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AmaryopeleTaL 1) avTIypor], 0o KeELOT Kot S10VOUT TS TAPOVSUS EPYACIAG, €& OAOKANPOL 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton n avartdnwon, amodnikevon kot dlovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVITIKNG GVONGC, VIO TNV TPoUTOOEGN VO avapEPETaL 1) TNy
npoélevong kot va dratnpeiton to Tapdv pnvope. Epotipata mov apopoldv ) xpion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

O1 amOYELS KO TOL GUUTEPAG AT TTOV TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GUYYPUPEN Kol

dgv mpémet va epunvevdel 0TL avtimpoocwnevovy Ti enionpeg Béoeig tov EBvikod Metoofiov [Tolvte-
YVeiov.



Hepiinyn

€ aUTH TN SIMA®UOTIKY EPYOGT0, LEAETOVLLE TO, TATYVIQ ¥ OPOOETNONEC TOAAATADY VINPESIOV, OTOL N
GTPUTNYIKOL TOUKTES OVOPEPOVY TIG BEGEIC TOVS GTY| YPOALLUY], Kot £VAG UNYXOVIGHOS TOVG avTioTouyilet
oe k > 2 vanpeoieg. Kabe maiktng emidimkel vo ELUYIGTOTOMGEL TV ATOCTUGT TOL 0d TNV TANGC1E-
otepn vanpecio. Evolapepdpocte yio pnyoviopovg mov givarl avOeKTIKOl 0TI GTPATNYIKT] GUUTEPL-
©opa TV TuKT®OV (strategyproof) ywpig TANpOUES, 01 0moiol TUPEYOLVV Lo AOYIKH TPOGEYYIoT GTO
KOW@VIKO BEATIOTO KO6TOG TV TokT®V. [ va avtipetonicovpe to 0éopnuo avornap&iog eriain-
OOV VIETEPUIVIOTIK®DY UNYAVICUAOV LE @PAYILEVO AOYO TTpocEyyiong TV matyviwv k-Facility Location
vy k > 3, mepropilovpe v Tpocoyr| LoG G€ GTIYUOTLTO TOV EMOEIKVVOVY EVCTADELD OE SLTUPOYES
(perturbation stable instances). H svotdfsia og dratapayés elonydn yuo to tpdfinua MAX CUT and
tovg Bilu kot Linial kot apydtepa epapproéotnke 610 mpdPAnua g cvotadonoinong (clustering). Ta
mapadeiypato pe evotddela og dratapayés Exovv o KoAG kabopiopévn PéATioTn Adon, 1 onoio dev
emnpealetol amd HKpEG dtatopayéc ota dedopéva. Tlapopoing, Eva mapddetypo Tov TpofANUOTOC
k-Facility Location otn ypopun givotl y-gvotabéc, yio kdmoto v > 1, av 1 PéAtiotn Adon dev ennped-
Cetar amd TV oAAayr 6TV 0mdoTAoT LETOEL TOV DECEMV SLUPOPETIKMV TAIKTMOV, 1 000 E0PTATOL
amo eva mapdyovia y. Qo enweenBolue exiong amd TNV TPOGPATY £PELVO. GTOV TOUEN “EYESIUGHOD
Mnyavicpuadv evioyvpévo armd Mdabnon”. Avti 1 TPoGEYYIoT) CUUTANPMVEL TNV TUPASOGIOKT TPO-
GEYYIOT OTNV EMOTNU TOV VITOAOYIGTAOV, TOV OVOAVEL TNV amdd00T aAyopifuwny Paciopuévev oty
YEPOTEPT TEPIMTOOT KO EXIKEVIPDOVETOL GTO GYEOLOGHO KO AVAADOT) UNYOVIGLMY OV EVIGYVOVTOL
ue mpofAréyelc, ot omoieg Exouv amoktnOel amd pnyovikn nanon oyetikd pe  PérTiot Avon. Xpn-
GLOTOIDVTOG OVTEC TIG TPOPAEYELS G KABOONYNTIKA GTOLYEl0, GTOYOG oG EIVOL VO ETLTOYOVIE TTOAD
KOAEG €YYUNGELS OTAY 01 TPOoPAEWELS pag eivar akpiPeis (cvvéreln), Tapapévovtag TapdAinio KOVt
otV PEATIOTN SuvaTh TPOGEYYIOT YOl TNV XEWPOTEPT TEPIMTMOT), KO Kot OTOV Ol TPOPAEYELC elvar
AavBacpévee (avBekTIKOTNTA). XTOYOC UG EIVOL VO GUVOVAGOLLLE TO, TUPUTAVE® GTOLXELDL GTOV GYE-
OGO UNYOVIGL®VY EVIGYLUEVAOV amd LaOnomn Yo To Toryvid yopoBETnong TOALATAMY VINPECIOV GE
OTLYLUOTLTIO LLE EVOTADELN GE SLOTAPAPUYES KOL VO, KAVOVLLE TOPUTIPNOELS TAVE® GTOVE TEPLOPICUOVCS
TOVG.

AgEgaig KAEWOWO

MpopAiuata Xopobitnong, Zyedtaciog Unyavicpav yopig yprparte, Evotdbeia oe datapayés, Xye-
SLOGHOG UNYOVICH®Y EVICYVUEV®V e MdOnon.






Abstract

In this diploma thesis, we study k-Facility Location games, where n strategic agents report their loca-
tions on the real line, and a mechanism maps them to k > 2 facilities. Each agent seeks to minimize
his distance to the nearest facility. We are interested in strategyproof mechanisms without payments
that achievve a reasonable approximation ratio to the optimal social cost of the agents. To circumvent
the unbounded approximability of k-Facility Location by deterministic strategyproof mechanisms for
k > 3, we restrict our attention to perturbation stable instances. Perturbation Stability was introduced
for the MAX CUT problem from Bilu and Linial and was later applied to the clustering problem.
Perturbation Stable instances have a well-defined optimal clustering, which is unaffected by small
perturbations of the input. Similarly, an instance of k-Facility Location on the line is y-perturbation
stable (or simply, y-stable), for some v > 1, if the optimal agent clustering is not affected by moving
any subset of consecutive agent locations closer to each other by a factor at most v. We will also
benefit from the recent surge of work in “learning-augmented mechanism design”. This approach
complements the traditional approach in computer science, which analyzes the performance of algo-
rithms based on worst-case instances, and focuses on the design and analysis of mechanisms that are
enhanced with machine-learned predictions regarding the optimal solution. Using the predictions as
guides, our aim is to achieve much better guarantees when the predictions are accurate (consistency),
while maintaining near-optimal worst-case guarantee, even when the predictions are wrong (robust-
ness). Our goal is to combine the above elements in designing learning-augmented mechanisms for
the K-facility Location games problem on perturbation stable instances and make observations on
their limitations.

Key words

Facility Location Games, Mechanism Design without Money, Perturbation Stability, Learning-Augmented
Mechanism Design.






Evyoaprotieg

Eekvavtag, 0o 0o va uyoplotiom Tov emPAETOVTO, KOONYNTN Yol TNV SUTAMUATIKY LoV - KOPLO
Dotdkn. Amd Vv apyn ™S SWTAMUATIKNG oL Tav olmha pov Kot e v forfeta Kot T1g GUHPOVAES
tov Ntav poli pov o ke Pripa. Eriong 0o ndela va evyapioticm kat tov [avayint [Tatoiivako,
Ue Tov omoio giya dplot cvvepyacio. Extiud mpaypuatikd tov ¥povo Tou Hov aplEpmacoy Kal ot 600,
KaBdg Epaba TOALE Y10l TOV TPOTO TOV TPEMEL VAL EPYALETOL KATOL0G TOV VOLALETOL Y10 VTO TTOV KAVEL,
OAAG KO YLOTL e EVERVEVGOV E TO XOPOKTNPO TOVS KO T1 TPOCOTIKOTNTA TOVG,
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Yoveig Tov yopig TV VTooTPIEN TOVG KoL TNV aydmn Tovg dev Bo pmopodceo Vo, OAOKANPOG® avTd
7oV BEA® Vo TETLY®.

Téhog BéL® va gvyaplotiom TV kupia Avactacio [Tatpikiov mov pe Tig GuUPoVAEG Kat TNV PpovTidn
™mg, Ke Pondnoce va avTipeTOnicw 6Tt SUGKOAIES TPOEKVTTAY GTO OPOLO LLOV.

Eppoavoun IadovPdg,
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Kepaiawo 1

Exteviic EAMnvuicn Tlepiinyn

‘Eva amd T o evOlapEPOVTO YOPUKTNPLOTIKA TMV HOBNUOTIKGOV €lval TAG WTOPOVLE VO EPUNVED-
OOVUE TIG TOAAEG EQPUPUOYEG TOVG GE (OIVOUEVIKG UN-OUOIOUOPPOLS oKdNUaikovg Topels. "Evag
avadLOUEVOS TopENG elvatl 0 AdyoptBukog Zyedtaoudg Mnyavicudv, £vog cuvovacpdc g Osmpiog
Kowavikng Emioync, g Ocwpiag Iaryviov, e Zyediacpod Mnyavicuov kot g Emetiung tov
Yroioyiotdv. H @swpio Kovovikig Emioyng e€etdlet Tig 61001K0GIEG CLALOYIKMOV OTOPAGE®V Kot
unyoviopmv. Agv omoteAet pia povo Bewpia, aAAA Evo COUTAEY O LOVTEL®V KOl OTOTEAEGUATMOV TOV
aQPOPOVVY TNV GLYKEVTPWOOT] ATOUIK®Y OEGOUEVOV (T.). YN POL, TPOTIUNOELS, KPIGELS, EVT|UEPIN) GE GLA-
AOYIKG omoteAéopata (TT.Y. CLALOYIKEC OMOPACELS, TPOTIUNGELS, Kpioelg, sunuepia). O Zyedaoudg
MnyovicpU®V OVAKEL GTOV TOUEN TNG OWKOVOMIKNG Bempia, YOPAKTNPIGTIKA TOV 0TOI0V AVOAVEL [E
GKOTILOL LIYOVIKOV. ZTOYXEVEL OTO GYESIUOUO OIKOVOUIKMY UNYOVICU®MV, OTMOC Ol EXICTHHOVES VITOAO-
YIOTMV EVIOPEPOVTAL VO GYEIATOVY alyOp1Bovg, TpTokoAAa 1 cvothpata. O AlyoplOukog Xye-
Soo oG Mnyoviopmv peAetd TpoPAnpate BEATICTONTOINGNG OOV Ta apy KA dedOpEVE - OTTc 1 atio
€voc ayaBov 1 T0 KOOTOG EKTELECTG LG EPYACIOG - eV €IVl YVOOTH GTOV GXEG10GTNH TOL aAYopiBpov
Kol TPENEL VoL moKTN OO0V gite Eppeca eite ptd omd CLUUETEYOVTES, TOV EVEPYOVV GTPATNYIKA. XTOV
oYEOCUO aAYOPIOL®Y, GUYVA OV AVNGVYOVLE Y10 TNV EYKLPOTNTO TNG EI0O00V HOC. ZE QLTHY TNV
ePInTOON, BEPOVLE TOVG GLUUETEYOVTEG O GTPATNYIKOVS GTIG EVEPYELEG TOVG, KaBMG Kal OTL -
vtote avanNTovLLE TO LEYLOTO KEPOOG TOVG, TO 0TOi0 eEaPpTATaL Ad TO oty vidl” Tov tailovv, dnAadn
umopovv va yevdovial. O oxedloeTne ETOIOKEL VoL EKUETAAAEVTEL ALTO TO YEYOVOS Kol Vo Snovp-
YNGEL £VO GOVOAD KOvOVMV ToL ol KaB0odN YooY TOVE TAUKTEC VA, EVEPYODV LLE TPOTO TOV TAPAYEL TO
Béltioto amotédecpa, pe fdon Evay otoyo mov oyetifeTal pe To moyvidt (t.y. péyiota €600, LEYIGTO-
TOINoN KOW®VIKNG eunpepiag K.AT.). Xvveyilovtog tn ovuvoeon HeTald TG SlodIKAGIog KATACKELNG
UNYOVIGU®V Kot 0AYOpiO®V, GTOYXEDOVLLE GTT) O1LLOVPYI0 VTOAOYIGTIKA OTOSOTIKMY UNYOVIGU®OV TOV
dev emnpedlovtol amd To YELOTO TOV CUUUETEYOVTOV, SLTNPOVTOS TNV TOAVTIUN 1010TNTa TG QLAM-
Mbelag (strategyproofness).

Onwg avaeépbnke Topamdvm, ol UNYovIGHOol Hog TPETEL VO UMV ETNPEALOVTOL ATtO TO WELN EVOC GULL-
UETEXOVTA 1], AKOUN KOAVTEPQ, VO TEIBOVY OAOVG TOLC CLLLETEYOVTEG OTL TO VoL AEve TNV oA Bela sivat
GT0 O1KO TOVG GLUPEPOV. OPIGUEVOL UNYAVIGHOT XPTCLOTOLOVV YPTLOTO KO TANPOUESG Y10 VO ETLPAA-
AOVV TETOlEG CLVONKEC, OAAL GE GAAEG TEPITTAGELS, 0L TANPOUES Bo LropovoaV Vo, ivat TapAVOLES
N avnbwkeg. Xe avty ™ dwtpPn, eEetdlovpe éva and o Pacikd TpoPANUATe GTNV TEAELTAIN KO-
myopia, ta [Tatyvie Xwpobétnong Yrnpeowov (Facility Location Games). E&gtalovpe Ta k-Facility
Location games, 6mov tovAdyiotov k > 1 vanpecieg tonofeTodviol 6TV TPAYLOTIKY YPUUUY PAceL
TOV TPOTIUAGEDMY TOV N GTPUTNYIKAOV TOKT®V. AVTE To TPOPAHOTO TPOKVTTOVY Od GEVAPLL TNG
Kowoving Emoyng, 6mov o tomikn apyn oxeddlel va kataokevdoel évay otabepd aplBpud om-
péciv vanpeciov o o tepoyn [39]. H emioyn tov tomobecidv Paciletol 6TIG TPOTUNGELS TOV
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TOTIK®V KoTolikmv 1| Toktdv. Kabe maiktng avaeépel v 10avikn tov tomobeaio Kot 1) TOmTKn apyn
epoppolet évav (VIETEPUIVIOTIKO 1] TUYALOTOIEVO) UNYXOVIGHO OV OVTIGTOLYEL TIG TPOTIUNOELS TOV
nokT®Vv o€ k Tomobecieg vanpeciov. Kabe maiktng tpoonabdei va peidoet 1o KOGTOG GUVOEGNG TOV -
TNV amOCTOGCT TOV a0 TNV TANGIECTEPN VANPECIN, KAl O GYESNGTIG TOV UNYOVIGHOD TpooTadel va
Beltiotonomoet £va cuykekpipévo atdyo (Kowmvikd Kootog, Méyioto Koatog, k.AT.). Amo tTE TOV
ot Procaccia kot Tennenholtz [43] Eexivioay v Epguva mepi oyedioong UNYOVIGLOVY XOPIG TANP®UES,
10 k-Facility Location ypnoylomomOnke mg tpofAnpa avapopas oTov TOREN Kot EEETAGTIKE EKTEVMG
o€ oYedOV Oheg Tig duvatég mapardayés. [a mapaderypa, 1 TponyodUeVT Epevva eEETOGE TOAMATALS
vanpeoieg otn ypopuun (BA. m.y., ([21],[24]1,[27],[33].[42]) ko yevikovg petpikovg yodpovg ([20],[32]),
SAPOPETIKOVS GTOYOVG (T.)., KOWMVIKO KOGTOG, UEYIGTO KOGTOG, 1| Lo VOPUL TOV GUVIEGEDV TMV
oty ([[19],[24],[43]]), meplopiorévovg HETPIKOVG YHPOVS TTLO YEVIKOVS amd TN YPoUUn (KOKAOG,
eminedo, dévrpa, PA. m.y., ([2],[L6],[16].[25].[16]), vanpeciec mov eELANPETOVY SLAPOPOVE TTOYOVG
(BA. m.y.,[B0],[B1]]), kot S1popeTIKEG EVVOLEC TOV OIOTIKMOV TANPOPOPIDOV GYETIKE LLE TIG TPOTLUN-
OELG TOV TOIKTMV TOL TPEMEL VO AVOKOVAVOVTAL 6TOV Unyovioud (BA. .., [[L5],[[18],[36]). Ady® Tov
ONUAVTIKOV EVOLOPEPOVTOG Y10L TO BENa, 1) IO PAGIKY EPMOTNOT GYETIKA LE TNV TPOCEYYIoN TOV PEA-
TIGTOV KOWMVIKOD KOGTOVG Old UNYOVIGLOVG TTOL dtaTnpodv T eraAinon wiotnta yia to k-Facility
Location ot ypopun €xet katavondei oyetikd kold. o pia vinpesia, o pnyavicpds mov tomobetel
v vanpeoio otn 0€om Tov didpecov maiktn ivan kot EATIOTOG Ko erAainOnc. ['a dHo vnpesieg,
1 Tomofétnon ota 6¥0 Akpa TNOL oTiydTLIIOL Ba daTNPHoEL TN EIANANDN 1010TNTA, TOPdYOVTOG
TN KoAVTEPN dvvat TPocéyyion (n - 2). Avotoymg, Yo k > 3, pag divetat To apvnTIKO OmOTEAEGHLO
g [21], 6Tov amodetkvieTal OTL HEV VTLAPYEL OVAVVLOG, VIETEPUIVIGTIKOS, PIAOANONG UNYOVIGUOG UE
opayuévn mpocéyyion, yuo 1o K-Facility Location, pe k > 3. Avtd 10 amotéleoa, Lag 001YNGE GTO
VO 0VOYVOPIGOVLLE T, OPLoL TNG YEVIKOD TANIGOV TOV TOiyVIOV y®poBETNoNG VINPESIDY KOl VO GTPOL-
(QOVLLE TTPOG MEPUTTMOELS OV EIVOL TTLO KOVTH GTOV TPOYUATIKO KOGHO Kot S10Tnpovv 1010TNTEG TOL
UTOPOVV VO, EKUETAAAEDTOVV altd TOV UNYOVIoUO pog. Xe auth T dtatppn, Bo emkevipmbovpe og
oVTOV TOV VEO TOTO TEPImTMONG, dov dev Ba Exovpe povo pia epeavn PEATIOT opadomoinon, oA
00 vrooTNPOpaoTE Kot oo Evay EEMTEPIKO GVOTNUO GTNV TOTODETNON TV VANPESIOV LS.

Ot opotdtnreg HeTa&d TG opadomoinong TV 6£30UEVOY, TOV TPOGOUOUDVETOL A0 £VO, LETPLKO YDPO
(X, d), ka1 tov maiyviov xopobETnong VANPESIOV Eival TOGEC TOALEC MGTE OV LITOPOHV VO, aryvon0ovv.
Kat to 300 avtd mpofAnpata avalntody tpomous yio tnv BEATIOT opadomoinot. v opadoroinon,
EVOEYETAL VO UMV TPETEL VOL AGYOANO0VLLE LE EvaY "YEDLTIKO” HETPIKO YDPO, 0ALY apoD TPOKELTOL Y0l
évav eEapeTIKG EpgLVNUEVO TOUED, EYOVUE BPEL TOALOVG TPOTOVS Yia VO YopakTNPilovLE TO dESOUEVA
€10600V KoL TNV avamTLEN aAYopiOU®V TOV EKUETOALEDOVTOL ALTA TO YOPAKTNPIOTIKA. Eva arnd avtd
TOL YOPOKTNPIOTIKA Eival To “oTiydTuno evotadn oe dwotopayés” (perturbation stable instances), ot
omoleg elval TEPUTMOOELS TOV HOLALOVV LE T OEOOUEVA TOV TPAYHOTIKOD KOCLOV. L€ OQVTEG TIG TEPL-
TTOGCELG, VTOOETOVE OTL LITAPYEL OOLN| GTO SESOUEVA KoL OKOWO KO PIKPEG S10TAPAYES OEV UTOPOVV
va aAAGEOVY T doun TG €106d0v. Ot dratapoayés avtéc etonydncav amod toug Bilu ko Linial oto [[13]
Kot omd Tovg Awasthi, Blum kot Sheffet oto [(]] kot éxovv evBappuvel éva onpoavtikd 6yko emmAéov
gpyociog petd and avtod, (PA. m.y. [A1,[81,[L0],[43] kot Tig avapopés ekeivewv) oty Tpoctddeio va
OTTOKTNOOLY OE®PNTIKY KATAVONOT) TNE AVAOTEPNG TPAUKTIKNG AITO00TG ATADY 0AYopifuwmv opadomoi-
nong yio yvootd NP-dvekora mpopinuata opadonoinong (60mwg to k-Facility Location og yevikovg
UETPIKOVG YDPOVG). XNV ovoia, 1 PEATIOTN opadomoinon evog oTIyUIoTOTOV TOL €ival Y-gvoTafég
glval ELEAVNG KoL, GUVETMOG, amiol adyopiBuotl opadoroinong, OTmg o adyopdpog single-clustering,
UTOPOVV va, EMAEYB0VV TNV TPOSTABELLG Log Yio TNV Tapoy®yn BEATIOTNG OLAdOTOINOTG GE TOAV®-
VOUIKO YpOVO, Y10 Ui KaTdAANAN T Tov 7. H amhotnta avtdv teov akyopiBpmv evieyvetol amo Tig
1010TNTEG EVOTABELG TOL £XOVV AMOJELYTEL, OTMC N Y-center proximity, weak y-center proximity, kot
n Cluster-Separation Property. Avtég ot 1010tnteg kKabopilovv ta Oplo HETAED TV ANOCTACEWDVY [LE-
a0 TV OPAd®V, 0ALY Kol TOV CNUEIDV EVTOS TV OLAS®V, KOBIGTOVTAG TLO0 EDKOAO TOV SOY®PIGHO
TOV OHAd®V € P Tepintor. Mia Quoiky| enéktaor Oa NTav vo EPAPUOGOVLE OVTEG TIG O1OTNTES
GTOV TOUEN TV TAIYVIDV YOPOBETNONG LANPESIOV KOl Vo, EEETAGOVIE TNV PEATIOTN AVON Kot TNV 1~
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AoAnBeta Tov PNYaVIGHoD Hog og oTyoTune Y-evatadn. Ola o amoteAéoUATA GTO TPONYOVUEVO
tunua Bosifovol 6to Gevaplo YEPITEPNG TEPITT®ONG, TO omoio meptopiletarl amd to [21]]. Qotdoo,
OV YPNCLOTOWCOVUE TNV EVVOL0 TNG EVGTADELNG OTIC TEPITTMOGELG LOC, LTOPOVUE VO KATOANEOLE
G€ OPICHEVO EVOLAPEPOVTO OTOTEAEGHOTA. XTO [23], N HEAETN T®V ATOTEAEGUATIKOV (OCOV 0pOopd
TOV AOYO TPOGEYYIOTG Y10 TO KOWMVIKO KOGTOG) PAaAnfdv unyovicumv ekivnoe yio T peyoin ko
QLOIKT KAAo TOV Y-evoTafdv otrypotomey tov k-Facility Location ot ypapp. ITapovcidotnkov
VTETEPUIVIOTIKOL Kol TUYOLOTTOMILEVOL PLAaAnBelg unyavicpol e epoyuévo Adyo TpocEyyiong yuo S-
€V0TOON OTIYLOTLTO, Kol 07TolodNToTe appd vanpeciov k > 2. EmmAéov, £deiéav 6t 1 férTio
opadomoinon eivar haAndnc yio (2 + V3)-gvotadn otrypdtomo av i BéATioTn opadonoinon dev me-
pLappavet kopio povopein opdoa (kdtt wov givor mhoavo va copfaivel oxedOV 6€ OAEG TIG TPUKTIKEG
epupproyég). Emmiéov, n advvapio tov amotedéopatog tov [21] evioyvonke, £Tol dote va, 1oy OEL Yo
y-gvotady otrypiotona, pe y < (V2 - 8). Tuykekpyéva, deiyfnke OTL Yo omotovdfmote k > 3 ko
omo1001mote 6 > 0, deV VIAPYOLV VIETEPUIVIOTIKOL avdVLLOL OAaANOeic unyavicpol yia to k-Facility
Location o ( V2 - 8)-0t00eic nepmtdoeig e ppaypévo (6cov agopd to n kot 1o k) Aoyo mpocéyytong.
Amopével va dovpe e6v o ( V2 - 8) 6pro eivar PEATIOTO KL 0V VIAPYEL VIETEPUIVIOTIKOC, GIAAANONC
UNYOVIGLOG Y1 Y-€0GTOON oTrypioTuTa, Pe Y <5, 0 0T010G UTOPEL EMIONG VO AVTILETOTICEL LOVOUEAELG
opadeg. Avti m dtatpPn Bo emkevrpwBel 6Tov evtomopd g PEATIOTNG OpLAdOTOINGN G OE Y-EVOTUON
otrypiotvra, Aapfdvovtag kdmoteg "npdcobetec” MANpOPOpies amo o eE@TEPIKT TNYN.

H évvoia tov otiypnotinov pe gvetabeia e dtatapoyss anotehel povo pio amd Tig ToALEG S1Popeg
TPOGEYYIGELS TOV UTOPOVLE VO 0KOAOVONGOVLE OTOV KOLTALE TEPA O TO TAAIGIO0 AvVAALONG TNG YEL-
potepng mepintoong. To tedevtaia ypovia, £xet yivel a&loloyn Epgvva 6Tovg 0AYopiBOVS TOV EVIGYD-
OVTOL 07T T UNYOVIKT LEON o™, ONoVPY®VTOG £TGL TOV VEO TOLEN TV “oAyopiBuwy e TpoPAdyels”,
TPOGOIdOVTOG ETCL TPOYUATIKG KivTpa Y10 va kabopiotel €6v 1 cupBodn TV TpoPAEYE®DY GTOVG YVO-
GTOVG UNYOVICHOVE TV TATYVIDOV Y®POBETNONG VANPESIOV 1) N AVATTLEN VEDV UNYOVIGLOV LLE EVO®-
HoTOUEVN LaBnon pmopel vo. 0dNYNOEL 68 EVOLOPEPOVTO OTOTEAEGUATO. NEEG LETPIKEG - LVVETELN
Kol AvBextikotnta - elonydnoav oto [38] g o1 Pacikég pétpikég oTovg akydpifpovg pe TpoPArEwers.
Avtég emexteivovtot Tépa and T £vvola Tov AdYov mpocéyyiong: H Zuvéneia eivorl o Adyog mpocéyyt-
G1G TOL UNYAVIGHOV, Tav o1 TpoPAEWELS cuuminTovy LE T PEATIOT ADom Katl 1) AvBekTiKOTNTO Elvan
0 AOYOC TPOGEYYIOTG TOV UNYOVICHOD OTOV 01 TPoPAEWYELS gival Tuyaio eopoipévec. Xto [[I]], vipée
pio apykn Tpoorddeta vo e&epeuvnBoiv avtoi ot véor unyaviopoi. [lapovoiacoy Evay unyaviepod yio
pia vanpecio TN YPOUUR, EMLTUYYAvOVTaG 1-cuvETELD Kot 1-0vOEKTIKOTNTA Y10 TOV KOWVMVIKO KOGTOG
ka1 1-cuvérela xon (1 + \/2)—(1V98K11Kérnw Yl TOV PEYIOTO KOGTOC, eV amodeiydnie emiong 6tin 1
-ovvéneta kat (1 + V2)-avBektikotnrog sivar n Pédtiot aviarlayy cvvénelac-aviektucdtntag. Eva
avoryto TpoPanua ivar va Ppebel t PEATIOT GUVETELD Kot AVOEKTIKOTNTO GT YEVIKT TTEPITTOON
TV k vanpecidv yo y-evotabn oTiypldTuTa, TOV gival miong 0 KOPLOg GTOXOS QTG TNG dlTPl-
BNc. o TapPOLGLAGOVUE [0, YEVIKEDUEVT] EKOOGT] TOV EVIGYVUEVOL UE PLANONOT uNnyavicpol Yo pia
VANPECIA, TAV® GTNV TEPIMTOOT TAlYVIOV Y®OPOBETNONG VIINPESIOV Y10 TOVAAYIGTOV 5-eVGTAOY| OTLY-
pdtvma, Tov emtvyyavet 1-cvvéneia ya Kot tov MEI'TETO KOXTOX kot tov KOINQNIKO XTOXO,
2-avBekticotta yuo. tov MEIETO KOXTOZL, (n-1)-avOektikdtnra yio tov KOINOQNIKO ZTOXO,
EVO TOPATNPOVLLE EMIONG TA, OPLO. TOV GLVOVTA CVTOV TOL €IO0VE M YEVIKELON).

1.1 IMaiyvioe XopoBitnong Yrnpeorov

To mpdPANU pag amotereitan amd n oTpaTyIKOLG TaikTeg Ko k vinpesieg. Ot maikteg Tomobetovvtan
GTOV HETPKO Y0po (X, d), 6mov d: X x X = R>0 &ivar 1 cuvdptnon andotaons. H cuvdpton d
elvan po petpikn oto X mov kavomotet Tig e€ng wotnteg: d(x, x) =0 yia 6ha o x € X, d(x, y) = d(y,
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X) y1o OAa T X, y € X (ovppetpia) kot d(x, z) > d(x, y) + d(x, z) yi 6ho 10, X, ¥, z € X (avicdnTo
tprymvov). Kébe maiktng i € N €yet pia tomobecia z;, 1 omoia gival 1 O1OTIKY TOL TANPOPOpPia, Kot
oToV {010 HETPIKO XDPO TPEMEL VO, TOTOOETNGOVLLE TIC VANPESIEC. AVaQEPOIOGTE GTO GUVOAO T = (21,
cees L)) OC TPOPIL OTLYI0TOTOL. TO KOGTOG GVVIESNG TOV TaiKTN i, TOV ONUELOVETOL MG cOst(z4, ),
glvan 1 Adyiotn andoTaon avapeso ot BEon Tov TaikTn Kot TV TANclEctepn BEon TG vanpeciag.
O o16y0¢ pag etvan va tonoBetnoovpe k vanpecieg otov PeTpiKd YdPo, TPOSTAODVTAG VO, EAAYLGTO-
TOWCOVE [0 GLVAPTNOT KOGTOLG, 1 ool e&apTdton amd Ta KOGTY GVVIEONS TV TAKTOV. Kdbe
maikTng Tpoomadel va ELOYIOTOTOGEL TO KOGTOG TNG GVVOECTG TOL.

"Evog vIeTeppuvioTikdg Mmyaviopoc M avtiotoryilet to & og éva Stdvoopa (yi, ..., yi) € X* tono-
Oeoiov yuo vimpecieg. To M(Z) cuppoirilel to amotérespa Tov Mnyaviopov M. Evag toyaiomom-
névog Mmyaviopdc M avtictouyilel To & og o Kotovopr| téve ce dtavdopoto (yi, ..., yr) € X*
Tom00e01DV Y10 VINPEGiES. AVo and TIC o Pacikég GLVAPTNGEL KOGTOVGS Eivar 1 cuvaptnon Kowvo-
vikoy Kootovg, 1o dBpotopo OAmV Tov KOGT®V GOVIESTG TV TAKTMV, Kol 1] cuvaptnon Méyiotov
Kootovug, 10 péyioto avapesa ota K6ota cuvdeong OAmv Tov Ttoiktdv. To Kowvovikd k66T10og £vog
TPOGIA GTLYOTOROV (Y1, ..., i) € X etvon SC(Z, §) = S, cost(z;, 7). To Méyioto kdoT0g £vOG
TPOPIA GTIYOTOTOV (Y1, ..., yi) € XF is MC(Z,¥) = maz;e n[cost(x;, 7)].

‘Evag unyavicpog M yuo ta [Haiyvia Xopobémong Yanpeosidv emttvyydvel Eva Adyo mTpocéyyiong p
> 1 y1a tov oxond tov Kowvovikod kdotovg (avtiotorya yio To MEY1oTo KOGTOG), Y10 OA0 TO TPOPIA
%, SC (%, M(Z)) < pSC*(Z) (avtiotoyya ywa 1o péyioto koctoc M C (&, M (Z)) < pM C*(Z)). Evag
unyoviopog M eivor rhainong av kavévog taiktng oev umopet va emm@eAn el amd To Vo Topamolicel
v tomobecia Tov. Zuykekpéva, yio Oha Ta TPoeik T, kabe maiktng i Kot OAeg Ti¢ Tomobesiegy € X,
cost(xz;, M (%)) < cost(x;, M(Z_;,y)).

1.1.1 Mnyoviopdg Yo pio vanpecio ot YPoLp)

O mpdtog pog 61dyog givarl va Bpodpe Eva eriainor Mnyovicpd mov eAayloToTolEl T0 KOVOVIKO KO-
GTOC Y10, TO T VidL YwpobETnong vnpesiov Le n maikteg kot po vanpecio. H Adon sivor apketd
amAn. Mropovpe va emihéEovpe ) Tonobesio Tov didpecov naiktn oto & - med(F). Eqv emiéEovpe
OTOLOVINTOTE MOIKTN aPLoTEPE amd T0 med(T), TOTE TO KOWMVIKO KOGTOG avédveTat, apol gival o
pokpld awd TovAdyiotov k + 1 maikteg kot o kovid og 1o oA k waikteg. To 1610 1GyvEL Y10 0TO10V-
onmote maiktn 0e&1d amd T péon. Yrobétovpe 61t to n givan {uyo, n = 2k, 161€ omolodnmote onpeio
010 [Tf, Tp11] TOPAYEL TO PEATIOTO KOWOVIKO KOGTOG, Y10 TOV 1310 AdY0 pe v mepintwon tov n =
2k + 1. ’Etot, 1o med(Z) eivon Béltioto. Eivan eniong @ihoindng, kabog o maiktng pmopei povo vo
LETOKIVIIGEL TNV VTNPEGIO MO LLOKPLE LLE TO WELLO TOV.

Ozopnpe 1.1. M (Z) = med(Z) eivou prialnOig Peltiotog unyoviouos yia 1o Kowwviko K6oTog.

H debtepog pog otdyog eivarl va Ppodpe Eva PEATIOTO Kot GLAOANOT PNYOVIGLO Ylo TV GLVOPTNO)
TOV UEYLOTOV KOGTOVG GTNV TEPITTOON Uiag vanpecioc. H tomofétnon g vanpesiog mov eloyioto-
notel Tov 6toY0 pag givon 1 0éon cen(Z). Avotoydg, ovt) 1 tomobétnon dev givar eainom, 10T
KaO€ TOiKTNG UTOPEL VO TTEL YELOTO KOL VO 0ALAEEL TO UNKOC TOL GTLYUIOTVUTTOL, LEYPL O cen(a?’ ) va.
KataAn&el otn B€om avtov tov maiktn. Ot Procaccia xon Tennenholtz [43] npotevav tov Topordto
OLAOANON pnyaviopd pe Adyo mpocéyyiong 2 yua tov péyioto kootog, M () = lt(T).

Ozopnpa 1.2. O M (%) = It(Z) eivou évag prialnbig unyaviouds mpocéyyiong 2 yia tov péyioto
K0OTOC.
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Koxkivn Yrnpeoia givar n Bértiom emhoyn

‘Eva puoikd epdIno Tov TPOKOTTEL Evat oV avTdg ivol 0 KAADTEPOG UNYOVIGUOS TOV LITOPOVLLE VO
YPNCLOTOUGOVE Y10, TOV GTOYO TOL PEYIoToV kdoTous. Ot Procaccia kot Tennenholtz [43] mpdrypott
anéder&av 0Tt o [t (F) glvan 0 KaADTEPOG SUVATOG UNYAVIGUOG VI TNV TEPIMTOOT U0 VANPEGIOG, MG
TPOG TNV GLVAPTNGOT) TOL PEYIOTOV KOGTOVS. Kot pdrypatt, ) emiloyn Tov aplotepOTEPOL kTN Eivar
1 KAADTEPT] TOV UTOPOVLLE VO, KAVOVUE 0V BELOVLLE VAV VIETEPUIVIOTIKO GIAOANON UNyYovVIGHO.

Ozopnpa 1.3. Iia N = {1,...,n}, n > 2.. Onoiocdimote Vietepiuviotikog Prlolndng unyaviouog
M: R™ — R éxet éva L0yo mpooeyyions tovldyiotov 2 yia 10 ugyioto k0orog.

1.1.2  Mnyoviopdg yio 600 vanpecies ot ypopun

Topo propove vo, aoyoAn0ovuE (e TV EXEKTOCT TG TPOTYOOUEVNS pOOUIGNGS, TNV E0pEST] dVO VTN-
péotwv avti yo pia. [podta, Bo eEgtdoovue TOV 6TOXO TOV PUEYIGTOV KOGTOVE. AESOUEVOL TOV T, O
opicovpe v torobesia Tov aplotepov opiov wg Ib(Z) = maz{z; : i € N,z; < cen(¥)} ko v
tonobecio Tov 8e£100 opiov wg rb(Z) = min{x; : i € N,z; > cen(Z}. Enuewdvovue dist(Z) =
max{lb(Z)—It(Z), rb(Z)—rt(Z)}. Ou e€eTdcOVIE TOPOA TNV ELAYLGTOTOUGT) TOV KOWVMVIKOD KOGTOVG
pe o 0n tpodmo. Edv e€etdoovpie 1o okyopiBpiKd tpoPAna TomofETnong d0Vo VINPESL®Y e TPOTO
OV EAAYLOTOTOIEL TO KOWVOVIKO KOGTOG, OlyVODVTOG ToL KIVITPO TMV TOUKTOV. AESOUEVOV EVOG TPOPTA
Z € R", o1 Bértioteg tonobeoieg v vinpéoiov sivat y1, yo € R, y1 < yo. L€ YEVIKEC YPOUUES, UTTO-
POVLLE VO GLGYETIGOVUE LE TO Y1 EVO TOAAOTAO 6UVOAO Tomobecidv L(Z) C (1, ..., ) (Yo tnv "opt-
otepn” VANPEGIN) TOV OTOIWV TO KOGTOC LTOAOYILETOL MG TPOG TO Y1, KL avTioTOr)0 cLGYETICOVLE LE
70 Y2 éva moAanAd 6Ovoro tonoBecidv R(Z) C (z1, ..., z,) (Yoo Vv ’8e€14” vanpecia) T@v onoimv
T0 KOGTOG VIOAOYILETAL G TIPOG TO Y2, UE TPOTO TETO0 MOTE Y kGBe x; € L(Z), xj € R(Z), x; < xj.
Topa, 0 y1 eivarn péon T tov L(Z) kot 1o yo eivarn péon tipn tov R(Z). Emopévemc, eivor apketod
va. BedticTonomoovpe v Tig n - 1 duvatég emhoyég tav L(F) ko R(F). Mropei va emBefarwbei 6t
évag opadkos eadndng pe (n - 1) mpocéyyion punyoviopds divetor amd v emhoyn tov It(Z) ko
rt(Z) pe Paon to mpopik & € R™. Tvvontikd, o Adyog givar 0ti to [t(X) € L(ZF) xauto rt(Z) € R(Z)
[43].

Eivar ovtdg 0 kaAdtepog TpOTOG IOV UTOPOVUE VOl YPTCUYLOTOIGOVUE Y10l TOV GTOYO TOV KOWV®VI-
KOV KOGTOVG OTOV €PAPHOLOVIE KOAOVG UNyoviopovs 6t pvBpon g tortobeciog g vanpeciog; H
omdvinon givor vou.
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1.1.3 ®hoinOcic Avovopor Mnyavicpoi ywo to [aiyvia Xopo@étnong k-Yanpeosiov

Y7o [21] amodeiyfnie 611 0 AOYOC TPOGEYYIOTG TOV UNYOVIGHOV LE TIG 000 0KPOieg VANPESLDV Eivarn
Bértiotoc. Q6T0G0, TPOoEKLYE £va APVNTIKO OTOTEAECHO: OEV VILAPYEL VIETEPLIVIOTIKOC OVMVLLOG
QAN NG pnyoviopdg Yo v Tortobecio k-vanpeciov, pe k > 3 ko n > k + 1 naikreg.

Ocopnpa 1.4. lia kabe k > 3, kabe vietepuiviotikog ovavouog piloinons unyoviouog yio, v to-
wobeoio twv k-ornpeoidv ue n > k + 1 waikteg oty mpoyuatin ypouun Exel Evay un poyuEvo 10yo
TPOCEYYIONG.

[TapdAo TOL TO TAPATAVE® ATOTEAEGLO PAIVETOL ATOOAPPLVTIKO, UTOPEL VO, oG EVOOPPVVEL VO, EQOpP-
poécovue ta gupruoto Tov [aiyviov Xwpobétnong k-Yanpeoiov mov &xovv avarntuybei mponyovpé-
Vg o€ £vay Topéa mov dev ennpedleTal amod to Tapandvm Bempnua: H otkoyévela Towv oty loTutmV
pe evotbeln 6 SLoTaPayES.

1.2 Evotdfewo o€ dwutapayés otnv Opadomoinon Asdopuéveov

H mio xown mpocéyyion otov oxedlacd Kot TV avaAvcoT) DTOAOYIGTIK®Y TPoPAnpdTemy eivor n e&é-
TOON NG YEWPOTEPNG TEpimTmone. O oyedoouds unyovicpov dev pmopei va amotehel e&aipeon oe
ovToV TOV Kavova. Av kot ovti 1 péBodog mapEyetl Ty TAL0V OAOKANp®UEVN LETPNON TS SuoKOATNG
evOg TPOPALLATOG, oG TEPLOPIlel VO ¥PNOUYLOTOLOVUE TOV 1010 aAYOPIOLO, OKOUO KL OV EVOLOPEPO-
Hoote POVO Y10 "EOIKES” TEPIMTMOGELS TOV TPOPANUATOC TOV UOoPovV va Aoy pe mo PEATL-
670 TPOTO. AVGTLYMG, 1| TAELOVOTNTO TOV TPOPANUATOV AMYNE amoPdcemy Kot feEATIoTOmOINONG LE
KGOl LOPPT TPOAKTIKNAG ¥PNons, cuvnbwmg eumintel otnv xatnyopia tov mpofAnudtov NP-Hard.
Qo1660, TO YEYOVOG OTL ALTE TA TPOPANUATO EXYOVV TPUKTIKN ¥PNoT Lropel va pog fondnoet ot
GULGYETION TOVG HE TIC “IPUYUATIKES TEPITTOGELS, TPAYILO TOV OTUOIVEL OTL UTOPOVLUE VO, EKUETOA-
AELTOVLLE TIG WOIOTNTEG ALTAOV TOV TEPUTTOCEMV.

O Bilu ko Linial [[13] fjtav ot Tp®dTot Tov TpdTEVAY L0 TPOGEYYIOT LUE GTOYO VO, EKUETAAALEVTOVV
LTV TNV SOUT|. ZVYKEKPLUEVA, EIGTYOYOV TOV OPO TNG EVGTADELNG KOl LTOGTIPIENY OTL Ol TEPITTMOGELS
OV £YOVV TPOKTIKY €Qapoyn Bo Empene va gival evoTadeic MG TPOG IKPES SLATOPAYES OTO LETPLKO
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x®po. Eva Tpofinpo mov £yl "TparyLoTIKES” TEPIMTAOCELS [LE TOAD EVOLUPEPOVTES 1O1OTNTES Elval TO
TPOPAN U TNG opadomoinong dedouévmy.

Opwopog 1.1. (Tlpofinuo Ouadomoions Aedouévawv) Mo epintwon evog mpofAiuaros opadoroinens
oedougvav amotedeitor oo eva tuple ((X, d), H, k) evoc uetpixod yapov (X, d), uiog ooviptnons otyov
H xou evog axéporov apiBuod k > 1. H ovvaptnon H, dedouévng og dwoipeons tov X ae k abvoio
C1, ..., Cy kou piog uetpixng d oto X, emotpépet Evay un apvntiko Tpoyuetiko aplluo, mov ovoudlovue
KOGTOG THG OLAIPETTG.

2TOY0¢ oG €ivol Vo EAAYIGTOTOUCOVLE Lol GUVAPTNON KOGTOVG Tov e€upTATOL OO TO KOGTOC KGOE
onpueiov. Ot o evdlapépovieg otdyol opadomoinong dedopuévmv ivol ol k-means, k-median, xou k-
center. Avtol o1 610y0tl kabopilovion og e€ng. Agdopévov piag opadomnoinong C1, ..., Ck, 0 6TdY0C
glvar 100G e T0 EAAYLoTO avipeca og OAEG TIG EMAOYEG KEVTP@V ¢ € (1, ..., ¢ € Ck TV akolovbmv
GUVOPTHOEDV:

k
Hpeans(Chy ..., Ci; d) = Z Z = d(u, ¢;)*
i=1 ueC;
k
Hmedian(cla X Ck; d) = Z Z = d(u,ci)
i=1 ueC;

Heenter (Ch, ..., Crs d) = mazer,. p{mazyec, {d(u, c;) }}

"Evag tpomog Yo va TEPLYpAYOLLE TNV 1O10TNTA TG EVOTAOENG G £va OTIYUIOTVTO Eival va OpiGOLLE
pia TocoTnTo 7Y, 1) omoia KaBopilel TOGO PITOPOoLV Vo amoKAVOUY KOVIva dedopéva onpeio dedopeé-
vov, dttnpovtag Vv id1a BEATioTn opadonoinon.

Oprwopdg 1.2, (y-dratapayn). Aedouévoo evog uetpixod ywpoo (S, d) kary > 1, Aéue on1 pa ovvaptnon
d : S8 xS — Ry elvar y-drazapoyn e d, av yio omoradnimotex,y € S, ioyder:

d(z,y)/y < d'(z,y) < d(z,y)

Opwopoc 1.3. (y-cvotaBeia). Yrobétovue 01 Eyovue 1o TEPITTWON OUAIOTOINOHS TOV OTOTEAEITOL OO
n onuelo. 0edouEVWY Tov Ppickovial o€ Evo ueTpIko ywpo (S, d) kou wio ovvaptnon otoyov @ wov
embouodue vo feltioromomjoovue. Aéue 0Tl ) OUAIOTOINTH JEOOUEVWY EIVOL P-E0OTAONS OE LATOPOYES
yLa. tov otoyo D, av yio ke d’, wov eivour y-oraropoyn e d, n (uovy) féAtiotn opadomoinon dedouevwv
700 (S, d’) vro Tov otoyo D eivor TavTooNUY, S dLaipecn TV CHUEIWY o€ DTOCOVOAQ, UE T PéATioTy
ouoadomoinan dedouevawvny tov (S, d) vro tov otéyo P.

Avomtoynkav Tpelg POcIKES 110TNTEG OO TOVG TOPOUTAV® OPIGHOVS, TO, OTOiR YPNCLOTOOnKaY
EKTEVAOG OO TOVG EMOLEVOLS OAYOp1BOvC:

Idwotta 1.1. (y-center proximity) Eotw p € S éva toyaio onusio, éotw ¢ to kévipo oto omoio avati-
Octour 0 p ot PEATIONN OHOOOTTOINTN KL £0T Cj 7 C; VO EIVAL OTOLOCONTOTE GAAO KEVTPO OTH PEATIOTN
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opadoroinoy. Aéue Ot P10 TEPITTWON OUOIOTOINONS IKAVOTOLEL TV 1010THTA. Y-Center proxXimity av yio
KaBe p 1oyveL:

d(p, cj) > vd(p, ¢;)

Ioyber 6t1 av eva aTIyUIOTOTO OUAIOTOINONS OEOOUEVWV IKOVOTOIEL THV 1010THTO Y-VOTAOEING, TOTE 1KO-
Vomolel ka1 Ty 1010THTO. Y-center proximity

Iswtre 1.2. (weak y-center proximity) Eotw p € S éva toyaio onueio, éotw ¢ 1o kévipo oro omoio
avorifetou to p oty féATiony ouadomoinon ko é0Tw c; F ¢; Va gival 0mo1000NTOTE GALO KEVTPO OTH
Pértiotn opadomoinon . Aéue Ot1 pio TEPITTWON OUOIOTOINGNS LKOVOTOLEL THV 1010THTO GODVOUNS V-
KEVIPO KOVTIVOTHTOGS AV Y10, kKaOE p 1oyDeL:

d(z,y) > (v — 1)d(z, ¢)

Ioyver 6Tt av evo, oTIYUIOTOTO OUAOOTOINONS JEOOUEVV IKAVOTOIEL THV 1010THTO. Y-E0GTAOEIOG, TOTE KO-
Vvomolgl kai Ty 1010tto. weak y-center proximity

I6wtrta 1.3. (Cluster-Separation Property) Eotw (C4, ..., Cy) n féAtiotn ouadoroinon evog y-evoradoig
oryuéronov pey > 2. Eorw x;, x), € Cy kou x5 € Cyy, e i # j, 1016:

(=12,

2’7 ($i, ﬂfi/)

d(xi, xj) >

To Single-link++ givat évag aAydpiBpog opadomroinong dedopévav Tov eQopUOLETUL GE TEPITTMGELS
v-£0v0TafOV GTIYUIOTLIOV Y1 TOV 6TOXO0 Hpyedian, O 0Toiog avamtdyOnke and Evav amhoVcTEPO OA-
v6p1Bpo mov ovoudletor Single-link opadomoinon kot avaktd T PEATIOT OLOOOTTOINGT GE TOAV®-
VOUIKO ¥povo. O aAdydpiBuog g Single-link opadomoinong eivat yvmotdg adydpiOpog opoadomoinong
dedopévov. H 18éa eivar va oke@todue tov petpikd ympo €106dov (X, d) og évav TAnpn ypdoeo, e
Kopveég X Kot Bapn akudv mov divovral amd to d. O aiydpiBuog exterei Tov adydpiBuo eldyioton
ovvoedepévou dévtpov Kruskal, péypt va oynuatiotovv k cuvdedepévo odvora, 6mov k tvar o emibv-
unTog apfuog opddwv, Tpdypa mov onpaivel 6Tt mapaAeinovpe TG tedevtaieg k-1 emavolnyelg Tov
Kruskal. Qotoc0, vrdpyetl éva mpopavég avti-tapddetypa. [a va ertiodel avtod, to Single-link++
onpovpyet Evav mANpN YpAPo Le KopueEg mov divovtar arnd to X kot fApog oKUnG mwov divetan amd
t0 d Ko o1t cvvéeln ektelel Tov alyopBpo tov Kruskal péypt v ohokAnpwon yio va vroioyicet
10 ghdy1oTo GLVOEdEUEVO dévipo T Tov TANpoLs Ypapov mov mpokaieitol amd (X, d). To teAwd Pripa
elvar va vroloyicet avapeca o€ dAa Ta (Zj) vrocVuvoAa TV k-1 axpmv tov T kot Tic Tapoy®UEVES
k-opddec mov mpokaAohv, LT HE TNV EAGYIOTN TN TNG GLVAPTNONG AVTIKEWEVOD Hpedian. 2T
GUVEYELDL ATTOOEIKVIETAL TO akOAOLOO AL

Afqppa 1.1. 7o Single-link++ avaxoivmrer tny fédniory Lbon evos mpofinuaroc k-median (X, d) ov xau

uovov av ke péitiorn oudda C mpoxalel éva ovVOESEUEVO DTOYPAPNLLG. TOV EAGYLOTOV CVVOESEUEVOD
0EVTpOU.

Av10 givol TpoPavEG oV OMEIKOVIGOVIE KADE GUVIEDEUEVO GTOLYXELD TTOV ATOUEVEL ATO TIC TPMTEG K-1
emavaAnyelg Tov Kruskal og pio ave&dptnn opddo. Avtd odnyel oto axdAovbo amotélecyio:

Ozopnpa 1.5. 2¢ kabe k-median otryuiotvmo e 2-evotabeia, o alyopiBuog Single-link++ avaxald-
wtel ™) Pélniorn Abon (o€ moAvwVoIKS YpOovo).
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Avtimapadetypo tov Single Clustering, k =3

1.3 Evotafswo og owatapayés ota Haiyvie Xowpodétnong Yanpeowov

Eivatl gdkodo vo do0pE OTL v GTPEYOLLE TNV TPOCOYN HAG GE TO TPUKTIKA TOPAOEYLLOTA, OKOLLOL
Ko 70 TPOPAN U opadomoinong dedopévmv, To omoio givar NP-hard pnopei va avtipetomiotel pe éva
OmAO KOl OTOTEAEGHOTIKO aAYOP1Op0. AvTd Hmopel va, oG 001YNGEL GTNV JEPEVLVNON TWV GLUTEPL-
(POPOV OLTAOV TV GTIYHOTOTOV GTO TPOPAN LA ¥0poBETnong vInpesidY, To onoio oyetileTol oTEVA
pe 1o opadomoinong dedopévav. H emmiéov moivmlokdtnTa dvtov Tov TpoPAnuatog eival ot dev
UTOPOVLE TAEOV VO, EUTIOTEVTOVLE TANPOC TNV €10000 pog, KOOMG 0l TOIKTES Elval GTPATNYIKOL Kot
TPETEL VO Bpovpe TPOTOVG Y10l VO TOVG OTOTPEYOLLE 0Td TO VoL dNADGOoVY yevdn Tomobeaia.

Mmropolpe E0KOAN VO OPIGOVLLE TO Y-010TapOYT KOL T Y-EVGTADELD Y10l QL TO TO TPOPANLLQL:

Opwopog 1.4. ([ powuxii y-drotopayiy) Eorw & = (x1, .., Ty) éva mpopil otryuotdmov. Eve mpogil
oTiyotomovT = (x1, .., xy,) eivar y-olotapoyij ©ov T, yia kamoio g > 1, av &} = x1 kot yio kdle
i € [n— 1], ioyver ot

d(zi, wi1) /vy < d(xj, 25 1) < d(zg, 2i41)

Opwopég 1.5. (Tpoupuixny y-evotabeia). Eva mpofinuo ywpobétnong k-oxnpeoiwv givor y-evotabés, av
0 T &yet pua povaduxn féduiotn opadoroinon (C1, ..., C) ka1 kébe y-drozapoyi’ tov T éxer v idia
uovaowkn féltiorn opadomoinon (C1, ..., Cy) .

Kat to 1610 cvpPaivet pe Tig Tpelg Pacikég 1010TNTEG TNG EVOTADENG: YPOULLIKT] Y-center proximity,
ypapukn weak y-center proximity kou Cluster-Separation Property.

Xy perétn [23], TapoustdonKe VoG VIETEPUIVIGTIKOG, GIAOANONG UNYOVIGLOC TOV EMLTUYYAVEL TN
BélTiotn opadonoinon yio TEPUTTOGELS TOV €ivort 2 + \/3—81)01(198{9 AvoTuy®dg, 0vTdg LTOpEL Vo pap-
HOGTEL LOVO OE TEPMTMOOELS OTIG OMOieg 1) PEATIOTN opadomoinon dev mePIAapPAveL Lia OpAda oo-
TeAOVUEVT] 0T Eva TATKTT), SLLPOPETIKA 1| PLAAANDEL0 amOTLYYAVEL.
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Mechanism 1 OPTIMAL : Deterministic mechanism on 2 + +/3-stable instances without Singleton
Deviations.
Result: An allocation of k-facilities
Input: A k-Facility Location instance & Compute the optimal clustering (C1, ..., Ck). Let ¢; be the
left median point of each cluster C;.
if (E]Z S [k] with ’Cz’ =1)or(di e [k — 1] with max{D(Cz), D(Cz-i-l)} < d(CZ, Ci—l—l)} ) then
Output: "FACILITIES ARE NOT ALLOCATED”.
else
Output: The k-facility allocation (cy, ..., cx)
end if

211V 1010 LEAETT), TAPOVCLAGTNKE £VOG VIETEPUIVIOTIKOG, GIAUATONG UNYavIo OGS TTOV AmoKTA TN PEATL-
oTN OpAd0TOoIN oM Yo S-eVoTadN GTIYOTLTTA. AVTOC O PUNYOVIGLOGC OVEAVEL TN EVGTADELN TV GTUYLO0-
TOTOV oT0 omoia EQopOleTal, £T6L MOTE VO LWTOPEL VO UVTILETOTIGEL TIG OUAOES LOVOIIKDV TOUKTMDV
o PéATIoTN OULABOTOINGT] TOV GTIYUIOTLTTOV.

Mechanism 2 ALMOSTRIGHTMOST : Deterministic Mechanism Resistant to Singleton Deviations
5-stable instances.
Result: An allocation of k-facilities
Input: A k-Facility Location instance Z Find the optimal clustering C = (C1,...,Ck) of Z.
if there are two consecutive clusters C; and C;11 with max{D(C;), D(Ci41)} > d(C;, Ciy1)})
then
Output: "FACILITIES ARE NOT ALLOCATED”.
foriel,... kdo
if |C;] > 1 then
Allocate a facility to the location of the second rightmost agent of C;, i.e., ¢; <— T; —1.
else
Allocate a facility to the single agent location of C; : ¢; <
end if
end for
end if
Output: The k-facility allocation ¢ = (cy, ..., ¢)

1.4 Ewvioyopévor amo Mabnon Mnyoviepor mave oto Haiyvia
Xopodimonc Yrmpeoiov

H évvouwn tng gvotdbeiag dev givar 1 LOVOSIKN TPOGEYYIOT] GTOV GXESOCUO UNYOVIGHOD, TNV OOl
UTOPOVLLE VO YPNGLLOTOICOVLE Y10, VO ATOQVYOVHE TN HEBOSO TG avAALONC XEPOTEPNC TTEPITT®-
omng. Av KO 1 ¥p1oT TNG OVAAVGTG XEPOTEPNC TEPIMTMONG TAPEYEL L0 CUYKEKPLUEVT] OVOEKTIKOTITA
GTO OMOTEAEGLLO TOV OAYOPIOLOL HOg, Hag apatpel TNV gveMEi Vo LEAETIIGOVIE TOPASELYLOTOL TTOV
glvan og B€om va Tapdayovv £va TO KOVIIVO GTOV “TPayHOTIKO KOGUO™ HOVTEAD Yo Tol TPOPAN T
pag. Avtod tov €idovg ta TPoPALATE SIABETOVY GUYKEKPIUEVEG 1O1OTNTEG TTOV 01 AAYOPIOHOL UIyo-
VIKNG PAONoNG Pmopov va eKPUETAAAEDTODY Yio Vo Topdyovy xpioipes “mpoPAéyels”. Zto [[l] avty
N Ypopu oxkéyng xpnooromdnke yuo v avantuén tov Evicyvpévav oand Mabnon Mnyovicuov
v 10 TPOPANHa TV [atyviov Xopobétnong Yanpeoiov.
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[No otV TOV VEO TOTO UNYOVIGHLOV, TTPETEL VO EIGAYOVLLE KATOES VEES PETPIKES: T Zuvémela Ko v
AvBektucotnto. Edv n mpdPreyn sivar akpipng, opilovpe Tov AOY0 TPOGEYYIONG G TN CUVERELD TOV
unyavicpot. Eav n mpopieyn eivar avbaipetn, opilovpe Tov Ad0Y0 Tpocéyyiong o¢ aviekTikdTTaL.

270 TA0IG10 TOL GYESIGHOD UNYOVIGLOD EVIGYVUEVOL pE LdBnor, mpy {nTioel To GOVOAO T®V TTPo-
TILOPEVOV ToToBec1dV P amd tovg maiktec, o oyxediootig AapuPaver o mpoPAEyn O GYETIKA LE TNV
Béltiot TomoBesio vanpesiog o(P). O oyedoctig Wropel va YP1GILOTOMGEL AVTEG TIG TANPOPOPIEG
Y1 va, ETAEEEL TOVG KOVOVEC TOV UNYAVIGHOV, OAAG, OTIMG Kl 6TO KAAGGOIKO TPOPAN L ywpobétnong
VANPESIOV, 0 uNYavicpds mov cvpPoriletor wg M (P, 6), mpénet va ivar giiodong. OvolooTikd, av
VIAPYOoVY TOAAOTL PIAOANOELS UNYOVIGHOT atd TOVG 0Toi0VG Popel va emAEEEL O GYEOGTIG, 1| TPO-
BAeyn pmopei va KoBodYNoEL TNV ETAOYT TOVG, LE GTOYO TNV EMITELEN PEATIOUEVOV EYYVNCEDV EQV
N TpoPreyn sivor axpifng (cuvénela), datnpOVTOC TAPUAANAL BEATIOTEG EYYVNGELS OE TEPIMTMOON
YEPOTEPNG TIEPITTOOTNG (AVOEKTIKOTITCL).

Opwopég 1.6. (2vvéreia a) Aedouévy komora ovvaption koivavikod koorovs C (ontaon MC(-),SC(-)

), EVOG UNYOVIGUOS EIVOL O-COVETHS OV ETITUYYOVEL IO, O-TPOGEYYIoN OTOY N TPOPAEYN eival owath

(6 = o(P)), onlaon

C(M(P,o(P)), P))
C(o(P), P)

maxp| e’

Opwopog1.7. (Avbextixotnza f) O unyoviouog pog eivor B-ovOektikog av ETITOYYAVEL EVOY B-TPocEYyIon
axouo kor otav i mpofleyn sivor owBaipero AavBaouévn, oniaon

C(M(P,0),P)

(o). p) | ="

mazp,s|

®a acyoAnbovpe pe Ty mepinTmon piog S1dotaocng, Le TV EI60Y®YN TOL punyavicpov MinMaxP. Av-
TOG 0 UNYAVIGLOG YXPTOOTOLEL TV TPOPAEYT OMG TNV TPOETAEYLEVT EMAOYT| TOTTODEGI0G VN PEGIa,
exTog av 1 TpdPAeyn Ppioketal “apiotepd” OA®V TV onpeiov 6to P 1 7de&1d” AV Twv onueiov
ot0 P. v mpdn mepintmon, N vanpecio tonobeteitan 610 apiotepoTEPO onueio Tov P, evd ot
devtepn mepintwon, tomobeteiton oto de&idtepo onpeio Tov P.

AvTOC 0 UNYaviouog emTuYYavel 1-cUVETELD Kot 2-avOEKTIKOTNTA, TOV OmOTEAEL TNV PEATIOT 1o0Op-
POTLOL AVAUESO GE QUTA TOL dVO YUPOKTPIGTIKA.

1.5 Xyeowwopog Mnyoaviepov pe lipopréyers yio Xrabepa
YTrypotona TV Tolyviov Xopoditnong Yanpeoiov

216y0¢ Hog gival Vo EVEMUOTOGOVUE OAL TO TPONYOVUEVO GLGTATIKG oL Tapovstdotnkoy (ITai-
YVia Y®PoBETNGNG LINPECIDV, Y-EVGTAOELG GTIYLMOTLTIO KOl GYXESLAGHO PNYOVIGLOD EVIGYVUEVOD UE
uéonon) Kot vo TpocTaNGOLLLE VO SNULOVPYNGOVLE EVOV KOLWO UNYAVIGUO TOL Vo, To GuVOLALEL.
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H epyaoia pog eivar va gvtomicovpe k vinpesieg ot ypopup. Ga onpovpycovLe ToV UNyavIGHO
M (%, 0), o onoiog AapBavet o Ledyos (T, 6), og €icodo. To otrypdTumo Z givar évo davoopa Tov
amoteleitan omd tn Bon Kabe TaikTN TN YPOUUT Kot TO O givor vl S1GVOGHA LE TIG TPOPAETOUEVES
tomobecieg TV LANPECIDOV, TOV TapdyovTal amd Eva eEmteptkd cuotnua. H epyacia pag pmopet va
Qaivetal To gOKOAN, aPov 1O £YOVUE UNYXOVICUOVG TOV £PapuolovTal Le emtuyia o€ Y-guotabdsic
OTLYLLOTLTIO KO LE TNV TPOSHNKN e€MTEPIKMOV TPOPAEYE®V, QaiveTOl AoYKO v, EATICOVLLE Y10 AKOLLOL
KOADTEPO AmOTELEGHO. Q2GTOCO, TPOKVLATEL TPOPANUA A0 TO YEYOVOG OTL Ol TOUKTEG UTOPOVV TP
VO EKUETAAAELTOVY TOV pnyavioud pécw g tonobeciog twv tpofréyewv, Tpocbétovtag Eva ok
EMIMEDO TOAVTAOKOTNTOC.

O unyoaviopdg mov mpoteivovpe eivar évag yevikevpévog MINMAXP og k vanpecieg. Qotdc0, ot
MINMAXP, énpene va ovTILETOTIGOVHE LOVO Lo OpAd Kol POV pia TPOPAEYT, EVED OTN YEVIKT
nepintoon, énpene va avtictoyicovpe k mpofréyelg o k opada pe eraaindn tpémo. Avt givar m
VEQ LOPON WYELATOG TOV £VaG TOIKTNG LWTOpEl va ypnotplomomast yo va kepdicet. Emdéyovue va avti-
oTolyicovpE TNV i-0TN TPOPAEYT otV i-aTn opdda. ['a va amoplhyovpe 0molodNToTeE TPOPANL LE
TN EIAOANBELL TOL UNYOVIGHOD, YPEalOLOOTE TOVAUYIGTOV 5 EVGTADELN KO TOV OTOKAEICUO TEPUTTO-
CEMV OULAS®V VOGS LOVASIKOV TTaiKTN 0T PEATIGTN OLOOOTOINGT) TOVG.

O unyovicpog 6éyetal tnVv €i6000, extehel EAeyyo yio v cluster-separation property Kot eEAEYYEL oV
VIAPYEL Lo opada evOg povadikov maiktn. Edv 1o mapddetypd mepvd kail Toug 500 atohs EAEYYOVG,
e&hyovpue k vinpeoieg. T va Aettovpynoet o unyaviopog pog, xpelolOPacTe T0 OTIYUIOTUTO HOG VO
€xel ToLAGyIoTOV 5 gvoTAbeln ka1 PEATIOT ORAdOTOINGT TOV VO UV TEPIAAPPAVEL OUAdES [LovVa-
dkav moktov. Edv dev mapafraleton cluster-separation property kot 6gv vdpyel opado Lovadikod
Akt 01N PEATIOTN OHOSOTOINGT HOC, LWITOPOVLLE VO AVTIGTOLYICOVLE TNV i-0TN TPdPAeyn 0; otV
i-otn opdda C;. Aedopévou 0Tt 10 Tapaderyd Lag eivor y-evotabic, pmopovue vo Bewproovpe kabe
opada g Eva LoVadIKO GTIYHOTLTO TO 0010 Etvat TANPMG SLUWPIGUEVO OO TIG VTOAOUTEG OLLAOEG,
Kot va epappocovpe Tov Mnyaviopd MinMaxP [[I]] og kG0g opdda. Avotuyms, TPEMEL VO GUUTEPIAI-
Boupe TOVG TEPLOPIGLLOVE TG ATOLGING OUAO®Y LOVASIKOL TTaikTn 6T PEATIOTN opadomoinon, S0t
€0V EMTPEYOVLE GE £VOV TOTKTT VO ATOKALVEL KO VO STULOVPYNGEL [LL0L OLLAD0L LOVOLOTKOD TTOAKTY, Y M-
pig va datapdéet tn evotdfela Tov GTIYUIOTLTTOV, TOTE UTOPEL VO OTTOUOVMGEL LI OTOUOKPLGUEVN

Ot maikteg avamapiotovtot amd padpovg KOKAoLS, 1 TpdPAreyn avorapictatal and prie opboydvia,
1 tomofecia T vanpesiog avamapictaTol amd Eva PELOC. AvTég gival ot 3 dlapopeTIKol TPOTOL LE
TOVG 0TO10VG HITOPOVLLE VO avaBEGOVLE oL VINPETia 6TO Tapaderypa. O TpdTog delyvel TL cupPaiver
otav 6 < min;p;, 0 devtEpPog Otav 6 € [Mmin;p;, max;p;] Kou o tpitog dtav 6 > max;p;
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Mechanism 3 Generalized MinMaxP M (Z, 6) :Deterministic Mechanism for 5-stable instances with
no singleton clusters

Result: An allocation of k-facilities
Input: A k-Facility Location instance Z and k-vector of predictions on facilities locations 6 Find
the optimal clustering C' = (C4, ..., C},) of Z.
foriel,... kdo
Match 0; to i-th cluster, C;.
if 0; € [wi,ly .I'@,«] then
Allocate a facility to 9;.
end if
if 0; < x;; then
Allocate a facility to x;
end if
if 6, > z; , then
Allocate a facility to x; ,
end if
end for
Output: The k-facility allocation that was previously defined.

TPOPAeYT Kal va 0AAGEEL TV avTIGTOIYNON TV TPOPAEYEDV-OLAS®Y TPOS OQEAOC TOV.

O unyoviopog givar 1-cuvemng Kot 2-av0ektikog yio Tov 610)0 tov Méyiotov Kdotoug, 1-cuvennc
Kal (n-1)-avBextiKdg yuo tov 6tdyo 1o Kotvovikod Kootovg. H grhainfeia tov dwacparileton amod
TO YEYOVOG OTL amaplOUOVUE TAPOKAT® TIG ATOKAIGELS TTOV UTOPEL VO KAVEL EVOC TUIKTNG:

1. Awipeon \ Zvyyxdvevon mov dwtnpel TNV apyikn ovTioToiylon TV TPoPAEYEDV OTIC OUASES
2. Awipeon \ Zvuyydvevon mov dev dtotnpel TV aviiotoiyion v TpofAEYE®Y OTIC OLADES.

3. Ambéxhon Tov waikTn Tov dALALEL LOVO TO UNKOG TNG SIKNG TOV OUAdaG.

Onowdnmnote dwipeon eite mapaPraler v Cluster-Separation Property eite dev pmopet va mapdyet
Qo KoAwtepn opadomoinon omd v apytkn. O pévog tpomog yo. £vay TOIKTn Vo, TPOYLOTOTOWGEL
KEPOOPOPES CLYYWVELGELS Etvat va Tapafidcel TNV apiBunon Tov opddwy g GLYKEKPIUEVTG TTepi-
TonG. OAEG 01 GUYYWOVEDGELG ONILOVPYODV TEPITTAOGELS TOL ~amayopegvovial”’. H mpdtn mepintmon
glvan pa tepintwon pe opdoa pLovadikol maiktn, 1 omoio amroTuYXAVEL TO TECT TG LOVOOIKNG OLLd-
d0¢ Tov Unyaviopov. Ot devTEPN Kot TPITN TEPMTMOELS TEPIAAUPAVOLV dla1péoelg Tov gite dev elvar

P = [ = o =

¢ v v
]

To pmhe opBoydvia etvor opddeg, ol pavpot KhkAot eivan TpoPAréyets, o pmie BEAN eival ol Tomobe-
TNUEVES VTN PETiES, Kot KAOE 1-6Tn TpOPAeyn avtioTolyel oty i-0T1 opdda.
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Xmv 1n mepintwon daipeong, uropovpe vo, dovpe 6tL | Cluster-Separation Property mapafialertat.

Cl

[ m =

Yty 2n mepintoon daipeong, PAEmovpe 611 eival vTOBEATIGTO Vo "ortatakncovpe” 600 VINPEGiEG GE
naikteg C kabdg yio ) PEATIOT opadomoinom €xet amoderydel Ot ypelalopacte povo pio.

* L]

” L ]

4
I
X X.

|

EPIKTEG E1TE AMOTLYYAVOLV GTIV 1310TNTA TOV SLOYOPIGHOV TOV OUAS®V. AVTO GNUAIVEL OTL OEV VTLAP-
Y€l duvatodOTNTO KEPOOPOPOG draipeonc. TéLog, av 1 amdkAion Tov maiktn Oev ennpedlel Kopio GAAN
ouada, tote mpoomadei vo cuumepiAdfel N va amokieioel p€oa otn 61K TOV OpAda TNV TPOPAEYT TOL
avtiotoryel ot Sk Tov opdda. XpNoUYLomolmvTag ToV 1010 oyedtacd anddetng ue tov MINMAXP,
KOTOAYOVUE GTO GUUTEPAGLO OTL OEV UITOPEL va kEPSiGEL AEyovTag WENATA.

1.6 Xvpmepaopato kol Merhovrikég Hlpooeyyicerg

To amotéieopa g perémng [21] odnynoe tovg epevvntég va emtkevipwBodv ce 816.popouvs TpdTOVGS
TPOGEYYIONG TV TOiyVIKOV Y®poBétnong k vanpesiodv, Tpoonaddviag cuveyds va cuvovdcovy dta-
(POPETIKA TEGIOL GTNV TPOGTADELR TOVS VO KUTOVONGOVY TANP®S OAOVG TOVG TEPLOPIGLOVE TOL UITOPEL
va vdpyovv. Av kat 1 evotAadeilo Kot ot ahyopiBot evioyvong TpoPreymc dev givol evieEADC vEeS
EVVOLEG, DTTAPYEL OKOUO SOVAELD TOV TTPETEL Vo Yivel otav epappolovrar ota [aiyvia xyopobétnong k
VANPECIOV. XT1 SIMAGUOTIKY HOV £PYOCIN, TAPOLGINGH £Va UNYOVICUO TOL EMTVYYXAVEL 1-cuVvETELD
KoL n-0vOEKTIKOTNTO, AALG EXEL dVO aduvapieg. O unyavicpog omattel TOVAGYIGTOV 5 evoTAbELD, OTMG
ka0 pnyovicpdc ALMOSTRIGHTMOST, kot dev €£€T0LEl TEPMTMGELS TOL TEPIEXOVY OLASES LLE EVaL
povadiko maiktn, 6nmg o unyovicpog OPTIMAL.

"Evog puokdc katevBuvon Ba Tav va eEetdoovie dv LTOPOVLE VO ETLTUYOVUE YOAUNAITEPT] EVOTA-
Og1o M €dv pmopov e va. BpodLe Evay TPOTO VO AVTLLETOTICOVLE TO TPOPAN O TOV TPOKVTTEL OO TNV
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O ap1oTEPOTEPOC TOUKN TS TNG TPITNG ORASOC EMBVLEL VL OVIKEL GTT SEVTEPT] OLLADA EVOG TPOTOTOMUEVTG OTLY-
HOTOTTOV. AVTO UTTOPEL VOL TO KAVEL LLE TPELG SIUPOPETIKEG CLYXWOVEVGELG. MTOPEL VO GLYYWOVEDGEL TNV TPDTN
Kot T 0g0TEPN OpAda, dNUIOVPYDVTAG Hiot opada e Evo TaiKTn Hovo ota de&id Tov. MTopel va ouyyovedoel
TNV TPMTI KO TN O0EVTEPT) OLLAIAL, SLOPAOVTAG TN OLLASa ToV. Mmopel va GuyY@VeDGEL TNV TPAOTN Kot T1) deVTEPN
OLLAd0, SLULPDOVTOG TV TETAPTN OLAdA KoL TN S1KT TOV.

vmapén opddwv pe éva povadikod maiktr. H evotdBeia nepropiotnke o€ 5, kabhg faciotnKaple o€ ple-
yaro Babpo atov pnyaviopd ALMOSTRIGHTMOST. Qot660, 0 ALMOSTRIGHTMOST dev mepio-
piletar amd povadikég opddeg OTMG 0 UNYOVIGHOG pog. EmmAéov, | eilcaywyn ntpofAéyewmv éyve Moy
™G amdoTaonG TG evotadeiag mov vrapyetl peta&y Tov ALMOSTRIGHTMOST kot tov OPTIMAL,
KkaBog mopapével va eEgtaotel edv pmopovpe va Bpodpe évav unyovicpd pe evotdfeia < 5, o omoiog
avTIHeTOTILEL emiong opadeg e va pHovadtko moiktn oto ottyptotomo. Téhog, ot perémn [23] to
OmoTELEG O TNG AOLVOTOTNTOG Yo Ta [Taiyvia yowpobétnong vanpeciov k pe k > 3 dievpdvOnke, amo-
JEKVOOVTOC OTL OEV VTTAPYEL KAVEVOS TPOCIOPICUEVOG OVAVVLOG CTPATNYIKA 0VOEKTIKOG UNYOVIGLLOC
v TonoBecia vnpeoiov k, pe k > 3, oe mepumtdoelg pe gvotabeia (2 - 9), pe ppayuévo Adyo Tpo-
o€yylong yio orotodnmote 0 > 0. Amopévet vo doOE av ovTd To PPAyUa etvorl akpiPec.

29






Chapter 2

Introduction

One of the most interesting aspects of mathematics is how we can interpret its numerous applications
in seemingly non-uniform academic fields. Such an upcoming field is the Algorithmic Mechanism
design, a combination of Social choice theory, Game theory, Mechanism Design, and Computer Sci-
ence. Social choice theory is the study of collective decision procedures and mechanisms. It is not a
single theory, but a cluster of models and results concerning the aggregation of individual inputs (e.g.,
votes, preferences, judgments, welfare) into collective outputs (e.g., collective decisions, preferences,
judgments, welfare). Mechanism Design is a sub-field of economic theory that is unique within eco-
nomics in having an engineering perspective. It is interested in designing economic mechanisms, just
like computer scientists are interested in designing algorithms, protocols, or systems. Algorithmic
Mechanism design studies optimization problems where the underlying data — such as the value of a
good or the cost of performing a task — is initially unknown to the algorithm designer, and must be
implicitly or explicitly elicited from self-interested participants. In algorithm design, most of the time
we were not concerned with the validity of our input. In this setting we consider the participants to
be rational in their actions and to always look to maximize their gain, which depends on the ”game”
that they are being played, meaning that they opt to lie. The designer is looking to exploit this and
create a set of rules that will lead the players to act in a way that produces the optimal outcome, based
on a game-related objective (e.g. maximum revenue, social welfare maximization, etc.). Continu-
ing the correlation between the process of constructing mechanisms and algorithms, we aim to create
computationally efficient mechanisms that are not susceptible to a player’s deviation from the truth,
preserving the valuable property of strategyproofness.

As mentioned above, our mechanisms need to be unaffected by a participant’s lie or even better to con-
vince all the participants that telling the truth is in their best interest. Some mechanisms use money
and payments to enforce such conditions, while in others, payments could be illegal or unethical. In
this thesis, we are interested in one of the fundamental problems in the latter category, Facility Loca-
tion Games. We consider k-Facility Location games, where k > 2 facilities are placed on the real line
based on the preferences of n strategic agents-participants. Such problems are motivated by natural
scenarios in Social Choice, where a local authority plans to build a fixed number of public facilities
in an area [39]. The choice of the locations is based on the preferences of local people, or agents.
Each agent reports his ideal location and the local authority applies a (deterministic or randomized)
mechanism that maps the agents’ preferences to k facility locations. Each agent strives to reduce its
connection cost - his distance from the closest facility and the mechanism designer strives to optimize
a certain objective (Social Cost, Maximum Cost, etc.), while also. Since Procaccia and Tennenholtz
[43] initiated the research agenda of approximate mechanism design without money, k-Facility Lo-
cation has served as the benchmark problem in the area and its approximability by deterministic or
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randomized strategyproof mechanisms has been studied extensively in virtually all possible variants
and generalizations. For instance, previous work has considered multiple facilities on the line (see
e.g., ([21],[24].127],[33].[42]) and in general metric spaces ([20],[32]), different objectives (e.g., so-
cial cost, maximum cost, the Lo norm of agent connection costs ([[19],[24],[43]]), restricted metric
spaces more general than the line (cycle, plane, trees, see e.g.,([2],[[16],[16],[25].[[16]), facilities that
serve different purposes (see e.g., [30],[31]), and different notions of private information about the
agent preferences that should be declared to the mechanism (see e.g., [[15],[[18],[36]) and the references
therein). Due to the significant research interest in the topic, the fundamental and most basic question
of approximating the optimal social cost by strategyproof mechanisms for k-Facility Location on the
line has been relatively well understood. For one facility, the mechanism that places the location at
the median agent of the instance is both optimal and strategyproof. For two facilities, the placement
at the two extreme points of the instance will preserve strategyproofness, while producing the best
possible approximation (n - 2). Unfortunately for £ > 3, we are given the negative result of [21]],
where it stated that there is no anonymous, deterministic, strategyproof mechanism with bounded ap-
proximation, for K-Facility Location, with X > 3. This result led us to acknowledge the limitations
of the normal setting of facility location games and turn our interest to instances that are closer to the
real world and thus maintain properties that can be exploited by our mechanism. In this thesis, we will
focus on this new kind of instance, where not only we will have a distinguishable optimal clustering,
but also we will be aided by an external system in our location placing.

The similarities between the Clustering of data, simulated by a metric space (X,d), and Facility Lo-
cation Games are too many to ignore. Both of those problems look to find ways of optimal grouping.
In clustering, we may not have to deal with a “lying’ metric space, but since it is a heavily researched
field, we have found many ways to characterize our input instance and develop algorithms that ex-
ploit this characterization. One of these attributes is the so-called perturbation stable instances, which
are instances resembling real-world data, in the sense that we are implicitly assuming that interest-
ing structure exists in the data and even small perturbations can not alter the structure of the input.
Perturbation stability was introduced by Bilu and Linial in [13] and Awasthi, Blum and Sheffet in
[6] (and has motivated a significant volume of follow-up work since then, see e.g., ([4],[8],[10],[45]
and the references therein) in an attempt to obtain a theoretical understanding of the superior practical
performance of relatively simple clustering algorithms for well known NP-hard clustering problems
(such as k-Facility Location in general metric spaces). Intuitively, the optimal clusters of a y-stable in-
stance are somehow well-separated, and thus simple clustering algorithms, such as single-clustering,
become viable choices in our attempt to produce optimal clustering in polynomial time, for an ap-
propriate value of . The simplicity of these algorithms is enhanced by the stability properties that
have been proven, such as y-center proximity, weak ~-center proximity, and the Cluster-Separation
Property. These properties define bounds between inter-cluster and intra-cluster distances between
data points, making it easier to distinguish clusters on an instance. A natural extension would be to
apply these properties on the field of Facility Location Games and investigate the optimality and strat-
egyproofness of our mechanism on ~y-stable instances. All the results in the previous section are based
on the worst-case scenario, which is bounded by [21]. However, if we utilize the notion of stability
in our instances, we can come up with some interesting results. In [23]], the study of efficient (wrt.
their approximation ratio for the social cost) strategyproof mechanisms was initiated for the large and
natural class of y-stable instances of k-Facility Location on the line. The existence of deterministic
(resp. randomized) strategyproof mechanisms with a bounded (resp. constant) approximation ratio
for 5-stable instances and any number of facilities k > 2 was exhibited. Moreover, it was shown that
the optimal solution is strategyproof for (2 + 1/3)-stable instances if the optimal clustering does not
include any singleton clusters (which is likely to be the case in virtually all practical applications).
Furthermore, the impossibility result of Fotakis and Tzamos [21]] was strengthened, so that it applies
to y-stable instances, with v < v/2. Specifically, it was shown that for any k > 3 and any § > 0, there
do not exist any deterministic anonymous strategyproof mechanisms for k-Facility Location on (/2
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— J)-stable instances with bounded (in terms of n and k) approximation ratio. It remains to be seen, if
the (/2 — &) bound for  is tight and if there is a deterministic, strategyproof mechanism for ~-stable
instances, with v < 5, who can also deal with singleton clusters in the instance. This thesis will focus
on finding optimal clustering on y-stable instances while receiving some “extra’ information from an
external source.

The notion of perturbation stability on instances is only one of the many different approaches we
can take when we look further from the worst-case analysis framework. In recent years, there has
been a significant amount of research applied to algorithms enhanced by machine learning creating
the new field of “algorithms with predictions”, thus giving a real motivation to determine whether
the contribution of predictions to known Facility Location Games mechanism or the development of
new learning-augmented Facility Location Games mechanisms can produce interesting results. New
metrics - Consistency and Robustness were introduced in [38] as the standard measures in algorithms
with predictions. They expand upon the notion of approximation ratio: Consistency is the approxima-
tion ratio of the mechanism, when the predictions coincide with the optimal solution and Robustness
is the approximation ratio of the mechanism when the predictions are arbitrarily wrong. In [|L], there
was an initial attempt to explore these new mechanisms. They developed a mechanism for one fa-
cility located on the line, achieving 1-consistency and 1-robustness for the social cost objective and
1-consistency and (1 + v/2)-robustness for the maximum cost objective, while also proving that the
1-consistency and (1 + v/2)-robustness trade-off is optimal. An open problem is to find out the op-
timal trade-off between consistency and robustness in the general case of k facilities for ~y-stable
instances, which is also the focus of this thesis. We will present a generalized version of the one-
facility learning-augmented mechanism, for the k-facility variation of at least 5-perturbation stable
instance, that achieves 1-consistency for both MAXIMUM COST and SOCIAL COST OBJECTIVE,
2-robustness for MAXIMUM COST, (n-1)-robustness for SOCIAL COST OBJECTIVE, while also
observing the limitations that this kind of generalization meets.

2.1 Facility Location Games

Our game consists of n strategic agents and k facilities. The agents are placed in the metric space
metric space (X, d), where d: X x X — R>0 is the distance function. The function d is a metric on X
satisfying d(x, x) =0 for all x € X, d(x, y) =d(y, x) for all x, y € X (symmetry) and, d(x, z) > d(x, y) +
d(x, z) for all x, y, z € X (triangle inequality). Each agent ¢ € IV has a location x;, which is his private
information, and on the same metric space, we intend to place the facilities. We refer to the collection
¥ = (1, ..., xy,) as the location profile or as the instance.The connection cost of agent i, denoted as
cost(x;,7), is mini<j<xd(z;, y;), which is the distance between the agent’s location and the closest
facility location. Our task is to place k facilities on the metric space while trying to minimize a cost
function, which depends on the agents’ connection costs. Each agent tries to minimize his connection
cost.

A deterministic Mechanism M maps 7 to a k-tuple (y1,...,yx) € X* of facility locations. We let
M (%) denote the outcome of Mechanism M. A randomized Mechanism M maps & to a probability
distribution over ak-tuples (y1, ..., yx) € X k of facility locations. Two of the most basic cost functions
are the Social Cost function, the sum of all the agents’ connection costs, and the Maximum Cost
function, the maximum over all the agents’ connection costs. The Social cost of a facility locations
profile (y1, ..., yx) € X¥is SC(Z,7) = Y., cost(z;, 7). The Maximum cost of a facility locations
profile (y1, ..., yx) € X¥ is MC(Z, ) = maz;ey[cost(z;, )]
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A mechanism M for k-Facility Location achieves an approximation ratio of p > 1 for the objective
of Social cost (respectively for Maximum cost), for all instances Z, SC(Z, M (Z)) < pSC*(Z), (re-
spectively for maximum cost M C(Z, M (%)) < pMC*(Z)). A mechanism M is strategyproof if no
agent can benefit from misreporting his location. Formally, for all instances %, every agent i, and all
locations y € X, cost(x;, M (Z)) < cost(x;, M(Z_;,y))

2.1.1 Mechanism for one facility on the line

Our first task is to find a strategyproof Mechanism that minimizes the social cost for the Facility
Location Game of n agents and one facility. The solution is pretty straightforward. We can choose
the median location in Z - med(Z). If we choose any agent on the left of med(Z), then the Social
Cost increases, since it is further away from at least k + 1 agents and closer to at most k agents. The
same holds for any agent to the right of the median. Assume that n is even, n = 2k, then any point
in [z, Tx+1] produces the optimal social cost, for the same reason as in the case of n =2k + 1. So,
med(Z) is optimal. It is also strategyproof since the agent can only move the facility further away
with his lie.

Theorem 2.1. M (%) = med(Z) is a strategyproof optimal mechanism for social cost

Red facility is the optimal selection

Our second task is to find an optimal and strategyproof mechanism for the maximum cost objective
in the one facility setting. The facility placement that minimizes our objective, is the location cen(Z).
Unfortunately, this placement is not strategyproof, since the any agent can lie and change the instance’s
length, until cen(f’ ) lands on this agent’s location. Procaccia and Tennenholtz [43] proposed the
following group strategyproof 2-approximation mechanism for the maximum cost, M (%) = lt(Z).

Theorem 2.2. M (%) = It(Z) is a strategyproof 2-approximation mechanism for the maximum cost

A natural question that arises is, if this the best we can do for the maximum cost objective. Procaccia
and Tennenholtz [43], indeed proved that [#(Z) is the best possible mechanism for the one facility
setting, wrt the maximum cost function. And indeed the leftmost agent choice is the best that we can
do if we want a deterministic strategyproof mechanism

Theorem 2.3. Let N = {1,...,n}, n > 2. Any deterministic strategyproof mechanism M: R™ — R
has an approximation ratio of at least 2 for the maximum cost.
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2.1.2 Mechanisms for two facilities on the line

We can now deal with the extension of the previous setting, locating two facilities, instead of one.
First, we will examine the maximum cost objective. Given Z, let the left boundary location be
Ib(Z) = max{x; : i € N,z; < cen(Z)} and the right boundary location be rb(Z) = min{z; :
i € N,x; > cen(Z}. We denote dist(Z) = max{lb(Z¥) — It(Z),rb(Z) — rt(Z)}. We shall, now,
look into minimizing the social cost in a strategyproof way. If we consider the algorithmic problem
of locating two facilities in a way that minimizes the social cost, disregarding incentives. Given a
location profile © € R™, let the optimal facility locations be y1,y2 € R, y1 < yo. Informally, we can
associate with y; a multiset of locations L(Z) C (x1, ..., zy,) (for "left”) whose cost is computed with
respect to y1, and similarly associate with yo a multiset of locations R(Z) C (x1, ..., z,,) (for "right”)
whose cost is computed with respect to y», such that for all z; € L(Z),z; € R(Z),x; < xj . Now,
y1 is the median of L(Z) and y» is the median of R(Z). Hence, it is sufficient to optimize over the n -
1 possible choices of L(Z) and R(Z).

It can be verified that a group strategy-proof (n - 1)-approximation mechanism is given by choosing
lt(Z) and rt(Z) given the location profile # € R™. In brief, the reason is that [t(¥) € L(Z) and
rt(Z) € R(¥) [43]

Is this the best we can do for the social cost objective when we implement nice mechanisms in the
facility location setting? Surprisingly, the answer is yes.
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2.1.3 Anonymous Strategyproof Mechanisms for k-Facility Location

In [21]], it was proved that the approximation ratio of two-extremes mechanism is tight. However, a
negative result was also established: there is no deterministic anonymous strategyproof mechanism
for K-Facility Location, with k > 3 and n > K + 1 agents.

Theorem 2.4. For every K > 3, any deterministic anonymous strategyproof mechanism for K-
Facility Location with n > K + 1 agents on the real line has an unbounded approximation ratio.

Although the above result may seem discouraging, it can motivate us to apply the concepts of the
Facility Locations Game that were previously developed to a field unaffected by the impossibility
theorem: The perturbation stable family of instances.
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2.2 Perturbation Stability on Clustering

The most common approach to the design and analysis of computational problems is the worst-case
analysis. Mechanism Design could not be an exception to that rule. Although this method provides
the most complete measurement of a problem’s difficulty, it bounds us to use the same algorithm, even
if we only care for “special” cases of the problem that can be solved more optimally. Unfortunately,
the majority of decision and optimization problems with some sort of practical use, usually fall into
the class of NP-hard problems. However, the fact that these problems have practical use can assist us
in correlating them to “real-world” instances, meaning that we can take advantage of these instances’
properties.

Bilu and Linial [[13] were the first to suggest an approach aimed at taking advantage of this underlying
structure. In particular, they introduced the notion of stability and they argued that instances in prac-
tice should be stable to small perturbations in the metric space. One problem that has “real-world”
instances with very interesting properties, is the problem of clustering.

Definition 2.5 (Clustering Problem). An instance of a clustering problem is a tuple ((X,d), H,k) of a
metric space (X,d), objective function H, and integer number k > 1. The objective H is a function that,
given a partition of X into k sets C1, ..., Cy, and a metric d on X returns a nonnegative real number,
which we call the cost of the partition.

Our goal is to minimize a cost function, depending on each data point’s cost. The most well-studied
and, perhaps, most interesting clustering objectives are k-means, k-median, and k-center. These ob-
jectives are defined as follows. Given a clustering C1, ..., Cy, the objective is equal to the minimum
over all choices of centers ¢; € (1, ..., ¢ € Cy, of the following functions:

k
Hmeans(ch 7Ck7d) = Z Z = d(ua ci>2

=1 ’U,ECZ'

k
Hmedian(cla 7Ck7d) = Z Z - (u, Ci)

Hcente'r(cla ey Ck; d) = maxiel,...,k{mam'ueCi{d(u7 cz)}}

A way to describe the stability property on an instance is to define a quantity -y, which defines how
close two data points can deviate while maintaining the same optimal clustering.

Definition 2.6 (y-perturbation). Given a metric (S,d) and vy > 1, we say a functiond’ : S x S — Rsq
is a vy perturbation of d, if for any x,y € S, it holds that

d(z,y)/y < d'(z,y) < d(z,y)

Definition 2.7 (y-stability). Suppose we have a clustering instance composed of n points residing
in a metric (S, d) and an objective function ® we wish to optimize. We call the clustering instance
~-perturbation stable for @ if for any d’ which is an y-perturbation of d, the (only) optimal clustering
of (S, d’) under ® is identical, as a partition of points into subsets, to the optimal clustering of (S, d)
under P.

We developed three basic properties from the above definitions, which were used extensively by the
subsequent algorithms:
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Property 2.8 (y-center proximity). Let p € S be an arbitrary point, let c; be the center p is assigned
to in the optimal clustering, and let c; # c; be any other center in the optimal clustering. We say a
clustering instance satisfies the y-center proximity property if for any p it holds that :

,,/"'f.—- hnt
E °

d(p,cj) > vd(p,c;)

. It holds that if a clustering instance satisfies the ~y-pertubation stability property, then it satisfies the
y-center proximity property.

Property 2.9 (weak ~y-center proximity). Let p € S be an arbitrary point, let c; be the center p is
assigned to in the optimal clustering, and let c; # c; be any other center in the optimal clustering.
We say a clustering instance satisfies the ~y-center proximity property if for any p it holds that :

d(z,y) > (v — 1)d(z, )

1t holds that if a clustering instance satisfies the ~y-pertubation stability property, then it satisfies the
weak ~y-center proximity property.

Property 2.10 (Cluster-Separation Property). Let (C1, ..., Ck) be the optimal clustering of y-stable
instance with vy > 2. Let x;,x; € Cy, and x; € Cyy, with i # j then :

(=17,

d iy Lyg

(961‘7 »’Uz")

Single-link++ is a clustering algorithm applied to ~-stable instances for the H,,cq;4n Objective. It
recovers the optimal clustering in polynomial time. It was developed from a simpler algorithm called
single-link clustering. Single-link clustering is a widely known clustering algorithm. The idea is to
think of the input metric space (X,d) as a complete graph, with vertices X and edge weights given
by d. The algorithm runs Kruskal’s minimum spanning tree algorithm, except it stops when there are
k connected components, where k is the desired number of clusters, meaning that we skip the last
k-1 iterations of Kruskal. However, there is one obvious counter-example. To improve upon that
single-link++ creates a complete graph with vertices given by X and edge weight given by d and then
runs Kruskal’s algorithm until completion to compute the minimum spanning tree T of the complete
graph induced by (X, d). The final step is to compute among all (Z’j) subsets of k—1 edges of T
and the induced k-clusterings (with one cluster per connected component), the one with the minimum
H edian Objective function value. The following lemma then is proved :

Lemma 2.11. Single-link++ recovers the optimal solution of instance (X, d) if and only if every op-
timal cluster C} induces a connected subgraph of the minimum spanning tree

The above is evident if we visualize each connected component that is left from the first k-1 iterations
of Kruskal as an individual cluster. This leads to the following result:

Theorem 2.12. In every 2-perturbation-stable k-median instance, the single-link++ algorithm recov-
ers the optimal solution (in polynomial time).
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Single Clustering Counter Example, k = 3

2.3 Perturbation Stability on Facility Location Games

Anyone can admit that by simply taking a step back and turning our focus to more practical instances,
even the NP-hard clustering problem can be dealt with with a simple and efficient algorithm. This has
motivated us to investigate how these instances will behave in the Facility Location Games problem,
which is heavily correlated with the clustering problem. The additional complexity of this problem
is that we can no longer fully trust our input since the agents are strategic and we must find ways to
discourage them from trying to declare a false location.

We can easily define y-perturbation and y-perturbation stability for this problem:

Definition 2.13 (Linear y-perturbation). Let & = (z1, .., xy,) be a locations profile. A locations profile
7 = (x1,..,xy) is a y-perturbation of T, for some g > 1, if ¥ = x1 and for every i € [n — 1], it
holds that

d(zi, zig1)/y < d(xf, iy ) < d(zi, Tig1)

Definition 2.14 (Linear y-stability). 4 k-Facility Location instance I is y-pertubation stable (or sim-
ply, y-stable), if T has a unique optimal clustering (C1, ..., C) and every y-perturbation ' of T has
the same unique optimal clustering (C1, ..., Cy)

And the same happens with the three basic properties of stability: linear y-center proximity, linear
weak y-center proximity, and Cluster Separation Property.

In [23], a deterministic, strategyproof mechanism that obtains the optimal clustering for 2+ /3-stable
instances was introduced. Unfortunately, it can only be applied on instances, in which their optimal
clustering does not contain a singleton cluster, otherwise, the strategyproofness breaks down.
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Mechanism 4 OPTIMAL : Deterministic mechanism on 2 + /3-stable instances without Singleton
Deviations.
Result: An allocation of k-facilities
Input: A k-Facility Location instance & Compute the optimal clustering (C1, ..., Cf). Let ¢; be the
left median point of each cluster C;.
if (3i € [k] with |C;| = 1) or ( Ji € [k — 1] with max{D(C;), D(C;4+1)} < d(C;,Ciy1)} ) then
Output: "FACILITIES ARE NOT ALLOCATED”.
else
Output: The k-facility allocation (¢, ..., cx)
end if

In the same paper, a deterministic, strategyproof mechanism that obtains the optimal clustering for
5-stable instances was introduced. This mechanism increases the stability of the instances that he is
applied to so that it can deal with the singleton clusters in the optimal clustering of the instance.

Mechanism 5 ALMOSTRIGHTMOST : Deterministic Mechanism Resistant to Singleton Deviations
5-stable instances.
Result: An allocation of k-facilities
Input: A k-Facility Location instance & Find the optimal clustering C = (C1,...,Ck) of Z.
if there are two consecutive clusters C; and C;11 with max{D(C;), D(Ciy1)} > d(C;, Ciy1)})
then
Output: "FACILITIES ARE NOT ALLOCATED”.
foriecl,... kdo
if |C;] > 1 then
Allocate a facility to the location of the second rightmost agent of C;, i.e., ¢; <— T; 7—1.
else
Allocate a facility to the single agent location of C; : ¢; <
end if
end for
end if
Output: The k-facility allocation ¢ = (¢, ..., ck)

2.4 Learning Augmented Mechanisms on Facility Location Games

The notion of perturbation stability is not the only approach to mechanism design, which we can use
to avoid the method of worst-case analysis. Although the use of worst-case analysis provides a certain
robustness to the outcome of our algorithm, it deprives us of the flexibility of studying instances that
are able to produce a closer-to-the-"real world” model for our problems. These kinds of problems
have certain properties, that machine learning algorithms can exploit to produce useful ”’predictions”.
In [[l]] this train of thought was used to develop Learning-Augmented Mechanisms for the Facility
Location Games problem.

For this new kind of mechanism, we need to introduce some new measures: Consistency and Ro-
bustness. 1f the prediction is accurate we define the guarantee-approximation ratio of our mechanism
design as consistency. If the prediction is completely off, we define the guarantee-approximation ratio
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of our mechanism design as robustness

In the learning-augmented mechanism design framework, before requesting the set of preferred lo-
cations P from the agents, the designer is provided with a prediction 6 regarding the optimal facility
location o(P). The designer can use this information to choose the rules of the mechanism but, as in
the standard facility location problem, the mechanism denoted M (P, 6), needs to be strategyproof.
In essence, if there are multiple strategyproof mechanisms the designer can choose from, the pre-
diction can guide their choice, aiming to achieve improved guarantees if the prediction is accurate
(consistency), but retaining some worst-case guarantees (robustness).

Definition 2.15 (a—consistency). Given some social cost function C (i.e MC(-),SC(-) ), a mechanism
is « — consistent if it achieves an a-approximation ratio when the prediction is correct (6 = o(P)),
Le.

C(M(P,o(P)), P))
C(o(P), P)

maxp| |<a

Definition 2.16 (5 — robustness). Our mechanism is 3 — robust if it achieves a [-approximation
ratio even when the prediction is arbitrarily wrong, i.e.

C(M(P,0),P)

Clo(p).py ) =7

mazp,s|

We will deal with the 1-dimensional case, with the introduction of the MinMaxP mechanism. This
mechanism uses the prediction 6 as the default facility location choice unless the prediction lies ”on
the left” of all the points in P or ”on the right” of all the points in P. In the former case, the facility is
placed at the leftmost point in P instead, and in the latter, it is placed at the rightmost point in P.

Agents are represented by black circles, prediction is represented by blue rectangular, facility location
is represented by an arrow. These are the 3 different ways we can assign a facility to the instance. The
first one shows what happens when 6 < min;p;, the second one when 6 € [min;p;, maz;p;] and the
third one when 6 > max;p;
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Mechanism 6 MinMaxP mechanism for maximum cost in one dimension.

Input: points (p1, ..., p,) € R”, prediction 6 € R
if 6 € [min;p;, maz;p;] then
return 6
else if 6 < min;p; then
return min;p;
else
return max;p;
end if

This mechanism achieves 1-consistency and 2-robustness, which is the optimal trade-off.

2.5 Learning-Augmented Mechanism Design with Predictions for
stable instances of Facility Location Games

Our goal is to integrate all the previous ingredients that were introduced (facility location games,
~-stable instances, and learning-augmented mechanism design) and try to come up with an elegant
mechanism that incorporates them. Our task is to locate k facilities on the line. We will create mech-
anism M (Z, 6), which receives the tuple (Z, 6) as input. Our instance & is a vector consisting of each
agent’s location on the line and 6 is a vector with the predicted locations of the facilities, produced by
an external system. Our work may seem easier since we already have mechanisms that are applied
successfully in gamma-stable instances and with the addition of external predictions, it seems right
to hope for an even better outcome. However, a problem arises from the fact that the agents can now
exploit the mechanism through the predictions’ location, adding another layer of complexity.

The mechanism that we propose is a generalized MINMAXP on k facilities. However, in MINMAXP,
we had to deal with only one cluster and only one prediction, while in the general case, we had to assign
k predictions to k clusters in a strategyproof way. This is the new kind of deviation that an agent
can use to profit. We choose to assign the i-th prediction to the i-cluster. To avoid any issue with
strategyproofness, we need at least 5 stability and the exclusion of instances with singleton clusters in
their optimal clustering.

The Mechanism receives the input, runs a check on the cluster-separation property, and checks if a
singleton cluster exists. If the instance passes both of these tests, we output k facilities. For our
mechanism to work, we need our instance to have at least 5 stability and its optimal clustering to not
include singleton clusters. If the Cluster Separation Property is not violated and there is no singleton
cluster in our optimal clustering, we can match the i-th prediction 6; to the i-th cluster C;. Since our
instance is y-stable, we can treat each cluster as a single instance, which is completely divided by the
rest of the clusters, and apply the MinMaxP Mechanism [[l]] on each cluster. Unfortunately, we need
to include the restrictions of no singleton cluster in the optimal clustering, since if we allow an agent
to deviate and create a singleton cluster, without disturbing the stability of the instance, then he can
isolate a distant prediction and change the enumeration of the predictions to his gain.

The mechanism is 1-consistent, and 2-robust for the Maximum Cost objective, 1-consistent and (n-
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Mechanism 7 Generalized MinMaxP M (Z, 6) :Deterministic Mechanism for 5-stable instances with
no singleton clusters

Result: An allocation of k-facilities
Input: A k-Facility Location instance £ and k-vector of predictions on facilities locations 6 Find
the optimal clustering C = (C4, ..., Cy,) of 7.
foriel,... kdo
Match 0; to i-th cluster, C;.
if 0; € [$i,l7 1'1'77«] then
Allocate a facility to o;.
end if
if 0; < x;; then
Allocate a facility to x;
end if
if 6, > z; , then
Allocate a facility to x; ,
end if
end for
Output: The k-facility allocation that was previously defined.

1)-robust for the Social Cost objective. Its strategyproofness is ensured by the fact that we enumerate
the deviations that an agent can make:

1. Case 1 - Splits \ Merges that maintain the initial assignment of predictions to clusters
2. Case 2 - Splits \ Merges that do not maintain the assignment of predictions to clusters.

3. Case 3 - Agent deviation that changes only its own cluster’s length.

Any kind of split either violates the Cluster-Separation Property or is unable to produce a better clus-
tering than the original. The only way for an agent to make profitable merges is to manipulate his
cluster’s enumeration in the instance. All of the merges produce instances that are ”banned”. The first
one is an instance with a single-ton, which fails the mechanism singleton test. The second and third
instances include splits that are either not feasible or fail the cluster-separation property. This means
that there exists no profitable merge deviation. Finally, if the agent’s deviation does not modify any
other cluster, then he tries to include or exclude inside his cluster, the prediction that is matched to his
cluster. Using the same proof plan as MINMAXP, we conclude that he can not gain by lying.

Blue rectangles are clusters, black cycles are predictions, blue arrows are allocated facilities, and i-th
prediction to the i-th cluster.
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In the split case 1, we can see that the CSP is violated.
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In split case 2, we can see that it is suboptimal to ”waste” two facilities on C; agents since the optimal
clustering has proven that we only need one.
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2.6 Conclusion and Future Work

The result of [21] has led researchers to focus on different ways to approach k-Facility Location
Games, constantly trying to combine seemingly different fields in their effort to fully understand all
the limitations that may exist. Although stability and prediction-enhanced algorithms are not entirely
new concepts, there is still work to be done when they are applied to k-Facility Location Games. In
my thesis, I have presented a mechanism that achieves 1-consistency and n-robustness but has two
shortcomings. The mechanism needs at least 5 stability, like the ALMOSTRIGHTMOST mechanism
and it does not examine instances that have singleton clusters, like the OPTIMAL mechanism.

One natural direction would be to examine if we can achieve lower stability or if we can find a way
to deal with the strategyproof issue that is created by the existence of singleton clusters. The sta-
bility was bounded in 5 since we based much of our proof on ALMOSTRIGHTMOST. However,
ALMOSTRIGHTMOST is not restricted by singleton clusters like our mechanism. Moreover, the ad-
dition of predictions was introduced, due to the gap of stability that exists between ALMOSTRIGHT-
MOST and OPTIMAL, since it remains to be seen, if we can find a mechanism with v < 5 stability,
which also deals with singleton clusters in the instance. Finally, in [23] the impossibility result for
k-Facility Location games with k > 3 was extended, proving that there is no deterministic anonymous
strategyproof mechanism for k-Facility Location, with k > 3, on (2 — §)-stable instances with bounded
approximation ratio for any ¢ > 0. It remains to be seen if this bound is tight.
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Truth

singleton

The leftmost agent of the third cluster wants to belong in the second cluster of a modified instance. He can do
that with 3 different merges. He can merge the first and second clusters, while he creates a singleton on his

right. He can merge the first and second clusters, while he splits his cluster. He can merge the first and second
clusters, while he splits the fourth and his cluster.
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Chapter 3

Facility Location Games

Facility Location Games are among the central problems in the research agenda of approximate mech-
anism design without money. The simplicity of its setting yields a smooth presentation of the core
concepts of Algorithmic Mechanism Design, such as strategyproofness, while the wide variety of
its applications in real-world problems provides us with a strong motivation to analyze and improve
the algorithms we implement on this problem. In this chapter, we will define the basic concepts of
Algorithm Mechanism Design, analyze the algorithms that are involved in the most important varia-
tions of Facility Location Games, and finally we will investigate the impossibility of the existence of
deterministic Mechanisms with bounded approximation, for Location Games with & > 3 facilities

3.1 Basic Setting, Definitions and Preliminaries

Our game consists of n strategic agents and k facilities. Each agent: € IV has a location z; on a metric
space (X, d), which is his private information, and on the same metric space, we intend to place the
facilities. We refer to the collection & = (z1, ..., ;) as the location profile or as the instance.

i v

v
[ ] e o [ ]

Definition 3.1 (Connection Cost). Given agent i, whose location is x; and a collection of the fa-
cilities § = (y1,...yr), which are all located in a metric space (X, d), where d : X x X — R>0
is the distance function, the connection cost of agent i, denoted as cost(x;, ), is the cost(x;,y) =
mini<;<kd(x;, y;j), which is the distance between the agent s location and the closest facility location.

Definition 3.2 (k-Facility Location Game). Let N = {1,...,n} be a set of strategic agents and let
T = (x1,...,xy) be the instance of the agents’ locations, which is located in a metric space (X, d),
where d: X x X — R>0 is the distance function. The function d is a metric on X satisfying d(x, x) = 0
forallx € X d(x, y) =d(y, x) for all x, y € X (symmetry) and, d(x, z) > d(x, y) +d(x, z) forallx, y, z€ X
(triangle inequality) Our task is to place k facilities on the metric space while trying to minimize a cost
function, which depends on the agents’ connection costs. Each agent tries to minimize his connection
cost.
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For an instance & = (21, ..., z,) € X™, we let £_; denote the tuple Z without coordinate x;. For a
non-empty set S of indices, we let &'s = (z;)ics and 75 = (2i)igs-

We need a set of rules that will define the placement of facilities. These rules will take into account,
the location that each agent presents as his ’real” location. This location can be misguiding, since the
agents are strategic and their goal is to manipulate the rules, as far as they can, if that places a facility
closer to them. We define these rules as a Mechanism.

Definition 3.3 (Mechanism). Considera ¥ = (x1, ..., xy) € X™. A deterministic Mechanism M maps
Ztoak-tuple (y1, ..., yx) € X* of facility locations. We let M (Z) denote the outcome of Mechanism
M, for instance, ¥ and M;(Z) denote the I-th smallest coordinate of M. A randomized Mechanism M
maps T to a probability distribution over a k-tuples (y1, ..., yx) € X* of facility locations.

Given a deterministic mechanism M and instance ¥ , we denote the connection cost of agent i with
respect to the outcome of M (¥) as cost(x;, M(¥)). Given a randomized mechanism M and in-
stance ¥ , we denote the expected connection cost of agent i with respect to the outcome of M (Z)
as By (z) cost(z, )]

Our goal is to place the facilities in a way that minimizes a cost function, which depends on the
agents’ connection cost. Two of the most basic cost functions are the Social Cost function, the sum of
all the agents’ connection costs, and the Maximum Cost function, the maximum over all the agents’
connection costs.

Definition 3.4 (Social Cost). The social cost of a facility locations profile (y1, ..., yr) € X* is

n

SC(Z,§) =) _ cost(wi, 7))

i=1

Respectively, the social cost of a deterministic Mechanism M on an instance T is
n
SC(Z M(%)) =Y cost(xi, M(Z))
i=1
and the social cost of a randomized Mechanism M on an instance T is
n
SC(Z, M (%)) = Z Eyvi(z)lcost(wq, )]
i=1

The optimal social cost, denoted SC* (%), is

n
SC*(T) = minge xr Z cost(x,v)
=1

Definition 3.5 (Maximum Cost). The Maximum cost of a facility locations profile (y1, ..., yr) € X*
is
MC(Z,9) = mazien|cost(z;, §)]

Respectively, the Maximum cost of a deterministic Mechanism M on instance T is
MC(Z, M (%)) = maz;en|cost(z;, M(Z))]
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and the Maximum cost of a randomized Mechanism M on instance ¥ is
MC(Z, M (%)) = Egn(zmazien|cost(z;, )]
The optimal maximum cost, denoted M C* (%), is

MC*(Z) = minge xxmazien[cost(x;, §)]

We also need to define a metric, that determines if the facilities produced by our Mechanism, are close
to the optimal facility placement, with regard to the instance .

Definition 3.6 (Approximation Ratio). 4 mechanism M for k-Facility Location achieves an approxi-
mation ratio of p > 1 for the objective of Social cost (respectively for Maximum cost), for all instances

—

z,

SC(T, M(T)) < pSC*(7)

(respectively for maximum cost MC(Z, M (%)) < pM C*(%))

We have mentioned above, that in the facility location setting, our goal is to minimize a cost function,
which depends on the agents’ connection costs and the goal of each agent is to minimize his connection
cost. It becomes evident that these two goals can be conflicting, since the location that each agent
presents as his “real” location can be misguiding, since the agents are strategic and their goal is to
manipulate the rules, as far as they can, if that places a facility closer to them. We need our mechanisms
not only to be unaffected by these kinds of motives but also to provide the agents an incentive to share
their true location. To define such Mechanisms, we introduce the property of Strategyproofness.

Definition 3.7 (Strategyproofness, Group Strategyproofness and Partial Group strategyproof). 4 mech-
anism M is strategyproof if no agent can benefit from misreporting his location. Formally, for all
instances T, every agent i, and all locations y € X,

cost(x;, M(Z)) < cost(x;, M(Z_;,y))

A Mechanism M is group strategyproof, if any coalition of agents misreports their locations, at least
one agent does not benefit. Formally, for all instances I, every coalition of agents S, and all sub-
instances ygs, there exists an agent i € S such that

cost(x;, M (%)) < cost(x;, M(7_s,ys))

Mechanism M is a partial group strategyproof, if for any coalition of agents that occupy the same
location, none of them can benefit if they misreport their location simultaneously. Formally, for all
instances T, every coalition of agents S, all occupying the same location x in T, and all sub-instances
ys,

cost(x, M(Z)) < cost(x, M(Z_g,ys))

By definition, any group strategyproof mechanism is a partial group strategyproof, and any partial
group strategyproof mechanism is strategyproof. In Lu et al. [2010, Lemma 2.1] [32], it is shown that
any strategyproof mechanism for K-Facility Location is also a partial group strategyproof .
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3.2 Facility Location Mechanisms on the line

Although we have introduced the basic concepts of Facility Location Games on the general metric
(X,d), we will focus on the most important variations of this problem on the line, meaning that we
assume (X,d) = (R, | - |), where | - | is the euclidean distance. We also denote [t(Z), as the location
of the leftmost agent of the instance, rt(Z), as the location of the rightmost agent of the instance, and

) = @) r@)
2

cen(¥ , as the center of the interval [It(Z), rt(Z)].

3.2.1 Mechanism for one facility on the line

Our first task is to find a strategyproof Mechanism that minimizes the social cost for the Facility
Location Game of n agents and one facility. The solution is pretty straightforward. We can choose the
median location in Z - med(Z).

Theorem 3.8. M (%) = med(Z) is a group-strategyproof optimal mechanism for social cost

Proof. 1Is med(Z) optimal? Assume that n is odd, n = 2k + 1. If we choose any agent on the left of
med(Z), then the Social Cost increases, since it is further away from at least k + 1 agents and closer
to at most k agents. The same holds for any agent to the right of the median. Assume that n is even, n
= 2k, then any point in [z, z 1] produces the optimal social cost, for the same reason as in the case
of n=2k + 1. So, med(Z) is optimal.

Is med(Z) strategyproof? The structure of the preferences of our agents is known in the social choice
literature as single peaked: the peak, or bliss point, of agent i is at x;, and the closer a location is to
x, the more preferred it is. It has long been known that, when agents have single-peaked preferences,
the selection of the k-th order statistic for some k& € 1, ..., n is group strategyproof [40]. So med (&)
is group strategyproof.

It is evident that med(Z) is a group-strategyproof optimal mechanism for social cost O

Our second task is to find an optimal and strategyproof mechanism for the maximum cost objective
in the one facility setting. The facility placement that minimizes our objective, is the location cen ().
Unfortunately, this placement is not strategyproof, since any agent can lie and change the instance’s
length, until cen(yg/ ) lands on this agent’s location. Procaccia and Tennenholtz [43] proposed the
following group strategyproof 2-approximation mechanism for the maximum cost, M (%) = lt(Z).
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Theorem 3.9. M (%) = It(¥) is a group strategyproof 2-approximation mechanism for the maximum
cost

Proof. We have already showed that the selection of any k-th order statistic for some k& € 1,...,n is
- ~ ~ ot 1t(z)
group strategyproof [40], so [¢(Z) is group strategyproof. The optimal maximum cost is 5=

and the maximum cost of [t(Z) is rt(&) — [t(Z). So we end up with 2-approximation. O

A natural question that arises is, if this the best we can do for the maximum cost objective. Procaccia
and Tennenholtz [43], indeed proved that I¢(Z) is the best possible mechanism for the one facility
setting, wrt the maximum cost function.

Theorem 3.10. Let N = 1,...,n, n > 2. Any deterministic strategyproof mechanism M : R" — R
has an approximation ratio of at least 2 for the maximum cost.

Proof. In order to prove that no deterministic strategyproof mechanism can have a better approxima-
tion ratio than 2, in the one facily setting for the maximum cost, we will create an instance, that will
cause a strategyproof inefficiency to any deterministic strategyproof mechanism with approximation
ratio lower than 2. Assume that we have to deal with 2 agents, N = 1,2 and that M, a deterministic
strategyproof mechanism with approximation ratio lower than 2, exists. Suppose that z; = 0 and
zy = 1, & = (21, 22), which means that without loss of generality M () # 1, since this is not a
strateygproof facility allocation, as we have mentioned above. So M (%) = % +€,e > 0. We, now,
create another instance 2/ = 1, % + e. This instance has an optimal maximum cost of i + 5. Since, M
achieves an approximation lower than 2, the mechanism places the facility in the interval (1, % + €).
The agent that is located at % + €) has an incentive to lie and declare that his location is at 1. This
creates the instance Z and since M (%) = % + €, agent 2 manages to land the facility on him, making
mechanism M not strategyproof, which contradicts our initial assumption that such a mechanism ex-
ists. To generalize this family of instances to arbitrary n, we just need to locate all agents N \ {1, 2}
at % in each one of the profiles, discussed above. O

3.2.2 Mechanisms for two facilities on the line

We can now deal with the extension of the previous setting, locating two facilities, instead of one.
First, we will examine the maximum cost objective. Given Z, let the left boundary location be lb(¥) =
max{x; : i € N,z; < cen(Z)} and the right boundary location be rb(Z) = min{z; : i € N,z; >
cen(Z}. We denote dist(Z) = max{lb(Z) — lt(Z), rb(Z) — rt(Z)}.

From [A43]], we get the following result :

Lemma 3.11. Given &, the optimal placement of two facilities has a maximum cost of di%(x)

We shall, now, look into minimizing the social cost in a strategyproof way. If we consider the algorith-
mic problem of locating two facilities in a way that minimizes the social cost, disregarding incentives.
Given a location profile ¥ € R, let the optimal facility locations be y1,y2 € R, y1 < y2. Informally,

49



we can associate with y; a multiset of locations L(Z) C (z1, ..., x,) (for ”left”) whose cost is com-
puted with respect to y1, and similarly associate with y, a multiset of locations R(Z) C (z1, ..., Z, ) (for
“right””) whose cost is computed with respect to yo, such that for all z; € L(Z),z; € R(Z),z; < xj .
Now, y1is the median of L(Z) and y9 is the median of R(Z). Hence, it is sufficient to optimize over

the n - 1 possible choices of L(Z) and R(Z).

It can be verified that a group strategy-proof (n - 1)-approximation mechanism is given by choosing
It(Z) and rt(Z) given the location profile # € R,,. In brief, the reason is that [t(¥) € L(Z) and
rt(Z) € R(Z) [43]

Is this the best we can do for the social cost objective when we implement nice mechanisms to the
facility location setting? Surprisingly, the answer is yes.

3.3 Anonymous Strategyproof Mechanisms for k-Facility Location

In this section, our goal is to examine, whether it is possible to find a mechanism with a better approx-
imation than n-1 and whether we can find a nice mechanism for the setting of k-Facility Location with
k > 3. We will need to define some extra notations, while also presenting some important lemmas.

For an instance ¥ = (z1,...,2,), wWe say that the agents are arranged on the line according to a
permutation 7 if 7 arranges them in increasing order of their locations in 7, that is, (1) < Tr(2) <
o < Tn(n). We consider 3-agent instances, where n = 3, and 3-location instances, where there are
three different locations x1, x2, z3 and a partition of N into three coalitions /N1, No, N3 such that all
agents in coalition N; occupy location z;,7 € 1,2,3. We denote such an instance as (x1 : N1,22 :
N2,23: N3). For aset N of agents, we let I(N) denote the set of all instances, and let I3(/N') denote
the set of all 3-location instances

A mechanism M is anonymous, if for all & and all agents permutations 7, the outcome of M depends
only on the location of the agents and not their identities, that is 7, M (Z) = M (r(1); s Tr(n))

Definition 3.12 (Nice Mechanisms). Let M be a Mechanism that is deterministic, strategyproof and
has a bounded approximation ratio. We declare M to be a nice Mechanism for the social cost objective.
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Any nice mechanism F for K-Facility Location is unanimous since otherwise, M would not have a
bounded approximation ratio. We can prove this easily , since for any instance Z, where the agents
occupy K different locations x1, ..., xx, we have SC*(Z) = 0, with optimal facility allocation =
(21, ..., zx ). Any other facility allocation (y1, ..., yx ) # (21, ..., k) produces a social cost SC(Z, ) >
0, which means that our approximation ratio is unbounded.

Definition 3.13 (Well-Separated instances). Given a nice mechanism M for K-Facility Location with
approximation ratio p, a (K + 1)-agent instance T is called (i1|...|ix —1|ix,ix+1) —well — separated
ifl'il < ... < Tig 1 and p(l’iK_H — miK) < minggggK{:Eié+l — l’ié}

Hence, given a p-approximate mechanism for K-Facility Location, a well-separated instance includes
a pair of nearby agents at a distance to each other less than % times the distance between any other
pair of consecutive agents. Therefore, any p-approximate mechanism serves the two nearby agents
by the same facility and serves each of the remaining “isolated” agents by a different facility. The
intuition is that by employing well-separated instances, we are able to reduce K-Facility Location on
well-separated instances to a single-facility two-agent location game parameterized by the identities
and the locations of the K—1 isolated agents.

Definition 3.14 (Image Sets). Given a mechanism M, the image (or option) set I;(¥_;) of an agent
i with respect to an instance T; is the set of facility locations the agent i can obtain by varying her
reported location. Formally, I;(Z_;) = {a € R : y € Rwith M(Z_;,y) = a}

One can show that if M is strategyproof, any image set I;(Z_;) is a collection of closed intervals and
M places a facility at the location in [;(Z_;) nearest to the location of agent i.

Lemma 3.15. Let M be a strategyproof mechanism for the k-Facility game. For every location profile
Z, any agent i € N and any location y € R we have

d(y, MZ_;,y)) = infacr,z_,)d(a, y)

Proof. For the location profile 2/ = (Z_;,y), let a € M(z’). Assume for contradiction that exists
a* € I;(¥_;) such that d(a*,y) < d(a,y). By the definition of the image set there exists a y* such
that a* € M(Z_; ,y*). Then, if agent i is located at y, he can benefit by misreporting to y* lowering
his connection cost from d(y, M ((Z_; ,y*))) to d(a*,y). This contradicts the assumption that M is
strategyproof. O

We can extend the previous definition of the image set from a single agent to a group of agents. For a
given mechanism M we define the image set of agents in a subset S with respect to a location profile
Z_g as the set of all possible facility locations they can obtain by varying their reported location:

Is(Z_s) = {a € X : 37 € XISl with M((Z_s,7))}

Also, in [32] the previous lemma is extended to hold for partial group strategyproof mechanisms when
all agents in the coalition report the same location.
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Lemma 3.16. Let M be a strategyproof mechanism for the k-Facility game. For every location profile
T, any non-empty set of agents S, any location y € R and vector of locations § = (y, ...y) we have :

COSt(yv M((f*Sa 37))) = infaels(f,s)COSt(av y)

Definition 3.17 (Holes). Any (open) interval in the complement of an image set [ = I;(Z_;) is called
a hole of I. Given a location y € I, we let |, = supger{a < y} and ry = infoci{a > y} be the
locations in I nearest to y on the left and on the right, respectively. Since I is a collection of closed
intervals, l, and r, are well defined and satisfy l, <y <ry. Given ay € I, we refer to the interval
(ly,ry) as y-hole in I.

Any hole in an image set I;(#_;) of F is a bounded interval. Otherwise, that is, if there was an image
set I;(Z_;) with a hole that extends either to —oco or to +o0, we could move agent i sufficiently far
away from the remaining agents, and obtain an instance for which F would have approximation ratio
larger than p. Therefore, if F is a nice mechanism, for any instance Z) and any agent i, there is a
sufficiently small (respectively, large) a such that if i moves to a, F allocates a facility to a that is,
a€ F(Z_a).

A mechanism M is unanimous, if for all M (&), where the agents occupy K different locations (z1, ..., k),
the outcome of M is M (%) = (x1, ..., k)

First, we will present some useful properties of nice mechanisms for k-Facility Location applied to
instances with k+1 agents.

Proposition 3.18. Let M be a nice mechanism for K-Facility Location on the line. For any (K +
1)-location instance T with x;, < -+ < x;,. ., we have that M(¥) < z;, and My (Z) > x;,..

Proof. Let us assume that z;, < M (Z) (the other case is symmetric). Then, the agents at z;, have
an incentive to report z;, and decrease their connection cost, since x;, € M (xZ;, x;,), due to the
bounded approximation ratio of M. This contradicts M’s (partial group) strategyproofness. O

Proposition points out the relative power of the two extreme agents for (K+1)-location instances.
Those two agents force any nice mechanism to place the facilities at the two “edges” of the instance,
otherwise, any agent can exploit the mechanism for his own gain. It is also evident that this proposition
applies to instances with more than k+1 agents, as long as the agents are located to k+1 points on the
line.

Proposition 3.19. Let M be a nice mechanism for K-Facility Location on the line. Forany (i1|...|ig—1]ix,ix+1)-
well-separated instance T, My (Z) € [iy, Tij .

Proof. Since M has a bounded approximation ratio, the two nearby agents 7 - and ¢ i1 are both served
by the same facility at My (Z). By Proposition B.18, My (Z) > Tiy. Moreover, M (7) < @iy, .
Otherwise, the agent ix could report x;,. ., and decrease his cost, since z;,,, € M(Z_;,, iy, ),
due to the bounded approximation ration of M O
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Proposition suggests that in a well-separated instance, the two nearby agents have a facility
allocated between them, while every other agents is served by a facility that is placed on top of them.

Proposition 3.20. Let M be a nice mechanism for K-Facility Location on the line and let T any
(21]..-lik—1liK, i +1)-well-separated instance, such that Mk (Z) = x;,.. Then, forevery (i1|...|ix—1|ix,ix+1)-
wy ) withxi, <, itholdsthat My (x') = ;.

well-separated instance ©' = ( ke

b g /

T —{ir it} Tigo

Proposition 3.21. Let M be a nice mechanism for K-Facility Location on the line and let T any

(i1]...lig—1lir, ix+1)-well-separated instance, such that My () = ;... Then, for every (i1|...|ix—1|ix, ix4+1)-
. w _ — / / . / . - _

well-separated instance ¥' = (T_g;, i 1} Th s aciKH) with Tirerr < Tigepys it holds that M (z') =

/

TK+1

Propositions B.20, B.21], show that if there exists a(iy|...|ix_1|ix, 95 +1)-well-separated instance &
with M K(:E’ ) = i, (respectively, M K() = w;KH), then as long as we “push” the locations of
agents ix and ix 41 to the right (respectively, left), while keeping the instance well-separated, the
rightmost facility of F stays with the location of agent i i (respectively, ix+1). We sometimes refer
to this property as the consistent allocation property of well-separated instances.

Propositions B.18, B.19, B.20, B.21| combine a set of characteristics, which anonymous, nice mech-
anisms are required to exhibit. Taking that into consideration, we can establish that the image sets
of nice mechanisms do not include holes in certain intervals. If such a hole (I, r) exists, we are able
to construct a well-separated instance (or a pair of well-separated instances), utilizing the (I, r) hole
and show that such an instance contradicts either the consistent allocation property of well-separated
instances or the bounded approximation ratio of the nice mechanism. This contradiction leads us
to certain interesting properties about anonymous, nice mechanisms that are applied on K-Facility
Location, with K > 3.

Using the consistent allocation property of well-separated instances, we can prove that any anonymous
nice mechanism for K-Facility Location on instances with K+1 agents has to place the facilities in the
two extreme locations. First, we show that the rightmost facility of an anonymous, nice mechanism
is always allocated to the rightmost agent.

Lemma 3.22. Let M be any anonymous nice mechanism for K-Facility Location with K > 2 and n =
K + I agents. Then, for all instances & = (x1, ..., Xk, Tx+1), withx; < =~ < zx < g1, Mg (Z) =
TKA+1-

Proof. We will prove this lemma for K = 3 facilities. We can generalize this result for any K > 2. We
consider instance & = (x1, w2, T3, T4), where 1 < z9 < x3 < x4. Our proof plan is to examine the
image set of agent 4, I4(Z_4) and show that I,(Z_4) includes the entire interval [x3, 0c]. Since the
image set I4(Z_4) does not have any holes on the right of x3, we can conclude that for any y > z3,
My (%) = y, while taking into account that M is strategyproof. So, agent 4 receives a facility on him,
as long as he is the rightmost agent. We will assume that there is a hole (L,r) in 74(Z_4) on the right
of x3, which will allow us to obtain two well-separated instances, that will contradict the properties
of nice mechanism M. Our first instance 2/ = (z1,x2,1,1 + €) will move agent 3 to | and agent 4 to
[ + € and our second instance 7/ = (x1,x2,7,7 — €) will move agent 3 to r and agent 4 tor - €. By
strategyproofness, [ € M (&) and Ms(&) = r. By applying B.21], when we try to go from 2 to #’ , we
have that M (7') needs to allocate facilities to [ and [ + ¢, which is the contradiction we are looking
for.
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Formally, we assume that there is a hole (I, 7) in I4(Z_4), with [ > 3. We consider an intermediate
instance #° = (1, 22, 73,1 + €) and the instance & = (21, z2,[,1 + €), where € > 0 is chosen small
enough that the instance &’ is (1]]2|3,4)-well-separated and that [ + e is closer to [ than to r. Since M
is strategyproof and [ is the closest point of I4(ZF_4) to [ + ¢, we have that [ € M (z°). Moreover,
due to M’s strategyproofness, [ € M (Z'). If | ¢ M (Z"), then the agent that resided on location [ can
declare his location as x3 and change the instance from 7' to 29, which leads to the dissolution of
strategyproofness, since [ € M (z°).

We, now, create two more instances, the intermediate instance &' = (z1, 2, x3, 7 —¢) and the instance
7' = (x1,z9,7,7 — €), where € > 0, @ is (1]]2|3,4)-well-separated and r — € is closer to r than to
I. Since M is strategyproof and 7 is the closest point of I,(Z_4) to r — €, we have that € M (z1).
Moreover, due to M’s strategyproofness, r € M (Z"). If r ¢ M (Z"), then the agent that resided on
location 7 can declare his location as x3 and change the instance from 2" to !, which leads to the
dissolution of strategyproofness, since € M (Z!). From B.19, we know that M3(Z") € [r — ¢, 7).
Since, r € M (Z") and M3(Z") € [r — ¢, 7], we have that M3(Z") = r. A key note is that since M is
anonymous, we only care for the agents’ locations. We highlight that agents 3 and 4 implicitly switch
indices in #! and . More specifically, since we require that the agents are arranged on the line in
increasing order of their indices, the location of agent 3 is x3 in 21 and r—e in 7 and the location of
agent 4 is r—e in &' and r in z Therefore, to argue about the outcome of M(Z”) based on the outcome
of M(#!), we resort to the anonymity of M.

Our last step is to observe that 7 is (1][2|3,4)-well-separated such that M3#") = r = 2 From B.21],

for every (1]12|3,4)-well-separated instance Zpe,, = (27 (3.4 Tnewss Tnews )s WIth Tpew, < @, it

holds that M3(357’ ) = Tpew,. We know that & is a (1][2|3,4)-well-separated instance and that 2, =
I+ ¢ < r = 2/, which means that M3(Z") = [ + . Since both x% and z; are served by a facility,
either agents 1 and 2 are served by one facility or agent 2 is served by the facility of 4. In both cases,
we obtain a contradiction to the bounded approximation ratio of M, which means that there is no hole
(l, 7“) in I4(f_4) and Mg(f) = X4 ]

Using a symmetric argument, we can show that the leftmost facility of an anonymous nice mechanism
is always allocated to the leftmost agent.

Lemma 3.23. Let M be any anonymous nice mechanism for K-Facility Location with K > 2 and n =
K + I agents. Then, for all instances ¥ = (1, ...,xx, Tr 1), withx) < - < xg < xgi1, M1(Z) =
Ty

Combining .22, B.23, we can easily conclude that any anonymous nice mechanism for 2-Facility
Location on instances with three agents has to place the facilities in the two extreme locations.

Lemma 3.24. Let M be any deterministic anonymous strategyproof mechanism with a bounded ap-
proximation ratio for 2-Facility Location with n = 3 agents. Then, for all instances T, with x1 < x9 <
3, M(f) = (1‘1, I‘g).

We can extend Lemma 3.3 to 3-location instances by restating the proofs of lemmas .22, (and
those of propositions and with three coalitions of agents instead of three agents. Using the
fact that any strategyproof mechanism is also partial group strategyproof [32], we obtain that:
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Corollary 3.25. Let F be any deterministic anonymous strategyproof mechanism with a bounded
approximation ratio for 2-Facility Location applied to 3-location instances with n > 3 agents. Then,
Sor all instances & € I3(N), M (%) = (minZ, mazZ).

Finally, we can use induction on the number of different locations and extend to instances with
any number of agents on any number of locations.

Theorem 3.26. Let M be any deterministic anonymous strategyproof mechanism with a bounded ap-

—

proximation ratio for 2-Facility Location. Then, for all instances ¥ € I(N), M (Z) = (minZ, max).

Proof. On a conceptual level, we will try to create an instance Z for which M (Z) # (min, maz®),
which can be converted to another instance with less distinct locations for the agents, while the new
instance has a non-extreme facility location, thus contradicting B.23.

Formally, let & = (z1, ..., zy,) € I(IN) be an instance for which M (Z) # (minZ, mazxZ). We let j be
an agent located at mina and k be an agent located at maxZ. Since, M (Z) # (z;, ), then there is
alocation a , a # x; and a # xy, such that a € M (Z)

First, we examine the case, where z; < a < xj. We iteratively move every agent i € N {j, k} to the
location a, creating instance a. The new instance needs to allocate a facility on a, since if it allocated
elsewhere, any agenti € N {j, k}, can lie and create instance Z, for which M allocates a facility on a.
So, we now have the 3-location instance &’ = (x; : j,a : N {j, k},zy : k), where a € M (Z). From
B.23, M (") = (minZ, mazi) = (x;,x)). This leads to a contradiction, since a # z; and a # zy.
Therefore, for all instances & € I(IV), M (Z) does not allocate a facility inside the two extremes.

Now, we examine the case, where x; < a or a < xp. We will focus on the case of z; < a (case
of x > a is identical). We assume that & has the minimum number of distinct locations among all
instances for which M assigns a facility outside of [minZ, maxZ]. Since z; < a, either x; ¢ M (&) or
x), ¢ M(Z). Without loss of generality, we assume that z; ¢ M (Z). We declare S; = agents located
inz; and b=minxi_g;, which is the second location from left of 7. Since z; ¢ M (&), there exists a x;
hole (1, ) in the image set I's, (Z_s, ). If we create the instance & = (Z_s; ), (b, , .., b)) , where every
agent of S; went to location b, then we have an instance with less distinct locations than Z. Since,  has
the minimum number of distinct locations among all instances for which M assigns a facility outside of
[minZ, maxZ], M needs to assign a facility inside the interval [min@”’, max@’] = [b, zx]. However,
we know that from the previous case, we can not locate a facility at (minz”, max@”) = (b, xy).
So we conclude that M (Z") = (b,xy), b € I;(Z_;) and r < b. We can now create the instance
" = (f_g;),(r — € ...,r —¢€)). Since M is strategyproof and r is the closest location to r — € in
Is;(7_s,), M(Z") allocates a facility to r > r — € [32]. Therefore, M (") allocates a facility inside
the two extremes of 7, which contradicts our assumption that M does not allocate a facility inside
the two extremes. O

A consequence of is that the TWO-EXTREMES mechanism of Procaccia and Tennenholtz [43]
is the only anonymous nice mechanism for 2-Facility Location.

Corollary 3.27. A deterministic anonymous mechanism M for 2-Facility Location is strategyproof
and has a bounded approximation ratio if and only if for all instances ¥, M (Z) = (minZ, mazZ).
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We have now produced all the tools needed to prove the impossibility result for anonymous nice K-
Facility Location mechanisms, for all K > 3.

Theorem 3.28. For every K > 3, any deterministic anonymous strategyproof mechanism for K-
Facility Location with n > K + 1 agents on the real line has an unbounded approximation ratio.

Proof. We will consider the case where K = 3 and n = 4. From there, it is straightforward to verify
that this proof applies for X' > 3 and n > K + 1. We assume that there is an anonymous and nice
mechanism M, which has a bounded approximation ratio p. For some large enough A > p, we build
the instance & = (21, 22,23, 24) = (0,X,3A% + X,3A? + A + 1). From and B.23, we allocate
facilities at 0 and at 3\%2 + X\ + 1, M(Z) = (0,3)A%> + X\ + 1). Since 3\% + X\ ¢ M (Z), that means
3M\2 + X\ ¢ I3(7_3), which implies that there is a hole (I,7) in I3(F_3).

We will now try to place the hole (I, r) on the real line. If agent 3 moves to location 3\ + \ + 1, he
will be assigned a facility, since M is unanimous. That fact leads us to an upper bound of r, while also
having a lower bound at 3\? + ), which provides us with the relative location of r, 3\> + X\ < r <
3A% + X + 1. Suppose that | < A\? + X — 1 and that y is the location of the third agent, if he moves
on the left and creates the instance & = (0, A, i, 3A%2 + A + 1). Moreover, suppose that y = 2\% +
then the closest point of I3(Z_3) will be 7, where 7 > 3A2 + \. Since M is strategyproof , a facility
is going to be allocated on r and SC(#, M (Z')) > 2A?+. Since, the optimal social cost for 7’ is
A, we have that M approximation ratio would be A > p, which is a contradiction. So we have that
I>X24+X-1

Finally, we will follow the same proof steps as in B.18, B.1§. We create instance 2° = (0, \,1 +
€,3\2 4+ A+ 1). From B.22, B.23, we have that M (") = 0 and M; (2°) = 3A2 4+ A+ 1. Location [ is
the closest point of I3(Z_3) to [+ €, so from M strategyproofness, we must allocate a facility on [. We
create instance 7 = (2f, 2, 24, 27]) = (0, A, 1,1 + €). We must allocate a facility on /, else the agent
that is located at / can lie and create the instance &, for which My (Z) = [. Moreover, since Z, 2" are
(1]213,4)-well-separated, M3(&) = 3A% + X+ 1and [+ e < 3X2 + X\ + 1, from B.21|, M3(Z) = [ + .
Since both «%, z/j € M (&), either agents 1 and 2 are served by the same facility of M (Z)” or agent 2
is served by the facility at [. In both cases, SC[M (Z)"”] > A, which is a contradiction. O

3.4 Conclusion

In this chapter, we introduced the most important definitions and notations of Algorithmic Design,
applied to K-Facility Locations Game, on of the most studied problem of this field. Although there
have been many different and interesting results for the cases, where k < 3 , the impossibility result of
[21] for k£ > 3 bounds our research on this topic. However, there are still ways to tackle this problem
and produce interesting results, if we ignore the “worst cases” and focus our interest in instances
that are closer to the “real-world”. We can choose to study only instances that are meaningful to be
studied [46] or even allow ourselves to be aided by some external system, which can even guide our
mechanism to choose a better clustering [|L]
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Chapter 4

Stability on Clustering and Facility Location Games

The most common approach to the design and analysis of computational problems is the worst-case
analysis. Mechanism Design could not be an exception to that rule. Although this method provides
the most complete measurement of a problem’s difficulty, it bounds us to use the same algorithm, even
if we only care for “special” cases of the problem that can be solved more optimally. Unfortunately,
the majority of decision and optimization problems with some sort of practical use, usually fall into
the class of NP-hard problems. However, the fact that these problems have practical use can assist us
in correlating them to “real-world” instances, meaning that we can take advantage of these instances’
properties. One problem that has “real-world” instances with very interesting properties, is the prob-
lem of clustering. Given a set of data points, our goal is to divide them into groups that make “sense”,
using a similarity function that makes this distinction. The main property, which we can use in the
“real-world” application of clustering, is, that, probably the data points have an underlying structure,
which we can exploit. The groups or clusters of these instances are well defined, giving us the option
to not care for cases that deal with entangled clusters, as the worst-case analysis method would do.
This can be summarized in the following phrase by Tim Roughgarden “Clustering is hard, only when
it doesn t matter” [46]. We can apply this train of thought to the design of our algorithms, not only to
their analysis, meaning that we can solve a modified version of the clustering problem (or any kind
of optimization problem, with “real-world” significance), where we only care for inputs that satisfy
the assumption of this underlying structure. For every other “not interesting” input we may produce
a solution with ”bad” approximation or not even produce a solution at all.

Bilu and Linial [[13]] were the first to suggest an approach aimed at taking advantage of this underlying
structure. In particular, they introduced the notion of stability, which we will define later, they argued
that instances in practice should be stable to small perturbations in the metric space and gave an effi-
cient algorithm for clustering instances of the MAX-CUT problem that are stable to perturbations of
size O(n%) Awasthi, Blum and Sheffet [6] proved that any instance that is stable to as little as O(1)
perturbations should be solvable in polynomial time for any center-based clustering objective (such
as k-median, k-means and k-center). More specifically, they proposed an algorithm that finds the
optimal clustering assuming only 3-stability for metric spaces and 2 + /3 for general metrics. This
algorithm is the popular Single-Linkage algorithm combined with dynamic programming. Later, Bal-
can and Liang [[10] improved upon the above result to an algorithm that finds the optimal clustering in
polynomial time, assuming 1 4 v/2-stability. Finally, Angelidakis, Makarychev K., and Makarychev
Y. [4] gave an exact algorithm for 2-perturbation stable instances of clustering problems with center-
based objectives. This result was tight, since Balcan, Haghtlab, and White [§] have proven that no
polynomial-time algorithm can solve (2 - €)- perturbation stable instances of k-center unless NP =
RP. There are also the results of [9], which deals with another kind of stability, called approxima-
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tion stability. Finally, there has been success in the design of polynomial time exact algorithms for
perturbation stable clustering instances in [33], [[14], [37]

Our goal is to analyze the clustering problem inside the realm of algorithmic game theory, in our effort
to circumvent the strong impossibility theorem [21]], which means that the notions of strategyproof-
ness, connection cost, approximation ratio, social cost, maximum cost, etc that were introduced inﬂ
still apply to our setting. However, there are still some preliminaries, unique to the clustering prob-
lem, that need to be added, such as the notions «y-perturbation and y-stability, while also proving some
important properties. After introducing these definitions, we will analyze two mechanisms that are
designed to solve the Facility Location Game on +-stable instances from [23]. The OPTIMAL mech-
anism is applied on instances with stability v > 2 + /3, whose optimal clustering does not contain
singleton clusters and ALMOSTRIGHTMOST is applied on instances with stability v > 5, whose
optimal clustering may contain singleton clusters.

4.1 Clustering and Stability

4.1.1 Definitions and Preliminaries

First of all, we will define the components of the classic clustering problem.

Definition 4.1 (Clustering Problem). An instance of a clustering problem is a tuple ((X,d),H,k) of a
metric space (X,d), objective function H and integer number k > 1. The objective H is a function that,
given a partition of X into k sets C1, ..., Cy, and a metric d on X, returns a nonnegative real number,
which we call the cost of the partition.

Given an instance of a clustering problem ((X,d),H,k), our goal is to partition X into disjoint (non-
empty) sets C1, ..., C , so as to minimize H(CY, ..., Cy, d). Awasthi et al. [f] gave the following
definition for center-based and separable center-based objectives.

Definition 4.2 (Center-based and Separable Objectives). 4 clustering objective is center-based if the
optimal solution can be defined by k points c1, ..., cy in the metric space, called centers, such that
every data point is assigned to its nearest center. Such a clustering objective is separable if it further
satisfies the following two conditions:
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e The objective function value of a given clustering is either a (weighted) sum or the maximum of
the individual cluster scores.

e Given a proposed single cluster, its score can be computed in polynomial time.

The most well-studied and, perhaps, most interesting clustering objectives are k-means, k-median,
and k-center. These objectives are defined as follows. Given a clustering C1, ..., C} , the objective is
equal to the minimum over all choices of centers ¢; € C1, ..., ¢ € Cy, of the following functions:

k
Hmeans(cla 7Ck7d) = Z Z = d(u7ci)2

=1 uECi

k
Hmedian(ola ,Ck;,d) = Z Z = d(u7ci)

i=1 ueC;
Hcenter(olv ceey Ck:; d) = maxiel,...,k{maxueCi {d(u7 Cz)}}

It is evident that H,,¢qns Objective is equivalent to the social cost and the H cpier to the maximum
cost in the Facility Location game.

There have been a number of investigations of different notions of stability for the problem of clus-
tering. Balcan, Blum and Gupta [9] introduced approximation stability. They considered a clustering
instance to be approximation stable if good approximations to the given objective are guaranteed to
be close, to a desired ground-truth partitioning. Formally, the target clustering of a k-median instance
is (¢, €)-approximation stable if every c-approximate k-clustering is e-accurate, meaning that it agrees
with the target clustering on at least a 1 — € fraction of the data points. As mentioned above, we will
use another notion of stability called pertubation stability introduced by Bilu and Linial and later used
in [[13] [6], [10], [4]. The intuition, behind this definition, lies in the fact, that in practice, distances
between data points are typically just the result of some heuristic, like the Euclidean distance. Thus,
unless, the optimal solution on the given distances is correct by luck, it likely will be correct on small
perturbations of the given distances, as well.

Definition 4.3 (y-perturbation). Given a metric (S,d) and v > 1, we say a functiond' : S xS — R<q
is a vy perturbation of d, if for any x,y € S, it holds that

d(z,y)/y < d(z,y) < d(z,y)

Definition 4.4 (v-stability). Suppose we have a clustering instance composed of n points residing
in a metric (S, d) and an objective function ® we wish to optimize. We call the clustering instance
~y-perturbation stable for ® if for any d’ which is an y-perturbation of d, the (only) optimal clustering
of (S, d’) under ® is identical, as a partition of points into subsets, to the optimal clustering of (S, d)
under ®.

There is also a weaker notion of stability called v-metric perturbation stability. In the definition of
stability, the perturbed space d’ does not need to be metric (i.e. d’ does not have to satisfy triangle
inequality). In order for an instance to be y-stable it needs to admit the same optimal solution in every
~-perturbation. For y-metric stability we only require that the optimal solution remains the same for
every ~y-metric perturbation a subset of y-perturbations. Thus, the class of y-metric stable instances
includes the class of ~y-stable instances. The reason that we say y-metric perturbation stability is a
weaker notion of stability is that we relax the conditions for stability to more natural ones, therefore
allowing more instances in that class.
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Definition 4.5 (Metric y-perturbation and Metric y-stability). Consider a metric space (X,d). We say
that a metric d’ is an (a1, as)-metric perturbation of (X,d), for a1, as > 1, ifa=td(u,v) < d'(u,v) <
agd(u;v) for every u,v € X. An instance ((X,d),Hk) is (a1, as)-metric perturbation-stable if for
every (ai,ag)-metric perturbation d’ of d, the unique optimal clustering for ((X,d’),H k) is the same
as for ((X,d),H,k). We say that an instance ((X,d),H,k) is a-metric perturbation-stable if it is (a,1)-
metric perturbation-stable.

All ~y-stable instances are essentially distinct clusters, whose intra-cluster distance can be quantified
by the following property, which states that any point that belongs to a cluster assigned to it by the
optimal clustering is at least  times closer to its center than any other center of the optimal clustering.

Definition 4.6 (y-center proximity). Let p € S be an arbitrary point, let c;x be the center p is assigned
to in the optimal clustering, and let c; # c; be any other center in the optimal clustering. We say a
clustering instance satisfies the y-center proximity property if for any p it holds that :

d(pa C]) > P)/d(pv Ci)

4.1.2 Properties Of Perturbation Stable Instances

The definitions of ~-stability and y-pertubation produce some very interesting properties that each
~-stable instance must satisfy. We can easily prove that y-center proximity property is implied on a
~-stable instance.

Proposition 4.7. If a clustering instance satisfies y-pertubation stability property, then it satisfies the
y-center proximity property

Proof. Let v > 1, C; and C7 be any two clusters in the optimal clustering and pick any p € C7.
Assume we blow up all the pairwise distances within cluster C;" by a factor of 7. As thisis a legitimate
perturbation of the metric, it still holds that the optimal clustering under this perturbation is the same as
the original optimum. Hence, p is still assigned to the same cluster. Furthermore, since the distances
within v were all changed by the same constant factor, ¢; will still remain an optimal center of cluster
i. The same holds for cluster C’;‘. It follows that even in this perturbed metric, p prefers ¢} to c;.
Hence

d(p,c;) = d'(p,c;) < d'(p,cj) = d(p,cj)

An immediate consequence of the above proposition is that vy-stable instances, with v > 2, satisfy the
weak ~y-center proximity : For all clusters C; and C};, with i # j, and all locations x € C; and y € C}
5 d(:E? y) > (7 - 1)d($7 Ci)
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Proposition 4.8. Let v > 2 and let ¥ be any ~y-stable instance, with unique optimal clustering
(C1,...,Ck) and optimal centers (c,...,c) . Then, for all clusters C; and C;, with i # j, and all
locations x € Cjand y € Cj, d(x,y) > (v — 1)d(x, ¢;)

Proof. Denote by c; the center of the cluster that y belongs to. Now, consider two cases

e Case(a): d(y,c;) > d(z, ¢;). Inthis case, by triangle inequality, we get that d(x, y) > d(y, ¢;)—
d(z, ¢;). Since instance is stable to y-perturbations, we have that d(y, ¢;) > vd(y, ¢;). Hence
we get that

d(z,y) > vd(y,cj) — d(z,¢;) > vd(y, ¢j) — d(y,c;) > (v — 1)d(y, ¢j)

e Case (b): d(y,¢j) < d(x,c;). Again by triangle inequality, we get that

d(x,y) = d(z,¢j) — d(y, ¢j) > vd(z,¢i) — d(y, ;) > (v = Dd(x, ¢i)

Finally, we state the cornerstone of our stability properties, the cluster-separation property. For any
~-stable instance, the distance between points that belong to different clusters has a lower bound.

Lemma 4.9 (Cluster-Separation Property). Let (C1, ..., Ck) be the optimal clustering of y-stable in-
stance with y > 2. Let z;, z; € Cy, and x; € Cyy, with i # j then :

=%,

d(zi, xj) > o

l“i,fﬁi')

Proof. Let ¢, be the center of C, and ¢ be the center of Cys. Since -stability implies y-center
proximity we have that :
d(zi, cgr) > vd(zi, c)

From triangle inequality, we get the following statement:

d(xh Ck) + d(Ck’Ck/) > ’Yd(.%'“ Ck) =
d(cg,cpr) > (v — Dd(xi, cx)

We also get from triangle inequality, the following:
d(Ck, Ck/) < d(Ck, (liz) + d(a:i, :z:j) + d(a;j, Ck/)

And since ~y-stability implies weak y-center proximity, we get that :

1
d(l'j, Ck/) > ﬁd(x“l'])
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and )
d(z;, cﬁg) > ﬁd(xi,:cj)

So we conclude that: ]
d(cky ) < szld(fUz’,SUj)

Finally, again from triangle inequality:
d(xi,x'y) < d(xg, cx) + d(cg, x't) =

1 1
d(IL’Z‘,IL"i) < ﬁd(l’“xj) + ﬁd(Ck,Ck/) —

, 1 v+1

d(xlvxl) < v — 1d($1,1‘3) + (’Y . 1)2d($z,$])) =
_1)\2

(=17,
2y

d(xi, ) > (i, 7)

Those three properties, @, @, @, provide us with useful inequalities that define inter and intra-
cluster distances of our instance. We can then create algorithms, that exploit these bounds and trans-
form our instance to more manageable forms, such as trees. This is the core idea behind the algorithm
of single-link++.

4.1.3 Single-link++

Single-link++ is a clustering algorithm applied to y-stable instances for the H,,eqns Objective. It
recovers the optimal clustering in polynomial time. To fully appreciate its brilliance, we must first
analyze another simpler algorithm called single-link clustering.

Single-link clustering is a widely known clustering algorithm. The idea is to think of the input metric
space (X,d) as a complete graph, with vertices X and edge weights given by d. The algorithm runs
Kruskal’s minimum spanning tree algorithm, except it stops when there are k connected components,
where k is the desired number of clusters, meaning that we skip the last k-1 iterations of Kruskal.
Although single-link clustering is very intuitive in its analysis, it has shortcomings, since the objective
of Hpeans plays no part in the algorithm’s cluster-creation process, making it possible to output a
sub-optimal clustering of an instance. For example, suppose that after some iterations of Kruskal’s
algorithm, we found ourselves with four connected components, one with 1 data point in it (C) and
three with T » 1 data points in them (Cy, Cs, C4). Suppose that the T data points in Cs, C'3, Cy are
located in the corresponding centers ca, c3, c4. If our goal is to output four clusters, our job is done
and we have indeed found the optimal 4-clustering. If our goal is to output three clusters, we need
to make another iteration of the Kruskal algorithm and since C'5 and C are the closest clusters, they
merge and we output a sub-optimal clustering.

The issue of single-clustering was that it paid no mind to the objective cost function. Single-link++
is a more sophisticated version of single-clustering.
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Single Clustering Counter Example

G,

¢ @

Mechanism 8 Single-link++
Input: metric space (X,d)
Create a complete graph with vertices given by X and edge weight given by d
Run Kruskal’s algorithm until completion to compute the minimum spanning tree T of the complete
graph induced by (X, d).
Among all (Zj) subsets of k—1 edges of T and the induced k-clusterings (with one cluster per
connected component), compute the one with the minimum k-median objective function value.
Output the clustering

First, we need a way to verify that our algorithm not only has a way to validate the existence of an
optimal clustering but can also produce it as an output.

Lemma 4.10. Single-link++ recovers the optimal solution of a k-median instance (X, d) if and only
if every optimal cluster C; induces a connected subgraph of the minimum spanning tree.

Proof. The single-link++ algorithm can only output a k-clustering obtained by removing k — 1 edges
from the MST T. Such an output necessarily produces clusters that are connected subgraphs of T. Thus
if some optimal cluster C}" is not a connected subgraph of T, the single-link++ algorithm has no chance
of finding it. Conversely, every partition of X into k (non-empty) connected subgraphs of T can be
obtained by deleting k—1 edges from T (namely, every edge with an endpoint in two different optimal
clusters). Since the single-link++ algorithm explicitly optimizes over k-clusterings of this form, if the
optimal algorithm has this form, then the algorithm will recover it. O

We now have a method to distinguish optimal clusterings in our induced MST. We only have to apply
our core stability properties on the induced instance to receive the following result:

Theorem 4.11. In every 2-perturbation-stable k-median instance, the single-link++ algorithm recov-
ers the optimal solution (in polynomial time).

Proof. Itis enough to show that the correctness condition in holds—that is, in every 2-perturbation-
stable H,,cdian instance, every optimal cluster C}" induces a connected subgraph of T. We proceed by
contradiction. If not, there is a point x € C such that the (unique) ¢;-x path in T concludes with the
edge (y, x) withy ¢ C7. Atthe time (y, x) was added by Kruskal’s algorithm, x and ¢; were in different
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connected components (otherwise the addition of (y, x) would have created a cycle). Thus, Kruskal’s
algorithm also had the option of including the edge (x, ¢;) instead. Since the algorithm chose (y, x)
over (X, ¢;), d(x, y) > d(x, ¢;). But then x is as close to y ¢ C7 as its own center, contradicting the
weak 2-center proximity property. O

To the extent that we believe that “real-world” clustering instances with “meaningful solutions” are 2-
perturbation-stable, gives a formal sense in which clustering is hard only when it does not matter.
It is a largely open research direction to prove robust versions of Theorem (.11, where perturbations
can cause a small number of points to switch clusters, while still preserving the optimal clustering of
the instance, a property called approximation stability.

4.2 Stability and Facility Location Games

It is evident that our research on Facility Location Games can benefit from the many algorithmic
approaches to the clustering problem. We can envision the Facility Location Games as a clustering
problem, whose input data is not to be completely trusted, adding an extra layer of difficulty. However,
it seems that the notion of stability can be applied here in the same context as in the clustering problem
and act as a deterrent to any agent’s desire to gain from their lie. We will expand the definitions of
~-pertubation and ~y-stability on the Facility Location Games setting, as well as modify the most basic
properties of stability, to suit the mechanisms that will solve the Facility Location Games on y-stable
Instances.

4.2.1 Definitions and Preliminaries

Facility Location Game is essentially a clustering problem on the line with data points that can not be
trusted. Since our goal is to implement clustering algorithms, utilizing the properties of stability, on
the problem of Facility Location, we need to define clusterings on the line.

Definition 4.12 (Clusterings in Facility Location Games). A4 clustering (or k-clustering, if k is not clear

from the context) of an instance ¥ is any partitioning C = (C1,...,Ck) of Z into k sets of consecutive
agent locations. We index clusters from left to right. le., C1 = {z1, ..., 7|, |}, C1 = {71, ..., 210y
and so on. We refer to a cluster C; that includes only one agent (i.e., with |Ci| = 1) as a Slngleton

cluster. We sometimes use (T, c ) to highlight that we consider Casa clustering of instance .

Two clusters C and C’ are identical, denoted C = C’, if they include the exact same locations. Two
clusterings C = (C1,...,Ck) of Z and Y = (Y1, ..., Yy) of an instance Z are the same, if C; = Y}, for
alli € [k]. Abusing the notation, we say that a clustering C of an instance 7 is identical to a clustering
Y of a v -perturbation Z of Z, i |C;| = |Y;|, for all i € [k].

We let x; ; and x; - denote the leftmost and the rightmost agent of each cluster C;. In this setting, we
will be more interested in the leftmost and rightmost agents of each cluster C;(x; , ; ), instead of the
leftmost and rightmost agents of the whole instance - Z. Under this notation, z;_1, < z;; < 1,7 <
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xip1,, foralli € {2,...k — 1}. Exploiting the linearity of instances, we extend this notation to refer
to other agents by their relative location in each cluster. Namely, x; ;41 (resp. x;,—1) is the second
agent from the left (resp. right) of cluster C;.

The diameter of a cluster C; is D(C;) = d(x; 1, z; ). The distance of clusters C; and C; is d(C;, C;) =
Mingec; yec;1d(z,y)}, i.e., the minimum distance between a location x € C; and a location y € Cj.
A k-facility locations (or k-centers) profile & = (ci, ..., ¢;,) induces a clustering C' = (C1, ..., Cy,) of an
instance ¥ by assigning each agent / location z; to the cluster C; with facility ¢; closest to ;. Formally,
foreachi € [k],C; = {z; € ¥ : d(zj,¢;) = d(xj,¢;)}. The optimal clustering of an instance Z is the
clustering of & induced by the facility locations profile with minimum social cost. The social cost of
a clustering C induced by a k-facility locations profile ¢ on an instance & is simply SC(Z, ¢) i.e., the
social cost of @ for Z. We sometimes refer to the social cost SC(Z, ) of a clustering C for an instance
Z, without any explicit reference to the corresponding facility locations profile. Then, we refer to the
social cost SC(Z, ¢), where each facility ¢; is located at the median location of C; (the left median
location of Cj, if |C'i| is even).

We often consider certain structural changes in a clustering due to agent deviations. Let C be a clus-
tering of an instance &, which due to an agent deviation, changes to a different clustering C’. We say
that cluster C; is split when c changes to ", if not all agents in C; are served by the same facility in
C'. We say thatC}; is merged in ', ifall agents in C; are served by the same facility, but this facility
also serves in €’ some agents not in C;.

We have defined y-perturbation and v-stability on the many available choices of metric, d. Since the
Facility Location Game on the line is using the Euclidean Distance as a metric - |-|, we can change the
definitions to be more suited to our problem. Namely, a y-perturbation Z’ of an instance Z is obtained
by moving a subset of pairs of consecutive locations closer by a factor at most v > 1. A k-Facility
Location instance ¥ is ~y-stable, if & and any ~y-perturbation & of Z admit the same unique optimal
clustering.

Definition 4.13 (Linear y-perturbation). Let & = (x1, .., zy,) be a locations profile. A locations profile
=/

¥ = (x1,..,xy) is a y-perturbation of T, for some g > 1, if &} = x1 and for every i € [n — 1], it
holds that

(i, wip1) /v < d(xg, vi4q) < d(@, Tig1)

Definition 4.14 (Linear ~y-stability). A k-Facility Location instance & is ~y-pertubation stable (or sim-
ply, y-stable), if T has a unique optimal clustering (C1, ..., Cy) and every y-perturbation &' of & has
the same unique optimal clustering (C1, ..., Cy)

Essentially, the above notion of linear perturbation stability is a natural adaptation of the metric sta-
bility [4], to the line.

The definition of «y-center proximity can be adapted to the following:

Definition 4.15 (linear ~-center proximity). Let & be our instance and p € T be an arbitrary agent
location. Also, let c;x be the center, p is assigned to in the optimal clustering, and let c; # c; be any
other center in the optimal clustering. We say a clustering instance satisfies the ~y-center proximity
property if for any p it holds that :

d(p7 C]) > ’Yd(p7 Ci)
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4.2.2 Properties Of Perturbation Stable Instances on the Facility Location Games

We can now adapt the three basic properties of stability 4.7, 4.8, B.9, to our own linear stability. Linear
~-center stability implies linear y-center proximity and subsequently linear weak ~y-center proximity

Proposition 4.16 (linear weak y-center proximity). Lety > 2 and let T be any y-stable instance, with
unique optimal clustering (C1, ..., Cy) and optimal centers (c1, ..., c) . Then, for all clusters C; and
Cj, with i # j, and all locations x € Cyand y € C;, d(x,y) > (v — 1)d(x, ¢;)

Proof. Denote by c; the center of the cluster that y belongs to. Now, consider two cases

e Case(a): d(y,c;) > d(x, ¢;). Inthis case, by triangle inequality, we get that d(x, y) > d(y, ¢;)—
d(z, ¢;). Since instance is stable to y-perturbations, we have that d(y, ¢;) > vd(y, ¢;). Hence
we get that

d(z,y) > yd(y, ¢;) — d(z,ci) = vd(y, ¢j) — d(y, ¢;) = (v = 1)d(y, ¢j)

e Case (b): d(y,cj) < d(x,c;). Again by triangle inequality, we get that
d(:E?y) > d(CC, Cj) - d(yv Cj) > ’)/d(IE,Cl) - d(yv Cj) > ('Y - 1)d($7cl)

Next, we state the cornerstone of our stability properties, the cluster-separation property. For any -
stable instance there is a certain distance that each cluster needs to have from its neighbors, which is
larger than their diameters

Lemma 4.17 (Cluster-Separation Property). For any y-stable instance on the line with optimal clus-

tering (C1, ..., Cy) and all clusters C; and C;, with i # j, d(C;, Cj) > %mamD(C’i), D(Cy).

Proof. Obviously,it suffices to prove the lemma for two consecutive clusters C; , C;11. We recall that
d(Ci, Cit1) = d(zr,zi11,) and we assume that D(C;) > D(C;11). We will divide the proof into
three cases.

e Case 1 : C; singleton. D(C;) = 0 and the lemma holds trivially.
e Case2: |C;j| =2
Since C; = x; 1, z;, wlog we consider x;; = c; to be the center of C;. We then have:
D(Cs) = d(x g, iy = d(ci, x5,) = (BIH)
(@i, Tiv11) =

1
(v—1)

(v—-1)
d(Ci, Cit1) > (v — 1)D(C;)

d(C;, Cit1) =
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Forany v > 1,

v +1

y—12> -1 = d(C;,Cit1) >
Case3:|C;j| >3

We have that z;; < ¢; < x;,. We will use 8 € (0, 1], which quantifies how close ¢; is to
C;’s extreme points and to the closest point of C;;1. So we denote d(c;, z;;) = SD(C;) and
d(ci,zir) = (1 — B)D(C;). We have that:

d(zig, xig11) > d(@ig, civ1) — A(Xip1y, cip1) = (BEID)

d i , Ci
d(xi, wig1) > vd(xig, ci) — (Jr;l)
d i )i —d PRT)
d(xi,l7xi+1,l) > ”Yd(%',z, Ci) _ (35 +1,1,T Jﬁ)}/ (C T ,l)
2
+1
(i, 1) > 77+ 1 d(ci,ziy) =
2
+1
D(C:) +4d(Cy, Cia) > 7 BD(C:) =
v+1
By +1
d Clacz > — 1)D(C;
( +1) > ( o )D(C;)

From we have that d(z; ., ;y11) > (v — 1)d(2ir, ¢;) and d(z; ., ¢;) = (1 — B)D(C;), so
d(C;, Ciy1) > (v — 1)(1 — B)D(C;). Finally, we have that :

2
+1
d(Cy, Cis1) > maz{(y — 1)(1 - B), (%1) —1)}D(Cy)
We now observe that for any fixed > 1, the term (% — 1) is increasing for all 8 > 0,

while the term (y — 1)(1 — ), is decreasing for all 8 € (0, 1]. Hence,for any fixed v > 1, the

minimum value of the max in maz{(y —1)(1 — 5), (M —1)}D(C;) is achieved when 3

. 7+1
satisfies:
B(y*+1)

(7—1)(1—5):ﬁ—1

Solving for /3, we get that: § = % + %, with 5 € (1/2,1], when v > 1. So if we substitute

B=1i+ % in d(C;, Cit1) > max{(y — 1)(1 — B), (% —1)}D(C;), we get our result.

We can now expand our existing properties and prove more lemmas and propositions, which play an
integral part in the development of mechanisms OPTIMAL and ALMOSTRIGHTMOST, that solve
the k-Facility Location Games for v-stable instances. A natural consequence of is that we can
treat stability factors multiplicatively:

Proposition 4.18. Every a-perturbation followed by a B-perturbation of a location’s profile can be
implemented by an (a3)-perturbation and vice versa. Hence, a y-stable instance remains ( vy /7')-
stable after a ~'-perturbation, with v' < =, is applied to it.
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If we set v > 2 4 /3, we get the following corollary from 4.17:

Corollary 4.19. Let v > 2 + \/3 and let ¥ be any ~-stable instance with unique optimal clustering
(Ci,...,Ck). Then, for all clusters C; and Cj, with i # j, d(C;, Cj) > maxD(C;), D(C}).

We can receive the following proposition, as a direct consequence of the Cluster Separation Property.

Proposition 4.20. Let ¥ a k-Facility Location with a clustering C = (C1, ..., C) such that for any
two clusters C; and C;j, maxD(C;), D(C;) < d(Cj, C;). Then, ifin the optimal clustering of Z, there
is a facility at the location of some x € C;, no agent in C; is served by a facility at x; ¢ C;.

Lastly, from [23]] we will state the so-called no direct improvement from singleton deviation properties,
for v > 3. Namely, we show that in any 3-stable instance, no agent deviating to a singleton cluster in
the optimal clustering of the resulting instance can improve his connection cost through the facility of
that singleton cluster.

Lemma 4.21 (no direct improvement from singleton deviation property, v > 3). Let T be a ~y-stable
instance with vy > 3 and optimal clustering (C' = (C1, ..., Cy) and cluster centers (c1, ..., cx), and let
an agent x; € C; {c¢;} and a location x’ such that x’ is a singleton cluster in the optimal clustering

of the resulting instance (Z—;, x'). Then, d(z;,x') > d(z;,c;)

The following shows that for 5-stable instances ¥, an agent cannot form a singleton cluster, unless he
deviates by a distance larger than the diameter of his cluster in Z’s optimal clustering.

Lemma 4.22 (no direct improvement from singleton deviation property, v > 5). Let T be a ~y-stable
instance with v > 5 and optimal clustering (C = (C1,...,Cy). Let ; € C; {c;} be any agent and
x’ any location such that x’ is a singleton cluster in the optimal clustering of the resulting instance

(-, ). Then, d(x;,z") > D(C})

4.3 Optimal Solution for a special case of 2 + \/3-stable instances

Mechanism 9 OPTIMAL : Deterministic mechanism on 2 4 /3-stable instances without Singleton
Deviations.
Result: An allocation of k-facilities
Input: A k-Facility Location instance & Compute the optimal clustering (C1, ..., Cy). Let ¢; be the
left median point of each cluster C;.
if (3¢ € [k] with |C;| = 1) or (i € [k — 1] with max{D(C;), D(Cit1)} < d(C;,Ciy1)} ) then
Output: "FACILITIES ARE NOT ALLOCATED”.
else
Output: The k-facility allocation (cy, ..., cx)
end if

We will introduce the OPTIMAL mechanism, whose goal is to minimize the social cost of 2 + /3-
stable instances®, SC(Z), on k-Facility Location Game, while maintaining the strategyproofness
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property. One key note is that the optimal clustering of & does not include any singleton clusters.
This mechanism computes the optimal clustering C' = (C1,...,Cy) and checks for two transgres-
sions: The existence of a singleton cluster in the optimal clustering C and the violation of the cluster
separation property. If any of these two transgressions exist, we will output no facilities. In any other
case, our output will be the center (c1, ..., ¢;) of each cluster of C.

4.3.1 Approximation Ratio

The computation of the approximation ratio is straightforward since the mechanism only outputs the
optimal clustering C' = (C4, ..., Cf).

4.3.2 Strategyproofness

Our proof plan will be to show that if an agent i deviates to any location y # x;, the new clustering that
will be produced (which will not contain a singleton cluster) will either violate the Cluster Separation
Property or the new clustering will not provide a closer facility to the true location of agent i. Formally,
for any agent i and any location y, let Y be the optimal clustering of the instance ¢ = (xZ;, y) resulting
from the deviation of agent i from x; to y. Then, if y does not form a singleton cluster in (%, 17') either
d(z;,Y) > d(x;,C), or there is an i € [k — 1] for which maxD(Y;), D(Yi11) > d(Y;, Yis1)

So, we let z; € C'i deviate to a location y, resulting in ¥ = (2, y) with optimal clustering Y. Since
y is not a singleton cluster, it is clustered with agents belonglng in one or two clusters of C say either
in cluster C; or in clusters C';_; and C;. By optimality of C and Y, the number of facilities serving
Cj—1UC;Uyin (y,Y) is no less than the number of facilities serving C'j—1 U Cj in (Z,C). Hence,
there is at least one facility in either C;_; or Cj in Y.

Wilog, suppose that a facility is allocated to an agent in C; in y, ). By B.19 and §.20], no agent in
C; is served by a facility in ¥ Cj in Y . Thus we get the following cases about what happens with the
optimal clustering Y of instance 7 = (zZi,y):

e Case 1: y is not allocated a facility in Y : This can happen in one of two ways:
— Case 1a: y is clustered together with some agents from cluster C'; and no facility placed
in Cj serves agents in Z \ C; in Y.
— Case 1b: y is clustered together with some agents from a cluster C'; and at least one of the
facilities placed in C; serve agents in Z \ C;j in Y.

e Case 2: y is allocated a facility in Y. This can happen in one of two ways:

— Case 2a:y only serves agents that belong in C; (by optimality, y must be the median
location of the new cluster, which implies that either y < x;; and y only serves x;; or
Tjl <Y S Tjr )

— Case2b: InY, y serves agents that belong in both C;_1 and Cj.
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First, we will deal with the cases that violate the Cluster Separation Property - Casela and Case2a,
i.e. the cases where some agents of C; are clustered with agents of Z\C} in Y. By hypothesis,
there are agents z,w € Cj, that in Y are clustered with agents p € (C7,l # j. Suppose that in Y,

agent z is clustered in C} and agents z,p are clustered in C’j’ 1> which is in agreement with our initial

hypothesis. We will try to produce a contradiction, using the known properties on intra-cluster and
inter-cluster distances. Since our mechanism produces a clustering Y, that clustering must have the
Cluster Separation Property. From in Y we know that :

d(C/ ]—‘,—1) > D( ]—‘,—1) =

d(w,z) > d(w,p)
From in C we know that :
d(Cj,Cl) > D(C]) —
d(w,p) > d(w, z)

Hence, we have our contradiction.

Finally, we will deal with the cases in the new clustering Y, does not improve the connection cost of
agent i - Caselb and Case2b, i.c. the cases where Y allocates facilities to agents of C; (between x

and x; , ). We show that the cost of the original clustering C'is less than the cost of clustering Y in .
Hence, mechanism Optimal would also select clustering C' for ¢/, which would make x;’s deviation to
y non-profitable. In particular, it suffices to show that:

SC(7,C) < 8C(F,Y) =
SC(z,C) + d(y,C) — d(z;,C) < SC(Z,Y) +d(y,Y) — d(z;,Y) =
d(y,C) —d(y,Y) < SC(z,Y) — SC(Z,C) + d(x;, C) — d(a;,Y)

Since x;’s deviation to y is profitable, d(z;, C_J") — d(x;, 37) > 0. Hence, it suffices to show that:

d(y,C) — d(y,Y) < SC(Z,Y) — SC(Z,0) =
d(y,C) —d(y,Y) < SC(C;,Y) — SC(C;,C) 4+ SC(Z\C;,Y) — SC(Z\C}, C) (4.1)

Note that in case 2a, y can also be located outside of C; and serve only z;;. We can treat this case as
Case lasince itis equivalent to placing the facility on z; ; and serving y from there. In Case 1a and Case
2a, we note that (3.1) holds if the clustering Y allocates a single facility to agents in C'; Uy, because the
facility is allocated to the median of C;jUy, hence d(y, C)—d(y,Y) = SC(C;,Y)—SC(C;, C), while
SC(# *\C],Y) SC(Z\Cj, C) > 0, since C is optimal for Z. So, we focus on the most interesting
case where the agents inC';U y are allocated at least two facilities.

We will, now, introduce a perturbation to the instance for reasons, that will be explained later. Consider
the valid «-perturbation of the original instance & where all distances between consecutive agent pairs
to the left of C; (i.e. agents x1, x2, ..., 7;_1, and between consecutive agent pairs to the right of C}
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(i.e. agents x;11, ..., T, are scaled down by . By stability, the clustering C' remains the unique
optimal clustering for the perturbed instance 2. Moreover, since agents in Z \ C; are not served by a
facility in C; in C and Y , and since all distances outside C are scaled down by -y, while all distances
within Cj remain the same, the cost of the clusterings C and Y for the perturbed instance & is SC(C';,
C)+SC(Z\ C}, C)/  and SC(C;, Y) + SC(& \ Cj, Y) / 7, respectively. Using SC( i, C') < SC(Z,
Y)and ~ > 2, we obtain:

SC(C;.7) = 5C(C5,0) < (SC@\C;. F) = SO@\C.C) (42)

SC(C;,Y) - 8C(C4,C) < (1 — i)(SC(f\Cj, Y) - SC(#\C},C)) (4.3)

Moreover, if C;U y is served by at least two facilities in Y, the facility serving y (and some agents of
() is placed at the median location of Y ’s cluster that contains y. Wlog, we assume that y lies on the
left of the median of C;. Then, the decrease in the cost of y due to the additional facility in Y is equal
to the decrease in the cost of x;; in Y , which bounds from below the total decrease in the cost of C;
due to the additional facility in Y . Hence,

d(y,C) — d(y,Y) < SC(C;,C) — SC(C;,Y) (4.4)

We can now construct the following inequality, one from (3.2) and (3.4)

d(y,C) —d(y,Y) < =(SC(&\C;,Y) — SC(2\C;, () (4.5)

1
v

If we combine (3.3) and (3.5), we get (3.1) and our proof is over.

4.4 A Deterministic Mechanism Resistant to Singleton Deviations
S-stable instances

Mechanism 10 ALMOSTRIGHTMOST: Deterministic Mechanism Resistant to Singleton Deviations
5-stable instances.
Result: An allocation of k-facilities
Input: A k-Facility Location instance & Find the optimal clustering C = (C1,...,Ck) of Z.
if there are two consecutive clusters C; and Cj1 with maz{D(C;), D(Cit1)} > d(Ci, Cit1)})
then
Output: "FACILITIES ARE NOT ALLOCATED”.
foriel,... kdo
if |C;| > | then
Allocate a facility to the location of the second rightmost agent of Cj, i.e., ¢; <— ;1.
else
Allocate a facility to the single agent location of C; : ¢; <— x4
end if
end for
end if
Output: The k-facility allocation ¢ = (¢, ..., ¢k)
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Now, we present the ALMOSTRIGHTMOST mechanism, whose goal is to minimize the social cost
SC(Z) of 5-stable instance &, whose optimal clustering may include singleton clusters, while main-
taining the strategyproofness property. This mechanism computes the optimal clustering C= (C1,....,Ck)
and checks for only one transgressions : The violation of the cluster separation property. If that trans-
gression exists, we will output no facilities. In any other case, we allocate facilities near the edge of
each optimal cluster, so that cluster merging will be discouraged by the facility allocation rule. We
will end up with a significantly larger approximation and a requirement for larger stability, in order to
achieve strategyproofness.

4.4.1 Approximatio Ratio

The approximation ratio of (n — 2)/2 follows directly from the fact that the mechanism allocates the
facility to the second rightmost agent of each non-singleton optimal cluster.

4.4.2 Strategyproofness

Our proof plan will be to show that if an agent i deviates to any location y # x;, the new clustering that
will be produced (which will not contain a singleton cluster) will either violate the Cluster Separation
Property or the new clustering will not provide a closer facility to the true location of agent i.

Let & denote the true instance and C' = (C1,...,Cy) its optimal clustering. We consider an agent
xz; € Cj deviating to location y, resulting in an instance § = (Z-;,y) with optimal clustering Y
. Agent x;’s cost is at most D(C}). Thus we get the following cases about what happens with the
optimal clustering Y of instance § = (2, y):

e Case 1: The agents in C; are clustered together in Y and y is allocated a facility with d(y, =;)
<d(z;, ;1) < D(C}j) (x;,-11s the location of x;’s facility, when he is truthful).

— Case 1a: y is a singleton cluster and d(y, z;) <D(C)). For 5-stable instances, implies
that z; € C; has to move by at least D(C);) to become a singleton cluster, a contradiction.

— Case 1b: y is the second rightmost agent of a cluster C; in ¥/, Y . Then, the agent x; can
gain only if d(y, z; ) <D(C}). In Case 1, the agents in Cj are clustered together in Y .If'y
< xi, y must be the second rightmost agent of a cluster on the left of x; ; and by Cluster-
Separation Property, d(x;, y) > d(x;;, xj_1,) > D(C}). Hence, such a deviation cannot
be profitable for x; (note how this case crucially uses the facility allocation to the second
rightmost agent of a cluster). If y > x;, x; can only gain if y is the second rightmost agent
of a cluster including C;) Uy, ;41 and possibly some agents on the left of C';), which
is treated below.

e Case 2: The agents in C; are clustered together in Y and C; is merged with some agents from
C'j+1 and possibly some other agents to the left of ; ; (note that merging C'; only with agents to
the left of ; ; does not change the facility of ;). Then, we only need to consider the case where
the deviating agent x; is x; ., since any other agent to the left of x;_; , cannot gain, because
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cluster merging can only move their serving facility further to the right. As for z;,, we note
that by optimality and the hypothesis that agents in C; belong in the same cluster of Y s Tjy
cannot cause the clusters C'; and Cj11 to merge in Y by deviating in the range [x},, Tj41,].
The reason is that the set of agents (C; \ z;,) U {y} U C;4; cannot be served optimally by a
single facility, when the set of agents C; U Cj 1 requires two facilities in the optimal clustering
C . Hence, unless Cj41 is split in Y (which is treated similarly to Case 3a), z;» can only move
her facility to Cj11, which is not profitable for her, due to Cluster-Separation Property.

Case 3: (] is split into two clusters in Y. Hence, the leftmost agents, originally in Cj, are
served by a different facility than the rest of the agents originally in C';. We next show that in
any profitable deviation of &; where C; is split, either the deviation is not feasible or the cluster
separation property is violated.

— Case 3a: By hypothesis, there are agents z,w € C, that in Y are clustered with agents
p € C;, 1 # j. Suppose that in Y, agent z is clustered in C]’. and agents z,p are clustered
in C]’- 41> which is in agreement with our initial hypothesis. We will try to produce a con-
tradiction, using the known properties of intra-cluster and inter-cluster distances. Since
our mechanism produces a clustering Y, that clustering must have the Cluster Separation
Property. From in Y we know that :

d(C]/'7 ]/'+1) > D( ;'+1) =
d(w, z) > d(w, p)
From in C' we know that :
d(Cj, Cl) > D(C]) -
d(w,p) > d(w, 2)
Hence, we have our contradiction.

— Case 3b: Agents in C; are split and are not clustered together with any agents of Z \ C;
in Y. Hence, y is not clustered with any agents in Z \ C; in Y. Otherwise, i.e., if y is not
clustered with agents of C'; in Y, it would be suboptimal for clustering Y to allocate more
than one facility to agents of C; \ z; and at most k — 2 facilities to (2 U y) \ C}, while
the optimal clustering C' allocates a single facility to C'; and k — 1 facilities to Z \ C;. But
again if y is only clustered with agents of C}, it is suboptimal for clustering Y to allocate

more than one facility to agents of (C; LI {y}) \ z; and at most k — 2 facilities to Z \ C}

, while the optimal clustering C allocates a single facility to Cj and k — 1 facilities to & \
Cj.

4.5 Conclusion

Our beyond worst-case analysis approach circumvents a great number of issues that arise with the
result of and allows us to study problems closer to the real world. However, there are still some
results that restrict this approach. There is an NP-hardness lower bound for the stability factor. For
any € > 0, finding the optimal k-center clustering for (2 — €)-perturbation stable instances is NP-hard,
unless NP = PR [§]. Moreover, the impossibility theorem holds for (/2 — €)-stable instances, [23].
Also, the OPTIMAL mechanism is applied to instances with no singleton in their optimal clustering
and the ALMOSTRIGHTMOST mechanism does not produce an optimal approximation ratio. A
natural extension to these issues would be to find a mechanism that can deal with instances with lower
stability than 5, while also dealing with singletons in their optimal clustering.
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Chapter 5

Learning-Augmented Mechanisms on Facility Location
Games

The notion of perturbation stability is not the only approach to mechanism design, which we can use
to avoid the method of worst-case analysis. Although the use of worst-case analysis provides a certain
robustness to the outcome of our algorithm, it deprives us of the flexibility of studying instances that
are able to produce a closer-to-the-"real world” model for our problems. These kinds of problems have
certain properties, that machine learning algorithms can exploit to produce useful ”’predictions”. Mo-
tivated by this tension between worst-case analysis and machine-learning algorithms, a surge of recent
work is aiming for the best of both worlds by designing robust algorithms that are guided by machine-
learned predictions. The goal of this exciting new literature on “algorithms with predictions” is to
combine the robustness of worst-case guarantees with consistency guarantees, which prove stronger
bounds on the performance of an algorithm whenever the prediction that it is provided with is accu-
rate. Although, the introduction of these learning-augmented algorithms has taken place mostly in
the field of online algorithms (as we can observe in this survey [38]), there is an application in the
field of Mechanism design, presented here [[]. These kinds of Mechanisms can be called from now
on Learning-Augmented Mechanisms. There is a long list of classic algorithmic problems that have
been studied in that framework, including online paging [34], scheduling [44], and secretary problems
[17], [5], optimization problems with covering [[L1]] and knapsack constraints [28], as well as Nash
social welfare maximization [[12] and several graph [[7] problems. We note that this line of work has
also studied facility location problems [22], [29]. However, the crucial difference is that these papers
are restricted to non-strategic settings, and the predictions are used to overcome information limita-
tions regarding the future, rather than limitations regarding privately held information. [41]] use bid
predictions in auctions to learn reserve prices and yield revenue guarantees as a function of the pre-
diction error but provide no bounded robustness guarantees. We can implement this thought process
to the Facility Location Games, hoping that the addition of predictions to our established algorithms
can improve their time complexity or even introduce new algorithms. We have already introduced the
notions of Maximum Cost, Social Cost, Approximation Ratio, and Strategyproofness. We will intro-
duce two new notations that measure our dependence on the predictions, while also parameterizing the
worst-case performance guarantee of our mechanism. These notations are consistency and robustness.
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5.1 Basic Setting, Definitions and Preliminaries

In the setting of Facility Locations Games, our mechanism is provided with a prediction 6, along with
the instance Z. The prediction is, essentially, a set k of facility locations, that a machine learning
algorithm proposes, as the optimal solution to our problem. Depending on our goal - Maximum Cost
or Social Cost - there is an optimal placement for the k facility locations, o(Z) = o

Now we will re-introduce the same setting for facility location as in chapter 2. We deal with the single
facility location problem in the two-dimensional Euclidean space. Our goal is to choose a location
f € R? for a facility, aiming to serve a group of n agents. Each agent I have a preferred location p; € R’
and is assigned to a price that he must pay, denoted cost(f, p;) = d(f, pi), where d( f, p;) corresponds
to the Euclidean distance between his preferred location p; and the chosen location f. We refer to the
set of preferred locations P = (py, ..., p,) for the agents, as the problem’s instance. The mechanism
receives as input the instance P and the prediction of the optimal facility location 6. We are trying to
minimize two standard cost functions. The Social Cost function SC(f, P) = >, cost(f,p;) (i.e the
aggregated cost of all agents) and the Maximum Cost Function MC(f, P) = max;cy|cost(f, p;)] (i.e. the
maximum cost over all agents. Depending on the cost function that we are trying to minimize, there
exists an optimal facility location o(P) = (x,(P),y,(P). In the strategic version of the facility location
problem, the preferred location p; of each agent i is private information. Similarly, to a mechanism
that deals with the normal facility location setting a learning-augmented Mechanism M maps the set
P to a location f = M (P, 6). However, the goal of each agent is to minimize their own cost, so they
can choose to misreport their preferred location if that can reduce their cost.

The ideal mechanism would produce the optimal solution when he received a prediction with n =0
(consistency = 1 ) and the worst-case approximation ratio when 7 is arbitrarily large ( robustness =
approximation ratio of worst-case scenario). This is, essentially, a mechanism that utilizes the predic-
tion only when it is close to the optimal solution, disregarding any other case. This is an unreachable
goal in most cases, since if we have consistency = 1, our mechanism is more than likely to trust the
prediction in most cases, which leads to unbounded robustness. Our goal is to find the best possible
trade-off between robustness and consistency.

In the learning-augmented mechanism design framework, before requesting the set of preferred lo-
cations P from the agents, the designer is provided with a prediction 6 regarding the optimal facility
location o(P). The designer can use this information to choose the rules of the mechanism but, as in
the standard strategic facility location problem, the mechanism denoted M (P, 6), needs to be strate-
gyproof. In essence, if there are multiple strategyproof mechanisms the designer can choose from, the
prediction can guide their choice, aiming to achieve improved guarantees if the prediction is accurate
(consistency), but retaining some worst-case guarantees (robustness). Consistency and robustness are
the standard measures in algorithms with predictions.

Definition 5.1 (o« — consistency). Given some social cost function C (i.e MC(-),SC(-) ), a mechanism
is o — consistent if it achieves an a-approximation ratio when the prediction is correct (6 = o(P)),
ie.

CQU(P.o(P). P)), _
C(o(P), P) B
Definition 5.2 (5 —robustness). Our mechanism is 3 — robust if it achieves a 3-approximation ratio
even when the prediction is arbitrarily wrong, i.e.
C(M(P,0), P)
C(o(P), P)

maxp|

J<B

maxps|
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Note that any known strategyproof mechanism that guarantees a ~ -approximation without predic-
tions, directly implies bounds on the achievable robustness and consistency. The designer could just
disregard the prediction and use this mechanism to achieve y-robustness. However, this mechanism
would also be no better than ~y-consistent, since it ignores the prediction. The main challenge is to
achieve improved consistency guarantees, without sacrificing too much in terms of robustness. For
an even more refined understanding of the performance of a learning-augmented mechanism, one can
also prove worst-case approximation ratios as a function of the prediction error n > 0. In facility loca-
tion, we let the error 1(6, P) = cost(0, o(P) C(o(P), P) be the distance between the predicted optimal
location 6 and the true optimal location o(P), normalized by the optimal cost. Given a bound 7 on the
prediction error, a mechanism achieves +y(7)-approximation if

C(M(P,6), P
maxP,ésn(a,P><n[é(o((P)7)P))] <7(n)

A strategyproof mechanism that plays a central role in the strategic facility location problem is the Co-
ordinatewise Median (CM) mechanism. This mechanism takes as input the locations P = {(z;, ¥:) }ie[n]
of the n agents and determines the facility location by considering each of the two coordinates sep-
arately. The x-coordinate of the facility is chosen to be the median of {(;};¢[,), i.€., the median
of the x-coordinates of the agents’ locations, and its y-coordinate is the median of {(y; };c[,) (if n is
even, we assume the smaller of the two medians is returned). The more general class of Generalized
Coordinatewise Median (GCM) mechanisms take as input the locations P of the n agents, as well as
a multiset P’ of points that are constant and independent of the locations reported by the agents, and
outputs CM (P U P’). In other words, a GCM mechanism is the coordinatewise median mechanism
over the locations of the agents and the additional constant points P’ chosen by the designer (often
called phantom points). Apart from being deterministic and strategyproof, any GCM mechanism is
also anonymous: its outcome does not depend on the identity of the agents, i.e., it is invariant under
a permutation of the agents.

5.2 Minimizing the Maximum Cost Objective

Our focus will be on the maximum cost objective. It is known that a deterministic and strategyproof
mechanism can not achieve anything better than a 2-approximation, even for the one-dimensional case
[Procaccia and Tennenholtz, 2013] [43]. Our goal is to provide a deterministic, strategyproof, and
anonymous mechanism that is 1-consistent, while also achieving the best possible trade-off between
robustness and consistency, which is what most learning-augmented mechanisms aim to accomplish.

5.2.1 Facility location on the line

Initially, we will deal with the 1-dimensional case, with the introduction of the MinMaxP mechanism.
This mechanism uses the prediction 6 as the default facility location choice unless the prediction lies
on the left” of all the points in P or ”on the right” of all the points in P. In the former case, the facility
is placed at the leftmost point in P instead, and in the latter, it is placed at the rightmost point in P.
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Agents are represented by black circles, prediction is represented by blue rectangular, facility location
is represented by an arrow. These are the 3 different ways we can assign a facility to the instance. The
first one shows what happens when 6 < min;p;, the second one when 6 € [min;p;, max;p;] and the
third one when 6 > max;p;

Mechanism 11 MinMaxP mechanism for maximum cost in one dimension.
Input: points (p1, ..., p,) € R”, prediction 6 € R
if 6 € [min;p;, maz;p;] then
return o
else if 6 < min;p; then
return min;p;
else
return max;p;
end if

We will now prove some of the properties of MinMaxP Mechanism. The mechanism is strategyproof,
1-consistent, which means that we choose the optimal facility location when we are provided with the
correct prediction, while also being 2-robust, when the prediction is arbitrarily wrong. MinMaxP is
able to achieve the best of both worlds: when the prediction is correct, it yields an optimal outcome,
and when the prediction is incorrect, the approximation factor never exceeds 2, which is the best-
possible worst-case approximation.

Theorem 5.3. The MinMaxP mechanism is deterministic, strategyproof, and anonymous. It is I-
consistent and 2-robust for the maximum cost objective.

Proof. First, we will tackle the issue of the algorithm’s strategyproofness. Consider an agent i and
without loss of generality, assume that p; < 0, i.e. the agent’s true location is weakly on the left of
the prediction’s location. An observation regarding the facility allocation rule is that the mechanism
allocates a facility to the point of the instance which is the closest to our prediction. So, if the prediction
is out of the instance’s bounds, we project the prediction on the instance. We will consider two cases,
depending on the position of agent i in relation to the position of the other agents.

Suppose that agent 7 is the rightmost agent, meaning that Vj # 7 p; < p;. In this case, agent 7 does
not have an incentive to lie, since a facility will be allocated to him if he just reveals his true location.
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The prediction will either be on him (6 = p;) meaning that the mechanism will return 6(= p;), or the
prediction is strictly to the right of the agent(6 > p;), meaning that the mechanism will return max ;p;,
which is the location of the rightmost agent.

Now, let’s suppose that agent i is not the rightmost agent, which means that 3j s.t. p; > p;. We
declare as f, the facility location that the mechanism returns. We can conclude that f > p;, since if
J = pi, agent i does not have an incentive to lie. We also declare as p}, the false location that agent
i reports, with which he hopes to manipulate the location of the facility. It is clear that the agent’s
lie must change the bounds of the instance, otherwise, facility f will stay in the same location, so
p; ¢ [min;p;, max;p;]. If pg < p;, does not affect f, since f is either a projection of 6 to the rightmost
agent of the instance or is already a point inside the instance. If p, > p;, the only change that can
happen is p/ becomes the location of the new rightmost agent, essentially pushing facility location f,
further away from agent i. We can now conclude that MinMaxP is strategyproof.

'om
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The true location of the agent is the green circle and the different deviations he can try are the red
circles. It is evident from the above schema, that no deviation is profitable

Another approach to prove the strategyproofness of the mechanism is to view MinMaxP as a Gener-
alized Coordinatewise Median (GCM) mechanism. As mentioned above, a GCM receives as input
the locations P of the n agents, as well as a multiset P’ of points that are constant and independent of
the locations reported by the agents and outputs C M (P U P’). We can observe that if P’ contains n-1
copies of the prediction 6, then GC'M (P, P') produces the same results, as MinMaxP.

e If 6 € [min;p;, max;p;], then the median of P U P’ is 6
e If 6 < min;p;, then the median of P U P’ is min;p;
e If 6 > max;p;, then the median of P U P’ is max;p;
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Since GC' M (P, P') is strategyproof, the same applies to MinMaxP.

To verify the consistency guarantee, to verify the consistency guarantee, consider any instance where
the prediction ¢ is accurate. Since the truly optimal location for the maximum cost objective is the
middle of the leftmost and rightmost point in P, then we know that whenever 0 is accurate, it must be
that 6 € [min;p;, max;p;]. As aresult, for any such instance, the mechanism will place the facility at
the optimal location, 0, leading to a consistency of 1.

Finally, to compute the robustness guarantee, we only need to observe that the facility f'is a projection
of ¢ on the instance P, meaning that f € [min;p;, maz;p;]. The worst case scenario is to allocate
a facility on the leftmost or rightmost agent, making the maximum cost of the mechanism equal to
maz;p;] — min;p;. The optimal maximum cost is (max;p;| — min;p;)/2, since the optimal facility
location is in the middle of [min;p;, max;p;|. This leads us to our 2-robustness guarantee. O

5.2.2 Facility location on 2 dimensions

We then move on to the two-dimensional version of the problem, for which prior work has produced
an optimal deterministic strategyproof mechanism achieving a 2 approximation n [Alon et al., 2010
- [3], Goel and Hann-Caruthers, 2021 - [26] ]. For the 2D Case, i.e. p; € R, we introduce the
Minimum Bounding Box mechanism. We extend the MinMaxP mechanism to this setting by running
it separately for each of the two dimensions. An alternative, more geometric, description of this
mechanism is that it first computes the minimum axis-parallel bounding box of the set P of agent
locations and then places the facility at the location within that box that is closest to the predicted
optimal location. We therefore call it the Minimum Bounding Box mechanism.

Mechanism 12 Minimum Bounding Box mechanism for maximum cost in two dimensions.

Input: points ((x1,%1), ..., (Tn, yn)) € R?", prediction (x5, (y5) € R?
xp = MinMaxP((z1,...,Zn), Ts)
yr = MinMaxP((yl,...,yn), ys)
return (z¢,yy)

We will now prove some of the properties of Minimum Bounding Box Mechanism. The mechanism
is strategyproof, 1-consistent, which means that we choose the optimal facility location when we are
provided with the correct prediction, while also achieving a (1+1/2)-robustness when the prediction
is arbitrarily wrong. Although the best achievable approximation is 2 , we will prove that we can not
create a mechanism that provides (1+v/2 — €)-robustness, while also maintaining 1-consistency.
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Theorem 5.4. The Minimum Bounding Box mechanism is deterministic, strategyproof and anony-
mous. It is 1-consistent and (1 ++/2)-robust for the maximum cost objective.

Proof. Initially, we will tackle the issue of the algorithm’s strategyproofness. We can observe that
Minimum Bounding Box Mechanism runs MinMaxP separately for each dimension, which implies the
strategyproofness of our Mechanism since we have already proved the strategyproofness of MinMaxP.
Alternatively, we can view Minimum Bounding Box Mechanism as GCM mechanism, the same way
we did with MinMaxP, by constructing a set P’ that contains n-1 copies of 0.

We will now prove the consistency guarantee. Let’s denote as o, the optimal location of the facility,
and since our prediction is correct, 0 = o. Moreover o is always in the convex hull of the points
in P. Obviously, the convex hull is contained within the minimum axis-parallel bounding box, so for
any instance where the prediction 6 is correct, this prediction is in the bounding box, and is thus the
location returned by the mechanism, verifying its 1-consistency.

Visual Representation of Mechanism’s Consistency

Worst Case scenario

Visual Representation of Mechanism’s Robustness
Finally, we will prove the robustness guarantee with a geometrical approach. Consider any instance
with set P of agents’ locations, optimal facility location o, and MC(o,P) as the maximum cost an agent

of P can pay if we set the facility location on 0. Consider, also, a circle C with center on o and radius
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= MC(o,P). Obviously, C contains all points of P, since MC(o,P) is the distance between o and the
furthest point of P from o. Furthermore, C is inscribed to a square T with a side length of 2MC(o,P),
which also, contains all points of P. As a result, the minimum bounding box is contained inside T,
which means that the facility location f that our mechanism produces is also inside T. The most distant
point of T from o, is one of its vertices, meaning that cost(o, f) < v/2MC(o, P). From triangle
inequality :

mazp,ep{cost(f,pi)} < cost(o, f) + maxy,ep{cost(o,pi)} < (1+v2)MC(o, P)

5.2.3 Optimality of Minimum Bounding Box

With Minimum Bounding Box, we have managed to achieve 1-consistency, but that comes at the
cost of the robustness guarantee, which weakens from 2 to 1 + v/2. The coordinatewise median CM
mechanism achieves a 2-approximation for the maximum cost over all instances in two dimensions
[Goel and Hann-Caruthers, 2021], meaning that it is 2-consistent and 2-robust. A natural question,
that comes up is whether the Minimum Bounding Box mechanism is tight and the trade-off between
1-consistency and (1 + 1/2)-robustness is the best we can attain. It turns out that ensuring that there is
no middle ground between the coordinatewise median CM mechanism and Minimum Bounding Box
mechanism.

Theorem 5.5. There is no deterministic, strategyproof, anonymous Mechanism that guarantees (2-€)
consistency and (1 + /2 — €)-robustness, with respect to the maximum cost objective for any € > 0.

Proof. Our proof sketch will follow 3 steps.

e Prove that every mechanism with the desired properties (determistic, strategyproof, anonymous,
bounded robustness) can be modeled to a GCM mechanism with n-1 constant points in P’.

e Create an instance in which these mechanisms need to have all the n-1 constant points on 6, in
order to achieve (2-€) consistency

e Create an instance in which a GCM mechanism with n-1 constant points on 6, have at least
(1 + +/2)-robustness

To fulfill our first objective we just need to observe that any mechanism f with bounded robustness
needs to be unanimous, i.e., given a set of points P where all the points are at the same location
(pi = pj¥i,j € [n]), the mechanism needs to place the facility at that same location, i.e., f(P) = p;.
If not, then its cost would be positive, while the optimal cost is zero, by placing the facility at the same
location as all the points. Therefore, we can restrict our attention to mechanisms that are unanimous.
Using the characterization of Peters et al. [1993], we know that any deterministic, strategyproof,
anonymous, and unanimous mechanism in our setting takes the form of a generalized coordinatewise
median (GCM) mechanism with n-1 constant points in P’.

For the second objective, consider any GCM mechanism with at least one of its n-1 constant points
not located on 6 = (x,,y,). Without loss of generality, assume that this point is directly below 6 at

82



1 point . (Xo, Yo+ £)

n-2 points . (x,.7.)

n-1 points . (X5, ¥o—¢]

A

(o, Yo — €). We create the following instance : n-1 agents at (x,, y, — €) and 1 agent at (z,, y, + €).
So we have 1 point at (x,, Y, + €), n-2 points at (x,, y,) and n points at (z,, y, — €). Their median
is at (x,, Yo — €), however, the optimal facility location for the maximum cost objective is at (z,, ¥,).
Our mechanism has at least 2-consistency. So if we wish to have lower consistency we need to place
n-1 constant points at o

For our final objective, we conclude the proof by showing that the robustness of the GCM mechanism
that uses the prediction point 6 for all the n — 1 constant points in P is no better than (14+/2). Assume
that the prediction is located at (1,1) and consider and instance with n = 3 agents located at (0, 1), (1,
0), and (:/—%, :/—%) The set P’ will contain 2 points located at (1,1). The GCM mechanism will place
the facility at (1,1), however, the optimal facility location is at (0,0). The maximum cost of GCM is
1 + v/2, while the optimal is 1, meaning that no GCM mechanism that uses the prediction point 6 for
all the n — 1 constant points in P’ can achieve better robustness than (1 + v/2).

v
® (1,0) B (11)
“ (00) ® (01)

@
(—1/42,-1/V2)
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5.3 Conclusion

We can conclude this section by mentioning that in [|1|] Gkatzelis et al introduced a learning-augmented
mechanism for the social cost objective on the two-dimensions plane using a deterministic, anony-
mous, and strategyproof mechanism, that achieves a \/2-approximation, which is optimal for this
class of mechanisms. They provide a family of mechanisms, parameterized by a “confidence value” ¢
€ [0, 1) that the designer can choose depending on how much they trust the prediction. If the designer
is confident that the prediction is of high quality, then they can choose a higher value of ¢, which
provides stronger consistency guarantees, at the cost of deteriorating robustness guarantees. Specif-
ically, we prove that our deterministic and anonymous mechanism is v/2¢? + 2/(1 + c)-consistent
and v/2¢2 + 2/(1 — ¢)-robust. However, it still remains to be seen how we can utilize the addition of
predictions in our facility locations mechanisms in the general case of K facilities.
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Chapter 6

Learning-Augmented Mechanism Design with Predictions
for Stable Instances of Facility Location Games

We can now integrate all the previous ingredients that were introduced in previous chapters (facility
location games, ~y-stable instances, and learning-augmented mechanism design) and try to come up
with an elegant mechanism that incorporates them. Our goal is to locate k facilities on the line. We will
create mechanism M (&, 0), which receives the tuple (Z, 6) as input. Our instance Z is a vector consist-
ing of each agent’s location on the line and 0 is a vector with the predicted locations of the facilities,
produced by an external system. Our work may seem easier since we already have mechanisms that
are applied successfully in y-stable instances and with the addition of external predictions, it seems
right to hope for an even better outcome. However, a problem arises from the fact that the agents can
now exploit the mechanism through the predictions’ location, adding another layer of complexity.

Let’s examine the different kinds of deviations that an agent can produce in the simple case of k-
Facility Location Game in a y-stable instance. The agent can merge clusters, the agent can split clusters
(if he creates a new singleton cluster or if he merges other clusters), the agent can create singleton
clusters and he can finally change its own cluster’s length. In the OPTIMAL mechanism, we do not
deal with singleton clusters, while the change of the agent’s cluster length is not an optimal strategy.
So, we are left to deal with merges and splits, where, as seen in the strategyproofness analysis, we can
make a distinction between two cases: one in which the Cluster Separation Property is violated and
one where the optimal clustering does not change, despite the deviation. In ALMOSTRIGHTMOST,
we allow the existence of singleton clusters. The analysis of merges and splits is the same as in
OPTIMAL, since both of these strategies are infeasible or suboptimal, due to the structure of a -
stable instance, with v > 2 + V/3. The inclusion of singleton clusters can be dealt with with the
increase of stability on the instance. If v > 5, then from no agent can gain from being served by
a singleton cluster, that he creates.

With the addition of predictions, our mechanism is obliged to utilize them in its decision-making
process, making it susceptible to manipulation. One natural approach is to generalize the rule of
MINMAXP, that [|I]] introduced, where each prediction is attached to a cluster and according to its
position in relation to the cluster’s bounds, we allocate the facility. However, in MINMAXP, we had
to deal with only one cluster and only one prediction, while in the general case, we had to assign k
predictions to k clusters in a strategyproof way. This is the new kind of deviation that an agent can
use to profit. He can manipulate the structure of the instance and choose a more suitable prediction to
be assigned to his cluster. We can make the following categorization of our deviations:
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1. Case 1 - Splits \ Merges that maintain the initial assignment of predictions to clusters

2. Case 2 - Splits \ Merges that do not maintain the assignment of predictions to clusters.

3. Case 3 - Agent deviation that changes only its own cluster’s length.

Case 2 is already examined in the ALMOSTRIGHTMOST \ OPTIMAL analysis. Our goal is to
investigate ways to deal with Cases 1 and 3.

6.1 Creating our Mechanism

The Mechanism receives the input, runs a check on the cluster-separation property, and checks if a
singleton cluster exists. If the instance passes both of these tests, we output k facilities. For our
mechanism to work, we need our instance to have at least 5 stability and its optimal clustering to not
include singleton clusters. If the Cluster Separation Property is not violated and there is no singleton
cluster in our optimal clustering, we can match the i-th prediction o; to the i-th cluster C;;. Since our
instance is y-stable, we can treat each cluster as a single instance, which is completely divided by the
rest of the clusters, and apply the MinMaxP Mechanism [[I]] on each cluster. Unfortunately, we need
to include the restrictions of no singleton cluster in the optimal clustering, since if we allow an agent
to deviate and create a singleton cluster, without disturbing the stability of the instance, then he can
possibly isolate a distant prediction and change the enumeration of the predictions to his gain.

Mechanism 13 Mechanism M (&, 6) :Deterministic Mechanism for 5-stable instances with no single-
ton clusters
Result: An allocation of k-facilities
Input: A k-Facility Location instance & and k-vector of predictions on facilities locations 6 Find
the optimal clustering C' = (C4, ..., Cj;) of Z.
foriel,... kdo
Match ¢; to i-th cluster, C;.
if 0; € [l’i,l, xi,r] then
Allocate a facility to 6;.
end if
if 6; < T4 then
Allocate a facility to x;
end if
if 6, > z; , then
Allocate a facility to x; ,
end if
end for
Output: The k-facility allocation that was previously defined.
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Blue rectangles are clusters, black cycles are predictions, and blue arrows are allocated facilities.

6.1.1 Consistency for Maximum Cost

We know that M C*(Z) = %lc" If we want to check the consistency of the mechanism, then we
assume that the predictions are correct 6 = o = center of each cluster.

MO(&,M(F,0)) = =51 G
MO(#, M(#,6)) = MC*(@)

We conclude that M is 1-consistent for the Maximum Cost objective.

6.1.2 Robustness for Maximum Cost

If we want to check the robustness of the mechanism, then we assume that the predictions are arbitrarily
wrong. In our case it is one of the two edges so 0; = w; ,

We conclude that M is 2-robust for the Maximum Cost objective.

6.1.3 Consistency for Social Cost

If we want to check the consistency of the mechanism, then we assume that the predictions are correct
0 = o* = median of each cluster. So 6 = (med(C}), ..., med(C})) = o*

SC(Z M(%,0)) =Y _ d(x;,0") =
=1
SC(&, M(Z,0)) = SC* (&)

We conclude that M is 1-consistent for the Social Cost objective.

87



6.1.4 Robustness for Social Cost

If we want to check the robustness of the mechanism, then we assume that the predictions are arbitrarily
wrong. In our case, it is one of the two edges so o; = z; . Suppose that we have only one cluster C,
to make our computations simpler.

SC(&, M(,6))

IN

k
(n—1)x ZD(C’,-) =
=1

SO(Z, M(,6)) < (n — 1) * SC*(@)

We conclude that M is (n-1)-robust for the Social Cost objective.

6.1.5 Strategyproofness

Suppose that z; € C; and agent i declares false position y. With that lie, he creates clustering Y. We
can make 3 categories for the agents’ deviations.

Splits. C; is split into two clusters in Y. Hence, the leftmost agents, originally in C; , are served
by a different facility than the rest of the agents originally in C; We next show that in any profitable
deviation of x; where C} is split, either the deviation is not feasible or the cluster-separation property
is violated.

1. Agents in C; are clustered together with some agents of z\Cj in Y . By hypothesis, there
are agents z,w € C; placed in different clusters of Y , and at least one of them, say z, is
clustered together with an agent p € Cj, with [ # j, in Y. For brevity, we refer to the (dif-
ferent) clusters in which z and w are placed in clustering Y as C’, and C),, respectively. Then,
D(C?) > d(p,z) > D(C;), by Lemma 1. But also d(C”,C;,) < d(z,w) < D(C};), conse-
quently D(C?) > d(C”, C.,), which implies that the cluster-separation property is violated and
Mechanism does not allocate any facilities in this case.

2. Agents in C; are split and are not clustered together with any agents of z\C} in Y. Hence, yis
not clustered with any agents in 2\C}; in Y. Otherwise, i.e., if y is not clustered with agents of
C; inY , it would be suboptimal for clustering C; to allocate more than one facility to agents
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of C\z; and at most k-2 facilities to (Z U y)\C}, while the optimal clustering C allocates a
single facility to C'; and k-1 facilities to Z\C; . But again if y is only clustered with agents of
C}, it is suboptimal for clustering Y to allocate more than one facility to agents of (C; Uy)\z;

and at most k-2 facilities to Z\C}; , while the optimal clustering C allocates a single facility to
Cj and k - 1 facilities to 2\ C}.

The above restrictions for the Splits deviations are independent of the mechanism, that we choose to
use. They are produced by the structure of the instance. So they exist, regardless of the way, we will
place the facilities.

c, C'y

C
p z w
o o .
P
o

B °

In the split case 1, we can see that the CSP is violated.

CJ

[ m . [

In the split case 2, we can see that it is suboptimal to “waste” two facilities on C}; agents since the
optimal clustering has proven that we only need one.

Merges. The only way for an agent to make profitable merges is to manipulate his cluster’s enumer-
ation in the instance. What are the ways to manipulate your cluster’s position? All of the merges
produce instances that are “banned”. The first one is an instance with a singleton, which fails the
mechanism singleton test. The second and third instances include splits that are either not feasible or
fail the cluster-separation property. This means that there exists no profitable merge deviation. The
proof plan for this case is the same as in Case 1b,2b of the OPTIMAL mechanism.

Altering cluster length, without changing its enumeration. In this case, the agent’s deviation does
not modify any other cluster. He tries to include or exclude inside his cluster, the prediction that is
matched to his cluster. Consider any agent i and, without loss of generality, assume that z; < ¢; ,
i.e., that the agent’s true preferred location is weakly on the left of the prediction. We consider two
cases, depending on whether z; is weakly greater than all the locations reported by the other agents
or not. If it is, this means that if i reported truthfully, the mechanism would place the facility at x;
and i would clearly have no incentive to lie. If, on the other hand, x; is not weakly greater than all the
other reported locations, then the returned location f if i reported the truth would be on the right of x;,
ie., f > z;. However, it is easy to verify that if agent i reported a false point < x;, this would not
affect the outcome, and if he reported a false point 2 > x;, this could only move f further away from
x;. Therefore, it is a dominant strategy for i to report the truth.
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Truth

singleton

The leftmost agent of the third cluster wants to belong in the second cluster of a modified instance.
He can do that with 3 different merges. He can merge the first and second clusters, while he creates a
singleton on his right. He can merge the first and second clusters, while he splits his own cluster. He
can merge the first and second clusters, while he splits the fourth and his own cluster.

l, ®
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6.2 Conclusion and Future Work

The result of [21]] has led researchers to focus on different ways to approach k-Facility Location
Games, constantly trying to combine seemingly different fields in their effort to fully understand all
the limitations that may exist. Although stability and prediction-enhanced algorithms are not entirely
new concepts, there is still work to be done when they are applied to k-Facility Location Games. In
my thesis, i have presented a mechanism that achieves 1-consistency and n-robustness but has two
shortcomings. The mechanism needs at least 5 stability, like the ALMOSTRIGHTMOST mechanism
and it does not examine instances that have singleton clusters, like the OPTIMAL mechanism.

One natural direction would be to examine if we can achieve lower stability or if we can find a way
to deal with the strategyproof issue that is created by the existence of singleton clusters. The stability
was bounded in 5, since we based much of our proof on ALMOSTRIGHTMOST. However, AL-
MOSTRIGHTMOST is not restricted by singleton clusters like our mechanism. Moreover, the addi-
tion of predictions was introduced, due to the gap of stability that exists between ALMOSTRIGHT-
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MOST and OPTIMAL, since it still remains to be seen, if we can find a mechanism with v <5 stability,
which also deals with singleton clusters in the instance. Finally, in [23] the impossibility result for
k-Facility Location games with k > 3 was extended, proving that there is no deterministic anonymous
strategyproof mechanism for k-Facility Location, with k > 3, on (2 — §)-stable instances with bounded
approximation ratio for any § > 0. There still remains to be seen if this bound is tight.
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