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NeplAnyn

Ot Bdoeis edopuévwy Tailovv poéAo peilovog onpaciog 6to cUyxpovo Tomio Twv
ymolaxwv cvotnpatwyv. Kabwg Bplokovtal oty kapSid ToU GUGTIUATOG, | CWOTH
ETAOYT UTIOPEL VU EMNPEATEL € ONUAVTIKO Badud Tnv amoddoot, To KOGTOG, TNV
KALLOKWOLULOTNTA KAL TNV EVKOALa otV cuvtrpnon. Ta televtaia xpovid pe Ty
paySala adinom Tou 0ykov Twv dedopevwy, Exouv avantuyxBel moAAa ién NoSQL
Baoewv dedopévwy. MeTalV avtwv Bplokovtal kot ol facels §eSopévwy XpovooseELp®Y
(time series databases- TSDB) pe kot va BEATIOTOTIO|00VY TIG EMISOCEL GE TIOAAG
mpofAnuata ot omoia anatteltal emeepyacio SeSopEvwy XpovooeLpwV, OTIWG GTOV
XWPO TWV OLKOVOULK®V, TOU TEPLRAAAOVTOG KL TNG EVEPYELAS.

Y& qUTN TNV EPYACLA ETILXELPOVE ULX CUYKPLTIKT] AVAAUOT] APXLTEKTOVIKWY AOYLOULKOU
IOV KAVOUV Xp1io1 KATIOLwY BACEWY SE60UEVWV XPOVOOELPWV KAL ULOG OYXECLAKNG BAong
Sdedopévwy - ouykekpipéva tig InfluxDB, Apache Druid kot MySQL, avtiotoiya. Zto)0g
HOG elval va SLEPEVVIICOVUE T 0OQPEAT], TLG TIPOKANGELG KAL TNV SLa@Opd 0TV amddoom
IOV TIPOCPEPEL KAOE pia. o va amo@avOoU e TOU GUYKEKPLUEVOU EPWTIUATOG
XPNOLUOTIOMOUUE EVaV HEYAAO OYKO BESOUEVWV XPOVOGELPWV ATIO TIG AYOPES
NAEKTPLKIG EVEPYELAG OTLG XWPES TNG EVPWTIAIKNG EVWOTG, LE TA OTIOLX XPOVOUETPOAUE
EYYPAPEG, AVAYVWOELS KAL LETATIOINOELG GTNV EKACTOTE PACT KL LEAETOAUE SLAPOPES
QPXLTEKTOVIKEG VAOTIOMOMG VOGS TIAT)POUG GUGTIUATOG.

H vAoToinor) Tov €ywve, pag emETpePE Vo TAPATNPT)COVUE PE CUYKPIOLUO TPOTIO TIG
EMLSOOELG, TN CUUTIEPLPOPA KAL TN XPNOTIKOTNTA KAOE CUCTUATOS TIPOKELUEVOU VO
08nNynBolpe 0€ CUUTIEPATUATA XPTOLUA OE OCOVG AVTIHETWTIOVV ATIOQAOCELG OXETIKEG
ue Baoelg SeSopEVwVY KAl APXLTEKTOVIKWY AOYLOULKOU YIA TIAPEUPEPT] CUCTHLATA.
Tuumepavape, 6t Apache Druid, aAdd TpwTtiotws 1 Influxdb, eival onuavtikd mo
ypfyopes amo v MySQL ywx Staxeiplon Xpovooelp®y Kol LG EMLITPETOVY VX XTIOOULE
ALYOTEPO TIEPITIAOKES APXLTEKTOVIKEG.

Ae€eig KAelbia

Bdoeig AeSopévwv, NoSQL, Xpovooelpég, Baoelg Aedopévwv Xpovooelpwv, Influxdb,
Apache Druid, MySQL, Am68oon, Kéotog, KApakwoipoétnta, Zuvtipnon, ‘Oykog
Agdopévwy, Eyypagés, Avayvwoelg, Metamouoelg, ApYLTEKTOVIKEG YAoTro(nomG, AyopEg
HAektpknig Evépyelag, Eupwmaikn Evwon, Zuykpitikn AvaAvon, ZuoTiuata,
Xpnotkotta



Abstract

Databases play a vital role in the modern landscape of digital systems. As they lie at the
heart of the system, the right choice can significantly affect performance, cost,
scalability, and ease of maintenance. In recent years, with the rapid increase in data
volume, many types of NoSQL databases have been developed. Among these are time
series databases (TSDBs), designed to optimize the performance of timeseries
management in various problems, such as in finance, environment, and energy sectors.

In this work, we undertake a comparative analysis of architectures that use selected
time series databases along with a relational database—specifically, InfluxDB, Apache
Druid, and MySQL, respectively. Our goal is to explore the benefits, challenges, and
performance differences each offers. To address this question, we used a large volume of
timeseries data from the electric energy markets in the European Union countries, with
which we timed records, reads, and transformations in each database and studied
various implementation architectures of a complete system.

The implementation allowed us to observe in a comparable manner the performances,
behavior, and usability of each system to lead to conclusions useful for those facing
decisions related to databases and software architectures for similar systems. We
concluded that Apache Druid, but primarily InfluxDB, are significantly faster than
MySQL for timeseries management and allow us to build less complex application
architectures.

Keywords

Databases, NoSQL, Time Series, InfluxDB, Apache Druid, MySQL, Performance, Cost,
Scalability, Maintenance, Data Volume, Writes, Reads, Transformations, Implementation
Architectures, Electric Energy Markets, European Union, Comparative Analysis, Systems,
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Extetapévn MepiAndn

H evotnta «Introduction» tng epyaociag B£tel To UTIORABPO yLa pLa OAOKANPWHEVN
g€epelivnon Twv Baoswv Asdopévwyv Xpovoaoelpwy (TSDBs), piag e€slSIKeELHEVNG KaTnyopLag
Baoewv edopévwy mou éxouv BeAtiotomnolnBel yia to Xelplopo SeSoUEVWV UE XPOVIKN
onpavaon. Neplypadetal o KEVIPLKOG pOAOC AUTWV TwV Bacewyv SeSouévwv oTo cUyXpovo
Pnolakod olkoocvotnua, Sivovtag Eudoon oTo avIiKTUIO Toug otnV anodoaon, tTnv
ETIEKTAOLLOTNTA KOL TN cuvThRpnon Twv Pndlokwv cuotnuatwy. Ta tedevtaia xpovia, n
av&non tng mapaywyns Pndlakwv SeSopévwy KoL N avAayKn yLo AITOTEAECOTLKN SLaXElpLon
Twv Sedopévwy autwy, £xouv pépel Tig TSDB 0TO MPOOKAVLO. ITOV XWPO TWV ETUXELPHOEWY
KOl TWV OPYOVIOUWY ,TIPOKUTITOUV OAOEVQL KOL TIEPLOCOTEPEC TIPOKANCELG OTNV ETILAOYT) TOU
KatdAAnAou tuTou Bdaong SeSopévwy yla vaL ovTOTTOKpLBoUV OTLG LOVOSIKEG OTIOLT OELG
XelpLopol edopévwy Touc. Eotialovtag os dtadedopéveg TSDB omnwe to InfluxDB [5] Kal to
Apache Druid, n epyacia oToxeUel va MOPEXEL LA CUYKPLTLKN OVAAUCH AUTWV TwV BACEWVY
Sebopévwy évavtl Twy apadootakwy Baoswy dedopévwv SQL 6mwe n MySQL. Aut n
oUyKpLoN €lval KpLloLn yla TNV KATovonon Twv SLOKPLTWY TAEOVEKTNHATWY Kol TwV TiLBavwy
TepLOpLoP WV Twv TSDB oe lddopa oevapla edappoync. TNV eLoaywyn avodEpetal n
onpaoia twv 6e60UEVWVY XPOVOOELPWY, Ta omola xapaktnpilovral and tn dtadoxikn ¢uon
TOUC KalL TOV KPLOLO pOAO TOU XpOVOU WC MPWTAPXLKAG Sldotaong. AUTOg 0 TUTOC
Sebopévwv pmopei va Bpebel og Stadopouc topeic, cupnepAapPavopévwy Twv
OLKOVOULKWYV, TNG UYELOVOULKAG TIEPIBaAPNG, TwV TNAETIKOLVWVLWYV Kal TNG SLaxeliplong
evépyelag. Mehetwvtal ektevwg To InfluxDB kat to Apache Druid, o ap)LTEKTOVLKOG
OXEOLAOUOC TOUC, OL TIEPUITTWOELG XPONG KAl O TPOTIOC GUYKPLON G TOUG UE CUPBATIKEG
oxeolakec Baoelg SeSopévwy omwe n MySQL. MéxplL To TEAOG AUTAG TNG EVOTNTAC, Ol
OVAYVWOTEC AVOUEVETOL VOL £XOUV HLa oadr) KaTavonon tng onuaciog twv TSDB otnv
Pndlakn €moxn, To OKEMTIKO oW oo TNV AUEAVOUEVN SNUOTIKOTNTA TOUC KOl Ta BacLKA
EPWTALOTO TIOU ETILSLWKEL VAL AVTIUETWIIIOEL N Epy0Loial OYXETIKA e TNV ArOSoon Kal T
Suvatotnta epapuoyng Toug o CUYKPLON HE TTapadoolaKd cuoThpata BAcewy SeSouEVwy.

Emtidoyn kot Z0ykplon Baong

Jtnv evotnta auth sotidloupe otnv emmloyn tou InfluxDB kat tou Apache Druid yia pia
HEAETN Kot cUYKpLon e MySQL. KaBwg £xel auénbei n onuaocio twv TSDB, W8laitepa yla
edapuOYEG TIOU ATIOLTOUV ATIOTEAECHATIKO XELPLOMO SeSOUEVWYV [E XPOVIKN oruavan. To
InfluxDB eival yvwoto yia tv uPnAr Tou anddoacn otov XELPLoUO SeSOUEVWV XPOVOTELPWV.
Katataocostal otaBepd Pnha otic Baoelg SeSopévwy mou eival adlepwuéveg os SeSopéva
XPOVOOELPWY, OTIWG AMOSELKVUETAL Ao TIG O€0€LG TNG OTLG Katatdagelg DB-Engines kat G2.[1]
Avtiotolya to Apache Druid, pe tn ouppetoyn tou oto 16pupa Aoylopikol Apache, dépvel
Loxupn ¢nun otnv Kowotnta open source KwWdLKa, kablotwvtag To 1avikd urtoPridlo yla
olykpLon.
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To InfluxDB, tou avamntuxBbnke amnd tnv InfluxData kot kukAodopnoe to 2013, Eexwpilel yia
TNV apXLTeEKTOVIKN Tou oto cloud. ExetL oxedlaotel yla va StoxelplleTal amoteAeoUATIKA
Sebopéva XpovooelpwV, KATAAANAO yLa pLa OELpd epapuoywy, Onwe n apakoAoldnon, To
loT [2] kat n av@Aucon os MPAYHATIKO Xpovo. H teheutaia €kdoon, to InfluxDB 3.0, slcayel
uia distributed apyttektovikn yio urtoAoyLlopouc pe scalability kot amoBrikevon kat
urnootnpilel SQL kat InfluxQL /Flux yia queries. OL TIEPLITTWOELG XPrONG TOU £ival TOLKIAEG,
KaAUTITOVTOC TO monitoring, tTnv anobrikeuon dedopévwy loT kat Thv avaluon oe
T(PAYLATIKO XPOVO.

To Apache Druid, mou dnutoupynBnke amo t Metamarkets kat apyotepa elorxdn oto
16pupa Apache, eivat BeAtiotomolnuévo yla avaAloelg os real-time. H ap)LTEKTOVIKI TOU
ouvbualel otolyelao Baoewv SeS0UEVWV XPOVOOELPWY, CUCTNUATWY avalnTnong Kot
columnar storage, kaBlotwvtag To 16aviko yla interactive analytics kat event-driven data.
Elval yvwoto yla tnv opl{OvVTLa EMEKTACLUOTNTA TOU KOL UTIOOTN PL{EL KATOVEUNUEVEC
OPXLTEKTOVIKEC. To Druid elval 8laitepa katdAAnAo yla edappoyEg onwg n geospatial
analysis, n unxavikn padnon, to Al preprocessing Kal n avalucon o€ TPayHOTLKO XPOVO.

H oUykpLlon petagl InfluxDB kat Apache Druid elvat mepimiokn, AapBdavovtag urmoyn tig
SL0POPETIKEG OPXLTEKTOVLKES TTPOCEYYIOELC KaL TIG TIEPUTTWOELS XPHOoNG Toug. Ta Suvatd
onuela tou InfluxDB Bpiokovtal otn BeAtiotonolnuévn anobnkeuaon Tou Ue Xxpnon
TEXVOAOYLWYV OTwC To Parquet kot To Apache Arrow, n oxediaon xwpig oxrfpa Kot n eUKoAN
EVOWPATWON Héow HTTP API A CLI.

OL TIEPUTTWOELG XProNg Kal Twv SUo Bacswv SeSoUEVWY AVTIKATONMTPI{OUV T OPXLTEKTOVLKA
toug mAsovektiuata. To InfluxDB uttepéxel o oevapla mou amattouv uPnAn anodoon
gyypadng kat avaltnong, Omwe n cuvexng eyypaodr dedopévwy kat n adueon avalntnon. To
Druid, eotldlel mepLOCOTEPO GTNV OVAAUGN OE TPOYHATLKO XPOVO Kol 0TnV amoBriKeuon
LOTOPLKWY SESOUEVWV LE OLKOVOLILKA OTIOS OTIKO TPOTIO.

H Baon Apache Druid

H apyttektovikni Tou Apache Druid avaAUetal yia va tapExel TANPodopieg yLa to
AeLToUPYIKO Tou TAaioLo. H Bdaon dedopévwy Stavepetal, pe pia Stapdpdwaon mou
niephappavet Stadopetikolg TUMOUG KOUPBWV: kOUPBoug Master, Query kat Data. AutA n
TUnUaTomnoinon gival kaboplotikA yia tn BeAtiotonoinon tng npooBaocipotntag SeSopévwy,
v enefepyaocia epwTnUATWY Kal Tn dlaxeiplon tng anobrnkeuvong dedopévwy. H
ETEKTAOLLOTNTA KAOE TUTIOU KOUPOU €lval Eva XOPOKTNPLOTLKO TIOU EEXWPLIEL, ETUTPEMOVTAG
TNV MPOCOPUOCTLKOTNTO TOU GUOTHLATOG OTLG ETOBOAAOIEVECG QTTALT OELG OTLG SUVATOTNTEG
amnoBnkeuong kat avalntnong.

H gueliéla tou povtélou dedopévwy tou Apache Druid sival éva Baotkd otolyelo. X
avtiBeon pe ti¢ mapadoaotakeg Baoelg Sedopévwy e otabepd oxnuata (schemas), n
T(POCEYYLON OXAUATOC o€ avayvwon Tou Druid emutpénel Suvaplkd Xewplopd dedouévwy Kal
gvowpatwon dtadopwv popdpwv dedopévwy. To data ingestion avantuoostal, TAPEXOVTAS
HLo. OAOKANPWHEVN KATOVONOH TOU TPOTOU [E ToV oTtolo T SeSopéva ELoEp)XOoVTaL KOl
enefepyalovral HEoa 0TO cUOTNUA.

H untoBoAn epwtnudtwy oto Druid ival eVEAIKTN, TiPoodEPOVTAG EPWTILATO TIOU
Bacilovtal oe SQL kat og Druid Native. Mapéxovtal mapadeiypata PeTddpaong amo to
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gpwtnipata SQL os Druid Native, amodelkvovtag TNV EUKOALO LLE TNV OTOLO OL XPHOTEG
UITOPOUV VO EVOWUOTWOOUV TNV UTApYouoa Texvoyvwaia toug SQL oto meplfaAlov tou
Druid.

H Baon InfluxDB

To InfluxDB , mou avayvwpiletol w¢ oNUAVTLKN EEALEN OTLC KALLOKOUUEVEG BAOELG
S6ebopévwy, ELOAYETAL PE TNV TUNHOTOMOLNUEVN APXLITEKTOVIKA TOU TIou IepAapPavel
Eexwplota otolyela yia tnv anoppodnon dedouévwy, TNV avaltnon, Tn CUUTESH Kal Th
GUA\OYN OKOUTILSLWYV. AUTOC O QPXLTEKTOVIKOG OXESLAOUOC UTTIOYPAUUIEL TNV
anoteAeopatikotnta tou InfluxDB otn Staxeiplon deSopévwy os dladopa otadla Tou
KUKAOU {wNC Tou.

To data ingestion oto InfluxDB meplypadetat, Sivovtag éudacn oTnV EMEKTACIUOTNTA TOU
CUGCTAATOC OTOV XELPLOWO SladopeTikwv dopTtwv gpyaciag Sedouévwy. AUTA n Ituyn ivot
KPLOLUN Ylot GUCTAUATA TTOU A0XOAOUVTAL LE KUUOLVOUEVOUC OYKOUC SES80UEVWY, OTIWC
dalvetal oe edappoyEG avAAUONG O TTPAYHOTIKO Xpovo. Ooov adopd Ta epwTiaTa
Sebopévwy, to InfluxDB mapouctalet éva kaAd dounpévo querying component,
BeAtioTomolnuévo yia va xelpiletatl unAoug poptoug epyaciag EpwWTNUATWY, TO OTOLo
anoteAel Baotkn anaitnon ya tnv avaAucon Se60UEVWV XPOVOTELPWV.

To component cupumnieong(compaction) eSopévwv avtlLeTweL TNV MPOKANGN TNG
Slaxeiplong moAAwv Hkpwv apxeiwv. Me Tn cupmnieon autwv Twv apxeiwv os peyalltepa,
un emkaAumtopeva apyela, to InfluxDB BeAtuwvel Ty amddoon epwTnUATWY Tou. EmutAéov,
0 pUNXavIopog ouAloyng okoutildlwv(Garbage Collection) oto InfluxDB, o omolog
Slayelpiletal tn Slatrpnon 6£50UEVWY KOL TNV OVAKTNON XWPOU, ATELKOVIZEL TNV LKAVOTNTA
™ Baonc Sedopévwy va SLoTnpel AmMoTEAECUATIKOTNTA KOl TAEN otnv amobrikeuon
Sebopévwy.

H Stadikaoia eyypadng dedopévwy oto InfluxDB xpnotpomnolwvtag to line protocol,
KQAUTITETOL EKTEVWG. AUTH N eotiaon og pa dALKA Tpog Tov Xprnotn Hébodo eloaywyng
Sebopévwv avtikatomntpilel tn déopeuon tou InfluxDB yla mpooBaciuotnta. AlepeuvwvTol
eniong ol SuvatotnTeg epwTNUATWY Tou InfluxDB, meplypdadovtag AemMTopepwE T XPron
1000 TNG YAwooag Flux 6co kat tng InfluxQL. Authi n mpoogyyion pe 800 yAwooeg KaAUTTEL
£€va eupl GACHO TIPOTIUNCEWVY KOL ATIOLTACEWY TWV XPNOTWV.

JulntouVvTOlL TTAPAKATW TEXVLKEG OTIWE N emavayaptoypddnon dedopévwy, n opadomnoinon
Kal n ouykévtpwon (data remapping, grouping, and aggregating are discussed),
umoypappifovrag tic Suvatotnteg tng Bdong Sedouévwy otn BeAtiotomnoinon tng xprnong
Sedopévwy. H cuumepiAnn mponyUEvwy AELTOUPYLWV OTIWGE N TtEpLoTPodn Kal N Helwon
SetypatoAnyiog, pall pe Tn SUVATOTNTA AUTOUATOMOLNGNG EPYOCLWY ETEEEPYATLAG
SeSopévwy, urtoypapuilel tnv ohokAnpwpévn epyaieloBnkn dlaxeiplong kot avaAuong
S6ebopévwv tou InfluxDB.

MNeplypadn tou mPoPARLOTOG

H epyaocia £0TLAleL OTIC TIPOKANCELG TIOU QVTIUETWITIEL N Slayeiplon SeSOUEVWV EVEPYELOC
HeyAaAng KAlpoKkag e mapadootakég Baoelc Sedopévwy SQL. Oftel to €dadog yla pia
€PEVVOL OXETIKA LLE TO €AV OL BAoeLs bedopEvwy xpovooelpwV (TSDB) pmopouv va
TIPOCGHEPOUV LA TILO ATIOTEAECHATIKN eVAAAAKTLIKA AUon, eldikd Aappavovtag undyn Ta
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HoVaSIKA XOpAKTNPLOTLKA TWV EVEPYELAKWY SeSOUEVWY, TA omola lval oykwdn Kal
guaiobnta oto xpovo.

lvetal euBAaBuveon ot CUYKEKPLUEVA XOPOKTNPLOTIKA TOU CUVOAOU EVEPYELOKWY
Sebopévwy, Tovilovtag TNV MOAUTIAOKOTNTA TTOU £(VaL EYYEVIC OTOV XELPLOUO aUTOU TOU
tumou Sedopévwy xpnolpomnolwvtag Baocelg Sedopévwy SQL. Tulntad TG MPOKAROELS OTNV
enefepyaoia TETolwy SeSopévwy, cupmepAapBavopévwy INTNUATWY TIoU oxetilovtal Le
TNV CUUMANPWON KEVWYV, TN CUYKEVTPWON S£60UEVWV KOL TIC OVATIOTEAECUATIKEG ETULSOOELG
otL; Baoelg Sedopévwy SQL 6tav acxoAoUHAOTE PE HeyAAa cUVOAQ SESOUEVWY E XPOVLIKN
onuavon.

H peBodoloyia yla Tn CUYKPLTIKA avAAuon MeplypAdETAL O QUTH TNV evotnta. Neplypadet
Tn pUBULON TTaVOUOLOTUTIWY SLAKOULOTWYV yia TN SokLun tng anddoong tng SQL évavtt Twv
TSDB uTto eAeyyopeveg ouvOnkeg. H evotnta e€nyel tov oxedlaopo Stadopwv oevapiwv
SOKLUWYV, HE SLPOPETIKEG KATOOTACELS TwV BACEwY Se6ouévwy (ABELEG, HEPIKWC YEUATEG,
TIANPWGS GOPTWUEVEG) KaL TIWE AUTEG OL cUVONKEG emnpealouv TNV anoppodnon dedopévwv
KOl TOUG XPOVOUG OTIOKPLONG EPWTNUATWVY.

Mapouaotdletal pia ouykplon twv SQL kot TSDB, eKTEAWVTOC TTAVOUOLOTUTIEG AELTOUPYLEC KalL
ota Suo neptBalovta. H eotiaon sivat otnv afloAdynon Tou TpOToU HE ToV Omoio KABe
Baon debouévwy xelpiletal to data ingestion kal ta epwthipata oe Stadopoug OyKoug
Sebopévwy, aPEXOVTAC UL TTOOOTIKA BAon yla TN cUYKpLoN TwV eMEOCEwWVY TOUG.

Afloloyeltal n AettoupyLkr) TTOAUTTAOKOTNTA TTOU OXeTieTalL pe KABe TUMO BAong dedopevwy
Kall oTtoxeVEL va kaBopioel eav ta TSDB pmopouv va amlonotloouy TiG Stadikaoieg
XELPLOHOU SedopEVWY Kal Vo UENOCOUV TN AELTOUPYLKN OITOTEAECUATIKOTNTA.
AvtutapaBarlel TI¢ MPOCHETEC AMALTAOELS SECUNG EVEPYELWY KOl LETACXN LOTLOMOU
Sebopévwy otnv SQL pe tnv o BeATIWUEVN IPOCEYYLon Tiou ipoodEpouv ta TSDB.

EmutAéov oulntolvTal Ta EVPHLATA OO TN CUYKPLTLKN LEAETN, He €udaon oto av Ta TSDB
elval o amoteAeOUATIKEG Ao TIG BAoelg dedopévwy SQL. H evotnta Slepeuva Tig
ETITTWOELG AUTWV TWV QNTOTEAECUATWY, OTO TAALCLO TNG AELTOUPYLKI G OIMOTEAECLATLKOTNTOG
Kall TnG TBavr ¢ e€0LKOVONGNG KOOTOUG OTOV EVEPYELOKO TOUEQ Kal 0 AAAOUC KAASOUG TToU
aoyolouvrtal pe Sedopéva peyaing KALLAKOG.

Ol petpnoslc tTncMySQL

H evotnta « MySQL Baseline» mapouaotdlel pla kpttiki avaAuvon tng MySQL, mou
Xpnotuomnoleital oto mAaiolo tng Sltaxeiplong SeSopevwy PeyaAng KAHLOKAG, LE XPOVLIKNA
onuavaon. O otdxog eivat va dnuloupynBel pia Baokn ypapun anoddoong yia tnv MySQL.

H peBodoloyia mepihapPBavel tn Stapdpdwon plog Baong dedopévwv MySQL waote va
QVTLKOTOTTPLLEL €va TIANPWG GOPTWHEVO CUOTNUA, TTOU KAAUTITEL 120 HAVEG LOTOPLKWY
Sebopévwv. Autn n puBuion dtacdaAilel OTL oL LETPNOELG ATOS00NG TTOU TTPOKUTITOUV lval
OKPLBELG KL OYETIKEG JLE TAL OEVAPLA TOU TIPOYHATIKOU KOGUOU. H peAétn aglohoyel Tnv
anddoon tng MySQL umnd dUo SLakpLTEG CUVONKEG: e Kal Xwplg indexing.

O SoKLEG Ttou TipaypatomnoliOnkav otn MySQL sival Aemtopepelc, pe Eudaon otn pEtpnon
Twv pubuwv data ingestion, TWV XpOVWV ATIOKPLONG EPWTNHATWY KOL TNG CUVOALKNG
QTMOTEAECUATIKOTNTOC TOU CUCTAMOTOG 0€ SLadOPETIKA AELTOUPYLIKA CEVAPLAL.
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‘Eva amno ta Baoikd eupnpota eival n petaBoln tng anmodoong mou nmapatnpeital otav n
MySQL Aettoupyel pe kal xwpig indexing. H peAétn moootikomnolet autr t Stadopd,
TIAPEXOVTAC OTATLOTIKA SeSOUEVA YLA TNV TOXUTNTA KOL TNV OMOTEAECUOTLKOTNTA
enetepyaoiog

H Baown avaluon MySQL B£TeL TO OTASLO YLA ULO LETAYEVECTEPN CUYKPLTIKN UEAETN UE T
TSDB.

Ot petpnoelg tne InfluxDB kot Apache Druid
Elcoywyn oTLg LETPAOELG:

H evotnta "Metpnoslc yia InfluxDB kat Apache Druid" mapouotalel pa AsTtopepn
EUMELPLKN aVAAUOHN TIOU cuykpivel Tnv anddoon tou InfluxDB kat tou Apache Druid otov
XELPLOUO SESOUEVWY XPOVOOELPWV LEYAANG KALLOKAG.

H pneBodoloyia mepthapBAvVeL pLa oLpd SOKLUWY TTOU €X0UV OXESLOOTEL yLa TNV afloAdynaon
Kal Twv §Uo Baocswv dedopévwy umod dadopeg ouvOnKes. AUTEC oL GUVONKEC avamapdyouv
TUTILKA AELTOUPYLKA ogvapla, cupmepltAapBavouévwy Bacswv dedopévwy og SLadopeTIKA
otadla mAfpwaong (KeEvo, HEPLKWE YEUATO, TIANPWG GOPTWHEVO) KAl HE TIOLKIAEG SOUEG
Sebopévwy. OL SokLpEG Sle€dyovtal og eheyxouevo TeptBaiiov yia va StacdalloTel n
akpiBela kat n aglomotio TwWV AmoTEAECUATWVY.

MNeplypadetal Aenrouepw( n anodoaon twv TSDB oe S1ddpopa oevapla. BaolkEG LETPROELS,
OMWC TA TOCOOTA aAmoppodnong Se5o0UEVWY, OL XPOVOL ATIOKPLONG EPWTNUATWY KaL h
QIMOTEAECUATIKOTNTA TOU CUCTHHATOC mapakoAouBouvtal otevd. H anodoon tou InfluxDB
ONUELWVETAL OTL elval LdLaltepa LoXupr o€ oevapla ou Teplhapfavouv enegepyaocia
Sebopévwv o TpayHATIKO XpOvo Kal eyypadn Sedopévwv peydlou oykou, embelkviovTag
TNV LKAVOTNTA TOU VA XELPL(ETAL AMOTEAECUATIKA pHeyaha ocUvola dedopgvwy. Opoiwg, To
Apache Druid emibeikvieL Ta SUVATA TOU ChLELQ 08 OEVAPLA TTOU QIMALTOUV OVAAUGon o€
TIPAYLATLIKO XPOVO Kal armoBrkeuon Lotoplkwy SeSopévwy, EUBUYPAUULOUEVA LIE TO
oXeSLOOO KaL TNV OPXLTEKTOVIKH TOU.

Ztpatnykeg AvaBaduiong Ymapxoviwy Zuotnudtwy pe Evowpdtwon
TSDB

To ke@dAalo avtd €0TIAlEL 0TV EVOWPATWOT Baoewv AeSopévwv Xpovooetlpwv (TSDB)
0€ KOTAVEUNUEVEG APYLITEKTOVIKEG,. [TeploTpéeTal amd pla culnTnon Twv
TAEOVEKTNHATWV am6Soong Twv TSDB o€ oxéon e T Tapadooiakes facels SeSopévwv
MySQL o€ TTpakTIKEG OTPATNYIKES Yo TNV avafABULOT TWV VTTAPYXOVIWY CUCTNUATWY
yla TV evowpdtworn twv TSDB. Autd epilapfavet SUo kOpleg 0800G: TNV
QVTIKATAOTAOT TNG UTTAPXoVaaS amodnkns SeSouévwy pe éva TSDB 1| v vioBétnon
LLLOLG TILO OAOKAT PWUEVNG TIPOCEYYLOTG AVTIKABLOTWVTAG TOGO TNV amodnkn edopévwy
000 KoL TNV VTTApYovoa oxeatakn Baor Sedopuévwy pe pia evomompévn Aon TSDB.

H apxltekTovikn Tov TAAXLOV CUOTIHATOG, GXESLAGEVT] Yia T Slaxeiplon Sedopévwv
NG AYOPAS EVEPYELXG, ATIOTEAELTAL ATLO TIOAAQ oTOLYElX: pLa SleTTaT) eappoyng front-
end ywx aAAnAemiSpaon pe tov xpnotn, éva Energy Markets Data API yla tpocBaon o€
Sdedopéva kal Staopa ototyeia Staxeiplong dedopevwy, 0Twg éva ORM yia
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aAAnAemiSpaon pe faon dedopevwy kat MySQL ylx amoBnkevon dedopeévwv. To
ovotnua meplapfavel emiong API pe poforég SQL yia Suvapikn avaditnon kKol eva
otolyeio amobkevonG SES0UEVWVY IOV AVTIUETWTI(EL TIPOKAT)OELG OO0V APOPA TNV
TIOAUTIAOKOTNTA, TNV ETIPPET OE CPOAAPATA KL TIG TIOLVEG atOS00NG, LSlaitepa o€
epyaoieg ouykévTpwong Sedopévwv.

H mpotewvouevn avafaduion meplappavel v evowpudtwon evog TSDB atnv
QPXLTEKTOVIKT, BEATLOVOVTAG TIG SUVATOTNTEG EMEEEPYATLAG KAL CUYKEVTPWOTG
Sedopévwv. Autn 1 aAdayn TepAapBavel T SLATPN 0T OPLOUEVWY VTIAPXOVTWY
otolyeiwv, 6TTws To ORM Data Access kat To MySQL RDBMS, yia otaBepdnTa, eVed
eLoayetal £va véo emimedo avtiotolyiong RDB kat pua Bdon Sedopévwv xpovooelpwy yla
ATIOTEAEGUATIKO XELPLOPO SeSoUEVWY KoL TiponYHEVES avaAoels. To cUotnua Statnpel
Tov apBpwTtd oxedlacud Tov, EXPAAILOVTAG EMEKTAGIUAOTNTA KOl GUVTNPNOLUOTTA.

IV TeEAeuTala apyLTEKTOVIKY EMAVAANYT, TO CUGTNHA VPIOTATAL TEPALTEPW
BEATIWOOELSG e TNV TIATPT) EVOWUATWOT £vOG TSDB, avtikablotwvtag T TTapadooiakn
oxeolakn Baon Sedouévwv. AT 1 LETATOTILOT BEATIWVEL TOUG XPOVOUG ATIOKPLOT|G
EPWTNUATWV KOL LELWVEL TNV AVTLYPAPT SESOUEVWY, KAAQR ATIALTEL OT|ULAVTIKY)
emaveyypa@n tou emumédov APL IMapd ti¢ aAdayég oto backend, n aAAnAenidpaon tou
frontend Ttapapével cuvemg, Stac@aiifovtag pa otabept) eumeLpio xproTn Kal
EMLEELKVVOVTAG TNV TPOCAPHOCTIKOTNTA KAl TN SEGUEVGT) TOU CUGTIHATOS VX
e€looppoTel TNV Kawvotopia pue Tn Aettovpytkn otaBepotnTa. Auth 1 €6€AEn
QVTIKATOTITPILEL Ul OTPATN YLK TIPOCEYYLON Y TN BeATiwon Twv SuvatoTiTwy
XELPLOPOU SESO0UEVWY TOU CUCTIHOTOG LE ELPAOT OTA SESOUEVA XPOVOTELPWY,
SLao@aAifovtag TapIAANAX T1 GUVEXELX KL TNV AELOTILOTIO 0TI CAANAETISPACELS TWV
XPNOTWV KAl TIG AELTOVPYIEG TOU CUGTHLATOG.

Ermiokomnon epyaoiac:

Télog n epyaocia £xel avalUoeL tn ocUVOETN SUVAULKNA TNG AMOS00NG, TNG EMEKTACLUOTNTAG
KalL TNG AELTOUPYLKOTNTAG TN Baong dedopévwy oTo mAaiolo TG dlaxeiplong dedopévwy
HEYAANG KALLOKaG, evaioBnTwy oto xpovo.

Ta gunetpkd dedopéva mou eAidOnoav anod Stddopeg Sokipég €detéav otL to InfluxDB kat
to Apache Druid, wg TSDB, yevika utteptepolV tng MySQL otov XelpLlopo dedouévwv
XPOovooelpwv. AUTA n uTiepoxn amoSiSeTal oTnNV APXLTEKTOVIKI Kal TO 0XeSL00UO TOUG, Ta
ormoia ivat eldika BeAtioTomolnuéva yla Se8oUEva e XPOVIKI orjpavon.

Tovioape emniong TG mpokANOEL; 600V adopd TOV LETACKNUATIOUO TOU OXHUATOC
S£60UEVWY, TNV TIPOCAPHOYH TNC YAWCOOG EPWTNUATWY KOL TN GUVOALKA UETEYKATACTACN
CUCTAMATOC. H yvwaon autr elval XproLpn yla TOUG opyaviopous, mou e€sTtalouy To
evdexouevo otpodng os TSDB yLa Tig avaykeg dtaxeipiong dedopévwy Tous. Mia amo Tig
BaolKEG CUCTAOELG TNG EpYAOLag eival n ULOBETNON ULag UBPLSIKNG TTPpOCEyyLong, yLa TNV
aglomoinon twv £eLSIKEV LEVWY SuvaToThTwy Twv TSDB yla Asttoupyieg SeSopévwy mou
Baoilovtal otov xpovo, Slatnpwvtag mapaAAnAa tnv euelifia Kal tnv eupwotia tng MySQL
yla tn yevikn Slaxeiplon deSopévwv.
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AeSopévou Tou aufavopeVou OYKoU Kal TnG MoAumAokotnTag Twv Sedopévwy o€ Stddopoug
Topelg, ta TSDB omwc to InfluxDB kat to Apache Druid eival £toleg va yivouv avamoomnooto
otolyela Tng olyxpovnc umtodopng dedopévwy. Ot TEMKEC TTapatnproeLg Tovilouv Thv
OVAYKN YLOL JLOL TIPOOEKTLKH KAl KOAQ OXESLAOUEVN TIPOCEYYLON KATA TNV EVOWHUATWON TWV
TSDB ota undpyovta cuothpata Staxeipiong dedopévwv. H epyacia cuviotd otoug
0pyaVvLOUOUC va AapBavouv umoPn TIG CUYKEKPLUEVEG OTTOLT OELG SES6OUEVWY Kal T
AeLtoupyikd Toug MAaiola otav anodacifouy yla Tnv KatdAAnAn texvohoyia faong
Sebopévwy.

16



1. Introduction

Timeseries Databases, Timeseries Data and the Difference form
Other Types of Databases

A Time Series Database (TSDB) is a specialized form of database engineered for the
optimal handling of time-stamped or time series data. Time series data comprises
measurements or events systematically recorded, monitored, downsampled, and
aggregated over temporal intervals. This encompasses a wide range of analytical data
types, such as server metrics, application performance metrics, network data, sensor
data, event logging, user interactions such as clicks, and financial transactions in
markets. The architectural foundation of a TSDB is intrinsically designed to manage
metrics and measurements with time stamps effectively. TSDBs are particularly fine-
tuned to facilitate the analysis of temporal change.

Unique characteristics of time series data that distinguish it from other data workloads
include sophisticated data lifecycle management, data summarization techniques, and
the capacity for extensive range scans across numerous records.[10] Time series data is
an aggregation of observations gleaned through repeated measurements over
designated time periods. When visualized, these data points form a graph where one
axis invariably represents time. In the context of metrics, time series data can be
understood as specific data points tracked sequentially over time intervals. For example,
a metric might track the daily variation in inventory sales in a retail environment. [9]
Given that time is a fundamental element of all observable phenomena, time series data
is ubiquitous. The proliferation of instrumentation in contemporary society means that
sensors and systems are continuously generating a vast stream of time series data. This
data has many applications across various sectors. To illustrate, time series analysis is
employed in diverse fields, ranging from monitoring electrical activity in the brain,
managing server logs, tracking stock market prices, analyzing annual retail sales trends,
to measuring heart rate.

Time series databases are underpinned by key architectural designs that set them apart
from traditional databases. These include optimized storage and compression of time-
stamped data, comprehensive data lifecycle management, effective data summarization,
the ability to conduct extensive scans of time series dependent records, and the
execution of time series aware queries. For instance, time series databases are adept at
summarizing data over extended periods. This involves analyzing a range of data points
to compute metrics such as the percentile increase of a specific measure over a given
period, compared to the same period in the previous year, with the summary organized
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monthly. Such computational tasks are challenging to optimize in distributed key-value
stores. However, TSDBs are specifically optimized for these scenarios, delivering
millisecond-level query response times for data spanning several months. Another
example of TSDB functionality is the management of high-precision data for short
durations. This data is subsequently aggregated and downsampled into longer-term
trend data. In a TSDB, data points are systematically deleted after their relevance period
expires. Implementing this type of data lifecycle management is challenging in standard
databases, requiring developers to devise efficient schemes for the large-scale eviction
and summarization of data. TSDBs inherently provide these capabilities, simplifying the
management of time series data for application developers.

Literature Review

The increasing volume and complexity of time-stamped data in various sectors,
particularly with the advent of the Internet of Things (IoT) and smart devices, have led
to a significant interest in the efficient management of time series data. This literature
review explores various approaches and technologies for handling time series data, with
a focus on Time Series Database Management Systems (TSDBMS) such as InfluxDB, and
their comparison with traditional SQL databases.

In their work "Hybrid Approach for Efficient Data Management" Leighton et al. (2023)
[16] discuss a hybrid system combining a Python-based proxy, InfluxDB, and a Sensor
Observation Service (SOS) implementation for managing environmental data with
complex metadata. They emphasize the challenges of delivering large volumes of time
series data efficiently and propose a solution that combines the high performance of
TSDBMS with the rich metadata capabilities of SOS. The performance tests show a
significant improvement over a standalone SOS setup, demonstrating the potential of
hybrid systems in scientific domains where rapid data retrieval and analysis are critical.

In "Comparative Analysis of TSDBMS", Rudakov et al. (2023) [17] provide a
comprehensive comparison of four major TSDBMS: InfluxDB, MongoDB,
TimescaleDB,[8] and ClickHouse. Their study evaluates these databases based on criteria
such as writing and reading speed, database size, and API convenience. The findings
suggest that ClickHouse, despite some limitations, stands out for its exceptional speed in
both writing and reading operations, making it suitable for storing time series data in
industrial applications.

In the same context, Praschl et al. (2022) in "Performance of Specialized Time Series
Databases" [18] evaluate the performance of various DBMSs, including InfluxDB,
MongoDB, PostgreSQL, TimescaleDB, and LeanXcale, in the context of storing time series
data. They conclude that InfluxDB, a specialized time series NoSQL DBMS, shows the
best performance in terms of write-throughput and resource utilization. The study
underscores the efficiency of InfluxDB in a single server environment, suggesting its
suitability for managing high-frequency, time-related data.

Verner-Carlsson and Lomanto (2023) [19] compare MongoDB and PostgreSQL with the
Timescale extension for handling time series data, focusing on query execution time.
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Their study reveals that the performance of these DBMSs varies depending on the
query's nature. While MongoDB performs well for queries over a large timespan,
TimescaleDB is efficient for queries involving restricted periods or large data volumes.
The study highlights the importance of considering the specific requirements of time
series data and queries when selecting a DBMS.

Integration with legacy systems using RDBMSs.

This thesis aims to build upon the findings of these studies by exploring the integration
of TSDB like InfluxDB and Apache Druid [4] with traditional relational databases,
particularly MySQL. The goal is to assess their comparative performance and identify
the best practices for managing large-scale time series data, especially in the energy
sector. The motivation for this approach stems from the fact that many existing software
systems do time series management using traditional relational databases in less-than-
efficient ways. However, due to the size, complexity and costs involved, it is not usually
possible to migrate such systems to TSDBMSs. We therefore examine performance and
alternative architectural options for even partial migrations of legacy systems.

The reviewed literature suggests a growing trend towards specialized TSDBMS for
handling time-stamped data due to their superior performance and resource efficiency.
However, the database system choice depends on specific use cases and the data's
nature. This thesis contributes to this field by providing insights into the integration of
TSDBMS with traditional SQL databases, addressing the challenges and opportunities in
this evolving landscape.
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Time series Databases Selection and
Comparison

In our comparative analysis, the initial database selected was InfluxDB, as it consistently
appears at the top of lists in both DB-Engines [1] and G2 [13], indicating its prominence in the
field. Subsequently, Apache Druid was chosen as the second database for evaluation. The
decision to include Apache Druid was influenced by its association with the Apache Foundation,
a renowned entity in the software development community, which positions it as a natural
starting point for this kind of comparative study. The comparison between InfluxDB and Apache
Druid is a pertinent topic in the realm of database technologies, particularly when dealing with
time series and online analytical processing (OLAP) workloads. This discussion centers around
the architectural differences, use cases, and scalability features of both databases, providing
insights into their respective strengths and weaknesses.[12]

InfluxDB is a time series database with a cloud-native architecture that can operate as a
managed cloud service or be self-managed on local hardware. Developed by InfluxData and
released in 2013, it is an open-source database designed for high-performance handling of time
series data. The latest version, InfluxDB 3.0, built in Rust, offers a decoupled architecture for
independent scaling of compute and storage, and supports both SQL and InfluxQL for querying.
Its use cases span monitoring [3], IoT, and real-time analytics. Key aspects of InfluxDB's
architecture include columnar storage using Parquet and Apache Arrow, a flexible data model
with schemaless design, and integrations through HTTP API or the InfluxDB CLI. It also features
a decoupled architecture for independent scaling and supports retention policies for data
management. Use Cases for InfluxDB primarily include monitoring and alerting, IoT data storage
and analysis, and real-time analytics.

Apache Druid, on the other hand, is an open-source columnar database tailored for real-time
analytics. It emerged from Metamarkets in 2011 and was later contributed to the Apache
Software Foundation in 2018. Druid's architecture, a blend of time series databases, search
systems, and columnar storage, is optimized for event-driven data and interactive analytics. It is
horizontally scalable and supports distributed architectures.[7] Apache Druid's architecture
comprises different node types, including Historical, Broker, Coordinator, and
MiddleManager/Overlord, each playing a specific role in data management and querying. It uses
deep storage for persistent data storage and supports various metadata storage databases.
Apache Druid is well-suited for geospatial analysis, machine learning and Al preprocessing, and
real-time analytics.

In the context of time series data, both databases have distinct advantages. InfluxDB is
specifically designed for such data, offering high write and query performance, making it ideal
for applications involving continuous data writing and immediate querying. Apache Druid, while
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also catering to time series data, emphasizes real-time analytics and the capacity to store
historical data in cost-effective storage solutions.

In terms of pricing models, InfluxDB offers a free open-source version, a cloud-based service,
and an enterprise edition for on-premises deployment. Apache Druid, being open source, incurs
costs related to self-hosting but is also available as a managed service with varying pricing
based on service tiers and data management needs.

The Druid Database

Here we will focus on the deployment of Apache Druid on a single-server architecture. While
Apache Druid is often deployed in clustered environments for scalability, this research narrows
its scope to a single-server deployment, offering a methodology suitable for environments with
limited resources.

The server Prerequisites for this deployment are modest, with a minimum requirement of 6 GiB
of RAM. The operating system should be Linux, Mac OS X, or another Unix-like OS, as Windows
is currently not supported. Java (11, or 17), Python 3. Prior to installation, a review of Apache
Druid's security overview is advised. It is recommended to avoid running Druid under the root
user for security reasons. Instead, a dedicated user account should be created for running Druid
services.

The Apache Druid 27.0.0 package is downloadable from the official Apache Druid repository.
For initiating Druid services, the automatic single-machine configuration is employed. Druid is
configured to utilize up to 80% of the available system memory. However, this can be explicitly
set by passing a value to the memory parameter.

The Druid Architecture

In the deployment architecture of Druid, a distributed system, the configuration is delineated
across a cluster comprising one or more servers functioning through multiple processes. The
deployment encompasses three distinct types of server nodes:

Client Queries
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Figure 1. Architecture Diagram of a Distributed Data Storage and Query System
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Master Nodes: These nodes are pivotal in orchestrating data accessibility and
overseeing the ingestion process.

Query Nodes: Responsible for receiving and processing queries, these nodes execute
the queries across the Druid system and return the resultant data.

Data Nodes: These nodes are tasked with the execution of ingestion workloads and the
storage of queryable data.

In configurations of a more modest scale, it is feasible to operate all these nodes collectively on a
single server. Conversely, in more expansive deployments, each node type is typically allocated
one or more dedicated servers. [14]

Additionally, Druid's operational framework includes three critical external dependencies:

e Deep Storage: Utilized as a secondary repository for each data segment, deep storage
leverages cloud storage solutions or HDFS (Hadoop Distributed File System). Its primary
function is to facilitate the transfer of data among Druid processes and to serve as a
resilient data source for system recovery post failures.

e Metadata Storage: Constituted by a small-scale relational database system such as
Apache Derby, MySQL, or PostgreSQL. This component is essential for data management,
storing information pertinent to storage segments, ongoing tasks, and other
configurational data.

e Apache ZooKeeper: Primarily engaged for service discovery and leader election
processes. Although historically employed for a broader range of functions, these have
since been transitioned to other mechanisms.

Each node type within the Druid architecture can be scaled independently, allowing for the
addition or removal of nodes without inducing system downtime. This flexibility is critical for
adapting to varying demands in storage, querying capabilities, or coordination. Druid's inherent
design automatically redistributes resources, ensuring that any added capacity is immediately
operational.

Druid's architecture is marked by a distributed design that efficiently partitions tables into
segments. This design not only balances these segments across servers but also swiftly
identifies the segments relevant to a specific query. Subsequently, it maximizes computational
efficiency by delegating extensive computational tasks to individual data nodes.

Moreover, Druid incorporates approximation methodologies in its operations. While it can
execute exact computations, the system often opts for approximations in processes like ranking,
histogram calculations, set operations, and count-distinct computations to enhance speed and
efficiency.

Using Apache Druid

Apache Druid features a dynamic data model that contrasts with the rigid schemas found in
traditional relational databases. During the data ingestion phase, Druid ingests data in formats
like JSON, CSV, or Parquet, allowing you to specify a schema that outlines dimensions for
filtering or grouping, metrics for quantitative analysis, and a timestamp column. This ingestion-
time schema definition introduces a flexible approach where different data sources within
Druid can have individualized schemas, accommodating a diverse range of data structures.
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Druid operates on a schema-on-read basis, applying the schema at query time rather than at the
time of data ingestion. This method offers adaptability and is capable of handling changes in the
data over time. Data in Druid is stored in segments with accompanying metadata detailing the
schema for the data they contain. Additionally, Druid's ingestion process supports rollup, a
summarization technique that pre-aggregates data, further influencing the schema by defining
how data is aggregated. The combination of these features enables Druid to provide real-time
analytics across varied data formats and structures with efficiency and flexibility.

Ingesting

To ingest data in druid you can either use streaming or batch ingesting, below we will focus
only on batch ingestion.

Batch ingestion in Apache Druid is a process suitable for loading large volumes of data not
required to be ingested in real-time. This method is often used for historical data loads or for
data sources that do not continuously generate data. Here is how you can perform batch
ingestion in Apache Druid. Bellow you can see the typical steps for batch ingestion:

1. Prepare Your Data: Make sure your data is in a format that Druid can read and
that is accessible to Druid.

2. Define an Ingestion Spec: Create a JSON ingestion spec file that tells Druid how
to read and ingest the data. This spec includes:

- "dataSchema’: Defines the dataSource name, the timestamp column,
dimensions, and metrics.

- "ioConfig’: Details about where the data is located (like type of input source, file
paths, etc.) and the input format (CSV, Parquet, JSON, etc.).

- "tuningConfig: Parameters to control the performance aspects of the ingestion
job (like memory settings, max rows per segment, etc.).

Example template for a batch ingestion spec:
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"type": "index_parallel®,
"spec": {
"dataSchema": {
"dataSource": "your-data-source-name",
"timestampSpec": {
"column": "timestamp",
"format": "auto"
3,
"dimensionsSpec": {
"dimensions": [

]
s

"metricsSpec": [

1
})
"ioConfig": {
"type": "index_parallel”,
"inputSource": {
"type": "local",
"baseDir": "path/to/data",
"filter": "your-data-file.*"
})

"inputFormat": {

}
3,
"tuningConfig": {

¥

Code Snippet 1. Ingestion Spec for Apache Druid

3. Submit the Task: Use Druid's console or REST API to submit the ingestion task.
This can be done with a command like the one used for streaming ingestion:

curl -X POST "Content-Type: application/json' @ingestion-spec.json

http://OVERLORD HOST:PORT/druid/indexer/v1/task

4. Monitor the Task: Monitor the status of the ingestion task in the Druid console or
via the API. Batch tasks can take a while to complete, especially for large datasets.

5. Querying Data: After the batch ingestion task is completed successfully, the data
will be available for querying in Druid.

When working with Apache Druid, it's important to ensure that your data conforms to Druid's
supported file formats for smooth ingestion. Performance tuning is a crucial step, particularly
for substantial datasets or when working with limited resources; it requires adjusting the
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ingestion tasks for the best possible performance. The data schema, defined during the
ingestion specification, must accurately reflect your data's structure to avoid inconsistencies.
For handling large datasets, data partitioning becomes vital. Efficient partitioning can
significantly enhance query performance in Druid. While Druid excels at real-time data
analysis, batch ingestion is an effective method for instances where immediate data visibility
isn't a necessity, allowing for the periodic processing of large data volumes for subsequent
analytics and reporting tasks.

Querying

In the realm of data querying using Apache Druid, practitioners have two primary methods at
their disposal: SQL-based queries and Druid Native queries. The flexibility of SQL, a widely
familiar querying language, is a significant advantage in this context. Queries formulated in SQL
are converted into Druid Native format for execution. This translation process allows users to
leverage their existing knowledge and pre-written SQL queries, facilitating a smoother
integration with Druid's data processing capabilities.

To illustrate, consider the following example: an SQL query designed to aggregate and order
data from the 'wikipedia' datasource is presented alongside its equivalent Druid Native query.
The SQL query:

“page”,
"countryName",
COUNT (*) "Edits"

"wikipedia"
1, 2
"Edits"

Code Snippet 2. SQL Query example

This is translated into the following Druid Native format:
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"queryType": "groupBy",
"dataSource": {
"type": "table",
"name": "wikipedia"
¥
"intervals": {
"type": "intervals",
"intervals": [
"-146136543-09-08T08:23:32.09672/146140482-04-24T15:36:27.903Z"

¥
"granularity": {
"type": "all"
}s
"dimensions": [
{
"type": "default",
"dimension": "page",
"outputName": "de",
"outputType": "STRING"

"type": "default",
"dimension": "countryName",
"outputName": "d1",
"outputType": "STRING"

1,

"aggregations":

{

ll_typell :
"name" :

1,
"limitSpec": {
"type": "default",
"columns": [
{
"dimension": "a@",
"direction": "descending",
"dimensionOrder": {
"type": "numeric"

Code Snippet 1. Analogues Ingestion Spec
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Additional examples further demonstrate the translation from SQL to Druid Native queries. For
instance, a SQL query retrieving sum aggregates of a specific field within a specified time
interval, grouped by multiple dimensions, and ordered descending, is seamlessly converted into
its corresponding Druid Native configuration. This process underscores the versatility of using
SQL as an entry point for Apache Druid, particularly for those already versed in SQL syntax and
logic.

The InfluxDB Database

In the realm of InfluxDB documentation, a multitude of installation methods are presented,
catering to diverse platforms such as Linux, Windows, Docker, Kubernetes, and even Raspberry
Pi. However, our focus will be narrowed to the realm of local development on a single Linux
server. [18] The outlined procedure focuses on utilizing systemd for service management. This
method is recommended for users seeking an automated approach to manage the InfluxDB
service. The installation involves:

a. Downloading the Package: Obtain the appropriate .deb or .rpm package from
the InfluxData downloads page. For instance, for Ubuntu/Debian AMD64, use:

curl -0 https://dl.influxdata.com/influxdb/releases/influxdb2 2.7.4-1 amd64.deb

b. Installing the Package: Utilize the distribution's package manager to install
InfluxDB. For Debian-based systems, use:

sudo dpkg -i influxdb2 2.7.4-1 amd64.deb

c. Starting the Service: Activate the InfluxDB service via:

sudo service influxdb start

d. Service Verification: Confirm the service status with:

sudo service influxdb status

Post-installation configuration may be necessary to align InfluxDB with specific system
requirements. This includes setting directory permissions and customizing the network
port (default: TCP port 8086). InfluxDB sends telemetry data to InfluxData by default.
To disable this, start InfluxDB with the --reporting-disabled flag. The initial setup
process includes creating an organization, a primary bucket, and an admin
authorization. Setup can be performed through the InfluxDB UI or CLI.
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The Influx Architecture

InfluxDB 3.0, formerly known as InfluxDB I0x, represents a significant evolution in
the realm of scalable databases, particularly in the context of time series data
management. Its architecture is characterized by its segmentation into four distinct
components, each responsible for a specific operational aspect: data ingestion, data
guerying, data compaction, and garbage collection. These components function
guasi-independently, underpinning the database's performance in both data loading
and querying processes. [15]
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Figure 2. InfluxDB architecture

The data ingestion process is facilitated through a component structure that includes
an Ingest Router and multiple Ingesters, allowing dynamic scalability in response to
varying data workloads. This component is crucial for the initial handling of incoming
data, which involves table identification, schema validation, data partitioning,
deduplication, and persistence. Data querying in InfluxDB 3.0 is handled by a Query
Router and Queriers. The Queriers are instrumental in executing query plans, which
involve metadata caching, data reading and caching, and deduplication processes.
This component is optimized to handle high query workloads efficiently.

The data compaction component is designed to address the challenges posed by the

creation of numerous small files during the ingestion phase. By compacting these

files into larger and non-overlapped files, the database enhances its query

performance. InfluxDB 3.0 incorporates a garbage collection mechanism to manage
29



data retention and space reclamation. This process involves the scheduling of
background jobs for soft and hard deletion of data.

The architecture of InfluxDB 3.0 includes two primary storage types: Catalog and
Object Storage. The Catalog is dedicated to cluster metadata, while Object Storage,
which can be integrated with systems like Amazon AWS S3, is used for storing
actual data. InfluxDB 3.0's cluster operation is distinguished by its use of dedicated
computational resources and the potential for operating on single or multiple
Kubernetes clusters. This approach is pivotal in ensuring the isolation of clusters to
mitigate "noisy neighbor" issues and enhance reliability.

Using InfluxDB

InfluxDB, with its diverse range of data ingestion options, stands as a pivotal tool in modern
data management and analysis. The database supports several methods including Influx user
interface (UI), HTTP AP], influx CLI, Telegraf, and client libraries. Understanding these methods,
particularly the line protocol, is vital for effective data handling in InfluxDB.

Line protocol is the cornerstone of data writing in InfluxDB. It is a text-based format that
structures data points for InfluxDB. The protocol contains essential elements: measurement, tag
set, field set, and timestamp. Each element plays a critical role in defining and organizing data in
the database.

The elements of Line Protocol include the Measurement, which is a string identifying the data's
measurement; the Tag Set, comprising key-value pairs used for indexing and querying; the Field
Set, containing key-value pairs that hold the data values; and the Timestamp, a Unix timestamp
that provides the time context for the data. Parsing Line Protocol elements involves determining
the measurement from the text before the first comma, extracting tag sets from key-value pairs
following the measurement, identifying field sets between the first and second whitespace, and
recognizing timestamps as the integer values after the second whitespace.

Constructing line protocol involves understanding its syntax and structure. For example, in a
home sensor data scenario measuring temperature, humidity, and carbon monoxide, the line
protocol is structured as follows:

home, room=Living\ Room temp=21.1,hum=35.9,co0=01 1641024000

Here, 'home' is the measurement, 'room' is a tag, and 'temp’, 'hum’, and 'co’ are field sets with
respective values and a timestamp.

Various methods for writing data in line protocol format to InfluxDB include using the InfluxDB
Ul for a graphical interface, the influx CLI for command-line interaction, and the InfluxDB API

for data writing via HTTP requests.

An example using cURL for the InfluxDB API:

30



curl POST
"http://localhost:8086/api/v2/write?org=myOrg&bucket=myBucket&precision=s" \

"Authorization: Token myToken" \
"home, room=Living\ Room temp=21.1,hum=35.9,c0=0i 1641024000"

InfluxDB offers a range of tools for querying data, crucial for extracting meaningful insights
from time series datasets. The document discusses the use of both the Flux language, designed
specifically for InfluxDB and other data sources, and InfluxQL, a SQL-like query language
tailored for time series data in InfluxDB.

Flux, a functional scripting language, provides flexibility and power in querying and processing
data from InfluxDB. Key functions in Flux include from(), for data retrieval, range(), for time-
bound data filtering, and filter(), for column value-based data filtering. Flux utilizes a pipe-
forward operator (|>) for seamless function chaining and Flux queries can be executed through
the InfluxDB U], influx CL], or InfluxDB API. A typical Flux query might look like this:

from(bucket: "get-started")
|> range(start: 2022-01-01T08:00:00Z, stop: 2022-01-01T20:00:01Z7)

|> filter(fn: (r) => r._measurement == "home")
|> filter(fn: (r) => r._field == "co" or r._field == "hum" or r._field ==

On the other hand InfluxQL offers a SQL-like experience for querying time series data from
InfluxDB, especially suitable for versions 0.x and 1.x of InfluxDB. Basic InfluxQL queries involve
SELECT, FROM, and optional WHERE clauses. An example of an InfluxQL query:

co, hum, temp, room "get-started".autogen.home
01-01T08:00:00Z' <= '2022-01-01T720:00:00Z'

InfluxQL queries can also be executed via the influx CLI or InfluxDB API. An example using the
InfluxDB API:

"http://localhost:8086/query?org=myOrg&bucket=get-started" \
"Authorization: Token myToken" \

"q=SELECT co, hum, temp, room FROM home WHERE time >= '2022-01-
01708:00:00Z' AND time <= '2022-01-01T20:00:00Z"'"

Data processing in Flux often involves the map() function, which iterates over each data row,
allowing for value updates or transformations. An example of the map() function, applied to
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humidity data:
from(bucket: "get-started")
|> range(start: 2022-01-01T708:00:00Z, stop: 2022-01-01T20:00:017)

|> filter(fn: (r) => r._measurement == "home")
|> filter(fn: (r) => r._field == "hum")
|> map(fn: (r) => ({r with _value: r. value / 100.0}))

The group() function in Flux is used to regroup data by specific column values, preparing it for
subsequent processing steps. An example using the group() function:
from(bucket: "get-started")

|> range(start: 2022-01-01T08:00:00Z, stop: 2022-01-01T20:00:017)

|> filter(fn: (r) => r._measurement == "home")

|> group(columns: ["room", " field"])

Flux offers aggregate and selector functions to condense or pinpoint specific data from input
tables. Using mean() to calculate the average temperature:
from(bucket: "get-started")

|> range(start: 2022-01-01T08:00:00Z, stop: 2022-01-01T20:00:017)

|> filter(fn: (r) => r._measurement == "home")

|> filter(fn: (r) => r._field == "temp")

| > mean()

For users accustomed to relational databases, Flux provides the pivot() function to transform
data into a more familiar relational schema. Pivoting temperature data in a kitchen:
from(bucket: "get-started")

|> range(start: 2022-01-01T714:00:00Z, stop: 2022-01-01T20:00:01Z)

|> filter(fn: (r) => r._measurement == "home")

|> filter(fn: (r) => r._field == "temp")

|> pivot(rowKey: [" time"], columnKey: [" field"], valueColumn: " value")

Downsampling, a strategy to reduce the volume of data while preserving trends, is
accomplished using functions like aggregateWindow(). Downsampling temperature data over
two-hour windows:
from(bucket: "get-started")

|> range(start: 2022-01-01T14:00:00Z, stop: 2022-01-01T20:00:01Z)

|> filter(fn: (r) => r._measurement == "home")
|> filter(fn: (r) => r._field == "temp")
| > aggregateWindow(every: 2h, fn: mean)
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InfluxDB tasks allow for the scheduling of queries, automating data processing operations.
These tasks can perform various operations described earlier and write the results back to
InfluxDB.
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Problem statement

In the rapidly evolving world of energy management, handling extensive and complex
data efficiently is crucial. This chapter delves into the specific challenges faced when
managing large-scale energy data using traditional SQL databases and explores the
potential advantages of transitioning to a time series database (TSDB). The focus of our
investigation is on a typical dataset of open data for energy markets, available from
ENTSO-E via ftp and API, namely "Actual Total Load". This dataset offers the energy
(MWh) consumed in European markets. Every month, a new file containing the total
load values is offered via ftp. Every day, new lines are added containing data of the
previous day for all European energy markets, at various time resolutions (60, 30, or 15
min) and the size of the file grows, until the end of the month where it reaches its
maximum size (around 300 MB, 3219201 lines). Important to note is that the number of
rows increases close to linearly based on the date of the month because each file has a
complete record from the start of the month until the date mentioned on the file. Below
you can see said pattern where the number of rows increases until the 30th of April and

drops suddenly.
File Name Date Line Count
20230425_2023_04_ActualTotalLoad_6.1.A | 2023/04/25 95498
20230426_2023_04_ActualTotalLoad_6.1.A | 2023/04/26 113835
20230427_2023_04_ActualTotalLoad_6.1.A | 2023/04/27 118325
20230428_2023_04_ActualTotalLoad_6.1.A | 2023/04/28 122925
20230429_2023_04_ActualTotalLoad_6.1.A | 2023/04/29 135161
20230430_2023_04_ActualTotalLoad_6.1.A | 2023/04/30 139659
20230502_2023_05_ActualTotalLoad_6.1.A | 2023/05/02 3583
20230503_2023_05_ActualTotalLoad_6.1.A | 2023/05/03 9265
20230504_2023_05_ActualTotalLoad_6.1.A | 2023/05/04 13818
20230505_2023_05_ActualTotalLoad_6.1.A | 2023/05/05 18375
20230506_2023_05_ActualTotalLoad_6.1.A | 2023/05/06 22939

However, it is common that values may be missing or modified in some next iteration,
due to inherent deficiencies of the data collection mechanism of ENTSO-E. This
introduces considerable performance challenges for any party collecting such data and
maintaining an up-to-date database. Below is the representation of the size of this file

for our 49-day window of study, from 24 April 2023 to 13 June 2023.
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File Sizes Over Time
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Figure 3: File Size to Date Comparison

Data Characteristics and Challenges

The dataset under consideration includes entries with various attributes like DateTime,
ResolutionCode, AreaCode, and TotalLoadValue. Each entry represents a unique time
slot's energy load. The primary challenge in SQL is the labor-intensive process of gap
filling and aggregating data. These operations are not only complex but also inefficient
in terms of performance. A typical Relational DB schema for the "Actual Total Load"
dataset is shown in Figure 1 (source: diem-platform.com). In this section, we shall delve
deeper into the intricacies and challenges associated with the dataset in question.
Subsequent paragraphs will elucidate through illustrative diagrams the modalities of
data transmission from the ENTSO-E system.
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Figure 4. Data series and dimensions for raw data to be imported.

Figure 5. exemplifies the structural composition of the dataset. It commences with a
type of reference, succeeded by the reference itself, culminating in a sequential
aggregation of data points. Each datum is characterized by a distinct resolution, a
timestamp, and a corresponding value. Our methodology entails the acquisition of data
batches on a daily cadence, each batch encompassing updated values commencing from
the onset of the respective month.
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Figure 5. Demonstration of Holes of Missing and Addition to Fil those Holes

It is noteworthy that the initial day's dataset may exhibit lacunae in data representation.
However, these gaps are progressively ameliorated in the datasets of the ensuing days.
as shown Figure 5
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Figure 6. Missing Data Added and Existing Data Updated

Subsequent data batches witness periodic updates in certain values. The dataset,
expansive with approximately 3 million lines, intrinsically comprises a mere 100,000
unique additions and 20,000 modifications. This significant disparity in data
composition may well account for the observed divergence in performance metrics
between the MySQL and TSDB systems. This is shown in Figure 6.

In the following table, we present a detailed breakdown of the daily data transactions,
encompassing additions and edits, as extracted from the dataset. This tabular
representation is a direct quantitative articulation of the data handling dynamics within

the system.
Table 1 the numerical characteristics of the data
SIZE AFTER ADDITIONS EDITS
25/4/2023 28827 28827 0
26/4/2023 34325 5498 1279
27/4/2023 35674 1349 595
28/4/2023 37061 1387 675
29/4/2023 40983 3922 460
30/4/2023 42330 1347 1070
2/5/2023 1072 1072 0
3/5/2023 2775 1703 236
4/5/2023 4141 1366 442
5/5/2023 5508 1367 357
6/5/2023 6877 1369 331
7/5/2023 8246 1369 361
8/5/2023 9615 1369 255

38




SIZE AFTER ADDITIONS EDITS
9/5/2023 10982 1367 471
10/5/2023 12349 1367 434
11/5/2023 13700 1351 545
12/5/2023 15079 1379 452
13/5/2023 16455 1376 469
14/5/2023 17817 1362 812
15/5/2023 19161 1344 544
16/5/2023 20490 1329 600
17/5/2023 21762 1272 364
18/5/2023 23021 1259 442
19/5/2023 24290 1269 373
20/5/2023 25537 1247 452
21/5/2023 26788 1251 703
22/5/2023 28086 1298 282
23/5/2023 30223 2137 432
24/5/2023 31767 1544 400
25/5/2023 33221 1454 424
26/5/2023 34695 1474 1789
27/5/2023 36194 1499 422
28/5/2023 37669 1475 915
29/5/2023 39141 1472 381
30/5/2023 40618 1477 627
31/5/2023 41685 1067 655
1/6/2023 64 64 0
2/6/2023 1460 1396 3
3/6/2023 2933 1473 367
4/6/2023 4290 1357 295
5/6/2023 5608 1318 253
6/6/2023 7178 1570 398
7/6/2023 8593 1415 368
8/6/2023 10006 1413 353
9/6/2023 11410 1404 305
10/6/2023 12837 1427 380
11/6/2023 12837 1305 340
12/6/2023 15581 1439 315
13/6/2023 17084 1503 494
TOTAL 968045 101099 22920

The last entry in the table, with a size of 968,045, adds up to 101,099 and edits
amounting to 22,920, encapsulates the cumulative transactions throughout the dataset's
lifecycle. This cumulative figure underscores the substantial volume of additions and the
fewer, yet significant, number of edits. Such a distribution of additions and edits
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provides an insightful glimpse into the dynamic nature of the dataset and potentially
influences the differential performance between MySQL and TSDB system:s.

Experiment Setup and Configurations

The experiment conducted to compare the performance of SQL databases and Time
Series Databases (TSDBs) involved a detailed setup across three distinct scenarios. Each
scenario was executed on identical servers with 16GB RAM and 4 cores. The first
scenario tested empty databases with new data added to an empty table. The second
scenario involved databases pre-filled with extensive historical data, comprising 200
tables of 120 months, with new data added to an empty table within this setup. Finally,
the third scenario also used databases filled with historical data but added new data to a
full table already containing 120 months of data. Performance metrics for these tests
included data ingestion response time and query latency.

In the comparative analysis, identical operations were performed in both SQL and the
chosen TSDB to assess how each database managed data ingestion and querying under
various levels of data volume. A significant focus of the analysis was on the ease of data
handling, comparing the need for additional scripting and data transformation in SQL
with the more streamlined approach offered by TSDBs. The study aimed to determine if
TSDBs could offer at least double the performance efficiency compared to SQL
databases. Key aspects of the findings included the broader implications for operational
efficiency and potential cost savings, particularly in the energy sector. The study
summarized insights into the advantages of using TSDBs for large-scale energy data
management and explored the prospects of TSDBs in managing the increasing volume
and complexity of data in various industries.
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MySQL Baseline

In our comprehensive study, we embarked on a rigorous evaluation of a MySQL system,
carefully configured to mirror a fully loaded database that spans 120 months (about 10
years) of historical data. This meticulous configuration was essential to ensure that our
baseline measurements were both accurate and relevant. The primary goal was to
evaluate this system's performance under varying conditions, specifically focusing on

scenarios with and without indexing. This dual approach was critical in providing a
holistic understanding of MySQL's capabilities in different operational settings.
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To ensure a fair and consistent comparative analysis, we loaded the MySQL system with
the same dataset to the one used in our Time Series Database (TSBD) assessments. This
parity in data characteristics was crucial in eliminating any variables that could

potentially bias our results. A particularly interesting finding was an observed
correlation between the file size and various performance metrics. This correlation held
true across different file sizes, with the notable exception of smaller files. These smaller
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files appear as "anomalies” in our graph depicting the time consumed to process per
1000 lines; however, this discussion is out of scope of this thesis, as the performance in
this case depends on low-level service and systems architectures.

MySQL Time per 1000 lines (milliseconds/1000 lines) and File Sizes Over Time
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Figure 8 MySQL Time per 1000 Lines and File Sizes Over Time

Moreover, a key highlight of our findings was the average enhancement in processing
speed observed when the system operated without indexing. This improvement was
quantified at an average of 14.61%, with a standard deviation of 5.23%. This significant
increase in speed underscores the impact of indexing on MySQL's performance, which
probably stands for other RDBMSs as well.
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MySQL Measurement (seconds) and File Sizes Over Time
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Below we also have the same data in table form with the measurements in ms.
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Figure 9 MySQL Measurements and File Sizes Over Time
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13/5 5222.4 4932.8 4228.7

14/5 5632 5197.9 4644
15/5 6041.6 5693.2 4799.1
16/5 6451.2 5938.9 5068.6
17/5 6860.8 6330.8 5318
18/5 7270.4 6799.1 5855.4
19/5 7680 7185.4 6013.3
20/5 8089.6 7500.7 6218.5
21/5 8499.2 7920.2 6801.1
22/5 8908.8 8090.9 6804.2
23/5 9523.2 8822.6 7330.5
24/5 10035.2 9237.5 7995
25/5 11264 9965.9 8090.8
26/5 11264 10098.3 8423.5
2715 12288 10504.8 8702.3
28/5 12288 11170.1 9227.5
29/5 12288 11334.1 9529.1
30/5 13312 11988.5 10468.7
31/5 13312 12352 10248.2
1/6 28 853.8 868.1
2/6 460 1412.9 1021.3
3/6 920 1613.68 1322.6
4/6 1433.6 1893.5 1599.39
5/6 1843.2 2296.5 1890.1
6/6 2252.8 2565.2 2229.4
716 2764.8 3183.8 2497.7
8/6 3174.4 3475.1 2896.7
9/6 3584 3879 3279.4
10/6 4096 4164.3 3502.2
11/6 4096 4168.2 3446
12/6 4915.2 4801.1 4196.7
13/6 5427.2 5270.7 4543.9
Average 6339.820408 5924.501429 5041.048571
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Measurement Methodology and
Results for InfluxDB and Apache

Druid

Data organization in a non-relational DBMS is always a challenge, especially for those
experienced in traditional database design. In our initial attempts using Druid, we
adopted a strategy of storing data for each country into separate collections (tables).
However, this approach proved to be markedly inefficient. We observed that the time
required to process data for a single country was comparable to that needed for
incorporating data from all countries into a unified table. This led us to an important
realization: the time consumed in filtering data by area name is equivalent to the time
taken to add a row to the table. Consequently, we shifted our methodology towards a
more consolidated data management approach.
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Figure 10 UML Diagram: Data Management via Separate Tables Approach

The structural differences between the two methodologies are shown through our UML
diagrams. In the separate tables approach, the primary 'for loop' iterates over each
country, creating individual tables, which is then followed by a secondary loop
processing the data within each country. This structure, while conceptually
straightforward, introduces significant redundancy and processing overhead.
Conversely, the consolidated approach reverses these loops. Here, the primary loop
processes the data entries, and within this loop, a secondary iteration filters the data by
country. This inversion significantly streamlines the data handling process, reducing the
computational load, and enhancing efficiency. The reversed loop structure in the
consolidated model is not just a syntactical change but represents a fundamental shift in
how data is organized and processed, as clearly depicted in the corresponding UML
diagram.
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Figure 11. UML activity diagram - consolidated data management flow

Testing Scenarios

In this section, we explore the system's performance through three scenarios, designed
especially for this purpose. These scenarios simulate different states of the database,
offering insights into the system's efficiency and scalability. The process, as illustrated in
the Activity Diagram, is straightforward, particularly focusing on operations in InfluxDB.

The core of our methodology is a Python script comprising three pivotal functions that
manage the data flow from file sources to InfluxDB. The first function,
ingest_and_log_for_all_in_one, serves as the orchestration hub. It iterates over various file
locations, performing a series of operations on each file. These operations include
reading and ingesting data from the files into the database, querying the database,
calculating data differences across queries, and updating reference tables for the next
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iteration.

ingest_and_log for_all in one(input_file_locations, my_measurement_name,
table before, temp output dir):
for input_file location in input_file_locations:
file in_that location =
get dir location_and return_the only file in that location(input file location)
ingest _duration = ingest _data(file_in_that_location,my measurement_name)

table_after, query_duration = query_table(measurement_name)

derive addition_deletions_edits(table_after, table before)

table before = copy.deepcopy(table after)

Code Snippet 3. The ingest_and_log_for_all_in_one function.

The second function, ingest_data, is dedicated to ingesting data from a file into InfluxDB.
This function performs multiple tasks including reading and cleaning the CSV files by
removing unnecessary columns and setting an appropriate index. It then establishes a
connection with InfluxDB and writes the data into it. The duration of this operation is
measured and returned in milliseconds, providing valuable metrics for performance
analysis.

ingest _data(input_file location, my_measurement_name=measurement_name):

df = pd.read_csv(input_file location, delimiter='\t')

df.drop(columns=[ 'ResolutionCode’, 'AreaCode’', 'MapCode’, ‘'UpdateTime’],
inplace= )

df.set_index('DateTime', inplace= )

with InfluxDBClient(url=url, token=token, org=org) as client:

with client.write_api(write_options=SYNCHRONOUS) as write_api:
t1l start = perf_counter()

write api.write(bucket, org=org
record=df,
data_frame_measurement name=my_measurement_ name,
data_frame_tag columns=[ 'AreaName', 'AreaTypeCode'],
data_frame_field columns=['TotallLoadValue'],

)

return int(perf_counter - t1 start)

Code Snippet 4. The ingest_data function.

In the third function, query_table, the script queries data from InfluxDB. This function
involves constructing and executing a Flux query that selects data based on specific
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criteria and performs aggregation. The execution time of this query is measured, and the
function returns both the query results and the time taken in milliseconds.

query_table(measurement_name_f=measurement_name):
with InfluxDBClient(url=url, token=token, org=org) as client:

query api = client.query_api()

query = R

from(bucket: "bucketl")

|> range(start: {start}, stop: {stop})

filter(fn: (r) => r["_measurement"] == "{measurement_name}")
filter(fn: (r) => r["_field"] == "{total_load_value}")
filter(fn: (r) => r["AreaTypeCode"] == "CTY")
aggregateWindow(every: 15m, fn: last, createEmpty: false)
yield(name: "last")

start_time = perf_counter()
result = query_api.query csv(query)
diff time = perf _counter() - start time

response = []
for record in result:
response.append({'__time': record[5], 'AreaName': record[7],
'TotalLoadValue': record[6]})

return response[4:], int((diff _time) * 1000)

Code Snippet 5. The query_table function for InfluxDB.

For Apache Druid, the process remains similar, with modifications in the ingest and
query functions to suit the Druid framework. Our testing utilizes a specific ingestion
specification, tailored for the Druid environment.
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INGESTION_SPEC_FOR_ALL_IN_ONE
"type": "index_parallel”,
"spec": {
"ioConfig": {
"type": "index_parallel™,
"inputSource": {
"type": "local",
"baseDir": FILE_ FOLDER,
"filter": "*"
s
"inputFormat": {
"type": "tsv",
"findColumnsFromHeader" :

s
"appendToExisting":

})
"tuningConfig": {
"type": "index parallel",
"partitionsSpec": {
"type": "dynamic"

3
"dataSchema": {

"dataSource": "please_specify",
"timestampSpec": {
"column": "\ufeffDateTime",
"format": "auto"
}s
"metricsSpec": [
{
"type": "doubleSum",
"name": METRIC_NAME,
"fieldName": METRIC_NAME

1,
"dimensionsSpec": {
"dimensions": [
"AreaName"

}s

"granularitySpec": {
"queryGranularity": "none",
"rollup": h
"segmentGranularity"”: "month"

},
Code Snippet 6. Ingestion Spec Used For Druid.
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The Druid version of the query table function executes SQL queries on the Druid
database, using the HTTP POST method to send the query to the Druid SQL endpoint. It
processes the query, receives the response in JSON format, and calculates the query
duration in milliseconds.

query table(data_source name,):

endpoint = "/druid/v2/sql"
http_method = "POST"

payload = json.dumps({
"query": "SELECT * FROM " + data_source name
})

response = requests.request(
http method, druid host + endpoint, headers=headers, data=payload,
timeout=60)

response_json = response.json()
delta = response.elapsed.microseconds * 0.001
return response_json, int(delta)

Code Snippet 7. The query_table function for Druid.

Similarly, the ingest_data_using_file_location function in Druid ingests data using
provided file locations. It sends a POST request with a detailed ingestion specification to
the Druid ingestion endpoint. The function then monitors the ingestion task's status
until completion and returns the duration of the task, providing a measure of the
ingestion process's efficiency.
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ingest_data using file location(input_file location, ingestion_spec):
http_method = "POST"

endpoint = "/druid/indexer/v1/task"

headers = {'Content-Type': 'application/json'}

spec = copy.deepcopy(ingestion_spec)
spec[ 'spec' ][ 'ioConfig"' ][ 'inputSource']['baseDir'] = input_file_ location

payload = json.dumps(spec)
ingestion_task _id response = requests.request(

http_method, DRUID HOST+endpoint, headers=headers, data=payload,
timeout=60)

ingestion task id = json.loads(ingestion task id response.text)['task']

endpoint = f"/druid/indexer/v1/task/{ingestion_task id}/status"

http_method = "GET"
payload = headers = {}

response = requests.request(
http_method, DRUID HOST+endpoint, headers=headers, data=payload)

ingestion_status = json.loads(response.text)['status']['status’]

while ingestion_status != "SUCCESS":
response = requests.request(
http method, DRUID HOST+endpoint, headers=headers, data=payload)
ingestion_status = json.loads(response.text)['status']['status']
time.sleep(1)

return json.loads(response.text)['status']['duration’]

Code Snippet 8. The function to Insert data to Apache Druid using the API.
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InfluxDB and Apache Druid Schema Structure

In InfluxDB, a dedicated time-series database, the schema is intricately designed to
optimize data storage and query performance for time-series data. This schema
comprises several components. The 'Measurement' is akin to a table in traditional
relational databases and represents a collection of data points. For example,
'my_measurement_name' denotes the name of the measurement. 'Tags' serve as indexed
metadata, crucial for efficient querying. Examples of tags include '‘AreaName' and
'AreaTypeCode’, both string types, which facilitate effective data querying. 'Fields'
represent the actual data values, such as 'TotalLoadValue', a numeric type indicating the
metric or measurement that changes over time. Lastly, the 'Timestamp' is implicitly
managed by InfluxDB and can originate from the DataFrame or the server timestamp at
the time of data ingestion.

Component Name Data Type Description

Measurement my_measurement_ | - Name of the

name measurement
(analogous to table
name in relational
databases)

Tag AreaName String Indexed metadata,
used for efficiently
querying data

Tag AreaTypeCode String Indexed metadata,
used for efficiently
querying data

Field TotalLoadValue Numeric Actual data value,
the metric or
measurement that
changes over time

Timestamp - DateTime Automatically
managed by
InfluxDB; either
from the
DataFrame or
server timestamp
at ingestion time

Apache Druid, another time-series database, features a schema organization tailored for
high-speed data aggregation and intricate analytical queries. It diverges slightly from
InfluxDB's design. The 'DataSource' in Druid is equivalent to a table or measurement in
other databases and stores sets of related data points, like 'my_measurement_name".
'Dimensions’, like InfluxDB's tags, are used for filtering, grouping, and aggregation. They
include 'AreaName' and 'AreaTypeCode’, both of which are string types. 'Metrics' in
Druid are numerical measurements intended for analysis, with 'TotalLoadValue' (a float
type) exemplifying this, supporting various metrics such as count, sum, min, and max. A
unique aspect of Druid's schema is the 'Timestamp’, a special column named '__time'
used to partition and sort data.
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Component

Name

Data Type

Description

DataSource

my_measurement_
name

Equivalent to a
table in traditional
databases; stores a
set of related data
points

Dimension

AreaName

String

Used for filtering,
grouping, and
aggregation. Like
tags in InfluxDB

Dimension

AreaTypeCode

String

Used for filtering,
grouping, and
aggregation. Like
tags in InfluxDB

Metric

TotalLoadValue

Float

A quantitative
measurement.
Druid supports
various metric
types like count,
sum, min, max, etc.

Timestamp

__time

DateTime

A special column in
Druid that is used
to partition and
sort the data

Performance Testing Scenarios and Measurements

To evaluate the performance of these databases, three distinct scenarios were
considered. The first, 'Fresh System Installation' (shown in the diagrams as empty),
tests the system with an empty database following installation, establishing a baseline
performance metric. The second scenario, 'Loaded Database on a New Table’, involves a
database laden with substantial historical data - 200 tables each holding 120 months of
data, totaling approximately 80GB and 340 million entries. However, operations in this
scenario are performed on a new, empty table (this is labeled as full-empty). The final
scenario, 'Loaded Database on an Existing Table', is like the second but involves
executing operations on a table already containing 1.6 million lines of historical data
table (this is labeled as full).

For the TSDB the measurements were taken by either sending requests to the database
and waiting for the response and timing the time difference with the python
performance counter package[20] or by logging the reported time by the databases
themselves. We found that the values between the 2 were almost identical.

DRUID MEASUREMENTS

In the accompanying figure, we present a graphical representation of query
performance after the incorporation of each data file. The horizontal axis (x-axis)
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delineates the date corresponding to each file, offering a temporal context. Vertically (y-
axis), we display the duration required to execute a query on the table, which has been
progressively augmented with the respective data files. To furnish a comparative
perspective, we have superimposed an additional layer of data indicating the size of
each file. This layered approach facilitates a comprehensive analysis of the correlation
between file size and query performance over time.
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Figure 12. Druid Query Performance

The graphical representation reveals fluctuations within the line, indicative of variations
in the data. However, a closer examination reveals the absence of a discernible,
significant trend in these variations. Furthermore, the data does not demonstrate a
consistent pattern where any specific scenario persistently outperforms or
underperforms relative to the others. This suggests a lack of strong correlation or
causative factors influencing the performance metrics across the different scenarios
represented.

In the subsequent graphical depiction, we focus on the performance metrics pertinent to
data ingestion. A discernible correlation emerges between the size of the data files and
the ingestion performance. Notably, the graph exhibits distinct inflection points
coinciding with the commencement of new months, where the file sizes are observed to
decrease. This phenomenon introduces a step-like pattern in the performance curve.
Despite these observations, it is important to note that no significant difference in
ingestion performance is evident when comparing scenarios with empty databases to
those with databases at or near capacity. This lack of differentiation suggests that
database fullness does not markedly influence the efficiency of data ingestion under the
conditions studied.
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Druid Ingestion Performance

7000 4 —— Druid_Full_Empty_Ingestion Line Counts (Thousands)
Druid_Empty_Ingestion

—— Druid_Full_Ingestion

6500

6000 -

5500 A

5000 -

Measurement Values (ms}

p
=t

4500 -

4000 -

r 100

3500

T T T T T T — 0
2023-05-01 2023-05-08 2023-05-15 2023-05-22 2023-06-01 2023-06-08 2023-06-15
Date

Figure 13. Druid Ingestion Performance

In the forthcoming enhancement of graphical analysis, we incorporate SQL performance
metrics for a comparative evaluation with the previously examined data ingestion
framework. The augmented graph elucidates a notable trend: for smaller data inputs,
SQL demonstrates superior efficiency in data ingestion. However, this dynamic alters as
the size of the data escalates. Beyond a certain threshold of data volume, the ingestion
capabilities of the alternative system, Druid, begin to surpass those of SQL. This
transition marks a critical inflection point where the relative performance advantage
shifts. It becomes apparent that with increasing data sizes, the Druid system exhibits
enhanced ingestion speeds, outperforming SQL. This observation underscores the
scalability and efficiency of the Druid system in handling larger datasets, as compared to
the SQL framework.
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Figure 14. Druid Ingestion Performance vs MySQL
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INFLUX MEASUREMENTS

In the provided analysis, we delve into the query performance characteristics of
InfluxDB, particularly focusing on the impact of database and table occupancy levels.
The data distinctly indicates a variation in performance contingent upon whether the
database and the table are empty or full. This distinction is evident in two separate
scenarios: one where the database is full, and another where the table within the
database is full. Quantitatively, performance degradation can be characterized by an
average increase in response time. Specifically, there is an average increment of 3
milliseconds attributed to the presence of a fully populated database, and an additional
increase of 3 milliseconds when the table itself is full. This cumulative impact of 6
milliseconds underscores the sensitivity of InfluxDB's query performance to both
database and table occupancy levels, providing valuable insights into its operational
efficiency under varying data storage conditions.

InfluxDB Query Performance
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Figure 15. InfluxDB Query Performance

In our analysis of the ingestion performance, a strikingly linear relationship emerges,
aligning precisely with the size of the files being ingested. This correlation is
represented by a consistently straight line in the graphical depiction, indicating a direct
proportionality between file size and ingestion performance metrics. However, it is
noteworthy that this relationship appears invariant across different scenarios.
Regardless of the varying conditions or parameters under which ingestion occurs, there
is no perceivable deviation in the performance trend. This uniformity suggests a
robustness in the ingestion process, where performance is predominantly dictated by
file size, unaffected by other potential variables or operational scenarios.
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InfluxDB Ingestion Performance
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Figure 16. InfluxDB Ingestion Performance

With the introduction of SQL into our comparative analysis, a significant shift in the
performance landscape is observed. The graphical representation now reveals a marked
disparity in ingestion performance between SQL and InfluxDB. This difference is not
marginal but rather spans two orders of magnitude. Specifically, SQL's ingestion times
hover around the 12-second mark. In stark contrast, InfluxDB demonstrates a more
efficient performance, with ingestion times averaging around 120 milliseconds. This
substantial disparity highlights the vastly superior ingestion efficiency of InfluxDB over
SQL in the examined scenarios, providing a clear indication of its potential for high-
speed data handling and processing capabilities.
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Figure 17. InfluxDB Ingestion Performance vs MySQL
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Comparing the Results

To effectively represent the comparison of two time series databases (TSDBs) in
graphical form, focusing on InfluxDB and another TSDB, we can create two distinct types
of plots:

Query Performance Graph: This graph will compare the query performance of InfluxDB
with Apache Druid. Here, we can use a line graph or bar chart where the Y-axis
represents the time taken for queries and the X-axis represents different query
scenarios. InfluxDB's line or bars would be consistently lower on the graph, indicating
better (faster) performance.
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Druid vs InfluxDB Query Performance
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Figure 18. Druid vs InfluxDB Query Performance

Ingestion Performance Graph: Like the query performance graph, this one will focus on
the ingestion performance, which is the speed and efficiency with which the databases
can ingest or input data. Again, a line graph or bar chart would work well, with the Y-
axis showing the time taken for data ingestion and the X-axis representing various data
ingestion scenarios. InfluxDB would again demonstrate superiority by having lower
values on the graph.

MySQL joins the comparison alongside Apache Druid and InfluxDB. Throughout the
range of tests conducted, InfluxDB consistently outperforms the others, maintaining the
lead in speed. Apache Druid, on average, ranks second in terms of performance, while
MySQL typically falls behind, occupying the last position in this comparative study.

Druid vs InfluxDB vs MySQL Ingestion Performance
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Figure 19. Druid vs InfluxDB Ingestion Performance

Below we have also the data from the table above.
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Integrating Time Series Databases in
Distributed Architectures:
Enhancing legacy Systems

Having explained the performance improvements gained by Time Series Databases
(TSDBs) over traditional MySQL databases, this thesis now pivots to explore their
integration within distributed architectures. Specifically, the discourse will focus on
pragmatic methodologies for upgrading existing operational systems employing TSDBs.
This investigation delves into two distinct upgrade paths: firstly, the substitution of our
current data warehouse with a TSDB, and secondly, a more holistic approach where
both the data warehouse and the existing relational database are replaced with a unified
TSDB solution.

The following section outlines the comprehensive legacy software architecture deployed
for the acquisition, processing, and distribution of energy market data. The architecture
is designed to facilitate robust data management practices and to provide a streamlined
interface for front-end applications to interact with the underlying data structures. The
system is organized into various components, each tailored to handle specific aspects of
the data lifecycle.
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Figure 20 The Legacy System

Front-End Application Interface

At the top of the architecture resides the Front-End Application Interface, which
provides an interactive user interface for clients. It is engineered to communicate with
the Energy Markets Data API, which acts as a mediator between the user-facing side of
the system and the data management layers.

Energy Markets Data APl (EMD API)

The EMD API serves as a gateway, allowing the front-end application to request and
receive energy market data. This API is pivotal in abstracting the complexity of the
underlying data management processes, providing a simplified and coherent data access
layer for the application.

Data Management Components

Object-Relational Mapping (ORM) Data Access:

This component utilizes an ORM framework to facilitate interaction with the database. It
translates data between the incompatible type systems of relational databases and
object-oriented programming languages, thereby streamlining database interactions.

Relational Database Management System (RDBMS - MySQL):
At the heart of the data storage mechanism is the RDBMS, with MySQL employed as the
database system. It is responsible for the secure and efficient storage of structured data.
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APIs Based on SQL Views with Parameters:

The APIs are augmented with parameterized SQL views, enabling dynamic and flexible
data querying capabilities. This feature allows users to tailor their data requests to
specific needs and contexts.

Data Processing and Warehousing

Special emphasis should be put on the complexity and challenges associated with the
Data Warehousing (DW) component. This aspect significantly influences our preference
for integrating a TSDB into our system. The DW component, as it currently stands,
presents several drawbacks: it is computationally intensive, prone to errors when
managed manually, and imposes a performance penalty that hasn't been adequately
measured in the rest of this paper. These issues further weaken the case for a purely
relational solution. One of the critical limitations of traditional DW is its rigidity in data
aggregation. For instance, aggregating data to a specific time window (such as 15 or 30
minutes) is notably slower and lacks flexibility. In contrast, a TSDB allows for efficient
and dynamic aggregation over various time windows. With a conventional DW,
decisions about data aggregation need to be made in advance. Any subsequent changes
require time-consuming migration operations. Moreover, time series databases
inherently accommodate updates to individual values or specific time ranges, which is
an essential feature for our system's efficiency and adaptability. This capability further
underscores the advantages of a TSDB over traditional data warehousing solutions.

Data Warehouse Updater (DW Updater):

A critical component in the data warehousing segment is the DW Updater. It is tasked
with the processing and cleansing of raw, 'dirty’ data, transforming it into a refined
format suitable for analysis and storage.

Data Warehouse Update Scheduler (DW Update Scheduler):
The DW Update Scheduler automates the timing of data updates, ensuring that the data
warehouse maintains the most current and accurate data without manual intervention.

Custom SQL for Aggregated Tables:

Custom SQL scripts are utilized to periodically update aggregated tables within the data
warehouse. These scripts are tailored to handle custom intervals and specific
aggregation requirements, central to maintaining summary data for expedient access.
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Data Importation and Logging
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Figure 21. Importer Module Activity Diagram

The importer module is responsible for storing the data located in “.csv’ files into the
local MySQL database and simultaneously performing data cleansing, pre-processing
and post-processing operations. The python class performing the above operations
requires connection to a MySQL server, a Redis server and several python libraries
such as pandas, numpy e.t.c.

The operations performed by the module are the following:

Performs DB sanity checks on the foreign keys of the database to verify
uniqueness of each foreign key utilized.

Initializes connections to the Redis and MySQL servers.

Retrieves all the foreign keys located as string key-value pairs in the Redis
server and performs check on them to verify equality with the corresponding
database foreign keys.

Utilizes pandas library to read the ‘.csv’ files and store them in a pandas
dataframe.

Performs structural checks on the ‘.csv’ files, such as expected vs current
headers equality and removes all “corrupted” records not having proper
number fields from the ‘.csv’.

Utilizes the foreign key dictionaries to dereference the foreign keys from
strings to integers, as they reside within the mapping database tables. In case a
foreign key is missing, update both the MySQL table and the Redis tables
Perform a hash operation for the given columns of a record, in order to easily
distinguish the records between them and identical records already residing
within the import database table.

Keep only the most recent records in case duplicates hash exist and also erase
from the database records already existing with the same hash values. The
query utilized to erase the records already existing within the db is very large
and time consuming.

“Delete from <table> where RowHash IN (....) , contains up to milions of
records

Performs time series checks. Splits the input data per unique time series for
each dataset’s specified dimensions (country, production type e.t.c.) and
identifies duplicates and time gaps, based on each series resolution.
Performs checks to identify new country information in the “.csv’ file.
Removes duplicate records of multiple resolution codes.

Logs above events

Generates a .csv file to utilize with an SQL query and bulk import the data
“LOAD DATA LOCAL INFILE ‘generated csv_name’;”

This importer module is time consuming and utilizes a large part of the memory,
given that time series operations and deletion/insertion tasks occur on a large amount

of data.
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Importers - ETL (Extract, Transform, Load):

The importer module serves a critical function in integrating data from ".csv" files into a
local MySQL database while simultaneously managing various data operations such as
cleansing, pre-processing, and post-processing. This module operates through a Python
class, which requires connections to a MySQL server and a Redis server, and utilizes
several Python libraries, including pandas and NumPy. Its primary role involves
performing database sanity checks to ensure the uniqueness of each foreign key. It also
initializes connections to Redis and MySQL servers and manages foreign keys by
retrieving them from the Redis server (where they are stored as string key-value pairs)
and ensuring they are consistent with the database foreign keys.

The module uses pandas to read ".csv' files and store the data in dataframes. It conducts
structural checks on these files, comparing expected headers against current ones and
discarding records with incorrect number fields. It also converts foreign keys from
strings to integers to match their format in the database, updating MySQL and Redis
tables when a foreign key is missing. Another significant function is the hashing of
specific record columns, which helps differentiate new records from existing ones in the
import database table. This process involves retaining only the most recent records
when duplicate hashes are found and removing existing database records with the same
hash values using a large and time-consuming query:

Delete from <table> where RowHash IN (...)

Additionally, the module performs time series analysis by splitting data per unique time
series based on dataset dimensions like country and production type. It identifies
duplicates and time gaps according to the series resolution and checks for new country
information in ".csv' files. It also removes duplicate records that have multiple resolution
codes and logs all these events. Finally, the module prepares for data import by
generating a ".csv' file used for bulk data import with the SQL command:

LOAD DATA LOCAL INFILE ‘generated_csv_name’;

Despite its crucial role, the importer module is time-intensive and consumes a
significant portion of memory, given the large scale of its time series operations and the
extensive data deletion and insertion tasks it performs.

Data Downloaders and Download Scheduler:

These components manage the downloading of data from external APIs or services and
schedule these operations to maintain a steady and up-to-date flow of data into the
system.

Logger:

A Logger component is incorporated to chronicle system events and errors. This utility
is vital for the ongoing monitoring, troubleshooting, and optimization of the system's
operations.

System Interaction and Integration

The architecture is designed to promote seamless interaction between its constituent
components. The front-end application interfaces with the EMD API, which in turn
interacts with both the ORM data access and the parameterized SQL views to retrieve
and manipulate data stored in the MySQL RDBMS. The data warehousing components
ensure that data is processed and stored in a manner that facilitates efficient retrieval
and analysis. The importers and downloaders work in tandem with the data processing
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components to maintain a continuous and automated data flow. The entire process is
underpinned by the Logger, which maintains a critical oversight of system performance
and integrity.

This architecture represents a robust, scalable solution for managing energy market
data, designed to support high availability and responsive data access for front-end
applications. The modular design ensures that each component can be independently
maintained or upgraded, thereby future proofing the system.

System architecture progression

The first significant change we will implement in this updated architecture is the
addition of a timeseries database as the data warehousing component. This addition
plays a pivotal role in addressing the growing complexity of energy market data and the
need for advanced analytical capabilities. By incorporating a timeseries database, we
can forego the heavy in engineering time process of cleaning the data and instead we
can pass them through the TSDB system and pass them along.

<<component>> a
frontend + app
EMD API ?

<<component>>
energy markets data API

|
<<component>> E]
ORM data access

- = 2 =wmmnns | Modifies the database as
l::;\:l:sem)’ <<component>> g] <<component> ] would do DW updater
Y RDBMS (MySQL) | RDBMAPPING |- - _____ and Importers - ETL

<<component>> a
Timeseries DB

<<component>> gl <<component>> g] <<component>> €|
Timeseries queries ——| data downloaders — download
scheduler

<<component>> g
Logger

Figure 22 Replacement of the Data Warehousing Component with TSDB

RDB Mapping:

The updated architecture introduces RDB Mapping, an intermediary layer that modifies
the database in a similar fashion to the DW Updater and the ETL processes of the
original system. This component suggests a refined approach to data transformation and
integration, providing a more sophisticated mechanism to ensure data consistency and
integrity between the relational database and the new Timeseries DB.
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Timeseries DB:

The timeseries database component will play a crucial role in processing and cleaning
the data with the same goal and efficacy as the traditional data warehousing layer. It acts
as a robust intermediary layer that not only stores and organizes time-series data
efficiently but also performs vital data preparation tasks to ensure that the data is of
high quality and ready for advanced analytics. One of its key advantages is its reliability
and accuracy in data processing and cleaning. By leveraging a specialized timeseries
database, the system mitigates the risk of introducing bugs or errors that might occur if
these tasks were handled manually or through custom-built solutions. This ensures that
the data preparation process is not only efficient but also dependable, safeguarding the
integrity of the data for critical decision-making processes in the energy market.

Maintained Components

Notably, the update mandates that certain components, particularly the ORM Data
Access and RDBMS (MySQL), "Remain exactly the same as today." This instruction
indicates a deliberate decision to preserve stability and continuity in certain areas of the
system while evolving others. It underscores the system's foundational reliability and
the strategic focus of the enhancements on expanding capabilities rather than
overhauling well-functioning elements.

Conclusion

The updated architecture reflects a strategic evolution focused on specialized data
handling and advanced analytical capabilities. By introducing a Timeseries DB and
dedicated querying mechanisms, the system is now better equipped to handle the
intricacies of energy market data. The inclusion of RDB Mapping indicates a
commitment to sophisticated data processing techniques, ensuring that the system can
maintain its core functionality while expanding to meet the demands of complex data
scenarios.

Architecture without a relational DB

In the latest iteration of the system architecture, there are further refinements and
modifications which focus on the introduction of a timeseries database and the
adjustments in the API layer to accommodate this change. Below is a description of the
differences compared to the previous architecture.
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Figure 23 The Architecture Void of a relational DB

Timeseries Database Integration

The architecture has undergone significant refinement with the integration of a Time
Series Database (TSDB). This shift represents a substantial departure from our previous
architecture, which relied on a traditional relational database system. With this change,
in addition to the benefits we had previously achieved, we are now experiencing faster
query response times and reduced duplicate data storage. However, it's worth noting
that adapting to the TSDB requires us to rewrite a significant portion of the API layer to
interact with the TSDB, as opposed to the relational database.

API Layer Evolution

The Energy Markets Data API has been restructured, signifying a substantial evolution
from its predecessor. The new EMD API (TS) is a rewritten implementation, indicating
that while the API's functionality remains consistent with the previous version—serving
the same endpoints—the underlying operations have been adapted to leverage the
capabilities of the timeseries database. This alteration ensures that the API's
performance is optimized for the new data structure without compromising the
endpoints' expected behavior.

Consistency in Frontend Interaction

In the realm of frontend interaction, the system architecture maintains a steady
approach with no changes to the Frontend + App component. This decision implies a
design philosophy where enhancements to the system's backend—such as the
integration of the timeseries database—do not adversely impact the existing frontend
application. Such an approach reduces the need for frontend redevelopment and
ensures a consistent user experience. Despite significant backend changes, the API
maintains its ability to serve the frontend application as before. This demonstrates a
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commitment to backward compatibility and service continuity, which is essential for
system reliability and stakeholder confidence.

The further refined architecture underscores a strategic decision to enhance the
system's data handling capabilities with a focus on timeseries data while ensuring that
the frontend application and API endpoints remain stable. This evolution highlights the
system's adaptability to new technological demands without disrupting the established
flow of operations.

These enhancements reflect a keen awareness of the system's operational needs and a
forward-looking approach to scalability and performance. The transition to a timeseries
database and the retention of existing API interfaces demonstrate a balance between
innovation and stability, crucial for maintaining service quality in a dynamic
technological landscape.
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Conclusions

The thesis entitled "Integration of Time Series Databases with Relational Databases for
Data Series Management" presents a comprehensive and detailed study, focusing on the
comparative performance and applicability of Time Series Databases (TSDBs) and
traditional SQL databases, particularly in the context of managing large-scale, time-
stamped data. The research primarily revolves around the evaluation of InfluxDB, a
prominent TSDB, against MySQL, a widely used SQL database, and includes Apache
Druid, another TSDB, for a broader perspective.

The core of the thesis lies in its meticulous performance analysis. It dives deep into
various operational aspects such as data ingestion rates, query response times, and
overall system efficiency under different database conditions. InfluxDB stands out in this
analysis, demonstrating a clear edge in handling large datasets and real-time data
processing. The efficiency of InfluxDB is particularly notable in scenarios involving
empty databases, databases filled with extensive historical data, and fully occupied
tables. This distinction in performance is attributed to the inherent architectural
advantages of TSDBs in managing time-centric data, which becomes increasingly
relevant in sectors where real-time analytics and quick data processing are critical.

A significant part of the thesis is dedicated to exploring the challenges associated with
transitioning from a conventional SQL database system like MySQL to a more specialized
TSDB. This transition, as the research indicates, is not without its complexities. The
study emphasizes the need to consider numerous factors, such as the reformation of
data schema to align with time-series models, the adaptation to new query languages
tailored for TSDBs, and the overarching operational changes required in database
management practices.

In addressing these challenges, the thesis proposes an innovative hybrid approach,
suggesting a time-series database with MySQL. This approach is presented as a solution
that capitalizes on the unique strengths of both database systems. By employing a TSDB
for tasks that involve extensive time-based data operations such as data cleaning and
aggregation, and using MySQL for general-purpose data management, the hybrid
approach aims to enhance the overall efficiency and scalability of data processing
systems.

The implications of the study are far-reaching, particularly considering the increasing
importance of efficient data management in the digital era. The findings advocate for a
broader adoption of TSDBs in applications where real-time data analysis is paramount.
This recommendation is underpinned by the growing volume and complexity of data in
various industries, notably in the energy sector, where managing time-stamped data
efficiently is crucial for operational success.

To conclude, the thesis makes a compelling case for the adoption of TSDBs like InfluxDB,
especially in scenarios where traditional SQL databases may fall short in terms of
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performance and scalability. It also provides valuable insights and practical solutions for
organizations grappling with the decision to transition between these technologies. The
study not only underscores the superior capabilities of Time Series Databases in
managing time-based data but also highlights their increasing relevance and potential in
the landscape of modern data management.
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Source Code

For those wishing to examine our project in more detail, we provide you with the link
to the GitHub repository where the source code of the application for this thesis is
available. Link to the repository: https://github.com/ntua/timeseries22
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