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Anoryopeteton 1 avtiypagn, amobixeuon xau Swvour T mopoloas epyociog, €€ oXNoxApou N
TuAaTog auTAS, yio eumopixd oxond. Emteéneton n avatdnwomn, anobixcucn xou Sioavour yio
OXOT U1 XEEDOOKOTUXOS, EXTAUDEVTIXAS 1 EPELYNTIXNC PUOTNGE, LTS TNV TEoUTEDETT Vor avapépeTon
1 TYH TEOENEUSTC Xan Vo dlatneeitan To mapdy urvuua. Epwthuata mou agopolv 0 xerion tne
epyootag yia xepdooxomxd oxond neénel vo aneubivovtal Tpog Tov GuYYpapEd.

Or andeic xon To GUUTERHOUATA TTOU TEPLEYOVTAL OE OUTO TO EYYPAPO EXPEACOUY TOV GUYYEUPE
xon Oev mpémel vo epunveuBel 6Tl avtinpocwnelouy Ti¢ enlonues Béoec tou EBvixod Metodfiou
TTohuteyveio.



Iepixndn

Yty mopoloa Simhwpatixy spyacia eetdlouue SloupopeTinols Tedmoug dlavours ayadwy ot or-
ponpaoiec xwele TANpwués, e oxond Ty dnulovpyio eucTtafoY o TYUOTOTWY TOU ETTUYYAVOLY
TAUTOXEOVA LYNAG XOWVWVIXG GPENOG. LYETIXE UE TOV OPIOUO TNE ELCTABELNG, ATADS VoL oVoupE-
POUUE OBPOUERWE WS AVAPECOUATTE OE BIAVOUES aryaBdV GTOUC CUUUETEXOVTES G TNV dnuoTpacia
TOU XATONYOUV GE TUPOUOLN ATOTENECUATO O TEQLTTWOELS HOVAdLlwY amoxNcewy ool Blovd-
ouat a€tondynong twv ayabdv amd toug maixteg. Xto mhaioto g avalhTnonc pog, doxuudlouvue
Bewpnuind oANE xou melpopaTind Sldpopes MON YVOOTEC TEOoEYYIOES, OTWE TOUC XUVOVES OVO-
Noyuic xa avtioTpogo avaNoYIXg Blatvourc, TNV TEXVIXY EVIPOTUXNC Xavovixorolnone ent tne
CUVHETNONE XOWWVIXOD OQENOUS X0k TNV TEXVIXT] TNG OVTIXATAC TUONG TNG AVTIXEWWEVIXTS GUVEE-
TNONS UE TNV ouvdptnot xowvwvixol ogélouc Nash. ITapdAAnia, mEAL xwvoluevol emdve TNy
(Buat ypauun €peuvog, TEOTEVOUUE Wia VEA XAAOT adyoplBuwy Slavounc evog avTixeyévou, 1 omoia
amOdEVUOUNE OTL TETUYAIVEL UEYIOTOTONCT XOWWVIXO) OPENOUC OF [LOL OLXOYEVELDL YRUUUXODY
TPOYPAUUUETOV TOU - BEWEOVTIC TOUC GUUPETEYOVTES GTNV ONUOTEAUC(O SLOTETAYUEVOUS 0C TIEOS
v afloNoynon Toug yiot To avTelyevo - emPBEANoUV Slovouy) TOU OVTIXEWWEVOU YLoL UEYLO TO-
TolNom TOL XOWEVIXOD OPENOUS UE TEPLOPLOROUE GTNV dlaopd Twv BSloveundéviny alidv yetalld
dradoynhc ofloc cUPUETEXOVTOV.

Ag&elg xhewdid: Ocewpla mtouyviev, Anponpacies, Mnyoviopol Atavouric, ANyoplBuixr Auxato-
olvr, Agopxt] Idiwtixdétnta, Kavovixonoinor, Kowovixé Ogeloc Nash.



Abstract

In this dissertation we examine different ways to allocate items in auction settings without pay-
ments, in order to produce stable instances with high efficiency. On a high-level, with the term
stability we mean a unilateral deviation on the agents’ value vector, doesn’t change the final
allocation by a lot. In this context, we examine both theoretically and experimentally various
- already known - approaches, and more specifically Proportional and Inverse Proportional
Allocation Rules, Entropy Regularization (to the Social Welfare function) Technique and the
maximization of the Nash Social Welfare function. At the same time, in the same line of work,
we provide a new class of single-item allocation algorithms (named "Keep Consecutive Scales
Tight”) which produces - as we prove - optimal solutions to a family of linear programs that -
considering an ordering of participants’ valuations for the item - enforce constraints between
the allocated values between participants with consecutive valuations.

Keywords: Game theory, Auctions, Allocation Mechanisms, Algorithmic Fairness, Differential
Privacy, Regularization, Nash Social Welfare.
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Evyapiotieg

Apyind, Ba ek va euyaplotiow tov avayvonotn tou o Swfdoel oXdxAnpo To xelpevo Twv
EUYAPLOTLOV 1)/ %o - TOND TEPLOGOTERO - ONOXATRO TO xeluevo tne dimhopatxhc! Hdvw oe autd,
amA®S vou e mopevleTind o o&ilel va diafdoel xavelc To mAfpeg xelyevo yiatl povo €tol Ba
TarvoxoN el Tor didonapTo anooTdouaTa Tou Eypopa Gtay iy mparypaTid 6pedn (cuvibug uetd
o TEEEWO A TIC TPMTES MPES MENETNS Oty TOYAVE vat elpon wévoc pov oty MOII) xou tor onolo
TporypaTnd Tpénel ot xdmoto Pabud va eviunwbholv ce xdmolo GuANOYIXS uocuveldnTo. 'Exdelce
1 mapévleon.

IMpoto xon v an’ oxa BEXN® xou o@eilw vor euyAELOTHOW Ue OXN Hou TNV Yuyy| TNV UNTépa You
xaw TV Belar pou yioe Ty utoo ey Toug and TV TEDTN oTiyuh Tou elda To pws Tou Hiwou.
Koatohoaivw ott yior ToNNG yedvia oag elyo "noryideboel” ot plo xatdotaon dy(ous Xol oVOUOVAC.
Evo mhyouva mpog - xou TeAixd éptaca - nhixieg mou ot Avyétepo dElot (1/xon toruneol) Peioxouvy
oUvtpowo xou cuuPifdlovtar oto 9 ue 5 xou ot mparypatxd GElol Blampémouy, €76 TENEVO UE
BLdpPopoUC ECMTEPLXOUS HOL BUlUOVES Ol AUTOTHIWEOVHOLY uéxpel xdnwe 1 {on Vo @Tdoel oTo
peToU oS oTddlo Tou “ouufifdoou ¥ mhyouve vo to whpeic OXa”. Ko anoBdvouon mparyuatind
OO doynua, yiatl outh 1 “uovixoiotiny)” mpocéyyion elvon wpata yior Touvior xan EVOEYOUEVWES
%o oty mporypotixy) Lo, oANG yia xdmotov dvBpwno o omolog elvon auBimpoxtog, Let oxovouixd
ave&dptnTa xou Bev €xel amd Tiow Tou avlpmroug va divouv TNy {wi Toug xou vor EAT{oUY GE aUTOV.
Meyarovete évay ol BUoxoho dvlpwmo, pe peydhn duoxoiia mpocoapuoync o xde Yeydin
uetdBacn otny Lwn Tou, Tou cUYVE GAERTURE UE OYAUNTA UNDEVIGUOD Xl UEYAUNOIDEATIOUOD Ywolc
vo urtootneilet e TpdEelc éotm TV e&ENEN oy Lw - EVE UTOpoUsE, xou AT Elval TO YELPOTERO
-, oL 0 OTolog TAVTOYEOVA EVOL TOGO - Hal TOOO - XAPLOUOTIXOS, TTou Bo HTay xplua vo Tov x6Bate
%ot var tov uroypenvate vo ouufifoactel. Kou exel oxpifddc ouviotatou n nay(da. Teloomdvtwy,
OTOEC xou Vo e, VOWLm Tog 1 LeYAAT LeTdfoon tpoc TV HEYEAT petdfoon (and to navemo o
o710 xdoc e Lwfc) oe peydho Babud éywve. TnoPéNtota, oe mdpo mOND ypdvo, Juyopbdpa,
x0OURUC TXA, OANG Eyive. Kou Tot 2 o onpovTixd mpdryporta elvon 6TL TeodTov eigat TOX) o XovTd
o710 "mhyouve vo ta tipelc ONa” and To “ouufiBdoou” xa dedtepov (xou To onuavTnd), Topd Tov
YUEVO xebVO, vouilw Twg EPTiada Lot TEOCWTIXOTNTA TOU EYTVEEL TNV EXTIUNGT XL TOV GEPacUO
TPOCWTIXOTHTWY TOU EUTVEOUV TNV LN Uou extiunom xat oeBaouo.

Muoc xan elpacte oe autd To Thaioto etontnic Bedpnone tne Lwhc, wo olvToun arncbBuvor (vou
Mrogmvicytn to eina, Tt Ba xdvels yio autd;) mpoc Tov HeAovVTS eavtd pov. H Lwi dev elvon Oe-
Genon péoa and oyfuata anoiutétnTag. Evdeyouévag, autéd va Bonbdel dtav yivetar otoxesupéva
oL - XUPLWS - ENEYYOUEVOL YLOL CUYXEXPUIEVA YEOVIXE. Blo THULOTO TEOXEWEVOL VoL TETUYELS XdTt
axpalo. 'H mo cwotd. T va peylotonooelg Tic mbavotnteg va tetiyels xdt axpofo. AXNG
oty LY vpioTtavton ONeg oL evdidueces @aopatixée anoxpwoels. H Lwn éxel xobnuepvotnra.
H Com éye tradeoffs. Mévo av "touvdpeic” xord to mpdryparta metuyodvels. Aev undpyet dANog
teémoc. Ko 10 mo onuavtind amd dXa. E1o TENOC NG U€pag, OTOU Xl VoL PTACELS, TO UOTO
npénel va ebvon autéd mou et o Will.i.am : 7T don’t give a *** that’s my whole M.O.. I rock
the whole globe with no problemo”.

Sy ouvéyewa, Ba ABeXa vor euyaplo THOW ONGYuUY ToV ETPAENOVTE Loy oy dimhopatixd (xou
Ayo oty Lof v televtaia nepiodo) xabnynth Anufiten Potdxn. Nowilo noc 1 peyohltepn
PINOPEOVNOT) (UE TNV EVVOLXL TNG TEPLYPAUPNHC TV BETIXDV TOU YapaXTNELOTIXMY Xat &yl YE YpOoLd
xohoxelog) yio exelvov elvan amhd va teplypddw tnv Souietd tou. H (Baoixn) Soukeld tou, owtdy,
elvor v Bonfder 10, 15, 20 (mhotdpoupe oTotioTind yia vo dolue Toool givor axplde oto napdp-
TN 670 TENOS TN Shwpatixic) amd tar xaNOTepa puohd e EXNGDSog va Bpouv tov dpduo toug
x&be ypdvo. Kou - pddhhov - 10 xdver xanltepa amd xdfe diov xabnynth oty EXNGOa. Auté.
Elpon oxeddv PéPaioc nwg Ba elote ye Sopopd o mo veupahyixds dvlpwmog xan mapdyovTag yLo
O TNV TOPEld KOV GTA HOVOTIATIAL TNG EMOTAUNG X0l HEANOY Xou TNng emoryyeAdortixrc Cwhc. Av
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Beebel dAhog dvBpwrog Ye onuavTixdtepn cUVEIGPoRd oty eEENEN Tou "enaryyeuatia” X téNou,
TOTE PEANOV %Ave %3t TOND xoXd () %dve xdTL moXs Ndbog, yiati eteponpoodiopilouar évtova
- 6nwe to del xavelc!). Emiong, - uddhhov - Bo elote xou 0 TéTapTOC ONUAVTIXOTEPOS TOPAY OVTOC
otnv e€ENEN Tou LTENOU GUVONIXA ¢ AvBpwTog, YETE and TNV poud wou, TNy Bela pou xou tov
eywopd pov. ‘Onwe cog elyo mel xou xdmola oTrywh TEW TIC XOAOXUPVES dlaxoTée (AN 1) uTtep-
TPOCOPOY T GTOUC MAEXTRPONGYOUC oo Buoxoelel va to delte) couc oéfopon xou cog oryarned Pabid.
'H mo ocwotd, oag aryaned xa cag oPopar Padid. Ilapdro mou ue €xete doyelpiotel uToPéNTIo T
AEXETEC POPEC AOYW TOV - TEPLOGOTERWY and 660 B EMPETE - BLAYELPLO TIXWDY CUS UTOYPEDCEWY Xl
TNC BLUPOPETIXOTNTAC LoV O TNV TREOCEYYIOT] TNG YVWONG OANE X0 0 TNV TEocéyYIoT TG Tpoaéy-
YIONG TNS YVWONC OE OYECT UE TOV BELYUATOYWEO avBpOTmV UE TOUC OToloUE CUVIVIC TREPETTE.
II&vtoe, eviéret, vopllo g o Bpoldue éva modus operandi mou Ba to xdver vo "toouifioel” xou
vor "toounfoel” xond. TIoX) xahd. Baowd, yio va elpan ethixpivrc, to govadixd constraint vouile
nwg ebvar évar No yive mpaypatxd cofapdc dvbpwnog. Enlong, oawobBdvopor to nBixd ypeéoc va
coc {NTHoW Wlo cLYVOUN and xaEdide yiatt elyal 0 @ortnTAC oL Cug Gy WOE TEPIGOOTERO od
%&b dANOV, xou aUTH JEYLoE VoL PULVETOL OTAY TOL TEAYHATOL YOV QoYU XL EYIVE TROPIUVES
OTOY TOL TEAYUOLTOL dEyIooy VoL T YavouY XOoNG.

Axoun, Ba HBeka va euyapio THow ToNL Bepud tov xalnynth Aen Hayouetln. Metd tov x. Pwtdnm,
elote 0 dvlpwnog Tou e evénveuoe TMEPIOGOTERO Vo Ao orndw ye v Ozwentixy IIAnpogopuxn
(o oe cuVBLaoPS PE TO APUCCUNED oL Uicog Yia 0T TOTE GANO TodleL TNV o ONA, ¥Aeldwoe
0T0 UONG pou to Corelab). Yog xpwotdw éva xoné tépaoua otic Stapdveles e Kpuntoypagpiog
TPOC To xohoxalpl. BTNV mparypotixdtnTa, dev ddfoca toté yio To udbnua (tépav and To Ted-
lext pe tov Oupofdpo), nap’stt wou dpeoe dpa ToXd. O Noyoc fitay évac xuptde cuvduaoudc
enavdnouone Aoye Covid xaw emavdmavong eneldy| exclvr tnv neplodo mapaxolouvboloa xal Oew-
pla Ouddwy xou tioteva twg Ba xoNdPw o Teyvind xevd éuueoa, drafdlovtog yio autd To Pddnua
(Tt o éyve ev TENEL, AANG etepoypoviopéva). Enione Hheka va cac {nthow ouyvoun o thy
OOUVETEL o (xan) ot évar epeuvnTind npdtlext. Aev Huouy €toios - Puyoroynd xuping - 00te
yior aUTO, GUTE Yot TRV Ahopatix pov. Topa duwe elyon (e edaipeon éva recovery phase tou
olyoupa Ba ypewaot®). Kou and tnv otryud mou coc %pnotdw éva tedtlext onuaivel Toc TpEne
VoL XAVOUPE TOUNSYIGTOV 2.

Puowd, BENw mdpo TOND - xan Oyt xa OPEiA® - Vo euyoEle THOW Tov XxolfnynTr X1dln Zdyo. O
Baowde Noyog elvon eneldy| pe uonoe ota dduta e Enotiune e Oswplog Trnoloyiopol xou
ITohuvmhoxdtnrac xou BéPoua ... Ilpogavdde oxt, étal! Ou Baouxol Noyou elvan 3. Tlpdhtov, BioTt
elote N anopaitnTn VOt XoWEVIX0U aviixoupopuiopol oto Corelab. Eiote foouxd autd mou
Aeew o Kalavtldune "dev exnilw tinota, dev gpofoluon tinota, elya Nevtepoc”. Iapdtl olyoupa
extilete xou lowg @oPdote, olyovpa autd cuufatvouv oe oL wixpdTepo Pabud oe oyéon ue T
unolowma uéNT tou Egyaotnpiov. Aedtepov, glote éva mopdderypa tou tog meénet va dlayerpileton
évoc omoudaiog dvlpwrog to "pbdowo oty 18dxn”. H dpeln ye v omolo épxeote Ty TeXeuTaio
dexoetiot 670 EpyacThEIO LOVO Xou HOVO ETEWY| YouaTdpeTe (VTAZeL xou ENEWdY| 1) GANT) emhoyY elvon
7 yuvaixo ouc 0To ORlTL), 1 aTdXa TOU og ElYATE TEL TPt 610 TEMTO Pdbnua ANyopibuwy, otny
é€tpa dpa Tou AAMA "Bev efpar 1éc0 onoudaiog” we avTiBpaoT GTO TUPUTETAUEVO YELPOXEOTNHUA
ond ToL xpd GTOY PTAXATE opyOTopNuéVe (Xxatd o yvootd!) o1o augbéatpo, 1 éyvoln cog
Vo UTIdEYEL OLUVEYEL Ylot To community otnyv ddaoxokio tng IHlohumhoxdtntag péoo and tov
x.Iotixa xou téoa AN Tou dev umopw va anaplluricw oc autd To 6TEVO TAaioLo Belyvouv évay
xatamAnuxd dvlpwno. Maxder ota 70 pou va Eumvdw To mewl pe didbeon va vtube Ayiog
Baoiing xan va porpdlew ntuyioc oto xulelo tov Hextpooywv! TéXog, - udhnid cuoyetiouévo
HE TNV auéong TporyolUevn TpdTaot - va Eépete g Bo pe Bonbroete doo dev pavidleste oty
TapousiooT e dimopatixic pou!

Avtd o Niyo (6xu!)  pe touc xabnyntéc. Topa ndpe ota dVoXONA, ANOYW TNe AodPelaC OTa
xpLthpla Bidtagng. Ltoug ouugortntég! H mpddtn emhoyy| elvon edxoln. Oéhw v euyaplotion
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Tov évay and Ttoug 2 mo Wiatepous avbpdnoue Tou Eépw, pall pe péva, Poifo (ubévo mou oe
oéva 1) WioutepdTnToL EVEXEL TOND AiydTept apvnTixt] xpold) o ToXNG latex templates, 2 emails,
Piyparta (TouldyoTov TEog To Tapdv) know-how xou apxetéc dboeic Tpéhac, N onola var E€pele
elvon dxpwe petadotr]. T'ar va Eeplyw amd Tov auiydg TEXVOXEATIXG AOYO Tou €xw LBeThoEL
and v opy), oc Béhw xou pio oXkyoplo. ‘Otav to omitl elvon TOTIOUEVO UE OWVOTVELUD, €Vl
omipto yeetdleton yroo vor TultBel otic eNoyec. Emlong, péyet to 2028 Bo diddoxec oto MIT,
opxel vo unv 1o oxéprecol. OENw TOND, axoua, Vo euxoeloTHon Tov €tepo Kanmaboxn otou
Zorypdepou, Ltépovo, eneldr) ioouy mdvta (ox, oxeddv Tévta) to olyovpo auti dtav Kbk ducou
VO HOLROG TK) X4TL oL e amaoyoioloe. O tinog mou Ba ofjxwve 10 TAéQuvo xou Bo Byalvopue
vioe xopé 1yl unbpa oty Dopdévia 6tay AUOUV XOUPAOUEVOS, UTOUXTIOUEVOS, EEVEQWUEVOC,
Eevuytnopévoe 1 évag ypopuixds cuvduaopuoe autdv. "Hoouv n arnopaitntn tuyowornoinon yiot tny
evpwotia ot oxédelc wou. Ko BéPana, o'suyaptotad xou yio wa oetpd and xoufarfiuoto ot ot
Sxvpo (1 WEANOV amapofTNTO Yiot TNV TANEGTNTOL, TEXVIXH EMAEXEL XKoL DIXADUA UTOYEAUPHS TOU
NAEXTEONGYOL UNYAVIX0D) ERYOC THELO NAEXTEOVIXAS X0 TNAETUXOWWVIAOY €Toule 6 TNV OO TN
CUVEYELN, EUXOPLOTO YEoo and TNy xopdld pou tov I'idvvn xou tov Nixo, yuatl elvon mparypatind
2 and to o xoNd xou Enynuéva toudd mouv Eépw. Ilpoomabroate ToNY va pe Bonbrioete mépot,
oe wa neplodo mou xoltala yla Yeydho xpovind Sidotnua “xotdpote’ Ty dPucco (aANd euTuY DS
Oyl dpXETE UEYENO DOTE VoL Ye xoltdiel xi auTh, omwg eine o Nitoe). Auto, dev Ba 1o Eexdon
noté, énoe xo va wdel ) Lwh. IToté. T var oupminpwbel n tetpdda twv Ntédhtove (ywelic avtd
70 "aoTelo” va evéyel LTOdGELES BOTELS OYHONAGHOU CUVUPAUOUEVES UE VYOUETEIXES BLOXUMEVOELS),
BENw va euyopto Thow oAU Tov Tdpyo. Tudpyope, Ba to Bydhouue to woapolAl dXot pali. Eite
Ba urabvw oTic xX\foelc we comic relief xan yio v oulntdue yia xdva paper, eite Ba udbo web
development xou Bo ypddw xou x@dixa. EXnilw to npdto, pofdum to debtepo. Ildvtwg, dnwe
xan voUyel xerowog Ba eluon. Puowd, BEN® TOXD va euyoploTiow TV ayamnuévn pou Aovdn,
xatd Bdom yia tov (Blo Noyo mou euyaplotnoa tov I'dvvn xou tov Nixo. Mou éoteiveg otay
PNépTapo Ye TNV un avaoteédun arnotuyio otnv Lof xo o’euyaptotd ToND yio avtd.  Kupio
Mmdhha, énpene vo emipelvete TEPLOGHTERO TOTE, OANG OTIWC XL VOUXEL TO EXTLULL TEOYMOTIXG Xl
TETOLEC OUUTEPLPORES BeV Tig Eeyviw. Liyoupa TEETEL VO EUYAUPLOTHOW TOV UOVAOLXO ETUC THUOVA
oextlh mou Epw, Axn, yio tooec wpaiec (xou T6oEC Gyt 1600 WPUIES) GTIYUES TOU HOLEAC TAXAE
poli oty oyof xou oty Lof. H ayovioe av B tv xdvel, emtéloue, tny pétpnon To y ¥R
T0 0y Tépt, Tor EeviyTiar Yol TV epyooion otor LApotor (Tou TeNixd TopEdwoa pe xabuotépnon uoAie
TEVTE ETMV), 0L UTUPES TToL efvan amhd¢ 1) apopun yia va Sovue pall Tic tpudpes tou OXuumioxo) et
e Aex () xou Oy, TEOXWEAUE), OL TOLOTIXES Hag TONTIXES ou{NTHOELS Tou Eextvolv pe dapwvia,
ouveyilouv ue ouppwvia (v Nyo) xou xotakfiyouy oe diopwvia xow téoo dAka. Eloow moXd
xOAG oudl XL oe €xw OTEVOYXWEHOEL TOANES QOPEC UE Ta TUOTONA Tou plyve. Xuyvoun!! Oa
enavopboon va E€pelg, wONG yivel negligible 1 mboavdnta va yive Topiog oty xagetépia Tou
EadéNpou pou. AT TNV MEEOWT| PoupVLE TV PxewyV Tou %x.Pwtdxn, Ba beda va euyaploTion
v Kotepiva xan tov Idoova. Kotepiva, o’suyapiotd ol yia to evdiagpépov xou vouilon mwg
xdmotor o Ty TEéNEL var xdvoupe (Toundyiotov pia) oulhtnom. Idoove, édeilec xi ol evbiagépoy
xau entione pe yAltwoeg and apxetéc auryaves dadpdoeic oto workshop tou Koutooumd (oy 6t
Exeway xon autée BéPana, 80 dAN0). Eeuyoplo Tt ToNL!

Axbun, BEXN0 vo anoroynbd, TopdT eivon xelUEVO EUYAPLOTIOV (AANG KoL VoL EUYOPIG THOW YLoL TNV
UTIOUOVY] GOG VO TO TUNEPETE - QUOLXS UE UEYEAT Sloxduovon - uéypl anhd vo anodeyteite 6Tl
auTdC amhd dev efvan o€ @dom thpa) oty AN, oty Avva, oty Apyvpd, oty Euboxia, oty
Kortepiva, oty Moapla, oty Mehiva, otnv Natoiia, otnv Zogla xou oty Ppdow (n didtadn ndet
HE ahpofnTixy oelpd yior amoguyn tapelnyhoewy).

Ogelho, TéNOC, Vo EUXARLO THOW ONOXANEO TO G TENEY XS Buvopxd Twv Google, Red bull, Monster,
Stack Overflow, Special One, AB Baoihénouvhog, Poupehidtng xou (tdpor tekeutaia) Ovelpwy
I'etoeic, Starbucks, ChatGPT, Resto xau Coffee Island. ITparypatixd Sev Ba éfyauve nruyio yo-
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plc eodc! Aev Epw av pou éxete otephioet ypovia tototxhc Long, aANE HOU EXETE YALTOOEL ANELRO
%e6Vvo Yo oo QorTNTixy) LwY), GOYETAL AV - GTNV TEAYUOTIXOTNTO - TOTE v TNV éxava. Aev
graite eoelc yior auTo.

A enlong, vo anohoynBe oe doec QaTooLNES E€xaoa Var ELYoPLOTACK. AV EVOLUPERETIL TRy o
wnd Yo péva, xdmwe To EEpw xou 0'EUYAPLOTE UEo amd TNV xopdid Hou yio autd. Kou vo Eépeis
ot elyan and toug avlpdroug mou Wia xoaxn TeEdEn owe Ty Eexdoouy, (cwg xar Oxt. AXNNG uia
%o\ Bev Ba v Eexdoouy moté. T to xhelowo vo amooynBe xou GTOV avoryvae T Yl TO
poxpooxeXéc xelpevo (oTo elya meL oty apyr, aANE autd Bev to xdvel xaitepo). Eivan adribeto
ot dev enuiCopat ylot THY AaxXOVIXOTNTE Yo xo 660 1) L1 Bev e Tipopel yior autd Ba cuveylon
vo unv gnuilopan yio TRV Aaxwvixdtntd pou. Ko enlong, mépoav tne moludoyloc pou, 1 arfbeia
elvon 6Tl TO XElUEVO TV EUYUPLOTIOV YEAPTNXE UE Oyl TONNY Opedn xou Xdmwe yeryopa.

Kat omwe elme o Haoxdd: "Xvyvaun mov oov éypapa tooo paxpooxelés yoduua, aild dev Porxa
70V Y0V0 YA 0oV Yedpw oVYTOUCTEQOD”.

vi
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Kepdiawo o

Ewocoyoyixod onuelopo

Yo mhaiota TG TopoLoog BIMAWHATIXNS EpYATlaC, ETUXEPOVUE Uial adPOUERY) IANE 6GO TO BuvaTdY
TAnpéotepn (dedopévou bt yiveton ota ot TN Topovoas Stthwpatixrc epyaoiog) emoxdnnon
oe Bidpopec évvoleg xon teVéC emiteudng euotdbeloc, uwéoa and to mplopa Tou oyedlaoUol
unxoviouoyv oe dnuonpaocieg. T vo elpaote mo oxpiPeic aANd oxL TexViXOl, poag evlapépeEt
HOVO TO TEWTO OUENOE TOU OYEDACUOU UNYAVICUWY GE DNUOTPAGIES, AUTO TOV XAVOVWYV BLAVOUNC
TWV AVTIXEWEVOY OTOUC OUUPETEYOVTES. ot var avdrcoupe 1o xivntpo (oAN& xar tov Poabud
tevinfic duoxohioc!) ewodyoupe xdmolor vvola SxonocVNG AVEUESH GTOUG CUUUETEYOVTES Xl
emyelpolue v yetatonilouvue Ti¢ Tpog dlavour] UACeC OE GUUMETEXOVTEC TIOU UEYLIOTOTOLOUY TO
XOWWVIXG OPENOS, TNROVTIC WO TOCO TAVTA TOUE TEPLOPLOUOUE BIXAOGUVNE GTOUS OTOloUS €YOUUE
TpodeoueuTEL.

Oa eufabivoupe o teXVId BEpoata chvToua, AN ey amd auTtd Ay Lo Topla.

ATmAd¢ pia toTtopixy avagoped : Mia cuVEY AT AVTIXPOVOUEVOY CUYE-
POVIOV Xou EVA SIAMUR YL TNV ETLCTAUY TOV AVILXEOVOUEVKOV CU-
PEPOVTWV XU TOV BIANUUATOV. T Noyouc mnpdtntac (xou eneldy) vouiloupe nog
exer evilagpépov!) Bewpfioope oxdmUo vor xEvouue Wwiot TOND GUVTOUN LOTOPIXY ovapopd Yior TNV
oUyypovn Oswpla Haryviwy, xabdg xan yio tig xotaforéc g otov apyalo xdéopo. Mia xhaocoixn
BIANATUOITLXT] XATAC TACT| AVAPEPOUEVOL GE LoTopd Béuata €yxelton 6To Tolog Ba meénel va Bewpel-
o o motépac e lotoplog, o Hpddotog 1 o ©ouxudidng; And v pla o Hpdbotog, éxel to moXd
Lo LEoS emiyelpnua TNS TacdTNTOC, XoBHdg NTay EXEVOC TTOL TEWTOCTACNOE GTNV XATOYEAUPY) TWY
LOTOPXADY YEYOVOTWV XU OTNV TpooTdbeln ENEENYNONG TOV LTIV TOU Ta TEOXONOUY. And TNy
GAAT) 0 ©0ouUxLBIBNG €xEL YE TO U£EOC TOU TNV ETOTNUOCOVY, APol HTAV O TEMTOS LOTOPLXOS TOU
amoyohoxtiotnxe amd TNy yeron wibwyv, pubeupdtwy xou MUy xotd Ty avaliTnorn TS Lo Topl-
e anrBetac.

Enextelvovtag tov aAAyopnd culhoyiopd, ac npoonafricouvye va e€etdoouye éva {ATnua Tou
evéyel Ay6Tepoue Babuoic utoxeluevixdTnTaC ot oxéon Ye TNy tatedTnTa Tne Owploc Mouyviwvy.
ITowog nailer tov pdéXo tou Hpddotou xar molog tou Oouxudidn otnv Oewpio Mouyviwv; Eyet-
xd pe tov "Hpdd010”, 0UCLIoTIXG AVOPEPOUACTE OE TEPWTONELES TPOOTADELES LOVTENOTOMNONG Xou
BeXtiotonomong aNANAeTOEACEDY UETAED NOYIXd OXETTOUEVLY, CTRATNYIXWY avTindiwy. Afio-
pvnuéveuteg etvar ol avagopéc atov Kivélo otpatnyd, cuyypagpéa xou gilécogo Sun Tzu xou oo
BaPurwviand Torgo'd. Eyxeuxd pe tov Sun Tzu (544 - 4961X), TEOQavHOC aVUPEROUACTE GTNY
omoudata tporypateio tov "H Teyvn tou Iloépou”; 6mou entyelpeiton 1 LovTeEAOTOMON NS €VVoLag
TOV OVTIXPOUOUEVWY CUUPEROVTWY X0 HECK aUTHG BlBoVTaL TEAXTIXEC GUUBOUNES YLol OTEOTIWTL
AEC NATACTACELS UE AVTIXEOUOUEVA GUppEpovTa. Ewxdleton 6t1 ot o otevd mouyviobewpntixd



2 Kegdhowo a. Ewaywyixd onuelowpa

maaota, oe autéd to Biio mpwtoeohdnoav ol évvolec Twv minmax, xupldp Vv xoL UEXTOV
CTRUTNYXDY, EVEK BEV "uTdPERE” VoL 0plaEL TNV EVVOLX TV CTEATNYIXWY Lo0oEEOTIAS. LUVETWDC,
EVQ GyylEE TNV EVVOLo TN CUANOYLOTIXAC OF EMOVUANTTIXES Dladixacieg, abuvatel vo Boaoel Ty
TNen SdoToom Tou gouvouévou (WBiwe tne olyxhiomng ot woppoTia). 2oT600, oV AVONOYLoTOUUE
10 omopyovdeg eninedo tne avBpwrdtnTog o mawyvioBewpnTinée xan - v yével - polnuatixés
YVOOELS, TOpUUEVEL EXTANXTIXG To BdBoc oxédne xan To TARBoc Twv evvoldy Tic omoleg xotdpepe
VoL tpoaeyyioelL amA@C xou uévo extoedovtog PENT Swdobnone péoo and Ty vontixt tou @apéted.
[Mopanéunoupe Tov W0 TOpLONGTEN (*ou pe emapxr eEAelBEpO YpdVo!) avaryvdotn TNy TOXD eviLo-
pépovoa xan €€w and ta "texvind VBata” ota omola cUVABWS xoXuundue, epyaoio Twv Niou xou
Ordeshook [36]. Avogopwxd pe 1o Bafulwvioxd Torpold, mpdxeitar v to Paocixd xelyevo tou
eafPrvixot Toudaiouol, war GUNNOYY VoUWV 1 ontolo cuvTayOnxe xatd x0pLo NOY0 Toug 5 TEWTOUS
auveg uX xou amoteel v Pdorn tou Touddixol Bpnoxeutinod, mowixol xon acTIXo) xOOXA. e
exelvo 10 XElUEVO GUVOVTOUUE ULol TPOTONEL GANG 0L QUTOAVALEOVUEVY], Hop®n Ttaty VioBewTixo0
oUANOYIOU00, 6To Aeyouevo mpdPAnua tou cupfolaiou yduou. Ewlwodtepa, évag dvbpac ebvou
TaVTEEUEVOC UE 3 yuvaixec xou €xel Tpoouu@wvhoel 6Tl ot mepintwon Bavdtou tou, Bo AdBouv
100, 200 o 300 avtioTorya. Av n neptovaio tou avépyeton ot 100, to Tahpold opilet wwopot-
paocud. Av avépyetar ota 300 opilel avoroyny| Siavour|, dnhad (50,100,150) eved av avépyeto
ot 200 opilet wa "ropdhoyn” popactd e wopehic (50,75,75). Topd tny "adediétntol” owtol Tou
eV ELPNUATOS, TapATNEOVUE Twg amd TNV apxondTnTa N avBpwrdtnta apouyxpalotay Beperloddelc
€vvoleg BIXooa VNG XAl AVOUNOYIXOTNTOG.

T tov "Oouxudidn” e Ocwplac oy viwy, vopilovye twe tor ovopaTa TOU £EYOVTAL GTO LUUNS
HE puowd teéTo elvan 2, elvan omoudalo xon oxeddV acuvorydviota : John Von Neumann xou John
Nash! Ané tnv pla, o John Von Neumann ¥toav o dvfpwnog mou fepehinoe tny olyypeovn Oswela
[owyviov, pe TNy BN TV UIXTOV GTEATNYIXOY LoopeoTiae ot malyvio 2 Touxtev undevixot abpoi-
opatoc. Ilépa and tnv o e Onapeng, weydin afio éxel xou 1 Wéa Tne anddelEne tou, ool
N Wéa e yeriong tou Brouwer’s Fixed Point Theorem ennppéace tnv yeténeita e€éNEn 1600
e Ocwploc Houyvidv 660 xou e entotiune v Owovouxav (aAA& xou tou €tepou feuewTh
John Nash). Enforng, vevpahyixé eivan 1o épyo touv "Theory of Games and Economic Behavior”
([43]) poli pue tov Oskar Morgenstern, to onolo anoté\eoce 10 eQaAThplo Yo T Bepedinon g
Bewplac Ty viny néve oe otépea paldnuater Bdon. Amd Ty dANY, 0 - EXAPENOS - HETAYEVEGTEROC
John Nash 0étel xou autde oyueh vnodmedtnta Yo Tov Ttho tou Bepehiwts. Eivar, udhhov é-
vog xUpTde cUVBLACPGC oToudatdtnTog Epyou (xuplng 1 anddeldn tnapine onuelwy wwopporioc ot
nenepacuéva nafyvia [33]) o éunvevone véov avbpdnwy Noyo dtacnudtntac(notog dev €xel det
v tawvia "Evag Trépoyoc *AvBpwnoc”;) mou tou Bivel toyupd épelopa oe autd to drumo debate.
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Extetoevn eAAnvoylooon
nepiindn

B.1 Extetapeévn eXAnvoyiwocorn nepindn

1o nopdv xe@diato, Bu emyelpricouue va teptypdhoupe aBPOUERNOS - OANG UE TATPOTNTA - ONO-
YANEN TNV EXOVA TN SIMAWPATIXAS Hog epyooias, T0c0 o eninedo teyvixol undfabpou doo xou
TpwtoTUTNG TaparyBelcac yvdong, dnhady arotereoudTwy. ATAOC vo dleuxptvicouye e Bewpol-
pE doxono 6TO TGO TS EAANVOYAWGNG TERIANNG Vo avahwbolUe o TeEXVIXEC AETTOUERELES,
enopévag Bo emyelpiooupe Vo BOGOUYE Eupaon atny dloncdntiny tpocéyyior pe dldonapTes oL
YOS TEXVIXES TveNég dTav xplvetan Twe evBuypauuilovton ye v xatedBuvor g éupaons oty
dlonoOnuny mpooéyyion. Emnlong, wa dieuxpiviong, mbovede xerowr, mboavag dyr. Do v xato-
oxeun i/ %o TopouciaoT) OTOLUBHTOTE UIOVIOUOU OE oUTO TO XEPANAO (OANG xou YEVIXE OE OA
NV AMAQUATIXY EQYUOI0) EMXEVTIPWVOUAGTE OE MEPLTTWOOELS XNACUATIXAG DIVOURC EVOS OVTIXEL-
HEVOUL G TOUC GUUMETEYOVTES 6 TNV dladixaoio Stavoprc (1 loodivaya dnponpacio xoplc TANPOUES).

B.2 Abdpopepnc meplypap” ToOV Apx®V YL TNV TEO-
ogyyiom tov IlpoBAruatocg

B.2.1 Apeyxn "Avaloyixob Kavova Atavopng”

Q¢ mpwn apy/Tpocéyyion poc TapousiaoT Tou tpofAfuatoc tne enitevine guotdbeloc xatd
v Blavopn) aryaov emhéxOnxe 1 apxh "Avoroyixod Kavéva Awavouric”. Ou Boaoixol Noyor eivan
ovo. Ipdtov, e 1 TEMTN UAC ETOPT] X0 CUVAUO TO EQELVITLXG UAC EVAUOUOL VLol VAL OGO
Bolue pe wnyoviopole davourc oryabdv tou tetuyadvouy evotdbela (U6 TNV évvola: TapeEUEpEic
eloodot divouv napepgepeic e€68ouc). Tuyxexpéva, N epyooio twv Chawla xo Jegadeesan [5]
UTHPEE TO EQOUNTAPLO YLOL VO XAUTUVOOOUUE XOU GTNV GUVEYELX VO ETVONCOUPE UNYAVIOHOUS TOU
notpdlouv oryafd pe xdmota EvvoLo aVaNOYIXOTNTOC WS TPOC TIC 0ElEC TV ToUX TV yiat Tor aryafd
oautd. Emniéov, Bewpolye g 1 ev ANoyw oy Slovopng eival 1) EUXONOTERY) EVVOLONOYIXE amtd TIC
3 xou emopévog elval eONOYO Vo Eextviioel xavelc topouctdloviag auThy.

O mpddtog pnyaviopde mou Pooileton oe autiyv v oexh elvan o Mryxaviopds Atavouric Eubeioc
Avoroywotnroc. H 8éa elvan mparypotind moX0 amhf: Awagolpace avaroyd npoc g ofiec 1
Tpoc ot yvnolwe abdfovoa cuVEETNoN TV oLV XNdoUaTo ToU avixelévou otoug naixtec. O
pnyaviopog dtavourc mou Baciletan oe authv T opyh mapovctdleton atov Alydebuo 3. To

3
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Boowxd mpdPANua pe autdy Tov unxoviops etvar 1 evpwotia tou. Ewbixdtepa, apol xdbe maixtng
(un-undevixic o&iog) Ba N&Pel unrundevixd Pépog tou mpog dlavour] avTixeévou, 6co to Tarbog
TWV TOUX TV TelVEL TPOC TO ANELPo, OXoL ot Takxteg Bt Ao fdvouv eENAyIo TO TUAPA TOU AV TIXEWEVOU
X0l GUVETMOS TO GUVONLXO XoWwvixd d@enog Ba undeviCetar. Io va emhboouy autd to mpdPanua,
o. Chawla xou Jegadeesan emwvonoav évav pnyaviopd o onotog avtl va potpdler avaroyixd tpog
i oieg, divel oe xdBe malxtn Eva "etxovind” avtixeluevo xon "x6Pel” and xobéva pe pubud avéroyo
mpo¢ to avtiotpogo tne ofiog Tou (SN, oe LY a&lag malxtes x6Pel "Niyo” xou e YounAfc
o&ioc maixtee x6Pel "toN0”) uéxpelc 6Tou To dBpoloU ONOV TOV SLAVEUNBEVTOV XNACUATIXDY UE-
eV va toolton pe 1 (B, va xatahiZoupe ot e@uxth Aoom). O ANéyog Tou autde o unyaviopds
elvan Two epwoTog ot oyxéomn pe tov eubelog avohoyxdntas (L TV évvola 6T anoyohoxtileton
omd to TAABoC Twv TouxTAVY) elvon Tt xatd Ty Stadixasia "xodiuatoc”, duvnTind aghvel ToANolg
nalxtee xounirg afioc ye undevixd xhdoua tou avtixewévou. [o pla mo teyxvixy napovaciaon
QUTAHS NG LOEAG, TOPATEUTOUUE TOV EVOLOPEROUEVO GToV Peudoxmddixa tou ANyopiBuou 4.

B.2.2 Apyn "Enizvong 'eappixol Ipoyedupatog pe entfoln ne-
pLopLOU®Y dixonoocLVNC”

H 8ebtepn npocéyyion tou npoPNuatodc wog cuviotaton oty entAUoY eVOS YEoUULXOU TROYEA-
HOTOS UEYIOTOTOMONS TOU XOWmViXo0 0QENOUS (1 "xNooox)” avTIXEWHEVIXY GUVAPTNOT)) UE TE-
pLoplopd oTic dlapopéc Twv dtoguotpaldpevoy oty uetall Touxtdv dtadoyxfc adios (bewpdvtac
TOUS TOUXTES SLATETAYUEVOUS WS Tpog TNV 0&LONGYNOT| Toug Yo To avtxeipevo). Ta vo yivoupe
o cogel, ouclao Txd eTLBANNOUPE €va dvw pedyua oty andotaon tng ofiog mou Bu mdpel éva
nalxTn ot oYon UE TOV APECWS "TAOUCLOTERD” Xau aécws "@Twydtepd” Tou (av undpyouy). Autd
T0 Gvew Qpdrypa lva Noyxd Vo elvor Yiol GUVEETNOY TNE AMOCTAONS TWY AELdY TWY - TEOE ETULPONN
TEpLopLoU@Y - mtouxteyv. [ v axpiBela, 1 ouvdptnon xabopiopol Twv neploplopdy, €6To g()
TpENEL vor TANPEL To xdtwbt npoanartodueva(desiderata)

ITpoanoutodueva yia TNy cuvdetnon entfoinc
TEELOPLOPLOUOY oTIg adieg Sradoyixdy mauxTdv g() :

e g(0) =0, evvomvtoc nwe 2 TaixTeS P TNV Bla axpBoc allordynon yia
70 avTixeipevo Teémel vor Adfouv v (B axplPde aia (ev mpoxeévn
xou Sovoun)) amé Tov U ovios.

e g(00) = 1, (unobétwvTac xavovixoroinomn 6to ddvuopo adltdv, dnadh
v; € [0,1],V agent i € [n]) evvomvtoc 6Tt tadxtec ye avboipeta dlapope-
Txéc agloNoyNoElC yia To avTixelyevo, Bo mpénel vo umopolv vo AdBouy
avbalpeTa Slopopetinés alleg and Tov unyavioud.

o g T, evvowvtog 6Tl 600 avidvetar 1 Swopopd petald TV a&lohoyoewy
2 (BoBoynhv) Toux TV yLat To avTixelpevo, 16oo mo noAd Bo TeEnel va
"YONAROVEL” O TIEPLOPLOUOS GYETXA PE TNV Blapopd otig afieg mou Bu
TEETEL VO AGBOLY omd TOV UNYAVIoUO.

‘Eva ypouuind npdypaio EPOBIACUEVO YE ULt CUVEETNOT "ENEYYOL” TV Teploplopdy g() e Tic
TOEATAVW LBLOTNTES XATAUPERVEL Vo ETULTOYEL Xdmolou (Blou "Sixatocivn’ evtog tou (Blou oTiyploTd-
mou (ag Y ovoudooupe avboipeta Tomxy, enedn axpBde apopd to (Blo otryudtuno). Erniong,
Bt UTOPOVLOUUE VoL TNV KUEAXTNRIGOUKE Yol WS UN-0UTOAVAPOpIXT, BOTL apopd cuyxpioelc petadd 2
(BropopeTnIV) Toux TV T'evind, EVEATUGTOVUE WS HEGO BTG AUTHY THY UN-0UTAVOPOPLXY), TOTUXN
gvoTtdbelor mou emTuyydveTon péoa amd epixtéc Aoelg Touv Lpopuxol Ilpoypdupatog mou poAic

4
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TEPLY PAUPOPE, HUTAUPEEVOUIE VoL TETUYOLUE auTOavVapopLxt], olxY) euotdbela (Snhodn av wévo évog
nalxTNng amoxAivel govadioda and TNy oa€loAGYNGT) TOU YLol TO AVTIXEUEVO, Tol 2 GTLYUIOTUTIO - TO
a6 xa exelvo mou mpoéxude and TNy Yovodiaio amdxilon ond To apyixd - Ba xatadiEouy o
TONU Topeppepelc Slavopés Tou ayafol). To mwe Slamhéxovton axplde autéc oL 2 évvoleg ELoTE-
Betoc (xatd Bdomn to av xou moc 1 wio cuvendyeton Ty dXAAN) Oo propodoe va eivar avtixelpevo
HEANOVTIXAC €peuvag, ool Bev UENETABNXE oTa TAaloL TNE ToE0 VoA BIMAOUATIXAS.

Auto, duwe, mou peXeTBnxe ota T Aol TOU TOEOVTOC Xou TTOU ATOTENEL - UAANOV - TOV Pacixnd-
TepO X0pU6 NS BoLAELdS Yag, elvar 1 BéNTIo Ty enliuoy tétotou eldouc I'poppxdyv Hpoypopudtwy
uéow evog alyoplBuou mou ovoudletar "Alatrenoe Awdoyxnd Xxardxo xotd to duvatdv Unhdte-
e’ (AAXT). Autde o alydpBuog - unobétwvTac Toug Taixtes Talvounuévous ot phivouca oelpd
a€loNOYMONG YLot TO avTIXElUEVO - apyxd polpdlel xdmota tuyala pudlo otov LPnAGTepnc a&loNs-
ynong malxtn. Xty cuvéxela, “xatefaivel” Tpog TOUC AUECWS XUUNAOTERNS AELONOYNONG TUXTES
dratnedvTos TNy tlodTNTa 6T0UC TEploplopols oTic adiec (dnhady| dlauotpdlel 660 To duvatdy Ai-
votepn alia otov Saboyind younhotepne aliug nadxtn Hote va unv tapafdletar 1 euoTdbelar).
Suvexilet v (Bl dradxasiac BlathpNong TS LoOTNTAS GTOUE TEPLOPICUOVS UEXEL VAL PTACEL GTOV
TPAOTO TUXTY TOL TEOXUTTEL OTL TEETEL Var NAPet apvntixs| ol - %3t Tou PuoLxd dev emTpéne-
oL XE QUTOV XA GTOUG YXUUNMAOTEPNG oloNGYNONE TOUXTES ANO QUTOV TAIXTES, O UNYOVIOUOS
potpdler 0. Ev ouveyela, mpocbétel ta SlopelpacBeévtor x¥NooUaTNG UEEN TOU OVTIXEWEVOU, Xl
av afpoilovtar 610 1, 0 unyoviopos Berxe v Péxtotn davopr. Av abpollovto oe ntocdTnTA
uixpdtepn Tou 1, o pnyaviopos avgdvel v diaveunbeioo TocdTNTo oTOV TEDTO TalXTN (UE TNV
Noyueh) tne duadufic avalhtnong) xaw emavoopfdver v Swadiaocio. Toapdpota hoyh av Peet
nocotnTo Yeyanutepn Tou 1. Kotd pia évvola, autde o unyoviouds Bupiler moXNd tnv Aoyixn tou
pNYaVIoHOoU Blovoprc avtloTeopng avahoyxoTnTag, Bedouévou OTL TETUXAVEL LYNAG XOoWVLVIXO
OQENOC - o ELPWO TN WS TEOC TO TANBOC TWV CUUUETEYOVIOV - OPTVOVTUS TOUC XOUNNOTERNC
alonoYNoNe malxteg Ye undeviny) Slovopun. Avalutixd) TeEpLypop) TOU Unyaviopol uropel xavelc
va Beel otov Alyéebuo 5.

B.2.3 Apxn "Teponmonoinoce 7 AVIIXATECSTNOE TNV AVILXELAEVIXT
CUVAETYNOY XOWOVIXOL OYEXOLS”

H tpltn mpocéyyion tou mpofAfuatoc elvon 1 dpon TwV TEQLOPLOUWY EVCTAOELNC Xal TAVTOYEOVA
1) TEOTOTONOT 1) TAHENS AVTIXATAC TACT] TN AVTIXEWWEVIXTS CUVERTNONE TOU XOWVOVIXOU 0QENOUC.
Ewbwotepa, yio 10 mp®dTo oxéNog NG Teltng mpocéyylong, dniadh awtd Tng Teomomonone tTNne
CLVEETNONE XOWWVIXOU 0PENOUS, ATAWS TEOGBETOUUE wg EETPU GPOUC GTNV OVTIXEWEVIXY) GUVER-
mon Y apvnTxY evipoTia Twv ThavoTATwY Tpoc Slavour| (o SOUUE T TEOC SLOVOUT) XAAGHOTIXS
Hépn TOU - LOVadIXOU - AVTIXEWEVOU TpOG Blovopr K¢ THVOTNTES). LNy YADCoH TwV pofnuoti-
AWV, 0 UETACYNUATIONOEC ToU emiBarNovye Topatifeton TopodTo :

n n n
g mzv,—>§ :17,;~v7;+77~§ x; log z;
i=1 i=1 i=1

Autéc o petaoynuatiopos, éxet dittod poro. Koatapyde to é€tpa dfpotopa mou emavidver v o-
VTIXEWEVIXT oUVERTNOT TNV XahoTd Loyued xueTh. ++-++ Enlong, n ouyxexpiuévn emhoyy tng
evipomiog 0g xavovixonownth dev elvon tuyaio. H evrponia elvon wa ouvdptnon mou "suvoel” i
OUOLOPOPPES XaTavopéS xau "Tipwpeel” Ti¢ utepouyxevipwTixéc. Enouévmc, autdc o xovovixomol-
nthc emPériel o amoxeviponoinon tov palov and tov uhnhdtepne adlondynone naixtn (dnwe
"eTBUUED” 1 CUVEETNOT XOWWVIXOU OPENOUS), XUTOPEEVOVTAS ETOL VoL ETLPEPEL XAmoLoL Bixonocivn
oty xatavour] (guotxd o Babude “dixarocivne”/anocuyrévipnon” edaptdtal ond TO JAVUCUL
TV ALY X0t A6 TNV T TNG TOPAUETEOU —1).
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T To Bedtepo oxéNOC NS TElTNG TPOCEYYIONG, OWTO TNG AVTIXATACTUCNS TNG CUVAETNONS TOU
x0WveVX00 0@éloug, N emeydelon avTixelevinr) cuvdptnon mou nafpvel TV Béom Tou elvon To
xowovixd ogeoc Nash. To xowovixd dgeloc Nash elvar o yewuetendg péoog dpog Twv mpog
Blavour| agLedv, BNNABY 0 UETACKNUATIONOS NG AVTIXEWWEVIXTS CUVARTNONG Tou Aoufdvel ywpa
elvon 0 e€nc :

n n

1
Zl’i Vg — (H$l °Vi)ﬁ
i=1 =1

H cuyxexpulévn avTiXELUEVIXT) CUVAPTNO) UEYLIO TOTIOLETAL OE XATUVOUES OL OTO(ES EIVOL AVANOYLXES
%o oUy VS oUotdlouy Tpog TNV opoLdpopdn (Quotxd auté e€apTdTon omd TNV LoPYT| TOL SlavioUATOS
o€Ldv v). Amhadg éva obvtouo “unouotdptopa Swictnonc”. To xolho mpdypauud Ue AVTIXEWEVIXH
ouvdptnon o xowvwvixd égeNoc Nash, yetafintéc andgouone mbavotntes xan {oec aliec/Pdpn
yior Ghoug touc maixteg peyloTonoleton dtav Ohec o mbavdTntee yivouy {oec (dnh.x; = %,W S
[n]). T - elagpds - avorUTIXOTEPY ETEEHYNOT TNS €VVOLIS TOU xowwvixol ogélouc Nash,
TOPAMEUTIOVPE TOV VoY VOO TN o TNV UToevotnTa B.6 Tne eNAnvéy woone nepiindne. T xdt mo
OVONUTIXO O CUYXEXPWEVO, TUPATEUTOVUE GTNY UTOEVOTNTA 5.2 TOU oy yA0o0 XEWEVOU.

B.3 ExBetixdg Mnyovicuog

B.3.1 ExBetixdc Mnyaviopuods and tTnyv oxomid tTne ALdPopixnig
ISiwTixoTnTag

Yy napotioa uroevdtnta, e€etdlouue vo taitepa oNUAVTIXG Unyoviops dlavournc oyafoy mou
ouvdudlel v enlteun euotdbetag e aUTAY Tou LPNAOY xoWVLVIXOD ogéNoue, Tov Exbetind M-
yaviop6. H oxomd and v onola Ba tov e€etdooupe dev elvar 1 povadixy) mou Ba napovolacTel
070 ToEdY XEWUEVO Xal - WENOTA - Ba unopodoaue va ToUUE Tog elvar xdmwe Wlodtept), apol dev
ouvnBiletan vo "Blamiéxeton” oTar VAT TOV BLAVOUWY oYy xon - eV YEVEL - TOU OYEBLAGUOD
pnaviopddy. Autrv tng Sagopinic Wetxottoc. e npoywericouue 6Tov QOpUINGUO, ATAGDS
VoL 86)c0LPE TOND cuvonTixd Ty Bladobnor oxetxd pe to T etvon Ataopiny| IdlwTtixdtnta xou twe
ouoxetileton pe TV oyedlaon unyaviouwy davoprc ayofov. H Awagopur Idiwtixdtnta, péoo
o éva "ounvixd” Onapdng n TUXTMV HE XETOoLL AELONGYNOT YL EVOL ~TIPOC XNACUATIXY DlavouT-
AVTIXEIMEVO, AMOTENEL o WBLOTNTA TEPLOPLOHOY TNE ETBPUONS OV €xEL VO TOUXTNG OTO TENIXO
omotéNeopa TN Svourc. 1o cuyxexpiuéva, aAXg oyt texvnd, xpotdvtag otofepéc Tig adlo-
Noyfoeic n — 1 mouxtddy, av arkd&oupe - avbalpeta TOAD - TNV a€loNOYNoT EVOC MoV TalxTy,
T0 TENXO amoTéENEOUA TG dlavourc Bev Ba aNdel onpavtixd. Tatl, dpwg, auth 1 WidTNTYL var
€xel xdmota a&fo oty mparypotinh on, oE pLo xatdo Toon dlavouhc ayabdov Y/ dnponpaciog pe
Tnpwés; Eva ToXd xoné xiviteo yior Ty évtadn (xou) autic TN évvolac oTo TAKCLO HENETNS
TOU GYEBLACUOU U ovoudy elvor oe dnuonpacies mou Sle€dyoviar o8 TOANUTAS (xpovixd) o Tddia
xou To Tovtoplopata Tou evég atadiov, elvon cuoyeTouéva PE To TOVTaploUTA OE ENOUEVO O TY-
ol Tote, mpogave xdbe maixtng embBuyel va Swotnenbodv WiwTxd ta tovTtaplouatd Tou oTov
exdotote Y0po xan 1 Alopopxt| ISiwtixdtnta amotelel pio 1BLOTNTA TOL Xveltal TEOg AUTAY TNV
xateBuvon. Alyo mo opuoiioTixd:

Definition B.3.1. (ILbavotnde Alydpbuoc). Evac mbavouxde anydpibuoc A Snuovpyel wio
avuotoiyion A : D — A(R). AauPdvovtac we gloodo d € D, A Sivel wg é€odo pe mbavotnta
(A(d)), w0 €€hc @ A(d) = r, v %80 r € R. Erione, o yopoc mbavotAtwv opiletar eni twv
pldenv vououdtov tou A.
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Definition B.3.2. (Awgopwxh; Iwtxdtna). Evac mbavotixdc anyopbpoc A 1 X™ — O eivan
e—0Lopopixd WwTOG av yiot xdbe - maixtn - ¢, Y xde eloodo x € X", yia xdfe yovadiaio
andxhon x; € X, wou yLat Ot o evdeydueva e€68ou E C O :

Pr[A(z) € E] <€ - Pr[A(z_;, ) € E]

Ac meprypddouye - TOND abdpopepns - €va eldog dnponpacioc, wovo ot U6vo ylo vo dolue Tov
ExBetind Mryoviopsd yéoo and éva napdderypo. H dnuonpascto autr, ovoudletar Anuonpacia Wn-
Proxcdv Ayofdov. Xe authv v dnuonpacia, éxoupe dewpntind drepo andbepo omd éva (Ynproxd)
avTixeldevo, xou n uTodriplous oyopao e, xobévas ex Twv onolwy embuuel uévo éva avtiypapo
Tou avixewévou. Ilpogavie, oe authv Ty xatdoToon €yl vonua va ovalnTHoOOUUE TV TN
TOU UEYIOTOTOLEL TO %€pD0G, APOU 1) UEYICTOTOMNGCT TOU XOWVWVLXOD OQPENOUS YiVETOL TETPLUUEVA
(ytor Ttopdderypor potpdlovtog dwpedy éva avtiypapo tou avixeévou ot xdbe maixtn). Enfong,
ag Bewpricouye mwe embBuuodue va Slatneooupe xar T WIoTNTa TS Alopopiniic Isiwtixdtntoc.
E8G, howndy, eumiéxeton o ExBetinde Mnyoviopde yia vo xdvel v emNOYY TG TWAC HE Olo-
POPIXA WBLWTIXO TEOTO TOU UmOPEREL, TaUTOYEOVY, Xal VYNNG xépdoc. Mia onuovtes xou UPNAS
ovoytetopévn pe TNy Alagopixr Idiwtixdtnta évvola tou Exbetixod Mnyaviopol, eivon autr tne
evatcBnotlag Tou oe yovadlales anoxhioelc mouxtodv. Ilo cuyxexpuéva:

Definition B.3.3. (Evoucbnoio tou Xxop Anédoone tou Exbetixod Mnyoaviopot). H evoucbnoio
Tou axop anbdoone s : X" x O — R elvow 1 péyiot (amdbhutn) oXhoryh 6Ty TW TOU GX0p TOU
unopel var emipépel xdmota povadiaio andxAoT. e o podnuatiny y oo

As = max s(z,0) —s((x_;,z}),0
ie[n],xexn,x;ex,oeo| ( ’ ) (( v l)’ )‘

O Exbetindc Mnyaviopde, otny yevixdtepn pop@r tou, gaiveton oTov xdtwdl anydplduo.

Algorithm 1 Ex0etix6c Mnyaviouog

Input: Elpo¢ tov avuxewévev O, cuvdptnon oxop ollac s : X™ x O — R, nopd-
UETPOC €.

exp( 53

e-s(z,0)
CXP\ 5 A(s
£ w755

o€

1: return o € O ye mbavétnTa :

)

Ouoctaotind, autd mou emtuyydvel o Exbetindg Mnyavioude eivan va dnplovpyrioet yeltoviéd’
TGV TOU ETLPEEOUY TOND UPNNG x€pB0C xan Ba ETAEYOUY OVTWE 0G TENXES TES UE TOXND UPNAY
mbavotnro. Enoyévog, uéon tng Tuyaionolnong emTuyydvel Blagopixy| IBlwTXOTNTa Xl UECK TNC
ONuLoLEY o LTV TV YEITOVIOY ETUTUYYAVEL EVPWO Tia.

H onuaocio tou Exfetixot Mryoviopol armotur@vetan yAapupd and ta xdtondl 2 fewprjuata.

To npdto Bedpnuo dniidvet 6t o Exbetind Mryaviopds emtuyydvet Ty - toxurddntn - (e—)duapopint
WotixdtnToL.

Theorem P.3.1. O Exfetinds Mnyanouss Mg(x;s, O, ¢€) evar e-dtapogixd 1diwtinds, dnradn
LoyveL:
PriMg(z;s,0,¢€) = 0]
PriMg(z_;,z});s,0,¢ ~

To deltepo Oewpnua emonualvel To Yeyovog 6Tl o Exbetinde Mnyavioudg eivon anodotixde, umd
™y €vvola 6Tl pe LM mbavotnta Bivel atnv €€080 €va LYol oxop afiog avTixeluevo.

7
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Theorem B.3.2. "Xradepomoinoe” éva elpoc avtxeyévay O. Eortw OPT, o = max, o s(o, O)
T0 VYNAdTEQO %00 TOV Blver omolodhToTE ArTIXElUEVO VTG TOV ebgove O. Emlong, éotw O* = {0’ €
O :5(0,0) = OPT, 0} w0 0tworo twy aveixeévar evrds tov edgovs O mov meTvyaivovy avtd o
oxog. Tére, woyvel on :

2A o
Pris(Mg(0)) < OPTs 0 — " (In( ||(9*|

)+t <e”

‘Etol, 6nog qolvetar 010 teXeuTalo Béwprnuor authC TNG UTOEVOTNTAS, 1 Xehor Tou Exbeticod
Mrnyaviopol wg "emhoyéa TN’ odnyel oe éva unyoviopd yio Ty dnuomeacto gneloxdy oryadodv
Tou - mépay NG Slapopnc WL TXOTNTACS - e€ac@anilel xou TONY LPNAS xépdog:

Theorem B.3.3. Ia tny dnpompacia ynpiaxdy ayaddy, vrdoyet pia e-mpooeyyiotixn xvolagyns
orparnymns pilaining dnuompaocia, wov ya to Sidvvopa abtodoynoewy yewpdtepns megintwons v,
diver to xdrwth pa ta éooda:

Pr{’'Ecoéa > OPT(v) — O(

logmy: . 0.9
€

B.3.2 3Xuvdptnorn xowwvixoL ogéloug we Eviponixr Kavovixo-
noinom

‘Evag SopopeTtindg - mo EUUECOS - TEOTOC YLot Vo Tdpouue Tov exBeTind unyoavioud, elva emou-
E8VOVTOS /XAVOVIXOTOLOVTOS TNV GUVEETNOT) Xovwvixol ogélouc (D 1 | x; - v;) e TV eviporia
e xatavophc mavotnTag Tov peTaANTOY andpaons z; (D z; - log z;) ToNNamAacloopévn
UE Lot TUPAUETEO "ENEYYOU” 77, DNULOVEYWVTAS ETOL UL VEO OVTIXELIEVIXY) OUVERTNON TEOC UEYL-
otonoinon xou dpoviac onolovdhnote dANo meploploud evotdbeiac/Bixatocivne”. Ouclaotind,
10 mpdTo dBpolopa (xovwvind GPENOG) TelVEL VO BNULOVEYHOEL UTECOUYXEVTPWTIXES XATAVOUES,
CUGCWEEVOVTG TNV TEog dlovour udlo otov LdmAdTepng afloNoynong malxtn. Amd Ty GAn,
70 deltepo Gfpotopa (eVTpoTia) YEYIOTOTOLETUL GTNY OUOLOHOPPY XATAVOUT|, ETOUEVHOS TEIVEL VoL
OnuloveYNoEL LooUoLeaoUd GTNY TEOS Slavoun Udla. SUVETKS, AVANOYA TNV T TOU CUVTEAESTY
e evtponiog (77), UTOPOUUE BUVNTIXG Vol TIOPAYOUPE XOTOVOUES UPNAOU Xowwviol ogéloug, ot
omolec TopEANNAA IXaVOTIOLOVY XdToLa EVVoLa SlaxotocvNne/euo Tébetac.

‘Evo a€loonueinto yeyovée, eivar mog 1 BéNtiot (U€ylotn) Aoom yior aUTAY THY AVTIXEWEVIXH
cuvdptno, ebvat - AL - o ExBetixdc Mnyavioude, dnog gaiveton xow 610 xdtwb AMuyo:

Lemma B.3.4. H félniorn AMbon tov moofifuatos peyiotonoinons: max Y, x; - v; —n - (O x;logx;)
i=1
eivar o Exdetieds Mnyavouds, dnladn:
E

n vj
S et
j=1

xTr; =

B.3.3 AXyépeiBuog avavenoewyv tolkaniactoo Tixol Bdeoug

Amhdg wa abvtoun avopopd, Noyw NG YEYEANC enowdtnTtds Tou, otov ANyoeiBuo avavemdoewy
oA anmiaclac Tixol Bdpoug. Agopd online "oxnvixd”, dSnhady| xotactdoelc 6mou 1) elcodog Epye-
Tl TUNUATIXG OE SLaBoYIXES YPOVIXES OTLYPES o TREEL Var AngBel wior -un avoo Teédiun- andgaon
oxeTWd ue TNV emhexleloa evépyela TNV TEEXOUC YEOVIXT] OTUYUR UE YVMON UOVO TOU TUPEN-
B6vtoc xan tou mapdvtog xou Oyt Tou wENNovtoc. O Alydeibuog autd mou xdvel, ev cuvtoula,

8
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elvon 1o €€hc: Apyxd emhéyel opoldpoppa pla EVERYEL. Xe B xpovixr) OTLYUY, YELOVEL TNV
ThavoTNTo ETMAOYAC TV "XaxWV” evepyeldy exbeTnd, onote and éva onueio xan petd Bo emnéyel
HE VONAY TlovdTNTo OYEBOV AMOXAELTTIXG "XaUNEC” evépyeleg. AmodexvieTton mwe 1 TeENeuTaia
xaTovou) 6TV omola cUYXAVEL auTOC 0 ahyoplBuog, elvon AL o Exfetinde Mnyavioude. T
Noyoug mAnedTnTag, topabétoupe ot Peudoxddixa ot EXAnvixd tov ANyoplbuo mopoxdtw :

Algorithm 2 ANyopibuoc avoavemoenmy ToA o acloc TLxol) Bdpoug

Input: cOvolo duvatdv dpdoewv A = {A1, Ag, ..., Ap}, napduetpoc elepelivionc-
otbyevonc”’ n € (0,1).
(1)

1: Apywomoinoe 1o Bdpog xdbe dpdong A; wg e€hc : w; * — 1
2: for xdbe ypovxd Pruat =1,2,...,7 do

3: Eni\ee dpdoeic pe mbavotnto avéhoyn Twv Bopwvy wl@ 0N\, YEO® TNS XATAVOUNC:

(t) (t) w® )

. [} n . 9000y n 1 .
> w; '21 w; > w;
i=

1=1 i=1
4: [Mopatrenoe to didvuoua anwielog £ yio xdbe Spdom
A
5: Avavéwoe to Bdpoc xdbe dpdone A; we e€h¢ ¢ wEtH) — wgt) et
6: end for

B.4 Mnyavicpol dtavoung evbeiog xow avticTpopng o-
VAAOYLXOTNTOG

YNy 1opolod UTOEVOTNTA, TEELYPAPOUUE EVVOLONOYIXG Xou HE (Peudoxddixa Toug 2 anyoplBuouc
TIOL GUVATOTENOVY TNV LAomoinom tng apxhc "Avaroyixot Kavova Awovounc”. Autol or ahyopib-
pot ebvar 0 unyoviopog dlavourc eubelog avaAOYIXOTNTAC XAl O UNYOVIoUOS Blavourc avtiotpopng
VOOV LXOTN TS,

Avagopd pe tov unyoviopd eubelac avoroyixdtntag, n Aoy Onwg TERLYPAPNUE GTNY UTOU-
noevotna B.2.1 xou emavohapfdveton €36 yia Noyous TAneoTTac elvan 1 xdtwbu: Awpolpace oe
%8B modxtn Yépog Tou avTixeévou avdroyo (wog adioucag cuvdptnong) e oflag tou. O -
TOND AMAOS AUTOC - UNYOVIOHOS, TEpLYpdpeTal oTov ANyoplBuo 3 axplfdc and xdto.

Algorithm 3 Mnyoviouoc Awavourc Eubeloc Avoloyixdtntog TopoueTponoinuévos onod
v ouvdetnon g()
Input: Yuvdptnon g() : R=Y — R2% cuveyic, unepmpoaetind (3rh. g(x) + g(y) <
g(xz +1y)), av€ovoa cuvdptnon. Aiec vy, ..., Uy.
1: for i € [n] do
2: Oéoce a; =

ng(vz')
> g(vj)
j=1

3: end for
4: return a.

To mpbfrnua pe tov mapandve o\yopluo elvar 6Tl 1 anddooy| tou elaptdtatar and to TARBoC
TOV CUPPETEXOVTOV oTNV dlodxacto diavouns, €otw n. Otav n — 00 , TOTE T0 xOWVIXd OPE-
Xoc — 0, agol xdbe (un-undevixiic altohdynone) naixtne Bo Nafet xdmolo xahaopatixd pépoc tou

9



10 Kegdhawo B. Extetopévn eNknvéyhwoon meplndn

avTXEEVoU, OTOTE ouoLoTXd xdBe maixtng (axdua xar o udmidtepne aflordynone) Ba Ndpet
ENAYIOTO UEPOG TOU OVTIXEWWEVOU XAl 1) CUVELT(QOEE TOU GTO XOWwWIxo 6gelog Bu telvel oTo 0.
To mparyuatind mpdBAnua autold Tou unyaviouol mou “xovioptonolel” TNy evpwotia Tou elvon To
YEYOVOE OTL DivEL UN-UnBevind xAGoUO TOU avTIXEWWEVOLU G TOND youn\ic a&tondynone maixteg,
eved Qo urmopoloe va petagpépet autéc Tic pdlec ot udpmihdtepne afiog maixteg, xwplc vo mapafLdlet
xdmota - g0Noyo - xprthpla Bixanocivne” (ool eivon cogéc Tt 6o YaunhoTtepnC alONGYNoNS
elvan o mobxtng, oo Avybtepn adia ypetdleton v va ixavoronBel). Enouéveg, n Pacixn 18éa mou
odnyel oty uetdPacn otov o "EEunvo” xou xaT’ENEXTACT] ElPWOTO AAYOEWBUO Elvor Vo aprivouuEe
- BuVNTIX - Toug XouNAGTERTC a€loNdyNoNg kX TeEC Ye undevixr| Slovour aryafou.

Ac 0 Solue o avoutixd. e "uPn\é eminedo” N Aoy Tou véou ahyoplbuou - avticTpopng
avooyxotnTac - elvon avti vo polpdloupe To avtixeipevo avéloya e wa avfouoo cuvdptnon
TV o€V TV TUXTOV, Vo "xoPoude” avdhoya plag @Bivoucag cuvdptnong twy o€y toug. Ilio
CUYXEXPLWEVA, OTIWC TEPLYPAPETAL O TEXVIXA oTov ANyopiBuo 4, o unyoviopos capxixd polpdlet
oe xdfe malxtn éva "eovixd” avtiypopo OXOXATPOL TOU - TEOC BlavouY| - avTXelévou xou Ee-
nwdeL vor "x6Pel” and xabéva éva uépog tou, Ye pubud avdroyo xdmolag @bivoucag cuvdptnong
e adlondynonc tou. Otav xdnolog nalxtng xatd v Swdixacio Twv cuvexdY "xoPdtwy” Pee-
Bel pe apvnTind pepldio atnv dlavoun, tote yapaxtneiletar wg un evepyos, AopPdvel - oploTixd
- undevind uepidio Tou avtixewévou xan to "xodiuata” cuveyilovton xotd Tov (Blo TedéTo Yyl b-
Aoug toug umdhoitoug. H Bradixaotia otopatd étay 10 cuvoaxd dfpotopa Twv Slopotpal GUEVKV
peptdiov tou avuxelévou afpolletar oto 1 (dnhadh dtav @Tdcoupe Yol TEMTN Qopd Ot EQPXTH
Noon/Bogotpacyd).

Algorithm 4 Mnyavioudg Aavourc Aviiotpogne AVoroyixOTNTAS TUPUUETOOTOUE-
vog and v ouvdptnon g()

Input: YXuvdptnon g() : RZ% — (0, 00] e g(0) = 0o xou limy—s o0 g(x) = 0, bivouca
ouvdptnor. A&ieg vi,...,vy.

Apywonoinoe s = min({i € [n]|v; > 0}).

while 1 — (2=8)90s) < 4o
> 9(vj)
Jj=s

1: Apywaroinoe a; =0 yio 1 <i<n

2: Tagwounoe tic afiec wote v1 <vg < ... < vy,

3: if v, = 0 then

4: ©éoce a; = % it G oug Toug deixtec 1 <7 < n.
5: return a.

6: end if

7

8:

9: s+ +

10: end while

11: for 7 > s do

12: @éosaizlf(nfs)-ng(#i)
]Z::Sg(vj)

13: end for

14: return a.

10
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B.5 Mmnyxaviowog dravounic PAlatriprnos Atadoyixd Xxo-
Adxia xTd To duvatov ¥nhotepd”’

‘Onog avopépaue xaL oTNY AdPOUERT] TEQLY PP TWV oEY WYV YId TNV TEOCEYYLOT TOU TEOPAAATOC
xan ouyxexpwéva otnv Apgyr "Enihuone tou Doopuixod Hpoypduuotog pe emPoly| neploploytdv
dixanoolvng”, 1o PacixdTepo U€pog TG BOUAELRC HaC OTA TANLCI TNG TAUPOUCAS DIMAWUATIXAC
gpyaoiouc cuvioTtatar 6Tov oYEdOUOU EVOC VEOU Unyaviopol dtavopic oryaddv (vl Ty nepintw-
on dporpacpol evée ayabol - Single-Item case), mouv tov ovopdlouue "Alatfipnoe Awadoyxd
Yoxodnio xatd 1o Suvatdy Unhotepa’(AALY). H agoppr dnpiovpyiac xou o Aoyoc napéne tou
CUYXEXPLUEVOU UNYAVIOHOU Blovopnic EVTAocovTol 6T TAAioL TS TeooTdlelds pag vor emNOGoUUE
HE BENTIOTO TPOTO TO HETWOL Ypouuixd TEdY PO

LP1(Single-Item)

max E T; - U;

iEN

s.t. Z Ty = 1

ueN

T - Vi — Tij41 * Vi1 < g(vi,viﬂ),v agent xS [O, . ,N— 1],
x; €[0,1],V agent i € N

e "uPn\6-eninedo” n oy Tou alyopibuou mou mpoteivouye elvan M e€hc: Ilpoondbnoe vo eu-
vofoelg 660 To duvaTdV TEPLoGOTEPD Toug LPMAGTEENC alohdynone taixtes, unv topafidlovtog
TOUC TEPLOPLOMOVS dixonoalivng xau Unv agrvovtag pdla xweic dioavoun. o Adyoug mAnpdtntog
Ba unoméoouue oto oXioOnua TNe enavaAnPyoTNTOC Xou Bor BlUTUTGOLUE OE O TEXVIXO ET{TEdO
WS BOUAEVEL O UNYAVIOUOC Hog TIElY BOCOUUE TOV PEUBOXMBIXA, XYUTL TOU XEVUUE X0 GTNV UTOE-
votnta $.2.2. Autd mou xdver, Aowmdy, o unyaviopds poc etvon to e€fc: ALaTdooEL TOUS TOUXTES
ot @bivouca oeglpd (we Tpog Ty aloNdyNoT Toug yiot To avTxelpevo). Apxixd, potpdlet xdmoto
Tuyata pdlot Tou - TEOg Blarvour) - AVTIXEWEVOU GTOV UPNAGTERNC A€oy oG TtakxTn. XNV ou-
VEYEL, Bivel 0TOV auécwg ounAOTeEpNg adlondynong tokxtn pdlo 60N hoTe va xavoromnbel o
HETAEY TOUC TEPLOPLOUGS UE LodTNTa (BAad Ty eEXdyiotn Suvarth). Buveyilet xotd tov Bo tpdmo
OTOUG ETOUEVOUC TOUXTES, UéXPL VO PTAoEL o€ xdmotov Tou "Ba €mpeme” var Nafel cpvntind pépoc
TOU OVTIXELMEVOU 1] VO TEAELWCOLY Ol TOUXTES. 2TO TPWTO EVOEYOUEVO, XPUTAEL AUTOV TOV TAlX TN
OTWS XL OAOUE TOUG ETOUEVOUS TOU UE Undevixt) Sovour| Tou ayafol. Aol oloxAnewdel 1 @don
e dlavouric, o anydelbuog tpoohétel dheg Tic dlaveunBévtec pdlec xou éotw 6Tt abpollovtal oe

nooétnta t. Av t < 1, t61e podler mocoa L otov mpdto mabxtn, evey av t > 1, téte
Tou poipdler toodTnTa 5. ‘Encita enavodopufdver tnv Sadixasia 6noc avopépbnxe mopamdve. O

oa\yopuog otauatd étav t = 1. H nopandve neprypapy| QoiveETal O aVONUTIXG Xo TEXVIXA GTOV
AXNybpibuo 5.

11



12 Kegdhawo B. Extetopévn eNknvéyhwoon meplndn

Algorithm 5 Mnyavioudg davouric "Atatripnoe Awadoyixd Xxondxia xatd To duvatdy
Unh\otepa” (AAXY) mopapetponomnuévos and tnv cuvdptnon g()

Input: Iivaxoc 1 X n and n un-apvnuxég alleg TauxT®V Yo 10 aviixeiuevo
(xBry "enavoaeTixetomololue” Tic o&lec, €T0L OOTE @ U] > Uy > ... > Up)
Output: Awvopr z(v)
1: 'Eoto a évag tuxaloc mparylotixds aplfuoc mou emAEyeTon ogoLoUoppa and To did-
otnua [0, 1].

2: notwPpayua — 0;

3: avoPooryuo < 1;

4: while (aAnbéc) do

5: Oéoe 11 = q;

6: s+ 2;

7. Ty Wl—vigs(vh%);

8: while z, > 0 do

9: S++;

10: T xs—1~vs—11;g(vs—1,vs);
11: end while

12: for i € [s,n] do

13: x; + 0

14: enql for

15: if Z z; > 1 then

. z;1<_ xth(bp(;’YpOH‘Il :
17: avwPpoyuo < x1;

n
18: else if >  x; <1 then

=1

19: a ml—l—ocw;'ibpw{pa;
20: xotoPparyua < x1;
21: else

22: return z(v)

23: end if
24: end while

3Ny ouvéyela, amodEXVIOUHE OTL O TUPAUTAVG UNYOVICHOS Blavouric ayofdv Aivel BélTioTa To
voouuxd mpdypoppo LII1, yio xde cuvdptnon andotaons g(). Lty YAOOCO TOV LoUBNUATIXGY,
€Y OUE:

Theorem B.5.1. O unyaviouds Swavoutc "Awarionoe Awadoyind Xxaldna xard to dvvardy Wi-
Abtepa” Buavéuer to avrixeiuevo féltiora ya to I'll1, pa xdde ovvdornon andoraons g().

Eneldr) npdxeiton yior v amd To xUPLOTERO AMOTENECUATA TNG OIMAUaTIXAS Hog o Bdcouue pia
aBpOUERT| TIEPLYPUPT TNS ATOBEIENC.

12



Kegdhawo B. Extetopévn eAAnvoyrooor nepihndn 13

Ixapipnua tTne Anodeidng :

H anddeiln eivon edxorn xou udAhov elvar xoXOtepa vor TV amodOooude ypopd. Mévo uepixd
Noyta mou "Bonbolv” Tic exdveg va e€nyioouv Ty Aoy, O ohyoplbude pog elvar dminotog xou
Y1t UTO ETULXELPOVUE VoL omoBel€ouUE TNV PEATIOTOTNTA TOU Péoa amd éva EyElpNUol AvTONAAY TG,
Suyxexpiuéva, unobBétouye 6t 1 Ao pag Sev elvan BENTIoTN xan Stopopornoteltan omd Ty BéNTIO TN
Yio TR TN Yopd oty a&ia Tou Talpvel amd Tov unyavioud o taixTng i. Luvenog, Bdoel e Aoyinnc
Tou a\yopibuou pac, o BENTIoTog unyaviouds éxel ddoel Ttapandve ol 6Tov i—oTo TaixTn and
™V eNdytoTn mou ypewdletar (dote vo TapaflacToly ol Tepoptopol TBxaochvne” Tou €youpe
oploel. Ty emnpdobetn udla mou dnuovpynoe authy Ty emnpdobetn ala, TV aPaLEolye ond
oV i—oTo malxTn X TNy Sopotpdlouue otoug Talxte 1 €wg ¢ UE TPOTO WO TE VoL SLaTnEoVTOL Ot
neploptol danooivng pe lodtnTo’” (tpo@ovede xon auTtde HETaEy (i—1)—oTou xot i—oTou naixTn)
uéxpelc 6Tou va unv uTdpyet AT wdla teog Stavopr. Me autév Tov TpdTo, G Tadlond TPOTOTOLOUUE
v BENTIOTN NUoT YE TPOTO MO TE Vo TAUTIOTEL UE THY ATANG TN VoM Uog Xat Ao Tor auEdvovTog
TO GLVOAIXS XOWWVIXOG 6YENOS (ool 1 udla avadlavéueTon oTov i—o T maixTn xou o€ maixTteg
udmAbtepne a&lag omd autév). Emouévac, n PéNTiotn Aom tetuyaivel lxpbTeRo XoWwvind 6QeNog
and TNy Bt pag, dromo. Ta mopandve, atotundvovton To yAapued otic Ewdvec B.1 xou B.2.

mass to be reallocated
to the same and higher agents

g(v1,v2)

g(va,v3) .

g(V?n V4)

< g(va,vs)

HEH o BN NN NS LN NN NN NN BN NN NN - EEEEEEE-JHEHE
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

EXT’]HO( B.1: An illustration of the initial allocation, assuming k—th constraint is not tight

13



14 Kegdhawo B. Extetopévn eNknvéyhwoon meplndn

1
} Vi,
|
}g(VQ,
]
}Q(V3,V4>
< g(va,vs)

HEH o BN NN NS LN NN NN NN BN NN NN - EEEEEEE.JEHE
0

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Yyhua B.2: An illustration of our many-to-one greedy exchange argument

B.6 Xvuvdptnon xowwvixoL ogeéloug Nash: Evallo-
XTIXOGC TEOTOG UNYAVIOUOU dLavounrg subsiag o-
VAAOYLXOTNTOG

‘Evag evahoxtixode tpémoc yia en{teuin avoroyixic davopric oryabdv, xal o cuyXeXpLéva
oty TAéov "mpwTtoreld” popp e (Snhady| dtav o i—otoc maixtne molpvet %) TPOX VT TEL
uéoa and v Apyh "Teomonolnoe 1 avTXATESTNOE TNV AVTIXEWWEVIXT] GUVEETNOY) XOWVOVIXOD
0QENOUC” XAl TILO CUYXEXPUIEVA OO TNV AVTIXATACTAOT TNS CUVAETNONE XOWOVIXO) 0QENOUS UE
TOV YEWUETOIXG [1E00 300 TwY aldy Twy TaxTdy yua o mEos Stavoun avtixelevo (ag emxevipoholue
oty nepintwon dwavouhic evoc ayabol). Auth 1 cuvdptnorn ovopdletor cuVEETNOT XOWWVIXOD
o@élouc Nash - vou xan €8¢d elvan ywpévos autds o dvbponog - xou yia vo ueyiotonowndel amontel
xdmotov eldouc Tavahoydtnta’/Buixatocivy” otic Slavopée (ac To aphooupe xdmwg apnenuévo
- TouNdyoTov ota TAadota e mepndne). Bto UyAua B.3 mapatnpolpe twe To onueio Tou
pethrov Pareto mou peyiotonoel to epfadov touv opboywviouv taparAnhoypdupuou HeTaEld auTtol
%o Tou onueiou avagopds, elvor éva evdidueco onueio (ev mpoxewévew o (3.25,4.5)) xan oy éva
AXEELAVO.

14
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,(2:55) (2,5.5)

(2.25,4.5) (2.25,4.5)
. .

(3.25,3.5) (3.25,3.5)
.

fa(x) fa()
(4.25,2.5) (4.25,2.5)

L(5:5.2) S 5:52)
d=(2,2)

fi(@) fi(=)

Yynua B.3: Nash social welfare maximizing point is the “fairest” point of the Pareto frontier

Auté onualvel 6TL undpyel xdmola looppotia oTo onuelo emAoyng, LTS TNV évvola dTL xaL oL 2
oLVAPTACELS AoPAVOUY PeYEAes TIES xou BeV peyloTonolelton Wovo ulo amd T 2 Ue TNV AT vat
nodpver pxen T (6nog ovuPoiver ota axpelavd onuela tou petdrou Pareto). Auth 1 Wbt
EYEL YEVIXOTERT LoD YO TNV CUYXEXPUIEVT CUVARTNOT). LUYXEXPWEVA, ATODEVOOUUE TOND EU-
XONA HE ¥eYoN TOANAmAaclao 6y Lagrange mog oe cuvlixn Slavouic XNACUUTIXWY UEPDY EVOC
OVTIXEWEVOU 6T0UC T TES (loodUvaa Stoptolpaouol mhavothtwy and xotovour thavotntog). n
ueylotonolnon tou xowvwvixol ogéroug Nash cupPoiver dtav xdbe maixtng Adfer tnv xoavovixo-
TounuévT agiot Tou yia To avTXelpevo, 1) - Llooduvaua - NEBel TNV avahoyixy| Slovopr] Tou aryabod
oty "mpwtorewd” popph te. H mopandve npdtacm, ot wopen dewphpotog petoppdletar 0 e€hc:

Theorem B.6.1. To xoilo mpdyoauua Siaporpaouod mdavorntwy e avuxeyevinn ovvdQTnon To
xowanxé Spelog Nash (ue petafintés andpaons ts mbavdrnres xar napauéroovs tg ables twy
raxtdy), &per we PéATiorn Mon Ty avalopxt) xatavoun).

B.7 Ilswpopatixny cLyxplon RETAED unyxovicood Ouo-
voung AAXY, unyavioprol BLavoung avtictpo-
PNG AVANOYILXOTNTOS, UEYLOTOTOLNTY] XOLV®WVIXOU
OPENOVG UE ARVTTIXY] EVTROTILXY XAVOVIXOTO{NnoT
xo pNavioprol Sitavopng subeiog avaloyixotn-
TS

Yty nopoloo unoevoTnTa, Tapafétoute To TELpaUATIXG anoTENEoUaTo and dldpopa "tpeipata”

TOU ETUYXELRNOOUE YIo TNV OOYXELOY TV XATAVOUWDY TOU Toedyouv w¢ TEog TiC dlavoués ol 4

pnoviopol Tou evBlapépovtde pag xabie xou Ty eniBoot| Toug (xowwvind bpelog) ev cuyxploet

xo e Ty péytotn duvarth, Sniadn exeivn mou emtuyydvel o "YPniotepou Ilovropiouatog Haixtne
Kepbdilel” unyaviouoc.

15
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007 016

— ALGL with |

— PAwithI=1 014 — PAwithi=5

—— Entropy Regularizer with heta — Entropy Regularizer with het
Proportional with | = Proportional with | = 5

—ALGL with | = 10

— PAwith =10

—— Entropy Regularizer with heta = 1
Proportional with | = 10

— ALGL With |
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Eyfuo B.4: TPA vs KCST vs PA vs Entropy Regularizer for Single Gaussian(p = 30,0 = 0.3)

025
— ALGL With | —ALGY with | —ALGY with | = 10

— At =1 — IPAwithi =5 — IPAwithI =10
— Entropy Regularizer with heta = 1 — Entropy Regularizer with heta = 1
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Yyfua B.5: TPA vs KCST vs PA vs Entropy Regularizer for Single Gaussian(u = 30,0 = 3)

—ALGL with | = 1 10 —ALG1 with —ALG1 with | = 10

— PAwith=1 — IPAwithi=5 — lPAwithI =10

— Entropy Regularizer with heta = 0.2 — Entropy Regularizer with heta = 1 — Entropy Regularizer with heta = 1
Proportional with | = 1 Proportional with | = 5 Proportional with | = 10

2
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Yyfua B.6: TPA vs KCST vs PA vs Entropy Regularizer for Single Gaussian(yu = 30,0 = 9)

—ALG1 with —ALG1 with | = 10
— At =2 — IPAwith| =10

% —— Entropy Regularizer with heta = 0.8 ‘1’; 06 —— Entropy Regularizer with heta = 1
2o oropenional with | = 2 2 Proportional with 1 = 10
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Yyhuo B.7: TPA vs KCST vs PA vs Entropy Regularizer for Uniform(p = 30)
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Chapter 1

Ariadne’s Thread

1.1 Introducing the Introduction

First things first, we have to define the land through which we will walk in the entire diploma
thesis. This is, actually, a complex task to achieve since we stepped in different fields and
adopted different principles, in order to achieve the same thing. I mean it’s not so easy to
explain both conceptually and technically what we are trying to do here without sticking into
details, that affects negatively the intuition pump that we wish to accomplish through the
introductory material. Anyway, we will give it a try!

Briefly, our goal is to achieve some sort of “individual fairness” for every single participant in
a (single) item allocation process, but in a way that it scores consistently high social welfare.
By the term “individual fairness”, we mean something really simple that includes an interior
"load” of fairness in a natural and straightforward way: Agents with similar valuations should
receive similar proportions of the item. In a more technical level, the basis of our work was
the work of Chawla et al.([5]), where they try to design an allocation mechanism that achieves
this desideratum indirectly. More specifically, they come up with an indirect definition of
individual fairness, that - if and when satisfied - implies the straightforward definition that we
gave above. In a natural language, this definition can be described like this: for an arbitrary
agent, say i, define a radius for his value, say A. Keeping all the other agents’ valuations fixed
and agent ¢’s valuation multiplicatively close to his original valuation with respect to his radius
(i.e. v} € [3,A] - v;), agent i should receive similar allocation in the 2 instances. In our line of
work, in order to achieve individual fairness, we come up with a more direct definition that we
try to satisfy than the one in Chawla’s paper. More precisely (but not ultimately precisely!),
considering that the agents are sorted based on their valuation for the -soon to be allocated-
item, we enforce that agents of consecutive valuations (hence somehow similar valuations) will
receive similar values (and not just allocations) from the mechanism. In order to achieve this,
we have experimented - both theoretically and programmatically - with different approaches
(let’s call them principles to emphasize on the generalizing power and value of these though
processes), that we briefly summarize below:

e The “Proportional Allocation Rule” Principle: Allocate proportionally to (some
increasing function of) the values of agents or deduct proportionally to (some increasing
function of) the inverse of values of agents.

e The ”Linear Programming” Principle: Solve optimally a Linear Program with
“fairness” constraints of our choice, where the decision variables represent the fraction of
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the item to be allocated to each agent.

e The ”Slightly or completely modify the objective function” Principle: Remove
the "fairness” constraints and instead “enhance” the (social welfare) objective function
with some term that enforces decentralization of the mass or completely change the
objective function with a new one who is maximized in "fair” allocations.

Before jumping into the main analysis and technical details of each approach, we consider our
duty in a scientific but also ethical way, to mention some worth mentioning works that lie in
the - really vast - algorithmic fairness literature, since they inspired and educated either us
or the researchers that inspired and educated us (and therefore us after 2 hops in the social
graph!). The definition of individual fairness that created the basis of the works that created
the basis of our work (:)) can be found in the paper of Dwork et al.([15]). In a very high-level
and abstract way, some illustrious works on the algorithmic fairness from the prism of classify-
ing - under certain criteria - the agents into several groups and trying to achieve some sort of
(well-defined) balance between and/or inside the different groups can be found in the following
papers: [10], [20], [22],[23], [46]. Staying - for a little bit more - in the waters of group fairness,
it can be smoothly established a logical bridge and (hence) a scientific interconnection with
the machine learning/statistical group fairness - meaning having people being categorized into
groups, we try to minimize the error of a (say) binary decision that concers each individual
that is included in one of these groups (for example people with higher market force and rich
medical data history and people with lower market force and poorer medical data history,
when the decision is to be hospitalized or not). Epigrammatically, some works that lie on this
direction can be found here: (]25],[45],[44]).

In another research direction, that lies under the same Algorithmic Fairness umbrella, allo-
cating indivisible items between individuals (and/or groups of individuals) was the starting
point of our conceptual trip to this field. In this topic, Markakis has some very important
contributions in both research and educational level, with works (and joint works) like [26],
[27] and [28].

A research direction very similar (and in some cases identical) to the one followed in our thesis
is allocating divisible item(s) to the agents under a proportional logic. We chose to mention
the following works: [35], [3],[6] and [§].

Finally, from a clearly more technical standpoint, the main algorithmic topics that enhanced
our tool-set throughout the whole diploma thesis are Randomized Algorithms ([31], [30]), On-
line Algorithms([16]) and Differential Privacy([37]) (and many more that we mention below
and find tiring to mention here:)).

Alright, now that we have established what we are trying to do in this thesis and how (or at
least I hope so!), let’s jump into the details.

1.2 Motivation

Before giving a high-level explanation of our technical trigger that initiated our research at-
tempts, maybe it is better to talk a little bit about the real-life perspective that could motivate
theoretical research. Why should we care about stability in allocating things at auction set-
tings in the first place? As we will see later on (in the Differential Privacy subsection of the
Preliminaries section), privacy can be a major concern for the mechanism designer if it is a
major concern for the participants (incentivizing their behavior). And when do privacy issues
concern the participants? For example, let’s think of a multi-stage auction. If the valuation
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and, thus, the bidding strategy of an agent in the current stage is somehow correlated with
his bidding behavior in previous stages, then -definitely - she should be aware of any potential
information leakage.

In a more technical level, the onset of our own work was the work of Chawla and Jagadeesan
([5]) and a joint work of them with Ilvento ([21]). In fact, the first paper was the one that
mostly triggered our research interest, where we first got in touch with the idea of the In-
verse Proportional Allocation Mechanism and, in a second level, with the idea of "keeping”
low valuation agents with zero-allocation without hurting "fairness”, in order to achieve higher
and robust social welfare guarantees. More concretely, our initial intuition was that this idea
was generated from a principle quite different from the proportional allocation one. Hence,
we developed a linear program with our own defined stability constraints and constructed an
algorithm that solves it optimally. If the principle behind this Inverse Proportional Allocation
rule is the optimal solution of our program, then obviously this mechanism should be equiva-
lent with our algorithm (short and honest disclaimer, we aren’t quite sure yet :)). During the
development of our diploma thesis we experimented with other ”auction-stabilizing” techniques
too, such as Negative Entropy Regularization and changing the objective function from social
welfare to Nash social welfare. For a more intuitive and mathematical explanation of all the
above, we refer the reader to the corresponding sections.

1.3 Related Work

In this section, we chose to mention only the absolutely essential papers for our own line of work,
along with their corresponding - twofold - contribution, both to our theoretical background and
ideas, for generating our own theoretical background and ideas. As we mentioned earlier and we
will mention a lot of times in our diploma thesis, our starting point was the work of Chawla and
Jagadeesan ([5]). In fact, the whole "Linear Programming” and "Proportional Allocation Rule”
part was generated - mostly - based on the above paper. Obviously, our first introduction to the
differential privacy notion/solution concept came through the fundamental work of McSherry
& Talwar ([29]). Now, for the "Entropy Regularizer™related sections, we should mention the
amazing lecture notes of Syrgkanis ([42]) as the main contributing factor of our understanding
and explanations. Finally, we got a glimpse of the Nash Social Welfare objective function
through the work of Charkhgard et al. ([4]) and the classic paper of Nakamura and Kaneko

(132))-

1.4 Overview of Our Contribution

In our diploma thesis, our main contribution is the introduction of a new “family” of alloca-
tion algorithms, the "Keep Consecutive Scales Tight” allocation mechanisms. Also, we gave
a theoretical proof of an alternative way to achieve the "vanilla” proportional allocation for
the single-item case, by simply solving optimally (with the method of Lagrange multiplier)
an unconstrained concave program with the Nash Social Welfare Objective function with a
probability distribution in the role of the decision variables. Besides the above, we have con-
ducted some experimental analysis on several allocation techniques like Proportional & Inverse
Proportional, maximizing Social Welfare with an Entropy Regularized term and our "Keep
Consecutive Scales Tight” allocation mechanisms. Obviously, my apologies for the density of
the terminology, it is a necessary evil for the provided facilitation of the “obligatory” struc-
ture of the diploma thesis. I promise that everything will make sense in a while, given one
constraint: the reader’s little patience!
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Chapter 2

Preliminaries

2.1 Convex Analysis

Before jumping to the more algorithmic aspect of our Preliminaries section, it will be useful
to introduce and formally define some very basic notions that will enhance our mathematical
tool-set and accompany us until the end. Our main source is the fundamental book of Shalev-
Shwartz and Ben-David [39].

2.1.1 Convex Sets

Definition 2.1.1. (Convex Set). A set S in a vector space is convex if for every pair of
value vectors x,y € S, S contains the line segment that lies between  and y. In a more
mathematical expression :

A+ (1 - Ny €S, forall A el0,1]

For better understanding, in the figure below we illustrate some examples of convex and non-
convex sets.

Non-Convex sets Convex sets

SRON

Figure 2.1: Tllustration of convex and non-convex sets

2.1.2 Convex Functions

Definition 2.1.2. (Convex Function). Let S be a convex set. A function f :.S — R is convex
if for every pair of vectors &,y € S and X € [0, 1],

fAz+ (1=Ny) <Af(z) + (1= f(y)
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In English, f is convex if for any «x,y, the graph of f between x and y lies below the line
segment that joins f(x) and f(y). For an illustration of a convex function, you can see the
figure below.

pef (@) +(1—p)-f(y)

f(iB) Ef(uer(l*u)y)

v

T pxt+(1-—p)y Yy

Figure 2.2: An illustration of Convexity

2.1.3 Strong Convexity

Definition 2.1.3. (Strongly Convex Function). A function f is A-strongly convex if for all
x,y and p € (0,1) it holds that :

P+ (L= py) < (@) + (=) [ )~ G0 — )l — gl

Obviously, every convex function is 0-strongly convex. Just to gain some intuition, strong
convexity implies a quadratic lower bound on the growth of the function. An illustration of
strong convexity can be found in the figure below.

v

T pet+(l-py Y

Figure 2.3: An illustration of Strong Convexity

24



CHAPTER 2. PRELIMINARIES 25

2.1.4 Lipschitz Condition

Definition 2.1.4. (Lipschitzness with respect to the Euclidean norm). Let S C R?. A function
f:R* = R* is p-Lipschitz over S if for every &1, xs € S it holds that :

1f (1) = f(2)|| < p- |l — 22|

2.1.5 Jensen’s Inequality

Definition 2.1.5. For any real concave function ¢, numbers x1, xs, ..., x, in its domain, and
positive real numbers a1, as,...,a, :

i a;p(x;) i a;x;
i=1 <o | =k

n n
> ai > ai
=1 1=1

Equality holds if and only if 21 = 23 = ... = x, or ¢ is linear on a domain containing
TlyeeeyLp.

2.2 Algorithmic Mechanism Design Basics

2.2.1 Let’s talk about the science of decision-making”

So, now let’s move to the main "wrapper” of all the work produced in the limits of our diploma
thesis. As we mentioned earlier, we are focused on "stabilizing” (let’s leave this desideratum
somehow abstract until we will make it more concrete on the fly) allocations rules. This means
that we wish to concentrate the masses for allocation to the highest valuation players in order
to maximize the social welfare (let’s leave this desideratum somehow abstract until we will
make it more concrete on the fly :)), but - at the same time - we have some ”interior” sense
of fairness and, hence, we impose a "centrifugal force” in order to decentralize the allocation
to some degree. But, probably this is too much information for the start. Let’s see the bigger
picture.

Continuing with the same modus operandi as in the previous subsections, let’s start with
the name. Why ”science of decision making”? High-level, mechanism design focuses on the
design of systems with strategic participants. This means that the players that “constitute”
the system can be considered as autonomous decision-makers whose objectives usually isn’t
aligned with the designer’s one. In fact, the mechanism designer wants to “serve a greater
good” by maximizing the total social welfare or raise significant revenue for his “employer”.
On the other hand, system participants are generally considered as selfish - thus caring only
about maximizing their own utility. We will go back on "redefining” the notion of mechanism
design in a more concrete way in a moment. But before that, there is one promise from the
previous subsection that we have to fulfill. Why so much noise around truthfulness/incentive-
compatibility? For these types of questions there is a very specific oracle that always returns
satisfying answers. Life!

In the box below, we mention some real-life examples of agents’ misreport because of bad
mechanism design. These examples are taken from the tutorial on Incentive-Compatible and
Incentive-Aware Learning at EC’20 from Nika Haghtalab & Chara Podimata ([19]).
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Truly incentivizing theorists to be truly occupied with incentivizing
people to tell the truth :

First the principle and afterwards the motivation.

Goodhart’s Law
When a measure becomes a target, it ceases to be a good measure.

In other words, when we use a measure to reward performance, we provide
an incentive to manipulate the measure in order to receive the reward. This
can sometimes result in actions that actually reduce the effectiveness of the
measured system while paradoxically improving the measurement of system
performance.

So, let’s get a taste of why and how things can go bad when paying for a good
mechanism designer isn’t high on our agenda, from real-life examples :

1. Zara Restocking Process : Back in 2010, Zara decided to reengineer its
global distribution process, with the help of Operations Research. In order to
do so, it needed some data, so it asked the managers of each store to report
the expected amount of items that they will sell form different articles. From
the managers’ point of view, they were strongly incentivized to misreport, over-
estimating the expected amount of the top-selling items and underestimating
the rest, since acquiring more top sellers could lead to increased profit for their
local store and bigger bonuses for themselves. And - obviously - they did so!

2. School Admissions : A very classical example of data manipulation. In
high school, a lot of students have good motivation to misreport their school
preferences, to move to a lower-ranking school in order to achieve higher class
ranking for themselves. Also, before college, candidates may take SAT multiple
times or pay extra to take SAT preparation classes, thus achieving higher scores
by simply “overfitting” to the examined material, without actually acquiring a
better understanding.

2.2.2 Basic Definitions

In this subsection, we chose to deal with some (semi-)’formalism”. More precisely, the goal is
to concretely define some very basic notions of mechanism design that will follow us from the
beginning to the end, mostly addressed to the algorithmically educated but without "mecha-
nism designing theoretical background” reader.

First and foremost, let’s define the objective function that will lie on the center of our at-
tention through the entire document (along with some "tweaked” versions) : the Social Welfare
Function.

Definition 2.2.1. (Social Welfare Function from the Mechanism Designer’s point of view).
In mechanism design, social welfare function is a function that ranks items’ allocations as less
desirable, desirable, or indifferent for every possible pair of allocations.

Alright. So, speaking about mechanism design, everyone understands the term design, but
what about the mechanism part? From the standpoint that we examine here, a mechanism
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is a set of rules that orchestrates how agents with selfish motives should behave in a strategic
interaction to achieve a desirable (for the designer and/or for the society) collective outcome.
More concretely, this set of rules consists of 2 parts : an allocation rule (how recourses should be
distributed among the agents) - which is our major concern in this thesis - and a payment rule
(how much each agent should pay or receives a compensation given the result of the allocation
rule). Both the challenge and the goal is to create rules that align individual incentives with
the overall goal, ensuring that the outcome is not only efficient but satisfies some notion of
fairness. Ok, so now, let’s try to define formally our fundamental notion.

Definition 2.2.2. (Mechanism). A mechanism M can be represented as a tuple M =
(G,A, T,0,R,P), where:

e (G is the set of agents.

o A =]];c Ai is the set of possible joint action profiles, where A; is the set of possible
actions for agent 3.

T = [Lice Ti is the set of possible types for each agent, where 7; is the set of possible
types for agent 1.

O is the set of possible outcomes.

R :AxT — O is the allocation rule that maps joint actions and types to outcomes.

e P: AxT — R is the payment rule that maps joint actions and types to allocation
profiles.

For reasons of brevity, we will mostly refer to a mechanism M as M : 7" — O. Next, we will
define the notion of prior-free mechanism, which will be useful in the "Proportional Allocation
Rule” principle section, since the designed allocation mechanisms there display that property.

Definition 2.2.3. (Prior-free Mechanism). Let a mechanism M : 7™ — O, where agents’
types 7 are drawn from some probability distribution. The mechanism M is prior-free if it
does not require any prior knowledge or assumptions about the distribution that generated the
agents’ types.

Finally, let’s define formally 2 notions (in fact there are the 2 sides of the same coin) of
(approximate) truthfulness, that we will need in just 2 subsections below (in the Differential
Privacy part) :

Definition 2.2.4. (e—approximate Dominant Strategy Truthfulness for Deterministic Mech-
anisms). A deterministic mechanism M : 7" — O is e—approximately strategy truthful if for
allt € 7" and for all ¢ and ¢, € T :

ui(M(t)) = ui(M(t-i,t;)) — €
Intuitively, this means that no agent can gain more than e utility by misreporting their type.

Definition 2.2.5. (e—approximate Dominant Strategy Truthfulness for Randomized Mecha-
nisms). Assuming risk neutral players, a randomized mechanism M : 7" — O is e—approximately
strategy truthful if for all ¢ € 7™ and for all ¢ and ¢, € T :

Eonp(t) [ui(M(1))] 2 Eorpo [us(M(t—i, 17))] — €

The interpretation is pretty much the same with the one in the deterministic version.
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2.3 Solution Concepts of Stability with motivation in
Auction Settings

2.3.1 Self-Referential Global Stability a.k.a. Differential Privacy for
Mechanism Designers

2.3.1.1 Basic Definitions

In this section, we will be concerned with a very important privacy/stability solution concept,
Differential Privacy, introduced by McSherry & Talwar in [29]. Since we are interested in
auction settings, we will examine this kind of privacy as a gametheoretic desideratum. But,
what does that even mean?

Before establishing the logical bridge between Differential Privacy and Mechanism Design, we
have to define the notion of Differential Privacy in the first place. The setting where this
concept lives in is the so called "trusted curator model”.

Trusted Curator Model :
e n individuals, who each have their own datapoint

e cach individual trusts the curator with their datapoint in raw form, but
no one else

e with the individuals’ raw datapoints in hand, the curator runs an algo-
rithm A and outputs the result of this computation

Differential Privacy is the property of the algorithm A that there is no individual whose dat-
apoint has a large impact on the algorithm’s output. In order to jump into our main area of
concern, meaning a mechanism that ensures this property in a prevalent auction setting, some
necessary evil first : formalism!

Already from the definition of Differential Privacy, it will become obvious that there exists a
strong interconnection between this idea and randomness. So, let’s define what a Randomized
Algorithm is and afterwards proceed to our main definition.

Definition 2.3.1. (Randomized Algorithm). A randomized algorithm A creates a mapping
A : D — A(R). When receiving an input d € D, A outputs with probability (A(d)), the
following : A(d) = r, for each r € R. Also, the probability space is defined over the coin flips
of A.

Definition 2.3.2. (Differential Privacy). A randomized algorithm A : X™ — O is e—differentially
private if for all ¢, for all z € X™, for all 2} € X, and for all outcome events E C O :

Pr[A(z) € E] < e - Pr[A(z_;, ) € E]

Now that we have defined Differential Privacy, it is easy to see that this notion is quite similar
(at least from the mathematical standpoint) with the truthfulness of a mechanism, since they
both require "similarity guarantees” when unilateral deviations take place. Actually, (e-) dif-
ferential privacy implies (e-approximate) truthfulness. More formally, the following theorem
holds :

Theorem 2.3.1. If M is e-differentially private for ¢ < 1, then it is also e-approzimately
dominant strategy truthful.
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Ok, so we have established a mathematical interconnection between mechanism design and
differential privacy. But is there any real-life motivation behind this interconnection? Why
should a mechanism designer should be concerned with privacy issues, anyway? I mean, obvi-
ously, a mechanism designer cares only about the incentives and the motivation of the agents
to participate in the auction. So, if serious "privacy-preserving issues” are a disincentive for an
agent’s participation, then yes, the auction designer should be concerned a lot. But is this the
case here ?

In fact, it could be. Perhaps an agent might unbeknownst to the seller be participating in
another auction tomorrow. If the agent’s value for the item he might be purchasing tomorrow
is correlated with her value for the current item, then he should care a lot about any possible
information leakage.

2.3.1.2 Motivating the Transition to the Exponential Mechanism

After getting a glimpse of the Differential Privacy notion and establishing a (high-level) frame-
work - consisting mostly of definitions -, now it’s time to introduce one of the most fundamental,
yet powerful, mechanisms in the corresponding literature, the exponential mechanism. To il-
lustrate the type of problems this mechanism tries to address, let’s take a look at a very simple
auction setting, the digital goods auction (DGA). So, the scenario is the following :

Digital Goods Auction Scenario :

e 1 unit-demand agents

e infinite supply of identical items

The name derives from the fact that the motivation of the above auction format comes from
selling items with zero marginal cost of production, meaning digital items like software. Obvi-
ously, in this infinite supply setting it makes no sense to seek for welfare maximization, since
n
we can easily achieve > v; always (just give each agent 1 copy of the item for free). Hence,
i=1
our main focus here is revenue maximization. The logical bridge with the stability framework
that we are interested in this section is created easily, since we wish to "run” this auction in a
differentially private way. The revenue, obviously, has to depend from the chosen price, and
more specifically it holds that : Revenue = Price - |i : Price < v;|. Before diving into the main
idea, let’s take a look at some other - more naive - approaches first :
First Idea : As always, the simplest idea is to "brute force”. That means, simply to set
repeatedly the threshold/price equal to every agent’s valuation and keep the revenue maxi-
mizing one. This idea, obviously, leads to efficiency, since we will always achieve maximum
revenue, but completely violates the differential privacy restriction, in the "plausible deniability
property” sense (just think of the case where some agent has very high violation for the digital
item compared to the others and raises the price super high).
Second Idea : Ok, the first approach was indeed a bit "vanilla”. But what about adding
some noise to whatever price we end up with? Besides, a lot of brain power and work have
been dedicated to that direction - always inside the privacy context -, like Laplacian ([9]) and
Gaussian([11],[12],[13],[14]) mechanisms. It turns out that this idea will also fail because of
revenue’s sensitivity to price changes, meaning a small "perturbation” in the chosen price may
cause huge revenue loss. To see this, let’s go through an example. Suppose there are 3 unit-
demand agents, with valuations {«, o, 3 -« +€}. As we can see graphically in Figure 2.4, there
are 2 prices (o and « + €) where small price increases lead to big revenue decreases.
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Figure 2.4: Revenue sensitivity to small price changes in Digital Goods Auction without randomization

Ok, so can we do any better? Yes, randomize!

The Key Idea : Use randomization to select prices, giving a significant advantage to those
prices who end up in high revenues. More technically, instantiate a mechanism equipped with
a quality score function s : X™ x O — R, which is an indicator of how good an output (let’s
call it object) o is, for input z. After the quality score “assignment”, the mechanism outputs
a random object within the range O, giving exponentially weighted preference to objects with
high quality score.

2.3.1.3 The Exponential Mechanism

Besides the previous differential privacy-related works that we mentioned in the previous sub-
sections, we should also mention the work of Balcan et.al (|2]) that - alongside with the others -
helped us create a solid theoretical background on the Exponential Mechanism. Before present-
ing the (super simple) Algorithm of how the Exponential Mechanism produces allocations, it
is important to formally define the most important and ”stability related” aspect of the mech-
anism, meaning the sensitivity of the quality score to unilateral deviations. More precisely

Definition 2.3.3. (Sensitivity of the Quality Score of the Exponential Mechanism). The
sensitivity of the quality score s : X™ x O — R is the maximum absolute value change a
unilateral deviation of an agent can affect on the quality score. More formally :

As = sl
s ie[n]we)r(r}’/a;{;ex,on'S(x’O) s((@—i, 23), 0)|

So, now, after having established the basic Differential Privacy framework, it is time to present
the algorithm that realizes the Key Idea presented above, the Exponential Mechanism.
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Algorithm 6 The Exponential Mechanism

Input: Range of objects O, quality score function s : X" x O — R, value e.
e-s(x,0)

CXP(T(S))
3 (5

o€

1: return o € O with probability :

The importance of the Exponential Mechanism can be confirmed by two fundamental theorems.

The first theorem states that the mechanism produced by the above algorithm is e-differentially
private. Aside from simply stating the theorem, we also proceed to prove it. There is a twofold
reason for this. Besides the importance of this result, all the “different versions” of this proof
that we are aware of, skip some non-trivial parts, rendering her obscure in a certain degree.
Let’s become more formal :

Theorem 2.3.2. The exponential mechanism Mg(x;s, O, €) is e-differentially private.
Proof. From the definition of differential privacy, it is enough to show that :
PrMg(x;s,0,€) = 0] <o
PriMg(x_;,2);s,0,¢] —

o 6-52(2,0))

BEICRON

(
PriMp(z;s,0,¢) =0 RS
PI[ME(xfiaxfi);8707€] 8(7&5(@;31;)’0))

es((x_;,zl),0
( ((x_j,z}) ))

e A
ocO
es((@_q,2),0)
(gm0
e (s(z,0)—s((x_;,x}),0))
= €0 o) . A .
e-s(xz,0 —_
3 e(T2a)
ocO
e-s((z_;,xh),0) =A

3 e A )

< ocO _
— Z e(e~s2(z,o))
0cO
cs((w_y,ah),0
E e( («( 22 i) ))
e €
= wewS ez (2.1)
Z 6(%)
ocO

Now, let’s fix an arbitrary object, say o € O. It holds that :

i> es((mé7w*i)70)_S($70)_Inaxie[n],xEX",I,’L-EX,OEO ls((x,2—4),0)—s(x,0)| < 0 —
— s((@hz_),0)=s(x,0) < Mieln] seX™ ol €X,0€0 Is((z},2—1),0)—s(z,0)]| —

—y 35 (5(@m-1),0)=5(2,0) < ¢7& MKicln] wexn afeX 00 ls((@5,2-i),0)=s(@0)| _,
defy 35 (s((whr-i)0)=5(20)) < o2g P

cs((@f,@_;).0) e s(x,0)

— e 2A S e% e 24 (2.2)
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By applying 2.2 for every object within the range O and summing, we end up with the following
inequality :

> (T
0eO — <e > (23)
0€O

ol

By combining 2.2,2.3 we finally prove our desired inequality :

P M ; ,(97 == € £ €
Prr[[/\/l]f((xxi x’i);ez,(’),oe]] <ez-e2 = Pr[Mg(x;s,0,¢) =0] <e-PriMg(z_;,2);s,0,¢

The second theorem emphasizes on the fact that the Exponential Mechanism is efficient, mean-
ing that with high probability it outputs a high quality (score) object.

Theorem 2.3.3. Fiz a range of objects O. Let OPTs o = max, o s(o,O) be the highest score
obtained by any object within the range O. Also, let O* = {0’ € O : 5(0/,0) = OPTs 0} be the
set of objects within the range O that achieve this score. Then, it holds that :

2A

Pris(Mg(0)) < OPTs 0 — - (In ( [¢

0%

)+t)] <e”

Alright, so at the moment we have a good algorithm in our hands (in the stability and efficiency
sense). But, the original problem still remains. How do we pick a price in a way that leads
to a differentially private and at the same time high-revenue mechanism for the digital goods
auction? The following algorithm answers that question.

Algorithm 7 Digital Goods Auction with the Exponential Mechanism as Price selector

Input: Discretization parameter « € [0, 1], values vy, ..., v,, value €.
1: Set range of objects O = {«o,2a,...,1}
2: Set score function s(v,p) = p - |{i: v; > p}|
e5(v.p)
P( 2-A(s) )
ESYNEEICEN
;%:o BXP( 2-A(s) )

3: Pick price p € O with probability :

for i € [n] do
if v; > p then
Sell item to agent ¢ for a price of p
end if
end for

Just a bunch of things to work out a bit. To begin with, why did we chose to set as score
function the function p - [{i : v; > p}|? Actually, it is a quite natural choice, since picking
a single price for the digital item is a very simple and "fair” policy (price discrimination not
only complexifies the auction format, but a lot of times it may be a forbidden practice). So,
by picking a "horizontal” price, the total revenue equals to the price of the item times the
number of bidders willing to pay at that price. Hence : revenue = p - |{i : v; > p}|. Also, by
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choosing the fixed price policy, a natural benchmark arises for measuring the performance of our
algorithms : the best fixed price (assuming normalized valuation vector, meaning v € [0, 1]")
aka OPT(v) = maxpec,1]p-|i : v; > p|. A worth-mentioning feature of our score function is the
fact that its sensitivity equals to 1 (since changing a single agent’s valuation can only change
the quantity |[{i: v; > p|} by 1 and also p < 1).

One more observation (and one more theorem). About the discretization parameter a. In fact,
it expresses/generates tradeoffs between "accuracy” and "uncertainty”. Wait, a lot of quotation
marks. What does that even mean? It means that by assigning to a lower values, that implies
a greater value for % (i.e. number of objects inside the range O = {a,2a,...,1}), so a finer
discretization, meaning a closer approximation to the optimal price/object OPT(v). On the
other hand, this increase in the number of objects decreases the chance for the exponential
mechanism to actually pick the price that is closer to the optimal.

Finally, let’s close the differential privacy part of this section with some (very) good news. It
can be easily proven that with the use of the exponential mechanism price selector, there is a
(approximately) truthful mechanism that, with high probability, ends up with high revenue.
More concretely:

Theorem 2.3.4. For the digital goods auction setting, there is an e-approximately dominant
strategy truthful auction, that in the worst case value vector v, gives the following guarantee
for the revenue:

logn

Pr{Revenue > OPT(v) — O( )] > 0.99

2.3.2 Epimythium

What’s the Epimythium?

Differential Privacy Version

e Differential Privacy requires “plausible deniability”, that is any agent participating in
the auction should be able to deny his participation (aka no big changes to the outcome
with or without him).

e Strict determinism hits the wall of plausible deniability (just think the case of an agent
with huge bid with respect to all the others) = "Randomization for Robustness!”

e Adding some noise could reassure differential privacy, but for unstable revenue functions,
doesn’t fix the stability issue. Hence, it doesn’t provide good efficiency guarantees (aka
small changes could lead to huge revenue loss).

e Core idea of the Exponential Mechanism : Choose an object at random, but giving
“exponential preference” to objects with high quality score.

2.4 Some Online Learning Paraphernalia
2.4.1 ”Smooth” Introduction to Online Learning & Basic Concepts
through the classical Ski Rental example

Online Learning is a sub-field of Algorithms and Algorithmic Design occupied with situations
of irrevocable decision-making under partially revealed input. More precisely, it deals with
computational problems where : the input arrives piece-by-piece and our algorithm needs to
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make an irrevocable decision each time it receives a new piece of the input. Obviously, the
term online seems a bit misleading, since it has nothing to do with the Internet. Probably, the
main reason of this "bad”/outmoded naming is that it was developed about 40 years ago.

A classic real-life problem with online nature is the Paging Problem. We have a 2-level com-
puter memory (fast memory with capacity K items and slow memory with capacity N items).
We need to answer a request sequence o = 0103 ...0,,. Each time we access page request o,
we put it in fast memory with cost 1 if it’s not in fast memory, otherwise we do nothing and
the cost is 0. Of course, the goal is to minimize the total cost and our Paging Algorithm when
receiving a request that is not in fast memory, needs to decide which item to evict and make
room for the new item.

Alright, enough with the Introduction to the Introduction. Now, let’s jump to the Introduc-
tion! As promised, we will try to get a taste of Online Algorithms as well as the importance
of randomization in this setting through a very classical online problem, Ski Rental. This
warm-up problem will help us to demonstrate basic techniques and to transition into more
sophisticated ones in a smooth way. After finishing with the example, we will define all the
above (and more) in a more formal way, while still emphasising in giving the intuition behind
the maths.

Quick but important disclaimer before directing our attention to the example. For the Ski
Rental example, our main source is the classic book of Fiat and Woeginger ([17]). The
core of the core of this online learning paraphernalia subsection (aka the introduction to the
online-learning setting part) consists of the work of Shalev([38]) and 2 joint works with Singer
([40],[41]). For the brief part of online convex optimization at the end, our basis is the work of
Freund and Schapire ([18]).

Ski Rental

Suppose you stay in a ski resort for T days. You can either rent skis (cost 1 per day) or buy
them (cost B once). You do not know the number of days you will go skiing in advance. Every
morning, you get to know if you will go skiing that day. Then, you can choose if you rent skis
for that day or if you buy them, in which case you can use them for the rest of the stay and
do not have to rent or buy them again.

First Idea : Ok, here is an idea. Let’s try to exhaust the possibilities to avoid the "big
purchase”, but if the situation starts getting too expensive, just buy to avoid any big damage.
In a more algorithmic perspective, rent skis up to B — 1 times and in the Bth skiing day, buy
the skis. The above algorithm is presented below in pseudocode.
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Algorithm 8 Online Deterministic Algorithm for Ski Rental

Initial Input: Cost of buying the skis B, time horizon T
Initialize skiingDays = 0
Initialize cost = 0
while skiingDays < B — 1 do
Read skiingDay
if skiingDay == True then
skiingDays + +
cost + +
else if skiingDay == Null then
return cost.
else continue
end if
: end while
: cost =B
: return cost.

—_ = = =

We can easily prove the following result :

Theorem 2.4.1. For any sequence of ’skiing”/"not skiing” days, Online Deterministic Al-
gorithm’s cost for Ski Rental exceeds the cost of the optimal solution by a factor of at most
2 -1,

B

Moreover, it can be proved that the above algorithm is optimal (in terms of competitive ratio)
among every deterministic online algorithm.

Theorem 2.4.2. There is no deterministic algorithm for Ski Rental that achieves a competitive

ratio strictly less than 2 — %.

To see why we hit the wall of 2 — %7 let’s think about 2 key factors. First, every determin-
istic algorithm displays the same behavior no matter what the input sequence is (say that it
decides to rent skis for £ days - 0 < £ < T). Second, let’s think about an adversarial sequence.
Obviously, this sequence consists of ¢ 4+ 1 skiing days, since she will "force” the deterministic
algorithm to "waste” an extra of B—1. Hence, we see that the deterministic approach is limited
to competitive ratios no less than 2 — %. If we want to do something better - or at least exhaust
the possibilities to do something better - we have to shift gears.

Key Idea : As we saw earlier in Differential Privacy, there is an Invariant in terms of principle
: "Randomization for Robustness!”. So, let’s take a look at the following approach :
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Algorithm 9 Online Randomized Algorithm for Ski Rental
Initial Input: Cost of buying the skis B, time horizon T

1: Flip a coin.

2: if Heads then

3: Run Online Deterministic Algorithm for Ski Rental (B, T).
4: else

5. Set B'=3.B

6: Run Online Deterministic Algorithm for Ski Rental (B, T).
7. end if

So, did we manage anything? In fact yes, by randomizing we managed to free ourselves from
the B—dependence. More specifically, it holds that :

Theorem 2.4.3. The Online Randomized Algorithm for Ski Rental is strictly 15‘5—competitwe,

Just a brief intuitive explanation about this improvement, since we will rejoin this idea in
the Online Leaning setting that comes next. By inserting randomness, we gave ourselves a
good chance (i.e. %) to “escape” from adversarial sequences, which has a direct impact on the
algorithm’s worst-case performance.

2.4.2 Super High-Level Online Learning Framework

After our first meeting with the Online Learning setting through the Ski Rental Problem,
let’s direct our attention to the bigger picture. What is an Online Problem? What is an
Online Algorithm? Is there any meaningful "metric” in order to measure the efficiency of our
algorithms? In this section, we will try to answer briefly to the above questions.

2.4.2.1 Online Problem

Ok, so let’s start with the very basics. When we reason about an online problem (at least in
the context of algorithms), we refer to problems of the following nature :

Online Problem

e QOur input arrives “one piece at a time”.

e A decision-maker has to make an irrevocable decision every time she receives a new piece
of the input, having only the knowledge of the past and the present (she is oblivious about
future pieces of the input).

2.4.2.2 Online Algorithm

Having defined the type of problems that we are interested in in this section, we need to define,
also, the behavior of the "guy” who tries to solve them. Maybe I should rephrase a little bit.
We should define, the behavior of the "guy” who tries to solve them as well as the context
where he lives in.
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Online Algorithm

Suppose there is a set A of actions, where |A| > 2, and a time horizon T > 1.
Every Online Algorithm works as follows :
For each time stept =1,...,T :

e The Algorithm commits to a probability vector over his actions, say pf,
based on what it has observed so far.

e The Adversary picks a loss vector £ : A — [0,1] (after the Algorithm’s
commitment)

e An action a® € A is chosen according to the probability vector pf, and
the Algorithm incurs a loss ¢ (at)

e The Algorithm learns £¢ (meaning the entire loss vector)

2.4.2.3 Regret

Ok ok. The setup seems a little bit puzzling, but after some thought maybe it starts to make
sense. Obviously we are not just seeking for algorithms, but for good ones. But what does
that mean? We are looking for some sort of metric, that quantifies the distance between the
online decision-maker’s performance and a well-defined benchmark.

The whole point of this subsection is that we need to lower our expectations it terms of the
choice of our benchmark. Why is that? Because the setting is unfair! In fact, the fact that the
Adversary gets to choose the loss vector after the commitment of the Algorithm in each time
step, gives him a significant advantage. Let’s take a closer look at this ”choice of benchmark”
necessity:

First Idea : Man vs Prophet (aka compare with the best action sequence in hindsight). Let’s
think of the following situation: Suppose that A = {A;, A2} and the Algorithm commits to
the probability vector p’, at time step t. Also, suppose that the Adversary is smart enough
to do the following : say A; is the action that the Algorithm chooses to play with probability
greater or equal than % at time step t (obviously ¢ € {0,1}). The Adversary chooses to "place”
a loss of 1 at the action A; and 0 at the other action (say i'). Hence, the best action sequence

T
in hindsight achieves reward : T — > ¢;(Ay) =T —T -0 =T. The online decision-maker gets
i=1

T
c T — S [ (A + (1 —pi) - € (A)] ST —T- 1 = L. But, the thing is that we wish to
t=1

design algorithms with performances that grow sub-linearly with 7" and that’s just impossible.
So, what’s next? A very reasonable trade-off is to shift benchmarks from the best action
sequence in hindsight to the best fized action sequence in hindsight. Lucky for us, this idea
actually works. Hence :

Key Idea : Man vs Lucky Man (aka compare with the best fized action sequence in hindsight).
This approach leads to the main definition of this subsection.

Definition 2.4.1. (Regret). The regret of an online learning algorithm is the difference of its
cumulative loss and the cumulative loss of the best fixed action in hindsight, in the worst case
over loss sequences. Therefore, the following definition holds :

T T
Regret(T) = sup (Zet(at)ﬁgzgt(a))

Lyl s
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Just to avoid any possible misunderstandings, let’s mention one more highly correlated defini-
tion.

Definition 2.4.2. (No-regret algorithm). An algorithm is called no-regret if it’s regret grows
sub-linearly with 7', i.e. if Regret(T") = o(T)

2.4.3 Is Randomization that important? Absolutely Yes!

Here, we will define the most fundamental algorithm for our analysis up until the Entropy Reg-
ularization technique in the Online Convex Optimization setting, the Follow-the-Leader(FTL)
algorithm. This algorithm will form the baseline for the whole entropy-related “conceptual
building” that will be created later on. Besides introducing this algorithm, by emphasizing in
one of its caveats we will highlight one more time the - probably - second most important prin-
ciple principle presented in this diploma thesis : the "Randomization for Robustness” principle.
Let’s jump into the main analysis.

The setting is super simple : An action set A = {A4;, A2} and a time horizon T. At each
time step t (1 <t < T) a decision-maker has to choose between his 2 options (A; or A3) and
afterwards, he incurs a loss ¢:(a;) € [0,1], depending on his choice a;. Also, he observes the
loss that both actions would have incurred had he chosen them. The decision-maker’s goal is
to achieve sub-linear regret.

Enough with the definitions. Let’s try to solve it!
First Idea : Since the decision-maker knows only (but at least completely) the past, just play
the "historically best” action. This idea -in a more formal way- is given in pseudocode below :

Algorithm 10 Follow-the-Leader (Deterministic Version)

Input: Action set A = {A1, As}, loss vector £ with all the values/losses up to step

t — 1 (considering ¢ as the current decision-making time step).
t—1
1: return a; = argmingera, 4,3 2. Cf
=1

The thing is that - as we explained earlier - the above algorithm, given his deterministic nature
has a bad worst-case performance and is unable to achieve no-regret. More precisely, no matter
what action the deterministic FTL chooses, imagine the loss sequence that puts "loss weight” of
1 to this action and 0 to the other action. Then, FTL (as well as any algorithm of deterministic
nature) will get "0 points”, and choosing the best fized action will achieve at least % This
observation implies the following theorem :

Theorem 2.4.4. Any deterministic online learning algorithm has linear worst-case regret.

Second Idea : Fair enough. Let’s put some randomness in our initial approach :
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Algorithm 11 Follow-the-Leader ("Randomized” Version)

Input: Action set A = {Aj, A}, loss vector £ with all the values/losses up to step
t — 1 (considering ¢ as the current decision-making time step).

t—1
1: Compute p; = argmin,,c(q Y (p- 6241 +(1-p) 'Efb)
=1

Choose a number p’ € [0, 1] uniformly at random
if p’ < p; then
return A;
else
return Ao
end if

To avoid repeating long expressions, let :

h(pe;ly) = el + (1 — py )i (2.4)

be the expected loss of randomized FTL at time step t by playing action A; with probability
p¢. Also, since we have switched from the deterministic context to the randomized one, just to
be absolutely clear, let’s define the expected version of regret. The definition arises naturally
from the deterministic version of regret. More specifically :

E ted-Reeret(T) = i) — (p; £4))
xpected-Regret(T) stlil'pf (Zf(]?t t) pfe%nl]z:fp t

For notational convenience, let Hy(p) be the cumulative loss by playing the mixed strategy
p = (p,1 — p) for actions A; and A, respectively in every time step up until ¢ (inclusive),
meaning :

t
Hy(p) =Y h(p;tw) (2.5)
=1
Alright, so now that we inserted randomness to reach no-regret, are we done? As we will see
in the following subsection, the answer is no.

2.4.4 Is Randomization enough? No, we need stability too!

2.4.4.1 Correlation between Stability and Regret

After getting rid of strict determinism that made our algorithm vulnerable to certain adversarial
loss sequences, there is one more pathology to fix in FTL’s behavior in order to - finally - achieve
no-regret. In loss sequences where the "current” best action changes very often, our algorithm
should somehow "stick to the plan” and change its mind (i.e. its tendency to favor the one
action over the other) not after the first indication, but after stronger evidence. For example,

imagine the following loss sequences for the action set A = {41, A2} : A; = {1(2)%?81 ...} and A; =
{(1)%84118?0 .}. An algorithm that changes its action too often, will suffer big losses too often! In

fact, as we will see, the expected regret of the FTL algorithm is upper bounded by a stability
quantity related to its changes in policy, aka the probability of choosing each action. More
formally, it holds that :
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Lemma 2.4.5. For any sequence of losses £1,...,Lr, the expected regret of FTL Algorithm is
bounded above by the stability quantity Zthl |pt — pev1|. More formally, it holds that :

Expected Regret Stability
T T T
> " h(ps; ) — th)nl] hp,ft E — P4
t=1 t=1

Proof. The high-level plan of the proof is the followmg: To upper-bound the expected regret of
FTL by the stability term, we will first prove that it is upper-bounded by the expected regret
of a tweaked version of FTL, say BTL (from Be-The-Leader), plus our stability term. After
that, we will prove that the expected regret of BTL is non-positive, so the above statement
holds.

To be more precise, BTL is a hypothetical structure/algorithm. It is some sort of "enhanced
version” of FTL, if the online decision-maker knew the loss vector up to and including time-
step t. In that situation, the chosen action would be the one that minimizes the loss up until
time-step t(inclusive). For a concrete description of BTL, you can see Algorithm 12.

Algorithm 12 Be-the-Leader ("Randomized” Version)

Input: Action set A = {A1, As}, loss vector £ with all the values/losses up to step
t (considering ¢ as the current decision-making time step).

t
1: Compute p; = argmin,c 1) > (P (4 (1 —p) - £52)
t=1

2: Choose a number p’ € [0, 1] uniformly at random
3. if p’ < p; then
4: return A;
5: else
6: return A,
7. end if
Lemma 2.4.6.
T
Ezxpected Regret of the FTL algorithm < Fxpected Regret of the BTL algorithm —I—Z |pt—pril
t=1
Proof.
T T T T
D hpele) =Y hpisbe) + > (] 6) = h(piil) =
=1 t=1 t=1 =1
T T T
=D h(pil) + > (pe- 6+ (L —py) - £2) =Y (0 £+ (1 —pf) - £2)
t=1 t=1 t=1
T T
=3 hpiil) + > (e —pi) 48 + (07 —pe) - 42)
t=1 t=1
A
T T
=Y Wit + Y (pe —p7) - (6 = £72) (2.6)

o~
I
-
~
I
A
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Now, let’s try to upper bound the expression A. Actually, this is quite easy to see, since from
the definition of our setting, it holds that 6241,6242 € [0, 1], hence :

T
A< Ipi - il (2.7)
t=1

Combining 2.6, 2.7 we end up with the following :

T T T
Zh pe;le) < Zh(pi;ft) +Z|Pt —pil=
t=1 t=1 t=1
T T
Pispet =N h(pyile) + Y Ipe— peri| =
t=1 t=1
T T T
= Zh(pt;&)— rer}lnl] hp,Zt Z (pf; ) — mln Zh p; 4¢) +Z\pt Per1| =
t=1 t=1 0.1 t=1
T
= E[regret of FTL] < E[regret of BTL] + Z |pt — Dyl (2.8)
t=1
]
Lemma 2.4.7.

Ezpected Regret of the BTL algorithm < 0

Proof. In a more mathematical language, we wish to prove that :

BTL’s loss until time step ¢

cumulative loss of best fixed action until time step ¢

¢ —
E h(pf; L) < min H,;(p)
= pe0,1]

A

We will prove this by induction.
Base Case : By BTL’s definition, it holds that : pj = argmin,c( y h(p; ;). Hence :

=miny,eqo,1] H1(p)

h(py; 1) — H%m h(p;£1) =0

p€(0,1]

Induction Hypothesis : Suppose that the cumulative loss by BTL up until time step ¢ is
less than or equal the corresponding loss by the best fixed action in hindsight, aka :

t

> h(pjite) < min Hy(p) (2.9)
1 p€e(0,1]

Induction Step :

41



42 CHAPTER 2. PRELIMINARIES

t+1 T
D hlpesbe) < h(piias bern) + Y h(pfi ) <
t'=1 t'=1

Induction Hypothesis Sh(p;_p Et—i—l) + prer[%nl] Ht (p) <

< h(piyrilesr) + H(pipy) =

t+1 t+1
= Hi1(piy) = Y h(peile) <> h(phi;le)
t'=1 t'=1
[ |
Combining the above lemmas, we conclude that :
T
E[regret of FTL] < E[regret of BTL] + Z lpt — pe41] =
t=1
T
— Elregret of BILISOR [rogret of FTL) < Z Ipt — Pet1]
t=1
[ |

2.4.4.2 Correlation between Stability and Convexity

As we saw in the previous subsection, besides randomization which is essential in our pursuit
of no regret, there is one more - major - issue to figure out. How do we keep the stability

T

quantity > |pt — pi41] small? Obviously, by ensuring that FTL stays or becomes stable. Yes,
t=1

but how? In fact, we can’t control the stability of FTL. Just think of the adversarial loss

1234567 1234567 . .
sequences A; = {1010101 ...} and As = {0101010 ...} from the previous subsection. Hence, to

exhaust the possibilities to achieve stability, we have to think of indirect methods , maybe by
“tweaking” him a little bit. But before fixing the issue, we have to identify it first.

Recall that FTL’s criterion as to which action should tend to play more at time step ¢ is the
minimization of the cumulative loss up until the previous time step, t — 1. So, the instability
is generated by big “jumps” between cumulative losses of consecutive time steps. Let’s give
the catchphrase: The problem with the randomized version of FTL is that the minima of
two consecutive cumulative loss functions, say F;_1, F; - despite the fact that they differ only
in f(pf,¢) - can differ a lot. For a better understanding, Figure 2.5 illustrates the case of
two linear function that express the cumulative losses of consecutive time steps, with very far
minima.

A~

Fiya1(p)
Pt+2 Fy (p) Pt+1

\
4

Figure 2.5: Two linear cumulative loss functions, close to each other but with far minima
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Alright. Now we know the problem. Can we fix it? In fact, yes we can. If those 2 cumulative
loss functions weren’t linear but “very convex”, then this pathology wouldn’t appear. The
following lemma formalises exactly this property, that 2 strictly convex functions that are close
to each other have to have their minima colse to each other :

Lemma 2.4.8. Consider 2 convex functions f1 : [0,1] = R and fa : [0,1] — R, such that

(x) and fi(x) > % for all x, where their difference, say d(x) = fo(x) — f1(z), is an
L—Lipschitz function, i.e. |d(z) —d(z')| < L-|x —2'|. Then for their minima py, and py,, i.e.
ppy = argming,crg ) f1 and py, = argmin,cg 1) f2, it holds that :

|pf1 _pf2| <n-L

Proof. The proof here is pretty straightforward, if we make use of a pictorial argument. More
specifically, it is obvious from Figure 2.6 that it holds :

A1 — Ay =A3+ Ay (210)

Ay

Aq

~N-

Figure 2.6: Pictorial proof of closeness of minima of convex functions
By the Lipschitzness of the distance function between f; and fs, it holds that:

hyp.
Al - A2 = d(pfl) - d(pfz) < |d(pf1) - d(pf2)| % A1 - AQ <L-: |pf1 _pf2| (211)

By the strong convexity of f; (more specifically from the property f(z) > f(z.)+4 ||z —z.||?,
where x, is the global minimum of f and p = %), we have that :
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1
Az > 2 : (pfl 7pf2)2 (212)
With the same reasoning, for fs :
1
A4 > 2’/] : (pfl _pf2)2 (213)

Combining all the above, we end up with the desired inequality :

2.10

2.11 2.12,2.13
A+ Ay =A1—Ay < L-|pg, —pp,| ==
1
— “(pr, —pp)? < L-lpp, —pp| =
= |pp —ppl<n-L u

Conclusively, what we need to do in order to achieve no-regret - besides randomizing FTL
algorithm - is to "force”/modify its cumulative loss function so that it becomes strongly convex.
We will present one common way to achieve this in the Entropy Regularization - related
subsection 5.1.1.

2.4.5 Epimythium

What’s the Epimythium?

Stability in Online Learning Version

e For the notion of regret, we switched our benchmark from the best action in hindsight to

T T
the best fixed action in hindsight(change from min ) ¢;(cy) to > min#¢(cy)). That’s
t=1 t=1
because at each time step, the adversary can assign weight loss equal to 1 to the action
with higher probability and 0 to the other (obviously, the best action in hindsight would

achieve 0 loss and our algorithm would achieve loss more than or equal %)

e Strict determinism hits the wall of linear regret, since the adversary can always assign
weight loss equal to 1 to the chosen action and 0 to the other. Hence, the best fixed

action in hindsight can always experience loss less than %

e Hence, we need randomization to have any chance. But that’s not enough.

e High-level, stability implies that the decision-making of the algorithm isn’t very sensitive
to new observations, i.e. doesn’t "jump” from one action to another every time this hap-
pens : best action at time step ¢ — 1 # best action at time step ¢. In English (actually
not so much!) that means that a stable algorithm doesn’t overfit in the history.

e stability bounds regret

e strong convexity implies stability (closeness of minima of convex functions)

e randomized algorithm that fixes the stability issue of the FTL is no-regret!
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”Success is not final, failure is not fatal: It is

the courage to continue that counts”

"If you are going through hell, keep going”
Winston Churchill



46

CHAPTER 2. PRELIMINARIES

46



Chapter 3

The ”Proportional Allocation
Rule” Principle

3.1 Motivation & setup

This section is by far the most "Mechanism Design-oriented” section of our diploma thesis.
Actually, our concern focuses on the first of the two major components of Mechanism Design,
the allocation rule. For both the text and the technical part of the whole section, we are mostly
based on the works of Chawla, Jagadeesan ([5]) and a joint work of them with Ilvento [21]. The
context in which and for which they create their algorithmic framework is online advertising.
Before starting bombing with technicalities, why starting bombing with technicalities anyway?
Is it worth it? In fact, yes it does. The algorithms produced in this line of work tend to
encounter several "fairness” issues that arise in ad auctions that take place on the Internet. Just
a quick disclaimer before continuing. As you see, we chose to surround the word fairness with
quotation marks. We will continue on the same pattern until defining formally this notion, and
the same principle applies to “similar” words, for reasons strictly related with the multi-aspect
compulsive mentality of the author. I apologise for that in advance. Anyway, to continue our
reasoning, there is a lot of empirical evidence of skewed delivery in online advertising. What
do we mean by that? High-level, we want similarly "qualified” people from different gender or
racial group (or whatever - in this context), to end up seeing similar amounts of online ads -
especially - in sensitive categories like housing and employment. So, skewed delivery refers to
situations where this doesn’t happen.

From empirical data, we can categorise the sources of unfairness to 2 main ”buckets” :

e First Source : When advertiser targeting is "unfair” (maybe the advertising targeting
parameters are noninclusive). This source of unfairness can be directly audited by looking
at each advertiser’s behavior in isolation.

e Second Source : When the platform’s allocation algorithm creates "unfairness”, even
when the bids are "fair”.

In this section, we will be interested exclusively with the second source of "unfairness”. To
highlight the importance of this problem in real-life settings, from empirical studies conducted
in the recent past there are plenty of examples of “unfairness” in online ads, introduced by the
platforms’ allocation mechanisms, like the following :
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e Employment : It has been observed skewed delivery in ads even with gender-neutral
advertisers. There is more context in the empirical study of Lambrecht and Tucker [24].

e Housing : It has been observed skewed delivery in ads even when advertiser targeting
parameters are inclusive. Empirical evidence can be found in [1].

Before boosting our intuition on why a platform can introduce unfairness with the help of an
example, let’s sum up the problem that we will target in this section :

Takeaway from empirical studies : "Unfairness” can arise solely from the allocation algo-
rithm of the platform!

As we will see (not so) later on, the contribution of both the Proportional and the Inverse
Proportional Allocation algorithms is the creation of a "fairness” framework that eliminates
“unfairness” introduced by the platform’s allocation mechanism.

Ok, now as promised, let’s see a very simple example of skewed delivery within a single ad
category introduced by the platform, in order to draw some useful conclusions. Imagine the
following scenario :

Example of skewed delivery within a single category :

e 2 Users : Alice, Bob

e 2 Employment Tech Advertisers : Multinational, Startup

First Attempt : Say that the platform’s mechanism designer chooses a very standard auction
format, the Highest-Bidder-Wins, as the allocation rule that determines the matchings between
users and displayed ads. Now, assume the bidding scenario displayed in Figure 3.1 :

Multinational Startup
Alice 1.01 1
Bob 1 1.01

Figure 3.1: Example of skewed delivery within a category

What can we say, based on the above bidding profile of the 2 tech companies? Obviously,
their bidding strategy is "fair” (since their bids on the 2 users are almost - but not exactly
- identical - they have a slight preference over the one of the two users), but the allocation
outcome isn’t "fair” at all. Why is that? Because, since the highest bidder wins entirely the
right to display his ad to the corresponding user, Alice sees only Multinational’s online ads and
Bob only Startup’s online ads.

So, conclusively : Highest-Bidder-Wins exaggerates small fluctuations in bids.

Fine. Now we have seen a potential pathology that may arise from the platform’s allocation
mechanism, if the mechanism designer doesn’t choose him wisely. So, let’s analyze other
allocation rules that may do the work better than Highest-Bidder-Wins did. Basically no.
Before we do that, we haven’t even defined concretely the rules of the "game” that we Il try to
figure out. In [5], the assumed model is the following :
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The Model :

e Universe U of users that arrive sequentially

e n advertisers that have valuations for every user u € U (i.e. value
vector on user u, v, = [vi,vZ ... v1])

e The auction allocates a single slot per user. Each advertiser gets a

fraction of the slot (i.e. user u assigned allocation [a},a?2,...,a"]
n .

where Y af, <1)
i=1

e The allocation rule should satisfy weak monotonicity (so that incen-
tive compatibility is achievable)

Now that we have established a concrete model to work with, let’s direct our attention to the
real elephant in the room. How do we get rid of the quotation marks?! Let’s see.

As we mentioned earlier, our focus will be on possible "unfairness” introduced by the platform.
That means that we only care about "fairness” from the perspective of the advertisers. We
have assumed that somehow the advertisers’ bids have been audited and are representative of
their valuations on the users. To make it easy, if 2 users are identical for an advertiser, then
we assume that he will place the same amount of bids on each.

In the line of work that we study, "fairness” (from the users perspective) is expressed as a
stability condition. In fact, their starting point lies on the work of Dwork et al. ([15]), where
they defined a notion of individual "fairness” as a situation where similar users receive similar
allocations. On extending (or even better on adapting to our model) this notion, the stability
requirement is the following : if 2 users receive similar bids/values from all the advertisers,
then they should receive similar allocations.

Definition 3.1.1. (Value-stability). An allocation is value-stable with respect to function
f:[1,00] = [0, 1] if the following condition is satisfied for every pair of value vectors v and V' :

cy
la;(v) — a;(v")] < f(X) for all i € [n], where X is defined as max (max{:f, % ) .

i€[n] i Vi

So, the catchphrase for the above definition in real-life settings (without assuming audit):
The platform itself doesn’t introduce any further unfairness than what may be present in the
bidding profile of the advertisers.

Even though they are quite evident, just to be clear, let’s summarize the main desiderata that
our distance function f(-) should satisfy:

e f(1) should be equal to 0 (since A = 1 means that v =/, so advertiser ¢ should get the
exact same amount under the 2 different instances/value vectors).

e f(o0) should be equal to 1 (since A — oo means that the 2 value vectors are arbitrarily
different, hence we should allow each advertiser to get arbitrarily different allocations).

e f(-) should be increasing (since as A grows, the 2 instances/value vectors become more
and more different, so the stability/fairness constraint should be loosen).

Before analyzing the allocation mechanisms of this section, one more definition fist. Maybe it
is useful, maybe not.
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Definition 3.1.2. (Approximation Ratio). The approximation ratio of an (allocation) algo-
rithm is the percentage of social welfare it achieved compared to the highest social welfare
achievable. In our setting and in the language of maths :

n . .
2L 2 Vi,
uelU i=1

Y. maxepy] VY,
uelU

Approximation Ratio :=

Obviously, our goal is to design value-stable allocation algorithms that achieve a (near-)optimal
approximation ratio.

3.2 Proportional Allocation Mechanisms

3.2.1 Some Intuition Pump

As we saw earlier, the choice of the Highest-Bidder-Wins allocation rule, despite the fact that
it is welfare maximizing, is very far away from any notion of value stability - hence from our
notion of value-stability, as defined above, too.

Second Idea : Allocate to each agent a fraction of user’s ad slot proportional to her value.

That means, agent i receives : ny; -, Alright, this approach at least doesn’t seem doomed

J
va,

j=1
in the sense that it doesn’t leave zero-allocation agents and also for each pair of agents ¢, j it
holds that : a; > a; < v; > v; . So, there is some sort of fairness and efficiency involved. In
fact, the following theorem holds :

Theorem 3.2.1. The Proportional Allocation Mechanism is value-stable with respect to f(\) =
-4

But, there is a major problem with this allocation rule. The fraction allocated to each agent
grows (almost) inverse proportionally to n (where n denotes the number of agents). And why
is that a problem? Because, obviously, as n — oo every single agent gets almost nothing,
so approximation ratio — 0. To see this, let’s consider the following “adversarial” instance
: vy = [1,€,...,€]. Then, the proportional allocation rule will end up with the allocation :
a, =|

1+(n1—1)e’ 1+(n6—1)e’ ) 1+(ne—1)e]'

Hmm, maybe we could get away with the same idea after some refinement. Like what ? While
sticking to the proportional allocation logic, what if we increase the degrees of freedom, so that
we can achieve higher efficiency (at the expense of "fairness”)? Seems legit. Let’s take a closer
look.

Second Idea with some refinement : Allocate to each agent a “tuned” fraction of user’s ad
GAN
pS{CAL

i=
erates in some degree stability-efficiency tradeoffs. That means that as £ grows, the allocation
becomes more and more concentrated (uniform — Highest-Bidder-Wins). For experimental
evidence that enhance the claims above we refer to Figures 5.1,5.2,5.3,5.4. Actually, things
are even worse. It is easy to see that this caveat appears no matter what function of v we
choose. So, we need to escape from the "distribute somehow proportionally” logic.
Nevertheless, just for reasons of completeness and in order to create a stepping stone for
the Inverse Proportional Allocation mechanism, we mention the generalised version of the
Proportional Allocation Mechanism in the section below. After that, we will pass to the
protagonist of the current section, the Inverse Proportional Allocation mechanism.

slot proportional to her value. That means, agent ¢ receives : . This ¢ parameter gen-
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3.2.2 The Proportional Allocation Algorithm for the Single-Item
Case

Below, we present the generalised version of the Proportional Allocation mechanism, aka the
Proportional Allocation mechanism “equipped” with a "general” function of the values. Since
this mechanism simply serves as a stepping stone for the Inverse Proportional Allocation Mech-
anism, we find it needless to analyse it furthermore.

Algorithm 13 Proportional Allocation Mechanism parameterized by ¢()

Input: Function g() : RZ% — R0 continuous, supper-additive (i.e. g(x) + g(y) <
g(x 4+ y)), increasing function. Values vy, ..., vy.

1: for i € [n] do

2: Set a; = 20
> 9(v))
j=1

3: end for

4: return a.

3.3 Inverse Proportional Allocation Mechanisms

3.3.1 Some Intuition Pump

At first, I have to apologise for the disproportion between the 2 subsections of this section,
meaning the Proportional Allocation-related and the Inverse Proportional Allocation-related
(which is quite ironic if you think that the topic of discussion is proportional allocations, but
anyway). There are 2 main reasons for this. First, the concept of Inverse Proportionality is
more obscure and - probably - interesting than the more "natural” and straightforward concept
of Proportionality. Second, this algorithm (or more precisely this class of allocation algorithms)
was the starting point of our diploma thesis. Both Mr.Fotakis & I have spent more working
hours and brain power on analyzing the logic and performance of the Inverse Proportional
Allocation algorithm than the Proportional Allocation one.

After this disclaimer of "procedural character”, let’s dive into our analysis. More specifically,
our initial intuition was that the allocation mechanism produced by this family of algorithms
- that we will call IPA, as acronym for Inverse Proportional Allocation - was a result of the
"Linear Programming” principle (to avoid repeatability, for more context on this principle see
the corresponding section). Nonetheless, given IPA’s suboptimal performance (a topic that we
will discuss in more details later on in this section), at the moment that this thesis was written
we strongly believe that the "Linear Programming” principle is not the generative principle of
IPA. This . Furthermore, our conjecture is that the class of IPA mechanisms was produced
either by some ad hoc "inspiration” while trying different stuff or simply by a reasoning of
the form "instead of giving proportionally, cut inverse proportionally”. My personal opinion
slants towards the second option. That is the main reason that I chose to place both PA and
IPA mechanisms under the "Proportional Allocation Rule” umbrella. We have compunctions of
technical nature on the proportional logic behind IPA, because - as we will see explicitly soon
- the algorithms final outcome contains - possible "a lot” - of zero-allocation bidder, a feature
that contradicts proportionality. Maybe, finding (and proving) the origins behind IPA could
be an interesting line for future work.

But wait. This, definitely, isn’t the right order to start the discussion. We don’t have even
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made clear how the IPA algorithm works, and we are talking about the principle behind him!
Let’s proceed to the mechanism’s core idea and we will give more context afterwards.

Key Idea : Since allocating proportionally to the values doesn’t work well, try to deduct
proportionally to the inverse of the values. An attempt for visualization of this idea can be
found in Figure 3.2, below.
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Agent 1 Agent 2 Agent 3 Agent 4

Figure 3.2: Allocation deductions "aligned” with the IPA logic

Before jumping into the main analysis and start analyzing a plethora of IPA-related theorems,
maybe it is useful to give an informal description of our mechanism. Actually, we will give
different formulations of the mechanism (probably the second one is conceptually easier to
understand than the first, although both are quite straightforward).

e Algorithmic Formulation of the IPA : The quintessence of the IPA algorithm is to
find the final number of active agents (meaning those who will receive non-zero fraction
of the item). Obviously, the highest bidder should always belong to the set of active
agents (in fact he should always receive the greatest fraction of the item among all the
agents). Actually, let’s put it this way : initially all the agents should be considered
as (potentially) active. The final allocation of an active agent, say ¢, equals to a; =

1- % - g(v;). Hence, the algorithmic version of IPA proceeds as follows : For
J

j Eactive
convenience, let’s relabel the agents such that : v; > vy > ... > v,. Starting from
the lowest bidder, the Algorithm checks if a,, > 0 (for #active agents = n) If yes, then
the algorithm stops. Else, the n — th bidder will receive zero allocation (so #active
agents——) and the algorithm proceeds to the next highest bidder. The whole process
continues until finding an agent, say ¢, such that a; > 0. The implementation of all the
above in pseudocode can be found in Algorithm 14.
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e Alternative Formulation of the IPA: Ok, so the formulation is the following: Let
v be the standing value vector of the instance. Let y;(t) = max (0,1 — tg(v;)) for agent
i € [n] and y(t) = 3 ;cp, vi(t), for t > 0. We are, essentially, looking for the "right”
time t, where 3, ¥i(t) = 1. Let’s denote this time by ¢*. So, the final allocation
is defined as a(v) = (y1(¢*), y2(t*), ..., yn(t*)). To gain more intuition let’s rephrase it
in English: We start the whole process by allocating 1 to every agent. We gradually
decrease the allocation of every agent, proportionally to g(v;) by increasing ¢. If an agent
“hits” 0 allocation, he remains with 0 until the end. We stop when the total allocated
mass equals to 1.

3.3.2 The Inverse Proportional Allocation Algorithm for the Single-
Item Case
At first, we will present the Inverse Proportional Allocation Algorithm in a more concrete way,

and afterwards we will analyze both its performance and its value-stability guarantees in a
deep level.

Algorithm 14 Inverse Proportional Allocation Mechanism parameterized by g()

Input: Function g() : R=% — (0,00] with ¢g(0) = oo and lim,—. g(z) = 0,

decreasing function. Values vy, ..., v,.

Initialize a; =0 for 1 <i<n

Sort the values so that v1 < vy < ..

if v, =0 then
Setai:%foralllgign.
return a.

end if

Initialize s = min({i € [n]|v; > 0}).

while 1 — 22090) < go

Esg(vj)

. < .

9: S+ +

10: end while

11: for i > s do

12: Setaizl—(n—s)-ng(%
]Esg(vj)

13: end for

14: return a.

So, after defining the protagonist of our section let’s try to analyze its properties a bit further.
One of the most fundamental properties of TPA mechanism is that it produces monotone
allocations. Why is that so important? Besides giving us the possibility to apply Myerson’s
Lemma in order to design payment rules for truthful mechanisms, it helps us proceed with the
value stability analysis. More precisely, for proving value stability, we are looking for value
vectors that are multiplicatively close to the current value vector of our instance and changes
the allocation to the greatest extent. In order to find that value vector we have to use the
monotonicity property and argue that to minimize :—th agent’s valuation we have to minimize
its valuation. The following lemma expresses mathematically this property :
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Lemma 3.3.1. For any value vector v and any i € [n], let v = (vi,v_;) be another value
vector that differs from v only in coordinate i with v; > v;. Then it holds that a;(v) > a;(v")
and a;(v) < a;(V') for all j # i.

To be more precise about what we call Inverse Proportional Allocation Mechanism, let’s align
our definition with the one used in the basic paper of this subsection ([5]).

Definition 3.3.1. (Inverse Proportional Allocation Algorithm). For ¢ € (0,00), the Inverse
Proportional Allocation Algorithm with parameter ¢ is Algorithm 14 with g defined as g(x) =
x=¢ for z € [0, 00).

The above allocation mechanism achieves value-stability, as stated in the theorems below :

Theorem 3.3.2. For any £ > 0 and any number n > 0 of advertisers, the inverse proportional
allocation algorithm with parameter £ is value stable with respect to any function f that satisfies
F) > fo(A) =1 = X2 for all A € [1,00).

Theorem 3.3.3. For any function f and parameter £ > 0 such that over any number of
advertisers k > 0, the IPA with parameter £ is value stable with respect to f, it holds that

f(x) = fe(x) for allx > 1.

But the question still remains. Does the transition from PA mechanisms to IPA really worth
it? Since we have lost on value-stability, have we gained anything in terms of social welfare?
The following theorem shows that the answer to the above is positive.

Theorem 3.3.4. For any ¢ € (0,00), the inverse proportional allocation algorithm with pa-
rameter ¢ obtains a worst case approximation ratio for social welfare of at least :

1,
= min (1-a2'+2")=1- —(—)°
= e e 171

Just a semi-mathematical and semi-intuitive explanation for the above result. At first the
key idea of the proof is to consider that the worst case value vector is of the form (after

normalisation) [1,7,7,...,7] (because every other value vector can be “transformed” to a value
vector of this form without losing any more welfare, hence the greedy exchange argument
holds).

A very important observation is that, as we see, IPA’s approximation ratio is independent of the
number n of advertisers, and this is one of the most - if not the most - important characteristics
that distinguishes IPA allocation rules from the PA ones. More specifically, as we mentioned
earlier the major pathology of PA mechanism is that every advertiser will necessarily receive
some positive fraction of the item. This is the reason that PA’s performance gets worse and
worse as the number n of advertisers becomes larger. On the other hand, IPA by "creating”
zero-allocation bidders (the lower ones), is a more robust mechanism.

Actually, often a good way to understand an algorithm’s general behavior is to consider its
limiting behavior. As far as it concerns IPA’s behavior, we observe the following (reminder
g() = 20):

e As { — 0, IPA — Uniform, hence approximation ratio — 0 and value-stability — super
strong.

e As ¢ — oo, IPA — Highest-Bidder-Wins, hence approximation ratio — 1 and value-
stability — super weak.
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e Just to highlight another interesting case: For ¢ = 1, IPA achieves a constant approxi-
mation ratio of %.

IPA’s Value-Stability Proof Sketch :
High-Level Version :

What we need to do is to analyze how the allocation vector a changes as
the valuation vector v changes. How?

e Step 1: Fix a valuation vector v. Find a valuation vector v that is
multiplicatively close to v (aka fix n—1 agents, "perturb” the valuation
. . . / 1
of just a single agent, say i, such that v; € [, A]-v;) and changes the
allocation by the greatest amount.

e Step 2: Bound the corresponding change to the allocation.
But : The challenging part is that the set of active agents changes along

with the value vector. So, what can we do ?

High-Level Idea : Construct modified allocations where the sets of active
agents are much easier to compare. Afterwards :

e Prove that the modified allocations are no closer than the real ones
(hence, bounding the modified allocations gives us an upper bound
to the original problem).

e Prove that the modified allocations are within f(\) with each other.

Now we have a quite good understanding of how IPA works and his value-stability and effi-
ciency performance. One more loose end to tie up and then we will display our experimental
results. Is it really worth it? I mean, obviously it is a finer idea than proportional allocation
mechanisms, but those consist a somehow "vanilla” way of achieving value-stability anyway.
Do they perform well compared to "fancier” mechanisms? Well, the short answer is yes.

More specifically, for the family of value-stability constraints as defined earlier, IPA achieves
optimal approximation ratio for "large” number of agents (to be more precise, there is no prior-
free, value-stable with respect to that family of constraints allocation mechanism that performs
better than IPA’s approximation ratio —%):

Theorem 3.3.5. For the value-stability constraint f(\) = 1 — A72¢, IPA with g(z) = %
achieves the optimal approzimation ratio for social welfare as k — oco.

Moreover, it can be proved that IPA achieves near-optimal approximation ratio for “general”
value-stability constraints.

Theorem 3.3.6. For any f satisfying a mild condition, there exists an IPA algorithm that is
value-stable and achieves a worst case approzimation factor :

ar
((1 +log (1 +af)))
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3.4

Epimythium

What’s the Epimythium?

"Proportional Allocation Rule” Principle Version

Core idea of PA mechanisms : Super simple. Allocate to every agent proportionally to
(some increasing function of) her value.

Caveat of Proportional Allocation Mechanism : Since every (non-zero) bidder will receive
some fraction of the item, PA’s performance depends on the number of advertisers. More
specifically, approzimation ratio — 0 as n — oc.

Core idea of IPA mechanisms : Rather than allocate proportionally to the values, deduct
proportionally to the inverse of values.

Comparative advantage of IPA to PA mechanisms : IPA’s approximation ratio is inde-
pendent of the number of advertisers. This is because, under PA allocation, even very
low bidders will receive a fraction of the item, contrary to the IPA allocation, where
they will receive nothing (and the proportion that they would receive from PA "shifts”
to higher bidders). So, IPA achieves both value-stability and high social welfare, even if
#agents — 0.
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Strive for Greatness

"The best way to predict the future is to create

it”

"I do the very best I know how, the very best I

can, and I mean to keep doing so until the end”
Abraham Lincoln
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Chapter 4

The ”Linear Programming”
Principle

4.1 The setup

Now that we have familiarized ourselves with the "Proportional Allocation Rule” principle, and
mainly with the Inverse Proportional Allocation mechanism, it’s time to introduce another per-
spective for the same problem (i.e. ways to achieve highly efficient and value-stable allocations
in auction settings), the "Linear Programming” principle. This section is the "conceptually”
easier to understand section of our diploma thesis, and in the same time the one that contains
the core of our work. For this section, We won’t give any references to related literature, since
it, actually, constitutes of an ”ad hoc” attempt to approach the problem.

Just to give the chronological order of our thought process, we began our diploma thesis with a
conjecture. The conjecture was that the IPA mechanism was produced as the optimal solution
of the linear program displayed below (LP1). The program is super simple : maximize the
social welfare while allocating fractions of a single item (or probabilities if you like), subject to
a bunch of "fairness”/stability constraints. More specifically, these constraints enforce that 2
consecutive bidders (given an ordering based on their bids) should receive similar values from
the mechanism. The degree of similarity depends on the value vector (the difference between
their valuations) and also the “tightness” of the g() function.

Before becoming more specific, just a sketch of the structure of this section. After defining
the Linear Program that we wish to solve optimally, we introduce a new “family” of allocation
mechanisms that will do the work, along with the corresponding proofs.

LP1(Single-Item)

maximize Z Ti - U;
€N
subject to Z =1,
€N
TV — Tip1 - Vit1 < g(vi,vip1),V agent i € [0,... , N — 1],
x;€ [0,1],V agent i € N
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4.2 Our results

4.2.1 Theoretical Analysis

4.2.1.1 Introducing a new class of allocation algorithms for the Single-Item
Case : The “Keep Consecutive Scales Tight” Family

In order to solve LP1, we introduce a new allocation mechanism. Besides solving optimally
this problem, this mechanism will serve as benchmark for other allocation mechanisms that we
examine in this diploma thesis (the Proportional, the Inverse Proportional and the Negative
Entropy Regularizer).

So, the main logic is the following : Since we have the value-stability constraints, we are
obviously obliged to satisfy them. But, since our “concern” - besides feasibility - is the welfare
maximization, why not satisfy them tightly? I mean, from all the feasible solutions, we prefer
the ones that favor the highest valuation players. So, why don’t we give as much as possible
fraction of the item to the “highest” player (we will talk in more details about this in a moment)
- satisfy the first constraint tightly, i.e. between agents 1 and 2 - then, after satisfying the first
constraint - give as much as possible fraction of the item to the second highest valuation player,
who is the highest valuation available one and continue the same process until “exhausting”
the item, leaving (potentially) the lowest bidders with zero allocations. So, high-level, what
we try to do is to concentrate all the allocated mass to the highest bidders, but because of the
stability constraints, some of this mass "gravitates away” from them and goes to the lower ones
too. An attempt to visualise the allocation deductions based on this logic is shown in Figure
4.1.

1

g(v1,v2)
g(v2,v3)
g(V3,V4)
} Sg(V4,V5)
HEEEHEE o BN NN NS S SN NN NN N N BN NN NN EEEEEEEREJd
0
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Figure 4.1: Allocation deductions "aligned” with the KCST logic
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One more loose end to tie up and afterwards we will give a complete description of our algo-
rithm, both in natural language and in pseudocode. What fraction of the item should we give
to the highest (valuation) agent. If we give him too much, then as we ”"go down the stairs”
satisfying marginally lower agents, we might run out of item without satisfying some of them.
On the other hand, if we give him too little, there is obviously the danger of suboptimality /in-
efficiency. Actually, the right question isn’t what to give but how to decide what to give. In
fact, the answer arises naturally : "Binary search”. Give him a random fraction of the item, say
x1, and keep satisfying the consecutive scales tightly. If some agents gets negative allocation,
give him zero allocation and stop the process. If you run out of the item, decrease x; by half.
If there are unallocated leftovers, increase x; by half. In both situations, try again. A formal
description of our algorithm in pseudocode is shown below (Algorithm (15)).

Algorithm 15 "Keep Consecutive Scales Tight”(KCST) Allocation Mechanism pa-
rameterized by g()

Input: Matrix 1 x n of n non-negative players’ valuations for the item
(WLOG we relabel the valuations, such that : v; > vy > ... > vy)
Output: Allocation z(v)

1: Let o be a random real number chosen uniformly from the interval [0, 1].
2: lower Bound + 0;

3: upper Bound <+ 1;

4: while (true) do

5: Set 1 = «;

6: § <+ 2;

T g 4TI,

8: while z, > 0 do

9: S++;

10: Ty xs_rvs_l;g(vs_hvs);
11: end while

12: for i € [s,n] do

13: x; < 0

14: en(% for

15: if > x; > 1 then

16: Z_al<_ lowerBo2und+a:1 :
17: upper Bound < x1;

n

18: else if > x; <1 then
19: a <_Z:c1+uppe2eround;
20: lower Bound + x1;
21: else
22: return z(v)

23: end if
24: end while
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4.2.1.2 Proof of optimality of "Keep Consecutive Scales Tight” for the
Single-Item Case

Theorem 4.2.1. "Keep Consecutive Scales Tight” algorithm outputs optimal allocations for
LP1, for every distance function g().

Proof. Let SOL denote the solution that our algorithm returns, and OPT an optimal solution
for LP1. Consider the allocations xAMC = [24LC . 2ALG] and xOFT = [29PT . 29PT] that
our algorithm and the optimal algorithm computes, respectively. Also, let m and m* denote
the number of non-zero allocation/active bidders in SOL and OPT, respectively.

Before diving into the main analysis, we first prove the following - super useful - Lemma :

cey

Lemma 4.2.2. FEvery algorithm that solves optimally LP1, keeps tight the constraints between
consecutive agents starting from the highest valuation one, until some agent gets satisfied by
receiwing zero allocation or we run out of agents.

Proof. We will make use of the ”’Greedy Exchange” technique.

Let’s assume that SOL and OPT differ for the first time between the k — th & the (k+ 1) — th
agent, k € [I,n — 1]. Let a{TT - v, — x?ﬁ? k1 = o < g(vk,Vk41) (since we assumed
that the constraint between k — th and (k + 1) — th agents is not satisfied tightly). Let

:a/

OPT OPT " "

. g(vg, vk - “ Vg + X V41 20T —z0PT .y .

€ = min{ (on 0w41) =Tk BT Pkl T ORL Zhen W1 T8a k2 (4 k. the quantity of the
Vk41 ’ Vk41

item that we need to cut in order to make the constraint between the k —th & the (k+ 1) —th
agent tight or/and the valuations between the (k 4+ 1) — th & the (k 4+ 2) — th agent equal).
Let’s follow the "Water-Level” algorithmic logic in order to redistribute the quantity e. More
precisely, for bidders 4,7 + 1 with ¢ < k, say that we increase the allocation of agent i by d
(let’s imagine that § expresses the rate of increase). We want to keep the constraints between
consecutive bidders tight, hence the rate of increase of agent’s ¢ + 1 valuation, should be the
following :

(zi +0") vy — (Tig1 +0) - vig1 = g(v3, vig1) =
= (2 +0") - v; = g(vi, vig1) + (Tig1 +0) - vip1 =

N 9(vi, vig1) + (Tig1 +0) - vigr — @ v (4.1)
V; '
Hence, we reallocate the quantity e between consecutive bidders in {1,...,k} with the rates

implied by 4.1 until we run out of quantity “for reallocation” (aka e — 0). Let x’ denote the
new allocation that resulted from the redistribution of e. Obviously this allocation is feasible,
since :
n n
B> 2= > 29T = 1(since we simply redistributed already allocated fraction of the
i=1 i=1
item

),

B2 v— 2 vip1 = g(vi,vip1), Vi € {1,...,k — 1} (since we maintained the constraints
tight between higher bidders),

B2 v — Ty Vks1 < g(Uk, Vkt1), (since bidder & has lost some value and we didn’t
touch bidder’s k + 1 allocation) and
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B oov—2), v < g(vi,vi+1),Vi € {k+1,...,n} (since we didn’t "touch” the allocations
of lower bidders)

Also, the (feasible) allocation that results from the above redistribution, achieves higher social
welfare than OPT, since we reallocate some fraction of the item to the same agent and to

agents with higher valuations. The above violates the optimality of %", a contradiction.
|

Now, we can proceed to the main part of the proof. We consider the following cases :
B Case 1 (z9PT > 290L)(depending on g(), the allocation may be feasible) :
From the above Lemma, we conclude that the optimal allocation should keep tight the

constraints between consecutive bidders. Furthermore, it must hold that m* < m, since
otherwise the allocation becomes infeasible. More precisely, fix an agent ¢ € [m*]. It

holds that :
E?ET'vq‘,—z*g(vi—mvi—l)
OPT 5’310—P1T -1 — g(Vi-1,;) : P Vet — 9(Viz1,0;)
'Ti - = =
(o G
. I?_PQT *Vi—2 — 9(01—277%—1) - Q(Ui—l,vi) .
= o — —
_ a9 v — g(v1,v2) = g(va,v3) — ... = g(vie1, v3) >
Vi
> x§OL vy — g(v1,v2) — g(v2,v3) — ... — g(vi_1,v;)
v;
— 20PT > 290 i e [m*] (4.2)
Hence :
m* m* om
Zx?PT > Z xZSOL mlclm] Z:EZSOL = 1, a contradiction.
i=1 i=1 i=1

Therefore, m* < m. But under this assumption, the fairness/stability constraints are
violated. Indeed, for the m* — th, (m* + 1) — th highest bidders, it holds that :

22, 2OPT > 250k (4.3)

O =0 < 2d0k | (since m* <m) =

OPT SOL
= —Typrq1  Um*+1 > —Tpp=iq " Umr41 (44)

SOL SOL

4.3,4.4 ..
xOPTmm*—x%ZE_l'vm*H > s ~vm*—xn?*+1'vm*+1 = g(Um», Um=+1), a contradiction.

— Ty
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B Case 2 (z9PT = 2J0L) .
This is the easiest case. By the above Lemma, the optimal allocation should keep tight

the constraints between consecutive bidders (the exact same way SOL behaves), and
since 29T = 2§OL, we conclude that OPT = SOL.

B Case 3 (z9PT < 2§0L) .
Again, with the aid of the above Lemma, in order to achieve optimal allocation, we

should keep tight the constraints between active bidders. With the same reasoning as in
Case 1, for every active bidder in SOL, it holds that :

9P < 29 Vi € [m]
Also, using similar arguments as in Case 1, it holds that m* < m.

Hence, the social welfare achieved by OPT is strictly less than the one achieved by SOL,
which contradicts the optimality of OPT.

4.3 Epimythium

What’s the Epimythium?

"Linear Programming” Principle Version

e KCST in a nutshell : Give the highest valuation agent an arbitrary fraction of the
item, say x;. Continue allocating by "keeping consecutive scales tight”. If you reach
a negative-allocation agent, give him zero allocation and stop allocating. If the total
allocated mass is greater than 1, halve x; and repeat. If the total allocated mass is less
than 1, double x; and repeat.

o KCST produces optimal and monotone allocations, with respect to LP1.
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"The best way to pay for a lovely moment is to
enjoy it”
"What the caterpillar calls the end, the rest of
the world calls a butterfly”
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Chapter 5

The “Slightly or Completely
Modity the Objective Function”
Principle

5.1 The Entropy Regularization Method

The main point of this "Entropy Regularizer’-related subsection is to understand why “enhanc-
ing” the cumulative loss function Hy(-) of the randomized version of Follow-the-Regularized-
Leader (in the Online Learning Setting as we saw in the Preliminaries) with an additional
entropy term, can lead to the highly anticipated stability! Actually, before that, just a quick
reminder. For reasons of completeness, we mention that - as we proved in the Preliminaries
section - the expected regret of FTL (which we wish to minimize) is upper-bounded by a sta-
bility term. This stability term is additive to the differences between "probabilities of playing
a particular action” from consecutive time steps. To upper-bound this sum of differences, we
would like the minima of consecutive time steps to be close to each other. This property is sat-
isfied if we - somehow - manage to "tweak” H;(-) to assure that it is strongly convex. Well, let’s
continue to reverse engineer a little more. From Lemma 2.4.8, - i.e. the closeness of minima of
convex functions lemma in the Preliminaries section - if F}(-) happened to be strictly convex,
meaning had second derivatives bounded from below by %, then ZtT:1 |pt — pey1] <m-T. Why
is that?
+€[0,1]

‘

Since Hy(p) — Hi—1(p) = he(p) =pr - 4 + (1 —=py) 4> < prt(L—p)=1-]t—(t—1),
meaning that Hy(-) is 1—Lipschitz, we can apply Lemma 2.4.8 to the minimum of Hy(-) at each
time step and conclude that : |p; — per1| < n-1,Vt € [1,T]. By adding each time step, we get
the upper-bound for the stability term. Of course, i is a parameter that we can control. By
choosing 77 to get values inversely proportional to a power of T, we get sub-linear regret for
the "tweaked” version of FTL.

Now, that we have - somehow - explained why, let’s see how. Let’s consider a stricly convex
function R(p), who satisfies: R"”(p) > 1,¥p € [0,1]. If we "tweak” our initial cumulative func-
tion like : Hy(p) = Hy(p) + %R(p)7 then H/ (p) > %

Conclusively, if our FTL algorithm adapts his mixed strategy by considering the "tweaked” ver-
sion of the initial cumulative loss function, i.e. H, (p), then we have achieved strong convexity
and as a result, at each time step ¢, p, and p;41 have to be close to each other. In the following
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subsection, we will unify all the above in Algorithm 16 and afterwards we will proceed to some
- brief - theoretical analysis in order to explain the benefits of the entropy regularizer.

5.1.1 Follow the Regularized Leader: Stability through Convexity
through Regularization
The randomized version of Follow-the-Leader, modified such that at each time step, the ex-

pected loss of his mixed strategy includes its ("weighted”) entropy, is shown in pseudocode
below :

Algorithm 16 Follow-the-Regularized-Leader ("Randomized” Version)

Input: Action set A = {Aj, A}, loss vector £ with all the values/losses up to step
t — 1 (considering ¢ as the current decision-making time step).

t—1
1: Compute py = argmin, o4y > (p- (M (1—p) e+ %R(p))
=1

Choose a number p’ € [0, 1] uniformly at random
if p’ < p; then
return A;
else
return A,
end if

NS g Wy

For the expected regret that Follow-the-Regularized-Leader, theorem 5.1.1 holds. The proof is
quite similar with the Follow-the-Leader’s proof of worst-case regret (without the regularizer),
using the Be-the-Regularized-Leader algorithm (for reasons of brevity, we find it pointless to
give a detailed description of the algorithm in pseudocode form - in fact it is quite obvious).
Just a brief mention on the proof. One difference between BTL and BTRL is that the second
one experiences some small regret. The reason it “displays” regret is obvious, because of the
regularizer, but why small though? This is also easy to see, since the regularization term is
“loss-independent” and by extension "time step-independent”; so we can view it as a fake loss
in the beginning.

Theorem 5.1.1. The expected regret of FTRL with a regularizer R(p), satisfying R”(p) > 1
and a parameter 1, is upper bounded:

< 2maxpe[o,l} |R(p)|

Ezpected-Regret(T)
n

+n-T

Based on the above theorem, it is easy to see that choosing the parameter n appropriately,
leads - finally! - to sub-linear regret. More precisely, the following corollary holds:

Corollary 5.1.1. Setting n = w, the expected regret of FTRL is :

FEzxpected-Regret(T) < 2 \/ 2 max |R(p)|-T
pE[O,l]

Alright, so adding as additional terms strictly convex functions to our initial cumulative func-
tion (aka regularizing” H,;()) helped us achieve stability and indirectly no-regret. Now, let’s
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take a closer look to a specific regularizer that does the job and displays some really nice
properties, the negative entropy function :

p)=> pi-logp; (5.1)
=1

In order to fully understand the behavior of the negative entropy regularizer, let’s examine the
following theorem first. Besides stating the theorem, we also give its proof, since it will help
us to draw the right conclusions in the "right depth” afterwards :

Theorem 5.1.2. Let p,q be distributions in action set A = {A1,As,..., Ay}, H(p) =
sz log— the entropy of p and D(p|lq) = > p; log% the Kullback-Leibler divergence be-
i=1 ‘

=1
tween p and q. Then the following hold :

1. For allp:0< H(p) <logn
2. For allp and q: D(p||lq) >0

Proof. 1. Given log()’s concavity, we have that :

= Zpi log(p;) = E[logp] >

p =1
en’s § 1
zJensens ineq. IOg]E[ ] Z log - logn —
n

ﬁMs

= —H(p) > —logn = H(p) <logn
Also :

Vi€[n]:p; <1

—H(p) = sz- log(pi) = Eflogp] < 0= H(p)>0

2.
- 4
D(pllq) = sz log — =-> pilog o (5.2)
i=1 v
Applying Jensen’s inequality to (concave) function log() with argument g(z) = %, it
holds that :
9(2) =255 q(x) q(x)
Ellog g(z)] > logE[g(x)] =" Ellog ——] > log E[=—~ 5.3
[log g()] [g(x)] [ p(x)] [p(x)} (5.3)
Combining 5.2,5.3 we end up with the following :
4i q:i<1 log ¢; >0
D(pllg) > logZzy TS Dllg) > 0
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Did that theorem made it clear on what does the entropy regularizer brings to the table?
Actually it will, if we think about the types of allocations that achieve the 2 extremes of the
entropy values. More precisely, in order to have 0 entropy, all probabilities except one have to
be equal to 0, and the - only - non-zero probability has to be equal to 1. Hence, allocations with
0 entropy are the highly concatenated ones. On the other hand, to achieve maximal entropy we
have to saturate Jensen’s inequality. Since log() function is never linear, the only way to do so,
isif and only if p; = pa = ... = p,. So, only the uniform distribution can maximize the entropy.
Now, it has to be clear what does the entropy regularizer brings to the table. Let’s quote it in a
more complete and concrete way, just to remember. The negative entropy reqularizer penalizes
distributions that are too highly concentrated (and favors the less concentrated/"more uniform”
ones). Hence, the FTRL algorithm with the negative entropy regularizer tries not only to
choose the best action in hindsight, but also to play with a distribution over actions that is not
highly concatenated. So, it aligns with the "Randomization for Robustness!” principle. Also,
the negative entropy regularizer shares a common characteristic with every strongly convex
regularizer. It leads to stability, meaning it prevents the FTRL algorithm from overfitting to
the history, meaning always jumping around to the best action. In fact, the negative entropy
version of the FTRL algorithm makes only small modifications towards the action that performs
best in hindsight, thus avoiding big cumulative losses from adversarial loss sequences.

Since in this diploma thesis we are interested in the mechanism design perspective (ok fine,
just allocations without the payment part, but you get the point), it would be useful to make
some more targeted observations when the objective function is the social welfare. Let’s take
a closer look :

Just to have something more concrete, let’s imagine that we are in the single-item case. The
objective modification is the following :

n n n
S wivi =Y v+ () xi-logw;)
i=1 i=1 i=1

The new objective function contains 2 sums. The first one expresses the "Highest Bidder Wins”
part and forces all the mass to concentrate on the highest bidder. The second one expresses
the ”Allocate Proportionally” part and forces all the mass to be allocated equally to every bid-
der. Thus, tuning 1 generates trade-offs between fairness/stability and efficiency. One more
comment that is really worth mentioning. One of the most - if not the most - important
characteristics of this technique is its simplicity. More precisely, the negative entropy regular-
izer behaves like "ignoring” the existence of stability constraints and achieving these stability-
efficiency trade-offs like the problem is unconstrained. The importance of this feature becomes
more obvious in multi-item settings, where the impact factor of each stability constraint on
the social welfare function is - in most cases - impossible to understand. Just to highlight this
point a little bit more, think of the single-item case and more specifically the linear program
LP1(Single-Item) in 4.1. In this example, the whole fairness/stability thing, which depends on
n values/parameters (i.e. g(v;—1,v;)) now becomes a single-parameter setting, depending only
on 1.

Now that we have established a solid theoretical background (or at least T hope so) on the whole
negative entropy regularizer thing, let’s jump into one of the most fundamental applications of
this technique, the Multiplicative Weights Update Algorithm.
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5.1.2 Killer App: Tell me about Multiplicative Weights Update Al-
gorithm without telling me about Multiplicative Weights Up-
date Algorithm

In order to be more concrete, let’s rewrite the explicit formula that FTRL minimizes at each
time step ¢, for the case where the action set is A = {A;, A2} (along with some calculations) :

Py = argmin H;_1(p) + %(plog(p) + (1 —p)log(l —p)) =

pE[O,l]
def — 1
= argmin Y (p- (611 — £5%) +£7%) + = (plog(p) + (1 — p) log(1 — p)) =
pel01] 7
Eé2ind4 of p =1 A A 1
=" py=argminp- Yy (6 —3*) + —(plog(p) + (1 — p)log(1 —p)) —>
pE[O,l] t'=1 n
6777.2:’;11 ef’l

first order conditions A
——

(5.4)

t = t—1 pA71 t—1 ,HAg
e*ﬂ'zt/zl Zt/ +6777'Zt/:18t/

We can generalize 5.4 in the case where the action set consists of n actions, ie. A =
{41, As, ..., Ay} (for reasons of brevity and because it lies beyond the purposes of the cur-
rent work, we omit any further explanation and formalism):

_1 ,A;
A, e X b
by = t—1 gAn (55>

t—1 ,Aq1
e—ﬁ'zﬂzl etl + . + 6—77'Et/:1 U

Wait! This looks familiar, right?

Yes, just take a moment to check again Algorithm 6 (i.e. the Exponential Mechanism that
helps to select a "good” price for the item in the Digital Goods Auction). They are the same
thing!

Moreover, there is a nice interpretation of equation 5.5, that yields to a very well known
online algorithm (alternative to the Follow-the-Regularized-Leader that we just saw), called
Multiplicative Weight Updates. Intuitively, this algorithm proceeds as follows: It keeps a
weight wff’ for each action A; € A. At the beginning of the algorithm, before time step 1, we
choose an action uniformly at random (aka wj’ = 1 Vi € [n]). Afterwards, at each time step
we learn the current loss vector £¢ and update the weight of each action as follows:

Ai _ A,, —77-2
Wyl =Wy iy € 7

At each iteration, we play each action with probability proportional to its weight. Therefore,
the main idea is that gradually we penalize actions that incur higher losses by dropping their
weights faster. For a more formal description of this algorithm and because of its importance,
we provide Multiplicative Weights Update in pseudocode below.
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Algorithm 17 Multiplicative Weights Update Algorithm
Input: action set A = {43, Ag, ..., A,}, "exploration-exploitation” parameter n €
(0,1).
1: Initialize the weight of each action A; as follows : w
2: for each time stept=1,2,...,7 do

(1)

)

-1

(t)

3: Choose actions proportional to the weights w,’, i.e. use the distribution :
@ _ o wd Wl®
p - ( n y n PR D) )

Sowp 3w > wi

=1 i=1 i=1
4: Observe the loss vector £; of each action

A

5: Update the weight of each action A; as follows : wgt“) — wz@ et
6: end for

5.1.3 Our results

5.1.3.1 (Experimental) Comparison between IPA Mechanism, Proportional
Mechanism, Entropy Regularized Objective Function Maximiza-
tion Mechanism & LP Optimal Solver Mechanism for the Single-
Item Case

Explaining our initial intuition & goals : Our first approach was to search for experimental
indications that the Inverse Proportional Allocation Mechanism was produced by the "Linear
Programming” Principle. Hence, we (strongly) believed that IPA algorithm was equivalent to
KCST algorithm. Also, we would like to juxtapose graphically the “steep scales nature” of the
IPA + KCST and the "smooth nature” of the Entropy Regularizer. Finally, we would like to
confirm the "uniform nature” of the PA Mechanism.

Explaining the setup : The setup is quite simple. We fixed an arbitrary number of agents
(100 in the plots displayed below). Since we are in the Single-Item case, each agent ¢ has a single
valuation v;. We decided to generate valuations from the Single-Gaussian distribution (as well
as the Uniform distribution) and we tune the variance, in order to observe how each allocation
rule’s behavior changes when agents’ purchasing power goes from “all equal” to "rich vs poor
guys”. The agents are indexed in decreasing order with respect to their valuations, i.e. v; >
vy > ... > v100- In addition, in the Figures below, x — axis consists of the agents’ labels (the
leftmost agent is the highest valuation one) and y — axis consists of the corresponding fractions
of the item, allocated to each agent depending on the allocation rule that was contextually
running. Just a quick reminder and some clarifications, before jumping into the pictorial
results :

¢ "Keep Consecutive Scales Tight” Method : A more analytical explanation about
this method can be found in the corresponding subsection of the "The "Linear Program-
ming” Principle” section (4.2.1.1). In a high-level, we chose as g() function the following:
g(vi,viq1) = 1 — (ﬁ)_”,w € {1,...,n — 1}. Because of the optimality of KCST,
we expected to produce the most concentrated, yet efficient allocations. To be more
precise, we expect this method to produce very "steeps scales” (since it satisfies tightly
the stability constraints, trying to keep the differences in the allocations - at least on the
highest bidders - as large as possible), thus achieving high efficiency.

e Inverse Proportional Allocation Method : As we explained earlier, the main func-
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tionality of this algorithm is to identify the number of non zero-allocation bidders. As-
suming that the bidder’s valuations is ordered as follows : vy < vy < ... < vy, the
mechanism initially sets all the agents as active and starts "trying” to allocate some pos-
itive fraction of the item from the lowest valuation bidder and on (sets index s = 0). On
the i-th bidder, the quantity that the mechanism tries to allocate is the following :

(n—1—s)-v;"°

a; = Py t
—
2 v
j=s
If a; < 0, the mechanism sets this bidder to the set of zero-allocation agents and proceeds
to the next higher valuation agent, adjusting the index of still active agents appropriately
(ie. s> s+1).

e Proportional Allocation Method : Probably the easier to explain method from the
4, since it is the easier to understand. We simply give each agent the following fraction
of the item :

€Ty =

e Entropy Regularization Method : As we explain in (way) more details in the en-
tropy regularization-related subsections of the "The ”Slightly or Completely Modify the
Objective Function” Principle” section, the main purpose of the entropy regularizer is to
generate trade-offs between "Highest Bidder Wins” allocations (the optimal unfair) and
”Allocate Uniformly” allocations (the most fair). More technically, we modify the objec-
tive function (aka the "classical” social welfare function) and try to solve the following
optimization problem :

n 1 n
max{z X v; + i (Z x; - logx;)}
i=1 i=1

Observe that the entropy part is multiplied by % and not by simply 7. The main reason
for that choice is that we would like when increasing the ¢ or n parameter, to observe the
same behaviors (meaning increasing ¢ or 7 the allocations, become more concatenated).
The above maximization problem has a solution with closed form, as proved in Nesterov’s
paper [34]. After the small modification that we mentioned above (i.e. replacing n — %),
we allocate to each agent the following fraction of the item :

eU'U(i)

Ty = —

3 enold)
(=1
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The results :

Percentage of Allocated Social Welfare
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Explaining the experimental results (or at least trying to) : Alright, some of the most
important conclusions that can be drawn from Figures 5.1,5.2,5.3 and 5.4 are the following :

1. We have confirmed experimentally the nature/form of allocations for all the 4 different
allocation mechanisms. For reasons of completeness, just a brief repetition : Both KCST
and IPA rules produce allocations of “steep scales nature”, Entropy regularizer produces
allocations of "smooth nature” and PA rule of "uniform nature”.

2. We have evidence of the difference between the IPA and the KCST mechanism. More-
over, since KCST produces systematically “steeper scales”, it has to return higher social
welfare compared to IPA’s output.

3. The less efficient (always in terms of social welfare) but also the "fairest” (from the
“equalizing sense”) from the 4 mechanisms is the PA rule.

4. As ¢ grows, the allocations from KCST & IPA (from PA too, but - of course - in a lesser
extent) become more concentrated, meaning less "fair” and more efficient (i.e. tend to
the "Highest Bidder Wins”). Similar behavior as 7 grows (especially compared with the
PA mechanism) is observed with the Entropy Regularizer method.

5. As the variance increases, all the allocation mechanisms produce allocations with higher
concentrations (obviously with different rate of concentration).

5.1.3.2 Synopsis

In the table below, we present for our 4 allocation algorithms of concern, which of 3 important
properties they display. The desired properties are the following :

e Monotonicity: In the sense of "making Myerson’s Lemma work”, in order to be able to
design the appropriate payment rule and, in a second level, the corresponding truthful
mechanism. More precisely, we would like - ideally - when increasing the valuation of an
agent for the (single) item (keeping all the other agents’ valuations fixed), the allocation
that he receives from the algorithm to be no less that the one under the initial value
vector.

e Scale-Freeness : This property is of interest when dealing with non-monetary settings
(as in our case here). The main reason is that, when simply allocating fractions of
an item for free, we consider value vectors of the form v and « - v, with a > 0, as
equivalent since the absolute values of the agents’ valuations don’t have any particular
“natural meaning”. They are simply a way to express the ordering between agents with
criterion how much they would like to "purchase” the item (given their market force
and -probably- other contributing factors as well), which is the only agents’ feature that
we are interested in in our diploma thesis. Obviously, to actually achieve scale-freeness
(through the mechanisms that display this ability), we have to choose a scale-free distance
function.

e Value-Stability : Since our research efforts are “aligned” in the direction of achieving
some kind of value-stability /“fairness” in a welfare maximizing way, value-stability is -
obviously - one of the most (if not the most) important desiderata. In our thesis, as we
have already mentioned several times, we examine this value stability concept through
2 different kind of definitions. The self-referential global stability definition 3.1.1 (in the
sense of referring to allocation constraints on the same agent under 2 different - but close
to each other - instances/value vectors) from the line of work that initially triggered our
research interest. And our own, non self-referential local stability definition (in the sense
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of referring to value constraints on 2 different agents under the same instance/value
vector), aka ”Scales” (for a more analytical explanation, we refer to the corresponding
subsection 4.1 of the "Linear Programming” Principle section).

Allocation Algorithms

KCST | Entropy Reg. TPA PA

Desiderata Monotonicity X v v v

Scale-Freeness v X v v
Value-Stability | ”Scales” "Scales” Definition 3.1.1 | Both

Table 5.1: Comparison between our 4 allocation algorithms of main interest

5.2 The Replacement with the Nash Social Welfare Ob-
jective Function Method

5.2.1 Multi-Objective Optimization vs Nash Social Welfare Opti-
mization through an Example

5.2.1.1 Basic Definitions

Our main goal, here, is to better understand the Nash Social Welfare Objective. Most of our
theoretical background and intuition on this topic was constructed with the aim of the work
of Charkhgard et al. in [4] and Nakamura and Kanecko in [32] (which is by the way the most
"paper for economists” paper that i have studied so far!).

First things first : motivation! Why should we choose the Nash Social Welfare Objective
over other objectives, hence why should we even consider replace our initial objective function
“equipped” with the stability constraints that we discussed earlier with this one in the first
place? Before trying to answer that question, let’s finish with the boring stuff first.

Initially, we will present some basic notions/definitions that will help us walk through the
entire section. Let’s begin by defining formally our protagonist, the Nash Social Welfare
Objective/Program.

Nash Social Welfare Program
(NSWP)

maximize H (fi(x) —d;)™ x H (di — fi(z))""
icS+ €S

subject to x € X,
fi(x) >d;, VieST,
file) <d;, VieS™

Now, let’s define the 2 main Programs, that we will compare the Nash Social Welfare Program
with, in order to highlight its usefulness. These 2 are the Single-Objective Optimization and
Multi-Objective Optimization Programs.
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Single-Objective Optimization Program
(SWP)

max {éwifi(w) - Xp: w;fi(x): x e X},

i=p’+1

where p > p’ > 0 and X C R” represents the set of feasible solutions and is
assumed to be bounded. Moreover, f(x) := (fi(x),..., fp(x)) is a vector of
arbitrary functions and w = (w1, ..., wp) is a vector of weights with w; > 0
foralli=1,...,p.

For the rest of the section, we will refer to the above problem as SWP (because the above
objective function is called (weighted) social welfare function).

Multi-Objective Optimization Program
(MOOP)

max {f;(xz):i€ St}
min {f;(x):i€ S~}
st.xe X,

where St and S~ are the (index) sets of objective functions that need to be
maximized and minimized, respectively. For simplicity, we assume that ST :=
{1,...,p'}and S~ := {p' +1,...,p} which implies that ST US™ := {1,...,p}.

For the rest of the section, we will refer to the above problem as MOOP. In order to better
understand

Definition 5.2.1. (Pareto Improvement from its allocation-aspect). Given an initial alloca~
tion, a Pareto improvement is a new allocation where some agents will gain more value, while
no agents will lose value.

Definition 5.2.2. (Pareto Optimality from its allocation-aspect). An allocation is called
Pareto-optimal if no change in the allocation can lead to a Pareto improvement.

5.2.1.2 Weaknesses of Single-Objective Optimization

First, it is easy to observe that SWP is a solution approach for computing a Pareto-optimal
point for the MOOP. Specifically, assume the following transformation (from MOOP to SWP):

max {fj(x) :i € ST} max {f;(xz) :i € St} max { > wifi(x) —

min {fj(x) :i € 57} =  max {-fi(x):i€ 57} = ies+

st. € X, st. xEX, Zs wifi(z) @ € X}
€57

Setting ST = {1,...,p'} and S~ = {p’+1,...,p}, we transform the weighted sum optimization
problem into precisely the MOOP. So, trying to solve the SWP is basically equivalent to having
p number of criteria/functions fi,..., f, and trying to find a desirable Pareto-optimal solution
for MOOP by setting the weight w; of f;(x), V 1,...,p, where the weights indicate the degree
of importance for each criterion.

Ok, now that he have established the relationship between a SWP and a MOOP, we are ready
to jump into the main weaknesses of the Single-Objective Optimization, with the help of a very
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simple example. But first, we have to define one more notion - the unsupported Pareto-optimal
points - since it is highly correlated with those weaknesses.

Definition 5.2.3. (Unsupported Pareto-optimal points) For non-convex multi-objective op-
timization problems, there can exist - possibly infinite - Pareto-optimal points that cannot
be obtained by optimizing a (positive) weighted summation of all objective functions over the
feasible set. Such points are called unsupported Pareto-optimal points.

Alright, so now let’s see the example: Say we would like to maximize 2 objective functions,
f1(x), fo(x). In addition, say that we end up with a Pareto-optimal frontier consisting of the
points : {(2,5.5), (2.25,4.5), (3.25, 3.5), (4.25,2.5), (5.5,2) } as illustrated in Figure 5.8. Based
on this example, we can easily 2 detect to major weaknesses of SWP, correlated with the
fairness of the its optimal solution. More precisely :

A

(2,5.5)

(2.25,4.5)

(3.25,3.5)

fa(z)
(4.25,2.5)

(5.5,2)

v

fi(x)

Figure 5.8: An illustration of Pareto-optimal frontier with 2 objective functions in the
criterion space

e Weakness 1 : A weakness of the SWP is that it completely ignores the existence of
unsupported Pareto-optimal points that can possibly better balance different objectives.
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To see this, let’s take a look at our example in Figure 5.8. If we use the SWP, then we
will find either the point (2,5.5) or the point (5.5,2), thus completely ignoring each of
the middle points (that balance better between the conflicting objectives - it can quite
easily be proven, by observing that for each Pareto middle point (x1,x2) of the example,
it holds that 7.5 — x1 — x5 > 0).

e Weakness 2 : Another weakness of the SWP is that it does not necessarily ensure the
fairness. In fact, this observation/weakness is on the same page with the first one. To see
why, let’s consider again Figure 5.8. Suppose that the 2 criteria/objectives are equally
important (let w; = wy = 1). In this case, the SWP returns one of the 2 endpoints
with equal propability %, and nothing else. However, it is quite obvious that the "fairest”
solution is the middle point (3.25, 3.5), that makes both players - almost - equally happy.

5.2.1.3 Weaknesses of Multi-Objective Optimization

Since every MOOP can be transformed to SWP - as shown in the previous subsection -,
the fairness-related weaknesses of the single-objective optimization are present in the multi-
objective optimization too. Besides, a lot of MOOP are too complex not only from a com-
putational standpoint, but even from a desiderata one (meaning we may not even know our
preference over the set of feasible solutions). Ok, to put it epigrammatically in a more concrete
way :

e Weakness 1 : In some situations, computing even a single Pareto-optimal solution is
computationally infeasible/expensive. So, selecting a desirable Pareto-optimal solution
using the existing approaches can be infeasible.

e Weakness 2 : In some situations, either there is no decision maker or the decision
makers do not know how to select a desirable solution. So, selecting a desirable Pareto-
optimal solution using the existing approaches can be infeasible.

5.2.1.4 Good Properties of Nash Social Welfare Objective Function : Mul-
tiplying is better than Summing!

Let’s revisit the initial example from the perspective of optimizing the Nash Social Welfare
Objective. First, let’s fix the reference point. Suppose that it is d = (2,2). Also, suppose that
each of the 2 players has the same negotiating power (let’s say w; = wy = 1). In that case, the
NSWP that we defined earlier tries to maximize the area of the rectangle with endpoints on
one of its diagonals d and the point under consideration. The points that we examine belong
to the feasible space. As we observe in Figure 5.9, the solution that the NSWP returns, is the
point (3.25,3.5). More specifically, we observe the following :

The NSWP returned a Pareto-optimal point.

The NSWP is a single-objective optimization problem (obviously, the product is the
single objective).

The NSWP returned an unsupported Pareto-optimal point.

The NSWP returned the only fair point of the example.
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(2,5.5)
(2.25,4.5)
(3.25,3.5)
fa(z)
(4.25,2.5)
(5.5,2)
(] .
d=(2,2)
fi(z) '

Figure 5.9: Selection of the Pareto-optimal point by the NSWP
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The charm of Nash Social Welfare in a Nutshell

. Pareto Optimality: As we explained earlier, this property implies that for a NSWO

maximizing solution, there is no feasible state/solution where at least one individual will
gain more value while no individual will lose value.

. Independence of Irrelevant Alternatives with Neutral Property: This means

that the social preference between two alternatives depends only on individuals’ prefer-
ences between these alternatives, regardless of individuals’ preferences relating to other
alternatives.

. Anonymity: The preferences of individuals and the value they receive should be con-

sidered without any regard to who those individuals are. More precisely, if we exchange
the roles of two individuals - i.e. if two individuals exchange both their utility functions
and the values they receive from the mechanism - the total social welfare will remain
unchanged. This property assures that all individuals are treated the same, regardless
of their identities.

. Continuity: It is a self-referential notion. Imagine that an individual has a set of

preferences for some outcomes that happen with certainty. Imagine that there are 2
alternatives. The first one is to get one of two outcomes with some probability distri-
bution (for this case of two outcomes, we have a single parameter, say p) and the other
alternative is to get a third outcome with certainty. Continuity implies that there is
a value of p where the individual is indifferent between these 2 alternatives (necessary
condition for the existence of Mixed Nash Equilibrium).

Just to summarize the information inside the box in a form of theorem, the following possibility
theorem holds :

Theorem 5.2.1. The Nash Social Welfare Function satisfies all 4 conditions: Pareto Optimal-
ity, independence of Irrelevant Alternatives with Neutral Property, Anonymity and Continuity.

Actually, things are even better (for the Nash Social Welfare!). The following uniqueness
theorem holds :

Theorem 5.2.2. The Nash Social Welfare Function is the only social welfare that satisfies all 4
conditions: Pareto Optimality, independence of Irrelevant Alternatives with Neutral Property,
Anonymity and Continuity.

Another worth-mentioning property of Nash Social Welfare is its multiplicative scale-freeness.
To be more precise,

e The NSWP is global-power-scale-free, i.e.,

max | I Y = max H P

€y SN
Y i€eStTUS— Y i€STUS—

e The NSWP is local-benefit-scale-free, i.e.,

max H Yt = max H (i yi)"

ey ey
Y eStTUS— Y i€STUS—

As Cole and Gkatzelis mention ([7]), the scale-freeness property means that choosing the desired
allocation does not require interpersonal compatibility of the individual’s preferences. Maybe a
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more straightforward explanation? Yes, actually this simply means that the agents should just
report their relative valuations, i.e. how much more they like an item compared to another.
Hence, maximizing NSWO using v;; values (valuation of agent i for item j), is equivalent
to using a;v;; as values instead, where a; > 0 is some constant for agent 7. This property
is particularly useful in settings where the agents are not paying for the items that they are
allocated, in which case the scale in which their valuations are expressed may not have any
real meaning.

5.2.2 Our results
5.2.2.1 Proof that "Proportional Allocation is the best Allocation” for Con-
cave Program allocating probabilities with Nash Social Welfare

Objective Function

Theorem 5.2.3. The following concave program :

CP with Nash Social Welfare Objective

maximize E v; - log x;

1N
subject to Zz, =1,
iEN
x; > 0,Vi € N

has as optimal solution the proportional allocation.

Proof. Tt is easy to see that the objective function f(z1,...,z,) = Y. v; - logz; is concave.
ieN
—;—% 0 0
0o -3 0
Indeed, the Hessian matrix of f is H(z1,...,2,) =| : |, so it is diagonal.
0 0 .. -um

7,
Thus, it’s eigenvalues are of the form : -5 < 0,Vi € N, which means that H is negative

semi-definite. We define the Lagrangian for ZCP, as :

L(zy,...,zp,\) = Zvi-logmi—)\-in

iEN iEN

83



CHAPTER 5. THE “SLIGHTLY OR COMPLETELY MODIFY THE OBJECTIVE FUNCTION”

84 PRINCIPLE
VL(xl,...,2,,\) =0 =
V(Z v; - logz;) — A~ V(Z ) =0 =
ieEN iEN
o 1
Sl =A ] =0 =
Z—: 1
v (_g\[miZI =)
A A= v;
iEN
Yi Vie N
T; = , P
> v
iEN
|
5.3 Epimythium

What’s the Epimythium?
”Slightly or Completely Modify the Objective Function” Principle Version

The negative entropy regularizer penalizes distributions that are too highly concentrated
(and favors the less concentrated /more uniform ones).

The famous MWU Algorithm is simply the solution of the FTRL algorithm “equipped”
with the negative entropy regularizer.

Catchphrase for the MWU : Initially choose an action uniformly at random. Keep
choosing actions, and if the action is proven to be ”"bad”, "punish” her by decreasing
exponentially the probability of choosing her in future rounds.

One "On achieving no-regret” principle is the following: We need randomization, but
not “completely random randomization”. More specifically, past performance of actions
should guide us on what action to choose in the current time step. This means that the
probability of choosing some action should be decreasing to the cumulative loss.

Another ”"On achieving no-regret” principle: The probability of choosing a poorly per-
formance action should decrease in exponential rate.

Probably the most important property of the NSWO that justify its existence: it returns
Pareto optimal solutions, but that are somehow in the "medium” of the Pareto frontier,
meaning that they achieve optimality by satisfying in some degree all the criteria/objec-
tive functions involved and not by optimizing only some of them.

The concave program that allocates probabilities with the NSWO is solved optimally by
the proportional allocation mechanism.
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