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ITepiindm

To teheutala ypdvia, mapotneeiton onuavtixy avdntuin ot yefon epappoyey Mnyavixic Méddnone (ML)
oto Edge. O cuoxeuéc Awadixtiou twy Hpaypdtwy (IoT) xou pixpoekeyxtdyv (MCUS) éyouv yivet ohoéva
xoL o ONuopihelc ot xonueplvEC BpaoTNELOTNTES. e QUTH TNV SITAWUATIXY, ETUXEVIPWVOUACTE TNV
owovyévelar Twv STM32 MCUs. ‘Eyouye vhonoioel tn duvatétnta Dynamic Voltage Frequency Scaling
(DVFS) vy touc ARM Cortex M MCUS ot Ty £Y0UUE EVOOUATOCEL GE £Val SOGTNLO TONUXPLTNELOXAS
Behtiotonoinong, oe cuvduaoud pe uio Bedtiotonoinon xwdxa pe ™ pédodo Decoupled Access Exe-
cute, mou ywellel v extéleon oe memory-bound xou compute-bound xopydtio. Iapouoidlouvue o
TpwTonoplaxy] uedodoroyio yia Ty epopuoy) twv CNN oty oxoyévela twv STM32, ectdlovtog otnv
BehtioTomolnoy g evépyelag péow Tne amoteleopatixrc e€epedivnong Tou design space Twv WBLOTATWY
tou Decoupled Access-Execute ot tov puduioewy tou pohoylol. Auth 1 tpocéyylon eunhoutileta ye
BeAtioTomolinoy e xatavdAwong evépyelag Eow tne teyvixiic Dynamic Voltage and Frequency Scaling
(DVFS) uné 8dgpopoug meptopiopotc xou oynuatilel éva NP-complete npdBinua fertiotonoinons. Xuy-
xplvouue NV mpocéyylon pog pe to state-of-the-art cotnua TinyEngine, xaddc xou to TinyEngine oe
ocuvduaoud Ue Tic Aettovpylec e€oixovounong evépyelag twv MCUs tng STM32. To anoteléoyata dely-
VOUV GTL UTOPOVUE Vo ETLTOYOUPE PEIWOT TNG XoTavdAwong eVERYELNS €0 xou 25,2% Yo Sudpopa enineda
nodtntog vnnpesiog (QoS).

AgZeic KAedid — Nevpowvixd Aixtua, Edge Computing, Dynamic Voltage Frequency
Scaling, Decoupled Access-Execute
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Abstract

Over the last years the rapid growth Machine Learning (ML) inference applications deployed on the
Edge is rapidly increasing. Recent Internet of Things (IoT) devices and microcontrollers (MCUs), be-
come more and more mainstream in everyday activities. In this work we focus on the family of STM32
MCUs. A DVFS capability for ARM Cortex M MCUs is implemented and integrated within a state-of-
the-art inference engine, along with a Decoupled Access Execute code optimization. A novel method-
ology is proposed for CNN deployment on the STM32 family, focusing on power optimization through
effective clocking exploration and configuration and decoupled access-execute convolution kernel ex-
ecution. This approach is enhanced with optimization of the power consumption through Dynamic
Voltage and Frequency Scaling (DVFS) under various latency constraints, composing an NP-complete
optimization problem. We compare our approach against the state-of-the-art TinyEngine inference
engine, as well as TinyEngine coupled with power-saving modes of the STM32 MCUs, indicating that
we can achieve up to 25.2% less energy consumption for varying QoS levels.

Keywords — Neural Networks, Edge Computing, Dynamic Voltage Frequency Scaling,
Decoupled Access-Execute
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Chapter 1

Extetopevn EAAnvixn [epiindn

1.1 Ewayowyn

To tedevtala ypdvia, to Edge Al [1] éxet eugoaviotel v éva xavotopo vroloylotind nopddetypo. To Edge
AT avagépeton otnv LIonoinon ToAUTAOXWY Yovtéhwy Badéwv Nevpwvixdv Amtinv (DNN) areudeiog
oe ouoxevéc oto Edge, 6nwe awodntipes, ouoxevéc Internet of Things (IoT) xou dMhat evowyatomuéva
ovothpata. Emmhéov, n avZavouevn {htnom yia egoppoyéc dnproannic enelepyaoiac ofuatoc oto Edge,
omwe 1 avdhuon Bivieo [2], n avoryvodplorn oe xvntée cLoxeVES [3] xon dhNes e@apuoYEe, Exel xohepMOEL
o Buvelxtxd Nevpwvind Aixtuo(CNNs) o¢ Ty xOpta teyvoloyio yia Ty anodotixh exTéleon TETowwY
epapuoyov. Ilohhéc etaupeieg €youv avtamoxpilel oe aUTAY TNV PETATOTLON TUEABIBOVTAG ETLYELPNUATIXES
ANooelc oyedlaopéves yia T Behtiotonoinon xa v vhomoinor povtéhwv CNN oto Edge. Autéc ol
Nooewg nepuhouPdvouy software stacks(m.y., Amazon SageMaker Edge [4]) xade xou e1dund, e€etdixeupéva
hardware devices (m.y., To ASIC Edge TPU tnc Google [5]).

‘Eva onuovtind pépog g Teéyouoas €pELVAC ETUXEVTPWVETAL oTNnY £€epelvnon TOU TOAUTAOXOU OYEBL-
aopobd DNN/CNN xaw e Pertiotonoinone tou dataflow scheduling [6][7] v ) Behnotonoinon tne
evépyetag. Ilopd tnv meplteyvn vhonoinon toug, autég oL Aoelc ouyvd utodétouv Ty Orapdrn VAXWY
ETMUTOYLVTWY 1) cuoxeLwy oto Edge mou unoctnellovta and Aettoupyind custhuata xou dxtua. Qotdoo,
xad0¢ 1 uTohoylo Ty cuvéyela extelveTal 0TO TEPLIDEI0 TWV BIXTUWY, CUCTAUATO UE TEPLOPLOUEVOUS
Topoue, Omwe ol uixpoeleyxtéc (MCUs), ewodyovion oo oxoovotnue. Avtideto and toug mo xavéc,
ueyahbtepee ovoxevég, Ta MCUs cuvitug yenowonololy extéheot) e@apuoyrc bare-metal, ywpic Aet-
ToupYS GUOTNUY, UE TPOCUPHOCUEVA 1) EAappLlo runtime cuo THUAT EVE TapdhAnia Bploxovtol anocuvd-
edepévo and To dixtuvo. Auth 1 yetatémon npog to Edge €yel Snulovpyrioet tov bpo "tinyML" [8]. To
tinyML opopd t Bertiotonoinon twv povtéhwy DNN/CNN yia va hettoupyoly dveta oe autd to MCUs
bare-metal, enexteivovtac €tol ta Gplar Tou TOL unopel VoL EQUPUOC TEL 1) Ny oV Uddnom.

IMpoxewwévou vo unopéoouy va avtamoxpidolv 6Touc aUENUEVOLS TEQLOPLOIOUS UVAUNE Kol UTONOYLO TLXAC
loyvog, to yovtéda tinyML oyebidlovtar ylor vo tpoc@épouy amodotixés duvatdtntec mpoBiedng, xa-
Mo TOVTOG BLVATA TNV EVOWUATKOY) TEYVNTAC VONUOCOVNG OE GUGKEVEC TOU TEONYOUUEVWS NTOY OTOX-
Aetopévee and tov yweo tne Mrnyovixic Mdédnone (ML).

H vlornoinon twv CNNs oe MCUs enupépel 6o Baowés npoxfioeic. lpdhtov, 1 teploptoyévr pviun twv
MCUs npoxahel Suoxohiec 1600 oty anodixevon oo xa otny extéreot twv woviédwv CNN. Autd
yiveton axdurn mo abdvieto, xodde ol avadudueves apyttextovixée CNN telvouv va yivovtar dho xou mo
nepinhoxec, oToyebovTag oTNy Mooy weyahlTepns axpifBelog ot/ UTOGTARIENG O PEYHAWY EQPUOUOYOV
[9]. Acitepov, dedouévou bt ta MCUS ouyvd evowpatmvovial o cuoxevéc Edge mou Aettoupyolv pe
unatapleg, 1 Slathpnon Twv evepyelaxwy Topwv yivetow xplown, xadde n extéleon yeydhwy ot yéyedog
xat unoloyiotind axeBdv DNNs pmopel vo e€avtifioet yeryopa Ty unotaplo, 8Loitepo 68 CUOXEVES Ue
aunuéves amouthoels Aettoupylog.



Chapter 1. Extetouévn ENinvuc Ilepiindn

Evé ov mepiocdtepec mpoondldeleg yio T Bektioon TN EVERYELXAC ATOBOTIXOTNTAC €YOUV EMUXEV-
Towdel otn pelwon e xaduotépnone dlatmedviag TV Loyl otodepr (SnAady pruning cuvdécewv,
Behtiotonoinon kernels), 1 expetdhheuot) TLV XUXAWUETEOY pOAOYLOL Yo TNV evepyeloxy anodotxdTnta
OE CUOXEUEC UE TEPLOPLOUEVOUS TTOPOUEC GLY VA TopalehelTol.

I'vootol xataoxevactée, omwe 1 ARM xou n Atmel, dev npoogépouv Suvopxée hertoupyieg duayelp-
lONC EVEPYELS Yot Tat MYOTERO uTohoYloTxd toyupd MCUs touc (ou tumixée hettovpyieg e€oixovounong
evépyelog oe tétola MCUs anooxonolv oty avactohy tou mupriva CPU xai, cuvende, otny ovao ToAy
e Aertovpyiag). Xe authv T dimhwpotixd, npotelvoupe éva oyua Suvouixic dayelplone evépyetog
yioe Tor youniic xhdone ARM Cortex M MCUs. 3tn cuvéyewa, BeATioToTol00PE oUT6 TO oyfua Yio
epappoyéc tinyML, evowpatidvovtag Decoupled Access-Execute yetaoynuationoids otov mnyalo xhduxa
Tou vevpwwixol Bixtlou. Télog, mapoucidlouvye évav optimizer, mou egepeuvd Tov YWeo oyedlaong yia
va Beet tov Béltioto cuvduaoud ano pLIUICES POROYLOU oL PETACYNUATICHOUS XODLXA, TROXEWEVOL VL
dnuovpyroel Tic Bétioteg putuloeic DVES yia évav 8edopévo meplopiopd otny xodtuo tépnor.

1.2 Xyetxn BiBAoypapia

Eoudlovtoac oty npdPredn pe v Borideir CNNs, nponyolueves épeuvee [10], [11] xou evpéwe yenot-
pornotodueva mhaiota (m.y., TFLite Micro [12], Microsoft’s NNI [13], ARM’s CMSIS-NN [14], x\r.)
TEOCPEPOLY TEYVIXEC BEATIOTOTOINGNC TOU UTOPOUY Vo BUVOMGCOUY TNV UAOTONGCT WXEWY UOVTEAWY
CNN oe neploptopévoue népouc MCUs. Autéc ol teyvinée mepthopfdvouy cuvidng oTtatixés, Lovtélo-
eEotopneupéveg, peto-exnaidevone PedtioTonooels, 6nwe to mixed-precision [15], weight pruning
oto yoviého [16], [17] xou quantization [18], [19], xaddc xou to downsampling [20] xou pedodoroyiec
avalAtnone e apyrtextovixic (NAS) [8], [21]. "Alkec Siepeuviioeic eietdlouv PENTIOTOTOACES GTO
scheduling xou otov mnyaio xwMdwa elte yio va emitpédouy anotereopatiny avtiotolylon dedopévev xau
UTOAOYIOWOU 070 uToxelpevo Ukxd  [22]-[24] eite yia va Sywploouy T CNN layers oe aveldptnrec
epyaoiec Tou unopolv va anexpoptewdoly xou Vo exTEAEcTOUY Topdhhnha [25].

H vionoinon twv CNNs oe cuoxeuvéc pe meptoplopévoug mopoug oto Edge auwidver tny avdyxn yio
EVEQYELOXA ATODOTIXEC UAOTIOLACELS TOU YPMNOWOTOW0Y TEYVXES Duvaixhc Olayelplone XaTavdAmong
evépyewac. ITohhéc €peuvee eotidlouv ot yphorn tou DVFES oe CPUs xau GPUs [26] [27]. Zuyvd,
autt) 1 épeuva cuvdudleton Ye pedodoroylec Decoupled Access-Execute, pe otdyo tnv ehoayiotonoinon
TWY YPOVIXOV ETBUPUVOEWY TOU TpoxoholvTaL o TNy akharyl) Tou pohoylod [28]. Tétoleg pedodoroyiee
ouY V8 LAOTOLOUY AUGELS AUTOPATOTOMNONG BACIOUEVEC GTOV UETAYAWTTIOTY, YENOLLOTOLWVTOS UETAYAWT-
TIoTéC Yo var xdvouv Decoupled Access-Execute pe Bdorn to workload profiling[29].

ITol\éc épeuvec otov touéa tou design automation emxevrtpdvovion otov cuvduaoud tou DVFES pe ta
veupvd dixtua péow e avalitnong e opyltextovixrc Toug. Evd tétola epeuvnTixd €pya €youv
BloyElplo Tl AMOTENEGUATIXG TNV ATOUOVWOT) TERLOY WY TOU XWdxa 6Tou unopel vo egappoctel to DVES,
TOMEC amd AUTEC EMUXEVTIPOVOVTOL OTo BUVOLXE vevpwvixd dixtua, émouv to DVFES unopel va eqop-
pootel ywpic onuavtxole yetaoynuatiopols [30]. Autéc ol dnuooiedoeic éxouv enione emxevipwidel
oty aval\TNoT NG oEYLTEXTOVIXNS TOU VEUPWVIXOL BIxTOOU Ylol GUOXEUES TOL BeV €Y0UV TOAD TEPLOPLO-
pévoug mopoug, ot avtideon e tig vAonowfoelc tou tinyML nou elvor 0 6Tdy0¢ UTAS TNG SIMAWUXTIXAC
gpyaoiog.

ITopdho mou €youv epeuvniel Tohhéc Bedtiotomolroelc Yo TNy vAomoinon twv DNN ce MCUs, emixev-
TEWVOVTAL XUPIWS OToL SOUXE YopOXTNELOTIXG TWY HOVTEAWY, OTwe Ta Bden, ot aptiuntixée mpdiels, N
APYLTEXTOVIXY| AT, EVE BlveTow AyN mpocoyr 6Tig BEATICTOTOMOEIC XATd TN SLdpxEla Tou runtime.

Y10 mhafoto TN BEATIOTOTOMNONG TNS XATAVIAWONC EVERYELNS Xou/T TNe evepyeloxhc anddoong, to Dy-
namic Voltage Frequency Scaling(DVFS) [31] anotehel éva anoteleopoatind péoo yia Ty e€looppdnnot
avdpeca otny anddoor xou TNV xatavdhnwon evépyelos, pulpilovias owoTd T cLYVOTNTO TOU POROYLOU
tou MCU clpgpova Ue Ti¢ UTONOYIO TIXEC AMUTHOELS TOU LOVTENOL.

Qotéo0, N npocapuoyn tou DVES ota cuyxexpipéva yopoxtnplotind twv DNN, xadoe xon ) mpoxtix
gQapuoYY) e, Bev elvan amAy, xodode umopel var emipépetl emmAéov Ypovixég xouoTEPNOEL AOYW TWV




1.3. Ipotewvdpevr yedodoroyia
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Figure 1.3.1: Amlomnoinuévo didypouua xuxhopatog Yo to clock configuration cuvaptioel twv
napapéTowy HSE xou PLL.

PLLM

PLLP

HETABEOEWY 0o TNV Wiat suYVOTNTOL TNV AN [32] xou awEnuévn BLappor| evépyetag Ay Twy HaxplTEp®V
Yeovov extéheone [33].

1.3 IlIpoztewvouevn pedodoroyio

To cbotnua pohoyidv Twv pixpoeieyxtdv STM32 eivon dioyetplowo and to Reset and Clock Control
(RCCQ) peripheral. To RCC mopéyet por evpeior YxAUo pONOYIOY %ol TNYMY POAOYLOU TOU XOAITTOUV
BLdpopes AMAUTATELS TOU GUOTARATOS, OTWS PONGYLOL YIO TA TIEPLPERELOXS Kol TNV UTOGTARLEY TEWTOXOAAWY
emxowvwvioe [34].

Ye authv TNV epyaolo EMXEVTIPWVOUIOTE O CUYXEXPWEVA pohoYLo xou puduloelg, mou xodopllouv
oLy véTNTA ToL pohoyLol Tou cuothuatos (SYSCLK) tou MCU, 1o onofo eivar unehduvo yua tov ypoviopd
Tou Tuphva tou CPU, tne uviung xou oplopévey nepupepetaxyv povédnv. To yAua 1.3.1 anewxovilel to
ATAOTIOLNUEVO DLAY OOl XUXADUATOS TOU TS xodopileton to SYSCLK.

e Po)6ur High-Speed Internal (HSI): To HSI poldu anotehel évav ecwtepixd oscillator péoa otov
uxpoeheyxty). To HSI Aettovpyel ota 16MHz. To SYSCLK unopel va dnptovpyniet elte yenoiuonoudv-
tac anevdeiog to HST elte yéow tou PLL ypnowonowwvtag to HSI w¢ input source.

e Po)éu High-Speed External (HSE): To polét HSE elvan évac e€wtepinde oscillator. To HSE propel
VoL TPOYpaoTioTel WoTE Vo hettoupyel oe BapopeTtinés cuyvotntes, pe To STM32F7 va urnootnpllet
ouyvotnteg wéypet 50MHz. ‘Onwe xou ye to HSI, To SYSCLK unopel va dnuiovpyniel eite ano to HSE
elte uéow tou PLL étav to HSE ypnowonotelton w¢ mnyy| eioddou.

e Phase-Locked Loop (PLL): To PLL eivou éva hardware module mou emitpénet 1oV TONATAAGLAOUS
NS SLYVOTNTOS TNE EMAEYREVNS TINYHc etobBou (HST A HSE) xatd évay npoypoupatilOUevo Topdyovta,
dote vo dnuovpyroel wa vdnhotepn cuyvotnTa e£6dou. Onwg gaivetar oto Lyfua 1.3.1, o mopd-
yovtag autéc xodopileton amo Soupétes €0ddou o €£680u evtoe tou PLL xuxAdpatog, ot omolot
amhonololv TNV oyedlaon tou PLL xou tnv eniteulrn evotddetac yio yeyalbtepo ebpoc cuyvothtwy. H
ouyvotnta e€660u Tou PLL divetor aro tnv napaxdte e&lowon:

PLLN

e (1.3.1)
PLLM % PLLP

Fsyscrk = Fluse, sty *

6mou PLLM elvai 0 Bloup€tng Tng ouyvotnroc elcddou mply gtdoet otov Voltage Controlled Oscillator
tou PLL; To PLLN eilvor 0 mopdyovtog TOANATAACIHOUOU Yia Tr ouyvoTnTa €ic6dou tou VCO yia vo
xadoplotel n ouyvétnTa €€68ou tou VCO, N omolo mopEyetar w¢ avddpaor otov Phase Comparator,
ue otoyo vo Tapéyel cuyypovioud peTalld elcddou xan e€6dou. To loop filter yenowonoteiton yior v
e€aoqolloel TNV oTodepdTNTO TOU CUCTARATOS XAk VO JELDOEL TLC BLOXUUAVOEL XoTd TNV exxivnoT Tou
pohoyol. Téhog, to PLLP xotopilet Tov mopdyovta diadpeons YL Ty amdxtnom e TEMXAS oUYVOTNTOC
Tou SYSCLK.
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Figure 1.3.2: Zuyvétnta poroyiot xan Ioydc yio Sapopetind HSE, PLLM xan PLLN configurations

H cuyvotnta e£680u tou pohoylob Tou cUCTALATOS, Fayscrk, Unopel va emteuydel ye didpopoug tpdTouS
(m.y. amevdelug péow twv TNYGOY poloytol HSI/HSE 1| yéow tou xuxhopatog PLL). O cuoxeuéc STM32
TAPEYOLY TNV ETUAOYT TNE TNYNS ELGOGBOL TOU POROYLOU HE TOAUTAEXTY), o0 XU TNE TNYNS ELGGBOU TOL
PLL. Na onuelwdel 6t xdde autr emhoyr enneedlel xpioiues Yetpunés tou cuosthuatog yio to DVES, émee
TNV XATAVAAWOT) Loy 00¢ XA TOV YPOVOo exxivnone Tou pohoylol. Kdle wa and tig emhoyég avolbovtan
xol To anoteAéopatd toug egetdlovian ot axdhouldec evotnteg. ‘Eyel edpouwidel bt 1 emhoyy Twv
TNYOV TOL POAOYLOU ELGOBOL TOCO YLl TO POAGL €£680L 660 ot Yl To PLL GUVETAYETOL OMUAVTIXG
tradeoffs. T vo e€etdoovye Ty enibpaon xdde evalhoxtxhc emAOYHS 6TNY AELTOLPYIXT AnbGd00N X
™V xatavdiwon evépyetag Tou MCU, avantdlope xon exteréoaue évo e€eldixevyévo microbenchmark,
oyedlaouévo vo extehel emavolnmtixég npdelc mpdoleong wéoa oe éva Bpodyyo. Emxevipnvouaote eldind
oTic napapétpouc HSE xan PLL. H mnyy poloylol HSI éyel udmhdtepn xotavdiwaon loyboc oe clyxplon
ue to HSE xou elvan emlong emppenic o amdxAon xou jitter, npoogépovtag Aydtepn otodepdtna Xon
axpiBeta. Eniong, éxel onuewdel 6t éxel peyohltepo ypovo exxivione and to pohdL UPnAfc TayvTnToC.
Yuvendg, Yo frav unoféitioto 6tav emiéyeton ¢ TNYYH poloylol. EmmAéov, n mnyR poroyiol HSI
Aettovpyel oe otadeph ouyvétnta (cuvidng 8 1) 16MHz), xdti mou v xadiotd Aiydtepo euéhixtn yio To
DVEFS. Téhog, n emdoyn tou HSI w¢ evdldpecou poloyiod xatd tnv extéleon yetaBdoswy and PLL o
PLL da fjtav eniong unoPértiot, xadde 1 ouyvotnta twv 16MHz odnyel oe avemdbuntn adpdvela xatd
T Sudipxelo TS CAAAY S TOU POAOYLOV.

Oploaye v T tou PLLP {on pe 2, mou elvor 1 eAdytoty Suvath) Tin Yo To Blonpétn, SOTL yiot Ty (Suat
T Tov Fayscrk, 1 emhoyT) poc uPnhoteene tiurc Tou PLLP odnyel oe uPniotepn anattoduevn cuyvotnta
Tou VCO xou, ouvende, uvdnhétepn xotavihwon toyboc (émwe mpoxdntel and to Lydua 1.3.1 xou v
EZlowon 5.2.1). AZilet va onuewwdel 1 n opopévn tiwh tou PLLP otnyv ehdytotn ouufatd Tiuh yio
Vv emduunth cuyvotnta e€6dou elvan TpoTidTERT), XaddC N Yprion evog BlalpETy PETE To xUXAwUo PLL
ovclootxd "omatodd" Ty evépyeta Tou PLL, apol ol tponyolueveg nopduetpol Yo €youy opiotel oe ur-
ANotepeg TS yia T dnulovpyia udPniétepng cuyvotntag we elcodo tou PLLP. KatavdAwon toyxvog
oc woo-cuyvoTixég puBuioelg: To Xyrua 1.3.2 anewovilel v enldpaon dlapdpwy pudulcewy
HSE, PLLM xou PLLN otnv xatovdAwon toybog tne mhaxétag Yo ddpopec ouyvotntee SYSCLK. And to
Tyfua 1.3.2 mpoxdntouy d0o xbpiec mopatnefoeis: (1) n S cuyvotnta e€6dou pmopel vo dnuoupyn-
Vel uéow Bropopetixdy cuvduaouwy HSE, PLLM xat PLLN, wotéoo (ii) n emheyuévn pduion ennpedlel
Loy Led TNV xotavdhwon oyboc oto STM32 MCU. Yuyxexpyéva, 1 1y tne eloddou HSE éyel avtiotpopn
OYEOT UE TNV XATAVIAWOT Loy 00g, EQHGOV 1 cuyvoTNTA €600 elvan oTadepr| xou TOUTOOTUY OE XOL TG
0o puluicec. EmnAéov, obugpuva pe to obvolo dedopévwy tou STM32, n iy tou PLLN Yo mpénel va
ehaylotonoundel mpoxewwévou va emtevydel 1 eNdytotn tdon tou VCO. Qotdo0, 1 dagopd ¢alveton vo
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elvon pixpr} 6oov aopd TNV xatavdinwon toyvog 1.3.2. Na onuewwdel 6TL mapd 0 pixet| dloncduavon otny
XATUVEAWOT) Loy VoS, oL Yauniotepeg TWwée tou PLLN odnyolv enlong oe yenyopdtepo ypdvo exxiviong
TOU PONOYLOU, XoMS 0 Ypovos xhewdpatoc Tou PLL pewdveton [34]. Enopévee, emhéyouue tic eAdylo-
Teg BuvaTéc TWéC Yo To PLLN 6tav Aaufdvouue unddr TiC TopaéTeous Tou OAOYLOU Ylal TNV emtduunTty
ocuyvétnta DVES e€ébou.

Emiéyovton oL cuVBLaGUOL TOL EAUYLOTOTOLOVY TNV XATAVIAWGT] Loy VOC Yiot TOV ETIUUNTS 6Tdy0 SYSCLK.
Audgpopol cuvduacpol urogel v dnuiovpyicouy Ty Bla cuyvoTnTa e€680U ot xaTAVEAWoN Loy 00g, OTKC
50, 25,100 xou 50, 50,200, emouyévwe anarteltar TeEpalTép EEELVA Yol TNV EMAOYT] TOU BEATIOTOU GUVDL-
aopou. Hapduoleg napatneroelc ntpoxintouy Yo dhheg puduioelc SYSCLK.

MeTdBaon petagd drapopeTix®y oL VoTHT®Y SYSCLK: Ta nepiocdtepa clock trees evowpot-
Vouv BLaLpeTES EL0HBOU xa e£680L 0To XUXhwPo Toug PLL, npoxeyévou vo anhonoticouy 1o oyediacuo
tou PLL xou va emitdyouv Tic amoutrioeic otadepdtnrog oe €va eupltepo e0pog GUYVOTHTWY ELGHBOU
xou €€680v.  Autd to extetapévo xUxhwpo PLL nepihopfBdver Swoupetéc eioédouv (PLLM) xau e€660u
(PLLP). O otéyoc authc tTne Simhwpoatixfc eivon vor BEATIC TOTOMAGEL QUTEC TLC TUPUETEOUS GO0V apopd
TNV XATAVIAWOT Loy 00S XAl TOV XPOVo exxivnong, xode XL VoL TS TPOTOTOACEL XOTE TNV DIdEXELL TNG
Aertovpylac yior vo emtOyel T emduuntée ouyvotntes e£630v.

H dnuoveylo tng ouyvétnrac SYSCLK ypnowonouwviag to x0xAnuo PLL emepel gl onuovTixy xo-
Yuotépnon xotd T petdPoon (nepinov 200usec), didT xatd TRV TPOTOTOINCT TWV TaPUUETEKY Tou PLL,
To xOxhwua meénel va enovexxivniel, ye anotéheopa g onuavtixy xaduotéenon avd yetdfacr. To
xOxhopa PLL efvar éva avahoyind xOxhwpa mou npénel vo cuyypoviotel (Yvenoto xa og "xheldwpa" tou
PLL) npotol unopéoetl va dnpovpyniel n cuyvotnto e£68ou xou vor yenotporomdel yia T Aettovpyio Tov
nueriva CPU. To PLL Yewpelton aotadés mpty emiteuydel To xheldwyad, ETOYEVES TEETEL VO Ty A TOTIOLEL-
Tou evaAhayT) o dhheg otadepég mnyég pohoyiol yia va cuveyioel 1 Aettovpyia. Autd mpoxaAel oNpAVTIXS
emnp6c¥eTo x6GT0¢ GE YPOVOo, XWHOTOVTIEC TNV ANXYT| TV ToEoUETewY Tou PLL yia Samoavney| enthoyy
oyediaopol yia Ty teYvoroyia DVES.

Ané v &N mhevpd, 1 petdfoon and ) cuyvétnTa Tou PLL oto poidl HSE cupPoivel oyeddv apéong,
Moy Tng dueone ouvdeone Tou HSE pe to SYSCLK (Zyrua 1.3.1). Luvende, yio petaBdoeic and vdmin
oLy véTnTa TEOC YounAY (SnhadY) <50M H z), n emhoyr tou pohoyiod HSE avti yio Ty emavaBadpovéunon
oV nopopéTewy Tou PLL unopel va efvon @,

Iopdho mou pia amoteieopotixy pUOuLo tou SYSCLK umopel va o8nynoetl o Pelwon Tng xaTaviAwong
EVEPYELUG, 1) ouYVOTNTA TwV UeTofdoewy unopel vo emBaAel onuavtixd xéotoc. Enopévwe, amantelton
TEPAUTEP EREUVL YLOL TNV ATOTEAEGUATINY EQUPUOYT TNE UETABOANC TNG oL VOTNTAG, UE 0TOYO T1 Uelwon
NS XATAVIAWOTC EVERYELXS, Ywplc va 0dnyel oe pelwon tne anddoong.

1.3.1 Brpa 1: Memory Access & CPU Execution Decoupling

Auto to xepdhono napovsidlel Ty TpoTeoUEVT uedoboloyia yio T BehTioTomolinom TN XaTavahwong
evépyelag xatd Ty extéreon poviéhwyv CNN oe évav MCU STM32 uné 8idpopouc meploptopoic Ypovixic
xaduotépnone (enione yvwoto we QoS). H hoyu niow and authv v npocéyyion eivar dtu ot tehxol
XEHOTES oUYVE €xouv Blaxpltols TEploptopols Ypovixic xaduo tépnone/enidoone Yo Ti EQopUOYES TOUG
%o/ Yenouonotoly CUGXEVES UE Teploplouévn unatapla oto far edge. Xuvendce, oe nepinttoels dmou ol
amouthoelc e QoS efvan Arydtepo avotneée, To Dynamic Voltage and Frequency Scaling (DVFS) propei
va evioyboeL Ty evepyeloxn anddoo, Wiwe 0To TANUGLO TWV GUGKEVMY TOU AELTOLEYOVY ATOUAXPUOUEVAL
xou pe umatapio.  Auto LoyVel IOLUTEPA YLOL CUOXEVES TOU AELTOURYOLV BLOEXMS, OTOU OL TEYVIXES OL-
ayelplone e evépyelag TEEmel vo hauBdvouy unddn uio otpatryix evepyelonic anddoons and dxpo oe
dxpo. To LyAua 7.0.1 delyvel wior cUVOAXT EMIGXOTNGCT TNE TEOTEWOUEVNE Teoceyyiong. H mpotewvouevn
pedodoroyia anoteleltan omd Teel doxpitinés @doelc (mou meplypdpovtar ot evétnteg 7.0.1 - 7.0.3),
TIOU UTOPOUY VoL Qaproctoly tdoo ot ur Bertiotonomuéva povtéla CNN 660 xou oe BeltioTonoimnuéva,
. . Hovéha tou e&dyovton and to MCUNet [22].

Ipotelvouye wo mpocéyyion DVES pe Buaywpeiopd mpooPaong-extéleong xon AUvouue To TpoBinua
Behtotonoinong tne ehayloTomoinong tng xatavdiwaong evépyeloc. To mpdBinud pog dtatumdveTtal ot
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Novetan w¢ medPBinua molhamhic emhoync Knapsack. (¢ eloobo otn pedodoroyia pag, mapéyoupe to
egetalopevo CNN.

To mpwto B tng mpocéyyionc pag mepthaBavel T SlgoROWOY) TUPUUETEWY ot eNinedo LAXOU, ue
oT6)0 TNV UToo ThEEN TNg BeATioTonolnong Tng xaTavdAwong evépyetag ota endpeve Brnote. H xatovdh-
wom evépyelag ennpedletal onuavTixd and ) Sldpgwon tou pohoyol Tou cusThuatoc. Auth 1 tpdo-
Vet xoTovdhewaor evEpyelog UTOpel Vo TpoxoAelTal oLy VA and YapoxTNEIoTIXE ToU UAXOU (Y. ovTioTd-
oelg, xplowa yovondtiar Hetalld ToU pONOYLOU Xl TOU TUEAVA), 1 OO YOPAXTNELO TG TOU XUXADUATOS
eNEYYOU TOU PONOYLOU (T.X. 1 XATAVIAWOT ToU Ttpoxaheitar and o xoxhwpa xhewdopotos touv PLL). H
oLy voTnTa Tou €6B0L TOU POAOYLOL emnpedleTon onuovTd and TN Sopdppraon tou HSE poloylol xou
™ Spdppwon twv topauéteny tou Phase Locked Loop (PLL), dnhad¥ PLLN,PLLM, PLLP.

Me otéy0 va nopdyoupe T BEATIOTN POYULON YLoL TNV XATAVAAWOT, EVERYELXS, OTNY TROTELVOUEVY U
pedodoroyia, mpaypotonowolpe: 1) sensitivity analysis yio tic Tywéc tou HSE o ii) eepedivnon tou
YWpou oyediaone xou Peltiotonoinon topauéteny tou Phase Locked Loop (PLL).

H Swpoppuon tou HSE ennpedler onuavtind tnv xatavdhwon evépyelag tTng avtloTolyng ouoxeuic
MCU. 1o cuyxexpyéva, TeoyUlotonoloVpe wo extevég profiling xou avdluor tng enidpoaone diapope-
TIxwyV emnédwy ouyvotnrac HSE oty xatavdiwon evépyelac. To pordl HSI éyer wxpdteen axpifeia
o LEYOAUTERO YeOVO exxivnong, xou ETOUEVWE Elvon AlYOTERO EMIUUNTO YLl EPUPUOYES UE AUOTNREE GpLa
latency. To poAdl HSI éyel eniong uhnhotepn xotavdiwon evépyetag and to HSE. Yto mhaioio authc g
OLIAWPATIXNAG, YUUNAT EMPBAEUYOT ETLTUYYEVETOL UE TN YENOT YOUUNADY GUYVOTHTWY TOU BEV TopdyovTaL
and to PLL (3nhad?) cuyvotntes < 50M Hz). Enopévoe, AMoyw tne BEATIOTNS xatavdAwons eVEpYELaC,
T0 poAol HSE emAéyeton wg mnyy) pohoyiol yia 1 dnuiovpylor younioy cuyvotitwv. H €€odoc tou
TOAUTAEXTY, dnhadY, To HSE, enelepydleton otn ouvéyela pe tic mapopétpouve tou PLL: PLLM, PLLN
xou PLLP. H cuoyétion e cuyvétnrog e€680u (Fpyy) pe i Spoppiroeic HSE xan PLL opiletan oty
eglowon 5.2.1

Méow autrg tng diadwaciog, dnulougyolpe €vay mivoxa avtioTolylone Slipopwy ETAOYHOY CUYVOTNTAS
HSE, diagopgpnoewy mapauétewy PLL xau xatavdlwong evépyelag. O otdyog wog etvon 1y eharyiotomoinon
NG HATAVIAWONG EVERYELS.

Mporypatononidnxe avélvon tov napauéteny tou @don-xieldopatoc (PLL) vy tc mhoxétee STM32.
ARpdnxay vddn teeic Pooixée yetpéc amddoong:

o Xpdvoc exxivnone tou pohoylol (Clock startup time)
o Xpbvoc xhewddpotoc touv PLL (PLL lock time)
o Katavdlwon evépyelac tou PLL (PLL power consumption)

O ypdvoc exxivnong tou pohoytol gbvon pia petewt| tou xadopilel Ty xaduo tépnomn mou amouteiton Yo TV
enovoplYULoT TV TUPUUETEWY TG TAaxéTag OTav mpoypatonole(ton gt aAlayry ouyvotntog. Ilepihoy-
Bdvel tny xaduo tépnon Tou tpoxakelton omd Ty ahhay ) T TYNS pohoyiol, xadde xou Ty emavophiuion
v wait states tng flash xou tou puduiot tdong. ‘Otav yenotwonoieitoaw To PLL, nepihayufBdvel enlong to
¥EeOVO Tou amotTe(Ton YLoL TNV TEOTOTONGCT] TV XATUYWENTOV TOU TEPLEYOLY TIC Topauéteoug Tou PLL.

O ypdvoc xhewdwuatog tov PLL elvan 1 petpwer mou moootuxonolel tov ypdvo mou amanteitar yior Thv
emnhéov xaduo tépnom mou tpoxaheital amd Tov avahoyxd xUxhwpa tou PLL, tpoxeiwévou va emiteuy el
1 oLYYEOVIoWOG. AvopépeTon 0T didpxeta Tou amonte{tan Yo éva xOxAwua Phase-Locked Loop (PLL) yia
vaw ouyypovioel T ouyvétnTa €680V TOU PE TNV eMBUVUNTY 1 AVoPOEdS CUYVOTNTA. XE dAAa Aoyia, efval
0 xpovocg mou amoutelton yior To PLL va xAeddoel 6To ewoepydpevo ofjo xan v eyxorddploel plo o tordepn
X0 CUVETH ouYVOTNTA €£600U TOU OVTIOTOLYEl 0T GUYVOTNTA TOU ELCEPYOUEVOLU GRUATOC, OTOY TOA-
Aomhaotdletan ue tig mopopéteoug tou PLL. Kotd tn Sidpxeia authig tng mepiodou adhayng, T0 X0Oxhwpa
tou PLL npaypatonotel pio oelpd frudtov, cuuneptagfovouévne tng aviyveuons e @dong, tne olyxe-
LlONC TV CUYVOTHTWY X0 TNG TEOCUOUOYHAS TWY ECWTERIXMOY Tou GTolyelwy, 6Twe Tou Voltage Controlled
Oscillator (VCO). O ypdvoc xheddpotoc tou PLL eivon pla xplown nopduetpoc ot equppoyéc émou eivan
anapoltnTog o axpBhc xon oTadEPOC GUYYPOVIOHOS Tou pohoYlol. LuvAdwe elvol TpoTiunTéol xpedTEROL
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YEOVOL andxTNoNG, X 0dNYolV oe TayUTECO CLUYYEOVIOUS TOU GHUUTOS Xol UELWUEVY) TEPLOBLXY 00 T4-
Vel pdong, eaocpourilovrog axpldr) xou amoteleopatiny) Aeltoupyiol TOU GUGTAUATOS OV EAEYYETAL OO
to PLL.

Adyw e mxpric Slobuovone tne xotavdiwone evépyelag, 1 Beltiotomnolnor emixevipdinxe otnv
ghaytotonolnoy Tou xpdvou exxivnone tou poroyiol tou MCU. Ilpaypatonoujdnxe avdiuon evoucin-
olag ylo didpopeg puduioelc pohoylol, 600V aPopd TOV CUVOAXS YpOVo exxivnong Xal TNV XATUVAAwoN
evépyetag. Hoapotnpeiton dti yio wo Sedouévn eloodo xou €€obo cuyvotntog, ol mopduetpor PLLN xou
PLLM, ye younAdtepes Tyéc TOAOTAACLIO TH xot UPNAOTERES TWECS Blotpétn 0dNYolY oe xpdTERO YEOVo
exxlvnong tou poloylol.

To mp®to 0TAdL0 TG TPOTEWVOUEVNS UeEVOBONOY(OG UaC EMXEVTRPOVETA 6TNY avadldTaly Tou Yooy
%O, pe otéyo to Decoupled Access-Execute(DAE), Snulovpydvtag ge ouTtéV TOV TpOTO LTOTURUOTA
MVAUNG %ot UTOTUNUOTA UTOAOYLOMOU U€ca oTr) BouY| Tou layer tou veupwvixol dixthou.

H avodidtagn auvtnh anotehel Booixd epyareio yio Tn otpatnyxy) pog, xadde mopéyel EUXOAOTERD €AY YO
Yiot THTE %o THOO GUYVE TEAYUATOTOLOUVTOL Ol TPOCTENSCELS TNG UvAung xat ot utohoyiopol (Sec. 7.0.2).
Auto emitpénel TNV eQUEUOYT| SLUPOLETIV GUYVOTHTWY YLOL EXTETOUEV YPOVIXE, SLOUCTAUATO XAl YE TILO
axeLPBY) EAEY YO, TPOCUPUOOUEVO OTIC CUYXEXPWEVES amouThioel xdde Aeitoupylag, 6mwe N TpdofBocy ot
HVAUT X0 OL UTOAOYLOUOL, UE amoTEAECUA Vo ELdVOVTOL Tol TEoBATUoTa Tou ayetilovTal Ye Tov Ypdvo
evahhayne e ouyvotntag. T v e@apuoyy twv Tpononotioewy oto eninedo tou Tyolou xOOLXA,
et avaryvwelloupe ta enineda tou poviéhou CNN mou anattody Toug TEPLOGOTEPOUS UTONOYLOHOUS

ol AmoTEAOVUY TO omueio eotioomng (@)

Emuxevtpevouacte xan epappolovue 1o DAE (@) o 800 ouyxexpévoug Tinoug convolutional layers,
dnhadt| 1) depthwise xou ii) pointwise.

7ol oL TOTOoL EMTEBWY aroTeAoVY TEpiTOL TO © TOL cLVOAXoU aptduol Twy layers To loxovTal o
Av OToL emLméd ehoLy Tepinou to 80% Tou cuvolol aprduol 1 L % €
povtéha CNN, 6nwe to Mobilenet [3], mou ypnowonotel v évvola tou depthwise separable convolution
yia Vo UELwoeL To Péyedog xon TNV TOAUTAOXOTNTA TOU UOVTEAOU.

Depthwise convolutions: Ot depthwise cuveliZeic elvar plar e€eldixeupgévn Aertovpyla twv CNN émou
xdde eloodog xavaiiob cuvellooetal pe évay EexmELoTo exTUdELOLUO GiATEO, TOU avTihouBdveTon Ywelxd
YOO TNELO TS avd xovdhL. Luvidwe, too CNN pardaivouv otadioxd 6Ao xat mo ToAdTAoxo YopaxTneto-
Txd, Ye xqUe €va amd qUTE Vo AVTITEOCWTEVETAUL And €val SLPORETIXG xavdhL. Lo mopddelyua, o uio
exova, To opy s 3 xavdha elobdou (RGB) audvovtar xodde to dixtuo enelepydleton Ty edva yio
vor eEQYEL XOU VO AVATUPLO TE TILO TOAUTAOXOL Y OROXTNELO TXE, OIS UPES, CUYXEXPWUEVA OV TIXELUEVY X AT,
Mpbogata frameworks, énwe to CMSIS-NN [14] xou 1o TinyEngine [22], vlonololv pio npocéyyion
UTOAOYLOPOU vl xovdhL yior Toe depthwise convolutions.

H mpoocéyyion poc yio to DAE eigdyel évav napaueteixd unrolling factor nou ovoudCouue "decoupling
granularity", o onuatodoteiton pe 0 g. Autog o mopdyovtog xoopilel Tov aprdpd Twv channels tou
"poptdvovtan" otnv cache mptv yivel 1 cuvéMEn oe xdde éva ano autd. ‘Etol, yweiloupe ) uviun oe
memory-bound xot compute-bound sections.

To Listing 7.2 nopéyet eva amhonownuévo code snippet mou delyvel tnv vhomoinorn tou DAE optimization,
delyvovtag mwg To decoupling granularity dnuloupyel euvoixéc cUVIHAXES Yol TNV ATOBOTIXT EXTEAEST) TWV
depthwise convolutions.

INo mapddelyya, étav g = 4, téooepa xavahla avaxtovion ot wvhAun cache tou MCU mply npoywenoouue
otov umohoylopb. Auth n Badpeom emiTEéNEL TNV EQUEUOYT| SLUPOPETIXOV CUYVOTHTWY POROYLOU avd
U, To onolo avahboupe tepautépw oty Evétnta 7.0.2.

Pointwise Convolutions: To depthwise convolutions cuviidwe axohovdoivton and ta pointwise con-
volutions yia vo mparypatonoimndel yeltwon tne Slao TATXOTNTAS ovd XoVEAL, UeldvovTag €tol To péyedog
TOU JOVTEAOU X0l TNV UTOAOYIO TIXY) TOAUTAOXOTNTA eVE Slatnpeiton 1 anddoor. O pointwise convolutions
nephapBdvouy muphvee peyédoug 1x1 xou e@appolovion oe xde otolyelo eviog TwWV xAVaAL)Y ELGGIOUL.
H CMSIS-NN [14] xo to TinyEngine [22] egapu6élouy cUVEMXTIXES ATOTUTIWOELS ONUElWY YE TEOTO avd
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othAn. Kdde othin anoteleiton and éva otolyelo avd xovdil eloédou. H npocéyyion pog mpoyotonolel
decoupling otic npoofBdoeic PVAUNG ovd xavahL, BlaLEKOVTOC €TOL TO TUAUA XWX OE TEQLOYES UVAUNG Xal
unohoylouol. ‘Onwg xo otig depthwise convolutions, eiodyoupe to évvola tne amoculevxtinic oxp{Betlog,
oupPoiiletar w¢ g, Yot uTooTHEEN TNC HOVABUE TEOCWELVTE ATOVAXEVCTS WS TTPOS TOV b TwV oTr-
AV Tou avoxtdvTon and T wvApn. o mopddetypa, yio yiot eixdva elo6d0L 8x8x3 xou évay mupriva 1x1x3,
g OTHAEC QOPTWVOVTIAL OTNV UVAUY Tely Teaydoatonomndel o urtohoyloude yio xadévay, avtideta pe to
TinyEngine xoa to CMSIS-NN, nou @optiyvouy plo udvo othin emdvog 1x1x3 xdlde @opd.

Yuvolxd, 1 evowudtwon molomhodv buffers odnyel otn Snuovpyio  peyahltepwv  mEELOY OV
UVAUNG/UTOAOYLOUOU, e omoTéEAEGU TNV EAUYLOTOTOMOT TwV emPBapivoewy ond v alhoy) oLy voTn-
TOS, AMOPEDYOVTOS TAUTOY POV TNV LYNAY xaTavdiwor evépyelac. 261600, 1 TOAD éviovn yenor buffers
unopel vo odnyfoet o awénuéva cache misses, pe anotéheoua Ty unoBdduion tne andédoone.

To Iupdptnua 7.1 mopéyel wior anAoTOMUEVT ETLOXOTNON TNG anocLLEVYUEVNS TedoPRooNC-EXTENEOTC VLo
pointwise convolutions.

Metd v ohoxhfpwon tng @done DAE, ta DAE-enabled CNN nepvdve omo profiling xou design space
exploration. To tponononpévo DAE-enabled poviého CNN npowdeitar 610 endpevo otddlo tne npo-
tevopevne pedodoroyioc poc (BAua 2) vy tyv anotelecpatxn e€epedvnon xou pOdulon Tou tapdyovia
draxprtonoinone DAE, pall pe v e&epedivnon twv napapétpwy DVES.

1.3.2 Brpa 2: Tavtdéypovn E€cpedvnon DAE xau Clocking

Ye auté To Pripa, avahOOUUE TNV AmOBOOY XU TNV XATUVIAWOT) EVERYELIS UE OVl layer(@), hafdvovtog
umodn g emdpdoelc e towtéypovne dapdppwone DAE xau clocking. T ) pétenon tne xatovdhi-
WONG EVERYELNC Xl NG amddoong xdle layer, €youpe avamTOZEL Xol EVOWHUATWOEL EVAY TROGUPUOCUEVO
unyoviowd mapoxohoinong xotd TN Sldpxeld TG EXTEAEONE Yl TNV utocThplEn TN mopaxolodinong
xot tou profiling ye per layer teéno. O unyoviopoc Yog YeNoLHOTOLEl TOUG EVOWUATOUEVOUS timers Tou
xé&de MCU, ol onolol evepyonototvton YeTol TwV TUNUATOY xOOixa Twv layers. Emniéov, exyetodleuo-
HOOTE TNV EVoWPATwUéVN urtoothptln derypatoindioc oyvoc twv STM32 MCU xa napoxohouvdoiyue
TNY XOTAVEAWGT) oy 0og el xaL PETA TNV evowudtwon DVFES oe xdie eninedo CNN. O petprioeic
NG XATAVIAWGNE Loy VOC xou TNE amddoong yia v DVFES oe xdle eninedo cuyxevipwvovton xou yenot-
pomololvTaL yiar TNV e€epelivnan Tou ypeou oyedlaong yia v dlapdppwon DAE xau clocking.

Ilio cuyxexpiéva, e&epeuvolue TOV GYEBLAOTIXG Yo Tou oplletar and T axdlovldec Tpelg Paoixég
TOPAUETEOUS: 1) 0 Tapdyoviag amocVlELENS AEMTOPEREWDY g Tou Teptypdpetar oto Tudua 7.0.1; i) n
oL VOTNTA POAOYLOU TOu poloytoly SYSCLK; xou #44) 1 emAOYH TOPUUETEWY Yiot TO TEPLOdXS GUCTANA
PLL (dnhad¥ PLLM xou PLLN), xou ot dvo mepiypdgovtar oto Tuhua ??. ‘Ocov oagopd to decoupling
granularity, o xadoptopdc g mo xatdAAning tuhc avd layer e€optdton téc0 amd mEodlaypapEéS TOU
oyetilovton pe v mhaxéto (m.y., wéyedoc cache) oo xou and yopoxnEloTind Tou oyeTilovTon YE TOV
OO (1., aptdpde xovahiiv e€6dou xau kernel size). Ltnyv nepintwon pog, e€etdloupe €81 SopopeTinég
Tée, onrady g € 0,2,4,8,12,16, émouv g = 0 unodnhdver xapia Beitiotonoinon DAE xau avtiotouyel
070 TEOXAIOPLOUEVO LOVTEND ELGOBOL.

‘Ocov apopd Tic SlapopeTixég evalhoxTixég pohoyiwy, opillouue 800 mopaueTeX0lg TpOTOUS Aettoupyiog,
avtiotoyo v Low Frequency Operation (LFO) xou tnv High Frequency Operation (HFO). H LFO
yenowonotel anoxielotixd tny tnyr| pohoylod HSE oe pa npoxadopiopévn cuyvétnta (50MHz) xou 61o-
YeVEL 0N pelwon e xatavdhwong oybog otny thaxéta. Avtideta, n HFO puduilel to pohdt tou cuoth-
HOLTOS YPNOHOTOLWVTOS TO XUXAwUa PLL, 6mou 1 tedunr) Ty} SYSCLK xadopiletan and Sidpopous cuvduoo-
polg Twv Topapétewy PLLN xou PLLM, edixdtepa PLLN € 75,100, 150, 168, 216, 336, 432 xou PLLM € 25, 50.
Avuti) 1 Budpiom petagd twyv BUo TedTWY Aettovpylog Hoc emLTEénel Vo UETABalVOUUE YE1YOopa avauEsH O
BlapopeTinéc ouyvotnTee SYSCLK, ehattwvovtag €10l Ty evanoinoia otny unepxelyevn xaduo tépnon nou
ocuvdéetan Ye To PLL, 6mwe avaivetan oto Turuo 5.2.2.

Yuvolxd, n evahhayfy DVES mpoyuatoroteiton uetolld twv deopeupévwy teptoyov uvhune (Lst. 7.2:3)
xou vohoyiopot (Lst. 7.2:7) , mpoxewévou vo adlonomndel BENTIOTO 0 HETACY NUATIONGS AmOCUVDESEUEVNS
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Figure 1.3.3: EniSpoon dapopetindy puluicewv DAE xou ypoviopol atny xaduotépnon xo vy toyd
Twv pointwise xou depthwise layers.

npdoPoong-extéheong, ue to LFO va egoappoletan oto Seopeupévo ot uviun xo to HFO otoa unotur-
poTor Tou cUVOEOVTAL Ue UTohoyiopd avtiotolya. Mia mapduola tpocéyylon axoloudelton oto pointwise
convolution layers.

DSE Insights: To Zyfuoa 1.3.3 delyvel v enldpaon Twv UETABAAAOUEVLY CLUYVOTATOY AelTovpyiag
(aptoTepd) xou TV Topayévtwy evaoincias g (8eid) oty xaduotépnon tou layer xou 6TV xaTavdAKo
evépyetag. Ilpdtov, napatneolue 6Tt 660 aEAVETUL TO UETPO TWV GUYVOTATWY AelToupYlag, 1 XATOVIA-
won evépyelog avtoAldooeTal yia xohltepr anddoot), cuviétovtac €Tol Tov Yweo oyedlacuol. Emniéov,
N ohhayn TV TWOV Tou cuvtedeo T granularity unopel vo mpoopépel oNUAVTIXT BLUXVUAVOT) OTNY Xo-
Yuotépnon xou TNy xotavdiwon evépyetac. Lo nopdderyua, N xotavdiwor evépyetas punopel vo uelwdel
o710 54,2% oe olyxpion ue v apyxh extéheon. ‘Etol, n anoteheopatin and xowvol eEgpelivnon tng eu-
aodnolog g xaw e ouyvétntoe odnyel oe ouuPiPacuols oylog/latency. To anotéheopo Tou DSE eivou
évag ywpog hbone avd layer, énou xdlde Aoy avtarmoxpiveton YeTald TN AmbGB0CNE XAl TNG XATAVIAWGTG
evépyeloc (MB)). Xe autd to ddotnua, emhéyouue ta BédTiota onpeior Pareto, mou da Soedodolv oto
Brua 3.

1.3.3 Brjpa 3: Evepyelaxn BerticTonoinon pe eniyvwon QoS

Y10 teMixd oTtddo, mpoodopilovue Tic BélTioteg ouyvotnteg Yot xdde eninedo evidée tou CNN, pe
GTOYO VO ENALYLO TOTOLCOUKE T1) GUVORLXY) XUTAVAAWOT) EVERYELIC TOU HOVTEAOL, LXAVOTIOLWVTAS TOPAAANAL
évay npoxadoplopévo mpotmoloyiowd xodustépnone (QoS). XuuBoiiloupe to olvoro Ghwv twv Tdavdy
CUYVOTHTWY ToL dnplovpyoLVToL elte u€ow tou poloytol PLL 1 tou poloyol HSE w¢ F' xou T0 clvoho
oAV TV VOV Topayovieny evaoinoiag we G. 'Eoten n o cuvohixdc apltdudc emnédwy Tou Lovtéhou
CNN xa Py = {..,p§ = {th, EF},..}k € {1,..,n},j € {1,...,|P|} e 10 civoro twv Péhtiotey
Nooewv Pareto (and to BApa 2) tou emnédou k, brou ta t? xou Ejk LVTOBNAGYOLY TNV Xxaduc TEENON KoL
TNV xatavdhwon evépyetoc Tou j pareto Péhtio) Aon yio To eninedo k dtav hettoupyel pe DVFS
evepyomomuévo pe ouyvotnta HFO f € F xou evanodnola g € G. Oewpolue tnyv elayiotonoinon g
ouvolfc evépyetag £ tou CNN nou avantbooetan oto otéyo STM32 MCU, étol dote 0 cuvolxde
xeovoc extéleone T va uny unepPaivel éva QoS nou oplleton and Tov yeHotn. X1 cuVEYELd, TO TEOBATUA
Behtiotonoinone unopel va dwortunwidel e egnig:

minimize E =YY Ef, (1.3.2)
k=1jEP;
st T=Y > the; < QoS (1.3.3)
k=1j€Py
oag=1, k=1,...n (1.3.4)
JEPy
zr; €0,1,  k=1,..,n,j € Py (1.3.5)

Movtehomolobye 0 mEOBANUd pog olpgwve ue to IlpdPBAnua Xoadlou Ilorhamihc Emioyrc
(MCKP) [35], to onolo enexteivel to xhaond npdBAnua Tou coxtdiou xoTnyoplonoldVTIS To GTOLYE
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o dlaxpltég x)\o’(ostq(@). Ye auth ) dltinwon, 1 duadr| andgact cuunepiAndng evog avtixeiuévou
avtadotaton and v emhoyn axpiBoe evog avTixeldévou and xdde xatnyoplo xor 0 otody0C elval va
peyotomoindel 1 aglor Twv avTxewévwy Tou tepthauBdvovton oto coxidio ywpic vo unepBaivel To péye-
B6¢ Tou. Lny nepintwor| pog, xde YeHovwUévn xAAoT avTitpoowneVel Tig ddpopes BéATioTee AdoElC
Pareto p;? avd layer k. Kdde otouyeio otnv xotnyoplio yopaxtneileton and tn dixh tou ofio (Snhadr,
XATAVIAWOT| EVERYELIC EJ]“) xou 1o péyedog (dnhadr, Aovddvouoo xotdotaon tf) Ytoyog pog ebvou
VO ENOYLO TOTOLACOUPE T1 SUVOMXY xatavdhwon evépyelag (E) evd tnpolue Tov neploplopd ToLdTnTag
utneeowdy (T < QoS). Metatpénoupe Tov 0Td)0 ENAYIOTONOMNONG LAS OE O0THYO UEYLOTOTOIMOTNGS YENot-
HOTIOLOVTOG TOV UETooYNUaTopd ou Beioxeton oto [35]. Téhog, Aovouye to TpdPinua Bedtiotonoinong
YenotomolnvTag Wit Peudo-ntoAvwvupxt) Aoor ypovou tou Bacileta oe Ilpocéyyion duvauixob npoypay-
patiopol (DP).

1.4 A&woAoyrnonm

1.4.1 TIleipapotixry Adtaln

H nepapatied poc aflohdynon mpoyuoatonoeiton oe pa mhaxéto STM32F767Z1 Nucleo, e€onthopévn pe
CPU ARM Cortex M7 mou dodéter cache uviun L1 16 KB. H nhaxéta evowpatidvel éva e€wtepind
poAbL LPMATc ToytnTae (HSE), mou xupodveton ané IMHz éwe 50MHz. Tt v mapoaxoholinen tne
XATOVIAWONG EVERPYELNS, Ypnoylonotioaue Ttov awodntrpa loyloc INA219. T'a va petplactoly ol mdovég
BLAXLPAVOELS TTOU TEOXOTTOLY UM TLE BLAXLPAVOELS Loy DOC oL TpoxaholvTal and T Yeppoxpacio, cuyxpl-
VOUE CUCTNUATIXG xdie YETEnom 1oy Do UE TNV XATAVIAWOT Loy 00¢ Tou Boacixol Lovtélou ElOB0L GTNY
avtiotouyn yeovixr ofuavor. H mpotewvduevn pedodoroyio pac aflohoyeiton oe tplo TpoeXTadeLUEVDL LOV-
éhot CNN, ouyxexpiéva Visual Wake Words (VWW), Person Detection (PD) xaw Mobilenet-V2 (MBV2),
Tou npoépyovton and to model library Tou MCUNet [22].

Iparypatonololue wa ouYXELTXr] avdAUCT YETOED NS TROCEYYIoNC Uac xaL Tou state-of-the-art frame-
work TinyEngine [22], To onolo ypnowelel we Bdomn yio v aiohdynon. Ta newpdpatd pog degdyovto
oE €Val OEVAPLO EXTEAEOTC LOOYPOVNE XoUCTEPNOTNS, OTIOU UETEIUE TNV XATAVAAWOT] EVEQYELNS YLOL (Lo
ouyxexpévn tepiodo mou xadoplleton and évay neploptond QoS. Xty nepintwon tou TinyEngine, autd
onpolvel 6Tl 1 TAAXETO TUPAUEVEL OE XATdo TAoY adpdvelag pe otodepr) cuyvotnta 216 MHz petd and to
inference, éw¢ 6tou emiteuydel To 6plo QoS. Bewpolye enlone to TinyEngine BeAtiwpévo pe clock gat-
ing, wo tey v mou €yl oyedlao el yio TN BEATIOTONOMNON TNC XATAVIAWOTG EVEQYELNS UTEVEQYOTOLVTAS
ETUAEXTIXG TOL U1} YENOLLOTONUEVA POASYLA TNG TAAXETOS Yol TOV PLUIG T TAONS, EAAYLO TOTOLOVTOS €TOL
1 Blappeo| oy bog xatd T didpxeia Tou inference tou CNN.

1.4.2 Arnoteléopata
Anddoon xow Katavalwor evépyeiog

To oyfua 1.4.1 nopouctdlet yior EVOEXTIXY CUYXELOT TNS XATAVIAWONS EVERYELNS PETAED TN TEOTEWVO-
HEVNS TEOGEYYIONC Wog xat Twv 800 dlapoppooeny tou TinyEngine: n pio ywelc xoplo BeAtiotomoinon
xat 1 @A pe clock gating. Auth n allohdynon nepthopfdvel Sidpopa ovtéha uvextinddy Neupomvixohv
Awxtowv (CNN), xadéva and ta onolo undxeitan ot Sloxpttodc nepoplopole toldtnrac utnpesioc (QoS)
ov opilovtan oe 10% (o@uytd), 30% (uétero) xou 50% (yahopd). O dZovac X anewxoviler Toug nepioplo-
potc QoS, eved 0 d€ovag T avTinpoonmredel TNV XAVOVIXOTIOMUEVY XaTavdiwaor evépyelag. H npotewvouevn
Tpoaéy Lot pog Eemepvd xat Tig dVo Tepintwoelc Tou TinyEngine, napoucidlovtag Pelwor oTny XaTovd-
won evépyelog énc xou 25,2%. Emnhéov, oe olyxpion pe To TinyEngine pe clock gating emituyydvouue
7,2% Wyobtepn xatavdhwon evépyelas. Emmiéov, ol mapatnefoels tag utodetxviouy 4T 1 yohdpwon Temv
neploplopy QoS unopel vo 0dnyfoel ot afloonueiwTn Helwon TN XATAVEAWONG EVERYELIS, OV ol HUE XOO-
T0¢ oplopévwy avtlotaduloewy anddoone. o nopddetypa, xatd tny e€étaon tou povtélou Mobilenet-V2,
1 XATAVIADOT EVEPYELIS TNG TPOCEYYIONG Yaig UG €vay Yahopd neploplopd QoS 50% pewdveton oto 20,4%
oe oUyxplon Pe Tov auoTtned neptoptopd 10%.

Avdiuom frequency scaling: To oyrfua 1.4.2 anexoviler to HFO vy xdde e€etalépevo CNN. O
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&€ovac X umodetxviel tov avtioTtolyo tomo layer xadoe ntpoywed 1 extéleon tou CNN, xou ta emheyuéva
granularitities yia Tov neplopioud QoS 10% xou 50%, avtiotouya, evd o dZovac Y delyvel tn ouyvotnTa
Aettoupylag avd eninedo. H diapdppuon LFO napauével otadepr ota 50 MHz yia Adyouc amidtnroc.
O napatnerioelc mou mpoéxuday elvar ol axdhovdes. Ilpdtov, 1 Aettoupyinr) cuyVOTNTO BLUUOPPOVETAL
oto péyioto (216MHz) xupine Y v extéheor) pointwise convolutions, dnhady 58,8% évavtt 21,4% yia
depthwise convolutions. To teheutala elvon AydTEpO UTONOYLOTIXG, ETOPEVKC 1) UElOT TNS AELTOURYIXHC
ouyvéTnTag dev Yo odnyfioel oe onuavtixt| unoBdduon tne anddoone. Emniéov, to 46,1% twv pointwise
convolutions xou to 43,4% twv depthwise convolutions extehodvrtal oTic YaunhbTeERES GUYVOTNTES, SNAdN
756MHz xou 100MHz, pe otéy0 v evioyuon tou otdyou Bedtiotonoinone e elaytotonoinong toyvog.
Téhog, Siepeuvolue Ty enldpaot Twv Teploplouwy QoS otn cuyvotnta Aettovpyloc. To melpduatd pog
delyvouv 611 18,6% nepiocdrepa layers Aettovpyolv ota 216 MHz yia avotnpoic teplopiopole (10%).
‘Ooov agopd tnv avdluon granularity, yio to yahapd QoS(50%), Aertoupyolv 22,3% nepiocdtepa layers
pe ouvteleoth] granularity 16, oe cUyxpion e tov meplopiopd 10%. Autd ogeiletan oto yeyovéde 6Tt
UTdpy el HEYAAUTEPOS YWpog i latency trading, emopévwe computation-bound xopydtia ywellovion oe
peyahUtepa TUfuaTa, pe otdyo TNy ehaylotonolnon tou switching overhead xou tnv mopoyy| yelwong
oy vog.

1.5 Xvunepdopata xow MeAhovTixy doLAsld

Ye auth) v epyaocia, mapovoidloupe uia véo pedodoloyia and dxpo o dxpo mou exUeTOAAEVETUL TO
DVFS vy ) Behtiotonoinon tng xotavdhwong evépyelag anéd to CNN inference oe low-end STM32
MCUs. H npocéyyiot| pac oftonoiel oe peydho Padud tic teyvixéc Decoupled Access Execute yio
dlaxpltonoinom Tunudtey Tou layer mou yapaxtneilovtar wg memory-bound xar compute-bound. Auty
1 TpooEyYlon yenowlomolel enlong Texvixég BEATIOTONOMONG Yol Vo ATOPEREL EQPXTA AMOTEAECUATAL VLol
avotned QoS constraints. Zenecpvd Tic undpyovoe npooeyyioelc emTuyYdvovtag émg xou 25,2% Mydtepn
XOUTAVIAWOT) EVEQYELNS.

1.5.1 MeAlovTixr} BoLAELL

Avuth 1 epyacio Yo unopoloe va Bedtiotonomndel tepoutépw Yo va Behtwdel to scalability, 1 evehi&io
X0l 1) AMOTEAEOUATINOTNTA TNE. MEow auThY TwV enextdoenwy, otoyebouue va xdvouye to DVES npoo-
Bdowo vy etepoyeveic MCU younhot eminédou, xadde xou vo eEEpeUVAGOUUE TN GUV-OYEDBINGT LOVTENOU-
vhiowxol yio tinyML pe duvatétnteg dynamic voltage frequency scaling.

Optopévee mbavég Bertiotonooel nepthaufdvouy:
e DVF'S ye fine-grained granularity xou pn-opoiduoppn emioyy cuyvotntag eviog tou kernel.
o Evonudtwon Blapopetixiy evploTix®y yia Ty emhoyt ot layers xou DVFS settings.
o Emoyy otpatnywric DVFES on-device, ylo yelwon tne avdyxng yio e€wtepixd runtime monitoring.

o O autopatiopds avdntuéne yia didpopo MCU xau 1 yerion compiler yia v autopatonoinon tou
decoupled access execute.

e DVFS xou Decoupled Access Execute aware NAS, yioa tnv dnwovpyio BEATIOTOY HOVTEAWY Yia
DVEFS.
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Chapter 2

Introduction

Over the last years, Edge AI [1] has appeared to the forefront as a novel computing paradigm. Edge
AT refers to the deployment of complex Deep Neural Network (DNN) models directly on edge
devices, such as sensors, Internet of Things (IoT) devices, and other embedded systems. Furthermore,
the increasing demand for edge-centric digital signal processing applications, such as video analytics [2],
mobile visual tasks [3] and others has established Convolutional Neural Networks (CNNs) as the go-to
technology for efficiently handling these tasks at the edge. Notably, major technology providers have
responded to this paradigm shift by offering enterprise-grade solutions designed to optimize and deploy
CNN models at the edge. These solutions include software-based stacks (e.g., Amazon SageMaker
Edge [4]) as well as custom, purpose-built hardware chips (e.g., Google’s Edge TPU ASIC [5]).

A significant amount of research efforts are focusing on exploring the complex DNN/CNN design
space of dataflow schedules [6], [7] to optimize energy. Despite their sophistication, these solutions
often assume the presence of hardware accelerators or OS-supported and network-connected edge
devices. However, as the computing continuum extends to the far edge of networks, arrays of resource-
constrained devices, typified by microcontrollers (MCUs), are introduced into the ecosystem. Unlike
their more capable counterparts, MCUs typically employ bare-metal application execution with custom
or lightweight run-times and, at times, disconnected from the network grid. This paradigm shift to the
far edge has highlighted the concept of “tinyML" [8]. TinyML involves the optimization of DNN/CNN
models to operate seamlessly on these bare-metal MCUs, thus, extending the boundaries of where ML
can be applied. In the face of limited processing power and memory, tinyML models are designed
to offer efficient inference capabilities, making it possible to bring intelligence to devices previously
excluded from the ML landscape.

Deploying CNNs on MCUs introduces two major challenges. First, the limited memory capacity of
MCUs poses difficulties in both storing and executing CNN models. This becomes even more complex,
since emerging CNN architectures tend to become more and more deeper, aiming to provide better
accuracy and/or support more complex applications [9]. Second, given that MCUs are frequently
embedded in battery-operated edge devices, preserving energy resources becomes crucial, since the
execution of resource-intensive and computationally hungry DNNs can rapidly deplete the battery,
particularly concerning devices with extended operational requirements.

While most attempts at improving energy efficiency have been focused at reducing latency while keeping
power constant (i.e. pruning, kernel optimization), the explotation of clocking circuits for energy
efficiency in resource constrained devices has often been neglected. Well known vendors, such as ARM
and Atmel, offer no dynamic power management modes for their low end MCUs (typical power-saving
modes in such MCUs suspend the CPU core thus suspending operation). In this thesis, we propose a
dynamic power management scheme for low-end ARM Cortex M MCUs. We then optimize this scheme
for tinyML applications, by integrating decoupled access-execute based code transformations to the
inference engine. Finally we introduce a QoS-aware optimizer that performs design space exploration
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on the possible configurations, in order to generate the optimal DVF'S configurations for a given latency
constraint.
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Chapter 3

Related Work

Focusing on CNN inference, prior research [10], [11] and widely-used frameworks (e.g., TFLite Mi-
cro [12], Microsoft’s NNI [13], ARM’s CMSIS-NN [14], etc.) offer optimization techniques that
can enable the deployment of tiny CNN models on resource-constrained MCUs. These techniques
typically include static, model-specific, post-training optimizations, such as mixed precision arithmetic
[15], model’s weight pruning [16], [17] and quantization [18], [19], as well as downsampling [20] and
Neural Architecture Search (NAS) methodologies [8], [21]. Other works examine schedule and source
code optimizations either to enable efficient data and computation mapping on the underlying hard-
ware [22]-[24] or to divide CNN layers into independently distributable tasks that can be offloaded
and executed in parallel [25].

Deploying CNNs on far-edge, resource constrained devices, increases the need for energy efficient de-
ployments, that utilize power consumption techniques. Many works have investigated the use of DVFS
on CPUs and GPUs [26] [27]. This research is often coupled with decoupled access execution method-
ologies, aiming to minimize the overhead that is induced by clock switching [28]. Such methodologies
often implement compiler-based automation solution, using just-in-time compilers for profiling-based
decoupled access-execute region generation [29].

Many design automation works focus on the co-design of DVFS with neural networks, through neural
architecture search. While such works have effectively managed to isolate regions of the code where
DVFS can be implemented, many of them focus on dynamic neural network decision regions, where
DVFS can be implemented without major code restructuring [30]. Such works have also focused on
Neural Architecture search for non resource-constrained devices, in contrast to the tinyML deployments
that are the goal of this thesis work.

Although a vast amount of optimizations have been investigated for DNN deployment on MCUs, they
mostly focus on models’ structural features, e.g., weights, arithmetic, architecture etc., while little
attention is given to system-level runtime optimization knobs. In the context of power consumption
and/or energy efficiency optimization, Dynamic Voltage and Frequency Scaling (DVFS) [31] forms an
efficient tuning knob to balance performance and energy consumption by right-adjusting the clock
frequency of the MCU according to the computational demands of the deployed model. Still, the cus-
tomization of DVFS policy to DNN specific features as well as the materialization of DVFS in practice
is not straightforward, as it may impose switching overheads [32] not straightforwardly analyzable and
increased leakage power due to longer execution times [33].
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Chapter 4

Theoretical background

T he convergence of two transformative technologies, Convolutional Neural Networks (CNNs) and
Tiny Machine Learning (TinyML), has ushered in a new era of intelligent computing at the edge.
As the demand for deploying CNN-based models on resource-constrained devices like microcontrollers
continues to surge, the quest for achieving the delicate balance between computational efficiency and
model accuracy becomes increasingly paramount. Dynamic Voltage and Frequency Scaling (DVFS), a
long-standing technique in embedded systems for managing power and performance, presents itself as a
promising tool to address this challenge. By dynamically adjusting the voltage and clock frequency of
microcontrollers, DVFS can optimize power consumption while adhering to QoS constraints for CNN-
based tasks. In this background section, we delve into the foundational principles of CNNs, explore
the emerging field of TinyML, and provide a comprehensive overview of DVFS, setting the stage for an
in-depth investigation into their application for efficient CNN inference on resource-constrained edge
devices.

4.1 Machine Learning - Introduction

Machine learning (ML) constitutes one of the most important advancements in the fields of computer
science and data analysis in recent years. It represents a paradigm shift in problem-solving, where
computers are not explicitly programmed to perform a task but instead learn from data and adapt their
behavior autonomously. This departure from traditional rule-based programming and optimization
techniques has opened up a realm of possibilities across various domains. In this section, we delve
into the fundamental principles of machine learning, explore its diverse types, and highlight its critical
distinctions from traditional optimization methods.

4.1.1 Types of Machine Learning

Machine learning encompasses a spectrum of techniques, each designed to address specific problem
types and learning paradigms. Three primary categories are prominently recognized:

e Supervised Learning: Supervised learning is perhaps the most familiar type of machine learn-
ing. In this paradigm, algorithms learn to map input data to predefined output labels based on
a labeled training dataset. Common applications include image classification, natural language
processing, and regression tasks. Supervised learning models aim to generalize patterns from
training data to make accurate predictions on unseen data. Notable examples include decision
trees and support vector machines [36].

e Unsupervised Learning: Unsupervised learning focuses on discovering hidden patterns or
structures within data without explicit labels [37]. Clustering and dimensionality reduction are
typical tasks in this category. Clustering algorithms group data points based on similarity, while
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dimensionality reduction methods seek to capture essential features of the data while reducing
complexity. Unsupervised learning is vital for tasks like anomaly detection and data exploration.
The most popular example of an unsupervised learning algorithm is the k-means algorithm,
where items are often classified according to their spatial properties.

e Reinforcement Learning: Reinforcement learning models interact with an environment and
learn to make sequences of decisions that maximize a cumulative reward signal. This type of
learning has found success in applications such as game-playing, robotics control, and autonomous
systems. Reinforcement learning algorithms explore various strategies and adapt their behavior
based on feedback from the environment [38].

4.1.2 Supervised learning: Types and characteristics

Supervised learning is a foundational category of machine learning where algorithms learn to map input
data to corresponding output labels based on a labeled training dataset. Within this domain, several
types of supervised learning have emerged, each tailored to specific data types and problem domains.
In this section, we delve into three primary types: Artificial Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs), while highlighting their distinctive
characteristics.

Artificial Neural Networks

Artificial Neural Networks, represent the most popular basis for many machine learning models. ANNs
consist of interconnected layers of nodes organized into an input layer, one or more hidden layers, and
an output layer. These nodes are interconnected through weighted synapses (which are often referred
to as weights). These weights shape the importance of each feature in the neural network. The nodes
process input data through weighted connections and activation functions to produce predictions.

ANNS, especially shallow architectures with fewer layers and neurons, tend to have a lower computa-
tional cost compared to deeper networks. The cost primarily depends on the number of parameters
(weights and biases) to be learned and the number of operations required for inference.

Each neuron with a binary threshold in an artificial neural network can be described by the equation,
as proved in [39]:

y= 9(2 w;z; — ) (4.1.1)

where theta is the step function (used as an activation for the neuron), w represents the synapse weight
matrix, x represents the input matrix and u is the activation threshold. In modern literature, u is
often referred to as the bias of the neuron.

In modern works, the threshold function was replaced by other activation function in order to achieve
the desired asymptotic properties. Some notable activation functions include:

e The sigmoid function [40],

1
= 4.1.2
) = T (112)
where [ is the slope that the sigmoid function has.
o The rectified linear unit function (ReLU) [41],
g(x) = max(0, ) (4.1.3)
e Leaky rectified linear unit [42],
Bx forxz <0
g(z) = { . (4.1.4)
x  otherwise
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Figure 4.1.1: Example of a CNN architecture.
where § is the slope of the function.
e Hyperbolic tangent function (often referred to as tanh) [43],
(" =)
) — 4.1.5
g(x) 1) (4.1.5)

Convolutional Neural Networks

Convolutional Neural Networks are a specialized type of ANN designed to excel in processing grid-
like data, such as images and videos. They introduce convolutional layers to efficiently capture spatial
hierarchies and patterns within the input data. In contrast to fully connected layers, these architectures
utilize local connections to extract image properties, which are spatially correlated.

At their core, CNNs employ convolutional layers that scan input data with learnable filters, enabling the
detection of local patterns. This property makes CNNs ideal for tasks like image classification, object
detection, facial recognition, and image generation. Furthermore, CNNs exhibit spatial invariance,
allowing them to recognize patterns in different regions of an image, making them indispensable in
applications where understanding complex visual data is essential. As models get bigger, deploying
them in resource constrained devices, optimizing and deploying CNN variants plays an important
role in enabling efficient and accurate image-related tasks on resource-constrained embedded devices.
CNNs are computationally more intensive than simple ANNs, primarily due to the convolutional layers,
which involve a significant number of multiplicative operations for feature extraction. An example of
a CNN is shown in Fig.4.1.1.

Many CNNs can be employed in TinyML applications, particularly for image-related tasks, when
optimized implementations, quantization, and model pruning are utilized to reduce computational
requirements. Efficient architectures like MobileNets are designed to be more lightweight, making
them suitable for resource-constrained devices.

Most CNNs consist of the following components [43]:

e Convolutional layers apply learnable filters to input data, detecting local patterns and hier-
archies within the data. Each convolutional layer receives a filter (often referred to as kernel),
whose utility is to extract specific features out of the input image. Each element in the kernel
matrix holds a different value, and those values are adjusted during training depending on the
loss value (or the value of other metrics as discussed below). In order to extract border features,
padding elements are used. When output dimensions need to be reduced, a larger stride value is
utilized.

e Pooling layers reduce spatial dimensions and enhance translation invariance by downsampling
feature maps. They help to retain important information while reducing computational com-
plexity.
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e Fully Connected layers make predictions based on the high-level features learned by previous
layers. They serve as the output layer of the network, producing the final results.

e Activation functions such as ReLU (Rectified Linear Unit), introduce non-linearity into the
model, enhancing its capacity to capture complex relationships within the data. They help make
the network more expressive and adaptable.

This work mainly focuses on the efficient deployment of convolutional neural networks for detection
tasks.

In order to understand the optimization domain of the current research issue, one needs to examine the
optimization domain. This requires some background on the building blocks of convolutional neural
networks.

Each CNN layer receives an input that has been coded in order to support optimal feature extraction.
The input layer typically receives input in 3 channels, red green and black (RGB) and has 3 dimensions,
height, width and depth (also indicated by the number of channels). The objective is to extract feature
maps, used to make the model’s predictions. Each feature map is calculated as follows:

RF = f(WF sz + bF) (4.1.6)

where h is the k-dimensional feature matrix, f is the activation function, W is the weight matrix, x is
the input and b is the bias matrix.

These outputs are then sub-sampled using pooling functions.

In order to train the network, a loss function is employed in order to quantify the impact of each weight
change on the network performance.

Loss functions are employed in the output layer of the CNN, in order to calculate the output error,
which is representative of the difference between the correct output (ofter referred to as the data label)
and the predicted output. Some of the most popular loss functions include:

e The Cross-Entropy or Softmax Loss Function (also known as the log loss function) yields
an output in the form of a probability (p) within the range of [0,1]. In the output layer, this
function leverages softmax activations to generate a probability distribution. The probability
distribution is described by [44]:

—— (4.1.7)
pi=—v 4.1.7
> k=1 €h
The loss function is given by:
H(p,y) =— Zyilog(pi) where i € [1, N] (4.1.8)
e Euclidean Loss Function, often used in regression related problems:
| X
H(p,y) = 5= > _ (i — i)’ (4.1.9)
2N P
e Hinge loss function, most commonly used in binary classification:
N
H(p,y) = Zmaa:(o, m— (2y; — 1) * p;) (4.1.10)
i=1
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Recurrent Neural Networks

Recurrent Neural Networks are designed for sequential data, where the order of elements matters,
such as time series data, natural language, and speech. RNNs introduce recurrent connections to
capture dependencies across time steps. RNNs can be computationally demanding, especially when
processing long sequences or using deep RNN architectures. The recurrent nature of RNNs makes
them less efficient in terms of parallelization compared to feedforward networks. Deploying RNNs
on microcontrollers for tasks like real-time natural language processing or speech recognition can be
challenging due to their computational demands. Lightweight variants like GRU (Gated Recurrent
Unit) and LSTM (Long Short-Term Memory) can be more suitable for TinyML when computational
efficiency is a priority.

4.1.3 Building blocks of Convolutional Kernels

Convolutional kernels consist of various different types of convolutions, which have been derived from
the original convolution operation, in order to achieve better performance in different metrics (com-
putational cost, accuracy, etc.)

The convolution operation

In the context of neural network training, a convolution refers to a process that reduces the number
of model parameters needed for learning by condensing image information into fewer pixels. Convolu-
tions involve aggregating data from nearby pixels, effectively summarizing them into a more compact
representation. This summarization is achieved by moving a kernel or filter across an image, producing
an output for each position it covers.

A convolutional kernel is represented as an n x n matrix of numerical values. Each element within
the kernel matrix is multiplied with the corresponding pixel value it aligns with in an image. These
products are then summed up to produce a single output value. Subsequently, the kernel is shifted
to a new position in the image, and this process is iterated. The ideal values for a kernel matrix
are acquired through model training. For optimal performance, a model learns values for a kernel
that capture essential information within an image, even though this information may not be directly
interpretable by humans. Examples of such information that kernels in Convolutional Neural Networks
(CNNs) can extract include specific objects, structural patterns, or prominent outlines within an image.

Types of convolution
There are 3 main variants of the convolutional kernel:

e Regular convolutions: Standard convolutional kernels are the foundation of Convolutional
Neural Networks (CNNs). They consist of learnable filters that slide across the entire input
volume. Each filter captures spatial hierarchies of features by considering all input channels si-
multaneously. These kernels are effective at detecting complex patterns and interactions between
features in the data. However, they come at a computational cost, as they involve a large number
of parameters and operations. Standard convolutions are commonly used in the early layers of
CNNs to capture low-level features like edges and textures.

¢ Pointwise Convolutions (1x1 Convolutions): Pointwise convolutions, often referred to as
1x1 convolutions, are a crucial component in optimizing the computational efficiency of CNN
architectures. These convolutions use 1x1-sized filters to process each element within a feature
map independently. While they may seem trivial due to their size, pointwise convolutions play a
significant role in adjusting the dimensionality of feature maps. They are employed to reduce the
number of channels while preserving essential features. This reduction in channel dimensions not
only reduces computational complexity but also facilitates model compression and acceleration,
making them particularly valuable in scenarios with limited computational resources.
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Figure 4.1.2: MobilenetV2 architecture.

e Depthwise Convolutions: Depthwise convolutions represent another key optimization tech-
nique for CNNs, especially in resource-constrained environments like mobile and embedded de-
vices. Unlike standard convolutions, depthwise convolutions perform spatial convolution sepa-
rately for each input channel. This means that for each input channel, a separate set of filters
is applied, leading to a significant reduction in both parameters and computational operations.
Depthwise convolutions are commonly followed by pointwise convolutions (known as depthwise
separable convolutions) to capture inter-channel interactions, further reducing the computational
load. These convolutions are particularly well-suited for tasks that require high computational
efficiency, such as real-time image processing and object detection on edge devices.

4.1.4 MobilenetV2 Architecture

One of the most popular CNN architectures, the MobileNet network, as well as the improved Mo-
bilenet V2 network, exploit pointwise and depthwise convolutions in order to achieve efficient inference
for vision-related tasks. The architecture and computational cost of such networks is described below.

Standard convolution

The standard convolution process involves taking an input tensor Li with dimensions hi x wi x di and
applying a convolutional kernel K, which is of size k x k x di x dj, resulting in an output tensor Lj with
dimensions hi x wi x dj. Standard convolutional layers come with a computational cost determined
by hi x wi x di x dj x k x k.

Depthwise separable convolutions

Depthwise Separable Convolutions are a fundamental component in the construction of highly efficient
neural network architectures.

The core concept involves replacing a traditional convolutional operation with a more efficient alter-
native that divides the convolution into two separate stages. Firstly, the depthwise convolution layer
applies lightweight filtering to the input data, accomplishing this by individually applying a single
convolutional filter to each input channel. Secondly, the pointwise convolution layer, with a 1 x 1
kernel, is responsible for creating fresh features by performing linear combinations across the input
channels.
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Depthwise separable convolutions illustrate similar accuracy to standard convolutions, with reduced
computational cost. More specifically, a depthwise separable convolution has a cost of:

hi * W; * dl(k’2 + dj)

It is worth noting that these convolutions reduce the computational cost by a factor of k2 [45].

Linear Bottlenecks

Consider the context of a deep neural network comprising n layers, each characterized by an activation
tensor of dimensions h;w;d;. These are considered to be groups of h;w; pixels, each with d; dimensions.

The concept of a "manifold of interest" in a given layer implies that the set of activations at that
particular layer can be construed as a structured entity. These manifolds can be projected onto
lower-dimensional spaces. When examining the "d-channel pixels," of a deep convolutional layer, the
information in these channels can be simplifies by projection into lower dimensional spaces [46].

While this efficiency optimization is utilized in previous works, such as MobilenetV1 [46], it is subject
to various constraints.. Notably, deep convolutional neural networks incorporate nonlinear transforma-
tions, such as the Rectified Linear Unit (ReLU). In contrast to linear transformations that don’t have
dimensionality constraints, ReLLU introduces various complexities. For instance, applying ReLU to a
one-dimensional line yields a "ray," whereas its application in an R"™ space (an n-dimensional space)
yields a non linear solution[45].

Essentially, it can be observed that deep networks can act similarly to linear classifiers within the
domain of non-zero volume in the output space [45].

Conversely, when ReLLU reduces the dimensionality of a channel, which results in setting certain values
to zero, this unavoidably results in information loss within that channel. However, when multiple chan-
nels exist, and there exists a structure (as described above) within the activation manifold, information
preservation can potentially be conserved within other channels.

Two notable conclusions can be reduced from the definitions above:

e When the manifold of interest retains a non-zero volume following a ReLU transformation, it
corresponds to a linear transformation.

e ReLU possesses the capability to preserve comprehensive information pertaining to the input
manifold, but only under the condition that the input manifold resides within a low-dimensional
subspace of the input space.

These observations indicate that neural network architecture could be improved by integrating linear
bottleneck layers into convolutional blocks.

Henceforth in this thesis, the "expansion ratio" is defined as the ratio between the size of the input
bottleneck and the inner size.

For a block with dimensions hw, an expansion factor of ¢, and a kernel size of k, having dy input channels
and dj output channels, the total number of multiply-add operations required can be expressed as
hxw* dg * t * (do + k? + djy). While this expression includes an additional term compared to the
standard approach due to an extra 11 convolution, the nature of the MobilenetV2 networks typically
utilizes smaller input and output dimensions.

The MobilenetV2 architecture is customized to fit various performance requirements. This is achieved
by employing adjustable hyperparameters (the input image resolution and width multiplier). These
hyperparameters can be fine-tuned based on the desired trade-offs between accuracy and perfor-
mance[45].
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4.2 Dynamic Voltage Frequency Scaling

The burgeoning field of edge artificial intelligence (AI) has sparked many research endeavors aimed at
investigating and optimizing power efficiency in edge devices. Over the past several decades, research
has prominently featured techniques such as idling exploitation, low-power operating systems [47],
methodologies dedicated to low-power design for reconfigurable devices [48], and dynamic voltage
frequency scaling. These methodologies collectively represent a multifaceted approach to mitigating
the power consumption challenges associated with edge Al deployment.

In particular, idling exploitation strategies involve the useful utilization of idle states in hardware
components, allowing devices to temporarily enter low-power modes when computational demands are
minimal. Low-power operating systems, tailored to the constraints of edge devices, facilitate energy-
efficient task scheduling and resource management. Concurrently, methodologies for low-power design
in reconfigurable devices seek to optimize the energy footprint of programmable logic, making them
amenable to Al workloads at the edge. Furthermore, dynamic voltage frequency scaling (DVFS)
techniques enable real-time adjustments to the operating voltage and clock frequencies of processors,
striking an equilibrium between performance requirements and energy conservation.

At the heart of DVFS lies a fundamental relationship between voltage (V) and clock frequency (F) in
microelectronic devices. This relationship can be expressed by the following equation:

P=CxV%xF
Where:
e P is the power consumption.
e C denotes the capacitance of the device.
e V is the supply voltage.
e F represents the clock frequency.
Therefore, by reducing either the voltage or frequency, considerable power savings can be achieved.

When DVEFS is applied in the context of a CPU, the CPU clock frequency is scaled, in order to
reduce power consumption. In tandem to the frequency modification, the voltage regulator and the
flash memory wait states are modified in order to maximize the energy gain and ensure consistent
operation.

DVFS approaches often exploit processor idling in order to select regions where the frequency is scaled
down. More specifically, regions where the processor is idle and waiting for the external memories are
exploited, in order to obtain optimal energy consumption with negligible performance degradation.
This methodology is often referred to as Decoupled Access-Execute [28].

4.3 Optimization - Pareto optimality

Multiobjective optimization problems are characterized by increased difficulty, as there is no unique
solution; rather, there is a set of acceptable trade-off optimal solutions. This set is called Pareto front
[49]. Examples of pareto frontiers are illustrated in Fig. 4.3.1.

Pareto Dominance

A solution is considered to have dominance over another solution when it fulfills the following two
criteria:

e The objective values of the first solution are at least as good as those of the second solution in
all objectives. In simpler terms, for this two-objective scenario, Solution A performs as well as
or better than Solution B in every objective, denoted as f(A) < f(B) for all objectives.
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Figure 4.3.1: Examples of pareto frontiers for different optimization use-cases[49].

e The objective values of the first solution are clearly superior to the objective values of the second
solution in at least one objective. In this context, for this two-objective situation, Solution A
outperforms Solution B in at least one objective, denoted as f(A) < f(B) for at least one objective.

If either of these two conditions is not met, it cannot be stated that Solution A dominates Solution
B. However, when both criteria are satisfied, it can be asserted that Solution A holds dominance over
Solution B. The pareto frontier is formed by solutions that are non-dominated across the design space.
An example of pareto domination concepts is illustrated in Fig.4.3.2

4.4 Optimization algorithms - Knapsack

The Knapsack Problem is a classic optimization problem that can be encountered in various real-world
scenarios. At its core, it involves making choices under constraints to maximize a certain objective.
Each item in the knapsack optimization problem is characterized by two main metrics: the cost metric
(often referred to as the item’s weight) and the value, which indicates the reward of including the item.
In the context of the Knapsack Problem, the algorithm gets input as a set of items, each with its own
weight and value, and a knapsack with a limited capacity. The goal is to decide which items to include
in the knapsack to maximize the total value of the selected items, while ensuring that the combined
weight of the items does not exceed the knapsack’s capacity.

The objective function of the knapsack problem can be formed as follows:
mazimize Y. WL
subject to Y i wix; < W

where w; indicates the weight of item i, u; indicates the item value, z; indicates the number number
of items i to include and W is the maximum weight capacity.
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Figure 4.3.2: Pareto domination example.

When the knapsack variation only enables selection of one item i, the value z; is constrained to {0,1}

It is worth noting that the knapsack optimization problem is NP-complete, meaning that there is no
polynomial time algorithm for the general case of the algorithm. There are many approaches to solving
the knapsack optimisation problem more efficiently, such as dynamic programming, branch and bound
and optimization algorithms.

In the dynamic programming approach, an adjacency matrix is used to store the optimal solutions.
The matrix equation can be expressed as:

cli,w] = max{cfi — 1,w — w[i]] + P[i]}

where w(i] is the weight of item i and P[i] is the value of item i.

4.4.1 Multiple Choice Knapsack

The Multiple-Choice Knapsack Problem (MCKP) [35], extends the classical knapsack problem by
categorizing items into distinct classes. In this formulation, the binary decision of including an item is
replaced by the selection of precisely one item from each class and the goal is to maximize the value of
items included in the knapsack while not exceeding its size. The problem can be formulated as follows:

minimize E =YY Efay, (4.4.1)
k=1j€EPy
st. T= Z Z t?:vkj < QoS (4.4.2)
k=1jEP,
da=1, k=1,..,n (4.4.3)
JEP
zr; €0,1,  k=1,..,n,j € Py (4.4.4)
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4.5

TinyML

TinyML, short for Tiny Machine Learning, represents a groundbreaking intersection of two technolo-

gies:

machine learning and resource-constrained embedded systems. It refers to the deployment of

machine learning models on tiny, resource-constrained devices such as microcontrollers, sensors, and
other constrained hardware. TinyML is expected to revolutionize various industries by enabling in-
telligence at the edge, where data is generated, without relying on a constant internet connection or
powerful cloud servers.

The main components that need to be taken into account when designing tinyML systems are the
following:

Hardware: TinyML is deployed on microcontrollers, sensors, and other embedded hardware.
These devices have limited processing power, memory, and energy resources, making it challeng-
ing to deploy traditional machine learning models. Many tinyML works also explore solutions
that are architecture and hardware-specific, making the hardware an essential parameter to con-
sider for tinyML.

Inference Engine: The inference engine is responsible for running machine learning models
on edge devices. It optimizes model execution for minimal computational and power consump-
tion. Current inference engines consist of hardware-efficient kernels that exploit the underlying
hardware in order to push the state-of-the-art boundaries on latency.

Machine Learning Models: TinyML employs compact, optimized machine learning models.
These models are specifically designed to run efficiently on resource-constrained hardware. The
models are either optimized post-training using techniques like quantization, pruning, and model
distillation or before they are trained, with methodologies such as Neural Architecture Search,
depending on specific problem constraints.

Data Acquisition: Edge devices gather data from sensors or other sources. This data serves as
input for the machine learning model. This involves optimizing the latency and energy consump-
tion of the peripherals as well as the data buses, often in conjunction with the main machine
learning workloads.

The elements mentioned above constitute the main focus point for tinyML research. It is worth
discussing the main constraints that are encountered when these elements need to be optimized. The
most notable ones include:

Resource Constraints: Developing models that can operate within the limited memory and pro-
cessing power of edge devices requires careful optimization and trade-offs. Modern MCUs are
extremely constrained in terms of RAM and Flash memories, whereas state-of-the-art machine
learning models have been exponentially scaling in size. This calls for a different approach to
machine learning deployments in tinyML devices.

Variance in sensor readings: TinyML sensors are typically lower resolution, making their perfor-
mance degrade when the model has been trained on different, less constrained sensors. Training
neural networks online in such devices has proved to be extremely challenging, with few works
attempting limited, on-device training that fine-tunes the network hanlabtraining.

Energy Efficiency: Managing power consumption is critical for battery-operated devices, making
efficient model design and inference essential.

Security: Protecting TinyML models from tampering or reverse engineering is essential, partic-
ularly in safety-critical applications.

While tinyML has many challenges, it also presents significant benefits that cloud computing often
fails to deliver. These advantages include:

Privacy and Data Localization: With TinyML, data is preserved on the edge device, enhancing
privacy and reducing the risk of data breaches. The lack of network connection also makes tinyML
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robust to numerous network-based cyber attacks. This is especially critical in applications where
data security and compliance are paramount such as biomedical use-cases.

e Low Latency: TinyML enables real-time processing of data, making it ideal for applications that
require quick decision-making. This includes robotics, autonomous systems, and applications in
industrial automation.

e Offline Functionality: Many TinyML applications continue to function even when there is no
internet connection, providing uninterrupted service in remote or disconnected environments.

4.5.1 CMSIS-NN

Deploying neural networks on resource-constrained platforms, such as Arm Cortex-M CPUs, presents
unique challenges due to limited computational resources and memory. Many works have focused on
architecture specific code optimizations. The most notable ones include ARM’s CMSIS-NN [50], mi-
croTVM [51], Microsoft’s NNI [13]. CMSIS-NN focuses on the most popular neural network kernels,
as well as utility functions and performs optimizations while taking into consideration the underlying
ARM architecture. The framework consists of two main components: The first component, named
NNFunctions, where most neural network kernels are implemented. These kernels are fully paramet-
ric, making them easy to integrate with various frameworks, such as TFLM[52] or Tiny Engine [50]
The most notable ones include convolution, depthwise separable convolution, fully-connected, pooling,
and activation. NNSupportFunctions, where utility functions such as data conversion and activation
function tables are implemented. These utility functions unlock important functionalities such as the
capability to deploy more complex neural network models (Long Short Term Memory, Gate Recurrent
Units). At last, the kernel generation process is optimized. For a given neural network, the optimal
kernels are selected and used to perform inference.

Quantization

Traditionally, neural network models are trained using 32-bit floating-point data representation, which
demands high precision. However, during inference, the high computational cost of floating-point
operations and the memory overhead for storing weights and activations can be prohibitive. Most
tinyML-optimized kernels utilize quantization in order to counter this problem, thus reducing model
size and improving efficiency. This approach is preferred for ARM Cortex M CPUs, as it also enables
faster computation through Single Instruction Multiple Data (SIMD) operations.

The quantization granularity is determined by the ARM instruction set, optimized in the CMSIS frame-
work, which supports 8-bit and 16-bit quantized datatypes. These datatypes are declared through
separate datatype instructions, namely q7_t (int8), ql15_t (int16), and q31_t (int32). Quan-
tization is performed in a fixed-point format with power-of-two scaling, represented as A * 2™. This
quantization format also enables the use of lookup tables for implementing activation functions and
makes dequantization between layers redundant.

Efficient kernel implementation in CMSIS-NN

As mentioned previously, CMSIS-NN utilizes SIMD instructions to perform efficient computation.
More specifically 16-bit Multiply and Accumulate operations are performed using specialised instruc-
tions such as SMLAD. These instructions are the building block of multiplication operations, which are
the main bottleneck for neural network computation.

The support functions in CMSIS-NN mostly implement data reordering and in-register operations
in order to implement efficient basic matrix multiplication and transformations between quantized
datatypes.

The matrix multiplication functions, implemented in NNFunctions, utilize the basic multiplication
implemented in NNSupportFunctions, in order to optimize the in terms of data reuse. The implemen-
tation, based on CMSIS mat_mult kernels, employs 2x2 kernels to maximize data reuse and reduce
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Figure 4.5.1: Matrix multiplication example with CMSIS-NN [50].
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Figure 4.5.2: Example of an im2col transformation [50].

load instructions. These functions also include optimized kernels for matrix vector multiplications. An
example of CMSIS matrix multiplication is illustrated in 4.5.1

The convolution operations are based on the image-to-column (im2col) transformation (Fig. 4.5.2).
This transformation performs input reordering and expansion, in order to utilize Single Instruction Mul-
tiple Data (SIMD) instructions to perform efficient convolution. Since input expansion utilizes memory
resources which are limited in microcontrollers, CMSIS-NN performs partial im2col, only expanding
two columus at a time. In addition, data format optimality is utilized (Channel-Width-Height (CHW)
and Height-Width-Channel (HWC)), and efficient HWC convolutional kernels are implemented.

4.5.2 TinyEngine

Many works have based their implementations on the CMSIS-NN kernels, and added additional op-
timization in order to improve performance. The TinyEngine framework combines an optimized,
CMSIS-NN based inference engine with a Neural Architecture Search Framework, that generates op-
timal model architectures for the given engine. TinyEngine aims to make large scale detection models
deployable on resource constrained MCUs.

TinyNAS employs a two-stage neural architecture search (NAS) approach capable of accommodating
the diverse memory constraints of various microcontrollers. It automates the search space optimization
process by adjusting input resolution and model width to fit specific resource constraints. TinyNAS
also performs neural architecture search within the optimized space, resulting in improved model
accuracy.

TinyEngine, the memory-efficient inference library, eliminates unnecessary memory overhead and al-
lows for a larger model capacity within the given memory constraints. While most existing inference
libraries rely on interpreters, TinyEngine adopts code generator-based compilation to eliminate the in-
terpretation overhead and free up memory for larger models. This approach reduces memory usage and
improves inference efficiency. Furthermore, TinyEngine employs model-adaptive memory scheduling,
optimizing memory allocation based on model-level statistics. This enhances input data reuse and re-
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Figure 4.5.3: TinyEngine and MCUnet architecture[22].
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Figure 4.5.4: In place depthwise convolution [22].

duces runtime overheads, such as memory fragmentation and data movement. Specialized computation
kernel optimizations further improve inference efficiency.

An overview of the framework’s architecture is illustrated in Fig 4.5.3. Some of the main code opti-
mizations implemented in TinyEngine include:

1.

In-place depth-wise convolution: This technique replaces input data with intermediate or
output data, thus performing operations without additional memory overhead. It’s used to
reduce the maximum SRAM memory requirement during processing.

Operator fusion: Performance improvements are achieved by combining different operators in
a way that they can be executed together without the need to access memory repeatedly. This
utilizes data reuse, thus improving efficiency.

Patch-based inference: TinyEngine adopts a strategy where it focuses on smaller sections of
the feature map during inference, processing data in a patch-by-patch manner. The input data
is processed in patches and the features for each patch are extracted with less memory overhead.
The patches are then processed to extract correlation feature between them. This approach
effectively reduces the amount of memory needed for large layers.

HWC to CHW weight format transformation: This technique transforms the format of
weights in a way that enhances the efficiency of cache usage (useful for in-place depth-wise
convolution) as well as SIMD operations in convolution, which require a specific data format.

SIMD (Single instruction, multiple data) instructions.

GEMM operations: It’s a method for computing convolution operations using general matrix
multiplication (GEMM) operations, optimizing the process.

Loop reordering: This technique involves rearranging the sequence of loops within a program
to enhance its execution speed, by facilitating cache and register file hits.

Loop unrolling: It’s a method that speeds up program execution but increases binary size,
representing a trade-off between space and time efficiency.

Loop tiling: Loop tiling partitions a loop’s iteration space into smaller blocks or chunks, re-
ducing memory access latency and ensuring that data used in a loop remains in the cache until
it’s needed again.
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Figure 4.5.5: Example of patch-based inference [22].
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Figure 4.6.1: ARM Cortex MO architecture overview

4.6 ARM Cortex M Architecture

The deployments in this thesis are performed on the ARM Cortex M series of CPUs which are integrated
in the STM32 family.

4.6.1 ARM Cortex MO

The Arm Cortex-MO is the smallest Arm processor available. It is characterized by a very small silicon
area, low hardware capabilities, low power and minimal code footprint. Suitable for analog and mixed
signal devices, it features 8-bit and 16-bit precision.

MO-based microcontrollers are widely adopted and offer significant advantages in entry-level applica-
tions. They meet the computing performance needs, and their fundamental design allows them to
achieve exceptionally low power consumption, particularly in applications where minimizing the num-
ber of switching gates is essential. The Cortex®MO core helps reduce electromagnetic interference
(EMI) and meets performance requirements by optimizing clock speed.

e Versatile Core Usage: The compact size of the core allows it to serve as either a standalone core
in small devices or as an additional embedded companion core when specific hardware isolation or
task separation is needed. The core size in these CPUs as small as 0.03mm? in 90nm lithography.

e Dynamic Power Range: The power consumption of the core varies from 5 to 50uW per MHz,
depending on the manufacturing technology used. However, it’s crucial to note that the core’s
power consumption is just one part of the overall device power profile.

e Thumb Instruction Set: The Thumb instruction set, which is a subset of the Cortex-M family,
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Figure 4.6.2: An overview of the ARM Cortex M3 architecture.

simplifies the scalability of the product portfolio by enabling the reuse of validated software
components across various Cortex-M products.

The ARM Cortex M0 CPUs are typically integrated into the STM32F0 family of MCUs.

4.6.2 ARM Cortex M3

The 32-bit Arm Cortex-M3 core processor is suitable for high-performance, real-time processing and
can handle complex tasks. Any Arm Cortex-M3 microcontroller offers scalability combined with an
optimal trade-off between performance and cost.

The main features of the M3 series include:

e Compact Size: The compact size of the core enables its utilization either as a sole core in
diminutive devices or as an extra embedded companion core in situations necessitating precise
hardware isolation or task segregation.

e Dynamic power consumption (10 to 150uW/MHz)

e Memory Protection Unit (MPU): The Memory Protection Unit (MPU) manages the CPU’s
access to the memory. It ensures that a task does not accidentally corrupt the memory or the
resources used by other active tasks. The MPU is usually controlled by a Real-Time Operating
System (RTOS).

The ARM Cortex M3 cores are integrated in STM32L1, STM32F1 and STM32F2 MCU families.

4.6.3 ARM Cortex M33

The Arm Cortex-M33 core processor is tailored for [oT and embedded applications demanding effective
security or digital signal management. This processor includes a digital signal processing extension
(DSP), TrustZone security for robust hardware-based isolation, memory-protection units (MPUs), and
a floating-point unit (FPU).

In terms of performance, the Cortex-M33 outpaces the Cortex-M4 by approximately 20%, boasting a
remarkable 1.5 DMIPS/MHz and 4.09 CoreMark/MHz.
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Figure 4.6.3: An overview of the ARM Cortex M33 architecture

The main benefits of the M33 series include:

e Armv8-M architecture: The Cortex-M33 leverages the Armv8-M architecture, which incorporates
programmer models optimized for swift processing with minimal latency. Additionally, it offers
the flexibility to integrate a memory protection unit (MPU) based on the protected memory
system architecture (PMSA).

e Lower design costs and easier system design: The Cortex-M33 includes digital signal processing
(DSP), single instruction on multiple data (SIMD) and MAC instructions. It also included
CMSIS support, simplifying interaction with the peripherals.

e Large scope of applications: Cortex-M33 core includes low-latency interrupt handling, integrated
sleep modes, debug and trace capabilities

The Arm Cortex M33 CPUs are included in the STM32L5, STM32U5, STM32H5 and STM32WBA
boards.

4.6.4 ARM Cortex M4
The Cortex-M4 core achieves 1.25 DMIPS/MHz and 3.42 CoreMark/MHz thread performance.
The main highlights of this CPU include:

e Armv7E-M architecture

e Digital Signal Processing

e Scalability and power efficiency

e Dual core processing options in big. LITTLE architectures, either as the main or as the secondary
core

4.6.5 ARM Cortex M7
The Cortex-M7 core achieves 2.14 DMIPS/MHz and a 5.01 CoreMark/MHz thread performance.
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The main advantages of the M7 series include:
e A 6-stage superscalar pipeline with branch prediction, combined with instruction and data caches

e High CPU frequency up to 216MHz

Instruction and data Tightly Coupled Memories (TCM) allowing 0-wait execution
Double precision FPU
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Chapter 5

Clocking Scheme of STM32
Microcontrollers

5.1

Properties of STM32 MCUs

The STM32 Nucleo boards are equipped with 32-bit ARM Cortex-M microcontrollers (MCUs) along
with Instruction and Data caches, as well as integrated Flash and SRAM memories. For the purposes
of this thesis, emphasis will be placed on the STM32F7 series, and as such, the following specifications
will pertain primarily to these boards.

5.1.1 F7 Architecture
The STM32F7 Nucleo family of MCUs have the following defining characteristics:

32-bit MCU

Floating point unit

462 DMIPS computing capabilities
up to 2 MB flash memory

512 KB RAM memory

16 KB instruction TCM RAM

4 KB backup

DSP instruction support

5.1.2 Power efficiency

The STM32 boards include native support for various low power modes. Each mode utilizes voltage
regulation or circuit gating. The STM32 devices support three low power modes:

Sleep mode
When sleep mode is enabled, the CPU is turned off, while the rest of the peripherals continue to
operate. The CPU wakes up when an interrupt is issued.

Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of SRAM
and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE
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ARM® Cortex®-M7

Figure 5.1.1: Arm Cortex M7 CPU architecture.

crystal oscillators are disabled. The voltage regulator can be put either in main regulator mode
(MR) or in low-power mode (LPR).

e Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC
and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM
and register contents are lost except for registers in the backup domain and the backup SRAM
when selected.

5.2 Clocking scheme

The clocking system of STM32 microcontrollers is managed by the Reset and Clock Control (RCC)
peripheral. The RCC provides a wide range of clocks and clock sources which cater to various system
requirements, e.g., peripheral Bus and UART clocks [34]. In this work, we focus on specific clocks
and settings, which determine the frequency of the system clock (SYSCLK) of the MCU, responsible for
driving the CPU core, memory, and some peripheral modules. Figure 5.2.1 illustrates the simplified
circuit diagram of how the SYSCLK is determined. Specifically, the output frequency of the clock can
be configured by the following clock sources and settings:

High-Speed Internal (HSI) Clock: The HSI clock source is an internal oscillator within the MCU.
The HSI clock operates at 16MHz by default. SYSCLK can be derived directly from HSI or through
the PLL when HSI is selected as the PLL input source.

High-Speed External (HSE) Clock: The HSE clock source is an external clock provided by an
external crystal oscillator or clock generator. Depending on the MCU, the HSE clock can be config-
ured to run at various frequencies, with our examined board supporting a range from 1 to 50MHz.
Similar to the HSI, the SYSCLK can be derived directly from HSE or through the PLL when HSE is
selected as the PLL input.

Phase-Locked Loop (PLL): The PLL is a hardware module which allows to multiply the frequency
of the selected input clock source (either HSI or HSE) by a programmable factor to generate a
higher-frequency output. As shown in Fig. 5.2.1, this programmable factor is determined by input
and output dividers within the PLL circuit, which simplify the PLL design and achieve stability
requirements within a wider range of input and output frequencies [34]. Specifically, the frequency
of the system clock can be calculated by the following equation:
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Acronym Short Description

HSI High Speed Internal clock. Used as an intermediate clock to continue operation
when the PLL is off

HSE High Speed External clock

PLL Phase Locked Loop. Consists of PLLM, PLLN, PLLP, PLLQ parameters used to
adjust the input frequency

DAE Decoupled Access Execution

Granularity N Number of buffers (N) to be decoupled

Table 5.1: Acronym description
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Figure 5.2.1: Simplified circuit diagram for clock configuration through HSE and PLL parameters.

PLLM

PLLP

PLLN

— (5.2.1)
PLLM x PLLP

Fsyserx = F{HSE,HSI} *

where, PLLM is a factor that determines how much the input frequency is multiplied before it reaches
the Voltage-Controlled Oscillator (VCO) in the PLL; PLLN is the multiplication factor for the VCO input
frequency to determine the VCO output frequency, which is then provided as feedback to the Phase
Comparator, aiming to provide input/output synchronization. The loop filter is utilized in order to
ensure system stability and mitigate ripple effects during clock startup; Last, PLLP determines the
division factor to obtain the final SYSCLK frequency.

An overview of the acronyms described above is provided in Table 5.1.

5.2.1 Clock switching methodology

In order to perform Dynamic Voltage Frequency Scaling, the register configuration of the STM32
MCUs needs to be examined.

Reset and clock control registers

The Reset and Clock control peripheral consists of registers used by the STM32 Hardware Abstraction
Layer and the STM32 Low Layer libraries, to configure the clock properties at board startup time. The
board starts using the default HSI configuration at 16MHz. The HAL auto-generated code performs
alterations to the RCC registers in order to configure the clock source, parameters and output frequency
according to the user selection (usually performed through the STM32 Cube IDE clock configuration
GUI).

The RCC registers can be exploited to alter the clock properties at runtime, using software commands.
The outline of the clock switching methodology is as follows

1. PLL to HSE switching
When the low frequency is < 50 MHz, the High Speed External Clock can be utilized as a direct
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output clock source, in order to reduce switching overhead induced by the PLL startup time

The RCC->CFGR clock configuration register is modified by clearing the previous
RCC_CFGR_SW mask and updating it with the RCC_CFGR_SW_HSE flag. This changes the
clock source to the High Speed External clock.

The RCC->CFGR value is read until the necessary flags have been set, in order to avoid
out-of-order execution due to compiler optimizations.

The RCC->CR clock control register is modified, in order to disable the PLL.

Overdrive mode and overdrive switching, used to increase performance at high frequencies,
are disabled by modifying the PWR->CR1 register flags.

The voltage scale is adjusted by modifying the PWR->CR1 register.

The flash wait states are adjusted according to the output frequency, using the FLASH->ACR
register flags.

The SysTick (which relates to the timer synchronization) and SysClk (which records the
frequency of the system clock) variables are updated accordingly

2. PLL to HSI switching

The RCC->CFGR register is modified by clearing the previous RCC_CFGR_SW mask and up-
dating it with the RCC_CFGR_SW_HSI flag. This changes the clock source to the High Speed
Internal clock.

The RCC->CFGR value is read until the switch is complete.
The PLL is disabled.
Overdrive mode and overdrive switching are disabled.

The SysTick, flash wait states and voltage scale are adjusted as previously.

3. PLL to PLL switching
When the high and low frequency are both > 50MHz, the phase locked loop needs to be utilized
for both output frequencies. The clock switch can be described as follows:

The clock source is switched to the High Speed External clock, in order to continue op-
eration when disabling the PLL.

The PLL is disabled.

The flash wait states are modified.

The new PLL parameters are selected and passed as flags in the RCC- >PLLCFGR
The PLL is enabled.

Due to the high startup time of the PLL circuit, the processor polls the dedicated PLL_RDY
flag, to determine whether the clock source can be changed to the PLL.

The clock source is changed to the PLL, as described above.

The SysTick, flash wait states and voltage scale are adjusted.

5.2.2 Considerations of SYSCLK Frequency Scaling

Determining the frequency of the system’s clock, Fsyscrx, can be achieved in different ways (e.g., directly
through the HSI/HSE clock sources or through the PLL circuit). The STM32 boards provide multiplexer
selection of the input clock source, as well as the PLL input clock source. It should be noted that
each of these selection affect crucial system metrics for DVFS, such as the power consumption and
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Figure 5.2.2: Clock Frequency and Power for different HSE, PLLM and PLLN configurations

clock startup time. Each of the option are examined and their results are investigated in the following
sections.

It has been established that choosing input clock sources for both the output clock and the PLL
involves important tradeoffs. To examine the impact of each alternative on the operational efficiency
and power consumption of the MCU, we develop and execute a specialized microbenchmark, designed
to execute repetitive addition operations within a loop. We focus our exploration specifically on the
HSE and PLL parameters. The HSI clock source yields higher power consumption compared to the
HSE and is also prone to drift and jitter, thus, providing less stability and precision [34]. It has also
been noted [53] has a higher startup time than the High Speed External clock. Therefore, it would
be suboptimal when selected as a clock source. Furthermore the HSI clock operates at a constant
frequency (typically 8 or 16MHz), making it less versatile for DVFS. At last, selecting the HSI as
intermediate clock when performing PLL-to-PLL switches would also be suboptimal, as the 16MHz
frequency leads to unneccessary idling during clock switching. We set the value of the PLLP equal to 2,
which is the minimum possible value for the divider, since for the same Fgyscrx, selecting a higher PLLP
value leads to a higher required VCO frequency and, thus, higher power consumption (as evident from
Fig. 5.2.1 and Eq. 5.2.1). It is worth noting that setting the PLLP value to the minimum compatible
value for the desired output frequency is preferred, as using a divider after the PLL circuit essentially
"wastes" PLL energy, as the previous parameters have been set to higher values in order to generate
a higher frequency as the PLLP input.

Power consumption of iso-frequency configurations: Figure 5.2.2 illustrates the impact of dif-
ferent HSE, PLLM and PLLN configurations on the power consumption of the board for different SYSCLK
frequencies. Two major observations are derived from Fig. 5.2.2: (i) the same output frequency can be
generated through different HSE, PLLM and PLLN combinations, however (ii) the selected configuration
strongly affects the power consumption on the STM32 MCU. More specifically, the HSE input value
has an inverse relationship with the power consumption, provided that the output frequency is constant
and identical in both of the configurations. Furthermore, according to the STM32 dataset, the value
of PLLN should be minimized in order to achieve the minimal VCO voltage. However, the difference
seems to be minor in terms of power consumption 5.2.2. It should be noted that despite the minor
variance in power consumption, lower PLLN values also yield faster clock startup time, as the PLL
lock time is reduced ?7?7. Thus, we select the smallest possible values for the PLLN when considering
clock parameters for a desired DVFS output frequency. For instance, generating a set SYSCLK output
frequency with different PLL parameters leads to 50% power gap. The combinations that minimize
the power consumption are selected for the target SYSCLK. Different combinations may generate the
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same output frequency and power consumption, e.g. {50,25,100} and {50, 50, 200}, thus further inves-
tigation is required for selecting the optimal combination. Similar observations are derived for other
SYSCLK configurations.

Switching between different SYSCLK frequencies: Most clock trees integrate input and output
dividers within their PLL circuit, in order to simplify the PLL design and achieve stability requirements
within a wider range of input and output frequencies. This extended PLL circuit includes input
(PLLM) and output (PLLP) dividers. The objective of this framework is to optimize these parameters
in regards to power consumption and startup time, as well as modify them at runtime to achieve the
goal output frequencies.

Generating the SYSCLK frequency using the PLL module introduces a notable switching overhead (=~
200usec), since, when modifying the PLL parameters, the circuit has to be restarted, resulting in a
substantial delay per switch. The PLL circuit is an analog circuit that needs to be synchronized (also
referred do as the PLL "lock"). Before the output frequency can be generated and used to operate the
CPU core. The PLL is considered unstable before the lock has been achieved, therefore intermittent
switching to other stable clock sources needs to be performed in order to continue operation. This
causes significant overhead, making the change of PLL parameters a costly design option for DVFS.

On the other hand, switching from the PLL frequency to the HSE clock occurs almost instantly, due
to the direct wiring of the HSE with the SYSCLK (Fig. 5.2.1). Thus, for high-to-low (i.e. < 50M H?z))
frequency switches, opting for the HSE clock over re-calibrating the PLL parameters can be beneficial.
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Decoupled access execute

One way to address the substantial overhead associated with clock switching is to implement
Dynamic Voltage and Frequency Scaling (DVFS) at a level of granularity that is more detailed
than the entire program but coarser than just a few individual instructions. By splitting program
execution into distinct phases characterized by consistent memory behavior, it becomes possible to
predict and set the optimal operating frequency for each phase separately, as demonstrated in reference
[16]. The finer the segmentation, the more effectively DVFS can be utilized (although there is a
practical limit due to the latency involved in DVFS transitions, which adds overhead). Consequently,
in any execution model where memory operations closely interact with arithmetic computations, we
can anticipate harnessing only a portion of the potential benefits offered by DVFS.

To address the intricacies of this challenge, existing works [28] introduce a novel solution named
Decoupled Access Execute. This solution is coupled with DVF'S in order to maximize its’ performance
gain. Within this framework, the execution of programs is organized into a sequence of tasks, with
each task partitioned into two distinct phases: the access phase, which entails data prefetching, and
the execute phase, responsible for the core computational workload. In multi-core systems, the execute
phase is scheduled for immediate execution on the same processing core following the conclusion of the
access phase, in order to avoid cache misses. In this thesis, we focus on single core MCUs.

The central concept underlying this approach is the deliberate decoupling of data access from compu-
tational processing, affording us the capability to make independent voltage and frequency decisions
for each phase—distinguishing between the access and execute phases. This significantly reduces the
switching overhead induced by naive DVFS. An outline of this methodology is illustrated in 6.0.1
During the access phase, the primary objective is data prefetching, a process that effectively mitigates
the occurrence of cache misses during the subsequent execute phase, thereby substantially amplifying
overall performance. The access phase predominantly involves waiting for data retrieval from memory,
with a relatively minor portion of its time allocated to address computation. Consequently, it remains
relatively impervious to fluctuations in core frequency, allowing for its operation at the lower frequency
levels —a strategic power-saving measure that does not compromise performance integrity.

Conversely, the execute phase gets substantial benefits from the prefetching operations executed during
the access phase. This translates into a notable reduction in the frequency of cache misses during the
execute phase. The minimization of execution stalls during this phase aligns with the utilization of
the highest frequency setting, making it the optimal choice from the perspective of the Energy-Delay
Product (EDP).

In any execution model the main source of power inefficiency is induced by the stalls during the
memory accesses, because the processor is spending power waiting for memory. Stalls occur when
computations are unable to conceal prolonged miss penalties. By lowering the operating frequency,
the computational processes (during the memory access phase in the case of decoupled access-execute)
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Figure 6.0.1: Example of Decoupled access execution methodology.
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Figure 6.0.2: Example of DVFS stalling with and without Decoupled Access Execute[28§].

are deliberately slowed down. This deliberate slowing down allows computations to overlap more with
the miss penalty, resulting in a reduction in the duration of stalls. Although execution at the highest
frequency is optimal when it comes to execution time, it is suboptimal in terms of power efficiency due
to the processor idling at high speed while waiting for the memory elements from the RAM memory.
The goal of co-designing DAE with DVFS is to match the miss penalty to the new, lower-frequency
induced execution time, thus exploiting processor idling without causing additional execution time
overhead.

In this scenario, data prefetching is conducted into the cache during the access phase, effectively
mitigating the majority of cache misses during the subsequent execute phase due to the previously
completed prefetching. The process of decoupling enables the transformation and division of an in-
struction interval into two distinct phases: an entirely memory-bound phase (referred to as "access")
succeeded by a purely compute-bound phase (named "execute"). This separation enables the fine-
tuning of program behavior in alignment with DVFS granularity. By doing so, we can optimize the
utilization of available memory resources more effectively, adjusting the operating frequency downward
when the system is waiting for memory operations.

While current works focus their approach on parallel workloads, this thesis implements Decoupled
Access Execute on single core, single-thread sequential workloads, such as the ones encountered in
tinyML applications. In this case decoupling is performed with code transformations and no inter-core
communication takes place. The cache hierarchy discussed is also simplified compared to complex
CPUs. The boards that were evaluated contain at most Ll-caches, as well as instruction and data
caches that have not been integrated as tightly near the CPU core.
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Proposed methodology

his chapter introduces the proposed methodology for optimizing energy consumption of CNN
model inference on a STM32 MCU under various latency constraints (a.k.a. QoS).The rationale
behind this approach is that end-users often have distinct inference latency/throughput constraints
for their applications and/or even operating in the context of battery-operated far-edge MCUs. Con-
sequently, in cases where QoS requirements are less strict, Dynamic Voltage and Frequency Scaling
(DVFS) can be exploited to amplify energy efficiency, particularly in the context of battery-operated
far-edge MCUs. This is particularly true for always-on devices, where energy management techniques
need to consider an end-to-end energy efficiency strategy. Figure 7.0.1 shows an end-to-end overview
of the proposed approach. The proposed methodology consists of three distinct phases (described in
Sections 7.0.1 - 7.0.3), applicable to both unoptimized CNN models and optimized ones, e.g., models
exported from MCUNet [22]. We propose a decoupled-access execute DVFS approach and tackle the
NP-complete optimization problem of power consumption minimization, while obtaining the maxi-
mum possible performance. Our problem is formulated and solved as a Multiple Choice Knapsack
optimization problem. As input to our methodology, we provide the examined CNN.

The first step of our approach consists of the configuration of hardware-level parameters, aiming to
provide support for energy consumption optimization on the next steps. Power consumption is strongly
affected by the configuration of the system clock. This overhead can often be induced by hardware
characteristics (e.g. resistances, critical paths between the clock and the core), or clock control circuit
characteristics (e.g. the PLL consumption caused by the lock circuit). The of the output clock is
highly affected by the configuration of the High Speed External (HSE) clock and the configuration
of the Phase Locked Loop (PLL) parameters, namely PLLN,PLLM,PLLP. Aiming to derive the optimal
power consumption configuration, in our proposed methodology we perform: i) sensitivity analysis for
the configuration of the HSE and ii) exploration and optimization of the Phase Locked Loop (PLL).

The configuration of the HSE significantly affects the power consumption of corresponding MCU
device. More specifically, we perform an extensive profiling and analysis of the impact of different
HSE frequency levels on the power consumption. HSI clocks tend to have jitter, and are therefore
less preferable for latency-critical applications. The HSI clock also yields higher power consumption
than HSE. In the context of this framework, low overhead switching is implemented by utilizing
non-PLL generated low frequencies (i.e frequencies < 50M Hz). Therefore, due to its optimal power
consumption, the HSE clock is selected as a clock source for low frequency generation. The output
of the multiplexer, i.e. the HSE, is then processed with the PLL paremeters: PLLM, PLLN and
PLLP. The correlation of output frequency (F,,:) with the HSE and PLL configurations is defined in
equation 5.2.1.

Through this process, we generate a table mapping of different HSE frequency options, PLL param-
eter configurations and power consumption. Our optimization objective is to minimize the power
consumption, thus the combination that minimizes the power is selected.
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Figure 7.0.1: Overview of the proposed methodology.
Symbol Parameter Conditions Min Max Unit
. VCO freq = 192 MHz 75 200
tiock PLL lock time 4 us

VCO freq = 432 MHz 100 300

Table 7.1: Clock startup time values depending on VCO - Datasheet reference

An analysis was performed on phase-locked loop parameters for the STM32 boards. Three main
performance metrics were considered:

e Clock startup time
e PLL lock time
e PLL power consumption

The clock startup time is a metric defines as the latency required to recalibrate the board parameters
when frequency switching occurs. It encompasses the clock source switching latencyas well as the
recalibration of the flash wait states and voltage regulator. When the PLL is utilized, it also includes
the time to modify the registers that contain the PLL parameters.

The PLL lock time is the metric that quantifies the overhead induced by the analog PLL circuit, in
order to achieve synchronization. It refers to the duration it takes for a Phase-Locked Loop (PLL)
circuit to synchronize its output frequency with the desired or reference frequency. In other words, it
is the time required for the PLL to lock onto the input signal and establish a stable and consistent
output frequency that matches the input signal’s frequency,when multiplied by the PLL parameters.
During this acquisition period, the PLL circuit goes through a series of steps, including phase detec-
tion, frequency comparison, and adjustment of its internal components, such as the voltage-controlled
oscillator (VCO). The PLL acquisition time is a critical parameter in applications where precise and
stable clock synchronization is essential. Shorter acquisition times are generally desirable as they lead
to quicker signal synchronization and reduced phase jitter, ensuring accurate and efficient operation
of the PLL-controlled system.

Due to minor variance of power consumption, the optimization focused on minimizing the clock startup
time of the MCU. Sensitivity analysis was performed for different clock configurations, in regards to
total startup time and power consumption. It can be observed that for a given input and output
frequency, the parameters PLLN and PLLM, lower multiplier values and higher divider values yield
lower clock startup time.

These observations can also be partially validated through the STM32 datasheet, as referenced in
Tables 7.1, 7.2

48



Symbol Parameter Conditions Min Max Unit

; PLL power }ggOMg‘;q Co015 04
DD(PLL) consumption on VDD VCO freq —
432 My 0.45 0.75

Table 7.2: Current consumption depending on VCO value - Datasheet reference[53]

for (element = 0; element < num _elements/g; element=g) {
//LFO for memory bound operations (Sec.IIIB)
ClockSwitchHSE ();
//Memory Bound Segment: Load g channels from the feature maps and pack them into 16—bit buffers
ql5_t bufl,buf2,...,bufg = getColumns(chl,ch2,...,chg);
//HFO for computation (Sec. IIIB)
ClockSwitchPLL (PLLM, PLLN) ;
// Compute Bound Segment: Perform matriz multiplication for each column

out = matmul(kernel, bufl, xxargs);
out = matmul(kernel, buf2, xxargs);
out = matmul(kernel, bufg, xxargs);

}

Listing 7.1: Simplified source code modification for enabling decoupled access-execution (DAE) in
pointwise convolutions

7.0.1 Step 1: Memory Access & CPU Execution Decoupling

The first step of our proposed methodology focuses on source-code level restructuring, with the objec-
tive to Decouple memory Accesses from CPU Execution (DAE), thus, creating memory-bound and
compute-bound sub-segments within the layer’s structure. DAE restructuring is a key-enabler for our
strategy, as it provides more fine-grained control over when and how frequently memory accesses and
computations occur (Sec. 7.0.2). This enables the application of different frequencies for extended du-
rations and with finer control, tailored to the specific requirements of each operation, such as memory
access and computation, thus, resulting in the mitigation of clock switching overhead issues. To apply
the source-code level modifications, we first identify the CNN model’s most computationally-intensive

and time-consuming layers (@) We focus and apply DAE (@) on two specific layer types, i.e., i)
depthwise and i) pointwise convolutions. These layer types make up over 80% of the total number
of layers found in deep lightweight CNN models, e.g. Mobilenet [3], which employ the concept of
depthwise separable convolution to reduce model’s size and complexity.

For instance,

Convolutional layers are known to be the most power and resource-hungry layers, thus we focus on
convolutional layer optimization. Furthermore, for state-of-the-art models, such as mobilenet-like

for (channel = 0; channel < in_channels/g; channelt=g) {
//LFO for memory bound operations (Sec.IIIB)
ClockSwitchHSE (hse ) ;
//Memory Bound Segment: Load g channels from the feature maps
ql5 t bufl,...,bufg = getChannels(chl,... chg);
//HFO for computation (Sec. IIIB)
ClockSwitchPLL (pllm , plln , hse);
// Compute Bound Segment: Perform depthwise convolution for each channel
convolve depthwise(kernel , bufl, xxargs);
convolve depthwise(kernel , buf2, xxargs);

convolve depthwise(kernel, bufg, *xargs);

}

Listing 7.2: Simplified source code modification for enabling decoupled access-execution (DAE) in
depthwise convolutions
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models, the computation overhead mostly occurs on (i) pointwise and (ii) depthwise convolutions [22].
In order to achieve the maximum exploitation of the convolutional kernels for DVFS with minimal
switching overhead, decoupled access execution is performed with configurable granularities.

Depthwise Convolutions: Depthwise convolution is a specialized CNN operation where each input
channel is convolved with a separate learnable filter, capturing spatial features per channel. Typically,
CNNs gradually learn increasingly complex features, each one represented by a different channel. For
instance, in an image, the initial 3 input channels (RGB) increase as the network processes the image
to extract and represent more complex features, such as textures, specific objects and others. State-of-
the-art frameworks, such as CMSIS-NN [14] and TinyEngine [22] implement a per-channel computation
approach for depthwise convolutions. In contrast, our DAE approach introduces a parametric unrolling
factor called the "decoupling granularity", denoted by g. This factor determines the number of channels
that are buffered in cache memory before the convolution operation is executed on each of them, thus,
separating the code into memory-bound and compute-bound subsegments. Listing 7.2 provides a
simplified code snippet that illustrates the practical implementation of DAE optimization, showing
how the decoupling granularity enables the efficient execution of depthwise convolutions. For example,
when g = 4, four channels are fetched in the MCU’s cache memory before proceeding to the actual
computation. This division enables the application of different clock frequencies per segment, which
we further discuss in Sec. 7.0.2.

Pointwise Convolutions: Depthwise convolution is often followed by pointwise convolution to per-
form channel-wise mixing and dimensionality reduction, thus, reducing model size and computational
complexity while maintaining performance. Pointwise convolutions involve 1x1 kernel sizes and are ap-
plied to each element within input channels. CMSIS-NN[14] and TinyEngine [22] implement pointwise
convolutions in a per-column manner. Each column consists of one element per input channel. Our
approach performs decoupling on the per channel memory accesses, thus splitting the code segment
into memory and compute-bound regions. Just as in the depthwise convolution, we introduce the
concept of the decoupling granularity, denoted as g, for modular buffering support w.r.t. the number
of columns fetched from memory. For instance, for a 8x8x3 input image and a 1x1x3 kernel, g columns
are loaded into the cache before performing computation for each one, in contrast with TinyEngine
and CMSIS-NN, which load a single 1x1x3 image column at a time. In general, integrating multiple
buffers leads to the generation of larger memory/compute-bound regions, thus we can minimize the
frequency switching overhead while avoiding high power consumption. However, very high buffer size
can lead the cache misses to skyrocket resulting in performance degradation.

Listing 7.1 provides a simplified overview of decoupled access-execute for pointwise convolutions.

After the DAE phase is performed, the DAE-enabled CNN layers are encapsulated with a config-
urable decoupling granularity factor for the layer unrolling. The modified DAE-enabled CNN model
is propagated to the next step of our proposed methodology (Step 2.) for effective exploration and
configuration of the DAFE granularity factor, alongside with the DVFS parameters exploration.

7.0.2 Step 2: DAE and Clocking Co-exploration

At this step, we analyze the performance and energy consumption in a per-layer manner(@) con-
sidering the interplay effects of DAE and clocking scheme configurations. To measure the energy
consumption and performance of each layer, we have developed and integrated a custom run-time
monitoring mechanism for supporting per-layer monitoring and profiling. Our mechanism relies on
the on-board timers of the target MCU, which are triggered in-between the layers’ code segments.
Furthermore, we take advantage of STM32 MCUs integrated support for power sampling and we mon-
itor the power consumption prior and after the DVFS integration on every CNN layer. The power
and performance metrics for the DVFS in each layer are aggregated and utilized for the design space
exploration for DAE and clocking configuration.

More specifically, we co-explore and gain insights on the design space defined by the following three
key parameters: i) the decoupling granularity factor g; ) the clock frequency of the SYSCLK clock; and
iii) the selection of parameters for the PLL module (namely PLLM and PLLN), both described in Sec. 77.
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Figure 7.0.2: Impact of different DAE and clocking configurations on latency and power of depthwise
and pointwise layers.

Regarding the decoupling granularity, determining the most suitable value per layer depends on both
board-related specifications (e.g., cache size) as well as code-related characteristics (e.g., number of
output channels and kernel size). In our case, we examine six different values, i.e., g € {0,2,4,8,12,16},
where g = 0 indicates no DAE optimization and corresponds to the default input model .

Regarding the different clock alternatives, we define two parametric operating modes, namely the
Low Frequency Operation (LFO) and the High Frequency Operation (HFO). LFO exclusively employs
the HSE clock source at a predefined frequency (50MHz) and aims to reduce power consumption on
the board. In contrast, HFO configures the system’s clock using the PLL circuit, where the final
SYSCLK value is determined by varying combinations of the PLLN and PLLM parameters, specifically
PLLN € {75,100,150, 168, 216,336,432} and PLLM € {25,50}. This distinction between the two op-
erating modes allows us to quickly transition between different SYSCLK frequencies, thus, mitigates
susceptibility to the switching overhead associated with the PLL, as elaborated in Sec. 5.2.2. Overall,
DVFS switching is performed between the memory (Lst. 7.2:3) and compute (Lst. 7.2:7) bound regions
, in order to exploit the decoupled access-execution transformation optimally, with LFO applied to
the memory-bound and HFO to the compute-bound subsegments respectively. A similar approach is
followed in pointwise convolution layers.

DSE Insights: Figure 7.0.2 shows the impact of varying operating frequencies (left) and granularity
factors g (right) on the layer latency and power consumption. First, we observe that as the number of
operating frequency increases, the power consumption is traded for better performance, thus composing
the design space. Moreover, changing values of the granularity factor can provide significant variation
on the latency and the power consumption. For instance, power consumption can drop down to 54.2%
compared to the initial execution. Thus, the effective co-exploration of granularity ¢ and frequency
leads to power/latency trade-offs. The result of the DSE is a solution space per layer, where each

solution trade-offs between performance and power consumption (@) In this space, we select the
Pareto optimal points, to be propagated to Step 3.

7.0.3 Step 3: QoS-aware Energy Optimization

In the final stage, we determine the optimal frequencies for each layer within the CNN, aiming to
minimize the model’s total energy consumption while satisfying a predefined latency budget (QoS).
We denote the set of all possible frequencies generated either through the PLL or the HSE clock as F' and
the set of all possible granularity factors as G. Let n be the total number of layers of the CNN model
and P, = {...,pf = {t?,Ej’?}, ~hke{l,..,n},j€{l,..,|Px|} be the set of Pareto optimal solutions
(from Step 2) of layer k, where t;‘? and E;“ denote the latency and the energy consumption of the j**
pareto optimal solution for layer k when operating with DVFS enabled with an HFO frequency f € F
and granularity g € G. We consider the minimization of the overall energy E of the CNN deployed on
the target STM32 MCU, so that the overall execution time T does not go beyond a user-defined QoS.
Then, the target optimization problem can be formulated as follows:
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minimize E =YY Ef, (7.0.1)
k=1j€Py
st. T = Z Z tkaj < QoS (7.0.2)
k=1j€Py
a =1, k=1,.,n (7.0.3)
JEP
zr; €0,1,  k=1,..,n,j€ P (7.0.4)

We model our problem according to the Multiple-Choice Knapsack Problem (MCKP) [35], which

extends the classical knapsack problem by categorizing items into distinct classes(@). In this formu-
lation, the binary decision of including an item is replaced by the selection of precisely one item from
each class and the goal is to maximize the value of items included in the knapsack while not exceeding
its size. In our case, each individual class represents the various Pareto optimal solutions p;? per layer
k. Each item in the class is characterized by its own value (i.e., energy consumption EJk) and size
(i-e., latency tf) Our goal is to minimize the overall energy consumption (F) while adhering to the
size constraint (T < QoS). We convert our minimization objective to a maximization one using the
transformation found in [35]. Last, we solve the optimization problem using a pseudo-polynomial time
solution based on a dynamic programming (DP) approach.
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Experimental Evaluation

8.1 Experimental Setup and Evaluation

Experimental Setup: Our experimental evaluation is conducted on an STM32F767ZI Nucleo board,
equipped with an ARM Cortex M7 CPU featuring a 16KB L1-cache. The board incorporates a High-
Speed External (HSE) clock, ranging from 1MHz to 50MHz. For power consumption monitoring, we
employed the INA219 power sensor. To mitigate potential variations arising from temperature-induced
power fluctuations, we systematically compared each power measurement with the power consumption
of the baseline input model at the corresponding timestamp. Our proposed methodology is evaluated
over three pre-trained CNN models, namely Visual Wake Words (VWW), Person Detection (PD), and
Mobilenet-V2 (MBV2), derived from the MCUNet [22] inference library. We conduct a comparative
analysis between our approach and the state-of-the-art TinyEngine [22], which serves as the baseline
for evaluation. Our experiments are conducted in an iso-latency execution scenario, where we measure
energy consumption for a certain period specified by a QoS constraint. In the case of TinyEngine, this
entails the board remaining in an idle state with a constant frequency of 216MHz after an inference,
until the QoS threshold is met. We also consider TinyEngine enhanced with clock gating, a technique
designed to optimize power consumption by selectively deactivating non-utilized board clocks and the
voltage regulator, thus minimizing power leakage throughout the CNN inference.

Energy Comparison and Analysis: Figure 8.1.1 presents an illustrative comparison of energy
consumption between our proposed approach, and the two configurations of the TinyEngine: one
without any optimization and the other with clock gating applied. This evaluation encompasses various
Convolutional Neural Network (CNN) inference models, each subject to discrete Quality of Service
(QoS) constraints set at 10% (tight), 30% (moderate), and 50% (relaxed). X-axis illustrates the
QoS constraints, while Y-axis represents the normalized energy consumption. Our proposed approach
surpasses both instances of the TinyEngine, exhibiting a reduction in energy consumption up to 25.2%.
Additionally, compared to the TinyEngine equipped with clock gating we achieve down to 7.2% less
energy consumption. Furthermore, our observations indicate that relaxing the QoS constraints can
lead to a notable reduction in energy consumption, albeit at the cost of some performance trade-offs.
For instance, when examining the Mobilenet-V2 model, the energy consumption of our approach under
a relaxed 50% QoS constraint decreases to 20.4% compared to the stringent 10% constraint.

Frequency Scaling Analysis: Figure 8.1.2 illustrates the HFO for each examined CNN. X axis in-
dicates the corresponding layer type as the CNN execution proceeds and the granularities selected for
10% and 50% QoS constraint, respectively, while Y axis shows the operating frequency per layer. The
LFO configuration at 50MHz of the memory-bound segment of each layer is excluded for simplicity.
The observations derived are the following. Firstly, the operational frequency is configured to maxi-
mum (216MHz) mostly for performing pointwise convolutions, i.e. 58.8% against 21.4% for depthwise
convolutions. The latter are less compute-intensive, thus decreasing the operational frequency will
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not lead to significant performance degradation. Furthermore, the 46.1% of the pointwise convolu-
tions and 43.4% of the depthwise convolutions are executed over the lowest operating frequencies, i.e.
75MHz and 100MHz, aiming to boost the optimization objective of power minimization. Last but
not least, we investigate the impact of QoS constraints on the operating frequency. Our experiments
indicate that 18.6% more layers are operating at 216MHz for tight constraints (10%). Regarding the
granularity analysis, for the relaxed QoS(50%), 22.3% more layers operate with granularity factor 16,
compared to 10% constraint. This is due to the fact that there is higher space to trade latency, thus
the computation-bound parts are split to bigger segments, aiming to minimize switching overhead and
provide power reduction.
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Figure 8.1.1: Energy consumption gains of our approach over the TinyEngine [22] baseline. We
compare against TinyEngine with Clock Gating over the examined CNN models
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Figure 8.1.2: Frequency distribution throughout layer progression over the examined CNN models for
10% and 50% QoS constraints.
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Figure 8.1.3: Example building block of the MobilenetV2 baseline model.
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Figure 8.1.4: Example of the MCUNet-generated VWW architecture
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this work, we present a novel end-to-end methodology that exploits DVFS for optimizing the energy
consumption of CNN inference on low-end STM32 MCUs. Our approach strongly leverages Decoupled
Access Execute techniques to discretize memory-bound and compute-bound layer segments. This
approach also utilizes optimization techniques to yield feasible results for tight latency constraints.It
outperforms existing state-of-the-art approaches by achieving up to 25.2% less energy consumption.

9.2 Future Work

This work could be further optimized to improve its scalability, versatility and efficiency. Through these
extensions, we aim to make DVFE'S accessible for heterogeneous low-end MCUs, as well as explore model-
hardware co-design for tinyML with dynamic voltage frequency scaling capabilities. Some potential
optimizations include:

e Finer DVFS granularity, including non-uniform in kernel frequency selection and adaptive DVFS
selection.

e Integration of diverse heuristics for layer selection.

e On-device DVFS strategy selection, to reduce the need for an external runtime monitoring frame-
work.

e Deployment automation for diverse MCUs and integration of the decoupled access execute opti-
mization into a compiler pass.

e DVFS and Decoupled Access Execute aware Neural Architecture search, to generate optimal
models for DVFS.
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