f

solutions do not intersect and the respective absent constraints do not contribute to the feasible

solutions. O

Hence, the solution of a non-convex optimization problem reduces to a simple calculation for each
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Table 6.2: A numerical example of the proposed technique.

i | X Zti+1 Xti+1 ui(t) |yt Y5
1| [5.42,5.64] | [5.62,5.84] | [5.62,5.83] | 0.38 | 0.15 | 0.1
2 | [5.67,6.00] | [5.98,6.32] | [5.98, 6.20]
3] 10.98,1.02] | [0.97,1.03] | [0.97, 1.02]

state variable. The minimum and maximum output-compatible values of the x5 state are attained
similarly.

On the other hand, for the output-compatible values of the x3 state, it suffices to solve two
similar linear programs to find the minimum and maximum admissible values. In order to find a

maximum value u§'®*, the following optimization problem must be solved, derived by eq. (@)

Hi?,’éiﬁfe U3 (6.17a)

subject to vz — 23 < yi — wH, (6.17b)

vy — T3 > Y3 — wyx, (6.17¢)

wy € W2, (6.17d)

x5 € &2, (6.17¢)

o 2, (6.17%)

where Wy = [wi™® wPaX] with w® € R, wi®* > 0. The minimum output-compatible value
uy'®* is attained by the respective minimization problem subject to the same constraints. Finally,

having calculated the output-compatible intervals for the three states, e.g., )EgH € [ufrin yinax)
the overapproximated estimation set /'?Hl is computed as the Cartesian product of the three sets:

Xip1 = Xy X Xl x &y = [ul™, uP™] x [ud™, uy™] x [uf™, uf™]. (6.18)

Thus, in the context of this chapter, the estimation set is a parallelotope in the 3-D space. As it
will be thoroughly examined in the following section, the low complexity of the approximation of
the estimation set leads to simple calculations for deriving controllers for each motion. Moreover,
the volume of the estimation set in the 3-D space is introduced:

VO]()etJrl) _ (urlnax _ ullnin)(uglax _ urQnin)(ugnax _ ug)in). (619)

In Fig. @, an example of our approximation is demonstrated, for the experiment setting intro-
duced in Section @ The blue-dashed line denotes X;, while the red-dashed line the overapprox-
imation using the TM technique. Finally, the next estimation set, /'\A,’tﬂ, is drawn with a green
line. Additionally, for the specific example of translational motion, Table @ presents the actual
overapproximation of our method in numbers. For the calculation of these sets, the following values
are used w® = (.38, W = —(.22, WP = —0.008, W = 0.002 and § = 0.1. More details

regarding the measurement errors and the disturbance follow in Section @
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—— New Estimation Set

- TM over-approximation
----- Current Estimation Set
1.03

1.02
1.01 x3
1.00

0.29

0.98

Figure 6.1: An example of the overapproximation for the calculation of the next estimation set,
Xt+1.

We can notice that the conservative approximation of the estimation set, while taking into
account the measurements, affects significantly the result, especially in this nonlinear setting.
To sum up, the challenging calculation of the estimation set is handled with overapproximation

techniques due to the TM properties and our approach of computing the output-compatible states.

6.6 Control Design

In the previous section, the solution for calculating a conservative approximation of the estimation
set was agnostic to the control actions. In this section, we propose a stabilizing state feedback
control mechanism, that guarantees convergence to the target region. Let d(z(t),z*) = ||z7.5 —
x1:2(t)||2 be the distance between two points, specifically between a specific point and the target.

The distance between a point and a set is defined as:

V(& z*) = max d(z, z*). (6.20)
TEX
Moreover, let
B(Xy, z") :{ap ER:(Fze Xy :¢=mx3—tan ' <:v2 — xi))}, (6.21)
Tl — Ty
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be the set of angles between the robot’s current estimation of orientation and the line connecting
current robot’s position and the target position for X, simply put, the set of angles of incline
towards the target. Finally, let M be the set of states where translation is performed,

M= {x ER®: (Hul ER: | < 2V (&, z") cos(5M)) } (6.22)

where 6, = max{dmin| s Omaz },

1= /2(6m 2(1 = cos(Tém)),
On = max{’T(;mm + @(-?\?t, x)

,‘T&maz +B(X, )

}

The reasoning behind the choice of the M set is presented in Subsection . In order to select

between performing either translational or rotational motion and reduce the overall computational
complexity, only the center of the convex hull of the estimation set is investigated in terms of
whether it belongs in the M set. Hereinafter, the center point of the current estimation set,
X,, is referred to as the representative point, x"°P"(t). As the estimation set is the Cartesian
product of three intervals of the states, the coordinates of the representative point are computed
straightforwardly:

") = (21 (), 2 (1), 25" (1)), (6.23)
where z; 7" (t) = £ (@ (t)+a"(t)), i € [1,2, 3], is the center of the interval of each state z; € X
The translational motion is selected if 2"°P" € M for any u, otherwise the rotational motion is

selected. Moreover, we consider that the robot has reached the target position when X, Cg¢ , with
G={zecR®: V(X,z*) <e} (6.24)

where € is an acceptable distance from the target position, for the mission to be assumed successful.
Note that the robot’s orientation when the goal set is reached is not considered important. Since
in the proposed modeling the motion is considered either strictly translational or rotational, one
control input in each case is nonzero. The overall control strategy that includes the state-dependent
switching mechanism can be described by a directed graph of Fig. @, which illustrates the
control automaton. It is noted that the closed-loop system can be described by a linear hybrid
automaton with non-convex guard conditions. Nevertheless, we do not use this formalism in
order to simplify exposition, especially since the convergence proofs that follow are simple enough
not to necessitate the adoption of this powerful modeling approach. Independently of the selected
estimation technique, the robot moves as described in the control automaton; specifically (i) decides
the motion (signal o(t)) according to () for x"¢P"(t), (ii) computes and moves according to the
selected control action, (iii) acquires an estimation of its pose using an estimation technique and
finally (iv) follows the procedure introduced in the previous section to compute the new estimation
set and repeats the process. When the goal set is reached the robot stops. A complete algorithm
of the proposed technique is presented in detail in Subsection .
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X"P'() ¢ MUG

X e MNG

S1:0)=0
X e MNG

S, to(t) =1
X*P(t) ¢ MUG

X e MNG

X*P(t) ¢ MUG

VX, x*) < e

Figure 6.2: The control automaton for the robot’s motion.

6.6.1 Set Controller for Translational Motion

In this subsection, we compute a translational control action that decreases the distance to the
target set, i.e.: V(Xy1,2%) < V(X,x*). The control action u;(t) is computed by the solution of

the following optimization problem,

miniglzize A (6.25a)
subject to A% > 1+ (A2 — 2\y) cos?(6ar) (6.25Db)
A€ (0,1) (6.25¢)

A2 € (0,2), (6.25d)

)

where dp; = max{‘Témm + @(ft,x*) Témaz + @(2&, 2*)|}. Then, for the selected Ay that mini-

mize A, we select the following control action

Huy| = Xod(x] 3", 2%) cos(Tdnr), (6.26)

where [ = \/ 2(6m (1 — cos(d,,)). In this chapter we consider only forward motion for the unicycle
robot; as a result, the positive value of u; is selected. Next, for the selected control action wuq (t),

the approximation of the one-step reachable set Z; is computed using eq. () Also, as stated
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in Subsection , the approximated one-step reachable set Z,, has guaranteed enclosures for
the solution of eq. (@) by construction. Let us consider ZAtm, omitting the orientation plane
as the distance function denoted in eq. (), is defined in the 2-D space. It should be noted
here that the following condition for the selected control action is investigating using the reachable
set approximation and without taking into account the compatibility set, as this presupposes a
control action that is already applied to the robot. To this purpose, the value of eq. () can be
deduced from the vertices of 2}’2, since it is a parallelotope overapproximation. Thus, it suffices
to investigate whether the distance from the vertices of Z!2 towards the target decreases for a

given control action. To this purpose, let us denote the vertices of 2’t+1 as:
Dij (t + 1) = [Zia Z%]v (627)

where i = 1,2, j = 1,2 indicate the four vertices of Z}2. For example, i = 1 denotes 2" (¢ + 1)
and similarly j = 2 denotes 25X(t + 1), where 20(t + 1), 2"®(t + 1) € ZAt1+1 and Zn(t + 1),
28 (t+1) € 23+1 as in eq. () Consequently,

V(&Xipr,2%) = max_d(pi;(t+1),z%). (6.28)

i,j€[1,2]
As a result, given the selected control action uq(t), the following condition must be investigated to
determine if the translational motion decreases the distance of the Z}*2 set to the target position

in one step

max_d(pi;(t +1),2*) < NV (X, %), (6.29)

i,5€[1,2]
where X € (0,1). If this condition holds, then the robot implements the translational motion
for uy(t), acquires the measurements and proceeds with the calculation of /XA’H_l, as described in
Subsection . Otherwise, eq. () is not decreasing and a more precise estimation of the

current location is required to approach the target position. Hence, each time the translational

/

rax(®) € (0,1) for all vertices to guarantee

motion is allowed, it suffices to find the maximum \

that the distance towards the target is decreasing.

6.6.2 Set Controller for Rotational Motion

When the representative point z"¢P" (¢t + 1) does not belong in M, the robot performs a rotational
motion. During this, the rotational controller acts to ensure that after one actuation step the
translational motion will be allowed. This is essential as naturally the considered function of eq.
() is not decreasing when the rotational motion is performed.

In this section, an interval of angles of incline @ € [amin, @max] Of the lines connecting each point
in the estimation set to the target position, is specified. The purpose of this is to find, if exists,

a rotational control action that shifts the robot’s orientation, aiming to satisfy ineq. () for
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P (t+1). Since the overapproximated estimation set X, isa parallelotope in the 3-D space, i.e.,
the states x;, ¢ € [1,2, 3] lie in known intervals, then ami, and amax can be specified by calculating
the angles of incline for the lines that connect the vertices of the estimation set, in the 2-D space and
the target position, as illustrated in Fig. @ Consequently, the control action us(t) is calculated

by solving the following linear problem:

min  max (3 +0 —uz —a) (6.30a)
u2 Xt,a,0
subject to x5 € A7, (6.30b

@ € [amin; Cmax], (6.30c
5 eD, (6.30d

)
)
)
up € Us, (6.30e)

where @i, = min{tan~! (%)} and Gmayx = max{tan—! (%)} where i = 1,2 and
j = 1,2 indicate the four vertices of the estimation set in the 2-D space. For example, i = 1
indicates the minimum value of the interval of z1(t) and similarly j = 2 indicates the maximum
value for x5(t). Next, for the selected control action us(t), Z441 is computed by, eq. () which
also has guaranteed enclosures for the solution of eq. (f.§) by construction. Similarly to the

previous subsection, the compatibility set in not taken into consideration. We define
2P+ 1) = (1Tt + 1), 25T (E 4 1), 257 (E+ 1)), (6.31)

where z; " (t+ 1) = 2 (2 (t+ 1)+ 2" (t+1)), for i € [1,2, 3], is the center of the interval of each
state z; € Zt 11 It should be noted that when a rotation is performed the robot’s position (z1,z2)
is not affected. As a result, the following condition is examined; whether the shift in orientation
endeavors to satisfy ineq. () for the representative point z"*P" (¢ + 1):

lui| < d( Tt +1),2") cos(dm), (6.32)

where [ = \/2(5m_2(1 —¢08(T6))) and 6py = max{|T6min + P(2"P"(t + 1),2%)| ,|T0maz + P(z"F" (t + 1), z*)|
}. If 27°P"(t + 1) belongs in M then the robot performs the rotational motion for us(t), acquires
the measurements and proceeds with the calculation of Z1, as described in Subsection .

To sum up, after the rotational motion, if "¢P"(¢) belongs in M then the translational motion
is allowed in the next step. Hence, the robot performs the translational motion for u;(t), acquires
a measurement and proceeds with the calculation of /'\A,’tﬂ, as described in Subsection .
Otherwise, a more precise estimation is necessary to proceed towards the target position. One
must note that, after rotating with ug(t), if 27¢P"(t 4+ 1) is in M, then, due to the parallelotope
overapproximation, it is certain that """ (¢ + 1) will be in M, as described in Subsection .

That is why translational motion is allowed in the next step.
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Figure 6.3: An illustrated example of the maximum minimum distance and slope between X; and
the target position.

6.6.3 Remote Estimation Technique

It should be clear now that if conditions () and () are not satisfied for the translational and
the rotational motion respectively, then the system can no longer converge to the target position
and the switching signal x(t) triggers the precise estimation technique to assist in the navigation

1, if o(t) =0 and (.29) is not satisfied
or

K(t) = if o(t) = 1 and (p.32) is not satisfied, (6.33)

0, otherwise.

Whenever k(t) = 1, the localization algorithm described in [159] is invoked remotely. Briefly, this
estimation technique relies on a bilateration method using principles of projective geometry. The
robot’s equipped camera captures images from the area and offloads them into the proximate edge
server. There, the localization algorithm analyzes the images to detect landmarks and provide a

highly precise estimation regarding the pose of the robot. Thus, this real-time image processing
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is resource-intensive and time-consuming, even when executed on an edge server. Hence, both the
transmission overhead of the images via the access point and the remote processing overhead must
be considered to find the right balance between navigation accuracy and mission duration.

In the context of this chapter, the estimation computed by this technique is considered accurate,
without measurement errors. Consequently, after invoking the remote estimation technique, the
exact pose of the robot is considered known. This allows us to compute a fine-grained control
approach and prove the convergence of the proposed technique. We should note here that, the
choice of the selected remote estimation technique is made to showcase a general setting in edge
robotics in which computationally intensive algorithms are not to be executed on the robot, but
rather to be offloaded on an edge server. Many works exist in the bibliography such as [173],[174]
that provide very precise estimations regarding the robot’s pose. Moreover, such landmark-based
techniques are broadly utilized for indoor localization in the context of Industry 4.0. [L75]. It
should be emphasized, that the scope of this chapter is to introduce an offloading strategy between
different estimation techniques, seeking a trade-off between mission duration and accuracy and not

seeking the best between different methods.

6.6.4 Convergence when Constantly Invoking Remote Estimation

In this section, we show that the proposed technique converges to the target position after finite
time, when the remote estimation technique is exclusively invoked. Let us assume that at time t =
t* the remote estimation technique provides a precise estimation to the robot, thus the estimation
set is minimized to a point X;» = {z?}, as illustrated in Fig. @ Then, it is straightforward to
compute the Z;;1 set using eq. (@) and (@)

The robot initially aligns the orientation accordingly and then proceeds with the translational
motion. Another benefit of the precise estimation is that the set-based controller, proposed in
Problem (30), considers only one point in order to provide the control action u3. In this way, the
robot manages to rotate, aligning to (AT), as illustrated in Fig. @ Thus, the angle of incline

towards the target is minimized, specifically @(Z;+41,2*) C D. As a result, the orientation of the
o A__*

robot Z3*+1 lies in the interval [tan_l (%—i?) + i, tan ™! (%—i?) + dmaz)-

Lemma 1. Consider the Subsystem S (@) and that the remote estimation technique provides

an accurate estimation x* at time t = t*. Let u} be the control input obtained by the solution of

Problem () applied to (@) at time t*. If|(T + 1)6m| < 5, then the translational motion is

allowed in the next step, i.e., there exists a control action u] that satisfies ineq. () for Zyiq.

Proof. After performing a rotational motion, the robot is still positioned at z{.,, i.e., Ztlif_l =2,
and @(Zp11,2%) C D. Moreover, for the translational motion to be allowed, it suffices that
Zi+41 € M. Subsequently, given that V(Zp 1, 2*) = d(z?, 2*), from ineq. () we get:

lui| < 2d(z®, 2*) cos(dar), (6.34)
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Figure 6.4: Convergence example after the rotational motion.

where

= \/2(67,172(1 — COS(T(sm)), Om = max{|6mzn| 76maac}

Sar = max{‘TcSmm + B2 ,’T&mm +B(%, )}

Under our assumption that ‘(T—i— 1)6m| < % and since @(Z;+11,2*) C D, then [ is a positive

constant and 0 < cos(dpr) < 1. As a result, the translational motion is allowed at time t = t* + 1

for all w7y that satisfy ineq. () and therefore () O

We note that typically the heading error lies in the fraction of a few degrees [[176], thus, the

condition of Lemma m is not particularly conservative since the sampling time 7" is small.

Proposition 2. Suppose that the robot rotates at time t*. Then, there exists a control action uj
such that V(Xip1,2*) < AV (X, x*) fort =t*+1, A € (0,1).

Proof. After rotational motion, by eq. () we know that Xp«11 C Zx11, since the compatibility
set is not included in this proof. By Lemma [l|, at time ¢t = t* + 1, the robot is positioned at
1}y, hence the orientation X? lies in the interval |[tan~' (ji:j%) + Smin, tan™! (Zg:zé + Smaz) -
Moreover, it also holds that @(X;,2*) C D and the translatignai motion is allowed1 for1 all ] that
satisfy ineq. () Also, from Subsystem (@)7 it occurs that the shift in the robot’s orientation,

produced by the heading error during the translational motion, is equal to T'§. Then, © is the set

of angles that combine ®(X;«y1,2*) and this shifts in the orientation, as follows:
08, B(X,, ")) = {19 €ER: (35 €D,3p € B(Xpoy1,27) : 0 = T5 + tp) } (6.35)

It should be noted that 6 € © C [dymin + Tdmin, dmaz + Tdmaz], since rotational motion is applied
first, i.e., ®(Xp41,2*) C D and d is bounded in D.

Let us also define the circle C(h,r), centered at the target position z*, h = T(a7,xz3) and
its radius is the distance from the target position r = (AT) = d(z{,,2*). If the robot after
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translational motion is located inside this circle then the distance in one step, is decreasing.

Let x1., be a point in the circumference of circle C, as illustrated in Fig. @ By definition,
(AT) chord’s length, d(z#,z"), is equal to 2d(z*, z*) sin(%). We assume that the robot traverses
the (AT) chord by performing a translational motion with a combined error § € ©. Using the
circle’s identities, we get that ¢; = 6, as (AT'T) is an isosceles triangle and, thus, ¥y = 7™ — 26.
This means that for the (AT') length we get that d(z?,z") = 2d(x4, z*) cos(f).

Next, suppose that x5, is a point on (AT') that the robot can reach in one step, i.e., 25, € ZH3
for t = t* + 1. Using basic trigonometric identities, we get that the distance between A and the
target point x*, i.e., d(x®,x*), is minimized if A is a point on the perpendicular bisector of (AL,
i.e., when its distance from point A is equal to M = d(z?, 2*) cos(0). Now, let us assume the
general case where

d(z?, z%) < Xad(x™, 2*) cos(6), (6.36)

where Ay € (0,2). This parametrization guarantees that point A is inside the defined circle. The

coordinates of 2, can be computed by eq. (@) 2 = g1 (24, u1,8). As a result, d(z?, 22) =

28y — 2445 ]l2. Using eq. (@) and involving trigonometric identities ineq. () becomes:

\/ (%1)2[2 — 2c08(T5)] < Aad(a*, ") cos(6). (6.37)

Satisfaction of ineq. (), which is by assumption true, implies existence of a u; satisfying ineq.
(), for X, = x* and for # = §,;. Next, we show that ineq. () implies

V(Xir1,2") S AV (X, z™) for t =" + 1. (6.38)

To this purpose, let us assume that, V(X 1,2*) = d(x®, 2*), as point A lies arbitrarily in X; for
t = t* + 1 Exploiting the law of cosines for the (AAT) triangle we know that for t =¢* 41

VH X1, a*) =V X, 2%) + d* (2, 22) — 2V (X, 2*)d(z™, 2°) cos(6) (6.39)
By replacing eq. () to eq. (), then
V23X, 2*) + d*(a?, 2™) — 2V (X, 2*)d(z?, 2%) cos(0) < N2V (X,, %) (6.40)
By eq. (), eq. () becomes:
V(X 2%) + XNV (X, %) cos” () — 2V (Xy, ) Az cos®(0) < N2V (X, z*), for t =% + 1. (6.41)
And finally,
14 cos®(0)(A3 — 2X2) < A% (6.42)

Ineq. () is satisfied for any Ag € (0,2) and A € (0, 1), thus, V(Xy1,2*) < AV (X, 2%), for t =
t* 4+ 1. O
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Theorem 3. Consider the system (@), (@) Then, by repeatably, invoking the remote estimation

and performing first rotational motion and then translational motion, the robot converges to the

target set G eq. ()

Proof. By Lemma m, after the remote estimation technique is invoked, the shift is orientation
defined by problem (), guarantees that the translational motion is allowed in the next step,
ie: X(t*+1) € M. Furthermore, by Proposition E, there is guarantee that V(Xi11,2%) <
AV (X, x*) for t = t* + 1, namely the distance from the target position is decreasing. The robot
repeats the following process when constantly invoking the remote estimation technique, namely
(i) performing a rotational motion and (ii) proceeds after one time step to the translational motion.
Consequently, for any initial condition Xy such that V(Xp,z*) < ¢, it follows that V(A;) <
ATV (A, 2%) < AL¥ )¢, thus, the robot converges to G as defined in eq. (), in at most
N* > QL%J steps. O

Following this simple technique, i.e., initially rotating to fix the heading error and then proceed
to translational motion, it is apparent that the convergence of the proposed technique is guar-
anteed in the case of the robot constantly invokes the remote estimation. As stated before, this
computationally intensive method heavily affects the mission duration of the robot. Thus, while
relying on the theoretical guarantee, next we need to find an offloading strategy to find a balance
between accuracy and mission duration, whilst the dynamic conditions of the network and remote

computation resources, are also considered.

6.7 Computational Offloading Decision Mechanism

In this section, the decision-making mechanism behind the offloading of the computationally inten-
sive tasks of our framework is presented. This mechanism is based on a utility function decision-
making procedure that quantitatively ranks the current conditions, in terms of their associated
resource metrics (i.e., availability of networking and computing resources at the edge and quality
of robot’s navigation) and dynamically assigns tasks to be executed on the edge infrastructure. To
get a reliable estimation of these conditions, network and computing resource profiles are devel-

oped, as described in the following subsections.

6.7.1 Network Profiling

In the following, mainly for demonstration purposes, we assume that the wireless access technique
between the robot and the access point is based on IEEE 802.11g. In this network deployment,
a common effect that occurs when a signal travels through a communication channel is its power
level decreases as the distance increases. To estimate this propagation loss, the well-accepted
Log-Distance Path Loss (LDPL) model is utilized [177]. The LDPL model applies to indoor

environments with the presence of obstacles, having a propagation exponent that indicates whether
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the environment has more or fewer obstacles, impacting on the computed loss. The respective path-

loss is calculated as follows:

d
PL(d)4p = PL(do)aB + 1()nloglo(d—)7 d > dy, (6.43)

0
where PL(dy)qp is the path-loss at a reference distance dg = 1m, n is the path-loss exponent
(PLE), which depends on the presence of obstacles in the environment. To set the upper bounds

of the channel capacity we also leverage the signal-to-noise-ratio (SNR) metric,
SNR(d) = Pyg — PL(d)ap — NaB, (6.44)

where Pyp is the incoming signal to the access point and Nyp is a Gaussian noise. Then, the

channel capacity C' can be calculated using the Shannon—Hartley theorem,
C(d) = B logs(1+ SNR(d)), (6.45)

where B is the available WLAN bandwidth (in Hz), giving in this way an estimation of the tightest
upper bound on the information rate of data (in bits per second) that can be communicated at
an arbitrarily low error rate using SNR. Having this bound available, an estimation of the task

transmission duration (in seconds) can be calculated as follows:
eu(d) = = (6.46)

where m is the size of the offloaded data in bytes.

6.7.2 Edge Computing Resources Profiling

Regarding the profiling of the computing resources at the edge, we assume that the allocation of
the resources to the localization service on the server is managed by the resource orchestrator of the
infrastructure provider. Hence, we can only estimate the amount of allocated resources through
measurements. To this end, we model the resource allocation strategy on the edge server as a linear
dynamical system, subject to process and measurement uncertainty disturbances which follow the
standard Kalman Filtering estimation approach [[178], a computationally light prediction method.
Briefly, using previous CPU utilization measurements, allows for acquiring a current estimation of
the virtual CPU cores allocated to the container, é(t), dedicated the remote estimation technique.
Subsequently, this allows for estimating the expected computation time (in seconds) of the offloaded
task to the edge server, ecomp(t), by modeling it as a linear relationship of the available resources,
specifically:

Ceomp(t) = a E(t) + B. (6.47)
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N

The coefficients a, § are calculated using a least-squares fitting method on a set of pairs (ecomp(t), (t))
produced offline while experimenting with a dataset of pictures from the robot’s camera. The in-
terested reader may also refer to [[146] for further information on this process, as it is based on this

previous work.

6.7.3 Utility-based Offloading Strategy

After evaluating the current network and available edge computing resources, we apply the results
in a utility function in order to quantify the trade-off between remote execution time and navigation
performance. Naturally, this utility function incorporates a term, which assesses the quality of the
navigation till the point of the offloading decision making, ¢, which in our case is expressed as
a fraction (rational number) that is the quotient of the volume of the estimation set X,, divided
by the robot’s remaining maximum distance of the estimation set towards the target position,
V (&, z*), as introduced in Section @ The rationale behind this inclusion lies in the fact that the
smaller the distance is between the robot and the target, the more precise the navigation has to be
in order to approach it e-close, thus the more preferable the offloading. Additionally, in Subsection
, we identified a hard constraint for resorting to remote execution, expressed by the value of
k(t) in eq. (), which also has to be engaged in the offloading decision.

Therefore, taking the above into consideration, the utility function of edge computing processing

for the robot can be defined as:

Vol(X,)

m —ca-eo(d,t) + k(t) - C, (6.48)

qo(t) = c1 -
where e, (d, t) = eyi(d) +ecomp(t) denotes the total estimated duration of the remote execution. We
should note here that, similarly to other studies [[179], in the envisioned application, the duration
of the transmission of the computation results is negligible, as the size of the computation results
(plain text) is much smaller than the size of the input data (image or video). Thus, in our case, the
total duration specifically involves the uplink transmission and the computation execution time.
The ¢1,c0 > 0, € R coefficients are carefully selected after thoroughly experimenting with different
combinations in order to reflect the desired balance of mission duration and accuracy. C' > 0, € R
represents a very large number.

By carefully examining eq. (), one can notice that the system’s utility increases as the
navigation accuracy decreases, while decreases as the total offloading duration increases and is
maximized when offloading is deemed necessary, i.e., k(t) = 1. Leveraging the above, we define
O(t), a function that dictates whether the task is offloaded to the edge (O(t) = 1) or not (O(¢t) = 0),

as follows:

, i qo(t) > Jra
ot) = (6.49)

0, otherwise,
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where Jry < C is a predefined threshold, the value of which, together with the values of ¢y, co
and C, tunes the sensitivity of our mechanism in triggering the remote execution technique and

depends on the mission’s characteristics.

6.7.4 Convergence of the Proposed Technique and Core Algorithm

To summarize the whole operation of the proposed CPS, as introduced in Section @, the robot’s
motion, dictated by the control automaton of Fig. @, relies at first on local techniques for pose
estimation. On the one hand, the robot performs a translational motion using the respective
controller computed by eq. () and (), only when it is guaranteed that the distance towards
the target position for the whole estimation set decreases. On the other hand, the robot performs
a rotation using the controller computed by problem (), only when it is guaranteed that in
the next step the translational motion is allowed. In both cases, an overapproximation of the
estimation set is calculated, as explained in Subsection . The offloading strategy switches to
the remote estimation according to the system’s utility, given by the utility function () This
utility function dictates the robot to invoke the remote estimation whenever at least one of the
two conditions for convergence, eq. () and (), is not satisfied, or when the communication
conditions and/or the available computing resources result in a fast computation for the precise
remote estimation technique. In this case, given the precise estimation, by Theorem E, the distance
between the robot and the target position decreases. Thus, using a combination of the local and

remote estimation technique, the robot eventually converges to the target position.

Corollary 1. Consider the system (@), (@) and the utility-based offloading strategy defined in
(6.48). Then, the robot converges to the target set G eq. ()

Proof. The proof of Corollary E follows the same reasoning as in Theorem a, with the exception
that the convergence speed is A = max; N (t), as given by eq. () and that the rotation is

invoked at worst every two time instants. O

6.8 Performance Evaluation

In this section, we provide a detailed numerical performance evaluation of the proposed technique,
through modeling and simulation of various scenarios, illustrating the operation, features and
benefits of our approach. Specifically, in Subsection , the detailed configuration of the experi-
mental setup is described. In Subsection , we focus on the control sequence benchmarking. To
this end, we identify two metrics, based on which we evaluate the performance of our mechanism,
namely the a) navigation accuracy and b) mission duration and different offloading strategies are
compared. In Subsection , the utility function is evaluated for different application scenarios,
indicating the easily adapted applicability of the proposed technique. The benchmarking is con-
ducted by simulating the motion of a mobile wheeled robot in Python. For the calculation of X, we

utilize Flow*, described in [180] and [181]. Flow* is a software used for calculating reachable sets
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’ Parameter \ Value ‘

€ 0.2m

D [0.1,0.2] rad

w1 [—0.2,0.03] m
Wa [—0.06,0.04] rad
T* (13,14)

Xo (3, 2)

JrH 10

U [0,5] m/s

Us [0,27] rad/s

Table 6.3: Simulation parameters.

in hybrid automata, together with other dedicated software (e.g., CORAE) [182]. The simulation

code, alongside any related dataset used in this section, is publicly availables.

6.8.1 Experiment Setup

In order to have a realistic setting, for evaluating the described scenarios, we simulate a square,
20m x 20m sized factory floor where five wireless access points are located. Four of them are
placed in the corners of the floor and the last one is places in its center. As the simulated robot,
an AlphaBotE is selected, thus, the local pose estimation is performed by using the robot’s photo-
electric sensors (encoders) attached to each wheel, which provide an estimation about the travelled
distance and the shift in orientation. Moreover, the discretization time is set at T = 0.1s. The
remaining key experiment parameters are listed in Table @, unless otherwise explicitly stated.
Additionally, regarding the mission, we consider that the robot starts from a known position Xy
and stops when it reaches e-close to the target position z*; for illustration purposes and in order
to be able to average the following results over multiple repetitions of the experiment, the starting
and final position are kept always the same.

Regarding the networking settings, we assume a signal of power P;p for the uplink, which is
proportional to the distance between the robot and the access point it is connected to and which
has a maximum value of PJ}** = 24dB. Moreover, we fix PL(dy) at —20dBm, based on the work
of [177], which presents an access point with the same characteristics of ours and the same reference
distance. The path-loss exponent n is set equal to 3.5, a value typical for a factory floor setting
[183]. The size of offloaded data, in MB, follows a uniform distribution with a mean value of 0.075
and variance equal to 0.25. The Gaussian Noise Nyp is set equal to —114dB while the bandwidth
B allocated to the robot at any given time is set to 1M Hz.

Finally, regarding the edge computing resources, as mentioned in subsection m and similar to
[146], a least-squares fitting method is used to calculate the coeflicients @ = —1.34 and 8 = 3.675

Thttps://swmath.org/software/25659
2https://github.com/Dspatharakis/Replan
3https://www.waveshare.com /wiki/AlphaBot
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Figure 6.5: Estimation set propagation for the three offloading schemes.
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Figure 6.6: Decrease of distance V(/'?t, x*) for the three offloading schemes.

for the computation of the remote estimation technique. Also, the allocated cores of the edge
server ¢(t) are updated every 0.5s, following a Normal Distribution with a mean value of 0.75 and

variance equal to 0.5.

6.8.2 Control Sequence Benchmarking

In this scenario, we compare the performance of the following three computational offloading
schemes, in terms of navigation accuracy and mission duration: i) exclusively local estimation,
where the robot never invokes the remote estimation algorithm, i) exclusively remote estimation,
where the robot constantly invokes the estimation algorithm, i) utility-based offloading decision,
where our proposed mechanism comes into operation. For each of these three cases, a set of 35
experiments is conducted and the results are averaged per time slot for better illustration.

Fig. @ depicts the changes in the estimation set volume (per second), as the robot moves
and offloads tasks. The estimation set is depicted in 2-D, as the robot’s position (and not its
orientation) is sufficient to satisfy the termination condition (eq. ()) Alongside this, Fig. @
shows how quickly the robot reaches e-close to the target in each case. As expected, in case i),
where only local estimations are used, although the robot moves rather quickly as shown in Fig.

, it consistently fails to approach the target as the localization error is accumulated in each
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Average Average Success

Offloading Scheme mission offloading
. . Rate
duration triggers
(s)

Exclusively Local 25 0 3%
Exclusively Remote 270 95 100%
Utility-based 33 3 100%
Time-triggered (pu = 5) 95 26 100%
Time-triggered (1 = 10) 58 11 100%
Time-triggered (u = 15) 48 7 100%
Time-triggered (u = 35) 35 3 100%
Time-triggered (p = 50) 38 3 95%

Table 6.4: Experiment metrics for each offloading scheme.

step. This is illustrated in Fig. . There, the vast increase of the size of the estimation set,
due to this accumulated error, indicates that the robot can not converge to the target position. It
must be noted that, in the 35 repetitions of this setting, only once the robot managed to reach
e-close to the target, as shown in Table @ On the other hand, case ) showcases great precision
in localization, which also reflects at the size of the volume of the estimation set, which is fixed
at the minimum value (point) throughout the mission, as shown in Fig. . However, this
comes with a cost in mission duration which is significantly increased due to the robot uncritically
invoking a time-consuming estimation technique, despite the networking conditions and available

edge computing resources not being always favorable.

After the evaluation of the first two cases, it becomes evident that a balance between the
investigated metrics, i.e., navigation accuracy and mission duration, is of paramount importance

and our method, i), manages to deliver one.

As illustrated in Fig. , in the beginning, where the robot moves quickly using the local
pose estimation, the estimation set increases over time. Then, the utility-based offloading strategy
invokes the remote estimation technique three times, specifically at the 16th, 25th and 29th second
of the experiment. In these moments, a precise estimation of the robot’s pose is provided, thus the
estimation set is minimized to a point. After offloading, the robot moves again faster towards the
target position, as long as the size of the estimation set allows it. In this setting, the average mission
duration is kept to a low 33s, which is only 10% longer in duration than the single successful try
of case 7). We should note here that the coefficients of the utility function of eq. (.48) were fixed
to values that provided a balanced outcome between the evaluation metrics, in order to reflect
a generic mission. In the next subsection, an evaluation on the different values and dynamics

between these coefficients follows.

Finally, along with the three aforementioned offloading schemes we evaluate five different set-
tings of a time-triggered remote estimation, a variation of case 4ii), where the remote estimation

is now triggered periodically every u seconds. Although this time-triggered estimation provides,
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Figure 6.7: Time-critical mission.

in some cases, similar results to our case, it has no convergence guarantees. This is elucidated in
Table @, where the averaged results for the set of 35 experiments, for all the offloading schemes
are presented. As one can notice, our technique is superior to all the other offloading strategies
when it comes to providing a guaranteed convergence to the navigation target, while keeping the

mission duration low.

6.8.3 Offloading Strategy Benchmarking

Having evaluated the overall usefulness of the proposed mechanism, in this section, we investigate
the effect of the coefficients of the utility function, on navigation accuracy and mission duration. To
this end, we tweak the coefficients of eq. () to steer the offloading strategy towards benefiting
one of the two metrics, depending on the mission requirements. In this context, we identify three
mission-scenarios, differing on which term of the utility function gets promoted and the results this
has on the mission metrics: 4) time-critical mission, (e.g., rescue robots), ) navigation-critical
mission, (e.g., autonomous museum tour guides) and ¢i7) sparse communication mission (e.g., space
robotics). The first case differs from the exclusively local execution one of the previous subsection,
as we guarantee a 100% mission success rate, i.e., the robot always reaches the target.

For case ¢), we tweak the coefficients of the utility function to benefit the mission duration.
Consequently, co, which is associated with the total duration of the remote execution of the precise
estimation technique is promoted, while ¢1, which is associated with the quality of the navigation, is
demoted. Hence, the time-consuming remote estimation is invoked either when the total duration
of remote execution is really low, compared to the local estimations, or when the estimation set
has grown vastly, as shown in Fig . In detail, the remote estimation technique is invoked two
times in this experiment, when the volume of X, results in a great deterioration of the quality of

the navigation, as shown in Fig. and at the same time the total duration of remote execution
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Figure 6.8: Navigation-critical mission.

is minimized. The average mission duration for this setting was 33s.

On the other hand, in case i), to address the need for a more fine-grained navigation, ¢; is
promoted and ¢, is demoted, thus, the estimation set’s volume is not allowed to grow uncontrollably.
This results, as presented in Fig , in invoking the remote estimation technique more frequently,
i.e., 6 times during this experiment. In this case, the quality of navigation is more important
than execution time; this is evident in the 1st, 3rd and 6th offloading trigger, where the network
conditions and available edge resources are not so preferable, but, still the robot chooses to offload
in order to minimize the localization uncertainties. In addition, naturally, the volume of the
estimation set, depicted in Fig. , is relatively compared to the first case, resembling the case
of exclusively offloading of Subsection . The average mission duration for this setting is 33%

longer (45s) than case 7), as expected.

Finally, in case %), we minimize c¢;, to simulate a scenario where the robot invokes the remote
estimation algorithm only when it is an absolute necessity. This setting is a special case of case 7)
to indicate that the mission duration also depends on the increase of the estimation set. Therefore,
as shown in Fig. , in this case we notice only two offloading triggers, namely; the 1st due to
the increase of the estimation set, at the 22nd second of the experiment and the 2nd due to the
k(t) signal trigger at the 33rd second. As presented in Subsection 7 k(t) becomes equal to 1
either when the distance towards the target is not decreasing or the rotational controller fails to
allow translational motion in the next time instant. As shown in the same figure, regardless of the
current network and computing conditions, the robot seeks a more precise estimation to guarantee
that the target is reached. A last note is that the average mission duration for this setting is 15%
longer than time-critical experiment (38s). So, a conclusion that is drawn is that the bigger the
estimation set, the more it deteriorates the quality of the navigation, under the proposed controller

design.
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Figure 6.9: Sparse communication mission.

To sum up, it is noticeable that promoting c; results in more precise yet time-consuming
navigation, as the robot offloads more frequently. On the other hand, when promoting cs, the
robot offloads rarely, when absolutely necessary, resulting in quicker but less precise navigation.
Moreover, in the special case, where ¢y is minimized, the robot offloads either when the estimation
set grows vastly, or when the conditions that guarantee convergence are not satisfied. It should
be noted that, while all three configurations manage to achieve a 100% success rate in reaching
the target position, the first one is allowed to roam more freely, relying on its local navigation
capabilities in favor of speed, the second one manages so in a more fine-grained trajectory while
the third one invokes the remote estimation technique only when necessary. To sum up, the utility-
based offloading decision framework manages to achieve the required balance among the various

mission characteristics, making it suitable in the context of co-design of 3C for a CPS.

6.9 Summary

A novel resource-aware estimation and control framework for edge robotics, that jointly tack-
les the problem of convergence in trajectory navigation of a unicycle robot and the problem of
efficiently using communication and computing resources, is presented. The conservative overap-
proximation techniques introduced alleviate additional computationally intensive tasks from the
resource-constrained robot and provide a quick solution to the challenging problem of calculating
the estimation set in the presence of modeling and measurement uncertainties. Moreover, we pro-
pose controllers that guarantee the robot reaches a target position after a finite number of steps.
Finally, a utility-based offloading decision strategy is presented and thoroughly evaluated to high-
light the need of finding a balance between two important metrics, namely navigation accuracy

and mission duration. The performance evaluation of the proposed technique suggests that our
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solution outperforms other typically used offloading schemes and is easily adjustable to the needs
of different application characteristics. More importantly, the proposed framework guarantees
convergence to the target position independent of the various parameters chosen, in contrast to

the periodic offloading schemes. The results of this Chapter are also presented in [184].
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Chapter 7

A Task Offloading and Batch
Scheduling Framework for

Edge-assisted Inference

7.1 General Setting

The era of modern applications has witnessed the emergence of new computing paradigms that
alleviate the computational burden of complex algorithms from the devices. There are several
scenarios in which conducting the best quality computations provides disproportionate benefits
in terms of performance and energy of the overall system [185]; a fact that paves the way for an
adaptive computing paradigm, namely, Approzimate Computing [41] or Transprecision Computing
Paradigm [186]. The basic idea of this paradigm is to reduce the number of computations an
application must perform, thus, reducing the execution time but producing a potential but ac-
ceptable loss in accuracy. Approximate computing is applied at various levels, including hardware
acceleration (e.g., CPUs, GPUs, etc.) and software (e.g., model compression [3g]).

This Chapter focuses on the case of real-time inference (i.e., image detection) applications
deployed in various scenarios such as AR/VR, mobile robotics, and Smart City applications, among
others [187]. We assume that inference tasks (e.g., images or video stream) generated by low-
power and compute-constrained EDs are processed either locally or offloaded, using a wireless
connection, to the ECs for further processing. The offloaded tasks are first compressed on the
EDs to reduce the transmission time [188]. Accordingly, when an offloaded task arrives at an
EC, it is decoded, and then the inference is executed. Thus, we investigate the trade-off between
the minimization of transmission time (i.e., compression of task size) and the accuracy loss of
the inference. Furthermore, we consider that each EC has an available GPU unit that assists

with the computations. On the EC side, we assume that the offloaded tasks are executed in
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parallel, i.e., in a batch. The batch processing of tasks drastically decreases the overall latency
compared to the sequential execution of the tasks [189]. Moreover, the time the GPU is operating is
reduced, thus minimizing the cost and energy from the EC side. However, for the batch processing
to be optimized, the offloaded tasks must arrive at the EC simultaneously to reduce the total
latency [190].

7.2 Related Work

In this section, we present studies related to the task offloading problem and Edge-assisted real-time

inference.

7.2.1 Task Offloading

Leveraging the Edge Computing capabilities, there are numerous works related to the task offload-
ing problem subject to various metrics (e.g., latency, bandwidth utilization, energy). Here, we
present the most recent studies on SDR-based task offloading for the binary case.

In [191], the authors propose the modeling of a single device that has a set of tasks to execute
and a set of ECs that the tasks can be offloaded. They consider two different cases of resource allo-
cation on the ECs, namely; fixed and elastic CPU frequency, and they solve the QCQP with SDR.
The results indicate that SDR provides near-optimal solutions and outperforms all other baseline
techniques. In Chen et. al. [192], the authors assume only one EC and a set of users. The task is
executed either locally or remotely on the EC. They formulate the Multi-User Multi-Task Offload-
ing algorithm that solves, using SDR, the binary offloading problem and then maps the solution
to a feasible one using stochastic randomization. Mukherjee et. al. [193] design a computation
offloading strategy to minimize a utility function defined as the weighted sum of every device’s
delay and energy consumption, in a UAV scenario. Then, they formulate a binary offloading prob-
lem that is solved with SDR as the problem is a Quadratically Constrained Linear Program. The
SDR solution is then used to train a Deep Neural Network model to find a near-optimal offloading
strategy. Finally, in [194], a joint task offloading and resource allocation problem for mobility
scenarios is presented. The proposed framework utilizes Lyapunov optimization combined with
Semi Definite Program (SDP) to optimize the offloading ratio, power, and CPU frequencies of the
ECs.

7.2.2 Edge-Assisted Inference

This section briefly presents studies that tackle the problem of optimizing inference accuracy in an
Edge-assisted offloading scenario.

In particular, in [[195], the authors propose a framework where each device offloads an inference
task taking into account the network quality. If the channel quality is adequate (in terms of signal

strength) then the task is offloaded to the EC. Otherwise, the tasks (images) are compressed to
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reduce the transmission latency and manage to receive the result within the frame rate. Similarly,
in [196] the decision for offloading is based on the network and the application’s requirements; a
problem is formulated that simultaneously decides the frame rate and frame resolution, the bit-
rate of the video along with the model selected for the inference. The proposed framework focuses
on executing a convolutional neural network (CNN) for real-time augmented reality applications.
Moreover, the authors in [197] utilize a dynamic Region Of Interest (ROI) encoding technique
that adjusts the encoding quality for each subframe of the original picture based on the latest
inference. They introduce a real-time framework with dynamic offloading policies to minimize
latency and maximize accuracy for an AR application. In [I18§], the authors address the issue
of real-time object detection under poor communication conditions. They run a lightweight deep
neural network model on the device to find candidate ROIs and then encode with higher quality the
ROIs by controlling the compression ratio (i.e., bitrate). Then, a fine-grained offloading strategy
is introduced to limit the frequency of offloaded images to the ECs. Specifically, offloading occurs
only when the results of the local inference are inaccurate or significant changes in the motion of
the objects are observed.

In the following we also highlight two research works that try to formulate optimization prob-
lems regarding the maximization of accuracy for Edge-assisted inference. Fresa et. al. [198] propose
an approximation algorithm to maximize the total accuracy for inference tasks subject to latency
constraints of the makespan. The authors use model selection and formulate an NP-hard problem
that is linearized in order to achieve a feasible solution. Also, in [199], an NP-hard problem is for-
mulated to investigate the trade-off between latency and accuracy in a 3-layered architecture. Tasks
can be either executed locally or offloaded to the edge and the cloud layer. The joint optimization
of compression and offloading is similar to ours, however, the offloading decision is approximated
using a heuristic algorithm with a moving average technique. Moreover, the solution provided in
[199] is not compared to the optimal solution. In difference with the above-mentioned works, we
formulate an optimization algorithm that jointly minimizes the average latency and maximizes
the accuracy of the inference process, by computing the optimal values for the compression of the
offloaded tasks and employing them to compute an SDR-based task offloading decision for batch
scheduling.

7.3 Contributions & Outline

Overall, we aim at a task-offloading strategy for batch scheduling that (a) facilitates the collabo-
ration between the EDs and the ECs to reduce the average latency and (b) maintains a certain

quality of the inference process. Our contributions are summarized as follows:

e A two-layer environment is introduced, where EDs produce inference tasks and seek addi-
tional computing resources from the ECs, in an Edge Intelligence scenario. We formulate a
joint optimization problem to maximize the average accuracy and simultaneously minimize

the average latency of Edge-assisted inference. We introduce a framework to approximate
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the solution of the optimization problem by breaking it into two sub-problems: (a) compute

an optimal task compression and (b) decide a task offloading policy for batch scheduling.

o Following the Approximate Computing paradigm, we consider two inference models, namely:
(i) a computationally light for the resource-constrained ED and (ii) a precise one executed
on the GPU-enabled ECs. Thus, we investigate the trade-off between the expected quality
of the inference and the transmission time of tasks. We first compute an optimal compres-
sion strategy subject to a task offloading policy. The solution to the compression problem
introduces some important results which imply that the batch scheduling is optimized when
the tasks arrive simultaneously at the EC, thus, minimizing the total latency of the inference

process.

e The task offloading problem remains challenging as it is a mixed-integer linear program.
We formulate the equivalent Quadratically Constrained Quadratic Problem (QCQP) since
the binary offloading constraints are expressed as quadratic equations [200]. Therefore, we
exploit the power of Semi Definite Relaxation (SDR) to achieve a near-optimal solution
while maintaining polynomial complexity based on the results of the compression problem.
We utilize a randomized method to obtain a feasible solution that converges close to the
optimal solution with low polynomial complexity, as the results indicate. We propose an

algorithm that iteratively solves the two subproblems until convergence.

e We perform an extensive evaluation of the proposed framework via modeling and simula-
tion. The superior performance of the proposed approach is demonstrated in comparative
experiments, as the total cost is at least 50% less than all other benchmark techniques, and
improves even further as the number of tasks increases. Finally, we investigate the effect of all

significant parameters on the overall performance of the framework in a series of experiments.

7.4 System Model and Problem Formulation

We consider a two-layer computing environment, involving a set of homogeneous (in terms of
processing capabilities) EDs that produce tasks A= {1,..., N} and a set of ECs M = {1,... M}
located in the proximity of the devices. Each task ¢ € A/ contains one or more images, or ROIs,
of a similar size (in bytes), which is denoted by d; and is bounded by a maximum data size; i.e.,
d; < d™*®. The images are used for real-time object detection algorithms e.g., using the newest
version of YOLO software [201]. The EDs communicate with the ECs via wireless access points.
A high-level illustration of the systems’ overview is depicted in Fig @ Each ED has to decide
the task scheduling strategy, i.e., whether to execute the inference process locally or offload to

an EC. Hence, we consider two binary offloading decision variables, z;, for i € N and y;;, for
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Figure 7.1: High-level concept of Inference Offloading for GPU-enabled ECs.
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i € N,j € M, to denote the task scheduling:

1, the i*" task is executed locally
T = )
0, the " task is offloaded

1, the i*" task is assigned to EC j
Yij =
0, otherwise 7

We denote the task scheduling matrix as

1 Y1 .- YiMm

TN YN1 --- YNM-

Observe that X is a N x (M + 1)-matrix. To assist the reader, a summary of the key notations
used in the text is provided in Table @

In addition, we consider that each edge server is mounted with a GPU unit to assist with the
image detection process. Following similar works (see [202]), we let the GPUs execute multiple
tasks in parallel to reduce the total computation delay. We denote b;, for j € M, the batch of
parallel executed tasks, following [190]. Moreover, for each EC j € M, we consider a maximum
batch size b]*®. Let b™* = [b*e®, ... b1**] be the (M x 1)-matrix containing the maximum

batch size of each GPU-enabled EC. We also denote s;,7 € A/, the compression ratio of the data
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Table 7.1: Summary of the key notation.

Symbol | Interpretation
N number of EDs

i index of an ED
M number of ECs
j index of an EC
x; local offloading decision
Yij remote offloading decision
X task scheduling matrix
d; data size for task ¢
R;; data rate between ED 4 and EC j
S; compression factor for task 4

g(s, k) | expected accuracy related to compression

b maximum batch size for EC j

L%’a” transmission latency of task i offloaded to EC j
i | computation latency of task i offloaded to EC j

Lyt waiting time at EC j

L; overall latency of task ¢

A(X,s) | average accuracy of all tasks
T(X,s) | average latency of all tasks
Trnaz maximum allowed latency
Anin minimum allowed accuracy
U(X,s) | objective function
A7 scalar weight for latency
Aa scalar weight for accuracy
€ solution convergence threshold

size of the tasks which are offloaded. We further assume that the data size of the tasks is known
beforehand. As mentioned in the introductory section, in the case of offloading, the tasks are
first compressed using the appropriate software (e.g., libjxl [203]) and then sent to a specific EC,
to reduce the communication overhead. Following the Approximate Computing paradigm, we
consider two different inference models to perform the image recognition algorithm, namely; (i) a
computationally light but inaccurate model executed locally on the constrained ED and referred
to as kiee, and (ii) a precise model executed on the ECs, which is denoted by k. This practice
is common when executing inference in computing-constrained EDs [204]. Therefore, in order to
express the relationship between the expected accuracy of a machine learning model and the image

compression of each task, we use the following function, following [205]:

9(s, k) = ay exp(— Pk exp(—ks)) , (7.1)

where k denotes the selected machine learning model and s € (0, 1] is the compression ratio used
for data compression (i.e., s = 0.9 means that the output size of the task is at 90% of the original

size). This function is known in the literature as the Gompertz function and captures the idea
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that as the compression ratio increases there is a significant loss in the accuracy of the inference.
It is easy to see that the concavity of the Gompertz function depends on the parameters a, 3, 7.
Hence, we choose the parameters «, 3,7 in such a way that (a) the concavity of the function is
guaranteed, and (b) the local and remote machine learning models produce different maximum
accuracy. Finally, we denote by s = [s1, ..., sn], the (N x 1)-compression matrix. We now proceed

with defining the accuracy of the system.

1. Accuracy: The average accuracy of all tasks is given by:

AX,s) = % Z (mi ~g(1, kioe) + Z Yij - 9(Ss, k)), (7.2)

ieEN JEM

where ko is the local machine learning model used for the inference and k is the machine learning
model used by the ECs. Clearly, in the case of local execution, compressing the data is redundant,

and therefore the compression ratio is equal to 1.

Let R;; denote the data rate to transmit the images from the i ED to the j'** EC. We assume
that the latency of transferring the response from the EC to the ED is considered negligible as in
[206]. Then, let Lﬁ;a”,Lf;mp be the transmission and computational latency, respectively, when
the task 7 is executed on the EC j. More specifically, we define

sid;

e =22 and L™ = filby), (7.3)
ij

where fr(b;) = &kb; + Cr, where &, i are constants and b = >, 4ij, for all j € M. Driven
by [190], the function fi(b;) is a linear approximation to the computing latency of the inference
for a batch of tasks b;, when executed on a GPU; as showcased also in the results of our prior
work [189]. Furthermore, from our prior work, we know that small deviations in the task size have
an insignificant effect on the latency of batch processing. In the function f;(b;), apart from the
computational latency, we also include the time needed to encode the task on the ED side and
decode it on the EC side. More information regarding the linear approximation of the latency is
presented in Sec. @

However, in this chapter, we consider parallel processing of the tasks at the EC. This means

that each EC starts the processing of the batch when the last of the tasks arrive. As a result, let

it Sidi
Lj*" = max {yij : Rw} (7.4)

be the waiting time of all tasks ¢ € N offloaded at EC j. Evidently, if a task, say i, is offloaded at

the j*" EC satisfies Sé‘?? = L;’“”, then the waiting time for the specific task is zero. Moreover, we
. *J

know that L;-”‘“t > Lf;“" for all tasks offloaded at EC j. We define the makespan of task i € N,

that corresponds to the transmission, waiting time, and computing latency at the j** EC when at
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least one task is offloaded, as follows:

Li — maj\}[{ {L%‘an’L}uait} + L?;mp _ L}uait + ij{’mp (75)

i€
Having defined the accuracy if the system, we now proceed with defining its latency.

2. Latency: The average latency of all tasks is given by:

1 wai com
T(X,s) = & ST (@iLioe(d) + > wis (Lj Ly ,,) ), (7.6)
ieN JEM
where Lioe(d;) = fr,..(di) = &kodi + Cryo., 18 the latency of the local execution. Observe that,
similarly as before, we consider a linear function of the data size, d;, for the local computing time.

As already mentioned, the same processing capabilities are considered for all EDs.

We aim to minimize the tradeoff between the average latency of the tasks produced by the EDs
and the average inference accuracy. To this end, we formulate the total cost as the weighted sum
of the two metrics:

U(X,s) = AMT(X,s) — M A(X,s), (7.7)

where A7, A4 € RT are tunable positive parameters. We subtract the second term in the objective
function aiming to maximize the average accuracy of the tasks. Therefore the joint minimization

problem can be formulated as:

El: mig\Il(X, s) (8)
st. T(X,s) < Thax (7.8a)
AX,s) = Anin (7.8b)
0<s; <L, VieN (7.8¢)
>y SO, Ve M (7.8d)

ieN
i + Z yi; =1, Vie N (7.8e)

JEM

zi,yij € {0,1}, Vi e N, j € M. (7.8f)

The constraint () guarantees that the average completion of the inference of all tasks is upper
bounded by T4z, while constraint () ensures that the average accuracy for all tasks is lower
bounded by A,.;n. Furthermore, () ensures that the compression ratio of the data at the
ED side is greater than 0 and at most equal to 1. Constraint () ensures that the amount of
offloaded tasks to EC j is upper bounded by b7** for all ECs. Constraint () also secures that
each task is executed either on the ED or offloaded to a specific EC. Finally, () describes the
binary character of offloading, i.e., the task is not split into several tasks. Problem £1 is a mixed

integer nonlinear problem that is well-known to be NP-Hard [207].
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7.5 Accuracy Maximization and SDR Relaxation

In this section, we discuss an optimization framework to efficiently find a near-optimal solution to

Problem (@)

7.5.1 Optimization of Inference Accuracy

We first aim to find an optimal solution to the compression ratio of the offloaded tasks given
a feasible task scheduling matrix X. More concretely, we first optimize over the values of s in
Problem (@), while considering the values of X as fixed.

&2 :msin U(X,s) (9)

s.t. (.8d), (.81), (7.8d) (7.92)

Note that Problem (@) can be equivalently written as follows:

mln — Z Z Yij - 08X {yej Zd'e }

16/\/]6/\/1

Z Z Yij - Sz; + Cy+Crp (10)

zeNgeM
d C
s.t. — Z Z ywmax Yoj—— Sede 4+ 2L < Tonax (7.10a)
Ry, AT
ZENJEM
C
AT Z Z ng 3“ )\A Z Amin (710b)
zeNyeM
0<s; <1,VieN, (7.10c)

where Cr = )‘ﬁ YN Zje/\/t (wiLloc(di) + &k, Dorem ylj) and Cy = —/\WA DN Zje/\/l Aag(1, kiocd)
are independent of s, and may be regarded as constants. in this chapter, we choose the parameters
a, 3,7 in the Gompertz function in such a way to guarantee that we consider only the concave
part of the function that is convex in the negative form. To solve problem (), since a task
scheduling matrix X is known beforehand, we substitute the max operator that indicates the max-
imum transmission latency of all tasks towards each EC, with respective linear constraints [208§].
Moreover, Cp,C 4 are constants subject to the task scheduling matrix and are omitted as they do

not contribute to the solution. Hence the equivalent optimization problem is:
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msin % Z Z Yij (Art; — Aag(si, k)) (11)

iEN jEM

1 Cr

s.t. N Z Z yijtj + )\7 S Tmax (7.11&)

1EN jJEM T

1 Ca

N Z Z Yijg(si, k) + WA > Amin (7.11b)
iEN jEM A

0<s; <L,VieN (7.11c)

iy . )
Yij - ° - <t;,Vie N,Vje M. (7.11d)

)

As a result problem () can be solved efficiently by a convex programming solver in polynomial
time which provides an optimal solution for the compression matrix s and the maximum trans-
mission latency ¢; for all j € M. With respect to an optimal solution, we provide the following

results. For each EC, say j, we define the following two sets of offloaded tasks:

a. Pj={le{l,...N}:s <1,y;; = 1}, which is the set of the tasks with feasible compression

ratio and

b. Q; ={le{l,...N}:s = 1,y;; = 1}, which is the set of tasks with maximum compression

ratio.

Let tp, = maz sédi
J

ij
respectively. It is evident from Problem () that an for optimal solution ¢}, j € M, of Prob-
lem () it holds that either £ = tp, or t; = tg;. Then we proceed with two results that provide

a qualitative description of an optimal solution.

and tg, = m%x g?_ be the maximum transmission times over P; and Q,,
s R

Lemma 2. Lets* = (sj,...,sy) and t},j € M, be an optimal solution to Problem () Then,
for every j € M and every i1,12 € P;, it holds
8;1 dil s¥ di2

=20 (7.12)
R, ; Ri,; '

Proof. Fix a j € M. Suppose, towards arriving at a contradiction, that there exist i;,i2 € P; for
which it holds

* *
Sil di1 N Siz diQ

. (7.13)
Ri; Ry

. Tdi T e)d;
Since s7 < 1, we can find € > 0 such that : 1L > (o5, ,E), 2 and s* +e < 1. Now let s = s* +e,
2 Riq,j Ri,,j 12 12 12

and let s* be the vector obtained from s after replacing the value s7, with sj;, and leaving all
remaining values unchanged. Now observe that the objective function in Problem () decreases;

indeed, note that T'(X, sT) remains the same and, since the Gompertz function is concave, A(X,s™)
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increases. Moreover, the constraints are satisfied. This contradicts the optimality of s* and we

conclude that the transmission rates for all tasks ¢ € P; are equal. The result follows. O
We now provide the analogous statement for Q;.

Lemma 3. Lets* = (s7,...,sy) andt},j € M, be an optimal solution to Problem () Suppose
that for some j € M it holds tg; = tj. Then it also holds

to, = tp, =t} (7.14)

Proof. The proof is similar to Lemma (E), so we only sketch it. Suppose, towards arriving at
*d, X,
a contradiction, that t; = tg; > tp;. Then from Lemma (E) we know that 512171]1 = S}gmz =

tp;, Vi, iz € P;. Now, for every i € P; we can find €; > 0 such that, using the same reasoning as

in Lemma (E), upon replacing s¥ with s = s¥+¢;, the accuracy increases while the latency remains
unchanged. This contradicts the assumption that s7,...s% and ¢} are the optimal solutions, and
the result follows. O

Let us remark that a similar result is obtained in [209], where it is shown that the task offloading
delay is equal for all tasks offloaded at a specific EC. This result is important for the proposed
framework as we consider batch processing of the tasks in the ECs. Moreover, as said previously
the batch processing starts when the last of the tasks arrives at the EC. Consequently, it is evident
that in order to minimize the computing latency at EC j it is enough to minimize the waiting
time L’j”‘”t. Hence, the performance of batch processing can be significantly increased by carefully

compressing the offloaded tasks in such a way as to arrive simultaneously at each specific ECs.

7.5.2 SDR-based Offloading

Considering the optimal solution s7,...s} and t}...t}, of the compression problem (@) let us
formulate the offloading problem derived from Problem (@), by substituting the max operator
with the respective ¢} for j € M

1
£3: min ;xz (/\Tdifkloc + A1y, — Aagi(l, kloc))

1
v Z Z Yij <)\th*- + ArCr; — Aag(s], k;))

iEN jEM
AT
+ 57 Z Z &k, Yij Z Yl (15)
iEN jEM leN

st. (8d), @81, (8d). E3d). Esh (7.15)

Problem £3 is a mixed-integer linear program still challenging to solve. We now proceed with

transforming Problem £3 to an equivalent QCQP problem. To begin with, we replace the binary
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constraints with the following quadratic constraints:

zi(l—2;)=0,VieN
Z/ij(l _yij) =0,VieN,jeM. (16)

We begin with some auxiliary notation. Let us consider the following 1 x (NM + N)-matrix: z =
[T1,. s TN, YLy - YIM - - -, UNTs - - - YNr) L, and consider the following 1 x (N M )-matrices: & =
(54 Chyse s 5+ Chys e e s U Chings - - o Uy G | T and A = A (¢ +Ck, ) —Aag(s1, kar)s - s Ar (85, +
Ckar) — Aag(sn, kar)]". Moreover, we denote ¢ = [€x,,.d1 + Chypes - - - s Ekrdn + Cy,.]”s and @ =
AT (k. di+Cr )= Aa9(L kioe )y -+ o s AT (ko AN +Cryo ) —Aag(1, kioe )]t which are 1 x N-dimension
matrices. Then Problem () can be written as:

£3.2 min 2T Agz + bz (17)
st.2 Aoz +cgz < N -Thaw (7.17a)

—dyz< —N-Apin (7.17b)

A]_Z = ]-N><1 (7170)

Aoz < b (7.17d)

sziag(up)z—ugz =0,p=1,...,NM + N, (7.17e)

A A T
where A3 = WT&W ce WT&VM} y

diag(Ag,)MxM - diag(A;;)MxM
A= : ,

diag(A ...diag(A
A zag( 3)MxM zag( 3)M><M (N M) (N M)

0 0
T N*WM], bo = (@, A",

Oy N A,
O¢x s
ry= T , for/=0,1,...,N —1,

ON—r—1)xM

A, = [INxN Iy ... FN—I} , co=1[0,8]"

A :[ } ,
2 Omxn Tarxm T M (NMTAN)
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dO = [9(17 klOC)7 e 79(17 kloc)ug(sla k1>7 cee 7g(SN7 kM)]T7

and u, is a (NM + N) x 1 unit vector with the p, entry being 1 and all others zero. Con-

straints (7.174),([7.178),[.17d), (F.17d) are equivalent to the constraints (7.8d),([.81), (F.8d),[.8d)

respectively, while Constraints () are equivalent to the binary constraints ()

Let W = ? {le]. Now we further transform the Problem () into homogeneous QCQP

as follows:

£3.3: mvi&l Tr(BoW) (18)
s.t. Tr(BiW) < N - Thas (7.18a)
—Tr(B2W) < =N - Apin (7.18Db)
TrH,W)=1, h=1,....NM+ N (7.18c¢)

Tr(3;W) <b79%, j=1,...,NM+ N (7.18d)
Tr(BsW) =0, p=1,...,NM + N, (7.18¢)

W >0, rank(W)=1, (7.18f)

where Q2 = (NM + N),

A lp A 1
Bo=|, 0T 2 0, B: =1, OT 2%0)
_§b0 0 §C0 O
B. — 00,xQ, _%do 00,%x0Q, 2A17h
2 = —ld T 0 ’ h — lA T 0 ,
|~ 240 5A1n
_|0qaxq.  3Az;  [diag(u,) —1u,
= T . B3 = o 7
§A2,j 0 —3u, 0

and W > 0 indicates that the matrix is positive semi-definite (PSD) and Aq pn, Az j are the ht" and
j*" row vector of matrix Ay and As respectively. Following [210] by dropping the rank(W) = 1
constraint which is the only non-convex constraint, Problem £3.3 becomes the SDR. of £3.2 and
therefore can be solved efficiently using a convex optimization toolbox. The worst case complexity
is (’)(max{m,n}‘*n%log(%)) where n is the dimension of the PSD matrix W, m the number of
constraints and e the solution accuracy. What is still to be defined is how to obtain a feasible
solution.

Let W* be the optimal solution of Problem () without the rank one constraint. If rank(W*) =

*
1 then we can construct the optimal solution of Problem () by W* = lzl ] {Z*T1:| . We call W’

151



7.5. ACCURACY MAXIMIZATION AND SDR RELAXATIOAPPROXIMATE FRAMEWORK

Algorithm 1: SDR-based Offloading Algorithm.
1: Input N, M, T, Apin, AT, AA,€, 3, sty dg, b
2: Solve Problem (@) without the rank one constraint to get W*.

3: Extract the upper left (NM + N) x (NM + N) sub-matrix to get W',

4: if rank(W*) = 1 then

5.  z* is the diagonal of W’
6:  Construct task scheduling matrix X* from z*
7: else
8 forl=1toL do
9: Draw vector () ~ N(0, W’)
10: Set 1M to %M by sig function.
11: Reshape () € [0,1]MN+N into a candidate task scheduling matrix
X(l) c [07 1]N><(NM+1)
12: for i=1toN do
13: 0" argmaxf(ij
JEM
14: Zig < 0,Vk € M {6*} and Z;+ =1
15: end for

16: end for B
17:  Chose X* by finding the minimum ¥ (X, s*) over L samples.
18: end if

the upper-left (NM + N) x (NM + N) sub-matrix of W*. W’ is also PSD [211]. As z; = {0, 1},
then z; - z; = 2z;. As a result, because W’/ = z*z*T7 we can extract the task scheduling matrix
X* from z*. On the other hand, if rank(W*) # 1 we need to map the optimal solution of the
SDR problem to a nearby feasible solution. For this purpose, we chose to employ a well-known but
efficient Gaussian Randomization method [191]]. Specifically, we generate L random (M N+ N) x 1
vectors u € RVM+N " drawn by a Gaussian distribution with zero mean and covariance the PSD
matrix W', ie., u) ~ N(0,W’),l = 1...L. To maintain the binary characteristics (constraint
()) we map each vector u(l) € RVM+N into a new vector ) € [0, 1]MN+N using the sigmoid
function sig(x) = m, where w > 1. Then, we reshape V) € [0, 1]+ into a candidate
task scheduling matrix XM e [0, 1]VXNM " The largest value for each ED’s offloading combination
of tasks is set to 1 and all others to 0. By this procedure a matrix X is constructed containing
the binary constraints for each ED. We repeat the process seeking to find the minimum over L
iterations. The best task scheduling matrix is chosen as the solution to the offloading problem £3.
In the next Section, we will show that near-optimal solutions can be achieved with a relatively
(compared to the problem’s state space) small number of L vectors. The randomization map-
ping has worst-case complexity O(LNM). We summarize the SDR-based Offloading algorithm in

Algorithm m
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Algorithm 2: SDR-based Offloading with Maximization of Inference Accuracy.
1: Input N, M, Tz, Amina AT, Aa, €, d;, b;nam
2: \Ifold(X,s) = 400
3: while True do
Solve Problem ([f.9) to obtain s*,t*
Given s*,t* solve Problem () to obtain ¥(X,s) with Algortihm ﬁ]
if |Una(X,s) — ¥(X,s)| <ethen
break;
else
\Ilold(X, S) = \I/(X, S)
10: end if
11: end while

Table 7.2: Total inference time per batch size, in seconds, in linear and parallel processing with
YOLOv5

Batch Size Total Inference Time
Linear CPU | Parallel GPU

1 0.774 0.101

3.899 0.377

10 7.615 0.683

20 15.531 1.386

40 33.397 2.707

7.5.3 Overall Algorithm

In this section, we present an overall Algorithm to efficiently solve Problem (@) In summary,
using an iterative alternating optimization [212], we solve the compression Problem (@) to find
optimal compression ratios for all tasks and maximum transmission time for the offloading and
then utilize these values to solve Problem ([f.15) and acquire a near-optimal task scheduling matrix.
We repeat the process until the solution (X, s) converges and can not be further improved by a
small threshold e. A summarized Algorithm is presented in Algorithm E The overall complexity
of the algorithm is O(max{m, n}4n%log(%) + LN M) where n is the dimension of the PSD matrix

W, m the number of constraints, L the number of Gaussian Samples and ¢ the solution accuracy.

7.6 Numerical Evaluation

In this section, we provide a systematic evaluation of the proposed framework. The parameters
we chose are based on [[199] and [189]. More specifically, we repeated the evaluation of the latter
to extract the approximated linear functions regarding the inference pipeline, i.e., compress the
image on the ED, decode and execute inference at the EC. We used the newest version of YOLO
as the inference application [201]. The role of ED plays an Intel NUC equipped with Intel Core
i5-1135G7 and 8 GiB CPU Intel Core i5-1135G7 RAM 8 GiB and Tiny YOLOv5. The GPU-
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Table 7.3: Simulation parameters.

’ Parameter \ Value
d; U(1,2) MB
Rij U(5, 10) MB/S
€ 0.001
Tmax 0.8 s
Anin 0.75
Chyon 0.01
ko 0.76
Ck 0.03
&k 0.06

Gompertz ED

a=0.6,b=5,c=5

Gompertz EC

a=095b=5,c=5

Aa 1

A1 1

L 300
e NCD.)

enabled server is a Lenovo IdeaCente5 equipped with an Nvidia GeForce GTX 1660 SUPER with
6 GiB memory GPU and 16 GiB RAM. We selected to deploy a YOLOV5E| tiny model to the ED
and x-large model on the ED. For the compression and decoding processes, we select the libjxl
[203] library. Based on 200 images of 640 by 640 pixels from the Dota dataset [213], we measured
the average accuracy of the inference using Yolovh, and we selected the Gompertz parameters as
follows (a) for the ED kjo. model (tiny): a = 0.6,b = 5, ¢ = 5 and for the GPU-enabled EC k model
(x-large) a = 0.95,b = 5,¢ = 5. Moreover, using the thunder effort (a libjxl set of parameters for
compression), with a quality factor of 100, we measured that the encoding speed is 22.83 MP /s or
an average of 26 ms for the selected images. Then we measured the inference pipeline (except the
transmission) in case of offloading a batch to the GPU-enabled ED, and the results are presented in
Table E In the case of local execution, we consider that tasks are executed sequentially, and no
encoding-decoding is required. Based on these results, we extract the approximated linear functions
fr(bj) = &kbj + (x to have an estimation of the average latency for a batch of offloaded inference
tasks. For the local inference we compute that ¢y, . = 0.01 ,&,,, = 0.76, while ¢, = 0.03 , &, = 0.06

for the remote inference.

Regarding the rest parameters, the precision of the solution is € = 0.001 while the threshold
for latency and accuracy are Tyae = 0.8 s , Apin = 0.75. The weights of the objective function
are A4 = Ay = 1 the number of Gaussian samples is L = 300 and task size and the data rates are
drawn from a uniform distribution, i.e., d; ~ U(1,2) MB and R;; ~ U(5,10) MB/sec, respectively.
The maximum batch size for EC j is drawn by a Gaussian distribution, i.e., b7** ~ N(ED, 5.
Table @ presents a complete list of simulation parameters and represents all the experiments

'https://github.com/ultralytics/yolov5
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Figure 7.2: Convergence of SDR solution to optimal, for different ECs over the Number of Gaussian
samples L, when N=10.

unless stated explicitly otherwise. The simulation code for the experiments is available here E For

all experiments to get unbiased results we generated the same seeds for the simulation parameters
and averaged the results over 50 experiments.

7.6.1 Convergence of SDR-based Offloading to the Optimal Solution

First, we study the convergence of the SDR-based offloading algorithm to the optimal solution.
We set the number of tasks n = 10 and use the default values for the rest parameters as shown in
Table B Fig. @ shows the Mean Average Error (MAE) between the SDR-based offloading and
the optimal solution to the number of Gaussian Samples L. The optimal solution is acquired with
brute force in each experiment with exponential running time. One can observe that the higher the
number of samples, the better the solution provided by the SDR algorithm. Also, as the number of
servers increases, the solution convergence speed declines, due to the fact that the number of total
variables and constraints to the SDR problem rapidly increases. We chose L = 300 for the rest of
the experiments, as to achieve a marginal difference in the MAE, a much larger L is required. In
particular, to obtain an MAF score of 1.15, L needs to increase from 50 to 300 for m = 5, while to
achieve an MAE of 0.01, L needs to increase from 300 to 500.

2https://github.com/Dspatharakis/approximate
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7.6.2 Algorithm Comparison

Next, we study the performance of the proposed SDR-based Offloading with Optimized Compres-
sion solution (SDR-OC) compared to other baseline methods. Namely; (a) Local Processing (Lo-
cal): all tasks executed on the EDs, (b) Remote Processing Random Compression (RemoteRC):
all requests executed on the ECs with random compression, (¢) Remote Processing Optimized
Compression (RemoteOC): all requests executed on the ECs with optimized compression, (d)
Random Processing Random Compression (RPRC): random offloading of tasks and random com-
pression, (e) Random Processing Optimized Compression (RPOC): random selection for the tasks
and optimized compression, (f) SDR-based Random Compression (SDR-RC): SDR-based offload-
ing and random compression and (g) Convex-Relaxation Optimized Compression (ConvexOC).
Specifically, the ConvexOC method refers to Problem () if we relax the binary constraint, i.e.,
zi,yi; € [0,1],Vi € N,j € M. With this relaxation Problem () becomes Convex and it is
possible to find a solution with the interior point method with a complexity of O(v3°K?), where
v denotes the number of variables and K the number of the bits in the input [214]. However,

the extracted solution of ConvexOC is a solution vector xConvexOC

, which is not feasible for the
initial Problem. As a result, in this case, we repeat a similar randomization process as in the
SDR-OC, to extract a feasible solution. Specifically, for the xCoVexOC yector we execute steps
[9-14] of Algorithm m For the methods Local, RemoteRC, RemoteOC, RPRC, and RPOC, in
order to even obtain solutions it is necessary to let the thresholds T},4., = 0.9 and A,,;,, = 0.6
and b7'** = N,Vj € M. For the rest parameters and for the methods SDR-OC, SDR-RC, and
ConvexOC, we select the values as in Table B

For this experiment, we set the number of servers m = 5. In Fig. @ we compare the total
cost ¥(X,s) over the number of tasks N, for the same random seeds for all methods. We should
mention that the lower the cost the better the solution. As expected, for all methods the total cost
increases with the number of requests for fixed ECs. The proposed method (SDR-OC) outperforms
all others achieving a significant reduction in the total cost. As the number of tasks increases
the margin of reduction is increased. For example, for N = 70, the ratio of total cost between

SDR-OC and ConvexOC is FOMIOTXKS) 0102 2.11 and between SDR-OC and SDR-RC
PSDR-OC(Xs) ~ 0.091 ~ < g g

PSPR-RC(x o) 0.339 . .. . .
\IISDR’OC(X,S) = ooo1 & 3.72. Moreover, all methods with optimized compression provide better

results than those with random compression, e.g., see RemoteRC when compared to RemoteOC or

RPRC and RPOC. As a result, the optimization of the compression of tasks remarkably boosts the
overall performance. We should also mention that although Ay = A4 = 1, the total cost seems to
be more dependent on the offloading decision than the compression, e.g., see RPOC which provides
in all cases, worse results than SDR-RC.

Another interesting remark is that for N = 40, we note the ratio of total cost between the
RemoteOC method and our approach (SDR-OC) is q’;;;,:t;zc(g S) = 0182 ~ 2.01. Let us consider
that for m = 5, the 40 tasks are equally distributed among the ECs. Hence, the average compu-
tational for the RemoteOC method is approximately L;7™" = fx(8) = 0.5(s). In addition, if we

consider the mean values from the Uniform distribution for the data rates and the task size and set
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Figure 7.3: Comparison of the proposed method to other baseline methods.

compression equal to 1 for all tasks, then the average transmission time Lgan = ;gl\g ~0.2. Asa
result, the average latency for one task ¢ offloaded to EC j is L; = 0.7, which is comparable with
the local execution which is Lj,. = 0.76 as (x,,, = 0.01 and &,,, = 0.76. This implies, that for such
a number of requests in the particular scenario, the remote execution of all tasks is optimized. As
expected, the RemoteOC method performance declines as the number of tasks increases because
the batch size execution is not as beneficial as executing some of the tasks locally. Finally, for
N =70, the RPRC method is worse even than Local, whose performance is almost static through-
out the experiments. This, clearly shows that for non-optimized offloading and compression, the

total performance deteriorates as the total system is stressed.

7.6.3 Maximum Batch Size effect on Total Cost

In this experiment, we study the effect of the maximum batch size on ECs on the performance
of the solution. We select three different Gaussian Distributions to draw the %" for each EC,
namely, (a) small batch: b™** ~ N(& I) (b) medium batch: b™** ~ N(Z, ), (c) large
batch: M™% ~ /\/‘(%7 %) We set the number of ECs m = 3 and repeat the experiment for
N ={10,20,30,40}. We should note that for N = 40, the ECs are considered stressed. In Fig @,
the Average Latency, Average Accuracy, and Percentage of Offloaded Tasks are depicted for each
setting. For the small batch, the percentage of offloaded tasks is approximately 60% for all values

of N. For the medium batch, the percentage of offloaded tasks is 76%,81%, 75% and %65 for
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Figure 7.4: Average Latency, Accuracy, and Percentage of Offloaded Tasks for different maximum
batch sizes for the ECs.

N = {10,20,30,40} respectively. Correspondingly for the large batch, the percentages are larger
for small values of N, i.e., 100%,93% for N = 10, N = 20, respectively however, drop to the same
rate of the medium batch, as the number of tasks grows, i.e., 78% and 65% for N = 30, N = 40.
Specifically, having as a baseline the small batch, we remark that the average latency is for N = 10,
17%, and 36% less for the medium and large batch, respectively, and N = 20 is 5% 7.5% and 5%
3%. As the number of tasks increases, N > 30, the average latency is almost equal for all cases
and close to the threshold of T;,,,,. In parallel, the results for the average accuracy follow the same
trend, as for N = 10 and N = 20, we observe an increase of 5%, 8% and 3%, 7% in accuracy for
the medium and the large batch, respectively. However, again when N > 30, the differences are
minimized as previously. As a result, we conclude that the average latency and average accuracy
are strongly connected to the percentage of offloaded tasks and can significantly benefit from
larger values of the maximum batch sizes until the ECs are stressed, where we observe a similar

performance for all settings.

7.6.4 Impact of the Weights of the Objective Function

As the total cost is a weighted sum of the average latency and average accuracy as defined in
(?7)(@) in this experiment, we study the effects of Ay and A4 parameters. We select three

different cases for the ratio, i.e., (a) latency-sensitive: ;\\—'; = 0.5, (b) balanced: i—? = 0.5 and
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Figure 7.5: Average Latency and Average Accuracy over N for different Number of

(c) accuracy-sensitive: :\\—; = 0.5, that imply different application’s requirements. In Fig. @, the

average accuracy and latency for N = {10, 20, 30,40} and m = 3 are presented. As expected, the
average accuracy slightly drops and the average latency linearly increases to the number of tasks
for all cases. Moreover, as one can notice, for the latency-sensitive application, the average latency
is minimized compared to other cases, resulting though a declining average accuracy that equals
the selected threshold A, = 0.75 for N > 5. For the balanced case A(X, (z)) =~ 0.81 keeping
the latency at a slight increase of 107% on average than the latency-sensitive application. For the
accuracy-sensitive application, we can see that A(X, (x)) ~ 0.87 on average for the different cases
of N which is 1.07% and 116% better than balanced and latency-sensitive respectively. However,
the average latency increases on average 113%, compared to the latency-sensitive application. As

a result, we can achieve different performance requirements by tweaking the values of Ay and A 4.

7.6.5 Effect of Data Rates

For the final experiment, we study the effect of different uniform distributions of the data rate
R;; on the total cost. We set m = 3, and all settings are in the best-effort mode, meaning that
the thresholds Tina4, Amin are not hard constraints in the problem. This is necessary to obtain
solutions for all settings. In Fig. @, one can notice that the system cost is minimized as the

data rates increase, which is expected as the overhead of the transmission time is insignificant
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Figure 7.6: Total Cost for different distributions of data rate R;;.

to the total latency. Specifically for data rates drawn by the following uniform distribution, i.e.,
R =1(0.1,0.5), the total cost significantly increases, and the desired thresholds, i.e., Tjnq. = 0.8
and A, = 0.75, are constantly violated. Moreover, most of the tasks are executed locally, i.e.,
above 55%, as the transmission time heavily affects the total latency. We notice similar resutls for
R =U(1,2). The percentage of offloaded tasks for lower values of N is relatively higher, i.e., 73%
for N = 10, however, drops to the same level as the previous case for N > 30. However, for this
case, the thresholds for T},q., Amin are satisfied for N < 30. On the other hand, for faster data
rates R = U(5,10) and R = U/(10, 20), the total cost is minimized, and the percentage of offloaded
requests is above 90% for both cases for N = [10, 20]. However, as the number of tasks increases,
we observe a decrease in the percentage of offloaded tasks, i.e., on average 70% when N > 30.
Nonetheless, in both cases, the provided solution never exceeds the limits for Th,qz, Amin. As a
result, for a large number of tasks, it is necessary to have faster data rates to keep the percentage

of offloaded tasks high while keeping the overall performance of the system in a desired state.

7.7 Summary

In this chapter, we studied the problem of batch scheduling in GPU-enabled ECs with maximizing
inference accuracy in a real-time Edge-assisted inference scenario. We modeled a joint optimization
problem with a weighted sum function of the average latency and average accuracy of the task

inference. We first optimized the inference accuracy given a scheduling decision and provided
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significant results for the transmission time of offloaded requests in the examined scenario. Based
on the compression problem solution, we employed the SDR to obtain a solution in polynomial
time. A randomization process mapped the solution to a near-optimal solution to the initial
problem. Then, we solved both problems iteratively until they converged into a solution to the
joint optimization problem. Results indicate that the proposed technique outperforms all other

benchmark methods by having a close-to-optimal solution and achieving minimum total cost.
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Chapter 8

Conclusions and Future Work

In this chapter, the main outcomes of this thesis are discussed in section @ Next, our work-in-
progress is summarized and interesting directions for further research in the future are identified

in section @

8.1 Conclusions

The immense advancement of modern applications along with the stringent requirements for ever-
expanding resources requires new sophisticated approaches in the journey of providing high QoS
and QoE to users. Besides, many contradictive and diverse KPIs exist, and infrastructure providers
and application developers must work together to achieve the desired overall optimal performance
of applications and utilization of resources. Although many new architectural concepts have arisen
in the past few years, there are still many challenges to be addressed to provide seamless operations
and execution of the complex algorithms a CPS may have. The two major challenges are the task
offloading strategies and the accompanied resource management mechanisms. Consequently, in
this thesis, multiple aspects for solving these two problems have been studied, which will allow the
network edge to become a reliable pool of resources for IoT devices in their quest for executing
computing-intensive applications and transforming the world as we know it. Key problems have
been identified, novel algorithms have been developed and their performance has been evaluated.
Toward dealing with the challenges of the research topics introduced in the introductory chapter,
we employed Control Theory approaches to achieve stability and convergence guarantees for the use
cases addressed in the thesis. Moreover, modeling from Queuing Theory and several optimization
problems are studied in the quest of finding a balance between the accuracy of applications and
mission duration for CPS. On the other hand, to maximize the performance of the underlying edge
infrastructures, holistic frameworks were designed to tackle the challenges that arise from real-world
problems and to try to be synchronized with state-of-the-art standardized architectures. Thorough

experimentation was conducted in real-world infrastructure and/or simulation to provide solid
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results regarding the performance benefits when adopting the proposed solutions. The conclusions

to which we arrived throughout the realization of this thesis so far are the following:

¢ Control-Theoretic Approaches can provide powerful tools to support resource
management and offloading in CPS. Due to the need for real-time decisions in task
scheduling and optimal offloading problems control-theoretic approaches are appropriate.
By providing a precise understanding of the behavior of the system, these approaches of-
fer numerous benefits in terms of resource allocation and offloading. Through mathematical
modeling and analysis of system dynamics, these approaches can identify areas of inefficiency
in resource utilization and design control algorithms to regulate the behavior of the system.
These algorithms can dynamically adjust resource allocation based on the system’s current
state and performance objectives, leading to improved efficiency, stability, and robustness.
The control-theoretic approach also provides a framework for balancing the trade-off between
resource utilization and system performance. Overall, in this thesis, we conclude that the uti-
lization of control-theoretic methods in CPS can lead to significant advancements in resource

allocation and offloading optimization.

e Switching Offloading Strategies can be beneficial for both application perfor-
mance and resource utilization. The utilization of switching offloading strategies in
cyber-physical systems (CPS) has the potential to greatly improve the performance and
resource utilization of these systems. By dynamically distributing processing workloads be-
tween the edge and the cloud, the system can effectively leverage the strengths of both
resources, leading to optimized resource utilization and application performance. For exam-
ple, in certain scenarios, offloading processing tasks to the cloud can provide the necessary
computational power and reduce the load on edge devices, leading to improved performance
and resource utilization. Conversely, in other scenarios, keeping processing tasks at the edge
can reduce network congestion and minimize latency, also leading to improved performance
and resource utilization. All in all, switching offloading strategies offer flexible and adaptive
approaches to resource utilization in CPS. By dynamically adjusting the distribution of pro-
cessing workloads, these strategies can help ensure that the system is utilizing its resources
in the most efficient and effective manner, leading to improved performance and resource
utilization. Finally, Approximate Computing is also a powerful paradigm to embrace when
dealing with task offloading in resource-constrained devices and a really interesting research
topic as the problem of decreasing the quality to gain in time or utilization of resources, is

fundamentally an extremely interesting trade-off.

¢ Resource scheduling and dynamic resource allocation are key challenges that
need to be jointly addressed. Maximizing the performance of modern applications re-
quires timely resource management of the virtualized resources. However, proactively deploy-
ing resources for meeting specific application requirements subject to a dynamic workload

of incoming requests is extremely challenging. For example, if resource scheduling is not
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properly implemented, it can lead to bottlenecks in processing, causing delays and decreased
system performance. Similarly, if dynamic resource allocation is not effectively managed, it
can result in suboptimal resource utilization, leading to inefficiencies and reduced system per-
formance. To address these challenges, a comprehensive and integrated approach is required,
where resource scheduling and dynamic allocation are jointly considered and optimized. This
approach can lead to improved resource utilization, reduced system latency, and increased
system stability and robustness. To this end, in this thesis, the fundamental problems of
task scheduling and resource autoscaling were jointly addressed and evaluated resulting in

better performance when compared to other solutions

o Application Profiling is another powerful tool to facilitate fine-grained resource
management solutions but is a very complex task. Appropriately mapping the re-
sources to a dynamic workload and incorporating the dynamics and various performance
criteria was a key challenge in this thesis. By leveraging the Application Profiling Mecha-
nisms, the resource allocation and resource scheduling problems can benefit a lot by providing
simpler, however, stable solutions. Hence, effective and efficient algorithms of low complex-
ity are required, as the training phase of the application profiling may need much time or
plenty of experiments. and while taking into account the constraints of the state and input

variables. Exactly this is what we tried to do in all our works in this thesis.

e The integration of holistic architectures with real-world frameworks rise new
problems and challenges. Finally, many of the research challenges encountered in this
thesis were discovered when trying to integrate the proposed mechanisms with state-of-the-
art frameworks such as Kubernetes and OpenStack. Trying to build holistic architectures
compatible with these frameworks and aligned with the current standards and research trends
of the Academia and the state of practice of the Industry was the driving force throughout
this thesis.

8.2 Future Work

Concluding this thesis, this final section elucidates some of the possible future research directions
that can be followed based on the outcomes of the presented work and the challenges faced during
the research process. While the thesis treats resource allocation and computational offloading
problems that concern some of the most dynamic procedures in the context of CPS, there still
exists much room for further development and innovation.

One interesting direction is the examination of various KPIs from the infrastructure side for
the problem of dynamic resource allocation. Hence, the optimization problem that decides the
number of deployed resources introduced in Chapter E, could be enhanced to concentrate on power
optimization by minimizing the number of active servers. As mentioned previously, edge datacen-

ters have a specific capacity of resources, making the problem of horizontal scaling of the cluster
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(i.e., adding a new server to the cluster) very exciting. For example, trying to offload as many
tasks of a specific application as possible, while keeping the number of active servers low, results in
maximum energy efficiency both for the devices and the edge servers. Moreover, optimizing energy
cost in the device layer namely optimizing the energy consumption of devices either by offloading

or executing tasks locally is also an interesting and challenging problem.

Another interesting work is to include non-deterministic/stochastic approaches that could be
evaluated for estimation and control purposes and machine learning techniques could be integrated
into the mobility prediction approaches to enable addressing errors in the predictions of dynamically
estimated values of the position and number of the involved devices to tackle mobility aspects. It
would be interesting to extend these novel methodologies for the position estimation, to further
improve its accuracy, while including pattern recognition of users’ mobility in the overall designed
architecture. This can be achieved by exploiting Machine Learning techniques and combining them
with more detailed modeling of the signal interference among the users, in order to ultimately offer

a more effective and efficient offloading decision.

Regarding the resource allocation mechanism, future work could focus on further investigating
improvements in the modeling and control of the application-specific VMs and leveraging different
combinatorial optimization criteria to improve the resource management framework, introduced in
Chapters E and H Furthermore, for time-sensitive applications, e.g., augmented or virtual reality
ones, the resource profiles can be used to design feedback controllers that enable scale-up/down

operations on the deployed resources and achieve fine-grained performance regulation.

A combination of the above is also a really challenging topic for future ideas and innovation. As
a result, further investigating the Co-design aspect of resource allocation and offloading is crucial
for optimizing overall performance. One possible research direction could focus on modifying and
extending the capabilities of state-of-the-art resource orchestrator tools (e.g., Kubernetes) in order
to develop fine-grained dynamic resource scaling mechanisms. Leveraging the work in Application
Profiling to support the creation or modification of instances of containerized applications, and
then we will develop customized resource-allocating mechanisms that support real-time resource

scaling and container migration.

Another very interesting research direction is to focus on further examining offloading capabili-
ties in the context of 3C, as studied in Chapter E especially the integration of planning algorithms
and the adaptation of the offloading decisions based on safety guarantees for the robot’s navigation.
We also plan to investigate more sophisticated techniques to manipulate the unicycle dynamics
and integrate them into the proposed set-based solution. Moreover, one possible research direc-
tion could cover the case of multiple robots moving in a common environment and using shared
resources, thus requiring us to adapt our framework to interacting agents in both the resource
utilization problem and the trajectory tracking and path planning problem. Finally, deep learn-
ing techniques will be investigated, for calculating and dynamically adapting the utility function

coefficients based on different application criteria.

In another scenario, in the context of approximate computing for real-time data processing
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as studied in Chapter H, we could adopt more sophisticated communication modeling (e.g., Non-
Orthogonal Multiple Access), which could be approached as another subproblem or again employ
SDR to obtain a solution. Also, to make a decentralized technique for real-time Edge-assisted
inference, it would be very challenging to provide a model of a Reinforcement Learning agent for

each ED, whose reward will depend on the total cost provided by our method.
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