
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

EFFICIENT RESOURCE ALLOCATION FOR DATA
CENTERS WITH DYNAMIC OPTICAL NETWORK

INFRASTRUCTURE

DOCTORAL DISSERTATION OF

KONSTANTINOS G. KONTODIMAS
Dipl.-Ing. Computer & Informatics Engineer, MSc

SUPERVISOR:
Emmanouel Varvarigos
Professor, NTUA

ATHENS, November 2023

This research is co-financed by Greece and the European Union (European Social Fund – ESF) through the Operational Programme
«Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources
Research Potential via Doctorate Research – 2nd Cycle” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Operational Programme

Human Resources Development,

Education and Lifelong Learning

Co-�nanced by Greece and the European UnionEuropean Social Fund

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

EFFICIENT RESOURCE ALLOCATION FOR DATA
CENTERS WITH DYNAMIC OPTICAL NETWORK

INFRASTRUCTURE

DOCTORAL DISSERTATION OF
KONSTANTINOS G. KONTODIMAS
Dipl.-Ing. Computer & Informatics Engineer, MSc

Approved by the seven-member examination committee on November 29th, 2023.

THREE-MEMBER ADVISORY
COMMITTEE:
1. E. Varvarigos, Professor, NTUA

(Supervisor)
2. H. Avramopoulos, Professor, NTUA
3. S. Papavassiliou, Professor, NTUA

SEVEN-MEMBER EXAMINATION
COMMITTEE:
1. E. Varvarigos, Professor, NTUA
2. H. Avramopoulos, Professor, NTUA
3. S. Papavassiliou, Professor, NTUA
4. T. Varvarigou, Professor, NTUA
5. K. Christodoulopoulos, Assistant Professor,

University of Athens
6. P. Kokkinos, Assistant Professor,

University of Peloponnese
7. K. Yiannopoulos, Associate Professor,

University of Peloponnese

ATHENS, November 2023

To all remarkable individuals who have contributed to breaking down barriers
and challenging the norms.

They give us a thread to follow.

...

Konstantinos G. Kontodimas
Computer and Informatics Engineer
Doctor of Engineering of NTUA

Copyright © 2023 Konstantinos G. Kontodimas
“All rights reserved”

Copying, storing and distributing this work, in whole or in part, for commercial purposes is
prohibited. Reproduction, storage and distribution for a non-profit, educational or research
purpose is permitted, provided the source is acknowledged and this message is preserved.
Inquiries regarding the use of the work for commercial purposes should be directed to the
author.

“The approval of this Doctoral Dissertation by the School of Electrical and Computer Engi-
neering of the National Technical University of Athens does not indicate acceptance of the
author’s opinions” (Law 5343/1932, article 202, par. 2)

Summary

We investigate resource orchestration in a data center interconnection network, which relies
on hybrid electro-optical top-of-rack switches to interconnect servers over multi-wavelength
optical rings. The bandwidth of the rings is shared, and an efficient utilization of the infras-
tructure calls for coordination in the time, space, and wavelength domains. To this end, we
present offline and incremental dynamic resource assignment algorithms. The algorithms
are suitable for implementation in a software defined network control plane, achieving effi-
cient, collision-free, and on demand capacity use. Our simulation results indicate that the
proposed algorithms can achieve high utilization and low latency in a variety of traffic sce-
narios that include hot spots and/or rapidly changing traffic. Furthermore, we evaluate the
effect of the control plane delay and traffic estimation policies, using the OMNET++ packet-
level simulator with realistic MapReduce traffic.

The introduction of all-optical switching in data center interconnection networks (DCN)
is an important step in addressing the shortcomings of current electronic switching solutions.
However, limitations in optical switch port count, and reconfiguration speed require new de-
signs for optical switching and DCNs. In this dissertation, we propose a DCN fabric that
relies on a “Lean” optical switch design with limited but scalable configurability. This de-
sign offers high reconfiguration speeds, real-time scheduling, efficient network control, and
a low number of switching elements. To achieve these objectives, we relax the non-blocking
network requirement and opt for partially configurable switching modules, limiting the con-
trol capability of the scheduler and reducing control overhead. We compare our proposed
network with the RotorNet architecture, which operates with fully distributed control, and
the Mordia architecture, which operates with centralized control. Each architecture achieves
varying levels of functionality and offers distinct advantages. The proposed solution lies
in the middle of the other two approaches and combines the benefits of both of them. Ad-
ditionally, we analyze the crosspoint complexities of the proposed and the aforementioned
reference architectures, and evaluate their throughput and latency performance through sim-
ulations. Finally, we enhance RotorNet using breakout to control latency, partial configura-
bility with centralized control, and an adaptive scheduling policy that learns and optimizes
resource allocation dynamically.

viii

Distributed storage systems spanning across different cloud data centers have substan-
tially improved availability and flexibility for data storage and retrieval operations. However,
stringent latency requirements of emerging applications necessitate optimized selection of
storage resources that exhibit smaller delay. Introducing edge resources into distributed
storage systems enables data placement closer to its source, but simultaneously increases
the complexity of decision-making and orchestration processes for optimal data placement.
In this work, we develop mechanisms for storing data across an infrastructure that includes
both edge and cloud resources. Our approach focuses on optimizing data integrity, longevity,
security, and cost, while leveraging erasure coding when performing the resource allocation.
We first present a comprehensive mixed integer linear programming formulation of the stor-
age resource orchestration problem. As the search space for the optimal solution can be vast
and the execution time prohibitively large for real size problems, we also propose an in-
novative multi-agent heuristic approach that uses the rollout, a reinforcement based policy,
to balance performance and execution time efficiently. Through various simulation experi-
ments, we evaluate the developed mechanisms and trade-offs involved in our approach. By
incorporating data from a multi-cloud provider, we further enhance the validity of the sim-
ulations and the conclusions drawn.

Keywords – Data center networks, Interconnection networks, Cloud computing, Edge
computing, Distributed storage systems, Optical networks, Data security, Optimizationmeth-
ods, Erasure coding

Περίληψη

Μελετούμε την ενορχήστρωσης πόρων σε διασυνδετικό δίκτυο κέντρου δεδομένων (ΔΚΔ)
που βασίζεται σε υβριδικούς ηλεκτροοπτικούς top-of-rack μεταγωγείς για τη σύνδεση
των εξυπηρετητών μέσω οπτικών δακτυλίων πολλαπλών μηκών κύματος. Το εύρος ζώνης
των δακτυλίων είναι κοινόχρηστο, και η αποδοτική χρήση της υποδομής απαιτεί συντο-
νισμό στα πεδία του χρόνου, του χώρου και του μήκους κύματος. Για τον σκοπό αυτό,
παρουσιάζονται offline και incremental δυναμικοί αλγόριθμοι ανάθεσης πόρων. Οι αλ-
γόριθμοι αυτοί είναι κατάλληλοι να υλοποιηθούν σε επίπεδο ελέγχου που χρησιμοποιεί
software defined network (SDN), επιτυγχάνοντας αποδοτική, χωρίς συγκρούσεις και κατ’
απαίτηση χρήση της χωρητικότητας. Τα αποτελέσματα της προσομοίωσής δείχνουν ό-
τι οι προτεινόμενοι αλγόριθμοι μπορούν να επιτύχουν υψηλή χρησιμοποίηση και χαμηλή
καθυστέρηση σε διάφορα σενάρια κίνησης που περιλαμβάνουν hot spots και/ή γρήγορα
μεταβαλλόμενη κίνηση. Επιπλέον, για την αξιολόγηση της επίδρασης της καθυστέρη-
σης στο επίπεδο ελέγχου και μεθόδων εκτίμησης της κίνησης, γίνεται χρήση ρεαλιστικής
κίνησης MapReduce με τον προσομοιώτη επιπέδου πακέτων OMNET++.

Η εισαγωγή της πλήρους οπτικής μεταγωγής στα διασυνδετικά δίκτυα κέντρων δε-
δομένων (ΔΚΔ) αποτελεί σημαντικό βήμα για την αντιμετώπιση των αδυναμιών των υ-
πάρχοντων λύσεων ηλεκτρονικής μεταγωγής. Ωστόσο, οι περιορισμοί στον αριθμό των
θυρών των οπτικών μεταγωγέων και στην ταχύτητα αναδιαμόρφωσης απαιτούν νέες σχε-
διαστικές λύσεις για την οπτική μεταγωγή και ταΔΚΔ. Σε αυτή τη διατριβή, προτείνουμε
μια αρχιτεκτονική ΔΚΔ που βασίζεται στον σχεδιασμό ενός οπτικού μεταγωγέα «Lean»
με περιορισμένη, αλλά κλιμακούμενη ρυθμισιμότητα (configurability). Αυτός ο σχεδια-
σμός προσφέρει υψηλές ταχύτητες επαναρρύθμισης, χρονοπρογραμματισμό πραγματι-
κού χρόνου, αποδοτικό έλεγχο του δικτύου και χαμηλό αριθμό στοιχείων μεταγωγής.
Για να επιτευχθούν αυτοί οι στόχοι, γίνεται χαλάρωση του non-blocking περιορισμού
του δικτύου και επιλέγονται στοιχεία μεταγωγής μερικής ρυθμισιμόττας, περιορίζοντας
τη δυνατότητα έλεγχου του χρονοπρογραμματιστή και μειώνοντας την επιβάρυνση της
διαδικασίας ελέγχου. Γίνεται σύγκριση του προτεινόμενου δικτύου με την αρχιτεκτονική
RotorNet, η οποία λειτουργεί με πλήρως κατανεμημένο έλεγχο, και με την αρχιτεκτονική
Mordia, η οποία λειτουργεί με κεντρικοποιημένο έλεγχο. Κάθε αρχιτεκτονική πετυχαίνει

x

διαφορετικά επίπεδα λειτουργικότητας (functionality) και προσφέρει διαφορετικά πλεο-
νεκτήματα. Η προτεινόμενη λύση βρίσκεται ανάμεσα στις δύο άλλες δύο προσεγγίσεις
και συνδυάζει τα οφέλη και των δύο. Επιπλέον, αναλύονται οι crosspoint πολυπλοκότητες
της προτεινόμενης αρχιτεκτονικής και των αρχιτεκτονικών αναφοράς και αξιολογούνται
ως προς τη ρυθμαπόδοση και την καθυστέρηση μέσω προσομοιώσεων. Τέλος, εφαρμόζο-
νται βελτιώσεις στο ΔΚΔ RotorNet χρησιμοποιώντας τη μέθοδο breakout για τον έλεγ-
χο της καθυστέρησης του επιπέδου ελέγχου, την εφαρμογή μερικής ρυθμισιμότητας με
τη βοήθεια κεντρικοποιημένου ελέγχου, και μιας προσαρμοστικής πολιτικής χρονοπρο-
γραμματισμού που βελτιστοποιεί δυναμικά τις αναθέσεις με βάση τα χαρακτηριστικά της
κίνησης.

Τα συστήματα κατανεμημένης αποθήκευσης που εκτείνονται σε διαφορετικά κέντρα
δεδομένων του cloud έχουν βελτιώσει σημαντικά τη διαθεσιμότητα και την ευελιξία για
λειτουργίες αποθήκευσης και ανάκτησης δεδομένων. Ωστόσο, οι αυστηρές απαιτήσεις
χρόνου απόκρισης των νέων εφαρμογών απαιτούν τη βέλτιστη επιλογή αποθηκευτικών
πόρων που παρουσιάζουν μικρότερη καθυστέρηση. Η εισαγωγή πόρων edge σε συστήμα-
τα κατανεμημένης αποθήκευσης επιτρέπει την τοποθέτηση δεδομένων κοντά στην πηγή
τους, αλλά ταυτόχρονα αυξάνει την πολυπλοκότητα στις διαδικασίες λήψης αποφάσεων
και ενορχήστρωσης για τη βέλτιστη εναπόθεση των δεδομένων. Σε αυτή τη διατριβή,
αναπτύσσονται μηχανισμοί για την αποθήκευση δεδομένων σε μια υποδομή που περι-
λαμβάνει τόσο edge, όσο και cloud πόρους. Η προσέγγισή επικεντρώνεται στον βέλτιστο
συνδυασμό της ακεραιότητας των δεδομένων, της μακροβιότητάς τους, της ασφάλειας
και του κόστους, ενώ χρησιμοποιείται η τεχνική του erasure coding κατά την ανάθεση των
πόρων. Αρχικά παρουσιάζεται μια ολοκληρωμένη διατύπωση μεικτού ακέραιου γραμμι-
κού προγραμματισμού για το πρόβλημα της ενορχήστρωσης των πόρων αποθήκευσης.
Δεδομένου ότι ο χώρος αναζήτησης για τη βέλτιστη λύση μπορεί να είναι τεράστιος και
ο χρόνος εκτέλεσης απαγορευτικά μεγάλος για προβλήματα πραγματικού μεγέθους, προ-
τείνεται επίσης μια multi-agent rollout ευρετική προσέγγιση, για να ισορροπήσει αποδοτι-
κά μεταξύ απόδοσης και χρόνου εκτέλεσης. Μέσω διαφόρων πειραμάτων προσομοίωσης,
αξιολογούνται οι μηχανισμοί και οι συμβιβασμοί αυτής της προσέγγισής. Ενσωματώνο-
ντας πραγματικά δεδομένα που δόθηκαν από πάροχοmulti-cloud, ενισχύοντας περαιτέρω
την έγκυροτητα των προσομοιώσεων και των συμπερασμάτων που προκύπτουν.

Λέξεις Κλειδιά – Δίκτυα κέντρων δεδομένων, Διασυνδετικά δίκτυα, Υπολογιστικό
νέφος, Υπολογιστική παρυφής, Κατανεμημένα συστήματα αποθήκευσης, Οπτικά δίκτυα,
Ασφάλεια δεδομένων, Μέθοδοι βελτιστοποίησης, Κωδικοποίηση απαλοιφής

Prologue

In the boundless expanse of human knowledge, the journey of discovery is often character-
ized by the pursuit of answers to questions that have eluded understanding. This dissertation
embarks upon such a journey, a scholarly odyssey that explores the realms of “Efficient Re-
source Allocation for Data Centers with Dynamic Optical Network Infrastructure” within the
Division of Communication, Electronic, and Information Engineering of the School of Elec-
trical and Computer Engineering of the National Technical University of Athens (NTUA),
and more specifically, at the High Speed Communication Networks Laboratory (HSCNL).
In this prologue, we introduce a deep dive into the subject.

As we peer through the lens of efficient resource allocation for data centers in the con-
text of dynamic optical networks infrastructure, we stand on the precipice of a transformative
era. The world is in a constant state of evolution, marked by advancements in technology,
shifts in socio-political landscapes, and environmental challenges that demand our collective
attention. Amidst these complex and ever-changing dynamics, the study of resource alloca-
tion within data centers has emerged as a critical focal point of intellectual inquiry, and this
dissertation endeavors to shed light on the intricacies of this multifaceted domain.

Our exploration of efficient resource allocation in this study is marked by a steadfast com-
mitment to knowledge acquisition. It pays tribute to the contributions of predecessors who
established the foundational understanding and anticipates the endeavors of future scholars
who will further develop upon this groundwork. With the ongoing dedication of scholars,
both past and present, this dissertation aims to make a meaningful and innovative addition
to the collective knowledge base.

I am deeply grateful to Professor Emmanouel Varvarigos for serving as my supervisor,
as his wisdom, mentorship, and support have been instrumental in shaping the direction of
this dissertation. Furthermore, I would like to extend my gratitude to the Assistant Profes-
sors Konstantinos Christodoulopoulos and Panagiotis Kokkinos, to the Associate Professor
Konstantinos Yiannopoulos, as well as to the postdoctoral researchers of the HSCNL, Dr.
Polyzois Soumplis and Dr. Aristotelis Kretsis, who have been invaluable collaborators in
this academic journey, and whose contributions, insights, and dedication have enriched the
research process and enhanced the quality of this work.

xii

To Nikos, Olga, Danae, Nagia, Iro, and all the other dear colleagues and comrades, with
whom we managed to make a collective step toward an academic future we dream of.

Last but not least, a deep appreciation to Alexandra Elbakyan. Without her remarkable
dedication to providing access to scientific knowledge, I wouldn’t have had the chance to
read even a fraction of the publications I read during these years.

Throughout the chapters that follow, we will navigate the intricate network of ideas,
theories, and empirical evidence that underpin efficient resource allocation in data centers
with dynamic optical network infrastructure. We explore data center networks that use com-
binations of optical and electrical connections for efficient server communication. We’ve
developed algorithms to manage these connections and ensure smooth performance. When
it comes to data center switching, we’ve introduced balanced approaches, offering a mix
of speed and control, which falls between other designs. In the realm of data storage, our
work focuses on optimizing resource use, whether in cloud or edge environments. We aim
to make data management secure, cost-effective, and durable. We’ve rigorously tested these
methods to ensure their practical effectiveness in cloud setups. It is our aspiration that this
scholarly endeavor will not only provide new insights and perspectives but also inspire future
researchers and enthusiasts to engage in a never-ending quest for understanding.

This dissertation is the result of extensive effort and commitment. As we delve into the
topic, it’s worth noting that the pursuit of knowledge is a valuable endeavor with the potential
to broaden our understanding of the world.

Konstantinos G. Kontodimas
November 2023

Contents

Summary vii

Περίληψη ix

Prologue xi

List of Figures xvii

List of Tables xxi

Nomenclature xxiii

Εκτενής Περίληψη xxix

1 Introduction 1
1.1 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

and Wavelength Selective Switches . 1
1.2 Fast Optical Datacenter Interconnects with Partial Configurability 3
1.3 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures . . 6

2 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings 11
2.1 Introduction and Related Work . 11
2.2 Hybrid Electrical/Optical Interconnect . 14
2.3 Bandwidth Allocation and Control Scheme 18
2.4 Scheduling Algorithms . 23

2.4.1 Offline Scheduling . 23
2.4.2 Complexity of Offline Scheduling and Stability 25
2.4.3 Incremental Scheduling Algorithms for Locality Persistent Traffic . 27

2.5 Architecture-Related Constraint . 34
2.5.1 Full-Ring Greedy Heuristic . 35

xiv Contents

2.5.2 Spectrum-Shifted Optical Planes 35
2.6 Performance Evaluation . 38

2.6.1 Evaluation Without Architecture Constraint SC3 38
2.6.2 Evaluating the Effect of the SC3 Constraint 42

2.7 Realistic Evaluation of Control Plane and Architecture Enhancements . . . 45
2.7.1 Realistic Traffic Simulations Setup 45
2.7.2 Simulation Experiments . 47

2.8 Conclusion . 49

3 Fast Optical Datacenter Interconnects with Partial Configurability 51
3.1 Introduction and Related Work . 51
3.2 A DCN Architecture with Lean Switching Components 55

3.2.1 The Rotor Switches . 56
3.2.2 The Lean Switches . 56
3.2.3 Combining Lean and Rotor Switches for Full Connectivity 56
3.2.4 The Architecture Specifications 57
3.2.5 Crosspoint Complexity and Reconfiguration Delay 59

3.3 The Control Plane . 60
3.3.1 Preliminaries . 60
3.3.2 Control Cycle . 60

3.4 Problem Definition and Scheduling Policies 63
3.4.1 Problem Definition . 63
3.4.2 Scheduling Constraints . 63
3.4.3 Scheduling Policies . 64

3.5 Alternative DCN Architectures . 69
3.5.1 RotorNet: DCN with Rotor Switches 69
3.5.2 Mordia: DCN with WDM Rings and Wavelength-Selective Switches 70
3.5.3 Comparison of the Lean and the Alternative DCN Architectures . . 71

3.6 Simulation Experiments . 74
3.6.1 Simulation Setup . 74
3.6.2 Performance Comparison Between Different DCNs and Policies . . 75
3.6.3 Performance Comparison with Different Levels of Traffic Uniformity 77
3.6.4 Performance Comparison with Different Traffic Patterns 78

3.7 Partial Configurability Applied to RotorNet 80
3.8 Additional Simulation Experiments on RotorNet 83

3.8.1 Traffic Profiles Setup . 83
3.8.2 Dimensioning and Breakout Performance Study 84

Contents xv

3.8.3 Performance Comparison with Different Policies 85
3.8.4 Performance Comparison of AWRR with Different Traffic Profiles . 86

3.9 Conclusion . 88

4 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures 91
4.1 Introduction and Related Work . 91
4.2 Distributed Storage Infrastructure and Operations 95

4.2.1 Store/Retrieve Data Processing Operation 96
4.2.2 Store Operation . 97
4.2.3 Retrieve Operation . 98

4.3 Distributed Storage Resource Allocation 100
4.3.1 Pre-processing Phase - Availability 101
4.3.2 Mixed-Integer Linear Programming Formulation 101
4.3.3 Multi-Agent Rollout Heuristic Algorithm 105

4.4 Simulation Experiments . 109
4.4.1 Simulation Setup . 109
4.4.2 Optimality Performance Evaluation of Heuristic and Multi-Agent

Rollout Mechanisms . 110
4.4.3 Evaluating Performance Based on Distributed Storage KPIs 116

4.5 Conclusion . 126

Bibliography 127

Curriculum Vitae 135

List of Figures

2.1 Optical DCN architecture utilizing fiber rings and WSSs. 14
2.2 Resource allocation and data cycles. 20
2.3 Average execution time of optimal decomposition algorithm as a function of

load 𝜌 and arrival matrix density 𝛿. 27
2.4 Concept of incremental scheduling. 29
2.5 Average queuing latency resulting from the examined scheduling algorithms,

measured in Data periods additional to the control cycle, for intra-pod den-
sity (a) 𝛿in = 100% (locality ℓ = 68%) and (b) 𝛿in = 2.5% (locality ℓ = 5%). 40

2.6 Average queuing latency resulting from the examined scheduling algorithms,
measured in Data periods additional to the control cycle, for locality dynam-
icity (a) 𝛿(|DA|) = 0.1% and (b) 𝛿(|DA|) = 10%. 40

2.7 Execution times of the algorithms for intra-pod density (a) 𝛿in = 100% (lo-
cality ℓ = 68%) and (b) 𝛿in = 2.5% (locality ℓ = 5%). 42

2.8 Execution times of the algorithms considered for locality dynamicity (a)
𝛿(|DA|) = 0.1% and (b) 𝛿(|DA|) = 10%. 42

2.9 Latency (in periods) as a function of load for density between pods (a) 𝛿out =
50% (locality ℓ = 2.5%) and (b) 𝛿out = 0.5% (locality ℓ = 70%). 44

2.10 Execution time as a function of load for density between pods (a) 𝛿out = 50%
(locality ℓ = 2.5%) and (b) 𝛿out = 0.5% (locality ℓ = 70%). 44

2.11 Effect of the parallel network and randomized void filling heuristic on slot
utilization. 47

2.12 Effect of the Control cycle (in Data periods) on makespan. 48
2.13 Effect of the number of MapReduce jobs on makespan. 48
2.14 Effect of the cluster size on makespan. 48

3.1 A 𝑛 ∶ 1 × 𝑚 gang-switched selector module. 55
3.2 A Rotor switch implementing 𝑚 port mappings of 𝑛 ports. 56

xviii List of Figures

3.3 The proposed network of a Lean plane combining a Lean switch with𝑚⋅𝑛 in-
puts/outputs and a layer of 𝑚 Rotor switches implementing 𝑛 port mappings
of 𝑛 ports each. 57

3.4 The DCN architecture utilizing 𝑁 racks/ToRs with 𝑃 servers each, and 𝑆
Lean switches/planes. ToR switches use 𝑆 + 𝑃 ports, 𝑆 communicate with
Lean switches and 𝑃 with the racks’ servers. Lean switches use 𝑁 = 𝑚 ⋅ 𝑛
ports. 58

3.5 Data and Control Plane cycles. 62
3.6 Decomposition of a trafficmatrix into direct transmission permutationmatri-

ces, in a network with 𝑆 = 2 Lean switches and 𝑁 = 16 racks (𝑛 = 4, 𝑚 = 4). 64
3.7 Alternative 2-level DCN architectures. 69
3.8 Structured traffic patterns. 75
3.9 Network and policy comparison. 76
3.10 WTraffic uniformity comparison. 78
3.11 Structured traffic pattern comparison. 78
3.12 Communication of successes for AWRR. 83
3.13 Dimensioning study comparison. 84
3.14 Breakout factor comparison. 85
3.15 Scheduling algorithms comparison. 86
3.16 AWRR with 𝑤 comparison. 87
3.17 AWRR with 𝑤𝐶𝑜𝑢𝑛𝑡 comparison. 87
3.18 Convergence behavior for changing traffic patterns. 87

4.1 Components and data flow. 95
4.2 Store/retrieve data processing. 97
4.3 Store and retrieve operation. 98
4.4 Geo-distribution of cloud storage nodes and gateways. 109
4.5 Monetary costs as a function of the number of files for the basic topology

(white: store costs, gray: retrieve costs). 112
4.6 Effect of the optimization objectives on the percentage of utilized cloud and

edge nodes with the basic topology. 113
4.7 Progress of the optimization over time. 114
4.8 Evaluation of the monetary costs. 116
4.9 Effect of the optimization objectives on the percentage of utilized cloud and

edge nodes. 116
4.10 Effect of the number of data fragments the files are split into, on the store

and retrieve operation latencies. 117

List of Figures xix

4.11 Effect of the number of parity fragments used for redundancy to the store
and retrieve operation latencies. 118

4.12 Effect of the erasure code policy on the total monetary costs (white: store
costs, gray: retrieve costs). 119

4.13 Effect of the minimum availability requirement on the selection of the level
of redundancy. 121

4.14 Effect of the minimum availability requirement on the types of the selected
storage nodes. 121

4.15 Percentage of successful retrievals for each optimization objective. 122
4.16 Effect of the edge nodes’ colocation. 123

List of Tables

2.1 Fully fledged DCN parameters. 16
2.2 Scheduling constraints (SC). 22
2.3 Networking parameters. 39
2.4 Maximum throughput of algorithms considered as a function of inter-POD

connection density 𝛿out and load dynamicity 𝜌(|DA|). 43
2.5 Simulation parameters. 46

3.1 Comparison between fully connected RotorNet, Mordia and Lean DCNs,
where 𝑆 + 𝑃 is the ToR switch radix (𝑛: group factor in Lean, ̄𝑛: WSSes’
bidirectional ports in Mordia). 73

3.2 Network simulation setup. 76

4.1 Definition of MILP variables. 103
4.2 Default parameters used with the basic topology setup. 111
4.3 Default parameters used with the extended topology setup. 112
4.4 Comparison of execution times between mechanisms (sec). 113

Nomenclature

Functions

𝛿 Matrix density.

𝛿in Intra-POD connection density.

𝛿out Inter-POD connection density.

𝜌𝑠𝑑 Load intensity between source destination ToR pair (𝑠, 𝑑).

𝜌 Average network load.

ℱ Scheduling algorithm.

𝒢 Function for the estimation queue matrix.

ℋ Critical sum of a matrix.

ℐ Indicator fuunction where ℐ (𝑥) = 1, when 𝑥 > 0, and 1 otherwise.

ℳ Number of non-zero entries of a matrix.

𝒫 Returns the load intensity matrix of another matrix.

Sets and Indices

𝒟 Set of all files, indexed by 𝑑.

ℐ𝑘𝑚 Set of all combinations of 𝑘 + 𝑚 nodes, indexed by 𝑖.

𝒦𝑑 Set of fragmentation options of file 𝑑, indexed by 𝑘.

ℳ𝑑 Set of encoding schemes of file 𝑑, indexed by 𝑚.

𝒩 Set of all nodes, indexed by 𝑛.

xxiv Nomenclature

𝒩 𝑡
r Set of selected nodes to retrieve fragments from at retrieval 𝑡.

𝒩s Set of selected nodes to store fragments to.

𝒬𝑑 Set of Quality of Service (QoS) requirements of file 𝑑.

𝒯𝑑 Set of retrievals of file 𝑑, indexed by 𝑡.

Fiber Rings Optical Architecture Parameters

𝛿in Intra-POD connection density.

𝛿out Inter-POD connection density.

𝜌 Average network load.

𝐶 Resource allocation cycles (measured in Data periods)

ℎ Critical sum of a matrix.

𝐼 Number of POD switches per pod/number of ports per ToR switch.

ℓ Locality parameter: traffic percentage that is destined within the same pod
over the total load.

𝑃 Total number of POD switches.

𝑅 Number of fiber rings.

𝑆 Number of servers per rack/number of southbound ports per ToR switch.

𝑇 Number of timeslots/Data period.

𝑊 Number of ToR switches per POD/number of wavelenghts.

Lean/RotorNet Parameters

𝐶 Control cycle delay in Data periods.

𝑚 Number of selector modules per Lean switch.

𝑁 Number of racks/ToR switches

𝑛 Group factor of the Lean switches.

𝑃 Number of servers per rack.

Nomenclature xxv

𝑆 Number of spine switches (Lean planes for Lean DCN, Rings with WSSes
for Mordia or Rotor switches for RotorNet).

𝑇 Number of timeslots per Data period.

𝑡 Index of Data period.

Distributed Storage Parameters

𝜖 Optimality factor of the erasure code scheme.

𝜔𝑑 Index of gateway used for storage of 𝑑.

𝜔′
𝑑𝑡 Index of gateway used for retrieval 𝑡 of 𝑑.

𝜌 Data size retrieved at each GET request, measured in Data Units.

𝐴𝑛 Availability probability of node 𝑛.

𝐴req Minimum availability requirement (part of 𝒬𝑑).

𝐶𝑛 Storage capacity of node 𝑛 measured in Data Units.

𝐷enc
𝜔𝑑 Encoding/encryption latency per Data Unit in gateway 𝜔𝑑 .

𝐷spl
𝜔𝑑 Split latency of a file into two fragments in gateway 𝜔𝑑 .

𝐷dec
𝜔′

𝑑𝑡
Decoding/decryption latency per Data Unit in gateway 𝜔′

𝑑𝑡.

𝐷mrg
𝜔′

𝑑𝑡
Merge latency of two fragments in gateway 𝜔′

𝑑𝑡.

𝐷prop
𝑛𝜔𝑑 Propagation latency between node 𝑛 and gateway 𝜔𝑑 .

𝐷read
𝑛 Reading latency per Data Unit from node 𝑛.

𝐷wrt
𝑛 Writing latency per Data Unit to node 𝑛.

𝑀𝑑 Size of file 𝑑 measured in Data Units.

𝑁𝑐 Number of cloud nodes.

𝑁𝑒 Number of edge nodes.

𝑃r𝑛 Monetary cost per GET request for retrieving a fragment from node 𝑛.

𝑃s𝑛 Monetary cost per Data Unit for storing a fragment to node 𝑛.

xxvi Nomenclature

𝑇𝑑 Hosting duration of file 𝑑.

MILP Variables

𝜓𝑑 Integer variable denoting the maximum propagation and writing latency of
file 𝑑.

𝜓′
𝑑𝑡 Integer variable denoting the maximum reading and propagation latency of

the retrieve operation 𝑡 of file 𝑑.

𝜉𝑛𝑑 Binary variable indicating the fragment and the storage node 𝑛with themax-
imum propagation and writing latency of file 𝑑.

𝜉′
𝑛𝑑𝑡 Binary variable indicating the fragment and the storage node 𝑛with themax-

imum reading and propagation latency of the retrieve operation 𝑡 of file 𝑑.

𝑘̂ Integer variable describing the required fragments to recover a file, equal to
(1 + 𝜖)𝑘.

𝑣𝑛𝑑 Binary variable indicating whether a fragment of file 𝑑 is placed at a node
𝑛.

𝑥′
𝑛𝑘𝑚𝑑𝑡 Binary variable indicating that a fragment of 𝑑 is retrieved from node 𝑛

during the retrieval 𝑡, while the fragmentation option is 𝑘 and the erasure
code is (𝑘 + 𝑚, 𝑘̂).

𝑥𝑛𝑘𝑚𝑑 Binary variable indicating that a fragment of 𝑑 is stored to node 𝑛, while the
fragmentation option is 𝑘 and the erasure code is (𝑘 + 𝑚, 𝑘̂).

𝑦𝑘𝑚𝑑 Binary variable indicating the fragmentation option 𝑘 and the erasure code
(𝑘 + 𝑚, 𝑘̂) of file 𝑑.

𝑧𝑖𝑘𝑚𝑑 Binary variable indicating the combination 𝑖 ∈ ℐ𝑘𝑚 of storage nodes, the
fragmentation option 𝑘 and the erasure code (𝑘 + 𝑚, 𝑘̂) of file 𝑑.

Abbreviations

AONT All-Or-Nothing-Transform

ATM Asynchronous Transfer Mode

AWG Arrayed Waveguide Grating

BvN Birkhoff-von Neumann

Nomenclature xxvii

CAWG Cyclic Arrayed Waveguide Grating

C1…5 Constraint 1…5

COTS Commodity Off-the-Shelf

CU Cost Unit

DC Data center

DCN Data Center Network

DU Data Unit

EPS Electronic Packet Switching

FBB Full Bisection Bandwidth

HOL Head-of-Line (blocking)

IaaS Infrastructure-as-a-Service

KPI Key Performance Indicator

LVD Lean Valiant Decomposition

MEMS Microelectromechanical System

MILP Mixed Integer Linear Programming

MR Micro-Ring Resonator

NoC Network-on-Chip

OBS Optical Burst Switching

OCS Optical Circuit Switching

OF OpenFlow

OPS Optical Packet Switching

PaaS Platform-as-a-Service

PU Period Unit

QoS Quality of Service

xxviii Nomenclature

RR Round-Robin

SaaS Software-as-a-Service

SC1…3 Scheduling Constraint 1…3

SDN Software Defined Network

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

TDM Time Division Multiplexing

ToR Top-of-Rack

TU Time Unit

UDP User Datagram Protocol

VLB Valiant Load Balancing

VOQ Virtual Output Queue

WDM Wavelength Division Multiplexing

WSS Wavelength Selective Switch

Εκτενής Περίληψη

Ανάθεση Πόρων σε ένα Οπτικό Διασυνδετικό Δίκτυο Κέντρου Δεδο-
μένων με Δακτυλίους Ινών και Μεταγωγείς Επιλογής Μήκους Κύ-
ματος

Η ευρεία διαθεσιμότητα εφαρμογών στο cloud προς δισεκατομμύρια τελικούς χρήστες
και η εμφάνιση μοντέλων Υποδομής ως Υπηρεσία (Infrastructure-as-a-Service – IaaS) και
Πλατφόρμας ως Υπηρεσία (Platform-as-a-Service – PaaS) βασίζονται σε συγκεντρωτι-
κές υπολογιστικές υποδομές, τα κέντρα δεδομένων (ΚΔ). Τα ΚΔ συνήθως αποτελούνται
από πολλούς διασυνδεδεμένους διακομιστές (servers) που εκτελούν εικονικές μηχανές
(virtual machines). Δεδομένου ότι η κίνηση εντός του ΚΔ (east-west) είναι υψηλότερη
από την εισερχόμενη/εξερχόμενη (north-south) κίνηση, και αναμένεται να συνεχίσουν να
αυξάνονται και οι δύο, τα δίκτυα των ΚΔ (ΔΚΔ) παίζουν κρίσιμο ρόλο. Απαιτούνται
ΔΚΔ υψηλής χωρητικότητας, κλιμακούμενα και ενεργειακά/οικονομικά αποδοτικά που
να εκμεταλλεύονται πλήρως τη δυναμική των ΚΔ.

Τα προηγμένα ΔΚΔ βασίζονται σε ηλεκτρονική μεταγωγή με τοπολογίες Fat-Tree.
Τα Fat-Tree τείνουν να υποεκμεταλλεύονται τους πόρους, απαιτούν πολλά καλώδια και
υφίστανται προβλήματα σχετικά με την επεκτασιμότητα και την ενεργειακή αποδοτικό-
τητα. Για τη μείωση του κόστους, τα Fat-Tree συνήθως είναι oversubscribed (π.χ., 1:4)
και δεν προσφέρουν πλήρες εύρος ζώνης διατομής (full bisection bandwidth) που μπορεί
να χρειαστεί για ορισμένες εφαρμογές. Η δικτύωση που καθορίζεται από τις ανάγκες
των εφαρμογών (application-driven networking), μια αναδυόμενη τάση, θα επωφεληθεί
από ένα δίκτυο που αναθέτει ευέλικτα τη χωρητικότητα όπου χρειάζεται. Για να αντι-
μετωπιστούν τα μειονεκτήματα των Fat-Tree, πολλές πρόσφατες έρευνες πρότειναν υ-
βριδικά ηλεκτρικά/οπτικά δίκτυα κέντρων δεδομένων. Μια από αυτές χρησιμοποιεί ένα
ΔΚΔ στο οποίο οι βαριές ροές μεγάλης διάρκειας (elephant) δρομολογούνται εκλεκτικά

↬Η διατριβή έχει γίνει αποδεκτή από τη Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογι-
στών (ΣΗΜΜΥ) του Εθνικού Μετσόβιου Πολυτεχνείου (ΕΜΠ) τον Νοέμβριο του 2023 για την απόκτηση
Διπλώματος Διδάκτορος Μηχανικού του ΕΜΠ.

↬Επικοινωνία με τον Κωνσταντίνο Κοντοδήμα μέσω του email: kontodimask@gmail.com.

mailto:kontodimask@gmail.com

xxx Εκτενής Περίληψη

μέσω ενός δικτύου οπτικής μεταγωγής κυκλώματος (optical circuit switching – OCS), ε-
νώ η υπόλοιπη κίνηση διέρχεται μέσω ενός δικτύου ηλεκτρονικής μεταγωγής πακέτων
(electronic packet switching – EPS). Αυτές οι λύσεις βασίζονται στην αναγνώριση των
βαριών ροών (elephant), κάτι πού είναι αρκετά δύσκολο, ενώ παρατηρήθηκε ότι τέτοιες
μακρόβιες και βαριές ροές δεν είναι τυπικές, κάτι που δυσκολεύει τη διατήρηση υψηλής
χρησιμοποίησης (utilization) του OCS. Αντίθετα, απαιτείται υψηλός βαθμός συνδεσιμό-
τητας (connectivity). Για να επιτραπεί μεγαλύτερη συνδεσιμότητα, ερευνητές πρότει-
ναν και προτυποποίησαν ένα πολύ πυκνό υβριδικό ΔΚΔ που υποστήριζε και multi-hop
συνδέσεις, μαζί με μια ειδικά κατασκευασμένη στοίβα ελέγχου. Επιπλέον, μέτρησαν τη
συνολική καθυστέρηση, συμπεριλαμβανομένης αυτής του επιπέδου ελέγχου και της ε-
παναρρύθμισης του υλικού του OCS (μικροηλεκτρομηχανικά συστήματα – MEMS), να
είναι της τάξης των εκατοντάδων χιλιοστών του δευτερολέπτου. Η multi-hop δρομολό-
γηση αξιοποιήθηκε ως εκ νέου για διαμοιρασμό οπτικών κυκλωμάτων, για το οποίο ανα-
πτύχθηκε ένα επίπεδο ελέγχου βασισμένο στο OpenFlow, δείχνοντας ότι ο διαμοιρασμός
των κυκλωμάτων μειώνει την επίδραση της αργής επαναρρύθμισης (reconfiguration) του
OCS.

Άλλα προτεινόμενα διασυνδετικά ΔΚΔ δε χρησιμοποιούν καθόλου ηλεκτρονικούς
μεταγωγείς. Το Proteus, είναι μια πλήρως οπτική αρχιτεκτονική ΔΚΔ που βασίζεται
στον συνδυασμό μεταγωγέων επιλογής μήκους κύματος (wavelength selective switches
- WSSs) και MEMS. Ξανά, η multi-hop μετάδοση χρησιμοποιείται για να επιτύχει υψηλή
χρησιμοποίηση, αλλά εξακολουθεί να είναι δύσκολο να αντισταθμιστούν οι αργοί χρόνοι
επαναρρύθμισης τωνMEMS μέσω «έξυπνου» ελέγχου. Άλλες προσεγγίσεις πρότειναν υ-
βριδικές αρχιτεκτονικές OCS και οπτικής μεταγωγής πακέτων/ριπών (optical packet/burst
switching – OPS/OBS), ελεγχόμενες μέσω SDN. Προτάθηκαν και διάφορες άλλες αρχιτε-
κτονικές βασισμένες σεOPS/OBS, αλλά οι τεχνολογίεςOPS/OBS δεν είναι ακόμαώριμες,
οπότε ο σημερινός στόχος θα μπορούσε να είναι δίκτυα μικρής κλίμακας με περιορισμένη
δυνατότητα αναβάθμισης.

Μια υβριδική αρχιτεκτονική ΔΚΔ με το όνομα Mordia χρησιμοποιεί WSS για να πα-
ρέχει χρόνους μεταγωγής 11,5 μs. Το Mordia λειτουργεί με δυναμικό τρόπο για να επιτύ-
χει υψηλή συνδεσιμότητα. Ωστόσο, η κλιμάκωση του Mordia είναι περιορισμένη, καθώς
χρησιμοποιεί έναν μόνο δακτύλιο πολυπλεξίας διαίρεσης μήκους κύματος (wavelength-
division multiplexing – WDM) του οποίου η χωρητικότητα μπορεί να φιλοξενήσει λίγα
racks, ενώ οι αλγόριθμοι ανάθεσης πόρων εμφανίζουν υψηλή πολυπλοκότητα και δεν μπο-
ρούν να κλιμακωθούν σε μεγάλα ΚΔ.

Στα πλαίσια του ευρωπαϊκού έργο NEPHELE αναπτύχθηκε ένα οπτικό ΔΚΔ που εκ-
μεταλλεύεται την υβριδική ηλεκτρονική/οπτική μεταγωγή με χρήση ελέγχου SDN για

Εκτενής Περίληψη xxxi

την αντιμετώπιση των τρεχουσών περιορισμών των ΚΔ. Για να επιτρέψει δυναμικό και
αποδοτικό διαμοιρασμό των οπτικών πόρων και επικοινωνίας χωρίς συγκρούσεις, τοNEP-
HELE λειτουργεί με σύγχρονο τρόπο, κάνοντας χρήση χρονοθυρίδων (timeslots). Οι χρο-
νοθυρίδες χρησιμοποιούνται για την επικοινωνία από rack-σε-rack και ανατίθενται δυνα-
μικά, κατόπιν ζήτησης, προκειμένου να επιτευχθεί αποδοτική χρησιμοποίηση, οδηγώντας
σε εξοικονόμηση ενέργειας και κόστους. Επιπλέον, χρησιμοποιούνται πολλαπλά μήκη κύ-
ματος και οπτικά επίπεδα για να επιτευχθεί μια κλιμακούμενη υποδομή ΔΚΔ με υψηλή
χωρητικότητα.

Το δίκτυο NEPHELE βασίζεται σε μεταγωγείς επιλογής μήκους κύματος (WSSs), οι
οποίοι είναι πιο γρήγοροι από τα μικροηλεκτρομηχανικά συστήματα (MEMS) και πιο ώ-
ριμοι από την οπτική μεταγωγή πακέτων και οπτική μεταγωγή ριπών. Οι γρήγοροι χρόνοι
μεταγωγής, μαζί με τη δυναμική λειτουργία των χρονοθυρίδων, παρέχουν υψηλή και ευέ-
λικτη συνδεσιμότητα. Σε σύγκριση με άλλες αρχιτεκτονικές που εξαρτώνται επίσης από
τους μεταγωγείςWSS (π.χ. Mordia), τοNEPHELE είναι πιο επεκτάσιμο: αποτελείται από
πολλαπλούς δακτυλίους πολυπλεξίας διαίρεσης μήκους κύματος (WDM), επαναχρησιμο-
ποιεί τα μήκη κύματος και χρησιμοποιεί οικονομικά παθητικά εξαρτήματα δρομολόγησης
και επεκτάσιμα σχήματα χρονοπρογραμματισμού. Στο Κεφάλαιο 2 θεωρούμε την αρχι-
τεκτονική του NEPHELE ως την αρχιτεκτονική αναφοράς.

Όσον αφορά την ανάθεση των πόρων, προβλήματα χρονοπρογραμματισμού παρόμοια
με αυτά που αντιμετωπίζονται σε αυτό το έργο μελετήθηκαν στο παρελθόν για δορυφο-
ρικούς μεταγωγείς και μεταγωγείς κατάστασης ασύγχρονης μεταφοράς (asynchronous
transfer mode – ATM). Πράγματι, μπορεί κανείς να θεωρήσει ολόκληρο το ΔΚΔ πολλα-
πλών δακτυλίων αναφοράς ως έναν μεγάλο κατανεμημένο μεταγωγέα. Η κύρια διαφορά
αυτού του ΚΔ είναι ότι αφορά μεγάλες εγκαταστάσεις δικτύων και δυναμική λειτουργία
πολυπλεξίας διαίρεσης χρόνου (time-division multiplexing – TDM)· συνεπώς, ο στόχος
δεν είναι η αυστηρή βελτιστότητα, αλλά η χαμηλή πολυπλοκότητα. Επίσης, επεκτείνο-
νται κατάλληλα προηγούμενοι αλγόριθμοι TDM για να αντιμετωπιστούν ορισμένοι εσω-
τερικοί περιορισμοί συγκρούσεων που απορρέουν από την αρχιτεκτονική αναφοράς.

Στο Κεφάλαιο 2 προτείνουμε και αξιολογούμε ένα σύνολο αλγορίθμων χρονοπρο-
γραμματισμού για το οπτικό ΔΚΔ που χρησιμοποιεί δακτυλίων οπτικών ινών και με-
ταγωγείς WSS. Περιγράφουμε λεπτομερώς τον κύκλο ελέγχου της αρχιτεκτονικής α-
ναφοράς, καταγράφουμε τις απαιτήσεις του και παρουσιάζουμε έναν αλγόριθμο για τη
βέλτιστη ανάθεση των πόρων. Προτείνουμε επίσης τρεις άπληστους ευρετικούς αλγο-
ρίθμους χρονοπρογραμματισμού που μειώνουν τους χρόνους ανάθεσης και αξιολογούμε
την απόδοσή τους μέσω προσομοιώσεων. Οι τυχαιοποιημένος (randomized) και ο άπλη-
στος (greedy) γραμμικός ευρετικός αλγόριθμος εμφάνισαν κανονικοποιημένη ρυθμαπό-

xxxii Εκτενής Περίληψη

δοση (throughput) άνω του 85% για όλα τα εξεταζόμενα σενάρια κίνησης. Ο χρόνος ε-
κτέλεσης του άπληστου γραμμικού ευρετικού μετρήθηκε σε εκατοντάδες χιλιοστά του
δευτερολέπτου, ενώ ο υπο-γραμμικός άπληστος ευρετικός αλγόριθμος ήταν πιο γρήγο-
ρος, θυσιάζοντας κάποια ρυθμαπόδοση. Μελετήσαμε επίσης την επίδραση στην απόδοση
του περιορισμού χρονοπρογραμματισμού που σχετίζεται με την αρχιτεκτονική ΚΔ ανα-
φοράς. Για να αντιμετωπίσουμε την προκύπτουσα μείωση της ρυθμαπόδοσης και την
αύξηση του χρόνου εκτέλεσης, προτείναμε μια παραλλαγή της αρχιτεκτονικής που χρη-
σιμοποιεί spectrum-shifted οπτικά επίπεδα και επεκτείναμε τον άπληστο γραμμικό ευρε-
τικό αλγόριθμο για να λειτουργεί σε ένα τέτοιο δίκτυο. Οι προσομοιώσεις έδειξαν ότι η
ρυθμαπόδοση και ο χρόνος εκτέλεσης πλησιάζουν την απόδοση ενός δικτύου στο οποίο
δεν υπάρχει ο περιορισμός της αρχιτεκτονικής ΚΔ. Οι προτεινόμενοι ευρετικοί αλγόριθ-
μοι επιτυγχάνουν υψηλή ρυθμαπόδοση και χαμηλό χρόνο εκτέλεσης, επιβεβαιώνοντας
τη δυναμική και αποδοτική λειτουργία του ΚΔ.

Επιπλέον, εξετάσαμε περαιτέρω τις πολιτικές για τη λήψη καλών εκτιμήσεων του
πίνακα ουρών που να προσεγγίζουν το μοτίβο της κίνησης μετά την καθυστέρηση του
κύκλου ελέγχου. Διενεργήσαμε προσομοιώσεις χρησιμοποιώντας το OMNET++ με ρε-
αλιστική κίνηση της εφαρμογής MapReduce. Εξετάσαμε τον αντίκτυπο της χρήσης ενός
παράλληλου δικτύου για τα TCP ACKs και ενός ευρετικού γεμίσματος της αχρησιμοποί-
ητης χωρητικότητας. Παρατηρήσαμε ότι και οι δύο τεχνικές βελτιώνουν το makespan.
Εξετάσαμε την περίπτωση της εφαρμογής μιας στατικής πολιτικής round-robin και δύ-
ο πολιτικών που λαμβάνουν υπόψη το μοτίβο της κίνησης. Παρατηρήσαμε ότι όταν η
καθυστέρηση του κύκλου ελέγχου είναι υψηλή, φαίνεται να είναι προτιμότερη η στα-
τική πολιτική round-robin. Οι πολιτικές που λαμβάνουν υπόψη την κίνηση προκαλούν
σημαντική βελτίωση στο συνολικό makespan που μπορεί να φτάσει το 48% όταν η βρα-
χυπρόθεσμη δυναμικότητα του φόρτου είναι υψηλή.

Γρήγορα Οπτικά Διασυνδετικά Δίκτυα Κέντρων Δεδομένων με Πε-
ριορισμένη Ρυθμισιμότητα

Όπως αναφέρθηκε και πιο πάνω, οι τοπολογίες Fat-Tree για τη διασύνδεση ηλεκτρονι-
κών μεταγωγέων με οπτικές ίνες, υποχρησιμοποιούν πόρους, απαιτούν πολλά καλώδια
και μεταγωγείς, παρουσιάζουν προβλήματα στην επεκτασιμότητα και τη δυνατότητα α-
ναβάθμισης και καταναλώνουν υψηλά επίπεδα ενέργειας. Η ενσωμάτωση της οπτικής με-
ταγωγής στα ΔΚΔ αποτελεί έναν κρίσιμο βήμα προς την αντιμετώπιση των περιορισμών
των τοπολογιών Fat-Tree. Ενώ οι οπτικοί μεταγωγείς χρησιμοποιούνται κυρίως για τη
μεταγωγή κυκλώματος σε μητροπολιτικά δίκτυα και δίκτυα κορμού, πρόσφατες έρευνες

Εκτενής Περίληψη xxxiii

έχουν προτείνει υβριδικά ΔΚΔ που χρησιμοποιούν ηλεκτρονικούς/οπτικούς μεταγωγείς
ως λύση. Αυτές οι μελέτες χρησιμοποιούν οπτικούς μεταγωγείς, οι οποίοι ανακατευ-
θύνουν το φως χωρίς μετατροπή από οποιαδήποτε θύρα σε μια άλλη. Ωστόσο, οι χρόνοι
επαναρρύθμισης τους (σε χιλιοστά δευτερολέπτου για μεταγωγείς με μεγάλο radix και σε
δεκάδες εκατομμυριοστά του δευτερολέπτου για μεταγωγείς με μικρό radix) αποτελούν
πρόκληση για τη χρήση τους σε ΔΚΔ, όπου η γρήγορη ρύθμιση των μεταγωγέων είναι
απαραίτητη. Παρά τον περιορισμό αυτό, τα δυνητικά οφέλη της ενσωμάτωσης των οπτι-
κών μεταγωγέων στα ΔΚΔ είναι σημαντικά, και η συνεχιζόμενη έρευνα επικεντρώνεται
στην ανάπτυξη πιο αποδοτικών και βιώσιμων λύσεων. Το 2022, η Google ανακοίνωσε ότι
τα διασυνδετικά δίκτυα του ΚΔ «Jupiter» θα χρησιμοποιούν δυναμική επαναρρύθμιση
της τοπολογίας χρησιμοποιώντας οπτική μεταγωγή κυκλώματος, η οποία έχει εξελιχθεί
για να επιτυγχάνει υψηλότερη ταχύτητα, μείωση του κόστους, αποδοτικότητα ισχύος
και βελτιστοποίηση στα μήκη των διαδρομών.

Το πρώτο εμπόδιο για την υιοθέτηση των τεχνολογιών οπτικής μεταγωγής στα ΔΚΔ
πηγάζει από την ταχύτητα επαναρρύθμισης των (πλήρως) οπτικών μεταγωγέων crossbar.
Καθώς το μέγεθος των ΔΚΔ αυξάνεται, οι δυνατότητες για χρήση μεταγωγέων ενός στα-
δίου (single-stage) μειώνονται και/ή η ταχύτητα επαναρρύθμισης γίνεται απαγορευτικά
υψηλή. Αντιθέτως, η χρήση crossbars πολλαπλών σταδίων (multi-stage), κατασκευασμέ-
νων με μικρότερες λειτουργικές μονάδες, είναι η μόνη λύση. Ωστόσο, αυτή η λύση πάσχει
από τον υψηλό συνολικό αριθμό μεταγωγέων και από την πολυπλοκότητα καλωδίωσης,
τα οποία μπορούν με τη σειρά τους να επηρεάσουν το κόστος παραγωγής. Απαιτεί ε-
πίσης αυστηρό συγχρονισμό και συντονισμένο έλεγχο των πολλαπλών στοιχείων. Στην
αρχιτεκτονική NEPHELE γίνεται χρήση μεταγωγέων WSS (σχετικά) χαμηλού radix, των
πεδίων του χώρου (πολλαπλοί δακτύλιοι) και του μήκους κύματος (WDM) για να επι-
τευχθεί χαμηλή ταχύτητα επαναρρύθμισης και υψηλή χωρητικότητα. Ωστόσο, η αρχιτε-
κτονική NEPHELE δεν είναι ακόμα επεκτάσιμη, όπως περιγράφεται στη συνέχεια (τρίτο
εμπόδιο).

Το δεύτερο εμπόδιο για τη χρήση εξ’ ολοκλήρου οπτικών ΔΚΔ πηγάζει από τον υπο-
λογισμό των schedules. Η ανάθεση οπτικών πόρων σε χώρο (σύνδεσμοι), χρόνο (χρονοθυ-
ρίδες) και/ή μήκος κύματος απαιτεί υψηλή υπολογιστική πολυπλοκότητα, καθιστώντας
πρόκληση τη βέλτιστη, ή ακόμα και τη μη-βέλτιστη εκτέλεσή της σε πραγματικά χρόνο.
Στην αρχιτεκτονική NEPHELE παρουσιάστηκαν αλγόριθμοι ανάθεσης πόρων με χαμηλή
πολυπλοκότητα για αργά μεταβαλλόμενα μοτίβα κίνησης που εκμεταλλεύονται τα προη-
γούμενα υπολογισμένα schedules. Ωστόσο, ο γρήγορος χρονοπρογραμματισμός αν και
επιλύει ένα σημαντικό μέρος του προβλήματος, δεν επιλύει ολόκληρο το πρόβλημα, όπως
περιγράφεται στη συνέχεια.

xxxiv Εκτενής Περίληψη

Το τρίτο εμπόδιο αφορά την υπόθεση του πλήρως κεντρικοποιημένου ελέγχου στα υ-
βριδικά ηλεκτρονικά/οπτικά ΔΚΔ, τα οποία συνήθως ακολουθούν το πρότυπο του SDN.
Ο κεντρικός ελεγκτής/χρονοπρογραμματιστής συγκεντρώνει όλες τις απαιτήσεις κίνησης
και ρυθμίζει αντίστοιχα τους οπτικούς μεταγωγείς, αλλά, όταν το δίκτυο είναι μεγάλο και
η λειτουργία κλειστού βρόγχου εφαρμόζεται για όλους τους κόμβους του δικτύου, αυτή
η δομή είναι αναποτελεσματική λόγω της υψηλής καθυστέρησης που προκαλείται από
τον έλεγχο (monitoring), τον υπολογισμό των schedules, και τη διάδοση των schedules.
Ως αποτέλεσμα, μια αποκλειστικά κεντρικοποιημένη προσέγγιση αντιμετωπίζει περιορι-
σμούς ως προς την επεκτασιμότητα και τη λειτουργία σε πραγματικό χρόνο.

Ερευνητές πρότειναν τον σχεδιασμό ενός μεταγωγέα που χρησιμοποιεί ως θεμελιώ-
δες στοιχείο μεταγωγής μια μονολιθική μονάδας πολλαπλής μεταγωγής (monolithic gang-
switched module), τη «μονάδα επιλογέα» (selector module). Με αυτόν ως βάση, παρου-
σιάστηκε ο σχεδιασμός μιας πλήρους αρχιτεκτονικής ΔΚΔπου ονομάζεται «RotorNet», η
οποία χρησιμοποιεί μεταγωγείς που αποτελούνται αποκλειστικά από μονάδες επιλογέων,
γνωστούς ως «μεταγωγείς Rotor». Ωστόσο, το RotorNet πετυχαίνει χαμηλές επιδόσεις
όσον αφορά τη ρυθμαπόδοση, καθώς δαπανά τη μισή χωρητικότητα του δικτύου για λό-
γους εξισορρόπησης του φόρτου.

Στο Κεφάλαιο 3, εξετάζουμε τρόπους αντιμετώπισης των περιορισμών των υπαρχου-
σών αρχιτεκτονικών οπτικών ΔΚΔ. Η προσέγγιση που ακολουθούμε είναι η σχεδίαση
προσαρμοσμένων οπτικών μεταγωγέων «Lean», οι οποίοι αποτελούνται από δύο στάδια
με πολλαπλές μονάδες επιλογέων στο καθένα και συνδυάζονται με ένα σύνολο μεταγω-
γέων Rotor για να επιτευχθεί πλήρης συνδεσιμότητα στο δίκτυο. Κάθε μονάδα επιλογέα
του πρώτου σταδίου συνδέεται με όλες τις μονάδες επιλογέων του δεύτερου σταδίου,
ενώ όλες οι μονάδες επιλογέων μπορούν να μεταφέρουν μια ομάδα από πολλαπλά οπτικά
σήματα από διαφορετικές εισόδους προς τις αντίστοιχες εξόδους τους σε κάθε κατάστα-
ση μεταγωγής. Αυτό σημαίνει ότι λίγες μονάδες επιλογέων μπορούν να μεταφέρουν ένα
πολύ μεγαλύτερο αριθμό οπτικών σημάτων μεταξύ των κόμβων του ΔΚΔ, μειώνοντας
τον αριθμό των απαιτούμενων στοιχείων μεταγωγής σε σχέση με ένα οπτικό δίκτυο με
πλήρη ρυθμισιμότητα.

Επιπλέον, σε σύγκριση με ένα οπτικό δίκτυο με πλήρη ρυθμισιμότητα, η προσέγγισή
μας μειώνει τον βαθμό του κεντρικού ελέγχου, επιτρέποντας την ανάπτυξη μη-βέλτιστων,
αλλά σχεδόν-βέλτιστων αλγορίθμων για την ανάθεση πόρων σε πραγματικό χρόνο. Ωστό-
σο, η ρυθμισιμότητα (configurability) του ΔΚΔ καθορίζεται από τον αριθμό των μεταγω-
γέων και των καταστάσεων μεταγωγής των εσωτερικών μονάδων επιλογέων του Lean
μεταγωγέα και είναι χαμηλότερη σε σύγκριση με ένα δίκτυο με μεταγωγείς crossbar α-
ντίστοιχου μεγέθους. Αυτοί οι παράμετροι σχεδιασμού επηρεάζουν επίσης την ταχύτητα

Εκτενής Περίληψη xxxv

επαναρρύθμισης των μεταγωγέων, την αλγοριθμική πολυπλοκότητα για τον υπολογισμό
των schedules και την πολυπλοκότητα των εντολών ελέγχου. Ο σχεδιασμός τουΔΚΔ που
προτείνεται είναι παραμετρικός, όσον αφορά τον αριθμό των ομαδοποιημένων σημάτων
που μεταφέρονται από την ίδια μονάδα επιλογέα, επιτρέποντας την αύξηση της ρυθμισι-
μότητας του δικτύου με την προσθήκη περισσότερων Lean και Rotor μεταγωγέων. Αυτό
μπορεί να οδηγήσει σε αύξηση του αριθμού των θυρών, με αποτέλεσμα την αύξηση της
διαθέσιμης χωρητικότητας του δικτύου.

Τέλος, εξετάσαμε την επέκταση του ΔΚΔRotorNet, μέσω της εφαρμογή της τεχνικής
breakout για τη μείωση της καθυστέρησης που οφείλεται στην αύξηση του μεγέθους του
δικτύου, καθώς και την υιοθέτηση της μερικής ρυθμισιμότητας, με τη βοήθεια ενός κε-
ντρικού επιπέδου ελέγχου. Σε αυτό το πλαίσιο, εισάγαμε μια πολιτική Προσαρμοστικού
Weighted Round-Robin (Adaptive Weighted Round-Robin – AWRR), ειδικά σχεδιασμέ-
νη για να ξεπερνά τις επιδόσεις της πολιτικής VLB. Η ισχύς του AWRR βρίσκεται στη
δυνατότητά του να προσαρμόζεται στα χαρακτηριστικά της κίνησης χωρίς να έχει προη-
γούμενη γνώση αυτών. Μαθαίνει σταδιακά τα μοτίβα κίνησης και δυναμικά καθορίζει
τις χρονοθυρίδες βασιζόμενος σε εξελισσόμενους συντελεστές βάρους. Διενεργήσαμε
μια περιεκτική εξέταση διάφορων πολιτικών χρονοδρομολόγησης, συμπεριλαμβανομένης
μιας λεπτομερούς αξιολόγησης του AWRR σε διάφορα προφίλ κίνησης.

Τα αποτελέσματα έδειξαν ότι εφαρμόζοντας την τεχνική breakout, και όσο αυξάνεται
ο παράγοντας του (breakout factor), εξασφαλίζεται τη σταθερότητα της ρυθμαπόδοσης,
ενώ η καθυστέρηση εμφανίζει γραμμική μείωση, αποτρέποντας αποτελεσματικά τα προ-
βλήματα καθυστέρησης που σχετίζονται με την αύξηση του μεγέθους του δικτύου. Σε
συγκεκριμένα σενάρια κίνησης, όπως το προφίλ WTraffic, ο AWRR επιδεικνύει εξαιρε-
τική απόδοση. Ξεπερνά τον VLB προσφέροντας σημαντική αύξηση της ρυθμαπόδοσης
κατά περίπου 30%, χωρίς καμία προηγούμενη γνώση του προφίλ κίνησης. Επιπλέον, ο
AWRR επιδεικνύει εξαιρετική προσαρμοστικότητά στο να χειρίζεται αλλαγές στα προ-
φίλ κίνησης. Μπορεί να προσαρμοστεί γρήγορα σε μεταβαλλόμενες συνθήκες, επιτυγχά-
νοντας σύγκλιση σε μια σταθερή κατάσταση σε μόλις 500 μs.

ΣτοΚεφάλαιο 3 παρουσιάζονται οι προδιαγραφές σχεδιασμού των μεταγωγέων Rotor
και Lean, καθώς και μιας προτεινόμενης αρχιτεκτονική ΔΚΔ μερικής ρυθμισιμότητας
που τους χρησιμοποιεί, του ΔΚΔ Lean. Περιγράφεται το επίπεδο ελέγχου και ο κύκλος
ελέγχου του, δίνονται ο ορισμός του προβλήματος και οι πολιτικές χρονοπρογραμμα-
τισμού που εκμεταλλεύονται την περιορισμένη ρυθμισιμότητα της αρχιτεκτονικής, οι
οποίες έχουν χαμηλή αλγοριθμική πολυπλοκότητα.

Συγκρίνοντας το Lean δίκτυο με ένα δίκτυο RotorNet που χρησιμοποιεί μεταγωγείς
Rotor με ελάχιστη ρυθμισιμότητα και ένα οπτικό δίκτυο Mordia που χρησιμοποιεί οπτι-

xxxvi Εκτενής Περίληψη

κούς δακτυλίους WDM και μεταγωγείς WSS με πλήρη ρυθμισιμότητα, το Lean δίκτυο ε-
πιτυγχάνει μέτρια crosspoint πολυπλοκότητα, επιτρέποντας μεγάλο αριθμό θυρών στους
μεταγωγείς και υψηλή ταχύτητα αναδιαμόρφωσης, ενώ διατηρεί μειωμένη πολυπλοκό-
τητα χρόνου στον χρονοπρογραμματισμό. Η προτεινόμενη πολιτική προγραμματισμού
για το δίκτυο Lean, η Lean Valiant Decomposition (LVD) συνδυάζει τις τεχνικές της α-
παλοιφή (decomposition) Birkhoff-von Neumann και της Εξισορρόπησης Φόρτου Valiant
(Valiant Load Balancing), και επιτρέπει είτε άμεσες, είτε έμμεσες μεταδόσεις, ανάλογα
με τα μοτίβα της κίνησης, διασφαλίζοντας ότι το δίκτυο επιτυγχάνει ρυθμαπόδοση που
κυμαίνεται μεταξύ των περιπτώσεων του δικτύου RotorNet και του δικτύου Mordia.

Οι προσομοιώσεις που παρουσιάζονται περιλαμβάνουν σύγκριση της μέγιστης ρυθ-
μαπόδοσης και των μέσων καθυστερήσεων πακέτου σε τρία σενάρια:

• Στο πρώτο σενάριο, αξιολογούνται τα διάφορα ΔΚΔ και οι πολιτικές χρονοπρο-
γραμματισμού τους και διαπιστώνεται ότι το Lean δίκτυο ξεπερνά το RotorNet κα-
τά 26,8% ως προς τη ρυθμαπόδοση, ενώ πετυχαίνει το 67,3% της ρυθμαπόδοσης
του δικτύου Mordia. Παρατηρείται επίσης ότι οι πολιτικές άμεσης μετάδοσης ο-
δηγούν σε χαμηλότερες μέσες καθυστερήσεις πακέτου, αλλά το Lean δίκτυο με
την πολιτική LVD πετυχαίνει τουλάχιστον 28% χαμηλότερες καθυστερήσεις από
το RotorNet.

• Στο δεύτερο σενάριο, εξετάζονται η επίδοση του Lean δικτύου με διάφορα επίπεδα
ομοιομορφίας στο μοτίβο κίνησης χρησιμοποιώντας την πολιτική LVD. Παρατηρεί-
ται η σταθερή μείωση της μέσης καθυστέρησης πακέτου κατά 21% όσο αυξάνεται
το ποσοστό της κίνησης που ακολουθεί δομημένο μοτίβο.

• Τέλος, στο τρίτο σενάριο, μελετώνται τα δομημένα μοτίβα κίνησης WTraffic,
BlkDiag, και FFT στο Lean δίκτυο, χρησιμοποιώντας την πολιτική LVD. Γίνεται
η διαπίστωση ότι το Lean δίκτυο πετυχαίνει παρόμοια ρυθμαπόδοση και μέση κα-
θυστέρηση πακέτου με τα μοτίβα WTraffic και BlkDiag. Ωστόσο, στο μοτίβο
FFT, το Lean δίκτυο πέτυχε 5% λιγότερη ρυθμαπόδοση από τις άλλες περιπτώσεις
και τουλάχιστον 30% αύξηση της μέσης καθυστέρησης πακέτου λόγω της υπο-
χρησιμοποίησης των άμεσων μεταδόσεων με τα δομημένα μοτίβα κίνησης του FFT.

Ενορχήστρωση Ασφαλούς Κατανεμημένης Αποθήκευσης σε Cloud-
Edge Υποδομές
Οψηφιακός μετασχηματισμός έχει επηρεάσει σημαντικά τις απαιτήσεις αποθήκευσης, οι
οποίες αναμένεται να αυξηθούν ακόμα περισσότερο στο μέλλον, σύμφωνα με τη Διεθνή

Εκτενής Περίληψη xxxvii

Ένωση Δεδομένων (International Data Corporation – IDC). Καθώς το cloud computing
αποτελεί τον θεμέλιο λίθο της ψηφιακής μας κοινωνίας, οι επιχειρήσεις προτιμούν να
αποθηκεύουν τα δεδομένα τους στο cloud αντί να εγκαθιστούν τη δική τους υποδο-
μή.Υπάρχουν πολλοί λόγοι για τους οποίους μια επιχείρηση προτιμά να αποθηκεύει τα
δεδομένα της στο cloud αντί να τα διατηρεί σε ιδιωτικά μέσα αποθήκευσης. Τα πλεο-
νεκτήματα που προσφέρει περιλαμβάνουν την αποφυγή υψηλών αρχικών κεφαλαιακών
δαπανών (CAPEX), την επεκτασιμότητα της παρεχόμενης υπηρεσίας αποθήκευσης και
την εύκολη μεταφορά των δεδομένων όταν αυτό απαιτείται. Επιπλέον, μια υπηρεσία
αποθήκευσης βασισμένη στο cloud παρέχει υψηλή διαθεσιμότητα, απαλλάσσοντας μια
επιχείρηση από την ανάγκη να αναπτύξει περίπλοκους και δαπανηρούς μηχανισμούς για
τον πλεονασμό των δεδομένων (redundancy) και την ανοχή σε σφάλματα (fault-tolerance)
σε περιπτώσεις διακοπών τροφοδοσίας ή σε σενάρια καταστροφής.

Αντίθετα, τα κατανεμημένα συστήματα αποθήκευσης διατηρούν τα δεδομένα σε πολ-
λές τοποθεσίες και ενοποιούν πόρους από πολλούς παρόχους που, εάν επιλεγούν προσε-
κτικά, μπορούν να προσφέρουν αυξημένη ευελιξία σε σχέση με μια μεμονωμένη υπηρεσία
αποθήκευσης. Με την εμφάνιση του edge computing, η αποθήκευση και η επεξεργασία
των δεδομένων κοντά στην πηγή τους (π.χ., κάμερα ή άλλο αισθητήρα) έγινε πραγματικό-
τητα. Η ενσωμάτωση πόρων edge σε κατανεμημένες υπηρεσίες αποθήκευσης βελτιώνει
τον τρόπο με τον οποίο εξυπηρετούνται απαιτητικές εφαρμογές: τα δεδομένα αποθηκεύ-
ονται και επεξεργάζονται στο πόρους edge για να ελαχιστοποιηθεί η καθυστέρηση και
η χρήση του δικτύου, και, εάν απαιτούνται επιπλέον πόροι, χρησιμοποιούνται οι άφθο-
νοι πόροι του cloud. Η συνεχής αύξηση στον αριθμό και την πυκνότητα των πόρων edge
αναμένεται να αλλάξει τον τρόπο με τον οποίο λειτουργούν οι τρέχουσες υπηρεσίες α-
ποθήκευσης. Ωστόσο, αυτό αυξάνει και την πολυπλοκότητα, καθώς οι πόροι edge έχουν
μεγάλη ποικιλομορφία χαρακτηριστικών, η διαθεσιμότητά τους ποικίλλει με τον χρόνο
και είναι πιο αναξιόπιστοι σε σχέση με το cloud.

Η τοποθέτηση θραυσμάτων (fragments) δεδομένων σε απομακρυσμένες τοποθεσίες,
όπου μπορεί να συμβούν διαρροές δεδομένων, δημιουργεί ανησυχίες για το απόρρητο
και την ασφάλεια αυτών των συστημάτων. Δεδομένου ότι οι πάροχοι αποθήκευσης εν
γένει δεν μπορούν να θεωρούνται αξιόπιστοι, υπάρχει η πιθανότητα να ανακτηθούν ευαί-
σθητα δεδομένα από τα κρυπτογραφημένα θραύσματα. Δεδομένου ότι οι αποτυχίες εί-
ναι συνηθισμένες στα κατανεμημένα συστήματα, πρέπει να αποθηκεύονται πλεονάζοντα
(redundant) δεδομένα για να αντέχουν στις αποτυχίες χωρίς να υπάρχει απώλεια δεδο-
μένων. Η κωδικοποίηση απαλοιφής (erasure coding) χρησιμοποιεί κώδικες Forward Error
Correction (FEC) για να διασφαλίσει την ακεραιότητα και τη μακροβιότητα των δεδο-
μένων. Τα δεδομένα διασπώνται (split), κωδικοποιούνται (encoded) και επιδέχονται κά-

xxxviii Εκτενής Περίληψη

ποια επιβάρυνση (overhead), ανάλογα με τον χρησιμοποιούμενο αλγόριθμο. Ακόμη και
όταν δεν είναι δυνατή η ανάκτηση ορισμένων θραυσμάτων, ανάλογα με την τεχνική κω-
δικοποίησης που χρησιμοποιείται μπορεί να μην απαιτούνται όλα τα θραύσματα για να
ανακτηθούν αποτελεσματικά τα αρχικά δεδομένα. Η κωδικοποίηση απαλοιφής παρέχει
επιπρόσθετη ασφάλεια σε σχέση με την περίπτωση που γίνεται χρήση μόνο της τεχνικής
της κρυπτογράφηση, καθώς απαιτείται συγκεκριμένος αριθμό θραυσμάτων από διαφο-
ρετικές τοποθεσίες ούτως ώστε να αποκωδικοποιηθούν από κοινού για να ανακτηθούν
τα αρχικά δεδομένα. Η λειτουργία μιας κατανεμημένης υπηρεσίας αποθήκευσης που
ενσωματώνει ταυτόχρονα πόρους edge και cloud ενώ χρησιμοποιεί την κωδικοποίηση α-
παλοιφής για τη διάσπαση των δεδομένων, παρουσιάζει μια σημαντική πρόκληση για τον
αντίστοιχο μηχανισμό ενορχήστρωσης πόρων. Εκτός από τον καθορισμό της ποσότη-
τας και της κατανομής των θραυσμάτων των δεδομένων και των θραυσμάτων ισοτιμίας
(parity), ο ενορχηστρωτής πρέπει επίσης να ικανοποιεί τις απαιτήσεις των χρηστών και
να βελτιστοποιεί τα διάφορα κριτήρια, συμπεριλαμβανομένου του οικονομικού κόστους,
της καθυστέρησης και της διαθεσιμότητας.

Στο Κεφάλαιο 4, διατυπώνουμε την ενορχήστρωση πόρων αποθήκευσης ως ένα πρό-
βλημα Μεικτού Ακέραιου Γραμμικού Προγραμματισμού (Mixed-Integer Linear Program-
ming – MILP) για τον υπολογισμό της βέλτιστης λύσης. Ωστόσο, ο χώρος αναζήτησης
μπορεί να είναι τεράστιος, οδηγώντας σε απαγορευτικά μεγάλο χρόνο εκτέλεσης για το
MILP, ειδικά όταν χειρίζεται πολλά αιτήματα αποθήκευσης με αυστηρές και ετερογενείς
απαιτήσεις. Ο χρόνος εκτέλεσης αναφέρεται στη διάρκεια που απαιτείται από τον μη-
χανισμό ενορχήστρωσης για να επεξεργαστεί αιτήματα αποθήκευσης και να υπολογίσει
ένα schedule ανάθεσης πόρων για το δεδομένο σενάριο. Προτείνουμε μια αποδοτική ευ-
ρετική μέθοδο multi-agent rollout που βασίζεται στην ενισχυτική μάθηση (reinforcement
learning), η οποία ανταλλάζει απόδοση για χρόνο εκτέλεσης. Αυτό επιτρέπει τη γρήγο-
ρη λήψη αποφάσεων σε πραγματικά σενάρια, μειώνοντας τον μέσο χρόνο εκτέλεσης σε
σύγκριση με αυτόν του βέλτιστου MILP, διατηρώντας ταυτόχρονα την απόδοση κοντά
στη βέλτιστη, όπως αποδεικνύεται στα πειράματα για τα οποία καταφέραμε να υπολο-
γίσουμε τη βέλτιστη λύση. Οι μηχανισμοί που αναπτύχθηκαν χρησιμοποιούν πολλαπλά
κριτήρια βελτιστοποίησης, όπως κόστος, χωρητικότητα, αξιοπιστία, απόδοση, διαθεσι-
μότητα ή συνδυασμό αυτών, ενώ αποφασίζεται ο κατακερματισμό (fragmentation) των
δεδομένων, η κρυπτογράφηση και η τοποθέτηση των δεδομένων. Οι μηχανισμοί λαμβά-
νουν επίσης υπόψη τα διάφορα χαρακτηριστικά των πόρων edge και cloud όσον αφορά
την καθυστέρηση, τη διαθεσιμότητα, την ασφάλεια και το οικονομικό κόστος.

Για να αναδειχθεί η αποτελεσματικότητα των προτεινόμενων μηχανισμών, διεξήχθη-
σαν μια σειρά πειραμάτων προσομοίωσης χρησιμοποιώντας ανώνυμα δεδομένα από την

Εκτενής Περίληψη xxxix

Chocolate Cloud. Η Chocolate Cloud ειδικεύεται στο λογισμικό ασφαλούς και κατανεμη-
μένης αποθήκευσης δεδομένων, και το πιο εμβληματικό της προϊόν, το SkyFlok, είναι έ-
να Λογισμικό-ως-Υπηρεσία (Software-as-a-Service – SaaS) συστήματος αποθήκευσης και
διαμοιρασμού αρχείων. Οι προτεινόμενοι μηχανισμοί ενισχύουν λογικά την ενορχήστρω-
ση της πλατφόρμας SkyFlok, επιτρέποντάς της να ενσωματώσει αποτελεσματικά πόρους
edge. Αυτό σημαίνει ότι οι μηχανισμοί μπορούν να ενσωματωθούν στους back-end μη-
χανισμούς ελέγχου και ενορχήστρωσης της υπηρεσίας, επιτρέποντάς της να συντονίσει
την κρυπτογράφηση, την κωδικοποίηση απαλοιφής και την κατανομή των θραυσμάτων
των δεδομένων στις επιλεγμένες τοποθεσίες cloud και edge.

Οι προτεινόμενοι μηχανισμοί μας επιτυγχάνουν απόδοση κοντά στη βέλτιστη σε εκτε-
ταμένες προσομοιώσεις χρησιμοποιώντας τόσο συνθετικά όσο και πραγματικά δεδομένα
που κυμαίνονται στο εύρος 94,8-97,5%. Στις προσομοιώσεις ανάκτησης δεδομένων, ε-
ξετάσαμε τόσο στη λειτουργία αποθήκευσης (store), όσο και στη λειτουργία ανάκτησης
(retrieve), την επίδραση διαφόρων κριτηρίων βελτιστοποίησης στα χρηματικά κόστη, τις
καθυστερήσεις, τη διαθεσιμότητα και το ποσοστό επιτυχούς ανάκτησης αρχείων. Σε
σύγκριση με τις μονοκριτηριακές προσομοιώσεις, οι προτεινόμενοι πολυ-κριτηριακοί μη-
χανισμοί βελτιστοποίησης ανταποκρίνονται αποτελεσματικά στις διάφορες αντιφατικές
απαιτήσεις βελτιστοποιώντας την τοποθέτηση των αρχείων, επιτυγχάνοντας βέλτιστο ή
σχεδόν βέλτιστο χρηματικό κόστος, καθυστέρηση και διαθεσιμότητα, όλα με μικρό χρό-
νο εκτέλεσης μέσω του μηχανισμούmulti-agent rollout, ο οποίος βελτιώνει σημαντικά την
απόδοση του άπληστου ευρετικού αλγόριθμου (2%-57%). Επιπλέον, η μελέτη μας υπο-
γραμμίζει τη σημασία της ενσωμάτωσης των κόμβων edge στην αντιμετώπιση των αυστη-
ρών απαιτήσεων των εφαρμογών σχετικά με την καθυστέρηση (ο χρόνος καθυστέρησης
αποθήκευσης και ανάκτησης βελτιώθηκε κατά 22%). Ο συντοπισμός (colocation) των
κόμβων edge οδηγεί στην περαιτέρω μείωση της εμπειρικής καθυστέρησης (experienced
latency) (γραμμικά ως προς την αύξηση του συντοπισμού), αναδεικνύοντας την αξία του
να λαμβάνεται υπόψη ο συντοπισμός στην ανάπτυξη μεικτών συστημάτων αποθήκευσης
edge-cloud.

Τελικά, η παρούσα διδακτορική διατριβή παρέχει σημαντικές γνώσεις για τον σχεδια-
σμό αποτελεσματικών και αξιόπιστων συστημάτων αποθήκευσης που εκμεταλλεύονται
τα πλεονεκτήματα τόσο των πόρων edge όσο και των πόρων cloud, συμβάλλοντας στην
ανάπτυξη ανθεκτικών κατανεμημένων υποδομών αποθήκευσης που ανταποκρίνονται α-
ποτελεσματικά στις αυξανόμενες απαιτήσεις της ψηφιακής εποχής.

Chapter 1

Introduction

1.1 ResourceAllocation in anOptical Datacenter Intercon-
nectwith FiberRings andWavelength Selective Switches

The widespread availability of cloud applications to billions of end users and the emer-
gence of platform- and infrastructure-as-a-service models rely on concentrated computing
infrastructures, the data centers (DCs). DCs typically comprise numerous interconnected
servers running virtual machines. As traffic within the DC (east-west) is higher than incom-
ing/outgoing traffic, and both are expected to continue to increase (59), DC networks (DCNs)
play a crucial role. High throughput, scalable, and energy/cost-efficient DCN networks are
required to fully harness DC potential.

State-of-the-art DCNs are based on electronic switching in Fat-Tree topologies (8). Fat-
trees tend to underutilize resources, require numerous cables, and suffer from poor scalability
and low energy efficiency (14, 65). To reduce cost, Fat-Trees are typically oversubscribed
(e.g., 1:4), and do not offer full bisection bandwidth (FBB) that may be needed for certain ap-
plications. Application-driven networking (31, 41), an emerging trend, would benefit from
a network that flexibly allocates capacity where needed. To cope with the shortcomings of
Fat-Trees, many recent works proposed hybrid electrical/optical DCN, a survey of which is
presented in (42). The authors of (30, 77) proposed a DCN in which heavy long-lived (ele-
phant) flows are selectively routed over an optical circuit switched (OCS) network, while the
rest of traffic goes through the electronic packet switched (EPS) network. These solutions
rely on the identification of elephant flows, which is rather difficult, while it was observed
that such long-lived heavy flows are not typical (65), making it difficult to sustain high OCS
utilization. Instead, a high connectivity degree is needed (65). To enable higher connec-
tivity, (24) proposed and prototyped a very dense hybrid DCN that also supports multi-

2 Introduction

hop connections, along with a custom-built control stack. The authors measured the total
delay, including control plane and OCS hardware reconfiguration (microelectromechanical
system-MEMS-switches), to be of the order of hundreds of milliseconds. Multi-hop routing
was exploited anew as shared optical circuits in (13), where an OpenFlow (OF)-based con-
trol plane was developed (54), showing that circuit sharing reduces the effect of slow OCS
reconfigurations.

Other proposed DC interconnects completely lack electrical switches. Proteus, an all-
optical DCN architecture based on a combination of wavelength selective switches (WSSs)
andMEMSwas presented in (72). Again, multi-hop is used to achieve high utilization. How-
ever, it is still hard to compensate the MEMS slow reconfiguration times through sophisti-
cated control. References (62, 67) introduced hybrid OCS and optical packet/burst switch-
ing (OPS/OBS) architectures, controlled using SDN. Various other architectures based on
OPS/OBS were proposed (20, 42) (and references therein). However, OPS/OBS technolo-
gies are not yet mature, so the current target could be small-scale networks with limited
upgradability potential.

The authors of (63) presented a hybrid DCN architecture called Mordia, which uses
WSS to provide switching times of 11.5 μs. Mordia operates in a dynamic slotted manner to
achieve high connectivity. However, the scalability of Mordia is limited as it uses a single
wavelength division multiplexing (WDM) ring whose capacity can accommodate only a few
racks, while resource allocation algorithms exhibit high complexity and cannot scale to large
DCs.

The European project NEPHELE is developing an optical DCN that leverages hybrid
electrical/optical switching with SDN control to overcome current datacenter limitations
(3). To enable dynamic and efficient sharing of optical resources and collision-free com-
munication, NEPHELE operates in a synchronous slotted manner. Timeslots are used for
rack-to-rack communication and are assigned dynamically, on a demand basis, to attain ef-
ficient utilization, leading to both energy and cost savings. Moreover, multiple wavelengths
and optical planes are utilized to implement a scalable and high capacity DC network infras-
tructure.

The NEPHELE network relies onWSSs, which are faster than theMEMS used in (13, 24,
30, 77) and more mature than the OPS/OBS used in (20, 62, 67). The fast switching times,
along with the dynamic slotted operation, provide high and flexible connectivity. Compared
to Mordia (63), which also relies on WSSs, NEPHELE is more scalable: it consists of mul-
tiple WDM rings, re-uses wavelengths, and utilizes cheap passive routing components and
scalable scheduling schemes.

1.2 Fast Optical Datacenter Interconnects with Partial Configurability 3

Regarding resource allocation, scheduling problems similar to those addressed in Chap-
ter 2 were studied in the past for satellite and ATM switches (9, 18, 19, 29, 35, 40, 68, 84).
Indeed, one can view the entire multi-ring DCN as a large distributed switch. The key differ-
ence of our work is that we consider huge network installations and dynamic time-division
multiplexing (TDM) operation; thus strict optimality is not the objective, but we rather target
low complexity.

We also encounter certain internal collision constraints that are particular to the reference
architecture, and thus we need to extend previous TDM algorithms appropriately. Apart
from (63), which considers dynamic TDM operation, a somehow relevant algorithmic work
is (21), where the authors present an integrated optical network-on-chip (NoC) based on a
ring topology and micro-ring resonators (MRs). The key difference with the NEPHELE
network is that MRs target NoC and small networks, where propagation and control plane
delays are negligible. Thus, scheduling does not take place in periods, as in NEPHELE, but
on a per-slot basis as in electronic switches (53).

In Chapter 2 we begin by introducing the reference optical DCN architecture utilizing
fiber rings and WSSs, followed by a description of the dynamic resource allocation problem
and the set of algorithms designed to address it effectively. We then delve into an analysis of
the resource allocation constraints specific to the reference architecture. Subsequently, we
thoroughly evaluate the performance of the proposed algorithms. Furthermore, we explore
enhancements in the control plane using traffic estimation and in the architecture with de-
ploying a parallel network, and conduct simulations with realistic traffic scenarios. Finally,
our conclusions summarize the key insights and findings from our work.

1.2 FastOptical Datacenter Interconnectswith Partial Con-
figurability

The integration of optical switching in DCNs is a pivotal step towards addressing the limi-
tations of Fat-Tree topologies. While optical switches are primarily used for circuit switch-
ing in metro and backbone networks, recent research has proposed hybrid electronic/optical
switched DCNs as a solution (12, 20, 24, 30, 42, 62, 63, 67, 72, 76, 77). These studies em-
ploy optical switches, which transparently redirect light from any port to another. However,
their reconfiguration times (milliseconds for high radix and tens of microseconds for low
radix switches) present a challenge to their use in DCNs, where rapid switch configuration
is essential. Despite this limitation, the potential benefits of integrating optical switches
into DCNs are significant, and ongoing research is focused on developing more efficient

4 Introduction

and sustainable solutions. In 2022, Google announced (64) that Jupiter datacenter network
fabrics will use dynamic topology reconfiguration using Optical Circuit Switching, which
have evolved to achieve higher speed, cost reduction, power efficiency, and optimized path
lengths.

The first barrier to the adoption of optical switching technologies in DCNs comes from
the reconfiguration speed of (full) crossbar optical switches. As the size of DCNs grows,
the options of employing a single-stage optical diminish and/or the reconfiguration speed
is prohibitive high. Conversely, using multi-stage crossbars, built with smaller modules, is
the only solution. However, this suffers from high overall switch count and wiring com-
plexity, which can in turn affect the production cost. It also requires tight synchronization
and coordinated control of the multiple elements. To address these challenges, researchers
have proposed two hybrid DCN architectures: Mordia and CBOSS, which utilizeWSSwhich
makes use of wavelength domain to reduce the number of required elements and provide low
switching times. These proposed solutions operate in a dynamic slotted manner to achieve
high connectivity (15, 63). However, the scalability of both Mordia and CBOSS is lim-
ited, as they employ a single wavelength division multiplexing (WDM) ring with a capacity
that can accommodate only a few racks. In contrast, NEPHELE (12) proposes a distributed
crossbar optical network fabric using WSS switches interconnected in several WDM fiber
rings. The NEPHELE architecture takes advantage of the use of (relatively) low radix WSS
switches, space (multiple rings) and wavelength (WDM) domains to achieve low reconfigu-
ration speed and high throughput. However, the NEPHELE architecture is still not scalable,
as discussed below (third barrier).

The second barrier to using all-optical DCNs derives from schedule computation. Al-
locating optical resources in space (links), time (slots), and/or wavelength (WDM) domains
requires high computational complexity, making it challenging to perform optimally or even
suboptimally in real-time. The resource allocation algorithms of Mordia (63) and CBOSS
(15) exhibit high computational complexity and do not scale well with large DCs, repre-
senting a significant challenge for optimizing these networks. NEPHELE (12) introduced
resource allocation algorithms with low complexity for slowly changing traffic patterns that
take advantage of previously computed schedules. Efforts to address the computational com-
plexity of centralized scheduling calculations have also been explored, such as the parallel
scheduler architecture of (61). However, fast scheduling solves a key part but not the whole
problem, as discussed next.

The third barrier pertains to the assumption of centralized control in hybrid electronic/
optical DCNs, which typically follows the SDN paradigm (12, 24, 67). In this architecture,
a central controller/scheduler gathers all traffic demands and configures the optical switches

1.2 Fast Optical Datacenter Interconnects with Partial Configurability 5

accordingly. However, when the network is large and the closed-loop operation is applied
for all network nodes, it is inefficient due to the high latency induced by the control plane
for monitoring, schedule calculation, and schedule dissemination. As a result, this purely
centralized approach faces limitations in terms of scalability and real-time operation.

In (57) the authors proposed a switch design that utilizes a monolithic gang-switched
module called the “selector module” as its fundamental building block. Building on that,
the authors of (56) introduced a full DCN architecture design called “RotorNet”, utiliz-
ing switches constructed exclusively with selector modules, referred to as “Rotor switches”.
However, RotorNet achieves poor throughput performance since it spends half its network
capacity for load balancing purposes.

In Chapter 3 we explore ways to address the limitations of existing optical data center
network (DCN) architectures. The approach we take is to design custom “Lean” optical
switches, which have two stages of multiple selector modules and are combined with a set of
Rotor switches to achieve full network connectivity. Each selector module of the first stage
is connected to all selector modules of the second stage, while all selector modules can carry
a group of multiple optical signals from different input ports to their corresponding output
ports at each switching state. This means that a few selector modules can carry amuch higher
number of optical signals between DCN nodes, reducing the number of required switching
elements compared to a fully configurable network.

Additionally, compared to a fully configurable network, our solution reduces the level of
centralized control, enabling the development of algorithms to allocate resources sub- but
near-optimally in real-time. However, the configurability of the DCN is determined by the
number of switches and the switching states of the Lean switch internal selector modules,
and it is lower compared to a network with crossbar switches of similar size. These design
parameters also affect the reconfiguration speed of the switches, the algorithmic complexity
for the computation of schedules, and the complexity of the control commands. The pro-
posed DCN design is parametric with respect to the number of the grouped signals carried
by the same selector modules, allowing for an increase in the network’s configurability by
adding more Lean and Rotor switches. This may lead to an increase in the number of ports,
which in turn increases the available network capacity. WDM can be utilized with the optical
signals to further enhance the network’s capacity.

In Chapter 3, we present the design specifications of the Rotor and Lean switches, and our
proposed partially configurable DCN architecture that uses them. Furthermore, we discuss
the control plane and its control cycle, and we present the problem definition and scheduling
policies that take advantage of the limited configurability of the architecture, exhibiting low
computational complexity. Additionally, we present some reference architectures, their cor-

6 Introduction

responding scheduling policies, and compare them in terms of crosspoint complexity. We
evaluate the achieved throughput and average packet latency of the proposed DCN under
various scenarios using the packet simulator OMNET++.

Finally, we examine enhancements on RotorNet by applying breakout for mitigating la-
tency due to network size expansion and integrating centralized control for partial config-
urability. We develop a policy that adapts to traffic characteristics without prior knowledge,
designed to surpass VLB. We compare it to various other scheduling policies and evaluates
it across diverse traffic profiles, though comprehensive simulations.

1.3 SecureDistributed StorageOrchestration onCloud-Edge
Infrastructures

Digital transformation has had a significant impact on the storage requirements, which are
expected to further increase in the foreseeable future, according to the International Data
Corporation (IDC) (37). As cloud computing is the cornerstone of our digital society, busi-
nesses prefer to store their data in the cloud rather than deploying their own infrastructure,
thereby exploiting the offered scalability and increased availability. In this manner, busi-
nesses are alleviated from the burden of deploying complex and costly data redundancy and
fault-tolerance mechanisms.

There are many reasons for a business to prefer storing its data on the cloud instead of
privately held storage devices. The advantages obtained in this way include the avoidance of
high initial capital expenditure (CAPEX), the scalability of the storage service provided, and
the easy migration of the data when needed. Also, a cloud-based storage service provides
high availability, exempting a business from the necessity to deploy complex and costly
mechanisms for data redundancy and fault-tolerance to power outages and other disaster
scenarios.

Distributed storage systems, on the other hand, store data in multiple locations, con-
solidating resources from multiple providers that, if selected carefully, can offer increased
flexibility compared to a single storage service (33). With the advent of edge computing,
the storage and processing of the data close to the generating source (e.g., camera, or other
sensor) (48) became a reality. The incorporation of edge resources in distributed storage
services improves the way demanding applications are served: data are stored and processed
at the edge to minimize latency and network usage, and, if additional resources are required,
the abundant cloud resources are utilized. The continuous increase in the number and density
of edge resources is expected to change the way current storage services operate. However,

1.3 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures 7

this also increases the complexity as the edge resources exhibit diverse characteristics, their
availability varies with time, and they are more unreliable (28).

Laying data fragments to remote storage locations where data leaks can happen raises
privacy and security concerns for such systems. As storage providers cannot generally be
considered trustworthy, sensitive data can be retrieved from encrypted fragments. Since fail-
ures are common in distributed systems, redundant data must be stored to tolerate failures
without data loss. Erasure coding (70) uses Forward Error Correction (FEC) codes to ensure
data integrity and longevity. Data are split, encoded, and incur an overhead depending on
the algorithm. Even when some fragments cannot be retrieved, the original data can be ef-
ficiently recovered by fetching a subset of fragments, depending on the encoding technique.
Erasure coding provides additional security atop encryption, as data can only be recovered
when a specific number of fragments from various locations are jointly decoded.The opera-
tion of a distributed storage service that integrates edge and cloud resources while utilizing
erasure coding to divide data presents a formidable challenge for the corresponding resource
orchestration mechanism. In addition to determining the quantity and distribution of data
and parity fragments, the orchestrator must also fulfill user demands and optimize various
criteria, including monetary cost, latency, and availability.

We formulate the storage resource orchestration as a Mixed-Integer Linear Program-
ming (MILP) problem to obtain the optimal solution. However, the search space can be vast
leading to a prohibitively large execution time for the MILP, especially when handling nu-
merous storage requests with strict and heterogeneous requirements. Execution time refers
to the duration required for the orchestration mechanism to process storage demands and
generate a resource allocation plan for the given scenario. In this work, we propose an effi-
cient multi-agent rollout heuristic approach that is based on reinforcement learning, which
balances performance and execution time. This enables fast decision-making in real-world
scenarios, reducing the average execution time over that of the optimal MILP algorithm,
while maintaining near-optimal performance, as demonstrated in the experiments for which
we were able to track the optimal solution. The developed mechanisms use a multitude of
optimization criteria, namely, cost, capacity, reliability, performance, availability, or a com-
bination of them when deciding on the data fragmentation, encryption and data placement.
Themechanisms also account for the different characteristics of the edge and cloud resources
with respect to latency, data availability, security and monetary cost.

To demonstrate the effectiveness of the proposed mechanisms, a series of simulation ex-
periments were performed using anonymous data fromChocolate Cloud. Chocolate Cloud is
specialized in secure and distributed data storage software and its flagship product, SkyFlok
(sky), is a Software-as-a-Service file sharing and storage solution. The proposed mecha-

8 Introduction

nisms enhance the orchestration logic of the SkyFlok platform, allowing it to incorporate
edge resources efficiently. This means that the mechanisms can be integrated into the back-
end control and orchestrationmechanisms of the distributed service, enabling it to coordinate
the encryption, erasure coding and distribution of data fragments across the selected cloud
and edge location.

The storage allocation problem has long attracted the interest of many researchers. To
address the limitations of single cloudmodels, multi-cloud resource allocation schemes were
initially examined (33, 60) and (49). In (33), Hadji proposed a solution based on commodity
flows to minimize the storage monetary cost and latency. Papaioannou et al. (60) proposed
Scalia, a cloud storage brokerage solution for data placement that targets to minimize the
storagemonetary cost. Mansouri et al. (52) proposed an algorithm thatminimizes the storage
monetary cost, guaranteeing at the same time high data availability and privacy.

Ma et al. (51) proposed a mixed policy that is based on a combination of erasure and
replication coding techniques, targeting to minimize latency, as well as storage and network
monetary costs. In the same context, Zhang et al. (86) proposed a sub-optimal multi-agent
heuristic approach for selecting the storage locations and the appropriate redundancy con-
figuration to minimize the monetary cost with respect to the user’s latency and availability
requirements. Wu et al. (83) proposed a scheme that trades-off cost for latency, meeting the
preset availability requirements. Liu et al. (49) proposed a heuristic (genetic) algorithm to
minimize costs while providing Service Level guarantees.

Targeting the experienced latency minimization, Sharov et al. (69) proposed a quorum-
based configuration that makes use of replication coding and assigns the fragments to the
different locations. Bermbach et al. (16) examined the consistency versus latency trade-
off making use of a mechanism from Amazon’s Dynamo for replication to multiple cloud
providers. Other works, such as (17, 33, 52, 81), rely on replication to multiple providers
in order to attain higher availability and avoid vendor lock-ins, while keeping the cost low.
However, the use of replication instead of erasure coding does not address the problem of
the variations in latency that are experienced by the user.

Other works have proposed mechanisms that improve data availability through redun-
dancy, alsominimizing themonetary cost incurred. However, these works rely on replication
coding, which requires more storage space, compared to erasure coding. In (6, 58, 60, 86),
the authors proposed mechanisms that make use of erasure coding solutions to improve data
availability. In this direction, Wang et al. (78, 80) proposed various techniques that mini-
mize the monetary cost while maximizing the availability. Su et al. (73) proposed an erasure
coding model for solving the data placement problem. Wang et al. (79) proposed an adaptive

1.3 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures 9

model for data placement that minimizes the monetary cost but also takes into consideration
the latency and availability constraints.

In (26), the authors address cloud plan selection by users, introducing a simple language
to express user requirements and plan preferences, and propose a model for identifying and
ranking the plans that satisfy the requirements. In (27), the same authors extend this work, al-
locating resources frommultiple cloud services. Users can specify allocation requirements to
reduce burden and avoid excessive fragmentation. The authors provide an integer program-
ming formulation for finding an allocation satisfying protection and allocation requirements
while minimizing costs. (11) adopts All-Or-Nothing-Transform (AONT) and data replica-
tion, introducing two strategies for allocating shards to nodes. The analysis of these allo-
cation strategies illustrates tuning to balance availability and security. In (10), the authors
address the dynamic version of the problem, relying on fountain codes instead of replication.

Previous works have focused on cloud storage and optimizing individual objectives, such
as data availability, latency, and cost. In contrast, (50) and (7) propose caching schemes with
erasure code for low latency in distributed storage systems that span across the edge-cloud
continuum. The proposed scheme caches popular data chunks at edge servers to achieve
low latencies, but costs and availability of storage resources are not optimized. Authors in
(71) propose a location aware to optimize the data retrieval latency in ultra-large distributed
storage systems, while the authors in (25) propose a rights Management Protocol to enable
the sharing of files in distributed storage systems consisting of nodes that are not fully trusted.

In the current work, we extend the storage resource allocation problem considering the
intrinsic characteristics of a distributed storage infrastructure that spans over the edge-cloud
continuum. Hence, in addition to cloud resources, we consider edge resources, which are
located closer to where the data are generated (82, 85) and have limited storage capacity and
highly dynamic availability. When edge and cloud resources are allocated, leveraging the
erasure code technique, different optimization criteria can be addressed simultaneously.

In Chapter 4 we discuss on the infrastructure and the distributed storage operations. We
provide the resource allocation policies, and we present the simulation results.

Chapter 2

Resource Allocation in an Optical
Datacenter Interconnect with Fiber
Rings

2.1 Introduction and Related Work

The widespread availability of cloud applications to billions of end users and the emergence
of Platform- and Infrastructure-as-a-Service (IaaS and PaaS) models rely on concentrated
computing infrastructures, the data centers (DCs). DCs typically comprise numerous inter-
connected servers running virtual machines. As traffic within the DC (east-west) is higher
than incoming/outgoing traffic, and both are expected to continue to increase (59), DC net-
works (DCNs) play a crucial role. High throughput, scalable, and energy/cost-efficient DCN
networks are required to fully harness DC potential.

State-of-the-art DCNs are based on electronic switching in Fat-Tree topologies (8). Fat-
trees tend to underutilize resources, require numerous cables, and suffer from poor scalability
and low energy efficiency (14, 65). To reduce cost, Fat-Trees are typically oversubscribed
(e.g., 1:4), and do not offer full bisection bandwidth (FBB) that may be needed for certain ap-
plications. Application-driven networking (31, 41), an emerging trend, would benefit from
a network that flexibly allocates capacity where needed. To cope with the shortcomings of
Fat-Trees, many recent works proposed hybrid electrical/optical DCN, a survey of which is
presented in (42). The authors of (30, 77) proposed a DCN in which heavy long-lived (ele-
phant) flows are selectively routed over an optical circuit switched (OCS) network, while the
rest of traffic goes through the electronic packet switched (EPS) network. These solutions
rely on the identification of elephant flows, which is rather difficult, while it was observed

12 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

that such long-lived heavy flows are not typical (65), making it difficult to sustain high OCS
utilization. Instead, a high connectivity degree is needed (65). To enable higher connec-
tivity, (24) proposed and prototyped a very dense hybrid DCN that also supports multi-
hop connections, along with a custom-built control stack. The authors measured the total
delay, including control plane and OCS hardware reconfiguration (microelectromechanical
system-MEMS-switches), to be of the order of hundreds of milliseconds. Multi-hop routing
was exploited anew as shared optical circuits in (13), where an OpenFlow (OF)-based con-
trol plane was developed (54), showing that circuit sharing reduces the effect of slow OCS
reconfigurations.

Other proposed DC interconnects completely lack electrical switches. Proteus, an all-
optical DCN architecture based on a combination of wavelength selective switches (WSSs)
andMEMSwas presented in (72). Again, multi-hop is used to achieve high utilization. How-
ever, it is still hard to compensate the MEMS slow reconfiguration times through sophisti-
cated control. References (62, 67) introduced hybrid OCS and optical packet/burst switch-
ing (OPS/OBS) architectures, controlled using SDN. Various other architectures based on
OPS/OBS were proposed (20, 42) (and references therein). However, OPS/OBS technolo-
gies are not yet mature, so the current target could be small-scale networks with limited
upgradability potential.

The authors of (63) presented a hybrid DCN architecture called Mordia, which uses
WSS to provide switching times of 11.5 μs. Mordia operates in a dynamic slotted manner to
achieve high connectivity. However, the scalability of Mordia is limited as it uses a single
wavelength division multiplexing (WDM) ring whose capacity can accommodate only a few
racks, while resource allocation algorithms exhibit high complexity and cannot scale to large
DCs.

The European project NEPHELE is developing an optical DCN that leverages hybrid
electrical/optical switching with SDN control to overcome current datacenter limitations
(3). To enable dynamic and efficient sharing of optical resources and collision-free com-
munication, NEPHELE operates in a synchronous slotted manner. Timeslots are used for
rack-to-rack communication and are assigned dynamically, on a demand basis, to attain ef-
ficient utilization, leading to both energy and cost savings. Moreover, multiple wavelengths
and optical planes are utilized to implement a scalable and high capacity DC network infras-
tructure.

The NEPHELE network relies onWSSs, which are faster than theMEMS used in (13, 24,
30, 77) and more mature than the OPS/OBS used in (20, 62, 67). The fast switching times,
along with the dynamic slotted operation, provide high and flexible connectivity. Compared
to Mordia (63), which also relies on WSSs, NEPHELE is more scalable: it consists of mul-

2.1 Introduction and Related Work 13

tiple WDM rings, re-uses wavelengths, and utilizes cheap passive routing components and
scalable scheduling schemes. The latter is the major contribution of this chapter. We con-
sider NEPHELE as the reference architecture, and we presents fast scheduling algorithms to
meet NEPHELE dynamic reconfiguration requirements.

Regarding resource allocation, scheduling problems similar to those addressed in this
chapter were studied in the past for satellite and ATM switches (9, 18, 19, 29, 35, 40, 68, 84).
Indeed, one can view the entire reference multi-ring DCN as a large distributed switch. The
key difference of our work is that we consider huge network installations and dynamic time-
division multiplexing (TDM) operation; thus strict optimality is not the objective, but we
rather target low complexity.

We also encounter certain internal collision constraints that are particular to the refer-
ence architecture (Section 2.6), and thus we need to extend previous TDM algorithms appro-
priately. Apart from (63), which considers dynamic TDM operation, a somehow relevant
algorithmic work is (21), where the authors present an integrated optical network-on-chip
(NoC) based on a ring topology and micro-ring resonators (MRs). The key difference with
the NEPHELE network is that MRs target NoC and small networks, where propagation and
control plane delays are negligible. Thus, scheduling does not take place in periods, as in
NEPHELE, but on a per-slot basis as in electronic switches (53).

The research results of this chapter were published in (23), (22) and (44). The remainder
of this chapter is organized as follows. In Section 2.2, we introduce the reference optical
DCN architecture utilizing fiber rings and WSSs. Section 2.3 is dedicated to the dynamic
resource allocation problem, where we describe the challenge and its implications. In Sec-
tion 2.4, we present a set of algorithms developed to address this problem effectively. Sec-
tion 2.5 dives into the resource allocation constraints specific to the reference architecture,
providing a deeper analysis. The performance of the proposed algorithms is thoroughly eval-
uated in Section 2.6. Furthermore, in Section 2.7, we explore enhancements in the control
plane using traffic estimation and in the architecture with deploying a parallel network, and
conduct simulations with realistic traffic scenarios. Finally, our conclusions are summarized
in Section 2.8, bringing together the key insights and findings from our work.

14 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Figure 2.1 Optical DCN architecture utilizing fiber rings and WSSs.

POD Switch 1
...

AWG

W x 1
power

combin
er

AWG

1 x 2 WSS

R x 1
power

combiner

...

... ...

...
...

1 x 2 WSS

...

Ring DROP

Ring DROP

...
...

...

POD Switch P
...

AWG

W x 1
power

combin
er

AWG

1 x 2 WSS

R x 1
power

combiner

Ring PASS

...

... ...

...
...

1 x 2 WSS Ring PASS

...

...

...

Ring DROP

Ring DROP

...
...

...

...

...

Plane 1

...

...

... ...

... ...

...

...

...

...

...

... ...

... ...

...

...

...

...

...

...
...

...

coupler

coupler

coupler

couplerWSS

WSS

WSS

WSS

coupler

coupler

co
up

le
r

co
up

le
r

co
up

le
r

co
up

le
r

co
up

l

co
up

l

co
up

l

co
up

l

AWGAWG

AWG AWG

Cyclic AWG Cyclic AWG

Cyclic AWG

power combiner power combiner

power
combiner

power
combiner

fast
switch

fast
switch

fast
switch

fast
switch

fast
switch

fast
switch

fast
switch

fast
switch

wavelengths

wavelengths

POD POD

POD POD

Rx Rx Rx Rx Rx Rx Rx Rx Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

Tx
(tunable)

ToR ToR ToR ToR

pod podServer (ports) Server (ports) Server (ports) Server (ports)

Optical plane

Optical plane

wavelength wavelength wavelength wavelength wavelength wavelength wavelength wavelength

2.2 Hybrid Electrical/Optical Interconnect

We investigate a hybrid electrical/optical DCN architecture, built out of POD and top-of-rack
(ToR) switches. Figure 2.1 illustrates the NEPHELE DCN, which we use as reference DCN
architecture in this chapter. It is divided into 𝑃 pods1 of racks, with each pod consisting of
𝐼 POD switches and 𝑊 ToR switches, interconnected as follows: each ToR switch listens
to a specific wavelength (thus, by design, the number of wavelengths equals the number 𝑊
of racks in a pod) and has 𝐼 ports. Each port is connected to a different one of the 𝐼 POD
switches. A rack consists of 𝑆 (computer, storage, or memory) servers. The ToR is a hybrid
electrical/optical switch, and each of the 𝑆 servers of the rack connects to it via a link. Thus,
a ToR switch has 𝑆 ports facing “south” to the servers.

POD switches are interconnected via WDM rings to form “optical planes”. An optical
plane consists of a single POD switch per pod (for a total of 𝑃 POD switches in the DCN)
connected with 𝑅 fiber rings. Each fiber ring carries WDM traffic over 𝑊 wavelengths (𝑊 ,
by design, equals the number of racks in the pod), propagating in the same direction. There
are 𝐼 identical and independent/parallel (in the sense that traffic entering a plane stays in
it until the destination) optical planes. In total, there are 𝐼 ⋅ 𝑃 POD switches, 𝑊 ⋅ 𝑃 ToR
switches, and 𝐼 ⋅ 𝑅 fiber rings.

We now explain how communication is performed in the reference DCN (Figure 2.1).
The key routing concept is that each ToR switch listens to a specific wavelength (out of 𝑊
available), and wavelengths are re-used among pods. The ToRs use tunable transmitters that

1The term “pod” refers to the cluster of racks, and “POD” to a pod switch.

2.2 Hybrid Electrical/Optical Interconnect 15

are tuned according to the desired destination. Each ToR employs Virtual Output Queues
(VOQs) per ToR destination (𝑊 ⋅ 𝑃 VOQ per ToR) to avoid head-of-line blocking.

Traffic in the form of an optical signal originating from a port (plane) of a ToR switch
enters a POD switch and is switched through a fast 1 × 2 space switch according to locality:
if the traffic is destined to a ToR in the pod (intra-pod), it remains within the POD switch;
otherwise, it is routed to the rings and to the next POD switch. Local intra-pod traffic enters
a 𝑊 × 1 power combiner, located after the 1 × 2 space switch, and then an 1 × 𝑊 arrayed
waveguide grating (AWG). The AWG passively routes the traffic, depending on the used
wavelength, to the desired destination.

Inter-pod traffic is routed via the fast 1 × 2 switch toward a 𝑊 × 𝑅 cyclic AWG (CAWG)
followed by couplers that combine the CAWG outputs into the 𝑅 fiber rings. The 𝑊 × 𝑅
CAWG has a passive routing functionality, with the incoming signal being routed to the
output port (ring):

𝑟 = (𝑤𝑠 + 𝑤𝑑 − 1) (mod 𝑅) (2.1)

where 1 ≤ 𝑤𝑠 ≤ 𝑊 is the input port (the index of the source rack in the source pod,
which equals its listening wavelength), 1 ≤ 𝑤𝑑 ≤ 𝑊 is the wavelength that has to be
used to reach the specific destination (thus, also equal to the index of the destination rack in
the destination pod), and “mod” denotes the modulo operation. In the simple (not cyclic)
1 × 𝑊 AWG, the output depends only on the used wavelength. So, the traffic enters the
ring according to the CAWG function, propagates in the same ring through intermediate
POD switches, and is dropped at the destination pod. These routing decisions are applied by
setting appropriately the wavelength selective switches (WSSs) in the related POD switches.
The WSSs can select whether traffic passes through or drops on a per-fiber, per-wavelength,
and per-slot basis. Thus, each intermediate POD sets the corresponding WSS to the pass
state, while at the destination the related WSS is set to the drop state. The drop ports of all
the WSSs-corresponding to all the rings-are connected to a power combiner and a 1 × 𝑊
AWG. So again, the traffic once dropped is passively routed to the desired ToR according to
the wavelength used.

Following the above, wavelengths are statically assigned to racks, to simplify optical
routing, and are re-used for efficient operation. Conflicts on the WDM rings are avoided
in the time and space (plane) domains. Regarding the time domain, the DCN operates in
a synchronous slotted manner that closely resembles the operation of a single (huge and
distributed) time-division multiple access (TDMA) switch. In particular, it maintains the
timeslot component of TDMA, but timeslots are not statically assigned; instead, a central
scheduler dynamically assigns them based on traffic needs, enabling efficient utilization of
the resources. However, making scheduling decisions on a per-timeslot basis is prohibitive,

16 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Table 2.1 Fully fledged DCN parameters.

Parameter 𝑊 𝑃 𝑆 𝐼
Value 80 20 20 20

due to high communication and processing latency. Instead, it is both more efficient and less
computationally demanding to perform resource allocation periodically, so that scheduling
decisions are made for periods of 𝑇 timeslots; this approach facilitates the aggregation and
suppression of monitoring and control data and also absorbs traffic peaks.

From the control plane perspective, configurable components are the tunable transmitters
(𝐼 per ToR switch), the 1 × 2 optical switches (𝑊 per POD switch), and the WSSs (𝑅 per
POD switch). The timeslot duration is lower bounded by the slowest component, which is
the WSS with a switching time of about 10 μs (63). This is reserved as a guardband and the
timeslot is taken to be 0.2 ms, so that the network exhibits 95% efficiency. The amount of
data transmitted during a timeslot equals the wavelength transmission rate times the timeslot
duration (i.e., 0.2 ms×10 Gbps = 2 Mbits) and will be referred to as a data unit (DU), which
also is the switching granularity. A reference number for 𝑇 is 80 timeslots, corresponding
to a period of 16 ms.

The existence of 𝐼 parallel planes provides an additional domain, the space, to resolve
conflicts: each timeslot of each plane can be independently allocated. We will refer to a
timeslot/plane combination as a generic (time)slot, implying that the space and time domains
are interchangeable.

Variations of the above described baseline architecture include cases where each ToR
does not listen to a specific wavelength. One such variation will be given in Section 2.5.
Still, the routing function remains similar: the transmitter needs to select the appropriate
wavelength, which is pre-calculated based on certain parameters (the source, the destination,
the plane, etc., as opposed to only the destination in the baseline architecture), while the
WSSs are configured according to that wavelength mapping.

Since a CAWG is used to route the 𝑊 wavelengths on 𝑅 rings, we must have 𝑊 ≥ 𝑅 in
order for the CAWG to be able to use all 𝑅 egress ports. This is a system constraint. We can
also derive the required conditions for achieving FBB assuming that the DCN is nonblocking
(see sections 2.4 and 2.5). We say that a DC interconnect has FBB if, for any bisection of the
servers in two equal partitions, each server of one partition is able to communicate at full rate
with any server of the other partition. Since a ToR supports S servers, the number of PODs
connected to a ToR must be at least 𝐼 ≥ 𝑆, so that all servers of a ToR can communicate
with servers outside their rack. Considering the whole network, there are 𝑃 ⋅ 𝑊 ⋅ 𝑆 server
ports, whereas the overall capacity in the POD-to-POD network is 𝐼 ⋅ 𝑅 ⋅ 𝑊 . Thus, for FBB,

2.2 Hybrid Electrical/Optical Interconnect 17

we need to have 𝐼 ⋅ 𝑅 ⋅ 𝑊 ≥ 𝑃 ⋅ 𝑊 ⋅ 𝑆 ⟹ 𝐼 ⋅ 𝑅 ≥ 𝑃 ⋅ 𝑆. Assuming 𝐼 = 𝑆, the FBB
requirement becomes 𝑅 ⋅ 𝑃 . More flexibility is obtained by increasing the number of planes
𝐼 . In the presence of traffic locality, the FBB requirement can be relaxed to support larger
DCs. Table 2.1 presents target values satisfying the above constraints (including FBB) for
a fully fledged DCN using commodity off-the-shelf (COTS) equipment and a reference DC
size (32K servers).

18 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

2.3 Bandwidth Allocation and Control Scheme

The reference DCN architecture exploits the SDN concept that decouples data and control
planes through open interfaces, enabling programmability of the networking infrastructure.
It utilizes an optical network with 𝐼 optical planes, 𝑅 fibers/plane and 𝑊 wavelengths/fiber
to interconnect the ToR switches in 𝑃 pods. As discussed above, the network operates in
a slotted and synchronous manner. A key functionality of the SDN controller is the coor-
dination of the networking resources usage, including the timeslot/plane dimension. Thus,
an important building block of the SDN controller is the scheduling engine, which allocates
resources to communicating ToR pairs in a centralized, periodic, and on-demand manner1.

Recall that the number of racks per pod is equal to the number of wavelengths, and each
rack listens to a specific wavelength. A ToR switch 𝑠 is thus defined by a unique pair 𝑠 =
(𝑝𝑠, 𝑤𝑠), where 𝑝𝑠, 1 ≤ 𝑝𝑠 ≤ 𝑃 , is the index of the pod it belongs to, and 𝑤𝑠, 1 ≤ 𝑤𝑠 ≤ 𝑊 , is
the rack indexwithin the pod (𝑤𝑠 is also thewavelength onwhich ToR 𝑠 receives data). It will
sometimes be convenient to represent the ToR switch by the scalar index 𝑠 = 𝑝𝑠 ⋅(𝑊 −1)+𝑤𝑠
instead of the pair representation (𝑝𝑠, 𝑤𝑠); as the mapping between the two representations
is one-to-one, we will use, with a slight abuse of notation, the same symbol 𝑠 to stand for
the ToR itself, the scalar index, and the pair representing it.

We assume that a Data period consists of 𝑇 timeslots, and we denote by Q(𝑛) the queue
matrix for period 𝑛. The queue matrix Q(𝑛) is of size (𝑊 ⋅ 𝑃) × (𝑊 ⋅ 𝑃), and element
Q(𝑛)[𝑠, 𝑑] corresponds to the number of DUs that are queued at the start of the period 𝑛 at
source ToR 𝑠 and have as destination ToR 𝑑, with 𝑠 = 𝑝𝑠 ⋅(𝑊 −1)+𝑤𝑠, 𝑑 = 𝑝𝑑 ⋅(𝑊 −1)+𝑤𝑑 ,
1 ≤ 𝑤𝑠, 𝑤𝑑 ≤ 𝑊 , and 1 ≤ 𝑝𝑠, 𝑝𝑑 ≤ 𝑃 . That is, Q(𝑛)[𝑠, 𝑑] is the number of DUs in VOQ
(𝑠, 𝑑) at the start of period 𝑛. Since the scheduling problems of the different wavelengths are
not independent, we will avoid breaking this matrix per wavelength.

Two operation modes are envisioned: (i) application-aware and (ii) feedback-based net-
working. The former approach (31, 41) assumes that applications communicate to the SDN
controller (or via the DC orchestrator) their topology and traffic requirements. In that case,
the queue matrix is constructed from input from the applications. The latter, feedback-based,
mode assumes that the central controller collects (monitors) data from the ToR queues (77)
to build the queue matrix. We can also have a hybrid application-aware and feedback-based
network. In the following, we focus on the feedback-based approach, which is the hard-
est of the two from the control and scheduling viewpoint. The analysis and the proposed
algorithms are applicable with minor changes to application-aware and hybrid operation.

1In the following, the terms “bandwidth allocation”, “resource allocation”, and “scheduling” will be used
interchangeably

2.3 Bandwidth Allocation and Control Scheme 19

Recall that the matrix Q(𝑛) records the queue sizes at the start of the period 𝑛. We
denote by A(𝑛) the matrix of arrivals at the queues during period 𝑛 and by S(𝑛) the schedule
calculated for period 𝑛. Element Q(𝑛)[𝑠, 𝑑] denotes the DUs in the (𝑠, 𝑑) queue at the start
of the period 𝑛, element A(𝑛)[𝑠, 𝑑] the DU arrivals during the period 𝑛, and from S(𝑛) we
get the DUs scheduled to be transferred from 𝑠 to 𝑑 during the period 𝑛. We will describe in
the next section the way schedule S(𝑛) is calculated.

Under feedback-based operation, the DCN operates in two parallel cycles:

1. data communication cycles of 𝑇 timeslots (also referred to as a Data period), where
the actual communication between ToRs takes place, and

2. resource allocation cycles of duration 𝐶 (measured in Data periods of 𝑇 timeslots),
where control information is exchanged. If the duration of the resource allocation
process is not fixed, 𝐶 is an upper bound on it.

The resource allocation cycle 𝑛 corresponds to a Data period 𝑛, and computes the sched-
ule S(𝑛) to be used during that period. Note, however, that the schedule is computed based on
information that was available 𝐶 periods earlier than the Data period to which the resource
allocation cycle corresponds (and is applied). Thus, S(𝑛) is a function of Q(𝑛 − 𝐶), i.e.,

S(𝑛) = ℱ (𝒢 (Q(𝑛 − 𝐶))) (2.2)

where Q̂(𝑛) = 𝒢 (Q(𝑛−𝐶)) is the function that creates the estimated queue matrix Q̂(𝑛) from
Q(𝑛 − 𝐶) upon which the schedule is calculated, and ℱ is the scheduling algorithm. When
𝐶 > 1 period (control delay larger than the Data period), a new resource allocation cycle
still starts every Data period. So, there are 𝐶 resource allocation cycles (or virtual control
planes) running in parallel. For determining the schedule S(𝑛) to be used during Data period
𝑛:

a) the traffic matrix engine of the SDN controller collects the queue sizes from the ToRs to
build Q(𝑛 − 𝐶) and runs the queue estimation algorithm 𝒢 to create the estimated queue
matrix Q̂(𝑛) = 𝒢 (Q(𝑛 − 𝐶)),

b) the scheduling engine of the SDN controller runs the algorithm ℱ to calculate the sched-
ule S(𝑛) = ℱ (Q̂(𝑛)), and

c) the SDN controller communicates the scheduling output S(𝑛) to the data plane devices
(POD and ToR switches) to be used during Data period 𝑛.

Figure 2.2 shows the resource allocation and data cycles (control and data plane, respec-
tively). As discussed, there is a delay between the two cycles: the schedule S(𝑛) applied

20 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Figure 2.2 Resource allocation and data cycles.

Traffic matrix
creation of

Schedule computation
of

Monitoring
data

Transmit
according to

Arrivals Arrivals

Transferring
configuration

Resource
allocation cycle

for Data period

Data
communication

cycle

in Data cycle 𝑛 is computed based on queue matrix Q(𝑛 − 𝐶), since it takes 𝐶 periods to
compute and reach the data plane devices. The queue evolution is described by

Q(𝑛 + 1) = Q(𝑛) + A(𝑛) − S(𝑛) (2.3)

where S(𝑛) = ℱ (𝒢 (Q(𝑛 − 𝐶))). The value 𝐶 does not affect the achievable throughput, as
long as scheduling decisions are efficient (more on that later), but affects the traffic delay.
The control plane delay 𝐶 depends on many factors, including the execution time of the
scheduling algorithm, and the delay of the control protocol carrying information from ToRs
to the SDN controller (if monitoring is assumed) and from the SDN controller to the data
plane devices. Both delays depend on the network size and the choice of the Data period 𝑇 .

For scheduling decisions to be efficient, the scheduling matrix S(𝑛), computed based
on an estimated queue matrix Q̂(𝑛), which in turn is calculated by Q(𝑛 − 𝐶), should be a
“good” scheduling to be used during the Data interval 𝑛. This is true when Q̂(𝑛) is a good
approximation of Q(𝑛).

For slowly and medium changing traffic, we expect calculations made for previous pe-
riods to be valid. In estimating Q̂(𝑛) from Q(𝑛 − 𝐶), it is possible to also use statistical
predictions, filters, and other (notably application-aware) methods to improve performance.
Moreover, it is possible for the scheduler to fill unallocated resources in S(𝑛) by opportunistic
transmissions, which can have collisions or be collision free (e.g., nodes agree to use slots in
lexicographic order, mimicking static TDM, which under heavy load is efficient). Finally,
the overall scheme is “self-correcting”: if some queues are not served for some periods due

2.3 Bandwidth Allocation and Control Scheme 21

to poor scheduling and their size grows due to new arrivals, this will be communicated with
some delay to the controller, and the queues will eventually be served.

In the following, we will focus on the scheduling problem. We start from the estimated
queue matrix Q̂(𝑛) and devise fast algorithms to calculate the schedule S(𝑛) (function ℱ
in Eq. (2.2)). For reference, we can assume that we calculate the estimated queue matrix
(function 𝑔 in Eq. (2.2)) as

Q̂(𝑛) = A(𝑛 − 𝐶 − 1) + Q̂(𝑛 − 1) − S(𝑛 − 1),

where we acknowledge that due to control plane delay 𝐶 , the central scheduler has access
to (delayed) arrival information A(𝑛 − 𝐶 − 1) instead of A(𝑛). This corresponds to the case
where the schedule S(𝑛) calculated on Q̂(𝑛) serves the arrived traffic A(𝑛 − 𝐶 − 1), plus a
correction equal to traffic not served in the previous period Q̂(𝑛 − 1) − S(𝑛 − 1).

We now describe the form of the schedule S(𝑛). The scheduling engine provides the ToR
pairs that communicate during each timeslot and for each optical planewithin the upcoming
Data period. Note that wavelengths and rings are dependent resources; the selected wave-
length is determined by the destination, and the ring depends on the source and destination
according to Eq. (2.1). Thus, the allocated resources are the timeslots and the optical planes
(𝐼 ⋅ 𝑇 in total), or the generic slots, as stated previously.

The scheduling algorithm takes the estimated queuematrix Q̂(𝑛) and decomposes it (fully
or, if not possible, partially) into a sum of 𝐼 ⋅𝑇 permutation matrices P(𝑔)(𝑛), 𝑔 = 1, 2, … , 𝐼 ⋅
𝑇 , each corresponding to a generic slot. A permutation matrix is binary of size (𝑊 ⋅ 𝑃) ×
(𝑊 ⋅ 𝑃); an entry P(𝑔)(𝑛)[𝑠, 𝑑] equals “1” if a DU is to be transferred from ToR 𝑠 to ToR
𝑑 during the 𝑔th generic slot of period 𝑛, and “0” otherwise. In other words, P(𝑔)(𝑛)[𝑠, 𝑑]
identifies if one DU at the 𝑑-VOQ of ToR 𝑠 will be transmitted during the 𝑔th generic slot
of period 𝑛:

P(𝑔)(𝑛)[𝑠, 𝑑] =
⎧⎪
⎨
⎪⎩

1, if S(𝑛)[𝑔, 𝑠] = 𝑑
0, otherwise.

A permutation matrix determines a configuration of the network for a specific generic
slot. For the communication to be contention free, the scheduling constraints SC1, SC2,
and SC3 that are summarized in Table 2.1 should be satisfied. In particular, the first two
constraints, SC1 and SC2, ensure that each ToR transmits to and receives from at most one
ToR per generic slot. Constraints SC1 and SC2 are relevant to all TDMA-like architectures
and are readily enforced by the decomposition process.

The third constraint, SC3, is related to the (not nonblocking character of the) architecture,
and particularly, it is a result of the usage of static routed CAWGs as opposed to dynami-

22 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Table 2.2 Scheduling constraints (SC).

Constraint ID Description1

SC1 ∑𝑠 P(𝑔)(𝑛)[𝑠, 𝑑] ≤ 1
SC2 ∑𝑑 P(𝑔)(𝑛)[𝑠, 𝑑] ≤ 1
SC3 P(𝑔)(𝑛)[𝑠, 𝑑] + P(𝑔)(𝑛)[𝑠,′ 𝑑′] ≤ 1, for 𝑝𝑠 < 𝑝𝑠′ < 𝑝𝑑 or

𝑝𝑠 < 𝑝𝑑′ < 𝑝𝑑 and (𝑤𝑠′ − 𝑤𝑠) (mod 𝑅) = 0
1 P(𝑔)(𝑛)[𝑠, 𝑑] = 1, 𝑠 = 𝑝𝑠(𝑊 − 1) + 𝑤𝑠, and 𝑑 = 𝑝𝑑 ⋅ (𝑊 − 1) + 𝑤𝑑
indicate that one DU is scheduled for transfer from source ToR (𝑤𝑠, 𝑝𝑠)
to destination ToR (𝑤𝑑 , 𝑝𝑑) in the 𝑔th generic slot of period 𝑛.

cally configured components. To better illustrate SC3, assume that a source ToR (𝑤𝑠, 𝑝𝑠)
communicates with a destination ToR (𝑤𝑑 , 𝑝𝑑). This communication takes place over the
optical ring that is calculated from Eq. (2.1), and it occupies a wavelength 𝑤𝑑 on the ring
segment between 𝑝𝑠 and 𝑝𝑑 . If another source ToR (𝑤𝑠, 𝑝𝑠′) within the aforementioned ring
segment (i.e., 𝑝𝑠 < 𝑝𝑠′ < 𝑝𝑑) concurrently communicates with destination ToR (𝑤𝑑 , 𝑝𝑑′), a
collision will occur irrespective of the destination pod (𝑝𝑑′), since it occupies the same ring
and wavelength. A similar contention will occur if the destination pod lies in the initial ring
segment (i.e., 𝑝𝑠 < 𝑝𝑑′ < 𝑝𝑑), irrespective of the source pod. Note that SC3 is alleviated
for 𝑅 ≥ 𝑊 , which, however, leads to underutilization of rings. Moreover, the effect of
the lack of the nonblocking property for the architecture (when seen as a huge switch), or
equivalently the existence of SC3, is small, and will be discussed in sections 2.5 and 2.6.

The set P(𝑔)(𝑛), 𝑔 = 1, 2, … , 𝐼 ⋅ 𝑇 , of permutation matrices comprise the schedule S(𝑛),
which records information for all generic slots of period 𝑛. The permutation matrices P(𝑔)(𝑛)
are stored as sparsematrices, eachwith𝑊 ⋅𝑃 entries. Similarly, S(𝑛) is sparsewith 𝐼⋅𝑇 ⋅𝑊 ⋅𝑃
entries.

2.4 Scheduling Algorithms 23

2.4 Scheduling Algorithms
Having described the DCN operation, we now proceed to present a set of scheduling al-
gorithms. We assume that we start with the estimated queue matrix Q̂(𝑛) and calculate the
schedule S(𝑛) (functionℱ in Eq. (2.2)). To target both static and dynamic resource allocation
scenarios, we developed two classes of scheduling algorithms: (i) offline and (ii) incremen-
tal. Offline algorithms, given in Section 2.4.1, take the estimated queue matrix Q̂(𝑛) and
compute schedule S(𝑛) “from scratch”. Incremental algorithms, given in Section 2.4.3, use
the previous schedule S(𝑛 − 1) and update it based on traffic changes to obtain S(𝑛). Offline
algorithms are better suited for semi-static traffic, take longer to execute, and achieve better
utilization; incremental algorithms are faster and can handle dynamic scenarios.

2.4.1 Offline Scheduling
As discussed above, offline scheduling decomposes the matrix Q(𝑛) into a sequence of per-
mutation matrices P(1)(𝑛),P(2)(𝑛), … ,P(𝐼⋅𝑇)(𝑛), without taking into account the previous de-
composition. We start by presenting the optimal offline scheduling algorithm.

The decomposition of Q̂(𝑛) can be performed optimally following the well-known Hall’s
theorem (an integer version of the Birkhoff-von Neumann theorem (18)). We define the
critical sum ℋ (Q̂(𝑛)) = ℎ of a matrix Q̂(𝑛) as the maximum of its row sums and column
sums. Then the following theorem holds:

Theorem 2.4.1 (Hall’s Theorem). An integer matrix of critical sum ℎ can be written as the
sum of ℎ permutation matrices.

The following algorithm calculates the optimal decomposition of matrix Q̂(𝑛):

1. Find a matrix of non-negative integers E(𝑛) so that the matrixM(𝑛) = Q̂(𝑛) + E(𝑛) is
a perfect matrix with critical sum ℋ (M(𝑛)) = ℋ (Q̂(𝑛)) = ℎ. A perfect matrix has the
sum of each row and each column equal to the critical sum. An algorithm to obtain
E(𝑛) is found in (19).

2. Treat M(𝑛) as a (bipartite) graph adjacency matrix and obtain a maximum matching
𝑗 → 𝑝(𝑗), 𝑗 = 1, 2, … , 𝑃 ⋅𝑊 . This matching can then be represented as a permutation
matrix P(𝑖)(𝑛), whose (𝑗, 𝑝(𝑗)) entries are equal to 1, and all other entries are 0.

3. Find the weight 𝑐𝑖 as the smallest element ofM(𝑛) that corresponds to a nonzero entry
in P(𝑖)(𝑛).

4. Repeat P(𝑖)(𝑛) for 𝑐𝑖 times in the schedule and updateM(𝑛) = M(𝑛) − 𝑐𝑖 ⋅ P(𝑖)(𝑛).

24 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

5. If M(𝑛) is not equal to zero, repeat steps 1-4. Otherwise, an optimal decomposition
forM(𝑛) has been found.

6. Set the entries of the dummy matrix E(𝑛) to zero.

Steps 2-4 are repeated ℎ times at most, and we have that ∑𝑖 𝑐𝑖 = ℎ. Note that the
decomposition of an integer matrix as a sum of ℎ permutation matrices is not unique and that
the permutation matrices in the decomposition of M(𝑛) are full rank (corresponding to full
utilization of the 𝐼 ⋅𝑇 generic slots), while those in the decomposition of Q̂(𝑛) = M(𝑛)−E(𝑛)
may not be full rank (leaving some generic slots unused, namely, the entries of E(𝑛), and
available for opportunistic transmissions). In general, a decomposition that uses a limited
number of permutations, each carrying a considerable amount of traffic 𝑐𝑖, is preferable as it
results to fewer reconfigurations of the switches.

The preceding algorithm assumes that the critical (row or column) sum is constrained,
but this will not always be the case. The arrival matrixA(𝑛) corresponds to traffic created by
the servers and aggregated at the related ToR switches in period 𝑛. Since one link connects
a server to the ToR, the server sends to its ToR switch at most 1 DU during a timeslot.
Therefore, the row sums of A(𝑛) are at most 𝑆 ⋅ 𝑇 . Some of A(𝑛)’s column sums, however,
may be larger than that, e.g., in the presence of hotspot destinations. Note that the capacity
connecting a ToR to the destination servers can transfer 𝑆 ⋅ 𝑇 DUs, and this is the same for
all DCNs. So hotspot problems, where traffic toward some ToRs (columns ofA) exceeds the
available capacity, are present in all DCNs.

We could, in principle, devise flow control mechanisms to guarantee that the critical sum
of A(𝑛) satisfies ℋ (A(𝑛)) ≤ 𝑆 ⋅ 𝑇 . Using an entry flow control mechanism between servers
and source ToRs, like the “stop and go” queuing proposed in (32), which limits (smoothens)
the entry of DUs toward the destinations, we can enforce the column sum to be less than𝑆⋅𝑇 .
In particular, each source ToR can check the destination ToR 𝑑 of the packets forwarded to
it by the source servers and, through a back-pressure mechanism, guarantee that packets
equivalent to at most (𝑆 ⋅ 𝑇)/(𝑊 ⋅ 𝑃) DUs are destined for each destination during a period
of duration 𝑇 . Such a source flow control mechanism, however, may be too restrictive,
unnecessarily, and introduce large entry delays, as packets are queued at the servers, outside
the interconnection network. To relax somewhat the constraint, a credit-based flow control
mechanism can be used at the pod level, where each source POD is given 𝑊𝑑 = (𝑆 ⋅ 𝑇)/𝑃
credits for each destination ToR 𝑑 per period, which it can distribute to the ToRs below it
that can, in turn, distribute them to the servers. This would relax considerably the input
flow control constraints and the corresponding delays at the servers, but requires a clever
mechanism for distributing credits.

2.4 Scheduling Algorithms 25

Even if a flow control mechanism is not present, the column sums will be on average less
or equal to 𝑆 ⋅ 𝑇 , assuming the destinations of packets are uniformly distributed on average.
Actually, the critical sum will be less or equal to 𝑆 ⋅ 𝑇 not only on average, but also with
high probability, if the network operates at less than full load. Finally, note that TCP flow
control smoothens the traffic to a given destination. Since the downstream links from a ToR
to the servers can support up to 𝑆 ⋅ 𝑇 DU per Data period, the previous condition will tend
to hold with high probability in a DC network that employs TCP.

Based on the previous discussion, we conclude that in the “typical case” the column
sums of the arrival matrix A(𝑛) will be less or equal to 𝑆 ⋅ 𝑇 and so will also be its critical
sum (since the row sums are always less or equal to 𝑆 ⋅ 𝑇). In that case, the schedule S(𝑛),
that is calculated based on Q̂(𝑛) = A(𝑛 − 𝐶), assuming 𝑆 ≤ 𝐼 , can be chosen to completely
serve all the arrivals in A(𝑛 − 𝐶) in the available 𝐼 ≤ 𝑇 generic slots.

Note that in the reference FBB network scenario we assume 𝑆 = 𝐼 and so we will
interchangeably use 𝑆 and 𝐼 in the following. Thus, in this case, all packets generated in
a Data period will be served 𝐶 periods later, emptying the queue from such packets. So
the delay in the DCN is upper bounded by 𝐶 periods when appropriate input flow control
is used, or with high probability when the load is far enough from full load. Thus, in the
typical case, the reference DC provides both full throughput and delay guarantees.

In the more general case where the critical sum of Q̂(𝑛) is not bounded by 𝐼 ⋅ 𝑇 , we stop
when we find the first 𝐼 ⋅ 𝑇 permutations, while the traffic Q(𝑛) − S(𝑛) that is not served is
fed to produce the estimated matrix for the next period Q̂(𝑛+1). Fairness and priority issues
can also be handled with small extensions to the above process without a requirement for
additional flow control.

2.4.2 Complexity of Offline Scheduling and Stability

For general traffic, we define the load intensity between source destination ToR pair (𝑠, 𝑑) as

𝜌𝑠𝑑(A) = 𝔼[A[𝑠, 𝑑]]/(𝐼 ⋅ 𝑇), (2.4)

where 𝔼 stands for expected value and 0 ≤ 𝜌𝑠𝑑(A) ≤ 1 for an FBB DCN (𝑆 = 𝐼). The load
intensity matrix 𝒫 (A) is defined as the matrix with 𝜌𝑠𝑑(A) entries. The row sums of 𝒫 (A)
are always less than or equal to 1, while for a stable network (finite queues), the column sums
should also be less than or equal to 1.

Necessary condition for stability: For the DCN to be stable, the load intensity matrix
𝒫 (A) should be at most a double stochastic matrix.

26 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

When the previous condition does not hold, it is impossible to find a schedule to serve the
queues in a stable manner. It is thus up to the DC orchestrator to allocate tasks to servers so
that their communication requirements meet this constraint. Our target is to provide sched-
ules that can serve any (long-term) stable matrix 𝒫 (A).

We define the average network load 𝜌(A) (also represented by 𝜌) for arrival matrices A
as the scalar

𝜌(A) = 𝜌 = ∑
𝑠,𝑑

𝜌𝑠𝑑(A)/(𝑃 ⋅ 𝑊) = ∑
𝑠,𝑑

𝔼[A[𝑠, 𝑑]]/(𝐼 ⋅ 𝑇 ⋅ 𝑃 ⋅ 𝑊), (2.5)

and 𝜌(A) ∈ [0, 1]. The quantity 𝜌⋅𝑃 ⋅𝑊 ⋅𝐼 ⋅𝑇 equals the average of the entries of the arrival
matrix A during a period (or, equivalently, 𝜌 ⋅ 𝑃 ⋅ 𝑊 ⋅ 𝐼 is the average number of arrivals per
timeslot and ToR-to-ToR pair).

Besides the load, another parameter that is important in characterizing the arrival process
and the algorithmic complexity is the arrival matrix density 𝛿(A), which is complementary
to the sparsity of A. In particular, if we define the indicator function ℐ (⋅), as

ℐ (𝑥) =
⎧⎪
⎨
⎪⎩

1, if 𝑥 > 0
0, otherwise,

then the density 𝛿(A) of the matrix A is defined as

𝛿(A) = 𝔼
[∑

𝑠,𝑑
ℐ (A[𝑠, 𝑑])

]
/(𝑊 ⋅ 𝑃)2, (2.6)

where 𝔼 [∑𝑠,𝑑 ℐ (A[𝑠, 𝑑])] is the average number of nonzero entries of A and, clearly, 0 ≤
𝛿(A) ≤ 1. In other words, 𝛿(A) is the fraction of nonzero entries of A. Then, the number of
nonzero entries ℳ(A) is given by ℳ(A) = 𝛿(A) ⋅ (𝑊 ⋅ 𝑃)2.

In the worst case, the optimal algorithm described earlier executes a maximum match-
ing algorithm 𝐼 ⋅ 𝑇 times (uniform traffic). Finding a maximum matching can be time-
consuming, and even the well-known Hopcroft-Karp bipartite graph matching algorithm
(35) exhibits a complexity of 𝑂(ℳ(A) ⋅ √𝑊 ⋅ 𝑃), where ℳ(A) is the number of nonzero
elements in A. The number of different matches is 𝜌 ⋅ 𝐼 ⋅ 𝑇 , and thus the complexity of the
optimal offline algorithm is 𝑂(𝜌 ⋅ 𝛿 ⋅ 𝐼 ⋅ 𝑇 ⋅ (𝑊 ⋅ 𝑃)

5
2).

An indicative example of the execution time required for optimal decomposition with
the Birkhoff-von Neumann and Hopcroft-Karp algorithms is shown in Figure 2.3, for a fully
fledged DCN (parameters listed in Table 2.1). The algorithm was developed in MATLAB

2.4 Scheduling Algorithms 27

(38) and the simulations were performed on an Intel® Core™ i5 laptop. Figure 2.3 plots
the average execution time of the optimal decomposition algorithm against the load 𝜌 and
density 𝛿, which are shown to range from tens of seconds to minutes.

Figure 2.3 Average execution time of optimal de-
composition algorithm as a function of load 𝜌 and
arrival matrix density 𝛿.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

50

100

150

E
x
ec

u
ti

o
n

ti
m

e
(s

)

δ = 25%

δ = 2.5%

δ = 0.25%

In these simulations, the traffic was
created as follows: at each period, each
source ToR communicated with 𝛿 ⋅ 𝑊 ⋅
𝑃 uniformly chosen ToR destinations
by transmitting a total number of 𝜌⋅𝐼 ⋅𝑇
DUs.

Based on the above result, and
given the size of a fully fledged FBB
DCN (Table 2.1), we deduce that,
even with an optimized software and
hardware environment, the optimal al-
gorithm would only be viable under
a static resource allocation scenario,
where traffic remains unchanged for prolonged periods. The requirement for dynamic re-
source allocation can be pursued via non-optimal algorithms that employ maximal rather
than maximum matchings, at the expense of blocking at high loads. To this end, we
also developed faster offline heuristics of reduced complexity and performance quite close
to the optimal. In particular, we developed a greedy offline algorithm of complexity
𝑂(𝜌(𝑊 ⋅ 𝑃)2 ⋅ 𝐼 ⋅ 𝑇), which is linear in the size of the problem (note that the number of
DUs to be scheduled is 𝑂(𝜌 ⋅ (𝑊 ⋅𝑃)2) and the number of resources is 𝑂(𝐼 ⋅𝑇)). For brevity,
we do not discuss this algorithm, as it still cannot meet dynamic resource allocation require-
ments, but describe a variation of it in the next subsection. To further reduce scheduling
complexity, we have to exploit the variations (temporal and spatial) of traffic, as is done in
the incremental scheduling algorithms of the next subsection.

2.4.3 Incremental Scheduling Algorithms for Locality Persistent Traf-
fic

It is evident from the previous results that offline scheduling is not suitable for bursty traffic.
Measurements in commercial DCs indicate that application traffic can be relatively bursty,
with flows activating/deactivating within milliseconds (65). Although traffic can be bursty,
it tends to be highly locally persistent: a server tends to communicate with a set of destina-

28 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

tions that are located in the same rack or the same cluster/pod (65). This is due to the way
applications are placed in DCs, each occupying only a small fraction of the DC.

ToR switches aggregate the flows of the servers in a rack, smoothening out the bursti-
ness of individual flows, especially considering locality-persistent traffic. To formally define
locality persistency, we define the arrival matrix difference as DA(𝑛) = A(𝑛) − A(𝑛 − 1),
the load 𝜌(|DA(𝑛)|), and the density 𝛿(|DA(𝑛)|) of the difference by replacing A with DA in
Eq. (2.5) and (2.6), where | ⋅ | stands for the entrywise absolute value.

Locality Persistency Property: holds if

𝛿(|DA(𝑛)|) ≪ 1. (2.7)

We also define the estimated queue matrix difference as

DQ̂(𝑛) = Q̂(𝑛) − Q̂(𝑛 − 1). (2.8)

Note that when arrivals have the locality persistency property (i.e., Eq. (2.6) holds), then,
in view of the Section 2.3 discussion, we also expect 𝛿(|DQ̂(𝑛)|) ≪ 1. For example, in the
typical case where

Q̂(𝑛) = A(𝑛 − 𝐶 − 1) + Q(𝑛 − 1) − S(𝑛 − 1), (2.9)

the persistency property of A also holds for the estimated matrix Q̂.
Motivated from this observation, we propose and investigate incremental scheduling,

i.e., rely on the previous schedule to calculate the new one. The expected benefit is that we
need to update only specific elements of the permutation matrices of the decomposition of
Q̂(𝑛 + 1), corresponding to traffic that has changed, but there is no need to modify the rest
of the elements.

To be more specific, let Q̂(𝑛 − 1) be the estimated queue matrix and S(𝑛 − 1) be the
schedule produced at period 𝑛 − 1. To compute schedule S(𝑛) for the next period 𝑛 with
estimated queue matrix Q̂(𝑛), we perform the following:

1. Compute DQ̂(𝑛) = Q̂(𝑛) − Q̂(𝑛 − 1) (Figure 2.4b).

2. Split DQ̂(𝑛) into D+(𝑛) and D−(𝑛), where D+(𝑛) denotes the matrix consisting only of
the positive entries of difference matrix DQ̂(𝑛), and D−(𝑛) denotes the matrix consist-
ing only of the negative entries of difference matrix DQ̂(𝑛).

3. Use a freeing algorithm to free entries of S(𝑛 − 1) according to the matrix D−(𝑛) and
obtain the half-filled schedule, denoted as S′(𝑛 − 1) (Figure 2.4c).

2.4 Scheduling Algorithms 29

4. Use a scheduling algorithm to add entries in S′(𝑛 − 1) (half-filled schedule) according
to D+(𝑛) to obtain the current period’s schedule S(𝑛) (Figure 2.4d).

Figure 2.4 Concept of incremental scheduling.
(a)

0 1 0 0
0 1 1 1
0 0 2 1
1 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 0 0 1
0 0 1 0
0 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Q̂(𝑛 − 1) S(𝑛 − 1)

= + +

(b)

0 0 1 0
0 1 1 1
0 1 1 1
1 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 1 0 0
0 1 1 1
0 0 2 1
0 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 −1 1 0
0 0 0 0
0 1 −1 0
0 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Q̂(𝑛) Q̂(𝑛 − 1) DQ̂(𝑛)

− =

(c)

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 0 0 1
0 0 1 0
0 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This was selected

But it could be this

S′(𝑛 − 1)

+ +

(d)

0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 0 1 0
0 1 0 1
1 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This was selected

But it could be this

S(𝑛)

+ +

The complexity of incremental scheduling is 𝑂(𝛿(|DQ̂|) ⋅ 𝜌 ⋅ 𝐼 ⋅ 𝑇 ⋅ (𝑊 ⋅ 𝑃)2), where,
𝛿(|DQ̂|) ≪ 1 in view of the persistency property of Eq. (2.6) and the related discussion.

The above describes the core of the incremental algorithms. In the first two algorithms
that we will present, we used a greedy freeing algorithm in step 3 to free entries that works

30 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

as follows: by iterating each element of D−(𝑛), we find the last permutation matrix of S(𝑛 −
1) that serves that element, and we free that entry (set it to zero). This algorithm frees
sequentially the scheduled resources for the demands whose traffic was reduced, leaving
the entries that satisfy the current traffic. Regarding the scheduling algorithm of step 4, we
present three heuristic schemes: a) a linear-time greedy incremental heuristic, b) a sublinear
greedy incremental heuristic, and c) a randomized heuristic.

Linear-Time Greedy Incremental Heuristic

The greedy heuristic is a non-optimal algorithm running in linear time to the size of the
problem and the number of generic slots per period. The greedy heuristic can be used as
an offline or as an incremental algorithm. In the following, we focus on the incremental
case. The algorithm takes as input the difference traffic matrix DQ̂(𝑛) (or Q̂(𝑛) in offline).
It follows steps 1-3 described above, so that it finds the half-filled schedule, denoted as,
S′(𝑛 − 1) and the positive difference matrix D+(𝑛). By iterating on each non-zero element of
D+(𝑛), it greedily finds the available generic slots to use. This is done by taking into account
constraints SC1 and SC2, of Table 2.1, which ensure that at each generic slot a ToR can send
to or receive from only one other ToR. Data structures TC(𝑛) and RC(𝑛) are used to keep
track of two constraints. In particular, element TC(𝑛)[𝑠, 𝑔] (orRC(𝑛)[𝑑, 𝑔]) records whether
the transmitter (or receiver) at source 𝑠 (or destination 𝑑, respectively) and generic slot 𝑔 is
active or not. The pseudocode of the incremental greedy algorithm is given in Algorithm 1.

Sublinear Greedy Incremental Heuristic

The sublinear greedy algorithm is a variation of the linear greedy heuristic, but it schedules
blocks of DUs instead of DUs. In particular, an integer 𝑘 = 𝑂(𝐼) is chosen and used to
calculate the block estimated queue matrix Q̂𝑘(𝑛) = Q̂(𝑛)

𝑘 (in our implementation we chose
𝑘 = 5, and 𝐼 was a multiple of 5). The purpose of this procedure is to reduce the amount of
load to be scheduled, within a span of 𝑇 ⋅ 𝐼

𝑘 generic slots, speeding up the scheduling process
roughly by a factor of 𝑘. The block estimated queue matrix is treated as the estimated queue
matrix, while applying the previous greedy algorithm. The schedule produced by the greedy
algorithm is reproduced 𝑘 times, in order to cover the initial traffic. As expected, the speedup
obtained comes at a cost: dummy DUs are introduced when the ceiling function is applied,
which are allocated some generic slots, reducing the resource usage. In particular, the load

2.4 Scheduling Algorithms 31

Algorithm 1 Linear Greedy Algorithm
Input: D+(𝑛),S′(𝑛 − 1),TC(𝑛 − 1),RC(𝑛 − 1), 𝑃 , 𝑊 , 𝑇 , 𝐼
Output: S(𝑛),TC(𝑛),RC(𝑛)
1: S(𝑛) ← Copy of S′(𝑛 − 1)
2: TC(𝑛) ← Copy of TC(𝑛 − 1)
3: RC(𝑛) ← Copy of RC(𝑛 − 1)
4: for 𝑠 ← 1, 2, … , 𝑃 ⋅ 𝑊 do
5: for 𝑑 ← 1, 2, … , 𝑃 ⋅ 𝑊 do
6: 𝑠𝑙𝑜𝑡𝑠 ← D+(𝑛)[𝑠, 𝑑]
7: 𝑔 ← 1
8: while 𝑔 ≤ 𝑇 ⋅ 𝐼 and 𝑠𝑙𝑜𝑡𝑠 > 0 do
9: if TC(𝑛)[𝑠, 𝑔] = 0 and RC(𝑛)[𝑑, 𝑔] = 0 then
10: S(𝑛)[𝑠, 𝑔] ← 𝑑
11: TC(𝑛)[𝑠, 𝑔] ← 1
12: RC(𝑛)[𝑑, 𝑔] ← 1
13: 𝑠𝑙𝑜𝑡𝑠 ← 𝑠𝑙𝑜𝑡𝑠 − 1
14: end if
15: end while
16: 𝑔 ← 𝑔 + 1
17: end for
18: end for
19: return S(𝑛),TC(𝑛),RC(𝑛)

32 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

overhead introduced is

Number of dummy DUs = ∑
𝑠,𝑑 (𝑘 ⋅ (

Q̂(𝑛)[𝑠, 𝑑]
𝑘) − Q̂(𝑛)[𝑠, 𝑑]) . (2.10)

In order for the algorithm to run in sublinear time (a speedup of roughly 𝑘 is expected),
some filtering has to be applied to Q̂(𝑛) in such a way that its critical sum is at most (𝑇 ⋅ 𝐼)/𝑘
after the division, rather than 𝑇 ⋅ 𝐼 . This process takes place in the estimated queue matrix
creationmodule and requires at least linear time to complete. These two operations, however,
namely, the estimated queue matrix creation and the scheduling, are performed by different
modules. The queue matrix creation module can start executing while receiving monitoring
information; once the block estimated queue matrix is created, the scheduling algorithm is
executed in sublinear time. We consider this to be technically feasible for the reference DC’s
architecture.

Randomized Heuristic

A randomized variation of the greedy heuristic was also implemented for an incremental
resource assignment. Randomized operation avoids the greedy first find approach, aiming
to increase (on average) the traffic that is served (74). The algorithm follows an approach
similar to the four steps presented at the start of this subsection: it receives as input the
previous period’s schedule S(𝑛 − 1), the estimated queue matrix Q̂(𝑛), and calculates the
schedule S(𝑛). In the first phase, it examines the previous period’s permutation matrices
P(𝑔)(𝑛−1) against the traffic they can carry in the new period and discards any P(𝑔)(𝑛−1) that
carries less traffic than ∑𝑠,𝑑 Q̂(𝑛)[𝑠, 𝑑]/(𝐼 ⋅ 𝑇), expecting that a new randomized allocation
could provide a better solution for the corresponding generic slot. The P(𝑔)(𝑛 − 1) matrices
that carry their fair share of the traffic load are then subtracted from Q̂(𝑛):

1. If the subtraction of a P(𝑔)(𝑛−1) leaves no negative entries, then the P(𝑔)(𝑛−1) is kept
unaltered in S′(𝑛 − 1).

2. Whenever negative entries occur, the corresponding entries on both P(𝑔)(𝑛 − 1) and
Q̂(𝑛) are set to zero, and the updated P(𝑔)(𝑛 − 1) is used in S′(𝑛 − 1).

The previous steps calculate (i) the updated set of permutations S′(𝑛 − 1), by skipping
the calculation of D−(𝑛), and (ii) the positive change matrixD+(𝑛), which is the Q̂(𝑛) matrix
after the subtractions. In this case, D+(𝑛) includes the new connections, the old connections
with increased traffic, and the old connections that belonged to discarded permutations. Then
the entries of D+(𝑛) are distributed randomly on S′(𝑛 − 1) following the algorithm below:

2.4 Scheduling Algorithms 33

Algorithm 2 Randomized Heuristic Algorithm

1. Select a random destination ToR (column) 𝑑 of D+(𝑛).

2. Find the𝑚 active source ToRs for destination 𝑑, corresponding to rows {𝑠1, 𝑠2, … , 𝑠𝑚}
of the non-zero entries in the column 𝑑, and re-arrange them randomly.

3. For each row 𝑠𝑘 in the randomized arrangement:

a) Find the existing P(𝑔)(𝑛) that are available for the (𝑠𝑘, 𝑑) communication (by check-
ing the related scheduling constraints, using the data structures TC(𝑛 − 1) and
RC(𝑛 − 1), as discussed in Section 2.4.3).

b) If the number of available P(𝑔)(𝑛) is greater than the D+(𝑛)[𝑠𝑘, 𝑑] entry (i.e., more
resources are available than those required), randomly select the required number;
otherwise select all of them.

4. Repeat steps 1-3 for all columns of D+(𝑛).

Finally, if any traffic remained in D+(𝑛) and not all the 𝐼 ⋅ 𝑇 permutations are utilized,
then the algorithm performs a final round where it repeats steps 1-4, with the only difference
being that new permutations are considered to be initially available to all connections.

34 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

2.5 Architecture-Related Constraint

The resource allocation problem at hand is quite similar to scheduling problems for TDM
satellite or ATM crossbar switches (19, 29, 40, 68, 84). Scheduling constraints SC1 and
SC2 are common, but constraint SC3 (Table 2.1) is new and is a result of specific archi-
tecture choices, and particularly of using static routed (C)AWGs instead of reconfigurable
components. This design choice, which was decided to keep the cost and routing complexity
low, results in a reference (NEPHELE) DCN (when seen as a huge switch connecting ToRs)
losing its nonblocking character even for 𝐼 = 𝑆. In the previous section, we described
algorithms that operate without taking into account SC3, whose effect is studied here. To
evaluate the performance under the additional constraint SC3, we extended the incremental
greedy heuristic Section 2.4.3) to account for SC3. The algorithm to be described is referred
to as the ring-segment greedy heuristic.

To be more specific, consider a transmission from source ToR 𝑠 = (𝑤𝑠, 𝑝𝑠) to destination
ToR 𝑑 = (𝑤𝑑 , 𝑝𝑑) at generic slot 𝑔 (timeslot 𝑡 over optical plane 𝑖), where 𝑝𝑠 < 𝑝𝑑 without
loss of generality. Such a communication is represented in the schedule by P(𝑔)(𝑛)[𝑠, 𝑑] = 1.
Under the baseline architecture of Section 2.2 that uses 𝑊 × 𝑅 CAWGs at the input of the
rings, this communication uses wavelength 𝑤𝑑 and ring 𝑟𝑠𝑑 = [(𝑤𝑠 + 𝑤𝑑 − 1) (mod 𝑅)],
according to Eq. (2.1). So, the communication from 𝑠 to 𝑑 captures the ring-wavelength
resource, indexed

ℓ𝑠𝑑 = [(𝑤𝑠 + 𝑤𝑑 − 1) (mod 𝑅)] ⋅ 𝑊 + 𝑤𝑑 (2.11)

Resource ℓ𝑠𝑑 is actually captured only for the segment of the ring that is between pods
𝑝𝑠 and 𝑝𝑑 and can be used by other connections if they use non-overlapping segments of
the ring. SC3 constrains that 𝑠 → 𝑑 communication cannot take place simultaneously with
communication from 𝑠′ → 𝑑′ ⟹ (𝑤𝑠′ , 𝑝𝑠′) → (𝑤𝑑′ , 𝑝𝑑′), with 𝑝𝑠 < 𝑝𝑠′ < 𝑝𝑑 or
𝑝𝑠 < 𝑝𝑑′ < 𝑝𝑑 , 𝑤𝑑′ = 𝑤𝑑 and (𝑤𝑠′ − 𝑤𝑠) (mod 𝑅) = 0 (see Table 2.1).

The ring-segment greedy heuristic algorithm keeps track of the utilization of the ring-
wavelength resources and the specific ring segments utilized. To accommodate the commu-
nication from 𝑠 to 𝑑 at generic slot 𝑔, we need to check whether ring-wavelength resource
ℓ𝑠𝑑 is used be tween pods 𝑝𝑠 and 𝑝𝑑 . If it is not used, we reserve it to block any future con-
flicting communication. The data structure records for each generic slot 𝑔 = 1, 2, … , 𝐼 ⋅ 𝑇 ,
the ring-wavelength resource ℓ = 1, 2, … , 𝑅 ⋅ 𝑊 , and the specific ring segment it uses (𝑃
ring segments in the worst case), resulting in size 𝑂(𝑃 ⋅𝑅⋅𝑊 ⋅𝐼 ⋅𝑇). This data structure can
be similar to TC(𝑛) and RC(𝑛) used to keep track of SC1 and SC2 (Section 2.4.3), which,
however, are of size 𝑂(𝑃 ⋅ 𝑊 ⋅ 𝐼 ⋅ 𝑇). Specifically, line 9 of the pseudocode of Algorithm 1,
should also search for maximum 𝑃 ring segments, which increases the complexity.

2.5 Architecture-Related Constraint 35

The worst case traffic pattern is obtained when we have the maximum number of conflict-
ing communication pairs defined by SC3, and all of them carry maximum traffic. Regarding
the constraint on the overlapping of ring segments, there are 𝑃 such conflicting (𝑠, 𝑑) pairs
for unidirectional traffic (𝑝1 to 𝑝𝑃 , 𝑝2 to 𝑝1, … , 𝑝𝑃 −1 to 𝑝𝑃 , 𝑝𝑃 to 𝑝𝑃 −1), and since they are
in different pods they can have maximum traffic equal to Q̂(𝑛)[𝑠, 𝑑] = 𝑆 ⋅ 𝑇 . In this case,
we require 𝐼 = 𝑃 ⋅ 𝑆 planes to fully serve the worst case traffic. Such worst case traffic
is, of course, highly improbable to occur. Still, our simulations show that the throughput is
affected even in the average case when considering SC3, while the execution time increases,
since we need to account for the ring segment utilization.

We developed two solutions to address this problem: the first extends the incremental
greedy algorithm of Section 2.4.3, considering in a more coarse way the utilization of the
ring-wavelength resources, while the second relies on a variation of the architecture that uses
spectrum-shifted optical planes.

2.5.1 Full-Ring Greedy Heuristic

In the first solution, called the full-ring greedy heuristic algorithm, communication from s
to d is taken to occupy the entire ring-wavelength resource ℓ𝑠𝑑 , i.e., the whole ring and not
only the segment between pods 𝑝𝑠 and 𝑝𝑑 . This reduces the size of the data structure needed
to 𝑂(𝑅 ⋅ 𝑊 ⋅ 𝐼 ⋅ 𝑇) and improves the execution time over the ring-segment greedy heuristic
discussed above, sacrificing somewhat the (already lower) throughput performance.

2.5.2 Spectrum-Shifted Optical Planes

Aproblem of the baseline architecture is that, if two communicating source-destination pairs,
(𝑠, 𝑑) and (𝑠′, 𝑑′), conflict over an optical plane, by using the same ring-wavelength resource
ℓ𝑠𝑑 = ℓ𝑠′𝑑′ = ℓ, they will use the same resource ℓ and conflict over all planes. This problem
affects all planes, so we have available only the time domain (𝑇) to resolve such conflicts, as
opposed to having both the plane and time dimensions (all 𝐼 ⋅ 𝑇 generic slots), resulting in
lower performance. To address this, we developed an architecture variation where the optical
planes are spectrum shifted. To be more specific, in the architecture of Figure 2.1, traffic for
destination ToR 𝑑 = (𝑤𝑑 , 𝑝𝑑) always uses wavelength 𝑤𝑑 . The main idea of spectrum-
shifted optical planes is to make the ring-wavelength in Eq. (2.11) depend on plane 𝑖 and
on other source/destination location parameters. This proposed variation uses the desired
passive components, i.e., (C)AWGs, instead of replacing them by reconfigurable ones that
would significantly increase the cost, due to their high radix.

36 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

The goal is to design all-pair conflict-free optical planes, so that ToR pairs conflicting
on some optical plane do not conflict on another one. There are various ways to achieve
that, such as permuting the rings between pods, or varying the CAWG routing function by
changing the way CAWGs are coupled/added to the rings. One such efficient solution is to
replace the 1 × 𝑊 AWG connected to the drop ports of the WSSs with an 𝑃 × 𝑊 CAWG
connected as follows: We connect the drop ports of all theWSSs of plane 𝑖 and pod 𝑝 through
the 𝑅 × 1 power combiner to the input port 𝑧(𝑖, 𝑝), 1 ≤ 𝑧(𝑖, 𝑝) ≤ 𝑃 of the 𝑃 × 𝑊 CAWG.
The 𝑊 output ports of the 𝑃 × 𝑊 CAWG are connected to the ToRs as before. We make
the wavelength 𝑤𝑠𝑑(𝑖), used for communication between source 𝑠 = (𝑤𝑠, 𝑝𝑠) and destination
𝑑 = (𝑤𝑑 , 𝑝𝑑) over the plane 𝑖 depend on 𝑠, 𝑑, and 𝑖, as opposed to the baseline architecture
where this was fixed and equal to 𝑤𝑑 . Considering the routing function of the CAWG, 𝑤𝑠𝑑(𝑖)
should satisfy the following condition in order to reach the desired destination:

(𝑤𝑠𝑑(𝑖) + 𝑧(𝑖, 𝑝𝑑) − 1) (mod 𝑊) = 𝑤𝑑 (2.12)

where 𝑤𝑑 in this equation indicates only the location of the destination ToR in the related
pod (and not, as previously, the receiving wavelength), and 𝑧(𝑖, 𝑝𝑑) is the input port of the
CAWG. The routing function of the CAWG that adds the traffic to the rings at the source
gives the ring used:

𝑟𝑠𝑑(𝑖) = (𝑤𝑠 + 𝑤𝑠𝑑(𝑖) − 1) (mod 𝑅). (2.13)

Then, the ring-wavelenth resource of plane 𝑖 that is used is

ℓ𝑠𝑑(𝑖) = [(𝑤𝑠 + 𝑤𝑠𝑑(𝑖) − 1) (mod 𝑅)] ⋅ 𝑊 + 𝑤𝑠𝑑(𝑖). (2.14)

Consider now another ToR pair communication 𝑠′ → 𝑑′ ⟹ (𝑤𝑠′ , 𝑝𝑠′) → (𝑤𝑑′ , 𝑝𝑑′)
on the same plane 𝑖. To create conflict, this communication has to use the same wavelength
and the same ring with the 𝑠 → 𝑑 communication, i.e.,

𝑤𝑠𝑑(𝑖) = 𝑤𝑠′𝑑′(𝑖) ∧ (𝑤𝑠 + 𝑤𝑠𝑑(𝑖)) (mod 𝑅)
= (𝑤𝑠′ + 𝑤𝑠′𝑑′(𝑖)) (mod 𝑅) (2.15)

or, equivalently,

𝑧(𝑖, 𝑝𝑑) − 𝑧(𝑖, 𝑝𝑑′) = (𝑤𝑑 − 𝑤𝑑′) (mod 𝑊) ∧ (𝑤𝑠′ = 𝑤𝑠) (mod 𝑅) (2.16)

Our goal is to avoid pairs 𝑠 → 𝑑 and 𝑠′ → 𝑑′ to conflict in any other plane. This can be
satisfied if |𝑧(𝑖, 𝑝𝑑) − 𝑧(𝑖, 𝑝𝑑′)| ≠ |𝑧(𝑖′, 𝑝𝑑) − 𝑧(𝑖′, 𝑝𝑑′)|, for all 1 ≤ 𝑖′ ≤ 𝐼, 𝑖′ ≠ 𝑖. Generally,

2.5 Architecture-Related Constraint 37

we want that to hold for any conflicting pair of any plane, i.e., we need the following to hold
for all 𝑖, (𝑖′ ≠ 𝑖), all 𝑝𝑑 , 𝑝𝑑′:

|𝑧(𝑖, 𝑝𝑑) − 𝑧(𝑖, 𝑝𝑑′)| ≠ |𝑧(𝑖′, 𝑝𝑑) − 𝑧(𝑖′, 𝑝𝑑′)|. (2.17)

Remember that 1 ≤ 𝑧(𝑖, 𝑝) ≤ 𝑃 , since 𝑧(𝑖, 𝑝) corresponds to the input port of the 𝑃 × 𝑊
CAWG that the WSSs of pod 𝑝 at plane 𝑖 are connected. For a prime number of pods 𝑃 , one
choice (along with others) that satisfies Eq. (2.16) is

𝑧(𝑖, 𝑝) = [1 + (𝑝 − 1) ⋅ (𝑖 − 1)] (mod 𝑃). (2.18)

For prime 𝑃 , with the above function, we construct 𝑃 all-pair conflict-free planes. The
number of planes 𝐼 required to serve any pattern is then 𝐼 ≥ 𝑃 . To see this, assume that we
have several conflicting pairs on a plane (𝑃 is the maximum number of pairs, as discussed
previously), and each requires the full capacity (all the timeslots) of the plane. This plane can
serve any of those, but the remaining pairs conflicting on that plane are not conflicting on the
other 𝐼 −1 planes. Thus, if 𝐼 ≥ 𝑃 (which also holds for the reference NEPHELE architecture
– Table 2.1), conflicts can be solved using the plane dimension in addition to the timeslot
dimension. In that case, the entire DCN is actually a nonblocking time-wavelength-space
switch.

If𝑃 is not prime (in the reference𝑃 = 20), the above function constructs all-pair conflict-
free planes equal to the smallest divisor (=2 for the reference architecture). However, even
in this case, the conflicts are reduced substantially. The average performance improves when
the number of conflicting pairs among the planes is small, and the proposed solution reduces
this number. All-pair conflict-free planes mean that this number is zero, which results in the
best worst case and average performance. We rely on simulations to evaluate the performance
of our solution for average traffic.

The extensions needed in the scheduling algorithm to account for spectrum-shifted planes
are straightforward, and require the calculation of the wavelength based on the source, des-
tination, and plane. This can be done with pre-calculated tables and does not affect the
complexity. We also need to use either the ring-segment or the full-ring heuristic algorithm
to keep track of ring-wavelength resource utilization. We decided to use the faster full-ring
greedy heuristic in the performance evaluation section.

38 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

2.6 Performance Evaluation

2.6.1 Evaluation Without Architecture Constraint SC3
The proposed incremental scheduling algorithms were evaluated via simulations for various
traffic scenarios. We assumed a DCN of the reference architecture, with 𝑊 = 80 racks/pod,
𝑃 = 20 pods, 𝑆 = 20 server ports/rack, and 𝐼 = 𝑆 = 20 optical planes (see Table 2.1), and
set 𝑇 = 80 timeslots. We used a custom traffic matrix generator where we could control the
following parameters (4):

1. the average network load 𝜌(A), defined from Eq. (2.4) as the ratio of the total traffic
over the total capacity. The individual ToR loads 𝜌𝑠𝑑(A) were generated as indepen-
dent Gaussian random variables, assuming that a ToR aggregates numerous TCP/UDP
flows. The distribution mean was set equal to the desired load, while its variance was
correlated to the load dynamicity 𝜌(|DA|);

2. the load dynamicity 𝜌(|DA|), defined as the average change in traffic between succes-
sive periods;

3. the connection density 𝛿(A), defined from Eq. (2.6). Low connection density corre-
sponds to a few destinations per source, thus an increased number of traffic hotspots.
To accommodate the description of traffic patterns of previous works (65), where
ToRs systematically prefer to communicate with peers in specific pods, or even the
same pod, we further distinguished between intra-POD density 𝛿in(A) and inter-POD
density 𝛿out(A). A locality parameter is then defined as the traffic percentage that is
destined within the same pod over the total load:

ℓ = 𝛿in ⋅ 𝑊
𝛿in ⋅ 𝑊 + 𝛿out ⋅ 𝑊 ⋅ (𝑃 − 1),

given that the local POD comprises 𝑊 ToRs out of 𝑊 ⋅ 𝑃 that are available in total;
and

4. the locality dynamicity 𝛿(|DA|), defined as the average number of connections that
change from active to inactive and vice versa at each period. Traffic exhibits locality
persistency (Eq. (2.7)) when 𝛿(|DA|) is low.

To evaluate the proposed algorithms, we developed a simulator in MATLAB (38). For
each simulation instance, we chose to vary one parameter, while the rest of the parameters
were set to their default values (Table 2.3). To focus on the performance of the scheduling

2.6 Performance Evaluation 39

Table 2.3 Networking parameters.

Parameter Symbol Value Default
Network load 𝜌(A) 0.1-0.9 –
Intra-POD connection density 𝛿in(A) 100%,25%,2.5% 25%
Inter-POD connection density 𝛿out(A) 25%,2.5%,0.5% 2.5%
Load dynamicity 𝜌(|DA|) 10%,1%,0.1% 1%
Locality dynamicity 𝛿(|DA|) 10%,1%,0.1% 1%

algorithms, we assumed a resource cycle with 𝐶 = 1, which corresponds to the schedule
being calculated within a Data period. We also assumed the reference case where the esti-
mated queue matrix on which the schedule is calculated based on the arrivals: Q̂(𝑛 + 1) =
A(𝑛 − 𝐶) + Q̂(𝑛) − S(𝑛). As discussed in Section 2.4.3, this ensures that the persistency
property of A is also true for the estimated queue matrix Q̂.

For each parameter set, we measured a) the additional average queuing latency, i.e., the
average number of periods a packet remains buffered in addition to the 𝐶 = 1 period that it
takes for the schedule to be calculated, to focus on the efficiency of the algorithm and not
of the whole control cycle, and b) the scheduling algorithm’s execution time (s) against the
network load. We also measured themaximum network throughput, defined as the maximum
offered load at which the queues and the latency are finite. Thus, the maximum throughput
indicates the load that can be transferred by the network under stable operation. Note that
maximum throughput is identified in the latency/load graphs as the load at which the latency
becomes (asymptotically) infinite.

Queuing Latency

Initially, we present the results on the latency. In the first set of simulations, the examined
parameter is intra-POD density, which is set to 100% for the results of Figure 2.5a and to
2.5% for Figure 2.5b; the other parameters were set to their default values (Table 2.3). Fig-
ure 2.5a shows that the sublinear greedy heuristic clearly underperforms, as expected, the
other two algorithms, resulting in average latency that increases at load 0.7 and becomes
(asymptotically) infinite at load 0.8 (= maximum network throughput). The linear greedy
heuristic comes next, followed by the randomized heuristic with slightly better performance.
In the results of the second set of simulations, shown in Figure 2.5b, the density of intra-POD
connections is set very low to 2.5%. The queuing latency of all three algorithms start to in-
crease at load around 0.7. The increase is steeper for the sublinear greedy heuristic, followed
by the linear greedy, and finally by the randomized heuristic. The latter two algorithms have
very similar performance regarding latency and stability.

40 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Figure 2.5 Average queuing latency resulting from the examined scheduling algorithms,
measured in Data periods additional to the control cycle, for intra-pod density (a) 𝛿in = 100%
(locality ℓ = 68%) and (b) 𝛿in = 2.5% (locality ℓ = 5%).
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

linear greedy

sublinear

randomized

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

linear greedy

sublinear

randomized

Figure 2.6 Average queuing latency resulting from the examined scheduling algorithms,
measured in Data periods additional to the control cycle, for locality dynamicity (a)
𝛿(|DA|) = 0.1% and (b) 𝛿(|DA|) = 10%.
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

linear greedy

sublinear

randomized

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

linear greedy

sublinear

randomized

Locality considerably impacts the performance. The greedy and the random algorithms
are more efficient when the matrix is concentrated in small blocks (𝛿in high, heavy intra-
POD traffic – Figure 2.5a) than when it is spread out (Figure 2.5b). In contrast, the sublinear
algorithm underperforms when locality is high; introducing several dummy DUs in a small
block increases the column sum more than when traffic and the locations of the dummy DUs
are spread out.

We next examine the effect of the locality dynamicity parameter 𝛿(|DA|). When 𝛿(|DA|) =
0.1% (Figure 2.6a), all three heuristic algorithms start to induce high latency at network load
of about 0.7. As in the previous cases, the queuing latency increase with network load is
steeper for the case of the sublinear heuristic, followed by the linear greedy, and then by the
randomized heuristic. This is more clear at load 0.8, where the sublinear greedy heuristic is

2.6 Performance Evaluation 41

already in the unstable region, while the linear greedy and the randomized heuristic remain
stable until load 0.85.

When the locality dynamicity parameter 𝛿(|DA|) = 10% (Figure 2.6b), all three algo-
rithms improve their results by increasing their maximum throughput (latency asymptote
moves to the right). Higher dynamicity reduces the persistency of bad scheduling matrices,
improving the performance, but as expected, has negative effects on execution times, as will
be discussed in the following.

Scheduling Algorithms Execution Times

Next, we present results on the execution times of the considered algorithms. We provide
four plots for the same parameters examined in Section 2.6.1.

As shown in Figure 2.7a, the algorithms’ performance in order of increasing execution
times is randomized, linear greedy, and sublinear greedy heuristic. As expected, the av-
erage execution times increase with the load. At load 0.8, the randomized heuristic needs
an average of 1.5 s to complete. Next comes the linear greedy heuristic with an execution
time (at 0.8 load) of about 0.7 s, and last comes the sublinear greedy heuristic with about
0.5 s. These results were expected from the theoretical complexity analysis given in Sec-
tion 2.4. The relative order of the algorithms with respect to their execution times remains
the same when intra-POD connection density is set to 2.5% (Figure 2.7b). The decrease in
the execution times for low intra-POD density is due to the fewer connections, each of higher
load, which reduces the complexity of all three algorithms. The execution times for differ-
ent values of locality dynamicity parameter 𝛿(|DA|) are depicted in Figure 2.8. As expected,
by complexity analysis, execution time increases as load and locality dynamicity 𝛿(|DA|)
increases.

Maximum Network Throughput

We now focus on the maximum network throughput achieved by the scheduling algorithms,
defined as the load at which the queues and the latency become (asymptotically) infinite and
the system becomes unstable. The throughput is examined with respect to two parameters
that were not discussed above: (i) the inter-POD connection density 𝛿out and (ii) the load
dynamicity 𝛿(DA). The results are shown in Table 2.4. We see that the impact of inter-
POD connection density 𝛿out is quite significant, since for dense traffic (𝛿out = 50%), the
throughput reaches about 0.97, while for sparse traffic, it drops to 0.85 at most. The reason
is similar to the one discussed for the role of intra-POD density. It should be noted that,
for dense inter-POD connections (𝛿out = 0.5%), the sublinear greedy heuristic is unstable

42 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Figure 2.7 Execution times of the algorithms for intra-pod density (a) 𝛿in = 100% (locality
ℓ = 68%) and (b) 𝛿in = 2.5% (locality ℓ = 5%).
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

0.5

1.0

1.5

2.0

E
x
ec

u
ti

on
ti

m
e

(s
)

linear greedy

sublinear

randomized

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

0.5

1.0

1.5

2.0

E
x
ec

u
ti

on
ti

m
e

(s
)

linear greedy

sublinear

randomized

Figure 2.8 Execution times of the algorithms considered for locality dynamicity (a)
𝛿(|DA|) = 0.1% and (b) 𝛿(|DA|) = 10%.
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

0.5

1.0

1.5

2.0

E
x
ec

u
ti

on
ti

m
e

(s
)

linear greedy

sublinear

randomized

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

0.5

1.0

1.5

2.0

E
x
ec

u
ti

on
ti

m
e

(s
)

linear greedy

sublinear

randomized

even at low traffic loads, since it wastes too much capacity. This should be expected, as
small and spread demands result in many entries that create many dummy DUs, thus wasting
network capacity. Regarding load dynamicity, we consider the cases 𝜌(|DA|) = 0.1% and
𝜌(|DA|) = 10%. We observe that this parameter does not affect substantially the throughput,
nor the execution time. The throughput performance of all the algorithms was similar, with
the sublinear greedy heuristic being slightly worse and faster (lower than 0.4 s in almost all
cases).

2.6.2 Evaluating the Effect of the SC3 Constraint
We evaluated the performance of the reference DCN under the architecture constraint SC3
and also for the architecture variation that uses the spectrum-shifted planes. In particular,
we assessed the performance for

a) reference architecture/greedy (no SC3),

2.6 Performance Evaluation 43

Table 2.4 Maximum throughput of algorithms considered as a function of inter-POD connection
density 𝛿out and load dynamicity 𝜌(|DA|).

Parameter Symbol Value Linear Randomized Sublinear

Intra-POD connection density 𝛿out
50% 0.97 0.97 0.4
0.5% 0.85 0.85 0.82

Load dynamicity 𝜌(|DA|) 0.1% 0.92 0.93 0.9
10% 0.88 0.88 0.87

b) reference architecture/segment-ring greedy,

c) reference architecture/full-ring greedy, and

d) spectrum-shifted planes/segment-ring greedy.

In all examined cases, the number of planes was the same (𝐼 = 20). Case (a) was
examined in the previous subsections and is used here as a reference. The network of case
(a) can achieve maximum throughput; that is, it can accommodate any traffic if an optimal
algorithm is used. The network of cases (b) and (c) has worst-case traffic that requires more
(20 times) planes, while case (d) also requiresmore planes than the 𝐼 available, but lower than
those of cases (b) and (c). The probability of generating the worst-case traffic is extremely
low, but cases (b) and (c) have several traffic instances that require more than 𝐼 planes,
while for case (d) this probability is low. Note, however, that we use a heuristic (incremental
greedy) and thus blocking is expected even for case (a).

Figure 2.9a shows the latency for density between pods 𝛿out = 50%, corresponding to
ℓ = 2.5% locality (default 𝛿in = 25%). Such a low locality results in heavy utilization
of the inter-pod WDM rings and creates SC3 conflicts. We observe that the asymptotic
throughput of the reference architecture/segment-ring greedy reduces to 0.8 compared to 0.9
of the reference architecture/greedy, where SC3 is neglected. The reference architecture/full-
ring greedy has even lower throughput, measured to be 0.7, but exhibits lower execution
times (see the following). The spectrum-shifted planes architecture resolves conflicts in
one plane by serving in another plane, and thus improves the throughput. The achieved
throughput was 0.85, which is close to the case where SC3 is neglected, as shown by the
reference architecture/greedy (no SC3).

As locality increases, inter-pod traffic decreases, and eventually, at high locality, the
performance of all algorithms converges. For example, in Figure 2.9b, where the density
between pods is 𝛿out = 0.5% (or ℓ = 70% locality), we observe that the reference architec-
ture/greedy (no SC3) achieves throughput close to 0.95, very close to the rest of the cases
examined. Note that, according to (65), locality is very high in a Facebook DC, higher than

44 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Figure 2.9 Latency (in periods) as a function of load for density between pods (a) 𝛿out = 50%
(locality ℓ = 2.5%) and (b) 𝛿out = 0.5% (locality ℓ = 70%).
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

ref arch/greedy (no SC3)

ref arch/segment-ring

ref arch/full-ring

ss planes/full-ring

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0

1

2

3

4

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(p
er

io
d

s)

ref arch/greedy (no SC3)

ref arch/segment-ring

ref arch/full-ring

ss planes/full-ring

Figure 2.10 Execution time as a function of load for density between pods (a) 𝛿out = 50%
(locality ℓ = 2.5%) and (b) 𝛿out = 0.5% (locality ℓ = 70%).
(a)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

1.0

2.0

3.0

4.0

E
x
ec

u
ti

on
ti

m
e

(s
)

ref arch/greedy (no SC3)

ref arch/segment-ring

ref arch/full-ring

ss planes/full-ring

(b)

0 10 20 30 40 50 60 70 80 90

Load (%)

0.0

1.0

2.0

3.0

4.0

E
x
ec

u
ti

on
ti

m
e

(s
)

ref arch/greedy (no SC3)

ref arch/segment-ring

ref arch/full-ring

ss planes/full-ring

50% for typical DC applications, such as web and map-reduce. Figure 2.10 shows the re-
lated execution times. We observe that the reference architecture/segment-ring greedy has
the highest running time, well above 1 s. Keeping track of ring segments yields higher com-
plexity. Execution time is reduced in the reference architecture/full-ring greedy (but it wastes
resources – has lower throughput, as seen in Figure 2.9). The spectrum-shifted planes/full-
ring greedy case has quite low execution time, similar to the reference architecture/full-ring
greedy. Thus, it combines the execution time benefits of the full-ring algorithmwhile achiev-
ing throughput close to the case without SC3 (by reducing the conflicting sets). As locality
increases, the execution times of the reference architecture/full-ring and spectrum-shifted
planes/full-ring converge to that of the reference architecture/greedy (no SC3).

2.7 Realistic Evaluation of Control Plane and Architecture Enhancements 45

2.7 Realistic Evaluation of Control Plane and Architecture
Enhancements

2.7.1 Realistic Traffic Simulations Setup

To evaluate the performance of the reference DC’s control cycle, we developed a packet
level network simulator. The simulator is an extension of OMNET++ 4.3.1 with INET
2.4.0, a framework that contains implementations for various real-life network components
and protocols. We evaluated the network performance using an application that simulates
MapReduce, which was implemented by Mellanox.

In our simulation model, we consider that the control plane delay, which includes the
time to gather monitoring information (if we operate the network in feedback based, would
be zero in application-aware mode), to calculate the schedule (which as previously discussed
is fast, within 1 Data period (61)) and to distribute the schedule to the data plane devices,
is described through the parameter 𝐶 . This in turn defines the number of multiple identical
(virtual) schedulers that work in parallel. We also assume that each parallel scheduler knows
the 𝐶 previous schedules (feasible, as the schedule is computed in 1 Data period).

In the simulated network, we run a number of MapReduce jobs simultaneously. Each
MapReduce job requires a number of worker nodes: mappers, reducers and storage servers
and runs for a number of iterations. The communication pattern for each particular MapRe-
duce job, regarding the server where each worker node resides, the size of the MapReduce
data produced in each phase, the number of MapReduce iterations and the computational
delay for map and reduce operations, are described using appropriate semantics in an input
file. In the simulations, the assignment of the worker nodes to the servers was random. This
means that a server could host simultaneously multiple types of worker nodes for the same
or different jobs.

The communication between the worker nodes is achieved via Ethernet packets over
TCP/IP. We assumed full-duplex 10G Ethernet from a server to the corresponding ToR
switch. For the ToR to ToR communication, we rely on the TDMA operation. The Eth-
ernet packets are stored in Virtual Output Queues (VOQs) and served in slots according to
the computed schedules.

We study the impact of various parameters, such as the Control cycle delay𝐶 , the number
ofMapReduce jobs, or the cluster size (𝑃 ⋅𝑊), on the throughput, in terms of total makespan.
The makespan is defined as the time it takes for all MapReduce jobs to finish. Table 2.5
summarizes the DCN parameters, as well as the TCP-related parameters. Note that a target
for the DCN would be to have 1600 racks with 20 servers each, while each timeslot (of

46 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Table 2.5 Simulation parameters.

Parameter Value
Number of servers in each rack (𝑆) 2
Number of planes (𝐼) 2
Link capacity per plane (each direction) 10 Gbps
Timeslot duration 200 μs
Maximum segment size (MSS) 625 bytes
TCP window size 65000 bytes
Storage server Mapper Reducer output 5 10 5 Mbytes
Mapper processing time 25 μs
Reducer processing time 20 μs
Number of MapReduce iterations 3

duration 200 μs) aggregates the traffic of all servers residing in a rack. Since it is not possible
to simulate a fully-fledged DCN, but only smaller clusters with fewer servers per rack, the
parameters are also scaled down accordingly. We assumed 𝐼 = 2 optical planes, and the
scheduling period 𝑇 took values so that the generalized slots/resources equals to the number
of racks (𝑇 ⋅ 𝐼 = 𝑃 ⋅ 𝑊).

The key parameters that we examine are the Control cycle delay 𝐶 , the number of
MapReduce jobs that run simultaneously in the cluster and the number of cluster’s racks;
their default values are 4, 5 and 8, respectively. In all scenarios, the ratios of the MapRe-
duce worker nodes types remained the same: the number of mappers equals to half, while
the number of reducers and storage servers equals to a quarter of the available servers. A
parallel (dual) network (utilizing 1 Gbps capacity) is also used to route the TCP ACKs. We
examine three queue matrix estimation policies:

Round-robin policy: An policy assuming static uniform traffic under which no traffic iden-
tification mode (monitoring or application awareness) is assumed, and the resource
allocation is evenly distributed among the ToR pairs (round-robin scheduling)

Follow the arrivals policy: A policy assuming that Q̂(𝑛) (described in sections 2.3 and 2.4)
is computed based on the most recent known arrivals A(𝑛 − 𝐶 − 1).

Prediction policy: A simplistic prediction mechanism that assumes that the arrivals for the
next 𝐶 Data periods will be equal to the latest A(𝑛).

It then virtually applies the latest 𝐶 known schedules and computes an estimation for the
remainder in the queues when the schedule will be applied (after 𝐶 Data periods). The above
queue estimation policies are combined with the incremental scheduling algorithm, which

2.7 Realistic Evaluation of Control Plane and Architecture Enhancements 47

Figure 2.11 Effect of the parallel network and randomized void filling heuristic on slot uti-
lization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time (s)

0%

10%

20%

30%

40%

50%

G
en

er
al

iz
ed

sl
ot

u
ti

li
za

ti
on

(%
)

no parallel / no void filling

no parallel / void filling

parallel / no void filling

parallel / void filling

is extended with a greedy randomized void filling heuristic. Void filling is used to fill the
unallocated slots left empty by the scheduling algorithm. In particular, a randomized greedy
heuristic greedily computes a set of matchings in order to fill the free slots in a uniform way,
taking into account the previously allocated slots and the transmission constraints that they
yield.

2.7.2 Simulation Experiments
We initially examine the effect of utilizing i) a parallel packet switched network over which
we sent TCP ACK packets and ii) a randomized void filling heuristic to fill the empty
slots/permutations of the schedules on slot (network capacity) utilization over time. As it
can be observed in Figure 2.11, both the effect of the parallel network and the randomized
void filling heuristic is quite significant. Since, TCP features congestion control, the TCP
window limits the traffic load the servers transmit. This has a major impact to the overall
slot utilization and thus to the throughput and the makespan of the network.

These two techniques improve the TCP window pipelining, resulting in improved slot
utilization and reduced makespan. In particular, we observed a reduction of the makespan
for the 4 MapReduce jobs from 27.4 s in the case of no parallel/no void filling to 27.2 s in
the case of parallel/no void filling and to 14 s in the case of no parallel/void filling. The
combination of parallel/void filling achieves a substantially lower makespan of 10.3 s. In
the following, we will assume that the DCN uses both parallel/void filling.

We now examine the effect of the control delay 𝐶 which was varied from 0, 5, 10, 20, 50
to 200 Data periods. As it is shown in Figure 2.12, the makespan for the case of the static
round-robin policy remains constant at about 0.36 s, regardless of the Control cycle delay.

48 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings

Meanwhile, the other two policies seem to perform better for at most 19%, given that they
take into account the traffic (monitoring or application awareness) and carry out scheduling
based on Q̂(𝑛) estimates. This performance improvement decreases as the Control cycle
delay increases, and eventually in the sample of Control cycles equal to 200 Data periods,
it gets worse than the static round-robin for at most 13%. This is expected, since the longer
control delay results in an increased chance of the actual traffic at the queues to substantially
differ from the calculated schedule. It can also be observed that in small numbers of Control
cycles, utilizing prediction also improves the performance. However, this improvement fades
out from 20 Control cycles and on.

Figure 2.12 Effect of the Control cycle
(in Data periods) on makespan.

0 5 10 20 50 200

Control cycles (C)

0.0

0.2

0.4

0.6

M
ak

es
p

an
(s

)

round-robin

follow arrivals

prediction

Figure 2.13 Effect of the number of
MapReduce jobs on makespan.

1 4 7 10

Number of jobs

0.0

0.2

0.4

0.6

0.8

M
a
ke

sp
an

(s
)

round-robin

follow arrivals

prediction

Figure 2.14 Effect of the cluster size on
makespan.

4 8 16 32

Cluster size in racks

0.0

1.0

2.0

3.0

M
a
ke

sp
a
n

(s
)

round-robin

follow arrivals

prediction

In the next scenario, we consider the cases
where we have 1, 4, 7 and 10 MapReduce jobs
simultaneously running on the cluster. It is ex-
pected that as the number of jobs increases, the
network load increases, but also the traffic dy-
namicity decreases, given that the assignment of
the worker nodes with the servers is done ran-
domly and uniformly. As shown in Figure 2.13,
the makespan increases with the job number in
all queue matrix estimation policies, since the
network load increases. However, especially in
the case of 1 job, where only certain parts of the
network are utilized in each MapReduce phase,
we can see that the static round-robin policy per-
forms much worse than the other two policies for
about 32%. This difference is reduced for larger
numbers of jobs to at least 16%.

In the last considered scenario, we have dif-
ferent cluster sizes, namely of 4, 8, 16 and 32
racks (8, 16, 32 and 64 servers, respectively).
Figure 2.14 shows the performance of the three
queue matrix estimation policies. In particular,
we can observe that the policies that take into ac-
count the traffic have a much better performance
than the static round-robin that ranges between
12-48% and increases with the increase of the
cluster size.

2.8 Conclusion 49

2.8 Conclusion
We proposed and evaluated a set of scheduling algorithms specifically designed for an op-
tical DCN utilizing fiber rings and wavelength-selective switches, which allows dynamic
allocation of resources according to traffic requirements. To avoid contention, a central-
ized allocation process enforces three scheduling constraints. We described in detail the DC
control cycle, outlined its requirements, and presented an algorithm to optimally allocate
resources. We also proposed three incremental heuristic scheduling algorithms that reduce
the execution times of allocation, and evaluated their performance through simulations. The
randomized and greedy heuristics exhibited normalized throughput higher than 0.85 for all
examined traffic scenarios. The execution time of the greedy heuristic was measured in
hundreds of milliseconds, while the sublinear greedy heuristic was faster, sacrificing some
throughput. The parallel implementations of the proposed algorithms on specialized hard-
ware (field-programmable gate array) to further reduce execution time is ongoing. We also
studied the effect on performance of the third scheduling constraint (SC3), which is specific
to the reference DC’s architecture. To cope with the resulting reduction of throughput and
increase of execution time, we proposed an architecture variation that employs spectrum-
shifted optical planes and extended the greedy heuristic to function in such a network. Sim-
ulations showed that the throughput and execution time performance approaches that of a
network without SC3. The proposed incremental heuristic algorithms achieve high through-
put and low execution time, asserting the dynamic and efficient operation of DC.

We further examined the control cycle, including the importance of the policy used to
obtain good queue matrix estimates that approximate the traffic pattern after the control
cycle delay. We conducted simulations using OMNET++ under MapReduce realistic traffic.
We examined the effect of utilizing a parallel network for TCP ACKs, and of a void filling
heuristic. We observed that both these techniques, improve themakespan. We considered the
case of applying a static round-robin policy and two policies that take into account the traffic.
We observed that when the control cycle delay is high, a static round-robin policy seems
preferable. The policies that take into account the traffic induce a significant improvement
to the total makespan that can reach 48% when the short-term load dynamicity is high.

Chapter 3

Fast Optical Datacenter Interconnects
with Partial Configurability

3.1 Introduction and Related Work

The widespread availability of cloud applications has allowed billions of users to access
software-, platform-, and infrastructure-as-a-service models. These services rely heavily on
Data Centers (DCs), which comprise large numbers of interconnected servers. It has been
observed that incoming/outgoing (north-south) traffic in DCs is low, while the traffic within
a DC (east-west) is high (39), making the DC interconnection networks (DCNs) critical
to overall performance. Currently, state-of-the-art DCNs use Fat-Tree topologies to inter-
connect electronic switches with optical fibers, using electro-opto-electrical transformation
at each electronic switch hop (8). However, this approach underutilizes resources, requires
numerous cables and switches, suffers from poor scalability and upgradability (lack of trans-
parency), and consumes high levels of energy (65).

The integration of optical switching in DCNs is a pivotal step towards addressing the
limitations of Fat-Tree topologies. While optical switches are primarily used for circuit
switching in metro and backbone networks, recent research has proposed hybrid electronic/
optical switched DCNs as a solution (12, 20, 24, 30, 42, 62, 63, 67, 72, 76, 77). These studies
employ optical switches, which transparently redirect light from any port to another. How-
ever, their reconfiguration times (milliseconds for high radix and tens of microseconds for
low radix switches) present a challenge to their use in DCNs, where rapid switch configura-
tion is essential. Despite this limitation, the potential benefits of integrating optical switches
into DCNs are significant, and ongoing research is focused on developing more efficient
and sustainable solutions. In 2022, Google announced (64) that Jupiter datacenter network

52 Fast Optical Datacenter Interconnects with Partial Configurability

fabrics will use dynamic topology reconfiguration using Optical Circuit Switching, which
have evolved to achieve higher speed, cost reduction, power efficiency, and optimized path
lengths.

The first barrier to the adoption of optical switching technologies in DCNs comes from
the reconfiguration speed of (full) crossbar optical switches. As the size of DCNs grows, the
options of employing a single-stage optical switch diminish and/or the reconfiguration speed
is prohibitive high. Conversely, using multi-stage crossbars, built with smaller modules, is
the only solution. However, this suffers from high overall switch count and wiring complex-
ity, which can in turn affect the production cost. It also requires tight synchronization and
coordinated control of the multiple elements. To address these challenges, researchers have
proposed two hybrid DCN architectures: Mordia and CBOSS, which utilize WSS making
use of the wavelength domain to reduce the number of required elements and provide low
switching times. These proposed solutions operate in a dynamic slotted manner to achieve
high connectivity (15, 63). However, the scalability of bothMordia and CBOSS is limited, as
they employ a single wavelength division multiplexing (WDM) ring with a capacity that can
accommodate only a few racks. In contrast, NEPHELE (12) proposes a distributed crossbar
optical network fabric using WSS switches interconnected in several parallel WDM fiber
rings. The NEPHELE architecture takes advantage of the use of (relatively) low radix WSS
switches, space (multiple rings) and wavelength (WDM) domains to achieve low reconfigu-
ration speed and high throughput. However, the NEPHELE architecture is still not scalable,
as discussed in the following section (third barrier).

The second barrier to using all-optical DCNs derives from schedule computation. Al-
locating optical resources in space (links), time (slots), and/or wavelength (WDM) domains
requires high computational complexity, making it challenging to perform optimally or even
sub-optimally in real-time. The resource allocation algorithms of Mordia (63) and CBOSS
(15) exhibit high computational complexity and do not scale well with large DCs, repre-
senting a significant challenge for optimizing these networks. NEPHELE (12) introduced
resource allocation algorithms with low complexity for slowly changing traffic patterns that
take advantage of previously computed schedules. Efforts to address the computational com-
plexity of centralized scheduling calculations have also been explored, such as the parallel
scheduler architecture of (61). However, fast scheduling solves a key part but not the whole
problem, as discussed next.

The third barrier pertains to the assumption of centralized control in hybrid electronic/
optical DCNs, which typically follows the SDN paradigm (12, 24, 67). In this architecture,
a central controller/scheduler gathers all traffic demands and configures the optical switches
accordingly. However, when the network is large and the closed-loop DCN control operation

3.1 Introduction and Related Work 53

is applied to all network nodes, it is inefficient due to the high latency induced by the control
plane for monitoring, schedule calculation, and schedule dissemination. As a result, this
purely centralized approach faces limitations in terms of scalability and real-time operation.

In (57) the authors proposed a switch design that utilizes a monolithic gang-switched
module called the “selector module” as its fundamental building block. Building on that,
the authors of (56) introduced a full DCN architecture design called “RotorNet”, utiliz-
ing switches constructed exclusively with selector modules, referred to as “Rotor switches”.
However, RotorNet achieves poor throughput performance, as it spends half of its network
capacity for load balancing purposes.

This chapter explores ways to address the limitations of existing optical data center net-
work (DCN) architectures. The approach we take is to design custom “Lean” optical swit-
ches, which have two stages of multiple selector modules and are combined with a set of
Rotor switches to achieve full network connectivity. Each selector module of the first stage
is connected to all selector modules of the second stage, while all selector modules can carry
a group of multiple optical signals from different input ports to their corresponding output
ports at each switching state. This means that a few selector modules can carry amuch higher
number of optical signals between DCN nodes, reducing the number of required switching
elements compared to a fully configurable network.

Additionally, compared to a fully configurable network, our solution reduces the level of
centralized control, enabling the development of algorithms to allocate resources sub- but
near-optimally in real-time. However, the configurability of the DCN is determined by the
number of switches and the switching states of the Lean switch internal selector modules,
and it is lower compared to a fully configurable network. These design parameters also affect
the reconfiguration speed of the switches, the algorithmic complexity for the computation
of schedules, and the complexity of the control commands. The proposed DCN design is
parametric with respect to the number of the grouped signals carried by the same selector
modules, allowing for an increase in the network’s configurability by adding more Lean and
Rotor switches. This may lead to an increase in the number of ports, which in turn increases
the available network capacity. WDM can be utilized with the optical signals to further
enhance the network’s capacity.

The research results of this chapter were partly published in (43). Also, a manuscript
was recently submitted to Optical Switching and Networking (OSN) and is currently under
review.

The chapter is structured as follows. In Section 3.2, we present the design specifications
of the Rotor and Lean switches, and our proposed partially configurable DCN architecture
that uses them. In Section 3.3, we discuss the control plane and its control cycle. Sec-

54 Fast Optical Datacenter Interconnects with Partial Configurability

tion 3.4 presents the problem definition and scheduling policies that take advantage of the
limited configurability of the architecture, exhibiting low computational complexity. Addi-
tionally, in Section 3.5, we present reference architectures, their corresponding scheduling
policies, and compare them in terms of crosspoint complexity and reconfiguration delay. In
Section 3.6, we evaluate the achieved throughput and average packet latency of the proposed
DCNunder various scenarios using the packet simulator OMNET++. Finally, in sections 3.7
and 3.8, we examine enhancements on RotorNet by applying breakout for mitigating latency
due to network size expansion and integrating centralized control for partial configurability.
We develop a policy that adapts to traffic characteristics without prior knowledge, designed
to surpass VLB. We compare it to various other scheduling policies and evaluates it across
diverse traffic profiles, though comprehensive simulations.

3.2 A DCN Architecture with Lean Switching Components 55

3.2 ADCNArchitecture with Lean Switching Components

Figure 3.1 A 𝑛 ∶ 1 × 𝑚 gang-switched selector
module.

In large optical networks connecting hun-
dreds of endpoints (i.e. racks), full-optical
operation using crossbar switches is rather
unrealistic. Building a large network with
a single crossbar switch is constrained by
the feasible number of tilting positions of
the MEMS, putting a limitation on the
radix but also increasing substantially the
reconfiguration speed. On the other hand,
interconnecting several lower-radix swit-
ches, increases the number of elements,
fibers and complicates their control. Ad-
ditionally, in a full-crossbar network (ir-
respectively of how the crossbar is built)
the computational complexity required for
scheduling can be challenging to handle in
real-time.

The proposed architecture avoids using switches with individually-switched elements,
i.e. elements that switch each input signal independently of others, and instead employs
a design built with the selector module, a monolithic gang-switched element (57), as its
building block. This module uses MEMS beam-steering micromirrors and employs a fixed
and small set of switching states and hard-wired interconnection mappings. The selector
module comes in two flavors:

𝑛 ∶ 1 × 𝑚: a switching element that simultaneously routes all 𝑛 inputs to one of its 𝑚 groups
of outputs (each group having 𝑛 ports, for a total of 𝑚 ⋅ 𝑛 outputs), and

𝑛 ∶ 𝑚 × 1: a switching element that routes one of its 𝑚 groups of 𝑛 inputs to its 𝑛 outputs,

both implementing 𝑚 states and port mappings.
The proposed architecture uses two types of switches built with selector modules, Rotor

and Lean. Both types have two stages containing one or more selector modules (as shown
in Figure 3.1). The selector modules of the first stage are 𝑛 ∶ 1 × 𝑚, while the ones of the
second stage are 𝑛 ∶ 𝑚 × 1. The number of simultaneously routed signals is described by
the design parameter 𝑛, which we refer to as the group factor.

56 Fast Optical Datacenter Interconnects with Partial Configurability

3.2.1 The Rotor Switches

Figure 3.2ARotor switch implementing 𝑚 port
mappings of 𝑛 ports.

Rotor

The Rotor switch (56, 57) is a partially
configurable switch that utilizes a single
selector module in both the first and sec-
ond stages. This switch can configure 𝑚 =
𝑂(𝑛) instead of the 𝑛! (𝑚 ≪ 𝑛!) states,
thereby implementing 𝑚 port mappings of
𝑛 ports (as shown in Figure 3.2). The
switch’s various port mappings are imple-
mented through fixed 𝑚 (hard-wired) shift
shuffles, each for a set of 𝑛 optical fibers,
implemented between the two stages.

3.2.2 The Lean Switches

The proposed architecture includes a partially configurable switch called the Lean switch
(Figure 3.3), which has 𝑚 ⋅ 𝑛 inputs and outputs and utilizes 𝑚 selector modules of type
𝑛 ∶ 1 × 𝑚 at the input stage and 𝑚 selector modules of type 𝑛 ∶ 𝑚 × 1 at the output stage.
By using these selector modules, the switch is capable of routing a group of 𝑛 input signals
to a group of output ports and can configure 𝑚! switching states. Although the Lean switch
operates similarly to an 𝑚 × 𝑚 optical crossbar switch, the use of gang-switched (selector)
elements allows (57) for simultaneous routing of 𝑚 ⋅ 𝑛 optical signals, rather than 𝑚.

To ensure satisfactory switch functionality, fast reconfiguration speed, and simple schedul-
ing policies, the number of selector modules in a Lean switch and their corresponding sup-
ported mappings should be on the order of 𝑂(𝑛).

3.2.3 Combining Lean and Rotor Switches for Full Connectivity

While the Lean switch is highly efficient in routing a group of input signals to a group of
output ports, it does not provide full connectivity. To achieve configuration with all port
mappings, a secondary switching layer is required. This layer uses 𝑚 Rotor switches, each
capable of supporting 𝑛 port mappings of 𝑛 ports, as shown in Figure 3.3. We refer to a Lean
switch combined with Rotor switches as a Lean plane.

With this combination, the architecture offers several advantages over using large Rotor
switches alone, as in RotorNet (56). Not only does it increase the network’s functionality, but

3.2 A DCN Architecture with Lean Switching Components 57

Figure 3.3 The proposed network of a Lean plane combining a Lean switch with 𝑚 ⋅ 𝑛
inputs/outputs and a layer of 𝑚 Rotor switches implementing 𝑛 port mappings of 𝑛 ports
each.

Lean Rotor

Rotor

Rotor

it also allows for adaptive switching configurations through scheduling, resulting in improved
throughput.

3.2.4 The Architecture Specifications
The proposed network architecture interconnects 𝑁 racks of 𝑃 servers each. Each rack
includes an electro-optical ToR (top-of-rack) switch that facilitates inter-rack (through the
proposed optical network) and intra-rack communication for its 𝑃 servers. The optical part
of the network consists of Lean and Rotor switches, with the ToR switches as its endpoints.
Figure 3.4 illustrates the complete layout of a datacenter with 𝑁 racks, 𝑆 Lean switches,
each connected to 𝑚 Rotor switches (𝑆 Lean planes). Each Lean switch has 𝑁 = 𝑚 ⋅ 𝑛
bi-directional input and output ports, each connected to a different ToR switch.

The ToR switches are equipped with 𝑆 bi-directional optical ports which connect with
the Lean switches via optical fibers (northbound ports), and 𝑃 Ethernet bi-directional ports
which connect to the underlying racks’ servers (southbound ports). They also incorporate an

58 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.4 The DCN architecture utilizing 𝑁 racks/ToRs with 𝑃 servers each, and 𝑆 Lean
switches/planes. ToR switches use 𝑆 + 𝑃 ports, 𝑆 communicate with Lean switches and 𝑃
with the racks’ servers. Lean switches use 𝑁 = 𝑚 ⋅ 𝑛 ports.

VOQs array VOQs array VOQs array VOQs array VOQs array VOQs array VOQs array VOQs array

ports ports ports ports ports ports ports

ports ports ports ports ports ports ports

ports

ports

Lean
ports

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

Lean
ports

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

Lean
ports

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

Lean
ports

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

R
otor

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

Rack
Server

Server

.

electronic switching fabric, a 1 × (𝑁 − 1) dispatcher, a set of 𝑁 − 1 Virtual Output Queues
(VOQs) for all possible destination racks, an internal scheduler, and a set of transceivers (per-
forming electro-optical and opto-electronic transformation). The incoming Ethernet frames
from the southbound ports are dispatched though the electronic switching fabric to their cor-
responding VOQs, to mitigate head-of-line blocking (HOL) (55). The internal scheduler
routes the Ethernet frames from the VOQs to one of the 𝑆 transmitters at the northbound
ports, where electro-optical transformation is performed. The incoming optical signals from
the northbound ports reach the 𝑆 receivers, where opto-electronic transformation is per-
formed. Then the Ethernet frames are routed to the electronic switching fabric and then to
their corresponding southbound ports.

To achieve full bisection bandwidth, it is necessary to maintain the total capacity among
the network levels. Given that all links have the same capacity, this balance is achieved when
the number of links (𝑃 ⋅ 𝑁) between the racks and ToR switches is equal to the number of
links between the ToR and Lean switches. So the number of northbound and southbound
ports of each ToR should be equal, thus, 𝑆 = 𝑃 . Also, we employ 𝑆 Lean switches each
with 𝑁 = 𝑚 ⋅ 𝑛 ports, so again we need 𝑆 = 𝑃 . Oversubscription is achieved with 𝑆 < 𝑃 .

In our approach, network operation occurs in discrete time intervals called timeslots of a
fixed duration, during which all optical elements are configured to a specific state. The deci-

3.2 A DCN Architecture with Lean Switching Components 59

sions for the configurations of switches are taken dynamically by a centralized scheduler, ac-
cording to traffic characteristics. However, scheduling on a per-slot basis seems prohibitive
due to communication and processing latency limitations. Therefore, such configurations
(also called schedules) are generated in batches of 𝑇 timeslots, what we call periods, as
discussed in Section 3.3. This enables significant savings through the aggregation and sup-
pression of monitoring and control information. It also helps absorb traffic peaks, smoothing
out the resource allocation process.

At each timeslot, there is a finite reconfiguration time 𝑡setup, during which no data can
be sent. The remaining time, 𝑡stable, is dedicated to data transmissions. We denote the duty
cycle of the network as:

𝐷 = 𝑡stable
𝑡setup + 𝑡stable

⋅ 100%, (3.1)

where 𝑡setup + 𝑡stable is the total duration of each timeslot.

3.2.5 Crosspoint Complexity and Reconfiguration Delay
The Lean switches have 𝑚 selector modules at each of their two stages, each of which can
be configured in 𝑚 ways (𝑚! configurations). Each Lean switch is connected to 𝑚 Rotor
switches, each of which can be configured in 𝑛 ways. Since we assume 𝑁 = 𝑚 ⋅ 𝑛, the
crosspoint complexity of a Lean switch is 𝑚2 = (𝑁/𝑛)2, and that of 𝑚 Rotor switches is
𝑚𝑛 = 𝑁 .

Since the entire network comprises 𝑆 Lean switches, its total crosspoint complexity is
derived as ((𝑁/𝑛)2 + 𝑁)𝑆.

The authors of (57) developed a prototype design for the selector module based on com-
mercial off-the-shelf MEMS mirrors, which accomplished 151 μs (re)configuration delay
with 61 ports. Subsequently, they proposed a detailed custom module design which can
accomplish (re)configuration in 20 μs with up to 2048 ports, using micro-optic port map-
pings and a micromirror array. Since, the elemental component of the Rotor and Lean
switches is based on their selector module design, we consider the Lean DCN to achieve
a (re)configuration delay of 20 μs.

60 Fast Optical Datacenter Interconnects with Partial Configurability

3.3 The Control Plane

3.3.1 Preliminaries
The proposed DCN’s control is managed through an SDN-enabled control plane, which is
divided into three phases: monitoring, scheduling, and reconfiguration. During the monitor-
ing phase, the control plane reads the reported traffic demands from the buffers of the ToR
switches and estimates the current traffic demands, while also considering the monitoring
delay, as will be discussed later. Next, the control plane executes a batch scheduling task to
determine which connections (represented as source-destination rack pairs) will take place
during each slot of the period, while taking into account the estimated traffic demands. In
the final phase, the control plane distributes the computed schedule to the corresponding
switches for reconfiguration.

However, using switches based on the selector module (i.e. Rotor or Lean) determines
the switching state for multiple of their ports, constraining the source-destination ToR pairs
communicating in each timeslot. The control plane takes these constraints into account and
calculates schedules for serving the source-destination pairs that are interdependent at each
slot. These schedules that route packets from a source to a destination ToR result in direct
transmissions.

The timeslots of a period that are not assigned for direct transmissions are used for two-
phase routing, where a transient ToR is used as an intermediate node from source to des-
tination ToR. In the first phase, the end nodes (ToRs) decide in a distributed manner to
transmit packets to random intermediate hops, and in the second phase, the packets are then
transmitted to their corresponding destinations. Notably, the network can use predetermined
schedules during these timeslots. This technique is Valiant Load Balancing (VLB) (87, 88),
which is also used in RotorNet. We call these transmissions indirect transmissions.

This technique makes the control model “semi-centralized” since the control plane does
not necessarily decide on the assignments of all timeslots of a period. The degree of central-
ized control is determined by the degree of the existence of structures in the traffic pattern
that can be directly served based on the supported states of the switches, while the remaining
traffic is served in an indirect and decentralized way.

3.3.2 Control Cycle
As mentioned earlier, time in the DCN is divided into periods of 𝑇 timeslots. The DCN
operates in two parallel cycles: a) data communication cycles of 𝑇 timeslots (referred to as
Data periods), where communication between nodes occurs, and b) Control plane cycles that

3.3 The Control Plane 61

take 𝐶 Data periods to complete (including monitoring, scheduling and configuration). A
Control plane cycle, computes the schedule S(𝑡) to be applied during the Data period 𝑡. It
is important to note, however, that the schedule is calculated based on information that was
available 𝐶 periods prior to the Data period to which the Control plane cycle is applied, due
to the control communication delay. So, the network controller calculates the schedule for
period 𝑡, receives information about the queues of the ToR switches during period 𝑡 − 𝐶 ,
denoted by queue matrix Q(𝑡 − 𝐶) of size 𝑁 × 𝑁 . Based on that, the controller creates an
estimation matrixD(𝑡), which it uses to calculate the schedule S(𝑡) for the period 𝑡. Note that
during the part of the period that is not scheduled, in S(𝑡), indirect transmissions are applied
through VLB policy.

We provide the following definition for the traffic matrix:

Definition 3.3.1 (Traffic Matrix). A traffic matrix, denoted by D(𝑡) = [𝑑𝑖𝑗(𝑡)] for 𝑖, 𝑗 =
1, 2 … , 𝑁 , is a square matrix of size 𝑁 × 𝑁 . The entries of this matrix, represented by
𝑑𝑖𝑗(𝑡), are non-negative integers that specify the number of demanded bandwidth slots from
rack 𝑖 to rack 𝑗 during period 𝑡.

The Control Plane cycle can be summarized in the following steps:

1. Obtain the monitored queue matrix Q(𝑡 − 𝐶) and estimate the traffic matrix D(𝑡).

2. Compute the schedule S(𝑡) for the direct transmissions based on the estimated traffic
matrix D(𝑡).

3. Transfer the reconfiguration S(𝑡) to the corresponding switches.

If the control delay𝐶 is greater than oneData period (i.e., the delay required for obtaining
the monitored queue matrix, making scheduling decisions and configuring the network, is
longer than the data period), a new Control Plane cycle will still begin every Data period,
in a “pipelined” way as shown in Fig. 3.5. Therefore, 𝐶 Control Plane cycles will run in
parallel.

The control plane delay 𝐶 depends on several factors, such as the execution time of the
scheduling algorithm and the delay of the monitoring and control protocol used to transmit
information between the ToRs and the SDN controller, and between the SDN controller and
the data plane devices, respectively. Both delays are influenced by the network size and the
Data period, 𝑇 .

To ensure efficient scheduling, the schedule S(𝑡) should be sufficiently accurate to be
applied during the Data period 𝑡 if D(𝑡) is a good approximation of Q(𝑡) (the ToR queues
at the time that it is applied). To estimate D(𝑡) from Q(𝑡 − 𝐶), various methods can be

62 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.5 Data and Control Plane cycles.

Traffic matrix

creation of

Schedule computation

of

Monitoring
data

Transmit
according to

Arrivals

Arrivals

Transferring
configuration

used such as statistical predictions, filters, and cases where the application communication
pattern is known or communicated in advance to the scheduler. The overall scheme is also
designed to be self-correcting. If some queues are not served for some periods due to poor
scheduling and their size increases due to new arrivals, this information will eventually be
communicated to the controller with some delay, and the unserved queues will eventually be
serviced.

3.4 Problem Definition and Scheduling Policies 63

3.4 Problem Definition and Scheduling Policies

3.4.1 Problem Definition

In a Lean datacenter network, the configurability of the Lean and Rotor switches is lim-
ited compared to crossbars of the same size. This constrains the combinations of source-
destination pairs that can communicate simultaneously, and limits the traffic that is trans-
mitted directly. The indirect routing solution based on VLB spends half of the throughput
for transmissions to intermediate nodes, and thus results in lower throughput.

The objective is to maximize the throughput in a Lean datacenter network, comprising
𝑁 racks with 𝑃 servers. The network consists of 𝑁 top-of-rack (ToR) switches with 𝑆 + 𝑃
bi-directional ports each, and 𝑆 Lean planes/switches, where each Lean switch has 𝑚 ⋅ 𝑛
bi-directional ports and is connected to 𝑚 Rotor switches, where 𝑛 is the group factor, and
𝑁 = 𝑚 ⋅ 𝑛. During each timeslot, the Lean network is configured in a specific way, enabling
the communication between specific ToRs. The SDN-enabled scheduler makes decisions for
a period of 𝑇 timeslots. It examines the traffic and computes schedules for the portion that can
be directly transmitted, guaranteeing maximum utilization1 of the slot capacity during these
timeslots. The remaining timeslots of the period are used for indirect transmissions, where
the packets are transmitted to random intermediate hops instead of their true destinations,
following the VLB policy. A maximization of direct transmissions results in a decrease of
the slots/capacity that is reserved for transmissions to intermediate destinations by the VLB
policy, leading to an overall increase of the throughput.

3.4.2 Scheduling Constraints

We use matrix notation from linear algebra to describe switching patterns, represented by
block matrices. A block matrix is a square, non-negative, and integer matrix of size 𝑁 ×
𝑁 , where 𝑁 = 𝑚 ⋅ 𝑛. It has 𝑚 row partitions and 𝑚 column partitions, each of size 𝑛.
Each intersection of row and column partitions forms an 𝑛 × 𝑛 submatrix, and there are 𝑚2

submatrices. We refer to each submatrix’s main diagonal and all the cyclic shifts above
the main diagonal as diagonals. The configuration of the Lean switches is a permutation
of the submatrices, while the Rotor switches’ configuration corresponds to a selection of
a diagonal. Figure 3.6 illustrates how a block matrix is decomposed into submatrices and
diagonals to form a sequence of valid switching patterns.

1In this work, we exclusively focus on schedules that achieve full utilization. However, it’s worth noting
that the use of partially-filled schedules could be further investigated.

64 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.6 Decomposition of a traffic matrix into direct transmission permutation matrices,
in a network with 𝑆 = 2 Lean switches and 𝑁 = 16 racks (𝑛 = 4, 𝑚 = 4).

timeslot 1 timeslot 2Submatrix selection

2
2 1
2
2

1

1

1

1

1 2
2

2
2

1
1

1

1

1 1
1 1
1 1
1 1

2
3
2

2 1

1 1
1 1
1 1

2 1
2
2
2 1
2

2 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+

+

:

:

switch 1

switch 2

A valid switching pattern of the proposed DCN fabric can be represented by a block
matrix S(𝑡) that satisfies the following constraints:

C1 Each row can have at most one entry set to ‘1’, while the rest of entries are set to ‘0’.

C2 Each column can have at most one entry set to ‘1’, while the rest of entries are set to
‘0’.

C3 Each row partition can have at most one non-zero submatrix.

C4 Each column partition can have at most one non-zero submatrix.

C5 Each submatrix can have at most one diagonal with non-zero entries.

Constraints C1 and C2 are straightforward and dictate that a given source ToR can only
connect to a single destination ToR, and vice versa. These two are the typical constraints
in crossbar switches. Constraints C4 and C5 reflect the fact that a given first-stage selector
module of a Lean switch can only connect to one second-stage selector module, and vice
versa. Constraint C5 reflect the use of cyclic port mappings in the Rotor switches.

3.4.3 Scheduling Policies
We introduce the Lean Valiant Decomposition (LVD) as a combined scheduling policy based
on Birkhoff-vonNeumann decomposition (BvN) (40, 66) andValiant Load Balancing (VLB)
(87, 88) for our proposed DCN architecture.

3.4 Problem Definition and Scheduling Policies 65

Definition 3.4.1 (Perfect matrix). Perfect is a non-negative matrix, all rows and columns of
which sum up to the same number.

Definition 3.4.2 (Critical sum). We define the critical sum ℎ of an integer and non-negative
matrix D ≡ [𝑑𝑖𝑗]𝑁

𝑖,𝑗=1 as

ℎ = max
(

max
𝑗∶𝑗∈{1,2,…,𝑁} (

𝑁

∑
𝑖=1

𝑑𝑖𝑗)
, max

𝑖∶𝑖∈{1,2,…,𝑁} (

𝑁

∑
𝑗=1

𝑑𝑖𝑗))
.

The BvN decomposition method builds on the observation that to decompose a traffic
matrixDwith a critical sum of ℎ into a sum of permutation matrices, a scheduler would need
to execute a maximum cardinality matching algorithm for at most ℎ iterations, as described
in (66) (p. 57). This decomposition results in a sequence of ℎ permutations, each with max-
imum cardinality. The permutations are then translated into configurations for the switches
by applying the Lee-Hwang-Capinelli algorithm (47). Note that if the critical sum ℎ of a
traffic matrix exceeds 𝑇 , the decomposition has to be carried out to yield only 𝑇 switching
matrices, as each period has 𝑇 slots.

On the other hand, VLB is a method that utilizes randomized two-phase routing to sup-
port all possible traffic matrices. This method allows each ToR to be agnostic to the global
traffic and make randomized local decisions, as randomness translates any traffic pattern to
a uniform one, which can be more easily served. However, despite efficiently serving non-
uniform traffic without the need for centralized control, VLB may waste half of the available
network capacity due to the two-phase routing.

The proposed LVD policy aims to achieve higher throughput compared to the VLB
method by taking into account the existence of structured traffic patterns. The policy takes
place in two steps, the decomposition step and the load balancing step:

1. In the decomposition step, the algorithm decomposes the trafficmatrix into a sequence
of permutation matrices, with respect to the scheduling constraints outlined in Sec-
tion 3.4.2. These permutations are then used to configure the Lean and the Rotor
switches to directly transmit the traffic demands to their corresponding destinations.

2. In the load balancing step, the timeslots of the period that weren’t used in the decom-
position step are used for the remaining demands to be transmitted indirectly through
intermediate destination hops (ToR switches). The transmissions to the intermediate
destination hops take place according to predetermined round-robin schedules of the
Rotor and the Lean switches. Hence, the intermediate hops are uniformized determin-
istically.

66 Fast Optical Datacenter Interconnects with Partial Configurability

We refer to the matrix that describes the capacity allocations for directly transmitted de-
mands as the direct capacity matrix, and to the matrix that describes the capacity allocations
for both directly and indirectly transmitted demands as the capacity matrix. In the following
pseudocode of the scheduling policy (Algorithm 3) we denote the number of timeslots used
for the decomposition step (direct transmissions) as 𝜃, while the remaining 𝑇 − 𝜃 timeslots
are used for the load balancing step (indirect transmissions).

By recalling theDefinition 3.4.1 of perfect matrices and theDefinition 3.4.2 of the critical
sum, we derive the following theorem:

Theorem 3.4.1. SupposeD is a perfect integer traffic matrix with a critical sum of ℎ𝑑 . LetA
be a direct capacity matrix with a critical sum of ℎ𝑎, and let E be an indirect capacity matrix
obtained by transmitting D − A through an indirect routing scheme. Then, the capacity
matrix obtained by combining A and E is also a perfect integer matrix, with a critical sum
of 2ℎ𝑑 − ℎ𝑎.

Proof. LetD be a perfect traffic matrix with critical sum ℎ𝑑 . SinceD is perfect, it can be de-
composed into its permutations, which are all perfect matrices. Let A be the resulting direct
capacity matrix, which is also perfect with critical sum ℎ𝑎. Each permutation corresponds
to a set of paths in the network, and the capacity of each link in A is set to the minimum of
the capacities along these paths.

Since D is perfect, we know that D − A is also perfect. We can then apply the Valiant
Load Balancing policy to the matrix D−A to transmit in two phases, described by matrices
which sum up to a perfect indirect capacity matrix E.

The resulting matrix A + E is a perfect capacity matrix, since it is obtained by adding
two perfect matrices. Moreover, its critical sum is ℎ𝑎 + 2(ℎ𝑑 − ℎ𝑎) = 2ℎ𝑑 − ℎ𝑎, as claimed,
since the critical sum of E is 2(ℎ𝑑 − ℎ𝑎).

Therefore, the capacity matrix is also perfect with critical sum 2ℎ𝑑 − ℎ𝑎, completing the
proof.

According to the theorem, if the LVD policy is applied to a fully structured matrix where
all traffic demands can be served directly (ℎ𝑎 = ℎ𝑑), the policy can achieve maximum
throughput (2ℎ𝑑 − ℎ𝑑 = ℎ𝑑). However, if there are no structured patterns present (ℎ𝑎 = 0),
the policy will produce a capacity matrix with a critical sum of 2ℎ𝑑 , resulting in a loss of
half of the throughput.

The time complexity analysis of Algorithm 3 can be summarized as follows:

1. Line 7 is executed 𝑚2𝑛 times, where 𝑛 is the number of elements per diagonal. There-
fore, the complexity of this line is Θ(𝑁2), where 𝑁 = 𝑚 ⋅ 𝑛.

3.4 Problem Definition and Scheduling Policies 67

Algorithm 3 Lean Decomposition
Input: D = [D𝑖𝑗 |D𝑖𝑗 ∈ ℝ𝑛×𝑛], ∀𝑖, 𝑗 ∈ {1, 2, … , 𝑚}, 𝑁, 𝑇 , 𝑆, 𝑃
Output: S ∈ ℤ𝑇 ×𝑁 ;R ∈ ℤ𝑇 ×𝑚

1: S ← [0]𝑇 ×𝑁 ; S̄ ← [0]𝑇 ×𝑚;R ← [0]𝑇 ×𝑚

2: ℳ ← 𝑚 × 𝑚 array of lists; ̄ℳ ← 𝑚 × 𝑚 array of lists
3: B ← [0]𝑚×𝑚;P ← [0]𝑚×𝑚

4: for 𝑖, 𝑗 ∈ {1, 2, … 𝑚} do
5: ℳ𝑖𝑗 ← 𝑒𝑚𝑝𝑡𝑦_𝑙𝑖𝑠𝑡(); ̄ℳ𝑖𝑗 ← 𝑒𝑚𝑝𝑡𝑦_𝑙𝑖𝑠𝑡()
6: for 𝛿 ∈ {1, 2, … , 𝑛} do
7: 𝜇 ← Get minimum entry of diagonal 𝛿 of D𝑖𝑗
8: ℳ𝑖𝑗 ← ℳ𝑖𝑗 ∪ (𝜇)
9: ̄ℳ𝑖𝑗 ← ̄ℳ𝑖𝑗 ∪ (𝛿)
10: end for
11: ̄ℳ𝑖𝑗 ← Sort (descending) the elements of ̄ℳ𝑖𝑗 according to ℳ𝑖𝑗
12: end for
13: for 𝑖 ∈ {1, 2, … , 𝑚} do ▷ Initialize maximum values
14: for 𝑗 ∈ {1, 2, … , 𝑚} do
15: B[𝑖, 𝑗] ← ℳ𝑖𝑗(̄ℳ𝑖𝑗(1)) ▷ Get maximum value
16: end for
17: end for
18: 𝜃 ← 0
19: P ← Find Maximum Cardinality Matching with input B
20: while P is a perfect matrix AND 𝜃 < 𝑇 do
21: 𝛽 ← min𝑖,𝑗∶𝑖,𝑗∈{1,2,…,𝑚}{B[𝑖, 𝑗] |P[𝑖, 𝑗] = 1}
22: ̄𝜇 ← 1
23: while ̄𝜇 ≤ 𝛽 AND 𝜃 < 𝑇 do
24: 𝜃 ← 𝜃 + 1
25: S[𝜃, 𝑖] ← ̄ℳ𝑖𝑗(1), ∀𝑖 ∈ {1, 2, … , 𝑚} where P[𝑖, 𝑗] = 1
26: S̄[𝜃, 𝑖] ← 𝑗, ∀𝑖 ∈ {1, 2, … , 𝑚} where P[𝑖, 𝑗] = 1
27: ̄𝜇 ← ̄𝜇 + 1
28: end while
29: for 𝑖, 𝑗 ∈ {1, 2, … , 𝑚} where P[𝑖, 𝑗] = 1 do
30: ℳ𝑖𝑗(̄ℳ𝑖𝑗(1)) ← B[𝑖, 𝑗] − 𝛽
31: ̄ℳ𝑖𝑗 ← Update sorting order with given ℳ𝑖𝑗 and ̄ℳ𝑖𝑗
32: B[𝑖, 𝑗] ← ℳ𝑖𝑗(̄ℳ𝑖𝑗(1))
33: end for
34: P ← Find Maximum Cardinality Matching with input B
35: end while
36: for 𝜏 ∈ {1, 𝜃} do
37: R[𝜏, ∶] ← Find configurations for the switches with S[𝜏, ∶]
38: end for
39: return S,R ▷ For 𝜏 ∈ [1, 𝜃], transmit directly according to S.

▷ For 𝜏 ∈ [𝜃 + 1, 𝑇], transmit indirectly using VLB.

68 Fast Optical Datacenter Interconnects with Partial Configurability

2. In line 11, the heapsort algorithm is executed 𝑚2 times, each time sorting 𝑛 elements,
which requires 𝑂(𝑛 log 𝑛) time complexity. Thus, the total worst-case complexity in-
duced by this line is 𝑂(𝑚2𝑛 log 𝑛) < 𝑂(𝑁2).

3. Line 25 is executed at most 𝑇 times, assigning the destinations of 𝑁 racks. Hence,
the complexity is 𝑂(𝑇 𝑁).

4. Line 34 involves the Hopcroft-Karp algorithm for bipartite matchings of size 𝑚 ×
𝑚. This algorithm has a time complexity of 𝑂(𝑚

5
2) = 𝑂((𝑁/𝑛)

5
2). Since this line is

executed at most 𝑇 times, the total time complexity it induces is 𝑂(𝑇 (𝑁/𝑛)
5
2).

5. Finally, line 37 involves Lee-Hwang-Capinelli algorithm. This algorithm has com-
plexity 𝑂(𝑚2). Since it’s called at most 𝑇 times, the total time complexity it induces
is 𝑂(𝑇 𝑚2) = 𝑂(𝑇 (𝑁/𝑛)2) < 𝑂(𝑇 (𝑁/𝑛)

5
2).

Therefore, the worst-case time complexity of Algorithm 3 is 𝑂(𝑁2 + 𝑇 (𝑁/𝑛)
5
2 + 𝑇 𝑁).

3.5 Alternative DCN Architectures 69

Figure 3.7 Alternative 2-level DCN architectures.

RotorRotorRotorRotor

ToR
 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

(a) DCN with Rotor switches (RotorNet).

WSS WSS WSS WSS

WDM Ring with Wavelengths

ToR
 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

 ports
ToR

 ports

WSS WSS WSS WSS

WDM Ring with Wavelengths

 ports
ToR

 ports

 ports
ToR

 ports

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

 se
rv

er
s

WSS WSS WSS WSS

WDM Ring with Wavelengths

 ports

WSS WSS WSS WSS

WDM Ring with Wavelengths

(b) DCN with WSSes/WDM rings (Mordia).

3.5 Alternative DCN Architectures
In this section, we describe two alternative 2-level architecture designs: a) the RotorNet
architecture (56) (Figure 3.7a), and b) the Mordia architecture (63) with optical crossbar
switches (Figure 3.7b). These are compared in this section with the proposed Lean architec-
ture in terms of crosspoint complexities and reconfiguration delay, and in the next section
through simulations.

We assume that all considered DCNs have 𝑁 racks with 𝑃 servers each, and 𝑁 ToR
switches with 𝑆 + 𝑃 bi-directional optical ports, where 𝑃 of these ports communicate with
the underlying servers, and 𝑆 communicate with the higher level switches. In the following,
we will refer to the switches at the second level as spine switches to distinguish them from
the ToR switches.

Table 3.1 provides a comparison of the network component specifications, and their cor-
responding crosspoint complexities.

3.5.1 RotorNet: DCN with Rotor Switches
Assuming the network architecture illustrated in Figure 3.7a, a RotorNet network comprises
𝑆 Rotor switches. Each Rotor switch has 𝑁 ports, and supports 𝑁 port mappings of 𝑁 .

The Rotor switches have a crosspoint complexity of 𝑁 . Thus, the total crosspoint com-
plexity of the entire network is 𝑁𝑆.

As for the reconfiguration delay of the network, the Rotor switches can be designed to
be reconfigured in 20 μs (56).

A DCN equipped only with Rotor switches does not require centralized control, as the
Rotor switches can operate in a decentralized deterministic manner. For direct transmissions,
a round-robin (RR) policy cyclically rotates through all source-destination pairs, which is

70 Fast Optical Datacenter Interconnects with Partial Configurability

sufficient for serving uniformly distributed traffic patterns. However, non-uniform traffic
patterns require the use of indirect transmissions through Valiant Load-Balancing (VLB)
(87, 88) with the cost of half of the available capacity due to two-phase routing.

Both RR and VLB are fully decentralized and hence their computational complexity is
Θ(1) (87).

3.5.2 Mordia: DCN with WDM Rings and Wavelength-Selective Swit-
ches

We assume the architecture illustrated in Figure 3.7b, which corresponds to Mordia DCN.
The network comprises 𝑆 unidirectional rings constructed by optical fibers, each carrying
𝑁 individual multiplexed wavelengths (WDM). At certain interconnection points, wave-
lengths are dropped from the rings to the ToRs and added from the ToRs to the rings using
wavelength-selective switches (WSS) (?). Each ToR is designated to transmit with a dis-
tinct wavelength, exclusive to any other ToR, ensuring that ToRs connect through unique
wavelength channels. The WSS selects at most ̄𝑛 wavelengths (1 × ̄𝑛 WSSes) to route to its ̄𝑛
bi-directional ports, and onto the ̄𝑛 underlying ToRs. The other wavelengths are multiplexed
with the wavelengths that originate from the underlying ToRs and forwarded to the next in-
terconnection point. The WSSes connect to their WDM ring through 2 unidirectional ports,
additional to their ̄𝑛 bi-directional ports connected with the ToRs.

Since the WDM signal contains 𝑁 wavelengths, the WSSes’ crosspoint complexity is
𝑁(̄𝑛 + 1). A non-blocking network consisting of a ring carrying 𝑁 wavelengths and 1 × ̄𝑛
WSSes requires 𝑁/ ̄𝑛 WSSes/interconnection points. Therefore, the crosspoint complexity is
𝑁2+𝑁/ ̄𝑛. Furthermore, a full network consists of𝑆 rings, resulting in a total of (𝑁2+𝑁/ ̄𝑛)𝑆
crosspoints.

As for the reconfiguration delay of the network, the WSSes can be designed to be recon-
figured in 11.5 μs (63).

Similar to the Lean architecture, we assume an SDN-enabled scheduler which makes
decisions every 𝑇 timeslots for direct transmission. To describe the scheduling, we use a
similar notation. The scheduler uses as input a traffic matrix D(𝑡) ∈ ℤ𝑁×𝑁 which describes
the (estimated) accumulated traffic between ToR pairs for Data period 𝑡. As in Lean archi-
tecture, this is assumed to be created through monitoring and an estimation algorithm and/or
application traffic awareness. The critical sum ofD(𝑡) is assumed to be ℎ. According to (66),
Birkhoff-von Neumann (BvN) decomposition can be used for optimal scheduling, which de-
composes a traffic matrix D(𝑡) with critical sum ℎ into a sequence of permutation matrices

3.5 Alternative DCN Architectures 71

with maximum cardinality:

D(𝑡) = P(1) + P(2) + P(3) + ⋯ + P(ℎ−1) + P(ℎ)

This is done by executing amaximum cardinality matching algorithm for at most ℎ iterations.
We refer to the exact BvN decomposition method as EXACT (75):

Algorithm 4 EXACT Decomposition

1. Set slot counter to 𝜃 ← 1.

2. Find maximum cardinality matching P with input D(𝑡).

3. Allocate bandwidth according to P; 𝜃 ← 𝜃 + 1.

4. Find switch configurations for P.

5. Subtract P from D(𝑡). If 𝜃 ≤ 𝑇 and D(𝑡)[𝑖, 𝑗] > 0, ∀𝑖, 𝑗 ∈ {(𝑖, 𝑗) |P[𝑖, 𝑗] = 1 ∧ 𝑖, 𝑗 =
1, 2, … , 𝑁}, go to step 3.

6. If 𝜃 ≤ 𝑇 go to step 2.

A traffic matrix is considered “admissible” if it can be served within the available capac-
ity provided by the available slots in a serving Data period. For the DCN architecture shown
in Figure 3.7b, a traffic matrix is admissible if its critical sum satisfies ℎ ≤ 𝑇 .

For an admissible traffic matrix, the number of decomposition steps is limited to 𝑇 . We
can use the Hopcroft-Karp algorithm (35) for finding maximum matchings, which has a
worst-case complexity of 𝑂(𝑁

5
2) for a dense matrix. For finding the switch configurations

we can use the Lee-Hwang-Capinelli algorithm (47) which has complexity 𝑂(𝑁2). Both
algorithms are called for at most 𝑇 times. Therefore, the complexity of the former dominates
the latter’s, the total worst-case complexity of the algorithm is 𝑂(𝑇 𝑁

5
2).

3.5.3 Comparison of the Lean and the Alternative DCN Architectures

The Lean, the RotorNet and the Mordia DCN architectures are compared in Table 3.1. All
three architectures have the same number of racks/ToR switches 𝑁 with the same number
of ports (𝑃 southbound and 𝑆 northbound) and VOQs (𝑁 − 1), the same number of servers
per rack 𝑃 , and the same number of spine switches 𝑆 (𝑆 Lean planes in the case of the Lean
DCN).

72 Fast Optical Datacenter Interconnects with Partial Configurability

The RotorNet exhibits the lowest crosspoint complexity among all three (𝑁𝑆) and the
Mordia the highest ((𝑁2 +𝑁/ ̄𝑛)𝑆). However, the Lean DCN’s crosspoint complexity highly
depends on the group factor 𝑛. As 𝑛 → 𝑁 , the crosspoint complexity tends to be 𝑂(𝑁𝑆).
On the contrary, as 𝑛 → 1, the crosspoint complexity tends to be 𝑂(𝑁2𝑆). In an in-between
scenario, where 𝑛 = √𝑁 , the crosspoint complexity tends to be 𝑂(𝑁𝑆). According to (36),
crosspoint complexity often bears a direct relationship with minimizing power consumption
and other cost criteria. As a result, the Lean DCN architecture may lower the total monetary
cost of the network.

As for the worst-case time complexities of the algorithms, both RR andVLB (“RotorNet”
in Table 3.1) exhibit the lowest one among all three, namelyΘ(1), and the EXACT (“Mordia”
in Table 3.1) the highest, namely 𝑂(𝑇 𝑁

5
2). The worst-case time complexity of the LVD

algorithm (“Lean DCN” in Table 3.1) again depends on the group factor 𝑛. As 𝑛 → 𝑁 , the
time complexity tends to be 𝑂(𝑁2 + 𝑇 𝑁). On the contrary, as 𝑛 → 1, the worst-case time
complexity tends to be 𝑂(𝑇 𝑁

5
2), equal to EXACT’s. For 𝑛 = √𝑁 , the worst-case time

complexity of the LVD algorithm tends to be 𝑂(𝑁2 + 𝑇 𝑁
5
4).

3.5 Alternative DCN Architectures 73

Table 3.1 Comparison between fully connected RotorNet, Mordia and Lean DCNs, where 𝑆 + 𝑃 is
the ToR switch radix (𝑛: group factor in Lean, ̄𝑛: WSSes’ bidirectional ports in Mordia).

RotorNet Mordia Lean DCN
Number of racks 𝑁 𝑁 𝑁
Number of servers per rack 𝑃 𝑃 𝑃
of spine switches1 𝑆 𝑆 𝑆
of ToR switches 𝑁 𝑁 𝑁
of bi-directional ports of
spine switches

𝑁 𝑁 𝑁

of bi-directional
northbound ports of ToR
switches

𝑆 𝑆 𝑆

of bi-directional
southbound ports of ToR
switches

𝑃 𝑃 𝑃

of bi-directional ports of
WSSes

– ̄𝑛 –

of wavelengths 1 𝑁 1
of VOQs per ToR switch 𝑁 − 1 𝑁 − 1 𝑁 − 1
of crosspoints per spine
switch

𝑁 𝑁2 + 𝑁/ ̄𝑛 (𝑁/𝑛)2 + 𝑁

Reconfiguration delay 20 μs 11.5 μs 20 μs
Duty cycle 𝐷 𝐷 𝐷
Timeslot duration 20/(1 − 𝐷) μs 11.5/(1−𝐷) μs 20/(1 − 𝐷) μs
Total number of VOQs 𝑁(𝑁 − 1) 𝑁(𝑁 − 1) 𝑁(𝑁 − 1)
Total number of
crosspoints

𝑁𝑆 (𝑁2 + 𝑁/ ̄𝑛)𝑆 ((𝑁/𝑛)2 + 𝑁)𝑆

Scheduling worst-case
time complexity

Θ(1) 𝑂(𝑇 𝑁
5
2) 𝑂(𝑁2+𝑇 (𝑁/𝑛)

5
2 +𝑇 𝑁)

1 With “spine switch” we refer to a) a Rotor switch in RotorNet, b) an optical ring with
WSSes in Mordia, and c) a Lean plane in Lean DCN.

74 Fast Optical Datacenter Interconnects with Partial Configurability

3.6 Simulation Experiments

3.6.1 Simulation Setup
In this section, we present a set of simulation results using OMNET++ packet-level sim-
ulator. We consider three network setups comprising 128 racks each, namely a RotorNet,
a Mordia and a Lean network. Each rack has a Top-of-Rack (ToR) switch with 𝑃 = 16
Ethernet ports facing the servers of the underlying rack (southbound ports) and 𝑆 = 16
optical ports facing the spine switches of the network (northbound ports), with each link
being 100 Gbps. The Data cycle was 𝑇 = 64 timeslots and each timeslot lasts for 200 μwith
RotorNet and Lean, and 115 μs with Mordia. In the scenarios of the Mordia and the Lean
networks, a new batch schedule is generated for each Data cycle, and we assumed that the
control cycle takes 𝐶 = 1 period (61) to generate the schedule.

RotorNet Network Setup

The RotorNet network comprises 128 optical ToR switches and 16 128 × 128 Rotor (spine)
switches, which implement 128 port mappings. We examine the RotorNet architecture by ap-
plying both Round-Robin (RR) and Valiant Load Balancing (VLB) policies. The RR policy
transmits only directly to the destinations when the network configuration allows a transmis-
sion. On the other hand, with the VLB policy, the packets are initially transmitted indirectly
from the source to a random intermediate rack and then from the intermediate to the destina-
tion rack. In both policies, the decisions are made by hosts without centralized orchestration.

Mordia Network Setup

The Mordia network comprises 128 optical ToR switches and 16 optical WDM rings with 4
1×32WSSes each. We refer to an optical ring and its correspondingWSSes as a spine switch
with 128 ports. We examine the Mordia architecture by applying the EXACT scheduling
policy (Section 3.5.2) with the assistance of a centralized orchestrator, which computes the
batch schedules for each Data cycle.

Lean Network Setup

The Lean network comprises 128 optical ToR switches and 16 128×128Lean planes. At each
Lean plane, there is a Lean switch and 32 Rotor switches with 4 ports (512 Rotor switches
in total). We examine the Lean architecture by applying the LVD policy with the assistance
of a centralized orchestrator, which computes the batch schedules for each Data cycle.

3.6 Simulation Experiments 75

Figure 3.8 Structured traffic patterns.

(a) WTraffic (b) BlkDiag (c) FFT

The traffic is divided into structured and unstructured. A percentile of the load is trans-
mitted following the corresponding structured pattern. We apply three different traffic struc-
tured patterns: W traffic, Block diagonal traffic and Fast Fourier Transform traffic (34),
which we abbreviate as WTraffic, BlkDiag and FFT, respectively. The unstructured traffic
is distributed uniformly among the ToRs which are randomly selected during each time slot.
The percentile of the structured traffic is denoted by a parameter 𝑤 within the range of (0, 1).

In the WTraffic structured traffic, a source rack transmits to a specified destination rack
that is located at a predefined distance from it. A depiction of WTraffic structured pattern
is given in Figure 3.8a. In the BlkDiag case, the racks are partitioned in clusters and traffic
is transmitted inside each cluster. We examine a scenario of 32 clusters of 4 racks each.
A depiction of BlkDiag structured pattern is given in Figure 3.8b. Finally, in the case of
FFT, the racks shape the structured traffic part by applying a 7-stage radix-2 butterfly FFT
algorithm of size 128 (34), with all the racks participating in all stages. A depiction of the
corresponding pattern is given in Figure 3.8c.

The setup parameters are provided in Table 3.2.

3.6.2 Performance Comparison Between Different DCNs and Policies
For the first evaluation, we compared the performance of network architectures and their cor-
responding algorithms. We utilized RR and VLB for the RotorNet, EXACT for the Mordia,
and LVD for the Lean network, using WTraffic with 𝑤 = 0.5.

In Figure 3.9a, we present the corresponding throughput results. The RotorNet achieves
a maximum throughput of 7.6% using the RR policy and 46.7% using the VLB policy. The
Mordia achieves the highest throughput, reaching 87.9% when using the EXACT policy. Fi-
nally, for the Lean network, using the LVD policy, the achieved throughput is 59.1%, which

76 Fast Optical Datacenter Interconnects with Partial Configurability

Table 3.2 Network simulation setup.

RotorNet Mordia Lean
Number of racks (𝑁) 128 128 128
Number of servers per rack (𝑃) 16 16 16
Total number of servers 2048 2048 2048
Group factor of spine switches (𝑛) 128 – 4
Data communic. cycle timeslots (𝑇) 64 64 64
Control plane cycle periods (𝐶) 1 1 1
Link capacity (Gbps) 100 100 100
Timeslot duration (μs) 10 10 10
of spine switches1 (𝑆) 16 16 16
of ToR switches 128 128 128
of WSSes per spine – 4 –
of ports of spine switches1 (𝑁) 128 128 128
of north. ports of ToR switch. (𝑆) 16 16 16
of south. ports of ToR switch. (𝑃) 16 16 16
of bi-directional ports of WSSes (̄𝑛) – 32 –
of VOQs per ToR switch 127 127 127
of crosspoints per spine switch 128 16388 1152
Reconfiguration delay 20 μs 11.5 μs 20 μs
Duty cycle (𝐷) 90% 90% 90%
Timeslot duration 200 μs 115 μs 200 μs
Total number of VOQs 16256 16256 16256
Total number of crosspoints 2048 262208 18432
1 With “spine switch” we refer to a) a Rotor switch in RotorNet, b) an optical ring with
WSSes in Mordia, and c) a Lean plane in Lean DCN.

Figure 3.9 Network and policy comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(%

)

Lean/LVD

RotorNet/RR

RotorNet/VLB

Mordia/EXACT

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

100

200

300

400

A
ve

ra
ge

p
a
ck

et
la

te
n

cy
(m

s) Lean/LVD

RotorNet/RR

RotorNet/VLB

Mordia/EXACT

(b) Examination of average packet latency.

places it between the RotorNet/VLB and the Mordia/EXACT cases. This result is expected
since the structured part of the traffic allows the LVD policy to directly transmit a signifi-

3.6 Simulation Experiments 77

cant portion of the total traffic to their corresponding destinations while using the remain-
ing slots to transmit indirectly with VLB. In contrast, the RotorNet/VLB is traffic-agnostic,
uniformizing the entire traffic load by transmitting to intermediate destination racks. While
theoretically capable of achieving a throughput of at least 50%, in our simulations it achieved
46.7%. This discrepancy can be attributed to the fact that, although a fraction of the traf-
fic reached its destination in the first hop, providing a marginal increase in throughput, this
increase was offset by the reconfiguration delay during which no transmissions occurred.
We conclude that the Lean/LVD case improved the throughput by 26.8% compared to the
RotorNet/VLB case, while achieving 67.3% of the total throughput of the Mordia/EXACT
case.

In Figure 3.9b, we present the average packet latencies for the scenarios discussed earlier.
In the RotorNet network, the latency scales linearly from 12.74 to 13.31 ms (7% load) when
using the RR policy, and from 33.62 to 62.63 ms (40% load) when using the VLB policy.
For the Mordia network, the latency scales linearly from 7.23 to 12.07 ms (80% load) when
using the EXACT policy. Finally, for the Lean network, using the LVD policy, the average
packet latency scales between 24.14 and 56.34 ms (60% load). It is evident that policies
that transmit only directly (RR and EXACT) have lower average packet latencies than the
indirect policies (VLB and LVD). However, compared to VLB, the LVD policy has lower
average packet latencies by 28–39% (up to 40% load).

3.6.3 Performance Comparison with Different Levels of Traffic Uni-
formity

In Figure 3.10a, we utilize WTraffic to investigate the effect of different values of the pa-
rameter 𝑤 (𝑤 = 0.3, 𝑤 = 0.5, and 𝑤 = 0.7) on the performance of the Lean network
with the LVD policy. In the first evaluation, where 𝑤 = 0.3, the network achieves a maxi-
mum throughput of 52.8%. With 𝑤 = 0.5, the achieved throughput improves to 59.1%, and
by further increasing the percentile of the structured part of the traffic with 𝑤 = 0.7, the
achieved maximum throughput reaches 78.1%. It is apparent that as the percentile of the
structured traffic increases, the maximum throughput increases as well. This is because an
increased amount of traffic reaches its destinations directly, saving more network capacity
from transmissions to intermediate destination racks.

In Figure 3.10b, we also evaluate the average packet latencies of the mentioned cases.
Initially, for 𝑤 = 0.3, the average packet latency scales linearly from 29.35 to 60.02 ms (50%
load). Then, for 𝑤 = 0.5, the latency scales from 24.14 to 56.34 ms (60% load), and finally,
for 𝑤 = 0.7, the average packet latency scales linearly from 19.66 to 31.05 ms (70% load).

78 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.10 WTraffic uniformity comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

w = 0.3

w = 0.5

w = 0.7

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

100

200

300

400

A
ve

ra
ge

p
a
ck

et
la

te
n

cy
(m

s) w = 0.3

w = 0.5

w = 0.7

(b) Examination of average packet latency.

Figure 3.11 Structured traffic pattern comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

BlkDiag

FFT

WTraffic

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

100

200

300

400

A
ve

ra
ge

p
a
ck

et
la

te
n

cy
(m

s) BlkDiag

FFT

WTraffic

(b) Examination of average packet latency.

We can observe a small decrease of around 21% on average between 𝑤 = 0.3 and 𝑤 = 0.5
and between 𝑤 = 0.5 and 𝑤 = 0.7, in low traffic loads (up to 40%).

3.6.4 Performance Comparison with Different Traffic Patterns

In this section, we investigate the performance of the Lean network using the LVD policy
with different traffic patterns: WTraffic, BlkDiag, and FFT with 𝑤 = 0.5. To visualize the
structured parts of these traffic patterns, we present them as stochastic bitmaps in Figure 3.8.

Figure 3.11a displays the maximum throughput achieved by each traffic pattern. The
Lean network achieves amaximum throughput of 59.1%with WTraffic, 59.2%with BlkDiag,
and 56.3% with FFT. Overall, the network and policy perform similarly in terms of through-
put for all three traffic patterns. However, the FFT traffic pattern achieves around 5% less
throughput compared to the other two due to a part of its structured traffic not matching pat-
terns that can be fully served directly by the Lean network. This leads to some structured

3.6 Simulation Experiments 79

traffic being served indirectly, resulting in a reduction of the maximum achievable through-
put.

In Figure 3.11b, we also evaluate the average packet latencies of the three structured
traffic patterns. For WTraffic, the average packet latency scales linearly from 24.14 to
56.34 ms at 60% load. For BlkDiag, the latency scales from 21.81 to 62.66 ms at 59% load,
and for FFT, it scales linearly from 29.67 to 60.33 ms at 50% load. In low traffic loads (up to
40%) we observe a small increase in latency when we apply FFT, of around 31% on average
compared to the WTraffic, and around 30% on average compared to the BlkDiag. As in
the throughput case, this is due to the fact that a bigger part of the FFT traffic is transmitted
indirectly, compared to the other, and hence more packets stay queued.

80 Fast Optical Datacenter Interconnects with Partial Configurability

3.7 Partial Configurability Applied to RotorNet
In this section, we examine scheduling policies aimed at optimizing the performance of the
RotorNet architecture as described in (56). To set the stage, we revisit the architectural
depiction provided in Figure 3.7a, which was initially introduced in Section 3.5.1. In pursuit
of this goal, we harness partial configurability, empowered by a centralized control plane, as
previously detailed in Section 3.3.

Our primary aim in this investigation is to devise a scheduling and routing scheme that
outperforms Valiant Load Balancing (VLB). The policies we scrutinize include:

Round-Robin (RR): The most straightforward scheduling algorithm applicable to such a
network is the Round-Robin (RR) method. In this approach, optical switches establish
circuits among the ToR uplinks in a cyclic manner, and packets are forwarded once a
circuit connecting to their destination ToR is established. RR is anticipated to excel
in scenarios with uniform traffic patterns but may falter when dealing with structured
or non-uniform traffic.

Valiant Load Balancing (VLB): The authors of (56) employed Valiant Load Balancing
(VLB). VLB’s objective is to harmonize structured traffic patterns, effectively ren-
dering them akin to a uniform traffic pattern. It accomplishes this by introducing a
random step in packet forwarding, directing them to an intermediate destination be-
fore reaching their final destination. VLB exhibits robust performance across various
traffic patterns, but this comes at the expense of a reduction in maximum throughput
by half and increased latency.

Weighted Round-Robin (WRR): This policy involves connections among the ToR up-
links, where the connection weights, which may or may not be uniform, remain static
during network operation. This approach is particularly applicable when there is prior
knowledge of job placement and traffic requirements for host applications, making it
a suitable choice for application-aware networking. For evaluation purposes, weights
can be preset with knowledge of the anticipated traffic pattern to maximize perfor-
mance tailored to that specific scenario. In this setup, packets are forwarded directly
to their intended destinations

Adaptive Weighted Round-Robin (AWRR): AWRR was designed with the goal of sur-
passing VLB while requiring minimal knowledge about the status of the network
buffers. The fundamental concept behind AWRR involves learning the traffic pat-
tern based on gradual feedback from network devices. To begin, let 𝑁 represent the
number of available permutations P(𝜃) for 𝜃 = 1, 2, … , 𝑇 that can be used during a

3.7 Partial Configurability Applied to RotorNet 81

period. Similar to the Weighted Round-Robin (WRR) approach, a weight vector is
maintained to determine the allocation of slots for each P(𝜃). However, in the case of
AWRR, these weights are not known in advance and evolve over time, adapting to the
traffic pattern by considering the success level of each P(𝜃).

We define (𝑤̄1(𝑡), 𝑤̄2(𝑡), … , 𝑤̄𝑁 (𝑡)) as theweight vector at round 𝑡, where∑𝑁
𝑖=1 𝑤̄𝑖(𝑡) =

1. Also, let D(𝑡) = [𝑑𝑖𝑗(𝑡)] for 𝑖, 𝑗 = 1, 2, … , 𝑁 represent the traffic matrix at period
𝑡. For each diagonal 𝑖, where 𝑖 = 1, 2, … , 𝑁 , of D(𝑡), the maximum number of DUs

̄𝑞𝑖(𝑡) is maintained, defined as ̄𝑞𝑖(𝑡) = max𝑖∶𝑖∈{1,2,…,𝑁}(𝑑𝑗,𝒻(𝑖,𝑗)(𝑡)), where

𝒻(𝑖, 𝑗) = (𝑖 + 𝑗 − 2) (mod 𝑁 + 1). (3.2)

Initially, the weights are set to 𝑤̄𝑖(𝑡0) = 1/𝑁 , for 𝑖 ∈ {1, 2, … , 𝑁}.

The success 𝜎𝑖(𝑡) is the number of DUs that are served from P(𝜃) during period 𝑡; the
relative success is calculated as

𝜎̄𝑖(𝑡) = 𝜎𝑖(𝑡)
∑𝑁

𝑗=1 𝜎𝑗(𝑡)
(3.3)

for 𝑖 = 1, 2, … , 𝑁 . During period 𝑡, the mean relative success is given by:

𝔼[𝜎̄](𝑡) = 1
𝑁

𝑁

∑
𝑖=1

𝜎̄𝑖(𝑡). (3.4)

The weights evolve according to a training scheme:

𝑤̄𝑖(𝑡 + 1) = 𝑤̄𝑖(𝑡) + 𝛾 ⋅ (𝜎̄𝑖(𝑡) − 𝔼[𝜎̄](𝑡)) ,

where 𝛾 ∈ (0, 1) determines the training memory and rate of convergence. Upper and
lower bounds are applied to all weights. The lower threshold ensures that someweights
do not converge to zero, allowing permutations that are rarely used to be occasionally
tried again. This adaptation helps the system respond to pattern changes. The value of
the lower threshold balances the rate of learning new traffic patterns with themaximum
throughput achievable for each pattern.

Additionally, a credit policy scheme is employed to control the rounding process by
managing rounding errors and noise, ensuring that they average to zero in the long
run. Credits are tracked using a vector (𝑐1, 𝑐2, … , 𝑐𝑁). Algorithm 5 is called at each
period 𝑡 to implement this scheme.

82 Fast Optical Datacenter Interconnects with Partial Configurability

Algorithm 5 Adaptive Weighted Round-Robin
1: for 𝑖 ∈ {1, 2, … 𝑁} do
2: ̄𝑞𝑖(𝑡) ← max𝑖∶𝑖∈{1,2,…,𝑁} (𝑑𝑗,𝒻(𝑖,𝑗)(𝑡)) , with 𝒻(𝑖, 𝑗) = (𝑖 + 𝑗 − 2) (mod 𝑁 + 1)
3: end for
4: Update 𝑤̄𝑖(𝑡), ∀𝑖 ∈ {1, 2, … , 𝑁}, according to the training scheme.
5: 𝑐 ← min𝑖∶𝑖∈{1,2,…,𝑁}(𝑤̄𝑖(𝑡))
6: 𝜃 ← 1
7: while 𝜃 ≤ 𝑇 and ∑𝑁

𝑖=1 ̄𝑞𝑖(𝑡) > 0 do
8: for 𝑖 ∈ {1, 2, … , 𝑁} do
9: 𝑐𝑖 ← 𝑐𝑖 + 𝑐
10: while ̄𝑞𝑖(𝑡) not empty and 𝑐𝑖 ≥ 𝑤̄𝑖(𝑡) and 𝜃 ≤ 𝑇 do
11: 𝑝 ← min(̄𝑞𝑖(𝑡), slot capacity in packets)
12: for 𝑠 ∈ {1, 2, … , 𝑁} do
13: 𝑑 ← 𝒻(𝑠, 𝑖)
14: Schedule 𝑝 packets 𝑠 → 𝑑 at slot 𝜃, during period 𝑡.
15: end for
16: ̄𝑞𝑖(𝑡) ← ̄𝑞𝑖(𝑡) − 𝑝
17: 𝑐𝑖 ← 𝑐𝑖 − 1
18: 𝜃 ← 𝜃 + 1
19: end while
20: end for
21: end while

3.8 Additional Simulation Experiments on RotorNet 83

Figure 3.12 Communication of successes for AWRR.
(a)

ℐ (𝑑𝑖1) ℐ (𝑑𝑖2)

…

ℐ (𝑑𝑖𝑁) = 0 or 1

ToR 1 ToR 2 ToR 𝑁

(b)

𝜎𝑖

ToR 𝑖

A centralized scheduler
requires extensive informa-
tion, as it needs to be aware
of the complete state of the
queues at the ToRs. This
means it must be informed
about the buffer occupancies,
denoted as 𝑑𝑖𝑗(𝑡), for all sources
𝑖, destinations 𝑗, and at all
times 𝑡. Providing this level of
detail is demanding in terms of state information, requiring constant transmission to the cen-
tral scheduler.

In contrast, the AWRR algorithm has a more efficient approach. It solely needs knowl-
edge of the relative success 𝜎̄𝑖, 𝑖 ∈ {1, 2, … , 𝑁} to make scheduling decisions (Figure 3.12).

In practice, 𝜎𝑖 can be computed as 𝜎𝑖 = ∑𝑁
𝑗=1 ℐ (𝑑𝑖𝑗), where

ℐ (𝑥) =
⎧⎪
⎨
⎪⎩

1, if 𝑥 > 0
0, otherwise,

is an indicator function, signaling success or “hit” for the (𝑖, 𝑗) entry of P(𝜃). The value of 𝜎𝑖
represents the total number of successes for permutation P(𝜃).

It’s important to note that the computation of these summations can be performed effi-
ciently. Given that summation is an associative operation and many parallel computation
models consider it to be of 𝑂(1) complexity, it can be executed rapidly using a parallel pre-
fix operation over the control tree’s wires. This approach minimizes the communication
overhead and computational load on the system.

3.8 Additional Simulation Experiments on RotorNet

3.8.1 Traffic Profiles Setup

The traffic is divided into structured and unstructured. A percentile of the load is transmitted
following the corresponding structured pattern. We apply three different traffic structured
patterns: W traffic, Block diagonal traffic and Fast Fourier Transform traffic (34), which we
abbreviate as WTraffic, BlkDiag and FFT, respectively (recall Figure 3.8). The unstruc-

84 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.13 Dimensioning study comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

64 racks

128 racks

256 racks

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

100

200

300

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(µ
s) 64 racks

128 racks

256 racks

(b) Examination of average packet latency.

tured traffic is distributed uniformly among the ToRs which are randomly selected during
each time slot.

The percentile of the structured traffic is denoted by a parameter 𝑤 which falls within the
range of (0, 1). For WTraffic, we also use the parameter 𝑤𝐶𝑜𝑢𝑛𝑡 to denote the number of
diagonals where the traffic hotspot is concentrated on (a scenario involving multi-diagonal
traffic).

3.8.2 Dimensioning and Breakout Performance Study
The network’s latency is anticipated to rise as the network’s size expands. When additional
Top-of-Rack (ToR) switches are introduced while maintaining a constant number of uplinks,
it implies that the circuits connecting any pair of ToRs will be established less frequently.
This effect is first demonstrated using our developed simulator. To address this issue, we
propose breaking out the ToR uplinks. In this approach, each port of modern switches, such
as a 100 Gbps port, is divided into multiple lanes, for example, 4 × 25 Gbps lanes, which
can be connected to different optical switches.

Figure 3.13 illustrates the throughput and latency for networks of different sizes: 64, 128,
and 256 racks. Packet forwarding is executed through random intermediate nodes, following
Valiant Load Balancing (VLB). The throughput remains consistent as the network scales,
remaining close to 50%. This is due to the use of VLB. However, the latency shows a linear
increase with the network’s size.

As explained earlier, this increase in latency was expected when the number of ToRs
increases while the number of uplinks for each ToR remains constant. To provide more
specific details, the increase in latency under light loads is twice as pronounced when the
number of ToRs is doubled and quadruples when the number of ToRs is multiplied by four,
in line with our expectations.

3.8 Additional Simulation Experiments on RotorNet 85

Figure 3.14 Breakout factor comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

No breakout

Breakout: 2

Breakout: 4

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

100

200

300

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(µ
s) No breakout

Breakout: 2

Breakout: 4

(b) Examination of average packet latency.

Figures 3.14a and 3.14b illustrate the throughput and latency for different breakout fac-
tors. When the breakout factor is set to 2, the lanes are divided into two groups, with each
group consisting of two lanes at 25 Gbps. When the breakout factor is 4, the lanes are divided
into four groups, each with one lane at 25 Gbps.

As shown in the figures, when breakout is employed, throughput remains consistent and
latency decreases linearly, as the breakout factor increases. This indicates that by using ToR
uplink breakouts, the latency increase can be effectively mitigated as the network scales.

3.8.3 Performance Comparison with Different Policies

In this section, we assess the performance of the scheduling algorithms and routing schemes
described previously, with a primary focus on two critical network metrics: latency and
throughput.

Figure 3.15 provides a comprehensive view of the scheduling algorithms’ performance
under varying network loads. Notably, RR exhibits significant underperformance, particu-
larly when dealing with a traffic pattern where a substantial portion (30%) of the total load is
concentrated in a few connections (as indicated by the 𝑤 = 0.3 pattern). RR’s inefficiency
leads to the creation of numerous underutilized connections.

VLB, on the other hand, alleviates the underutilization issue by rerouting concentrated
traffic through random destinations. However, this redirection comes at a cost, limiting the
network’s throughput to a maximum of 50%. Furthermore, it has a negative impact on la-
tency.

WRR serves as a reference for comparison with AWRR, as it has prior knowledge of the
primary hotspots and achieves nearly 100% utilization. AWRR was specifically designed
to outperform VLB, and Figure 3.15 clearly illustrates its success in achieving this goal.

86 Fast Optical Datacenter Interconnects with Partial Configurability

Figure 3.15 Scheduling algorithms comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

RR

VLB

WRR

AWRR

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

200

400

600

800

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(µ
s) RR

VLB

WRR

AWRR

(b) Examination of average packet latency.

AWRR performs similarly to WRR until the network load reaches around 80%, signifying a
remarkable improvement of over 30% compared to VLB.

3.8.4 Performance Comparison of AWRR with Different Traffic Pro-
files

In this section, we delve into the performance of AWRR under different traffic patterns and
explore how it adapts when the traffic pattern undergoes changes.

Our initial investigation, depicted in Figure 3.16, focuses onAWRR’s performance across
a range of 𝑤 values. Regardless of the specific 𝑤 value, AWRR consistently achieves nearly
100% utilization until the network load approaches 80%. For higher load values, AWRR
demonstrates superior performance when dealing with smaller 𝑤 values. Smaller 𝑤 val-
ues are indicative of traffic patterns that closely resemble a uniform distribution, a scenario
where weighted round-robin algorithms are known to reach peak performance.

Figure 3.17 explores the impact of varying values of 𝑤𝐶𝑜𝑢𝑛𝑡. Notably, we observe that
there are no substantial performance differences. However, a slight improvement can be
discerned when considering larger values of 𝑤𝐶𝑜𝑢𝑛𝑡. Greater 𝑤𝐶𝑜𝑢𝑛𝑡 signifies a higher
number of “useful” matchings, making it easier for AWRR to accommodate the traffic and
enhance traffic uniformity.

In Figure 3.18, we delve into the convergence behavior of AWRR when confronted with
changing traffic patterns. The graph illustrates the performance concerning three distinct
traffic patterns evolving over time (X-axis): WTraffic, BlkDiag, and FFT. The Y-axis rep-
resents the achieved throughput. Notably, it takes approximately 500 μs for AWRR to reach
a steady state when there is a shift in traffic patterns. The convergence time is influenced by

3.8 Additional Simulation Experiments on RotorNet 87

Figure 3.16 AWRR with 𝑤 comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

w = 0.0

w = 0.3

w = 0.7

w = 0.9

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

200

400

600

800

1000

A
ve

ra
ge

p
ac

ke
t

la
te

n
cy

(µ
s) w = 0.0

w = 0.3

w = 0.7

w = 0.9

(b) Examination of average packet latency.

Figure 3.17 AWRR with 𝑤𝐶𝑜𝑢𝑛𝑡 comparison.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(%
)

wCount = 1

wCount = 2

wCount = 3

(a) Examination of throughput.

0 10 20 30 40 50 60 70 80 90

Load (%)

0

50

100

150

200

250

300
A

ve
ra

ge
p

ac
ke

t
la

te
n

cy
(µ
s) wCount = 1

wCount = 2

wCount = 3

(b) Examination of average packet latency.

Figure 3.18 Convergence behavior for changing traffic patterns.

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (ms)

0%

20%

40%

60%

80%

100%

T
h

ro
u

g
h

p
u

t
(%

)

WTraffic

BlkDiag

FFT

the parameters described in the AWRR section, primarily the lower threshold for the weights.
For the experiment presented in Figure 3.18, the network load is set at 60%.

88 Fast Optical Datacenter Interconnects with Partial Configurability

3.9 Conclusion
Despite the potential benefits of integrating optical switches into Data Center Networks
(DCNs), there are several limitations that prevent an efficient and sustainable fully-optical
operation with full configurability. These are the limited optical switch port count, the high
switch reconfiguration speed, and the need for real-time control plane scheduling. To over-
come these issues, we proposed a partially configurable DCN architecture that utilizes Lean
switches. These switches use gang-switched optical elements to achieve all-optical partial
configurability.

Comparing with a RotorNet network that utilizes Rotor switches with minimal config-
urability and a Mordia network that employs optical WDM rings and WSSes with full con-
figurability, the Lean network achieves a mediocre crosspoint complexity, allowing for a
large port count in the switches and high-speed reconfiguration, while maintaining reduced
scheduling time complexity.

The proposed scheduling policy Lean Valiant Decomposition combines the Birkhoff-von
Neumann decomposition and the Valiant Load Balancing techniques, allows either direct or
indirect transmissions according to the traffic patterns, ensuring that the network achieves
throughput that ranges between the cases of the RotorNet and the Mordia networks.

Our simulations involved a comparison of maximum throughput and average packet la-
tencies across three scenarios. In the first scenario, we evaluated different DCNs and their
scheduling policies, and found that the Lean network outperformed RotorNet by 26.8% in
terms of throughput, while achieving 67.3% of the throughput of the Mordia network. We
also observed that direct transmission policies resulted in lower average packet latencies,
but the Lean network with the LVD policy achieved at least 28% lower latencies than Rotor-
Net. In the second scenario, we examined different levels of traffic uniformity with the Lean
network using the LVD policy, and observed a steady decrease in average packet latency
of 21% as the percentile of structured traffic increased. Finally, in the third scenario, we
studied different structured traffic patterns with the Lean network using the LVD policy. We
found that the Lean network performed similarly in terms of throughput and average packet
latency with WTraffic and BlkDiag patterns. However, with FFT pattern, the Lean net-
work achieved 5% less throughput than the other cases and at least 30% increase in average
packet latency due to underutilization of direct-only transmissions with the structured traffic
patterns of the FFT.

Ultimately, we investigated enhancements on RotorNet, including the application of the
breakout technique to mitigate latency escalation stemming from network size increase, and
also the integration of partial configurability facilitated by a centralized control plane. In this
context, we introduced an AdaptiveWeighted Round-Robin (AWRR) policy, specifically de-

3.9 Conclusion 89

signed to surpass VLB. AWRR’s strength lies in its ability to adapt to traffic characteristics
without prior knowledge. It gradually learns traffic patterns and dynamically allocates slots
based on evolving weight factors. We conducted a comprehensive examination of various
scheduling policies, including a thorough evaluation of AWRR under different traffic pro-
files.

The results showed that the introduction of breakouts with higher factors ensures that
throughput remains stable while latency exhibits a linear decrease, effectively mitigating
the latency concerns associated with network scaling. In specific traffic scenarios, like the
WTraffic profile, AWRR demonstrates exceptional performance. It outperforms VLB by
delivering a substantial 30% increase in throughput, all of this achieved without any prior
knowledge of the traffic profile. Moreover, AWRR showcases its remarkable adaptabil-
ity when encountering diverse traffic profiles. It can swiftly adapt to changing conditions,
achieving convergence to a stable state in as little as 500 μs.

Chapter 4

Secure Distributed Storage
Orchestration on Cloud-Edge
Infrastructures

4.1 Introduction and Related Work

Digital transformation has had a significant impact on the storage requirements, which are
expected to further increase in the foreseeable future, according to the International Data Cor-
poration (IDC) (37). As cloud computing is the cornerstone of our digital society, businesses
prefer to store their data in the cloud rather than deploying their own infrastructure. There
are many reasons for a business to prefer storing its data on the cloud instead of privately held
storage devices. The advantages obtained in this way include the avoidance of high initial
capital expenditure (CAPEX), the scalability of the storage service provided, and the easy
migration of the data when needed. Also, a cloud-based storage service provides high avail-
ability, exempting a business from the necessity to deploy complex and costly mechanisms
for data redundancy and fault-tolerance to power outages and other disaster scenarios.

Distributed storage systems, on the other hand, store data in multiple locations, con-
solidating resources from multiple providers that, if selected carefully, can offer increased
flexibility compared to a single storage service (33). With the advent of edge computing,
the storage and processing of the data close to the generating source (e.g., camera, or other
sensor) (48) became a reality. The incorporation of edge resources in distributed storage
services improves the way demanding applications are served: data are stored and processed
at the edge to minimize latency and network usage, and, if additional resources are required,
the abundant cloud resources are utilized. The continuous increase in the number and density

92 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

of edge resources is expected to change the way current storage services operate. However,
this also increases the complexity as the edge resources exhibit diverse characteristics, their
availability varies with time, and they are more unreliable (28).

Laying data fragments to remote storage locations where data leaks can happen raises
privacy and security concerns for such systems. As storage providers cannot generally be
considered trustworthy, sensitive data can be retrieved from encrypted fragments. Since fail-
ures are common in distributed systems, redundant data must be stored to tolerate failures
without data loss. Erasure coding (70) uses Forward Error Correction (FEC) codes to ensure
data integrity and longevity. Data are split, encoded, and incur an overhead depending on
the algorithm. Even when some fragments cannot be retrieved, the original data can be ef-
ficiently recovered by fetching a subset of fragments, depending on the encoding technique.
Erasure coding provides additional security atop encryption, as data can only be recovered
when a specific number of fragments from various locations are jointly decoded.The opera-
tion of a distributed storage service that integrates edge and cloud resources while utilizing
erasure coding to divide data presents a formidable challenge for the corresponding resource
orchestration mechanism. In addition to determining the quantity and distribution of data
and parity fragments, the orchestrator must also fulfill user demands and optimize various
criteria, including monetary cost, latency, and availability.

We formulate the storage resource orchestration as a Mixed-Integer Linear Program-
ming (MILP) problem to obtain the optimal solution. However, the search space can be vast
leading to a prohibitively large execution time for the MILP, especially when handling nu-
merous storage requests with strict and heterogeneous requirements. Execution time refers
to the duration required for the orchestration mechanism to process storage demands and
generate a resource allocation plan for the given scenario. In this work, we propose an effi-
cient multi-agent rollout heuristic approach that is based on reinforcement learning, which
balances performance and execution time. This enables fast decision-making in real-world
scenarios, reducing the average execution time over that of the optimal MILP algorithm,
while maintaining near-optimal performance, as demonstrated in the experiments for which
we were able to track the optimal solution. The developed mechanisms use a multitude of
optimization criteria, namely, cost, capacity, reliability, performance, availability, or a com-
bination of them when deciding on the data fragmentation, encryption and data placement.
Themechanisms also account for the different characteristics of the edge and cloud resources
with respect to latency, data availability, security and monetary cost.

To demonstrate the effectiveness of the proposed mechanisms, a series of simulation ex-
periments were performed using anonymous data fromChocolate Cloud. Chocolate Cloud is
specialized in secure and distributed data storage software and its flagship product, SkyFlok

4.1 Introduction and Related Work 93

(sky), is a Software-as-a-Service (SaaS) file sharing and storage solution. The proposed
mechanisms enhance the orchestration logic of the SkyFlok platform, allowing it to incor-
porate edge resources efficiently. This means that the mechanisms can be integrated into
the back-end control and orchestration mechanisms of the distributed service, enabling it
to coordinate the encryption, erasure coding and distribution of data fragments across the
selected cloud and edge location.

The storage allocation problem has long attracted the interest of many researchers. To
address the limitations of single cloudmodels, multi-cloud resource allocation schemes were
initially examined (33, 60) and (49). In (33), Hadji proposed a solution based on commodity
flows to minimize the storage monetary cost and latency. Papaioannou et al. (60) proposed
Scalia, a cloud storage brokerage solution for data placement that targets to minimize the
storagemonetary cost. Mansouri et al. (52) proposed an algorithm thatminimizes the storage
monetary cost, guaranteeing at the same time high data availability and privacy.

Ma et al. (51) proposed a mixed policy that is based on a combination of erasure and
replication coding techniques, targeting to minimize latency, as well as storage and network
monetary costs. In the same context, Zhang et al. (86) proposed a sub-optimal multi-agent
heuristic approach for selecting the storage locations and the appropriate redundancy con-
figuration to minimize the monetary cost with respect to the user’s latency and availability
requirements. Wu et al. (83) proposed a scheme that trades-off cost for latency, meeting the
preset availability requirements. Liu et al. (49) proposed a heuristic (genetic) algorithm to
minimize costs while providing Service Level guarantees.

Targeting the experienced latency minimization, Sharov et al. (69) proposed a quorum-
based configuration that makes use of replication coding and assigns the fragments to the
different locations. Bermbach et al. (16) examined the consistency versus latency trade-
off making use of a mechanism from Amazon’s Dynamo for replication to multiple cloud
providers. Other works, such as (17, 33, 52, 81), rely on replication to multiple providers
in order to attain higher availability and avoid vendor lock-ins, while keeping the cost low.
However, the use of replication instead of erasure coding does not address the problem of
the variations in latency that are experienced by the user.

Other works have proposed mechanisms that improve data availability through redun-
dancy, alsominimizing themonetary cost incurred. However, these works rely on replication
coding, which requires more storage space, compared to erasure coding. In (6, 58, 60, 86),
the authors proposed mechanisms that make use of erasure coding solutions to improve data
availability. In this direction, Wang et al. (78, 80) proposed various techniques that mini-
mize the monetary cost while maximizing the availability. Su et al. (73) proposed an erasure
coding model for solving the data placement problem. Wang et al. (79) proposed an adaptive

94 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

model for data placement that minimizes the monetary cost but also takes into consideration
the latency and availability constraints.

In (26), the authors address cloud plan selection by users, introducing a simple language
to express user requirements and plan preferences, and propose a model for identifying and
ranking the plans that satisfy the requirements. In (27), the same authors extend this work, al-
locating resources frommultiple cloud services. Users can specify allocation requirements to
reduce burden and avoid excessive fragmentation. The authors provide an integer program-
ming formulation for finding an allocation satisfying protection and allocation requirements
while minimizing costs. (11) adopts All-Or-Nothing-Transform (AONT) and data replica-
tion, introducing two strategies for allocating shards to nodes. The analysis of these allo-
cation strategies illustrates tuning to balance availability and security. In (10), the authors
address the dynamic version of the problem, relying on fountain codes instead of replication.

Previous works have focused on cloud storage and optimizing individual objectives, such
as data availability, latency, and cost. In contrast, (50) and (7) propose caching schemes with
erasure code for low latency in distributed storage systems that span across the edge-cloud
continuum. The proposed scheme caches popular data chunks at edge servers to achieve
low latencies, but costs and availability of storage resources are not optimized. Authors in
(71) propose a location aware to optimize the data retrieval latency in ultra-large distributed
storage systems, while the authors in (25) propose a rights Management Protocol to enable
the sharing of files in distributed storage systems consisting of nodes that are not fully trusted.

In the current work, we extend the storage resource allocation problem considering the
intrinsic characteristics of a distributed storage infrastructure that spans over the edge-cloud
continuum. Hence, in addition to cloud resources, we consider edge resources, which are
located closer to where the data are generated (82, 85) and have limited storage capacity and
highly dynamic availability. When edge and cloud resources are allocated, leveraging the
erasure code technique, different optimization criteria can be addressed simultaneously.

The research results of this chapter were published in (46) winning a Best Paper Award,
and (45). The remainder of our work is organized as follows. In Section 4.2, we discuss
on the infrastructure and the distributed storage operations. In Section 4.3, we provide the
resource allocation policies, while in Section 4.4 we present the simulation results.

4.2 Distributed Storage Infrastructure and Operations 95

Figure 4.1 Components and data flow.

Fragments decrypted/decoded
and merged into file

File is
stored Transmitted to

Gateway

Gateway

Orchestrator

Cloud

Edge

File is
retrieved

Transmitted
from Gateway

File encrypted/encoded
and split into fragments
...

4.2 Distributed Storage Infrastructure and Operations

A distributed storage service utilizes storage resources that can be classified, based on their
location, into two broad categorizes: (i) cloud and (ii) edge resources. Cloud resources com-
prise vast data centers boasting substantial storage capacity and excellent uptime. However,
their centralized nature and distance from data generation sites often results in higher per-
ceived latency for store and retrieve operations. Conversely, edge nodes possess limited
storage capacity (85), exhibiting dynamic participation in the distributed storage system and
are often considered less reliable (28). However, their widespread presence across various
locations allows them to be situated closer to data sources, substantially enhancing the qual-
ity of service offered. It is important to note that file hosting charges differ based on the
characteristics of the cloud or edge node, with cloud node charges commonly being lower
than edge node charges (edg).

To handle crucial operations like file encryption and decryption, as well as splitting and
merging data fragments (Figure 4.1), a typical distributed storage infrastructure relies not
only on storage nodes, but also on processing power. These essential devices are commonly
referred to as gateways, serving as the crucial link between users and the distributed storage
service. Gateways can be implemented through software, such as pieces of code that run
within users’ client software (e.g., browsers), or through hardware, such as privately owned
dedicated devices that are usually placed on-premise.

The operations executed within a distributed storage infrastructure can generally be clas-
sified as: (i) Data processing operations, including file encoding/decoding andmerging/splitting,

96 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

(ii) Store operations necessary to store the encoded fragments in storage nodes, and (iii) Re-
trieve operations necessary to reconstruct the user’s files. When a file 𝑑 is stored, a monetary
cost (measured in Cost Units - CU) and a store/retrieve operation latency are incurred. These
factors depend on the file’s (i) size 𝑀𝑑 (measured in Data Units - DU), (ii) hosting duration
𝑇𝑑 (measured in Period Units - PU), and (iii) set of expected retrievals 𝒯𝑑 within the hosting
duration.

When a file 𝑑 is stored on a distributed storage infrastructure, it is split into 𝑘 data frag-
ments at the gateway. These data fragments are expanded into (𝑘 + 𝑚) encoded fragments
using erasure coding, which is a data protection method commonly used in storage systems
to ensure data integrity and availability in the event of failures. This allows the initial file to
be successfully retrieved from a subset 𝑘̂ of the encoded fragments. The value of 𝜖 indicates
the number of tolerated failures, and varies depending on the erasure coding scheme used.
Optimal schemes, such as Reed Solomon, Parity, and Regenerating codes, have 𝜖 = 0, while
near-optimal schemes, such as fountain codes, have 𝜖 > 0. However, reducing 𝜖 increases
the encoding/decoding latency of files for a given gateway.

4.2.1 Store/Retrieve Data Processing Operation
When a file 𝑑 is split at a gateway 𝜔𝑑 , the split latency is denoted by 𝐷spl

𝜔𝑑 (in TUs/split),
and the latency of encoding/encryption is 𝐷enc

𝜔𝑑 (in TUs per DU). The overall latency for the
𝑘 ∶ 𝑘 + 𝑚 store operation is calculated as:

𝐺𝑘𝑚𝑑 = 𝑘 + 𝑚
𝑘 𝑀𝑑𝐷enc

𝜔𝑑 + 𝑘𝐷spl
𝜔𝑑 . (4.1)

For the retrieval 𝑡 of a file 𝑑, decryption and decoding of the fragments are performed at a
gateway 𝜔′

𝑑𝑡. A subset of 𝑘̂ fragments is then linearly combined, and the decoded fragments
are merged into the file 𝑑. The latency of decoding/decryption per DU is denoted by 𝐷dec

𝜔𝑑
(in TUs per DU), and the overall latency is proportional to the file size 𝑀𝑑 . The latency of
merging per DU, denoted by 𝐷mrg

𝜔𝑑 (in TUs per DU merged), and the total merging latency
is proportional to 𝑘̂. Therefore, the overall latency of the retrieve operation is derived as:

𝐺′
𝑘𝑚𝑑𝑡 = 𝑘̂

𝑘𝑀𝑑𝐷dec
𝜔′

𝑑𝑡
+ 𝑘𝐷mrg

𝜔′
𝑑𝑡

. (4.2)

This process is illustrated in Figure 4.2. The number of fragments and erasure codes used
can be adjusted, creating a trade-off between the number of fragments and the associated
overhead. The storage allocation mechanism can exploit this trade-off to further enhance
infrastructure performance.

4.2 Distributed Storage Infrastructure and Operations 97

Figure 4.2 Store/retrieve data processing.

File

Split into
data fragments

Calculate
parity fragments

Decode
encoded

fragments

Merge

data fragments

... ...

... ... File

Store:

Retrieve:

4.2.2 Store Operation

Store Operation Monetary Cost

The encoded fragments of a file are stored at various locations in the available edge/cloud
infrastructure (as shown in Figure 4.3). Let 𝒩s denote the selected nodes hosting these frag-
ments, with |𝒩s| = 𝑘 + 𝑚. The monetary cost of storing the fragments of file 𝑑, assuming
that each storage node 𝑛 ∈ 𝒩s charges 𝑃s𝑛 CUs for each DU, can be calculated as:

𝜙1(𝑘, 𝑚, 𝑑) = ∑
𝑛∈𝒩s

𝑀𝑑
𝑘 𝑇𝑑𝑃s𝑛. (4.3)

The latency of the store operation comprises three components: (i) processing latency,
(ii) propagation latency, and (iii) writing latency, which are required for placing the frag-
ments into the storage nodes.

As discussed in Section 4.2.1, the processing of a data fragment at a gateway requires
time equal to 𝐺𝑘𝑚𝑑 . Next, transmitting an encoded fragment from a gateway 𝜔𝑑 to a storage
node 𝑛 requires a propagation latency of 𝐷prop

𝑛𝜔𝑑 TUs, which depends on the relative distance
between the two components. Finally, placing a fragment into a storage node requires a
writing latency 𝐷wrt

𝑛 in TUs per DU. Given the set of nodes 𝒩s where the encoded fragments
are stored, the total latency for storing a file 𝑑 can be calculated as:

𝜙2(𝑘, 𝑚, 𝑑) = 𝐺𝑘𝑚𝑑 + max
𝑛∈𝒩s

{
𝑀𝑑
𝑘 𝐷wrt

𝑛 + 𝐷prop
𝑛𝜔𝑑 } (4.4)

98 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Figure 4.3 Store and retrieve operation.

node node node node node

split
data

gateway

encoding
+

encryption

gateway

merge
data

decoding
+

decryption

... ...

...

store retrieve at

4.2.3 Retrieve Operation
Retrieve Operation Monetary Cost

The fragments are retrieved from a subset of storage nodes 𝒩 𝑡
r ⊆ 𝒩s at retrieval 𝑡, where

|𝒩 𝑡
r | = 𝑘̂ (Figure 4.3). The selected set of nodes determines the cost of a retrieve operation,

which may involve multiple GET requests. Each storage node 𝑛 ∈ 𝒩 𝑡
r charges the user based

on the number of GET requests required to retrieve the entire fragment. Assuming that each
GET request retrieves 𝜌 DUs and costs 𝑃r𝑛 CUs, we can calculate the monetary cost for the
retrieve operation as:

𝜙3(𝑘, 𝑚, 𝑑, 𝑡) = ∑
𝑛∈𝒩 𝑡

r

1
𝜌

𝑀𝑑
𝑘 𝑃r𝑛. (4.5)

Retrieve Operation Latency

Similarly to the store operation latency, a retrieve operation 𝑡 involves latency that includes:
(i) processing latency, (ii) propagation latency, and (iii) reading latency for recovering frag-
ments from the storage nodes.

In particular, the latency for recovering an encoded fragment from a storage node 𝑛 re-
quires a reading time of 𝐷read

𝑛 TUs per DU. Next, the data propagation between a storage
node 𝑛 and a gateway 𝜔′

𝑑𝑡 introduces a propagation latency of 𝐷prop
𝑛𝜔′

𝑑𝑡
, which depends on the

4.2 Distributed Storage Infrastructure and Operations 99

distance between the two components. Finally, a processing latency of 𝐺′
𝑘𝑚𝑑𝑡 TUs is intro-

duced at the gateway 𝜔′
𝑑𝑡 for decrypting and decoding the 𝑘̂ fragments and merging them

into the initial file 𝑑 (as discussed in Section 4.2.1). Assuming that the storage allocation
mechanism selects a set of nodes 𝒩 𝑡

r for retrieving the fragments, the total latency for the
retrieve operation can be calculated as:

𝜙4(𝑘, 𝑚, 𝑑, 𝑡) = 𝐺′
𝑘𝑚𝑑𝑡 + max

𝑛∈𝒩 𝑡
r

{
𝑀𝑑
𝑘 𝐷read

𝑛 + 𝐷prop
𝑛𝜔′

𝑑𝑡}
. (4.6)

100 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

4.3 Distributed Storage Resource Allocation

We consider a distributed storage infrastructure comprising a set 𝒩 of storage nodes, which
can range from cloud data centers to edge mini-data centers and workstations. Each node
𝑛 ∈ 𝒩 contributes a writing latency 𝒟wrt

𝑛 and a reading latency 𝒟 read
𝑛 measured in TUs

for each DU that is stored or retrieved, respectively. Additionally, each node periodically
charges 𝑃s𝑛 CU per DU for hosting a file, for a total duration of PU periods. A set of gate-
ways is also present in the storage infrastructure, responsible for splitting, encrypting, de-
crypting, and merging files during storage and retrieval. Propagation latency is introduced
when transferring files to and from the storage nodes, which depends on the relative distance
between the components.

The storage resource allocation problem involves deciding how a set of files 𝒟 is to be
served, while minimizing the optimization criteria. Each file 𝑑 ∈ 𝒟 is described by the tuple
(𝑀𝑑 , 𝑇𝑑 , 𝒯𝑑 , 𝜔𝑑 , 𝜔′

𝑑𝑡, 𝒬𝑑 , 𝒦𝑑 , ℳ𝑑 , 𝜖), for 𝑡 ∈ 𝒯𝑑 , where 𝑇𝑑 is the hosting duration (in PUs),
𝒯𝑑 is the set of future retrievals (an offline problem), 𝜔𝑑 is the gateway where 𝑑 is processed
during the store operation, 𝜔′

𝑑𝑡 is the gateway used for retrieve operation 𝑡 ∈ 𝒯𝑑 , 𝒬𝑑 is the
set of Quality of Service (QoS) requirements, 𝒦𝑑 is the set of fragmentation options, ℳ𝑑 is
the set of encoding schemes, and 𝜖 is the optimality factor of the erasure code scheme.

To optimize the quality of service, the resource allocation mechanism examines various
fragmentation and encoding options for each file at the gateway. The optimal combination
is selected based on preset criteria, which include:

i The number of data fragments each file should be split into (𝑘), selected from the set of
fragmentation options (𝒦𝑑).

ii The type of erasure code to be used, which adds parity fragments for redundancy (𝑚),
selected from the set of encoding schemes (ℳ𝑑).

iii The set of storage nodes where the encoded fragments will be stored (𝒩s).

iv The set of storage nodes from which the fragments will be retrieved at retrieval 𝑡 (𝒩 𝑡
r),

to minimize the weighted cost resulting from different optimization criteria.

After the optimal options have been determined, each file is split into the chosen number of
data fragments, and parity fragments are added using the selected erasure code. The total
number of encoded fragments is then 𝑘 + 𝑚.

4.3 Distributed Storage Resource Allocation 101

4.3.1 Pre-processing Phase - Availability
To optimize the availability of a file 𝑑 after encoding, a pre-processing phase is performed
in which all possible combinations of 𝑘 + 𝑚 storage nodes to host the encoded fragments are
computed, for all 𝑘 ∈ 𝒦𝑑 and 𝑚 ∈ ℳ𝑑 . We assume that each storage node can only host one
fragment of each file, and that each node 𝑛 ∈ 𝒩 has an availability probability 𝐴𝑛. There
are Φ𝑘𝑚 = (

|𝒩 |
𝑘+𝑚) combinations of 𝑘 + 𝑚 nodes, which we denote by 𝒥1𝑘𝑚, 𝒥2𝑘𝑚, … , 𝒥Φ𝑘𝑚 .

Since up to 𝑘 + 𝑚 − 𝑘̂ node failures can be tolerated, the availability of the encoded file is
calculated by summing all the probabilities that 𝜅 ∈ [𝑘̂, 𝑘 + 𝑚] nodes are functioning and
accessible. We denote the number of collections of 𝜅 available nodes as Θ = (

|𝒥𝑖𝑘𝑚|
𝜅) and

the 𝑗th collection as 𝑆Θ
𝑗 . Assuming that nodes fail independently, the availability of a file

hosted by the storage nodes of set 𝒥𝑖𝑘𝑚 is given by:

𝑎𝑖𝑘𝑚 =
𝑘+𝑚

∑
𝜅=𝑘̂

Θ

∑
𝑗=1

[∏
𝑛∈𝑆Θ

𝑗

𝐴𝑛 ∏
𝑛∈𝒥𝑖𝑘𝑚⧵𝑆Θ

𝑗

(1 − 𝐴𝑛)], (4.7)

where 𝒥𝑖𝑘𝑚 ⧵ 𝑆Θ
𝑗 denotes the unavailable nodes. We then discard combinations that do

not meet the minimum availability requirement 𝐴req ∈ 𝒬𝑑 , and denote the indices of the
remaining combinations as ℐ𝑘𝑚 = {𝑖 ∶ 𝑎𝑖𝑘𝑚 ≥ 𝐴req ∈ 𝒬𝑑 ∧ 𝑖 = 1, 2, … , Φ𝑘𝑚}, for all 𝑘 ∈
𝒦𝑑 and 𝑚 ∈ ℳ𝑑 .

Thus, the average combined availability of a set of nodes 𝒥𝑖𝑘𝑚, with given 𝑘 and 𝑚, is
defined as:

𝜙5(𝑖, 𝑘, 𝑚) = 𝑎𝑖𝑘𝑚. (4.8)

In this study, we consider the offline version of the storage resource allocation problem.
Therefore, based on the availability probability 𝐴𝑛 of each storage node 𝑛, we define a se-
quence of binary random variables 𝐻[𝑛, 𝑑, 𝑡] ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐴𝑛), which determines whether
the node 𝑛 is available during a retrieve operation 𝑡 of file 𝑑, for all 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟 , and
𝑡 ∈ 𝒯𝑑 . The related retrieve operation costs of 𝑡 are then calculated based on these node
availabilities.

4.3.2 Mixed-Integer Linear Programming Formulation
In this section, we present the MILP formulation of the distributed storage resource alloca-
tion mechanism.

The objectives under examination are: (i) the monetary cost of store and retrieve oper-
ations, (ii) the latency of store and retrieve operations, and (iii) the successful retrievals of

102 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

the files (availability). To calculate these objectives, we use two parameters, 𝑈 and 𝑈 ′, to
represent the maximum propagation and writing delay and the maximum propagation and
reading delay, respectively, in a given infrastructure. These parameters are large positive
numbers that are computed as follows (Eq. (4.9) and Eq. (4.10)).

𝑈 = max
𝑑,𝑛∶𝑑∈𝒟,

𝑛∈𝒩
{ max

𝑘∶𝑘∈𝒦𝑑
{

𝑀𝑑
𝑘 𝐷wrt

𝑛 } + 𝐷prop
𝑛𝜔𝑑 }, (4.9)

and
𝑈 ′ = max

𝑑,𝑛∶𝑑∈𝒟,
𝑛∈𝒩

{ max
𝑘∶𝑘∈𝒦𝑑

{
𝑀𝑑
𝑘 𝐷read

𝑛 } + max
𝑡∶𝑡∈𝒯𝑑

{𝐷prop
𝑛𝜔′

𝑑𝑡}}. (4.10)

To indicate whether a node 𝑛 belongs to a particular combination of nodes (as described
in Section 4.3.1), we define the following function:

𝜃(𝑖, 𝑘, 𝑚, 𝑛) =
⎧⎪
⎨
⎪⎩

1, if 𝑛 ∈ 𝒥𝑖𝑘𝑚

0, otherwise.
(4.11)

The MILP variables are given in Table 4.1.

min [𝑤1 ̄𝜙1, 𝑤2 ̄𝜙2, 𝑤3 ̄𝜙3, 𝑤4 ̄𝜙4, 𝑤5 ̄𝜙5, ∑
𝑑∈𝒟

𝜓𝑑 , ∑
𝑑∈𝒟

∑
𝑡∈𝒯𝑑

𝜓′
𝑑𝑡]

where ̄𝜙1 ∶= ∑
𝑛∈𝒩

∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝑇𝑑𝑃s𝑛𝑥𝑛𝑘𝑚𝑑

̄𝜙2 ∶= ∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝐺𝑘𝑚𝑑𝑦𝑘𝑚𝑑 + ∑
𝑑∈𝒟

𝜓𝑑

̄𝜙3 ∶= ∑
𝑛∈𝒩

∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

∑
𝑡∈𝒯𝑑

1
𝜌

𝑀𝑑
𝑘 𝑃r𝑛𝑥′

𝑛𝑘𝑚𝑑𝑡

̄𝜙4 ∶= ∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

∑
𝑡∈𝒯𝑑

𝐺′
𝑘𝑚𝑑𝑡𝑦𝑘𝑚𝑑 + ∑

𝑑∈𝒟
∑
𝑡∈𝒯𝑑

𝜓′
𝑑𝑡

̄𝜙5 ∶= − ∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

∑
𝑖∈ℐ𝑘𝑚

𝑎𝑖𝑘𝑚𝑧𝑖𝑘𝑚𝑑

subject to:

C1 ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝐷wrt

𝑛 𝑥𝑛𝑘𝑚𝑑+

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝐷prop
𝑛𝜔𝑑 𝑥𝑛𝑘𝑚𝑑 − 𝜓𝑑 ≤ 0,𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟

4.3 Distributed Storage Resource Allocation 103

Table 4.1 Definition of MILP variables.

Var. Definition
𝑘̂ Integer variable describing the required fragments to recover a file, equal

to (1 + 𝜖)𝑘.
𝑣𝑛𝑑 Binary variable indicating whether a fragment of file 𝑑 is placed at a

node 𝑛.
𝑦𝑘𝑚𝑑 Binary variable indicating the fragmentation option 𝑘 and the erasure

code (𝑘 + 𝑚, 𝑘̂) of file 𝑑.
𝑥𝑛𝑘𝑚𝑑 Binary variable indicating that a fragment of 𝑑 is stored to node 𝑛, while

the fragmentation option is 𝑘 and the erasure code is (𝑘 + 𝑚, 𝑘̂).
𝑥′

𝑛𝑘𝑚𝑑𝑡 Binary variable indicating that a fragment of 𝑑 is retrieved from node 𝑛
during the retrieval 𝑡, while the fragmentation option is 𝑘 and the erasure
code is (𝑘 + 𝑚, 𝑘̂).

𝜉𝑛𝑑 Binary variable indicating the fragment and the storage node 𝑛 with the
maximum propagation and writing latency of file 𝑑.

𝜉′
𝑛𝑑𝑡 Binary variable indicating the fragment and the storage node 𝑛 with the

maximum reading and propagation latency of the retrieve operation 𝑡 of
file 𝑑.

𝜓𝑑 Integer variable denoting the maximum propagation and writing latency
of file 𝑑.

𝜓′
𝑑𝑡 Integer variable denoting the maximum reading and propagation latency

of the retrieve operation 𝑡 of file 𝑑.
𝑧𝑖𝑘𝑚𝑑 Binary variable indicating the combination 𝑖 ∈ ℐ𝑘𝑚 of storage nodes,

the fragmentation option 𝑘 and the erasure code (𝑘 + 𝑚, 𝑘̂) of file 𝑑.

C2 − ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝐷wrt

𝑛 𝑥𝑛𝑘𝑚𝑑 − ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝐷prop
𝑛𝜔𝑑 𝑥𝑛𝑘𝑚𝑑+

𝑈𝜉𝑛𝑑 + 𝜓𝑑 ≤ 𝑈 , 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟

C3 ∑
𝑛∈𝒩

𝜉𝑛𝑑 = 1, 𝑑 ∈ 𝒟

C4 ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝐷read

𝑛 𝑥′
𝑛𝑘𝑚𝑑𝑡 + ∑

𝑘∈𝒦𝑑
∑

𝑚∈ℳ𝑑

𝐷prop
𝑛𝜔′

𝑑𝑡
𝑥′

𝑛𝑘𝑚𝑑𝑡−

𝜓′
𝑑𝑡 ≤ 0, 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟, 𝑡 ∈ 𝒯𝑑

C5 − ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝐷read

𝑛 𝑥′
𝑛𝑘𝑚𝑑𝑡 − ∑

𝑘∈𝒦𝑑
∑

𝑚∈ℳ𝑑

𝐷prop
𝑛𝜔′

𝑑𝑡
𝑥′

𝑛𝑘𝑚𝑑𝑡+

𝑈 ′𝜉′
𝑛𝑑𝑡 + 𝜓′

𝑑𝑡 ≤ 𝑈 ′, 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟 , 𝑡 ∈ 𝒯𝑑

C6 ∑
𝑛∈𝒩

𝜉′
𝑛𝑑𝑡 = 1, 𝑑 ∈ 𝒟, 𝑡 ∈ 𝒯𝑑

C7 ∑
𝑑∈𝒟

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑀𝑑
𝑘 𝑥𝑛𝑘𝑚𝑑 ≤ 𝐶𝑛, 𝑛 ∈ 𝒩

104 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

C8 ∑
𝑛∈𝒩

𝑣𝑛𝑑 = ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

(𝑘 + 𝑚)𝑦𝑘𝑚𝑑 , 𝑑 ∈ 𝒟

C9 ∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑦𝑘𝑚𝑑 = 1, 𝑑 ∈ 𝒟

C10 ∑
𝑛∈𝒩

∑
𝑘∈𝒦𝑑

∑
𝑚∈ℳ𝑑

𝑥′
𝑛𝑘𝑚𝑑𝑡 = ∑

𝑘∈𝒦𝑑
∑

𝑚∈ℳ𝑑

𝑘̂𝑦𝑘𝑚𝑑 , 𝑑 ∈ 𝒟 , 𝑡 ∈ 𝒯𝑑

C11 𝑥′
𝑛𝑘𝑚𝑑𝑡 ≤ 𝑥𝑛𝑘𝑚𝑑 , 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑 , 𝑡 ∈ 𝒯𝑑

C12 −𝑥𝑛𝑘𝑚𝑑 + 𝑣𝑛𝑑 + 𝑦𝑘𝑚𝑑 ≤ 1, 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑

C13 𝑥𝑛𝑘𝑚𝑑 − 𝑣𝑛𝑑 ≤ 0, 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑

C14 𝑥𝑛𝑘𝑚𝑑 − 𝑦𝑘𝑚𝑑 ≤ 0, 𝑛 ∈ 𝒩 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑

C15 − ∑
𝑛∈𝒩

𝜃(𝑖, 𝑘, 𝑚, 𝑛)𝑥𝑛𝑘𝑚𝑑 + ∑
𝑛∈𝒩

𝜃(𝑖, 𝑘, 𝑚, 𝑛)𝑧𝑖𝑘𝑚𝑑 ≤ 0,

𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑 , 𝑖 ∈ ℐ𝑘𝑚

C16 ∑
𝑛∈𝒩

𝜃(𝑖, 𝑘, 𝑚, 𝑛)𝑥𝑛𝑘𝑚𝑑 − ∑
𝑛∈𝒩

𝜃(𝑖, 𝑘, 𝑚, 𝑛)𝑧𝑖𝑘𝑚𝑑 ≤

(1 − 𝑧𝑖𝑘𝑚𝑑)|𝒩 |,𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑 , 𝑖 ∈ ℐ𝑘𝑚

C17 ∑
𝑖∈ℐ𝑘𝑚

𝑧𝑖𝑘𝑚𝑑 = 𝑦𝑘𝑚𝑑 , 𝑑 ∈ 𝒟, 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑

C18
5

∑
𝑖=1

𝑤𝑖 = 1.0

To calculate the latency when the fragments are stored at different storage nodes, we use
constraints C1-C3. Similarly, to calculate the latency of the retrieve operation, we use con-
straints C4-C6. Constraint C7 ensures that the fragments are placed based on the available
storage capacity, while constraint C8 ensures that all fragments are hosted by the infrastruc-
ture. To ensure that each file undergoes a selection of the number of split data fragments
and the erasure code, we use constraint C9. Constraints C10-C14 express that the minimum
number of encoded fragments is retrieved along with their respective storage nodes. To de-
termine the nodes where the total number of encoded fragments for a specific file are placed,
we use constraints C15-C17. Finally, constraint C18 is a weighting coefficient-related con-
straint.

We examine the number of variables and constraints required by the MILP formulation.
The number of retrievals of each file 𝑑 ∈ 𝒟 is bounded by |𝒯 | = max𝑑∶𝑑∈𝒟 |𝒯𝑑|. Each

4.3 Distributed Storage Resource Allocation 105

file can be split into a maximum of |𝒦| = max𝑑∶𝑑∈𝒟 |𝒦𝑑| options for the number of data
fragments and a maximum of |ℳ| = max𝑑∶𝑑∈𝒟 |ℳ𝑑| options for the number of additional
parity ones. All the encoded fragments are stored over a storage infrastructure consisting of
|𝒩 | nodes. For each file, there are a total of |ℐ | combinations of storing the fragments.

The MILP formulation requires |𝒟| ⋅ (|𝒩 |(|𝒯 | + 2) + (2|𝒩 | + |ℐ | + 1) ⋅ |𝒦| ⋅ |ℳ|)
variables. It also requires the following inequality constraints: |𝒩 | ⋅ |𝒟| for C1-C2, |𝒟| for
C3, |𝒩 |⋅|𝒟|⋅|𝒯 | for C4-C5, |𝒟|⋅|𝒯 | for C6, |𝒩 | for C7, |𝒟| for C8-C9, |𝒟|⋅|𝒯 | for C10,
|𝒩 | ⋅ |𝒟| ⋅ |𝒦| ⋅ |ℳ| ⋅ |𝒯 | for C11, |𝒩 | ⋅ |𝒟| ⋅ |𝒦| ⋅ |ℳ| for C12-C14, |𝒟| ⋅ |𝒦| ⋅ |ℳ| ⋅ |ℐ |
for C15-C16, |𝒟| ⋅ |𝒦| ⋅ |ℳ| for C17, and 1 for C18. Hence, the total number of constraints
in the MILP formulation is derived as (2|𝒟| ⋅ (|𝒯 | + 1) + 1) ⋅ (|𝒩 | + 1) + |𝒟| + |𝒟| ⋅ |𝒦| ⋅
|ℳ| ⋅ ((|𝒯 | + 3) ⋅ |𝒩 | + 2|ℐ | + 1).

4.3.3 Multi-Agent Rollout Heuristic Algorithm
For large instances, the optimal MILP mechanism can exhibit a high execution time, making
it less practical when fast placement and retrieval of fragments decisions are required for
numerous files. To address this limitation, we developed a multi-agent rollout algorithm
that solves the respective resource allocation problem sequentially, with one-at-a-time agent
controlling the selection made. The complete solution is provided in stages and is built by
extending the partial solution from the previous stages. At each stage, one of the available
options is selected for storing the examined file, while the rest of the unallocated resources
are handled using the base-heuristic Algorithm 8. At the end of each round, the resource
allocation with the minimum cost for each file is selected, based on the exhibited cost.

The pseudocode for the proposed mechanism is presented in Algorithms 6-9. The main
body of the multi-agent rollout heuristic is described in Algorithm 6, while Algorithm 7 is
used to calculate the costs of a single storage node in case it is selected to host an encoded
fragment.

The rollout algorithm relies on a base-heuristic (Algorithm 8) to handle the current re-
source utilization and serve the demands sequentially by placing encoded fragments in the
first available combination of storage locations that can accommodate them. To calculate
the total cost of serving a single demand provided by the base heuristic, the algorithm uses
Algorithm 9, which considers decisions on storage nodes, fragmentation, and erasure code
options. By serving demands one-by-one, the base heuristic yields a complete assignment
of files to storage resources, extending the provided partial solution with the decisions made
by the first fit approach.

To examine the computational complexity of the multi-agent rollout heuristic, we intro-
duce some notation. Let 𝒦 and ℳ be the sets with the maximum sizes among 𝒦𝑑 and ℳ𝑑 ,

106 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Algorithm 6 Multi-Agent Rollout Heuristic
Input: w, 𝒩 , 𝒟, 𝜌, 𝜖, Ps,Pr,Dread,Dwrt,A,𝓚,𝓜,𝓠,Dprop,𝝎,𝝎′,𝓣,Dspl,Dmrg,Denc,Ddec

Output: 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛|𝒟| and 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡
1: 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟 ← (Ps,Pr,Dread,Dwrt,A,Dprop); 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟 ← (Dspl,Dmrg,Denc,Ddec)
2: 𝑐𝑜𝑠𝑡 ← array of size |𝒩 | × |𝒟|
3: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← array of size |𝒟|; 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 ← 0; 𝒟 ∗ ← {}
4: for 𝑑 ∈ 𝒟 do
5: 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐[𝑑] ← {}
6: for 𝑘 ∈ 𝒦𝑑 , 𝑚 ∈ ℳ𝑑 do
7: 𝐶𝑆 ← {}; 𝑘̂ ← min(⌈(1 + 𝜖)𝑘⌉, 𝑘 + 𝑚)
8: for 𝑛 ∈ 𝒩 do
9: if 𝐶𝑛 ≥ 𝑀𝑑 then
10: 𝑐𝑜𝑠𝑡[𝑛, 𝑑] ← CALCNODECOST(𝑛, 𝑑, 𝑘, 𝜌, 𝑀𝑑 , 𝑇𝑑 , 𝒯𝑑 ,𝝎,𝝎′, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟)
11: 𝐶𝑆 ← 𝐶𝑆 ∪ {𝑛}
12: end if
13: end for
14: 𝐶𝑆 ← Sort 𝐶𝑆 according to 𝑐𝑜𝑠𝑡
15: 𝐶𝑆 ← Select from 𝐶𝑆 the first 2(𝑘 + 𝑚) elements
16: 𝑖 ← 0
17: 𝒩 ∗ ← {𝐶𝑆[1 + 𝑖], 𝐶𝑆[2 + 𝑖], … , 𝐶𝑆[𝑘 + 𝑚 + 𝑖]}
18: 𝑎𝑣𝑎𝑖𝑙 ← given A, calculate combined availability of 𝒩 ∗

19: while 𝑎𝑣𝑎𝑖𝑙 < 𝐴req and 𝑖 < 𝑘 + 𝑚 − 1 do
20: 𝑖 ← 𝑖 + 1
21: 𝒩 ∗ ← {𝐶𝑆[1 + 𝑖], 𝐶𝑆[2 + 𝑖], … , 𝐶𝑆[𝑘 + 𝑚 + 𝑖]}
22: 𝑎𝑣𝑎𝑖𝑙 ← given A, calculate combined availability of 𝒩 ∗

23: end while
24: if 𝑎𝑣𝑎𝑖𝑙 ≥ 𝐴req then
25: 𝒯 ∗ ← {}
26: for 𝑡 ∈ 𝒯𝑑 do
27: 𝐶𝑅 ← sort 𝒩 ∗ according to 𝑐𝑜𝑠𝑡
28: 𝒯 ∗ ← 𝒯 ∗ ∪ {(𝐶𝑅[1], 𝑡), (𝐶𝑅[2], 𝑡), … , (𝐶𝑅[𝑘̂], 𝑡)}
29: end for
30: break
31: else
32: 𝑎𝑣𝑎𝑖𝑙 ← ∞
33: end if
34: 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐[𝑑] ← 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐[𝑑] ∪ {(𝑘, 𝑚, 𝒩 ∗, 𝒯 ∗)}
35: end for
36: end for
37: for 𝑑 ∈ 𝒟 do
38: 𝒟 ∗ ← 𝒟 ∗ ∪ {𝑑}
39: 𝑡𝐶𝑜𝑠𝑡∗ ← ∞
40: for (𝑘, 𝑚, 𝒩 ∗, 𝒯 ∗) ∈ 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐[𝑑] do
41: 𝑐∗ ← CALCFILECOST(w, 𝑑, 𝑘, 𝑘̂, 𝑚, 𝑀, 𝑇 , 𝒯𝑑 ,𝝎,𝝎′, 𝒩 ∗, 𝒯 ∗, 𝑐𝑜𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟, 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟)
42: 𝑡𝐶𝑜𝑠𝑡 ← BASEHEURISTIC(w, 𝒟 , 𝒟 ∗, 𝒩 , 𝑐∗,M,T,𝓣,𝝎,𝝎′, 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐, 𝐶, 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡, …

𝑐𝑜𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟, 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟)
43: if 𝑡𝐶𝑜𝑠𝑡 < 𝑡𝐶𝑜𝑠𝑡∗ then
44: 𝑡𝐶𝑜𝑠𝑡∗ ← 𝑡𝐶𝑜𝑠𝑡
45: 𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛∗ ← (𝑘, 𝑚, 𝒩 ∗, 𝒯 ∗)
46: end if
47: end for
48: 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∪ {𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛∗}
49: Update 𝐶 according to 𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛∗

50: Calculate 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 according to 𝑡𝐶𝑜𝑠𝑡∗

51: end for

4.3 Distributed Storage Resource Allocation 107

Algorithm 7
1: function CALCNODECOST(𝑛, 𝑑, 𝑘, 𝜌, 𝑀, 𝑇 , 𝒯 ,𝝎,𝝎′, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟)
2: (𝑃s𝑛, 𝑃r𝑛, 𝐷wrt

𝑛 , 𝐷read
𝑛 , 𝐴𝑛) ← 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟[𝑛]

3: ℎ𝑜𝑠𝑡𝑆𝑡𝑜𝑟𝐶𝑜𝑠𝑡 ← 𝑀
𝑘 𝑇 𝑃s𝑛

4: 𝑛𝑒𝑡𝑤𝑆𝑡𝑜𝑟𝐿𝑡𝑛𝑐 ← 𝑀
𝑘 𝐷wrt

𝑛 + 𝐷prop
𝑛𝜔𝑑

5: ℎ𝑜𝑠𝑡𝑅𝑒𝑡𝑟𝐶𝑜𝑠𝑡 ← 1
𝜌

𝑀
𝑘 𝑃r𝑛

6: for 𝑡 ∈ 𝒯 do
7: 𝑛𝑒𝑡𝑤𝑅𝑒𝑡𝑟𝐿𝑡𝑛𝑐[𝑡] ← 𝑀

𝑘 𝐷read
𝑛 + 𝐷prop

𝑛𝜔′
𝑑𝑡

8: end for
9: return (ℎ𝑜𝑠𝑡𝑆𝑡𝑜𝑟𝐶𝑜𝑠𝑡, 𝑛𝑒𝑡𝑤𝑆𝑡𝑜𝑟𝐿𝑡𝑛𝑐, ℎ𝑜𝑠𝑡𝑅𝑒𝑡𝑟𝐶𝑜𝑠𝑡, 𝑛𝑒𝑡𝑤𝑅𝑒𝑡𝑟𝐿𝑡𝑛𝑐)
10: end function

Algorithm 8
1: function BASEHEURISTIC(w, 𝒟 , 𝒟 ∗, 𝒩 , 𝑐∗,M,T,𝓣,𝝎,𝝎′, 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐, 𝐶, 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡, 𝑐𝑜𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙, …

𝑛𝑜𝑑𝑒𝑃 𝑎𝑟, 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟)
2: 𝑡𝑒𝑚𝑝𝐶𝑜𝑠𝑡 ← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡
3: for 𝑛 ∈ 𝒩 do
4: 𝑡𝑒𝑚𝑝𝐶[𝑛] ← 𝐶[𝑛]
5: end for
6: Update 𝑡𝑒𝑚𝑝𝐶[𝑛], ∀𝑛 ∈ 𝒩 ∗

7: Calculate 𝑡𝑒𝑚𝑝𝐶𝑜𝑠𝑡 according to 𝑐∗

8: for 𝑑 ∈ 𝒟 ⧵ 𝒟 ∗ do
9: for (𝑘, 𝑚, 𝒩 ∗, 𝒯 ∗) ∈ 𝑐𝑑𝑡𝐴𝑙𝑙𝑜𝑐[𝑑] do
10: 𝑐 ← CALCFILECOST(w, 𝑑, 𝑘, 𝑘̂, 𝑚, 𝑀𝑑 , 𝑇𝑑 , 𝒯𝑑 ,𝝎,𝝎′, 𝒩 ∗, 𝒯 ∗, 𝑐𝑜𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟, 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟)
11: if (𝑘, 𝑚, 𝒩 ∗, 𝒯 ∗) fits in 𝑡𝑒𝑚𝑝𝐶 then
12: break
13: end if
14: end for
15: Update 𝑡𝑒𝑚𝑝𝐶[𝑛], ∀𝑛 ∈ 𝒩 ∗

16: Calculate 𝑡𝑒𝑚𝑝𝐶𝑜𝑠𝑡 according to 𝑐
17: end for
18: return 𝑡𝑒𝑚𝑝𝐶𝑜𝑠𝑡
19: end function

108 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Algorithm 9
1: function CALCFILECOST(w, 𝑑, 𝑘, 𝑘̂, 𝑚, 𝑀, 𝑇 , 𝒯 ,𝝎,𝝎′, 𝒩 ∗, 𝒯 ∗, 𝑐𝑜𝑠𝑡, 𝑎𝑣𝑎𝑖𝑙, 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟, 𝑓 𝑖𝑙𝑒𝑃 𝑎𝑟)
2: (Ps,Pr,Dread,Dwrt,A,Dprop) ← 𝑛𝑜𝑑𝑒𝑃 𝑎𝑟
3: 𝜙1 ← 0; 𝜙2 ← 0; 𝜙3 ← 0; 𝜙4 ← 0; 𝜙5 ← 0
4: for 𝑛 ∈ 𝒩 ∗ do
5: 𝜙1 ← 𝜙1 + 𝑐𝑜𝑠𝑡[𝑛, 𝑑].ℎ𝑜𝑠𝑡𝑆𝑡𝑜𝑟𝐶𝑜𝑠𝑡
6: end for
7: 𝜙2 ← 𝜙2 + 𝑘+𝑚

𝑘 𝑀𝐷enc
𝜔𝑑

+ 𝑘𝐷spl
𝜔𝑑

8: 𝑚𝑎𝑥𝑁𝑒𝑡𝑤𝑆𝑡𝑜𝑟𝐿𝑡𝑛𝑐 ← max𝑛∶𝑛∈𝒩 ∗ {𝑐𝑜𝑠𝑡[𝑛, 𝑑].𝑛𝑒𝑡𝑤𝑆𝑡𝑜𝑟𝐿𝑡𝑛𝑐}
9: 𝜙2 ← 𝜙2 + 𝑚𝑎𝑥𝑁𝑒𝑡𝑤𝑆𝑡𝑜𝑟𝐿𝑡𝑛𝑐
10: for (𝑛, 𝑡) ∈ 𝒯 ∗ do
11: 𝜙3 ← 𝜙3 + 𝑐𝑜𝑠𝑡[𝑛, 𝑑].ℎ𝑜𝑠𝑡𝑅𝑒𝑡𝑟𝐶𝑜𝑠𝑡
12: end for
13: 𝜙4 ← 𝜙4 + 𝑘̂

𝑘 𝑀𝐷dec
𝜔′

𝑑𝑡
+ 𝑘𝐷mrg

𝜔′
𝑑𝑡

14: 𝑚𝑎𝑥𝑁𝑒𝑡𝑤𝑅𝑒𝑡𝑟𝐿𝑡𝑛𝑐 ← max𝑛,𝑡∶(𝑛,𝑡)∈𝒯 ∗ {𝑐𝑜𝑠𝑡[𝑛, 𝑑].𝑛𝑒𝑡𝑤𝑅𝑒𝑡𝑟𝐿𝑡𝑛𝑐[𝑡]}
15: 𝜙4 ← 𝜙4 + |𝒯 | ⋅ 𝑚𝑎𝑥𝑁𝑒𝑡𝑤𝑅𝑒𝑡𝑟𝐿𝑡𝑛𝑐
16: 𝜙5 ← 𝑎𝑣𝑎𝑖𝑙
17: return ∑5

𝑖=1 𝑤𝑖𝜙𝑖
18: end function

and let 𝒯 be the set with the maximum number of retrievals among 𝒯𝑑 , for all 𝑑 ∈ 𝒟 . Also,
let 𝑘∗ = max𝑑∈𝒟 max{𝑘 ∶ 𝑘 ∈ 𝒦𝑑} and 𝑚∗ = max𝑑∈𝒟 max{𝑚 ∶ 𝑚 ∈ ℳ𝑑}, and let’s
assume that the required number of encoded fragments at each retrieval is 𝑘∗ + 𝑚∗.

The computational complexity of Algorithm 7 is𝑂(|𝒯 |), which is determined by lines 6-
8. The computational complexity of Algorithm 9 is 𝑂(|𝒯 |(𝑘∗ + 𝑚∗)), which is determined
by lines 4-8 (complexity 𝑂(𝑘∗ + 𝑚∗)) and lines 10-14 (complexity 𝑂(|𝒯 |(𝑘∗ + 𝑚∗))). The
computational complexity of Algorithm 8 is 𝑂(|𝒟| ⋅ |𝒦| ⋅ |ℳ| ⋅ |𝒯 |(𝑘∗ + 𝑚∗)), since in the
worst case it calls Algorithm 9 at most |𝒟| ⋅ |𝒦| ⋅ |ℳ| times.

Based on the above individual algorithms’ complexities, we derive the overall compu-
tational complexity of the multi-agent rollout heuristic as 𝑂((|𝒟| ⋅ |𝒦| ⋅ |ℳ|)2 ⋅ |𝒯 | ⋅
|𝒩 | log(|𝒩 |)). This is because the sorting algorithms in lines 14 and 27 (Algorithm 6)
have worst-case complexity 𝑂(|𝒯 | ⋅ |𝒩 | log(|𝒩 |)) (called |𝒟| ⋅ |𝒦| ⋅ |ℳ| times at most),
Algorithm 8 is called at most |𝒟| ⋅ |𝒦| ⋅ |ℳ| times, and 𝑘∗ + 𝑚∗ ≤ |𝒩 |.

4.4 Simulation Experiments 109

4.4 Simulation Experiments

4.4.1 Simulation Setup

Figure 4.4 Geo-distribution of cloud storage
nodes and gateways.

−150 −100 −50 0 50 100 150

−75

−50

−25

0

25

50

75

Cloud node

Gateway

(a)World map.

2.5 3.0 3.5 4.0 4.5 5.0 5.5
×106

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

×106

Cloud node

Gateway

(b)Western and Central Europe map.

To assess the effectiveness of the proposed
mechanisms, we utilized a Python simula-
tion framework and the Gurobi Optimizer
(gur) to solve the MILP model. The simula-
tion experiments were conducted on a com-
puter with an Intel® Core™ i7-9700K pro-
cessor operating at 3.6 GHz with 32 GB of
RAM. We examined two network topolo-
gies: (i) a basic topology with randomly
generated parameters, and (ii) an extended
topology where we employed data logs pro-
vided by Chocolate Cloud’s Skyflok storage
service (sky).

To evaluate the performance of the de-
veloped schemes, we considered the follow-
ing cases: (i) maximizing the availability
of stored files, (ii) minimizing retrieval la-
tency, (iii) minimizing retrieval cost, (iv)
minimizing storage latency, (v) minimiz-
ing storage cost, and (vi) a weighted func-
tion combining all the above criteria. We
focused on the following Key Performance
Indicators (KPIs): (i) monetary costs of
store and retrieve operations, (ii) latencies
of store and retrieve operations, (iii) avail-
ability, and (iv) the percentage of successful
file retrievals.

The basic topology includes a single
gateway and 12 storage nodes, with 6 of
these nodes inheriting characteristics from
the cloud nodes and the remaining 6 from the edge nodes. The details of the various compo-
nents of the monetary costs, latencies, average availability (𝐴𝑛), and storage capacity (𝐶𝑛)
are presented in Table 4.2. The extended network topology comprises 576 edge nodes and

110 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

64 cloud nodes. The edge nodes are randomly placed in 36 countries around the world, with
16 edge nodes per country, as per the data logs. The locations of the cloud nodes are de-
termined using the provided data logs, and are illustrated in Figure 4.4. Each city listed in
the data logs incorporates a single gateway, that can transact with all cloud nodes and edge
nodes present in the same country. The various components of monetary costs, latencies,
availability probabilities (𝐴𝑛), and storage capacities (𝐶𝑛) are further detailed in Table 4.3.

We conducted several simulation experiments with different requests for the two network
topologies. For the basic network infrastructure, we considered a set of 20, 40, 60, 80, or
100 file store requests, depending on the number of files in each case. Each file 𝑑 ∈ 𝒟 had a
size of 𝑀𝑑 = 5 DUs, was hosted for a period of 𝑇𝑑 = 10 PUs, and was retrieved |𝒯𝑑| = 100
times from the storage service. In addition, all files were split into 𝑘 = 4 data fragments
(𝒦𝑑 = 4, ∀𝑑 ∈ 𝒟) by default, and encoded with an erasure code that used 𝑚 = 2 parity
fragments (ℳ𝑑 = 2, ∀𝑑 ∈ 𝒟). The minimum required availability for each file was set to
98%.

For the extended network topology, we used the data provided by Chocolate Cloud’s
Skyflok (sky). The Skyflok data logs contained the transaction entries of 12749 file re-
quests, along with the corresponding file sizes 𝑀𝑑 , hosting durations 𝑇𝑑 , and the numbers
of retrievals |𝒯𝑑|. All files were split into 𝑘 = 5 data fragments (𝒦𝑑 = 5, ∀𝑑 ∈ 𝒟) by de-
fault, with the addition of 𝑚 = 4 parity fragments (ℳ𝑑 = 4, ∀𝑑 ∈ 𝒟). The default minimum
required availability was set to 98%.

In the following simulation scenarios, unless otherwise stated, we assumed the use of an
optimal erasure code scheme (𝜖 = 0), i.e., the number of required encoded fragments to be
retrieved was equal to the number of data fragments (𝑘̂ = 𝑘). The parameters used in the
simulations are detailed in Table 4.3.

4.4.2 Optimality PerformanceEvaluation ofHeuristic andMulti-Agent
Rollout Mechanisms

Initially, we conducted simulation experiments to evaluate the performance of the MILP
and the multi-agent rollout mechanism. The experiment considered various numbers of files
(|𝒟| ∈ [20, 100]) for the previously described optimization cases using the basic topology.
The critical parameters of the simulation experiments are presented in Table 4.2.

As expected, the total cost increases linearlywith the number of hosted files (Figure 4.5a).
Using the heuristic mechanism, in the weighted multi-objective optimization case, the mon-
etary cost ranges from 679 CUs (20 hosted files) to 3341 CUs (100 hosted files), for an
average cost per file of around 34 CUs. When the objective is either the minimization of

4.4 Simulation Experiments 111

Table 4.2 Default parameters used with the basic topology setup.

Par. Value Unit
𝑀𝑑 5, ∀𝑑 ∈ 𝒟 DU
𝒦𝑑 {4}, ∀𝑑 ∈ 𝒟 –
ℳ𝑑 {2}, ∀𝑑 ∈ 𝒟 –
𝑇𝑑 10, ∀𝑑 ∈ 𝒟 –
|𝒯𝑑| 100, ∀𝑑 ∈ 𝒟 –
𝒬𝑑 {𝐴req = 98.0%}, ∀𝑑 ∈ 𝒟 %
𝜖 0 –
𝑁𝑐 6 –
𝑁𝑒 6 –
𝜌 10𝑒6 DU/GET
𝐷spl

𝜔𝑑 𝒰(0.15, 0.195) TU/split
𝐷mrg

𝜔𝑑 𝒰(0.12, 0.156) TU/merge
𝐷enc

𝜔𝑑 𝒰(300, 390) TU/DU
𝐷dec

𝜔𝑑 𝒰(150, 195) TU/DU
Cloud nodes Edge nodes

𝐷wrt
𝑛 𝒰(300, 390) 𝒰(100, 130) TU/DU

𝐷read
𝑛 𝒰(150, 195) 𝒰(50, 65) TU/DU

𝐷prop
𝑛𝜔𝑑 𝒰(0.5, 0.65) 𝒰(0.05, 0.065) TU

𝑃s𝑛 𝒰(0.25, 0.325) 𝒰(0.4, 0.52) CU/(DU⋅PU)
𝑃r𝑛 𝒰(200𝑒−8, 260𝑒−8) 𝒰(320𝑒−8, 416𝑒−8) CU/GET
𝐴𝑛 𝒰(99.9%, 99.99%) 𝒰(70.0%, 75.0%) %
𝐶𝑛 ∞ 𝒰(2500, 3250) DU

store or retrieve operation latencies, the cost is higher than the multi-objective scenario by
2.4% and 4.7%, respectively. When the objective is either the minimization of store or re-
trieve operation monetary costs or the maximization of availability, the cost is lower than
the multi-objective case by 37.1%, 32.7%, and 32.2%, respectively.

With the MILP mechanism (Figure 4.5b) and considering all objectives, the monetary
cost ranges from 663 CUs (20 hosted files) to 3522 CUs (100 hosted files), for an average
cost per file of 32.1 CUs, which is about 5.6% lower than that obtained with the heuristic
mechanism. When the objective is either only the minimization of store or retrieve oper-
ation latency, the monetary cost is nearly identical to the multi-objective scenario. When
the objective is either the minimization of store or retrieve operation monetary costs or the
maximization of availability, the cost is lower than the multi-objective scenario by 65.6%,
31.3%, and 64.8%, respectively.

112 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Table 4.3 Default parameters used with the extended topology setup.

Par. Value Unit
𝒦𝑑 {5}, ∀𝑑 ∈ 𝒟 –
ℳ𝑑 {4}, ∀𝑑 ∈ 𝒟 –
𝒬𝑑 {𝐴req = 98.0%}, ∀𝑑 ∈ 𝒟 %
𝜖 0 –
𝑁𝑐 64 in total –
𝑁𝑒 16 per country / 576 in total –
𝜌 10𝑒6 DU/GET
𝐷spl

𝜔𝑑 𝒰(0.15, 0.195) TU/split
𝐷mrg

𝜔𝑑 𝒰(0.12, 0.156) TU/merge
𝐷enc

𝜔𝑑 𝒰(300, 390) TU/DU
𝐷dec

𝜔𝑑 𝒰(150, 195) TU/DU
Edge nodes

𝐷wrt
𝑛 𝒰(100, 120) TU/DU

𝐷read
𝑛 𝒰(50, 60) TU/DU

𝐷prop
𝑛𝜔𝑑 𝒰(0.05, 0.06) TU

𝑃s𝑛 𝒰(0.32, 0.40) CU/(DU⋅PU)
𝑃r𝑛 𝒰(130𝑒−8, 156𝑒−8) CU/GET

Cloud nodes Edge nodes
𝐴𝑛 𝒰(99.9%, 99.99%) 𝒰(70.0%, 72.0%) %
𝐶𝑛 ∞ 𝒰(2500, 3250) DU

Figure 4.5Monetary costs as a function of the number of files for the basic topology (white:
store costs, gray: retrieve costs).

20 40 60 80 100
Number of files (|D|)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

To
ta
lC

os
ti
n
C
U
s

×103

max. availability
min. retrieve latency
min. retrieve cost
min. store latency
min. store cost
all criteria

(a) Heuristic mechanism.

20 40 60 80 100
Number of files (|D|)

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

To
ta
lC

os
ti
n
C
U
s

×103

max. availability
min. retrieve latency
min. retrieve cost
min. store latency
min. store cost
all criteria

(b)MILP mechanism.

We then analyzed the utilization of resources in the cloud and edge nodes (Figures 4.6a
and 4.6b). In Figure 4.6a, we can see that when the objective is to minimize the store or

4.4 Simulation Experiments 113

Figure 4.6 Effect of the optimization objectives on the percentage of utilized cloud and edge
nodes with the basic topology.

Cloud Resources Edge Resources
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U
til
iz
at
io
n
of

st
or
ag

e
lo
ca
tio

ns
(%

)

m
ax

.a
va

ila
bi
lit

y

m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

m
ax

.a
va

ila
bi
lit

y m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

(a) Heuristic mechanism.
Cloud Resources Edge Resources

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U
til
iz
at
io
n
of

st
or
ag

e
lo
ca
tio

ns
(%

)

m
ax

.a
va

ila
bi
lit

y

m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

m
ax

.a
va

ila
bi
lit

y

m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st al
lc

ri
te
ri
a

(b)MILP mechanism.

retrieve operation latency, the heuristic mechanism tends to prefer edge nodes over the cloud.
This preference is also observed in the MILP mechanism results, which are presented in
Figure 4.6b. The reason for this is that edge nodes are typically closer to gateways compared
to cloud data centers (85).

However, when the objective is set to minimize the store or retrieve operation (monetary)
cost or maximize availability, both the heuristic and MILP mechanisms prefer to host the
fragments on the cloud, as it is cheaper (edg) and has higher availability (28). Specifically,
the heuristic mechanism utilizes only cloud nodes in all these cases (Figure 4.6a), while the
MILP mechanism’s optimal solution uses only cloud nodes when optimizing the monetary
cost of store operation and availability. However, the percentage of cloud resources used
drops to 67% when minimizing the retrieve operation cost with the MILP mechanism.

When all the objectives are taken into consideration, the heuristic scheme prefers edge
to cloud nodes in 60.5% of the utilized storage nodes (Figure 4.6a). Correspondingly, the
MILP mechanism places the fragments in edge nodes over cloud nodes in 83.3% of the
utilized storage nodes (Figure 4.6b). We observe that the heuristic mechanism achieves a
solution that is close to optimal, with a 72.6% match.

Table 4.4 Comparison of execution times between mechanisms (sec).

|𝐷| MILP Base Heuristic Multi-agent Rollout
20 363.38 0.003 0.143
40 726.53 0.005 0.560
60 1089.69 0.008 1.247
80 1452.84 0.010 2.208
100 1816.02 0.013 3.442

114 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Figure 4.7 Progress of the optimization over time.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Runtime (sec)

15

20

25

30

35

40

45

St
or
e
co

st
(C

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(a) Store operation monetary
cost.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Runtime (sec)

2000

2500

3000

3500

4000

St
or
e
la
te
nc

y
(T

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(b) Store operation latency.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Runtime (sec)

1.0

1.2

1.4

1.6

1.8

R
et
rie

ve
co

st
(C

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(c) Retrieve operation monetary
cost.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Runtime (sec)

925

950

975

1000

1025

1050

1075

R
et
rie

ve
la
te
nc

y
(T

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(d) Retrieve operation latency.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
Runtime (sec)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Av
ai
la
bi
lit
y
(%

)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(e) Average availability.

Table 4.4 presents the execution times of the different mechanisms developed. TheMILP
mechanism exhibits the highest execution time, which could render it impractical for large-
size distributed storage systems or when fast decisions need to be made. In contrast, the
greedy heuristic algorithm demonstrates the lowest execution time, taking advantage of the
sequential execution and the limited number of choices that are examined. The multi-agent
rollout mechanism, which exhibits an execution time below 3.5 seconds, manages also to
maintain a resource allocation close to the optimal solution, taking advantage of the use of
the low-complexity heuristic in a reinforcement learning approach. This clearly shows its
ability to effectively balance performance and execution time.

We also examined the multi-agent rollout objective cost evolution as the number of iter-
ations increases. Figures 4.7a-4.7e show the improvement brought about by the multi-agent
rollout algorithm compared to the performance of the base heuristic. The improvement is
presented over the simulation time. In each figure, we examine the temporary achieved costs
in terms of the following optimization criteria: store operation monetary cost (Figure 4.7a),
store operation latency (Figure 4.7b), retrieve operation monetary cost (Figure 4.7c), retrieve
operation latency (Figure 4.7d), and availability (Figure 4.7e).

All the figures depict various scenarios of optimization criteria. There are |𝒟| = 10
files that are split into 𝑘 = 5 data fragments, and we provide the following options for
the number of parity fragments to the heuristic: 𝑚 ∈ {0, 1, 2, 3, 4, 5, 6}. Under the store

4.4 Simulation Experiments 115

monetary cost minimization criterion, the rollout heuristic improves the initial solution by
up to 57% in 0.33 seconds, while also decreasing store operation latency by 47% from 3814
TUs to 1969 TUs. The algorithm achieves this improvement by gradually selecting solutions
with less redundancy, reducing the number of parity fragments and therefore the data size.
Furthermore, a lower number of fragments also reduces the store operation latency, as this
is determined by the slowest fragment placement. Retrieve operation monetary cost and
latency remain unchanged throughout the simulations, as the redundancy does not affect the
number of fragments or the size of the retrieved data. Meanwhile, availability remains above
93% for all scenarios, as the minimization of the store operation monetary cost favors the
utilization of cloud nodes.

The results when minimizing the store operation latency are quite similar to the previous
scenario. The heuristic achieves an improvement of up to 27% in 0.32 seconds. As in the
previous scenario, the algorithm selects options with less redundancy, reducing the number
of parity fragments and, therefore, the store operation latency. However, since the number of
fragments retrieved each time is not directly affected by the redundancy, the monetary cost
remains unchanged.

When the optimization criterion is minimizing the retrieve operation monetary cost, the
initial solution is derived with a cost of 1.03 CUs per operation and is slightly improved to
1.04 CUs in 0.73 seconds. The data size is not directly affected by the reduced redundancy,
but since the transmitted data size is reduced, the store operation cost is affected and reduced
from 31 CUs to 14 CUs. The store operation latency is also reduced from 3745 CUs to 1930
CUs. On the other hand, the retrieve operation latency remains almost unchanged, as it is
not directly affected by the redundancy.

Retrieve operation latency is minimized by gradually improving the initial solution of
latency 1028 TUs to 927 TUs in 0.71 seconds, an overall reduction of 10%. The algorithm
initially selects a cloud node to host the fragments, and then the redundancy is further re-
duced, limiting the maximum distance between a fragment and a gateway.

In conclusion, themulti-agent rollout algorithm significantly outperforms the base heuris-
tic in terms of cost and latency. By gradually selecting solutions with less redundancy, the
algorithm reduces the number of parity fragments and consequently the data size, also lead-
ing to decreased store operation latency. However, the retrieve operation costs and latency
remain unchanged during the simulations, as redundancy does not influence the number of
fragments or the size of the retrieved data. In all scenarios, the availability remains above
93% because minimizing store operation costs favors the use of cloud nodes.

116 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

4.4.3 Evaluating Performance Based on Distributed Storage KPIs

Figure 4.8 Evaluation of the monetary costs.

0

3

6

9

12

15

18

21

24

27

30

To
ta
lC

os
ti
n
C
U
s

×103

max. availability
min. retrieve latency
min. retrieve cost
min. store latency
min. store cost
all criteria

We proceeded with simulation experi-
ments using real-world data, as outlined
in Section 4.4.1, evaluating the impact
of various optimization criteria on users’
monetary cost charges. As depicted in
Figure 4.8, the average total cost per user
was 22907 and 22735 CUswhenminimiz-
ing store and retrieve operation latency,
respectively. Conversely, when minimiz-
ing store or retrieve operation monetary
costs, the average total cost was 11827
and 12370 CUs, respectively. Minimizing
files’ availability resulted in an average cost of 13518 CUs per user. In the multi-objective
optimization scenario, the average total cost was 16228 CUs. When minimizing store or
retrieve operation latencies, the cost was 41.2% and 40% higher, compared to the multi-
objective scenario. However, optimizing store or retrieve operation monetary costs, or avail-
ability, the cost was 27.1%, 23.8%, and 16.7% lower than the multi-objective scenario, re-
spectively.

Figure 4.9 Effect of the optimization objectives
on the percentage of utilized cloud and edge
nodes.

Cloud Resources Edge Resources
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

U
til
iz
at
io
n
of

st
or
ag

e
lo
ca
tio

ns
(%

)

m
ax

.a
va

ila
bi
lit

y

m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

m
ax

.a
va

ila
bi
lit

y m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

In the next step of our simulation ex-
periments, we analyzed the utilization of
both cloud and edge nodes, as shown in
Figure 4.9. When the objective is set to
minimize store or retrieve operation la-
tency, the heuristic mechanism utilizes
only edge nodes. However, when store
or retrieve operation (monetary) cost or
maximize availability are minimized, the
heuristic mechanism prefers to host frag-
ments on the cloud. This is because the
cloud is cheaper (edg) for hosting and
provides significantly higher availability
(28). In the multi-objective scenario, the heuristic mechanism prefers the cloud instead of
the edge nodes for 59.8% of the utilized storage nodes, highlighting the potential cost-saving
benefits of cloud usage.

4.4 Simulation Experiments 117

Figure 4.10 Effect of the number of data fragments the files are split into, on the store and
retrieve operation latencies.

(6
, 2
)

(8
, 4
)

(1
0,
6)

(1
2,
8)

(1
4,
10
)

(1
6,
12
)

(1
8,
14
)

(2
0,
16
)

(2
2,
18
)

Number of fragments (k +m, k̂)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

D
el
ay

in
TU

s

×103

(stor.) Ne = 0
(stor.) Nc = 64

(stor.) Ne = 16
(stor.) Nc = 64

(stor.) Ne = 32
(stor.) Nc = 64

(a) Store operation
with multi-objective
optimization.

(6
, 2
)

(8
, 4
)

(1
0,
6)

(1
2,
8)

(1
4,
10
)

(1
6,
12
)

(1
8,
14
)

(2
0,
16
)

(2
2,
18
)

Number of fragments (k +m, k̂)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

D
el
ay

in
TU

s

×103

(retr.) Ne = 0
(retr.) Nc = 64

(retr.) Ne = 16
(retr.) Nc = 64

(retr.) Ne = 32
(retr.) Nc = 64

(b) Retrieve operation
with multi-objective op-
timization.

(6
, 2
)

(8
, 4
)

(1
0,
6)

(1
2,
8)

(1
4,
10
)

(1
6,
12
)

(1
8,
14
)

(2
0,
16
)

(2
2,
18
)

Number of fragments (k +m, k̂)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

D
el
ay

in
TU

s

×103

(stor.) Ne = 0
(stor.) Nc = 64

(stor.) Ne = 16
(stor.) Nc = 64

(stor.) Ne = 32
(stor.) Nc = 64

(c) Store operation
while optimizing the
latencies.

(6
, 2
)

(8
, 4
)

(1
0,
6)

(1
2,
8)

(1
4,
10
)

(1
6,
12
)

(1
8,
14
)

(2
0,
16
)

(2
2,
18
)

Number of fragments (k +m, k̂)

0.95

1.00

1.05

1.10

1.15

1.20

1.25

D
el
ay

in
TU

s

×103

(retr.) Ne = 0
(retr.) Nc = 64

(retr.) Ne = 16
(retr.) Nc = 64

(retr.) Ne = 32
(retr.) Nc = 64

(d) Retrieve operation
while optimizing the la-
tencies.

Effect of the Erasure Code on the Experienced Latency and Monetary Cost

We also investigated the impact of the number of data fragments on store and retrieve op-
eration latencies. We consider three scenarios for the number of randomly-computed edge
nodes in each real-world country, 𝑁𝑒 ∈ {0, 16, 32}, while keeping the number of cloud
nodes set to 𝑁𝑐 = 64, as seen in the data logs. The number of data fragments is varied from
𝑘 = 2 to 𝑘 = 18, while the number of parity fragments is set to 𝑚 = 4.

Figure 4.10a and 4.10b show the results for the weighted multi-objective scenario, while
Figure 4.10c and 4.10d display the results for the scenarios where only store and retrieve op-
eration latencies are optimized. The number of data fragments significantly impacts the store
and retrieve operation latencies, with both latencies decreasing as the number of fragments
increases. In the scenario where only cloud nodes are available (Figure 4.10a), the store
operation latency steadily decreases from 5911 TUs with an erasure code of (6, 2) (𝑘 = 2)
to around 2484 TUs with an erasure code of (22, 18) (𝑘 = 18). A similar trend is observed
in Figure 4.10b, where the store operation latency decreases from around 5890 TUs with
an erasure code of (6, 2) (𝑘 = 2) to 2469 TUs with an erasure code of (22, 18) (𝑘 = 18).
In contrast, the retrieve operation latency in Figure 4.10b decreases from around 1258 TUs
with an erasure code of (6, 2) (𝑘 = 2) to 1034 TUs with an erasure code of (22, 18) (𝑘 = 18),
and then gradually increases as 𝑘 increases.

In the case where both cloud and edge nodes are available (Figure 4.10c), the retrieve
operation latency decreases from 1235 TUs with an erasure code of (6, 2) (𝑘 = 2) to 1033
TUs with an erasure code of (12, 8) (𝑘 = 8) and then begins to increase. These scenarios
exhibit maximum delays, since only cloud nodes are available.

In the scenario of (𝑁𝑒, 𝑁𝑐) = (16, 64), the store and retrieve operation latencies can be
lower than in the previous scenario where only cloud nodes were available, thanks to the

118 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

Figure 4.11 Effect of the number of parity fragments used for redundancy to the store and
retrieve operation latencies.

(5
, 5
)

(6
, 5
)

(7
, 5
)

(8
, 5
)

(9
, 5
)

(1
0,
5)

(1
1,
5)

(1
2,
5)

(1
3,
5)

Number of fragments (k +m, k̂)

2.0

2.5

3.0

3.5

4.0

4.5

D
el
ay

in
TU

s

×103

(stor.) Ne = 0
(stor.) Nc = 64

(stor.) Ne = 16
(stor.) Nc = 64

(stor.) Ne = 32
(stor.) Nc = 64

(a) Store operation
with multi-objective
optimization.

(5
, 5
)

(6
, 5
)

(7
, 5
)

(8
, 5
)

(9
, 5
)

(1
0,
5)

(1
1,
5)

(1
2,
5)

(1
3,
5)

Number of fragments (k +m, k̂)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

D
el
ay

in
TU

s

×103

(retr.) Ne = 0
(retr.) Nc = 64

(retr.) Ne = 16
(retr.) Nc = 64

(retr.) Ne = 32
(retr.) Nc = 64

(b) Retrieve operation
with multi-objective op-
timization.

(5
, 5
)

(6
, 5
)

(7
, 5
)

(8
, 5
)

(9
, 5
)

(1
0,
5)

(1
1,
5)

(1
2,
5)

(1
3,
5)

Number of fragments (k +m, k̂)

2.0

2.5

3.0

3.5

4.0

4.5

D
el
ay

in
TU

s

×103

(stor.) Ne = 0
(stor.) Nc = 64

(stor.) Ne = 16
(stor.) Nc = 64

(stor.) Ne = 32
(stor.) Nc = 64

(c) Store operation
while optimizing the
latencies.

(5
, 5
)

(6
, 5
)

(7
, 5
)

(8
, 5
)

(9
, 5
)

(1
0,
5)

(1
1,
5)

(1
2,
5)

(1
3,
5)

Number of fragments (k +m, k̂)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

D
el
ay

in
TU

s

×103

(retr.) Ne = 0
(retr.) Nc = 64

(retr.) Ne = 16
(retr.) Nc = 64

(retr.) Ne = 32
(retr.) Nc = 64

(d) Retrieve operation
while optimizing the la-
tencies.

selection of edge nodes. Specifically, although the store operation latency is initially lower,
when more than 𝑘 + 𝑚 = 10 encoded fragments are selected, the delay is nearly equal to
the previous case, as the heuristic selects some cloud storage resources. This is also shown
in Figure 4.10c, where the objective is to minimize latencies. In this scenario, when the
erasure code is (18, 14) (𝑘̂ = 14), the delay reaches the levels of the previous scenario since
the edge nodes are not sufficient to host all the fragments (𝑘 + 𝑚 = 18 transmitted). The
retrieve operation latency (Figure 4.10b) is initially low due to the selection of edge nodes.
However, from the erasure code of (10, 6) and onwards, the heuristic performs similarly to
the previous scenario due to the inclusion of cloud nodes in the solution. Again, this is more
evident in Figure 4.10d, where a sharp delay increase occurs when using the erasure code of
(22, 18). At this point, the 16 edge nodes are not sufficient for all required 𝑘̂ = 18 fragments.
Lastly, in the scenario of (𝑁𝑒, 𝑁𝑐) = (32, 64), the edge nodes are sufficient to store all the
fragments, resulting in lower latencies than all previous scenarios.

We also evaluated the store operation latency (Figures 4.11a and 4.11c) and the retrieve
operation latency (Figures 4.11b and 4.11d), with the number of data fragments set to 𝑘 =
5 while changing the number of parity fragments 𝑚. Figures 4.11a and 4.11b show the
results of the multi-objective optimization scenario, while Figures 4.11c and 4.11d show the
optimization of both the store and retrieve operation latencies, excluding monetary costs and
availability.

As seen in Figure 4.11, increasing the redundancy results in a linear increase in the store
operation latency (Figures 4.11a and 4.11c). This is expected, since the total size of the data
increases linearly with the addition of more parity fragments. Moreover, introducing more
edge nodes into the infrastructure reduces the store operation latency, and to some extent,
the retrieve operation latency.

4.4 Simulation Experiments 119

In the scenario of (𝑁𝑒, 𝑁𝑐) = (0, 64) (Figure 4.11b), the heuristic selects only cloud
nodes, resulting in the highest average latency per retrieve operation. In contrast, the sce-
nario of (𝑁𝑒, 𝑁𝑐) = (32, 64) (Figure 4.11d) results in the lowest average latency per retrieve
operation, as the heuristic only selects edge nodes. The latency is not affected by the addi-
tion of parity fragments, since the retrievals always require 𝑘̂ = 5 fragments out of the 𝑘 + 𝑚
hosted ones.

In the mid-case scenario of (𝑁𝑒, 𝑁𝑐) = (16, 64), the latency is observed to increase
in the results shown in Figureσ 4.11b and 4.11d, but at a higher pace in Figure 4.11b. In
Figure 4.11b, which depicts the multi-objective scenario, the heuristic selects to retrieve
some fragments from cloud nodes even though the 16 edge nodes per country are sufficient
to host all the required 𝑘̂ = 5 ones. In contrast, Figure 4.11d only shows edge nodes being
selected to host and recover the fragments. However, the latency is higher compared to the
scenario with 𝑁𝑒 = 32, since a lower number of available edge nodes increases the average
maximum distance between the gateway and the selected nodes. Overall, increasing the
number of parity fragments greatly increases the store operation latency and to some extent
the retrieve operation latency. However, the retrieve operation latency can be reduced by
increasing the number and density of deployed edge nodes, providing more options for node
selections.

Figure 4.12 Effect of the erasure code policy
on the total monetary costs (white: store costs,
gray: retrieve costs).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(2, 2)(3, 3)(4, 4)(3, 2)(4, 3)(5, 4)(4, 2)(5, 3)(6, 4)

Number of fragments (k +m, k̂)

0

20

40

60

80

100

To
ta
lC

os
ti
n
C
U
s

ϵ
=

1

ϵ
=

1 2

ϵ
=

1 3

ϵ
=

1

ϵ
=

1 2

ϵ
=

1 3

ϵ
=

1

ϵ
=

1 2

ϵ
=

1 3

We also examined the effect of era-
sure code selection on monetary cost for
different options of data and parity frag-
ments (Figure 4.12). We considered 𝑘 ∈
{1, 2, 3} and 𝑚 ∈ {1, 2, 3} and examined
three cases of near-optimal erasure codes
with 𝜖 = 1, 𝜖 = 1

2 , and 𝜖 = 1
3 . The

white part of the bars depicts the aver-
age monetary cost of file storage, while
the gray part shows the average monetary
cost of file retrieval. We first considered
three samples, i.e., (𝑘 + 𝑚, 𝑘̂) = (2, 2),
(𝑘 + 𝑚, 𝑘̂) = (3, 3), and (𝑘 + 𝑚, 𝑘̂) = (4, 4)
(split into 𝑘 = 1, 2, 3), where we used one
parity fragment. In this scenario, as the number of fragments increased, the total cost de-
creased from 44.3 to 28.1 CUs. The parity fragments and the data fragments had the same
size, which was 𝑀𝑑 /𝑘. Therefore, the total data size transferred to the storage nodes was
𝑀𝑑 + 𝑀𝑑 /𝑘, i.e., 2𝑀𝑑 , 3

2𝑀𝑑 , and 4
3𝑀𝑑 . The total data size transferred during each retrieval

120 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

from the storage nodes to the gateways was 𝑘̂𝑀𝑑 /𝑘 = (1+𝜖)𝑀𝑑 , i.e., 2𝑀𝑑 , 3
2𝑀𝑑 , and 4

3𝑀𝑑 .
The store and retrieve data size was proportional to the corresponding costs, which explained
the cost decrease.

Next, we considered three samples, i.e., (𝑘 + 𝑚, 𝑘̂) = (3, 2), (𝑘 + 𝑚, 𝑘̂) = (4, 3), and
(𝑘+𝑚, 𝑘̂) = (5, 4) (split into 𝑘 = 1, 2, 3), where we used two additional parity fragments. As
in the previous scenario, the data and the parity fragments had size 𝑀𝑑 /𝑘 DUs, and the total
data size transferred to the storage nodes was 𝑀𝑑 + 2𝑀𝑑 /𝑘, i.e., 3𝑀𝑑 , 2𝑀𝑑 , and 5

3𝑀𝑑 . The
total data size transferred from the storage nodes to the gateways during each retrieval was
(1 + 𝜖)𝑀𝑑 , i.e., 2𝑀𝑑 , 3

2𝑀𝑑 , and 4
3𝑀𝑑 . Again, the total size was proportional to the store

operation cost, which explained the cost decrease.
Lastly, we considered three samples, i.e., (𝑘 + 𝑚, 𝑘̂) = (4, 2), (𝑘 + 𝑚, 𝑘̂) = (5, 3), and

(𝑘 + 𝑚, 𝑘̂) = (6, 4) (split into 𝑘 = 1, 2, 3), where there were three parity fragments with size
𝑀𝑑 /𝑘 each. Hence, the total data size transferred was 𝑀𝑑 + 3𝑀𝑑 /𝑘 (i.e., 4𝑀𝑑 , 5

2𝑀𝑑 , 2𝑀𝑑)
during each store operation and (1 + 𝜖)𝑀𝑑 (i.e., 2𝑀𝑑 , 3

2𝑀𝑑 , and 4
3𝑀𝑑) during each retrieve

operation. As in the previous cases, the total size is proportional to the depicted costs.
The results presented demonstrate that the overall monetary cost is directly proportional

to both (𝑘 + 𝑚)𝑀𝑑 /𝑘 and 𝑘̂𝑀𝑑 /𝑘. As such, the monetary cost achieved is dependent on
the effectiveness of the chosen erasure coding scheme. When the objective is to minimize
the monetary cost, optimal erasure code schemes are utilized. However, it is important to
note that the optimal schemes may impact the latency due to their need for more intensive
processing.

Effect of the Minimum Availability Requirement on the Redundancy and Node Selec-
tion

In Figure 4.13, we investigated the impact of the minimum availability requirement on re-
dundancy. We divided all files into 𝑘 = 5 data fragments, and considered the number of
candidate parity fragments to be 𝑚 ∈ {0, 1, 2, 3, 4, 5, 6}.

When the goal is to optimize file availability, the heuristic chooses the maximum redun-
dancy, which is 6 parity fragments in our setup. In all other cases, the number of parity
fragments increases as the availability requirement grows. When the objective is to mini-
mize the monetary cost of the store operation, the heuristic selects a lower number of parity
fragments compared to all other scenarios. Meanwhile, the retrieve operation cost is inde-
pendent of redundancy, since the data of size (𝑘̂/𝑘)𝑀𝑑 is always needed. Therefore, when
the store operation cost is minimized and the minimum availability requirement is satis-
fied, the redundancy is also minimized. Specifically, we choose 𝑚 = 0 parity fragments
for 𝐴req = 75%, 79%, 83%, 87%, 91%, and 𝑚 = 1 for 𝐴req = 95%, 99%. When the retrieve

4.4 Simulation Experiments 121

operation cost is minimized, the number of parity fragments is not a consideration, and any
number of parity fragments can be chosen as long as the availability requirement is met.

Figure 4.13 Effect of the minimum availability
requirement on the selection of the level of re-
dundancy.

75% 79% 83% 87% 91% 95% 99%
Availability requirement (Areq)

(5, 5)

(6, 5)

(7, 5)

(8, 5)

(9, 5)

(10, 5)

(11, 5)

N
um

be
ro

ff
ra
gm

en
ts
(k

+
m
,k̂
)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

Figure 4.14 Effect of the minimum availability
requirement on the types of the selected storage
nodes.

75% 79% 83% 87% 91% 95% 99%
Availability requirement (Areq)

0
1
2
3
4
5
6
7
8
9

N
um

be
ro

fs
to
ra
ge

lo
ca
tio

ns

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

In the case of minimizing the store
operation latency, edge are preferred to
cloud nodes. Furthermore, since edge
nodes have lower average availability than
cloud nodes, more nodes are chosen to
meet the availability constraint. Also,
the number of parity fragments is min-
imized, since all the 𝑘 + 𝑚 encoded
fragments are transmitted to their corre-
sponding nodes during the store operation.
The latency is determined by the slow-
est fragment placement. Therefore, in-
creasing the redundancy leads to the in-
clusion of more distant nodes, which in-
creases the latency. Thus, the heuristic se-
lects 𝑚 = 3 parity fragments for 𝐴req =
75%, 79%, 83%, 87%, 91%, and 𝑚 = 4 for
𝐴req = 95%, 99%. On the other hand,
during the retrieve operation, only 𝑘̂ out
of 𝑘 + 𝑚 encoded fragments are retrieved.
Thus, increasing the redundancy provides
a larger pool of node selections for each
retrieval and does not burden the latency.

Finally, the results of the multi-
objective scenario are similar to those of
minimizing the store operation latency.
This is because edge nodes, which gen-
erally have lower availability than cloud
nodes (28), are chosen. We expect this
scenario to be somewhere between the
other two scenarios, depending on the
weight coefficients of the objectives and
the infrastructure’s characteristics. In Fig-
ure 4.14, we analyze the impact of the minimum availability requirement on the choice of

122 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

storage resources (cloud or edge nodes) to host file fragments. The experiment considers
files split into 𝑘 = 5 data fragments and 𝑚 = 4 additional parity fragments using the erasure
code (𝑘 + 𝑚, 𝑘̂) = (9, 5). The white-colored bars in the figure represent the average number
of utilized cloud nodes, and the gray-colored ones the average number of edge nodes.

We observe that the heuristic uses only cloud nodes when optimizing for availability,
store and retrieve monetary costs, or in the multi-objective scenario, since cloud nodes offer
higher availability and lower monetary costs. In contrast, when optimizing for store or re-
trieve operation latency and the minimum required availability is at least 91%, the heuristic
predominantly employs edge nodes, as they offer lower latencies (82, 85). For higher avail-
ability requirements, such as 95%, the number of cloud nodes increases, but edge nodes still
dominate. Edge nodes alone may not suffice for high-availability scenarios; therefore, the
heuristic adds cloud nodes to achieve the required availability level.

Effect of the Optimization Objective on the File Availability

Figure 4.15 Percentage of successful retrievals
for each optimization objective.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Su
cc

es
sf
ul

fil
e
re
tri

av
al

ra
te

(%
)

m
ax

.a
va

ila
bi
lit

y

m
in
.r

et
ri
ev

e
la
te
nc

y

m
in
.r

et
ri
ev

e
co

st

m
in
.s

to
re

la
te
nc

y

m
in
.s

to
re

co
st

al
lc

ri
te
ri
a

Figure 4.15 shows the successful retrieval
rate of stored files, which is a parame-
ter that directly affects both monetary cost
and latency. A file is considered suc-
cessfully retrieved only when all 𝑘̂ storage
nodes selected by the algorithm for that
particular retrieval are operational and ac-
cessible when requested for fragment re-
trieval.

The results indicate that when the op-
timization criterion is availability, or store
and retrieve monetary costs, files are always retrieved successfully because the algorithm
chooses only cloud nodes. However, when the optimization criterion is either store or re-
trieve operation latency, the successful file retrieval rate drops to around 82%. This is due to
the selection of edge nodes, which generally exhibit lower availability than cloud nodes (28).
In the multi-objective scenario, the successful retrieval rate is 94.8% due to the selection of
a mixed combination of edge and cloud nodes.

4.4 Simulation Experiments 123

Figure 4.16 Effect of the edge nodes’ colocation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
colocation

20

25

30

St
or
e
co

st
(C

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(a) Store operation monetary
cost.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
colocation

32000

33000

34000

35000

36000

St
or
e
la
te
nc

y
(T

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(b) Store operation latency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
colocation

8

10

12

R
et
rie

ve
co

st
(C

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(c) Retrieve operation monetary
cost.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
colocation

16500

17000

17500

18000

R
et
rie

ve
la
te
nc

y
(T

U
s)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(d) Retrieve operation latency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
colocation

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Av
ai
la
bi
lit
y
(%

)

max. availability
min. retrieve latency
min. retrieve cost

min. store latency
min. store cost
all criteria

(e) Average availability.

Effect of the Colocation of the Edge Nodes on the Examined KPIs for the Different
Optimization Criteria

We examined the impact of edge node colocation on the Key Performance Indicators (KPIs).
When the optimization criterion is the store and retrieve monetary costs and availability, the
colocation degree of edge nodes does not affect the results, since the algorithm only selects
cloud nodes to host fragments. Cloud nodes have lower monetary costs than edge nodes and
provide higher availability, as reported in (edg) and (28).

When the store operationmonetary cost is minimized, the achieved cost is 15.8 CUs (Fig-
ure 4.16a), which is the lowest cost among all the scenarios. The retrieve operation monetary
cost is also minimized (Figure 4.16c) with a cost of 7.4 CUs. However, the achieved store op-
eration latency (Figure 4.16b) is 35932 TUs, the second-highest delay among all scenarios,
while the retrieve operation latency is maximal at 18376 TUs (Figure 4.16d). The avail-
ability reaches the second-highest value of 97.6% (Figure 4.16e), with cloud nodes being
preferred for fragment hosting.

Next, we evaluated minimizing retrieve operation monetary cost on KPIs for different
colocation levels. Retrieve monetary cost (Figure 4.16c) was constant at 7.4 CUs, nearly
equal to the previous scenario’s store operation cost. Store operation cost (Figure 4.16a)
reached 16.5 CUs, slightly higher than the store optimization scenario, as cloud nodes were

124 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

preferred over edge nodes. The achieved value is nearly equal to the cost of the previous
scenario, with a retrieve monetary cost of 7.4 CUs per retrieval. When evaluating edge
node colocation on KPIs, results are unaffected by colocation degree for store operation
monetary cost, retrieve operation monetary cost, and availability, as only cloud nodes host
fragments. Store operation monetary cost is minimized at 15.8 CUs (Figure 4.16a), retrieve
operation cost at 7.4 CUs (Figure 4.16c), and availability reaches 97.6% (Figure 4.16e).
Store operation latency is the second-highest delay at 35932 TUs (Figure 4.16b), and retrieve
operation latency is maximal at 18376 TUs (Figure 4.16d). The heuristic selects only cloud
nodes for fragment hosting.

When examining the effect of minimizing the retrieve operation monetary cost on the
examined KPIs, the achieved retrieve monetary cost is almost 7.4 CUs for different levels
of colocation (Figure 4.16c). The store operation cost is slightly higher than the previous
scenario, at 16.5 CUs (Figure 4.16a), as cloud nodes were preferred over edge nodes. When
the optimization objective minimizes the store operation latency, the colocation degree af-
fects the achieved latency. With a colocation value of 0.1, the store latency is 32411 TUs
(Figure 4.16b), and it decreases linearly as the colocation increases until it reaches around
32052 TUs at a colocation of 0.9. Other factors that can affect the latency include encoding
and encryption delay and delay of the fragment placement. The retrieve operation latency
exhibits a similar behavior, starting at 16566 TUs at a colocation of 0.1 and reducing lin-
early to 16234 TUs at a colocation of 0.9 (Figure 4.16d). The store and retrieve operation
monetary costs are nearly constant at 30.6 CUs and 12 CUs, respectively (Figures 4.16a
and 4.16c), while the availability is nearly constant at around 14%, the lowest of all sce-
narios (Figure 4.16e). As edge nodes become more proximate to gateways due to increased
colocation, latency decreases (Figure 4.16b). For instance, with a colocation value of 0.1,
the store latency is 32411 TUs, which linearly decreases until the colocation becomes 0.9,
reaching around 32052 TUs. Apart from colocation, other factors can affect latency, such
as encoding and encryption delay at the gateways, which depend on the total data size, and
the delay of fragment placement. Edge nodes’ proximity to gateways reduces delay when
multiple locations are present. This behavior is similar when optimizing retrieve operation
latency. For a small degree of colocation (0.1), the latency starts at 16566 TUs, which lin-
early reduces to 16234 TUs until 0.9 (Figure 4.16d). Store and retrieve operation monetary
costs (Figures 4.16a and 4.16c) are nearly constant at 30.6 CUs and 12 CUs, respectively,
and unaffected by colocation. Fluctuations observed in the range of 0.4-0.6 are derived from
the monetary charging differences between the edge nodes.

Maximizing availability does not directly affect examined KPIs in our simulations, us-
ing only cloud nodes with higher availability than edge nodes (28). 99.9% availability (Fig-

4.4 Simulation Experiments 125

ure 4.16e) is achieved, while store operation cost is 18 CUs (Figure 4.16a), higher than in
cost-minimized scenarios. Retrieve operation cost per operation is low at 8.9 CUs (Fig-
ure 4.16c). In multi-objective optimization, store operation cost increases linearly from 18.5
to 21 CUs, and retrieve operation cost from 8.5 to 9.2 CUs. This behavior is due to the
decrease in cloud nodes in favor of edge nodes, taking advantage of proximity to gateways.
Availability decreases linearly from 75.7% to 52%. The increase in proximity benefits la-
tency (Figures 4.16b and 4.16d), allowing for relatively more expensive edge nodes. Finally,
store and retrieve operation latencies are affected by increased colocation. Store operation
latency decreases from 35044 to 34689 TUs, and retrieve operation latency from 17729 to
17601 TUs (colocation degrees of 0.1 and 0.9). This improvement is achieved by reducing
cloud nodes in favor of edge nodes, which are closer to the gateways.

126 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

4.5 Conclusion
As the amount of digital data continues to increase dramatically, there is an increasing need
for efficient and reliable distributed storage infrastructures to accommodate the rising stor-
age capacity requirements. Edge computing plays a crucial role in reducing data transaction
latency, thereby enhancing overall performance, while erasure coding techniques can sig-
nificantly improve data security and availability. We proposed storage resource allocation
mechanisms over the edge-cloud continuum. We developed an optimal mixed-integer lin-
ear programming formulation (MILP) and a sub-optimal multi-agent rollout heuristic for
storage resource selection aimed at hosting the file fragments as provided by the applica-
tion of the erasure coding. These mechanisms jointly optimize monetary costs, latency,
and average availability, all while satisfying user requirements. By trading off performance
for execution time, our proposed mechanisms achieve near-optimal performance in exten-
sive simulations using both synthetic and real data that varies in the range 94.8-97.5%. In
read data simulations, we examined the impact of different optimization criteria on store
and retrieve operation monetary costs, latencies, availability, and percentage of successful
file retrievals. Compared to the single-objective scenarios, our proposed multi-objective
optimization mechanisms effectively addressed the various conflicting requirements by op-
timizing the placement of files, achieving optimal or close to optimal minimum cost, latency
and availability, all within a small execution time with the multi-agent rollout mechanism
that significantly advanced the greedy heuristic’s performance (2%-57%). Furthermore, our
study highlights the importance of incorporating edge nodes in addressing the stringent ap-
plication requirements concerning latency (storage and retrieval latency time improved by
22%). The colocation of edge node results in decreasing further the experienced latency (lin-
early to the colocation increase), demonstrating the value of considering colocation when
developing mixed edge-cloud storage systems. In conclusion, our work provides valuable
insights into the design of efficient and reliable storage systems that leverage the advantages
of both edge and cloud nodes, contributing to the development of robust distributed storage
infrastructures that efficiently address the growing demands of the digital era.

Bibliography

[edg] The economics of edge computing. https://edgecomputing-news.com/2020/10/29/
analysis-economics-of-edge-computing.

[gur] Gurobi optimizer. https://www.gurobi.com/.

[3] NEPHELE project. http://www.nepheleproject.eu/.

[4] NEPHELE traffic generator. https://github.com/kchristodou/
Datacenter-network-traffic-generator.

[sky] Skyflok. https://www.skyflok.com/.

[6] Abu-Libdeh, H., Princehouse, L., andWeatherspoon, H. (2010). RACS: a case for cloud
storage diversity. In Proceedings of the 1st ACM symposium on Cloud computing, pages
229–240.

[7] Al-Abbasi, A. O. andAggarwal, V. (2020). TTLCache: Taming latency in erasure-coded
storage through TTL caching. IEEE Transactions on Network and Service Management,
17(3):1582–1596.

[8] Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A scalable, commodity data center
network architecture. ACM SIGCOMM computer communication review, 38(4):63–74.

[9] Anderson, T. E., Owicki, S. S., Saxe, J. B., and Thacker, C. P. (1993). High-speed switch
scheduling for local-area networks. ACM Transactions on Computer Systems (TOCS),
11(4):319–352.

[10] Bacis, E., di Vimercati, S. D. C., Foresti, S., Paraboschi, S., Rosa, M., and Samarati,
P. (2019a). Dynamic allocation for resource protection in decentralized cloud storage. In
2019 IEEE global communications conference (GLOBECOM), pages 1–6. IEEE.

[11] Bacis, E., di Vimercati, S. D. C., Foresti, S., Paraboschi, S., Rosa, M., and Samarati,
P. (2019b). Securing resources in decentralized cloud storage. IEEE Transactions on
Information Forensics and Security, 15:286–298.

[12] Bakopoulos, P., Christodoulopoulos, K., Landi, G., Aziz, M., Zahavi, E., Gallico, D.,
Pitwon, R., Tokas, K., Patronas, I., Capitani, M., et al. (2018). NEPHELE: An end-to-
end scalable and dynamically reconfigurable optical architecture for application-aware
sdn cloud data centers. IEEE Communications Magazine, 56(2):178–188.

[13] Ben-Itzhak, Y., Caba, C., Schour, L., and Vargaftik, S. (2016). C-share: Optical circuits
sharing for software-defined data-centers. arXiv preprint arXiv:1609.04521.

https://edgecomputing-news.com/2020/10/29/analysis-economics-of- edge-computing
https://edgecomputing-news.com/2020/10/29/analysis-economics-of- edge-computing
https://www.gurobi.com/
http://www.nepheleproject.eu/
https://github.com/kchristodou/Datacenter-network-traffic-generator
https://github.com/kchristodou/Datacenter-network-traffic-generator
https://www.skyflok.com/

128 Bibliography

[14] Benson, T., Akella, A., and Maltz, D. A. (2010). Network traffic characteristics of data
centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 267–280.

[15] Benzaoui, N., Estarán, J., Dutisseuil, E., Mardoyan, H., De Valicourt, G., Dupas, A.,
Van, Q. P., Verchere, D., Ušćumlić, B., Gonzalez, M. S., et al. (2018). CBOSS: bringing
traffic engineering inside data center networks. Journal of Optical Communications and
Networking, 10(7):B117–B125.

[16] Bermbach, D., Klems, M., Tai, S., and Menzel, M. (2011). Metastorage: A feder-
ated cloud storage system to manage consistency-latency tradeoffs. In 2011 IEEE 4th
International Conference on Cloud Computing, pages 452–459. IEEE.

[17] Bessani, A., Correia, M., Quaresma, B., André, F., and Sousa, P. (2013). DepSky:
dependable and secure storage in a cloud-of-clouds. ACMTransactions on Storage (TOS),
9(4):1–33.

[18] Birkhoff, G. (1946). Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman,
Ser. A, 5:147–154.

[19] Bongiovanni, G., Coppersmith, D., and Wong, C. (1981). An optimum time slot as-
signment algorithm for an ss/tdma system with variable number of transponders. IEEE
Transactions on Communications, 29(5):721–726.

[20] Calabretta, N. and Miao, W. (2018). Optical switching in data centers: Architectures
based on optical packet/burst switching. Optical Switching in Next Generation Data Cen-
ters, pages 45–69.

[21] Cerutti, I., Andriolli, N., Pintus, P., Faralli, S., Gambini, F., Liboiron-Ladouceur, O.,
and Castoldi, P. (2015). Fast scheduling based on iterative parallel wavelength match-
ing for a multi-wavelength ring network-on-chip. In 2015 International Conference on
Optical Network Design and Modeling (ONDM), pages 180–185. IEEE.

[22] Christodoulopoulos, K., Kontodimas, K., Siokis, A., Yiannopoulos, K., and Varvari-
gos, E. (2017). Efficient bandwidth allocation in the nephele optical/electrical datacenter
interconnect. Journal of Optical Communications and Networking, 9(12):1145–1160.

[23] Christodoulopoulos, K., Kontodimas, K., Yiannopoulos, K., andVarvarigos, E. (2016).
Bandwidth allocation in the nephele hybrid optical interconnect. In 2016 18th Interna-
tional Conference on Transparent Optical Networks (ICTON), pages 1–4. IEEE.

[24] Christodoulopoulos, K., Lugones, D., Katrinis, K., Ruffini, M., and O’Mahony, D.
(2015). Performance evaluation of a hybrid optical/electrical interconnect. Journal of
Optical Communications and Networking, 7(3):193–204.

[25] Confais, B., Rostirolla, G., Parrein, B., Lacan, J., and Marques, F. (2022). Mutida:
A Rights Management Protocol for Distributed Storage Systems Without Fully Trusted
Nodes, pages 1–34. Springer Berlin Heidelberg, Berlin, Heidelberg.

[26] Di Vimercati, S. D. C., Foresti, S., Livraga, G., Piuri, V., and Samarati, P. (2017).
Supporting user requirements and preferences in cloud plan selection. IEEE Transactions
on Services Computing, 14(1):274–285.

Bibliography 129

[27] di Vimercati, S. D. C., Foresti, S., Livraga, G., Piuri, V., and Samarati, P. (2019).
Security-aware data allocation in multicloud scenarios. IEEE Transactions on Depend-
able and Secure Computing, 18(5):2456–2468.

[28] Duc, T. L., Leiva, R. G., Casari, P., and Östberg, P.-O. (2019). Machine learning
methods for reliable resource provisioning in edge-cloud computing: A survey. ACM
Computing Surveys (CSUR), 52(5):1–39.

[29] Eng, K. and Acampora, A. (1987). Fundamental conditions governing tdm switching
assignments in terrestrial and satellite networks. IEEE transactions on communications,
35(7):755–761.

[30] Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya, V., Fain-
man, Y., Papen, G., and Vahdat, A. (2010). Helios: a hybrid electrical/optical switch
architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2010 Con-
ference, pages 339–350.

[31] Follows, J. and Straeten, D. (1999). Application driven networking: Concepts and
architecture for policy-based systems. IBM Corporation.

[32] Golestani, S. J. (1991). A framing strategy for congestion management. IEEE Journal
on Selected Areas in Communications, 9(7):1064–1077.

[33] Hadji, M. (2015). Scalable and cost-efficient algorithms for reliable and distributed
cloud storage. In International Conference on Cloud Computing and Services Science,
pages 15–37. Springer.

[34] He, S. and Torkelson, M. (1996). A new approach to pipeline fft processor. In Pro-
ceedings of International Conference on Parallel Processing, pages 766–770. IEEE.

[35] Hopcroft, J. E. and Karp, R. M. (1973). An 𝑛5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231.

[36] Hui, J. Y. (2012). Switching and traffic theory for integrated broadband networks,
volume 91. Springer Science & Business Media.

[37] IDC and Seagate (2017). Data age 2025: The evolution of data to life-critical.

[38] Inc., T. M. (2017). Matlab.

[39] Index, C. V. N. (2016). Forecast and methodology, 2015–2020. White paper, pages
1–41.

[40] Inukai, T. (1979). An efficient SS/TDMA time slot assignment algorithm. IEEE Trans-
actions on Communications, 27(10):1449–1455.

[41] Jarschel, M., Wamser, F., Hohn, T., Zinner, T., and Tran-Gia, P. (2013). Sdn-based
application-aware networking on the example of youtube video streaming. In 2013 Second
European Workshop on Software Defined Networks, pages 87–92. IEEE.

[42] Kachris, C. and Tomkos, I. (2012). A survey on optical interconnects for data centers.
IEEE Communications Surveys & Tutorials, 14(4):1021–1036.

130 Bibliography

[43] Kontodimas, K., Christodoulopoulos, K., and Varvarigos, E. (2020). Simplifying opti-
cal dcn fabrics with blocking space switching and wavelength-constrained wdm. In Opti-
cal Network Design andModeling: 23rd IFIPWG 6.10 International Conference, ONDM
2019, Athens, Greece, May 13–16, 2019, Proceedings 23, pages 286–298. Springer.

[44] Kontodimas, K., Christodoulopoulos, K., Zahavi, E., and Varvarigos, E. (2018). Re-
source allocation in slotted optical data center networks. In 2018 International Conference
on Optical Network Design and Modeling (ONDM), pages 248–253. IEEE.

[45] Kontodimas, K., Soumplis, P., Kretsis, A., Kokkinos, P., Fehér, M., Lucani, D. E., and
Varvarigos, E. (2023). Secure distributed storage orchestration on heterogeneous cloud-
edge infrastructures. IEEE Transactions on Cloud Computing.

[46] Kontodimas, K., Soumplis, P., Kretsis, A., Kokkinos, P., and Varvarigos, E. (2021).
Secure distributed storage on cloud-edge infrastructures. In 2021 IEEE 10th International
Conference on Cloud Networking (CloudNet), pages 127–132. IEEE.

[47] Lee, H. Y., Hwang, F. K., and Carpinelli, J. D. (1996). A new decomposition algorithm
for rearrangeable clos interconnection networks. IEEE Transactions on Communications,
44(11):1572–1578.

[48] Li, J. and Li, B. (2013). Erasure coding for cloud storage systems: A survey. Tsinghua
Science and Technology, 18(3):259–272.

[49] Liu, G., Shen, H., and Wang, H. (2017). An economical and slo-guaranteed cloud
storage service across multiple cloud service providers. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2440–2453.

[50] Liu, K., Peng, J., Wang, J., Huang, Z., and Pan, J. (2022). Adaptive and scalable
caching with erasure codes in distributed cloud-edge storage systems. IEEE Transactions
on Cloud Computing, pages 1–1.

[51] Ma, Y., Nandagopal, T., Puttaswamy, K. P., and Banerjee, S. (2013). An ensemble of
replication and erasure codes for cloud file systems. In 2013 Proceedings IEEE INFO-
COM, pages 1276–1284. IEEE.

[52] Mansouri, Y., Toosi, A. N., and Buyya, R. (2013). Brokering algorithms for optimiz-
ing the availability and cost of cloud storage services. In 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, volume 1, pages 581–589.
IEEE.

[53] McKeown, N. (1999). The islip scheduling algorithm for input-queued switches.
IEEE/ACM transactions on networking, 7(2):188–201.

[54] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008). Openflow: enabling innovation in campus networks.
ACM SIGCOMM computer communication review, 38(2):69–74.

[55] McKeown, N., Mekkittikul, A., Anantharam, V., and Walrand, J. (1999). Achieving
100% throughput in an input-queued switch. IEEE Transactions on Communications,
47(8):1260–1267.

Bibliography 131

[56] Mellette, W. M., McGuinness, R., Roy, A., Forencich, A., Papen, G., Snoeren, A. C.,
and Porter, G. (2017). Rotornet: A scalable, low-complexity, optical datacenter network.
In Proceedings of the Conference of the ACM Special Interest Group on Data Communi-
cation, pages 267–280.

[57] Mellette, W. M., Schuster, G. M., Porter, G., Papen, G., and Ford, J. E. (2016). A scal-
able, partially configurable optical switch for data center networks. Journal of Lightwave
Technology, 35(2):136–144.

[58] Mu, S., Chen, K., Gao, P., Ye, F., Wu, Y., and Zheng, W. (2012). 𝜇libcloud: Providing
high available and uniform accessing to multiple cloud storages. In 2012 ACM/IEEE 13th
International Conference on Grid Computing, pages 201–208. IEEE.

[59] Networking, C. V. (2013). Cisco global cloud index: Forecast and methodology, 2014–
2019. white paper.

[60] Papaioannou, T. G., Bonvin, N., and Aberer, K. (2012). Scalia: An adaptive scheme
for efficient multi-cloud storage. In SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, pages 1–10. IEEE.

[61] Patronas, I., Gkatzios, N., Kitsakis, V., Reisis, D., Christodoulopoulos, K., and Var-
varigos, E. (2018). Scheduler accelerator for TDMAdata centers. In 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing (PDP),
pages 162–169. IEEE.

[62] Peng, S., Guo, B., Jackson, C., Nejabati, R., Agraz, F., Spadaro, S., Bernini, G., Ciulli,
N., and Simeonidou, D. (2015). Multi-tenant software-defined hybrid optical switched
data centre. Journal of Lightwave Technology, 33(15):3224–3233.

[63] Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T., Fain-
man, Y., Papen, G., and Vahdat, A. (2013). Integrating microsecond circuit switching into
the data center. ACM SIGCOMM Computer Communication Review, 43(4):447–458.

[64] Poutievski, L., Mashayekhi, O., Ong, J., Singh, A., Tariq, M., Wang, R., Zhang, J.,
Beauregard, V., Conner, P., Gribble, S., Kapoor, R., Kratzer, S., Li, N., Liu, H., Nagaraj,
K., Ornstein, J., Sawhney, S., Urata, R., Vicisano, L., Yasumura, K., Zhang, S., Zhou,
J., and Vahdat, A. (2022). Jupiter evolving: Transforming google’s datacenter network
via optical circuit switches and software-defined networking. In Proceedings of ACM
SIGCOMM 2022.

[65] Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren, A. C. (2015). Inside the social
network’s (datacenter) network. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 123–137.

[66] Ryser, H. J. (1963). Combinatorial mathematics, volume 14. American Mathematical
Soc.

[67] Saridis, G. M., Peng, S., Yan, Y., Aguado, A., Guo, B., Arslan, M., Jackson, C., Miao,
W., Calabretta, N., Agraz, F., et al. (2016). Lightness: A function-virtualizable software
defined data center network with all-optical circuit/packet switching. Journal of Light-
wave Technology, 34(7):1618–1627.

132 Bibliography

[68] Serpanos, D. N. and Antoniadis, P. (2000). Firm: A class of distributed scheduling
algorithms for high-speed atm switches with multiple input queues. In Proceedings IEEE
INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEEComputer and Communications Societies (Cat. No. 00CH37064),
volume 2, pages 548–555. IEEE.

[69] Sharov, A., Shraer, A., Merchant, A., and Stokely, M. (2015). Take me to your leader!
online optimization of distributed storage configurations.

[70] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: Vision and
challenges. IEEE internet of things journal, 3(5):637–646.

[71] Singh, H. J. and Bawa, S. (2022). Lameta: An efficient locality aware metadata man-
agement technique for an ultra-large distributed storage system. Journal of King Saud
University - Computer and Information Sciences, 34(10, Part A):8323–8335.

[72] Singla, A., Singh, A., Ramachandran, K., Xu, L., and Zhang, Y. (2010). Proteus: a
topology malleable data center network. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, pages 1–6.

[73] Su, M., Zhang, L., Wu, Y., Chen, K., and Li, K. (2015). Systematic data placement
optimization in multi-cloud storage for complex requirements. IEEE Transactions on
Computers, 65(6):1964–1977.

[74] Tassiulas, L. (1998). Linear complexity algorithms for maximum throughput in radio
networks and input queued switches. In Proceedings. IEEE INFOCOM’98, the Confer-
ence on Computer Communications. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Gateway to the 21st Century (Cat. No. 98, vol-
ume 2, pages 533–539. IEEE.

[75] Towles, B. and Dally, W. J. (2003). Guaranteed scheduling for switches with configu-
ration overhead. IEEE/ACM Transactions on Networking, 11(5):835–847.

[76] Vargaftik, S., Caba, C., Schour, L., and Ben-Itzhak, Y. (2020). C-share: Optical circuits
sharing for software-defined data-centers. ACM SIGCOMM Computer Communication
Review, 50(1):2–9.

[77] Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T. E., Kozuch, M.,
and Ryan, M. (2010). c-Through: Part-time optics in data centers. In Proceedings of the
ACM SIGCOMM 2010 Conference, pages 327–338.

[78] Wang, P., Zhao, C., Liu, W., Chen, Z., and Zhang, Z. (2020a). Optimizing data place-
ment for cost effective and high available multi-cloud storage. Computing and Informat-
ics, 39(1-2):51–82.

[79] Wang, P., Zhao, C., Wei, Y., Wang, D., and Zhang, Z. (2020b). An adaptive data
placement architecture in multicloud environments. Scientific Programming, 2020.

[80] Wang, P., Zhao, C., and Zhang, Z. (2018). An ant colony algorithm-based approach for
cost-effective data hosting with high availability in multi-cloud environments. In 2018
IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), pages
1–6. IEEE.

Bibliography 133

[81] Wei, Q., Veeravalli, B., Gong, B., Zeng, L., and Feng, D. (2010). CDRM: A cost-
effective dynamic replication management scheme for cloud storage cluster. In 2010
IEEE international conference on cluster computing, pages 188–196. IEEE.

[82] Wu, H., Deng, S., Li, W., Yin, J., Li, X., Feng, Z., and Zomaya, A. Y. (2019). Mobility-
aware service selection in mobile edge computing systems. In 2019 IEEE International
Conference on Web Services (ICWS), pages 201–208. IEEE.

[83] Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., and Madhyastha, H. V. (2013).
Spanstore: Cost-effective geo-replicated storage spanning multiple cloud services. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 292–308.

[84] Yeung, K. L. (2001). Efficient time slot assignment algorithms for tdm hierarchical and
nonhierarchical switching systems. IEEE Transactions on Communications, 49(2):351–
359.

[85] Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., and Yang, X. (2017). A
survey on the edge computing for the internet of things. IEEE access, 6:6900–6919.

[86] Zhang, Q., Li, S., Li, Z., Xing, Y., Yang, Z., and Dai, Y. (2015). CHARM: A cost-
efficient multi-cloud data hosting scheme with high availability. IEEE Transactions on
Cloud computing, 3(3):372–386.

[87] Zhang-Shen, R. and McKeown, N. (2004). Designing a predictable internet backbone
network. HotNets.

[88] Zhang-Shen, R. and McKeown, N. (2005). Designing a predictable internet backbone
with valiant load-balancing. In International Workshop on Quality of Service, pages 178–
192. Springer.

Curriculum Vitae

Personal Information

FIRST NAME: Konstantinos
LAST NAME: Kontodimas

FATHER’S NAME: Georgios
Contact information:

ADDRESS: Ekalis 4, 11636, Athens
TEL.: +306970449953

EMAIL: kontodimask@gmail.com

Education

2016-2023 Doctoral student, School of Electrical & Computer Engineering,
National Technical University of Athens
Field: “Efficient resource allocation in data centers with dynamic op-
tical networking infrastructures”
Supervisor: Prof. Emmanuel VARVARIGOS

2016 MSc degree in Computer Science & Engineering, Dept. of Com-
puter Engineering and Informatics, University of Patras
Thesis: “Analysis and evaluation of scheduling policies in consoli-
dated I/O operations”

2014 Dipl.-Ing. degree in Computer Engineering & Informatics, Dept.
of Computer Engineering and Informatics, University of Patras
Thesis: “Implementation of a math-heuristic algorithm for routing
and spectrum allocation in elastic fiber optic networks”

https://doi.org/mailto:kontodimask@gmail.com

136 Curriculum Vitae

List of Publications

Articles in Scientific Journals
1. Kontodimas, K., Christodoulopoulos, K., & Varvarigos, E. (2023). A Lean and Fast

Optical Datacenter Interconnection Fabric with Partial Configurability. (submit-
ted to Optical Switching and Networking (OSN) – under review)

2. Kontodimas, K., Soumplis, P., Kretsis, A., Kokkinos, P., Fehér, M., Lucani, D. E.,
& Varvarigos, E. (2023). Secure Distributed Storage Orchestration on Heteroge-
neous Cloud-Edge Infrastructures. IEEE Transactions on Cloud Computing. DOI:
10.1109/TCC.2023.3287653

3. Bakopoulos, P., Christodoulopoulos, K., Landi, G., Aziz, M., Zahavi, E., Gallico,
D., Pitwon, R., Tokas, K., Patronas, I., Capitani, M., Spatharakis, C., Yiannopou-
los, K., Wang, K., Kontodimas, K., Lazarou, I., Wieder, P., Reisis, D., Varvarigos,
E., Biancani, M., & Avramopoulos, H. (2018). NEPHELE: An end-to-end scal-
able and dynamically reconfigurable optical architecture for application-aware
SDN cloud data centers. IEEE Communications Magazine, 56(2), 178-188. DOI:
10.1109/MCOM.2018.1600804.

4. Landi, G., Capitani, M., Kretsis, A., Kontodimas, K., Kokkinos, P., Gallico, D., Bian-
cani, M., Christodoulopoulos, K., & Varvarigos, E. (2018). Inter-domain optimiza-
tion and orchestration for optical datacenter networks. Journal of Optical Com-
munications and Networking, 10(7), B140-B151. DOI: 10.1364/JOCN.10.00B140

5. Christodoulopoulos, K., Kontodimas, K., Siokis, A., Yiannopoulos, K., &Varvarigos,
E. (2017). Efficient bandwidth allocation in the NEPHELE optical/electrical dat-
acenter interconnect. Journal of Optical Communications and Networking, 9(12),
1145-1160. DOI: 10.1364/JOCN.9.001145

Publications in Conference Proceedings
1. Kontodimas, K., Soumplis, P., Kretsis, A., Kokkinos, P., & Varvarigos, E. (2021,

November). Secure distributed storage on cloud-edge infrastructures. In 2021
IEEE 10th International Conference on Cloud Networking (CloudNet) (pp. 127-132).
IEEE. DOI: 10.1109/CloudNet53349.2021.9657156

2. Kontodimas, K., Christodoulopoulos, K., & Varvarigos, E. (2020). Simplifying Op-
tical DCN Fabrics with Blocking Space Switching and Wavelength-Constrained

https://doi.org/10.1109/TCC.2023.3287653
https://doi.org/10.1109/MCOM.2018.1600804.
https://doi.org/10.1364/JOCN.10.00B140
https://doi.org/10.1364/JOCN.9.001145
https://doi.org/10.1109/CloudNet53349.2021.9657156

137

WDM. In Optical Network Design and Modeling: 23rd IFIP WG 6.10 International
Conference, ONDM 2019, Athens, Greece, May 13–16, 2019, Proceedings 23 (pp.
286-298). Springer International Publishing. DOI: 10.1007/978-3-030-38085-4_25

3. Christodoulopoulos, K., Kontodimas, K., Dembeck, L., &Varvarigos, E. (2019,March).
Slotted optical datacenter networks with sub-wavelength resource allocation. In
Optical Fiber Communication Conference (pp. W1J-1). Optica Publishing Group.
DOI: 10.1364/OFC.2019.W1J.1

4. Kontodimas, K., Christodoulopoulos, K., Zahavi, E., & Varvarigos, E. (2018, May).
Resource allocation in slotted optical data center networks. In 2018 International
Conference on Optical Network Design and Modeling (ONDM) (pp. 248-253). IEEE.
DOI: 10.23919/ONDM.2018.8396140

5. Landi, G., Patronas, I., Kontodimas, K., Aziz, M., Christodoulopoulos, K., Kyriakos,
A., Capitani, M., Hamedani, A. F., Reisis, D., Varvarigos, E., Bakopoulos, P., &
Avramopoulos, H. (2017, March). SDN control framework with dynamic resource
assignment for slotted optical datacenter networks. In Optical Fiber Communica-
tion Conference (pp. Tu3L-1). Optica Publishing Group.
DOI: 10.1364/OFC.2017.Tu3L.1

6. Yiannopoulos, K., Kontodimas, K., Christodoulopoulos, K., & Varvarigos, E. (2017,
July). Resource partitioning in the NEPHELE datacentre interconnect. In 2017
19th International Conference on Transparent Optical Networks (ICTON) (pp. 1-4).
IEEE. DOI: 10.1109/ICTON.2017.8024738

7. Christodoulopoulos, K., Kontodimas, K., Siokis, A., Yiannopoulos, K., & Varvari-
gos, E. (2016, December). Collisions free scheduling in the NEPHELE hybrid
electrical/optical datacenter interconnect. In 2016 IEEE International Conference
on Electronics, Circuits and Systems (ICECS) (pp. 368-371). IEEE.
DOI: 10.1109/ICECS.2016.7841209

8. Christodoulopoulos, K., Kontodimas, K., Yiannopoulos, K., & Varvarigos, E. (2016,
July). Bandwidth allocation in the NEPHELE hybrid optical interconnect. In
2016 18th International Conference on Transparent Optical Networks (ICTON) (pp.
1-4). IEEE. DOI: 10.1109/ICTON.2016.7550704

https://doi.org/10.1007/978-3-030-38085-4_25
https://doi.org/10.1364/OFC.2019.W1J.1
https://doi.org/10.23919/ONDM.2018.8396140
https://doi.org/10.1364/OFC.2017.Tu3L.1
https://doi.org/10.1109/ICTON.2017.8024738
https://doi.org/10.1109/ICECS.2016.7841209
https://doi.org/10.1109/ICTON.2016.7550704

138 Curriculum Vitae

List of older Articles in Scientific Journals
1. Kontodimas, K., Kokkinos, P., Kuperman, Y., Houbavlis, A., & Varvarigos, E. (2017).

Analysis and evaluation of scheduling policies for consolidated I/O operations.
Journal of Grid Computing, 15(1), 107-125. DOI: 10.1007/s10723-017-9392-4

2. Bouras, C., Diles, G., Kokkinos, V., Kontodimas, K., & Papazois, A. (2014). A sim-
ulation framework for evaluating interference mitigation techniques in heteroge-
neous cellular environments. Wireless Personal Communications, 77, 1213-1237.
DOI: 10.1007/s11277-013-1562-5

List of older Publications in Conference Proceedings
1. Kontodimas, K., Kokkinos, P., Kuperman, Y., & Varvarigos, E. (2015, December).

Analysis and evaluation of I/O hypervisor scheduling. In 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing (UCC) (pp. 45-54). IEEE.
DOI: 10.1109/UCC.2015.19

2. Akribopoulos, O., Amaxilatis, D., Georgitzikis, V., Logaras, M., Keramidas, V., Kon-
todimas, K., Lagoudianakis,…,&Chatzigiannakis, I. (2013). Making p-space smart:
Integrating iot technologies in amulti-office environment. InMobile Wireless Mid-
dleware, Operating Systems, and Applications: 5th International Conference, Mobil-
ware 2012, Berlin, Germany, November 13-14, 2012, Revised Selected Papers 5 (pp.
31-44). Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-36660-4_3

3. Bouras, C., Kokkinos, V., Kontodimas, K., & Papazois, A. (2012, October). A sim-
ulation framework for LTE-A systems with femtocell overlays. In Proceedings
of the 7th ACM workshop on Performance monitoring and measurement of heteroge-
neous wireless and wired networks (pp. 85-90). DOI: 10.1145/2387191.2387204

4. Alexiou, A., Bouras, C., Kokkinos, V., Kontodimas, K., & Papazois, A. (2011, Octo-
ber). Interference behavior of integrated femto and macrocell environments. In
2011 IFIP Wireless Days (WD) (pp. 1-5). IEEE. DOI: 10.1109/WD.2011.6098161

List of Awards and Scholarships
1. Best Paper Award in 2021 IEEE 10th International Conference on Cloud Networking

(CloudNet) for Secure distributed storage on cloud-edge infrastructures. (Kon-
todimas, K., Soumplis, P., Kretsis, A., Kokkinos, P., & Varvarigos, E.)

https://doi.org/10.1007/s10723-017-9392-4
https://doi.org/10.1007/s11277-013-1562-5
https://doi.org/10.1109/UCC.2015.19
https://doi.org/10.1007/978-3-642-36660-4_3
https://doi.org/10.1145/2387191.2387204
https://doi.org/10.1109/WD.2011.6098161

139

2. Scholarship for Doctorate Research, funded by the State Scholarship Foundation
(IKY).

	Summary
	Περίληψη
	Prologue
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Εκτενής Περίληψη
	1 Introduction
	1.1 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings and Wavelength Selective Switches
	1.2 Fast Optical Datacenter Interconnects with Partial Configurability
	1.3 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures

	2 Resource Allocation in an Optical Datacenter Interconnect with Fiber Rings
	2.1 Introduction and Related Work
	2.2 Hybrid Electrical/Optical Interconnect
	2.3 Bandwidth Allocation and Control Scheme
	2.4 Scheduling Algorithms
	2.4.1 Offline Scheduling
	2.4.2 Complexity of Offline Scheduling and Stability
	2.4.3 Incremental Scheduling Algorithms for Locality Persistent Traffic

	2.5 Architecture-Related Constraint
	2.5.1 Full-Ring Greedy Heuristic
	2.5.2 Spectrum-Shifted Optical Planes

	2.6 Performance Evaluation
	2.6.1 Evaluation Without Architecture Constraint SC3
	2.6.2 Evaluating the Effect of the SC3 Constraint

	2.7 Realistic Evaluation of Control Plane and Architecture Enhancements
	2.7.1 Realistic Traffic Simulations Setup
	2.7.2 Simulation Experiments

	2.8 Conclusion

	3 Fast Optical Datacenter Interconnects with Partial Configurability
	3.1 Introduction and Related Work
	3.2 A DCN Architecture with Lean Switching Components
	3.2.1 The Rotor Switches
	3.2.2 The Lean Switches
	3.2.3 Combining Lean and Rotor Switches for Full Connectivity
	3.2.4 The Architecture Specifications
	3.2.5 Crosspoint Complexity and Reconfiguration Delay

	3.3 The Control Plane
	3.3.1 Preliminaries
	3.3.2 Control Cycle

	3.4 Problem Definition and Scheduling Policies
	3.4.1 Problem Definition
	3.4.2 Scheduling Constraints
	3.4.3 Scheduling Policies

	3.5 Alternative DCN Architectures
	3.5.1 RotorNet: DCN with Rotor Switches
	3.5.2 Mordia: DCN with WDM Rings and Wavelength-Selective Switches
	3.5.3 Comparison of the Lean and the Alternative DCN Architectures

	3.6 Simulation Experiments
	3.6.1 Simulation Setup
	3.6.2 Performance Comparison Between Different DCNs and Policies
	3.6.3 Performance Comparison with Different Levels of Traffic Uniformity
	3.6.4 Performance Comparison with Different Traffic Patterns

	3.7 Partial Configurability Applied to RotorNet
	3.8 Additional Simulation Experiments on RotorNet
	3.8.1 Traffic Profiles Setup
	3.8.2 Dimensioning and Breakout Performance Study
	3.8.3 Performance Comparison with Different Policies
	3.8.4 Performance Comparison of AWRR with Different Traffic Profiles

	3.9 Conclusion

	4 Secure Distributed Storage Orchestration on Cloud-Edge Infrastructures
	4.1 Introduction and Related Work
	4.2 Distributed Storage Infrastructure and Operations
	4.2.1 Store/Retrieve Data Processing Operation
	4.2.2 Store Operation
	4.2.3 Retrieve Operation

	4.3 Distributed Storage Resource Allocation
	4.3.1 Pre-processing Phase - Availability
	4.3.2 Mixed-Integer Linear Programming Formulation
	4.3.3 Multi-Agent Rollout Heuristic Algorithm

	4.4 Simulation Experiments
	4.4.1 Simulation Setup
	4.4.2 Optimality Performance Evaluation of Heuristic and Multi-Agent Rollout Mechanisms
	4.4.3 Evaluating Performance Based on Distributed Storage KPIs

	4.5 Conclusion

	Bibliography
	Curriculum Vitae

