
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Βελτιστοποίηση των λειτουργιών Εισόδου/Εξόδου στο

λειτουργικό σύστημα linux με χρήση της τεχνολογίας eBPF

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συμεών Ν. Ποργιώτης

Επιβλέπων: Γεώργιος Γκούμας

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2024

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Βελτιστοποίηση των λειτουργιών Εισόδου/Εξόδου στο

λειτουργικό σύστημα linux με χρήση της τεχνολογίας eBPF

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συμεών Ν. Ποργιώτης

Επιβλέπων: Γεώργιος Γκούμας

Αναπληρωτής Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 23η Φεβρουαριού 2024.

..

Ν. Κοζύρης

Καθηγητής Ε.Μ.Π.

..

Δ. Πνευματικάτος

Καθηγητής Ε.Μ.Π.

..

Γ. Γκούμας

Αν.Καθηγητής Ε.Μ.Π.

Αθήνα, Φεβρουάριος 2024.

...................................

Συμεών Ν. Ποργιώτης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

© Συμεών Ν. Ποργιώτης, 2024, Εθνικό Μετσόβιο Πολυτεχνείο.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ’

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα

συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και

δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού

Μετσόβιου Πολυτεχνείου.

Περίληψη

Με την εμφάνιση νέων τεχνολογιών αποθήκευσης δεδομένων υψηλών αποδόσεων,

όπως οι ultra-low latency SSDs και οι NVMe συσκευές αποθήκευσης, είναι δυνατή
η ολοκλήρωση διαδικασιών Ι/Ο σε χρόνους της τάξης των μικροδευτερολέπτων. Σε

τέτοια υψηλή επίδοση, το προστιθέμενο κόστος από τη στοίβα αποθήκευσης του πυ-

ρήνα linux έχει γίνει σημαντικός παράγοντας στη καθυστέρηση ολοκλήρωσης των
λειτουργιών αρχείων. Επιπλέον, καθώς οι συσκευές αποθήκευσης γίνονται ακόμη πιο

γρήγορες, το σχετικό κόστος του πυρήνα αναμένεται να επιδεινωθεί. Το γεγονός αυτό

αποτελεί κίνητρο για να επανεξετάσουμε τον τρόπο που ο πυρήνας διαχειρίζεται τις

λειτουργίες αρχείων Ι/Ο και να βρούμε νέους τρόπους για τη μείωση του κόστους

του.

Συγκεκριμένα, ο στόχος της παρούσας διπλωματικής εργασίας είναι να εξετάσει

τη στοίβα αποθήκευσης του πυρήνα linux και να επικεντρωθεί σε ένα ιδιαίτερα κρίσι-
μο στοιχείο, την Page Cache, και τον τρόπο με τον οποίο επηρεάζει την απόδοση
του συστήματος. Κατά βάση, εξετάσαμε τη προσπάθεια της Page Cache να βελτι-
ώσει την απόδοση του συστήματος φέρνωντας δεδομένα προτού ζητηθούν μέσω του

μηχανισμού Read-Ahead που έχει ως στόχο την αύξηση των ποσοστών ευστοχίας
της. Επιπλέον, εξετάσαμε την αποτελεσματικότητά της σε διεργασίες που εμφανίζουν

σειριακά πρότυπα πρόσβασης καθώς και τους περιορισμούς στην απόδοση της όταν

εμφανίζονται διεργασίες με πιο πολύπλοκα πρότυπα πρόσβασης. Στα κεφάλαια που

ακολουθούν, θα παρουσιάσουμε μια νέα επαναστατική τεχνολογία, το eBPF, καθώς
και το πως μπορεί να χρησιμοποιηθεί για την ανάπτυξη ενός εργαλείου που θα αλ-

λάξει τη συμπεριφορά του πυρήνα. Συγκεκριμένα, θα παρουσιάσουμε ένα νέο εργαλείο

που έχουμε αναπτύξει, εκμεταλλευόμενοι την τεχνολογία αυτή, που επιτρέπει στους

χρήστες να καθορίσουν ποια δεδομένα θα προστεθούν στην Page Cache, προσαρ-
μόζοντας έτσι το μοτίβο πρόσβασης της στις ανάγκες των εφαρμογών τους. Τέλος,

θα επισημάνουμε τα οφέλη της εκμετάλλευσης του νέου εργαλείου μας μέσω σύνθε-

των δοκιμών με τη βοήθεια του εργαλείου FIO για τις λειτουργίες αρχείων read()
και mmap(), όπως επίσης και το πως μπορεί να χρησιμοποιηθεί για να βελτιώσει την
επίδοση ενός προγράμματος σε πραγματικό περιβάλλον και συγκεκριμένα την μέθοδο

snapshotting του Firecracker.

Λέξεις-Κλειδιά: πυρήνας του Linux, χώρος χρήστη, χώρος πυρήνα, Page Cache,
eBPF, FIO, read, mmap, firecracker, snapshotting

Abstract

With the advent of new high performance storage technologies, such as ultra-
low latency SSDs and NVMe storage devices, it is feasible to achieve I/O latencies
at the scale of microseconds. At such high performance, the overhead introduced by
the linux kernel storage stack has become a significant contributor to file operations
latency. As storage devices become even faster, the kernel’s relative overhead is
going to worsen. This motivates us to reexamine the way the kernel handles file
operations and find new ways to reduce its software overhead.

Specifically, the objective of this Diploma thesis is to examine the linux kernel
storage stack and especially focus our attention on a crucial component, the Page
Cache, and its impact on system’s performance. Mainly, we delve into the effort
made by the Page Cache to improve system’s performance by pre-fetching data
through the Read-Ahead mechanism in order to achieve high cache hit ratios.
Additionally, we examine its effectiveness in sequential access patterns and its
limitations in more complex access patterns. In the following Chapters, we will
introduce a new revolutionary technology, the eBPF, and how it can be utilized
to develop a tool that will alter the kernels behavior. In essence, we will present
a new tool that we’ve developed, by leveraging this new technology, that will
allow users to define what data will be added to the Page Cache and thereby how
to customize the Page Cache fetching pattern to align it with the needs of their
userspace applications. Finally, we will illustrate the benefits of exploiting our new
tool through synthetic FIO benchmarks for read() and mmap() file operations and
additionally we will provide insights on how it can benefit a real case scenario,
specifically the firecracker’s snapshotting method.

Keywords: Linux Kernel, Userspace, Kernel Space, Page Cache, eBPF, FIO,
read, mmap, firecracker, snapshotting

Ευχαριστίες

Η παρούσα διπλωματική εργασία εκπονήθηκε στο Εργαστήριο Υπολογιστικών

Συστημάτων της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

του Εθνικού Μετσόβιου Πολυτεχνείου υπό την επίβλεψη του Αναπληρωτή Καθηγητή

Γεώργιου Γκούμα. Αρχικά λοιπόν, θα ήθελα να ευχαριστήσω τον κ.Γκούμα για την

ευκαιρία που μου έδωσε να εκπονήσω τη διπλωματική μου εργασία στο συγκεκριμένο

εργαστήριο.

Η εκπόνηση της διπλωματικής αυτής αποτελεί έμπνευση της Μεταδιδακτορικού

Ερευνήτριας Χλόης Αλβέρτης. Θα ήθελα να ευχαριστήσω ιδιαιτέρως τη Χλόη όπως

και τους Μεταδιδακτορικούς Ερευνητές Δημήτρη Σιακαβάρα, Στράτο Ψωμαδάκη και

Χρήστο Κατσακιώρη που είχαν μια άριστη συνεργασία μαζί μου και με βοήθησαν στην

ολοκλήρωση της διπλωματικής μου εργασίας. Τόσο η συνεχή τους καθοδήγηση και

οι πολύτιμες γνώσεις που μου παρείχαν όσο και το ενδιαφέρον, η ενθάρρυνση, ο σε-

βασμός και η υπομονή που μου έδειξαν μετέτρεψαν τη διπλωματική μου εργασία σε

μια πραγματικά σπάνια εμπειρία.

Επίσης, επιβάλλεται να ευχαριστήσω όλους μου τους φίλους με τους οποίους

μοιράστηκα τα όμορφα φοιτητικά μου χρόνια. Κυρίως, θα ήθελα να πω ένα μεγάλο

ευχαριστώ στο Λευτέρη και στη Κέλλυ, που ήταν οι πρώτοι με τους οποίους θα μοιρα-

ζόμουν την οποιαδήποτε επιτυχία ή αποτυχία συναντούσα είτε στα πλαίσια της σχολής

είτε στη προσωπική μου ζωή.

Τέλος, δε γίνεται να μην ευχαριστήσω την οικογένεια μου και τους γονείς μου.

Είναι οι άνθρωποι που όλα αυτά τα χρόνια με βοήθησαν να πετύχω τους στόχους μου

και χωρίς την υποστήριξη, την κατανόηση, το ενδιαφέρον και την αμέτρητη αγάπη

τους δε θα μπορούσα να έχω καταφέρει όλα όσα έχω καταφέρει σήμερα.

Συμεών Ποργιώτης

Contents

1 Introduction 12

1.1 Current Solutions . 13

1.1.1 Polling . 13

1.1.2 Interrupt Driven I/O . 13

1.1.3 Scatter/Gather I/O . 13

1.1.4 Kernel Bypass . 13

1.2 Motivation: Page Cache . 14

1.2.1 Limitations of Kernel-Level Page Cache 14

1.2.2 Limitations of User-Level Page Cache 15

1.3 BPF : New Revolutionary Technology 15

2 Kernel Stack 17

2.1 System Call Layer . 18

2.2 Virtual Filesystem (VFS) . 19

2.3 Device Drivers . 21

2.3.1 Read Operation . 21

3 Page Cache 24

3.1 How it Works . 24

3.2 Read-Ahead . 25

3.3 Synchronous Vs Asynchronous Read 25

3.4 Read-Ahead Window . 26

3.5 Page Cache in Action . 27

4 eBPF 28

4.1 Introduction . 28

4.1.1 Security . 29

4.1.2 Networking . 29

4.1.3 Tracing and Profiling . 29

4.1.4 Observability and Monitoring 29

4.2 The evolution from BPF to eBPF 29

4.2.1 The Evolution of eBPF to Production Systems 30

4.3 How eBPF works . 31

10

4.3.1 eBPF Virtual Machine . 31
4.3.2 Hooks . 31
4.3.3 JIT Compiler . 32
4.3.4 Verifier . 32
4.3.5 Deployment of eBPF code 34

4.4 High Performance of eBPF Programs 34
4.5 eBPF Helpers . 34
4.6 eBPF Maps . 35
4.7 eBPF in Page Cache . 36

4.7.1 bpf force page2cache() . 37
4.7.2 offload pages2cache() . 39
4.7.3 bpf get filename() . 40

5 Experimental evaluation 41
5.1 Simulation Tool : fio - Flexible I/O tester 41
5.2 Page Cache . 42

5.2.1 Latency . 42
5.2.2 read() . 42
5.2.3 mmap() . 44

5.3 Impact of “bpf force page2cache()” in Page Cache 44
5.3.1 read() . 45
5.3.2 mmap() . 46
5.3.3 Results . 47

5.4 Use Case : Firecracker . 47
5.4.1 Serverless computing . 47
5.4.2 Cold Start Problem . 48
5.4.3 Snapshotting . 49
5.4.4 Deployment of eBPF . 50
5.4.5 Results . 50

6 Conclusions and Future Work 51
6.1 Conclusions . 51
6.2 Future Work . 52

Chapter 1

Introduction

Storage performance is crucial in computer systems to ensure the continuous
supply of data to a CPU without causing pipeline stalls and wasting CPU cycles.
Traditionally, storage devices were much slower than CPUs and were considered
the bottleneck of computer systems. Nowadays, the evolution of technology in
storage devices has made things different. Today’s ultra-low latency (ULL) SSDs
and NVMe storage devices [1] can achieve sub-ten microseconds of I/O latency
and have made kernel stack time comparable to hardware time thus creating the
need to find new ways to decrease the latency of system operations.

For instance, when an application issues a read I/O request and a filemap fault
occurs, then a new entry must be created in the Page Cache. After that, the entry
must be filled with the requested data and several auxiliary data structures (e.g.,
bio) must be allocated and manipulated. The issue here is that these operations
occur synchronously before an actual I/O command is dispatched to the storage
device. With ultra-low latency SSDs, the time it takes to execute these operations
is comparable to the actual I/O data transfer time, as depicted in Figure 1.1.

Figure 1.1: Kernel Software is becoming a bottleneck for system performance
[17]

12

1.1 Current Solutions

Traditionally, the linux kernel is in charge of memory management and provides
file abstraction to userspace processes. In this context, the first effort made to
optimize the kernel I/O stack was to alleviate its overhead.

1.1.1 Polling

An effective approach to mitigate kernel I/O stack overhead is through the
use of the polling mechanism. Polling a device [2] means repeatedly reading the
device’s status register to check if the I/O request has been completed. This
mechanism is very useful to avoid time consuming context switches. As device
drivers are integral parts of the linux kernel, employing a traditional “busy-wait”
approach directly on the device would prevent any other tasks from running in the
kernel during that time. Instead, polling device drivers utilize system timers to
periodically check their status.

1.1.2 Interrupt Driven I/O

Polling by means of timers is at best approximate, since the kernel does not
know when the device will be ready it could be wasting CPU cycles by constantly
checking on it. A significantly more efficient method involves the use of interrupts.
An Interrupt-driven I/O [2] device will create an interrupt when an event, such as
an I/O completion, error or timeout has occurred. This mechanism consumes CPU
cycles only when there is an event for the CPU to handle. However, it’s important
to note that the implementation of interrupt-driven I/O is notably more complex
and challenging compared to the polling mechanism.

1.1.3 Scatter/Gather I/O

In cases where a userspace process needs to execute multiple read (or write)
system calls to buffers that are scattered in memory, each system call must traverse
the same kernel path, causing extra latency. To address this inefficiency, a high-
speed primitive known as Scatter/Gather I/O [3] is employed to execute these
scatter-gather operations in a single kernel call. As a result, this type of I/O takes
its name from the fact that data is either scattered into or gathered from a given
vector of buffers.

1.1.4 Kernel Bypass

These proposals are effective in reducing I/O stack overheads, and some of
those are adopted by mainstream OSes (e.g., I/O stack for NVMe SSDs in linux).
A different and more radical way to alleviate the I/O stack overhead would be to
give userspace processes direct access to storage devices and completely bypass the

13

kernel. This approach can be achieved through libraries such as SPDK[4]. Such
approach could be effective as it would leave the residual cost of posting a request
to a storage device driver and the device’s time to complete the request. On the
other hand, it poses many challenges. Since processes don’t have access to kernel
features, each user has to construct his own userspace filesystem. A userspace
filesystem means that there is no fine-grain isolation or sharing data between pro-
cesses. In addition, there is no efficient way for userspace applications to receive
interrupts on I/O completions and thus applications must directly poll on device
completion queues to obtain high performance. Consequently, even though I/O
is no longer the systems bottleneck, cores cannot be shared among processes and
result in significant under-utilization of the CPUs. Furthermore when more than
one polling thread shares the same core, the CPU contention between them, along
side with the lack of synchronization, results in all polling threads to experience
degraded tail latency and significantly lower overall throughput [5].

1.2 Motivation: Page Cache

Since data-intensive applications require a large amount of data transfer be-
tween a storage device and the systems main memory, operating systems employ
Page Caches to efficiently manage slow data transfers. Page Cache is a crucial soft-
ware component of the linux kernel and deeply affects a computer systems overall
performance. Since the Page Cache is managed from the kernel it not only ensures
robust data protection but also facilitates efficient data sharing across processes.

1.2.1 Limitations of Kernel-Level Page Cache

Kernel-Level Page Caches make an effort to exploit locality of reference [7]
to reduce I/Os between disks and host memory. In order to exploit locality of
reference, Page Cache makes use of the LRU (Least Recently Used) replacement
policy [8] combined with Read-Ahead, a mechanism that makes an effort to reduce
page faults by pre-fetching pages to Page Cache (we will delve into Read-Ahead
in later chapters). Due to those characteristics, Page Cache generally achieves
a high hit ratio if applications have moderate locality [9]. Unfortunately, when
it comes to processes with more complicated I/O access patterns, like a graph
application executing Pagerank algorithm [10], then this general-purpose design of
the Page Cache fails to match specific I/O characteristics and shows sub-optimal
performance. A possible reason for this poor performance could be either that a
process might access a large range of I/O addresses repeatedly in a looping pattern
and then the MRU (Most Recently Used) replacement policy [8] would outperform
the commonly used LRU replacement policy or that a process could have a random
access pattern to its I/O address space and then the standard Read-Ahead policy
would prove ineffective.

14

Page Cache Hints

Userspace processes can provide hints to the linux kernel by pre-declaring an
access pattern for a file operation via fadvise [11] and/or giving directions about
the address range via madvise [12]. At the same time, processes retain the same ad-
vantages of the kernel-level cache management. However, this method can provide
limited results as it is very hard to fine control the Page Cache just by injecting
hints to the kernel and additionally, users must make a non-trivial effort to modify
their applications in order to match their I/O access pattern with the provided
hint to the linux kernel.

1.2.2 Limitations of User-Level Page Cache

Some data-intensive applications such as Jaydio [13] or RocksDB’s Direct-IO
[14] with complex I/O access patterns implement their own userspace Page Caches
instead of relying on the Kernel-Level Page Cache and User-Level hints. On the
one hand these applications show excellent cache hit ratios which greatly improve
systems performance. On the other hand, they require developers to create the
caching algorithm from scratch and can not take advantage of kernel’s data pro-
tection and consistency or its sharing features thus making applications more vul-
nerable to data protection issues and requiring extra effort to enable data sharing.
Another major drawback is that userspace Page Cache is actually located inside the
kernel Page Cache so its performance depends on the applications dataset size. If
the dataset exceeds the application’s cache memory then kernel Page Cache makes
use of the LRU replacement policy evicting pages with possibly useful data to the
disk and therefore deteriorating applications performance. Moreover, if there are
significant changes in either disk or the host memory system then the userspace
cache would need to be re-implemented.

1.3 BPF : New Revolutionary Technology

The kernel-level Page Cache faces challenges in delivering optimal performance,
primarily because it lacks the capability to adapt to application-specific I/O pat-
terns. Although application-level hints offer some mitigation, their effectiveness
is limited compared to an ideal solution. While User-Level custom Page Caches
demonstrate efficiency, they are unable to harness the kernel’s infrastructure and
suffer a performance drop due to kernel intervention. To address these challenges,
we rely on BPF (Berkeley Packet Filter [15]) which lets applications offload simple
functions to the linux kernel. Specifically, in order to overcome the issues men-
tioned above, we leverage BPF technology to create an interface that enables users
to determine which pages of a specific process will be loaded into the Page Cache
before the process triggers a Page Cache miss.

15

In contrast to kernel bypass and User-Level Page Caches, BPF is an OS-
supported mechanism that ensures isolation, avoids low utilization due to busy-
waiting, and allows a large number of threads or processes to share the same core,
leading to better overall utilization. Linux’s framework for BPF is called eBPF
(extended BPF [16]). eBPF is commonly employed for various purposes, includ-
ing filtering packets (e.g., TCPdump), load balancing, packet forwarding, tracing,
packet steering, network scheduling, and network security checks. In the final
Chapters of this Diploma thesis, we will examine in detail the eBPF technology
and how we can exploit it to to develop the tool that will achieve our goal.

16

Chapter 2

Kernel Stack

In this chapter we will delve into the read file operation. Accessing a file located
on disk for a read() operation is a complex activity that involves many different
layers of the linux kernel, as well as handling Block Devices and using the Page
Cache. This complexity arises from a fundamental principle of the linux kernel
which strictly prohibits applications in userspace from directly accessing hardware
devices. Instead, linux offers processes running in userspace a set of interfaces to
interact with hardware devices such as the CPU, disks, etc.

When a userspace application tries to read the contents of a file then that
could either be a short trip to the L1 CPU cache [18] or a long trip to a storage
device. Naturally, a short trip to a CPU cache provides minimum latency and is
the fundamental reason for which hardware caches were introduced – to alleviate
the performance mismatch between the CPU and RAM. Specifically, caches are
based on the locality principle which states that when some data is requested then
the data next to it have a high probability of being used in the near future. This
results in the cache controller selecting whole cache lines to transfer instead of
just the requested data. For example, when a cache hit occurs during a read file
operation the controller selects the data from the cache line and transfers it into a
CPU register. On the other hand, when a cache miss occurs, then the cache line is
written to memory, if necessary, and the correct line is fetched from the RAM into
a cache entry. Again if the data is present in the RAM then they get transferred
to the cache and if not they are fetched from a storage device. Unfortunately,
when new data are requested from a process, for example because the process
just started running, then they are not available in any of the CPU caches or the
systems RAM and thus the kernel must fetch them from a storage device.

In the following section, we will examine the linux kernel software layers in-
volved in fetching data from a storage device for a userspace process.

17

2.1 System Call Layer

A process needs to interact with the linux kernel [19] so that the kernel can
perform a set of operations on its behalf. For example, if a userspace process needs
to do some sort of I/O, like open, read, write, etc, or modify its address space,
with mmap or sbrk then it has to trigger the kernel. What prevents a userspace
application from performing these type of operations on its own is its privilege
level.

Figure 2.1: Userspace applications belong to Ring 3 and have the least priv-
ileges in a computer system

The architecture of modern computer systems obliges that there is a secure
model. The picture above demonstrates how this is achieved through the “protec-
tion rings” model, which specifies multiple privilege levels under which software
may be executed. For example, a userspace process belongs to the outer ring.
That means that it is limited to its own address space, so that it can’t access or
modify other running processes or the linux kernel and is prevented from directly
accessing hardware devices. In other words, the linux kernel considers all running
in userspace processes to be malicious and trusts only itself to execute commands.

In order for an application to gain access to a hardware device, for example
to read the contents of a file located in a storage device, system calls are made
available from the linux kernel to provide well-defined and safe implementations
of such file operations. The linux kernel is the most privileged component of a
computer system and has access to everywhere. A system call is essentially an
entry point for a userspace process into the linux kernel. Usually, a system call
is not directly invoked but instead a corresponding C library wrapper function is

18

called to perform the steps required to invoke a system call [20]. In most cases
these steps are :

• copying arguments and the unique system call number to the registers where
the kernel expects them.

• trapping to kernel mode, at which point the kernel does the real work of the
system call.

• setting errno if the system call returns an error number when the kernel
returns the CPU to user mode.

A system call is initiated via a software interrupt. A software interrupt auto-
matically puts the CPU into some elevated privilege level and then passes control
to the kernel. After that, the kernel determines whether the calling process should
be granted the requested service by checking the accuracy of the request at the
System Call Layer before attempting to satisfy it. This involves checking all sys-
tem call parameters and if any of them contains an address, then to check whether
it is inside the process address space. If the service is granted then the kernel
executes a specific set of instructions over which the calling process has no direct
control until the completion of the request and the return of the CPU to userspace.

Last but not least, it is important to mention that the System Call Layer has
been kept stable through a policy of not introducing changes to it. This stability
guarantees the portability of applications source code.

2.2 Virtual Filesystem (VFS)

The service routine of a system call, for example a read() system call, activates
a suitable Virtual Filesystem function, in the case of a read() system call it passes
to it a file descriptor and an offset inside the file. The Virtual Filesystem (VFS)
is the second layer of the kernel stack and handles all system calls related to a
standard Unix filesystem. The VFS can be seen as the upper layer of the block
device handling architecture.

Due to the emergence of different kinds of filesystems such as ext2, ext3, NTFS
and others, the VFS was developed by the linux kernel to allow userspace processes
to access all filesystems in a uniform way. For example, VFS is used to access local
and network storage devices transparently without the running userspace process
noticing the difference.

Essentially, VFS consists of a wide range of information about every supported
filesystems operations and is stored as a part of the linux kernel [21]. For instance
when a read, write, or some other system call is executed, the kernel with the
help of the VFS substitutes the system call with the actual function that is sup-
ported from the native linux filesystem, the NTFS filesystem, or whichever other
filesystem the file is on.

19

In the case of a read() system call, the first step performed from the VFS
is to determine whether the requested data are already available and if not how
to perform the read() operation. Sometimes there is no need to access the data
on disk because the kernel keeps in RAM the data most recently read from or
written to a block device. If a read() operation must be performed then the VFS
is responsible to translate it into a call to the corresponding filesystems function.
Every file in a filesystem is represented by a file data structure which contains a
field that has pointers to functions specific to files, such as the read function. The
VFS finds the pointer to this function and invokes it. Once the requested data are
fetched from the storage device and become available in the system’s RAM, the
kernel can return them.

Figure 2.2: The Linux Kernel Stack

20

2.3 Device Drivers

A Device Driver is a software component of the linux kernel that operates
or controls a particular type of device that is attached to a computer system.
Essentially, a Device Driver is the software interface that enables the linux kernel
to access a hardware device and respond to the programming interfaces defined by
the canonical set of VFS functions (open, read, lseek, ioctl, and so forth) without
requiring detailed knowledge of the specific hardware in use.

Block Device Driver

A special category of Device Drivers are the Block Device Drivers [21] which
are the lowest components of the linux block subsystem. For a Block Device
Driver the key aspect is the disparity between the time taken by the CPU and
the buses, to read (or write) data and the speed of the disk. Block devices have
very high average access time and each operation requires several milliseconds to
complete. Since accesses to these devices are usually very slow, the kernel provides
sophisticated components such as the Page Cache and the block I/O subsystem to
handle them.

Disk

A disk is a logical Block Device such as either a hardware disk (HDD) or a
virtual device built upon several physical disk partitions or even a storage area
living in some dedicated pages of RAM. In any case, different types of disks are
handled in the same way by the upper kernel components thanks to the services
of the Block Device Drivers. Essentially, the linux kernel sees a disk as a split in
blocks, each block corresponds to the minimal disk storage unit defined from a
filesystem, and each block is assigned a Logical Block Number (LBA) which is its
identifier.

2.3.1 Read Operation

In order for the kernel to read data from a Block Device, such as a Hard Disk,
it must first determine their physical location on the device. Initially, it must
determine what is the block size of the filesystem that the requested file belongs
to and then compute which blocks of the file are requested. A file is divided into
blocks and each block is assigned a File Block Number (FBA) as its identifier. This
identification is crucial as the filesystem maintains a mapping between file block
numbers and their corresponding Logical Block Numbers (LBA) on the storage
device. This mapping enables the filesystem to track the storage location of each
block of a file. Once the kernel has determined the requested FBAs it can establish
the physical location of these blocks inside the disk by checking their corresponding

21

LBAs. It is important to notice that due to the mapping of FBAs to LBAs a file
may be stored in nonadjacent blocks on a disk.

Since the physical position of the requested data has been located the kernel
can now perform a read operation on the Block Device. When a kernel component
wishes to read (or write) some disk data thanks to the help of the Block Device
Drivers it simply must create a Block Device request. This request is submitted to
the generic block layer which is the software component responsible for handling all
requests to block devices and glues together all the upper and lower components.
Since the requested data is not necessarily adjacent on disk, the generic block layer
might need to start several I/O operations. Each I/O operation is represented by
a “block I/O” structure or in short, “bio”, which collects all information needed
by the lower components to satisfy the request. The generic block layer hides the
peculiarities of each hardware block device, thus offering an abstract view of the
block devices. Below the generic block layer, the “I/O scheduler” sorts the pending
I/O data transfer requests according to predefined kernel policies. The purpose of
the scheduler is to group requests of data that lie near each other on the hardware
device. Finally, the block device driver takes care of the actual data transfer by
sending suitable commands to the hardware interfaces of the disk controllers.

Figure 2.3: Abstract Image of a block device operation [21]

In particular, block device drivers are interrupt-driven which means that the
generic block layer invokes the I/O scheduler to create a new block device request
or to enlarge an already existing one and then terminates. The Block Device
Driver, which is activated at a later time, invokes the strategy routine to select

22

a pending request and satisfy it by issuing suitable commands to the disk con-
troller. When the I/O operation terminates, the disk controller raises an interrupt
and the corresponding handler invokes the strategy routine again, if necessary,
to process another pending request. It is important to notice that when a new
block data transfer is requested, the kernel checks whether it can be satisfied by
slightly enlarging a previous request that is still waiting. Due to the fact that disks
tend to be accessed sequentially, this simple mechanism greatly improves systems
performance.

23

Chapter 3

Page Cache

Up to this point, we have examined how the linux kernel fetches data from a
storage device. In this Chapter we delve into one of the most crucial components
of a computer system: the Page Cache. The Page Cache is a specific type of
disk cache responsible of keeping in RAM data that is normally stored on a disk,
such as the contents of a regular file. The importance of the Page Cache to the
performance of a computer system lies in two key aspects :

1. further accesses to the same data can be satisfied quickly without accessing
the disk again as the data is “cached” in the Page Cache.

2. Page Cache has developed a mechanism called Read-Ahead to improve sys-
tems performance by pre-fetching data.

3.1 How it Works

First of all, Page Cache works on whole pages of data. We use the term “page”
to refer both to a set of linear addresses and to the data contained in this group
of addresses. In particular, for a page size of 4 KB, we denote the linear address
interval ranging between 0 and 4,095 as page 0, the linear address interval ranging
between 4,096 and 8,191 as page 1, and so forth. Each memory region therefore
consists of a set of pages that have consecutive page numbers.

Practically, file operations such as read and write rely on the Page Cache to
get satisfied. When a process tries to read (or write) the data of a file then it
actually tries to read (or write) the set of pages that contain the file’s data. If the
requested pages are available then the Page Cache simply returns them. If not,
then the kernel has to take a series of steps to fulfill the request. The first step is for
the kernel to allocate new page frame(s) in the systems RAM which later on will
be filled with new page(s). Reading a page of data from a file is just a matter of
finding what blocks on disk contain the requested data. It is important to mention
that a page does not necessarily contain physically adjacent disk blocks. For that

24

purpose, the VFS calls the filesystems generic function which is used to implement
the read method for block device files and for regular files. Once this is completed,
the kernel fills the pages by submitting the proper I/O operations to the generic
block layer. Once the pages are filled with the requested data the kernel copies
them into the process address space. If there is enough free memory then the page
is kept in the cache for an indefinite period of time and can be reused by other
processes without the need to access the disk. If there is not enough memory, then
the linux kernel must perform a method called swap() to release pages from Page
Cache and to create space for new pages.

3.2 Read-Ahead

Predicting the future is hard a problem, but the kernel has to make an effort to
do so through the Read-Ahead mechanism. Read-Ahead is a mechanism developed
by the linux kernel which consists of reading several adjacent pages of data before
they are actually requested. Read-Ahead only ever attempts to read pages that
are not yet in the Page Cache and if a page is present but not up-to-date, then it
will not try to read it.

In most cases, Read-Ahead significantly enhances disk performance. Specif-
ically, there are situations where it is not too hard to predict what will happen
next, namely, when a process sequentially accesses a file. For example, consider
a situation in which a process reads a file linearly from position A to position B.
It therefore makes sense to Read-Ahead from position B until position C so that
when requests for pages between B and C are issued from the process, the data
will already be available in the Page Cache.

3.3 Synchronous Vs Asynchronous Read

In the previous example, a process issued a read request from position A to
position B of a file. Let’s say that the file’s data from position A to B is contained
in 8 pages. Since the process hasn’t tried to read the file before, those pages will
not be available in the Page Cache. Thus, the kernel will perform the necessary
steps to fetch these 8 pages from the disk. This type of read request is called a
Synchronous read (Sync read) because the process has to wait for the kernel to
fetch the corresponding pages to continue its execution. Moreover, the kernel must
set a marker called PG Readahead, for example on the sixth page, to signal the
beginning of an Asynchronous read (Async read).

Once the pages are available in the Page Cache the process sequentially reads
them. When the sixth page is accessed the kernel notices that the page was
equipped with the PG Readahead marker. This triggers an Asynchronous read
operation that fetches a number of pages in the background. For example, the
kernel fetches 16 more pages to the Page Cache, which in our example contain

25

the data from position B to C of the file. This type of read request is called an
Asynchronous read (Async read) because pages are fetched before they are actually
required. Since two more pages are left in the Page Cache from the initial read
from position A to B, there is no need to hurry. Meanwhile, the I/O performed
in the background will ensure that the pages are present when the process makes
further progress in the file. As a result, when the process tries to read the contents
of the file from position B to C the data will already be contained in the Page
Cache. If the kernel would not adopt this scheme, then Read-Ahead could only
start after a process has experienced a page fault. Thus the required page would
be brought into the Page Cache Synchronously and this would introduce delays
which reduce system’s performance. This scheme is now repeated further. The
Asynchronous read marks a page with the PG Readahead flag, and the kernel will
start a new Asynchronous read when the process has accessed the marked page,
and so on.

Figure 3.1: Overview of the Read-Ahead mechanism [22]

3.4 Read-Ahead Window

Adding pages to the Page Cache is simple task from a technical point of view.
However, the Page Cache has a limited space that should not be occupied by pages
that will not be accessed. More importantly the key-point of Read-Ahead is to
have activated the low-level I/O device driver at the proper time so that the future
pages will have been transferred when the process needs them. In the end, the
challenge lies in predicting the optimal number of pages that the kernel should
pre-fetch. For that reason, the Page Cache requires a sophisticated algorithm that
will increase the number of pre-fetched pages when noticing a sequential access
and decrease them or even disable Read-Ahead otherwise.

For this purpose, while accessing a given file, the Read-Ahead algorithm makes
use of two sets of pages, each of which correspond to a contiguous portion of the
file. These two sets are called the current window and the Read-Ahead window.
The current window consists of pages fetched from a Sync read and contains both
the last pages sequentially accessed by the process and possibly some of the pages

26

that have been read in advance by the kernel but have not yet been requested by
the process. The Read-Ahead window consist of pages fetched from an Async read
which follow the ones in the current window. No page in the Read-Ahead window
has yet been requested by the process, but the kernel assumes that sooner or later
the process will request them.

When a process accesses a file for the first time, the kernel creates a new current
window starting from the first requested page. All current windows have a length
that is a power of two and their initial size mainly depends on the number of
requested pages. As soon as the kernel recognizes that the process has performed
a sequential access in the current window it creates the Read-Ahead window. The
length of the Read-Ahead window depends on the length of the current window and
it is either two or four times larger from it. If the process continues to access the
file in a sequential way, eventually the process will request pages that belong to the
Read-Ahead window. Thus, the Read-Ahead window will become the new current
window and a new one will be created. As a result, Read-Ahead is aggressively
enhanced if the process reads the file sequentially. It is worthwhile mentioning,
that when a process accesses a file for the first time, the kernel automatically
presumes that it will make a sequential access on it.

3.5 Page Cache in Action

The core idea in Read-Ahead is to read more pages than those requested. If
successful and the extra pages are accessed then, that would justify taking a risk to
read even more data that hasn’t been requested. However, if the kernel recognizes
that the file access is not sequential, the current and Read-Ahead windows are
cleared (emptied) and the Read-Ahead is temporarily disabled. When the kernel
notices that a file has started to get accessed sequentially again then, it restarts
the Read-Ahead from scratch.

The linux kernel should be able to provide efficient performance for processes
that have sequential and/or random access patterns over a file. Unfortunately,
for those with random access patterns Read-Ahead is of no use and it could even
deteriorate the Page Cache performance because it tends to waste space with
useless information. We will examine this situation in Chapter 5.

27

Chapter 4

eBPF

4.1 Introduction

eBPF [23], acronym for extended Berkeley Packet Filter, is a revolutionary
kernel technology that allows developers to write custom code that can be loaded
into the kernel dynamically, changing the way the kernel behaves. eBPF provides a
secure and efficient method to enhance kernel capabilities during runtime without
requiring changes to kernel source code or loading kernel modules.

Safety is ensured through an in-kernel verifier that conducts static code analy-
sis, rejecting programs that could potentially cause issues to the kernel. Examples
of programs that are automatically rejected by the verifier include those that might
trap the kernel in infinite loops (e.g., for/while loops without exit conditions) and
programs dereferencing pointers without safety checks.

Loaded programs which passed the verifier are interpreted through an in-kernel
JIT compiler, utilized to achieve native execution performance. The execution
model is event-driven, allowing programs to be attached to various hook points in
the kernel and executed upon triggering of an event.

Figure 4.1: Abstract image of an eBPF program

28

Below we present some of the most common use cases for the eBPF technology.

4.1.1 Security

Typically, entirely independent systems have handled different aspects of se-
curity. For example, we would need independent systems for system call filtering,
process context tracing, and network-level filtering. In contrast, eBPF facilitates
the combination of control and visibility over all aspects by extending the basic
capabilities of seeing and interpreting all system calls and providing packet and
socket-level views of all networking operations. This allows the development of
security systems that operate with more context and an improved level of control.

4.1.2 Networking

eBPF allows developers to install faster, more tailored packet processing fea-
tures, load balancing processes, application profiling scripts and network monitor-
ing practices. Open-source platforms, like Cilium, leverage eBPF to provide secure,
scalable networking for Kubernetes clusters and workloads, and other container-
ized microservices. Furthermore, by leveraging kernel-level package forwarding
logic, eBPF can streamline routing processes and enable faster overall network
response [25].

4.1.3 Tracing and Profiling

The ability to attach eBPF programs to kprobes, uprobes and tracepoints en-
ables the user to profile the runtime behavior of both userspace and kernel space
processes. This gives unique and powerful insights to troubleshoot system per-
formance issues. Also, advanced statistical data structures allow users to extract
useful data in an effective way, without needing to export huge amounts of sam-
pling data that is typical for similar systems.

4.1.4 Observability and Monitoring

eBPF lets developers instrument the kernel and userspace applications to col-
lect detailed performance data and metrics without significantly impacting the
system’s performance. These capabilities enable real-time monitoring and observ-
ability.

4.2 The evolution from BPF to eBPF

What we call “eBPF” today has its roots in the BSD Packet Filter, first de-
scribed in a paper [26] written by Lawrence Berkeley National Laboratory’s Steven
McCanne and Van Jacobson. This paper discusses a pseudomachine that can run

29

filters, which are programs written to determine whether to accept or reject a net-
work packet. These programs were written in the BPF instruction set, a general-
purpose set of 32-bit instructions that closely resembles assembly language. The
heart of what eBPF enables is that the author of the filter can write their own
custom programs to be executed within the kernel without the need to change the
kernel.

BPF came to stand for “Berkeley Packet Filter” and it was first introduced
to linux in kernel version 2.1.75 [27], where it was used in the tcpdump utility as
an efficient way to capture the packets to be traced out. Fast-forward to when
seccomp-bpf was introduced in version 3.5 of the kernel. This enabled the use
of BPF programs to make decisions about whether to allow or deny userspace
applications from making system calls. This was the first step in evolving BPF
from the narrow scope of packet filtering to the general-purpose platform it is
today. From this point on, the words packet filter in the name started to make
less sense as BPF demonstrated capabilities beyond that!

BPF evolved to what we call “extended BPF” or “eBPF” in kernel version
3.18, while the former version became “classic BPF” or “cBPF”. At that time,
“eBPF” was completely reshaped, with the addition of new functionalities and
performance improvements. New features such as maps and tail calls appeared
and the JIT compiler was rewritten in order to provide a new language that would
be even closer to native machine language than cBPFs was.

4.2.1 The Evolution of eBPF to Production Systems

A feature called kprobes [28] (kernel probes) had existed in the linux kernel
for years, allowing for traps to be set on almost any instruction in the kernel
code. Developers could write kernel modules that attached functions to kprobes
for debugging or performance measurement purposes.

The ability to attach eBPF programs to kprobes was the starting point for
a revolution in the way tracing is done across linux systems. At the same time,
hooks started to be added within the kernel’s networking stack, allowing eBPF
programs to take care of more aspects of networking functionality.

Due to eBPFs popularity it became a separate subsystem within the linux
kernel. At the same time, BPF Type Format (BTF) was introduced, which made
eBPF programs much more portable. The final step in eBPFs evolution was the
introduction of LSM BPF, allowing eBPF programs to be attached to the Linux
Security Module (LSM) kernel interface. This indicated that a third major use
case for eBPF had been identified. It became clear that eBPF is a great platform
for security tooling, in addition to networking and observability.

30

4.3 How eBPF works

4.3.1 eBPF Virtual Machine

An eBPF program is a set of eBPF bytecode instructions that run in an in-
kernel execution environment called the eBPF virtual machine [30]. It’s possible to
write eBPF code directly in this bytecode form, much as it’s possible to program
in assembly language. However, this would prove to be rather difficult than useful
and instead developers first write their programs in a higher-level programming
language, such as C, that is easy to deal with. Once the developer writes his code,
he has to convert it to intermediary bytecode by using a compiler suite (such as
LLVM). The next step is to identify a system event (called a “hook”) to attach the
program to, and then load the program into the linux kernel by using one of the
available eBPF libraries. This bytecode runs in the eBPF virtual machine within
the kernel. The eBPF virtual machine, like any virtual machine, is a software
implementation of a computer.

4.3.2 Hooks

eBPF programs can be loaded into and removed from the kernel dynamically.
Once they are attached to a hook, they’ll be triggered by that event regardless of
what caused that event to occur. Hooks are predefined and can include events such
as network events, system calls, function entry and exit, and kernel tracepoints.
If there is no predefined hook for a certain requirement, a developer can create
a user or kernel probe (uprobe or kprobe). For example, a user can attach an
eBPF program to the execve system call and it will be triggered whenever any
process executes “execve()”. It is important to mention that it doesn’t matter
whether that process was already running when the program was loaded. This is a
huge advantage compared to upgrading the kernel and then having to reboot the
machine to use its new functionality.

Figure 4.2: Attaching an eBPF program to a “Hook” point

31

4.3.3 JIT Compiler

Once loaded into the kernel, the program is automatically verified through the
verification engine, and its bytecode is compiled—via a just-in-time (JIT) compiler
[30]. The JIT compiler translates the generic bytecode of the program into the
machine specific instruction set to optimize execution speed of the program. This
makes eBPF programs run as efficiently as natively compiled kernel code or as if
its code was loaded as a kernel module.

4.3.4 Verifier

An eBPF program is loaded into the kernel which means that there must be a
verification process to ensure that the program is safe to be run inside the kernel
[30]. Let’s focus on how the verifier achieves this goal.

First of all, the verifier works on eBPF bytecode not directly on the source.
That bytecode depends on the output from the compiler. Due to compiler opti-
mization, a change in the source code might not always result in what was expected
in the bytecode. As a consequence, it might not give the expected result in the
verifier’s verdict. For instance, the verifier rejects unreachable instructions, but
the compiler might optimize them away before the verifier assesses them.

The verification step involves checking every possible execution path through
the program and ensuring that every instruction is safe. The verifier, steps through
the instructions in order, evaluating them rather than actually executing them.
Each time the verifier comes to a branch, where a decision has to be made on
whether to carry on in sequence or jump to a different instruction, the verifier
pushes a copy of the current state of all the registers onto a stack and explores one
of the possible paths. It continues evaluating the instructions until it reaches the
return at the end of the program (or reaches the limit on the number of instructions
it will process, which is currently one million instructions), at which point it pops
a branch off the stack to evaluate next. If it finds an instruction that could result
in an invalid operation, it fails verification.

Verifying every single possibility could get computationally expensive, so in
practice there are optimizations called state pruning that avoid reevaluating paths
through the program that are essentially equivalent. As it works through the pro-
gram, the verifier records the state of all the registers at certain instructions within
the program. If it later arrives at the same instruction with registers in a matching
state, there is no need to continue to verify the rest of that path, as it’s already
known to be valid.

Here are the steps the verifier has to take to ensure the safety of the eBPF
program :

32

Validating Helper Functions

A user is not allowed to call directly from eBPF programs any kernel function.
Instead, eBPF provides a number of helper functions (4.5) that enable programs
to access kernel information. Different helper functions are valid for different
eBPF program types. For example, the helper function bpf get current pid tgid()
retrieves the current userspace process ID and thread ID, but it does not make
sense to call this from an XDP program that is triggered by the receipt of a packet
at a network interface, because there is no userspace process involved. Also, the
verifier checks that if a user is using an eBPF helper function that’s licensed under
GPL, his program also has a GPL-compatible license.

Checking Memory Access

The verifier performs a number of checks to ensure that eBPF programs only
access memory regions that have access to.

Checking Pointers Before Dereferencing Them

One of the most common errors that cause a program to crash is to dereference
a null pointer. Pointers indicate where in memory a value is being stored. Since
null is not a valid memory location, the eBPF verifier requires all pointers to be
checked before they are dereferenced so that this type of crash can’t happen.

Accessing Context

In every eBPF program some context information is passed as an argument.
Depending on the program and the attachment type it may be allowed to access
only some of that context information. For example, tracepoint programs receive a
pointer to some tracepoint data. The format of that data depends on the particular
tracepoint. Although every tracepoint program starts with some common fields
not every field is accessible from the eBPF program. Only the tracepoint-specific
fields that follow can be accessed. Attempting to read or write the wrong fields
leads to an invalid bpf context access error.

Running to Completion

The verifier ensures that the eBPF program will run to completion. Otherwise,
there is a risk that it might consume resources indefinitely. It does this by having
a limit on the total number of instructions that it will process which is set at one
million instructions at the time of this writing. That limit is hardcoded into the
kernel and it’s not a configurable option. If the verifier hasn’t reached the end
of the BPF program before it has processed this many instructions, it rejects the
program.

33

Checking the Return Code

The return code from an eBPF program is stored in Register 0 (R0). If the
program leaves R0 uninitialized, the verifier will fail.

4.3.5 Deployment of eBPF code

The eBPF code at this stage is ready to be invoked by the specified hook. Once
the eBPF code is triggered, it can call special “helper” functions (4.5) that can
perform a wide range of tasks, including searching and updating key-value pairs in
tables, generating random numbers, redirecting network packets, and more. For
security and stability reasons, these helper functions must be predefined by the
kernel, but the list of helper calls available to eBPF is quite large [29]. As a result,
thanks to eBPF, developers can create projects covering a wide range of use cases
without having to modify kernel source code and therefore without risking the
security or reliability of the kernel.

Figure 4.3: Steps to execute an eBPF program

4.4 High Performance of eBPF Programs

eBPF programs provide a very efficient way to add instrumentation to a com-
puter system [30]. Once loaded and JIT-compiled, the program runs in high speed
as native machine instructions on the CPU. Furthermore, the cost of transitioning
between user and kernel space to handle each event is eliminated.

For performance tracing, another advantage of eBPF is that relevant events can
be filtered within the kernel before incurring the costs of sending them to userspace.
Filtering only certain network packets was, after all, the point of the original BPF
implementation. Today eBPF programs can collect information about all manner
of events across a system, and they can use complex and customized programmatic
filters to send only the relevant subset of information to userspace.

4.5 eBPF Helpers

eBPF differs from the older cBPF in several aspects, one of them being the
ability to call special functions called “helpers” from within a program [30]. These

34

functions are restricted to a white-list of helpers defined in the kernel.
An eBPF program cannot arbitrarily call into a kernel function. This is because

eBPF programs need to maintain compatibility and avoid being bound to specific
versions of the kernel. Thus, eBPF programs use helper functions to make function
calls.

Helpers are APIs provided by the kernel and are used by eBPF programs to
interact with the system, or with the context in which they work. For instance,
they can be used to print debugging messages, to get the time since the system was
booted, to interact with eBPF maps, or to manipulate network packets. Due to the
fact that there are several eBPF program types that they do not run in the same
context, each program type can only call a subset of those helpers. In addition,
due to eBPF conventions, a helper can not have more than five arguments.

Internally, eBPF programs call directly into the compiled helper functions with-
out requiring any foreign-function interface. As a result, calling helpers introduces
no overhead, thus offering excellent performance.

Figure 4.4: Modern Linux : a new OS model

4.6 eBPF Maps

eBPF Maps are one of the most significant features that distinguish eBPF from
cBPF [30]. Maps are data structures that can be used to share information among
multiple eBPF programs or to pass messages between a userspace application and
eBPF code running in the kernel.

In general, all maps have the form of a key–value store. eBPF provides different
types of maps such as arrays which always have a 4-byte index as the key type, hash
tables that can use some arbitrary data type as the key, first-in-first-out queues,
first-in-last-out stacks, least-recently-used data storage, longest-prefix matching,
and Bloom filters (a probabilistic data structure designed to provide very fast
results on whether an element exists).

Some map types have per-CPU variants, which means that the kernel uses a
different block of memory for each CPU core’s version of that map. On the other
hand, for the non per-CPU variants a spin lock support was added to ensure that
multiple CPU cores can access the same map while establishing concurrency.

35

Typical uses include the following:

• A userspace application stores information to be retrieved by an eBPF pro-
gram.

• An eBPF program can use maps to store its current state so that it can be
retrieved by another eBPF program (or from the same program in a future
run).

• An eBPF program stores its results into a map enabling a userspace appli-
cation to retrieve them for further exploitation.

Figure 4.5: Abstract image of eBPF maps

4.7 eBPF in Page Cache

Up to this point, we’ve examined how eBPF works and what are some of
its most common uses. However, we’ve yet to mention how to exploit this new
technology to address our primary objective; which is how to mitigate the linux
kernel overhead. In order to achieve our goal we must take a step back and focus
our attention on the Page Cache.

We’ve mentioned in Chapter 3, that the Page Cache is a software component
with a crucial role in the overall system’s performance, serving as the intermediary
between a storage device and a CPU’s hidden cache. In addition, we’ve covered
the Page Cache Read-Ahead mechanism for fetching pages from a storage device in
order to reduce system latency. These methods adopted from the Page Cache have
a general use purpose. However, better results could be achieved if users could
define what pages should be fetched from a storage device in order to match the
patterns of their userspace applications. For that purpose, we propose to create

36

an eBPF program that will allow users to determine themselves what pages of a
file will be added to the Page Cache before the first Page Cache miss occurs.

Currently, eBPF for safety reasons, prohibits users from directly modifying
the source code of the linux kernel or its routines. Consequently, its strict rules
and policies do not permit users to make alterations on the way the Page Cache
operates. In response to this limitation, we introduce a new BPF Helper under
the name of “bpf force page2cache()” that provides the necessary means to allow
user-defined pages to be added in the Page Cache.

4.7.1 bpf force page2cache()

Every eBPF program consists of two parts. The first part belongs to userspace
and is responsible for executing the system calls that will open the eBPF appli-
cation, load eBPF programs, send them to the Verifier, and finally attach them
to the tracepoint handler. Users can efficiently perform these operations by lever-
aging eBPF libraries such as libbpf [31] that provide the necessary functions to
complete these steps. Furthermore, from the userspace part of the eBPF program,
users can create an eBPF map and store values in it. We propose to users to take
advantage of this capability offered by eBPF and create an array-type eBPF map
in which they can store the page offsets of the file that they wish to be added to
the Page Cache.

The second part belongs to kernel space and is the part of the eBPF program
that will interact with the linux kernel. The kernel part of the eBPF program
has the capability to interact with the eBPF helper functions and as a result it
is tasked with handling the “bpf force page2cache()” function. It is important
to mention that in order to achieve maximum performance for a file operation,
such as read() or mmap(), the pages of the file must be added to the Page Cache
before the first Page Cache Miss occurs. Therefore, we attach our eBPF program
to the kernel function that is responsible for reading pages from the Page Cache
which is “filemap get pages” [32]. At this hook point, we can access all necessary
kernel data structures needed to equip the “bpf force page2cache()” function so
that it can add pages to the Page Cache. Additionally, since users have previously
stored the page offsets in an eBPF map the “bpf force page2cache()” is ready to
be executed.

We’ve created our new eBPF helper “bpf force page2cache()” with two in-
put arguments. The first argument is the kernel data structure “file” [33] which
is responsible for storing essential information required by the kernel for a file
operation. Specifically, we exploit the “file” structure in order to define a “reada-
head control” kernel data structure [34], that is responsible for issuing Read-Ahead
requests for consecutive pages.

The second argument of the function is the eBPF map in which the user has
stored the page offsets that will be added to the Page Cache. Because eBPF data
structures require specific headers, the eBPF helper goes through the map and

37

stores the page offsets in an array. As illustrated in the helper’s source code 4.1,
the first item stored in the eBPF helper is the number of offsets the user wishes to
add to the Page Cache, and the rest of the map contains the corresponding page
offset values.

“bpf force page2cache()” is an eBPF helper and therefore it is also an integral
part of the linux kernel which means that it can interact with every other kernel
function. Given the complexity of the task at hand, we’ve introduced a new kernel
function that our new eBPF helper will call, with the name “offload pages2cache”,
that can actually read pages from a storage device and store them to the Page
Cache. Essentially, “bpf force page2cache()” reads the page offsets that are stored
in the eBPF map and invokes “offload pages2cache” providing it with the user-
defined offsets and the kernel structures it requires to accomplish its task. After
the execution of “bpf force page2cache()” there are two possible outcomes. Either
the pages will be successfully added to the Page Cache and the eBPF program we
terminate its execution or an error will occur causing the linux kernel to take over
control and execute the requested file operation. Either way our program will not
cause any harm to the kernel or crash the execution of the file operation.

1 BPF_CALL_2(bpf_force_page2cache , struct file **, f, struct bpf_map *, map)

2 {

3 unsigned long i = 0;

4

5 WARN_ON_ONCE (! rcu_read_lock_held () && !rcu_read_lock_bh_held ());

6 unsigned long *nr_pages =(unsigned long)map ->ops ->map_lookup_elem(map ,&i);

7 int *indexes = kzalloc (* nr_pages*sizeof(int), GFP_ATOMIC);

8 if (nr_pages != NULL)

9 {

10 for(i=1; i <= *nr_pages; i++)

11 {

12 WARN_ON_ONCE (! rcu_read_lock_held () && !rcu_read_lock_bh_held ());

13 unsigned long *index=(unsigned long)map ->ops ->map_lookup_elem(map ,&i);

14 indexes[i-1] = *index;

15 }

16

17 }

18

19 struct file *filp = *f;

20 struct address_space *mapping = filp ->f_mapping;

21 struct file_ra_state *ra = &filp ->f_ra;

22

23 DEFINE_READAHEAD(ractl , filp , ra , mapping , 0);

24

25 offload_pages2cache (&ractl , *nr_pages , indexes);

26

27 kfree(indexes);

28 return 0;

29 }

Listing 4.1: source code of bpf force page2cache() eBPF helper

38

4.7.2 offload pages2cache()

“offload pages2cache()” is the kernel function we’ve developed, that is responsi-
ble for reading pages into the Page Cache. The function, starts with validating the
input pointers, to ensure they are not NULL. Its main objective is to loop over the
user-specified pages and identify consecutive sequences in order to initiate Read-
Ahead requests for each sequence. The function must also handle gaps in the se-
quence or cases in which a page extends beyond the end of the file. Notably, the ac-
tual Read-Ahead process is executed by invoking the “page cache ra unbounded”
[35] kernel function with the calculated number of pages to read.

1 void offload_pages2cache(struct readahead_control *ractl , unsigned long

nr_to_read , int *indexes) {

2 if(indexes == NULL) {

3 printk(KERN_DEBUG "offload_pages2cache indexes == NULL return ...");

4 return ;

5 }

6 if(ractl == NULL) {

7 printk(KERN_DEBUG "offload_pages2cache ractl == NULL return ...");

8 return ;

9 }

10 struct inode *inode = ractl ->mapping ->host;

11 unsigned long index , prev_index , i, j, seq_pages_to_read;

12 loff_t isize = i_size_read(inode);

13 pgoff_t end_index; /* The last page we want to read */

14 if (isize == 0)

15 return;

16 end_index = (isize - 1) >> PAGE_SHIFT;

17 for(i=0; i<nr_to_read; i++)

18 {

19 seq_pages_to_read = 0;

20 index = indexes[i];

21 ractl ->_index = index;

22 if (index > end_index)

23 return ;

24 seq_pages_to_read += 1;

25 for(j = i + 1; j < nr_to_read; j++)

26 {

27 prev_index = index;

28 index = indexes[j];

29 if (index > end_index)

30 return page_cache_ra_unbounded(ractl , seq_pages_to_read , 0);

31 if (index != prev_index + 1)

32 break;

33 seq_pages_to_read += 1;

34 // Don’t read past the page containing the last byte of the file

35 if (seq_pages_to_read > end_index - ractl ->_index)

36 {

37 seq_pages_to_read = end_index - ractl ->_index + 1;

38 return page_cache_ra_unbounded(ractl , seq_pages_to_read , 0);

39 }

40 }

41 i = i + seq_pages_to_read - 1;

42 page_cache_ra_unbounded(ractl , seq_pages_to_read , 0);

43 }

44 }

Listing 4.2: source code of offload pages2cache() kernel function

39

4.7.3 bpf get filename()

The linux kernel is a multitask O.S. and therefore there could be a number
of file operations being executed at the same time. However, a user is interested
in the file operation that is referring to a specific file and as a result he must be
able to specify that in the eBPF program. For that purpose, we’ve developed a
second eBPF helper, with the name “bpf get filename()”, that is responsible with
handling this task. “bpf get filename()” has three input arguments :

1. the filename the user is interested in.

2. the size of the filename (for safety reasons).

3. The kernel data structure from which the eBPF helper can retrieve the
filename that corresponds to the current process (and which the helper will
compare with the filename that the user specified).

“bpf get filename()” has a return value of either 0 or 1. If the filename of the
current process is the same with the filename that the user specified then the eBPF
helper returns 1 otherwise it returns 0.

“bpf get filename()” is an eBPF helper and therefore it is executed in the
kernel side of the eBPF program. In addition, from the hook that the eBPF
program is attached to (“filemap get pages”) we can retrieve the necessary kernel
data structure (“file”) the helper requires for its execution. As a result, the user
is only obliged to specify the filename that is interested in.

1 BPF_CALL_3(bpf_get_filename , char *, filename , u32 , size , struct file **, f)

2 {

3 if (unlikely (!f))

4 goto err_clear;

5

6 struct file *filp = *f;

7 struct path *f_path = &filp ->f_path;

8 struct dentry *dentry = f_path ->dentry;

9 const struct qstr *dname = &dentry ->d_name;

10

11 int ret = strncmp(filename , dname ->name , size);

12 if(ret != 0)

13 return 0;

14 return 1;

15 err_clear:

16 return 0;

17 }

Listing 4.3: source code of bpf get filename() eBPF helper

40

Chapter 5

Experimental evaluation

5.1 Simulation Tool : fio - Flexible I/O tester

We employ the FIO simulation tool [36] to conduct our experiments and mea-
surements. FIO, which stands for Flexible I/O, is a third-party tool designed to
simulate specific I/O workloads. It allows us to quickly define and execute work-
loads, providing detailed metrics for each run. This capability enables us to com-
pare results across various conditions, including different hardware and firmware
configurations, using workloads that closely resemble production scenarios.

The workload gives the capability to test various I/O scenarios that represent
real-life usage patterns on computer systems. For example, it enables testing se-
quential read and write operations as well as random read and write operations. It
also enables the ability to test single-threaded vs. multi-threaded I/O operations
as well as the ability to control I/O queue depths and whether hardware caches
should be used.

In the following sections we present results of :

• fio tests over a file that is currently located only on a storage device and not
on the Page Cache.

• two types of file operations :

– read()

– mmap()

• A single thread is executing the file operations.

• two types of access patterns :

– sequential access patterns.

– random access patterns.

41

5.2 Page Cache

Up to this point we’ve examined the Page Cache and its mechanisms. We’ve
stated before that the Page Cache Read-Ahead mechanism is very efficient when it
comes to sequential access patterns and behaves poorly when it comes to random
access patterns. In this section, we will dive into the Page Cache efficiency and
present our results. In all our experiments we will focus our attention on the file
operations latency.

5.2.1 Latency

Latency is the flip side of the same performance coin. Where throughput
refers to how many bytes of data per second you can move on or off the disk,
latency—most commonly measured in milliseconds—refers to the amount of time
it takes to read or write a single block. In fact, storage bottlenecks are actually
latency issues that affect throughput, not the other way around.

We can understand how latency affects throughput from a simple experiment.
If we have a reasonably fast disk with a maximum throughput of 180MB/sec and
a total access latency of 16ms, and we present it with a maximally fragmented
workload—meaning that no two blocks have been written/are being written in
sequential order—we can do a little math to come up with that throughput. As-
suming 4KB physical blocks on disk, 4KB per seek divided by 0.016 seconds per
seek = only 250KB/sec, a disappointing performance.

5.2.2 read()

This section explores the impact of a sequential and a random access pattern
on the latency of the read() file operation. The effectiveness of a sequential read()
comes from the fact that the process is accessing file pages consecutively and thus
leading the linux kernel to consistently hit the PG Readahead marker and pre-
fetch file pages before they are actually requested. Consequently, we expect that
only one Page Cache miss will occur and therefore the performance for a sequential
read() will depend on the disks performance and the variation of the Read-Ahead
window size. Conversely, in random read() operations, the kernel cannot predict
the pages the process will request and thus can not correctly mark pages with
the PG Readahead flag, making it challenging to predict the effectiveness of the
Read-Ahead mechanism.

The following figure 5.1 illustrates the results for both sequential and random
read() operations, highlighting the expected outcome of only one Page Cache miss
for sequential reads and varying numbers of Page Cache misses for random reads.
It is important to mention that there is a significant difference in the number of
Page Cache misses between the two access patterns, particularly evident in the
results for a 2GB file, where a substantial contrast is exhibited.

42

Figure 5.1: Number of Page Cache Misses for read() operations with Sequen-
tial (Left) and Random (Right) access patterns.

In Chapter 3, we’ve examined the complexity of retrieving data stored in a disk.
Consequently, an elevated number of Page Cache misses, which results in more
requests to a storage device, leads to an increase in the latency of file operations.
In the following Figure 5.2, we showcase the completion time of each file operation
that corresponds to what we’ve presented in Figure 5.1.

Figure 5.2: Latency for Sequential and Random read() file operations. It’s
important to notice the significant scaling difference between the y-axis of
the left and right figure.

The above results illustrate what we’ve mentioned so far providing conclusive
data that showcase the significant difference in the performance of the Page Cache
when dealing with processes with more complex access patterns. In almost every

43

examined case, the latency for random access pattern is two or three times more
than that of the sequential access pattern.

5.2.3 mmap()

Everything we’ve showcased so far for the read() file operation also stands for
the mmap() file operation. In fact, as we can observe from the figure 5.3 the
performance gap between sequential and random access patterns for the mmap()
file operation is much more substantial than it was for the read() file operation.

Figure 5.3: Latency of mmap() file operations with Sequential and Random
Access Pattern. It’s important to notice the significant scaling difference
between the y-axis of the left and right figure.

5.3 Impact of “bpf force page2cache()” in Page

Cache

In the previous cases, the user is aware that the process will access every page
of the file. Therefore, it is time to deploy “bpf force page2cache()” to add pages
to the Page Cache. The following figures present the influence of the new eBPF
helper to read() and mmap() file operations.

44

5.3.1 read()

Figure 5.4: Latency of Sequential read() with and without eBPF. It’s impor-
tant to notice the significant scaling difference between the y-axis of the left
and right figure.

Figure 5.5: Latency of Random read() with and without eBPF. It’s important
to notice the significant scaling difference between the y-axis of the left and
right figure.

45

5.3.2 mmap()

Figure 5.6: Latency of mmap() for Sequential Access Pattern with and with-
out eBPF. It’s important to notice the significant scaling difference between
the y-axis of the left and right figure.

Figure 5.7: Latency of mmap() for Random Access Pattern with and without
eBPF. It’s important to notice the significant scaling difference between the
y-axis of the left and right figure.

46

5.3.3 Results

Sequential Access Pattern

In the case of sequential access patterns, the influence of the eBPF helper on
the performance of file operations depends on the file size. For smaller file sizes,
the eBPF helper exhibits a natural impact, neither deteriorating nor significantly
enhancing the file operations performance. However, as the file sizes increase, the
impact of the eBPF helper becomes noticeable, indicating its utility in larger files.

Random Access Pattern

In the case of random access patterns, the impact of the eBPF helper on file
operations latency is immediately evident. The results clearly prove that the uti-
lization of the eBPF helper has reduced the latency for both file operations, read()
and mmap(), to levels comparable to the corresponding latency of the sequential
access patterns. Consequently, in this case, we have achieved our goal of minimiz-
ing the performance gap between the two types of access patterns.

5.4 Use Case : Firecracker

Firecracker [38] is a virtual machine monitor (VMM) that uses the linux kernel-
based Virtual Machine (KVM) to create and manage microVMs. Firecracker was
primarily developed as a specialized VMM for serverless workloads, but it is gen-
erally useful for containers, functions and other compute workloads. It has a
minimalist design that intentionally excludes unnecessary devices and guest func-
tionality, aiming to reduce the memory footprint of each microVM and leading to
reduced startup times and increased hardware utilization. With firecracker, cloud
providers can pack thousands of microVMs onto the same machine. This means
that every serverless function, container, or container group can be encapsulated
with a virtual machine barrier, enabling workloads from different customers to run
on the same machine, without any tradeoffs to security or efficiency.

5.4.1 Serverless computing

Serverless computing [39] has emerged as the fastest growing cloud service and
deployment model of the past few years. In serverless, services are decomposed into
collections of independent stateless functions that are invoked by events specified
by the developer. These functions are very popular due to their reduced cost of
operations, improved utilization of hardware, and faster scaling than traditional
deployment methods. Consequently, at any given time there could be a number
of active functions concurrently running that could range from zero to thousands.
Moreover, the serverless model provides a pay-as-you-go billing allowing customers
to be charged only for the time spent executing their requests.

47

5.4.2 Cold Start Problem

The economics and scale of serverless applications demand that workloads from
thousands of independent function instances run on the same hardware with min-
imal overhead, while preserving strong security and performance isolation. This
high degree of co-location has proven to be possible from a recent study of Azure
Functions [40] in production. The study shows that serverless functions are short-
running and invoked infrequently. Specifically, it shows that half of the functions
complete within 1 second while >90% of functions have runtime below 10 seconds.
Another finding is that functions tend to have small memory footprints: >90% of
functions allocate less than 300MB of virtual memory. Lastly, 90% of functions are
invoked less frequently than once per minute, albeit >96% functions are invoked
at least once per week.

We are interested in the Azure study because the process inside the firecracker’s
microVM, which receives the function invocation in the form of an RPC, takes
up to several seconds to bootstrap before it is able to invoke the user provided
function, which also may have its own initialization phase [39]. Considering the
short execution time of serverless functions that the Azure study revealed, the
period it takes to initialize them, commonly referred to as “cold start”, constitutes
a significant portion of the total execution time and introduces a notably expensive
latency. In addition, customers are not billed for the time a function boots and
have a strong incentive to minimize cold starts due to their impact on latency.

In order to avoid this problem, both cloud vendors and their customers prefer
to keep function instances memory resident, commonly referred to as keeping them
“warm”. However, cloud vendors can not predict whether a customer will execute
the same function again and therefore keeping idle function instances alive could
turn out to be a waste of precious main memory. As a result, given that serverless
providers deploy thousands of functions on a single server, the memory footprint of
keeping all instances warm can extend into hundreds of gigabytes. Another thing
to keep in mind, is that a servers main memory accounts for a large portion of its
typical capital cost and thus serverless providers can’t afford to waste it.

To avoid unnecessary memory usage, most serverless providers tend to limit
the lifetime of function instances to 8-20 minutes after the last invocation, due
to the sporadic nature of invocations. In other words, providers prefer to remove
instances after a period of inactivity and start new ones on demand. In the last
few years, high cold-start latencies have become one of the central problems in
serverless computing and one of the key metrics for evaluating serverless providers.

48

5.4.3 Snapshotting

Snapshotting is an innovative technique proposed by researchers to help reduce
cold starts while avoiding the need to keep thousands of functions warm [39]. This
method aims to quickly restore a virtual machine (VM) to its warm state by
capturing it to a snapshot. Specifically, a snapshot captures the current state of
a VM, including the state of the virtual machine monitor (VMM) and the guest-
physical memory contents, and store it as files on disk. With snapshotting, we can
capture the state of a function instance that has been fully booted and is ready to
receive and execute a function invocation and therefore we no longer need to keep
it alive. Upon the next invocation of the function, a new instance can be quickly
created from the corresponding snapshot. After the loading process is complete,
this instance is ready to process the incoming request, effectively eliminating the
high cold start latency.

Firecracker has introduced their own open-source snapshotting mechanism [41]
that follows the same design principles as Catalyzer [39]. Similarly to Catalyzer,
loading a Firecracker VM from a snapshot is done in two phases. First, the hy-
pervisor process loads the state of the VMM and the emulated devices (that we
further refer to as loading VMM for brevity) and then maps a plain guest-physical
memory for lazy paging.

Snapshotting Latency issue

In order to avoid loading the whole guest memory when starting guest VMs,
snapshot methods apply lazy loading of guest memory [42]. With Lazy loading
memory pages are loaded from disk on-demand when accessed by the guest. How-
ever this proves to have a negative impact on the snapshotting technique because
the page access pattern tends to be closer to random than sequential and exhibit
low spacial locality. Therefore, this leads to many major page faults and scattered
disk reads that add significant overhead and slow down function execution. As a
result, although snapshot and restore improve performance, the cold start problem
is still not entirely solved. This is because in order to restore the VM state and
initialize the guest memory, the guest needs to access at least a few thousands of
memory pages with lazy loading.

49

5.4.4 Deployment of eBPF

In order to enhance the performance of the snapshotting technique we can
leverage our new eBPF helper. To achieve our goal, in the first invocation of
restoring a snapshot we will record the pages accessed and store them into a file.
Next, we will assume that memory accesses are stable across function invoca-
tions and use the stored information to prefetch a compact representation of the
working set of previous invocations when handling new ones. Finally, we will lever-
age “bpf force page2cache()” to bring the user-defined pages into the Page Cache
through a single read(), thus avoiding the costs associated with scattered page
reads and reduce the techniques latency.

5.4.5 Results

In the following figure 5.8 we present the impact of “bpf force page2cache()”
to firecracker’s snapshotting. The following results occur from loading a snapshot,
using it to resume a firecracker’s microVM and executing a simple function.

Figure 5.8: Results of eBPFs impact on firecracker’s snapshotting method

On the left bar, we present the operations latency for firecracker’s snapshotting
method and on the right bar the corresponding latency for the same operation with
the influence of our new eBPF helper.

50

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this Diploma thesis, we’ve conducted a comprehensive examination of the
software layers and components of the linux kernel that are associated with the
read file operation. Furthermore, we’ve delved into the Page Cache and its key
roll on the file operation’s latency. Specifically, through a thorough analysis of the
Page Cache, we’ve demonstrated that :

• Processes with sequential access patterns have an ideal performance. This
outcome come from the fact that the Page Cache Read-Ahead mechanism
manages to pre-fetch pages before they are actually requested. Thus, it
eliminates the time it would normally take for the process to request a set
of pages every time a Page Cache miss occurred.

• Processes with complex access patterns have a significant higher latency
compared to those with sequential access. The main reason for this con-
sequence is the inadequacy of the Page Cache Read-Ahead algorithm to
adapt to access patterns that are more complex and seem to be random.
As a result, a sufficient number of Page Cache misses occurs, that introduce
additional latency to the completion of file operations.

Motivated by the unsustainable performance of the Page Cache for processes
with complex access patterns, we’ve shifted our attention to a new powerful tech-
nology of the linux kernel named eBPF to find a solution. We’ve examined how
the evolution of eBPF has led it to be a tool used to safely and efficiently extend
the capabilities of the kernel without requiring to change kernel source code or
load kernel modules. We’ve leveraged eBPF to create a new helper that will allow
user to define the pages that will be added to the Page Cache in order to match
the access patterns of their userspace applications.

More information about the development of the “bpf force page2cache()” eBPF
helper can be found on this Github repository : [43].

51

From our tests and results we’ve conducted the following conclusions :

• In order to develop a new eBPF helper we’ve modified the linux kernel.
However, we’ve successfully completed our goal without making any major
changes to the linux kernel but with only a few extra lines of code. In
addition, we’ve kept the full support of the linux kernel when executing our
new helper to add pages to the Page Cache.

• Page Cache misses lead to increased latency of file operations due to the
large number of read system calls that must be handled from the kernel. To
address the disparity between processes with a high number of Page Cache
misses (random access patterns) and those with a small number (sequential
access patterns), we utilize our new eBPF helper to efficiently fetch the pages
that a userspace application will request in a single read batch. The figures
presented in Chapter 5 illustrate how this approach effectively narrows the
performance gap between them.

• We can take advantage of our new eBPF helper for file operations such as
read() and mmap(). This capability can be utilized in applications that per-
form these types of operations. Specifically, we’ve demonstrated the utility
of our eBPF helper in enhancing the snapshotting technique of firecracker,
which executes the mmap() file operation to load and restore a snapshot file.

6.2 Future Work

Based on the results and conclusions we’ve presented, we believe that the
new eBPF helper “bpf force page2cache()” is capable of offering significant perfor-
mance improvement under certain conditions and is worth studying and evolving.
Particularly, as a continuation of the present work, we would find it interesting
and challenging to add these utilities:

• Currently, the eBPF helper performs synchronous read. That means that it
is designed to read a batch of pages from the storage device and fetch them
to the Page Cache in order to complete its operation. However, its perfor-
mance could be significantly improved by implementing a hybrid approach.
Specifically, it would be advantageous for the eBPF helper to read a small
set of pages (e.g., four pages) synchronously, while fetching the remaining
pages asynchronously in batches. This would minimize the process waiting
time, as it would only need to wait for a short period until the first batch of
pages arrives. By the time the process finishes reading these pages, the next
batch of pages would already be available. In essence, it would be beneficial
to implement a Read-Ahead mechanism for the eBPF helper.

52

• The next step involves incorporating multiple kernel threads into the proce-
dure. Given that the user has predefined the pages to be added to the Page
Cache and, as mentioned earlier, a hybrid approach with synchronous and
asynchronous page fetching has been established, we can divide the proce-
dure into distinct parts and assign a dedicated thread to handle each part.
Specifically, the initial thread would address the synchronous segment, while
concurrently, the remaining threads —whether they’re one, two, or more—
would asynchronously handle the retrieval of a number of additional pages
each (i.e. eight), continuing this process until all specified pages have been
successfully fetched into the Page Cache. This threaded implementation
aims to enhance parallelism and overall efficiency in the execution of the
eBPF helper operation.

53

Bibliography

[1] INTEL. Breakthrough performance for demanding storage workloads.
https://ark.intel.com/content/www/us/en/ark/

[2] Polling and Interrupts.
http://www.linux-tutorial.info/?page_id=418

[3] Fast Scatter-Gather I/O.
https://www.gnu.org/software/libc/manual/html_node/Scatter_

002dGather.html

[4] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. NVMeDirect: A user-space I/O
framework for application-specific optimization on NVMe SSDs. In USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage ’16) (Denver,
CO, USA, 2016).

[5] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
Rearchitecting linux storage stack for µs latency and high throughput. In 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
21), pages 113–128. USENIX Association, July 2021.

[6] YANG, Z., HARRIS, J. R., WALKER, B., VERKAMP, D., LIU, C., CHANG,
C., CAO, G., STERN, J., VERMA, V., AND PAUL, L. E. SPDK: A devel-
opment kit to build high performance storage applications. In IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom
’17) (Hong Kong, 2017), pp. 154–161.

[7] Wikipedia : Locality of reference.
https://en.wikipedia.org/wiki/Locality_of_reference

[8] Wikipedia : Cache replacement policies.
https://en.wikipedia.org/wiki/Cache_replacement_policies

[9] Viacheslav Fedorov, Jinchun Kim, Mian Qin, Paul V Gratz, and AL Narasimha
Reddy. Speculative Paging for Future NVM Storage. In Proceedings of the
International Symposium on Memory Systems (MEMSYS), 2017.

54

https://ark.intel.com/content/www/us/en/ark/
http://www.linux-tutorial.info/?page_id=418
https://www.gnu.org/software/libc/manual/html_node/Scatter_002dGather.html
https://www.gnu.org/software/libc/manual/html_node/Scatter_002dGather.html
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Cache_replacement_policies

[10] Wikipedia : PageRank.
https://en.wikipedia.org/wiki/PageRank

[11] Linux. fadvise(1) — Linux manual page.
https://man7.org/linux/man-pages/man1/fadvise.1.html

[12] Linux. madvise(2) — Linux manual page.
https://man7.org/linux/man-pages/man2/madvise.2.html

[13] Stephen Macke - GitHub. smacke/jaydio: A Java Library to Perform Direct
I/O in Linux, Bypassing File Page Cache.
https://github.com/smacke/jaydio

[14] EighteenZi - GitHub. Direct-IO.md.
https://github.com/EighteenZi/rocksdb_wiki/blob/master/

Direct-IO.md

[15] Wikipedia : Berkeley Packet Filter.
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter

[16] LWN : A thorough introduction to eBPF.
https://lwn.net/Articles/740157/

[17] XRP: In-Kernel Storage Functions with eBPF.

[18] Wkipedia : CPU cache.
https://en.wikipedia.org/wiki/CPU_cache#

[19] Wikipedia : System call.
https://en.wikipedia.org/wiki/System_call

[20] intro(2) — Linux manual page.
https://man7.org/linux/man-pages/man2/intro.2.html

[21] Understanding the Linux Kernel, 3rd Edition, By Daniel P. Bovet, Marco
Cesati, November 2005

[22] Halo Linux Services : Page Cache Readahead.
https://www.halolinux.us/kernel-architecture/

page-cache-readahead.html

[23] Wikipedia : eBPF.
https://en.wikipedia.org/wiki/EBPF

[24] eBPF Explained: Use Cases, Concepts, and Architecture.
https://www.tigera.io/learn/guides/ebpf/

[25] IBM : What is eBPF? .
https://www.ibm.com/topics/ebpf

55

https://en.wikipedia.org/wiki/PageRank
https://man7.org/linux/man-pages/man1/fadvise.1.html
https://man7.org/linux/man-pages/man2/madvise.2.html
https://github.com/smacke/jaydio
https://github.com/EighteenZi/rocksdb_wiki/blob/master/Direct-IO.md
https://github.com/EighteenZi/rocksdb_wiki/blob/master/Direct-IO.md
https://en.wikipedia.org/wiki/Berkeley_Packet_Filter
https://lwn.net/Articles/740157/
https://en.wikipedia.org/wiki/CPU_cache#
https://en.wikipedia.org/wiki/System_call
https://man7.org/linux/man-pages/man2/intro.2.html
https://www.halolinux.us/kernel-architecture/page-cache-readahead.html
https://www.halolinux.us/kernel-architecture/page-cache-readahead.html
https://en.wikipedia.org/wiki/EBPF
https://www.tigera.io/learn/guides/ebpf/
https://www.ibm.com/topics/ebpf

[26] Steven McCanne, Van Jacobson. The BSD Packet Filter : A New Architecture
for User-level Packet Capture, 1992.

[27] Alexei Starovoitov’s, BPF – in-kernel virtual machine, 2015.
https://netdevconf.info//0.1/docs/starovoitov-bpf_netdev01_

2015feb13.pdf

[28] Kernel Documentation : Kernel Probes (Kprobes).
https://www.kernel.org/doc/html/latest/trace/kprobes.html

[29] Linux. bpf-helpers(7) — Linux manual page.
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[30] Liz Rice, Learning eBPF : Programming the Linux Kernel for Enhanced Ob-
servability, Networking, and Security, March 2023.

[31] Github : libbpf.
https://github.com/libbpf/libbpf

[32] linux kernel v5.15.19 : function filemap get pages.
https://elixir.bootlin.com/linux/v5.15.19/source/mm/filemap.c#

L2524

[33] linux kernel v5.15.19 : struct file.
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/

fs.h#L965

[34] linux kernel v5.15.19 : struct readahead control.
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/

pagemap.h#L820

[35] linux kernel v5.15.19 : page cache ra unbounded kernel function.
https://elixir.bootlin.com/linux/v5.15.19/source/mm/readahead.c#

L174

[36] fio : Flexible I/O tester.
https://fio.readthedocs.io/en/latest/fio_doc.html#

overview-and-history

[37] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, Diana-Maria Popa. Fire-
cracker: Lightweight Virtualization for Serverless Applications. In the Pro-
ceedings of the 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’20).
https://www.usenix.org/system/files/nsdi20-paper-agache.pdf

[38] Firecracker.
https://firecracker-microvm.github.io/

56

https://netdevconf.info//0.1/docs/starovoitov-bpf_netdev01_2015feb13.pdf
https://netdevconf.info//0.1/docs/starovoitov-bpf_netdev01_2015feb13.pdf
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://github.com/libbpf/libbpf
https://elixir.bootlin.com/linux/v5.15.19/source/mm/filemap.c#L2524
https://elixir.bootlin.com/linux/v5.15.19/source/mm/filemap.c#L2524
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/fs.h#L965
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/fs.h#L965
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/pagemap.h#L820
https://elixir.bootlin.com/linux/v5.15.19/source/include/linux/pagemap.h#L820
https://elixir.bootlin.com/linux/v5.15.19/source/mm/readahead.c#L174
https://elixir.bootlin.com/linux/v5.15.19/source/mm/readahead.c#L174
https://fio.readthedocs.io/en/latest/fio_doc.html#overview-and-history
https://fio.readthedocs.io/en/latest/fio_doc.html#overview-and-history
https://www.usenix.org/system/files/nsdi20-paper-agache.pdf
https://firecracker-microvm.github.io/

[39] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, Boris
Grot. Benchmarking, Analysis, and Optimization of Serverless Function Snap-
shots. ASPLOS ’21, April 19–23, 2021, Virtual, USA.
https://marioskogias.github.io/docs/reap.pdf

[40] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. 2020. Serverless in the Wild: Characterizing and Opti-
mizing the Serverless Workload at a Large Cloud Provider. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC). 205-218.

[41] Github : firecracker snapshotting.
https://github.com/firecracker-microvm/firecracker/blob/main/

docs/snapshotting/snapshot-support.md/

[42] Lixiang Ao, George Porter, Geoffrey M. Voelker. FaaSnap: FaaS Made Fast
Using Snapshot-based VMs. EuroSys ’22, April 5–8, 2022, RENNES, France.

[43] Github Repository.
https://github.com/el18053/Diploma

57

https://marioskogias.github.io/docs/reap.pdf
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md/
https://github.com/firecracker-microvm/firecracker/blob/main/docs/snapshotting/snapshot-support.md/
https://github.com/el18053/Diploma

	Introduction
	Current Solutions
	Polling
	Interrupt Driven I/O
	Scatter/Gather I/O
	Kernel Bypass

	Motivation: Page Cache
	Limitations of Kernel-Level Page Cache
	Limitations of User-Level Page Cache

	BPF : New Revolutionary Technology

	Kernel Stack
	System Call Layer
	Virtual Filesystem (VFS)
	Device Drivers
	Read Operation

	Page Cache
	How it Works
	Read-Ahead
	Synchronous Vs Asynchronous Read
	Read-Ahead Window
	Page Cache in Action

	eBPF
	Introduction
	Security
	Networking
	Tracing and Profiling
	Observability and Monitoring

	The evolution from BPF to eBPF
	The Evolution of eBPF to Production Systems

	How eBPF works
	eBPF Virtual Machine
	Hooks
	JIT Compiler
	Verifier
	Deployment of eBPF code

	High Performance of eBPF Programs
	eBPF Helpers
	eBPF Maps
	eBPF in Page Cache
	bpf_force_page2cache()
	offload_pages2cache()
	bpf_get_filename()

	Experimental evaluation
	Simulation Tool : fio - Flexible I/O tester
	Page Cache
	Latency
	read()
	mmap()

	Impact of ``bpf_force_page2cache()'' in Page Cache
	read()
	mmap()
	Results

	Use Case : Firecracker
	Serverless computing
	Cold Start Problem
	Snapshotting
	Deployment of eBPF
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

