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ITepiindn

Ov aAANAETIBRAOELS POPUAXWY ATOTENOVUY €Val XpIOLWO XOUUdTL OTN Sloyelplon Ulag @ape-
poxeuTXhAC aywYnc. Oplouéveg UeEAETEC UAALOTA, EXTHLIOUY OTL QUTES OL IAANAETIOPACELS UTopEt
va efvan uTebBuveS Yol éwe xan 20% TWY TUPEVERYELDY TOU OMOUTOUV VOGOXOUELIXT| YOO AEL.
H xadiepouévn yédodoc yio v medfredn autdv twv odAniemdpdoswy efval o exTtevig
xat TohOmAoxy Sladixacio, 1 onola Baciletar 0TNY AVIAUCT TWV PUOUOXEUTIXWY WBIOTHTWY
TWV QUEUEXWY G XAvxd amoteléopata, PiBAoypapixéc avapopéc x.a.  BéPoua tor teheu-
Tador ypovia, g evolhoxtixy) Ao, €youv mpoxdel TAnddea tpoceyyicewy Baciouéveg ot
unyovix pddnorn. Autéc ol uédodol exueTaAAEDOVTOL TO PEYEAO OYXO BeBOUEVWY o Elvan
Théov Slotéoto aTov Topéa TG BLolaTEiXnc, YL TOV EVIOTIOUO OYECEWY UETAED QUPUAXMY XAl
TUPEVERYELWY, 00NYWVTag ot uPniic axpBeiag mpoPAédeic. Ye autd mou Yo npooTadrioel va
cuufdietl ) cuyxexpyévn epyaota xan TN Eeyweilel and dAleg npooeyyioelg etvar 1 a€lomoinon
¢ Zero—Shot Learning teyvixfc. To ZSL elvou o o0y ypovn teyvixt| unyavixic udinong
TIOU ETUTEETEL OTOL LOVTEAAL VO YEVIXEVOUV TEQOL AT TIC XUTNYOPIEC TOU GUVAVTNOOY XAUTA TNV
EXTIAUOEVOT] TOUS ol Var xdvouy TeofAédels yio xatnyopieg mou dev €youyv del Toté. o var To
TetOyoupe autd, alonojooue éva ZSL mhaico mou Pocileton otn yapToyedgnon oyéoewy
HETOEY TWY YUPUXTNRIC TIXWY oL EEAYOUNE oo TI xaTrnyopieg xal o dedopéva eilcddou. To
Thaiolo mpooTadel Vo ATOTUTWOEL oL VoL ATAOTIOLAOEL TIC TOAUTAOXES OYECELS oL XpUPBovTal
HETOED TV (EUYWY QUPUAX®Y ot TV TapevepYelnv. Na onueiwdel axdua 6TL évag cuvduao-
HOC PUpUAXGY €YEL TN BUVOLLXT VoL OONYHOEL OE TOAATAES TOPEVEQYELES Ko ETOL OmOUTOVVTAL
XATIAANAES TPOTOTOCELS Yior Vo Angiel umddm auth N mdavotnTa. Mtdyog Uog elvor va
avormtLEoupe Wia u€odo, oL UE TIC amopaltnTES TPOCUpUOYES, Yo amoTeAéoEL €val TOAUTIIO
gpYoAElo YL TOV EVTOTIOUO ot TN PElWOT TV TovmdY dANAETIOPACEWY PUOUIXWY UE Pop-

HAXWY TOL 081 YOUV O TUPEVEQYELES.

AgCeic KAeouk

Alnhemdpdoeig qopudxnv, Mnyovixh uddnon, Alovuopatind oavomoedotaon AEEEwY,
TaZvounorn ToAATAGY eTixeTtedv, Mdinon ywelc enapxr| dedouéva
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Abstract

Drug-to-drug interactions (DDIs) are a crucial aspect of medication management.
While estimates vary, some studies suggest that DDIs may be responsible for up to 20%
of the adverse drug reactions requiring hospitalization. Conventional methods for predict-
ing those interactions rely on analyzing the pharmaceutical properties of drugs, clinical
findings, and literature references. In recent years, approaches based on machine learning
have emerged as a promising alternative, taking advantage of the vast biomedical data
currently available, to identify relations between drugs and side effects, leading to highly
accurate predictions. In this thesis, we differentiate by adopting the Zero-shot learning
(ZSL) paradigm to tackle the challenge of DDI prediction. ZSL is a modern ML technique,
that enables models to generalize beyond the classes encountered during training, and make
predictions for unseen classes. To achieve this, we leveraged a ZSL framework that relies
on feature vectors extracted from both instances and classes. The framework effectively
tries to capture and simplify the complex underlying relationships between different drug
pairs and side effects. We should mention that a single drug combination can result in
multiple side effects, necessitating appropriate modifications to account for this possibility.
Our goal is to develop a DDI prediction pipeline that, with the necessary adjustments, can

serve as a valuable resource for identifying and mitigating potential drug-drug interactions.

Keywords

Drug-to-drug interactions, Machine Learning, Zero-Shot Learning, Multi-label classifi-
cation, NLP, Word Embeddings
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Euyoplotisg

Oa Hleha vo euyoptoThow Yepud tov emBAénovtd pou x. IHavoywwtn Toovdxa yio tnv
TOAOTWUY UTOOTARLEN ToU pou Tapelye ot dlexmepaiwon tng epyaciag pou. Eriong, opelhw
Tohkég euyoplotiec atov gpeuvnth Tou EKE®E Anudxeitog, x. Anurten Boywtly, o onolog
pe TNV eumetpla, Ti¢ oLUPBOUAES xou TNV UTOUOVY| ToU, GUVEBUAE GNUAVTIXG GTNV OAOXAPWOT)
QUTAC NS OLTAWUATIXTC EpYOCLaC.

Axduor €lgon ELYVOUWY GTOUC YOVEIC XU TNV oBERPT) LOU, VLo TNV AXAOVNTY UTOCTARIEN Xal
evidppuvon toug. Téhog, euyaploT® GAoUE 6GOUE CUVERYUCTAXOUE Xal OGoug Ue Porinoay,
) Nuoh yioo ) ouveyny oTiplen g xou To QAo xou cuu@ortnth wouv Nudlo pe Tov omolo

7 4 Ié 7 4 7
LOLRAUOTAXOUE TOCU TOAAS OAOL QUTA TOL YEOVLOL.

Diploma Thesis






Table of Contents

IMepirndn

Abstract
Euvyapioticg

Extevic EANAnvixn Tlepiindn
Ewooyoyn . . oo
Yyetx Bihoypaplon . . . oL oo
Y1oy0¢ NG TUPOoUCUC DIMAWUATIXAG ERYUOlOG . . o o o o
Emoxémnon tng 00UAC TOU MOVTEROU . . . . . . . . . .
ATOTENEOUOTOL . . . . o

Yulhtnon xow Mehovtixd AovAeld . . . . .

1 Introduction

1.1 Artificial Intelligence . . . . . . . . . ...
1.1.1 Machine Learning . . . . . . . . . . ... ...
1.1.2 Deep Learning . . . . . . . . ...

1.2 Zero-Shot Learning . . . . . . . . . . ...

1.3 Word Embeddings . . . . . . . . ...

1.4 Multi-label classification . . . . . . . .. ... L

1.5 Drug-Drug Interactions . . . . . . ... ... ... oo

2 Thesis Outline
2.1 Approaches for Predicting DDIs . . . . . . . ... ... ... ... ......
2.2 Thesis Description . . . . . . . . . ...

3 Analysis and Design

3.1 Brief Architecture Review . . . . . . . . . ... ...

3.2 ESZSL framework . . . . . . . . ... ..

3.3 Multi-label classification . . . . . . . .. ... ... L

3.4 Evaluation . . . . . . . ...
4 Implementation

4.1 Data collection . . . . . . . ... ...

4.2  Selecting an Optimal Word Embedding Model . . . . . . . ... .. ... ..

Diploma Thesis

15
15
16
16
17
21
25

27
27
27
28
29
30
31
32

33
33
34

35
35
36
37
38



TABLE OF CONTENTS

4.3 Implementing the ESZSL framework . . . . .. ... ..

4.4 Filtering Mechanism for Multi-Label Predictions

4.5 Evaluation Method . . . . . . . .. ... ... ... ...

5 Results

6 Future Work and Extensions

6.1 Discussion . . . . . . . ...
6.2 Feature Work . . . . . . .. ...

Bibliography

List of Abbreviations

49

57

........... o7
........... o7

60

61

Diploma Thesis



List of Figures

W N =

N O Ot =~

1.1
1.2
1.3

3.1

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
5.5
5.6
0.7

5.8

9.9

5.10

ALy paUOTIXT ETIOXOTNCT TNG BOUNE TOU WOVTENOL . . . . . . . . . . . .. 17
A&oynon Sudpewv N LP pvtéhwy mu €yuv exnawdeutel oe Pliateixd dedpéva 19
[Mapdderypo tng €€8u g €xgpaong zV.S;, yia éva VE GUVBLICHO PURTIAXWY

XL TECOEPLC VEEC TUPEVEQYELEC.  © w v v v v v v v e e et i 20
ALGUECOS TWV ATOTEAECUATWY, UE Ypnorn Tou BioBert yovtéhouv . . . . . . . 21
Aduecog TwV anoTeAeoudToY, Ue yenon touv BioClinical Bert yovtéhov . . 22
AldPecoC TwY amoTEAEOUATWY, YE Ypror Tou SciBert yovtéhouv . .. .. .. 23

Xprion uovo 25 moapevepyel®y yio TNy exnaideuct tou mivoxa V', Anotehéoyato

xdvovtac yehon tetwv BERT poviélwy (BioBert, BioClinical Bert, SciBert) 24

Differences between AI, ML, and Deep Learning . . . . . .. .. ... ... 28
Example of ZSL using embeddings to categorize images . . . . . . . .. .. 29
Example of word embeddings vectors and word relationships . . . . . . .. 30
Summary of the thesis architecture . . . . . . . . .. .. ... ... .... 35
Results of the various models . . . . . . . ... .. ... ... 43
Overview of the 2’V S equation . . . . . ... ... ... ... ....... 46
Probability vector and matrix . . . . . ... ... L 46
Comparing the Filtered Probability Matrix and the truth label matrix . . . 48
Results from the different datasets using BioBert . . . . . . . ... ... .. 49
Results from the different datasets using BioClinicalBert . . . . . . .. .. 50
Results from the different datasets using SciBert . . . . . . . .. .. .. .. 50
Calculated median from the BioBert results . . . . . . . ... ... ... .. 51
Calculated median from the BioClinicalBert results . . . . . ... ... .. 52
Calculated median from the SciBert results . . . . . . ... ... ... ... 53
Using 13 Side Effects for Training the V Matrix, Results from Three BERT

Models (BioBert, BioClinicalBert, SciBert) . . . . ... ... ... ... .. 54
Using 25 Side Effects for Training the V Matrix, Results from Three BERT

Models (BioBert, BioClinicalBert, SciBert) . . . . ... ... ... ... .. 54
Using 50 Side Effects for Training the V Matrix, Results from Three BERT

Models (BioBert, BioClinicalBert, SciBert) . . . . .. ... ... ... ... 55
Using broader classes for Training the V Matrix, Results from BioClinical-

Bert . . . 56

Diploma Thests






List of Tables

ALGUECOC TWV ATOTEAECUATWY, UE Yenorn Tou BioBert yovtéhouv . . . . . . . 22
Alduecog Twv anoTeAeoudTwY, Ue yenon touv BioClinical Bert yovtéhov . . 23
AldPEcOC TWY amoTEAEOUATWY, YE Ypror Tou SciBert yovtéhouv . . . .. .. 24
4.1 Sample from the Drug-drug interaction and side-effect dataset . . . . . .. 41

4.2 Sample from the processed Drug-drug interaction and side-effect dataset . 42

5.1 Median accuracy values for the BioBert results . . . . . . .. ... .. ... 51
5.2 Median accuracy values for the BioClinicalBert results . . . . . . . . . . .. 52
5.3 Median accuracy values for the SciBert results . . . . .. .. .. ... ... 53
5.4 Sample of Side Effects within the Same Disease Class . . . . . . . ... .. 55

Diploma Thests






Extevrig EAAnvixn Tlegiindn

Eicoaywyn

YE ULoL QoipUoXeLTIXY VepamEla 1) GUVTOY OYEAPNOT) TEPLOCOTERWY TOL EVOS POPUAXOU, EVoL
CUY VA avary xokar YLoL TNV avTETOTLON plog acVévetag. 2otdc0o, autol ot avaryxolol cuvBUaGHOL,
unopet avunodiacTta va 081yHooLY o€ AAANAETLORACELS HETAEY TWV SRUGTIXDY CUCTUTIXDY TWV
PUPUAAWY, OL OTIOIEC XATA GUVETELX UTOREL VoL TEOXAUAEGOLY aveTtdlunTeS Tapevépyeteg. Eivon
ONUOVTIXO VO AVAPEQOUUE OTL QUTEC Ol TOPEVERYIES ATOTEAOUV [Lal oo TIC XVPlEC alTieg Twv
AVIOGUEVWY QPURUAXEUTIXOY AYWYOV OTIC OVETTUYUEVES YWPES.

Autég oL ahANAETdRACES UTOPOLY Vol TROXAAEGOUY UETUBOAEC OTNY AMOTEAECUATIXOTNTO
TWV QUPUAX®Y XL VoL 0dNYHooUY oty ol anotuyio tng Yepanciag 1) oxoun oc coPupéc
xou eZouvdevortixée mopevépyetec. Extdtar tog 1o 10-20% twv TapevepYELdY ToU Xotah -
yYouv oe voonhela ogethovtan oe autég Tig ahhnhemdedoelc. E&aipetind eudhwtol eivon oL
nAuaowuévol acdevele, xomg umdpyet loyuer oxéon uetald tng adinong tne nixdog, Tou ap-
WHOU TWV CUVTUYOYPAPOUUEVLY PUOUEXWY Xal TNG CLUYVOTNTOS TwV THoavOY ovemdOunTwy
odnhemidpdoewy [1], [2].

AvopgBola, 1 xavdTnta va TeoBAETouUE aUTES TIC AAANAETLORACELS E0X0AA Xou UE axpifela
elvon €val avexTiunTo epyahelo yia Toug LTEolE, xoMdS Xl EVOL ONUOVTIXO ONUELD ACPIAELAS
yioo toug aoVevele.  Koatd xavova, 1 elpeorn twv oANAemOpdoewy PETAE) EVOC GUVOLIO-
HoU QopUdxeY, elvor plo eXTEVAS xou TohdThoxr Sodixacta. Booileton otn uehétn tov gop-
HOXOAOY XDV IBLOTHTOY TWY QUOUIXGY, OE XAWIXE ATOTEAECUATA, BIBMOYEAUPES AVOPORES XKoL
TIc WantepdTNTES Tou Xdde ac¥evy|. Elvar 80ox0oho Aotmdv, ToUAdyIGTOV UE TIC PEYPL TEOTLVOC
pedodoug va umdpéet wa oot TEOBRed, exd oe pio Yepaneia mou umdpyel yeydhog apt-
Yuoe papudxwy [2].

Ye autd 1o ey YElpnUa OTWS xou € TOANOUS GANOUC TOUELIC, Tal UTOAOYICTIXE GUGC THUATO
€y0uv Yivel avamdoTacTog GUUUY0C. XENOoWOTOLOVTAS TEONYUEVOUS alyopiduoug xou eget-
OLXELUEVO AOYLOULXO, 1) BUVATOTNTO TNG AVTORATNS TTEOBAEdNE Tdovdy oA eTLOpdCEWY Yive-
Ton 6o xan o emtelon. H épeuva yipm and autd 1o Héua €yel xevtploel To eVOLapEQOY TOA-
AV EEELYNTAOY XU ATOTEAEL AVTIXEIUEVO PEAETNE Yot TOMAOUC axadnuaiixole @opels. MdlioTa
eTanpleg avamTOOCOLY Xal TEOCPEPOLY TETOLEG AUGELS, EITE (C TRWTAPYIXT| TOUS dEACTNELOTNTA
elTe EVOOUATWUEVES GE UEYUNDTERN GUC THUTA.

Y10 enixevtpo authc Tng Teyvohoynhc €M NS Boloxeton avopiBoAa 1) ey vNTH vonuooivr
1 ewdixotepa 1 unyovixr udinon [3]. H amoteleoyanxdtnmo tov LoVTENY wnyovixnic udinong
OTN XATAVONOT TWV TERITAOXOY BLOYNUXOY GUVOECEWY Yo OTY| TEOPBAEYT AAANAETLORAGEWY
Eyel amotunwIel oe eEXTEVElC PHEAETEC XU TOPOVCLUGTEL GE TOAAS XATOEIWUEVA ETULO TNUOVIXG.

Teplodd. Autd ta povtéha, cuyvd Bacilovton oe veupmvixd dixtua, ot Bahd uddnon N oe

Awmdoua Tneoig



Extevic ENAnvixy Hepliindn

dAhoug cOvietoug ahyopriuoug teyvntic vonuoolvng. Exnadebovton oe tepdotiec Bdoelg

OEDOUEVKV IOV €y 0LV ONUIoLEYNUEL amd HAVIXEC BOXES, LUTEIXA apyEla XaL UENETES.

Yxetxr) BiBAoypapia

Y péyper topa PiBhoypapla Stapopetiol pédodol mpoceyyiong €youv alomoinlel and
EPELYNTEC Yl TNV ToEAYWYT TEOPAEYewy. Ao autéc Tic YeVOBOUC O GUY VA CUVOVTWVTOL
npooeyyioeic mou Pocilovion GTNY SoUXY| OUOLOTNTA TWV QUEUIXWY 1) OTNV EXTAOELOT EVOS
HOVTENOL UE TPONYHEVES tavoTnTeS Tavounone [4].

H npocéyyion nou Bocileton otnv ogoldTnTa TV Qapudxwy axolovdel Ty e&Xg omin
Aoy Av 1o @dppoxo A ohhnhemided ue To @dppaxo B xon mpoxodel pior cuyxexpuévn
TOREVERYELDL, TOTE Tl PAPUAXO TOU elvor GUYXEIoLUN UE TO Qdppoxo A elvar Tdovd var TpoXoAE-
couv TNV Blo TopevEpyELa XAt TNV ahAnAenidpacn Toug ue to @dpuaxo B. Ilowiiol timol
VELPWVIXOV BIXTUWY YENOWOTOOLYTOL Yo auTO To oxomo. Eite yio va SleuxoAbvouv tny
VALY VORLOT] TWY TOTOAOYIXDY X0l SOUIXMY YoRUXTNELO TIXGY TIou oyeTilovton ye mrioveég ok
AETUORAOELS 1) Yiot TNV EE0Y WYY TWV QURUOXOXIVITIXOY TROQIA TwV Qopudxwy. Ol Teyvixég nui-
eMPBAETOUEVNC Xou U1 EMPBAETOUEVNS pdinong ebvar enlong oe dvodo, EEEPELVIVTIC YT Y VWO TEC
OYEOCELC XL avomopao T8oels oTor dedopéva. Xe éva dplpo ol epeuvntéc Vilar et al. [5], yenot-
HoToloLY TNV U€V0B0 aUTH, UEGO EVOS BLUVUCUITIXOU ATOXWOXOTOMNTY YL VO XWOXOTIOLCOUY
TOL OPLAXY YUPUXTNELO TIXG TWV QUOUEXWY Kol VoL EE8YOUY T HOPLIXT| OUOLOTNTA TOUG.

And v AN Thevpd €vag BLadixdE TaEvounThg umopel Vo TpocouolwUEl Yo TN TEOf-
Aedn twv odnhembpdoewy. Eicodor and Lebyn @opudxwy mou eite napdyouv ToREVERYELES
elte Oyl yenoyomololvToL Ylor TNy exnaideucy) evog woviéhou tadvounone. Befolwe didpopot
Tagvountéc Onwe o todvountic Mmréul, x-tAnoiéotepot yeltoveg, SV M, x.t.A emhéyovion
yioe T Onutovpyia Tou Yovtédou. XENOWOTOLOVTISC ULl TEYVIXY TEOBAEYNC GUVIECUWY, Ol
Kastrin et al. [6] 9edpnoav v 1edPredn twv alnlemdpdocwy we pla epyacia duadixhc
Tagvounone xou Pociotnxay oe tévte peydheg Bdoelg dedouévwy DDI

‘Ohec autéc oL TeYVOLOYiEC EXUETOAAEDOVTOL TV UEYIAO OYXO DEBOPEVWY TOL Elvol BLo-

Véowa otn popuoxoroyia, divovtag T duvatdTNTa Yiot o axpUBels xou Ypriyopes TeoPBAédeLc.

21T6Y0g TNE TAEOoLOAS BLTAWUATIXNAG ERYACIAS

Me Bdomn xan tor Tapamdve, 1 Topodoo SiThwpatix Slepeuvd To TEOBANUA TnS TEOBAedng
TWV TOPEVERYELDY oL Vol ONULOUEYHCEL 1 AAANAETBPaoT BUO opUdxwy. e auTé Tou Yo
TpooTadfoel Vo GUUPBAREL 1 cuyxexpWévn epyaoia xou T Eeyweilel and dhheg Tpooeyyloelg
elvon 1) alontoinon tng Zero — Shot Learning texvixhc. XToY0¢ Uag €ivor AOITOV VoL XAVOUUE
TEOBAEPELC VIl TOUPEVERYLES TTIOU OEV CUUTERIAABUUE GTO GTABLO TNE EXTABEUCTC TOU LOVTENOL.
Méow piag yedodou zero shot learning Vo aloTOICOUUE TIC BLUVUCUATIXES OVITOQOGC TAGELS
TWV QUOUEXWY XL TWV TUPEVERYEWWY, Xl Vol TEOCTUUHCOUUE Vol BNULOUEYHOOUNE €Val Uot-
Unuotind cuoyeTopd PeTol Twv 800. O embidEouue Aowmdy vo eEETACOUPE XAt TOCO
UTOPOUKE VO EXUETAAAEUTOUUE oUTO TO CUCYETIOUO Ylot Vo xdvouue meoPBiéels yia xhdoe-

1c/mapevépyetee Tic onolec dev elyope ouuneptAdBel oo dedopéva exudinone Tou LOVTEAOL.

Diploma Thests



Extevic ENmvier Hepiindn

Axduo 6ToY0¢ Yog EVOL VoL AVTIO TOLY NOOUUE XGUE GUVOUIOUO QURUAXMY UE TEPLOCOTERES AT

Lot TOREVERYELES, €TOL 0 TadvounThAc Yog Vo YpelaoTel XATEAANAT AVaTEOGopUOYY.

Enioxdénnon tng dopng Tou LOoVTEAOU

Zero-Shot Learning

AsBopéva skpodnang
( pdpuako A, pdpuako B )
(mapsvépyaa )

hypospadias MovTEko BIOVUCHATIKIG <-1.1749. 1.8135
avamapdoraong

ESZSL mpéTumo ‘

AsBopiva EAEyXoU (lﬂazo\ar‘v
( wapuako A, pdpuako B)
( mapevipyaa )

MovTéAo
avamapdoTacng

TaEwdpnong

MovTého ypapuikric ‘

Multi-label 7

Epvbunon;

EMAOYT KOTNYOPILV UE TNV
vwnAdTeRn oxpiBea

ABoAayfon Twy
QIOTENEGUATWY
( precision, recall, and 1
score )

Figure 1. Awypappaticn emoxonnon tng 60UNS Touv LovTélou

‘Onwe avapépinue xon mponyouuévee 1 topoloa SimAouotixy Zeywellel Aoyw tng em-
Aoyng pag vo aglonoticouye o Zero — Shot learning (ZSL) mpbtuno. To ZSL eivon pua
TEYVIXY TEYVNTAC YONOoUVNG, OToU €va WOVTEND exTaldeleETol OOTE var avary vepilel AéEele,
avxelpeva ¥ évvoleg Tic omoleg Sev €yel ocuvavthoel xatd Ty exnaidevor tou [7]. Kota
AAVOVAL, TOL HOVTERNL UMY OVIXAC HEINoTE amanToLY UEYAAO OYXO BEDOUEVWY YL VO UTOPEGOUY
VoL oVary Vploouy évar cuYXeXELEVO avTixeluevo. Autd mou Sloxplvel Aolmdy, Tn TEOGEYYLoN
tou Zero— Shot Learning, etvar 6Tt T0 LOVTEAO EXUETUAAEDETOL TIC YVOELS TTOU EYEL ATOXTY-
OEL XoTd TNV exnaideucT) Tou xou umopel vo eEdyeL YeVxeoELS Yia VEES xaTYopleg Tou Bev €xel
ouvavThoel ToTé. AuTd To TeTUYAlVEL EQUNVEDOVTOS TN OTUUCIOAOYIXY onuacio Twv AéEewy
1) AVTIXEWEVODY PECU GE EVaY TOAUBLACTATO Y(OEO, BIEUXOAOVOVTOS TO UOVTEAO VOl OTOTUTWOEL
X0l VAL XOTAUVONOEL TIC OYECELS UETOEY OLUPORETIXV EVVOLWY ol Vo TeoBAEdeL anotehéouota
Yt €VVoleG Tou Bev €yel ddoy Vel

Yn 0w pog mpooéyylon emAéloue Vo yenowonooouue to ZSL, mpotuno ESZSL
Tou etoaydyouv o Bernardino Romera xou Philip Torr oto dpdpo toug “An embarrass-
ingly simple approach to zero-shot learning" [8]. To ESZSL nopouctdlet pla xouvotouo
pédodo mou xdvel yeron PoninTixdy TANEOPOELHY Yo Vo SNULOUEYNOEL UL OYECT) METOEY
TWV YVWO TGOV Xl TWV &yvwotwy xhdoewy. Ot Bonintixés mAnpogopiec otny nepintwon uag,
BaoiCovton 0TIC AeXTINES AVITUPAC TACELS, YVWOTEC Xl we word embeddings, anoteholy Uia
HOE®Y| BLAVUOUATIXNAG AVATURAC TACTS TV AEEEWY, 1) OTOlol ETUTEENEL TNV TOCOTIXOTOMNOT) XAl
AVIAUGT] TNG CNUACLOAOYIXNG X0 CUVTUXTIXTG TANEOYopeiag Tou xeUBouy.

To ESZSL Bactleton oty edpeomn Uiot cuvdpTtnong 1 onota utoloyilel 10 T060GT6 GUY-

Batotnroag YeTag) EVOC AVTIXEWWEVOU %O WA XAAOTE. 2TN TERITTWOTN Yo oUTH 1) CUVEETNON
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€yEL WG €l0000 Vo GUVBUUCUO PUEUAXWY YO Lo TUREVERYELA Xa UTohoy(lel Tn miavoTnTa Tou
cLVBUACUOU auTol Vo Teoxakel TNy e€nc Topevépyeta. o var To TeTtOyEl autod, yeetdleTon va
TOEEYOVUE GTN CUVIQTNOT TAUTOY POV T1) BLUVUCHATIXT OVAUTUQRAGC TUGT, TOU GUVOUACUOU) TV
popudnwy xadwe eniong xat e nopevépyelac. To dedouéva exTalBEUoNS YENOHLOTOLOUVTOL
yia Vo BeATiotomolniody oL TUROUETEOL TNG CUVARTNOTC.

To ESZSL ypenowonotel €va euplh QAcUR HOOTUATINGY EVVOLOY XOL TEYVIXOV. XLTOV
muprvar autol Tou mAwctlou PBeloxovian ol VeueiddeS dpyéc TG Yeouuixc dAyeBpac xou
eWdixdTepa oL MEdEelc mvixwy. Ilopoxdte, Tapéyouue wia cbvToun emoxdémnon e odvieong
XL TRV TEAEEWY UETAE) TWV BAPOPKY TVEXWY TOU EUTAEXOVTOL OTO TAXLGLO.

Me S cuyfohiCoupe To Tivoxa Tou TEPIEYEL TIC LOLOTNTES TV XAACEWY, ue X To Tivoxa Tou
TEPLEYEL TAL YOQUXTNPLOTIXG TWV ELCOOWY Xt Y eumepIéyel Tn mporypotix| xhdon otny omoia
avixel xde eloodog exnaidevong. To dpdpo apynd tapoucidlel i e€lowan oyedloouévn yia
VoL SLEUXOAUVEL TNV EXUAINOT EVOS YEUUUIXOV TAZVOUNTY Yiot VoL OEBOUEVO GUVONO XATTYORLOY

EXTAUOEVOTC.

min L(XW,Y) + Q(W)
W ERdx=

Y napandve e&lowor, e W avamaplo TdvTon oL TopdeTeol Tou Tpénet vo Bpedoly, L el-
Vo 1) ETAEYUEVT GLVAETNOT AmAELG, xou £ elvon 0 xavovixornomntig. H cuyxexpiuévn emhoy
Tou L xou tou {2 unopel vo odnyroel oe ToAanhéc npoceyyioelc. Xt cuyxexpulévn egicwaon
TAL YOEAXTNEIC TS TV XAACEWY OEV YENOWOTOLOUVTAL, UE ATOTEAECHUA VoL Uny LToo TNeileTon
1 HETOPORE TNG YVOONE amd TO UTEEYOV GUVOAO XAdoewy ot Véeg. Lol var eVoWUATOGOoUUE

TIC TANEOYOpRiEg Yiar ToL yopaxTnelo T, 1 e&iowon Tpomonoleiton wg e€hg:

min L(XVS,Y)+Q(V)
VERdX“

O wivaxag V mpoxtmte and v wotnra W = STV, H ypron tou nivaxa V eiodyel Tic
WBOTNTES TWV XAJOEWY 0NV eE{0Won XaL ETMTEETEL TN YEVIXEUGOT) antd TIG XAAOELC TOU YeNol-
nomolinxay 6To oTddlo TS exmaldeuong o véeg. O TENXOC PG GTOYOG Evol VoL SLoxpivouUE
LeTaD evoc véou adleuxpiviotou cuvdhou xhdoewy 2. T va yivel autd oty eliowon npénel
va mopéyoue évav ivoa pe Tic Wibtnteg xdde xhdoeic tou oupBolileta and to S ¥ . Y
oLVEYELD, Yo e VEa elcodo x, uio TedBAedn uropel vo Sodel yenoylomolidvtag Ty axdrouin

OHAwON:

argmax V' S;
Bdion xdmolwy anapaitntev unodécewy Yoo T Hop@Y| Tou xavovixonounty 1 e&lowor yia
Vv edpeot) Tou Tivoxa V' Biveton wg e€ng:
V=(XXT 4~y tXYST(SST 4 AI)7!

[Mo va propécouye BéLorar var xataoxeudoouue 1o mivaxa V' mpénel va €youue oTn Odieon
woc o omopodtnTor Sedouéva xou T SuvaTOTNTAL VoL EEAYOUNE TOL YR TNELo TIXd,/WOLOTNTES

touc. T T cuAAoYY| TV Gedopévwy yenotwormolinxe 1 Bdon dedouévoy TWOSIDES,
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OToL TEPLEYEL AETTOUERTC TANPOPOpieC Yo 1.318 BLaPOLETINES TUPEVEQYEIEC TIOU TEOXANOUY-
Ton and 63.473 cuvduaouols Qopudxwy. MeTtd 0 xatdAANAT woponoinon o dedouéva Tal-
vouRinxay oe TAELEOES, OUO PUPUAXWY XL TNG AVIAOYNS TUEEVERYELNS TOU TEOXAAOLY. X
auTH TN Uop@y| Ta dedouéva eivon amiéc cuUPBolocelpéc xou BV UTopolUE Uéoa amd AUTEC
vor e€dyoUUE TN onuactoloyix) Thnpogopta mou ypewalouaote. o autd To AdyOo, ude
XOUUATL TV OedoUEvwyY Tou GUANEEOUE ypeetdotnxe Vo tepaoTel and évo Yovtélo dlovuo-
potixrc avamapdotaone (word embedding model), yio vo yetotpomel xou vor amodnxeutel
oTnV avuoTolyn Owvucuatixh pwop@r. To poviéha SLavuoUaTIXAC avamapdoTaong AEEEwy
(word embedding models) etvor ahydprduor N LP nou yetotpénouy Tic AéEelg ot apiuntixée
HOPYES, YVOOTEC WE Btaviouoto. AUTH 1 HETATEOTY| SLEUXONDVEL TNV XATAVONOT XL TNV ENEE-
gpyaoia YAWOOIXWY BEQOUEVWY GE UTOAOYLOTIXG ETiNEDO. XENOLILOTOLOVTIS QUTH T HOVTENT,
OL UTOAOYLOTES €lvo xovol Vor oy VEDOUY OUOLOTNTES XAl OTUAUCLONOYIXEC OYECELC OVAUETH
oTIC MéEelc.

Y1 npocéyyion yag ollonolioaue Oidpopa LovTéAa oy elvon Bactouéva oTr TeEYVohoyia
BERT tnc Google [9]. Ta yovtéha autd e€dyouv éva didvuoyua, cuvidwg 768 Siootdoenmy
yioo omoldrrote cupfohocelpd elooydel oe autd. Ol SlacTdoE TOU BLAVUCUATOS ATOTEAODY
TOL YOEAXTNEOTXG Tol omola, To WoVTEAO yenowonotel yior var avoryvewpellel war AEEN 1 o
npotaon. Kdbe S1dotoom anotundvel xdmota TTuy T TwV YAWCOXOY, CUACLOAOYIXOY 1) GUU-
(pealOUEVKDY TANPOPORLOY TOU XEWEVOL. LyEddouUe Evo uxpd melpaua WoTe vor eEhEyEouye
moto word embedding model Yo Aoy WOAVIXOTERO Yol TH HOPQPOAOYI TLV OEBOUEVLV UG XAl

Tautdypova Yo pog €dve Tn xaAUTeRn avTio Tolylo LETAUE) QPUEUAXWY XAl TUPEVEQRYELWY.

80 [ Detected
I Random
SE 60
©
g
%3]
£ 40
()
8
%
=)
= 20
0
SentenceBert BioClinicalBert BlusBert PubMedBert
BioBert ChemBerta SciBert

Bert Based Model

Puryvpe 2. A&ioddynon ddpopwry NLP povtélwv mouv éxovv exmaidevtel o€ Pioiatpiicd
oedouéra

KotohriZope ota e€hc tpla BioBert, BioClinical Bert, xou SciBert. Méow autev tov Lov-
TEAOY UTOPOVYE VoL E8YOUUE AOLTOV TN UAINUATIXT OVATUEAC TUCT] TOV YORUXTNELO TIXDY TOU
XeeWlOUAC TE Y10 TOUC GLUVBUICUOUE PUEUAXeY oAAa xa Ti Tapevépyelec. Me Bdon ta meo-

NYOUMUEVA, UTOPOVUE UE TNV €YWYY TWV YAURUXTNELOTIXWY omd Ta BedoUEva eXToldEUONC,
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VO XOTAOXEVACOUUE TO Tiivaxa V' WOTE Vo To Yp1NOWOTO|COUUE aRYOTEQD YOl VO XAVOUUE
TpoPBréeic Yior Véeg TapevEpYELEC.

‘Onwg elye avagpepldel xdde cuvdLaoUOS Papudxwy uTopel Vo 00NYEel Ot TEPLOGOTEPES Ao
ulor mapevépyetee. 2otéc0 1 B won arg max; xV.S; mou elyope TapadEcel TEONYOUUEVLC,
avTioTolyel povadxd TNy €lcodo x Ye xdmota and TN xAdoelg Tou mivoxa S. E&etdlovtag tnv
€€080 e éxgpaone £V S;, Tapatnpolue 6Tt To anotéheoya eivar éva Sidvuoyua 2’ Blao TdoEwY.
‘Onou 10 %die otoyeio Tou dlaviouatog oe po Tuyaio Véon 7, avtiotolyel otn mavoTnTa

NS €L0OO0U T VoL AVAXEL TN XAdoT S;.

xX'V§'

atenolol ranitidine

Lyme Disease | Toxic Shock | Pyodema | Ovarian cancer

\ /

|0.021 |0.080|0‘093‘0.003|

L J
T

probability vector

Puryvee 3. Hapdderyua tng é6odov tng éxppaons xV'.S;, ya éva véo ourdvaous papudkwy
K@l TEOOEPIS VEES TTaPEVEPYELES.

Mrnopolue hoindv var exUeTUAAEUTOUUE XATIAANAAL TO BLAVUCHA GUTO YLOL VO XEVOUUE TEQLO-
cotepeg and uia teofrédelc yia xdde eloodo. Eivon eugavéc ot Ya ypeetaotel va Yécouue
xdmolo 6plo To onofo Vo dlaxplvel TIC TEOPAETOUEVES TIAVOTNTEC OF EVOEIXTIXES XOL UM
rapevépyetag. Io var oplooupe autd o 6plo e€eTdoaue BIdPORES TEYVIXES, AUTH TOU ATEBWOE
xahOTepar yior To melpapar pog ebvon 1 e€hc: Do xdde Bidvuopor mou mepiéyel Tig THavoTNnTES
ULOC ELCOBOL T VoL OVAXEL OTIC OLAPOpES *AAOELS, ToToUETOVUE G AOEOUCH GELRA TIC TYES TWV
TAVOTATOVY X ETAEYOUUE (¢ OPLo TN T ToU BeloXETUL GTO EXATOCTNUOELO TO OTolo EUE(C
Yéhouye va Spa we onueio amoxomrg. Me auth ) teyviny e€acparilovue 6Tt To bplo Va etvan
BuVaULXO Yo xdde amoTéAEoUa plag Tuy g el6Bou xan e€upTdTal UOVO OO TO TOGOGTH TOU

Yo emAéZouye epeic.

Diploma Thests



Extevic ENmvier Hepiindn

AnoteAéopata

[TpotoV e€etactoly T amoteréopata efva onuUavTind va avapepdoly ol BldPopes Topado-
xéc mou éyway. Kata tn Bidpxeio tng a€lohoynong uio ToAd onuavtixt unddeor mou €yve yia
T Oedouéva eEAEYYOU Efval: 0 0PLOUOS HLAC HOVO TROYUOTLXG oAU ETIXETAS Yiol Xdde GUVOL-
aopo gopudxwy. Etot yio dhoug Toug cuvduaouols yia Toug otoloug Yivovton TeoPBiédelc and
TO HOVTEAO, HOVO ULa EX TWV TROPAETOUEVWV TUPEVERYELWY VEWPEITOL (C TEAYUATIXG AANUTHC.
Avahoyilovtag tn mponyoluevn unddeon, elvar eupavég otL o apriudg twv false positives
Yo etvan augnuévog oe peydho Podud, xotd cuvEneLa 1) To o&lOTIUO TN UETELXY) Yol To TELRAULOTA
pog ebvon 1 avdxAnon 1 recall. e Oho ol TEWRAUOTA Xoplar Ad TIC TUPEVEQYEIEC TIOU YPNOL-
pomolinxay 0To GTAOLO TNG EXTABEVOTC BOEV CUUMETELYE OTIC TMUPEVEQYEIEC VLo TIC OTOLEC
gyway ol TeoBAEEl; 0TO xouudTL Tou EAEYYOU. TN TEKOTN Tepapatxr owdtagn, 3000 cuv-
duacuol opudxwmy xan 150 mopevépyeleg, yenowonoidnxay yio TNV exnaldeuct Tou Hov-
Téhou. Axoua 1000 véor cuvduaouol xou 50 véeg xhdoelg, ftay Sladéotues yia TNy oa&lohdynom
Tou povtéhou. Amnoteléopota e€ryaue and €EL SLPORETIXOUSC GUVBUUCUOUE PUOUEHWY XoL
napevepyewwyv: (100, 5), (200, 10), (400, 20), (600, 30), (800, 40), (1000, 50). Axdua yuo
TNV EaYWYT YOEUXTNEICTIXOY and Ta dedopéva, eetdotnxay 3 diapopetind N LP yovtéla
BioBert, BioClinical Bert, xa. SciBert. "QQote vo e€eTa0TEl TWS 1) EMAOYYH TWV YoUpUX-
e TIXGY emneedlel Ty anddoor. To (Bio melpoyo mpaypatomofdnxe ye 5 BiopopeTind
TOXETOL BEBOUEVWY Yol TO GTAB0 EXTUUBEVTTG GAAAL X0t ELONGYNONG. 2ITAL YROUPHUOTL (POLVETOL

1 SLIUECOC TN AMOBOCTNC TOU TUPOUGIAGE TO HOVTENO GE QUTA T TOXETAL.

Precision

o A
NQ'Q
o

&

o)
o

o
K,
8 5 10 20 30 40 50

Recall

F1

e

Figure 4. Aidueoog twr anotedeoudtwr, pe ypnon tov BioBert povtélov

Diploma Thests



Extevic EAnvuc Heplhndn

Table

H NSideEf fects ‘ Precision ‘ Recall ‘ F1 H

) 0.18 0.18 0.18
10 0.095 0.19 | 0.126
20 0.055 0.222 | 0.089
30 0.036 0.221 | 0.063
40 0.027 0.222 | 0.049
50 0.023 0.231 | 0.042

1. Awdueoos twv anoteAeoudtwy, pe xpron tov BioBert povtédov

Precision
T T T T T T
5 10 20 30 40 50
Recall
5 10 20 30 40 50
F1

T T T T T

5 10 20 30 40 50

Figure 5. Aidueoos twr anoteAeoudtwy, e ypnion tov BioClinical Bert povtélov
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H NSideE f fects ‘ Precision ‘ Recall ‘ 1 H

5 0.22 0.22 0.22
10 0.112 0.225 | 0.15
20 0.053 0.212 | 0.084
30 0.035 0.215 | 0.061
40 0.027 0.218 | 0.048
50 0.0221 0.221 | 0.040

Table 2. Aidueoos twr anoteAeoudtwv, pe xprion tov BioClinical Bert povtélov

Precision

Recall

F1

Figure 6. Aidueoog twy anotedeoudtwy, pe ypnon tov SciBert povtélov
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H NSideEf fects ‘ Precision ‘ Recall ‘ F1 H

) 0.17 0.17 0.17
10 0.092 0.185 | 0.123
20 0.05 0.2 0.08
30 0.036 0.201 | 0.057
40 0.025 0.202 | 0.045
50 0.021 0.217 | 0.039

Table 3. Aidueoos twy anoteAeoudtwy, pe xprion tov SciBert povtédov

Moot 1 axp{Belo Tou PovTéLoL Bev elvan auTH oL €youue cuVNIYoEL Vo BAETOVUE UE A~
heg teyviéc TN, amoteher yior xaht| Yoot ovapopds yia éva zero shot learning mpdBAnua.
‘Onwe avadevieTol xou and T0 TOCOGTO AVAXAACTS, TO LOVTEAO EYEL TNV IXOVOTNTA VoL TPO[3-
Aémel odnhedpdoeic. Mdhota unodnAGVeL OTL 1) VePeMWONG TEOGEYYIOT TOU UOVTEAOL Elva
UTOGYOUEVT Xai €YEL To duvod va BedTindel tepantépw Ue TpoOaUeTn avamTUEN TV YoEoX-
TN Tix@Y. Mo axdua Tetpopatiny SLdtaln mou eEETACTNNE Kol EYEL UPXETO EVOLUPECOV Efvar
TO X0TA TOGO 0 VELIUOC TWV YAACEWY TOU Vol TUPOUGES XOTA T1) SLEEXEL TNG EXTOUOEVOTC
TOU JOVTEAOU EMNEEALOLY TNV IXAVOTNTA YEVIXEUOTS Tou. Apa €va oxouo avayxato Telpoua,
Aty vo eheyydel mwe 10 oUVoho TwV BLEoUOY HAACEDY XATA TNV EXTOLOEUCT) TOU UOV-
Téhou emnpedlel TNy oxpifBeiar Tou. EAEyyUnxoy oL TEQITTOOELS TOL TO HOVTEAD EXTUOEUTNXE
ue dexotpelc, eixoot Tévte, TEVAVIA X0 EXUTO XAJCELS, UE TIC TREIC TPMTES VO ToPOVCLELoUV

xamolo anoInTr SLdpopa amd ToL TEOTYOUUEVY BEGOUEVAL.

E) E) © E) E) E) £ E]

Figure 7. Xpnjon uovo 25 napevepyeisyv ya tny exnaidevon tov rivaxa V, Anotedéopata
kdvovtag xprion iy BERT povtédwv (BioBert, BioClinical Bert, SciBert)

A&wonueiot frav n addnon xutd 15% oto recall, mouv mopatnehinxe pe ) yeron
tou BioClinical Bert, 6tav 10 Wovtého exmoudeltnxe ue 25 xou 50 xAdoelg, xou xAHUnxe va
ndver tpoPAédelg uetall 5 xan 10 véwv xAdocwv. Télog pior axdpo telpapatin Sidtoln mou
eEETAOTNXE, HTAY 1) AVTIXATAOTAOY TWV XAACEWY EXTOUOEUONC ( TOPEVERYELES ) ol THO YEVIXES
xatnyopleg otig omoleg umopel var avixel éva mAfdog and Tic Topevépyeleg avtéc. Mia puxen
avénon moapatnerinxe 6tay to poviého tédnxe va mpofBiéder petadd mévte xou Oéxa VEwY

XAAoEWY, GAAo 0T cLVEYELN LT EEE aodNTH pelwon Tng anddoong.
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YulAtnon xow MeAlovtixry AouvAesld

Yyohdlovtog To Tponyolueva, elvon euxonplol Yo OPLOHEVES ETLOTUAVOELS GTOUS TEQLOPLO-
nolg tne epyaotag, xadog xou oe ueAovtixég Bedtiwoeg. Baowd otoryelo yia tn BérTio
en{Boom TOL LOVTEROU, Elval 1) XUADTERY BUVATH CUOYETION HETUEY TWY YUPUXTNPLO TIXWY LG
EL0OO0U UE QUTWVY TV OLdpopwy ¥Adcewy Tou eivon dtadéoiuec. Eivon eugavée 6T 600 o
OVUAUTIXG X0 OLUGLOOT EVOL TOL YUPUXTNEICTXE TOU EERYOLUE Yo T OEGOUEVDL Uag, TOGO
amOTEAECUATIXOTERT) Dot lvar 1) EXTTABEVCT) TOU LOVTEAOU Ol 1) IXOVOTNTOL TOU VoL XAVEL TTO[3-
Adeic. Ln mopoloo TpocEyyion To YopaxTnElo Tixd e€ydncay uEow TEo eXTOUdEUUEVELV
povtéhwy. Iloapdtt Tor povtéda mou emAéydnxay elvar exnawdevuévo tdvew oe Plolateixd Oe-
OOMEVA, TO UELOVEXTNUO TOUG EVOL OTL €UV XATACHEVAGTEL Yol YEVIXY| Yp1ion %o Glyoupa Oyl
yiot To TOAD e€eldixeupévo TedBAnua mou tpooradel vo Aooel auth 1) epyacia. Autd onuaivel
OTL Ta YoEOXTNELOTIXG Tou e&dyovtal dev elvon o oxpBade amapaitnTo yior vor TeoxUdeL 1|
BeATIoTN CUCYETION UETAEY TV CUVOLICUNDY QUPUAX®OY %ol TIC OLPOPES TUQEVERYELES, TO
omofo ennpedlel onuavTixd Ty anoédoan tou povtélou. Trnv anddoon emnpedlel oxodua xou
1 duoxohion Tng emakdeuvong Twv TEoBArédeny Tou yovtélou, agol yio vo Vewpniel cw-
o1 onowdnnote TEOPAedn meemel vo texuneiwiel omd xhvixd dedouévo. e Uelhoviixh
doukeld, Yo wpeholoe onuavTixd 1 exnaidevon evoc wordembeddingmodel, ye yvouova to
CLUYXEXPWEVO TEOBANUYL, OTE TaL YoEUXTNELO TIXE oL Yor EGYOVTAL VoL v TOVOXAODY TIC TTOAD-

Thoxeg Bloynuixés dlepyacieg mou dpouv oTo TapaoxRvio xdde ahAnhemidpaong.
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Chapter

Introduction

1.1 Artificial Intelligence

The focus of Artificial Intelligence (AI), is creating and executing computer systems
that can resolve complex problems typically requiring human intelligence [10]. These prob-
lems can involve tasks that are either natural or of a high level of complexity. To rephrase
it in simpler terms, Al is a computing paradigm, that enhances a machine’s capabilities
to mimic how humans think and solve complex problems. In the same way as a human,
Al can improve and self-correct from the mistakes it makes during the process of solving
problems and so it’s able to self-improve.

The conception of the idea of Artificial Intelligence isn’t as modern as many think,
with the concept first appearing as early as 1950 by Alan Turing and his very influential
paper on the potential of programming a computer to act intelligently. Al has experienced
substantial growth since then, with many advances in areas such as natural language
processing, speech recognition, computer vision, and robotics. Due to the exponential
growth Al has experienced, many subfields have been constructed with the two most

prominent being Machine Learning and Deep Learning.

1.1.1 Machine Learning

Machine Learning (ML) is the subfield of Al, that refers to the ability of machines to
resemble intelligent human behavior, using algorithms [11]. ML needs an extensive amount
of data, that has to be collected and processed to be used as training data. This is the
information under which the ML model will be trained on. Once a model has been selected,
it’s given the training data and allowed to learn on its own, identifying patterns and making
predictions based on that data. Added, the model’s parameters can be manually adjusted
to help improve its accuracy. Machine learning consists of several learning methods, which

include:

e Supervised learning: In supervised learning, the models get trained on information

that consists of inputs and their expected output, which are more commonly called
labeled data. That data enables the models to learn patterns and improve their
accuracy over time. In practice, the models can generalize what they’ve learned and

be able to predict correctly for previously unseen data. Today, supervised learning
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is the most commonly used type of machine learning.

e Unsupervised learning: In a different context, unsupervised learning uses unlabeled

data and from those tries to extract meaningful patterns not necessarily noticeable
by the human eye. The model is left to discover on its own without any external

guidance and draw conclusions, previously unthought or unknown.

e Reinforcement learning: Reinforcement learning trains models by experimenting and

learning from mistakes, by implementing a feedback-dependent system. The model
is trained to analyze input data and generate predictions. If the model’s predictions
are incorrect, corrective feedback is provided to help the model improve its accuracy.
By doing so, the model can gradually learn which steps to take to generate correct

predictions [12].

1.1.2 Deep Learning

Deep Learning is a subset of Machine learning that uses algorithms loosely modeled
after the structure and function of the brain’s neural networks [13|. Therefore, they are
referred to as artificial neural networks. Neural networks are constituted of layers of inter-
connected nodes, with the number of layers oftentimes spanning tens or hundreds. These
networks are capable of processing large amounts of data and setting a weight for each
connection within the network. Deep learning models learn by consuming an extensive
amount of labeled data and have the ability to determine features directly, without requir-
ing manual feature extraction. The above constitutes a sizable contrast with the machine
learning workflow, in which features must be manually extracted. Another key difference
is the ability of deep learning algorithms to scale with data, as in comparison to ML where

the accuracy flattens after a certain amount of training data.

‘, ————— ARTIFICIAL INTELLIGENCE
- - A technique which enables machines
Artificial Intelligence P _ -~ to mimic human behaviour
& :
Machine Learning
MACHINE LEARNING
___________ Subset of Al technique which use
statistical methods to enable machines
to improve with experience
Deep Learning
~
>~ DEEP LEARNING
SN~ —_——— Subset of ML which make the

computation of multi-layer neural
network feasible

Figure 1.1. Differences between Al, ML, and Deep Learning
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1.2 Zero-Shot Learning

Zero-Shot learning (ZSL) is a new learning paradigm in machine learning, in which the
testing phase includes objects from classes, that were not included in the training, and
the model must now classify them correctly [7]. ZSL made its first appearance in papers
regarding computer vision. In computer vision, ZSL models were used to match images to
new classes, by creating a similarity mapping between the attributes of samples and the

classes they belong to.

There has been a rapid increase in the number of zero-shot learning methods proposed
yearly. Traditional zero-shot learning methods, work by linking seen and unseen classes
through some form of complementary information, which encodes characteristic properties
of objects. So even if we haven’t encountered a sample before, we can assess the class to
which it belongs by observing its properties. These properties could include descriptive
features such as color, shape, size, or other attributes that can be used to identify an object
or class. That way by providing a high-level description of the new category that relates
them to categories previously learned by the machine, we can access semantic information

about the category to classify.

Information can be extracted from classes using various tools. We can get the textual
definition of each class represented in a vector using modern language processing models.
Another, key tool for strengthening the semantic relationship extraction can be manually

tagged attributes.

One can see that Zero-shot learning can have a great impact in many applications, as

it permits models to categorize new classes without requiring any additional training data.
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Figure 1.2. FExample of ZSL using embeddings to categorize images

Diploma Thests



Chapter 1. Introduction

1.3 Word Embeddings

Word embeddings are a unique process of representing words, that grants words with
similar context the ability to have a similar representation. Embeddings not only capture

the context of a word but also the syntax and interpretation [14].

Most commonly, words are depicted through word embeddings with a dense numerical
vector, usually containing floating point values. Higher dimensional embeddings capture
more subtle dependencies between words, but on the other hand, need substantial amounts

of data to train.

Word embeddings have been a part of every natural language process model, since
their first utilization by researchers at Google in 2013. This signifies their importance
and effectiveness, after all, they make it feasible to perform mathematical operations, by

numerically representing whole sentences.

Deep learning models are used, to create these multi-layered word representations that
capture both their features and their relationships to other words. Although word embed-
ding models get trained in large amounts of generic text data, they can be also tweaked

for a specific problem, cutting time and resources from needing to begin again.

Today there are many technologies avai-lable for creating word embeddings. In the
past, two of the most influential techniques have been Word2Vec and GloVe. Word2Vec
makes use of neural networks and a large dataset, to learn word embeddings. GloVe takes
a different approach, adopting a co-occurrence matrix that keeps statistics for each word
co-occurrence. More recently, Google’s BERT offers state-of-the-art performance in many
NLP problems. BERT takes advantage of deep learning architecture used in excessive
amounts of text data, named transformers. BERT can process text in all directions and

thus can achieve better relations extraction between words.

&
& RGN >
¢ & & & & p @
& N S\ S
R N S & S & N
T ¢ ¢ & < houses
cat —>| 0.6 I0.9 |0.1 |0.4 |—o47|—o.3 |—0A2| Dimensionality o
reduction of
. word
kitten —| 0.5 | 0.8 I—O.llo.z |—0.6|—0.5 |—0,1 embeddings
from 7D to 2D
- - cat
dog —|0.7 —()1|0,4 |0.3 |—0.4 |—0.1 I—O.s| ® Litten
[ J
housesa|—0.8]70.4|—0.5 0.1 |7(J.9 0.3 |0.8 | ®
dog
woman
man —| 0.6 —0.2| 0.8 |0.9 —-0.1 |—0.9 —0.7 o o )
reduction of ,/
woman a| 0.7 | 0.3 | 0.9 |70.7| 0.1 |70.5 —0.4 vord y
embeddings [
from 7D to 2D man queen
[os o407 Jos [0s [o[-0e] °
queen —| 0.8 —0.1’ 0.8 |—O.9| 0.8 |—0.5 -0.9
N J\ )\ J
Y ) ‘. Y
Word Word embedding Dimensionality Visualization of word
reduction embeddings in 2D

Figure 1.3. Ezxample of word embeddings vectors and word relationships

Diploma Thesis



1.4 Multi-label classification

1.4 Multi-label classification

Multi-label classification, unlike conventional classification tasks where a single label is
predicted for each sample, involves predicting a combination of multiple labels. It expands
upon multi-class classification, where each sample can be unambiguously categorized into
one class from a group of several classes [15].

To clarify, in multi-label classification problems, the input is transformed into a binary
vector, where one represents the presence of a class associated with the input. There is a
wide array of applications for multi-label classification, especially in the area of text and
image classification. It has a pivotal role in NLP text categorization tasks and computer
vision where multiple labels are needed.

There are different techniques on how to approach these problems, the standard method,
known as the binary relevance method, involves training a binary classifier for each label
[16]. Then the predictions for each one are joined to accurately output the labels of an
unseen input. Another interesting method is the label powerset transformation, where a
binary classifier is created for every combination of labels. That way the problem becomes
a multiclass classification problem, and can be dealt with accordingly. Furthermore, many
classification algorithms have adapted to be able to tackle multi-label tasks as well, for
example, the k-nearest neighbors algorithm has been extended to account for multi-label
data.

Despite its versatility, multi-label classification comes with a range of unique challenges
[17]. The varying frequencies of label occurrences within datasets can lead to imbalanced
class distributions, particularly when certain labels rarely appear during training. This
can impair the model’s ability to generalize to underrepresented labels. Moreover, the
computational complexity can significantly increase, as datasets often possess a substantial
set of features that the model must train upon. Therefore, more computational resources
may be required to handle the increased complexity.

Another challenge lies in evaluating multi-label classification models, as each input
can possess multiple correct labels. Several metrics can be employed to assess model
performance, including hamming loss, the Jaccard index, precision, recall, and F1-score.
The specific metric utilized depends on the objectives and requirements of the task. For
instance, in applications where false positives are costly, precision optimization is crucial,
while recall prioritization is essential in settings where missing relevant labels pose a greater

concern.
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1.5 Drug-Drug Interactions

Drug-drug interactions (DDIs) are one of the most common causes of medication errors
in developed countries and are responsible for 10-20% of the adverse drug reactions requir-
ing hospitalization [1]. DDIs might occur when multiple drugs are administered conjointly.
These interactions may result in either an increase or decrease in efficacy, treatment failure,
or may even result in severe and debilitating drug-induced side effects. Extremely vulner-
able to these types of interactions are elderly patients, as there is a strong relationship
between increasing age, the number of drugs prescribed, and the frequency of potential
DDIs [2].

Drug-drug interactions can be categorized into different categories, according to the un-
derlying mechanism by which drugs interact, such as Pharmacokinetic, Pharmacodynamic,
and Idiosyncratic [18, 19].

e Pharmacokinetic interactions: These interactions arise when a drug alters the ab-

sorption, distribution, and elimination of a coadministered drug. Altering the con-
centration of a coadministered drug can have severe clinical consequences and can

lead to treatment failure or toxicity.

e Pharmacodynamic interactions: Occur when one drug alters the sensitivity or re-

sponsiveness of tissues to another drug by having similar (agonistic) or opposing
(antagonistic) effects. In other words, combining drugs can have an additive reaction

on their effects, leading to an exaggeration or mitigation of them.

e Idiosyncratic interactions: These are adverse drug reactions that are not related to the

known pharmacological properties of the drugs and occur in only a small percentage

of the population and do not show any apparent relationship.

To effectively mitigate the detrimental consequences of DDIs, healthcare providers need
to review patients’ medication lists carefully, use computerized systems to alert them to
potential problems and educate patients about the importance of reporting all medications

they are taking.
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As previously mentioned, drug-to-drug interactions can induce adverse effects on pa-
tients, which can be dangerous or even life-threatening. Additionally, DDIs can have
consequences on the efficacy of drugs, can affect their therapeutic benefit, and make it dif-
ficult for doctors to prescribe the appropriate medication regimen. Evidently, being able
to predict ahead of time DDIs, can be an essential tool for managing them in a clinical
environment and help to ensure that patients receive safe and effective treatment.

One way to approach this issue is by creating a computer system capable of identifying
DDIs either by predicting them or identifying known interactions. There has been a sig-
nificant amount of progress in research using machine learning methods in the past years.
Some of the approaches using traditional machine learning methods are discussed shortly.

What is yet to be widely explored, is the application of zero-shot learning to predict
DDIs. Zero-shot learning offers the ability to generalize from seen to unseen data, enabling
predictions for data not included in its training. Although the intricate nature of drug
interactions poses a challenge, the captivating idea of utilizing zero-shot learning keeps the

door open for innovative solutions.

2.1 Approaches for Predicting DDIs

Similarity-Based Approach

The concept behind this approach is as follows: if drug A interacts with drug B and
induces a specific side effect, then drugs that are comparable to drug A are likely to yield
the same side effect when interacting with drug B. Researchers Vilar et al. [5], made use
of the similarity-based method by extracting the molecular similarity of drugs, using a bit

vector to encode molecular features.

Matriz factorization Approach

This approach reveals concealed relationships in extensive datasets and has become a
valuable asset in predicting interactions between drugs. By harnessing latent patterns ex-
tracted from existing DDI data, matrix factorization aptly anticipates interactions among

drugs sharing similar attributes [20].

Classification-Based Approach
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A binary classification problem is simulated to predict DDIs in the traditional classification-
based approach. Inputs of DDI and non-DDI pairs are used to train a classification model.
Various classifiers like Bayesian, k-nearest neighbor, logistic regression, random forest, and
support vector machines (SVM) are employed to build a model. Using a link-prediction
technique, Kastrin et al. [6] considered the prediction of unknown drug interactions in five
large DDI databases as a binary classification task. They further improved the network
topology features by incorporating four semantic characteristics. In the link predictions
approach, a graph is constructed using the drugs (or other biomedical entities) as nodes
and their connections and interactions as edges. Next, algorithms such as random walk are
used to predict missing links between nodes and thus identify missing interactions. This

approach has been adopted by many researchers and tweaked according to their study.

2.2 Thesis Description

In simple terms, this thesis aims to predict potential adverse side effects that may arise
from the combination of two drugs, where either the side effects or drug pairs have been
included at the training stage. To do that, we employ the use of a zero-shot learning frame-
work that has been carefully adjusted to account for the multilabel nature of the problem.
Our goal is to first establish a mathematical relationship between a sample of known drug
interactions and their side effects. And use this relationship to make predictions for new
unseen drug pairs and side effects. Additionally, It’s very important to build on this re-
lationship, extracted from the framework, to achieve a one-to-many correlation between
drugs and side effects. As with most zero-shot learning problems, the target of this thesis
isn’t to be a stand-alone mechanism for tackling this very complex problem of identifying
DDIs but to be combined with other methods, such as the ones mentioned above. That
way we can ensure better results, especially in the case of making predictions for unseen

side effects.
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3.1 Brief Architecture Review
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Figure 3.1. Summary of the thesis architecture

The following overview provides a high-level account of the steps employed in this thesis
architecture, intended as a concise introduction to its different components.

The first step of our extensive process is to gather data from open-source datasets
and mold it to align with our requirements. The data format consists of drug pairs and
their corresponding known side effects. In this state, the data are nothing but a string of
characters and can’t provide us with the words and semantic information we very much
require.

To solve this problem, each piece of data we collected, is sent through a word embedding
model, trained explicitly on biomedical text. The resulting vector, or the yield of the model,
is then stored to be used in the subsequent steps.

We have chosen to utilize the ESZSL framework, an acronym for Embarrassingly Simple

Zero-Shot Learning. We will examine this framework, in more detail at a later point.
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Essentially, this process enables the establishment of a mapping between drug features and
their corresponding side effects. Consequently, a linear classification model gets trained,
which can be utilized for classes that have not been encountered previously.

Another aspect we do consider in our architecture is that a drug pair might have the
potential to produce more than one side effect. Therefore, in the final step of our process,
we manipulate the linear classifier to generate predictions for multiple classes and make
selections based on the probability scores assigned to each class.

In the final stage, we will employ unseen data to evaluate the effectiveness of our
architecture and its ability to make predictions for side effects that were not included in

the training stage.

3.2 ESZSL framework

ESZSL is a framework introduced by Bernardino Romera and Philip Torr in their paper
“An embarrassingly simple approach to zero-shot learning” [8]. Its inherent goal as a zero-
shot learning framework, is to classify objects without previously having any training data
for those specific classes. ESZSL takes a novel approach by leveraging auxiliary information
and exploiting the relationships between seen and unseen classes.

Two options for auxiliary information in ESZSL are semantic embeddings or attribute
vectors linked to the classes. These embeddings capture and represent the semantic infor-
mation or attributes associated with the classes. By incorporating embeddings into the
model, ESZSL has the ability to understand and recognize the intricate relationships that
exist among various classes. This enhanced understanding enables the framework to make
more informed and accurate classifications, even for classes that have not been previously
encountered.

Therefore, the primary goal of ESZSL is to train a function that can accurately cal-
culate the probability of an object belonging to a specific class. This function takes as
input an object’s features and a class semantic embedding and generates as output the
similarity score between the two. To achieve this during the training stage, a labeled
dataset consisting of objects with their corresponding class embeddings is utilized to opti-
mize the function’s parameters. The training process involves continuously adjusting these
parameters to minimize the discrepancy between the predicted similarity scores and the
ground truth labels. Below, we’ll provide a more in-depth account of the framework’s
mathematical principles and logic.

ESZSL employs a wide range of mathematical concepts and techniques to tackle the
challenge of zero-shot learning. At the core of this framework lies the fundamental princi-
ples of linear algebra and specifically specialized matrix operations. Below, we will provide

representations and compositions of the various matrices involved in the framework:

e S5%%%. Represents a set of classes associated with attributes, where a denotes the

number of attributes, and z denotes the number of classes.

e X@X™M. Represents a set of instances and their corresponding feature vector, where

d denotes the dimensionality of the data, and m denotes the number of instances.
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o Y™*%. Represents the ground truth labels of each training instance belonging to any

of the z classes.

The paper initially presents an equation designed to facilitate the learning of a linear

predictor for a given set of training classes:

min L(XW,Y)+ QW) (3.1)
WeRdxz
In the preceding equation, W represents the parameters to be learned, L is the chosen
loss function, and € is the regularizer. The particular selection of L. and 2 can lead to
numerous approaches for addressing the problem at hand. In the previous problem, the
attributes are not utilized, resulting in a lack of knowledge transfer from the existing set of
classes to new classes. To incorporate the given information about attributes, the equation

is modified as follows:

min L(XVS,Y)+Q(V) (3.2)
VeRdxa

The matrix V%% is derived by the equality W = STV. Utilizing matrix V introduces the
attributes into the equation and enables the transfer of knowledge from training classes to
new ones. Ultimately our objective is to differentiate among a new unseen set of 2’ classes.
The framework needs to be provided with a matrix of their attribute signatures donated
by S’axz' - Then for a new instance x, a prediction can be given using the subsequent
statement:

argmax 2V S; (3.3)

The above formula provides us with a straightforward and accurate method of making
predictions, given that we are able to precisely calculate matrix V. In light of this, the
authors of the paper introduce two critical assumptions concerning the regularizer. The
first assumption focuses on controlling the Euclidean norm of the representations of at-
tribute signatures on the feature space. Controlling the norm promotes fairness and equal
consideration of all attribute signatures. The second assumption aims to limit the vari-
ance of representations of instances on the attribute space. By ensuring invariance, the
model’s ability to generalize well to unseen feature distributions is enhanced, making it
more reliable and effective in practical scenarios. By incorporating these two properties,
the model becomes more balanced, unbiased, and adaptable to diverse data scenarios. A
regularizer that accomplishes the previous terms, has a solution for equation (3.2) that can

be expressed in closed form in the following way:

V= (XXT +~4D)7 XY ST(SST + A7t (3.4)

3.3 Multi-label classification

As mentioned before, we are addressing a multi-label classification problem due to the
possibility of multiple side effects resulting from each drug interaction. However, a few

issues arise when examining the solution provided by the ESZSL framework in equation
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(3.3). Using arg max;, means that only a single side effect gets selected for each drug pair,
based on having the maximum output, obtained from the compatibility function. Hence,
some adjustments to the framework are necessary to meet our specific requirements.

If we calculate the compatibility scores for each instance and class embedding, following
the standard ESZSL framework. We are presented with multiple scores, each one associated
with a distinct instance-class pair. What we need to accomplish is to filter out the pairs
that exhibit scores indicative of a relationship. These can be achieved by establishing a
threshold for the scores, the threshold acts as a lower bound, indicating the minimum score
required for a label to be considered present for an instance. This threshold is essential for
making predictions for each instance and its many class pairs.

That threshold can be computed by many different methods [21], for example, the usage
of a validation data set or the f1 score to find the optimal trade-off between precision and
recall. Our approach uses the top percentile score method, we sort all the compatibility
scores in descending order and identify the score at the chosen percentile. This score
will be used as the threshold for classifying labels. For each instance, we compare the
compatibility scores of the class embeddings to the threshold. If a compatibility score for a
particular label is higher than or equal to the threshold, we consider that label as present
for the instance. Otherwise, scores below the threshold suggest the absence of the label.

The top percentile score method enables us to adapt the threshold to the specific dataset
and distribution of compatibility scores. By sorting the scores and selecting a percentile,
we take into account the varying strengths of relationships between drugs and side effects.
This approach is particularly suitable for our problem, as we prioritize a higher recall score,

aiming to capture as many relevant labels as possible.

3.4 FEvaluation

The essence of zero-shot learning lies in its ability to generalize beyond its training
data, and make predictions for previously unseen classes. To accurately assess our model’s
performance in this domain, we employ a separate dataset comprised entirely of novel
classes and evaluate how well it predicts the potential drug-to-drug interactions for each
instance. We begin by feeding this new dataset through the embedding model, identical
to the process for the training data. Next, we use our trained linear classifier in conjunc-
tion with our multi-label classification approach to generate predictions. Each instance is
associated with a specific set of labels. In a conventional machine learning setting, eval-
uating the model’s accuracy would entail utilizing the true labels present in the testing
dataset. However, our challenge arises from the absence of comprehensive clinical data for
all possible drug combinations. While we can obtain limited reference labels from known
drug-to-drug interactions, we cannot definitively validate or refute the model’s predictions
for the broader spectrum of interactions. Therefore, we employ a more tailored evaluation
method: identifying the overlap between our model’s predictions and the true labels we
currently possess for each instance. This approach emphasizes the recall of our model,
also known as sensitivity, which measures the proportion of correctly predicted positive

labels out of the actual positive labels. Recall serves as a crucial indicator of our model’s
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ability to effectively identify and capture the inherent relationships between drugs and
their potential interactions. This assessment, coupled with the limited reference labels
from known interactions, provides a comprehensive evaluation of our model’s performance

in the zero-shot learning domain.

Precisi TP Recall TP 1 Precision x Recall
e — e — = *
reasion=gp T pp N T pp RN Precision + Recall

(3.5)
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4.1 Data collection

The first and foremost requirement is to obtain the necessary information to imple-
ment the previously described architecture. This information is crucial for both training
and testing purposes. Without it, our ability to develop the architecture would be ob-
scured, making it essential to prioritize and acquire the necessary data to proceed with
the implementation process. We acquired our data from the publication titled "Model-
ing polypharmacy side effects with graph convolutional network" [22]. The dataset which
interested us the most was the "Drug-drug interaction and side-effect dataset". This infor-
mation on polypharmacy side effects was extracted from the TWOSIDES database, which
provides comprehensive details on 1,318 types of side effects across 63,473 drug combi-
nations. This database was generated using adverse event reporting systems that collect
reports from doctors, patients, and drug companies. Below is provided a sample from the
dataset.

H STITCH 1 STITCH 2  Polypharmacy Side Effect Side Effect Name H
CID000002173 CID000003345 C0151714 hypermagnesemia
CID000002173  CID000003345 C0035344 retinopathy of prematurity
CID000002173  CID000003345 C0004144 atelectasis

Table 4.1. Sample from the Drug-drug interaction and side-effect dataset

As mentioned in the preceding sections, a subsequent step requires generating word
embeddings for our data. However, the embedding models we tested failed to capture the
semantic information of the drugs when given the CID ID of each drug. CID, which stands
for Compound Identifier, is a distinct identification number assigned to chemical com-
pounds in the PubChem database. Consequently, we processed the dataset by substituting
the CID ID with the most commonly used scientific name for each drug. Additionally, we
eliminated the polypharmacy side effect ID as it was not needed in our procedure. Below

is provided a sample from the processed dataset.
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| DRUG1 DRUG 2 Side Effect Name |
ampicillin ~ fentanyl hypermagnesemia
ampicillin  fentanyl retinopathy of prematurity
ampicillin ~ fentanyl atelectasis

Table 4.2. Sample from the processed Drug-drug interaction and side-effect dataset

The dataset includes 1,048,575 drug-drug-side-effect pairs. Since we will be performing
matrix operations later on, we have divided the data into smaller chunks. This approach
allows us to maintain smaller matrix dimensions and ensures that our calculations remain
manageable. The reduced dataset we have created consists of 4,000 distinct drug pairs
and 200 distinct side-effects, some of which will be utilized for training while others will

be allocated for testing purposes.

4.2 Selecting an Optimal Word Embedding Model

As aforementioned, we will be passing our data through a word embedding model to
extract the features that we will leverage later in the process. Choosing the right word
embedding model can depend on many factors, but foremost, it has to do with the task
at hand. Since word embeddings, are not the central point of investigation in this thesis
but simply a tool, we opted to choose a pre-trained BERT model. Thankfully, there
is an array of BERT models fine-tuned on an extensive volume of biomedical text. To
evaluate the ability of each model to identify potential drug interactions, we had to design
a small-scale test. We selected a pair of drugs and their corresponding side effect from
the dataset. Additionally, we selected a side effect that was not yet known to be caused
by the chosen drug pair, this way we ensured that the model could recognize both known
and unknown interactions. For each model, we passed the drug pair as a single string
representing the combined drug names and separately passed the side effect names. This
allowed us to embed and compare the drug pair and side effects independently. After
embedding, we calculated the cosine similarity scores for the drug pair embedding and its
corresponding detected side effect, as well as a score for the drug pair and the side effect not
known to be caused by the interaction. In this way, we can evaluate the model’s ability to
distinguish between drug pairs that have and have not been observed to interact, indicating
its suitability for our application. A model that exhibits consistently higher cosine scores
for the detected side effect compared to the unknown side effect would be considered more
effective in predicting potential interactions. We ran the previous test for several drug
pairs and used seven different models (BioBert, ChemBert, BlueBert, BioClinicalBert,
SciBert, PubMedBert, Sentence-Bert). The bar graph below illustrates the comparison
between cosine scores for clinically detected side effects and randomly selected ones across
all candidate models. The blue bar indicates the percentage in which the cosine score was
higher for detected side effects, while the red bar represents the corresponding percentage

for the randomly selected side effects.
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Figure 4.1. Results of the various models

As is evident from the bar graph above, the BioBert, BioClinicalBert, and SciBert
models emerged as the top performers. While BioBert marginally surpassed the other
two, it’s not necessarily the optimal choice for our final experiment. This preliminary test
serves to narrow down our selection of models, not necessarily identify the absolute best

performer.

4.3 Implementing the ESZSL framework

To fully harness the capabilities offered by the ESZSL framework, we must transform
the concepts and algorithms outlined in the paper into functional code. For this task,
will make use of the Python programming language. Python’s intuitive syntax and rich
ecosystem of libraries make it a great candidate for our application. Specifically will
take advantage of the widely prevalent NumPy library. NumPy’s broad range of tools,
especially for array operations will significantly assist with translating the process detailed
in the paper.

We have divided the code into several core modules, which significantly enhances code
readability by breaking it into smaller, self-contained units. Furthermore, this approach
improves our capacity to expand and integrate new features seamlessly. For now, will
focus on two of them. In the first module, we’ll create all the matrices described in the
framework, that are integral to construct the main matrix V. In the second module, we’ll
implement the novel one-line solution proposed in the paper (equation 3.4) and finally
produce matrix V.

Previously we discussed that we’ll be employing the help of pre-trained word embed-
ding models. The models we choose all have expanded above BERT, a natural language
processing model developed by Google, where its generated vector has a dimensionality of
768. By considering that we use these embeddings to extract attributes for both drugs and
side effects, it’s apparent that both S and X matrices described in Chapter 3, will have
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their rows bounded by the dimensionality of 768.

Before proceeding it would be helpful to take a moment and briefly explain how we
transform our data from their form in Table 4.2, to accommodate for the framework re-
quirements. To construct matrix S, we take each side effect name and pass it through our
chosen embedding model. If there are x number of side effects this will result in a vector
with dimensionality of x. Where each element of the vector itself has a dimensionality of
768. To construct the matrix S, will take the aforementioned vector and stack each ele-
ment as a column, to be able to do this correctly the only prerequisite is that all elements
must have the same dimension, something our vector satisfies. The same process is used
to construct matrix X, this time by embedding the concatenated string of the two drugs
using the chosen embedding model. Finally, matrix Y, containing truth labels, is formed.
With x rows where x represents the number of training drug pairs and z columns for the
number of training classes. Fach row denotes a specific instance and is populated with
zeros, except for the class it belongs to, marked with a one. Below is provided a snippet

of pseudo-code entailing the steps mentioned above.

Aarpions 4.1: Create the input matrices

Let S be an array containing z number of side effects
Let X be an array containing z number of drug pairs
Let Y be an array of size z rows and z columns
for each element in S do

Transform element into a vector and store it in its original location.
end for
Take all vectors from array S and stack them as columns to make a single 2-D array
for each element in X do

Transform element into a vector and store it in its original location.
end for
: Take all vectors from array X and stack them as columns to make a single 2-D array
: for ¢ = 0 torows - 1 of Y do
for j = 0 to columns - 1 of Y do

if the element in the row 7 belongs in class j then

Set element in row ¢ and column j to 1
else
Set element in row 4 and column 5 to 0

end if
end for
: end for

[ N e e e e e
e B o el

With the matrices constructed, we can focus on solving equation 3.4 and obtaining
matrix V. One last thing we should make a note of is the hyperparameters v and A which
ensure that the model avoids overfitting while maintaining the ability to generalize effec-
tively to unseen data. Selecting optimal hyperparameter values, to ensure the model’s
highest performance requires a meticulous search process, typically involving trial and er-
ror. In our case, we opted for the grid search approach, which involves defining a value
range for each hyperparameter and exhaustively evaluating all possible combinations. For

our specific application, the most suitable combination of values proved to be « set to zero
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4.4 Filtering Mechanism for Multi-Label Predictions

and A set to three.

Ultimately, we anticipate the dimensions of V to align with the dimensions of the
feature vector multiplied by the number of class attributes. We utilize the NumPy library
to perform the different matrix operations mentioned earlier. In the pseudocode provided

below, we outline the core steps at a higher level.

Aarpiops 4.2: Calculating matriz 'V

. Initialize matrix V with dimensions 768 x 768 and filled with zeros
: Set v to the optimal value determined through experimentation
: Set A to the optimal value determined through experimentation
Compute matrix multiplication of X and its transpose

: Regularize the result of XX’ by adding 1071

: Calculate the pseudo-inverse of the sum

: Store the result in tmpl

Compute matrix multiplication of X, Y, and S’

: Store the result in tmp2

: Compute matrix multiplication of S and its transpose

. Regularize by adding 10 to the result of SS’

: Calculate the pseudo-inverse of the sum

: Store the result in tmp3

: Compute matrix V by multiplying tmp1, tmp2, and tmp3

e e e =
W N = O

Having completed the above steps, we are now able to utilize the V matrix to make

predictions and evaluate the precision of the model.

4.4 Filtering Mechanism for Multi-Label Predictions

As previously mentioned, using equation 3.3 as is, for making predictions is limiting for
our type of use. Nevertheless, the equation is still extremely valuable. If we disregard the
need to locate the optimal value and remove arg max, the equation will produce a vector.
Each element within this vector will contain a probability score. Will delve deeper into what
this probability score signifies. Let’s indicate as x’ the feature vector of a new drug pair
instance and S’ the matrix containing a new unseen set of side effects and their attributes.
The multiplication of 2’V S" will result in a vector with its number of components being
equal to the number of new side effects in matrix S’. Each component of the vector will
hold a score. This score signifies the probability of the instance 2’ belonging to each class
of the S’ set. In other words, the probability of drug pair 2’ inducing a side effect from the
set S’. To be more precise, if we were to state that the initial row of matrix S’ represents
the attributes of side effect y, then the corresponding element in the probability vector’s
first component would indicate the probability of drug pair x’ causing side effect y and so

on.
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Z-dimensional vector
N

r ]
1 1 —
X [ ] V [ ] 8 — 0.02, 0.048, 0,14, 0.0094, ..., 0,31, 0.086, 0.0039
| -0.23,-1.18, 0.62, -1.02, ., 0.56 | 087 112 033 130, 11%
L . J 0.34, -0.74, -1.62,0.05, ., -0.23
768-dimensional vector 053,123,123, 157, -1.40
0.13,0.34, 073,005, ., -0.25 Zrows
1.00, 195, -1.73, 0.10, ... 1.65

768 columns

Figure 4.2. Overview of the 2’V S’ equation

As we observe the equation in its current form, it only has the ability to process one
instance at a time. Our goal is to enhance this capability by directly feeding the matrix X”,
which contains the testing instances, to the function. Achieving that is a straightforward
task. We will substitute 2’ with the transpose of the matrix X’. Now, the equation will
be represented as X7V S’. The result of the equation will transform into a matrix, where
the rows correspond to the number of drug pair instances in X’, and the columns are
equivalent to the count of side effects in S’. Every row in the resulting matrix will contain
the probability scores of distinct instances within X’. The figure below provides a high-level

overview of both the process of calculating the probability vector and matrix.

X'TV 5

atenolol ranitidine atenolol ranitidine Lyme Disease

lisinopril methotrexate Toxic Shock

ketorolac paroxetine Pyodema

marinol zolpidem Qvarian cancer

i

0.021, 0.08, 0.093, 0.003

Lyme Disease ‘ Toxic Shock ‘ Pyodema | Ovarian cancer

\ /

0.004, 0.023, 0.37, 0.102

[0.021]0.080[0.093]0.003 ] 0.430,0.24, 0.104, 0.001

L J 0.340, 0.51, 0.097, 0.001

S

probability vector
probability matrix

Figure 4.3. Probability vector and matriz

In the following phase, we’ll process the probability matrix, through a necessary filtering
mechanism. Our approach is centered around the establishment of a threshold value. This
threshold value serves as a critical criterion for determining which data points should be
retained. By applying this threshold to the probability scores, we identify instances that
exceed a predefined level of significance and can discard all the rest. Determining the
appropriate threshold can be a challenging task. Unlike static thresholds that remain
constant across all instances, dynamic thresholds adapt to the characteristics of each row

within the probability matrix. A threshold set too low might capture too many irrelevant
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relationships, leading to a high rate of false positives. On the other hand, a threshold set
too high might miss relevant associations, resulting in false negatives.

To address this, we explored several methods for establishing a threshold. Although
we considered alternative options based on statistical methodologies, they often struggled
to adapt to the dynamic threshold requirement. As explained in section 3.3, we ultimately
opted for a top-percentile approach due to its ability to provide a well-balanced outcome.

The top-percentile approach involves selecting a percentage value, such as 5% or 10%,
which represents the upper portion of scores within each row of the probability matrix.
This percentage value serves as a filter, identifying the threshold score for each row. The
flexibility of this approach shines through as it automatically adjusts to the distribution
of scores within each row, capturing the most significant associations while accounting for
variation.

Below is a brief pseudo-code snippet illustrating the filtering process. Ultimately, we
modify the probability matrix such that it marks a spot with 1 if we identify a relationship

between the drug pair and the side effect, otherwise, it is marked as 0.

Aarpiops 4.3: Transforming the probability matrix

1: Set P as the probability matrix
2: for each row in P do
3: sorted vector = sort(row)

4: min_index = [(length(sorted vector) — 1) x percentile]
5: min = sorted vector[min index]

6: for each element, index in row do

7: if element > min then

8: row[index] = 1

9: else

10: row[index] = 0

11: end if

12: end for

13: end for

4.5 Evaluation Method

The model’s training phase involved the utilization of 3,000 distinct drug pairs and 150
corresponding side effects. For the testing process, 1,000 drug pairs and 50 side effects
were reserved. To ensure the robustness and accuracy of the findings, multiple iterations
of training and testing were performed, each time incorporating distinct sets of drug pairs
and side effects. This systematic approach served to validate the model’s performance
consistently. By using a separate set of 1,000 drug pairs and 50 side effects, we aimed to
measure the model’s ability to classify correctly interactions in previously unseen data and
test its potential as a zero-shot learning paradigm.

As we have discussed, our approach involves generating multiple predictions for each
instance of drug pairs. However by design, in the testing dataset, each instance is associated

with only one truth label. Due to the complexity inherent in our data, while we do make
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predictions, validating their accuracy or falsehood presents challenges. So we opted to
classify as false positive every prognosis except for the ones matching the truth labels.
Consequently, each instance can have only one true positive, while the number of false
positives is dependent upon the number of predictions we’ll permit the model to make for
each instance. It’s apparent that the high number of false negatives could significantly
skew the accuracy of measurements. Hence the recall measurement, which is controlled by
true positives and false negatives, is the most accurate evaluation metric for this thesis.
As explored earlier, a probability matrix can be generated by employing the feature
matrix of the testing instances denoted as X’, the signature matrix S’ associated with
the testing side effects, along with the V matrix derived from the testing data. Once the
probability matrix has been filtered, each instance will have a set of predictions belonging to
the interactions it could potentially generate. Before evaluating the predictions, similar to
a previous step we must formulate the ground truth label matrix for the testing instances.
This procedure enables us to compare the two matrices and calculate the parameters

essential for our accuracy metrics.

Filtered Probability Matrix Truth Label Matrix
i A

r ) r 1

0100100010001 oooO00O0O0OQOTI0OO0OO0OD

1000100100100 0000100000000

0000110010010 0010000000000

1100001001000 oooo00O01O0O0O0O0O00O0

Figure 4.4. Comparing the Filtered Probability Matrixz and the truth label matriz

Although recall as discussed is the most reliable metric for our model, we still calculated
the precision and f1 score. Which were as expected highly distorted by the deliberate large
number of false positives. The next section will present the results we extracted from the
various datasets we tested the model with. We should mention that we also performed
two more experiments. In the first one, we replaced side effects with their corresponding
disease classes, for example, "color blindness" will fall under the "nervous system disease"
category. This experiment was used to check if the model would be able to generalize
better with broader categories. The other experiment we chose to perform, is to use the
CID identification for both drugs and side effects, to derive their embeddings. Will discuss

both experiments further in the next section which will be accompanied by the results.
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Results

As discussed briefly in previous sections, the fundamental test for our model was com-
posed of the following. For the model’s training, 3000 distinct drug pairs and 150 side effects
were used. Each side effect in the training set is linked with 20 unique drug pairs. Similarly
for the test set 1000 drug pairs and 50 side effects were used. The data comprising every
dataset were randomly selected and ensured that no drug combination was duplicated. For
all datasets, every metric was calculated for six different number combinations of drug pairs
and side effects. The combinations were (100, 5), (200, 10), (400, 20), (600, 30), (800, 40), (1000, 50).
Taking into account the effect the embedding model might have on the results, the exper-
iment was repeated using three different models: BioBert, BioClinicalBert, and SciBert.
Below are the results of the different datasets corresponding to the different word embed-

ding models.

Figure 5.1. Results from the different datasets using BioBert
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Figure 5.2. Results from the different datasets using BioClinicalBert
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Figure 5.3. Results from the different datasets using SciBert
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Precision

Recall

F1

Figure 5.4. Calculated median from the BioBert results

H N? Side Effects ‘ Precision ‘ Recall ‘ F1 H

) 0.18 0.18 0.18
10 0.095 0.19 | 0.126
20 0.055 0.222 | 0.089
30 0.036 0.221 | 0.063
40 0.027 0.222 | 0.049
50 0.023 0.231 | 0.042

Table 5.1. Median accuracy values for the BioBert results
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Precision
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Figure 5.5. Calculated median from the BioClinicalBert results

H N? Side Effects ‘ Precision ‘ Recall ‘ F1 H

) 0.22 0.22 0.22
10 0.112 0.225 | 0.15
20 0.053 0.212 | 0.084
30 0.035 0.215 | 0.061
40 0.027 0.218 | 0.048
50 0.0221 0.221 | 0.040

Table 5.2. Median accuracy values for the BioClinicalBert results
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Figure 5.6. Calculated median from the SciBert results

H N? Side Effects ‘ Precision ‘ Recall ‘ F1 H

5

0.17 0.17 0.17

10

0.092 0.185 | 0.123

20

0.05 0.2 0.08

30

0.036 0.201 | 0.057

40

0.025 0.202 | 0.045

50

0.021 0.217 | 0.039

Table 5.3. Median accuracy values for the SciBert results
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Let’s analyze the results presented above before delving into discussing other configura-
tions. One immediate observation in most of the results is a slight fluctuation in the recall
percentage among the first three numbers of available side effects. This is followed by a
generally steady but minor increase or decrease in percentage afterward. In general, the
recall percentage stays at around 20% but both precision and the f1 score show a consistent
decline as the number of false positives grows exponentially. It’s worth noting that while
BioBert appears to have the best results when all 50 side effects are available, one could
argue that the BioClinicalBert results exhibit more consistency, with only minor variation.

It’s essential to remember that in this particular setup, the training data significantly
outnumbered the testing data. Consequently, the model was trained with a larger number
of side effects than it was intended to predict, which can impact its ability to generalize. To
gain further insights, it would be beneficial to conduct the next experiment with a reduced
number of side effects and assess whether this adjustment improves the results or not.
The V matrix was trained using three different combinations of available side effects: 13,
25, and 50. The testing configuration remained unchanged, with the maximum allowable
number of side effects still set at 50. Below, the results for the three different configurations

on the first dataset are depicted.

Figure 5.7. Using 18 Side Effects for Training the V Matriz, Results from Three BERT
Models (BioBert, BioClinicalBert, SciBert)
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Figure 5.8. Using 25 Side Effects for Training the V Matriz, Results from Three BERT
Models (BioBert, BioClinicalBert, SciBert)
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Figure 5.9. Using 50 Side Effects for Training the V Matriz, Results from Three BERT
Models (BioBert, BioClinicalBert, SciBert)

Our initial observation reveals that the results derived from models utilizing BioBert
and SciBert in their processes do not display any significant differentiation from the pre-
vious experiments. Nevertheless, the model that incorporated BioClinicalBert into its
process yielded some intriguing results. It’s helpful to categorize our findings based on the
amount of side effects used in the training stage, making two distinctions: one for a small
quantity of side effects (13) and another for a larger quantity (25 and 50). In the first case,
there was no considerable difference, compared to the results of the initial experiment.
However, in the second case, it revealed a significant 15% increase in recall when making
predictions between a smaller number of classes (5 and 10). One possible explanation for
this increase could be that the reduction in training side effects led to a simplification of
feature boundaries within the feature space, thereby aiding the model in more effectively
mapping the semantic relationships between drug pairs and side effects. While the exact
cause of the model’s increased recall remains somewhat unclear, it could also be attributed
to having fewer classes to differentiate, allowing it to make clearer distinctions.

One final experiment was conducted to evaluate whether training the model with
broader classes would improve its test phase accuracy. By ’boarded classes,” we refer

to the disease class that encompasses all associated side effects.

H SIDE EFFECT NAME

DISEASE CLASS H

color blindness
refraction disorder
corneal ulcer

nervous system disease
nervous system disease
nervous system disease

Table 5.4. Sample of Side Effects within the Same Disease Class

For the training dataset, we replaced the side effect names with their corresponding
disease classes. The reasoning behind this choice was that the use of more general classes,
would provide the model with broader margins and enhance its ability to generalize to un-
seen classes during the testing phase. This experiment was run on a reduced scale, focusing
solely on one of the datasets and utilizing the BioClinicalBert model for embeddings. The

results can be seen below in Figure 5.10.
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Figure 5.10. Using broader classes for Training the V Matriz, Results from BioClinical-
Bert

The results resemble those of the previous experiment. We observe a notable increase
in prediction accuracy with a smaller number of available classes, suggesting that this type
of generalization works more effectively when there are fewer classes, making it easier to
achieve distinctions. However, as the number of classes increases, it becomes evident that

capturing the correct semantic meaning requires more explicit relationships.
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Future Work and Extensions

The experiments above gave us a greater understanding of our model’s strengths and
weaknesses. From them, we were able to recognize some of our design and process flaws.

We need to discuss further our resources, methodology, and, ultimately, our decisions.

6.1 Discussion

Feature Extraction

One pivotal part of our process is the extraction of features from our data. To achieve
this we opted to use pre-trained word embedding models. Although the models we chose
were trained on a vast amount of medical data, they were trained for general purposes and
not the particular task we utilized them. It is clear from the previous in-depth explana-
tion of the zero-shot learning framework that we adopt. The quality of features we derive
from our data plays a vital role in the success of our approach. In part, we can attribute
some of our design’s shortcomings to this. As discussed many times before, the strength of

the correlation between drug pairs and side effects greatly depends on those characteristics.
Validating Our Predictions

Inherently the type of problem we choose to take on leads to difficulties when it comes
time to validate the guesses made by our model. Even if a prediction isn’t present in
the recent clinical data, it could be encountered and confirmed at a later point. Leading
to an uncertainty of what can be labeled as correct at the time the prediction is made.
Simultaneously the fact that we only accept one prediction as truly positive, for every
drug combination hinders our ability to use most accuracy metrics. At the same time, the
multi-label classification ability that we have added to our structure can not be reliably

tested, as a subsequent result of the previous choice.

6.2 Feature Work

Feature Extraction
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As underlined above feature extraction and their fineness, are essential for our ap-
proach’s success. The use of pre-trained models although reasonable, in reality did not
yield the best results. For that reason in feature work, the development of a word em-
bedding model solely focused on the problem at hand would be of great benefit [23]. The
constructed model could focus on capturing the biochemical properties that are hidden
behind every DDI. It could focus on how properties found at the molecular level of each
substance, may assist in inducing a specific side effect. An embedding model that could
capture and generate a vector, mapping these characteristics, would considerably increase

the certainty and accuracy of the predictions made by our architecture.
Validating Our Predictions

Our dataset extraction process could be modified so our testing set, included drug
pairs exhibiting more than one confirmed side effect, belonging to the new assortment
of classes. This modification would introduce a greater diversity of side effect patterns
into our testing set, allowing our model to better generalize and identify DDIs involving
multiple side effects. By incorporating drug pairs from the newly defined assortment of
classes, we can expand the scope of our model’s capabilities, potentially leading to more

accurate predictions of complex DDIs.
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