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ITepiindm

Y onuepwv dngaxy enoyy), n paydola adénon twv Sedopévwy xa 1 auEavouevn yeron TS TEXYNTAC
vonpooVvne (AI) éyouv xatacthoer to Badid vevpwvixd dixtua Bacixd d&ova tne cOYYpovNne TAnpo-
popixic. Autd tor eUENXTA LOVTEN TEYYNTAHS VONUOCUVNE YeNnotpebouy we Bdon yia mowxiles epopuoyéc,
An6 TNV OVOLYVOELOT EXOVC Ewe TNV eneéepyaoia Puotxic YAMooOS, YETHULOPPOVOVTAS TG Blounyavies
xan to gmeloxd poc tomio. Kadde ta vevpwvixd dixtua Bploxovtan oto enixevipo, n avdyxn yla vy
ATMOTEAECUATIXY EXTEAEST TOUC YiveTow OO X0 TLO ONUOVTLXY.

IMopodootaxd, ta vevpwvixd dixtua extehobvton ot nepBdhhovto utoloyiotixol vépous (Cloud comput-
ing), to omola elval YVWOTE YLOL TOUC EXTETHUEVOUC UTIONOYLO TIXOUE TthpoUC Tou Pploxoviton eVtoc Twv
xévtpwy dedopévev (data centers). Eved n mpocéyyion auth mpoopépet onuavtixf utoloylotxy oy,
elodyel npoxifoel mou oyetiCovtal ye Ty xaduotépnon xou T diordectiudtnTar Tou Bixtiou. OL TEOoXAY-
oel auTég umopel vor elvol WBLalTeEpa TEPLOPLOTIXES YLOL EQUPUOYES IOV ANALTOUV OMOXEICY| OE TEOYUOTIXG
Xeovo.

Ye auth v epyaoio, exteholyue ta veupwvixd dixtua oto Edge (Edge computing). To Edge comput-
ing avtinpoonnedel pla EVOAAUXTIXT) TPOGEYYLON Yo TNV AVETTUEN VEUROVIXGDY SIXTOWY, ETUBLOXOVTOS VoL
AVTHIETWTIOEL TOUC TEPLOPLOHOUS TWV TEABOCLUXMY TEPLBUAAOVTLY VEpouc. Pépvel Tov unoloyloud o
X0OVTd oI TNYEC BedoPéVwY, emttpénovac TNy eneéepyaoia dedouévwy oe mpaypatind ypovo. Me autdv
TOV TPOTO UELOVOUUE TNV XAUC TERNOT| EXTEAECTIC TWV VEUPWVIXADY BXTUMY Xl EVIGYUOUUE TNV oVTUTOX Q-
LOT) TWV EQPAPUOYOY, XaIoTOVTAS TO Wovixd Lol oevdpla 6Tou 1 €yxoupn Mn aropdoewy elva xplown.
Qot600, 1o Edge computing €yel xou autd €val alvoro mpoxinoetdv. Ol GUOXEVES TTOU AELTOUPYOUV GTO
Edge mowihhouv oe peydro Podud ©¢ meog TNy UTOROYIo TIXY IXaVOTNTA, 0o GUOXEVES LPNITC andboong
gwg ouvoxevéc IoT ye neploplopévouc népoug. H Biayelpion authc tng ETEROYEVELNG XAl 1) ATOTEAEGUATIXT)
XATOVOUY| TV TOPWY Yol TN Blacpdhon tne BEATIOTNG eXTEAEOTC TWV VEUPOVIXGY BIxTO®Y elval TOAD-
mhoxn. o to Adyo awtd, xdvoupe yerion tou Serverless computing. To Serverless Computing acponpel
TIC TOAUTAOXOTNTEG TNG OLaYElPLONG UTOBOUMY, OTAOTOLMVTOS TNV XAWEXWOT Xl BEATIOTOTOLWOVTAS TN
¥eNon TV TépwYV, UEWWVOVTIC Ta AElToupYLxd €€oda. Auth 1 mpooéyyion euduypoppileton anpdoxonTa
pe to nepBdihovto Edge.

A&onowdvtog Aowndv to Serverless Computing oto Edge, oyedidoope xon avantOloue €vo TAHRES Xol
otadepd framework yia Ty avdmTuEn VELpWVIXGOY dxTOwY ot éva clumheypo Edge cuoxeumy.

Ttnv xopugt Tou mhauatou pag Beloxeton évag ahybdprduoc Evioyutixic Mddnone (Reinforcement Learn-
ing). H Boowr amoctohf tou elvor ditth: mpdtov, vo Slacgoiilel étu n xaduotéenon extéheons Twv
VEUPWVIXGOY dTlmV elvon evide twv xadoplopévey SLAs (Zupgpwvia Emnédou Ynpeoudy), ixavonotdyv-
TAC TOUC OTOYOUC YL TO YEOVo amdxplong xou delTepoy, Vo BEATIOTOTOE! TNV XATAVAAWOT| EVEQYELNS
XAUTOVEUOVTOG EQYOGIEC OE GUOXEVES PE YOUNAT] EVERYELUXT XATAVAWOT), 6ToTE auTh elvon epixtd. Autdg
o ohybpripoc evioyutinic udinone modlet xodoploTixd pORo 6TNY EVIOYUCT] TG CUVOMXAS OTOBOTIXGTNTAS
X0l OTOXELOTE TOU GUC THUATOSC UAC.

A€Zeic Khewdid —  Neuvpwvind Abetua, Mnyovied Mddnon, Badewd Mnyavuag Mddnon, Evioyutxy
Médnor, Troroyiotnd vépoc (Cloud Computing), Edge Computing, Serverless Computing
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Abstract

In today’s digital era, the explosive growth of data and the increasing prominence of artificial intel-
ligence (AI) have made neural networks a linchpin of modern computing. These versatile Al models
serve as the foundation for diverse applications, from image recognition to natural language processing,
transforming industries and our digital landscape. As neural networks take center stage, the demand
for their efficient execution becomes increasingly critical.

Traditionally, neural networks are deployed in Cloud (Cloud computing) environments, which are
known for their extensive computational resources located within data centers. While this approach
offers significant computational power, it introduces challenges related to latency and network avail-
ability. These challenges can be particularly limiting for applications that demand real-time respon-
siveness.

In this work, We deploy neural networks in the Edge (Edge computing). Edge computing represents
an alternative approach to neural network deployment, seeking to address the limitations of traditional
cloud environments. It brings computation closer to data sources, enabling real-time data processing.
In this way We reduce exeuction latency of neural networks and enhance the responsiveness of ap-
plications, making it ideal for scenarios where timely decision-making is critical. However, the edge
environment presents its set of challenges. The devices operating at the edge vary widely in com-
putational capacity, from high-performance servers to resource-constrained IoT devices. Managing
this heterogeneity and efficiently allocating resources to ensure optimal neural network execution is
complex. For this reason, We make use of Serverless computing. Serverless computing abstracts the
complexities of infrastructure management, simplifying resource scaling, reducing operational overhead
and optimizing resource utilization. This approach aligns seamlessly with edge environments.

By leveraging Serverless computing in the Edge, We designed and developed a complete and robust
framework for deploying neural networks in an edge cluster.

On top of our framework is a Reinforcement Learning (RL) algorithm. Its core mission is twofold:
first, to ensure that neural networks execution latency is within the defined SLAs, meeting response
time targets; second, to optimize energy consumption by allocating tasks to energy-efficient devices
whenever this is feasible. This RL algorithm plays a pivotal role in enhancing the overall efficiency
and responsiveness of our system.

Keywords — Neural Networks, Machine Learning, Deep Learning, Reinforcement Learning, Cloud
Computing, Edge Computing, Serverless Computing

ix






Euyaplotieg

Oo el vo euyoploTHow Tov xadnynty pou x.Anurtelo Xolvtpn xat Toug uodriploug SLBdxTopES
Anuoocdévn Macolpo o Mavirn Kotoopaydxn yio vy eniBiedn avtrc e Simhwpotiic epyaoiag xou
yior TNV guxatpiot TOU Mo Edwoay Vo TNV EXTOVHCWL 0T0 epyacthpto Mixpoenelepyaotdv xar Unelaxdv
Yvotnudtwv. Eriong, Yo fdeha vo euyapiotiow Ty owoyévela o yio TNy xadodhynomn xou tnv ot
CUUTORICTOOY TTIOU OU TROGEQPEROY OAd auTd Tal Ypdvia. Télog Va ideha va euyopiotion Ttoug (pihoug
pou mou Ntav BlmAo Lou xotd T Bidpxela TS Poltnong Lov.
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Extetopevn EAAnvixn Tlepiindm

0.1 Ewcoywyn

Ytov yhpo TNg oUYYEOVNG TANEOPORIXAC, 1) ATODOTIXY) EXTEAEST] VEUPWVIXAY BIXTOWY OF Lol Towhn xaL
ouvletn yxduo mepBarhoviwy amotekel pa coBapn mpdxinam. Auth 1 medxhnon amotelelton and TNV
0pYAVWOY TNE EXTEAECTS TWV ETUTEDKY TOU VEUPWVIXOU SXTOOU EVE Tautdypova TNy TATer aflonolnon
TV Sotéoiuny VAoY tdpnv. Kadde ta vevpwvind dixtua eéeMocovton oe moAumhoxdtnta xou eel-
Bixeuoy), 1 AVTWETOTOT AUTAC TNG TEoXANoNS Yiveton 6ho xou o xplowr. Trdpyel 1 avdyxm yio wo
xouvotopa Ao ixavy) vo Bedtio tonotfioet T Stadixacio extéheong diavéuovtog pe ¢Eunvo TpdTo To eineda
TOU VEUPWVIXOU BIXTUOU GE €vol GUUTAEYHO UTOAOYIOTIXGY Pnyavedy. Autd mepthoufdvel tny extéleon
TWV EMUTEDWY TWY VELPOVIXDY STOWY GTO TAEOV XATIAANAO LAXG TepBdilov, elte autd elvon o eneé-
epyacthc (CPU) elte n xdpta ypapwdv (GPU), hopfdvovtag urddn to Lovadind opoxtnelo Tixd Tov.
Emniéov, auth n Abon npénel vo mapéyet tny evehila va eEumnpetel puo evpeior YXAULO ORYLITEXTOVIXV XA
puduioewy Veupwvxdy dixtiwy. O otdyoc elvar 1 e€oudiuvon tne dladixaoiac extéheonc, 1 Uelwon TS
xaduotépnone, tewdvtag to SLAs (Service Level Agreements), Bektivon e ofonoinong twv ndpwyv
xat, TEMXA, 1) 0EloTolNom TWV BUVATOTATWY TWV VEVPWVIXWY BIXTUMY O TROXTIXES EQPUPUOYES.

Emuniéov, éva avandomacto xouudtt autrhc tng medxinong Peloxetar oto Suvopxr) tonodétnon twv
EMUTEDWY TWV VEUPOVIXWY OXTOWY OTLS UTOMOYLOTIXEG GUOKEVES, Uidl TOAOTAOXY, €pYooial TOU AMOUTEL
TROCEXTIXY EEETACT] TWV AMAUTACEWY AU EUTEDOL Ko TV BlAIECIUWY UTOAOYLOTIXMOY TOPWY GTO GOU-
TAEYUO TWV UTOAOYIG TV pnyovedvy. To medBinua tne Suvouixic TotodéTnong Tev emmEdwy TV VEUR-
WVIXOY OXTOWY TEOoUETEL Uiot ETUTAEOY GTEMGCT, TOAUTAOXOTNTOS, ANALTOVTS HLO EVQUY| TROCEYYLON VLo
va xadopto el mov xou tog Yo extereotel xdde eninedo ye Tov Mo BéATioTo TEdTO.

Avtn) n dimhwpatiny epyocio e€epeuvd xa Tapoualdlel oxeBde plar TETol Moo - éva BEATIGTOTONUEVO
framework mou o&lomolel teyvohroyiec 6mwe to Kubernetes, to Knative, to Deep Learning, xo mo
ouyxexpéva to Reinforcement Learning, yio va avtigetonioet tny nepinhoxn odnienidpoor petold tneg
ATMOTEAEGUATIXNC EXTENETTIC XOUL TOU BUVOLXOU TROYPUUUTIONOV OE AMOCTIOUEVES AVUTTUEELS VEURMVLXGY
BxTOWV.

0.2 Xyetxr BiAoypapia

O Hyuk-Jin x.4. [1] npoteivouy wa partitioning-based teyvixh expdptowone DNN yio unohoyiotée axphc
(edge devices). H npotewvbpevn teyvixhy, IONN, dwopepilel to enineda DNN oe partitions xou tor otéhvel
otadoxd oto cloud, yio vo emtpéder T cuvepyoTin extéleon and tov meRdTn xou To cloud, oxdun
xou ety uetagoptwdel ohdxAneo to poviého DNN. Ta melpopotind anoteAéouato XaTadexviouy tny
anoteheopatxdtnta Tou IONN 60V agopd ) Beltivon 1660 TNE anddoong Twy WTNUETWY GG XAl TNG
HATAVEIAWOTNE EVERYELAS XATd TN YeTapdpTwoT tou Yoviéhov DNN, oe olyxpior pe pio anhy) tpocéyyion
all-at-once.

O Laskaridis et al. [2] mpoteivouv éval véo xatavepnuévo cloTnpo extéheons otV VEUPOVIXMY JIXTOMV
TOU G TOYEVEL OTNV AVTIUETOTICT] TWV TEQLOPLOUMY TWYV VPO TAUEVKY TROCEYYIoEWY UE TN YeYion pog pedo-
BoL TPoodEVTIXAC eEXTENETTC Pothdv VEUupKVIX®Y dixTOwy. To npotevépevo cbotnua, SPINN elcdyel éva
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oo Stovouic TEOOBEUTIXGY HOVTENWY UE TEOWIES EE680UC OE GUOXELY| Xau server, 6To omoio pLo é080¢
elvon TavTA TOPONCU GTY) CUGKELT|, EYYUMUEVT TN SLodeoIUOTNTA EVOC ATOTEAECUUTOC avd oo GTLY Y.
Emnmiéov, to SPINN ¥étet 10 xdtw bplo npdPiedne we puduilduevrn napduetpo yio TNV Tpocaployy| Tou
oupBBoaopol petalld axelBetac-toyvntag. IHopdAAnha, to clotnua mpotelvel Evay VEO YpOVOTPOYEOUUI-
TioTh extéleone (run-time scheduler) nou cuvtovilel and xowvol To onueio doywploPoy xou THY TONTIXA
TpdwENG EE680L TOL TEOOJEVTIXOY LOVTENOU, ATOBIBOVTAC UIdl CUUTERLPOPE TROGUOUOCUEVT] GTLC UTOLTY-
oelg andédoong e eQapuoyRc und duvopxés cuvirixes. Mio ohoxhnpwuévn allohdynon twv emdocEwY
Tou cuoThdatog Belyvel 6Tt To SPINN uneptepel €vavil Twv oUYYpovwY OUOAOYWY TOU GUVERYATIXNC
extéleong Bohdv VEupwVIXGY BIXTOLY En¢ XaL 2 QOpEC GTNY ETUTUY YAVOUEVY andBooT untd Toixileg cuV-
Vrixec dixtOou, PELDVEL To xGGTOC TOU server €wg xat 6.8 @opéc xou Bedticdvel tTnv axelfBeta xatd 20.7
% uné neploplopols xoduo Tépnong, Tapéyovias napdAinia elpwotn Aertoupyio und aféBouec cuvdixeg
ouvdeodTNTaC XaL oNaVTLXY EE0IXOVOUNGT EVERYELNG O oUYXELoN KE TNV exTtéleon oTo cloud.

O Xueyu Hou et al. [3] npoteivouv to Dystri, éva xauvotépo nhaloto mou oyedidotnxe yia vor SIEUXoADVEL
T duvaxy| extéleon DNN oe xotaveunuévee vnodouéc axpolwv onueiwy, eEunneet®vtag €10l ToA-
hamholcg etepoyevele yenotee. H apyitextoviny) nepthauBdvel xotaveunuévous eEAEYXTEC xaL Evay YEVIXO
CUVTOVLO TN, ETUTEETOVTOG TPOCUPUOYEG TNG TOLOTNTOS UTNEESLLY avd altnom xou avd yerotr, e€acparilov-
ToC QPECO, EVENXTO o dlaxpttd éleyyo. To mhalowo aflohoyeltar o€ Tpels eTepoYevelc TAATQOPUES UTNEE-
oty extéreonc DNN noAlamhdy xpnotov Tou avantiooovial 68 XAToUveUnUEVT utodoun edge cuoxeuwy
xon epthopfdvouy entd egapuoyéc DNN. To anotehéopoata delyvouv étt to Dystri emtuyydver oyeddv
UNdEVIXEC anWAEIEC TEOUECULOY XOL UTEREYEL OTNV TROCURUOYT e Toixihoug aptiolc YeNoTWY Xl EV-
Tdoeic autnpdtwy. Emniéov, to Dystri uneptepel évavtt tev Baciniv AMoewy pe Beitinon e axelBetag
gwe xau 95%.

Ov Yanan Yang et al. [4] mpoteivouv to INFless. To INFless mopéyel yLot EVOTOUNUEVY), ETEROYEVH
agalpeon mopwy peta€ld CPU xou emitoayuvt®y, 1 onola EMTEENEL TNV ATOTEAECUATIXY] XUTAVOUY| TOPWYV
e Bdon Tic anatiioe Tou @opTou gpyacios. To cVotnua emtuyydvel UPNAY amOGBOCT YENOULOTOLOVTAS
EVOLUATOUEVOUS UNYOVIoUOUEC opodomolinomg xou Ur odolduopgne xhipdxwong, evé urootneilel eniong
YoUnAY xoductépnon Y€ow CUVTOVIOUEVNE BlayElplong TOU YEOVOU AVAUOVAC GTNY 0UPE TWV TAPTIdWY
(batches), Tou ypdvou extéheone xou tou puduod cold start. H apyitextovin) tou INFless éyel oyedi-
aotel v va avtpetoniler e tpoxhfoeie tne Sayelpione LBV cuctnudtwy CPU /emitayuvti, tne
eTAOYHC xATEAANAWY peyeddv Toptidnmv (batches) xou mopwv xou tne ehaytotonoinone e emBdpuvong
extéheonc. M Aentopepic emoxdmnon e apyltextovixfic tou INFless nepthoyfdver tmv nohn (gate),
ToV Ypovonpoypoupatioth (run-time scheduler), to povtého mpdPredne, ta Tpopik yewpiotdv (operator
profiles), tov xatoveunt), to @pbpto epyacioc déoune (batching workload), toug xéupouc CPU/GPU,
Tov dlayelplo T Tou cold start, Tn unyovr auTOUATNG HAUINWONE xol AR

Ou Lockhar et al. [5] mpoteivouv to Scission, évo epyahelo yio TV autopatonomuévn cOYXELOT Xo
afohéynon DNN oe éva 3edopévo civoho cuoxeuiic-otdyou, axuic (edge) xar uTOAOYIGTIXOD VEQOUS
(cloud) mépwv Yy Tov TEoodloploud e BEATIOTNG XaTdTUNONS Yot TN HEYLOTOTONoN TN anddoong
twv DNN. Trootneiletan and pio mpooéyyion ocuyxpitixic a€lordynone mouv xodopilel tov cuvduooud
TV THIVOY TOpWY VAXOV-6TOY0U ot TNy axohoudio Twy emnédwy mou meémel vo xotaveundolv yia
N peyLoTonolnoy Tne xoataveunuévne anddoone twv DNN, hauBdvovtoag umddn toug otéyoug mou xo-
Yoptlovtaw and tov yehotn. To Scission Poocileton oe euncipixd dedouéva xou dev extipd v andédoon
uqvovtag LTodéoelc Yol T0 UAXS-0Tdy0 1 o atpwyoata DNN. Ipaypatonoudn oy nelpapotinés uehéteg
oe 18 duapopetid DNN yia v amodelydel 6t to Scission elvon éva ypriowo epyaleio yio Tnv extéleon
xataveunuéveoy DNN e enlyvwon tou mhawoiou xou anodotixn anédoon. To Scission ymopel enlong va
A&Bel anopdoelc mou Sev Ymopoly va Angdody yeipoxivnta and évay dvipwno Adyw NS TOAUTAOXOTNTAS
%ot Tou apLdol TwY Blao Tdoewy Tou eETNEEdlouy Tov Ywpo avalAtnone.

O Kakolyris et al. [6] npoteivouv to RoaD-RuNNer, éva cuvepyatixd mhaioto yiot ThY xatdTunoy xat
™V ex@opTeoT Padidy vevpwvixwy Sixtiwy (DNN) ot etepoyev cuoTAuata axudy. Auth 1 xouvotduog
TROGEYYIoT AVTHETOTILEL TI TEOXANOELS Sloyelplong Twv tépwy Twv DNN mou avantbocovtou o€ Lo TH-
HOTOL UTOAOYLO TV AXEWY XL TROCQEREL Widl TOAAG UTOOYOUEVT AOGT) VL0l ATOTEAECUATIXY] XOTATUNON Xol
expbdptwon DNN. Ou cuyypagelc mpoteivouv €vav unyovioud dBuvopxnc ex@opTwons ToU YeNOHLOTOLEL
CUVERYUTIXO QUATEAELOUA Yiol TNV TROBAEYY TOU YPOVOU EXTENEGNC XA TNG XUTAVIAWGNG EVERYELIS TWV
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empépouc emnédwy ot dapopetiée apyttextovixéc CPU/GPU. To mhaioto mepthapBdver enione évay
UNYOVLOUS SUVOIXAC XaTdTUNoNG oV Sl wpeilel xal Ex(popTVEL anote ecuotind to atpdpotae DNN.
O ouyypageic die€hiyoyay extetopévn Telpadotixy] a&loAOYNoT TOU TROTEWVOUEVOU Thauclou Toug, cuy-
xplvovtag 1o ye Baoixolc alyopilpouc xou obyypovee mpooeyyioe expoptwone DNN oe mpoyuotind
VA6 xou Bixtuo. To anoteréopata detyvouv 61t to RoaD-RuNNer uneptepel £vavtl Twv LGLo TUEVLV
Tpooeyyloewy emtuyydvoviac éwe xat 9,58 emtdyuvorn xatd pEco Gpo xat éwe xat 88,73% Nydtepn
XUTUVIAWOT) EVERYELOG XATd WEGO bpo.

Ou Patterson x.4. [7] mpoteivouv pia apyttextovin] cuoThdatoc LAxolv-Aoyiomxol, to HiveMind, novu
EMLTEETEL TNV TPOYPoUATLOPEVN EXTENEDT GUVIETWY POWY EpYaoLOY UETAED LTOAOYIOTIXOU VEQOLC XoL
TopwY oxpalwy oMUeiwy UE amodoTNd xol XAAXOVPEVO TEOTo. AuTh 1 dpyttextovixy] avTeTwilel
TIC TPOXANOELS TOU YELROXIVNTOU XOTHUEPIOHOU TWV EQYUCLOY Xl TNG OANAYAC TOU TOTOU EXTENEONC
TWV UTOAOYIOHWY, Ol OTOlEC UTOPOVY Vol EMNEEACOLY TNV amautolUeVY] untodour] Aoyiopxol. To epyolelo
oUVIEONC TEOYEQUUATOS DIEPEUVE U TOPATA GTEATNYIXES TOTOVETNONG EPYATLAY, ATAOTOLIVTOS TNV TEO-
YROUUATIOWOTNTA TwV Eqopuoy®y cloud-edge. To enovoadlalop@mdUevo LA EMTEYLVONS Yia TedoBaoT
o€ J{XTUO o ATOUAXEUGUEVY) UVARTY GUUBAAREL GTNY AmdBOoY XL TNV ETEXTACLUOTNTO TNG TAATPOPUOC.
SUVOAXE, aUTH 1) AEYLTEXTOVIXY) TOEOUGLALEL Wiot OAOXATPWOUEVT AVOY OTIC TROXANCELS TWV AUTOVOUWY
GUOXEL®Y, XONCTOVTAC TNV YENOULY CUVELGQOPd GTOV TOUEA.

O Bin Wang ».4. [8] mpoteivouv tnv mhatedppo LaSS, plar véa apyttextovixs yior ThY ovTUETOTULOT TOV
TpoxAfioewy Tou serverless computing oto edge. H mhatpodpua yenowonoiel npooceyyloeic Baocioyéveg
o€ YoVTERD Yiar TNV axplB1| TpoBRedn Twv TopwY Tou amattodvTol Yo TiG Aettoupyieg serverless mopousio
duvoXOY QopTrv epyaciag. H LaSS yenowonolel uedddoug Baclopéve oe 0upég avaovic Yo ToV Tpoo-
BLOpLOPO TNS XUTAAANANG xorTavounc Yo xdde @UAoEevolpevn Aettoupyla xaL TNV QUTOUATY XAUIXOGT] TWY
AATOVEUNUEVRY TTOPWYV OE amdxELoT) 6TY) duvoplxr Tou pépTou epyoaciag. H mhatgpdpua yenowwonolel enlong
pedddoug avixtnone tépwyv nou Bacilovton otny anocuunicon xou Tov Teppationd containers ylo TV ex
véou avddeon tépwy and Aertovpyieg pe unepBolunt| mopoyy| oe Aettovpylec pe younhy mapoyn. O cuy-
yeagelc UNOTOLOUY éva TpeTdTUTIO TNE TPoaéy Yo Toug oto OpenWhisk [9] xou SieZdyouv pior Aemtopepy
netpopatixny] allohdynon, anodewxvioviac Ty xavotnta tou LaSS vo avtamoxpivetal 6toug 6Tdyous Tou
emmédou eEunnEéTnong xot Vo AEtTovpYel PeE eYYUNoELS Bixaing xotavourc oe GEVEpLAL UTERPORTLOTNG.

0.3 Emoxonnorn Pacixedv evvolny

Teyxvnth Nonpooivrn - Nepwvixd Aixtuo

Ta Teyvnud Nevpwvixd Abxtua, éva xOpto xoupdtt e Bathde Mdidnone, elvon urohoylotixd povtéla
gumvevopéva and T vevpxn) doun Tou aviponivou eyxe@dhou. Xtnv xopdd toug, Ta Teyvntd Nevp-
wvixd Alxtuo anoteholvon and dlacuvOEdEUEVES Hovades Tou ovopdlovton VEVPMVES. AUTol 0L VELPMVES
ene€epydlovtan TAnpogopies, TapouoLa e Toug BloAoYxols VEuptveS, AauBAavovTag Elo6B0UC, EXTEADVTAS
umohoyloUoUe xan Topdyovtag W é€odo. Méoa ot éva veupwvixd dixtuo, N mAnpogopla péel and Toug
eloodo vevphvee mpog Toug e€0do vevpWveS PECW EVOC TERITAOXOU BIXTOOU GUVDEBEUEVLV OTPWUATOY.
"Eva napdderypo evég tétotou dixtdou aneixovileton otny exdua

‘Eva onuavuxd otoiyelo twv Teyvntd Nevpwvind Alxtua elvan 1y cuvdptnon evepyonoinong. Ewodyel un
YEUUUXOTNTA OTO HOVTENOD, eMTEENOVTAG TOu Vo Uddel mohbmhoxec oyéoelc péoa ot dedopéva. Luv-
nhopévec cuvapthoEls evepyoToinomne TepthopPdvouy Tn otypoedr| cuvdptnon (sigmoid), v unepfolini
epontopeviny| (tanh) cuvdptnon ) cuvdptnor tou ypopupxol pehé (ReLU) xou tn povadiado Brpotind
ouvdptno (step). Kdde pa éxel to dixd tne yapoxtnelo txd mou ennpedlouy ) duvatdtnta tou dixtiou
VoL lovtehonolfoel xou var tpocapudoet Ta dedouéva. Ko ol téooepeig aneixovilovta oto figure 0.3.2.

To Teywntd Nevpwvixd Alxtuva eygaviovion oe Sidpopes poppés, xadeuio ex TwV omolwy oYedIdoTNXE
Yior vor avtomoxplveton oe Bidpopa €ldn epyaotiv xou dedopévwy. Ta Nevpwwixd Aixtuo Me Ipoddnon
(FNN) [11] anoteholv T Pdon twv Teyvntdv Nevpwvixdv Alxtuwy, 6mov 1 tAnpogopio péel pdvo
and v elcodo otny €€0b0, xohoTOVTUC Ta Wavxd Yiot TEOBAAUATO OOV QUTH 1) YeoUUiXY) eon elval
XUTAAANAT. Autd Ta Sixtuo elvon eEoUpETING AMOTENECUATIXG OTHY aVary VEELOT TEOTOTWY o TNV ETLAUGT
TEOPBANUATKY 6Tou Tor dedopéva elval GELPLAXA.
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Figure 0.3.1: Iopdderypa Teyvntol Nevpwvixol Aixtuou [10]

(a) Step function (b) Sigmoid function (¢) tanh function (d) ReLU function

Figure 0.3.2: Most popular activation functions

To Enavainrnuxd Nevpowvind Alxtua (RNNs) [12], and v dhhn thevpd, elvon xotdhnia yio epyooies
ToL cLVOEOVTOL PE oxohoudLaxd dedouéva, OTWS 1 LETAYADTTION TEOTAGEWY Xou 1) TEOBAEYT YPOVOTELROV.
Emitpénouv ) Swtipnon ecmtepixic pviung, xoioTdvTog Ta txavd vor avTeToni{ouy poxponpdlecues
egapthoelc ota dedopéva. Evdetnéc naporhayéc twv RNNs neplauBdvouy tig povddee Long Short-
Term Memory (LSTM) [13] xou Gated Recurrent Unit (GRU) [14], ot onolec éyouv avoadetydel we
1Ol TEPA AMOTEAECUATIXES OTNV AVTYETAOTLOTN LoXpOTEOVECUWY EEAPTHOEWY.

To Buvelxtind Nevpwvixd Alxtuo (CNNs) [15] elvon e€edixevpéva yia epyooiec mou oyetilovron pe
TAEyUaTa BEBOUEVLY, OTWE EOVES 1) pacuoToypduuate fyov. Xenoiwonololy eninedo cUVEMENS Yia VoL
VoY VeplooLY YapaxTNELoTIX oTo eloepydpeva dedouéva, hauBdvovtas vddn tic ywewés oyéoels. Ta
CNNs éyouv avatpéer Tov Xhd80 NG 6pUoNS UTOAOYIGTMY Xl TNG oVILY VOPLONG EXOVAS, ETLTRETOVTOG
™V e€aywYn ONUAVTIXGY TANEOPOELMY ond TOAITAOXES SOUES BEBOUEVLV.

Avutéc oL mapahhayéc v Teyxvntd Nevpwvixd Alxtua elvon wévo pla emloxdnnon tou noxihou toniou e
Babide Mddnone. "Exouv wifoel oe eviunwaotloxés npoddoug oe nedlo 6nwe 1 enegepyaoio Quonhc YAGo-
oac (NLP), n avaryvédeion govhc xaw ot autévouol popmotixol yeiptopol, oynuatiCovtag Ty enavdotoon
e Texvntic Nonuoolvng otny enoyn yog.

Evioyvtixh wddnon (Reinforcement Learning)

H Ewvioyutixy Mddnon (Reinforcement Learning - RL) eivon évoc mponypévn xhédoc tne Teyvnthc
Nonuoolvng mou emxevtpwveton otn M anopdoeny xou Ty exnaidevorn and, 81 undpeyouca, eunclpio
(Experience replay). Emxevtpwveton otny autévoun M anogdoewy, yedodoroyio tou Pacileton otny
avtopolB) xat to melpapo. Xe éva tepBdhioy, évac ahyoprdpoc RL adAnhemidpd xou mopatnpeel Slopxds Ue
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To oUTH xa eXTEAEL DPAOELS YE OXOTO VO UEYLIOTOTOACEL Wiat SUYXEXPWEVT avTopol3n. Katd tn didexeia
QTWY TV AAANAETIBEACEWY, 0 ahyOpLiHog avamTOOGEL Wal oTEATNYIXY Yl T AN amopdoeny Tou Tou
EMTEETEL VO ETUTUYYAVEL TOUC OTOYXOUC Tou Ue Tov xohltepo tpomo. Kdde dpdom €xel ouvéneleg otnv
xatdotaoy Tou neplBdAlovtog xou oty avtauolB) tou hauBdvel o olyderduog, xa autdg podalvel and
Ta amoTEAéoUOTA TwY dpdoemy Tou. O emhoyéc mou odnyolv oe LPNAGTERES AVTOOBEC TEOTYLWDVTAL,
%o aUTOC efvan 0 TEdTOC Ye Tov onolo o ahyodprtuog pardalvel va tpoTiud Tic BéATioTeg dpdoelg. H ewdva
0.3.3 delyver oxpBde autd Tmou avodinxe mopomdve, dniadn ) Spdon-avtidpacn peta€d RL adyopiduou
xan tepBdAlovToq.

—>» Environment

action Reward| |State

R s
a t ‘

Agent :

Figure 0.3.3: Ioapdderyya dpdornc-avtidpaong evég alyopiduouv Evioyutinic Mddnong ue to nepBdiiov
Tou [16]

T v avdhuon xat Tov LTOAOYLOUS TV BEATIOTWY oTpatnyx®y, Ta RL yenowonowolv tic eiodoelc
Bellman . Ou e€iotoeic autég expedlouy Ty avauevopevn avtopol3n yio xdde xotdotaon xau dpdon,
Aopfdvovtag unddn to uéAlov xan Ty mhavotnTa uetdfacng ot véeg xatactdoec. O alydprduor RL
GTOYEVOUY GTOV UTOAOYIOUS TV BEATIOTOV OTEUTNYXOV Tou P UEYLGTOTOCOUY TNV VUUEVOUEVT|
avtapgolBn. Modnuoatixd ol e€lotoelg auTég Unopody va expeaotoly wg:

Ve(s) = Z[PW(S)(S’\S, 7(s)) * (R(s,7(s),s") + v Vr(s'))] (0.3.1)

ry

‘Omov 10 s elvon 1 xatdotacn tou nepBdihovtoc auth TN oTypn, s” civon 1 ENOUEVN XATAGTACT TOU
nepi3dhhovtog, T elvan n tolte mou axohouvdeiton, Pr,)(s[s, 7(s)) elvou n mdavdtnta, dedopévou bt
BeloxduaoTte o1 xATAOTAC § Xou oxolovdeite 1 TOMTN T, Vo UeTABolUE 0T XATdoTAOT TERBAAAOVTOC
s’ Téhoc 10 R(s,7m(s),s") elvou n avtopolB| €dv and tn xatdotaot s tou nepBdrlovToc, oxohovddvTog
™ mohuxn 7, petofolue otn xatdoTacy s’ y ovoudleton puiude Exntwong xan tpocdlopilel T onpocio
(TocOTHE) TWV LENNOVTIXGY avTopolBoY 6T1 Tapoloo XATAoToon xot TENOG T0 Vs mou npocdiopilet tny
OVOUEVOUEVY] AVTAUOLBY) OTN XATACTAOY § AXOROLIWVTAS T1) TOALTIXY 7.

Trdpyouv didpopot ahydprduol eVioyUTIXAC WEINoNE TOL YENOWOTOLOUVTAL Yol TNV ENLALCT) TEOBANUATWLY.
Mepwxol and autoic nepthaudvouy tov ahydprdpo Q-Learning [17], tou elvon xatddiniog yio npofBhiuato
ehéyyou, xat tov ahybéprduo PPO (Proximal Policy Optimization) [18], nou eivon amoteheopatinde yio
oToyaoTxd mpoPifuata eréyyou. Ot akydprduol autol Bacilovton oTic apyée e evioyutixrc udinong
Yioo TNV EXTUBEVOT) TWV HOVTEAWY xou T MAn anogdoewy. Ilépa and autole, umdpyouv mollol dAloL
oy pLiuol Tou TEOGPEEOLY UOVIDIXEC BUVATATNTES Yia TNV ENIAUGCT) BlapbpwV TEOBANUATWY o ToLxiAoug
Topelg, xodde xow Tohhée mapahhayéc Twy UTapydVTLwY ohyoplduwy Tou npocapudélovion oTiC SLdpopes
ATOUTACELS TOV TEOBANUTWLY.

Ot ev Aoyw odydprduol RL éyouv epapuoyéc oe molholc Touelc, dnwe 1 autdvoun Thoynon poundt, 1
duayeipton amodepdtwy, 1 auTdVOUN 00HYNON OYNUETWY, XaL axdUn xou OTAY aVETTUEN Touy VIBLY, X hS
EMTEETOLY o€ Unyavée va pddouy xou vo tpocapubdlovtar oe avtiotolya tepBdAlovTa.
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Serverless Computing

To Serverless Computing oavtinpocwnedel Wwio eEeEMGCOUEVY] TEOCEYYLON GTNY OVATTUEN %ol EXTEAEST
AOYLOUIXMY EPUOUOYOV. € AUTO TO UOVTENO, OL TPOYPUUUTIOTES eV ypeldleton TAéov va dlayetpllovTon
BLXOULGTES, VAl PEOVTILOUV Yid TNV XAUEXWOT, TOU LAIXOU 1) Vo avnouyoly yio 1 SlodectudTnTa Twv
Topwy.  Avtileta, unopolv vo emxevipmUoUY ATOXAELOTIXE OTNY AVATTUEY TOU X(OOXA TOUC XaL TN
ONULoLEYia AELTOURYIHDY EQPUPUOYMY.

‘Eva and to xOpta yopoxtnelotid tou Serverless elvon to autoscaling. Autéd onuoivel 6t 1 unneeoior ov-
Tamoxplveton ouTéUaTa oe ALENCELC 1 UEWOOELS TOL QopTiou epyaoiac, auEdvovTac ¥ HELVOVTOS BuVoLXE
Toug mopoug Tou dlatildevtal v TNV extéleoy) TV AettovpYldy. Autd elahelpel TV avdyxr Yio TRoE-
TOWOGTO TOV BLOXOWUIG TAV Lot AVOUEVOUEVES ahhayEC 6TO PbpTo epyaciauc xou e€aopoilel dTL 1 epapuoyT
OOC TUPUUEVEL AMOBOTIXY aXOUoL XL XAUTE TIS TEPLOBOUE QWENUEVOU QPOETOL.

Extég amd v autoscaling xou tnv anoteheoyotixdtnTa 0T Yenfon moépwyv, To serverless computing
GO €vo TOAD ONUAVTIXG YaEUXTNELOTXO ElVOL TO LOVTEND YEEWONE pay-as-you-go To onolo anotehel yia
onpoavTixy adhoyy) and Tic napadoatoxéc puluioeic unodouric. Me to serverless, oL opyaviopol ypekvovtol
HOVO YOl TOUC TROY HATiX00E UTOAOYLOTIXOUE TTOPOUS TIOU XUTUVUAMYOVTOL XUTA TN BldpXELld TN EXTENEOTG
TWV AELTOURYLOV 1] TWV EQopUoY®dY Tous. Auth 1 uédodoc ypéwone elvan Wialtepa mheovextixy, xadog
eZohelpel ™MV avdyxn yioo apyixéc enevdloele ot UTodouéc xou mapéyel TEOoBAEPUOTNTA TOU XOGTOUC,
xadLloTOVTOC TO eEAxVoTIX emAOYY Yl startups, wxeég EmLYEIROELS Xol 0pYAUVIOUOUS Tou AduBdvouy
umoYn Toug To x6oToC. Me ToV TPOTO AUTO, TO serverless ETITEETEL GTIC EMLYERNOELS Vo BEATIOTOTOGOUY
Tov mpolnohoyYioud Toug xot VoL SLtd€TouY TOEOUE TLO ATOTEAECUATIXG.

Téhog, €va amd ta To Pacind YapaxTNELO TIXd TG UTOAOYIC TIXTE dpyLtexTovXTC serverless, elvon 1) event-
driven apyttextovix| tou. Xe avthAv v mapadoyr, ot Aettovpyiec tou serverless oyedidlovtan Yol vo
avtanoxpivovton duvauixd 6e cLYXEXPWEVA YEYOVOTa (events). Autd ta yeyovéto unopolv va TepLh-
opfdvouv pia eupelar Yxduo dpactnplothtwy, énwe ot ewoepyouevec HTTP atioeic (HTTP requests),
oL ahhayéc oty xatdotaon Wwag Bdong dedouévev ¥ To upload apyelwv otov yopeo armodixeucnc Tou
végoug (cloud). T napdderypa, dtav évae yeRotne UToBEAAeL wio opUo OE Wiol DLBIXTUOXT| EQUPUOYT,
o Aettoupryia serverless unopel va evepyomounel yia vo enelepyaotel Tor DESOUEVO Ko VoL TUPEYEL UECHC
pLot amdvnon. Auth 1 apyttextovixn tou Baoileton og YeyovoTo aLEGVEL O)L LOVO TNV ATOBOTIXOTNTOL TV
EQOPUOYWY ahhd emtlong cuuPodilel amoluTa Ue TIg GUYYPOVES 0pYES TYEDLICUOU EQUPUOY RV, XAITTEOV-
Tog To serverless plar Wavix ETAOYTH YL TNV avdnTuln ot mpaypatixd yedvo (real-time development),
BLABEAUC TV KO EVENXTWY AOYLOWXOY AOGEWV.

To Serverless Computing Baoctleton o€ ToAAéC TEYVOIOYIES XU TAATPOPUES TOU EMUTEENOLY GTOUG TPO-
YOOUATIO TES VoL ONoLpY oLV, avartiocouy xou dayetpilovton egapuoyéc serverless pe euxoiio. Eva and
ToL O YVWOo T8 epyohela o autdy Tov Topéa eivor to AWS Lambda [19], mou mopéyetar and to Amazon
Web Services. To AWS Lambda emitpénetl 6toug npoypoatio Téc vor exTEA0DY XWX Ywpelc TNy Tpour-
Yelo 1) Slayelplon dloaxoplotdy. Trootnellet pla eupela yxdua YAOCOOV TEOYROUUATIONOD, Xoo THVTIC
TO EVENLXTO Ylal BLAPOEOUE TUTOUG EPUPUOYGV.

‘Evoc dMoc onpavtixde toixtng eivon to Azure Functions [20] and to Microsoft Azure, nou Topéyet pio
unneesio UTOAOYIOHOU Ywpelc DIXOPLOTY XaL EVOWPATOVETHL o€ dhheg unnpeaieg tou Azure. To Google
Cloud Functions [21], mou elvou uépoc tne Google Cloud Platform, napéyet xou autéd wio napdpota unnpesio
ue event-driven serverless functions.

To Knative [22], pa avoxtod xoddwma mhatpbdpua Pootopévr oto Kubernetes [23] xou éyer xepdioet
npocoy tehevtain. To Knative anocuvdéel tnv mohumhoxdtnta tne Srayelplone tne unoxelyevng um-
080UTC, EMTEENOVTUC OTOUS TEOYPUUUATIOTES VO ETUXEVTRWVOVTAL UOVO 0T AOYLXY| TNS EQUPUOYHS TOUC.

Teyvohoyieg 6mwe to Docker, mou agopoly tnv utodour unohoyiopol ce containers, nallouvv évav ouat-
oo Txd pOAO GTOV TopEd TOU serverless computing, ETTEENOVTNG GTOUC TPOYROHUHUATIO TEG VO GUGKEVALOUY
(containerize) tic eguppoyéc xou Tic €apTAOEIC TOUC e containers, To omolo UTOPOVY OTN GUVEYELL VOl
AVOTTUGOOVTOL Xol VoL EXTEAOUVTOL E0XOAA OE TEpBdANOVTA serverless.

IMaiow énwe to OpenFaaS [24] mopéyouv wio mhatgpdpua serverless avowtod xoddxa (open source)
mou umopel xan auTH va avantuyvel oe omolodnfnote cluster Kubernetes yenowwomnowdvtag to faas-netes




0.3. Emoxémnon Pactxody evvolidy

HTTP Request Server
Form Upload -
Proxy-Server_ B8 ." Upload Form Event o  Tiigeet
Response
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Function
Execution

Figure 0.3.4: Ioapoadelyuo yenone Serverless function, émou evag yerotng xdvel upload oe évayv server
ulo popua, péow evog AP, émou téte, uéow evog trigger, yiveton triggered plo ouvdptnon 1 onola
enefepydletar T QOpUAL ol ETUOTEEPEL GTOV YENOTY TO UTOTEAEGUOTA.

[25]. To OpenFaaS omlomotel tn dnwovpyior xou doyelpion twv Aettoupyldv serverless, xdvovtde to
par a€toroyn emAoyy yiot opyaviopolg mou emdupgody va uiodethoouy TNy Te)Vohoyia Tou serverless
computing oto dixd Tous *EvTpa BEDOUEVEV.

Avutéc ol teyvohoyiec xou mhalota ouvdétouv ta Yepéhia Tou serverless computing, entpénovtog oToug
TROYPUUHATIOTES VoL avamTOOC0UY EQUPHOYES ol AElTovpYleg ywpelc v avdyxm vo Soyelpilovton tnv
umoxelyevn unodour. Autd elaogariler evehi&io, oauinuévn amodoTxdTnTa Xou amhomonuévn dayelp-
oy, xdvovtag to Serverless évo amd to To onuavTxd epyohela otov Touéo TG olYYEOVNG aVATTUENC
AoviopxoL.

Edge Computing

To Edge Computing anotelel évay Slagpopetind tpomo enedepyaciac xou dlayelpnone twv dedouévoy.
Avtideta ané tov napadooioxd utoloyioud otov "olvvegpo" (cloud computing), énou ta dedopévo emel-
epydlovto XevTpxd oe amouoaxpUoUéva xévTtpo dedopévwy, To edge computing xatovéyel Toug UTOhO-
Yo TX0UC TOHEOUS TLO XOVTE GTNY YT TWV DEBOUEVWY, OTKE Evay atoUnThpa, ta cuoxeLy| 1 éva orueio
tou Internet of Things (IoT). Auth n npocéyyion tne enclepyaoios dedopévwy oTov TOTO TPOEAEUOTC
TOUG TPOCYPEREL ApXETA oNpavTixd tAsovexTiuota. H exdva 0.3.5 nogouotdlel dlaypopuatixd Tig Slopopés
petoly Cloud xaw Edge Computing.

‘Eva ané ta x0pla theovextipata Tou edge computing etvar 1 youniy xaduvotéenon. Enelepydlovtac
Ta dedopéva Tomixd, oL cuoxevéc oto edge (edge nodes) unopodv vo TUPEYOLUY UTOVTACEC OF TEOY-
paTixd Yeovo N TOAD %x0ovid oc auTéV, XdTL TOoL TO XHOTA WBAVIXO YLl EQUPUOYES OTWS TAL AUTOVOUN
OYATOL, 1) BLOPMYAVIXTY] AUTOPATOTIOMGT Xal 1) ENQUENUEVY TEAYUATIXOTNTA, OOV AXOUT XAl 1) TUEUULXET
xaduotépnon unopel vo €xel xploweg, eog xou Yavatneopes, ouvénelec. To didypoapya 0.3.6 delyvel hen-
Topepwe TNV apyttextovixr Tou Edge Computing xou to nwe to Edge devices Bploxovton mo xovtd otig
TNYEc BEBOUEVWLV.

Emniéov, to edge computing BeATiddvel TNV ao@AAELd TOU OTOPETITOU XU TNV ACPIAELN TWV DEBOUEVLV.

Avti va yetadidovtan evaiodntec mhnpogoples yeydhec anootdoeic npoc to "oUvvepo" (cloud), to de-
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Figure 0.3.5: Edge vs Cloud Computing [26]
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Figure 0.3.6: Edge Computing Architecture [27]




0.4. Serverless Framework xow Run-Time Scheduler

dopéva enelepydlovtar Tomxd, Yewdvovtog tov xivduvo dlapporic dedouévmv xatd Tr didpxela TNg UETd-
doong. Auto elvan Wuaitepa onuavtind oe Brounyavieg 6mwe 1 Lyelo xou oL olxovolxéc unneeaiee, 6mou 1
EUTLOTELTIXOTNTA TWV DEBOUEVWY EYEL Xalpla onpaaio.

‘Eval ax6un mieovéxtnuo agopd tnyv Bedtiotonolnor tou ebpouc Lovng. Ot cuoxeuéc oto edge eneepyd-
Covtan potol petadidouy ta dedopéva oo "oivvepo" (cloud), pewdvoviac Tov dyxo Twy dedouévey Tou
mpénel v petagepdolv géow tou dixtdou. Autéd unopel va 0dnyroel o onuovTXéG e£0XOVOUNoES GTO
x6o10¢, Wle o8 TEPITTHOOELS Ue Teploplopévo ebpoc Lhvre.

INo v aroteleopatin?) vAoroinon tou edge computing, yenowonoobvtal ddpopec TEYVOAOYIEC XaL
mhaiota. Ou cuoxevéc oo edge elval eE0TAOPEVES UE UTOAOYLOTIXOUE THEOUE, OTWE WXPOEEUTNEETNTES 1)
povédee enelepyasiog ypapxdy yevixol oxonol (GPGPUs), yio va avtoaneépyovion ota Tomxd oftnpota
(requests) enelepyacioc. Ennmiéov, teyvohoylec containerization 6nwe to Docker ypnoionotodvton yio
Vo avoxheloouy eQopUoYES o TIC avoryxoleg Toug eEopThoEls, SlaopoAilovTag TN QopNTOTNTA Xo TNV
e0xoAn avdntuin oe Bidpopa Tept3dihovta tou edge. To Kubernetes umopel va Suayeipiotel autée Tig
containerized eqopuoyéc oe edge clusters, dlucpaiilovtag anodotixn yenomn Twv tdpwv xou duvatdtnta
enextaoétnTac. Télog, to Knative emitpénet tn Slaryelplon xou TV auTOUOT XAUAXWOY) TOV EQURUOY WV
Aettoupyundy (serverless) otov edge, npoo@épovtac piot TANEn ADon yio THY avEnTuln xat TNV EXTEAEOT)
EQPUPUOYWY OE aUTH TO TEPBAANOY.

Yto Edge Computing yenowwomnoieiton plor mouxhior GUCKEVWY TOU XAAOTTOUY CUYXEXQULEVES AVEYHES XAl
oevdpla. Elducdtepa, ovoxevéc omwe to Raspberry Pi (28], n oewd Jetson [29] and v NVIDIA xou
oL pxpoeheyxtéc STM32 [30] éyouv amoxthoel onpaviixf 9éorn oto oxoouothuota edge computing.
To Raspberry Pi, évag cupnoyfc xou oixovopxos unohoyio g, anoTteAel yior eVEAXTY) ETLAOYT] Yo TOA-
Aéc eqopuoyég edge, and TNV auTopaToToinoT TOL OTUTIOL €W TNV TEXVNTH Vonuooluvn oto edge. H
owovyévewr Jetson e NVIDIA, and v dhhn, Eeywpller yia Tic oyupée duvatdtnteg twv integrated
GPU g, xadiotdvtag v bavixr yior anatntixég epyooieg oto edge Omwe 1 UTOAOYLIG TN Gpacn ol
Ta Bardid veupwvixd dixtua. O wixpoeheyxtég STM32, yvwotol yior TNV younhn xatavdhwon evépyelag
xal Tig duvatéTnTeS TpayHatixol yedvou eneepyaoiog, Beloxouy extetauévn yerion otic epapuoyéc edge
IoT, e€aocpariCovtag anodotxr) cuAkoyT| xou eneéepyacio dedouévov. Autég ol cuoxeuvés, pall ye dud-
QopeES GAke, cuuPdihouy otov mholaolo yapaxthpa Tne edge computing, evioylovtag plo eupelor Yxduo
EQUPUOYWY UE TG EENTOULXEVUEVES TOUC DUVATOTNTES XOl LOLUTEPOTNTES.

To Edge Computing Beloxel epopuoyéc oe Sidpopous Topelc, BEATIOVOVTAC TNV OMOTEAECUOTIXOTNTA, TNV
a€lomiotior xou 0 Mdn anogdoewy oe mpayyotixd yeévo. Xtov topéa tng uyelag, divel T duvatéTnTa
Y10 AMOPAXPUOUEVT] TIopoXOA0UUN oY acVeEVHVY, 6TOU Tol BEBOPEVA UM LUTEWXEC GUOXEVES UTopolY VoL eneE-
gpyaoTolv Tomxd, e€aopolilovtoc Sueces EBOTOMOELS XaL UewdvovToe TNy xaduotéenon oe xplolueg
xatooTdoelg.  Yta autévoua oyfuate, edge cuoxevéc emeepydlovton T dedouéva aucUnTrhewy dueocd,
EMTEENOVTAS YPNYOPES avTidpdoelc xat Behtiwpévn aopdieia. O é€unveg mohelg enwpelolvTon and To
Edge Computing, Beitiotonowdvtag t dayeipion g xlvnong, avolbovtog nepiBarlovTind dedopévar xau
emitpénovtag €Eunveg dnudolec unneeoiec. Mtic Blounyavixéc egapuoyeéc, dleuxohlvel Ty tpolAentixy
CLVTAHENOT, HELOVOVTAS TO YPHVo abpdvelas Tou eEomhopol xat auEdvovTag Tny TopaywYxotnta. Téhog,
to Edge Computing dwdpapatilel xevtpind poho oTic eunelples eTauENUEVNC Xl EXOVIXAS TROYHATIXOTY-
to¢ (Augmented Reality), pewdvovtag v xaduotépnon eneepydlovtog tor dedopévo tomxd. Autd ta
rouha nopadelypata unoypopuiCouy Ty suehiio xan TNy yeTaoyNuaTo T BuvatdtnTa Tou Edge Com-
puting oe didgpopoug Topels.

0.4 Serverless Framework xotw Run-Time Scheduler

‘Onwe éyel KON avagpepdel, auth 1 dimhwpatixy epyoacio e&epeuvd xou togouctdlel éva BehtioTonoinuévo
framework mou ofiomotel teyvoroylec énwe to Kubernetes, to Knative, to Deep Learning, xou mo
ouyxexpwéva to Reinforcement Learning, yio va avtigetonioet tny nepinhoxn odnienidpoor uetald tng
ATMOTEAEOUATIXAC EXTENECTC XOU TOL DUVOLXOV TPOYPUUUITIONOD OE ATOCTIOUEVES OVUTTUEELS VEUPMVLXV
BTOWV.
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0.4.1 Serverless Framework yio layered xau full offloading tewyv DNNs

To framework ypnoipwonotel to Kubernetes xat to Knative yio tn dnuovpyia evog euéhixtou nepBdiioyv-
TOg YLl TNV eXTEAEOT) vELpVIXGDY SxTOwy. To Kubernetes, nopéyel v Bdomn néve otnv onola Bacileton
to framework. Emitpénel tny avdntuln xou v xApdxnmon Ty emmédwy veupwvixod dixtiou oe éva
oTaveunUEVo abvolo cuoxeudyv. To Knative npociétel oto Kubernetes évo mhaioio serverless yio tnv
avdnTuEn xou T Bloyelplon eqapuoydy, daopouiilovtoas amotelecpotixy Siovour tépwv. Mall, avtée
Ol TAUTPOPUES TOREYOUV EVOL EVENXTO XU XAWUAXWOWO CUCTNUO YL TNV EXTEAECT] VEUPWVIXADY DXTUWVY.
To framework amhomnoiel T Slayeipion TV TOATAOXOTHTWY TNE TOAUGUGXEVICUEVNG, TOAUTAEUPIXAS EX-
téheone xou mapéyel unoothplEn yia tepBdihovia CPU xoa GPU, emtpénovtoc tn Béltiot yerorn tTwv
TOpWV %ot TN Blayelptorn TNC aVATTLENS VELEWVIXDY BIXTVWY OE BLAPOEA UTOAOYLOTiXd TepBdAhovTa.

0.4.1.1 TYrnneeoia Extéreong eminédwy Nevpwvixdyv AxtOony

Yo emxévipo tou framework Ppioxeton oto Service mov extehel ta eninedo (layers) twv vevpwvixdv
dwtOwV. Mia ouvortin) avdluoT tev Booixwy evepyeldy nou exteiel  Trnpeola Extéheonc Emnédowv:

e Xewpiopds SupBéviwy (Events): H vnnpesio axolel yio ewoepydpeva CloudEvents péow
atnudtey HTTP, yenowonowwvtog to Flask [31] yia tn Mdn xan tnv enelepyacio twv cupféviov.

o Extéleon ITorhanAodv Atepyaociwy: Kdle cioepyouevo CloudEvent Snuiovpyel uio apiep-
wpévn diepyaoto, cuyxexpiuéva Yo avté to CloudEvent, emitpénovtog tnyv tautdypovr encéepyaocia
yia T BéATIoTN Sloyelplon Twv TdpwV.

o ITpoeneZepyacio Acdopévwy: Ta axatépyocto dedoyéva eioddou avaoynuatilovron xou
petatpénovian yenotponowdvag t NumPy [32] Biloden yio v tanptdlouy pe v xadoplopévn
pop@Y| Tou amautel To xdde veLpwWVIXS dxTVO.

e Extéleon Emnédou: To PyTorch [33] yenowonoteliton yior Ty anoTENEOUOTIXT EXTENEST] TWY
EMTEDWY TOU VEUPWVLXOU dixThou.

o ITpoyvpappatiopwds touv Enduevouv Emnédou: H unnpeoia emxoivwvel ye tnv unneeoia
npoypoppotiopol (scheduling service) yu vo anogocicer o0 npénel va extelectel 10 endpevo
eninedo, Bdoel g BlardeopdTNTUC TOPWY XAl TWV CTEATNYXOY BedTioTonolnong.

o AiacuvoxevacTtixy) Emxowvwvic: Edv 1o enduevo eninedo avatedel oe diapopeting cuoxeun,
1 unnpeoio oelplonotel to dedouéva e€680v, dnuiovpyel éva véo CloudEvent xou o amootélhel otny
xodoploPEVY GUGXELY), oxohovddvTac TNV (Bla oxolouvdia evepYELMY.

H ewdva 0.4.1 delyvel ye Sworypappatind Teomo T0 Twe exteAodVTOL To napandve Priwata e Trneeoiog
X0l [E TIOLaL GELPAL.

Eva xplowo uépoc tne hertovpyloc tne umnpeotac anoterel 1 Awadixacio ITpostoipaciog
(Warmup Process), tou eZacgpahilel anotelecpatny| apyxonoinon xou diddeon tépwv, avtetonilov-
TAS TIC XPOVOXAYUOTERHOELS antd T AeYOUeva cold starts TOuU UTOPEL Vol EMNEEGAGOUY TNV ATOXELOWOTNTA
e unneecioc. Auth 1 Sladixacia tepthoBAveL T QOPTHOT Kol EXTEAEST) TWV OTOUTOVUEVRY ETUTEDWY TOU
MOVTEAOU Lol VoL TROETOWAOEL TNV UTNEESTA Yiol BEATIOTY EMBOOEIC YETW TOANATAGY XOXAWY EXTEAECTC.

0.4.1.2 TYnneeoia Extéleong Nevpovixdy AwxtOwy

Emniéov, éyel vhonoundel axdpa uio unneeosia oto framework pag mou axolovdel Ty (Bla Booixr Aoyt
pe autr) mou culnTRinxe mpoNYOLUEVWLS, WoT6GO, N Bacuxr Blapopd PeTad aUTOY TV 300 UTNEECLHOY
elvan 6TL eved 1) TR TN unnpeata Intd and Tov server va xodopicel ol Yo exteleotel To endpevo eninedo
EVOC veupwVixoU dixthou, 1 deltepr unnpeaio extelel oAOXANEO TO Veupwvixd dixtuo. Me dhha Adyia,
7 debtepn unneecia autopatonotel T Swdixacio extéheong Tou vevpwvixol dixtvou, efolelpovtac TN
avéyxn emxowvmviog petalld tne unneesiog xow tou dtaxopoth. To Bidypopua pofic authc Tne unneesioc
napovatdleton oto oo 0.4.2.

10



0.4. Serverless Framework xow Run-Time Scheduler

CloudEvent - HTTP

—— Spawned Thread action Receive CloudEvent
and Spawn Thread
Flask's Main Thread action

Spawn thread

Extract data from
CloudEvent and
Reconstruct Input

Set next layer as

the current Layer Execute Layer

Ask servers
scheduling service
for next device

|

Set output data as Same Device - Locally <>
current input data

|
Other Device - Remotely

Serialize Output and
get shape, data type

l

Create and Send
Next CloudEvent

I
Exit

.
®

Figure 0.4.1: Ta Baowxd otoiyela e YTrnpeoiog Extéheone emnédwyv Nevpwvixdv Axtiony xodag xou
7 OElEd UE TNV omolo EXTEAOVVTAL.
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CloudEvent - HTTP

—— Spawned Thread action Receive CloudEvent
and Spawn Thread
Flask's Main Thread action

Spawn thread

Extract data from
CloudEvent and
Reconstruct Input

Set next layer as

the current Layer Execute Layer

Set output data as No

current input data
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X
AN -
> Last layer?
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Figure 0.4.2: Whole Neural Network Execution Service Flowchart
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0.4.1.3 TYrnneeoia Extéreong Nevpwvixov Awxtdwv oto Cluster

Metd v avdntugn xou T BedtioTonoinon Tou xMBo TNE UTNEEGIOC YL TNV EXTENEST] VEUPWVLXWY Oix-
TOWV, TO ETOUEVO Bua elvol 1) avaxaTavoUT| aUTOY Twy Utnpeclwy oto Kubernetes cluster. H Sobixacio
QUTY) OYEDIAOTNXE Yiol VAL BLACPAA(CEL TNV OPOAY) XAUAXWOT), TNV ATOTEAECUATIXY] XUTAVOUT] TOPWY XA
TNV QVTATOXELOT OE BLOPOPETIXG GEVIPLO PopTOu amd requests, elte younid eite uPnAd. Ta BAuata Tou
xdvouv deploy tn unneeoia oaut oto cluster eivou:

o Anutovpyio Yuothpatog-Cluster: Apyixd, dnwovpyolue to cluster Kubernetes-Knative
yenowonowdvtag to epyaheio kubeadm CLI [34]. Auté nepihapBdvel Ty npootixn cUoXEVHY 010
cluster xat 0 plduion otouyelwy énwe To Flannel yia to dixtuo xaw to Knative yio tn Soyeipion
epappoyoy serverless. Enione, eyxadiototpe to NVIDIA device plugin ywx to Kubernetes yia
olayelpton Twv GPUs.

e Docker Ewxdveg (Images) Yrnpeoiog: o va avaxatavelpoupe Tic unnpeoiec, mpénel va
g eviduloxdooupe oe eixdveg Docker containers. O xddixag tng unneecioug xou ot e€apTHOELS
TNC EVOWUATMVOVTOL OE QUTES TIC EOVES, oL onoleg avePBaivouv oto DockerHub yio euxoldtepn
TpoofooT xou avaxatovour oto cluster.

o Apyeio POOuiong YAML: H avoxoatavour; twv umneeolody yiveton pe tn Pordela apyelwy
YAML [35]. Kdde apyeio opiler néde mpéner var dnuovpyndel xou vo Swotnendel pior ouyxexpiuévn
vrneeoio.  IephauBdvouv pululoeic neptBaAlOVTIXWY PETABANTOY, TEPLOPLOUOUE Xl TUPUUETEOUC
xAdxwone, 6nwe to aptdud Twv requests mou pnopel vo eEunnpethoel tapdhhnia éva contain-
er/Kubernetes pod ploc unnpeoioc. Eva yapoxtnplotxd napdderyua etvon 6t oe autd to apyela
optleton to Node Affinity, mou Selyvel tn cuoxeun mou Yo exteheatel 1 xdde cuvdptnom, OTay AUTH
yivel triggered.

o Avtopatn Khpdxwon e to KPA: Xpnowonotolpe to Knative Pod Autoscaler (KPA) [36]
v Suvopx xhdxwon. O KPA napaxohouvdel tic epyaociec tou cluster xou npocapudlel avtduota
Tov apub Twv containers/kubernetes pods avéroya e ™ Lo,

Avutd o PAUoTa ETLTEETOLY TNV OMOTEAEGHATIXY OVAXOTAVOUY) TWV UTNEESLOY aTo cluster, divovtdg yag
™ Suvatdtnta var avomTOEoupe ahyoplduous SpotohGYNOELS TKV ELOEPYOUEVLY artnudtny (requests) yio
NV anodoTix Toug eEunnEéTno).

0.4.1.4 Tevixn Apyitextovixy e scheduler

ITéves amé autd 1o mhaloto (framework), évag xevtpde scheduler propel va xadopioetl oe nolo cuoxeLn
Yo exteleotel €va veupWIxG Bixto 1) éva omd Ta enimedd Tou. AUTH 1 OAOXANPWUEVN OEYLTEXTOVIXN
anewxoviletoan oto oyfua 0.4.3.

0.5 Reinforcement Learning based Scheduler

H opydvwon tou framework emexteivetor xor oto scheduling twv awtnudtov, €mXEVTPOVOVTAC TNV
TPOGOY 1] OTOV TREOYPUUUATIONS TV TORWY XL GTIG TEYVIXES eVIoy LTS Wdinong. Katd tn didpxeia awthc
e dduactog, To framework npocopudletan oe Sdpopa cevdplo utohoyioTixol @opTou. H evioyutind
pddnon anotelel T Bdon mou emtpénel oto framework vo Aopfdvel anogdoelg oyeTixd Ue TN Sovour
TV eMTEdWY TOU VeLpwVixol dixthou. Ilpdxeiton yia meploodTepo and amAy| Sluyelplon ToOpwY, APoOL
amotehel €voy SuVoXd TROYPUUUATIOTH oL avaklel To tepBdihov, avadétel tdpoug xan dtaopailel Tnv
AMOTERECUATIXY EXTEAEOY) TOU VELPWWLXOU BLxTOOoU.

To Vepého g evioyvtxic Mddnone (Reinforcement Learning - RL) ectidlouv oe évav mpdxtopa
(agent), éva nepiBdhhov (environment) xou éva chotnue avtopoBov (rewards). Yto RL, o mpdxtopac
pordolver vo Aopfdver oxoloudia ano@pdoewy UeE OXOTO VoL UEYLOTOTIOLACEL TIC CUCCWREUTIXEC AVTUUOBES
oe éva mepBdihov. Autéd ouyPoivel pe Tov TedxTopa Vo oAANAETSRE Ue To mEpBEANOY, houfBdvovTag
HETEA X0 AVTOAAACCOVTAS OVATEOPODBOTHCELS GE LOPPY| AVTALOBAV 1) TOLVEV.

13



Table List

Client
Scheduler Scheduler Scheduler Scheduler Scheduler
ﬁ ﬁ a L] . o o L] L] ﬁ ﬂ
m e Lo m e m m
Server

o

@y Knative ¥ Knative €y Knative

K8s K8s K8s

Device 1 Device 2 Device N

A

Figure 0.4.3: Apyitextovixf Tou nhouciov (framework) poli pe xevtpxéd scheduler

Ye authv v gpyooia, oxomdc elvar 1 avdnTuEn VO SUVOULXOU XL TEOCUPUOCTIXO) UNYAUVICUOY Tpo-
yeauuotiopol tdpwy pe yenon texvinwdy RL. Autdg o unyaviopde anooxonel otny €€unvn Slayeipion tev
TOPWY OTA EMINESA TWV VEUPWVIXWY JIXTUWY OE TEAYHATiXd Xedvo, Ue yvhuova TN Bektiotonolnon g
amod00NE XU TNV AVTATOXEIoN o PeToBuAAduevVa UTOAOYIC TG popTio oTo Edge.

Ogiopde Xwpou IMoagathenone (Ilegifdiiov)

O ypoc mapathpnong éxel onuavtixd pdho TNV ATOTEAECUOTIXOTNTA Yiot TNV exnaideuon tou RL oAyo-
plduov. Méow tou ywpouv-xatdotacy nopathencng, o npdxtopac RL avtilopfdveta to nepBdilov xau
haBdvel anogdoelc. H xatdotoor autr) anoteleiton and noixiha dedopéva xal TopaUéTeous Xal anoTehel
™ Bdom yior Ty €EUTYN XATAVOUT| TOPWY.

Kevtpué otoiyelo yior v anoteheopatixdTnta xon Ty TANEOQopLoxt oo TG Xotdo oG Toeathenong
anoTeAEl Lol TEQIEXTIXY TEOCEYYLON YLo TNV TopaxoholUNoT xaL TN cUAAOYY| Bedouévev. e autd To
mhaioto, yenowonototvia dVo dienagéc ypouphc eviordy (CLIs), to tegrastats [37] o to perf [3§],
YLOU TNV XOTaYpopY) HETEHOEWY omd To LTOAOYLGTiXG TEpBdhhoy (Bnh. umoloyioTéc cuoxevés). Autd
o gpyoheior anoteA0VY GNUAVTIXG GTOLYE(D TNE OTEATNYIXAC TOEUXOAOUUNOTC, EMTEETOVTAS TTEOYATIX00
YEOVOU EVNUERWOELS GYETIXA YE TN YENOWOTOMOT TORWY, TN CUUTERLPORE TOU UAXOD Xl TNV ONOTEAEC-
paTXOTNTA EXTEAEOTC.
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0.5. Reinforcement Learning based Scheduler

Emmiéov, n mpocéyylon Tpog ToV YMpo Topathenong enexTelveton mépa amd TNV oA SUANOYT BEBOUEVLY
xatd T Budpxeio TNg extédeonc. Avoyvepiletoan 1 xplown onuacio tou profiling Twv oTpwudTwV veup-
WVIXOY DXTOOVY YLl TNV XOTAVONOT] TOV YUEAXTNELO TIXWY TOUC.

Ye autrv v xatedduvor, o xdpeog napatrhenone dlatpeltar oe 800 Soxpltéc meployég: v online ¢don
xou Tnv offline ¢dom.

Online ITepiodog - ITagaxohoVdnomn xatd tnv Extéleon (Runtime Monitoring)

e Epyaieio Perf CLI: Katd tnyv online gdor, émouv hayPdvovton Suvouixéc amo@doeic, yernot-
pomoteitan to gpyoheto Perf CLI yia ) culhoyy xplowwy Yetpxdy and xdde cuoxeLr], CUUTEPLA-
ouBovouévev:

IPC (Evtohég avd x0xAo): Métpnon tne anodotuxdtntoc tne extéheone eviormv CPU.

Aocroyieg ITpoonéhaone MvAunc (Cache Misses): AZiohdynon twv potifey npdo-
poaong ot pviiun.

Context Switches: Ilopoxololinorn twv context switches ylo amoteheoyotixy doyelpion
v tépwyv e CPU.

Page Faults: Ilapaxohotdnon tne Soyelpione uvAung.

o Epyaieio Tegrastats CLI (Ewdux6 yiow To Jetson): Yt mhatpdpues Jetson [29], yenot-
pornotelton eniong to epyaielo Tegrastats CLI yio v xotaypoapy| wiag mowahiog deuxtoy amd xdde
GUOXELY), TEQLAOUBAVOUEVLYV:

Koatavdiwon Ioyxboc (Power Consumption): Métpnomn tne xatavdiwong toyog yio
EVEQYELONY) ATOBOTIXOTNTAL

XeHon MvAunc (RAM Utilization): Iopoxohovdnon tne yerione pviune yia BértioT
dlavopur| mépwy.

XeAon CPU (Méorn twph xouw Tumixr Anoxiiom): Avdiuvon CPU goptiou yia
avly veuoT UTEpQOPTIONC ULIC CUGXEUNG.

Yuyvotnta CPU (Méor »xouw Tumixr Andxiiom): Ioapaxorolinon twv toyuthtwy
poroytol CPU yio Suvaxr xatovoun.

Xehon GPU (GPU Utilization): AZohéyrnon tou goptiou epyosioc tne GPU yio anote-
Aeopatixn avTioTolylon epyootdy.

Yuyvotnta GPU (GPU Frequency): Iopoxohovdnon tewv toayutAtoy poroyod GPU
yio Béhniotn anddoon.

e Teéyovoeg Kataotdoeig Ioyog twv Juoxeudv (Devices Current Power Modes):
O1 tpéyouoes XATAGTIOELS LoYVOC TWY CUOXEVEY cuUTERLAAUBEVOVTAL OTA ELoaY GUEVO SEBOUEVA TTOU
nopEyovton atov medxtopa RL.

¢ Yuoxevf Extéleong tou Ilponyodpevou Ttpohuatog (Previous Layer Execution
Device): Eniong, nepihopfdveton mAnpogopla Yo 1 GUOKEUH GTOU EXTEAECTAXE TO TEOYYOUUEVO
otpwua.  Auth n mAnpogopla Bondd oty uelwon g xaduotéenong Tou BixTOoU, ETLTEETOVTUS
otov npdxtopa RL vo Aoufdvel evnuepwuéVes anopdoels oYeTIXd Ye TNV ToToUETNOY) TOU ENGUEVOU
OTEWOUATOC.

Offline Ileplodog - Profiling

e Profiling tov Ytpwpdtwyv (Layer Profiling) xow oAéxAnpwyv twv DNN: H neplodoc
offline nepthauBdvel to profiling twV YELOVOUEVWY GTEWUATWY AAAG XAl OROUATIEOY TWY VEURKVLXWY
dxtOwY, 6mou aflohoyeitan 1 anddoon tous. Katd tn Sidpxeio tou profiling, e€dyovtan ot {dieg
HETPNOELC ambB00TE OIS xou xaTd TN didpxeia Tng online gdorng.
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o ITepiBdrrov CPU xow GPU (CPU and GPU Context): To profiling mpaypatonoieiton
1600 oto mhaloo e CPU 600 xau tne GPU, napéyovtag mhnpogopiec yia o mode tor didpopa
OTEWUOTO X0l VELPWVLXA BlxTua amodidouy ot didgopo hardware.

e Profiling 3tpwpdtwv xar oAdxAnpwyv twv DNN oe Aidpopeg Katactdoeig
IoyVog (Layer Profiling Across Power Modes): To profiling 8ev neplopileton oe yio pévo
XOTACTUOT LOYVOG, OANG avatelvetar o OAEC TG OLECLUES XUTAOTACELS LOYVOC TWY GUOXEUMDY.
Avuth 1 ouvolt| tpocéyyion e€aopolilel tL 1 anddoon Ty o TpwudTey afloloyeiton LT Sudpopes
hertovpywée ouvirixec. To profiling oe Bidpopec xataotdoelc Loy oS TUPEYEL TANEOPORIES Yidl TO
WG T oTEOUTA xo ohéxAnea too DNN cuunepipépovion o TepITTOOELS SLPORETIXAC XATAVIA-
WOoNS LoYVOC XL IXAVOTATWY ambB00YC, EMTEENOVTUC 0TO TAdiolo va mpooapudletar €€unva oTa
ewdd yapaxTnelo Tixd xdde cuoxeunc.

Auth n tohudido tatn a€lohéynon (oto mhaioto extéheone {CPU, GPU} xou o didpopes xataoté-
oelc 1oy 00 TWY CUGXELWY) anoTehel onpovTixd oTolyelo GTN OTEATNYIXY YIol TNV OMOTENEGHUATIXT
X0l TEOGUPUOC TLXY) EXTEAEST] VELPWVIXADY BIXTOWY.

E&iocwoeig

Ye yodnuotixr pop@n, umodétoviag 6Tl 0 apliuds TV cuoxeudv etvon (cog ye N, 1 xoTdoToom
TapaTAENONS Yiar Eval TUY Ao GTEMOUA EVOS TUYOlOU VELPWYLXOL BixTou, To onolo €ylve profiled oe xdie
ouoxeun, oe xdle xatdotaon woyvog xa oe xdle mhaiowo extéheone {CPU, GPU}, du Atov:

Mo xéde cuoxevyy D; omou i € 0...IN, 10 Tpéyov didvuoua xoutdoTtacng divetar amd T @dor online wg
e&nie:

1PC;
CacheMisses;
ContextSwitches;
PageFaults;
Power;
RAM;

D; + | CPUs_mean_util; (0.5.1)
CPUs_std_util;
CPUs_mean_ freq;
CPUs_std_ freq;
GPU_utili
GPU _freg;
Power _Mode;

INo xéde cuoxevn) D; émou ¢ € 0...IN, to profiled Sidvuoua otp®duatoc ¥ ToU VEUP®VIXOD BixTOOU Yid TO
mhaioto extéreons ¢ 6mov ¢ € {CPU,GPU} xau v xatdotaoy oyvog pm diveton we e€fc:

IPOi_c_pm
CacheMisses; ¢ pm
ContextSwitches; . pm
PageFaults; . 7,,7;
Power; . 7an
RAMi_c_pm
Di ¢ pm < | CPUs_mean_util; . pm (0.5.2)
o CPUs_std_util; . pm
CPUs_mean_fre&i . pm
CPUs_std_ freq; . ;m
GPU _util; ¢ pm
GPU_freq; c_ pm
EzxecutionTime; . pm
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0.5. Reinforcement Learning based Scheduler

Auté 1o Sdvuopo uroroyileton i xdde cuoxevh D; 6mou i € 0...N, xdde xatdotaon woyboc pm xou
x&de Thaiolo extéheonc ¢ émouv ¢ € {CPU,GPU}.

Yuvdudlovtag xatoxdpupo oha tor Slavbopata and tnv offline gdor, ta N Swaviopato omd v online
(pdom, xadidS X0 T GUOAELY) EXTEAEGTC TOL TPOTYOVUUEVOL OTEMUATOS (UE Yenomn one-hot xwdixonoinong),
ONULOVEYEITAL 1) XATACTACT) TOPATHENONS.

Elvar onpoavtixd va onpeiwdel 6tL OAeC oL TWES XAVOVLXOTOLOOVTOL UE TNV Xavovixomolnoy min-max
Tpoxelévou va Beloxovton otnv (Bar xhipoxa.

Oplopdc Xwdpou Apdong

O ydpoc dpdone (action space) otnv evioyutixh udidnon (reinforcement learning - RL) avunpocwnedet
T0 oUVOAO TwV amo@doewy mou umopel vo Adfer To povtélo RL. Autéc ov amogdoeig urnopel va elvon
apxeTd hemtouepeic xat vo meplhopBdvouy emAoYES, OmWE 1 EMAOYT TNG CUCGKEUTC TROOELOUOU YLoL TOV
endpevo eninedo, 1 xadoplopds TG AELTOVPYIXAC XATAOTACNS VLol AUTHY TN cUoXELY] xou 0 xaopLouog
Tou mhatalou extéreone (CPU ¥ GPU). Autéc ol hentopepeic amogdoeig elvar onuavtinés Yo Ty axpi3n
X0l TEOCUPUOGTIXY XATAVOUY| TTOPWV.

Qot600, 0 YWEoc dpdone Unopel vou YIvEL onuavTxd UEYTAOG, omaUTMVTAS évay TepdoTio aptdud Brudtwy
exmaldevone yia To Yovtého mpoxetuévou va pddel. T'a vo avtigetonicovye authv v nolunhoxotnta
%ol VoL SLEUXONOVOUUE TNV TROXTIXY] EXTALBEVCT), UToEOUUE VoL EEETACOUUE ATAOTOINUEVES TUEUAAAYES TOU
Y0pou dpdone. Autol ov amhonomuévol yheot dpdone umopel va mepthapfBdvouy v emhoyR wovo e
enbuevne ouoxevic (ywelc va hopPdvovtar vddn N AettovEyYXh xoTdoTaoT xo T0 TACLO EXTEAEONS),
™V emAoYY 1060 NG GUOXELYIC 600 %o TOU TAMGIOL eEXTEAEONS, 1) TOV XoWOELOUd HOVO TNG GUGXELYC
X0l TNG AELTOLRYIXAC XUTAOTAOTG.

Enthoy?r Movo tng Endpevng Xvoxevdq:

Ye authv v mepintwon, ye otadepd TANLOLO EXTENEONC Xl AELTOURYIXEC XUTAOTACELS TWV CUOXEVWY,
0 yopoc dpdone elvan éva Sidvuopa AS pe pixoc (oo pe tov aprdud twv cuoxeumy. Kdade déon AS|i)
AVTLTPOCWTEVEL TNV TIAVOTNTA ETLAOYNE TNG CUCKELNG i

Deviceg
AS Devicey

Emiloy? tng Endpevng Xvoxeuvhc xou tou ITAawciov Extéleonqg:
‘Otav emAéyouue 1660 TNV ENOUEVY GUOKELY 6GO XL To TAAioL0 EXTEREOTS, O XMEOS dpdong elvan éva
dudvuopa AS pe uixoc (oo ye SImAdoLo apldd TV GUGXEVWYV:

Deviceg, py,
Demceogpu

AS Deviceq py
Devicey ,pu

E86, av i mod 2 == 0, n ¥éon AS[i] avunpoownevel v mdavétnta emhoyhc g ouoxeufic D =i//2
oto mhafoto CPU. Avtideta, av i mod 2 == 1, n ¥éon AS[i] avuinpocwnedel tnv mdavdtnta emhoyhc
e ovoxevhc D = i//2 oto thaioio GPU.

Emiloy? tng Endpevng Svoxeung xou tng Asttovpyixnc Katdotaong tng Lvoxeung:
Ye autd 10 GEVEpPLO, 0 YWpog dpdong elvar éva Sdvuoua AS ue urixoc (oo e tov apliud TwV CUOXEVDY
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TOANATAAGLICOUEVO UE TOV APLUUO TV AELTOURYIXWY XATAOTACEWY:

Demceopmo
Deviceg M1
Deviceg,m,

AS + .
Demcelpmo

Dem'celpm1
Devicer,m,

Trodétovtog 6Tt yio x&de cuoxeur| undpyouv P hertovpyinés xataotdotls, To AS[i] avtinpocnnelel tnv
mdovdtnta emhoyhic e ovoxevic D = i/ /P otn hertovpyixh xatdotaon PM =i mod P.

Enthoy? xaw twv Avo IThauciowyv xow tov Asttovpyixody Kataoctdoewy Mall pue tig
Yuoxevéc:

Y10 mo mohdmAoxo oevdplo, TOCO TO TANCO EXTEAECNC OCO XOL OL AELTOUPYWXES XAUTOGC TACELS
XWOXOTIOLOUVTAL GTOV YWeo dpdone pall e Tic ouoxeués. O xhpog Bpdone DLUUOPPOVETAL UTAME GUV-
dudlovtag to 800 mponyolUeva TopadelyoTa:

Deviceg,mg.pu
Deviceopmogpu
Deviceg,m, .pu
Deviceo,m, ,pu

AS +—

Devicer,mg.pu
Devicei,mq,pu
Dem’celpmlcpu
Deviceopmlgpu

E3¢, av i mod 2 == 0, n 9éon AS[i] avunpoowneder v mdavomto emhoyhc g ouvoxeuric D =
i//(2P), otn hettoupyweh xatdotaon P = (i//2) mod P oto nhaicio CPU. Avtideta, avi mod 2 == 1,
n Véon AS[i] avumpocwnedel v mdavétnta emhoyhc e cuoxevic D = i//(2P), otn Aettovpyini
xatdotaon P = (i//2) mod P oto nhaioio GPU.

0.6 Xvuvdetnon AviouolfBAig

H ouvdptnon avtopoBrc odnyel to poviého evioyutinhc pdidnong xou oxond €yel va xadodnynoel tig
evépyeleg mpog TNy xatediuvon tng Beitiwong g anddoong TNg exTtéREoNg TOU veupeVxoD dixtiou. H
onulovpyia ploe amoteleopatinrc ouvdptnone avtagoBne etvon tokdmhoxn xan amontel Bardd xotovdnon
TWV OTOYWY TOU TAUGCIOU XU TV AENTOPEPELWY Tou edge computing. Xtdyoc tng elvan var dlocpaiioet
™ ouveyl exnhipwon N utépBao e Tupgwvioe Eninedou YTrnpeoiog (SLA). T vo emiteuydel auto,
xodopilouye éva xoTOTATO XATWEAL ombdoone xatd tn didpxela Tou Tpo@ulapiopatoc. O mpwtopytxoc
0T6)0¢ elvon Vo Beloxeton 0 YpOVog EXTEAEOTC TWV CTROUATWY XdTw and autd To xotweil. H cuvdptnon
avtapgoBnc vrohoy(lel avdioya, ovoxovevtag Yetxr] oavtadol3r] Yot XUAUTERT, ombB00T o UELWUEVT
HATAVEIAWOT] EVERYELNG, EVE TUpdAANAC AauBdvel uTOPT TNY AmOXAOY 06 TO XATWTUTO XATWPAL OTOV
0 yedvoc extéleong unepPaivel autd o bplo. To clotnua avtauoBric anotehel Paocwd ctoiyelo NG
OTEATNYIXAC EXYWENONE TOpwV YE BAom TNV eVoyLT! UAINoT Xou ETLTUYYAVEL LOOPEOTLA AVAUESH OTH
Behtiotonoinom g anddoong Xl TNV AMOBOTIXOTHTA OTNY XATAVAAWOY) EVERYELNG.

Eva mopddetypa CUGTARATOS ovTopoB3he elvor:
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0.6. Xuvdptnon AvtopoBic

o YUotnua AviauolBhc pue Awaipeon:
— ApvnTixr AvtapoiBn: ‘Otav o ypovog extéheong unepPaiver to SLA:

neg rew < layer execution time — SLA time (0.6.1)

— Oetixny Avtapoifr: Otav o ypdvog extéleong elvon uxpdtepog 1) (oog ye o SLA:
pos_rew < 1/(10 x power _consumption X execution _time) (0.6.2)

Ov née e avtopoBic Beloxovton oto ebpog [-1, 1] eneldh ov ypdvor xou 1 xatovdhwon
eVEpYELo Xxavovixonololvtal ato evpog 0-1.

o YVotnua AvtapolBrg we Agoaipeon:
— Apvntixny AvtapolBn: Otav o ypdvog extéreong unepBaivelr to SLA:

neg rew < —(layer execution time/SLA _time)

— Positive Reward: ‘Otav o ypdvoc extéheonc elvan wxpdtepog 1 (oo pe to SLA:
pos_rew < 1/(10 x power _consumption X execution _time)

AZ{ler va onueiedel 6TL xatd v apy iy exnaldeuo, To povtélo eugpavilel Tuyaio cupteplpopd,
odnydvTag ot yeydhoug Ypovous extéreons. Autéd umopel va elvan tpofinuatind xodode 1 Tin
e aevNTLNC avTapoBic ot dpyn unopel var Tacel TNV TAEN YIALBWY, EVE PETA and Alyn
exmaldevom TV T8N Sexddwv, Vewpdvtag €Tol 6Tl xdvel TOAD xah| SOVAElX EVE autd dev
elvan ampaitnto. Autd emAVETOL YE TN TEPIXOTY| TV avTapoBny ot otadepd ebpog, 6nwe [-10,
+10].

Apyrtextovix Moviéhouv Evioyvtixrie MdaOnong

H evioyutin| udinon nepthopfdvel plor mouxthlar SLpope TV dEYLTEXTOVIXOY LOVTEA®Y, xadéva oyedLoo-
HEVO YloL Vo avTLHETOTLEL Bidpopec TpoxAnoels xou cevdpta. §2otéo0o, adilel va onueiwdel 6Tl 1 emhoyy
TOV OPYLTEXTOVIXMY NG EVIoYUTIXAS pdinone neptopileton xdnwe and ta gpyoleior Tou undpyouy. Luy-
HEXPWEVA, amd TN oTIYRY Tou yenowdmoleitan To maxéto Stable Baselines3, ta Sidéoiua povtéla etvou
ouyxexppéva. o avohutnd, etvon to Advantage Actor-Critic (A2C) [39], to Deep Deterministic Policy
Gradient (DDPG) [40], to Deep Q Network (DQN) [41], to Hindsight Experience Replay (HER) [42],
to Proximal Policy Optimization (PPO) [43], to Soft Actor-Critic (SAC) [44] o to Twin Delayed
DDPG (TD3).

Y epyooio auth, yenowonodnxe o aiydprduoc Proximal Policy Optimization (PPO) [18]. O
PPO Eeywpiler Moyw Aoyw tne otadepdtntde tou, tne anodoTixdtnTtde Tou 6To JelyUo Xt TNS TEOCup-
pooTxdTNTéC Tou oe LPNAAC BdoTAoNG YWEOUS XaTacTdoewy. Autde amotehel To x0plo otolyelo Tne
OTRPUTNYINAC UAS YL TNV XATAVOUT| TOPWY, ETUTEETOVTOG TeaYatixy) AMdn anopdoewy oe Suvopxd tepl3di-
Aovta oty dxen.

ITpocopoiwon Popriou

N tpocoyolwon Tou goptiou epyasiag Tou Epyeton xaTd TNV TEaYUATXr EXTEAEDT), Yenoulono|dnxe éva
povtého un-opoyevolc dodxaciog Poisson (Non-Homogeneous Poisson Process - NHPP) [45]. Autd
EMTEETEL TNV AVATOEAY WYY TOWIAWY BLAPORETIXWY OEVORIWY POopTIwY MoV UToEoVY Vol EUPAVIOTOUV OF
mporypatnd tepi3dhhovto edge computing. e avtideon ue tnv opoyevi xatavour Poisson mou unodétel
otodepd péco pLiud artnudtev (A tapduetpog TN xotavoprc Poisson), 1 un-opoyevic napodhay | elodyet
HETABANTOTNTA 0TO PLIUS AUTO, AVTAVAXAMVTOS TN Buvox] POoT TwV TepBalhoviwy edge computing.
T v npocopoiwon auth, yenoworoteiton 1 teyvixf) Thinning [46], nov emitpénet ) dnpovpyio un-
opoyevolc dadixacioc Poisson mou avtovoxhd duvauxés ahhayée otic pudploets dpine yeyovotwy.
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0.7 A&wohbéynonm

Ye auth) T evétnTa napouctdleton 1 Sladxacio aELloAGYNONE OV YENOWOTOLACAUUE YLl VoL 0ELOAOY COUUE
To TAXLOLO o TO UOVTEAD EOYPUUUATIONOU TOU TEpLYpdpnxe OTIC evotnTeg 4.1 xau 4.2, avtioTolya.

IMewpopotinr Avdtadn
H rewpoportind| Sidtaln tepthopféver tpio Edge ouyxevéc xan pla ecovied, unyavs (VM).

Yuvoxevéc Edge

‘Evo Jetson AGX Xavier, mou pa mhatgdppa udmiic anédoone SoC (system-on-a-chip), nopéyet onuoy-
) UTohoyto T Loy b xan 800 cuoxeuée Jetson Xavier NX, mou efvon avary VploPEVES YLoL TNV EVERYELOX
TOUG AMOBOTIXOTNTA X0l TNV XUTOAANAGTNTE Toug Yo eQappoyéc oto edge. AuTéC oL GUOXEVES axUTC El-
vou UTEOVUVES YLoL TNV EXTEREDT) TWV DLAPOPWY ETUTEDWY TWV VEURPOVIX®Y BIXTOWY PE TNV eXTEAECT] TNG
unneeaiag (service) mou meptypdpeton oty evétnra 4.1.1.  Aev ocuppetéyouv otig dadixacies AMdng
anoPdoenwy mou oyeti{ovial UE TOV TPOYPAUUUATIONS Xl TNV xotavour tépwy. Avtideto, extelolyv Tig
UTOAOYLOTIXEC gpYaoiec 6mwe xadodnyolvton and to xeviped VM. Autr n dudtoln avtiotoiyel otig
TeoxTxég cuviixeg Tou edge computing, 6mou ol epyacleq XATAVEUOVTUL ATOTEAECUATING OE BLAPOPES
cuoxevéc tou edge v TN pelworn g xoduoTépnong xaL TNV eVioYUoT TNES CUVOAXHC ambdooYE TOU
OUC THUATOG.

Kevtpwxr Eheyxtix Movéda (VM)

Mo euxovixdy unyovi (VM) mou guhoZevelton o€ éva xeVTpxd Server, AELToUpYMVTIS KOG XEVTEIXY) LoVEdaL.
To VM biodpapatilel xplowo pdho otov cuvtovioud xou tn Pehtictononon tng diavoung mdpwv oe
oh6xhnpeo To dixtuo. EmPBiénel xon doyelplleton TIg anopdoelc Xatovounc TOpwyY EXTEADVTIC TOV ahYOpL-
Yo evioyvtnnc pdinone mov meplypdpeton otny evétnTa 4.2

O nivaxoc 5.1 mopéyel pLot AETTOUERY] EOVAL TWV TEYVIXDY YOQUXTNELOTIXDY TWV GUGXEUMY.

1lightgray
Suoxeuh EreZ «c cpU | 12 L3 RAM GPU
oxELN TecEpYAOT Cache | Cache
512 Tupriveg
Xavier AGX 8 mupvec ARM | oy | yMB | 32GB LPDDRax | NVIDIA - Volta
v8.2 64-Bit xou 64 muprveg
Tensor
6 mupfvec NVIDIA 3N%IDI A “\‘;Sﬁvﬁ
Xavier NX Carmel ARM@®) | 6MB 4MB 8GB LPDDR4x ,
. GPU xou 48 muptveg
v8.2 64-bit
Tensor
16 muprvec Intel
VM Xeon (Skylake, | 64MB | 256MB | 16GB -
IBRS)

Table 1: Teyvixd yapaxtnelotixd diapopetindy x6ufwv Edge xou Cloud Server

0.7.1 IIpoxAroeic YAonoinong

Kotd ) didpxela Tng @dong vhonolnong autrg tng €eeuvag, avTetwrioaue pla TANdopea ToAOTAOXWY
TEOXANCEWY GTNY TEOoTAYELd Loc Vo HETAPEPOLPE VewpnTixéc €vvoleg o mpaxTixéc AUoELS.

e YTroothellry GPU - Kubernetes: T'o va unootneiler to Kubernetes extéieorn xdduoa
oe GPU, elvar anapoitntn n npoodxn tou NVIDIA Device Plugin [47]. Autd n npoodxn
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evonpotovel utootieln GPU oto cluster, anowtdvtog oupBatdtnta pe v €xdoorn tou hoylo-
wxol Jetpack tne NVIDIA [48]. Ewludtepa, to NVIDIA Device Plugin efvon oupPotd pe tic
exdooeic Jetpack > 5.0 (ot mpaypoatiedtnta elvar cupPotd pe tny nvidia-docker [49] >= 2.0 xou
nvidia-container-toolkit [50] >= 1.7.0 nou eyxadocTavtou oto Jetpack > 5.0). Qc ex tovTou, Ta
Jetsons mpémel va avaPaduicotody oe wa cuPaty) éxdoor Jetpack, énweg to 5.0.1. Emmpdoieta,
1o PyTorch Docker Image nou ypnowonoteiton we base Image, mou eivan to 4t-pytorch:r35.2.1-
pth2.0-py3, mpoéeyetan and tov xatdhoyo NGC xon emBEIAREL ONUOVTIXES OMAUTACELS YDEOU ATO-
Wxevone (13GB). Aedouévou tou epiopiopévou anodnreuvtixod yweouv EMMC otic cuoxeuée Jet-
son, i tpaxTixy Aoon nepthaufdvel ) yenon e€wtepixcdv USB flash drives. Autéc ol e€wtepinég
povadeg anodrixevone cuPfBdihovy oty aOENoT NG YWENTXOTNTAS ATOUAXEVONS, SLEUXOADVOVTOG
NV EYXATAGTAON QUTAV TwV Yeydhwy Images. Me tnv vionoinorn avtic e AVoTNg, ETTUY YEvETOL
OTOTEAEOUATIXG 1) AVTWETHOTIOT TWIAVMY TEQLOPLOUWY ATOVAXEVOTC.

e YTrootheEn GPU - Pytorch: H gbéptwon poviéhwv oty GPU pe to PyTorch odnyel oe
onuavtief, yerion RAM (repinov 1-1.5GB), npdypo mou dev elvon cupfatd pe Touc TEPLOPLOUEVOUS
népoug Tou edge computing, ebixdtepa oTic cuoxeuvég Jetson Xavier NX. I autd tov Adyo, 7
a&lordynom da npaypatonomnel poévo oto mhaioto extéheonc oty CPU. Mehovuxéc epyaoiec Yo
emAUoOLY aUTO TO {HTNUA TROXEWWEVOL Vo uTooTne(leTal, Ue MYOTEROUE TOPOUS, EXTENEDTT) LOVTEAOU
ot GPU vy xahOtepn anodotudtnta.

o Xwpog Evepyonoinone Evioyvong Mdidnoneg: Xtov topéa e Evioyvtinrie Mddnorng
(RL), to povtéha cuviideg Tpénet vo eEepeuvioouy To YGpo Spdomng Yo var uddouv o xohh ToATXY.
Edv o yopoc dpdorng elvar tohb yeydhog, n anoteheopatixt| e€epedivnor Unopel vo tdpel TEptocdTERO
Yeovo, pe anotéreopa mdavae va auEniel o ypdvoc exnaideuonc. Ou mpdxtopes Umopel va ypetao-
o0V TeplocdTepeg aAANAeTOpdoElS Ue TO TEPUBEANOY VLol VoL EEEPELVACOUV XAl VO XAUTOVOHOOLY TIC
CUVETELEC DLaPOopeTIXOVY EVERYEL®Y. [l auTdV TOV AbYO0, 0 YEOoC dpdone amhonoleltal Ye SLdo oo
lon pe 3, éva yia xdde cuoxeur| ntou xadopllel ubvo Ny enduevn cuoxevy| 6mou Yo exterectel To
enduevo eninedo.

e Tune tng Evioyvtixnic Mdadnonec: To Tuning oty Evioyut Mddnong eivon yio dOoxoln
xa yeovoBopea dladixacta. Auty 1 uehétn Yo emxevipwiel oe Evay neplopiopévo @dopa e€epebvnong,
YENOWOTOUOVTAS TECOEPX DLUPOPETIG CUCTHUNTA OVTOOLBNC TOU TEPLYPAPOVTOL OTNV EVOTNTA
Scheduling. Emnpdodeta, 1 e€epedivnon twv unepnapauétowy Yo mepthopBdvel xupiwe v €&-
gpelvnon e nopopéteou Generalized Advantage Estimation Lambda, pe ouyxexpiéveg Tipéc
émwe [0.9, 0.7, 0.5, 0.3, 0.1].

0.7.2 Amnoteléocpata Ielpapdtwy

‘Onwe avapépinxe teonyouuévng, ol devepynieloeg melpadotinés doxipés xdhuoy EXTEVMS BU0 GUCTH-
portar avtapol3ng, To oot avTopolBhc ue apaipeot xou Ye dlakpeo), TepthauBdvovTog Eva PAoHaL TLWY
Nwda (X), ouyxexpwéva (0,1, 0,3, 0,5, 0,7, 0,9], 6ha exteholyeva péoa oto mhaioto (framework) mou
onpovpyHinxe edixd yio outh T uerétn. Kou ot 80o unneeoieg, nepthopfavouévne tne extéieong eninedo-
TPOG-ETUNEDO Xot TNG cLVOAXAS, Vot UTooToVY Aenttoyept| alloddynon. Ta va aflohoyioouye Ty anddoon
TV alyopituwy evioyuong udidnong, Yo yenowonolooupe éva cbvolo mo amhwy schedulers.

e Tuyaiog Scheduler: Agopohoyel TNV extéheon VEUPLVIXGDY BIXTOWY GTIC CUOXEVES e Tuyalo
TpoéTO.

e Round Robin Scheduler: Apopohoyel tnv extéheon VELPWVIXGY BXTOWY GTIC CUGKEVES GUY-
puva pe tov ahyoptduo Round Robin.

e EXdyiotn Xperion CPU Scheduler: Apgopohoyel v extéleorn veLpovixdy Bixtiny ot
CUOXEUT| ME TNV EAdyloTh yerion CPU.
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0.7.3  AvtapoiPn xatd tn dSidpxela Tng eExnadELong

Avuth 1 evétnta Topouoidlel Tov ENEGOBLKS HEGO GPO TWV AVTOHOBOY and oevipla exTaldeuons, Tpoo-
pépovtac plor exdva OTIC TEOXAACES ot TNV TEOodo Twv poviehwy. To oyfuata 0.7.1a xou 0.7.1b
anetxovilouv Tov encloodlaxd PEco bpo TV avTadoBOVY Yo To GUC THUATO oVTooBRC Ye apalpeoT xou
dadpeom avtiotouya, xdvovtag offload ohdxhnpo to vevpwvind dixtuo yia Sidpopec Twéc lambda (A) Tou
Generalized Advantage Estimation. Apywxd, ol avtopoiBéc BeAtichvovton, aAAd 0T GUVEYELDL UELVOVTAL.
Emuiéyouye to povtého dtav emtuyydvel T udnhotepn avtopolBn avd enetcddio yior va xotarypdpouvue Ty
xnopugaia ambddooT TELY apyloel omoladNmoTe anodidvwaon otn Sladxacio udinong. Ov avtopolBéc otny
layered extéheon TwV vEUpOVIXGOY BIXTUWY ax0AoLYOUY Evay TaEOUOL0 TEOTUTO, Xal Eavd ETAEYOUUE TO
HovVTENO 6Ty €YEL TNV xopugalo avtauolBr) avd encioddlo.

-20

-30

4 40
-50
5
a 10k 20k 30k 40k 0 10k 20k 30k 40k 50k
(a) Méom enelcodiony| avtapolBy (b) Méon encicodlaxh aviopolBn
ue agaipeon, xévovtog offload ue daipeon, xdvovrag offload
OAOXANEO TO VELPWVLXS BixTLO OAOXANEO TO VELPWWIXS BixTUO

0.7.4 EmnBdpuvorn tou Scheduler

Xeetdleton vor a€loAOYNOOUPE TOV YpdVo Tou mpoctidetan and toug schedulers evioyuong pdinong oto
cVoTNUE poc, Tou mepthopfBdvel TV aviyveuorn moAVETTEd®Y veupwvixdy dixtiny (MLP). Mto Lyh-
pator 0.7.2a xou 0.7.2b, mapovoidlouye tov mpdoveto yedvo yio ta woviéda PPO xou DQN xatd tnv
aviyveuorn. Axéun xou e 100 towtdypoves aviyveloels yio x8le LovTéNo, 0 UECOS YpOVOG OVl VEUOTC
TapaEVEL pEEIXE YLAooTd deuteporéntou. To povtého PPO elvau mo apyd and to DQN, pe xdnoieg
neptntooel va ayyillouv axdua xan ta 600 yihiootd deuteporéntou. Avtideta, to DQN ¢@tdvel oe pdiic
6 yhooTtd Seuteporéntou. Aoufdvovtac unddn Tov aueAntéo YEco Ypbvo, Bev Tov YempoluE oNUaVTIXG
yior HEANOVTIXES DoXLUECS.

PPO Model Inference Time DQN Model Inference Time
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o
¢ o
= 0.4 = 0.04+
= o] e o O
E ) o E )
5 0.3 R ' 0.034 s} o g o
g g
o 8 ° 8 e 5 §
b 8 g © b 8 9
' 0.2 g © § ° S 0.02 o o
g o o o o § §
8 8 6 ° o 9
0.1 1 o—8 % 0.01 o 8 <
ho0 IRy
0.0 4 _— = ﬁ i é |:_|_| R e A== 0.004 — = & a % - % T L = =
]‘L 1‘0 2‘0 3b 4‘0 Sb 6‘0 Tb SID 9‘0 160 i l‘D ZID 3‘0 4‘0 5‘0 ﬁb 7‘0 Hb 9‘0 160
Concurrent Inferences Concurrent Inferences
(a) EmBdpuvorn PPO povtélou (b) Emdpuven DQN povtélou
scheduler yia Siagpopetind aptdud scheduler yia dlapopetind aptdud
Ao TOUTOYPOVES EXTEAECELS and TAUTOYPOVES EXTERETELS
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0.7.5 AZ&LoAoYTMom XeOVWY XAl EVERYELXS TOU CUGTAUATOG

Ye autv v evotnta, mpofaivoupe ot exTeV] a€lOAGYNOYN TOU GUCTAUATOC TEOYPUUUITIONOD HAC.
IMopouctdlouye TEWUUATIXG ATOTEAEGUATO VIOl TNV OTOB00Y) TOL OE TEUYUATIXG YEOVO XoL TNV EVEQYELAXT)
anodotxdtntd Tou. Auty N aflohdynon elvar xplown yiot var a€LoAOYHOOUUE TNV TEAXTIXT EQUEULOCHLOTHTA
TOU CUOTAUATOC HUC OE OYEON UE GANOUS TEOYROPUATIOTEG TTou culntolvtar otny evotnta 5.3. Méou
and OAOXANEWUEVA TIELRAUATO, OTOYEVOVUE GTNY TOQOY T WIAG AVTIXEWEVIXNAS AVEAUOTC TV BUVAITOTHTWY
TOU CUCTARATOC oS, OVOBELXVVOVTOG TO TAEOVEXTAHUATO X0l TOUS TEPLOPIOHOVS Tou. AuTtd Ta melpdyuata
anoteloly TN Bdon yia tepautépw BedTioTonolnoy Tou GUC TAUATOS YIS

Iot v xatovdnom tev anotelecpdtwy, g eENYHoouPE TNV ovopatoloyia Tou yenotporoidnxe xatd tnv
a&tohdynon. Xe xdde didypauua, o optlovtiog dfovag avtiotouyel otoug schedulers. To mpwto yedupa
oe xdde etixéta dnhdveL To cVOTNUA AVTOHOBNC TOU YENOULOTOLAUNXE, EVE OL ETOUEVOL YoRUXTHRES
TEQLYPAPOLY T1] DLUUOPPWON XAl TOL YAUEUXTNELOTIXE TOU HOVTEAOU.

o S¥* Jambda {LAMBDA VALUE} {MODEL ITERATION}: PPO povtého ye clotnua ov-
topoBrc e agaipeoy, 6mou LAMBDA VALUE etvow to h oto GAE xauw MODEL ITERATION
elvon To iteration Tou povtéhou mou SloAEyTNXE

o D**** Jambda {LAMBDA VALUE} {MODEL ITERATION}: PPO povtého pe cUoTnua av-
topoBric we dwdpeon, ‘onov LAMBDA VALUE eivar to N oto GAE xaw MODEL ITERATION
elvon To iteration Tou wovtéhou mou SLoAEYTNXE

o S¥* DQN lambda {LAMBDA VALUE} {MODEL ITERATION} (uévo oto full offload
TWV VELPOVIXOY dixtOwy): DQN povtého pe obotnuo avtopoBic pe agaipeon, 6mov LAMBDA
VALUE eivaw 10 A ot0 GAE xov MODEL ITERATION elvan to iteration tou yovtélou mou
BLaAEY TNXE

e D¥* DQON lambda {LAMBDA VALUE} {MODEL ITERATION} (uévo oto full offload
TV Veupwvix®y dixtiwy): DQN povtélo ye obotnua avtopoBnc pe diadpeon, énov LAMBDA
VALUE eivaw 10 A ot0 GAE xov MODEL ITERATION eivan To iteration tou yovtélou mou
OlaAEYTNXE

e {DUMMY SHEDULER}: Just the dummy scheduler.

¢ {DUMMY SCHEDULER} load: The dummy scheduler with the services that send the devices
states running. By default this state runs for the RL based schedulers. We evaluating the dummy
schedulers with this load in order to examine the sensitivity of dummy schedulers to external
load.

0.7.6 Emndpuvor Tou Monitor Service

Ye auThv TNV UTOEVOTNTO EMUXEVTIPWVOUACTE AMOXAELCTIXA 6Ty emfBdpuvon tou monitor service. H
enideln e enidpoone tou monitor service efvon xplown yio o oponpry a€lohdynoT TV emdpdoey
NG OTNY AmdB00Y TOL CUGTARATOS, TNV YENHOT TOPWY Xl Tr CUYOALXY ATOBOTIXOTNTA.

To Eyrfuata 5.3.3 xou 5.3.4 delyvouv ) yeron e CPU xau tnv xotavdhowon evépyelog Tou monitor
service oe OAEC TIC CUOXEVEC.

IMopatnedvtoe ta anotehéopata, Tapatneolue 6Tl 6T cuoxeun xavier-nx-00, n yenon e CPU xupaive-
Tou 670 eVpog nepinou 20-28%, otn cuoxeur xavier-nx-01 xuyaiveton oTo edpog nepinou 15-25%, evd o
ouoxeur] agx-xavier-00, mopayéver younidtepn nepinouv oto 5-6%. To monitor service éyel pla oyetixd
onpavTixy enidpoor oty anbédoon Twv cuoxeuy NX.

‘Ocov aopd TNV xATAVIAWGCT] EVERYELNS, OE OAEC TIC CUOXEVES, XUTA TNV AMOXAEIOTIXY AetToupyio Tou
monitor service, 1 xatavdAwor evépyelag Tapouével otadepd ota teplnou 7,5 Watt.
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Power Consumption Over Time
Device

225
—— agx-xavier-00
WMWW = ssavier
—— xaviernx-01
— sum of devices

Monitor Service CPU utilization (300ms interval)
—— agx-xavier-00-average 20.0
—— xavier-nx-0O0-average
xavier-nx-0l-average
175

25
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CPU Utilization (%)

20 40
(b) Monitor Service xatovdiwon

(a) Monitor Service yphon CPU Ioyboc

0.7.7 Ilelpopra UE CLUYYPOVIOCUEVES CUOKEVES
Y10V TpKOTO TONO TELRGUATOS EMXEVTPWVOUAOTE GT CUVTOVIOUEVT] CUUTERLPORE TWV CUOXEVDY. M€ oUTO
TO GEVAPLO, OPLOPEVES CUOXEVES, DpMVTAC W TEAYTES, ouyypovilovtal yia va EEXLVACOUV T ATHOELS
Toug mepinou Ty Bio oTiyn avd tpoxadopiopéva ypovixd Stacthuata T (m.y. 3 Seutepbhenta). T
TopddeLyUa, uropel va €youue ToANES xduepes Tou ouyypoviovtal yia va {nthoouy TAneopopies exxovwY
¢ (0ec ypovinée oTiypés. Autd to melpapol Yo ETUTEETEL VO TOOGOUOWCOUUE TEAYUOTIXES XATOUOTACELS
6mou ot cuoxevéc ouvepydlovtar 1 cuvTovi{ouy Tig SpaoTNEIOTNTES ToUC.
Auto to melpapa mpocopoldveton yenoylomowdvtas T Mn Ouoyevy Awadixacia Poisson, v (S di-
aduacio Tou yeNoLwwoToLe(ToL Yia THY TPOoGoUolwoT) Tou popTiou xatd Tn ddpxela Tng exnaldevong. Xenol-
HOTIOLVTAS TOV aAYdpLduo 3, TEayoTOTOOUUE €Val TEIPUUO UE Amar = 15. Autdc 0 ahydprduoc, oe xdie
xeovixd Brua, xodopllel Tic cuoxeuég Tou anocTéAAoUY TauToypoves authoels. To ypovixd ddotnuo T

loolTon Ue 3.

ot Mgz = 15, ot oyt 5.3.5a xou 5.3.5b anewoviletar 0 cuvohixde ypovoe extéheonc yio layered
xot whole exteléoeic. Yta oyfuata 5.3.6a xau 5.3.6b aneixovilovton to anoteréoporto 660V apopd Ty
xotavdhwon evépyetag. Emmiéoy, yio xaADTERT XATAVONON TV OTOTEAECUATOY, Ot oy Auate 5.3.7a xat
5.3.8b napéyouye To TOGOCTH TWV CUOXEUGDY TOL YeNotdomolinxay xatd T didpxela xdde nedUaToC,
xou ot oyferte 5.3.8a xau 5.3.8b o ntocootd mopaPinone (To T0c0oTd TwV UTHOEWY TOU UTERERNoOY
10 SLA). Tehxd, yio v eninedn extéleon, to oyfua 5.3.9 Selyvel 10 noc06T6 YEdVOL dThOU YO TO

TOG00TO YPOVOU EXTERECTC.
Execution Times
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(b) Xpdbvoe autnudtewy oe Whole

(a) Xpbdvoc artnpdtwy o
eXTENEON UE Amae = 15

Layered extéheon pe Amaz = 15
Layered Extéieon: O adpolotixol ypdvol extéleonc xau oL teptntidoels mopofidoewy twv SLAs elvon
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Energy Consumption by Scheduler

(b) Koatavdhwon evépyelag ot
Whole extéheon ye Amaz = 15

Energy Consumption by Scheduler
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Figure 0.7.8: Xp6vog Extéheong vs Awxtbou oe Layered extéheon

nou oyetilovtat ye to dixtuo. H B n extéleorn anotehel va oyeTind uixpd pépog Tou GUVOALXOU YpPOVOU.
H auénuévn {itnon oe ndpoug Sixtiou mpogpyetol amd Tig ToAVdpLiues autrioels Tou dnuiovpyolvtal. Auth
1) EXTETUUEVY] TORAY WYY UTNUATOY EYEL WE ATOTEAECUN TN oLUPSOENOY eVTOC Tou server. Ewixdtepa, éva
auENuéVo Bardoc veupwVXoL BixTHoU (TEPLOCATEPN GTEMUATA) AVTIGTOLYEL GE AUENUEVO GYXO TARUY GUEVGY
athoewy. Ot schedulers nou nopouctdlouy mo euvoixd ypovixd anoteréoyata etvor exelvol ou Boacilovton
xuplwe ot wia povadxr cuoxeut Y Ty enelepyaoio atnudtwy. Autol ol schedulers, pe mopdderyua to
DPOPC_lambda_0_7_797184, xotoypdpouy onuavTixd UelwUEVeS Ypovixée emBoaplvoelg Tou oyeTi-
Covton ye 1o dixtuo, BedOPEVNE TNG amoUGlag UETAPORAS SeBOUEVLV UETAED cuoXeL®Y. §loToco, elval
ETUTOCTIN VY XY VoL avary Vwelo Tel 6TL oL ev Aoy schedulers odnyoly avomdgeuxto oe UTERYENOT TNG
ouoxevic. T mapdderyua, o scheduler DPOPC_lambda_0_9_ 1511424, o onolog avardétel Ohec Ti¢ ep-
yooleg oto xavier-nx-01, éyel onuavtind peyahitepn cuvolut| Sudpxeta extéreons. Avtideta, o scheduler
DPOPC_0_7_797184, o onolog o téAvel 6ha Tor outiatol o1 cLoxeLt) Ldmiig anddoone agx-xavier-00,
ETUTUY YAVEL GNUAVTIXS e TEROUS GUYOALXOUS Ypdvoug extéleonc. A&ilel va emonuaviel n anddoon twv
mo aniov schedulers pe mpdoletec eEwTtepinéc BlaXVUAVOELS TOU POpTOU gpyaoiac (Tpéyovtac anhd to
monitor service oe x&de cuoxeLR), TOL EXBNAGOVETAUL WS AOENCT TWVY TOGOCTAOY Tapaficone xatd tepinou
16%. ‘Ocov agopd tnv xatavdiwon evépyetog, ot schedulers napoucidlouvy otadepd younhs evepyetoxt
yeron, xatd péoo bpo mepimouv 7.5 kilojoules. O schedulers DPOPC lambda 0 7 797184 Eeywpilel
HE TN YounAdTepn xatavdhwon evépyelg, pe 7 kilojoules, Aoyw tng amoxieiotixrg e€dptnorc Tou and
T0 agx-xavier-00 ywplg petapopé SeBoUEVKV HETAED GUOXEUMY, OTWS SleuxplvloTnxe Tponyouuévws. Ou
&ihot schedulers éyouv eniong adloonueintes emdooelc 660V agopd TNV evepyeloxn anddoor. Ewdixdtepa,
ot amhof schedulers xou ot RL-based schedulers napoucidlouv cuyxpiowwa mpogih evepyelonic XaTovdA-
wong, ahhd oTtoug amiolg schedulers 1 ewoaywyy TaVTOYPOVWY PopTiwy epyaciog YaunAnic éviaong oe
OheC T oLaxEUEG 0dNYel oe afloonueiwTn addnon TS EvEpYElaXAS XATAVIAWGNS, 1) omola auEdveTon and

neplnou 7,5 kilojoules oe nepimou 12 kilojoules.

Whole Extéreon: O cuvolxol ypdvol extéheons elvon apxetd mapopolol, ohAd UTEEYOUY OPLOUEVES
efapéoeic.  Autéc ol elapéoeic mepthaufBdvouv toug schedulers DEOP DQN gamma 000 32256,
DEOP_ DQN gamma 000 48640, DEOP_ lambda 0 1 15872, DEOP_ lambda 0 3 3584,
DEOP _lambda 0_5_ 8192 xav DEOP_ lambda 0 9 8192. Avutol ot schedulers ypnoiuonowolv oe
peydho Badud cuoxevée xavier-nx-0%, oL onolec €youv AydTepEC UTOANOYIOTIXES IXAVOTNTES Altd TNV
agx-xavier-00. AutA n unepBohuxn yenorn odnyel oe peyaAlTEPOUC YPOVOUS EXTEAECTC, HE TOCOCTA
nopafiaone mou @Tdvouy wéyel xou to 80%. And tnmv dhkn mhevpd, ol meptoodtepol dhhol schedulers

nou PBaocifovtor oe RL ypnowwonoolv xuplwe to agx-xavier-00, xotavéuovtag udvo évo U€pog Twv
Avt n mpocéyylon odnyel oe cuvtoudtepoug ypEOVOUC EX-

EPYAOLOV OTIC cUOXEVEC xavier-nx-0*.
téheone xan Eemepvd axdun xou toug o aniolg schedulers. Yuyxexpuyeéva, o schedulers round-robin
pe xou ywpelc mpdodeto goptio, éyxer mocootd mopaPiacne 22% xa 9,5%, aviictoa. O Tuyaioc
schedulers éyel nocootd mapafioone 25% xa 15%, eved o schedulers nov Baoileton ot yehon e

‘Ocov agopd toug RL schedulers, moihol emtuyydvouv

CPU Bitnpel nocootéd mopoPiacne 10%.
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T mapdderyue, oo DEOP lambda 0 9 16384,

nohég emdOOEC PE YoUNAd TOoo0oTd mapoBlaonc.
SEOP_ DQN_gamma 000 43008 xo SEOP lambda 0 5 16384 ¢youv nocootd mopofBlacnc
A&iler va onuewwdel 61t to SEOP lambda 0 7 16384 esmituy)dvel To XornAOTERO
nococt6 nopafioone ke 5% . Toupwva pe v xatavdiwon evépyelac, 6hot ol schedulers emituyyd-
VOULV TIOPOUOLEC EMBOCELS UE XaTavdAwaoT Yopw ota 12 kilojoules. H younkétepn xatavdiwon evépyelac
emtuyydveta ond toug round-robin xou random schedulers (5 kilojoules), ywplc e€wtepixd @optio, eved
oL (dlot ye e&wtepd poptio xatovakevouv eniong 12 kilojoules. Auté Seiyver 6tL To monitor service
elvon 0 x0plog Adyog yior TNV evepyelaxy| diapopd uetalld twv schedulers ywelc goptio xan twv dAAwy

schedulers.
A&ilel va avagepdel 6Tl autd To melpopa aglohdynong anotelel TedxAnon yio toug RL-based schedulers.

O Aoyog elvan 6TL 6Ty TALTOYPOVAL PTAVOLY AUTACEL GTOV server, o omoiog @uiolevel Tov scheduler,
xou 0 scheduler ene€epydletar Ghec aUTEC TIC ATHOELS UE OYEDOV TAVTOONUES HATACTACELS CUGHEUNDY (S
eloodo. Katd ouvénewa, o scheduler npoypoppatiler autée tig anthioeic ywplc vor Aopfdver emopxde unogn
Tov mdovd avtixTuntd TOUG OTIC CUOXEVES. AUTH 1 AELTOURYLXY TROGEYYLOT Unopel vo odnyNoeL o un
BEATIOTES XaL AVATOTERECUATIXES ATOPATELS, WBiwe 6TO TANLGLO TOU GUYXEXELUEVOL TiELpopaTiXo Thauciou.

IMeipapa avedetnTwy TEAXTOV
Ye auto 1o ld0g TELEGUATOC OL CUOXEVES GTEAVOUY OGUYYPOVOL OLTHUATO OTOV Server mou @Lholevel tov

scheduler. Ta nelpdyota teploteépovial YOpw and 500 Baoixéc TapauéTEous: Tov dpllud TWY CUUHETE-
YOUOKY GUOXELKY Xal ToV LG HE TOV OTolo AUTEC Ol CUOKEVEC OTéAVOUY authpata. MetaBdAhovtag
oTOVC TOUS TaPdyovTeS, aEloMOYOUUE TIC EMBOCELC TOU UG THUTOS O [lal GELRd amd cuvirixes poptiou.

LAMBDA MAX=25, NUM_ CLIENTS=L1:

Ye auth v neplnTwon utdpyel wévo Evac TEALTNG oV avd TEELOBOUE GTEAVEL TOAAS ALTAUATO. LTO OY Y-
partor 5.3.10a xou 5.3.10b amewxovileton 0 cuvolixde ypedvoc extéleone yia whole xou layered exteléoelc.
Yo oyfjparto 5.3.11a xou 5.3.11b anewxovilovtat to anoTteAéopata GUUPWVOL UE TNV XATAVIAWOT) EVERYELXS.
Emnmiéov, yia TNy xoAUTERT XATAVONON TV ATOTEAEOUTWY, oTa oyfuata 5.3.12a xou 5.3.11b noapéyouue
TO TOGOGTO TWY CUOXEURY TOU YeNothonotiinxay xatd tn Sidpxela xdde TEWPAUATOC XAl GTO Oy UOT
5.3.13a xau 5.3.13b ta tocootd nopaficone (to tocootd Ty authoewy tou urtepefBnoay to SLA). Téloc,

v ) layered extéleom, to oyrua 5.3.14 delyvel T0 T0GOGTO TOU YEOVOL BLXTUOL XA TO TOCOGTO TOU

Xeévou extéreong.
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Execution vs Network time
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Figure 0.7.13: Xpdvoc Extéheong vs Awtiou oe Layered extéleon Apaz = 25 xou num_clients = 1

xat o scheduler SPOPC _lambda 0 1 633856 napovoidlouy nocootd magoBiaone 23% xou 30% avtio-
Touyo, o ongovtix Bektiwon and to mponyoluevo melpapa, émou autol ol scheduler elyav 80% 95%
avtiotoyo. Emmiéov, to oynua 5.3.14 nopéyel tAnpoopleq oyeTnd Ue TO YEdVo BixTOOU, UTOXUAOTTOV-
Tag 6TL M) TAetovoTnTa Twv scheduler nogouoidlel onuovTind pelwpévo yedvo dixtiou oe aYXpELoN UE TO
TponyoLpevo melpopa. Autéd umopel va amododel otny anousia cup@denong Tou BixTioL GTO BlaXOWo T,

mou odnyel o AVENUEVN ATOBOTIXOTNTA TOU GUGTAUATOG.
ISwitepo evdiopépov mapoucidlel 1 anddoorn twv aniwv schedulers, ov omolol, elielder e&wtepnold
@opTiov, emTUYYAVOLY Undevixd tocootd napaPioonc. 2otéoo, dtav utofdilovia ot eEntepind Yoptio,

(QOLVETAL VO XUTUVAAWYOLY TEPLOCOTERT] EVEQYELN

Whole Extéleomn: ‘Ocov agopd tn cuvolixt| extélect), 6nwe @aiveton oto Xyhua 5.3.13b, oyeddv
6hot ot schedulers emtuyydvouv tocootéd mapaBicone 0%, YeYovos Tou UTOBNAMYEL TOV ATOTEAEGHATIXG
YELPLOWO TOL oyeTxd ehappol pdptou epyacias. Ol udveg e€atpéoelc oe autd to pot{Bo etvar ot schedulers
DEOP DQN gamma 000 32256 xoo DEOP DQN gamma 000 48640, ot onoiot duoxoiebovrol

AOYw TN BEOPOASYNONS OAWY TWVY WTHACEWY GTN CLOXELY) Xavier-nx-00.
‘Ocov agopd v xatavdiwon evépyelog, to oyfua 5.3.11b delyvel Tl Ta anoteAéopaTa TOUEUUEVOLY
TopdpoL e To TponyoLuevo melpopd pag. To meplocdtepa poviéla magouctdlouv Tig Bleg emdooELS,
extog and toug amholg schedulers ywplc @optio, yeyovdg mou umodexviel yior GAAN Wot Qopd OTL 7
unnpeoio napaxohotinone elvon uedBuVY yia Evol ONUAVTIXG TOGO XATAVIAWONC EVERYELIC.

Yto embueva melpduota, Eyouue Tapahelel TNy mapovciooy twy anoteeoudtwy g layered extéleong.
H nopdhewdn auth) ogelhetar oty Wiaitepa xaxt| enidoon otoug cLVOAXOUE YEOVOUC EXTEAECTC, YEYOVOS

Tou xahoTd TNV EPPAVLOY| TOUG TEQPLTTY.

LAMBDA MAX=15, NUM CLIENTS=5:
Ye auth TNV nep(nTwoT UTdEYoUY TEVTE TEAATES OV avd TEELOBOUE aTéAvouy Torhd authipata. O pududg

ToU Tot oTEAVOLV elvan wixpdTepog amd to mponyoluevo nelpapa (lambdamae = 15 avtl v 25).

Ye autd To ouyxexpévo oevdplo, 1 anddoor Twv neplocdtepwy schedulers mopouoidlel évo afié-
mouwvo eninedo amodototnTag.  Ewduxdtepa, ou amhol schedulers, 6tav dev eqopudleton xavéva e€w-
Tepd @optio, emiTuYYdvouy oxeddy 0% mocootd napofPioone, anodewviovtog Ty alomo o ToUS 6T
dayelpion twv gbptwv epyaoiac. O scheduler CPU_ UTIL Eeyweiler enlone, ue e€oapetind amote-
AeopaTny| amddoon, emTuyydvovTae Tocootd mapoPlaorne uixpdtepo and 1%. Emmiéov, o scheduler
SEOP_lambda_0_3 16384 nopéyel elopetinéc emdooelc, Ye oyedov undevixd mocootd nopoBiacng.
Auté elvan epgovég and to dedouéva mou mopoucidlovial oto XLyfua 5.3.15, 6mou avtéc o scheduler,
pall pe toug schedulers SEOP _lambda_0_1 16384 xow CPU_UTIL, xataypdger touc youniotep-
oug péooug ypbdvoug extéreonc. And to Lydua 5.3.19, pmopolue vo mapatnericouvue 6Tl o scheduler
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SEOP_lambda_0_3_ 16384 aflomotel tnv toyupy cuoxeur agx-xavier-00, evé petagépet ye obveon éva
onuavTid Pépoc Tou PopTOL Epyaciuc oTic cuoxeuéc xavier-nx-0%. Aut 1 otpatnyxh| TEOcEY Yo EXEL
©C AMOTENEOUA €Vl EVTUTILOLOXS Toc00Td Topafiaons oyeddy 0% xo Tov Yopunhdtepo PEco Ypdvo ex-
éheone. Avtideta, dhhol schedulers mou emPBapivouv unepBolixd Tic cuoxeuéc xavier-nx-0* A Bacilovtos
unepPolxd otn cuoxeur| agx-xavier-00 yio v extéAeon pYACLOY TOPOUGLELOUY GNUAVTIXE YELPOTERX
nocootd mapaPloonc. ‘Ocov apopd TNV XATAVIAWOY) EVERYELNS, TO ATOTEAECUATO TOROUEVOUY GUVETY| UE

exelva TPONYOVUEVWY TELROUATWY.

LAMBDA MAX=10, NUM CLIENTS=8:
Ye auth ™V TERINTWOoN UTAPYOLY OXTE TEALTES TOU avd TEPLOBOUE OTEAVOUY TOANS cuthuata.O pududeg

ToU Tot oTEAVOLY elvon AYo WixpdTEROS amd To TEONYOoUUEVO TElpopol (Amar = 10 avti yio 15).
IMopatnpdvtac  t0  oyfua  5.3.24, yvivetow  eOxohot  avuinnté 6t o scheduler
SEOP lambda 0 3 16384 emidesixviel eaupetixy) anodoom, SlatnemvIog T0C0cTO
nopafBiaone mwxpodtepo and 1%. Auth n anddoon anodidetar ot duvauixd xatavour tou 75%
TV PépTwv gpyacioc oTn cuoxeur agx-xavier-00 xou tou uréhotou 25% oTic cuoxeuvéc xavier-nx-0*,
Avtideta,

omwe qalvetan oto oyfua 5.3.22, otav To agx-xavier-00 undxeitan o ueydho optia.
ou amhol schedulers, 6tav Aettoupyolv yweic e€wtepixd @optio, mapoucldlouv onuavtxd wWxpedteen

evpwotia, amodidoviag nocootd mopaPiaone mou éxouv avindel and oyxedév 0% oto mponyoluevo
Emniéov, o scheduler SEOP lambda 0 3 16384 umeptepel €vavtl TV omiov

nelpapo oe 3-4%.
schedulers pe eZwtepixé goptio (20% xou 6,5% mnocootd mapofiacne tou random scheduler xou
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tou round robin scheduler avtictowya). ‘Aot schedulers nouv Posilovion oty evioyutinf wddnon
(RL), 6nmwc o DEOP_DQN gamma 099 71168, napéyouv enione olloonuelntec emdboec. Autd
EMUTUYYAVETAL UE TN GUVETH PETAPOPTWON VoG UEPOUC TwV UTACEWY 0TI CUOXEVEC Xavier-nx-0%,
anotpénovtog €Tol TNy unepyperior tou agx-xavier-00 xat odnydvTog ot younidtepa 1ocootd tapafioone.
Avtideta, ov schedulers mou PBaociCovtow Sucavdhoyo oto agx-xavier-00 amoTtuyydvouv va yello-
To0v g awtfoec. T mopddetypa, oo DEOP lambda 0 9 16384, SEOP lambda 0 5 16384,
SEOP lambda 0 7 16384 xo SEOP lambda 0 9 16384 mopovcidlouv mocootd mopoBilacnc
40%. AZilel va onuewwdel 6t o scheduler cpu_ util Swtnpeel otodepd embdboeic mapduole pe awtég Tov
mponyoLUevoL Telpduatog, unoypopuilovtag v avilextixdétntd tou. Télog, 6mwe ameixoviletan oTto
Eyfua 5.3.24, nopatnpotue 6T oo SEOP _lambda_0_3_ 16384, DEOP_DQN_gamma_099 71168,
cpu_util xou ot undhowmol amhol schedulers ywplc e€wtepixoic @pdptouc epyaoiog emttuyydvouv Toug
yapnidtepoug péooug yedvoug extéheonc. A&ilel va onueiwdel 6Tl Tol ATOTEAEGUATA TNS XATAVEAWONG
EVEQYELUC TOPUUEVOUY GUVETY| PE EXEVAL TOU PO YOUUEVOU TELRAUATOCS.

0.8 Xvprmepdopota

Z NV opoVod SITAWUATIX epyooia, dnuovpyfitnxe éva ohoxinpwpévo thaiolo (framework) yio vo

xataotel Buvaty) 1 extéreon Padiwdy vevpwvxdy dixTOwy ot éva Serverless Edge Cluster. Emniéov,
éyel avantuydel évag scheduler, o onolog yenowonoiel teyvixég Evioyutuaie Mddnong yio v €€umvn
duayelpton tou scheduling tng extéheone twv DNN yia to elogpyduevo antpata otic Edge Devices.
O npwtoapyixdc 0TéY0C aUTAC TN epeuvnTixic meoomdielog elvon v emiteuyVel 1 BEATIOTY xaTAvOUT
TOV TopwYV eVToC Twv Edge Devices, trpwvtoc mapdhinha otadepd tic Lupguvieg Emnédou Tnnpeoiiv
(SLAs).

0.8.1 Xulvtnon

Yto xedhono 0.4.1, avantdooouye éva robust mhaioto (framework) yia tnv extéleon odicdv VELPOVIXGDY
dixtiwv. Autéd to mhaioo oftonotel to Kubernetes xow to Knative yio v avdmtuln, alomodvrog to
TAEOVEXTAUAT X TwV dVo TeYvoroywwy. To Kubernetes, yvwoto yia v evpwotia tou, anoterel to
Yeuéhio tou mhouclou yog, mopéyovtoc TNy afloToTior ToU amatTelTaL Yol TNV AMOTEAECUATIN EXTENEDT)
DNN. To Knative npoo@épel yia oelpd and noAdTiua epyoaheio, cuuneptiopfavouévou tou Knative Pod
Autoscaler, To onolo npocapuélet duvouxd tov aptdud Twv evepy®dy pods oe andxplorn TV UETHBAUANG-
HEVWV pOpTwYV epyaoiac Yo BérTiotn aflonoinon Twv népwv.

Emnmiéov, to mhaiold poag mpoopépet tnv euehiéio va unootneilel téoco v layered éco xou tnv whole
extéleon Poadidv VEUpOVIXGY BixTOwY. AUTY 1) TEOCUEUOCTIXOTNTA BIVEL TN BUVATOHTNTA GTOUS YENOTES
vou ETLAEEOLY TOV XATAAANAGTERO TEOTO EXTEAEOTG, ELTE TPOXELTAL YO Lo TEOCEYYLOT OE ETUNEDO Yo
To Aemtouepn Eheyyo elte yia oAdxANEN extéheon yia anodouxdtnra. H evehiio tou miouciov pac to
egomhilel yior THY AVTIUETOTLON TOIAWY TEPLTTWOEWY YeNong xou To evduypauuilel ye tig e€eMocdueveg
amoutrioel Ty edge tepiBoAAOVTWY.

Y10 xepdhauo 0.5, epPodivouue oty avdntuén evioc scheduler Evioyutuaie Mddnong nou éyel oyedi-
aotel Yo vou Sloyelplleton omoTEREOUATIXG TNV XATOVOUY) TOV ELOEPYOUEVRY UTACEWY 0TI cuoxevég. Ou
TpwTapyixol atdyol autol tou scheduler eivon SVo: va Biacpaiioer 6Tt dev mapafialovTon ot Xuupnvieg
Emunédou Yrnpeowhv (SLAS) xou vor ehoylo TOTOCEL TNV XATAVEAWOY) EVERYELIS PECO GTO GUCTNAHAL.

INo v avtyetodmon evée gdopatog oevoplwy, €xouue oyedidoel schedulers téoo yia layered éco xau
vt whole extéheon Bahddv vevpwvixdy dxtdny. Auty 1 npocopuoctixdtnta elvan xalplog onuactoc,
xo00¢ YoC EMTEENEL Vo Teocopp6louye TV mpoceyylor Tou scheduling otic ouyxexpévee avdyxeg
BLAPOPETIXWY TEQLTTWOEWY YENONS, TUPEYOVTAS UAC T1) BUVATOTNTA BEATIOTOTOINONC TNG XATAVOUTC TOPWY
X0 TNG HATAVIAWONE EVERYELNG OE €Val EUPD PAoUA TEQLBAAAGVTWY UTOAOYLOUOD 0xEaltY TEQLOYWYV.
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0.8.2 MeAlovtixéc Enextdosic
Yto yéhhov evdéyeton vo tpotadolv BLdpopes EMEXTACELS Xan TopoAAayéc TG epyaoios auThC.

o H layered extéleon mdoyel and 1o ypedvo dixtiou xou 1 whole extéleor) dev bivel opxetd €heyyo
oto Tou Yo extelecToly Ta layers. T vo emtOyoupe por looppomion YETOEY auTdY Twv 300
pedddwy, mpotelvouue wa LPBEWIXY Tpocéyyion. H mpocéyylon auth) nepthopfBdvel T oTeatnYLX)
tonovétnon xadoployévey onuelwy e€6dou péoa ot xde Badl vevpwvixd dixtuo, emitpénovtog
amo@doelc scheduling poévo oe autd ta mpoxodopiouéva onuela. Me v egapuoyh) autic g
OTEATNYIXAC, EAUYLOTOTOLOVUE OMOTEAECUATIXG T1) CWEEUTIXY xoducTépnon Tou dixthou, xadwg
Aydtepa onueio e£600u 0dnyolv ot uelwuévn emPBdpuvor tou dxtbou. Tautdypova, diatneodue
évoL hoYx6 eminedo eAéyyou, dlac@ahilovtag 6T 1) UTOAOYLo TIxT| Sladixacio TUPAUEVEL TEOCUPUOGLUT,
oTig edéc avdyxec Tne exdoTote gpyaoiog.

o Mio dAAn uelovtint| enéxtoon ebvan 1 dnutovpyla wog xataveunuévne éxdoone Tou RL scheduler.
To undpyov HoVTERD %EVTEXOD BLOXOULOTY| ATOBEXVOETAL AYOTERO XALUXOVUEVO OTO TAXCLO [ULog
ovuotédac Edge Cluster mohhamhedv cuoxeumv. T Ty avTWETOTION QUTHS TNS TEOXANCNS XALUAX-
WONG, Yol XATAVEUNUEVT ExDOYT) TOL unyaviopol scheduling poag mpoo@épet wiot TOAAG UTOCYOUEVT,
Moo, AuTh 1 xoTavVEUNUEVY TEOGEYYLOY GUVETEYETOL TNV avamTUEN peLOVLpéveY tpaxtdpwy RL
oe xdde cuoxeur|, oL omolol cuUUETEYOLUY CUANOYIXE oE Uia pop@y) dnuompaciog Yo va xadopi-
ocouv TN cuoxevy| Tou elvar uebYLYY Yiol TNV extéAeoT) ploc dedopévng altnong. Autd pmopel va
BEATIOOEL ONUAVTIXG TNV EMEXTACLLOTNTA XOU TNV TEOCUPUOC TIXOTNTA ToU cuc Thuatog scheduling
oe mohOmhoxa xat duvaxd tepBdiiovta Edge Cluster.
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Chapter 1

Introduction

In today’s digital era, the confluence of two major trends has dramatically transformed the landscape
of modern computing. On one hand, the explosive growth of data has ushered in the era of big data,
revolutionizing the way we capture, process, and harness information. On the other hand, artificial
intelligence (AI), and more specifically, neural networks, have risen to prominence as the driving force
behind a multitude of applications, ranging from image recognition to natural language processing.
As these versatile Al models take center stage, their efficient execution becomes increasingly critical
in shaping the future of computing.

Traditionally, neural networks have found their home in Cloud computing environments, renowned for
their extensive computational resources housed within sprawling data centers. These environments
offer immense computational power, but they also introduce challenges related to latency and network
availability. Such challenges can be particularly limiting for applications that hinge on real-time
responsiveness, where every moment counts.

In response to these challenges, our work explores a shift in the deployment of neural networks,
moving beyond the traditional confines of the Cloud to embrace the paradigm of Edge computing.
Edge computing represents an alternative approach, seeking to overcome the limitations of traditional
cloud environments by bringing computation closer to data sources. This proximity enables real-time
data processing and decision-making, effectively reducing the execution latency of neural networks and
enhancing the responsiveness of applications.

However, the transition to the edge environment is not without its own set of complexities. Devices op-
erating at the edge exhibit a wide spectrum of computational capacity, ranging from high-performance
servers to resource-constrained Internet of Things (IoT) devices. Effectively managing this heterogene-
ity and efficiently allocating resources to ensure optimal neural network execution is a multifaceted
challenge.

1.1 Contributions

In response to these challenges, We have built a robust and reliable framework for DNN execution on
the edge, harnessing the power of Serverless computing. Serverless computing, known for its capacity to
abstract the intricacies of infrastructure management, streamline resource scaling, alleviate operational
burdens, and optimize resource allocation, emerges as a pivotal solution. This approach seamlessly
aligns with the dynamic and heterogeneous nature of edge environments, making it a fundamental
enabler in our pursuit to address the challenges and optimize the deployment of neural networks.

The deployment of neural networks, while essential, is just the implementation part. Efficiency hinges
on the presence of a sophisticated and effective scheduling mechanism. It’s the dynamic art of schedul-
ing that ensures each task seamlessly aligns with the right resource at precisely the most opportune
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moment. The intricacies of this scheduling process are central to enhancing the overall efficiency and
responsiveness of our system. Here, we introduce a Reinforcement Learning (RL) based scheduling
algorithm. This RL algorithm plays a central role in intelligently orchestrating the scheduling process,
striving to meet defined Service Level Agreements (SLAs) and response time targets. Moreover, it seeks
to optimize energy consumption by judiciously allocating tasks to energy-efficient devices, whenever
and wherever feasible.

1.2 Thesis Structure

The thesis is divided into 5 chapters. Chapter 2 delivers a rich and comprehensive exploration of the
related work, contributing significantly to the body of knowledge in our research area. Chapter offers
a detailed look into the background work and the technologies used in our study, helping us better
understand the basis of our research. Chapter 4 provides an in-depth explanation of the implementation
for both the deployment framework and the scheduling algorithm, offering an in-depth exploration of
our workings and functionalities. Chapter 5 delivers an extensive evaluation of our approach, offering
a deep analysis and comprehensive insights into its performance and effectiveness. Finally, Chapter 6
summarizes the thesis’s findings and presents our future directions.
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Related Work

T his chapter provides an overview of prior research efforts that inform the context of our study.
These works cover various aspects of edge computing, including edge-based deep learning, col-
laborative DNN partitioning, edge swarm coordination, and serverless computing at the edge. By
examining these contributions, we gain insights into the evolving field of edge computing, setting the
stage for our own research.

Hyuk-Jin et al. [1] propose a partitioning-based Deep Neural Network (DNN) offloading technique
for edge computing. The proposed technique, IONN, partitions the DNN layers and incrementally
uploads the partitions to allow collaborative execution by the client and the edge server even before
the entire DNN model is uploaded. The experimental results demonstrate the effectiveness of IONN in
improving both query performance and energy consumption during DNN model uploading, compared
to a simple all-at-once approach. The proposed technique has the potential to enable DNN-centric
edge servers where a mobile client can offload its custom DNN computations without a long waiting
time.

Laskaridis et al. [2] propose a novel distributed inference system that aims to address the limitations
of existing approaches by employing a progressive inference method. The proposed system, SPINN
introduces a scheme of distributing progressive early-exit models across device and server, in which one
exit is always present on-device, guaranteeing the availability of a result at all times. Moreover, SPINN
casts the acceptable prediction confidence as a tunable parameter to adapt its accuracy-speed trade-off.
Alongside, the system proposes a novel run-time scheduler that jointly tunes the split point and early-
exit policy of the progressive model, yielding a deployment tailored to the application performance
requirements under dynamic conditions. A comprehensive evaluation of the system’s performance
shows that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x
in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x,
and improves accuracy by 20.7% under latency constraints, while providing robust operation under
uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.

Xueyu Hou et al. [3] propose Dystri, an innovative framework devised to facilitate dynamic infer-
ence on distributed edge infrastructure, thereby accommodating multiple heterogeneous users. The
architecture comprises distributed controllers and a global coordinator, allowing per-request, per-user
adjustments of quality-of-service, ensuring instantaneous, flexible, and discrete control. The frame-
work is evaluated on three multi-user, heterogeneous DNN inference service platforms deployed on
distributed edge infrastructure, encompassing seven DNN applications. The results show that Dys-
tri achieves near-zero deadline misses and excels in adapting to varying user numbers and request
intensities. Furthermore, Dystri outperforms baselines with accuracy improvement up to 95%.

Yanan Yang et al. [4] propose INFless. INFless provides a unified, heterogeneous resource abstrac-
tion between CPU and accelerators, which enables efficient resource allocation based on the workload
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demands. The system achieves high throughput using built-in batching and non-uniform scaling mech-
anisms, while also supporting low latency through coordinated management of batch queuing time,
execution time, and cold start rate. The architecture of INFless is designed to address the challenges
of managing hybrid CPU/accelerator systems, selecting appropriate batch sizes and resources, and
minimizing running overhead. A detailed overview of the INFless architecture includes the gateway,
scheduler, prediction model, operator profiles, dispatcher, batching workload, CPU/GPU nodes, cold
start manager, auto-scaling engine, and more.

Lockhar et al. [5] propose Scission, a tool for automated benchmarking of deep neural networks
(DNNSs) on a given set of target device, edge, and cloud resources for determining the optimal partition
for maximizing DNN performance. It is underpinned by a benchmarking approach that determines
the combination of potential target hardware resources and the sequence of layers that should be
distributed for maximizing distributed DNN performance while accounting for user-defined objectives.
Scission relies on empirical data and does not estimate performance by making assumptions of the
target hardware or the DNN layers. Experimental studies were carried out on 18 different DNNs
to demonstrate that Scission is a valuable tool for obtaining context-aware and performance-efficient
distributed DNNs. Scission can also make decisions that cannot be manually made by a human due
to the complexity and number of dimensions affecting the search space.

Kakolyris et al. [6] propose RoaD-RuNNer, a collaborative framework for Deep Neural Network (DNN)
partitioning and offloading on heterogeneous edge systems. This innovative approach addresses the
resource management challenges of DNNs deployed on edge computing systems and offers a promising
solution for efficient DNN partitioning and offloading. The authors propose a dynamic offloading
mechanism that uses collaborative filtering to predict the execution time and energy consumption
of individual layers over different CPU/GPU architectures. The framework also includes a dynamic
partitioning mechanism that efficiently splits and offloads DNN layers. The authors conducted an
extensive experimental evaluation of their proposed framework, comparing it with baseline algorithms
and state-of-the-art DNN offloading approaches over real hardware and networking. The results show
that RoaD-RulNNer outperforms existing approaches by achieving up to 9.58 x speedup on average and
up to 88.73% less energy consumption on average. This work contributes to the field of edge computing
and DNN offloading by providing a collaborative solution for efficient resource management.

Patterson et al. 7] propose a hardware-software system stack, HiveMind, that enables programmable
execution of complex task workflows between cloud and edge resources in a performant and scalable
manner. This architecture addresses the challenges of partitioning work manually and changing where
computation runs, which can affect the software infrastructure needed. The program synthesis tool au-
tomatically explores task placement strategies, simplifying programmability of cloud-edge applications.
The reconfigurable hardware acceleration fabric for network and remote memory accesses contributes
to the platform’s performance and scalability. Overall, this architecture presents a comprehensive
solution to the challenges of autonomous devices, making it a valuable contribution to the field.

Bin Wang et al. [8] propose the LaSS platform, a novel architecture to address the challenges of
serverless computing at the edge. The platform uses model-driven approaches to accurately predict
the resources needed for serverless functions in the presence of highly dynamic workloads. LaSS uses
principled queuing-based methods to determine an appropriate allocation for each hosted function
and auto-scales the allocated resources in response to workload dynamics. The platform also utilizes
resource reclamation methods based on container deflation and termination to reassign resources from
over-provisioned functions to under-provisioned ones. The authors implement a prototype of their ap-
proach on OpenWhisk [9] and conduct a detailed experimental evaluation, demonstrating the ability of
LaSS to meet service level objectives and operate with fair-share allocation guarantees in overload sce-
narios. The LaSS platform provides valuable insights into the design and implementation of serverless
computing platforms for edge environments.
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Chapter 3

Background on Deep Learning,
Serverless and Edge computing

| This chapter provides a comprehensive exploration of the theoretical underpinnings of this study,
including (deep) neural networks, their fundamental architectures, serverless computing, edge
computing, and their underlying technologies.

3.1 Artificial Neural Networks - Deep Learning

Neural networks are a class of machine learning algorithms inspired by the structure and function of
biological neural networks in the human brain. They are composed of interconnected computational
units, often referred to as "neurons," which work collaboratively to process data, extract patterns, and
make predictions. Neural networks possess the remarkable ability to learn from examples, adjust their
internal parameters, and generalize their knowledge to new, unseen data.

The concept of neural networks dates back to the 1940s. The term "neural network" itself was in-
troduced in the works of Walter Pitts and Warren McCulloch [51]. The first was a logician and
the second a neurophysiologist and their research progressed within the confines of the University of
Chicago. This paper laid the foundation for the mathematical representation of artificial neurons,
providing a theoretical framework for simulating computation in a manner inspired by the human
brain.

However, the full potential of neural networks was not fully realized until much later due to limitations
in computational resources and data availability. The resurgence of interest in neural networks began
in the 1980s and gained momentum in the 2000s, driven by several factors. Advances in computational
power, coupled with the availability of large datasets, allowed researchers to explore more complex
neural network architectures.

The emergence of deep learning, characterized by the use of neural networks with multiple layers (deep
neural networks), revolutionized the field. Techniques such as convolutional neural networks (CNNs)
for image analysis and recurrent neural networks (RNNs) for sequential data transformed areas like
computer vision, natural language processing, and speech recognition.

In recent years, the deep learning revolution has been fueled by advancements in hardware, including
Graphics Processing Units (GPUs) optimized for parallel processing, and specialized hardware like
Tensor Processing Units (TPUs). These technologies have accelerated the training and deployment of
large-scale neural networks, enabling them to achieve impressive results in tasks that were previously
considered challenging.
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3.1.1 Neuron: The Core of Neural Networks

In artificial neural networks, a network consists of a collection of neurons. These neurons serve as the
building block of the network, interconnected through synapses, allowing them to communicate and
collaborate. The level at which neurons interact varies, driven by the synaptic weights assigned to
their connections. These synaptic weights are not fixed; they dynamically adapt as the neural network
receives input from the environment and learns from the data. This dynamic adaptation leads to the
strengthening or weakening of connections, akin to enhancing or diminishing the significance of certain
features. Essentially, synaptic weights encode empirical knowledge and equip the network with the
capability to learn and adapt to the environment.

Figure 3.1.1 shows the structure of a neuron:

Bias
b
[ x; O———>Ww,
Aclivation
Function
Output
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L oO——>w,

Weights

Figure 3.1.1: The structure of an artificial neuron [52]

The core elements are:

1. A collection of synapses, distinguished by individual weights. The input signal x; at each artificial
synapse j linked to artificial neuron k experiences multiplication by the synaptic weight wyj.

2. A summation unit (adder) for adding input signals, each multiplied by the weight of the relevant
connection.

3. A constant term b added to the weighted input sum before activation, to improve the models
performance, known as bias.

4. A mathematical transformation applied to the weighted sum of inputs in a neuron, determining
its output, known as activation function. They introduce non-linearity, enabling neural networks
to capture intricate patterns and relationships within data.

The core elements can be described in a mathematical manner as follows:

u=W=xx+b (3.1.1)
where : (3.1.2)
w1 I
wo T2
W= and x =
Wy, T,
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The W is the vector containing the weights, the x is the input vector and w is the sum of bias and the
adders output (W * x).

Finally, the output of the neuron is:

y=o(u) (3.1.3)

Where ¢(.) is the activation function.

According to the activation functions, the most popular are:

1. Step Function
We have

o(u) = {1’ =1 (3.1.4)

0, otherwise

So, the output of the neuron, with the above activation function, is of the form:

1, ifu>1
={" - 3.1.5
Y {0, otherwise ( )

Where u is the output of the adder. It is not frequently utilized because is non-differentiable in
x = 0 and the derivative is 0 elsewhere. This leads to challenges during the training process.

2. Sigmoid Function
We have

1

S e

(3.1.6)

It’s one of the most popular activation functions in artificial neural networks. There are certain
problems with sigmoid function like inferior performance and vanishing gradient [53].

3. tanh Function
We have

et —e ® 1—e 2

e +e T 14e27

¢(u) = tanh(x) = (3.1.7)

Like sigmoid function, its one of the most popular activation function in artifical neural networks,
but struggles too with inferior performance and vanishing gradient.

4. Rectified Linear Unit (ReLU)
We have

0, otherwise

o(u) = {u’ =0 (3.1.8)

The most common activation function in the field of deep learning, overcoming the tanh and
sigmoid.
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Figure 3.1.2 illustrates the differences of the stated functions:

(a) Step function (b) Sigmoid function (c) tanh function (d) ReLU function

Figure 3.1.2: Most popular activation functions

3.1.2 Architectures of Neural Networks

Neural Network architectures are the fundamental structures that define the layout, connections and
organization of artificial neural networks. These architectures play a crucial role in determining the
network’s ability to learn, generalize and perform specific tasks. Here are some common types of neural
network architectures:

1. Feedforward Neural Networks (FNNs): FNNs are the simplest form of neural networks. They
are widely employed in machine learning tasks that require pattern recognition, classification,
and feature extraction from static data, finding utility in image recognition, sentiment analysis,
and medical diagnosis.

2. Recurrent Neural Networks (RNNs): RNNs find extensive application in various domains, lever-
aging their ability to model sequences and time-dependent patterns, making them suitable for
tasks such as natural language processing, speech synthesis, and predicting financial trends in
time series data.

3. Convolutional Neural Networks (CNNs): CNNs have gained renown for their proficiency in pro-
cessing structured grid data and particularly images. These networks find widespread application
in tasks such as image classification, object detection, and image segmentation, elevating their
significance in the realm of computer vision and pattern recognition.

4. Generative Adversarial Networks (GANs): GANs have emerged as a significant innovation due
to their ability to synthesize realistic data samples. Their utility extends across domains like
image generation, style translation, and anomaly detection, revolutionizing diverse applications
in the realm of artificial intelligence.

5. Transformers: Transformers is a relatively new and pivotal architectural innovation, have gained
significant acknowledgement for their adeptness in handling sequential data, enabling contextual
comprehension and capturing intricate relationships. Their impact spans applications such as
natural language processing, machine translation, and image generation, reshaping the landscape
of contemporary artificial intelligence.

3.1.2.1 Feedforward Neural Networks

Feedforward neural network (FNNs), also known as Multi-Layer Perceptron (MLP), a fundamental ar-
chitecture in deep learning, consist of layers of interconnected neurons (also referred to as perceptrons),
described in 3.1.1, that process information in a one-way flow, from input to output, as shown in 3.1.3.
The architecture lacks cycles or loops, distinguishing it as "feedforward". All neurons in one layer
transmit their outputs as inputs to all neurons of the subsequent layer without feedback connections.
Input data propagates through the network, undergoing transformations and computations through
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weighted connections and activation functions. Each neuron’s output influences the subsequent layer’s
neurons, culminating in the final output layer that generates predictions or classifications.

Input 2 Hidden layer

Figure 3.1.3: Example of a Feedforward Network [11]

Training feedforward neural networks often involves supervised learning [54] and optimization tech-
niques to adjust the weights, optimizing their ability to capture complex patterns in data. The tech-
nique most commonly embraced for updating the weights of feedforward networks encompasses the
utilization of a supervised algorithm known as Back Propagation [55], combined with an optimizer,
e.g. Gradient Descent [56].

3.1.2.2 Reccurent Neural Networks

Recurrent Neural Networks (RNNs) constitute a dynamic architecture designed to process sequences
of data by incorporating feedback loops, allowing them to maintain memory of previous inputs. Unlike
feedforward networks, RNNs possess an internal state (known as hidden state) that captures infor-
mation from earlier steps in the sequence, enabling them to comprehend temporal dependencies and
patterns. This mechanism makes RNNs particularly adept at tasks involving sequences, such as lan-
guage modeling and time series analysis. During processing, each input in the sequence is fed into the
RNN one by one. The network not only processes the current input but also considers the context of
preceding inputs stored in the hidden state. This iterative process allows RNNs to learn and recognize
patterns across sequential data, making them valuable tools for tasks that involve sequential relation-
ships and dynamics. Illustrated in 3.1.4, the RNN initiates by taking x0 from the input sequence and
deriving hO (hidden state). Subsequently, h0, combined with x1, forms the input for the subsequent
step, initiating a similar pattern through subsequent steps.

In a mathematical manner, the RNNs are described as:

he = f(Whnht—1 + Whay) (3.1.9)
yr = Wshy (3.1.10)

where:
e h;: the hidden state at time t
o 1, € R%: input vector at time-step t

o Wy, € Rénxd. weights matrix used to condition the input vector x;

Whp, € R ¥dn: weights matrix used to condition the output of the previous time-step hs_.

f0): non-linear activation function (e.g. tanh)
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e y, € R!: the output at time-step t.

o W, € R¥%X!: weights matrix used to take an output 7,

R
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Figure 3.1.4: Recurrent Neural Network [12]
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However, traditional RNNs can struggle with maintaining long-range dependencies due to vanishing
gradient problem, leading to the development of more advanced RNN variants that mitigate these
issues and enhance their ability to capture intricate patterns within sequences.

Long Short-Term Memory Neural Networks

To overcome the limitations of capturing long-range dependencies, in 1997, Sepp Hochreiter et al.
[13] proposed an architecture called Long Short-Term Memory (LSTM). LSTMs address the vanishing
gradient problem by introducing specialized memory cells that can store and retrieve information over
extended sequences. These memory cells maintain their states over time, allowing LSTMs to effectively
learn and retain information across distant time steps. The iterative process and internal unit structure
of LSTMs is illustrated in 3.1.5. Each LSTM unit consists of the cell state and three gating mechanisms:
put gate, forget gate, and output gate. These gates regulate the flow of information into, out of, and
within the memory cell. By controlling the information flow, LSTMs can selectively retain or discard
information, facilitating the capture of intricate patterns and temporal relationships in sequences.
This capacity makes LSTMs highly effective for tasks like language modeling, speech recognition, and
time series prediction, where capturing long-term dependencies is crucial for accurate predictions and

modeling complex dynamics.
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Figure 3.1.5: LSTM iterative process and internal structure. [57]

LSTM Cell State and Gate Mechanisms:

e Forget gate: The forget gate determines which information from the previous cell state (long-
term memory) should be discarded. It evaluates the current input and hidden state to produce
a forget factor, which ranges from 0 (discard) to 1 (retain). This forget factor is then applied to
the previous cell state C;_1, allowing the LSTM to decide what information is no longer relevant.

e Input gate: The input gate regulates the flow of new information into the cell state. It computes
candidate values (the tanh part in figure 3.1.10) based on the current input and hidden state.
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i fe =0 Wy Thim1, 2] + by)
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Figure 3.1.6: Forget Gate of LSTM [57]

The input gate then determines the amount of these candidate values that should be added to the
cell state (the sigmoid part in figure 3.1.10) in order to calculate the new cell state C;, allowing
the LSTM to adapt its representation based on the new information.

iy =0 (Wi-[hee1,z¢] + b;)
Cy = tanh(We - [hy—1,2¢] + be)

Figure 3.1.7: Input Gate of LSTM [57]
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Figure 3.1.8: Update of cell state [57]

e Output gate: The output gate produces the final output. First, it processes the current input
and hidden state to generate an output factor, which is then combined with the modified cell
state to determine the information that will be passed on to the next time step.

0r =0 (Wo [hi1, 2] + bo)
hi = oy * tanh (Cy)

Figure 3.1.9: Output Gate of LSTM [57]

Gated Recurrent Unit

Gated Recurrent Unit (GRU) is simplified version of LSTM, proposed by Cho et al. [14]. Is featured
by two main gates, an update gate (a combination of the forget and input gate of LSTM) and a
reset gate. Also, the hidden state emerges by merging the hidden and the cell state of LSTM. The
reset gate determines how much of the previous hidden state should be forgotten or reset, allowing
the model to focus on new input information. The update gate decides how much of the new input
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to incorporate into the hidden state. These gating mechanisms enable GRUs to effectively capture
temporal dependencies and patterns in sequential data while simplifying the architecture compared to
traditional LSTMs. The internal unit structure of GRU architecture is illustrated in following figure:

zi =0 (W, [hi—1,2])
re =0 (W, - [hi—1, 7))
h, = tanh (W - [re % hi—1, m])
he= (1 —z) % hy_y + 2 * by

Figure 3.1.10: GRU internal structure. [57]

3.1.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a pivotal advancement in deep learning, prominently
shaped by the innovative contributions of Yann LeCun et al. proposing a CNN for document recogn-
tion [15], in 1998. These networks, inspired by the human visual system, demonstrate exceptional
capabilities in processing visual data. LeCun’s architectural breakthrough introduced a layered frame-
work, empowering CNNs to adeptly learn and extract intricate features from input images, facilitating
the discernment of spatial hierarchies and patterns. This transformation has propelled CNNs into
diverse applications, encompassing domains such as medical imaging and autonomous vehicles, firmly
establishing their pivotal role within the realm of modern artificial intelligence.

CNNs operate through a distinctive layering system tailored to automatically learn and extract essential
features from input, primarily images. These layers include:

e Convolutional layer: Convolutional layers detect patterns by sliding small filters across input
data, generating feature maps that capture relevant information such as edges, textures, and
shapes. These layers excel in capturing spatial hierarchies and local patterns, making them
essential for tasks like image recognition and object detection. The following figure illustrates an
example of a convolutional layer.

Input Kernel Output
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Figure 3.1.11: Example of convolutional layer [58]

e Pooling layer: Pooling layer downsample feature maps, reducing dimensionality while retaining
crucial information. There are three main types of pooling: max pooling selects the maximum
value from a local region, min pooling selects the minimum value from a local region, and
average pooling calculates the average value. These layers enhance the network’s efficiency and
effectiveness in tasks like image recognition and object detection. The following figure illustrates
an example of each a aforementioned pooling layer.
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Figure 3.1.12: Example of pooling layers [59]

e Fully Connected layer: Fully connected layer connects each neuron to every neuron in the
previous and subsequent layers, enabling comprehensive feature integration and mapping. This
layer is vital for making final predictions in tasks like classification and regression. The following
figure illustrates an example of a fully connected layer.
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Figure 3.1.13: Example of Fully Connected layer [60]

3.1.2.4 Overfitting and Underfitting

Overfitting occurs when a machine learning model learns the training data too well, capturing not only
the underlying patterns but also the noise and randomness present in the data. A model’s complexity
can contribute to this phenomenon. If a model is excessively complex, it may fit the training data so
closely that it loses the ability to generalize effectively to new, unseen data. This leads to a model
that performs exceptionally well on the training set but fails to generalize to real-world scenarios. In
other words, it memorizes the training examples rather than learning the underlying concepts.

On the contrary, underfitting occurs when a machine learning model is too simplistic to capture the
underlying patterns in the training data. This results in poor performance not only on the training
data but also on new, unseen data. An underfit model lacks the capacity to grasp the complexities
present in the dataset, essentially oversimplifying the relationships between input features and target
outputs. It often stems from using overly basic algorithms or models with too few parameters. To
address underfitting, one can explore more complex model architectures and increase the number of
model parameters. Achieving a balance between model simplicity and its ability to capture intricate
patterns is essential for avoiding underfitting.Figure 3.1.14 illustrates an example of underfitting, an
ideal fit and overfitting.

When addressing the challenge of overfitting, a variety of approaches are involved. To be more pre-
cise, regularization constitutes a collection of methods that can hinder overfitting in neural networks,
enhancing the precision of a Deep Learning model when encountering entirely novel data within the
problem domain. A subset of these methods encompasses L1 regularization, L2 regularization, Dropout
and data augmentation.
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Polynomial fit degree 1 Polynomial fit degree 4 Polynomial fit degree 20
Training error: 0.4 Training error: 0.14 Training error: 0.07
Generalization error: 0.42 Generalization error: 0.17 Generalization error: 2000
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20.5 20.5 2054 -
o, 20.0 20.0 20.04
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Figure 3.1.14: Left: Underfitting, the model is incapable of learning the data completely. Center:
Ideal, the model acquires knowledge of the underlying data structure. Right: Overfitting, The model
is overly complex and acquires noise as it learns from the training data. [61]

L1 and L2 regularization

L1 regularization, also known as Lasso regularization, introduces a penalty term to the model’s loss
function, based on the absolute values of the model’s coefficients. By doing so, L1 regularization
encourages the model to minimize the magnitudes of certain coefficients to zero, effectively leading
to sparse feature selection. This process has a pruning effect, reducing the impact of less relevant
features on the model’s predictions. L1 regularization aids in simplifying the model and preventing it
from memorizing noise in the training data, resulting in improved generalization to unseen data. Its
ability to induce sparsity in the feature space makes L1 regularization particularly useful when dealing
with high-dimensional datasets where feature selection is essential.

L2 regularization, often referred to as Ridge regularization, like L1 regularization, adds a penalty term
to the loss function, but this time based on the squared magnitudes of the model’s coefficients. Unlike
L1, L2 regularization doesn’t force coefficients to zero; instead, it encourages all coefficients to be
small. This results in a smoother weight distribution. L2 regularization is effective in preventing large
weight values and controlling the overall complexity of the model, contributing to better generalization
performance.

In mathematical terms, the equations of L1 and L2 regularizations are:

n
L1: Loss = Error(Y —Y) + )\Z |w;| (3.1.11)
1

L2: Loss = Error(Y — ?) +A Z w? (3.1.12)
1
where Error is the Loss function of the model

Dropout

In contrast to L1 and L2 regularization, which modify the model’s loss function, Dropout operates
within the architecture of the neural network itself. During training, Dropout randomly deactivates
a fraction of neurons at each iteration as shown in figure 3.1.15. This technique effectively creates
an ensemble of subnetworks that share weights, preventing the network from relying too heavily on
specific neurons for predictions. By introducing controlled randomness, Dropout serves as a potent
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regularizer, reducing the risk of overfitting and enhancing the model’s generalization ability. The pro-
cess of deactivating neurons simulates a form of model averaging, leading to more robust and resilient
networks. Dropout has become a standard practice in building deep neural networks, contributing
significantly to their improved performance and adaptability across a range of complex tasks.
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(a) Standard Neural Net (b) After applying dropout.

Figure 3.1.15: Left: A standard neural net with 2 hidden layers. Right: An example of a thinned
net produced by applying Dropout to the network on the left. [62]

Data Augmentation

Unlike previous methods that focus on modifying model architecture or loss functions, data augmenta-
tion operates on the training data itself. It involves applying various transformations, such as rotation,
scaling, cropping, and flipping, to create new instances of existing data points, as shown in figure 3.1.16.
By diversifying the dataset with these altered versions, data augmentation helps the model learn to
be more invariant to variations in the input data. This effectively enhances the model’s ability to
generalize by exposing it to a wider range of scenarios that it might encounter during inference. Data
augmentation is particularly useful when working with limited training data, as it artificially expands
the dataset and reduces the risk of overfitting. This technique has proven valuable across various
domains, from computer vision to natural language processing, contributing to improved model ro-
bustness and accuracy on unseen data.

(a) Rotation Data (b) Changing colors Data
Augmentation [63] Augmentation [64]

Figure 3.1.16: Data augmentation examples

ol



Chapter 3. Background on Deep Learning, Serverless and Edge computing

3.1.3 Reinforcement Learning

3.1.3.1 Introduction to Reinforcement Learning

Artificial Intelligence (AI) has undeniably transformed the way we live, work, and interact with technol-
ogy. From natural language understanding to image recognition, Al systems have achieved remarkable
feats, largely driven by the power of machine learning. Yet, there exists a class of Al challenges that
extends beyond passive pattern recognition and mere data analysis. These are challenges where Al
must learn to interact with dynamic environments, make sequences of decisions, and adapt its behavior
through trial and error. This is where Reinforcement Learning (RL) emerges as a pivotal force, pushing
the boundaries of Al capabilities and paving the way for autonomous systems that can navigate the
complexities of the real world.

Reinforcement Learning [65] is a subfield of machine learning that takes inspiration from behavioral
psychology and the principles of reward-driven learning. At its core, RL is concerned with the devel-
opment of intelligent agents that learn to make a series of decisions in an environment to maximize
a cumulative reward signal. Unlike supervised learning [54], where algorithms are trained on labeled
datasets, and unsupervised learning [66], where algorithms uncover hidden patterns, reinforcement
learning focuses on an agent’s interaction with an environment. This interaction is marked by a con-
tinuous loop of observation, action, and feedback. Through this loop, RL agents learn to not just
passively recognize patterns but to actively seek actions that lead to desired outcomes.

—>»| Environment

action Reward| |State
at R St

Agent ‘E

Figure 3.1.17: Reinfrocement learning loop [16]

One of the defining characteristics of reinforcement learning is its ability to handle sequential decision-
making problems. In many real-world scenarios, decisions made at one moment can have a profound
impact on future outcomes. For instance, in robotics, a robot must decide how to move its limbs or
adjust its sensors to perform tasks effectively. In finance, an algorithmic trader must make decisions
on buying or selling financial instruments to maximize profits over time. In healthcare, personalized
treatment plans can be seen as sequences of medical decisions made to optimize a patient’s well-being.
Reinforcement learning equips Al with the cognitive capability to navigate these complex sequences
of actions and consequences.

Reinforcement Learning has garnered significant attention in recent years due to its potential to solve
complex problems that were previously deemed insurmountable for Al systems. It has enabled au-
tonomous vehicles to navigate streets, defeating world champions in complex board games, and opti-
mizing energy consumption in data centers. Moreover, it has shown promise in domains as diverse as
healthcare, finance, robotics, gaming, and natural language processing.
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3.1.3.2 Basics of Reinforcement Learning
Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are a mathematical framework used in the field of reinforcement
learning (RL) and decision-making under uncertainty. MDPs provide a structured way to model and
solve problems where an agent interacts with an environment and makes decisions to maximize some
notion of cumulative reward over time.

As Michael L. et al.[67] explain, the components of an MDP are:

e States (S): States represent different situations or configurations of the environment. The agent
and the environment jointly exist in one of these states at any given time. States can be discrete
or continuous, depending on the problem. The set of all possible states forms the state space.

e Actions (A): Actions are the choices or decisions available to the agent within each state. The
set, of all possible actions forms the action space. Actions can include physical actions, like moving
a robot, or abstract decisions, like choosing a stock portfolio.

e Transitions (T): Transitions describe how the environment changes from one state to another
based on the agent’s actions. They define the probabilities of moving from one state to another
given a specific action. In simple terms, transitions answer questions like "If T take action A in
state S, what is the probability of ending up in state S’ 7"

e Rewards (R): Rewards are numerical values associated with state-action pairs. They represent
the immediate benefit or cost of taking a particular action in a given state. Rewards provide
feedback to the agent about the quality of its decisions. The agent’s goal is to maximize the
cumulative reward over time.

e Policy (w): A policy is a strategy that specifies which action the agent should take in each
state. It maps states to actions and guides the agent’s decision-making. Policies can be deter-
ministic (i.e., they always choose the same action in a given state) or stochastic (i.e., they specify
probabilities for taking different actions).

MDPs are based on the Markov property, which means that the future state depends only on the
current state and the action taken, not on the sequence of states and actions that preceded it. This
property simplifies modeling and computation, as the history of interactions is condensed into the
current state.

Objective: The primary objective in MDPs is to find an optimal policy, denoted as 7*, that maximizes
the expected cumulative reward over time. This optimal policy represents the best way for the agent
to make decisions in the environment.

MDPs can be solved using various methods, including Bellman Equations (Dynamic Programming),
value iteration, policy iteration, and reinforcement learning algorithms like Q-learning and Deep Q-
Networks (DQN). These methods aim to find the optimal policy or approximate it to make good
decisions in complex, real-world scenarios.

In summary, MDPs provide a mathematical framework to model decision-making problems where an
agent interacts with an uncertain environment. They are fundamental to reinforcement learning and
have applications in robotics, finance, game playing, and more, where agents must learn to make
sequential decisions to achieve long-term goals.

3.1.3.3 Policy, Value Functions, and Bellman Equations

In the context of Markov Decision Processes (MDPs) and reinforcement learning, policy, value func-
tions, and Bellman equations are essential concepts that help us understand and solve decision-making
problems.

Policy (m): As already mentioned, a policy, denoted as 7, is a strategy that defines the agent’s behavior
in an MDP. It specifies which action the agent should take in each state or state-action pair. Policies
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can be deterministic, meaning they always select the same action for a given state, or stochastic, where
they specify probabilities for taking various actions. The goal of reinforcement learning is often to find
the optimal policy, denoted as ©*. This optimal policy maximizes the expected cumulative reward over
time.

Value Functions: Value functions are essential tools used to evaluate and compare different policies
and states within an MDP. There are two primary types of value functions: the state-value function
(V) |68] and the action-value function (Q) [69]:

e State-Value Function (Vr): This function estimates the expected cumulative reward an agent
can achieve, starting from a particular state and following a given policy n. In other words, it
quantifies how good it is to be in a particular state while following the policy T.

e Action-Value or Q Function (Q=): This function estimates the expected cumulative reward
an agent can achieve when starting in a particular state, taking a specific action, and then
following the policy m. It quantifies the expected goodness of taking a particular action in a
particular state while following the policy .

Bellman Equations: The Bellman equations (also known as Dynamic Programming equtions) are
fundamental recursive relationships that connect the value functions of different states or state-action
pairs.

e Bellman Expectation Equation for Vr: This equation expresses the state-value function
(Vr) in terms of the expected reward (immediate reward) and the expected value of the next
state, taking into account the current state and the action chosen according to the policy .
Mathematically, it can be represented as:

Ve(s) = Z[PW(S)(S/‘S, 7(s)) * (R(s,7(s),s") + v Vr(s'))] (3.1.13)

ry

Here, s represents the current state, s’ represents the next state, n(s) represents the action chosen
in state s according to policy w, P(s’ [ s, n(s)) represents the transition probability from s to s’
under policy ©, R(s, n(s), s’) is the immediate reward, y (gamma) is the discount factor (which
values future rewards less than immediate rewards), and Vr(s’) is the value function of the next
state s”.

e Bellman Expectation Equation for Qr: This equation expresses the action-value function
(Qn) in terms of the expected reward (immediate reward) and the expected value of the next
state, taking into account the current state, the action chosen, and the policy n. Mathematically,
it can be represented as:

Qr(s,a) = Z[P,r(s’|s, a) x (R(s,a,s") + * Zw(a’|s’) * Qr(s',a)] (3.1.14)

s’ a’

Here, s represents the current state, a represents the current action, s’ represents the next state,
P(s’ | s, a) represents the transition probability from s to s’ under action a, R(s, a, s’) is the
immediate reward, y (gamma) is the discount factor, m(a’ / s’) represents the probability of
taking action @’ in state s’ according to policy w, and Qn(s’, a’) is the Action-Value function of
the next state s’ and action a”.

These Bellman equations play a crucial role in solving MDPs and finding optimal policies or value func-
tions. They allow us to update and refine value estimates iteratively, ultimately leading to improved
decision-making in uncertain environments.

3.1.3.4 Reinforcement Learning Algorithms

This section explores some of the most well-know Reinforcement Learning (RL) algorithms, ranging
from foundational techniques like Value Iteration and Policy Iteration to modern innovations such
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as Deep Q-Networks (DQNs), Q-Learning, Policy Gradient Methods, Proximal Policy Optimization
(PPO), and Actor-Critic Methods. These algorithms play a pivotal role in the field of RL, significantly
impacting the landscape of artificial intelligence. They offer adaptable solutions with applications in
various contexts, making this exploration valuable for both experienced RL practitioners and those
new to the field.

e Value Iteration: Value Iteration [70] is a dynamic programming algorithm widely used in Re-
inforcement Learning to compute the optimal value function and policy for a Markov Decision
Process (MDP). The algorithm iteratively refines the value estimates for each state in the en-
vironment until convergence to the optimal solution. It’s based on the principle of Bellman’s
Optimality Equation, which states that the optimal value of a state is the maximum expected
return achievable from that state by following the optimal policy. The algorithm begins with
initializing the value function V (s) for all states s in the MDP. It then iteratively updates the
value estimates using the Bellman equation for Vw 3.1.13. An alternate method to write the
algorithm is to use the idea of Q-values which is closer to a code-based implementation. For this,
the loop is:

Algorithm 1 Value Iteration with Q-Values

Input: MDP M = (S, A, P, (s’ | s),7(s,a,s"))
Output: Value function V'

Initiazlize V' to arbitrary value function; e.g., V(s) = 0 for all s

while V' changes (no convergence) do
for each s € S do
for each a € A(s) do
Qs,0) & Xyes Pa (' | 5) [ (5,0,8') + AV ()]
end for
V(s) <= maxaea(s) Q(s, a)
end for
end while=0

Value Iteration is guaranteed to find the optimal policy for finite MDPs. However, it can be
computationally expensive for large state spaces due to its iterative nature. Nevertheless, it serves
as a foundational concept for understanding other advanced reinforcement learning algorithms.

e Policy Iteration: Policy Iteration [71] is an iterative reinforcement learning method for finding
the optimal policy in a Markov Decision Process (MDP). It consists of two main steps: policy
evaluation and policy improvement. In the policy evaluation step, it estimates the value function
Vr(s) for a given policy © which represents the expected cumulative reward from a starting state
s. The estimated values are calculated using the 3.1.13. In the policy improvement step, the goal
is to improve the policy by updating the actions it recommends based on that we receive from
the policy evaluation. Let Qmn(s, ) be the expected reward from s when doing a first and then
following the policy t. Qn can be defined as:

Q(s,a) « Y Pu(s' | s)[r(s,a,8) + 7V (5] (3.1.15)

s'eS

This is the same equation used in Algorithm 1, but here the V(s’) term is the value function from
the policy evaluation. If there is an action « such that Qm(s,a) > Qm(s,a) then the policy © can
be strictly improved by setting 7(s) <— «. Algorithm 2 demonstrates an example implementation
of this concept.

The policy iteration algorithm finishes with an optimal = (7*), after a finite number of iterations,
because the number of policies is finite.
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Algorithm 2 Policy Evaluation

Input: MDP M = (S, A, P, (s' | s),r (s,m(s),s"))
Output: Policy function V

Initiazlize 7 to arbitrary value function; e.g., w(s) = « for all s, where a € A is an arbitray action

while 7 changes (not convergence) : do
for each s € S do
Qr(s,a) <> o cgPa(s' | 8)[r(s,a,8) +~V (s')] {Policy Evaluation}
end for
for each s € S do
7T(S) — argmaxaEA(s)Q(Sv a)
end for
end while=0

Value and Policy iteration are the fundamental algorithms in the field of Reinforcement Learning.
However, as RL continued to evolve and diversify, numerous additional algorithms emerged to address
various complexities and challenges.

e Q-Learning: Q-Learning [17] is a pivotal algorithm in the realm of reinforcement learning due
to its practical effectiveness and robustness in handling complex problems. One of its notable
characteristics is its model-free nature, meaning it doesn’t require prior knowledge of the envi-
ronment’s dynamics. Instead, it learns through a trial-and-error process by interacting with the
environment. It is worth mention that Q-Learning operates on the principle of temporal differ-
ence [72]. At its core, Q-Learning revolves around estimating the value of taking a specific action
in a given state. This estimation is often referred to as the Q-value. The algorithm iteratively
updates these QQ-values based on observed rewards and state transitions. The Bellman equation,
once again, plays a central role in these updates, aiding in the calculation of the expected return
for a given state-action pair. The core update equation for Q-Learning is as follows:

Q(st,ar)  Q(st,ar) + ax (R(se, ar) + v * marqQ(Si+1, arg1) — Q(Se,ar)) (3.1.16)

In this equation 3.1.16, Q(ss, a;) represents the Q-value for state s; and action a;, o denotes the
learning rate, controlling the step size of the updates, R stands for the immediate reward received
after taking action a; in state s, v represents the discount factor, which balances the importance
of immediate and future rewards and s;y; represents the resulting state after taking action a;11
in state s;. In Q-Learning, for the update of the current Q(s, at) is used the state-action pair
< St41,G¢41 > that maximizes the Q-value. On the other hand, to pick the next action/state
(from the current state) the epsilon greedy policy [73] derived from the current Q table is used.
For this reason Q-Learning is called off policy algorithm, which means that uses different policy
to explore and learn than the target policy. In this way, Q-Learning entails a delicate balance
between exploring new actions (due to the randomness of epsilon greedy) to gather information
about the environment and exploiting existing knowledge to maximize rewards.

It is important to notice that a major limitation of Q-learning is that it is only works in envi-
ronments with discrete and finite state and action spaces.

e Deep Q-Networks: Deep Q-Networks (DQNSs) [74] represent a groundbreaking advancement
in the field of reinforcement learning (RL). At their core, DQNs combine the power of neural
networks with the Q-learning algorithm as shown in , enabling the handling of high-dimensional
state spaces encountered in complex environments like video games and robotics. In a DQN,
a neural network approximates the Q-function, with the input being the state and the output
representing the Q-values for each possible action. This approach drastically improves the ability
to generalize across states, making it possible for an agent to learn effective policies even when it
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hasn’t explored every state-action pair. Moreover, DQNs introduce the concept of experience re-
play, where past experiences are stored in a replay buffer and randomly sampled during training.
This technique breaks the temporal correlations of sequential experiences, making learning more
stable and efficient. DQNs have achieved remarkable success, outperforming humans in various
Atari 2600 games and demonstrating their potential in real-world applications like autonomous
driving. Despite their strengths, DQNs are not without challenges, including hyperparameter
tuning, instability in training, and the need for substantial computational resources. Neverthe-
less, their ability to learn from raw sensory data and navigate complex environments marks a
significant milestone in the realm of reinforcement learning.

Variations of the original DQN algorithm have also emerged, each with unique enhancements tai-
lored to specific challenges. These variants include Double DQN (DDQN) [75], which mitigates
the overestimation bias present in traditional DQNs, and Dueling DQN [76], which disentangles
the value and advantage functions to improve learning efficiency. Additionally, Rainbow [77], an
integration of multiple DQN extensions, further enhances the algorithm’s performance, showcas-
ing the ongoing innovation in this field. These adaptations highlight the dynamic nature of DQN
algorithms, continuously evolving to address complex real-world problems effectively.

Q-Learning
Q Table
State-Action Value

—>| Q-Value

Action

Deep Q-Learning

Q-Value Action 1

Q-Value Action 2

Q-Value Action n

Figure 3.1.18: Q-Learning vs DQN [7§]

e Policy Gradient methods: Policy gradient algorithms [79] represent a class of reinforcement
learning (RL) techniques that directly learn the optimal policy for an agent. Instead of estimating
the value function, as done in methods like Q-learning, policy gradient methods focus on finding
the policy that maximizes the expected cumulative reward. At the heart of policy gradient
algorithms is the parameterization of the policy itself, often using neural networks. The policy
network takes the current state as input and outputs the probabilities of taking different actions.
During training, these networks are optimized using gradient descent to maximize the expected
reward. One of the fundamental policy gradient algorithms is the REINFORCE algorithm, which
uses the likelihood ratio gradient estimator to update the policy parameters. While effective,
REINFORCE can suffer from high variance in its updates, which can slow down learning. To
address this issue, several variations and improvements of policy gradient methods have been
introduced. Proximal Policy Optimization (PPO) [18] PPO is one algorithm designed to address
this issue. It introduces a clever modification to the policy update step by incorporating a clipping
mechanism. This clipping constrains the policy update to be within a certain range, preventing
overly large changes in policy. By doing so, PPO achieves more stable learning and faster
convergence. PPO also employs multiple epochs of minibatch updates on collected data, further
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enhancing its robustness. It’s known for its simplicity and effectiveness, making it a popular
choice for various RL tasks. PPQ’s ability to balance exploration and exploitation and its ease of
use have contributed to its widespread adoption in both research and practical applications. Trust
Region Policy Optimization (TRPO) [80] is another policy gradient method that aims to ensure
stable policy updates. It introduces a key concept known as a "trust region." In simple terms, a
trust region is a region around the current policy where the algorithm is allowed to make updates.
However, the updates should not venture too far from the current policy to avoid destabilizing
learning. TRPO rigorously maintains a bound on how much the new policy can deviate from the
old one, effectively controlling the magnitude of policy updates. This ensures that the changes
made during training are gradual and do not lead to catastrophic policy collapses. TRPO’s
trust region approach provides strong theoretical guarantees on policy improvement, making it
an attractive choice for safety-critical applications. While TRPQO’s stability and guarantees are
appealing, it can be computationally demanding due to the need for constrained optimization.
Researchers have explored approximations and extensions to TRPO to strike a balance between
stability and efficiency. Additionally, Actor-Critic methods [81] combine elements of both value-
based and policy-based approaches. In these methods, an actor network parameterizes the policy,
while a critic network estimates the value function. The actor is responsible for selecting actions.
It learns a policy, which is essentially a strategy for choosing actions in different states. In
detail, the actor takes the current state as input and outputs the probability distribution over
possible actions. Over time, through training, the actor’s policy becomes more refined, aiming
to maximize expected rewards. The critic, on the other hand, evaluates the actions taken by the
actor. It learns the value function, which estimates the expected cumulative reward an agent
can achieve from a given state by following the actor’s policy. This value function provides
feedback to the actor, helping it adjust its policy to select better actions. The Actor-Critic
method combines the advantages of both policy-based and value-based methods. It can learn
both the optimal policy and estimate the state’s value simultaneously, making it more stable and
efficient. Figure 3.1.19 illustrates the Actor-Critic architecture. This approach is particularly
useful in scenarios where dealing with high-dimensional state spaces and complex environments
is crucial. Actor-Critic methods come in various forms, and they are often employed in tasks such
as robotic control, game playing, and autonomous navigation. Variants of Actor-Critic methods,
such as A3C (Asynchronous Advantage Actor-Critic) and A2C (Advantage Actor-Critic) [82],
have demonstrated remarkable success in various RL tasks.

Reward

A

Environment

Action

Figure 3.1.19: Actor-Critic RL Architecture [83]
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Policy gradient algorithms and their variations offer a powerful framework for tackling RL prob-
lems, especially in scenarios with high-dimensional action spaces or continuous action domains.
These methods, with their ability to directly optimize policies, have been instrumental in solv-
ing complex tasks in robotics, natural language processing, and game playing, among others.
While they can be computationally intensive, the versatility and effectiveness of policy gradient
algorithms make them a vital component of the RL toolkit.

3.1.3.5 Applications of Reinforcement Learning

Reinforcement Learning (RL) has found a wide range of applications across various domains due to
its ability to make autonomous decisions through trial and error. Here’s an extensive look at its
applications:

e Game Playing and AI: RL has made significant strides in game playing. AlphaGo [84],
developed by DeepMind, achieved a historic milestone by defeating Lee Sedol, one of the world’s
top Go players, in 2016. Go is an ancient board game with an incredibly vast and complex state
space, making it a benchmark for Al. AlphaGo’s success demonstrated RL’s capacity to handle
intricate and strategic games. In video games, agents trained using RL techniques have mastered
games like Dota 2 [85] and StarCraft II [86], both of which demand high-level strategic planning,
coordination, and real-time decision-making. These accomplishments are not just limited to
scripted gameplay but also involve adapting to evolving environments and opponents.

It is worth mentioning that RL’s success in game playing has led to its adoption in simulating
environments such as flight simulation. Simulated games can replicate real-world scenarios and
allow AT agents to learn from various situations without the associated risks. This is especially
valuable for the advancement of RL in fields like robotics.

e Robotics: Reinforcement Learning (RL) has emerged as a cornerstone in the field of robotics,
revolutionizing the way robots learn and adapt to complex, unstructured environments. RL
empowers robots with the ability to autonomously acquire and refine their skills, making them
increasingly versatile and capable of performing a wide array of tasks. This technology is in-
strumental in the development of autonomous vehicles [87], drones [88], and industrial robots
[89]. In the realm of autonomous vehicles, RL is leveraged to optimize control strategies, en-
abling self-driving cars to navigate safely through dynamic traffic scenarios. Drones benefit from
RL by learning how to fly more efficiently, perform precise maneuvers, and adapt to changing
environmental conditions. In industrial settings, RL is used to train robots for tasks like pick-
and-place operations, assembly line tasks etc. RL-driven robots can adapt in real-time, making
them indispensable in environments where unforeseen challenges often arise.

e Healthcare: Reinforcement learning (RL) is making significant inroads into the healthcare in-
dustry, revolutionizing patient care, diagnostics, drug discovery, and treatment planning. In
personalized medicine, RL algorithms can analyze vast patient data sets to tailor treatments and
therapies for individuals, optimizing outcomes. For instance, RL-driven predictive models have
been used to identify at-risk patients for chronic diseases like diabetes or to optimize insulin
dosage for diabetic patients [90]. In diagnostics, RL-based systems can assist medical profes-
sionals by providing more accurate and rapid diagnoses, such as detecting anomalies in medical
images or interpreting medical texts [91]. Moreover, in drug discovery, RL accelerates the search
for potential drug candidates [92]. Additionally, RL plays a pivotal role in treatment planning,
suggesting personalized rehabilitation plans for patients [93]. The ability of RL to analyze and
adapt to complex medical data makes it an indispensable tool in healthcare, with the potential
to enhance patient care, improve outcomes, and expedite medical discoveries.

e Finance: In the realm of finance, RL plays a pivotal role in algorithmic trading, trading strat-
egy optimization, portfolio management, fraud detection, cybersecurity, and dynamic pricing.
According to algorithmic trading, RL-driven trading systems can adapt and optimize trading
strategies based on market dynamics, enhancing profitability and risk management [94]. In port-
folio management, RL aids in the allocation of assets to maximize returns while minimizing risk
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[95]. In the realm of fraud detection and cybersecurity, RL models can continuously learn to iden-
tify and respond to evolving threats in real time [96]. Furthermore, RL plays a role in dynamic
pricing strategies [97] for businesses, optimizing pricing decisions based on market conditions and
consumer behavior. With its capacity to make data-driven decisions in a dynamic and uncertain
environment, RL is poised to make a significant impact on financial institutions, providing them
with powerful tools to navigate the ever-evolving landscape of finance.

In conclusion, the applications of reinforcement learning are vast and continually expanding, rev-
olutionizing numerous domains. From mastering complex games to enabling autonomous robotics,
optimizing healthcare treatments, and enhancing decision-making in finance, RL has demonstrated
its versatility and transformative potential. As researchers push the boundaries of what’s possible
in artificial intelligence, the future promises even more innovative applications and breakthroughs.
With ongoing advancements in algorithms and increasing computational capabilities, the impact of
reinforcement learning on society, technology, and industry is bound to grow, fostering a new era of
intelligent systems that adapt and learn from their environments.

3.1.3.6  Challenges of Reinforcement Learning

Despite the fact that is a powerful paradigm with a growing list of applications spanning numerous
domains, harnessing the potential of Reinforcement Learning comes with its own set of formidable
challenges that researchers and practitioners must navigate. These challenges represent critical aspects
of RL’s development and deployment. This section presents some of the primary challenges that
confront RL, including exploration, sample efficiency, generalization and transfer learning, as well
as safety and ethical considerations. By addressing these challenges head-on, we aim to illuminate
the path forward for RL in diverse applications, ensuring responsible and effective use across various
domains.

e Exploration vs Exploitation: Achieving the delicate balance between exploration and ex-
ploitation [98] is a cornerstone challenge in reinforcement learning (RL). In RL, agents are re-
quired to actively explore their environment by trying out different actions and closely observing
the outcomes. Striking the right balance between exploring new actions to gather valuable infor-
mation and exploiting known actions to maximize immediate rewards is particularly intricate in
complex and dynamic environments. This challenge becomes even more pronounced when deal-
ing with environments characterized by high uncertainty, as agents must decide when and how
to explore new possibilities while not sacrificing the performance gained through exploitation of
previously learned actions.

e Sample Efficiency: Sample efficiency is a critical challenge in reinforcement learning (RL) [99],
where algorithms aim to learn and improve policies with minimal data. In this context, sample
efficiency refers to an algorithm’s ability to make the most of the data it collects, allowing it to
learn and improve policies quickly. RL algorithms that are sample-efficient can achieve better
performance with the same number of training samples compared to less sample-efficient methods.
For instance, a human player can master a game like Pong with just a few dozen trials, while
some RL algorithms may require tens of thousands of samples to learn effective policies. This
challenge is particularly significant due to the costs associated with real-world interactions and
simulations, as well as considerations of time, energy, and equipment wear and tear. Developing
more sample-efficient RL algorithms is crucial for practical applications in various domains, where
efficiency and speed of learning are paramount.

e Generalization and Transfer Learning: Achieving robust generalization and transfer of
knowledge across diverse environments remains a significant challenge in RL [100]. RL models
often struggle to apply learned policies effectively in contexts different from their training envi-
ronment, limiting their adaptability and scalability. This challenge necessitates the development
of innovative techniques for enabling RL agents to generalize their knowledge and transfer it
seamlessly to varied scenarios.

e Safety Considerations: The deployment of reinforcement learning in real-world applications,
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such as autonomous driving and robotics, has brought forward significant safety concerns [101].
These concerns are primarily rooted in the potential risks associated with RL systems making
critical decisions, which could lead to accidents or undesirable outcomes. As a result, there’s
a growing demand for the development of safe RL algorithms that can operate reliably and
adhere to safety constraints. While the field of control theory has a long history of addressing
safety in systems, the study and development of safe RL algorithms are still relatively nascent.
Researchers are actively working on creating algorithms that not only optimize performance but
also prioritize safety, ensuring responsible and secure RL deployment in various domains.

3.1.3.7 Reinforcement Learning in Practice

Transitioning from theoretical concepts to real-world applications involves addressing several practi-
cal considerations. One crucial aspect is the availability of robust tools, libraries, and reinforcement
learning frameworks designed to facilitate RL research and development. In the earlier days of RL,
implementing algorithms from scratch was a formidable challenge, often requiring extensive mathemat-
ical and programming expertise. However, the advent of specialized RL frameworks has significantly
simplified the process, allowing researchers and practitioners to focus on the core components of their
applications rather than getting bogged down in algorithmic details.

Prominent platforms like OpenAl Gym [102], TensorFlow [103], and PyTorch [33] provide essential
resources, environments, and abstractions for training and evaluating RL agents, making it more
accessible for researchers and practitioners. These frameworks offer standardized interfaces, optimized
performance, and pre-built environments that can simulate a wide range of scenarios. This not only
saves time but also ensures the reliability and reproducibility of RL experiments.

Moreover, specialized reinforcement learning frameworks like KerasRL [104], Stable Baselines [105],
Stable Baselines 3 [106], PyQlearning [107], TensorForce [108], RLCoach [109], TF-Agents [110], and
RLLib [111] have gained traction for their tailored support and optimized implementations of RL al-
gorithms. These frameworks offer a wide range of pre-implemented algorithms, making it easier for
developers to experiment with different approaches, fine-tune hyperparameters, and adapt RL meth-
ods to their specific applications. Importantly, many of these frameworks are designed to seamlessly
integrate with popular environments like the aforementioned OpenAl Gym, allowing users to harness
the power of RL while working within familiar and standardized simulation environments. This de-
mocratization of RL through user-friendly frameworks is reponsible for the accelerated innovation and
the practical adoption of RL in various domains.

3.2 Serverless Computing

This chapter introduces the concept of serverless computing, a revolutionary paradigm in cloud com-
puting. This approach transforms traditional application development by abstracting the complexities
of infrastructure management, allowing developers to concentrate on code logic.

3.2.1 The Need of Serverless Computing

Cloud computing facilitates the delivery of computational services via the Internet. As defined by
NIST [112], traditional cloud computing encompasses three service categories:

e Infrastructure as a Service (IaaS): Infrastructure as a service is a form of cloud computing
that provides virtualized computing resources over the internet. The cloud provider manages I'T
infrastructures such as storage, server and networking resources, and delivers them to subscriber
organizations via virtual machines accessible through the internet. AWS, for instance, offers
services like Elastic Compute Cloud (AWS EC2) [113] and Simple Storage Service (AWS S3)
[114]. TaaS is a cost-efficient solution to operate a workload without having to buy, manage and
support the underlying infrastructure. However, IaaS retains the operational complexities of ap-
plications, leaving developers responsible for tasks such as resource provisioning and application
code management.
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e Software as a Service (SaaS): SaaS, on the other hand, enables developers to directly access
cloud provider applications like Google’s Gmail [115] and Docs [116]. Operating under the SaaS
umbrella, the intricacies of operations are gracefully concealed, sparing developers the burdens
of intricate management. However, this simplicity doesn’t come without trade-offs. While SaaS
hides operational intricacies, it imposes limitations and may entail relinquishing control over the
application.

e Platform as a Service (PaaS): PaaS provides developers with the means to develop, run,
and manage applications using cloud provider-supported execution environments, exemplified
by Google’s App Engine [117] and Azure’s App Service [118]|. PaaS strikes a balance between
TaaS and SaaS, offering a middle ground where certain operational complexities are abstracted
away. However, it doesn’t entirely absolve developers from all management duties, requiring
them to still handle a portion of management and configuration tasks, potentially complicating
development [119].

To alleviate the cloud management burden on software developers, cloud providers introduced a novel
paradigm called serverless computing. Similar to PaaS [[120], [121]], serverless computing minimizes
complex management tasks concerning underlying servers ("server-less") while retaining application
control. Moreover, it offers automatic scaling based on demand, distinguishing it from PaaS [[122],
[119]]. However, unlike PaaS, serverless computing is unsuitable for long-running processes and stateful
applications [[123]].

Serverless applications adhere to the design principles of the microservice software style, which in-
volves dissecting applications into discrete, independent tasks. In practice, serverless computing and
microservices share notable commonalities. Both paradigms share the objective of disassembling mono-
lithic applications into manageable units that can be developed, deployed, and maintained individually.
The execution units within serverless applications, termed serverless functions, can be perceived as a
means of hosting microservices. When it comes to monitoring and management, as the number of
components within an application increases, the complexity of overseeing them rises, necessitating ro-
bust monitoring and log management tools. However, distinctions exist between serverless computing
and microservices. For instance, serverless functions operate at a finer granularity than traditional
microservices, potentially fulfilling multiple functions within a single unit. Moreover, in the context
of constructing microservices-based applications, developers find themselves tasked with additional re-
sponsibilities, encompassing crucial aspects like scalability, fault tolerance, and load balancing. These
responsibilities require strategic planning, implementation, and ongoing management to ensure the
seamless performance of the distributed architecture. In contrast, the provisioning of infrastructure
for serverless applications follows a different trajectory. This responsibility is borne by the serverless
providers themselves, freeing developers from the intricacies of infrastructure management.

3.2.2 Architecture of Serverless Computing

Serverless architecture, a cornerstone of modern cloud computing, empowers developers to construct
intricate applications without the burdens of traditional infrastructure management. At its core,
this architecture revolves around the concept of serverless functions orchestrated within a cloud-based
environment. Developers harness cloud providers’ specialized platforms to craft applications composed
of multiple serverless functions, each designed to execute specific tasks, such as running a Deep Learning
model (also called model inference [124]). These functions are intricately tied to predefined events,
such as HTTP requests or data updates within cloud storage, e.g. databases, acting as triggers for
their execution. When an event occurs, the serverless platform automatically initializes the runtime
environment, be it containers or virtual machines, needed to execute the designated function. Once
executed, the resources are recycled. This intricate orchestration of events, functions, and resource
allocation lies at the heart of the serverless architecture, streamlining application development and
ushering in a new era of dynamic, event-driven computing.

To better understand the event-driven architecture of serverless computing, consider a practical use
case that illuminates its seamless integration into user interactions. Imagine a scenario where a user
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initiates search and purchase requests directly from their web browser. This scenario is illustrated
in figure 3.2.1. These requests are guided through an API Gateway, the entrance to the serverless
ecosystem. The Gateway efficiently directs the search request to a dedicated search function and the
purchase request to a specialized purchase function. These functions, akin to skilled workers, diligently
carry out their designated tasks within the dynamic serverless environment.

In parallel with function execution, the serverless platform instantaneously springs into action, con-
structing the necessary runtime environments. These environments empower the functions to perform
their tasks.

Upon task completion, the functions generate responses containing data or status updates. These
responses navigate back through the API Gateway, making their way to the user’s web browser. This
well-coordinated procedure showcases how serverless architecture adeptly manages tasks and responses,

ultimately improving the user experience.
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Figure 3.2.1: Step-by-step flow of serverless computing through a user-initiated search and purchase
request [125]

3.2.3 Key Characteristics of Serverless Computing

The following outlines the key characteristics that define serverless computing, setting it apart from
traditional application architectures. These characteristics collectively redefine how applications are
developed, executed, and managed in the cloud environment.

e Event-Driven Execution: At the core of serverless architecture lies an event-driven model
that orchestrates the execution of functions based on specific triggers. These triggers encompass
a range of events, from HTTP requests and database updates to file uploads and beyond. This
dynamic mechanism ensures that functions spring into action precisely when required, enabling
resource utilization to be maximized.

e Automatic Scaling: Serverless platforms exhibit automatic horizontal and vertical scaling in
response to fluctuations in application workloads. Horizontal scaling involves launching new
function instances or recycling existing ones, while vertical scaling entails adjusting the compu-
tation resources allocated to function instances. After handling requests, function instances and
resources remain in memory briefly for potential reuse by subsequent requests. In the absence
of such requests, these resources are automatically recycled, potentially leading to a scaling to
zero scenario. In this scenario, the serverless platform intelligently de-allocates all resources as-
sociated with the function instance, making it resource-efficient. However, this efficient approach
can give rise to the "cold start problem, where a new function instance experiences a delay in its
response time due to the need for time-consuming environment setup before executing the task
at hand. This trade-off between resource efficiency and initial response time is a characteristic
consideration in serverless design.
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e Ephemeral Statelessness: Within the realm of serverless computing, functions are purpose-
fully crafted to embrace a stateless and ephemeral nature. This foundational design principle
ensures that each function invocation is devoid of any remnants from prior executions. By main-
taining a stateless disposition, these functions avoid the complexities of managing persistent
data across invocations, streamlining both development and maintenance processes. Moreover,
the ephemeral nature of serverless functions aligns harmoniously with the dynamic nature of
cloud-native architectures. This design facilitates rapid and efficient scaling, enabling functions
to be instantiated or recycled swiftly in response to varying workloads. The marriage of stateless-
ness and ephemerality not only simplifies function management but also contributes to enhanced
fault tolerance. The lack of persistent state prevents failures in one instance from affecting others,
bolstering the overall reliability and resilience of serverless applications.

e Microservices Composition: Serverless encourages a microservices-oriented approach to ap-
plication development. Functions, acting as microservices, perform specific tasks, enabling de-
velopers to compose complex applications by integrating these functions through APIs. This
microservices-driven strategy not only enhances modularity and maintainability but also pro-
motes reusability and scalability of individual components, fostering an environment of rapid
innovation in application design.

e Pay-as-You-Go Billing: Serverless operates on a pay-as-you-go pricing model, which represents
a significant departure from traditional cloud billing. Users are exclusively billed for the exact
resources consumed during function execution. This approach eliminates the need to pay for
idle resources, aligning costs directly with usage. By embracing an event-driven philosophy,
where functions remain dormant until triggered by specific events, serverless minimizes wastage
and ensures cost efficiency. This approach empowers users to optimize their expenditures while
taking full advantage of cloud resources, revolutionizing the way computing costs are managed.

e Infrastructure Abstraction & Faster Development: Serverless computing introduces a
paradigm where developers are shielded from the intricacies of underlying infrastructure. Instead,
cloud providers assume the role of managing server provisioning, maintenance, and scaling. This
abstraction empowers developers to concentrate exclusively on crafting code that delivers func-
tionality and meets business requirements. By delegating infrastructure management to experts,
developers can streamline their workflows, accelerate development cycles, and focus on creating
value through innovative applications.

e Simplified Deployment Process: Serverless architecture simplifies function deployment. De-
velopers can easily upload code to the serverless platform, bypassing intricate configurations.
This accelerates development and reduces overhead. User-friendly interfaces and tools further
improve the packaging, uploading, and management process, enhancing the deployment experi-
ence.

3.2.4 Serverless platforms

As we explore the serverless landscape, we encounter a multitude of platforms, encompassing both
proprietary and open-source solutions. Noteworthy proprietary platforms, including AWS Lambda [19],
Microsoft Azure Functions [20], Google Cloud Functions [21], and IBM Cloud Functions [126], furnish
developers with robust tools and seamless integrations, simplifying the deployment and management
of serverless functions. On the open-source front, platforms like Knative [22], Apache OpenWhisk [9],
OpenFaa$ [24], and OpenLmbda [127] present versatile options, granting organizations the ability to
tailor their serverless environment to their precise requirements. This selection of platforms empowers
us to choose the one that best aligns with our project’s demands and resonates with our technological
preferences. The following bullets provide a brief overview of each of these platforms:

¢ AWS Lambda: Amazon Web Services (AWS) Lambda stands at the forefront of serverless
computing, providing a powerful platform for executing code without the complexities of infras-
tructure management. Since its debut in November 13, 2014, serverless computing has been
steadily capturing more attention, driving other major cloud providers to join the movement
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by introducing their own serverless platforms. Lambda’s "pay-as-you-go" pricing model charges
based on actual execution time and memory usage, ensuring cost efficiency. Its integration with
various AWS services enables the creation of event-driven architectures, where Lambda functions
respond to real-time changes and triggers from both AWS and external sources. With built-in
auto-scaling, Lambda dynamically allocates resources to handle incoming requests, maintain-
ing optimal performance. Through features like provisioned concurrency, cold start delays are
mitigated, ensuring rapid execution.To enhance the monitoring capabilities of AWS Lambda,
Amazon delivers tools like AWS CloudWatch [128] and AWS CloudTrail [129], facilitating the
observation and logging of serverless functions.

Microsoft Azure Functions: As a significant player in the serverless landscape, Azure Func-
tions by Microsoft simplifies application development by allowing developers to focus solely on
code logic. Much like AWS Lambda, the platform offers event-driven capabilities and seamless
integration with other Azure services. Azure Functions ensures the observability of functions with
tools like Azure Monitor, which provides comprehensive insights into function behavior. With
a "pay-as-you-go" pricing model, users are billed based on memory consumption during execu-
tion, promoting cost efficiency. Also, supports multiple programming languages and through
autoscaling ensures optimal performance. Its robust integration with Azure services and efficient
resource management make it a versatile choice for modern application development within the
Microsoft Azure ecosystem.

IBM Cloud Functions: A notable contender in serverless computing, IBM Cloud Functions,
based on the OpenWhisk framework, optimizes development by abstracting infrastructure man-
agement complexities. Following an event-driven model, it seamlessly integrates with diverse IBM
Cloud services, fostering the creation of flexible and responsive solutions. Utilizing consumption-
based pricing, IBM Cloud Functions charges users solely for resources used during function
execution. Compatibility with multiple programming languages allows developers to work seam-
lessly in their preferred coding environments. The platform’s dynamic auto-scaling mechanism
ensures optimal performance, adapting to changing workloads.

Knative: The Knative framework operates as an open-source platform for building, deploying,
and managing serverless workloads on Kubernetes clusters, making it a powerful tool for devel-
opers. At its core, Knative leverages Kubernetes to create an extensible platform that automates
the orchestration of serverless deployments. Serving as a middleware layer, Knative encompasses
two key components: Serving [130] and Eventing [131]. The Serving component focuses on han-
dling traffic and scale-to-zero deployments, while Eventing manages event-driven architectures.
Knative’s extensible nature allows developers to customize and extend its capabilities to suit
their specific application needs. This framework aligns seamlessly with the Kubernetes ecosys-
tem, harnessing the power of Docker containers [132] and Kubernetes [23] clusters to simplify the
development and management of serverless applications. More about Knative in section 3.2.5.

Apache OpenWhisk: Apache OpenWhisk functions as a comprehensive open-source serverless
computing framework, integrating key components to streamline application development. In
OpenWhisk, HTTP requests can be utilized to transform function invocations, which are then
directed to the Nginx [133] server that supports the Web protocol. From there, the Nginx server
forwards the request to the controller, which collaborates with CouchDB [134], to store the data
of the application. Then, OpenWhisk takes advantage of Kafka [135], a messaging system built
on the publish-subscribe model [136] for efficient message transmission, to connect Controller
with Invokers, responsible for managing the execution of functions. Finally, the controller sends,
through Kafka, a message to the Invokers to initiate the execution of function instances (on worker
nodes) in response to the requests, managing their runtime environments, and collecting results
upon completion. OpenWhisk’s programming model encompasses fundamental concepts: actions
represent executable functions, triggers denote predefined events, and rules define the binding
relationship between actions and triggers. This intricate system is designed for compatibility
with Docker container engine and orchestration systems such as Kubernetes and OpenShift [137].
Figure 3.2.2 illustrates the architecture of Apache OpenWhisk.
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Figure 3.2.2: Apache OpenWhisk architecture [138]

e OpenFaaS: OpenFaaS comprises several key components that collectively enable its functional-
ity. At its core is the Gateway, which acts as the entry point for invoking functions and managing
requests. Functions themselves are packaged as Docker containers, ensuring portability and flex-
ibility. The Gateway then invokes the orchestration system e.g. Docker Swarm or kubernetes
(through faas-netes [25]) to execute the function. Additionally, the Prometheus monitoring sys-
tem is integrated to collect performance metrics and ensure observability. OpenFaaS provides
a set of built-in templates for various programming languages, streamlining function creation.
Developers can utilize these templates to quickly define and package their functions. The plat-
form also supports asynchronous function invocations through a queue, using NATS streaming,
that enables decoupling of components for improved scalability and reliability. Furthermore,
OpenFaa$S incorporates an extensible ecosystem, allowing users to integrate additional services
and plugins to extend its capabilities. This modular architecture empowers developers to create,
deploy, and manage functions efficiently while taking advantage of the flexibility and scalability
offered by OpenFaaS. Figure 3.2.3 illustrates the architecture of OpenFaas.
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Figure 3.2.3: OpenFaas architecture [139]

e OpenLambda: OpenLambda stands as an open-source serverless platform under the Apache
license, functioning on the foundation of Linux containers. Developers are required to upload
their functions to the code store or function registry within OpenLambda. Upon triggering a
serverless function, requests are directed to the load balancer component, which selects appropri-
ate workers based on a configured algorithm to serve the incoming requests. Nginx, the software
load balancer, is responsible for orchestrating function scheduling in the OpenLambda system.
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Notably, OpenLambda supports both Docker containers and lightweight SOCK container system
[140]. Additionally, OpenLambda offers interaction through CLI and API interfaces, allowing
seamless coordination with diverse backends. The platform also integrates external monitoring
tools for enhanced observability and performance analysis.

3.2.5 Overview of Knative

Selecting the Knative serverless framework over other open-source alternatives presents a compelling
choice for enhancing modern application development practices. Knative stands out with its seamless
integration into Kubernetes environments, allowing you to leverage your existing infrastructure invest-
ments while embracing serverless capabilities. This compatibility ensures a smoother transition and
reduces the need for extensive rearchitecting. Knative’s architecture provides developers with a famil-
iar toolkit and coherent experience, as it harnesses Kubernetes-native tools for creating, deploying,
and managing serverless applications. The platform’s customizable auto-scaling mechanism ensures ef-
ficient resource utilization, automatically adjusting to workload changes for optimal performance. The
ability to scale functions down to zero not only maximizes resource efficiency but also minimizes costs
by charging only for actual resource consumption. Additionally, Knative’s vibrant community fosters
rapid innovation, resulting in the continuous development of features, integrations, and extensions that
enhance the platform’s versatility.

To establish a comprehensive foundation for understanding Knative’s inner workings, a closer explo-
ration of Docker, containerd, and Kubernetes becomes imperative.

Docker and Containerd

Docker serves as a potent tool for constructing, deploying, and overseeing applications within contain-
ers. Containers, being lightweight and self-contained executable packages, encapsulate all necessary
components like code, runtime, system tools, and libraries essential for running an application. By
doing so, Docker substantially streamlines the development and deployment process, eradicating com-
patibility issues across varying environments. Operating on a client-server model, Docker employs
communication between the Docker client and the Docker daemon, responsible for container manage-
ment. This interaction occurs via a REST API, enabling developers to seamlessly interact with the
daemon and execute various container operations.

Central to Docker’s architecture is Containerd [141], a foundational container runtime that plays a
pivotal role in overseeing the execution of containers. Serving as the vital interface between Docker
and the underlying system, containerd ensures the seamless orchestration of containers, encompassing
everything from image management to execution. Containerd takes charge of managing container life-
cycle events, distributing images, and handling runtime tasks. This essential component operates in
tandem with containerd-shim, which acts as an intermediary layer responsible for setting up names-
paces, configuring filesystems, managing networking, and imposing resource constraints. In this role,
containerd-shim ensures that each container operates within its isolated environment, safeguarding
isolation and security. This arrangement prevents any potential interference with other containers or
the host system. Notably, the communication channel between Docker and containerd is facilitated by
the gRPC framework [142], allowing for efficient and standardized data exchange, thus contributing
to the robustness and reliability of the container ecosystem.

Finally, runc [143], a fundamental element within the Docker ecosystem, plays a pivotal role in the
closing stages of the container execution process. Operating as a container runtime, runc adheres
closely to the Open Container Initiative (OCI) [144] standards, which ensure uniformity and compat-
ibility across diverse container runtimes. Runc is responsible for orchestrating the essential low-level
functionalities required to initiate containers, in an isolated environment, encompassing tasks such as
establishing namespace isolation, configuring control groups, and managing file system mounts.

Figure 3.2.4 demonstrates the aforementioned container tools stack .
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Figure 3.2.4: Container ecosystem stack [145]
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Kubernetes

Kubernetes, often abbreviated as K8s, is a powerful open-source container orchestration platform
that revolutionizes the deployment, scaling, and management of containerized applications. While
Docker and containerd excel at encapsulating applications and managing their runtime environments,
Kubernetes focuses on automating the deployment and scaling of these containers across a cluster
of machines. This orchestration capability proves immensely beneficial as applications become more
complex, involving numerous interconnected microservices that require efficient distribution, scaling,
and fault tolerance.

Kubernetes introduces the concept of "pods," which are the smallest deployable units and can host one
or more containers. It abstracts away the underlying infrastructure, allowing developers to specify the
desired state of their application in terms of desired replicas, resource requirements, networking policies,
and more. Kubernetes then ensures that the actual state matches the desired state by automatically
scaling, distributing, and managing containers based on the defined specifications.

Kubernetes operates on a robust architecture, with multiple components [146], designed to manage
the deployment, scaling, and operation of containerized applications across clusters of hosts. At its
core is the Kubernetes Master, which acts as the control plane governing the cluster. The Master
includes components such as the API server, responsible for handling API requests and orchestrating
communication; the etcd datastore, which stores configuration data and provides consistency; the
controller manager, which regulates the state of the system; and the scheduler, which assigns work to
available worker nodes based on resource requirements and constraints.

On the worker nodes, the Kubernetes Node Agent, called kubelet, ensures the node’s health and
manages the communication between the Master and the node. Each node runs multiple Pods, with
each Pod hosting one or more containers sharing network and storage resources. Container runtimes
like CRI-O [147], containerd, or others execute these containers within the Pods. Kubernetes also
employs the kube-proxy to maintain network rules allowing Pods to communicate with each other and
with external networks.

Kubernetes’ architecture promotes high availability, scalability, and fault tolerance. By distributing
workloads across worker nodes and automatically rescheduling failed Pods, it ensures applications
remain operational even in the presence of node failures. This architecture, coupled with its declarative
configuration approach and support for diverse container runtimes, solidifies Kubernetes as a powerful
platform for orchestrating and managing containerized applications at scale. Figure 3.2.5 illustrates
the architecture of Kubernetes.

Knative Architecture

As outlined above, Knative builds upon Kubernetes and offers a comprehensive architecture to facilitate
the deployment, management, and execution of modern serverless workloads. Comprising an array
of interconnected components, Knative seamlessly extends Kubernetes’ capabilities into the realm
of serverless computing. At its core, Knative encompasses two essential components: Serving and
Eventing.

e Serving Component: The Serving component [130] serves as the bedrock for deploying and
overseeing serverless applications. It introduces distinct concepts such as Revisions [149] and
Routes [150] to empower developers. Revisions capture the immutable snapshots of deployed
application instances, providing a versioned history that supports easy rollbacks. Meanwhile,
Routes facilitate traffic management by acting as intelligent routers that direct requests to the
appropriate Revisions based on criteria like percentage splits or HT'TP conditions. Figure 3.2.6
demonstrates the Revisions-Routes concept. Furthermore, the Serving component proposes an
autoscaling model (also known as KPA [36]), pivotal for modern application architectures. This
dynamic scaling feature, serves as a safeguard against the inefficiency of allocating excessive
resources during periods of low or no incoming traffic. It dynamically adjusts the number of
running instances based on real-time demand, ensuring that only the necessary containers are
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Figure 3.2.5: Kubernetes Architecture [148]

active. Notably, this can lead to the scaling down [151] of instances to an efficient zero state when
no requests are pending, drastically minimizing resource consumption and associated costs. This
meticulous orchestration of resources not only enhances operational efficiency but also aligns
seamlessly with the principles of cost-effectiveness, making Knative an ideal choice to optimize
resource utilization in a serverless environment.

e Eventing component: The Eventing component [131] is a foundational component within
Knative’s architecture, enabling developers to build highly responsive and event-driven applica-
tions with ease. At its core, this component focuses on the efficient management of events, which
can encompass a wide range of triggers, from HTTP requests to messages from various sources.
Knative’s Eventing system is designed to simplify the orchestration of event production, con-
sumption, and routing, facilitating the creation of dynamic applications. Within Knative, Event
Producers are responsible for generating events. These producers can vary widely, encompassing
GitHub repositories, cloud storage buckets, message brokers like Apache Kafka, and even cus-
tom. Each event producer is supported by an Event Source [152], that acts as a link between an
event producer and an event sink [153]. For example Apache Kafka is supported by KafkaSource
[154], which then sends the events-messages to a configured sink. This extensive support for
different event producers ensures that Knative can seamlessly integrate with a wide spectrum of
systems and services, allowing developers to create event-driven workflows that suit their unique
requirements. Sinks on the other hand, can be a Knattive Service [155], a Channel [156] or a
Broker [157]. Knative Services are the applications, deployed in the Knative ecosystem via a
configuration file, e.g. a YAML file [35]. Channels serve as intermediaries for event distribution.
They act as event buses where produced events are deposited and can subsequently be retrieved
by interested consumers. Subscriptions [158] complement this by specifying which events from
a Channel a particular service or function should consume. Brokers also serve as intermediaries
for routing events, but are more generic and can be part of larger messaging systems. It is worth
mentioning that Triggers [159], that subscribed to a broker, are used to route events from him
to a Target, e.g. a Knative Service. Knative Eventing further provides a robust set of building
blocks for constructing complex event-driven workflows. Sequences and parallel flows [160] al-
low developers to define both sequential and parallel sets of actions triggered by specific events,
while Triggers offer a declarative approach for specifying which events should initiate particular
actions. These abstractions simplify the composition of sophisticated event-driven applications,
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providing flexibility in defining the flow of events and actions.
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Knative, with its versatile architecture and robust event-driven capabilities, stands as a pivotal com-
ponent in the world of modern serverless computing. Its foundational features, such as eventing,
seamless scalability, and container orchestration, empower developers to craft dynamic applications
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that respond swiftly to changing demands. Beyond its fundamental offerings, Knative’s adaptability
extends to specialized use cases, including running deep learning applications like deep neural net-
works (DNNs). Leveraging the platform’s dynamic scaling and resource allocation, organizations can
efficiently deploy and manage resource-intensive DNN workloads, optimizing inference processes and
delivering sophisticated Al-driven solutions. Knative’s role in the serverless ecosystem transcends con-
ventional boundaries, offering a versatile foundation for a wide array of applications, from event-driven
microservices to cutting-edge deep learning frameworks.

3.3 Edge Computing

Edge computing represents a paradigm shift in the world of information technology, fundamentally
altering how we process, store, and analyze data. As Cao et al. [162] explains, in a digital land-
scape marked by the explosive growth of connected devices, IoT sensors, and real-time applications,
traditional cloud computing models face limitations in addressing the demands of low latency, high
bandwidth, and data privacy. Edge computing, born out of the need to overcome these constraints,
offers a decentralized approach to computation. At its core, it involves deploying computing resources,
including servers, gateways, and data centers, closer to the data sources and endpoints. This proxim-
ity to data generation points significantly reduces the time it takes for data to travel to distant cloud
servers and back, resulting in lower latency and faster response times. Edge computing is not a one-
size-fits-all solution; instead, it is a flexible and scalable architecture that can be customized to meet
the specific needs of diverse applications. It finds applications in various domains, from autonomous
vehicles and smart cities to healthcare and industrial automation, where real-time decision-making is
paramount. In essence, edge computing represents a shift from the era of centralized cloud computing
to a distributed model that harnesses the power of computation at the edge, promising a future where
data is processed where it’s needed, when it’s needed.

Key Principles of Edge Computing:

Edge computing is founded on a set of core principles that redefine how we process and manage data
in the digital age. Three fundamental pillars underpin edge computing: low latency, proximity to data,
and distributed processing;:

e Low Network Latency: In an era where real-time responsiveness is paramount, edge comput-
ing brings computing resources closer to the data source, drastically reducing latency. Unlike
traditional cloud computing, where data travels to distant data centers for processing, edge de-
vices process data locally or in nearby edge servers. This immediacy is critical for applications
like autonomous vehicles, where split-second decisions can be a matter of life and death.

e Proximity to Data: Edge computing recognizes that not all data should, or can, be sent to
centralized data centers. By processing data at or near the source, edge computing optimizes
bandwidth usage and minimizes the risk of data bottlenecks. This is particularly valuable for de-
vices in remote locations or with limited connectivity, as it allows them to function independently,
even when disconnected from the cloud.

e Distributed Processing: Edge computing operates on a distributed model, decentralizing the
processing workload across a network of edge devices and servers. This distributed architecture
enhances fault tolerance, as failures in one part of the network don’t cripple the entire system.
It also aligns with the scalability requirements of modern applications, ensuring that computing
resources can be dynamically allocated where and when needed.

These principles address the shortcomings of traditional cloud computing, which often struggles with
latency issues due to data traveling long distances, especially in global-scale applications. Edge com-
puting brings computation closer to the data source, mitigating latency concerns. It also reduces
the strain on network infrastructure by minimizing data transfers and enhances overall system re-
silience through distributed processing. As we delve deeper into edge computing’s applications and
implications, these principles will emerge as the bedrock upon which its transformative power is built.
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General Architecture of Edge Computing

As Keyan Cao et al. demonstrate [162], the general architecture of edge computing constitutes a
network structure in a federated form, effectively extending cloud services to the network’s edge. This
is achieved through the introduction of edge devices situated between terminal devices and cloud
computing resources.

This architecture ca be divided into three layers, the Terminal layer, the Edge Layer and the Cloud
Layer. The following is a concise overview of the composition and roles of each layer:

e Terminal Layer: The Terminal layer encompasses a diverse range of devices connected to
the edge network, including mobile devices and various Internet of Things (IoT) devices like
sensors, smartphones, cameras, vehicles, and more. Within this layer, devices function both as
data consumers and data providers. Their primary role is data sensing and collection. The
emphasis in this layer is on data perception rather than computational capabilities. This results
in countless devices in the Terminal layer collect various raw data, which is then transmitted to
the upper layers for storage and processing.

e Edge Layer: The edge layer constitutes the core of the edge computing architecture and is posi-
tioned at the network’s edge. It comprises widely distributed edge nodes strategically positioned
between terminal devices and the cloud. Components in the edge layer include base stations,
access points, routers, switches, gateways, and more. The edge layer facilitates connections with
terminal devices, receiving and processing data uploaded by these devices. It then connects with
the cloud layer and forwards processed data to the cloud. Due to its proximity to end-users,
the edge layer is especially suited for real-time data analysis and intelligent processing. This
proximity enhances efficiency and security compared to traditional cloud computing.

e Cloud Layer: The cloud layer represents the apex of the cloud-edge computing federation and
comprises a collection of high-performance servers and storage resources, boasting robust compu-
tational and storage capabilities. This layer primarily serves as a potent data processing center,
particularly suitable for tasks requiring extensive data analysis, such as routine maintenance
and critical business decision support. In addition to permanent data storage from the edge
computing layer, the cloud computing center can undertake analysis tasks that the edge layer
may be unable to handle. It also executes processing tasks that necessitate the integration of
global information. The cloud module possesses the flexibility to dynamically adjust deployment
strategies and algorithms for the edge computing layer in accordance with prescribed control
policies.

The aforementioned architecture of Edge Computing is illustrated in figure 3.3.1.

Use Cases and Applications of Edge Computing

Edge computing presents a plethora of real-world applications and use cases, where its advantages
shine brightly. Some of the key domains benefiting from edge computing include:

e Internet of Things (IoT): Internet of Things (IoT) devices constitute a diverse ecosystem,
spanning from household smart thermostats to intricate industrial sensors. These devices share
a common trait: they generate an overwhelming volume of data. In the context of IoT, edge
computing emerges as a pivotal solution. Rather than transmitting all this data to distant cloud
servers, edge devices process it locally. As Salam Hamdan et al. [164] explains, this approach
carries multiple benefits. First and foremost, it slashes latency to a minimum. In applications
where real-time responses are critical, such as industrial automation or smart cities, this is
indispensable. Imagine a smart city’s traffic management system. By employing edge nodes at
intersections, data from traffic lights can be processed on-site. This allows for instant decision-
making, optimizing traffic flow, and reducing congestion. Furthermore, processing data locally
conserves precious bandwidth, a critical consideration in scenarios with limited connectivity. In
essence, edge computing is the backbone that empowers IoT to deliver on its promises of enhanced
efficiency, responsiveness, and resource conservation. Numerous architectural paradigms have
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Figure 3.3.1: General Edge Computong Architecture [163]

been proposed to harness the potential of edge computing in IoT applications [164]. These range
from hierarchical approaches to fully distributed models, each tailored to suit specific use cases
and deployment scenarios.

e Autonomous Vehicles: Edge computing is a game-changer for autonomous vehicles, equipping
them with split-second decision-making capabilities. These self-driving cars rely on an array of
advanced sensors, cameras, and lidar systems to navigate the roads. Instead of sending all
sensor data to remote data centers, edge devices within the vehicle process data in real-time
[165]. This approach allows vehicles to instantly analyze their surroundings, identifying obstacles,
pedestrians, and other vehicles, and react swiftly to changing traffic conditions. The result is
reduced latency, enhanced privacy, and the ability to make crucial driving decisions swiftly and
safely. Edge computing is the linchpin that ensures the success and safety of autonomous vehicles,
marking a transformative shift in the realm of transportation.

e Augmented Reality (AR): In the realm of augmented reality (AR) applications, where seam-
less and responsive experiences are of utmost importance, edge computing plays a key role. AR
necessitates the precise alignment of virtual objects with the real world, creating immersive and
interactive scenarios. Edge computing significantly reduces latency by processing data locally,
ensuring that virtual overlays respond instantaneously to changes in the physical environment
[166]. Consider AR glasses that offer real-time language translations or provide contextual in-
formation about landmarks as you explore a new city. With edge computing, these applications
become more immersive, accurate, and engaging, as the digital and physical worlds seamlessly
converge, opening up new possibilities for entertainment, education, professional use cases, and
even revolutionizing fields like Remote Assistance [167] and Telemedicine [168].

e Smart Grids: As Cheng Fend et al. [169] point out, in the context of Smart Grids (SGs),
the incessant generation of vast data volumes necessitates advanced data analytics algorithms to
translate this data into actionable insights. These insights are pivotal for enhancing SG opera-
tions and services. The data analytics depend on Information and Communication Technologies
(ICTs) performing a critical role in data collection, transmission, and processing [170]. Com-
puting, a critical ICT function, underpins SG data analytics, serving as the linchpin for SG
operations and services. Historically, centralized cloud computing prevailed as a dominant SG
computing solution [171]. In this model, geographically distributed devices connect to cloud data
centers, which make centralized decisions and issue control commands. However, this approach
faces limitations, including bandwidth constraints, environmental diversity, and data privacy con-
cerns. In response, edge computing has emerged, pushing computation from centralized nodes
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to the communication network’s edges. Edge Computing leverages computing resources near
sensors and end-users for data analytics. This transition yields numerous advantages, including
reduced system latency, lightened cloud center workload, improved scalability and availability,
and fortified data security and privacy [172]. This shift towards edge computing represents a
substantial leap in bolstering the efficiency and reliability of Smart Grids.

e Healthcare: As Rushit Dave et al. [173] mention, the healthcare sector represents another
crucial domain poised to gain significant advantages from the adoption of edge computing. Edge
computing holds the potential to streamline data flow, thereby enhancing overall efficiency within
healthcare operations [174]. Moreover, the architectural framework of edge computing offers
healthcare professionals the opportunity to reduce their reliance on remote centralized servers
[175, 176] and enhanced data security and ethical integrity [177, 178, 179]. Currently, wearable
devices and sensors are serving as essential tools for treating and actively monitoring patients
who face conditions like Parkinson’s disease, a heightened risk of heart attacks, and various
severe health issues [180]. In these critical situations, edge computing can react promptly with
negligible latency, substantially improving reliability and averting potential adverse events.

Edge Computing vs Cloud Computing: Challenges and opportunities

As already mentioned, in the context of data management and processing, Edge Computing and Cloud
Computing represent two distinct paradigms. The following comparison, Sriram G. K. (2022) [181],
aims to elucidate their contrasting attributes, applications, and associated considerations.

e Speed and Response Time: Edge Computing excels in terms of speed and rapid response.
In today’s competitive landscape, where milliseconds matter, Edge Computing reduces latency
by processing data near its source. This reduced latency is invaluable, especially in sectors like
finance and data-driven industries, where sluggish networks can result in substantial financial
losses or customer dissatisfaction. By quickly accessing and processing user requests as they
occur, Edge Computing ensures that organizations can provide rapid responses and maintain a
competitive edge. Cloud Computing, while offering immense computing power, may face longer
response times due to the geographical distance between its data centers and end-users. The
centralized nature of Cloud Computing means that data often has to traverse long distances to
reach the data center, which can introduce delays. While Cloud Computing is indispensable for
tasks that require massive data processing and in-depth analysis, its response times may not
meet the demands of real-time applications.

e Data Analysis and Analytics: Cloud Computing, with its centralized architecture, excels
in providing a robust platform for data analysis and analytics. It leverages organized data
centers distributed across regions, enabling it to process vast amounts of data from various
sources efficiently. This is crutial for task like training a neural network. This scalability offers
enhanced flexibility for Big Data management, making it an ideal choice for large enterprises
dealing with complex web applications and comprehensive analytics. Cloud Computing’s ability
to handle data-intensive workloads and provide detailed insights sets it apart in this aspect. Edge
Computing, on the other hand, processes data locally, close to its source. While this proximity
allows it to deliver instantaneous results, it comes with limitations in terms of data processing
capabilities. Edge devices are typically designed to handle smaller datasets efficiently. This
design is well-suited for applications requiring real-time responses, such as IoT devices, but may
not be suitable for complex and data-intensive analytics tasks.

e Data Processing Capacity: Cloud Computing boasts a plethora of data management applica-
tions and high processing capacity, making it suitable for large-scale data processing tasks. Major
cloud providers like Microsoft Azure [182] and Amazon Web Services [183] offer comprehensive
solutions for enterprises requiring extensive data processing capabilities. With the ability to
handle vast datasets, Cloud Computing provides in-depth analysis and meaningful insights that
may be unattainable with Edge Computing. Edge Computing, while delivering real-time results,
faces limitations in processing substantial data. Its design, focused on low-latency, real-time
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processing, means that Edge devices are often equipped to handle smaller datasets efficiently.
This limited capacity can be a challenge for organizations dealing with extensive data processing
needs, where Cloud Computing’s superior processing power becomes a necessity.

e Network Security: Both Edge and Cloud Computing encounter unique cybersecurity chal-
lenges. Edge Computing presents a decentralized model that mitigates specific threats by dis-
tributing data across multiple locations. This distribution reduces the impact of network disrup-
tions, ensuring that a disruption in one location does not affect the functioning of other networks.
Furthermore, since data is processed locally at the Edge, only a portion of data is at risk in the
event of a security breach. However, Edge Computing introduces its own security concerns. Edge
devices, as entry points for data processing, can be vulnerable to cyberattacks, malware, and
intrusions that may infect the network. Nevertheless, Edge Computing’s distributed architecture
allows for the implementation of security protocols that can efficiently address vulnerabilities
without compromising the entire network’s integrity. In contrast, Cloud Computing relies on
centralized data centers that are susceptible to distributed denial of service (DDoS) attacks and
major power outages. These centralized centers present attractive targets for cyber threats. Yet,
they also offer the advantage of centralized security measures, which can be rigorously imple-
mented to safeguard data.

e Scalability, Versatility, and Reliability: Cloud Computing stands out in terms of scalabil-
ity, making it an ideal choice for large enterprises experiencing growth. It accommodates the
expansion of data processing requirements, offering resources and computing power on demand.
Additionally, Cloud Computing enables versatile data processing for macro data management,
allowing organizations to handle a wide range of tasks efficiently. Edge Computing, conversely,
excels in microdata management and is well-suited for enhancing network reliability. It facilitates
expansion into local markets through partnerships with local data centers, eliminating the need
for costly infrastructure investments. However, Edge Computing’s resource constraints limit its
scalability for large-scale data processing tasks.

e Cost: Cloud Computing is known for its comprehensive data management capabilities but often
comes with a considerable price tag. While the services offered are valuable and scalable, the costs
can escalate, especially for large data processing requirements. Expenses related to data storage
and processing can deter some companies from adopting Cloud solutions. Edge Computing
presents a more cost-effective alternative, particularly with the availability of affordable IoT
devices and minimal additional costs. Organizations can deploy Edge devices without incurring
significant overheads, making it an attractive option for cost-conscious projects. However, Edge
Computing’s cost-effectiveness comes with trade-offs in terms of functionality compared to Cloud
Computing.

e Standardized IoT Protocols: Both Edge and Cloud technologies grapple with the challenge of
lacking standardized IoT protocols. The absence of common standards or protocols can introduce
data security concerns during data transfer or migration to Cloud infrastructure.

3.3.1 Infastructure of Edge Computing

In edge computing, a diverse array of hardware components plays a pivotal role in shaping its capabil-
ities. These devices, ranging from IoT sensors to specialized edge servers, form the backbone of edge
computing infrastructure. Some of these key devices are:

e Internet of Things (IoT) Devices: IoT devices serve as the bedrock of edge computing.
These encompass a wide range of sensors, actuators, and smart objects that collect data from
the physical world. Examples include temperature sensors, motion detectors, cameras, and
even smart home appliances. IoT devices are typically resource-constrained and are designed to
transmit data to edge nodes or servers for processing, making them instrumental in applications
like smart homes, industrial automation, and environmental monitoring.

o Edge Servers: Edge servers are versatile computing devices strategically positioned at the edge
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of the network. These servers act as intermediaries between IoT devices and the centralized
cloud. Their processing and storage capabilities can vary significantly based on the specific
application requirements. In some instances, edge servers demand substantial processing power,
equipped with GPUs, FPGAs, or specialized processors, along with memory and storage to
handle data-intensive tasks. Conversely, there are scenarios where the emphasis is on minimizing
their footprint, making them as compact and efficient as possible. This adaptability ensures
that edge servers can meet the diverse needs of edge computing applications, whether it involves
resource-intensive data processing or serving as unobtrusive attachments to existing assets.

e Edge Data Centers: Larger-scale edge computing implementations may include edge data
centers. These facilities house multiple edge servers, storage systems, and networking equipment.
Edge data centers are strategically located in proximity to end-users and IoT devices to minimize
latency.

e Edge Gateways: Edge gateways serve as aggregation points for data collected from various IoT
devices. They consolidate and preprocess data before forwarding it to higher-level edge servers
or cloud data centers. Edge gateways often integrate connectivity options like Wi-Fi, Bluetooth,
and cellular networks, ensuring seamless communication with a variety of IoT devices. These
gateways play a critical role in ensuring data efficiency and reliability in edge computing setups.

e Single-Board Computers (SBCs): Single-board computers like the Raspberry Pi [28] and
NVIDIA Jetson series [29] offer a compact yet potent solution for edge computing. These credit
card-sized computers feature CPUs, GPUs, and various connectivity options. In addition to
these, microcontrollers like STM32 [30] (STMicroelectronics) and development platforms like
Arduino are also noteworthy in the world of edge computing. These devices cater to a wide
range of edge computing needs, making them valuable assets for prototyping and deploying
edge applications. Their popularity continues to grow, making them integral tools for projects
spanning home automation, robotics, Al-powered edge devices, and more.

e Industrial PCs: In industrial settings, ruggedized industrial PCs are often deployed at the
edge. These devices are designed to withstand harsh environmental conditions, making them
ideal for manufacturing and process automation. They handle tasks like real-time monitoring,
quality control, and predictive maintenance.

In summary, Edge computing represents a transformative paradigm shift in the world of computing.
Unlike traditional cloud computing, which centralizes data processing in distant data centers, edge
computing brings computation closer to where data is generated, often at the network’s periphery.
This approach offers several key advantages. It drastically reduces latency, enabling real-time decision-
making critical for applications like autonomous vehicles and industrial automation. It enhances data
privacy and security by keeping sensitive information localized. Edge computing is highly versatile,
finding applications in various domains, from IoT to augmented reality. In the context of IoT, it allows
for rapid data analysis and decision-making at the source, optimizing efficiency and enabling faster
response times. However, edge computing faces challenges, such as defining the processing capabilities
of edge servers, to ensure they meet specific application requirements. Nonetheless, this technology is
revolutionizing how we handle data, making it faster, more secure, and adaptable to diverse scenarios,
and it is poised to play an increasingly vital role in our connected world.
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Chapter 4

Serverless Framework and Run-Time
Scheduler

| his chapter, We delve into the framework and scheduling mechanism central to our dissertation,
providing a foundational understanding of our research approach.

Problem Definition

In the realm of contemporary computing, the efficient execution of neural networks across a diverse
and intricate array of environments presents a formidable challenge. This challenge revolves around
orchestrating the seamless execution of neural network layers while harnessing the full potential of
available hardware resources. As these neural networks grow in complexity and sophistication, ad-
dressing this challenge becomes increasingly crucial. The demand arises for an innovative solution
capable of optimizing the execution process by intelligently dispatching neural network layers across
a heterogeneous computing cluster. This entails dynamically allocating tasks to the most suitable
hardware context, whether it be CPU or GPU, while considering the unique characteristics of each
layer. Additionally, this solution must provide the flexibility to cater to a wide spectrum of neural
network architectures and configurations. The goal is to streamline the execution process, reduce la-
tency, under strict SLAs, enhance resource utilization, and ultimately, unleash the full capabilities of
neural networks in practical applications.

Furthermore, an integral aspect of this challenge lies in the dynamic scheduling of neural network
layers, a complex task that requires careful consideration of each layer’s requirements and the available
hardware context. The scheduling problem adds an additional layer of complexity, demanding an
intelligent approach to determine where and how to execute each layer optimally.

This dissertation explores and presents precisely such a solution—an optimized deployment framework
that leverages Kubernetes, Knative, Deep Learning, and more specifically Reinrocement Learning, and
other technologies to address the intricate interplay between efficient execution and dynamic scheduling
in neural network deployments.

4.1 Serverless Framework for layered and full offloading of
DNNs

As already mentioned, this framework leverages the robust infrastructure provided by Kubernetes
and Knative to create a highly adaptable environment for neural network execution. Kubernetes,
known for its efficient container orchestration and management, forms the foundation upon which this
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framework builds. It facilitates the deployment and scaling of neural network layers across a distributed
cluster of devices. In parallel, Knative extends Kubernetes by introducing a serverless framework for
deploying and managing containerized applications, ensuring efficient resource allocation and seamless
communication between services.

Together, these platforms lay the groundwork for a versatile and scalable system capable of handling
neural network execution tasks with ease. The framework streamlines the complexities of multi-device,
multi-context execution, offering support for both CPU and GPU environments. This architecture
empowers users to optimize resource utilization, adapt to various execution scenarios, and effortlessly
manage the intricate nuances of deploying neural networks across diverse computing clusters.

Framework Core: Execution Service

4.1.1 Layer Execution Service

At the heart of the framework lies a service responsible for executing individual neural network layers.
This service is implemented exclusively in Python and serves as a critical component for handling the
execution of layers in response to incoming CloudEvents [184]. The sequence of actions and the inner
workings of the service are described below:

1. Receiving and Processing CloudEvents: The service operates as an event listener, awaiting
incoming CloudEvents conveyed through HTTP requests. To handle these events, it leverages
Flask [31], a popular Python web framework that establishes a REST API for the seamless
reception and processing of CloudEvents. Each incoming CloudEvent carries crucial information
essential for layer execution. This includes serialized input data in the form of a byte array, data
shape, numerical format (e.g., float16) (needed for deserialization), the specific target layer, the
server’s IP address and the scheduling services port, hosted in the server.

2. Multithreaded Execution: Upon receiving a CloudEvent, the service spawns a dedicated
thread to handle its processing. This multithreaded approach ensures that multiple requests can
be served concurrently, optimizing resource utilization.

3. Data Preprocessing: Before executing the requested layer, the, dedicated to this CloudEvent,
thread conducts essential data preprocessing tasks. It reshapes and casts the raw input data
to match the specified shape and data type. This step utilizes the powerful capabilities of the
NumPy package [32], a fundamental library for numerical computing in Python.

4. Layer Execution: Once the data is appropriately preprocessed, the dedicated thread proceeds
to execute the targeted neural network layer. PyTorch [33], a deep learning framework, is em-
ployed for this purpose, ensuring efficient and accurate execution.

5. Scheduling Next Layer: After successfully executing the current layer, the thread determines
the location for the next layer’s execution. To make this decision, it communicates with the
scheduling service. The scheduling service provides the next device to continue layer execution
based on resource availability and optimization strategies (more in scheduling section).

6. Inter-Device Communication: If the scheduling service designates the same device for ex-
ecuting the next layer (local execution), the same thread seamlessly continues the execution
process. However, if the next layer is assigned to a different device, the thread retrieves the
shape and data type of output data, serializes them, creates a new CloudEvent and dispatches
it to the designated device. In such a scenario, the destination device follows the same sequence
of actions.

The described sequence of actions is illustrated in figure 4.1.1. Moreover, the Extract data from
CloudEvent and Reconstruct Input block is explained in figure 4.1.2 and the Serialize Output and get
shape, data type & Create and Send Next CloudFEvent blocks are explained in figure 4.1.3.

In the previous steps, there has been no mention of the initialization of the neural network layers.
However, this critical step is addressed through a preparatory technique known as warmup. When the
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source code is invoked for the first time, warmup comes into play. This warmup process encompasses
the loading and execution of the neural network layers, and its significance lies in priming the service
for optimal subsequent performance. During warmup, the service loads the required model layers
and conducts multiple execution cycles, typically around five times or as dictated by configuration.
This enables the service to efficiently initialize and allocate resources for model execution, ensuring
that subsequent layer executions encounter minimal delays. This initialization phase, often referred
to as a cold start, signifies the challenges associated with the initial execution of a service in dynamic
computing environments. During a cold start, various setup and initialization tasks can introduce
latency, potentially impacting the responsiveness of the service. Warmup effectively preempts these
cold start latencies by conducting multiple execution cycles.

Ultimately, it is worth to mention the reason why to use CloudEvents. CloudEvents serve as a pivotal
component within the service infrastructure for several compelling reasons. Firstly, they provide a
standardized and universally recognized format for event data, ensuring consistency and compatibility
across diverse components and services within the system. This standardization simplifies event han-
dling, reducing the intricacy of interpreting and processing incoming events. CloudEvents are not only
easy to work with but also highly flexible, supporting various transport protocols like HT'TP, which
is ubiquitous in web communications. This flexibility makes it seamless to transmit events across the
network, enabling efficient communication between different services. Moreover, CloudEvents can be
extended with custom attributes, allowing for the inclusion of additional context or metadata spe-
cific to the event, enhancing its informativeness. Lastly, CloudEvents enjoy robust support within
a growing ecosystem of tools, libraries, and platforms, enabling seamless integration with event bro-
kers, serverless frameworks (like Knative), and event-driven architectures, thus further elevating the
service’s capabilities and its capacity to interoperate with diverse technologies and environments.

4.1.2 Whole Neural Network Execution Service

Additionally, one more service is implemented within our framework that follows the same core logic
as the one previously discussed. However, it’s important to note a key difference between these two
services. While the first service quereis the server to specify where to execute the next layer of a neural
network, the second service streamlines the process by executing the entire neural network. In other
words, the second service automates the neural network execution process, eliminating the need for
communication between the service and the server. The Flowchart of this service is shown in figure
4.1.4.

4.1.3 Deployment of Services

Once the service code is developed and optimized for neural network layer execution, the next critical
step is the deployment of these services within the Kubernetes-Knative cluster. The deployment
process is designed to ensure seamless scalability, efficient resource allocation, and responsiveness to
varying workloads. Below, we outline the key steps and configurations involved in this deployment
phase:

1. Cluster Setup: The foundation of our deployment begins with the establishment of the
Kubernetes-Knative cluster. This involves utilizing kubeadm CLI [34] to add devices to the
cluster, effectively integrating them into the computing environment. Furthermore, the setup
process involves a plethora of complexities, such as configuring essential elements like Flannel for
networking to facilitate smooth intra-cluster communication, and setting up Knative for stream-
lined serverless application management, providing effective resource allocation and auto-scaling
functionalities to our framework. Moreover, it’s essential to emphasize that within the cluster,
the NVIDIA device plugin for Kubernetes [47] must be deployed. This plugin serves the critical
functions of exposing the quantity of GPUs on each node within the cluster, monitoring their
health, and enabling the execution of containers that require GPU execution context in the Ku-
bernetes cluster. This cluster setup lays the groundwork for orchestrating the execution of neural
network layers across heterogeneous hardware.
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2. Service Docker Images: In order to deploy the images to the created cluster, the service must
be containerized. The source code, explained in the previous section, is encapsulated within
Docker images. These images act as self-contained units, bundling not only the service code
but also its dependencies. Once crafted, these images are puhsed on DockerHub, facilitating
easy access and deployment across the cluster. It is worth to mention that the base image
(the image that on top of it the services images are built) is the 14t-pytorch:r35.2.1-pth2.0-py3,
pulled from the Nvidias NGC Catalog [185]. This image provides GPU support for the Jetson
devices (more in evaluation section) that are used in this dissertation. More specifically contains
essential packages and tools like PyTorch, Cuda Toolkit which allows PyTorch to run efficiently
on NVIDIA GPUs, cuDNN, an optimized GPU library for deep neural networks that significantly
speeds up the training and inference of deep learning models, Nvidia GPU Drivers required to
interface with NVIDIA GPUs and other common Data Science libraries like NumPy, SciPy, and
scikit-learn.

3. YAML Configuration Files: The orchestration of the services within the cluster is driven by
YAML configuration files. Each YAML file serves as a blueprint, defining how a specific service
should be instantiated and maintained. These files encompass a multitude of configurations,
specifying resource requirements, environmental variables, deployment constraints, and scaling
parameters. They play a pivotal role in ensuring each service’s efficient operation within the
cluster. Some examples of the configurations that a YAML file define are:

e Environmental Variables: Several environmental variables are defined. These variables
serve as a communication bridge, enabling seamless interaction between the service and
the broader cluster environment. As an illustration, the environmental variable MODEL-
FOLDER-NAME designates the models (such as Mobilenetv2) directory location within the
container that holds his layers, which are intended to be loaded by the service.

e Node Affinity: To achieve granular control over service placement, node affinity is config-
ured within the YAML files. This affords the flexibility to explicitly designate which device
within the cluster should host a particular service. Such fine-grained control is invaluable,
especially in scenarios where optimization and efficient scheduling are imperative. Figure
4.1.5b illustrates an example configuration of Node Affinity in a YAML file.

e Concurrency configuration: Each pod-service is configured to allow multiple threads
to run concurrently within a service. For instance, setting concurrency to two threads per
pod enables concurrent execution of neural network layers. However, it’s essential to strike
a balance, as excessively increasing concurrency can introduce latency due to Python’s
Global Interpreter Lock (GIL) [186]. Figure 4.1.5a illustrates an example configuration of
concurrency in a YAML file.

e Scale Down Delay Configuration: This configuration parameter determines the delay
before a service pod is scaled down after it becomes idle. It can be set to a specific duration,
such as 10 minutes, which means that if a pod remains idle for 10 minutes, it becomes a
candidate for termination during the next scaling decision. This parameter helps balance
resource optimization with responsiveness to incoming requests. Figure 4.1.5a illustrates an
example configuration of Scale Down Delay in a YAML file. It is worth to mention that
Scale Down Delay configuration helps in mitigating cold starts. A cold start refers to the
process of initializing a container or pod, resulting in slower response times, as it involves
launching the container and loading its dependencies (in this case loading the model too),
configurations, and application code. So by keeping a pod alive for a specified duration
minimizes the effects of cold starts on service performance, ensuring consistently responsive
behavior.

4. Autoscaling with KPA: The Knative Pod Autoscaler (KPA) [36] is a critical component of our
deployment strategy. It brings dynamic scalability to the forefront. KPA intelligently monitors
the cluster’s workloads and automatically adjusts the number of pods based on demand. This
adaptive scaling mechanism optimizes resource utilization while ensuring the cluster remains
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(a) Concurrency and Scale Down Delay example Configurations

(b) Node affinity example configuration

responsive to varying workloads. Notably, KPA offers the unique capability of scaling pods
down to zero, a feature that proves highly advantageous in resource-constrained edge computing
environments.

4.1.4 General Architecture with scheduler

On top of this framework a centralized scheduler can determine where a neural network or a layer of it
will be executed in a device, triggered by an incoming request. This generalized architecture is shown
in figure 4.1.6.

4.2 Reinforcement Learning based Scheduler

The framework’s orchestration extends beyond deployment, encompassing resource scheduling where
reinforcement learning techniques come into play. In this phase, the framework adapts to diverse
edge computing scenarios. Reinforcement learning is the foundation, enabling our framework to make
informed decisions regarding neural network layer or whole neural network allocation. It’s more than
scheduling; it’s a centralized orchestrator that continually assesses the environment, assigns resources,
and ensures neural network execution. This dynamic scheduler is a cornerstone of our framework’s
versatility, navigating the ever-changing terrain of edge computing and ensuring responsive execution
across various computing environments.

As previously mentioned, the fundamentals of Reinforcement Learning (RL) revolve around an agent,
an environment, and a system of rewards. RL is fundamentally about the agent learning to make
a sequence of decisions over time in an environment to maximize cumulative rewards. The agent
interacts with the environment by taking actions and receiving feedback in the form of rewards or
penalties. The objective is for the agent to learn a policy that maps states to actions in a way that
maximizes its expected cumulative reward. This iterative learning process, driven by the pursuit
of favorable outcomes, forms the essence of RL and underpins its application in various decision-
making scenarios. Following these fundamentals, the primary goal of employing RL techniques in
this dissertation is to develop a centralized dynamic and adaptive resource scheduling mechanism
for orchestrating neural-network execution within an edge computing environment. This RL-driven
scheduler aims to intelligently allocate resources to neural networks and neural network layers in
real-time. The overarching objective is to optimize resource utilization, minimize latency, minimize
energy, and ensure efficient execution of neural networks, ultimately enhancing the responsiveness and
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Figure 4.1.6: Whole Neural Network Execution Service Flowchart
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adaptability of the framework across diverse edge computing scenarios.

To achieve this goal, several crucial components and parameters must be defined and integrated into
the RL-based scheduling mechanism. These include defining the Observation Space (or State Space),
Action Space, Reward structure and the RL agent architecture itself. Each element plays a pivotal
role in shaping the scheduler’s decision-making process, enabling it to effectively adapt to the dynamic
demands of neural networks execution in edge computing environments. It is worth to mention that
the implementation of the Reinforcement Learning algorithm is accomplished by using OpenAls GYM
[102] and OpenAls StableBaselines3 [106].

Observation State Definition

The observation state plays a pivotal role in the efficiency and effectiveness of our reinforcement
learning (RL)-based scheduling framework. Through the Observation State, the RL agent perceives the
environment and makes decisions. Comprising a diverse array of data and parameters, the observation
state forms the foundation for intelligent resource allocation.

Central to the efficiency and descriptiveness of the Observation State is a comprehensive approach
to monitoring and data collection. In this regard, We employ two command-line interfaces (CLIs),
namely tegrastats and perf, to capture performance metrics from the computing environment (e.g.
computing devices). These tools are essential components of the monitoring strategy, enabling us to
gain real-time insights into resource utilization, hardware behavior, and execution efficiency.

Moreover, the approach to Observation Space extends beyond mere data collection during runtime.
We recognize the critical importance of offline profiling to understand the intrinsic performance char-
acteristics of neural networks. To this end, We divide Observation Space into two distinct realms: the
online phase and the offline phase. The online phase focuses on real-time monitoring, where dynamic
decisions are made, while the offline phase involves in-depth layer and whole neural-network profil-
ing, ensuring a holistic understanding of layer and neural-network behavior across diverse hardware
contexts. This dual-phase Observation Space is the foundation upon which the RL-based scheduling
algorithm operates, allowing us to make intelligent, context-aware decisions for efficient neural network
execution.

Online Phase - Runtime Monitoring

e Perf CLI: During the online phase, where real-time decisions are made, We leverage the perf
CLI to gather critical performance metrics, from each device. This includes:

IPC (Instructions Per Cycle): Measuring the efficiency of CPU instruction execution.

Cache Misses: Assessing memory access patterns.

Context Switches: Tracking context switches to manage CPU resources efficiently.
— Page Faults: Monitoring memory management.

e Tegrastats CLI (Jetson-specific): In Jetson platforms, We also harness the tegrastats CLI
to capture a spectrum of performance indicators, from each device, encompassing:

— Power Consumption: Measuring power usage for energy-efficient scheduling.
— RAM Utilization: Monitoring memory usage for optimal resource allocation.

— CPU Utilization (Mean and Standard Deviation): Analyzing CPU load across mul-
tiple cores to ensure balanced workloads.

— CPU Frequency (Mean and Standard Deviation): Tracking CPU clock speeds for
dynamic allocation.

— GPU Utilization: Evaluating GPU workload for efficient offloading of tasks.
— GPU Frequency: Monitoring GPU clock speeds for optimal performance.
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e Devices current power modes: The current power modes of devices are included in the input
data provided to the RL agent.

e Previous Layer execution Device: In the case of layer execution, the device where the
previous layer was executed is included too. This information helps reduce network latency by
enabling the RL agent to make informed choices regarding the next layer’s placement.

Offline Phase - Profiling

e Layer and DNN Profiling: The offline phase involves layer and DNN profiling, where We
assess the performance of individual layers within neural networks. During profiling, the same
performance measurements are extracted as in the runtime online phase.

e CPU and GPU context: Profiling is conducted in both CPU and GPU contexts, providing
insights into how different layers and DNNs perform on diverse hardware components.

e Layer Profiling Across Power Modes: Profiling isn’t limited to a single power mode; instead,
it spans across all available power modes of the given devices. This comprehensive approach
ensures that layer performance is assessed under various operational conditions. Profiling in
different power modes provides insights into how layers and DNNs behave in scenarios of varying
power consumption and performance capabilities, allowing the framework to adapt intelligently
to the specific characteristics of each device.

This multi-dimensional assessment (in execution context {CPU, GPU} and in different power
modes of devices) is a key element in the strategy for efficient and adaptable neural network
execution.

In a mathematical manner, Assuming that the number of devices equals N, the Observation State for
a random layer of a random neural network or simply for a random neural network, that is profiled in
each device, in each power mode in each context, would be:

For each device D; where i € 0...IN the current state vector, given from the online phase is:

1PC;
CacheMisses;
ContextSwitches;
PageFaults;
Power;
RAM;

D; « | CPUs_mean_util;
CPUs_std_util;
CPUs_mean__ freq;
CPUs_std_ freq;
GPU _util;
GPU _freg;
Power _Mode;

For each device D; where ¢ € 0...N the profiled vector of a layer of a neural-network or a neural-network
for execution context ¢ where ¢ € {CPU, GPU} and power mode pm is:
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IPC; ¢ pm
CacheMisses; ¢ pm
ContextSwitches; ¢« pm
PageFaults; ¢ pm
Power; ¢ pm
RAM; ¢ pm
D; ¢ pm + | CPUs_mean_util; c,m
CPUs_std_util; . pm
CPUs_mean_ freq; ¢ pm
CPUs_std_freq; ¢ pm
GPU _util; ¢ pm
GPUﬁfreqi_c_pm

ExecutionTime; ¢ pm

This vector is computed for each device Di where ¢ € 0...IN, each power mode pm, each execution
context ¢ where ¢ € {CPU,GPU}.

By combining (vertical stack) all the vectors from the offline phase, the N vectors from the online phase
along with the previous layer execution device (one hot encoded) , in the case of layered execution,
the Observation State is constructed.

It is important to mention that all the values are normalized with min-max normalization in order to
be in the same scale.

Action Space Definition

The action space is the output of the RL model. Is the landscape of decisions, with the most complex
scenarios involving the selection of the destination device for the next layer or next neural-network
request, specification of the power mode for that device, and determination of the execution context
(CPU or GPU). These granular decisions are important for precise and adaptable resource allocation.

Despite that fact that these granular decisions are important for precise and adaptable resource al-
location, the action space is relatively large and for this reason the model requires a huge number of
training steps in order to learn. To mitigate this complexity and facilitate practical training, explore
simplified variations is required. These simplified action spaces may involve choosing only the next de-
vice (without power mode and context), selecting both the device and execution context, or specifying
only the device and power mode.

In the case of selecting only the next device, with fixed execution contex and devices power modes,
the action space is simple a vector AS with length equal with the number of devices and each position
AS[i] represents the probability of picking the device i:

Deviceg

AS Devicey

In the case of selecting the next device and the execution context, the action space is simple a vector
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AS with length equal with twice the number of devices:

Deviceoicpu
Deviceg gpu
AS Devicel_cpu
Devicer gpu

If i mod 2 ==0, position AS[i] represents the probability of picking the device D = i//2 in CPU
context. On the other hand if i mod 2 == 1, position AS[i] represents the probability of picking
the device D =i//2 in GPU context.

In the case of selecting the next device and power mode of the device, the action space is simple a
vector AS with length equal with the number of devices x the power modes:

Deviceoipmio
Deviceg pm 1

Devicey pm 2

AS «— .
Devicer pm o

Devicer pm 1

Devicer pm 2

Assuming that for each device the number of power modes is P, then the AS[i] represents the proba-
bility of picking device D = i//P in power mode PM =4 mod P.

The most complex scenario is to encode both contexts and power modes in the action space along with
devices. In this scenarion, the action space is formulated by simply mixing the two previous cases:

Deviceo_pm_o_cpu
Deviceoipmioigpu
Deviceo pm 1 cpu

Deviceo_pm_l_gpu

AS +

Devicel_pm_o_cpu
Demcelipmioigpu
Devicer pm 1 cpu

Deviceo_pm_l_gpu

If ¢ mod 2 == 0, position AS[i] represents the probability of picking the device D = i//(2 * P),
in power mode P = (i//2) mod P in CPU context. On the other hand if ¢ mod 2 == 1,
position AS[i] represents the probability of picking the device D = i//(2 % P), in power mode P =
(i//2) mod P in GPU context.
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Reward System(s)

The reward function, at its essence, serves as a guidepost for the reinforcement learning model. Its
purpose is to provide a clear and measurable indication of the desirability of certain actions taken
within the framework. The reward function got a single aim — to encourage actions that enhance the
overall efficiency and performance of the neural network execution process. It evaluates the outcomes
of various resource allocation decisions, assigning values that reflect the success or failure of these
decisions in achieving the optimization goals. In doing so, it helps the model learn to make choices
that align with the framework’s objectives, ultimately fostering efficiency and responsiveness in diverse
edge computing environments.

Creating an effective rewarding system in the context of reinforcement learning is a complex and
iterative process. It involves a deep understanding of the framework’s objectives and the intricacies
of edge computing. Edge computing introduces various variables that require adaptability. Finding a
suitable rewarding system involves experimentation and ongoing development, fine-tuning the reward
function to match the dynamic nature of edge computing. This process is marked by continuous
learning and evolution, ensuring the framework’s effectiveness in diverse and evolving environments.

The primary objective of the rewarding system revolves around ensuring that the neural network
execution framework consistently meets or surpasses the Service Level Agreement (SLA). We set a
baseline performance metric during the profiling phase, specifically targeting a time threshold of 2
times the worst execution time observed during profiling. This threshold serves as our benchmark for
acceptable performance. When the framework achieves execution times better than this benchmark, we
generate a positive reward that factors in both improved performance and reduced power consumption
during the layer or whole neural-network execution. However, if the execution times exceed the SLA
threshold, we consider only the deviation from the benchmark when determining the negative reward
value. This rewarding concept forms the cornerstone of our reinforcement learning-based resource
allocation strategy, striking a balance between performance optimization and power efficiency. Some
rewarding systems that follow this concept are:

¢ Rewarding System with Substraction:

— Negative Reward: In the case where execution > the SLA:

neg rew < execution time — SLA time

— Positive Reward: In the case where execution < the SLA:

pos_rew < 1/(10 x power _consumption x execution _time)

The reward values are in range of [-1, 1] because the times and power consumption are normalized
to the range of 0-1.

¢ Rewarding System with Division:

— Negative Reward: In the case where execution > the SLA:

neg rew < —(execution time/SLA time)

— Positive Reward: In the case where execution < the SLA:

pos_rew < 1/(10 x power _consumption x execution _time)

In case of layered execution many times, particularly in the initial phases of training, the model
exhibits random behavior, resulting in execution times, including network latency, that can be
up to two or even three orders of magnitude longer than expected. Consequently, this leads to
substantial negative rewards. While this behavior isn’t inherently detrimental, an issue arises
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as the model evolves. Over time, the model tends to favor executing layers on the same device
consistently. This preference minimizes network-related delays, such as data serialization and
deserialization, HTTP overhead, and data transfer times, resulting in comparatively minor neg-
ative rewards. This situation may appear favorable when the device isn’t under significant load.
However, it becomes problematic under high load conditions. Even when subjected to device
load simulations, the model persists in selecting the same device for execution. To mitigate the
issue of enormous negative rewards during initial training phases, a reward clipping mechanism
is employed, constraining rewards to a fixed range, typically [-10, +10].

Reinforcement Learning Model Architecture

Reinforcement Learning (RL) encompasses a diverse array of model architectures, each designed to
tackle distinct challenges and scenarios. To optimize resource allocation for neural network execution,
We have at our disposal a rich selection of RL methodologies. However, it’s worth noting that our choice
of RL architectures is somewhat constrained by the tools at our disposal. Specifically, We leverage
the Stable Baselines3 Python package, which offers a set of well-established RL algorithms, including
Advantage Actor-Critic (A2C) [39], Deep Deterministic Policy Gradient (DDPG) [40], Deep Q Network
(DQN) [74], Hindsight Experience Replay (HER) [42], Proximal Policy Optimization (PPO) [18], Soft
Actor-Critic (SAC) [44], and Twin Delayed DDPG (TD3) [40]. These RL models offer unique insights
and capabilities, enabling us to tailor our resource allocation strategy to the complex and dynamic
landscape of edge computing.

In this dissertation, We have chosen to employ the Proximal Policy Optimization (PPO) algorithm
as our primary reinforcement learning method. PPO stands out for several reasons, making it a
well-suited choice for addressing the resource allocation challenges We encounter in our dissertation:

e Stability and Robustness: PPO is known for its stability and robustness in training RL mod-
els. It often converges to a good policy reliably, which can be crucial in real-world applications
where consistent performance is required.

e Sample Efficiency: PPO typically requires fewer samples (interaction with the environment)
compared to other algorithms like DDPG or A3C. This makes it more suitable for scenarios
where collecting data is costly or time-consuming, as in our case.

e Safety and Exploration: PPO incorporates a trust region approach, which limits policy up-
dates to ensure that the new policy does not deviate too far from the old one. This safety
mechanism helps prevent catastrophic policy updates, making it safer for exploration in critical
environments.

e Applicability to High-Dimensional Inputs: PPO can handle high-dimensional state spaces
and observations effectively, which is common in complex real-world. From Observation State
Definition section its obvious that the input in our models is high dimensional too.

e Proven Performance: PPO has demonstrated strong performance in various domains, includ-
ing robotics, autonomous vehicles, and game playing, which underscores its suitability for a wide
range of tasks.

Moreover, We will incorporate a separate DQN (Deep Q-Network) model as an alternative schedul-
ing mechanism within our system. This contributes to a comprehensive evaluation of our system’s
performance, enabling us to compare and assess how different reinforcement learning algorithms influ-
ence scheduling decisions. By introducing this alternative mechanism, We enhance the thoroughness
and completeness of our experimentation, offering a more holistic understanding of our scheduler’s
capabilities across various scenarios.

Load Simulation During Training

To simulate the incoming request workload during actual inference, We employ a Non-Homogeneous
Poisson Process (NHPP) [45]. This model allows us to recreate a diverse range of workloads that devices
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within the cluster might experience in real-world scenarios. Unlike a homomorphic Poisson distribution,
which assumes a constant request rate, the non-homomorphic variant introduces variability in request
arrivals, reflecting the dynamic nature of edge computing environments. By using this simulation
approach, We gain a more accurate representation of the demands placed on the framework, enabling
us to train my reinforcement learning model to make informed decisions in the face of varying workloads
and resource constraints.

A common way to simulate a Non-Homogeneous Poisson Process (NHPP) is Thinning [46]. Thinning
allows for the generation of a Non-Homogeneous Poisson process characterized by a time-varying
arrival rate, often denoted as A(t), where A(t) represents the intensity of events at a given time ’t’.
To replicate the dynamic ebb and flow of request arrivals in real-world scenarios, we adopt a non-
homogeneous Poisson process with A(t) modeled as a sine function zeroed in the negative part. This
choice emulates bursts of requests interspersed with periods of inactivity. The core idea behind thinning
remains consistent: events are initiated from a homogeneous Poisson process operating at a constant
rate, typically referred to as Ap,q.. This homogeneous process generates events uniformly across time
intervals. Subsequently, for each generated event, the corresponding intensity A(t) at the event’s
timestamp is computed using the sine function. Random numbers within the range of 0 to 1 are then
generated for each event. By comparing these random numbers to the ratio of A(t) to Ajaz, €vents are
selectively retained or ’thinned out.” If the random number falls below this ratio, the event is retained;
otherwise, it is discarded. Through this process, thinning ensures the generation of a non-homogeneous
Poisson process that accurately reflects the dynamic fluctuations in event arrival rates, making it a
valuable technique for simulating real-world scenarios with varying event intensities.

Algorithm 3 NHHP with Thinning

Input: Q {A frequency that cycles every X time units, in radians}
Output: Number of incoming requests in next timestep

function NHPPTHINNING(?)
A(t) = lambda t: maz(0, Az * cos(2 x 1))
t<«+ 0.0
while True do
t+ = ExponentialVariate(An,q.) {A random exponential distribution floating number}
ran = Random(0,1) {A random number between 0 and 1}
if ran < A(t)/Amax then
yield poisson(A = A(t))
else
yield 0
end if
end while
return

Algorithm 3 implements the Non Homogeneous Poisson Process with Thinning and figure 4.2.1 illus-
trates the way this algorithm produces the events.

Auxiliary Services
Monitoring Execution

To closely monitor the execution of neural network and accurately compute the associated metrics, a
coordinated approach is employed. On each device within the cluster, a dedicated Flask REST API
service resides. When a layer or a neural-network execution is initiated, an HTTP request is sent
to the start monitor endpoint on the device. Subsequently, on the device side, a process is spawned
to execute the tegrastats CLI, enabling the measurement of power consumption. Simultaneously, the
execution time is tracked using Python’s time package. These two processes work cohesively, recording
power consumption and execution time throughout the execution. The monitoring process concludes
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Figure 4.2.1: Non Homogeneous Poisson Process with Thinning, Ay, = 20

when the device requests the location for the next layer or posts the end of execution, prompting a final
HTTP request to the stop monitor endpoint. This action halts the power consumption monitoring
process and finalizes the execution time measurement. The combined data from these processes are
used to compute the final reward of the models decision.

Real-time State Tracking

Simultaneously, an additional service within each device leverages the Python requests package to
periodically transmit the device’s current state to the main server. These state updates, which include
essential performance metrics, are dispatched at regular intervals, typically every 500 milliseconds,
and are facilitated through the perf and tegrastats CLI tools. This dynamic data collection approach
ensures that the framework remains constantly informed about device performance and resource uti-
lization in real-time, forming a crucial part of the model’s input. It empowers the framework to make
informed decisions and dynamically optimize resource allocation in response to ever-evolving edge
computing scenarios.

Parallel Training of Multiple RL Models

The architecture of the services and the central server has been designed to facilitate the simultaneous
training of multiple RL models. The process is relatively straightforward: each RL training process is
linked with a corresponding monitor process responsible for tracking executions on the devices. These
monitor processes are configured to listen on a predefined port, often designated as port 10000, within
each device. Additionally, to ensure consistency and accuracy, all RL training processes obtain real-
time device states from a shared process within each device, which periodically transmits the latest
device state data. This collaborative setup empowers the framework to concurrently train multiple RL
models. It effectively harnesses parallelism to enhance hyperparameter tuning, ultimately optimizing
the performance of RL models and resource allocation across a wide array of dynamic edge computing
scenarios.

In order to gain a deeper understanding of the framework, We provide an example to showcase how this
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architecture and framework operate. This scenario is about the layered execution Service described in
4.1.1, the whole Neural-Network execution Service, described in 4.1.2, is straight forward.

In figure 4.2.2, a computational scenario of our framework is illustrated. More specifically, A server
and three devices collaborate to execute a four-layer neural network in response to a client’s request,
orchestrated by a central server driven by an Reinforcement Learning model. The sequential process
unfolds as follows: the server initiates by dispatching the first neural network layer to Device 2. Once
Device 2 completes this layer’s execution, it queries the RL model for the location of the next layer.
The RL model designates Device 1 for executing the second layer, after which Device 1 transmits the
third layer to Device 0, following the RL model’s guidance. Device 0, upon completing the execution
of the third layer, consults the RL model once more, which instructs Device 0 to finalize the execution
locally for the fourth and final layer. Device 0 carries out this computation and subsequently returns
the results to the central server. Lastly, the server communicates these results to the client, thus
concluding the entire process.

The S-D-I, S-D and D-D mentioned in figure 4.2.2 are the abbreviations of the following CloudEvent
Structures:

e Server-Device Init CloudEvent Structure (S-D-I):
— Next Service URL (includes model name, next device and execution context)
— Servers Scheduling Service IP and Port

e Server-Device Final CloudEvent Structure (S-D-F):
— Output Vector of last layer

e Device-Device CloudEvent Structure (D-D):

— Layer index to execute

Serialized Input data

Input data shape

Input data data_type

Servers Scheduling Service IP and Port
e Server-Device CloudEvent Structure (S-D):
— Next Service URL (includes model name, next device and execution context)

— Servers Scheduling Service IP and Port

96



4.2. Reinforcement Learning based Scheduler

START: Incoming request for END: Output Results
a 4 layer Neural Netowrk returned to client

‘ 8: D-D (No data transfer)
Server \ |

5: Where to
send next?

Device 0

Device 2

Figure 4.2.2: A simple visualized example of architecture
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Chapter 5

Evaluation

| his section details the evaluation process we used to assess the framework and scheduling model
described in sections 4.1 and 4.2 respectively.

5.1 Experimental Setup

The experimental setup encompasses three edge devices and a central control unit. These components
play pivotal roles in investigating resource allocation within edge computing scenarios.

Edge Devices

At the core of this experimental configuration are three edge devices. The Jetson AGX Xavier, a
high-performance system-on-a~chip (SoC) platform, provides substantial computational power. Ac-
companying it are two Jetson Xavier NX devices, recognized for their energy efficiency and suitability
for edge applications. These edge devices are responsible for executing the various layers of neural
networks by running the service described in sections 4.1.1 and 4.1.2. They are not involved in the
decision-making processes related to scheduling and resource allocation; instead, they carry out the
computations as directed by the central control unit. This setup closely emulates practical edge scenar-
ios, where tasks are efficiently distributed across edge devices to mitigate latency and enhance overall
system efficiency.

Central Control Unit (VM)

Supplementing this ensemble of edge devices is a virtual machine (VM) hosted on a centralized server,
functioning as the central control unit. The VM assumes a pivotal role in the orchestration and opti-
mization of resource distribution throughout the network. It oversees and governs resource allocation
decisions by hosting the Reinforcement Learning algorithm described in section 4.2.

The table 5.1 provides a detailed insight of the devices technical characteristics.

5.2 Implementation Challenges

In the pursuit of translating theoretical concepts into practical solutions, the implementation phase of
this research confronted a multitude of intricate challenges.

e GPU Support - Kubernetes: To enable GPU execution context within the Kubernetes clus-
ter, the deployment of the NVIDIA plugin is imperative. This plugin seamlessly integrates GPU
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1lightgray
Device CPU ‘ L2 ‘ L3 ‘ RAM GPU
512-core NVIDIA
Xavier AGX acgte ARM v82 | o\ip | 4MB | 32GB LPDDR4X | Volta and 64 Ten
-1 SOr cores

6-core NVIDIA 384-core NVIDIA
Xavier NX Carmel ARM@ 6MB 4MB 8GB LPDDR4x Volta™ GPU and

v8.2 64-bit 48 Tensor Cores

16-core Intel Xeon
VM (Skylake, IBRS) 64MB | 256MB| 16GB _

Table 5.1: Technical characteristics of heterogeneous Edge nodes and Cloud Server

support into the cluster, a crucial requirement for the efficient execution of deep learning work-
loads. However, it’s important to note that the compatibility between the NVIDIA plugin and
Jetson devices hinges on the version of NVIDIA’s Jetpack software [48]. Specifically, the NVIDIA
plugin is compatible with Jetpack versions > 5.0 (actually with nvidia-docker [49] >= 2.0 and
nvidia-container-toolkit [50] >= 1.7.0 that are installed in Jetpack > 5.0). Consequently, to
ensure alignment, the Jetsons must undergo a reflash process, updating them to a compatible
Jetpack version, such as 5.0.1. Furthermore, the PyTorch image used as base image, which
is is 4t-pytorch:r35.2.1-pth2.0-py3, sourced from the NGC Catalog, impose significant storage
demands (13GB). Considering the constrained EMMC storage on Jetson devices, a practical
solution involves the utilization of external USB flash drives. These external storage options
serve to augment storage capacity, facilitating the seamless accommodation of these substantial
images. By implementing this, potential storage constraints are effectively mitigated.

GPU Support - Pytorch: Loading models onto the GPU with PyTorch results in huge RAM
utilization overheads (around 1-1.5GB), which is not aligned with the resource constraints of
edge computing, particularly on Jetson Xavier NX devices. For this reason, the evaluation will
be done only in CPU execution context. Future work will address this issue to optimize GPU
model loading for improved edge computing efficiency.

Reinforcement Learning Action Space: In the realm of Reinforcement Learning (RL), agents
encounter the task of traversing the action space to acquire an optimal policy. However, when
confronted with a large action space, the agent’s exploration process becomes notably protracted,
consequently extending the duration of training sessions. As a response to this challenge, the
action space has been simplified, reducing its dimensionality to three elements. Each of these
three elements corresponds to a distinct device, enabling the agent to solely determine the location
for executing the subsequent layer. One more simplification involves the utilization of one neural
network (MobilenetV2) during training.

Reinforcement Learning Tuning: Tuning in reinforcement learning is a complex and time-
consuming task. This study will focus on a limited scope of experimentation, utilizing four
distinct reward systems outlined in the scheduling section. Furthermore, the exploration of
hyperparameters will primarily revolve around varying the Generalized Advantage Estimation
Lambda parameter, specifically considering values of [0.9, 0.7, 0.5, 0.3, 0.1].

e Load Simulation:
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5.3 Experimental Results

As previously stated, the conducted experiments comprehensively covered two distinct rewarding sys-
tems, namely subtraction and division, encompassing a spectrum of lambda ()\) values, precisely [0.1,
0.3, 0.5, 0.7, 0.9], all executed within the established framework tailored specifically for this study.
Both services, encompassing layer-by-layer execution and holistic offload, will undergo thorough eval-
uation. To assess the performance of the Reinforcement Learning algorithms, We will employ a set of
dummy schedulers.

e Random Scheduler: This scheduler randomly assigns neural networks for execution on the
available devices.

e Round Robin Scheduler: The round-robin scheduler allocates neural networks in a cyclic
fashion to the devices.

e Less CPU Utilization Scheduler: This scheduler selects the device with the lowest CPU
utilization for neural network execution.

Reward During training

This section presents the episodic mean rewards of some training sessions, providing a direct view of
the encountered challenges and the model’s progress in reinforcement learning.

As an illustration, figures 5.3.1a and 5.3.1b displays the episodic mean rewards for the training sessions
where the subtraction and division rewards were employed with full NN offload, featuring different
lambda values for the Generalized Advantage Estimator.

-20

-30

a 10k 20k 30k 40k 0 10k 20k 30k 40k 50k

(a) Subtraction mean episodic (b) Division mean episodic
Reward during Training with Reward during Training with
full NN offload full NN offload

The episodic mean rewards, as observed in the figures, initially display a consistent upward trend,
showcasing the model’s progress. However, it becomes evident that after a certain number of episodes,
these rewards start to decrease. This decline in rewards prompts us to select the model when it attains
the highest reward per episode, as this signifies the model’s peak performance before any degradation
in its learning process occurs.

The rewards in the layered network execution follow a similar pattern. Again we select the model
when it attains the highest reward per episode.

Scheduler overhead

It is imperative to consider and quantify the overhead incurred by the RL schedulers in our system-
framework, which is simply an Multi-Layer Perceptron (MLP) inference. In Figures 5.3.2a and 5.3.2b,
We present a visual representation of the overhead associated with the inference of both PPO and DQN
models. Even when subjected to 100 concurrent inferences of each model, the median inference time
remains within a few milliseconds. Notably, the PPO model exhibits slower performance compared
to the DQN model, with a few exceptional cases reaching a total inference time of 600 milliseconds.
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In contrast, the maximum inference time for the DQN model is a mere 6 milliseconds. Given the
negligible median time, it is deemed inconsequential and is therefore not considered in the subsequent
experiments.
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Time and Energy system evaluation

In this section, We undertake an extensive evaluation of our scheduling system, providing experimental
results of its real-time performance and energy efficiency. This evaluation is pivotal for assessing the
practical viability of our system in to the other schedulers discussed in the 5.3 paragraph. Through a
series of comprehensive experiments, We aim to provide an unbiased and data-driven analysis of our
system’s capabilities, highlighting its potential strengths and limitations. These experiments form the
basis for further optimization and refinement of our system.

To understand the evaluation results, it’s important to explain the naming convention used during
the evaluation process. Each diagram’s horizontal axis represents the schedulers. The initial letter in
each label signifies the reward system employed, while the subsequent characters specify the model’s
configuration.

S*#**  Jambda {LAMBDA VALUE} {MODEL ITERATION}: PPO model with subtraction
rewarding system, with LAMBDA VALUE the lambda in GAE and MODEL ITERATION the
model iteration that is picked

D** lambda {LAMBDA VALUE} {MODEL ITERATION}: PPO model with division re-
warding system, with LAMBDA VALUE the lambda in GAE and MODEL ITERATION the
model iteration that is picked

St DQN _lambda {LAMBDA VALUE} {MODEL ITERATION} (only with whole execu-
tion): DQN model with subtraction rewarding system, with LAMBDA VALUE the lambda in
GAE and MODEL ITERATION the model iteration that is picked

D**** DQN _lambda {LAMBDA VALUE} {MODEL ITERATION} (only with whole exe-
cution): DQN model with division rewarding system, with LAMBDA VALUE the lambda in
GAE and MODEL ITERATION the model iteration that is picked

{DUMMY SHEDULER}: Just the dummy scheduler.

{DUMMY SCHEDULER} load: The dummy scheduler with the services that send the devices
states running. By default this state runs for the RL based schedulers. We evaluating the dummy
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schedulers with this load in order to examine the sensitivity of dummy schedulers to external
load.

Monitor Service Overhead

In this subsection, we focus exclusively on the monitor service overhead. Demonstrating the impact
of the monitor service is crucial for a comprehensive assessment of its effects on system performance,
resource utilization, and overall efficiency.

Figures 5.3.3 and 5.3.4 show the CPU utilization and Power consumption of monitor service across all
devices.

Monitor Service CPU utilization (300ms interval)

30 A —— agx-xavier-00-average

—— xavier-nx-00-average
xavier-nx-0l-average

254
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154

CPU Utilization (%)
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samples

Figure 5.3.3: Monitor Service CPU utilization

Power Consumption Over Time
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—  xavier-nx-00
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7.5

Figure 5.3.4: Monitor Service Power Consumption

Observing the results we see that in xavier-nx-00 device, the CPU utilization registers at a range of
20-28% approximately, in xavier-nx-01 registers at a range of 15-25%, while in the agx-xavier-00 device,
it remains lower at around 5-6%. The monitor service has a relatively substantial performance impact
in NX devices.
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According to power consumption, across all devices, when exclusively running the monitor service,

power consumption hovers consistently at approximately 7.5 Watts.

Coordinated Devices Experiment
In the first type of experiment We focus on coordinated device behavior. In this scenario, certain

devices, acting as clients, are synchronized to initiate their requests at approximately the same time
within predefined intervals T (e.g. 3s). For instance, We may have multiple cameras synchronized to
request image inference at the same time interval. This experiment allows us to simulate real-world
situations where devices collaborate or coordinate their activities. By studying how our scheduler han-
dles these coordinated requests, we gain insights into its ability to manage and optimize simultaneous
workloads, which is particularly relevant in applications where precise timing and synchronization are

critical for achieving desired outcomes.
This experiment is simulated using the Non Homogeneous Poisson Process, the same process used

to simulate the load during training. Employing the algorithm 3, We conduct an experiment with
Amaz = 15. This algorithm, in each timestep, specifies the devices that send concurrent requests. The

interval T is equal to 3.
For A\jqe = 15 in figures 5.3.5a and 5.3.5b is illustrated the total execution time for whole and layered

services. In figures 5.3.6a and 5.3.6b are illustrated the results according to the energy consumption.
Moreover, in order to better understand the results, in figures 5.3.7a and 5.3.6b We provide the
percentage of devices used during each experiment and in figures 5.3.8a and 5.3.8b the violation
percentages (the percentage of requests that exceeded the SLA). Ultimately, for layered execution,
figure 5.3.9 shows the fraction of network time and the fraction of execution time.
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(b) Whole Request Execution

(a) Layered Request Execution
time for A\maz = 15

time for Amae = 15
Layered Execution: The cumulative execution times and instances of violations are notably greater
in the context of layered execution, as compared to the entirety of execution facilitated by dummy
schedulers (as depicted in Figure 5.3.5a and Figure 5.3.8a). Upon close examination of Figure 5.3.9,
it becomes evident that a substantial proportion of the overall time expenditure pertains to network-
related activities. The execution itself constitutes a relatively small portion of the total time. The
increased demand on network resources predominantly stems from the numerous requests generated
at each neural network layer. This extensive request generation results in congestion within the server.

Notably, a heightened neural network depth (more layers) corresponds with an increased volume of
generated requests. Schedulers exhibiting more favorable temporal outcomes are those that maintain a
consistent execution pathway within a single device, predominantly relying on a singular device for pro-
cessing tasks. These schedulers, exemplified by DPOPC_lambda 0 7 797184, record substantially
reduced network-related temporal overheads, given the absence of inter-device data transfers. However,
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(b) Whole Request Execution
Device utilization percentage for

(a) Layered Request Execution
Amaz = 15

Device utilization percentage for
Amaz = 15

it is imperative to acknowledge that such schedulers inevitably lead to device overutilization. For in-
stance, the DPOPC_lambda_0_9 1511424 scheduler, which offloads all tasks to xavier-nx-01, yields
considerably extended total execution durations. In contrast, the DPOPC 0 7 797184 scheduler,
which offloads all processing tasks onto the high-performance agx-xavier-00 device, achieves notably
shorter total execution times. It is worth highlighting the responsiveness of the dummy schedulers
with additional external workload fluctuations, manifesting as an approximate 16% elevation in viola-
tion rates when subjected to concurrent low-intensity workloads on each device (monitor workload).
In terms of energy consumption, the schedulers consistently exhibit low energy utilization, averaging
around 7.5 kilojoules. The DPOPC_lambda 0 7 797184 scheduler stands out with the lowest en-
ergy consumption, with 7 kilojoules, due to its exclusive reliance on agx-xavier-00 with no inter-device
data transfers, as previously elucidated. The other schedulers also perform commendably in terms
of energy efficiency. Notably, dummy schedulers and RL-based schedulers exhibit comparable energy
consumption profiles, but in dummy schedulers the introduction of concurrent low-intensity workloads
across devices leads to a noticeable increment in energy consumption, rising from approximately 7.5

kilojoules to around 12 kilojoules.
Whole Execution: The total execution times are quite similar, but there are some exceptions. These
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Violation Percentage by Experiment

Violation Percentage by Scheduler
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Figure 5.3.9: Execution vs Network time in layered execution

exceptions include the DEOP DQN gamma 000 32256, DEOP DQN gamma 000 48640,
DEOP lambda 0 1 15872, DEOP lambda 0 3 3584, DEOP lambda 0 5 8192, and
DEOP lambda 0 9 8192 schedulers. These schedulers heavily use xavier-nx-0* devices, which
are less powerful than agx-xavier-00. This overuse leads to longer execution times, with violation
percentages reaching up to 80%. On the other hand, most other RL-based schedulers primarily
utilize agx-xavier-00, allocating only a portion of tasks to the xavier-nx-0* devices. This approach
results in shorter execution times and even beats the dummy schedulers. Specifically, the round-robin
scheduler with and without additional load, has violation percentages of 22% and 9.5%, respectively.
The random scheduler has violation percentages of 25% and 15%, while the CPU utilization-based
scheduler maintains a 10% violation rate. Among the non-exception RL-based schedulers, many
achieve good performance with low violation percentages. For example, DEOP lambda 0 9 16384,
SEOP DQN gamma_ 000 43008, and SEOP lambda 0 5 16384 all have violation percentages
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of 9%. Notably, SEOP lambda 0 7 16384 achieves the lowest violation percentage
at 5%.According to the energy consumption, all the schedulers achieve similar performance with
consumption around 12 kiloJoule. The lowest energy consumption is achieved by round robin and
random, without the external load, and the round robin and random with external load also consume
12 kiloJoule. This indicates that the monitoring service responsible for reporting device status is the

primary reason for the energy difference between the no-load dummy schedulers and other schedulers.

It is worth to mention that this evaluation experiment is challenging for our RL-based schedulers. The
reason is that when simultaneously requests arrive in the server, which hosts the scheduler, and the
scheduler processes all of these requests with nearly identical device statuses as input. Consequently,
the scheduler schedules these requests without adequately considering their potential impact on the
devices. This operational approach may lead to suboptimal and inefficient decisions, particularly within

the context of the specific experimental framework.

Independent Clients Experiment
In this type of experiment devices asynchronously send requests to the server, that host the scheduler.

The experiments revolve around two key parameters: the number of participating devices and the rate
at which these devices send requests. By varying these factors, We evaluate the system’s performance

under a range of demand conditions.

LAMBDA MAX=25, NUM CLIENTS=1:
In this case there is only one client with bursting periods of requests. In figures 5.3.10a and 5.3.10b is
illustrated the total execution time for whole and layered services. In figures 5.3.11a and 5.3.11b are
illustrated the results according to the energy consumption. Moreover, in order to better understand
the results, in figures 5.3.12a and 5.3.11b We provide the percentage of devices used during each
experiment and in figures 5.3.13a and 5.3.13b the violation percentages (the percentage of requests
that exceeded the SLA). Ultimately, for layered execution, figure 5.3.14 shows the fraction of network
time and the fraction of execution time.
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Layered Execution: Observing the figures 5.3.10a and 5.3.11a it becomes evident that the system
operates under a relatively light load. Notably, in certain instances, layered execution demonstrates
a relatively low percentage of violations. For instance, the DPOPC lambda 0 7 791184 scheduler
and the SPOPC lambda 0 1 633856 scheduler exhibit violation percentages of 23% and 30%, re-
spectively, a marked improvement from the previous experiment, where these schedulers had 80%
95%, respectively. Furthermore, figure 5.3.14 provides insights into the network time, revealing that
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the majority of the schedulers exhibit significantly reduced network time compared to the previous
experiment. This can be attributed to the absence of network congestion on the server, leading to

enhanced system efficiency.
Of particular interest is the performance of the dummy schedulers, which, in the absence of external
However, when subjected to external load, these dummy

load, achieve zero violation percentages
schedulers appear to consume more energy compared to their counterparts
Whole Execution: In terms of overall execution, as shown in Figure 5.3.13b, nearly all

indicating their efficient handling of the relatively light

schedulers achieve a 0% violation rate, i

workload. The only exceptions to this pattern are the DEOP DQN gamma 000 32256 and
DEOP DQN gamma 000 48640 schedulers, which struggle due to routing all requests to the xavier-
nx-00 resource.

Regarding energy consumption, figure 5.3.11b shows that the results remain similar with our previous

experiment. Most models perform the same, except for the dummy schedulers without load indicating
once again that the monitor service is responsible for a significant amount of energy consumption.
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Figure 5.3.14: Execution vs Network time in layered execution for A\,,q, = 25 and num__clients =1

In the subsequent experiments, We have omitted the presentation of layered execution results. This
omission is due to the notably poor performance in total execution times, rendering their display

unnecessary.

LAMBDA MAX=15, NUM _CLIENTS=5:
In this case there are five (5) clients with bursting periods requests. The burst rate is a bit smaller

than the previous experiment (lambda;q, = 15 instead of 25).
In this particular scenario, the performance of most schedulers exhibits a commendable level of effi-

ciency. Notably, the dummy schedulers, when no external load is applied, achieve almost 0% violation
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Figure 5.3.19: Median Request Execution time for A,,., = 15 and num__clients =5

rate, demonstrating their reliability in managing workloads. The CPU_UTIL scheduler also stands
out, with a highly effective performance achieving a violation rate of less than 1%. Furthermore,
the SEOP_lambda_0_3 16384 scheduler delivers an exceptional performance, with near-zero viola-
tion rates. This is evident from the data presented in Figure 5.3.15, where this scheduler, alongside
SEOP lambda 0 1 16384 and CPU_UTIL schedulers, records the lowest median execution times.
From Figure 5.3.19, we can observe that SEOP lambda 0 3 16384 scheduler leverages the powerful
agx-xavier-00 device while judiciously offloading a significant portion of the workload to xavier-nx-0*
devices. This strategic approach results in an impressive nearly 0% violation rate and the lowest me-
dian execution time. In contrast, other schedulers that overburden xavier-nx-0* devices or overly rely
on the agx-xavier-00 device for task execution exhibit considerably worse violation rates. Regarding

energy consumption, the results remain consistent with those of previous experiments.

LAMBDA MAX=10, NUM_CLIENTS=8:
In this case there are eight (8) clients with bursting periods requests. The burst rate is a bit smaller

than the previous experiment (A4, = 10 instead of 15).
Upon examining Figure 5.3.24, it becomes readily apparent that the SEOP lambda 0 3 16384
scheduler demonstrates outstanding performance, maintaining a violation rate of less
than 1%. This performance is attributed to the dynamic allocation of 75% of the workloads to the
agx-xavier-00 device and the remaining 25% to xavier-nx-0* devices, as illustrated in figure 5.3.22,
when agx-xavier-00 is subjected to heavy loads. In contrast, the dummy schedulers, when they oper-
ate without external load, exhibit significantly less robustness, yielding violation rates that have in-
creased from nearly 0% in previous experiment to 3-4%. Furthermore, the SEOP lambda 0 3 16384
scheduler outperforms the dummy schedulers with external load (20% and 6.5% violation rates the
random and round robin scheduler respectively). Other reinforcement learning (RL)-based sched-
ulers, such as DEOP_DQN _ gamma_ 099 71168, also deliver commendable performance. This is
achieved by judiciously offloading a portion of requests to xavier-nx-0* devices, thereby preventing
overutilization of agx-xavier-00 and resulting in lower violation rates. In contrast, schedulers that
disproportionately rely on agx-xavier-00 to bear the load fail to handle the demands efficiently. For in-
stance, DEOP lambda 0 9 16384, SEOP lambda 0 5 16384, SEOP lambda 0 7 16384, and
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Figure 5.3.21: Whole Request Execution energy for A, = 10 and num_ clients = 8
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Figure 5.3.24: Median Request Execution time for A4, = 10 and num__clients = 8
It is noteworthy that the cpu_util

SEOP lambda 0 9 16384 exhibit violation rates of 40%.
scheduler consistently maintains performance akin to the previous experiment, underscoring its ro-

Lastly, as depicted in Figure 5.3.24, We observe that SEOP lambda 0 3 16384,

bust nature.
DEOP_ DQN gamma 099 71168, cpu_util, and the remaining dummy schedulers without work-
loads achieve the lowest median execution times. Notably, the energy consumption results remain

consistent with those from the prior experiment.
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Chapter 6

Conclusions

I n this Diploma Thesis, a comprehensive framework has been established to enable the execution
of Deep Neural Networks within a Serverless Edge Cluster. Additionally, a dynamic run-time
scheduler has been developed, utilizing Reinforcement Learning techniques to intelligently manage the
scheduling of DNN execution for incoming requests to the Edge Devices. The primary objective of
this research endeavor has been to achieve optimal resource allocation within the Edge Devices while
steadfastly adhering to Service Level Agreements (SLAs).

6.1 Discussion

In chapter 4.1, we develop a robust framework for the execution of Deep Neural Networks. This
framework leverages the power of Kubernetes and Knative for deployment, harnessing the strengths
of both technologies. Kubernetes, known for its robustness, forms the foundation of our framework,
providing the reliability required for efficient DNN execution. Knative offers a range of valuable tools,
including the Knative Pod Autoscaler, which dynamically adjusts the number of active pods in response
to changing workloads for optimal resource utilization.

Furthermore, our framework offers the flexibility to support both layered and whole execution of Deep
Neural Networks. This adaptability empowers users to choose the most suitable mode of execution,
whether it be a layered approach for more granular control or whole execution for efficiency. The
versatility of our framework equips it to address diverse use cases and aligns it with the evolving
demands of edge computing environments.

In chapter 4.2, we delve into the development of a Reinforcement Learning scheduler designed to
effectively manage the allocation of incoming requests to the devices. The primary objectives of this
scheduler are twofold: to ensure that the Service Level Agreements (SLAs) are not violated and to
minimize energy consumption within the system.

To address a spectrum of scenarios, We have designed schedulers for both layered and whole execution
of Deep Neural Networks. This adaptability is pivotal, as it allows us to tailor our scheduling approach
to the specific needs of diverse use cases, granting us the ability to optimize resource allocation and
energy consumption across a wide range of edge computing environments.

6.2 Future Work

Various expansions and variants of our work may be proposed in the future.
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e The layered execution suffers from the network time and the whole execution has a poor granu-
larity control. To strike a balance between these two methods, We propose a hybrid approach.
This approach involves the strategic placement of designated exit points within each Deep Neural
Network, permitting scheduling decisions only at these predefined junctures. By implementing
this strategy, We effectively minimize the cumulative network latency, as fewer exit points result
in reduced network overhead. Simultaneously, We maintain a reasonable level of granularity
control, ensuring that the computational process remains adaptable to the specific needs of the
task at hand.

e An area of potential future development lies in the creation of a distributed version of the
RL scheduler. The existing centralized server model proves to be less scalable in the context
of a multi-device Edge Cluster. To address this scalability challenge, a distributed iteration
of our scheduling mechanism offers a promising solution. This distributed approach entails the
deployment of individual RL agents on each device, which collectively engage in a form of auction
to determine the device responsible for executing a given request. This shift towards distribution
can significantly enhance the scalability and adaptability of our scheduling system within complex
and dynamic Edge Cluster environments.

e Algorithmic and coding optimizations, especially in monitor service due to the relatively high
overhead.
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