EOGNIKO METXOBIO IIOAYTEXNEIO

2XOAH HAEKTPOAOTON MHXANIKQN
KAI MHXANIKQN YIIOAOTIZTQN

TOMEAYX TEXNOAOTIAY ITAHPO®OPIKHE KAI YIIOAOTIZTQN

apdAAnAn Extéleon E§unveov ZvpPolaiwv pe Eniyvwon
tov Emunmedov Xvykpovoewv oto Popto Epyaciag

AITTAQOMATIKH EPTAXIA

Iwavvng A. Ale§omovog

ABnva, Noéupplog 2023

E®GNIKO METZOBIO ITOAYTEXNEIO
2XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKQN YTIIOAOTTETON
TOMEAZX TEXNOAOTIAY ITAHPO®OPIKHY KAI YIIOAOTIZETON

£

nvpeopos

=]

MPOMHOEY §

qd

MapdAAnAn Extéleon E§unvwv Zvpfolaiwv pe Eniyvwon
tov Emunmédov Xvykpovoewv oto Popto Epyaciag

AIITAQOMATIKH EPTAXIA

Iwavvng A. AAe§omoviog

EmpAénwv: Aptoteidng Hayovptlng
KaOnyntrg EMII

EyxpiOnke ano tnv tpipelr| e§etaotikn emtponi) tnyv 14n Noeyppiov 2023.

EAevBépilog Kokopng-Koytag Tewpylog I'kovpag Apioteidng Hayovptlig
Enik. Kabnyntng ISTA Av. KaOnyntrg EMII KaBnyntrg EMII

ABnva, Noéupplog 2023

NATIONAL TECHINCAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DI1VISION OF COMPUTER SCIENCE

Parallel Smart Contract Execution with Contention
Awareness

DIPLOMA THESIS

Ioannis D. Alexopoulos

Athens, November 2023

NATIONAL TECHINCAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE

£

nvpeopos

=]

MPOMHOEY §

qd

Parallel Smart Contract Execution with Contention
Awareness

DIPLOMA THESIS

Ioannis D. Alexopoulos

Supervisor: Aris Pagourtzis
Professor, NTUA

Approved by the three-member examination committee on November 14th 2023.

Lefteris Kokoris-Kogias Georgios Goumas Aris Pagourtzis
Assistant Professor, ISTA Associate Professor, NTUA Professor, NTUA

Athens, November 2023

Iwavvng A. AAe§dmovAog
HAektpoAdyog Mnyavikog kat Mnxavikog Yrohoytotwv EMIT

Copyright © Iwdvvng A. AAe§dmovhog, 2023

Me emgOlagn mavtog Sikatwpatog. All rights reserved.

Amnayopebetat avtypagr], anobrkevon kat Stavopr} tng mapovoag epyaciag, €§ oAokAnpov 1
TUAHATOG AUTHG, Yla euntopikd okomnd. Emtpénetal n avatvnwon, anobrkevon kat Stavopur| yla
OKOTIO U KepSOOKOTILKO, EKTTAUSEVTIKNG 1] EPEVVITIKHG PVONG, VIO TNV TpoDTO0e0o Vo avapépeTal
n Ty poélevong kat va Satnpeitat To mapov ufvupa. Epotripata mov agopovv T xpnon
NG epyaociag yia kepSooKomiKd OKOTO TPEMEL Va anevfhvovTal TPOG TOV GUYYpagEa.
OLamoOYELG KA TA CUUTIEPAGUATA TIOV TIEPLEXOVTAL GE AVTO TO £YYPaPO EKPPAlovy TOV GLYYpaPéa

Kat dev mpémet va eppnvevBei 0Tt avtimpoownevovy TIG entioneg B€oelg Tov EOvikov Metoofiov
ITohvtexveiov.

OTOUG YOVELG oV

vi

ITepiAnyn

H eioaywyn tov modular design oe ovotnuata blockchain €xet amogépet onpavtikég
PeAtiwoelg oty anodoon Tovg. AvTr 1 6TOVOVAWTI TIPOCGEYYLOT| ETUKEVIPWVETAL OTO
Slaxwplopd Twv eMMESWV consensus Kat EKTEAEONG, ETMUTPETOVTAG £TOL TNV TAVTOXPOVN
Savopr| Twv block oto diktvo. Ot tapadootakég pébodot yia o Xelplopd ng mapda-
AnAng ektéheong transactions mepthapfdvovy gite TV Tavounon Twv cuvallaywv oe
L1 CUYKPOLOUEVEG OpASES XPNOLHOTIOLWVTAG (ta antatotddo&n pooéyyion eite v at-
010808 ektédeon OAwY TwV CLVAAAAYDV, pe SLAKOTIT KAt €K VEOU EKTENEDT] KATA TNV
aviyvevon obykpovons. Qotdoo, avtég ot uéBodot Sev a&lohoyodvtal ovTe eivan Ka-
TaAANAeG VIO VYNAA avTaywvioTikd (contended) goptia epyaciag, kdtt mov dmwg dei-

XVOUE givat éva ovvnoeg patvopevo ota vdpyovta ovotrpata blockchain.

v napovoa epyacia, Tapovotalovpe Eva unxaviopo mapdAAnAng ektéAeong ya €€v-
nva ovpPolata (smart contracts) Tov cLVEVAeL Eva VEO APXITEKTOVIKO LOVTEAO, TIOV O-
vopagetat Loose Coupling 1o omoio avTipeTwmilel TOUG TEPLOTOTEPOVG VTIAPXOVTES PO-
peig embéoewv oe CLVSVACHO e Hia PNV EKTENEOTIG TTOV AELTOVPYEL AMOTEAEHATL-
k& vné contended workloads. Xto mAaioto tov Loose Coupling ot kopupot dnpiovpyodv
acvyxpova petadedopéva (pre-execution) amd ocvvallayég eKTOG TOL KpioLOv Hovo-
TATIOV TOV CONSENsus, YEYOVOG TOV EMULTPETEL TNV andoPeot) TOV KOGTOVG peTady Twv
OVUUETEXOVTWY. ZTN CUVEXELQ, OL KOUPOL Xprotpomotody avtd Ta petadedopéva yla va
eKTENODV amoTeAeopaTIKA TIG ouvallayég mapdAAnia. EmmAéov, wa Peltiotonoinon
TIOV eloaydyape gival 1 ehaylotomnoinon Tov cache coherence traffic pe tnv SpopoAod-
ynon twv cvvaAlaywv pag alvoidag e§aptnong otov idto muprva. Télog, Ta amote-
Aéopata aftohoynong g pnxavrg ektéheor|g Hag deixvouv OTL vTTEpTEPEL EVavTL [iag

ovyxpovng mpooéyylong (Block-STM) éwg kat 1,4x oe contended workloads.

0.0.1 Ag&ag-Kheba

Blockchain, E§umtva ovpfolata, TTapaAAnAn extéleon

viii

ix
Abstract

The introduction of modularity to blockchain system architectures has yielded substan-
tial performance improvements. This modular approach focuses on separating the con-

sensus and execution layers, thereby allowing concurrent block distribution.

Traditional methods for handling concurrent transaction processing involve either sort-
ing transactions into non-conflicting batches using a pessimistic approach or optimisti-
cally executing all transactions, resorting to aborting and re-executing upon conflict de-
tection. However, these methods are are neither evaluated nor well-suited under highly
contended workloads, which as we show is a common occurrence in existing blockchain

systems.

In this work, we present a parallel-execution engine for smart contracts that combines
a novel architectural model called Loose Coupling which mitigates most existing attack
vectors and a context-aware execution engine that operates efficiently under highly con-
tended workloads. Under Loose Coupling nodes asynchronously generate metadata
(pre-execution) from transactions outside the critical path of consensus which allows
the cost to be amortized among participants. Consequently, nodes use this metadata
to execute transactions in parallel efficiently. Additionally, one optimization we intro-
duced is to minimize cache coherence traffic by scheduling transactions of a depen-
dency chain on the same core. Benchmark results of our execution engine show that it

outperforms a leading approach (Block-STM) by up to 1.4x in contended workloads.

Keywords

Blockchain, Smart Contracts, Parallel Execution

Contents

IMepiAnyn vii
0.0.1 A&ac-Khedtd vii

Abstract ix
1 Ewaywyn 1
L1 Kivnmpo . . . o o o 1

1.2 Awtonwon ITpoPAAUaTos o o oo 2

1.3 YRApYOVOEGAVOEIS v v v ot e e e e e e e e e e e 3
1.3.1 ZUVOTTIKN TAPOVCIACT) TWV VPLOTAUEVWY TTPOOEYYioEWY 3

1.3.2 Advvauiec TwV VEIOTAUEVWY TTPOCEYYIOEWY 6

1.4 TlpotetvOuevn ADON e e e 8
1.4.1 Emikevtpo TnG SIMAWUATIKAG EPYATIOG . . . o o o o o o o . .. 9

1.5 Aoun Aumwuatikng Epyaoiag oL oL 10

2 YroBabpo 11
2.1 Baowd otowyeia Blockchain o oL 11
2.1.1 Opiouoégblockchain 11

2.1.2 Consensuso e e e e e 11

2.1.3 Efvmvdovufolata 12

2.2 MOVTEAO ZUOTAUOTOS « « v v v v e e e e e e e e e e e e e e e 12
2.2.1 Order-Execute ApXITEKTOVIKT) v v v v v v v v v v v o 12

222 ModularDesign L 13

2.3 HapdAnAn extéeon éEvmvwy ovpPolaiwy L L. 13

xi

xii

2.3.1 Anawododoec mpooeyyioelg
2.3.2 A101080&0G EAEYYOG OVYYPOVIOUOV OTNV EKTEAEDT) EEVTIVWV GULL-
Bohaiwv
233 Block-STM
2.3.4 IIpoektéleon Kat aviyvevon e€apthoswy
3 3Xxediaon
31 EMOKOMNOM « .« « v v v o e e e e e e e e e e e e
32 LooseCoupling
4 YMomoinon
4.1 EMOKOTNOT . . .« v o e e e e e e e e e e e e e e e e e e
5 A&oloynon
5.1 EMOKOTNON . .+« v o o e e e e e e e e e e e e e e e e
5.2 Exté\eon pe emiyvwon e€dptnong oo e e e e e e e
6 Emiloyog
6.1 JUUTEPAOUATIKA ZXONO .+ . v v v v o e e e e e e e e e
6.2 MeAMovtkOEpyo

1 Introduction

1.1 Motivation e
1.2 Problem Statement,
1.3 ExistingSolutions,
1.3.1 Summary of existing approaches
1.3.2 Shortcomings of existing approaches
1.4 Proposed Solution
1.4.1 Focusofthethesis

1.5

. Outline

2 Background

2.1 Blockchain Background
2.1.1 Blockchain definition
2.1.2 Cryptographybasics
2.1.3 ConsSensus e e e e e e

17
17
17

21
21

23
23
24

27
27
28

29
29
30
31
31
33
34
36
36

2.1.4 State Machine Replication 38

2.1.5 Permissioned vs Permissionless setting 39

2.1.6 SmartContracts 39

22 SystemModel 40
2.2.1 Order-Execute Architecture 40

222 ModularDesign 40

2.3 Multi-Version Deterministic Databases 41
2.3.1 Optimistic Concurrency Control 42

2.4 Parallel Smart Contract Execution 44
2.4.1 Pessimistic Approaches 45

2.4.2 Optimistic Concurrency Control in Smart Contract Execution 46

243 Block-STM 46

2.4.4 Pre-execution and Dependency Detection 47

2.5 Hardwarebackground 48
2.5.1 Thread Affinity 48

3 Design 51
31 SystemModel 51
32 OVeIVIEW v i i it e e e e e e e e e e e 52
33 GoodBlocks 53
3.3.1 Good Block Construction 54

34 LooseCoupling 56
3.5 Optimistic Block Production 57
3.6 Scheduler 60
3.6.L1 Model 60

3.6.2 Algorithm, 62

4 Implementation 67
4.1 Overview e e e e 67
4.2 ExecutionEngine oo 68
4.3 GoodBlock Production 74
5 Evaluation 77
51 OVerview o it e e e e e e 77
52 Workloads 78
5.3 Dependency Aware Execution 78
5.4 Cloud infrastructure deployment 80

Xiv

6 Conclusion 83
6.1 ConcludingRemarks 83
6.2 FutureWork 84

Bibliography 85

Eloaywyn

1.1 Kivntpo

H texvoloyia blockchain éxet avadeyOei wg pia amd TIg M0 EMAVACTATIKEG KAIVOTOWIEG
NG YNPLAKIG ETOXTG, avadlapop@wvovTag TG Plopnxavieg kat emavanpoadiopifovrag
TOV TpOTO e Tov omoio dte§dyovtat, emainfevovtal kal KataypagovTtal ot cuvalla-
v€6. Ta ovotriuata blockchain vmootnpiovv onpepa fia otkovopia TPLoEKATOUULPLWY
dohapiwv kat pe TNV mpoonTikn Tov “Web 3.0” mpokVNTOVY VEEG TTEPIMTWOELS XPTION,
kaBwg 0 apBuog twv xpnotwv avéavetatr paydaia ([49]). To “Web 3.0” 1} o “amoxe-
VIpWUEVOG 10TOG” eivar 1) emdpevn e&ehktikn @aor tov StadkTdoL oV opapaTifeTal
£VaL TILO AVOLKTO, ATTOKEVTPWHEVO YNPLAKO OLKOOVOTNIA e TNV ALOTTOINoT TG TEXVO-
Moyiag blockchain yia tnv mpowOnon peyalvtepng iStwtikoTnTag, ac@aletag kat tdlo-
ktnoiog Twv dedopévwv. H avamtvén tov "Web 3.0” nepihayfdvet éva evpd gaopa
EQAPLOYWYV KAl EVVOLWY, OTIWwG TAATQOPESG ATOKeVTpwHEVNG Xpnpatodotnong (DeFi),
Non-Fungible Tokens (NFTs), anokevipwpéveg Avoelg amodrkevong, cvotripata dta-

Xelplong tavtoTnTaG Kat dAAa.

Onwg depevvovpe TepauTépw 0TO KEPAAALO 2, GTNV KApSLA TWV TTEPLOTOTEPWY GVYXPO-
vwv ovotnuatwy Blockchain Ppioketat éva vreteppiviotikd mpwtdkoAo state machine
replication (2.1.4), To oTolO EMUTPENEL OTOVG XPHOTEG VA CUHPWVODV KAl VA EQAPHO-
{ovv otV TOTIKT| TOVG KATAoTAOT), Hta akohovBia amd blocks ouvallaywv. Kabe ov-
vaAlayn meptéxet kwdka e§umvwv ovpPfolaiwy (smart contracts) (2.1.6) ypappévo oe
YAwooeg mpoypappatiopod onwg n Solidity (Ethereum) kau n Move (Aptos), kat kaOe

ovtotnTa mov ektelel To block Twv cuvallaywv péow pag pnyavng ektéleong, Omwg

2 KEQAAAIO 1. EIXAI'QI'H

n etcovikr unxavr) (EVM) tov Ethereum, mpémnet va ovpgwvnoet oty idta Tehikn ka-

Tdotaor.

Me v avgnon g dnpotikotnTag Twv epappoywv “Web 3.0” ta tekevtaia xpovia, pa
KEVTPIKT TiPpOKANoT vrtfpée n Pektivwon g anoddoong Twv LTTOKEILEVWY CLOTNUATWY

Blockchain. Ta teAevtaia xpovia éxel mpotabei mAnbwpa Aoewv kAtpdkwong, Onwg
TX:

o Sharding: n xatarunon tov Stktdov blockchain oe pkpoTepa avegaptnta vo-

ovvola mov ovopdfovrtat shards ([48].

« Sidechains: exwplotd Siktva blockchain mov ouvéovtat pe éva “main” blockchain
(mainnet) mov pmopovv va enegepyalovrat cuvallayég mapdAAnAa kat ot ov-

Véxela va emoTpé@ovy oTo mainnet ([30].

« Layer 2 Solutions: mpwtokoAa 1 mAaiota mov xTilovtal mavw oe LVITApYOVTA
blockchains yia v amo@dption pépovg tng enegepyaciag Twv cuvaAlaywy a-
76 TV KVpta akvoida. Afloonueiwta mapadeiypara mepthapBavovv ta kaviia

nmAnpwpwv ([10]), ta Optimistic kat ZK rollups ([51], [47]).

Mia ToANG VTOOXOHEVT AVEEAPTNTN TIPOCEYYLO eival 1 EQapoyT g apBpwTng ap-
xttekTovikng (2.2.2), n onoia Staxwpilet Tig Stadikaoieg evog blockchain peta&h egeidi-
KEVHEVWYV ETUTTEQ WY, ETTPEMOVTAG TOV OXEOLAOUO £VOG TIO PEATIOTOV, KAILAKOVHEVOU
Kat ac@alovg cvoTtipatog. e avtifeon pe pa povoAlBikn oxediaon 6mwg to Bitcoin
[36] omov pua eviaia diepyaocia eivat vevBvvn yla 6heg Tig Aettovpyieg, dnhadn tnv
ekTéleon, To consensus kat TN Stabeopotnta Sedopévwy, Ta modular blockchains a-
TOooLVOEOLV TO consensus amd TNV eKTENEOT), EMTPEMOVTAG TNV TaALTOXpovn diddoon

kat ektéheon Twv block.

1.2 Awtvnwon IIpoPAnuatog

Ta modular ovotrpata neplopifovtat mtapadootakd ano Tov TePLOPLoHO TG anddoong
TwV vrokeipevwy akyopibuwv consensus. QoTtO00, TPOOPATES Epevveg EXxovv Seifel OTL
TO ONLelo CLUPOPNOTG AVTWV TWV CVOTNUATWY HeTATOTI(ETAL TAEOV ATTO TO consensus
oto eminedo ektéeong. Avtod ovpPaiver emeldr], kabwg avfdvetal o dykog Twv GuVal-

Aaywv oe éva diktvo blockchain, n dtadikacio Tov consensus pnopei va opadomnon et

1.3. YIIAPXOYZXEX AYXEIX 3

Kat va anooPeoTel [6], pe amoTEAEOHA VO LELWVOVTAL OL XPOVIKEG ATAULTIOELG O GUYKPL-
on pe 1N Sadikacia ektéleons. Katd ovvémela, 1o yeyovog avtd mpokaleoe pa véa
eoTiaon otn Siepebvnomn TV MEPLOPLOUWY TOV OTPWHATOG EKTEAEOTG TWV CLOTNUATWY

blockchain.

1.3 Ymapyovoeg Avoelg

1.3.1 ZuvomTiKI] TAPOVGIACT] TWV VPLOTAUEVWV TIPOCEYYIOEWV

H mhelovotnta Twv VQLOTAEVWY UNXavoy eKTEAeon Eumvwy cupPolaiwy, pia amod
TIG TILO EVPEWG XPTOLUOTIOLOVEVEG €K TwV omoiwV eivau 1 Ethereum Virtual Machine
(EVM) [50], extehobv TG ovvallayég oetplakd kat dev alomolodv Tig duvatotnreg
Twv ovyxpovwv apxttektovikwv CPU. Tia to Adyo avto, £xet vmdp&et éva kbpa épevvag
oe punxavég mapdAAnAng ektéleong éEvmvaov ovpPolaiwv [44], [25]. O otdx0¢ avtdv
TWV pnxavwv ekTéAeong eival) ektéleon evog block and n dtatetaypéveg ovvarlayég
tr; < txy < ... < tx, TapdyovTag fia TEAIKN KATAOTAOT] L6OSVVAN HE TNV KATAoTAOoT

TIOV TIAPAYETAL AT TNV EKTEAEOT] TWV CLVAAAAYWV CELPLAKA.

Yvykpovoelg oty mapdAAnAn ektédeon block

Mia Baotkr| évvola otny TapdAAnAn ektéAeon Ty onoia TpEmeL va Tpoodlopicovpe 6To
mAaiolo evog blockchain eivat mote epgavitovtat cvykpovoelg peta&d cuvallaywv. Ot
ovykpovaoelg kaBopilovv oTe oL Guvallayég Oev umopolv va ekTeleaToVY apdAAnia

Xwpic va BvolaoTel) vIeTEpUIVIOTIKT oglpoTonotpoTtnTa (serializability).

1. Account Conflict: Otav dvo vipata ene§epyalovtatl Tavtdxpova To vItodAoLmo 1
dAa xapaktnplotika piag Stevbuvvong evog Aoyaptacpov (address account), Sev
elpaoTe olyovpol av To amoTENEOHA Eival CVVETEG e TO ATTOTENECA TG OELPLAL-

kG enefepyaoiag.

2. Zhykpovon amodnkevong g idag dtevOvvong: Otav kat ta dvo cupPoraa

TpomomotoV Ty anobrkevon pag maykooutag petapAntrg (global variable).

3. Cross-Contract Call Conflict: E&v 1o cuppolaio A dateBei mpwto, to ovpfo-

Aato B mpémet va mepipéver péxpt va ohoxAnpwbei n davopr tov A yia va kaléoet

4 KEQAAAIO 1. EIXAI'QI'H

10 ovpBoAato A. QoTtd00, 6Tav ot cLVaAAayEg eivat TapdAAnheg, dev vtdpyet Té-

Tota aAAnlovyia, yeyovog mov odnyei oe ovykpovor.

Ot mpooeyyioelg TG mapdAAnAng ektéleong é§umvwy cupPolainy Urtopoldy va katn-
yoptomomnBolv katd mpooéyylon oe §00 opuddes: TNy atotodo&n kat tnv anatotodoln,

EVW LTIAPXOLY Kat AVOELG TTOV TIPOKVTITOLY Kall amtd TiG SV0 opddeg.

1.3. YIIAPXOYXEX AYXEIX 5
o Ao1000&eg pooeyyioelg:

- Ot awot6dokeg mpooeyyioelg, omwg to Block-STM [25], éxouvv oxediaoTei
yOpw amo Tig apxég tng Software Transactional Memory (STM) [16]. Ou
BtPAoONKeg STM pe atoto808o éAeyxo TavTOXpOVNG EKTENEONG KATAYPA-
QOVV TIG TPOOTIEAATELG HVIUNG, emainBebovy kdBe cuvallayr petd tnv
eKTENEOT] TNG Kat SLAKOTITOUV Yl VA EKTEAECOVV €K VEOU TIG CUVAAAQYEG
otav o éAeyyog emkbpwong vrodeikvoel cvykpovon. To Block-STM xpn-

olgomoleital og apaywyn oto Aptos [21].

o Anaio10d0&eg mpooeyyioeig:

- Xe avtifeon pe Ti¢ atotddofeg mpooeyyioels, ot anatotddoeg mpooeyyioelg
neplopiovy avotnpd Ty TPOGPacT 0TOVG TOPOLS ATATWYTAG ATIO TIG OV-
vaAlayég va SnAdVoOuV TOvg TOPOVG GTOVG OTOLOVG CKOTIEVOVYV VAL £XOLV
npooPaon mptv ano tnv ekTéAeon. To yeyovog 0Tt ot cuvalAayég Tov Tpo-
onehavvouy StaopeTikég B€0elg PvAUNG UopodV TEvTa va ektehodvTal
TapdAAnAa emTpENeL 0T pnxavr) eKTENEOTG VAL SMILLOVPYEL EVAL VTETEPHLVL-
OTIKO XPOVOOSLAYPANHA KAl VO EKTENEL TAVTOXPOVA 1] CLYKPOVOUEVEG OL-
varhayég. Optopéva mapadeiygata avtig TG mpooéyylong mepthapPa-
vouv ta Fuel VM, Solana kau Sui ([22], [44], [32]).

» X0vOeteg Mpooeyyioelg:

- TIpoteivovtag éva ovvdvaod Tooo atotodowy 6o kat anatotodo&wv po-
oeyyioewv, To Polygon [39] napovaoiace mpdogata pia avvOetn Abon n o-
nola anmokaleital "npooéyylon eAdyotwv petadedopévwv”. H vhomoinon
tov Block-STM otnv alvoida Polygon Proof of Stake (PoS) mepthappavet
ta Stadikacia mov ovopaletan pre-execution 6mov oL TOpoL Tov StaPdlet kot
ypdpet kaBe cuvarlayn eEqyovtat and tov block builder, kat ot ovvéxela
TeKUnpLwvovtal oe pia dopn dedopévwv katevBuvopevov akvkAkoy ypd-
¢@ov (DAG) (PA. evotnTa 2.4.4 yla AeMTOEPELEG), 1] OTIOLOL TTPOCAPTATAL WG
petadedopéva oto block. Avtd emtpénet otovg validators va anogevyovv

TIG TIEPLTTEG EMAVEKTENEOELG Kat Ta amatotddofa kAeldpata.

6 KEQAAAIO 1. EIXAI'QI'H

1.3.2 Advvapies TWV VPLOTALEVWY TTPOCEYYIoEWV

A01080&¢e¢ tpooeyyioeis: ITaporo mov ot awotddoleg pnxavég mapdAAnAng ektéheong
SnA@vovv evtvmwotakd voduepa anddoong, otny mpagn 1 avalvon Tov opTov &p-
yaoiog ([40]) éxet deifet 6TL OxL LOVO 0 POPTOG epyaTiag eivatl EVTOVA AVTAYWVIOTIKOG
[e AmOTENEOHO VA ATIAULTEITAL EMAVEKTENEDT] [eyAAov aplBod cuvallaywy, aAlld kat
pHeydheg ahvoideg egaptrioewy petald cuvalhaywv katalapPavovy cuxva peydho mo-
000TO TOV XPOVOV eKTEAEOTG. AVTO pmopel va ogeiletal oTny mpooPaocn o€ SnHoPLAn
¢gumva oupPfolata ya eQappoyég Omwe ta anokevipwuéva xpnuatiotipla (DEX) 1
NFT minting. EmmAéov, n opdda pe emkepalng tov Ray Neiheiser katé tn Sidpketa
NG TTPAKTIKNG Hov aoknong oto ISTA Sie€ryaye pa avdlvon tov 1otoptkov cuvalia-
ywv Snpoghwv epappoywv blockchain, n omoia vtootnpilet TANPWG TOVG LOXVPLOUOVS
OXETIKA pe Ta vpLotapeva enineda contention oe blockchain workloads. O @optog ep-
yaoiog eivat TEToL0G, WOTE 0€ OPLOUEVEG TIEPITTWOELS, OL ALoLOS0EEG IPOTEYYioelg pumopel
va anodidovv xelpoTepa akoun Kal anod pia oelptakn ektéeon evog block. To oxnua 1.1
[33] aneikovilet To Qavopevo hot spot TwV aVICOUEPWDS KATAVEUNUEVWY TIPOOTIEAATEWY

dedopévwv (skewed data accesses).

ITeoiuoTikég mpoaoeyyioels: Eva ot anatotddoeg mpooeyyioelq anotpémovy Tig meptt-
TEG eMAVEKTEAETELG UTIO LYNAA AVTAYWVLIOTIKOUG OPTOVG epyaaciag, eloayetal Tpoode-
TN TTOAVTTAOKOTNTA YLt TOVG TIPOYPARUATIOTEG EEVTTVWV cupPolainy, kaBwg Tpémet va
dnAwvovv pnta moteg dtevBuvoelg TOpwv EMTPEMETAL VA TTPOOTIEAAGTOVV ATIO TO TPO-
ypappa. EmmAéov, og oplopéveg mepIMTWoelG, 1 akpiPrg mpoPAeyn Twv mOpwvY GTOVG
omoiovg Ba yivel mpooPaon pmopei va pnv eival Suvatn katd tn didpkela Tov XpOvov
dnuovpyiag g ovvallayng. Katd ovvénela, diapoppwvetat éva vrepPolikd amat-
016800 xpovodiaypappa, pe arotéeopa tn Stadoyikn ektédeon cuvaldaywy ov Sa-

@opeTikd Ba pmopovoav va éxovv ekteleoTel TapaAAnia

XvvOeteg mpooeyyioeis: TéAog, oty mepintwon TG TPooEyylong “eAdaxiotwv petade-
Sopévwv” tov Polygon, kaBwg ot ouvalayég ektehobvTal 0TO KPIOWWO HOVOTIATL TOV
consensus katd tn Stapketa TG Snuiovpyiag block, n cuvolikn anddoon mepropiletal

o€ ueydAo Paduo kat ot Stabéoipot mopot Tov cvoTpatog dev aftomotovvTat TANPWS.

1.3. YIIAPXOYZXEX AYXEIX

107
«u -
= 108
B 109
&
= 101
=]
= 10°
oo
S 10?
>
£ 10!
100
0 2M am 6M 8m 10M
Contracts
(a) Hot contracts
107
w 106
€ 105
5 10
o 107
210°
8
g 102
10!
100 —

(=]

40M 80M 120M 160M 200M
Storage Slots

(b) Hot storage slots

Ixfpa 1.1: [33] Ta pauvoueve hot spot yia o) Tig ovpPaoeis ko (B) Oéoeis amodikevors.
O1 Seixtes ovpfolaiwy ko Oéoewv (&oves X) eivau talivounuévor katd pOivovon oeipd
WG TIpog TI§ IpoaeAdoeis Tovg. Ot apiBuoi Twv kAjoewy ko Twv poomeldoewy (déoveg
Y) aneicovifovrau oe AoyapiBuis kAipaxa.

8 KEQAAAIO 1. EIXAI'QI'H

1.4 IIpotewvopevn Advon

O\eg ot tpéxovoeg mpooeyyioelg oTn PipAioypagia mTov Tpoo@épovy mapAAAnAn ekté-
Aeon éEumvwv ovpPolaiwy @aivetar 0Tt Sev Xetpifovtal To contention pe anoteAeopa-

TIKO TPOTIO KAl £TOL XAVOLY éva HEYANO TOGOOTO TNG anodoong mov Voo Tnpifovy.

210 MAiol0 TNG TMPAKTIKNG pov daoknong otnv opada SPiDerS (Secure, Private, and
Decentralized Systems) Tov ISTA pe emikepalng tov emikovpo kadnyntr Aevtépn Kokopn-
Koyia, ovvéBala oe éva €pyo vmo tnv emifAeyn Tov Ray Neilheiser pe otoxo v avti-

HETWTILOT) TWV TIEPLOPLOUWY TIOL TTAPOVOLALOVYV OL TPEXOVOEG AVTELG.

H npdtaon pag eivan pa vBpidikn Avon petafd mAinpwg anoovvdedepuévwy kat govo-
AMBikwv consensus kat execution, 1 onoia ovopdetat loose coupling. H Baown 1déa
Tov loose coupling eivat 6t ot kOpPot vrobetikd TPo-ekTEAODY CUVAAAAYEG ATtO TN
de€apevry ouvallaywv tovg kat vitoloyilovv to gvvoro avayvwans-eyypagrs (read-
write set) kaOe ouvallayng ptv amod TN oelpd Tovg va mpoteivouv €va block. Akpt-
B¢ e€attiag Tov TeEAevTaiov, n po-ektéNeon eivat voBetikn (speculative), agov Aap-
Bavel xwpa évavTt pag SuVNTIKA TapwXNUEVNG €kEOONG TNG KATACTAOTG TOV OLOTH-
Hatog. Otav évag kOpPog ekAéyetal wg proposer yla €vav yvpo, avTtAel pia opdda
TPO-eKTEAEOUEVWVY GUVAAAaywY, vtoloyilet éva ypaenua (DAG) amo tig e€aptroelg
AVAYVWONG-EYYPAPNG HeTaD Tovg Kat TomoBetel avtég TIg TAnpogopieg we petade-
Sopéva padi e to mpotevopevo block. Katd tnv avalvon mpaylatikwv opTtwv ep-
yaoiag, kataAn&ape oto ovpmépacpa OTL N TAAAOTNTA TNG KATAOTAONG TWV Tapa-
ywywv block oAb onédvia ennpedlet v opBOTNTA TOV TTAPAYOpHEVOL YpdoL eEap-
moewv. EmmAéov, to loose coupling a&lomotel To mAeovéktnua evog anoovvedepié-

VOV OULOTHHATOG, TO omoio o cvvdvaoud pe pa Order-Execute architecture emtpémnel

0TO consensus Kat execution va A£ITOVPYyoDV TALTOXPOVA 0 SLAPOPETIKOVG YOPOLG
ue pipelined tpomo. H Swadikaoia mpo-ektédeong yivetal emiong Tavtodxpova Ue TO
consensus kat execution aglomotwvrag tig SuvatdTNTEG TOALVTTVPN VNG EMeEepyaoiog Kd-
Oe kopPov. Ia to Adyo avto, n kabBvotépnon mov emPaAletat and TNV mpo-ekTéeon

Hotpdletal petadd Twv ovppetexdOvTwy mapaywywv block, omwg e&nyeital oto 3.5.

[Tpokelpuévov va PHEYLOTOTOOOVE TO KEPOOG AmOO00NG TG TPOTEYYLOTG HAG, XPNOL-

Homotoape S1dpopeg oXedIAOTIKEG PEATIOTOTIOLOELG, CLYKEKPLHEVAL:

o Ta petadedopéva mov Aappdvovrat LEow TNG TPo-eKTENEDT|G cuoKeLAlovTatL padi

1.4. IIPOTEINOMENH AY2H 9

pe To mpoTetvopevo block kat xpnopomotovvtat and dAlovg validator koppovg
Yl Vo OXNUATIOOVV £vay VTIETEPUIVIOTIKO XPOVOTIPOYPAUUATIOHO TwV GuVaAAa-

ywv Tov block 6ToVG LTOAOYLOTIKOVG TTOPOVG TOVG.

o a&lomolwvTtag Xpovo mov StagopeTikd Ba oaTaAOTAV O EMAVEKTENETELG K-
PWUEVWVY CUVAANAYWV O XPNOLUEG aoVyXpoveg Aettovpyieg (T.X. emaAnfevon

VIOYPAPNS).

« pinning Twv vnudtwv ektéAeong (thread pinning) oe mupnveg katd tn ddpkela
NG ekTéAeong OAwv Twv ovvaldaywv oe €va block, avabétovtag emiong Stadoyt-
KéG ovvallayég oe pa ahvoida e§aptnong otov idto Tuprva, EAAYLOTOTOLDOVTAG

Ta invalidation tng kpveng pvAung cache.

« aflomoinon twv petadedopévwy mpv and TNy ekTEAEON Yo TO KATdAANAo mpo-
QIATPApLOpa TV CUVAANAYDV Kal Th peiwor Tov aptOpov Twv peydAwv alvoi-
Swv oV CLUPOPOVY TN UNXAVT EKTENEDTG, TPOOTATEVOVTAG TTAPAAANAA TO GV-

otnpa and embéoelg apvnong mapoxng vrnpeoiwv (DoS).

1.4.1 Enikevipo g Simlwpatikng epyaciog

To emikevipo avtig NG SIMAWUATIKAG gpyaciag eivat o oXeSLAOUOG HIaG VTETEPULVL-
OTIKNG unxavig mapdaAnAng ektéleong evog block cuvaAlayav n omoia xpnopomnotei
T0 Ypagnpa e§aptioewv mov vIToAoyileTal and TNV TPo-eKTENEDT) OTIWG TIEPLYPAPETAL
otnv L.4. Xt pnxavn ektéleong, Aappavovpe emiong voyn to affinity tov vnuatwv
(BA. 2.5.1) pe TNV AVTIOTOIXIOT TWV VIUATWY OE TIUPTVEG KAL TOV XPOVOTIPOYPAHUATL-
opo twv alvoidwv transactions otov idio mupnva (BA. 3.6). A&loloyroape T punxavn
eKTENEONG KATW amd vtoBéoelg Téletag mpoPheyng kat Seifape OTLVTTEPTEPEL EVAVTL TOV
Block-STM [25] ¢wg kot 1,4x. Emumhéov, mapolo mov to épyo eivat akopa oe e§EAEn
Kat 1 afloAdynon tov anotehel peAhovtikn epyaocia, éxw SlapOpPWOEL Ta oeVApPLA €-
VOpXNOTPWOTG yla TNV ekTéAeon evog benchmark mAfpovg ovotripatog oto AWS kat
napovotalw tnyv TN por| epyaciag 0to 5.4. Télog, mapovotalw oAdkAnpo to oo TN -
L0, TO OTIOLO EVOWHATWVEL TN UNXavr eKTEAEONG EEUTTVWVY GLUPOAAiWY, TPOKELHEVOD VA

mapéxw pa 1o kabohikr) kat oAokAnpwévn katavonon tov Bépatog.

10

KEQAAAIO 1. EIXAI'QI'H

1.5 Aoun Aumlwpatikig Epyaciag

210 ke@dhalo 2 mapéxovpe To amapaitnto Bewpntikd voPabpo: Eekivaue a-
76 TG Paotkég apxég Tng apyitektovikng blockchain, gtdvovtag otadiakd otny

KATAVONOT) TOV TPOTIOL AetTovpyiag Twv ovyxpovwy cvotnuatwy blockchain.
210 Kepdhato 3 meptypa@ovpe T0 HOVTELO TOV CLUOTHUATOG Kot AVAADOVE TIG
0XeSLAOTIKEG [aG ETUAOYEG.

>to kepalato 4 mapovotdfovpe Steodikd Tig Aemtopépeteg vAOTOINONG TOV OVL-
OTNUATOG HaG.

Zto Kegalato 5 aflohoyolpe v gpyacia pag, Tnv omoia GUYKPIVOLE He TNV
TIPONYOVHEVT KATAOGTAOT], VW e§YODLE €V GUVTOpIA TO SO HAG TTPOCAPUOTUE-
vo workload.

>1o Kegdlato 6 mapéxovie fia 6OVOYN TnG ouveloPopds pag kabwg kat mbavég

peAlovtikég katevBuvoelg epyaociag.

YnopPabpo

2.1 Baowa ototxeia Blockchain

2.1.1 Opiopog blockchain

‘Eva blockchain pumopei va meptypagei wg éva apetdPAnto kabohiko (ledger) oxediaoué-
VO yla TNV Kataypa@r cuvarllaywy. AEgTovpyel 0T0 TAAUCLO €VOG ATTOKEVTPWUEVOD
StkTVoL opoTipwy Tov dev epmioTeOVTAL TANPWS 0 évag Tov dAlov. Kdbe opdtipog
Katéyel éva avtiypago tov ledger. Méow evog mpwtokoAAov consensus (2.1.3), ot o-
HOTLHOL ETUKVPWVOLV TIG OLVAAAAYEG, TiG opadomotodv o blocks kat dnpovpyovv pia
aAvoida hashes mov ovvdéet avtd ta blocks. Avtn n dadikacia opyavwvel Tig cuvaia-

Y£G e évav akolovBiako TpoTo, e§ao@alilovtag Tnv amapaitntn ovvéneta tov ledger.

2.1.2 Consensus

‘Eva mpwtokoAlo consensus eival £€vag UNXavIopOG HECW TOV OTIOIOV £Va KATAVEUNE-
Vo SikTVO KOUPWV 1) CUHUETEXOVTWY O €Va CUCTNUA CUHPWVEL OE [l EVIaiA, CLVETT
KATAOGTAOT) TOV CUOTAHATOG, AKOUN KAl OTAV Ol HEHOVWHEVOL KOUPOL UTTopeL va €xovv
StapopeTikég MAnpoopies. Zro mhaioto Twv ovotnuatwy blockchain, Ta mpwtdékoAa
consensus Stac@aliCouv 6Tt OAot ot elkikpiveig kOpBot Tov diktdov, SnAadh ot kouPot
Tov akoAovBovv TOTA TO TPWTOKOANO, KATAAYOUV G€ GUHPWYVIA CXETIKA UE TNV €-
YKLPOTNTA Kat TN oelpd Twv ovvaldaywv. H emloyn tov mpwtokdANov consensus

efaptdtan and mapdyovteg 0w 1 Von Tov SikTvoL (SNuoacto 1 WwTKS), To embu-

11

12 KED®AAAIO 2. YIIOBA®PO

HNTO eminedo amoKEVTIPWOTNG, TIG AMAITHOELG A0PAAELAG, TNV evepyetakn anodoon Kat
TOVG 0TOXOVG emekTaoIHOTNTAG. KdbBe mpwTtokoAlo cuvodebetat amd ta Sikd Tov avTi-

oTaOUOTIKA OQEAN.

2.1.3 Egunva ovpporaia

Ta ¢Eumva ovpPoOrata AVTIIPOOWTEVOVV EKTEAETLHLA TIPOYPAUUATA VTTOAOYLOTWYV TIOL at-
noBnkevovtal kat ektedovvtat og éva diktvo blockchain. Ta cvppolata avtd mepthap-
Bavovv éva obvolo odnywv kwdika ov kabopilovy ovykekpiuéves cuvOnkes. Otav
LKavoTolovvTaL avtég ot tpokabopiopéves ouvlrkeg, To ¢Eumvo cupPorato Spopolo-
Yei ouyKekpLpéveg evépyeleg i) anotedéopata. E§elicoovtag amnod Tig amhég peer to peer
HETaQOPEG TOL TTPWTOKOAAOL Tov Bitcoin, Ta meploodTEPA GVYXPOVA OIKOCVOTHHATA
Aertovpyovv péow cuvallayv mov meptexovy kadika éEumvwv ovpPolaiwy, o omoi-
0G ekteleital o KATAAANAEG unxavég ektéleong, onwg n Ethereum Virtual Machine

(EVM) ([12]).

2.2 MovTtélo ZvoTHHaTOoG

2.2.1 Order-Execute ApiTeKTOVIKI)

Ta meplocotepa ovyxpova permissioned ocvotripuara blockchain Aettovpyovv pe tnv
apxltektovikr order-execute, 1 omoia pumopel va meptypa@ei oTig akoAovbeg tpeig faot-

K€G AelTovpyieg:

1. ‘Evag koppog tov Siktvov mov evepyei wg mapaywyog block diatdooet Tig ouva-
Aayég kat poteiver éva block atovg vdlotmovg oe pia mpoomabela emitevéng

consensus

2. Agov egmtevyOei To consensus, kdOe kOuPog ektelel OAeG TIG cuVaAayéG TOv
block xpnotpomolwvTag pa VIETEPUIVIOTIKY unxavr| ektéheong mov eEaopalilet

OVVETEIG KATAOTACELG CLOTIHATOG.

3. KaBe kopfog evnuepwvet TNV TOTIKI TOV KATACTAOT), COUPWVA [E T ATOTENE-

OHATO TOV TTPONYOUUEVOL PIHATOG EKTENEOTG.

2.3. IAPAAAHAH EKTEAEXH EEYIINQN XYMBOAAIQON 13

2.2.2 Modular Design

AvtAdvTag éumvevon and Tig tpéxovoeg egehiels ([15], [21], [45], [14]) n obyxpovn
npooéyytlon mepthapPdavet To Staxwptopo TG eKTEAEONG Kal TOL consensus o€ SLakpLTa
apBpwta emineda. Av kat ot kOuPot umropovv va ekmAnpwvoLvy Kat Tovg dbo poloug,
UTOpoLV va eTAEEOLY va eTAEEOVY OTIOLAST|TTOTE HEHOVWUEVT) ETUAOYT, UE ATTOTENETHA

va peylotonoteitat n eveliia Tov CLOTHRATOG,.

Zto eninedo consensus, To consensus avVTILETWTICETAL WG “pavpo kovTi” (black-box).
KdBe koppog ovvaiveong mapayet pia mavopototumnn akohovBia umhok By, Bo, ..., B;
To OTIolaL 0T OLVEXELA TPOWDEl 0TO OTPWHA EKTENEOTG YLt VOl EKTEAEGTOVY VIETEPULVL-

OTIKA.

AvTOG 0 SLaXwpLoPOG TNG EKTEAEOTG KAl TOV CONSENsus eMTPETEL TNV EPAPUOYT TPW-
TOKOA WV VYNARG amodoong omwg eivat 1 dour) Tov Narwahl ([15], 6mov T0 oTpwpaA
consensus amoteleitat anod éva TpwTOkoAlo Stadoong dedopévwy kat Tov alyopiduo
consensus. Xto Narwahl ([15]), ot kopfot consensus AeLTOVPYOVV ATTOKAEIOTIKA [LE [Le-
tadedopéva, Omwg Ta block hashes, kat wg ex Tovtov dev eivat oe Béon va emkvpwoovy
OowoTA TIG ouvalAayég kata TN dtdpkela Tov consensus. Katd ovvénela, To consensus
napayet éva “dirty-ledger” ([45]), dnhadn €éva blockchain mov mepiéxet Suvntikd dxv-
peg ovvalayés. Ilap’ OAa avtd, edv mavopoldotuma block Aappdvovtar pe tnv ida
oelpd anod Toug KOpPovg ektéleong (kdtt mov Staoaliletal and To consensus), Evag
VTETEPUIVIOTIKOG alyoplBpog ektédeong eyyvatat 6Tt OBa akvpwBovv ot idieg axpipwg

ovvaAAayég.

2.3 TapaAAnAn extédeon e§umvov cvpPolaiwv

Onwg avagépape oto 1.2 1 oelplakn ektédeon twv cuvalhaywv éEumvwv ovpBolai-
wv éxetL yivel éva onpavtiko bottleneck kot epmodifet tnv evpeia vioBéTnon TWV OL-
otnudtwv blockchain. H apeon epappoyn texvikwv amo) PipAioypagia twv fdoe-
wv Sedopévwy dev eivat e@iktr Aoyw Twv Bepeliwddv Stagopwv petad twv Pdoewv
dedopévwv kat Twv é§umvav ovpBolaiwy. Ze éva mepipdAlov Pdoewy Sedopévwy, Ta
write-sets Twv cuvaAlaydVv gival yevikd mpokabopiopéva Kat yvwoTtd ek Twv TPoTé-

pwv. QoT1600, aut} 1 vToBeon Sev oxvelL doov agopd ta &umva ovpPorata, kabwg

14 KED®AAAIO 2. YIIOBA®PO

Ta v AOyw ovpPoAlata pmopoldV va eVOwUAT@Vouy oOVOETN Kat TOkiAn Aoyikr. XN
onpeptvy emoxm, £vag av§avopevog aptBuog epyaleiwy mapéxet T SuvatdTnTa TAPdA-
AnAng ektéleong ovvallaywv éEumvov cupfolaiwy, woTtodCO, OTWG Paivetat oto 1.3 ot

TEXVIKEG TOVG Yia TNV TapdAANAn ektéleon TotkiAAovv.

function transfer (address _receiver, uint256 _amount) /*... */
{
balances [msg.sender] —= _amount; //
balances[_receiver] += _amount,
//

Listing 2.1: Metpntéc Solidity, pia kovi] myyn contention

2.3.1 Anaoi6dofeg npooeyyioelg

Ot anao1080&eg TPooeYYIoELG ATOPEDYOLV EVIEAWG TIG OVYKPOVOELG ATALTWVTAG ATIO
TIG ovvalAayég va tpoadiopifovy GAovg Tovg TOpovg ov propobdv va StaPdoovy N
va ypayovuv katd tn Stapketa TG (WG TOVG, EMTPETOVTAG OTN UNXAVY EKTENEOTG VA
dpopoloyei cuvallayég TavTOXpPOVA XWPIG VAL ATIAUTEL UNXAVIOHOVG ETUKVPWOTG 1) €-

TIOVEKTENEOT|G.

Avtr | mpooéyylon mpwToepaviotTnke oe pia mpdtaon tov Ethereum [3] kot éktote
avantoxOnke oe pia Snpo@r Avon otpwpatog-2 mov ovopdletat Fuel VM [22]. Extog
and to FuelVM, 1o Solana [44] eivou éva blockchain mov eniong a§lomotei avtr) v
TPooEyyLon. QQoTOC0, AVTO ATALTEL ATO TOVG TIPOYPAPUATIOTEG EEuTTVWV ovpfolaiwy
va pooBétovy vrodeilelg, ot omoieg umopel va emBaphvovy TOV TPOYPAUUATIOTH Kat
va odnynoovv oe vitepPolikd anatotodoa kKhetdwuarta, kabwg oe oplopéveg TEPUTTW-
O€1G pmopel va unv eivat duvatdv va mpoodloploTei ek Twv TPOTEPWV ToLoL TTOpoL Ba

TPOOTIEAACTOVV KATA TN SLdpKELa TNG EKTENEONG TNG OLVAANAYTG.

2.3. IAPAAAHAH EKTEAEXH EEYIINQN XYMBOAAIQON 15

2.3.2 A01000806 éAeyX0G oVYXpOVIOpOV 0TIV ekTéNEDT EUTTVWY OV~

BoAaiwv

Opoiwg pe TNV epappoyn otig Paocetg dedopévwy, o aotddofog ENeyxog TaLTOXPOVIG
ektéleong €xet aflomomnOei oe ovotrpara blockchain pe otdx0o TNV avgnon g anod-
doong. Ot PipAiobnkeg Software Transactional Memory (STM) pue OCC ([43], [27])
KATAYPAPOLV TIG TTPOOTIEAATELG 0T UVIHN, EMKVPWVOLV TIG CUVAAAAYEG HETA TNV €-
KTEAEOT] Yla TOV EVTOTIOWO CVUYKPOVOEWY Kal TTpaypatomotovy abort kat re-execution

yta va eEao@alicovv tn ouvoyr| Twv dedopévwy.

2.3.3 Block-STM

Amé) Baon tovg, ot PitPAodrkeg STM dev eyyvwvtatl Ta idta anotehéopata 6Tav ot
ovvaAlayég ektehovvTat TOANEG PopEg, kdTL Tov Ba Tig kabioTtovoe akatdaAAnAeg ya
NV mepinTwon xpriong Twv cvotnuatwy blockchain, kabwg ot ovppetéxovreg validators
TipémeL va KataAnyovv otny idta TeAikn kataotaon. Qotdoo, éxel yivel mpdodog oe Pi-
PAoBnkeg Deterministic STM, ot omoieg eyyvwvtat 6T) ekTéAeon €xet pia mpokabopt-
OpéVT Oelpd OelploToinong, ov Looduvayiei fe Tn oelplakn ektéheon kdbe cuvallayng
oto pumhok. H Block-STM [25] (Block-level Software Transactional Memory) eivat pua
TéTola pnyavn TapdAAnAng ektéeong mov ektelel anoteAeopatikd éva block and ov-

vallayés, evad Staxelpiletat Ti e§apTrioelg Kat Tov ouvTovIopo petald Twv vipuatwy.

H eicodog otnv Block-STM eivar éva block ovvailaywv, arotehodpevo anod n cuval-
Aayés. Avtd to block opiet pa mpokaBopiopévn oepd oelpromoinong try < tre <

. < tz,. O 010X0G £ival va ekTeAeoTOVY aVTEG Ol ovVaAAayég péoa oto block, pe
amoTéAeopa {ia TEAKT KATAOTAOT toodUvan Pe auTr oV emTuyXdveTat pe Tr dia-
doxwkr| ektéleon Twv cuvaAlaywv pe TN oepd txy, try, ..., tr,. Kdbe cuvallayn oto
Block-STM pmopet va vmootel TOAATAEG EMAVAAYELG EKTENEOTG, OL OTIOIEG OVOA-
(ovtat evoapkwoelg (incarnations). Eva incarnation Oewpeitat 01t €xet Stakomei dtav
elvaw amapaitnTn pa enodpevn ektéleon pe avgnpévo aptBuo incarnation. Mia ékdoon

amoteleital and évav deiktn cvvaAlayng kat €vav aptduod incarnation.

To Block-STM ypnotpomotei pia dopry dedopévwv moAlamhwv ekdooewv (multi-version)
0TI UVAUN YL TNV VTTOOTHPEN TAVTOXPOVWY AVAYVWOEWY KAl EYYPAPWDV aTtd GUVAA-

Aayég. Avtr i doun dedopévwv amobnkedet Ty Tehevtaia TIn TOL YpaPTNKe yia kabe

16 KED®AAAIO 2. YIIOBA®PO

0éon pvrung padi pe t oxetikn ékdoon cvvailayng. Otav pwa cuvadlayn tx; Stafadet
armo pa B€0T UVHUNG, AVaKTA TNV TR IOV YPAPTNKE amo Tnv VYNAOTEPN ovvaAayn
IOV TIponyeitaL TG tx; otny mpokaboplopévn oelpd oeplomoinong, padi pe Ty avTti-
ototxn ékdoon. Ot cuvalayég umopodv va Stafdoovy TIHEG AKOUN KAl AV OL ETTOHEVES
ovvallayég éxovv kdvet updates, apkel avtd Ta updates va mpoépxovtat and ovvaiia-
Y£G pe vynAotepo Seiktn. Edv kapia mponyovuevn ovvallayn dev éxel ypdyel og pia
0¢om, TOTE pia avayvwon emAveTal pe fAOT) TNV KATAOTAOT) TIPLY antd TNV EKTEAEOT) TOV

TpéxovTog block.

2.3.4 IIpoektéleon kat aviyvevon e§apTioewv

[Iponyolpeveg epevvnTikég epyaoieg [7], [9] kou [18] éxovv expeTalevtel Ta povadt-
K& XapaKTnpLoTikd Tng mepintwong xprong blockchain yia va feAtiwoovy tnv anodo-
on tov STM. H otpatnywkr| tovg mepthapfavetl Tov mpo-vmoloytopd twv efaptnoewy,
dnuovpywvtag évav KatevBuvopevo akVKAIKO Ypa@o OV avamaploTd TIG CUVAAAA-
Y€G. AUTEG Ol GUVAAAAYEG HTOPOVV 0TI OLVEXELD VA EKTEAEGTODV XPTOLUOTIOLWOVTAG
¢va fork-join schedule. To anotéheopa eivat éva xpovodidypappa mov éxetl eniyvwon
Twv e§apTHOEWV Kat, WG €K TOVTOV, amoPelyel TIG SLaKOTEG/emaveKTENETELG AOYWw V-

YKPOUGEWY.

2€ TEPITTWOELG OTIOV Ol CVUUETEXOVTEG £XOVV KIVITPO VA KATAYPAPOLY Kal VA HOLPA-
{ovtat avtd To ypagnua egaptnoewy, vapxet n Suvatotnta va petwdel n emPapuvon
TOV TIPO-VTIOAOYLOHOD YLa KATIOLOVG Ao avTovs. Me dAAa AdyLa, EXOVTag OpLOEVES O-
VTOTNTEG LTIEVOVVEG YLt TOV VTTOAOYLOHO Kat TN SLavour| TOV YPa@NUaTog eEapTHoewy,
AANeg ovTOTNTEG Umopei va eivat og Béon va mapaleiyovv avtod To Pripa yeyovog mov

odnyei oe PeAtiwpévn emidoon.

Yxediaon

3.1 Emokomnnon

Me Baon tnyv evdehexn avalvon mpaypatikwv workloads, pe emkegalrg tov Ray Neiheiser,
KaL TNV KATAVONOT) TOL TPOTIOV pe Tov omoio 1 ovvBeon Twv block emnpealet tnv anddo-
o1, dtatvnwoape cageig oxeSIAOTIKODG 0TOXOVG Yl To ovoTnUa Hag. [TpdTov, emdiw-
Eape va amo@uyovpe v mapdAAnAn extéheon OCC (2.4.2), kaBwg Sev amodidet kald
oe contented workloads. Eniong, amoguyape pua anaioiddon npooéyyion (BA. 22) mov
emBaphVeL TOVG TIPOYPAUUATIOTEG Kol TOVG XprioTes é§umvwy ovuPolaiov. EmmAéov,
0 0TOXO0G pag frav va Snuiovpynoovpe évav akyoptduo yla Tovg proposers mov yepilel
ta blocks pe ouvalhayég pe tpodmo mov va atomotovvtat Pértiota ot topot CPU otovg

KOUPovG exTENEOTG.

H mpwtapyikr| 0TPATNYIKT| TTOL XPNOLHOTIOLEITAL GTO GCUOTHHA HAG Vi TV EMITEVEN TwWV
dnhwBévtwv otoxwv mepthapPdvet pua “xalapd ovvoedepévn” (“loosely coupled”) @a-
o Tpo-ekTéNeONG, 1 omoia Xpnotpedet yia T dnpovpyia Twv anapaitntwy petadedo-

HEVWV yia TNV emakoAovdn exTéleon e “emiyvwon Tov concurrency’.

3.2 Loose Coupling

10 mApwg anoovvdedepévo cvotnpa (decoupled system) mov meptypdgetal 6To po-
VTéAo TOv oVOTHHATOG, 6oL Ta block mapdyovtatl and Tovg kdUPovg consensus, ot
napaywyoi block dev Stabétovv to state mov eivan amapaitnTo yla TNV Mpo-ekTéNeon

ovvaAlaywv, kaBwg 1 ektéleon Twv blocks kat 1 evnuépwon tov state eival TARpwg

17

18 KEQAAAIO 3. XXEAIAYXH

(1) (2) (3) (4) (5) (6)
Transaction Pre-Execution Block Run Broadcast Execute Blocks
Submission Broadcast Consensus Block Order in Order

NS PN - - =
5‘@ \ €] @ i @

Execution Layer: " W ’\ @ \g ’] ’/ /[’ @ e |
3> B : 4 .

Consensus Layer: /‘ i i f‘ r’ >/‘ \/‘<V—>i f‘ i
’ ’ ’ 9 4 ’

Ixnua 3.1: Kvkdog (whc ovvaldaywv oty yadapr ovlevén

Saywplopévn amod to consensus. g ek TOVTOV, 1} KVpLa TPOKAN O™ 0T oXediaon Tov
OVOTHHATOG HOG Eival VA KATAOTHOOVE Suvath TNV Tpo-ekTéAeot, StatnpavTag ma-

pAAAnAa ta o@éAn Tov decoupling.

Q¢ mpawto Pripa, avti ot kOpBoL consensus OV dev £XOVV YVWOT TNG KATAOTACNG Va
OVYKEVTPWVOLY, Va opadomotovv kat va Stadidovv Tig ouvalayég Twv Xpnotavy, 1 v-
0vvn avth petagépetar oto eminedo ekTéAeong, OMOL oL KOpPoL ekTéNEONG TTapayovV
“KaAd Blocks” ouvalhaywv. Q¢ anotéAeopa, To otpwpa consensus Oa Aappdvet tnv
00806 Tov Ao To oTpWpa ekTéENEONG avTi va T AapPavel amo tov xpriotn. Ovoualov-

He auTn TNy poo€yylon otny anocvvdeon “Loose Coupling”.

O mApn¢ kbKAoG Lwnig pag ovvalayng mapovotaletat oto XxApa 3.1. H Sadika-
oia Eekvd pe Toug clients va aAAnAemidpolv pe kopBovg and to eminedo ekTéAeong.
21 ovvéxela, avToi ot KOpPoL TPo-eKTEAOVV Kal TPO-£YKPivouv TIG ouvalAayEg (T.x.
eAéyxouv yla TéAn cuvallaywy, emainfebovy TIG LTOYPAPEG TWV TEAATWV K.ATL), TIG
opadomnolodv o “Kald Blocks” kat mpoofétovv petadedopéva omwg ot eEaptnoeig tng

ovvaAayng kat ot xpovot ektédeong oto block (Pripa 1).

21N ovvéxela, oTo Tpito Pripa, ot kopPol ekTéAeong mepvovv oTn @aon Stddoong kat

retadidovv ta emipépovg blocks Tovg oe dAovg TovG KOPBOVG TAVTOXPOVAL.

21 ovvéyela, To consensus Aettovpyel mévw ota hashes Twv blocks xwpig va amartei-
Tal yvwon Tov state mapopota pe to Narwhal [15] (tétapto frpa). Ze avtd to mhaioto,
avTipetwmilovpe To consensus wg £va padpo kovTi Omov unopei va xpnotpomnotndei o-
TOL0GONTOTE AAYOPIOHOG avANoya e TIG CUYKEKPLHEVEG ATIAUTHOELG TOV CLOTHHUATOG.
Metd Tov Teppatiopd Tov consensus, ot KOpPoL consensus 0T ovvéxela petadidovv
v mpokvTTovoa oelpd block otovg kOUPovG ekTéNeONG (TEUTTO [EPOG), OL OTIOIOL OTN

ovvéxela ektehodV Ta blocks vreteppvioTikd ocbpu@wva pe T mpokaboplopévn oelpd

3.2. LOOSE COUPLING 19

(televtaio pépog).

Me v mapepBolr Tov oTPWHATOG EKTEAEONG UETAED TOV TTEAATN KAl TOV CTPWUATOG
consensus Umopovpe va aglonouoovpe TANpwG TG eyyvnoelg liveness kat safety mov
kaBiepwOnkav oto Narwhal [15] kaBwg To oTpwpa consensus mapapével apeTapAnTo.
Metagépovpe amhwg tn petadoon block oto otpwpa ektéAeons €Tol wote 0 KOUPOG
mov mapdyet to block va pmopei va mpo-extelei ovvallayés. Qg ek TovTOL, EPOGOV
VTTAPYEL TOVAAXLOTOV €vag eAKPLVHG KOHPOG exTéAeong Tov peTadidel cwotd To block
TOL OTNV TAElOYN@Pia Twv consensus nodes, To consensus Oa mMaApAyeL [e CUVETELA i
Swatetaypévn alvoida blocks. Avtiotpoga, omotadnimote block to omoio dev petadi-
detau oty mMAelovotnTa TwV consensus nodes dev UOPEL Vo TPOKVYEL WG ATOTENETHA

amo TOV UNYAVIOUO COnsensus.

20

YAomoinon

Evowpatwoape To ovotnud pag pe to Aptos [21] o cvvdvaouod pe to Block-STM [25].
[Ipawtov, elodyape TNV TPo-ekTéAeon atn @domn dnpovpyiag Twv block, mov mepthap-
Baver T dnpovpyia “Kakwv Blocks” kat tnv mpoolnkn peta-0edopévav. Agdtepov,
aAAd&ape Tov akyopBuo extédeong wote va AapPdavovpe vroyn Tig e§aptnoelg kot
TOV XpOVO €KTENEOT|G TWV GUVAANAYWYV Kat Va eMAANOEDOLUE TIG VTTOYPAPEG TWV OL-
vallaywv katd T StdpKeLa TOV XpOVOL AdpAVveLag TWV TTVUPTNVWV Kal OXL OTO KPIoLHo
novoratt ektéleong. EmAé€ape to Aptos kabwg eivat £va épyo VYNNG ToLOTNTAG TTOV

1161 akolovBei éva amoovvdedepévo HovTENO CUVAIVEOTG Kal EKTEAEOTG.

4.1 Emoxonnon

[TapovotdCovpie Twpa Ta Pacikd GTOLXEIA IOV VIIAPXOLY O€ évay KOUPo Tov ekTelel TO

Aptos:

Consensus: To blockchain Aptos xpnotponotei éva mpwTtokoANo consensus TOL OVOUA-

(et AptosBFT to omoio Paociletat oto Jolteon [24] kau oto HotStuft [6].

Execution: H unxavr ektéheong mov xpnotpomoteitat yia Tnv mapdAAnin ektéAeon ov-
valhaywv givat pia apeon vAomoinon tov Block-STM [25], onwg meprypagetat 6To

2.4.3.

Mempool: To Mempool eivat €vag kovoxpnotog buffer mov mepiéyet Tig cvvarlayég
mov éxovv VoPAnOel 0To GVoTNUA AAAA dev €xovV akodpn cupPwvNOel Eow Tov Pnxa-

VIopoU consensus Kal dev éxovv ekTeAeoTEL

21

22 KE®AAAIO 4. YAOIIOIHXH

Other Validators

Consensus «———» Execution

|
|
|
- |
|
|
|
|

Sxnua 4.1: AAyAeniSpaon emuépovs ovvIoTWOWY

Avtd ta ototyeio alAnAemdpovv petadd Tovg e Tovg akolovBoug TpodTOoLG:

(1) Mempool <+ Other Validators: Otav pia véa ovvallayn npootiBetal 6o mempool
and éva aitnua xpnotn, 1o mempool potpaletal avtr T ovvailayn pe AAAOVG KO-
Povg validator oto ocvotnua. ‘Otav évag validator Aappdvet pia ovvallayn and to

mempool evog dAlov validator, Tnv mpooBétel oToV TOMKO AMOONKELTIKO XWPO TOL.

(2) Consensus <> Mempool: Otav évag validator eivat proposer, n povada consensus
Tov avTAel éva block ouvalhaydv and To mempool Tov kat oxnuatifet Eéva TPoTELVO-

uevo block.

(3) Consensus <+ Other Validators: Edv ¢vag validator eivat proposer, n povada consensus

Tov Stadidet To mpotetvopevo block ouvalAaywv oe &AAovg validators.

(4) Zvvaiveon <+ Extéleon: Agov €va block mpootebei oo “dirty ledger” anod to mpw-
ToKkoAO consensus, peTaPiPaletal 0To component eKTENEONG Yia VO EKTENETTEL VTe-

TEPULVIOTIKA Kat va yivel commit.

Kavovtag xprion ¢ pdong kwdika Aptos wg vdBabpo ya 1o cvoTHd pag, n Kopla
YAwooa mpoypappatiopod mov xpnotponomoape nrav n Rust [5]. H Rust eivat pua
oDYXPOVI] YAWOOQ TIPOYPAUHATIOHOD 1) OTtola TTapéxel ao@dAela pviung xwpig va Gv-
otdlet Ty anddoon. Ot onuavtikdTepeg alhayég Eyvav yopw amod Tn pnxavi ektéle-
ong, TPOosapROCovVTag TNV WOTe va xelpiletat mpo-voloylopéveg vrodeielg eEaptroe-

wv (dependency hints).

A&loAoynon

5.1 Emokomnon

A&loloynoape to cvotnud oe Svo Prjpata: (1) Apxukd a§loloyroaye To execution engine
Eexwplotd, xwpig va AdBovpe vioyn t Snuovpyia block, obte Tov xpovo mov Samavi-
Onke katd TV mpo-ekTéNeon kal 0T ovvéyela (2) avantvdape To Siko pag testnet oto
AWS [2], mpooopowwvovtag Tnv mAnpn Aettovpyia Tov ovoTHpatos. 20T600, 1| TAR-
pNG avdAvon Tov ovoTtnpatog Eepedyet and to medio avTng TG epyaociog kat amotelel

HEPOG HeANOVTIKOV €pyou pe emikepalng Tov Ray Neiheiser.

IToAAég peréteg aglodoyovv ovotnuata blockchain xpnotpomotwvrag anAd workloads
ovvalAaywv peer-to-peer [25] 1} workloads pe xaunAd emineda contention kat moAv-
nAokotnTag. Evi éxouv mpotabei kalvtepa mhaiota a&loAdynong, 6nwg to Diablo [26],
egakolovBovv va punv avtimpoownevovv peakiotikd workloads o mpaypatikd blockchain.
[a va 1o avTiHeTwmicovre avTo, paypatomotoape pa dteodkr avalvon g Spa-
otnpLoTNTag Twv Xpnotwv oto Ethereum kat to Solana kat evromicape téooepa pea-
AMotikd oevapla ektéheong: NFT Minting, DEX Trading, Peer-to-Peer (P2P) Zvvalia-
Y€ kou Mixed Contracts. Avtd Ta ogvapla KAADTTOVY £va VPV PATUA XAPAKTPLOTL-
KWV eKTENEONG, amd vynAd enineda contention kat ovvOeteg alAnAemdpdoelg ovppo-
Aaiwv éwg amhég ouvallayég P2P. Auto emitpémet pia o oAokAnpwpévn aftohoynon
Twv ovotnuatwyv blockchain kat TG tkavoTNTAG TOVG Va AelTOVPYOVV O€ PEAAIOTIKA

workloads.

23

24 KEDAAAIO 5. AEIOAOTHXH

5.2 Extéleon pe emiyvwon e§aptnong

H a&loAdynon g pnxavrg ektéleong mpaypatonowOnke oe Mac Pro (2023) ue CPU
24 mupnvwv (16 muprveg anddoong kat 8 mupriveg anddoong) kat 64 GB pvijung RAM.

To oxnfua 5.1 deixvel To throughput ava devtepodento yia GAOVG TOVG POPTOVG €p-
yaoiag yia to BlockSTM kat to dikd pag povtého ektéleong xwpig signature validation
(TMARPNG Ypapun) kot pe signature validation (Staxekoppévn ypappn). Iapatnpovpe 6t
1 Stapopd anodoong peta&d twv Vo Tpooeyyicewy ALEAVETAL OTHAVTIKA OTAY CLUTE-
pthapPavetar n Aettovpyia Tov signature validation tavtdxpova e TV ektéeon evog
block. Avto ovpPaiver emeidr) To BlockSTM xpnotpomnotei 0Aovg Tovg muprveg kab oAn
TV SlapKela TNG eKTEAEONG HE EAAXIOTO adpavr] XPOVO Yla AoVYXPOVEG AELTOVPYIES.
AvtiBéTwg, To oVoTNA pag Spopoloyei Tig ouvailayég AapBavovrag voyn Tig e&ap-
TNOELG KAt UTTOPEL VaL Xprotpomotroet Tov Xpovo adpdvetag tng CPU mov kepdilet amod

auTo yla va emaAnfevoet TIg VITOYPAPES.

5.2. EKTEAEXH ME EIII'NQXH EEAPTH>HX

Approach

Throughput (Transactions/s)

—— Pythia BlockSTM —— PythiaOld Signature —— False

25

True

1500 ~

NFT

1000 A

3000

2000 4

DEXAVG

1000 A

1200 ~

1000 A

DEXBURSTY

800 4

3000 4

2000 4

PZPTX

1000 A

SOLANA

4 8 12 16 20 24
Number of Cores

Xxnua 5.1: Throughput per Second - Execution Engine

28

32

26

Eniloyog

2e auth TNV gpyaoia, TpoTeivape évav oxeSLAOUO TIOV ETMITPEMEL TNV VIETEPUIVIOTIKT

TapdAAnAn ektéleon égumvwv ovpfolaiwy, aglomowwvtag Tig ToAvThpnveg Suvatod-

NTEG TWV OVYXPOVWV LTTOAOYLOTIKWYV povadwv. EmmAéov, mapovaidoape évav Spo-

poloyntn (scheduler) yia ovvaAlayég smart contracts, o omoiog xpnotpomnotei mpo-

VTIONOYIOPEVEG TIANPOPOPiEG Yl Va emTaxDVel TNV ekTéAeoN €wg kat 1.4x og oOyKpLon

pe o BlockSTM [25] oe mpaypatikd workloads.

6.1 Xvunepacpatika XxoAa

Zovoyn

Context Decoupled Intelligent Susceptibility

Work Driven Consensus & Block Performance
Execution Execution Assembly Attacks

Block-STM [25] No Yes No High
Thomas Dickerson, et al. [17] Yes No No High
Polygon [39] Yes No No Low
FuelVM [22] Yes No No Low
FSC [34] Yes No No Low
Solana [44] Yes No No High
Eve [28] No No Limited High
Aria [35] No No No High
This work Yes Yes Yes Low

IMivaxag 6.1: Overview of the different approaches

O Tlivakag 6.1 ovykpivel SlaopeTikég TPooeyyioelg pe PAorn Téooepa KOpLa KPLTHpLaL:

27

28 KEDAAAIO 6. EIIIAOI'OX

(1) xprion peta-Oedopévwy yla TNV amo@uyr cLYKPOLOEWY KATA TV ekTéAean, (2) a-
TooVVSEDT TOL consensus amo To execution, (3) xprion dedopévwy yla TV KaTaokevn

evkola parallelizable block, kat (4) evaioOnoia o embéoeis.

Amd 600 yvwpilovpe, OAeg oL Tpéxovoeg pooeyyioels otn PiAloypagia Tov TPOoPE-
povv apaAAnAn ektéleon eEumvwy cupPolaiwy emPpadbvovtal onpavtikd anod contended
workloads kat Stadoxikég alvoideg cuvallaywv kat emiong LVTOKELVTAL Og eMOETELS O
nodoong. IIpo-extedovv emiong ovvallayég otny kpiown dtadpopr| Tov consensus,

HELDWVOVTAG OTHAVTIKA TNV duvartr| emTdyvvor).

v epyaoia pog, avtipeTwnilovpe avtég TG eAeiyelg pe tn PorBeta tng acvyxpovng
TIPO-EKTEAEONG, 1] OTIOLAL [LAG ETUTPETEL VL OXNpaTioovpe meta-data xwpig va Bacilopa-
oTe o€ emmMA£oV inputs amod Tov XprioTN. XTI GLVEXELA XPTOLlHoTToLoDpE avTd Ta dedo-

HEVA yla Va eTTaYUVOVE TV ekTéAeon Twv blocks.

6.2 Mellovtiko Epyo

Ot TepLocOTEPEG CLVELTPOPEG TIOL TIAPOLOLALOVTAL O€ AUTN TN SITAWUATIKY Epyacia
Sie€nxOnoav oe ovvepyaoia pe pa opada oto ISTA kat To €pyo Ppioketat akdpa oe
eEENEN. Amopévouy akopa Pactkd {NTHata OTwG oL TEAKEG AETITOHEPELEG EPAPHO-
N6 kat a&ohdynong tov ovotripatog. ‘Eva Oepehiodeg axoun mpoPAnua mov mpémet
VA AVTIHETWTILOTEL eivat OTL ot OLVAAAAYEG TTOL TIpo-ekTeAel kKABe kKOUPOG pumopolv va
ETKAAVTITOVTAL, [IE ATTOTEAEDHA VA XAVETAL XpOVOG ekTéNeaNG. Evag tpomog yla va Av-
Oei avto pmopei va eivat to sharding Twv cvvaAlaydv kdbe kopPov, £Tot wote kdbe
KOpPog va mpoektelel HOvo TIG ovvalAayég mov Ba mpoteivel oto pEAAov. EmmAéoy,
kabwg o scheduler tng unxavig extéleong eivau Pektiotomotnpévog vd TNV VEOBEON
Téletag mpoPAeyng, n anodoor| Tov pénel emiong va eheyxOel kdtw amod diaBabiopé-
va tocootd AavBaopévwy vtodeifewv. TéNog, Ta kivntpa evog validator va Aettovpyei
ovpQwva pe To TPwTOKoANo Kat va tpoteivel "KaAd Block” mpémet va oplotodv pe oa-

Qnvela.

Introduction

1.1 Motivation

Blockchain technology has emerged as a one of the most transformative innovations of
the digital age, reshaping industries and redefining the way transactions are conducted,
verified, and recorded. Blockchain systems are currently supporting a trillion-dollar
economy and with the prospect of “Web 3.0” new use cases are arising as the number of
users grows rapidly ([49]). “Web 3.0” or the “decentralized web” is the next evolutionary
phase of the internet that envisions a more open, decentralized, and user-centric digital
ecosystem by leveraging blockchain technology to empower individuals and promote
greater privacy, security and ownership of data. The development of ”Web 3.0” involves
a wide range of applications and concepts, including decentralized finance (DeFi) plat-
forms, non-fungible tokens (NFTs), decentralized storage solutions, identity manage-

ment systems, and more.

As we further explore in Chapter 2, at the heart of most modern Blockchain systems is
a deterministic state machine replication protocol (2.1.4), which allows users to agree
on and apply on their local state, a sequence of blocks of transactions. Each transaction
contains smart contract code (2.1.6) written in programming languages such as Solidity
(Ethereum) and Move (Aptos), and every entity that executes the block of transactions
through an execution engine such as the Ethereum Virtual Machine (EVM) must agree

on the same final state.

With the rise in popularity of “Web 3.0” applications in recent years, a central challenge

has been improving the throughput of the underlying Blockchain systems. There has

29

30 CHAPTER 1. INTRODUCTION

been a plethora of scalability solutions proposed in the last years such as:

o Sharding: partioning the blockchain network into smaller independent subsets

called shards ([48].

« Sidechains: separate blockchain networks connected to a “main” blockchain
(mainnet) that can process transactions in parallel and then settle back into the

mainnet ([30].

« Layer 2 Solutions: protocols or frameworks built on top of existing blockchains
to offload some of the transaction processing from the main chain. Notable ex-

amples include Payment Channels ([10]), Optimistic and ZK rollups ([51], [47]).

One very promising orthogonal approach is applying a modular architecture (2.2.2),
which splits up the processes of a blockchain among specialized layers, allowing the de-
sign of a more optimal, scalable and secure system. In contrast to a monolithic design
such as Bitcoin [36] where a single process is responsible for all functions, namely Exe-
cution, Consensus and Data availability, modular blockchains decouple consensus from

execution, enabling concurrent block dissemination and execution.

1.2 Problem Statement

These modular systems have traditionally been limited by the throughput constraint of
their underlying consensus algorithms. However, recent research has shown [15] that
the bottleneck of these systems is now shifting from consensus to the execution layer.
This occurs because, as the volume of transactions within a blockchain network rises,
the consensus procedure can be batched and amortized [6], resulting in reduced time
requirements in comparison to the execution process. Consequently, this has prompted
a renewed focus on exploring the limitations of the execution layer of blockchain sys-

tems.

1.3. EXISTING SOLUTIONS 31

1.3 Existing Solutions

1.3.1 Summary of existing approaches

The majority of existing smart contract execution engines, one of the most widely used
being the Ethereum Virtual Machine (EVM) [50], execute transactions sequentially and
do not utilize the capabilities of modern CPU architectures. For this reason, there has
been a surge of research into parallel execution engines for smart contracts [44], [25].
The aim of these execution engines is to execute a block of n ordered transactions tx; <
tx, < ... < txn producing a final state equivalent to the state produced by executing the

transactions in sequence.

Conflicts in Parallel Blockchain Execution

A key concept in parallel execution which we need to specify in the context of a blockchain
is when conflicts between transactions appear. Conflicts determine when transactions

cannot run in parallel without sacrificing deterministic serializability.

1. Account Conflict: When two threads process the balance or other attributes of
an address account at the same time, we are not sure if the outcome is consistent

with the result of sequential processing.

2. Storage Conflict of the Same Address: Where both contracts have modified the

storage of the same global variable.

3. Cross-Contract Call Conflict: If contract A is deployed first, contract B needs
to wait until the deployment of contract A is completed to call contract A. How-
ever, when the transactions are parallel, there is no such sequence, which leads to

conflict.

The approaches of smart contract parallel execution can be roughly categorized into
two groups: optimistic and pessimistic, while solutions stemming from both groups

also exist.

32

CHAPTER 1. INTRODUCTION

« Optimistic Approaches:

- Optimistic approaches, such as Block-STM [25], are designed around the
principles of optimistically controlled Software Transactional Memory (STM)
[16]. STM libraries with optimistic concurrency control record memory
accesses, validate every transaction after execution, and abort to re-execute
transactions when validation indicates a conflict. Block-STM currently runs

in production on Aptos [21].

o Pessimistic Approaches:

— Contrary to optimistic approaches, pessimistic approaches strictly limit re-
source access by requiring transactions to declare the resources they will ac-
cess prior to execution. The fact that transactions that access different mem-
ory locations can always be executed in parallel allows the execution engine
to create a deterministic schedule and execute non-conflicting transactions
concurrently. Some examples of this approach include Fuel VM, Solana and

Sui ([22], [44], [32)).

1.3. EXISTING SOLUTIONS 33
« Composite Approaches:

- Proposing a mix of both optimistic and pessimistic approaches, Polygon
[39] recently introduced a composite solution which is termed “the mini-
mum metadata approach”. The implementation of Block-STM on the Poly-
gon Proof of Stake (PoS) chain involves a process termed pre-execution where
the resources that each transaction reads and writes are extracted by the
block builder, then documented in a directed acyclic graph (DAG) data
structure (see Section 2.4.4 for details), which is appended as metadata to
the block. This allows downstream nodes and validators to avoid unneces-

sary re-executions and pessimistic locking.

1.3.2 Shortcomings of existing approaches

Optimistic approaches: Although optimistic parallel execution engines claim impres-
sive throughput numbers, in practice workload analysis ([40]) has shown that not only
is the workload highly contended resulting in a large number of transactions needing re-
execution, but long chains of dependencies between transactions often take up a large
percentage of the execution time. This may happen due to accessing popular smart
contracts for applications such as decentralized exchanges (DEX) or NFT minting. Fur-
thermore, an analysis of the transaction history of popular blockchain applications was
also conducted by the group led by Ray Neiheiser during my internship in ISTA which
tully supports the claims regarding the existing levels of contention in blockchain work-
loads. The workload is such, that in some cases, optimistic approaches may even per-
form worse than a single thread sequential execution. Figure 1.1 [33] visualizes the hot

spot phenomenon of skewed data accesses.

Pessimistic approaches: While pessimistic approaches prevent redundant re-executions
under highly contended workloads, additional complexity is introduced for smart con-
tract developers as they need to explicitly state which resource addresses are allowed
to be accessed by the program. Additionally, in some cases accurately predicting the
resources that will be accessed during transaction creation time may not be possible.
Consequently, an overly pessimistic schedule is formed, resulting in the sequential ex-

ecution of transactions that could have otherwise been executed in parallel.

34 CHAPTER 1. INTRODUCTION

107
2} ~
e 10°
=
o 10°
= 101
=R
= 10°
©
g 107
2 1
£ 10

10°

2M am 6M M 10M
Contracts

o

(a) Hot contracts

107
106

(=]
T

o
Y

Access Counts
R
o [=]
= 2

—

10° —

40M 80M 120M 160M 200M
Storage Slots

o

(b) Hot storage slots

Figure 1.1: [33] The hot spot phenomenons for (a) contracts and (b) storage slots. The
contract and slot indices (X-axises) are sorted in the descending order in terms of their
invocation and access counts. The invocation and access counts (Y-axises) are plotted on
a logarithmic scale.

Composite approaches: Finally, in the case of Polygon’s “minimum metadata approach’,
as transactions are executed on the critical path of consensus during block creation, the
potential throughput is heavily limited and the available resources of the system are

underutilized.

1.4 Proposed Solution

All current approaches in the literature that offer parallel smart-contract execution seem
to not handle contention in an efficient manner and thus lose a large percentage of their

claimed performance.

As part of my internship in the SPiDerS (Secure, Private, and Decentralized Systems)
group at ISTA led by Assistant Professor Lefteris Kokoris-Kogias, I contributed to a
project overseen by Ray Neilheiser aiming to address the limitations of current solu-

tions.

1.4. PROPOSED SOLUTION 35

Our proposal is a hybrid solution between fully decoupled and monolithic consensus
and execution, termed loose coupling. The main idea of loose coupling is that nodes
speculatively pre-execute transactions from their transaction pool and compute the read-
/write set of each transaction before their turn to propose a block. Exactly because of
the latter, the pre-execution is speculative, since it takes place against a potentially stale
version of the system state. When a node is elected as a proposer for a round, it pulls
a batch of pre-executed transactions, calculates a graph (DAG) from the read-write de-
pendencies between them and packs this information as metadata with the proposed
block. Upon analyzing real-world workload, we concluded that the staleness of the
state of block producers very rarely affects the correctness of the produced dependency
graph. Furthermore, this loose coupling leverages the advantage of a decoupled sys-

tem which in combination with an Order-Execute architecture allows consensus and

execution to function concurrently on different rounds in a pipelined fashion. The pre-
execution process is also done concurrently to consensus and execution utilizing the
multi-core processing capabilities of each node. For this reason, the latency imposed by

pre-execution is shared among participating block producers as is explained in 3.5.

In order to maximize the performance gain of our approach, we employed several design

optimizations, namely:

» metadata obtained through pre-execution is packed together with the proposed
block and used by other validator nodes to form a deterministic scheduling of the

transactions of the block across the resources of the system.

« utilizing time that would otherwise be wasted on re-executions of aborted trans-

actions on useful asynchronous functions (i.e., signature verification).

« pinning spawned threads to cores during the execution of all transactions in a
block, while also assigning consecutive tasks in a dependency chain to the same

core, minimizing cache invalidation.

« leveraging pre-execution metadata to pre-filter transactions appropriately and re-
duce the number of long chains congesting the execution engine while the system

is also protected from denial of service attacks (DoS).

36 CHAPTER 1. INTRODUCTION

1.4.1 Focus of the thesis

The center of this thesis is the design of a deterministic parallel execution engine of a
block of transactions which utilizes the dependency graph computed from pre-execution
as described in 1.4. In the execution engine, we also take thread affinity (see 2.5.1)
into consideration by pinning threads to cores and scheduling transaction chains on
the same core (see 3.6). We evaluated the execution engine under perfect prediction
assumptions and showed that it outperforms Block-STM [25] by up to 1.4x. Further-
more, even though the project is still in progress and its evaluation is future work, I
have configured the orchestration scripts for running a full system benchmark on AWS
and shown the full workflow in 5.4. Finally, I present the entire system, which encap-
sulates the smart contract execution engine, in order to provide a more universal and

comprehensive understanding.

1.5 Outline

« In Chapter 2 we provide the necessary theoretical background: We start from the
fundamentals of blockchain architecture, gradually making our way to under-

standing the way modern blockchain systems operate.
« In Chapter 3 we describe the system model and analyze our design choices.
o In Chapter 4 we thoroughly show implementation details of our system.

« In Chapter 5 we evaluate our work, comparing it to the previous state while briefly

explaining our custom workload.

o In Chapter 6 we provide a summary of our contributions as well as possible future

work directions.

Background

In this chapter we provide the necessary theoretical background for the rest of the thesis.

2.1 Blockchain Background

2.1.1 Blockchain definition

A blockchain can be described as an unchangeable ledger designed for recording trans-
actions. It operates within a decentralized network of peers who do not fully trust each
other. Each peer possesses a copy of the ledger. Through a consensus (2.1.3) proto-
col, peers validate transactions, group them into blocks, and establish a chain of hashes
connecting these blocks. This process organizes transactions in a sequential manner,

ensuring the necessary consistency of the ledger.

2.1.2 Cryptography basics
Public Key Cryptography

Public Key Cryptography is a cryptographic method that employs a private key, kept se-
cret, and a public key, shared with the network. This system ensures message authentic-
ity and integrity through advanced cryptographic techniques. For instance, Alice may
send a secure message to Bob over the internet using public key cryptography. First, she

generates a pair of public and private keys, shares the public key with Bob, and attaches

37

38 CHAPTER 2. BACKGROUND

a digital signature to her message using her private key. This signature verifies her as

the message creator, and Bob confirms this using her public key.

In Bitcoin [36], public key cryptography is utilized in wallet creation and transaction
signing, crucial elements of the system’s operation. Bitcoin employs the Elliptic Curve
Digital Signature Algorithm (ECDSA) to generate private and corresponding public
keys. Users use the public key to generate public addresses which they use to send and

receive funds and the private key to sign transactions, validating their authenticity.

2.1.3 Consensus

A consensus protocol is a mechanism through which a distributed network of nodes or
participants in a system agrees on a single, consistent state of the system, even when
individual nodes may have differing information. In the context of blockchain sys-
tems, consensus protocols ensure that all honest nodes in the network, that is nodes
that are following the protocol correctly, come to an agreement about the validity and
ordering of transactions. The choice of consensus protocol depends on factors like the
nature of the network (public or private), the desired level of decentralization, security
requirements, energy efficiency, and scalability goals. Each protocol comes with its own

trade-offs and considerations.

2.1.4 State Machine Replication

State Machine Replication (SMR) is a technique to achieve consensus by replicating the
execution of a state machine across nodes of a distributed system. A state machine con-
sists of a state of the system and a program that receives a set of inputs and applies them
in a sequential order using a transition function to generate an output and update the
local state. Therefore, a blockchain can be seen as an example of a state machine, where
the machine’s state corresponds to the current status of the blockchain and executing a
transaction results in a state transition. As a result, the techniques that have been used
for solving the SMR problem for over 40 years have direct applications in blockchain
technology. The two fundamental desired properties of an SMR protocol are consis-

tency and liveness:

2.1. BLOCKCHAIN BACKGROUND 39

1. Consistency guarantees that any two honest nodes store the same prefix of state
transitions in their logs, that is if an honest node executes transaction ¢z as its i,
transaction, then it is impossible for a different honest node to to execute tz/, as

its 74, transaction.

2. Liveness guarantees that every valid transaction submitted to at least one honest

node is eventually added to every node’s local history.

2.1.5 Permissioned vs Permissionless setting

In a public or permissionless blockchain environment, participation is unrestricted and
does not require a specific identity. These types of blockchains typically incorporate
a native digital currency and often use consensus based on economic incentives such
as Proof of Work (PoW) or Proof of Stake (PoS) ([29]). In contrast, permissioned
blockchains function within a confined network of recognized and identifiable partic-
ipants sharing a common objective but which do not fully trust each other. By capi-
talizing on the participants’ authenticated identities, permissioned blockchains can use
traditional Byzantine-fault tolerant (BFT) SMR protocols such as HotStuff [6] or Ten-

dermint [11].

2.1.6 Smart Contracts

Smart contracts represent executable computer programs that are stored and executed
on a blockchain network. These contracts comprise a set of code instructions that define
specific conditions. When these pre-defined conditions are satisfied, the smart contract
initiates specified actions or outcomes. Evolving from the simple peer to peer trans-
fers of the early Bitcoin protocol, most modern ecosystems operate through transac-
tions containing smart contract code, executed in suitable execution engines such as

the Ethereum Virtual Machine (EVM) ([12]).

40 CHAPTER 2. BACKGROUND

2.2 System Model

2.2.1 Order-Execute Architecture

Most modern permissioned blockchain systems operate in the order-execute architec-

ture, which can be described in the following three basic functions:

1. One node of the network acting as block producer orders the transactions and

proposes a block to the rest in an attempt to reach consensus

2. After consensus is reached each node executes all transactions in the block using

a deterministic execution engine ensuring consistent server states.

3. Each node updates its local state, according to the results of the previous execu-

tion step

2.2.2 Modular Design

Drawing inspiration from contemporary advancements ([15], [21], [45], [14]) the state
of the art approach involves separating execution and consensus into distinct modular
layers, with server processes divided into execution and consensus nodes. Although
nodes can fulfill both roles, they can choose to select any single option, maximizing

flexibility in the system.

In the consensus layer, consensus is treated as a black-box. Each consensus node gen-
erates an identical sequence of blocks By, Bo, ..., B; which it then passes on to the exe-

cution layer to be deterministically executed.

This separation of execution and consensus allows the application of high throughput
protocols such as Narwahl structure ([15], where the consensus layer includes a data dis-
semination protocol and the consensus algorithm. In Narwahl ([15]), consensus nodes
operate solely on metadata such as block hashes, and therefore are unable to properly
validate transactions during consensus. Consequently, consensus produces a “dirty-
ledger” ([45]), that is a blockchain containing potentially invalid transactions. Nonethe-
less, if identical blocks are received in the same order by executor nodes (guaranteed by
consensus), a deterministic execution algorithm guarantees that the same transactions

will be invalidated.

2.3. MULTI-VERSION DETERMINISTIC DATABASES 41

2.3 Multi-Version Deterministic Databases

Many ideas that ultimately led to the development of parallel smart contract transaction

execution engines stem from database literature.

Deterministic databases: Deterministic databases refer to databases where the oper-
ations and results are entirely predicable and consistent, ensuring that given the same
initial state and a sequence of operations, the final state of the database will be the same
regardless of the execution environment or the order of operations. In other words,
the behavior of a deterministic database is entirely determined by the order of its in-
puts. Deterministic databases hold appeal for various reasons. Their pre-defined trans-
action order guarantees serializable execution, avoiding deadlocks and aborts related to
concurrency control. The absence of aborts ensures strict serializability as transactions
consistently read coherent data. Moreover, deterministic execution lessens the reliance
on two-phase commit, enhancing the scalability of distributed transaction throughput.
Additionally, it removes complexity from replication and recovery processes, as trans-

actions can be replayed in a deterministic manner.

Multi-version databases: The simplest design of a deterministic database executes all
transactions serially in the predefined order. Although producing correct results, this
obviously does not utilize the parallelism available on modern multi-core systems.

A multi version database keeps track of multiple versions of data items over time. In a
multi-version database, whenever a data item is updated, a new version of that data item
is created, instead of overwriting the existing data. This is key in increasing the amount

of concurrency in transaction processing because reads do not block writes.

Like blockchain systems, databases also commonly face skewed and contended work-
load in web applications that encounter unpredictable demand spikes (i.e holiday sales,
discounts on specific items). One approach used by concurrency control protocols such
as BOHM [20] is to partition the resources across the cores of the system as seen in 2.1.
However, it should be noted that partitioning suffers heavily under uneven resource

aCcCess.

To manage load imbalance, databases can employ a shared memory architecture and

distribute transactions across the cores of the system.

42 CHAPTER 2. BACKGROUND

d ;:. b d
e C f
g |4 h | 4 i

Figure 2.1: Intra transaction parallelism as used in BOHM. Each concurrency control
thread is responsible for a partition of resources.

2.3.1 Optimistic Concurrency Control

Optimistic Concurrency Control (OCC) is a technique introduced to database systems

by H.T Kung and John T. Robinson [31].

The term “optimistic” in this context refers to the approach’s hopeful assumption that
conflicts between transactions will be rare. Rather than locking data resources during
the entire transaction, as in pessimistic concurrency control, OCC allows transactions
to perform operations without such restrictions. The system records a “backup” of the
transaction’s changes, often using version numbers, timestamps, or similar mechanisms,
in case the transaction needs to be rolled back due to conflicts. Although this approach is
predominately followed in non-deterministic databases, enforcing a preset serialization

makes the outcome deterministic. The typical phases of OCC are as follows:

1. Read Phase:

« Transactions perform resource reads from the database in parallel, without

acquiring locks.

o The system records a snapshot of the data’s state (often using version num-

bers or timestamps), which serves as a reference for detecting conflicts later.

2. Modify Phase:

o Transactions perform their necessary modifications to the data (writes) with-

out locking accessed resources.

2.3. MULTI-VERSION DETERMINISTIC DATABASES 43

« The system locally records changes as tentative modifications that are not

immediately applied to the database.

3. Validation Phase:

« Before committing, the system checks for conflicts by comparing the recorded

snapshot with the current state of the data.

o If the data has not been modified by other transactions, the transaction is

conflict-free and can commit.

o If conflicts are found, the transaction might need to be aborted or restarted.

The “optimistic” nature of OCC leads to potentially higher performance, better resource
utilization, and reduced contention for locks. However, that is only under the assump-
tion that conflicts are indeed rare, as multiple transaction roll-backs sufficiently limit

performance.

Aria/Eve: An approach from the database literature is Aria [35] which executes transac-
tions optimistically, and aborts transactions on conflict to be re-executed in a later batch.
In order to reduce abort rates, it has an additional reordering phase where it attempts to
deterministically reorder transactions to avoid read-after-write aborts. However, simi-
lar to Eve [28], Aria does not deal well with the highly contended workloads we expect
in this setting leading to high abort rates.

Caracal: Caracal [41] adopts a two-phase processing model, where transactions are
batched into epochs and processed through initialization and execution phases. In
this approach, the initialization phase manages concurrency control for all transactions

within an epoch, while the execution phase actually executes these transactions.

By default, Caracal [41] assigns transactions to processor cores in a round-robin man-
ner. Each core takes care of both initializing and executing the transactions assigned
to it. Alternatively, different assignment policies can be used for load balancing or im-

proving data locality.

In a scenario with four transactions, Caracal’s initialization phase uses the transactions’
write sets (sets of rows to be inserted, updated, or deleted) to create pending row ver-

sions. These versions act as placeholders with no actual data yet. Shared initialization

44 CHAPTER 2. BACKGROUND

Cores Transactions Rows —»

T1: Update RO, Insert R1

co
T4: Update RO, Insert RS 0 1 4 1 2 3 4
C1 | T2:Read RO, RangeUpdate R1..R100 o) z & & 3 &
=l =1 a =% =1 =3 2
B 5 5 5 5 5 g
(=] ['=] (=] (=] ['=] ['=]

‘ c2 ‘ T3: Update RO, Insert R3
Version Array

Figure 2.2: Transaction processing in Caracal.

is a key feature allowing transactions on different cores to create versions for the same

row, thus minimizing the impact of skewed data access patterns.

During the execution phase, writers can update these pending row versions without
needing synchronization. This approach is made safe by preventing transactions from
aborting after their initial write, thus ensuring that transactions only read committed
data. Readers are able to observe all row versions that will be generated in the epoch
(due to initialization), enabling them to correctly determine the appropriate previous
version to read based on the serial order. This ensures readers consistently access the

latest committed version of the data.

For instance, in the depicted example in 2.2, with transactions and row versions, a reader
synchronizes with a writer by waiting when a pending version is encountered, allowing
the reader to proceed once the version is written. Due to the deterministic nature of
execution, there are no deadlocks, and no aborts related to concurrency control, estab-

lishing a streamlined and efficient process.

2.4 Parallel Smart Contract Execution

As we mentioned in 1.2 the serial execution of smart contract transactions has become
a serious bottleneck and hinders the widespread adoption of blockchains. Applying
techniques directly from the database literature is not feasible due to the fundamental
differences between databases and smart contracts. In a database context, the write-

sets of transactions are generally predetermined and known in advance. However, this

2.4. PARALLEL SMART CONTRACT EXECUTION 45

assumption does not hold in the realm of smart contracts, as these contracts can embody
complex and diverse logic. At present, an increasing number of projects are providing
the ability to execute smart contract transactions in parallel, however as seen in 1.3 their

parallel execution techniques vary.

function transfer (address _receiver, uint256 _amount) /*... ¥/

{

balances [msg.sender] —= _amount; //
balances[_receiver] += _amount;

//

Listing 2.1: Solidity counters, a common source of contention

2.4.1 Pessimistic Approaches

Pessimistic Approaches avoid conflicts altogether by requiring transactions to specify all
the resources that they may read or write during their lifetime, enabling the blockchain
to schedule transactions concurrently without requiring mechanisms for validation or

re-execution.

This approach was first proposed in an Ethereum Proposal [3] and was since then de-
ployed in a popular layer-2 solution called FuelVM [22]. Aside from Fuel VM, Solana [44]
is a blockchain that also leverages this approach. However, this requires smart contract
developers to add hints, which can be a burden on the developer and may result in overly
pessimistic locking, as in some cases it might not be possible to determine ahead of time
which resources will be accessed during the transaction’s runtime. Furthermore, sim-
ilar to optimistic approaches, the performance is still inherently limited by the highly

contended workloads we outlined earlier.

FSC [34] attempts to reduce this level of pessimism by combining developer hints to
discover hot and cold resources in smart contracts with static analysis to obtain the
read and write sets of transactions and schedule them accordingly. This avoids overly
pessimistic locking but may result in re-executions when cold resources are accessed
concurrently. However, they only use this information for scheduling and are still sub-

ject to long sequential paths slowing down the system significantly. Furthermore, they

46 CHAPTER 2. BACKGROUND

obtain this information on the critical path of consensus which presents a performance

overhead.

2.4.2 Optimistic Concurrency Control in Smart Contract Execution

Similarly to the case of databases, optimistic concurrency control been leveraged in de-
signs aiming to increase performance. Software Transactional Memory (STM) libraries
with OCC ([43], [27]) record memory accesses, validate transactions after execution to

identify conflicts, and use abort and re-execution to ensure data consistency.

2.4.3 Block-STM

By default, STM libraries do not guarantee the same results when transactions are ex-
ecuted multiple times, something that would make them unsuitable for the use case
of Blockchain systems, as validators need to end up on the same final state. However,
there has been work on Deterministic STM libraries which guarantee that execution
has a predefined serialization order, equivalent to sequentially executing every trans-
action in the block. Block-STM [25] (Block-level Software Transactional Memory) is
one such parallel execution engine that efficiently executes a block of transactions while

managing dependencies and coordination among threads.

The input to Block-STM is a block of transactions, consisting of n transactions. This
block defines a predetermined serialization order tx; < tzo < ... < tx,. The objective
is to execute these transactions within the block, resulting in a final state equivalent to
that achieved by executing the transactions sequentially in the order txy, tz,, ..., tz,,.
Each transaction in Block-STM might undergo multiple execution iterations, referred
to as incarnations. An incarnation is considered aborted when a subsequent execution
with an incremented incarnation number is necessary. A version consists of a transac-

tion index and an incarnation number.

Block-STM employs an in-memory multi-version data structure to support concurrent
reads and writes by transactions. This data structure stores the latest value written for
each memory location along with the associated transaction version. When a trans-

action tz; reads from a memory location, it retrieves the value written by the highest

2.4. PARALLEL SMART CONTRACT EXECUTION 47

transaction preceding tx; in the preset serialization order, along with the correspond-
ing version. Transactions can read values even if subsequent transactions have made
updates, as long as those updates are from higher-indexed transactions. If no prior
transaction has written to a location, then a read is resolved from storage based on the

state before the current block execution.

For each incarnation, Block-STM maintains a read-set and a write-set. The read-set
contains memory locations read during the incarnation and their corresponding ver-
sions. The write-set includes the updates made by the incarnation in the form of (mem-
ory location, value) pairs. At the end of execution, the write-set is applied to shared
memory (the multi-version data structure). After execution, an incarnation undergoes
a process of validation which entails re-reading the read-set and comparing the ob-
served versions. A successful validation indicates that the updates made by the incarna-
tion are still valid, while a failed validation causes the incarnation to abort. Furthermore,
as an optimization, the write-set of an aborted incarnation is used as an estimation of

the write-set of the next one preventing following transactions from likely aborts.

2.4.4 Pre-execution and Dependency Detection

Previous research [7], [9] and [18] has taken advantage of the unique characteristics
of the blockchain use-case to enhance the performance of STM. Their strategy involves
pre-computing dependencies, creating a directed acyclic graph that represents the trans-
actions. These transactions can then be executed using a fork-join schedule. The out-
come is a schedule that is conscious of dependencies and therefore avoids aborts/re-

executions due to conflicts.

In cases where entities are incentivized to record and share this dependency graph, there
is a potential to reduce the overhead of pre-computation for some entities. In other
words, by having some entities responsible for computing and distributing the depen-

dency graph, other entities may be able to skip this step leading to improved efficiency.

The "miner-replay paradigm,” explored in [18], involves miners parallelizing block ex-
ecution using a white-box STM library application. This application produces the seri-
alization order, represented as a "fork-join” schedule and transmits it alongside the new

block proposal from miners to validators through the consensus process. Validators

48 CHAPTER 2. BACKGROUND

then utilize the fork-join schedule to deterministically replay the block. ParBlockchain
[7] introduced the "order-execute paradigm” (OXII) for deterministic parallelism. The
ordering phase resembles the schedule preparation from [18], while the transaction de-
pendency graph is computed without actual block execution. OXII relies on either
the read-write set being known in advance through static analysis or speculative pre-

execution to generate the dependency graph among transactions.

OptSmart [9] introduces two improvements. Firstly, the dependency graph is com-
pressed to include only transactions with dependencies, allowing parallel execution of
transactions not included in the graph. Secondly, multi-versioned memory is used dur-
ing execution to avoid write-write conflicts. Hyperledger Fabric [8] and related works
[42] follow the "execute-order-validate paradigm.” This design departs radically from
the order-execute paradigm in that Fabric executes transactions before reaching final
agreement on their order. This consequently enables the execution phase to abort trans-
actions that would lead to unserializable outcomes before they are ordered. Forerunner
[13] follows a Dissemination-Consensus-Execution (DiCE) paradigm where transac-
tions are speculatively pre-executed outside the critical path to provide hints for the

final execution process.

2.5 Hardware background

2.5.1 Thread Affinity

Thread affinity refers to the concept of associating a particular thread in a multi-threaded
program with a specific central processing unit (CPU) or processor core. This affinity

ensures that the thread primarily runs on the designated CPU core.

Thread affinity can be advantageous in several scenarios:

1. Performance Optimization: By assigning threads to specific cores, the system
can optimize the use of CPU caches and reduce cache coherence traffic, resulting
in better performance. When a thread consistently runs on the same core, it can

take advantage of the cache locality.

2. Predictable Performance: Thread affinity can help achieve more predictable and

2.5. HARDWARE BACKGROUND 49

deterministic performance. In some real-time systems or applications with strict
timing requirements, controlling which threads run on which cores can be criti-

cal.

3. Resource Isolation: In a multi-threaded or multi-process environment, the iso-
lation of certain threads or tasks from others to prevent interference may be re-
quired. Assigning thread affinity can help ensure that critical tasks are not inter-

rupted by less critical ones from the operating system scheduler.

4. Avoiding Context Switching Overheads: When threads switch between differ-
ent cores, it incurs some overhead due to context switching. Thread affinity can

reduce these context switching costs by keeping threads on the same core.

It's important to note that while thread affinity can provide performance benefits in
some cases, it can also have negative effects. Overusing thread affinity or binding threads
too tightly to specific cores can lead to under-utilization of available CPU resources, es-
pecially in systems with dynamic workloads. The specific mechanisms for setting thread
affinity can vary depending on the operating system and programming language being
used. Many modern operating systems provide APIs or tools for managing thread affin-

ity, allowing developers to control which cores threads are assigned to.

50

Design

3.1 System Model

Before diving into our design, we describe the system model on top of which we build.

Processes: We assume the existence of a set of n server processes p1, pa, ..., p,, and a set
of [client processes ¢y, ca, ..., ¢, communicating over a peer-to-peer network under the
Public Key Infrastructure Assumption (PKI) where clients and servers are identified
through their public keys (see 2.1.2) and entities prove their identity by signing their
respective transactions and messages with their private keys. Furthermore, clients and
servers communicate over perfect point-to-point channels. As a result, if a process p;

sends a message m;; to process p;, process p; will eventually receive m;;.

Network and failures: To deal with network failures, we assume that the network fol-
lows a partial synchrony model based on [19]. During periods of asynchrony, messages
may be delayed for an arbitrary amount of time. However, after some unknown GST
(Global Stabilization Time), message transmission is bound by a known A and progress
can be made in a deterministic manner. Furthermore, we assume a Byzantine fault
model with both Byzantine servers and clients. Byzantine servers correspond to the
Byzantine fault model inherited from the chosen consensus framework, with the num-
ber of faulty nodes limited to f < n/3 for most permissioned consensus algorithms for
non-faulty replicas to agree on the same transactions in the same order. In this context,
a process is considered correct when it adheres to the predefined protocol, while any
deviation from this protocol categorizes it as faulty. Meanwhile, Byzantine clients are

assumed to possess limited financial and computational resources and are required to

51

52 CHAPTER 3. DESIGN

pay transaction fees for their transactions to be included in the blockchain.

Function decoupling: Following the structure of modern approaches [15], [21] the sys-
tem’s architecture separates execution and consensus into distinct layers. Server nodes
are divided into two types: execution nodes and consensus nodes. Although any node
can serve both roles, this setup provides flexibility. This decoupling permits the applica-
tion of the structure introduced in Narwahl [15], where the consensus layer is divided
into (a) a data dissemination protocol, and (b) the actual consensus algorithm. This
structure considerably accelerates processing compared to traditional methods, ensur-

ing robust consensus across the distributed network.

Consensus: Regarding the consensus layer, we treat consensus as a black box, where
each consensus node produces an identical chain of blocks (e.g., Bi, Do, ..., BB;), exe-
cuted sequentially by all executor nodes. This approach ensures that all nodes reach the
same state as long as execution remains strictly deterministic. In Narwahl [15], con-
sensus nodes lack awareness of the system state and operate solely on metadata (e.g.,
block hashes). Consequently, client transactions cannot be fully validated during con-
sensus. Thus, consensus generates a dirty ledger 2.2.1 containing potentially invalid
transactions. However, since executors receive the same blocks in the same order (via
consensus) and execute them deterministically (invalidating identical transactions), the

final state remains consistent across all executors.

Execution: To ensure deterministic outcomes in parallel execution and maintain safety,
we adopt a structure similar to Block-STM[25], where transactions are processed in two
distinct phases. In the execution phase, transactions are executed, and in the validation
phase, the execution results are checked for conflicts due to data dependencies, and

transactions are rolled back if necessary and rescheduled for execution.

3.2 Overview

Based on our thorough workload analysis, led by Ray Neiheiser, and our understanding
of how block composition influences performance, we formulated clear design goals
for our system. First, we aimed to avoid OCC (2.4.2) parallel execution as it does not
perform well in contented workloads. Also, we refrained from a pessimistic approach

(see 2.4.1) that burdens smart contract developers or users. In addition, our objective

3.3. GOOD BLOCKS 53

was to create an algorithm for proposers that fills blocks with transactions in a manner

that optimally utilizes CPU resources on executor nodes.

The primary strategy employed in our system to achieve the stated goals involves a
“loosely coupled” pre-execution phase, which serves to create essential metadata for

subsequent “concurrency-aware” execution.

In this section, we outline our approach in three parts. Initially, we detail how our pre-
sented system constructs what we term “Good Blocks”, which are designed to maximize
concurrent execution efficiency. Subsequently, we explain how our system executes
pre-execution tasks outside the critical consensus path, thereby facilitating the sepa-
ration strategy outlined in the system model. Finally, we analyze our design choices
for scheduling transactions across cores, attempting to reduce intra-CPU traffic due to

cache coherence protocols.

3.3 Good Blocks

In the context of concurrent transaction execution, the composition of a block can sig-
nificantly impact the system’s throughput. This is exemplified by the fact that in an op-
timistic parallel execution engine, a workload that is entirely sequential may take even

longer to process than if it was executed on a single core [25].

We introduce the term “Good Block” to refer to a block that can be efficiently processed

in parallel.

In blockchain systems that support smart contract execution, like Ethereum [12], there
is typically a global parameter that sets an upper bound on the computational com-
plexity of a block. This parameter represents the maximum computational capacity of
the system, as exceeding it can lead to adverse effects such as Denial of Service (DoS)
attacks. Block producers ensure that this limit is not surpassed when adding transac-
tions to a block, maintaining the efficiency and security of the blockchain network. For
instance, Ethereum uses the concept of Gas to estimate transaction complexity, and a

maximum gas parameter acts as an upper bound on a block’s complexity.

However, parallel execution introduces additional complexity as a single complexity

parameter is insufficient to estimate the time needed to execute a block. Analyses of

54 CHAPTER 3. DESIGN

Ethereum’s workload reveal that while many transactions can run concurrently without
conflicts, the majority of blocks are bottlenecked on a single chain of dependent trans-
actions that need to be executed serially and thus dominate the overall execution time
[23]. Consequently, execution time can vary significantly depending on the length of

these chains.

To estimate computational complexity accurately, we employ two system parameters
to describe the maximum block size. First, a maximum gas limit denoted as gas 4>
which is the maximum amount of gas that all the transactions in the block are allowed
to consume, similar to Ethereum’s maximum gas limit. Second, a concurrency param-
eter ¢,q, represents the system’s ability to process transactions in parallel, such as the
number of available processor cores. In this context, the total system capacity can be ex-

pressed as Cyqz * §ASmas> and we aim to construct blocks guaranteed to execute within

gasmax .

To achieve this, we identify three requirements that a block b; must meet to ensure its

execution gas b"’ never exceeds gas,,,,. and we label such a block a “Good Block”.

To construct a "Good Block,” we require knowledge of the runtime complexity of all
transactions and information regarding their inter-dependencies. We will elaborate on

how we acquire and process this information in the following section.

3.3.1 Good Block Construction

The system obtains contextual transaction information by having the block producer
execute each transaction before including it in the current block. We call this “Pre-
Execution” of transactions and we outline a straightforward pre-execution algorithm

that produces “Good Blocks” and obtains the necessary metadata in Algorithm 1.

3.3. GOOD BLOCKS

55

Algorithm 1 Block Creation

L CaPiotal < L
D capeurr <=0
: Chyes < 0

: block + ()

a S, T
JaSmaz g éYL(L‘L
Captotal < 9ASmaz * Cmax

forall tx € txs do
: writeset, readset, gas < RUN(tx)
10: txchain < 0
11: for all read € readset do
12: if read € ch A chyeqq > txzchain then
13: txchain < chyead
14: end if
15: end for
16: if txchain + gas > gasmaz V CaPcurr + gas > capiorq; then
17: CONTINUE
18: end if
19: CaPcurr < CaAPcurr + gas
20: block <+ block U (tz, readset, writeset, gas)
21: for all write € writeset do
22: if write & ch V chyrite < txzchain then
23: chwrite < txchain
24: end if
25: end for
26: end for

27: end procedure

1
2
3
4
5: procedure CREATEGOODBLOCK(g@Smaz> Cmaz> tTS)
6
7
8
9

> Set to track transaction chains
> Current block

> Calculate the maximum capacity
> Iterate over transactions
> Longest chain length

> Iterate over readset
> Find longest chain

> Skip transaction inclusion
> Track current capacity
> Add tx to Block

> Iterate over writeset

> Note new chain length

The above algorithm can be easily broken down into the following steps:

1. Begin by limiting the gas,,,, to half of its original value to shorten the longest

acceptable dependency chain.

2. Calculate the total block capacity by multiplying the adjusted maximum gas limit

JSmae With a concurrency parameter Cp,q;.

3. For each transaction within the block, do the following:

a. Execute the transaction to extract information such as the read-set, write-set,

and

gas usage.

b. Analyze the read-set to determine the longest dependency chain, utilizing a

data structure ch, ..

c. Perform two checks for each transaction:

i. Verity whether the longest dependency chain exceeds a predetermined

limit for sequential execution.

ii. Check if adding the computational load of the transaction would surpass

the total block capacity.

56 CHAPTER 3. DESIGN

1) (2) (3) (4) (5) (6)

Transaction Pre-Execution Block Run Broadcast Execute Blocks
Submission Broadcast Consensus Block Order in Order
N S LY — - _
N v ¥ ¥ 3
Execution Layer: " ¥ ’\ | \@ y { ’/ /[’ g @
@ 3 g T 5 ®
Consensus Layer: /‘ P ‘ f‘ \ r’%/‘ | ‘f‘—" f‘ 9
’) ’ g » E

Figure 3.1: Transaction life cycle in Loose Coupling

Although speculative pre-execution, if on the critical path of consensus, introduces ad-
ditional computational overhead, next we demonstrate how we can distribute and amor-

tize this cost leading to a full system speedup.

3.4 Loose Coupling

In the fully decoupled system described in the system model, where blocks are pro-
duced by consensus nodes, the block producers lack the state that is necessary to pre-
execute transactions as executing blocks and updating the state is completely seperated
from consensus. Therefore, the main challenge in designing our system is to enable

pre-execution while maintaining the benefits of decoupling.

As afirst step, instead of having consensus nodes that lack state knowledge gather, batch,
and disseminate client transactions, this responsibility is moved to the execution layer,
where execution nodes produce “Good Blocks” of transactions. As a result, the consen-
sus layer will receive their input from the execution layer instead of receiving it from the

client. We call this approach to decoupling “Loose Coupling”.

The full life cycle of a transaction is shown in Figure 3.1. The process starts with clients
interacting with nodes on the execution layer. Subsequently, those nodes pre-execute
and pre-validate transactions (i.e., check for transaction fees, verify client signatures,
etc.), batch them into “Good Blocks” and include metadata such as the transaction de-

pendencies and runtimes in the block (step 1).

Following that, in the third step, the executor nodes enter the dissemination phase and

broadcast their individual blocks to all nodes concurrently.

Consensus then operates on the block hashes without requiring state knowledge sim-

3.5. OPTIMISTIC BLOCK PRODUCTION 57

Traditional | <+ »<- »<€< <> <™ €y ... <"r<-Tr >
........ €-F g iy €Sy
Loose Coupling G <Py
................ CEpgEtly o By

Blocks: [Bi [|Bi+1 []Bn Types: ----Consensus = = = Pre-Execution Execution

Figure 3.2: Relationship between Pre-executions P;, Executions E; and Consensus in-
stances C; with and without decoupling.

ilarly to Narwhal [15] (step four). In this context, we treat consensus as a black box
where any consensus algorithm can be used depending on the specific requirements of
the system. After consensus terminates, the consensus nodes then broadcast the re-
sulting block order to the executor nodes (fifth part) which then execute the blocks

deterministically in order (last part).

By inserting the execution layer between the client and the consensus layer we can fully
leverage the liveness and safety guarantees that were established in Narwhal [15] as the
consensus layer remains unchanged. We solely move the block broadcast to the execu-
tion layer such that the node that produces the block can pre-execute transactions. As
such, as long as there is at least one honest executor node that correctly broadcasts its
block to a majority of consensus nodes, consensus will consistently produce an ordered
chain of blocks. Inversely, any block that is not broadcast to a majority of consensus

nodes will not be output by the consensus mechanism.

Even when a block output by the consensus mechanism has been correctly broadcast
to a majority of consensus nodes, an execution node might not have correctly received
the block yet. However, execution nodes can query missed blocks from any consensus

node in a trustless fashion once they received a signed quorum on the block hash.

3.5 Optimistic Block Production

By pre-executing transactions outside of the critical path of consensus we can “hide”
the performance impact of pre-execution across the nodes of the network. We show

the interplay of consensus C;, execution £, and pre-execution P; for different blocks

58 CHAPTER 3. DESIGN

100 1" 10 Nodes
907 100 Nodes
X 80 1 —— 1000 Nodes
g. 70 - —— 10000 Nodes
)

g 60
2 so
0

40
£
o 30
7
> 20
n

10
0
0 10 20 30 40 50 60 70 80 90 100

Speedup from Pre-Execution (%)

Figure 3.3: Expected Translation from Pre-Execution Speedup to System Speedup

Bi, Bit1, ..., By, in Figure 3.2, comparing the traditional with the loosely coupled de-
ployment. While in a traditional deployment pre-execution has to run on the critical
path of consensus which slows down the overall system, in the loosely coupled approach
pre-execution runs concurrent to consensus and execution and the cost is distributed
over all executors. As such, with an increasing set of executors, even a minimal speedup
obtained from the speculative execution quickly compensates the computational over-

head of the pre-execution.

For example, consider a system with NV executors and the last produced block b; at round
¢ of consensus. In this context, each executor had to pre-execute]Lv blocks and execute
all 2 blocks with the given speedup u by leveraging the metadata we've obtained from the
speculative pre-execution. This results in a total cost of % + i at each executor. Based
on this equation, as the number of executors in the system increases, the more the pre-
execution cost is diluted among the nodes and the total system speedup converges to

the ideal pre-execution speedup.

We simulated this for different values of N and u and the results are shown in Fig-
ure 3.3. In a system with a small number of executors (e.g., 4-10) the total speedup of
the overall system is only a fraction (around half) of the execution speedup that our
mechanism offers. This happens because the potential block proposer pool is limited
and the same nodes pre-execute multiple blocks. However, at or above 100 nodes the

execution speedup translates almost fully to an overall system speedup as each node

3.5. OPTIMISTIC BLOCK PRODUCTION 59

pre-executes a small number of transactions. There can be cases where we obtain no
execution speedup by pre-execution, for example when the workload can be run fully
in parallel. The overhead is however minimal with a sufficient number of nodes, even

in these edge cases.

While Loose Coupling allows offsetting the pre-execution cost, depending on the system
conditions, the gap between the execution £; of an instance ¢ and the pre-execution of
P, can span several blocks. For example, in Figure 3.2 the pre-execution P; runs

roughly two slots ahead of the execution of the previous round £;_;.

Consequently, the pre-execution process is performed with partially stale data, which
can result in outdated metadata being passed to the execution phase, leading to a slow-
down in the execution protocol or an increase in the number of aborted transactions

within a block.

However, based on our workload analysis, we argue that even with partially stale data,
we will still, with high confidence, produce an accurate dependency graph and runtime
estimates. This is true in most popular applications. because even though data might be
partially stale, the extraction of the dependencies is still accurate with a high likelihood:
When handling Peer-to-Peer Transactions and DEX Trading, any valid transaction (i.e.,
when the user has sufficient gas and currency) will touch the same resources regard-
less of the current state (i.e., touch the user’s balance and the currency-pair pool). In
this case, the staleness of the metadata from pre-execution does not affect the resulting
dependency graph in no way. As for NFT Minting, this is also true until the NFT is
exhausted (no more NFTs can be minted after this period). At this point, for a short pe-
riod, stale state can lead to false positives (e.g. detecting resource accesses that will not
happen), similar to invalid transactions, but never to false negatives. The same also ap-
plies to on and oft-boarding layer-2 solutions which also make up a significant portion
of the system load [37]. Therefore, a block producer may overestimate dependencies,
and, as a result, overestimate the execution time of a block, but much less likely, under-

estimate the execution time of a block.

This insight is important as it allows us to execute all transactions fully in parallel dur-
ing the pre-execution phase, ignoring potentially state-changing interdependencies be-
tween transactions. As a result, the cost of pre-execution is minimized as it scales fully

with the number of available cores.

60 CHAPTER 3. DESIGN

Dependency Graph

Scheduler

core 1 core 2 e - core n

Figure 3.4: The role of the transaction scheduler

3.6 Scheduler

Our pre-execution approach under the “loose coupling” model requires changes to the

execution engine.

First, we introduce a mechanism that generates an execution schedule using the infor-
mation obtained from pre-execution. During this process, each node uses the depen-
dency graph and the estimated gas cost of each transaction to deterministically schedule
transactions among cores in a manner that avoids conflicts. In our system, a dedicated
thread is responsible for scheduling all transactions of a block to all other threads ac-
cording to a scheduling algorithm presented below. We chose to schedule all transac-
tions of a block at the beginning of processing (static scheduling) due to the general
small execution time of a block. A dynamic approach tends to increase the time com-
plexity of the scheduling algorithm and in the case of fast block execution faces the risk

of scheduling becoming the bottleneck, as we saw happen in benchmarks.

3.6.1 Model

Let G = (V, E) be a directed acyclic graph (DAG), where the vertices in the set V' rep-

resent transactions (tasks), and the edges in the set £ represent the dependency con-

3.6. SCHEDULER 61

T

T2

T6 T3 T4

T5

T7

Figure 3.5: Transaction dependencies depicted in a DAG

straints (read-write) between those transactions. For example, if transaction ¢, reads
the results of transaction ¢, with x < y the edge t, — t, would exist in the graph,
that is (v;,v,) € E. Letn = |V| be the total number of vertices. We use Pred[v;| =
{v;|(vj,v;) € E} to represent the (immediate) predecessors of a vertex v; € V, and
Succlv;] = {vj|(v;,v;) € E} to represent the (immediate) successors of v; in G. Ver-
tices without any predecessors are called source nodes, and the ones without any suc-
cessors are called target nodes. Every vertex v; € V' has a weight, denoted by w; which

represents the predicted execution time of transaction ¢;.

In the computing model, there are P identical processing units, referred to as cores
(p1,--.,pp). Inter-core communication is achieved through a shared memory mecha-
nism. Each transaction must be scheduled onto a core while adhering to the dependency
constraints. The tasks are non-preemptive and atomic, meaning that a processor exe-
cutes at most one transaction at a given time. Given a specific mapping of tasks onto the
computing platform, let 14(7) denote the index of the processor on which transaction ¢; is
mapped. In other words, ¢; is executed on processor p,,(;). For every transactiont; € V/,
its weight w; represents the time required for its execution on any core of the system.
Moreover, if there exists a dependency constraint between two transactions mapped
onto different cores, i.e., (¢;,t;) € E and p1(i) # pu(j), data must be “transmitted” from
the cache of p,,(;) to p,(;). The time required for this data transfer is represented by the

62 CHAPTER 3. DESIGN

edge cost ¢; ;. In practice, this time corresponds to cache coherence traffic among pro-
cessors. Cache coherence traffic refers to the communication and data transfers that
occur between multiple caches in a multiprocessor or multi-core system to maintain
cache coherence. By taking cache coherence overhead into account, we attempt to keep

dependency chains on the same core and have better data locality.

In multi-core or multiprocessor systems, each core typically has its own cache mem-
ory, which stores copies of data from the main memory. Cache coherence ensures
that when one core updates a memory location, any other core reading or accessing the
same memory location sees the most up-to-date value. Cache coherence traffic is man-
aged by cache coherence protocols like MESI (Modified, Exclusive, Shared, Invalid),
MOESI (Modified, Owner, Exclusive, Shared, Invalid), and others. These protocols de-
fine how caches communicate and coordinate their actions to maintain data consistency

and minimize unnecessary data transfers.

We define a schedule for graph G as follows: each taskv; € V' 1 <7 < n is assigned to
a processing unit p, (i), 1 < p(i) < P.

3.6.2 Algorithm

The algorithm we chose is a modified implementation of the simple heuristic of BL-EST

[38].

This heuristic operates by maintaining a well-ordered list of tasks that are ready for exe-
cution, which consists of all transactions for which all dependencies have already been
successfully executed. We denote the set of tasks that have been executed as Fz, and
the set of currently ready tasks as Ready. Initially, E'x is empty, and Ready consists
of tasks v; € V that have no predecessors, expressed as Pred[v;] = (. However, as
tasks are executed, new tasks may become ready. At any given moment, the set Ready

is defined as follows:

Ready = {v; € V'\ Ex | Predlv;] = 0 or ¥(vj,v;) € E,v; € Ex}.

During the first phase of our algorithm we assign tasks a heuristic priority, which is

determined to be their “bottom level,” hence the acronym BL. The bottom level bl(7)

3.6. SCHEDULER 63

assigned to a task v; € V is calculated as the maximum weight along the path from v;

to a target node, which is a vertex of the DAG without any successors. Formally:

0 if Succlv;] = 0;
bl(i) = w; + (3.1)
MaXy, e sucefv;] DI(J) otherwise.

In the second phase, transactions are assigned to processing cores. At each iteration, our
algorithm selects the task of the Ready set with the highest priority and schedules it on
the core that would result in the earliest start time of that task. To calculate this time,
we iterate over the processors: for each processor, the start time depends on the time
when that processor becomes available from other scheduled executions and the finish
time of the predecessors of that transaction. If a preceding transaction was scheduled on
a different core, an extra cost is added to the calculation to represent cache coherency
traffic. We also keep track of the finish time of each processor P}, (compy) for future

rounds of the algorithm.

This heuristic is called BL - EST, for Bottom-Level Earliest-Start-Time, and is described
in Algorithm 2. The Ready set is stored in a max-heap structure for efficiently retriev-
ing the tasks with the highest priority, and it is initialized at line 6. The computation
of the bottom levels for all tasks (line 5) can easily be performed in a single traversal
of the graph in O(|V| + |E|) time. The main loop traverses the DAG and tentatively
schedules a task with the largest bottom level on each processor in the loop lines 12-24.
The processor with the earliest start time is then saved, and all variables are updated on
lines 25-26. Finally, the list of ready tasks is updated in line 27, i.e., Ex < Ez U {v;},

and new ready tasks are accordingly inserted into the max-heap.

The total time complexity of Algorithm 2 is hence O(|V'|log |V'| + p|F|):

o |V|log |V| for the heap operations (we perform |V| times the extraction of the

maximum, and the insertion of new ready tasks into the heap).

o p|E| for lines 14-20 as we find the processor with the earliest start time

The space complexity is O(p + |V| + |E|).

64 CHAPTER 3. DESIGN

Algorithm 2 Modified BL - EST algorithm

1: procedure BLEST(G = (V, E), p)

2: // Data: Directed graph G = (V, E'), number of processors p

3 // Result: For each task v; € V/, allocation p(7) and start time st(3)
4: /] For each (v;,v;) € E, delay time com(i, j)

5: bl <— ComputeBottomLevels(G)
6

7

8

9

Ready < EmptyHeap
Insert v; in Ready with key bl () for all v; without any predecessors
for k = 1topdo
: compy, < 0; sendy, < 0; recv, < 0
10: end for

11: while Ready is not empty do

12: v; — extractMax(Ready)

13: Sort Pred[v;] in a non-decreasing order of the finish times
14: for k = 1topdo

15: beginy <— compy,

16: for v; € Pred|v;] do

17: if 11(j) = k then

18: beging < st(j) +w; + c;j;
19: else

20: beginy, < st(j) + w,

21: end if

22: end for

23: end for

24: k* < argmin, {begin;} // Best Processor
25: p(i) < k*

26: st(i) < begings

27: Insert new ready tasks into Ready

28: end while

29: end procedure

3.6. SCHEDULER 65

In combination with utilizing thread affinity 2.5.1, that is assigning threads to specific

cores, we aim to take advantage of cache locality and reduce cache coherence traffic.

66

Implementation

We integrated our system with Aptos [21] and Block-STM ([25]. First, we injected pre-
execution in the block-building phase, including the creation of “Good Blocks” and the
addition of meta-data to the blocks. Second, we altered the execution algorithm to take
dependencies and transaction runtime into account and to verify transaction signatures
during idle-time of cores rather than on the critical execution path.We chose Aptos as it

is high quality project that already follows a decoupled consensus and execution model.

4.1 Overview

We now present the key components present on a node running Aptos:

Consensus: The Aptos blockchain uses a consensus protocol named AptosBFT which

is based on Jolteon [24] and HotStuft [6].

Execution: The execution engine used to execute transactions in parallel is a direct im-

plementation of Block-STM [25] as described in 2.4.3.

Mempool: Mempool is a shared buffer that holds the transactions that have been sub-

mitted to the system but are not yet agreed on by consensus or executed.
These components interact with each other in the following ways:

(1) Mempool <= Other Validators: When a new transaction is added to the mempool by
a client request, the mempool shares this transaction with other validator nodes in the
system. When a validator receives a transaction from the mempool of another validator,

it adds it to the local storage of the “shared mempool” of the recipient validator.

67

68 CHAPTER 4. IMPLEMENTATION

Other Validators

Figure 4.1: Component Interaction

(2) Consensus <> Mempool: When a validator is a proposer, its consensus component
pulls a block of transactions from its mempool and forms a proposed block of transac-

tions.

(3) Consensus <+ Other Validators: If a validator is a proposer, its consensus compo-

nent disseminates the proposed block of transactions to other validators.

(4) Consensus <+ Execution: After a block is added to the “dirty ledger” by the consen-
sus protocol, it is passed to the execution component to be deterministically executed

and commited.

Utilizing the Aptos codebase as a foundation for our system, the main programming
language we used was Rust [5]. Rust isa modern programming language which provides
memory safety without sacrificing performance. The major changes were around the

execution engine, adapting it to handle pre-computed dependency hints.

4.2 Execution Engine

Thread flow

The Rust library we employed in the project to enable parallel utilization of available
cores was Rayon [4]. Each thread belonging to a Rayon thread pool, executes and com-
mits a block by looping in the function work_task_with_scope(), which we present

in 4.2. The data structure scheduler is shared among all running threads. The basic

4.2. EXECUTION ENGINE

core_2

¥ '\L

scheduler

work_task_with_scope()

executor_arguments
signature_verified_block.txns()
last_input_output

versioned_data_cache

scheduler

base_view
committing
total_profiler
barrier

thread_id

num_txns: usize

execution_ids: AtomicUsize
validation_ids: AtomicllG4

commit_state: Mutex<(Txnindex, Wave)=

done_marker AtlomicBool

txn_dependency:
Vec<CachePadded=Mutex<HashMap=TxnIndex,

txn_stafus:
Eecl<Cgclj§Ea?dfi_edf_\'HwLQCk:ExeculiunStatusz
hint_graph: Vec<CachePadded=\Vec<Txnlndex===>
use_hints: bool

thread_buffer: Vec=Arc<SkipSet<Tanlndexs>x_
concurrency_level: usize

gas_estimates: CachePadded=Vec=ufid=»
sched_lock: AtomicUsize
condvars:Vec<(Mutex<boal= Condvar)s

heap: SkipSet<Tasks

finish_time: Vec<Mulex<usize=:

mapping: Vec<Mutex<usize-=

incoming: Vec<Mutex=usizes

children: Vec<Mutex<Vec<TenIndex===
end_comp: Vecs

b - Arc<Mutex<Vec<usizess=

init_lock: Mutex<bools

nscheduled:AtomicUsize

Figure 4.2: Scheduler data structure

components of this data structure are shown below:

The core logic of the function work_task with_scope() in Rust:

fn work_task_with_scope(...) {

{
loop {

if committing {

loop {

if scheduler.try_commit().is_none() {

break;

}

scheduler_task = match scheduler_task {

SchedulerTask::ValidationTask(...)

70

let ret =

1
SchedulerTask

1
SchedulerTask

let ret =

1
SchedulerTask

1
SchedulerTask
let ret =

1
SchedulerTask

_ => {break;}

self.validate(...);

::SigTask(index) => {

::NoTask => {

CHAPTER 4

scheduler.next_task(...);

::Done => {

::ExecutionTask(...) => {

self.execute(...);

::PrologueTask => {

. IMPLEMENTATION

Each thread first enters work_task_with_scope() with scheduler_task initialized as

SchedulerTask: :NoTask, goes into scheduler.next_task() and follows the logic of

the scheduler module. After a first check of whether the self.done() flag is set, the

first thread that reaches a predefined threshold in its respective thread_buffer which

holds the transactions already scheduled to it, attempts to schedule another batch of

transactions in sched_next_chunk(). The first time, sched_setup() is called, so that

all necessary information such as the bottomlevel of each transaction is available for

scheduling.

We outline the calculation of the bottom level of each transaction in 3.1. The tasks

without incoming dependency edges are marked as ready to execute in lines 24-28.

1 fn sched_setup(&self) {

let
let
4 let
let

mut init = self.init_lock.lock();

mut incoming_ lock

mut children_lock

mut mapping_lock =

6 if *init == false {

self.incoming.lock();
self.children.lock();

self.mapping.lock();

6

4.2. EXECUTION ENGINE 71

return ();
}
*init = false;
mapping_lock[@] = ©;
let mut bottomlevels: Vec<TxnIndex> = vec![0; self.num_txns];
for i in (@..self.num_txns).rev() {
for node in &*self.hint_graph[i] {
incoming_lock[i] += 1;
children_lock[*node].push(i);
if bottomlevels[*node] < bottomlevels[i] + 1 {

bottomlevels[*node] = bottomlevels[i] + 1;

}
if self.hint_graph[i].is_empty() {
self.heap.insert(Task {
bottomlevel: bottomlevels[i],
index: 1i,

1)

}
*self.bottomlevels.lock() = bottomlevels;

If there is no further scheduling to be done, a thread first re-checks for concurrency
reasons whether it needs to return Scheduler: :NoTask. In case there is still work to
be done, priority is first given to validation tasks, to limit cascading aborts. If there is
no validation task ready, the thread finally attempts to execute a new incarnation of a

transaction in line 21.

pub fn next_task(&self, ...) -> SchedulerTask {
loop {
if !*local_flag && *finished_val_flag && self.done() {
return SchedulerTask: :Done;
}
if *local_flag && self.nscheduled.load() < self.num_txns {
*local_flag = false;
if let Ok(_) = self.sched.try_lock.()
self.sched_setup();
let x = self.sched_next_chunk().unwrap();

return x;

72

CHAPTER 4. IMPLEMENTATION

Thread flow of scheduler
scheduler.rs
next_task()

thread_id: int
committing: boal

Only
checks
SchedulerTask::Done| e seff.dene() flag
no

thread_buifer.len() < threshold

validation_idx == num_txns

Il
thread_bufferlen()==0

true
false
ry atomic
Heees schedule
- . b
[sched_setup() once |
sched next_chunk()
return NoTask
true
return SchedulerTask::Done |+true self.done()
false

if lcommitting hint::spin_loopi)
return SchedulerTask::NoTask

SchedulerTask::NoTask

Mone

self.try_validate_next_version()

selftry_exec()

Figure 4.3: Thread flow of scheduler

Some(}

return SchedulerTask::ValidationTask

SchedulerTask::ExecutionTask

1

4.2. EXECUTION ENGINE 73

}
else {
if !*finished_val_flag {
if let Some((val,guard)) = self.try_val() {
let ret = SchedulerTask::ValidationTask(val, guard);
return ret;
}
}
let ex = self.try_exec(thread_id, ...);
return ex;
}
}
}
}

Finally, it should be noted than in the rare case that the execution of a transaction incurs
a conflict due to a false dependency graph (either stale or byzantine), the validation pro-
cess will detect, abort and reschedule the transaction accordingly when the dependency

is resolved.

Thread Affinity

By (a) scheduling transactions in a way where the majority of inter-dependent transac-
tions are scheduled on the same thread (Algorithm 2) and (b) pinning threads to CPU
cores, we aim to reduce the number of cache coherence conflicts. Thread pinning, is
a technique in which a thread is bound to a specific CPU core or set of CPU cores in
a multi-core processor system. This means that the thread is restricted to running ex-
clusively on the pinned CPU core(s), rather than being scheduled across multiple cores
by the operating system’s scheduler. We achieve this by using the affinity rust crate
([1]) which uses sched_setaffinity from the libc crate, which in turn calls the set_-
thread_affinity system call.

pub static RAYON_EXEC_POOL: Lazy<rayon::ThreadPool> = Lazy::new(|| {

rayon::ThreadPoolBuilder::new()
.num_threads (num_cpus::get())

.thread_name(|index| format!(”par_exec_{}”, index))

.spawn_handler(|thread| {

)

74 CHAPTER 4. IMPLEMENTATION

std::thread::spawn(]|| {
affinity::set_thread_affinity(&[thread.index()]);

thread.run();

s
ok (())

)
.build()

.unwrap()

4.3 Good Block Production

We show he logic of producing Good Blocks” as described in 3.3 in the code block be-
low. In lines 13-16, the earliest starting time of each transaction is calculated depend-
ing on previous transactions who read common resources. If a transaction exceeds the
chosen value of self.gas_per_core * 2, it is skipped from the current block and is
cached for a block proposal (lines 20-23). The total gas capacity of the block is checked
in lines 24-28 and afterwards the dependency chain length is calculated to make sure
that it doesn't exceed self.max_bytes. Finally, corresponding values are updated to
prepare for a new transaction in the next iteration of the loop (lines 37-42) as well as the

last touched times for each resource the transaction accessed.

fn add_all (...) -> Vec<SignedTransaction> {

while let Some((speculation, status, tx)) = previous.pop_front()
{
let txn_len = tx.raw_txn_bytes_len() as u64;
if self.total bytes + txn_len > self.max_bytes {
self.full = true;
cache.push_back((speculation, status, tx));
break;
}
let mut arrival_time = 0;
for read in read_set {
if self.last_touched.contains_key(&read) {
arrival_time = max(arrival_time, *self.last_touched.get(&

read).unwrap())

36

39

40

41

4.3. GOOD BLOCK PRODUCTION 75

}

// Check if there is room for the new block.

let finish_time = arrival_time + gas_used;

if finish_time > (self.gas_per_core * 2) as u64 {

cache.push_back((speculation, status, tx));

continue;
}
if self.total_estimated_gas + gas_used > self.gas_per_core * self
.cores {
self.full = true;
cache.push_back((speculation, status, tx));
break;
}

let mut dependencies = HashSet::new();
// Add Read-Write conflicts to dependencies
if self.total bytes + txn_len + (dependencies.len() as u64) * (

size_of::<TransactionIdx>() as u64) + (size_of::<u64>() as u64) > self.

max_bytes {
self.full = true;
cache.push_back((speculation, status, tx));
break;
}

self.total bytes += txn_len + dependencies.len() as u64 * size of
::<TransactionIdx>() as u64 + size_of::<u64>() as u64;

self.total_estimated_gas += gas_used;
let current_idx = self.block.len() as TransactionIdx;
self.estimated_gas.push(gas_used);

self.dependency_graph.push(dependencies);

// Update last touched time for used resources.

76

Evaluation

5.1 Overview

We evaluated our system using a two-step process: (1) First we evaluated the execution
engine separately, without taking account the creation of full blocks, nor the time spent
pre-executing, and subsequently (2) we deployed our own testnet on AWS [2], simulat-
ing a full system operation. However, the full system analysis goes beyond the scope of
this thesis and is part of future work under Ray Neiheiser. Therefore we only provide
the deployment steps through which the necessary infrastructure to run our testnet is

built.

Many studies evaluate blockchain algorithms using simple peer-to-peer transaction work-
loads [25], or workloads with little contention and complexity. While better evaluation
frameworks have been proposed, such as Diablo [26], they still fall short of represent-
ing realistic blockchain workloads. To address this, we conducted a thorough analysis
of the user activity on Ethereum and Solana and identified four realistic blockchain ex-
ecution scenarios: NFT Minting, DEX Trading, Peer-to-Peer (P2P) Transactions, and
Mixed Contracts. These scenarios cover a wide range of execution characteristics, from
heavy contention and complex contract interactions to simple P2P transactions. This
allows for a more comprehensive evaluation of blockchain algorithms and their ability

to handle the demands of realistic workloads.

77

78 CHAPTER 5. EVALUATION

5.2 Workloads

In the following, we will describe the four workloads:

P2PTX: First, we created a Peer-to-Peer Transaction workload. However, instead of
assuming a uniform distribution, we simulated the account distribution of peer-to-peer

transactions on the Ethereum Mainnet over 2022.

NFT: Next, the NFT Minting workload is derived from Ethereum’s minting behavior in

2022, collected and calculated in a similar fashion as the Peer-to-Peer Workload.

DEXAVG/DEXBURSTY: We created two DEX Trading Workloads for which we gath-
ered data on the daily distribution of different trading pairs on Uniswap over the course
of 2022. From the data, we then obtained a daily average for an Average DEX Workload
and the thirty most contended days for a Bursty DEX Workload.

SOLANA: Finally, for the Mixed Contracts workload, we extracted the write sets of
Solana transactions and their corresponding gas expenditure. This workload is the most
complex among the four, as it involves varying the length of the write-set, the access dis-
tribution of resources, and the transaction runtime. We obtained this data by querying

a sample of 1000 blocks per day in 2022 and calculated the average similar to before.

5.3 Dependency Aware Execution

The single server evaluation of the execution engine was done on a Mac Pro (2023) with

a 24 core CPU (16 performance cores and 8 efficiency cores) and 64 GB of RAM.

Figure 5.1 shows the per-second throughput for all workloads for the baseline (Block-
STM) and our dependency-aware execution model without signature validation (full
line) and with signature validation (dotted line). We observe that the performance dif-
ference between the two approaches increases significantly when including signature
validation concurrently to the block execution. This is the case because BlockSTM uses
all the cores throughout the experiment and has little room to verify the block signa-
tures. Meanwhile, our system schedules the transactions taking the dependencies into

account and can use the idle CPU time it gains from this to verify the signatures.

5.3. DEPENDENCY AWARE EXECUTION

Approach

Throughput (Transactions/s)

—— Pythia BlockSTM —— PythiaOld Signature —— False

79

True

1500 ~

NFT

1000 A

3000

2000 4

DEXAVG

1000 A

1200 ~

1000 A

DEXBURSTY

800 4

3000 4

2000 4

PZPTX

1000 A

SOLANA

4 8 12 16 20 24
Number of Cores

Figure 5.1: Throughput per Second - Execution Engine

28

32

80 CHAPTER 5. EVALUATION

5.4 Cloud infrastructure deployment

For the full system evaluation setup we modified and debugged existing orchestration

scripts provided by Aptos Labs.

Terraform: The deployment was done through Terraform [46], an infrastructure au-
tomation tool which operates with declarative configuration files. These configuration
files describe the desired state of the infrastructure, and according to them, Terraform
creates and manages resources on cloud platforms and other services through their ap-

plication programming interfaces (APIs).

AWS: We deployed a testbed on Amazon Web Services after previously attempting to use
Google Cloud Platform (GCP), but failing due to quota constraints. Through AWS we

provision a cluster of virtual machines, as well as any storage or network requirement.

Kubernetes: To utilize this cluster of virtual machines, we used Kubernetes (K8s). K8s
provides tools for deploying and scaling containerized applications automatically. It
ensures that the desired number of container instances are running, handles failures,
and replaces containers that become unhealthy. K8s primarily works with containers,
which are lightweight, isolated, and portable environments that package an application
and its dependencies. In Kubernetes, the smallest deployable unit that represents a sin-

gle instance of a running application in a cluster is called a Pod.

EKS: To run our containerized application on AWS, we leveraged Amazon’s Elastic Ku-
bernetes Service (EKS). EKS takes care of the Kubernetes control plane, including master
nodes, etcd clusters, and the API server. AWS manages the control plane’s availability,

scalability, and security.

Docker image: Finally, to create our containerized application, we used the open source
platform Docker. The resulting output is a docker image which is lightweight, stan-
dalone, and executable package that contains all the necessary components to run our

system, including the code, runtime, system tools, libraries, and settings.

Starting with the development of our system using Rust and subsequently publishing
the Docker image to a repository like Docker Hub, we proceed by using our configura-
tion files for the deployment of an EKS cluster through Terraform. This cluster operates
Kubernetes on AWS cloud infrastructure, effectively managing all essential prerequi-

sites, including storage provisioning through Persistent Volume Claims and network

5.4. CLOUD INFRASTRUCTURE DEPLOYMENT 81

s ™y
. Create & Push Docker Image
Developer
T @ | =
docker
h A |
' Pull image
v
s 5,
= I . WS
Kubernetes
Configuration !
Flle EKS AN vy

Figure 5.2: Deployment steps

administration. Finally, a “Validator” Pod on each virtual machine runs the Docker
image containing our built system, and the cluster is fully functional and ready to ac-

cept transaction submissions by clients. The full work flow can be seen in 5.2.

82

Conclusion

In this work, we proposed a system design allowing deterministic parallel smart contract

execution, leveraging the multi core capabilities of modern computing units. Further-

more, we presented a scheduler for transactions containing smart contract code, which

uses pre-computed hints to speed up execution by up to 1.5x compared to BlockSTM

[25] in real-world workloads.

6.1 Concluding Remarks

Summary

Context Decoupled Intelligent Susceptibility

Work Driven Consensus & Block Performance
Execution Execution Assembly Attacks

Block-STM [25] No Yes No High
Thomas Dickerson, et al. [17] Yes No No High
Polygon [39] Yes No No Low
FuelVM [22] Yes No No Low
FSC [34] Yes No No Low
Solana [44] Yes No No High
Eve [28] No No Limited High
Aria [35] No No No High
This work Yes Yes Yes Low

Table 6.1: Overview of the different approaches

Table 6.1 compares different approaches based on four main criteria: (1) use of contex-

tual data to avoid conflicts during execution, (2) decoupling of consensus from execu-

83

84 CHAPTER 6. CONCLUSION

tion, (3) use of contextual data to construct easily parallelizable blocks, and (4) suscep-

tibility to performance attacks.

To the best of our knowledge, all current approaches in the literature that offer paral-
lel smart-contract execution are either significantly slowed down by highly contended
workloads and sequential transaction chains and also subject to performance attacks.
They also execute transactions on the critical path of consensus, reducing the potential

speedup significantly.

In our work, we tackle these shortcomings with the help of asynchronous pre-execution
which allows us to obtain contextual transaction information without relying on de-
veloper input. We use this information to build “Good Block”and speed up execution

through metadata.

6.2 Future Work

As most work presented in this thesis was conducted in collaboration with a team in
ISTA, there is still future work such as the final details of implementation and evalua-
tion of the system. A key problem that needs to be addressed is that the transactions
that each node pre-executes can overlap, resulting in wasted execution time. One way to
solve this can be sharding the transaction pool of each node so that each each node pre-
executes only the transactions it will propose in the future. However this endangers the
liveness of the system and potentially the latency of a transaction commit. Additionaly,
as the transaction scheduler of the execution engine is optimized under perfect predic-
tion assumption, its performance needs to also be tested under varying percentages of
wrong hints. Finally, the incentives of a validator to operate following the protocol and

propose "Good Blocks” need to be formalized.

[1]
2]

(8]

Bibliography

affinity documentation. https://docs.rs/affinity/latest/affinity/.

Amazon web services. https://aws.amazon.com/.

Easy parallelizability, ethereum eip.

Rayon documentation. https://docs.rs/rayon/latest/rayon/.

Rust programming language. https://www.rust-lang.org/.

Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-
resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018.

Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Parblockchain:
Leveraging transaction parallelism in permissioned blockchain systems. In 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
pages 1337-1347, 2019.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukoli¢, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permissioned blockchains. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys 18, New York, NY, USA,
2018. Association for Computing Machinery.

85

https://docs.rs/affinity/latest/affinity/
https://aws.amazon.com/
https://docs.rs/rayon/latest/rayon/
https://www.rust-lang.org/

86

[9]

[10]

[14]

[15]

BIBLIOGRAPHY

Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit So-
mani. Optsmart: A space efficient optimistic concurrent execution of smart con-

tracts. CoRR, abs/2102.04875, 2021.

Zeta Avarikioti, Krzysztof Pietrzak, losif Salem, Stefan Schmid, Samarth Tiwari,
and Michelle Yeo. Hide & seek: Privacy-preserving rebalancing on payment chan-

nel networks. IACR Cryptol. ePrint Arch., 2021:1401, 2021.

Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consen-

sus, 2019.

Vitalik Buterin. Ethereum white paper: A next generation smart contract & de-

centralized application platform. 2013.

Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou, and
Xian Zhang. Forerunner: Constraint-based speculative transaction execution for

ethereum. pages 570-587, 10 2021.

Shir Cohen, Guy Goren, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. Proof of availability retrieval in a modular blockchain architecture.

Cryptology ePrint Archive, Paper 2022/455, 2022. https://eprint.iacr.org/

2022/455.

George Danezis, Eleftherios Kokoris Kogias, Alberto Sonnino, and Alexander
Spiegelman. Narwhal and tusk: A dag-based mempool and efficient bft consensus,

2022.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Shlomi Dolev,
editor, Distributed Computing, pages 194-208, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding

concurrency to smart contracts, 2017.

Thomas D. Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding
concurrency to smart contracts. CoRR, abs/1702.04467, 2017.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288-323, 4 1988.

https://eprint.iacr.org/2022/455
https://eprint.iacr.org/2022/455

BIBLIOGRAPHY 87

[20]

[25]

[26]

[27]

(28]

[29]

Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion concur-

rency control. Proc. VLDB Endow., 8(11):1190-1201, jul 2015.

Aptos Foundation. Aptos whitepaper. https://aptos.dev/assets/files/
Aptos-Whitepaper-47099b4b907b432f81fcleffd34f3b6a.pdf, 2023. Ac-
cessed on 12.04.2023.

Fuel Network. https://www.fuel.network/.

Péter Garamvolgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu. ACM, may
2022.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with

asynchronous fallback, 2021.

Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun
Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain

execution by turning ordering curse to a performance blessing, 2022.

Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. Diablo: A benchmark suite for blockchains. In Proceedings of the Eighteenth
European Conference on Computer Systems, EuroSys ’23, page 540-556, New York,
NY, USA, 2023. Association for Computing Machinery.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, page 289-300, New York, NY,
USA, 1993. Association for Computing Machinery.

Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and
Mike Dahlin. All about eve: Execute-Verify replication for Multi-Core servers. In
10th USENIX Symposium on Operating Systems Design and Implementation (OSDI
12), pages 237-250, Hollywood, CA, October 2012. USENIX Association.

Aggelos Kiayias, Alexander Russell, Bernardo Machado David, and R. Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual In-

ternational Cryptology Conference, 2017.

https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://www.fuel.network/

88

[30]

[31]

[38]

BIBLIOGRAPHY

Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Andrea
Bracciali, Jeremy Clark, Federico Pintore, Peter B. Ronne, and Massimiliano Sala,
editors, Financial Cryptography and Data Security, pages 21-34, Cham, 2020.

Springer International Publishing.

H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.

ACM Trans. Database Syst., 6(2):213-226, jun 1981.

Mysten Labs. https://sui.io/.

Haoran Lin, Yajin Zhou, and Lei Wu. Operation-level concurrent transaction ex-

ecution for blockchains, 2022.

Ye Lu, Caihua Liu, Meng Zhao, Xiaodong Duo, Pengfei Xu, Zhiyuan Zhou, and
Xia Feng. Fsc: A fast smart contract transaction execution approach via read-

write static analysis. 2023.

Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A fast and practical
deterministic oltp database. Proc. VLDB Endow., 13(12):2047-2060, jul 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.

Ray Neiheiser, Gustavo Inacio, Luciana Rech, Carlos Montez, Miguel Matos, and
Luis Rodrigues. Practical limitations of ethereum’s layer-2. IEEE Access, 11:8651-
8662, 2023.

Yusuf M. Ozkaya, Anne Benoit, Bora Ucar, Julien Herrmann, and Umit V.
Catalyiirek. A scalable clustering-based task scheduler for homogeneous proces-
sors using DAG partitioning. In IPDPS 2019 - 33rd IEEE International Parallel
& Distributed Processing Symposium, pages 155-165, Rio de Janeiro, Brazil, May
2019. IEEE.

Polygon. https://polygon.technology/.

Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Tha-
jchayapong. Performance analysis of private blockchain platforms in varying
workloads. In 2017 26th International Conference on Computer Communication

and Networks (ICCCN), pages 1-6, 2017.

https://sui.io/
https://polygon.technology/

BIBLIOGRAPHY 89

[41]

[43]

[44]

[45]

Dai Qin, Angela Demke Brown, and Ashvin Goel. Caracal: Contention manage-
ment with deterministic concurrency control. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, SOSP "21, page 180-194, New
York, NY, USA, 2021. Association for Computing Machinery.

Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,
and Beng Chin Ooi. A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, SIGMOD 20, page 543-557, New York, NY, USA, 2020.

Association for Computing Machinery.

Nir Shavit and Dan Touitou. Software transactional memory. Distributed Com-

puting, 10(2):99-116, 1997.

Solana Labs. https://solana.com/.

Christos Stefo, Zhuolun Xiang, and Lefteris Kokoris-Kogias. Executing and prov-
ing over dirty ledgers. Cryptology ePrint Archive, Paper 2022/1554, 2022. https:
//eprint.iacr.org/2022/1554.

HashiCorp Terraform. https://www.terraform.io/.

Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain
scaling using rollups: A comprehensive survey. IEEE Access, 10:93039-93054,
2022.

Gang Wang, Zhijie Shi, Mark Nixon, and Song Han. Sok: Sharding on blockchain.
pages 41-61, 10 2019.

Rasanga Weerawarna, Shah Jahan Miah, and Xi Shao. Emerging advances of
blockchain technology in finance: a content analysis. Pers Ubiquit Comput,

27:1495-1508, 2023.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1-32, 2014.

Darko Capko, Srdan Vukmirovi¢, and Nemanja Nedi¢. State of the art of
zero-knowledge proofs in blockchain. In 2022 30th Telecommunications Forum

(TELFOR), pages 1-4, 2022.

https://solana.com/
https://eprint.iacr.org/2022/1554
https://eprint.iacr.org/2022/1554
https://www.terraform.io/

	Περίληψη
	Λέξεις-Κλειδιά

	Abstract
	Εισαγωγή
	Κίνητρο
	Διατύπωση Προβλήματος
	Υπάρχουσες Λύσεις
	Συνοπτική παρουσίαση των υφιστάμενων προσεγγίσεων
	Αδυναμίες των υφιστάμενων προσεγγίσεων

	Προτεινόμενη Λύση
	Επίκεντρο της διπλωματικής εργασίας

	Δομή Διπλωματικής Εργασίας

	Υπόβαθρο
	Βασικά στοιχεία Blockchain
	Ορισμός blockchain
	Consensus
	Εξυπνά συμβόλαια

	Μοντέλο Συστήματος
	Order-Execute Αρχιτεκτονική
	Modular Design

	Παράλληλη εκτέλεση έξυπνων συμβολαίων
	Απαισιόδοξες προσεγγίσεις
	Αισιόδοξος έλεγχος συγχρονισμού στην εκτέλεση έξυπνων συμβολαίων
	Block-STM
	Προεκτέλεση και ανίχνευση εξαρτήσεων

	Σχεδίαση
	Επισκόπηση
	Loose Coupling

	Υλοποίηση
	Επισκόπηση

	Αξιολόγηση
	Επισκόπηση
	Εκτέλεση με επίγνωση εξάρτησης

	Επίλογος
	Συμπερασματικά Σχόλια
	Μελλοντικό Έργο

	Introduction
	Motivation
	Problem Statement
	Existing Solutions
	Summary of existing approaches
	Shortcomings of existing approaches

	Proposed Solution
	Focus of the thesis

	Outline

	Background
	Blockchain Background
	Blockchain definition
	Cryptography basics
	Consensus
	State Machine Replication
	Permissioned vs Permissionless setting
	Smart Contracts

	System Model
	Order-Execute Architecture
	Modular Design

	Multi-Version Deterministic Databases
	Optimistic Concurrency Control

	Parallel Smart Contract Execution
	Pessimistic Approaches
	Optimistic Concurrency Control in Smart Contract Execution
	Block-STM
	Pre-execution and Dependency Detection

	Hardware background
	Thread Affinity

	Design
	System Model
	Overview
	Good Blocks
	Good Block Construction

	Loose Coupling
	Optimistic Block Production
	Scheduler
	Model
	Algorithm

	Implementation
	Overview
	Execution Engine
	Good Block Production

	Evaluation
	Overview
	Workloads
	Dependency Aware Execution
	Cloud infrastructure deployment

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

