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Amayopevetal 1 avtiypogr, arodfkevon ko divopn tng moapovoog epyaciog, €€ oAokAnpov 1
THHOTOG QVTHG, Yo eutoptkd okomnd. Emitpémetal n avatdnwor, amobrikevon kot dtoxvopr) yio
OKOTO 1) KeEPOOOKOTLKO, EKTTALOEVTIKNG 1] EPELVNTIKNG PVGTIG, LTTO TNV TpodOeon v avoupépeTa
1 Y1 TPoéAevong ko va dratnpeital To mopdv privopa. Epotipata wov apopodv T xprion tng
epyooiag yla kepdookomikd oKomd mpémel v otevBOVoOVTOL TTPOG TOV GLYYPAPEQL.

Ot amdPeLg Ko Tor GUUTTEPAGHATA TTOV TEPLEXOVTOL GE QLUTO TO £YYPOPO eKPPALOLY TOV GLYYPAPEX

Kot Oev mpémel vo eppunvevbel 0TL avTitpocwebovy Tig entionpeg Béoelg Tov EOvikod MetooPiov
IMoAvteyveiov.



ITepiAnyn

H teyvntn vonpootvn vréotn expnktikr e€EMEN ta tedevtaia xpovie. Me kivntriplo dbvopn
v texvoloyio g Pabiag pébnong, n texvnth vonpoovvy Ppickel epappoyn oe TAnbmpa emt-
oTnpoVIKOV Tediwv, otr Propnyavia, kabwg ko otig téyves. opd Ta Beapotiké amoteAéopata,
éyouv pokveL dSikpopa NOké Intipata mov epmodilovv v aklomoinomn tng Pabibg pabnong o
EPAPHOYES TTOV emnpedlovy kpioipa Tn (T TV avBpdTOY, OTTWG ELVAL OL EPAPHOYES OTNV LATPLKT).
Kopia mnyn tov nbukdv Intnpdtov aootehel ) adiopavela g Pabidg pdbnong, kabog o povréia
aduvatoby va dOGoLY emeENYNOELS Yo TIG AToPAoEeLg Tov AapPavouy, Kal 1 EpopPHOYT] TOUG TPO-
0mobétel TNV EPTIETOCUVN TV XPNOTOV. AuTh 1) EAAELYN) eENYLOIHOTNTAG YEVVA TTEPETALp® TTPO-
PAqpota mépav twv NOkev, 6nwg elvor yia mapadetypo 1 dSvokoAio evtomiopod kot ddpBwong
COUAMLATWV OE TETOLA GUOTIHATA.

To {ntipoato avtd €xovy 0dnynoel 6To medio £pevvag TNG ePUNVEDGLUNG TEXVITNHS VOTHOG VG,
070 omoio evtacoetal 1) tapovoa datpiPr). To medio avtd éxel peydro ebpog, pe wAnbog dixgo-
PETLKOV aAYoplBHwV oL Tapdyouv StapopeTikod TOTTOL eneEnynoelg, oe SapopeTikd BewpnTikd
mAaioo kKo StopopeTikog TuTOVG dedopévav. Xe avtr] Tn SatpiPr] diepevviioape T GLOTHHAT
KOl TLG TEXVOAOYLEG TUTIKTG OVOTTXPAOTACTG YVAOOTG WG PYXAEL0 Y TNV eme€rynomn, kabdg kot
yia v a€loAdynon g Aettovpyiog adiapavav cvotnpdtov Padiag pédnong. Svykekpipéva, ova-
tOxOnKe 10 KaTdAANAO BewpnTicd mhaiolo kot adyopiBpot yio tnv ene€rynor) T€Tolwy GueTNPG-
Twv pe Phon onpocloloylkés mepLypapég deSOHEVMVY, XPTOLUOTOLOVTAS GUYKEKPLHEVT) Opoloyin
IOV TEPLYPAPETOL GE DITOKEILEV) OVTOAOYIKT] YVOOT).

To BewpnTcd mhaicto, wg aveEdptnto TOoL TOTOL dedOPEVV, KoL TOU VITOKELPUEVOL HOVTEAOL,
ePapPOoTNKE 0T TTEdIX TNG ELKOVOC, TWV CUHUPOALKOV XVOTTOPACTACEWDY HOVGLKTG, KOL TOU T)XOU.
Yuykpibnke pe vapyovoeg peBoddovg emeEnynong kot a€loAdynong adlapavdy GLGTHHATOY, KoL
avadeiyOnke wg tpocéyylon mov SVVATOL Va TPOGPEPEL GTO XPNO TN TANPOPOpic Tov dAAeg pébo-
dot advvatovv, xapn otnv OepeAinon TV TPoTElVOIEVOV EENYTCEWV GE TUTTLKA XVOTTOPACTIHEVT]
yvaon. H xawvopovig tdéa oG var X pro OOt GOUHE YPAPOUS YVOOT|G JLE TOV GUYKEKPLUEVO TPOTTO,
avoiyeL vE EPELVTIKG LOVOTIATIO TTPOG TNV LPPLOOTOINGT) TWV CUGTHHATWOV TEXVNTHG VONHOG VG,
a€lomolvtag TAnpopopic YapunAov emimédov, 6mov Srampénel 1) adrapaveig fobid pddnon, kabmg
Kot oupPorikn} TAnpogopic LYMAOL emuTédov, 1) omola eival OpYOVOUEVT), SOUNIEVT, KL TTLO KOTO-
vonth otov avBpwrro.

Aggerg Khewdra: Tpagor I'vaong, EEnyiowpotnta, Eppnvevopotnta, AfloAdynon






Abstract

Artificial intelligence (AI) has progressed explosively in recent years. Driven by the advent of
deep learning, Al is being used in a variety of applications, across multiple scientific fields, in indus-
try as well as in the arts. Despite spectacular results, various ethical issues have arisen that prevent
the utilization of deep learning in applications that critically affect people’s lives, such as applica-
tions in medicine. The main source of ethical issues is the opacity of deep learning, as the models
generally do not provide explanations for the decisions they make, and their use presupposes users’
trust. This lack of transparency also gives rise to additional problems hindering the development
of Al systems, such as for example the difficulty of detecting, and consequently fixing bugs, and
mistakes in deep learning based systems.

These issues have led to the emergence of the eXplainable AI (XAI) field of research, which is
the overarching context of this dissertation. This field of research has produced a wide range of
approaches, with different algorithms that produce different types of explanations, in different the-
oretical contexts and concerning different types of data. In this dissertation we explored systems
and technologies of formal knowledge representation as a tool to explain the operation of opaque
deep learning systems. Specifically, we developed a theoretical framework and algorithms for ex-
plaining such systems based on semantic descriptions of data, expressed using specific terminology
which is described in underlying ontological knowledge.

The proposed framework is domain and model agnostic, and was applied on image classification,
symbolic music generation and classification, and audio classification systems. It was compared
with existing explainability and evaluation methods, and emerged as a promising approach that can
provide high level information to users that other approaches cannot, thanks to the grounding of the
explanations on structured represented knowledge. Our novel idea to utilize knowledge graphs for
explainability in this way opens new paths to researching hybrid Al systems that utilize both low
level sub-symbolic information, such as deep learning systems, in addition to high level symbolic
information, that is structured, and more understandable to humans, as are knowledge graphs.

Keywords: Knowledge Graphs, Explainability, Interpretability, Evaluation
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Extetapévn IepiAnyn

H e&nyopotnta, ) a&loAdynor, Kot 1) epPNVeLR TV CUGTHATOV TEXVTHG VONHOGUVNG, KoL ELOLKO-
TEPQAL EKELVOV TNG HNYAVIKNG PABNong, £xouv mpokOYel wg {ntrpata kaBopLloTiknG onpociog yio
TNV €QUPHOYT] TOVG G TPaypatikd TpofAnpata. O pébBodol yio Tnv emomnteio TwV GLOTHHATOV
WITOpOOV vt GUVELGPEPOLY ONHAVTIKG 0T PeAtinot Tng arddoorig Toug, kabwg Stevkodbvouv Tnv
QVOLYVOPLOT) KOL TV OVAAVGT) GPAAHATOV, Kol LITtopodv va KatevBivouy avtolg mov Ta avantio-
ooULV OOTE va Ta avTipetwnicovy. Emiong, eldikotepa n e€nyopotnra o eivon amapaitntn yiox
TNV EQOPHOYT] KAVOVIGUOV KOl VOROBETIKOV TAXLGI®Y TTOL apopolV TIG EQUPHOYES TNG TEXVNTNG
vonpoovng otn Propnyavio. T mopdderypa, mpémel vo SIGPAALGOUIE TOS TO CUGTHHATA HE T
omoioe aAANAeTOpA 1) KOwwVia, dev petadidouvv emPrafPr] otepedTua, AAAL Yia va StucpaAioTel
autd, Ba pémeL TpodTO Vo avartTOEOUE oTIPapég peBddoug yio Ty avaryvidpiot) toug. Emutpoceta,
1 e€nylootnta dovartar va StevkoAbvel TNV aAAnAemidpact Tov avBpdOTOL pe TNV TEXVNTH VONHO-
ovvn, Yo Tov atAd Aoyo oti évag xproTng Oo prtopei v potael to chotnpa “yioti;” kot To c0oTH:
VO TOU OUTOVTA LE LKOVOTTOLNTLKO TPOTTO.

H avadvdpevn avaykn yioe tnv e€nNyLopoTnTa tng TeXvnThig vonpoovvng éxel odnyroel otnv
ovartTuEn Tov ePELVNTIKOL TopéX TNG epunvévoyng texvytrs vonuoouvns (XAI - eXplainable Al).
O topéag avtdg eivar peveTodg, TPOKOTTOLY cLVEXWG VEeg 1déec, aAldlovv Tar dedopéva, KoL oL
epeLVNTEG OV OLHPWVOLY akOpa KoL o€ oToLXelddn {ntipate, 0mwg elval oL oplopol Twv dpwv
eENYLOHOTN T KoL EPHIVEVSIHOTNTA, T} TO TOLEG €lvarl OL UTALTHOELG Yot pia “KoAr” e€fynon. e
dLopopeg eMOKOTNOELS TG TTEPLOXTG, ExOLV oploTel TaEovopieg peBoddwv, 0TI omoleg oe yevikég
YPOULES CUHPWVEL 1) epevvnTiKT KowoTnTe. Miot amd Tig onpavtikég diokpioelg pe@ddwv apopd
To av avTég eivon ante hoc, d0mov 1 e€nylodTnTa AopPavetal LT OYN KOT& TNV AVATTUEN KoL
ekmaidevon evog povtéAov 1) post hoc, Omov emiyelpeitan 1) €Nynon £vOG GLUOTHHATOG APOD AVTO
éxeL avouttuy et kou exmondevtei. Opola, virapyel Siakpion pebddwv oe avtég Tov “parpov Kovtiov”
(black box), oL omoieg epappodlovtal oe omolodnmote cOGTNUA, apkel va VITapyeL TpocPact oe
évae o0VOAO elo0dwv Ko e€6dwv, kot otig peBddouvg Tov “dompov kovutoy” (white box) dmov yix
Vv e€nynon amouteital TpdcPact 6To ecwtepLkd TOL pHovTéAov (Yo tapddetypo ota Papn evog
VELPWVLKOL SIKTOOV).

St mhaioio tng dratpiPric, pag amaoyolobv kupiwg ol post hoc péBodor “podpouv kovtiov”,
KOO®OG aUTEG €XOUV TO PEYAADTEPO EDPOG EPAPIOYTG, KL EXOVV TIG ALYOTEPEG ALTTALTHGELS VIO VXL
ptopécouv va Aettovpyricovv otnv Tpaén. AEileL va onpetwBel mwg owtég oL péBodol éxouvv vtootel
OTHOVTLKT) KPLTLKT OO KATTOLOUG EPEVVITEG TNG EPUNVEDOLUNG TEXVNTHG VONHOODVNG. ZUYKEKPLUEVA,
ETLYELPTHATOAOYOVV TTWG YLt CTHAVTLIKG TtpoPAfpaTo 6To oTTola 1) e€nyLopoTnTa eival amopaitnTn,
OMWG elval To TPOPATUATO GTOV TOHER TG LATPLKTIG, Bt TTpéTtel v avamThoooLpe AOGELG OL OTTOLEG
va elvan ev yevog enylotpeg, a€lomotwvrag pefddovg eEaywyng YapoKTnpLoTIKOV, Kot eKTTatdel-
OVTOG OUTAQ KOl KATALVONT& CUGTHHATO HXOVIKNG HABnong, OTwg eivan ta SEVTpa amopioemy.
Eva 6o emmiyeipnpo eival g ov KaTo@éPoupe var eENyoovpe pe akpifeta éva podpo KOUTL pe
post hoc mpocéyyion, ToTe yoti va pnv xpnoiponotjoovpe amevdiog tnv pébodo e€nynong yo vo
Aboovpe To TpOPAnpa wov Abvel To pocdpo kouti; Apod ot StatpLPr] Ao XOAOVUAGTE KOL TTPOTELVOLLE
post hoc peBddovg Pobpov KovuTLOY, BewpPOvILE CTHAVTLKO VOL ATTAVTI|GOVHE GE CCUTA TOL ETTLYELPTHOLTOL.
Qg TTPOg TO TPAOTO, TOL APOPE TNV EEXYWYT] XUPAKTNPLOTIKAOV Kol e€NYiopov amAdv pefddwv,
T’ OTL PaLlVETOL OTTO TG CUYKPLOELG TTPOCEYYLOEWMY GTOVG TTEPLOGHTEPOVG TTAEOV TOMELS, PaiveTon
wg 1 adtapovic fabid pddnon cvotnuatikd éxel kaddtepn amddoot ot TpoPfAnipata, 1 oroia
avaykooTikd Ba Buolaotel edv akolovBrjcouvpe SLopopeTLKT) TPOGEYYLOT), KATL TO OTTOL0 evOEYOpé-
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Vg va givar emlBuuntd oe kAmolovg Topelg, aAA& oiyovpa Sev elval va Yevikd GUUTEPACHA YL
6Movg Toug Topeig. e 0,TL popd To SeVTEPO EmLYELpNL, TO 0TTolo oTNpilel Twg o eiyape akpiPeig
post hoc peBodovg e€nynong padpov koutiov, dev Ba ypetaldpacToy To 8o To padpo KouTi, N
QTTAVTNGOT HOG ELVOL TTWG OTIG TEPLOCOTEPEG TEPUTTMOGELG EVOL KAAO GUGTNHA ENYLOHOTNTAS EKPPAL-
Cer 11g e€nynoelg oe drapopeTikd eminedo agaipeong amd Ta YoUPOKTNPLOTIKG TTOL PAETEL OTNV
£l60d0 TOL TO PAPO KOUTL, KA X PI|CLHOTTOLEL GUYKEKPLHEVT) OpOAOYIQL, 1) OTTOLX EiVAL TTPOGAPHOCLE-
VI OTOV TEALKO XPT|OTN).

I va To etdovpe avTod, afloTolovpE YPAPOLS YVOOTG, e TOVG 0TT0L0VG PItopel Vo avatopar-
otabel oOVOetn TANpOoPOpia e TPOTO O OTTOLOG ELVOLL VLY VDG LHOG OTO UMY OVEG KOl TAUTOX POV
kotavontog amd avBpnmovg. O Tpdmog mov To meTLYAivoLy aVTod elval 1) ehevBepio oL LITAPYEL
OTOV OPLOUO TNG CTHAGLOAOYLXG TV GTOLYXELWVY TOV Ypapov, kKabng kot otnv ekppactikoTnTa. [t
napaderypo otov ypago twv WikiData vrtépyovv akpég “témoclévinong” mov cuvdéovy avBpomoug
pe tomobeoieg, akpég "éxelZvvepyacteiMe” mov ocvvdéovv avBpwmoug pe avBpdmoug, kot peydho
TAR00C SLopopeTik®dV TOTWY KOPPWV, KoL OKUOV, GUVTACGOVTOG £TOL £VOV YPAPO YVAOONG TTOU
@épeL TepdoTio OYKO TANPOPOPIRG, Ge EVKOAX avaryvoipn poper. Tétolov TOTOL TANpPOPOpic
elval Wavikr] ya to mpoPAnpa tng e€nylopdTnTog, opkel va fpodpe TpOToug var mepLypafioupe
Ta ovoTHpoto ov BéAovpe va e€nyrnoouvpe alomoltdvtag tnv mTAnpogopio avtr. Me auvtdv Tov
TpOmo pmopel kaveig v maipvel e€nynoelg ekppacpéveg pe tnv opoloyio ko aflomoldvtag
OTHOGLOAOYIO TOV YPAPOV YVAOGTG.

H onpavtikétnta tng oporoyiog o€ 0,TL apop& TNV e€NyLopdTnTa, TNV eppnveia, tnv afloAoyn-
OT) KOUL TNV ETOTTELX HOVTEAWV ELVAL OTOV TTLPHVAL TG TTapovoag StatpLPrig, kot dev eivon éva {rjTnpo
70 omoio éxel pedetnOel extevdg od TNV epevvnTikT] KowodTnTa. Tt avtd TO AdYO, avoutTOEYLE
éva Bewpnrikd mAaiclo, mov mapovoaletal oto Ilpdto KepdAato tov Pacikod coOpaTog TNG
SwatpiPrig, To omolo alomolel TOV POPUAALGHO TV TEPLYPAPLKDOV AOYLKOV KoL 0pilet Tumikd pebo-
dovg yoe TNV aELoAdYN o1 KoL TNV EpUn Vel TAELVOUNTOVY PNXOVIKNG HaBnong, Paclopévn oe ypopoug
yvoong. Xto Agvtepo Kepddano tng dratpiPrig avadetkvioupe tn xpnotpotnto tov Bewpntikod
pog mAatcsiov, epoppolo- vrag to kot ekteAdvtog die€odikd metpdparta yioo TNV afloAdynon kot
™V eppnveior TRELVOUNTOV elkovag. Yotepa, oto Tpito xou to Tétapro Kepdahono, pehetipe
mo optlovTiar dvo Sropopetikd medio: ALTO TWV CUUPBOALKOV AVOTTUPACTACEDY HOVGLKNG, KL
g avayvoplong COVID-19 and nyntikd apyeio, mTévta vrd To Tpicpa TNG CHAVILIKOTNTOG TNG
opoloyiog o€ 0,TL a@opd TNV eENYLOPOTNTA KOL TNV EPUNVELX GLGTNUATOV PYXOVIKAG HABnong.

KepdAono 1: EEnynoeig Paoiopéveg o€ ypa@ovg yvwong

Y& auTO TO KEQAALO elGyoupe éva BewpnTikd TAaiclo o omoio PacileTol GTOV POPUAALGHO TWV
TEPLYPAPLKOV AOYLKGV, KoL pe o To omolo pmopel kaveig va opicet e€nyroelg ko pebddouvg
aELOAOYN GG, OL 0TT0lEC 0ELOTTOLOVY GTHAGLOAOYLKT] TTAN pOPOpiaL, Kat eKPpalovTaL X PTG LILOTOLOVTAG
OUYKEKPLLEVT) OpoAoYiaL.

To kepdAaio Eekivael pe Tov oplopod Tov cuvodov dedopévwv eENynong (explanation dataset),
TO OTOL0 €lvall GTOV TLPHVAL TOU TOL i BACT] YVOOTG TEPLYPAPIKDOV AOYLKOV. ZUYKeKPLUEVA,
opilovtag: o) éva Ae€lAdylo (vocabulary) mov amoteleiton amd tpioe Eévar petad tovg cOVOAX
OVOHATOV aTOP®Y, EVVOLOVY, kol pOAwV, B) éva ohvoro aiwpdtwv (TBox) oto omoio opilovtal
Ol GTHAGLOAOYLKES OXEoELS HeTAED TV dAPOopwV OpwV TTOL LYoV oTo AeELAdYLo, KaL Y) Eva
oVOVOAo artd Loy LPLopHOVG (ABOX) TTOL TTEPLYPAPOLY EVOV KOGHO, XPTOLHOTOLOVTAG TNV 0poAoYyia
mov éxel oplobel, éxovpe pla Pdomn yvoong meplypapikedv Aoyikdv. To emutAéov otolyelo mov
xpetaletan yio va amotedécel auth éva 6OVoAo dedopévwv e€Nynomng, elvat o oplopog piog eldikng
évvolog, tnv omoia tnv ovopdlovpe Exemplar, n omoio dev epmAéketor 6T0 GUVOAO TV AELOPATWV
(TBox), xou dev emnppedlet 1 oNUAGLOAOYIQ, 1] TO WTOTEAGHO TOV AAYOPIBH®V GUALOYLOTLKHC.
AvT’owTOoU, 11 £VVOLoL oLUTT] X PTICLHOTTOLELTOL GTO GUVOAO TwV Lo LPpLopodV (ABox) yio va yapaktnpicet
T avTikeipeva exeiva, T omoia dedopévou evog TOELVOUNTY HITOPOVDY VO OITELKOVIGTOVY GTO XWPO
TWV YOPAKTNPLOTIKOV VOGS TOELVOUNTT] TTOL emtBUPOVHE var €Ny COUE.
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‘Exovtag éva c0volo dedopévwv e€ynong, £XOVHE XTIOEL OVUCLAGTIKG Lt YEQUPOL PETOED eVOG
pobpoL KOLTLOD TRELVOUNTY, [E pioe TUTTLKG OpLopévn Bdor yvoong. Ze autd To Thaiclo opilovpe
eENYNOELG KAVOVWV, TTOL ETTLYELPODY VXL TTEPLYPAPOLVY TH) AELTOVPYICt TOL TAELVOUNTT] X PT)OLHOTTOLRD-
VTOG KAVOVEG TTOU elvai EKPPAGHEVOL e TNV opoAroyia Tov cLVOAOL dedopévwv e€ynong, Kabdg kot
ovTITopaBeTikéc eENYNOELS, OL OTTOLEG EMLYELPODV VO POVV OHAGLOAOYLKA KOVTX oevTutapadeiypo-
Ta yia évo §edopévo, Tov Tapd T GTHAGLOAOYLKT] OPOLOTN T, TOELVOHOVVTOL G SLOLPOPETLKT KATIYO-
pice. Ko yia toug o thmoug e€nyroenv avorttiooouvpe alyopiBpoug yio Tov ItoAoyLopd Toug, kat
Seiyvoupe WG To ATOTEAEGHATH AUTOV PItopel vaw eiva Xprioipa, Oxt pOvo yo T e€nynopotna,
OAAG KO YLOL TNV OTOXEVHEVT] OELOAOYNOT) TOELVOUNTOV.

O e€nynoelg oe popen kavovev Paciloviol 6To CNHACLOAOYIKE EPWTHATO. ZUYKEKPLUEVA,
oe éva oOvoro dedopévav eEnynong, k&be atoryeio mov popei va tpopodotnBei otov TaELvopnti
(exemplar) éxet pia 660 to dvvatdov avoarvtikdtepn meptypar. Emiong, k&Be odvoro amd tétola
otolyeia, éxel P 660 TO SLVATOV GLVOTTLKY) TEPLYPOPT], T) OTTOLX £XEL T HOPPT] CTIHAGLOAOYLKOD
EPWTNHATOG OV £XEL TX GLYKEKPLLEVX GTOLY el WG amavTrioelg. Emopévag, yia va meprypdjoupe tn
Aettovpyia evog TaELvopnTr) o€ auTd TO TAXLOL0, KAAOVRAGTE VO BPOVIE CTHOGLOAOYLKA EPWTHHATO,
Ol QUTOVTHOELG TWV OTOLWV €lval LTTOGVVOAO TV GTOLYEIWV TOL 0 TaELVOUNTHG TOELVOpEL O pLo
ovykekppévn katnyopio. Otov avtd Lo VEL, TOTE TO EPOTNIX PITOPEL VO HETALPPAOTEL GE KOVOVaL
NG Hoperig AN <oopa ToL onpactoloytkol epwtipatog> TOTE <tagvopeiton amd Tov TaLvoun-
1) 6T GLYKEKPLEVT) kKaTnyopio>. Emiong opifovrol k&moleg peTpikéc, oL omoieg Aapfdvouy v’ oy
NV emKAALYT peTafD TOV ATAVTICEOV EVOG GTHUGLOAOYIKOD EPWTHHATOC, KOl TWV GTOLYELWV
7OV 0 TaELVOUNTHG TAELVOEL OE [Lot CUYKEKPLUEVT] KXTYOPLQ, e GTOXO TNV TOCOTIKOMTOLNGT) TNG
LKAVOTITOG EVOG KOVOVAL VO TTEPLY PALPEL T AELTOVPYLO TOV TOELVOUTNTT] VIO T CUYKEKPLUEVT] KALTTYO-
pio. T Tov voAoyilopd Tétolwv Kavovev, ot dtatpiPr) mtapovoidlovtal dvo adyopibpot (KGrules
ko KGrules-H), ou Aemtopépeleg twv omoiwv eivon ektdg Tov mediov peAétng tng dwrpiprig. O
TPAOTOG elvor eEavTANTIKOG aAyOpLOpog exBeTIKTG TOALTAOKOTNTAG, EVD 0 debTEPOG eEepeLV e
EVPLOTIKA KPLTHPLAL TOV XDOPO TWV CNHOGLOAOYLKOV EPOTNUATOV TpooTabmvTiag va Ppel KoAég
e€nynoeg.

O dettepog ToMOG e€nynoewy mov mopovstdleton 6To Bewpntid TAaioto eivor oL avtutopadeTi-
kég eknynoelg (counterfactual explanations). Avtég tumikd opilovror wg éva eldyloto cOVoOAO
oAAay®Vv Tov e@oppolovton o éva dedopévo, wote var oAAGEeL 1) TpOPAeYn evog Takvountr oto
ovykekplévo dedopévo. Xto Bewpntikd mAaiclo mov avarttiEape, N évvola tng “elaytototnrag”
apopd TN onpocloloylky atdotaot Twv dedopévwy, 1 omola opileto pe faon To afldpoto Tov
vnapyovv 6to TBox tov cuvorov dedopévwv e€nynong. Iapdpown pe tig e€nynoelg oe popen
Kovovov, 1 éa Paciletal 6To yeyovog mwg kdbe otolyeio Tov cuvoroL dedopévav éxel P 660
7O SUVATOV OVOAUTIKY] TEPLYPOPT] YIVETAL, KOL TWG HETAED RUTMOV TWV AVAAVTIKGOV TTEPLYPAPOV
prtopovpe va opicovpe pétpa amdotocng. Emopévag, Yoy voupe yioe To KOVTIVOTEPO GHAGLOAOYLK
dedopévo to omoio Ta€Lvopeital oe Soupopetikn Katnyopia artd TOV TAELVOUNTH, KoL TO OTTOTEAEG O
EXEL TN HOPYPT] CAAOY®V 6TOVG LoXLpLlopots (ABox) tov cuvorov dedopévwv. Tia Tov vTOAOYLONO
TéTowwv e€nynoewy, ot datplPr] mpoteivoupe évav alydpiBpo, o omoiog mpoimobétel k&moLeg
QITAOTIOLCELG 0TV LTTOKELpEVT) BAoT YVOOTG. Zuykekpipéva Bewpoipe mTwg kat To a€idporta (TBox),
KOG ko ot toyvplopoi (ABox) Tov cuvorov dedopévmv, prtopoiv va avartapaotnBodv wg katevdu-
vopevor ypagot. Emeirta 1o tpofAnpa wov kadlovpaote vo AOooUpe eivat éva tpOPAnpa atdoToong
YPOPWV, TO 0T0l0 SLGTLYMG ELVAL YVOOTO TG avrkeL 6TV KA&oT moAvmAokotntag NP-hard, ko
dev Ba elvar epktd ya peydho oovolo dedopévwv. Etol k&voupe pia mepetéipw amlomoinom,
K®LKOTTOLOVTAG TNV AT popopic artd e€epyOpeveg ok pég 6TOLS KOUPBOUG TPOEAEVOTIC TOUG, peETATPE-
TWVTOG TO TPOPNHa oe éva TPOPANHA aTdGTAONG GUVOAWY atd GOVOAX, TO oTmoio elvor TOAD
€UKOAOTEPO VO ALDEL.

Zuvoyilovtog, To TPOTO KEPAAALO ELodyeL éva KeVoPavEég BewpnTikd TAicLO, TO 00io pHécw
TWV TEPLYPOPLKOV AOYIKOV 0pilel onpacloloyikég eneEnynoelg Talvountov oe Hoper] Kavovwv
KOL G€ HOPPY avTLTopabécewy, KoL TPOTELVEL TPOTOUG YLt TOV LITOAOYLGHO Tovg. A&lomoldvtag
oty Vv Wéa, puropel kowvelg va mapdlel e€nynoelg yio To€LvounTég, X prooToLOvTag Opwg 0,TL
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opoloyia ekeivog BéAeL, kan éxovtag opicel Tn onpactoloyic TG oporoyiag avThg e pabnpatiky
avoTnpoTNTA o€ P Paor yvoong meptypagikdv Aoykodv. Etol, propolpe vo kKatookevdooupe
oVvola dedopévav eEfynong oto omoia ta dedopéva TePLYpAPOVTOL e OPOAOYIX TPOCOAPHOGHEVT)
OTOV TEALKO XPTOTI OV AVOHEVOUHE XAANAETLOPACEL e TO GOOTNHA, KoL VA SOCOVHE eENYNOELG
o010 KatdAAnAo eminedo agpaipeong. T mapddeypo ot e€nynoelg mov Ba dwboiv ce éva yrotpd
Bo xprnopomolotv drapopetikr] oporoyio ad avtég mov B dwbolbv oe évav pnxavikd, 1 évay

TPOYPAPUATLOT.

Kepahaio 2: Inpuocioloyikég eENynoeig yla teElvounTtég 1Ko vag

370 deTEPO KEPAAALO TWV TEPLEXOUEVWOV TNG STPLPNC epapprolovpie ekTeVAOG TO BewpnTikd TAXi-
010 1oL avatTOYXONKe GTO TPONYOOHEVO Ke@P&ALo, Yo TNV eEfynon kot tnv aELoAdynoT TaLvopn-
OV elkovag. O kOpLog Adyog mov emhé€aye TOUG TAELVOUNTEG ELKOVOG YLt UTO TO KEPAAOLO lvat
1 Vmopkn oxeTikdv dovAeldv otV meEpLoyr, OTIG omoieg éxel avadelyBel 1 onpavTIKOTTR TNG
onpocloloyiag o 0,TL apopd TNV eENYLOOTNTA. AUTO YIVETOL APKETA TPOPAVEG OV CKEPTOVHE
WG 0 XWPOG TWV ELKOVOKLTTAPWV (pixels), Tov omoiov dpovv o Ta€vopntég etkdvac, dev eivou 1)
QVOTALPAGTACT) TTOL XTLLOVHE OTO HLOAD pog oy AvBpwTTtoL dTay KoLTdyte pio pwtoypopio. Avtidé-
TG, epeig AVTIAPPAVOPACTE TIG ELKOVES WG EVOL GDVOAO TTLO G UPDOV EVVOLOV, KOl CXEGEWMV HETAED
TOUG, TTOV TEPLYPAPOLV TO TL aelkovileTal.

To Tp®OTO GVUVOAO TELPAPATWY TTOL TAPOVLCLALETOL GE QTO TO KEPAAALO APopd TO GVVOAO
dedopévev CLEVR-Hans3. Autd mepiéyel ouvOeTikég eLcdVeG oL autelkovi{ouy TpLodidotato oY po-
Ta, eved KaBe elkOva GLVOSEVETUL ATTO PLOL GTHOGLOAOYLKY TLEPLYPOLPT], TTOL ALPOPL TO XPOHUX, TO
oxfHa, To LALKO, To péyebog, kot tnv tomobesio twv avtikelpévov mov aetkovilovrat. Ot elkOveg
TOL GUVOAOL dedopévmv elval YwPLopéVeg o TPeLg EEveg PeTaED TOUG KATNYOpLeg, OpLopéveg e faor
ovykekpléva avtikeipeva mov ametkoviCovral. Ta mapdderypo n pia amd TG TPELS KT YOpieg
opiletan wg “Oretkdveg ov ametkovilovy évay peyddo kOBo ko évay peydho kOAVEpo”. H idatepod-
TNTO TTOL €XEL ALTO TO GOVOAO SedopEVV elvat TG oL SO amTd TIG TPELG KATNYOpieg £X0LV KATOLOUG
eokeppéva oplopévoug mapdyovteg ovyyvong (confounding factors). T map&derypo, oTor GOVOAX
ekmaidevong kat etaAnBevong, oTLg eLkOVEG TNG TPWOTNG KaTnyopiog (Heydhog kOPog ko peydAog
KOALVEPOG), 0 peydhog kvPog eivon mhvta ypodpatog ykpt. Etol avopévoupe povtéha mov eivon
eKTTOUOEVPEVOL G€ ALTO TO GVVOAO dedopévwv va LLOBETCOVY AVTOVG TOVG TAPAYOVTEG GUYXVOTG,
TO 07t010 VOTEPQ, e TIG HEBOSOVG EENYNOHOTNTAG PITOPOVHE VXL TTPOGTIAOGOVHE VAL TO EVTOTIGOUYLE.
Méow TV TELPUpPATOV HOg deiyVOUpE Twg KaL oL eENyNoelg oe HOpPT] KAVOVKV, KoL oL avTLopobde-
TLKéG EENYNOELS, PITopolV Vo ovadelEOUV TLG TOAMGELS TOV VITOKEILEVOUL TAELVOUNTH, HE Ta KOADTEPXL
TLOLOTLKG UTOTEAEGHOTO VO TTPOKDITTOUV OTAV GUGGOPEDOVHE TO GOVOAO OAWV TOV AVTLITOPAOETIKOV
e€nynoewv (global counterfactuals) oe éva cOvoro dedopévwv e€noynong.

To debtepo meipapa mTov mTapovodletal éyve 6to obvoro dedopévwv CUB, to omoio mepiéyel
ELKOVEG TTTNVOV, XWPLOPEVEG € £1dT) TTNV®V, Ol 0TT0ieG GLVOSEDOVTOL ATTO CTHOGLOAOYLKEG TTEPLY POL-
(P£G TTOL APOPODV T XOUPAKTNPLOTIKA TOL K&Be TN voL. Xe avTd T0 cOVOAO dedopévv avartopiyxOn-
Ke évo Ttelpalon e TEALKOVG X PTIOTEG, e 0KOTO T GUYKPLOT) TG TTPOoTELVOUEVNG HEBOSOL yia avTimo-
paBetucég eEnyrioels, pe vdpyovoeg SOLAELEG TTOL APOPOVV CTIHAGLOAOYLKES EENYTOELS. TUYKEKPL-
péva 6Toug XproTeg SLVOTAV P ap)LKT] ELKOVA, kal 00 avTutapabeTikég eLkOVEG, KoL OL XPHiOTEG
KoAoOVTOY Vo emAéEoLY ToLa atd TIG oV TLITOPaDETIKEG ELKOVEG ElVOL OTHAGLOAOYLKA KOVTLVOTEPT)
otnv apytkn. Evd 1o yevikd ocupmépocpa Tov mELPAPATOS ELVOL TG OL TEPLEGOTEPOL XPHjoTEG deV
propovoav va emthéEovv pe oryovpld pix amd Tig dvo ewkoveg, 1 Sikn pog pébodog avadeiyOnke
WG TPOTIUOTEPT Yl Tovg Xpriotes. Kt aloonpeiwto ed@ eival mwg ol SoVAELES pe TIG oToieg
oUYKPLONKOE AVIKOUV 0TIV oLKoYévelx Twv pefddwv “dompov koution”, kabng xpetdlovtal Tpdo-
Baon ot fapn Tov vITOKEIPEVOL POVTELOV, VD 1) SIKT] pag TTpoTevOpevT péBodog eivar “podpou
KOLTLOV”.

To TelevTatio GVVOAO TTELPAPATWV TTOL APOPOLY TAELVOUNTEG ELKOVOS, £YLVE G £VOL TTLO PEAALOTL-
KO TAiCLO, OOV eTLYeLpOVHE var eENYHOOUHE YEVIKOD GKOTTOU TaLVOUNTEG, eKTTaldeVPEVOLG O
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Swadedopéva ovvora dedopévwv omwg eivar to ImageNet ko to PLACES, xpnollomotdvtog »g
obvola dedopévwv e€Nynong, ovvola SedopEVWVY TOL PEPOLY GTUAGLOAOYLKT) TTANpOPOpla OTTWG
eivar 1o COCO ko To Visual Genome. e OAeG TIC TEPLMTOCELS GE AUTO TO GUVOAO TELPAUATWV, T
opoloyia eivat Paciopévn atnv tepapyio vITEPW VOV Kot LITOVOHWY Tov WordNet. To amotéleopa
QUTOV TOV TELPAPATOV ELVAL JLLOL TTOLOTLKT] OVAALOT) TOV OTTOTEAECUATOV TWV TPOTELVOPEVOY ALAYO-
piBpwv, ko pice cvlrtnon yLor T GNUOVTIKOTNHTO TNG OPOAOYING KOL TNG ONpacloloyiag yio To
npoPAnpa g e€nynong xar tng afordoynong adiapavav cvotnpdtwv. Ta mopddetypa, évog
kavovag eEnynong evog tavopnt ekmaidevpévou oto ImageNet ov tpoékvye tav: “Av n elkdva
amelkovilel (Mo To omolo popdel katL, TOTE 1) elkOva Tavopeiton wg katowkidio {Ho”. Tétolol
KOWVOVEG HITOPOVV Vo €lvail TTOAD XPHGLHOL YL TNV ATTOGPAARATOGCT) GLOTNUATWY. T Topdderypa o
OLYKEKPLUEVOG KoVOVOG Bt TTatpOTPLVE TOUG TTPOYPUHUATIOTES TOV HOVTEAOL VoL EAEYEOLV av dGOLY
oTOV TAELVOUNTH ELKOVEG OTTO Gy pLow {da TTov Popolv avtikeipeva, av autég Ba tavopnBoiv (ec@o-
péva) g karotkidia {da. Eva GAN0 topdderypo ortd Tor TELPAPATO TOL KEGAAXLOV, APOPR KOAVOVEG
e€nynong yo tavopunTr wov eiye exkmadevtel 6to cOvoro dedopévwv PLACES. Xe avtd to meipapa,
e éEaie pe Paom Tov mivako cOYYLONG, TIG O00 Lo PITePOEPEVES YLIAL TOV TAELVOUNTT] KATNYOplieg,
oL omoieg HTav “dpopog epripov” (desert road) ka “Gppog epfipov” (desert sand). Ou xavdveg mov
npoéxuPiay xouv e€opetikd evilapépov, Kabmg ylo TNV kartnyopia “Gppog eprfpov”, o€ GAoLG Tovg
KQVOVEG TTOL PHEYLOTOTOLOVGOV TIG HETPLKEG, eppoavildtav wg otowyeio péoa 1 évvowa “dpopog”.
Me Béon autd, kabog kat T YopnAy amddoon Tov tavountr, Kot Tn obyxuot) twv d0o avtdv
KOTNYOPLOV, DTTOBETOVE TWG OL ETIKETES TV dVO AVTOV KATNYOPLOV divovtal avamodo otd Tovg
Sdnpovpyolc Tov GLVOAOL. AVTIOTOLYX EVOLPEPOVTOL ATTOTEAECHATO TTPOKVITOLY KOL QIO TNV
e@appoyr Tov alyopifpov yia g avturapabetikég eEnynoelg, 6o yix Tapadelypo evromicople
WG T povréda ekmondevpéva oto PLACES eival moAwpéva otav vmdpyel {do otnv elkodva, TNV
TaELVOPODY GUYVE G KTNVIOTPLO, AKOP KoL oV 1) eLkOVaL elvot eVTEADG SLtpopeTikdg XD pog (TT.).
kpePatoxdpopa 1) kovliva).

Suvoilovtag, To KeQPAANLO VTO aVASELKVDEL KUPIWG TTOLOTLKA, AL GE TTEPUTTMOGELG KL TTOGO-
TIKQ, TN XPNOLHOTNTA TOV TTPOTELVOHEVOL BewpnTikod mAatoiov. Metakd twv TOmwv e€nynoewv
(kavoveg, avtutapabécels), OAeg pavépwoay XproLun TANPOPopio Yio TOUG TAELVOUNTEG TTOU pEAe-
ONKOY, v éyvay epeoviy kot Tow BeTikd kol Tor apvnTikd TV Slapdpwv TOTWV aAyopibpwy,
ot omoiot éxyovv peydro meplBopro yio v Bedtiotomownfovv. To Paocikd cupmépaocpo ovtod Tov
KeQoAaiov elvat 1) ONUAVTIKOTHTA TOL OPLoHOD evOg “KahoD” cuvodov dedopévwv e€fynong, kot
NG KATAAANANG opoAroyiog, kaBdS elval OVCLAOTIKE O POVOG TTOPAYOVTOG TOL emtnppedlel TNV
TOLOTNTO TWV eENYNOEWY, Kot TO Ti AT poopla avtég petadidovv. TéNog, culntajie mwG oL kavoveg
KO 0L Yevikevoelg Tov avtimapadécenv (global counterfactuals) prropoidv va xpnotpomonBoiv yuo
T GTOXEVHEVT) KELOAOYNOT) TAELVOUNTOV, OTTWG Eival Yo TTotpAOELYHOL O EVTOTLOPOG CUYKEKPLUEVOV
TOADCEWV.

KepaAono 3: EEnylopotnro kat eppunveio 6to nedio twv cupfoAikmv
AVATTAPACGTACE®MV HOVOIKNG

370 TPITO KEPAAOLO TV TTEPLEXOPEVLVY TNG SLaTpLPrig peAeTdTon o 0pLldvTLo TO TTedio TV GUPPOAL-
KOV QVOTTOPUOTACEW®Y HOVOLKNG, TAVTX LILO TO TPLOPA TNG CNUAVTIKOTNTAG TNG 0poAoylag oe
0,1t apopd v afloAdynon ko v e€nynopotnta. O Adyog mov emedéxOnkov or cupPoAtkég
ovVoTapaoTAoELG elvol 1) eVKOALa doryeiplong koL avaktnong dedopévwy, Ge OYECT) HE NXTTIKK
apxeio povoikng, kabhg avtd eivan evpéwg drabéoipa kal dev LITOKEWVTOL GTOVG ISLOVG VOULKODG
TEPLOPLOPOVG OYETLKA e TVEVPATIKA dikaopato. EmumrpocBeta, amd cupforikég avamapaotaoelg
propei kovelg evkodotepa va e€dyel TAnpogopio oxetikn pe tn Bewpio Tng povokne. Tevikd 1
UTTOAOYLOTLKY povoLtkoloyia éxel peletnBel extevadg ko elval yvootég ot duokodieg mov @épet,
Omwg eivar yio mopddertypa n dop€n TAnpopopiag oe TOAAATAGL Xpovikd 0pr, 1) OTTWG elvan 1
UTTOKELHEVIKOTN T G O,TL apopd eTLcéTeG dedopévv. Xe avtd To ke@aAato peAeTodvTon 500 TpoPAr-
poto: 1) aEloAOYN T CUOTNHATOY YLO TNV AUTOHATH 60VOEST) HOVGLKTG, KO 1] vty vepLoT) eidoug
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MOVGIKTG.

H a&loldynon cvotnpétwv mov cuvBétovv povoikr eival e€oupetikd Svokolo mpofAnpa, ye-
yovog Tov Tt y&lel KUPiwg OTTd TNV LITOKEWEVIKOTNTA TG HOUGLKTG, AAAX Kot artd Tig TOoeg Sroupo-
PETLKEG TTTUYEG TTOL pPITopel va Exel Eva KOPPATL pouotknig. T mapdderypa popet 1 povoikr evog
OUGTHHOTOG Vo apécelL TePLoGOTEPO o€ KATtola opdda avBpmmwv oe oxéon pe AAAOUG, Kol Pitopel
poe petpikry o€LoAdynong va eivo kKoADTepT) yior KOO0 HOVTELD, eVE QAL HeTpLkr] YELpOTEPT).
XpNoYomoLdvVTaG TNV KATAAANAT avortapdotoot) dedopévmv kot To KatdAANAo ertinedo agaipe-
oG, LITOoPODLE Vo ELOAOYTIGOVHE TETOLO GUGTHHATA (OG TTPOG GUYKEKPLUEVES TTTUXEG TOVG. LUYKEKPL-
péva ot dwatpiPr), dovAévovtag pe avaapidoTacT) TG HOVGLKNG WG AAANAOUYit GLVOAWY ATTO
voteg, opilovpe évav pebodikd TpoTo e ToV omolo propel kavelg v opicel petpikég afloAdynong,
o0 omoiog Paciletar oe povoikoBewpnTikég Oéeg Omwg eivan to Tonnetz, kot e amAég mPAEELS
oLVOAWV. 270 TAaiolo avtd opllovpe TEoGEPO TETOLX EVPLOTLKA KPLTHpLaL AELOAOYNOTG, KoL e
auT& cLYKpivoupe SapopeTik povtéda ovvBeong povoiknic. Exovtag wg Bdon v aklordynon
amd avBpodIoug (LOVoLKOUG KaL |T)), PALVETAL TWG TETOLO KPLTHPLAL PITOPOoDV vaL Xprotporotnfoiy
yla TNV mtpocéyytor tov mpoPAnpatog g aklordynong. op’dla awtd, yio va xpnoipomonfovv
WG oo TnNpd ko EpmeTa KpLerpla a€loAdynong, Oa mpémel va Paciotovv mo otifopd otn Oewpio
NG HOLoLKTG kaBmG Ta KpLtrpLa o epeig oploope Pacifovior oe LITOBECELS KoL TPATNPTICELS.
I va To etdovpe avtod Ba pémel va avarttvEovpe pebddoug yia TNV kwdikomoinemn tng Bewpiog
TNG HOUGLKNG G€ YPAPOULG YVMOGTG, TO 0TTolo eival evepyod epeuvntiko medio.

To devtepo mpOPANa TOL peleTdEe G GUHPBOALKES AVOTTOPAOTAGELS LOVOLKNAG ELVOL 1) VoY V-
pton eidoug povotkng. Avtd to TpoPAnpa éxel evdiapépovoeg SUGKOAIEG, OTWG ELVAL 1) LTTOKELHEVL-
KOTNTA OTX €101 LOVOLKTG, 1) TTOLKIA LD KO AVIOGOPOTTLX TV deSOUEVWV, 1) HETAPBOAT TV XOpOK TN PL-
OTIK®OV TOV 100V HOVOLKTG avi To Xpovia, kabog kot 1) cupfoAlkr) avarmapiotact 1 id, otnv
ool dev eival KWSLKOTONPEVT) TANPOPOPLa TOL NXOXPWOUATOG KoL TNG EPUNVeLAC, 1) ool yix
kéutola €101 eivan kaBoprotiky. Eva akdpa evdiopépov avtod Tov TpofAHaTog eivol T KATOLEG
amd TG amodotikdTepeg poceyyioels ot PiAloypapio eivor e€nyiopeg. Svykekpipéva, pe alyo-
piBpoug avayvaplong TpoTHITWVY, EEAYOUV HOVOLKA BELATO OITO TNV TOPTLTOVPX, KL GTI) CUVEXELR
XPNOHOTOLOVTAG TNV VITOPEN HOLGLKOV BePATOV GOV YOPOKTNPLOTIKG ekmatdebovy amrAovg Ko
e€ENYNOLHOLG TOELVOUNTES YL TO TTPOPAN O TNG vy vedpLong eldoug. AvTd HOG KLVITOTTOLEL TPOTWV
va tpoceyyicovpe 1o TPOPANHA XPTCLHOTOLOVTAS HOVOSLAGTOTO GUVEALKTIKA SikTuva, Tow 0TTOolN
evOEXOHEVWS VO HITOPODY v HdBouv povotkd Bépata Owg oL alyopLBpoL vy vipLong Tpotinwy,
Kot Oe0TEPOV VoL HEAETTGOVE TNV ENYLOLHOTN T 6TO TPOPANHO ALTO, CLYKPLVOVTAG SLALPOPETLKEG
HeBddoug, KoL HEAETMOVTOG TTOLOTIKG T XPTOLUOTNTA TNG 0POAOYIOG TTOV YPNOLHLOTOLOVVTOL OTLG
e€nynoelg, ota mhaiola tng yevikotepng éag mov culntape otr datpifP).

T var peAeTrioovpe Th XPNOLUOTNTR TWV HOVOSLAGTATWY GUVEALKTIKOV SIKTOWV 0§ HOVTEAO
yla GUHPOALKEG OVATTAPAOTAGELS HOVOLKTG, 0XEOLACOE KoL EKTEAECOE £Vl GUVOAO TTELPAPATWV
070 omoio kpatovoope otobepd To TANOOG eKTALSEVCIHWY TAPUPETPWV, KoL TO deKTLKO TTESLO TWV
Sk TOWV, eved petoPfAntd frav to fabog SikTOWV KaL TO TAKTOG TV GLVEALKTIKGOV TTuprvev. Emut-
pocBeta melpapatioTriikope pe pio Sikn pag kevopovn wéa, otnv omoia oELOTOLOVHE TNV KPYLKT]
OAANAOL- Yl IOV AVATTOPLOTA TY) HOVGLKY, 0 TOAAATAEG X povikég avalboelg (MuSeRe - Multi-
ple Sequence Resolution). H 18éa awtr) oxomevet ) “SievkdAvvon” twv Siktdwv vo pdbouvv povotkd
Oépoarta mov emovolopévovron petd ard peydho xpovikod dStdotnpa, Kabdg Kot TANpoQopio yio Tn
Sopr) NG povoikrig wov déxovtan otny elcodo. Ta amoTeAéUATH AVTOV TOV TELPAPATWY Bewpoiyte
WG elval TOAD evdloupépovto otd didpopeg amoelg. IIpdtwv, ToAlEg amo TIg ekdOYXEG TWV GLVEALK-
TIKOV SIKTOWV oL oyedidooe, Eemepdoave oe atddoon T kaAbTepa povtéha tng PLiAloypapiag,
Ko pddioTto ot kdutoteg mepurtdoelg katd oAl ( 15% otn petpikn F1 score). Avtd avapevotov
o€ k&molo Pabpod, av xortdéel kaveig mwg éxovv vepteprioet T Pfabid vevpwvikd dikTva oe GAAX
media dedopévav TEPav TwV GUHPOAKOV OVAITTOPACTAOE®Y HOVGLKNG. Ae0TEPOV, OTA TELPAPATA
pac @dvnke Too “mAatid” SikTuo VoL glvol GLGTHATIKG KoAUTEpX otd T “Pabd” wg Tpog TNg
enidoor tovg. Avtd eivon éva eviiapépov GUUTEPAGH Yior TNV GXeSLAOT KOL TNV XPYLTEKTOVLKN
HOVOSLACTATWV GUVEALKTIKGOV VELPWVLIKOV SIKTOWV ELPUTEPX, TO OTOLO €V elval EKTOG TTedIOL TNG
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nopovoag dtpiPric, eivor k&t mov ailel vor peretnOei o SieEodikd. TEAOG atd TO TELPOPATA PHOG
e€Qyoupe KQITOLOL ETLTAEOV GUNITEPAGHATA TTOL APOPOVVY TNV TPOGEYYLOT) TNG adOvaung enifredng,
KOL T CTHAVTIKOTNTR TOU HKOUG TOU HOUGLKOD QTOGTAGHATOC oL PAémel otnyv €i6080 TOL TO
VELPWVLKO dikTLO KGOe GTLYHN, KoL TG AVLTES eTNPPedlovTaL aTd TNV AVIGGOPOTTiN, KOl TV 0LGA-
(QELOL TTOV LTTAPYEL OTLG ETIKETEG TTOL Kaheiton vor péBet.

BéPaia, 6mwg mpoovapépbnke, moAAEG amd TIg vITApPYOLOES TpooeyYioels Tng PipAoypapiag
elvon ev yevag eEnyrotpeg, k&t To omoio eival S0okoAo va toootikomotnBel. v mpaypatikdTTa,
Bewpovpe TWG VITAPYOLY TEPLTTAOCELS EPAPHOYDV, OTLG oToieg dev akilel va BuolaoTel 1) ev yevdg
eppnvevopoTnTe XApnv tng Pedtioong g enidoong. Eva tétoto mopaderypo epoppoyng Oa o
EVOLG HOLGLKOG 0 0TTOL0G EXEL YPAEL Lo TOPTLTOVPQ, Kot OEAEL VO oKePTEL LOEEG YLOL TNV EVOPYTIOTPW-
on. Ia ekeivov Ba rjtov oA 1o Ypriotpo, Tépa amd Tor €181 HOVOLKTG, Vo LITaPXEL StkaloAdynom
Baciopévn oe povotkd Bépata oL EVTOMIGTNKAY OTNV TOPTLTOVPA WG CHAVTIKA Yl TO k&Be
eldoc. Me autd To okemtTiKO, pedeTioope post hoc peBodovg e€nynong yia mpoomabrcovpe va
OLVOLKTT|GOUE TNV EPUNVELGILOTN T TTOL BuoLaoope pe TNV adlopavr) Tpocéyylomn TV Babiodv cuve-
ATV Siktowv. H mpdytn owkoyévela pebddwv mov epappooope ftav ot péBodot onpoavtikdTnTag
xopoktnplotikedv (feature importance). Avtég apéowg EavNKov mwg dev elval XpriGLUES Yo TO
TPOPANHQ, KoL pTopel var elvo ev SUVAEL TTOPATTAAVLTIKES, KOBDG 0 XMPOS TWV XAPAKTIPLOTLKOV
(pianorolls - mivakeg pe Siotaon 128 x ¢, 6mov t 1) dikpkela, o€ avdlvor cuvnBwg 24 Seiypoto v
TéTapTo) elvort TOAD oOvOetoc. Ta mopaderypo popel o€ Evor KOPPUATL HOUGLKTG VO EHPAVIOTEL GOV
ONHAVTLKO XXPAKTNPLOTIKO Hiot VOTO TTOV TToETAL L GUYKEKPLUEVT) GTLYHT), QAL dev yvwpilovpe
ortd TO eVPUTEPO KOUPATL yiorTi 1) vota BewpnOnice onpavtikn, 0dnyovtog pog va k&voupe vitobéoelg
aval0- ovtag tnVv e€fynon, oL onoieg propei va eivon eopadpévec. Eva dhlo mopaderypo elvo mog
TOAAEG POPEC EPPaVLLOTAV GOV GTHOVTLIKO XOPOKTNPLOTIKO 1) EAAELYT) VOTOV GE €V GLYKEKPLUEVO
€0POG KOL L X POVLKT] OTLYHT], TO 07010 AL ptopel v oSy GEL KATTOLOV X PTG TT GTO VO TTOPOTTAQL-
vnBel. Baoiopévol otnv 1déa pag yio e€nynoeLg mov XpnoLlonoloby cUYKeKPLHEVT] oporoyio Kot
QVOLPEPOVTOL GE SLAPOPETLKA ETTLTESO AUPALPESTIG, TPOTOTOLCOE KAITTOLOVG OAYOPiBHOLG oNpOoVTL-
KOTNTAG XAUPAKTNPLOTIKOV. ZUYKEKPLLEVA, VITAPYEL Lo otkoyévelx pebddwv ot omoieg Ydyvouv va
Bpouv oNHOVTIKG XOPOKTNPLOTIKA G HLO YKOOUGLAVY YELTOVLA YOP® ortd évor SeSOPEVO, ETTLYELP®D-
vtog vou oty Tov ToELvounTr pe ev yevag e€nynoipa povtéha. Epeic tpomomotoaype autég Tig
peBddovg pe dbo tpomovg. Apykd mpooBécape pio cuvaptnon pe medio 0pLGHOD TOV XWOPO TWV
XOUPOKTNPLOTIKGOV Kot 7edio TIH®OV TNV TAnpogopio mov BéAovpe va eppaviletor oty e€Rynon.
SUYKEKPIHEVY, TO HOVTEAO oL kadeitar va pypnBet tov takvoun- tM déxetal otnv elcodd Tov
TN GUXVOTNTA ERPAVIONG SLACTNHATOV VOTMV GTI HOUGLKT], ovTi Ylo OAOKANPO TO KOMPUATL GE
avamapdotact) pianoroll. EminpocOeta, opicape tn yettovid Baciopévol atnv emBopnti opoloyio
(o TpaTA VOTGOV), AVTL YLOL YKOOVGLAVY) GTO X(DPO TMOV XAPUKTNPLOTLKOV, opilovtag tnv amdota-
o) 6TO XWPO TNG oUYVOTNTAG G TNUATWY VOT®V. TéNoG, pedetrioayie kot dGAAlovg TOTOLG e€nyrioe-
WV, OTTOG elvol OTEC TOV XOPOKTNPLOTIKOV TaApadelypdTomv ko KpLtikng (prototypes and criti-
cisms), ot 010ieg Ve dev TOV TOGO LKAVOTTONTIKEG GOV eENYNOELS TV HOVTEAWV, avEDELEaY KATTOLL
XPHon TAnpogopia, 6Twg eivor kot dedopéva Ta omoia £xovv pdAlov Adbog eTikéTec.

Svvoyilovtag, oto KePAAoto avTo peletdye opllovTia To medio TV GUHPOALKOV avoTTapaoTd-
OEWV HOVGLKNG, Kot avadetéole T onpavTikOTNTR TNG oporoyiag o€ 0,1t apopd eEnyLlopdtnTa Ko
aELOAOYNOT), KoL TG YLOL TOV GKOTO CLUTO PITOPEL VXL GUVELCPEPEL TUTTILKA CLVOTTPAGTIHEVT] YVOOT)
povoikng Bewpiog. Zxetikd pe Tnv a&loAdynoT, OTTKG YL TO CUGTHHOTO HNYXAVIKHG HETAPPOCTG
Xpnotpomotobvtal cOVOeTeG TPOCEYYIOELS Yia TNV OELOAOYNOT) SLOUPOPETIKDV TTTUXDOV TWV HETOUP-
pacewv (my. akpifela, cuvtaktikn opBoTnTR, EAey)x0g Y emlPAaPr) oTEPEOTU), ETOL KOLL YLOL TNV
avtopath ovvBeon povotkng xpetdlovTon StopopeTikd pETpa oL v Aapfavouy v’ oYn dioupopeTt-
KEC MTUYEG TNG HOUOIKNAG. Xe avTd To TAaiolo, poteivape pia pébodo yuo tnv mocotikomoinon
anAov 18e®v mov oxetilovton pe UVOAQ VOT®OV KoL pe TNV appovia Tovg. Eva tétoto cvotnpa
mpémel va elvat Yepd Paciopévo oe évol HouotkoBemprTikd TAOIGLO TO 0TTOL0 PG KLVITOTOLEL Yo
TNV TUTLKT] AVATAPAOTAOT] Lo UVOET®VY evvolmdv artd T povotkr] Bewpic. EmumAéov, eEnyovrag
TAL GUOTHHOTO YL TNV QVOYVOPLOT) EL80VG HOVG KNG, otkOp KaL e TTOAD aAég HovoLKoBewpnTLKEG
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EVVOLEG, OTTMG ELVALL 1] EPPAVLOT) HOVOLKOV SLULGTNHATWV OTT HOVGLKT), TopdEale eENYT oL OL OTToleg
Nty akpLPeig, ko oAD o atAég 6TV KOTAVONGT] YL KATTOLOV XPHOTH 0ITO QUTEG TNG CTHOVTLKO-
TNTOG XXPOKTNPLOTIKGOV. Avadeiape emtiong ) onpovtikdTnTo TNG €ENYNOLUOTNTAG KOO KOL Yot
npofApata ota ontola dev pépel peydhn tpotepondtnTa, Kabndg dev facilovTal oe aLTA KPLOLUES
aropaoelg, av kai 1 afic g eivat Sdokoro va mocotikomonBei. Amd mAevpdg adAnienidpaong
avBphmov-vToAoyloTh Yo topddetypa, dev éxel toon akia 15% Yniotepn Ty tng petpikrg F1-
score 660 éxeL 1 auttoAdynon g e€nfynong pe povowkd Bépata. Télog, ota mepiocodTEpa medie
VITaPYEL 1) APePaLOTNTA, 1) ACAPELX KOLL T) DTTOKELHEVIKOTNTO OTLG £TLKETEG OedOPEVWV, T OTTOLX ELvaLL
evioyvpéva ota eidn povoikrg. Etol, pedetodvrog autd to mpdPAnpe, avadetkvoeTot 1) eEnyLooTn-
TaL pe Xprion KaTAAANANG 0poAoYiaG WG XPHOLHO EPYOAELD YL VO KOATALVOT)GOVE T HOVTEAQL, KOl
Ta cVvoAa Sedopévwy oTo OTTol TO EKTTOULOEVOUJE.

KepaAono 4: EEnyopotnra ywx tnv avayvopion COVID-19 ano
apxela X0V

370 TETOPTO KoL TEAELTOUO KEPAAALO TWV TEPLEXOUEVOV TNG STpLPric, pedetdyle To TPOPANp
g avayvoplong COVID-19 amd nyoypogroelg Prixe, ovamvong kot opiAiag. Ztnv apyr Tng
TOVONHLOG 1) TPOGOXT] TNG EPEVVITIKNG KOLVOTNTOG GTPAPNKE GTO VoL avamtOEEL TPOTOTLITEG AVOELG
ota dtpopa kevopavr] mpoPAnpata mov eiyav mpokOYEL Adyw TOL OV, OWG 1] KATOHETPTOT)
TEPLOTATLKOV, 1] CLAAOYT SNHOYPAPLKOV GTOLXELWVY, 1) TTPOPAEYT TEPLOTATIKGOV Kot 1) Stdyvwaor.
Mio amd autég Tig ev Suvdypiel ADGELG TAV 1] VLY VOPLOT) TOU LoD 0T NXTTLKG aLpXEiot TTOU €XOLV
nxoypaenOei amd kvnTod. Amd TOLG TPOTOVS Pjveg KLOAaG Eekivioay va avartTGGOVTOL GOVOAX
dedopEVOV aTO XN TLKA aLp)ELet, ETLOTHELWHEVO WG TTPOG OV TAL LITOKEIHEV PEPOUV TT) VOGO, KaB®G
Ko povtéda wov aflomolotv avtd ta cOvora dedopévav yio Tnv mtpdPAeyn Omapéng Tov Lov. e
avTo T0 TAaiolo TtepLypaetal 1 pebodoroyio ov avarttiyOnke yia tnv eidAvon avtod Tov tpofAn-
HaTog, 1) omoia katéktnoe tnv mpmtn 0éon oto Siaywviopd “Sensory Informatics Challenge” ov
OieknyOer amd tnv IEEE oto cuvédpio IEEE Healthcare Summit 2021. Afioonpeiwto eivon mwg éva
ard to kpLrrpLo aELoAOYN oG GTO SLOLYWOVIORO TOV 1) EPUIVEVCLUOTNTOL. XTI CUVEXELA TTEPLY PALPE-
TaL 1 avamtugn tov ouvodov dedopévev kot kuping g Paong yvoong smarty4covid, To omoio
XpNoipomoOnke meLpopatikd WG Voo dedopévwv e€nyrnoeny, OO VTO elvol OPLOPEVO GTO
BewpnTikd TAaiclo Tov TpdToL kKe@aAaiov. [Ikvew oto cbhvoro dedopévev avTd peletdpe SLaPopeg
TPOCEYYLOELS YLo TNV €TTLAVGT) TOV TTPOPARUATOC TNG VLY VOPLOTG TG VOO OU e eEnyrnoipo Tpdmo,
KoL OpOLOL [le TN HEAETN) TOV TPLTOL KePaAaiov TOL APOPoLGE TIG GUUPOALKES AVATUPACTAGELG
HOUVGLKNG, KOTAATYOUHE GE SLAPOpa VOLALPEPOVT CUNITEPACHATA.

310 daywviopod g IEEE, 0mov 6mwg avapépOnie Eva amd To KpLTHpLoe TV 1) EPUNVELCLUOTNTAL,
pog Swvotav éva ohvoro dedopévev amd nyntikd apyeio Pfriye, avamvong kal opiiog omd 965
aoBevelc, e To 0molo VT TOEapLE Korl EKTTOUSEDGULE T HOVTEAQ HOG, TOL OTTOLO VO TEPO OELOAOYTON-
Koy o€ évae kpud ovvoro dedopévwv. H dwkn pag mpocéyyion frov vo ekmatdedoovpe oAk
OUVEAKTIKA SIKTLA GTO POOUATOYPUPTHATR TOV NXNTIKOV ap)eiwv, pe acbevr eniffAeym, dmov
70 K&Be cuVeAKTLKO dikTLO ekTodeVeTAL GE TOAD HIKPNG SLAPKELXS CIELR TV XN TIKOV OPYELWV
(< 1 devtepdiento), aAAE TTalpVOVTAG WG ETLKETO AUTHV OAOKATpOL TOL apyeiov. Ot kOplol Adyol
mov emAéEoe auTrV TNV TTPocéyylon elval: o) to pkpd TABog dedopévwv, dmov o cvVBeTa
diktua evdeyopévwg var duokolebovtav va yevikeboouvv PB) 1 dwaicBnon pog mwg av vhpyxovv
XOPOAKTPLOTIKA TOL XOU XPHOLHa Yo TV TpoPAeyn Tov 100, avtd Kot maca mbovotnto Bo
a@opolV TN oTiypLlaia avtiAnyn Tov fxov, kat XL T06c0 T peydho xpovikd eopr). Ta mapddeypa,
o€ évanXnTiko apyeio 30 deuteporénTV evog avBpdov va PrxeL, av LTTAPYEL TANPOPOPLX GYXETLKT
e Tov 10, T pdAdov B vapyel oe kKOs Prixa EexwploTd, emopévwg To SikTud pog dev xpetdleTon
va éxel peydho dextikd medio. H acBevrig enifAemn mpoxidmtel amd to yeyovog mwg eved to SikTuo
ekmoudeveTon e pkpd onpeia Tov k&be nxnTIKOD apyeiov, emAeypévo Toxaio (Yo opdderypo
popet Tuxaio vo emhexBel onpelo oLyng 6To omoio TPoPaV®G dev LITAPYEL TANPOPOPL GYETLKY
HE ToV 10), oav eTikéta Aapfaver tnv etikétor GAov tov apyeiov. Exovrag exmandevoel To diktuat e
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QUTOV TOV TPOTTO, PeT 1) TEALKT TPOPAEYN yiow évar ved Sedopévo TpokvIITEL TAPVOVTOG TO PEGO OPO
Twv npoPfAréPenv twv Siktdwy, ot k&Be xpovikr otiypr). H amhr) mpocéyyion avth pog emitpémet
QPECMG VO EVTOTIGOUIE TTOLX GTELCt TOVL MYNTLKOD OPYELOL NTOV GNHOVTIKE Yiow TNV tpoPAeym,
ooV yvwpllovpe Twg 1 TpoPAeyn elvor amotédeopa TG péong TG TV €600V TV SIKTOWV o
k&Be onpeio Tov NyNTIKOL orjpatoc. Yotepa, k&be éva arrd vTR TOL OTEIR TTOV EVTOTIGTNKAV G
onpavTiKd propel vor avoluBel mepetaipw xproyonodvtag post hoc pebddovg e€fjynong amd

BipAroypapion.

"Exovtog avantdEel To OewpnTikd TAAIGLO TOL TPADOTOL KEPAAALOV, AVASELKVDOVTOG T XPTOLHO-
TNTA T00 GTO Vo TOPAYEL CNHOCLOAOYLKEG EENYTOELG YLt LALPO KOULTLX e post hoc mpocéyyion,
Ot mpoékLYe To epeLVNTLKO evilapépov yio tnv avayvopion COVID-19 and fyo mpoékuye poli
KOLL 1] LVAYKT) YLO TNV QVAITTUEN eVOG GUVOAOL dedopévav eENynomg, OTTwg auTd elval opLopévo 6To
npdTo KePaAato. 'Etol, ota mAaicia Tov épyov smarty4covid, avortOEaype éva chvolo dedopévwv
70 omoio cuvodeveTa aTd P TAOVOLO PACT) YVAOOTG 1) 07Ol KWILKOTTOLEL TTANPOPOpPLa GYETLKT) JLE
dnpoypa@ikd ototyeio, VTOKEPEVO VOGTIHOTO, CUHTITOUATO, XOPOUKTNPLOHODS EOIKOV K.ol. XP1OL-
HOTOLOVTAG LLTPLKT 0poAOYict 0pyovwpévn tepapykd, faciopévn ot yvoon SNOMED-CT. Eneita
avt 1 faon yvoong propel va a€romoinOei yioe tnv post hoc ene€fynorn HovTéAwV-padpwV KOUTLOV
yia v tpoPAeyn COVID-19. Me avtd to okemntikd, apyitkd aELomoL)oope TIG eTIKETEG TOV Smarty4-
covid yia va a€lohoyrficoupe To mpoovepepBév povtédo tov draywviopoo g IEEE. Ilpog éxmAnén
HoG, To povtélo autd elye emidoon yelpdtepn omd tuyaio Ta€vountr, meTuxaivovtog 0.49 otn
petpikry Area Under the Receiver Operator Characteristic Curve - AUC. Ynobétovpe mwg yia tnv
andkAion auth oe enidoot) peTaEd TwV GLVOAWY deSOHEVOV EVOEXOHEVHC VL OPELAOVTOL TTOPAYOVTEG
Omwg eivor ot Sroupopeticég peTaAAGEELS TOV LOD KoL T SLOUPOPETLKA CUIITTMOUOTO TTOL EKELVEG PEPOLV,
ta avEnpéva mooootd epfoAlacpod oTov TANBLGHO, KAHBOG KoL Ol KATAVOUY TWV KATVIGT®OV GTO
deiypo. T va pedetricovpe ta aitia g YoapunAng enidoong, a&lomotjocape T0 cVVOAo dedopéviv
ko T Béon yvoong tov smarty4covid yia va mopaEouvpe avtitopoabetikég eEnynoeLg ylo To HovTéAo
oL SLaywVIopov. Ao ta amote Aéopata apéong éywve EexdBapo mTwg To HOVTELD TV TOAWNHEVO
WG TPOG TO PUANO, KOl WG TTPOG TLG NALKLOKEG OpPAdEG TV XPNoTdV, To omoio eEokptPdbnke dotepa
ad oTaToTIKY avdAvoT 6To 6Ovolo dedopévav ekmaidevong Tov povtéhov. ‘Etol avadetkvietal
YLOt pLeL 0tk ORT OP& 1) X PTICLHOTI TO TOV TTPOTELVOHEVOL BewprTLkoD TAatsiov, kot Toviletal 1 onpov-
TIKOTNTA TNG OPOAOYING KOL TWV CTHAGLOAOYLKOV EENYNOEWVY YLA TNV KOTOVONGT, aEloAOYN o1 Kot
epUNVein TV adLLPAVOY HOVTEAWV.

‘Eva emimAé0v 6UVOAO TTELPAPATOV TTOL TPAYHATOTOONKAY 6 AUTOV TOV Topé TepLeEAGPParve
Vv e€aywyr XOPOaKTNPLOTIKOV ad OAa Ta apyela fXov Xprnotpomotdvag pefddouvg Ymprokng
ene€epyaciog onportog (DSP), kot dotepa cLVOLALOVTHG VT e TX LVTOOVOPEPOHEVO XOLPOKTTPL-
OTIK& ot TNV TAATQOppa smarty4covid, Snpiovpydvtog éTol pia €kdoat Tov GLVOAOL dedopévwv
0€ HOPPT] TVAKA. 2TT) CUVEXELD EKTTOUSEVTIKOLY G AUTO TO GUVOAO ATTAOVC, EYYEVMG EPUNVEVGLHOVG
taLvopnTég, Omwg eivor ta Sévrpa amoPaoewv, 1) Aoylotiky maAvdpdunor ko o Naive Bayes. O
KUPLOG AOYOG TTOV HOG KLVITOTOLNOE YLOL VO EKTEAEGOVHE AUTA T TTELpapata eivor 1) Béon oA GV
EPELVNTWV TNG ENYNOUNG TEXVNTNG VOHOCVVNG TTOV OVOPEPETAL GTNV TPLTH TAPAYPOPO TNG EKTE-
Tapévng autng mepiAnYmg, mwg yo TpofAfpato Kploung onpaciog Tpémel Vo avartTOGGOUE
pebodolroyieg ov omoieg pe ante hoc hoyikr) va eivon e€nynoipeg. To amoteAéopata auTOV TV
TELPAPATOV elval eviiopépovta Kabmg oL amAol avtol ToELVOUNTEG TETOXALVAV GUOTIHATIKA TNV
koA UTepn emtidoon ad 6oovg SokpdoTnKay, pe T BEATIoTH v Tpokvtel artd Tov TaEvopn T XG-
Boost. X¢ 0,TL pop& OPWG TNV EYYEVOGS EPUNVEVGLHOTN T, AVOIELKVOOVTOL HEGK TWV TELPHATWV HOLG
kartola {ntrpata ta ool dev éxovv oulntnOei extevdg amd Tnv epevvntikn kowvodtnTa. To TpodTo
elval g akOpo kol var elval TANPwG Stopavelg ol TaELVOUnTEG, oV T YopokTpLoTik® Tor idia,
Ko 1] opoAoyia pe v omoioe avtd eivon ekppacpéva dev eiva katavontd atd avBpdmovg, tote
ovte oL e€nynoetg Ba elvat. AvTtod €yive epQaveg oTn dLKT HOG TTEPITTWOT), KUPLWG o€ O,TL APOoPd T
XOLPOLK T PLOTLKA OITO TNV EEEEPYOLTLOL GTIHATOG, T OTTOLX YIOL VOL TOL KATatvorjoeL kavelg Oo tpémel vau
EXEL YVOOT) TOL TG avtd eEdyxOnkav. To devTepo cupmépacpa Tov cLINTAE elval TTOG 1) EYYEVAG
EPUNVEVOIHOTNTA TOV HOVTEAWV TTOAAEG POPEG TapoLGLALeTaL e TOAD QUTAOTOLNUEVT) HOPPY, T|
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orola evOEXOHEVWG VO ELVAIL TTOPATTAQVTTIKT] YLt KAITOLOV XPHOTT], EXV £KEIVOG dev £XeL KA YVOOT)
TOU TTWG AELTOVPYEL TO LTTOKEIHEVO HOVTEAO. XAPAKTNPLOTLKO TopASELYHO ALTOV elva oL eENYNoeLg
ONHAVTIKOTN TG YopokTnpLoTikodVv (feature importance) wov mpokdmTovy and Tov adyoptdpo XG-
Boost. Xvykexpéva, n BtpAobrikn mov éxovv avamtdEel oL epevVNTEG TOL KOTOGKEDACOV TOV
aAyopBpo, TpocPépel SLAPOPOLG TUTTOUG EENYHOEMY GTHAVTIKOTNTOG XAPAK T PLOTIKOV. Tor outote-
Aéopota autdV TV TOTTOV (Yo To 1810 povTéAo) eivor Sroupopetind peTa&d Toug, emopévng dev Ba
ATV 6WOTO VO SOGOLE EVO GOVOLO XAPAKTNPLOTIKGDV WG ATAX “onpovtikd” oe éva xpioTn, cA&
Bo pémel va eipaote EexdBopot yio To TG avtd vtoAoyioTnkay, Kot 0 XprioTng amd T HepLd TOL
Bo mpémeL va éxel apketd Pabid yvOOT TOL GLOTHATOS OGTE VO KATAVONOEL TIG EENYHOELG.

Svvoyilovtog, oe avTO TO KePaAaLo peletape To TPOPANpa NG avayvopiong COVID-19 amd
XNtk opyeio Prixe, optAiog ko avortvorg, divovtag épeact otny eppnvevoipotna. Iapovoid-
Covpe pioe otAr] AL KouvoTopa yior To TPOPAHR TTPOGEYYLOT), 1) omola TTePLAapPAvel GUVEALKTIK
SikTua pucpot Baboug kot pe picpd dextikd medio, T omoia exmondevovron pe acbeviy emifreyn. H
TPOGEYYLOT aUTH KEPOLOE €val OYETLKO SLOYWVIGHO GTOV 0TT0L0 GUHUETELYOLY SLAPOPOL EPEVVNTEG,
TETLYXALVOVTOG TO KOADTEPX ATTOTEAEGHATA, KoL OVTAG G K&olo Pabpd eyyevog eEnyroytn, xépn
KUPLOG OTNV ATAOTNTA TNG TPOGEYYLONG. 2TI) GUVEXELX, TEPLYPAPOULE T1) SLAdIKACIX KATOGKELTG
Tov ovvohov dedopévwv e€nynong smarty4covid, divovtag éugact otov oplopd TG opoloying
KoL T0 oXedlopd Kot TNV KatokeLvr NG Paong yvoons. AEomoudvtog To o0VoAo autd, pEcw
Tov BewpnTikod TAaLoiov OV TEPOLCLALETOL GTO TTPWOTO KePAAaLo NG StaTplPrig, Topiyoupe
ONHaoLOAOYLKEG EENYNOELS, OL Omoieg pHag @avepdvouy kdiroleg emPAaPeig molwoelg mov eiyov
voBeTroEL ToL GLVEALKTIKG SIKTLA TOL SLYWVIGHOD, KUPLWG 0€ O,TL APOPX TIG NALKLOKEG OPADES
Ko To POA0. TENOG, PeAETALE KOl TV TPOCEYYLOT) TWV EYYEVAOG EPHUNVEVCIUOV ATTADY TAELVOUNTOV
7oL akoAovBolV pia Stadikacion eEQYYNG XUPoKTNPLOTIKOV. AUTH 1) TPOGEYYLoT), eV 0d1yNnoe
OTO KOADTEPQ ATTOTEAEGPAT WG TTPOG TNV eid00T TAELVOUNONG, PavEPWGE KATTOLo {NTHHOTA TG
eyyevag e€nynowotntag to onoia dev éxovv oulntnbel exTeEVOG QTG TNV EPELVNTLKT] KOLVOTHTAL,
oM WG elval 1) GNHAVTIKOTNTO TNG OPOAOYING TTOV X PTICLLOTTOLELTAL YO TNV KATAVONGT) TV eENYNOEQV,
KOG KxalL 1) KA yvaoon Tov vrokeipevou povtédov ko tng pebodoloying yir Tov voloyilopo
eENyNoewv, o TE 0 XPHOTNG VO NV TTOUPATAAVELTAL 0T LITEPATTAOVGTEVGELS OTWG eiva 1) “onpovTL-
KOTNTA XAPOKTNPLOTLKOV .

YUunEpACHOTH

>Ny apovoa dixtpLPr] pedetape To TPoPANpATR TNG AELOAOYNONG, TNG EPUNVELXGS, TNG eENYNOLUO-
TNTOG KO TNG ETOMTELONG TWV ASLAPAVOV GUGTNHATOV Pnyovikng pabnong. H tpocéyyior pog yio
NV emilvon avTedV tev TpoPfAnuateov Pacileton otnv aflomoinon mAovolag opoAoyiag 1 omoix
elval avamopactnpévn 6e YpAPOUG YVAOONG. ZUYKEKPLHEVD, GTO TTPOTO Ke@aAato tng dtpLPrig
ToPoLSLALeTon Evor KXvoTOpOo BewpnTikd TAaioLo, PacLopévo 6TO POPHAALGHO TWV TTEPLYPAPLKOV
Aoyikwv, oto omoio opilovtor e€nynoelg oe popen Kavovey Kot e poper ovtutapobécewy, oL
07t0leG £Vl EKPPUCHEVES |LE GUYKEKPLUEVT) OPOAOYLQ, 1) OHACLOAOYLO TNG OTTolaG Elval OpLopEVT e
poOnpoatikn cveTnpoOTNTA o€ pia LITokeipevn Bhon yvoong meptypapik®dv Aoyk®v. To Bewpntikd
TAaioLo auTO TO EQAPROTOVIE EKTEVAS YL Vot ENYTCOUHE Kal VO otELOAOYT|GOUIE TOELVOUNTEG ELKO-
vag, ekteA®dVToG dteEodikd ToLoTLKEG Kot TocoTLKEG aELOAOYNOELS, KBS KoL oLYKpioELS pe GANES
pebddoug amd ™ PLAtoypopio. Yo to mpicpa TV Pactk®dv 8edv ov Pplokovtol 6ToV Tuprva
g dratpiPrig, oL aPopovV TN CNHAVTIKOTNTA TNG opoloying kot Tng onpactoloyiog ce 0,Tt
apopd TNV eEnylopodta, peletdye emiong To medio Twv GURPOALKOV AVATTOUPOCTACEWDY HOVGLKNG.
SUYKeKPILEVX avamTOGGOUE pia peBodoroyia yia Tnv a&loAdynoT GUGTNHAT®Y AVTOpHATNG GUVOE-
ong, Paciopévn oe Wéeg amd ) Bewplo TNG HOVOLKTG, OTTWG ElvaL 0 KOKAOG TWV TEPTTAOV, KL
avOdELKVOOUE T XPNOLHOTNTO ovaTTUENG HeBOdwv akloAdynong Paciopéveg oe TUTTLKG OPLOEVT)
Bewpia. Emmpdobeta, peletdpe to TpoOPANpa TnG avayvaplong eidovg pouotkng ard cUpPoAiiég
QVOTTOPACTAGELS, OVOTTTUGGOVTOS L TTPOGEYYLOT) 1) oToia Eemépace o emidooT TG LITAPXOVOEG
g PrpAioypapicg. Mg ko 1 dikr) pog mpocéyylon dev eivon eyyevog e€nynotpn, Omwg eivot
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avtég g PLpAoypaping, yeyovog to omoio eival Sdokoho va tocotikomolnOei, pedetrioole TIG post
hoc peBddoug yLor TNV EPUNVELGIHOTNTA TNG TPOGEYYLONG HOG. ATtO ALTEG TIG SOKLUES PAVIKE TTWG
dev elval 1000 ebKoro v avaktnBOel 1) e€nylopdtnTa, eWdikd oe éva tétolo medio Omwg eivat avTo
NG oLUPOALKNG HOVOLKNG, Yo TNV omoio dev éxovv avarttuxOel 1] TPOCAPHWOTEL GUYKEKPLUEVEG
péBodot. To kvpLo {rjTnpe Tov 0dnyei oTnv autotvyio Twv adyopibuwv e€nynong eivo 1 avoopdo-
Taor Tov dedopévav (ivakeg pianoroll) xal 1 opoloyia mov yprotpomoteital, 1 omoia dev eiva
Kotovon T otd avBpomoug. e avtd Ta TAaloln, epoppocape Tig WG Tov BewpnTikod TAALGioL
TOU TPOTOL KEPAAXLOV KoL KaTapépagie va Topdoviie e€nyroeLg oL omoieg oy opoAoyio xpnotpo-
TOLOVGAV HOVG LKA StaTripaTa, ovti yia ototyeio Tov wivaka pianoroll. TéAog pedetdpe To TpOPAN-
po tng poPAedng COVID-19 amd nyntikd apyeic, vmd to idlo mplopa, To omoio mepeTépw oTnpilel
TOL ETLLYELPHATA OGS TTOL 0LPpOPOVV TNV 0poroyic o Tig eENYNoELS, Yio Tapadelypa HEGK TV ONHACL-
0AOYLKOV eENYNOEOY TOL TOELVOUNTH) TOU SLayWVIGHOV, oL o7moieg avédelEav mwg 0 TaELVOpUNTHG
TV TOAWOPEVOG WG TTPOG TO PUAO Ko TIG NALkLakég opddeg. Emmpdobeta, yix To mpoPfAipa avtd
OUYKPLVOULLE TOLOTLKA Kail SL&Popeg eYYevag eEnyioipeg mpooeyyioelg pnyovikng pabnong, facio-
HéVeg KLPLWG o€ EEAYWYT) XOPOUKTIPLOTIKOV KOl TN XPYOT) AITA®V TAELVOUNTOV Yot TNV eTiALGT) TOV
npofAfpatog. Me avtdv tov tpomo avadeilaype mepetépw Bépata tng e€nynopdTnTog, 6TWG elvot
TOAAEG POPES 1) AVALYKT) O XPHIOTNG VA £XEL YVMOOT] TOV TG AELTOVPYEL TO LITOKELPEVO PHOVTENO, TG
éxouv e€oyOel Tor YAPAKTNPLOTIKY, KAL TO TWG ELvaL OPLOPEVES OL LOLEG oL eENyroeLC.

To kvpLdTEPO GLPTEPATHA TNG dLaTpLPr|g elval 1) {WwTIKNG ONIAGLAG CTIHAVTLIKOTNTO TG OPOAOYi-
og o€ 0,TL apopd TNV e€nytopodtnta. Méoa and ta melpdpoatd pog deiyvovpe TOHGO VKOO eiva
Kaveic va tapomthovnOel ard Tig TANpopopieg mov mepLéxovton péoa o “e€nynoels” ko Tovilouvpe
WG OV AVTEG OL TANPOPOPLEC elvar ekPPAGPEVES pPe KAAX oplopévn opoloyia, “yetwpéves” oe puo
Baon yvoong, tote Eemepvovtor kdmoto atd ta TpoPApaTo Kol TG SUGKOALES TNG TEPLOXTS.
EmutpodoBeta, mapopola cupmepdopota eEdyoupe kot yio tig pebodouvg a€loAdynong, kuping exeiveg
YL TT) GTOXEVHEVT AELOAOYNOT) WG TTPOG CUYKEKPLUEVX XOPAKTIPLOTIKY TWV CUCTNHATOV (OTTWG Yo
Top&detypa 0 eVvTomIoHOG arv avTd éxouv vioBetrioel emPAaPr] otepedTUNX), OTIG OTOiEG pTOpEl Var
elvo ToAD xpriotpo va epLy papel kaveic ta dedopéva Tov oe StopopeTikd eminedo apaipesng oo
ekeivo mov AapPaver otnv €i60d6 ToL TO PobPO KOUTL. AeSOUEVWV TWV GUUTEPACHATWV XUTOV,
aVOOELKVOETAL ETTLOTG 1) ALVALYKT) YIO TNV VAITTUEN GUVOAWY Sedopévav e€ynong, 0mwg ot eivart
OPLOUEV GTO TTPOTO KePahalo, dadikacia 1) ool Propel oe MePLTTOCELS Vo eival akpLpr) oe
TOPOLG, OTTWG 1) SradLkacio Tov akoAovBoope Yy TV Kotookevr] NG faong yvoong smarty4covid.
TéAog, KoBMOG 1) EPELVNTIKT] TTEPLOXT] TNG EPUNVEDOUNG TEXVITHS VONHOGVVNG €ival KOO PEVGTH,
Ko T dedopéva oA dLovv auvexdg, Bo Tpémel va va elpacTe KpLTikoi, oAAG KaL oevoly TOPLAAOL e
0,TL apopd TNV £pevva oTNV EENYNOLUN TEXVNTH VONHOGLVY, Kot véeg peBddoug mov mpokmTouy,
Ko w6 ovpmepthapPavet kot Tnv Topodon datpiP).

MeAAovTiKéG EMEKTAOELG

H mpotewvopevn mpocéyyion otnv mopovoo StatpLPr] elvor apKeTa YEVIKT) OGTE VOL LTTAPYXOLV TTOA-
Aég xatevBivoelg Tpog v omoia B propovoe va emektabel. ApYIK®, o€ 0,TL APop& To BewpnTikd
TA0LGL0, LTO PITOpel Vo EPTTAOVTIOTEL TTEPETEPW® PE AANEG HOPPES EENYTOEWVY TTEPAV TOV KAVOVWV
KoL TV avTimapabicewy, OTWG elval oL eENYNoELS e HOPPT) XAPOKTNPLOTIKOV TAPASELYHATOV.
EmutpodoBeta, ota mhaioio tng SratpPrig dev epPfoabivape otn Pertiotomoinon twv aiyopibuwy,
Ko kabwg T TpoPfAnpata eivon TOAD akpl& vTOAoYLoTLKG, YpELRleTAL EKTEVAG HEAETT) YLt TNV
ovamTuEn vEwV adyopiBpwy Yo Tov LTTOAOYLOPO OTHAGLOAOYLKGV eENyNoewV, KaBMG KoL oL eTEKTOL-
o] TOUG YLOL TILO EKPPAOTLKES YVOOELS, OL 0TT0LEG TEPLAapPivouy yio Tapddetypo cuveyeig oplOpnTi-
KEG TUHEG.

[Tépo amd To BewpPnTLKO KOPPATL, YIO VO EQAPHOGTOVV OL TTPOTELVOpEVES HéBodoL otV TTpdkn,
elvon atapaitnTn 1 avamtuEn cvvorwv dedopévav e€nynong, mepthapfavovtog aveTnpd opLopo
T1G 0POAOYLNG, KOl TUTILKTY avaTtapiotooT) TG yvoonc. Exovtag epfabivel oto medio Twv supfolt-
KOV OVOTTXPOAO TACEWV HOVOLKTG, £VOL KOPPATL TNG HEAAOVTLKHG HOG EPELVAG AUPOPX TNV KOSLKOTTOLN-
O] EVVOLOV Otd TN HOULGCLKY Bewpla, TOV XAPAKTNPLONO HOUGIKNG HE QUTEG, KOL TNV HET ETTELTO
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avamTuEn cuvodwv dedopévav eEfynong. Eva mapadetypa evog tétotov cuvolov Ba ity koppdtio
HOVGLKNG, T oToi cLVOdebovTaL Ao TG AAANAOLYiEG TUYXOPILOV TOVG, OTOV 1) GNHACLOAOYiX
TOV GLYXOPILOV elVOL OPLOHEVT) GTNV LITAPYOVCX OVTOAOYI AELTOVPYIKTIG APHOVIOG. ZTO KOHHATL
TNG HOVOLKTG peAeTdyple emtiong ko GAAa CnTrpata, 6meg elval 1) e€nynoun cbvBeon povoikng, kot
1N Snpovpyikn epappoyn Twv peBddwv mov avoartOEape (Yo mopddeypo avtimopoadéoelg yuo tn
OTOYEVPEVT] TPOTTOTTOLNGT) £VOG KOUHATLOD HOVGLKHG).

Y 0,TL a@opd TV épevva pag yio Tnv avayvopior COVID-19 amd nyntikd apyeio, peAetdye
TPOTTOULG YLat TNV KAADTEPT) AELOTOLNGT) TG ETEPOYEVOVS TTATPOPOPLAG TTOL PEPEL O YPAPOG YVOOTC.
T mapadeypo Ba prropovoape otig e€nynoelg vo divovpe peyodvTepn Eppaot oe TANpoQopic 1|
orola éYeL TPOKVPEL AITTO XOPAKTNPLOHOVS ELOLKOV, TTopd ard avToavapopég twv xpnotov. Emiong
vTtapyxoLV avtioTolya cOVolo dedopé- vov yia dAleg acBéveleg, ko pe SoupopeTikovg TOTOVG
dedopévav, OTTWG elval oL ELKOVES QKTLVOYPAPLOVY, OTLG oToieg o ptopodoape vor epoppoOGOL|LE
TIg 10€eg pog ya Ty e€nynopotnTa kal tnv a€loAdynor).
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Chapter 1

Introduction

The main focus of our research has been the utilization of knowledge graphs for explaining and
evaluating opaque Artificial Intelligence (AI). We developed a framework for computing rule-based,
and counterfactual explanations of machine learning classifiers using knowledge graphs (chapter ff),
allowing for explanations at different levels of abstractions, using terminology tailored to specific
use-cases. We applied this framework on multiple domains, including image classifiers (chapter H),
where high level conceptual information is used instead of pixels to generate human-understandable
explanations. Furthermore, motivated by our research in the domain of music (chapter ), in which
evaluation is often a difficult task due to subjectivity, while explainability has the potential to
broaden the applicability of machine learning systems, we utilized our ideas for evaluating sym-
bolic music generation systems in addition to developing an approach for genre classification, com-
paring with existing approaches, and focusing on explainability. Finally, we applied our ideas on
a real-world, decision-critical application, by utilizing the proposed explainability framework for
explaining audio classifiers that automatically diagnose COVID-19 given cough, speech and breath
audio of a user (chapter ff), and comparing it with other explainable Al approaches.

In recent years, Al has progressed explosively, with thousands of papers being published daily
and new applications and use-cases being constantly proposed. This progress is mainly fueled by the
advancements in the field of Machine Learning (ML), and in particular that of Deep Learning [[113,
68]. Despite their apparent success in solving problems across domains, deep learning models suffer
drawbacks that make it difficult for them to be applied in various real-world settings. At the core
of these drawbacks is the inherent opacity of deep learning models, stemming from their structural
complexity, it is very difficult to explain their output in a given setting. These drawbacks have given
rise to ethical and legal concerns [69] regarding the use of opaque Al in everyday applications, and
have led to the emergence of the eXplainable AI (XAI) field of research [[192, 77]. The target of
XA is the end-user who depends on the decisions of Al models. In this context, researchers are
exploring a wide range of questions, such as: What is an explanation? How can we develop models
that are inherently transparent without sacrificing performance? How can we convincingly explain
a black-box model’s predictions? How can we make sure that explanations are accurate, useful and
not misleading? As research progresses, we are getting closer to answering such questions [[143,
75], however most remain without a convincing answer.

In this rapidly growing research area, new issues have emerged, some leading to important ar-
guments against using post hoc XAl for explaining black-boxes, instead of using models that are
interpretable in the first place [[172]. However, black-box models are essentially the only solution
for a multitude of tasks ranging from image classification, to chat bots. In addition, even transparent
models used in industry are obfuscated as being proprietary, and can only be treated as black-boxes.
Thus the problem of post hoc explainability remains an important one, and researchers should take
under consideration the criticism when proposing new ideas. A particular set of XAI approaches
which has emerged as “promising”, and avoids many of the pitfalls of post hoc XAl involves the uti-
lization of knowledge graphs (KG) [94, 191]. These provide a structured representation of informa-
tion which is based on the way humans perceive the world, that is typically both machine-readable
and human-understandable. There is also a vast body of theoretical work concerning knowledge
graphs, such as the framework of description logics, that provides theoretical guarantees and rea-
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soning capabilities for logical entailment, both useful tools in the context of XAI. Even using simple
knowledge, such as for instance hierarchies of concepts, can boost transparency of a system and in
some cases even performance, as shown in our work in [43], or more informative and transparent
evaluation of Al models, as shown in our work in [[129].

1.1 Thesis overview

The main matter of the thesis is split into four chapters. Chapter [ introduces the theoretical frame-
work and the explanation generation algorithms we developed, while the following chapters show-
case the application of the framework in different domains. In particular, in Chapter i we experi-
ment explaining image classifiers by utilizing existing tools and available knowledge, in Chapter f
we broaden our scope and apply our ideas for explaining and evaluating systems in the domain of
symbolic music, while in Chapter f we develop all necessary resources for explaining and evaluating
audio classifiers for COVID-19 detection.

1.1.1 Explanations in Terms of Knowledge

The developement of our framework for post hoc explainability, was introduced in [42], and was
motivated by the need to provide explanations at a level of abstraction that is meaningful to humans,
and using terminology that is understandable. As Alis now applicable in most domains and scientific
areas, there is a greater need than ever for interdisciplinary work. When it comes to explainability,
there is a vast body of work from philosophy, cognitive and social sciences that attempts to formalize,
define, and study what is a “good” explanation for humans, on which computer scientists, and in
particular XAI researchers can build on [138, 21]. A motivating example for our work, inspired
by [84] is the following. Consider an explanation for a car accident. For a car mechanic such an
explanation might be “the car accident happened because the breaks were not in working order”.
However the same explanation for the same car accident would not be meaningful to a civil engineer,
who might expect something along the lines of “The car accident happened because the stop sign
was not clearly visible from the road”. It is clear that different users expect explanations at different
levels of abstractions, and they understand different terminology. Our proposed framework attempts
to tackle this exact issue.

The only possible interaction with a black-box model is to feed it data and to then observe its
output, and most post hoc explanation pipelines follow the illustration shown in figure [L.1, where
the explainer operates in the feature domain of the classifier. The issue here is that low-level feature
representations, such pixels or audio signals, are not necessarily understandable and meaningful
to humans. To mitigate this problem, in our framework [42, 59, 121, 41], we propose using data
for which we have available information in two representations: one suited for the black-box, and
one suited for explanations. A typical post hoc XAl pipeline within this framework would follow
the illustration shown in figure [.4. By using information at different levels of abstraction we can
have more control over the generated explanations, their form, the terminology they use and the
information they provide, and we are not constrained by what the black-box expects at its input.
For example, consider a classifier that provides a risk assessment, or a diagnosis given audio of a
person’s cough [[181]. Traditional XAI methods would provide explanations in terms of the input
of the classifier (typically spectral representations of the audio). If, however, we had available ad-
ditional information about the data, such as for example the age, or the sex of the person in the
recording, then we could provide explanations in terms of this information. This way, it would
be easy to uncover specific biases of the black-box classifier, which would be obscured if the only
information we had available were the spectral representations. Taking this idea further, consider
we have available a dataset of audio of coughs which has been extensively annotated by medical
professionals, using standardized medical terminology. Then, explanations can be provided, that
use as a vocabulary standardized medical terminology, and a XAI procedure could make use of the
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relationships between medical terms, as they are defined in knowledge graphs such as SNOMED-
CT [50] and ICD-10 [92]. This can be useful in many ways, including improving understandability,
especially when the black-box input representation contains low level sub-symbolic information
(such as pixels or samples of a digital audio signal).

Feature Representation - Qutput

Explanation

Figure 1.1: Typical post hoc XAl pipeline

Data
Feature Representation Qutput
Explanation
Representation

Explanation

Figure 1.2: Proposed post hoc XAl pipeline

Given the idea of using different representations of a data samples for explanations, than what
the black-box expects at its input, the question arises of what representation should be used? There
are many different options, depending on the type of explanation required, the domain of data and
the application. For example in [4(] we used a vector representation of musical intervals for ex-
plaining a MIDI genre recognition neural network, after modifying the GPX [57] algorithm to be
compatible with this framework. In another example [59] we used sets of objects depicted in im-
ages and in terms of these provided counterfactual explanations. In the formal description of the
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framework introduced in [42], the additional representation is provided in the form of a semantic
description. Specifically provided a mapping of each item to an individual name from a given vocab-
ulary representing an individual from a given description logics knowledge base, we can provide
explanations in terms of the vocabulary of the knowledge, by leveraging theoretical results from the
area of semantic query answering,.

Choosing a different representations of data for providing explanations, also effects the appli-
cability of different algorithms, and their scalability. For example, using the mapping to individual
names as a representation suited for explanations, the problem of finding rules which mimic the
behaviour of the classifier, which is a form of explanations, is reduced to a semantic query reverse
engineering problem which is known to be very difficult to solve [, [155, 46, 28]. To overcome this
difficulty, we can either use simpler representations, such as sets (similarly to our work in [59]) or
vectors (similarly to our modification of GPX in [40]), or to approximate the solution, for which we
developed heuristic algorithms [[122, 121]. Thus the choice of explanation representation, and expla-
nation algorithm heavily depends on the application, and available data, and different approaches
can uncover different aspects of the black-box under investigation.

1.1.2 Semantic Explanations of Image Classifiers

Image classification is one of the most intuitive tasks for humans, and one of the first to be taken
over by deep learning, by use of deep Convolutional Neural Networks (CNN) [110]. The process
of human visual perception is intricate and encompasses the binding of spatial, structural, and se-
mantic information [[189]. On the other hand, machine vision encounters challenges in capturing
high-level conceptual and semantic information with the same ease as humans. Unlike the hu-
man visual system, which effortlessly grasps complex scenes and recognizes objects based on their
context, machines primarily rely on low-level information such as pixels, and automatic pattern
recognition, extrapolating to higher level concepts by means of training on large datasets. This is
an issue for explainability, as there is a missing link between semantic understanding, the ability to
infer meaning and context from images, and the complex inner workings of systems that extrapolate
meaning from pixel values.

A classic example of pixel-based explanations are saliency maps [[182]. The result of such meth-
ods is typically a set of values assigned to each pixel, representing the importance of each pixel for a
specific prediction, or for a specific class. When it comes to explainability, such methods have been
shown to often be misleading [2]. A good example from [{172] is shown in figure [.3. If a human was
shown the evidence for the image being classified as a Siberian Husky, they might be convinced,
as the highlighted pixels make sense as being indicative of the particular dog breed. However, the
explanation stops making sense when we observe the second saliency map, showing evidence for
the image depicting a transverse flute. Such explainability methods do actually show what pixels
are important for a prediction, but they do not show why. For instance a classifier might always
consider the pixels in the center of the image as being important, regardless of what they depict. In
these cases humans might tend to fill in the gaps, and end up being misled pertaining to why the
classifier actually made its prediction.

These issues have long been recognized by the computer vision and XAI communities, and other
approaches have been proposed for explaining image classification. One such approach involves
counterfactual explanations, where instead of pixel importances, explanations have the form of pixel
edits. For instance, in [[72], the explanations indicate a specific region of an image, and how it should
change (based on a region from a different image) in order for the classification to change. As such
counterfactual methods can often end up with infeasible, or nonesense explanations, further work
has attempted to enforce constraints, such that the explanations are semantically consistent [[196].
The importance of semantics in explainability of image classifiers is also highlighted in concept
attribution methods [62, 206]. These, especially useful in a global setting, extract human-defined
concepts, and measure their importance for the classifier under investigation making them more
understandable and less prone to be misleading. In the husky example (figure [L.3), such an explana-
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Evidence for Animal Being a Evidence for Animal Being a

Siberian Husky Transverse Flute

Figure 1.3: Example of misleading pixel importance explanation. Taken from [[172]

tion might include concepts such as the muzzle of the dog, fur, color etc. However these methods
often suffer from other drawbacks, such as their requirement for white-box access to the classi-
fier, which is often not possible, as is the case of proprietary models, where one could argue that
explainability is especially important.

In our work, we applied the proposed knowledge-based explainability framework for generating
multiple types of explanations, including rule-based, counterfactual, local and global. Importantly,
without requiring white-box access to the model under investigation, we utilize semantic descrip-
tions of images in order to better understand what the classifier under investigation is doing, by
only observing sets of input-output pairs. In particular, we show that within our framework we can
generate explanations that are more semantically consistent to humans than the related work [41],
and we argue that by using well defined terminology the explanations are more understandable.
We also showcase how the proposed framework can be used for detecting biases, and debugging
black-box classifiers.

1.1.3 Explainability and Evaluation of Al in the Domain of Symbolic Music

The second domain we tackled with the idea of utilizing knowledge and semantics for explanain-
ability and evaluation was the domain of symbolic music. Specifically, while exploring applications
involving symbolic representations of music, with emphasis on automatic music composition, we
quickly realized that the bottleneck obstructing progress in this area is the lack of trustworthy and
objective evaluation procedures, thus making it impossible to compare different approaches to au-
tomatic music generation. In our work in [B8] we proposed a framework which facilitates the de-
velopment of evaluation metrics for music, based on music-theoretical concepts such as the circle
of fifths and the Tonnetz [[194]. We showed that metrics defined within this framework can be used
heuristically to determine if music represented symbolically was likely composed by a human or
a machine. This is an example of how knowledge graphs (such as the circle of fifths), that encode
domain knowledge (such as music theory), can be used for evaluating Al, in addition to explaining
it.

Furthermore, in our work in [39] we were researching the merits of specialized neural architec-
tures for symbolic music, and achieved promising results, surpassing the state-of-the-art for genre
recognition based on F1 score and the area under the receiver operating characteristic curve. How-
ever, we realized that these metrics, even though objective, do not tell the whole story, and we
hypothesize that a musician or another end-user would probably prefer to use the genre recogni-
tion approach presented by Ferraro and Lemstrom in [55], since it is based on extracted musical
patterns and is thus more transparent than our deep learning based approach, even though our ap-
proach achieves better performance based on the metrics. For this task specifically, explainability
is especially important, as there are known issues of ground truth reliability, and ill defined genres.
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For example the notion of “Pop” music has drastically changed over the past decades, and given a
black-box classifier that classifies a song as being “Pop”, we should be able to understand what the
black-box considers to be “Pop”, in order to use it in a real-world setting. Motivated by this, we
then extended our work and studied post hoc explainability techniques which could be applied to
explain the predictions of our neural networks, for our deep learning based approach to be com-
pared with the inherently transparent one presented by Ferraro and Lemstrom, with mixed results
[40]. Specifically, by experimenting with a multitude of different explainability methods, we deter-
mined that in many cases the explanations were not understandable, not consistent, and could be
misleading. We also applied our framework, in which explanations are provided across different
levels of abstraction (for example musical intervals instead of musical notes), and show how some
of the afforementioned pitfalls can sometimes be avoided.

Our hypothesis about the importance of transparency of Al in the domain of music was validated
to an extent by professional musicians in our work in [58], in which we developed a methodology to
automate musical effects via brain-waves of a performer in a live setting. Especially in this context
of performer-computer interaction, we saw that musicians want to know, to an extent, how the Al
will react to their actions. This research motivated us to further explore post hoc explainability that
utilizes different levels of abstraction, in which underlying Al models are treated as black-boxes. To
this end, as the proposed framework can make use of complex semantics defined in description logics
knowledge bases, we also developed the musical harmony ontology [99] which represents the theory
of tonal and modal harmony as a knowledge graph, which is a more rich representation than what
had been previously used, and we are in the process of extending this knowledge with more music-
theoretical notions (such as for example the structure of music in the music part ontology ). Our
ongoing research involves utilizing this represented knowledge for the purpose of explainability,
similarly to how we utilized higher level information to explain genre classification [40], or how we
utilized more complex knowledge graphs for explaining image classifiers.

1.1.4 Explainability for COVID-19 audio classification

In the final chapter of the main matter of this dissertation, we sought to validate our proposed ex-
plainability framework in a real world, decision critical application. Specifically, motivated by the
COVID-19 pandemic and the challenges it brought forth, an area of research showing promising
results was explored by the community, in which assessments of COVID-19 infection are computed
given audio of people’s coughing, breathing or speech [209, 148, 20, 25, 29, 181]. We took part in the
efforts to explore this approach, by our winning entry [| at the IEEE COVID-19 sensor informatics
challenge hackathon |, in which one of the evaluation criteria was explainability. Using methods
from related literature we were able to explain (to an extent) the predictions of our classifier. How-
ever as these “traditional” explainability methods operate in the feature space of the classifier, they
suffer from aforementioned pitfalls that similar methods do, such as for example being expressed in
terms of a spectral representation of the audio, that is not necessarily understandable to humans.
The limiting factor for applying our knowledge-based explainability framework is its reliance on
the existence of well-defined structured knowledge. For this reason, in the context of the smarty4covid
project [| in which we developed a crowd-sourced dataset containing audio of coughs, speech and
breathing, in addition to information such as demographics, symptoms, preexisting conditions, and
expert annotations we invested in developing an accompanying knowledge base [219], in which all
information gathered by crowd-sourcing and labeling procedures was represented using the web
ontology language (OWL) [|, and the formalism of Description Logics (DLs) [4]. Such a knowledge
base is required for applying the proposed framework, and even though its development is a re-
source intensive procedure, requiring significant human effort, we argue that in some cases it is

* https://ieee-dataport.org/analysis/ntuautn-ieee-covid-19-sensor-informatics-challenge
? https://healthcaresummit.ieee.org/data-hackathon/

® https://www.smarty4covid.org/

* https://www.w3.org/OWL/

38



worth it.

To show this, we utilized the smarty4covid knowledge base, alongside deep learning models, for
attempting to solve the task of COVID-19 assessment from audio. From our experiments, we real-
ized that many available models, including our winning entry from the hackathon, do not generalize
well, and their performance can vary significantly between datasets. Using traditional explainabil-
ity methods, the reasons for such discrepancies were not clear. However, by using the terminology
defined in the smarty4covid knowledge base, and by applying our general idea of explaining classi-
fiers at a different level of abstraction than the feature space, we were able to gain insights about the
problem, that would otherwise be difficult, or even impossible to detect using traditional methods.
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Chapter 2

Background Material

In this chapter we introduce background material relating to explainable Al, knowledge represen-
tation, music, and deep learning, focusing on higher level concepts that are important throughout
the dissertation. Where necessary, additional background material is provided at the beginning of
each chapter.

2.1 Explainable Al

Explainable Al (XAI) is not a new area of research [[178], but has gained popularity in recent years
due to the problem of opacity of deep learning models. As there are constantly a multitude of
advances and new propositions from the research community, XAl is constantly evolving, and in
our opinion has not yet reached maturity. Nonetheless, there have been attempts at surveying the
area, and defining terminologies, taxonomies, methodological approaches, and challenges [[74, 112,
212, 78, 8]. In this section we discuss how this dissertation fits in the broader context of XAl

Interpretability and Explainability An example that indicates the immaturity of the field, is that
there is not an agreed upon distinction between the terms “interpretability” and “explainability”. In
this work we often use the words interchangeably. Their difference in our view is that “interpretabil-
ity” refers to the action of the user, who given information, attempts interpret it, while “explainabil-
ity” refers to the action of the system, which is tasked with providing an explanation. For example,
if a user, by viewing the coefficients of a linear model, is able to exhume feature importances, then
they would be interpreting the model, and we would consider this to be “interpretability”. Contrar-
ily, if a system were to sort the coefficients by absolute value, and show the top-3 to a user as being
important, then we would consider this to be “explainability”, but these definitions are used loosely.

Post hoc and ante hoc A first distinction of explainability approaches is whether the explanations
are generated after the model under investigation has been developed and trained (post hoc), or if
the model was designed in a way that it is interpretable (ante hoc). The latter are often referred to
as “inherently interpretable”, or “transparent” models, and include methods such as decision trees,
linear models, and even some specialized neural networks, while the former can be applied on any
“opaque” model, such as a deep neural network. Many researchers argue that post hoc explainability
is a flawed approach, and that we should focus on inherently interpretable solutions [[172], instead of
using deep learning for everything and attempting to solve the explainability problem after the fact.
However, the undeniable performance supremacy of opaque models in specific domains (for example
Natural Language Processing, Computer Vision), motivates research into post hoc explainability,
which is a main focus of this dissertation. Our proposed framework in chapter B, outlines some
current issues with post hoc XA, and how we attempt to tackle them.

Global and Local A second distinction of XAI methods, is whether they produce “Global” or “Lo-
cal” explanations. The first provide information for explaining the general behaviour of a model to
a user, while the second explain why a specific prediction was made on a specific data sample. Both
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global and local explanations are useful, and each provides different insights into the model under
investigation. For example, if an Al supported decision was accompanied by a local explanation,
it would allow a domain expert to evaluate the decision, potentially uncovering new information,
and ultimately making the decision themselves, which would be an ideal scenario for the medical
domain. On the other hand, reliable global explanations would be imperative for regulation of Al
in industry, potentially uncovering unwanted biases, and serving as a way of evaluating models
across more dimensions besides typical performance metrics. Our proposed framework facilitates
both global and local explanations, and throughout our experiments we often discuss and compare
both approaches.

Black box and White box A third distinction of XAI approaches concern whether the explainer
has access to all components of model under investigation, such as the weights of a neural network,
or if the only access involves probing the model with inputs and observing outputs. The former,
also referred to as “white box” or “model-specific” explanations, extract information from the inner
mechanisms of a model in order to produce an explanation, and are able to provide meaningful in-
formation even for very complex models, such as concept based explanations for large transformers
[97], or counterfactual explanations for image classifiers [196]. These white-box approaches, de-
spite their effectiveness, are much less appealing than pure black-box approaches, as the latter can
be applied to a wider variety of use-cases. Especially when the model is hidden, either as being pro-
prietary, or even being maliciously obfuscated, the need for explainability is higher. It is however a
much harder problem to solve. Throughout our work, the focus has been black-box explainability,
where we only have access to input-output pairs for generating an explanation.

Features and Concepts A distinction that is not often discussed separately, concerns the terminol-
ogy used in the explanations, and specifically if they use the features that the model uses, or if they
use different terminology. This distinction is sometimes grouped with the broader classification of
different forms of explanations, where approaches that use higher-level terminology are referred to
as concept-based XAL In our work, this distinction is crucial, and throughout the thesis we high-
light the benefits of using higher level concepts in the explanation (such as objects depicted in an
image), as opposed to features (such as pixels). The main issue with concept-based explanations is
the analogue of the grounding problem [85], where we cannot know if the semantics of symbols
(such as concepts) are the same for the model and for the user’s mental model. For example the
concept of a “Dog” is different in each person’s mind, and it will also be different for an AI model.
In our work, we attempt to ground our explanations on rigorously defined knowledge bases using
the formalism of description logics, introduced in the next section.

Forms of explanations There is a large variety of forms of explanations in the context of XAI,
ranging from a simple bar chart of feature importance, to natural language, and visual explanations.
The form of explanations is crucial for understandability and informativeness, and there is not an
agreed upon ideal form of an explanation. Some forms have been argued to be misleading, such
as feature importance, as they do not explain why a feature is important, and the end-user might
end up inferring incorrect information, while others have been argued to be aligned with the way
humans explain things to one another, such as rule-based and counterfactual explanations. In our
work, we experiment with multiple forms of explanations, but the proposed framework is tailored
to generate rule-based and counterfactual ones. Finding the ideal form of explanations should be
a result of interdisciplinary work with cognitive scientists, which is currently lacking in XAI [21],
but we do believe that rule-based and counterfactual explanations provide a good foundation for
human-understandability when compared to other forms.
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2.2 Knowledge Representation

Representing knowledge in a way that is structured, easily accessible to humans and to machines,
accurate, and unambiguous is very difficult in practice. One data structure that has prevailed for
knowledge representation is the knowledge graph [94], where by appropriately labeling nodes and
edges of a directed graph, complex information can be efficiently encoded in a structured way,
including entities, relations, attributes, and semantics. Knowledge graphs are scalable, can be inter-
linked, and can be efficiently queried, thus they are useful resources for explainability [191].

Description Logics Description Logics (DLs) [9] provide a formal foundation for representing, and
reasoning on knowledge. DLs define a set of languages, that include a vocabulary and constructors,
that are used to define knowledge bases, that consist of axioms and assertions. Within this frame-
work we can describe a world using the artefacts of a DL language to assert facts and define axioms,
and then via reasoning algorithms we can infer new facts about the world, we can check if a piece
of information is true, false or unknown, and we can perform semantic query answering. The frame-
work of DLs allows for very expressive languages, that in turn allow for encoding, and reasoning
on, complex ideas. However, in practice, utilizing very expressive knowledge is not feasible, as the
complexity of reasoning algorithms becomes exponential or even undecidable. In this work, even
though we do not make full use of the expressive power and reasoning capabilities of DLs, they
are used as a way of future-proofing the proposed explainability and evaluation framework, which
could be extended in the future for more expressive knowledge than what is presented here. Specif-
ically, we make certain assumptions about the structure of DL knowledge bases, that mainly allow
the information to be represented in finite directed labeled graphs. We give a short introduction to
DLs as they are used in this work, while a more detailed description of the notation used within our
proposed framework and algorithms is provided in section B.d.

Given a vocabulary V = (CN, RN, IN) where CN, RN, IN are mutually disjoint finite sets of con-
cept, role and individual names, we consider X = (A, T) to be a knowledge base, where the ABox
A is a set of assertions of the form C(a) and 7(a,b) where C' € CN, r € RN and a, b € IN, and the
TBox T is a set of terminological axioms of the form C' C D where C'; D € CN or r C s where
r,$ € RN. The symbol ‘C ’ denotes inclusion or subsumption. For example, a concept name (in
CN) could be Dog, an individual name (in IN) could be the (unique) name of a specific dog, for ex-
ample snoopy_42, and a role name (in RN) could be a relation, such as “eating”. Then an ABox could
contain the assertion Dog(snoopy_42), indicating that snoopy_42 is a Dog, and a TBox could contain
the axiom Dog T Animal, representing the fact that all dogs are animals (where Animal is also a
concept name in CN). In such a knowledge base, both the ABox and the TBox can be represented as
labeled graphs. An ABox A can be represented as the graph (V, E, ¢y, {) (an ABox graph), where
V = IN is the set of nodes, £ = {(a,b) | r(a,b) € A} C IN X IN is the set of labeled edges,
by 2V — 2N with £,(a) = {C | C(a) € A} is the node labeling function, and ¢y : E — 2fN
with £ (a,b) = {r | r(a,b) € A} is the edge labeling function. A TBox 7 that only contains hier-
archies of concepts and roles, can be represented as a directed graph (V, E) (a TBox graph) where
V = CNURN U {T} the set of nodes. The set of edges F contains an edge for each axiom in the
TBox, in addition to edges from atoms appearing only on the right side of subsumption axioms, and
atoms that don’t appear in the TBox, to the T node: £ = {{(a,b) |aCbe T} U{(a,T)|cCa €
TNaCd¢ T Ne,de CNURNFU{(a,T) | a ¢ sig(T)}. This is abusive notation, in that the
symbol T is overloaded and symbolizes both the universal concept and the universal role.

Knowledge graphs in XAI On a high level knowledge graphs seem perfect for XAl applications, as
the desiderata for good explanations, such as human-understandability, and semantic clarity, are in-
herent features of well-constructed knowledge graphs. Furthermore, the strengths and weaknesses
of knowledge representation techniques seem to be complementary to those of machine learning,
thus making hybrid approaches potentially the best of both worlds. Specifically, sub-symbolic in-
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formation is prevalent in machine learning, which is data-driven, while knowledge-driven methods
work by manipulating well-defined symbolic information. In addition, machine learning systems
are often accompanied by uncertainty and fuzziness, as opposed to knowledge graphs, which cannot
easily handle uncertainty, especially in cases that introduce inconsistencies, which have the poten-
tial to “break” the knowledge. Crucially, sub-symbolic machine learning is opaque, while symbolic
knowledge-driven Al is transparent.

However, utilization of knowledge graphs for XAl is not straight-forward in practice, especially
in the case of post hoc black box explainability. Most knowledge based XAI approaches are either
ante hoc, where the models are designed to utilize knowledge during training (such as Deep Knowl-
edge Aware Networks [201]), or white box, where the knowledge is extracted from inner layers of
a neural network (such as concept based explanations for transformers [97]) [191]. Contrarily, a
black box approach, having access only to input-output pairs, attempts to discover knowledge that
adequately describes the model in a given context. For example, in [4], the authors use reasoning on
geospatial knowledge for explaining the errors of a satellite image segmentation, resulting in expla-
nations that use high level concepts, such as “Park”, “Manmade Structure” or “Shadowy area”, that
are defined in an ontology, and end up describing errors of the image segmentation system. Our pro-
posed framework, as a black box, post hoc approach, works among similar lines. The input-output
pairs are mapped to a knowledge graph, where each is semantically described using appropriate
terminology, as individuals in a DL knowledge base. Then, the explanations are expressed in terms
of the knowledge, resulting for example in rules that explain the behaviour of the black box.

2.3 Music

Chapter B covers multiple different aspects of Al in the domain of symbolic music, from classifi-
cation, generation, evaluation, and explainability. In this section we introduce some basic notions
from music theory that are used throughout.

Music Theories There are numerous theories about different aspects of music, across different
cultures, historical periods, genres, and musical instruments. All of them are descriptive, meaning
that they are used to describe, a posteriori, what sounds good to humans, and are not meant to be
used for creating music. This makes the utilization of music theoretical knowledge for explainability
and evaluation an interesting problem, because we can explore how much specific aspects of music
effect a model’s behaviour, since a single piece of music can be described in many different ways.

Symbolic Music Representation In the context of 12-tone equal tempered western music, which is
the most prevalent system in moden music, the most common digital symbolic representation is the
MIDI protocol. For the purpose of this chapter, this representation is equivalent to the pianoroll, an
example of which is shown in figure P.1. This is an two-dimensional array, where the horizontal axis
represents time, and the vertical axis represents pitch. Time is typically quantized in subdivisions of
beats, meaning that the duration in seconds depends on the tempo of the music. Pitch on the other
hand is quantized in semitones comprising of 12 pitch classes that repeat every octave (indicating
a doubling in frequency). Different values in the array (indicated as different colors in figure P.1)
represent velocity - how loud the note is played. Such representations are abundantly available and
much easier to handle than audio recordings of music, and they are perfectly suited for linking with
knowledge representations of music theoretical notions.

Intervals and Harmony The music-theoretical notions we utilize mainly relate to musical har-
mony. These describe the effect that groups of notes have on the music when played simultaneously,
or in succession. An interval is the distance between two notes in semitones, and there are music
theoretical descriptions of intervals in a large variety of contexts. For example, there are intervals
that themselves are considered dissonant, such as the semitone (interval 1) and the tritone (interval
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Figure 2.1: An example of a pianoroll.

6), consonant such as the perfect fifth (interval 7), joyous, such as the major third (interval 4), and
sad, such as the minor third (interval 3). These descriptions become more complicated when con-
sidering groups of more than two notes, the broader context of what notes were playing before and
what notes are to follow, and rhythmic characteristics, such as note duration. A crucial component
of most ideas that describe groups of notes is the idea of a tonic note. The way humans perceive tonal
sound, i.e. sound where a specific frequency is prevalent, is by isolating the prevalent frequency as
the pitch, and perceiving all other frequencies in relation to the prevalent pitch, typically as timbre.
Similarly, when listening to music, we perceive pitch in relation to multiple broader contexts, each
of which defines a tonic note. For example, when listening to the group of notes G,B,D, if the note
G is perceived as the tonic (for example by being the lowest frequency note), then we perceive a
“joyous” G major chord. If in the broader context the perceived tonic is the note C (for example the
piece of music being written in the key of C major), then we perceive the G major chord as building
tension which we expect to be resolved, contrarily to if the context implied a G major key.

2.4 One-dimensional Convolutional Neural Networks

Part of our research involved developing custom convolutional neural networks (Sections 5.3.7, b.),
and our motivation when developing these focused on aspects such as receptive field, and trainable
parameters. In this section we give a brief introduction to one-dimensional CNNs. For further
reading we refer to [6].

A one-dimensional convolution with kernels of size k is an operation, which acts on a sequence
of T" vectors X of size N to produce a sequence of vectors Y, where at timestep ¢ and channel j:

N k
}/;,j = U(Z ZWj,n,mXiwmel,n) (21)
n=1m=1

The matrix W consists of the convolution’s trainable parameters, while the function o enforces
non-linearity. Note that there is also a bias term that has been omitted. Each element of the out-
put sequence Y only depends on k consecutive elements of the input sequence X, leading to the
effectiveness of the convolutional operation for capturing local structures and patterns in the data.
A deep neural network may then be constructed by stacking such operations in a depth-wise fash-
ion. This results in the first convolutional operations capturing low-level features in the data, while
deeper operations capture more complex high-level features.

Receptive Field and Trainable Parameters

An important attribute of such a network is its receptive field, which is defined as the number
of elements in the input sequence that affect a single element of the output sequence. A single
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convolution C'; with kernels of size k; has a receptive field of k;. A second convolution with kernels
of size k, which is fed C';’s output will depend on k, consecutive elements of said output, leading to
its dependence on k, + k; — 1 elements of the original input sequence. Another important attribute
of a CNN to keep track of is the number of trainable parameters, equivalent to the size of all weight
matrices W. The number of trainable parameters is the primary factor for the memory requirements
of a network which is often a bottleneck for network design.

Efficiently increasing a network’s receptive field is crucial for effectively capturing features
across multiple time scales. By stacking convolutional layers, receptive field increases linearly with
network depth and with kernel size k. However, increasing depth could give rise to difficulties dur-
ing training such as the exploding and vanishing gradients problem (EVGP)[82][210] among others
in addition to increasing the number of trainable parameters, while increasing k by dk leads to a
fin X four % dk increase in trainable parameters, where f;,, and f_,, are the numbers of input fea-
tures and output features (number of kernels in the layer). There exist many methods for increasing
a network’s receptive field more efficiently, for instance using dilated convolutions such as in [[146],
using strided convolutions, or the most common approach: pooling layers.

Pooling

A pooling layer of stride S and kernel size K acts on a sequence of vectors X of dimensions 1" x N
and outputs a sequence Y of dimensions (% + 1) x N. The stride parameter S determines how
many input samples are skipped in between applications of the pooling kernel. A common pooling
operation is max pooling with a stride equal to kernel size K = S. In this case for the output
sequence Y:

Yij = maxy, e X ik im) (2.2)

Another common pooling operation is average pooling with K = S, for which case:

Y = Bpc k (X(ink£m).5) (2.3)

A pooling operation has a receptive field K and does not have any trainable parameters. Each
of two consecutive samples in the pooling operation’s output depends on K input samples, how-
ever, these samples are spaced apart by on average S samples in the input sequence. This means
that feeding the pooling operation’s output to another layer effectively increases receptive field by
a factor of S without an increase in trainable parameters. Finally, pooling operations introduce in-
variance to local translations of an input sequence which could be useful for the learning process
but they entail information loss which could be detrimental to learning.
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Chapter 3

Explanations in Terms of Knowledge

3.1 Introduction

The first concern when thinking about explanations of machine learning systems is the end-user.
They could be a system developer that seeks explanations of the system they are developing, to
improve it in a further iteration, or to troubleshoot. They could be a judge using a recidivism risk
assessment tool, that requires explanations to assess fairness, as such tools have been shown to be
biased [5]. They could be a person that was declined a loan by a bank’s Al, and requires explanations
that offer recourse: what should they do for their loan to get approved. For each of the above
use-cases, the ideal explanation would be different. For instance, the developer supposedly has
knowledge of the underlying system they are trying to explain, and would want the most informative
explanation. On the other hand, the judge has no technical knowledge of how the automatic risk-
assessment tool works, so they want explanations to be understandable. Furthermore, as the decision
they have to make based on the explanation is critical, they want explanations to have guarantees,
be accurate, and clearly stated using legal terminology. Contrarily, the person who was declined a
loan application, wants the explanation that offers the best recourse.

The varying and ill-defined desiderata for good explanations has led to the development of a
plethora of XAI methods [[75]. First, there is a distinction between local explanations that aim to
explain a specific input-output pair, and global explanations that aim to explain the behaviour of
the system in general. An example of the former are counterfactual explanations of classifiers that
answer the question: “What is the minimal change we have to make to a data sample for it to be
classified to class A instead of class B?". Such explanations can be useful in the bank loan use-case
[69, 199]. There are still however important problems to be solved for producing good counterfac-
tual explanations, such as how to encode feasibility and actionability in the explanations [157], how
to make explainers more robust [[184, 161, 36], and what is an appropriate definition of minimality
for each domain of application. An example of the latter (global explanations) are rule-based ex-
planations [214, 139], some of which also make use of logics and reasoning [[117, 174], that provide
explanations in the form of logic rules, or decision trees that mimic the behaviour of the black-box.
There are also local rule-based explanations [[76], in addition to global counterfactual explanations
[59], and a multitude of other forms of explanations, such as feature importance, and example-based.
In this chapter however we are mainly concerned with rule-based and counterfactual explanations.

Each of these XAI methods is suited to different use-cases, and might have different priorities
or outcomes regarding the desiderata (understandability, informativeness, accuracy etc.). It is thus
important that we develop theoretical frameworks [81] to unify explanation methods, and subse-
quently to formally define and quantify what is a good explanation, and while there have been
attempts to formalise notions of interpretability and its evaluation [51], there is still no agreement
on what constitutes a good explanation [[12¢]. To this end, symbolic Al systems play a key role in
the eXplainable AI (XAI) field of research [[143, 7], and one promising approach for mitigating the
pitfalls of XAI methods is to utilize knowledge graphs [191] as a complement or extension to ma-
chine learning systems [112]. An example are global explanations of image classifiers, which would
be very difficult to express in terms of pixels while maintaining understandability and informative-
ness. Instead, global explanations for computer vision often have the form of concept attribution
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or concept importance methods [62, 206], which extract important concepts (such as “black and
white stripes”) and present them as global explanations. This motivates us to use formal knowledge
representation, that allows us to define a specific terminology (for example names of concepts), and
relationships between them (for example a hierarchy of concepts), in addition to descriptions of
the data using this terminology, and to utilize this formally represented information for producing
explanations.

In this chapter, we define a novel theoretical framework, based on Description Logics (DL), that
includes rule-based and counterfactual explanations, and ways to compute them, based on knowl-
edge. Specifically, we first introduce the background and notation used throught this chapter in
section B.4. Then, we describe the core idea of an explanation dataset in section B.3, that contains
items that can be fed to the black-box and are simultaneously described in a DL knowledge base,
and acts as a bridge between the black-box classifier and the knowledge. In sections B.4 and B.5
we define rule-based and counterfactual explanations respectively, in the context of an explanation
dataset. Finally, in section B.q we discuss other usages of explanation datasets, in addition to how we
could convincingly measure informativeness, understandability, and accuracy by using explanation
datasets in future work, and in section B.7 we connlude the chapter.

3.2 Background and Notation

Description Logics Let V = (CN, RN, IN) be a vocabulary, where CN, RN, IN are mutually disjoint
finite sets of concept, role and individual names, respectively. Let also 7 and .4 be a terminology
(TBox) and an assertional database (ABox), respectively, over V using a Description Logics (DL)
dialect £, i.e. a set of axioms and assertions that use elements of ¥ and constructors of £. The
pair (V, £) is a DL-language, and X' = (T, A) is a (DL) knowledge base (KB) over this language.
The semantics of KBs are defined the standard model theoretical way using interpretations. Given
a non-empty domain A, an interpretation 7 = (A”,-7) assigns a set C7 C A7 to each C € CN, a
set 7”7 C A7 x A7 toeachr € RN, and an @’ € A to each a € IN. 7 is a model of a KB X iff it
satisfies all assertions in A and all axioms in 7.

When the ABox A is a set of assertions of the form C'(a) and r(a,b) where C € CN, r € RN
and a,b € IN, it can be represented as the labeled graph (V, E, ¢y,,¢y) (an ABox graph), where
V = IN is the set of nodes, E = {(a,b) | r(a,b) € A} C IN X IN is the set of labeled edges,
Oy 2V — 2N with £y, (a) = {C | C(a) € A} is the node labeling function, and ¢, : E — 2"N with
lp(a,b) = {r|r(a,b) € A} is the edge labeling function.

When the TBox T is a set of terminological axioms of the form C' C D where C, D € CN or
r C s where r, s € RN, ie a hierarchy of concepts and roles, then it can be represented as a directed
graph (V| E') (a TBox graph) where V.= CNURNU{ T } the set of nodes. The set of edges E contains
an edge for each axiom in the TBox, in addition to edges from atoms appearing only on the right
side of subsumption axioms, and atoms that don’t appear in the TBox, to the T node: E = {{a,b) |
aCbeT}tU{{a, T)|cCaeT NaCd¢T Ac,d e CNURN}U{{(a, T) | a ¢ sig(T)}. This
is abusive notation, in that the symbol T is overloaded and symbolizes both the universal concept
and the universal role.

Conjunctive queries A conjunctive query (simply, a query) g over a vocabulary V is an expression
{(xy,...xy) | Fyy ... y;.(e4 A ..o ANe,,) }, where k1 > 0, n > 1, z;, y,; are variables, each ¢; is an
atom C(u) or r(u,v), where C' € CN, r € RN, u, v are some z,, y; or in IN, and all z;, y; appear in
at least one atom. The vector (xq, ... z;) is the head of g, its elements are the answer variables, and
{c1s-.o s ¢, } is the body of g. For simplicity, we write queriesas ¢ = {c¢;, ..., ¢, }, . - vars(q) is the
set of all variables appearing in q. A query ¢ can also be viewed as a graph, with a node v for each
element in vars(q) and an edge (u, v) if there is an atom r(u, v) in ¢, and labeling nodes and edges
by the respective atom predicates. A query is connected if its graph is connected. In this paper we
focus on connected queries having one answer variable in which all arguments of all ¢;s are variables,
which we call instance queries. A query g, subsumes a query q; (we write ¢; <g ¢) iff there is a
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substitution @ s.t. g,0 C ¢;. If ¢;, g5 are mutually subsumed, they are syntactically equivalent. Let
be g a query and ¢’ C q¢. If ¢’ is a minimal subset of ¢ s.t. ¢ <g ¢, then ¢’ is a condensation of
q (cond(q)). Given a KB X, an instance query ¢ and an interpretation J of X, a match for ¢ is a
mapping 7 : vars(q) — A7 such that m(u) € C7 for all C(u) € ¢, and (7(u),n(v)) € r’ for all
r(u,v) € q. Then, a is a (certain) answer for q over X if in every model J of X there is a match
7 for ¢ such that m(x) = a’. We denote the set of certain answers (answer set) to q by cert(q, X).
Because computing cert(q, X) involves reasoning on X', queries on top of DL KBs are characterized
as semantic queries.

Rules A (definite Horn) rule is a First Order Logic (FOL) expression of the form Vz, ... Vx,, (¢q,...,¢,, =
¢p), usually written as ¢y, ..., ¢,, — ¢y, where the ¢;s are atoms and z; all appearing variables. In
a rule over a vocabulary V, each ¢; is either C'(u) or 7(u,v), where C' € CN, r € RN. The body of
a rule can be represented as a graph similarly to the queries. In this paper we assume that all rules
are connected, i.e. the graph of the body extended with the head variables is connected.

Classifiers A classifier is viewed as a function F' : D — €, where D is a domain of item feature
data (e.g. images, audio, text), and C a set of classes (e.g. Dog, Cat).

3.3 Explanation Dataset

The first step for attempting to understand a black box is to choose what data to feed it. In this work
we explore the merits of feeding it data for which there is available information in a knowledge
base. This data comes in the form of what we call exemplars, that are described as individuals in the
underlying knowledge, and can be mapped to the feature domain of the classifier. Such semantic
information that describes exemplars can be acquired from knowledge graphs available on the web
(for example wordnet [[137]), or conceptnet [[187]), it can be extracted using knowledge extraction
methods (such as scene graph generation), or, ideally, it can be provided by domain experts, with
the purpose of explaining opaque models. A motivating example would be a set of X-rays that have
been thoroughly described by medical professionals, and using standardized medical terminology
their characterizations have been encoded in a description logics knowledge base. Having such a
set of exemplars allows us to provide explanations in terms of the underlying knowledge instead of
being constrained by the features of the classifier.

Definition 1 (Explanation Dataset). Let D be a domain of item feature data, C a set of classes, and
V = (IN,CN,RN) a vocabulary such that C U {Exemplar} C CN. Let also EN C IN be a set of
exemplars. An explanation dataset & in terms of D, C,V is a tuple & = (M, S), where M : EN — D
is a mapping from the exemplars to the item feature data, and § = (T, A) is a DL KB over V such that
Exemplar(a) € A iffa € EN, the elements of C do not appear in S, and Exemplar and the elements of
EN do not appear in T .

Intuitively, 2 contains items that can be fed to a classifier. Each such item is represented in the
associated semantic data description by an individual (exemplar) a € EN, which is mapped to the
respective feature data by M. The knowledge base & contains the semantic data descriptions about
all individuals in EN. The concept Exemplar is used solely to identify the exemplars within .4 (since
other individual may exist) and should not appear elsewhere. The classes € should not appear in §
so as not to take part in any reasoning process. The explanation dataset thus provides items with
which we can probe the black-box classifier to explain it, by making use of the semantic descriptions
of the items, in the context of the underlying knowledge.

An example of an explanation dataset for producing explanations is illustrated in figure B.1.
Consider an image classifier that operates on the pixel-level. In order to provide explanations for
the classifier on a higher level of abstraction, we have available a set of images and their semantic
descriptions, in the form of scene graphs (ABox). Furthermore, we have available terminological
axioms involving the vocabulary used in the ABox, defining relationships between terms (TBox).
Now consider that we notice that every image that depicts a cat or a dog is classified to class A,
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Figure 3.1: Overview of explanation dataset usage

while images that depict fish or dolphins are classified to class B. Using the knowledge to extrapolate,
we conclude that the classifier classifies images depicting domestic animals to class A, and aquatic
animals to class B.

3.4 Rule-based Explanations

The first type of explanations we will explore utilizing explanation datasets are rule-based explana-
tions. Specifically, given an explanation dataset, an unknown classifier, and a class C, the aim of the
rule-based explainer is to detect the semantic properties and relations of the exemplar data items that
are classified by the unknown classifier to class C, and represent them in a human-understandable
form, as rules utilizing the terminology of the knowledge.

Definition 2 (Explanation Rule). Let F' : D — C be a classifier, & = (M, S) an explanation dataset
in terms of D, C and an appropriate vocabulary V = (CN, RN, IN). Given a concept C' € C, the rule

Exemplar(z), ¢y, Co, ..., ¢,, = C(x)

where c; is an atom D(u) orr(u,v), where D € CN, r € RN, and u, v are variables, is an explanation
rule of F' for class C over £. We denote the rule by p(F, &, C), or simply by p whenever the context is
clear. We may also omit Exemplar(x) from the body, since it is a conjunct of any explanation rule.

Explanation rules describe sufficient conditions for an item to be classified in class C by a clas-
sifier. E.g., if the classifier classified images depicting wild animals in a zoo class, an explana-
tion rule could be Exemplar(x), Image(x), depicts(z,y), WildAnimal(y) — Zoo(x), assuming that
Image, WildAnimal € CN, depicts € RN, and Zoo € C. It is important that explanation rules refer
only to individuals a € EN that correspond to items M (a) € D; this is guaranteed by the conjunct
Exemplar(z) in the explanation rule body. Indeed, since the classifier under explanation is unknown,
the only guaranteed information is the classification of the exemplars.

Given a classifier ' : D — € and a set of individuals J C EN, the positive set (pos-set) of F' on
J for class C € Cis pos(F,J,C) ={a € J: F(M(a)) = C}, ie the pos-set for a class is the set of
individuals that are mapped to items that are classified positively to the specific class.
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Definition 3 (Explanation Rule Correctness). Let F' : D — C be a classifier, £ = (M, S) an expla-
nation dataset in terms of D, C and an appropriate vocabularyV, and p(F', £, C') an explanation rule.
The rule p is correct over F' and & if and only if

fol(S U {Exemplar C {a | a € EN}}
U{C(a) | a € pos(F,EN,C)}) E p

where fol(XX) is the first-order logic translation of DL KB XK.

The intended meaning of a correct explanation rule is that for every a € EN, if the body of
the rule holds, then the classifier classifies M (a) to the class indicated in the head of the rule.
Intuitively, an explanation rule is correct if it is a logical consequence of the underlying knowledge
extended by the axiom Exemplar C {a | a € EN}, which forces Exemplar(x) to be true in an
interpretation J only for # = a” with a € EN. For instance, the rule of the previous example
Exemplar(z), Image(z), depicts(z,y), WildAnimal(y) — ZooClass(x) would be correct for the KB
8, = (T4, Ay), where A; = {Image(a), depicts(a, b), Wolf(b)} and T, = {Wolf C WildAnimal} if
a € pos(F,EN, ZooClass), while it would not be correct for the KB 8, = (0}, A;), nor would it be
correct for §; ifa ¢ pos(F', EN, ZooClass). Checking whether a rule is correct is a reasoning problem
which can be solved by using standard DL reasoners. On the other hand, finding rules which are
correct is an inverse problem which is much harder to solve.

As mentioned in section B.2, an instance query has the form {c,, ..., ¢,, },., which resembles the
body of an explanation rule with head some C(z). Thus, by representing the bodies of explanation
rules as queries, the computation of explanations can be treated as a query reverse engineering
problem.

Definition 4 (Explanation Rule Query). Let F' : D — C be a classifier, ¢ = (M, S) an explanation
dataset in terms of D, C and an appropriate vocabularyV, and p(F, &, C): Exemplar(x), ¢;, ¢y, ..., C
— C(x) an explanation rule. The instance query

n

q, = {Exemplar(:r), C1;Coy ... ,cn}x
is the explanation rule query of explanation rule p.

This definition establishes a 1-1 relation (up to variable renaming) between p and ¢,,. To compute
queries corresponding to explanation rules that are guaranteed to be correct, we prove Theorem [l

Theorem 1. Let F' : D — C be a classifier, £ = (M, 8) an explanation dataset in terms of D, C and
an appropriate vocabulary V, p(F,&,C): Exemplar(x), ¢y, ¢y, ..., c,, — C(x) an explanation rule,
and q,, the explanation rule query of p. The explanation rule p is correct if and only if

cert(q,,8) C pos(F,EN,C)

Proof. Let § = (T, A). Because by definition Exemplar(a) € A iff @ € EN and Exemplar does not
appear anywhere in 7, we have

cert(q,, S) = cert({Exemplar, ¢y, ..., ¢, }, (T, A))
= ENNcert({cy,...,c, }, (T, A))

= cert | {Exemplar}, <{Exemplar C I_I {a}} ,/l>> Ncert({cy,...,c, }, (T, A))

a€cEN

= cert | {Exemplar, ¢y, ..., ¢, }, <T U {Exemplar C I_I {a}} ,/l>>
a€cEN
= cert | g, <T U {Exemplar C |_| {a}} ,/l>)
a€EN
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Because by definition C' does not appear anywhere in &), we have also that cert(q,,5) =
cert(q,,8’), where 8’ = S U {Exemplar T || __ {a}} U{C(a) | a € pos(F,EN,C)}}, since
the assertions C'(a) are not involved neither in the query nor in § and hence have no effect.

By definition of a certain answer, e € cert(q, X) iff for every model J of X there is a match 7
s.t. m(x) = ¢’ and w(u) € D’ for all D(u) € q and (7(u), 7(v)) € r’ for all 7(u,v) € q.

Assume that p is correct and let e € cert(q,,S). We have proved that also e € cert(q,,§").
Because p is correct, by Def. 3 it follows that every model J of &’ is also a model of p. Because the
body of g, is the same as the body of p, ™ makes true both the body of p and the head of p, which

is C(x), hence ¢’€¢” . It follows that C(e) is true in J. But the only assertions of the form C(e) in
8’ are the assertions {C'(a) | a € pos(F,EN,C)}, thus e € pos(F, EN,C).

For the inverse, assume that cert(q,, §) C pos(F, EN, C), equivalently cert(q,,8") C pos(F,EN,C).
Thus if e € cert(g,,S) then ¢’ Since this holds for every model J of 8’ and the body of q, is
the same as the body of p, it follows that J is also a model of p, i.e. p is correct.

O

Theorem [l allows us to compute guaranteed correct rules, by finding a query ¢ for which
cert(q,8) C pos(F,EN,C). Intuitively, an explanation rule query is correct for class C, if all of
its certain answers are mapped by M to feature data which is classified in class C. It follows that
a query with one certain answer which is an element of the pos-set is a correct rule query, as is a
query ¢ for which cert(q, §) = pos(F,EN, C). Thus, it is useful to define a recall metric for expla-
nation rule queries by comparing the set of certain answers with the pos-set of a class C, as shown
in equation .1

Furthermore, an explanation rule query might not be correct due to the existence of individuals
in the set of certain answers which are not in the pos-set. By viewing these individuals as exceptions
to arule, we are able to provide as an explanation a rule that is not correct, along with the exceptions
which would make it correct if they were omitted from the explanation dataset; the exceptions could
provide useful information to an end-user about the classifier under investigation. Thus, we extend
the framework by introducing correct explanation rules with exceptions, as follows.

Definition 5 (Explanation rule with exceptions). Let F' : D — € be a classifier, £ = (M,S) an
explanation dataset in terms of D,C where S is a knowledge base S = (A, T ), EN the set of exemplars
of &, and let EX be a subset of EN. An explanation rule p(F', &, C) is correct with exceptions EX for
class C' if the rule p(F, &', C) is correct for class C, where &’ = (M,S8’), and 8’ is the knowledge
S =(A",T),and A = A {Exemplar(a) | a € EX}.

Since we allow exceptions to explanation rules, it is useful to define a measure of precision of
the corresponding explanation rule queries as shown in equation B.4. Obviously, if the precision of a
rule query is 1, then it represents a correct rule, otherwise it is correct with exceptions. Furthermore,
we can use the Jaccard similarity between the set of certain answers of the explanation rule query
and the pos-set, as a generic measure which combines recall and precision to compare the two sets
of interest as what we call the degree of an explanation rule query, as shown in equation B.3.

Metrics
|cert(q, 8) N pos(F, EN, C)]
o _ 3.1
recall(g, &, C) |pos(F, EN, C)] ’ .
orecision(q. &, C) — [cert(g, §) 1 pos(F', EN, O)| (3.2)

|cert(q, S)]

 cert(q, &) Npos(F',EN,C)|
degree(q, &, C) = |cert(q, 8) U pos(F,EN,C)|’ (3:3)
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3.4.1 Computing Explanation Rules

As we have already mentioned, the computation of explanation rules in the context of this frame-
work can be reduced to a query reverse engineering problem. This query reverse engineering prob-
lem follows the Query by Example paradigm or QbE. This term refers to reverse engineering queries
that contain some positive examples in their answer set but not any negative examples and is widely
used in the related literature [224, 131, 79, 149, 98, 32]. It has been shown to be a difficult problem
to solve for conjunctive queries (coNEXPTIME-Complete [11]), thus any algorithms developed will
either be extremely resource intensive, and not scalable, or they will solve a relaxed version of the
problem, and provide approximate solutions. In this thesis we use two algorithms for computing
explanation rules. The first is an adaptation of the method developed by Chortaras et al. in [28]
for exploring the entire space of semantic queries in DL knowledge bases, which we call KGRules,
and the second developed by Liartis et al. in [[122] that searches the space of semantic queries using
heuristic criteria.

KGRules

The computation of arbitrary candidate explanation rule queries for the KB § of an explanation
dataset is in general hard since it involves exploring the query space Q of all queries that can be
constructed using the underlying vocabulary V and getting their certain answers for §. Difficulties
arise even in simple cases, since the query space is in general infinite. However, the set of all possible
distinct answer sets is finite and in most cases it is expected to be much smaller than its upper limit,
the powerset 2'N,

Alg. il explores a useful finite subset of Q, namely the tree-shaped queries of a maximum depth
k [64]. It constructs all possible such queries (that include Exemplar(z) in the body), obtains their
answers, and arranges them in a directed acyclic graph (the query space DAG) using the subset rela-
tion on the answer sets. The queries are constructed in the for loop, and then the while loop replaces
queries having the same answer set by their intersection. The intersection ¢, I g, of two instance
queries ¢, ¢, with answer variable x is the query cond(q; U ¢,0), where 0 renames each variable
appearing in g, apart from x to a variable not appearing in g;. Thus, from all possible queries with
the same answers, the algorithm keeps only the most specific query q of all such queries. Intuitively,
this is the most detailed query. Finally, the queries are arranged in a DAG. By construction, each
node of the DAG is a query representing a distinct answer set.

Theorem 2. Let F' : D — C be a classifier, & = (M,S) an explanation dataset in terms of D, C
and an appropriate vocabulary V, and p(F', £, C') a correct tree-shaped explanation rule of maximum
depth k. The DAG constructed by Alg. [ contains a query q, corresponding to a correct explanation
rule p’ (F, £, C) with the same metrics as p, s.t. ¢,y <g q,.

Given Theorem [} a node corresponding to a correct rule for some pos(F, EN, C) can be reached
by traversing the graph starting from the root and finding the first node whose answer set equals
pos(F, EN, C'). The descendants of that node provide all queries corresponding to correct explana-
tion rules. The DAG has a unique root because answer sets are subsets of cert({Exemplar(x)},,S).

An unavoidable difficulty in using Alg. [l is its complexity. The sizes of B and J are at the
orders of 2/°Nl and 4/”Nl respectively, and the number of tree-shaped queries with k variables is at
the order of 2FICNI . 4(k=DIRNI  However, in practice the query space is much smaller since most
queries have zero answers and can be ignored. To get answer sets, Alg. [| assumes a function that
returns cert(q, X') for any query gq.

If X is fully materialized, i.e. if no reasoning is needed to answer queries, it is easy to implement
the function for cert(q, X'). The sets B and F can be computed to contain only queries with at least
one answer, and queries can be constructed incrementally; once a query with no answers is reached,
no queries with additional conjuncts are considered.

If K is not materialized, or impossible to materialize, the incremental query construction process
should by coupled with the necessary reasoning to get the query answers. For the DL-Lite_, dialect,
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Algorithm 1: QuerySpaceDAG
Data: Vocabulary V, KB X', a maximum query depth k& > 0
Result: Query space DAG G
1 Compute the set B of all non-syntactically equivalent queries {C (z), ..., C,,(x)},, where
C; € CN {Exemplar}, n > 1;
2 Compute the set F of all non-syntactically equivalent queries
{ri(uy,vq), .o, (1w, v,) b, Where r; € RN, > 1, each u;, v; is either x or y and

n» -’ n

3 Initialize an empty set of queries Q.;

4 fori=0...kdo

5 Compute the set T, of all trees of depth i.;

6 foreach t € 7, do

7 Assign to each node v of ¢ a distinct variable var(v). Assign x to the root of t.;

8 Construct all non-syntactically equivalent queries ¢ obtained from ¢ by adding to
the body of ¢: i) for each node v of ¢, the body of an element of B U {(}} after
renaming x to var(v), ii) for each edge (v,,v5) of ¢, the body of an element of &
after renaming x to var(v, ) and y to var(v, ), and iii) Exemplar(z).;

9 Condense all ¢gs and add them to O.;

10 end
11 end

12 while there are ¢;, g, € O s.t.cert(q;, X) = cert(gy, X') do

13 ‘ remove ¢, ¢, from Q and add ¢, M ¢, to 9.;

14 end

15 Arrange the elements of O in a DAG G, making ¢, a child of ¢, iff
cert(qq, X) C cert(gy, X).;

16 return the transitive reduction of G

a more efficient alternative to Alg. [il is proposed in [28]. DL-Lite, allows only axioms of the form
C C DorrC s, where C, D are concepts, and r, s are atomic roles. D can be either atomic or of
the form 3r7). T, and C can be of the form 3r(7). A, where A is atomic. The authors exploit the
fact that query answering in DL-Lite, can be done in steps by rewriting a query to a set of queries,
the union of whose answer sets are the answers to the original query, to incrementally compute the
tree-shaped queries of a maximum depth with at least one answer.

Further simplifications to reduce the practical complexity of Alg. [Il, that may affect its theoretical
properties, include not condensing queries, keeping an arbitrary query for each answer set instead of
the most specific one, and setting a minimum answer set size threshold for a query to be considered.

KGRules-H

As the KGRules algorithm is not always practical, due to its complexity, Liartis et al. developed
KGRules-H, that provides approximate solutions by using heuristic criteria. The pipeline of the
algorithm is illustrated in figure B.7, and is outlined in algorithm [

First of all, KGrules-H can only be applied for knowledge bases in which the TBox can be elim-
inated. In particular, TBox elimination is the process of expanding a given ABox by applying the
axioms of a given TBox, so that the TBox in eventually not needed, in the sense that all certain
answers of the original knowledge can now be obtained only from the expanded ABox. Because
TBox elimination is not always possible, this poses certain restrictions on the applicability of Alg. ],
namely that if the original knowledge of the explanation dataset is indeed of the form (7, .A4)
with T # (), it should be possible, as outlined above, to be transformed through TBox elimina-
tion to an equivalent w.r.t. query answering finite assertional-only knowledge base A’, such that
cert(q, (T, A)) = cert(q, (, A")) for any ¢. For knowledge bases that this is possible, the standard
approach for TBox elimination is materialization and is typically performed by first encoding the
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Figure 3.2: Visualization of how KGrules-H is integrated into our framework.
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Algorithm 2: KGRuLEs-H

Input: An atomic ABox .4 and a set of individual names I.
Output: A list of queries S.

18« []

2 L+ {MSQ(a,A) |a €I}

3 while |L| > 2 do

4 qasqp < argming ,cr o QueryDissimilarity(q, q’)
5 | q< Merge(qa,qp)

6 | L (L {qa,9p})U{d}

7 append g to S

8 end

9 return S

axioms in T as a set of inference rules generating ABox assertions, and then iteratively applying
them on the knowledge base until no more assertions can be generated. Materialization is possible,
e.g. for Description Logic Programs and the Horn-§/(JQ DL dialect. Finite materialization may
not be possible even for low expressivity DL dialects, such as DL-Lite. [1106, 65].

Having eliminated the TBox, the algorithm starts with the Most Spcific Query (MSQ) of each
exemplar in the pos-set, and iteratively merges the most similar queries, with the goal of producing
more general descriptions, eventually describing the entire pos-set. Different criteria can be used
for computing similarity of queries, and different methods can be used for merging queries, and
these are hyperparameters of algorithm f.

Specifically, for a cheap approximation of query dissimilarity, Liartis et al. define it as follows.
Given two queries ¢;, g, with respective graph representations Gy = (Vi, B, 4y, , {5 ) and Gy =
(Va, By, by, , L, ), we define the query dissimilarity heuristic between ¢, and ¢, as follows:

QueryDissimilarity(q;, g5) = min diss, , (vy,v5) + Jfnin diss,, g, (V2,v1)
vo€Vy

where

dissy g, (v1,v9) = |Li(vy) Lg(vy)]

+ Z{max(indegreeg1 (vy)— indegreeTG2 (vq),0)+ Inax(outdegreeTG1 (vy) — outdegreeTGQ (vy),0)},
reER
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R is the set of all role names appearing in the edge labels of the two graphs, and indegree, (v)
(outdegree, (v)) is the number of incoming (outcoming) edges e in node v of graph G with r € £(e).
The intuition behind this dissimilarity measure is that the graphs of queries which are dissimilar
consist of nodes with dissimilar labels connected in dissimilar ways. Intuitively, we expect such
queries to have dissimilar sets of certain answers, although there is no guarantee that this will
always be the case.

For merging queries into more general ones, Liartis et al. use two different procedures. The
first is the computation of the Query Least Common Subsumer (QLCS) of the two queries, which
is defined as the most specific generalization of two queries, and is computed as the Kroenecker
product of the two queries. The second, outlined in algorithm B, greedily merges queries based on
their common conjuncts. Since the Kroenecker product of two graphs of |V; | and |V,| vertices, will
have |V;| x |V,| vertices, which in the context of graph representations of queries correspond to
variables, the merged queries will have many redundant conjuncts. As these queries will be itera-
tively merged, and the end-result will be shown to a human, after each merge, Liartis et al perform
query minimization by removing redundant conjuncts. Unfortunately, the problem of minimizing
a query, also known as condensation is coNP-complete [71], so they propose an approximation to
query minimization described in algorithm [.

Algorithm 3: GREEDYCOMMONCONJUNCTS

Input: Two queries ¢;, ¢, with query graphs
qu = <V17E17€V17£E1>7Gq2 = <V27E27£V2>€E2>'
Output: A query consisting of common conjuncts of ¢; and gs.
1 if |var(q;)| < |var(q,)| then
Swap ¢y, ¢,
end
0 {}
U var(ay) {z}
V «var(qy) {z}
while true do
S {zrylzeV,yel, (52) € By, (5,y) € By, fp ((52) Ny, ((y) #
0, 2 vy €6}
9 U{zylzeV,yelU, (2,2)€ B, ¥,y €
Ey, U, ((z',2)) N lg,((y' y) #0, 2 =y €6}
10 if S # () then

0 N AN R WoN

11 2 g < argmax,,, cs{|q; N (0 U {z = y})| — g1 N g0}
12 0+—0U{zZ— 7y}

13 V<V {z}

14 U«U {y}

15 else

16 break

17 end

18 end

19 q < ¢; N g0

20 return g

While the details of how to approximate solutions to the query reverse engineering problem,
and the KGrules-H algorithm are out of the scope of this dissertation, we have mentioned some of
the details, to show i) why the problem is theoretically difficult (merging, minimizing, comparing),
and ii) How with specific relaxations, approximate explanation rules can be computed in a scalable
way. For further details on KGrules-H, we refer to the work of Liartis et al.
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Algorithm 4: APPROXQUERYMINIMIZE

Input: A query represented as a graph ¢ = (V, E, {y,, ().
Output: An approximately minimized query ¢’, also represented as a graph.

1 do

2 q < q

3 foreach pair (v,v"), v,v" € V, v # v" do

4 if 0y,(v") C ¢y, (v) and
(W' Wy e E= ((v,v") € E, L', v") Cly(v,v")), v” # v and
W)y eE= ((v,v) € E, (v, v)Cly(v,v)), v # v and
(W,v") e E= ((v, v) €E, gy, v) Clyv, )) then

5 ‘ Delete variable v’ from q.

6 end

7 end

8 while ¢’ # ¢
9 return ¢’

3.5 Counterfactual Explanations

The second type of explanations we explore utilizing explanation datasets are counterfactual expla-
nations. As these are supposed to answer the question “What has to change for a data sample to
be classified to class B instead of class A”, they often have the form of input edits. ie small changes
of the features of the data sample that lead to a different classification by the black-box. In our
approach, counterfactual explanations have the form of semantic edits that are applied on an ABox
corresponding to an explanation dataset, instead of the features of the data sample, while the notion
of “minimality” (small changes), is defined based on the underlying knowledge. Specifically, given
an exemplar and a desired class, we are searching for a set of edits that when applied on the ABox
lead to the exemplar being indistinguishable from any exemplar that is classified to the desired class,
where two exemplars are indistinguishable if their connected components on the ABox graph are
equal.

Definition 6 (Counterfactual Explanation). Let F' : D — C be a classifier and (M, X) an explanation
dataset where M : EN — D is a mapping function, EN is a set of exemplars and X = (A,T) is a
knowledge base. A counterfactual explanation for an exemplar a € EN and class C' € C is a tuple
(c, E) where c € EN and F(M(c)) = C, and E is a set of edit operations that when applied on the
connected component of a on the ABox graph make it equal to the connected component of c. An edit
operation on an ABox can be any of:

e Replacement of assertion D(a) with E(a), symbolized e, ,
e Replacement of r(a, b) with s(a,b), symbolized e, _,
e Deletion of D(a) orr(a,b), symbolized e, .+ ore, .+
e Insertion of D(a) orr(a,b), symbolized e+_, , ore,_,,
where D, E € CN andr,s € RN.
For example, consider an image classifier F’ that classifies to the classes
€ = {WildAnimal, DomesticAnimal}

and two exemplars e, e, each classified to a different class: F'(e;) = WildAnimal and F'(e,) =
DomesticAnimal. The connected components of each exemplar in the ABox graph might be:

A, = {Exemplar(e, ), depicts(e;, a), depicts(ey, b),
isin(a, b), Animal(a), Forest(b) }
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A, = {Exemplar(e,), depicts(e,, ¢), depicts(e,, d),
isin(c, d), Animal(c), Bedroom(d) }

Then an explanation for exemplar e; and class DomesticAnimal would be the replacement of asser-
tion Forest(b) with Bedroom(b), which would be symbolized (e, {€ryrest—spedroom }) a1d it would be
interpreted by a user as “If image e; depicted animal a in a Bedroom instead of a Forest, then the
image would be classified as a DomesticAnimal”. Of course there is no way to know if the image
e, with the Forest replaced with a Bedroom would be classified to the target class, because we do
not have a way to edit the pixels of the image and feed it to the classifier. The explanation how-
ever provides useful information to the user and can potentially aid in the detection of biases of the
classifier. For example, after viewing this explanation, the user might choose to feed the classifier
images depicting wild animals in bedrooms to see whether or not they are misclassified as domestic
animals.

To provide more information to the end user, we can accumulate counterfactual explanations for
multiple exemplars and the desired class and provide statistics about what changes tend to flip the
prediction of the classifier, as a form of a “global” explanation. For example, one could ask “What are
the most common semantic edits that when applied on exemplars depicting bedrooms lead to them
to be classified as wild animals?”. To do this, we first compute the multiset G of all counterfactual
explanations from each exemplar in the source subset to the target class, and then we show the
end-user the importance of each atom for changing the prediction on the source exemplars to the
target class, where

|{6x%y € 9}| - Hey%x € -9}|
9]

Importance(y) = (3.4)
where ,x,y € CN, or x,y € RN.

Intuitively, the importance of an atom shows how often it is introduced (either via replacement
or via insertion) as part of the semantic edits of a set of counterfactual explanations. A negative
importance would indicate that the atom tends to be removed (either via replacement or via deletion
of assertions). For example, one could gather all exemplars that are classified as WildAnimal, along
with their counterfactual explanations for target class DomesticAnimal and compute how important
the presence (or absence) of a concept or a role is for distinguishing between the two classes.

3.5.1 Computing Counterfactual Explanations

Given an explanation dataset (EN — D, (A, T)), the first step for computing useful counterfactual
explanations is to determine the edit operations on the ABox that transform the description of every
exemplar to every other exemplar, thus this is a computation that has to be done O(|EN|?) times,
but it only has to be done once for an explanation dataset. Ideally, each set of edit operations will be
minimal as they are intended to be shown to users as explanations, which means that the problem
to be solved is the exact graph edit distance problem [[173].

Edit Distance Between Exemplars

Unfortunately, computing the graph edit distance is NP-Hard [220], and even though there are op-
timized algorithms for its computation [[1], it will not be feasible for explanation datasets with a
large number of exemplars. One way to overcome the complexity is to simplify the problem, and
to work with sets instead of graphs, which will allow us to use an algorithm similar to the one pre-
sented in [59] for the computation of explanations. Of course converting a graph into a set without
losing information is not generally possible. In this work, we convert the connected components
of exemplars on the ABox graph into sets of sets of concepts, by rolling up the roles into concepts.
Specifically, we add information about outgoing edges to the label of each node in the ABox graph,
by defining new concepts 3r.C for each pair of role name r and concept name C, and then adding
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Jr.C to the label of a node a if r(a, b), C(b) € A for any b € IN. Then every exemplar of the expla-
nation dataset is represented as the set of labels of nodes that are part of the connected component
of the exemplar on the ABox. For instance, an exemplar e with a connected component:

A, = {Exemplar(e), depicts(e, a), depicts(e, b), depicts(e, ¢),
Cat(a), eating(a, b), Fish(b), in(b, ¢), Water(c) }

would be represented as the set of labels (ignoring the Exemplar node): {{Cat, Jeating.Fish},
{Fish, Jin.Water}, {Water} }.

Now, to compute counterfactual explanations, we have to solve a set edit distance problem be-
tween concept set descriptions of exemplars.

Cost of Edits

Before solving the edit distance problem we first have to determine how much each edit costs. Intu-
itively, we want counterfactual explanations to be semantically similar exemplars, thus the cost of
an edit should reflect how much the exemplar changes semantically after applying the edit. Further-
more, the edits should be as transparent as possible in order to provide the user with comprehensive
explanations. For instance, if the distance among concepts equals the distance between their em-
bedded representations provided by a word embedding system or a graph neural network, we would
not know why these concepts are close or distant. Thus it is imperative to use a transparent method
for this calculation. To do this, we utilize the information that is present in the TBox. For the first
type of ABox edits, that involves replacing concept assertions (e 4_, 5), we assign a cost to the re-
placement of concept A with concept B equal to their distance on the TBox graph, ignoring the
direction of the edges. For example, given a TBox: 7 = {Cat = Mammal, Dog C Mammal, Ant C
Insect, Mammal C Animal, Insect C Animal} the cost of replacing a Cat(a) assertion with Mammal(a)
would be 1, the cost of replacing Cat(a) with Dog(a) would be 2 and the cost of replacing Cat(a)
with Ant(a) would be 4. Similarly, the cost of replacing a role assertion r(a, b) with s(a,b) (sym-
bolized e,._, ) is assigned to be the distance of the shortest path on the undirected TBox graph from
r to s. It is worth mentioning that this is not necessarily the optimal way to compute semantic
similarities of concepts and roles, and other measures exist in the literature [33], which we plan to
experiment with in future work.

For the insertion of concept or role assertions, as is apparent from the notation e_, ,, we assign
a cost equal to the distance of the inserted atom (either a role or a concept) from the T node in the
TBox graph. This means that it is more expensive to insert more specific atoms, than more general
ones. Similarly for the deletion of atoms e,_,, the cost is assigned to be the distance of the deleted
concept or role from the T node on the undirected TBox graph meaning it is more expensive to
delete more specific concepts and roles.

Based on the above, when dealing with concept set descriptions instead of graphs, where we have
rolled up the roles into Jr.C' concepts, the cost of inserting or deleting an 3r.C concept to/from a set
is equal to the cost of inserting or deleting both a role assertion r(a, b) and a concept assertion C'(b)
so the cost would be the sum of the costs of e+_,,. and e+_,. In this case, a concept C' cannot be
immediately replaced with a concept 3r.D, instead it has to first be deleted e_,+ and then the new
concept inserted e+_,5,. p. On the other hand, replacing a concept Ir.C' with 3s.D (e5, ~_,55 p) is
equivalent to replacing a role assertion r(a, b) with s(a, b) and a concept assertion C'(b) with D(b)

so the cost of replacement would be the sum of the costs of e, and e_, ;5.

r—s

Finally, we allow a user to manually assign cost to edits which could be useful in specific appli-
cations where some edits might not be feasible in the real world. For example, if we had exemplars
representing people, and concepts representing their age (Young, Old) we might want to disallow
the edit €5)4_,young @s it would require time-travel in order to be implemented realistically, so we

could assign an infinite cost to this edit.
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Additional Criteria for Good Counterfactuals

In the context of this framework, the simplest counterfactual explanation for an exemplar e and
a target class C would be the exemplar x (along with the edits) that is the closest with respect to
edit distance to e while considering exemplars that are classified to C'. If we have access to the
output probabilities of the classifier for each class, then we can utilize this information and provide
additional criteria to determine which counterfactual explanations to show to a user.

Target Significance The first additional criterion, defined as significance in [59], is to find the ex-
emplar x that maximizes the fraction #ﬁﬁ(m, where P, (z) is the probability for exemplar =
to be classified to target class C. Intuitively, we are searching for a small set of low-cost edits (min-

imize edit_distance) that largely effect the output of the classifier for the desired class C' (maximize

Po(x)).

Source-Target Significance Another option for a criterion would be to also take under consider-
ation the prediction probability for the class that the original exemplar is classified to. Similarly to

before, a counterfactual for exemplar e would be exemplar x (along with the edits) that maximizes
Po(z)—Pp(z)

edit_distance(e,x)
are supposed to answer the question “Why class D and not class C?”, and while the previous criteria
emphasize the “..and not class C” part of the question, intuitively source-target significance puts

more weight on the “Why class D” part.

the fraction , where D is the class that e is classified to. Counterfactual explanations

Entropy A final criterion we explore in this work is to consider the confidence of the classifier for
classifying an exemplar to the target class C. As a measure of confidence we use the entropy at

the output of the classifier, where a lower value indicates a more confident prediction. To do this,
Zie@ P,;(z)log P;(x)

edit_distance(e,z)

we find exemplar x that is classified to target class C' and maximizes the fraction
where € is the set of classes of the classifier.

Algorithm

In the general case, the algorithm for computing counterfactual explanations has two steps. The first
step (preprocessing) is to compute the edit path between all pairs of exemplars in an explanation
dataset and to acquire predictions of the classifier on all exemplars, including the prediction prob-
abilities if they are available. The second step is, given an exemplar and a target class, to find the
exemplar with the minimal edit distance that is classified to the target class that maximizes (or min-
imizes) the chosen criterion, out of those mentioned in section B.5.1. Regarding complexity, when
using the graph representation, as mentioned before graph edit distance computation is NP-Hard
and it has to be done [ENJ? times. In our experiments we use the implementation provided by the
python package networkx fl. In our experiments we use a depth-first graph edit distance algorithm
proposed in [[]. For the case of concept set descriptions, first we need to find the connected compo-
nents of exemplars on the ABox graph. Then we need to add Jr.C' concepts to the labels of nodes a
for which 7(a, b)C(b) is in the ABox.

To compute the set edit distance between two labels of nodes ¢,, ¢;, each of which is a set
of concepts (either atomic or of the form 3r.C'), we first construct a bipartite graph where each
element of ¢, is connected to every element of ¢, and has a cost based on the TBox T, as defined
in section B.5.1. On this bipartite graph we then compute the minimum weight full match using an
implementation of Karp’s algorithm [[100] for the problem to get the optimal set of edits from one
set of concepts to another. Finally, to compute the edit distance between two sets of labels L, L,,
each of which is a set of sets of concepts, we first compute the edit distance from each label in L,

*https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.
algorithms.similarity.optimize graph edit distance.html
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Algorithm 5: Explanation Graph Construction

Data: A classifier /', an explanation dataset D, an undirected TBox Graph G'1»
Result: Explanation Graph G'f;
1 //the explanation graph will have a node for each element in the explanation dataset
2 Initialize Directed Graph G = (Vg = D, Ep = 0);
3 foreach (z,;,C;) € D do

4 | foreach (z;,C;) € D {(x;,C;)} do
5 Initialize Graph G = (Vo = C; U C}, Eq = 0);
6 foreach k € C; do
7 foreach [ € C; do
8 //Compute concept distance using TBox graph
9 dp(k,1) = |ShortestPath(Gp, k, )|
10 //Add an edge to G with weight d -
11 Ec=E-U{(k,,dp)}
12 end
13 end
14 //Compute minimum weight full matching of the bipartite graph G
15 {(¢;s €p) }, w = MinFullMatch(G )
16 //Concept Set Edit Distance
17 Dy (C;,C)) =w
18 //Compute criterion
19 o (i, j) = criterion(x;, x;)
20 //Add an edge to the explanation graph G, with weight % and as a label the edits
corresponding to the minimum weight full match
21 Ep=FEgU {(Uz'a Vs, ﬁa {ecm—)cn}>}
22 end
23 end
24 return Gg
25

to every label in L, by using the procedure described in the previous paragraph for each pair of
labels, meaning the set edit distance computation is performed | L, || L,| times. Then to find the edit
distance between L, and L, we use the same procedure as with sets of concepts (bipartite graph
and full match), but this time the weights of the edges of the bipartite graph are assigned according
to set the edit distance. Having preprocessed the explanation dataset and saved the edit paths, an
explanation can be provided in O(|EN|). The result of the preprocessing stage is what we call an
explanation graph, where the shortest paths indicate counterfactual explanations. The construction
of this graph for concept set descriptions is outlined in algorithm p4.

Complexity

Regarding complexity, when using the graph representation, as mentioned before graph edit dis-
tance computation is NP-Hard and it has to be done |[EN|® times. For the case of concept set de-
scriptions, first we need to find the connected components of exemplars on the ABox graph which
requires time O(|A4|). Then we need to add 3r.C' concepts to the labels of nodes a for which
r(a,b)C(b) is in the ABox, which also requires time O(|.4|). To compute the set edit distance
between two labels of nodes ¢, £;, each of which is a set of concepts (either atomic or of the form
Jr.C'), we first construct a bipartite graph where each element of ¢, is connected to every ele-
ment of ¢, and has a cost based on the TBox 7, as defined in section B.5.1. The computation of
the cost of a single edit can be done with Dijkstra’s algorithm on the TBox graph, requiring time
O(v + |T|log(v)), where v = |CN| + |RN| thus the construction of this bipartite graph requires
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time O(|¢,]|¢,|(v + |T|log(v))). On this bipartite graph we then compute the minimum weight
full match using an implementation of Karp’s algorithm [[100] for the problem with time complexity
O(]€,11¢,|1og(]4,])) to get the optimal set of edits from one set of concepts to another. Finally, to
compute the edit distance between two sets of labels L, L,, each of which is a set of sets of con-
cepts, we first compute the edit distance from each label in L; to every label in L, by using the
procedure described in the previous paragraph for each pair of labels, meaning the set edit distance
computation is performed |L,||L,| times. Then to find the edit distance between L, and L, we
use the same procedure as with sets of concepts (bipartite graph and full match), but this time the
weights of the edges of the bipartite graph are assigned according to set the edit distance. Following
from the above, for computing the edit distance between all pairs of exemplars, the total preprocess-
ing time ends up being O(|EN|?(L?(1*(v + T'logv + logl)) + L?log L)) where |EN| is the number
of exemplars, L is the maximum number of nodes in a connected component of an exemplar, [ is
the maximum cardinality of a label of a node, T is the size of the TBox and v is the number of
atomic concepts and roles. Having preprocessed the explanation dataset and saved the edit paths,
an explanation can be provided in O(|EN]).

3.6 Discussion: Other Usage of Explanation Datasets

Explanation datasets can be useful for a multitude of different problems besides explainability. In
this section we showcase two instances where explanation datasets were used for a task besides
explainability: a) Improving performance of Information Retrieval (IR) systems, and b) Evaluating
IR systems.

Regarding improving performance of IR systems, in our work in [43], we were tackling the
problem of retrieving scientific documents given a text query. Specifically, in the context of the
COVID-19 pandemic, new papers were being published daily, and key questions about the pan-
demic still did not have clear answers. Thus, it was imperative to develop tools to sift through the
publications and get sources that answer a specific question, such as “What are the comorbidities of
the virus?”. A common approach for text-document retrieval is to use large language models to get
vector representations of queries and corpus, and then using the cosine similarity of the vector rep-
resentations, as a proxy to semantic similarity. Thus, given a query, the most semantically similar
document is retrieved.

There are several pitfalls to this approach, and we focused on two of them. Firstly, especially
since the documents were scientific papers, and the COVID-19 pandemic was at its early stages, the
large language models will not have been trained on similar texts, there will be out-of-vocabulary
words, and words appearing in a different context. Secondly, most language models are limited
by the number of tokens they accept at their input, so getting a vector representation of an entire
document is not trivial. The overall pipeline of the system is summarized in figure B.3, however the
details are out of scope of this dissertation. We see however, that the document relevance rank-
ing procedure, takes into consideration, besides the document vector representation and the query
vector representations, a semantically enriched representation for each. These “semantically en-
riched” representations, are sets of concepts, that appear in SNOMED-CT, a large knowledge graph
of clinical terms.

Essentially, what we had was an explanation dataset, where we had individuals (exemplars),
that were mapped to documents, and were labeled with a set of concepts (ABox), that were defined
in SNOMED-CT (TBox). We hoped to use this knowledge to mitigate the first pitfall, of out-of-
vocabulary words, since many words that a language model cannot understand (such as medical
terminology) will appear in the semantic descriptions of the exemplars. Thus, our idea was to first
filter documents based on the number of common concepts (including parents from the SNOMED
hierarchy) with the query, before comparing vector representations. This had the added benefit
of fewer cosine similarity comparisons to return an answer, as many documents would have been
filtered out for not having common concepts with the query, in addition to not being constrained by
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Figure 3.4: Performance improvement for NDCG@100 over initial BERT models with the addition
of SNOMED-based filtering. The improvement is shown in light blue.

the length of the document, as concepts were extracted from the entire text. This led to a significant
improvement in performance, especially for generic language models such as BERT [44] (as opposed
to BioBERT [[115] and BlueBERT [[154] that have been fine-tuned on biomedical and clinical data
respectively), as shown in figure B.4.

The second task where an explanation datasets proved useful was evaluating IR systems, in our
work in [129]. The typical metrics used for evaluating IR, involve a set of ground truth query-
answer pairs, such as the Normalized Discounted Cumulative Gain (NDCG) metric shown in figure
B.4. Other evaluation metrics include precision at the n first documents, recall at 7, mean reciprocal
rank, median rank, etc. However, these numbers can be quite superficial, they do not explain why a
particular system performs poorly or well, and their dependence on the ground-truth assumes that

63



Dataset Ground truth image Evaluation Visual

m Concept concepts 14
It ol SN
@ Extraction Non-common Concept

\_ Similarity ) ‘
y .| Retrieved l ,
. . i 2 Concept Enumeration J
—> Representation Ranking %—@ [

I A g Bounding Boxes ——>[ Size Disagreement

|

Human evaluation

Figure 3.5: Evaluation pipeline for text-image retrieval

Automatic

I Concept Agreement

Metries

Interventions

Adversarial
query

Antonyms

Colors

© 006

Adversarial re-ranking Size

the ground-truth ranking is always reliable.

In our work we were concerned with the evaluation of text to image retrieval systems. Specif-
ically, we aimed to develop metrics that quantify specific aspects of these systems, such as their
ability to consider particular semantics, such as color, enumeration, size, etc. The pipeline of the
system is shown in figure B.5, the details of which our out of the scope of this dissertation. Firstly,
again in this pipeline, we have essentially developed an explanation dataset. Specifically, we have
available images annotated with concepts (such as COCO and the Visual Genome as shown in exper-
iments in chapter ). Then, given a text-image retrieval system, we can use the explanation dataset
for comparing the retrieved image with the ground truth, based on the underlying knowledge. Based
on this comparison (that is very similar to our counterfactual explanation computation of section
B.5.1), we can score the retrieval system, based on the conceptual similarities between retrieved and
ground-truth images.

3.7 Conclusion

Using knowledge for explaining black-box systems makes intuitive sense. When the only option we
have is to feed the black-box inputs, and observe its outputs, then having useful, and plentiful knowl-
edge about the inputs, and the outputs, can lead to the extraction of useful, and plentiful information
about the operation of the black-box. The main limitation of this approach, as it was presented in
this chapter, seems to be computational complexity. Both the exponential KGrules and the NP-Hard
graph edit distance version of the counterfactual generation algorithm, are prohibitively resource
intensive. Thus, future efforts will be focused on developing optimizations, adaptations, and en-
tirely different approaches for computing rule-based and counterfactual explanations. An example
of such an approach could be to utilize knowledge embeddings [202] or graph embeddings [22] as
components of algorithms such as algorithm [}, and P4, where for example instead of the graph edit
distance, we could use a cosine similarity of vector representations of the graphs.

Furthermore, the most widely accepted method of evaluating explanation methods in the liter-
ature, are user studies. However, there is no consensus for the best way to conduct these studies,
so part of our future endeavours involves conducting a human study to quantify the qualities of
knowledge-based explanations, when compared to more traditional methods. In addition, we are
exploring ways for utilizng explanation datasets, to detect specific aspects of other explanation sys-
tems, such as what semantics they can encode. For example, saliency maps highlight important
pixels for a prediction. We might then be able to use an explanation dataset to determine why pixels
might be highlighted as important. It could be their location in the image, it could be their color,
their texture, or a combination.

We are also exploring ways to extend this framework to include more types of explanations
besides rule-based and counterfactual. Specifically, of interest are prototype and criticism expla-
nations [[103], in which representative examples (prototypes) for each class are computed, along
with “interesting” outliers (criticisms), where the examples could be chosen based on the defined
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knowledge in the context of an explanation dataset. Finally, as we discuss in section B.d, explanation
datasets can be useful tools for a variety of tasks, thus, we should explore what constitutes a “good”

explanation dataset, and methodologies for developing them by combining domain experts, existing
resources, and knowledge extraction.
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Chapter 4

Semantic Explanations of Image Classifiers

4.1 Introduction

In this chapter we apply the proposed framework for the purpose of explaining image classifiers.
Starting from a controlled setting with a clear experimental objective (section [t.2), we progressively
evolve the experimental setting, moving to the utilization of knowledge for explaining real-world
state-of-the-art classifiers (section t.3). We also explore the efficacy of automatic knowledge extrac-
tion for the purpose of explainability, and provide qualitative and quantitative results.

Image classification is one of the most popular machine learning tasks, with hundreds of bench-
marks, thousands of papers, and a constantly evolving state-of-the-art. This task is broadly appli-
cable, with applications such as self-driving cars [60], medical imaging [23], and the sciences, such
as geology [[123], meteorology [177], and astronomy [[134]. It is also one of the first tasks for which
claims of superhuman performance was reported [88]. There are known issues with most deep-
learning based image classification methods, such as robustness to adversarial attacks [49], and
since its applications can be decision critical (e.g. self-driving cars, medical imaging), explainability
becomes crucial.

There is a large variety of explainability methods for image classification, including many domain-
agnostic approaches such as LIME [[165], Anchors [166], and example-based prototype/criticism
explanations [[103]. There are also domain specific methods, and even model-specific, such as Grad-
CAM [[179], and counterfactual visual explanations [72]. An important issue with explainability in
the computer vision domain, is the vocabulary used in explanations i.e. pixel values. These are not
really understandable to humans, whose mental model typically breaks down images into high level
concepts, instead of low-level pixels, and as a result many such approaches have been criticized as
being misleading [[172, 141].

An important family of explainability methods for image classifiers, are concept attribution
methods [[104, 73]. These provide explanations in terms of human understandable concepts, instead
of low-level pixels, mitigating many of the issues with other approaches, but they still suffer from
their own pitfalls. An important one, which our work manages to overcome, is their reliance on
white-box access to the classifier under investigation. This is an important caveat, because it means
that these explainability methods cannot be applied to explain pure black-box models, such as those
that are proprietary, which one might argue are the most important ones to be able to explain.

By applying our framework on multiple different classifiers, image classification tasks, and set-
tings, we are able to generate semantic explanations, and we show their worth -both qualitatively
and quantitatively.

4.2 CLEVR-Hans: Synthetic Images, Pre-determined Bias

In our first set of experiments, we employ CLEVR-Hans3 [188] which is a dataset of images with
intentionally added biases in the train and validation set which are absent in the test set. Specifi-
cally, the dataset depicts scenes containing 3D geometric objects of different shapes, colours, sizes,
materials and locations, and the images are split into three classes. The first class contains images
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Figure 4.1: An image from the CLEVR-Hans3 dataset.

that depict a large cube and a large cylinder, but the large cube is always gray in the training and
validation sets, while it has a random color in the test set (intentionally added bias - confounding
factor). The second class contains images that depict a small metal cube and a small sphere, where
the sphere is always metal in the training and validation sets, but random in the test set, while the
third class contains images depicting a large blue sphere and a small yellow sphere, and has no con-
founding factors. The existence of these intentionally added, well defined biases makes the dataset
ideal for the evaluation of XAl frameworks since it leads to classifiers with foreknown biases which
we can attampt to detect.

4.2.1 Explanation Dataset

The first step for applying the proposed framework is creating the explanation dataset, which in-
volves representing available information as a Description Logics Knowledge Base. To this end,
we define an individual name for each image and for each object depicted therein, and a concept
name for each color, size, shape and material of the objects. We also include a role name contains,
to connect images to objects they depict. Then, in the ABox, we assert the characteristics of each
object and link them to the appropriate images by using the role. For example, in Fig. f.1] we can
see a sample image from the CLEVR-Hans3 dataset with id ¢, which is described in the ABox of our
explanation datasets with the assertions: {Exemplar(i), contains(i,0,), Red(o,), Sphere(o,), Large(o.),
Rubber(o,), contains(i,0,), Green(o,), Cylinder(o.), Small(o,), Rubber(o,), ... }. In this case, the TBox
of the corresponding knowledge base is empty. Using this representation, we created multiple ex-
planation datasets: One from the training set, in order to compare our approach with methods that
are meant to be applied on the training set (such as FACE [[157], and several explanation datasets
of varying sizes from the test set of CLEVR-Hans3. Throughout our experiments, we attempt to
provide explanations for a ResNet34 model that was trained on the training set, and as is apparent
from the confusion matrix shown in Table [£.1 the classifier likely learned the intentional biases, as
shown from the poor performance on the two confounded classes (1 and 2), as oposed to the third
class.

4.2.2 Rule-based Explanations

KGrules

Using the true labels of the data allows us to use the description of each class as ground truth
explanations. Table t.9 shows a condensed version of the explanation rules produced by KGrules
(Alg. ) for an ideal classifier (accuracy=100%) with explanation datasets of various sizes, along with
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ground truth and the correct explanation rule with highest recall per class for a real classifier. The
full explanations are obtained by adding to that condensed versions the conjuncts Exemplar(z), and
contains(z,t), for all other appearing variables ¢t # x, as well as the tail of the rule (— ClassX) for
the respective class X. All explanations on the ideal classifier achieved recall=100%. We can see
that with explanation datasets with 600 or more exemplars we are able to predict the ground truth
for all 3 classes. Even with 20 exemplars we are able to produce the ground truth explanation for
one of the classes and with 40 or more exemplars we produce ground truth explanations for 2 out
of the 3 classes and almost for the third class too (only one characteristic of one object missing). In
order to produce accurate explanations it seems useful to have individuals close to the “semantic
border” of the classes, i.e. individuals of different classes with similar descriptions. Intuitively,
such individuals guide the algorithm to produce a more accurate explanation in a similar manner
that near-border examples guide a machine learning algorithm to approximate better the separating
function. Following this intuition, we experiment with two of the small explanation datasets that
almost found the perfect explanations (size of 40 and 80). By strategically choosing individuals ,
we are able to obtain two small explanation datasets, one of size 43 and one of size 82, that when
used by Alg. fil produce the ground truth explanations for all 3 classes. This indicates the importance
of the curation of the explanation dataset, which is not an easy task, and the selection of “good”
individuals for the explanation dataset is not trivial.

After observing the explanations produced by our method for the ideal classifier, we were also
able to detect the foreknown biases of the classifier due to the confounding factors of the dataset. To
this end, we curated an explanation dataset of 100 individuals that accurately produces the ground
truth rule. Then, running the KGrules algorithm we acquire the explanation rules shown at the
bottom of table .4, For example, regarding the first class (all images contain a large cube and a large
cylinder), the rule with the highest recall produced for the real classifier is: contains(x,y), Gray(y),
Large(y), contains(x, z), Cylinder(z), Large(z) — Class; () showing the existence of a large cylinder,
and detecting the potential color bias of another large object created by the intentional bias of the
train and validation set (the large cube is always gray in the train and validation sets).

KGrules-H

Regarding KGrules-H, that also produces explanation rules with exceptions contrarily to KGrules,
the best rule computed for each metric on the entire test set of CLEVR-Hans3, for the ResNet34-
based model is shown in table f.4. The algorithm found a correct rule (precision = 1) for each class,
in addition to a rule query with recall = 1, whose certain answers are a superset of the positive set.
The best degree was achieved for class 3, which lacks a confounding factor, meaning the classifier is
not expected to be biased. Correct rule queries are of particular interest since they can be translated
into guaranteed IF-THEN rules which the classifier follows on the particular dataset. For instance
the highest recall correct rule query for class 1 is translated into the rule “If the image contains a
Large Gray Cube, a Large Cylinder and a Large Metal Object then it is classified to class 1”. This
rule clearly shows the bias of the classifier, since it is the description of the class with the added
confounding factor (the Large Cube is Gray). Similarly the (not correct) rule query with recall =1

Table 4.1: Performance of the ResNet34 model on CLEVR-Hans3.

Test set metrics Confusion matrix

True label Precision Recall Fl-score Class1 Class2 Class3

Class 1 0.94 0.16 0.27 118 511 121
Class 2 0.59 0.98 0.54 5 736 9
Class 3 0.85 1.00 0.92 2 0 748
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Table 4.2: Explanations on CLEVR-Hans3. The concepts in parentheses are the confounding factors
in the ground truth row. The symbol (X) indicates that the explanation is the same with
the ground truth (without the confounding factors).

Nr. of images Class 1 Class 2 Class 3
Yellow(y),
Small(y),  Small(y),
20 X Metal(y),  Blue(z),
Cube(y) Large(z),
Sphere(z)
Yellow(y),
Small(y),
40 / 60 X X Blue(z),
Large(z),
Sphere(z)
Yellow(y),
Small(y),
80 /100 / 200 / 400 X X Sphere(y),
Blue(z),
Sphere(z)
600 / 800 / 1000 X X X
Small(y), Yellow(y),
(Gray(y)) ,
(Metal(y)), Small(y),
Largey), o
Ground Truth Cube(y), PREFE), SPRCTE).
Small(z), Blue(z),
Large(z),
; Metal(z), Large(z),
Cylinder(z)
Cube(z) Sphere(z)
Large(y),
Cube(y),
Gu e((y)) Small(y),
Real Classifier rayie. Metal(y), X
Large(z),
Cube(y)
Large(w),
Cylinder(w)

for the same class can be translated into the rule “If the image does not contain a Large Cube then
it is not classified to class 17, since the set of certain answers is a super set of the positive set. We
observed that correct rule queries tend to be more specific than others, with the most general rules
with exceptions being those with recall = 1. Other rules which were correct with exceptions, tended
to lie somewhere in the middle with respect to how general or specific they are, but they were the
ones which lead to the highest values of degree. By observing these results, we concluded that in
practice, a set of rules, both correct and with exceptions, can give us a very clear picture of what the
black-box classifier is doing. However, in order to not overwhelm an end-user with a large number
of rules, we should develop a strategy to select which rules to show to the user, that is out of the
scope of this dissertation, but is a priority for future work.
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It is interesting to note that the rule query with recall = 1 produced for class 1 contained a Large
Cube but not a Large Cylinder, which is also in the description of the class. This shows that in
the training process the classifier learned to pay more attention to the presence of cubes rather
than the presence of cylinders. The elements of the highest recall correct rule that differ from the
true description of class 1 can be a great starting point for a closer inspection of the classifier. We
expected the presence of a Gray Cube from the confounding factor introduced in the training and
validation sets, but in a real world scenario similar insights can be reached by inspecting the queries.
In our case, we further inquired the role that the Gray Cube and the Large Metal Object play in the
correct rule by removing either of them from the query and examining its behavior. In Table f.3 we
can see that the gray color was essential for the correct rule while the Large Metal Object was not,
and in fact its removal improved the rule and returned almost the entire class.

Another result that piqued our attention was the highest degree explanation for class 3 which
is the actual rule that describes this class. This explanation was not a correct rule, since it had two
exceptions, which we can also see in the confusion matrix of the classifier and we were interested to
examine what sets these two individuals apart. We found that both of these individuals are answers
to the query “y1 is Large, Gray, Cube”. This showed us once again the great effect the confounding
factor of class 1 had on the classifier.

Our overall results show that the classifier tended to emphasize low level information such as
color and shape and ignored higher level information such as texture and the combined presence
of multiple objects. This was the reason why the confounding factor of class 1 had an important
effect to the way images were classified, while the confounding factor of class 2 seemed to have had
a much smaller one. Furthermore, the added bias made the classifier reject class 1 images, which
however had to be classified to one of the other two classes (no class was not an option). Therefore
one of the other classes had to be “polluted” by samples which were not confidently classified to a
class. This motivates us to expand the framework in the future to work with more informative sets
than the pos-set, such as elements which were classified with high confidence, and false and true,
negatives and positives.

Table 4.3: Two modified versions of the class 1 correct rule produced by removing conjuncts.

Query Positives Negatives
y1 is Large, Cube. y2 is Large, Cylinder. y3 is Large, Metal. 108 547
y1 is Large, Cube, Gray. y2 is Large, Cylinder. 93 0

4.2.3 Counterfactual Explanations

Using the explanation dataset constructed from the test set of CLEVR-Hans3, we also used algorithm
R4 to generate counterfactual explanations. In figure .4 the importance of concepts for for images
which were classified in class 1, with the target class being class 0, is shown (as per equation B.4). The
bias of the classifier is immediately detected for the confounded class 0. As mentioned previously,
the confounding factor for class 0 is that the Large Cube is always Grey in the train set. This is
apparent from the first three bars of the plot on the left, where the most important insertions seem
to be the concepts: (Gray, GrayLargeCube, GrayLarge). The reason for which GrayLargeCube has
a larger importance than GrayLarge is because, for some local counterfactuals, GrayLarge objects
(which are not necessarily Cube) might be removed, thus lowering the importance of this concept.

In fig 4.3 we show local counterfactual explanations generated for three randomly selected im-
ages (first column), which were classified in class B (Small Metal Cube and Small Sphere - where
the Small Sphere is always Metal in the train set) and with the target class being class A (Large
Cube, Large Cylinder, where the Large Cube is always Grey in the train set). The second column
shows the suggestions of the FACE algorithm and the third column shows the suggestions of our
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Figure 4.2: Global explanation for the subset of CLEVR-Hans3 which is classified in class B, with
target class A

algorithm. At first glance, neither results are very intuitive, and we argue that the form of the ex-
planations (sequence of samples from the training set) is the reason. Note that the counterfactual
images generated within our framework would normally be accompanied by the edits themselves,
not shown here for brevity. A more thorough observation reveals that our approach tends to keep
the number of objects in an image constant, which is due to the high cost of adding and deleting
concepts rather than replacing them, while FACE, which relies on the distribution of the dataset,
operating on a pixel-level and having no knowledge of the objects depicted, tends to transition to
images that contain a large number of objects.

This experiment demonstrates the usefulness of the proposed method for detecting biases, in
addition to the efficacy of the overall framework, that allows us to produce explanations, without
having to consider the complex space of pixels, but instead leverage human understandable, seman-
tic information.

4.3 Real World Images, State-of-the-art classifiers

In this set of experiments we focus on explaining classifiers of real-world images, specifically those
trained on the ImageNet [37, [110], and Places [223] datasets. Furthermore, we apply our ideas on
more specialized settings, such as CUB [200] classification of bird species, and MNIST [114] for
hand-written digits.
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Figure 4.3: Counterfactuals for 3 images (first column) which classified in class B with target class
A, using FACE (second column) and our proposed method (third column)

4.3.1 Explanation Datasets

For applying the proposed framework, the main requirement is the existence of an explanation
dataset. We experimented with multiple different such datasets, and ways of acquiring them.

COCO, Visual Genome and WordNet

COCO The first explanation dataset we created from a subset of COCO [[124], which contains
real-world images, annotated with objects, which we can automatically link to external knowl-
edge such as WordNet. This allows us to use the simpler, and more efficient set version of the
counterfactual explanation algorithm. Specifically, we gathered images pertaining to two classes:
"Restaurant” related and "Bedroom” related images. For the restaurant-related class we gathered
all images from COCO that contained the concepts: 1. {dining table, person, pizza} (1000+ images)
2. {dining table, person, wine glass} (1200+ images). For the bedroom-related class we gathered all
images that contained the label combinations of: 1. {bed, person} (1300+ images) 2. {bed, book}
(800+ images) 3. {bed, teddy bear} (300+ images). On top of that, we wanted to make sure that
we included some images that might be puzzling for the classifier. Those images were the ones
including COCO label combinations of: 1. {bed, fork} (10 images) 2. {bed, spoon} (20 images) 3
{bed, wine glass} (20 images) 4. {bed, pizza} (10 images) 5. {dining table, bed} (170 images). For
each image in COCO, a description of the objects present in that image is provided. To create the
explanation dataset, we automatically linked these object descriptions with WordNet synsets by us-
ing the NLTK python packagefl. We used WordNet synsets as the set of concept names CN, and the
hyponym-hypernym hierarchy as a TBox. The explanation dataset contains only one role (|RN| = 1)
that links images (exemplars) to objects they depict, for example:

A = {Exemplar(a), depicts(a, b), Dog(b) }, Brown(b) ...

T = {Dog C Canine, Canine C Mammal ... }

* https://www.nltk.org/howto/wordnet.html
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Visual Genome We also utilizez the Visual Genome dataset (VGD) [[109] which contains richly
annotated images, including descriptions of regions, attributes of depicted objects and relations be-
tween them, leading to a graph representation for the knowledge describing each image (opposed to
a set representation for COCO). Specifically, similarly to the COCO case, we represent the available
VGD annotations as a Description Logics Knowledge Base, where the ABox consists of the scene
graphs for each image, in which each node and edge is labeled with a WordNet (WN) synset and the
TBox consists of the WN hypernym-hyponym hierarchy. In the ABox we also include assertions
about which objects are depicted by an image in order to connect the exemplar data with the scene
graphs. For example, the image in Fig. .4 with id i is described in the ABox by the assertions: {Ex-

e
L - _- | E

ST =
L Lk surfboard cord around man

,’ e

. man isteaning forward in air’

Figure 4.4: An image from the Visual Genome dataset.

emplar(i), contains(i,person,), contains(i,sea,), surfer.n.01(person,), ocean.n.01(sea,), blue.s.01(sea,),
travel.v.01(person,,sea,)} , and the TBox contains the axioms: {ocean.n.01 = body_of water.n.01,
surfer.n.01 C swimmer.n.02, ...}.

Since in the original VGD annotations are linked to wordnet automatically, there are errors, thus
we chose to manually curate a subset of 100 images. This is closer to the intended use-case of our
proposed method, in which experts would curate explanation datasets for specific domains. The
relatively low number of images, when compared to the other explanation datasets is justified, as
the intent was to run the high-complexity KGrules and graph edit counterfactual algorithms, which
would not really be feasible for larger explanationd datasets (opposed to KGrules-H and the set edit
counterfactual algorithm).

WordNet WordNet [[137] is a lexical database and hierarchical semantic network designed to
model the organization of words and their meanings in English. Synsets are the fundamental build-
ing blocks of WordNet. They represent groups of words that are synonymous or nearly synonymous,
sharing a common meaning. For example, the synset for the word “car” in WordNet might include
terms like “automobile”, “motorcar”, and “auto”. All these words are considered synonyms within
this specific context. Synsets are organized into a hierarchy, based on their semantic relationships,
where more general terms are defined as hypernyms of more specific ones (hyponyms). For example
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“vehicle” is a hypernym of “wheeled vehicle”, while “car” is a hyponym of “wheeled vehicle”.

The structure of WordNet can easily be represented as the TBox of a description logics knowledge
base, after first appropriately defining concept and role names (one for each synset), and encoding
the hierarchy using subsumption axioms. For example

T = {car C wheeledvehicle}, wheeledvehicle T vehicle}

In our experiments we constructed the TBox from the entirety of WordNet that contains more than
100,000 synsets, however most do not appear in the ABox.

CUB

CUB is a dataset that contains images of birds across 200 different species. Each image is annotated
with 15 bird parts, that we use as semantic descriptions for constructing the explanation dataset.
For each bird part, there are multiple different attributes, that are rolled up into concepts, leading to
an explanation dataset with |[CN| = 312. For example, from the annotation hasWingColor :: Blue we
define the concept BlueWingColor, and assign it to the appropriate exemplar. In this case, the TBox
is empty.

Scene Graph Generation and Feature Extraction

We also constructed two explanation datasets by using automatic methods of creating the semantic
descriptions.

For the first, we used RelTR: Relation Transformer for Scene Graph Generation [31] as a Scene
Graph Generator and run it on Google Colab, using the default model parameters. The predicted
classes for the scene graph nodes were 150 entities, and 50 relationship classes from WordNet.
Furthermore, one prediction is considered valid if their confidence is greater than 0.3. The scene
graph generator was used to create an explanation dataset from images “in the wild”. Specifically,
we searched the web for images satisfying our criteria and divided them into two classes, namely
“driver” and “pedestrian”. We did this for motorbike and bicycle riders since we want to avoid the
role name being itself the descriptor of the class, e.g. “person driving car”. We queried Google,
Bing and Yahoo images for a combination of keywords containing “people”, “motorbikes” and “bi-
cycles”, gathered the following creative-commons photographs, and manually split them into two
classes. 1. {driver class} (63 images of people on bicycles and 127 images of people on motorbikes)
2. {pedestrian class} (31 images of people and parked motorbikes, 38 images of people and parked
bicycles). Once we constructed our dataset, we extracted semantic descriptions with the scene graph
generator. The ABox and TBox of this dataset use the same vocabulary and are similar in structure
to the Visual Genome explanation dataset.

For the second, we applied a ridge detection algorithm [125] on MNIST to describe images as a
collection of intersecting lines, varying in angle, length and location within the image. In Fig. i.5
we show an example of an MNIST image, along with the results of the aforementioned information
extraction procedure using ridge detection. After this procedure, we encode the information in a
knowledge base, suited for use in an explanation dataset, where the vocabulary IN, CN, RN and the
Tbox of our knowledge base are the following:

IN = {test_zerol, test_zero1_line0, ..., test_zero1_line7, test_zero6, test_zero6_lineo, ...
test_nine979_line7, ..., lineM,s, }

CN = {Image, Line, Line0Odeg, Line45deg, Line90deg, Line135deg, TopLeft, TopCenter,
TopRight, MidLeft, MidCenter, MidRight, BotLeft, BotCenter, BotRight, Short,
Medium, Long}

RN = {contains, intersects}.

T ={C C Line | C' ¢ {Image, Line}}.
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image contains 3 lines

line 0 is: LineOGdeg TopLeft TopCenter TopRight MidLeft MidCenter MidRight Long
line 1 is: LineOdeg MidCenter MidRight Long

line 2 is: Lined45deg TopRight MidCenter MidRight BotLeft BotCenter Long

line @ intersects line 2

line 1 intersects line 2

Figure 4.5: An example of a digit, the results of ridge detection, and the corresponding description.

4.3.2 Rule-based Explanations
Explaining ImageNet Classifiers

We explain three different neural architecturesﬁ: VGG-16 [[183], Wide-ResNet (WRN) [217] and
ResNeXt [211], trained for classification on the ImageNet dataset, by using the curated visual genome
explanation dataset. We define three super-classes of ImageNet classes which contain a) Domestic,
b) Wild and ¢) Aquatic Animals , because they are more intuitive to perform a qualitative evalua-
tion, when compared to the fine-grained ImageNet classes generated with the KGrules algorithm.
Table .5 shows the correct rules of maximum recall for each class and each classifier. We discuss
three key explanations:

1. Wide ResNet: surfboard(y) — Aquatic(x). It seems that the classifier has a bias accepting
surfer/surfboard images as aquatic animals probably due to the sea environment of the images;
further investigation finds this claim to be consistent, showing the potential of this framework in
detecting biases.

2. Wide ResNet: animal(y), wear(y, z), artifact(z) — Domestic(x). It is interesting to compare this
explanation with another correct rule for the same classifier with lower recall: animal(y), collar(z)
— Domestic(x). By considering roles between objects we get a more accurate (higher recall) and
informative explanation, denoting the tendency of the classifier to classify as Domestic any animal
that wears something man-made. This example shows how more complex queries enhance the
insight (wearing an artifact) while less expressive ones might only see a part of it (collar). Here we
can also see one of the effects of the TBox hierarchy on the explanations, since this rule covers many
sub-cases (like dog wears collar, and cat wears bowtie) that would require multiple rules if it wasn’t
for the grouping that stems from the TBox.

3. ResNeXt: nose(y), plant(z), ear(w) — Wild. Although this explanation provides information
that is related to the nature environment of the images classified as Wild (plant), we see also some
rather odd concepts (nose, ear). While this could be a strange bias of the classifier, it is probably a
flaw of the explanation dataset. As we discovered, images are not consistently annotated with body
parts, like noses and ears. Thus, through the explanations we can also detect weaknesses of the
explanation set. The rules are limited by the available knowledge, so we should constantly evaluate

? https://pytorch.org/vision/stable/models.html

76



the quality and expressivity of the knowledge that is used in order to produce accurate and useful
explanations.

Explaining a PLACES Classifier

For the case of the Places365 [223] dataset and KGrules-H, as a black-box classifier we used the
ResNet50 classifier]] provided by the official GitHub repositoryfl for models pretrained on Places365,
which classifies images to 365 different classesf]. The top1 error is 44.82% and the top5 error is
14.71%. We used the confusion matrix to select the two most confused classes to generate expla-
nations for, which were “Desert Sand” and “Desert Road”. The best rule queries for each metric for
each of the two classes is shown in Table [4.6. For both classes the generated queries have some un-
expected conjuncts despite decent performance with respect to the three metrics. For example the
conjunct giraffe.n.01(y3) appearing in the best correct rule for “Desert Road”, and the best degree rule
for the same class being simply Image(x), depicts(x, y1),animal.n.01(y1). Furthermore, for “Desert
Sand”, the concept road.n.01 stands out. The concept communicaton.n.02 has the hyopnyms sign.n.02
and written_communication.n.01 in the WordNet hierarchy which could refer to license plates and
traffic signs. The second best query in terms of precision was Image(x), depicts(x, y1)

,depicts(x, y2), depicts(x, y3).motor_vehicle.n.01(y1), sky.n.01(y2), road.n.01(y3),

along.r.01(y1,y3). Again the concept motor_vehicle.n.01 stands out. Given that the second highest
value in the confusion matrix of this classifier was for the pair “Desert Sand”, “Desert Vegetation”
we conjencture that some mistakes were made during the training of this classifier or several images
in the training set of the Places365 dataset are mislabeled. The classifier may have been fed images
that should be described as “Desert Road” but with the target label being “Desert Sand” and images
that should be described as “Desert Vegetation” but with the target label being “Desert Road”. This
would explain the weird associations exhibited and the conjuncts appearing in the explanations.
It is worth mentioning at this point, that we do not see a way that this peculiar behaviour of the
classifier could have been discovered by using different explanation techniques, that do not utilize
explanation datasets, highlighting the usefulness of the proposed framework.

Explaining an MNIST Classifier

Using the MNIST explanation dataset where we utilized ridge detection for automatically generating
semantic descriptions, and KGrules-H to generate rules, we were able to produce rule-based expla-
nations for an example network provided by PyTorchfl. For example, for the digit zero the rule con-
sisted of conjuncts: contains(z, y; ), contains(z, y,), contains(x, y3), contains(z, y, ), contains(z, ys ),
contains(z, yg ). For five of the six lines, the explanation rule query included their location in the im-
age, indicated by the conjuncts TopCenter(y, ), BotRight(y,), BotCenter(y, ), MidRight(y; ), TopRight(ys ),
BotCenter(y). For all six lines the explanation rule included information about their orientation, in-
dicated by the conjuncts Line45deg(y; ), Line45deg(y, ), Line90deg(ys ), Line90deg(y, ), Line135deg(ys ),
Line135deg(yg)-

Finally, the rule-query included the following conjuncts which show which lines intersect each
other intersects(y;, ¥, ), intersects(ys, Y3 ), intersects(ys, ys ), intersects(yy, Yg)-

Such a rule would not be as good of an explanation as the ones shown in previous experiments,
since it contains a large number of conjuncts, and the terminology is not immediately understand-
able. By visualizing the rules however, we can get some useful explanations that might help us to
understand the classifier, as shown in figure @ An observation we made, is the fact that some
conjuncts were more understandable than others when they were part of explanation rules. For
instance, knowing a line’s location and orientation was imperative for understanding the rule via

* PyTorch model: http://places2.csail. mit.edu/models_places365/resnet50_places365.pth.tar
* https://github.com/CSAILVision/places365

> https://github.com/zhoubolei/places_devkit/blob/master/categories_places365.txt

¢ https://github.com/pytorch/examples/tree/master/mnist
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visualization, while conjuncts involving line intersections and sizes seemed not that important, re-
gardless of metrics. This is something which could be leveraged either in explanation dataset con-
struction (for example domain experts weigh concepts and roles depending on their importance for
understandability), or in algorithm design (for example a user could provide as input concepts and
roles which they want to appear in explanation rules). We are considering these ideas as a main
direction for future work which involves developing strategies for choosing which rules are best to
show to a user. This experiment shows how the prerequisite for producing good explanations in
this framework, using an explanation dataset, depends almost entirely on the properties and quality
of the explanation dataset.
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Figure 4.6: Visualizations of best recall correct rules for digits

4.3.3 Counterfactual Explanations
Explaining a PLACES Classifier

We also provide counterfactual explanations for the PLACES classifier by using the proposed frame-
work, and the explanation dataset created from the object annotations of COCO. In Figures j.7, .4
we see two examples of global counterfactual explanations on the COCO dataset. As before, each
bar’s numeric value shows the importance of the insertion (positive) or removal (negative) of that
specific concept, in the process of transforming from a source region of an explanation dataset, to a
target class.

Without revealing the source region and the target class for each figure, we can try to work out
what those are, just by looking at the most frequent additions and removals. On the first (fig.s.7),
which is the more trivial of the two, we see that the most common removals from the source images
were concepts relevant to {furniture, bed, animal, carnivore, dog}, while the most common additions
were the concepts {home appliance, refrigerator, white goods, consumer goods}. From this, we can
assume that the source region was likely bedroom images (with a bias towards pets) and the target
class was probably a kitchen. The true classes were, indeed, "bedroom” and “kitchen”. On the second
(fight.g), we see that most frequent removals revolved around {instrumentality, artifact, electronic,
furniture, telecommunications, TV, broadcasting, kitchen} and the most common additions around
{carnivore, animal, mammal, feline, cat, dog}. Knowing that we are dealing with a classifier of
rooms and places, we would probably guess a kitchen for the source and a location with domestic
animals for the target. The actual classes were "bedroom” targeting “veterinarian”, which raises an
interesting question: why did we see “kitchen” instead of "bed” in the bedroom class? The answer
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Figure 4.7: Generalized Counterfactual Explanations for the region of the explanation dataset for
COCO which is classified as "bedroom”, with the target class being “kitchen”

is that no beds were actually removed, since veterinarian office images tend to include beds. On the
other hand, our dataset contains a number of studio-apartment bedroom images which had part of
the kitchen appearing in the photo - kitchens that are mostly missing from a vet’s office and had
to be removed. Another thing to note is that those examples were not cherry-picked. During our
experiments we could, most of the time, estimate the source region and target class by looking at
the edit frequencies. Notably, the most confusing results were when we tested the computer room”
target and found out that the generalized counterfactual explanation was very often adding people,
but never laptops or computers. After investigating what seemed like a bug, we realized that most
images from our dataset which were classified as a >computer room” had no computers in them, but
people working in lab-appearing rooms.

In the first row of Figure §.9 we show a local counterfactual explanation for an image classified as
a “Bedroom” to the target class “Playhouse”, which requires only one Concept Edit (e1_,cp,yq)- This
example is interesting because “Playhouse” is an erroneous prediction (the ground truth for the
second image should be “Bedroom”), thus immediately we detect a potential bias of the classifier,
that if a Child is added to an image of a “Bedroom” it might be classified as a “Playhouse”. Similarly,
in the second row of Figure .9 we show a local counterfactual explanation for an image which is
classified as “Bedroom” to the target class “Veterinarian’s Office”, and the resulting target image
is an erroneous prediction. The resulting edit is simply to add a Cat. Finally, in Figure we
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Figure 4.8: Generalized Counterfactual Explanations for the region of the explanation dataset for
COCO which is classified as "bedroom”, with target class *veterinarian”

show a counterfactual explanation, where the path on the graph has two steps. The source image is
classified as a “Bedroom” and the target class is “Computer Room”. This shows a smooth transition
from the source image to the target class, by first adding a person (there are already two laptops in
the source image), and then adding two more people and two more laptops.

This experiment demonstrates a more real-world use-case than CLEVR-Hans, in which we even
detected unknown biases (for example the depiction of people was more important than that of
laptops for the class “computer room”), and further insight into the classifier, which we had not
thought about (for example that the classifier expects veterinarian’s offices to depict beds among
other objects).

A crucial question at this point is how can we know where the biases that the counterfactual
explanations uncover come from. We are assuming that they emerge from the classifier, but a biased
explanation dataset could yield similarly biased results. A way to answer this question is to run
the same task on a different dataset, to see how those results compare with the previous ones. As a
cross-checking dataset, we will use Visual Genome since it is, along with COCO, one of the very few
datasets containing semantically annotated images. The results of the Visual Genome experiment,
overlayed on COCO’s results, are depicted in fig. .11 We can see that the classifier gave very
similar predictions for both datasets , which validates the hypothesis that the biases did not arise
from a possible irregular distribution within the explanation datasets but from the classifier itself.

80



400 500 600 400 500 600

Figure 4.9: Counterfactual explanation for changing the prediction of the image on the left from
‘Bedroom’ to ‘Playhouse’ is simply to add a child (e_,¢p,;4) (top) and from ‘Bedroom’ to
‘veterinarians office’ is simply to add a cat (e+_,,,) (bottom).
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Figure 4.10: Counterfactual explanation for changing the prediction of the image on the left from
“Bedroom” to “Computer Room”, which requires two steps

Most of the important features that differentiated the classes in the previous experiment could
be fully expressed by concepts alone, e.g. the existence of a bed or a dog. There are, though, many
situations where this is not the case and where roles and relationships between objects should be
taken into account. For example, classifying between “driver” and “pedestrian” classes on images
containing the concepts “motorbike”, “bicycle” and “person” cannot be done without knowing the
relationship between the person and the vehicle. Thus, using the explanation dataset creating us-
ing the scene graph generator, we produced counterfactual explanations for the ground-truth la-
bels of this manually curated set of images. The global counterfactuals transitioning from “pedes-
trian” to “driver”, are depicted on figlt.19 as concept set descriptions, i.e. concepts along with
roles. The top addition by a very large margin is “ride”wheeled_vehicle” as expected, which is
the parent, and thus, the sum of “ride”bicycle” and “ride”motorbike”. Next, we see additions of
“wearing”helmet” and a smaller addition of the concept “helmet” by itself, presumably because in
some driving photos the helmet was on the handlebars of the bike and not on the rider’s head. We
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Figure 4.11: Global explanation for the subset of Visual Genome which is classified as "bedroom”,
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with target class "vet”

also see that “wear”hat” is removed (the child of “wear” clothing”), which compliments the addi-
tion of “wear”helmet”, and that “have” seat” is removed since bicycle seats are not visible when
bikes are ridden. The rest of the edits are too scarce and, although we might be able to explain them,
they can very likely be noise as well.

Human Evaluation on the CUB dataset

To assess how the counterfactual images retrieved by our algorithm fare against the state-of-the-art
results [72], we set up a human study; since a widely accepted metric to evaluate the success of
semantically consistent visual counterfactuals does not exist. For the human survey, we used the
Label Studio platform [|, which offers high-level flexibility and functionality. A screenshot of the
annotation page is depicted in the following Figure .13 The classifiers that we selected for this
experiment had the same pretrained weights that [Vandenhende et al., 2022] used in their work.
The 33 participants were mainly graduate students, and PhD candidates, who responded to the call
for participation. They were not offered compensation, they were volunteers. No information was
provided to the participants, besides the call for participation, and the instructions for the labeling
procedure. The study was conducted online.

We first acquire two pre-trained classifiers (a VGG-16 [[182], and a ResNet-50 [he2016deep]),
and make predictions on the test set of CUB. This dataset is what we use as an explanation dataset,
after encoding the annoatations of the images in a DL knowledge base.

In [], the authors selected a number of bird images from the CUB dataset. Then, for each
one, they retrieved its closest counterfactual image from the full dataset, with the restriction that it
cannot belong to the same bird species (label) as the source. For our experiment, we executed the
same methodology utilizing our algorithm to perform the same task on the same source images.

Then, to each of our 33 human evaluators, we presented a randomly selected source image along
with its two corresponding counterfactual images - the one retrieved by the SOTA and by our algo-
rithm. The evaluators were then asked which of the two counterfactual bird images more closely,

7 https://labelstud.io/
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person.n.0l
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helmet.n.01
window.n.0l

nde.v.01"bicycle.n.01
nde.v.01 *motorcycle.n.01
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wear.v.01"clothing.n.01
wearv.01"hat.n.01

have v.01"seat.n.01
supporting_structure n.01

fnde v.01 ~wheeled vehicle.n.0l

Figure 4.12: Flipping class form “pedestrian” to “driver”, the most important changes are: the addi-
tion of “ride”wheeled_vehicle”, “wear"helmet” and the removal of “wear”hat”.

Instructions

Based on the original image, choose which of the following two photos is closest to the original. The similarity must be based
solely on the semantic similarity of the birds, i.e.,if the original and one of the two images depict birds with a white belly or a small
beak. In addition, it should not be based on factors such as whether the original and any of the subsequent ones have a bird in the
same pose (e.g., both flying) or if they are in the same environment (€.g. both in water).

Images

Source Image Image 1 Image 2

Image 11
Image 221

CantTell®l

Figure 4.13: A screenshot from the annotating platform. The first image always depicts a source
image, whereas the second and the third are randomly the counterexample produced
by [Vandenhende et al., 2022] method and the proposed one.
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Figure 4.14: The first column shows the original image, the second one [[196]’s retrieved image and
the third one the image retrieved by our algorithm.

semantically, resembled the bird depicted in the first image (i.e. not taking into account the bird’s
posture or its background).

The images retrieved with both methods were largely similar and sometimes identical. As a
result, the evaluators experienced difficulties deciding between the two counterfactual images, and
the two methods achieved similar results (Table [.7). It is important to note that our algorithm did
not peek inside the model, contrarily to the SOTA algorithm. Our approach managed to attain equal
results just by taking into account the semantic knowledge accompanying CUB images, without
having white-box access to the classifiers. Further details about this experiment are available in the
supplementary material®.

4.4 Conclusion

Image classification, a corner stone of deep learning, and widely applicable, has also been widely
explored regarding explainability. Few methods however are able to bridge the gap between the
domain of pixels, and high level conceptual abstractions that humans use to comprehend images.
Using the proposed framework, the explanations are grounded on human-defined, and human-
understandable knowledge, and through our experiments we have shown how it can be used to
produce useful and understandable explanations. Compared to other concept-based approaches,
that mainly rely on “opening the black box” and utilizing the neural network’s activations, the pro-
posed approach relies solely on the explanation dataset. This means that all potential pitfalls of XAl,
in our case, depend on the explanation dataset. As long as the explanation dataset is reliable and
trustworthy, then the explanations will be also. Contrarily, the only way for the explanations to be
misleading or in other ways problematic, is if these issues exist in the explanation dataset.
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Table 4.4: Optimal explanations with regard to the three metrics on CLEVR-Hans3 produced by

KGrules-H.
Metric Explanation Rules Precision Recall Degree Positives
Class 1
Best y1is Large, Cube, Gray.
es
" y2 is Large, Cylinder. 1.00 0.66 0.66 83
Precision )
y3 is Large, Metal.
Best .
y1is Large, Cube. 0.09 1.00 0.09 125
Recall
Best y1is Large, Cube, Gray.
es
y2 is Large, Cylinder. 1.00 0.66 0.66 83
Degree .
y3 is Large, Metal.
Class 2
y1 is Small, Sphere.
y2 is Large, Rubber.
Best )
. y3 is Small, Metal, Cube. 1.00 0.09 0.09 116
Precision )
y4 is Small, Brown.
y5 is Small, Rubber, Cylinder.
Best .
y1is Cube. 0.63 1.00 0.63 1247
Recall
Best y1 is Metal, Cube.
0.78 0.8 0.65 1005
Degree y2 is Small, Metal.
Class 3
y1 is Metal, Blue.
Best y2 is Large, Blue, Sphere.
es
. y3 is Yellow, Small, Sphere. 1.00 0.42 0.42 365
Precision )
y4 is Small, Rubber.
y5 is Metal, Sphere.
Best y1is Large.
0.42 1.00 0.42 878
Recall y2 is Sphere.
Best y1 is Yellow, Small, Sphere.
0.99 0.85 0.85 748
Degree y2 is Large, Blue, Sphere.
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Table 4.5: Explanation rules utilizing the animal explanation dataset. Rules are shown in condensed
form: the full rules are obtained by adding the conjuncts contains(x,t) for all appearing
variables x £ t.

Network Rules
° artifact(y), dog(z), brown(w) — Domestic(x)
8 green(y), plant(z), organ(w) — Wild(x)
> ), ) — Aquatic(z)

whole(y), ocean(z

WRN

animal(y), wear(y, z), artifact(z) — Domestic(x)
green(y), plant(z), nose(w) — Wild(x)

surfboard(y) — Aquatic(x)

ResNext

artifact(y), dog(z), brown(w) — Domestic(x)
ear(y), plant(2), nose(w) — Wild(x)
fish(y), structure(z) — Aquatic(z)

Table 4.6: Optimal explanations produced by KGrules-H with regard to the three metrics using the
VG explanation dataset.
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Metric Explanation Rules Precision Recall Degree Positives
Desert Road
y1is field.n.01.
y2 is natural_object.n.01.
Best L
. y3 is giraffe.n.01. 1.00 0.12 0.12 16
Precision )
y4 is body_part.n.01.
y5 is woody_plant.n.01.
Best . .
y1is organism.n.01 0.54 1.00 0.54 139
Recall
Best . .
y1 is animal.n.01 0.72 0.84 0.64 118
Degree
Desert Sand
y1 is instrumentality.n.03
y2 is road.n.01
Best . o
. y3 1s communication.n.02 1.00 0.12 0.12 16
Precision ]
y4 is sky.n.01
y5 is tree.n.01
Best . . .
y1 is physical_entity.n.01 0.49 1.00 0.49 134
Recall
Best y1 is instrumentality.n.01
. 0.92 0.56 0.56 76
Degree y2 is road.n.01




ResNet-50

VGG-16

[196] S.O.T.A.
Ours
Can’t Tell

14.65%
34.93%
50.42%

13.68%
23.65%
62.67%

Table 4.7: Human evaluation results on which of the two counterfactual bird images is semantically

closer to the source image.
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Chapter 5

Explainability and Evaluation of Al in the Domain of
Symbolic Music

5.1 Introduction

Music is a domain that has been of interest to scientists and mathematicians for millennia, from the
ideas of Pythagoras to modern mathematics [54], computational musicology [13] and AI generated
music [45]. There have been numerous theoretical frameworks attempting to describe, analyze and
explain music, developed by different cultures and during different time periods. In the current
technological landscape, most practical applications regarding analysis and information extraction
from music, rely on the abundance of data and machine learning, and are being used in the music
industry more and more, as the technology matures. This includes recommender systems [24, 83],
which are the driving component of most music streaming platforms where increasingly more music
is consumed and discovered [[144], music production software, such as Al powered audio mastering
[16], and music education [204].

A first distinction for Al systems in the domain of music, is between creative and information
extraction systems. The former tackle tasks such as music composition [[128], accompaniment and
continuation [[164], style transfer and timbre change [53], synthesis [47] and more. The latter in-
cludes music information retrieval (MIR) tasks, such as chord recognition [[151], genre classification
[B9], instrument recognition [[186], beat tracking [70], audio tagging [18], music transcription [14],
source separation [89] and more. Explainability of models is desired both for information extraction
and for creative systems.

A second distinction for Al systems in the domain of music is between those that work with
audio representations and those that work with symbolic representations of music. Audio repre-
sentations are a digital waveforms stored in a WAV format, typically at a sample rate of 44100 Hz
and a bit-depth of 16 bits (CD quality). It is a resource intensive format, since even one second of
audio requires 44100 x 16 bits, or 88.2 kilobytes of memory. This makes it difficult to handle in the
context of machine learning, which requires large amounts of data. Furthermore, typical sequential
deep learning models cannot easily capture information across different time-scales of a waveform
simultaneously, mainly due to the receptive field of the neural networks, which has led to the de-
velopment of specialized architectures for audio [[146]. These architectures however are still very
resource intensive, and for this reason, most approaches for applying Al to audio of music work
in the time-frequency domain, requiring a pre-processing/feature extraction stage in which Digital
Signal Processing (DSP) methods are applied to transfer the audio information into a more work-
able representation. On the other hand, symbolic representations of music are typically much more
lightweight, by encoding musical information using musical notation. The most common format for
symbolically representing music, is the Musical Instrument Digital Interface (MIDI) [142], which is a
protocol developed for controlling digital instruments. Other formats for symbolically representing
music exist, such as musicXML [67], used for rendering musical scores in software such as Sibeliusﬂ
and Musescoref, and even simpler representations such as ASCII tablatures. These formats repre-

! https://www.avid.com/sibelius
? https://musescore.org/
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sent the bare-bones musical information, such as what notes are being played, at what time (using
musical time subdivisions), and with what velocity, and typically include meta-data, such as the
tempo, time-signature, instruments etc. Symbolic representations of music are not audible, and to
convert them to an audible format, synthesizers are required. This means that timbral characterstics
of music, and nuanced aspects of music performance cannot be represented in this way.

In this chapter we describe our research involving both creative and information extraction sys-
tems in the domain of symbolic music. We show our approach for evaluating music composition
models, based on notions from music theory, and describe the state-of-the-art model we devel-
oped for genre recognition from symbolic representations of music. For the latter, we also exten-
sively studied post hoc explanations of the developed model, and compared to other systems that are
explainable-by-design. This study of explanations is a main motivator for exploring explanations in
terms of formally represented knowledge, in general. The chapter ends with ways of formally repre-
senting music-theoretical concepts using knowledge representation technologies, and a discussion
about how this could aid both our evaluation approach, and the quality of explanations regarding
symbolic music.

5.2 Evaluation of AI Generated Music

Evaluating musical creative systems is a difficult task, mainly due to the subjectivity of music, the
unclear desiderata for a “good” creative model [[153, 152], and the lack of evaluation metrics. Thus,
the most widely accepted method of evaluation uses human studies. However, even these studies
are not conclusive evaluation, as they depend on demographics, questions asked, time requirements,
and more. For example BachBot [119], was evaluated via a “musical Turing test” [193]. They gath-
ered demographics, and self-reported musical expertise from 721 participants, and asked them to
differentiate between music composed by BachBot, and music composed by Bach. They conclude
that BachBot is capable of composing music that the average participant cannot differentiate from
Bach. Another example is the music transformer [95], which was evaluated by 180 comparisons
between real data and Al generated music. In a third example, the creators of MuseGAN [48] ran
a survey of 144 participants, where 44 of them were deemed “pros”. They asked specific questions
regarding i) harmony;, ii) rhythm, iii) structure, iv) coherency, and v) overall score.

Other approaches to evaluating music generation systems, involve computing the log-likelihood
on a real dataset (such as JSB Chorales [[19]), that measures a model’s ability to approximate the
probability distribution of a dataset. Along these lines, the creators of MuseGAN propose a set of
metrics that, that are computed on real and generated data, and their values are compared. These
metrics are the ratio of empty bars in a composition, the number of pitches used, the number of
pitch classes used, and the ratio of qualified notes (notes with a duration of at least a 32nd). They
also propose a metric measuring drum patterns (ratio of notes in 8 or 16 beat patterns). Finally, they
define Tonal Distance as an intra-track metric, measuring the harmonicity between tracks, where
in the context of MIDI, a song consists of multiple tracks, typically one for each instrument. Tonal
Distance is based on Euclidian Distance on a 6D space, where small distance represents harmonic
proximity [86].

5.2.1 Tone Networks and Tonic Coordinate Systems

Inspired by the Tonal Distance intra-track metric, and the underlying musical structures, such as the
Tonnetz, first proposed by Euler [B0], we aspired to develop an evaluation methodology that does not
depend on comparison with external data, as other evaluation metrics do [38]. The word “Tonnetz”
translates to “tone network” from German. In our work we view such networks as knowledge graphs
in which the twelve pitch classes are connected in some way that represents harmonic relationships
between them.
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Figure 5.1: The circle of fifths, a 2-Degree tone network
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Figure 5.2: Tonic coordinate system from circle of fifths, with a tonic note C

Definition 7 (Tone Networks). An N-Degree tone network is an undirected graph (V, E), where V is
the set of pitch classes and each vertex has exactly N neighbours (edges) of weight 1.

For example, the circle of fifths (figure b.1)), one of the most widely used visualizations in music
theory, can be viewed as a 2-Degree tone network, where each vertex representing a pitch class is
connected with an edge to its perfect fifth and its perfect fourth. Another example is the Tonnetz
(see figure b.4), that can be viewed as a 6-Degree tone network, where each pitch class is connected
to its perfect fourth, minor sixth/augmented fifth, minor third, perfect fifth, major third, major sixth.
(clockwise).

A tone network may be used to define useful properties of sets of pitch classes, and the relation-
ships between them. Examples of such properties are the span of vertices of a noteset, or the length
of the minimum set of paths between two notesets. In our work, we transform tone networks of
degree N into %—dimensional coordinate systems by arbitrarily assigning an origin and where each
dimension represents an interval. We call the origin of the coordinate system the tonic note.

Definition 8 (Tonic Coordinate System). An N-dimensional tonic coordinate system is a discrete Carte-
sian coordinate system in which every point represents a set of pitch classes. The origin of the coordinate
system represents exactly one pitch class which will be called the tonic note.

For example, the circle of fifths can be represented as a 1D coordinate system (figure .2). The
perfect fifth interval has the property that every pitch class is accessible from every other pitch class
by iteratively applying the perfect fifth. Specifically, since there are twelve pitch classes, the pitch
classes that are reachable from a pitch class p by applying the interval v are:

reachable(p,v) = {(p + n * v)mod12},n € N

There are only four intervals that have this property that |reachable(p,v)| = 12. These are the
perfect fifth (v = 7) and its complementary perfect fourth (v = 5), the semitone (v = 1), and its
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complemantary major seventh (v = 11). These two intervals (fifth, semitone) and their comple-
ments also have musical significance. The perfect fifth above a note, in just intonation, represents a
% frequency ratio, which is the simplest ratio that appears between musical notes besides the octave
that is an interval of 12 and leads to the same pitch class, with a % ratio. This indicates that the inter-
val “sounds the closest” to its origin. The fifth appears in most diatonic chords, with the exception
of diminished chords which have a characteristically dissonant sound. The fifth interval is also of-
ten used in harmonic progressions to build tension and reach resolution, for example the authentic
cadence goes from the fifth to the tonic, and the plagal cadence goes from the fourth to the tonic
(which is a perfect fifth interval as the fourth is the complement of the fifth). On the other hand,
the semitone (v = 1) is the smallest interval, and corresponds to the smallest frequency difference
between notes. Musically, it has some common characteristics with the fifth, namely that it can be
used to build tension and reach resolution, for example using leading tones. Unlike the fifth, how-
ever, it is a dissonant interval, and appears in chords mostly as a major seventh. These two intervals
(fifth, semitone) represent different aspects of “closeness” between pitch classes, where the fifth is
the closest harmonically, and the semitone is closest frequency wise. Based on this observation, we
define a 2-dimensional tonic coordinate system called the “Tonic Cross”, where one axis increments
in perfect fifths and the other in semitones.

Definition 9 (Tonic Cross). The tonic cross is a two-dimensional tonic coordinate system in which one
dimension represents the circle of fifths and the other represents the chromatic scale. The point (a,b)
represents the conjunction of the sets of pitch classes which are represented by (0,b) and (a,0), a, b # 0.

An example of a tonic cross, with a tonic note of C' is shown in figure 5.3. On this coordinate
system, we can make some interesting observations. Firstly, the tritone interval is the furthest from
the tonic note (F'f}) on both axes. This is an interesting interval in that it is unstable [91] and has
a unique role in music. A second observation is that cadences, ie transitions that resolve, have the
same shape. Theseare G - C(V — I),B — C (vit® - I), F - C IV — I),and Cf — C
(tritone substitution of V' — I). A third observation is that minor third and major third intervals also
have the same shape (square). The two larger squares are a major third above () and a major third
below (G1), while the two smaller squares are a minor third above (Df/ Eb), and a minor third below
(A). Finally, there are two more intervals that are represented as squares, the major second/ninth
(D), which is a common extension to major chords, and the minor seventh (Bb) which is a common
extension to minor chords.

r 5} 4 3 2

i\ C#/ Q#/ D#/ A#/ F
L Db Ab Eb Eb

o
lw)
>
m
55
-n
(o
-

L
Q0
3#*
(o

[~ =PV

Figure 5.3: The tonic cross coordinate system with a tonic note of C.
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Figure 5.4: Tone networks and tonic coordniate systems

On the tonic cross, we can represent sets of pitch classes, as sets of points. We call these the
harmonic points of the set of pitch classes. For example in figure 5.4 we show the harmonic points
of a C major triad on two tonic crosses, one with a tonic note of C' and one with a tonic note of C'f.

Definition 10 (Harmonic Points). The harmonic points of a set of pitch classes x, given a tonic coordi-
nate system C with tonic note t is the set of all points in the coordinate system which represent any set
of pitch classes in the power set: P(x), in addition to the origin. The harmonic points will be symbolized
PP (x)

Our hypothesis is that geometrical properties of such sets of points can give us information about
the sound of a set of pitch classes, in the context of a tonic note, and the corresponding tonic cross.
The two properties we use in this work are the span of the harmonic points, defined as the Euclidean
distance between the two furthest points, and the center offset of harmonic points, defined as the
Euclidean distance from the center of the points to the origin. These two properties are visualized

in figure 5.5,

Definition 11 (Span of set of pitch classes). In the context of a tonic coordinate system, the span of a
noteset  is a tonic property defined as the maximum distance between any two harmonic points:

Spy(x) = max; ;(||PPy(x); — PP(x),]]) (5.1)
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Figure 5.5: Visualization of Span, and Center Offset of a C' major triad, and given a tonic note of C'

Definition 12 (Center offset of set of pitch classes). In the context of a tonic coordinate system, the
center offset of a noteset x is the distance of the geometric center of all harmonic points to the origin

Cole) =l > ol 5.2

pePP,(x)

For example, sets of notes whose harmonic points are symmetric around the origin will have a
center offset of 0. Given a tonic note of C, such sets could be {C, Ct, B}, {C, D, Bv}, {C, Eb, A},
and {C, F',G}. These sets of pitch classes all have dissonant characteristics, and can be used for
building tension. The first would almost never be used in a composition, the second could be part
of a C'9 chord where the dissonance is caused by the tritone between Bb and the implied E, the
third is a diminished chord, and the fourth is a sus4 chord. Contrarily, sets of pitch classes with
a large center offset tend to have their harmonic points lie in the same quadrant, or on the same
side of an axis. For example, given a tonic note of C, the cardinality 3 sets that include C' with the
highest value of center offset (~ 3.16) are: {C, E, B},{C, Db, Ab},{C, E, F},{C,G, Ab}. Each of
these sets of notes has parts of a maj7 chord (Cmaj7, Dmaj7, Fmaj7, Gmaj7). Such chords have some
dissonance, given the maj7 interval, however they are not usually used to build tension, instead the
dissonance adds to the melancholic sound of these sets of pitch classes. Other chords, such as major
and minor triads have values in between these two dissonant extremes (C major triad center offset
~ 1.7, F major triad ~ 0.94, C minor triad ~ 0.94, with a tonic note of C'). Regarding Span, the
highest values are for the sets of pitch classes which contain the tritone above the tonic (F'§ with a
tonic note of C), while the lowest values are for sets with pitch classes whose points are clustered
together, such as {C, D, E'}. Low span sets seem to contain notes that would be part of melodic
lines, however we have not shown this in any way.

These two properties, seem to convey some musical information regarding the building of ten-
sion, and the amount of dissonance expected from sets of pitch classes. We have not clearly stated
their musical interpretation, as it is out of the scope of this dissertation, but we hypothesize that the
information encoded in these properties can be used to determine characteristics of music, which
in turn could be used for the purpose of evaluation. This is an example of how knowledge encoded
in graphs (such as the circle of fifths) can be used for evaluating Al systems.

5.2.2 Evaluation Metrics

The two metrics we have defined, and any other geometric properties of harmonic points that could
be defined, are computed for a set of pitch classes x given a tonic note ¢ (and we call them tonic
properties).

Definition 13 (Tonic Property). A tonic property Pr, is a function of a set of pitch classes, dependant
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on a tonic note t:

Pr,: P(PC) x PC — R (5.3)
Where PC is the set of pitch classes and P denotes the power set.

We would however want a metric that is computed for a sequence of sets of pitch classes, and that
is independent of a tonic note. We can derive such properties from tonic properties.

Definition 14 (Non-tonic Property). A non-tonic property Pr is a function of a noteset x which does

not depend on a tonic note:
Pr:?P(PC)—R (5.4)

Where PC is the set of pitch classes and P denotes the power set.

To derive non-tonic properties from tonic properties, we use pooling functions. A pooling func-
tion is any function F : (R) — R. Pooling functions will be symbolized with bold capital letters.
Some examples follow:

e The mean of a set, symbolized E
e The maximum of a set symbolized M
e The span of a set (max-min), symbolized S

We experimented with two approaches for this. The first, which we call relevant pooling prop-
erties, consist of computing a tonic property for a noteset x, |z| times, where each time a different
element of x serves as a tonic note. Then, the |z| different values are pooled (either by averaging, or
taking the max, or the span), leading to a single value that is independent of a tonic note. Similarly,
the second approach for computing non-tonic properties, which we call global pooling properties,
involves computing tonic properties 12 times, where each time a different pitch class serves as the

tonic note.

Definition 15 (Relevant Pooling Property). Given a pooling function F and a tonic-property Pr,, the
relevant pooling property FPr is defined as the non-tonic:

FPr(z) =F({Pr,x)}),tex (5.5)

Definition 16 (Global Pooling Property). Given a pooling function F and a tonic-property Pr,, the
global pooling property FPr* is defined as the non-tonic:

FPr(z) =F({Pr,(x)}),t € PC (5.6)
An example of a non-tonic property is the relevant span of the spans of a noteset SSp:
SSp(x) = max, e (Sp, () — Sp, () (57)
and the corresponding global span of the spans of a noteset SSp*:

SSp*(2) = max yepe (5P (x) — Sp, (7)) (5.8)

Properties of sequences of sets of pitch classes

By using pooling functions we may also accumulate properties across entire sequences of sets of
pitch classes (symbolized with capital letters), for instance the mean span of the span ESSp

ESSp(X) = |)1(| ) SSp(x) (5.9)
reX
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or the mean cardinality E||(X)

1
E||(X) = 57 D ol (5.10)
’ ‘ zeX
and the mean relevant span of center offsets:
1
ESCo(X) = X > max, e, (Coy(x) — Co, () (5.11)
zeX

In addition, we define properties of sequences of sets of pitch classes based on the rate of change
of properties of their constituent sets of pitch classes. An example of such a property is the variance
in the rate of change of the cardinality of sets of pitch classes o2 A[|(X)

?Al[(X) = ({1 X, 1] — 1X:1}) (5.12)
0<i<|X|—1
or the maximum cardinality change of consecutive sets of pitch classes:
MAIJ[(X) = maxg;<|x|—1 (| Xit1| — X)) (5.13)

Important aspects of music exist in multiple time-scales. For this reason we will utilize lower
resolution versions of the initial sequences of sets of pitch classes.

Definition 17 (Half resolution sequence). Given a sequence of sets of pitch classes X = x1,2,... 2,
the half resolution sequence, symbolized X ,, is defined as the sequence:

7 / /
Xjg =21, 29 ... 2,

where n
l‘; =x2i_1U$2i,0<i< 5
In general we symbolize
Xz =Xz,
H',_)
1
and

In order to quantify any musical information conveyed by lower resolution versions of the orig-
inal sequence we define properties of sets of sequences { X 5: }. This can be done by accumulating
the value for a property across different resolutions by use of pooling functions, similarly to how
properties of sequences where defined by pooling properties of sets of pitch classes.

Definition 18 (Cumulative Resolution Property). Given a property Pr of a sequence of sets of pitch
classes X, and a pooling function F the cumulative resolution property aFPr is defined as:

aFPr(X) =F({Pr(X)}) (5.14)
for some set of integers {i}, i < log,| X|

In addition we may define properties by quantifying the change in a property of a sequence
when resolution is lowered, similarly to how properties of sequences of sets of pitch classes where
defined based on the rate of change of properties of sets of pitch classes. To this end we define
resolution ratios. Note that for all ratio definitions below the value is set to zero if the denominator
of the ratio is zero.
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Definition 19 (Resolution Ratio of a Property). Given a property Pr of a sequence of sets of pitch
classes X and a pooling function F the resolution ratio property rFPr is defined as:

PT(X/QiH )

rFPr(X)=F({ Pr(X 5)

}),i < logy| X| (5.15)

An example of such a property is the mean resolution ratio of the mean cardinality of a sequence
of sets of pitch classes.

log, (| X))~1 __1

o] 2oaex 2int 171
PEE||(X) = e Y e
Og2<| |> i=0 szeX |$’

/2%

(5.16)

Heuristics for evaluation

Ideally there would exist a property which reflects musicality”, where sequences of notesets which
represent real music would have a higher value than sequences of notesets which represent Al
generated music, or non-musical sequences. Our goal is to define properties which are heuristics
for "musicality”.

Numerous such properties may be defined in this framework, some of which will be useful
for assessing musical qualities of a sequence of notesets and thus aid in the process of evaluating
Al generated music. As an example, we constructed four heuristic properties which are based on
intuition and empirical observations. These are not guaranteed to be optimal, or even effective, and
their usefulness is demonstrated experimentally in the next section.

We expect the mean cardinality of notesets to increase for lower resolution versions of a se-
quence which represents real music. This is an indicator of variety in notes being played, and is
quantified in heuristic measure H.

H,(X) = rEE[|(X) (5.17)

For the mean relevant span of center offsets, we expect the value to not decrease when reso-
lution is lowered. This hypothesis is based on observations of the distribution of values of SC'o of
all 4096 notesets with respect to their cardinality (figure b.6). Importantly, there is a local maxi-
mum for cardinality 7 which represents diatonic scales among other notesets. In addition, more
musical notesets, such as named chords, tend to have higher values than other notesets of the same
cardinality.

Hy(X) = min(rEESCo(X), 1) (5.18)

With regards to the mean resolution ratio of the maximum difference in cardinality of consec-
utive notesets of a sequence TEMA||(X) we expect the value to be closer to 1 for real music. Such
a value would indicate that there are no “erratic” changes in the sequence of notesets, or that even
for lower resolutions there exists some change in cardinality, otherwise MA||(X o), would be
assigned a zero value.

Hy(X) = rEMAJ|(X) (5.19)

Finally, the fourth heuristic is defined as the product of the three properties defined above
H,(X) = H,(X) * Hy(X) * Hy(X) (5.20)

5.2.3 Experiments

In order to assess the usefulness of the heuristics for evaluating music we conducted the following
experiment.
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Figure 5.6: Relevant span of center offset of every noteset. x-axis represents noteset cardinality and
y-axis represets the property SCo

Setup

We implemented five LSTM-based neural networks for autoregressive generation of symbolic music
and developed a platform for crowd-sourcing evaluationf. We acquired a pretrained MuseGAN [48]
along with two large datasets: Reddit MIDI [[162] and Lakh Pianoroll Dataset [159][48]. We trained
our networks on a small subset of classical guitar music, which will be referred to as the train set
in tables and figures. The generated results where evaluated threefold: 1) user survey, 2) objective
metrics from [48] and 3) heuristics from our framework.

In addition we created the Jazz, Metal and Bach datasets each containing 300 random MIDI files
from the corresponding folders in the Reddit MIDI dataset, and used the pretrained MuseGAN to
unconditionally generate 300 MIDI files with each of the two different inference modes. We then
calculated the heuristics on these datasets for further comparison.

Data Representation

For training the neural networks, MIDI files were represented as sequences of tokens, where a dif-
ferent token is assigned to each combination of note and quantized duration which occurs in the
dataset.

For calculating the various metrics, MIDI files were converted to pianoroll representations at
a resolution of 12 slices per quarter note. The duration of these pianorolls was set to 512 slices
(approximately 10 bars at % time signature) and we only used files with greater or equal duration.
All non-percussive tracks of a MIDI file were summed into a cumulative pianoroll. For the heuristic
metrics of the proposed framework each slice of the pianoroll is converted to a noteset by observing
the occurence of pitch classes in the slice.

* https://www.melodybot.com/vote
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Neural Networks

For generating symbolic music we followed the autoregressive approach, such as in [27]. Sequential
autoregressive models express predictions of observations based on past predictions. Specifically,
given a sequence X = [z, 2o, ..., 2], an autoregressive model factorizes the likelihood into a
forward product p(x) = Hi\il p(x — t|z_,) or a backward one p(z) = H;Np(x —tlx,).

We implemented three LSTM-based neural network architectures: a Feed Forward Lstm, an
Autoencoder and an Autoencoder with Self-attention. Based on them we modify their memory size
and we finally built five different neural networks, shown in figure b.7. These will be referred to as:

e LSTM256: Three stacked LSTM layers with 256 units each, following an embedding layer

LSTM512: Three stacked LSTM layers with 512 units each, following an embedding layer

e AE256: An autoencoder configuration, where the encoder consists of one LSTM layer of 256
units, as does the decoder

AE512: Similar autoencoder configuration but LSTM layers consist of 512 units each

AEATT: Autoencoder with self-attention

Embedding | ——— ' Embedding
| Embedding |
S

LSTM LSTM
l l — LSTM u l
LSTM é Aftention ]
Ll [Start l—Start
LSTM |,
LSTM LSTM
L |
Dense Dense ' Dense
Feed Autoencoder
Forward Autoencoder with
LSTM self- Attention

Figure 5.7: The three architectures we used for generation of music.

We trained all networks for 200 epochs with an early stopping criterion for categorical cross en-
tropy on a validation set. We used Adam [[105] as the optimization algorithm and the methodology
described in [185] for setting the learning rate. We also included a dropout parameter of 0.2 for
LSTM layers and used teacher forcing while training autoencoder architectures.

User Survey

We evaluated each neural network configuration by conducting a user survey online. In total 1,152
users participated, of which 569 stated they had musical knowledge, over a span of 100 days. Each
user was presented with 20 different pieces of music, 10 of which were composed by a neural network
and 10 were from the train set. For each piece of music, every user provided three ratings (from 1 to 5)
pertaining to: 1) How much they like the piece, 2) How interesting they find the piece and 3) Whether
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the composer of the piece was a human or a computer. In order to increase user engagement, after
each question the user was notified if they answered the third question (composer) correctly or not.
This had the effect of “training” some users to distinguish between human and computer composers,
as is apparent from the distribution of mistakes which are more numerous for the first questions.

Objective Metrics

We calculated objective metrics proposed in [48] on the generated samples and on the train set.
Closer values of these metrics between generated and real samples indicate a better model. Of
the proposed objective metrics we used polyphonicity (PP) and used-pitch-classes per bar (UPC).
For UPC since not all pieces are in % time signature we arbitrarily set a bar to be 32 samples of a
pianoroll. In addition we calculated the total number of pitches used in a piece (PU) and the total
number of pitch classes used (PCU). Results are shown in table p.2.

Results

The results of our experiments are summarized in the tables below. The baseline for evaluation is the
user survey, specifically how much users liked the music that they listened to and how interesting
they found it. Results are shown in table p.1.

Table 5.1: Average "liked” (L) and interesting” (I) votes for musicians (M) and non-musicians (NM)

MoODEL L(NM) LM) INM) IM)

LSTM256 1.47 1.60 1.29 1.57
LSTM512 1.75 1.94 1.93 2.09

AE256 3.21 2.93 3.10 3.12
AE512 3.03 3.22 3.25 3.27
AEATT 3.41 3.18 3.52 3.86

TRAIN SET 3.21 3.57 3.71 3.63

Concerning the objective metrics from [48] results are shown in table 5.4, In general these agree
with the user survey, validating their usefulness for evaluation.

Table 5.2: Objective metrics proposed in [48]

MODEL PP PCU PU UPC/32
LSTM256 0.05 5.05 7.65 3.18
LSTM512 0.08 6.07 10.01 3.49
AE256 0.24 7.87 14.09 4.07
AE512 0.46 9.10 18.31 4.89
AEATT 0.79 9.41 19.14 6.32
TRAIN SET  0.41 9.71 22.53 6.17

The results for our heuristics are shown in table p.3. Our goal when defining these was for a
larger value to indicate a more musical sequence of notesets without the need for comparison with
the train set. This can be argued to have been achieved to an extent for H,, H; and H,. A histogram
for non-zero observed values of H, is shown in figure b.§.

Finally, we measure how well each evaluation method separates the train set from generated
music via F1 score in table b.4. For users we use the data from the survey. For the heuristics we find
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Figure 5.8: Histogram of non-zero observed values for H, (best viewed in colour) - many of the
“poor” samples had H4=0

Table 5.3: Heuristic metrics calculated on generated and real samples. MG refers to MuseGAN, HT
and BS refer to MuseGAN inference modes (hard thresholding and Bernoulli sampling).
Reported values are mean (standard deviation)

MoDEL H, H, H, H,

LSTM256  1.18(0.1)  0.56 (0.42)  0.03(0.15)  0.03 (0.18)
LSTM512  1.19(0.1)  0.68(0.39)  0.07 (0.24)  0.08 (0.28)
AE256 1.20 (0.09)  0.85(0.27)  0.33(0.43)  0.38(0.51)
AE512 1.18(0.08)  0.94(0.15) 0.61(0.45) 0.70 (0.51)
AEATT 1.09(0.06)  0.94(0.07) 052(0.43)  0.54(0.45)

TRAIN SET  1.21(0.04)  0.99 (0.05)  0.87 (0.35)  1.04 (0.42)

Bacu 1.77(0.05)  0.98 (0.05)  0.86(0.34)  0.99 (0.40)
METAL 1.18 (0.05)  0.97 (0.11)  0.78 (0.45)  0.91 (0.54)
Jazz 1.25(0.1)  0.94(0.15)  0.62(0.45)  0.72 (0.54)

MG (HT)  1.18(0.02)  0.96 (0.04)  0.77 (0.30)  0.77 (0.30)
MG (BS) 1.20 (0.01)  0.73(0.05)  0.41(0.42)  0.37 (0.37)

the threshold which maximizes F1 score when samples above the threshold are classified as real and
below as computer generated.

Discussion

Even though the three different evaluation approaches agree with each other in general, there are
some interesting discrepancies, in particular when comparing the two best performing neural net-
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Table 5.4: Turing test classification F1 scores

MOoDEL Users H, H, H; H,

LSTM256 0.93 076 083 092 0.92
LSTM512 0.83 073 078 090 0.90
AE256 0.70 0.73 072 0.79 0.80
AE512 0.70 0.75 071 070 0.72
AEATT 0.65 092 078 072 0.79

works: AE512 and AEATT. In our survey, listeners who stated they have some musical knowledge
liked music generated by AE512 more than that generated by AEATT, although they found music
generated by AEATT more interesting. By observing table b.d, it is apparent that the total number of
pitches used (PU) and total number of pitch classes used (PCU) are similar for both neural networks
and the train-set. However AEATT, on average, uses significantly more pitch classes per 32 steps
(UPC/32) than AE512, and is significantly more polyphonic (PP) than both AE512 and the train-set.
This indicates that AEATT uses a variety of pitch classes and pitches similar to the train-set, but
they sound polyphonically in the generated music more often than in real music. Intuitively this
would mean a more obfuscated melody, which could lead to musicians liking it less, in addition to
more complex chords and chord progressions which could be the reason for which musicians found
the generated samples interesting.

Regarding H,, AEATT had the smallest value on average. This metric measures the mean in-
crease of noteset cardinality when resolution is halved. The fact that its value is closer to 1 indicates
that on average cardinality does not increase as much when accumulating notesets across more
time-steps, which would be consistent with overly polyphonic music. However this cannot be de-
duced directly from H, since it does not take into consideration the absolute number of pitch classes
used at each resolution. For instance a piece of music which uses very few pitch classes over a long
duration would also have a value of H; close to 1 even if there were no polyphonicity. In addition,
the highest scores for H; were observed on the Bach, Jazz and Train datasets, which agrees with
our intuition that harmonically rich music should tend to have a higher value of ;. A notable
exception is the Metal dataset, for which the value is similar to that of the neural networks.

For the proposed heuristic 15, both neural networks (AE512 and AEATT) on average score the
same, with AE512 having slightly more variance. When defining the heuristic, we hypothesized
that when resolution is decreased, the value of ESCo should not decrease as much for real music
when compared to Al generated music. This hypothesis was based on the fact that named notesets
from music theory, such as diatonic scales, tend to have a larger value of SC'o when compared to
notesets of the same cardinality, in addition to the existence of a local maximum at cardinality 7,
which represents diatonic scales. Thus, in our interpretation, a value of H, closer to 1 could indicate
either a) that noteset cardinality does not change much when resolution is decreased, such as for
the case AEATT or b) the music is “more diatonic” (tends to use notes which comprise a diatonic
scale) than if it had a lower value of H,. This is confirmed by observing the values of H, for the
datasets of real music, in particular that the lowest value of H, is for Jazz music, which tends to be
“less diatonic”, when compared to Metal, or Classical music.

The heuristic /5 had a lot of variance for both generated and real samples when compared to
the other metrics. Low values of H, such as for LSTM256 and LSTM512 would indicate that either
a) there are no changes in cardinality for many of the log, | X | resolutions, for which case the ratio at
these resolutions is assigned a zero value, or b) there exists an erratic change in noteset cardinality
in the original sequence. For the case of the worst performing models the value is close to zero due
to a), since from table 5.9 it is apparent that these models utilize very few pitch classes (PCU) and
are almost exclusively monophonic (PP) - which means most time-steps have notesets of cardinality
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Finally, it is interesting to compare the best performing MuseGAN (MG-HT) with the autore-
gressive models which we trained and the datasets which we collected. In particular with regards to
H,, H; and H, it seems to slightly outperform our models, while for H; the performance is similar.
However for three of the metrics it also scores higher than the Jazz dataset, which highlights some
weaknesses of the proposed heuristics, and challenges which we will face in future work.

5.3 Genre Recognition from Symbolic Music

Technologies for automatic music classification and tagging tasks have advanced considerably in
recent years, spurred on by their application in industry. Such tasks, for instance genre recognition
(147, 216, 133, 215], or mood classification [[163, 213, 150] are typically approached in the audio
domain. As mentioned in section @, raw audio data in WAV format is difficult to handle, and
specialized neural architectures tend to be resource intensive [[146], and thus most works for music
classification and tagging utilize digital signal processing (DSP) for extracting features from the
audio, such as spectrograms, and then applying machine learning methodologies to learn from the
extracted features [[156]. In our work, we wanted to explore, the much less active research area of
classifying and tagging symbolic representations of music.

Symbolic representations of music can be very useful for Al research, as they are abundantly
available for free on the web, are light-weight, and they encode the bare-bones musical information
of a piece of music (what notes are being played, at what time, and with what dynamics). Recently,
approaches that incorporate symbolic representations when analyzing audio of music have shown
promising results [207], while tasks for converting audio to symbolic (transcription)[17, 203] and
vice versa (synthesis)[53, 208] are also gaining traction. Nonetheless, there have not yet been de-
veloped specialized neural architectures for handling symbolic representations of music, and most
works adapt networks from natural language processing [95] and from computer vision [48]. In
our work, we experimented with one-dimensional convolutional neural networks [190], and ex-
plored how hyper-parameters such as network width, and depth affect the performance of a genre
recognition model, by keeping number of parameters and receptive field constant.

The state-of-the-art approach for MIDI genre classification presented by Ferraro and Lemstrém
in [56] uses an algorithm for recognizing patterns of notes in an input sequence and then performs
classification based on recognized patterns. These patterns are local, with the best results achieved
from extracting four or five note patterns. This, along with the success of 1D CNNs for other tasks in
the symbolic music domain [48] and their suitability for sequence pattern recognition, as has been
shown in multiple domains, such as pattern recognition in DNA sequences by Lanchantin et al in
[111], motivates us to explore 1D CNNs for the task of recognizing genres in symbolic music. For
details on 1D CNNs, that are used in this section, we refer to section .4 of the background chapter
of this dissertation.

5.3.1 Related Work

Most works related to genre classification involve music in audio (raw) format. The most up-to-date
techniques for the classification of music use neural networks on MFCCs or spectrograms [[198, 147],
some of them focus on feature selection [180, [171], or introducing new architectures [[133, 215, 127,
214].

The abundant availability of MIDI files online, from multiple sources, has given rise to the chal-
lenge of automatically organizing such large collections of MIDI files. One criterion for organiza-
tion is music genre, among others such as music style, similarity, and emotion. In [132] McKay
and Fujinaga argue in favor of genre classification, despite inherent difficulties such as ground truth
reliability.

There are many different approaches in the literature for genre recognition in the symbolic music
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domain. Dannenberg et al [34] used a machine learning approach, including a simple neural net-
work, on a custom dataset for successful genre recognition in the symbolic domain. In [[101], Karydis
et al combine pattern recognition with statistical approaches to successfully achieve genre recog-
nition for five subgenres of classical music. Kotsifakos et al in [107] compute a sequence similarity
between all pairs of channels of two MIDI files and then use a k-NN classifier for genre recognition,
on a dataset of 100 songs and four genres. Zheng et al. [222] extract features related to the melody
and the bass through a musicological perspective, incorporating text classification techniques and
using Multinomial Naive Bayes as the principal probabilistic classifier, in a self-collected dataset of
273 records.

These approaches were experimentally validated on relatively small datasets compared to, for
example, the openly available Lakh MIDI dataset [[159]. For large scale datasets, Ferraro and Lem-
strom [56] utilize pattern recognition algorithms SIA [[136] and P-2 [[195] in addition to a logistic
regression classifier to solve the task. The benefit of this approach is interpretability since the au-
thors have created a large corpus of genre-specific patterns, which could also be utilized for other
music related tasks. Duggirala and Moh [52] apply Hierarchical Attention Networks in music genre
classification, after converting the audio files into a word embedding representation. Liang et al.
[120] propose four word embedding models consisting of three vocabularies (chroma, velocity, and
note state) and apply these models in three MIR tasks: melody completion, accompaniment sugges-
tion, and genre classification, concluding the robustness and effectiveness of their embeddings.

5.3.2 Multiple Sequence Resolution Networks

Symbolic music is typically represented as sequences for deep learning approaches, but there exist
multiple ways to represent music in a tree structure in order to capture information across multi-
ple time scales. For instance, hierarchical models for music analysis proposed by Schenker [[175]
converted to trees by Marsden in [[130] and of Lerdahl and Jackendoff [[118] which partially for-
malise Schenker’s ideas, parsing musical structures into strict trees. Rizo et al. propose a non-linear
representation of a melody based on trees and they study the influence of different tree representa-
tions on classification rates in three corpora with monophonic melodies, concluding that tree coding
gives better results [167]. Rizo and Marsden extend the Music Encoding Initiative (MEI) [169] repre-
sentation with “semantic” and “non-semantic” encodings which allows the tight association of the
analytical information and the information in the score [[168]. This motivates us to explore ways in
which such trees may be given as input to a neural network instead of sequences. In this work, we
present a fully convolutional approach called MuSeReNet (Multiple Sequence Resolution Network),
in which each level of the input tree represents the original sequence at a different resolution.

In this work, we set a baseline for tree representation utilization for information retrieval from
symbolic music, by using full binary trees as input structures and by then treating each level of the
tree as a separate input. Each node of the binary tree has as a value the average of its children, thus
each level of the tree is equivalent to the original sequence - which is represented by the leaves of
the tree - at a lower resolution. This means that MuSeReNets presented in this paper are similar to
multiple resolution CNNs which have been successful for some computer vision tasks such as skin
lesion recognition by Kawahara and Hamarneh in [[102].

Intuitively, the first levels of a CNN detect low-level local features in the data, and more complex
higher-level features are captured in deeper layers. However, there could exist high-level features
which may be simply extracted from a lower-resolution representation of the input without requir-
ing increasing the depth of the network. For instance, in the case of symbolic music, a simple feature
that could be extracted from higher levels of a tree (closer to the root) would be the key signature of
a large segment of the input - which relates to the set of notes which appear in the segment. Such
features may then be combined with lower-level features extracted from levels closer to the leaves
of the tree and fed to deeper layers of the network for further feature extraction and eventually
solving a task, which in our case is genre classification.

The first module of a MuSeReNet is a set of average pooling operations which act on the original
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Figure 5.9: Constructing a binary tree where levels are equivalent to the input sequence at lower
resolutions

sequence, each producing a version of the original sequence at a different resolution (Figure b.9).
Each of these is treated as a separate input for the neural network.

There are many different ways to make use of these inputs. For MuSeReNets we distinguish
between two cases: When information flows from the leaves to the root (Figure 5.10) and when
information flows from the root to the leaves (Figure 5.11).

In the first case, in which information flows from the leaves to the root (Figure 5.1()), each input is
fed through a block which consists of convolutional layers followed by a max pooling operation with
the same stride and kernel size as the average pooling operation which generated the specific input
from its higher resolution counterpart. This way, and by using ’same’ padding for convolutional
operations, the output of a specific block has the same sequence length as the original input at the
previous resolution level and may be concatenated along their second axis, producing a sequence of
the same length and with more channels. The result of concatenation is the original sequence at a
lower resolution augmented with features extracted from the convolutional block which processed
the input at a higher resolution. This process is repeated until we reach the root of the tree, where the
sequence length is 1, and the vector consisting of the root and features extracted from the previous
convolutional block is fed to a fully connected layer with the goal of solving a specific task.

In the second case, in which information flows from the root to the leaves (Figure p.11), max
pooling operations are replaced with upsampling operations, and the order with which inputs are
fed to the network is reversed (the root first instead of the leaves first). In this case, the result is a
sequence of length equal to the original sequence, but is augmented with features that were extracted
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Figure 5.10: A MuSeReNet where the information flows from the leaves to the root.

by convolutions on lower resolution versions of the sequence. Intuitively, via the upsampling and
concatenation operations, this network could learn features that are local but are affected by the
context provided by the lower resolution version at a previous layer. Such an architecture is similar
to U-nets [[170] which is used for image segmentation. This resulting augmented sequence may then
be fed to further neural network layers in order to solve a specific task.
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Figure 5.11: A MuSeReNet where information flows from the root to the leaves.

5.3.3 Experiments

In order to explore the effectiveness of our architecture for information retrieval from symbolic
music and to check the compatibility of 1D CNNs for the task, along with the effect of allocating
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resources to network depth or to kernel size we conducted a set of experiments f|.

Data

For our experiments, we use the Lakh Pianoroll Dataset as presented by Dong et al in [48], specifi-
cally the LMD-matched subset. This dataset consists of pianoroll representations of MIDI files in the
Lakh MIDI Dataset presented by Raffel in [159]. The pianoroll is an array representation of music
in which columns represent time at a sample rate of n samples per quarter note and rows represent
pitch in the form of MIDI note numbers. The LMD-matched subset contains pianorolls that have
been linked with the Million Song Dataset (MSD) [[15]. The Million Song Dataset is the largest cur-
rently available collection of audio features and metadata for a million contemporary popular music
tracks. We use labels acquired by MSD to construct the MASD and top-MAGD datasets presented
by Schindler et al in [176], so we can compare our results with existing work. At the time of writ-
ing, Ferraro and Lemstrom in [56] have achieved the best results with regards to genre classification
of symbolic music for the MASD and top-MAGD datasets. Finally, we randomly split each dataset
into a train and test set (.75/.25), we use the train set for training our models and the test set for
evaluating them.
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Figure 5.12: Number of files in the LPD dataset per label of the MASD dataset

Both datasets are imbalanced with regard to the number of files corresponding to each label
(Figures and b.13). Methods such as over-sampling rare classes and under-sampling common
classes could be used to potentially improve the generalization ability of trained models, but it is left
for future work since we are interested in observing the behaviour of different network configura-
tions for this task.

Models

We construct neural networks by using blocks of 1-D convolutions followed by max-pooling oper-
ations of kernel size and stride 2. Specifically, we use a shallow block, which consists of only one

* The code is available in the following GitHub repository: https://github.com/kinezodin/cnn-midi-genre
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Figure 5.13: Number of files in the LPD dataset per label of the topMAGD dataset

convolutional layer prior to the pooling operation, and a deep block which consists of three con-
volutional layers before each pooling operation (Figure 5.14). A network built with shallow blocks
will be referred to with the prefix ’shallow’, and those built with deep blocks deep’.

In addition, each network has a ’Sequence’ version in which blocks are stacked depth wise and
the first block receives as its input the original sequence, and a '"MuSeRe’ (Multiple Sequence Res-
olution) version in which a level of a tree constructed from the input sequence is concatenated to
the output of each block. The first case represents a traditional CNN architecture, while the second
represents MuSeReNets in which information flows from the leaves to the root (Figure b.10).

Shallow vs Deep All blocks are individually set to have a similar receptive field of 24 samples,
thus stacking the same number of blocks will lead to CNNs with the same receptive field regardless
of which type of block is used. In the shallow block case, this implies a kernel size of 24. For the
deep block case, assuming all convolutions have the same kernel size k, if k& = 9 the receptive field
at the output of the third layer is 25 input samples. We arbitrarily chose the smallest kernel size
k = 9 which has the same number of trainable parameters as a 3 x 3 kernel which is popular for
computer vision two-dimensional CNNss.

All blocks are also set to have a similar number of trainable parameters. Given fixed input
dimensions of (|z|, f;,), a single convolutional layer with £, kernels of size k will have n,, trainable
parameters:

ny = (fin* k1) % fou

We set f,,;, = fi, = 128 for all blocks, thus the number of trainable parameters for a shallow
block is:
nshallow = 393, 344

For the deep block, we set the number of kernels of the third layer f,,, = 128, so that the
output of each block is the same shape as with the shallow block. In order to satisfy the condition
of having an equal number of trainable parameters to the shallow case

ndeep = Ngshallow
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1153f01 + 9f01f02 + f02 + 1153f02 +128 = N shallow

, where f, and f, are the number of kernels for the first and second layers of the deep block. By
arbitrarily setting f, = f,, we get 117 kernels per layer. This way we end up with the two blocks
shown in Figure .

For the different models, we use powers of 2 as input sequence lengths /, ranging from [ = 64 to
[ = 2048. In the context of our dataset, these lengths represent musical time from approximately 5
quarter notes to 170 quarter notes, or 42 bars for a % time signature (around one to two minutes for
typical values of a song’s tempo). Then each network will consist of log, ! blocks stacked depth-wise,
followed by a fully connected layer at the output, with as many sigmoid-activated units as there are
different labels in each dataset. For all convolutional layers, we used ReLu activations.

Output Shape:
N
Deep Block

Shallow Block

128 kernels
of size 24 1D Conv

Figure 5.14: The convolutional blocks used to construct the CNNs for use in our experiments
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Sequence vs MuSeRe The two versions of each network (Figure .15) differ with regard to the in-
puts of each block which are sequences of 128-dimensional vectors in the ’Sequence’ case and 256-
dimensional vectors in the ’MuSeRe’ case, which are a result concatenation of a previous block’s
output with the original sequence at a lower resolution and leads to an increase of trainable param-
eters for the first layer of each block. The ‘Sequence’ networks are a typical 1D CNN architecture,
which however, to our knowledge, have not been used in an end-to-end approach for symbolic
music inputs and genre recognition.
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Figure 5.15: a) Sequence architecture and b) MuSeRe architecture used in experiments
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Data Preparation and Training

Every piano-roll is a fixed length sequence of vectors x = [x;,X,, ...X;], where each vector x, has
128 dimensions representing MIDI note numbers. During training, before feeding a sequence to a
network, we perform a random transposition by shifting elements of every vector of a sequence by
arandom integer in [—6, 6]. This corresponds to transpositions up to a tritone below or above and is
done as a data augmentation step which helps to avoid bias with respect to a particular tonal center.

The way multi-track MIDI files are handled is by averaging the pianorolls of all instrumental
tracks and all percussive tracks separately into two cumulative pianorolls. The downside is that we
lose information pertaining to the different instruments and to some extent different voices become
convoluted, but this way we are able to process a larger number of MIDI files regardless of the
number of tracks.

We use a data generator to create batches for training and apply any data transformations on
the fly. For finding trainable parameters of networks which minimize the cross entropy between
predicted genres and real genres we use Adam [[105] as the optimization algorithm during training
with a learning rate of @ = 107° and for the other hyper-parameters of the optimizer 3, = 0.9,
By = 0.999 and a batch size of 32. Before training a model, we further split the original train set
into a validation set and a train set (0.2/0.8) randomly. We then trained our models for up to 300
epochs while using an early stopping criterion for each model’s F1-score on the validation set.

Evaluation and Post Processing

We evaluate our models on the held-out test set for each of the MASD and topMAGD datasets by
computing precision, recall, and micro f1 metric. Due to the varying sequence lengths of pianorolls
in the test set, we use the post-processing procedure described below to aggregate a model’s predic-
tion across whole sequences, which are of greater length than the expected neural network inputs.

Given a pianoroll x,, of sequence length N and a model with input length N,,, < NN, we retrieve

sequences of length N,,, from z,, by using a sliding window of V,,, samples and a hop size of NT’”
samples on the sequence. Each window is then fed to the model for inference, which returns a vector
where each element represents a probability that a specific label is assigned to z,,. Then we assign
as predicted labels those with a probability value greater than 0.5. If no labels have a probability
greater than 0.5 then we assign as a single label the element of the vector which has the maximum
probability, since there are no unlabeled samples in the dataset. These predictions are then used to
calculate false and true positives and negatives, recall, precision, and F1 score.

Results

The results of our experiments are shown in Table b.5 which lists the micro F1 scores of each trained
model on the test set. In general, all CNNs which were trained on sequences longer than 256 samples
surpassed Ferraro and Lemstrom’s pattern recognition approach, as well as Liang et al. model with
regards to F1 metric [56] [[120]. Increasing input length by a factor of two along with increasing
the number of blocks by one in most cases improved performance, with a notable exception for
the longest sequence lengths that we experimented on (1024 vs 2048). In general, MuSeRe models
outperform sequence models for shorter input lengths. The poor performance of MuSeRe models
for larger inputs could be a result of overfitting, but requires further experimentation.

In addition, we present precision, recall, and F1 scores for each label in the topMAGD dataset
for the best performing model (Table b.6). On the one hand, the effect of the imbalanced dataset is
apparent in the network’s performance for the most common label (Pop Rock) when compared to
those with fewer files in the dataset such as Blues, Reggae, and Folk. It is interesting that genres
such as Jazz which have little representation in the dataset are better classified than genres such
as Electronic which has almost double the support. This could be due to distinguishing musical
characteristics of each genre, which are apparent in symbolic representations of music - for instance,
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Table 5.5: micro F1 scores on the test sets of the MASD and topMAGD dataset for each of our ar-
chitectures P2-4 and P2-5 refer to the best performing configuration of those presented
in [566] and PiRhDy_GM refer to the best performing configuration of those presented in

[120]
Length Block Input MASD topMAGD
Sequence | 0.258 0.620
Deep
64 MuSeRe 0.265 0.622
Sequence | 0.295 0.623
Shallow a
MuSeRe 0.308 0.622
Sequence | 0.315 0.624
Deep
128 MuSeRe | 0317  0.631
Sequence | 0.361 0.632
Shallow d
MuSeRe 0.407 0.639
Sequence | 0.411 0.654
Deep
256 MuSeRe 0.404 0.639
Sequence | 0.335 0.663
Shallow -0
MuSeRe 0.491 0.668
Sequence | 0.456 0.661
Deep
519 MuSeRe 0.374 0.653
Sequence | 0.545  0.711
Shallow a
MuSeRe 0.525 0.703
Sequence | 0.507  0.673
Deep
MuSeRe | 0.337  0.641
1024 S 0.581 0.777
equence | 0. .
Shallow -
MuSeRe 0.526 0.737
Sequence | 0.456  0.696
Deep
MuSeRe 0.264 0.627
2048 S 0.593 0.759
equence | 0. .
Shallow d
MuSeRe | 0.444  0.733
pP2-4 0.468 0.662
P2-5 0.431 0.649
PiRhDy_GM 0.471 0.668

jazz music tends to have complex harmony and utilize more notes, while electronic music tends to
contain loops of very few notes.

5.4 Explainability for Genre Recognition

Even though we have shown that deep convolutional neural networks can perform better than other
methods for genre recognition from symbolic music, they suffer from drawbacks that most deep
learning approaches do, importantly lack of explainability and interpretability. This is not an im-
perative issue for genre recognition, since explainability is not critical for the method to be utilized,
however, it would be a useful feature that could help improve performance in a future iteration by
helping detect potential biases or flaws of the genre recognition model. Furthermore, since genres
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Table 5.6: Per label precision recall and F1 score on the test set for Shallow Sequence model with
input length 1024 (best performing model) on the topMAGD dataset

Label F1  Precision Recall Support
Pop Rock 0.86 0.81 0.96 3705
Electronic 0.58 0.74 0.47 557
Country 0.67 0.83 0.56 502
RnB 0.61 0.92 0.45 432
Jazz 0.76 0.91 0.65 281
Latin 0.45 0.78 0.32 338
International 0.53 0.77 0.41 236
Rap 0.34 0.78 0.22 133
Vocal 0.65 0.90 0.51 150
New Age 0.66 0.94 0.51 116
Folk 0.48 1.00 0.32 44
Reggae 0.48 1.00 0.31 38
Blues 0.55 0.73 0.44 18
micro avg 0.78 0.81 0.74 6550

themselves are not well-defined terms, and their characteristics can vastly change over time, expla-
nations of predictions could be valuable for understanding both the model and the dataset. In this
section, we generate explanations by adapting various explainability frameworks and tools from
the area of explainable AI (XAI) to the domain of symbolic music. As these are post hoc explana-
tion methods, which treat the model as a black box, we chose to present a high-level description of
multiple different methodologies, since such methods have been shown to occasionally produce mis-
leading results [172]. We analyze and qualitatively compare the usefulness of different explanation
methods when applied to symbolic music.

5.4.1 Local Explanation Methods

Methods for explaining the prediction of a black-box model on a specific sample are called local
explanation methods [[75]. There are many such methods in the relevant literature, for various types
of data, however, none have been designed specifically for symbolic representations of music. We
show results generated by Grad-CAM [[179], LIME [[165] and the genetic programming based GPX
[57]. Grad-CAM generates visual explanations and is intended for images, LIME works on any type
of data, while GPX is more suited for tabular data with a relatively small number of features. Here
we show visual explanations for Grad-CAM and LIME, where the image depicts the cumulative
pianoroll of each piece of music, while for GPX we modify the explanation pipeline for it to be
utilized on symbolic representations of music.

The results concern four hand-picked samples from the reddit MIDI dataset]. These are (a)
Beethoven’s Moonlight Sonata, (b) The Beatles - Here Comes the Sun, (c) Eminem - The Real Slim
Shady and (d) Queen - Bohemian Rhapsody. We fed the first 1024 time-steps of each sample through
the best performing (on the topMAGD dataset) CNN. The predictions are shown in Table p.7. We
chose Moonlight Sonata, since it is out of domain as its genre is not included in the dataset’s labels.
The top two predictions of International and New Age music for the specific sample are interesting
and merit an explanation. We chose (b) and (c) as examples of certain predictions, while (d) shows

Shttps://www.reddit.com/r/WeAreTheMusicMakers/comments/3ajwe4/the largest midi
collection on the internet/
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Table 5.7: Predictions for the top-4 genres for the first 1024 time-steps of each of the four songs
for which local explanations were generated. The tracks are: i) Beethoven - Moonlight
Sonata, ii) The Beatles - Here Comes the Sun, iii) Eminem - The Real Slim Shady, iv) Queen

- Bohemian Rhapsody
Beethoven Beatles Eminem Queen
International 0.69 | Pop - Rock 0.83 | Rap 0.89 | Electronic  0.54
New Age 0.40 | Jazz 0.06 | Electronic 0.03 | Pop-Rock 0.20
Rap 0.25 | RnB 0.04 | Jazz 0.02 | Vocal 0.06
Pop - Rock 0.24 | Country 0.037 | Vocal 0.003 | RnB 0.04

an erroneous prediction by the CNN (Electronic), and a relatively high value of 0.06 for the vocal
genre which is interesting since the introduction of the song features an a capella chorus.

Grad-CAM

Grad-CAM is a method proposed for generating visual explanations for large 2D CNNs which are
applied in the image domain. It works by computing the gradient of the target output neuron with
respect to the activation-map of the final convolutional layer of the CNN, averaging over the chan-
nels, thus leading to a coarse heatmap of the same size as the convolutional feature-maps, which in
our case is always a sequence of length 4, due to the application of max-pooling operations within
our networks. The resulting explanations for the top-2 predicted classes, for each of the four samples
are shown in Figure b.16.

Due to the coarseness of the heatmap, these explanations are not very useful in their own right,
and are used in this context as a baseline. For Moonlight Sonata the explanations show uniform
contribution of each timestep towards the International genre and no contribution towards the New
Age genre. For Here comes the Sun the first quarter of the pianoroll seems to contribute more towards
a Jazz prediction, while the third quarter contributes towards a Pop-Rock prediction. For The Real
Slim Shady the explanations are similar to those of Moonlight Sonata and are not very useful. Finally,
for Bohemian Rhapsody, the second half of the pianoroll contributes more towards the Electronic
genre, after the piano part is introduced.

LIME

LIME is a technique for generating explanations for any classifier, in any data domain. In order to
explain a classifier f : R? — R, LIME searches for a function ¢ : R? — R which is a) Interepretable
and b) Approximates f locally. It is formulated as:

§(x) = argmin £(f, g, 7,) + Q(g)
geG

where G is a family of explainable functions (such as linear models or decision trees), 7, is a prox-
imity measure that measures locality around z, €2 is a measure of how interpretable a function g
is (for instance the number of weights in a linear model, or the depth of a decision tree) and £ is
a distance function showing how closely ¢ approximates f in the locality defined by 7. In Fig-
ure we show explanations generated by LIME using the official python package f| provided by
the authors, and specifically the lime_image object, with default parameters. For Moonlight Sonata
LIME has highlighted the fifth measure without the melody note, the melody of the seventh and
eighth measures and the bass notes of measures 13 and 14 as contributing towards an International
genre prediction. For New Age only the fourth and fifth measures are highlighted by LIME. For Here

¢ https://github.com/marcotcr/lime
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(a) Moonlight Sonata -> International

(b) Moonlight Sonata -> New Age

(c) Here Comes the Sun -> Pop-Rock

(d) Here Comes the Sun -> Jazz

(e) Real Slim Shady -> Rap

(f) Real Slim Shady -> Jazz

(g) Bohemian Rhapsody-> Electronic

(h) Bohemian Rhapsody-> Pop-Rock

Figure 5.16: Explanations generated by Grad-CAM for the top-2 predicted genres, for the best per-
forming CNN, on the first 1024 time-steps of Beethoven’s Moonlight Sonata (a,b), The
Beatles - Here Comes the Sun (c,d), Eminem - The Real Slim Shady (e,f), and Queen -
Bohemian Rhapsody (g,h). The highlighted area with green represents the important
for the prediction segments - according to Grad-CAM

Comes the Sun, the fifth and sixth bars, along with their repetition four bars later contribute more
towards the Pop-Rock genre. For The Real Slim Shady the same three notes have been highlighted as
contributing towards the Rap genre across two repetitions. A different repetition of the same notes
has been highlighted as contributing towards Jazz. Finally, the first measure of the piano part of
Bohemian Rhapsody along with its preceding measure contribute towards Electronic, while the third
measure after the piano is introduced contributes towards Pop-Rock. These explanations seem to
generally agree with those generated by Grad-CAM and are not very intuitive visually. However,
by changing the representation of the MIDI files to either music notation (score) or audio, the high-
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(a) Moonlight Sonata -> International

(b) Moonlight Sonata -> New Age

&

(c) Here Comes the Sun -> Pop-Rock

(d) Here Comes the Sun -> Jazz

(e) Real Slim Shady -> Rap

(f) Real Slim Shady -> Jazz

Figure 5.17: Explanations generated by LIME for the top-2 predicted genres, for the best performing
CNN, on the first 1024 time-steps of Beethoven’s Moonlight Sonata (a,b), The Beatles -
Here Comes the Sun (c,d), Eminem - The Real Slim Shady (e,f), and Queen - Bohemian
Rhapsody (g,h). With green are highlighted the areas of the pianoroll that positively
contribute to the label prediction, and with red those that negatively contribute, ac-
cording to LIME.

lighted parts may be observed in more detail and listened to. It would be interesting to analyze them
from a music theoretical perspective, however, this is beyond the scope of this work.
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Modified GPX

GPX [b7] is a methodology for generating local explanations by utilizing genetic programming [108].
It is formulated similarly to LIME, in that GPX searches for a function £ : R™ — R which attempts
to mimic the original complex model f : RY — R on a given sample set 77, which is typically defined
locally around the sample to be explained. The goal of GPX is to find:
§=arg min_d([g(s1), ..., 9(s,)] = [f(s1), -, f(s)]) (5.21)
geG,s;€n

where d is a distance function, such as the [,-norm. GPX generates functions g which are non-
linear algebraic expressions in the form of binary trees on the given feature set. Genetic Program-
ming (GP), in general, generates a random population and evaluates the fitness of each individual,
in terms of effectiveness in solving the problem, favouring the better individuals. In this work, the
GP evolves symbolic expressions for local explanation in the genre classification task.

We modified GPX in two ways in order to generate more meaningful explanations for our ap-
plication: a) the way the local sample set 7 is generated and b) what features are used within the
genetic program, and for producing explanations.

Local Sample Set In order to generate the sample set 7 around the sample x to be explained, GPX
samples from a multivariate Gaussian distribution centered at x with a covariance matrix computed
from the training data. By experimenting with this approach we realized that on the one hand,
the predictions of the classifier on such a sample set were not varying significantly, and on the
other hand, the samples generated with this approach were not meaningful as pianoroll represen-
tations, and the resulting samples did not have any musical meaning. Instead, we generate each 7,
by randomly choosing a set of pitches which have a value > 0 in the cumulative pianoroll of x and
transposing them by a random number of semitones in [—10, 10]. This way 7, which is supposed to
consist of samples in the neighborhood of x, will contain pianorolls that are similar to x and differ
only with regard to some pitches. Notably, this approach does not impact the rhythmic characteris-
tics of the pianoroll, since the only changes are made in the pitch dimension, so even if pitches are
changed drastically for some samples, they can still be considered to be “local”.

Feature Extraction Each cumulative pianoroll consists of 1024 time-steps of 128-sized vectors,
which would translate to 128 x 1024 = 131,072 features per sample. Such a large amount of
features makes the application of GPX infeasible, and even if time and memory complexity were
not an issue, the explanations which would be generated would not be very informative, as GPX is
a feature importance explainability method, and it is difficult to draw conclusions from such a large
feature set. Instead, we incorporate a feature extraction function h : R™ — RP within the explainer
function, where n is the original number of features and p < n is the number of extracted features,
and reformulate Equation as:

f = arg min d([g(h(81>)7 7g<h(8m)>] - [f<81)7 ) f(sm)]) (5'22)

geG,s,€N

For applying this idea on symbolic music, we define h to extract thirteen features, which are intu-
itively linked to musical harmony. Specifically, for the first twelve features, we first get the preva-
lence of each pitch by summing x over the time dimension, leading to a 128-sized vector. Then from
this vector, we get the prevalence of each pitch class, by summing each dimension modulo 12, lead-
ing to a vector of 12 elements, each of which represents the prevalence of a pitch class within the
pianoroll. Finally, we transpose this vector by rolling it, such that the largest element is at position
0. The thirteenth feature is the average pitch across the whole pianoroll. This way, the function A,
acts on a pianoroll  to produce a vector h(x) which shows the prevalence of each musical interval
when compared to the most used pitch class. The features h(z) are then utilized by the explainer
which attempts to mimic the black-box classifier, and are the features that appear in generated ex-
planations.
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For the genetic programming algorithm, we used a population size of 110 evolved over 110
generations, to attempt to mimic the classifier in a local neighbourhood of 11,000 samples 7,. For
other hyperparameters, we used the same as those used in [57]. We ran the algorithm 5 times for
each sample, and show the best results with regard to the explainer accuracy. We comment on the
consistency of the results.
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Figure 5.18: Feature importance for the top-1 predicted genre as generated by the modified GPX

In Figure we show the feature importance generated by GPX for each prediction of the
CNN. The feature importance is calculated as the number of appearances of each feature in the
final population, which consists of 110 algebraic expressions. For Bohemian Rhapsody-Electronic
and Moonlight Sonata-International, which are both erroneous predictions, GPX has shown two
intervals as important features. This result was consistent for the case of Bohemian Rhapsody while
for Moonlight Sonata the maj_7 interval appeared in all 5 runs, but not the fourth interval. For the
other two samples, the best explainer was a constant function, however, the existence of features in
the final population can give us some musical insight. In Table 5.§ we show a summary of results for
the top prediction for each of the four selected samples. For the local sample set generated around
Here Comes the Sun and The Real Slim Shady, the CNN classified 0.75 and 0.93 as Pop-Rock and Rap
respectively (percentage of positive 7;). Even though the best explainer for these two samples was
(essentially) a constant function, the prevalence of the tonic note as an important feature for Rap
classification in the final population makes sense intuitively.

In Figure we show the final program evolved by GPX with the best explainer accuracy for
each sample. For Moonlight Sonata (explainer accuracy 0.8) the program is fourth - maj_7, where
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the intervals are based on the extracted tonic of B. However we know that Moonlight Sonata is
actually in Cff minor, so in this context, the program would be min_third — sixzth. For the actual
sample, the prevalence of the first interval is 0.59 while of the second it is 0.08, which would indicate
that when the pitch class Bb is more prevalent, then the sample is no longer classified as Interna-
tional. In music-theoretical terms, Bb appears as a Dorian substitute and it would be interesting to
explore the distribution of the Dorian mode within our dataset of International music, and determine
if this is a bias learned by the classifier, or if it is an actual feature of the genre. These results are also
somewhat consistent with the explanation generated by LIME (Fig b.17) since for measures 13 and
14 in which the pitch class Bb appears for the first time, LIME has only highlighted the bass notes
(which lack the pitch class) as contributing towards the International genre. For Bohemian Rhap-
sody (explainer accuracy 0.75), the best program generated by GPX is min(min_third, fifth). In
the actual sample the prevalence of the first interval is 0.63 and of the second is 0.51. This rule says
that if both the minor third and the fifth appear at least half as often as the tonic, then the sample is
classified as Electronic, which makes intuitive sense since Electronic music tends not to have complex
harmony, and the rule represents the prevalence of a minor triad in the pitches which appear in the
pianoroll. Again this merits further exploration to determine if it is a bias, or something useful that
the CNN has learned. For the other two samples, the explanations generated are trivial. For Here
Comes the Sun, we attribute the failure of GPX to the bias of the classifier towards the Pop-Rock
genre which is a result of dataset imbalance. For The Real Slim Shady, we believe that all samples
in the local sample set were classified as Rap due to the fact that the sample uses very few pitches,
which doesn’t change after randomly transposing them, and the sampling method does not affect
rhythmic characteristics, which we believe to be a key feature for Rap classification.

Table 5.8: Summary of results of applying GPX with the feature extraction addition, for the top
prediction for each sample.

Beethoven Beatles Eminem Queen

percentage of

0.69 0.75 0.93 0.62
positive 7,
Explainer

0.80 0.75 0.93 0.75
Accuracy
Extracted Tonic B A Eb/Df  Bb/Af
Actual Key Cf min AMaj Cmin Bb Maj

5.4.2 Global Explanation Methods

Global explanation methods aim to explain the overall behaviour of a black-box, contrary to local
explanations which concern the predictions of the model on a specific instance.

MMD-critic[[103]

MMD-critic is a methodology for analyzing the distribution of a dataset in order to find specific
samples which are prototypes, and others which are criticisms. The former are samples that are
characteristic for a specific distribution while the latter are outliers. MMD-critic is based on the
idea of Bayesian Model Criticism [61] and produces explanations by calculating Maximum Mean
Discrepancy (MMD).

In order to produce global explanations for a black-box model with MMD-critic, we first calculate
prototypes and criticisms for the test set, by feeding the algorithm cumulative pianorolls. Then, for
each genre, we get the set of positive examples as predicted by the black-box and compute prototypes
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Figure 5.19: Final programs generated by GPX as explanations for the top prediction for each sam-
ple.

and criticisms for each of these sets of positive examples. This way we get prototypes and criticisms
according to the real distribution (test set) in addition to the distribution learned by the black-box
(predictions on the test set). In Table 5.9 we show a prototype and a criticism for each genre, as
computed by MMD-critic on the test set of topMAGD, and in Table we show a prototype and a
criticism for each genre, as predicted by the CNN.

Regarding the results on the test set (Table .9), we can gain some insight about the dataset and
by extension the performance of the CNNs. Firstly, this table raises the issue of ground truth relia-
bility, which is one of the main difficulties for genre recognition. For instance, none of the Reggae
samples in the table are actually Reggae, but would probably be considered Soul/RnB/Gospel. Fur-
thermore, the prototype for the Latin genre doesn’t have any characteristics of Latin music besides
the language and would be considered Pop. Similarly, the prototype for Rap could be considered
RnB (which often contains Rap in modern music), while the prototype for New Age could be con-
sidered New Wave/Pop instead. A second issue raised by Table b.9 is that of dataset imbalance. This
is not only regarding the number of samples for each genre, but also the range of different music
each genre encompasses. For instance, the Pop-Rock genre is represented by a very diverse set of
samples, ranging from Hard Rock to Disco. A result of this is that almost half of the selected pro-
totypes and criticisms are labeled as Pop-Rock among other labels. Finally, for those genres with
very low support, we cannot expect MMD-critic to produce meaningful explanations since it is a
statistics-based approach that requires a sufficiently large dataset.

By studying the resulting prototypes and criticisms from the predictions of the CNN (Table b.10),
along with the performance of the CNN on each genre (Table b.6) we are able to better understand
what the CNN has learned. For Pop-Rock the prototype chosen by MMD-critic is a power ballad by
Abba which is closer to Pop than Rock, which is interesting when compared to the prototype selected
from the ground-truth labels: a Nine Inch Nails song which is a lot closer to Rock. For genres with
more than 100 samples in the test set, in which the CNN does not perform well (Electronic, Latin,
International, Rap) the generated prototypes are, as expected, far from representative of each genre,
however, they are still useful for gaining insight on what the CNN has learned. For instance, the
choice of Queen - We Will Rock You as a prototype for Rap could be due to the rhythmic qualities
of the vocal track, the looping music, and the repeating patterns which are prevalent in a lot of
different music, including Rap. This could help us understand the poor performance for the specific
genre (0.34 F1 Score), along with the high precision (0.78).
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Table 5.9: Prototypes and Criticisms for each genre, generated by MMD-critic on the test set of
topMAGD. In parentheses are the ground truth labels.

Genre Test Set Prototype Test Set Criticism
Nine Inch Nails - Piggy Spice Girls - Wannabe
Pop-Rock
(Pop-Rock) (Pop-Rock)
i Toy-Box - Tarzan & Jane George Michael - Fast Love
Electronic
(Pop-Rock, Electronic) (Electronic)
Count Session Americana - John Brown Olivia Newton-John - Everything Love Is
ountr
y (Country) (Pop-Rock, Country)
RaB Mariah Carey - If It’s Over Tina Turner - Steamy Windows
n
(Pop-Rock, RnB) (RnB)
Lee Ritenour - Papa Was A Rolling Stone | Procol Harum - A Whiter Shade Of Pale
Jazz
(Jazz) (Pop-Rock, Jazz)
Lati Yahir - Fue Ella, Fui Yo Os Paralamas Do sucesso - Romance Ideal
atin
(Latin) (Latin)
. Mamonas Assassinas - Pelados Em Santos | Mamonas Assassinas - Pelados Em Santos
International
(International) (International)
R 50 Cent - Baby By Me Bobby Brown - Don’t Be Cruel
a
P (Pop-Rock, Electronic, Rap) (Pop-Rock, Jazz)
Vocal Nana Mouskouri - Habanera Salvatore Licitra - E Lucevan Le Stelle
oca
(International, Vocal) (Vocal)
New A Cock Robin - The Promise You Made Slavic Soul Party! - Never Gonna Let You Go
ew Age
& (New Age) (Jazz, New Age)
Folk Judy Collins - Send In The Clowns Edison Lighthouse - Love Grows
o
(Folk) (Folk)
R Johnnie Taylor - For Your Precious Love | The Elgins - When A Man Loves A Woman
eggae
&8 (Pop-Rock, RnB, Reggae) (Pop-Rock, Country, Latin, Reggae)
Bl Deborah Coleman - Long Time Jim Reeves - I Won’t Forget You
ues
(Pop-Rock, Blues) (Country, Blues)

5.5 Discussion: Knowledge Representation for Music

So far in this chapter, we have described our approach to evaluation of Al generated music, our
methodology for genre recognition from symbolic music, and an analysis of post hoc explanations
in this domain. From the above research, it became apparent to us how useful utilizing music theo-
retical notions is for music related tasks. For the evaluation procedure (section p.J) the notions used
from music theory were the circle of fifths, the tonnetz, and underlying ideas such as pitch classes,
intervals etc. For the genre recognition methodology, we tried to utilize structural characteristics of
music, via the structure of the neural architecture, making use of multiple resolutions. For explain-
ability, we again used simple notions such as intervals and key signatures to get more meaningful
explanations when using methods such as GPX. Furthermore, the explanations were interpreted by
us in many cases, under the prism of music theory. However, all of the above utilizations of music
theory were done in an ad hoc fashion, where the knowledge was represented differently in each
case, to suit each methodology.

The above makes apparent the need for encoding music theoretical knowledge in a standardized,
computer-readble, and human-understandable format. To this end, there exists related work, such as
for example the work of G. Widmer [205] from 1994, that shows the potential of combining Al with
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Table 5.10: Prototypes and Criticisms for each genre, generated by MMD-critic on the positive ex-
amples as predicted by the black box, on the topMAGD test set. In parentheses are the

ground truth labels.
Genre Black-box Prototype Black-box Criticism
Pop-Rock Abba - The Winner Takes It All Donny Osmond - This Guy’s In Love With You
(Pop-Rock, Vocal) (Pop-Rock)
Electronic Siniestro Total - C’est Chic Crystal Waters - 100% Pure Love
(Pop-Rock) (Electronic)
Country Boots Randolph - Bridge Over Troubled Water John Fogerty - Big Train
(Country) (Pop-Rock)
RuB Stevie Wonder - You Are The Sunshine Of My Life | Whitney Houston - So Emotional
(RnB) (RnB)
Abba - Take A Chance On Me Vince Guaraldi Trio - Christmas Time Is Here
Jazz (Pop-Rock) (Jazz)
Latin Luis Miguel - El Dia Que Me Quieras Os Paralamas Do Sucesso - Romance Ideal
(Latin) (Latin)
. Brasilian Tropical Orchestra - Yesterday Uniting Nations - Uniting Nations
International
(International) (Electronic)
Rap Queen - We Will Rock You Phish - Wading In The Velvet
(Pop-Rock) (Pop-Rock)
Vocal Michael Crawford - The Phantom Of The Opera Collin Raye - Little Rock
(Pop-Rock, Vocal) (Country, Vocal)
New Age Lionel Richie - Hello Enya - China Roses
(New Age) (New Age)
Folk The Roches - Do You Hear What I Hear? The Roches - It Came Upon A Midnight Clear
(Folk) (Folk)
Reggae The Elgins - When A Man Loves A Woman Johnnie Taylor - For Your Precious Love
(Pop-Rock, RnB, Reggae) (Pop-Rock, RnB, Reggae)
Blues Bill Quinn - He’ll Have To Go Jim Reeves - He’ll Have To Go
(Country, Blues) (Country)

music theory. Another example is HarmTrace [35], that has encoded tonal harmony into a context
free grammar, and implemented in Haskell, to be used for the automatic harmonic analysis of chord
progressions. There also exist description logics knowledge bases, and ontologies written in the web
ontology language OWL [93], such as the music theory ontology [[160] that defines useful musical
terminology, and the functional harmony ontology [99] which we have developed, and allows for
automatic harmonic analysis of chord progressions, according to the theory of modal harmony.

There is however a long way to go, both for extending these knowledge bases, especially to be
inclusive to music from other cultures, and to not be focused on western music, and for including
additional useful musical information, such as rhythm, structure and melody. Furthermore, research
concerning the utliziation of such knowledge in machine learning pipelines, seems promising for
the future of music and AL

5.6 Conclusion

While new methodologies for solving music related tasks are rapidly evolving, following the gen-
eral trend of artificial intelligence, there still exist important aspects of it that are underexplored.
The main problems we uncovered during our research were: The lack of a consistent evaluation
framework for music composition systems, the lack of a reliable ground truth in baseline datasets,
and the unsuitability of out-of-the-box explainability methods for symbolic representations of mu-
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sic. For all three problems, we believe that formal knowledge representation, and knowledge graphs
can serve as tools for mitigating them. Concerning the evaluation framework, we can use encoded
music-theory to analyze Al generated music, and consequently come up with metrics, similar to
the heuristics of section .d, that may be used for evaluation. Regarding the unreliability of ground
truth for music datasets, such as ill-defined genres whose characteristics change over the decades,
or mood and emotion tags that can be subjective and unclear, formal knowledge representation can
aid by encoding the definition of the labels in the knowledge. For example what makes a song “Pop”
or “Rock”.
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Chapter 6

Explainability for COVID-19 audio classification

6.1 Introduction

The COVID-19 pandemic brought forth many challenges to the scientific community, from testing,
diagnosing and contact tracing, to prevention, treatment and identification of risk factors. Over
the past decade there have been significant technological advancements, especially in the area of
Artificial Intelligence and Deep Learning, which motivates researchers to find novel solutions to
the aformentioned challenges by making use of these technologies. Specifically, when it comes to
testing, quickly diagnosing new infections is crucial. However, the current methods, like RT-PCR
tests and CT scans, have limitations. They can vary in accuracy, take a long time, and require trained
staff, specialized labs, and expensive equipment, while antigen tests, as an alternative, are not very
sensitive [3]. One promising approach is using mobile health (m-health) to make testing faster,
more affordable, and accessible for multiple rounds. This could help control the spread and prevent
resurgence [80]. In this context, the idea is to harness Al and mobile technology to create an easy-
to-use and widely available COVID-19 detection method. This involves analyzing audio recordings
of coughs, voices, and breath to identify new COVID-19-related markers [3, 63].

In recent studies, most efforts to predict COVID-19 risk from audio recordings use deep learning
models. These models need a lot of data to work well. So, creating well-organized COVID-19 audio
datasets is really important to make predictions accurate and dependable [63]. Many studies have
tried to gather audio recordings from people using the internet. The first project doing this was the
COVID-19 Sounds project [209]. They collected 53,449 audio samples, each with 3 to 5 deep breaths,
3 coughs, and 3 voice repeats of a set sentence. Another project called Coswara also collected sounds
like breaths, coughs, voice, and counting numbers from people [181]. There’s also Coughvid, which
is a big database with cough sounds [[148]. The latest version of Coughvid has 27,550 cough record-
ings. These databases have different numbers of audio samples, from 2,030 to 53,449. However, it
is important to know that the number of COVID-19 cases in these datasets is relatively low, espe-
cially in Coughvid and COVID-19 Sounds. These databases also have information about the people’s
demographics, symptoms, and other health conditions to help find COVID-19 [63].

Developing accurate machine learning models to detect COVID-19 is challenging due to various
factors. These include differences in available datasets, a low number of COVID-19 cases compared
to controls, variations caused by COVID-19 variants, and the influence of factors like vaccination
status. Additionally, there are biases in the data that need investigation, and complex modeling
strategies can lead to over-fitting [80]. Researchers have tested the performance of audio-based
COVID-19 testing by intentionally introducing biases into the dataset, such as gender bias, to see
how it affects the model’s effectiveness [8(]. Another challenge is organizing and interpreting the
data effectively to ensure transparency and trust. This involves creating user-friendly interfaces that
explain COVID-19 risk estimates in understandable ways, making the Al more human-centered. To
develop responsible Al models, data needs to be well-annotated with metadata and expert labels.
This additional information can be used to train explainable Al models, which are easier for humans
to understand than raw audio data. It can also be used to analyze black-box classifiers, which are
commonly used for COVID-19 detection from audio recordings [20, 25, 29].

In this chapter, we first present an outline of our system that jointly won the IEEE COVID-19
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Sensor Informatics challenge. Notably, one of the criteria for judging the entries to the hackathon
was explainability, which in this work relied on post hoc methods from literature, such as LIME [[165].
Next, we describe how we developed a crowd-sourced dataset within the context of the smarty4covid
project [219]. This data was then utilized for inherently interpretable COVID-19 classification from
tabular data, where included are features such as demographics, symptoms, pre-existing conditions,
in addition to audio features that were extracted with signal processing. Furthermore, we utilize
this crowd-sourced dataset to create an explanation dataset from scratch, and show resulting ex-
planations of the classifier that was developed for the hackathon using the proposed explainability
framework. Finally, we compare the three approaches, and discuss their differences (Deep Learning
and feature-based post hoc explanations, interpretable machine learning on tabular data, and the
proposed knowledge-based post hoc explanations).

6.2 COVID-19 Audio Classification

Classification of audio signals is in general a difficult problem, with important applications in various
areas such as speech and music. Audio data is typically represented as a time-series of one (mono) or
two (stereo) channels, at a resolution of 44,100 samples per second (CD quality). The high resolution
of CD quality audio data is almost prohibitive for general time-series models, and even though
some specialized neural network architectures have been proposed [[146, 116, 145] to handle raw
audio data, most audio classification pipelines operate in the time-frequency domain [[197, 66]. This
implies stages of feature extraction and signal processing, which makes the development of audio
classification pipelines more challenging than for instance image classification.

Given audio representations in the time-frequency domain, the problem can be approached by
adapting methods from computer vision, such as 2D Convolutional Neural Networks (CNN) [90],
or general time-series prediction models such as Recurrent Neural Networks, 1D CNNs [[10, 221]] or
transformers [66]. However there does not exist a “go-to” architecture for audio classification, and
in the literature different approaches work best for different audio classification tasks, depending
also on the domain.

By using deep learning to solve an audio classification task, we inadvertently sacrifice inter-
pretability and tranceparency of the classifier, since the size and complexity of deep neural archi-
tectures makes them essentially black boxes. In critical domains such as medicine or law, inter-
pretability is essential for deep learning to be ethically utilized. Some of XAI methodologies have
been adapted to the audio domain [[140, 12], however these are usually visual explanations which
are on the one hand hard to understand, and on the other hand might be misleading [[158]. Other
approaches offer listenable explanations [87, 135], however these are specialized for the domain of
music.

In this section we describe a pipeline for audio classification for COVID-19 diagnosis [20, 4],
which operates in the time-frequency domain, uses a 2D CNN architecture and is, to an extent,
interpretable by design. This pipeline jointly won the IEEE Covid-19 sensor informatics challenge.

6.2.1 System Description

Our system [| consists of three identical simple CNNs: one accepts cough data, one speech and one
breathing. The inputs to the CNNs are short segments of mel scaled spectrograms generated with
librosa’s f| melspectrogram feature with the default parameters. Each timestep of the spectrogram
corresponds to about 0.01 seconds of audio, while each segment correpsonds to about 1.5 seconds.
There are three reasons for which we chose to use short segments combined with simple CNNs.

e Receptive Field : Our intuition is that low-level features are more important for the given
task, thus we designed a pipeline where the networks have a small temporal receptive field.

! https://github.com/kinezodin/ntuautn
? https://librosa.org/
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e Data Scarcity : The development dataset provided [[181] has data from only 965 subjects,
which would make a more complex model more prone to overfitting.

o Interpretability : By feeding short segments to the black-box CNN only low-level features
are obfuscated and it is easy for us to determine which segments contribute more to a positive

diagnosis. Furthermore, having identified important segments, we can use XAl methodologies
to further explain a prediction on a specific segment.

An overview of our system is shown in Figure b.1.

breathing segment
CNN 1

Segmentation
of spectrograms

audio data mel - scaled 1-step sliding
spectrograms window
: T N
Breathing important breathing segments Breathlhg
Explanations Explanations
2 \ 1 )
Speech important speech segments Speec.h
Explanations Explanations
-2 1 J
( ) Cough
Cough important cough segments | g.
Explanations Explanations
2 1 J
Segment-wise

mean

Figure 6.1: Overview of the system

Neural Network Architecture

Each CNN has only 3 layers of [32, 64, 64] kernels of size 16 x 16 and ReLU activations, with a max
pooling layer of stride 2 between each convolutional layer. The output of the final convolutional
layer is flattened and fed through a sigmoid activated neuron for the final prediction. The input to
the CNN is a short segment of 128 timesteps of a spectrogram, which corresponds to 1.5 seconds,
with a frequency resolution of 128.
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Training

Each CNN was trained independently from the others on relevant data. The training procedure for
a single CNN is shown in Figure .4, Specifically, we use a data generator to create batches on the
fly during training. These batches are balanced by oversampling the rare class (positive subjects).
Of each audio file, a single random segment is added to the batch at each step. Each segment is then
augmented by randomly shifting and by adding noise before being fed to the corresponding CNN.
We use binary cross-entropy as the loss function and Adam [[105] as the optimization algorithm.

‘ Labels and metadata ‘ I::"> [Create a balanced batch J
| |
audio files mel-scaled spectrograms
I::>[ Load Spectrograms ]

VL —

Randomly Segment
Feature Extraction ! I ! !
ADAM

Data Augmentatlon
- Random shifts

Binary cross- entropy
<,‘::|

- Noise

Data Generator

Figure 6.2: Training pipeline for a single CNN

Inference

During inference, given three audio files corresponding to coughing, breathing and speech, we first
compute a mel-scaled spectrogram for each and then split them into overlapping segments with
maximum overlap. For instance a spectrogram of N timesteps would be split into /N — 128 segments
of length 128. Each segment is then fed to the appropriate CNN, and the output is interpreted as the
probability of each segment to have originated from a positive subject. These probabilities are then
used to determine whether or not to classify the subject as positive by taking their mean across all
segments, and across all three CNNs and audio files.

6.2.2 Results

While training, we use the validation set differently than during inference, since each CNN is trained
independantly. Specifically we split validation spectrograms into non-overlapping segments, feed
them to the CNN, and make a final prediction by taking the mean of the predictions on individual
segments. We chose to use non-overlapping segments during validation, as opposed to during in-
ference, to save time. We then use early stopping based on validation ROC-AUC score to keep the
best performing weights on the validation set. An example of results while validating is shown in
the first three columns of Table b.1.

As mentioned in the previous subsection, during inference we feed overlapping segments of
spectrograms to the neural networks, and take the mean prediction across all segments, across all
three neural networks and types of inputs (cough, breathing, speech). The resulting ROC-AUC score
for networks trained on each fold is shown in the final column of Table p.1l. Based on these results,
we used the networks trained on Fold 4 for our submission to the datathon.
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Table 6.1: Area under the receiver operating characteristic curve for the best epoch on the valida-
tion set while training - for each neural network, and for the final ensemble of models
during inference. While validating the segments are non-overlapping, while inferring the
segments have maximum overlap.

Validation Inference
Data  Breathing Cough Speech All
fold 0 0.77 0.76 0.77 0.79
fold 1 0.80 0.75 0.85 0.84
fold 2 0.76 0.73 0.77 0.82
fold 3 0.81 0.75 0.81 0.83
fold 4 0.80 0.83 0.85 0.88

6.2.3 Interpretability

Interpretability is achieved in two stages. In the first stage we present spectrograms corresponding
to a subject, overlayed with the prediction probability for each segment, as shown in Figure f.3.
A medical expert might then choose to listen to specific segments which led to a high prediction
probability (for instance a single cough). In the second stage, one can select a specific segment of a
spectrogram and through some post hoc explainability technique get more information about why
the specific segment was classified as positive. In Figure .4 we show an explanation generated by
LIME [[165] on the segment corresponding to the highest probability cough of a subject.

VEZCLNIH speech

VEZCLNIH cough

VEZCLNIH breathing

Figure 6.3: Predicted probabilities on each segment overlayed on the mel spectrogram (for a positive
subject from the validation set)

Explanations generated in the first stage (Figure p.3) are intuitively useful, since they show which
parts of the audio file contribute towards a prediction. Explanations generated in the second stage
are more difficult to evaluate without the opinion of a medical expert. For instance the explanation
for the cough shown in Figure b.4 would indicate that low-frequency sound exactly before the cough
is important for the prediction, in addition to mid and high frequencies during the cough and mid
frequencies after the cough.

6.3 Developing an Explanation Dataset

For applying our proposed explainability and evaluation framework on this task, the requirement
is the existence of an explanation dataset. To this end, we developed our own explanation dataset,
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a) Segment corresponding to highest probability prediction b} Explanation generated for LIME for the specific segment

Figure 6.4: (left) Segment corresponding to the highest probability prediction from the cough au-
dio file of subject VEZCLNIH. (right) Explanation generated by LIME for the specific
segment. Green areas contribute towards a positive prediction and red area towards a
negative prediction.

by utilizing crowd-sourcing and expert annotations.

6.3.1 Data Collection and Curation

The data was collected in the context of the smarty4covid project [219]. Specifically, we created a
user-friendly web application (www. smarty4covid. org) for Greek and Cypriot citizens aged 18
and older. The questionnaire in smarty4covid had different sections and instructions for users. It
asked users to record their voice, breath, and cough sounds and provide information about them-
selves, like their age, COVID-19 vaccination status, medical history, vital signs (measured using
devices), COVID-19 symptoms, smoking habits, hospitalization, emotions, and working conditions.
There were four types of audio recordings: reading a sentence, taking deep breaths, regular breath-
ing close to the microphone, and voluntary coughs. To protect user data and follow ethical guide-
lines, they had user terms and a privacy policy that explained how data would be used, user rights,
and data protection measures. Users had to agree to this before taking the questionnaire. The
smarty4covid project started in January 2022, during the omicron wave in Greece when COVID-19
cases were high. More than 10,000 people provided information about themselves, but only about
half (4,679) gave permission for audio recordings. Among users, 17.3% tested positive for COVID-
19. A comprehensive description of all data that was collected, and is available in the public zenodo
repository is outlined in table [6.2.

Field name Description Type | Values

participantid Participant’s identifica- | String | UUID
tion number.

submissionid Questionnaire’s Identifi- | String | UUID
cation number.

“positive”: Positive,
covid_status Tested for COVID-19. String | “negative”: Negative,
“no”: Not tested

per_test Tested with PCR. Bool
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rapid_test Tested with a Rapid Anti- | Bool
gen test.
self_test Tested with a Rapid Anti- | Bool
gen Self test.
test_last_3_days Tested in the last 3 days. | Bool
last_negative_test_date Date of the last negative | String | “yyyy-mm-dd”
test.
first_positive_test_date Date of the first positive | String | “yyyy-mm-dd”
test.
“no”: No,
“partially”: One of two
shots, “fully”: Fully,
vaccination_status COVID-19  vaccination | String | "booster1”: Fully and
status. Booster dose,
“booster2”: Fully and two
Booster doses
latest_vaccination_date Date of the last vaccina- | String | “yyyy-mm-dd”
tion dose.
”0”: "No”,
”1”: ”I am currently
hospitalized”,
hospitalization Whether the user was | String | ”2”: "Yes, discharged a
hospitalised for COVID- week ago”,
19. ”3”: ”Yes, discharged more
than a month ago”
exposure_to_someone_with_covid | Whether the user was | String | "No” / "Maybe” / "Yes”
exposed to a confirmed
COVID-19 case.
. ”0”: No,
travelled_abroad Whether the user has | String | ,, : Yes
travelled abroad the last '
14 days.
submission_timestamp Timestamp when the | String

submission was received

Table 6.2: Main questionnaire json file description (Part 1/3: COVID-19 related information)

Field name

Description

‘ Type ‘ Values ‘
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sore_throat Sore Throat Bool

dry_cough Dry Cough Bool
wet_cough Productive Cough Bool

sputum Sputum Bool
runny_nose Nasal congestion Bool
breath_discomfort Dyspnea Bool

has_fever é Fever Bool

tremble % Chills Bool

fatigue § Fatigue Bool

headache ? | Headache Bool

dizziness Dizziness/ confusion Bool
myalgias_arthralgias Myalgias, arthralgias Bool
taste_smell loss Loss of taste/smell Bool
diarrhea_upset_stomach Stomach upset/ Diarrhea | Bool

sneezing Sneezing Bool

dry_throat Dry Throat Bool

oxymeter Oximetry test Bool
oxygenSaturation Oxygen Saturation Int [60, 99]
bpm go Beats per minute (BPM) Int [30, 250]
blood_pressure_meter Tv; Blood pressure test Bool
systolic_pressure = | Systolic Pressure Int [30, 260]
diastolic_pressure Diastolic Pressure Int [30, 260]
breath_holding Seconds of breath holding | Int [0, c0)
leave_bed Leave Bed Bool
leave_home 2 | Leave Home Bool
prepare_meal ﬁ: Prepare Meal Bool
concentrate gé) Concentrate Bool

self care a Self Care Bool
other_difficulty Every day activites Bool

Table 6.3: Main questionnaire json file description (Part 2/3: Symptoms and vital signs)
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Field name Description Description Type | Values

“nev’: Never smoked,
smoking Smoking status String | “ex”: Ex-smoker,
yes”: Smoker
years_of_quitting_smoking Years of quitting smoking Int [0, 00)
years_of_smoking Years of smoking Int [0, o0)
”1u”: less than 1,
”10u”: 1-10,
”20u”: 11-20,
”200”: more than 20
: No,
: Yes

no_cigarettes Number of cigarettes per day | String

Smoking habits

vaping Vaping String

: Low,
: Moderate,
: High,

4”: Very High

anxiety Level of anxiety about the String

”093

» 1”

”0”: None,

”1’3

”2”
pandemic 37

“home”: Working from
home,

“hospital”: Working
in hospital,

”store”: Working in
an essential goods
working Working Status String | store (pharmacy,
supermarket),
”social”: Working in a
service with increased
contact with

the general public,
"no”: Not working

Table 6.4: Main questionnaire json file description (Part 3/3: Smoking habits, anxiety level, and
working status)

The collected data were also further cleaned and curated by utilizing the data labeling platform
Label Studio. Specifically, four campaigns were launched for cleaning the data, and four for ad-
ditional labeling by medical experts. For the data cleaning process, there were three campaigns
pertaining to audio quality and validity of the three different audio types. Labelers were asked if an
audio file was valid (e.g. if it were submitted as a cough, is it really a cough?), and were also asked
to rate the clarity of the audio file. The goal of the fourth data cleaning campaign was to exclude
from the public repository any breathing, or cough audio files, that also contained potentially per-
sonal identifiable information (e.g. the subjects voice). For expert annotations, four campaigns were
launched, one for each type of audio file, where annotators described the audio using medical termi-
nology, such as audible symptoms, while the fourth showed them all audio files, and self-reported
information, and the medical experts were asked to assess the possibility of COVID-19 infection.

6.3.2 Constructing the knowledge base

A web-ontology language (OWL) knowledge base was developed motivated by the need of data
consolidation from different relevant databases (i.e. Coughvid, COVID-19 sounds, Coswara) and
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the application of complex queries for the detection of users with specific characteristics. All avail-
able information resulting from the crowd-sourcing, data cleaning and data labeling procedures
were also released in the form of the smarty4covid OWL knowledge base. The smarty4covid OWL
knowledge base is hosted on the same Zenodo Repository as the data records [218]. In general,
using a vocabulary 7V = (CN, RN, IN) where CN, RN, IN are mutually disjoint sets of concept names,
role names and individual names respectively, a knowledge base (X' = (A, 7)) can be built through
creating the Assertional Database (ABox - .4) and the Terminology Database (TBox - 7). The ABox
includes assertions of the form C(a), r(a,b) where C' € CN, r € RN, and a,b € IN. The TBox is a
set of terminological axioms of the form C' C D, where C'; D € CN,r C s and r, s € RN. Based on
these axioms, the hierarchies of concepts and roles can be defined in the TBox.

In the smarty4covid OWL knowledge base, the set of individual names (IN) contains a unique
name indicative to each participant, questionnaire, audio file, healthcare professional that partici-
pated in the labeling procedure and the corresponding characterizations of the audio records. (IN)
also includes unique names for each declared symptom, COVID-19 test and preexisting condition
that is linked to the corresponding questionnaire (e.g symptom, COVID-19 test) and participant
(i.e. underlying condition), respectively. These individuals are linked through appropriately de-
fined roles. The role names RN and their defined hierarchy is depicted in Figure .5H. Each role is
associated with a domain and a range indicative to the types of the individuals that can be linked
through this role. In particular, the role hasCharacterization links audio files to characterizations
as labelled by the healthcare professionals, and characterizedBy links characterizations to instances
of the healthcare professionals. The role hasAudio and its children link questionnaires to audio
files. The roles hasCovidTest and hasSymptom link questionnaires to instances of COVID-19 tests,
self-reported symptoms, and vaccination status, respectively. The role hasPreexistingCondition links
participants to preexisting conditions, while hasUserInstance links participants to their submitted
questionnaires.

The set of concept names CN involves concepts that describe instances of audio, COVID-19
tests, preexisting conditions, symptoms, users and questionnaires. For audio related concepts, their
hierarchy is shown is Figure b.5f. Specifically, there is a concept for each type of audio recording (i.e.
regular breathing, deep breathing, voice, cough), and concepts regarding the audio quality. Audio
instances can additionally be linked, via the hasCharacterization role to audible abnormalities, for
which the hierarchy of concepts is shown in Figure p.54. Similarly, all preexisting conditions that
appear in the questionnaire are organized as concepts in a hierarchy as shown in Figure p.5d, and all
symptoms are part of the symptom hierarchy, shown in Figure [p.5d. Furthermore, the User concept
subsumes concepts related to the different age and gender of the participants, as shown in Figure
b.5d, while the Userlnstance concept that corresponds to a specific questionnaire submitted by a user,
also subsumes a hierarchy based on the different possible answers in the questionnaire, shown in
Figure p.5H. Finally, the concepts related to COVID-19 tests, shown in Figure p.5d, are used to define
the type of test and its outcome.

The described hierarchies of concepts and roles are provided in OWL format in the file [smarty-
ontology.owl]. Using this terminology, all information presented in the dataset [218] is asserted in
the form of triples, provided in the file [smarty-triples.nt]. An example of a smarty4covid user is
depicted in Figure b.6. This user who is a female (20-30 years old) and has asthma, has submitted
a questionnaire declaring a positive PCR test and a headache while being a smoker. Her audio
recording of cough has been labeled by medical professionals as featuring audible choking.

6.4 Interpretable COVID-19 Classifiers from Tabular data

A school of thought when it comes to explainable Al is that we should not rely on post hoc methods,
but instead strive to develop inherently interpretable models [[172]. In this section, we utilize the
crowd-sourced dataset to develop inherently interpretable COVID-19 classifiers, using tabular data.
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Characterization
AudibleAbnormality
AudibleChoking
AudibleDyspnoea
AudibleNasalCongestion
AudibleObstructiveLungDisease
AudibleProlongedExpiration
AudibleRespiratoryCrackles
AudibleRespiratoryTractinfection
AudibleLowerRespiratoryTractinfection
" . VT "

AudibleStridor
AudibleExpiratoryStridor
AudiblelnspiratoryStridor

AudibleWheezing

InsufficientBreathDepth

CoughCharacterization

BarkingCoughCharacterization

CroupyCoughCharacterization

DryCoughCharacterization

HackingCoughCharacterization

MildCoughCharacterization

ProductiveCoughCharacterization

PseudocoughCharacterization

SevereCoughCharacterization

SpeechCharacterization

C

HoarseSpeechCharacterization

WhisperSpeechCharacterization

(a) Concepts related to expert (b) Questionnaire

characterizations.

v @ User
L Female

Male
UserEighties
UserFifties
UserFourties
UserSeventies
UserSixties
UserThirties
UserTwenties

v Userlnstance
AnxiousUserinstance
ABitAnxiousUserinstance
VeryAnxiousUserinstance
ExposedUserinstance
HospitalizedUserinstance
MaybeExposedUserinstance
NeverSmokedinstance
NotAnxiousUserinstance
NotExposedUserinstance
NotTravelledAbroadUserinstance
PastSmokerinstance
PreviouslyHospitalizedUserinstance
HospitalizedAWeekAgoUserinstance
HospitalizedMonthsAgoUserinstance
Smokerinstance
TravelledAbroadUserinstance
UnemployedUserinstance
Unvaccinated
Vaccinated
BoosterVaccinated
FullyVaccinated
PartiallyVaccinated
Vaperinsiance
‘WorkAtHospitalUserinstance
WorkAtServiceUserinstance
WorkAtStoreUserinstance
WorkFromHomeUserinstance

concepts.

Audio
CoughAudio
DeepBreathingAudio
GoodQualityAudio
OKQualityAudio
PoorQualityAudio
RegularBreathingAudio
SpeechAudio
ValidAudio

Symptom

DiarrheaUpsetstomach

Difficulty ¥ PreexistingCondition
ConcentrateDifficulty Cancer
LeaveBeanff_lm_xlly Diabetes
LeaveHomeDifficulty HeartCondition
PrepareMealDifficulty )
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Figure 6.5: Hierarchies of concepts and roles from the smarty4covid knowledge base.

6.4.1 Feature Selection and Engineering

For training and evaluating the classifiers, we use a combination of self-reported features from the
submitted questionnaires, and audio features extracted from the submitted audio files using signal
processing.

Self-reported features

From all information gathered for the smarty4covid dataset, we first excluded those features that
would not be useful for classification, or that had mostly missing values, such as “ParticipantID”,
“oxygen saturation”, and the received date of the questionnaire. Boolean information was repre-
sented as binary features, while categorical information (e.g. age, sex, vaccination statues) was
one-hot encoded. Finally, numerical features such as BMI, and how long one can hold their breath
were initially normalized by dividing all values with the maximum for each feature, leading to val-
ues in the range [0, 1]. After this procedure, we end up with a table of 4303 rows and 70 columns,
69 of which are the aforementioned features, and the 70’th is used as a label (COVID-19 positive or
negative).

Signal-processing features

Besides the self-reported features pertaining to pre-existing conditions, demographics, and symp-
toms, we also extracted features using signal processing. Specifically, we use the same features and
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code from Coughvid. It is worth noting that since these features are meant to be used in conjunction
with inherently interpretable machine learning classifiers, they themselves need to be understand-
able to end-users. Here we provide a short description of the audio features that were extracted
using signal processing.

Envelope Energy Peak Detection Returns the number of peaks detected, after applying a band
pass filter. We do this from 50Hz to 1kHz with a step of 50Hz

Zero Crossing Rate How many times does the signal cross zero (normalized by number of sam-

ples)

Root mean square power Average power of the signal

Dominant Frequency Out of 128 frequencies, returns the one with the most power.
Spectral Centroid Weighted mean of frequencies wrt FFT value at each frequency.

Spectral Spread Weighted standard deviation of frequencies wrt FFT value.
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Spectral Rolloff The frequency below which a certain percentage (typically a threshold, such as
85% or 95%) of the total spectral energy of the signal is contained.

Spectral Skewness Distribution of the spectrum around its mean.

Spectral Kurtosis Flatness of the spectrum around its mean.

Spectral Bandwidth Weighted spectral standard deviation.

Spectral Flatness The ratio of the geometric mean to the arithmetic mean of the spectrum.
Spectral Standard Deviation Standard deviation of power spectral density.

Spectral Slope Slope of line of best fit on the spectrum

Mel Frequency Cepstral Coefficients (MFCCs) A small set of features that describe the overall
shape of the spectral envelope

Crest Factor Peak value divided by RMS value
Length Length of signal in seconds

Preprocessing

Many of these features return scalars, while others are vectors. When combining them with the
self-reported features, we end up with a feature set consisting of 344 values for each sample. This
dataset was then split into a development set (75%) and a test set (25%), and the development set
was further split into training (75%) and validation (25%) when a validation set was necessary, e.g.
for hyperparameter tuning. All data was scaled using a standard scaler by subtracting the mean
value (computed on the training set), and dividing with the standard deviation.

6.4.2 Interpretable Machine Learning Classifiers

Our goal when experimenting with interpretable classifiers was not to optimize evaluation metrics,
rather, given adequate performance we attempt to interpret the models, to then qualitatively com-
pare this approach with the aforementioned feature-based post hoc explanations from section f.2.3,
and the explanations generated within the proposed framework in section p.5.

Naive Bayes

Bernoulli Naive Bayes is a simple yet effective probabilistic classification algorithm used primarily
for binary classification tasks. It is particularly well-suited for classification applications, where
the features are binary, indicating the presence or absence of specific features in data samples. The
algorithm assumes that the features are conditionally independent given the class label, making
it “naive” Bernoulli Naive Bayes leverages Bayes’ theorem to calculate the probabilities of a data
point belonging to one of two classes based on the binary features. It estimates the likelihood of
each feature being present in each class and combines this information with prior class probabilities
to make predictions. As this method is meant for binary features, prior to training features were
normalized to {0,1}. Notably, the predictions of this classifier can be interpreted by looking at
the involved probabilities probabilities P(C|z), P(x|C), for class C' and feature x which is useful
for gaining insight both for the classifier and for the data it was trained on. Even the probability
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P(C) could be considered useful towards interpretability, as it provides information making the
behaviour of the classifier more transparent and understandable. Note, we also experimented with
the Gaussian Naive Bayes which did not perform as well, so the results are ommited.

The Naive Bayes classifier achieved a 0.71 macro F1 score, with a 0.81 f1 score for negatives
and only 0.55 for positives. To interpret this classifier we take a look at the probabilites that were
computed. For the negative class, the highest conditional probabilites P(negative|x) were:

P(negative| AgeCategory_3) = 0.9475

P(negative|CardiovascularOther) = 0.9287
P(negative|Hypertension) = 0.9050
P(negative|ValveDisease) = 0.9002
P(negative|CysticFibrosis) = 0.8849

These probabilities seem to be very high, and the features do not really seem related to someone
being negative to COVID-19. As the negative class is also the most prevalent one, this could be
attributed to the rarity of the specific features. Concerning signal processing features, the highest
probabilities appear to be:

P(negative|DeepBreathSpectralKurtosis) = 0.8337

P(negative|SpeechPowerSpectralDensity_950-1150) = 0.8849

P(negative|SpeechPowerSpectralDensity_500-650) = 0.8849

Regarding spectral kurtosis, a high value indicates that the spectral components have heavier
tails, and there may be impulsive or transient events in the signal’s frequency domain. It is not really
clear why this feature leads to a high probability of negative prediction. We could hypothesize that
if a symptom such as wheezing was audible in the breathing recording, then the Kurtosis would be
low, as opposed to a normal breath, but it is not really based on any concrete evidence. Regarding
power spectral density of speech, as the fundamental frequency of speech for males is around 100
Hz and for females is around 200 Hz, these frequency bands of the top probabilities (950-110 Hz,
500-650 Hz) are not really interpretpretable without further investigation, and good knowledge of
the signal processing methods, and harmonics of human speech.

For the positive class, the five highest probabilities were:

P(positive|Dizziness) = 0.7852

P(positive|RunnyNose) = 0.6967
P(positive|DiarrheaUpsetstomach) = 0.6869
P(positive|LeaveBed) = 0.6046
P(positive|Fatigue) = 0.5539

All of these probabilities indicate the importance of the existence of symptoms for a positive
prediction. However, two (Dizziness, Diarrhea) of the five symptoms that appear are not known
to be strongly associated with COVID-19. This combined with the low f1 score for the positive
prediction indicate that this classifier is probably not reliable, despite the acceptable performance
when viewing only macro F1 as a metric. Concerning signal processing features for a positive
prediction, the probabilities were all low enough to not be worth discussing.
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Logistic Regression

Logistic regression is one of the simplest methodologies for classification. For binary classification,
the model estimates the probability of the positive class as a sigmoid function applied on a linear
combination of the features. During training, the coeflicients of the linear combination are computed
such that the negative log likelihood is minimized, in which case the predicted distribution best fits
the real one. Given a trained logistic regression classifiers, it can be interpreted by looking at the
coefficients of the linear combination. Specifically, the absolute value of a coeflicient indicates the
importance of the corresponding feature. Negative coefficients indicate importance of the feature
for a negative prediction, while positive ones indicate importance for positive prediction.

Even though this classifier seems to be more suited for the task than Bernoulli Naive Bayes,
the results are marginally worse, with a macro F1 score of 0.69, F1 score for negatives 0.88 and for
positives 0.51. Compared to the Naive Bayes classifier, the f1 score is higher for the negatives and
lower for the positives, indicating the effect of class imbalance. For interpreting the predictions of
this classifier, we can take a look at the coefficients with the largest absolute values. For positive
coeflicients, which are indicate importance for a positive prediction, they highest values were:

CoughEnvelopeEnergyPeakDetection_400_450 = 1.2476
DeepBreathEnvelopeEnergyPeakDetection_450_500 = 1.1205
SpeechEnvelopeEnergyPeakDetection_250_300 = 0.9778
SpeechEnvelopeEnergyPeakDetection_350_400 = 0.7112
SpeechSpectralFlatness = 0.6830

Interestingly, four of the five highest coefficients are Envelope Energy Peak Detection features,
that indicate the number of peaks in a specific frequency range, while all five features originate
from signal processing. Similarly to before, we have difficulties interpreting the results, due to lack
of expertise. Specifically, we do not know if the frequency ranges (e.g. 400-450 Hz for coughs) would
have any significance for a medical expert.

The top 5 coeflicients for self-reported features, which are more interpretable than the signal
processing ones, were:

Sneezing = 0.5830
OtherDifficulty = 0.5766
Exposed_maybe = 0.4407

Dizziness = 0.4325

RunnyNose = 0.3571

Similarly to the interpretation of the Naive Bayes classifier, the high value for these coefficients
makes sense and as the features are understandable, they can be easily interpreted. Specifically,
the symptoms Sneezing and RunnyNose should be correlated with COVID-19 infection. Regarding
Dizziness, which was also the most important feature for the Naive Bayes classifier, its relevance to
COVID-19 should be discussed by a medical professional, but if it should not be corelated, then it
indicates a bias of the smarty4covid dataset. Finally, it is interesting that the feature Exposed_maybe
appears, but not the Exposed feature, whose coefficient had a value of —0.05, meaning that it was
not important either for positive or for negative prediction.

Regarding negative coefficients, the top 15 features were all signal processing features, which
we have difficulty interpreting. For completeness, these were the top 5:

CoughPowerSpectralDensity_3800_3900 = —0.8884
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BreathSpectralFlatness = —0.9005
CoughEnvelopeEnergyPeakDetection_550_600 = —1.0970
SpeechEnvelopeEnergyPeakDetection_550_600 = —1.1005
DeepBreathPowerSpectralDensity_2300_2400 = —1.1009

XGBoost

XGBoost [26], short for Extreme Gradient Boosting, is a powerful and widely used machine learn-
ing algorithm renowned for its exceptional performance in various predictive modeling tasks. It
achieves this by sequentially building a multitude of decision trees, each compensating for the er-
rors of its predecessor, ultimately producing a robust and highly predictive model.

This classifier achieved the best performance, with 0.71 macro F1 score, 0.51 for positives, 0.90
for negatives. Regarding interpretability, the most straight forward way to understand the deci-
sions of the classifier would be to view the trees themselves. There are also three distinct ways of
measuring feature importance:

e Cover measures the relative frequency with which a feature is used in constructing decision
trees across all boosting rounds. It quantifies how often a particular feature is chosen as a
split point in the trees. Feature cover is useful for understanding how frequently a feature
is considered by the model during training. High feature cover suggests that the feature is
frequently used for splitting, indicating its importance in the model’s overall decision-making
process.

e Gain represents the average improvement in the model’s loss function achieved by using
a particular feature for splitting. It quantifies the contribution of each feature to reducing
prediction errors. Feature gain is particularly valuable in identifying the features that have
the most substantial impact on reducing the model’s prediction errors. Features with higher
gain scores are more influential in improving the model’s overall accuracy.

e Weight combines the count of times a feature is used (weight) with the average gain of that
feature when used as a split. It is essentially the product of feature cover and feature gain.
Feature weight provides a balanced perspective by considering both how often a feature is
used and the quality of those splits (measured by gain). Features with higher feature weights
are those that not only appear frequently but also provide substantial information gain when
used.

The cover feature importance of the XGBoost classifier is shown in figure p.7. The results in-
dicate, that features such as weather the user was exposed, or if they had symptoms, were used
frequently in the model’s decision making process during training. There is a notable lack of signal
processing features, with only Spectral Rolloff of speech audio appearing as important.

The gain feature importance of the classifier is shown in figure .8 Notably, all values of the
Exposed feature appear as important, in addition to symptom features that have appeared in multiple
previous interpretations of classifiers (HasFever, WetCough, HasSymptoms). These features all make
sense as being important for COVID-19 classification. Furthermore, various Envelope Energy Peak
Detection features appear, specifically Cough at 100-150 Hz, 400-450 Hz, and speech at 250-300 Hz.
Interestingly, two of three of these features also appeared as important in the logistic regression
classifier. However, as mentioned, in order to interpret the importance of these features, and what
they actually indicate (e.g. are they a bias of the dataset, or are they truly important for prediction
of COVID-19) would require domain expertise.

Finally, the weight feature importance, that essentially combines gain and cover, is shown in
figure b.9. Of these, the HasFever and RunnyNose seem to be consistently important across feature
importance methods and, to an extent, classifiers. Conversely, the BMI feature appears as the most
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Figure 6.7: Cover feature importance for the XGBoost classifier. The prefixes of the signal process-
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Figure 6.9: Weight feature importance for the XGBoost classifier. The prefixes of the signal process-
ing features s_, c_, bl_, b2_ indicate speech, cough, breathing and deep breathing audio
files respectively.

important, and interestingly does not appear in any other feature importance analyses. There are
also multiple signal processing features that appear as important, however as mentioned previously,
these should better be interpreted by a domain expert.

6.5 Knowledge-based explanations

Using the constructed explanation dataset, provide explanations for the CNN-based classifier from
section p.d, specifically, the winning entry of the IEEE COVID-19 sensor informatics challenge [
The input of the classifier is an audio file of a person’s coughing, and the output is the probability
that the user to has the COVID-19 virus. For this experiment, we further simplified the explanation
dataset, keeping only information could potentially be present in the audio file. Thus, we removed
concepts such as vaccination status, whether the user has been abroad or if they are anxious about
the pandemic.

Results

Since the classifier outputs a continuous value, and we do not know the threshold for classifica-
tion, we use the source-target significance criterion for counterfactuals, from section B.5.1. In this
case, the importance of a counterfactual for exemplar e is defined %, where P(x) is the
probability of classification assigned by the classifier. By maximizing importance, we are searching
for exemplars « who are similar to e (small edit distance), but lead to a large change at the output
(large |P(e) — P(x)|). A histogram of the predictions of the model on the coughs of smarty4covid
in shown in figure p.1(.

An example of a local counterfactual, one with a high importance is from the user with a Sub-
missionld *435463f8-8e1b-42b3-b467-c7581874700¢’. This user is negative to the virus but the clas-
sifier has assigned a probability of 0.43 which is on the high end, and with most thresholds would
probably be classified as positive. The highest importance counterfactual led to user with submis-

sion ’e463ea66-c413-484e-86db-9fb460b1127¢’ who was also negative to the virus, but the classifier

® https://healthcaresummit.ieee.org/data-hackathon/ieee-covid-19-sensor-informatics-challenge/
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Predictions of the cough model on smarty4covid
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Figure 6.10: Histogram of prediction probabilities of the hackathon cough model, on the coughs of
smary4covid.

assigned a probability of 0.14, and would definitely be classified as negative. The counterfactual ex-
planation itself consists of the following edits: Removal of a PneumOther concept, and replacement
of UserSixties with UserFourties. This can be interpreted as : If this user did not have a pneumono-
logical preexisting conditions, and were 20 years younger, then the classifier would classify their
cough as negative instead of positive. This explanation might indicate confusion of the classifier
regarding the pneumonological preexisting condition, as it might have a similar effect on the cough
of the subject to the virus itself, and it also indicates a potential bias regarding the age groups. An-
other example, for submission id '65bb2a6c-4f9¢-4594-99b2-1bfbd065172f” who is negative to the
virus and is assigned a high probability of 0.38 by the classifier, the most important counterfac-
tual is the exemplar with submission id 'b7a2d599-9a30-43e0-91ef-65ba8e7faa0d’ who is actually
positive to the virus, but is assigned a probability of 0.20. Thus this counterfactual transforms a
false positive into a false negative. The edits that accompany it are: the removals of the Stroke and
BreathDiscomfort concepts, and the replacement of UserSixties with UserTwenties, the replacement of
PastSmokerlnstance with NeverSmokedInstance and the replacement of DiarrheaUpsetStomach symp-
tom with DryThroat symptom. Again, the appearance of the age related concepts might indicate a
bias of the classifier, while smoking related concepts might indicate a confounding factor for the
classifier (smoker’s cough). Finally, the symptom replacement contradicts what we would expect
for COVID (more likely that dry throat is a symptom than diarrhea), which could be a result of
sparcity of the explanation dataset, or it could indicate a flaw of the classifier.

To further investigate, we can take a look at the global counterfactuals transitioning from “COVID-
19 Positive” to “COVID-19 Negative” (Figure f.11)). A first observation is that an important removal
is the concept “Symptom”, which is the parent of all the symptoms of the knowledge base. How-
ever, not every symptom is capable of altering the prediction of the classifier since the concept
“Respiratory” which is a child of the concept “Symptom” and the parent of all the symptoms that
are related to the respiratory system (e.g., “Dry Cough”) is the next most added concept along with
its children such as “Sneezing”, “Runny Nose”, and “Cough”. In this experiment, we also uncovered
an unwanted bias of the classifier since the most common edit was to change the user’s sex from
“Female” to “Male”. After this peculiar observation, we conducted a search on the training dataset,
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and we found out that this bias was inherited from the training set of the classifier. In particular, on
the Coswara dataset, 42% of females are COVID-19 positive, while for males the percentage is 27%,
which made the classifier erroneously correlate sex to COVID-19 status. Similar observations were
made concerning the age groups, specifically the importance of the insertion of the “Age group 30-
39” concept and the removal of age groups 40-49 and 50-59. This inherent bias is depicted in Figure
where we show statistics from the Coswara dataset, on a subset of which the classifier had been

trained.
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Figure 6.11: Global counterfactual explanations taking into consideration the Coswara dataset [[181]
as development dataset and the smarty4covid dataset [218] as explanation dataset.

6.6 Conclusion

In this section we have compared three explainability approaches for COVID-19 prediction. Two
of them involve opaque models (CNNs), that are explained in a post hoc fashion, first using the
features of the classifier (section f.2.3), and second using the smarty4covid knowledge base within
the proposed framework (section f.5). We also followed a “feature engineering and interpretable
classifier approach”, which is argued for in [172], as being the way forward for tackling classifier
opacity.
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Figure 6.12: Covid-19 prevalence (a) between male and female population and (b) across different
age groups in the Coswara dataset [[181].

The latter approach we believe highlights exactly the need for knowledge-based semantic ex-
planations that are not necessarily at the same level of abstraction as the features. Specifically, we
identify two main issues with this approach. First, in order to explain the predictions of such an
interpretable classifier, good knowledge of the classifier itself is required. For example knowing
what the coefficients in Logistic Regression mean, or the three different feature importances of XG-
Boost, how they are effected by class imbalance, scarcity of feature etc. . It is easy to see how this
could lead to misleading explanations as an end-user would not necessarily understand what the
results mean, but they might believe that they do (Illusion of Explanatory Depth [21]), especially if
the explanation indicates causal relationships that the user was expecting. The second issue with
the interpretable classifier approach, is its reliance on the understandability of the features. In our
experiments this is showcased from the signal processing features, that obviously appear important
for the predictions. However, as we lack the domain expertise, we could not really interpret them,
and any attempts to do so could be problematic.

Conversely, the post hoc approaches might be able to mitigate some of these issues, but suffer
from others. Firstly, as the methods used were model agnostic, the interpretation of the explanations
does not require knowledge of the inner workings of classifier under investigation. They would
however benefit from knowledge of the explainability algorithm, which we argue would be simpler
to explain to a layman end user, rather than the machine learning classifiers, but this would depend
on the methods themselves. Being model agnostic also means that we do not have to sacrifice
performance for the sake of transparency. Furthermore, the understandability of the terminology
used by the explanations is still an issue for the feature-based post hoc approach, as it requires that
the semantics of the features are known to the user, however, even in this case, since the output
of the explainability algorithm is a visualization, they are more understandable, however they still
might be misleading.

Our proposed approach is designed in a way that any potential issues with the resulting explana-
tions are traced back to the explanation dataset, and do not depend on the explainability algorithm,
the features of the classifier, or the classifier itself. Upon viewing an explanation, it is immediately
understandable, thanks to the terminology that is defined in the knowledge base. An explanation
still might be misleading though, if for example the explanation dataset contains unwanted biases.
As we have shown however, it is usually easy to check where the biases stem from, especially if we
have access to the training set of the classifier, or to an additional explanation dataset.
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Chapter 7

Conclusion

In this dissertation, we introduced a theoretical framework that defines explanations based on knowl-
edge graphs, within the formalism of Description Logics. We have presented arguments for this
form of explanations, focusing on understandability, thanks to the well-defined terminology and
the ability of the framework to be adapted to specific use-cases by appropriately defining an expla-
nation dataset, as we have shown in the multi-domain experiments. We have also argued that this
framework provides a solid foundation for enhancing the interpretability of complex Al systems,
by way of grounding the explanations in a well defined knowledge base. This entails that the qual-
ity, understandability, and trustworthiness of the explanations depend solely on the explanation
dataset itself, and if for example an explanation were to be misleading, it would be due flaws in the
explanation dataset, and not the explainability algorithm. We also explored the utilization of this
grounding approach for the evaluation of machine learning systems. Besides the knowledge based
heuristics that we developed for evaluating music generation, most of the discussion and analysis
of the resulting explanations lead to essentially qualitatively evaluating the model, with respect to
very specific information, that which is present in the explanation dataset. For example, uncover-
ing a bias of a model such as the sex bias of the COVID-19 predictor, or the gray color confounding
factor of the CLEVR-Hans class 1 images, is arguably concrete evaluation.

The benefits of our proposed approach are accompanied by a unique set of limitations for an ex-
plainability method. The main limitation is the reliance of the presented framework and algorithms
on the existence of a well-defined explanation dataset. Constructing an explanation dataset from
scratch takes significant effort, as we learned during the smarty4covid project in chapter [, but espe-
cially in such use-cases, we argue that the effort can be worth it. Furthermore, we have shown that
in some cases it is possible to automatically extract meaningful semantic descriptions that would
be useful for explainability, such as the ridge detection and the scene-graph generation approaches
from chapter [, or the extraction of musical intervals from chapter . Finally, a limitation for all
explainability approaches is the lack of a consistent and reliable evaluation framework.

The lack of a straight-forward, standardized way to evaluate the proposed framework lead us to
mainly qualitatively discuss results, and compare with other explanation methods. There are also
some quantitative comparisons that seem promising for our framework, such as the human study for
CUB in chapter . We believe that our qualitative discussion of the experiments may provide unique
insights to researchers in XAl, as we have covered and compared numerous existing approaches
from different categories, including local, global, counterfactual, rule-based, feature importance, and
prototypes. We have shown how these knowledge based explanations can be useful for detecting
unwanted biases, and notably, we can guide the algorithms to consider only information that we
believe is worth considering for explanations. For example, if we wanted to check a model for gender
biases, we would include gender information in the corresponding explanation dataset. This is an
important features for many applications.

A domain that is usually mentioned as a motivating example for XAl methods is the domain of
medicine. In this case, medical professionals typically look for specific information when given a
data sample to analyze (for example given a chest X-ray they might look for specific characteris-
tics, or for a patient’s history they might look for specific preexisting conditions given a context).
Contrarily, an Al model will have learned to make predictions by ingesting all available information
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(for example, the pixels of an X-ray), and we do not have a reliable way to check whether the model
looks at the specific characteristics that the medical professional does, which, if it were the case, it
would increase the trustworthiness of the model. Our proposed approach, provided we can encode
these characteristics in a description logics knowledge base, would be able to check if the model
under investigation is checking the characteristics that would be important for the medical expert.

We have also shown how in the context of the proposed framework, external knowledge rep-
resented as graphs, and in particular explanation datasets, may be useful for evaluating machine
learning systems. The main approach that these models are evaluated with is by measuring per-
formance metrics, such as accuracy or F1 score, on baseline datasets. However, we argue that this
approach is somewhat superficial, and even though it provides a solid way to compare models, it
does not fully provide an “evaluation” of the model. For example, as we discuss in chapter B, even
though our proposed CNN for MIDI genre recognition surpassed the state-of-the-art with respect to
the standardized evaluation metrics, in practice we believe that a musician, or a different end-user,
would choose the inherently interpretable, pattern recognition based approach [55]. We showed
how external, structured knowledge can be used for evaluation of AI generated music, and dis-
cussed how explanation datasets may be used for the explainable evaluation of transformers on the
semantic similarity of visual concepts [[129]. We believe that evaluation of machine learning systems
should include an analysis of explainability, and they should be evaluated across different aspects,
and not the single-dimensional performance metrics.

7.1 Future and Ongoing Work

The proposed framework is general enough and the contents of this thesis and our research has
been quite horizontal, covering different domains, use-cases, and approaches to explainable machine
learning, that there are multiple different branches that may build upon this research.

A first branch that is currently being explored relates to the form of explanations. Within our
framework we defined rule-based and counterfactual explanations, and there are arguments sup-
porting both of these as being intuitive and meaningful to humans. Part of our ongoing research
involves extending the framework to support counterfactuals of rules and data samples, by combin-
ing the two approaches. These might be able to provide both local information about a specific pre-
diction, and global information about the general behaviour of the classifier in a single explanation.
Another form of explanations that would be interesting in the context of the proposed framework
are prototype explanations. We are exploring the merits of finding these characteristic examples
(and criticisms) that may serve as explanations, based on their semantic descriptions. Finally, we
are obligated to research the human computer interaction aspect, and draw inspiration from social
and cognitive sciences, while experimenting with different forms of explanations.

An important issue with XAI is the issue of trust. On the one hand we need models that we
can trust, and explainability serves to increase that trust. However, having misplaced trust can be
even more problematic than having none at all. Unfortunately, XAI methods often increase a user’s
trust by showing inherently incomplete information that the user chooses to interpret in the sim-
plest way, and thus misleadingly increasing trust. For this reason, we believe that XAI methods
should attempt to scrutinize models, and prove that they are not trustworthy, instead of trying to
find information that supports their trustworthiness. If then a XAI method fails to prove a model’s
untrustworthiness, then, provided the method’s reliability, the model could be considered trustwor-
thy. In our ongoing research, we are developing and formalizing these ideas, and are exploring ways
define, and subsequently solve this problem.

An vital aspect for achieving the above goals is the computational one. We defined our frame-
work as rigorously as possible, utilizing the formalism of description logics, having in mind the
potential for increased expressivity and more complex knowledge bases in the future. However,
even with the simplest explanation datasets, the problem of computing explanations, either rule-
based via reverse query answering, or counterfactuals via edit distance computation, is extremely
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expensive. Thus, part of our future efforts involves looking into heuristic, and approximate algo-
rithms for the purpose of utilizing larger explanation datasets and more expressive knowledge to
compute explanations. For instance, a straight-forward extension would be the utilization of numer-
ical datatype properties, such as representing age as a number, instead of concepts that represent
age groups. An important dilemma when developing explainability algorithms is to what extent
can we utilize deep learning methodologies in the explanation computation pipeline. For example,
the graph similarity computation could be approximated by use of graph neural networks. It is not
clear how much the use of opaque systems can impact the reliability and trustworthiness of a XAI
pipeline, and since it has the potential to alleviate the huge computational cost, it is worth looking
into.

A crucial roadblock for XAl is the lack of a widely accepted evaluation procedure. For further
developing our ideas, and measuring information such as reliability and trustworthiness it is imper-
ative that we develop a robust evaluation framework. This is a very active research area, and new
ideas appear constantly, either criticising existing evaluation approaches, or proposing new ones. In
our view, every use-case is different and would have different priorities regarding the characteristics
of explanations that are considered important. For example, for some use-case accuracy might be
more important (for example flip-rate for counterfactuals) than understandability (for example mini-
mality for counterfactuals), thus, ideally, an explainability evaluation framework should measure all
aspects, and it should be able to be adapted to a specific use-case, by prioritizing information, based
on the requirements of the intended user. As first step in this direction we are exploring ways that
these requirements can be formalized, and subsequently utilized both for evaluating a XAl pipeline,
and for generating more targeted explanations.

A parallel goal, that is necessary both for impooving and building on the framework, and for
evaluating it, is the development of more explanation datasets. Throughout the dissertation we con-
structed explanation datasets via three main routes: a) Using existing knowledge (visual genome,
wordnet), b) Using automatic knowledge extraction techniques (scene graph generation, ridge de-
tection), and c¢) Constructing a dataset from scratch using crowd-sourcing (smarty4covid). We have
also identified a fourth route, which we did not follow, which would involve the manual construc-
tion and curation of such a dataset by domain experts. Part of our ongoing work involves utilizing
our expertise in the domain of symbolic music for developing an explanation dataset via the fourth
route. We are also exploring the use of existing resources for developing explanation datasets for
other decision critical domains such as law and finance, besides medicine.

A stepping stone for wide applicability of the proposed framework, and a notable omission from
this dissertation is the domain of natural language processing (NLP). The reason for the omission is
the difficulty of actually defining meaningful semantic descriptions of text, which itself has semantic
content. With the popularization of chat bots such as ChatGPT [}, and their increasingly widespread
use in most industries, it becomes critical that we are able to explain and scrutinize such models.
Thus, significant part of our ongoing work involves developing explanation datasets, and applying
our ideas for NLP models. This entails extending the framework to work for generative models
besides classification, in addition to coming up with meaningful semantic descriptions of text that
can be used for defining explanation datasets in this domain.

! https://chat.openai.com
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