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Abstract

Domain Name System (DNS) maps symbolic identifiers (i.e. domain names) to various types of
data, mainly IP addresses. Most network services depend on domain names for their operation,
thus DNS is vital for the reliability of computer networks. This makes DNS a frequent target of
DistributedDenial of Service (DDoS) attacks. One of themost devastating attack vectors against
the DNS infrastructure is Water Torture, which floods Authoritative DNS Servers with invalid
DNS requests to disrupt their name resolution services. Apart from DDoS attacks, DNS may
also be employed to forward data pertaining to botnet activities. Domain Generation Algorithms
(DGA’s) abuse DNS to establish communications between compromised hosts (bots) and botnet
orchestrators.

This dissertation addresses mechanisms for effectively protecting against threats targeting
DNS infrastructures (i.e. Water Torture) or exploitingDNSmessages formalicious purposes (i.e.
DGA’s). We overcome the limitations of traditional DNS security systems by employing Big
Data methods (probabilistic data structures, Machine Learning - ML) and promising networking
technologies (Software-Defined Networking, data plane programmability).

We initially propose a user-space schema that effectively detects and mitigates Water Torture
attacks against Authoritative DNS Servers. Instead of processing plaintext names, we employ
Bloom Filters (BF’s) to map entire zone contents and filter DNS traffic in a time and space
efficient manner. Our proposed mechanism categorizes requester IP addresses as legitimate
or suspicious based on operations performed by probabilistic data structures (BF’s, Count-Min
Sketches) and deterministic spelling correction algorithms (SymSpell). DNS traffic from suspi-
cious IP addresses is subsequently filtered based on BF contents. Malicious DNS requests are
dropped, whereas benign requests are forwarded to the victim Authoritative DNS Server.

We subsequently employ data plane programmability to significantly improve theWater Tor-
ture attack filtering throughput of our user-space, BF-based mitigation mechanism. We rely on
eXpress Data Path (XDP) to efficiently perform DNS Deep Packet Inspection (DPI) and rapidly
discern benign and malicious requests at the Authoritative DNS server data plane. Contrary to
other data plane programming approaches that require specialized hardware (e.g. P4 switches)
or bypass the Linux kernel (e.g. Data Plane Development Kit - DPDK), our XDP-based ap-
proach runs on low-cost Network Interface Cards (NIC’s) and does not bypass the kernel, thus
Linux utilities (e.g. TCP/IP libraries) are available to developers.

We then propose a privacy-aware mechanism to facilitate Authoritative DNS Server zone
distribution to external mitigation systems operating at Recursive DNS Servers (Recursors) or
upstream scrubbing facilities. Without requiring formal agreements, our mechanismmay enable
administrators to filter DNS DDoS attacks more efficiently closer to their origins or DGA traffic
with higher accuracy. Zones are mapped within Cuckoo Filters due to their time, space and
dynamic element update advantages over BF’s.

The aforementioned mechanisms depend on zone contents. However, Authoritative DNS
Server administrators may be unwilling to collaborate due to security concerns. To that end,
we complement our zone-based approaches for Water Torture attack mitigation by employing
XDP to accelerate ML feature extraction and inference within the data plane of Recursors. Our
approach relies on Naive Bayes Classifiers, which effectively segregate benign from DDoS at-
tack DNS requests entirely within the Linux kernel. Thus, DNS attack mitigation throughput is
significantly improved without requirements for any specialized hardware, e.g. Graphics Pro-
cessing Units (GPU’s).

Finally, we employ eXplainable Artificial Intelligence (XAI) techniques, specifically SHap-
ley Additive exPlanation (SHAP), to interpet the decisions of binary ML classifiers that differ-
entiate between legitimate names and malicious ones produced by DGA’s. SHAP operates in a



model-agnostic, post-hoc manner, i.e. regardless of the utilizedML algorithm and after the com-
pletion of the learning phase; this enables the analysis of tree and deep neural network classifiers
in a unified fashion. Based on various SHAP visualization tools (summary, dependence, force
plots), we derive global and local model interpretations on multiple and single dataset sample
points respectively; these enable us to estimate feature importance and assess feature interac-
tions. Our approach relies on features that capture name statistical and linguistic properties, thus
time-consuming and privacy sensitive operations to obtain historical data are avoided. Our eval-
uation focuses on determining how name classification decisions are affected by specific DGA
schemes (i.e. arithmetic, wordlist, hash and permutation based) used for name construction.

Our proposed DNS protection mechanisms are evaluated via proof-of-concept setups within
our laboratory virtualized infrastructure based on datasets widely-employed by the research
community and synthetic traffic generated based on our experience from the National Technical
University of Athens (NTUA) campus network services.

Keywords— Domain Name System (DNS), Distributed Denial of Service (DDoS) Attacks,
Water Torture, Domain Generation Algorithm (DGA), Software-Defined Network (SDN), Data
Plane Programmability, eXpress Data Path (XDP), Machine Learning (ML), Privacy-Aware
Mechanisms



Περίληψη

Το Σύστημα Ονοματοδοσίας (Domain Name System, DNS) απεικονίζει συμβολικά ανα-
γνωριστικά (ονόματα ή domain names) σε διάφορους τύπους δεδομένων, κυρίως διευθύν-
σεις πρωτοκόλλου Διαδικτύου (Internet Protocol, IP). Οι περισσότερες δικτυακές υπηρεσίες
βασίζονται σε ονόματα για τη λειτουργία τους. Κατά συνέπεια, το DNS είναι ζωτικής σημα-
σίας για την αξιοπιστία των δικτύων υπολογιστών. Αυτό καθιστά το DNS συχνό στόχο κα-
τανεμημένων επιθέσεων άρνησης παροχής υπηρεσίας (Distributed Denial of Service attacks
ή επιθέσεις DDoS). Μία από τις πιο καταστροφικές επιθέσεις εναντίον υποδομών DNS εί-
ναι η Water Torture, η οποία πλημμυρίζει επίσημους εξυπηρετητές DNS (Authoritative DNS
Servers) με μη έγκυρα ερωτήματα DNS για να διακόψει τις υπηρεσίες επίλυσης ονομάτων
(name resolution). Εκτός από τις επιθέσεις DDoS, το DNS μπορεί επίσης να χρησιμοποιηθεί
για την προώθηση δεδομένων που σχετίζονται με ενέργειες δικτύων μολυσμένων συσκευών
(botnets). Οι αλγόριθμοι παραγωγής ονομάτων (Domain Generation Algorithms, DGA's) κα-
ταχρώνται το DNS για να υποστηρίξουν την επικοινωνία ανάμεσα σε μολυσμένους υπολο-
γιστές (bots) και τους ενορχηστρωτές των botnets.

Η διατριβή αυτή προτείνει μηχανισμούς για την αποτελεσματική προστασία από απειλές
που στοχεύουν υποδομές DNS (Water Torture) ή εκμεταλλεύονται μηνύματα DNS για κα-
κόβουλους σκοπούς (DGA's). Οι περιορισμοί των καθιερωμένων συστημάτων ασφαλείας
DNS ξεπερνώνται με μεθόδους μεγάλων δεδομένων (Big Data), δηλαδή πιθανοτικές δο-
μές δεδομένων και αλγορίθμους μηχανικής μάθησης (Machine Learning, ML), καθώς και
πολλά υποσχόμενες δικτυακές τεχνολογίες, δηλαδή δίκτυα που καθορίζονται από λογι-
σμικό (Software-Defined Networks, SDN's) και προγραμματισμό σε επίπεδο δεδομένων (data
plane programmability).

Αρχικά, προτείνουμε έναν μηχανισμό σε χώρο χρήστη (user space) που ανιχνεύει και
αντιμετωπίζει αποδοτικά επιθέσεις Water Torture σε Authoritative DNS Servers. Αντί να
επεξεργαζόμαστε ονόματα στην αυθεντική τους μορφή (plaintext), βασιζόμαστε στα Bloom
Filters (BF's) για να απεικονίσουμε τα περιεχόμενα ολόκληρων ζωνών και να φιλτράρουμε
επιθετική κίνηση DNS με τρόπο αποδοτικό ως προς τον χρόνο και τη διαθέσιμη μνήμη. Ο
προτεινόμενος μηχανισμός κατηγοριοποιεί τις διευθύνσεις IP των αιτούντων ως καλόβου-
λες ή ύποπτες βάσει ενεργειών που εκτελούνται από πιθανοτικές δομές δεδομένων (BF's,
Count-Min Sketches) και αιτιοκρατικούς (deterministic) αλγορίθμους διόρθωσης τυπογρα-
φικών λαθών (SymSpell). Στη συνέχεια, η κίνηση DNS από ύποπτες διευθύνσεις IP φιλτρά-
ρεται βάσει των περιεχομένων των BF's. Τα κακόβουλα ερωτήματα DNS απορρίπτονται,
ενώ τα καλόβουλα ερωτήματα προωθούνται στον Authoritative DNS Server που δέχεται την
επίθεση.

Στη συνέχεια, χρησιμοποιούμε προγραμματισμό σε επίπεδο δεδομένων για να βελτιώ-
σουμε σημαντικά την απόδοση φιλταρίσματος του, βασισμένου σε BF's, user-space μηχα-
νισμού αντιμετώπισης επιθέσεων Water Torture που προτάθηκε προηγουμένως. Στηριζό-
μαστε στο eXpress Data Path (XDP) για την αποτελεσματική εκτέλεση ενεργειών DNS που
βασίζονται σε βαθιά επιθεώρηση πακέτου (Deep Packet Inspection, DPI) με σκοπό την τα-
χύτατη διάκριση καλόβουλων και κακόβουλων ερωτημάτων DNS στο επίπεδο δεδομένων
των Authoritative DNS Servers. Σε αντίθεση με άλλες μεθόδους προγραμματισμού σε επί-
πεδο δεδομένων, η προσέγγισή μας βασίζεται στο XDP και, κατά συνέπεια, δεν απαιτείται
εξειδικευμένο υλικό (όπως στο P4) και δεν παρακάμπτεται ο πυρήνας του Linux (όπως στο
Data Plane Development Kit- DPDK). Έτσι, ο προτεινόμενος μηχανισμός μπορεί να εφαρ-
μοστεί σε χαμηλού κόστους κάρτες δικτύων (Network Interface Cards, NIC's), ενώ χρήσιμα
εργαλεία του πυρήνα του Linux (π.χ. βιβλιοθήκες TCP/IP) παραμένουν διαθέσιμα στους
προγραμματιστές.



Έπειτα προτείνουμε έναν privacy-aware μηχανισμό διανομής ζωνών από Authoritative
DNS Servers σε εξωτερικά συστήματα άμυνας. Τέτοια συστήματα μπορεί να λειτουργούν
σε αναδρομικούς εξυπηρετητές DNS (Recursive DNS Servers ή Recursors) ή σε υπηρεσίες
που φιλτράρουν δικτυακή κίνηση (upstream scrubbing services). Χωρίς να απαιτούνται επί-
σημες συμφωνίες, ο μηχανισμός μας επιτρέπει σε διαχειριστές δικτύων να αντιμετωπίσουν
επιθέσεις DDoS, που βασίζονται στο DNS, πιο αποτελεσματικά κοντά στις πηγές τους ή
να φιλτράρουν κίνηση που παράγεται από DGA's με μεγαλύτερη ακρίβεια. Οι ζώνες απει-
κονίζονται σε Cuckoo Filters, καθώς πραγματοποιούν ταχύτερους ελέγχους ονομάτων και
καταναλώνουν λιγότερη μνήμη σε σχέση με τα BF's, ενώ υποστηρίζουν δυναμικές ανανεώ-
σεις ονομάτων.

Οι προαναφερθέντες μηχανισμοί εξαρτώνται από τα περιεχόμενα των ζωνών. Ωστόσο,
οι διαχειριστές των Authoritative DNS Servers μπορεί να είναι απρόθυμοι να συνεργαστούν
λόγων ανησυχιών για την ασφάλεια των υποδομών τους. Για το σκοπό αυτό, συμπληρώ-
νουμε τις προηγούμενες προσεγγίσεις μας που προτάθηκαν για την αντιμετώπιση επιθέ-
σεων Water Torture, χρησιμοποιώντας XDP για την επιτάχυνση της εξαγωγής χαρακτηρι-
στικών (features) και την αποτίμηση των εξόδων αλγορίθμων ML στο επίπεδο δεδομένων
των Recursors. Η προσέγγισή μας βασίζεται σε ταξινομητές Naive Bayes, οι οποίοι διαχωρί-
ζουν αποτελεσματικά την καλόβουλη από την κακόβουλη κίνηση DNS εξ ολοκλήρου εντός
του πυρήνα του Linux. Έτσι, η απόδοση αντιμετώπισης επιθέσεων DNS βελτιώνεται σημα-
ντικά χωρίς να απαιτείται εξειδικευμένο υλικό, π.χ. κάρτες γραφικών.

Τέλος, εφαρμόζουμε τεχνικές επεξηγήσιμης τεχνητής νοημοσύνης (eXplainable Artificial
Intelligence, XAI), συγκεκριμένα την SHapley Additive exPlanation (SHAP), για να ερμηνεύ-
σουμε τις αποφάσεις δυαδικών ταξινομητών μηχανικής μάθησης που διαχωρίζουν καλό-
βουλα ονόματα από κακόβουλα, τα οποία παράγονται από DGA's. Η SHAP εκτελείται με
model-agnostic, post-hoc τρόπο, δηλαδή ανεξάρτητα από τον χρησιμοποιούμενο αλγόριθμο
ML και αφού ολοκληρωθεί η φάση μάθησης. Αυτό επιτρέπει την ανάλυση ταξινομητών
που βασίζονται σε δέντρα αποφάσεων και βαθιά νευρωνικά δίκτυα με ενιαίο τρόπο. Βασι-
σμένοι σε διάφορα εργαλεία οπτικοποίησης της SHAP (διαγράμματα summary, dependence
και force), εξάγουμε ερμηνείες μοντέλων σε πολλαπλά (καθολικές ερμηνείες) και μονω-
μένα (τοπικές ερμηνείες) παραδείγματα του συνόλου δεδομένων. Έτσι, εκτιμούμε τη συ-
νεισφορά των features και αξιολογούμε τις μεταξύ τους αλληλεπιδράσεις. Η προσέγγισή
μας βασίζεται σε features τα οποία αντικατοπτρίζουν τις στατιστικές και γλωσσικές ιδιό-
τητες των ονομάτων. Κατά συνέπεια, αποφεύγονται χρονοβόρες ενέργειες που βασίζονται
σε ιστορικά δεδομένα και ενδέχεται να εγείρουν ζητήματα ιδιωτικότητας. Η αξιολόγησή
μας επικεντρώνεται στον προσδιορισμό του τρόπου με τον οποίο επηρεάζονται οι αποφά-
σεις ταξινόμησης ονομάτων από συγκεκριμένους μηχανισμούς παραγωγής ονομάτων DGA
(arithmetic, wordlist, hash, permutation based).

Οι προτεινόμενοι μηχανισμοί προστασίας DNS αξιολογούνται μέσω πειραμάτων στην
εικονική υποδομή του εργαστηρίου μας. Τα πειράματα βασίζονται σε σύνολα δεδομένων
που χρησιμοποιούνται ευρέως από την ερευνητική κοινότητα, καθώς και σε συνθετική δι-
κτυακή κίνηση που κατασκευάσαμε βασισμένοι στην εμπειρία μας από τις δικτυακές υπη-
ρεσίες του Εθνικού Μετσοβίου Πολυτεχνείου (ΕΜΠ).

Keywords--- Σύστημα Ονοματοδοσίας, Κατανεμημένες επιθέσεις άρνησης παροχής υπη-
ρεσίας, Επιθέσεις Water Torture, Αλγόριθμοι παραγωγής ονομάτων, Δίκτυα που καθορί-
ζονται από λογισμικό, Προγραμματισμός σε επίπεδο δεδομένων, eXpress Data Path (XDP),
Μηχανική Μάθηση, Μηχανισμοί που σέβονται την ιδιωτικότητα
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Chapter 1

Introduction

1.1 Motivation & Problem Statement

Domain Name System (DNS) [1] provides mechanisms for mapping symbolic identifiers (i.e.
domain names) to various types of information, mainly numeric values corresponding to Internet
Protocol (IP) addresses. DNS offers multiple benefits to network administrators. Indicatively,
domain names may be used to locate computational resources based on strings, which are usu-
ally easy to memorize, or employed for uniquely identifying Internet nodes whose IP addresses
frequently change. Most online services depend on domain names for their operation, therefore
DNS constitutes an essential component of the Internet infrastructure.

The major importance of domain names for Internet services results in DNS being frequently
targeted by cyber-attacks and specifically Distributed Denial of Service (DDoS) attacks. DDoS
attacks forward great amounts of malicious traffic to victim servers and/or networks. Their
purpose is to deplete victim resources, e.g. available processors, memory and/or bandwidth.
Recent reports [2] by leading cybersecurity companies have demonstrated a significant increase
in DDoS attacks targeting DNS infrastructures or abusing their vulnerabilities to disrupt criti-
cal, non-DNS systems. The impact of such attacks may be severe; victims usually suffer great
economic loss, whereas their public image is often harmed.

Several DDoS attack vectors pertaining to DNS have been reported in recent cybersecurity
incidents. Amongst them, Water Torture has been one of the most important with devastating
consequences on victims. Research interest in Water Torture attacks has widely increased since
2016 when they were among the attack vectors targeting Dyn, a well-known provider of DNS
services. Dyn DNS servers were flooded by approximately 100,000 Internet of Things (IoT) de-
vices with malicious traffic reaching a peak at 1.2 Tbps [3]. As a result, online services of major
companies, including Amazon, GitHub, Netflix, PayPal, Reddit, Twitter (X since July 2023)
and Spotify, became temporarily inaccessible to legitimate users resulting in severe financial
impact.

Water Torture attacks [4, 5] target Authoritative DNS Servers, which are name servers that
maintain the DNS Resource Records (RR’s) of specific zones, i.e. subsets of the DNS infras-
tructure managed by particular organizations. Water Torture floods Authoritative DNS Servers
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with huge volumes of DNS requests to exhaust their computational resources. The main attack
characteristic is that these DNS requests involve domain names, which are typically not included
within the zones of victim Authoritative DNS Servers. This is accomplished by randomly gen-
erating the prefixes (i.e. first labels) of requested names so that they are never repeated. This
method enables the attackers to bypass the DNS caches of intermediary Recursive DNS Servers
(Recursors); Recursors search for the Authoritative DNS Servers corresponding to the zones
that may involve the requested domain names. Thus, all attack requests are forwarded to the
victim name server, eventually maximizing Water Torture impact.

Apart fromDDoS attacks, DNSmay also be associated with other malicious activities that in-
volve significantly less traffic and thus, their detection is harder. As previously mentioned, DNS
is an ubiquitous protocol facilitating the operation of most Internet services. Therefore, network
administrators usually enforce firewalling policies that do not block DNS traffic so that DNS
messages are normally forwarded to their destination. Such policies are frequently exploited
by botnet orchestrators who employ DNS to establish communications between compromised
hosts (bots) and Command & Control (C&C) servers. Bots leverage on Domain Generation
Algorithms (DGA’s) [6] to produce several domain names based on a seeding technique known
to C&C servers. A small percentage of these names is registered to point towards C&C server
IP addresses, whereas the remaining names are not associated with any DNS data. Bots query
the generated domain names until they resolve those that will enable them to locate their C&C
servers. The typically high number of requested domain names combined with frequent changes
in the DGA seeds significantly complicate malicious DNS request detection efforts.

Safeguarding DNS is of paramount importance to network administrators. Traditional se-
curity systems for defending against DNS threats, including Water Torture attacks and DGA’s,
mostly rely onwhitelists of legitimate domain names and/orMachine Learning (ML) algorithms.
Name whitelists are inventories of valid DNS names; requests pertaining to the whitelisted
names are forwarded to their destination, while the rest are dropped as malignant. ML algo-
rithms are tuned based on previously acquired knowledge to differentiate between benign and
malicious domain names. Despite their promising results, the aforementioned protection mech-
anisms involve important limitations and pose significant challenges:

• Computational resource constraints: Traditional whitelist-based approaches for filtering
DNS traffic mainly employ data structures and algorithms that require the exact, plaintext
form of domain names to operate. Namewhitelists mapping entire DNS zones may involve
millions of entries [7], hence inefficient data structures and algorithms may result in time-
consuming element lookups, whereas the total memory consumption may be considerably
high. As a result, filtering appliances may be incapable of holding whitelists in-memory,
while mitigation throughput may be incompetent for modern high-speed DDoS attacks.

• Privacy concerns: Access to Authoritative DNS Server zone contents is generally re-
stricted by network administrators for security reasons [8]. This obstructs the construction
of inclusive domain name whitelists resulting in less accurate filtering of DNS messages.
Furthermore, DDoS mitigation cannot be enforced closer to the attack origins (e.g. within
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Recursors or upstream scrubbing infrastructures), where packet filtering is generally more
efficient.

• Packet filtering performance limitations: DNS attack mitigation mechanisms mainly
rely on Deep Packet Inspection (DPI), i.e. examination of the DNS message payload, for
extracting requested domain names. These names are subsequently fed to whitelists or ML
algorithms, which classify them as benign or malicious. DPI and name classifications in-
volve costly operations that are traditionally implemented within the user space of filtering
appliances. The mitigation throughput of such user-space solutions may be unable to cope
with the constantly increasing rate of modern DDoS attacks.

• Limited understanding of ML model decisions: ML has been widely investigated as a
promising approach to effectively differentiate between legitimate and malicious network
traffic. Constant efforts to improve ML model performance resulted in the replacement of
simple and intrinsically explainable white-box models by complex, black-box ones. Such
black-box ML algorithms are not interpretable, hence their adoption in production envi-
ronments is hindered; users of network services are unable to receive justifications about
model decisions, whereas developers are incapable of verifying the functionality of their
models. Thus, network administrators are usually reluctant to incorporate ML algorithms
within their attack detection and mitigation systems, eventually relying on traditional pro-
tection methods, which may be less effective.

Approaches for overcoming the aforementioned limitations and efficiently protecting against
DNS threats may be explored within the fields of Big Data and Software-Defined Networks
(SDN’s). Specifically, probabilistic data structures and Programmable Data Planes (PDP’s) may
be promising methods for accelerating cyber-attack detection and mitigation. Furthermore, eX-
plainable Artificial Intelligence (XAI) algorithms have been proposed to derive interpretations
of complex ML models.

Probabilistic data structures [9] are widely employed for Big Data analytics because they
perform traditional operations in a time and space efficient manner. These operations may per-
tain to membership lookups, frequency estimations, median approximation and set similarity.
Probabilistic data structures effectively perform such operations by mapping elements hashed
instead of their plaintext form; configurable errors are introduced, but the total calculations on
stored data are considerably decreased. Probabilistic data structures may be beneficial for DNS-
related DDoS attack detection and mitigation; small percentages of erroneous decisions may be
tolerated for efficient whitelist lookups and domain name frequency estimations. Furthermore,
storing elements hashed makes probabilistic data structures suitable for applications requiring
privacy-aware exchanges of sensitive information among participating collaborators.

SDN’s have revolutionized computer networking by decoupling the data and control planes
of network devices; routing decisions are made within the control plane, whereas data plane
is the part of the network where packets are actually forwarded based on the aforementioned
decisions. Programmable Data Planes (PDP’s) have been recently introduced as a promising
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implementation of the SDN paradigm. They enable network administrators to define the for-
warding logic and operations of white-box switches by directly programming their chips; this
was impossible with the fixed-function chips of legacy networking equipment. Therefore, net-
work administrators are capable of supporting custom protocols and experimental features for
DDoS detection and mitigation. Contrary to alternative SDN enablers (e.g. OpenFlow - OF)
that mainly rely on external controllers for forwarding decisions and application of security
policies, PDP’s process packets based on decisions made predominantly within the data plane
of networking devices. Thus, frequent communication with external mitigation systems is sig-
nificantly decreased and line-rate DDoS attack protection may be accomplished. Apart from
networking equipment, PDP’s also apply to Commercial Off-The Shelf (COTS) hardware (e.g.
low-cost Network Interface Cards - NIC’s) by providing technologies, which accomplish high-
speed packet processing.

Among various PDP implementations, the eXpress Data Path (XDP) framework [10] has
recently attracted significant interest. XDP establishes a programmable data path within the
Linux kernel and processes ingress packets at an early system level, e.g. at theNIC drivers, based
on extended Berkeley Packet Filter (eBPF) programs. The total system operations (e.g. memory
lookups) performed on received traffic are thus minimized and the packet processing throughput
is significantly increased. Contrary to other data plane programmability technologies, XDP does
not bypass the Linux kernel (like Data PlaneDevelopment Kit - DPDK [11]) and does not depend
on specialized hardware (like Programming Protocol-independent Packet Processors - P4 [12]).
Therefore, XDP enables network administrators to utilize functionalities available within the
Linux kernel (e.g. TCP/IP code), whereas eBPF programs may run on programmable COTS
hardware, e.g. low-cost SmartNIC’s.

Although PDP’s have revolutionized DDoS detection and mitigation by enabling packet pro-
cessing at remarkable throughputs, their application in DNS cyber-attacks is not straightfor-
ward. PDP’s, including XDP, accomplish line-rate packet processing by imposing important
constraints on developed programs; unbounded loops are not available, decimal numbers are
not supported, whereas the total program size is restricted [10]. Such constraints significantly
complicate the data plane implementation of traditional DNS security mechanisms. These are
mainly based on DPI for parsing DNS payload, hashing strings and infering ML algorithm out-
puts, which heavily depend on loops and decimal numbers. Therefore, significant effort is re-
quired to apply PDP’s for DNS threat detection and mitigation.

Requirements for ML model interpretations led to the development of XAI techniques [13,
14]. Among various XAI methods, SHapley Additive exPlanation (SHAP) [15] is one of the
most prominent because of its properties. Specifically, SHAP is a model-agnostic and post-hoc
method; it is applicable to all ML models, including complex tree classifiers and deep neural
networks, after their learning phase has been completed. Originating from the field of game
theory, SHAP determines feature importance by considering how much classification decisions
vary when specific feature subsets are utilized. SHAP is capable of delivering both global and
local interpretations; global interpretations report the classification criteria of the investigated
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MLmodel on various dataset sample points, whereas local ones detail decision criteria on single
dataset instances. Moreover, SHAP involves various visualization tools, which facilitate com-
prehension of model interpretations. XAI techniques like SHAP are promising for expediting
the adoption of ML algorithms in network security applications because they enable network
administrators to develop efficient protection services, while justifications on the operation of
their deployed models are possible.

1.2 Dissertation Contributions

Driven by the aforementioned challenges, this dissertation proposes mechanisms for effective
protection against cybersecurity threats targeting DNS (i.e. Water Torture DDoS attacks) or
abusing it to forward malicious data (i.e. Domain Generation Algorithms - DGA’s). We over-
come the limitations of traditional DNS security systems by leveraging on promising technolo-
gies from the fields of Big Data (probabilistic data structures, Machine Learning - ML, eXplain-
able Artificial Intelligence - XAI) and Software-Defined Networking (PDP’s and specifically
XDP).

Our key contributions are:

• DNSWater Torture attack detection andmitigation based on efficient data structures
and algorithms: We leverage on Big Data techniques, widely employed in streaming ap-
plications, to effectively detect and mitigate DDoS attacks against the DNS infrastructure,
specifically Water Torture attacks. Our proposed systems rely on probabilistic data struc-
tures (i.e. Bloom Filters - BF’s [16] and Count-Min Sketches - CMS’s [17]) to perform
name lookups and frequency estimation in a time and space efficient manner. We also
utilize deterministic Natural Language Processing (NLP) algorithms (i.e. SymSpell [18])
to rapidly detect spelling mistakes, thus enabling fine-grained classification of requester
IP addresses as legitimate and suspicious. Contrary to related approaches, which are con-
strained by the total number of entries stored within domain name whitelists, our proposed
mechanisms are capable of mapping large DNS zones without performance degradation at
the cost of a configurable and tolerable error percentage.

• Acceleration of DPI tasks for efficient DNS DDoS attack mitigation based on data
plane programmability methods: We use PDP’s to effectively differentiate between le-
gitimate and malicious DNSmessages within the data plane of filtering appliances. Specif-
ically, we use XDP to accelerate DPI tasks traditionally performed within the user space of
DNS security systems; domain name parsing, lookups in whitelists based on probabilistic
data structures andML algorithm inference. We develop data plane implementations of the
aforementioned tasks tailored to the challenges introduced by eBPF programs, i.e. the lack
of decimal numbers, the absence of unbounded loops and the limited program size. Our
data plane solutions significantly increase mitigation throughput compared to respective
user-space implementations without requiring specialized hardware like other data plane
programmability technologies, e.g. P4 switches.
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• Privacy-aware zone exchanges based on probabilistic data structures: We employ the
privacy-aware properties of probabilistic data structures and specifically Cuckoo Filters
(CF’s) [19] to facilitate zone exchanges betweenAuthoritative DNS Servers and third-party
filtering appliances, e.g. Recursors or upstream cloud scrubbing infrastructures. There-
fore, mitigation of DNS DDoS attacks (e.g. Water Torture) may be enforced closer to the
attack sources, where it is generally more efficient. Moreover, network administrators may
rely on third-party whitelists of valid names to filter DNS traffic related to botnet activities
(e.g. DGA’s) at the edge of their networks with increased accuracy. Contrary to related ap-
proaches relying on BF’s, which do not support element deletions, our proposed CF-based
mechanism enables incrementally updating the maintained whitelists, thus downloading
again entire zones is not required.

• Global and local interpretations of tree and deep neural network DGA name classi-
fiers based on model-agnostic, post-hoc XAI methods: We leverage on SHAP to de-
rive interpretations of DGA name classifiers in a model-agnostic and post-hoc manner,
i.e. independently of the ML model and after the learning process is completed. Based
on various SHAP visualization tools (summary, dependence and force plots), we provide
global and local interpretations that detail how our DGA name classifiers distinguish le-
gitimate from malicious domain names. Contrary to related approaches, we assess fea-
ture importance and feature interactions with respect to well-known fundamental DGA
schemes (arithmetic, wordlist, hash and permutation based). Learning and interpretations
rely on domain-specific features, which are extracted directly from domain names and
report their statistical and linguistic properties. Therefore, time-consuming accesses to ex-
ternal databases including historical information are avoided; extraction of features that
rely on historical data typically requires costly operations, while privacy concerns may be
raised.

• Extensive experimental validation of proposed mechanisms: Our developed security
solutions are validated via proof of concept setups deployed within the NETwork Man-
agement & Optimal DEsign (NETMODE) laboratory virtualized infrastructure. Experi-
mentation relies on up-to-date datasets widely-used for DNS research (e.g. DGArchive
repository [20], Tranco list [21]) and synthetic traffic, generated based on statistics from
publicly available data (Booters DDoS-as-a-Service attacks [22]) and experience from our
university campus network services.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows:

• Chapter 2 provides brief background on important concepts related to this dissertation.
We initially elaborate on DNS fundamentals, DDoS attacks and DNS security threats. We
subsequently describe SDN’s and infrastructure monitoring tools. We then delve into data
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structures and algorithms, which will be used to develop efficient DNS protection systems.
Finally, we discuss ML fundamentals, basic ML algorithms and XAI techniques.

• Chapter 3 describes our user-space schema for effective DNS Water Torture attack de-
tection and mitigation. Our solution relies on efficient data structures and algorithms to
safeguard Authoritative DNS Servers from malicious DNS traffic. We mainly emphasize
on BF’s, which are utilized to map entire DNS zones in a space-efficient manner. BF’s
enable rapid name lookups and effectively distinguish legitimate from malignant DNS re-
quests.

• Chapter 4 extends our user-space, BF-based protection mechanism for Water Torture at-
tack mitigation within the data plane of Authoritative DNS Servers. We leverage on the
XDP framework to efficiently discern legitimate and malicious DNS requests at the NIC
driver level of victim Authoritative DNS Servers. Therefore, mitigation throughput is sig-
nificantly improved compared to our user-space solution described in Chapter 3.

• Chapter 5 proposes a schema for privacy-aware DNS zone exchanges. We employ CF’s to
map entire Authoritative DNS Server zones andmake them available to third-party filtering
appliances (e.g. Recursors or upstream scrubbing facilities). Thus, DNS attack mitigation
may be accomplished more efficiently closer to the DDoS attack origins and/or DNS ad-
ministrators may filter DGA-related traffic more accurately at the edge of their networks.

• Chapter 6 extends our previous work on data plane DNS attack mitigation. Specifically,
we use XDP to accelerateML classification within the data plane of Recursors. We develop
binary Naive Bayes Classifiers tailored to eBPF program constraints. Our developed mod-
els effectively differentiate between legitimate and malicious DNS requests at the Recursor
NIC driver level.

• Chapter 7 describes our schema for analyzing the operation of DNS classifiers based on
XAI techniques. Specifically, SHAP is employed to derive global and local interpretations
of DGA name classifiers in a post-hoc and model-agnostic manner. Therefore, we deter-
mine the impact of the utilized features and indicate how their individual values contribute
to the classification of DNS names as legitimate or malicious.

• Chapter 8 summarizes our work and discusses future research directions.

• Chapter 9 lists our research publications in scientific journals and international confer-
ences/workshops.

• Chapter 10 summarizes the dissertation in the Greek language.
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Chapter 2

Background

This chapter includes theoretical background on important concepts of the dissertation. The
chapter is organized as follows:

• Section 2.1 presents Domain Name System (DNS) fundamentals.

• Section 2.2 discusses Distributed Denial of Service (DDoS) attacks.

• Section 2.3 delves into cyber-attacks targeting DNS infrastructures or abusing DNS vul-
nerabilities to support malicious activities, such as attacks to critical, non-DNS services or
communication between infected devices (bots) and their control servers.

• Section 2.4 introduces Software-Defined Networks (SDN’s) and explores Programmable
Data Planes (PDP’s).

• Section 2.5 discusses network and system monitoring methods widely employed in pro-
duction environments.

• Section 2.6 delves into data structures and algorithms, which will be employed in this
dissertation to enable time and memory efficient data operations for DNS cyber-attack
detection and mitigation.

• Section 2.7 summarizes Machine Learning (ML) fundamentals, outlines widely-used ML
algorithms and discusses eXplainable Artificial Intelligence (XAI) techniques.

2.1 Domain Name System (DNS) - Fundamentals & Operation

DNS [1] maps domain names (i.e. symbolic string identifiers) to various types of information
pertaining to computational resources, mainly Internet Protocol (IP) addresses, or vice versa.
DNS operation is similar to telephone directories that associate subscribers with their phone
numbers. Internet users are thus not required to memorize difficult details, such as long nu-
meric addresses; they may rely on resource names and leverage on DNS to obtain the necessary
information.

DNS is vital for computer networks. Erroneous DNS configurations or disruptions to its nor-
mal operation are usually responsible for rendering major Internet services inaccessible to their
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users [23]. Such outages typically cause severe financial damage to impacted organizations,
whereas their reputation may be negatively affected [24].

Requirements for redundancy and scalability resulted in constructing DNS as a distributed
and hierarchical naming database. DNS data are replicated across multiple name servers, which
may be in different geographical locations, whereas there are no single name servers (i.e. DNS
servers) responsible for all the available DNS mappings. This design facilitates DNS manage-
ment and enables scalable extensions to the existing DNS infrastructure. Moreover, there are no
single points of failure and DNS messages may be load balanced across several name servers,
thus name resolution latency is significantly reduced.

The termDNSmay refer to: (i) the distributed, hierarchical naming database described above
and (ii) the application-layer protocol utilized by name servers and Internet users (DNS clients)
for resolving domain names to their respective DNS values [23].

In the following, we provide more details pertaining to the DNS distributed and hierarchical
database (subsection 2.1.1), describe the name resolution process (subsection 2.1.2), discuss
DNS caching (subsection 2.1.3), analyze the Resource Records (RR’s) that are most frequently
used in DNS (subsection 2.1.4), describe zone transfers (subsection 2.1.5) and elaborate on
details related to the DNS application-layer protocol (subsection 2.1.6).

Figure 2.1: DNS is designed as a distributed and hierarchical database - A portion of DNS is depicted

2.1.1 The DNS Distributed & Hierarchical Database

DNS is a distributed and hierarchical naming system consisting of multiple name servers and
hosts (e.g. Personal Computers - PC’s) organized in a tree data structure. A portion of DNS is
depicted in Fig. 2.1. Leaf nodes of Fig. 2.1 correspond to hosts, whereas the remaining ones
represent name servers.
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Each DNS node (host or name server) is identified by a Fully Qualified Domain Name
(FQDN). FQDN’s are determined by concatenating all the available labels (e.g. "www" and
"edu" in Fig. 2.1) from the considered node up to the DNS root, i.e. the root node of the tree
structure. FQDN labels are separated using dot delimiters, whereas a trailing dot may be used
to denote the DNS root. Trailing dots are usually omitted because DNS client software appends
them automatically to FQDN’s when requests are issued to resolve domain names. However,
manual addition of trailing dots in configuration files may be required by specific DNS server
implementations, e.g. BIND [25].

Indicative FQDN examples constructed based on Fig. 2.1 information are "www.cnn.com."
and "netmode.ece.ntua.gr.". The former is built by joining labels "www", "cnn" and "com"
moving from the tree child nodes up to the root, whereas the latter consists of labels "netmode",
"ece", "ntua" and "gr". Both FQDN’s include trailing dots (".") corresponding to the DNS root,
which could have been omitted. Note that in the remainder of the dissertation, terms "FQDN",
"name" and "domain name" will be used interchangeably.

DNS is segmented into multiple domains. Each domain includes a subset of DNS nodes and
may be further segmented into subdomains. Mappings between FQDN’s and their corresponding
values (e.g. IP addresses) are stored asResource Records (RR’s)within DNS zones. Zones are
DNS subsets managed by a specific entity and facilitate the granular management of DNS. Fig.
2.2 depicts a portion of DNS divided into 5 zones; zones are visualized using elliptical shapes.

Figure 2.2: Zones are portions of the DNS managed by a particular organization - 5 zones are indicatively depicted

Name servers responsible for maintaining the DNS mappings (i.e. RR’s) of specific zones
are calledAuthoritative DNS Servers. RR’s are contained in zone files, whose format depends
on the utilized DNS software. Indicatively, BIND [25] stores zone files as text files, whereas
RR’s in PowerDNS [26] are held in databases. A zone may be served by a single Authorita-
tive DNS Server or multiple for redundancy and load balancing purposes. In case of multiple

29



instances, zones are updated at the master/primary Authoritative DNS Server. Modifications
are subsequently propagated to slave/secondary Authoritative DNS Servers via zone transfers
using specific types of DNS messages (see subsection 2.1.5).

According to their level within DNS [23], Authoritative DNS Servers may be further cate-
gorized as:

• Root DNS Servers: They are authoritative for the root DNS zone, which corresponds
to FQDN trailing dots (see Fig. 2.1). They resolve requests related to the Authoritative
DNS Servers of the first DNS level; this includes Top-Level Domain (TLD) zones, e.g.
"com" and "edu" zones depicted in Fig. 2.1. There are 13 Root DNS Servers denoted with
letters A-M. However, for load balancing and redundancy purposes, each Root DNS Server
actually consists of multiple instances, which are distributed across the globe and share
an IP address. Requests from DNS clients are distributed to Root DNS Server instances
based on Anycast [27], which routes DNS traffic based on the load of name servers and
their proximity to DNS clients.

• TLD Servers: They are authoritative for the zones of the first DNS level, therefore they
resolve requests leading to the Authoritative DNS Servers of the second DNS level. Labels
associated with TLD zones often denote country names (e.g. "gr", "fr" and "es") or the
type of organizations, e.g. "com" for commercial and "edu" for educational purposes.

• Lower-level Servers: They are responsible for requests pertaining to zones corresponding
to lower DNS levels.

2.1.2 Domain Name Resolutions

Domain name resolutions require searching the DNS infrastructure to determine the Author-
itative DNS Servers that maintain specific DNS RR’s; their associated values are eventually
returned to DNS clients. The majority of name resolutions in production environments pertain
to domain names that correspond to IP addresses.

Although DNS clients are capable of resolving names themselves, this task is usually dele-
gated to Recursive DNS Servers (Recursors) for increased flexibility. Such servers perform
requests towards multiple Authoritative DNS Servers, traversing DNS in an hierarchical manner
until they locate those responsible for the queried DNS information.

Recursors may leverage on either the iterative or recursive method to traverse the DNS
infrastructure [23]. The iterative resolution of name "www.example.com" is depicted in Fig.
2.3. The steps required are:

• Step 1: The PC issues a DNS request for the IP address corresponding to the domain name
"www.example.com". The request is forwarded to the Recursor.

• Step 2: The Recursor issues a DNS request towards a Root DNS Server. Notably, Root
DNS Server IP addresses are usually stored within a text file, thus they are already available
to Recursors.
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Figure 2.3: Domain name resolutions based on the iterative method - The IP address of FQDN
"www.example.com" is determined

• Step 3: The Root DNS Server is not authoritative for zones "example.com" and “com”.
Therefore, a response is forwarded to the Recursor with the details (i.e. FQDN and IP
address) of the TLD servers, which are authoritative for the "com" zone.

• Step 4: The Recursor makes a DNS request for the "www.example.com" IP address. The
request is forwarded to one of the TLD servers, which are authoritative for the "com" zone.

• Step 5: The TLD server is not authoritative for zone "example.com", but for zone "com".
Thus, a response is returned to the Recursor with the details (i.e. FQDN and IP address) of
the "example.com" zone Authoritative DNS Servers.

• Step 6: The Recursor subsequently sends a DNS request for the "www.example.com" IP
address to one of the "example.com" zone Authoritative DNS Servers.

• Step 7: The "example.com" zone Authoritative DNS Server determines the IP address
mapped to the "www.example.com" domain name and responds to the Recursor. If the
name is unknown to the Authoritative DNS Server, an error message will be returned.

• Step 8: The Recursor responds to the DNS client with the requested information, i.e. the
IP address of "www.example.com".

The recursive resolution of "www.example.com" is depicted in Fig. 2.4. In contrast with the
iterative method, Recursors will not receive responses from Authoritative DNS Servers unless
the RR is found or an error message is returned; Authoritative DNS Servers, which are not
responsible for the RR will issue DNS requests to resolve the name themselves. Regardless of
the method used (i.e. iterative or recursive), DNS clients perform recursive requests towards
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Recursors. However, in production environments, most Recursors rely on the iterative method
to issue DNS queries.

Figure 2.4: Domain name resolutions based on the recursive method - Determining the IP address of the domain
name www.example.com

Recursors are typically restricted to the DNS clients of a specific organization for security
purposes. However, a limited number of them is configured to respond to the requests of any
Internet user; these servers are called Open Resolvers. Although such services may be useful
for home users or small organizations that wish to avoid local setups, they are often abused for
malicious purposes [28] that will be discussed in subsection 2.2.

2.1.3 DNS Caching

Domain name resolutions are time-consuming because they require traversing the DNS infras-
tructure to locate the appropriate Authoritative DNS Servers. Therefore, upon receiving re-
sponses to DNS client requests, Recursors should ensure that name resolutions are not repeated
if the same information is needed in a short time period.

Recursors reduce the total number of name resolutions bymaintaining a cache memory (DNS
cache), which temporarily stores obtained information when a response is received [23]. This
information is stored for a time period determined by the Time To Live (TTL) value, which
is defined within Authoritative DNS Server zone files. When Recursors receive requests from
DNS clients, they first check if the RR is included within their DNS cache. If the information is
already available, responses are returned to DNS clients without searching the DNS infrastruc-
ture, otherwise Recursors traverse DNS as described in subsection 2.1.2.

TTL value selection [29] is hard and is often based on how frequently the value mapped to a
DNS name is expected to change. Incorrectly selected TTL values may cause severe problems.
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Indicatively, if the IP address mapped to a domain name changes and a previous value has
already been cached by a Recursor, DNS clients will be receiving erroneous responses until the
TTL value expires. TTL values corresponding to DNS mappings related to host and server IP
addresses are usually set to 86,400 seconds (i.e. 1 day), while smaller values (e.g. 10 minutes)
are preferred for names related to web services or Content Delivery Networks (CDN’s). IP
addresses pertaining to web services or CDN’s change frequently, thus lower TTL values are
recommended.

2.1.4 DNS Resource Records (RR’s)

As mentioned in subsection 2.1.1, Resource Records (RR’s) map FQDN’s (domain names) to
their respective DNS values and vice versa. RR’s are stored within Authoritative DNS Server
zone files and there are multiple types of them.

The most common DNS RR types [1] are:

• A:Maps names to IPv4 addresses, i.e. addresses of 32 bits.

• AAAA:Maps names to IPv6 addresses, i.e. addresses of 128 bits.

• NS: Lists the Authoritative DNS Servers responsible for a given zone.

• MX: Lists the mail servers for a given zone.

• PTR: Used to map IP addresses to their associated names, i.e. PTR is the opposite of A
and AAAA RR’s.

• SOA: Provides information about a specific DNS zone, such as the primary Authoritative
DNS Server, zone administrator contact details, the default TTL value of the zone RR’s
and the serial number, which tracks modifications to zone contents.

DNS requests for the aforementioned RR types typically utilize User Datagram Protocol
(UDP) at the transport layer. Requests target port 53 of Recursive and/or Authoritative DNS
Servers, while source ports are randomly selected.

2.1.5 Zone Transfers

Zone transfers enable DNS clients to retrieve entire DNS zone contents or portions of them.
Zone transfers are mostly employed by secondary Authoritative DNS Servers to retrieve zone
modifications from their respective primary Authoritative DNS Servers.

DNS requests used for zone transfers leverage on Transmission Control Protocol (TCP) at
the transport layer (targeting port 53 of DNS servers) because requested information should be
delivered reliably. The DNS requests utilized for zone transfers are:

• Authoritative Transfer (AXFR) [30]: Used to retrieve entire zone contents from an Au-
thoritative DNS Server.

• Incremental Zone Transfer (IXFR) [31]: Used to retrieve all the zone RR’s that have
been modified since a previous time moment. Different zone versions are determined by
the serial number identifier.
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Apart from legitimate DNS clients, zone transfers may also be used by attackers to gain
insight into the contents of specific DNS zones; sensitive information pertaining to the users,
servers and services of an organization may be exploited by attackers for malicious purposes [8].
Therefore, AXFR and IXFR requests are usually restricted to trusted DNS clients, such as zone
secondary Authoritative DNS Servers.

2.1.6 The DNS Protocol

Communication between DNS nodes relies on the DNS protocol. Messages issued by DNS
clients to resolve domain names are called DNS requests. The results of these requests are
returned to DNS clients within DNS responses.

Figure 2.5: Header of DNS requests/responses (figure retrieved from [1])

DNS is an application layer protocol of the TCP/IP Stack. The header of DNS messages is
fixed at 12 Bytes, whereas the length of their payload is variable [1]. The DNS message header
is depicted in Fig. 2.5 and consists of the following fields:

• ID - Identification (2 Bytes): Identifies DNS messages and provides a method to match
DNS requests to their corresponding responses.

• QR - Query/Response (1 bit): Differentiates between DNS requests (set to 0) and DNS
responses (set to 1).

• OPCODE (4 bits): Specifies the type of DNS requests, e.g. if the message involves a
standard query or whether it is linked to Dynamic DNS updates.

• AA -AuthoritativeAnswer (1bit): Set to 1 if the response originates from anAuthoritative
DNS Server, otherwise AA is set to 0.

• TC - Truncated (1 bit): Set to 0 if the entire DNS response is returned. Otherwise, the TC
flag is set to 1 if only the initial 512 Bytes of a DNS response are returned.
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• RD - Recursion Desired (1 bit): Set to 1 from the DNS client to request name resolution
based on the recursive method. RD is set to 0 to specify that iterative name resolution is
preferred.

• RA - Recursion Available (1 bit): Set to 1 by the DNS server responding to a request to
denote that recursive name resolutions are supported. Otherwise, the RA flag is set to 0.

• Z - Zero (3 bits): Reserved bits, set to 0.

• RCODE - Return Code (4 bits): Set to 0 for DNS requests or to a value between 0-15 for
DNS responses. Table 2.1 summarizes indicative RCODE values [32].

• QDCOUNT - Query Count (2 Bytes): Specifies the number of entries within the message
question section, i.e. the number of name resolutions requested by the DNS client.

• ANCOUNT - Answer Count (2 Bytes): Determines the RR number within the message
answer section, i.e. the number of returned DNS mappings within a response.

• NSCOUNT - Authority Count (2 Bytes): Specifies the number of RR’s within the mes-
sage authority section, i.e. the number of Authoritative DNS Servers returned as responsi-
ble for the zone pertaining to the requested name.

• ARCOUNT - Additional Information Count (2 Bytes): Determines the RR number
within the message additional section, which includes additional DNS mappings that were
not directly requested by the DNS client. Such RR’s may provide useful information, e.g.
the IP addresses corresponding to the name servers included in the message authority sec-
tion.

Decimal Value RCODE Name Description
0 NOERROR There are no errors in the DNS response

1 FORMERR The DNS request was inappropriately constructed,
hence the server was incapable of responding

2 SERVFAIL The server could not respond because of an
operational issue

3 NXDOMAIN The requested name does not exist within the zones of
the respective Authoritative DNS Server

4 NOTIMP The opcode value included within the received DNS request is not
supported by the specific DNS server

5 REFUSED The DNS server refused to respond to the request

Table 2.1: Indicative RCODE values for DNS responses

2.2 Distributed Denial of Service (DDoS) Attacks

Denial of Service (DoS) attacks aim to prevent legitimate Internet users from accessing online
services for short or long time periods. DoS attacks involve a single device, which floods the
victim with a great volume of network traffic to exhaust its resources, e.g. processing capacity
and/or physicalmemory (see Fig. 2.6). Overwhelmed by the vast amount ofmaliciousmessages,
the attack victims are unable to process all the messages originating from legitimate Internet
users. Thus, benign users are blocked from crucial network services.
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Figure 2.6: Denial of Service (DoS) Attacks - The attacker floods the victim with superfluous Internet traffic to
disrupt legitimate Internet users from using online services

DoS attacks do not infiltrate victim systems to execute malicious software (malware) and
perform malignant actions, such as credential theft. They benefit from the limited capabilities
of attacked infrastructures and exploit vulnerabilities of widely-used network protocols (e.g.
DNS and TCP) to deplete victim resources and disrupt the normal operation of online services.

Although DoS attacks were a major threat in the past, a single attacking device is usually
incapable of overloading the computational resources of modern hosts and servers. Therefore,
DoS attacks have evolved intoDistributed DoS (DDoS) attacks. In DDoS attacks, a huge num-
ber of Internet devices (e.g. 100,000 in Dyn cyberattack [3]) simultaneously forward malicious
traffic to one or more victims. Therefore, online services may rapidly become inaccessible to
legitimate Internet users (see Fig. 2.7). Apart from the processors and the physical memory
of targeted systems, DDoS attacks may also deplete the bandwidth of the network connections
leading to the victim.

Figure 2.7: Distributed Denial of Service (DDoS) Attacks - The victim is simultaneously attacked by multiple
devices, thus networking and computational resources are rapidly depleted

The main DDoS attack consequences [33, 34] involve severe financial loss because most
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modern organizations heavily depend on online services to support their clients, whereas the
image and trustworthiness of the targeted companies may be harmed. DDoS attacks may be
motivated by (i) political, social and/or religious causes of hacktivists, (ii) financial gain of-
ten achieved by demanding ransom in order not to attack the victims, (iii) hackers testing or
demonstrating their skills and (iv) hacker personal pleasure.

In the following, we discuss important DDoS attack aspects, namely IP spoofing (subsec-
tion 2.2.1), botnets (subsection 2.2.2), different DDoS attack types (subsection 2.2.3) as well as
commonly employed detection (subsection 2.2.4) and mitigation techniques (subsection 2.2.5).

2.2.1 IP Spoofing

DDoS attack orchestrators usually fake the identity of the attacking devices; their IP addresses
are replaced (spoofed) with those of other, potentially legitimate, hosts. This technique is called
IP spoofing [35] and may benefit the attackers in multiple ways:

• Identity protection: Attackers leverage on IP spoofing to conceal their identity, thus
avoiding detection by the DDoS attack victims and intermediary protection systems. If
the original IP addresses of the attacking devices were used, appropriate mitigation mea-
sures (e.g. IP reputation scores) would be promptly deployed to safeguard the attacked
systems.

• Reflection: Various DDoS attack vectors spoof the source addresses of malicious requests
with the victim IP address. Requests are subsequently sent to appropriately selected servers
that forwardmalicious responses to the victim, rendering its offered services inaccessible to
legitimate Internet users. This technique is called reflection. Reflection is often combined
with amplification, where small requests result in significantly larger responses. The ratio
of the response size to the request size constitutes the attack amplification factor.

• Response avoidance: Without IP spoofing, responses to malicious requests will be for-
warded to the attacker. Therefore, apart from the victim, the attacker will also suffer the
DDoS attack consequences.

2.2.2 Botnets

DDoS attack impact is partly determined by the total number of devices utilized to flood the
victim; more devices generally result in increased attack effectiveness. Modern DDoS attacks
usually depend on hundred-thousands or even millions of devices to overpower their victims.
Attackers gather the necessary capacity by infiltrating devices and installing malware to accord-
ingly gain their control. Such vulnerabilities are usually present in Internet of Things (IoT)
devices, which often have poor or no security measures, e.g. appropriately configured firewalls.
Notably, apart from DDoS attacks, these hacked devices may also participate in other fraudulent
activities, including malware propagation, credential theft and cryptocurrency mining.

Hacked devices are called bots (or zombies) and the entity controlling them is the botmaster,
whereas the networks involving bots are called botnets [36]. Zombies usually do not commu-
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nicate directly with the botmaster, but with intermediary servers (i.e. Command & Control or
C&C servers) distributed across the Internet. C&C servers may serve multiple purposes, such
as instructing bots to initiate DDoS attacks, retrieving information collected by infected devices
and/or updating the malware installed at bots.

Botnets based on C&C servers adhere to the client-server botnet architecture, which is de-
picted in Fig. 2.8. Botnets may also operate in a distributed manner without relying on dedicated
C&C server instances. Specifically, in Peer-to-Peer (P2P) botnets [37], bots may simultane-
ously act as C&C servers forwarding instructions to their peers and clients receiving commands
from them. P2P architecture renders botnets more resilient to takedown efforts than traditional,
client-server botnets described above.

Figure 2.8: Client-server botnet architecture for executing DDoS attacks (figure based on [38])

2.2.3 DDoS Attack Categories

DDoS attacks are broadly categorized in three classes [39] according to the type and volume
of attack traffic forwarded to the victim as well as the targeted system vulnerabilities. These
classes are:

• Volumetric attacks: They flood victims with malicious traffic to congest the bandwidth
of the links leading to them. Volumetric attacks typically leverage on reflection and ampli-
fication techniques to increase their impact. They are usually reported in bits per second
(bps). An indicative volumetric attack is DNS Amplification, which will be described in
subsection 2.3.1.3.

• Protocol attacks: They target vulnerabilities of network and/or transport layer protocols.
Protocol attacks disrupt the services of victims by draining their available resources, e.g.
Central Processing Unit (CPU) cores, physical memory, listening sockets, etc. These at-
tacks are usually reported in packets per second (pps). An indicative protocol attack is
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SYN Flood [39], which floods victims with TCP SYN segments. Source IP addresses
of the messages are spoofed, rendering victims unable to complete TCP handshakes; the
available memory of victim servers is entirely consumed by the entries allocated for each
incomplete TCP handshake.

• Application attacks: They exploit vulnerabilities of application layer protocols to deplete
victim resources. These attacks are usually reported in requests per second. An indica-
tive application DDoS attack is Hypertext Transfer Protocol (HTTP) Flood [39], which
overwhelms web servers with excessive HTTP requests.

Victims may be simultaneously targeted by various DDoS attack vectors belonging to one or
more of the aforementioned categories. These attacks are called multi-vector attacks and are
generally more effective in depleting victim resources [40] because they are harder to detect and
mitigate than attacks based on a single vector.

2.2.4 DDoS Attack Detection Methods

Intrusion Detection Systems (IDS’s) are defense solutions used for detecting DDoS attacks or
other cybersecurity threats [41]. IDS’s capable of mitigating the detected threats are also called
Intrusion Prevention Systems (IPS’s) [41].

Widely-used IDS categories [41] include Host-based IDS’s (HIDS’s) and Network-based
IDS’s (NIDS’s). HIDS’s are software applications installed within end hosts that monitor system
activities to detect malignant behavior. NIDS’s are security appliances inspecting network traffic
to detect abnormal patterns; they may consist of a single device or multiple devices distributed
across the monitored network.

Although IDS’s may employ various techniques for DDoS attack detection [41,42], the most
widely-used are:

• Threshold-based: DDoS attacks are detected when one or more monitored metrics exceed
a predefined value (threshold). Monitored metrics may involve single network variables
(e.g. the total volume of ingress packets) or the ratio of network variables (e.g. the total
number of incoming packets to the total number of outgoing packets). Threshold-based
approaches facilitate rapidDDoS attack detection. However, threshold value determination
is usually hard [43,44]; multiple false alarms may be raised, whereas low-rate attacks may
not be detected if the selected thresholds are not violated [45].

• Signature-based: Network traffic is inspected to identify patterns included in a database of
malicious signatures. Signature-based approaches enable DDoS attack detection with high
accuracy [46]. However, they are unable to detect zero-day threats, i.e. attack vectors that
have not been observed before and their signatures are thus unknown [41]. Furthermore,
frequent database lookups may prove time-consuming, rendering defense systems unable
to cope with modern DDoS attack rates, whereas the total number of stored signatures may
be limited by the available IDS memory.
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• Anomaly-based: Network traffic features observed during a specified time window are
compared with those of a baseline traffic profile. DDoS attacks are detected when the
inspected traffic characteristics deviate significantly from the baseline model. There are
multiple anomaly-based detection methods reported in the literature. The most widely
employed include: (i) entropy-based methods (e.g. Shannon and Tsallis entropies [47]),
which originate from Information Theory and evaluate the randomness of monitored traf-
fic feature values, (ii) statistical-based methods, which compare the statistical measures of
inspected traffic with those of the baseline traffic and (iii) Machine Learning (ML) tech-
niques, which leverage on previous knowledge extracted from past network traffic to gener-
alize to newly observed traffic. Although anomaly-based methods are harder to implement
than the aforementioned techniques (threshold-based or statistical-based) and may require
longer time intervals to categorize inspected traffic, they are capable of detecting zero-day
attack vectors.

2.2.5 DDoS Attack Mitigation Methods

Constraining DDoS attacks after the detection of abnormal traffic is not straightforward. Net-
work administrators should deploy appropriate mechanisms to effectively mitigate attack traffic.
The purpose of these mechanisms is to differentiate between legitimate and malicious packets;
malicious traffic is dropped, while legitimate traffic is forwarded to its destination.

There are multiple DDoS attack mitigation methods [33, 39, 48, 49]. Some of them are:

• Rate Limiting: The ingress and/or egress packet number is monitored over a specified
time interval. If the number of packets exceeds a specified threshold, the remaining traffic
is dropped. Rate limiting may be applied to specific IP addresses or traffic categories, e.g.
DNS requests. Despite being easy to implement and time/memory efficient, rate limiting
does not differentiate between legitimate and malicious traffic, therefore large amounts of
benign packets may be dropped as a side effect.

• Blackholing: After the DDoS attack victim (a single host or an entire subnet) is deter-
mined, all traffic destined to the victim is redirected to a null route (blackhole), where it
is dropped. Redirection may be accomplished by appropriate Border Gateway Protocol
(BGP) route announcements. Although blackholing may effectively protect network ser-
vices that are not targeted by the DDoS attack, both benign and malicious packets destined
to the victim are dropped; the attack purpose is thus accomplished because the victim be-
comes unavailable to legitimate users. Blackholing is widely used by organizations that
do not employ other, more sophisticated, DDoS attack protection systems.

• BGP Flow Specification (FlowSpec): Contrary to the aforementioned mitigation solu-
tions, FlowSpec [50] enables fine-grained traffic filtering by matching packets based on
their corresponding flows. Flows group packets based on specific header fields; a widely-
adopted flow definition involves the source-destination IP, the source-destination ports and
the protocol used (TCP, UDP or Internet Control Message Protocol - ICMP). After deter-
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mining the characteristics of a detected DDoS attack, the victim may leverage on BGP
announcements to propagate mitigation instructions to appropriately configured devices,
which will match ingress packets based on specific flows. Packets belonging to these flows
may be dropped, rate-limited or redirected to defense systems for further inspection. How-
ever, despite the offered flexibility, FlowSpec may be unsuitable for DDoS attacks relying
on variable-length fields within the packet payload. An indicative example is DNS Wa-
ter Torture attack [5], which floods Authoritative DNS Servers with randomly generated
domain names of diverse lengths (described in subsection 2.3.1.2).

• Over-provisioning: By dedicating more bandwidth and processing resources than neces-
sary to an online service, the victim may be able to sustain high-volume DDoS attacks.
However, the constantly increasing rate of modern DDoS attacks may require extensive
over-provisioning, which leads to significantly high Capital Expenditures (CapEx) and Op-
erational Expenditures (OpEx).

• Machine Learning (ML): Apart from DDoS attack detection, ML algorithms may also
be employed for mitigation purposes, i.e. for differentiating between legitimate and mali-
cious network traffic with high accuracy. AlthoughML inference is usually accelerated via
Graphics Processing Units (GPU’s), extensive investments in hardware may be required to
achieve satisfactory throughput. Nevertheless, the accomplished filtering throughput may
be unable to cope with the increasing rate of contemporary DDoS attacks.

• Deep Packet Inspection (DPI): Various DDoS attacks (e.g. DNS-based) may require an-
alyzing the packet payload to categorize network traffic as legitimate or malicious. The
technique that examines the packet payload is called Deep Packet Inspection (DPI). Al-
though DPI is valuable for mitigating specific DDoS attack types, extensive processing is
required per packet, whichmay be unsuitable for high-speedDDoS attacks. DPI techniques
are also useless when traffic encryption is employed.

Small organizations often lack the equipment, human resources and/or expertise required
for effectively mitigating DDoS attacks. Such organizations may employ the services of net-
work security companies (e.g. Cloudflare, Imperva, Radware, etc.) or Internet Exchange Points
(IXP’s), which leverage one or more of the aforementioned mitigation techniques to protect their
clients. Upon detecting a DDoS attack, network traffic destined to the victim may be redirected
to upstream, cloud-based scrubbing facilities [48] of such security companies. The redirected
traffic is subsequently filtered to alleviate victim networks from the attack consequences; mali-
cious traffic is dropped, while legitimate packets are forwarded to the clients. Such cloud-based
solutions are effective in mitigating attack traffic and thus, they are highly popular among small
organizations. However, the cost of subscribing to such security services is usually high.

2.3 DNS Security Threats

DNS is vital for the normal operation of the Internet, enabling users to map names to computing
resources. Therefore, DNS is frequently targeted by DDoS attacks aiming to disrupt critical
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online services. The connectionless nature of DNS (mostly UDP-based) also renders Recursors a
suitable relay for reflection DDoS attacks, whereas firewalling policies that usually do not block
DNS messages are exploited by attackers to transmit malignant data within the DNS payload.

In the following, we discuss important aspects of DNS security, specifically DDoS attacks re-
lated to DNS (subsection 2.3.1) and Domain Generation Algorithms - DGA’s (subsection 2.3.2).

2.3.1 DDoS Attacks Related to DNS

In the following, three important DNS DDoS attack vectors are described, namely DNS Flood
(subsection 2.3.1.1), DNS Water Torture (subsection 2.3.1.2) and DNS Amplification (subsec-
tion 2.3.1.3).

2.3.1.1 DNS Flood

DNS Flood [51] attacks are UDP Flood variants that target Recursors or Authoritative DNS
Servers to exhaust their resources or congest the bandwidth of the links leading to them. Relying
on IP spoofing and large botnets, attackers flood the victims with a huge number of valid or
invalid DNS requests. By depleting the victim resources, the majority of legitimate DNS clients
are incapable of receiving responses to their requests.

2.3.1.2 DNS Water Torture

DNS Water Torture attacks [4, 5, 52] target Authoritative DNS Servers to exhaust their com-
putational resources (e.g. CPU cores). They are also known as DNS slow drip attacks and
pseudo-random subdomain attacks.

A Water Torture attack is depicted in Fig. 2.9. A huge number of spoofed DNS requests is
generated by the botnet of the attacker. These requests are forwarded to the victim Authoritative
DNS Server; requests are relayed via various intermediary Recursors, which may either be local
Recursors or Open Resolvers.

Figure 2.9: The DNS Water Torture Attack

TheWater Torture attack main characteristic is that DNS requests are crafted in a randomized
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manner. Attackers ensure that the FQDN included in the question section of these requests
is invalid, i.e. not included in the victim zones; NXDOMAIN responses are returned by the
AuthoritativeDNSServer. Furthermore, requests for the same domain names are never repeated.
This method enables the attackers to bypass the DNS caches of the intermediary Recursors and
forward the entire attack traffic to the victim.

Apart from depleting Authoritative DNS Server resources, Water Torture attacks may also
degrade intermediary Recursor performance as a collateral damage. As the number of distinct
domain names requested by the attacker increases, the number of NXDOMAIN response entries
stored within Recursor DNS caches will also raise. Thus, DNS cache lookup time will be higher
and the consumed memory resources will significantly increase.

Water Torture attacks can be easily identified via threshold-based detection approaches. The
monitored metrics may include the total number of DNS requests received by the victim Author-
itative DNS Server, the total number of NXDOMAIN responses returned by the victim and/or
the victim CPU utilization. An increased number of NXDOMAIN responses combined with
high CPU utilization are clear indications of Water Torture attacks.

Real-time Water Torture mitigation is not straightforward. Network administrators usually
mitigate such attacks by rate limiting the total number of responses returned by the victim Au-
thoritative DNS Server. However, rate limiting may result in the rejection of multiple legitimate
DNS responses. Machine Learning (ML) algorithms may be used instead for differentiating
between valid and invalid names with increased accuracy [5, 53]. However, ML inference is
usually implemented at the user space of mitigation appliances, thus the accomplished filtering
throughput may be unsuitable for modern, high-speed DDoS attacks.

DDoS attacks, including Water Torture, are typically mitigated more effectively closer to
their origins. Traffic filtering may occur in upstream cloud-based scrubbing services or by ap-
propriately deployed filters within Recursors. Accomplishing this requires that whitelists of
valid names, constructed from Authoritative DNS Server zone contents are available to up-
stream mitigation appliances. However, as mentioned in subsection 2.1.5, zone transfers are
generally restricted for security reasons and thus, such whitelists are hard to obtain.

2.3.1.3 DNS Amplification

DNS Amplification [54] is a volumetric DDoS attack that depletes the victim network available
bandwidth to constitute an online service inaccessible to legitimate Internet users. Notably,
attack victims are not limited to DNS services; web servers or other critical services may also
be targeted. DNSAmplification is among themost effective attack vectors and the consequences
to victims are severe.

A DNS Amplification attack is illustrated in Fig. 2.10. The attacker leverages on a botnet to
forward a great number of DNS requests to various Open Resolvers or local Recursors. Using
Reflection, the attacker spoofs the source IP address of the requests with that of the victim server.
Therefore, DNS responses are forwarded to the victim server instead of the bots that made the
respective DNS requests (Reflection). Besides being vital for the attack execution, Reflection
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further conceals attacker identity.

Figure 2.10: The DNS Amplification Attack

The main reason behind the great effectiveness of this attack is Amplification. Attackers
benefit from zone RR’s with large amplification factors, i.e. names for which requests with
small size result in responses with significantly larger size. Such RR’s may be of type ANY
or related to Domain Name System Security Extensions (DNSSEC) [55, 56], a DNS extension
enabling cryptographic authentications for exchanged data. Large amplification factors (e.g.
70 [57]) enable attackers to inflict greater damage to their victims with less resources available,
i.e. botnets may comprise of less bots.

Detection of DNS Amplification requires monitoring network traffic for abrupt increases in
the number of unsolicited DNS responses. Apart from the techniques outlined in subsection
2.2.5, effective mitigation of DNS Amplification attacks may involve determining responses
that do not correspond to previously issued DNS requests.

2.3.2 Domain Generation Algorithms (DGA’s)

DGA’s are a common technique for establishing communications between hacked devices, i.e.
bots, and their orchestrators, i.e. Command & Control (C&C) servers. Bots generate DNS re-
quests based on a seeding technique that is known to C&C servers. A small number of domain
names is registered and bots are expected to request their resolution. These names correspond
to valid C&C IP addresses, thus bots are capable of locating them. Specifically, bots perform
several DNS requests; although most of these requests involve invalid domain names (i.e. NX-
DOMAIN responses are returned), a limited number of them is successfully resolved to the
C&C IP addresses. This typically large number of queried domain names combined with con-
stant changes to the seed render domain name blacklists ineffective.

Therefore, ML algorithms have been suggested as an alternative solution to blacklisting.
They leverage on previous knowledge and generalize to newly observed domain names for dif-
ferentiating between benign and malignant patterns, thus blocking communication between bots
and their C&C servers. Notably, various classification algorithms have been investigated with
promising results, including deep neural networks [58–63] as well as tree-based classifiers (e.g.
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Random Forests - RF’s), Support Vector Machine (SVM) and Naive Bayes [64–68].
The seeding strategy, the number of domain names produced by a bot and their structure are

determined by the DGA family. Although there are various families with diverse characteris-
tics, DGA’s are grouped into the following four generation schemes [6] based on the technique
utilized to produce domain names:

• Arithmetic-based: These algorithms generate sequences of random values. DGA names
are constructed by concatenating the American Standard Code for Information Interchange
(ASCII) representations corresponding to these values or using them to locate characters
within lists that constitute the DGA alphabet.

• Wordlist-based: DGA names are generated by randomly concatenating dictionary words.
Thus, domain name randomness is reduced, renderingmalicious name detectionmore com-
plicated.

• Hash-based: Domain names are constructed by hashing alphanumeric strings and return-
ing their hexadecimal representation.

• Permutation-based: They generate at random a domain name, which is subsequently
permuted several times to produce multiple DGA names.

2.4 Software-Defined Networking & Programmable Data Planes (PDP’s)

This section delves into the fundamentals of Software-Defined Networks (SDN’s) and Pro-
grammable Data Planes (PDP’s). These technologies have revolutionized network management
offering multiple advantages, but they have also introduced new challenges.

In the following, we describe networking planes (subsection 2.4.1), legacy networks (subsec-
tion 2.4.2), SDN’s and their advantages (subsection 2.4.3), the OpenFlow (OF) protocol (sub-
section 2.4.4) and Programmable Data Planes - PDP’s (subsection 2.4.5).

2.4.1 Networking Planes

Analyzing computer networks in networking planes [69] enables their granular design and ad-
ministration. Each plane is related to particular aspects of the network and thus, specific types
of traffic. Computer networks consist of the following three planes: (i) Data plane, (ii) control
plane and (iii) management plane. Their operations are:

• Data plane: This plane is responsible for forwarding data between network devices based
on the decisions made by the control plane.

• Control plane: This plane is responsible for the operation of routing protocols, e.g. Open
Shortest Path First (OSPF) and Border Gateway Protocol (BGP). Therefore, the control
plane determines how network traffic will be forwarded at the data plane. This plane also
involves packet signaling, e.g. Virtual Local Area Network (VLAN) tags, Multi-Protocol
Label Switching (MPLS) labels and IP headers, which are necessary for making forwarding
decisions.

45



• Management plane: This plane incorporates the network administrator policies that reg-
ulate how forwarding decisions are made by the control plane.

2.4.2 Legacy Networks

Legacy computer networks consist of hardware appliances, which are dedicated to specific op-
erations, e.g. routing, switching, security purposes, etc. Device capabilities are specified by
their chips; introducing novel features to these devices requires actions from the chip manu-
facturers, a process that usually requires significant time and effort. Moreover, the data plane
of legacy devices is coupled with their control plane. This significantly complicates network
administration; applying high-level policies across the network is difficult, automating device
configuration is not simple, whereas scaling networks is not straightforward.

2.4.3 Software-Defined Networking Overview

Limitations of legacy networks led to the introduction of Software-DefinedNetworking [69–71],
a novel computer networking paradigm. Fig. 2.11 depicts the major differences between legacy
networks and Software-DefinedNetworks (SDN’s). In SDN’s, the data plane of network devices
is decoupled from their control plane. Routing decisions and/or other advanced control plane
operations occur at the SDN Controller. Contrary to legacy networks, data plane devices are
turned into naive appliances, which mainly forward received frames towards their destination.
Their behavior (e.g. where ingress packets are forwarded) is programmed by the control plane,
thus they are usually called programmable switches.

Figure 2.11: Differences between legacy networks and Software-Defined Networks (figure based on [72])

The SDN Controller may be a single, centralized server or may consist of multiple instances
distributed across the managed networks. As depicted in Fig. 2.12, the SDN Controller lever-
ages on Application Programming Interfaces (API’s) to communicate with the diverse SDN
components. Specifically, communication between the SDN Controller and the SDN applica-
tions relies on Northbound API’s, whereas the SDN Controller interfaces with the networking
devices via the Southbound API’s. Multiple methods may be used for the communication of the
data plane devices with the SDN Controller. The most popular one relies on theOpenFlow(OF)
protocol [73], which will be analyzed in subsection 2.4.4.
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Figure 2.12: Communication between the SDN entities based on Northbound and Southbound API’s

The Software-Defined Networking paradigm offers multiple benefits to network administra-
tors. Controlling networks from a central point (i.e. the Controller) boosts network visibility;
administrators may effectively monitor their infrastructure and accordingly enforce granular
policies across data plane devices. Centralized management may also enhance network relia-
bility by facilitating the automation of complex operations, while resource utilization may be
improved by employing advanced traffic engineering algorithms across the network. By separat-
ing data and control planes, SDN avoids vendor lock-ins; specific open standards are followed,
which enable vendor-agnostic network management.

Despite the increased flexibility, SDN introduces novel challenges. The SDN Controller is a
common target of DDoS attacks [74], which aim to render the control plane inaccessible to the
networking devices. Therefore, SDN administrators should thoroughly design their networks to
safeguard the SDNControllers by providingmultiple instances and/or deploying effectiveDDoS
protection solutions. Furthermore, the latency between the data plane devices and the SDN
Controller instances may be significant for latency-sensitive applications, e.g. DDoS attack
detection and mitigation that requires high-throughput packet processing.

2.4.4 The OpenFlow (OF) Protocol

OpenFlow (OF) [73] is utilized by the data plane switches to communicate with the SDN Con-
troller (control plane). Switches supporting the OF protocol are called OF switches. Communi-
cation between the SDN Controller and the OF switches may be unencrypted or encrypted using
the Transport Layer Security (TLS) protocol, which establishes secure channels as depicted in
Fig. 2.13.

OF switches handle incoming packets according to the flow they belong to; packets are at-
tributed to the same flow if they have equal values in specific header fields (e.g. IP addresses
and/or transport layer ports). When a packet is received, OF switches search within their flow
tables to determine the corresponding flow entry, which specifies what action should be per-
formed. If there are no entries associated with a particular flow, hence a switch cannot determine
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how to handle a received packet, the packet is forwarded to the SDNController using the OF pro-
tocol. The Controller subsequently determines the appropriate action that should be performed
on the packet and installs a new flow entry at the switch. Thus, subsequent packets belonging
to this flow will be handled by the OF switch without communicating with the SDN Controller.

Figure 2.13: The OpenFlow protocol - Communication between the data plane switches and the SDN Controller
(figure retrieved from [73])

Each flow entry [75] consists of:

• Match fields: The packet header fields constituting a flow entry are called match fields.
Header values of ingress packets are compared with those of flow entry match fields; if
they are equal, the associated action is performed. Match fields may include the OF switch
port that receives the packet, source and destination Medium Access Control (MAC) ad-
dresses, source and destination IP addresses, source and destination transport layer ports,
VLAN ID’s, IP protocol (e.g. UDP, TCP or ICMP) and IP Type of Service (ToS) bits.
Flow entries may specify values for all the supported match fields or a subset of them;
match fields without a specified value are denoted with a wildcard character (usually "*").
Ingress packets may thus match with multiple flow entries; conflicts arising from multiple
matching flow entries for a packet are resolved based on a priority value associated with
each flow entry (higher values are prioritized).

• Counters: Each time an ingress packet matches a flow entry, one or more associated coun-
ters are updated accordingly. Counters may be maintained per flow table, specific flow en-
tries, OF switch ports, etc. Network administrators may utilize these counters to monitor
their networks and accordingly program the SDN Controller to take specific actions based
on the values of particular counters.

• Actions: Flow entries involve actions that should be performed on matching packets. In-
dicatively, OF switches may (i) forward the ingress packet to a specific OF switch port, (ii)
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flood the packet to all OF switch ports, (iii) drop the packet, (iv) modify the packet headers
or (v) forward the packet to the SDN Controller for further inspection.

Flow entries can be removed either manually by the SDN administrators or automatically
when specific timers expire. Flow entry timers may be: (i) the idle timeout timer, which resets
each time a packet matches the flow entry and (ii) the hard timeout timer, which does not reset
each time a matching packet is received and the flow entry is removed when the timer expires.

2.4.5 Programmable Data Planes (PDP’s)

The OF protocol initially attracted significant interest within the research community. However,
OF design limitations soon became apparent to network administrators. Data plane switches
were limited by the OF protocol available features; introducing novel capabilities to future OF
versions required time-consuming standardization processes. Furthermore, although network
administrators could program their own features at the control plane, the latency introduced by
frequent SDNController and data plane device communications was restrictive for various time-
sensitive applications. Finally, OF focused on packet headers, thus it was not a suitable solution
for DPI actions within the data plane.

The aforementioned limitations led to the introduction of Programmable Data Planes (PDP’s)
[76] as a promising alternative to OF for implementing SDN’s. Instead of being limited by the
device fixed-function chip capabilities (legacy networks) or the OF supported features (OF-
based SDN’s), network administrators may leverage on PDP’s to directly program the behavior
of the forwarding devices. Therefore, received packets are forwarded based on software running
within the data plane devices, while communications with external controllers are significantly
decreased compared to OF-based approaches. PDP’s offer the following advantages:

• Programmable chips: SDN administrators directly program the chips of data plane de-
vices. Therefore, experimental features and protocols may be implemented without re-
quirements for any standardization procedures.

• Cost reduction: Instead of replacing old networking equipment with newer to support
novel features and protocols, SDN administrators may rely on white-box switches, which
are able to support new capabilities by simply being reprogrammed.

• Complexity reduction: SDN administrators may remove protocols and features, which
are not utilized within their networks, to reduce packet header size and the overall com-
plexity of managing their devices.

• Network visibility: PDP’s may increase the network visibility of SDN administrators by
enabling the efficient collection of monitoring metrics within the data plane. Therefore,
widely-used legacy network applications may be implemented more effectively within
PDP’s (e.g. DDoS detection and mitigation).

There are multiple implementations of PDP’s. In the following, we describe Programming
Protocol-Independent Packet Processors - P4 (subsection 2.4.5.1), eXpress Data Path - XDP
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(subsection 2.4.5.2) and Data Plane Development Kit - DPDK (subsection 2.4.5.3), which are
important for subsequent chapters of this dissertation.

2.4.5.1 The P4 Language

Programming Protocol-Independent Packet Processors (P4) [12] is a Domain-Specific Language
(DSL) used for programming the forwarding logic of data plane switches. P4 programs are
compiled and their syntax is similar to that of the C programming language. P4 is commonly
employed by the research community for data plane programming.

The devices capable of running the compiled P4 programs are called P4 targets. P4 targets
include pipelines of blocks mainly responsible for parsing packet fields and subsequently ap-
plying specific actions according to packet header and payload values; actions are determined
based on match-action tables populated by the P4 target control plane. Some blocks are pro-
grammable and their behavior may be fully determined by P4 developers, whereas some blocks
are fixed-function and their functionality is predetermined. The programmable blocks of P4
targets as well as their data plane interfaces are specified by the P4 architecture [77]. There
are various P4 targets, which may either be software-based or hardware-based; depending on
the P4 target, specific P4 architectures are supported. Indicatively, a P4 architecture involv-
ing both programmable and fixed-function blocks is V1Model, whereas Protocol-Independent
Switch Architecture (PISA) consists only of programmable blocks [77].

The process of programming P4 targets is depicted in Fig. 2.14.

Figure 2.14: The process of programming P4 targets (figure retrieved from [78])

Although the Behavioral Model version 2 (BMv2) [79] is a popular software-based P4 target,
the achieved throughput is significantly low, while some P4 features are not supported by the
available P4 architecture (i.e. V1Model). These limitations render BMv2 suitable only for
learning the P4 language and/or debugging simple programs.

Network engineers usually rely on hardware-based P4 targets. These may include:

• P4-programmable SmartNIC’s: They are Network Interface Cards (NIC’s) supporting
the execution of P4 programs. They include a small number of ports, but their throughput is
high. Their cost is considerably low. Indicatively, NetronomeAgilio CX 25GbE SmartNIC
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[80] involves two ports, each supporting speeds up to 25 Gbps, and costs approximately
$600 (2023 price).

• Field Programmable Gate Arrays (FPGA’s): P4 may also be utilized as a high-level
programming language for describing FPGA operation; P4 programs are translated into a
hardware description language, e.g. Verilog. Compared to P4-programmable SmartNIC’s,
they include a higher number of high-throughput ports. However, their cost is generally
high. Indicatively, NetFPGA-SUMEVirtex-7 [81] includes 4 ports, each supporting speeds
up to 10 Gbps, and costs $7,000 (2023 price).

• P4 switches: Compared to the previous targets, P4 switches include the highest port num-
ber and their throughput is significantly increased, but their cost is much higher. Indica-
tively, Edgecore Wedge 100BF-32X [82] has 32 ports, each supporting speeds up to 100
Gbps, and costs roughly $10,000 (2023 price).

Despite the line-rate packet processing capabilities and the flexibility of programming data
plane device chips, there are important constraints [12] that complicate P4 usage and may limit
the type of supported applications. P4 is not a general-purpose programming language; loops
and pointers are not supported, while variables are of fixed-size. Thus, some applications may
not be supported or may require extensive workarounds, e.g. data plane ML inference [83].

2.4.5.2 The eXpress Data Path (XDP) Framework

The eXpress Data Path (XDP) framework [10] is an open-source solution that establishes a pro-
grammable data path in the Linux kernel. XDP achieves high throughput packet processing by
minimizing the overall number of actions performed on each packet. Received packets are in-
tercepted at the NIC driver level before any memory is allocated to them. This is done via an
XDP Hook attached at the earliest possible layer in the kernel network stack; this hook detains
ingress packets and delivers them to an extended Berkeley Packet Filter (eBPF) program on
a per-packet basis. Processed packets may be either (i) dropped (XDP_DROP action), or (ii)
bounced back to the interface they were received (XDP_TX action), or (iii) redirected to a dif-
ferent interface (XDP_REDIRECT action), or (iv) passed to the user space through the network
stack (XDP_PASS action), or (v) forwarded to the user space via an optimized AF_XDP socket
that bypasses the kernel. An eBPF program [10] may communicate with the user space and/or
other programs via eBPF maps available in the system kernel.

Contrary to similar data plane approaches, e.g. the Data Plane Development Kit (DPDK)
[11], XDP does not bypass the kernel and does not require specialized hardware, e.g. P4 [12]
NIC’s. Therefore eBPF programs may benefit from utilities available in the Linux kernel (e.g.
TCP/IP libraries) and may adapt to diverse systems if supported by the specific driver version.
However, additional effort is required to ensure that XDP operation will not compromise the
kernel safety at runtime. To that end, the eBPF verifier is used to guarantee the system safety
before the program is loaded. This involves ensuring that there are no unbounded loops present
and the eBPF program size [10] is constrained. During execution time, XDP requires checking
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that no data are read out of bounds in which case an XDP_ABORTED action is generated.

2.4.5.3 Data Plane Development Kit (DPDK)

The Data Plane Development Kit (DPDK) [11] is an open-source framework that provides util-
ities for offloading packets from the Linux kernel to the user space for efficient processing.
DPDK mainly relies on the following techniques [84, 85]:

• Fast-path: HighDPDK speeds are achieved by bypassing the kernel network stack and de-
livering packets from the data plane directly to the user space for processing. Thus, DPDK
avoids the latency introduced by the Linux kernel network stack, e.g. context switching
(which significantly increases processing delay per received packet) is decreased.

• Poll Mode Driver (PMD): Instead of utilizing costly interrupts to deliver ingress pack-
ets from the NIC to the CPU, CPU cores poll NIC’s for available packets, significantly
accelerating packet delivery to DPDK applications.

Despite accomplishing packet processing at remarkably high speeds, DPDK includes some
drawbacks. Writing efficient DPDK applications requires getting familiar with a new program-
ming model and a wide number of available libraries. Furthermore, bypassing the Linux kernel
renders DPDK applications unable to leverage on widely-used kernel modules (which are avail-
able to XDP), e.g. TCP/IP code. Finally, DPDK requires dedicating CPU cores to the running
applications, thus they are not shared with other system utilities [85] as in XDP; this may lead
to poor CPU utilization.

2.5 Infrastructure Monitoring Tools

Infrastructure monitoring tools are integral for effectively managing computer networks. The
available monitoring data enable administrators to verify that their network is operating as ex-
pected, eventually facilitating DDoS attack detection and mitigation.

In the following, we describe NetFlow (subsection 2.5.1), sampled Flow - sFlow (subsection
2.5.2) and the collectd system statistics collection daemon (subsection 2.5.3).

2.5.1 NetFlow

NetFlow [86, 87] is a network monitoring protocol developed by Cisco. NetFlow aggregates
ingress and egress network traffic into flows, which are groups of packets that share specific
header fields; flow-based data are periodically exported towards external collectors for further
analysis. Flow definition depends on the NetFlow version. In early NetFlow version, flows
were identified by the following seven fields: (i) Monitored device ingress interface, (ii) source
IP address, (iii) destination IP address, (iv) IP protocol number (e.g. 1 for ICMP, 6 for TCP and
17 for UDP), (v) UDP/TCP source port (0 for other protocols), (vi) UDP/TCP destination port
or ICMP message type and code (0 for other protocols) and (vii) IP ToS.
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Figure 2.15: The NetFlow architecture for network traffic monitoring (figure retrieved from [87])

The NetFlow architecture for network monitoring is depicted in Fig. 2.15. NetFlow setups
usually consist of the following three components:

• NetFlow Exporter: Network traffic is aggregated into flows, which are exported towards
one or more available NetFlow collectors.

• NetFlow Collector: Flow-based monitoring data are collected from multiple network de-
vices and converted into an appropriate format for storage and further processing.

• NetFlow Analyzer: Flow-based data are retrieved from NetFlow collectors and analyzed
for multiple purposes, e.g. for detecting ongoing attacks.

NetFlow has been widely employed for DDoS attack detection, providing valuable statistics
pertaining to packet header fields. However, data sampling is usually required so that NetFlow
copes with high-speed DDoS attacks and thus, flows including a small number of packets may
be missed. Furthermore, NetFlow does not deliver information about packet payloads, which
may be essential for protecting against various attack vectors (e.g. DNS Water Torture attacks).

2.5.2 sFlow

Sampled Flow (sFlow) [88] is a network monitoring protocol suitable for high-speed networks.
Packets arriving at network devices (sFlow agents) are sampled at configurable rates (i.e. 1 out
of n packets). Contrary to NetFlow that considers only packet headers, sFlow samples entire
packets. Thus, payload is also included at the cost of increased processing time compared to
flow-basedmonitoring solutions. One ormultiple sampled packets are encapsulated within UDP
datagrams, which are exported to the sFlow collector for storage and further processing.

53



2.5.3 System Monitoring with collectd

System monitoring gathers statistics pertaining to the performance of end systems and their
running applications. An indicative open-source UNIX-based daemon utilized for system mon-
itoring is collectd [89]. Relying on various plugins, collectd is capable of obtaining hardware-
based statistics (e.g. CPU, memory and disk information) as well as application statistics (e.g.
the number of packets handled by a server). Gathered data are usually streamed to collectors,
which may obtain statistics from multiple systems. Indicative collectd plugins are:

• cpu: Enables gathering information about the CPU utilization of an end system.

• memory: Enables gathering data related to the memory consumption of an end system.

• dns: Supports extraction of DNS statistics from a name server, e.g. the total number of (i)
received DNS requests, (ii) returned DNS responses or (iii) DNS responses pertaining to
specific RCODE values, e.g. NXDOMAIN names.

• rrdtool: Enables storing obtained data in Round-Robin Database files (RRDfiles).

The Round-Robin Database tool (RRDtool) [90] may be utilized to retrieve time series data
(e.g. CPU utilization) stored within Round-Robin Databases (RRD’s) for further processing.
RRD’s are circular buffers whose memory footprint remains constant over time. Storing new
data in RRD’s causes the deletion of an equivalent amount of data corresponding to the oldest
entries within the database.

2.6 Efficient Data Structures & Algorithms

This section delves into data structures and algorithms, which are utilized in subsequent chapters
of the dissertation to efficiently perform tasks related to cyber threat detection and mitigation.
Specifically, probabilistic data structures are analyzed in subsection 2.6.1, whereas spelling cor-
rectors are briefly discussed in subsection 2.6.2.

2.6.1 Probabilistic Data Structures

Probabilistic data structures are widely employed for Big Data analytics [9]. They are advanced
data structures utilized for performing various operations (e.g. membership lookups, frequency
estimation and set intersection) in a time and space efficient manner. This efficiency is accom-
plished by storing elements hashed instead of their original form, which results in the introduc-
tion of a configurable percentage of errors. Storing elements hashed also renders probabilistic
data structures beneficial for exchanging sensitive data in a privacy-aware format.

In the following, we describe probabilistic data structures, which will be subsequently used
for accelerating critical operations related to network security. Specifically, we analyze Bloom
Filters - BF’s (subsection 2.6.1.1), Cuckoo Filters - CF’s (subsection 2.6.1.2) and Count-Min
Sketches - CMS’s (subsection 2.6.1.3).
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2.6.1.1 Bloom Filters (BF’s)

Bloom Filters (BF’s) [16,91] are probabilistic data structures that perform efficient membership
lookups by meeting time and space constraints. They reduce the overall memory consumption
by storing elements not in their actual form, but hashed and mapped into a bit array of constant
size. Lookups are always accurate for elements stored in the filter (zero False Negatives - FN’s)
and potentially inaccurate for elements not in the filter (False Positives - FP’s). The BF error
percentage is affected by the: (i) number of stored elements n, (ii) size of the filter in bits m and
(iii) number of hash functions k. The time complexity of element lookups is O(k) and the space
complexity is O(m). The FP probability of BF’s is approximately given by:

(1− e−kn/m)k

Relying on a brute force approach to evaluate all k hash functions would require extensive
separate calculations. Instead, the Double Hashing technique employs only two hash functions
h1 and h2 to derive all required k digests without affecting the BF accuracy; the correctness of
this approach is formally stated in [91]. The digests di for a BF of size m bits are given by:

di = (h1 + i · h2) mod m, i = 0, 1, ..., k − 1

Figure 2.16: Insertion of element "Key_1" in the BF - BF bits determined by hashing element "Key_1" three times
are set to 1

Fig. 2.16 depicts the insertion of element "Key_1" in a BF of m = 16 bits relying on k = 3
hash digests. All BF bits are initially set to 0. After hashing "Key_1" three times, the BF bits
determined by the three hash digests are set to 1.

Fig. 2.17 depicts a BF lookup for the element "Key_2", which is not stored within the BF.
After hashing "Key_2" three times, the BF bits determined by the corresponding hash digests
are inspected. One of the bits equals 0, thus we conclude that "Key_2" is definitely not stored
within the BF. Notably, this outcome cannot be wrong because FN’s are not possible for BF’s;
if "Key_2" were in the BF, all bits corresponding to "Key_2" hash digests would equal 1.

Fig. 2.18 depicts a BF lookup for the element "Key_3", which is not stored within the BF.
After hashing "Key_3" three times, the corresponding BF bits are inspected. All bits are equal
to 1, thus we erroneously conclude that "Key_3" is stored within the BF. FP’s are possible
for BF’s; the bits determined by "Key_3" hash digests have been set to 1 by previous element
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Figure 2.17: BF lookup for element "Key_2" - "Key_2" is definitely not included in the BF because one of the
positions corresponding to "Key_2" hash digests is equal to 0

Figure 2.18: Lookup for element "Key_3" erroneously concludes that this element is included in the BF because all
bits determined by the three hash digests are set to 1 - This FP is returned because the bits determined by "Key_3"
hash digests have been set to 1 by the previous insertion of elements "Key_4" and "Key_5"

insertions (i.e. "Key_4" and "Key_5").
Notably, element deletions are not supported by vanilla BF’s. Removing elements by setting

their corresponding bits to 0 would introduce FN’s because BF positions may be shared by
multiple elements.

2.6.1.2 Cuckoo Filters (CF’s)

CF’s [19] are probabilistic data structures that perform time and space efficient set membership
tests. The overall memory consumption is decreased since elements are hashed and inserted
in the filter, as fingerprints in the entries of a two-dimensional array. Membership tests are
always accurate for elements stored in the filter, but may be inaccurate for those not in the filter.
Thus, similarly to BF’s [16], FP’s are possible, whilst FN’s are not. However, contrary to BF’s,
CF’s allow for the efficient deletion of previously inserted elements without introducing space
overhead and FN’s [91, 92].

CF’s are characterized by the number of (i) available buckets m and (ii) multiple fingerprint
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entries b per bucket. An element x is hashed into a fingerprint fgp(x) of f bits using the function
fgp() [19]. Each element x is assigned to a pair of buckets with indices determined by two
additional hashing operations. The index of the first bucket h1(x) is determined by hashing
the element x using a function hash(), which may be based on the same algorithm as fgp().
The index of the second bucket h2(x) is determined based on the Partial-key Cuckoo Hashing
technique [19]; this involves an XOR operation between h1(x) and fgp(x) hashed with the
function hash():

h1(x) = hash(x)

h2(x) = h1(x)⊕ hash(fgp(x))

The computed fingerprint is inserted in either h1(x) or h2(x) bucket if space is available.
Otherwise, an already inserted fingerprint is randomly selected from one of these buckets and
evicted to its alternate bucket if an entry is available. This swapping process continues until
empty space is found or a maximum number of allowed evictions is exceeded resulting in inser-
tion failure. Lookups and deletions involve inspecting if an element’s fingerprint is in either of
its corresponding buckets. The fingerprint size f [19] for an estimated FP ratio ϵ and maximum
entries per bucket b is:

f ≥ ⌈log2(1/ϵ) + log2(2b)⌉

The complexity of CF element insertion is amortizedO(1), whilst that of membership testing
and deletions is constant, O(1). Apart from enabling element deletion, CF’s outperform BF’s in
terms of lookup time and memory requirements for applications with FP ratio less than 3% and
nearly full CF’s. BF’s remain superior in applications that require frequent insertions of large
element sets due to the costly CF eviction process. However, our use cases for privacy-aware
zone exchanges (described in Chapter 5) will not require frequent bulk insertions, thus we will
opt for CF’s due to their low lookup latency and rapid updates for large zones.

2.6.1.3 Count-Min Sketches (CMS’s)

Count-Min Sketches (CMS’s) [17] are probabilistic data structures that efficiently provide fre-
quency estimations on data stream elements. Instead of maintaining dedicated counters per
element, they reduce the overall space requirements by hashing elements and using pools of
shared counters. As a result, the actual frequency of elements may be overestimated, while un-
derestimations are not possible. CMS’s are characterized by: (i) the number of hash functions k

and (ii) the number of counters m per hash function. Increasing the parameters k or m generally
reduces the probability of false frequency estimation.

Fig. 2.19 depicts the insertion of element "Key_1" in a CMS that relies on k = 3 hash
functions and m = 10 counters per hash function. After determining the appropriate CMS
counters based on the positions returned by hashing "Key_1" three times, the value of each
counter is increased by 1.
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Figure 2.19: Inserting element "Key_1" in the CMS - Counters determined by "Key_1" hashes are increased by 1

Figure 2.20: Lookup for element "Key_2" in the CMS - The frequency of "Key_2" is estimated as the minimum
value of all counters determined by hashing "Key_2"

Fig. 2.20 depicts a lookup for element "Key_2". Initially, the counters corresponding to the
inspected element are determined by hashing "Key_2" three times. The frequency estimation
for element "Key_2" is determined as the minimum of all counter values.

2.6.2 Spelling Correction Algorithms

Spelling correction algorithms identify typos within given words and enable rectification of
spelling mistakes. They are usually based on the edit distance between the word under consid-
eration and a dictionary of valid words. A frequently used edit distance metric is the Damerau-
Levenshtein [93] that determines the minimum number of character insertions, omissions, sub-
stitutions and transpositions to convert a string to another.

Naive spelling correction algorithms compare the given word with every available dictio-
nary term. To reduce the total processing time, Norvig’s approach [94] generates beforehand all
possible dictionary term variants (resulting from character insertions, omissions, substitutions
and transpositions) for edit distances up to a maximum defined value. These variants are stored
in the dictionary along with their original terms; this may result into oversized dictionaries. A
more efficient approach is followed by the Symmetric delete Spelling correction (SymSpell) al-
gorithm [18], which constructs a dictionary containing the actual terms along with their variants
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resulting from all possible character omissions up to the considered edit distance. As a result,
the overall storage requirements remain low, whilst SymSpell maps the dictionary terms to a
hash table to ensure that the average search time complexity is O(1). Notably, search time is
independent of the number of terms stored in the dictionary, although it depends on the average
length of dictionary terms and the maximum edit distance value under consideration.

2.7 Machine Learning (ML)

This section delves into concepts related to Machine Learning (ML). ML fundamentals are dis-
cussed in subsection 2.7.1, whereas ML algorithms utilized in this dissertation are briefly de-
scribed in subsection 2.7.2. Finally, in subsection 2.7.3 we provide background on eXplainable
Artificial Intelligence (XAI) techniques, which may be employed to derive interpretations on
ML model decisions.

2.7.1 Machine Learning Fundamentals

Following rule-based approaches to program system behavior may prove hard and extremely
time-consuming. Machine Learning (ML) [95,96] involves algorithms for developing systems,
which are capable of performing specific tasks without being provided with explicit instructions.
Learning datasets are provided to ML models, which enable them to identify patterns among
input features and generalize to previously unseen data. Learning datasets are usually split in
two portions; one portion is used by ML models to tune their parameters (training set), while
the other portion is utilized to evaluate model performance (testing set).

ML models are broadly categorized in one of the following paradigms according to the ap-
proach followed to solve a problem:

• Supervised learning: Provided learning datasets include input sampling points and their
respective labels, i.e. tags corresponding to the desired model output. ML models config-
ure their parameters by determining the best mapping between input features and output
labels that minimizes a given loss function.

• Unsupervised learning: Unlabeled learning datasets are provided, i.e. input sampling
points without associated labels. ML models configure their parameters by discovering
patterns within given data, e.g. clusters of input examples sharing similar properties.

• Reinforcement learning: MLalgorithms involve agents that learn tasks by receiving feed-
back from their environment. Specifically, agents aim at maximizing a cumulative reward
through a trial and error approach that rewards "good" decisions and penalizes "bad" ones.

ML has revolutionized a wide variety of applications, including cyber threat detection and
mitigation, by facilitating the automated identification of useful patterns within the given data
instead of rule-based systems, which may be hard to develop. However, ML has also introduced
significant challenges. Specifically, MLmodel performance depends heavily on the volume and
quality of the available data; ML applications usually require massive volumes of data, which
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should be representative of the targeted problem. Furthermore, ML model training requires
substantial amounts of time and considerable computing resources, e.g. multiple GPU’s. ML
models also introduce decisionmaking errors that may have significant consequences depending
on the considered application.

2.7.2 Machine Learning Algorithms

In the following, we briefly describeML algorithms that will be used in the remainder of this dis-
sertation. Specifically, in subsection 2.7.2.1 we discuss Decision Tree (DT) classifiers, whereas
in subsection 2.7.2.2 we describe Random Forest (RF) classifiers. Then, in subsection 2.7.2.3
we provide background on Extremely Randomized Trees (ExtraTrees) and in subsection 2.7.2.4
we describe boosting classifiers, which may involve Adaptive Boosting (AdaBoost), Gradient
Boosting (GB) and eXtreme Gradient Boosting (XGBoost). Finally, in subsections 2.7.2.5 and
2.7.2.6, we respectively discuss Naive Bayes Classifiers and Multi-Layer Perceptrons (MLP’s)
for binary classification.

2.7.2.1 Decision Tree (DT) Classifiers

Decision Tree (DT) classifiers are widely-used supervised learning algorithms. They are non-
parametric classifiers, i.e. they do not make any assumptions on the distribution of the provided
learning data. DT classifiers are organized in a tree structure; the root and the internal tree
nodes correspond to ML model features, whereas the leaves denote model outcomes, i.e. class
labels. Similarly to flowcharts, an input example is attributed to a specific class by following if-
then-else statements across the tree nodes from the root to the leaves. Training of DT classifiers
requires splitting learning datasets into subsets, while maximizing or minimizing a given metric,
e.g. the tree Gini index or Entropy respectively.

DT classifiers are simple and fast white-box models; their operation may be fully interpreted
byMLmodel developers contrary to more complex, black-boxmodels. However, they are prone
to overfitting, which becomes more evident as the tree depth and number of model features
increase.

2.7.2.2 Random Forest (RF) Classifiers

Random Forest (RF) classifiers are non-parametric, supervised learning ML algorithms. Rely-
ing on ensemble learning, they aggregate the predictions of multiple DT classifiers, eventually
decreasing the overall bias and overfitting. During the learning phase, RF classifiers ensure that
the correlation among individual predictors is low. This is accomplished mainly by (i) employ-
ing bootstrap aggregation (bagging), which involves randomly subsampling learning datasets
with data replacement and (ii) feature randomness, which involves selecting random subsets of
the available features. During the testing phase, input examples are assigned to the class pre-
dicted by the majority of the individual DT’s. RF’s are more accurate than DT’s, but they are

60



more resource-intensive, whereas their operation is not interpretable, i.e. they are black-box
models.

2.7.2.3 Extremely Randomized Trees (ExtraTrees)

Extremely Randomized Trees (ExtraTrees) are supervised learning algorithms relying on ensem-
ble learning techniques for categorizing input examples. Similarly to RF classifiers, ExtraTrees
combine multiple DT’s. However, ExtraTrees are generally faster than RF’s and individual DT’s
are trained on dataset subsets, which are sampled without data replacement. Therefore, each sep-
arate predictor is trained on a unique portion of the dataset. This ensures that the individual DT’s
are uncorrelated.

2.7.2.4 Boosting Classifiers

Boosting classifiers [97] are non-parametric, supervised learning algorithms. They rely on en-
semble learning techniques that combine multiple weak learners (e.g. DT classifiers) to build
stronger ones. Specifically, boosting classifiers require sequentially developing ML models
based on the output of previously trained, weaker learning models. The developed models are
aggregated to a single one to increase classification performance.

Multiple ML algorithms rely on boosting, such as Adaptive Boosting (AdaBoost), Gradient
Boosting (GB) and eXtreme Gradient Boosting (XGBoost). Indicatively, AdaBoost combines
individual predictors based on a weighted linear function that assigns larger weights to stronger
learners. Individual learners of AdaBoost are usually decision stumps, i.e. DT classifiers in-
cluding a single input feature. Similarly to RF’s, boosting classifiers are also black-box models.

2.7.2.5 Naive Bayes Classifiers for Binary Classification

Naive Bayes Classifiers [98] are supervised ML algorithms that assume conditional indepen-
dence among features given the class of the output. This assumption renders Naive Bayes easy
to implement and fast in evaluating inputs, while less time and data are required for training
compared to other ML algorithms.

Training a Naive Bayes Classifier to predict the class y of input [x1, ..., xm] given m features
Xi requires estimating two types of Maximum Likelihood Estimations (MLE’s):

• MLE’s for prior probabilities, i.e. P̂ (y), calculated by dividing the number of training
examples belonging to class y with the total number of examples in the training dataset.

• MLE’s for conditional probabilities of each feature Xi given a class y, i.e. P̂ (Xi = x|y),
calculated by dividing the number of training examples belonging to class y and their fea-
ture Xi equals x with the total number of training examples belonging to class y.

Then, a new test instance [xnew
1 , ..., xnew

m ] is assigned by Naive Bayes to class ynew based on:

ynew ← argmax
y

P̂ (y)
m∏

i=1
P̂ (xnew

i |y)
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2.7.2.6 Multi-Layer Perceptrons (MLP’s) for Classification

MLP’s [96] are feedforward neural networks utilized for supervised learning purposes. They
include multiple neurons, which are organized in layers, specifically an input layer, an output
layer and one or more internal layers between them (called hidden layers). Neurons of the input
layer and the hidden layers are connected to each neuron of the subsequent layer, whereas the
outcomes of output layer neurons are used to derive the class of the provided input examples.

Training of MLP’s relies on the backpropagation algorithm, which involves tuning (i) the
weights of the links between neurons, i.e. decimal numbers that specify the amount of the
neuron outputs that will be transferred to the next MLP layers and (ii) the bias parameter of each
neuron, which is a constant numeric value. The output of each neuron is determined by adding
the bias parameter to the weighted sum of neuron inputs and subsequently feeding the result to
a non-linear activation function, e.g. ReLU or sigmoid. Activation functions enable MLP’s to
capture complex relationships between input data and their provided labeled outputs, whereas
the model is capable of generalizing to previously unseen data.

Similarly to RF classifiers, boosting classifiers and ExtraTrees, MLP’s are black-box models.
Thus, their operation is not inherently interpretable unless XAI methods are used.

2.7.3 eXplainable Artificial Intelligence (XAI)

ML algorithms have been widely adopted for processing massive amounts of data in a highly
efficient manner for image processing, cybersecurity, healthcare, online education, etc. During
the last decades, practitioners have been focusing on increasing the predictive capabilities ofML
models. Therefore, simple and intrinsically explainable models have been replaced by complex
networks that achieve higher performance. However, these complicated, black-box models are
not interpretable, hence they introduce significant issues to their developers, their users and legal
entities who supervise their deployment. Developers are incapable of understanding their mod-
els to debug them and assert their intended operation, while users cannot receive justifications
on model decisions made on their data. Finally, legal regulators are unable to ensure that models
deployed within critical infrastructures comply with GDPR [99] or equivalent mandates.

Driven by the aforementioned limitations, eXplainable Artificial Intelligence (XAI) tech-
niques have been proposed to provide interpretations on the operation of ML models, including
deep neural networks. Although various techniques have been proposed, the most appealing
XAI algorithms are those categorized as post-hoc and model-agnostic. Such algorithms are ap-
plied after the model is trained (post-hoc) and they are independent of selected models (model-
agnostic), therefore they constitute a promising category of XAI algorithms. Interpretations
may be global, detailing the model behavior on multiple sample points, and local, reporting
how models make classification decisions for specific input examples.

In subsection 2.7.3.1 we briefly describe SHapley Additive exPlanation (SHAP), which
is a widely-used post-hoc and model-agnostic XAI method that provides both global and local
model interpretations.
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2.7.3.1 SHapley Additive exPlanation (SHAP)

SHAP [13,15] is a model-agnostic, post-hoc XAI method related to cooperative game theory. In
cooperative games, players collaborate to achieve a pay-off, which is subsequently split based
on participant contributions. Accordingly, features are considered as participants that tune a
classifier and subsequently SHAP determines feature importance by estimating the effect of
specific features on classification decisions when these features are present and absent.

SHAP delivers global and local explanations [14] on ML model decisions, whereas various
visualization tools facilitate interpretations, e.g. summary plots, dependence plots and force
plots. Model-agnostic SHAP is typically based on the KernelExplainer [100] method; this ap-
proximates feature importance via a weighted linear regression model applied to input instances
(sample points). SHAP time complexity mainly depends on the dataset size. Enabling execution
within reasonable time frames may require clustering and/or subsampling a given dataset. This
process extracts the eXplainability Background Instances (XBI’s) used for tuning SHAP values
and eXplainability Test Instances (XTI’s) utilized for generalizing model interpretations.
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Chapter 3

Water Torture Attack Protection based on
Efficient Algorithms & Probabilistic Data
Structures in the User Space

This chapter1 presents a privacy-preserving schema between Authoritative and Recursive DNS
Servers (Recursors) for the efficient detection and collaborative mitigation of DNS Water Tor-
ture attacks in cloud environments. Monitoring data are harvested from the victim premises
(Authoritative DNS Server and data center switches) to detect anomalies with DNS requester IP
addresses classified as legitimate or suspicious. Subsequently, requests are forwarded or redi-
rected for refined inspection to a filtering mechanism. Mitigation may be offered as a service
either on-premises or via cloud scrubbing infrastructures.

The proposed schema leverages on probabilistic data structures (Bloom Filters - BF’s, Count-
Min Sketches - CMS’s) and related algorithms (SymSpell) to meet time, space and privacy
constraints. Notably, BF’s are employed to map Resource Records (RR’s) of large DNS zones
in amemory-efficient manner; rapid name lookups are possible with zero False Negatives (FN’s)
and tolerable False Positives (FP’s). Our approach is tested via a proof of concept setup based
on traces generated from publicly available DNS traffic datasets.

3.1 Motivation

As briefly mentioned in Chapter 2, DNS DDoS attacks present an ever-increasing threat to the
operation of the Internet, whereas the severe impact of DNS outages became evident during the
Dyn DDoS attack (see Chapter 1). According to [3], Dyn servers were overwhelmed by attack
traffic that reached the immense volume of 1.2 Tbps. This was forwarded by roughly 100,000
IoT devices infected with the Mirai malware [101] presumably utilizing DNSWater Torture and
Generic Routing Encapsulation (GRE) Flood as attack vectors [102]. During the attack, Internet
services of major companies, e.g. Amazon, Twitter and Netflix [101] were severely affected.

1This work is included in the proceedings of the 8th IEEE International Conference on Cloud Networking (IEEE CloudNet 2019)
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DNSWater Torture [102] overwhelms the computing resources of Authoritative DNSServers
with invalid Fully Qualified Domain Names (FQDN’s) not contained in the victim’s zone (see
subsection 2.3.1.2). These are randomly generated so that a name is never repeated, bypassing
the DNS caches of caching Recursors. Thus, the attack traffic is forwarded to victims. Note that
another commonly used DDoS attack vector is DNS Amplification (see subsection 2.3.1.3) that
involves unsolicited amplified responses by exploiting vulnerable Recursors, including Open
Resolvers, which are openly available to every Internet user. This vector represents a volu-
metric attack that saturates network links and is commonly mitigated via traffic blackholing or
redirection to scrubbing services. This chapter focuses on protectingAuthoritative DNS Servers,
which are critical Internet resources, in a cost-effective and efficient manner against Water Tor-
ture attacks and not volumetric DDoS attacks.

We present a privacy-preserving schema among collaborating Authoritative DNS Servers
and Recursors for the efficient detection and mitigation of DNS Water Torture attacks. Our
schemameets time and space constraints both in detection andmitigation stages by leveraging on
probabilistic data structures, i.e. Bloom Filters (BF’s), Count-Min Sketches (CMS’s) and related
algorithms, i.e. SymSpell. Monitoring data are harvested from the victim infrastructure; these
enable a classifier to categorize requester IP addresses according to the validity and frequency
of requested names. When a Water Torture attack is detected, traffic from attack sources is
redirected for further inspection to a filtering appliance. Mitigation may be offered as a service
either on-premises or via cloud scrubbing services. Moreover, sources of suspicious traffic, e.g.
Recursors, are notified by the victim; these may deploy filtering instances to mitigate attacks
closer to their origins and therefore deliver high quality services to their users.

We are mainly based on the idea of employing BF’s as name whitelists and map the RR’s of
largeDNS zones in amemory-efficient manner. BF’s ensure fast element lookupswith zero FN’s
and tolerable FP’s. Moreover, their privacy-preserving nature supports mitigation enforcement
closer to the attackers without disclosing the contents of zones to third parties. Thus, they are
suitable for the mitigation of DNS DDoS attacks in cloud infrastructures that impose particular
time, memory and privacy requirements.

The remainder of this chapter is structured as follows: In Section 3.2, we discuss works
related to our approach; in Section 3.3, we provide a high-level overview of our schema and
analyze its design features; in Section 3.4, we discuss implementation details pertaining to our
proposed architectural components; in Section 3.5, we present the results of our experiments.
Finally, in Section 3.6, we summarize our work.

3.2 Related Work & Contributions

There are several approaches reported in the literature, e.g. [103,104] that suggest using BF’s for
whitelist/blacklist generation and CMS’s for frequency statistics in DDoS attack detection and
mitigation. Our work builds upon the privacy-preserving properties and space-time efficiency
of these probabilistic data structures to develop a schema for the protection against DNS Water
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Torture attacks, whichmay be deployed in cloud infrastructures. In the sequel, we refer to related
work pertaining to handling DNS DDoS attacks.

In [5] an approach is proposed to detect DNS Water Torture attacks on Authoritative DNS
Servers based on the frequency and statistical features of the requested names. This approach
includes a model that analyzes the requested names based on a learning phase that involves
training delays. In contrast, our proposed schema depends on the actual zone RR’s to validate a
name using efficient data structures (BF’s) for filtering suspicious traffic.

In [105] a BF-based method is proposed to mitigate DNS Amplification volumetric attacks.
The main idea is that a legitimate response corresponds to each outgoing request. Thus, BF’s
are used to efficiently store summaries of DNS requests and subsequently drop unsolicited re-
sponses. Our BF-based method protects Authoritative DNS Servers fromWater Torture attacks,
which are not volumetric in their nature.

In [106], an IBMUSPatent Application outlinesmethods for filteringDNS requests in Recur-
sors using whitelists/blacklists. This approach monitors the DNS response time of Authoritative
DNS Servers and Recursors to pinpoint those requiring protection. Similarly to our schema, the
authors propose the utilization of efficient data structures, e.g. BF’s, to store one or more valid
names selectively prefetched from Authoritative DNS Servers and, accordingly, filter offensive
traffic. Furthermore, they do not support their proposal with experimental results. In contrast,
our schema uses BF’s to map the entire zone contents of Authoritative DNS Servers and is vali-
dated with experiments tailored to the requirements of cloud services. Moreover, our approach
includes a fine-grained classification process that profiles requester IP’s to identify potentially
malicious users. This enables enforcing DNS DDoS mitigation closer to the attack sources via
a collaborative mechanism amongst Authoritative DNS Servers and Recursors.

3.3 Proposed Schema: High-Level Overview & Design Features

This section provides a general description and lists the design principles of the proposed archi-
tecture.

3.3.1 High-Level Description & Features

A high-level description of our schema is depicted in Fig. 3.1. The Authoritative DNS Server
receives requests from Recursors for FQDN’s within its zones. Data packets are sampled from
an SDN-enabled switch (SDN Switch) and DNS metrics are collected from the Authoritative
DNS Server. These are fed to an anomaly detection process to identify abnormal DNS activ-
ity and classify the corresponding requester IP addresses. DNS messages from suspicious IP
addresses are redirected to the DNS Firewall (DFW), thus offloading the Authoritative DNS
Server. Instances of this component may be deployed either on-premise or as cloud scrubbing
services. Moreover, Recursors forwarding suspicious traffic are notified. These are asked to
collaborate by filtering requests in their facilities, presumably closer to the attack sources, based
on the contents of the victim zones.
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Figure 3.1: Baseline design of the proposed schema

The main design features of the proposed schema are:

• Lightweight DNSmonitoring: Packet sampling based on sFlow and lightweight statistics
collection agents (i.e. collectd [89]) are used to efficiently harvest DNS-related data. Thus,
our schema may adapt to great traffic volumes without introducing considerable overhead
to the monitoring infrastructure.

• Fine-grained classification of requester IP addresses based on efficient data struc-
tures and algorithms: Our classification schema leverages on probabilistic data structures
(BF’s [16], CMS’s [17]), along with a deterministic spelling correction algorithm (Sym-
Spell [18]) to classify DNS requester IP addresses as legitimate or suspicious. Requests
from suspicious IP addresses are redirected for refined inspection, whereas legitimate traf-
fic is forwarded directly to the Authoritative DNS Server.

• Space and time efficient filtering of DNS requests: We utilized BF’s for rapid name
lookups in a memory-effective manner. Initially, the FQDN’s for each Authoritative DNS
Server zone are stored in a BF. Subsequent requests about non-existent names are dropped,
whilst valid ones are forwarded to the Authoritative DNS Server. BF’s ensure that only
invalid requests are dropped during filtering (zero FN probability), while FP’s may occur
with tolerable and configurable probability.

• Modular DNS Firewall: Leveraging on the privacy and space-time efficiency properties
of BF’s, we offer a mitigation solution suitable to be provided as a Virtual Network Func-
tion (VNF) [107]. DFW instances may be dynamically deployed at any point across the

68



attack path within or without the victim’s network, while BF’s safeguard privacy concerns
by hashing DNS zone contents. In particular, DFW instances may be embedded within
Authoritative DNS Servers, Recursors or offered as a service within cloud scrubbing in-
frastructures. Thus, depending on the magnitude of the attack, the mitigation process may
be orchestrated via a collaborative schema and pushed closer to the sources of the attack.

3.3.2 Architectural Components - Overview

Our overall architecture consists of three components: (i) the Anomaly Detection Component
(ADC), (ii) the Mitigation Trigger Component (MTC) and (iii) the DNS Firewall (DFW). In the
following, we outline the functionality offered by each component.

3.3.2.1 Anomaly Detection Component (ADC)

This component performs anomaly detection and classification pertaining to the DNS service.
Decisions are based on monitoring data harvested from the SDN Switch and the Authoritative
DNS Server. The ADC consists of: (i) the Data Collector (DC), (ii) the Attack Detector (AD)
and (iii) the IP Classifier (IPC).

The DC gathers non-sampled DNS metrics from the Authoritative DNS Server and packet
samples from the SDN Switch. It isolates DNS samples and extracts specific attributes from the
packet headers and payload. The AD retrieves from the DCDNSmetrics related to the detection
of DNS anomalies. The IPC categorizes DNS requests and related IP addresses as legitimate or
suspicious. Classification is conducted in two levels:

• The first level identifies requested FQDN’s as valid (present in the corresponding zone) or
invalid. Invalid names may occur due to typos, requests for obsolete names or malicious
intent, e.g. requests for names generated by Domain Generation Algorithms (DGA’s). Ap-
propriate counters for typos and DGA names per requester IP are kept in CMS’s.

• The second level employs operator-defined thresholds on the aforementioned counters to
classify DNS requester IP addresses as legitimate or suspicious.

3.3.2.2 Mitigation Trigger Component (MTC)

This component enforces the necessarymitigation actions for DNS-related anomalies. TheMTC
receives Mitigation Requests containing the identified suspicious IP addresses from the ADC.
Suspicious requests are redirected to the DFW for refined inspection; this may be located either
on-premises or in cloud scrubbing infrastructures. The SDN Controller installs appropriate flow
rules (SDN Switch) to divert suspicious requests to the on-premise DFW’s or triggers routing
updates (Edge Router) to redirect DNS traffic. Moreover, the MTC initiates collaboration re-
quests towards Recursors that forward suspicious traffic. Those willing to filter offensive traffic
receive the DNS zones in a privacy-aware format (i.e. BF’s) via the Collaboration Engine.
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3.3.2.3 DNS Firewall (DFW)

The purpose of this component is to handle suspicious DNS requests based on a BF containing
the Authoritative DNS Server zone FQDN’s. Requests pertaining to names contained in the BF
are forwarded to the Authoritative DNS Server. The zero FN probability ensures that all legit-
imate requests will reach the Authoritative DNS Server, while requests failing the membership
test are dropped. However, a small percentage of invalid requests may be forwarded to the Au-
thoritative DNS Server due to the non-zero FP probability of the BF. Depending on the severity
of the attack and the Authoritative DNS Server capabilities, administrators may fine tune the BF
size to sustain a tolerable probability of FP’s.

Figure 3.2: The Anomaly Detection Component

3.4 Architectural Components & Implementation Details

This section provides details pertaining to the implementation of the Anomaly Detection Com-
ponent (ADC), the Mitigation Trigger Component (MTC) and the DNS Firewall (DFW).
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3.4.1 Anomaly Detection Component (ADC)

In this part we discuss implementation details of the ADC. This component (Fig. 3.2) was
implemented in Python and consists of the following modules:

3.4.1.1 Data Collector (DC)

The DC harvests monitoring data to detect DNS anomalies and classify requester IP addresses.
Monitoring data consist of (i) non-sampled DNS metrics gathered from the Authoritative DNS
Server using collectd and (ii) DNS messages from the SDN Switch obtained through packet
sampling via sFlow. The aforementioned tools are lightweight and thus, suitable for high-traffic
networks.

DNSmetrics include the total number of DNS responses with (i) NXDOMAIN response code
(RCODE) and (ii) any RCODE in general. These are delivered to the DNS Metrics Collector
and stored in round-robin databases, which ensure that stale information is efficiently removed,
whilst storage requirements remain constant over time.

Packet samples are collected from the SDN Switch. We extract the requester IP address from
the IP header and the FQDN first label (prefix) from the DNS payload. Sampled DNS messages
may either be requests or responses; our mechanism determines the requester IP address from
the corresponding layer 3 field. As the sFlow collector, we used sflowtool [108] and selected
sampling rates based on the interface speed as proposed in [109].

3.4.1.2 Attack Detector (AD)

The AD processes information from the DC to detect Water Torture attacks. Collected DNS
metrics are retrieved in configurable time intervals via RRDtool [90], a standard tool for RRD
files. An attack is detected if the ratio of NXDOMAIN responses to the total number of DNS
responses, evaluated in intervals of 5 sec, violates a predefined threshold. This interval ac-
complishes a satisfactory trade-off between false and delayed decisions. Those based on short
intervals may be affected by instant fluctuations thus, benign IP addresses may be misclassified;
long intervals may delay the detection of suspicious IP addresses.

3.4.1.3 IP Classifier (IPC)

The IPC classifies requester IP addresses as legitimate or suspicious. The DC feeds the extracted
prefix to a BF that contains the valid FQDN prefixes of the Authoritative DNS Server zones.
This determines the validity of prefixes without misclassifying valid ones (recall that FP’s are
possible).

Identified invalid prefixes are further inspected to determine those resembling valid ones. To
that end, we employ the SymSpell algorithm to efficiently calculate edit distances in constant
time. The SymSpell dictionary is derived using all zone prefixes and their variants resulting from
character omissions up to a maximum edit distance value. This value depends on the tolerance
for typos. We selected a maximum edit distance of 3 characters assuming that common spelling
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mistakes are within this value. Our approach monitors typos as an additional functionality to
detect unintentionally invalid requests. Milder classification thresholds may be defined for them
than for users forwarding undefined names.

After evaluating the validity of requested prefixes, CMS’s are employed to estimate the fre-
quency of (i) typos and (ii) undefined names per requester IP. The estimations of the two CMS’s
are examined to classify requester IP addresses as legitimate or suspicious. An IP is classified
as suspicious if one of the two estimations calculated over a specific time window (e.g. 5 sec)
violates a predefined threshold. Traffic originating from this IP is redirected to the DFW. Note
that redirection of IP addresses takes place only when a DNS Water Torture attack has been
detected. When the time window is over, the sketch contents are cleared. CMS’s may overesti-
mate frequencies. Thus, we selected CMS parameters as in [17] to ensure a satisfactory trade-off
between false frequency estimations and consumed memory.

3.4.2 Mitigation Trigger Component (MTC)

This component receives Mitigation Requests from the ADC, redirects suspicious traffic to pro-
tect the Authoritative DNS Server and optionally sends collaboration requests to Recursors. In
general, DNS requests from Water Torture sources are redirected to DNS Firewall (DFW) in-
stances for further inspection via the SDN Switch and/or the Edge Router. The former diverts
suspicious traffic to an on-premise infrastructure, while the latter is used to redirect DNS traffic
to a cloud scrubbing facility.

The MTC is mainly based on the Ryu SDN Controller [110]; a Python-based framework that
provides various built-in components and a convenient REST API. We utilized the OpenFlow
(OF) [73] capabilities and BGP Speaker of Ryu to interface both with the SDN Switch and the
Edge Router (Fig. 3.1). The redirection rules may consist of OF rules, BGP routes or BGP
FlowSpec rules [50]. These should have higher priority than the default used to forward traf-
fic from legitimate sources. Administrators may set the OF idle and hard timeouts based on
experience from the duration of previous DDoS attacks.

It should be noted thatmodernDDoS attacks usually involve a great number of attack sources.
By installing mitigation rules per attack source, the capacity (i.e. Ternary Content-Addressable
Memory - TCAM entries) of the SDN Switch and/or the Edge Router may be exceeded. Thus,
administrators may consider aggregating entire IP prefixes [111] at the expense of potentially
redirecting legitimate IP addresses.

3.4.3 DNS Firewall (DFW)

The DFW is mainly based on a BF containing the FQDN’s of the Authoritative DNS Server zone
RR’s. It receives incoming DNS requests and extracts the requested FQDN from the question
section in the payload. Subsequently, the BF verifies if this name is valid or not. If it is valid or
perceived as valid because of an FP, the message is forwarded to the Authoritative DNS Server.
Otherwise, themessage is discardedwithout further notice. TheDFWoperates transparently, i.e.
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it forwards presumably valid DNSmessages to the Authoritative DNS Server without modifying
the IP header.

The DFW is packaged in a Docker container and may be deployed on demand in various
generic infrastructures. In Fig. 3.3 we illustrate a container-based NFV Infrastructure (NFVI),
which is based on adapting the Network Functions Virtualization (NFV) framework [107] to
deliver DNS-related services.

To that end, we employ the Kubernetes Container Management Stack that offers a unified
management system for Docker containers on Linux-based hosts as in [112]. An external API
may be used to dynamically provision, scale and terminate instances of the DFW for a specific
DNS zone. DFW instances are prepended with a load balancer to cope with the immense DNS
traffic during DDoS attacks.

Figure 3.3: DNS Firewall as a VNF

3.5 Evaluation

In this section we demonstrate the appropriateness of BF’s for mapping DNS zones and assess
the proposed schema.

3.5.1 Application of Bloom Filters (BF’s) in DNS

Table 3.1 exhibits the appropriate BF sizes that achieve a targeted FP probability for various
DNS zone sizes. We also depict indicative zones for each size and the overall memory required
to store their names plaintext. These zones were retrieved in July 2019 from [113,114] except for
"ntua.gr" that was available via AXFR within our NTUA campus. This table proves that BF’s
can reliably map RR’s of large DNS zones in a memory-efficient manner with a tolerable FP
probability. Notably, a filter of 16.95 MB may be used for the "ru" zone with an FP probability
of 0.01%, i.e. 1 in 10,000 invalid names may be considered valid. Note that the "ru" zone is
included in the top 10 zone sizes [7]. Thus, BF’s may meet the memory requirements of cloud
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services.
The FP percentages in Table 3.1 were evaluated using the BF FP approximation formula

in [16, 91] (actual FP percentages are slightly worse for the given parameters). Recall that BF
lookup times increase with the number of used hash functions. The exact number of hash func-
tions, i.e. 5, was selected as an acceptable trade-off between BF size and lookup time [91]. More
hash functions will not reduce the BF memory requirements significantly, while unnecessary in-
creases in BF lookup time will be introduced.

FQDN Entries
(Indicative Zone)

Plaintext
Zone Size

Bloom Filter Sizes for Specified
False Positive Percentage

1% 0.1% 0.01%
8,303 (ntua.gr) 58.59 KB 9.98 KB 17.52 KB 29.37 KB
1,470,834 (se) 21.61 MB 1.73 MB 3.03 MB 5.08 MB
4,905,628 (ru) 58.93 MB 5.76 MB 10.11 MB 16.95 MB

Table 3.1: Application of Bloom Filters in DNS

3.5.2 Evaluation of the Proposed Schema

In this subsection we evaluate our proposed schema. Specifically, we describe the utilized
dataset (subsection 3.5.2.1), we demonstrate the effectiveness of the ADC (subsection 3.5.2.2)
and assess our DFW (subsection 3.5.2.3).

3.5.2.1 Attack & Legitimate Traces

To the best of our knowledge, there are no publicly available traces of DNS Water Torture at-
tacks. Thus, we created our Attack Traces based on available DNSAmplification attack traces to
maintain the statistical properties of actual DDoS attacks. Specifically, we preserved the number
and order of packets per IP from the "Booter 4" dataset [22] and modified the message payload
to contain generated names between 4 and 20 characters. These were randomly selected from
the Latin alphabet, digits 0-9 and hyphens. We did not insert typos in our traces as SymSpell
is a deterministic algorithm that always detects typos. However, we included SymSpell in our
experimental pipeline to account for potential time delays.

Legitimate Traces were based on data provided by [115]. These contained DNS requests
from Google’s Public Recursors towards an Authoritative DNS Server located at SURF, the
Dutch National Research and Education Network (NREN). The selected trace (December 2017)
includes traffic from 1,851 unique sources. Similarly to the Attack Traces above, we maintained
the number and order of packets per IP and reconstructed the payload with names uniformly
chosen from the "ntua.gr" zone.

3.5.2.2 Anomaly Detection Component (ADC)

In the following we report on the effectiveness of the ADC in classifying requester IP addresses
via a proof of concept setup based on Fig. 3.1. We utilized Tcpreplay [116] to feed the traces
to the Authoritative DNS Server through the SDN Switch with the following constant rates: (i)
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100 Kpps for the Attack Traces and (ii) 3 Kpps for the Legitimate Traces. The Authoritative
DNS Server is based on BIND [25], whilst the SDN Switch is based on the Open vSwitch (OvS)
virtualization software [117] that supports the OF protocol. We constructed the zone file of the
Authoritative DNS Server using 8,303 names collected from hosts under the zone "ntua.gr".

The rate of the Legitimate Traces was based on statistics of the "ch" Top-Level Domain
(TLD) Authoritative DNS Servers [118]. The primary server (a.nic.ch) received approximately
1.5 Kpps of traffic (July 2019). Due to the excessive size of the "ch" TLD (about 2 million
FQDN’s), we consider this rate an indicative value for the majority of TLD and second-level
domain name servers. We experimented with the double rate of 3 Kpps to guarantee the effec-
tiveness of our mechanism on lower traffic rates. Regarding the Attack Traces, we selected a
rate that is sufficient to downgrade the service provided by the Authoritative DNS Server.

The forwarded traces (Attack and Legitimate) were sampled at the SDN Switch using var-
ious sampling rates. The AD detected a Water Torture attack when the ratio of NXDOMAIN
responses to the total number of DNS responses was more than 15% (available from "ntua.gr"
Authoritative DNS Servers). During time windows of 5 sec, requester IP addresses were classi-
fied by the IPC as suspicious if 2 invalid requests were sampled from them. In our experiments
we redirected traffic from DNS Water Torture attack sources to an on-premise infrastructure
with 5 DFW instances.

Figure 3.4: Authoritative DNS Server ingress traffic rate for various sampling rates

In Fig. 3.4 we illustrate the total number of legitimate and attack DNS requests reaching the
Authoritative DNS Server for various sampling rates at the SDN Switch. We began feeding the
Attack Traces at 30 sec. We observe that our schemamitigates most of the attack traffic in 60 sec
regardless of the sampling rate at the SDN Switch. Benign IP addresses were not misclassified
due to the zero FN’s of BF’s. The ADC, described in Section 3.4, included (i) a BF of 9.98
KB (1% FP’s), (ii) a SymSpell dictionary of 4.05 MB and (iii) 2 CMS’s with 5 hash functions
and 10,000 counters of 16 bits per hash function hence 97.66 KB per sketch (0.02% estimation
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error with 97% certainty). Thus, a total of 4.25 MB were used to protect a moderate-size zone
of 8,303 RR’s.

3.5.2.3 DNS Firewall (DFW)

In the following we examine whether the deployment and lookup time of BF’s and thus, our
DFW’s, are suitable for the stringent latency requirements of cloud services. BF’s (probabilis-
tic data structures) are compared against Red-Black Trees (RBT’s) that are deterministic data
structures used by BIND to represent the contents of the Authoritative DNS Server zones in
memory [119]. Our DFW achieved 25 Kpps throughput. This may seem a small rate, but higher
performance may be achieved via load balanced Docker Containers (Fig. 3.3).

In our experiments, the DFW was fed with an indicative total rate of 25 Kpps, with 12.5
Kpps corresponding to the Legitimate Traces and 12.5 Kpps to the Attack Traces. Using either
a BF or an RBT as the filtering mechanism for various zone sizes, we tested how fast the data
structure is filled with all the valid names (including "ntua.gr" zone names) and thus, is able to
filter invalid requests. Moreover, we examined how the zone size affects the DFW capability to
forward all requests. Recall that our BF utilized 5 non-cryptographic hash functions. DFW was
deployed on a Virtual Machine (VM) with 2 CPU cores and 4 GB RAM. The physical machine
is a Dell PE R730 with Intel Xeon E5-2620 v3 2.4GHz.

Table 3.2 exhibits deployment time and average number of valid requests forwarded by the
DFW. We observe that BF deployment times are lower than those of RBT for increasing zone
sizes. Moreover, BF’s forward all valid requests, i.e. 12.5 Kpps, regardless of the zone size.
Conversely, RBT’s containing bigger zones forward less valid requests. Insertion and lookup
time in BF’s is proportional to the number of used hash functions, whilst in RBT’s logarithmic
with respect to zone size. Thus, BF’s outperform RBT’s for larger DNS zones.

Number of
FQDN Entries

Deployment
Time (sec)

Average Number of Forwarded
Valid Requests (Kpps)

BF RBT BF RBT
8,303 0.033 0.047 12.5 12.49

1,470,834 9.955 25.367 12.5 10.55
4,905,628 31.389 81.695 12.5 10.26

Table 3.2: Deployment time and average number of forwarded valid requests - Comparison between Bloom Filters
(BF’s) and Red-Black Trees (RBT’s)

3.6 Summary & Concluding Remarks

We proposed a privacy-preserving collaborative schema to protect Authoritative DNS Servers
from Water Torture attacks tailored to the requirements of cloud services. Our approach em-
ployed space-time efficient data structures and algorithms in the user space to detect andmitigate
such attacks. Specifically BF’s were primarily used to map DNS zone RR’s taking advantage
of their space, time and privacy properties. Our proof of concept setup and evaluation experi-
ments were based on traces generated from publicly available DNS traffic datasets. Our results
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indicated that the proposed schema may efficiently secure Authoritative DNS Servers without
requiring extensive resources.

This chapter mainly focused on demonstrating that BF’s are suitable for efficiently mapping
Authoritative DNS Server zone names and effectively filtering DNS requests pertaining toWater
Torture attacks. However, user-space methods were employed; these may be unable to cope
with the increased rate of modern DDoS attacks. In Chapter 4, we will adapt our proposed
BF-based mitigation mechanism to higher attack rates by utilizing data plane programmability
techniques and specifically the eXpress Data Path (XDP) framework. Therefore, our schema
will be capable of efficiently differentiating between legitimate and malicious DNS requests
within the data plane of Authoritative DNS Servers.
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Chapter 4

XDP-based Acceleration of Bloom Filter
Lookups for Efficient Data Plane
Mitigation of DNS Attacks

In this chapter1, we utilize eXpress Data Path (XDP) for DNS Deep Packet Inspection (DPI) in
order to mitigate Water Torture attacks at the NIC driver level of Authoritative DNS Servers.
Our approach may benefit DNS administrators who wish to filter attack traffic within their DNS
infrastructure and avoid the latency overhead and additional costs imposed by external cloud
scrubbing services. Our schema does not depend on specialized hardware and does not blacklist
entire domain name suffixes, hence does not block legitimate requests.

In our proposed schema, packets are intercepted by XDP that identifies messages of DNS
requests for further processing. Requested names are extracted from the message payload and
categorized based on their validity. Valid names are forwarded to the user space to be resolved,
whilst invalid ones are dropped within the Linux kernel at an early stage without downgrading
the DNS service. Names are classified using BF’s that map DNS zone contents in a memory-
efficient manner. Recall that these probabilistic data structures are free of False Negatives (FN’s)
and therefore valid DNS requests are never dropped.

We provide a proof of concept setup to test our schema under a DDoS attack scenario and
assess howmitigation performance is affected by DPI on DNS requests. Our experiments verify
that using XDP significantly increases the throughput of valid DNS responses compared to user
space alternatives. In conclusion, XDP emerges as a promising solution for the mitigation of
Water Torture attacks against DNS servers.

4.1 Motivation

Recent terabit-scale DDoS attacks [120] highlighted the shortcomings of traditional mitigation
policies. To remedy these limitations, as mentioned in Chapter 2, promising data plane pro-
grammability methods have been proposed. Notably, eXpress Data Path (XDP) [10] was sug-

1This work is included in the proceedings of the 6th IEEE International Conference on Network Softwarization (IEEE NetSoft 2020)
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gested to implement high throughput protectionmechanisms, e.g. Cloudflare’s DDoSmitigation
system [121,122]. XDP provides a programmable network data path within the Linux kernel that
handles ingress packets at the NIC driver level via an extended Berkeley Packet Filter (eBPF)
program.

As previously mentioned, one of the most common DDoS attack targets concerns the DNS
infrastructure [2]. Specifically, Water Torture [4] attacks to Authoritative DNS Servers are sin-
gled out in terms of sophistication and devastating impact. Recall from Chapter 3 that this
attack vector utilizes invalid Fully Qualified Domain Names (FQDN’s) to exhaust the Author-
itative DNS Server processing capacity. The attacker exploits effectively the available botnet
resources by issuing requests that are generated at random. This ensures that attack traffic is
not cached in intermediary Recursive DNS Servers (Recursors) and thus, all requests are deliv-
ered to the victim Authoritative DNS Server. These attacks are typically mitigated via external
cloud scrubbing infrastructures, e.g. Akamai [123]. However, such facilities introduce addi-
tional costs and are usually located far from the victim premises. Therefore, latency of ingress
packets may significantly increase.

We propose a schema that relies on XDP to efficiently mitigate Water Torture attacks within
Authoritative DNS Servers. Thus, administrators may avoid external scrubbing services in favor
of in-house solutions. Our approach consists mainly of an eBPF program that distinguishes
valid and invalid DNS requests entirely within the Linux kernel at the NIC driver level, while
maintaining high-throughput packet filtering.

We intercept ingress traffic and process it via an eBPF program on a per-packet basis inspect-
ing the payload of DNS requests. Such a DPI mechanism isolates DNS requests and extracts
the corresponding FQDN from the question section in the payload. Rapid name lookups are
accomplished via BF’s that map DNS zones in the Linux kernel in a space-efficient manner.
Requests pertaining to FQDN’s not present in the DNS zones are dropped, whereas valid ones
are passed to the user space to be resolved. Our implementation is available from [124].

The remainder of this chapter is structured as follows: Section 4.2 describes related work;
Section 4.3 provides a high-level overview of our mechanism; Section 4.4 discusses implemen-
tation details; Section 4.5 includes the evaluation of our schema. Finally, Section 4.6 summa-
rizes our work.

4.2 Related Work & Contributions

In the previous chapter (see Chapter 3) we relied on BF’s to handle DNS requests from Water
Torture attack sources in cloud infrastructures. BF’s were used to map the names of large DNS
zones and filter suspicious DNS traffic accurately and efficiently, e.g. 5 million names required
BF’s of about 17 MB. In this chapter, we extend our BF-based mechanism by using XDP to
improve our filtering component performance and hence provide efficient mitigation within the
Authoritative DNS Server. Mitigation actions are performed entirely at the NIC driver level
within the Linux kernel contrary to related works on Water Torture that do not employ data
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plane programming [125, 126] or require specialized hardware [53]. Our schema provides in-
house mitigation instead of outsourcing it to external cloud scrubbing services that may increase
packet latency. Moreover, we apply XDP for DNS DDoS attack mitigation as DNS is a fitting
use case to test XDP DPI capabilities that are not studied in other works on XDP [127,128].

Our work is motivated by the wide adoption of Programmable Data Planes (PDP’s) that
achieve significant packet throughput improvements for various networking applications [10,
127, 129, 130]. Notably, Cloudflare [121] relies on XDP to define mitigation rules in the Linux
kernel and filter offensive traffic. Their bpftools toolset includes a utility [122] that drops all
DNS requests pertaining to a specific domain name suffix when excessive NXDOMAIN re-
sponses are detected. Moreover, Facebook introduced Katran [131], an XDP-based load bal-
ancer that efficiently distributes received traffic across the available service instances.

XDP and eBPF have been used by Cilium [132] to enforce security and network policies
for deployed containers. Moreover, the open-source IDS Suricata [133] includes XDP-based
plugins that are used to drop packets matching a predefined pattern. Finally, in [134] a proto-
type is presented that complements eBPF with a Lua-based XDP schema; the user-space DNS
software is substituted by in-kernel name resolution that does not implement filtering of DNS
DDoS attacks.

4.3 Proposed Filtering Mechanism: High-Level Overview & Design Fea-
tures

This section provides a high-level overview of our proposed schema and lists its main design
principles.

4.3.1 High-Level Description

Fig. 4.1 depicts a high-level description of our schema. Incoming traffic is intercepted by an
XDP Hook that is attached on the Authoritative DNS Server NIC driver level. Received packets
are processed by an eBPF program [135] that we customized for the DNS Water Torture attack
mitigation use case. This isolates DNS requests and forwards the remaining traffic, i.e. DNS
responses and/or non-DNS traffic, to the User Space through the Socket Buffer and the Network
Stack. The question section of DNS requests is parsed to extract the FQDN that is hashed
multiple times (typically 3-10).

These hashes are used to determine if this name is valid, i.e. present in the Authoritative DNS
Server zones or not. DNS zones are contained in an eBPF map in the form of a BF. This map
is initialized by the user-space program, i.e. the XDP Control Plane, when the eBPF program is
attached in the Linux kernel. Invalid DNS requests are dropped, whilst valid ones are forwarded
to the User Space through the Network Stack to be resolved by the DNS Server Software.
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Figure 4.1: Baseline design of the proposed mitigation approach

4.3.2 Design Features

The main design features of our approach are the following:

• In-network, high-throughput packet filtering of received DNS requests: We use XDP
to differentiate between valid and invalid FQDN’s entirely at the NIC driver level. Invalid
requests are detected and dropped at the earliest possible layer in the Linux kernel, i.e.
before the system allocates any memory to them. This alleviates the DNS software that
operates in the user space from the burden of processing large amounts of useless data.

• Independence from specialized hardware and DNS Software: Our XDP-based schema
may adapt to various generic infrastructures regardless of the DNS software, e.g. BIND,
PowerDNS, used for resolving incoming DNS requests. Our approach does not require
specialized hardware contrary to P4 [12] and DPDK. Native XDP depends on the NIC
driver version and thus, only a compliant driver update may be required.

• Efficient DNS request filtering with no generic blacklisting: We use BF’s to effec-
tively map zone FQDN’s in the Linux kernel. BF’s enable memory-efficient rapid element
lookups, consistent with the XDP low latency packet processing. The zero FN property of
BF’s ensures that all valid requests are delivered to the user space to be resolved. More-
over, a tolerable FP probability guarantees that only a small, regulated fraction of invalid
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requests are forwarded. These properties allow a fine-grained classification of requested
names contrary to approaches that blacklist entire domain suffixes [122,125] or Recursors
that may forward attack traffic.

• Cost-effective hashing in the system kernel: Our approach leverages on efficient hash
functions to hash names available from the question section of the received DNS requests.
We selected the MurmurHash3 (Mmh3) algorithm as non-cryptographic hash funcions are
evaluated faster than cryptographic ones. Instead of performing separate hash calculations,
we reduce the overall computation cost by enabling Double Hashing [91] (see subsection
2.6.1.1).

4.4 Implementation Details

This section includes implementation details about our schema. We elaborate on: (i) the XDP
Data Plane Program (XDP DPP) that enables packet filtering in the Linux kernel (subsection
4.4.1) and (ii) the XDP Control Plane Program, the user-space utility that manages the XDP
DPP (subsection 4.4.2).

4.4.1 The XDP Data Plane Program (XDP DPP)

We implemented the XDP DPP in a restricted version of C. In the following, we provide more
details pertaining to ingress traffic filtering (subsection 4.4.1.1), name parsing and hashing (sub-
section 4.4.1.2) as well as name membership lookups based on BF’s (subsection 4.4.1.3).

4.4.1.1 Ingress Traffic Filtering

This stage involves inspecting if an intercepted packet includes a DNS request or not since
the Authoritative DNS Server may receive non-DNS packets and/or DNS responses to issued
requests. Thus, layer 2-4 headers are parsed to identify UDP/TCP packets directed to destination
port 53. Parsing the header of a specific protocol layer requires checking that no data are read
out of bounds [10]. This requirement is imposed by the eBPF verifier during compilation to
guarantee system safety.

Received packets not corresponding to DNS requests are forwarded to the user space through
the kernel network stack without further processing. Regarding DNS requests, the eBPF pro-
gram locates the DNS payload beginning and hence the question section.

4.4.1.2 Name Parsing & Hashing

This stage involves extracting the requested FQDN from the question section of the received
DNS message and hashing it several times via Mmh3 to provide the inputs required by the BF
lookups. The purpose behind selecting Mmh3 is twofold:

• It is a non-cryptographic hash function and hence requires fewer arithmetic operations than
cryptographic ones, e.g. MD5, etc. This is important as the eBPF verifier restricts the XDP
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DPP total size to guarantee the kernel safety. Hash functions require fewer computations,
extending the capabilities of our program.

• It supports calculation of several independent name digests by varying the provided seed.
Therefore, we avoid using more than one hash algorithms. Our implementation was based
on code available in GitHub [136].

XDP DPP mainly involves a bounded loop that parses and hashes names. This loop is un-
rolled during the program compilation up to the maximum supported FQDN length, i.e. the loop
is replaced by the program instructions corresponding to each iteration. This method enables
the eBPF verifier to guarantee that the loop terminates and authorize its execution, whilst the
loop overhead is significantly reduced. However, the number of preallocated eBPF program
instructions increases.

The loop in our program iterates up to the maximum supported FQDN length. In each iter-
ation, the necessary checks are performed to ensure that no data are read out of bounds. The
ending of parsed FQDN’s is denoted by zero. The parsed characters are added to chunks and
h1, h2 values required by the Double Hashing technique (see subsection 2.6.1.1) are updated
every 4 loop iterations because Mmh3 hashes strings in chunks of 4 Bytes [136]. When the
loop terminates, the trailing characters are hashed to calculate the final digests di using Double
Hashing.

4.4.1.3 Name Membership Lookups based on Bloom Filters

The final stage checks if the received FQDN is included in the DNS zones. Recall that we use
BF’s to map the entire Authoritative DNS Server zone contents. These are represented as eBPF
maps within the Linux kernel [128]. We opted for maps of type BPF_MAP_TYPE_ARRAY
that define arrays of constant size optimized for fast lookups.

A limitation of the C programming language is that arrays of bits, used by BF’s, are not
directly supported. Thus, 1-bit sized variables were encapsulated within 8-bit character types
[128]. When the desired bit is located in the BF, appropriate right shifting operations place it in
the least significant bit position.

4.4.2 The XDP Control Plane Program

We implemented a C program that acts as the XDP Control Plane for our eBPF program and is
mainly responsible for: (i) invoking the eBPF verifier that ensures the normal operation of the
system before the XDP program is loaded, (ii) attaching the eBPF program as an XDP Hook at
the Linux kernel NIC driver level and (iii) inserting names, mapped to BF’s, in eBPF maps.

4.5 Evaluation

In this section we concentrate on XDP DPP performance under a Water Torture attack scenario
on an Authoritative DNS Server. Specifically, we investigate how our system is affected by DPI
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actions on ingress DNS requests. This trait differentiates us from [127, 128] that rely on layer
2-4 headers. We first assess design features of our eBPF program and then report experimental
results.

4.5.1 Assessment of Critical Design Features

Developing a prototype implementation of the XDP DPP (Fig. 4.1) requires assessing critical
design features. We first present the rationale of selecting BF sizes and hash function number.
We then study the capability of our schema to handle FQDN’s of various lengths to assess XDP
appropriateness for DNS DPI.

4.5.1.1 Bloom Filter Sizes for In-Network Membership Lookup

XDP DPP performance is mainly affected by the number of hash function calculations used for
BF membership lookups. We selected this critical design parameter by considering the appro-
priate range of hash functions based on BF memory and accuracy specifications.

Figure 4.2: Required BF sizes varying the number of hash functions used

Fig. 4.2 depicts the required BF sizes for a targeted FP percentage of 0.1% varying hash
function number between 3 and 15. Our BF’s contain 8,303 names obtained via AXFR requests
within our campus network zone "ntua.gr".

We observe that BF’s may accurately map the "ntua.gr" zone employing at most 28.66 KB
when only 3 hash functions are utilized, whilst BF size levels at 14.57 KB when 10 hash func-
tions are used. Thus, we will focus on evaluating our schema using between 3 and 10 hash
functions; this range is also applicable to bigger DNS zones (see Chapter 3 and [137]). Usage
of more hash functions may lead to oversized BF’s, increasing lookup latency without dropping
FP percentages.
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4.5.1.2 Maximum Supported FQDN Length

In the following we determine the maximum FQDN lengths that our schema is capable of pars-
ing. Recall that the size of our program is restricted by the eBPF verifier that guarantees the
safety of the kernel. The XDP DPP size is mainly affected by the total number of hashing
operations. As their number increases, the maximum supported FQDN length decreases, thus
restricting the scalability of our schema.

Figure 4.3: Maximum supported FQDN length determined by the number of used hash functions employing either
Double Hashing or separate calculations

Fig. 4.3 depicts the maximum FQDN length allowed by the eBPF verifier when hash func-
tions range between 3 and 10 (subsection 4.5.1.1). We considered (i) separate calculations of all
required hash functions and (ii) usage of Double Hashing to speed up the process.

We observe that the eBPF verifier does not impose remarkable limitations on the permitted
FQDN sizes and thus, XDP may support a wide variety of DNS zones. Specifically, separate
hashes limit FQDN lengths to 159 characters when 3 hash functions are used and 59 characters
for 10 hash functions. This is significantly improved by using Double Hashing which supports
194 characters when employing 3 hash functions that slightly drops to 178 characters for 10.
Recall that Double Hashing includes less calculations (see subsection 2.6.1.1) and thus, preal-
locates fewer program instructions in the compiled eBPF program.

4.5.2 Throughput of the Proposed Mitigation Schema

This subsection describes our experimental setup, details the traces used as inputs and reports
on our schema performance.

4.5.2.1 Testbed Overview

Our laboratory testbed included 2 VM’s: The Traffic Generator and the Authoritative DNS
Server. The former used Tcpreplay to forward traces to the Authoritative DNS Server. The latter
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implemented the modules of Fig. 4.1; the NIC Device Driver executed the XDP DPP (eBPF
program) in native mode, fed by the XDP Hook. Both VM’s included the Debian 10 Operating
System (OS) with the Linux kernel version 4.19 and shared a standard Gigabit interface. The
Authoritative DNS Server comprised of 1 CPU core, 2 GB RAM, 2 NIC queues and Virtio
adapters. The physical machine was a Dell PE R730 with Intel Xeon E5-2620 v3 2.4 GHz.
Finally, we selected BIND 9 as the DNS Server Software as it is one of the most frequent options
in DNS.

4.5.2.2 Legitimate & Attack Traces

DNS request filtering is based on the validity of related names, whilst the FQDN length is the
major factor affecting mitigation throughput; this defines the total hash function calculations
required. We created custom traces involving FQDN’s with lengths matching our campus zone
("ntua.gr") for normal traffic and [53] for attack traffic.

Figure 4.4: Distribution of FQDN length (in characters) within the Legitimate Traces

Legitimate Traces involved DNS requests pertaining to names randomly sampled from our
"ntua.gr" zone. To that end, we gathered 8,303 names via AXFR requests. The length of the
collected FQDN’s varied between 13 and 35 characters. As expected, their length was not uni-
formly distributed. Fig. 4.4 depicts the distribution of FQDN lengths in the constructed dataset.

We constructed Attack Traces based on the FQDN lengths tested in [53]. Traces consisted
of DNS requests involving names with randomly generated FQDN prefixes, whilst a name is
never repeated. We randomly sampled DNS requests with FQDN lengths uniformly distributed
between 20 and 32 characters; the variable name prefix may comprise of characters from the
Latin alphabet, decimal digits and/or hyphens.

4.5.2.3 Valid DNS Response Throughput Measurements

Legitimate and Attack Traces were fed to the Authoritative DNS Server in parallel at rates of
2 and 125 Kpps respectively. The Legitimate Traces rate was based on SWITCH Authoritative
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DNS Server data [118]; each Authoritative DNS Server resolves about 2 Kpps of requests. The
Attack Traces rate was selected to be within the processing capabilities of our testbed 1 Gigabit
NIC and able to severely downgrade the DNS service. Overall, these traces drove our schema
to a throughput ranging to 50% of an XDP Program that simply forwards packets to the user
space through the Linux kernel without performing DPI.

We varied hash functions between 3 and 10 (subsection 4.5.1.1) and BF accuracy was set to
0.1% FP’s. Fig. 4.5 depicts the ratio of valid DNS responses forwarded by the Authoritative
DNS Server after mitigation employing either (i) the XDP DPP with Double Hashing, or (ii)
the XDP DPP using separate calculations, or (iii) our previous work Mmh3-based user-space
utility [137] (described in Chapter 3). We also depict the valid DNS response throughput when
mitigation is not applied.

Mitigation based on the XDP DPP using Double Hashing outperforms the one with separate
calculations as the hash function number increases. The former approach is capable of achiev-
ing a satisfactory trade-off between the required BF size and valid DNS response throughput.
Specifically, it safeguards the normal operation of the Authoritative DNS Server by forwarding
between 94.36% (10 hash functions) and 97.02% (3 hash functions) of valid DNS responses.
Moreover, the XDP DPP using Double Hashing clearly exceeds our user-space utility [137] ca-
pabilities that forwards approximately the 13.5% of legitimate responses. Without mitigation,
the Authoritative DNS Server forwards only the 7.34% of valid DNS responses.

Figure 4.5: Valid DNS response throughput as a function of BF hash functions

4.6 Summary & Concluding Remarks

We leveraged on the XDP DPI capabilities to enable high-throughput Water Torture mitigation
within Authoritative DNS Servers. We implemented a prototype that isolated DNS requests;
requested names were extracted from the message payload and subsequently hashed for mem-
bership lookups. To that end, we utilized BF’s in the Linux kernel to map DNS zones efficiently
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in terms of space and time. DNS requests for names not included in the BF were dropped early
at the Authoritative DNS Server NIC driver, whilst the remaining ones were resolved in the user
space.

Our experiments verified the trade-off between the BF size and the hash function number that
ultimately affect the XDP DPP throughput. As hash functions increase to a certain number [91]
the BF size is reduced, but the mitigation throughput deteriorates. Note that, our approach was
tested on a VM with a single CPU core to provide results for the simplest possible setup. DNS
administrators may use more cores to enhance filtering throughput [10], e.g. our schema may
sustain attack rates up to 200 Kpps using 2 cores.

This chapter focused on accelerating BF lookups within the data plane of Authoritative DNS
Servers for efficient mitigation of DNS DDoS attacks. Our developed data plane mechanism
significantly improved the filtering throughput of our user-space schema presented in Chap-
ter 3. Although attack mitigation was accomplished efficiently on-premises, DDoS attacks are
usually mitigated more effectively closer to their sources, e.g. within Recursors (for our consid-
ered DNS DDoS attacks) or upstream scrubbing services. However, our BF-based mitigation
schema cannot be applied to external filtering appliances unless the contents of Authoritative
DNS Server zones are available; such information is usually restricted for security reasons be-
cause zone transfers may disclose sensitive data about the users and the services of a network. In
the following chapter, we will present a privacy-aware mechanism for distributing Authoritative
DNS Server zone contents.
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Chapter 5

Enabling Privacy-aware Exchanges for
Authoritative DNS Server Zones

In this chapter1, we propose a privacy-aware schema that enables Authoritative DNS Servers to
distribute their zones to third parties, e.g. RecursiveDNSServers (Recursors) or upstream scrub-
bing services, without disclosing sensitive information. Therefore, DNS DDoS attack mitiga-
tion may be effectively accomplished at external vantage points, presumably closer to the attack
sources than the Authoritative DNS Server. Moreover, DNS administrators may construct in-
clusive name whitelists to accurately filter malicious traffic associated with botnet activities, e.g.
DGA-related DNS messages. Our schema leverages on the space, time and privacy-enhancing
properties of Cuckoo Filters (CF’s) to map zone names in an efficient manner, while permitting
rapid name updates for large zones.

The feasibility of our approach is tested via experiments within our laboratory testbed for a
variety of DNS zones. Our evaluation intends to assess the privacy-awareness of our schema
and its responsiveness to zone name changes. We conclude that our approach enables mapping
of large DNS zones, while preserving privacy.

5.1 Motivation

Recursors are commonly abused by DNS attacks as intermediaries to victim Authoritative DNS
Servers [28]. In particular, as mentioned in the previous chapters, Water Torture attacks [4] aim
at exhausting computational resources of Authoritative DNS Servers by forwarding an immense
number of malicious DNS requests through Recursors. Typically, these involve randomly gen-
erated Fully Qualified Domain Names (FQDN’s), appropriately crafted to be requested once and
thus, bypass the DNS caches of Recursors. As a collateral damage, services offered by Recur-
sors are degraded since response latency and consumed memory resources increase [53]. Apart
from DDoS attacks, Recursors may also be abused by DGA’s to establish botnet communica-
tions between infected devices (bots) and their C&C servers.

Flooding attacks can be mitigated more efficiently close to their origins [33]. However,
1This work is included in the proceedings of the 2020 ACM/IRTF Applied Networking Research Workshop (ANRW 2020)
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a complete list of zone FQDN’s is commonly not available to Recursors as full zone trans-
fers, i.e. AXFR type requests are typically restricted by Authoritative DNS Servers for security
reasons [8, 138]. Thus, effective filtering policies near the attack sources cannot be enforced.
Furthermore, DNS administrators wishing to filter DGA traffic within their networks are un-
able to build accurate name whitelists. Thus, they typically depend on anomaly-based methods,
e.g. Machine Learning (ML) algorithms, which may result in significant amounts of legitimate
traffic being dropped.

In this chapter we propose a privacy-aware schema to facilitate the efficient distribution of
Authoritative DNS Server zones to third-party filtering appliances, e.g. Recursors and/or up-
stream scrubbing services [139], while being compatible with the existing DNS infrastructure.
Our mechanism may benefit Recursors that wish to mitigate DNS flooding attacks within their
premises, thus safeguarding the Quality of Service (QoS) offered to their end-users. Moreover,
our approach may enable DNS administrators to filter botnet traffic, e.g. DNS messages gener-
ated by DGA’s, more accurately by collecting zone contents from multiple Authoritative DNS
Servers and deploying effective security mechanisms.

We leverage on Cuckoo Filters (CF’s) [19] to map valid zone names in a hashed format, thus
FQDN’s are not exposed as plaintext. CF’s are time and space efficient probabilistic data struc-
tures that enable rapid element lookups in storage and bandwidth constrained applications. False
Positives (FP’s) are possible, resulting in the Authoritative DNS Server forwarding a regulated
volume of NXDOMAIN responses, whilst False Negatives (FN’s) cannot occur for appropri-
ately configured CF’s, hence valid DNS requests are never dropped. Contrary to Bloom Filters
(BF’s) [16] that require rebuilding the entire data structure, CF’s support dynamic item deletions.
Therefore, they are suitable candidates for DNS attack mitigation services that require frequent
updates and cannot tolerate any downtime. Our implementation is available from [140].

The remainder of the chapter is structured as follows: Section 5.2 presents related work;
Section 5.3 provides an overview of our schema; Section 5.4 involves implementation details;
Section 5.5 includes the evaluation of our mechanism; Section 5.6 summarizes our work.

5.2 Related Work & Contributions

Various approaches reported in the literature suggest probabilistic data structures (BF’s) to en-
hance DNS performance and security. An Internet Engineering Task Force (IETF) draft [141]
proposed using BF’s to map DNSSEC zone names in a space-efficient, privacy-preserving for-
mat for accelerating authenticated responses to requests about invalid FQDN’s. However, this
proposal may require tools external to DNS [142], i.e. a separate web server that contains BF’s,
and may not directly support incremental updates as item deletions are not possible in standard
BF’s.

In [143], it is recommended that Recursors use BF’s for monitoring DNS requests, thus re-
lying on privacy-aware summaries of sensitive DNS data. The space-efficient and hashed na-
ture of BF’s enables logging information over long time periods, whilst end-user privacy is not
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compromised. Thus, General Data Protection Regulation (GDPR) [99] directives are not vio-
lated. Recursor administrators are required to issue targeted requests over their collected BF’s
to determine if newly blacklisted domains have occurred within their network, triggering related
actions.

Hosts controlled by a particular botnet are based on the same Domain Generation Algorithm
(DGA) [6] to contact their Command and Control (C&C) servers. Thus, they typically request
the same invalid FQDN’s. Based on this, [144] maps invalid names requested within a network
to BF’s on a per host basis. BF bits from diverse hosts are compared to detect similar behavior
and subsequently identify abused hosts without logging any personal data. In addition, BF’s are
used to map valid names and efficiently locate C&C servers.

Malicious activities related to DNS are usually based on randomly generated names via
DGA’s. To remedy them in operational environments, some Recursor software implementa-
tions consider incorporating BF functionality. Notably, PowerDNS [145] uses BF’s to track
newly observed names and detect those related to DGA’s. FQDN’s appearing for the first time
are further inspected, whilst reappearing names are considered for resolution. Similarly, Un-
bound [146] includes a learning mode that collects valid FQDN’s from NOERROR responses
and stores them in BF’s. When a predefined threshold is reached, the filtering mode is acti-
vated and unknown names are dropped. Our proposed schema could significantly increase the
accuracy of these approaches by distributing valid Authoritative DNS Server zone names, while
preserving privacy.

Approaches related to DNSWater Torture mitigation employ eitherML [5,53,126] or sketch-
based methods [125, 137]. In previous work (Chapter 3), we relied on BF’s to mitigate Water
Torture attacks and outlined their privacy-preserving properties for outsourcing Authoritative
DNS Server zone protection to third parties, e.g. Recursors and cloud scrubbing services. In
this chapter, we extend the schema presented in Chapter 3 by implementing a privacy-aware
mechanism that enables Authoritative DNS Servers to communicate their zones in a hashed
format, thus distributing mitigation services. Contrary to Chapter 3 and related approaches [141,
143,144] we use CF’s, instead of BF’s, to reduce our privacy-aware DNS zone sizes and support
incremental updates.

5.3 Proposed Approach: Design Features & Baseline Design

This section presents an overview of our mechanism. The main design features of our schema
are outlined in subsection 5.3.1, whereas the baseline design of our approach is described in
subsection 5.3.2.

5.3.1 Design Requirements

The main design requirements of our schema are:

• Privacy-aware distribution of Authoritative DNS Server zone FQDN’s: The desired
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system should map the Authoritative DNS Server zone names not in their actual form,
but hashed. This will enable Recursors, upstream scrubbing services or other filtering
appliances to retrieve a complete list of all valid FQDN’s without inferring the exact zone
contents. Thus, fine-grained filtering policies may be enforced closer to the DNS attack
origins (e.g. bots external to the Authoritative DNS Server network).

• Efficient Authoritative DNS Server zonemapping: Our schema should exhibit: (i) com-
pact storage of hashed FQDN’s within Authoritative DNS Servers, (ii) low latency filtering
of malicious DNS requests and (iii) bandwidth conservation during information transmis-
sion among Authoritative DNS Servers and Recursors or other filtering appliances.

• Compatibility with the existingDNS infrastructure: We require a suitable data serializa-
tion format to map hashed FQDN’s within Authoritative DNS Servers with minor software
modifications. Copies of the privacy-aware zones may be obtained using widely-adopted
types of DNS requests, e.g. AXFR [30] and IXFR [31].

• Support for incremental updates: DNS attack mitigation systems should be able to up-
date their filtering policies incrementally without downloading again the entire information
included in the privacy-aware DNS zones. Thus, the desired system should support flexible
name updates.

5.3.2 High-Level Description

Complying with the aforementioned requirements, Fig. 5.1 provides a baseline description of
our schema. Plaintext DNS Zones (PltZn’s) contain the Resource Records (RR’s) that are un-
der the Authoritative DNS Server management responsibility. These zones may receive manual
and/or Dynamic DNS updates [147] either by the Authoritative DNS Server administrator or
Subscribed Devices, e.g. a Dynamic Host Configuration Protocol (DHCP) Server. Details re-
lated to the modified RR’s are subsequently recorded in the Zone Updates Log.

Our system relies on the Privacy-Aware ZoneManager (PAZM), responsible for constructing
and maintaining the privacy-preserving versions of the PltZn’s. The PAZM recovers a list of the
entire plaintext RR’s and hashes their corresponding FQDN’s to create the Hashed DNS Zones
(HsZn’s). Moreover, recently modified RR’s along with details pertaining to them are retrieved
from the Zone Updates Log. Sensitive information (i.e. names) is hashed, enriched with meta-
data and included in an Incremental DNS Zone (IncZn) that reflects recent zone changes. The
contents of the HsZn’s are renewed in frequent time intervals to match PltZn current contents.

Recursors (or DNS administrators in general) that wish to filter malicious DNS requests
within their infrastructure may retrieve the necessary zone names in a privacy-aware format
from the Authoritative DNS Server. This is possible by initially getting a full copy of an HsZn
along with its recent modifications from the corresponding IncZn. At regular time intervals,
DNS administrators may use the IncZn contents to incrementally update their FilteringModules.
Thus, they avoid the time consuming process of collecting again the entire contents of HsZn’s.
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Figure 5.1: Baseline design of our proposed schema

5.4 Implementation Details

This section involves implementation details regarding our schema. Specifically, we describe
the PAZM module and the properties of zones introduced in our architecture, i.e. Hashed DNS
Zones (HsZn’s) and Incremental DNS Zones (IncZn’s).

5.4.1 Privacy-Aware Zone Manager (PAZM)

This module is responsible for building and maintaining the CF’s whose fingerprints are used
to create and revise the privacy-aware DNS zones. The PAZM is implemented in Python and
relies on a CF implementation [148] that we customized to manipulate CF contents as desired.
CF’s in [148] employ the MurmurHash3 (Mmh3) algorithm [149] for both fgp() and hash()
(see CF background of subsection 2.6.1.2).

Initially, the PAZM retrieves the Plaintext DNS Zone (PltZn) RR’s and retains their FQDN.
These are hashed into fingerprints to fill the entries of a CF, thus creating the HsZn. Notably,
an FQDN may appear multiple times in the zone, hence only its first appearance is hashed and
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inserted in the CF.
After HsZn is initialized, the PAZM frequently recovers recent PltZn changes from the Zone

Updates Log. The corresponding names are used to update CF contents and changes are incor-
porated in the IncZn via Dynamic DNS updates. The PAZM ignores changes pertaining to: (i)
RR’s whose value was updated, thus their FQDN was not modified and (ii) RR’s that share an
FQDN with others, but differ in RR type and/or value. The latter case is handled by associating
frequency counters with each distinct FQDN. These monitor how many times an FQDN is in-
serted in the PltZn and thus, determine names newly inserted or completely removed from the
zone. Otherwise, an FQDN could have been inserted multiple times in the CF resulting into
significant memory overhead.

5.4.2 Hashed DNS Zones (HsZn’s)

These zones hold the FQDN’s of the PltZn’s hashed andmapped in CF’s. Recursors may retrieve
full copies of HsZn’s by performing AXFR type DNS requests. Listing 1 depicts the HsZn
information serialization format. CF-related information is encapsulated by the PAZM within
RR’s of TXT type. Note that generic DNS parameters that are not specific to our proposed
mechanism, e.g. TTL value and standard zone RR’s (SOA, NS, etc.) are not presented.

The first part of Listing 1 (lines 2-7) includes details pertaining to the selected CF parameters
and algorithms that were introduced in subsection 2.6.1.2. Specifically, the zone file involves
information regarding the CF m, b and f values (lines 3-5). Moreover, details about the algo-
rithms fgp() and hash() are also provided (lines 6-7). Each of the aforementioned details is
dedicated an FQDN. FQDN prefixes are reserved words, properly selected to convey the appro-
priate meaning.

The second part of Listing 1 (lines 8-9) includes CF data. The straightforward approach to
map CF fingerprints would be to assign each CF bucket to a separate RR of type TXT. How-
ever, such mapping method would have heavily increased the number of RR’s, thus leading to
oversized zone files: RR fields, i.e. FQDN’s, TTL values and Type parameters introduce unnec-
essary bandwidth overhead during AXFR requests (see subsection 5.5.4). Instead, our schema
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reduces the overall RR number by mapping the fingerprints of multiple CF buckets within a
single RR of type TXT.

PAZM maps CF fingerprints in the HsZn’s as hexadecimal numbers. All fingerprints are
equally sized of ⌈f/4⌉ hexadecimal digits. Those requiring less than ⌈f/4⌉ hexadecimal digits
are prepended with 0’s.

Fingerprints are sequentially inserted within RR’s until the maximum TXT-type RR value
size, i.e. 255 Bytes for single strings [150], is reached. Buckets that are not full, i.e. contain less
than b fingerprints, do not have explicit boundaries as the number of stored fingerprints varies
between 0 and b − 1. Thus, they are delimited from the next bucket with a dot. Conversely,
full buckets do not require a trailing dot, hence memory consumption is further reduced. If the
contents of a bucket do not completely fit within an RR, they are split and the remaining part is
inserted in the next RR. FQDN prefixes begin from 0 and increase by 1 until all data are inserted.

Listing 2 depicts an HsZn RR that maps the first 25 buckets of a CF. Each CF bucket can
accommodate up to 4 fingerprints and buckets with less than 4 fingerprints are delimited by
dots. The fingerprint size is 12 bits, hence each requires 3 hexadecimal digits for mapping in
the HsZn. Overall, 82 FQDN fingerprints are included in Listing 2, with the first fingerprint of
each bucket underlined for clarity.

5.4.3 Incremental DNS Zones (IncZn’s)

These zones map the name changes of PltZn’s. Therefore, administrators may be based on
IncZn’s to incrementally update their FilteringModules without downloading the corresponding
HsZn again. This is possible by performing IXFR requests since their most recently checked
zone serial number.

Listing 3 depicts the serialization format of IncZn’s. Each zone involves two parameters
(lines 2-4): (i) last-serial indicates that PltZn modifications prior to this value are incorporated
in the corresponding HsZn, whilst (ii) sequence increments each time the CF parameters are
altered, e.g. when the filter is full and needs to be reshaped. Thus, last-serial defines the starting
point for administrators to begin retrieving information from an IncZn and sequence defines if
the related HsZn is stale and must be downloaded again.

Each zone RR (Listing 3, line 6) is related to a single name update and includes (i) the fin-
gerprint fgp of the hashed FQDN as a hexadecimal number, (ii) the action associated with this
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fingerprint, i.e. add (addition) or del (deletion) and (iii) the pair of CF buckets h1 and h2 corre-
sponding to the hashed FQDN. Notably, RR FQDN prefixes begin from 0 and increase by one
to include each update.

5.5 Evaluation

Our experiments assess the HsZn privacy-awareness, the HsZn bandwidth consumption during
AXFR requests and appropriateness of CF’s for HsZn management. These are ultimately af-
fected by the selected CF False Positive (FP) ratio. In a nutshell, large FP ratios result into (i)
smaller probability of exposing HsZn contents, (ii) smaller CF fingerprint sizes and thus, less
bandwidth consumption for HsZn transfers and (iii) larger volumes of NXDOMAIN responses
by Authoritative DNS Servers.

In the following, we compare the effectiveness of CF’s versus BF-based approaches. We
configure a targeted FP probability of 0.3% for CF’s and BF’s. As CF’s yield their memory
advantages over BF’s when they are almost full, we experiment with CF’s that have 90% of their
entries occupied; these values lead to bucket sizes that may hold up to 4 fingerprints, a common
selection in CF’s [19]. These parameters define 12-bit fingerprints (subsection 2.6.1.2) and thus,
3 hexadecimal characters are required to map each fingerprint in the HsZn. In contrast, BF’s
require 3 hash functions [16, 91] to provide a fair comparison against the CF-based approach.
Notably, the Partial-key Cuckoo Hashing technique described in subsection 2.6.1.2 was adapted
accordingly [151,152] to support CF’s whose bucket number is not limited to powers of 2.

5.5.1 Testbed Overview

We performed our experiments within our laboratory testbed. We used a VM comprised of 2
vCPU’s and 16 GB RAM. The Hypervisor was a Dell PE R730 with Intel Xeon E5-2620 v3
2.4 GHz. We selected BIND 9 [25] for our Authoritative DNS Server as it is a common option
among DNS administrators.

5.5.2 Dataset Description

Access to zone files is typically restricted. However, we gathered datasets for experimentation
from servers within our campus and publicly available resources. Specifically, in April 2020,
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we collected the zone files of:

• ntua.gr: We obtained the names of this zone using AXFR requests within our NTUA
campus zone. This zone involves 8,294 distinct FQDN’s.

• se: Names of this zone were obtained via an AXFR request as its contents are publicly
available [114]. This zone includes 1,387,690 distinct FQDN’s.

• su & ru: The contents of "su" and "ru" were exposed for a short time period in 2017 due
to misconfigurations in the corresponding Authoritative DNS Servers [113]. These zones
include 109,719 and 5,325,231 FQDN’s respectively. Although these data may be old, they
are comparable with the current zone sizes as reported by [7].

5.5.3 Hashed DNS Zones Privacy-Awareness

Although CF’s store their elements hashed, attackers may still attempt to gain insight into zone
contents. This is possible by performing brute force attacks, i.e. looking up all possible character
combinations.

In the following, we assess the capabilities of CF’s to withstand brute force attacks in the
context of DNS. To that end, we fed a CF with all the permitted name combinations varying the
first FQDN label between 3 and 7 characters. These consist of 37 characters: Latin alphabet,
decimal digits and hyphen (not valid as an initial FQDN character). Note that these combinations
include Internationalized Domain Names (IDN’s) [153] in our dataset zones.

1st Label Length TP’s FP’s FP’s/TP’s
(Characters) (FQDN’s) (FQDN’s) (Ratio)

3 320 57 0.18
4 640 1,789 2.80
5 1,178 68,296 57.98
6 1,183 2,532,293 2,140.57
7 1,363 93,665,989 68,720.46

Table 5.1: CF privacy properties for DNS

Table 5.1 depicts the results of our assessment for a CF mapping our campus "ntua.gr" zone.
Specifically, Table 5.1 includes the number of True Positives (TP’s), i.e. matches for FQDN’s
stored in the CF, the number of False Positives (FP’s), i.e. matches for FQDN’s not included in
the CF, and their ratio.

Attackers may guess FQDN’s with first label length of 3 and 4 characters resulting into a
relatively small number of FP’s. FQDN’s with prefixes longer than 5 characters are protected
against brute force attacks with high certainty. Such attacks require exponentially longer time
as the prefix grows since the total number of required hashing operations is prohibitively large
(approximately 100 billion for 7 characters). Longer FQDN prefix lengths result into more FP’s,
thus discovery of plaintext names is next to impossible. We opted for an FP ratio of 0.3% which
is sufficient to safeguard privacy. Note that BF’s of similar targeted FP ratio would have resulted
in comparable TP and FP numbers at the expense of significantly more hashing operations.
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Indicative Zone
(Distinct FQDN’s)

Information Serialization Format Cuckoo Filters
(Actual Size)Cuckoo Filter

(Multiple
Buckets / RR)

Cuckoo Filter
(Single

Bucket / RR)

Bloom Filter
(Multiple
Bytes / RR)

ntua.gr (8,294) 26.77 KB 63.91 KB 41.86 KB 13.51 KB
su (109,719) 352.1 KB 876.1 KB 553.11 KB 178.58 KB
se (1,387,690) 4.36 MB 11.21 MB 6.86 MB 2.21 MB
ru (5,325,231) 16.78 MB 43.76 MB 26.34 MB 8.46 MB

Table 5.2: Hashed DNS Zones: Bandwidth consumption during AXFR requests

5.5.4 Hashed DNS Zones Serialization

In the following, we determine the applicability of diverse information serialization formats for
mapping FQDN’s into HsZn’s. To that end, we triggered AXFR requests towards our Authori-
tative DNS Server for various DNS zone sizes and recorded their memory footprint.

We considered the following serialization formats: (i) a CF with multiple buckets mapped
within each RR, (ii) a CF with a single bucket corresponding to each RR and (iii) a BF with
each RR containing multiple Bytes as hexadecimal numbers. Table 5.2 depicts the bandwidth
consumed during AXFR requests for the zones of subsection 5.5.2 and the serialization formats
mentioned above. It also depicts the actual CF size, i.e. the space required to hold the zone
names in memory.

We observe that mapping plaintext names using a CF with multiple buckets assigned to each
RR outperforms the other options. Moreover, although the consumed bandwidth is almost twice
that of the in memory CF size, the overhead is manageable for modern network links. Thus, the
selected FP ratio of 0.3% may map diverse zone sizes without issues.

5.5.5 Hashed DNS Zones Management

The PAZM performs various operations for managing HsZn’s. In the following, we compare
the latency of indicative actions using both BF’s and CF’s to map PltZn’s. These include: (i)
initial creation of the respective data structure in memory by hashing and inserting all the PltZn
FQDN’s and (ii) updating the data structures by performing 1,000 deletions and 1,000 insertions.
Unlike CF’s that directly support deletions, BF’s need to be rebuilt excluding the removed data.
Fig. 5.2 depicts the latency of performing these operations for the "ru" zone.

Figure 5.2: Latency of HsZn management operations

We observe that BF’s are created significantly faster than CF’s due to the element eviction
process during insertions. However, CF’s rapidly incorporate changes by employing incremen-

100



tal updates, contrary to BF’s that need to be rebuilt as deletions are not supported. Thus, CF’s
clearly outperform BF’s in DNS flood mitigation, where rapid updates are required; data struc-
tures are created only during the initialization phase, not affecting PAZM operations.

5.6 Summary & Concluding Remarks

We leveraged on probabilistic data structures to map the contents of Authoritative DNS Server
zones in a privacy-aware format. This enables effective filtering of DNS traffic within Recursors
or upstream scrubbing facilities. We employed CF’s due to their time, space and dynamic dele-
tion advantages over BF’s. We evaluated our schema via experiments in our laboratory testbed.
These indicated that our approach is promising for distributing Authoritative DNS Server zone
names efficiently, while preserving privacy. Thus, DNS threat mitigation services may be dis-
tributed to third parties with no formal collaboration agreements.

This chapter focused on developing privacy-awaremechanisms for sharing whitelists of valid
names pertaining to Authoritative DNS Server zones. However, DNS administrators may be un-
willing to collaborate with third parties by implementing such mechanisms. Therefore, efficient
anomaly-based methods, e.g. ML algorithms, may be required to enable effective DNS threat
mitigation within Recursors, upstream cloud-based scrubbing infrastructures or other filtering
appliances. Nevertheless, ML classification is usually implemented at the user space of the se-
curity mechanisms, thus mitigation throughput may be unable to cope with modern, high-speed
DDoS attacks. In the following chapter, we will propose an XDP-based solution to accelerate
ML inference within Recursors and effectively filter DNS DDoS attacks within the data plane.

101



102



Chapter 6

XDP-based Acceleration of Naive Bayes
Classifier Inference for Efficient Data
Plane DNS Attack Mitigation

In this chapter1, we propose a schema that implements via Programmable Data Plane (PDP)
methods efficient Machine Learning (ML) algorithms that differentiate between legitimate and
DDoS attack traffic within cloud infrastructures. Specifically, we leverage onXDP to implement
data plane Naive Bayes Classifier inference and effectivelymitigateWater Torture attacks within
data center Recursive DNS Servers (Recursors). DNS requests regarded as invalid by the Naive
Bayes Classifier are dropped within the Linux kernel before any resources are allocated to them,
while valid ones are forwarded to the user space to be resolved.

Our schema was assessed via a proof of concept setup within a virtualized environment.
Learning and testing were performed via legitimate and malicious DNS data records whose
statistical properties were consistent with datasets widely reported in the literature. Our experi-
ments mainly focused on evaluating the filtering throughput of the proposed mitigation schema
given the constraints imposed by XDP. We conclude that our XDP-based Naive Bayes Classi-
fier significantly decreases the volume of attack traffic within the data plane, thus efficiently
safeguarding Recursors.

6.1 Motivation

Programmable Data Planes (PDP’s) [76] emerge as a promising alternative that facilitates Soft-
ware Defined Networking and Network Function Virtualization (NFV) in cloud computing and
data center infrastructures. Asmentioned in Chapter 2, they enable the separation of data, control
and management planes, while providing line-rate throughput for network services. Therefore,
performance-critical tasks can be offloaded within the data plane, while complex actions are
performed within the user space that constitutes a slower processing path [154].

Among various data plane programmability methods, eXpress Data Path (XDP) [10] has
1This work is included in the proceedings of the 10th IEEE International Conference on Cloud Networking (IEEE CloudNet 2021)
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recently attracted significant attention. XDP enables the execution of extended Berkeley Packet
Filter (eBPF) programs within the NIC driver level. Ingress traffic is delivered to the eBPF
program that is executed on a per packet basis before any memory resources are allocated to the
received packets. Therefore, XDP establishes high-performance data paths within the kernel,
while maintaining the modules and the flexibility provided by the Linux kernel.

The aforementioned advantages render XDP suitable for various use cases, including DDoS
attack mitigation [127]. As eBPF programs are executed within the Linux kernel, a verifier
(eBPF verifier) [10] guarantees that these programs will not endanger kernel stability by re-
stricting their functionality. Specifically, unbounded loops are forbidden, the program size is
limited, while decimal numbers are not directly supported. These restrictions induce challenges
to DDoS attack mitigation, particularly when Deep Packet Inspection (DPI) and/or ML tech-
niques are required. DPI typically requires parsing the payload of ingress packets, which is of
variable length, while ML inference is based on calculations, usually involving decimal values.

As mentioned in previous chapters, DDoS attack vectors that typically depend on DPI actions
for their mitigation are those related to DNSWater Torture [4]. This attack was initially reported
in 2016 during the Dyn cyber attack incident and is associated with theMirai botnet [101]. Water
Torture attack packets are appropriately crafted, i.e. by randomizing the first label of requested
names, so that these are not contained in the zones of victim Authoritative DNS Servers. More-
over, names are never repeated by attackers, hence DNS caches of intermediary Recursive DNS
Servers (Recursors) do not filter attack requests. Note that such attacks are mitigated more ef-
ficiently within Recursors, i.e. closer to the attack sources, based on whitelists of valid domain
names or ML methods.

In this chapter, we propose a schema that employs PDP’s to efficiently mitigate DNS Water
Torture attacks targeting data center infrastructures. Our proposed solution leverages on XDP
and eBPF to accelerate ML inference within the data plane of Recursors. Specifically, we im-
plement in-network Naive Bayes Classifiers [98] tailored to the constraints of the eBPF verifier.
Our classification process drops invalid DNS requests entirely within the Linux kernel, there-
fore decreasing the packet delay when attack traffic is forwarded to the user space to be filtered.
Naive Bayes Classifiers are selected as simple, accurate and effective algorithms for mitigating
Water Torture attacks, proposed and evaluated in [5].

The remainder of this chapter is structured as follows: In Section 6.2 we discuss related
work; Section 6.3 provides a baseline description and lists the design principles of our proposed
schema; Section 6.4 includes implementation details related to our approach; Section 6.5 in-
volves the experimental evaluation of our suggested mechanism. Finally, in Section 6.6 we
conclude our work.

6.2 Related Work

XDP and eBPF have been recently used to enable Software-Defined Networking and NFV func-
tionality. In [154] a hybrid architecture is introduced that differentiates execution environments
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between a fast path (data plane) and a slow path (user space). Simple, but time-critical tasks are
performed in the fast path using eBPF/XDP, while complex tasks that cannot be implemented
in the data plane are executed in the slow path. Moreover, XDP and eBPF are employed to effi-
ciently chain Virtual Network Functions (VNF’s). Similarly, the Polycube [155] andMizar [156]
projects employ eBPF/XDP to implement lightweight VNF’s.

In [157], Decision Tree Classifiers were implemented using eBPF to efficiently analyze net-
work traffic. This ML method, implemented within the data plane, resulted into significant per-
formance improvements compared to the corresponding user-space packet monitoring solution.
Our eBPF/XDP-based mitigation schema follows a similar approach.

A straightforward method of mitigating Water Torture attacks involves rate limiting ingress
DNS requests [158]. To avoid dropping excessive amounts of requests triggered by legitimate
Internet users, ML approaches were proposed to implement selective filtering of attack requests.
In [5] Naive Bayes Classifiers were assessed as accurate and effective methods to distinguish
between valid and invalid domain names. However, their proposed implementation relied on
specialized hardware for efficient packet handling, therefore increasing complexity and reliance
on specific hardware platforms. Alternatively, [126] employed Random Forests (RF’s) to fil-
ter attack traffic. Nevertheless, selected features included information related to the source IP
address of DNS requests, thus rendering this work vulnerable to IP spoofing.

Other approaches for mitigating Water Torture attacks rely on whitelists of valid domain
names. Specifically, [159] filters attack requests by constructing lists from the successfully re-
solved domain names within DNS caches of Recursors. However, such filtering approaches may
result in dropping newly registered or infrequently requested names. Note that in previous work
(Chapters 3 and 4), we employed probabilistic data structures, i.e. Bloom Filters (BF’s) [16]
to map Authoritative DNS Server zones, thus creating name whitelists. This solution accom-
plished time and space efficient Water Torture mitigation, while retaining the privacy of zone
contents. However, complete contents of DNS zones may not be accessible to Recursors unless
Authoritative DNS Server administrators are willing to collaborate by adopting privacy-aware
mechanisms for securely sharing their zones (see Chapter 5).

Our proposed schema implements XDP-based Naive Bayes Classifiers to accelerate ML
feature extraction and classification within the data plane of Recursors. Contrary to [5], our
schema is a software-based solution that can be applied on general purpose hardware and thus,
it is suitable to be offered as a VNF within cloud infrastructures. Moreover, we revised the
features utilized in [5] by considering Domain Generation Algorithm (DGA) traffic filtering ap-
proaches [64]: Similarly to Water Torture, DGA’s involve randomized names, hence features
used for DGA traffic detection may also be applied in Water Torture attack mitigation.

6.3 Proposed Schema: Overview & Design Features

In this section, we provide a high-level description of our proposed schema and discuss its main
design principles.
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6.3.1 High-Level Description

Fig. 6.1 depicts an overview of our schema for the mitigation ofWater Torture attacks within the
data plane of Recursors. Ingress traffic is detained by an XDP Hook attached on the Recursor
NIC driver level. Subsequently, this traffic is delivered to an eBPF Program that is executed
on a per-packet basis. Initially, this program filters packets to detect DNS requests. These are
kept for further inspection, while the rest of the traffic, i.e. DNS responses or traffic unrelated
to DNS, is forwarded to the User Space through the Kernel Network Stack. Afterwards, the
program parses the name included in the DNS request and calculates the values of the Naive
Bayes features corresponding to the first DNS label, i.e. prefix, of the name. Based on these
values, Naive Bayes classifies names as valid or invalid. Names categorized as invalid are
dropped within the Linux kernel, while those labeled valid are forwarded to the User Space
for name resolution. Filtering of malicious packets is performed entirely within the data plane,
therefore increasing the overall packet processing throughput. Invalid packets are not forwarded
to the User Space and thus, they are not delayed by the Kernel Network Stack.

Figure 6.1: Baseline design of our proposed schema

The classification decisions made by Naive Bayes are based on the probabilities estimated
per feature and name class, i.e. valid and invalid, during the training phase of the algorithm.
Estimation of these probabilities is performed within the User Space by the Naive Bayes Trainer.
When the training phase is completed, the probability estimates are delivered to the XDP User
Space Program. This program is responsible for: (i) invoking the eBPF verifier to guarantee the
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safety of the Linux kernel, (ii) attaching the XDP Hook at the NIC driver level of the Recursor,
(iii) loading the eBPF Program for execution and (iv) creating and populating the eBPF maps
with the estimated probabilities per feature and name class. The eBPF maps are in-kernel, key-
value data stores that enable value exchanges among eBPF programs and the XDP User Space
Program. During execution of the eBPF program, Naive Bayes retrieves from eBPF maps the
estimated probabilities per feature and name class to label name prefixes as valid or invalid.

6.3.2 Design Principles

The main design principles of our schema are the following:

• Efficient, in-networkML feature extraction and inference: Our proposed schema lever-
ages on PDP’s to provide high-throughput packet filtering of DDoS attack requests. Specif-
ically, after a training phase, an XDP-based Naive Bayes Classifier efficiently extracts fea-
tures from requested names and assesses their validity. Therefore, packets are classified as
valid or invalid entirely within the data plane of Recursors and the user space DNS software
is not required to process excessive attack traffic.

• DNS request filtering that does not rely on lists of valid names: Our schema employs
ML to categorize ingress DNS requests based on features extracted from their associated
names (subsection 6.4.3). Therefore, our solution may complement whitelist-based ap-
proaches for Water Torture mitigation when lists of valid names are not available. More-
over, our schema stores only the feature conditional probabilities required by Naive Bayes
Classifiers, instead of whitelists that may include millions of names [7], thus decreasing
the overall storage and memory requirements.

• NFV-compliant mitigation schema: Our approach successfully separates data, control
and management planes, hence adhering to the Software-Defined Networking paradigm.
Thus, our solution may be deployed as a VNF in cloud environments, while centralized
management of deployed services is possible.

• DDoS attack mitigation independent of specialized hardware: We use an open-source
software solution, i.e. eBPF/XDP, that depends only on the version of the available NIC
drivers. Contrary to hardware-based data plane methods, e.g. FPGA’s and P4 switches
[12], XDP relies on C-like software implementation independent of specific hardware plat-
forms.

6.4 Implementation Details

In this section, we elaborate on details regarding the implementation of our schema. Specifi-
cally, we discuss (i) restrictions of implementing our schema using XDP and eBPF, (ii) provide
information about the diverse programs developed and (iii) describe the features selected for our
Naive Bayes Classifier. Our implementation is available from [160].
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6.4.1 eBPF/XDP Restrictions

The eBPF programs are executed within the Linux kernel. Specifically, the eBPF verifier guar-
antees that these programs will not damage kernel stability, e.g. by performing out of bounds
memory accesses. The main restrictions imposed by the eBPF verifier include: (i) forbidding
unbounded loops, (ii) constraining the eBPF program size and (iii) not supporting decimal num-
bers directly. In the following, we provide details on the aforementioned restrictions tailored to
the development of our XDP-based mitigation schema:

6.4.1.1 Absence of Unbounded Loops

Parsing DNS names typically depends on unbounded loops as their length varies and thus, their
position in DNSmessages is not clear until they are completely parsed. However, such loops are
not permitted in eBPF. To that end, we used a bounded loop that is unrolled up to a predefined
name length (subsection 6.4.1.2).

6.4.1.2 Limited eBPF Program Size

DNSnamesmay consist of up to 255 characters [1]. These lengths violate themaximumprogram
size permitted by the eBPF verifier. We accordingly restricted the maximum name length to a
smaller value allowed by the eBPF verifier, i.e. 200 characters. Thus, names with length over
200 characters cannot be completely parsed by our eBPF program. However, this restriction
does not reduce the accuracy of our classification process as it is performed on the first label, i.e.
the prefix, of DNS names. Recall that Water Torture involves names whose prefix is randomly
generated. According to [1], the maximum length of DNS labels is 63 characters, thus prefixes
of names with length over 200 characters will be definitely parsed in our eBPF program.

6.4.1.3 Lack of Decimal Numbers Support

ML algorithms, including Naive Bayes, typically require calculations involving decimal num-
bers, not supported by eBPF. Therefore, we multiplied Naive Bayes conditional probabilities
estimated during the training phase by powers of 10 and retained only the integer part of these
numbers for calculations within the eBPF program. Probabilities equaling 0 after enforcing the
multiplication factor are set to 1, thus being ignored during Naive Bayes inference.

This process may affect classification accuracy. Multiplication by small factors, i.e. powers
of 10, may lead to reduced classification accuracy when features are not represented accurately
enough. Conversely, bigger multiplication factors may result in buffer overflows within the
eBPF program during the multiplication of conditional probabilities, thus decreasing accuracy.

6.4.2 Details on Software Implementation

Our implementation consists of the following three programs: (i) the Naive Bayes Trainer, (ii)
the XDP User Space Program and (iii) the eBPF program. In the following, we provide details
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on the aforementioned programs.

6.4.2.1 Naive Bayes Trainer

This program estimates the probabilities that will be used by Naive Bayes for classifying ingress
DNS requests into valid/invalid based on the provided training examples. Afterwards, these
probabilities are multiplied by an appropriate multiplication factor (see subsection 6.4.1.3) and
provided to the XDP User Space Program. We implemented the Naive Bayes Trainer in Python.

6.4.2.2 The XDP User Space Program

This program acts as a workflow engine for the eBPF program and is executed within the user
space of Recursors. It is responsible for (i) invoking the eBPF verifier, (ii) attaching the XDP
hook, (iii) loading the eBPF program if permitted by the eBPF verifier and (iv) delivering the
Naive Bayes estimated probabilities to the eBPF program by initializing and filling the appro-
priate eBPF maps. We implemented this program in Python leveraging on the BPF Compiler
Collection (BCC) toolset [161].

6.4.2.3 The eBPF Program

This program is responsible for filtering attack traffic within the data plane of Recursors when
Water Torture attacks are detected. The eBPF program is executed per ingress packet at the
Recursor. Initially, traffic is filtered to differentiate between DNS requests, i.e. UDP segments
destined towards port 53, and traffic irrelevant to Water Torture attack mitigation, i.e. DNS
responses or packets not related to DNS. Then, the eBPF program parses the prefix of the name
included in the DNS request question section via a bounded loop and extracts the features of
Naive Bayes.

After feature extraction, the eBPF program retrieves the Naive Bayes probabilities, estimated
during the training process, from the appropriate eBPF maps using feature values as keys. This
is performed for both Naive Bayes classes, i.e. one related to valid names and another related
to invalid names. Finally, the eBPF program calculates and compares the two products required
for classification; one derived from the multiplication between the conditional probabilities of
features associated with the class of valid requests and one corresponding to the class of invalid
requests. Requests perceived as benign are forwarded to the user space, while requests involving
names classified as invalid are dropped within the kernel, thus offloading the Recursor. The
eBPF program was implemented in a restricted version of the C programming language, which
complies with the eBPF verifier restrictions.

6.4.3 Selected Features

The features of our Naive Bayes Classifier were selected based on their ability to differentiate
between meaningful and randomized strings. Specifically, we adopted features used in detecting
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botnet traffic by DGA’s [64]. Our selected features for evaluating prefixes of DNS names as
valid or invalid are summarized in Table 6.1.

Feature
Notation Feature Description

F1 Prefix length
F2 Number of digits
F3 Length of maximum digit sequence
F4 Number of consonants
F5 Length of maximum consonant sequence
F6 Number of vowels
F7 Length of maximum vowel sequence

Table 6.1: Selected features for Naive Bayes Classifier

Note that using a small number of features may significantly decrease classification accuracy
when they are not carefully selected. However, an excessive number of features may result in
buffer overflows within eBPF programs when Naive Bayes conditional probabilities are multi-
plied (subsection 6.4.1.3).

6.5 Evaluation

This section presents experiments aimed to evaluate our proposed schema. Initially, we de-
scribe the datasets employed in our experiments (subsection 6.5.1). Subsequently, we focus on
the evaluation of our eBPF program (subsection 6.5.2). Finally, we assess the accuracy of our
selected features and compare them with those used in related approaches [5] (subsection 6.5.3).

6.5.1 Dataset Selection

Our schema was evaluated using two separate datasets: Dataset I of name prefix lists that were
used to train our Naive Bayes Classifier and assess its accuracy; Dataset II of DNS request packet
captures that were used to evaluate our eBPF program. The datasets were retrieved/constructed
in July 2021.

Dataset I, used to train and evaluate Naive Bayes, consisted of two subsets: (i) A list con-
taining valid DNS prefixes extracted from the top names of an index including the most popular
Internet names [162] and (ii) a list containing invalid DNS prefixes generated using a custom
Python script with prefix lengths between 10 and 30 DNS characters as in [5]. Each subset con-
tained 800K prefixes; 700K prefixes were used for the training of the Naive Bayes Classifier
and the remaining 100K for testing its accuracy. Notably, both training subsets included the
same number of prefixes, hence prior probabilities were equal.

Dataset II, used to evaluate our eBPF program, comprised of two packet capture (pcap) files:
(i) the Legitimate Traces involving 100KDNS requests generated using the top 100K prefixes of
an Internet name popularity list [163] and (ii) the Water Torture Traces involving 4 million DNS
requests generated based on invalid names produced by 5 DGA’s (CoreBot, Monero Down-
loader, newGOZ, Reconyc, Qadars) [164]. The average length of prefixes included in Water
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Torture Traces was 24 characters.

6.5.2 Evaluation of our eBPF Program

In the sequel, we describe the testbed used for our experiments (subsection 6.5.2.1), investigate
how mapping decimal numbers within the data plane affects the accuracy of our eBPF program
(subsection 6.5.2.2) and assess the filtering throughput of our schema under a Water Torture
attack scenario (subsection 6.5.2.3). Note that we define invalid DNS requests correctly classi-
fied by our schema as True Positives (TP’s), while successfully identified valid DNS requests
as True Negatives (TN’s).

6.5.2.1 Testbed Description

Our schema was tested via a proof of concept setup within a virtualized environment. Our setup
consists of the following 3 Virtual Machines (VM’s):

• Traffic Generator: A VM that forwards Water Torture and Legitimate Traces to the Re-
cursor at specified packet rates. It consists of 4 vCPU’s and 4 GB RAM.

• Recursor: AVM that forwards DNS requests towards the Authoritative DNS Server using
BIND 9 [25]. Our eBPF/XDP based mitigation solution is deployed within this VM. The
Recursor comprises of 4 vCPU’s and 4 GB RAM, running Linux kernel version 4.15.

• Authoritative DNS Server: A VM that responds to Recursor requests. It involves a zone
mapping the names of the Legitimate Traces. This VM is implemented in BIND 9 and
consists of 2 vCPU’s and 2 GB RAM.

6.5.2.2 Accuracy of Mapping Decimal Numbers within eBPF

The purpose of this assessment is to investigate how mapping decimal numbers within eBPF
programs affects the in-network Naive Bayes accuracy in filtering DNS requests. Recall that
theNaive Bayes probabilities estimated during the training phase cannot be directly supported by
eBPF since decimal numbers are not available. Thus, all estimated probabilities are multiplied
by a power of 10 (multiplying factor) and only the integer part of decimal numbers is retained,
thus sacrificing accuracy (see subsection 6.4.1.3).

We utilized the Traffic Generator to forward the Legitimate Traces (Dataset II) to the Recur-
sor, while our eBPF/XDP based mitigation solution was active. Fig. 6.2 depicts the percentage
of valid DNS requests that are correctly classified by the Naive Bayes Classifier of our eBPF
program (TN rate). We applied three different multiplying factors, i.e. 100, 1,000 and 10,000,
before loading the estimated probabilities within eBPF maps of our program. Our maps were
able to store up to 128-bit integers. Naive Bayes was trained using Dataset I and the features
described in subsection 6.4.3.

We observed a notable accuracy loss when small or large multiplying factors were consid-
ered. Small multiplying factors, e.g. 100, decreased the accuracy of Naive Bayes probabilities
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Figure 6.2: Investigation of diverse multiplying factors for mapping decimal numbers within eBPF/XDP

representation, therefore leading to an evident packet loss of valid DNS requests. On the con-
trary, large multiplying factors, e.g. 10,000, significantly reduced classification accuracy since
buffer overflows frequently occurred within the eBPF program. We conclude that 1,000 is a sat-
isfactory multiplication factor by successfully forwarding 99.01% of valid names. This value
will be used in the experiments of subsection 6.5.2.3.

Note that a straightforward approach to support more accurate decimal number representa-
tions is to define eBPF maps that can handle integers of bigger sizes; recall that maps in our
assessment held values of up to 128 bits. However, defining such maps will deteriorate the fil-
tering capabilities of our schema as modern CPU architectures are optimized for integer values
of up to 64 bits.

6.5.2.3 Filtering Throughput of the Proposed Schema

The purpose of this experiment is to evaluate the capabilities of our proposed eBPF/XDP based
schema in filtering DNS requests during a Water Torture attack. Specifically, we employed the
Traffic Generator to simultaneously send Water Torture and Legitimate Traces (Dataset II) to
the Recursor, which forwards them to the Authoritative DNS Server. Legitimate traces were
forwarded at a rate of 1 Kpps, while Water Torture Traces at a rate of 40 Kpps. The rate of
the Legitimate Traces was based on statistics from packet captures performed in [165] within
Recursors of campus networks. The rate of theWater Torture Traces was selected as high enough
to downgrade the quality of the DNS service offered by the Recursor.

Fig. 6.3 depicts the percentage of valid DNS requests (TN rate) forwarded by the Recursor
to the Authoritative DNS Server during a Water Torture attack when (i) mitigation is not applied
and (ii) mitigation is performed within the Recursor using our eBPF/XDP based solution.

We observe that our eBPF/XDP based mitigation solution significantly improved the Recur-
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Figure 6.3: Number of valid DNS requests forwarded by the Recursor

sor filtering capabilities. When mitigation was not applied, the Recursor forwarded only 10.7%
of valid requests, while name resolution was impacted by the massive number of invalid re-
quests. However, when our solution was used, the Recursor filtered the vast majority of invalid
DNS requests (TP’s), hence forwarding the 98.95% of valid requests (TN’s).

6.5.3 Evaluation of Selected Features

The purpose of this assessment is to verify if our selected features F1 to F7 (subsection 6.4.3) are
sufficient for accurately differentiating between valid and invalid domain names. To that end, we
compare our features with those selected in [5] to mitigate Water Torture attacks; recall that both
our schema and [5] depend on Naive Bayes Classifiers to categorize ingress traffic. Specifically,
regarding information included in the DNS name prefix that characterizesWater Torture attacks,
[5] relied on two features: (i) the length of the name, i.e. feature F1 also employed in our
work, and (ii) the summation of all Naive Bayes estimated probabilities for each ordered pair of
adjacent characters, i.e. bigram.

Fig. 6.4 depicts the percentage of inaccurately classified valid and invalid name prefixes
when three diverse feature combinations for Naive Bayes are used: (i) our selected features (F1
up to F7), (ii) 8 features consisting of our selected features (F1 up to F7) plus the bigrams feature
as in [5] and (iii) prefix length (F1) feature plus the bigrams feature as in [5]. Naive Bayes
Classifiers were trained and assessed using Dataset I.

We concluded that our 7 selected features are suitable for classifying name prefixes as valid
or invalid; our features misclassify only 1.92% of valid prefixes and 1.27% of invalid ones.
Moreover, our features outperformed those of [5], while adding the bigrams feature does not
improve accuracy.
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Figure 6.4: Evaluation of diverse feature combinations

6.6 Summary & Concluding Remarks

We relied on data plane programmability to effectively mitigate DNS Water Torture attacks
within Recursors. Our schema leveraged on XDP and eBPF to implement Naive Bayes Classi-
fiers within the data plane and efficiently differentiate between valid and invalid DNS requests.
Our evaluation demonstrated that our schema significantly improved filtering throughput of Re-
cursors, thus relieving the user-space DNS service from processing excessive amounts of invalid
requests.

ML algorithms have been widely employed to effectively filter DNS cybersecurity threats,
including DDoS attacks and DGA traffic. Apart fromNaive Bayes, which was used in this chap-
ter, tree-based ML classifiers and deep neural networks have also been successfully utilized for
accurately differentiating between benign and malicious domain names. However, despite the
promising results of the aforementioned ML algorithms, DNS administrators may be unwill-
ing to deploy ML classifiers within their networks unless they receive appropriate justifications
regarding their operation. In the following chapter, we will leverage on eXplainable Artificial
Intelligence (XAI) techniques to provide model-agnostic interpretations of DGA traffic classi-
fiers.
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Chapter 7

SHAP Interpretations of DNS Classifiers
for Analyzing DGA Family Characteristics

Domain Generation Algorithms (DGA’s) have been employed by botnet orchestrators for con-
trolling infected hosts (bots), while evading detection by performing multiple DNS requests,
mostly for non-existing domain names. With blacklists ineffective, modern DGA filtering meth-
ods rely on Machine Learning (ML). Emerging needs for higher intrusion detection accuracy
lead to complex, non-interpretable black-box classifiers, thus requiring eXplainable Artificial
Intelligence (XAI) techniques.

In this chapter1, we utilize SHAP to derive model-agnostic, post-hoc interpretations on DGA
name classifiers. This method is applied to binary supervised tree-based classifiers (e.g. eX-
treme Gradient Boosting - XGBoost) and deep neural networks (Multi-Layer Perceptron - MLP)
to assess domain name feature importance. SHAP visualization tools (summary, dependence,
force plots) are used to rank features, investigate their effect on model decisions and determine
their interactions. Specific interpretations are detailed for identifying names belonging to com-
mon DGA families pertaining to arithmetic, wordlist, hash and permutation based schemes.
Learning and interpretations are based on up-to-date datasets, such as Tranco for benign and
DGArchive for malicious names. Domain name features are extracted from dataset instances,
thus limiting time-consuming and privacy-invasive database operations on historical data.

Our experimental results demonstrate that SHAP enables explanations of XGBoost (the most
accurate tree-basedmodel) andMLP classifiers and indicates the characteristics of specific DGA
schemes, commonly employed in attacks. We envision that XAI methods will expedite ML
deployment in networking environments where justifications for black-box models are required.

7.1 Motivation

ML algorithms have been widely employed within the cybersecurity domain for effectively fil-
tering massive amounts of data and classifying malignant traffic. Such algorithms have been
commonly used in the field of botnet traffic detection and for classifying names originating

1This work is included in IEEE Access (Volume 11)
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from DGA’s [6]. Tree-based ML classifiers and deep neural networks are utilized to differenti-
ate between legitimate and malicious DNS names with promising accuracy results.

Development of DGA name classifiers has been motivated by the desire for ML models of
higher performance. Therefore, simple and intrinsically explainable ML classifiers have been
replaced by complex, black-box models that are not interpretable. Thus, developers are inca-
pable of understanding their models to debug them and assert their intended operation, while
users cannot receive justifications on model decisions made on their data. Finally, regulators
are unable to ensure that models deployed within critical infrastructures comply with GDPR [99]
or equivalent legislations.

The aforementioned limitations led to investigations for XAI techniques [13] to provide inter-
pretations (and possibly explanations) on ML model operation. As mentioned in [14], post-hoc
and model-agnostic XAI algorithms are typically preferred. Post-hoc algorithms are applied to
ML models after learning is completed; model-agnostic ones are independent of the selected
ML models, e.g. tree classifiers and neural networks. Explanations may be (i) global detailing
model behavior on entire sets of sample points and (ii) local reporting how models make clas-
sification decisions for specific inputs. A promising post-hoc and model-agnostic approach is
SHAP [15,166], which is capable of global and local explainability.

Our work leverages on XAI to analyze the operation of binary, supervised DGA name clas-
sifiers that distinguish between legitimate and malicious2 names, thus detecting botnet traffic
abusing DNS. We train and evaluate various tree-based classifiers (Random Forests - RF’s, Gra-
dient Boosting - GB, eXtreme Gradient Boosting - XGBoost, Adaptive Boosting - AdaBoost,
Extremely Randomized Trees - ExtraTrees) and a deep neural network (Multi-Layer Perceptron
- MLP). SHAP is subsequently employed to determine and compare the classification criteria of
XGBoost [167], which was the most accurate tree model, and MLP deep neural network [96] in
a post-hoc and model-agnostic manner. Our experimental analysis focuses on global and local
model interpretations used to rank the impact of utilized features and indicate how their individ-
ual values contribute to classification decisions. Relying on multiple SHAP visualization tools
(i.e. summary, dependence and force plots [13,166]) we investigate how the developed models
(i) differentiate between benign and malicious domain names and (ii) identify which features
have the most significant contribution in classifications of names originating from well-known
fundamental DGA generation schemes that produce malicious names [6]. Learning and inter-
pretations are based on linguistic and statistical features, directly extracted from domain names
included within up-to-date datasets of benign and malignant DNS names.

Our main contributions are summarized as follows:

• SHAP interpretations of DGA name classifiers based on deep neural networks (MLP’s) and
comparison of their decision-making criteria versus tree-based ML models (XGBoost).

• Identification of dominant features utilized formalicious domain name detection pertaining
to specific DGA generation schemes (arithmetic, wordlist, hash and permutation based).

2Throughout this chapter, DNS names are considered malicious if they are produced by DGA’s. Non-DGA names, even those related to
malignant activities (e.g. malware propagation), are labeled as benign names in the training set.
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• Extraction of linguistic and statistical features leading to accurate and real-time classifi-
cation of DGA names with no reliance on time-consuming and privacy sensitive external
repository operations.

• Training and interpretations based on the most updated and inclusive dataset of DGA
names, i.e. the DGArchive repository [6, 20] including 105 DGA families.

• Open-sourced implementation available from our GitHub repository [168].

The remainder of this chapter is structured as follows: Section 7.2 summarizes related work;
Section 7.3 provides a high-level overview of our methods used for interpreting DGA name
classifiers; Section 7.4 elaborates on implementation details pertaining to our approach; Sec-
tion 7.5 includes our experimental results and interpretations of DGA name classifiers based on
XGBoost and MLP. Finally, in Section 7.6 we conclude our work.

7.2 Related Approaches & Key Contributions

This section outlines related research approaches (subsection 7.2.1) and details our key contri-
butions (subsection 7.2.2).

7.2.1 Related Work

Various approaches have been proposed for the detection of DGA names with promising re-
sults, e.g. [58–68,169,170]. However, the aforementioned approaches emphasize on improving
detection accuracy, but they do not deliver global and local model and feature interpretations.

Interpreting DGA name classifiers has recently attracted significant interest. In [171] neu-
ral network classifiers are interpreted based on their weights. A system for result visualization
is also presented to facilitate model comprehension. However, interpretations rely on model-
specific XAI methods applicable exclusively to deep learning models, whilst the total features
are limited for visualization purposes. In [172] multi-class DGA name classifiers are developed
based on features directly extracted from domain names and feature importance is assessed us-
ing various statistical methods. Nevertheless, [172] is limited to global explainability of DGA
classifiers, thus neglecting model interpretations on specific DNS names. Moreover, the effect
of different DGA schemes on model decisions is not addressed.

In [173–175] SHAP and/or equivalent XAI techniques (e.g. Local Interpretable Model-
Agnostic Explanation - LIME [176] and Counterfactual Explanations [177]) are employed to
provide global and local interpretations on binary DGA name classifiers. Although the afore-
mentioned approaches deliver promising results, they are limited mainly to tree-based ML clas-
sifiers. These approaches focus on interpreting how names are classified as benign or malicious,
therefore neglecting how the characteristics of different DGA families affect classification deci-
sions. Furthermore, feature calculation in [173] and [175] requires resource-intensive operations
on databases involving historical data, e.g. IP reputation lists, WHOIS lookups and TTL values
from DNS responses. These are usually time-consuming and may raise privacy concerns.

117



7.2.2 Key Contributions

Our approach relies on SHAP for model-agnostic (regardless of the selected models) and post-
hoc (after the learning procedure is completed) validation of DGA name classifier operation.
Our models are based on features extracted entirely from given names, hence resource-intensive
operations on privacy-sensitive historical DNS data are not required. We compare interpreta-
tions derived from tree-based models (i.e. XGBoost) and neural networks (i.e. MLP’s) us-
ing both global and local explanations. Notably, we extend related approaches by analyz-
ing how binary classifier feature rankings perform when facing diverse DGA schemes, e.g.
following testing methods used in use cases related to radio communications and health sys-
tems [178, 179]. Finally, malicious DNS data used for training and interpreting our models
are selected from DGArchive; we included 105 DGA families, a significantly higher number
compared to [173–175].

7.3 Proposed Schema: Overview & Design Features

This section outlines our analysis principles (subsection 7.3.1) and provides a baseline descrip-
tion of our schema for developing and interpreting DGA name classifiers (subsection 7.3.2).

7.3.1 Design Principles

The main design principles of our approach are:

• Model-agnostic ML interpretations: We employ the SHAP KernelExplainer [100] to
interpret our DGA name classifiers independently of the underlying ML model. Thus, we
analyze the operation of tree-based and deep neural network classifiers in a unified manner.

• Local and global interpretations: Our approach relies on SHAP to rank feature contri-
butions in classification decisions made on specific input instances for local explainability
and lists of domain names for global explainability.

• Analysis relying on various SHAP visualization tools: Multiple SHAP visualization
methods (i.e. summary, dependence and force plots) are employed to estimate feature
importance, determine how feature values affect model decisions and investigate feature
interactions.

• Classification based on domain-specific features: ML models are trained on features di-
rectly extracted fromDNS names without requiring costly database operations on historical
data that may raise privacy concerns. Such features conceive the statistical and linguistic
properties of DNS names, hence they are suitable for real-time DGA name classifications.

• Explanations for diverse DGA schemes: We assess the effect of different DGA family
properties on feature contributions. This way we infer how the binary DGA name classi-
fiers distinguish between legitimate and malicious DNS names for specific DGA schemes
(i.e. arithmetic, wordlist, hash and permutation based).
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Figure 7.1: Baseline design
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7.3.2 Baseline Design

Fig. 7.1 depicts an overview of our approach for DGA traffic detection based on accurate and
reliable classifiers. The purpose of the Administrator is to train supervised binary classifiers that
effectively differentiate between benign and DGA names, validate their dependable operation
via XAI techniques (specifically SHAP) and deploy filtering rules to drop botnet traffic.

The architecture of Fig. 7.1 consists of three components:

• Learning Module: Data are preprocessed and the necessary learning parameters are de-
fined to train and evaluate DGA name classifiers.

• Explainability Module: SHAP is used to analyze and validate the operation of name clas-
sifiers developed by the Learning Module.

• Recursor: Ingress DNS requests are inspected using the trained DGA name classifiers;
those involving malicious names are dropped, while legitimate DNS traffic is forwarded
for name resolution.

The Administrator initially selects the learning dataset that will be utilized for tuning DGA
name classifiers (step 1). The selected data consist of benign andmalicious (i.e. DGAgenerated)
DNS names labeled for binary classification purposes. Malicious dataset labels include the
DGA algorithm used for name construction; such information is typically available from reverse
engineering efforts on DGA malware installed within infected hosts [164].

Details of the Learning Module operation are subsequently determined (step 2). The Ad-
ministrator defines the model specifications required for tuning name classifiers, i.e. the ML
algorithm, the model hyperparameters and the selected features. The learning dataset is then re-
trieved (step 3) and preprocessed (step 4) based on the selected features and ML model details.
The DGA Classifier is subsequently trained and evaluated (step 5), while assessment results and
tuned model parameters are returned to the Administrator (step 6).

Upon completion of the learning phase, the Administrator configures the ExplainabilityMod-
ule by determining the reduced dataset instances required for SHAP execution (step 7). This
step refers to the clustering and subsampling processes required for keeping the SHAP running
time within feasible time periods. In steps 8 and 9 the Learning Module feeds the trained DGA
Classifier, the selected features and the preprocessed dataset to the Explainability Module. This
dataset is then clustered and subsampled (step 10) to derive the instances required for SHAP; the
eXplainability Background Instances (XBI’s) used in SHAP calculations for assessing feature
importance and the eXplainability Test Instances (XTI’s) consisting of the input sampling points
used to eventually derive model interpretations. Note that, in our case XTI’s were subsampled
from the class of malignant DGA names since our purpose was to assess feature importance per
DGA generation scheme.

After SHAP analysis is completed (step 11), the Explainability Module provides the Admin-
istrator with global and local model-agnostic interpretations of the trained classifiers (step 12).
The Administrator gathers the Learning and Explainability module results to validate model op-
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eration (step 13). If the classifier accuracy and explanations are satisfactory, the Administrator
deploys appropriate DGA filtering procedures within the Recursor (step 14).

In step 15, ingress DNS requests from DNS Clients are inspected by the Recursor (step 16).
Malicious DNS requests are dropped, whereas legitimate ones are resolved by the DNS Soft-
ware, e.g. BIND [25], installed within the Recursor (steps 17 and 18).

7.4 Implementation Details

This section elaborates on feature selection (subsection 7.4.1), on the development and opera-
tions of the Learning Module (subsection 7.4.2) and on details pertaining to the Explainability
Module (subsection 7.4.3).

7.4.1 Selected Features

We leverage on feature values that are directly extracted from given domain names and denote
linguistic properties (e.g. values denoting the number of vowels) and statistical measures (e.g.
entropy values). Such features facilitate real-time DNS traffic inspection and limit sensitive data
exchanges by not requiring storage of privacy-sensitive information. As already stated, we do
not employ historical data features (e.g. time-based patterns of DNS responses and IP reputation
measures), which typically require excessive processing resources and storing them may raise
privacy concerns [64].

Prior to feature extraction, valid DNS suffixes (one or multiple zone namespaces, e.g. "com"
and "gov.uk") are removed from domain names as in [64]. These are not generated by DGA’s,
hence they are not meaningful to the learning process. Identification of valid DNS suffixes
is based on the Mozilla public suffix list [180]. Note that removing these suffixes mapped
multiple distinct names to common prefixes within the learning dataset, e.g. "google.com" and
"google.fr" were both reduced to "google". As a result, classifiers are tuned towards accurately
recognizing frequently requested DNS names; their appearance frequency within the dataset
reflects specific trends of DNS queries resolved by Recursors.

The features used for DGAname classification are outlined in Table 7.1; feature selectionwas
based on approaches available from the literature, e.g. [61, 64, 181]. In the following, features
44, 47, 48 and 50 are further analyzed:

• Vowel_Freq (feature 44): Determines the number of vowels included within the domain
name, i.e. letters a, e, i, o, u and y; considering y as a vowel typically increases classification
accuracy as reported in [67].

• Reputation (feature 47): Evaluates domain name Reputation defined as an indication of
its legitimacy [182]; the higher the Reputation the more legitimate the name may appear. A
method for measuring the reputation score of a domain name is the appearance frequency of
N-grams (i.e. sequences of N consecutive characters) present in benign names and absent
in malignant ones [183]. Estimating Reputation requires a preprocessing stage whereby a
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Number Feature Name(s) Description
1 Length Length of the domain name
2 Max_DeciDig_Seq Length of maximum decimal digit sequence
3 Max_Let_Seq Length of maximum letter sequence

4 - 29 Freq_A, ..., Freq_Z Frequency of letters A-Z within the name
30 - 39 Freq_0, ..., Freq_9 Frequency of digits 0-9 within the name
40 Spec_Char_Freq Number of special characters (hyphens, dots) within the name
41 Ratio_Spec_Char Fractional division of Spec_Char_Freq and Length
42 DeciDig_Freq Number of decimal digits (0-9) within the name
43 Ratio_DeciDig Fractional division of DeciDig_Freq and Length
44 Vowel_Freq Number of vowels within the name
45 Vowel_Ratio Fractional division of Vowel_Freq and Length
46 Max_Gap Length of the longest name label
47 Reputation Number of whitelisted N-grams (N = 3, ..., 7)
48 Words_Freq Number of concatenated meaningful words within the name
49 Words_Mean Average length of concatenated meaningful words obtained from feature 48
50 Entropy Shannon Entropy of the name

Table 7.1: Selected Features for DGA name classification

whitelist is constructed based on the N-grams derived from a set of legitimate DNS names
(e.g. the Tranco list [21]). Reputation of a given domain name is evaluated by determin-
ing how many of its N-grams are included in the aforementioned whitelist. N values are
selected between 3 and 7 characters as in [183]; unigrams (i.e. N = 1) and bigrams (i.e. N
= 2) are excluded because most of them exist in both legitimate and malicious names, thus
affecting the learning process and hindering feature importance.

• Words_Freq (feature 48): Determines the number of meaningful words within the given
names. Words are extracted using the Wordninja Natural Language Processing (NLP) tool
[184] similarly to [185]. Wordninja probabilistically splits strings into concatenated words
based on the unigram frequency of words appearing within the English Wikipedia. As
in [186], words shorter than 3 characters (e.g. pronouns and articles) are ignored as their
effect to the learning process is not significant.

• Entropy (feature 50): Estimates domain name randomness using Shannon Entropy [64].
We used the standard definition of entropy:

H(X) = −
∑
x∈X

p(x)log2p(x)

where X is the set of characters included within a DNS name and p(x) the frequency of
character x ∈ X .

7.4.2 Learning Module

This module trains and evaluates supervised binary classifiers that differentiate between legiti-
mate andDGAnames. The labeled dataset comprised of benign andmalicious names is retrieved
and the Learning Module proceeds with dataset preprocessing by performing feature extraction.
Pairwise feature correlations are calculated using the Pearson’s Correlation Coefficient (PCC)
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statistical measure [187] to detect redundant features not contributing significantly to the learn-
ing process. Upon detecting pairs with PCC’s exceeding a predefined threshold, a feature is
randomly selected and evicted from the dataset, eventually accelerating the learning process
without significant performance degradation.

The resulting dataset is randomly split into the training set (used for tuning the binary classi-
fier) and the testing set (used for evaluatingmodel generalization). Training and testing instances
are scaled between 0 and 1 using Min-max normalization based on minimum and maximum
values of training instances as in [188]. The Learning Module completes dataset preprocessing
by balancing the number of benign and malicious class instances. Training set instances are
oversampled using the Synthetic Minority Over-sampling Technique (SMOTE) [189], similarly
to [188]. SMOTE synthetically generates instances following training set statistical properties
to reduce imbalance between given classes.

Finally, the Learning Module trains and evaluates DGA name classifiers. We trained tree-
based classifiers (i.e. Random Forest - RF, Gradient Boosting - GB, eXtreme Gradient Boosting
- XGBoost, Adaptive Boosting - AdaBoost, Extremely Randomized Trees - ExtraTrees) and a
deep neural network (i.e. Multi-Layer Perceptron - MLP). Tree classifiers were developed using
scikit-learn [190] and XGBoost Python Package [191], whereasMLP’s with Keras [192]. Model
hyperparameters were fine-tuned using Grid Search, which exhaustively explores a subset of the
ML algorithm hyperparameter space and selects the best performing classifier [193].

7.4.3 Explainability Module

This module analyzes the operation of DGA name classifiers using SHAP, eventually delivering
global and local model-agnostic post-hoc interpretations to the Administrator.

The preprocessed dataset, the trained model and the selected features are initially retrieved
from the Learning Module. The preprocessed dataset is then clustered and subsampled to limit
SHAP analysis within reasonable time constraints [14]. The eXplainability Background In-
stances (XBI’s) are obtained as the centroids of K-means clustering on the training set, whereas
eXplainability Test Instances (XTI’s) are derived by randomly subsampling the testing set. The
XBI’s are used to tune SHAP values and the XTI’s to interpret decisions made by the DGA name
classifiers.

Subsequently, SHAP KernelExplainer [100] is used to derive global and local interpretations
by ranking features according to their contribution in classification decisions and determining
interactions between them. SHAP offers various visualization tools to facilitate comprehension
of interpretations [14, 166]. We relied on the following SHAP plots:

• Summary plots: Features are ranked in descending order according to their impact on
model decisions. XTI’s are mapped as instance dots based on their positive or negative
contributions to model classifications, i.e. their SHAP values depicted in the horizontal
dimension. Low and high values of features are additionally mapped on summary plots
to depict their effect on classifier operation. SHAP relies on a color palette to distinguish
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feature values; extreme values are visualized using a pair of basic colors (e.g. blue and
red), whereas basic color shades denote their intermediary values.

• Dependence plots: They demonstrate contributions of specific features on model deci-
sions. XTI’s are mapped as dots on a two-dimensional plot; the horizontal axis includes all
possible values of an investigated feature, whereas the vertical axis depicts the correspond-
ing SHAP values, i.e. their impact on model decisions. Dependence plots also visualize
the correlation between the investigated feature and an additional one that mostly interacts
with it. This interacting feature is determined by evaluating the joint effect of all possi-
ble feature pairs, therefore estimating their influence on classification accuracy using the
Shapley interaction values [13,194]. Low and high values of the interacting feature are de-
picted using the aforementioned color palette, thus facilitating conclusions of how feature
interactions jointly affect classification decisions.

• Force plots: They demonstrate feature contributions on specific XTI’s (typically single
local instances). A pair of basic colors is used to discern model features according to
whether they contribute positively (e.g. red) or negatively (e.g. blue) to classification de-
cisions. Names and values of features mostly contributing to model decisions are included
in the plot, whereas less important feature names and values are omitted. A decimal num-
ber (denoted with bold characters) corresponds to the final result returned by the binary
classifier.

7.5 Evaluation

This section includes our experimental analysis. Subsection 7.5.1 describes the selected dataset
and subsection 7.5.2 outlines the experimental testbed. Subsection 7.5.3 involves the Learning
Module performance evaluation that assesses the binary DGA name classifier accuracy. Finally,
subsection 7.5.4 includes the SHAP interpretations extracted by the Explainability Module.

7.5.1 Datasets

MLmodels were evaluated using malicious and benign domain names, typically used for build-
ing DGA name classifiers. Our data were retrieved in Spring 2023.

Malicious DNS names were obtained from DGArchive [20], a moderated repository contin-
uously updated with DGA names resulting from reverse engineering efforts on DGA malware
code. We retrieved roughly 200 million domain names corresponding to 105 distinct DGA
families pertaining to all generation schemes (i.e. arithmetic, wordlist, hash and permutation
based). The total repository size and constraints of our experimental infrastructure rendered
training of DGA name classifiers time-consuming and memory intensive. Therefore, we sam-
pled DGArchive and randomly extracted 10,000 DNS names from each DGA family as in [195];
families involving less than 10,000 names were included without subsampling. Eventually, our
dataset consisted of 600,775 DGA names, which were used to train, evaluate and interpret DGA
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name classifiers.
Legitimate DNS names were selected from Tranco [21], a public online service ranking do-

main names based on their popularity. Tranco merges data from various name ranking services,
namely Alexa, Cisco Umbrella, Majestic and Farsight. Name rankings are calculated over long
time periods (e.g. 30 days), thus mitigating the impact of abrupt daily fluctuations and/or list
manipulation attempts. However, Tranco still contains a small percentage of DGA names that
are frequently requested by large numbers of infected Internet devices (bots). Therefore, we fil-
tered the Tranco dataset [196] by removing names included within DGArchive; these amounted
to 0.57% of Tranco entries. We subsequently utilized the top-ranked 1 million entries from the
remaining Tranco names similarly to [174]. Following [183] we used the first 100,000 to con-
struct thewhitelist pertaining to theReputation feature (subsection 7.4.1); the remaining 900,000
were used to train and assess the DGA name classifiers.

The aforementioned name sets were labeled as benign and malignant without indicating spe-
cific families of malicious DGA names. Binary classifiers were selected instead of multi-class
ones. Although multi-class classifiers may provide insight in specific DGA families, they are
typically less accurate than binary ones in segregating benign and malignant names [58].

7.5.2 Testbed Overview

Experiments were performed within our laboratory infrastructure. We utilized a VM comprising
of 8 virtual cores and 24GB physical memory. The hypervisor was a Dell PE R730 with Intel
Xeon E5-2620 v3 2.4 GHz. Training of neural networks was accelerated using the NVIDIA
GeForce GTX 1050 Ti 4GB [197] graphics card.

7.5.3 Learning Module

The Learning Module was evaluated by assessing (i) the pairwise correlation among selected
features and (ii) the performance of supervised binary DGA name classifiers. Assessments were
performed using the dataset of benign and malicious names described in subsection 7.5.1.

Pearson’s Correlation Coefficient (PCC) was utilized to detect highly correlated features.
PCC’s were calculated for all feature pairs and those exceeding 0.9 (by absolute value) were
considered strongly correlated [198]. In such feature pairs, a feature was selected at random and
evicted from the dataset. In particular, Ratio_DeciDig was determined as strongly correlated to
other features, hence it was removed from subsequent experiments.

We selected Random Forests (RF’s), Gradient Boosting (GB), eXtreme Gradient Boosting
(XGBoost), Adaptive Boosting (AdaBoost) and Extremely Randomized Trees (ExtraTrees) as
indicative algorithms of tree-based classifiers; Multi-Layer Perceptrons (MLP) were selected
as representative models of deep neural networks. Classifiers were trained and evaluated using
the dataset described in subsection 7.5.1. This dataset was randomly split into two parts using
the train_test_split method of scikit-learn [168]; 80% was utilized as the training set and the
remaining 20% as the testing set.
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Hyperparameters Considered Values Best Classifier Value
Random Forest - RF

Number of Trees 10, 20, ..., 200 200
Maximum Tree Depth 10, 20, ..., 200 50

Gradient Boosting - GB
Number of Trees 10, 20, ..., 100 100

Maximum Tree Depth 10, 20, ..., 50 20
eXtreme Gradient Boosting - XGBoost

Number of Trees 10, 20, ..., 200 100
Maximum Tree Depth 10, 20, ..., 200 20

Adaptive Boosting - AdaBoost
Number of Trees 10, 20, ..., 1000 520

Extremely Randomized Trees - ExtraTrees
Number of Trees 10, 20, ..., 500 260

Other Parameters: Default scikit-learn values

Table 7.2: Hyperparameter tuning of tree classifiers using Grid Search

Hyperparameters Considered Values Best Classifier Value
Number of Hidden
Dense Layers 1, 2, 3 3

Neurons per
Hidden Dense Layer 100, 200, 300

Dense Layer 1: 300
Dense Layer 2: 200
Dense Layer 3: 200

Dropout Probability 0.2, 0.5 0.2
Batch Size 256, 512 512
Epochs 100 epochs with EarlyStopping [199]

Loss Function BinaryCrossentropy [200]
Optimizer Adam [201]

Activation Functions Input/Hidden Layers: ReLU
Output Layer: Sigmoid

Table 7.3: Hyperparameter tuning of MLP classifier using Grid Search

Grid Search was used to tune model hyperparameters. The number and maximum depth of
RF, GB and XGBoost trees were varied as described in Table 7.2. The number of AdaBoost and
ExtraTrees estimators were varied as described in the table. Similarly, multiple MLP configu-
rations were considered by varying the hidden layers number, the neurons per layer, the batch
size and the rate of dropout regularization layers placed between the hidden layers to reduce
overfitting. Considered MLP hyperparameters are described in Table 7.3.

Based on the accuracy of ML models, classifier performance was assessed as:

Accuracy = TP + TN

TP + TN + FP + FN

where True Positives (TP’s) are the correctly classified DGA names, True Negatives (TN’s)
are the correctly categorized benign names, False Positives (FP’s) are the incorrectly classified
benign names and False Negatives (FN’s) are the misclassified malicious names.

Grid Search determined that among RF, GB, XGBoost, AdaBoost, ExtraTrees and MLP
classifiers the best accuracy scores on the testing set were 94.67%, 94.66%, 94.81%, 92.32%,
94.67% and 94.51% respectively3 as shown in Table 7.4. Their configuration details are sum-

3Filtering repetitive name prefixes (see subsection 7.4.1) within the training and testing sets yielded comparable accuracy results, specifically
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marized in tables 7.2, 7.3.

Algorithm Best Classifier Accuracy
Random Forest - RF 94.67%

Gradient Boosting - GB 94.66%
eXtreme Gradient Boosting - XGBoost 94.81%

Adaptive Boosting - AdaBoost 92.32%
Extremely Randomized Trees - ExtraTrees 94.67%

Multi-Layer Perceptron - MLP 94.51%

Table 7.4: Accuracy of best classifiers

7.5.4 Explainability Module

The Explainability Module was evaluated based on SHAP interpretations derived on the trained
models (subsection 7.5.3) for the dataset described in subsection 7.5.1. We investigated (i) the
features used to discern benign and malicious names derived from multiple DGA families and,
(ii) the most influential features utilized to differentiate specific DGA schemes.

Interpretations were derived for 105 DGA families of the DGArchive repository and are
available from our GitHub repository [168]. However, for illustration purposes representative
results are presented in this chapter for 4 indicative DGA families pertaining to 4 diverse DGA
schemes (see subsection 2.3.2). Specifically, as in [202] results are presented for the following:
(i)DirCrypt (arithmetic-based), (ii)Matsnu (wordlist-based), (iii) Bamital (hash-based) and (iv)
VolatileCedar (permutation-based).

Similarly to [14], XBI’s were selected as the cluster centroids resulting from K-means exe-
cution on the training set with K equal to 50. XTI’s used for interpreting how name classifiers
differentiate between benign and malicious names derived from all DGA families were obtained
by randomly subsampling 250 DGA names from the testing set. Interpretations pertaining to
specific DGA families were based on XTI’s randomly subsampled from testing set entries of
these specific families; families with less than 250 names were included without subsampling.

A greater number of XBI’s and XTI’s yielded in our extensive experiments insignificant
interpretation improvements, while SHAP running time increased dramatically [168]. Using
the aforementioned parameters, the Learning Module and the Explainability Module required
approximately 2 days to complete their operation.

The following subsections present SHAP interpretations for XGBoost (which was the most
accurate tree-based model) and the MLP deep neural network model. Interpretations are based
on multiple SHAP plots: (i) summary plots pertaining to 250 XTI’s from all DGA families
(subsection 7.5.4.1), (ii) summary plots involving XTI’s from selected DGA families (subsec-
tion 7.5.4.2), (iii) dependence plots pertaining to 250 XTI’s from all DGA families (subsection
7.5.4.3), (iv) dependence plots including XTI’s from specific DGA families (subsection 7.5.4.4)
and (v) force plots for selected domain names (subsection 7.5.4.5). Legitimate and malicious
name classes are denoted with numbers 0 and 1 respectively. Thus, negative SHAP values con-
tribute to benign name classifications, whereas positive values to DGA name classifications.

94.39% for XGBoost (best tree-based classifier) and 94.31% for the MLP neural network. Thus, we did not consider filtering them in our
experiments pertaining to the Explainability Module.
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7.5.4.1 XGBoost & MLP Classifier Summary Plots for all DGA Families

In this subsection SHAP summary plots are used to explain the operation of binary DGA name
classifiers. Fig. 7.2 and 7.3 demonstrate respectively XGBoost and MLP classification criteria
for segregating malicious names from benign ones. Analysis was based on 250 XTI’s, illustrated
as colored dots in the horizontal dimension, from all DGA families. In these summary plots blue
color is used to denote low feature values, whereas red color is utilized for high feature values
(see subsection 7.4.3).

Fig. 7.2 depicts the 20 most influential features used by the XGBoost binary classifier. The
most effective features are Reputation, Length, Freq_Q, Words_Mean, Words_Freq and De-
ciDig_Freq ranked in order of descending importance. High Length and DeciDig_Freq values
favor malicious name classifications. Such behavior is related to lengthy names and high deci-
mal digit frequencies, typically employed by most DGA’s to avoid coincidence with legitimate
registered domain names. As expected, high Reputation andWords_Freq values mostly point to
benign name categorizations since the presence of many whitelisted N-grams and meaningful
words are linked to legitimate names. Max_DeciDig_Seq contribution is significantly smaller
compared to the impact of the aforementioned features; it is ranked 12th in terms of contribu-
tion to classification decisions. Finally, high feature values ofWords_Meanmay inconclusively
affect both benign and malicious name classifications.

Fig. 7.3 shows that the most influential features used by the MLP classifier are Reputation,
Length, Max_DeciDig_Seq, Words_Mean and DeciDig_Freq. Similarly to XGBoost, MLP re-
lies predominantly on Reputation and Length features. Max_DeciDig_Seq was the 3rd most
important feature for MLP with higher values pointing to benign name classifications. Recall
that for XGBoost, Max_DeciDig_Seq was ranked 12th, a much lower significance level (Fig.
7.2). Likewise, Vowel_Freq feature significantly affects MLP decisions ranking as the 8th most
influential feature, while XGBoost dependence on Vowel_Freq is not even among the 20 most
significant features of Fig. 7.2. This may be partially explained by the difference of XGBoost
andMLP in modeling learning tasks. The former mainly relies on splitting training set instances
based on dominant feature deviations; following boosting methods strong tree estimators are
eventually constructed by iteratively improving weaker classifiers. The latter (MLP) tunes its
weights during back propagation towards directions that linearly combine feature values, form-
ing induced local fields that are further subjected to non-linear activation functions (e.g. ReLU,
Sigmoid). Thus, XGBoost mainly relies on boosting methods based on significant feature devi-
ations [97], while MLP on weighted feature differences.

7.5.4.2 MLP Classifier Summary Plots for Selected DGA Families

This subsection addresses explanations pertaining to binary MLP classifiers tested for XTI’s
derived from specific DGA families. In Fig. 7.4, 7.5, 7.6 and 7.7 we respectively present
summary plots for 4 DGA families selected from 4 different generation schemes: (a) DirCrypt
(arithmetic-based), (b)Matsnu (wordlist-based), (c) Bamital (hash-based) and (d) VolatileCedar
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Figure 7.2: SHAP summary plot on XTI’s including malicious names from all DGA families (the utilized algorithm
is eXtreme Gradient Boosting - XGBoost)
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Figure 7.3: SHAP summary plot on XTI’s including malicious names from all DGA families (the utilized algorithm
is Multi-Layer Perceptron - MLP)
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DGA Family Scheme Indicative Name (Prefix)
DirCrypt Arithmetic iwqvktutvmptevjbnzy
Matsnu Wordlist chickenpriceresearch
Bamital Hash b7a8b33957a2f95105353aa1873aebda

VolatileCedar Permutation shplayergetadobaefl

Table 7.5: Indicative names per DGA family

(permutation-based). In Table 7.5 we list four indicative malicious names pertaining to each of
the aforementioned DGA families; note that typical suffixes, e.g. "com" and "info", are not
included in the table. These schemes and their respective families have the following proper-
ties [6]:

• Arithmetic-based DGA’s (e.g. DirCrypt): Domain names are generated by concatenat-
ing randomly selected characters. DirCrypt is based on the 26 English alphabet letters
to produce names between 8 and 20 characters. Names typically contain long consonant
sequences and are characterized by increased randomness compared to benign names.

• Wordlist-based DGA’s (e.g. Matsnu): Random dictionary words are concatenated to
generate malicious domain names resembling legitimate ones. Matsnu forms long names
between 12 and 24 characters by joiningmultiple dictionarywords of relatively short length
[203].

• Hash-based DGA’s (e.g. Bamital): They rely on the hexadecimal representation resulting
from hashing domain names. Bamital is based on MD5 hash function to generate names
consisting of 32 hexadecimal digits.

• Permutation-based DGA’s (VolatileCedar): Multiple DGA names are produced by per-
muting a generated domain name that resembles legitimate names. Linguistic (e.g. number
of vowels) and statistical properties (e.g. letter frequencies) of the initial malignant name
are inherited by derived names.

In the following we analyze specific feature contributions using summary plots derived by
experimenting with malignant XTI’s, randomly subsampled from the aforementioned DGA
schemes:

• For DirCrypt, Fig. 7.4 shows that Reputation and Length are the most important features
(higher SHAP values) followed by Words_Mean, Freq_X, Freq_Q and Max_Let_Seq. As
expected, high Length and Max_Let_Seq values favor the malicious class since the typi-
cally long names and absence of digits discern DirCrypt names from benign ones. On the
contrary, high values of Reputation and Words_Freq favor legitimate name classifications
since DirCrypt names contain less whitelisted N-grams and meaningful words. High fea-
ture values ofWords_Meanmay be inconclusive, whereas lowerWords_Mean values point
to malignant (DGA) name categorizations.

• RegardingMatsnu, Fig. 7.5 shows that the most important features in terms of SHAP val-
ues are Reputation, Words_Mean, Length, Vowel_Freq, Freq_B and Max_Let_Seq. Repu-
tation exclusively contributes to benign name classifications (negative SHAP values) since
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many whitelisted N-grams may be present in both legitimate andMatsnu names, therefore
favoring misclassifications (FN’s) of DGA XTI’s. High Words_Mean values point to be-
nign name classifications (FN’s); this is expected asMatsnu concatenates dictionary words
that are typically short [203], thus higherWords_Mean values (mean length of meaningful
words within the name) may mislead the classifier towards benign name classifications.
Reputation andWords_Mean influence is mainly counterbalanced by Length, Vowel_Freq
and Freq_B values. High Length values point to malicious name classifications sinceMat-
snu names are typically longer than benign names. Although vowels are typically present
in both benign and Matsnu names, high Vowel_Freq values enable DGA name catego-
rizations (TP’s); Matsnu names are usually longer than benign ones, hence they typically
includemore vowels. LetterBwas found in variousMatsnuXTI’s, thus highFreq_B favors
TP’s.

• Regarding Bamital, Fig. 7.6 shows that DeciDig_Freq, Length, Max_DeciDig_Seq and
Reputation mainly affect model decisions. High DeciDig_Freq values (i.e. total fre-
quency of decimal digits 0-9) and high frequencies of specific hexadecimal digits (e.g.
Freq_C,Freq_D,Freq_B andFreq_1) contribute significantly to TP’s sinceBamital names
exclusively consist of such characters. As expected, impact of Length is very impor-
tant since Bamital names follow MD5 hash function statistical properties and their size
is fixed (i.e. 32 characters), thus clearly distinguishing them from benign names. High
Max_DeciDig_Seq (i.e. maximum digit sequence) values point to misclassifications of
DGA names as benign (FN’s) since long decimal digit sequences are usually not present in
Bamital names; hash function results are typically uniform, therefore short decimal digit
sequences are followed by hexadecimal digits. High Reputation values erroneously favor
the class of benign names (FN’s) as the frequency of whitelisted N-grams within Bamital
names is usually limited.

• For VolatileCedar, Fig. 7.7 shows that Reputation is the most important feature exclusively
favoring legitimate classifications (FN’s) with negative SHAP values; the initial name used
by VolatileCedar resembles benign names, therefore many DGAN-grams may be included
within the Reputation whitelist. The effect of Reputation is mainly counterbalanced by
features Length, Freq_E, Vowel_Freq, Freq_L andMax_Let_Seq. As a permutation-based
DGA, VolatileCedar is characterized by specific feature values, which act as signatures for
discerning malicious names from benign ones.

7.5.4.3 XGBoost & MLP Classifier Dependence Plots for all DGA Families

In this subsection, SHAP dependence plots are used to investigate pairwise feature relation-
ships, thus complementing our analysis based on summary plots. Fig. 7.8–7.15 depict XG-
Boost and MLP classifier dependence plots on malignant XTI’s subsampled from all DGA fam-
ilies. Plots are provided for 4 features of interest, i.e. Reputation, Entropy, Max_DeciDig_Seq
and Words_Mean. Interacting features are determined by SHAP using Shapley interaction val-
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Figure 7.4: SHAP summary plot derived for XTI’s fromDirCrypt arithmetic-basedDGA family (Algorithm: Multi-
Layer Perceptron - MLP)
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Figure 7.5: SHAP summary plot derived for XTI’s from Matsnu wordlist-based DGA family (Algorithm: Multi-
Layer Perceptron - MLP)
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Figure 7.6: SHAP summary plot derived for XTI’s from Bamital hash-based DGA family (Algorithm: Multi-Layer
Perceptron - MLP)
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Figure 7.7: SHAP summary plot derived for XTI’s from VolatileCedar permutation-based DGA family (Algorithm:
Multi-Layer Perceptron - MLP)
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ues (subsection 7.4.3); red and blue colors denote high and low values of interacting features
respectively, while these values are depicted normalized between 0 and 1 (subsection 7.4.2).
Interactions pertaining to features of interest are summarized below:

• Reputation Interactions: Fig. 7.8 and Fig. 7.9 show that Reputation significantly in-
fluences classifications. Namely, Reputation interacts with Length for XGBoost and De-
ciDig_Freq for MLP. However, combined Reputation and interacting feature values do
not clearly affect classification decisions because, as shown in Fig. 7.2 and Fig. 7.3, the
impact of Reputation is significantly higher than that of Length and DeciDig_Freq.

• Entropy Interactions: As expected from the summary plots of subsection 7.5.4.1, Fig.
7.10 and Fig. 7.11 show that Entropy values are not significant for both XGBoost andMLP
classifiers. Although higher Entropy values may favor malicious name categorizations for
MLP’s, their SHAP values are considerably low, therefore Entropy effect is counterbal-
anced by more influential features.

• Max_DeciDig_Seq Interactions: As already mentioned in subsection 7.5.4.1, values of
Max_DeciDig_Seq feature are not significant for XGBoost (Fig. 7.12). For MLP, Fig.
7.13 depicts thatMax_DeciDig_Seq significantly impacts classifications and interacts with
Length. Long sequences of decimal digits, i.e. high Max_DeciDig_Seq values, combined
with shorter names, i.e. low Length values favor benign name classifications. This is
expected as several DGA families alternate letters and decimal digits, thus long digit se-
quences are not formed.

• Words_Mean Interactions: Fig. 7.14 and Fig. 7.15 show that Words_Mean values affect
both XGBoost and MLP classifiers. However, although high Words_Mean values favor
legitimate name classifications (FN’s) for MLP, for XGBoost high Words_Mean values
mainly point tomalicious name categorizations. Explicit correlations betweenWords_Mean
and other interacting features are not evident in our experiments.

7.5.4.4 MLP Classifier Dependence Plots for Selected DGA Families

In this subsectionwe present indicative dependence plots forMLP’smapping eXplainability Test
Instances (XTI’s) for dominant features per DGA scheme (see subsection 7.5.4.2). Notably, in
Fig. 7.16 – 7.19 we indicatively present dependence plots pertaining to DirCrypt and Bamital.

DirCrypt XTI’s in Fig. 7.16 and Fig. 7.17 show that Reputation and Length features inter-
act with Max_Let_Seq and Reputation respectively. High Reputation and Max_Let_Seq values
favor benign class categorizations (FN’s), while high Length values favor TP’s. Such effect of
Reputation and Length on model classifications is expected since DirCrypt names are typically
long and randomized, thus they stand out from benign names. Note that Length effect on model
decisions increases at a smaller rate as Reputation values increase.

BamitalXTI’s in Fig. 7.18 and 7.19 show thatDeciDig_Freq interacts with Spec_Char_Freq,
whileMax_DeciDig_Seq with Length. Increasing DeciDig_Freq favors TP’s, with its influence
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Figure 7.8: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Reputation, Model: XGBoost

Figure 7.9: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Reputation, Model: MLP
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Figure 7.10: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Entropy, Model: XGBoost

Figure 7.11: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Entropy, Model: MLP
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Figure 7.12: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Max_DeciDig_Seq, Model: XGBoost

Figure 7.13: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Max_DeciDig_Seq, Model: MLP
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Figure 7.14: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Words_Mean, Model: XGBoost

Figure 7.15: SHAP dependence plot derived for XTI’s including malicious DNS names from all DGA families -
Feature: Words_Mean, Model: MLP
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Figure 7.16: SHAP dependence plot derived for XTI’s from DirCrypt DGA family - Feature: Reputation (Algo-
rithm: Multi-Layer Perceptron - MLP)

increasing (higher SHAP values) for higher values of the interacting feature (Spec_Char_Freq).
This is expected because Bamital names consist of hexadecimal digits, thus decimal digits con-
stitute their majority. Moreover, as in Fig. 7.19, increasedMax_DeciDig_Seq values favor FN’s
since Bamital follows the statistical properties of MD5 hash function with hexadecimal digits
uniformly distributed across domain names. Therefore, long decimal digit sequences typically
favor benign name misclassifications.

7.5.4.5 MLP Classifier Force Plots for Local Explainability

In this subsection force plots are used to analyze the operation of binary MLP classifiers pertain-
ing to specific inputs (local explainability). Force plots are particularly helpful for understanding
False Positives (FP’s) and False Negatives (FN’s) in classification of specific benign and DGA
names. In these plots, features dominantly influencing name classifications are depicted along
with their values. Red color denotes features favoring malicious name categorizations and blue
colors those contributing to benign name classifications. A bold decimal value corresponds to
the classifier output.

Fig. 7.20 and 7.21 depict force plots pertaining to MLP FP’s, i.e. benign (non-DGA) names
incorrectly categorized as DGA. Fig. 7.20 shows that name "wawibox.de" is perceived as DGA,
mainly because of the high frequency of letterW and the low Reputation value. For this partic-
ular name Freq_W and the absence of many whitelisted N-grams override the effect of Length
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Figure 7.17: SHAP dependence plot derived for XTI’s from DirCrypt DGA family - Feature: Length (Algorithm:
Multi-Layer Perceptron - MLP)

Figure 7.18: SHAP dependence plot derived for XTI’s from Bamital DGA family - Feature: DeciDig_Freq (Algo-
rithm: Multi-Layer Perceptron - MLP)
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Figure 7.19: SHAP dependence plot derived for XTI’s from Bamital DGA family - Feature: Max_DeciDig_Seq
(Algorithm: Multi-Layer Perceptron - MLP)

Figure 7.20: Force plot pertaining to benign (non-DGA) names incorrectly classified as DGA - Name: wawibox.de

Figure 7.21: Force plot pertaining to benign (non-DGA) names incorrectly classified as DGA - Name:
rvwgm2wrld2.xyz

Figure 7.22: Force plot pertaining to malicious names incorrectly classified as benign - Name: nomodum.info,
DGA Family: Simda
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Figure 7.23: Force plot pertaining to malicious names incorrectly classified as benign - Name: californiatransfer-
able.ru, DGA Family: Gozi

that favors benign name classifications. Fig. 7.21 shows that name "rvwgm2wrld2.xyz", which
is frequently used for malware propagation [204] but is not produced by DGA’s, is misclassified
as DGA. This is attributed to the low Reputation value, the high frequency of letter W and the
low Words_Mean value, although the zero Vowel_Freq value might point to non-DGA name
classification.

Fig. 7.22 and 7.23 depict force plots pertaining to MLP FN’s, i.e. DGA names incorrectly
classified as benign. Fig. 7.22 shows that Length values have a major effect on misclassify-
ing name "nomodum.info", generated by the Simda arithmetic-based DGA family, despite the
high frequencies of letters M and O that favor malicious name classifications. Fig. 7.23 shows
that name "californiatransferable.ru" originating from the Gozi wordlist-based DGA family is
classified as benign because Reputation values point to benign name classifications. This coun-
terbalances the effect of name length and the high presence of vowels that point towards DGA
names.

7.6 Summary & Concluding Remarks

We investigated XAI methods for interpreting DGA name classifiers that detect malicious DNS
messages used by bots to communicate with C&C servers. We addressed defense mechanisms
based on ML classifiers and analyzed their operation via the SHAP algorithm that provides
global and local interpretations in a model-agnostic, post-hoc manner.

To that end, we first configured tree-based and deep neural network binary classifiers for dif-
ferentiating between benign DNS names and malicious names produced by DGA’s. We trained
and evaluated classifiers based on supervised ML algorithms, specifically RF’s, GB, XGBoost,
AdaBoost, ExtraTrees and MLP’s. These relied on features directly extracted from domain
name datasets, thus eliminating time-consuming and privacy-sensitive operations on reposito-
ries of historical data. Classifiers were trained using up-to-date and inclusive datasets. Legit-
imate names originated from Tranco, an online service ranking top Internet sites; we selected
the 1 million most popular names. Malicious instances were sampled from the DGArchive
repository, which reports 105 DGA families from 4 different generation schemes; we randomly
selected 600,775 DGA names.

Our SHAP-based evaluation analyzed the features used by our trained XGBoost (determined
as the most accurate tree-based model) and MLP deep neural network classifiers to segregate
benign and DGA name instances. We investigated how DGA families and their different un-
derlying algorithmic generation schemes (i.e. arithmetic, wordlist, hash or permutation based)
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affect the features that specifically influence classification decisions. Relying onmultiple SHAP
visualization tools (summary, dependence and force plots) we provided global and local interpre-
tations on sampled dataset instances. Specifically, we ranked feature importance, investigated
the effect of feature values on model decisions and determined their interactions. Using up-to-
date and extensive datasets, we conclude that our SHAP-based analysis enables interpretations
of XGBoost and MLP name classifiers, attacked by well-known diverse DGA schemes. Such
methods may facilitate ML adoption within networking environments where interpretations for
black-box schemes are required.
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Chapter 8

Conclusions & Future Steps

In this chapter we summarize our work (Section 8.1) and discuss future steps (Section 8.2).

8.1 Summary & Concluding Remarks

Motivated by the vital role of Domain Name System (DNS) for critical Internet services, we
proposed mechanisms for effectively defending against major DNS cybersecurity threats. We
considered DDoS attacks targeting DNS infrastructures (i.e. Water Torture) as well as tech-
niques abusing DNS to establish botnet communications, i.e. Domain Generation Algorithms
(DGA’s). Our developed systems relied on various widely applied methods originating from
diverse research fields, such as Big Data analytics and Software-Defined Networking. Specif-
ically, we leveraged on probabilistic data structures, Machine Learning (ML) algorithms, eX-
plainable Artificial Intelligence (XAI) techniques and Programmable Data Planes (PDP’s) to
efficiently counter DNS cyber-attacks.

We initially proposed a user-space schema for the detection and mitigation of DNS Water
Torture attacks targeting Authoritative DNS Servers (Chapter 3). Our approach relied on data
structures and algorithms, which were capable of differentiating between legitimate and ma-
licious DNS messages in a time and space efficient manner. We mainly emphasized on the
utilization of Bloom Filters (BF’s) for accurately mapping large DNS zones and rapidly filter-
ing ingress DNS traffic. We also outlined the potential of supporting schemas for collaborative
Water Torture attackmitigation driven by the privacy properties of BF’s. Our analysis concluded
that our proposed schema was able to effectively safeguard Authoritative DNS Servers without
requiring extensive computational resources.

We subsequently extended our previously proposed user-space filtering mechanism (Chapter
3) by employing data plane programmability techniques for high-speed Water Torture mitiga-
tion at the NIC driver level of Authoritative DNS Servers. In Chapter 4, we employed eXpress
Data Path (XDP) for rapid Deep Packet Inspection (DPI) of ingress DNS messages at the ear-
liest level of the Linux kernel, i.e. before any memory is allocated to them. Therefore, our
solution enabled efficient BF-based domain name lookups for segregating valid from invalid
DNS requests entirely within the data plane of Authoritative DNS Servers. Contrary to other
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data plane programmability methods (e.g. P4 switches and DPDK), our XDP-based solution
does not depend on specialized hardware and the Linux kernel is not bypassed, hence network
administrators may benefit from COTS hardware (e.g. low-cost NIC’s) and the available Linux
kernel modules (e.g. TCP/IP libraries). Our experimentation concluded that our proposed BF-
based data plane mitigation mechanism was capable of significantly accelerating name lookups
compared to our previously proposed user-space mechanism.

In Chapter 5, we proposed a privacy-aware schema to facilitate Authoritative DNS Server
zone exchanges with no requirements for formal collaboration agreements. Via our schema,
domain names may be distributed to external filtering mechanisms, e.g. Recursors or upstream
cloud scrubbing infrastructures, which will mitigate DNS-based DDoS attacks more effectively
closer to their origins or filter DGA traffic more accurately. Our mechanism relied on Cuckoo
Filters (CF’s) to map Authoritative DNS Server zones, which were selected instead of BF’s due
to their time, space and dynamic deletion advantages. Our experimental analysis concluded that
our CF-based mechanism is promising for the privacy-aware distribution of Authoritative DNS
Server zone contents.

Although the results of our whitelist-based DNS attack mitigation mechanisms were promis-
ing, their application is not possible when Authoritative DNS Server administrators are not
willing to collaborate and thus, zone contents are not available to third-party mitigation sys-
tems. Therefore, in Chapter 6, we complemented our whitelist-based solutions by implementing
anomaly-based filtering mechanisms for Water Torture attacks and/or DGA traffic. Specifically,
we leveraged on XDP to accelerate ML classification within the data plane of Recursors. We
developed Naive Bayes Classifiers, which were capable of effectively differentiating between
benign and malicious DNS requests entirely within the Linux kernel of filtering appliances.
Thus, the cost of ML inference at the name server control plane was avoided. When deployed
within Recursors, our analysis demonstrated that our XDP-based solution accomplished signif-
icant mitigation throughput without requiring any specialized hardware, e.g. Graphics Process-
ing Units (GPU’s), for fast ML classification.

Finally, in Chapter 7 we relied on eXplainable Artificial Intelligence (XAI) techniques to
interpret the operation of DGA name classifiers that differentiate between legitimate and ma-
licious domain names. Specifically, we employed SHapley Additive exPlanation (SHAP) and
various of its available visualization tools (summary, dependence, force plots) to assess feature
importance and determine interactions among the selected features. As a model-agnostic and
post-hoc XAI method, SHAP enabled the analysis of tree (i.e. XGBoost) and deep neural net-
work (i.e. MLP) classifiers in a unified manner after the completion of the ML model learning
phase. Features were extracted directly from domain names, thus they reported the statistical
and linguistic properties of dataset entries, while costly and privacy sensitive external repository
operations were avoided. Contrary to related approaches, our evaluation focused on analyzing
classification decisions with respect to well-known fundamental DGA schemes (i.e. arithmetic,
wordlist, hash and permutation based), which are used to construct diverse DGA names. Our
evaluation concluded that SHAP is promising for understanding the functionality of ML-based
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security mechanisms and thus, XAI methods may facilitate ML adoption within networking
environments where justifications of black-box model decisions are required.

8.2 Recommendations for Further Research

In this section, we outline research directions, which may be considered to extend our proposed
DNS cyber-attack protection solutions and provide more advanced security services.

Distributed Ledger Technology (DLT), e.g. Blockchain-based architectures [205, 206], may
be investigated to streamline collaboration between Authoritative DNS Servers and potential
attack mitigators (e.g. Recursors) via Smart Contracts [205]. Similarly to [207], permissioned
Blockchains may be considered because of their immutability properties to ensure transparent
transactions among collaborators. Collaborator mitigation requests may also be ranked based
on reputation-based systems, whereas appropriate mechanisms may be developed to provide
incentives for mitigation offers.

Recently proposed probabilistic data structures, e.g. Morton Filters [208], Xor Filters [209]
and/or Vacuum Filters [210], may be applied to improve our BF and CF based mechanisms for
mapping DNS zones. These have been reported to outperform BF’s and CF’s in terms of lookup
latency and memory requirements, while permitting flexible element updates. The aforemen-
tioned data structures could be employed for privacy-aware zone exchanges and they may be
implemented within the data plane using the XDP framework to assess if the mitigation through-
put is improved compared to our proposed BF-based filtering solution.

Apart from supporting Water Torture detection and mitigation, our proposed mechanisms
may also be adapted to additional DNS attack vectors, such as DNS Flood, DNS Amplification,
NXNSAttacks [165] and TsuNAME DNS attacks [211]. Comparisons with existing counter-
measures, e.g. [212], in terms of latency and memory requirements could also be considered.
Additionally, potential extensions of our proposed mechanisms may be investigated to defend
against malicious attempts that are based on encrypted DNS traffic [213].

Our XDP-based data plane mechanisms may be compared with other data plane programma-
bility technologies, e.g. P4 switches and/or DPDK. Furthermore, XDP and eBPF could be used
to implement data plane ML inference for additional algorithms, e.g. Multi-Layer Perceptrons
(MLP’s) and/or Random Forests (RF’s); their throughput and accuracy may be compared with
our proposed in-network Naive Bayes Classifiers. Moreover, alternative techniques for map-
pingML algorithm parameters within the data plane, e.g. those reported in [83], may accomplish
higher DDoS attack mitigation throughput than directly implementingML algorithmmathemat-
ical equations.

Our SHAP-based interpretations may be extended to address additional deep neural network
models. These may include Convolutional Neural Networks (CNN’s), Long Short-Term Mem-
ory (LSTM) networks and/or Bidirectional LSTM (BiLSTM) networks, which can be employed
for DGA name classification [60]. Alternative XAI approaches, e.g. LIME [176] and Counter-
factual Explanation [177], may also be considered. The proposed schememay be further adapted
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to unsupervised deep learning models, e.g. Autoencoders.
Finally, the proposed mechanisms may be extended to multi-domain infrastructures using

Federated Learning [214] for collaborative DGA name detection, similarly to [215,216]. There-
fore, collaborators may converge to federatedMLmodels without sharing any private attack and
benign data.
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Chapter 10

Extended Abstract in Greek - Εκτεταμένη
Περίληψη στα Ελληνικά

Το κεφάλαιο αυτό περιλαμβάνει μία εκτεταμένη περίληψη της διατριβής στην ελληνική
γλώσσα. Κάθε ενότητα της εκτεταμένης περίληψης αφορά ένα κεφάλαιο του αγγλικού κει-
μένου. Στο τέλος του κεφαλαίου περιλαμβάνεται γλωσσάριο στο οποίο παρουσιάζονται οι
αντιστοιχίες ελληνικών και αγγλικών όρων.

10.1 Κεφάλαιο 1

Το Σύστημα Ονοματοδοσίας (Domain Name System, DNS) παρέχει μηχανισμούς για την
απεικόνιση συμβολικών αναγνωριστικών (ονόματα – domain names) σε διάφορα είδη πλη-
ροφοριών. Χαρακτηριστικό παράδειγμα τέτοιων πληροφοριών αποτελούν οι αριθμητικές
τιμές που αντιστοιχούν σε διευθύνσεις πρωτοκόλλου Διαδικτύου (Internet Protocol, IP). Οι
περισσότερες δικτυακές υπηρεσίες βασίζονται σε domain names για την ομαλή λειτουργία
τους. Κατά συνέπεια, η σημασία του DNS είναι ζωτική για το Internet.

Λόγω της σπουδαιότητάς του, το DNS γίνεται συχνά στόχος κυβερνοεπιθέσεων, όπως
είναι οι κατανεμημένες επιθέσεις άρνησης παροχής υπηρεσίας (Distributed Denial of Service
attacks ή επιθέσεις DDoS). Οι επιθέσεις DDoS πλημμυρίζουν τα θύματά τους με μεγάλο όγκο
κίνησης για να κατασπαταλήσουν τους διαθέσιμους πόρους τους, π.χ. την επεξεργαστική
ισχύ, τη διαθέσιμη μνήμη ή/και το εύρος ζώνης των ζεύξεων που οδηγούν στα θύματα.

Μία επίθεση DDoS εναντίον του DNS με πολύ σοβαρές συνέπειες είναι η Water Torture.
Θύματα της επίθεσης είναι επίσημοι εξυπηρετητές DNS (Authoritative DNS Servers). Οι εξυ-
πηρετητές αυτοί διατηρούν αντιστοιχίες ονομάτων και πληροφοριών DNS, ενώ είναι υπεύ-
θυνοι για συγκεκριμένες ζώνες, δηλαδή υποσύνολα της υποδομής DNS που βρίσκονται υπό
τη διαχείριση ενός συγκεκριμένου οργανισμού. Παράπλευρα θύματα της επίθεσης Water
Torture είναι και οι αναδρομικοί εξυπηρετητές DNS (Recursive DNS Servers ή Recursors),
που προωθούν την επιθετική κίνηση στους Authoritative DNS Servers. Οι Recursors είναι
εξυπηρετητές DNS, οι οποίοι αναζητούν τους Authoritative DNS Servers που εξυπηρετούν
τις ζώνες στις οποίες απευθύνονται τα ερωτήματα DNS των επιτιθέμενων.
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Οι επιθέσεις Water Torture πλημμυρίζουν τους Authoritative DNS Servers μίας ζώνης με
μεγάλο πλήθος ερωτημάτων DNS. Σκοπός της επίθεσης είναι η εξάντληση της υπολογι-
στικής ισχύος των θυμάτων. Κύριο χαρακτηριστικό της επίθεσης είναι ότι τα κακόβουλα
ερωτήματα αφορούν domain names που δεν είναι αποθηκευμένα στις ζώνες του θύματος.
Παράγοντας με τυχαίο τρόπο το πρόθεμα (prefix) των domain names εξασφαλίζεται ότι πα-
ρακάμπτονται οι προσωρινές μνήμες DNS (DNS cache) των Recursors. Κατά συνέπεια, όλη
η επιθετική κίνηση κατευθύνεται στο θύμα, μεγιστοποιώντας τις συνέπειες της επίθεσης.

Εκτός από τις επιθέσεις DDoS, οι επιτιθέμενοι κακομεταχειρίζονται συχνά το DNS για
την εγκατάσταση διαύλων επικοινωνίας στους οποίους προωθούνται κακόβουλα δεδομένα
με χαμηλούς ρυθμούς, ώστε να αποφεύγεται ο εντοπισμός τους. Οι επιτιθέμενοι ουσιαστικά
εκμεταλλεύονται τις πολιτικές τειχών προστασίας (firewalls) που εφαρμόζονται σε δίκτυα
υπολογιστών. Οι πολιτικές αυτές δεν μπλοκάρουν τα μηνύματα DNS λόγω της αναγκαιό-
τητάς τους για την ομαλή λειτουργία πολλών δικτυακών υπηρεσιών.

Χαρακτηριστικό παράδειγμα τέτοιων κακόβουλων ενεργειών είναι η κατάχρηση του
DNS για την εγκαθίδρυση επικοινωνίας ανάμεσα σε μολυσμένες συσκευές (bots) και τους
εξυπηρετητές ελέγχου τους (Command&Control ή C&C servers). Συγκεκριμένα, τα bots στη-
ρίζονται στους αλγορίθμους παραγωγής ονομάτων (Domain Generation Algorithms - DGA’s)
για να παράξουν πλήθος ονομάτων με βάση μία τεχνική seeding, που είναι γνωστή στους
C&C servers. Μερικά από τα ονόματα δεσμεύονται, ώστε να αντιστοιχούν στις διευθύνσεις
IP των C&C servers, ενώ τα υπόλοιπα ονόματα δε συνδέονται με κάποια πληροφορία DNS.
Τα bots ρωτούν τα παραχθέντα ονόματα μέχρι να λάβουν ως απάντηση τη διεύθυνση IP
που κατευθύνει στον αντίστοιχο C&C server. Ο συνήθως μεγάλος αριθμός των ερωτηθέ-
ντων ονομάτων, καθώς και συχνές αλλαγές στην τεχνική seeding δυσκολεύουν τον εντοπι-
σμό των κακόβουλων ονομάτων και, κατά συνέπεια, το μπλοκάρισμα της λειτουργίας ενός
δικτύου μολυσμένων συσκευών (botnet).

Η προστασία τουDNS είναι υψίστης σημασίας για τους διαχειριστές δικτύων. Οι μηχανι-
σμοί άμυνας του DNS από τις παραπάνω κυβερνοεπιθέσεις βασίζονται συνήθως σε λίστες
καλόβουλων ονομάτων (whitelists) ή αλγορίθμους μηχανικής μάθησης (Machine Learning,
ML). Ερωτήματα που περιλαμβάνουν domain names τα οποία περιέχονται στις whitelists
προωθούνται στον προορισμό τους, ενώ τα υπόλοιπα απορρίπτονται ως κακόβουλα. Αντί-
στοιχα, οι αλγόριθμοι μηχανικής μάθησης εκμεταλλεύονται παρελθοντικά δεδομένα για
την εκπαίδευση μοντέλων που μπορούν να γενικεύουν σε νέα δεδομένα, ώστε να διακρίνο-
νται αποτελεσματικά τα καλόβουλα από τα κακόβουλα ερωτήματα DNS.

Αν και τα αποτελέσματα των παραπάνω μηχανισμών είναι συνήθως ικανοποιητικά,
υπάρχουν σημαντικοί περιορισμοί στη χρήση τους:

• Περιορισμοί σε υπολογιστικούς πόρους:Οι παραδοσιακές προσεγγίσεις που χρησι-
μοποιούν whitelists για να φιλτράρουν επιθετική κίνηση DNS βασίζονται συνήθως σε
δομές δεδομένων και αλγορίθμους που απαιτούν την ακριβή μορφή των domain names
για να λειτουργήσουν. Whitelists που απεικονίζουν ολόκληρες ζώνες DNS μπορεί να
περιλαμβάνουν ακόμα και εκατομμύρια ονόματα. Κατά συνέπεια, η χρήση αναποτε-
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λεσματικών τεχνικών μπορεί να δημιουργήσει σημαντικά προβλήματα λόγω περιορι-
σμών στους διαθέσιμους υπολογιστικούς πόρους. Συγκεκριμένα, οι συσκευές που φιλ-
τράρουν την επιθετική κίνηση μπορεί να αδυνατούν να αποθηκεύσουν τις whitelists
στη μνήμη τους. Παράλληλα, η απόδοση φιλτραρίσματος των αμυντικών συσκευών
μπορεί να μην ανταποκρίνεται σε σύγχρονες επιθέσεις DDoS που πλημμυρίζουν τα
θύματά τους με πολύ μεγάλο όγκο κίνησης στη μονάδα του χρόνου.

• Προβλήματα ιδιωτικότητας:Ηπρόσβαση στα περιεχόμενα των ζωνών που περιλαμ-
βάνουν οι Authoritative DNS Servers είναι συνήθως περιορισμένη για λόγους ασφα-
λείας. Αυτό εμποδίζει την κατασκευή έγκυρων whitelists που μπορούν να χρησιμοποι-
ηθούν για το ακριβές φιλτράρισμα επιθετικής κίνησης DNS κοντά στις πηγές της.
Χαρακτηριστικό παράδειγμα είναι η αντιμετώπιση επιθέσεων DDoS σε Recursors ή
upstream υπηρεσίες συννέφου (cloud services), όπου είναι συνήθως πιο αποτελεσμα-
τική, καθώς και η κατασκευή whitelists από τα περιεχόμενα διαφόρων Authoritative
DNS Servers για το ακριβέστερο φιλτράρισμα κίνησηςDNS που παράγεται απόDGA's.

• Περιορισμοί απόδοσης φιλτραρίσματος πακέτων: Οι μηχανισμοί αντιμετώπισης
επιθέσεων DNS βασίζονται συνήθως στη βαθιά επιθεώρηση πακέτου (Deep Packet
Inspection, DPI), δηλαδή στην εξέταση των δεδομένων (payload) των μηνυμάτων DNS
για την εξαγωγή των domain names. Τα domain names τροφοδοτούνται στη συνέχεια σε
whitelists ή αλγορίθμους μηχανικής μάθησης που τα κατηγοριοποιούν ως καλόβουλα ή
κακόβουλα. Το DPI και οι κατηγοριοποιήσεις ονομάτων περιλαμβάνουν ενέργειες που
πραγματοποιούνται συνήθως στο χώρο χρήστη (user space) των συσκευών φιλτραρί-
σματος. Ωστόσο, η αντιμετώπιση επιθέσεων στο user space προκαλεί σημαντικές καθυ-
στερήσεις λόγω των συχνών προσβάσεων στη μνήμη, καθώς και άλλων ενεργειών του
λειτουργικού συστήματος. Ως αποτέλεσμα, οι μηχανισμοί φιλτραρίσματος μπορεί να
αδυνατούν να ανταποκριθούν στον μεγάλο όγκο κίνησης των σύγχρονων επιθέσεων
DDoS.

• Αδυναμία κατανόησης των αποφάσεων των μοντέλων μηχανικής μάθησης:Οι συ-
νεχείς προσπάθειες για τη βελτίωση της διακριτικής ικανότητας των ταξινομητών μη-
χανικής μάθησης οδήγησε στην υιοθέτηση όλο και πιο περίπλοκων μοντέλων. Έτσι,
απλά και επεξηγήσιμα μοντέλα αντικαταστάθηκαν από πολύπλοκα, μαύρα κουτιά
(black-boxes), των οποίων οι αποφάσεις δεν μπορούν να γίνουν άμεσα κατανοητές
στους χρήστες των αλγορίθμων και τους προγραμματιστές των μοντέλων. Ως αποτέ-
λεσμα, οι διαχειριστές δικτύων αντιμετωπίζουν με δυσπιστία τη χρήση μοντέλων μη-
χανικής μάθησης σε συσκευές φιλτραρίσματος δικτυακής κίνησης, καθώς απαιτούν
συνήθως διαβεβαιώσεις για τη λειτουργία τους.

Λύσεις για την αντιμετώπιση των παραπάνω περιορισμών μπορούν να αναζητηθούν
στο πεδίο των μεγάλων δεδομένων (Big Data) και των δικτύων που καθορίζονται από λογι-
σμικό (Software-Defined Networks, SDN's). Συγκεκριμένα, οι πιθανοτικές δομές δεδομένων
(probabilistic data structures), η μηχανική μάθηση και ο προγραμματισμός στο επίπεδο δε-
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δομένων (data plane programming) μπορούν να χρησιμοποιηθούν για την αποτελεσματική
προστασία από απειλές DNS. Επιπρόσθετα, αλγόριθμοι επεξηγήσιμης τεχνητής νοημοσύ-
νης (eXplainable Artificial Intelligence, XAI) μπορούν να χρησιμοποιηθούν για να ερμηνευτεί
η λειτουργία πολύπλοκων μοντέλων μηχανικής μάθησης.

Στη διατριβή αυτή βασιζόμαστε στις παραπάνω τεχνολογίες για την αποτελεσματική
προστασία υποδομών DNS από επιθέσεις DDoS, συγκεκριμένα τις επιθέσεις Water Torture,
καθώς και το αξιόπιστο φιλτράρισμα μηνυμάτων DNS που παράγονται από DGA's.

Η έρευνά μας στηρίζεται κυρίως:

• Στα φίλτρα Bloom (Bloom Filters, BF's) και τα φίλτρα Cuckoo (Cuckoo Filters, CF's),
τα οποία είναι αποδοτικές ως προς τον χώρο αποθήκευσης πιθανοτικές δομές δεδο-
μένων που χρησιμοποιούνται για να εξεταστεί ταχύτατα εάν ένα στοιχείο, π.χ. domain
name στην περίπτωσή μας, είναι αποθηκευμένο στο φίλτρο ή όχι. Για να είναι αποδο-
τικά ως προς τον χρόνο και τη μνήμη, τα BF's και τα CF's δεν αποθηκεύουν τα domain
names με την κανονική τους μορφή, αλλά αφού τα περάσουν από συναρτήσεις κατα-
κερματισμού (hash functions). Αφού αλλοιώνεται η αρχική μορφή των δεδομένων, οι
παραπάνω πιθανοτικές δομές αποκτούν ιδιότητες ιδιωτικότητας (privacy) και είναι
κατάλληλες για την ανταλλαγή ευαίσθητων δεδομένων.

• Στο eXpress Data Path (XDP), μια μέθοδο προγραμματισμού στο επίπεδο δεδομένων
που επιτρέπει την επεξεργασία των εισερχόμενων πακέτων σε πολύ υψηλές ταχύτητες.
Η επεξεργασία των πακέτων γίνεται στο επίπεδο των οδηγών (drivers) του Linux, μειώ-
νοντας σημαντικά τις συνολικές ενέργειες του λειτουργικού συστήματος που απαιτού-
νται ανά πακέτο, π.χ. δεσμεύσεις μνήμης. Έναντι άλλων μεθόδων προγραμματισμού
στο επίπεδο δεδομένων, βασικά πλεονεκτήματα του XDP είναι ότι δεν απαιτεί εξειδι-
κευμένο υλικό (hardware), όπως το Programming Protocol-independent Packet Processors
(P4), ενώ δεν παρακάμπτει τον πυρήνα του Linux (Linux kernel), όπως το Data Plane
Development Kit (DPDK), επιτρέποντας τη χρήση λειτουργιών που είναι διαθέσιμες
από τον Linux kernel, π.χ. τις βιβλιοθήκες της στοίβας TCP/IP.

• Στην τεχνική SHapley Additive exPlanation (SHAP), μία μέθοδο XAI που επιτρέπει την
εξαγωγή καθολικών (global) και τοπικών (local) ερμηνειών (interpretations) για τη λει-
τουργία πολύπλοκων μοντέλων μηχανικής μάθησης. Οι καθολικές ερμηνείες αφορούν
ομάδες δειγματικών σημείων του συνόλου δεδομένων (dataset), ενώ οι τοπικές αφο-
ρούν μεμονωμένα δειγματικά σημεία. Οι ερμηνείες που προσφέρει η SHAP μπορούν
να ληφθούν για οποιοδήποτε μοντέλο (model-agnostic), αφού ολοκληρωθεί η εκπαί-
δευσή του (post-hoc).

Οι βασικές συνεισφορές της διατριβής είναι οι παρακάτω:

• Ανίχνευση και αντιμετώπιση επιθέσεων Water Torture με αποτελεσματικές δο-
μές δεδομένων και αποδοτικούς αλγορίθμους: Αξιοποιούμε τεχνικές από το πεδίο
των Big Data για την αποτελεσματική προστασία απέναντι σε επιθέσεις που πλήττουν
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υποδομές DNS, συγκεκριμένα τις επιθέσεις Water Torture. Τα προτεινόμενα συστή-
ματα βασίζονται σε πιθανοτικές δομές δεδομένων (Bloom Filters - BF's και Count-Min
Sketches - CMS's) για να πραγματοποιήσουν ελέγχους ονομάτων (name lookups) και
εκτίμηση συχνοτήτων (frequency estimation) αποδοτικά ως προς τον χρόνο επεξερ-
γασίας και τη μνήμη που καταναλώνεται. Παράλληλα, στηριζόμαστε σε αιτιοκρατι-
κούς (deterministic) αλγορίθμους επεξεργασίας φυσικής γλώσσας (Natural Language
Processing, NLP), όπως είναι ο SymSpell, για τον ταχύτατο εντοπισμό τυπογραφικών
λαθών, ο οποίος επιτρέπει τη λεπτομερή κατηγοριοποίηση διευθύνσεων IP σε καλό-
βουλες και κακόβουλες. Σε αντίθεση με παρόμοιες προσεγγίσεις, οι προτεινόμενοι μη-
χανισμοί μπορούν να απεικονίζουν μεγάλες ζώνες DNS χωρίς μείωση της συνολικής
απόδοσης με κόστος την εισαγωγή ενός ανεκτού και παραμετροποιήσιμου ποσοστού
λαθών.

• Επιτάχυνση ενεργειών DPI με προγραμματισμό στο επίπεδο δεδομένων για την
αποτελεσματική αντιμετώπιση επιθέσεωνDNS:Βασιζόμαστε στο XDP για να ξεχω-
ρίσουμε καλόβουλα και κακόβουλα μηνύματαDNS στο επίπεδο δεδομένων (data plane)
των συσκευών φιλτραρίσματος δικτυακής κίνησης. Το XDP χρησιμοποιείται για τη
βελτίωση ενεργειών DPI που παραδοσιακά πραγματοποιούνται στο χώρο χρήση των
συστημάτων ασφαλείας, δηλαδή την εξαγωγή των ερωτηθέντων ονομάτων, ελέγχους
σε whitelists, καθώς και την αποτίμηση της εξόδου αλγορίθμων μηχανικής μάθησης.
Για την υλοποίηση των παραπάνω ενεργειών DPI στο data plane, λαμβάνονται υπόψη
οι περιορισμοί τουXDP, δηλαδή η απουσία δεκαδικών αριθμών, το περιορισμένο μέγε-
θος προγράμματος, αλλά και η έλλειψη ατέρμονων βρόχων. Οι data plane υλοποιήσεις
μας αυξάνουν σημαντικά την απόδοση φιλτραρίσματος σε σχέση με τις αντίστοιχες
υλοποιήσεις σε χώρο χρήστη, χωρίς να απαιτείται εξειδικευμένο hardware, όπως σε
παρόμοιες μεθόδους προγραμματισμού στο επίπεδο δεδομένων, π.χ. το P4.

• Ανταλλαγές ζωνών DNS που σέβονται την ιδιωτικότητα βασισμένες σε πιθανοτι-
κές δομές δεδομένων: Βασιζόμαστε στις ιδιότητες ιδιωτικότητας των πιθανοτικών
δομών δεδομένων και συγκεκριμένα στα Cuckoo Filters (CF's) για την ανταλλαγή ζω-
νών DNS ανάμεσα σε Authoritative DNS Servers και συσκευές φιλταρίσματος εξωτερι-
κών συνεργατών (third-parties), π.χ. Recursors ή upstream υποδομές συννέφου (cloud
infrastructures). Έτσι, η αντιμετώπιση επιθέσεων DDoS που πλήττουν το DNS (π.χ.
Water Torture) μπορεί να πραγματοποιηθεί πιο κοντά στις πηγές της επίθεσης, όπου
το φιλτράρισμα δικτυακής κίνησης είναι συνήθως πιο αποδοτικό. Παράλληλα, οι δια-
χειριστές δικτύων μπορούν να συλλέξουν whitelists από διάφορους Authoritative DNS
Servers ωστε να φιλτράρουν με αυξημένη ακρίβεια κίνηση DNS που παράγεται από
DGA's στις άκρες των δικτύων τους. Σε αντίθεση με παρόμοιες προσεγγίσεις που βα-
σίζονται σε BF's, χρησιμοποιούμε CF's, τα οποία επιτρέπουν τις διαγραφές στοιχείων
και, κατά συνέπεια, διευκολύνουν την ανανέωση των whitelists.

• Καθολικές και τοπικές ερμηνείες ταξινομητών DGA που βασίζονται σε δέντρα
αποφάσεων και βαθιά νευρωνικά δίκτυα με χρήση model-agnostic, post-hoc μεθό-
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δων XAI: Βασιζόμαστε στην τεχνική SHAP για να ερμηνεύσουμε τις αποφάσεις ταξι-
νομητών ονομάτων που παράγονται από DGA's με model-agnostic και post-hoc τρόπο,
δηλαδή ανεξάρτητα από το επιλεγμένο μοντέλο και αφού ολοκληρωθεί η διαδικα-
σία μάθησης. Αξιοποιούμε πλήθος εργαλείων οπτικοποίησης που παρέχει η μέθοδος
SHAP (διαγράμματα summary, dependence, force) για την εξαγωγή καθολικών και το-
πικών ερμηνειών των κριτηρίων με τα οποία οι ταξινομητές ονομάτων διακρίνουν τα
καλόβουλα από τα κακόβουλα ονόματα. Σε αντίθεση με παρόμοιες προσεγγίσεις, εκτι-
μούμε τη συνεισφορά των επιλεγμένων χαρακτηριστικών (features) και τις αλληλεπι-
δράσεις τους εστιάζοντας στην τεχνική που έχει χρησιμοποιηθεί για την παραγωγή
των ονομάτων DGA (arithmetic, wordlist, hash και permutation based). Η εκπαίδευση
των αλγορίθμων μηχανικής μάθησης και η εξαγωγή ερμηνειών βασίζονται σε features
που εξάγονται απευθείας από τα domain names. Τα features αυτά αποδίδουν τις στατι-
στικές και γλωσσικές ιδιότητες των ονομάτων, ενώ αποφεύγονται λήψεις δεδομένων
από εξωτερικές βάσεις δεδομένων. Τέτοιες ενέργειες είναι συνήθως χρονοβόρες και
μπορεί να παραβιάσουν την ιδιωτικότητα διαφόρων δικτυακών χρηστών.

• Εκτενής πειραματική αξιολόγηση των προτεινόμενων μηχανισμών: Τα προτεινό-
μενα συστήματα ασφαλείας αξιολογούνται με πειράματα στην εικονική υποδομή του
εργαστηρίου Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων Τηλεματικής στο Εθνικό
Μετσόβιο Πολυτεχνείο (ΕΜΠ). Οι αξιολογήσεις μας βασίζονται σε έγκυρα σύνολα δε-
δομένων που χρησιμοποιούνται κατά κόρον από τους ερευνητές DNS (π.χ. DGArchive,
λίστα Tranco) και συνθετική κίνηση, η οποία βασίστηκε σε στατιστικά στοιχεία από
δημόσια προσβάσιμα δεδομένα (επιθέσεις Booters) και την εμπειρία μας από τις δι-
κτυακές υπηρεσίες του ΕΜΠ.

10.2 Κεφάλαιο 2

Το κεφάλαιο αυτό περιλαμβάνει θεωρητικό υπόβαθρο για έννοιες που είναι σημαντικές
για την κατανόηση των υπολοίπων κεφαλαίων της διατριβής. Το κεφάλαιο είναι χωρισμένο
σε 7 ενότητες:

• Στην πρώτη ενότητα παρέχονται βασικές πληροφορίες για το σύστημα ονοματοδο-
σίας (Domain Name System, DNS). Αρχικά, το DNS αναλύεται ως κατανεμημένη και
ιεραρχική βάση δεδομένων και, στη συνέχεια, περιγράφονται η διαδικασία επίλυσης
ονομάτων, η προσωρινή αποθήκευση ονομάτων στους Recursors, οι τύποι εγγραφών
DNS και οι μεταφορές ζωνών. Τέλος, η ενότητα περιλαμβάνει πληροφορίες για τα
μηνύματα DNS και τις επικεφαλίδες τους.

• Η δεύτερη ενότητα περιλαμβάνει θεωρητικό υπόβαθρο για τις επιθέσεις DDoS. Ανα-
λύονται τεχνικές, όπως η παραποίηση διευθύνσεων IP (IP spoofing), ενώ παρέχονται
πληροφορίες για τα δίκτυα μολυσμένων συσκευών (botnets). Στη συνέχεια, περιγρά-
φονται οι βασικές κατηγορίες επιθέσεωνDDoS, καθώς και κοινές τεχνικές εντοπισμού
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και αντιμετώπισής τους.
• Στην τρίτη ενότητα παρέχονται πληροφορίες για δικτυακές απειλές που σχετίζονται
με το DNS. Αρχικά, περιγράφονται οι επιθέσεις DDoS που στοχεύουν το DNS ή βασί-
ζονται σε αυτό (DNS Flood, Water Torture και Amplification). Επιπρόσθετα, περιλαμ-
βάνονται πληροφορίες για τους Domain Generation Algorithms (DGA's).

• Η τέταρτη ενότητα αφορά SDN’s και μεθόδους προγραμματισμού στο επίπεδο δεδομέ-
νων (data plane programming). Αρχικά, παρέχονται βασικές πληροφορίες για τα SDN’s
και το πρωτόκολλο OpenFlow (OF). Στη συνέχεια, περιγράφονται τρεις τεχνικές data
plane programming: (i) P4, (ii) XDP και (iii) DPDK.

• Η πέμπτη ενότητα αναλύει πρωτόκολλα και εργαλεία για την παρακολούθηση δικτυα-
κών υποδομών, όπως είναι το NetFlow και το sFlow.

• Η έκτη ενότητα περιγράφει αποδοτικές δομές δεδομένων και αλγορίθμους που χρη-
σιμοποιούνται στα υπόλοιπα κεφάλαια της διατριβής. Αναλύονται πιθανοτικές δομές
δεδομένων, συγκεκριμένα τα BloomFilters (BF’s), τα Cuckoo Filters (CF’s) και τα Count-
Min Sketches (CMS’s). Έπειτα, παρέχονται πληροφορίες για αλγορίθμους διόρθωσης
τυπογραφικών λαθών με έμφαση στον αλγόριθμο SymSpell.

• Στην τελευταία ενότητα συνοψίζονται βασικές έννοιες της μηχανικής μάθησης, περι-
γράφονται βασικοί αλγόριθμοι μηχανικής μάθησης που χρησιμοποιούνται στα υπό-
λοιπα κεφάλαια της διατριβής και παρέχονται πληροφορίες για τεχνικές επεξηγήσι-
μης τεχνητής νοημοσύνης (eXplainable Artificial Intelligence, XAI).

10.3 Κεφάλαιο 3

Στο κεφάλαιο αυτό παρουσιάζεται ο μηχανισμός που αναπτύχθηκε για την αποτελεσμα-
τική ανίχνευση και αντιμετώπιση επιθέσεωνWater Torture. Βασικό ρόλο έχουν δομές δεδο-
μένων και αλγόριθμοι που εξασφαλίζουν χαμηλό χρόνο επεξεργασίας πακέτων και μειώ-
νουν τη συνολική απαιτούμενη μνήμη. Συγκεκριμένα, ο προτεινόμενος μηχανισμός στηρί-
ζεται σε πιθανοτικές δομές δεδομένων (Bloom Filters – BF’s, Count-Min Sketches – CMS’s)
και σε αιτιοκρατικούς αλγορίθμους για τη διόρθωση τυπογραφικών λαθών (SymSpell). Η
λειτουργία των παραπάνω τεχνικών γίνεται στο χώρο χρήστη (user space).

Η κύρια συνεισφορά εντοπίζεται στην αξιοποίηση των BF's για την ακριβής απεικό-
νιση μεγάλων ζωνών DNS. Στα BF's αποθηκεύουμε, οικονομικά ως προς την απαιτούμενη
μνήμη, τα ονόματα των ζωνών του Authoritative DNS Server που θέλουμε να προστατέψουμε
από τις επιθέσεις Water Torture. Έπειτα, χρησιμοποιούμε τα BF's για τον αποδοτικό διαχω-
ρισμό καλόβουλης και κακόβουλης κίνησης DNS, καθώς επιτρέπουν ταχύτατους ελέγχους
για να εκτιμηθεί εάν ένα όνομα είναι αποθηκευμένο στο φίλτρο ή όχι.

Ένα βασικό χαρακτηριστικό των BF’s, που τα καθιστά κατάλληλα για την άμυνα απέ-
ναντι σε επιθέσεις Water Torture, είναι η απουσία ψευδώς αρνητικών (False Negatives, FN’s)
αποτελεσμάτων. Η απουσία FN's εξασφαλίζει ότι κανένα καλόβουλο όνομα δεν ταξινο-
μείται λανθασμένα. Επομένως, το σύνολο των χρήσιμων μηνυμάτων DNS οδηγείται στον
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Authoritative DNS Server για να εξυπηρετηθεί. Ωστόσο, τα BF’s μπορεί να επιστρέψουν ψευ-
δώς θετικά (False Positives, FP’s) αποτελέσματα, δηλαδή ένα μικρό μέρος από την επιθετική
κίνηση της Water Torture θα προωθηθεί στο θύμα. Η πιθανότητα εμφάνισης ενός FP καθο-
ρίζεται από τις παραμέτρους των BF's.

Ένα ακόμα μεγάλο πλεονέκτημα των BF’s αποτελούν και οι ιδιότητες ιδιωτικότητας
(privacy) που παρέχουν. Η αρχική μορφή των ονομάτων, που περιλαμβάνονται στις ζώνες
του Authoritative DNS Server, αλλοιώνεται με την εφαρμογή συναρτήσεων κατακερματι-
σμού που απαιτούνται για την αποθήκευση δεδομένων στο BF. Έτσι, ευνοείται η ανάπτυξη
συνεργατικών σχημάτων αντιμετώπισης επιθέσεων Water Torture, καθώς τα BF’s διευκο-
λύνουν τον διαμοιρασμό ζωνών σε εξωτερικούς συνεργάτες (π.χ. Recursors, cloud services)
χωρίς την αποκάλυψη ευαίσθητων πληροφοριών. Οι εξωτερικοί συνεργάτες μπορούν να
φιλτράρουν την κακόβουλη δικτυακή κίνηση πιο κοντά στις πηγές της, όπου συνήθως ο
έλεγχος της επίθεσης είναι πιο αποτελεσματικός.

Ο προτεινόμενος μηχανισμός παρουσιάζεται στο σχήμα 3.1. Αποτελείται από τα ακό-
λουθα τρία δομικά στοιχεία (components): (α) Anomaly Detection Component (ADC), (β)
Mitigation Trigger Component (MTC) και (γ) DNS FireWall (DFW). Το ADC συλλέγει δε-
δομένα παρακολούθησης από το δίκτυο του θύματος (Authoritative DNS Server), εντοπίζει
επιθέσεις Water Torture και κατηγοριοποιεί τις διευθύνσεις IP ως καλόβουλες ή ύποπτες.
Για τις ύποπτες διευθύνσεις IP, το ADC διατυπώνει αιτήματα αντιμετώπισης προς τοMTC.
Στη συνέχεια, το MTC προβαίνει στις αναγκαίες ενέργειες, ώστε η κίνηση DNS που προέρ-
χεται από τις ύποπτες διευθύνσεις IP να κατευθυνθεί προς το DFW, όπου θα φιλτραριστεί.

Τα DFW's περιλαμβάνουν BF’s που ελέγχουν τα εισερχόμενα μηνύματα DNS.Μηνύματα
που αναγνωρίζονται ως κακόβουλα απορρίπτονται, ενώ τα υπόλοιπα (καλόβουλα μηνύ-
ματα και μερικά κακόβουλα που δεν εντοπίστηκαν λόγω των FP's του BF) προωθούνται
στον Authoritative DNS Server για εξυπηρέτηση. Το DFW λειτουργεί είτε στο δίκτυο του
θύματος ή σε κάποια υπηρεσία συννέφου. Τέλος, το MTC ενημερώνει τους Recursors που
προωθούν κακόβουλη κίνηση μέσω ενός συνεργατικού σχήματος. Οι Recursors που είναι
πρόθυμοι να φιλτράρουν την επιθετική κίνηση κοντά στις πηγές της θα λάβουν τα περιε-
χόμενα των ζωνών αποθηκευμένα σε BF’s, χωρίς να αποκαλυφθούν ευαίσθητα δεδομένα.

Η αξιολόγηση του προτεινόμενου μηχανισμού εστιάζεται σε τρία σκέλη:

• Αρχικά, ερευνούμε εάν τα BF’s απεικονίζουν ικανοποιητικά μεγάλες ζώνες. Εκτιμούμε
την απαιτούμενη μνήμη για την επίτευξη μίας δεδομένης πιθανότητας ψευδώς θετι-
κών αποτελεσμάτων, όταν απεικονίζεται συγκεκριμένος αριθμός ονομάτων. Η ανά-
λυσή μας βασίζεται στη ζώνη "ru" που περιλαμβάνει περίπου 5 εκατομμύρια ονόματα
και αποτελεί μία από τις 10 μεγαλύτερες ζώνες. Οι υπολογισμοί μας δείχνουν ότι ένα
BF μεγέθους 16.95 MB μπορεί να αναπαραστήσει ικανοποιητικά τη ζώνη με ποσοστό
FP 0.01%, δηλαδή μία λανθασμένη απόφαση στα 10,000 μηνύματα.

• Στη συνέχεια, αξιολογούμε την ικανότητα του ADC να ανιχνεύει έγκαιρα επιθέσεις
Water Torture και ύποπτες διευθύνσεις IP. Η αξιολόγηση στηρίχθηκε σε συνθετικά
δεδομένα καλόβουλης και κακόβουλης δικτυακής κίνησης που βασίστηκαν σε δημο-
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σίως προσβάσιμα datasets. Τα καλόβουλα και κακόβουλα πακέτα προωθήθηκαν ταυ-
τόχρονα στον Authoritative DNS Server με ρυθμούς 3 και 100 Kpps αντίστοιχα. Το ADC
εντόπισε τις διευθύνσεις IP που προωθούσαν το μεγαλύτερο μέρος της κακόβουλης
δικτυακής κίνησης σε λιγότερο από ένα λεπτό. Παρατηρήσαμε ότι καμία καλόβουλη
διεύθυνση IP δεν κατηγοριοποιήθηκε λανθασμένα λόγω της απουσίας FN's στα BF's.
Παράλληλα, η μνήμη που χρησιμοποιήθηκε για τις πιθανοτικές δομές δεδομένων (BF,
CMS) και τον αλγόριθμο SymSpell ήταν πολύ μικρή.

• Στο τελευταίο σκέλος αξιολογήσαμε την αποτελεσματικότητα των BF's για το φιλτρά-
ρισμα επιθέσεων Water Torture. Συγκρίναμε τα BF's με τα Red-Black Trees (RBT’s), τα
οποία χρησιμοποιούνται από το εδραιωμένο λογισμικό DNS ανοιχτού κώδικα BIND
για τη διατήρηση ζωνών στη μνήμη των εξυπηρετητών DNS. Προωθώντας μηνύματα
DNS ταυτόχρονα στα BF's και τα RBT's παρατηρήσαμε ότι τα BF’s φιλτράρουν αποδο-
τικότερα την επιθετική κίνηση όσο μεγαλώνει το μέγεθος της αποθηκευμένης ζώνης.

Ο προτεινόμενος μηχανισμός προστάτεψε αποτελεσματικά υποδομές DNS από επιθέ-
σεις Water Torture. Ωστόσο, η υλοποίηση του μηχανισμού αντιμετώπισης (που βασίζεται σε
BF's) στο χώρο χρήστη περιορίζει σημαντικά τις δυνατότητες φιλτραρίσματος δικτυακής
κίνησης. Στο επόμενο κεφάλαιο, χρησιμοποιούμε προγραμματισμό σε επίπεδο δεδομένων
για τη βελτίωση της απόδοσης του μηχανισμού αντιμετώπισης επιθέσεων Water Torture.

10.4 Κεφάλαιο 4

Στο κεφάλαιο αυτό αξιοποιούμε το eXpress Data Path (XDP) για την αποτελεσματική
αντιμετώπιση επιθέσεωνWater Torture στο επίπεδο δεδομένων (data plane) τωνAuthoritative
DNS Servers. Αντίστοιχα με το προηγούμενο κεφάλαιο, τα BF's χρησιμοποιούνται για την
απεικόνιση ζωνών DNS και το φιλτράρισμα δικτυακής κίνησης με τρόπο αποδοτικό ως
προς τον χρόνο (έλεγχος ύπαρξης ονομάτων) και τη μνήμη που καταναλώνεται.

Βασικές συνεισφορές του προτεινόμενου μηχανισμού είναι η (α) αντιμετώπιση επιθέ-
σεων DDoS αποκλειστικά εντός του πυρήνα του Linux, (β) διερεύνηση των δυνατοτήτων
DPI του XDP για το φιλτράρισμα επιθέσεων DNS επιπέδου εφαρμογής (application layer)
και (γ) επίτευξη υψηλής ταχύτητας αντιμετώπισης επιθέσεων DDoS χωρίς απαιτήσεις για
εξειδικευμένο hardware σε αντίθεση με παραπλήσιες τεχνικές προγραμματισμού στο επί-
πεδο δεδομένων, όπως το P4.

Ο προτεινόμενος μηχανισμός παρουσιάζεται στο σχήμα 4.1. Το XDP απομονώνει τα ει-
σερχόμενα πακέτα στο επίπεδο των οδηγών (drivers) του Authoritative DNS Server. Κάθε
πακέτο προκαλεί την εκτέλεση ενός προγράμματος extended Berkeley Packet Filter (eBPF
program). Το πρόγραμμα eBPF ελέγχει, αρχικά, εάν το πακέτο αφορά ερώτημα DNS ή όχι.
Απαντήσεις DNS ή πακέτα που δε σχετίζονται με το DNS προωθούνται στο χώρο χρήστη
χωρίς επιπρόσθετη επεξεργασία. Στη συνέχεια, εξάγεται το όνομα που περιλαμβάνεται στο
ερώτημα DNS και διέρχεται από πλήθος συναρτήσεων κατακερματισμού για να ελεγχθεί
εάν το όνομα είναι αποθηκευμένο στο BF ή όχι. Εάν το όνομα δεν είναι αποθηκευμένο στο
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BF, το ερώτημαDNSαπορρίπτεται εντός του πυρήνα του Linux ως κακόβουλο. Αντίθετα, τα
ερωτήματαπου χαρακτηρίζονται ως καλόβουλαπροωθούνται στο χώρο χρήστη, όπου θα τα
διαχειριστεί το λογισμικό DNS. Η απόρριψη των κακόβουλων πακέτων σε χαμηλό επίπεδο
μειώνει δραστικά τον αριθμό των ενεργειών του λειτουργικού συστήματος που απαιτού-
νται για τα πακέτα αυτά και, κατά συνέπεια, αυξάνει σημαντικά την αποτελεσματικότητα
φιλτραρίσματος δικτυακής κίνησης.

Η αξιολόγηση του μηχανισμού βασίζεται σε δύο μέρη. Το πρώτο μέρος περιλαμβάνει
την εκτίμηση κρίσιμων σχεδιαστικών παραμέτρων του μηχανισμού (π.χ. μέγεθος BF), ενώ
το δεύτερο μέρος μελετά την αποτελεσματικότητα του προγράμματος eBPF στην αντιμετώ-
πιση επιθέσεων Water Torture. Η αξιολόγηση εστιάζει στην επαλήθευση του trade-off ανά-
μεσα στο μέγεθος του BF και τον αριθμό των επιλεγμένων συναρτήσεων κατακερματισμού,
που συνδυαστικά καθορίζουν την απόδοση του προγράμματος eBPF. Αύξηση του αριθμού
των συναρτήσεων κατακερματισμού μέχρι μία δεδομένη τιμή συνεπάγεται μείωση στο μέ-
γεθος του BF, αλλά υποβαθμίζει την αποτελεσματικότητα του προγράμματος eBPF.

Αρχικά διερευνάται εάν ο προτεινόμενος μηχανισμός περιορίζεται σημαντικά από τους
κανόνες που διέπουν τη λειτουργία των προγραμμάτων eBPF. Συγκεκριμένα, ελέγχουμε
κατά πόσο το eBPF περιορίζει το μέγιστο μέγεθος ονομάτων που μπορούν να υποστηρι-
χθούν στην εφαρμογή μας. Η ανάλυση καταλήγει ότι οι περιορισμοί είναι μικροί και πως η
πλειοψηφία των domain names μπορεί να υποστηριχθεί από το μηχανισμό μας.

Στη συνέχεια, διερευνάται η απόδοση του προγράμματος eBPF. Προωθώντας ταυτό-
χρονα καλόβουλη και κακόβουλη δικτυακή κίνηση σε έναν Authoritative DNS Server παρα-
τηρούμε ότι η χρήση προγραμματισμού σε επίπεδο δεδομένων βελτιώνει την αποτελεσμα-
τικότητα του μηχανισμού αντιμετώπισης επιθέσεων Water Torture (που βασίζεται σε BF's)
περίπου 7 φορές σε σχέση με την αντίστοιχη υλοποίηση του μηχανισμού σε χώρο χρήστη.

Αν και η απόδοση του μηχανισμού βελτιώθηκε σημαντικά με την υλοποίηση στο επίπεδο
δεδομένων των Authoritative DNS Servers, η αντιμετώπιση επιθέσεων DDoS, όπως η Water
Torture, είναι συνήθως αποτελεσματικότερη κοντά στις πηγές τους. Για το σκοπό αυτό, στο
επόμενο κεφάλαιο υλοποιούμε έναν μηχανισμό για την ανταλλαγή ζωνών DNS με τρόπο
που σέβεται την ιδιωτικότητα.

10.5 Κεφάλαιο 5

Στο κεφάλαιο αυτό παρουσιάζεται ένας μηχανισμός για την αποτελεσματική διανομή
ζωνών DNS από Authoritative DNS Servers. Ο προτεινόμενος μηχανισμός βασίζεται σε με-
θόδους που αποκρύπτουν τα περιεχόμενα των ζωνών, ευνοώντας την αξιοποίηση των λη-
φθέντων πληροφοριών από εξωτερικές συσκευές φιλτραρίσματος δικτυακής κίνησης. Τέ-
τοιες συσκευές μπορεί να περιλαμβάνονται σε Recursors ή upstream υποδομές συννέφου.
Πιθανές εφαρμογές του προτεινόμενου μηχανισμού αποτελούν η αντιμετώπιση επιθέσεων
Water Torture πιο κοντά στις πηγές της επίθεσης (π.χ. σε Recursors) και το ακριβέστερο
φιλτράρισμα κίνησης DNS για την απόρριψη ερωτημάτων που παράγονται από DGA's.
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Καθορίζουμε διάφορες σχεδιαστικές απαιτήσεις για τον προτεινόμενο μηχανισμό. Συ-
γκεκριμένα, ο μηχανισμός πρέπει να απεικονίζει τα ονόματα που περιλαμβάνονται στις
ζώνες DNS αποδοτικά και με τρόπο που εξασφαλίζει την ιδιωτικότητά τους. Επιπρόσθετα,
η λειτουργία του μηχανισμού απαιτείται να είναι συμβατή με υπάρχοντα εργαλεία DNS
(ερωτήματα AXFR και IXFR), καθώς και να υποστηρίζονται ανανεώσεις των διαθέσιμων
πληροφοριών χωρίς την εκ νέου λήψη ολόκληρων των ζωνών.

Για την ικανοποίηση των παραπάνω προϋποθέσεων, τα περιεχόμενα των ζωνών απει-
κονίζονται σε Cuckoo Filters (CF's). Παρόμοια με τα BF's, τα CF's διαθέτουν ιδιότητες ιδιω-
τικότητας, καθώς τα ονόματα διέρχονται από συναρτήσεις κατακερματισμού πριν την απο-
θήκευσή τους στη δομή, χάνοντας έτσι την αρχική τους μορφή. Ωστόσο, τα CF's είναι πιο
αποδοτικά από τα BF's ως προς τον απαιτούμενο χρόνο αναζήτησης στοιχείων και τη μνήμη
που καταναλώνεται, ενώ σε αντίθεση με τα BF's, τα CF's υποστηρίζουν διαγραφές ονομά-
των που έχουν εισαχθεί προηγουμένως στο φίλτρο.

Ο προτεινόμενος μηχανισμός παρουσιάζεται στο σχήμα 5.1. Κύριες συνιστώσες του μη-
χανισμού είναι: (α) οι plaintext ζώνες DNS (Plaintext DNS Zones, PltZn's), που περιλαμ-
βάνουν τα ονόματα των ζωνών με την κανονική τους μορφή, (β) οι hashed ζώνες DNS
(HashedDNSZones, HsZn's), που έχουν αποθηκευμένα όλα τα ονόματα των ζωνών σε μορφή
που σέβεται την ιδιωτικότητα, δηλαδή ως στοιχεία ενός CF, (γ) τις incremental ζώνες DNS
(Incremental DNS Zones, IncZn's), που διαθέτουν πρόσφατες αλλαγές των PltZn's σε μορφή
που σέβεται την ιδιωτικότητα και (δ) τον Privacy-Aware Zone Manager (PAZM), που κατα-
σκευάζει και διαχειρίζεται τις HsZn's/IncZn's.

Βασικό μέρος της αξιολόγησης του προτεινόμενου μηχανισμού είναι η επικύρωση των
δυνατοτήτων του να αποκρύπτει τα περιεχόμενα των ληφθέντων ζωνών DNS. Αν και τα
CF's αποθηκεύουν τα διαθέσιμα ονόματα αφού τα περάσουν από συναρτήσεις κατακερ-
ματισμού, οι επιτιθέμενοι μπορεί να επιχειρήσουν να ανακαλύψουν περισσότερα για τα
περιεχόμενα των ζωνών εκτελώντας επιθέσεις ωμής βίας (brute-force attacks). Οι επιθέσεις
brute-force δοκιμάζουν όλους τους δυνατούς συνδυασμούς επιτρεπτών χαρακτήρων και
καταγράφουν τις θετικές απαντήσεις του CF.

Η αξιολόγησή μας περιλαμβάνει ένα CF που απεικονίζει τη ζώνη του Εθνικού Μετσο-
βίουΠολυτεχνείου (8,303 ονόματα). Εκτελώντας επίθεση brute-force στο CF, καταγράφουμε
τις αληθώς θετικές (True Positives, TP's) και ψευδώς θετικές (False Positives, FP's) απαντή-
σεις μεγαλώνοντας σταδιακά το πρόθεμα (prefix) των domain names που ερωτούνται. Για
μικρά prefixes (3-4 χαρακτήρες), παρατηρούμε ότι ο αριθμός των TP's και FP's είναι πα-
ραπλήσιος. Επομένως, οι επιτιθέμενοι μπορούν να ανακαλύψουν πληροφορίες για τη ζώνη
παρότι τα ονόματα δε βρίσκονται στην κανονική τους μορφή. Ωστόσο, για μεγαλύτερα μήκη
των prefixes, ο αριθμός των FP's ξεπερνά σημαντικά τον αριθμό των TP's. Συγκεκριμένα, ο
λόγος FP's/TP's αυξάνεται δραστικά, καθώς αυξάνεται το μήκος των εξεταζόμενων prefixes.
Ως αποτέλεσμα, τα περιεχόμενα των ζωνών αποκρύπτονται με μεγάλη βεβαιότητα.

Οι μηχανισμοί που παρουσιάστηκαν μέχρι αυτό το σημείο βασίζονταν σε λίστες κα-
λόβουλων ονομάτων. Όμως, οι διαχειριστές δικτύων μπορεί να είναι απρόθυμοι να μοι-
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ραστούν τα δεδομένα των εξυπηρετητών τους. Σε αυτήν την περίπτωση μπορεί να γίνει
χρήση μεθόδων ανίχνευσης ανωμαλιών, π.χ. αλγόριθμοι μηχανικής μάθησης. Η αποτίμηση
των εξόδων των αλγορίθμων αυτών υλοποιείται κυρίως στο επίπεδο χρήστη (user space)
με αποτέλεσμα η απόδοση φιλτραρίσματος μηνυμάτων DNS να μην ανταποκρίνεται στον
όγκο των σύγχρονων επιθέσεων DDoS. Στο επόμενο κεφάλαιο χρησιμοποιούμε data plane
programming για την ταχύτατη αντιμετώπιση επιθέσεων DNS μέσω της αποτίμησης των
εξόδων αλγορίθμων ML στο επίπεδο δεδομένων των Recursors.

10.6 Κεφάλαιο 6

Στο κεφάλαιο αυτό χρησιμοποιούμε προγραμματισμό σε επίπεδο δεδομένων για τη βελ-
τίωση της απόδοσης μηχανισμών αντιμετώπισης δικτυακών επιθέσεων που βασίζονται σε
αλγορίθμους μηχανικής μάθησης. Συγκεκριμένα, αξιοποιούμε τοXDP για να υλοποιήσουμε
στο data plane χρονικά κρίσιμες ενέργειες, όπως είναι η εξαγωγή των χαρακτηριστικών
(features) και η αποτίμηση των εξόδων δυαδικών ταξινομητών. Αντίθετα, πολύπλοκες και
χρονοβόρες ενέργειες, όπως είναι η εκπαίδευση μοντέλων μηχανικής μάθησης, πραγματο-
ποιούνται στον χώρο χρήστη.

Ο προτεινόμενος μηχανισμός μπορεί να εφαρμοστεί σε διάφορες δικτυακές επιθέσεις.
Ως use case επιλέξαμε την αντιμετώπιση επιθέσεων Water Torture σε αναδρομικούς εξυ-
πηρετητές DNS (Recursors). Ως αλγόριθμο μηχανικής μάθησης επιλέξαμε τον Naive Bayes
για δυαδική ταξινόμηση δικτυακής κίνησης, δηλαδή για τον διαχωρισμό καλόβουλων και
κακόβουλων ερωτημάτων DNS. Ο Naive Bayes επιλέχθηκε επειδή είναι απλός, ακριβής και
αποδοτικός ως προς τον χρόνο απόφασης αλγόριθμος μηχανικής μάθησης.

Η εξαγωγή των features γίνεται από το domain name και η επιλογή τους βασίζεται στην
καταλληλότητά τους να ξεχωρίζουν έγκυρα από άκυρα ονόματα. Η προσέγγισή μας περι-
λαμβάνει 7 features. Αυτά είναι το μήκος του προθέματος (prefix) του ονόματος, ο αριθμός
και το μήκος της μέγιστης ακολουθίας φωνηέντων στο prefix, ο αριθμός και το μήκος της
μέγιστης ακολουθίας συμφώνων στο prefix, καθώς και ο αριθμός και το μήκος της μέγιστης
ακολουθίας δεκαδικών ψηφίων στο prefix.

Ο προτεινόμενος μηχανισμός παρουσιάζεται στο σχήμα 6.1. Τα εισερχόμενα πακέτα
απομονώνονται από το XDP στο επίπεδο των drivers του Recursor. Κάθε πακέτο προκαλεί
την εκτέλεση ενός προγράμματος eBPF. Αρχικά, το πρόγραμμα ελέγχει εάν το πακέτο περι-
λαμβάνει ένα ερώτημα DNS. Πακέτα που δεν αφορούν ερωτήματα DNS προωθούνται στο
χώρο χρήστη, όπου θα τα επεξεργαστεί η αντίστοιχη εφαρμογή. Αντίθετα, τα ερωτήματα
DNS θα υποστούν επιπρόσθετη επεξεργασία. Συγκεκριμένα, το πρόγραμμα eBPF εξάγει το
όνομααπό το πεδίο ερωτήσεων και υπολογίζει τα features που θα δοθούνως είσοδοι στον τα-
ξινομητή Naive Bayes. Έπειτα, ο Naive Bayes υπολογίζει την πιθανότητα να είναι το πακέτο
καλόβουλο και την πιθανότητα να είναι κακόβουλο. Ανάλογα με το ποια πιθανότητα είναι
μεγαλύτερη, το ερώτημα DNS ταξινομείται στην αντίστοιχη κατηγορία. Ερωτήματα DNS
που χαρακτηρίζονται ως καλόβουλα προωθούνται στον χώρο χρήστη για να τα επεξερ-
γαστεί το λογισμικό DNS. Αντίθετα, τα μηνύματα που κατηγοριοποιούνται ως κακόβουλα
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απορρίπτονται εντός του Linux kernel, οπότε το λογισμικό DNS δεν επιβαρύνεται.
Σημαντική πρόκληση στην υλοποίηση του μηχανισμού αποτελούν οι περιορισμοί που θέ-

τει το XDP, δηλαδή το περιορισμένο μέγεθος προγράμματος, η απουσία ατέρμονων βρόχων
και η έλλειψη υποστήριξης δεκαδικών αριθμών. Από τους παραπάνω περιορισμούς, ο τε-
λευταίος είναι ο σημαντικότερος, καθώς ο αλγόριθμος Naive Bayes βασίζεται σε δεκαδικούς
αριθμούς για τη λειτουργία του. Για να ξεπεράσουμε τον περιορισμό, πολλαπλασιάζουμε
τις πιθανότητες του Naive Bayes με δυνάμεις του 10 και τις απεικονίζουμε ως δεκαδικούς
αριθμούς. Το ακέραιο μέρος των αριθμών διατηρείται, ενώ το δεκαδικό αποκόπτεται. Ως
αποτέλεσμα, προκύπτει ένα trade-off στην προσέγγισή μας. Πολλαπλασιάζοντας τις πιθα-
νότητες με μικρές δυνάμεις του 10 μειώνεται σημαντικά η ακρίβεια του Naive Bayes, καθώς
οι πιθανότητες δεν απεικονίζονται ικανοποιητικά. Αντίθετα, πολλαπλασιασμός των πιθα-
νοτήτων με πολύ μεγάλες δυνάμεις του 10 ενδέχεται να οδηγήσει σε κακή απόδοση, καθώς
μπορεί να υπάρξουν υπερχειλίσεις στους buffers του προγράμματος eBPF, όταν πραγματο-
ποιούνται οι απαιτούμενοι πολλαπλασιασμοί των πιθανοτήτων του Naive Bayes.

Βασικό μέρος της αξιολόγησης του μηχανισμού αποτελεί η εκτίμηση του παραπάνω
trade-off. Συγκεκριμένα, ελέγχουμε πώς η απεικόνιση των πιθανοτήτων του Naive Bayes
στο επίπεδο δεδομένων επηρεάζει την ακρίβεια του αλγορίθμου να ταξινομεί τα εισερχό-
μενα ερωτήματα DNS ως καλόβουλα ή κακόβουλα. Πολλαπλασιάζοντας τις πιθανότητες
του Naive Bayes με διάφορες δυνάμεις του 10 παρατηρούμε ότι ούτε μικρές, αλλά ούτε και
μεγάλες δυνάμεις εξασφαλίζουν καλή ακρίβεια για το μοντέλο. Αντίθετα, ενδιάμεσες τιμές
πετυχαίνουν ικανοποιητική ακρίβεια ταξινόμησης ερωτημάτων DNS (περίπου 99%).

Επιπρόσθετα, αξιολογούμε τις δυνατότητες του μηχανισμού μας να αντιμετωπίζει επι-
θέσειςWater Torture, όταν εγκαθίσταται σε Recursors. Προωθώντας ταυτόχρονα καλόβουλα
και κακόβουλα ερωτήματα DNS σε έναν Recursor παρατηρούμε ότι ο προτεινόμενος data
plane μηχανισμός προστατεύει αποτελεσματικά τον Recursor, φιλτράροντας το μεγαλύτερο
μέρος της κακόβουλης κίνησης.

Η υλοποίηση αλγορίθμων μηχανικής μάθησης στο επίπεδο δεδομένων αποδεικνύεται
πολλά υποσχόμενη τεχνική για την αντιμετώπιση επιθέσεων DDoS. Ωστόσο, αν και η μη-
χανική μάθηση έχει χρησιμοποιεί αρκετά σε ερευνητικές εργασίες για την ανάπτυξη μηχα-
νισμών άμυνας, δεν έχει βρει ακόμα ευρεία εφαρμογή σε παραγωγικά περιβάλλοντα. Το
πρόβλημα είναι, συνήθως, ότι οι διαχειριστές δικτύων είναι απρόθυμοι να χρησιμοποιή-
σουν μοντέλα, των οποίων τις αποφάσεις δεν κατανοούν πλήρως. Στο επόμενο κεφάλαιο
θα χρησιμοποιήσουμε τεχνικές επεξηγήσιμης τεχνητής νοημοσύνης (XAI) για να ερμηνεύ-
σουμε τις αποφάσεις αλγορίθμων μηχανικής μάθησης που χρησιμοποιούνται για την ταξι-
νόμηση ερωτημάτων DNS που παράγονται από DGA’s.

10.7 Κεφάλαιο 7

Στο συγκεκριμένο κεφάλαιο αξιοποιούμε τεχνικές επεξηγήσιμης τεχνητής νοημοσύνης
(eXplainable Artificial Intelligence, XAI) για να ερμηνεύσουμε τις αποφάσεις ταξινομητών
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DNS. Συγκεκριμένα, μελετάμε τη λειτουργία δυαδικών ταξινομητών που διαχωρίζουν κα-
λόβουλα ονόματα από κακόβουλα που παράγονται από DGA’s. Χρησιμοποιώντας αλγορίθ-
μους XAI αποσκοπούμε στη διευκόλυνση της υιοθέτησης των παραπάνω ταξινομητών σε
δικτυακές υποδομές, όπου απαιτούνται αιτιολογήσεις για τα κριτήρια απόφασης black-box
μοντέλων μηχανικής μάθησης.

Η προσέγγισή μας βασίζεται στη μέθοδο SHapley Additive exPlanation (SHAP) λόγω των
πλεονεκτημάτων που προσφέρει σε σχέση με άλλες τεχνικές XAI. Σημαντικό πλεονέκτημα
της SHAP είναι ότι μπορεί να εξάγει καθολικές (global), αλλά και τοπικές (local) ερμη-
νείες μοντέλων μηχανικής μάθησης. Οι καθολικές ερμηνείες παρέχονται για πολυάριθμα
δειγματικά σημεία του συνόλου δεδομένων, ενώ οι τοπικές ερμηνείες αφορούν μεμονω-
μένα δειγματικά σημεία. Παράλληλα, ένα ακόμη σημαντικό πλεονέκτημα της SHAP είναι
ότι λειτουργεί με model-agnostic, post-hoc τρόπο. Έτσι, μπορεί να εφαρμοστεί για οποιον-
δήποτε αλγόριθμο μηχανικής μάθησης (model-agnostic), αφού ολοκληρωθεί η διαδικασίας
εκπαίδευσης (post-hoc). Η προσέγγισή μας στηρίζεται στις παραπάνω ιδιότητες της SHAP
για να ερμηνεύσει τις αποφάσεις ταξινομητών που βασίζονται σε δέντρα αποφάσεων και
σε βαθιά νευρωνικά δίκτυα (deep neural networks) με ενιαίο τρόπο.

Η προσέγγισή μας περιλαμβάνει 50 features, τα οποία εξάγονται εξ ολοκλήρου από τα
ονόματα, αποδίδοντας τις στατιστικές και γλωσσικές ιδιότητές τους. Κάποια ενδεικτικά
features είναι το μήκος του domain name prefix, ο αριθμός των φωνηέντων/συμφώνων στο
prefix, η συχνότητα δεκαδικών ψηφίων και γραμμάτων του λατινικού αλφαβήτου, το πλή-
θος των υπακολουθιών του prefix που αντιστοιχούν σε υπαρκτές λέξεις, καθώς και η εντρο-
πία του prefix. Features που βασίζονται σε ιστορικές πληροφορίες αποφεύγονται. Τέτοια
features απαιτούν, συνήθως, χρονοβόρες προσβάσεις σε εξωτερικές βάσεις δεδομένων, ενώ
ενδέχεται να εκθέσουν προσωπικές πληροφορίες των χρηστών ενός δικτύου.

Η αξιολόγηση εστιάζει στην αποτίμηση της συνεισφοράς των features στις εξόδους των
επιλεγμένων μοντέλων μηχανικής μάθησης, τον έλεγχο της επιρροής συγκεκριμένων τμών
στις αποφάσεις των ταξινομητών, καθώς και στις αλληλεπιδράσεις των features. Η ανάλυσή
μας βασίζεται σε πολυάριθμα εργαλεία οπτικοποίησης που παρέχει η SHAP και συγκεκρι-
μένα στα summary, dependence και force plots. Τα summary plots απεικονίζουν τα features σε
φθίνουσα ταξινόμηση ανάλογα με την επίδρασή τους στις αποφάσεις του μοντέλου, ενώ πα-
ράλληλα δείχνουν πώς μικρές/μεγάλες τιμές των features επηρεάζουν τις ταξινομήσεις. Τα
dependence plots εστιάζουν σε συγκεκριμένα features του αλγορίθμου και τις επιρροές των
τιμών τους στις αποφάσεις του μοντέλου, ενώ καθιστούν δυνατή τη μελέτη αλληλεξαρτή-
σεων ανάμεσα στο εξεταζόμενο feature και τα υπόλοιπα. Τέλος, τα force plots απεικονίζουν
τη συνεισφορά των features για μεμονωμένα δειγματικά σημεία του συνόλου δεδομένων,
δηλαδή σχετίζονται με τοπικές ερμηνείες.

Τα πειράματά μας περιλαμβάνουν την εκπαίδευση και αξιολόγηση πλήθους δυαδικών
ταξινομητών για την κατηγοριοποίηση ονομάτων που παράγονται από DGA’s. Αρχικά,
μελετάμε ταξινομητές που βασίζονται σε δέντρα αποφάσεων. Συγκεκριμένα, οι αλγόριθ-
μοι δέντρων που συμπεριλάβαμε στην αξιολόγησή μας ήταν οι Random Forests, Gradient
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Boosting, eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost) και Extremely
Randomized Trees (ExtraTrees). Από τους αλγορίθμους αυτούς, η μεγαλύτερη ακρίβεια ση-
μειώθηκε από τον XGBoost. Έπειτα, τα πειράματά μας εστίασαν σε βαθιά νευρωνικά δί-
κτυα και, συγκεκριμένα, σε Multi-Layer Perceptrons (MLP’s).

Στη συνέχεια λήφθηκαν ερμηνείες για τη λειτουργία του αλγορίθμου XGBoost (καλύτε-
ρος δενδρικός ταξινομητής) και για το βαθύ νευρωνικό δίκτυο, δηλαδή το MLP. Ιδιαίτερη
έμφαση στην αξιολόγησή μας δόθηκε στη σύγκριση του τρόπου απόφασης των παραπάνω
αλγορίθμων, καθώς και στο πώς οι αποφάσεις των ταξινομητών επηρεάζονται από τη μέ-
θοδο που χρησιμοποιείται για την παραγωγή ονομάτων DGA. Οι μέθοδοι παραγωγής που
εξετάσαμε περιελάμβαναν όλες τις ήδη υπάρχουσες, δηλαδή arithmetic, wordlist, hash και
permutation based.

Οι arithmetic-based DGA’s κατασκευάζουν ονόματα ενώνοντας χαρακτήρες με τυχαίο
τρόπο. Έτσι, τα ονόματα που παράγονται από arithmetic-based DGA’s χαρακτηρίζονται συ-
νήθως από μεγάλες ακολουθίες συμφώνων και αυξημένη τυχαιότητα σε σχέση με τα καλό-
βουλα ονόματα. Οι wordlist-based DGA’s παράγουν ονόματα ενώνοντας λέξεις που επιλέ-
γονται τυχαία από κάποιο διαθέσιμο λεξικό. Επομένως, τα ονόματα που παράγονται από
wordlist-based DGA’s μοιάζουν σε μεγάλο βαθμό με καλόβουλα ονόματα με αποτέλεσμα
να δυσκολεύει σημαντικά η ανίχνευσή τους. Οι hash-based DGA’s βασίζονται στα αποτε-
λέσματα συναρτήσεων κατακερματισμού και κατασκευάζουν ονόματα χρησιμοποιώντας
τις δεκαεξαδικές αναπαραστάσεις τους. Ως αποτέλεσμα, τα ονόματα που παράγονται από
hash-based DGA’s χαρακτηρίζονται από υψηλές συχνότητες εμφάνισης δεκαεξαδικών ψη-
φίων (ψηφία 0-9 και χαρακτήρες A-F). Οι permutation-based DGA’s στηρίζονται στις πο-
λυάριθμες πιθανές μεταθέσεις χαρακτήρων ενός αλφαριθμητικού και τα όνοματα που πα-
ράγονται από αυτούς χαρακτηρίζονται από τις στατιστικές και γλωσσικές ιδιότητες του
αρχικού αλφαριθμητικού.

Η εκπαίδευση, αξιολόγηση και ερμηνεία των παραπάνω μοντέλων μηχανικής μάθησης
βασίστηκε σε σύγχρονα σύνολα δεδομένων που χρησιμοποιούνται κατά κόρον σε ταξινο-
μητές κίνησης που παράγεται από DGA’s. Συγκεκριμένα, ως καλόβουλα ονόματα χρησιμο-
ποιήσαμε εγγραφές από τη λίστα Tranco, ενώ τα κακόβουλα ονόματα επιλέχθηκαν από το
αποθετήριο DGArchive.

10.8 Κεφάλαιο 8

Στο κεφάλαιο αυτό συνοψίζουμε τα βασικά συμπεράσματα της διατριβής και περιγρά-
φουμε πιθανές μελλοντικές κατευθύνσεις για έρευνα. Μερικές από τις κατευθύνσεις αυτές
είναι:

• Η επέκταση των προτεινόμενων μηχανισμών για την ανίχνευση και αντιμετώπιση επι-
πρόσθετων επιθέσεων DNS, όπως είναι οι DNS Amplification και NXNSAttack.

• Η σύγκριση της απόδοσης των μηχανισμών που αναπτύχθηκαν σε XDP με μηχανι-
σμούς που βασίζονται σε άλλες μεθόδους προγραμματισμού στο επίπεδο δεδομένων,
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π.χ. P4 και DPDK.
• Η διερεύνηση νέων πιθανοτικών δομών δεδομένων, π.χ. τα φίλτρα Morton και τα φίλ-
τρα Vacuum, για την αντικατάσταση των BF’s και CF’s στους μηχανισμούς μας.

• Η χρήση ομόσπονδης μάθησης (Federated Learning) για τη συνεργατική ανίχνευση δι-
κτυακών επιθέσεων με τρόπο που σέβεται την ιδιωτικότητα των συμμετεχόντων.

• Εφαρμογή τεχνικών XAI για την ερμηνεία των αποφάσεων αλγορίθμων μη επιβλεπό-
μενης μηχανικής μάθησης.

10.9 Κεφάλαιο 9

Στο συγκεκριμένο κεφάλαιο παρουσιάζονται οι ερευνητικές εργασίες που πραγματοποι-
ήθηκαν σε περιοδικά, συνέδρια και workshops.

168



Αντιστοιχία Αγγλικών-Ελληνικών Όρων

Application layer Επίπεδο εφαρμογής

Authoritative DNS Server Επίσημος εξυπηρετητής DNS

Big Data Μεγάλα δεδομένα

Bloom Filter Φίλτρο Bloom

Botnet Δίκτυο μολυσμένων συσκευών

Bot Μολυσμένη συσκευή

Brute-force attack Επίθεση ωμής βίας

Cloud infrastructure Υποδομή συννέφου

Cloud service Υπηρεσία συννέφου

Command & Control (C&C) server Εξυπηρετητής ελέγχου

Component Δομικό στοιχείο

Cuckoo Filter (CF) Φίλτρο Cuckoo

Data plane programming Προγραμματισμός στο επίπεδο δεδομένων

Data plane Επίπεδο δεδομένων

Dataset Σύνολο δεδομένων

Deep neural network Βαθύ νευρωνικό δίκτυο

Deep Packet Inspection (DPI) Βαθιά επιθεώρηση πακέτου

Deterministic Αιτιοκρατικός

Distributed Denial of Service (DDoS) Κατανεμημένη άρνηση παροχής υπηρεσίας

DNS cache Προσωρινή μνήμη DNS

Domain Generation Algorithm (DGA) Αλγόριθμος παραγωγής ονομάτων

Domain Name System (DNS) Σύστημα Ονοματοδοσίας
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Domain name 'Ονομα

Drivers Οδηγοί

eBPF program Πρόγραμμα eBPF

eXplainable Artificial Intelligence (XAI) Επεξηγήσιμη τεχνητή νοημοσύνη

False Negative (FN) Ψευδώς αρνητικό

False Positive (FP) Ψευδώς θετικό

Feature Χαρακτηριστικό

Federated Learning Ομόσπονδη μάθηση

Firewall Τείχος προστασίας

Frequency estimation Εκτίμηση συχνότητας

Global interpretation Καθολική ερμηνεία

Hardware Υλικό

Hash function Συνάρτηση κατακερματισμού

Hashed DNS Zone (HsZn) Hashed ζώνη DNS

Incremental DNS Zone (IncZn) Incremental ζώνη DNS

Internet Protocol (IP) Πρωτόκολλο Διαδικτύου

IP spoofing Παραποίηση διευθύνσεων IP

Linux kernel Πυρήνας Linux

Local interpretation Τοπική ερμηνεία

Machine Learning (ML) Μηχανική μάθηση

Name lookup 'Ελεγχος ονόματος

Natural Language Processing (NLP) Επεξεργασία φυσικής γλώσσας

Payload Δεδομένα

Plaintext DNS Zone (PltZn) Plaintext ζώνη DNS

Prefix Πρόθεμα

Privacy Ιδιωτικότητα

Probabilistic data structure Πιθανοτική δομή δεδομένων

Recursive DNS Server (Recursor) Αναδρομικός εξυπηρετητής DNS
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Software-Defined Network (SDN) Δίκτυο που καθορίζεται από λογισμικό

Third-party Εξωτερικός συνεργάτης

True Positive (TP) Αληθώς θετικό

User space Χώρος χρήστη

Whitelist Λίστα καλόβουλων ονομάτων
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