
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF INDUSTRIAL ELECTRIC DEVICES AND DECISION
SYSTEMS

MMSleepNet: A Μultimodal Model for Automatic
Sleep Staging

DIPLOMA THESIS

Dimitrios K. Xynogalas

Supervisor: Dimitrios Askounis

Professor NTUA

Athens, February 2024

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF INDUSTRIAL ELECTRIC DEVICES AND DECISION
SYSTEMS

MMSleepNet: A Μultimodal Model for Automatic
Sleep Staging

DIPLOMA THESIS

Dimitrios K. Xynogalas

Supervisor: Dimitrios Askounis

Professor NTUA

Approved by the examination committee on 29 February 2024

Athens, February 2024

Ioannis Psarras

Professor NTUA

Dimitrios Askounis

Professor NTUA

Vangelis Marinakis

Assistant Professor NTUA

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF INDUSTRIAL ELECTRIC DEVICES AND DECISION
SYSTEMS

Dimitrios Xynogalas
Electrical and Computer Engineer, NTUA

Copyright © – Dimitrios Xynogalas, 2024. All rights reserved. This work is copyright and
may not be reproduced, stored nor distributed in whole or in part for commercial
purposes. Permission is hereby granted to reproduce, store, and distribute this work for
non-profit, educational and research purposes, provided that the source is
acknowledged, and the present copyright message is retained. Enquiries regarding use
for profit should be directed to the author. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the National Technical University of
Athens.

5

Περίληψη

Η αυτόματη ταξινόμηση των σταδίων ύπνου είναι ζωτικής σημασίας για την αξιολόγηση της
ποιότητας του ύπνου και τη διάγνωση των διαταραχών του ύπνου. Αν και έχουν αναπτυχθεί
πολυάριθμες προσεγγίσεις για τον σκοπό αυτό, πολλές βασίζονται αποκλειστικά σε
μονοκάναλα σήματα ηλεκτροεγκεφαλογραφήματος (EEG) ή εξετάζουν εισροές από ένα
μόνο πεδίο. Η πολυσωμνογραφία (PSG) προσφέρει μια πιο ολοκληρωμένη λύση
παρέχοντας πολλαπλά κανάλια καταγραφής σήματος, επιτρέποντας στα μοντέλα να
εξάγουν και να ενσωματώνουν πληροφορίες από διάφορα κανάλια για βελτιωμένη
απόδοση ταξινόμησης. Επιπλέον, πολύτιμες πληροφορίες μπορούν να αντληθούν τόσο από
τις αναπαραστάσεις του πεδίου του χρόνου όσο και από τις αναπαραστάσεις στο πεδίο της
συχνότητας των σημάτων PSG. Η παρούσα μελέτη εισάγει το MMSleepNet, ένα μοντέλο
βαθιάς μάθησης που εξάγει και συγχωνεύει επιδέξια πληροφορίες από πολλαπλά κανάλια
PSG τόσο στο πεδίο του χρόνου όσο και στο πεδίο της συχνότητας για να επιτύχει την
αυτόματη κατηγοριοποίηση των σταδίων του ύπνου. Αναγνωρίζοντας τη δυνατότητα των
εργαστηρίων ύπνου να παράγουν τεράστιες ποσότητες μη επισημασμένων δεδομένων για
τη κατηγοριοποίηση του ύπνου και την εγγενή δυσκολία της επισήμανσης αυτών των
δεδομένων, η μελέτη διερευνά την αποτελεσματικότητα διαφόρων αλγορίθμων
αυτοεπιβλεπόμενης μάθησης για την αντιμετώπιση της έλλειψης ετικετών και τη βελτίωση
της απόδοσης του προτεινόμενου μοντέλου.

Λέξεις κλειδιά: Μηχανική Μάθηση, Πολυτροπική, Αυτόματη Κατηγοριοποίηση Ύπνου

6

7

Abstract

Automatic sleep stage classification is crucial for assessing sleep quality and diagnosing sleep
disorders. While numerous approaches have been developed for this purpose, many rely
solely on single-channel electroencephalogram (EEG) signals or consider inputs from a single
domain. Polysomnography (PSG) offers a more comprehensive solution by providing
multiple channels of signal recording, enabling models to extract and integrate information
from diverse channels for enhanced classification performance. Furthermore, valuable
insights can be derived from both the time and frequency domain representations of PSG
signals. This study introduces MMSleepNet, a deep learning model that adeptly extracts and
fuses information from multiple PSG channels across both the time and frequency domains
to facilitate automatic sleep stage scoring. Recognizing the potential of sleep labs to
generate vast amounts of unlabeled data for sleep scoring and the inherent difficulty of
labeling this data, the study explores the efficacy of various self-supervised learning
algorithms to address label scarcity and enhance the proposed model's performance.

Keywords: Machine Learning, Multimodal, Automatic Sleep Staging

8

9

Ευχαριστίες
Θα ήθελα να εκφράσω τις ευχαριστίες μου και την εκτίμησή μου προς τον Καθηγητή
Δημήτρη Ασκούνη για την ευκαιρία που μου παρείχε να ασχοληθώ με το πρόβλημα
ανίχνευσης σταδίων του ύπνου στο εργαστήριό του. Επίσης, θα ήθελα να ευχαριστήσω τον
υποψήφιο διδάκτορα Λουκά Ηλία, ο οποίος με καθοδήγησε και με υποστήριξε κατά την
διάρκεια εκπόνησης της διπλωματικής μου εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένεια και τους φίλους μου για την υποστήριξη
τους καθ’ όλη την διάρκεια των σπουδών μου.

Δημήτρης Ξυνογαλάς,
Αθήνα, Ιανουάριος 2024

10

11

Contents

Περίληψη .. 5

Abstract ... 7

Chapter 0. Εκτεταμένη Περίληψη στα Ελληνικά ... 15

0.1 Εισαγωγή .. 15

0.2 Θεωρητικό Υπόβαθρο ... 16

0.2.1 Στάδια Ύπνου ... 16

0.2.2 Μηχανική Μάθηση .. 16

0.2.3 Βαθιά Νευρωνικά Δίκτυα .. 17

0.3 Μεθοδολογία και Πειράματα ... 18

0.3.1 Μεθοδολογία .. 18

0.3.2 Εκπαίδευση με Όλες τις Ετικέτες ... 19

0.3.3 Εκπαίδευση με Μειωμένες Ετικέτες .. 20

Chapter 1. Introduction ... 23

1.1 Motivation .. 23

1.2 Thesis Outline ... 25

Chapter 2. Theoretical Background ... 27

2.1 Sleep Stage Classification .. 27

2.1.1 Introduction ... 27

2.1.2 Sleep Stages ... 27

2.1.3 Polysomnography .. 29

2.2 Machine Learning ... 30

2.2.1 Introduction ... 30

2.2.2 Types of Machine Learning .. 30

2.2.3 Deep Learning ... 33

2.2.4 Evaluation Metrics ... 51

Chapter 3. Related Work ... 53

3.1 Unimodal Approaches .. 53

3.2 Multivariate and Multimodal Approaches .. 54

3.3 Self-supervised Approach ... 55

Chapter 4. Methodology ... 57

4.1 Data .. 57

4.1.1 Dataset .. 57

4.1.2 Data Preprocessing .. 57

4.2 Supervised Model ... 57

12

4.3 Self-Supervised Algorithms ... 59

4.4 Evaluation ... 60

Chapter 5. Experiments ... 61

5.1 Implementation Details .. 61

5.2 Results .. 62

5.2.1 Full-Label Scenario ... 62

5.2.2 Reduced-Label Scenario .. 65

Chapter 6. Conclusions .. 69

6.1 Discussion ... 69

6.2 Future Work .. 69

References .. 71

13

Figure 1: Screenshot of a PSG of a person in REM sleep [9] .. 24
Figure 2: The sleep cycle [20] .. 29
Figure 3: Action-reward feedback loop [23] .. 32
Figure 4: A Reinforcement Learning taxonomy as defined by OpenAI [24] 32
Figure 5: Overfitting and Underfitting [26] .. 34
Figure 6: Dropout [27] ... 35
Figure 7: Sigmoid/Logistic Activation Function [28] .. 36
Figure 8: Tanh Function (Hyperbolic Tangent) [28] .. 36
Figure 9: ReLU Activation Function [28] .. 37
Figure 10: Leaky ReLU [28] .. 37
Figure 11: Parametric ReLU [28] .. 38
Figure 12: Gradient descent with 2 parameters 𝜃𝜃0,𝜃𝜃1 and loss function 𝐽𝐽 [29] 39
Figure 13: A NN with 1 hidden layer. Where, 𝑤𝑤𝑤𝑤𝑤𝑤 is the weight that multiplies the activation
from the i-th neuron of the previous layer to the j-th neuron of the current layer, 𝑓𝑓 is the
activation function of the hidden layer and g is the activation function of the output layer
[32] .. 41
Figure 14: CNN architecture in comparison with a typical MLP model [33] 42
Figure 15: Illustration of the Convolution Operation for the 2 dimensional case [34] 43
Figure 16: Example of how three learned filters and a max pooling unit can learn to become
invariant to rotation [31] ... 44
Figure 17: Example of max pooling operation [35] .. 44
Figure 18: RNN architecture. (Left) Circuit diagram. The black square indicates a delay of a
single time step. (Right) The same network seen as an unfolded computational graph, where
each node is now associated with one particular time instance [36] 46
Figure 19: The computational graph used to compute the training loss of a RNN [31] 47
Figure 20: LSTM architecture [38] ... 48
Figure 21: Ways to compute attention [40] ... 49
Figure 22: Multi-head scaled dot-product attention mechanism [41] 50
Figure 23: Example of a multiclass confusion matrix [42] ... 52
Figure 24: Architecture of MMSleepNet ... 58
Figure 25: Self-supervised learning algorithms [54] .. 59
Figure 26: Confusion Matrix on SleepEDF-20 Dataset ... 62
Figure 27: Confusion Matrix on SleepEDF-20 (±30 min) Dataset ... 63
Figure 28: Confusion Matrix of supervised model on SleepEDF-20 (±30 min) Dataset With
10% of the Labels .. 65
Figure 29: Confusion Matrix after pretraining MMSleepNet with various SSL algorithms on
SleepEDF-20 (±30 min) Dataset With 10% of the Labels ... 66

14

Table 1: Per-class Performance Metrics on SleepEDF-20 Dataset .. 63
Table 2: Per-class Performance Metrics on SleepEDF-20 (±30 min) Dataset 64
Table 3: Performance Comparison with Previous Methods ... 64
Table 4: Performance of fine-tuned MMSleepNet after pretraining with various SSL
algorithms on SleepEDF-20 (±30 min) Dataset With 10% of the Labels 67

15

Chapter 0. Εκτεταμένη Περίληψη στα Ελληνικά

0.1 Εισαγωγή

Ο ύπνος έχει κρίσιμο ρόλο για την υγεία και ευεξία του κάθε ανθρώπου, με τις διάφορες
διαταραχές του ύπνου να συνδέονται συχνά με πολλές ασθένειες. Η αναγνώριση των
σταδίων του ύπνου είναι σημαντική για την κατανόηση των προτύπων ύπνου, τη διάγνωση
των διαταραχών και την βελτίωση της περίθαλψής τους. Κλινικά, η πολυυπνογραφία (PSG)
είναι μια σημαντική τεχνική για την ανάλυση των σταδίων του ύπνου και τη διάγνωση
διαταραχών του ύπνου. Το σύστημα PSG μετράει συνήθως την εγκεφαλική δραστηριότητα
(ηλεκτροεγκεφαλογράφημα, EEG), τις οφθαλμικές κινήσεις (ηλεκτροοφθαλμογράφημα,
EOG), τη μυϊκή δραστηριότητα ή την ενεργοποίηση των σκελετικών μυών
(ηλεκτρομυογράφημα, EMG) και τον καρδιακό ρυθμό (ηλεκτροκαρδιογράφημα, ECG).
Συνήθως, εμπειρογνώμονες χειροκίνητα ταξινομούν αυτά τα σήματα σε έξι στάδια ύπνου
ακολουθώντας διάφορα εγχειρίδια, αλλά αυτές οι μέθοδοι είναι χρονοβόρες και
υποκειμενικές.

Πολλές μελέτες έχουν χρησιμοποιήσει τεχνικές μηχανικής μάθησης για την αυτόματη
ταξινόμηση των σταδίων του ύπνου, κυρίως με παραδοσιακές μεθόδους επεξεργασίας
σημάτων ή χρησιμοποιώντας μοντέλα βαθιάς μηχανικής μάθησης. Οι παραδοσιακές
μέθοδοι απαιτούν την επιλογή των χαρακτηριστικών που πρέπει να εξαχθούν από τα
σήματα της πολυυπνογραφίας, ενώ οι μέθοδοι βαθιάς μάθησης αναγνωρίζουν αυτόματα
τα χρησιμότερα χαρακτηριστικά. Ωστόσο, η επισήμανση των δεδομένων που απαιτείτε να
πραγματοποιηθεί πρώτα από ειδικούς πριν μπορούν να χρησιμοποιηθούν οι παραπάνω
τεχνικές είναι κοστοβόρα και περιορίζει τη δημιουργία μεγάλων συνόλων δεδομένων που
θα μπορούσαν να αξιοποιηθούν για να βελτιώσουν την απόδοση των εν λόγω μοντέλων.

Επιπλέον, πολλές πρόσφατες μελέτες χρησιμοποιούν πολύπλοκα μοντέλα "ακολουθίας
προς ακολουθία" για την ανάλυση δεδομένων και την ταξινόμηση των σταδίων του ύπνου.
Αυτή η προσέγγιση αποτυπώνει τις χρονικές σχέσεις μεταξύ των εποχών ύπνου, αλλά
απαιτεί μεγάλα μοντέλα και χρόνους εκπαίδευσης. Το AttnSleep [1], που χρησιμοποιεί ένα
μοντέλο μιας εποχής, επιτυγχάνει καλά αποτελέσματα με ταχύτερη εκπαίδευση,
υποδηλώνοντας τις δυνατότητες απλούστερων, αρχιτεκτονικών ένα προς ένα στην ανάλυση
του ύπνου.

Η παρούσα διατριβή παρουσιάζει ένα νέο μοντέλο μηχανικής μάθησης, το MMSleepNet, το
οποίο ενσωματώνει πληροφορίες από πολλαπλά φυσιολογικά σήματα που έχουν εξαχθεί
με χρήση της τεχνικής PSG για την βελτίωση της ταξινόμησης των σταδίων του ύπνου. Το
μοντέλο δοκιμάστηκε σε δεδομένα με πλήρη επισήμανση για να μπορέσει να γίνει
σύγκριση με άλλες μεθόδους που χρησιμοποιούνται στην βιβλιογραφία για
κατηγοριοποίηση των σταδίων του ύπνου, αλλά και σε δεδομένα με μειωμένη επισήμανση,
όπου αφαιρέθηκαν οι επισημάνσεις από ένα μεγάλο ποσοστό των δειγμάτων του συνόλου
εκπαίδευσης, έτσι ώστε να συγκριθεί η απόδοση του μοντέλου σε αυτό το σενάριο όταν
εκπαιδεύεται εξαρχής με αυτά τα δεδομένα έναντι στο όταν αξιοποιούνται πρώτα
αλγόριθμοι αυτο-εποπτευόμενης μάθησης για την προεκπαίδευση του μοντέλου.

Οι ερευνητές στην βιβλιογραφία αναγνωρίζουν τη σημασία της αυτόματης
κατηγοριοποίηση του ύπνου με τη χρήση μηχανικής μάθησης και δίνουν έμφαση στη χρήση
πολυτροπικών και πολυκαναλικών μοντέλων. Η μετάβαση από τις παραδοσιακές μεθόδους

16

στις μεθόδους βαθιάς μάθησης προσφέρει τεράστιες δυνατότητες για τον τομέα και έχει
παρουσιάσει σημαντική βελτίωση στην ακρίβεια και ευρωστία των προβλέψεων. Ωστόσο,
υπάρχουν ακόμα προκλήσεις που πρέπει να αντιμετωπίσουν, όπως η δυσκολία στην
απόκτηση δεδομένων με επισήμανση από ειδικούς και η αποτελεσματική εξαγωγή και μίξη
πληροφορίας που προέρχεται από πολλαπλά σήματα. Μελλοντικές ερευνητικές εργασίες
μπορούν να επικεντρωθούν σε αυτές τις προκλήσεις για να βελτιώσουν περαιτέρω την
αυτόματη κατηγοριοποίηση των σταδίων του ύπνου.

0.2 Θεωρητικό Υπόβαθρο

0.2.1 Στάδια Ύπνου

Η αυτόματη ταξινόμηση σταδίων ύπνου (ASSC) είναι ένας σημαντικός τομέας της
βιοϊατρικής μηχανικής που αποσκοπεί στην αυτόματη αναγνώριση των σταδίων του ύπνου
μέσω της ανάλυσης καταγραφών πολυυπνογραφίας (PSG). Η PSG περιλαμβάνει την
καταγραφή πολλαπλών φυσιολογικών σημάτων, όπως ηλεκτροεγκεφαλογράφημα (EEG),
ηλεκτροοφθαλμογράφημα (EOG), ηλεκτρομυογράφημα (EMG) και αναπνευστικές
παράμετροι. Το ASSC έχει τη δυνατότητα να βελτιώσει την κλινική πρακτική και την έρευνα,
μειώνοντας το χειροκίνητο φόρτο εργασίας και επιτρέποντας την παρακολούθηση του
ύπνου σε πραγματικό χρόνο.

Ο ανθρώπινος ύπνος περιλαμβάνει πέντε διαφορετικά στάδια, τα οποία είναι: εγρήγορση,
ύπνος NREM και ύπνος REM. Ο ύπνος NREM αποτελείται από τέσσερα στάδια (N1, N2, N3,
N4), και οι φυσιολογικές παράμετροι και τα μοτίβα EEG διαφέρουν για κάθε στάδιο. Ο
ύπνος NREM αποτελεί το 75% του συνολικού ύπνου, με το στάδιο N2 να είναι το πιο κοινό.
Μία τυπική περίοδος ύπνου περιλαμβάνει 4 έως 5 κύκλους, με τη σειρά N1, N2, N3, N2,
REM. Κάθε περίοδος REM γίνεται μεγαλύτερη καθώς προχωρά η νύχτα, ενώ ο βαθύς ύπνος
(NREM) μειώνεται. Ο πλήρης κύκλος ύπνου διαρκεί περίπου 90 έως 110 λεπτά.

0.2.2 Μηχανική Μάθηση

Η μηχανική μάθηση είναι ένα πεδίο έρευνας που ασχολείται με την ανάπτυξη μεθόδων που
μπορούν να "μάθουν" από δεδομένα προκειμένου να βελτιώσουν την απόδοσή τους σε
διάφορες εργασίες. Οι αλγόριθμοι μηχανικής μάθησης χρησιμοποιούν δεδομένα
εκπαίδευσης για να δημιουργήσουν μαθηματικά μοντέλα και να κάνουν προβλέψεις ή να
πάρουν αποφάσεις. Η μηχανική μάθηση θεωρείται υποσύνολο της τεχνητής νοημοσύνης,
μιας επιστήμης που ασχολείται με την ανάπτυξη και την μελέτη έξυπνων μηχανών.

Τα νευρωνικά δίκτυα αποτελούν τον πιο δημοφιλή κλάδο μοντέλων μηχανικής μάθησης. Τα
νευρωνικά δίκτυα αποτελούνται από συνδεδεμένες μονάδες, γνωστές ως τεχνητοί
νευρώνες, που μοντελοποιούν τους αληθινούς νευρώνες ενός εγκεφάλου. Οι νευρώνες
λαμβάνουν σήματα, τα επεξεργάζονται και μεταδίδουν σήματα σε άλλους νευρώνες μέσω
των συνδέσεών τους. Η έξοδος κάθε νευρώνα υπολογίζεται από μια μη γραμμική
συνάρτηση του αθροίσματος των εισόδων του. Οι νευρώνες έχουν βάρη που
προσαρμόζονται κατά τη διάρκεια της μάθησης, επηρεάζοντας τη δύναμη των σημάτων
στις συνδέσεις. Οι νευρώνες μπορεί επίσης να έχουν ένα κατώφλι, καθορίζοντας ότι θα
παράξουν σήμα μόνο όταν το συνολικό σήμα στην είσοδο υπερβαίνει αυτό το κατώφλι.

Οι αλγόριθμοι μηχανικής μάθησης χρησιμοποιούνται σε πολλούς τομείς, όπως η όραση
υπολογιστών, η αναγνώριση ομιλίας και το φιλτράρισμα ηλεκτρονικού ταχυδρομείου. Η
υπολογιστική μοντελοποίηση αυτών των εργασιών είναι πολύπλοκη και η ανάπτυξη

17

συμβατικών αλγορίθμων είναι συχνά δύσκολη ή αδύνατη. Η μηχανική μάθηση παρέχει μια
αποτελεσματική προσέγγιση για την ανάπτυξη αλγορίθμων για την επίλυση αυτών των
προβλημάτων.

Yπάρχουν τρεις κύριες πρακτικές εκπαίδευσης στη μηχανική μάθηση: η μάθηση με
επίβλεψη, η μάθηση χωρίς επίβλεψη (ή μάθηση με αυτοεπίβλεψη) και η μάθηση με
ενίσχυση. Η μάθηση με επίβλεψη απαιτεί τη χρήση ετικετών για την εκπαίδευση των
μοντέλων, η μάθηση χωρίς επίβλεψη επιτρέπει στα μοντέλα να ανακαλύπτουν τη δομή των
δεδομένων χωρίς οδηγίες, και η μάθηση με ενίσχυση ανταμείβει τα μοντέλα για τις σωστές
ενέργειες και τιμωρεί τις λανθασμένες. Υπάρχει επίσης η ημιεπιτηρούμενη μάθηση, που
συνδυάζει στοιχεία από την επιβλεπόμενη και την ανεπίβλεπτη μάθηση.

Η μάθηση με αυτοεπίβλεψη είναι μια μορφή μηχανικής μάθησης όπου το μοντέλο
μαθαίνει από τα δεδομένα χωρίς επίβλεψη από ανθρώπους ή την χρήση ετικετών. Αντί να
βασίζεται σε επισημειωμένα παραδείγματα, το μοντέλο παράγει τα δικά του σήματα
εποπτείας από τα δεδομένα εισόδου. Συχνά, η μάθηση με αυτοεπίβλεψη στην βαθιά
μάθηση περιλαμβάνει το σχεδιασμό εργασιών που αξιοποιούν τις δομές και τις σχέσεις
μεταξύ των δεδομένων. Μέσω αυτών των εργασιών, το μοντέλο μαθαίνει αναπαραστάσεις
που μπορούν να χρησιμοποιηθούν σε άλλες εργασίες. Η αυτοεπιβλεπόμενη μάθηση είναι
δημοφιλής γιατί μπορεί να αξιοποιεί μεγάλες ποσότητες δεδομένων χωρίς ετικέτες.

0.2.3 Βαθιά Νευρωνικά Δίκτυα

Ο όρος Τεχνητό Νευρωνικό Δίκτυο (ANN) αναφέρεται σε ένα υπολογιστικό σύστημα
επεξεργασίας δεδομένων, το οποίο πρόκειται στην ουσία για ένα δίκτυο διασυνδεδεμένων
δομικών μονάδων που ονομάζονται νευρώνες οι οποίοι είναι τοπολογικά οργανωμένοι σε
επίπεδα. Κάθε τεχνητός νευρώνας λαμβάνει ένα σύνολο αριθμητικών εισόδων από άλλους
κόμβους του δικτύου, τις οποίες μετασχηματίζει βάσει ενός γραμμικού συνδυασμού με
ανάλογα βάρη και παράγει την τελική έξοδο ύστερα από την εφαρμογή μιας μη-γραμμικής
συνάρτησης ενεργοποίησης, η οποία τροφοδοτείται στην συνέχεια σε άλλους νευρώνες
του δικτύου. Το βασικό χαρακτηριστικό των τεχνητών νευρωνικών δικτύων έγκειται στην
δυνατότητα εκπαίδευσής τους μέσα από μια διαδικασία η οποία στοχεύει στην σταδιακή
βελτίωση της ικανότητάς τους να επιλύουν κάποιο συγκεκριμένο πρόβλημα μέσο της
αξιοποίησης μιας συλλογής δεδομένων που χρησιμοποιούνται για την εκπαίδευση του
δικτύου. Σε επίπεδο υλοποίησης, αυτό επιτυγχάνεται μέσω ενός αλγορίθμου ακολουθιακού
υπολογισμού των μεταβολών των βαρών κάθε νευρώνα του δικτύου, ο οποίος καλείται
Backpropagation.

Τα Συνελικτικά Νευρωνικά Δίκτυα (CNNs) αποτελούν μία κατηγορία τεχνητών νευρωνικών
δικτύων ειδικά σχεδιασμένων για την επεξεργασία και την ανάλυση δεδομένων που
χαρακτηρίζονται από κάποιου είδους χωρική τοπολογία πλέγματος και αναπαρίστανται
συνήθως με την μορφή γενικευμένων πινάκων. Παραδείγματα περιλαμβάνουν δεδομένα
χρονοσειρών, τα οποία μπορούν να θεωρηθούν ως ένα πλέγμα μίας διάστασης που
λαμβάνει δείγματα σε τακτά χρονικά διαστήματα, και δεδομένα εικόνας, τα οποία μπορούν
να θεωρηθούν ως ένα πλέγμα δισδιάστατων εικονοστοιχείων. Η κύρια διαφορά μεταξύ των
CNNs και ενός απλού νευρωνικού δικτύου είναι ότι, σε τουλάχιστον ένα στρώμα ενός CNN
ο συμβατικός πολλαπλασιασμός πινάκων αντικαθίσταται από ένα στρώμα συνέλιξης.

Τα επαναλαμβανόμενα νευρωνικά δίκτυα, γνωστά και ως RNN, είναι μια κατηγορία
τεχνητών νευρωνικών δικτύων που έχουν σχεδιαστεί για την επεξεργασία ακολουθιών

18

δεδομένων. Είναι ιδιαίτερα κατάλληλα για εργασίες όπως η επεξεργασία φυσικής γλώσσας,
η αναγνώριση ομιλίας, η πρόβλεψη χρονοσειρών και άλλα. Τα RNNs χαρακτηρίζονται από
την ικανότητά τους να διατηρούν μια μορφή μνήμης που τους επιτρέπει να συλλαμβάνουν
και να επεξεργάζονται πληροφορίες από προηγούμενα χρονικά βήματα μέσα σε μια
ακολουθία, καθιστώντας τα ιδιαίτερα ισχυρά για εργασίες που περιλαμβάνουν χρονικές
εξαρτήσεις.

Οι μηχανισμοί προσοχής είναι ένα θεμελιώδες στοιχείο στη βαθιά μάθηση που επιτρέπει
στα μοντέλα να εστιάζουν σε συγκεκριμένα τμήματα της εισόδου όταν κάνουν προβλέψεις
ή κωδικοποιούν πληροφορίες. Έχουν χρησιμοποιηθεί ευρέως σε διάφορες εφαρμογές,
συμπεριλαμβανομένης της επεξεργασίας φυσικής γλώσσας, της όρασης υπολογιστών και
της αναγνώρισης ομιλίας. Οι μηχανισμοί προσοχής είναι ιδιαίτερα χρήσιμοι όταν έχουμε να
κάνουμε με ακολουθίες ή όταν θέλουμε να δώσουμε διαφορετική σημασία σε διαφορετικά
μέρη των δεδομένων εισόδου.

0.3 Μεθοδολογία και Πειράματα

0.3.1 Μεθοδολογία

Σε αυτή την εργασία προτείνουμε ένα ένα-προς-ένα, πολυτροπικό μοντέλο μηχανικής
μάθησης, το MMSleepNet, για την επίλυση του προβλήματος της αυτόματης
κατηγοριοποίησης των σταδίων του ύπνου. Επιπλέον, εξετάζουμε την απόδοση του
μοντέλου όταν αυτό εκπαιδεύεται εξαρχής χρησιμοποιώντας μικρή ποσότητα
επισημασμένων δεδομένων έναντι στην περίπτωση όπου έχει προηγηθεί προεκπαίδευσή
του με την χρήση μεγαλύτερου συνόλου δεδομένων χωρίς ετικέτες μέσο της χρήσης
αλγορίθμων αυτοεπιβλεπόμενης μάθησης.

Η αρχιτεκτονική του προτεινόμενου μοντέλου φαίνεται στην Εικόνα 1 και αποτελείται από
δύο κλάδους. Ο ένας κλάδος εξάγει χαρακτηριστικά από χρονοσειρές 30 δευτερολέπτων
EEG και EOG ενός πολυυπνογραφήματος, ενώ ο άλλος κλάδος εξάγει χαρακτηριστικά από
τα αντίστοιχα σπεκτρογράμματα. Τα εξαγόμενα χαρακτηριστικά στην συνέχεια
ενοποιούνται μέσο ενός μηχανισμού προσοχής και δίνονται ως είσοδοι σε ένα RNN από το
οποίο εξάγεται η τελική πρόβλεψη του μοντέλου.

Για την εκτίμηση της απόδοσης του μοντέλου χρησιμοποιήθηκε το σύνολο δεδομένων
SleepEDF-20 που αποτελείται από πολυυπνογραφήματα 20 ανθρώπων με ηλικίες από 25
έως 34 ετών. Από το παραπάνω σύνολο δεδομένων χρησιμοποιήθηκαν είτε μόνο τα
δεδομένα που αντιστοιχούσαν σε περίοδο ύπνου είτε προστέθηκαν και 30 επιπλέον λεπτά
πριν και μετά την έναρξη και την λήξη του ύπνου αντίστοιχα, για να ανακουφιστεί σε
κάποιον βαθμό το πρόβλημα της μη ισορροπημένης κατανομής ετικετών το οποίο
εμφανίζεται τόσο στο συγκεκριμένο σύνολο δεδομένων, όσο και συνολικά στο πρόβλημα
της αυτόματης κατηγοριοποίησης σταδίων του ύπνου.

Για να γίνει σωστή αξιολόγηση της απόδοσης του μοντέλου χρησιμοποιήθηκαν για
σύγκριση τρία μοντέλα αναφοράς από την βιβλιογραφία, τα AttnSleep [1], XSleepNet [2] και
DeepSleepNet [3].

Ως μητρικές για την αξιολόγηση της συνολικής επίδοσης των μοντέλων χρησιμοποιήθηκαν η
ακρίβεια (Acc), το macro-averaged F1-score (MF1) και το Cohen Kappa (κ), ενώ το F1-score
χρησιμοποιήθηκε στην περίπτωση αξιολόγησης της απόδοσης ανά ετικέτα.

19

Εικόνα 1: Αρχιτεκτονική του MMSleepNet

0.3.2 Εκπαίδευση με Όλες τις Ετικέτες

Τα αποτελέσματα για την ανά ετικέτα επίδοση του μοντέλου δίνονται στους Πίνακας 1 και
Πίνακας 2 για το σύνολο δεδομένων SleepEDF-20 με και χωρίς την προσθήκη των 30 λεπτών
πριν και μετά τον ύπνο, αντίστοιχα. Από τους προαναφερθέντες πίνακες διαπιστώνουμε ότι
η προσθήκη των 30 λεπτών πριν και μετά τον ύπνο οδηγούν σε σημαντικές βελτιώσεις στην
απόδοση του μοντέλου για τις περισσότερες μητρικές και ετικέτες. Επιπλέον, μπορούμε να
παρατηρήσουμε ότι το MMSleepNet προσφέρει ως επί το πλείστον καλύτερα
αποτελέσματα σε σχέση με τις δύο προηγούμενες μεθόδους, το AttnSleep [1] και
DeepSleepNet [3].

Στον Πίνακας 3 δίνεται η συνολική απόδοση του μοντέλου σε σχέση με τις μεθόδους
αναφοράς. Από τον δοθείσα πίνακα μπορούμε να συμπεράνουμε ότι το προτεινόμενο
μοντέλο επιδεικνύει ανταγωνιστικά αποτελέσματα βάση των μητρικών που
χρησιμοποιήθηκαν σε σύγκριση με τα παλαιότερα μοντέλα αναφοράς που υπάρχουν στην
βιβλιογραφία.

20

Πίνακας 1: Αποτελέσματα κατηγοριοποίησης ανά ετικέτα στο SleepEDF-20

 MMSleepNet
 PR RE F1

W 81.9 83.2 81.9
N1 54.3 39.1 44.4
N2 86.9 87.6 86.6
N3 82.5 86.0 83.1

REM 76.8 83.9 79.2

Πίνακας 2: Αποτελέσματα κατηγοριοποίησης ανά ετικέτα στο SleepEDF-20 (±30 min)

 MMSleepNet AttnSleep [1] DeepSleepNet [3]
 PR RE F1 PR RE F1 PR RE F1

W 94.3 92.0 93.0 89.6 89.7 89.7 86.0 83.4 84.7
N1 57.9 51.5 53.4 47.1 39.1 42.8 43.5 50.1 46.6
N2 89.3 88.2 88.6 89.1 88.6 88.8 90.5 81.7 85.9
N3 85.9 81.2 82.1 80.7 89.8 90.2 77.1 94.2 84.8

REM 76.1 87.3 81.0 76.1 82.2 79.0 80.9 83.9 82.4

Πίνακας 3: Σύγκριση αποτελεσμάτων με μοντέλα αναφοράς

 Overall metrics Per-class F1-Score
Dataset Model Acc κ MF1 W N1 N2 N3 N4

SleepEDF-20

MMSleepNet 81.6 0.73 75.1 81.9 44.4 86.6 83.1 79.2
AttnSleep [1] - - - - - - - -
XSleepNet [2] 83.3 0.76 77.3 - - - - -

DeepSleepNet [3] 80.8 0.74 74.2 - - - - -

SleepEDF-20 (±30 min)

MMSleepNet 85.7 0.82 79.6 93.0 53.4 88.6 82.1 81.0
AttnSleep [1] 84.4 0.79 78.1 89.7 42.6 88.8 90.2 79.0
XSleepNet [2] 86.4 0.81 80.9 - - - - -

DeepSleepNet [3] 81.9 0.76 76.6 86.7 45.5 85.1 83.3 82.6

0.3.3 Εκπαίδευση με Μειωμένες Ετικέτες

Για να αξιολογηθεί η απόδοση του μοντέλου, με και χωρίς την χρήση αλγορίθμων
αυτοεπιβλεπόμενης μάθησης, στην περίπτωση που έχουμε πρόσβαση σε μικρό αριθμό
επισημασμένων δειγμάτων σε σχέση με το συνολικό μέγεθος του συνόλου δεδομένων
αξιολογήσαμε την απόδοση του μοντέλου βάση της ακρίβειας (Acc), του macro-averaged
F1-score (MF1) και του Cohen Kappa (κ) καθώς και του ανά κατηγορίας F1-score τόσο για το
μοντέλο χωρίς προεκπαίδευση, όσο και για την περίπτωση του προεκπαιδευμένου
μοντέλου με χρήση κάποιου από τους επιλεγμένους αλγορίθμους μη επιβλεπόμενης
μάθησης.

Τα αποτελέσματα που δίνονται στον Πίνακας 4 καταδεικνύουν ότι η επιλογή του
αλγορίθμου SSL έχει τεράστια σημασία. Όταν χρησιμοποιείται ο λάθος αλγόριθμος για το
πρόβλημα, μπορεί να οδηγήσει σε σημαντική υποβάθμιση των επιδόσεων του μοντέλου,

21

ενώ όταν εφαρμόζεται ένας πιο κατάλληλος αλγόριθμος μπορεί να οδηγήσει σε σημαντικές
βελτιώσεις στις προγνωστικές ικανότητες του μοντέλου που προκύπτει.

Σε αυτό το σύνολο δεδομένων μειωμένης ετικέτας τα καλύτερα αποτελέσματα προκύπτουν
όταν γίνεται προεκπαίδευση με τον αλγόριθμο CPC. Ο πιθανός λόγος για αυτό το
αποτέλεσμα είναι ότι αυτός ο αλγόριθμος βασίζεται στην πρόβλεψη των μελλοντικών
χρονικών βημάτων στον λανθάνοντα χώρο, γεγονός που του επιτρέπει να μάθει για τα
χρονικά χαρακτηριστικά στα δεδομένα EEG και EOG, τα οποία είναι χρήσιμα για τη
βελτίωση της απόδοσης του μοντέλου.

Πίνακας 4: Σύγκριση επίδοσης μοντέλου με και χωρίς προεκπαίδευση με SSL αλγορίθμους στο SleepEDF-20 (±30 min)
σύνολο δεδομένων με χρήση μόνο του 10% των ετικετών

 Overall metrics Per-class F1-Score
Algorithm Acc κ MF1 W N1 N2 N3 REM
Supervised 65.7 0.56 57.4 82.5 23.9 73.3 71.3 49.8

ClsTran 60.6 0.48 49.9 73.8 16.6 72.7 68.5 36.5
SimCLR 63.2 0.53 54.8 81.1 21.2 74.0 60.2 47.4

CPC 71.4 0.62 57.4 84.7 30.6 79.0 67.6 56.1
TS-TCC 56.4 0.34 31.6 60.0 5.8 64.4 49.2 28.5

22

23

Chapter 1. Introduction

1.1 Motivation

Sleep is an essential aspect of human life which plays a pivotal role in maintaining overall
health and well-being. Studies have suggested that sleep disorders may lead to a range of
physical and mental illnesses [4]. Lack of sleep is associated with increased mortality and
conditions, such as Alzheimer’s disease [5]. Therefore, the study of sleep architecture and its
various stages has long been of interest to researchers and healthcare professionals alike.
Sleep stage recognition, a critical component of sleep analysis, involves categorizing the
different phases of sleep, such as wakefulness, rapid eye movement (REM), and non-REM
(NREM) stages. Accurate identification of these stages is paramount for understanding sleep
patterns, diagnosing sleep disorders, and improving the quality of healthcare interventions.

Clinically, polysomnography (PSG) is an important technique to analyse sleep stage and sleep
disorder diagnosis. The PSG system generally consists of brain activity
(electroencephalogram, EEG), eye movements (electrooculogram, EOG), muscle activity or
skeletal muscle activation (electromyogram, EMG), and heart rhythm (electrocardiogram,
ECG) [6]. Traditional methods of sleep stage recognition primarily rely on manual scoring of
PSG recordings by trained experts who follow predetermined guidelines to identify the
distinct stages. Based on the Rechtschaffen and Kales (R&K) rules [7], PSG signals are
typically split into segments of 30 seconds and classified into six sleep stages, which are
wakefulness (Wake), four non-rapid eye movement stages (S1, S2, S3 and S4), and rapid eye
movement (REM). Due to limited evidence of a difference between the S3 and S4, the
American Academy of Sleep Medicine (AASM) later modified these rules with only three
non-rapid eye movement (N1, N2 and N3) stages being defined, where the S3 and S4 stages
in R&K were merged into N3 [8].

The main issue with having human experts performing manual sleep stage classification is
that this process can be significantly time-consuming and error prone, while at the same
time many decisions rely heavily on the subjective judgment of the individual expert and
thus results can vary arbitrarily. To solve these problems, many studies have adopted
machine learning methods for automatic sleep staging, which usually either use traditional
signal processing methods or deep learning to extract features from raw signals. When
traditional machine learning techniques, such as naive Bayes, k-nearest neighbour, support
vector machines or random forests, are used researchers must choose what features to
extract from the raw signal to use for classification. This means that they are highly
dependent on the researchers’ knowledge of sleep medicine when selecting appropriate
features to distinguish among stages. To avoid this limitation many researchers have applied
deep learning models, such as convolutional neural networks (CNNs) or LSTMs, to perform
sleep stage classification.

Despite the strides made in recent deep learning-based sleep stage models, they often focus
on single-channel time-domain data, primarily EEG or EOG signals. In contrast, clinicians
routinely employ multichannel and multimodal data, incorporating signals like EEG, EOG,
and EMG for comprehensive sleep stage scoring. Recognizing the potential insights and
improvements gained from multimodal data, both in the time and frequency domains,
becomes paramount for enhancing prediction accuracy and robustness.

24

Many recent studies use complex "sequence-to-sequence" models for analyzing EEG data
and classifying sleep stages. This approach captures temporal relationships between sleep
epochs but requires large models and training times. AttnSleep [1], uses a single-epoch
model, achieves good results with faster training, suggesting the potential of simpler, one-
to-one architectures in sleep analysis.

However, the development of deep learning models for automated sleep staging encounters
a significant hurdle— the reliance of supervised learning models on massive, labelled
datasets. Labelling such datasets is labour-intensive and expensive, limiting the feasibility of
large-scale data creation. Although sleep labs accumulate extensive overnight recordings,
the challenge of labelling restricts the potential of these models, making them cost-
prohibitive. To address this, the exploration of self-supervised and semi-supervised learning
techniques, requiring only a fraction or even no part of the dataset to be labelled, emerges
as a highly desirable avenue, mitigating the high cost associated with obtaining labelled
data.

This thesis introduces a novel single-epoch, multimodal and multichannel machine learning
model designed to enhance the accuracy and robustness of sleep stage classification. By
incorporating information from multiple physiological signals, the proposed model,
MMSleepNet, aims to align more closely with the comprehensive approach employed by
clinicians in scoring sleep stages. Furthermore, in recognizing the challenges associated with
acquiring large, labelled datasets, the thesis explores the applicability of SSL algorithms in
the context of automated sleep staging. By testing the model's performance under both full
label and reduced label scenarios, where only a fraction of the dataset is labelled, this
research seeks to shed light on the feasibility and efficacy of SSL techniques in mitigating the
data labelling burden.

Figure 1: Screenshot of a PSG of a person in REM sleep [9]

25

1.2 Thesis Outline

In Chapter 2 of this thesis we present the theoretical background necessary to fully
understand the motivation, methodology and results that are presented. Specifically, we first
explore some theoretical aspects of sleep stage classification, then we present fundamental
concepts in the field of machine learning in general and deep neural networks in particular.
Finally, we discuss the most popular evaluation metrics used in the literature concerning
automatic sleep staging.

In Chapter 3 we present and discuss related research present in the literature that explores
similar issues to those addressed in this thesis. In particular, we explore previous methods
for automatic sleep staging using both unimodal and multimodal methods and present
works that utilize and develop self-supervised learning approaches which are relevant to the
work done in this thesis.

In Chapter 4 we discuss the methodological approach that was followed to produce the
results demonstrated and to tackle the problem at hand. To be precise, we focus on the
dataset chosen to conduct our evaluation, the architecture of the proposed model, and the
SSL algorithms tested in the reduced-label scenario.

In Chapter 5 we discuss the technical implementation details of our approach and present
and evaluate the results of our experiments.

Finally, in Chapter 6 we discuss the overall conclusions resulting from the work conducted in
this thesis and present ideas for related future experimentation and research.

26

27

Chapter 2. Theoretical Background

2.1 Sleep Stage Classification

2.1.1 Introduction

Automatic sleep stage classification (ASSC) has emerged as a significant domain in
biomedical engineering, aiming to automate the identification of sleep stages from
polysomnography (PSG) recordings. PSG is a comprehensive assessment of sleep
architecture, involving the recording of multiple physiological signals, including
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), and
respiratory parameters. ASSC holds immense potential for enhancing clinical practice and
research by reducing the manual workload of sleep experts, enabling real-time sleep
monitoring, and facilitating large-scale sleep studies.

2.1.2 Sleep Stages

The human sleep cycle comprises five distinct stages: Wakefulness (W), Non-REM sleep
(NREM), and Rapid Eye Movement (REM) sleep. NREM sleep can further be categorized into
four stages (N1, N2, N3, and N4). Each sleep stage exhibits unique characteristics in terms of
EEG patterns, eye movements, muscle activity, and physiological parameters. Approximately
75% of sleep is spent in the NREM stages, with the majority spent in the N2 stage [10]. A
typical night's sleep consists of 4 to 5 sleep cycles, with the progression of sleep stages in the
following order: N1, N2, N3, N2, REM [11]. A complete sleep cycle takes roughly 90 to 110
minutes. The first REM period is short, and, as the night progresses, longer periods of REM
and decreased time in deep sleep (NREM) occur [12].

• Wake/Alert

EEG recording: beta waves - highest frequency, lowest amplitude (alpha waves are seen
during quiet/relaxed wakefulness)

The first stage is the wake stage or stage W, which further depends on whether the eyes
are open or closed. During eye-open wakefulness, beta waves predominate. As
individuals become drowsy and close their eyes, alpha waves become the predominant
pattern [13].

• N1 (Stage 1) - Light Sleep (5%)

EEG recording: theta waves - low voltage

This is the lightest stage of sleep and begins when more than 50% of the alpha waves are
replaced with low-amplitude mixed-frequency (LAMF) activity. Muscle tone is present in
the skeletal muscle, and breathing tends to occur at a regular rate. This stage lasts
around 1 to 5 minutes, consisting of 5% of total sleep time.

• N2 (Stage 2) - Deeper Sleep (45%)

EEG recording: sleep spindles and K complexes

This stage represents deeper sleep as your heart rate and body temperate drop. It is
characterized by the presence of sleep spindles, K-complexes, or both. Sleep spindles are
brief, powerful bursts of neuronal firing in the superior temporal gyri, anterior cingulate,

28

insular cortices, and thalamus, inducing calcium influx into cortical pyramidal cells. This
mechanism is believed to be integral to synaptic plasticity. Numerous studies suggest
that sleep spindles play an important role in memory consolidation, specifically
procedural and declarative memory [14].

K-complexes are long delta waves that last for approximately one second and are known
to be the longest and most distinct of all brain waves. K-complexes have been shown to
function in maintaining sleep and memory consolidation [15]. Stage 2 sleep lasts around
25 minutes in the first cycle and lengthens with each successive cycle, eventually
consisting of about 45% of total sleep. This stage of sleep is when bruxism (teeth
grinding) occurs.

• N3 (Stage 3) - Deepest Non-REM Sleep (25%)

EEG recording: delta waves - lowest frequency, highest amplitude

N3 is also known as slow-wave sleep (SWS). This is considered the deepest stage of sleep
and is characterized by signals with much lower frequencies and higher amplitudes,
known as delta waves. This stage is the most difficult to awaken from, and, for some
people, even loud noises (> 100 decibels) will not awaken them. As people age, they
tend to spend less time in this slow, delta wave sleep and more time in stage N2 sleep.
Although this stage has the greatest arousal threshold, if someone is awoken during this
stage, they will have a transient phase of mental fogginess, known as sleep inertia.
Cognitive testing shows that individuals awakened during this stage tend to have
moderately impaired mental performance for 30 minutes to an hour [16]. This is the
stage when the body repairs and regrows tissues, builds bone and muscle, and
strengthens the immune system. This is also the stage when sleepwalking, night terrors,
and bedwetting occurs [17].

• REM (25%)

EEG recording: beta waves - similar to brain waves during wakefulness

REM is associated with dreaming and is not considered a restful sleep stage. While the
EEG is similar to an awake individual, the skeletal muscles are atonic and without
movement, except for the eyes and diaphragmatic breathing muscles, which remain
active. However, the breathing rate becomes more erratic and irregular. This stage
usually starts 90 minutes after you fall asleep, with each of your REM cycles getting
longer throughout the night. The first period typically lasts 10 minutes, with the final one
lasting up to an hour [18]. REM is when dreaming, nightmares, and penile/clitoral
tumescence occur.

Important characteristics of REM:

• Associated with dreaming and irregular muscle movements as well as rapid
movements of the eyes

• A person is more difficult to arouse by sensory stimuli than during SWS
• People tend to awaken spontaneously in the morning during an episode of REM

sleep
• Loss of motor tone, increased brain O2 use, increased and variable pulse and blood

pressure

29

• Increased levels of ACh
• The brain is highly active throughout REM sleep, increasing brain metabolism by up

to 20% [19] [12]

2.1.3 Polysomnography

Polysomnography (PSG) is a comprehensive assessment of sleep architecture, involving the
recording of multiple physiological signals. The four primary PSG signals are:

1. Electroencephalography (EEG)

EEG measures electrical activity in the brain using electrodes placed on the scalp. EEG
signals provide insights into brain activity during sleep, allowing for the identification of
sleep stages and the assessment of sleep disorders.

2. Electrooculography (EOG)

EOG measures eye movements using electrodes placed near the eyes. EOG signals are
used to detect rapid eye movements (REM) and eye movements during NREM sleep.

3. Electromyography (EMG)

EMG measures muscle activity using electrodes placed on muscles. EMG signals are used
to assess muscle tone during sleep and detect arousals and awakenings.

4. Respiratory Parameters

Respiratory parameters include respiratory rate, airflow, and oxygen saturation. They are
measured using specialized respiratory sensors and provide information about breathing
patterns during sleep, which can be crucial for detecting sleep-disordered breathing
(SDB) [9].

Figure 2: The sleep cycle [20]

30

2.2 Machine Learning

2.2.1 Introduction

According to Mitchell [21] “machine learning (ML) is a field of inquiry devoted to
understanding and building methods that ’learn’, that is, methods that leverage data to
improve performance on some set of tasks”. Machine learning algorithms automatically
build a mathematical model from data alone to make predictions or decisions. The data used
to train these models is called training data and the set of parameters that can be adjusted
through this procedure, along with their underlying structure is often described as a
machine learning model.

Machine learning is a subset of Artificial Intelligence, a field of study in computer science
that develops and studies intelligent machines. Earlier efforts in Artificial Intelligence
focused on expert knowledge systems which, mainly based on logical inference rules,
derived new fragments of knowledge, or reasoned over statements. Machine learning
bypasses several limitations of these earlier approaches, such as the need to formally
describe all possible knowledge for a given task, and in many cases achieves significantly
better results in real-world applications.

The most popular branch of machine learning models are neural networks. A neural network
is based on a collection of connected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. Each connection, like the synapses in a biological
brain, can transmit a signal to other neurons. An artificial neuron receives signals then
processes them and can signal neurons connected to it. The signal at a connection is a real
number, and the output of each neuron is computed by some non-linear function of the sum
of its inputs. The connections are called edges. Neurons and edges typically have a weight
that adjusts as learning proceeds. The weight increases or decreases the strength of the
signal at a connection. Neurons may have a threshold such that a signal is sent only if the
aggregate signal crosses that threshold [22].

Machine learning algorithms are used to solve a wide variety of tasks, in areas such as
computer vision, speech recognition and email filtering. The computational modeling of
such tasks is overly complex for humans, making it difficult or even unfeasible to develop
conventional algorithms to perform the needed processes. Because of this, it turns out to be
much more effective to help the machine develop its own algorithm in order to solve such
problems.

2.2.2 Types of Machine Learning

The variety of different Machine Learning approaches can be categorized by the presence or
absence of human influence on raw data, regarding the inclusion of a reward, the utilization
of feedback or the existence of labels. There are three primary training practices, Supervised
Learning, Unsupervised Learning, and Reinforcement Learning. We discuss those in the
section below, along with Semi-Supervised Learning, which is a combination of Supervised
and Unsupervised Learning.

2.2.2.1 Supervised Learning

In supervised learning the dataset is required to comprise pairs (𝑥𝑥, 𝑦𝑦), 𝑥𝑥 ∈ 𝑋𝑋, 𝑦𝑦 ∈ 𝑌𝑌, where 𝑋𝑋
is some input space and 𝑌𝑌 is some output space. These pairs are samples, perhaps affected

31

by noise, from a mapping and the aim is to learn this mapping. If 𝑌𝑌 is discrete, we refer to
the task as classification, in which case 𝑦𝑦 is called the label and the dataset is said to be
annotated, otherwise, if 𝑦𝑦 is a continuous variable we refer to the task as regression. A point
𝑥𝑥 of the input space is often called a feature vector, 𝑋𝑋 often is a simple multidimensional
vector space, but may also be something more complex such as a space of variable length
sequences. This structure of training examples provides the algorithm with the ability to
analyze the corresponding dataset, capture correlations and associations among samples
and exploit this kind of information in order to produce an inferred function which is able to
predict output 𝑦𝑦 from a new input 𝑥𝑥 that was not in the training set.

2.2.2.2 Unsupervised Learning

In unsupervised learning, the dataset is comprised only from the input variables 𝑥𝑥, 𝑥𝑥 ∈ 𝑋𝑋,
without having an output variable that would declare the label or target value of the
mappings output. The goal for the unsupervised learning algorithms is often then to learn
patterns exclusively from the unlabeled data, so as to be able to adequately group the
samples into distinct classes and assign them a label or a value based on their class. This
type of unsupervised learning is called clustering.

Another class of unsupervised learning models are known as generative models. Generative
models are models that, given a dataset of examples 𝑥𝑥1, . . . ,𝑥𝑥𝑛𝑛, which are samples from a
data distribution 𝑝𝑝(𝑥𝑥), aim at approximating this underlying probability distribution of the
data. Synthetic data can then be generated by sampling from the approximated distribution.

One of the most important benefits of unsupervised learning techniques concerns the
structure of the utilized dataset. Unlabeled data do not require any kind of human
intervention or annotation, which is often a significantly time-consuming procedure, as such,
they constitute the most common type of dataset for most real-world applications.
Furthermore, such methods can be used for modeling more complex tasks compared to
supervised learning, since they have the ability to automatically detect and reveal hidden
patterns and intrinsic features of the underlying data distribution.

2.2.2.3 Semi-Supervised Learning

In semi-supervised learning, there are the input variables 𝑥𝑥, 𝑥𝑥 ∈ 𝑋𝑋, only a subset of which
have a corresponding output variable 𝑦𝑦, 𝑦𝑦 ∈ 𝑌𝑌. It is therefore a combination of supervised
and unsupervised learning. Semi-supervised learning algorithms usually use the labelled
subset of the dataset to label the remaining unlabeled samples. They can be used in various
cases, where it is infeasible or too expensive to label every sample of the dataset.

2.2.2.4 Reinforcement learning

Reinforcement Learning differs greatly from the aforementioned categories. It is an area of
machine learning concerned with how intelligent agents ought to take actions in an
environment in order to maximize some notion of a cumulative reward.

32

Figure 3: Action-reward feedback loop [23]

Usually, the aim is to find an algorithm for choosing actions based on the agent’s and the
environment’s current state. This is called policy-based RL. Another, RL implementation is
value-based RL, where the agent tries to maximize an arbitrary value function. Finally,
model-based RL creates a virtual model for a certain environment and the agent learns to
act within the constraints set by said model.

Figure 4: A Reinforcement Learning taxonomy as defined by OpenAI [24]

33

2.2.3 Deep Learning

2.2.3.1 Introduction

Deep learning is a machine learning technique that uses multiple layers to progressively
extract higher-level features from the raw input. For example, in image processing, lower
layers may identify edges, while higher layers may identify the concepts relevant to a human
such as digits or letters or faces. Most deep learning methods use multi-layered neural
network architectures, such as convolutional neural networks and transformers, although
they can also include propositional formulas or latent variables organized layer-wise in deep
generative models such as the nodes in deep belief networks and deep Boltzmann
machines.

In deep learning, each level learns to transform its input data into a slightly more abstract
and composite representation. In an image recognition application, the raw input may be a
matrix of pixels; the first representational layer may abstract the pixels and encode edges;
the second layer may compose and encode arrangements of edges; the third layer may
encode a nose and eyes; and the fourth layer may recognize that the image contains a face.
Importantly, a deep learning process can learn which features to optimally place in which
level on its own. This does not eliminate the need for hand-tuning; for example, varying
numbers of layers and layer sizes can provide different degrees of abstraction.[25]

2.2.3.2 Concepts

2.2.3.2.1 Underfitting, Overfitting and Regularization

A central problem in machine learning is how to make an algorithm that will perform well
not just on the training data, but also when given new inputs. Many strategies used in
machine learning are explicitly designed to reduce the test error, possibly at the expense of
increased training error. These strategies are known collectively as regularization.

Two related problems often encountered when developing machine learning models that
regularization can alleviate are underfitting and overfitting.

Underfitting is a phenomenon in machine learning where a model is too simplistic to
capture the underlying patterns in the data. This results in poor performance on both the
training and testing data because the model is overly biased and cannot effectively learn
from the training data. Underfit models are too simple or lack the necessary features or
complexity to represent the true data distribution, leading to inadequate generalization to
new, unseen data. Addressing underfitting typically involves increasing model complexity,
adding relevant features, fine-tuning hyperparameters, expanding the training dataset, or
applying regularization techniques to strike a better balance between simplicity and
complexity, ultimately enabling the model to make more accurate predictions.

Overfitting is a phenomenon in machine learning where a model learns the training data so
well that it essentially memorizes it, capturing noise and random fluctuations rather than
the actual underlying patterns. As a result, an overfit model performs exceptionally well on
the training data but poorly on new, unseen data because it has become too specialized and
fails to generalize. Overfitting occurs when a model is excessively complex or has too many
parameters relative to the amount of training data, allowing it to fit even the smallest details
of the training set. To mitigate overfitting, techniques like reducing model complexity,

34

increasing the amount of training data, or applying regularization methods are employed to
make the model more robust and better at generalizing to real-world data.

Figure 5: Overfitting and Underfitting [26]

There are various regularization techniques that can be used to alleviate the problems
mentioned above. Some of the most important ones are:

• L1 Regularization (Lasso):
L1 regularization adds a penalty term based on the absolute values of the model
parameters to the loss function. It encourages some parameters to become exactly
zero, effectively selecting a subset of the most important features, which can help
with feature selection and to reduce model complexity.

• L2 Regularization (Ridge):
L2 regularization adds a penalty term based on the square of the model parameters
to the loss function. It reduces the magnitudes of all parameters without forcing any
to become exactly zero. This encourages a more balanced reduction in parameter
values, preventing large weights that might lead to overfitting.

• Elastic Net Regularization:
Elastic Net combines L1 and L2 regularization. It adds a linear combination of both L1
and L2 penalty terms to the loss function. This provides a balance between feature
selection (like L1) and parameter magnitude reduction (like L2).

• Dropout:
Dropout is a regularization technique commonly used in neural networks. During
training, dropout randomly deactivates (sets to zero) a fraction of neurons in each
layer, making the network more robust and preventing it from relying too heavily on
any specific set of neurons.

35

Figure 6: Dropout [27]

• Early Stopping:
Early stopping is a simple technique where training is stopped when the model's
performance on a validation dataset starts to degrade. This prevents the model from
becoming overly complex and overfitting the training data.

• Data Augmentation:
Data augmentation is a technique used to artificially increase the size of the training
dataset by applying random transformations to the data, like rotation, cropping, or
adding noise. This helps the model generalize better.

• Batch Normalization:
Batch normalization normalizes the input to each layer in a neural network by
adjusting the mean and variance of each mini batch of data. This stabilizes training,
prevents vanishing/exploding gradients, and acts as a form of regularization.

These regularization techniques are essential tools for improving the generalization
performance of machine learning models in various domains and algorithms. The choice of
the appropriate technique depends on the specific problem and the characteristics of the
dataset and model.

2.2.3.2.2 Activation Function

Activation functions are critical components in artificial neural networks and machine
learning models. They introduce non-linearity to the model, allowing it to learn complex
patterns and relationships within the data. Each node in a neural network typically applies
an activation function to its weighted inputs and produces an output. Some common
activation functions are explained below:

• Sigmoid Function:
The sigmoid function (logistic function) maps input values to a range between 0 and
1. It's particularly useful in binary classification problems, as it resembles a step
function and squashes input values to a probability-like output. However, it can suffer
from vanishing gradient problems when used in deep networks.

36

Figure 7: Sigmoid/Logistic Activation Function [28]

• Hyperbolic Tangent (tanh):
The tanh function maps input values to a range between -1 and 1. It shares some
characteristics with the sigmoid function but is zero-centered, which can help with
training deep networks by mitigating the vanishing gradient problem to some extent.

Figure 8: Tanh Function (Hyperbolic Tangent) [28]

37

• Rectified Linear Unit (ReLU):
The ReLU activation function is one of the most widely used activation functions. It's
simple and computationally efficient. It outputs the input as-is if it's positive, and
zero if it's negative. ReLU can speed up training by mitigating the vanishing gradient
problem and is particularly effective in deep networks.

Figure 9: ReLU Activation Function [28]

• Leaky ReLU:
Leaky ReLU is a variation of the ReLU function that allows a small, non-zero gradient
for negative input values, preventing "dead" neurons that don't update their weights
during training.

Figure 10: Leaky ReLU [28]

38

• Parametric ReLU (PReLU):
PReLU extends Leaky ReLU by allowing the slope for negative values to be learned
during training, making it more adaptive to the data.

Figure 11: Parametric ReLU [28]

The choice of activation function often depends on the specific problem, architecture, and
data characteristics. Experimentation is key to determine which activation function works
best for a given task. Different activation functions have different properties and can
significantly impact the training and performance of a neural network or machine learning
model.

2.2.3.2.3 Loss Functions

Loss functions, also known as cost functions, are a fundamental component of neural
networks used to measure the disparity between the predicted outputs of the model and
the actual target values (ground truth). They play a pivotal role in training neural networks
by quantifying how well or poorly the network is performing. The choice of an appropriate
loss function depends on the specific type of machine learning task, whether it's
classification, regression, or something else. Here are some common types of loss functions
used in neural networks:

• Mean Squared Error (MSE):
MSE is a common loss function for regression tasks. It measures the average squared
difference between the predicted values and the actual target values. It is sensitive
to outliers and penalizes larger errors more heavily.

• Mean Absolute Error (MAE):
MAE is another loss function for regression that computes the average absolute
differences between the predictions and the actual values. It is less sensitive to
outliers compared to MSE.

• Binary Cross-Entropy (Log Loss):
Binary cross-entropy is used in binary classification tasks. It quantifies the
dissimilarity between the predicted probabilities and the true binary labels.

39

• Categorical Cross-Entropy:
Categorical cross-entropy is used in multi-class classification tasks, where there are
more than two classes. It measures the divergence between the predicted class
probabilities and the true class labels.

• Kullback-Leibler Divergence (KLD):
KLD is often used in probabilistic models and measures the difference between two
probability distributions.

Selecting the appropriate loss function is crucial for training a neural network effectively, as
it directly impacts the optimization process. Different loss functions emphasize different
aspects of the prediction error, and choosing the right one can lead to better model
performance and faster convergence during training.

2.2.3.2.4 Gradient Descent

Gradient descent is a fundamental optimization algorithm used in machine learning and
deep learning to minimize a loss function and find the optimal values of a model's
parameters (weights and biases). It operates by first initializing the parameters and then
iteratively calculating the gradient of the loss function with respect to each parameter. The
gradient indicates the direction and magnitude of the steepest increase in the loss, serving
as a guide for adjusting the parameters to reduce the error between the model's predictions
and the actual target values.

These parameter updates are made in the direction opposite to the gradient, with the step
size controlled by a user-defined parameter known as the learning rate. Smaller learning
rates lead to more precise but slower convergence, while larger rates can expedite
convergence but may risk overshooting the minimum.

Variants of gradient descent, such as Stochastic Gradient Descent (SGD), Mini-Batch
Gradient Descent, Momentum, and adaptive methods like Adagrad, RMSprop, and Adam,
offer different trade-offs in terms of computational efficiency and the ability to escape local
minima.

Overall, gradient descent is a crucial tool for training machine learning models, ensuring they
learn the best parameters through iterative optimization.

Figure 12: Gradient descent with 2 parameters 𝜃𝜃0,𝜃𝜃1 and loss function 𝐽𝐽 [29]

40

2.2.3.2.5 Backpropagation

Backpropagation, is a fundamental algorithm used for training artificial neural networks,
particularly feedforward neural networks. It's the key process through which a neural
network learns by updating its parameters (weights and biases) to minimize the error
between its predictions and the actual target values. Here's a step-by-step explanation of
how backpropagation works:

1. Forward Pass:
In the forward pass, input data is fed into the neural network, and it propagates
through the layers, one layer at a time, to produce predictions. Each neuron in a layer
computes a weighted sum of its inputs, adds a bias term, and applies an activation
function to generate an output. This output is then used as input for the next layer.

2. Compute Loss:
After the forward pass, the network's predictions are compared to the actual target
values, and a loss (or cost) function is calculated. The loss function quantifies how far
off the predictions are from the true values, providing a measure of the network's
performance.

3. Backward Pass (Backpropagation):
Backpropagation is the process of propagating the error backward through the
network to compute the gradients of the loss with respect to the model's
parameters. This involves applying the chain rule of calculus to calculate how much
each parameter contributed to the error. The gradients represent the direction and
magnitude of change needed for each parameter to minimize the loss.

4. Update Parameters:
The computed gradients are used to adjust the model's parameters through an
optimization algorithm, typically gradient descent or one of its variants. The
parameters are updated in the direction that minimizes the loss. The learning rate
controls the size of the steps in this parameter space.

5. Repeat:
Steps 1 to 4 are repeated for a fixed number of iterations (epochs) or until a
convergence criterion is met. During each iteration, the neural network gets better at
making predictions as the parameters are refined to minimize the loss.

Backpropagation enables neural networks to learn from data by iteratively fine-tuning their
parameters. It's a crucial process for supervised learning tasks, allowing the model to adjust
its weights and biases to produce more accurate predictions over time. To prevent issues like
vanishing gradients, various activation functions and regularization techniques are often
used in conjunction with backpropagation. Additionally, deep learning frameworks and
libraries have made it easier to implement backpropagation in practice, making it a
foundational tool for building and training neural networks.

2.2.3.3 Models

2.2.3.3.1 Neural Networks

Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks (SNNs), are a subset of machine learning and are at the heart of deep learning
algorithms. Their name and structure are inspired by the human brain, mimicking the way
that biological neurons signal to one another.

41

Artificial neural networks (ANNs) are a collection of interconnected units or nodes, called
artificial neurons, which are organized in multiple layers, containing an input layer, one or
more hidden layers, and an output layer. Each node, or artificial neuron, connects to another
and has an associated weight and threshold. If the output of any individual node is above
the specified threshold value, that node is activated, sending data to the next layer of the
network. Otherwise, no data is passed along to the next layer of the network.[30]

The goal then of a neural network, also often called a feedforward network, is to
approximate some function 𝑓𝑓∗. For example, for a classifier, 𝑦𝑦 = 𝑓𝑓∗(𝑥𝑥) maps an input 𝑥𝑥 to a
category 𝑦𝑦. A feedforward network defines a mapping 𝑦𝑦 = 𝑓𝑓 (𝑥𝑥; 𝜃𝜃) and learns the value of
the parameters θ that result in the best function approximation.

These models are called feedforward because information flows through the function being
evaluated from x, through the intermediate computations used to define f, and finally to the
output y. There are no feedback connections in which outputs of the model are fed back into
itself. When feedforward neural networks are extended to include feedback connections,
they are called recurrent neural networks, presented in section 2.2.3.3.3.

Feedforward neural networks are called networks because they are typically represented by
composing together many different functions. The model is associated with a directed
acyclic graph describing how the functions are composed together. For example, we might
have three functions 𝑓𝑓(1), 𝑓𝑓(2), and 𝑓𝑓(3) connected in a chain, to form 𝑓𝑓(𝑥𝑥) =
 𝑓𝑓(3)(𝑓𝑓(2)(𝑓𝑓(1)(𝑥𝑥))). These chain structures are the most commonly used structures of
neural networks. In this case, 𝑓𝑓(1) is called the first layer of the network, 𝑓𝑓(2) is called the
second layer, and so on. The overall length of the chain gives the depth of the model. The
final layer of a feedforward network is called the output layer. During neural network
training, we drive 𝑓𝑓(𝑥𝑥) to match 𝑓𝑓∗(𝑥𝑥). The training data provides us with noisy,
approximate examples of 𝑓𝑓∗(𝑥𝑥) evaluated at different training points.[31]

Figure 13: A NN with 1 hidden layer. Where, 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight that multiplies the activation from the i-th neuron of the

previous layer to the j-th neuron of the current layer, 𝑓𝑓 is the activation function of the hidden layer and g is the activation
function of the output layer [32]

42

2.2.3.3.2 Convolutional neural network

Convolutional neural networks, also known as CNNs, are a specialized kind of neural
network that excels at processing data which has a known, grid-like topology. Examples
include time-series data, which can be thought of as a 1D grid taking samples at regular time
intervals, and image data, which can be thought of as a 2D grid of pixels. The main difference
between CNNs and a simple feedforward neural network is that, in at least one layer of an
CNNs the conventional matrix multiplication is replaced by a convolutional layer.

Figure 14: CNN architecture in comparison with a typical MLP model [33]

The convolutional layer is the fundamental building block of a CNN model. This layer applies
grid-shaped feature detector filters to the input image, through a mathematical operation,
called Convolution. This procedure is graphically displayed in Figure 15 for the case of a 2-
dimensional grid. Some parameters of a convolutional layer, like the weight values, adjust
during training through the process of backpropagation and gradient descent. However,
there are three hyperparameters which affect the volume size of the output that need to be
set before the training of the neural network begins. These include:

• The number of filters affects the depth of the output. For example, three distinct filters
would yield three different feature maps, creating a depth of three.

• Stride is the distance, or number of pixels, that the kernel moves over the input matrix.
While stride values of two or greater are rare, a larger stride yields a smaller output.

• Zero-padding is usually used when the filters do not fit the input image. This sets all
elements that fall outside of the input matrix to zero, producing a larger or equally sized
output. There are three types of padding:
 Valid padding:

This is also known as no padding. In this case, the last convolution is dropped if
dimensions do not align.

 Same padding:
This padding ensures that the output layer is the same size as the input layer.

 Full padding:
This type of padding increases the size of the output by adding zeros to the
border of the input.[34]

43

Figure 15: Illustration of the Convolution Operation for the 2 dimensional case [34]

In Figure 15, it is important to note that during convolution the filter’s weights remain fixed
as it moves across the image, which is also known as parameter sharing. This means that we
need to store fewer parameters, when compared to a simple neural network where every
output unit interacts with every input unit, which both reduces the memory requirements of
the model and improves its statistical efficiency. It also means that computing the output
requires fewer operations. Due to parameter sharing, the layers of convolution neural
network will also have a property of equivariance to translation. It says that if we changed
the input in a way, the output would also get changed in the same way.

Α typical layer of a convolutional network consists of three stages. In the first stage, the layer
performs several convolutions in parallel to produce a set of linear activations. In the second
stage, each linear activation is run through a nonlinear activation function, such as the
rectified linear activation function. In the third stage, we use a pooling function to modify
the output of the layer further. The third stage is performed by the pooling layer.

The pooling layer replaces the output of the network at certain locations by deriving a
summary statistic of the nearby outputs. This helps in reducing the spatial size of the
representation, which decreases the required amount of computation and weights. Pooling
helps to make the representation become approximately invariant to small translations of
the input. Invariance to translation means that if we translate the input by a small amount,
the values of most of the pooled outputs do not change. This can be a very useful property if
we care more about whether some feature is present than exactly where it is. For example,
when determining whether an image contains a face, we need not know the location of the
eyes with pixel-perfect accuracy, we just need to know that there is an eye on the left side of
the face and an eye on the right side of the face.

Pooling over spatial regions produces invariance to translation, but if we pool over the
outputs of separately parametrized convolutions, the features can learn which
transformations to become invariant to, as shown in Figure 16.

44

Figure 16: Example of how three learned filters and a max pooling unit can learn to become invariant to rotation [31]

There are several pooling functions such as the average of the rectangular neighborhood, L2
norm of the rectangular neighborhood, and a weighted average based on the distance from
the central pixel. However, the most popular process is max pooling, which reports the
maximum output from the neighborhood.[31], [35]

Figure 17: Example of max pooling operation [35]

45

2.2.3.3.3 Recurrent Neural Networks

Recurrent Neural Networks, also known as RNNs, are a class of artificial neural networks
designed for processing sequences of data. They are particularly well-suited for tasks such as
natural language processing, speech recognition, time series prediction, and more. RNNs are
characterized by their ability to maintain a form of memory that enables them to capture
and process information from previous time steps within a sequence, making them
especially powerful for tasks involving temporal dependencies.

Just as convolutional networks can readily scale to images with large width and height, and
some convolutional networks can process images of variable size, recurrent networks can
scale to much longer sequences than would be practical for networks without sequence-
based specialization. Most recurrent networks can also process sequences of variable
length.[31]

RNNs are called recurrent because they perform the same task for every element of a
sequence, with the output being dependent on the previous computations. At its core, an
RNN is a type of neural network with an internal hidden state that is updated at each time
step as it processes a sequence of input data. The architecture of a simple RNN, which is
shown in Figure 18, can be described as follows:

• Input: 𝑥𝑥(𝑡𝑡) is taken as the input to the network at time step t. For example,
𝑥𝑥(1), could be a one-hot vector corresponding to a word of a sentence.

• Hidden State: ℎ(𝑡𝑡) represents a hidden state at time t and acts as “memory” of the
network. ℎ(𝑡𝑡) is calculated based on the current input and the previous time step’s
hidden state: ℎ(𝑡𝑡) = 𝑓𝑓(𝑈𝑈 ∗ 𝑥𝑥(𝑡𝑡) + 𝑊𝑊 ∗ ℎ(𝑡𝑡 − 1)). The function f is taken to be a
non-linear transformation such as tanh, ReLU.

• Weights: The RNN has input to hidden connections parameterized by a weight matrix
𝑈𝑈, hidden-to-hidden recurrent connections parameterized by a weight matrix 𝑊𝑊, and
hidden-to-output connections parameterized by a weight matrix 𝑉𝑉 and all these
weights (𝑈𝑈,𝑉𝑉,𝑊𝑊) are shared across time.

• Output: 𝑜𝑜(𝑡𝑡) illustrates the output of the network. At each time step, the RNN
produces an output based on the current hidden state. This output can be used for
various tasks, such as predicting the next item in a sequence or providing a summary
of the entire sequence.[36]

46

Figure 18: RNN architecture. (Left) Circuit diagram. The black square indicates a delay of a single time step. (Right) The
same network seen as an unfolded computational graph, where each node is now associated with one particular time

instance [36]

To train an RNN, the network's parameters (i.e., the weight matrices) are optimized to
minimize a specified loss function. This is typically done using backpropagation through time
(BPTT) or gradient descent.

Backpropagation Through Time, also known as BPTT, is a crucial training technique for
Recurrent Neural Networks (RNNs), extending the backpropagation algorithm to handle
sequential data. During the forward pass, the RNN processes the input sequence step by
step, computing hidden states and outputs at each time step. Losses are calculated at each
time step by comparing the predicted outputs with target values. In the backward pass,
starting from the last time step, gradients with respect to model parameters are computed
using the chain rule of calculus and then aggregated over all time steps. These gradients are
used to update the model's parameters with optimization algorithms like gradient descent,
minimizing the average loss across the entire sequence. To manage the computational
burden and address gradient issues, such as the vanishing and exploding gradient problem,
sequences are often truncated, and gradient clipping is employed. While effective for many
sequential tasks, BPTT has limitations in capturing long-range dependencies, for which more
advanced RNN variants like LSTMs and GRUs with gating mechanisms are designed.

47

Figure 19: The computational graph used to compute the training loss of a RNN [31]

Long Short-Term Memory networks, also known as LSTMs, are a type of recurrent neural
network (RNN) architecture, introduced by Hochreiter and Schmidhuber in 1997 [37],
specifically designed to address the vanishing gradient problem and effectively capture long-
range dependencies in sequential data. LSTMs comprise memory cells and gated
mechanisms, including the forget (𝑓𝑓𝑡𝑡), input (𝑤𝑤𝑡𝑡), and output (𝑜𝑜𝑡𝑡) gates, which control the
flow of information. The forget gate determines what to retain or discard from the previous
cell state (𝑐𝑐𝑡𝑡), the input gate calculates candidate values for updating the cell state, and the
output gate governs how much information should be used to compute the hidden state (ℎ𝑡𝑡)
at the current time step. LSTMs cell state acts as long-term memory, enabling them to excel
in tasks requiring memory of distant events, such as natural language processing and time
series analysis.

Given a sequence 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑡𝑡 , … , 𝑥𝑥𝑛𝑛 of vectors of an input sequence of length 𝑛𝑛, for vector
𝑥𝑥𝑡𝑡, with inputs ℎ𝑡𝑡−1 and 𝑐𝑐𝑡𝑡−1, ℎ𝑡𝑡 and 𝑐𝑐𝑡𝑡 are computed as follows:

𝑓𝑓𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)

𝑤𝑤𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)

𝑢𝑢𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊𝑢𝑢𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑢𝑢ℎ𝑡𝑡−1 + 𝑏𝑏𝑢𝑢)

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 ⊙ 𝑢𝑢𝑡𝑡

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑐𝑐𝑡𝑡)

48

Figure 20: LSTM architecture [38]

Gated Recurrent Units, also known as GRUs, are a type of recurrent neural network (RNN)
architecture that, like LSTMs, address the vanishing gradient problem while simplifying the
model. GRUs feature gating mechanisms, including an update gate (𝑧𝑧𝑡𝑡) and a reset gate (𝑟𝑟𝑡𝑡),
which allow them to control the flow of information within the network. The update gate
determines how much of the previous hidden state to carry forward, while the reset gate
regulates the extent to which the current input should influence the hidden state. This
architecture combines short-term and long-term memory capabilities within a more
streamlined structure, making it computationally efficient and often suitable for tasks
involving sequential data processing, where capturing both recent and distant dependencies
is crucial.

The equations that describe the function of a GRU are the following:

𝑧𝑧𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑧𝑧)

𝑟𝑟𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑟𝑟)

𝑢𝑢𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ(𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1) + 𝑏𝑏ℎ)

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡 −1 + 𝑧𝑧𝑡𝑡 ⊙ 𝑢𝑢𝑡𝑡

Although LSTMs and GRUs partially solved the vanishing gradient problem, the passing of
the information through a series of recurrent connections evokes information loss.
Moreover, the inherently sequential nature of recurrent networks makes it hard to do
computation in parallel. A solution to these problems was proposed by Bahdanau et al [39]
in the form of Attention Mechanisms, which will be discussed in section 2.2.3.3.4.

49

2.2.3.3.4 Attention Mechanisms

Αttention mechanisms in deep learning are a fundamental component that enable models
to focus on specific parts of the input when making predictions or encoding information.
They have been widely used in various applications, including natural language processing,
computer vision, and speech recognition. Attention mechanisms are particularly useful
when dealing with sequences or when you want to give different importance to different
parts of the input data.

An attention mechanism usually has three key components, called the Query (𝑄𝑄), the Key
(𝐾𝐾) and the value (𝑉𝑉). The query represents what part of the input we are currently
interested in. For each element in the input, we associate a key and a value. The key is used
to measure the similarity between the query and that element, while the value holds the
information we want to focus on. The key/value/query concept is analogous to ideas used in
retrieval systems.

The core idea of an attention mechanism is to calculate a weighted sum of values based on
the compatibility (similarity) between the query and keys. This weighted sum is used to
generate an attended context, which is then combined with the query to produce an output.

In the following table several popular techniques for computing attention are presented. The
symbol 𝑠𝑠𝑡𝑡 denotes the predictions, while different 𝑊𝑊 indicate trainable matrices:

Figure 21: Ways to compute attention [40]

Self-attention is an attention mechanism that is used within a sequence, where for each
element in the input sequence, the model calculates an attention score with respect to all
other elements in the same sequence. These attention scores determine how much focus
the model should place on each element when producing an output. In this way, it enables
the model to understand contextual information and relationships.

50

Rather than only computing the attention once, the multi-head attention mechanism runs
through the scaled dot-product attention multiple times in parallel. The independent
attention outputs are simply concatenated and linearly transformed into the expected
dimensions. Each head operates in parallel and learns distinct patterns and dependencies,
enhancing the model's expressiveness and enabling it to capture complex relationships, as it
allows the model to jointly attend to information from different representation subspaces at
different positions. Whereas, with a single attention head, averaging inhibits this.

𝑀𝑀𝑢𝑢𝑀𝑀𝑡𝑡𝑤𝑤𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐𝑡𝑡𝑡𝑡(ℎ𝑀𝑀𝑡𝑡𝑀𝑀1, . . . ,ℎ𝑀𝑀𝑡𝑡𝑀𝑀ℎ)𝑊𝑊𝑂𝑂

where ℎ𝑀𝑀𝑡𝑡𝑀𝑀𝑖𝑖 = 𝐴𝐴𝑡𝑡𝑡𝑡𝑀𝑀𝑛𝑛𝑡𝑡𝑤𝑤𝑜𝑜𝑛𝑛(𝑄𝑄𝑊𝑊𝑖𝑖
𝑄𝑄,𝐾𝐾𝑊𝑊𝑖𝑖

𝐾𝐾,𝑉𝑉𝑊𝑊𝑖𝑖
𝑉𝑉)

Where the projections are parameter matrices 𝑊𝑊𝑖𝑖
𝑄𝑄,𝑊𝑊𝑖𝑖

𝐾𝐾,𝑊𝑊𝑖𝑖
𝑉𝑉.

Figure 22: Multi-head scaled dot-product attention mechanism [41]

51

2.2.4 Evaluation Metrics

Evaluating the performance of a machine learning model is crucial to ensure its effectiveness
and reliability. Different types of machine learning models require different evaluation
metrics to assess their performance accurately. This section delves into a comprehensive
overview of common evaluation metrics used for classification.

Most metrics rely on the definition of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) which are terms used to evaluate the performance of a
machine learning model in distinguishing between multiple distinct categories.

• True Positive (TP)
A true positive occurs when the model correctly predicts that an instance belongs to
a particular class (positive class). For instance, in a multiclass classification task of
identifying different types of flowers, a TP would be a case where the model
correctly identifies a rose as a rose.

• True Negative (TN)
A true negative occurs when the model correctly predicts that an instance does not
belong to a particular class (negative class). In the flower classification example, a TN
would be a case where the model correctly identifies a sunflower as not being a rose.

• False Positive (FP)
A false positive occurs when the model incorrectly predicts that an instance belongs
to a particular class (positive class) when it actually belongs to a different class. In the
flower classification scenario, an FP would be a case where the model mistakenly
identifies a tulip as a rose.

• False Negative (FN)
A false negative occurs when the model incorrectly predicts that an instance does
not belong to a particular class (negative class) when it actually belongs to that class.
In the flower classification example, an FN would be a case where the model wrongly
classifies a rose as a tulip.

Some of the most common metrics used for multiclass classification are:

• Accuracy
Accuracy measures the proportion of correct predictions made by the model. It is
calculated by dividing the number of correctly predicted instances by the total
number of instances.

𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑟𝑟𝑡𝑡𝑐𝑐𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

• Confusion Matrix

The confusion matrix shows the number of observations belong to each class in
actual data and predictions.

52

Figure 23: Example of a multiclass confusion matrix [42]

• Precision
Precision measures the proportion of correct positive predictions among all
predicted positives. It is calculated by dividing the number of true positives by the
sum of true positives and false positives. Precision focuses on avoiding false
positives, ensuring the model's high confidence when predicting positive instances.

𝑇𝑇𝑟𝑟𝑀𝑀𝑐𝑐𝑤𝑤𝑠𝑠𝑤𝑤𝑜𝑜𝑛𝑛 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

• Recall
Recall measures the proportion of actual positives that were correctly identified by
the model. It is calculated by dividing the number of true positives by the sum of true
positives and false negatives. Recall focuses on avoiding false negatives, ensuring the
model captures the majority of actual positive instances.

𝑅𝑅𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

• F1 score

The F1 score is a harmonic mean of precision and recall, providing a balanced
measure of both. It represents the overall classification accuracy considering both
the precision and recall aspects. F1 score is particularly useful when both false
positives and false negatives have significant consequences.

𝐹𝐹1 =
2 × 𝑅𝑅𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀 × 𝑇𝑇𝑟𝑟𝑀𝑀𝑐𝑐𝑤𝑤𝑠𝑠𝑤𝑤𝑜𝑜𝑛𝑛
𝑅𝑅𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑇𝑇𝑟𝑟𝑀𝑀𝑐𝑐𝑤𝑤𝑠𝑠𝑤𝑤𝑜𝑜𝑛𝑛

53

Chapter 3. Related Work

The classification of sleep stages is a critical task in the field of sleep medicine, as it provides
valuable insights into a person's sleep patterns and overall health. Accurate and efficient
sleep stage classification is essential for diagnosing sleep disorders and optimizing treatment
plans. In recent years, there has been a growing interest in applying machine learning
techniques to automate and enhance the accuracy of sleep stage classification. This related
work section provides a comprehensive overview of the existing research in this domain,
highlighting the key approaches, methodologies, and advancements that have contributed
to the development of automated sleep stage classification systems.

3.1 Unimodal Approaches

A large part of the literature on automatic sleep stage scoring utilizes only a single modality
to perform the classification task. Usually, these approaches perform the classification task
based only on raw single-channel EEG timeseries as input.

In Supratak et al., 2017 [3] the authors proposed DeepSleepNet, a model for automatic sleep
stage scoring based on raw single-channel EEG. DeepSleepNet utilizes Convolutional Neural
Networks to extract time invariant features, and bidirectional-Long Short-Term Memory to
learn transition rules among sleep stages automatically from EEG epochs. In order to
effectively train the model and to prevent it from suffering due to the class imbalance
problem often present in a large sleep dataset. The algorithm first pre-trains the
representation learning part of the model and then fine-tunes the whole model using two
different learning rates. They evaluated their model using different single-channel EEGs (F4-
EOG(Left), Fpz-Cz and Pz-Oz) from two public sleep datasets, that have different properties
(e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that
DeepSleepNet achieved similar overall accuracy and macro F1-score (MASS [43]: 86.2%-81.7,
SleepEDF [44]: 82.0%-76.9) when compared to the contemporary state-of-the-art methods
on both datasets. This demonstrated that, without changing the model architecture and the
training algorithm, the model could automatically learn features for sleep stage scoring from
different raw single-channel EEGs and from different datasets without needing any hand-
engineered features.

In Phan et al., 2018 [45] the authors used time-frequency image features extracted from the
raw EEG signals after applying STFT and then frequency smoothing them though a learned
DNN filter. Their model consists of a simple CNN whose convolutional layer is able to support
convolutional kernels with different sizes, and is therefore, capable of learning features at
multiple temporal resolutions. In addition, the 1-max pooling strategy is employed at the
pooling layer to better capture the shift-invariance property of EEG signals. They
demonstrated that their proposed 1-max pooling CNN performs comparably with the very
deep CNNs in the literature on the SleepEDF dataset [44] and that by preprocessing the
time-frequency image features with the learned filter bank before presenting them to the
CNN leads to significant improvements on the classification accuracy.

In Phan et al., 2019 [46] the authors tackle the task of automatic sleep staging as a
sequence-to-sequence classification problem that receives a sequence of multiple epochs as
input and classifies all of their labels at once. To achieve this, they proposed a hierarchical
recurrent neural network named SeqSleepNet. The network consists of a filter bank layer

54

tailored to learn frequency-domain filters, an attention-based recurrent layer designed for
short term sequential modeling and a recurrent layer placed on top of the learned epoch-
wise features for long-term modeling of sequential epochs. The classification is then carried
out on the output vectors at every time step of the top recurrent layer to produce the
sequence of output labels. Their proposed method achieved a macro F1-score of 83.3 on the
MASS dataset [43].

In Eldele et al., 2021 [1] the authors proposed an attention-based architecture called
AttnSleep to classify sleep stages using single channel EEG signals. The core of the
architecture forms a multi-resolution convolutional neural network which is used to extract
low and high frequency features. They also use a temporal context encoder that leverages a
multi-head attention mechanism to capture the temporal dependencies among the
extracted features. AttnSleep achieved a macro F1 score of 78.1 on the SleepEDF-78 dataset
[44].

In Phan et al., 2022 [47] the authors proposed SleepTransformer, a sequence-to-sequence
sleep-staging model based on the transformer backbone that offers interpretability of the
model’s decisions at both the epoch and sequence level. They also proposed a simple
entropy-based method to quantify uncertainty in the model’s decisions. SleepTransformer
achieved a macro F1-score of 74.3 on the SleepEDF-78 dataset [44].

3.2 Multivariate and Multimodal Approaches

In Chambon et al., 2018 [48] the authors introduced the first deep learning approach for
sleep stage classification, that exploits all multivariate and multimodal polysomnography
(PSG) signals (EEG, EMG, and EOG). For each modality, the first layer learns linear spatial
filters and the last layer feeds the learnt representation to a softmax classifier. Their study
reveals that a good tradeoff for optimal classification performance measured with balanced
accuracy is to use 6 EEG with 2 EOG (left and right) and 3 EMG chin channels.

In Jia et al., 2020 [49] the authors proposed SleepPrintNet to capture the SleepPrint in
physiological time-series, which represents the complementarity among different features of
EEG and discriminative features from other modalities in different sleep stages. In order to
achieve this, it considers information from EEG signals in the time-domain, frequency-
domain, and spatial-domain, while also having different feature extractors for EEG, EOG and
EMG signals. SleepPrintNet thus consists of an EEG temporal feature extraction module, an
EEG spectral-spatial feature extraction module for the temporal-spectral-spatial
representation of EEG signals, and two multimodal feature extraction modules including
EOG and EMG feature extraction module. SleepPrintNet achieved a macro F1-score of 84.3
in the MASS-SS3 dataset [43].

In Duan et al., 2021 [50] the authors proposed an automatic sleep staging network model
based on data adaptation and multimodal feature fusion using EEG and electrooculogram
(EOG) signals. 3D-CNN is used to extract the time-frequency features of EEG at different time
scales, and LSTM is used to learn the frequency evolution of EOG. The nonlinear relationship
between the high-level features of EEG and EOG is fitted by a deep probabilistic network.
This approach achieved a macro F1-score of 86.0 on the SleepEDF-20 dataset [44].

In Yubo et al., 2022 [51] the authors introduced MMASleepNet a multimodal attention
network to extract, perceive and fuse multimodal features of electrophysiological signals.

55

The MMASleepNet has a multi-branch feature extraction (MBFE) module followed by an
attention-based feature fusing (AFF) module. In the MBFE module, branches are designed to
extract multimodal signals’ temporal and spectral features. Each branch has two-stream
convolutional networks with a unique kernel to perceive features of different time scales.
The AFF module contains a modal-wise squeeze and excitation (SE) block to adjust the
weights of modalities with more discriminative features and a Transformer encoder (TE) to
generate attention matrices and extract the inter-dependencies among multimodal features.
MMASleepNet achieved a macro F1-score of 77.6 on the SleepEDF-78 dataset [44].

3.3 Self-supervised Approach

In Banville et al., 2021 [52] the authors investigated self-supervised learning (SSL) to learn
representations of EEG signals. Specifically, they explored two tasks based on temporal
context prediction as well as contrastive predictive coding on two clinically relevant
problems: EEG-based sleep staging and pathology detection. Their results suggest that self-
supervision may pave the way to a wider use of deep learning models on EEG data, and that
linear classifiers trained on SSL-learned features consistently outperformed purely
supervised deep neural networks in low-labelled data regimes while reaching competitive
performance when all labels were available.

In Xiao et al. 2021 [53] the authors propose SleepDPC, a novel sleep stage classification
algorithm based on SSL. By incorporating two dedicated predictive and discriminative
learning principles, SleepDPC discovers underlying semantics from raw EEG signals in a more
efficient manner. The experimental results show that the proposed SleepDPC method not
only learns meaningful representations but also produces superior performance versus
various competing methods despite limited access of labeled data.

In Eldele et al., 2023 [54] the authors evaluate the efficacy of SSL to boost the performance
of existing SSC models in the few-labels regime. This paper conducts a thorough study on
three SSC datasets, and finds that, in many cases, fine-tuning the pretrained SSC models
with only 5% of labeled data can achieve competitive performance to the supervised
training with full labels.

56

57

Chapter 4. Methodology

4.1 Data

4.1.1 Dataset

To evaluate the proposed model in both the full and the reduced-label regimes experiments
were conducted using the publicly available SleepEDF dataset [44]. The SleepEDF-78 dataset
is the 2018 version of the Sleep-EDF Expanded dataset, it contains 153 Sleep Cassettes which
were obtained in a 1987-1991 study of age effects on sleep in healthy Caucasians aged 25-
101, without any sleep-related medication. Two PSGs of about 20 hours each were recorded
during two subsequent day-night periods at the subjects’ homes, except subjects 13, 36, and
52 whose one recording was lost due to device failure. Subjects continued their normal
activities but wore a modified Walkman-like cassette-tape recorder. Manual scoring was
done by sleep experts according to the R&K standard [7], but based on Fpz-Cz/Pz-Oz EEGs
instead of C4-A1/C3-A2 EEGs, as suggested by [55]. Each 30-second PSG epoch was labeled
as one of eight categories {W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN}.

The SleepEDF-20 dataset is a smaller version of the SleepEDF-78 dataset consisting of 20
subjects aged 25-34.

4.1.2 Data Preprocessing

The dataset was preprocessed following the practices presented in Phan et al., 2022 [2]. To
be precise, sleep stages N3 and N4 were merged into a single stage N3, while MOVEMENT
and UNKNOWN epochs were ignored. Fpz-Cz EEG and ROC-LOC EOG timeseries sampled at
100 Hz were used from which time-frequency representation, using the log magnitude
spectrum from the Short-Time Fourier Transform (STFT), were also extracted. Additionally,
the dataset is split into five folds by subject and the experiments are performed using 5-fold
subject-wise cross-validation, in order to evaluate the model in a subject-independent
manner that offers better insights into the model’s ability to generalize [56].

For the purposes of testing the model under a low-label scenario, we extract 5 additional
datasets from the preprocessed training data where we maintain only 1, 5, 10, 50 or 75
percent of the original labels.

4.2 Supervised Model

Given a training set {𝑋𝑋𝑛𝑛}𝑛𝑛=1𝑁𝑁 of size 𝑇𝑇 where 𝑥𝑥𝑖𝑖 = {�𝑥𝑥𝑖𝑖𝑡𝑡𝑡𝑡 , 𝑥𝑥𝑖𝑖𝑡𝑡𝑡𝑡� ,𝑦𝑦𝑖𝑖} represents the 𝑤𝑤-th
sample from the training set. In the above training sample 𝑥𝑥𝑖𝑖𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅

𝐶𝐶×𝐿𝐿 and 𝑥𝑥𝑖𝑖𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅
𝑇𝑇×𝐹𝐹×𝐶𝐶,

where 𝐶𝐶 = 2 is the number of channels used (EEG and EOG), 𝐿𝐿 = 3000 is the length of the
timeseries, 𝑇𝑇 = 29 is the number of time frames in the time-frequency image and 𝐹𝐹 = 128
is the number of frequency bins extracted, represent the 2-channel 30-second raw EEG and
EOG timeseries sampled at 100Hz and the time-frequency image extracted from those
timeseries, respectively.

The architecture of MMSleepNet is illustrated in Figure 24. The network extracts
embeddings from the raw timeseries signal using a Dual Kernel CNN Encoder architecture
inspired from the AttnSleep model [1]. The encoder uses a two-branch CNN architecture,
with a different kernel size per branch, to extract features from the 30-second EEG and EOG

58

signals. To be precise, it extracts high-frequency features by utilizing the small kernel
network and low-frequency features by performing convolutions with the wide kernel. This
multi-resolution approach aims to improve the quality of the extracted features since
different sleep stages are characterized by different frequency ranges [57]. The extracted
features from the different frequency bands are unified using a multi-head attention
mechanism.

Figure 24: Architecture of MMSleepNet

The time-frequency representations of the signals are handled via an attentive LSTM block
which is composed of a bidirectional LSTM encoder with a multi-head attention mechanism
being used to improve the generated context vector. This combination addresses the
limitations of LSTMs by enhancing the model's ability to capture global dependencies,
improving information flow, and enhancing the processing of long sequences.

The two outputs from the raw signal and time-frequency image encoders are then combined
into a single representation using multi-head attention and the resulting representation for
the 30-second signals is fed to another attentive LSTM block whose output is used to extract
the class predicted by the model.

59

4.3 Self-Supervised Algorithms

To evaluate the performance of the proposed model in low-label scenarios four Self-
Supervised Learning (SSL) algorithms which are used to adjust the starting weights of the
feature extractors, namely the dual kernel and attentive LSTM encoders, during a pretraining
phase using the raw signals in the dataset without utilizing the corresponding labels.
Following this, the entire model is fine-tuned using the reduced-label data in an end-to-end
manner. Specifically, the weights of the feature extractors are set to those that resulting
from the above pretraining with the SSL algorithms and are then frozen for the a few epochs
to allow for the randomly initialized weights of the rest of the models to be updated without
the potentially large losses leading to large unnecessary updates to the pretrained weights.
Following this initial period, the pretrained weights are unfrozen and allowed to be updated
with the rest of the model.

Figure 25: Self-supervised learning algorithms [54]

The four SSL algorithms used are adopted from Eldele et al., 2023 [54]. Namely:

1. ClsTran: Classifying Transformations is an auxiliary classification task, in which, first,
some transformations are applied to the input signal and then, an automatically
generated pseudo label is associated with each transformation. Finally, the model is
trained to classify the transformed signals based on these pseudo labels.

2. SimCLR: Simple framework for Contrastive Learning of Visual Representation, as it is
presented in Chen et al., 2022 [58], is a contrastive SSL algorithm that relies on data
augmentations to learn invariant representations. It consists of four major
components. The first is data augmentations, which are utilized to generate two
correlated views of the same sample. The second is the feature extractor network
that transforms the augmented views into latent space. The third is the projection
head, which maps the features into a low-dimensional space. The fourth is the NT-
Xent loss, which aims to maximize the similarity between an anchor sample with its
augmented views while minimizing its similarity with the augmented views of the
other samples within the mini-batch.

3. CPC: Contrastive Predictive Coding, as it is presented in Oord et al., 2019 [59], is a
predictive contrastive SSL approach that learns representations of timeseries signals
by predicting the future timesteps in the embedding space. To do so, the feature
extractor first generates the latent feature embeddings for the input signals. Next, an
autoregressive model receives a part of the embeddings, i.e., the past timesteps,

60

then generates a context vector and uses it to predict the other part, i.e., the future
timesteps. CPC deploys a contrastive loss such that the embedding should be close to
positive future embeddings and distant from negative future embeddings. CPC
showed improved downstream performance in various time-series and speech
recognition-related tasks, without the need for any data augmentation.

4. TS-TCC: Time-Series representation learning via Temporal and Contextual
Contrasting, as it is presented in Eldele et al., 2021 [60], is yet another contrastive SSL
approach for time-series data. TS-TCC relies on strong and weak augmentations to
generate two views of an anchor sample. Next, the feature embeddings of these
views are generated. Next, like CPC, a part of the embeddings of each view is sent to
an autoregressive model to generate a context vector. Then, the context vector
generated for one augmented view is used to predict the future timesteps of the
other augmented view with a contrastive loss. Therefore, it pushes the embeddings
of one augmented view to the positive future embeddings of the other augmented
view, and vice versa. In addition, it leverages the NT-Xent loss (Eq. 1) to maximize the
agreement between the context vectors of the same sample, while maximizing it
within the contexts of other samples.

4.4 Evaluation

To evaluate the performance of the proposed supervised learning model we compare the
performance of the model on the SleepEDF-20 dataset with three baseline models. Namely,
the baseline models chosen are:

• AttnSleep [1]: This model starts with a feature extraction module based on multi-
resolution convolutional neural network (MRCNN) and adaptive feature recalibration
(AFR) that models the inter-dependencies between the features. The second module
is the temporal context encoder (TCE) that leverages a multi-head attention
mechanism to capture the temporal dependencies among the extracted features.

• XSleepNet [2]: This model is capable of learning a joint representation from both raw
signals and time-frequency images. Since different views may generalize or overfit at
different rates, the proposed network is trained such that the learning pace on each
view is adapted based on their generalization/overfitting behavior. The Fpz-Cz EEG
and ROC-LOC EOG signals were used. Uses a sequence-to-sequence architecture.

• DeepSleepNet [3]: This model exploits a custom CNN architecture followed by an
LSTM with a residual connection for sleep stage classification.

To evaluate the performance of the models on a per-class basis precision (PR), recall (RE) and
f1 (F1) metrics are used, while for evaluating the overall performance of the model across all
classes the accuracy (Acc), macro-averaged F1-score (MF1) and Cohen’s Kappa (κ) [61]
metrics are used.

For the full-label scenario, experiments were conducted using the SleepEDF-20 dataset in
two common ways found in the literature. Specifically, (1) only in-bed parts of the recordings
were used as recommended in [62], (2) 30 minutes of data before and after in-bed parts
were included in the experiments following the recommendation in [3], denoted as
SleepEDF-20 (±30 min).

For the reduced-label scenario, experiments were conducted using the SleepEDF-20 (±30
min) dataset with only some of the labels being available in the training set used.

61

Chapter 5. Experiments

5.1 Implementation Details

To extract the time-frequency input as mentioned in 4.1.2 the EEG and EOG timeseries
belonging to a 30-second PSG signal segment sampled at 100 Hz where split into two-second
windows with 50 percent overlap, weighted by a Hamming window and transformed to the
frequency domain using a 256-point Fast Fourier Transform (FFT). The log-amplitude
spectrum was then extracted to create the time-frequency image used which was first
normalized to have zero mean and unit standard deviation. This produced an image per
channel 𝑥𝑥 ∈ 𝑅𝑅𝑇𝑇×𝐹𝐹 with 𝐹𝐹 = 128 frequency bins and 𝑇𝑇 = 29 time points which were then
concatenated to produce a singe 𝑥𝑥 ∈ 𝑅𝑅29×256 input feature. The preprocessing steps where
performed using Matlab following the methodology given in Phan et al., 2022 [2].

The model was developed and tested using PyTorch 2.1.2 and training was executed on a
GeForce GTX 1660 Ti GPU. Subject-wise 5-fold cross-validation was used by dividing the
subjects of each dataset into 5 groups. A validation set was left out to evaluate our model
during training.

During evaluation under the reduced-label scenarios a percentage of the training set
samples had their associated labels removed. Additionally, model training is split into three
distinct stages. First, the feature encoders of the model, namely the dual kernel encoder and
attentive LSTM encoder, are pretrained using the specified SSL algorithm. The entire model
is then fine-tuned with the feature extractors starting with the model weights they had
received during the previous stage, while the rest of the model is initialized with random
weights. During fine-tuning the pretrained feature extractor weights are initially frozen to
avoid large loss values caused by the random initialization of the rest of the model resulting
in large changes to their values early on in the training process. The pretrained weights are
then unfrozen and their learning rate is set to the same as that of the rest of the model. The
SSL algorithms are configured following the implementation presented in Eldele et al., 2023
[54].

The duration of training under the fully supervised regime is set to 40 epochs. When training
under the reduced-label regime pretraining is done for 40 epochs, fine tuning with frozen
pretrained weights for 10 epochs and fine tuning with the whole model unfrozen is done for
another 40 epochs.

For all experiments the network weights were optimized using the AdamW optimizer [63]
with an initial learning rate of 0.001. Cross-entropy loss was adopted as the training
objective and a minibatch size of 128 was used during training.

https://pytorch.org/

62

5.2 Results

5.2.1 Full-Label Scenario

The confusion matrices that demonstrate the performance of MMSleepNet on the
SleepEDF-20 and SleepEDF-20 (±30 min) datasets are shown in Figure 26 and Figure 27
respectively. Rows and columns represent the ground truth and predicted results
respectively for each class. The numbers in the diagonal thus represent the correctly
classified samples, while off-diagonal entries represent wrong predictions.

From the given figures, it can be observed that while most samples are correctly classified
the model has the most difficulty in identifying correctly the N1 stage, which has the fewest
samples. From comparing Figure 26 with Figure 27 it can be noted that the addition of 30
minutes of wake time before and after sleep results in better overall classification
performance for most classes and especially so for the W class. This is to be expected as the
additional samples added to the awake stage repair some of the class imbalances present in
this dataset and allow the model to be much more accurate in identifying the W stage.

Figure 26: Confusion Matrix on SleepEDF-20 Dataset

63

Figure 27: Confusion Matrix on SleepEDF-20 (±30 min) Dataset

The performance of the model across three evaluation metrics, namely precision (PR), recall
(RE) and F1-score (F1), on the SleepEDF-20 and SleepEDF-20 (±30 min) datasets are shown in
Table 1 and Table 2 respectively. In Table 2 we can also see the comparison between
MMSleepNet, AttnSleep [1], DeepSleepNet [3].

From the provided tables, it can be observed that, especially for the W stage, the addition of
30 minutes of extra wake time in SleepEDF-20 (±30 min) results in significantly better results
across most metrics. Furthermore, MMSleepNet seems to outperform AttnSleep [1] and
DeepSleepNet [3] particularly when it comes to classification of the W and N1 stages.

Table 1: Per-class Performance Metrics on SleepEDF-20 Dataset

 MMSleepNet
 PR RE F1

W 81.9 83.2 81.9
N1 54.3 39.1 44.4
N2 86.9 87.6 86.6
N3 82.5 86.0 83.1

REM 76.8 83.9 79.2

64

Table 2: Per-class Performance Metrics on SleepEDF-20 (±30 min) Dataset

 MMSleepNet AttnSleep [1] DeepSleepNet [3]
 PR RE F1 PR RE F1 PR RE F1

W 94.3 92.0 93.0 89.6 89.7 89.7 86.0 83.4 84.7
N1 57.9 51.5 53.4 47.1 39.1 42.8 43.5 50.1 46.6
N2 89.3 88.2 88.6 89.1 88.6 88.8 90.5 81.7 85.9
N3 85.9 81.2 82.1 80.7 89.8 90.2 77.1 94.2 84.8

REM 76.1 87.3 81.0 76.1 82.2 79.0 80.9 83.9 82.4

Table 3 compares MMSleepNet with methods developed in previous studies. The evaluation
of overall performance is done by accuracy (Acc), Cohen’s kappa (κ), and macro F1-score
(MF1), and evaluating the performance of each class with F1-score. The results show that
MMSleepNet outperforms AttnSleep [1] and DeepSleepNet [3], while achieving similar
results to XSleepNet [2].

Table 3: Performance Comparison with Previous Methods

 Overall metrics Per-class F1-Score
Dataset Model Acc κ MF1 W N1 N2 N3 N4

SleepEDF-20

MMSleepNet 81.6 0.73 75.1 81.9 44.4 86.6 83.1 79.2
AttnSleep [1] - - - - - - - -
XSleepNet [2] 83.3 0.76 77.3 - - - - -

DeepSleepNet [3] 80.8 0.74 74.2 - - - - -

SleepEDF-20 (±30 min)

MMSleepNet 85.7 0.82 79.6 93.0 53.4 88.6 82.1 81.0
AttnSleep [1] 84.4 0.79 78.1 89.7 42.6 88.8 90.2 79.0
XSleepNet [2] 86.4 0.81 80.9 - - - - -

DeepSleepNet [3] 81.9 0.76 76.6 86.7 45.5 85.1 83.3 82.6

65

5.2.2 Reduced-Label Scenario

The confusion matrix that demonstrates the performance of MMSleepNet on the SleepEDF-
20 (±30 min) dataset under a reduced-label scenario where only 10% of the labels were left
in the training set is shown in Figure 28. From the given figure it can be observed that the
supervised model’s performance has deteriorated significantly when compared to the
corresponding full-label scenario presented in Figure 27.

The confusion matrices that result from the fine-tuned supervised model following
pretraining with the various SSL algorithms tested are shown in Figure 29. From the
produced matrices it can be observed that SSL pretraining resulted in significant changes in
model performance across most classes and algorithms. A particularly interesting result is
that all SSL algorithms seem to have produced worst results when it comes to accuracy for
the least represented classes in the dataset, namely N1 and N3, when compared to the
supervised model without pretraining. However, most of them demonstrate improved
accuracy in classifying samples from the most highly represented classes, namely W, REM
and N3.

Figure 28: Confusion Matrix of supervised model on SleepEDF-20 (±30 min) Dataset With 10% of the Labels

66

ClsTran CPC

SimCLR TS-TCC

Figure 29: Confusion Matrix after pretraining MMSleepNet with various SSL algorithms on SleepEDF-20 (±30 min) Dataset With 10% of the Labels

67

In Table 4 performance in both the overall metrics chosen for evaluation and the per-class
F1-score is compared between the supervised model without pretraining and the fine-tuned
model following pretraining with the corresponding SSL algorithm. In all cases the SleepEDF-
20 (±30 min) dataset with 10% of the labels remaining was used.

From the provided table it can be noted that pretraining has significant influence on the end
results of the supervised model across most metrics. From the per-class results it can be
observed that the influence of the SSL algorithm pretraining affects the classification results
of all classes.

The results demonstrate that the choice of SSL algorithm is of monumental importance.
When the wrong algorithm for the problem is used, it can lead to significant deterioration of
model performance, while when a more appropriate algorithm is applied it can result in
important improvements to the predictive capabilities of the resulting model.

On this reduced-label dataset the best results are yielded when pretraining with the CPC SSL
algorithm. The possible reason for this result is that this algorithm relies on predicting the
future timesteps in the latent space, which allows the feature encoders to learn about
temporal features in the EEG and EOG data which are useful for improving classification
performance in this particular problem.

Table 4: Performance of fine-tuned MMSleepNet after pretraining with various SSL algorithms on SleepEDF-20 (±30 min)
Dataset With 10% of the Labels

 Overall metrics Per-class F1-Score
Algorithm Acc κ MF1 W N1 N2 N3 REM
Supervised 65.7 0.56 57.4 82.5 23.9 73.3 71.3 49.8

ClsTran 60.6 0.48 49.9 73.8 16.6 72.7 68.5 36.5
SimCLR 63.2 0.53 54.8 81.1 21.2 74.0 60.2 47.4

CPC 71.4 0.62 57.4 84.7 30.6 79.0 67.6 56.1
TS-TCC 56.4 0.34 31.6 60.0 5.8 64.4 49.2 28.5

68

69

Chapter 6. Conclusions

6.1 Discussion

In this diploma thesis we proposed MMSleepNet for automatic sleep stage classification
based on multichannel PSG signals including EEG and EOG in both the time and frequency
domain. The model consists of two feature extraction modules, one for extracting features
from the timeseries signals and one for the time-frequency images. The former consists of a
dual kernel CNN encoder which utilizes two CNNs with different kernel sizes to extract
information from the signals at different frequency ranges and then fuses the results to
produce a single embedding that encapsulates information across the frequencies
examined. The latter is comprised of an attentive LSTM which extracts information directly
from the time-frequency images by considering every column of the image as the input
vector for the corresponding time step. The resulting embeddings from the feature
extractors are then fused and propagated to another attentive LSTM which produces a single
prediction for the 30-second input signals. The proposed model demonstrated promising
results across various evaluation metrics when compared to previous methods using either
single-channel or multi-channel inputs on the SleepEDF-20 dataset.

Additionally, we evaluated the performance of the proposed model under a low-label
scenario and performed pretraining of the model with various self-supervised algorithms to
examine if this would lead to improvements in the resulting performance when the now
pretrained model was fine-tuned with the few labeled samples in the dataset. We
demonstrated that many of the self-supervised algorithms used show promise in improving
the performance of the model in this label-scarce scenario.

6.2 Future Work

There are several ideas whose potential can be further explored for improving automatic
sleep stage classification performance:

• Different methods for feature fusion both across the time and frequency modalities
used in the model and within the dual kernel encoder module could be explored.

• Additional PSG channels, such as Pz-Oz EEG, could be added to test if they will
further increase classification performance.

• The performance of the proposed model could be tested on additional sleep stage
classification datasets.

• Preprocessing methods could be tried that attempt to correct for the inherent class
imbalance present in the dataset.

• Additional self-supervised learning algorithms could be evaluated.

70

71

References

[1] E. Eldele et al., “An Attention-Based Deep Learning Approach for Sleep Stage
Classification With Single-Channel EEG,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp.
809–818, 2021, doi: 10.1109/TNSRE.2021.3076234.

[2] H. Phan, O. Y. Chén, M. C. Tran, P. Koch, A. Mertins, and M. De Vos, “XSleepNet:
Multi-View Sequential Model for Automatic Sleep Staging,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 9, pp. 5903–5915, Sep. 2022, doi: 10.1109/TPAMI.2021.3070057.

[3] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: a Model for Automatic
Sleep Stage Scoring based on Raw Single-Channel EEG,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 25, no. 11, pp. 1998–2008, Nov. 2017, doi: 10.1109/TNSRE.2017.2721116.

[4] A. N. Goldstein and M. P. Walker, “The Role of Sleep in Emotional Brain Function,”
Annu. Rev. Clin. Psychol., vol. 10, pp. 679–708, 2014, doi: 10.1146/annurev-clinpsy-032813-
153716.

[5] A. GAUR, A. KALIAPPAN, Y. BALAN, V. SAKTHIVADIVEL, K. MEDALA, and M. UMESH,
“Sleep and Alzheimer: The Link,” Mædica, vol. 17, no. 1, pp. 177–185, Mar. 2022, doi:
10.26574/maedica.2022.17.1.177.

[6] S.-T. Pan, C.-E. Kuo, J.-H. Zeng, and S.-F. Liang, “A transition-constrained discrete
hidden Markov model for automatic sleep staging,” Biomed. Eng. Online, vol. 11, p. 52, Aug.
2012, doi: 10.1186/1475-925X-11-52.

[7] A. Kales and A. Rechtschaffen, A manual of standardized terminology, techniques and
scoring system for sleep stages of human subjects. in NIH publication. Washington, DC:
United States Government Printing Office, 1968.

[8] “AASM Scoring Manual - American Academy of Sleep Medicine,” American Academy
of Sleep Medicine – Association for Sleep Clinicians and Researchers. Accessed: Dec. 25,
2023. [Online]. Available: https://aasm.org/clinical-resources/scoring-manual/

[9] “Polysomnography,” Wikipedia. Dec. 03, 2023. Accessed: Jan. 28, 2024. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=Polysomnography&oldid=1188055118

[10] J. Malik, Y.-L. Lo, and H.-T. Wu, “Sleep-wake classification via quantifying heart rate
variability by convolutional neural network,” Physiol. Meas., vol. 39, no. 8, p. 085004, Aug.
2018, doi: 10.1088/1361-6579/aad5a9.

[11] I. Feinberg and T. C. Floyd, “Systematic trends across the night in human sleep
cycles,” Psychophysiology, vol. 16, no. 3, pp. 283–291, May 1979, doi: 10.1111/j.1469-
8986.1979.tb02991.x.

[12] A. K. Patel, V. Reddy, K. R. Shumway, and J. F. Araujo, “Physiology, Sleep Stages,” in
StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. Accessed: Jan. 28, 2024.
[Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK526132/

72

[13] B. Varga, A. Gergely, Á. Galambos, and A. Kis, “Heart Rate and Heart Rate Variability
during Sleep in Family Dogs (Canis familiaris). Moderate Effect of Pre-Sleep Emotions,” Anim.
Open Access J. MDPI, vol. 8, no. 7, p. 107, Jul. 2018, doi: 10.3390/ani8070107.

[14] J. W. Antony, M. Schönauer, B. P. Staresina, and S. A. Cairney, “Sleep Spindles and
Memory Reprocessing,” Trends Neurosci., vol. 42, no. 1, pp. 1–3, Jan. 2019, doi:
10.1016/j.tins.2018.09.012.

[15] M. H. Gandhi and P. D. Emmady, “Physiology, K Complex,” in StatPearls, Treasure
Island (FL): StatPearls Publishing, 2024. Accessed: Jan. 28, 2024. [Online]. Available:
http://www.ncbi.nlm.nih.gov/books/NBK557469/

[16] C. J. Hilditch and A. W. McHill, “Sleep inertia: current insights,” Nat. Sci. Sleep, vol. 11,
pp. 155–165, 2019, doi: 10.2147/NSS.S188911.

[17] H. M. El Shakankiry, “Sleep physiology and sleep disorders in childhood,” Nat. Sci.
Sleep, vol. 3, pp. 101–114, 2011, doi: 10.2147/NSS.S22839.

[18] C. Della Monica, S. Johnsen, G. Atzori, J. A. Groeger, and D.-J. Dijk, “Rapid Eye
Movement Sleep, Sleep Continuity and Slow Wave Sleep as Predictors of Cognition, Mood,
and Subjective Sleep Quality in Healthy Men and Women, Aged 20-84 Years,” Front.
Psychiatry, vol. 9, p. 255, 2018, doi: 10.3389/fpsyt.2018.00255.

[19] J. Peever and P. M. Fuller, “The Biology of REM Sleep,” Curr. Biol. CB, vol. 27, no. 22,
pp. R1237–R1248, Nov. 2017, doi: 10.1016/j.cub.2017.10.026.

[20] “5 Stages of Sleep: Psychology, Cycle & Sequence.” Accessed: Jan. 28, 2024. [Online].
Available: https://www.simplypsychology.org/sleep-stages.html

[21] T. M. Mitchell, Machine Learning, 1st edition. New York: McGraw-Hill Education,
1997.

[22] “WikiMili, The Free Encyclopedia,” WikiMili.com. Accessed: Feb. 04, 2024. [Online].
Available: https://wikimili.com

[23] S. Bhatt, “Reinforcement Learning 101,” Medium. Accessed: Oct. 15, 2023. [Online].
Available: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

[24] “Part 2: Kinds of RL Algorithms — Spinning Up documentation.” Accessed: Oct. 15,
2023. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

[25] “Deep learning,” Wikipedia. Oct. 07, 2023. Accessed: Oct. 15, 2023. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=1179017520

[26] “Overfitting vs. Underfitting: What Is the Difference?,” 365 Data Science. Accessed:
Oct. 20, 2023. [Online]. Available: https://365datascience.com/tutorials/machine-learning-
tutorials/overfitting-underfitting/

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15, no.
56, pp. 1929–1958, 2014.

73

[28] “Activation Functions in Neural Networks [12 Types & Use Cases].” Accessed: Oct. 20,
2023. [Online]. Available: https://www.v7labs.com/blog/neural-networks-activation-
functions, https://www.v7labs.com/blog/neural-networks-activation-functions

[29] “5 Concepts You Should Know About Gradient Descent and Cost Function,”
KDnuggets. Accessed: Oct. 20, 2023. [Online]. Available: https://www.kdnuggets.com/5-
concepts-you-should-know-about-gradient-descent-and-cost-function.html

[30] “What are Neural Networks? | IBM.” Accessed: Oct. 15, 2023. [Online]. Available:
https://www.ibm.com/topics/neural-networks

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[32] “Deep Learning: Classifying Astronomical Images — AstroML Interactive Book.”
Accessed: Oct. 16, 2023. [Online]. Available: https://www.astroml.org/astroML-
notebooks/chapter9/astroml_chapter9_Deep_Learning_Classifying_Astronomical_Images.ht
ml

[33] “CS231n Convolutional Neural Networks for Visual Recognition.” Accessed: Oct. 16,
2023. [Online]. Available: https://cs231n.github.io/convolutional-networks/

[34] “What are Convolutional Neural Networks? | IBM.” Accessed: Oct. 16, 2023. [Online].
Available: https://www.ibm.com/topics/convolutional-neural-networks

[35] M. Mishra, “Convolutional Neural Networks, Explained,” Medium. Accessed: Oct. 16,
2023. [Online]. Available: https://towardsdatascience.com/convolutional-neural-networks-
explained-9cc5188c4939

[36] J. Nabi, “Recurrent Neural Networks (RNNs),” Medium. Accessed: Oct. 17, 2023.
[Online]. Available: https://towardsdatascience.com/recurrent-neural-networks-rnns-
3f06d7653a85

[37] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput., vol.
9, pp. 1735–80, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.

[38] “Understanding LSTM Networks -- colah’s blog.” Accessed: Oct. 17, 2023. [Online].
Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[39] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning
to Align and Translate.” arXiv, May 19, 2016. doi: 10.48550/arXiv.1409.0473.

[40] N. Adaloglou, “How Attention works in Deep Learning: understanding the attention
mechanism in sequence models,” AI Summer. Accessed: Oct. 17, 2023. [Online]. Available:
https://theaisummer.com/attention/

[41] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2017. Accessed: Oct. 17, 2023. [Online].
Available:
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c
4a845aa-Abstract.html

[42] “Which metrics are used to evaluate a multiclass classification model’s
performance?” Accessed: Jan. 28, 2024. [Online]. Available:

74

https://www.pi.exchange/knowledgehub/metrics-to-consider-when-evaluating-a-multiclass-
classification-models-performance

[43] C. O’Reilly, N. Gosselin, J. Carrier, and T. Nielsen, “Montreal Archive of Sleep Studies:
an open-access resource for instrument benchmarking and exploratory research,” J. Sleep
Res., vol. 23, no. 6, pp. 628–635, Dec. 2014, doi: 10.1111/jsr.12169.

[44] B. Kemp, Aeilko Zwinderman, B. Tuk, H. Kamphuisen, and J. Oberyé, “The Sleep-EDF
Database [Expanded].” physionet.org, 2018. doi: 10.13026/C2X676.

[45] H. Phan, F. Andreotti, N. Cooray, O. Y. Chèn, and M. De Vos, “DNN Filter Bank
Improves 1-Max Pooling CNN for Single-Channel EEG Automatic Sleep Stage Classification,”
in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Jul. 2018, pp. 453–456. doi: 10.1109/EMBC.2018.8512286.

[46] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “SeqSleepNet: End-to-
End Hierarchical Recurrent Neural Network for Sequence-to-Sequence Automatic Sleep
Staging,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 3, pp. 400–410, Mar. 2019, doi:
10.1109/TNSRE.2019.2896659.

[47] H. Phan, K. Mikkelsen, O. Y. Chén, P. Koch, A. Mertins, and M. De Vos,
“SleepTransformer: Automatic Sleep Staging With Interpretability and Uncertainty
Quantification,” IEEE Trans. Biomed. Eng., vol. 69, no. 8, pp. 2456–2467, Aug. 2022, doi:
10.1109/TBME.2022.3147187.

[48] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort, “A Deep Learning
Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time
Series,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 4, pp. 758–769, Apr. 2018, doi:
10.1109/TNSRE.2018.2813138.

[49] Z. Jia, X. Cai, G. Zheng, J. Wang, and Y. Lin, “SleepPrintNet: A Multivariate Multimodal
Neural Network Based on Physiological Time-Series for Automatic Sleep Staging,” IEEE Trans.
Artif. Intell., vol. 1, no. 3, pp. 248–257, Dec. 2020, doi: 10.1109/TAI.2021.3060350.

[50] L. Duan et al., “A Novel Sleep Staging Network Based on Data Adaptation and
Multimodal Fusion,” Front. Hum. Neurosci., vol. 15, 2021, Accessed: Sep. 13, 2023. [Online].
Available: https://www.frontiersin.org/articles/10.3389/fnhum.2021.727139

[51] Z. Yubo, L. Yingying, Z. Bing, Z. Lin, and L. Lei, “MMASleepNet: A multimodal attention
network based on electrophysiological signals for automatic sleep staging,” Front. Neurosci.,
vol. 16, 2022, Accessed: Sep. 12, 2023. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2022.973761

[52] H. Banville, O. Chehab, A. Hyvärinen, D.-A. Engemann, and A. Gramfort, “Uncovering
the structure of clinical EEG signals with self-supervised learning,” J. Neural Eng., vol. 18, no.
4, p. 046020, Aug. 2021, doi: 10.1088/1741-2552/abca18.

[53] Q. Xiao et al., “Self-Supervised Learning for Sleep Stage Classification with Predictive
and Discriminative Contrastive Coding,” ICASSP 2021 - 2021 IEEE Int. Conf. Acoust. Speech
Signal Process. ICASSP, pp. 1290–1294, Jun. 2021, doi: 10.1109/ICASSP39728.2021.9414752.

75

[54] E. Eldele, M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, and X. Li, “Self-Supervised Learning
for Label- Efficient Sleep Stage Classification: A Comprehensive Evaluation,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 31, pp. 1333–1342, 2023, doi: 10.1109/TNSRE.2023.3245285.

[55] B. van Sweden, B. Kemp, H. A. Kamphuisen, and E. A. Van der Velde, “Alternative
electrode placement in (automatic) sleep scoring (Fpz-Cz/Pz-Oz versus C4-A1),” Sleep, vol.
13, no. 3, pp. 279–283, Jun. 1990, doi: 10.1093/sleep/13.3.279.

[56] I. Tougui, A. Jilbab, and J. El Mhamdi, “Impact of the Choice of Cross-Validation
Techniques on the Results of Machine Learning-Based Diagnostic Applications,” Healthc.
Inform. Res., vol. 27, no. 3, pp. 189–199, Jul. 2021, doi: 10.4258/hir.2021.27.3.189.

[57] P. Memar and F. Faradji, “A Novel Multi-Class EEG-Based Sleep Stage Classification
System,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 1, pp. 84–95, Jan. 2018, doi:
10.1109/TNSRE.2017.2776149.

[58] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive
Learning of Visual Representations.” arXiv, Jun. 30, 2020. doi: 10.48550/arXiv.2002.05709.

[59] A. van den Oord, Y. Li, and O. Vinyals, “Representation Learning with Contrastive
Predictive Coding.” arXiv, Jan. 22, 2019. doi: 10.48550/arXiv.1807.03748.

[60] E. Eldele et al., “Time-Series Representation Learning via Temporal and Contextual
Contrasting.” arXiv, Jun. 26, 2021. doi: 10.48550/arXiv.2106.14112.

[61] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. Psychol. Meas., vol.
20, no. 1, pp. 37–46, Apr. 1960, doi: 10.1177/001316446002000104.

[62] S. A. Imtiaz and E. Rodriguez-Villegas, “Recommendations for performance
assessment of automatic sleep staging algorithms,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2014, pp. 5044–5047, 2014, doi:
10.1109/EMBC.2014.6944758.

[63] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization.” arXiv, Jan. 04,
2019. doi: 10.48550/arXiv.1711.05101.

	Περίληψη
	Abstract
	Chapter 0. Εκτεταμένη Περίληψη στα Ελληνικά
	0.1 Εισαγωγή
	0.2 Θεωρητικό Υπόβαθρο
	0.2.1 Στάδια Ύπνου
	0.2.2 Μηχανική Μάθηση
	0.2.3 Βαθιά Νευρωνικά Δίκτυα

	0.3 Μεθοδολογία και Πειράματα
	0.3.1 Μεθοδολογία
	0.3.2 Εκπαίδευση με Όλες τις Ετικέτες
	0.3.3 Εκπαίδευση με Μειωμένες Ετικέτες

	Chapter 1. Introduction
	1.1 Motivation
	1.2 Thesis Outline

	Chapter 2. Theoretical Background
	2.1 Sleep Stage Classification
	2.1.1 Introduction
	2.1.2 Sleep Stages
	2.1.3 Polysomnography

	2.2 Machine Learning
	2.2.1 Introduction
	2.2.2 Types of Machine Learning
	2.2.2.1 Supervised Learning
	2.2.2.2 Unsupervised Learning
	2.2.2.3 Semi-Supervised Learning
	2.2.2.4 Reinforcement learning

	2.2.3 Deep Learning
	2.2.3.1 Introduction
	2.2.3.2 Concepts
	2.2.3.2.1 Underfitting, Overfitting and Regularization
	2.2.3.2.2 Activation Function
	2.2.3.2.3 Loss Functions
	2.2.3.2.4 Gradient Descent
	2.2.3.2.5 Backpropagation

	2.2.3.3 Models
	2.2.3.3.1 Neural Networks
	2.2.3.3.2 Convolutional neural network
	2.2.3.3.3 Recurrent Neural Networks
	2.2.3.3.4 Attention Mechanisms

	2.2.4 Evaluation Metrics

	Chapter 3. Related Work
	3.1 Unimodal Approaches
	3.2 Multivariate and Multimodal Approaches
	3.3 Self-supervised Approach

	Chapter 4. Methodology
	4.1 Data
	4.1.1 Dataset
	4.1.2 Data Preprocessing

	4.2 Supervised Model
	4.3 Self-Supervised Algorithms
	4.4 Evaluation

	Chapter 5. Experiments
	5.1 Implementation Details
	5.2 Results
	5.2.1 Full-Label Scenario
	5.2.2 Reduced-Label Scenario

	Chapter 6. Conclusions
	6.1 Discussion
	6.2 Future Work

	References

