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IepiAndn

To teAevtalon YPOVLO, E TNV AVATTTLEY] TWY PNPLOXWY ETLXOLVWOYLLY, Ol EQXO-
novég yiow Stépopa oobpuoto dixTuor amaLtody T oxedioon evég Chip, yio v
LXOVOTTOLNOT TWY oToLTNoEWY amdédoons. H évvola evdg oLoTALOTOC TTOAAXTTAGY
eneEepyaotwyy o éva Chip eivol xatdAAnAn yioe 0 dtevxdAvvon TG LAOTTOINONG
OLOPOPWY TNAETILXOLYWYLOXWY OAYOPLOULWY Yior SLAPopa AGVPUOTA TTPWTOXOAAX OE
pioe Lévo oLoxXeLY. Ze ALTN TN OLTAWUOTIXY EQYOOLOL OLEPEVVYOOUE TOL OPEAN T
TLg BeAtioTomoLoeLg og eTTITEDO AOYLOWULXOD XoDME Xo TOV OYESLUOUS ETLTAYLYTWY
UDALXOU, OTOV TOUEN TWY PNPLOXWY ETILXOLVWYLOY. Avapopixd e TLg BEATLoTOTTOL-
oclg AoyLoutxoV, vAomotninxe o akydpLbpog g amodiapdppworng yroe QAM aote-
PLOUOVG OE EVOWRATWUEVEG TTAXTQOPUES ue ARM emetpyootés. EmweeAndxope
aTtd TN Xehomn evtoAwy Single Instruction Multiple Data (SIMD) mou mtopéyovrtat o
tov NEON (C++ Intrinsics). EmtmAéoy yia dbo aoteptopods QAM epeuvibnxe pia
TLPOOCEYYLOTLXY] DAOTTOLMOY] TOL PYLXOL aAYoPLOLoL, TTPOoXELLEVOL Yo pLetwbody oL a-
TTOLTOVEVES apLOUNTIXEG TTPAEELG. ZYETIXE UE TOV ETULTOYLYTY LALXOV, LAOTTOLNONXE
ne VHDL évac mpooopoiwtig fading xavood oe Field Programmable Gate Array
(FPGA). Tt T povteloToinoy Tov xavalol, to ofpa etoddov eneEepydletor pe
évor Qitpo TemepaoUévng xpovoTixfic amoxptorng (FIR), touv omoiov oL cuvtele-
OTEG TTOPAYOVTOL O TEOYUATIXO XOPOVO oL OxOAOLHOVY ULOL XOVOYLXY] XOTOYOUT
Gauss. H aELtohdynom twv mpoavopephévtwy bAoTooewy o ENLTESO AOYLOKLXOV
TEOYUOTOTOLNONXE UE TNV TTPOCGOUOLWOY ULOG PNPLAXNG TNAETILXOLVWVLOXNG AV GE-
dog 6mov ANEHnxay LTOPLY SVO TEHPAYOVTES: 0 XPOVOG EXTEAEOTG XaL 1 oxpifela
TOL OTLOTALOTOS LE TN peTpLxy Bit Error Rate (BER), pe/ywpic tn ypfjon Forward
Error Correction (FEC). Etdtxdtepa, avdAoyo (e TOV aoTePLOUO, 1 TTROTELVOUEYY,
vAoTtoinom pe ULxpég amoxiioels oto BER, mopovotdaler 38x emitayvvon oe oyé-
on HE TO aEyxd LOVTEAO, xabwg xor cuvoAxy] BeAtiwon 10-20% yio 0 povéada
Tou Oéxtn pe FEC. ‘Oco avagopd tov cEopoiwty Fading xavoAlod, eEetdoope
ovvdpton Toxvotntog Thovotntag (PDF) twy dedopévwy eEG30v, eved 1 oOYXEL-
oM UE VAl LOVTEAO E OPLOUMTIXN XLYNTNG LTTOOLOOTOANG EEELEE OUEANTEN ATTWOAELD
oxpifetag. Loyxexptpéva ta oOUBoAo oty €E050 TOL EEOUOLWTY] XOVOALOY, TTOLPOVL-
oLéllovy <0.5% Méoo ZyeTind ZQAALN, EVE TO LOVTEAO UTTOPEL VO AELTOVPYNOEL OE
ovyvotnta S00MHz.

Keywords — ARM, SIMD, NEON Intrinsics, FPGA, Erttayvvtig YAuxoo, VHDL,
TrnAemxovwvieg, QAM, EEopoiwon Kavaiiod






Abstract

In recent years with the development of digital communications, applications for
various wireless networks necessitate a single-chip design to meet performance re-
quirements. The Multi-Processor System-on-Chip concept is well suited to facilitate
the implementation of various telecommunication algorithms for multiple wireless
standards within a single device. In this thesis we explored the benefits from soft-
ware optimizations as well as hardware acceleration techniques, in the field of digital
communications. Regarding the Software Optimizations, the Quadrature Amplitude
Demodulation algorithm was implemented on ARM-based embedded platform. We
benefited from the use of Single Instruction Multiple Data (SIMD) commands the
NEON engine provides (C++ Intrinsics). Furthermore, for two QAM Constellations
an approximation technique over the original Demodulation algorithm was pro-
posed, in order to reduce the required arithmetic operations. About the hardware
accelerator, a Field Programmable Gate Array (FPGA) based fading channel emu-
lator was implemented in VHDL. For the modelling of a fading channel, the input
signal has to be processed by a Finite Impulse Response (FIR) Filter, whose co-
efficients are generated in real time and follow a Normal Gaussian distribution.
The evaluation of the aforementioned software implementations was conducted by
simulating a Digital Telecommunication chain and taking into account two factors:
the execution time and the accuracy of the system with the Bit Error Rate (BER)
metric, with and without the use of Forward Error Correction (FEC). In particu-
lar, depending on the constellation, our proposed Demodulation implementation,
having minimal BER deviations, shows up to 38x speedup over the initial floating
point model, and an overall 10-20% improvement for a Receiver Module with FEC
decoding. Regarding the Fading Channel emulator, we examined the Probability
Density Function (PDF) of the output, while a comparison with a floating-point
base model showed negligible loss in precision. Specifically the fixed-point faded
symbols present <0.5% Mean Relative Error, while the design is capable of operat-
ing at 500MHz frequency.

Keywords — ARM, SIMD, NEON Intrinsics, FPGA, Hardware Accelerator, VHDL,
Telecommunications, QAM, Fading Channel
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Evyoptotiec

Apyxé Bo Mo vou evyapLlotnow tov emPAETOVTO ®obNyNT) oL xOPELOo AnurTeLo
200VYTPEY, TTOL OV EGWOE TNY ELXOLPLOL YOL EXTIOVYOW ULOL EVILOPEPOLOAL OLTTAWLOTL-
xN gpyooio oto Epyaoatnoto Mixpodmoroytotwy xot WneLtaxwy Zuotnuatny. 2
ovvéyeLa, Oa e v evyapLoTNow Tovg LIToYNPLovg dLdaxTopes lwavvy Ltpotd-
%0 xou 'edpyto Appevidino yio 6An ) Bonbeta mov mpoopepay, v xobodynon,
x00g xot TNV eTIAVOY ATTOPLWY KATA TN OLAPXELXL EXTIOVNONG TNG OLTTAWULOTIXNG
epyaotiag. Axopo Oa neda voo evyapLtotiow OAo Ta wéEAN oto Microlab tor omot-
o ONULOLPYOVY EVOL ELYAPLOTO XOL TTOPAYWYLXO TEPLRGANOY, eV elpal LOLALTEQR
XPOoVUEVOG ToL B €xw ™) SLYATHTNTA Vo OLVEYLOW EXEL Tor ETTOUEV YPOVLA. O
neAa emiong vo eLYAELOTNOW TOLG YOVELG LOL %O TOV AdEPPH OV, TTOL Ty Oi-
TTAQL [LOV OAOL LT TOL Y POVLOL KOl PE OTNPLEAY OTLG ETTLAOYES Lov. TEAOG, ELYOPLOTE
OA0VLG oL TOLG PLAOLG xobWG xaL TN XELoTLva, YLo TLG OLOPPES OTLYUES Lall TOVG.

HAlog Iaraiouroov
OxtwfBprog 2023
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Extetopévn EAAnvixn IlepiAnd

Etcoynyn

Ou Pmnproxég emxolvwvieg XENOLLOTTOLODVTAL VLA ONUOTO TTOL TEQLAOUBAvVOLY
dedopéva OTIWS O MYO0G, OL ELXOVES, XelUeVO, apyeila xAt. Me ™) ovveyn adEnomn tng
{N™OoMG LETOPOPAG BESOUEVWLY, ELVAL YVWOTO TS M PnpLoxy] emtixotvwvio xobioto-
Tol plo oo TG Booixég texvoroyieg g emoyng wog [9]. EmimAéoy, pe ™) ovvexn
AvO00 TWY TEYVOAOYLWY OYXELXONG OAOXANPWUEVLY XUXAWUETWY, TTOV ETLTPETOLY
TNV EVOWUATWOY OAOXANPWY CLUOTNUATWY OE EVO LOVO OAOXANPWUEVO XOXAWUO, T
yonon touv System-On-Chip oe tnAemixotvwviaxés @opuoYES amoTeAe! tdovixy| €-
mAoY. T SoCs avagépovtor oe évar obaTuo. ToL TePLAaUPdveL ayeddy dAa To
BooLxd oTOLYELO TTOL ATTALTOVYTOL YLOL UL CUYXEXQLUEYT EQAELOYT. Me dAAa AdyLax,
TIPOXELTOL YLOL EVOL OAOXANPWUEVO aboTnua OTtov N Kevtpix Movéada ErcEepyaot-
oG, N PN, oL Bbpeg etaddov/eEHS0L, oL avahoYLxég elgodol xot €Eodot, xabwg ot
eEELOLXEVLEVOL XUXAD AT OLVAAOYOL UE TNV EQOPUOYY], TTEOaOLOPLLovToL Vo aLYSLOL-
oTovy o pLa povada [10].

Ozwpntino YroBabpo

Xty evotnta aut) Oo Eetdoovue Tor BepeAtdddn ototxeio evig PnepLaxod ov-
OTNULOTOG ETULXOLYWVING, Xot0dg xal T Bewpio Twv aAyoplbpwy amodiopdppworg,
x00W¢ xaL TEYVIXES LOVTEAOTIOINONG XOVOALWY eTLxOVwYiag. EmtmAéoy mapovoté-
Ceton ptor ovvtoun emioxdnnoy g opyLtextovixns SoC-FPGA, dov amotéAeos v
TAXTQOPUO TTOV XENOLULOTTOLNONKE HOTE TN SITAWUATIXY EQYOOLO.

WypLoxég emirolvmwvicg

‘Eva tumtind PnepLoxd odotnuo emixotvwviog mopovotdletal oto Xy. 1, T0 0-
T0l0 OVEEQPTNTOL OTTH TNV EQPOPLOYT] UTTOPEL VO XWELOTEL O TPLoL XVPELOL LEPT: TOV
Mopmd (TX), T0 xawvdAl xow tov déxtn (RX) [11]. Avoutixdtepa, 0 Toumdc eivor
vTeVOLYOG YLOL TN UETATPOTY] TOL UMVOUATOS OE LOPYY XUTOAANAY Yo LETAS00M
Hé€aw VO PLGLXOL XaVOALOV, (TT.). éva xoADSL0). O POAOC TOL RWSLXOTTOLTH TTNYHS
TeQLAOUPAvVEL TNV EEGAELYT TWY TTEQLTTWY TANPOPOPLOY TG TO UTVOUO TTOOXELLE-
you va BeAttotoronbel 1 xpNon tov xovoAlod. O Atoplop@wTrg TAdTOLS Ao Vel
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Receiver (RX)

Txneo 1: TrAemixotvwviaxn chvcido

pLoe oeLpd oo bits TOL KWOLXOTTOLNTY XOVAALOD xo UETOPEALEL xd&be axorovbio
OE L. XUUOTOLOPYY, XATEAAANAY Yo LETAS00M. To QuoLXd HEGo PETOED NG LOVE-
J0G TTOUTIOD XOL TOU OEXTY] OVOUALETOL XOVOAL ETUXOLYWYIOG, TO OTTOL0 TPOCHETEL
06pvPo oto oMo xabwg dev LTdPYEL xovéva LW3avixd péao. MTopody va cuufolv
OLAUPOPECS LOPPES TPOTTIOTIOLNOEWY OTO oNua, OTTwG eEacbévnom, 6pvPog xot Topa-
népewon. H povéda tou 3éxtn (RX) evdg TNAETLXOLYOVLOXOD GLOTAULOTOS, ElvaL
vredbovn YL TNV EaywYN TOL AOUPAVOUEVOL CNUATOS, EXTEADYTOS XTTOSLOUOQ-
QPwo, Loll LE OPLOUEVES OLUUTIANPWUOTIXES AELTOVPYLES OTTWE TO PLATOAPLOWLOL XL
N evioyvon, dedopévou 6Tl oL eTLIPAOELS TNG LTTOBAOULOTNG TOL CNUATOG TTEETEL VAL
ovTipeTwTLoToVY. H amodtapdppwon yetptletol T AouBEvovoes XOUOTOULOPPES
xoL ovtiotoryilet Ty xébe pla pe v avtiotoryn axorovdio bit.

QAM Aropdépowon

Mot amtd TG TTOAAES SLopOPETIXES TEXVIXES PN@Loxg SLapdpPwaons ovoudleTtal
TETPOYWYLXY SLapdp@won TAdTovg (QAM), n omolo Asttovpyel pe T petddoon
dvo onuatwy DSB yonoipomolwvtog @opeic g (diag ovyvotnrag. H dtopdppuwon
M-ary QAM emexteivel v évvola g M-ary PAM oe 300 diaotéoetg. Me avtdv
Tov TPOTO, GLYOLALOVTOG TO TAATOG XOL TV (PACY, O TOUTOS WLTOPEL Vou OTELAEL
TepLtaadtepa bit ava ovpforo. Mo Topaderypo, optopévol cuyniLopévol aotepLlool
omwg QAM4, QAM16, QAM256 %AT. petadidovy OTWEC QPOLVETOL XOL GTO OYNUO
2 2, 4 xou 8-bit avtiotorya. EmimAéov oplopévol aoteptopol QAM mouv amottody
TeELtTé apLBuo bits (dtwg QAMbS12), artetxovilovTol YeNoLLoToLYTOG piot SLATan
oTowPOL, Evavtt teTporywvtxng [12]. o xabe aotepiopd QAM, yornorpomoreiton
xdOog Gray yiow v avTLoTOLYLON, XONOLULOTIOLWOVTOS UL CUYXEXQLUEVY], OLATOEN
bits yta x&be odpBoro, 6ov ot Stadoytxég TLUES dLapépovy ot €va wovo bit. Avti 1
TEYVLXY] YONOLLOTIOLELTAL TTPOXELUEVOD VO LELWOHOVY Tl COAALATO XTTODLAUOPPWONG
AOYw TpooTLhEuevou HopvRov.
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(i) QAM4 (22 bits) (i) QAM16 (2* bits)  (iii)) QAM256 (28 bits)

Ixquo 2: QAM aotepiopol yio Staopetixa bits petddoong

Soft ATodiapdppwon

Ye avtibeon pe pébodo Hard amodiopdppwaorng, 6mov to Aaufavopevo onuo
omelxovileTal oTo TTANOLEGTEPO GVUPOAO TOL KO TEPLOROL, 1 LEbodog Soft aodtLo-
LOPPWOTG XENOLLOTIOLEL Yo LETELXY TtLhovdTnTag 1 otolor LTTOdELXVOEL TNY TtLhovo-
™Tee 6TL xabe oV Poro Tou petadidetal Ntoy opytxa 17 M 707, Avti n pébodog, av
%o €xel LYNAGTEPN LTTOAOYLOTLXY] TTOAVTTAOXOTNTO. OE OYEDY UE TN YOO TOL OAYO-
otpov g Hard amodiopdppwaong, €xel xoaAdTepeg €TMLIGOELS avopopLxa e To Bit
Error Rate (BER). To Log-Likelihood Ratio (LLR) avtimpoownedet tov AoydpLbu.o
TOL AGyoL TWY TOAVOTNTWY ULETAS00TG eVOg bit "0 évavtt tng petadoong evdg bit
717 yioe évor Ao Bovopevo onua 7.

O vroroylopdg g petpxric Approximate Log-Likelihood Ratio (LLR) mept-
Ao fBaver ™ xoNoM LOVO TOL TANGLEGTEPOL ONUELOL QOTEPLOUOD GTO AopBavopevo
delypa, Bewpwvtag 707 7 717 ot ouyxexpLuévy B€om bit, oe avtifeon pe Tov axpELfN
vmoAoytopd tov LLR, 6mov AapBavovtor vmédy dAa tor onpeia Tov aoTEPLGUOV.
‘Ontwg opiletar oto [13, 14, 15], to Approximate LLR (ALLR) Sivetow amé tny EE.
1.

ALLRy, = —i? {max [(x — 5.2+ (y — Sy)ﬂ — max [(x — 5.2+ (y — sy)ﬂ } 1)

o s€S, s€Sy

Movtelomoinon Kavoiiod

Toa owvépeva eEoobéviong kot TOAATAGY SLaSEOUWY CLYOVTHYTOL CLYNOWG
OTO CUOTNUOTO POUOLOETUXOLYWVIOG. XTI OOVPUATEG ETILXOLVWVIES, UTTOPEL Vo L-
TAEYOVY OLAPOPES OLASPOUES ONUOTOG UETAED TWY XEPALWY TTOUTIOD oL OEXTY.
AvTa Tot TOAATIAGL LOVOTTATLOL TTPOXVTTTOLY OTTO TNV OLTLOGQOLOLXY] OXESOOT, TN
OLAOACOY 1] TLS OVOXAATELS OTTO OVTLXELLEVO OTIWE T XTNELY, OTIWS POLVETOL O
OTO TOPASELYUO TOU 2Y. 3. XE TEPLTMTWOELS TTOAATADY SLASPOUWY, TO CNULOTO
IOV PTAVOLY LETL OLOPOPETLXWY OLASPOUKY Ttorpovaotalovy eEaabévnon xat xabv-
OTEPNOELG, OL OTOLEG UTOPOVY ELTE Vo eEVLOYVO0OLY ELTE VO UELWTGOLY TO GNULO TTOL



4 Extetoudvn EAAnvua) epidndn

Receiver

Iyqroa 3: Powvdpeva Fading xovaiod oc aotind meptaArov

petodidetorl neTaEd 000 xepattyy. I'a vor XOTavoNoOLUE TOL YOPOXTNELOTIXA TOV
(POLYOUEVOL OLTOV, UTTOPOVUE OYLXA VO EEETACOVUE EVOL OTATIXO OEVAQPLO, OTTOL
évag oxivnTog OEXTNG OAMNAETILOPG UE Evar HETAOLOOUEVO ONUOL TTOV OTTOTEAELTOL
omd v oNpor oTeEVg {wvng, eved xdvovpe vy vmdbeoyn Twg dVo eEnobevnuéva
oVTLYPOPOL TOU LETUSLOOUEVOL OYUATOG PTAVOLY OTOV 0EXTY Stadoyixd. H OmopEn
x00LoTEPNONG UETOED TWV ONUATWY ELOAYEL LETATOTILOY PAOELS LETOED TWY CLVL-
OTWOWY TOL AXULBAVOUEVOL GNUATOG.

Mo Bootx] avomopaotoon Yo SLaxXQLTE XOVAALX TTOAAXTIAWY SLOGPOUWY TTEPL-
vobopetor atny EE. 2, 6mov to s(t) avtimpoowTedeL To {wVoTeEPatd ofpo ELGOS0L,
70 a,(t) elvar n eEoobévnon yra To oo Tov AapBavetal péow TOL N-00TOV LO-
VOTIOITLOU, EVE TO T, (t) €lvor M oyeTixn xabuaTéPNom dLAS00YG. LUVETWS TO XOVAAL
eEoobeviong TOAMaTAGY dLtadpopwy pumopel vo bAoTotmbel wg Yoo utxd eiAtpo Te-
TEPAOUEVTS xpoLOTLXNS aTtoxptong (FIR).

y(t) = an(t)s(t — (1)) (2)

SoC-FPGA

Ot mMAatpbppeg System-on-Chip (SoC) FPGA avogépovtor oe StatdEelg nutoyw-
YOV TOL GLYSLALOLY TTPOYPOULOTLLOKEYY AoYixy (PL) pe TLpPHveg emeEepYOoTWY
EVOWOUATOULEVLY cLOTNULATWY (1t.x. ARM). To povtéAo awtd cLYSLALEL TNV ELXO-
Alot TOU TTPOYPOLUATLOUOD EVOG ETEEEQPYNOTY UE TNV ATTOTEAECUATIXOTNTO XOL TNV

omtH300m NG TEOYPOUUOTLLOUEYNG AOYLXNG.

FPGA

‘Eva Field Programmable Gate Array (FPGA) amoteheiton amd tpior OepeAtddn
oTolyelo: ULor AOYLXT] LOVADOL TTOL LTTOPEIVOL TTROYPOUULOTLIOTEL, €val GTOLYELD ELOO-
dov/eEddov Tov pTopel Vo TPOCoPUOOTEL Yiow eEWTEPLXEG oLVIEDELS, xabg o



smm
Results Results

Ixquoa 4: Avaopéc petakd SISD xoar SIMD evtoAwv

€vor oToLYELD DLOoVVOEDTG TTOL UTTOPEL VO TTROYPOUULOTLOTEL YLOL VO GUVIETEL OLAPO-
oo TUNHOTO LETOED Toug. EmimAgoy, vmapyovy povédeg ¥noLaxng Enctepyaoiog
SAuoatog (DSP) %ot evowPaTopwévy] Lyiuy], TEOXELLEVOL va evioyLHody oL LTTOAOYL-
oTxég Acttovpyieg. Metaupépovtog tar dedopéva o awutéd Tow otolyela, évo FPGA
WTTOPEL Vo ONULLOVPYNOEL TO TTPOPRAETTOUEVO PNPLOKO HOXAW L.

ARM NEON

O emteEepyaotég ARMVS pall pe Toug xoTowENTES YEVLXOD OXOTTOV, GUUTIAY-
pwvovy 32 xotoywentég SIMD 128-bit oe xabe mupNva, oL omoiol YPNOLULOTOLOV-
yTow Yo TV VAOTTOLNoY Twv evToAwy NEON. Ou evtoAég NEON vmootnpilovy 8-bit,
16-bit, 32-bit xow 64-bit yia mPooNUOGUEVOLG XOL UM TTOOONUAGUEVOLS OXEQPOL-
ovg, 32-bit atolyeior xtvnTNg LTTOSLGTOANG LoV axplfetag, xabwg xar 8-bit/16-bit
moAvwvopa. H texyvoroyio NEON mpoo@épet pia eEetdixevpéyn eméxtoon oty op-
yrtextovix] ARM Intruction Set Architecture, eLodyovTog ETLTAEOY EVTOAEG LXOVEG
vo. exteAoVy Sedopéva emeEepyaoiog GESOUEVLY TAVTOYPOVO OE TTOMATIAEG POEC
dedopévwy. Ou evtorég Single Instruction Multiple Data (SIMD) evioydovy ™ ov-
YOMXY TIOTEAEOUOATIXOTNTA TNG EQAPUOYNG, ETLTPETOVIAG UE ULO LOVO EVTOAY VO
yerptletot T TOYPOVO TOAXTIAG GUVOAX OESOUEVWY, LECK ELOLXA XATUOKEVOOUE-
NG AOYLxNG. XTO XY. 4 ToPOLOLAleETOL N SLOPOPB UETOED TNG CLOYLTEXTOVLXNG TWV
evtoAwy Single Instruction Single Data (SISD) xot SIMD.

SIMD Awodtopoppwon

H povéda QAM amodiopdpeworng PBaoiletol otny eElowon 1, omolo TEQLAOWL-
Béver Tov vToAoylopd Tov TPooeyYLoTixod LLR yia elogpydpeva obpfora péoa
oe évayv aoteptopd QAM. H vAomoinon eEumnpetel Stopopetind bits ava abpfioro
Yt TANOWpo aotePLop®Y, O0TTwg QAM4A, QAM16, QAMG64, QAM256, QAMS512 xou
QAM1024. H Sradixaocio Egxtvdel (e Tov LTTOAOYLOUS TNG ELXAEIBELOG ATTOGTOOYG
HETAED TwV eLogpydpevwy ouvtetayévwy (I, Q) xot 6Awy Twy TLhovey cuuBOAwY
EVTOG TOV ETUAEYUEVOL OLOTEPLOUOV. KT GUVEYELN, UE TNV EVPECN TNG UEYLOTNG TLUNG
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From predefined Array Demodulator Input

i Load Values
1 to NEON

FXPS2.44 FXP S2.14

Constant
Calculation

SIMD Vectors

+ » ——>(+
16-bit or 32-bit

Multiplication

Euclidean Distances Calculation Maximum finding

Tyneo 5: YAomoinon g Amodiapdppwong pue SIMD evtoAéc

LLR yio tox bit Tov €xovv 717 xow ’0” avtioTtolyo, TEOXVTTTEL TO TEAXO ATTOTEAE-
opa. ToviCetar mwg ot LLR tipég xavovixomolodvtal pe 10 mpwTto oOUBOA0 TOL
QOTEPLOPOV, eEaa@aAilovtol (3Lo EDPOS TLUWY YLOL SLOPOPETIXES TLUES OTNY €L00JO.

Y10 Zy. 5 amewoviletal v vAomoinon tng SIMD Amodiaudpewong, Le xomMom
NEON Intrinsics. H vAomoinon pmopel va ywpLotel o tplor xbpLa LEET: TN POPTWON
dedopévwy ot punyxavy) NEON, toug pobnuotixods vmoroylopols, 6mov meptAo-
Bavouy TOoLG LTTOAOYLOPOVG TWV ELXAEISELWY ATTOOTACEWY %ol xoL TNy €dpeom
™G UEYLOTNG TLUNG, XOL TEAMXA TNV eEarywyn dedouévwy amd Tov NEON miow otov
ARM emekegpyaot).

2UVOALX& LAOTTOLNONUOY 4 SLOPOPETIXG LOVTEAX YL TNY ATTOOLOUOPWOY)], LE [Bé-
om 7o péyehog Ty TLR®Y £to6d0ov (int8 kot int16), xabwg xo pe Pdon Ty axpifeta
TOL TOAAOTIAdGLOOUOV UE TN oTabepd a. H mpwytn Tpooéyyion Ntay 1 xonon tov
vqdmulhq n_s16() intrinsic, T0 omoio YeLplleTal €E0WTEPLXA TOV TTOAAATTAAGLATUO
X0l ETLOTEEQEL Eval atoTéAeopa 16-bit, (Sto pe owtd TNg eLoddov. H dedtepn mpo-
CEYYLON NTAY VO XELOLOTOVUE YELPOXIVYTOL TO OTTOTEAEGUO. TOU TTOAAATTAAGLAGLOD,
ovoBETOVTOG TO OE EVOL TTPOGWELYO SLEVUOUR, XOL OTY] CUVEXELD YO YIVEL 1] LETOTOOTY
Tov Tlow og int16. H diadixaoio awtn ametxoviletor oto Xy. 6.

2Tov opyx6 ohyopLipo tng amodiopdpewong, N Ttpen LLR yio xabe bit ypeLé-
Ceton Tig Ldteg ovyxplioelg, xabwg emovoyENOLULOTOLEL TLG TTPONYOVUEVES UEYLOTES
TLUEG, TTPOXELUEVOL Yo BeATioTtoTtotnfody oL amortodpeveg evToAés. Qg ex ToVTOU,
INuLovEYNONXE Lot CLYEPTNON YLO TOY DTTOAOYLOWUO TNG UEYLOTNG TLUNG UE YOO TOL
NEON, émtwg amewxoviletor ato Xy. 7. Kata ) SLdpxelor g eDPEONS NG LEYLOTNG



Split Vector for higher resolution

int16x8

. 1
vcombine_s16 l a(d%erg)
>

Iynror 6: SIMD moAlamAaoloouds Le 16-bit eioodo xar 32-bit €Eodo

TLNG, ovo dtopopeTixd NEON intrinsics ypnoipomoumbnxay, éva yioo v edpeon
™G UEYLOTNG TUUNG O €Vl LOVO OLAVUOUO, XOL EVOL GAAO YLOL TOV DTTOAOYLOUO TWV
UEYLOTWY TLUWY UETOED dVO SLOVUOUATWY.

ATodLopoppwor pe TpoosyyLtotixég texvinég o QAM16/QAMG64

‘Omtwg Mon €xovpe det ToY PO 0AyopLbud tov Approximate LLR, yio évo
oVpforo eloédov oto QAM16, voroyilovtor 16 cLXAEISELEG ATTOOTAOELS YL VO
Boebel n péytot nun LLR vy xébe bit. Ztn Sixn pog mpooeyytoy, vmoloyilovpe
LOVO TLG ELXAELBELEG ATTOOTAOELS TOV TETORTNLOPLOL TTOL aVNXEL TO OVWPBOAO €L-
o6dov. O vmoloytopdsg xabe Tipng LLR eEoxorovbel vo yponorpomolel tov opyixd
oAyo6ptbuo Approximate LLR mov avaAboope mponyovuevme.

‘Omtwg ametxoviletol 0T0 Xy. 8, LETE TOV LTTOAOYLOUO TWY TTPOCEYYLOTIXWY TULWY
LLR vt évar TeTapTnOpL0, £XOVTOG OCLUVOALXA 4 OTTOOTAOELS, XPELaleTOL Vo Bpodpe
wovo 2 péytoteg amootdoelg Yl TLg O€oelg mov vwapyel 17 xar ’0” avtioTolyo.
YNUELWVOVUE OTL 1 ETLAOYY TOL TETAPTNLOPLOL YiveTol ovyxpivovtog pe to 0 Tig
ouvteToYpEveG Loodov I xow (). Mo o bits otig 0€oesig LSB-1 xow MSB oe xafe
TETOPTNUOPLO TTOL YPNoLpoToLeiTon xWALxag Gray, TAPATNEOVUE OTL LTIAPYEL LOVO 1
N 0 wg mhavn Tty bit, emopévwg s ¢ So N s ¢ 51 avtiotoryo. H apyixy pog mpocéy-
YoM NTay vo TapofAEdovue avtd 0T {NTNUO XoL BOCLOTAROUE KTIOXAELGTIXO OTLG
dtabéatpeg amootaoelg. QoTdo0 LT N TEOTGEYYLGY OOYNOE OE ONUOVILXA AVEY-
WEVEG TUULEG OQAALOTOS TwY TLwY LLR o avtd tor onpeia, pe peydieg amoxAioetlg
oto BER. Emopévwg yia auTtég Tig eLOLXEG TEPLTTWOELS PONKAUE L0 EVOAAXKTLXT
AOOY YLOL TOV DTTOAOYLOWO TNG UEYLOTNG TLUNG TWY U1 LTTUEYOVTWY oTolyelwy. 'Etol
vmoAoyloope dVo TPdobeteg amooTAoELg, Uia Yior xabe tepiTTwomN - oy dev LTLEPYEL
xowvéva 17 N oy dev vTdpyeL xavéva "0 avtioToryo.

EmimAéov, 600y avopopd Ty xavovixoroinon xébe tiung LLR pe ™y tipn ovo-
Qopadg, ot apyLxeég TLLES LLR yior xdbe obporo vworoyiotnnoy opyixd xon amwoby-
xevTHay yonotpomotwvos Tov NEON. Xto Xy. 9 mopovotdletor 1 opyLTEXTOVLXN
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MAX w/ NEON

MAX Core 0

Vector MAX

Vector MAX

LLRy

int16x8

Vector MAX

Vector MAX

LLRy;

Tyquo 7: ApyLttexTovLXn YLo TOY DTTOAOYLOUO TG HEYLoTNG TLung LLR

\
‘3001

.+ Correction Factor

Quadrature Amplitude

In-phase Amplitude

Iyneo 8: [lpooeyyiotinn amodiopdpewon yioo QAM16



Quarter 1

E Euclidean Distances Correction Maximupa Value
: Calculation Factor gdélilng

Normalization
Factor

Quarter Quarter 4

Selection NEON Non SIMD

Ixneo 9: NEON vAomoinon yio tqv mpooeyytotix] QAM amodiopdp-
Ppwon

_______________________________________________

\ Gaussian Generator Coeftficient Calculation

Input Data from TX
4
P
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Complex FIR Filter

Ixquoe 10: YAomoinon tov €EopotwT) xovolod SLaAeiPewy

YLt TOV TPOOEYYLOTIXO aAYOpLbuo amodtapdppwone. Mo peyoAdtepovs aotept-
opodeg (QAMGB4), yra Ty ebpeom peyiotov yivetal xpYoyn xor tov NEON.

Axorovbyvtog Aotmtdy v (dta akyopLButxy mpooeyyton pe tov QAM16 aote-
OLOUO, ETTEXTELVOUE TNV VAOTOINON LOG TTPOXELUEVOL Vo bTTooTNEilet xow QAMG64
OOTEPLOROVG. LUYKEXPLULEVA YLO EVAL TETOPTNLOPLO, LTTOAOYLoOUE TLG 16 eLXAEISELEG
OTTOGTAOELS TTOL ATTOLTOVYTOL YPNOLLOTIOLWOVTOS Tov aAydptbuo Approximate LLR
xoL ot ovvéyela Bonxape yia xabe bit ™ péyiotn TLuY.

EEopoiwtg Kavoiiwy dtaieidPewyv o FPGA

210 Xy. 3 ametxoviletot M VAOTTOINON TOL EEOUOLWTY] XAVOALDY SLoAEiPewY, N
oTolor UTopel vo ywpLotel os Tpla xOpLa Lépy. To Gaussian Generator eivarl vedHv-
vo ytoo 0 dnutovpyta toxainwy puyodixwy I'taovotavey petofAantwy. To Coefficients
Calculation yNOLLOTTOLHOVTOG T XOLEOXTNELOTLXE TOL xavolol (xabvoteproetg dto-
Jpop.KY avéxhaone, péan toyde, K-factor) vmoroyilel toug pryadixodc ouvteAeoTég
Yoo T0 @iAtpo. TéAog to Complex FIR Filter, @UATOAOEL TOL SLOULOPPWUEVO GOUBOAX
€LOOO0L PLE TLG ULYOOLXEG UETAPBANTEG TOU XOVOALOD, TTOPAYOVTOGS TEALXE TO eEaabe-
YNUEVO ONUOL.
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Sine/Cosine

Xilinx sinz, cos © cos T

TURNG 1 L 4 Jm

CORDIC TP smI\

Logarithm Square Root
y y=az+b Inz Sl vz
TURNG 2 L& A CORDIC IP ° e

Tyneo 11: Metaoynuotiopnds Box-Muller

I'evvitota I'raovetavedy MetofAnToy

Ov mepLoodtepeg amd TLG PNPLOXES TEYVLXES YLOL TNV TTOOOYWYT TUXOLWY YXOo-
oLOLOVWY UETOPRANTOY Pacilovtol o PUETOOYNUATIOUOVS OE OULOLOLOPPES TUYALES
petoffAntéc. Xuvnbelg mpooeyylioelg meptAopavovy ™ pébodo Wallace, ™ pébodo
Inversion xafdg xaL ™ pébodo mov emAéEope epeic: Tov Box-Muller petooynuo-
TLopd, o omolog ypnotpomolel pLa axorovbion cuvaPTNoEWY YLO TN HETATPOTY] dVO
OULOLOLOPPWY XATAVEUNUEVWY UETAPRANTOY o€ 300 TTOL axoAovboby xavovixy] xo-
Tovopn. Mo v dnptovpynoovpe tor embopnta delypota, vwobétovtog OTL U XoL
ug elvor aveEgptnTeg peTafAnTéc oto Stdatnua [0, 1), xonotpomotodpe tig EE. 3 xoun
4. Xto Zynua 11 amewxoviletol 1 Bootxn opyLTEXTOVLXY TNG VAOTTOINOMG LALXOV TG
nebodov Box-Muller, pe Baon tig eElowoetg mov mapatifevtor Tapamave.

xo = v/—2In(up) cos(2muy) (3)
r1 = v/ —2In(ug) sin(27u;) (4)

YroAoyiopog Miyadixwy Xtadepwy

X1ny vAomoinon Tov Xy. 12, ot odvbetol cvvteAeotég Yo To @idtpo FIR vmo-
Aoytlovtor tapdAnAa. Emopévwg pta Serial to Parallel povada ypnoipomorndnxe,
omov Petd amd N xOxAovg, N véeg ['raovolavég petafAntéc Qoptwvovtal os TLg
povadeg moAlamAaatoopod/tpocheans. Ov otabepég m; xow a; vrohoyilovTal pe
v EE. 5, 1 omolor Aapféivel uTTOPLY TG TTOEOUETPOVS TOL XOAVOALOD. BETOVTOG TOV
mopdyovta K (oo pe 0, n xatovoun otny €£0d0 Toug xavoaAlod axolovdel xatovoun
Rayleigh, Stagopetind axorovbel Rician xotavoun.

VK +1 K—l—l )
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Multiplication/Addition Factor Upsample Coefficients \\

FXP 85.11
Re

FXP S5.11

Serial to Parallel
=

Tyneo 12: YroAoyiopdg atabepdv

holi] hali] hai] hsli]

Clock Cycles
1 2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 29 30 31 32 33 34 35
LD LD

LD LD ()]
LD LD L

LD LD
LD LD
LD LD
LD LD
LD LD
LD

FIR Filter Coefficients

Initial LD

| | | |
T T

I T
Upsample and Load Inital Coefficients Load Second Coefficients Set Start Loading simultaneously next coefficients set Repeat Previous pattern

Iyquroa 13: FIR Coefficients Loading Pipeline

EmimAéoy, mpoxetpnévon vo evnuepwvovtal ol cuvteAeotég Tov FIR @iAtpov xo-
T& TN OLdpxelor ExTEAEOG, TPETEL vou oxolovbeitar €var xuxALxd potifo PéPTw-
one. ‘'Etot, yonorpomowndnxe pio FIFO Booiopévn oe BRAM yia xdbe amotéAeopo
OLVTEAEOTY] OTIOL PE YENOM LG PNXOVAG TETEPOOUEVWY xartaotdoswy (FSM), e-
AEYYOUE TO ONUOL EVEQYOTIOINONG OVAYVWONG %ol YYpops. Ot xpoviopol yiow tnv
Tpoavopepbeion Stadixaotio, amelxovilovtol oto Xy. 13, o omoiol pumopody va xo-
TyopLtomolnbody oe Tplot XOELOL TUNUOTA: N OPYLXY] POPTWOY] TOL TTEWTOV GUYOAOV
OUVYTEAECTWY, 1] POPTWGCY] TOL GEVTEPOL GLUYOAOL v Oev ovufaivel xopior GAAN
EVNUEPWON CGUVTEAECTWY XL TEAOG, TO ETOVOAXLBOVOUEVO LOTIBO QOPTWONG TwY
OLVTEAEGTWY %oTd TN ddpxetor extéheong. Kabe @optworn tipfc (LD) ovpPaiver
xabe 2cc Aoyw NG TOTOAOYIOG TWY XATAYWENTWY 0T0 eTAEYREVO FIR.

FIR ®iATpo

21N TEPITTWOY TWV YOAUULXOY QIATOWY, N €E000G LTTOAOYILETAL WG YOOUULYOS
oLYOLOGOUOG TNG ELCOBOL XOL TWY TPONYOVUEVWY SELYUATWY €LGOS0L %o €EOJ0L.
2ty vAomoinon pag, o optbuds twy taps tov FIR, xabopiletor amd ™ péyrot
xofvotépnon dradpoung avexAoons. Aedopévonv Twg TOoO TO oNUa OGO XaL OL GU-
VTEAEGTEG TOL QLATPOL eivorl ptyadixol oaplbpol, yonolpomombnxe pLtae vAoToinoy
evig ptyadixod FIR @iAtpov, dmov yonotpomorodvtal tpia @idtpa FIR mopdAAnio
[16] (Zx. 14).
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Iyqroa 14: Apyrtextovixy FIR

Ietpapotind AToteAéopoto

[Na v vAOTOINON TNG TNAETLUOLYWVLAXNG OAVOLOOG, XENOLULOTOLMoaUE TN PBL-
BAobxn TOPCOM++ n omoior avartoybnxe oe yAwooo C++. Me Bdon tnv ap-
yLteExtovixy] Tov DVB-52 mpwToxdAAoL, 0pLodUE TLG XOTAAANAEG LOVADES, OTIWG
@drvetor 0to Xy. 15. EmimAéoy, wg pLoe deutepedovoor TELPROTLXY] OLATaEY, cke-
TOAOOWUE L TNAETILXOLYWVLAXY] XAVGLOA OTTOL O XWILXOTTOLNTNG/ATTOXWILXOTTOLTNG
LDPC mapaxaptetor. OAoL oL TopapetpoL Tpooopolwang divovtol amd éva opyelo,
eV ToL aTtoTEAéoUOTO TG TTPooopoiwarne (BER, ypdévog extéheong, vToAoYLopOS
ETLTALYONG LAOTTOLNOYG) XOTAYPAPOVTOL ETLOMG OE OPYELD, YOTE var StevXOALVOEL
N HETOYEVEDTEPT ETEEEPYOTLOL TOVG.

SIMD AmodLopoppwo

Mo tovg aotepLtopode QAMI16/QAM6G4A QoPUOCAUE TNV TEOCEYYLOTLXY] TEYVL-
%1 OV AVOAVONUE TTEONYOLUEVWG, TTOPOVGLALOVIE T ATTOTEAECULOTO. OLYOLPOPLKA
HE TN PEATIWON TOL YPOVOL EXTEAEOYG, OE OYXEOM WE TOV OPYLXO OAYOpLOpo ao-
Jopopewong e xonon SIMD Aoyuxng. EEetdoope v amddoon tng povadog tng
aTtodLapOpEwong xabne xot 0AdxAnEoL tov déxty (RX) tneg alvoidac, os dVo dro-
POPETLXA oevapLa: ywpelc/ne yonon xwdxoa FEC. Avatpéyovtag oto Xy. 16, 6mov
TIOLPOVOLALETOL LOVO O YPOVOS EXTEAEOTS TNG ATTOSLAULOPPWOYG, TTOUPATNPOVUE TTWE
€YOLUE ETILTAYLYON EWG 45X 0 abYXELOY UE TNV 0PYLXY LAOTTOino. ETLmAéoy e@op-
LOLovTog TNV TTPOTELVOUEYY] TEYYLXN TTPOOEYYLOYG, LTTAPYEL Lot ETLTAEOY PeAtiwon
omtb6300mg 3X.
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Tyneo 18: Emiddosic BER yiao QAM16 xot QAM64

X1 ovvéyeta, epoppolovtog LDPC xwdixomoinoyn 0mwe @oalvetol oto Xy. ?7,
YiveTOol QavEPd TTWGS 1 ATTOXMWOLXOTOLNOY] TOV ONUOTOG, AoBAveL onuovTixd YPOvo
EXTEAEONG OTN GUYOAXY LOVASK TOU JEXTY.

20Y%plvovTag OAEG TLG SLAPOPETLXES DAOTIOLNOELS YLoL TOVG aaTePLapobs QAM16
xor QAM64, XaTUAEQLE OTO CUUTIEQACULOL TTWG 1] XAADTEQRY] ETULAOYT UETAED ToryV-
o xol axpifBetog eivor to povtéAo FXP16-A32, xabwg vmepéyetl twv aAAwY 6oV
opopa Ty oxpifeto BER, eved TopdAAnAo TpOoQEPEL ETOp®T XEPDN AVXPOPLUE UE
TO YPOVO EXTEAEONG, OE OYEOM WE TNV aP)LX)N] LAOTOINoY. £T0 XY. 18 Topovatalo-
YTOL TOL ATTOTEAECUOTOL YLOL TNV ETULAEYUEVY] DAOTTOINOY YLt TOUG V0 SLOPOPETLXOVG
0O TEPLOLOVG.

EEotpotwtig Kavolioy StaieiPpewy o FPGA

Amattovpevor [opot 6to FPGA

Me v avéyxn evdg EOpOLWT XAVOALOD TTOL TPOCEPEPEL LPYNAEG ATTODOTELS,
N LAoToiNoY €xel apxeTd pipelined otddia, TEoxeLwEVOL Vo peyLaToTotnbel N ov-
yvotnToe Asttouypytog. o ™ odvbeon tov povtédov ypnotpomombnxe To epyoieio
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Mivaxag 1: Amtowtodpevol [Iépol oto FPGA

[Iopot  Amortovpevor  Awabéoipor  [locootd Xpnorng

LUT 2504 230400 1.09 %
FF 3851 460800 0.84 %
BRAM 9 312 2.88 %
DSP 49 1728 2.84 %

Xilinx Vivado 2022.2, émov ot mépot mov xotaAaufdvel o FPGA @aivovtal otov
[Tivaxo 1. Ocov avopopd Ty xotavdAworn evépyelag, To cpyaieio oyediaong xol
oVvbeomg avapéper 1.514 Watt.

[N v 0ELoAGYMOM TOL €EOUOLWTN XOVAALOD, EEETAOOUE TN CLVAPTNON TTUXVOTY-
tog mhovottog (PDF) twy eEocbevnuévmy oupforwy. Xto Xy. 19 mapovatélovron
TOL LOTOYQOUULOTO TWY GLUBOAWY GTNY €E0S0 TOL EEOLLOLWTY, XAOWG xot 3 XAUTTOAEG
PDF. H mpwtn eivor proe Bewpntixn Rician xotavouy pe Baorn tov avtiotolyo ov-
vteAeat) K mov yprnotpomoteitor. H dedtepn xouw toity xopmoin PDF avoapépovton
OTNY XAUTOYOWY] TTOV TPOXVTTEL OTTO T LOTOYQPAUUOTH ToL eEopotwt oto FPGA
xo0wg xow evig povtéAov oe MATLAB. Amé to mopamdvew Stoayplpotar COULTE-
paivovpe Twg Tor ToPaYOUeva cOPBoA axorovbody Ty Bewpntinn xauTdAn PDE,
EVW OLYYPOVWG O aLYXELOY e TO LovTEAo ato MATLAB, éxouv ptxpn amwieio
oxpifeLoc.
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Chapter 1

Introduction

Digital Communication is employed for signals that exist inherently in an analog
and continuous-form, including content like audio, images or other continuous data
data streams. Simultaneously, it is utilized for signals that are digital, such as text
files and discrete data sets. With the continuous rise of the demand of data transfer,
it is well known that digital communication is becoming one of the key technologies
of our time [9].

Furthermore, with the continuous rise of chip design technologies, allowing for
the integration of entire systems on a single ICs, the integration of System-On-Chip
in telecommunication applications is an ideal implementation choice. SoCs refers to
a VLSI system that encompasses nearly all the essential components required for
a specific application. In other words, they are microchips where the CPU, internal
memory, 1/0 ports, analog input and output, and specialized application-dependent
circuit blocks are all intended to be combined within a singular chip [10].

1.1 Related Works

The implementation of digital communication protocols in software, is a critical
research area for communication stakeholders, presenting substantial benefits such
as hardware integration, energy efficiency, scalability, as well as ease of maintenance
[17]. Over the past years, different researchers focus on implementing digital com-
munication protocols on software, like for example in paper [18], where the authors
have successfully constructed a DVB-S2 receiver achieving a 10 Gb/s throughput
using a cluster of server-class CPUs. Other works like [19], focus on low power
and smaller scale devices, where an Internet-of-Things (IoT) software-defined radio
platform was introduced on ARM-Cortex-M4 processor. It showcases the potential
of employing in such platforms software-based implementations of wireless physical

layers.
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In the realm of wireless communications research different networks are ex-
plored, with cutting-edge communication technologies and significant antenna ad-
vancements. To facilitate the development and assessment of these technologies, cre-
ating extensive fading channels within a laboratory setting using hardware, serves a
practical alternative to expensive field-testing [20]. In recent years, the literature has
seen a range of hardware approaches (FPGA-based) for simulating fading channels,
with some of them being proposed in papers [21, 22].

1.2 Thesis Objectives

The target of this thesis was utilize the available software optimizations tech-
niques in an ARM embedded platform/SoC for applications in the field of telecom-
munications. Initially a soft-demodulation algorithm’s performance for digital mod-
ulations was enhanced using SIMD logic in ARM processors, following up with the
application of Approximate Computing techniques over the original algorithm. Fur-
thermore, in order to have as real-time as feasible channel modeling, an FPGA-based
Fading Channel Emulator was implemented, performing at a high frequency with
highly accurate output samples.

1.3 Thesis Outline

The main part of this thesis is organized in total of 6 Chapters, which after this
introductory chapter the structure is as follows:

1. Theoretical Background
Chapter 2 presents a brief mandatory theoretical background for Digital com-
munications and channel modeling. Furthermore a brief introduction is given

for the FPGA-SoC, the platform that was used in during the development.

2. SIMD Demodulation with Approximation Techniques
Chapter 3 firstly presents the implementation of a QAM soft-demodulation
algorithm on NEON using SIMD commands. Then an approximation approach
over the original algorithm is proposed, in order to decrease the required

arithmetic operations.

3. Fading Channel Emulation on FPGA
Chapter 4 gives a detailed description of the implementation of all the necessary
blocks used in the Fading Channel Emulator on FPGA.

4. Experimental Results
Chapter 5 presents the experimental results for both works. For the SIMD
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Demodulation, the execution time as well as the system’s Bit Error Rate (BER)
is evaluated. Regarding the FPGA Fading Channel emulator, the quality of the
Fading effect is analyzed, by comparing with a floating model the Probability
Density Function (PDF) and the constellation plot.

5. Conclusions and Future Work
Chapter 6 shows conclusions from the aforementioned experimental results, as
well as some future work suggestions for both the SIMD Demodulation and
the FPGA Fading Channel Emulator.
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Chapter 2

Theoretical background

2.1 Introduction

In this chapter we will examine the fundamental blocks of a digital commu-
nication system, as well as the theory behind Demodulation Algorithms. In addi-
tion, modeling techniques for different transmission channels are presented. A brief
overview of the SoC-FPGA architecture is presented; the platform of choice during
the development of the thesis.

2.2 Digital Communication

A fundamental definition of digital communication involves transmitting a mes-
sage from a defined set of binary digits (bits) or symbols, during a specific time
interval. Each symbol or bit is associated with a continuous time waveform, which
is then transmitted over the channel. Within any finite period, the waveform at the
channel’s output belongs to a limited set of potential waveforms, contrary to analog
communications, where the channel’s output can be any possible waveform. Digital
Communications while not being without any trade-offs, offer multiple advantages
regarding Design Efficiency, Hardware Flexibility, QoS (Quality of Service), improved
security features etc. In a communication system (analog or digital), there are two
fundamental resources to take into consideration: transmitted power and channel
bandwidth. Moreover, Transmitted Power refers to the average power of the sig-
nal being sent out, while the channel bandwidth represents the range of significant
frequency components reserved for transferring the input signal [23].

2.2.1 Digital Communication Chain

A typical digital communication system is shown in Fig. 2.1, which can be divided
into three main parts, regardless of the particular application and configuration; the
Transmitter (TX), the channel and the Receiver (RX) [11].
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Figure 2.1: Digital Telecommunication Chain

In more detail, the information source generates its output, and then an input
transducer like a microphone, transforms the source output into a time-varying elec-
trical signal known as the message signal. Then the transmitter is responsible for
converting the message into a form suitable for transmission over a physical chan-
nel (ex. a cable), where the source encoder’s role involves eliminating redundant
information from the message, in order to to optimize channel utilization. The Mod-
ulation Module takes a series of bits of the Channel Encoder and translates each
sequence into a waveform, suitable for transmission.

The physical medium between the transmitter and receiver module is called com-
munication channel, in which the transmitted message is degraded, since no ideal
channel exist. Various forms of modifications in the signal can happen, including
attenuation, noise, distortion and inference phenomenons.

The Receiver (RX) module of a telecommunication system, is responsible for
extracting the received message signal, by performing demodulation, along with
some complementary functions like filtering and amplification, since the effects of
signal degradation must be encountered. The Demodulation handles the received
waveforms and matches each one with the respective bit sequence.

2.2.2 Digital Modulation

In digital communications the coded pulses used for the transmission of infor-
mation signals play an important role, which is essentially the conversion of analog
waveforms into coded pulses. In digital modulation, the message signal is expressed
with discrete values in both time and amplitude, enabling the transmission of the
message as a digital sequence of coded pulses [24]. Some fundamental different
Modulation techniques are presented bellow.
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Figure 2.2: Example of BPSK waveform [1]

Phase-Shift Keying (PSK)

Phase shift keying (PSK) Modulation encodes all the data within the phase of
the carrier signal and is now used in both military and commercial communications.
A series of information symbols form the set 1,2,..., M are transmitted from the
M-PSK Modulator. The general analytic expression for PSK is defined in Eq. 2.1,
where ¢;(t) = 2mi/m is defined as the phase term and contains A discrete values.

[2F
si(t) =/ 7 coslwot + ¢i(t)], 0<t<T.i=12....M (2.1)

Each symbol transmitted conveys k bits of information, where £ = log, M, while
the M-PSK mapping is used. The A variable indicates the modulation order and
determines the quantity of constellation points in the reference constellation. For
example if 3-bits of information are contained in a single transmit symbol, a 8-PSK
Modulation scheme is utilized. Furthermore, Binary Phase Shift Keying (BPSK)
and Quadrature Phase Shift Keying (QPSK) Modulation is used, for 2 and 4 bits
respectively.

Frequency Shift-Keying (FSK)

In a typical Frequency Shift-Key Modulation, the waveform depicts a slight shift
from one frequency to another. The general analytic expression is given in Eq. 2.2,
where w; is the frequency term and consists of M discrete values, while in contrast
to the PSK Modulation scheme, the phase term ¢ is a fixed parameter.

2K
si(t):\/?cos[wit—l—(b], 0<t<T,i=1,2,...,. M (2.2)
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Pulse-Amplitude Modulation (PAM)

Pulse-Amplitude Modulation (PAM) refers as to the most fundamental and
straightforward form of modulation. It involves linear modulation, where the ampli-
tudes of evenly spaces pulses are adjusted in relation to the respective sample values
of a continuous message signal. These pulses can be formed in either a rectangular
or another appropriate shape. During the creation of the PAM signal, the message
signal’s sampling happens at regular intervals, while taking into consideration the
sampling theorem. Meanwhile, the duration of each acquired sampled is extended
to a consistent value denoted as 7. A PAM signal can be expressed as a discrete
convolution sum, as denoted in Eq. 2.3 where T} represents the sampling period
and h(t) is a Fourier-transform pulse.

s(t) = i m(nTs)h(t — nTy) (2.3)

n=—oo

Quadrature Amplitude Modulation (QAM)

One of the many different digital modulation techniques is called Quadrature
Amplitude Modulation (QAM) or Quadrature Multiplexing, which operates by trans-
mitting two DSB signals using carries of the same frequency but in phase quadrature.
M-ary QAM extends the concept of M-ary PAM into two dimensions by utilizing two
orthogonal passband basis functions, as denoted in Eq. 2.4. A typical block diagram
of a QAM Modulator is illustrated in Fig. 2.4, where p(¢) is a smooth pulse defined
on [0, 7.
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Figure 2.5: QAM constellations for different transmission bits

$(t) = \/zcos(%rfct), 0<t<T
d (2.4)

Po(t) = \/gsin(%fct), 0<t<T

This way by combining the amplitude and phase, the Transmitter can send more
bits per symbol further. For example some popular variations like QAM4, QAM16,
QAM?246 etc. transmit as shown in Fig. 2.5 2, 4 and 8 bits respectively. Moreover,
certain QAM constellations that require odd number of bits (such as QAM512), are
depicted using a cross-like configuration instead of a square arrangement [12].

For each QAM constellation, a Gray Code is utilized for the mapping, employing a
specific bit-per-symbol arrangement, where consecutive values differ in only a single
bit. This technique is extensively used, in order to reduce errors in demodulation
due to added noise.

Rectangular QAM signal constellations offer a notable advantage, as they can
be effortlessly created by incorporating two PAM signals onto phase-quadrature
carriers, while their demodulation procedure is straightforward. Despite not being
the optimal choice for M-ary QAM signal constellations when M > 16, they exhibit
only a slight increase in the average transmitted power needed to achieve a specified
minimum distance compared to the best M-ary QAM signal constellation. Due to
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these factors, rectangular M-ary QAM signals find widespread practical use [25].

2.2.3 Demodulation Algorithms

As we’ve already seen, in a digital communication system carrying information
involves choosing a signal from a predefined set for transmission. The signal received
at the other end is inevitably distorted and affected by noise. Consequently, a key
challenge in designing the receiver is determining, from the received signal, the
specific signal that was originally transmitted from the source. The objective of the
link designer is to minimize the probability of error in this decision, adhering to the
constraints imposed by the system [2].

Soft Demodulation

In contrast to a Hard-Demodulation method, where the Demodulator maps the
received signal to the closest symbol in the constellation, Soft-Demodulation Method
uses a probability metric, indicating the likelihood that each symbol that transmitted
was originally ”1” or ”0”. This method, although having a higher computational
complexity than using a hard decision algorithm, it has better performance in terms
of Bit Error Rate (BER), while offering numerical stability with a reduced dynamic
range. The Log-Likelihood Ration (LLR), represents the logarithm of the ratio of
probabilities of a ”0” bit being transmitted, versus a 1" bit being transmitted for a
received signal r. For a bit b, the LLR is defined as follows:

oo | PT0=0]r)
LLR, = log {Pr(b = W)} (2.5)

Exact Log-Likelihood Ratio

By assuming all received symbols have equal probability we can express the Exact
LLR (FLLR) of an AWGN channel with Eq. 2.6, where ¢? is the noise variance of
baseband signal, s, represents the In-phase coordinate (I) of the ideal symbol or
constellation point, while s, corresponds to the Quadrature coordinate (@) of the
same ideal symbol or constellation point [13].

> s o~ 7z l(@=s2)+(y—sy)%]
sE€Sy
o 5P ()]

ELLR, =In { (2.6)

SES1

Approximate Log-Likelihood Ratio

The computation of the Approximate Log-Likelihood Ratio (LLR) involves using
only the closest constellation point to the received sample, considering "0” or ”1”
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at that specific bit position, as opposed to the Exact LLR Calculation, where all the
constellation points are taken into consideration. Essentially, each sum in Eq. 2.6 is
replaced by it’s largest term, by using only the nearest constellation point that has
”0” in the numerator and ”1” in the denominator. As defined in [13, 14, 15], the
Approximate LLR (ALLR) is given by Eq. 2.7

ALLR, = L {max [(z — s2)* + (y — 5,)°] —max [(z — $2)° + (y — sy)°] } (2.7

o2 SEST s€Sy

2.2.4 Forward Error Correction Codes

To ensure data integrity and minimize errors, Forward Error Correction (FEC)
can be employed. The primary objective of the channel encoder and decoder is
to mitigate the impact of channel noise, aiming to minimize the number of errors
between the channel encoder input and the channel decoder output that is delivered
to the user. When implementing a predefined modulation scheme, incorporating
redundancy into the coded messages necessitates a higher transmission bandwidth.
Additionally, the integration of error-control coding increases the complexity of the
system. Consequently, the design trade-offs associated with employing error-control
coding to attain sufficient error performance, encompass the balance of bandwidth
utilization and system complexity.

Low-Density Parity Check Codes

A type of Error Correction Code that is widely used is the Low-Density Parity
Check (LDPC) Codes. These codes are defined by a parity-check matrix designated
as A, deliberately designed to have a sparse structure. This means that the code
primarily comprises Os with only a few instances of 1s. Specifically, we refer to them
as n,t.,t, LDPC codes, where n represents the block length, ¢, signifies the number
of 1s in each column of matrix A, and ¢, indicates the weight of each row, with
t, > t.. The rate of an LDPC code is defined in Eq. 2.8 [3].

r=1-— (2.8)

In matrix A we consider that n — k represents the number of rows and n is
the number of columns. Hence, dividing ¢. by ¢, we get the Eq. 2.9, where */n is
essentially the block code rate. For this statement to hold true, it is necessary for
the rows in matrix A to be linearly independent.
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Variable
nodes

Figure 2.6: LDPC code example graph

The composition of LDPC codes is effectively illustrated by bipartite graphs,
originally introduced by Tanner in 1981, and consequently referred to as Tanner
graphs. Fig. 2.6 illustrates an example for a graph of n = 10, t, = 3 and ¢, = 5.
The nodes on the left represent variable nodes, corresponding to elements of the
codeword. On the right, check nodes are depicted, representing the set of parity-
check constraints satisfied by codewords in the code. The graph showcases LDPC
codes categorized as regular, where nodes of the same kind possess identical degrees.
With the block length approaching infinity, the proportion of variable node connected
to each check node diminishes significantly, resulting in what is referred to as "low

density” scenario.

2.2.5 Interleaver

To fully leverage the advantages of FEC coding in wireless communications, the
incorporation of an additional technique called interleaving is crucial, since wireless
channels possess memory, due to multipath fading caused by signals reaching the
receiver through various propagation paths of various lengths. Fast Fading specif-
ically, a phenomenon that arises from signal reflections off nearby objects near the
transmitter, the receiver or both. Interleaving servers to effectively disperse any er-
ror bursts that might occur during data transmission over the wireless channel,
distributing them across the duration of the Interleaver’s operation. This process
substantially enhances the probability of receiving a correctable sequence. During
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Figure 2.7: Structure of a Block Interleaver

the transmission phase, the Interleaver is positioned after the channel encoder, while
in the reception phase, the de-interleaver is positioned prior to the channel decoder.

Fig. 2.7 illustrates a classic Interleaver model, known as Block Interleaver, that
functions as a memory buffer. Input data is written into the rectangular array in
column fashion. After the array is full, it’s contents are read sequentially in a row-
wise manner and delivered to the transmitter. The opposite process is executed at
the receiver.

2.3 Channel Modeling

2.3.1 Additive White Gaussian Noise

Additive White Gaussian Noise (AWGN) serves as a straightforward noise model,
representing the movement of electors within the RF front end of a receiver. As
implied by its name, the noise is added to the signal, while it’s called "white” because
the noise maintains a uniform spectral distribution across the sampling bandwidth.

8
6
Transmitted Received \ 22
signal signal ¥ § X
s;(1) ;—@ x(1) 5 : 2 g
_‘;-; 0 e iRkt e ¥
+ 5, #
*. * *:
-4
+
White Gaussian noise 8
w(t) N In—POhass
(i) Channel model [3] (ii) Effect over General QAM Modulation

Figure 2.8: AWGN Channel and effects
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It’s termed Gaussian due to its amplitude conforming to a normal probability
distribution. Precisely, a random variable X is following a Normal or Gaussian dis-
tribution, if its density follows the Eq. 2.10., where m is the mean value of X and
v? represents the variance of X.

1 _ 2
p(z) = Wexp [—%} (2.10)

For an AWGN channel model, the received signal z(¢) is defined by Eq. 2.11,
where w(t) is the channel noise and s;(¢) the transmitted signal. The receiver is
responsible for observing the received signal for a duration of 7} seconds, and sub-
sequently forming an approximation of the original transmitted signal s;(¢).

x(t) = s;(t) +w(t), 0<t<T, (210

The AWGN channel is commonly employed to emulate a satellite communications
channel, as such channels generally avoid typical terrestrial impairments like fading,
multipath and interference. Utilizing an AWGN channel provides a solid initial basis
for analyzing terrestrial wireless links, as it sets a favorable benchmark for the Bit-
Error-Rate (BER) performance of these links.

For a transmitted signal over a AWGN channel, we can theoretically estimate the
BER, using a set of predefined equations. Moreover, to determine the probability of
error for a M-QAM Modulation, as stated in [26] the Eq. 2.12 can be used, where
k =log, M and it’s an even number.

VM —1 3kE, Vir-1\’ ) 3kE,
P=4=7 Q( (M—l)No>_4< >Q< ( ) 212
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Figure 2.10: Illustration of fading channel in urban environment

2.3.2 Fading Channel

Fading and Multipath effects are commonly encountered in radio communication
systems. In wireless communication setups, various signal paths can exist between
transmitter and receiver antennas. These multiple paths emerge from atmospheric
scattering, refraction, or reflections from objects like buildings, as illustrated in Fig.
2.10. In cases of multipath, signals arriving via different paths exhibit distinct atten-
uation and delays, which can either enhance or diminish each other at the receiving
antenna. To comprehend the characteristics of the multipath phenomenon, we can
initially examine a static, multipath scenario; a stationary receiver interacts with a
transmitted signal comprising a narrowband signal, such as an unmodulated si-
nusoidal carrier, while we make the assumption that two attenuated copies of the
transmitted signal reach the receiver sequentially. The consequence of the time delay
disparity is the introduction of a relative phase shift between any two components
of the received signal.

A basic representation for discrete multipath channels is shown in Eq. 2.13,
where s(t) represents the bandpass input signal, a,,(t) is the attenuation factor for the
signal received through the nth path, and 7,(t) represents the associated propagation
delay. Hence, the multipath fading channel is implemented as a linear finite impulse-
response (FIR) filter [27].

y(t) =) an(t)s(t — 7, (t)) (2.13)

When path lengths or geometry change due to factors such as transmission
medium alterations or antenna movement, signal strength can undergo unpre-
dictable fluctuations. Based on signal path, the fading distribution can be divided

into two categories:

1. Rician, where the transmitter has direct Line-of-Sight (LoS) path to the receiver.
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2. Rayleigh, where one or more major reflected paths from transmitter to receiver.

In general, a probability distribution is a theoretical model that is based on as-
sumptions about a source population. Probabilities are allocated through these model
to the occurrence of a random variable. A Rician Distribution is described from the
Eq. 2.14, where the first kind zero-order modified Bessel function is denoted as Ij.
The non centrality parameter s is non zero, while for > 0 the scale parameter
o> 0.

2 2
p(x) = I <IS) %exp (—I 21_28 > (2.14)

o2
Utilizing the Central Limit Theorem, the real and imaginary parts of the complex
faded signal can be represented as zero-mean Gaussian random variables, denoted as

N(0,0?), with mean value ;= 0 and variance o2. The probability Density Function
(PDF) of the Rayleigh distribution is shown in Fig. 2.11 and follows the Eq. 2.15.

2
p(r) = %exp <—%) (2.15)

2.4 SoC FPGA

System-on-Chip Field Programmable Gate Arrays (SoC FPGAs) consist of semi-
conductor devices that combine programmable logic (PL) and embedded processor
cores, typically sources from companies like ARM. This design merges the conve-
nience of programming a processor with the adaptability and efficiency of a pro-

grammable logic structure.

2.41 FPGAs

Field Programmable Gate Arrays are flexible hardware reconfigurable hardware
chips, designed for digital logic. FPGAs consist of an arrangement of logic gates that
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Figure 2.12: Overview of an Island-style FPGA [4]

can be programmed to create custom digital circuits. These circuits can be defined
using Hardware Description Languages (HDL), like Verilog or VHDL [28].

An FPGA comprises three fundamental elements: a logic element that can be
programmed, an I/O element that can be customized for external connections, and
an interconnect element that can be programmed to link various sections together.
Additionally there are Digital Signal Processing (DSP) units and integrated mem-
ory, in order to enhance computational capacity. By transferring the data to these
components, an FPGA can execute the intended digital circuit. The structure of
an island-style FPGA is illustrated in Fig. 2.12, which comprises logic elements
(logic block), peripheral 1/O elements (I/O block), routing elements (switch block,
connection block and routing channel), embedded memory and multiplier blocks.
A collection of adjacent logic blocks along with a connection and switch block, is
refereed to as a logic tile [4].

In the initial stages of FPGA development, LUTs were the only components
comprising a logic block. Nowadays however, FPGAs there are fundamental logic
elements known as BLEs, which contain a LUT, a flip-flop (FF) and a selector. De-
pending on a memory bit dedicated for configuration, the selector controls whether
the value of the LUT or the one stored in the FF is emitted. When designing the
architecture of a logic block, there are various trade-offs between area, efficiency and
delay.

In order to enhance arithmetic operation performance, modern FPGAs incor-
porate a specialized carry logic circuit within the logic block. While arithmetic op-
erations can technically be executed using LUTs, employing dedicated carry logic
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Figure 2.14: Zynq UltraScale+ MPSoC Block Diagram [5]

proves more efficient in terms of both integration level and operational speed.

2.4.2 Zynq UltraScale+ MPSoC

In this thesis we used the ZCU106, a general purpose evaluation board for rapid
prototyping from Xilinx, packaged in the 16nm FinFET Zynq UltraScale+ MPSoC.
The Zynq UltraScale+ MPSoC is a diverse SoC that integrates multiple processing
engines, a variety of high-speed peripherals, advances I/O capabilities and a PL com-
ponent. This SoC consists of a quad-core ARM Cortex A53-based APU, a dual-core
ARM Cortex R5-based RPU, a Mali graphics processing unit, a platform manage-
ment unit, and a video codec unit (VCU). Additionally, it features power islands
that allow turning specific blocks on and off to conserve power. The generic block
diagram of the Zynq’s UltraScale+ MPSoC architecture of the PS and PL, is shown
in Fig. 2.14 [5].
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DSP Blocks

In DSP applications, programmable logic devices have been proved to be highly
effective, due to their capability to execute tailored, fully parallel algorithms. Within
DSP applications, numerous binary multipliers and accumulators are utilized and
with dedicating specific DSP resources for these functions, leads to optimal imple-
mentation [29]. The UltraScale+ devices contain numerous specialized, low-power
DSP slices, offering a blend of high speed and compact size. The resources signifi-
cantly boost the speed and efficiency of various applications beyond DSP, spanning
from wide dynamic bus shifters, memory address generators, wide bus multiplex-
ers and memory-mapped I/O registers. The fundamental operation of the DSP48E2
slice contained in the UltraScale+ devices is depicted in Fig. 2.15.

The DSP48E2 slice provides versatile functionality, encompassing various in-
dependent operations, such as multiplication, multiply-accumulate, multiply-add,
four-input addition, barrel shifting, wide-bus multiplexing, magnitude comparison,
bitwise logic operations, wide XOR, pattern detection and wide counter. Additionally,
this design allows for the integration of multiple DSP28E2 slices, in order to create
DSP Filter, extensive math function and complex arithmetic operations, without the
necessity of additional logic units.

2.4.3 ARM Cortex-A53 Processor

The Cortex-A53 processor falls within the mid-range category, offering low-
power consumption and the capability of handling both 32-bit and 64-bit code. It
features one to four cores in a single cluster, each equipped with its own L1 cache
subsystem. There’s also an optional integrated GICv3/4 interface an optional L2
cache controller. The Cortex-A53 processor features an in-order, eight stage execu-
tion pipeline, reduced power consumption through hierarchical clock gating, power
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Figure 2.16: Cortex-A53 processor block diagram [7]

domains and advanced retention modes. Also it has enhanced dual-issue capability,
from incorporating dual instruction decoders and execution resources [30]. Fig. 2.16
illustrates the basic block diagram of the Cortex-A53.

The Armv8-A architecture introduces the potential of utilizing two distinct exe-
cution modes: AArch64 which is 64-bit and AArch32, which is 32-bit. Within the
AArch64 Execution state, the A64 instruction set is enabled, employing 64-bit reg-
isters to handle addresses and permitting instructions in the base Instruction Set,
in order to utilize these 64-bit registers for computation. Conversely, the AArch32
Execution state represents a 32-bit execution mode aimed at preserving compatibil-
ity with the prior Armv7-A architecture. It extends this profile to encompass certain
features from the AArch64. Furthermore, AArch32 supports both the T32 and A32
Instruction sets [31].

Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) instructions, enhance the overall effec-
tiveness of the intended application, by enabling a single instruction to simultane-
ously handle multiple sets of data, through purpose-built hardware logic. Fig. 2.17
shows the difference between SISD and SIMD processor architecture.

NEON Engine

ARMvVS processors along with the general purpose registers, they populate 32
128-bit SIMD registers on each core, that are used to implement NEON instructions.
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The NEON instructions support 8-bit, 16-bit, 32-bit and 64-bit signed and unsigned
integers, 32-bit single-precision floating point elements and 8-bit, 16-bit polynomi-
als. NEON technology offers a specialized expansion to the ARM Instruction Set
Architecture, introducing extra instructions capable of executing data processing
operations concurrently across numerous data streams. In Fig. 2.18 the possible
scenarios for splitting the NEON registers are illustrated, in order to fit the desired
data widths of vector elements [32].

NEON Intrinsics

NEON Intrinsics refer to functions with well-defined implementations known
to a compiler. Specifically NEON Intrinsics encompass a collection of C/C++ func-
tions outlined in arm_neon.h header file, compatible with Arm compilers and GCC.
These functions enable the utilization of NEON functionality, without the necessity
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of directly coding in Assembly. They encapsulate short assembly kernels, inlined
into the calling code. Furthermore, the compiler efficiently managers register allo-
cation and pipeline optimization, alleviating challenges commonly encountered by
assembly programmers.

Fig. 2.19 illustrates how a NEON intrinsic accomplishes a simultaneous addition
of eight lanes comprising 16-bit elements extracted from Q1 and Q2, while storing
the outcome in QO.
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Chapter 3

SIMD Demodulation with
Approximation Techniques

3.1 Introduction

In this chapter the implementation of the Demodulation block for QAM Mod-
ulation will be analyzed. Firstly, we’re going to analyze the initial implementation
on the NEON Engine based on a known algorithm. Afterwards we will present an
Approximation Technique for QAM Demodulation and it’s implementation.

3.2 Approximate LLLR Algorithm

The Demodulation Block depends upon Eq. 2.7, which involves calculating the
Approximate LLR for individual incoming symbols within a QAM constellation.
This implementation provides support to varying bits per symbol, accommodating a
range of constellations such as QAM4, QAM16, QAM64, QAM256, QAMb512 (Cross
Constellation) and QAM1024.

The process begins with calculating the Euclidean distance between each incom-
ing coordinate (I, @) and all conceivable symbols within the chosen constellation,
accounting for both 1s and 0s. Subsequently, by finding the maximum LLR value
within the relevant range, the final result is derived. It is important to emphasize that
the LLR values are normalized with the first-reference symbol, ensuring a consistent

span across diverse input values.

3.3 Loop transformations

In our initial C++ function, we applied fundamental loop transformations: loop
unrolling and loop tiling. We experimented with different factors for loop unrolling
and loop tiling. In both scenarios, we observed enhancement in the execution time of

the Demodulation process, achieving a performance improvement ranging from 5%
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Algorithm 1 Demodulation using Approximate LLR

1: function Sortr DEMODULATION

2 a 1202 > Calculate multiplication factor
3 for all Input Symbols do > Block input data
4 for all Reference QAM Symbols do > Find all Euclidean distances
5: dy I —Ief > e, Qrey Teference constellation coordinates
6 d2 < Q - Qref

7 d <+ —(dj +d3)

8 if i=0 then

9: LEy + a-d > Normalize LLR using the first symbol
10: else

11: LFE, < a-d; — LFy > Normalize results
12: end if
13: end for

14: for all QAM Symbol Bits do > Maximum LLR value V Bits
15: LLR; < maXgcs, (LFs) — maxgeg, (LE%)
16: end for

17: end for
18: end function

to 10%. It’s worth noting that similar improvements in percentages were observed
when applying the same loop transformations to the SIMD Demodulator Block,

which is outlined in the subsequent section.

3.4 SIMD Demodulation

Fig. 3.1 illustrates the calculation of Approximate LLR values using NEON In-
trinsics in C++, where as it is shown, we can divide the procedure into three main
parts: the data loading to NEON engine, the mathematical calculations (including the
Euclidean Distances calculation and the Maximum Distance finding, and ultimately
the data extraction from the NEON engine.

3.4.1 Data management

Through benchmarks we identified a notable portion of the execution time at-
tributed to data transfers to and from the NEON engine. Consequently, optimizing
these operations became essential. To enhance efficiency, we adopted a strategy as
proposed by ARM, of loading 8 or 16 values in a single cycle.
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3.4.2 Fixed point arithmetic

Although various software implementations use floating-point arithmetic, we
opted for fixed-point arithmetic [33], expressing all of our data in vectors of int16
or int8 for 16-bit or 8-bit fixed-point number respectively. For our fixed-point rep-
resentation we use the notation XA.B, where X denotes if it’s signed number (S), or
unsigned (U), A is the integer part with the sign bit, and finally B is the fractional
part.

For the transition from floating-point arithmetic to fixed-point arithmetic, we fol-
lowed the workflow illustrated in Fig. 3.2. Starting with the base model, we analyzed
the size of each variable in order to find appropriate fixed-point representation. Dur-
ing the development in fixed-point arithmetic, we evaluated the error in comparison
to the floating-point model in order to optimize our design.

For the evaluation of the precision loss due to the fixed point arithmetic, as en
error evaluation metric we utilized Mean Relative Error (M RE), which is calculated
using the floating (aprp) and the fixed point value (apxp) over a number of N values,
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as stated in Eq. 3.1.
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After data analysis of all the possible input values of the Demodulation Block, we
found out that we only need 2 integer bits, thus for our input we used the formats
S52.14 and S52.6 without losing accuracy. The final result of the LLR value is integer
(516.0), while it is important to keep track of the decimal position while we perform
any mathematical operation. A thorough data analysis was conducted at each step
to ensure the presence of sufficient integer and fractional bits and to prevent any
possibility of overflow.

Mathematical operations

We opted for a total of four implementations of the Demodulation Block, based
on the input values width (int8 and int16), and based on the precision of the
multiplication with constant . The first approach, was to use vqdmulhq_n_s16()
intrinsic which performs Vector saturating doubling multiply high with scalar, as re-
ferred in ARMs Manual, which conveniently handles the multiplication doubling
size internally and returns a 16-bit result, same as the input. While this instruction
is rather fast, the downside is that we have limited accuracy and is required to have
only 6 fractional bits for a. Thus the second approach was to manually handle the
multiplication result; assigning it to a temporary int32 vector and then converting
it back to an int16. The aforementioned described procedure is illustrated in Fig.
3.3. Additionally in order to gain execution time, we pre-calculated the reference
constellation symbol coordinates in fixed point format and stored them in an array,
rather than converting them in real time.
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Finding maximum Euclidean distance

In the original implementation of the Demodulation, the LLR value of each bit
doesn’t need the same comparisons; it re-uses previous calculated max values, in
order to optimize the required instructions. Therefore, we created a custom max
finding function for calculating the maximum value each time, by taking into con-
sideration the efficient use of the NEON engine.

When porting this algorithm to NEON using SIMD, vectorized instructions can’t
be utilized for each LLR computation. Therefore as illustrated in Fig. 3.4, the first
values of the LLRs are calculated using NEON intrinsics, while the remaining 3 LLR
calculations, since they require negligible number of comparisons, no SIMD logic
is required. Furthermore with the calculated values from the N — 1 digits, LSB bit
required only a subtraction for the desired result. During the maximum finding, two
different NEON intrinsics were utilized, one for finding the maximum value across
a single vector and another one for calculating the maximum values between two
vectors.

It’s obvious to point out, that for small QAM constellations (QAM16), the NEON
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Figure 3.5: Soft Demodulation proposed approximation for QAM16

engine for the Demodulation algorithm is utilized only during the Euclidean Dis-
tances calculation.

3.5 SIMD Approximate Demodulation

Having as a base model the four previous implementations of the SIMD Demod-
ulation, we opted for further optimizations, by applying Approximate Computing
techniques [34] to the original LLR calculation in order to reduce the required

arithmetic operations.

3.5.1 Approximation on QAM16

As we’ve already seen in the original Approximate LLR algorithm, for a given
symbol in QAM16, 16 Euclidean distances are calculated in order to find the max-
imum LLR value for each bit. For our approximation technique, we propose that
we only calculate the Euclidean distances on the quadrature the input symbol be-
longs. A similar technique of calculating less euclidean distances, but with a different
grouping and for PSK/APSK modulation schemes was presented in paper [35]. The
computation of each LLR value, still employs the original Approximate LLR algo-
rithm from previous section.

As illustrated in Fig. 3.5, after calculating the Approximate LLR values for a given
quadrature, knowing the Gray Mapping for our constellation, we can define the 1s
and Os in each bit position, in order to find the maximum Euclidean Distance in each

case. Moreover, having a total for 4 distances, we only need to find the maximum of
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2 distances for 1s and Os respectively. Note that the quadrature selection is simply
done by comparing with O the I and () input coordinates, which we found to be
the fastest solution. The aforementioned procedure in described by Eq. 3.2.

LLRscOuadrs, it I>0and Q>0
LLR . LLRSEQuad’/‘Qa it 1 <0 and Q >0 (3 2)
) LLRscguadrs, i 1>0and Q <0 '

LLRscouadr,, #1<0and Q<0

\

For each quadrature, we stored all the reference constellation coordinates in fixed-
point format in a different array with a specific arrangement, in order to optimize the
access pattern to the elements when loading the data to NEON engine. Specifically
we could load to a 8 element vector both values for I and () coordinates in order
to calculate both distances with a single instruction.

For bits in places LSB-1 and MSB in any quadrature mapped with Gray Code,
we observe that there is only 1 or 0 as a possible bit value, thus s ¢ Sy or s ¢ 5
respectively. In our preliminary attempt, we initially overlooked this issue and relied
solely on the available distances. However, this approach resulted in significantly
elevated LLR MRE values and a noticeably deviated BER. Therefore for these special
cases, where we had to find an alternative to compute the maximum value of non-
existing elements, thus we calculated two additional distances (one for each case; if
there is none 1s present or if there are none Os present), denoted as Correction Factor
in the Eq. 3.3.

LLRapproz = LLRsequadr; + LLRs¢Quadr, (3.3)
———
Correction Factor

After conducting tests with various possible combinations, we identified that the
symbol closest to the center of the axis exhibited the least LLR Relative Error. As
a result, we selected this particular symbol of our calculations, although different
methods could possibly be applied, for example selecting each time randomly or in
a cyclic pattern the symbol, for the correction factor computation.

Furthermore, regarding the normalization of each LLR value with the reference
one, the initial LLR values for each symbol was initially calculated and stored in
an array using NEON. In Fig. 3.6 an abstract block diagram of the proposed Ap-
proximate Demodulation is presented. The Maximum Value Finding block is drawn
with both colors, since as we’re going to analyze below, for larger constellations (ex.
QAMG64) it can also be accelerated with the use of NEON Intrinsics.
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Figure 3.6: NEON Implementation for proposed approximated QAM
demodulation

Table 3.1: Computational complexity of LLR Calculation per Bit

QAM16 QAMG64
Operation Original Proposed Original Proposed
Euclidean Distances 16 6 64 18
Comparisons 45 16 193 64

3.5.2 Extending the Approximation on QAMG64

Following the same algorithmic approach with the QAM16, we extended our
implementation design in order to support also QAM64 Demodulation. Specifically
for the given quadrature, we calculated the 16 Euclidean distances needed using
the Approximate LLR algorithm, and then found for each bit the maximum value.
A different access pattern that the one in QAM16 was implemented, where there
wasn’t a need for combining / and () coordinates.

From Table 3.1, we can observe the gain on additions, multiplications, and com-
parisons over the original Approximate LLR calculation and our approximate ap-
proach, for each Constellation. With our proposed method we need almost 1/4 of each
operation over the initial algorithm. For the calculation of each Euclidean Distance,
a fixed number of Multiplication and Additions/Subtractions is needed; for a single
computation 3 Addition/Subtraction and 3 Multiplications are required. Further-
more as we already mentioned, a small set of subtractions is also necessary during
the finding of the Maximum Value.

Furthermore, we were able to utilize more the NEON engine, for calculating the
maximum Euclidean distance (In QAM16 it wasn’t possible due to the fact we only
had to find the maximum value between two numbers). Moreover, we opted for a
custom architecture for finding the max value of an array similar to the one used in
Section 3.4, where the NEON engine is also utilized.

As we analyzed, we created for Approximate Demodulation different implemen-
tations for each QAM: 2 different blocks for QAM16; regarding the multiplication
precision (16-bits or 32 bits), as well as 4 different blocks for QAM64; regarding
the multiplication precision (16-bits or 32-bits) as well as having two input formats
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Table 3.2: NEON Demodulator Implementations QAM support

Implementation’ QAM16 QAM64 QAM256 QAMS512 QAM1024

FLP64-B64
FXP16-B16
g FXP16-B32 v v v v v
b FXP8-B16
FXP8-B32

FXP16-A16
& FXP16-A32 d d x x *

Q@Q FXP8-A16

FXPS-A32 X f X X X

T For the implementations naming, first three letters denote the input format and next number refers
input bits. Letter B is for original Approximate LLR Algorithm, while letter A is for our proposed
approximation method. Final number is the precision bits used in the multiplication.

(52.14 or S2.6). In Table 3.2 there is a complete list of all the NEON Demodulation
implementations, with the according QAM constellation support.
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Chapter 4

Fading Channel Emulation on FPGA

4.1 Introduction

This chapter outlines the integration on FPGA of a Fading Channel Emulator.
Moreover we describe the techniques used and the custom hardware blocks used
for the implementations. The chosen technique for the applying the fading effect to
the transmitted symbols, is filtered Gaussian noise.

4.2 Model Architecture

Fig. 4.1 illustrates the overall structure of the Fading Channel implementation,
where it’s apparent that we can split the implementation into three main blocks. The
Gaussian Generator is responsible for generating random Gaussian variables with real
and imaginary part. The process of Coefficients Calculation, uses the channel prop-
erties (discrete path delays, average power gains, K-factor) computes the complex
coefficients for the filter. Finally the Complex FIR Filter, filters the modulated in-
put symbols with the complex channel coefficients, ultimately producing the faded
signal.

_______________________________________________

Gaussian Generator Coefficient Calculation

Input Data from TX

1
REIEEI * 5

. x[n]—p 2t | 2 »] ol %
0“**** Re _[.ETE_[ E_l Re 0 ****
IO M 70 N il PO
¥ o x ¥ TJm Im 2 M
EEXIER e ’@_’y["] 0 2 4

I I

Complex FIR Filter

Figure 4.1: Fading Channel implementation block diagram
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4.3 Gaussian Random Variable Generator

Having access to random samples that follow a normal distribution is crucial
in numerous computationally intensive modeling and simulation applications, with

this necessity extending to evaluations of channel codes [36].

4.3.1 Box-Muller Transform

Most of the digital techniques for producing Gaussian random variables rely
on transformations on uniform random variables. Common approaches include the
Inversion method, the Wallace method, as well as our preferred method: the Box-
Muller, that utilizes a sequence of evaluations of elementary functions, to convert
two uniformly distributed variables into two variables with a normal distribution. In
order to generate our desired samples, supposing u; and u, are independent samples
on the interval [0,1), zy and z; from Eq. 4.1 and 4.2 accordingly, are independent
variables of a Gaussian distribution.

zo = v/ —21In(ug) cos(2muy) (4.1)
r1 = v/—2In(ug) sin(27u;) (4.2)

Fig. 4.2 illustrates the basic architecture of the hardware implementation of the
Box-Muller Method, based on the equations listed above. With blocks colored blue,
we refer to our custom made modules, while the purple blocks refer to Xilinx Soft
IPs. For our uniform random variables in order to provide us with sufficient reso-

lution, we chose 48-bits and 16-bits, for v, and wu; respectively.

4.3.2 Tausworthe URNG

Each Tausworthe Uniform Number Generator (TURNG), offers remarkable ran-
domness with a large number period of 2%. It provides a 32-bit uniform random
number per clock cycle and it was conducted by applying the algorithm presented
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Figure 4.3: TURNG Implementation

in paper [37]. As shown in Fig. 4.3, the Algorithm 2 was implemented using XOR
gates, AND gates and left or right shifts. For each module, we specified a starting
seed needed for initialization, that is loaded with a MUX.

Algorithm 2 Tausworthe URNG

1: function TURNG > Variables sq, s, s2, b are 32-bit
2: b+ ((s1 << 13) @ s1) >> 19

3 sl ((s1 A 4294967294) << 12) D b

4: b ((s9 << 2)®sy) >>25

5: S < ((s2 N 4294967288) << 4) Db

6: (

7

8:

b(—( S3 << 3)@83) >> 11
s3 < ((s3 A 4294967280) << 17) @ b
end function

Each TURNG module was obtained by combining three modules, essentially
combining with an XOR gate, three linear feedback shift registers (LFSRs) with
different initial parameters (for the AND gate, the shift registers and the starting

seed), in order to improve the statistical properties of the generator.

4.3.3 Sine/Cosine Implementation

For the calculation of sine and cosine functions, the CORDIC IP from Xilinx was
utilized. This core implements a generalized coordinate rotational digital computer
(CORDIC) algorithm as presented in [38]. A vector rotation is performed, as a se-
quence of successively smaller rotations, as it is shown in Eq. 4.3, were i is the
iteration index and a; = %1 is the direction of rotation.

Tip =T — a;y; 27"
Yir1 = yi + a3 27" (4.3)

0;11 = 0; + a; arctan(27")

Given that the input range of the CORDIC IP falls within the interval of [—m, 7],
we were required to perform a range reduction process following the conversion of
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Figure 4.4: Hardware implementation of Sine/Cosine

our random input variable into radians. This adjustment was necessary to adhere to
Xilinx’s IP specifications, since our radians were in the range [0, 27]. Afterwards, by
following the trigonometric identities of shifting sinz and cosz by one half period
(Eq. 4.4), we changed the output sign in order to obtain the correct result. A block
diagram illustrating the Sine/Cosine calculation is presented in Fig. 4.4.

sin(2rz — ) = —sin(27x)

sin(2rz — 7) = — cos(2wx) (4.4)

4.3.4 Logarithm Implementation

For the evaluation of an elementary function, we adhered these three following
steps, as stated in [39]:

1. Range reduction of the input variable, over a more appropriate interval.
2. Approximation of the function on the reduced interval.

3. Range reconstruction of the calculated value to the original input range.

Leading Zero Detector

A Leading Zero Detector (LZD) is a module that counts the number of consec-
utive leading zero digits in a binary number representation, until the first nonzero
digit is encountered. It’s purpose is to determine the appropriate shift needed for
input range reduction and was used both in logarithm and square root calculation.
The LZD was implemented with the combinational circuit of the Fig. 4.5, as pre-
sented in [40]. The main idea is to implement a base 4-bit LDZ, and then expand
in a tree topology for the required number of bits. Each module at the top layer,
read’s 4 different bits from the input with a 4-bit LDZ, while the following layers
are implemented using only the LZD Logic Unit (LU). The final result includes the
variable p, with the number of the leading Os and v, a valid signal whether the input

number contains 1s.
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Figure 4.5: Combinational LZD implementation

Logarithm

Following the block diagram in Fig. 4.6, we can see that the logarithm input
signal z is U0.48, which corresponds to z € [0,1 — 27*). Thus the function —21In(z)
is the range [0,66.54], so with an signed format, the output signal is S8.24. For the
range reduction of the variable z, based on Eq. 4.5 from [41], were M, = [1,2)
and E, is an exponent, we can define the calculation of our natural logarithm, by
approximating the logarithm over [1,2) and then performing range reconstruction.

In(z) = In(M, - 25°) = In(M,) + E, - In(2) (4.5)

The initial range reduction was performed using the aforementioned LZD circuit,
followed by a left shift depending on the leading zeros. For the calculation of the
natural logarithm over [1,2), we opted for a piece wise linear interpolation, with
a first order polynomial. Coefficients for the first order polynomial were calculated
using MATLAB Curve Fitting Toolbox, after diving our interval in 256 segments.
Fig. 4.7 depicts the accuracy of the Piecewise Linear Approximation of the logarithm
over the specified interval. These coefficients after converted to fixed point format,
there were stored in a 12Kb ROM, since the first coefficient was 16-bit while the
second one in 32-bit. By choosing high resolution for the polynomial constants,
we can avoid using a second order polynomial approximation, that will increase
the complexity, although offering better performance regarding the accuracy. ROM
contents were accessed using as address the 8 most significant fraction bits of the
reduced variable. With the result of the linear approximation, we perform based on
Eq. 4.5 the according range reconstruction using the LZD output. By utilizing the
valid out signal "v’ from the LZD, we can find if the input is zero. In this case, since
lim, ,o(—2Inz) = oo, we map the output signal to the largest FXP 58.24 number,
27 — 1.
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Figure 4.7: Logarithm Piecewise Linear Approximation versus floating
point model in MATLAB, with an expected R? ~ 1

4.3.5 Square Root Implementation

The Square Root was calculated with the CORDIC IP from Xilinx in square root
functional configuration. The input value of the core, considering it’s in fixed point
point format, must be in the interval [0, 2), thus according to input x € [0, 66.54] as
the —21In(z) result, we had to perform corresponding range reduction and recon-
struction. In Eq. 4.6 we can see the correlation between the input variable z and
the calculation of the square root after performing range reduction, based on [41].
The final implementation is depicted in Fig. 4.8.

VM, - 2812, if £, mod2=0
V2M, - 2F==D/2  if £, mod 2 =1

vz =M, - 2B = (4.8)

The range reduction was performed using the LZD of Fig. 4.5 for the responding
input bits, followed by the according right shift. For our proposed architecture, if
the input variable is in range [0,2) the input is going directly into the CORDIC IP
and no range reconstruction is required. The two calculations (with/without range
reduction) are perform in parallel and a MUX at the output selects the correct result
based on the x value (z < 2 or x > 2). The output result of the square root is in
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Figure 4.8: Hardware implementation of square root

0,8.15], so with a fixed point representation we select S5.13.

4.4 Complex Channel Coefficients

In the chosen implementation as shown in Fig. 4.9, the complex coefficients for
the FIR Filter are calculated in parallel. Therefore, a Serial to Parallel Module was
used, were after N cycles, N new Gaussian variables were loaded to the Multipli-
cation/Addition units. Each calculation is based on Eq. 4.7, were a Multiplication
and Addition unit was used for the real part, and only a Multiplication unit for the
imaginary part.

(4.7)

The constants m; and a; are pre-calculated with the Eq. 4.8, that takes into
consideration the Fading Channel parameters; the average path gain P and K factor.
By setting the K factor equal to 0, the fading distribution of the channel follows a
Rayleigh distribution; otherwise it adheres to a Rician distribution.

PK PK
Y s S 4,
i K+1 @ 2K + 1) (4.8)

Furthermore, in order to update the Coefficients of the FIR Filter in run-time, a
cyclic loading pattern must be followed. Thus, a BRAM based FIFO was utilized for
each coefficient result, and by controlling the Read and Write Enable signal of each
FIFO with a Finite State Machine (FSM), the desired pipeline was implemented.
The required timings for the aforementioned procedure, are illustrated in Fig. 4.10,
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where the timings can be categorized into three primary segments; the initial load of
the first coefficients set, the load of the second set while no other coefficient update
is happening, and finally the recurring pattern of run-time coefficient loading. Each
value load (LD) happens every 2cc because of the registers topology in the chosen
FIR Implementation.

4.5 Finite Impulse Response Filter

The FIR Filtering process, is employed to filter and modify a signal based on a
finite sequence of input data. In case of linear digital filters, the output is computed
as a linear combination of the input and the previous samples of input and output
signals. In the fading channel emulator, the FIR Filter Tap number is defined by
the maximum discrete path delay in the emulator specifications [42]. This block
filters the input data, essentially the output of the Transmitter (TX) of the Telecom
chain, with the channel coefficients, generating the faded output symbols. Since both
the signal and the coefficients are complex, a complex implementation of FIR was
utilized, were three FIR filters are used in parallel [16] (Fig. 4.11). Furthermore,
one block for parallel addition and one block for parallel subtraction were imple-
mented, for simultaneous calculation of the coefficients for the Complex FIR Filter.
One module with 2cc delay was utilized for the middle FIR Module, for coefficient
synchronization.

In order to efficiently use the DSP blocks of the FPGA, we followed the direct
Systolic architecture illustrated in Fig. 4.12 [43]. Although having a higher latency
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opposed to a transposed FIR Filter, if offers superior performance due to the absence
of a high fanout input signal. Furthermore, in order to avoid potential overflow, the
total bit growth for a N-Tap FIR filter is calculated using the Eq. 4.9. Subsequently
for a 9-Tap FIR filter that we’re using, the total bit growth of the 16-bit input z;, is
19 bits.

BG = hy, + [log, N (4.9)
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Chapter 5

Experimental Results

5.1 Introduction

In this chapter experimental results for each implemented block are presented.
Moreover, for the SIMD Demodulation (original and proposed approximate algo-
rithm), we evaluate our designs regarding the Execution Time and the BER Per-
formance. As to the FPGA based Fading Channel Emulator, we demonstrate the
Resources occupied for our implementation, and we evaluate the design based on
the Fading Effect PDF, while we also present the faded symbols I-Q plots.

5.2 SIMD Demodulation Setup

For our Telecommunication Chain simulation, we used the TOPCOM++ Library
developed in C++. Based on some examples of a DVB-S2 (Digital Video Broadcasting
- Satellite - Second Generation) chain, we defined all the required blocks for our
setup, as shown in Fig. 5.1. Furthermore as a secondary test case, we examined a
telecommunication chain in which the LDPC Encoder/Decoder was bypassed.

The simulation parameters are given from a text file, that can be configured to
accept multiple values, and traverse along them in multiple simulation runs accord-
ingly. This feature was particularly useful for running batches of implementation
arrangements without additional user input. Furthermore, the simulation results
(BER, Execution time, Speedup calculation) were logged in files, to facilitate post
processing and derive all the necessary results.

In the platform of choice (Xilinx ZCU106), we opted for Ubuntu 20.04.6 LTS
aarch64 as our operating system of choice, with kernel 5.4.0-1015-xilinx-zynqmp.
For code compilation we relied on GCC (g++ Version 9.4.0) and on CMake for
building the source files. All the subsequent implementations were compiled using
the (-03) flag, representing the highest and most aggressive optimization level, that
enables all optimizations outlined in (-02) and additionally, it triggers optimizations

flags regarding loop transformations, common sub expression elimination and loop
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Figure 5.1: Telecommunication Chain setup for Simulation

vectorization. Furthermore, for the implemented C++ functions, the inline keyword
was used, that instructs the compiler to replace the code within the function defi-
nition each time it’s called [44]. By employing inline functions, program execution
time can be enhanced by removing the additional steps involved in making func-
tion calls. Additionally the __restrict__ keyword was utilized for each function

arguments.

5.2.1 Original Approximate Demodulation Performance

Without our setup being the Telecom Chain of Fig. 5.1 with the same input
simulation parameters, we benchmarked each Demodulation implementation for
different QAM Modulations, in order to examine the execution time. From Fig. 5.2,
we conclude that for a larger QAM Modulation (for larger input bits), the more
efficient the use of the NEON engine is with an exponential rate, until a saturation
point is reached. Between the different implementations, the FXP8-B16 is the faster
for the large QAMs, since the int16x8 vectors are kept constant through all the
calculations, while we benefit from some 8-bit arithmetic operations for the initial
distances calculation. In order to maintain consistent results through all simulations,
we kept packet size at 64800 symbols, a fixed LDPC Coding Rate at 3/4 and 32
blocks.

5.2.2 Demodulation BER Performance

One of the key metrics in telecommunications for the system’s accuracy is the Bit
Error Rate (BER), that is calculated by comparing two binary streams; essentially
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by dividing the number of error bits, by the total number of transmitted bits. For
the following BER Analysis, as a baseline line model in each we used the default
Demodulation Block floating model. For additional evaluation, we compared our
results with the theoretical BER values in an AWGN channel for uncoded data, that
is calculated using equations as stated in Section 2.3.

For the base NEON Demodulation with LDPC Coding, we derive from Figs. 5.3
and 5.4 that across various LDPC iterations, there is minimal loss in BER perfor-
mance. Particularly, the FXP16-B32 configuration has superior performance, while
the FXP8-B16 model has the least favorable performance among the evaluated se-
tups.

5.2.3 Demodulation with Approximation Techniques Performance

For the QAM constellations we implemented the approximation technique pro-
posed in Section 3.5, we present the results regarding the improvement in execution
time, over the original SIMD Demodulation method. We examined the performance

of the Receiver Block (RX) of our chain in two scenarios:

1. Without FEC Code, where no Forward Error Correction was used, and the
classification of the output bit b; was done by only checking the sign of the
calculated LLR value, as stated in Eq. 5.1.

0, if LLR <0
b; = (5.1)
1, if LLR>0

2. With LDPC Code, where a Low-Density Parity Check Code (LDPC) was used for
generating parity bits, with a constant coding rate through all simulation runs.
As we will analyze below, we investigated various LDPC iteration settings, to
assess their impact on the Receiver’s execution time, as well as the alterations
in the system’s BER.
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Figure 5.6: Receiver (RX) performance without FEC

Referring to Fig 5.5, where only the execution time of the Demodulator Block for
QAM16 and QAMG64, we observe that we have a speedup up to 45x, compared to
the initial implementation. Additionally by applying the proposed Approximation
Technique, there is an additional performance enhancement up to 4x, over the
baseline NEON implementation; a foreseeable outcome, since as we demonstrated
in Table 3.1, about 1/4 of the arithmetic operations are required.

With the whole Receiver block, we can examine the impact of the Demodulation
Optimization over the total time needed for the processing of a received symbol. As
described previously, Fig. 5.6 illustrates the execution time of the receiver without
the use of FEC for each modulation.

By now applying LDPC Code for varying iterations (2, 5, 10), as depicted in Fig.
5.7, it becomes evident that as the iteration count increases, the LDPC Decoder Block
bottlenecks the Receiver’s performance. The impact of this block is significant, to the
extend that for 10 iterations, the acceleration achieved through the Demodulation is
negligible.

5.2.4 Demodulation with Approximation Techniques BER

Fig. 5.8 shows the BER performance of our Approximation Technique for QAM16
and QAMO64 without the use of FEC. In both constellation schemes we can observe
that the BER doesn’t get significantly affected from the original algorithm, while all
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implementations match the theoretical estimation. Furthermore, the BER accuracy
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Figure 5.8: BER Performance without FEC for our proposed Demod-

ulation implementation with Approximation Techniques

is similar regardless of the input format (FXP8/FXP16).

original algorithms, happens possibly due to the LLR values deviation, in the points

were a Euclidean Distance from an adjacent Quadrature is necessary.

20

Fig. 5.9 shows the performance of the Demodulator using LDPC for different
iterations. In the QAM®64 plots for the highest LDPC iteration settings (10 Iterations)
we observe a sudden rise in the BER value. This accuracy loss in contrast to the



5.2. SIMD Demodulation Setup

67

T T T T 10°
gt‘_"* S

1071 10! ]
— —~ |
g & I

m ]
ST ] ST J
o @ 1
= 3 | FRRa
~ i I EREAN &
5 R H \ R3 3 s . R \?\
= 1077 | | —©— Theoretical Reference I\ E £ 10°? | | —6— Theoretical Reference v \ 4
f — % — FLP64-B64 LDPC 50 Iter. = — % — FLP64-B64 LDPC 50 Iter. |\ 1 \
<) — 8 —FXP16-B16 LDPC 2 Iter. 5 — 8 —FXP16-B32 LDPC 2 Tter. \
—-A.— FXP16-B16 LDPC 5 Iter. |

1074 £ P+ FXP16-B16 LDPC 10 Iter. |,
— & —FXP16-A16 LDPC 2 Iter. |\
—-%-— FXP16-A16 LDPC 5 Iter. 4

¥
i
I
i
i
I
Il

10-4 L |-+ P FXP16-B32 LDPC 10 Iter.
— & —FXP16-A32 LDPC 2 Iter.
— -5~ FXP16-A32 LDPC 5 Iter.

\
—-A— FXP16-B32 LDPC 5 Iter. | 4
i
i
i
i
i

<vgrer FXP16-A16 LDPC 10 Tter. | | <vge FXP16-A32 LDPC 10 Iter. ﬁ‘
10-° | | T . 10-5 | L i H
0 2 4 6 8 10 14 0 2 4 6 8 10 12 14
Ey/Ny [dB] E,/Ny [dB]
(i) QAM16, FXP16-A16 (ii) QAM16, FXP16-A32
10° T T T 10° T T T
107! 107! El
= 2
L 02 & -2 : J
2 i g :
>4 \ \ [ B
g, [ : g8 . | NG
r-: 107% | | —&— Theoretical Reference SN - = 107° £ | —&— Theoretical Reference i 3 E
= — % —FLP64-B64 LDPC 50 Tter. | © | \ = — % —FLPG4-B64 LDPC 50 Tter. | § \ Y
& — & —FXP16-B16 LDPC 2 Iter. i 7Y & — & —FXP16B32 LDPC 2 Iter. | | \
—-A-— FXP16-B16 LDPC 5 Iter. | i | ¥ —-A-— FXP16-B32 LDPC 5 Tter. |} b
104 | |-+ FXP16-B16 LDPC 10 Iter. | © i b 1074 | [+ P> FXP16-B32 LDPC 10 Iter. | [ ]
— & —FXP16-A16 LDPC 2 Tter. i i — & —FXP16-A32 LDPC 2 Iter. : [
—--— FXP16-A16 LDPC 5 Tter. | i | i —-%-— FXP16-A32 LDPC 5 Iter. i I
<vigrr FXP16-A16 LDPC 10 Tter. | © | P < FXP16-A32 LDPC 10 Iter. |+ I
10-5 L T | L i 105 L LIS [
0 5 10 15 20 0 5 10 15 20
Ey/Ny [dB] Ey/Ny [dB]
(iii) QAM64, FXP16-A16 (iv) QAM64, FXP16-A32
10° T T T 10° T T T
(SRS &
10! 10! 4
= =
a a
ST 2 10 f
o o
= = 3
~ A ~
5 A g . i
£ 107 | [—©— Theoretical Reference PA & £ 103 L [—©— Theoretical Reference i ]
H — % —FLP64-B64 LDPC 50 Tter. | © i B A — % —FLP64-B64 LDPC 50 Iter. | |
B — & —FXP8-BI6 LDPC 2 Iter. | | | : & — 8 —FXP8-B32 LDPC 2 Iter. i
—-A-— FXP$-B16 LDPC 5 Iter. | © | —-A.— FXP8-B32 LDPC 5 Iter. i
104 | |-+ p FXP8-B16 LDPC 10 Tter. | © i 104 | |-+ P FXP8-B32 LDPC 10 Iter. i ]
— & —FXP8A16 LDPC 2 Iter. | © i — & —FXP8-A32 LDPC 2 Iter. \
—-%-— FXP8&A16 LDPC 5 Iter. | i | —.%-— FXP8-A32 LDPC 5 Iter. :
<vger FXP&-A16 LDPC 10 Tter. | © | <vfe. FXP8-A32 LDPC 10 Tter. “F
107 ; T JE| ! 10-5 ; —
0 5 10 15 20 0 5 10 20
Ey/Ny [dB]

(v) QAMG64, FXP8-A16

E,/No [dB]

(vi) QAM64, FXP8-A32

Figure 5.9: BER Performance using LDPC for our proposed Demodu-
lation implementation with Approximation Techniques

5.2.5 Chosen Implementation

The aforementioned previous implementations as we’ve seen present trade-offs,
between the execution time and the BER performance. Therefore we concluded
that the best option between speed and accuracy is FXP16-A32 model, since it
outperformed the other in terms of BER accuracy, while still offering sufficient gains
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Figure 5.10: BER Performance conclusions for QAM16 and QAMG64

regarding execution time. In Fig. 5.10 the results for the selected implementation
are presented for both QAM16 and QAMG64 constellations.

In Table 5.1 the perfomance gains over the original floating point implementation,
for the chosen implementations are presented. The demodulation block depending
on the constellation, shows up to 38x speedup over the original algorithm, and up
to 4x speedup over the SIMD optimized original Demodulation algorithm.

Table 5.1: Chosen Implementation Speedup over Original Algorithm

Modulation
Implementation Configuration QAM16 QAMG64
Only Demodulation  6.67x 7.98%
FXP16-B32 RX w/o FEC 3.37x 6.31x
RX w/ LDPC 5 Iter. 1.09x 1.25%
Only Demodulation 18.85x  38.62x
FXP16-A32  RX w/o FEC 5.64x  16.03x
RX w/ LDPC 5 Iter. 1.12x 1.28 %

5.3 FPGA Fading Channel Emulation

5.3.1 Resource Utilization

With the demand of a fading channel emulator that offers high performance,
the implementation is heavily pipelined to maximize the operating frequency. For
Synthesis and Implementation of the design, Xilinx Vivado 2022.2 was used, with
the resources occupied are depicted in Table 5.2. The throughput of the module

can be computed directly from the maximum frequency, since one input sample is
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processed every clock cycle. Regarding the power usage, running the implementation
reports 1.514 Watt Total on-chip power.

Table 5.2: Resource Usage by the Fading Channel Emulation

Resources Used Available Utilization Ratio

LUT 2504 230400 1.09 %
FF 3851 460800 0.84 %
BRAM 9 312 2.88 %
DSP 49 1728 2.84 %

5.3.2 Fading Channel Emulator Evaluation
Parameters Selection

Before applying the fading effect to a signal, it’s essential to ensure that the
channel specifications are appropriately configured for the intended scenario. Fur-
thermore for a realistic channel model parameters, the following suggestions should

be taken into consideration:

1. Path Delays The initial delay that is associated with the first path arrival, is
conventionally set to zero. In indoor environments, the subsequent delays typ-
ically fall within the interval [1077, 10~"] seconds, whereas in outdoor setups,
the delays typically span the range [10~7,10~°] seconds.

2. Average Path Gains Indicating the average power gain for each fading path,
they generally are in the range [—20, 0] dB. Frequently, normalization of these
values is done, in order to ensure that the expected total power of the combined
path gains is 1.

3. K-Factor With this parameter the ratio of a specular-to-diffuse power for a
direct LoS path is defined. The factor is expressed linearly in the range [0, 10].
A K-factor equal to O represents Rayleigh fading, while the rest of the values
represent Rician fading.

Fading Effect

For the evaluation of the Fading Channel Emulation, we examined the Proba-
bility Density Function (PDF) of the Faded Symbols, as shown in Fig. 5.11. In the
presented plots, the histogram of the faded symbols is depicted and three calculated
PDF curves. The first PDF is a theoretical Rician Distribution based on the according
K-factor used. For calculating the o and s parameters form the K-factor the method
in [45] was utilized, where the approximations in Eq. 5.2 were proposed.
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The second and third PDF curves, represents a Rician Distribution fitted to the
faded data using Maximum Likelihood Estimation. The fit was performed for the
faded symbols generated from both the FPGA and a floating model in Matlab, as a
benchmark. The o and s values shown are the calculated parameters for the fitted
distribution.

From the presented plots, we conclude that our generated fading symbols for the
different K-factors, adheres to the theoretical expected function. The fading symbols
generated in the FPGA compared to a reference floating point model in Matlab,
achieve minimum accuracy loss. Specifically, for a set of 10° complex input symbols,
the Real part demonstrates a MRE of 0.39%, the Imaginary part shows an MRE of
0.44%, while the Magnitude of the complex symbol registers an MRE of 0.06%.

Fig. 5.12 shows combined the PDF for each K-factor combined, where the differ-
ences between them can easily be distinguished. With the reduction of the K-factor;
thus the increase of the fading effect, the distribution center moves to the left, while
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Figure 5.12: Combined PDFs for different K-factors

the peak value decreases. significantly. For a large K-factor (ex. K = 10) where we
have a strong LOS component, we observe that the PDF tends to follow a normal
distribution.

An additional method for evaluating the fading effect impact, is by observing
the scatter plot of the output symbols. Fig. 5.13 illustrates the effects of different
K-factors on a QAM4/QPSK constellation. In the chosen color scheme, orange-red
indicates the maximum symbol count at a particular position, whereas blue signifies
the minimum symbol count. From the presented plots we can derive that for the
largest K-factor the fading effect is negligible, while as the K-factor decreases, the
reference symbols shift to the center of the axes. Furthermore, the symbol positions
in the original constellations are market with a red/grey circle.
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Chapter 6
Conclusions and Future Works

In this thesis in the first place, the soft Demodulation algorithm for QAM con-
stellations is presented and implemented using SIMD instructions, using NEON
Intrinsics. Different implementations were evaluated, regarding the input size and
the precision of the arithmetic operations. Furthermore, for two constellation types
(QAM16/QAM64) an approximation technique was proposed in order to reduce the
number of arithmetic operations required, offering improvement in the execution
time of the Demodulation block and thus in the Receiver, while exploration was
also conducted regarding the accuracy performance. We evaluated the BER of a
telecommunication chain for different scenarios; Initially without the use of FEC,
while afterwards we added an LDPC Encoder/Decoder with various iterations.

Furthermore, an FPGA-based Fading Channel emulator was implemented, where
the desired effect was obtained, by filtering the input signals with uniform Gaussian
variables. These constants were generated using various elementary functions which
were employed by different approximation methods. The accuracy of the emulator
was evaluated by comparing the PDF of the channel’s output with a theoretical
model, as well as a reference floating point baseline.

Although the results for both the software optimizations and the hardware ac-
celeration were encouraging, there is still room for extensions. Since as we afore-
mentioned the LDPC block for a large number of iterations, although offering better
BER performance has a noticeable bottleneck in the Receiver’s execution time, as a
future project, an optimization of the Decoder with NEON Intrinsics could be ex-
plored. For the FPGA-based fading channel emulator, as a future extension, it could
be integrating it in a telecommunication chain that is running in the PS section of

the SoC-FPGA, in order to provide channel fading effects in real time.
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