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IlepiAnypn

H xprjon 1oV pE€oOV KOW®VIKLG S1KTU®OONG £ival éva avaroonacto KOPPATL g Kabnpe-
pwotntag oto ouyxpovo koopo. ITAatdpoppeg ornwg to Twitter, to Facebook kat to Instagram
OUYKEVIPp@WVOUV KaBnpuepvd ekatoppupla xproteg. To Twitter, e1dikotepa, €xet avaderyOet
®G H1a 1oxupn mAatpoppa yia ouvopldieg o€ TIPAyRATikKo Xpovo Kat diadoor) e1d6rjoemv. Me
10 0p1o 280 yapaxipwev, 10 Twitter evBappuvel v Ko Xp1on YPHYOP®V EVIHEPDOOEDV
Kal aroyenv o poviepva dépata. 'Exet Stabpapatiost onpaviiké podo ot Siapdpdp®or) tou
dnpooou Aoyou, oty Snuioupyia KOWOVIKGOV KIVIPATOV KAl ot ouvdeor avlporneov arnd
OAoV OV KOopo. Autr 1) taxeia avarttudn £xel evBappuvel v eadavion v bots, mou sivat
auvtopatonounpévol Aoyaplacpol oxediaopévol va pipouvidl Ty avlp@dIivn cuprepipopd.
MriopouUv va aparnAnpopoprjcouy, va rpomdroouv 18e0Aoyieg Kal va evioxUoouv tig Yyeudeig
e1brjoelg pe avnouxnuko pubpo. 'Oyt Povo UTTOVOREUOUV TNV €UITICTO0OUVI] TOU KOWoU otd
PEoa evnuép®ong Kat Toug Jeopoug, aAAd PImopouv Eriong va £€X0UV OUVEIIEIEG OTOV IPAy-
Hatké KOOHO, A0 TOV EMNPEACHO EKAOYOV £0G TNV MPOKANOI KOIWMVIKIG AVAOTATHONG.
O amoteAeoPATIKOG EVIOIIONOG AUTOV TOV AOYaplaopeVv eival pia peyddn mpoxkAnon otov
OUYXPOVO KOOHO Kat €xel artoteAéoetl 9€pa oAudplOp®v PeAEToV.

Ze auty] ) Sumlepatiky, apouctddoupe TV £pyacia pag yia €va aroteAeopatiko Ho-
viédo aviyveuong bot. Xpno1omoloUpe OXEOIAKA OUVEAIKTIKA VEUP®VIKA SiKtud ypddpav
TToU eKpetalAevovial ta dedopéva Xpr)otn Kal TEXVIKEG PETAd00Ng PNVUPAT®V yid va IIpoo-
dwoouv etikeTeg oe KABe kKOpBo. Xpnopomoinoape emiong v TEXVIKN g Avadntnong Apxt-
TeEKTOVIKIG NeUp@VIKOV AIKTUGV TTOU avadntd v apX1ltEKTOVIKI] PE TV upndotepn akpibelq,
XPNOUOTIOIROVTAg £vav eEeAKTIKO aAyopibyio.

Zt0 1¢A0g, Tapoucladoupe Ta ATOTEAL0PATA KAl KATAANYOUE OTO0 CUHPIEPACHA OTL |
1€6086g pag propet va aviaywviotet riponyoupieva poviéda otnv avixveuorn bot, unoypap-

pidovtag ta mAeovekpaAta g XP1ong Kat tov dU0 TEXVIK®V.

Agterg KAe1ba

Méoa Kowevikng Siktuwong, Bots, Twitter, Nevupwvika Aiktua Fpagev, NpotokoAAo

Metddoong Mnvupdatev, Avadt)tnorn ApXITEKIOVIKNG
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Abstract

Social media usage is at an all-time high in the modern world. Platforms like Twit-
ter, Facebook, and Instagram congregate daily millions of users. Twitter, in particular,
has emerged as a powerful platform for real-time conversation and news dissemination.
With a concise character limit, Twitter encourages sharing quick updates and opinions
on trending topics. It has played an important role in shaping public discourse, mobili-
zing social movements, and connecting people across the globe. This rapid growth has
encouraged the emergence of bots, which are automated programs designed to mimic
human behavior. They can spread misinformation, promote ideologies, and amplify fake
news stories at an alarming rate. Not only do they undermine public trust in media and
institutions, but they can also have real-world consequences, from influencing elections
to provoking social disruption. The effective detection of these accounts is a big challenge
in the modern world and has attracted numerous studies.

In this thesis, we present our work on an efficient bot detection model. We use rela-
tional graph convolutional neural networks that exploit user data and message-passing
techniques to assign labels to each node. We also used a technique called Neural Arch-
itecture Search that searches for the architecture with the highest accuracy, using an
evolutionary algorithm.

In the end, we present the results and conclude that our method can compete with
other state-of-the-art models in bot detection, underlining the advantages of using both

techniques in this task.

Keywords

Social Media, Bots, Graph Neural Networks, Message Passing Protocol, Neural Archi-

tecture Search
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Euyxapilotieg

Ba 0sAa apX1KA va eUXAPIOT0® ToV emBAETIOVIA KaBnynt K. Anurtpn Aokouvn ya
NV €UKalpia mou pou £€6moe va aoXoAndao pe éva moAu ouyxpovo dépa. Odeide £va oAU
Yeppo euxaplote oroug urtoyrdproug d1ddxtopeg Aoukda HAla kat MiydAn Xatdnavaotdon yia
Vv ouvexr] KabBodnynorn toug Katl 0Aeg Tig MOAUTIPES OUPNBOUAEG TOUG, TTOU £€Kavav duvartr)
TV eKNOVNOT) NG Iapouoag SUMAGUATIKAS.

Kupiwng, 9a n6eda va euxaplotjoem v 01KoyEveLd HoU, Kat 18laitepa Toug YoVelg ou Kat
1oV adepPo pou, yla v aydr) 1oug Kat v otfpidn toug oe Kabe Pripa rmou €xo ermdédet
Kal eMALY® va KAVQ.

TéAog, 9a f1Bsda va eUXap1oTHo® Ao Kapdiag toug @iAoug 1ou, TO00 TG OXO0AIKHS 110U
{wng 600 KAl TG POINTIKIG, Yia OAEG TG APETPNTEG OPOPPES OTIYHES TTOU EXOUE MEPAOEL

padi kat v PorBeid toug va Eenepvdn kabs SuoxkoAia.

ABnva, deBpoudpilog 2024

T'eapyrog Tovpavekag
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Extetapévn lepiAnyn

1.1 Ewayoyn

1.1.1 Méoa KOIVOVIKIG S1ktuwong

To Six Degrees 16pubnke and tov Andrew Weinreich 1o 1997 kat Sewpeital o p®1og
10TOTOII0G KOWGVIKNG Siktuwong [34]. Ilpooépepe otoug xproteg ) Suvatotnta va dnpioup-
youv mpodid, va kavouv @idloug Katl va otéAvouv pnvupata. 'E¢tace oto arokopupeopd tou
ota téAn g dekaestiag tou 1990, pe 3,5 ekatoppupila xprjoteg, addd to 2001 aduvatoviag
va dnuoupyroet £é008a yla va datnprjoet tv avarntugr) 1ou, otapdinoe ) Asttoupyia tou.
[Mapd Vv avandPeukn toor v, Jewpeital 0 MP®IONopog rmou avoige 1o §popo ya tg
MAATPOPPES KOWOVIK®OV PECMV, OMKGg TS yvepiloupe ofjpepa. EE oplopou, ta péoa Kowve-
VIKNG H1KTUMONG avadEpovial o TTAATPOPHES KAl EPAPHOYEG TTOU ETUTPEITIOUV OTOUG XPIOTES
va Snpoupyouv, va polpddoviatl Kat va aviaAAacoouv nepleXopevo. To mePIEXOEVO PECOV
KOWQVIKLG §1KTU®ONG propet va eivat keipevo, potoypagieg, pfivieo, GIF, nxnukd pnvopa-
ta k.An. Kdmolog propet va xpnotpornotjost ta péoa KOWeVIKNG d1ktumong yla Stapopoug
Adyoug, amo Vv £mKowvevia pe AAAoug Xproteg pe apopola eviladEpovia £mg TV evh-
HEPOON Yla TpEXOVIA yeyovota aykKooping. To 2023 exktipdtal 6t urapxouv repirnou 4,9
Sioekatoppupla Xproteg PEoOV KOWaVIKNG diktumong [35], mocootd ndve and to 60% tou
naykoopiou rmAnbuopou oe rnieploocotepeg arnd 100 rmAatpopiieg HECOV KOWVOVIKIG SIKTU®-
ong. Ot mo yveotég matdpoppeg eivat to Facebook, to Instagram, to Twitter, to WhatsApp,
10 YouTube kat to TikKTok, cUyKevip®VOVIag T CUVIPUITIKI] MASIOPNQia TOV XP1oTOV TV
P€0®V KOIWVQOVIKIG S1KTUMOTG.

To Twitter eivat pia Snpo@lAng mAatpoppa PECEV KOWROVIKLG S1IKTU®ONG IoU EeKivnoe
10 2006 [36] and toug Jack Dorsey, Biz Stone kat Evan Williams kat éktote £€xet e§eAiyOel
o¢ pa taykoopa miatgpoppa pe 330 ekatoppupila evepyoug xprjoteg. Ot Xprjoteg PItopouv
va dnpootevouv kat va aAAnAerudpouv pe Kelpeva, €1KOVEG, PBivieo Kal ouvdéopoug, ToU
avagpépovial og «tweets», kaB1ot®VTAg T0 Pia 18AVIKL AATPOPHA Y1d TNV EKPPACT] OKEWPERDV,
TV KON XPron €18r0emv Katl 1] OUPHETOXN 0 oudntrioels. ApyXikd, ta tweets mepiopido-
vtav otoug 140 xapaktnpeg, péxpt t1ov NogpBpio tou 2017 otav enektdOnkav otoug 280
XOAPAKTL)PES.

To Twitter neplotpépetal yUpe aro v Evvola g akoAoubnong xpnotov. 'Evag xprjotng

propei va akoAouBrjoetl Aoyaplacpioug rou evdladépetat va det ta tweets Toug 0to XpovoAoy10
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tou ("following”) kat avuiotpopeg £xet “followers”™ rmou PAémouv ta tweets tou. Ot xprjoteg
HITOPOUV va AIavinjoouVv Kdl va avadépouv aAloug Aoyaplacpoug pe Tov Yapaktpa "@"
akolouBoupevo anod 1o ovopa tou Aoyaplacpou. To Twitter evoopatovel emiong tn Xpron
“hashtags”, ta ortoia sivat Aége1g-rAe161d 1) PPACELG TIOU TIPONyoUVIdAl TOU Xapaktrpa "#" kat
Katnyoplonolouv ta tweets, kabiotdviag mo dvetn v avalt|tnorn CUYKERPIHIEVOV JePaTav.
O1 xprjoteg PIopouVv emiong va avadniroouv tweets pie BAon 10 TEPIEXOPEVO TOUG XPTO1H10-
nolwvtag Aégelg mou neptdapBavovial, e ta arotedéopata va rapouvotadovial oe cuvéuaopo
XPOVOAOY1KI|G OE1PAG KA1 OXETIKOTTAG.

To Twitter pe autég 11g duvatotnteg €xel Kabiepwbel wg Eva 10XUPO epyaleio yia evi-
HepOOelg €1810e®V O TIPAYHATIKO XPOvo, Snpocto S1dAoyo Kal KOWeVIKA Kivhjpatd Kat

ouvexilel va e€edioostal KAt va BeEATIOVEL TV EUIEIPiA TRV XP1OTWV.

1.1.2 Weudeig c18fjoc1g Kat bots

O1 yeudeig e1dnoe1g eival avaAnBeig mAnpogopieg, 10topieg 1) PApoeg mou Srpioupyo-
Uvial yua va raparninpeodoprjoouy 1 va séanatrjoouv toug avayvaoteg [37]. Emdioxkouv va
MapPArtAavroouVv ToUg XPrOTeG IIPO001101adoviag aglormotoug 10TOTOIoUS, XPOTHOTIoIOVIAS
napopola ovopata Kat 61eubuvoetg 10ToU e adlornotoug £16n0e0ypadikoys 0pyavioioug.

Ta bots 1OV PEO®V KOWKOVIKIG §1IKTU®ONG €ival Aoyaplaopol Imou autopaTtornolouV Tig
aAAnlAermbpacelg o TMAATPOPHIEG HECKV KOWOVIKNG SIKTUMONG, OUXVA HIPOUPEVOL TV av-
Ypwrvn cupriepipopd. Mropouv va MPoypaplatiotovy yld va eKteAouv S1apopeg epyaoieg,
OTIOG autopaty SNPOcieuon) TEPIEXOPEVOU, ETTICHIAVOT “Hou apéoel”, KOlvY] Xpnor), napda-
KOAOUB1N 01 1] 0X0A1ao16 avaptroedv. Mepikd Pmopouv akOn Kdl va IIpoypdiatiotouyv va
OUPHETEXOUV O CUVOHALEG DOTE va TIPOWO 00UV CUYKEKPIIEVESG ATLEVIES.

Ot yeudelg e1drjoe1g Kat ta bots €xo0uv oNUAVIIKEG CUVENELIEG OTOV ITPAYHATIKO KOOHO.
Ka®' 0An ) Sidpkela tng navénpiag tou COVID-19, n napanAnpopopnorn GXETIKA HE TOV 10
KAt ta epBoAia eSanmdmbnKe yprjyopa ota P€oa KOW®VIKEG S1IKTU®OonG, 08Nyoviag o€ Mmaviko 1
Kat avtiotaon ota pérpa dnpootag vysiag. To 2016 weudeig e16r0e1g 61ad660NKavV eUPERG Ka-
1d ) S1dpketa g eKotpateiag yia tig poedpikég ekAoyeg towv HITA, pe otdxo va ernnpedoouv
TV KO1VY] YVOHI] Yld va €MpedcouV toug yrndpodopoug. Ta bots priopouv va yxprnotporoin-
Souv yia va napevoxAnocouv dtopda 1) va otoXeU00UV CUYKEKPIHEVEG OIAOEG, CUNETEXOVTAG
0€ OUVIOVIoHEVEG Kapmavieg. Mmopouv emiong va dnuioupyrioouv kat va Stadmooouv repte-
Xopevo averubupntng aAAndoypagdiag, kakdéBoudoug ouvdEo0UG KAl AOYIOPKO, Jtoviag o

kivbuvo Vv acpdAela Kal 10 anoppnIo IOV XP1oTev.

1.1.3 Zuvewopopd SumAwpatirng

H avayxkn svtormopou tev bot yia v avactodr] toug eivat apketd dpeon, a§lodoyoviag
T0Ug K1vBUVOUG TG aveSEAEYKING IMapousiag toug otd PEod KOWMVIKAG O1KTUmong. AUtog
etvat o Adyog 1ou ToAAEG TAQTPOPHES £XOUV £PAPPOCEL AAYOPIOHOUG yia TOV EVIOIOHNO
autoVv eV Aoyaplacpov. Qotooo, ta bots mpooappodouv ouvexmg Tig Aeltoupyieg toug yia
va IIPOCOHOIRC0UV YVI|010UG XPI)0TeG, KaB1ot®mvitag Tov eVIOTopo Toug Suokodotepo. 'Eva
KAWOTOHRO0 POVIEAO Y1d TOV EVIOITIOHO POUITIOT IOU eruAégapie va BeATIoTOnojooupie eivat to

BotRGCN [38], rtou amoteAei ouviopoypadia yia to Bot detection with Relational Graph
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1.1.4 Aoun dSurmlepatikng

Convolutional Networks. @a &erepdooupe Tov meploplopd arddoong AOY® NG OTATIKAG
O0UNG TV VEUPOVIK®V POVIEA®V HE TNV TeEXVIKI Avalfinong ApXITeKTOVIKNG Neupovikwv
Awtuev (Neural Architecture Search). I'a ta melpdapata pag Xpnotpono|oapie 10 cUVoAo
6edopévav Twibot-20 [39], rou sivat éva oAorANP®EVO oUVOAO Sedopévav tng "odaipag” tou
Twitter avurPOo®IEUTIKO €VOG CUVOAOU TPAYHATIKAOV XPNOTeV. AToteAeital and 1€o0oepig

B1aPOPETIKEG TIEPLOXEG: TNV TTOAITIKY, TIG EIMIXEIPLOELG, TNV PUXAY®Yia Katl tov abAntiopo.

1.1.4 Aopn SumAopatikig

Yto KepdAao 1 mapouotddetal pia ektevhg repidAnyn g SmAe®patikng € 0AoKARpou
ota EAAnvikd akodouBovtag id61a dourn.

Yto KepdAaio 2, divetal pia ouviopn €10ay®yr OXETIKA HE TNV MPOEAEUOT] TOV PECDV
KOWQVIKIG §1KTU®MONG KAl Pid TIEPypadn] IOV {NTnPAtev Iou pokalouvial ano 1ig Yyeudeig
€10110€1g KAl toug Aoyaplaopoug bot, kaBdg kat n ouvelopopd Kat 1 Sourn g TPEXOUCAS
Sumlepatikng.

Yto KepdAaio 3, eloayoupe KATIOEG BACIKEG £VVOleg Yia Tr Je@pPnTiKY KATAVONOT| NG
Sumdepatikrg. ITapouocialovial KATO101 0p1opoi Katl enenyroelg yupe and ta ypagrjpartd,
aAyop1Bpioug, povieda Kat epyaleia pnxavikng pabnong Kat, IIPOKEPEVOU va KATAvonBouv
{wTIKA PPN TOU MEPAPATOS.

Zto Kepdldatio 4, mapouotaloupe OXETIKEG EPEUVEG OTOV TOPEA TG avixveuong twv bot
Kal IOV Peudov e18noenv, Kabwg Kat PeAeteg yia ) Avadninon ApXIteKtovikhg Neupovikov
AKTU®V 0t 81A(POPES TIEPUTIOOELS XP1ONG.

Zto Kegpaldato 5, divoupe karotleg mAnpodopieg yia 1o ouvodo tov dedopévev rmou xpnot-
porolovpe Kat eKTteAoUpe évav €Aeyxo yla va StacpaAiicoupe v KataAAndotnta tou.

Yto KepdAaio 6, mapoucialoupe 1o poviédo pag. Ileprypdgoupe v eneiepyaoia tav
8edopévav, T XPron T®V OUVEAKTIKOV S1IKTUGOV YpAdnVv KAl ) dadikacia tng Avalitnong
APXITEKTOVIKIG.

Yo KepdAatio 7, mapouctadoulie ta anoteAéopatd TV MEPAPAT®V ag Kat td oUyKpivou-
e pe aAdeg pebodoloyieg axpng. Tedog, mpaypatonolovpe to ablation study, yia va aro-
Seilfouyie v akepatdtta g peboddou pag.

Zto KedpdAaio 8, odorAnpovoupe auty T PeAETn) Tapouotddoviag ta TeAKA OUpIepAcia-

1a G €Epyaociag pag, Toug meploplopous Kat Tig IIPOTACELS PAG Yid PEAAOVIIKI) £peuva.

1.2 Os0PNTIKO PHEPOG

1.2.1 Tpadotr: Sopn Kat epappoysg

'Evag ypagog opidetat wg G = V, E omou V eivat 1o ocuvolo tov kopudpov kat E eivat
10 0UVOAO OV akpu®v. Eitvalr pun ypappikeg dopég dedopévav mou xpnopornoovvial yia
HOVIEAOTIOIN 0T OXE0E®V PeTady otoixeiwv. Yidpxouv roAAoi tunot ypdgpov, e TG ITo KOIVEG
napaddayég va eivat kateubuvopevog 1 pn kKateubuvopevog kat pe Bapn 1 xepis. 'Evag
BN KateuBuvopevog ypdgog eival tUnog ypAapou OIoU Ol aKPEG OEV £XOUV OUYKEKPIHEVT
Kateubuvorn Kkat o1 ouvdEoelg Petady twv KOpBav eival apgidpopeg. e évav kateubuvopevo

YPAPO OAeg Ol AKPEG €XOUV Pl OUYKEKPIEVH KateuBuvor. 'Evag ypadog pe Bdpn sivat
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évag TUImog ypadou 1mou KAbe akjir) €Xel pla apl®pnukn T ou ovopadetat Bdpog. Autd
1a BApn Popouv va avIUPOO®IIEVOUV HETPTOELS OMOG 1) ATTO0TACH HETASU TV KOUB®V, To
KOOT0G K.AT. AvtiBeta o éva ypdpo Xopig Papn 0Aeg 01 aKPEG £XOUV TO 1810 MPOETTIAEYHEVO

Bdapog 1 armlwg Kavéva BAapog Kat povo 1) oUvoeor PETAdU TV KOPUPHOV £ival ONIAVIKY.

Ewova 1.1: Iapabdetyua karsvdvvousvou ypagpou ue Baopn. Inyn [1]

O1 ypagot eival pia eugMktn Kat e§apetikda xprjoirn dopr) dedopévav os odAAéG epap-
HOYEG TOU MPAYHATIKOU KOoPoU. Mepikég anod autég 9a mapouciactovv Mmapakdi®, yla va
KataddaBoupe ) onpaocia g peA€ng Toug Kat tig Suvatotnieg oto mpoBAnud pag.

Ot aAyopiBpot otoug ypddoug XProtHoIIolouvidl EUPERG O KOWMVIKA SiKtud On®g To
Facebook, to Twitter kat to evAwvkedlv. Xprnoworolovvial yla va IIpoteivouv ouvdeoelg
OTOUG XPLOTEG, va PPioKOouV KOWOTNTIEG KAl va MPOTEIVOUV MEPEXOPEVO TIOU Ya evilEdepe
Evav xprotn.

[ToAAd ouotpata ouotdce®v, OMKG AUTd mou Xprnotponolouviat aro 1o Netflix kat to
Amazon, Xp1notpornolouv aiyopifpoug pe ypdgooug yia v avaAuorn tov aAAnAembpaoenv
Kdl TV MPOTIPHOE®V TV Xpnote®v. Me Bdon rmapdpola oupnepipopd Xprotn Kal Opo10TnIeg
AVIIKEEVOV, PIITOPOUV va IPOTeivouV tatvieg Kat rpoidvid.

To PageRank civatl évag alyopiOpog Baociopiévog oe ypagoug rmou avarntuxdnke anod wmyv
Google kat ypnowporoteitat yia v katdradn otooedidwv pe Bdon ) onpacia toug. H
onpaotia piag totooedidag kabopiletat amod tov apBPo Kat v nodIa IOV CUVEECH®V TTOU
odnyouv oe autnv. Arnotedei 1o Sepédio g pnxavng avadnnong tmg Google.

O1 aAyop18po1 pe ypadoug Xp1o1orolouvial o eQapHoyES XapTtoypddnong Kat ImAonyn-
ong GPS ywa v eupeon g ouviopotepng diadpopng petau tornobeoiorv. Mriopouv eriong
va MPOCcAPHO0TOUV e §1adopoUg TEPIOPIONOUS OIS 1) KUKAOPOpia Kat ot ouvlrKeg Tou
dpopou. Eival emiong moAu ypriopa yla tov Kabopiopod eV o AroteAeopaTikoV d1adpo-
pov ota Siktua petadopwv yia tn BeAtiotonoinor ing porg ayadaov, dedopévav, mAnpodopiov

K.ATT.

1.2.2 KAadot tng pnxavikngg pabnong

H Mnxavikn) Exkpabnon eivat to nedio Texvnig Nonpoouvng mou emtpérnel ota ouotpia-
1a va pabaivouv amno Sedopéva, HoTe va PIopouv va KAvouv IpoBALPelg 1ovo pe Baon autd.

H Mnyxavikr) Mdabnon eivat ermkeipevn o€ OAAEG OUYXPOVEG £PAPHIOYEG TOU MPAYHATIKOU
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1.2.3 Neupovikd Aiktua I'pagwv (GNNs)

KOOP0U, onwg 1o Atabiktuo tev nipaypdiov (Internet of Things: [0T), aopdlsia otov kuBep-
VOX®PO, Ta OUCTHHATA OUOTACE®V, 1] UYEIOVOIIKY TepiOalyn K.ATT.

H pda6non pe eniBAeyn niepidapBavet ) Xprjon §e60évev e ETKETA Yia TV eKaideuor
aAyopiBuwv, Gote va propouv £netta va ta§ivopouv pe akpiBela ta Sedopéva xwpig eukéa,
pe Baon povo ta Xapakinplotika toug. Xwpidetal oe U0 Paocikoug tUroug mpoBAnpatav:
tadwvounorn kat aAvdépopnon. Zta npoBAnpata ta§ivopnong, n £5060g eival KAtyopikr] 1
Sraxpir]. Oplopéveg UAOTTO OIS TTEPIAAPBAVOUV: TOV EVIOIIONO AVEINOUUNT®OV PNVUHRATOV
NAEKTPOVIKOU Taxudpopeiou kat v tagivopnor elKOVOV IoU MEPIEXOUV £va AVIIKEIHEVO.
Zta npoBAnpata adwdpounong, n £60dog eival ouvexng 1 apOunukn. IlepiapBavetl tmyv
nPOBAeYn Piag TIPNG 1 moootntag pe Baon ta dedopéva e10060u. [epumtdoeig poBAnpdatev
naAvEpopnong repltAapBavouv: v POBAEYn TOV TIHOV TOV KATOKIOV HE Bdon Siapopoug
TIAPAYOVIEG KAl TV EKTIINOT TOU OYKOU MOANOE®V e BAon TG S1aPpnIoTIKEG daraveg.

H pdBnon xwpig eniBAeyn xpnopornoiei 6edopéva Xmpig ETIKETA Y1a va KAVEL TIPOBAEPETS.
O kUp10g 016X0G TV aAyopibpmv pabnong xepig emiBAeywn eivatl va Bpouv opddeg xapaktn-
P1OTIK®V TTIOU aKOAOUB0oUV £va 1tapo1010 PotiBo OPOo10THIOV KAl 51apopav.

H nui-enortteuopevn pabnon cuvduadel Sebopéva pe eTIKETA KAl XOPIG ETKETA KATA T
Otdpkela ng exkmaideuong. Autn n pébodog xpnopornolel apyika adyopiBpoug ekpabnong
Xwpig emiBAeyn yia va opadortoinoet mapopola 6edopéva Kat ot ouvexela divel ETIKETEG ota
b6edopéva mou dev elxav ponyoupnEvag ermonpavoet.

H evioyutikn pabnon eival pila texviky pnxavikgg pabnong ormou €vag rpaktopag Ba-
otdetat oto mep1BarAov yia va avaddBel dpdon. Autn n texVvikn dev xpnowporolei dedopéva
pe euKéTta, adAd XPnolpomnolel pia mIPoogyyilon SoKNg Kal opdApatog pe pa dadikaocia

ou Paoidetat otnv avadpaor.

1.2.3 Neupwvikra Aiktua I'papov (GNNs)

Apxikd 9a KATNYOPIOMOj00UHE Ta MPOBANATA TTOU PITOPOUHE VA EMMAUCOUNE HE TNV

XpHon ypadwev avaloya pe 1o emirnedo toug:

o O mpo10g TUNOG epyaoi®v Mnyavikng Mdabnong mou pmopoupe va Aucoupe pe do-
Pég ypagnpdtev gival o1 epyaocieg oe eninedo ypadprnpatog. e UG TG EPYATIES,
otoxog eivat va rpoBAéwoupe pia 1810tnta yia oAokAnpo 1 ypadnpa. Iapadetypata
[OU €UIUITIOUV O AUty TV Katyopia eivat n tavopnon evog ypapnpartog, n ra-
Awdpounon ypaprpatog, mou gival n mpoBAeyrn oUVEX®V TIPOV Yld £€va ypapnpa Kat
n Snuoupyla ypagrpatog pe kabopiopéveg 1610tnteg. 'Eva mapabetypa epyaoiag oe
emtiniedo ypagprpatog eivat n ‘Avixvevorn Kowotntev oe Kowvovikd Aiktuo. Aoopévou
EVOG YPAPIATOG P KOPBOUG TTOU AVIIIPOO®ITEVOUV TOUG XP1OTEG KAl AKEG ITOU AVIl-
IPOCKITEVOUV TIG OXE0ELS HETASY TRV XPNOT®V, 0 0TOX0G £ival va KAtnyoploroinouv ot
XPHOTeg O KATNyopieg, Orwg “owkoyevela”, "gidot”, "ouvadedgot”, K.Am., cUpdeva e

napopotla potiBa otlg aAAnAemdpdoetg Toug.

e O emopevog TUIOG €ival o1 epyacicg o eninedo kopBou rou acyolouviai pe v
npoBAeyn g tautdintag Kabe kopBou péoca oto ypadnua. AUTEG Ol gpyaoieg rie-

pllapBavouv tagivopnon kopBev, aAvépdpnon KopBwv, ou rpoBAénovial cuvexeig
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TIHEG Yia TOUG KOpBoug Kat opadonoinon kopBwv o cuotadeg 1) kowotnteg. 'Eva mpay-
patko napdadsiypa pag epyaociag oe eninedo kopBou sivat np Ta§wvopnon Eyypdopev
oe ¢va Aiktuo IMapanopnov. Kdabs kopBog os autdv 10 ypado avVIUTIPOO®ITEVEL Pl
EPEUVITIKI] £PYAOIA HE KAOWA XAPAKINPIOTIKA OMKG 1 MePiAnyr, ot A&geig-rAebia
KAl 01 OUYYPAdELG, EVE 01 AKHEG AVIIIPOORMITEVOUV TIG avapopég petady tov dnpoote-
Ueoewv. O otdyog eivat va ta§ivopnBei KABe epeUVNTIKY] epyaocia oe KAtnyopieg Orwg

“Bloloyia”, “ermotnun UmoAoylotewv”, “PUOIKI)” K.ATT.

e O teldeutaiog tUrog eival o1 epyacieg o eninedo arpng rov repthapBavouy ) Afyn
AMOPACEDV OTIS AKHEG, TIOU AVIITPOOMIIEUOUV TS OXE0E1G PETAdy TV KOuBwv. TEtoleg
epyaoieg mepAapBavouv v poBAeyn ouvdEoumV, OTTOU MPOBALETAL AV UTIAPXEL Pld
axyr) petagy 6Uo kopBwv, v tagvounon aKp@V, OII0U ETIKETEG aviiotolyi{oviatl oe ak-
PG Kat v aAtvépopnon akpev, ornou rpoBAérovial ouvexeig Tipég yua tig akpég. Ot
MIPOBAEYPELS TV TTPOBANATOV PIMOPEL EMOPEVAOG va £1val TTIOAU IO KATATOITIOTIKEG ATIO
TG arnAég npoBAgyelg ouvbéopwv. Ia nmapddetypa, pmopel va sivat Atyotepo Sapo-
TIOTIKO 011 U0 Xproteg eival Koot @idotl anod 1o Ot HU0 Xprjoteg oTEAvouv pnvupata
petady toug taktika. ‘Eva mpaypatiko napadetypa piag epyaociag oe erinedo akpng
etvat n TIpoBAeyn P1Aiag ota Kowvevikd Aiktua'. Ot kopBot tou ypdgpou Sa priopoucav
VA aVUIIPOO®ITEVOUV TOUG XPHOTEg Kal 01 akpeES Sa pmopouoav va avitipoo®IEUoUV
oxéoelg Kat aAAnAsmudpdoelg, onwg pnvupata, @iieg, avdptnorn Kowveov dnjooievoe-
ov KA. H epyaocia eivat va mpoBAéwoupe edv duo xprjoteg mou Oev eival akopn

ouvdedepévol Sa propovocav va ouvoebouv.

Ta Swaviopata kopbav (node embeddings) cival Siavuopatikég avanapactacetlg pi-
KPOV 8100T1d0e®Vv IoU Kataypddouv Tig SOPIKEG KAl OXEOIAKEG MTANPOPOPies Tov KOPBwV ot
éva ypago. 'Onwg @aivetal oto MapaKAt® oXHHd, 0 otoX0g ivat va Ppebel évag Xwpog ev-
OOPATOONG, OTIOU 01 YEDETPIKEG AVATIAPAOCTACELS Z,;, KAl Z, 9d avilotolXouv otoug KOpBoug

1OV KOpBeV U Kal 1ou ypadrpatog aviiotoixa.

T g B

o~ "ENC(u)

/ \-\_\_""‘-‘-\-._\_\____ :z‘tl
sncode nodes :

|yl / Hf'{
| el VoL — .
' ENC(1)
original network embedding space

Ewova 1.2: Aiavvouata koubwv (Node embeddings). ITnyn [2]

Ta Staviopata XapaKinploTKOV XP1NO1H0II00UVIAl 08 P MTOKIATA EpYAOI®OV PINXAVIKAS
pabnong. Ta mapadetypa, oy Enegepyaocia duowkng Iahooag xprowornoovviat da-
vuopata Agewv, o1 ornoieg eival avanapaoctdoeig Aégewv g Siavuopata, €10t ®ote Agelg pe
nmapopola ocnpacia va Bpiokoviat mo Kovid otov X®po avarapdotaong. Me tov 1610 tpomo,
01 KOPB01 £EVOG Ypadn1atog 1ou Bpiokovial Kovid 1] avikouv oty idia yettovid, avapévetat

va €xouv rapopola dtavuopata kKopBwv. Ta Stavuopata kOpBwv eivatl emiong moAu xprompa
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1.2.3 Neupovikd Aiktua I'pagwv (GNNs)

yla ) peioorn twv dltaotdoswv, Kabwg 1 eneepyacia akatépyaot®v Xapakinplotkoy KO8y
propei va etvat unodoyiotikd akpibr. Ymdpyxouv moAdoi tporotl dnuiouvpyiag dStavuopdtev
KOpBwv, 0 kaBévag pe ) S1Kr) T0U IIPOCEYY1OT).

AU0 Baoikég £vvoleg ota VEUP®VIKA Siktua ypadev eival ] apetaBAntotnta petabsong
(permutation invariance) ka1 n 1ooduvapia petaOeong (permutation equivariance).
H apetaBAntotnta petadeong avapipetal oty 1610tta ot 1o GNN mpérnet va mapayet
ouver) anoteAéopata ave§dptnta aro ) oelpd pe Vv oroia enegepyadoviat ot KGpBot tou
ypagou. Ta debopéva tou ypddou PImopouv va ATElKOVIOTOUV e €vav Iivaka yerviaong,
ordte 1) 0£1pd TV KOPBwv dev eival otabepr). H tooduvapia peta®song oxetiletal pe tov
1pOro e tov oroio éva GNN enefepyadetal tuxov petacynuatiopoug ota dedopéva. Eav
n €ioodog uPiotatal PETaoXNPIATIONOUG, OTIOG MEPIOTPOPEG, adAayeég oto 1€yebog K.ATT., 1)
£€060g 9a mpérnel va gppavidel mapopoloug petacxnuatiopovs. ‘Evag emionpog oplopodg
AUTEV TOV EVVOIOV TTapexetat amno toug Meltzer et al.[40]:

ApetaBAntotnta petabeong: 'Eotw P, 10 0UVOAO 0AGV T®V £YKUP®V IMIVAK®OV HMETAOE-
ong tadng n, wote pa ouvapton f eivatr apetdBAn o petddeon ypappov av f(X) =
J(PX),¥X € R™™ P, € P, ka1 ot petddeon otndov av f(X) = f(XPT), ¥X € R™", P, € P,.

Iooduvapia petabeong: 'Eote P, 10 0UVOAO 0AGV IOV £YKUP®V TIVAKGV PeTdOsong Taing
n, 10t pia ouvaptnon f eivat apetdBAntn ot petabeon ypappov av Prf(X) = f(PrX), VX €
R™™M P, € P, xat ot petddeon otAov av f(X)PT = f(XPT), ¥X € R™", P, € P,.

'Onwg avapepouv ot Gilmer et al. [41], 1o mAaioco petadoong pnvupdrev (message
passing framework) napouoiadel og Paoikn 6éa ot ta Stavuopata KOs KOPBoU mpénet va
dnpoupyouvtat pe Baon ta Stavuopata KOpB®V g YEITOVIAg Tou. ®a Iapouoiacoupe pia
mo uynldou emutedou MPOOoEyY1oTn g Padnpatikng 61atin®ong avtou 10U MPOIOKOAAOU.
IMa éva pn kateuBuvopevo ypaenpa G avilripoo®IEUOUE Ta XAPAKIPIOTIKA KOPB0oU ®©G X,

KAl Ta XAPAKTNPLIOTIKA AKHNG O €.

TARGET NODE a =
e _o% e
& | x
/ n» 2 —| AGGREGATE [5. ®
/ 7S ® — AGGREG! e ol

i U | :
& om ®
W -

INPUT GRAPH

Ewova 1.3: ITAaiow petadboong unvuuatov (Message Passing Framework). IInyn [3]

'Onwg @atveral oto maparnave oxnpa, to diavuopa kabe kopbou, ou cupBoAiletal pe
N4 yua tnv Kopuor) A, ernnpeddetal ano ta diavuopata g yYerovidg tou. Autt) i S adikaoia
petdadoong pnvupdtev enavadapBaverat yia otabepo apibpod enavaAnyemv 1 PEXPL va ertt-
teuxOel ouykAlon. Kdbe kopBog v £xet éva Sidvuopa kpupng kataotaong hy, Kat oto XpOoviko
Brina t n kpuen katdotaon hl evnuepovetatl pe Pdon ta pnvupata ano ) yerovid mf,“.
Ta pnvipata ouykevipovovial ano pia ouvaptnon AGGREGATE kat ot ouvéxela ol Kata-
otaocelg evnuepovovral anod pia ouvvaptnon UPDATE, napayovtag tn véa Kpudr] KAtdotaon)

hf,“. Ot e§lowoelg autrg g dadikaoiag Propolv va ocuvoylotouv IAPAKATR |
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KepdAawo 1. Extetapévn [epiAnyn

mg ) = AGGREGATE'" ({hﬁk), Vu e N(v)}) (1.1)
h+! = UPDATE™({(h{®, Vu € N(v)}) (1.2)

Agou exktedéooupe ta Prpata K g @dong petadoong pnvupdiov, Popovule va Xp1n-
OlJ10TTIO|COUHE TV KPUPI] KATACTACT hff KABe kOpBou v g evoopdtoon tou kopbou. H
@aon avayveong eivat 1o tedevtaio Pripa ot dwadikaocia petadoong PNVUPATIOV, OIOU Ot
mAnpodopieg anod 0Aoug Toug KOpBoug ouyKevip®vovtal yia va AngOei pia cuvoAikn avara-
pactaor ot eminedo ypaprparog. Ttn @Aon avdyveong, UTIAPXEL £va XapaKIneloTiKo Yy Mmou

UTIOAOY1{eTal XPNOOIIOIMVIAS Hid ouvaptnon avayveong READOUT:

5 = READOUT(hP|v € G) (1.3)

Mia onpavukr] ouvOnkr tou mAailoiou petddoong PNvupaAtev eivatl 6tt 0Aot ot Kopbot
MPEMEel va £X0UV KArmola apXikn kpudr kataotaon h? mou pmopei va etvat pia tpn émeg o
Babpog 1 n kevripikn 9éon kabe kopBou. Yrndapyouv diagdopor turot GNN pe Sapopetikeg
xpnoeig tov ouvaptmoeav AGGREGATE, UPDATE, kat READOUT.

Ta veupwvika diktua ypapev (GNNs) eivarl j1ia Katnyopia VEUP@VIKOV SIKTU®V TTOU £X0UV
oxeblaotel yla va xepidoviar debopéva ou avanapiotavial pe ) popdr ypadev. Exoupe
1ndén napouotdoet ) Sopun TV YpAP®V Kal TG £PAPIOYEG TOUG Of IPOBArjIata ToU mpay-
HPaTKoU KOOPOU, OIN®G 0 KOWOVIKA &iktua, Prodoyika dedopéva, ouotrjpata oUOTACERV
KA. Ot ovidunieg twv 6ebopévav avanaplot®vial ©g KOpBot, eve ol oxeoelg petaiu au-
1wV niapouotddoviat @§ akpég. Ta GNN propouv va eknatdeutouv aglonoiwviag tooo Tig
rAnpogopieg oe eminedo kO6NBoU 600 Kat arod ) 6011 ToU KABOAIKOU ypadou, PEC® PNXavl-
ORIV PETAd00NG PNVUNAT®OV OIOG MEplypdpape nponyoupevas. Kabe kopBog ouykevipovet
AN POPOPIEG ATIO TOUG YEITOVEG TOU KAl EVNHEPAOVEL T O1KN TOU KAtAotaot]. Aladopetikol
tuntot GNNs ¥p1noi1orolouv 81adopeTikeg Mapaidayeg T®V OUVAPTHOE®V TTOU XPI1O1H10IT010-
uvtat oto rAaiolo petadoong prnvupdteyv. Ilapakdte Sa mapoucldcoupe PEPIKOUG Ao TOUG

IO XP1NOolPoIoloupevoug turtoug T@v GNNs.

Hidden layer Hidden layer
® | ( ° .
y ° °
—a e
\ L ] . L ] .
® °
Input s i2e] 19 Output
® °
i ° ° .
" ° —_ RelLu —_ ReLU \
. e M ° I S| ° a1 P ™
- ° | i ° —J °
L ® o * . ° o
e e o
e °
e °
® -] . L ]
s ® s *
[] L \
L .y

Ewodva 1.4: Nevpowvwko Aiktvo T'pagou (Graph Neural Network). IInyn [4]
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1.2.3 Neupovikd Aiktua I'pagwv (GNNs)

e GCNs: Ta ocuvedikuka diktua ypapev GCNs eival évag turtog GNN rou s1onx0n arno
toug Thomas Kipf xat Max Welling [42]. Eivat 1diaitepa eprnveuopéva aro ta ouve-
AkTukA veupevikd diktua (CNNs), nipooappoopéva yia v ene§epyaoia debopévav o
ypagoug, avtl yia ewkoveg. Ta GCN Asttoupyouv pe Baon v apxr) g petddoong pn-
vupatev. Kdbe kopBog ouykevipmvel MANpodopieg amo toug yeitoveég tou AapBavovtag
éva otabpiopévo abpoilopa v 61avUOPATEV TOUG KAl Ot OUVEXELWD TIEPVA AUTEG TIS
MANPodopieg PEOK P1AG CUVAPTNONG EVEPYOTIONONG Y1ad VA EVIHEP®OEL TNV KATAOTA-
on tou. Ta GCNs anotedouvial ouvnOwg ard roAdarnAd ocuvedlkukd emnineba. Kdabe
ertirtedo uroAoyidetl ta diavuopata KOPBwV XPNoonolMvVIag MANPodopieg Ao mpoo-
8eUTIKA IO AMOPAKPUOHEVOUG KOHBoug oto ypado. Yrdapyouv duo turot GCNs: ta

(PAOPATIKA KAl Td XOP1KA.

e GraphSAGE: To GraphSAGE (SAmple and aggreGatE) eivat évag tirog GNN 1ou
npotddnke ard toug Hamilton et al. [43] wg evaAdaktiky) Auon otlg rapadoolareg
EYYEVRS HETAY®YIKES PeOOb0UG yia ) dnuoupyia davuopatikev kopbBeov. Ot mporno-
Upeveg 1E€B0do1 Xprotporniotovcav ocuyva pnebodoug Bactopévoug oe TTapayovionoinor)
mivaka Kal enopéveg reptlopiloviav oe eva otabepo ypaenpa. To GraphSAGE amo
Vv AAAN AEUPA XPNOIHOIIOLEL Pd EMAYDYIKY TIPOCEYYIOT), (OOTE VA HUIOPEL va ere-
KtaBel KAl 0g AYvOOTOUG KOPBOUG KdAl OUVENRG Ot Ayvwota ypadrpata. H Baowkrn)
16éa eivat 611 1o GraphSAGE &ev eknaidevet éva Eexmpioto Sidvuopa evoopdioong yia
Kabe kopBo, aAda skraidevel éva ouvodo ocuvaptroenv (AGGREGATE) yia va pabet
VA GUYKEVIPWVEL IANPOPOPIEG XAPAKTNPIOTIK@V ATIO TV TOIIKI YEOVIA £VOG KOPBOoU.
To forward pass koppdtt tou adyopiBpou akolouBei tn dadikaocia petadoong pnvu-
Patev Tou yevikou rmAatoiou Siedeuong pnvupdiev os K enavaAnyeig xpnotponowviag

oe KAOe enmavaAnyn k g edlonoeig:

my ) = AGGREGATE™ ({h/ ™", Yu € N(v)}) (1.4)
hi*! = o(WCONCAT(hY™ . m{? ) (1.5)

H ouvdptnon AGGREGATE eivat 1davikd piia CUPHETIPIKT) KAl EKITAOEUCTN OUVAPTI)-
on. H dnpooiesuon naparndave eetdlet tpeig Asttoupyieg, Kupiwg évav mean aggregator,
évav LSTM aggregator kat évav tedeotr) max pooling. H tpéxouca avamapdotaor tou
. (k=1) C et o (k=1)
kopBou hy, € TO OUYKEVIPROTIKO H1avuopa YEITOVIAG hN(U)

KUMIov evopevo dtdvuopa tpogodoteital os evog AN pwg ouvdebepévo otpopa pe pia

OUVEVOVOVTAL KAl TO Ipo-

BN YPAPHIKY oUuvaptnon evepyomnoinong o. H epyaoia mapouoiddet emiong pia oxEon
tou GraphSAGE pe 1o Teot Ioopoppiopou Weisfeiler-Lehman.

e GAT: To GAT (Graph Attention Network) eivat évag turtog GNN 1mou mipoteivetat arno
toug Velickovié et al. [44] wg enéktaon twv GCNs. Xe avtiBeon pe 1o GraphSAGE,
10 GAT enekteivel ) peBodo AGGREGATE ouvbuddovidg tn pe attention mechanisms
rou divouv éva attention score otoug 6idpopoug yeitoveg tou kKOPBoU, Hivovidg toug

Kata ouvénela Sagpopetiky onpacia. 'Eva eminedo tou diktvou AapBavel og eicobo

AitAeopauxny Epyaocia m



KepdAawo 1. Extetapévn [epiAnyn

£€va oUVOAO XapPAKINP1oTIK@V KOpBou h = {fﬂ h, ..., FEV} , iy € Rp xat mapdyet éva véo
OUVOAO XAPAKINPIOTIKGV KopBou h' = {ﬁi h; hj’v} Rl € Rpr. Apxikd, évag YPapL-
KOG PETACXNHATIONOG, TIAPAPETPOIIOHIEVOG ATIO £vav rmivaka Bapoug Q, edpappodetat
oe KABe kOPBo Kal otn OoUVEXEld Tpaypatonoleital pnxaviopog self-attention otoug
KOpBoug. Xt ouvéxeld, oe kabe kopBo, €vag kowvog attention mechanism a anet-
KOVigel Ta {euyn xKOpBav otoug ouviedeotés e;. Ot ouviedeotég autoi umoAoyifouv 1
oNpacia I®V Xapaxkinelotikev 9 rmou avikouv otov kKopBo 1. Autr n dwadikacia @a-
ivetatl oto mapakdat® oxnpa. Mabnuatikd, ol cuviedeotég Poooxrg urtodoyidovrat pe

Vv ak6Aoubn e§iowon :

e; = a(Wh, Why) (1.6)

[Tpaktikd, autoi o1 ouvieAeotég IPOOOXIG Urtodoyidovial povo yia ta {euyrn KopBwv
oU €lval yewovika oto ypaenpa. Mia enéktaon autou sivat n xprjon multi-head
attention, orou kdBe kedpaldr (head) urnodoyilel aveaptnta ta attention scores kat
10 AMOTEAEOIATA CUVEVOVOVTAL, Y1d TV IIAPAYOYE TOV §1aVUOHATOV XAPAKTIPIOTIKMV.

Mua anteikovion autng g diadikaoiag paiveral 0to MAPAKAT® XA :

concat/avg /.
> h

Ewova 1.5: Arneucdvion e multi-head mpoogyyiong. IInyn [5]

e GIN: To GIN (Graph Isomorphism Network) eivai évag turtog GNN 1ou ripoteivetat aro
toug Xu et al. [45], epnveuopévo os peyddo Badbpo amnod v £évvola ToU 100H0PPLoH0-
U ypagou, rmou onpaivel 6t o ypapot £xouv rapopowa Sour) petd myv avadidrain
1OV KOPBwV Xwpig va yivouv adAayeg otig ouvdéoels. H epyaoia emkevipovetatl oto
teot Weisfeiler-Lehman yia tov ioopopgpiopo ypagpou. H onpaocia tou teot WL eivat
1] EVETIKI] EVIIEP®OT) TTOU HITOPEL va avarapactr)oet S1apopeTiKEG YEITOVIEG e Sago-
peukd dwavuopata. Enexteivoviag ta GNNs, ta Stavuopata otn yettovid evog KopBou
propouv va Seopnbouv wg éva toAucuvodo kat 1) ouvaptnon AGGREGATE exkteleitat
oe autod to noAuocuvodo. H apyitektovikr] tou GNN 1rmou rpoxkurttel ot dnpooisuon
[45] eival e§loou armotedeopatiky pe 1o teot WL ot 81akpion yerrdvev ypapnpuatog.
To Bswpnpa KaboAikng IIpooeyyiong (Universal Approximation Theorem ) [46] 6n-
Awvel ot éva feedforward veupwviko diktuo pe €va Povo Kpudpo oTpdpd, HE EMTAPKY)
ap1Bpo veupovev Kat pe Sedopiéveg KAtdAAnAeg oUVAPTHOEIS EVEPYOIIOINONG, MITOPEl

va npooeyyioel oroladnote oUVEXI] OUVAPTNOL e Karola aubaipetn akpiBela. Autr
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1.2.4 Avalnnon Apxtiektovikig Neupovikov AIKtuov

n 16¢a odnyel oty Xpron roAuctpewpatikev perceptrons (MLPs) yia tig ouvaptrosig
AGGREGATION kat READ OUT. Zinv énpooieuon, mpoteivetal o1l e 10 € va givat
pla eknaidevolpn napdperpog 1 pla Babpwtr otabepd, kat 1o GIN evnuepovel g

avVArapaoctacelg KOPBmv Xprotponowviag v e5loworn :

RO = MLP®((1 + e)nk-1 4 Z ) (1.7)
ueN(v)

Metd aré ouykpion pe ddda a§loonpeiota PoviéAdd 1mou rnapouciaoayv Xepotepa aro-
tedéopata, 1o GIN tedikd arnodeixBnke ot eival pua moAu xpriowpn napaddayr GNN

He ) ouvdptnon ouvadpolong YEIToviag.

1.2.4 Avalfjtnon ApX1teKToVikNG NeUPpOVIROV ALKTURV

Ta veupevika diktua ypdoev Bacifovial oe peyddo Babpo otnv apXIIEKTOVIKI] TOUG, yid
va ntapéxouv kada arotedéopata. H evpeon g katdAAnAng apXlteKTOVIKLG PItopet va eivat
£Ca1PETIKA XPovoBOpa KAl EMOPEVOG UIMOPEL va £ival Kal ApKeTd MePLoplopevr). Autdg sival
0 Aoyog 1ou 1 avaditnon apyitektovikng (Neural Architecture Search (NAS)) €xet pooeA-
KUOg1 TOAUAP1011eG PEAETEG, 110G KA AUTH 1] TEXVIKI] PITOPEL VA KATAOKEUAOEL APXITEKTOVIKES
TTOU ETTTUYXAVOUV 1KAVOITOUTIKA AMOTEAEORATA PE PIKPL avOpwrvy niapépBaocn. e auth)
mv evotnta, Sa nmapouociacoupe ta 1pia Paocika otoikeia g Avadftnong ApPXITEKTOVIKIG
Neupovikou AIKTUOU: 0 XOPog avalitnong, n otpatnyikr avadninong kat 1 agloddynon
artodoong.

O X®pog avalfiTnong avilpoo®IIEVEL TO OUVOAO OAGV TV IBAVOV APXITEKTOVIKGOV VEU-
peVIKeOV Siktuwv. Mia apXitektovikn opiletatl anod tn Asettoupyia mmou oxetidetatl pe Kabe
erinedo Kat g evdiapeoeg ouvdeoelg tov ermrnedwv. To peyebog 10U Ywpou avalninong
KaBopilel 10 UMOAOY10TIKO KOOTOG g dradikaociag avaldninong. Enopéveg, undpyetl pa a-
vuiotadpion petady tou aptdpou ToV apXIEKTOVIKGOV rmou Jédoupe va SoKuacoupe Kat ToU

KOoToUg TOoU adyopibpou.

e MovoA101ka Sopnpévog xmpog avaitnong: O XOPpog tov PovoAdlfikda dounuévav
VEUPWOVIK®OV S1IKTU®V [47] elval 1 1o mpopavrg A0y yia Evav XOpo avadninong.
Autd ta poviéda kataokeuadovrat pe otoiBadn evog rpokabopiopévou ap1Bioy KOpBav.
Aut ) ermdoyn) Sa propouoce eriong va urootnpi§el Sopég KOPBwV rmou cuvdeovial pe
tuxaieg ouvdéoelg apdadetyng. O 0AOkAnNPog Sopnpévog Xwpog avalitnong HPIopet
va etvatl eUK0AOG otV £pappoyr], aAAd sival o akpBOg UITOAOYIOTIKA KAl otepeital

(PopPNTOTNTAG.

¢ Xmpog avalfitnong Baciopévog oe Sopikég povadeg: Autr) ) avalr)tnon VEUPIKNG
APXITEKTOVIKIG, aVIl va avadntd oAOKANPr Vv apXIIEKTOVIKY], avadntd potiBa ) kutta-
pa [48]. Autd 1o KUTIapo otolBadetal TIOAAEG POPES Yia va oXNPatioet pia peyaAutepn
APXITEKTOVIKY). AUTI) 1] 1€0060G £XEl PEIOPEVO XWPO AvadINong Kal EMOPEVRG elvat
UTIOAOY10TIKA Atyotepo akpiBr. ErmumAéov, Auvel 10 {fnpa g gopntotntag, Kabwg n
otoiBagn meploodtepwv 1] Ayotepev povadev Sa propovoes va dnuioupyriost apxiie-

KTOVIKEG Yla AAAeg epyaoieg.
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KepdAawo 1. Extetapévn [epiAnyn

o Iepapxikog x®pog avalnnong: Ot rponyoueveg IPOOEYYioElS ayvoouv To ermiredo
diktuou. Ot Liu et al. [49] oproav pia yevikn datvnieon yla pa 6oprn oe erinedo
Oiktvou pe 1o poviedo HierNAS. Autd opidetal wg o 1epapXlkog X®wpog avalftnong,
otov oroio dnuioupyeital éva PmAoK UPNAOTEPOU ETMIMEDOU JE TNV EMAVAAINTITIKI) V-

opdateon povadev xapnlotepou sruredou.

¢ Xmpog availfitnong BAacetl HopPlopoy: Autog 0 XOPOG avalftnong ermyelpei va oxe-
81doe1 véa veupavika diktua Baciopéva os Eva urtapyov S1KTuo Xprotonoimviag Peta-
OXNHATIopouUsg HopPplopou petadu v eruredov [50]. Ta mapddeiypa, ot petacynpatt-
opoi pop@dilopou Badoug 1) TAATOUg aviikadiotouV T0 AP KO HOVIEAO e £va avTioTotyo
Babutepo 1) euputepo povido. Ta Suyatpika Siktua anod tov PopPlopo tou S1IKTUOoU
KANPOVOPOUV OAn 11 YVOOT TOV YOVIKGOV SIKTUMV TOUG. LT OUVEXELd, AUTd Td Tatdikd

Siktua exknaidbevovial yla PiKkpo Xpoviko diaotnpa.

IToA)Aoi Sragopetikoi aAyopiOpot feAtiotonoinong éxouv Xprotpornow et yia va Bpebet
1 KAAUTEPT apXITEKTIOVIKI] OTOV Xwpo avadntnong. H emdoyn tng pebodou Bedtiotonoinong
ennpeadetal os peyaldo PBadbpo aro tov XOpo avalhtnong Kat £€xel peydln enidpaon oto uro-
AOY10TIKO KOOTOG KAl TA AITOTEAE0HATA TOU HOVIEAOU. @a KAVOULLE [1d OUVIOLL] AVACKOI )01

ot o Yvwotég pebodoug BeAtiotornoinong.

¢ Evioyutirin padnon: Mua adoonpeiotn texvike] BeAtiotonoinong yia tmy avadior)
APXITEKTOVIKIG £lval 1] EVIOXUTIKY pabnon [47]. O eAeyKAG IPOTEiVEL APXITEKTOVIKEG
duyatpikev poviéd®v amo tov Xwpo avadrntnong yia aglodoynorn. O sleykiAg eivat
ouvrifwg éva RNN. Exnaisvoupe kat a§loAoyoupe v apXIteKIOVIKI tou deiypatog
Kat auty 1 anodoor) ivat i aviapoBr) ou AapBavet o edeykirng. To orpa aviapoBng
dev eival Sagoporo|otpo, enopévag Xpnotporoovupe pa pébodo d1aBabpong yia
VA EVNPIEPWOOUNE TOV €AEYKTH] KAl 9€AOUPE va PEYIOTOMOIOOUHE TNV AVAPEVOUEVT)

avtapobr) :
J(8¢) = Ep(a.r:80)[R] (1.8)

OTIOU a;.1 €ival Ol evépyeleg ToU eAeyktn, T elval o ouvoAdikog apdpog twv tokens,
dc €lvatl ol mapdapeTpotl t1ou eleyKir) Kat R eivat i aviapoBn. Xpnowponoloviag tov
kavova REINFORCE wg pébodo kAiong, AapBavoupe tr SiaB8adpion tng avapevopevng
avtapoiBrg &g :

T
Vo J(8e) = ) Eptay.r:00[ Vo, 10gP(aiai-11 : )R] (1.9
t=1

e EfsAiktuikoi aAyopiOpor: O1 s§edikukoi adyopiOpot e§edicoouv évav mAnbuopd ap-
XITEKTOVIK®V HE OTOXO TNV €UPEOT) NG PEATIOTNG APXITEKTOVIKAG. Ze KABe Brjpa g
Sradikaoiag, pePKEG apXIIEKTOVIKEG detypatoAnmrovvial and tov mAnduouod ya va
dnuioupynOouv o1 Suyatpikeég apXIteKTOVIKEG PEO® PetaAdd§emv. Ot petadddadelg al-
Adadouv 1 Sopr) G APXITIEKTOVIKIG, OTI®G Il POOoBNKN 1) 1 adpaipeor evog emréedou
1) 1 aAdayr] v Asttoupylwv v erurédov. Ot Juyatplkég apXlteKTovikéG agloAoyo-

Uvtal Kat €netta mpootibeviat otov mAnOuopd. Xto 1édog, agalpsital 1 ynpatotepn
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1.2.4 Avalnnon Apxtiektovikig Neupovikov AIKtuov

APXITEKTOVIKT] 1] EKEIVI PE TNV XE1POTEPT anodoor.

e M:Bodotl katdBaong xAiong: Ot PO yoUNEVEG OTPATNYIKEG avaltnong AEtoupyouv
oe ¢vav dakplto xwpo avalninong. 'Evag mpwtonoplakog ailyopibpog, to DARTS [51],
Baoiotnke ot BeAtiotonoinon kataBaong KAiong rmou avalntouos VEUPOVIKEG AP TTE-
KTOVIKEG O€ £vaV XWPO OUVEXOUG avadninong XP1otHonol)viag pta ouvaptnor softmax

Yla va XaAapooet T0 S1aKpito XHpo avadl)tnong, 0rnwg rneptypddetal apakdito :

K ak

Gy = Y ———0(0 (1.10)

k=1 21:1 ey

orou o(x) eivatl n Asttoupyia 1ou ektedeital onv gicodo x, agfj etvat 10 Bdapog mou
exxwpeital ot Asttoupyia of petay evég Levyoug kopBmv (i, j) kat K eivat o api®pog
TV mpokaboplopévev unoyndiov evepyelidv. Metd 1 XaAdpeon 10U XOPOou ava-
{ong, 10 £pyo NG avaditnong apXIEKIOVIKOV NETATPETETAl O BeATioTornoinon g
VEUPW@VIKIG APXITEKTIOVIKIG A Kadl IOV Pap®v & aUutrg NG VEUPAVIKLG APXITEKTOVIKNAG,

XPTOIOIO1IOVIAS TO0 OUVOAO EMKUPKOONS KAl TO CUVOAO eKmaidsuong, aviiototxa.

e Mneidiavn) BeAtiotonoinon: H avadfjinon apXiteKtovikrg Sa Propouoe va rpooey-
ylotel og rpoBAnpa PeAtiotornoinong pavpou KOUTIOU, HE Pd AVIIKEIEVIKY OUVAPT-
on f. H pnetdiavn BeAtiotonoinon eivat pua eupemg diadedopévn texvikn Ady® tng
KAvOTNTAg NG va Snpioupyel €va UMOKATACTATO POVIEAO Yld Tr] POVIEAOIIOINoY NG
AVTIKEEVIKNG ouvAaptnong (mou oupBoAidetal g f). Emléyel emavaAnmuka apyite-
KIOVIKEG Yia agloAoynorn pe PAocn TV AVIKEPEVIKE] GUVAPTN O], EVIIEPOVOVIAS TTa-
PAAAnAa 1o UoKATACTATO POVIEAO. MOAIG mpaypatorotnfouv apKeteg aSloAoyHoelg
g f, xpnoworotei tov kavova tou Bayes yia va e§ayayetl tnv enopevr upn g f.
1o endpevo Pripa, aglorotel pa ouvaptnorn anoktong a(x), ylia va npoodiopioet to
endpevo onpeio deiypatog x; = argmaxya(x) rmou PeAtiotonotel ) ouvaptnon avt).
Autn 1 dadikaoia sival onpaviikd Atyotepo xpovoBopa kat 9a propouoe va PeATiRoet

TV AMOTEAEOPATIKOTNTA TG avadfjtnong 0 CUVEXEIS XOPOUS XAUNA®OV S1a0tdoemy.

Kd6e orpatnyikn avalnong e§Ayel v apXITEKTOVIKT] TTOU HEYIOTOmolel pia ermbupnt)
HETpIKN arnodoong, OnKg 1 akpiBela oto oUVOAO EmKUPOONG 1 1] akpiBela 0Tto0 oUVOAO GOK1-
prg. Kabe apyitektovikr) amno éva peydado Xwpo avadijtnong mpEmnet va eKnatdeutel nmpota ya
va a&lodoynBei, orote auty) n Stadikaoia propet va eivat apketd xpovoBopa Kkat va €xel pn
Odlaxelpiolpo umoAoylotiko Kootog. I'a va yivel mo armoteAeopatiky n avadiinorn apXlteKTo-
VIKL|G, £X0UV yivel mpoomndbeieg va pewwbel n dradikaoia eknaibeuong 1OV APXITEKTIOVIKGOV.
Ma apadetypa, oplopéveg POoeyyioelg eKTAISEUOUV TG APXITEKTOVIKES Y1a AlYOTEPES ETT0-
X€g 11 og éva urtoouvolo dedopévav. Mia aAAn mpoogyyion eival va kKAnpovopunbouv yovika
XOPAKTNP1OTIKA OTIS APXITEKTOVIKEG, aVIi va eKmaibevovial ta PovieAa ano v apyxr. Me au-
T€G TIG TEXVIKEG TO UTIOAOYIOTIKO KOOTOG PEIWONKE ONPAvVIIKA X®PI§ va peldvetatl 1 arodoon

g avaditnong.
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KepdAawo 1. Extetapévn [epiAnyn

1.2.5 AgioAoynon poviédwv tagivopnong

"Eva roAu onpavuko Prjpa yla v e§aopalion g rnotdtntag evog POVIEAOU UNXAVIKIG

pabnong eivat n agloddynorn tou pe Paon diagopeg petpikég. Mia ard 1g onpavukotepes

petpkég agloddynong ota mpoBArjpata ta§ivopnong eivat o mivakag cuyxuong (confusion

matrix). 'Evag mivakag ouyxuong €ivat évag mivakag Imou eVORPATOVEL TV artodoon evog

povtédou tagvopnong oe éva ouvolo Hedopévav dokurg. Ot Oe1pEg TOU IivaKa aviIpoon-

rievouv ta dedopéva oty mPoBAemopEV KAAOT), EVE 01 OTNAEG AVIIIIPOOMITEVOUV Ta dedopéva

oV mPaypatikn kKAdorn. i duadikn ta§ivopnon, o mivakag da eival peyeboug 2x2. Ta

v ta§vopnorn oe N kAdoeig, 1o oxfjpa tou mivaka da eivar NxN.

[Mpaypatikeg Tpeg
Nat 'Oxt

Nat | True Positive  False Positive
“Ox1 | False Negative True Negative

[TpoBAéwelg

[ivaxag 1.1: IMivaxag ovyyvong

Opioupe 11§ PETaBANTEG TOU ITivaKA OUYXUONG GG £EHG:

True Positive (TP): O1 eputtdoeig otig oroieg £€xoupe TipoBAéyet Jetkd Kat n ripoBAe-

w1 ermBeBaidverat.

True Negative (TN): Ot neputtwoelg otig oroieg £€xoupe mPoBALWel apvnTuikAa Kat 1)

npoBAeywn ermBeBatmverat.

False Positive (FP): [Ipoxkeital yla MEPUTIOOELS OTIS OTI0ieg £XOUNE TPoBAEWet etk

Kat n ripoBAeywn Sev ermBeBatwverat.

False Negative (FN): IIpokettatl yia IepUTIOOELS OTIG OToieg £xoupe poBAEWetl apvn-

KA Kat n ripoBAsyn Sev ermBeBaiwvetat.

Me Baorn autég Tig petaBAnteég opiloupie TG AKOAOUDEG PETPTOEIG :

e Accuracy: Ymoloyiletatl Siaipaviag tov apldpo 1oV o®otev IIPoBAEPE®Y e TOV OUVO-

AKO ap1OPo6 1V rPoBAEYERV.

TP + TN (1.11)
accuracy = .
v TP + TN + FP + FN

L& TEPUTTIOOEIS AVIOOPPOITiag TOV Se1ypatev KAAoE®V 010 ouvolo Sedopévav, o tagivo-
pntg Sa teivel va mpoBAgwetl tnv KAdon pe ta neplocotepa dedopéva, pe anoteAdeopa
va petpdtal oAU uvyPpnln akpiBeia. Auto, ®otdco, Hev avikatorTpidel pia 1Kavoron-

TIKY] TTO10TNTA TOU POVIEAOU. AUTOG £ival 0 Aoyog ou Xpetaldpaote Kt AAAEG PETPIKEG.

e Precision: Opiletal ®¥g 10 IT0000TO TOV OWOTOV JETKOV MPOBAEWERDV TOU Tagvountr).

. TP
precision = m (1.12)
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1.2.6 Awavuopata Aégewv

e Recall: Opiletatl oG 10 IT0CO0TO TOV UKWV SEYPATOV TTIOU £Xel TIpoBAepOel cwotd armo
oV tagvopunty).
TP

recall = ———— (1.13)
TP + FN

e Fl-score: Xuvdudadel v akpiBela Kal v avakAnon, yid va mapexel pia 100ppOort)-
Pévn pétpnon g anddoong Tou PoVIEAOU. LUYKEKPIPEVA, €ival O APHOVIKOS 1ECOG
akpiBelag Kat avakinong.

precision * recall

F1 — score = 2 * — (1.14)
precision + recall

e Specificity: Opiletal g 10 TOCOOTO TV APVNTIKGOV dEYPAT®V TTOU £Xel TIPoBAedOel
0®OTA artd Tov TaSvounty.
TN

specificity = TN £ FD (1.15)

e Cross-Entropy Loss: Mstpd tv avopotdtntd Petadl 1oV MPOBAETTOPEVROV ETIKETOV KAl
TOV ETKETOV MPAYHATIKOV KAAoswv. It duadikn ta§ivopnon, n anweleia diactaupo-

Upevng eviportiag urodoyietal wg eEng:
BinaryCross — EntropyLoss = —(ylog(p) + (1 — y) log(1 — p)) (1.16)

orou p eivat i poBAenopevn rmbavotnta kat y o deiking (0 11 1 oe duadikn taivopnon)

e Matthews Correlation Coefficient (MCC): Opiletal g 1 eKTIINON g CUCXETIONG
petady g npoBAendopevng KAAoNG Kat tng KAACNG OV Oroia avrKouv mpaypatkd

Ol XP1OTEG.
TP * TN — FP * FN

MCC =
V(TP + FN)(TP + FP)(IN + FP)(IN + FN)

(1.17)

1.2.6 Awavuopata Aéfewv

Ta Stavuopata Aé§ewmv eival pia TEXVIKY] IOV gUTTirtel otov topéa tng Enegepyaociag du-
owkng Moooag (Natural Language Processing: NLP) mou xpnoipornoteitatl yia v avara-
pdaotaon Aégewv pe apibpoug Pdoet g onuaociag toug KAl 1V eVHIAPECOV TOUG OXEOERDV.
Avtiotorifouv Aé€elg oe moAudidotata Staviopata pe Tporno wote mapopoleg Aggelg va eivat
Kovtva onpeia otov 1610 Siavuopatiko xopo. Mepikd yvoota povieda eivat ta Word2Vec,
GloVe, BERT xat 1€Aog auto rou Sa xpnopornoirioovpe oto reipapa pag RoBERTa.

To RoBERTa (A Robustly Optimized BERT Pretraining Approach) [52] eivat éva ripony-
pévo poviédo Sravuopatog Aégemv Paoiopiévo otov rpoxkatoo tou BERT. Metd aro BeAtioto-
nooeig otr) Siadikaoia mmpoekmnaideuong, propet va PeAtiwoet v anodoor Tou HOVIEAOU og
£va eUpU PACHIA EPYAOIAV TG EMedepyaoiag QUOoIKYg YAwooag. 'Eva onuavuko misovéktnpa
tou RoBERTa eivat 6t ekrnaidevetal o€ onpavilka PeyaAutepo oUvoAo §eboEvev KEEVOU
oe ouykpton pe 1o BERT kat katd ouvénela eknatdevetal o €va Imo eUpU YA®OOIKO @dopa.
Emiong, ayvoet tnv epyaocia [IpoBAewn Enopevng [Ipotaong (Next Sentence Prediction: NSP)
ou Ypnoworoteital oto BERT kat eotiddetl oty epyacia Moviédo Maokapiopévng Mwooag

(Masked Language Model: MLM). H exkniaibeutikr) Siadikacia tou RoBERTa mepiExet pia
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KepdAawo 1. Extetapévn [epiAnyn

Aerttopepr) eupeor) unepriapap€rpev. To RoBERTa &enepva ta dAAa mponyoupeva poviéda
0t APKETEG epyaoieg enedepyaoiag QUOIKNG yAwooag, mo ouykekpipéva otg General Lan-
guage Understanding Evaluation (GLUE), ReAding Comprehension from Examinations
(RACE), kat Stanford Question Answering Dataset (SQUAD). H anoteAeopatkotnta Kadbng
Kat n euedia tou poviédou eivat ot AdyOl TIOU XP1OIOTIOI0UE TO CUYKEKPIILEVO LOVIEAO

dlravuopatog Aégemv 0To POVIEAO H1ag.

1.3 XIxetREQ EpeEuveg

Y& auto 1o Kedpalailo, mapouotadoupe pia MANPN avaokonnon tov pebfodwv mou xpnot-
porolouvial yia tov evioriopo bot, kabog kat pedéteg ya v Avadntnorn APXIIEKIOVIKAG
Neupovikov AIKTUeV og S1A9opeg TIEPUTIVOELS XPL0NG. ZUYKPIvovTag Ta anoteAéopiata T0Ug
9a emAéCoupe v akpiBeotepn pEBodo mou otn ouvéxela da npoortabrjooupie va PeAtioto-
TOU|OOULIE.

Ot Lee et al [53] xpnowornoinoav evioxutiky pdbnorn kat eknaibsuocav évav ta§vountr)
yla va Stakpivel petagy yvriowv Xprotwv Kal pOPItot pe Ao XapakinplotiKda oy e§Ayo-
viat and 6edopéva tou Twitter, omwg tov apBpo t@v akodoubwv, @AV, TWEETS, XPOVOG
dnpioupyiag Aoyaplaopou, xpron dieubuvoewv YPA, naontayg, KA. Ot gpeuvniég edpdp-
pooav diapopoug aAyopiOpoug punxavikng pabnong, ocupneplAapBavopévay TOV PNXaAveV
unootpigng davuopatev (SVM), tou Naive Bayes kat twv §&vipov anopacewv, yia va &n-
H10UPYT|00UV KAl va a§loAOyrjocouV T0 POVIEAD aViXVeEUOoTG.

Ot Yang et al [54] xpnowponoinoav pn emBAernopevn pabnon yia 1oV €VIOIIOPO PO-
PIot. ZUYKEKPIIEVA, XPNOTHOMoinoav XapaKinplotiKd ToU MPoEPYoviatl arnod 1a petadedo-
Péva xpnotr, Xpovika potiBa, dour tou H1ktuou, avaluor ouvalodHpatog Kal YA®ooikd otot-
xela. ASlodoynoav v Kavotna tou poviedou va Stakpivel ta Botg ard 10ug mpaypatikoug
XPHoteg, urtoAoyidoviag v mePloyr) KAt Ao 11| XApaKINP10TIKY KAPTUAn Asttoupyiag tou
6éxtn (AUC-ROC). Avegpepav emiong PEIPIKEG OIwG 1 akpiBela, 1 avakAnorn kat to F1-score,
Yla TEPIO0OTEPES TIANPOPOPIEG OXETIKA 11E TV artodoon Tou poviédou. Ta va anoxktrioouv
10 ouvolo Hebopévav ol ouyypadelg Xpnotponoinoav 1o Botometer API, éva gpyaleio mou
avamuxOnke ano v idia epeuvnuikn opada.

Ot Cresci et al [55] slonyayav v texvikr) tou Social Fingerprinting yia avixveuon tov
bot, pa pebodo YynPpiakou DNA yia tr povieAomnoinor T®V CUPIEPIPOPKOV TRV XPTOT®V KOl-
vovikev diktuov. Kdbe xpriotng avanapiotatatl g piia akoAoubia Yapakthipev avaloya pe
TOV TUITO KAl TO TEPIEXOHEVO TV tweets rmou Snpootevel apopola pe pa akodoubia DNA.
Ot gpeuvnég enebiogav va Bpouv opototnieg otig akoAoubieg rou Sa Bonbrjcouv oto dlaxe-
Plopo TV U0 Katnyoplov xpnotov. To pérpo opoidtntag opidetal wg T0 PNKoG g peyaiute-
png Kowr|g urtooupBoAooeipag (LCS) petadu 6Uo akodoubiov. T'a éva ouvolo mpaypatikov
XPNOTOV, T0 PNKog autod Ppebnke va eival dlaitepa pikpotepo. Me Baon auty) v 16€a, ot
ouyypageig avérrtugav dUo texvikeg, pia faotopiévn oty ermBAenopevn padnon kat pia dAAn
pe pn ermBAeniopevn padnon Xxepig emiBAeywn yla va Bpouv opoiotnteg ot CUPNEPIHPOPA TRV
Aoyaplaopav. Xprnotpornoinoav 1o ouvodo dedopévav “peogt. [56]

To Botometer [57] eivat éva 61adiktuako mpoypappia mov avartuxdnke and to Iaver-

ompo g Iviidva. Xprnowornotei teXvikég pnxavikng ekpadnong ya va tadivopurost 1oug
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1.3 Zxeukég épeuveg

Aoyaplaopoug oe bots kat avBporoug, egetddoviag a oe1pd aro XapaKtnplotKd T0U mpo-
@iA. To Botometer 6iakpivel Toug Aoyaplaopoug pe éva ouvoAiko oxkop bot (0-5), padi pe
apketeg aAdeg BabpoAoyieg. 'Oco uywndotepn eival autn 1 ouvoAikn Babpoloyia, 1000 IO
mbavo sivatl autdg o Aoyaplaopiog va avhkel o €va bot.

Ot1Feng et al [38] ipdtetvav 1o §1k6 toug poviédo yia avixveuon bots, pe 6vopa BotRGCN.
To BotRGCN 8npioupyel évav etepoyevr] ypd@do aro Tig OXE0Eg aKOAoUOnong petay twv Ao-
YOPlAOP®OV Kal XPNOIorolel MANpopopieg, Onwg 1 meplypadsn tou Xprotn, ta tweets, tov
ap1Opo akodoubev kat @idev kat ot mAnpodopieg yerroviag. Ta nelpapata diednxdnoav oto
ouvolo debopévav Twi-Bot 20, ®otoco 1o BotRGCN Sa pnopouoe va ekpetadAeutel kat aA-
Aoug TUITOUG OXE0ERV PETady XPnotaVv eav unoatnpidoviav aro 1o ouvolo debopévav. Me pia
uynAn akpiBela tng 1aéng tou 86,42% Ierépaoe mponyoupeva poviéda, uroypappidoviag
Ta OQEAN TNG XPIONS OUVEAIKTIK®V VEUPOVIKOV S1IKTU®V otnv avixveuorn bot.

'Exovtag emBeBaiwoel 1a OQEAN Ao T XPNon ypadnudiov yia v avixveuon bots,
9a peAetriooupe epappoyeg g Avaldninong ApXtieKtovikyg Neupevikov AKTU®V ot pid
pootifdsia yla va srmtuyoupe mbaveg PeATIOOES.

Ot Nunes et al [58] mapouciacav §Uo 11e60doug yia ) BeATIOTONOINCT TOV VEUPOVIKOV
Siktuwv ypagwv: pia Baciopévn oty evioXUTikn Padnon kat pia Baciopévn oe e§eAIKTKOUg
aAyopiBpoug. Ot ouyypagdeig nepapatiomkav pe avtég tg pebdédoug yia va aflodoyrjoouv
€AV apEXoUV KaAUtepn akpiBela amo pa tuyxaia avadfjnorn) os 0Aeg 11§ TOaveg mapapEIrpoug
tou Siktuou. Ot e§ediktikol alyopiOpot eivatl pébodot rou Pacidoviat otn Sewpia g e§€AEng.
ZUYKEKPIIEVA, TIOAAEG OlAPOPETIKEG TTAPAIETPOL OTA £Inedd mapdyouv éva oUVOAO arod
biktua, ta omoia aviaywvidovial yia va emrtuyxouv v Kadutepn akpiBeia oe éva ouvolo
erukupeong (validation set), kat va ermleyouv yia va rapdfouv pia véa yevid arnoyovev.
TV eVIOXUTIKY pabnor), éva diktuo LSTM xprotponoteital ®g eAEYKING yia tn dnuioupyia
apxtiektovik®v. Ot ouyypageig 0ptoav SU0 MePITINOELS XOP®V avalrtnong: Macro, orou ot
APXLIEKTOVIKEG TTOU Snpitoupyouvat £xouv v i6ta dopr), kat Micro, 0rou ot apX1teKTOVIKES
Oev eival auotnpd dopnpéveg aAdd cuvdualouv moAAd ouvediktika oxnpata. Ot ouyypageig
Xpnotpornoinoav erta Siapopetika ouvoda Sedopévev yia 100 eravainyeilg os Kabe XHpo
avalnmong. KatéAn§av oto oupriépaocpa ot kat ot 6Uo pébodot Pprikav oAl napopoieg
APXITEKTOVIKEG HE NG TuXaiag avalinong. Qotooo, onpueinoav 0t o1 e§ediktikoi adyopifpot
Mapnyayav og £ri 1o MAEiOTOV apX1TEKIOVIKEG ITOU propovoav va xepeéoouv oty GPU, oe
avtiBeon pe 11g adleg pebodoug.

Ot Zhang et al. [6] nipdtetvav 1o poviedo DFG-NAS, pia kawvotdopo pébodo rou ert-
TpEnel v auvtopaty avadhmor Pabidv kat SUvVApIKOV apXITEKTOVIK®OV VEUPOVIKOV SIKTUGV
ypagpwv. To DFG-NAS 6ivel épngaorn otnv avadrinon o PaKpo-apXITEKTOVIKEG, KAl OUYKE-
Kplpéva o1o NG ot Asttoupylieg atopikig 6iddoong (propagation: P) kat petaoxnpatiopou
(transformation: T) uAomolouvtat oto &iktuo. To IT oxetietat oteva pe ) dopr| tou ypa-
prpatog, eve o T eotiadel otov Pn YPAPRPIKO PETACXNHATIONO OT0 VEUP®VIKO Giktuo. Ot
ouyypageig onpeiwoav OTL 01 IEPIOCOTEPES TIPOonyoupevol nEBodotl epappiooav petaoxnpa-
TIopo petd ) 61adoon (II-T) o kaABe otpodpa, n omoia eival pia MEPLOPLOTIKI IIPOCEYYLOT).
Xprnoporoinoav évav eSeAIKTKO alyopiOpo yia va Bpouv ) BEATIOT apXITEKTOVIKI], 1 OITO-
ia unootripide 1€00ep1g epuTtRoelg PetdAdading: (a) mpooBeon evog I1, (B) mpoobeorn evog T,

(y) avuikataotaorn evog IT pe éva T, (6) avukatdotaon evog T pe éva IT. O ouyypageis ka-
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eAngav pe pa Bedtioon akpiBelag éwg kat 0,9% oe oxéon pe Xelpokivhta oxédia tedeutaiag

texvodoylag, pe ermtayxuvon 15,96x oe oxéon pe arleg pebodoug.

1.4 Zuvolo Sedopévev rat neprypadn tou npoBAnpatog

Y& auto 1o KePAdAalo, Sa mapouciacoupe [ia eupeia eSHynon TV 18100V TOU GUVOAOU
b6edopévav ou Ypnotpono)oape ya 1o neipapd pag, kabmg Kat pia meptypadr) tou mpo-

BAnpatog oto ortoio eotiadoulie.

1.4.1 Zuvodo 6edopiveov TwiBot-20

Ate§dyape 1o meipapa pag xpnotpornoloviag to ouvolo dedopévav TwiBot-20, to oroio
AdBape ano toug Feng et al. [39]. Auto 1o ouvolo Sedopévev meplhapBavel 1o UVOAO eK-
naibevorng, ermkupwong, Soxkipung kat vnootrjping. [59]. To TwiBot-20 éxet kataokevuaotei
pe peboboloyia avadninong katd miatoug (BFS). [Tapouoiddoupe ta XapaKinplotikd tou

OUVOAOU JE 111a OUVIOUT MEPLyPad] Yia MEPAITEP® EMESHyNnon

XapaKtnpiotiko H [Teprypadr
ID avayveplotiko ano to Twitter yia tv avayvepion tou xprjotn
profile otoixeia ripodid ard to Twitter API
tweet 200 ipoogata tweets 10U ¥xprjotn Xpnotn
neighbor 20 tuxaiot akoAoubot kat Aoyaplacpoi ou akoAoubel o Xprjotng
domain Topéag xpnotn (moAiky), ermyeipnorn, Pyuyxaywyia, abAntiopog)
label €TIKETA TOU Xprjotn (1:bot, '0:avOpwrtog)

[Tivaxag 1.2: Xapakmpotikad kat teptypagrn ov ovvojou dsbopsvov TwiBot-20 Dataset

[nt!]
To Twibot-20 €xel xpnotponownOei o MTOAAEG MEPUTIDOELS EVIOITIOPOU POUPITOT AOY® TGV
ONPACI0AOYIK®V KAl VEITOVIK@V 1810TT®V XP1)0Tr TOU UIOPEl va AMEIKOVIOel. LT GUVEXELd

9a napouocidooupie tov 0p1opd ToU NPOoBATIATOg TTOU YEAoUE va AUCOUIE.

1.4.2 TIepirypad1n) tou npoBAnpatog

'Eotwe B = bif:l [IOU AVUIIPOORIIEVEL TNV TIEPYPAPI] TOU Xprjotr He apibpo Aégewv 0o

pe L. 'Eotw T = ti?i , Ta M tweets tou xprjotn kat kabe tweet t; = {wil, wiQi} TIEPLEXEL
Q; Aé&e1g. ‘Eote P = P™M P 1o gvodo api@pnTikov Kal KATYOPIKOV 1810TATOV TOU
xpriot avtiotoixa. Tédog, éote N = N, N' ot mAnpogopieg yettovidg tou Xprotr], Orou
N = N{ .... N, urio8nAcvet toug Aoyaptacpong rou axoAoubei o xpriotng kat Nt = Ni,....N{
urodnAwvel Toug Aoyaplacpoug ou akoAouBouv tov xprjotn. To £€pyo Tou eviormopou 1oV
bots oto Twitter eivatl va Sexwpioet 10 ouvodo Sedopévav oe bots kKat aAnBivoug xprioteg He

11§ mAnpogopieg aro ta B, T, P kat N.
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1.5 IMepapatikod pépog

1.5 TIIeipapatiro pEpog

O evtormiopog tewv bots eival Kpio1og oto ONUEPIVO KOO0, KAO®MG 0 TIOAAATTAAC1a0110G
Toug aroteAei onpavikr) areidr yia tg Siadiktuakég miatgpoppeg. Ta va avartugoupe éva
BeATIOIEVO POVIEAO Y1la AUTAYV TNV £PYAOCIA, EVO@PATOOAE 11d TIOAAA UTTOOXOHEVT TIPOCEYY1-
on avixveuong bot pe v texviky g Avadntnong ApXITEKTOVIKNG. ApXiKd, da meptypayou-
e v npoenedepyaocia 1oV PetadeSopévav Xprotn) rou Xpno1loroloUvial OTto POVIEAO 11aG.
I ouvéxeld, MEPLYPAPOUNE Tr XPNON TRV XXEOIAKOV ZUVEAMKTIK®OV NeUpOVIKOV AIKTUGV
Fpdapev rat tov dUo dadpopetik®v ouvaptoemv oto IIpwtokoAdo AwabiBaong Mnvupdiev.
Télog, e€nyoupe v epappoyn) tou DFG-NAS [6] ownv avalfjinorn tng KaAutepng petabeong

1@V ouvaptnoeev Atddoong kat Metaoxnpatiopou.

DFG-NAS Architecture

RGCN (P) RGCN (T)
()
-
User profile
. T
| Description . T( -) Real User
- - e
weets
T Bot
Numerical
property
Categorical
property TN T

Ewova 1.6: MovtéAo yia v aviyvevon tov bots

1.5.1 Aviyxveuon bots pe 0X£01aAKA CUVEALKTIKA VEUPWVIKA §iKTUA YpAPLV

Ot Feng et al. [38] npdtevav 1o poviedo 1oug BotRGCN yia tov eviormiopo tov bots,
anode1kvuovtag Ta MAEOVEKTHATA TNG XPHoNS ZXEOIAK®V ZUVEAIKTIKOV AKTUoV [pddpav.
Epnveuopévol and autr) i) pébodo, Xpnotpomnolovpe veupavikd diktua ypddpev oto PHoViEAo
Hag Kat Xpnoipornolovpe 1o ouvodo dedopévev Twibot-20.

AxoAouBoupe v rpoere§epyaoia rou sloayetat yia to BotRGCN [38]. H avartapdotaon

KaOe yxpriot neptdapBavet petadedopéva nou unoBaiAovial oe MPOENESepyaoia oG eEng:

e TuvoAwra: H mepiypagrn tou xpriotr, ta tweets, ot apiOunukég KAl 01 KATNYOPIKESG
1610T1eg KOS1KOITO10UVIAL KAl OUVEEOVTIAL Y1d VA AVIIIIPOOK®IIEUOOUV TEAKA Ta Xapa-
KTNP10TIKA TOU XP1otn)

r=[rp;r ™ rf,at] e RP*! (1.18)

orou D eivat o1 Swaotaocelg davuopdtev tou xprjotr. H enelepyacia kat n avarna-

pdotaon Kabe 51aPopetKOU XAPUAKIPIOTIKOU egnyeital maparAat.

o Ileprypadn xproty: Ot mepypadEg TV XPnotOv KOS1KOMoouval Pe 10 MPOEKIAL-
b6eupévo RoBERTa:
b = RoBERTa({b;}~.,), b € RP*! (1.19)
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KepdAawo 1. Extetapévn [epiAnyn

4rou 1o b urOdNAGVEL TNV avanapdortaot g Meptypadris Tou Xprotn kat 1o D sivat i
d6iaotaon tou RoBERTa. It ouvéxela poKUITouy ta diavuopata yla v neptypadr)
TOU P10t &G :

r, = @(Wp - b+ bp), r, € RP/4X! (1.20)

orou ta Wg kat bg eivat napdpetpot pe Suvatotnta ekpdbnong, 1o ¢ eivat ) ouvaptnon

gvepyortoinong kat 1o D sivat i Sidotaon tov Siavuopdtov.

o Tweets xprjoty: Ta tweets tou Xpriotn K@SIKOIIOI0UVIAL £ITIONG XPTOTHOMOIOVTAG TO
RoBERTa. H teAkr) avanapdotaor) tev tweets tou xprotn r; eivat o pe€ocog 0pog tev

avanapactdaoenmv 0Aav oV tweets.

o Ap1OunTtikég 1810tnTeg Xprjoty: Ot apOunukég 1610tnteg tou Xpriotn ulobetouval
arteuBeiag and 1o API tou Twitter xwpig feature engineering xkat nmapovotadovrat otov
MAPAKAT® Tivaka. [a autég g mAnpopopieg, mPAyHPATOOLEiTAl Z-SCOre KAVOVIKOITO-

inon yia va Angbet n avanapdaotaon r," ™.

Feature Name Description
#followers number of followers
#followings number of followings
#favorites number of likes
#statuses number of statuses
active_days number of active days
screen_name_length | screen name character count

[Tivakag 1.3: Apduntikég 1610tnTeg TOU XPNOTN

¢ Katnyopirég 1810tnteg xprioty: Ot KATNYOPKEG 1810TNTEG TOU XPT|0TH KOSIKOII010-
vvtat emiong pe ) xprjon MLPs kat GNNs, xwopig feature engineering, onwg kat ot
apBunukeg 1610tteg. 'Exouv uobetnBel aneubeiag amo to API tou Twitter kat na-
pouoiadovial oTov TMapakdt® rmivaka. Metd amo pia amlr Kadikomnoinorn, svovovial
Katl petaoxnpati¢oval pe éva rmirpeg ouvdedepévo erninedo kat pia leaky-relu yua va

AdBouv teAdKA v avanapdotact] T0Ug rIC,at.

1.5.2 IX£01aRA GUVEAIKTIKA VEUPWVIKAG HikTua ypadpwov

H pébobog pag dnuioupyel €vav etepoyevr) ypdgo amod TG oxeoslg akoAoubnong. Ot
Xproteg Sewpouvial kopBot kat o1 oxéoelg following’ kat *followers’ aviinpooerevovial g
AaKPEG TIOU oUVOEOUV Toug KOpBoug. Ermopévmg, ot «akoAoubor Tou Xp1jotn avIlTpoo®IIEVo-
viat dapopetikd and toug «akoAouBoug» tou Xprotrn. O £1epoyevrg YPAPOG ITOU KATAOKEU-
adetatl PIopei va avirpooIievsl KAAUTepd 1§ 0X£0EIS NETASU TRV XPNOTOV KAl MEPIO0OTEPES
OX£€0E1G PETAgU TV Xpnotwv da prnopovoav va evoopatoabouv oto ypadpnua eav urootnpido-
vtat aro to ouvoldo Sedopévav. Ot Xprioteg rmeplEXouv emiong ta ouvdedspéva petadedopéva
IOV MMEPYPAYPAE MTAPATIAVE.

IMa va ocuvbudooupe Tig avarnapaotdoel§ TV XPNOoTOV HE TI§ OXE0ELS NETASU TRV XPNOTOV,
XPNOTHOTIO0UHE LXEOIAKA OUVEAIKTIKA VEUP®OVIKA Siktua ypadwv (RGCNs). O aywyog &i-

¢Aevong pnvupdtov v RGCNs nieptdapBdvel U0 TUTIOUG ATOPKOV AE1TOUpYlOv: 8i1adoon

m Awtflopatkn Epyaoia



1.5.2 XxeolaKd OUVEAIKTIKA VEUP®VIKA OiKTud Ypdpov

Feature Name

Description

protected
geo_enabled
verified
contributors_enabled
is_translator
is_translation_enabled
profile_background_tile
profile_user_background_image
has_extended_profile
default_profile
default_profile_image

protected or not
geo-location enabled or not
verified or not
enable contributors or not
is translator or not
translation or not
the background tile
background image or not
extended profile or not
the default profile
the default profile image

[Tivaxag 1.4: Kamyopikég 1610tnTeg 10U XpN0tn

(IT) avanapactdoe®v @V YEIIOVEOV TOU KAl edpappoyn petacxnpatopou (T) oug avanapa-

otdoeig. [apakdate neprypadoupe 1) Sadikaoia nmioe anod tig dUo Asttoupyieg:

e Awdadoon (Propagation): H 61aboon nepidapBavel ouvabpolorn pnvupdiev and yei-
TOVIKOUG KOIBOUG X®PIG PETAOXNPIATIONO XAPAKINPEIOTIK®V KOopBwv. H pabnpatikn

ék@ppaor yia 1o Brjpa g 6iadoong sivat i e§ng:

(1) _ LG
W= 3 3 L

r€R jeN/

(1.21)

Ortou hng) glval To véo Xapaktnplotiko KopBou petda ) 6iadoon, R eival to cuvoAo
v oxéoewv, Nf elvat ot yeitoveg tou kOpBou pe ) oxéon 1, 10 ¢ eival pia otabepd
KAVOVIKOITOINo1NG yia OUYKeKplpévo npoBAnpa rouv propet eite va pabet to dikruo eite
va ermdeyel €K TV MPOTEP®V (Yia apadeypa ¢ = Nf) kat Wr(l) etvat o tivakag Papoug

yla ) oxéon r.

¢ Metaoxnpatiopdg (Transformation): O petaoynpatiopog npayparoroteital oe Kabe
KOpBo pe Baon tg oxéoslg. H pabnpatkn ékdppaon yua 1o Brpa petaoXnpatiopou
eivat n e8ng:

+1 1 l
h«E = Wroothg) + Z(thf )) (1.22)
rerR
. +1) . . . . . .
orou h; elvatl n véa duvatotnta KOPBou PETA ToV PetacXnNuatiopo, Wiy elvat n

pOtpa Bapoug expddnong yia tov pidikd kopBo, Wi etvat n pntpa Bapoug ekpabnong

yla ) oxéon r kat R givat 1o ouvolo 1ov oxEoewmv.

Alaywpidoupe autoug toug 6Uo TUOUg ouvaptnoemv adou cuvduaopoi toug Sa Snpoup-

YI)OOUV TOV X®POo avadninong ya tmyv Avalfjinon Apxtiektovikng Neupovikou Aiktuou.

AitAeopatxny Epyaocia



KepdAawo 1. Extetapévn [epiAnyn

1.5.3 Avalftnon apXiTERTOVIKIG VEUPHOVIRAOV S1KTIOV

H xpion eV veupmviKeV SIKTUGV YPAPIKOV IIPOoPEPEL avapdlobrtnta mAEoveKTHATd
o10 £€pyo g avixveuong bot. Qotdoo, 1 peylotonoinon g anodoorg ToUg PMoPEl va arnat-
Tel EKTEVI] PNXAVIKI] XAPAKINPIOTIKGOV. AUTOG €ival o AGyog ylad TOV OImoio XProli0Tioloue
mv Avalfjinon ApPXITEKTOVIKIG, XPNOornoloviag 1o poviédo AGI-NAY [6]. Ot mepiooodte-
peg 1€Bodot G-NAS ut00etouv évav otabepd ayeyo 61éAdevong pnvupdiov pe 6U0 turoug
atopikev Asttoupylwv: 61adidouv (P) avanapactdaoelg 1@V yeltoveov 1ou Kabs KopBou kat
epappodouv petacxnpatiopo (T) oug avanapaoctdaoelg. Ermiong, ot epioootepeg peBodot G-
NAS £xouv otaBepd prkog aynyou diédeuong pnvupdiov, Kabwg n anodoor pPeldvetal pe
neploootepeg Asttoupyieg P, 1o omoio avagépetal g {upa uvriepBolikng ssopaiuvong. Ot
Aettoupyieg 6146001G KAl PHETACXNPATIOPNOU AVIIOTOIXOUV OTNV augnor Kal oTtov PEIPlaopo
g e§opdduvong avtiotoxa. Avadnroupe évav ayoyo S1€Aeuong PnvupdteV Iou arnoteAeitat
arno Asttoupyieg P kat T, xpropornotoviag évav yevetko adyopifpo. Xpnot10molovpie emiong
Hnxaviopoug nuAng (gate operation) kat napakapyng (skip-connection) otig Asttoupyieg P

kat T avtiotoka.

OO0, OO®, FEO=0
kAl Al

==l Gating for deep P ==& Skip-connection for deep T

Ewova 1.7: Iapadetyua dtaviou otov xapo avadiimong. Inyn [6]

O xwpog avalninong neptdapBavel ocuvbuaopoug P-T kat tov apiBpd tewv Asttoupyiov
P-T. ErurmAéov, npootiBevtal ouvbéoeig petadu kabe turou. Ta pa Acttoupyia P 1) T oe éva
ertintebo GNN oto poviédo, 1o o(,f) elvat ) £€§060g tou kKOGPBou v oto ermtinedo 1 kat ta Lp kat Ly
eivatl 6Uo ouvoAa pe toug Beikteg oTp®IATog OA®V tev rpddenmv P kat mpagewv T aviiotolka.
O1 Aettoupyieg Kat o1 CUVHEDELS TV OTPOPATOV TIEPTYPAPOVIAL TIAPAKATR.

Suvdéoelg S1adoong: 'Eva ermuikeipevo mpdBAnpa ota GNN eivatl ) uriep- 1j uro-e{opdAuvon,
1 ortoia opeidetal oe TIOAAEG 1] TIOAU Atyeg Asttoupyieg 81adoong. Ta va ermteuyBel katdAAnin
opadotnta yia dtadopetikoug kopBoug, ot Aettoupyieg P evioxvoviat pie tov pnXaviopo muAng
(Gate operation). H £§o6og tng l-otiig Aettoupyiag P eival 1 evoopdtoon kopBou mou €xet
61a600ei tou oV edv 1 endpevn npd€n eivar emiong P. Edv 1 endpevn npdn sivat T, éva

Bapog rou 61adidetatl and dAeg 11§ ponyoupeveg Asttoupyieg P epappodetat. Alatunoukda :

2 = po™Y) (1.23)

z‘()l) followed by P
Z softmax(ai)sz) followed by T

iELp i<l

ol = (1.24)

émou a; = o(s - o) eivat 1o Papog yia v £§odo Tou i-otou ermnédou tou K6pBou v. To

s eivat 1o exknatdevopio diavuopa mou popddoviat 6Aot ot KopBot Kat 10 0 UTIoSNAGVEL 1)
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1.5.3 Avalfjinon apyieKIOVIKIG VEUPOVIKOV SIKTU®V

otypoeldr) ouvdptnorn.

Suvbéoeig Metaoxnpatiopou: 'Eva srmikeipevo ripoBAnpa pe ta GNN eivat n urto8ab-
pon tou poviédou (degradation issue), rou mpoxaleital and unepBoAko apBpod npdgemv
HETaoXNUATIOPoU KAl PEWWVEL TNV akpiBela tou poviédou. Ta va avipet®iotel auto to
{pa, xpnolpornoouvial pnyaviopot mapadeiyng (skip-connection) otg Asttoupyieg T. H
£i0060¢ kGOe rpagng T eivat to abBpoiopa tng £€660U Tou tedeutaiou ermEdou Kat v 506wV
OAGV T®V ponyouuevav rpaseav T rmpiv ano 1o tedeutaio emninedo. H eioodog kat ) €§0dog

g l-otg T Asttoupyiag propouv va Siapoppebouv wg eEng:

2D = o 4 Z oV (1.25)
ieLr,i<m(l)

o(l) = o(z(l) (l)) (1.26)

ortou m(l) eival o deiking g tedeutaiag npdaéng T mpwv aro 1o 1-oto eminedo kar W(l)

eivat n mapdapetpog otnv 1-otn Asttoupyia T.
v BT @D = B-T-B-B-T

Ewova 1.8: Anewwovion tov 4 Siapopetikwv puetaiialewv. Inyn [6]

Ot e€eAdiktikol aAyopiOpot eivat pia katnyopia adyopibpwev BeAtiotonoinong rmou eprnveo-
vtat ano 1) Prodoyikn €§EAEn. Ta va e§edifouv tov mAnbuopod v atdpev epapiidlouv
petaddagelg. Kabe apyitektovikyy GNN kedikornoeital g akodoubia Acitoupyiov P xkat T.
Téooeplg H1APOPETIKEG TIEPUTIWOELS PETAAAASNG PIopouv va cupBouv oe pia tuxaia 9éorn

otnv akoAoubia:
e +P: mpooBrkn piag Aettoupyiag H1adoong
e +T: PpooBr|Kn Piag AEToupyiag PeTacnatiopou
e P—T: avuikatdotaon pia Asttoupyiag §1adoong pe pia petacyniatiopioy

e T—P: aviikatdotaon pia Aettoupyiag petaocXnpatiopou pe pa Siadoong

Apyika, k Srapopetikég apyttektovikég GNN Snpioupyouvial tuxaia g 1o apX1ko ouvoAo
rmAn6Buopou @ Kat ot OUVEXELd aSl0A0yoUVIdl OT0 OUVOAO EMMIKUP®ONG. L1 ouvéxelda, m (m
< k) atopa anod tov mAnOuopo ermiéyovial tuxaia Kat auto e v KaAutepn anddoor) ert-
A¢yetal @g yovéag A. H Suyatpiky) apyitektovikn B dnuioupyeital ano v tuxaia epappoyn
plag ano g téooepig petaddagelg. To B aglodoyeital kat mpootiBetal otov mAnbuopo kat
Ot OUVEXElA agatlpeital To ynpaotepo datopo. Autr n dadikacia smavadapBavetal yua T

YEVIEG KAl ETTOTPEPETAL 1] EMMAEYHEVT] APXITEKTOVIKI] HE TV KaAutepn anodoorn. Mmopoupe
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KepdAawo 1. Extetapévn [epiAnyn

va ermA£E0UE YA APXITEKTOVIKT] HE TNV UPNAOTEPT akpiBela OTo OET EMKUPKONG 1] OTO OET

eknaidbeuong 1 pa pe cuvbuaopo Kat tev duo.

1.6 IIsipapatiry dradiraocia

To nieipapa exteAéotnke oto Google Colab xpnowpornowwviag GPU T4. IMa v avadiinon
APXITEKTOVIKLG, 0 ap1B1og tou mAnBuopou k eivat 15 kat o apBpog tov yeveov T eival 80. O
nipoUnioAoyiopog eknaideuong kabes apyitektovikng GNN eivat 70 eroxég. Autoi ot apiBpot,
av Kat IEPIOPIOPEVOL AOY® TRV TTOP®V 11ag, TIAPEXOUV £€va Kado rapddeiypa g anoteAeopa-
TKOTtag tou poviédou pag. H exnaidevorn yivetatr xpnowponowwviag tov Adam optimizer
pe pubpod expdabnong (learning rate) 0,04. To kpurplo eival n anwAela diaotavpoupevng
eviportiag (Cross Entropy Loss) kat o ouvieAeotr)g kavovikoroinong (regularization factor)
etvatl 2e-4. Epappoletat dropout oe 6Aa ta Siavuopata Xapaktnplotkev pe pubuo 0,5 kat
dropout petadu v Srapopetikov ermrédov GNN eivat 0,8.

Metd v extédeorn g pebodou NAS enefepyalopaote ta anotedéopata kat egetdloupe
TIG TIEVIE APXITIEKTOVIKEG 1€ TNV KAAUTEPT akpiBela oto oUvolo ermkUpwong. Kabe apyite-
KTOVIKY] TA¢ov ekmaidevetat yia 100 eroxég oto ouvodo dedopévev TwiBot-20 [39], yia va
dnpoupyrjostl éva stepoyeveg ypadpnpa 229.580 kopBov kat 227.979 akpev. To ouvolo
exnaideuong artoteAei 1o 70% 10U oUVOAOU Gedopévav, T0 oUVOAO eruKkUpwong to 20% Kat
10 oUVoAo Soxkrg 1o 10%. H exkmnaidsuon nmpaypatornoteital emiong pe ) Xpron tou Adam
optimizer pe pubuod ekpddnong le-3. Xin ouvéxela, KABe apXITEKTOVIKY] Sokipadetal oto
oUvoAo 6oKIPAG yia va AngOouv ta arnotedéopata, rmou Sa MmapoucidcoUPE MAPAKATR.

Kdbe apyitektovikn kata ) diapkeia g avaldfjinong anobnkevetatl pie 10 ouvéuaocpo P-
T, tnv akpiBela 0to OUVOAO ETKUPKONG KAl TNV akpiBela 0to cUvoAo Sokipng. Ly mapakdat®

€1KOVA arelkovi{oviatl o1 EVIE APXITEKTOVIKEG TTIOU ermAgyovial amno tr) peéBodo NAS.

G0

° 4 I >° ):‘ an

°7¥j‘ . mme .5*"0**6—*: T ‘}7>°f,,°7,5 i
. A . -

0 Q0O

Ewova 1.9: Kopugaieg 5 apyuektovikég anoboong. O akpibeieg emikupwong ano 1o NAS
(amo mtave mpog 1a katw) eivar: 87,01%, 86,99%, 86,95%, 86,89%, 86,82%

-

AUTEG 01 APXITEKTOVIKEG eKTIASEVOVTAL KAl dokipadovial amod v apxr] oto oUvoAo 6edo-
pévev TwiBot-20. [Mapouoiddoupe 0Aeg TG PETIPIKEG TTOU EIMTEVXONKAV Yia OAEG TIG ApXITe-
KTOVIKEG.

'‘OAeg 01 ETMAOYEG ETTITUYXAVOUV KAAEG HETPLOEIS KAl TTAPOUC1A0UV TTAEOVEKTIIATA OTOV

EVIOTIIOPO TV bot évavit pebddav axpng. Autd ta arotedéopata vroypappifouv ta onpa-
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1.7 Emidoyog

Apxttektovikn || Accuracy | Fl-score | Precision | Recall | Specificity | MCC
1n 0.852 0.865 0.851 0.88 0.818 0.702
21 0.855 0.869 0.853 0.886 0.819 0.709
3n 0.857 0.871 0.849 0.895 0.812 0.712
4n 0.852 0.864 0.856 0.873 0.828 0.702
51 0.852 0.864 0.858 0.872 0.829 0.703

[Tivakag 1.5: Eniboon t@v apxteKIOVIK®OU ano Wy avadljtnon apxteKTovK)S

VIIKA TTAEOVEKTHATA TTIOU IMIPOKUITTOUV A0 TI XPNOTI) TEXVIKWV avadinong apXltEKIOVIKIG
oToV TopEa g aviyxveuong bot. EmrAéov, KaBiepdvouv v aroteAeoPaTIKOTNTA TG XP10NS
TV XAPAKINPIOTIKGOV TRV XPI10T®V KAl TOV OXE0EMV HETASU TV XPNOoTtoVv otnv avixveuon bot.

Metd Ao IPOCEKTIKOTEPT £EETACT] TV ATOTEAEOUAT®OV, 1 BEUTEPT APXITEKTOVIKI] €XEl
Vv vPnldotepn akpiBeta. To méprmro poviedo £xet ermiong to uywnAotepo specificity. Ert-
A0V, OAEG Ol APYXITEKTOVIKEG £XOUV UWPNAEG NETPIKEG akpiBelag, Fl-score kat MCC. 'Omola
APYXUEKTOVIKY] Kl av ermAégoupe Ya propouoe va aviaywviotel dAda poviéda. Zto €§ng Sa
avaepopacte otn SeUTEPT APXITEKTOVIKI] G TO POVIEAO Pag, apou TapEXel TV UPnAotepn

axkpiBela.

mm Architecture #1
[ Architecture #2
BN Architecture #3
N Architecture #4

08 B Architecture #5

0.6

Value

0.4

0.2

0.0 Rt
test accuracy fl-score precision recall specificity mecc
Metric

Ewova 1.10: Zuykpton Tov aoyiteKIiovikov ano mu avaldninon apxiteKIovikig

Y10V MapaKkdAle mmivaka mapouctdadoupe v arnodoorn dAdev pebodwv oto ouvodo 6edo-
pévev TwiBot-20 oe ouykpion pe 1ou §1koU pag. BAémoupe 6t 1o poviédo pag enopeleitat
and mv avadnnorn g PEATIONG APXITEKTOVIKIG TTOU TPAYHATOIIOOANE €K TOV TIPOTEPRDV,
Kabwg srutuyyavel vypniotepn axkpiBeia, Fl-score xat MCC and dAAa adloonpeiota mpon-

youpeva povtéAa.

1.7 Emniloyog

To avukeipevo peA€ng pag nrav n aviyvevon bots oto Twitter. To Twitter eival pa

KOWQVIKI] TTAQTPOPHA ITOU €XEl YVOPIOEL Taxeia avamntudn Kal @g €K ToUToU I Irapoucia
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Movtédo Accuracy | Fl-score MCC
Lee et al. 0.7456 0.7823 0.4879
Yang et al. 0.8191 0.8546 0.6643
Kuduganta et al. 0.8174 0.7517 | 0.6710
Wei et al. 0.7126 0.7533 0.4193
Cresci et al. 0.4793 0.1072 0.0839
Miller et al. 0.4801 0.6266 | -0.1372
Botometer 0.5584 0.4892 0.1558
SATAR 0.8412 0.8642 0.6863
BotRGCN 0.8462 0.8707 0.7021
81k6 pag 0.8568 0.8712 | 0.7116

[Tivaxkag 1.6: Amodoon teov povtéAamv oto ovvoio debousvav TwiBot-20

AUTOPATOTIOUIEVAV AOYAPLAOH®V, YVROTOV @G bots, eival peyaAutepn amod noté. Ztoxeuouv
ot 61adoon PeUTIK®OV TMANPOGOPIOV KAl T XEPAY®OYNON T®V XPNOoIeVv, KatakiAuloviag ta
XPOvVoAoyla Kat ta ox0Aia tev Xpnotwv. Eve ta bots amoktouv v ikavotnta va pipouvial
KaAUtepa v avOp®Iiv) CUPIEPIPOPA, TO £PYO TIG AVIXVEUOIG TOUG YIVETAl OAO KAl IO
duokoAo.

Eotidadoupe otn xpron veupevikev Siktuav ypdpav (GNNs), ta oroia éxouv oxediaotet
yla va xepidoviar edopéva pe dopr| ypadpov. ZUYKEKPIPEVA, £0TIACOUHE OTA OUVEAIKTIKA
diktua ypagpnpatog (GCNs), ta oroia replAapBavouv TEXVIKES yid T PETAd00rn PNVUpATOV
petady v KOpBmy yia t Ay mAnpodopiav ard oAdokAnpo 1o ypado. Eunvedpaote and to
BotRGCN [38], ou kataoKeuddet éva eTEPOYEVEG Ypadna, OIToU 01 XPpHoteg avarnapiotaviat
e KOpBoUg Kat 01 0XE0e1S aKOAoUONong petady toug pe akpég. O1 Xprioteg TePIEX0UV EMTiONG
AN POPOPIES, CUNTEPIAAPBAVOIEVOV TRV TIEPIYPAPHOV TOUG, TV tweets Toug Kat aplOpnukov
KAl KATNYOPIKOV 1810THTOV TOUG.

Ze pa rpoorntdBeia va BeATidooupe tnv arodoor) T0U POVIEAOU, eEeTACAIE TV UAOIIOinon
tou Graph Neural Architecture Search, pia 6iadikacia ou emOTPEPEL TV APXITEKTOVIKY
TOU VEUP®VIKOU H1KTUOU Pe TNV uPnAotepn akpiBeia. Epnveopaote anod 1o DFG-NAS [6], to
0I1010 avadntd )V o AroteAOPATIKY petabeorn rpddenv 81adoong (P) Kat petacXnuatiopoy
(T) mou vAoroouvtat oto GNN. Ernopéveg, Serepvape toug Meploplopous pag otabeprg
apxtektovikyg. Me ) xpron tov Asttoupylov Gate kat skip-connection, anogeuyoupie v
urtiepBoAkr) e§opdAuvon Kat v uroBddpion tou poviédou rou da peiwvav v akpibeia
tou povtedou. H avalfinon akoAoubei évav eEeAIKTKO adyopiOpo, pa pébodo eprveuopévn
og peyddo Babpo and ) @uoikn e§EAN TMOU ermyelpel va evioxuoel £vav mAnOuopo PEow
petardageav.

To poviédo pag xpnoworotei oxeolakd GCNs petd v ektédeon avalfjinong apXteKIo-
VIKIG, Yia va Bpet v mo anotedeopatiky dapopewon P-T. Xpnopornotjoape 10 oUVoAo
debopuévav Twibot-20. KataAngape ot ) KaAUtepr apXITEKTOVIKT) £ival auty pe vrodetypa-
KT akpiBela exnaideuong Kat akpibela Soxkyrg. Exnaibsvoape 1o poviédo kat ermruxape
axkpiBela 85,7%, Eenepvaviag dAda povigda yia avixveuorn Bort.

Ta amnotedéopata mou MPOEKUYPAV arnd autnv v gpyacia unoypappi{ouv ta misove-

Kumpata mg xprnong Neupad Apgnitegtupe Zeapgn kat Pedatiovald I'™'N oto €pyo tou evrortt-
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1.7.1 MeAAOVUKEG IIPOEKTAOELS

opou Bot. Eivatl idlaitepa 1Kavormontikég Kat evOApPUVIIKEG OV KATeUOUVOT) TG MEPATTEP®D

€peuvag.

1.7.1 MecAAOVTIREG NMPOEKTACELG

[Tpotov, eivatl onuaviiko va avayvopiooupe Toug Meploptoplols tov opav pag. H xprion
opwV 10U da priopolioav va Urootnpi§ouv rneploodtepeg YEVIEG OV avaldl|tnorn apXIteKIo-
Vvikng 9a propovoe va eival enw@eAng yia tmyv £peuvd pag, kabwg da propovoe va egetdoet
Babutepeg apyxtektovikeég. 'Etot, iowg éva poviedo pe rieploootepa erineda Sa priopovoe va
aPOUOo1ACeEl aKOA KaAUtepa arnoteAéopatd.

Mia mpetn enMEKTAOT NG TPEX0UOAS epyaciag Sa propouoe va sivat n epappoyr) tou po-
viédou oe aAAa ouvolda 6edopévav. Auto to poviedo Sa propouce mbaveg va mpooapootet
@OTe va XProlponotel meplocotepeg nmAnpodopieg xpnotn. I'a napaderypa, Sa prnopovoa-
pe va Bedtidoouie tnyv eknaidsuon npooHetoviag mAnpopopieg 6Nwg 1 (v wPaAg, OPA TOV
tweet k.Ant. Extog and ta petadedopéva tou xpriotrn, 9a pnopovoapie va rpoobEécoupe re-
PlO00TEPEG OXEOEIS XPNOIOV, OTI®S Pnvupata, retweets k.An. Mia dAAn mepattépe PeA€n
9a propouoe va gival i avayveplon teov bots oe dAAa péoa KOW®VIKAS S1KTU®ONG, ONOG TO
Facebook 1 1o Instagram.

H epappoyn 1ou poviéAou otov Impaypatiko Koopo 9a Prmopouos va onpaivel myv mpo-
OapPoyI) TOU yla v avayvoplon bots oe mpaypatko xpovo. Auto Sa pmopouoes va mpay-
patoronfel Xpnotponowmviag pid pappoyr) ou AapBavetl unioyy ta petadebopéva xprjon
Kata ) dnpoupyia tou Aoyaplacpou yla v avayveplon bots. Auto Sa pmopouoe emiong
va epappootel oe ouviopa Xpovika Tapdabupad’ (npeprola, oplaia) yia va Angbouv ermiong

UTTOW1V 01 OXE0ELS PETASU TRV XPTOTOV.
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Introduction

2.1 The World of Social Media

Founded by Andrew Weinreich in 1997, Six Degrees is considered to be the first social
networking site [34]. Named after the “six degrees of separation” theory, which suggests
that two individuals are connected through a chain of no more than six intermediate
connections, Six Degrees offered users the ability to create profiles, make friends, and
send messages. It reached its peak in the late 1990s, attracting 3.5 million users but
eventually shut down in 2001, unable to generate revenues to sustain its growth. Despite
the unavoidable fall, it is now considered the trailblazer that paved the way for social
media platforms, as we know them today

By definition, social media refers to platforms and applications that enable users to
create, share, and exchange content within virtual communities. Social media content
can be text, photos, videos, GIFs, audio, etc. Somebody can use social media for various
reasons, from communicating with others with similar interests to getting informed about
current worldwide events.

The existence of social media in our day-to-day lives is more prevalent than ever. As of
2023, there are roughly 4.9 billion social media users [35], a percentage that is more than
60% of the world’s population and more than 100 social media platforms. The average
user approximately spends an average of 2 hours and 31 minutes daily on social media.
The most notable platforms are Facebook, Instagram, Twitter, WhatsApp, YouTube, and

TikTok, congregating the vast majority of social media users.

2.2 Twitter

Twitter is a popular social media platform that was launched in 2006 [36] by Jack
Dorsey, Biz Stone, and Evan Williams, and has since grown into a global platform with
330 million active users. Users can post and interact with texts, images, videos, and
links, referred to as “tweets”, making it a great platform for expressing thoughts, sharing
news, and engaging in discussions. At first, tweets were limited to 140 characters, until
November 2017 when they were extended to 280 characters.

Twitter revolves around the concept of “following” other users. A user can follow

accounts they are interested in seeing their tweets in their timeline (“following”) and
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conversely has “followers” that see their tweets. Users can reply and mention other
accounts with the character “@” followed by the account’s name. Twitter also incorporates
the use of “hashtags”, which are keywords or phrases preceded by the “#” character, and
categorizes tweets, making it more comfortable to search specific topics. Users can also
search tweets based on their content using words that are included, with the results
presented in a combination of chronological and relativity order. In addition, Twitter offers
features such as Twitter Moments, which curates collections of tweets around specific
events or topics, and Twitter Spaces, which allows users to host live audio conversations.

Twitter taking advantage of its features has been established as a powerful tool for
real-time news updates, public discourse, and social movements, and continues to evolve

and enhance user experience.

2.3 Fake News and Bots

Fake news is false information, stories, or hoaxes created to misinform or deceive
readers [37]. Fake news can even mislead people by looking like trusted websites using
similar names and web addresses to respected news organizations.

Social media bots are accounts that automate interactions on social media platforms,
often mimicking human behavior. These bots can be programmed to execute various
tasks, such as automatically publishing content, liking, sharing, following, or commenting
on posts. Some can even be programmed to engage in conversations to promote specific
agendas.

Fake news and bots have had significant real-world consequences in several cases.
Throughout the COVID-19 pandemic, misinformation about the virus and the vaccines
spread rapidly on social media. This led to mob panic, confusion, promotion of dangerous
medications, and even resistance to public health measures, jeopardizing public health.
In 2016 fake news stories spread widely during the U.S. presidential election campaign.
False narratives and fabricated stories aimed to influence public opinion to sway voters.
Fake news spread has also resulted in the manipulation of the stock markets and artificial
fluctuations in financial markets. Bots can be used to harass individuals or target specific
groups, engaging in coordinated campaigns and flooding comment sections. This leads to
the creation of a hostile environment for online users. Bots can also generate and spread
spam content, malicious links and malware, compromising the security and privacy of

social media users.

2.4 Purpose of this Thesis

The need to detect bot accounts to shut them down is quite immediate, assessing the
hazards of their uncontrollable presence on social media. This is why many platforms
have implemented algorithms to detect that type of accounts. However, bots can adapt
their functions to simulate genuine users, making their detection a challenging task.
There have been several methods that can perform with high accuracy, leveraging prop-

erties like followers and following count, verification marks, the content of tweets, etc.
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2.5 Thesis Structure

One innovative model for bot detection that we chose to optimize is BotRGCN [38], which
is short for Bot detection with Relational Graph Convolutional Networks. State-of-the-
art models are limited due to their fixed structures. We will overcome this performance
restriction with the Neural Architecture Search technique, aiming to achieve higher ac-
curacies than other models and pave a new way to bot detection. Briefly, the models and

the dataset we used which will be described in detail in the following chapters:

e We utilized the Twibot-20 Dataset [39] for our experiments. This is a comprehen-
sive sample of the Twittersphere and is representative of the present age of Twitter
bots and real users. It consists of four different territories: politics, business, en-
tertainment, and sports. Each user has semantics, property, and neighborhood
information. These qualities make it an optimal dataset to build the GNNs and

study the classification method of the accounts to bots and real users.

e We handle the challenge of the community aspects of Twitter space, by construct-
ing a heterogeneous graph from follower-following relationships and then applying
relational graph convolutional networks. We follow BotRGCN’s preprocessing and
leverage users’ semantical and property information and neighborhood information
to augment its ability to detect disguised bots, outperforming other competitive

models.

e Neural Architecture Search (NAS) for Graph Neural Networks (GNNs) is an innova-
tive approach that can leverage random search, supervised learning or evolutionary
algorithms to discover optimal network architectures. NAS explores a vast space of
possible network configurations, intelligently mutating and recombining architec-
tures to uncover those with superior performance. Evolutionary algorithms incor-
porate principles inspired by natural evolution, where only the fittest architectures

survive and reproduce, leading to efficient and specialized GNN models.

2.5 Thesis Structure

In Chapter 1, an extended summary of the entire thesis is presented entirely in Greek
following the same structure.

In Chapter 2, a brief introduction about the origins of social media was given, and a
description of the issues caused by fake news and bot accounts, as well as the purpose
and structure of the current thesis.

In Chapter 3, we introduce some background information on the theoretical parts
of the thesis. Definitions and explanations about graphs, machine learning algorithms
and models and word embeddings are presented in order to understand vital parts of the
experiment.

In Chapter 4, we present related work done in the field of bot and fake news detection,
as well as studies for Neural Architecture Search in a plethora of use cases.

In Chapter 5, we give some insight of the dataset that we use in the experiments and

perform a validation check to ensure its adequacy.
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In Chapter 6, we present our model. We describe the processing of the data, the use
of Graph Convolutional Networks in bot detection and the process of Neural Architecture
Search.

In Chapter 7, we present the results and compare them to other state-of-the-art meth-
ods we have presented before. Finally, we perform an ablation study, to prove the integrity
of our method.

In Chapter 8, we complete this thesis presenting the final conclusions of our work,

the limitations and suggestions for future research.
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Theoretical Background

In this Chapter, we will introduce some basic principles of graphs, Machine Learning,
and word embeddings that we used during the process of the experiment and for further
understanding. Specifically, section 3.1 presents the basic terms used in graphs and
some fundamental algorithms as well as real-world use cases. Section 3.2 presents
the different branches of Machine Learning. Section 3.3 analyzes the most common
traditional machine learning algorithms. In section 3.4 there is an introduction to some
of the most well-known artificial neural networks for a variety of applications. Their
architecture, capabilities, and limitations are summarized. In Section 3.5, we focus on
Graph Neural Networks, presenting some key concepts, their types, and applications.
Section 3.5 presents some key ideas on Neural Architecture Search (NAS). Section 3.6
discusses evaluation methods for a neural network model and gives an introduction to the
principles of cross validation. At last section 3.7 presents some common word embedding

models, including the one we will make use of RoOBERTa.

3.1 Graph Structure and Algorithms

3.1.1 Graph Structure

A graph is defined as G =V, E where V is the set of vertices and E is the set of edges
(connections between vertices). They are non-linear data structures that are used to
model relationships or connections between elements. There are many types of graphs,
with the most common variants being directed or undirected and weighted or unweighted.
An undirected graph is a type of graph where the edges have no specific direction, meaning
the connections between nodes are bidirectional. A directed graph is a type of graph where
all the edges have a specific direction. A weighted graph is a type of graph where each
edge has an associated numerical value called a weight. These weights can represent
metrics as the distance between nodes, cost, time, etc. An unweighted graph is a type of
graph where all edges have the same default weight or simply no weight associated with
them and only the connection between vertices is significant.

Some basic terminologies used in graph theory:

e The total number of edges occurring to a vertex in a graph is called degree.
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The in-degree of a node in a directed graph is the number of incoming edges directed

towards that node.

e A path is a set of alternating vertices and edges, where the vertices are connected

by the edges.
e If the path starts and finishes on the same vertex, it is known as a cycle.
e A spanning subgraph that is also a tree is known as a spanning tree.
e A connected component is the unconnected graph’s most connected subgraph.

e A bridge is an edge that if removed would seperate the graph to two unconnected

graphs.

e A forest is a graph without a cycle.

O——
(— e
8\@ /@

Ewodva 3.1: Example of directed and weighted graph. Source [1]

3.1.2 Representations for graphs

The two most common ways to represent a graph are with an adjacency matrix and

an adjacency list.

An adjacency matrix is a 2D array where the rows and columns represent the nodes
in a graph, and the value of each cell indicates whether there is an edge between the
corresponding nodes. In weighted graphs the value in the cells is usually the weight of
each edge, while in unweighted graphs it is a boolean value (O or 1). If there is an edge,
the value is typically 1. If there is no edge, the value is usually 0. In a directed graph the
value of a cell is 1 if there is an edge from source to destination. An example of a graph

representation with an adjacency matrix is shown below:
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Adjacency Matrix

sl wlnv|fr|o
o|lo|lo|lo|o| o
olo|lo|lo|r|r
olo|lo|lr|r|m
olo|r|o|o| w
o|lr|lo|lr|ol s

Ewova 3.2: Graph to adjacency matrix. Source [7]

An adjacency list is a collection of lists that represent the connections between nodes
in a graph. Each node is associated with a list of its neighboring nodes (adjacent nodes).
It is a very eflicient way to represent sparse graphs. In directed graphs, each node is
considered the source and associated with a list of its destinations. An example of a

graph representation with an adjacency list is shown below:

L1 [ {3 F—[a]/]
(3 [7]

InERE

Lo17]

Ewova 3.3: Graph to adjacency list. Source [8]

Adjacency lists are more memory efficient, due to their dynamic size, but are slower for
edge detection, so they are not suitable for dense graphs. On the other hand, adjacency
matrices have a fixed size and are less memory efficient, but are more effective in edge

detection.

3.1.3 Graph Algorithms

There are plenty significant algorithms implemented in graphs in order to solve real

world use cases. Some of the most well known algorithms are presented below.

BFS (Breadth-First Search): It is a graph traversal algorithm that explores all the
vertices in a graph level by level, starting from a given source vertex. It uses a queue
structure to keep track of the visited vertices to ensure that nodes closer to the source
are visited before those farther away. BFS can be utilized in unweighted graphs to find

the shortest path, as it explores level by level.

DFS (Breadth-First Search): It is a graph traversal algorithm that explores as far as
possible along each branch before backtracking. It uses a stack structure to keep track
of the visited vertices and their order so it can explore as deep as possible on each branch
before backtracking to explore other paths. DFS can be used for cycle detection, as it

detects back edges (edges connecting a node to an ancestor).
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Depth
First
Search

Breadth
First
Search

Ewova 3.4: BFS and DFS algorithms traversal. Source [9]

Dijkstra’s Algorithm: It is a greedy algorithm that finds the shortest path from a
single source vertex to all other vertices in a weighted graph with non-negative edge
weights. It initializes the distances from the source to all the other nodes to infinity
and then updates them using the minimum distance of all the unvisited notes at each

iteration. It terminates when the paths cease to update.

Bellman-Ford Algorithm: It is a dynamic programming algorithm that is used to find
the shortest path from a single source vertex to all other vertices in a weighted graph.
Bellman-Ford can handle graphs with negative edge weights, unlike Dijkstra’s algorithm.
The algorithm iterates through all edges for a number of iterations (equal to the number
of vertices minus one) and updates the distances to nodes considering all the possible

paths. Bellman-Ford can also be used to detect negative cycles in a weighted graph.

Kruskal’s Algorithm: It is a greedy algorithm used to find the minimum spanning
tree (MST) in a weighted, undirected graph, meaning a tree with all the vertices of the
graph and the minimum total weight. The algorithm works by repeatedly selecting the
edges with the least weight that don’t form a circle. When all the vertices are included the

MST is formed. The time complexity of the algorithm is O(ElogV).

Prim’s Algorithm: It is another greedy algorithm that finds the minimum spanning
tree (MST) in a weighted, undirected graph. It starts with an random node and keeps
growing the MST by selecting the shortest edge that connects the existing MST to a new
vertex, ensuring that the tree remains connected. The time complexity of the algorithm is
also O(ElogV).

Boruvka’s Algorithm: It is a greedy algorithm that similarly finds the MST in a
weighted, undirected graph. It works by iteratively growing the MST in multiple phases,
where in each phase it selects the cheapest edge for each connected component of the
graph. The algorithm continues until the entire graph becomes a single connected com-

ponent. The time complexity of the algorithm is also O(ElogV).
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Ewova 3.5: Minimum Spanning Tree. Source [10]

Floyd-Warshall Algorithm: It is a dynamic programming algorithm used to find the
shortest paths between all pairs of vertices in a weighted graph. The algorithm maintains
a matrix where each entry represents the shortest distance between two vertices. It
efficiently computes the shortest distances, considering all possible intermediate vertices
in each iteration. It works for both directed and undirected graphs. It can also handle
graphs with negative weights, but can not be used in graphs with negative cycles.

Ford-Fulkerson algorithm: The Ford-Fulkerson algorithm is a widely used algorithm
to solve the maximum flow problem in a flow network. The maximum flow problem
involves determining the maximum amount of flow that can be sent from a source vertex
to a sink vertex, including the capacity constraints on the edges. The algorithm repeatedly
searches for augmenting paths from the source to the sink and increases the flow along
these paths until no other augmenting paths can be found. In practice the Edmonds-Karp
algorithm, a specific variant of Ford-Fulkerson using BFS for finding augmenting paths,

is often preferred due to its better time complexity.

{0,
oh

Ewova 3.6: Example of graph with flow and capacity. Source [11]

Tarjan’s algorithm: It is a graph traversal and analysis algorithm used to find strongly
connected components in a directed graph. A strongly connected component is a sub-
graph where there is a path between any pair of nodes. The algorithm uses a depth-first
search (DFS) approach to explore the graph and a stack to keep track of the visited nodes.
As it traverses the graph, it adds nodes to the stack and assigns DFS order numbers and
low-link values. When a complete strongly connected component is found, its nodes are

popped from the stack.
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3.1.4 Graph Applications

Graphs are a flexible and extremely useful data structure for many real-world appli-
cations. Some of them will be presented below, to fathom the importance of their study
and the capabilities in our problem.

Graph algorithms are widely used in social networks like Facebook, Twitter, and
LinkedIn. They are used to suggest connections (named as mutual friends) to the users,
identify communities, and recommend content that would interest a user.

Many recommendation systems, like those used by Netflix and Amazon, use graph
algorithms to analyze user interactions and preferences. Based on similar user behavior
and item resemblances, they can suggest movies and products.

PageRank is a graph-based algorithm developed by Google, used to rank web pages
based on their importance. The importance of a webpage is determined by the number
and quality of the links pointing to it. It constitutes the foundation of Google’s search
engine.

Graph algorithms are used in mapping and GPS navigation applications to find the
shortest or fastest routes between locations. They can also adapt to various constraints
like traffic and road conditions. They are also very useful in determining the most efficient
routes in transportation and logistics networks and help in optimizing the flow of goods,
data, information, etc.

Graph algorithms can also be employed to analyze biological data, such as protein-
protein interaction networks, molecular structures, DNA sequences, etc. They help visual-
ize biological data and further understand complex biological structures and interactions.

Graph-based image segmentation algorithms use a graph representation of pixels to
group them into regions based on similarities. These segments can be used in applications
such as image analysis and object detection.

Game developers use graph algorithms to model game worlds, and design Al decision-

making systems. Simple graph algorithms can also be used for path-finding in mazes.

3.2 Branches of Machine Learning

Machine Learning is a field of Artificial intelligence that enables systems to learn from
data so they can make predictions only based on it. In order to do this, they observe the
data to uncover patterns. Machine Learning is imminent in many real-world applications,
such as the Internet of Things (IoT), fraud detection and cybersecurity, Natural Language
Processing (NLP), Recommendation Systems, healthcare, etc. They mainly fall into four
main categories: supervised learning, unsupervised learning, semi-supervised learning,

and reinforcement learning.

3.2.1 Supervised Learning

Supervised learning involves using labeled data to train algorithms, so we can ac-

curately classify unlabeled data, according only to their features. Supervised machine
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learning is divided into two types of problems: classification and regression. In classi-
fication problems, the output is categorical or discrete. It involves assigning the input
data to predefined classes. Some implementations include: identifying spam emails and
classifying images that contain an object. In regression problems, the output is continu-
ous or numerical. It involves predicting a value or quantity based on input data. Cases
of regression problems include: predicting house prices based on a variety of factors and

estimating the sales volume based on advertising expenditure.

3.2.2 Unsupervised Learning

Unsupervised learning uses unlabeled data to make predictions. The main goal of
unsupervised learning algorithms is to find groups of features that follow a similar pattern
of similarities and differences. Applications of unsupervised learning include customer

segmentation to recommend products, outlier detection in data, forecasting models, etc.

3.2.3 Semi-Supervised Learning

Semi-supervised learning combines labeled and unlabeled data during training. This
method first uses unsupervised learning algorithms to group similar data and then gives
labels to the previously unlabeled data. This approach is useful when obtaining labeled
data can be either challenging or simpler. Semi-supervised learning can be used in the

fields of medical image analysis, sentiment analysis in text, speech recognition, etc.

3.2.4 Reinforcement Learning

Reinforcement learning is a machine learning technique where an agent relies on
environmental feedback to take action. This technique does not make any use of labeled
data but uses a trial-and-error approach with a feedback-based process. The model learns
from experience to improve performance over time. Implementations of reinforcement

learning include intelligent robotics, personalized plans, gamification, etc.

REINFORCEMENT LEARNING MCDEL

State (St)
- Agent
Action
Reward (Rt) (A1)
Ri+1)
“ Sit) Environment <

Ewova 3.7: Reinforcement Learning Model. Source [12]
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3.3 Machine Learning Algorithms

3.3.1 Linear Regression

Linear regression is a supervised learning algorithm in machine learning, used to
predict the value of a variable based on the value of another variable. The variable
you want to predict is called the dependent variable and the one you are using for the
prediction is called the independent variable. The goal is to find the optimal line, that
minimizes the difference between the predicted values and the actual values of the output
variable. This line is determined by estimating the coefficients (slope and intercept) that
define the relationship between the input features and the output variable. In simple
linear regression, there is only one input feature, and the relationship between the feature
and the output variable is represented by a straight line. The equation for simple linear

regression can be written as:

y=m+x+Db (3.1

where y is the predicted value, x is the input feature, m is the slope or coefficient that
represents the relationship between x and y and b is the y-intercept. In multiple linear
regression, there are multiple input features, and the relationship between the features
and the output variable is represented by a hyperplane. The process of finding the line
involves estimating the coefficients that minimize a cost function, for example the sum of

squared errors.
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Ewova 3.8: Linear Regression. Source [13]

3.3.2 Logistic Regression

Logistic regression is used in classification problems, with the simplest form being
binary sorting, where the output y takes two distinct values (usually O or 1). Then, the

hypothesis h(x) can be expressed by the following sigmoid function:

1
l+e™™*

h(x) = (3.2)
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The hypothesis output h(x) equals the probability that a sample of the data set belongs
to a particular class. It can also be extended to handle multi-class classification problems

and does not produce a linear output

3.3.3 Support Vector Machine

Support vector machines are a part of supervised learning algorithms and are based
on the graphical representation of the various elements and their separation into classes.
SVMs are constructed with the idea of finding an optimal hyperplane that separates
classes, by maximizing the margin between the data points. This hyperplane is known
as the maximum-margin hyperplane. The closest data of the two classes in terms of the
hyperplane are called support vectors. For example, while the two classes are separated

by all the lines, none of them maximizes the margin between them.
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Ewova 3.9: Example of linear separation of classes. Source [14]

We can consider the training set of n points x;, y; where i=1,..,n and y; is a binary
value (-1,1) for the class of x;. We want to find a hyperplane which can map the points
into higher dimensional space and the two different classes of points can be divided with

the maximum margin. In linear cases, the hyperplane can be written as:

X;W+b=0 (3.3)

We want to find two parallel hyperplanes that can also separate the data and we want

their distance to be as large as possible. We describe them as:

X;W+b=+1 (3.4)
X;W+b=-1 (3.5)
We can prove that the distance between these two hyperplanes is @ The figure below

shows the support vectors, the separation margin, the hyperplanes satisfying equations
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(3.4) & (3.5) and the maximum margin hyperplane.

A
X2

Ewova 3.10: Support vector machines. Source [15]

In cases where the training data are not separated linearly, there are some trans-
formations, called kernels, where the non-separable data are separated in more than 2

dimensions.

3.3.4 Decision Trees

Decision trees are a popular and intuitive supervised machine learning algorithm used
for both classification and regression tasks. They represent a flowchart-like structure
where each internal node represents a feature, each branch represents a decision based
on that feature, and each leaf node represents the outcome or prediction. In a decision
tree, the goal is to split the data into homogeneous subsets based on the values of the
input features, ultimately creating decision rules for predicting the target variable. The
more important a feature is in predicting the class, the higher it is in the tree. Common
algorithms for constructing decision trees include ID3 (Iterative Dichotomiser 3), C4.5,

CART (Classification and Regression Trees), and Random Forests.

3.3.5 Random Forests

Random Forests consist of a large number of Decision Trees and belong to the family
of ensemble methods, a technique that combines machine learning algorithms for better
results. In classification problems, each Decision Tree, individually, predicts the class to
which the specific training data belongs, and in the end the class, which was predicted
the most, is the class of our final prediction. In regression problems, the output is the
average of the predictions of all the individual trees. It is required that the predictions and
thus the errors of the individual Decision Trees have a low correlation with each other.

This can be achieved by using the bagging (Bootstrap Aggregating) technique.
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Ewova 3.11: Random Forests. Source [16]

3.3.6 Naive Bayes

Naive Bayes classifier is a popular supervised machine learning algorithm used for
classification tasks. It is based on the probabilistic principle of Bayes’ theorem and
assumes that the features are conditionally independent given the class label. If X =
(x1,x2,..,xn) is a vector of features. The probability that the vector X belongs to one of
the classes C;, where i=1,...,k is equal to:

p(XICy) p(Cy)

p(Cilx) = T (3.6)

According to the Naive Bayes’ theorem, the Naive Bayes classifier calculates for the
feature vector X the probabilities of belonging to each of the classes and finally classifies

it into that class for which the probability is greater.

A very common variant of this classifier is Gaussian Naive Bayes. In this case, we
assume that the data follow a normal distribution. For each feature x; with mean y, and

variance o?

,,» and class y, the probability density function is assumed to be Gaussian, that

is:

Xi — 2
P(xi|y) = exp (—#) (3.7)
2mo 20y

<N

3.3.7 k-Nearest Neighbors

The k-nearest neighbors (KNN) algorithm is a supervised machine learning algorithm
used for both classification and regression tasks. A point in the feature space is classified
into the class that is the most common among its k nearest neighbors, the criterion being

a distance function. Most common functions are the Euclidean distance:

d(x,y) =
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and the Manhattan distance:

d(M, P) = [M — P| + |M, — P,| (3.9)

The choice of the distance metric and the value of k can significantly impact the per-
formance of the KNN algorithm. Larger values of k provide a smoother decision boundary
but may introduce more bias, while smaller values of k can lead to a more flexible deci-
sion boundary but may be more sensitive to noise in the data. In binary classification
problems, it is preferable to choose an odd value for k, in order to avoid a tie. For example
for k=3 in the following image the point (indicated by the star) would be classified in class

B, while for k=6 it would be classified in class A.

Ewova 3.12: kNN algorithm with k=3 and k=6. Source [17]

KNN is often used in applications such as recommender systems, image recognition,
anomaly detection etc. It is particularly useful when there is a large amount of training

data and the decision boundary is non-linear or irregular.

3.3.8 k-Means

The k-means algorithm is an unsupervised machine learning algorithm used for clus-
tering, which is the process of grouping similar instances together based on their feature
similarity. It is a simple and widely used algorithm for partitioning a dataset into k distinct

clusters that works as follows:

1. Choose the number of clusters k, called cluster centroids.
2. Assign each instance to the nearest centroid based on a distance metric

3. Recalculate the centroid of each cluster by taking the mean of all instances assigned

to that cluster.

4. Alternate between assigning instances to the nearest centroid and updating the
centroids until the centroids no longer change significantly or a maximum number

of iterations is reached.

The random centroid initialization is very important, as the algorithm could have
different solutions based on the initial conditions. To reduce errors due to wrong initial-
izations, the algorithm is often run multiple times with different initializations, and the

best solution in terms of the minimized WCSS (Within-Cluster Sum of Square) is selected.
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K-Means also requires specifying the number of clusters in advance, which can be
challenging if the optimal number is not known. It also assumes that the clusters are
more spherical and have similar variance, making it less effective for datasets with irreg-
ularly shaped or overlapping clusters. However, it is a computationally efficient algorithm
and has applications in various domains, including image segmentation, customer seg-

mentation, anomaly detection, and document clustering.

Ideal Clustering
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Ewova 3.13: Ideal example of k-Means algorithm with k=3. Source [18]

3.4 Artificial Neural Networks

3.4.1 Single Layer Perceptron

The single-layer perceptron (SLP) is the simplest form of an artificial neural network
and a fundamental concept in the field of neural network research. It is a type of feedfor-
ward neural network with no hidden layers, consisting of just one layer of neurons that

directly connect the input to the output.

+1

Ewova 3.14: Single Layer Perceptron. Source [19]

Each individual feature of the input x is multiplied by a numerical weight from w.
The weight indicates how important each feature is. After the inputs are multiplied by

their respective weights, they are summed together with a numerical bias value b and
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the output is passed through an activation function ¢. This is the final output and the

equation is:

y = o(wx + b) (3.10)

where,

y: the output of the perceptron
e 0: the activation function

e w: represents the weight vector, containing the weights associated with each input

feature

x: the input vector, representing the input features

b: the bias term, which allows shifting the decision boundary

3.4.2 Activation Functions

Activation functions are an essential component of neural networks used to introduce
non-linearity into the network. They operate on the output of a neuron or a layer and
determine whether the neuron should be activated or not. Some of the most common

activation functions are:

e Sigmoid: The sigmoid activation function compresses the input into the range (O,

1). )
Xx) = 3.11
o) = ——— (3.11)
The graph is given in the following figure:
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Ewova 3.15: Sigmoid Activation Function. Source [20]

e Tanh (Hyperbolic Tangent): Tanh is similar to the sigmoid function but com-

presses the input into the range (-1, 1).

ex—e_x_ 1-—e2

tanh(x) = =
) eX4+e X 14e2x

(3.12)
The graph is given in the following figure:
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Y #

Ewova 3.16: Tanh Activation Function. Source [21]

e Softmax: The softmax activation function is commonly used in the output layer for
multiclass classification tasks. It transforms the raw output values into a probabil-
ity distribution, where each output represents the probability of the input belonging

to a particular class. Softmax is defined as:

Zi

e
O(Zi):K—ezj fOTi: 1,2,...,K [313)

j=1

where z; is the raw output of the i-th class, and N is the total number of classes.

The graph is given in the following figure:

Ewova 3.17: Softmax Activation Function. Source [22]

o ReLU (Rectified Linear Unit): It is one of the most popular activation functions
used in deep learning. It returns the input value if it is positive and zero otherwise.

Mathematically, ReLU is defined as:
Relu(z) = max(0, z) (3.14)

The graph is given in the following figure:

—4 -2 0 2 4 X

Ewova 3.18: ReLU Activation Function. Source [23]

Awtlopatkn Epyaoia m



Kegpdldato 3. Theoretical Background

e Leaky ReLU (LReLU): It is a variation of the ReLU activation function that addresses
the "dying ReLU" problem. In the standard ReLU, when the input is negative, the
output becomes zero, and the neuron effectively becomes inactive. The Leaky ReLU
introduces a small slope for negative inputs, which allows a small, non-zero output

for negative values. The mathematical definition of Leaky ReLU is:
LReLU(z) = max(az, z) (3.15)

The graph is given in the following figure:
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Ewodva 3.19: Leaky ReLU Activation Function

3.4.3 Multilayer Perceptron (MLP)

The Multi-Layer Perceptron is an extension of single-layer perceptron, with at least
one hidden layer between the input layer and the output layer. What distinguishes the
hidden layers from the output layer, is that the output of these neurons serve as an input
for the next layers (hidden or output layer). Each layer consists of numerous neurons
connected to the neurons of the next layer through weights, similar to the single-layer
perceptron. The number of neurons in the output layer is equal to the number of labels
we wish to classify the data. The common structure of an MLP with two hidden layers is

shown in the figure below:

Input layer Hidden layers Output layer

Ewova 3.20: Multilayer Perceptron (MLP). Source [24]
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While MLPs have been instrumental in advancing the field of neural networks and
remain an essential building block in deep learning, more complex architectures like
convolutional neural networks (CNNs) for images, recurrent neural networks (RNNs) for
sequential data, and transformers for natural language processing have become more

predominant for many specific tasks.

3.4.4 Hopfield neural networks

Hopfield neural networks are a type of recurrent artificial neural network proposed
by John Hopfield [60]. Hopfield networks consist of a single layer of neurons with each
neuron connecting to every other neuron in the network. These connections are symmet-
ric and can be represented in a connection matrix. At each iteration of the training, the
network is presented with an input pattern or initial state. Each neuron receives an input
based on its connection weights and the states of other neurons. The input is summed,
and the neuron’s activation function is applied to determine the new state of the neuron.
Additionally at each iteration, the network tries to minimize its energy function. The net-
work updates the neuron states iteratively until the energy reaches a minimum, which
corresponds to a stable state and the convergence of the model. One of the key features
of Hopfield networks is their ability to function as an associative memory, meaning they
can recall and converge to stored patters when presented with a partial or noisy version

of a learned pattern.

Ewova 3.21: Hopfield Neural Network. Source [25]

While Hopfield networks were a significant development in the history of neural net-
works, they have been largely overshadowed by more advanced architectures in deep
learning as CNNs and RNNs. However, besides their historical importance, they remain

an interesting area of study in neural network theory.

3.4.5 Self-Organizing Maps (SOM)

Self-Organizing Maps (SOMs), also known as Kohonen maps after their inventor Teuvo
Kohonen [61], are a type of artificial neural network for unsupervised learning. The main
idea behind Self-Organizing Maps is to map high-dimensional input data onto a lower-
dimensional grid or lattice, typically in 2D or 3D space. Each node or neuron in the grid
represents a weight vector with the same dimensionality as the input data. At first, the

weight vectors are initialized to random values. The training consists of two main parts:
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competition and cooperation. In the phase of the competition, for each input data point,
the Euclidean distance with the weight vectors is computed and the closest is named the
Best Matching Unit (BMU). In the phase of the cooperation the weights of the BMU are
adjusted, so the neighbor moves closer to the input data point, subsequently organizing
the neurons based on similarity in smaller neighborhoods. The training process ends
with convergence after all the data points are iterated and the neurons have settled to

their final positions.

Sizexr

input vector

Ewova 3.22: Self Organizing Map (SOM). Source [26]

SOMs are powerful tools for data visualization and clustering, as they can capture the
topological relationships in the input, considering that nearby neurons in the grid tend to
represent similar data points. They have been successfully applied in various domains,
including pattern recognition, feature extraction, image processing, outliar detection and

data clustering.

3.4.6 Recurrent Neural Networks (RNN)

Recurrent Neural Networks are designed to handle sequential data, where each ele-
ment depends on the previous ones. Applications include natural language processing
and visual information resulting from movement. In RNNs, the output of the previous
step is fed as input to the current one contrary to traditional neural networks, where all
pairs of inputs and outputs are independent of each other. However, in cases where we
are asked to predict the next word in a sentence, the previous words are paramount, so
the model must have some sort of memory. RNNs manage to solve this problem with
the help of their internal hidden state, which holds information about the sequence. The
folded image shows the recursive operation of the RNN. The RNN receives the elements of
the sequence one after the other and updates its internal or hidden state. Another way
of representing RNNs is by "unfolding" the network in time, as shown in the right part of
the image. In this case, xp is initially taken as input, the output hg is produced, which in
turn is given as input along with x; in the next step. Similarly for the next timesteps and

that is how the neural network remembers the content of the sequence.
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Ewkova 3.23: Recurrent Neural Network. Source [27]
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The general form of the equations of a recurrent network is as follows: The general

form of the equations of a recurrent network is as follows:

hy = qD(Wxt + Uhy_1 + b) (3.16)

where,

h;: the hidden representation at timestep t

x;: the element vector of the sequence at timestep t
e phi: a non-linear activation function

e W: the array of parameters, which affect the input x;

U: the table of parameters, which affect the output of the network in the previous

timestep

b: a polarization vector

In theory, recurrent neural networks (RNNs) are a great choice for information in long
sequences. However, in practice, they are limited to shorter lengths due to the vanishing
or exploding gradient problem. Long Short Term Memory networks (LSTM) are presented

as a solution to that.

3.4.7 Long Short-Term Memory (LSTM) Networks

LSTM, which stands for Long Short-Term Memory, is a type of recurrent neural net-
work (RNN) architecture designed to handle the vanishing gradient problem, a common is-
sue in traditional RNNs. LSTMs were introduced by Sepp Hochreiter and Jurgen Schmid-
huber in 1997 [62] and have since become a fundamental building block in various deep
learning applications, especially in natural language processing, speech recognition, and
time series analysis. What sets them apart from simple recurrent neural networks is the
architecture of their hidden layer, commonly referred to as an LSTM cell. An LSTM cell
has three ports: the forget port, the input port, and the output port. The LSTM cell is

depicted in the image below:
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Ewova 3.24: Long Short Term Memory Cell. Source [28]

The first step is to decide what information to erase from memory. This decision
is made in the forget gate. It takes as input the current input x; and the output of
the previous timestep h;_; and produces a number between O and 1 (sigmoid activation
function). This output is multiplied by each number of the C;_; vector of the previous

state, thus setting which information will be "forgotten".

ﬂ = O(‘/fot + Ufht_l + bf) (3.17)

The next step is to decide what new information to store in memory. First, through
the input gate it is decided which values will be updated. The input gate accepts as input
the current input x; and the output of the previous timestep h;_;. Then, the current input
Xx; and the output of the previous timestep h;_; are passed through a single-layer neural
network with hyperbolic tangent activation function, which produces the new candidate

cell state values C;, to be added to memory.
i = O(Wixt + Uhy_1 + bl) (3.18)

C; = tanh(Wox; + U.hy—; + be) (3.19)

In this step, we update the old memory c¢;—; to the new memory c¢;. Specifically, we
multiply the forget gate with the values of the old memory. We also add the term it i; © ¢;.

These are the new candidate values, scaled by a decided update value to the current state.

Ct :ﬁ OCc_ 1+ O0¢ (3.20)

The output is based on a filtered version of the memory state. First, the current input
Xx; and the output of the previous timestep h;_; are passed through a single-level neural
network with a sigmoid activation function to decide which parts of the memory state
should participate in the final output. Then, the memory state, is compressed via the
tanh function and multiplied by the output gate, thus deciding which parts of that state
should participate in the final output.

Ot = o(Woxt + Uyhy_q + bo) (3.21)

h; = o; © tanhc; (3.22)
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3.4.8 Bidirectional LSTMs

Bidirectional LSTMs (BiLSTMs) are an extension of the traditional LSTM architecture
that enables the model to capture information from both past and future time steps in
a sequential input sequence, in order to improve the model’s performance in sequential
classification problems. Unlike standard LSTMs that process the input sequence in a
unidirectional manner, BiLSTMs process the sequence in both forward and backward
directions simultaneously. For example, in order to predict a missing word in a sentence
- sequence, we need to look at the words both before and after the word we are looking

for, so that we understand the content of the sentence.

In the figure below, one LSTM processes the sequence from left to right, while the
second LSTM processes it from right to left. At each time t, a hidden right-handed LSTM
with hidden state T{ takes as input the previous hidden state K_l} and the input x; at the
current time t. Additionally, a hidden left-handed LSTM with hidden state R takes as

—
input x; at the current time t and also the future hidden state hy,;

Qutput layer
Backward layer

Forward layer

Input layer

Ewova 3.25: Bidirectional LSTM. Source [29]

While BiLSTMs are effective in many cases, they also come with a higher computational

cost compared to unidirectional LSTMs since they process the input sequence twice.

3.4.9 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a type of artificial neural network and specifically a type
of recurrent neural network (RNN). They were proposed [63] as a more computationally
efficient alternative to traditional LSTM networks. The key idea behind GRUs is to have
fewer gating mechanisms than LSTMs. GRUs are also designed to handle sequential
data, using their gates. The primary gates are the reset gate, which determines the part
of information that should be forgotten, and the update gate, which controls how much
of the previous hidden state should be passed to the current time step. The architecture
of GRUs allows them to capture long-range dependencies in sequential data effectively
while reducing the vanishing gradient problem, which is present in standard RNNs. They
are an effective tool for handling sequential data, such as machine translation, natural

language processing, speech recognition, and time series analysis.
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3.4.10 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) [64], while not limited, are a good neural net-
work for visual data processing, such as images and videos. CNNs are widely used in
computer vision tasks and have shown remarkable success in image recognition, object

detection, and other related tasks. The main components of CNNs are:

The fundamental building block of a CNN is the convolutional layer. It applies a set of
learnable filters to the input image, which convolves over an image to produce the feature

maps. Each filter is suitable for detecting specific patterns, such as edges or textures.

After the convolution, an activation function is applied element-wise to introduce non-
linearity into the network. This allows CNNs to learn complex representations from the

input data.

Pooling layers are used to reduce the spatial dimensions of the feature maps and
mitigate the computational complexity. A commonly used pooling operation is max-
pooling, where the maximum value of a region with defined dimensions is kept, discarding
the rest.

After several convolutional and pooling layers, the feature maps are flattened and
passed through one or more fully connected layers similar to the ones in traditional neural
networks. These layers help make the final decisions, for example in a classification

problem.

fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A K—M
Sl)i(ds;))::;?:; Max-Pooling |(/il)l'(d5) : iy | g o Mt
(2x2) P g (2x2) /& dropout)

INPUT nl channels nl channels n2 channels n2 channels ||| E
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n3 units

Ewova 3.26: Convolutional Neural Networlk. Source [30]

CNNs can be computationally expensive, memory and time consuming and can fall
into overfitting. However they have been at the forefront of recent breakthroughs in
computer vision, such as image classification tasks like recognizing objects in images,

semantic segmentation, object detection, and more.
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3.5 Graph Neural Networks (GNNs)

3.5.1 Types of Tasks on Graphs

The first type of Machine Learning tasks on graph structures are graph-level tasks.
In these tasks, the goal is to predict a property for the entire graph. Examples that fall
into this category are graph classification, where a label for a graph has to be predicted,
graph regression, where the goal is to predict continuous values for a graph, and graph
generation, where a graph with defined properties has to be constructed. An instance of
a graph-level task is Social Network Community Detection. Given a graph with the nodes
representing users and the edges representing the relationships between users (friend-
ships, followers, etc.). The task is to categorize the users into classes, such as "family",
"friends", and "colleagues", by similar patterns in the users’ behaviors and interactions.
This task is applicable in social network analysis since the segregation in different commu-
nities can help targeted advertising, content recommendation, and understanding social
dynamics.

The next type is node-level tasks that are concerned with predicting the identity
of each node within the graph. These tasks include node classification, where labels
are predicted for nodes, node regression, where continuous values are predicted for the
nodes, and node clustering, where nodes are assigned to clusters or communities. One
real-world example of a node-level task is document classification in a citation network.
Each node in this graph represents a research paper with attributes like the abstract,

keywords, authors, etc., while the edges represent citations. The task is to classify each

"non "o

research paper into different categories such as "biology," "computer science," "physics,"
etc. Node classification in a citation network has practical applications in academia and
research and it can help in understanding the distribution of topics and finding similar
papers.

The last type is edge-level tasks that involve making decisions on the edges represent-
ing the relationships between the nodes. Such tasks include link prediction, where it is
predicted whether an edge between two nodes exists, edge classification, where labels are
assigned to edges and edge regression, where continuous values for edges are predicted.
The prediction of these problems can thus be far more informative than simple link pre-
dictions. For example, it is less illuminating that two users are mutual friends than that
two users message each other regularly. One real-world example of an edge-level task is
friendship prediction in social networks. The nodes of the graph could represent users
and the edges could represent relationships, like messages, friendships, posting shared
media, etc. The task is to predict whether two users that are not yet connected should

be.

3.5.2 Node Embeddings

Node embeddings are low-dimensional vector representations that capture the struc-
tural and relational information of nodes in a graph. As shown in the figure below the goal

is to find an embedding space, where the geometric representations z, and z, correspond
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to nodes the nodes u and v of the graph respectively.
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Ewova 3.27: Node embeddings. Source [2]

Embeddings are used in a variety of machine-learning tasks. For instance in Natual
Language Processing word embeddings are used, which are representations of words as
low-dimensional vectors, so that words with similar meanings are closer in the embedding
space. In the same way, nodes of a graph that are close or belong to the same neighbor-
hood, are expected to have similar node embeddings. This information can be used in
various tasks, such as Link Prediction, Node Classification, and Community Detection.
Node embeddings are also very useful for dimensionality reduction since working on raw
node attributes can be computationally expensive. There are many ways to generate node
embeddings, each with its own approach. Some common methods are matrix factorization
or random walk-based methods and even GNNs like GCN and GraphSAGE.

3.5.3 Permutation Invariance and Equivariance

Permutation invariance and equivariance are two key concepts in Graph Neural Net-
works. Permutation invariance refers to the property that a GNN should produce con-
sistent results regardless of the order in which the nodes of the graph are processed.
Graph data can be depicted using an adjacency matrix, where the node ordering is not
fixed. It is crucial that the model’s behavior remains invariant to these changes. Permu-
tation equivariance relates to how a GNN processes data transformations. If the input
undergoes transformations, such as rotations, size changes, etc., the output should dis-
play similar transformations. A formal definition of these concepts is provided by Meltzer
et al. [40].

Permutation Invariance: Let P, be the set of all valid permutation matrices of order
n, then a function f is invariant to row permutation iff f(X) = f(P;X),¥X € R™™ P, € P,
and to column permutation iff f(X) = f (XP,? ),YX € R™" P, € P,.

Permutation Equivarince: Let P, be the set of all valid permutation matrices of order
n, then a function f is invariant to row permutation iff P,.f(X) = f(P;X),¥X € R™™ P, € P,
and to column permutation iff f (X)P,I = f (XP?; ),¥X e R™" P, € P,.

3.5.4 The Message Passing Protocol

As stated by Gilmer et al. [41], the message passing framework presents the key

idea that the embedding of each node should be generated based on the embeddings
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of its neighborhood. We will present a more high-level approach to the mathematical
formulation of this protocol. For an undirected graph G we represent the node features

as x, and edge features as ey,.
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Ewova 3.28: Message Passing Framework. Source [3]

As shown in the figure above each node’s embedding, denoted by N, for vertice A,
is impacted by the embeddings of its neighborhood. This message passing process is
repeated for a fixed number of iterations or until convergence. Each node v has a hidden
state vector h, and at time step t the hidden state h! is updated based on the messages
from the neighborhood m‘"!. The messages are aggregated by an AGGREGATE function,
and then the states are updated by an UPDATE function, producing the new hidden state

hf,“. The equations of this process can be summarized below:

My, = AGGREGATE™® ({h{}",Yu € N(v)}) (3.23)
h! = UPDATE®({h{®, Yu € N(v)}) (3.24)

After running the K steps of the message-passing phase, we can use the hidden state
hX of each node v as the node’s embedding. The readout phase is the final step in the
message-passing process, where information from all nodes is aggregated to obtain a
global graph-level representation. In the readout phase, there is a feature y computed
using a readout function READOUT:

T = READOUT(h v € G) (3.25)

An important part of the message-passing framework is that all the nodes must have
some initial hidden state h® which can be a value such as the degree or the central-
ity of each node. There are various GNN types with different usages of the functions
AGGREGATE, UPDATE, and READOUT with learned differentiable functions.

3.5.5 Types of Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural networks designed to handle data
represented in graphs. We have already presented the structure of graphs and their ap-
plications in real-world problems, like social networks, biological data, recommendation
systems, etc. Data elements are represented as nodes, while the relationships between

these elements are represented as edges. GNNs can learn expressive representations by
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leveraging both the node-level information and the global graph structure, through the

mechanisms of message passing that we have described. Each node aggregates informa-

tion from its neighbors and updates its own representation. Different types of GNNs use

different variations for the functions used in the message passing framework. Below we

will present some of the well known types of GNNs
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Ewova 3.29: Graph Neural Network. Source [4]

e GCNs: Graph Convolutional Networks (GCNs) are a type of GNNs introduced by

Thomas Kipf and Max Welling [42]. They are highly inspired by CNNs adapted
to processing data in a graph structure, instead of images. GCNs operate on the
principle of message passing. Each node aggregates information from its neighbors
by taking a weighted sum of their embeddings and then passes that information
through an activation function to update its embedding. GCNs typically consist of
multiple graph convolutional layers. Each layer computes the node embeddings by
using information from progressively more distant nodes in the graph. In the paper,
GCNs are used for semi-supervised learning, where leveraging a small amount of
labeled data they can make predictions on the entire graph. There are two types of
GCNs: spectral, which transform the graph into a spectral domain for convolution
operations, and spatial, which directly aggregate information from neighbors in the

original spatial domain.

GraphSAGE: GraphSAGE (SAmple and aggreGatE) is a type of GNN proposed by
Hamilton et al. [43] as an alternative to traditional inherently transductive meth-
ods for generating node embeddings. State-of-the-art methods often use matrix-
factorization-based objectives and therefore are limited to a fixed graph. Graph-
SAGE on the other hand uses an inductive approach, so it can be extended to
unseen nodes, and subsequently to unseen graphs. The key idea is that Graph-
SAGE does not train a distinct embedding vector for each node, but trains a set
of aggregator functions to learn to aggregate feature information from a node’s lo-
cal neighborhood. The forward pass of the algorithm follows the message-passing

process of the general Message Passing Framework in K iterations using in every
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iteration k the equations:

MY, = AGGREGATE" ({h{{ ™", Yu € N(v)}) (3.26)
R = o(WXCONCAT (R, m{ ) (3.27)

The AGGREGATE function is ideally a symmetric and trainable function that main-
tains high representational capacity. The paper examines three functions, notably a
mean aggregator, an LSTM aggregator, and a max pooling operator. The node’s cur-
rent representation hl(,k_l) with the aggregated neighborhood vector hl(vk(;)l) are con-
catenated and the resulting concatenated vector is fed through a fully connected
layer with non-linear activation function o. The paper also presents a relation
of GraphSAGE to the Weisfeiler-Lehman Isomorphism Test, also known as “naive
vertex refinement". GraphSAGE is a continuous approximation to the WL test, and
hence the theoretical context for its algorithm design is provided so that each node’s

local neighborhood is efficaciously represented.

e GAT: GAT (Graph Attention Network) is a type of GNN proposed by Velickovi¢ et al.
[44] as an extension to graph convolutional neural networks. Contrary to Graph-
SAGE, GAT extends the AGGREGATE method combining it with attention mecha-
nisms that give an attention score to the different neighbors, consequently giving
them different importance. A single layer of the network takes as input a set of
node features h = {Iﬂ h, ..., ﬁfv} . h; € Rr and produces a new set of node features
h = {ﬁi hz h?v} ﬁ{ € Rp. At first, a linear transformation, parametrized by a
weight matrix W, is applied to every node and then self-attention is performed on
the nodes. Then on each node, a shared attention mechanism a maps feature pairs
into attention coefficients e;. The attention coefficients compute the importance
of the j features that belong to node i. Mathematically, attention coefficients are

computed with the following equation:

ej = a(Wh;, Why) (3.28)

Practically, these attention coefficients are computed only for the pairs of nodes
that are neighbors in the graph. An extension to that is the usage of multi-head
attention, where each head independently computes attention scores and the results
are concatenated or averaged, to produce feature vectors. An illustration of this

process is shown in the figure below:
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concat/avg /.
> h)

Ewova 3.30: Iustration of multi-head attention. Source [5]

e GIN: GIN (Graph Isomorphism Network) is a GNN type proposed by Xu et al. [45],
heavily inspired by the concept of graph isomorphism, meaning that two graphs
have a similar structure after rearranging the nodes without alterations in the con-
nections. The paper focuses on the Weisfeiler-Lehman test on graph isomorphism.
The importance of the WL test is its injective aggregation update that can map differ-
ent neighborhoods to different feature vectors. Extended to GNNs, the embeddings
on a node’s neighborhood can be seen as a multiset and the aggregation function
performs on that multiset. The resulting architecture of the GNN in the paper is
as effective as the WL test in distinguishing separate graph neighbors. GNNs with
injective aggregation and readout functions are proved to be as expressive as the
WL test. The Universal Approximation Theorem [46] states that a feedforward neu-
ral network with a single hidden layer, with a sufficient number of neurons, given
appropriate activation functions can approximate any continuous function to arbi-
trary accuracy within a bounded domain. This idea leads to the usage of multi-layer
perceptrons (MLPs) for the AGGREGATION and READ OUT functions. In the paper,
it is suggested that with e being a trainable parameter or a fixed scalar, GIN updates

node representations using the equation:

hf,k) — MLP(k)((l + e(k))h{f—l + Z h_lf_l) (3.29)

ueN(v)

After comparing to other notable models with worse results, GIN finally proved to

be an exceptional GNN using the neighborhood aggregation function.

3.6 Neural Architecture Search

All the deep learning models presented in the previous sections, such as convolutional,
recurrent, and graph neural networks, rely heavily on their architecture, to provide good
results. Architecture engineering can be extremely time-consuming if done manually and
therefore can be fairly limited. This is the reason Neural Architecture Search (NAS) has
attracted numerous studies since this technique can construct architectures that achieve

state-of-the-art accuracies with little human intervention. In this section, we will present
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the three basic components of Neural Architecture Search: search space, search strategy,

and performance evaluation.

3.6.1 Search Space

The search space represents the set of all possible neural network architectures. An
architecture is defined by the operation associated with every node or layer and their
in-between connections. The size of the search space determines the computational cost
of the search process. Therefore, there is a trade-off between the number of architectures

we want to test and the cost of the algorithm.

e Entire-structured search space: The space of monolithically structured neural
networks [47] is the most obvious choice for a search space. These models are con-
structed by stacking a predetermined number of nodes, where each node represents
a layer with a function. This could also support structures of nodes connected with
random skip connections, which is a more complex and promising approach. The
entire-structured search space may be easy to implement but has some limitations.
This choice can be quite computationally expensive and lacks portability, meaning

that a model built on a small dataset may not be suitable for a larger dataset.

e Cell-based search space: This neural architecture search, instead of searching for
the whole architecture, searches for motifs or cells [48]. This cell is stacked multiple
times to form a larger architecture. The input and output of the cell could have the
same dimensions or the output could have reduced dimensions. This method has
a reduced search space and hence is computationally less expensive. Moreover,
this approach solves the portability issue of searching for the whole architecture.

Simply stacking more or less cells can produce architectures for other tasks.

e Hierarchical search space: Most of the cell-based methods follow a two-level hi-
erarchy. An inner level, which selects the operation and connection for each node,
and an outer level, which handles changes in spatial decisions. However, these ap-
proaches ignore the network level. Liu et al. [49] defined a general formulation for a
network-level structure with their model HierNAS. This is defined as the hierarchi-
cal search space, in which a higher-level block is created by iteratively integrating
lower-level units. This method can describe more types of unit structures with more

flexible topologies.

e Morphism-based search space: This search space attempts to design new neural
networks based on an existing network using morphism transformations between
the layers [50]. For instance, morphism transformations of depth or width replace
the original model with a corresponding deeper or wider model. The child networks
from network morphism inherit all the knowledge of their parent networks. Then
these child networks are trained for a short amount of time. This search space
handles arbitrary non-linear activation functions and can perform depth, width,

and kernel size transformations in a single operation. This option of search space
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can remarkably speed up the training process and achieve great results based on

the introductory paper.

3.6.2 Optimization methods

Mavy dipgpepevt orttipdatiov adyopttnpg nag Beev voed v opdep to @vd e Peot apgnt-

TEGTUPE vV e oeapgn ortage. Tne oelegriov o¢ tne ormtidatiov Hetnod 1§ niynAy weAuevged

(PO TnE osapgn ortage avd nag Py epdegt ov e poded’'s goprtutatioval goot avd peouAtg.

Qe 1A yie a Bpled pele® ov e Poot weAA-Kvorv orttipi{atiov petnods.

¢ Reinforcement Learning: One notable optimization technique for neural archi-

tecture search is reinforcement learning [47]. The controller proposes child model
architectures from the search space for evaluation. The controller is usually a RNN,
that outputs a sequence of tokens specifying the network architecture. We train and
evaluate the sampled architecture and this performance is the reward the controller
receives. The reward signal is non-differentiable so we use a policy gradient method

to update the controller and we want to maximize the expected reward:

J(8¢) = Ep(a;.+:8.)[R] (3.30)

where a;.r are the actions of the controller, T is the total number of tokens, 8. are
the parameters of the controller, and R is the reward. Using the REINFORCE rule

as the policy gradient method, we obtain the gradient of the expected reward as:

T
VaJ@e) = ) Ep(ayrio Vo, logP(alai 1.1 : 8c)R] (3.31)
t=1

Sample architecture A
with probability p

v

Trains a child network
The controller (RNN) with architecture
Ato get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller

Ewova 3.31: Overview of reinforcement learning in NAS. Source [31]

e Evolutionary algorithms: Evolutionary methods evolve a population of architec-

tures aiming to find an optimal network. During every step of the process, some
architectures are sampled from the population to generate the child architectures
through mutations. Mutations alter the network structure, like adding or removing
a layer or changing the operations of the layers. The child architectures are evalu-
ated and added to the population. There are many parent selection methods, such
as tournament selection or the multi-objective Pareto method. In the end, the worst

or oldest model is removed.
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Parent selection

»  Parents

Initialization . Mutation
——— | Population
A
A 4
Termination - Offspring
Evaluation

Ewova 3.32: Overview of an evolutionary algorithm

e Gradient-based methods: The previous search strategies work in a discrete search
space. A pioneering algorithm, namely DARTS [51], was based on Gradient Descent
Optimization that searched for neural architectures in a continuous search space

using a softmax function to relax the discrete search space, as described below:

K eal{ci
BiJ(x) = Z ﬁok(x) (3.32)
k=1 2= €4

where o(x) is the operation performed on input x, ag. is the weight assigned to
operation o* between a pair of nodes (i,j) and K is the number of predefined can-
didate actions. After the relaxation of the search space, the task of searching for
architectures turns into optimizing the neural architecture a and the weights & of
that neural architecture alternately. Specifically, a and 8 are optimized using the

validation and the training set, respectively.

e Bayesian optimization: Neural architecture search could be approached as a black
box optimization problem, with an objective function f. Bayesian optimization is a
widely adopted technique in this context due to its ability to create a surrogate model
for modeling the objective function (denoted as f). It iteratively selects architectures
to evaluate based on the objective function, updating the surrogate model as it
goes. Once several evaluations of f have been performed, Bayesian optimization
employs Bayes’ rule to derive the subsequent f. In the next step, it leverages an
acquisition function a(x), to determine the next sample point x; = argmax,a(x)
that optimizes the acquisition function. This process is significantly less time-
consuming and could improve efficiency. However, an important constraint is that
conventional Bayesian optimization methods are most effective in low-dimensional
continuous spaces, making direct application to discrete architecture search spaces

challenging.

3.6.3 Performance Evaluation

Every search strategy in Neural Architecture Search outputs the architecture that
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maximizes a desired performance metric, such as accuracy on the validation set or ac-
curacy on the test set. Each architecture has to be trained first to be evaluated. Since
most search spaces contain a large amount of different architectures, this process can be
quite time-consuming and have an unmanageable computational cost. To make neural
architecture search more efficient there have been efforts to reduce the training proce-
dure of the architectures. For instance, some approaches train the architectures for fewer
epochs or on a subset of the data. Another approach is to inherit parent features into the
architectures, instead of training the models from scratch. These techniques made NAS
more feasible to implement in various tasks, as the computational cost was significantly

reduced without compromising the performance of the process.

3.7 Evaluation of Classification Models

It is important to evaluate the efficiency of the classification model, a procedure that

can differ for every use case. We will present the most common evaluation metrics.

3.7.1 Confusion matrix

A confusion matrix is a matrix that encapsulates the performance of a classification
model on a set of test data. The rows of the table represent the cases in the predicted
class, while the columns represent the cases in the actual class. For binary classification,
the matrix will be of a 2x2 table. For multi-class classification to N classes, the matrix
shape will be NxN.

Actual
Yes No
Yes | True Positive False Positive
No | False Negative True Negative

Predicted

[Tivakag 3.1: Confusion Matrix

We define the confusion matrix variables as follows:

e True Positive (TP): The cases in which we have predicted positively and the predic-

tion is confirmed.

e True Negative (TN): The cases in which we have predicted negatively and the pre-

diction is confirmed.

e False Positive (FP): These are cases in which we have predicted positively and the

prediction is not confirmed.

e False Negative (FN): These are cases in which we have predicted negatively and the

prediction is not confirmed.
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Based on these variables we define the following metrics:

e Accuracy: It is computed by dividing the number of correct predictions by the total

number of predictions.

TP + TN (3.33)
accuracy = .
Y TP + TN + FP + FN

In cases of imbalance of the class samples in the dataset, the classifier will tend to
predict the class with the most data, resulting in very high accuracy. That, however,
does not reflect a satisfactory accuracy of the model. This is the reason that we also

need the following metrics.

e Precision: It is defined as the percentage of correct positive predictions of the
classifier.
TP
precision = —— (3.34)
TP + FP
e Recall: It is defined as the percentage of positive samples correctly predicted by the
classifier.
TP
recall = ——— (3.35)
TP + FN
e Fl-score: It combines precision and recall, to provide a balanced measure of the

model’s performance. Specifically, it is the harmonic mean of precision and recall.

precision * recall
k

F1 — score =2 (3.36)

precision + recall

e Specificity: It is defined as the percentage of negative samples correctly predicted
by the classifier.
specificity = L (3.37)
TN + FP
e Cross-Entropy Loss: It measures the dissimilarity between the predicted proba-
bilities and the true class labels. In binary classification, the cross-entropy loss is

calculated as follows:
BinaryCross — EntropyLoss = —(ylog(p) + (1 — y) log(1 — p)) (3.38)

where p is the predicted probability, and y is the indicator (O or 1 in binary classifi-

cation)

e Matthews Correlation Coefficient (MCC): It is defined as the estimate of the cor-

relation between the class predicted and the class the users actually belong to.

_ TP « TN — FP « FN
V(TP + FN)(TP + FP)(TN + FP)(TN + FN)

MCC (3.39)
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e True Positive Rate: It is defined as the percentage of positive samples that are

correctly identified by the model.

P

TPR = —
TP + FN

(3.40)
e False Positive Rate: It is defined as the percentage of negative samples that are

incorrectly classified as positive by the model.

FP

FPR= ——
FP + TN

(3.41)
e ROC Curve and AUC: The ROC curve plots the true positive rate against the false
positive rate at various threshold settings. The AUC provides a single value that
represents the overall performance of the model. Higher AUC values indicate better

discrimination between classes.

Perfect ROC curve
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Eik’ona 3.33: ROC Curve and AUC. Source [32]

3.7.2 Cross Validation

To evaluate the model we can split the dataset into training and test set. However, this
simplified method can be insufficient when we have a small amount of data and may lead
to overfitting of the model. This issue can be resolved by using k-fold cross-validation, a

method that is analyzed below:

1. Divide the dataset into k partitions.

2. Use the k-1 segments as the training set and evaluate the model using the k-th

segment. Compute and save the desired evaluation metric.

m Awtflopatkn Epyaoia



3.8 Word Embeddings

3.

4.

Repeat steps 1 & 2, until every k-partition has been used as a test set.

Find the average of all the k computed evaluation metrics. This is the final evalua-

tion metric of the model.

Validation Training
Fold Fold
1st I_l I l I |—> Performance1_
% 2nd | I—l | | |——-> Performance ,
\!é 3rd I | r] I |_> Performance 3 | performance
Kel 5
g 4th I | ] I—] I—b Performance 4 = % Z Parfermaes
- 5th | | | | I_I — Performance 5

Ewkova 3.34: 5-fold cross-validation. Source [33]

While there is no rule for the choice of k the most used values are 5 or 10. Larger

values for k mean that the difference in size between the training set and the resampling

subsets gets smaller and thus the bias becomes smaller.

There are also commonly used variations of k-fold cross-validation:

3.8

Stratified: The data in the folds may be split using a criterion that could ensure a
proportional representation of the different classes in each fold. This is particularly
useful for imbalanced datasets to prevent underepresantations of classes in the
folds.

Leave-One-Out Cross-Validation (LOOCYV): k in this case is set to the number of
instances. In each iteration, a single element is used as the validation set. An
extreme variation that ensures the least biased estimate of a model’s performance,

but can be computationally expensive.

Repeated: K-fold cross-validation is repeated multiple times with a variation of data
partition. The final result is the average of the metrics from the entire process. Tthis
variation intends to eliminate the dependency of the result from a specific random

partition.

Nested: In this variation k-fold cross-validation is also performed within each fold
of the initial partition of cross-validation. This variation is used often to perform

hyperparameter tuning during the model evaluation.

Word Embeddings

Word embeddings are a technique falling into Natural Language Processing (NLP) that

represents words numerically based on their meaning and in-between relationships. They
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map words to multi-dimensional vectors in a way that similar words are nearby points
in the same vector space. Some well-known word embeddings that we will analyze for
further understanding are Word2Vec, GloVe, BERT, and RoBERTa, which we will use in

our experiment.

3.8.1 Word2Vec

There are two main use cases of Word2Vec [65]. It can be used to predict the context
of a word based on its neighboring words despite their sequence (Continuous bag-of-
words) or to predict neighboring words given a target word (Continuous skip-gram). The
architecture consists of an input and output layer, separated by a projection layer that
learns the word embeddings. The training part of the algorithm aims to make the model
better at predicting words in each case, a process that can be extremely time-consuming
with a high number of activation functions and words. Word2Vec speeds this procedure
with Negative Sampling, which selects a random subset of words to omit from the possible
predictions. After training, each word is represented as a vector and similar words map
to geometrically close vectors. Also Word2Vec can capture semantic relationaships in

words, like word analogies, finally making it a widely used tool in NLP.

3.8.2 GloVe

GloVe, short for "Global Vectors for Word Representation” [66] is a method for learn-
ing word embeddings that captures both syntactic and semantic relationships between
words based on their co-occurrence statistics. Co-occurrence statistics contain valuable
information about word relationships since words that appear frequently together are
likely to share semantic context. GloVe uses an objective function based on these prob-
abilities to capture both contextual and semantic information. It can also perform word
analogies. GloVe has an advantage over traditional pointwise mutual information (PMI)
methods, as it directly captures the underlying linear relationships between words and
performs with less computational complexity. GloVe presents great efficiency and scala-
bility as presented and is considered a powerful tool in NLP and suitable for large-scale

text corpora.

3.8.3 BERT

The BERT model [67], which stands for Bidirectional Encoder Representations from
Transformers, is a state-of-the-art deep learning architecture for various Natural Lan-
guage Processing tasks. Unlike previous unidirectional models, BERT introduces bidirec-
tional context by training a transformer model to predict masked words (Masked Language
Model) in a sentence. BERT is pre-trained on a large corpus of text data using two unsu-
pervised tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP). MLM
involves masking some words of a sentence and training the model to predict the masked
words from their context. NSP involves predicting if two sentences appear consecutively
in the original text. BERT utilizes a transformer architecture with self-attention mecha-

nisms and feedforward neural networks. There are two variants of BERT with different
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performances: BERTpgasg with 110 million parameters and BERT]agge With 340 million
parameters. The pre-trained BERT models presented advantages over previous work in
NLP tasks over multiple benchmark tests, proving the effectiveness of bidirectional con-

text.

3.8.4 RoBERTa

RoBERTa (A Robustly Optimized BERT Pretraining Approach) [52] is an advanced word
embedding model built upon its predecessor BERT. After optimizations in the pretraining
process, it can enhance the model’s performance on a wide range of NLP tasks. A major
advantage of RoBERTa is that is trained on a significantly larger corpus of text data
compared to BERT and consequently is trained on a more diverse linguistic landscape.
It also ignores the Next Sentence Prediction (NSP) task used in BERT and focuses on
the Masked Language Model (MLM) task. The training process of RoBERTa contains
detailed hyperparameter tuning for parameters such as batch size, learning rates, etc.
RoBERTa outperforms other previous models in several NLP tasks, more particularly
in General Language Understanding Evaluation (GLUE), ReAding Comprehension from
Examinations (RACE), and Stanford Question Answering Dataset (SQuAD). The model’s
effectiveness as well as versatility is undeniable and that is a fundamental reason why

our model utilizes it for the word embeddings.
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Related Work

In this Chapter, we present a complete review of the methods used to detect bot
accounts, as well as studies for Neural Architecture Search in different use cases. We will
evaluate the metrics and compare the results achieved with different datasets. That will

guide us in choosing the most accurate method and then endeavor to optimize it.

Lee et al. [53] employed several machine-learning techniques for bot detection. Specif-
ically, they utilized a supervised learning approach and trained a classifier to distinguish
between genuine users and bots based on features extracted from the Twitter data. The
features used in their analysis included account-based features (e.g., the number of fol-
lowers, friends, tweets), temporal features (e.g., time of account creation, tweet frequency),
and content-based features (e.g., usage of URLs, hashtags). To train the classifier, they
used labeled data, where accounts were manually classified as genuine or bot accounts.
The researchers then applied various machine learning algorithms, including Support
Vector Machines (SVM), Naive Bayes, and decision trees, to build and evaluate the bot de-
tection model. The dataset consisted of content polluters extracted by the social honeypot
and legitimate users sampled from Twitter, information collected over a period of seven
months. Combining different elements, the researchers reported an overall accuracy of
95% for the bot detection system they developed.

Yang et al. [54] used a combination of unsupervised and supervised learning methods
for bot detection. Specifically, the authors utilized features derived from user metadata,
temporal patterns, network structure, sentiment analysis, and linguistic cues. These
features were fed into a machine learning pipeline, that reduced dimensionality and in-
cluded classification algorithms. They evaluated the model’s ability to distinguish bots
from real users, by calculating the area under the receiver operating characteristic curve
(AUC-ROC). They also reported precision, recall, and F1-score, for more insight into the
model’s performance. The authors leveraged the Botometer API, a tool developed by the
same research group, to obtain the dataset. They also proved the model’s scalability by
including other datasets in the training process and got different AUC scores (up to 99%)
in different cases.

Kuduganta et al. [68] attempted to categorize Twitter users into humans and bots.
Initially, they used user- and tweet-based features. They used classifiers, such as Lo-
gistic Regression, SGD Classifier, Random Forest, AdaBoost, etc. They then proposed a

new deep learning approach, using only the user’s tweets and some metadata features
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implemented. This architecture includes a tokenizer, GloVE embedding layer, LSTM, and
Dense layers. The authors used a dataset with a minimal amount of features, that con-
sisted of the Cresci dataset and input from collaborators. To deal with the problem of
dataset unbalance they used synthetic data generation with SMOTOMEK and SMOTENN.
They achieved an AUC/ROC score of 96%.

Cai et al. [69] proposed their model (BeDM) that involved deep neural networks in
bot detection. They employed convolutional neural networks (CNNs) and LSTM, using
only the tweet semantics, such as the frequency and the type of publications. They used
a public dataset collected with the honeypot method [70]. After experimenting with the
parameters of the neural network, they achieved a precision of 88%.

Wei et al. [71] used only users’ tweets with no context of prior knowledge or assump-
tion about user profiles, friendship networks, or historical behaviour. They proposed a
recurrent neural network (RNN) model that used word embeddings to encode tweets, a
three-layer Bidirectional LSTM (BiLSTM), and a softmax layer at the binary output. The
authors used real-world datasets for their experiments and using the Cresci Dataset [56]
they achieved an accuracy of 97,6%.

Dickerson et al. [72] suggested the innovation of sentiment analysis with their model
SentiBot. The information obtained and leveraged for each user is divided into four cate-
gories: (a) tweet syntax, (b) tweet semantics (c) user behaviour, and (d) user neighborhood.
The authors used six high-level classifiers, including support vector machines (SVM) for
classification, Gaussian naive Bayes, AdaBoost, gradient boosting, random forests, and
extremely randomized trees. Preprocessing of the data is done through dimensionality
reduction techniques (PCA). The authors used a large dataset relating to the 2014 Indian
election, collected from July 15, 2013 to March 24, and achieved an accuracy of at least
90%.

Miller et al. [73] approached bot detection as an anomaly detection problem, whereas
previous methods identified it as a classification task. They extracted 107 features from
a user’s tweet and property information and adapted two stream clustering algorithms,
StreamKM++ and DenStream, to facilitate spam detection. Bot users are conceived as
abnormal outliers. Combining the two algorithms the system was able to identify 100%
of the spammers, while incorrectly detecting 2.2% of the normal users as spammers.

Cresci et al. [55] introduced the Social Fingerprinting technique for bot detection,
a Digital DNA method for modeling the behaviours of social network users. Each user
is represented as a sequence of characters depending on the type and content of the
tweets they publish, simulating a DNA sequence. The authors try to find similarities
in the sequences that will help split the two categories of users, humans and bots. The
similarity measure is defined as the length of the longest Longest Common Substring (LCS)
between two sequences. Afterwards, the LCS problem is extended to M users. For a set
of real users, the length of LCS was found to be particularly small. This led the authors
to the conclusion that longer sequences than the LCS of the whole dataset were more
possibly bot accounts. Based on this idea, the authors developed two techniques, one
based on supervised learning and another on unsupervised learning to find similarities

in the behaviour of accounts. They used the aforementioned Cresci dataset. [56]

m Awtflopatkn Epyaoia



Botometer [57] is a web-based program developed by Indiana University. It leverages
more than 1,000 features to classify Twitter accounts as bots and humans. These fea-
tures include friends, social network structure, user meta-data, temporal activity, content
features, and sentiment analysis. Botometer distinguishes the accounts by an overall bot
score (0-5), along with several other scores. The higher that score is, the more likely this
account belongs to a bot.

Yang et al. [74] presented a study of people’s interaction with Al countermeasures
and used Botometer as a baseline. They designed scores to evaluate how bot detection
methods met general opinion’s expectations and underlined the importance of the dataset
in supervised methods. As a future reference, they referred to ways bot detection meth-
ods could improve by taking into consideration features such as language and device
metadata, timezone differences, and content deletion patterns

Feng et al. [75] suggested SATAR, a self-supervised representation learning framework
for Twitter users, and applied it to bot detection. In particular, SATAR leverages the user’s
semantics, property, and neighborhood information. Meanwhile, it adapts by pre-training
on a massive number of self-supervised users and parameter fine-tuning on detailed
bot detection scenarios. The authors proposed two alternative models: SATARpc and
SATARpr. The experiments were performed in three datasets: Twi-Bot20 [39], Cresci-17
[56], and PAN-19, to prove the model’s adaptability. The model outperformed previous
models of bot detection, with SATARyr achieving higher accuracy (reaching an accuracy
of 98% at the Cresci-17 dataset).

Alothali et al. [76] presented their framework Bot-MGAT for the task of bot detec-
tion, which stands for bot multi-view graph attention network. Considering the ever-
changing bot behaviour, the authors noted the inability of other techniques to adapt to
other datasets due to a lack of recently updated labeled data. They proposed a frame-
work based on the multi-view graph attention mechanism using transfer learning (TL).
The framework also benefited from semi-supervised learning, using both labeled and un-
labeled data. The authors used the Twi-Bot20 [39] due to its graph structure, extracting
18 features for the training, and two other datasets for the testing. They discovered that
Bot-MGAT with TL outperformed other methods with an accuracy score of 97.8%.

Feng et al. [77] introduced the aspect of heterogeneity of relations and influence
among users in the Twittersphere for the task of bot detection. They proposed a bot
detection framework that leverages a heterogeneous information network with users as
nodes and diversified relations as edges. Then they aggregated messages across users
and operated heterogeneity-aware Twitter bot detection. The experiments they conducted
using the Twi-Bot20 dataset [39] provided the data set structure that the model required.
The authors discovered that a graph-based heterogeneity-aware method for bot detection
could outperform other methods and achieved an accuracy of 86%.

Feng et al. [38] proposed their model for bot detection BotRGCN, which is short for
Bot detection with Relational Graph Convolutional Networks. BotRGCN builds a hetero-
geneous graph out of the following relationships and uses information, such as the user’s
description, tweets, numerical and categorical property set, and neighborhood informa-
tion. The experiments were conducted on the Twi-Bot20 dataset, but BotRGCN could
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exploit other types of relations if supported by the dataset. It achieved an accuracy of
86.42% and outperformed other models, underlining the avails of using RGCNs in bot
detection.

Now that we have established the benefits of using graph-based approaches to bot
detection, we will study the implementation of NAS to achieve possible improvements.

Zhou et al. [78] proposed the automated graph neural networks (Auto-GNN) frame-
work. The authors noticed the inability of previous NAS algorithms to be applied to the
GNN search problem, due to differences in the search space and instability when param-
eters change. Auto-GNN looks for the best GNN architecture possible in a predetermined
search space. The search space is divided into the following six classes of actions: hidden
dimension, attention function, attention head, aggregate function, combine function, and
activation function. For efficiency reasons, the authors designed a conservative explorer
to maintain the best neural architecture found during the search. The authors also imple-
mented constrained parameter sharing, adapted to the heterogeneous GNN architecture.
Two approaches were proposed for the experiments: transductive, where the unlabeled
data used for validation and testing are accessible during training, and inductive, where
the graph structure and node features on the validation and testing sets are unknown
during the training process. Three datasets: Cora, Citeseer, and Pubmed [79] were used
for transductive learning, and PPI [80] was used for inductive learning. The results of
the studies demonstrate that Auto-GNN manages to discover neural architectures with
performances that surpass handcrafted models and models derived from other search
techniques.

Nunes et al. [58] presented two NAS methods for optimizing GNNs: one based on
reinforcement learning and one based on evolutionary algorithms. The authors experi-
mented with these methods to evaluate if they provide better accuracy on the validation
set than a random search in all possible parameters of the GNN. Evolutionary algorithms
are methods based on the theory of evolution. Specifically, many different parameters
in the layers produce a set of GNNs, which will compete to achieve the best accuracy in
a validation set, to be the schema that will produce a new offspring. In reinforcement
learning, an LSTM is used as a controller to generate architectures, while the training can
adapt along with the accuracies achieved at the validation set. Random search includes
an iteration through all the possible actions in a layer. The authors defined two cases of
search spaces: Macro, where the architectures generated have the same structure, and
Micro, where the architectures are not rigidly structured but combine several convolu-
tional schemas. The authors used seven different datasets for 100 iterations within each
search space. They concluded that EA and RL found very similar architectures to the
ones found by a random search, which is a significantly simple technique. However, they
noted that EA produced mostly architectures that could fit in the GPU, while the other
methods assembled oversized architectures in up to 80% of the cases.

Gao et al. [81] proposed a Graph Neural Architecture Search method (GraphNAS)
to implement an automatic search of the best graph neural architecture based on rein-
forcement learning. The search space covers sampling functions, aggregation functions,

and gated functions. GraphNas also uses more efficient parameter-sharing techniques
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than other contiguous models for CNNs and RNNs. The datasets used for transductive
learning were Cora, Citeseer, Pubmed, and PPI for inductive learning. The authors also
used random search as a baseline for their experiment, noting that it provides satisfac-
tory results despite the implied simplicity of this method. After training 1000 different
architectures, the five best ones were used for the testing. Eventually, architectures by
GraphNas surpassed human-invented ones or those produced by other models or random
searches.

Zhao et al. [82] proposed the SNAG framework (Simplified Neural Architecture Search
for Graph neural networks). The researchers found a deficiency in the designed search
space of models like GraphNAS and Auto-GNN. Contrary to the message-passing frame-
works of other models, the suggested framework had two key components: Node aggre-
gators, which focused on neighborhood features, and Layer aggregators, which focused
on the range of the neighborhood used. The search space algorithm was a variant of
Reinforcement Learning that adopted the weight-sharing mechanism (SNAGWS). Trans-
ductive learning (on the Cora, CiteSeer, and PubMed datasets) and inductive learning
(on the PPI dataset) were used for the experiments, which proved the efficiency of the
framework compared to the aforementioned models.

Jiang et al. [83] adapted the method of neural architecture search to the design
and development of GNNs for molecular property prediction. The authors designed neu-
ral networks for message-passing (MPNNs) between nodes. The purpose was to predict
molecular properties of small molecules. To find an optimal MPNN from the user-defined
search space, they used regularized evolution (RE) from the DeepHyper package, which
applies mutation to existing population models to uncover the final best model. The au-
thors experimented on three quantum mechanics and three physical chemistry datasets
from the MoleculeNet benchmark. They concluded that RE surpassed results achieved
by Random Search of the number of high-performance architectures on validation and
test loss.

Zhao et al. [84] proposed their framework, which tries to Search to Aggregate NEigh-
borhood (SANE). The search space has similarities with the search space from the SNAG
framework, with Node and Layer aggregators. However, the authors presented a novel
differentiable search algorithm, while other models used reinforcement learning. The
experiments on the same datasets as the SNAG experiments proved that the effective-
ness and efficiency of SANE are superior to those of existing GNN models and other NAS
techniques.

Cai et al. [85] proposed Graph Neural Architecture Search (GNAS) with a novel-
designed search space and a gradient-based search approach. To build the search space
the authors designed a three-level Graph Neural Architecture Paradigm (GAP) with a tree-
topology computation procedure and two types of fine-grained atomic operations (feature
filtering and neighbor aggregation) from message-passing. In this way, they combined the
features of each node and the neighborhood semantics. The experiments were conducted
on more complex datasets, such as chemistry-based ZINC, for mathematical modeling
PATTERN and CLUSTER and computer vision datasets CIFAR10 and MNIST. The main

focus of the survey was the optimization of the search space and the message-passing
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depth, and GNAS was able to surpass all human-made GNNs.

Li et al. [86] proposed a novel dynamic one-shot search space for multi-branch neural
architectures of GNNs. The dynamic nature of the search space offers a larger capac-
ity. The architectures with lower importance weights are removed periodically from the
population, while the operation candidates are unique to every edge of the computational
graph, so the model isn’t inferior to searches in a larger predefined search space. The au-
thors performed both supervised and unsupervised techniques for the training part. They
used the Cora, Citeseer, and Pubmed datasets and compared the architectures found by
their model to manually crafted ones, Micro NAS ones, and Macro NAS ones. They discov-
ered that their model outperformed other methods, while also providing a very important
up to 10 times speedup.

Peng et al. [87] implemented a NAS approach to human action recognition from
skeleton movements. The search space was enlarged with diverse spatial-temporal graph
modules while constructing higher-order connections between nodes using Chebyshev
polynomial approximation. The search algorithm used is an evolutionary adaptation with
a high sampling efficiency, denoted CEIM (Cross-Entropy method with ImportanceMix-
ing). The experiments were conducted on two large datasets NTU RGB+D and Kenitics-
Skeleton, that contained human actions. The authors concluded that the architectures
produced by their model outperformed state-of-the-art approaches.

Zhang et al. [6] proposed DFG-NAS, an innovative method that allows for automatic
search of very deep and adaptable GNN architectures. DFG-NAS emphasizes the search
on macro-architectures, and specifically on how atomic propagation (P) and transfor-
mation (T) operations are implemented into the GNN. P is closely related to the graph
structure, while T focuses on the non-linear transformation in the neural network. The
authors noted that most GNAS methods applied transformation after propagation (P-T) in
each layer, which is a fixed limiting approach. In addition, they also adopted gating and
skip-connection mechanisms to support deeper GNN pipelines. They used an evolution-
ary algorithm to find the optimal architecture, which supported four cases of mutation:
(a) add a P, (b) add a T, (c) replace a P with a T, (d) replace a T with a P. The experiments
were conducted on three citation graphs (Cora, Citeseer, and PubMed), and one large
OGB graph. The authors concluded with an accuracy improvement of up to 0.9% over

state-of-the-art manual designs, with a speedup of 15.96x over other G-NAS methods.
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Dataset and Problem Statement

In this Chapter, we present a broad explanation of the properties of the dataset that

we used to carry out our experiment as well as the problem we are focusing on.

5.1 TwiBot-20 Dataset

We conducted the experiment using the TwiBot20 dataset, which we obtained from
Feng et al. [39]. This dataset includes the training, validation, test and support set. [59].
TwiBot-20 is constructed with a breadth-first search (BFS) methodology. The first two
levels of the BFS expansion are the train, dev, and test sets, whereas the third and out-
ermost tier is the support set. The support test doesn’t require the neighbor information,
because it is included in the train, dev, and test sets. That is the reason the neighbor
column in support.json is "null". The support set could enable semi-supervised learning.

We present the attributes of the sets with a short description for further explanation:

Attribute H Description
ID ID from Twitter to identify the user
profile profile information from Twitter API
tweet 200 recent tweets of the user
neighbor 20 random followers and followings of the user
domain || domain of the user (politics, business, entertainment, sports)
label label of the user (’1’: bot, ’0’human)

[Tivaxkag 5.1: Attributes and description of TwiBot-20 Dataset

This dataset has been used in multiple cases of bot detection due to its user semantic
and neigborhood properties. Next we will present the definition of the problem we want

to solve.

5.2 Problem statement

LetB= bif‘zl represent the user’s description with L words. Let T = till.\i | be the user’s M
tweets and each tweet t; = {w!, ..., wiQi} contains Q; words. Let P = P, p¢d be the user’s
numerical and categorical property set. Finally Let N = N/, N be the user’s neighborhood

information, where N = N/, ..., N/, indicates user’s following accounts and N* = N, ..., N!
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indicates user’s follower accounts. The task of Twitter bot detection is to identify the bots

from the users utilizing the information from B, T, P, and N.

5.3 Experimentation with the dataset

Using the Python Pandas libray [88] we will present some processing of the dataset
we conducted in the train, test and validation set for further understanding. We will find
the null values to check the validity of our data and the frequency of attribute values to

ensure that the dataset is optimal for our experiment.

5.3.1 ID

We merge all the sets and confirm that every user ID is unique. This was expected, as
these IDs are from Twitter.

5.3.2 profile

Profile data are obtained from the Twitter API. We confirm that no user has null values

in that attribute. There are 38 values in profile data, which no user has more or less.

5.3.3 tweet

The dataset is projected to have 200 tweets per user. We find the frequency of the

number of tweets per user and present the results in a histogram:
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Ewova 5.1: Tweets per user

We deduce that even if not all the values are 200, the vast majority of the numbers
of tweets per user are near 200. It is also noted that 80 users have no tweets, which
constitutes 0.67% of the dataset.
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5.3.4 neighbor

5.3.4 neighbor

The dataset is projected to have 20 neighbors per user. We find the frequency of
the number of following and follower neighbors per user and present the results in a

histogram:
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Ewova 5.2: Number of neighbors per user

The majority of users have ten followers and ten following accounts, as predicted.
However there are 1087 accounts with no neighbors, which constitutes 9.19% of the

dataset.

5.3.5 domain

We find the number of users that include each of the four domains (politics, business,
entertainment, and sports). We intend to test whether the domains are balanced, so we

present the results in a bar plot that compares the number of users in each value:
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Ewova 5.3: Number of users in each domain

We conclude that the domains are well-balanced. Small disparities are expected since

some domains will interest more users.

Awtflopatkn Epyaoia m



KepdAaiwo 5. Dataset and Problem Statement

5.3.6 label

We find the number of bots and humans in the dataset to check if they are balanced.

We present the results in a bar plot:
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Ewova 5.4: Number of users in each label

In the dataset, there are 5237 humans and 6589 bots from all 11826 discrete users.
That indicates humans are 44.28% and bots are 55.72% of all users. We deduce that
there is not an extreme difference between those values, so the dataset is considered

balanced.
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Model

In this Chapter, after a thorough analysis of the theoretical background, related work
in Bot Detection and the technique of Neural Architecture Search, and the dataset we will

use, we will present a detailed analysis of our model.

6.1 Model Structure

Bot detection is critical in today’s digital landscape, as the proliferation of automated
bots poses significant threats to online platforms. To develop an improved model for this
task, we incorporated a promising bot detection approach with the technique of Neural
Architecture Search. First, we will describe the preprocessing of the user metadata used
in our model. Next, we introduce the use of Relational Graph Convolutional Neural
Networks and the two different functions in the Message Passing Protocol. Last, we explain
the application of DFG-NAS [6] in searching for the best permutation of Propagation and

Transformation functions.

DFG-NAS Architecture

RGCN (P) RGCN (T)
T(E)
N
User profile
. T(NER
| Description T( -) Real User
- o K
W
eets T(.:-) Bot

Numerical
property

Categorical

o g T(N) T(UEm)

Ewkova 6.1: Model used for Bot detection
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6.1.1 Data Preprocessing

Feng et al. [38] proposed their model for bot detection BotRGCN, proving the ad-
vantages of using Relational Graph Convolutional Networks in the task of bot detection.
Inspired by this method we employ Graph Neural Networks in our model and make use
of the Twibot-20 dataset.

We follow the preprocessing introduced for BotRGCN [38]. Each user’s representation

includes metadata that are preprocessed as follows:

e Overall: User’s description, tweets, numerical and categorical properties are en-

coded and concatenated to finally represent user features:

r = [rb; re rgum; rcat] e RDXI (6.1)

where D is the user embedding dimension. Each different feature’s procession and
representation are explained below. Later we will prove that the model’s perfor-

mance is attributed to all these features and not only to the heterogeneous graph.

e User description: The user descriptions are encoded with pre-trained RoBERTa:
b = RoBERTa({b;}-,), b € RP*! (6.2)

where b denotes the representation of user description and Ds is the RoBERTa

embedding dimension. Then the vectors for the user’s description are derived:
rp = @(Wp - b + bp), r, € RP/4X1 6.3)

where W and bg are learnable parameters, ¢ is the activation function and D is

the embedding dimension.

e User tweets: The user tweets are also encoded using RoOBERTa. The final represen-

tation of the user’s tweets r; is the average of the representations of all tweets.

e User numerical properties: The user’s numerical properties are adopted straight
from the Twitter API without feature engineering and presented in the table below.
For this information z-score normalization is conducted to get the representation

rp, " with a fully connected layer.
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Feature Name Description

#followers number of followers

#followings number of followings
#favorites number of likes
#statuses number of statuses

number of active days
screen name character count

active_days
screen_name_length

[Tivaxag 6.1: User Numerical Properties

e User categorical properties: The user’s categorical properties are also encoded
with MLPs and GNNs, without feature engineering, just as the numerical proper-
ties. They are adopted straight from the Twitter APl and presented in the table
below. After one-hot encoding, they are concatenated and transformed with a fully

connected layer and leaky-relu to get their representation rlc,at.

Feature Name Description
protected protected or not
geo_enabled geo-location enabled or not
verified verified or not

contributors_enabled
is_translator
is_translation_enabled
profile_background_tile
profile_user_background_image
has_extended_profile
default_profile
default_profile_image

enable contributors or not
is translator or not
translation or not
the background tile
background image or not
extended profile or not
the default profile
the default profile image

[Tivakag 6.2: User Categorical Properties

6.1.2 Relational Graph Convolutional Neural Networks

Our method builds a heterogeneous graph out of the following relationships. Users
are considered nodes and the ’following’ and ’followers’ relations are represented as edges
connecting the nodes. The user’s followers’ are therefore represented differently than the
user’s following’. The heterogeneous graph that is constructed can represent better the
relations between users and more relations between the users could be integrated into
the graph if supported by the dataset. The users also contain the concatenated metadata
that we described below.

To combine the users’ representations with the relationships between users we make
use of RGCNs. The message-passing pipeline of RGCNs includes two types of atomic
operations: propagating (P) representations of its neighbors and applying transformation

(T) to the representations. Below we describe the process behind the two functions:

e Propagation: Propagation includes message aggregation from neighbour nodes

without explicit node feature transformation. The mathematical expression for the
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propagation step is as follows:

1
(+1) _ D4,
h; = E E o W, hJ (6.4)

re€R jeN/

where hgl“) is the new node feature after propagation, R is the set of relations, N
are the neighbors of the node with relation r, ¢;, is a problem-specific normalization
constant that can either be learned or chosen in advance (for example c;, = N/) and

Wr(l) is the learnable weight matrix for relation r.

e Transformation: Transformation occurs on each node based on the relations. The

mathematical expression for the transformation step is as follows:

Y = Wiooh” + ) (Weh(") (6.5)
rerR
where hg”l) is the new node feature after transformation, W,,, is the learnable

weight matrix for the root node, W; is the learnable weight matrix for relation r and

R is the set of relations.

We segregate these two types of functions since combinations of them will construct

the search space for the Neural Architecture Search.

6.1.3 Deep and Flexible Graph Neural Architecture Search

The use of Graph Neural Networks offers undeniable advantages in the task of bot
detection. However, maximizing their performance may require extensive feature engi-
neering. This is why we employ Graph Neural Architecture Search, using the model
DFG-NAS [6]. Thus, we search for the permutation of Propagation and Transformation
steps that achieves the highest accuracy. Most G-NAS methods adopt a fixed message-
passing pipeline to organize two types of atomic operations, specifically propagating (P)
representations of its neighbors and applying transformation (T) to the representations.
This pipeline could be a tight entanglement (P — T — P — T) or one with a certain degree of
entanglement (P—T—-T-T, T—P—P—P). Also, most G-NAS methods have a fixed pipeline
length since the performance decreases with too many P operations as the layers become
deeper, which is referred to as the over-smoothing issue. Propagation and transformation
operations correspond to enforcing and mitigating the effect of smoothing respectively.
Our model searches for flexible pipelines of P and T operations, using a genetic algorithm.
It also makes use of gating and skip-connection mechanisms in the P and T operations,
respectively.

The search space includes P-T combinations and the number of P-T operations. Addi-
tionally, connections among each type are added. For a single P or T operation in one GNN
layer in the model, of,l) is the output of node v in the 1-th layer, and Lp and Ly are two sets
with the layer indices of all P operations and T operations respectively. The operations

and the layer connections are described below.
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Ewova 6.2: Pipeline example in the search space. Source [6]

Propagation connections: An imminent problem in GNNs is over-smoothing or
under-smoothing which is due to too many or too few propagation operations. To achieve
suitable smoothness for different nodes, P operations are amplified with a gating mech-
anism. The output of the 1-th P operation is the propagated node embedding of o=
if the next operation is also P. If the next operation is T, a node-adaptive combination
weight for the node embeddings propagated by all the previous P operations is assigned.

Formulatively:

zy) = P(oy ") (6.6)

zf,l) followed by P

o _

o, (6.7)

Z softmax(ai)zf,i) followed by T
i€Lp,i<l

where a; = o(s - 0)) is the weight for the i-th layer output of node v. s is the trainable

vector shared by all nodes, and o denotes the Sigmoid function. The Softmax function is

adopted to scale the sum of gating scores to 1.

Transformation connections: An imminent issue with GNNs is the model degra-
dation issue, caused by a hyperbolic amount of transformation operations, decreasing
the model’s accuracy. To mitigate this issue, skip-connection mechanisms are used in T
operations. The input of each T operation is the sum of the output of the last layer and
the outputs of all previous T operations before the last layer. The input and output of the

I-th T operation can be formulated as:

zl()l) = of,l_l) + Z of,i) (6.8)
i€Lp,i<m(l)
o,()l) = o(zf,l)w(l)) (6.9)

where m(l) is the index of the last T operation before the 1-th layer, and W(l) is the

learnable parameter in the 1-th T operation.

Evolutionary algorithms are a class of optimization algorithms inspired by biological
evolution. To evolve the population of individuals they apply mutations. Each GNN
architecture is encoded as a sequence of P and T operations. Four different cases of

mutation can be enforced:
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+P: add a propagation operation

e +T: add a transformation operation

P—T: replace a propagation operation with a transformation one

T—P: replace a transformation operation with a propagation one

These mutations can happen at a random position in the sequence. Each pipeline is

considered a chromosome and the above mutations simulate nature’s mutations.

P ®-—T—~®—~T = ®+TT'

Eik’ona 6.3: Depiction of the 4 different mutations. Source [6]

The pseudocode of the evolutionary algorithm implemented in the search space is
described below. At first, k different GNN architectures are randomly generated as the
initial population set Q and then they are evaluated on the validation set. Next, m (m
< k) individuals from the population are randomly sampled, and the one with the best
validation performance is selected as the parent A. The child architecture B is generated
by a random pick of one of the four mutations. B is evaluated and added to the population
and then the oldest individual is removed. This process is repeated for T generations and

finally, we can return the architecture with the best performance.

Aaroriemor 6.1: Searching algorithm

Initialize the population set Q with k individuals
Evaluate the architectures in Q
for1<t<Tdo
Randomly sample m individuals from Q
Select from these individuals the one with the best performance as parent A
Mutate A with a random mutation design and get child B
Evaluate B and add it to Q
Remove the oldest individual of Q
end for
Return the architecture with best performance
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Results and Ablation Study

In this Chapter, we will present our experiments after the analysis of our model struc-
ture. Specifically, section 7.1 presents the settings of our experiments, a brief portrayal of
the baseline models we are comparing to ours, and finally our results. Section 7.2 finally

presents the ablation study, to prove the integrity of our model.

7.1 Experiments and results

7.1.1 Experiment settings

The experiment was run on Google Colab using Nvidia’s T4 GPUs. For the architecture
search, the number of the population set k is 15, and the number of maximum generation
time T is 80. The training budget of each GNN architecture is 70 epochs. These numbers
although limited due to our resources, provide a great example of the efficiency of our
model. More intricate architectures that we tested do not provide better results and the
number of epochs is sufficient to have a good idea of each architecture’s accuracy. The
training is done using Adam optimizer with a learning rate of 0.04. The criterion is Cross
Entropy Loss and the regularization factor is 2e-4. Dropout to all feature vectors with a
rate of 0.5 is applied and the dropout between different GNN layers is 0.8.

After running the NAS method we process the results and examine the five architec-
tures with the best accuracy in the validation set. Each architecture is now trained with
100 epochs on the TwiBot-20 dataset [39], to make a heterogeneous graph of 229,580
nodes and 227,979 edges. The train set is 70% of the dataset, the validation set is 20%
and the test set is 10%. The training is also performed using the Adam optimizer with a
learning rate of le-3. Then each architecture is tested in the test set to get the results,
that we will present below.

Each experiment is run 5 times to avoid outliers in our results.

7.1.2 Baselines

We will compare our results with other state-of-the-art bot detection methods:

e Lee et al. used a random forest classifier with several account-based, temporal, and

content-based features (e.g. tweet frequency, use of hashtags, etc.)
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Yang et al. used a random forest classifier that derived user metadata, temporal

patterns, network structure, sentiment analysis, and linguistic cues.

Kuduganta et al. constructed an architecture that used a dataset with a minimal

amount of user- and tweet-based features.

Wei et al. used an RNN model with word embeddings, three-layer BiLSTM, and a

softmax layer. They only made use of each user’s tweets for bot detection.

Cresci et al. represented users as strings based on the type and content of their
tweets. They identified bots with similar behaviour after analyzing the longest com-
mon substrings. item Miller et al. contracted 107 features from the users’ tweet and
property information and performed two stream clustering algorithms for anomaly

detection, to distinguish bots from real users.

Botometer is a web-based program that uses a wide range of features, like a user’s
social network structure, temporal activity, and language, to provide an overall score
of likelihood that this account is a bot.

SATAR conducts self-supervised learning with fine-tuning, using a user’s semantics,

property, and neighborhood information.

BotRGCN constructs a heterogeneous graph out of the following relationships and
uses information, such as the user’s description, tweets, and numerical and cate-

gorical property set.

7.1.3 Results

Each architecture during the search is saved with its P-T configuration, accuracy in

the validation set, and accuracy in the test set. In the following image the five architec-

tures

that are chosen from the NAS method are depicted.
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Ewova 7.1: Top-5 performing architectures. NAS validation accuracies (from up to down)
are: 87.01%, 86.99%, 86.95%, 86.89%, 86.82%

These architectures are trained and tested from scratch in TwiBot-20 dataset. We

present all the metrics attained of all the architectures.
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Model Accuracy | Fl-score | Precision | Recall | Specificity | MCC

1st Architecture 0.852 0.865 0.851 0.88 0.818 0.702

2nd Architecture 0.855 0.869 0.853 0.886 0.819 0.709
3rd Architecture 0.857 0.871 0.849 0.895 0.812 0.712
4th Architecture 0.852 0.864 0.856 0.873 0.828 0.702
5th Architecture 0.852 0.864 0.858 0.872 0.829 0.703

[Tivakag 7.1: Performance of the architectures from architecture search

All selections achieve good metrics and present advantages in bot detection over state-

of-the-art methods. These results underscore the significant advantages that emerge from

employing architecture search techniques in the realm of bot detection. Moreover, they

establish the efficiency of utilizing user features and relationships between users in bot

detection.

Upon closer examination of the results, the third architecture has the highest accu-

racy. The fifth model has the highest specificity. Moreover, all the architectures have

high metrics of accuracy, Fl-score and MCC. Whichever architecture we choose could

compete with state-of-the-art models. From now on we will refer to the third architecture

as our model, since it provides the highest accuracy.

0.8 1

0.6 1

Value

0.4 4

0.2 1

0.0 -
test accuracy

Ewkova 7.2: Comparison of the architecture performances from NAS
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In the table below we present the performance of other methods on the TwiBot-20
dataset compared to ours. We see that our model benefits from the search for the fittest
architecture that we performed beforehand, as it achieves higher accuracy, F1-score and
MCC than other state-of-the-art models.

Model Accuracy | Fl-score MCC
Lee et al. 0.7456 0.7823 0.4879
Yang et al. 0.8191 0.8546 0.6643
Kuduganta et al. 0.8174 0.7517 0.6710
Wei et al. 0.7126 0.7533 0.4193
Cresci et al. 0.4793 0.1072 0.0839
Miller et al. 0.4801 0.6266 | -0.1372
Botometer 0.5584 0.4892 0.1558
SATAR 0.8412 0.8642 0.6863
BotRGCN 0.8462 0.8707 0.7021
ours 0.8568 0.8712 | 0.7116

[Tivakag 7.2: Performance of models on the TwiBot-20 dataset

7.2 Ablation Study

To prove the effectiveness and the integrity of our model we will perform an ablation
study on the basic ideas: the user’s features used for the training, the Gate operation,

and the skip-connection operation.

7.2.1 User’s features

To prove that using multi-modal information is vital to our model performance we will
conduct an ablation study to train the architecture we found produced the best results

with reduced features. We will reduce one feature at a time for the first part.

Model Accuracy | Fl-score | Precision | Recall | Specificity | MCC
Ours 0.857 0.871 0.849 0.895 0.812 0.712

w/o description 0.859 0.875 0.845 0.906 0.804 0.718
w/o tweets 0.833 0.858 0.796 0.93 0.719 0.671
w/o numerical 0.859 0.872 0.856 0.889 0.823 0.716
w/o categorical 0.792 0.814 0.791 0.84 0.738 0.582

[Tivakag 7.3: Training model without one feature

We conclude that all the features are crucial to the model’s performance to an extent.
Notably, training without descriptions has a higher and accuracy and F1-score than the
original model. Also, training without tweets has a higher recall value. These remarks
are important to consider for future research, but training the model with all the features
provides higher accuracy and makes it more adaptable to other datasets. For further
understanding we will train the model using only one feature at a time, to investigate

their importance separately.
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Ewova 7.3: Training model without one feature

Model Accuracy | Fl-score | Precision | Recall | Specificity | MCC
Ours 0.857 0.871 0.849 0.895 0.812 0.712

only description 0.699 0.74 0.695 0.793 0.589 0.392
only tweets 0.585 0.643 0.602 0.691 0.461 0.157
only numerical 0.679 0.758 0.641 0.929 0.385 0.383
only categorical 0.817 0.853 0.747 1.000 0.6 0.667

[Mivaxkag 7.4: Training model with only one feature

Obviously, the model trained with all the features has the best accuracy. From the
results, we deduce that the categorical property is the feature that contributes the most
to the model’s sufficient accuracy. This ablation study proves that all features are advan-
tageous for training our model to perform well in the task of bot detection. However, they
do not contribute equally, and more studies to enhance the quality of the datasets could

benefit future studies of bot detection.

= Model

[ Only description

. Only tweets

W Only Numerical Property
I Only Categorical Property

08

0.6
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S—

0.4+

0.2
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Ewova 7.4: Training model with only one feature
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7.2.2 Gate operation

Model Accuracy | Fl-score | Precision | Recall | Specificity | MCC
With Gate 0.857 0.871 0.849 | 0.895 0.812 0.712
Without Gate 0.853 0.867 0.845 0.891 0.808 0.704

[Mivaxkag 7.5: Ablation study on Gate operation

We compare the architecture that results from the architecture search with a Gate

operation and without a Gate operation. We see that the architecture without the gate

has a reduced accuracy by 0.5% compared to the model’s and a reduced F1l-score by

0.46%. The gating mechanism dynamically aggregates the information from all the prop-

agation steps and manages to control the smoothness of different nodes. Without it, the

T operations take as input only the last output of the P steps. This is the reason the

model underperforms without the Gate operation in the P functions, as it may suffer from

over-smoothing. The architectures that are examined during this search have more T

steps and shallower propagation processes, failing to obtain information from nodes dur-

ing message passing as successfully as the original model. This ablation study proves the

importance of the Gate operation in the P functions during our architecture search.
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0.8

0.6 1

0.4 1

0.2 1
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T
precision
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T
recall
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Ewova 7.5: Plot for ablation study on Gate operation
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7.2.3 Skip-connection operation

Model Accuracy | Fl-score | Precision | Recall | Specificity | MCC
With skip 0.857 0.871 0.849 0.895 0.812 0.712
Without skip 0.849 0.86 0.857 0.863 0.831 0.695

[Tivaxkag 7.6: Ablation study on skip-connection operation

We compare the architecture that results from the architecture search with a skip-
connection operation and without a skip-connection operation. We see that the archi-
tecture without the gate has a reduced accuracy by 0.93% compared to the model’s and
a reduced F1l-score by 1.2%. Without the skip-connection operation, the input of the T
steps is only the output of the last step. This may lead to the degradation of the model as
the transformation functions can increase. The processing of the messages from nodes is
not as effective and the accuracy declines. This ablation study proves the importance of

the skip-connection operation in the T functions during our architecture search.

B With skip-connection operation
[ Without skip-connection operation

0.8

0.6

Value

0.4

0.2

0.0 T T T T T
test accuracy fl-score precision recall specificity mcc
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Ewodva 7.6: Plot for ablation study on skip-connection operation
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Conclusion

In this Chapter, we summarize the results of this thesis and discuss some directions

for future research on the task of social media bot detection.

8.1 General Conclusion

In this thesis, we studied the task of detecting bots on Twitter. Twitter is a social
platform that has experienced rapid growth and thus the presence of automated accounts,
known as bots, is more pervasive than ever. Bots aim to spread fake information and
manipulate users, by flooding users’ timelines and comment sections. While bots attain
the capability to better imitate human behavior the task of detecting them becomes more
and more challenging. Bot detection is a subject that has been the topic of many studies
in recent years and many different methods have been proposed.

We focus on the use of Graph Neural Networks, which are designed to handle data in a
graph structure. Specifically, we focus on Graph Convolutional Networks, which include
techniques for message passing between nodes to get information from the entire graph.
We are inspired by the work of BotRGCN [38] and build a heterogeneous graph, where
the users are represented with nodes and the following relationships between them with
edges. The users also contain metadata information, including their descriptions, tweets,
and numerical and categorical properties.

In an effort to enhance the performance of the model, we looked into the implemen-
tation of Graph Neural Architecture Search, a process that returns the architecture with
the highest accuracy. We are inspired by the work of DFG-NAS [6], which searches for the
most effective permutation of propagation (P) and transformation (T) operations that are
implemented into the GNN. Therefore, we overcome the limitations of fixed architectures.
With the utilization of the Gate operation and skip-connection operation, we overcome
over-smoothing and model degradation that would reduce the model’s accuracy. The
search follows an evolutionary algorithm, a method heavily inspired by natural evolution
that attempts to enhance a population through mutations.

Our model makes use of relational GCNs after performing architecture search, to
find the most efficient P-T configuration. We used the Twibot-20 dataset, which is an
optimal dataset that includes many types of user information and following relations.

We conclude that the five architectures with the highest validation accuracy are quite
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efficient in our task and compete with other models. Meanwhile, the one with the highest
accuracy achieves a test accuracy of 85,7%, surpassing other state-of-the-art models for

bot detection.

8.2 Future Work

The results obtained from this work underline the advantages of using Neural Archi-
tecture Search and Relational GCNs in the task of bot detection. They are particularly
satisfactory and encouraging in the direction of further research.

First, it is important to recognize the limitations of our resources. Having the resources
that could support more generations on the architecture search could be beneficial for
our research, as it could examine deeper architectures. Thus, perhaps a model with more
layers could present even better results.

A first expansion of the current work could be applying the model to other datasets.
This model could probably be adapted to utilize more user information. For example, we
could enhance the training by adding information like timezone, time of tweets, etc. In
addition to user metadata we could add more user relations, such as messages, retweets,
etc. Using other datasets will improve the adaptability of the model and could present
better results.

Applying the model to the real world could mean adapting it to identify bots in real
time. This could be performed using an application that takes into account user metadata
during the creation of the account. This could also be implemented in short periods (daily,
hourly) to also take into account relations.

An extension of our model in real-world cases would benefit from the use of dynamic
graphs. Dynamic graphs are a type of graph data structure in which the structure of the
graph changes over time. In a dynamic graph, edges and nodes can be added or removed
at different time points, reflecting the evolution of relationships or connections between
entities. This could be particularly useful in social networks where new users are added
constantly and the relationships between the users alter.

Another further study could be investigating bots in other social media, like Facebook
or Instagram. User metadata is different in other social platforms and relations between
users can vary. Perhaps state-of-the-art methods in bot detection in other platforms could

benefit from Neural Architecture Search.
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