
NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Decision Support Systems Laboratory

Development of an IoT data processing system using
distributed technologies based on Kubernetes

DIPLOMA THESIS

Nikolas T. Bellos

SUPERVISOR

Vangelis Marinakis
Assistant Professor

Athens, February 2024

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗ-

ΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Απο-
φάσεων

Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Ανάπτυξη συστήματος επεξεργασίας IoT δεδομένων
με χρήση κατανεμημένων τεχνολογιών βασισμένο

σε Kubernetes

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Νικόλας Θ. Μπέλλος

ΕΠΙΒΛΕΠΩΝ

Μαρινάκης Ευάγγελος

Επίκουρος Καθηγητής

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή στις 29 Φεβρουαρίου 2024.

..

Μαρινάκης Ευάγγελος

Επίκουρος Καθηγητής

..

Δούκας Χάρης

Καθηγητής

..

Ψαρράς Ιωάννης

Καθηγητής

Αθήνα, Φεβρουάριος 2024.

..

Nikolas Bellos
Electrical Engineering & Computer Engineering Graduate
NTUA, Decision Support Systems Laborator

Copyright Notice
© 2024 Nikolas Bellos. All Rights Reserved.

No part of this Thesis may be reproduced, stored, or distributed for com-
mercial purposes without the prior written permission of the author. Repro-
duction, storage, or distribution for non-commercial educational or research
purposes is permitted provided that the source is properly cited and this
copyright notice is retained. Inquiries regarding the use of this Thesis for
commercial purposes should be addressed to the author.

Disclaimer The views and conclusions expressed in this document are those
of the author and should not be interpreted as representing the official posi-
tions of the National Technical University of Athens.

4

Abstract

The Internet of Things (IoT) era is here, with the number of internet-
connected devices expected to hit over 75.4 billion by 2025. These devices
create lots of data that help us understand and control our environment
from afar. Traditionally, the systems managing this data have been closed-
source and outdated by the time they’re widely available. Now, cloud-native
technologies and virtualization make it easier and more efficient to manage
IoT systems. Kubernetes, a key tool, helps make building and maintaining
IoT infrastructures simpler and less manpower-intensive.

This thesis explores the design and implementation of an IoT system using
distributed technologies deployed on Kubernetes, an open-source framework
for automating container application management, deployment, and scal-
ing. It discusses the need for efficient processing and management of large
data volumes generated by numerous IoT devices and how implementation
through Kubernetes offers a flexible and dynamically scalable solution. Ad-
ditionally, it examines technologies like MQTT for efficient message transfer
and Apache Kafka for real-time data processing and storage. It also ana-
lyzes the importance of using distributed systems to improve performance,
scalability, and resilience compared to centralized systems, as well as the chal-
lenges encountered in managing distributed data and achieving consensus in
such environments. Finally, it presents suggestions for future work, includ-
ing automated scaling, monitoring metrics, continuous integration/delivery
(CI/CD), and the extensive implementation of security techniques.

Keywords: Kubernetes, IoT, Distributed systems, Microservices, Systems
Design, Data-driven microservices, Kafka, MQTT, Smart Home, Cloud com-
puting, Containers, Energy Consumption.

Περίληψη

Το Internet of Things (IoT) είναι εδώ, με τον αριθμό των συνδεδεμένων στο
διαδίκτυο συσκευών να αναμένεται να ξεπεράσει τα 75,4 δισεκατομμύρια έως το

2025. Αυτές οι συσκευές δημιουργούν πολλά δεδομένα που μας βοηθούν να

κατανοήσουμε και να ελέγξουμε το περιβάλλον μας από μακριά. Παραδοσιακά,

τα συστήματα που διαχειρίζονται αυτά τα δεδομένα ήταν κλειστού κώδικα και

ξεπερασμένα κατά τη στιγμή που έγιναν ευρέως διαθέσιμα. Πλέον, οι τεχνολο-

γίες cloud-native και containerization καθιστούν πιο εύκολη και αποτελεσμα-
τική τη διαχείριση των συστημάτων IoT. Το Κυβερνετες, ένα βασικό εργαλείο,
βοηθά στην απλούστευση της κατασκευής και συντήρησης των υποδομών IoT
κάνοντας τη διαδικασία λιγότερο εντατική σε εργατική δύναμη.

Αυτή η διατριβή εξερευνά τον σχεδιασμό και την υλοποίηση ενός συστήμα-

τος IoT χρησιμοποιώντας διανεμημένες τεχνολογίες που αναπτύσσονται στο
Kubernetes, ένα ανοιχτού κώδικα πλαίσιο για την αυτοματοποίηση της διαχε-
ίρισης, της ανάπτυξης και της κλιμάκωσης εφαρμογών σε containers. Συζητά
την ανάγκη για αποτελεσματική επεξεργασία και διαχείριση μεγάλων όγκων

δεδομένων που παράγονται από πολυάριθμες συσκευές IoT και πώς η υλοπο-
ίηση μέσω του Kubernetes προσφέρει μια ευέλικτη και δυναμικά κλιμακούμενη
λύση. Επιπλέον, εξετάζει τεχνολογίες όπως το MQTT για αποτελεσματική με-
ταφορά μηνυμάτων και το Apache Kafka για την επεξεργασία και αποθήκευση
δεδομένων σε πραγματικό χρόνο. Αναλύει επίσης τη σημασία της χρήσης διανε-

μημένων συστημάτων για τη βελτίωση της απόδοσης, της κλιμάκωσης και της

ανθεκτικότητας σε σύγκριση με τα κεντρικοποιημένα συστήματα, καθώς και τις

προκλήσεις που συναντώνται στη διαχείριση διανεμημένων δεδομένων και την

επίτευξη συναίνεσης σε τέτοια περιβάλλοντα. Τέλος, παρουσιάζει προτάσεις για

μελλοντική εργασία, συμπεριλαμβανομένης της αυτοματοποιημένης κλιμάκωσης

(autoscaling), του monitoring μέσω metrics, του continuous integration/de-
livery (CI/CD) και της εκτεταμένης υλοποίησης τεχνικών ασφαλείας.

Keywords: Kubernetes, IoT, Κατανεμημένα Συστήματα, Microservices, Sys-
tems Design, Data-driven microservices, Kafka, MQTT, ΄Εξυπνο Σπίτι, Cloud
computing, Containers, Κατανάλωση Ενέργειας.

Preface

This thesis summarizes my work at the EPU lab located in NTUA during
my last semester of studies. It marks the culmination of my work during the
past 5 years as an Electrical Engineering & Computer Engineering student.
Although the subjects I completed concern a broader engineering spectrum,
my specialization concerns software engineering, computer systems and Ku-
bernetes.

To follow this path, there were some people that played a key role and
whom I would like to thank. First of all, I would like to thank Vangellis
Marinakis for trusting me and offering me a place at the lab, providing me
with the opportunity to work on this project. I am also grateful for Elissaios
Sarmas and Vasilis Michalakopoulos who provided me with all the needed
guidance and assistance when I needed it. The two people that I worked
closer with for this project were Fillipos Serepas and John Papias, whom I
would like to thank especially for the help, the calls and for trusting me to
’break’ things. The story on how I ended up learning about Kubernetes is
longer than that and for obtaining all the basic skills and confidence in this
field I would like to thank the people of Arrikto and Vaggelis Koukis.

Last but not least, I would like to express how appreciative I feel about
studying in this university and along many talented people that I now call
friends. I saved thanking my family for last, for the love they always provided
and the shaping of my character. I dedicate this work to them.

Nikolas Bellos

NTUA, Athens
29nd February 2024

Contents

1 Εκτεταμένη Ελληνική Περίληψη 6
1.1 Εισαγωγή . 6
1.2 Πειραματικό Περιβάλλον . 7
1.3 Σχεδιασμός &Υλοποίηση . 8
1.4 Αποτελέσματα &Αξιολόγηση 13

2 Introduction 16
2.1 Thesis structure . 17
2.2 Motivation . 18
2.3 Research Questions . 19

3 Background &Related Work 21
3.1 Internet of Things (IoT) . 21
3.2 MQTT Protocol . 23

3.2.1 Message Topics . 23
3.2.2 Message Structure . 23

3.3 Containers . 24
3.4 Container Orchestration Systems 24
3.5 Kubernetes . 25

3.5.1 Components of Kubernetes 26
3.5.2 CRD (Custom Resource Definition) 28
3.5.3 CNI (Container Network Interface) 29
3.5.4 Services . 30
3.5.5 Workload Resources 33

3.6 Distributed Systems . 35

4 Design &Concepts 37
4.1 EHS Architecture . 37
4.2 Why choose Kubernetes . 38
4.3 MQTT Broker . 39

4.3.1 Choosing an appropriate MQTT Broker 41

2

4.4 Kafka Broker . 42
4.4.1 Distributed Kafka Cluster architecture 44

4.5 MQTT to Kafka Connector 45
4.6 Kafka Connect . 47

4.6.1 Task Rebalancing . 47
4.6.2 Workers . 48
4.6.3 Connectors . 49
4.6.4 Converters . 49
4.6.5 Schema Registry . 50

4.7 Kafka to TimescaleDB Connector 51
4.8 TimescaleDB / Postgresql . 52

4.8.1 Replication . 53
4.8.2 Failover . 54
4.8.3 GraphQL . 55

4.9 Deployments . 55
4.10 How we expose the services 57
4.11 HELM Charts . 58

5 Implementation 60
5.1 Infrastructure . 60
5.2 Kubernetes Setup . 60
5.3 Dynamic Provisioner . 61

5.3.1 Deployment Instructions 62
5.3.2 Usage Instructions . 63

5.4 MQTT Broker (HiveMQ) . 63
5.4.1 Deployment Instructions 64
5.4.2 Usage Instructions . 64

5.5 Messaging Broker (Apache Kafka) 65
5.5.1 Deployment Architecture 66
5.5.2 Deployment Instructions 66
5.5.3 Usage Instructions . 69

5.6 MQTT - KAFKA Connector 69
5.6.1 Deployment Instructions 69

5.7 Kafka Connect (with Timescale connector) 70
5.7.1 Deployment Instructions 70

5.8 TimescaleDB . 73
5.8.1 Deployment Instructions 73
5.8.2 Usage instructions . 73

5.9 Cert-manager . 74
5.9.1 Deployment Instructions 74
5.9.2 Usage Instructions . 74

3

5.10 Rest of components (Grafana, Hasura, Keycloak, Frontend,
Backend) . 76

6 Testing &Evaluation 77
6.1 Experimental Setup . 77
6.2 Performance Analysis . 78

6.2.1 Message Throughput 78
6.2.2 Results . 81

6.3 Resource Management . 82
6.3.1 Required resources . 82
6.3.2 Resource optimization 84

6.4 Network Bandwidth . 84

7 Conclusion &Future work 86
7.1 Conclusions . 86

7.1.1 Research Question 1 86
7.1.2 Research Question 2 87
7.1.3 Research Question 3 88

7.2 Future work . 89
7.2.1 Autoscaling . 89
7.2.2 Monitoring metrics . 90
7.2.3 CI/CD pipeline . 90
7.2.4 Separate production and development pipelines 90
7.2.5 Stress testing of each component separately 91
7.2.6 More Nodes . 91
7.2.7 Ingress Controller as a Daemon set 91
7.2.8 Extend device support to LoRa WAN 92
7.2.9 Deploy a Data Lake . 92

4

Nomenclature

AI Artificial Intelligence

CI/CD Continuous Integration / Continuous Development

CPU Central Processing Unit

DNS Domain Name System

EHS Energy Home System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

ML Machine Learning

MQTT Message Queuing Telemetry Transport

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

URL Uniform Resource Locator

VM Virtual Machine

WAL Write Ahead Log

YAML Yet Another Markup Language

5

Chapter 1

Εκτεταμένη Ελληνική

Περίληψη

1.1 Εισαγωγή

Η εποχή του Διαδικτύου των Πραγμάτων (ΙοΤ) έχει ξεκινήσει και θα είναι

σημαντική για τα επόμενα χρόνια. Δισεκατομμύρια συσκευές είναι ήδη συν-

δεδεμένες στο διαδίκτυο, με τον αριθμό τους να προβλέπεται να ξεπεράσει τα

75.4 δισεκατομμύρια έως το 2025. Αυτή η αύξηση στον αριθμό των συσκευών

ΙοΤ οδηγεί συνεπώς σε μεγαλύτερους όγκους δεδομένων που παράγονται και

επεξεργάζονται για την απόκτηση πληροφοριών για τον κόσμο γύρω μας και

τον έλεγχό του από μακριά. Υπάρχει συνεπώς, ανάγκη για εκτεταυμένη έρευνα

στην ανάπτυξη συστημάτων που θα επεξεργάζονται και θα αναλύουν αυτά τα

δεδομένα σε μεγάλη κλίματα.

Στην παρούσα διατριβή, πειραματιστήκαμε με τον σχεδιασμό και την αξιο-

λόγηση ενός συστήματος ΙοΤ βασισμένου στο Kubernetes, χρησιμοποιώντας
τεχνολογίες ανοιχτού κώδικα που λειτουργούν κατανεμημένα σε όλη την αλυ-

σίδα των επιμέρους λειτουργικών κομματιών. Αυτές οι τεχνολογίες έχουν ωρι-

μάσει αρκετά για να είναι σταθερές για παραγωγικούς σκοπούς, επιτρέποντας σε

ολοένα και περισσότερα άτομα να τις χρησιμοποιούν και να πειραματίζονται με

αυτές, χωρίς να βασίζονται αποκλειστικά σε εμπορικό λογισμικό από παρόχους

cloud.
Παράλληλα, καθώς αυτές οι κατανεμημένες και κλιμακώσιμες τεχνολογίες

γίνονται πιο σταθερές και προσβάσιμες, η χρήση των συσκευών ΙοΤ για την

κατανάλωση ενέργειας αυξάνεται γρήγορα λόγω των προσπαθειών μας να αντι-

μετωπίσουμε το πρόβλημα της ανεπαρκούς ενεργειακής απόδοσης στις μεγάλες

πόλεις και τις εγκαταστάσεις που καταναλώνουν πολλή ενέργεια. Τα συστήμα-

τα ΙοΤ θέτουν να γίνουν όσο πιο σχετικά γίνεται για ομάδες αισθητήρων σε

6

επίπεδο πόλης να λειτουργούν σωστά, αλλά και για μεγάλες ποσότητες δεδο-

μένων που συλλέγονται από αυτούς και χρησιμοποιούνται για μοντέλα μηχανι-

κής μάθησης.

1.2 Πειραματικό Περιβάλλον

Οι υπολογιστικοί πόροι που διαθέταμε για τον σχεδιασμό και την υλοποι-

ήση του παρόντος συστήματος αποτελούνταν από 3 ομογενείς κόμβους (δηλαδή

virtual machines) τα οποία ήταν εγκατεστημένα σε δικές μας υποδομές (on-
premise). Κάθε ένα από τα 3 αυτά VM λειτουργούσε με 2 CPUs, 10GB RAM,
1TB αποθηκευτικό χώρο. Κάθε VM λειγουργούσε πάνω από ένα Hyper-V
hypervisor και είχε λειτουργικό Ubuntu Server 22.0. Τα 3 αυτά μηχανήμα-
τα έτρεχαν στο ίδιο τοπικό δίκτυο με Static IP ώστε να είναι έτοιμα για την
εγκατάσταση του Kubernetes σε αυτά.
Το Kubernetes είναι container orchestration framework που επιτρέπει την

ανάπτυξη και διανομή των containers σε πολλές φυσικές μηχανές, δημιουρ-
γώντας εικονικά δίκτυα μεταξύ αυτών και διαχειριζοντάς τα από μια ενιαία δια-

σύνδεση.

Τα 3 μηχανήματα χωρίστικαν σε αυτό που επιτελεί τη λειγουργία τουMaster
κόμβου και στα υπόλοιπα 2 τα οποία αποτελούν τουςWorker κόμβους, ακολου-
θώντας το κλασσικό master-slave pattern που συναντάται στις κατανεμημένες
αρχιτεκτονικές. Οι υποδομές αυτές αποτελούν ένα ελάχιστο αριθμό κόμβων

προκειμένου να υλοποιήσουμε ένα τέτοιο σύστημα και ένα από τα μειονεκτήμα-

τα είναι ότι, για παράδειγμα, δημιουργούνται single points-of-failure για την
ενορχήστρωση των εσωτερικών λειγουργιών. Στη περίπτωση που θα θέλαμε

να δώσουμε έμφαση στο high-availability (HA) του συστήματος, θα έπρεπε να
προσθέσουμε περισσότερους φυσικούς κόμβους (δηλαδή VMs) στο cluster μας
και επομένως και κάποιον επιπλέον Master κόμβο.
Η αρχιτεκτονική του συστήματος μας και ο διαχωρισμός με βάση τα χαρα-

κτηριστικά του Kubernetes φαίνεται στο παρακάτω διάγραμμα :

7

Figure 1.1: Αρχιτεκτονική του Kubernetes

1.3 Σχεδιασμός & Υλοποίηση
΄Εχουμε ως στόχο να σχεδιάσουμε ένα σύστημα που λαμβάνει μηνύματα

MQTT από πολλαπλούς αισθητήρες ταυτόχρονα και τα διανέμει σε διάφορες
μικροϋπηρεσίες. Επομένως, το πρώτο στοιχείο που πρέπει να χρησιμοποιήσου-

με είναι ένας MQTT Broker. Επιλέγουμε να αποφύγουμε τη λήψη των ει-
σερχόμενων μηνυμάτων απευθείας με το Apache Kafka, για να μειώσουμε τον
φόρτο του και να μπορέσουμε να μετατρέψουμε τα δεδομένα των μηνυμάτων

πριν φτάσουν στους Kafka Brokers.
Ο πυρήνας του συστήματός μας είναι ο Kafka, που επεξεργάζεται και απο-

θηκεύει όλα τα δεδομένα που προέρχονται από τους αισθητήρες. Κάθε μήνυμα

ξεκινάει από τον MQTT Broker, στη συνέχεια περνάει από μία προεπεξεργα-
σία, εισέρχεται στους Kafka Brokers και από εκεί αποθηκεύεται σε πολλαπλές

8

βάσεις δεδομένων μέσω των Kafka Connectors. Οι Kafka connectors τρέχουν
μέσω του Kafka Connect, μια συμβατή με το Kafka λύση για την υλοποίηση
μεταφορών δεδομένων υψηλής απόδοσης από και προς το Καφκα.

Στην περίπτωσή μας, έχουμε 3 κύριους τύπους βάσεων δεδομένων όπου

θέλουμε τα δεδομένα που προέρχονται από τον Kafka να αποθηκεύονται. ΄Ε-
χουμε μια βάση δεδομένων σειρών χρόνου όπου θέλουμε να αποθηκεύσουμε

δεδομένα μόνο για ένα σύντομο χρονικό διάστημα για να μειώσουμε τον φόρτο

από την κεντρική βάση δεδομένων πραγματικού χρόνου για δεδομένα σειρών

χρόνου. (Η λήψη δεδομένων από τη βάση δεδομένων σειρών χρόνου πραγματο-

ποιείται από μια ανάπτυξη Hasura που χρησιμοποιεί GraphQL για να εκτελέσει
τα ερωτήματα δεδομένων και να αυτοματοποιήσει τη διαδικασία δημιουργίας

API [1]). Στη συνέχεια, έχουμε μια βάση δεδομένων no-sql με σκοπό την απο-
θήκευση συγκεντρωτικών δεδομένων από τους αισθητήρες. Οι συνεχείς ροές

δεδομένων συγκεντρώνονται, για να αποφευχθεί η αποθήκευση περισσότερων

πληροφοριών από όσες χρειάζονται, και καταγράφονται μόνιμα στη βάση δε-

δομένων no-SQL. Τέλος, χρειαζόμαστε έναν συνδυασμό των δύο παραπάνω
βάσεων δεδομένων για να αποθηκεύσουμε όλα τα δεδομένα και τα μεταδεδομένα

των αισθητήρων που μπορούν να χρησιμοποιηθούν για την εκπαίδευση ενός μο-

ντέλου μηχανικής μάθησης. ΄Ετσι, πρέπει να αναπτύξουμε μια λίμνη δεδομένων

(datalake) με πολύ περισσότερο χώρο αποθήκευσης από τις υπόλοιπες.

Figure 1.2: Αρχιτεκτονική του ΙοΤ συστήματος

9

΄Ενας MQTT Broker είναι ένα πρόγραμμα ή μια συσκευή που βασίζεται στο
πρωτόκολλο MQTT και λειτουργεί ως ταχυδρομείο μεταξύ δημοσιευτών και
συνδρομητών, ενώ ένας MQTT Client είναι ένα πρόγραμμα που είτε στέλνει
είτε λαμβάνει μηνύματα από τον MQTT Broker. Κάθε μήνυμα περιέχει δεδο-
μένα ωφέλιμου φορτίου (payload), ένα επίπεδο υπηρεσίας ποιότητας (QoS), ένα
σύνολο ιδιοτήτων και ένα όνομα θέματος (topic).
Ο MQTT Broker αποθηκεύει τα δεδομένα στη μνήμη, μια επιλογή που

επιτρέπει ταχύτερες λειτουργίες ανάγνωσης και εγγραφής, πράγμα σημαντικό

για το χειρισμό μηνυμάτων MQTT. Θέλουμε ο MQTT Broker να λειτουργεί
μόνο ως ενδιάμεσος για τα δεδομένα των αισθητήρων.

Για περαιτέρω διατήρηση όλων των μηνυμάτων, συνδέουμε το HiveMQ Clus-
ter με ένα Kafka Broker Cluster, το οποίο μπορεί να διαχειριστεί μεγαλύτερες
ουρές μηνυμάτων και να διατηρεί τα δεδομένα για μεγαλύτερα χρονικά διαστήμα-

τα.

Figure 1.3: Διάγραμμα του κατανεμημένου σχεδιασμού των Kafka Brokers

΄Ενα κατανεμημένο σύστημα όπως το Kafka, για να λειτουργεί, πρέπει να
έχει υψηλή διαθεσιμότητα και ανθεκτικότητα σε σφάλματα. Αυτός είναι ο λόγος

για τον οποίο κάθε θέμα αναπαράγεται σε πολλούς μεσίτες (Kafka Brokers). ΄Ε-
νας από αυτούς τους ενεργούς μεσίτες θα είναι υπεύθυνος για την ανταπόκριση

10

στα αιτήματα για το συγκεκριμένο θέμα και θα δηλωθεί ως Leader. Οι υπόλοι-
ποι θα δηλωθούν ως αντίγραφα (replicas). ΄Οπως μπορεί κανείς να υποθέσει,
σε περίπτωση που ο Leader διακοπεί τη λειτουργία του, ένα από τα αντίγραφα
εκλέγεται ως νέος Leader και το Καφκα συνεχίζει να εξυπηρετεί αιτήματα με
ελάχιστο χρόνο διακοπής λειτουργίας.

Αναπτύξαμε το Kafka με το KRaft, αντί για το Zookeeper, το οποίο δεν
απαιτεί την ανάπτυξη επιπλέον Pods και δηλώνεται ως production-ready υπη-
ρεσία. ΄Ενα από τα καθήκοντα του Kraft είναι η εκλογή αρχηγού μεταξύ των
διαφορετικών Kafka Brokers.

Figure 1.4: Διάγραμμα κατανεμημένου σχεδιασμού του Kafka

Επιλέξαμε να δημιουργήσουμε έναν προσαρμοσμένο Connector για τη με-
ταφορά μηνυμάτων από το σύμπλεγμα MQTT Brokers στο σύμπλεγμα Kafka
Brokers. Αυτή η επιλογή γίνεται κυρίως για να έχουμε μεγαλύτερο έλεγχο στα
μηνύματα που προέρχονται από τις συσκευές. Διαφορετικές συσκευές μπορεί

να στέλνουν μηνύματα με διαφορετικές δομές ανάλογα με το firmware. ΄Ετσι,
χρειαζόμαστε πιο λεπτομερή κώδικα για να τα επεξεργαστούμε και να τα με-

τατρέψουμε στην κατάλληλη μορφή. Επιπλέον, θέλουμε να πειραματιστούμε με

έναν πιο απλό τρόπο οριζόντιας αυτόματης κλιμάκωσης, χρησιμοποιώντας έναν

απλό αυτόματο κλιμακωτή, σε αντίθεση με το Kafka Connect.

11

Figure 1.5: Διάγραμμα κατανεμημένου σχεδιασμού τουMQTT-Kafka Connec-
tor

΄Ενα πρωταρχικό πεδίο χρήσης των δεδομένων που εξέρχονται από τους

Kafka Brokers είναι η χρήση τους ως δεδομένα χρονοσειράς, η οποία θα α-
πεικονίζεται μέσω κατάλληλων γραφημάτων και θα χρησιμοποιείται για την ε-

ξαγωγή συγκεντρωτικών πληροφοριών. Επιλέξαμε την Timescale για τη βάση
δεδομένων σειρών χρόνου μας, η οποία είναι μια επέκταση της βάσης δεδομένων

PostgreSQL και μπορεί να λειτουργήσει με κατανεμημένο τρόπο. Η κύρια λει-
τουργία αυτής της βάσης δεδομένων είναι να διατηρεί δεδομένα σε πραγματικό

χρόνο από αισθητήρες, κυρίως για να τροφοδοτεί τη γραφική διασύνδεση της

εφαρμογής. Αυτό μας επιτρέπει να μειώσουμε το φορτίο από την κύρια βάση

δεδομένων μας και επίσης να αποφύγουμε την μόνιμη αποθήκευση πολύ λεπτο-

μερών πληροφοριών σχετικά με τους αισθητήρες.

12

Figure 1.6: Διάγραμμα του κατανεμημένου σχεδιασμού της timescaledb

1.4 Αποτελέσματα & Αξιολόγηση
Στην παρακάτω ενότητα εστιάζουμε στην ικανότητα του συστήματος να

διαχειρίζεται αρκετά υψηλή ροή μηνυμάτων χωρίς διακοπές.

Προκειμένου να μετρήσουμε την απόδοση του υποσυστήματος MQTT-to-
Kafka από άκρη σε άκρη, πραγματοποιήσαμε Δοκιμές Επιδόσεων Φορτίου (Load
Testing). Για κάθε στοιχείο του υποσυστήματος (MQTT Brokers, MQTT-
Kafka Connector, Kafka Brokers) αναπτύξαμε τον ελάχιστο δυνατό αριθμό
εμφανίσεων, που είναι 2. Για αυτές τις 2 εμφανίσεις κάθε στοιχείου, θέλουμε

να μετρήσουμε την εισροή ροής για τους MQTT Brokers και την εκροή ροής

13

για τους Kafka Brokers.
Επειδή όλες οι δοκιμές είχαν πολύ παρόμοια αποτελέσματα, από γραφική

άποψη, παρουσιάζουμε τα αποτελέσματα για την τελευταία από τις δοκιμές, η

οποία είχε ροή περίπου 365 μηνυμάτων ανά δευτερόλεπτο.

Figure 1.7: Ροή μηνυμάτων από τον Kafka Subscriber

Εστιάσαμε επίσης στην παρατήρηση της κατανάλωσης πόρων από τα Pods,
τα οποία αντιπροσωπεύουν τα αναπτυγμένα στοιχεία στο σύστημά μας. Ε-

πιλέξαμε να παρακολουθήσουμε τα κύρια στοιχεία του pipeline επεξεργασίας
μηνυμάτων μας, πρώτον επειδή αυτά μας απασχολούν περισσότερο σε αυτήν

την εργασία και δεύτερον επειδή για αυτά έχουμε περισσότερο έλεγχο επί της

παραμετροποίησής τους για να τα κάνουμε να λειτουργούν πιο αποδοτικά. Με-

τρήσαμε την κατανάλωση CPU και μνήμης για δύο διακριτές καταστάσεις των
Pods.
Τα αποτελέσματα παρουσιάζονται στον παρακάτω πίνακο. ΄Οπου έχουμε

πολλαπλά Pods για το ίδιο στοιχείο, υπολογίζουμε τη μέση τιμή για κάθε με-
τρικό στοιχείο:

14

Table 1.1: Κατανάλωση Πόρων Συστήματος

Pod CPU (idle) Memory
(idle)

CPU Memory

MQTT Bro-
kers (average)

15m 400Mi 35m 525Mi

MQTT-
Kafka Con-
nectors
(average)

2m 10Mi 5m 14Mi

Kafka Bro-
kers (average)

22m 1000Mi 25m 1050Mi

Kafka Con-
nect (aver-
age)

10m 800Mi 17m 870Mi

Timescale
DB (average)

5m 126Mi 10m 130Mi

Postgresql
DB

6m 25Mi 6m 25Mi

Ingress Con-
troller

2m 78Mi 2m 78Mi

Grafana 21m 760Mi 60m 960Mi

Για μια πιο λεπτομερή περιγραφή του συστήματος και των εσωτερικών του

στοιχείων θα πρέπει να διαβάσετε ολόκληρη την εργασία γραμμένη στα αγγλικά!

Καλή ανάγνωση!

15

Chapter 2

Introduction

The era of the Internet of Things (IoT) has begun and it will be relevant
for the upcoming years. Billions of devices are already connected to the Inter-
net with their number being projected to surpass 75.4 billion by 2025. This
surge in the number of IoT devices results consequently in greater volumes
of data being generated and processed in order to gain insightful informa-
tion about the world around us and control it remotely. This highlights the
need for message delivering and processing solutions, around all different IoT
system types.

So far, there have been developed many solutions provided by third party
providers or provided through a cloud provider platform. The state-of-the-
art software and architecture, therefore, for these systems is mainly closed-
sourced and when it becomes available to the general public after some years,
it lags behind the current state of technology and the actual demands of the
real-world infrastructure. At the same period, cloud native technologies have
become more and more democratized and tools that can run in a decentral-
ized and distributed manner are more reliable and production ready than
ever.

Virtualization technology has also played a key role in deploying these
systems, as a single machine can now be used to host multiple smaller host
kernels on top of which containers can run. Resource allocation becomes im-
mediately more efficient and the initialization time of individual applications
decreases significantly. The amount of people needed to deploy and maintain
such a system also decreases and with the help of Kubernetes, the building of
custom IoT infrastructure becomes more accessible and more easily maintain-
able. The question that remains to be answered is whether the technologies
that exist today can be performant and reliable enough to replace black-box
solutions provided by third party providers.

The processing and collection of these data is not the only driving force

16

for this work. The topics of energy and artificial intelligence are also very
ubiquitous and relevant for the field of computer systems and information
processing. To lean towards a more energy efficient future, we must be able
to monitor the energy consumption of various power hungry devices and take
the appropriate actions. This can be achieved by providing the device users
the appropriate data, by advising them on their usage habits, by distributing
the load in a more efficient way across the power grid, or by providing the data
to authorities, which can later pass relevant laws or take immediate action
on problematic occasions. Machine Learning techniques can also assist in
this matter, but for them to actually work, massive data of good quality are
needed to ensure the high accuracy of the developed ML models.

The thesis lays the groundwork for a system that utilizes open-source
technologies in order to handle and process various IoT data. It also analyses
the suitability of Kubernetes as a framework that can stand beside commer-
cial cloud infrastructure and whether it can offer performance and reliability
as much as it offers control.

2.1 Thesis structure
Before getting into the more detailed sections of this work, we should first

try to provide a brief description of each of its 6 distinct sections, in order to
get a more holistic view of it.

In the first section of this work, we present the problem statement and
motivation, as well as relevant questions that are worth to be answered.

The second section deals with all the background information that one
needs to be familiar with, in order to understand the theoretical aspects of
this work from the ground up. Also, a current state of the work in this field
is given, along with more general diagrams to gradually introduce the reader
to the next section.

The third one is about the design and architecture of the system. We
present the different software components that we used to create the central
message processing pipeline and how they are connected with each other to
ensure a truly distributed system. When refering to the system, we talk
about an infrastructure about IoT message processing based on Kubernetes.

In the fourth section we describe the deployment of the system. We
describe the open-source software tools that we used and how we deployed
them in Kubernetes. An almost step-by-step configuration process is pro-
vided, with all the details of the infrastructure and the helper links one can
use to setup a similar system in Kubernetes.

The fifth section consists of our findings while analyzing the deployed

17

system. We evaluate its capacity and scalability based on performance testing
metrics. We explore the message throughput and resource needs for our 3-
Node Kubernetes cluster.

In the sixth and final section, we summarize the architectural decisions
and the performance outcomes of the system and propose future extensions
for the system.

2.2 Motivation
This work describes the decision-making process and the tradeoffs for

designing and deploying an IoT infrastructure using only open-source and
distributed software tools that can be deployed in Kubernetes, an open-
source container orchestration framework. The need for such a system stems
from the development of EHS, which stands for Energy Home System. The
idea behind it is to create the necessary infrastructure, in order to collect,
process and store data from energy meter sensors.

These data have the potential to assist not only the user in keeping an
eye on his energy usage, but also a central authority in gaining knowledge
about household energy consumption patterns and training machine learning
models to allocate resources for home appliances more effectively.

Furthermore, the majority of such systems that gather and process mes-
sages in very large scale are closed sourced, both the design and the source
code. Nowdays, tools and resources are provided as a service in the cloud,
which is an adequate and easy solution for most cases. However, there is
a need to open-source tools and methodologies regarding the cutting edge
of IoT data processing systems, as it is a field that experiences exponential
growth at the moment. These tools have the potential to democratize the
development of distributed systems based on Kubernetes and provide the
laying ground for labs ans smaller companies to experiment with them, thus
resulting in more reapid growth in the field of IoT systems.

More specific applications of the aforementioned system are presented be-
low:

Energy Autonomy

With the data collected and by applying AI/ML algorithms, accurate
predictions of energy production and consumption can be achieved, even in
scenarios with suboptimal data quality. This capability enables users to gain
insights into their energy ecosystem, including precise information on energy
generation and consumption. Therefore, users can now compare their en-

18

ergy consumption with other similar domestic installations, allowing them to
make informed decisions on load-shifting strategies to optimize their energy
consumption by strategically aligning it with the solar energy production,
thereby extending the hours of energy autonomy during the day.

Demand Response

Through a single measurement capturing total consumption and employ-
ing cutting-edge algorithms for "energy disaggregation", users gain the ability
to discern the energy consumption of individual devices within their homes.
This understanding empowers users to identify and address energy-intensive
devices, whether through more efficient usage or by considering replacements.
From the utility company’s standpoint, this technology offers real-time vis-
ibility into the consumption patterns of a multitude of households. This
perspective allows utility companies to pinpoint the most flexible areas in
terms of demand, enabling strategic implementation of Demand Response
initiatives.

Remote Control

By integrating swiftly deployable equipment, dedicated monitoring, and
evaluation tools offer a detailed breakdown of consumption per device or
system (e.g., air conditioners, heaters, water heaters). This setup not only
facilitates remote monitoring but also enables remote control. Leveraging
AI/ML algorithms, these systems are trainable to provide personalized sug-
gestions tailored to each user’s energy behavior and the installed appliances.
Users can transition towards a hands-off approach, with minimal initial input
such as setting basic conditions (temperature, hours away from home). The
Energy Management System (EMS) takes center stage, continuously opti-
mizing energy consumption without the need for constant user intervention.
This transition from active intervention to automated optimization not only
simplifies the user experience but also ensures sustained efficiency through
ongoing optimization by the EMS.

2.3 Research Questions
RQ1. Is it possible to use open-source production level software
that can run in a distributed manner for all components of such a
system ?

19

Currently, the state of the art systems for message processing of large IoT
clusters are proprietary and provided as a service from large cloud providers.
Such systems that can tolerate high amounts of traffic are dependent on big
scale infrastructure, sophisticated software and well though out architectures.
It is interesting, for that reason, to investigate ways with which one can repli-
cate these systems with home owned hardware, to know the requirements for
such a smaller scale system and if it can replace the current cloud-based so-
lutions offered as a third party service.

RQ2. How does the system perform while using the minimum
amount of resources for its distributed components ?

The resources we usually have available while researching these kind of
experimental technologies are limited to a few servers. Thus, we should be
able to determine at what extent we can still have a distributed, horizon-
tally scalable system, while tolerating at the same time an adequate enough
amount of message load from IoT devices. By understanding how many com-
puter resources are needeed to handle a few hundred messages per second,
we can then proceed to design how the system should scale in order to handle
multiples of these loads.

The current thesis is not concerned with a high message throughput tol-
erance system, but rather lay the foundations for a Kubernetes-based system
which includes only truly-distributed components that can scale horizontally
in the future, one by one.

RQ3. What are the practical limitations of such a system ?

Because this is an experimental technology and architecture, it is expected
to pose many downsides compared to the state-of-the-art technologies pro-
vided by cloud providers and other third party services. By acknowledging
what these limitations are, we can focus to mitigating them with a more
targeted approach in the future, as well as contribute to the open-source
community with tools and propositions to augment the existing software
tools and architectures.

20

Chapter 3

Background & Related Work

3.1 Internet of Things (IoT)

Figure 3.1: Timeline of internet evolution [2]

The history of the internet is not very long. The first network, called
ARPANET, was developed by DARPA and is just 55 years old. The recent
history of the internet as we know it, however, is not older than 20 years.
Mobile internet was introduced around 20 years ago with the era of cloud
computing beginning not earlier than the early 2010s. Until the end of the
previous decade, the need for multiple wireless devices was not immense. In
each household, there was a necessity for a few portable electronic devices
and maybe some more sophisticated smart home devices like a wireless light
switch. In the past few years, more and more problems have started to
arise, which align with the progress of technology. More specifically, due to
climate change, cities must learn to be more energy efficient, energy grids to

21

be smarter, and more data needs to be collected to make better decisions. At
the same time, internet bandwidth gets bigger and bigger and data transfers
get cheaper and cheaper. This can only lead to an increase in smart remote
devices, which will be able to collect data across households, cities, crop fields,
and many more. It is estimated that more than 75 billion smart devices will
be connected to the internet by the end of 2025. We anticipate that there
will be more than 9 smart devices per person in the following years [3].

Figure 3.2: Estimated Number of Connected Devices Per Person [3]

When it comes to the IoT market, it is also experiencing significant growth
with a forecast of rising to 33 billion dollars by 2027 [4]. In the smart home
industry alone we expect to have 350 million devices by 2024. IoT and AI are
also going to be tightly coupled in the following years, with sensors providing
all the necessary data for ML models to be trained. AI in general is going to
enable smart decision-making, optimize efficiencies, and provide predictive
insights, making IoT devices more intelligent and efficient [5].

However, the rapid growth of these interconnected devices raises chal-
lenges. Challenges such as high data traffic, energy efficiency, and highly
scalable message processing infrastructure. Thus, systems like EHS must be
able to scale well, while being highly available and energy efficient at the same
time. When it comes to the communication protocol with the IoT devices,
MQTT is the most well-adapted one that employs the publish-subscribe ar-
chitecture and is the one we will choose to set up our system as it also fits
with our use case scenario where all devices are within a house environment.

22

3.2 MQTT Protocol
MQTT is an open source, application layer, publish-subscribe messag-

ing protocol designed for lightweight M2M (Machine to Machine) and IoT
communications [3].

MQTT (Message Queueing Telemetry Transport), initially released in
1999 by IBM employee Andy Standford-Clark, has evolved into a core com-
ponent of various IoT solutions. Designed for constrained devices and net-
works with low bandwidth, high latency, or unreliability, MQTT minimizes
network bandwidth and hardware requirements while ensuring reliability and
some degree of assurance of data delivery [6]. It is typically used for trans-
ferring small messages, a few bytes in size.

3.2.1 Message Topics

In a publish-subscribe architecture, each MQTT message should have a
UTF-8 string, known as “topic”. Topics in MQTT are strings used by the
broker to categorize messages for each device connection, often structured hi-
erarchically for real-case scenarios (e.g. myHome/livingRoom/temperature).
More details about the MQTT Brokers and the handling of those messages
will be presented later.

3.2.2 Message Structure

MQTT messages have a structure consisting of a fixed header, an optional
variable header, and an optional payload. The fixed header is 2 to 5 bytes,
and it is variable because it represents the remaining length of the message.

Figure 3.3: MQTT Message Structure

23

3.3 Containers
Containers [7] is the most straightforward way to deploy apps in the cloud.

They are more lightweight than VMs, making them more energy efficient but
also faster to get deployed, not to mention that they have a smaller startup
time.

Figure 3.4: Containerized applications diagram

Therefore, they replaced relatively quickly the old way of setting up a
VM and then deploying the app there by hand. This solved the problem of
a more lightweight and faster deployment for a single application, which in
many cases is adequate, mainly speaking for small organizations and systems
with few clients and few applications to deploy. However, most applications
nowadays need to operate at scale, meaning that they need to be able to scale
dynamically, load-balance the traffic, get monitored, heal with minimal hu-
man intervention, and operate in a distributed way across multiple machines.
All these problems are solved with a container orchestration system.

3.4 Container Orchestration Systems
A container orchestration system enables the deployment and distribution

of containers across multiple physical machines, by creating virtual networks
across containers and managing them from a single interface. Additionally,
some of these containers running can be used as automated operators that

24

upscale or downscale other containers, based on their usage, or load-balance
traffic that is incoming to the cluster and the different containers [8].

Kubernetes is the most popular among the existing frameworks and it is
the one that we will use to deploy our proposed system.

3.5 Kubernetes
Kubernetes, often referred to as K8s, is a container-management system

that assists application developers in easily deploying, scaling, and maintain-
ing cloud-native applications.

Kubernetes is open-source, being initially developed by Google in 2014.
It is derived from its internal container management software, called Borg
[9]. As the popularity of containers and the cloud infrastructure arose among
developers, Google got motivated to develop and open-source the well-known
framework. Among its main uses are, deployment, updating, monitoring,
scaling, managing, and distributed execution of containerized applications.

25

Figure 3.5: Architecture of Kubernetes

3.5.1 Components of Kubernetes

• Control Plane & Workers

Kubernetes follows a master-slave architecture, where each machine is
called a Node.

The master component is represented by a cluster of Master Nodes (in
bigger clusters multiple master nodes are deployed to avoid single points
of failure and have better load balance across them). These Nodes are
responsible for managing the CRDs and controlling the orchestration
of containers through a scheduler, a controller, and an apiserver.

The Worker Nodes are the machines that do all the heavy lifting by
running the pods.

26

• Etcd

Etcd is widely known as the go-to key-value store for Kubernetes. It
can run in a distributed manner making it highly available, which is
important for clusters with high amounts of Nodes and load.

Its primary use is for storing all configuration data of the K8s cluster,
whether that is the metadata of each Node or information about the
Pod scheduling and status.

• Kube-apiserver

All functions in K8s are exposed through a REST API. This API end-
point is referred to as apiserver, it runs on the control plane nodes
and is designed to scale horizontally to be able to load balance traffic
and serve all the incoming requests to the cluster, either from inside or
outside of it.

• Kube-scheduler

Every time a new Pod is created, the scheduler needs to be the one
that chooses the Node for the Pod to run on. What it does is watch
if there are Pods that do not have an assigned Node in their metadata
and then choose one with the greedy approach of choosing the Node
that has at least as many resources as the Pod requests (meaning CPU,
memory, and storage).

• Kube-controller-manager

It is the Pod that runs controller processes. When we talk about con-
trollers, we refer to control loops that provision and act upon a change
of an object, like the creation of a Pod.

There are multiple default controllers compiled into the controller man-
ager each taking its name depending on its function. Node controller
provisions when a Node goes down for example and Deployment con-
troller handles the actions that need to be done for a Deployment object
to work properly. [IoT device management using Kubernetes → Con-
trol plane components]

• Kube-proxy

It acts like most network proxies, exclusively for each of the Nodes in
the cluster.
It allows incoming and outgoing traffic to and from the Pod and main-
tains network rules to properly route traffic from other Pods or from

27

outside the cluster. It is responsible for implementing, through ipta-
bles, the Service concept by mapping containers to Services and utiliz-
ing load-balancing mechanisms to distribute traffic among them. The
Service concept is going to be explained later [10].

• Kubelet

In every Node a Pod has to be running, whose purpose is to commu-
nicate with the control plane and supervise the lifecycle of the Pods
running on the same Node, either that has to be their creation, their
failure, or health status. More specifically, it communicates with the
master nodes to receive instructions about the Pods and it updates the
etcd accordingly for changes it performs.

• Containerd

At the heart of every Kubernetes node, there is a container runtime,
a daemon responsible for running the containers inside the Pods. In
our setup, we use containerd, which was, and still is, one of the main
components of the Docker daemon. Containerd is a representative of
the implementation of K8s CRI.
A CRI (Container Runtime Interface) is provided for the communica-
tion with a container runtime through a high-level interface. The CRI
is the main protocol for the communication between the containerd and
the Kubelet.

By the time of writing, at least four fully CRI-compatible container
runtimes exist: containerd, CRI-O, Docker Engine, and Mirantis Con-
tainer Runtime.

• Kubectl

There are several ways to interact with the API server. One of the pop-
ular options covering the most functionality is the CLI tool Kubectl.
Kubectl is the command-line tool for users to interact with the Kuber-
netes cluster that comes shipped along the K8s setup.

3.5.2 CRD (Custom Resource Definition)

Kubernetes uses ‘objects’ it calls CRDs to give meaning to the different
entities that it can understand [11].

There are predefined CRDs in Kubernetes (like Deployment), but one
can also create his own and apply them through manifests [11], in the for-
mat of yaml files ansibleYAMLSyntax. Kubernetes can understand CRDs
deployed in the format of a yaml file.

28

Each CRD is defined with a schema. One that wants to deploy a resource
in Kubernetes must follow the structure of that schema and provide all the
necessary attributes that are described in it. The structure of a CRD can
be separated into two parts. The universal information is described below
the ‘metadata’ section while the CRD specific is described below the ‘spec’
section of the yaml file.

Figure 3.6: CRD example manifest

3.5.3 CNI (Container Network Interface)

• Manages IPs of Pods and Services (for internal communication across
all pods)

• Kubernetes creates a NAT network that is ‘invisible’ and inaccessible
to the outside world but enables pods to communicate with each other,
independently of the node they are located in.

• The CNI is responsible for giving the IPs to the Pods and Services.

• Kube-proxy exists in each Node to implement routing from Services to
Pods.

• Kubernetes uses a subnet for all Services and one for all Pods.

29

– Services CIDR: (usually) 10.96.0.0/12
– Pods CIDR: (in calico) 192.168.0.0/16

* with block size = 26, meaning that each Node gets a subset of
these IPs for his pods ex. 192.168.1.1/26 → which translates to
64 available IPs for each Node

Figure 3.7: Diagram for CNI architecture

3.5.4 Services

A service is an abstraction that is deployed along with Pods, to expose
them under a single endpoint. Every Pod has a different and unique IP that
changes every time it gets recreated. That creates the need to refer to them,
not by their IP address, but in a unified way that represents a container
instance or multiple containers clustered together.

Kubernetes Services solves both the problem of dynamic IPs and Load
Balancing by offering a single endpoint to connect to Pods in the form of
a DNS name which can be accessed from the outside world or from inside
the Kubernetes subnet. Services are implemented in the kube-proxy Pods in
every Node [12].

The main types of services are 3, with each one of them being an enlarged
edition of the previous. Their characteristics are presented below:

ClusterIP

30

It is the simpler type where Services are accessible only from inside the
Kubernetes cluster. Any Pod can communicate with any other Pod from
inside the cluster by using its DNS name of the ClusterIP Service. In the
diagram below you can better visualize the connectivity between Pods in
K8s. Every Service that gets created is at least a ClusterIP meaning that it
has to provide an endpoint and also load balancing to the Pods. The default
load balancing implementation is usually Round-robin.

NodePort

NodePort allows both internal and external access to a Service. While
maintaining the properties of a ClusterIP, it also exposes a port in all Nodes,
called the NodePort, thus the name.

The service can now be accessed both from its DNS name and from the IP
of any Node plus the NodePort. It does not matter what Node you choose,
as all of them have the NodePort exposed and they forward the request to
the appropriate Pod, thanks to Kubernetes internal networking.

This Service type is usually used for testing purposes and is not recom-
mended for production use.

LoadBalancer

This Service type augments the properties of NodePort, by allowing ex-
ternal clients to use a single IP as an endpoint. This eliminates the problem
of one of the Nodes going down or changing IP and therefore not being able
to respond to the client through the NodePort.

When the cluster is deployed at a cloud provider the IP is automatically
given. However, when we have a local deployment, we either have to use
MetalLB to reserve IPs from the network or enter an IP manually in the Ser-
vice manifest of the LoadBalancer (for example the IP of one of the Nodes).
[13]

31

Figure 3.8: Diagram of architecture for types of Services

Ingress

Ingress is a Kubernetes-defined object (CRD) that manages access to the
Services from outside the Cluster, typically HTTP connections. It acts like
a proxy by providing load balancing, name-based virtual hosting, and SSL
termination.

Ingress rules are fulfilled by an Ingress Controller that is running as a
Pod and is the one that handles the routing of the requests to the equiva-
lent Service. Ingress Rules are applied to the controller to determine what
Service should respond depending on the URL of the request. For exam-
ple, an Ingress Rule might state that connecting to the /test-route-1 should
access the ‘Service 1’, while another Ingress Rule might state that test-route-
2.app.com should access the ‘Service 2’.

Ingress Controller gets exposed as a LoadBalancer and this means that
we get all the benefits of it such as the round-robin-based Load Balancing
that is performed across the Services.

It can also provide secure access to HTTPS endpoints because it can talk
with a certificate-generating authority like lets-encrypt which can create and
refresh valid certificates. In our work, we use the cert-manager service which
runs inside a Pod and manages everything about https certificates. [14]

32

Figure 3.9: Diagram of architecture for Ingress

3.5.5 Workload Resources

A workload is an abstraction we use to describe an application that runs
on Kubernetes, whether it runs as a single component or several that work
together. In K8s, the smallest deployable unit of computing is called a Pod
and it represents a set of running containers. The Pod acts as the ‘logical
host’ of these containers, as it provides an IP and ports. These containers that
run inside a Pod are tightly coupled and share the same storage and network

33

resources. Pods on their own have a predestined lifecycle, because when the
Node that they are deployed on goes down, or when they are terminated for
any other reason, then they are declared as ‘failed’ and cannot come back up
on their own, thus requiring manual recovery. For that purpose, there are
’logical’ entities called Workload Resources that cluster these Pods together
and supervise their life cycle. Each of these resources has a controller that
is constantly checking for the state and health of each pod and can take the
appropriate actions to recover the deployed application in case of a failure.
A lot of such predefined controllers are deployed inside the Kube-controller-
manager Pod which resides in the control plane, as mentioned earlier [6].

Below, we analyze the most common Workload Resources that are used
in Kubernetes and which are also used in the implementation part of this
work. The main differentiating factor among the Workload Resources below
is the type of application that we want them to encapsulate. For example,
some applications are stateless, meaning that they are not dependent on any
permanent storage, while others need to claim some storage from the oper-
ating system to operate.

ReplicaSet

It is the simplest and most common way to run an application. It is made
for deploying and managing stateless application workload on the cluster,
where any Pod is identical and interchangeable. A ReplicaSet is deployed
using a Deployment object in Kubernetes, in which someone declares the
number of copies that the workload should have, and in case any of these
Pods go down or the Node goes down, the ReplicaSet controller is responsible
for creating a new Pod on one of the available Nodes of the cluster.

StatefulSet

As the name declares a StatefulSet is a resource made for deploying state-
ful applications. All Pods that are under a StatefulSet have a distinct identity
and their main characteristic is that they are linked to persistent storage pro-
vided by the cluster. This persistent storage is defined as a PersistentVolume
and can be created either manually by the cluster administrator or with a
StorageClass given a fixed amount of requested storage capacity [15]. If one
of the Pods goes down, the PersistentVolume will remain intact, and then the
Pod gets created again by the StatefulSet controller, it will get reattached to
the same PersistentVolume without losing any of its data stored there. That
is why having a distinct is important and also why scaling such a resource
can be tricky and difficult.

34

DaemonSet

There are scenarios when an application needs to run on every machine,
but there is no need to run more than one instance on it. For example,
the Kubelet is a workload that requires a Pod to run on every Node of the
cluster, to supervise the lifecycle of other Pods and more generally it is an
application that helps manage the equivalent Node. Such an application is
very similar to a system daemon on a classic UNIX system and that is why
we deploy such applications as a DaemonSet. You can run a DaemonSet
across every node in the cluster, or across just a subset of them (for example,
install the GPU accelerator driver only where a Node has a GPU installed)
[16].

Creating your own resources and controllers is also possible through the
Kubernetes API [17] to extend its functionality for applications that cannot
be deployed with the existing ones [18]. Creating new controllers and CRDs
for that purpose is described as creating an operator that can be described
as a custom controller for a specific application that follows the Operator
Pattern guidelines [19].

3.6 Distributed Systems
Distributed systems are networks of independent components working to-

gether to form a cohesive system, designed for improved performance, scal-
ability, and resilience compared to centralized systems. Within this broad
spectrum, a fundamental distinction exists between stateless and stateful
systems.

A stateless distributed system is one in which the servers do not retain
any internal state between requests — each interaction is processed inde-
pendently, without reliance on information from previous interactions. This
absence of state enables such systems to scale horizontally with ease; addi-
tional servers can be added to the pool to handle the increased load, and
since there’s no need for synchronization of state, these new servers can start
processing requests immediately. What makes a system truly distributed in
this context is its ability to work in concert with other systems, often over
a network, to deliver a service. Such systems are robust and resilient, as
the failure of a single component often does not impact the availability or
performance of the overall system.

Conversely, stateful distributed systems present a more complex scenario.
These systems maintain state across requests, remembering previous inter-

35

actions or the status of operations. This state can include data such as user
sessions, information caches, or persistent data required for operations. In
such environments, distribution becomes a challenge due to the necessity of
data consistency and replication across nodes. Ensuring that all nodes see
the same state is non-trivial and often involves sophisticated synchronization
and consensus algorithms. The replication of data, which is vital for resilience
and fault tolerance, introduces latency and potential bottlenecks that must
be managed. Stateful systems require intricate strategies to handle partition-
ing, replication, and transactional integrity, making the scaling process more
complex compared to their stateless counterparts. Despite these challenges,
stateful systems are indispensable for scenarios where data continuity and
stateful interactions are necessary.

Consensus

Consensus plays a pivotal role in the operation of distributed systems,
which are composed of multiple nodes that must coordinate to accomplish a
shared objective. This process requires that all nodes in the network reach
a unanimous agreement on specific data or the state of the system, despite
potential disruptions or malfunctions within the network.

A real-life example of consensus in a distributed system can be seen in a
banking application. Suppose a customer deposits into their account. The
deposit must be recorded in the bank’s database, and all nodes in the system
must agree on the account balance. To achieve consensus, the nodes must
exchange messages to ensure that all nodes have the same view of the account
balance. If one node fails or behaves incorrectly, the other nodes must be
able to detect this and continue to operate correctly [20].

36

Chapter 4

Design & Concepts

4.1 EHS Architecture
We intend to design a system that receives MQTT messages from multiple

sensors at the same time and distributes them across multiple microservices.
Thus, the first component we have to use is an MQTT Broker. We choose to
avoid receiving the incoming messages directly with Apache Kafka, to ease
its load and be able to transpose the message data part before it reaches the
Kafka Brokers.

Kafka is the central part of our system that processes and persists all
data that come from the sensors. Each message starts from the MQTT Bro-
ker, then receives a timestamp, enters the Kafka Brokers, and from there,
it gets stored in multiple databases with Kafka Connectors. Kafka connec-
tors are deployed in Kafka Connect which is a Kafka-compatible solution for
implementing high-throughput data transfers from and to Kafka.

In our case, we have 3 main database types where we want Kafka to dump
our data. We have a time series database where we want to store data for
only a short period to ease the load from the central database for real-time
time series data.(The data fetching from the time series database is being
performed by a Hasura Deployment which uses GraphQL to perform the data
queries and automates the API creation process [1]). Then we have a no-sql
database with the purpose of storing aggregated data from the sensors. The
continuous data streams get aggregated, to avoid storing more information
than needed, and get written in the no-SQL database permanently. Lastly,
we need a combination of the above two databases to store every sensor data
and metadata possible to use for the training of a machine learning model.
Thus, we have to deploy a data lake with much more storage than the rest.

37

Figure 4.1: Diagram for architecture of the IoT system

Below, we present every component of our system and how that operates
in a distributed manner.

4.2 Why choose Kubernetes
The capacity to manage and serve innumerable device connections, con-

vey massive amounts of data and deliver high-end services such as real-time
analytics involves a deployment architecture that can dynamically scale up
and down in response to IoT deployment demands. Kubernetes enables de-
velopers to autonomously scale up and down across various network clusters.
Many IoT solutions are classified as business/mission-critical systems that
must be extremely dependable and available. As an example, an IoT solu-
tion crucial to a hospital’s emergency healthcare facility must be available at
all times [21]. Kubernetes provides developers with the tools they need to
deploy highly available systems.
Kubernetes’ design also allows workloads to run independently of one an-
other.

On a practical level, Kubernetes is the most well-known and most widely
used system for container orchestration. Possibly, it is the only open-source

38

and production-ready with a relatively long history of updates and bug fixes.
Often, there is a comparison between Kubernetes and Terraform. However,
those two systems solve different problems. While Kubernetes focuses on
running and orchestrating multiple containers, Terraform targets the Infras-
tructure as Code (IaC) space.

4.3 MQTT Broker
IoT networks deploy several radio technologies at the lower level. Lower-

level communication protocols may include LoRaWAN, SigFox in long-range
(km)-low data rate (bps-kbps), cellular/4G/5G in long-range(km)-high data
rate (Mbps), Zigbee, Zwave in medium range (m)-medium-data rate (kbps)
and WiFi in medium range(m)-high-data rate (Mbps). Apart from the radio
technology used to transmit the data, the appropriate messaging protocol
also plays a key role. MQTT, CoAP, AMQP, and HTTP are the four widely
accepted and emerging messaging protocols for IoT systems. In this work,
we work with the MQTT message protocol as it is designed specifically for
minimizing network bandwidth and power consumption, while also ensuring
reliable delivery over low-bandwidth and unreliable networks [22].

Figure 4.2: Diagram for Pub/Sub in MQTT

Apart from being efficient, it is also a relatively flexible protocol as it
offers three qualities of service (QoS) for message delivery which allow the
system developer to make the tradeoff between a high message delivery suc-
cess rate and high throughput. Each QoS level is usually targeted for a
specific category of applications.

39

For example, QoS 0 (or known as ‘at most once’) is used for sending
real-time sensor data, like humidity, pressure, or power consumption, where
throughput is important and the loss of messages is acceptable. Continuing
we have QoS 1 (known as ‘at least once’) where the message is going to be
delivered to the broker at least one time, which allows message duplicity in
case the broker message acknowledgment gets lost but ensures the message
gets delivered. An example used is a command and control system like a
home automation system, where we need the device to receive and execute
the command. We can understand that because these actions are human-
operated, the message frequency is not as great as the sensor measurements.
Finally, we have the QoS 2 (also known as ‘exactly once’) which is useful in
billing systems or remote surgery applications, where duplicate messages are
not acceptable.

In our case, we can easily conclude the use of QoS 0 for our sensory data
streams, as we see that it reduces both memory usage, for temporary storing
of messages, and latency, as there is no need for the publisher to wait for a
response from the broker.

For future work, we will consider using QoS 1 to communicate with home
devices such as an AC or a power plug to operate them remotely. We should
note that MQTT is a bi-directional communication protocol. This helps in
both sharing data, managing, and controlling devices.

Figure 4.3: Process diagram for QoS in MQTT

The components of an MQTT system are the following:

• Publisher or Producer (client)

40

• A broker (server)

• Consumer/ Subscriber (client)

An MQTT server is a program or device based on MQTT that acts as
a post office between publishers and subscribers, while an MQTT client is a
program that either sends or receives messages from the MQTT server. Each
message contains payload data, a QoS, a collection of properties, and a topic
name.

4.3.1 Choosing an appropriate MQTT Broker

We initially tried the Eclipse Mosquitto Broker [23] which is a lightweight,
commonly used, and well-maintained broker software. However, the fact
that it is a single-threaded and not a horizontally scalable implementation
made it difficult to incorporate it in an everything-distributed data processing
pipeline. Therefore, we set the requirements for a highly scalable broker that
implements load balancing across all nodes and is fault tolerant.

Looking across the open-source and commercially licensed options[22] we
considered the EMQ X [24], the HiveMQ [25], and the VerneMQ [26] brokers.

Figure 4.4: Available MQTT Broker software comparison table

41

We decided to use the HiveMQ, because of better documentation, active
and high maintenance, and easier integration with Kubernetes through the
available Operator. Operators are control loops that can handle stateful
applications in Kubernetes. They can handle dynamic recovery of replicas as
well as upscaling and downscaling of the cluster. In our case especially they
should be able to do that without sacrificing broker availability.

HiveMQ stores the data in memory which is a choice that allows faster
read & write operations, which is important in MQTT message handling.
We want the MQTT broker to act solely as an intermediate for sensor data.

For further persistence of all messages, we connect the HiveMQ cluster
with a Kafka Broker cluster, which can handle longer message queues and
hold the data for longer periods.

Figure 4.5: Diagram of architecture for distributed MQTT Brokers cluster

4.4 Kafka Broker
Apache Kafka [27], an open-source software, is a distributed and fault-

tolerant event streaming platform based on the publish/subscribe model.
Following topic-based design and written in Scala and Java it is currently

42

maintained by Apache foundation and is used in a majority of Big Data
solutions and real-time data pipelines.

The publisher/subscriber model implies that there are 2 distinguished
types of clients. The ones that produce/publish messages to the Kafka cluster
of brokers, which are called Producers, and the ones that consume those
data based on a classification that uses topics to describe, which are called
Consumers.

Figure 4.6: Diagram for Pub/Sub in Kafka

Kafka Brokers are responsible for maintaining and distributing the mes-
sages to clients.

To store and manage all the configuration data of the broker’s cluster,
meaning the information about the cluster nodes, the message topics, and
partitions, Kafka relies on a third-party service. The most popular, because
of its adaptation is Zookeeper [28].

However, because Zookeeper requires an extra independent deployment
object to run alongside Kafka, we will use KRaft, which is a more recently
developed alternative, runs on the same Pod as Kafka, and is production-
ready.

43

4.4.1 Distributed Kafka Cluster architecture

Running a distributed system like Kafka means that it has to be highly
available and fault-tolerant. That is why every topic is replicated across mul-
tiple brokers. One of those active brokers will be responsible for responding
to the requests for the specific topic and will be declared as a Leader. The
rest will be declared as replicas. As one can assume, in case the Leader goes
down, one of the replicas gets elected as the new Leader and Kafka continues
to serve requests with minimal downtime.

Figure 4.7: Diagram for internal distributed function of Kafka

Topics can also be partitioned across multiple nodes so that they can grow
beyond the limits of a certain node and for load balancing of the writing
process. Each partition has also a preferred Leader, which is responsible
for handling all read and write operations for that partition. All the data
concerning the preferred Leader for each topic and partition are stored in
Zookeeper/Kraft.

44

Figure 4.8: Diagram for partitions architecture in Kafka

4.5 MQTT to Kafka Connector
We choose to create a custom Connector to transfer messages from the

MQTT Brokers Cluster to the Kafka Brokers Cluster. This choice is mainly
to have more control over the messages that derive from the devices. Dif-
ferent devices may send messages with different structures depending on the
firmware. Thus, we need more delicate code to process them and convert
them to the appropriate format. Plus, we want to experiment with a more
simple way of horizontal autoscaling, by using a simple autoscaler, in contrast
with Kafka Connect.

The design of our Connector is fairly simple. We deploy an MQTT Client
that subscribes to the appropriate MQTT Topic and acts as a Consumer of
the messages. After that, follows the message processing.

MQTT messages do not provide a timestamp of arrival and that is why
we need to insert a timestamp to our message payload before we produce the
message to the Kafka Brokers.

At the same time, we open a connection to the Kafka Brokers and Sub-
scribe to the appropriate Topic as a Producer. Once the messages are con-
verted they are published to this topic.

45

Figure 4.9: Diagram of MQTT-Kafka Connector architecture

By default, the MQTT Broker sends the message to every Client who is
subscribed to the following Topic. This means that if we scale the Connector
instances horizontally, each instance will transfer the same message multiple
times.

To solve this issue, we deploy each MQTT Client with a unique ID, so
that all can keep the connection open at the same time and also make use of
the shared subscriptions [29].

Another key characteristic of MQTT Brokers is the ‘Shared Subscrip-
tions’. We choose to use MQTT v5 (compared to MQTT v3) in our system
because it standardizes the shared subscriptions and allows multiple MQTT
client instances to share the same subscription on the Brokers.

Topics can be shared among many clients that belong to the same group.
This means, that the MQTT Broker will send each message only once to the
Clients of the same group in a round-robin manner, enabling a load-balancing
strategy.

What we have to do is make all Clients subscribe to a topic with the
following syntax $share/<group-id>/<topic-name> .

$share : A prefixed name telling the MQTT server this is a shared sub-
scription.

<group-id> : A string, without any wildcards (‘/’, ‘+’, and ‘#’), that
identifies a subscription group. All clients with the same GroupID and Topic
are part of the same shared subscription.

46

<topic-name> : A string – can include wildcards (‘+’ and ‘#’) – that
denotes the topic filter to be used. This is equivalent to the topic filter in a
non-shared subscription.

Figure 4.10: Diagram of MQTT-Kafka Connector distributed architecture

4.6 Kafka Connect
Kafka Connect is a tool for scalably and reliably streaming data between

Apache Kafka and other data systems. It makes it simple to quickly define
connectors that move large data sets in and out of Kafka [30]. Kafka Connect
is a server process that runs independently of the Kafka Brokers themselves
on different nodes, forming a Kafka Connect Cluster.

4.6.1 Task Rebalancing

When a connector is first submitted to the cluster, the workers rebalance
the full set of connectors in the cluster and their tasks so that each worker has
approximately the same amount of work. This rebalancing procedure is also
used when connectors increase or decrease the number of tasks they require,
or when a connector’s configuration is changed. When a worker fails, tasks

47

are rebalanced across the active workers. When a task fails, no rebalance is
triggered, as a task failure is considered an exceptional case.

4.6.2 Workers

Kafka Connect calls Workers individual processes that are responsible for
executing Connectors and Tasks. These Workers can either work run in a
distributed manner or not.

• Standalone Workers
A single process is responsible for executing all connectors and tasks.
Since it is a single process, it requires minimal configuration. Stan-
dalone mode is convenient for getting started, during development, and
in certain situations where only one process makes sense, such as col-
lecting logs from a host

• Distributed Workers
In distributed mode, you start many worker processes and they co-
ordinate to schedule the execution of connectors and tasks across all
available workers. If you add a worker, shut down a worker, or a worker
fails unexpectedly, the rest of the workers acknowledge this and coor-
dinate to redistribute connectors and tasks across the updated set of
available workers. Behind the scenes, connect workers use consumer
groups to coordinate and rebalance.

48

Figure 4.11: Kafka Connect distributed architecture

4.6.3 Connectors

Kafka Connect implements two types of connectors, depending on the
direction of the data stream.

• Source Connector
Source connectors ingest entire databases and stream table updates to
Kafka topics. Source connectors can also collect metrics from all your
application servers and store the data in Kafka topics–making the data
available for stream processing with low latency.

• Sink Connector
Sink connectors deliver data from Kafka topics to secondary indexes,
such as Elasticsearch, or batch systems such as Hadoop for offline anal-
ysis.

4.6.4 Converters

Kafka Connect does not have the ability to understand the message
schema, meaning that it wants to have the type and name of each mes-
sage field declared, in order to transfer it properly. The matching process

49

for the payload fields is done by tasks. Tasks use converters to change the
format of data from bytes to a Connect internal data format and vice versa.

Most common converters are the AvroConverter, JsonSchemaConverter
and JsonConverter with the latter one requiring no Schema registry [31].

Figure 4.12: Schema of Kafka Connector internal components

4.6.5 Schema Registry

A schema defines the structure of message data. It defines allowed data
types, their format, and their relationships. A schema acts as a blueprint for
data, describing the structure of data records, the data types of individual
fields, the relationships between fields, and any constraints or rules that apply
to the data.

Schema Registry enables you to define schemas for your data formats and
versions and register them through the registry. Once registered, the schema
can be shared and reused across different systems and applications. When a
producer sends data to a message broker, the schema for the data is included
in the message header, and Schema Registry ensures that the schema is valid
and compatible with the expected schema for the topic [32].

It is a standalone server process that runs on a machine external to the
Kafka brokers. Its job is to maintain a database of all of the schemas that
have been written into topics in the cluster for which it is responsible. That
“database” is persisted in an internal Kafka topic and cached in Schema Reg-

50

istry for low-latency access. Schema Registry can be run in a redundant,
high-availability configuration, so it remains up if one instance fails [33].

4.7 Kafka to TimescaleDB Connector
For distributing the data from Kafka to the Timescale database we use a

Connector deployed to Kafka Connect. To use a Schema Registry the data
need to be transformed into serialized format (ex. Avro). Because Kafka
does not provide data conversion into such formats, it means that for Kafka
Connect to receive a serialized message, that message needs to be converted
in some previous step.

The 2 solutions are presented in the diagram below. The goal is to output
the message from Kafka into an Avro format. Thus, we either can convert
the message inside the MQTT-Kafka Connector or we can use another Kafka
Connector which will consume the message from Kafka and produce another
message in a different topic.

Because each Kafka Connector needs a different message format depend-
ing on the database type, the second design is preferable because we can
transpose the messages accordingly for each database.
(For our testing we avoid using a Schema Registry as we can guarantee the
integrity of the structure of the message, so we use a simple JSONConverter
[34].)

51

Figure 4.13: Diagram of message conversion solutions

4.8 TimescaleDB / Postgresql
High availability is a top priority for every component of our system. This

is why we chose Timescale for our time series database, which is an extension
of the PostgreSQL database and can run in a distributed manner.

The main function of this database is to hold real-time data from sensors,
mainly to feed the graphical interface of the application. This allows us to
ease the load from our primary database and also avoid storing permanently
very detailed information about the sensors.

52

4.8.1 Replication

Timescale offers High Availability (HA), by providing multiple places to
get the same data and by eliminating single points-of-failure. The way it
does that is by replicating the data on the primary database to one or more
read-only replicas. The replication is performed with streaming replication
[35] which uses WAL files to sync files from the primary database across the
replicas. While a client can perform a write to only the Primary database,
the reads are distributed across all Replicas in a load-balancing manner [36].

Figure 4.14: Architecture of distributed postgresql deployment

53

4.8.2 Failover

Timescale relies on Patroni which acts as a failover solution, in order
to run in distributed mode. When the Leader goes down, we need to keep
responding to write requests, and for that, a new Leader needs to be elected.
The leader election process is handled by Patroni, which uses an etcd cluster
to store all the configuration data. Etcd implements the leader election with
the Raft consensus algorithm [37]. When deployed in Kubernetes Patroni is
able to use Kubernetes objects in order to access the existing etcd cluster
and store the state of the cluster there, thus eliminating the need to operate
an extra Etcd deployment [38].

Figure 4.15: Leader election diagram for postgresql (Raft)

54

4.8.3 GraphQL

To access our time series data and make them available to the frontend
application we make use of GraphQL. GraphQL is a query language for
APIs and a runtime for fulfilling those queries (GraphQL [39] was originally
developed by Facebook and released publicly in 2015). To deploy it, we
make use of the Hasura GraphQL engine, which gives us high-performance
GraphQL for any Postgres database without having to write any backend
code.

By using TimescaleDB and Hasura GraphQL engine together, we are
able to query for real-time data using the Subscriptions operation. It enables
you to subscribe to events on the server and get real-time updates for each
record insertion, modification, or deletion [40]. Usually, this is being done
using WebSockets, but GraphQL Subscriptions eliminate that need.

4.9 Deployments
To deploy the simpler stateless applications, such as the Frontend and

Backend of our system, in a distributed way, we employ the Deployment
object in Kubernetes which creates a ReplicaSet. Deployments are a declar-
ative way to manage the instances of the applications, ensuring a specific
number of pod replicas are running at all times. The number of replicas
can vary depending on the load of the application and if we want the ap-
plication to scale automatically in real time we can use an autoscaler like
KEDA (Kubernetes-based Event-Driven Autoscaler), which is able to scale
up or down the system as needed based on metrics such as CPU utilization
or network bandwidth.

To function truly as a distributed application, each Deployment should
be accompanied by a LoadBalancer Service, which will distribute the load
across all instances with a round-robin type of load-balancing algorithm.

55

Figure 4.16: Deployment diagram deployed in Kubernetes

An example of a Deployment object that uses a specific Docker image and
exposes port 80 can be seen below:

56

apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend-deployment

spec:
replicas: 2
selector:

matchLabels:
app: frontend

template:
metadata:

labels:
app: frontend

spec:
containers:
- name: frontend

image: your-frontend-image
ports:
- containerPort: 80

4.10 How we expose the services
In Kubernetes, iptables is replaced by eBPF [41], as demonstrated in

the creative. The most basic type of load balancing in Kubernetes is load
distribution, which is simple to implement at the dispatch level, meaning
that simple algorithms such as round-robin are used.

Kubernetes has two load distribution mechanisms, both of which operate
through a feature called Kube-proxy, which maintains the virtual IPs used
by services. Kubernetes provides a basic, yet effective, form of load balancing
by distributing incoming traffic among the available instances of a service,
and this distribution is implemented at the dispatch level, ensuring a more
equitable sharing of the load.

In Kubernetes, each Pod receives its own unique IP address, reachable
from any other pod in the cluster, whether colocated on the same physical
machine or not. This requires advanced routing features based on network
virtualization [42].

57

Figure 4.17: Diagram of the eposure of Services to the oustide world

4.11 HELM Charts
A Helm Chart is a collection of files organized in a specific directory struc-

ture. At its core, a Helm Chart contains a Chart.yaml file that provides
metadata about the chart, a set of default values in a values.yaml
file, and templates that generate Kubernetes manifest files. These tem-
plates, written in the Go template language, reference the values defined
in values.yaml or values passed at runtime, allowing for customiz-
able deployments. Additionally, Charts can include a charts/ directory
containing dependencies, which are Charts that your Chart relies on, and a
templates/ directory for template files [43][44].

The true power of Helm Charts lies in their ability to package the entire
lifecycle of Kubernetes applications. They encapsulate all necessary Kuber-
netes resources and configuration into a single cohesive unit that can be easily

58

distributed, versioned, managed, and updated.
For example, if you’re deploying a web application on Kubernetes, you

could use a Helm Chart to define not just the Deployment and Service re-
sources needed to run your application, but also more complex aspects like
Ingress rules, Persistent Volumes, and ConfigMaps. With Helm, you can
then install this Chart into your Kubernetes cluster with a single command,
helm install my-web-app ./my-chart , where my-web-app is
the release name, and ./my-chart is the chart directory. This not only
simplifies the initial deployment but also streamlines updates with helm upgrade

, rollbacks with helm rollback , and customizations through different
environments by overriding default values.

Figure 4.18: Example structure of Helm Chart files

The main reason we use Helm Charts in this deployment is because they
offer the easiest way to install and uninstall many CRDs under a common
tag, which is very convenient for testing different alternatives for the same
component. Helm charts also offer an easier way to maintain and manage
the various deployments, because all are categorized based on their tag.

59

Chapter 5

Implementation

5.1 Infrastructure
In this work, we consider a homogeneous 3-node Kubernetes cluster com-

posed of VMs running on-premises. Each VM is equipped with 2 CPUs, 10Gb
of RAM, and 1TB of persistent storage. Each VM runs on top of Hyper-V
hypervisor with Ubuntu Server 22.0 installed as the Operating System. To
make our VMs ready to act as nodes in the Kubernetes cluster we need to
apply some prerequisites. Firstly, we assign each machine a public IP and
a hostname. Then, for each machine, we add the IPs and hostnames of the
rest to their DNS records.

Each VM is called a Node in the Kubernetes cluster and these Nodes are
partitioned into the Control Plane Nodes and the Workers. One of the three
Nodes is configured as a Control Plane Node and the rest as Worker nodes,
following the master-slave pattern, that is commonly used in distributed
architectures. A Control Plane with a single Node in Kubernetes means that
there is a single point-of-failure for the orchestration of the internal cluster
processes. In case we intended to emphasize High Availability (HA) even
more, we would add more nodes in the control plane, and usually for that
we need a minimum of 5 VMs. In our case, we chose only one master Node
due to a lack of resources [45].

5.2 Kubernetes Setup
There are several approaches to creating and bootstraping the Kuber-

netes cluster. We set up the Kubernetes cluster using the Kubeadm software
tool. It is a tool designed and built to provide the necessary commands to
bootstrap a minimum viable Kubernetes cluster. The prerequisites for the

60

cluster setup are that each VM has the minimum amount of resources as
stated in the Kubernetes documentation [46], that all nodes can communi-
cate with each other, and that there is a container runtime installed in each
machine (we use containerd, which is preferred).

Kubernetes components use specific ports for internal node communica-
tion. When setting up the cluster on premises we should be aware of the
used ports [47] and open them with the appropriate firewall updates (in our
case we used iptables to update the firewall rules).

We first configure the control plane nodes and the worker nodes and
bootstrap them together.

In order for the multiple nodes to communicate with each other we need
to install a CNI (Container Network Interface), which will handle all the
virtual IPs given to each Pod along with the internal communication of the
nodes. In our setup, we use the Calico CNI as one of the most popular and
well-maintained ones.

In order to monitor the cluster for resource consumption and potential
errors we also install a Kubernetes Metrics Server [48] with which we can get
system information for all nodes through the masters’ command line.
Find a more detailed description of the setup in the following article on
Medium (here).

Worker Nodes
After setting up the Master Node, we perform the same initialization

procedure for the Worker Nodes. For these Nodes, instead of using the
kubeadm init command, we will use the kubeadm join command
that the Master Node issues upon initialization. Running this command on
the workers will add them to the cluster and we should see all nodes being
in the ‘Ready’ state.

5.3 Dynamic Provisioner
Before we start deploying all the various components of our system, we

must ensure that we have a Dynamic Provisioner installed in our cluster.
A dynamic provisioner is a service that has control over the storage of

our machines and is able to create Volumes dynamically when a Pod requests
it. These volumes are called Persistent Volumes as mentioned earlier, they
have a fixed capacity and we want to avoid creating them manually to reduce
human intervention.

If you are using a managed Kubernetes service (AWS EKS, GKE, AKS)
the cloud provider will provide a StorageClass which will perform automati-

61

https://medium.com/@nikolas.bellos/how-to-setup-kubernetes-with-kubeadm-fe47818650cc?sk=f0865e3f89a37aeadc4fb005d1b63e9b

cally the PersistentVolume creation [15]. However, when using a bare-metal
Kubernetes cluster, as we do in this example, we will need to manage storage
by ourselves. At this moment, one of the open-source local storage provision-
ers is the one developed by rancher [49].

Figure 5.1: Diagram of dynamic PV creation

5.3.1 Deployment Instructions

Apply the manifest provided by rancher which deploys all the necessary
CRDs for the provisioner to work.
kubectl apply -f https://raw.githubusercontent.com/rancher/
local-path-provisioner/v0.0.26/deploy/local-path-storage.yaml
where the version v0.0.26 should represent the latest tag of the provi-
sioner releases [50].

The main components this manifest deploys, are the container of the
Provisioner [51] with the equivalent tag deployed as a ReplicaSet, as well as

62

a StorageClass object named local-path . StorageClass is the object one
must reference for the creation of the PersistentVolumes. After installation,
you should see something like the following:

Figure 5.2

5.3.2 Usage Instructions

To use the Dynamic Provisioner to create PersistentVolumes, one must
reference the local-path StorageClass in the appropriate CRD. The
most common object in Kubernetes that makes use of the StorageClass is
the StatefulSet, which includes the storageClassName as a property
field. An example of how one can reference the StorageClass to create PVs
dynamically is shown below:

volumeClaimTemplates:
- metadata:

name: pvc
spec:

storageClassName: "local-path"
accessModes: ["ReadWriteOnce"]
resources:

requests:
storage: "1Gi"

It is important to note that if the storageClassName field is ex-
cluded then the ‘default’ StorageClass will be used and in the case where we
set an empty string storageClassName: "" then no provider will
be used and it is implied that a Persistent Volume already exists or will be
created manually.

5.4 MQTT Broker (HiveMQ)
To deploy our MQTT Cluster of HiveMQ Brokers we will use the Operator

provided by HiveMQ [52].

63

The Operator is deployed as a Helm Chart. The process we follow in this
circumstance is to download the files locally, so that we have better control
of what we deploy in our system, and then change the properties necessary
in the values.yaml file to fit our system needs (for example the number
of instances or the tag of the container).

5.4.1 Deployment Instructions

Clone the files from GitHub repository of the Helm Chart to your local
file system.
git clone https://github.com/hivemq/helm-charts.git and
navigate to the /helm-charts/charts/hivemq-operator folder.

Then, make sure you install any other dependency charts with the
helm dependency build command.

Edit the values.yaml file and configure all the appropriate proper-
ties.
We edit the following properties:

• nodeCount → number of brokers

• cpu → CPU requirements of Node

• memory → memory requirements of Node

• Enable the LoadBalancer Service by uncommenting the line 272
Because the MQTT messages will not get filtered by the Ingress Con-
troller and we have to use another way, such as a LoadBalancer

After that, we install the Helm Chart with the name hivemq , using
the following command helm install hivemq .

The operator pod is initialized and after a few minutes, the MQTT Broker
pods have been created, as many as the nodeCount property that we specified
earlier.

5.4.2 Usage Instructions

We access the MQTT brokers through the IP of any of the Nodes or their
DNS name because we have a LoadBalancer. We use port 1883, which is
the default port for the MQTT protocol. In case someone wants to use a
different port, they can change it from the values.yaml configuration
file.

64

5.5 Messaging Broker (Apache Kafka)
For the deployment of the Kafka Brokers, we will use a simple way for

Deploying it. We avoided using an operator or a Helm Chart, just because
a Kafka cluster is not ideal for scaling up or down. Therefore, we need to
choose a specific number of brokers from the beginning, depending on the
expected load, and deploy them using a simple StatefulSet to demonstrate
how simple their configuration can be.

The most common dependency of Kafka is ZooKeeper [28], but we de-
ploy it with KRaft which does not require extra Pods to be deployed and is
declared as a production-ready service [53]. One of the tasks of Kraft is the
leader election among the different Kafka Brokers [54].

Below we have the deployment architecture of the Kafka Brokers deployed
as a StatefulSet in Kubernetes.

65

5.5.1 Deployment Architecture

Figure 5.3: Kubernetes deployment architecture for Kafka [55]

5.5.2 Deployment Instructions

Our deployment process is based on the method used in the following
article [55]. We deploy a StatefulSet, along with a Headless Service [56] to
expose the Pods.

Here are the manifests for the StatefulSet and the Headless Service. We
declare the number of Brokers we want, along with the StorageClass we
deployed earlier.

66

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: kafka
labels:

app: kafka
spec:
serviceName: kafka-svc
replicas: 2
selector:

matchLabels:
app: kafka

template:
metadata:

labels:
app: kafka

spec:
containers:

- name: kafka-container
image: doughgle/kafka-kraft:latest
ports:
- containerPort: 9092
- containerPort: 9093

env:
- name: REPLICAS

value: ’2’
- name: SERVICE

value: kafka-svc
- name: NAMESPACE

value: default
- name: SHARE_DIR

value: /var/run/kafka-data
- name: CLUSTER_ID

value: LRx92c9yQKws786HYosuBn
- name: DEFAULT_REPLICATION_FACTOR

value: ’2’
- name: DEFAULT_MIN_INSYNC_REPLICAS

value: ’1’
volumeMounts:
- name: pvc

mountPath: /var/run/kafka-data
...

67

...
volumeClaimTemplates:

- metadata:
name: pvc

spec:
storageClassName: "local-path"
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: "1Gi"

apiVersion: v1
kind: Service
metadata:
name: kafka-svc
labels:

app: kafka
spec:
clusterIP: None # headless service
ports:

- name: ’9092’
port: 9092
protocol: TCP
targetPort: 9092

selector:
app: kafka

To deploy them together we will make use of Kustomize [57], a tool in
Kubernetes which allows for multiple manifest deployments from a single file.

We create therefore, a kustomization.yaml file where we include
the names of the StatefulSet and the Service manifests.

resources:
- kafka-statefulset.yaml
- kafka-service.yaml

After we create the kustomization file we apply it using the kubectl
tool with the following command.
kubectl apply -k . where . is the current folder where we have

68

placed all the manifests along with the kustomization file.

After the deployment has been completed we should be able to see the
Kafka Pods and PersistentVolumes having been created.

5.5.3 Usage Instructions

To connect with the Kafka Brokers, one must declare the names of all the
brokers, along with their external ports. Because of the StatefulSet prop-
erties, the pods will have standardized names depending on the number of
replicas we have. Therefore, we connect to the Brokers using their DNS name
in Kubernetes and port 9092 (which is a default for Kafka) like the following.

Kafka Broker 1: kafka-0.kafka-svc:9092
Kafka Broker 2: kafka-1.kafka-svc:9092
Kafka Broker 3: kafka-2.kafka-svc:9092

where kafka-svc is just the name of the service we deployed earlier.

5.6 MQTT - KAFKA Connector
We deploy our custom MQTT to Kafka Connector with a Deployment

object.
We note that the connector uses the previously deployed Services of

MQTT (LoadBalancer) and Kafka (Headless Service - ClusterIP) as end-
points to connect to the appropriate brokers and transfer messages between
them. All the details of the load-balancing of the messages and the connec-
tion to the Brokers are described in the ‘Design & Concepts’ section.

5.6.1 Deployment Instructions

The parameters we must configure are the following:

• The number of replicas we want

• The name of the Deployment (depending on the topic of messages we
want to forward)

• The topic of the messages with the format we described earlier (using
the $share keyword)

69

After that, we simply deploy our ReplicaSet using the following manifest:

apiVersion: apps/v1
kind: Deployment
metadata:
name: mqtt-kafka-connector

spec:
replicas: 1
selector:

matchLabels:
app: mqtt-kafka-connector

template:
metadata:

labels:
app: mqtt-kafka-connector

spec:
containers:

- name: mqtt-kafka-connector
image: nickbel7/mqtt-kafka-connector:latest
env:
- name: MQTT_PORT

value: ’1883’
- name: MQTT_TOPIC

value: ’$share/test-group/test-topic’

We should see the pods getting created and also be able to consume the
messages that get sent to the MQTT Broker from the Kafka Brokers. Now
we are ready to distribute these messages to all the rest of the components
in our system through the Kafka Brokers.

To do that we need to make use of the Kafka Connect component, on top
of which we will be able to deploy connectors for the various databases we
will use.

5.7 Kafka Connect (with Timescale connector)
For the deployment of the Kafka Connect Brokers cluster we will make

use of Helm Charts.

5.7.1 Deployment Instructions

We clone the files from GitHub repository of the Helm Chart to your local
file system.
git clone https://github.com/confluentinc/cp-helm-charts.git

70

and navigate to the /cp-helm-charts/charts/cp-kafka-connect
folder.

Edit the values.yaml file and configure all the appropriate proper-
ties.
We edit the following properties:

• replicaCount → number of instances

• replication.factor → how many replicas for data (≤ than the
Kafka brokers)

• kafka.boostrapServers → the Kafka brokers URLs (comma
seperated)

After that, we install the Helm Chart with the name kafka-connect
, using the following command helm install kafka-connect .

The Kafka-Connect pods then are deployed and listen to port 8083 for
the deployment of Connectors. However, these connectors are dependent on
specific libraries that are not included in the simple deployment of the Kafka
Connect cluster. Therefore, we must update the init script of the containers,
which is the script that the container runs before it starts, to include the
download of the appropriate libraries for the connectors we want to deploy.

Apart from that, we must also include in the init script the automatic
deployment of the connector, which is a simple HTTP request, because in
the case where the pods go down, then when recreated the connectors will be
lost. Kafka-connect is not dependent on a Persistent Volume and therefore
is not considered a stateful application in Kubernetes.

We present how we modify the init script of the containers to deploy
automatically a connector for the Timescale database, which is just like any
regular Postgresql database.

Inside the folder :
/cp-helm-charts/charts/cp-kafka-connect/templates we find
the file deployment.yaml which includes the command property for
the kafka-connect container. In this part of the manifest, we install our
libraries, as follows.

71

command:
- /bin/bash
- -c
- echo "======> Importing confluent-hub jars" &&

confluent-hub install confluentinc/kafka-connect-jdbc
:10.7.4 --component-dir /usr/share/java --no-prompt
&&

echo "Launching Kafka Connect workers" &&
/etc/confluent/docker/run &
$CREATE_CONNECTORS_SCRIPT &
sleep infinity

After installing the JDBC connector, we then go and create the connector
through the $CREATE_CONNECTORS_SCRIPT that we call, in the above
script.

This variable represents a ConfigMap object [58], that we have previously
deployed containing the properties of the connector.

What we did is create a create-connectors.sh file containing the
script for creating the connector through a HTTP request and then creating
a ConfigMap that references that file, as follows:

apiVersion: v1
kind: ConfigMap
metadata:
name: {{ template "cp-kafka-connect.fullname" . }}-

connectors-configmap
labels:

app: {{ template "cp-kafka-connect.name" . }}
chart: {{ template "cp-kafka-connect.chart" . }}
release: {{ .Release.Name }}
heritage: {{ .Release.Service }}

data:
create-connectors.sh: |-

{{ .Files.Get "create-connectors.sh" | indent 4 }}

As a result, every time the instances of Kafka Connect initialize, they
download the necessary libraries and also create the connectors to be able to
process messages immediately.

72

5.8 TimescaleDB
For the deployment of the TimescaleDB cluster we will make use of Helm

Charts.

5.8.1 Deployment Instructions

We clone the files from GitHub repository of the Helm Chart to your local
file system.
git clone https://github.com/timescale/helm-charts.git

and navigate to the /helm-charts/charts/tiemscaledb-single/
folder.

Then, make sure we install any other dependency charts with the
helm dependency build command.

Edit the values.yaml file and configure all the appropriate proper-
ties.
We edit the following properties:

• replicaCount → number of instances

• credentials.PATRONI_admin_PASSWORD → admin password

• storageClass → edited to be ‘local-path’ as deployed earlier

• persistenVolumes.data.size → size of PersistentVolume

• image.tag → changed to pg15.4-ts2.12.2 (due to a bug in patroni)

After that, we install the Helm Chart with the name timescaledb ,
using the following command: helm install timescaledb .

5.8.2 Usage instructions

We should be able to access our database now through its DNS name
timescaledb.default.svc.cluster.local and by using the ad-
min code we specified in the values.yaml file earlier.

All the commands inside the database are the same as any Postgresql
database. Timescale does not come with a User Interface, therefore we will
use Grafana to monitor and visualize the data.

73

5.9 Cert-manager
When exposing our services to the outside world through an HTTP end-

point we want certificates to automatically get generated and renewed for it,
thus, providing HTTPS connections. For that use, we deploy cert-manager,
which creates TLS certificates for workloads in Kubernetes and renews them
before they expire [59]. Along with cert-manager we need a certificate au-
thority which will be the one that issues the certificates. Among the different
alternatives, we will choose lets-encrypt.

For the deployment of the cert-manager pods we will make use of Helm
Charts.

5.9.1 Deployment Instructions

Clone the files from GitHub repository of the Helm Chart to your local
file system.
git clone https://github.com/timescale/helm-charts.git

and navigate to the deploy/charts/cert-manager folder.
Then, make sure you install all the necessary CRDs for the deployment

to work.
kubectl apply -f https://github.com/cert-manager
/cert-manager/releases/download/v1.13.3
/cert-manager.crds.yaml

Edit the values.yaml file and configure all the appropriate properties.
We edit the following properties:

• image.tag (in all places) → get the latest version from here

After that, we install the Helm Chart with the name cert-manager , using
the following command
helm install cert-manager .

5.9.2 Usage Instructions

Cert-manager pods should now be running in the cluster.
For the certificates to get generated automatically we should deploy a Clus-
terIssuer.

We apply the following manifest:

74

https://quay.io/repository/jetstack/cert-manager-controller?tab=tags&tag=latest

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
name: letsencrypt-prod

spec:
acme:

The ACME server URL
server: https://acme-v02.api.letsencrypt.org/directory
Email address used for ACME registration
email: youremail@domain.com
Name of a secret used to store the ACME account

private key
privateKeySecretRef:

name: letsencrypt-prod
Enable the HTTP-01 challenge provider
solvers:
- http01:

ingress:
class: nginx

We have stated that in our ClusterIssuer that:

• Our ClusterIssuer is named ‘letsencrypt-prod’

• We use the letsencrypt server to generate the certificates

• We use our email to sign the certificates

• We generate certificates for an Ingress Controller named ‘nginx’

We should now be able to generate automatically certificates for our HTTP
endpoints. An example on how to do so in an Ingress rule is demonstrated
in the following manifest.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: some-ingress-rule
annotations:

cert-manager.io/cluster-issuer: letsencrypt-prod
...

75

5.10 Rest of components (Grafana, Hasura, Key-
cloak, Frontend, Backend)

Following the same practices for stateful and stateless applications we
deploy them with the help of a HELM Chart if there is one, or as a sim-
ple deployment in the use case of our proprietary Frontend and Backend
applications.

We provide all the necessary repositories for the abovementioned open-
source software:

• Ingress Controller - HELM Chart

• Grafana - HELM Chart

• Hasura - HELM Chart

• Keycloak - HELM Chart
(needs a separate deployment of a postgresql database HELM Chart)

• Frontend, Backend - Deployment + Service

76

https://github.com/kubernetes/ingress-nginx/tree/main/charts/ingress-nginx
https://github.com/grafana/helm-charts/tree/main/charts/grafana
https://github.com/hasura/helm-charts/tree/00071f8c46bd3c3bb1eee8cbe034b4cd8a9536de/charts/graphql-engine
https://github.com/codecentric/helm-charts/tree/master/charts/keycloakx
https://github.com/bitnami/charts/tree/main/bitnami/postgresql

Chapter 6

Testing & Evaluation

In the Testing and Evaluation section of the thesis, we delve into the
process of evaluating a Kubernetes-based system, focusing on the system’s
capacity to handle high enough message throughput without failure. This
involves designing tests that assess how the system manages and processes
messages under various loads, identifying the maximum throughput it can
sustain while maintaining stability and performance. Through these evalua-
tions, we aim to understand the system’s limits and capabilities in handling
real-world operational demands.

We should note that the experiments do not involve actual data from
IoT sensors, but rather simulations of realistic message payloads sent to the
MQTT endpoint of the cluster just for a few seconds.
Also, during the testing, some of the components of the system, such as the
frontend application were temporarily disabled due to the fact that they were
not essential for the messaging pipeline, as well as for saving up some of the
system’s confined resources.

6.1 Experimental Setup
The experimental setup for the proposed proof-of-concept system is pre-

sented below. As mentioned earlier, our Kubernetes (K8s) cluster was de-
ployed on top of 3 VMs, 1 acting as the Master Node and the rest 2 as the
Worker Nodes. They are all hosted on proprietary hardware that uses a
hypervisor to share resources.

The latest and most stable versions were used wherever possible.
Kubernetes v1.28.5 was installed on all 3 machines, along with containerd
v1.7.2 for running the containers.

77

The hardware characteristics of each VM are displayed below:

VM Name OS CPU RAM DISK
Master Node Ubuntu 22.04.2 LTS 2 16 GB 1 TB
Worker Node 1 Ubuntu 22.04.2 LTS 2 16 GB 1 TB
Worker Node 2 Ubuntu 22.04.2 LTS 2 16 GB 1 TB

Table 6.1: System Specifications

6.2 Performance Analysis
The goal of the performance tests for the system is to evaluate how much

load it can handle, given very few resources and replicas for each component.
We remind you that the purpose of the system is to use software that can run
in a distributed way for each component. Thus, having 2 instances for each
component is the minimum amount possible, without violating the initial
constraint.

We want to prove that the system can tolerate enough message through-
put that represent a big enough amount of actual home devices. By finding
the maximum amount of devices that can connect to this system, we can de-
fine how to scale it accordingly to handle bigger magnitudes of IoT devices.
Theoretically, no components will need to be replaced for bigger workloads,
as all are designed to scale horizontally.

6.2.1 Message Throughput

In order to measure the throughput of the subsystem MQTT-to-Kafka
end to end we performed Performance (Load) Testing. For each component
of the subsystem (MQTT Brokers, MQTT-Kafka Connector, Kafka Brokers)
we deployed the minimum possible amount of instances, which is 2. For those
2 instances of each component, we want to measure the input throughput for
the MQTT Brokers and the output throughput for the Kafka Brokers.

For performing such a task, we concluded on using the Apache JMeter
for the one end, [60] which can perform many MQTT requests into a small
time window (with the MQTT plugin by EMQX [61]. It offers the option to
perform requests with multiple clients and multiple threads, to better assess
the limits of the tested system.

For the other end, which is the reception of the messages from Kafka,
we created a custom container, that listens to the appropriate topic and
measures the throughput of the messages by the second. We should note

78

here, that this measurement is not distributed and is performed by only one
thread, thus, it might not represent the performance of the actual system.
For such a small scale, however, it is adequate and proves our initial theory.

We tried a few different configurations in terms of the number of mes-
sages that were received and the number of threads that were used during
the MQTT messages production. Below we present the results for the system
for our various tests.

Test 1

Table 6.2: Publisher (MQTT)

Threads Total mes-
sages

Runtime (s) Throughput
(msg/s)

Throughput
(bytes/s)

1 1577 5 312 msg/s 78 kB/s

Table 6.3: Subscriber (Kafka)

Total messages Throughput (msg/s)
1000 296 msg/s

Test 2

Table 6.4: Publisher (MQTT)

Threads Total mes-
sages

Runtime (s) Throughput
(msg/s)

Throughput
(bytes/s)

2 3660 5 422 msg/s 106 kB/s

Table 6.5: Subscriber (Kafka)

Total messages Throughput (msg/s)
1000 357 msg/s

Test 3

Table 6.6: Publisher (MQTT)

Threads Total mes-
sages

Runtime (s) Throughput
(msg/s)

Throughput
(bytes/s)

5 4102 5 377 msg/s 95 kB/s

79

Table 6.7: Subscriber (Kafka)

Total messages Throughput (msg/s)
1000 336 msg/s

Test 4

Table 6.8: Publisher (MQTT)

Threads Total mes-
sages

Runtime (s) Throughput
(msg/s)

Throughput
(bytes/s)

2 3678 5 414 msg/s 103 kB/s

Table 6.9: Subscriber (Kafka)

Total messages Throughput (msg/s)
2000 370 msg/s

Test 5

Table 6.10: Publisher (MQTT)

Threads Total mes-
sages

Runtime (s) Throughput
(msg/s)

Throughput
(bytes/s)

1 2061 5 411 msg/s 103 kB/s

Table 6.11: Subscriber (Kafka)

Total messages Throughput (msg/s)
1000 365 msg/s

Because all tests had very similar results, graphically speaking, we present
the results for the last of the tests, which had a throughput of around 365
messages per second. Also, we present the diagram of the progressive trans-
mission of the MQTT messages by JMeter.

80

Figure 6.1: Message throughput of Kafka Subscriber

6.2.2 Results

We can see that the input throughput is not analogous to the number of
threads that we used for the MQTT message producer. For many threads
(5 or more), the MQTT Brokers allow as many messages to be processed
simultaneously as for fewer threads. This implies that for just 2 MQTT
Brokers there is a throughput limit of around 450 messages per second or
around 110 kB per second that can be processed (this number is subject to
change with future tests).

Another thing that we can observe is that the throughput of the Kafka
Consumers is not lagging a lot from the input throughput, suggesting that
it can scale along with the number of the MQTT Brokers. The difference in
MQTT Publisher and Kafka Subscriber throughput is explained by the pre-
processing of messages by the MQTT-Kafka Connector, which is responsible
for adding a timestamp and transposing the message before it forwards it to
the Kafka Brokers.

We conclude that the system can handle (from the Kafka endpoint)
around 370 messages per second (large messages containing the schema).

81

This translates to either 370 devices transmitting every second or to around
22000 devices transmitting every minute. Because the application of this
system is the processing of smart home energy consumption devices, it is
interesting to note that by taking the median of 5 devices per home, the sys-
tem can support around 4.400 homes, with the minimum amount of replicas
for all components of the system.

6.3 Resource Management
When we have such a system, which is deployed on-premises and is an

experimental work, we want to have as much control and information about
the system as possible. Such information can give us real-time insight into
the resource usage for every Node and individual component of the system,
enabling us to prevent errors related to insufficient resources and plan ac-
cordingly for future expansions of the system. Also, we would be able to
pinpoint any overuse of the available resources and optimize for less resource
consumption and therefore lower costs.

In Kubernetes, the resource usage metrics, such as CPU and Memory
usage, are available through the Metrics API [62]. It provides resource real-
time usage information about the Pods and the Nodes. The only problem
is that these metrics are only saved in memory and are not accessible for a
long period. For that, we would need a separate database. ‘Metric Server’ is
deployed as a ‘Deployment’ and acts as a cluster-level component that gets
all these metrics by talking to the Kubelet through the Summary API. To
use the ‘Metric Server’ we deployed it separately from the K8s installation,
as presented earlier, and accessed it with the kubectl top command.

Results that were observed through this tool are shown and discussed as
follows:

6.3.1 Required resources

We focused on observing the resource consumption from the Pods, which
represent the deployed components in our system. We chose to track the main
components of our message processing pipeline, firstly because these are the
ones that we are concerned with in this work and secondarily because for
these we have more control over their parametrization to make them run
more efficiently.

We have measured the consumption of CPU and Memory utilization for
two discrete states of the Pods. The first is what we call the ‘idle’ state
where the Pods have just been deployed and they do not process or exchange

82

any messages (this represents the minimum amount of resources they need to
operate). The second one is the state where we have successfully transmitted
thousands of MQTT messages and the Pods are in the middle of processing
them. With this second measurement, we plan on investigating any sharp
differences in comparison to the ‘idle’ state.

Results are shown in the table below. Wherever we have multiple Pods
for the same component we calculate the average value for each metric.

Table 6.12: System Resource Usage

Pod CPU (idle) Memory
(idle)

CPU Memory

MQTT Bro-
kers (average)

15m 400Mi 35m 525Mi

MQTT-
Kafka Con-
nectors
(average)

2m 10Mi 5m 14Mi

Kafka Bro-
kers (average)

22m 1000Mi 25m 1050Mi

Kafka Con-
nect (aver-
age)

10m 800Mi 17m 870Mi

Timescale
DB (average)

5m 126Mi 10m 130Mi

Postgresql
DB

6m 25Mi 6m 25Mi

Ingress Con-
troller

2m 78Mi 2m 78Mi

Grafana 21m 760Mi 60m 960Mi

Based on the results, we observe that the amount of memory most of the
components use is significant even in the ‘idle’ state. The CPU utilization is
not ameliorable, in both states, but does not pose any pressure to the system,
as the sum of it represents a relatively small percentage of the available
system’s CPU compute. Memory consumption, however, scales fast, with
components like the Kafka Brokers and Kafka Connect growing very close to
or even surpassing the 1Gb threshold of memory usage. It becomes evident,
that if we want to deploy a lot of components into our system, we either have
to provide a lot of memory to our worker Nodes or deploy smaller instances
of the components.

83

In the case now, where we want to have very few components, but want
them to handle very large loads, this initial test proves that the change in
resource consumption is not significant enough to suggest an extension of the
available memory.

If there is an adequate amount of available memory then the system will
theoretically hold and therefore we can focus on deploying more replicas,
which will lead to more threads processing information at the same time and
a faster system

6.3.2 Resource optimization

In practice, containers have no upper bound on their CPU and memory
usage. They can consume all the resources that are available on the node,
where it is running on. In the case of memory, this might invoke the ‘Out
of Memory (OOM)’ killer and there is a possibility for the container to be
killed. To avoid this, Kubernetes gives us the possibility to manage the
amount of resources that would be consumed by containers. By configuring
resource limits for the containers running on our cluster, we avoid losing jobs.
Moreover, this way, we can make efficient use of the available resources on our
cluster’s nodes. We define such resource constraints in the Pod definition,
with two sub-categories: ‘requests’ and ‘limits’. In ‘requests’, we define a
reasonable value for the memory and CPU requests of the Pod to be running
properly. Defining this value is a help for scheduling of Pods in the nodes
with appropriate available resources. Then, in the ‘limits’ field, we define
the upper bound that the Pod can use. Hence, the containers would not be
allowed to use the whole of available resources on the node [10].

6.4 Network Bandwidth
To analyze most of the system’s components and identify current and

future bottlenecks, we tested the network bandwidth between the Kubernetes
cluster nodes to ensure it does not pose any limits.

We used the iperf tool on the nodes to measure the bitrate between
them. We found that there is an actual connection of 1GB/s, which is more
than enough and does not pose any limit to the messages exchanged between
the nodes.

The results of the networking test are shown below :

84

Figure 6.2: Results from network bandwidth testing

85

Chapter 7

Conclusion & Future work

In this thesis, the experimental design and evaluation of a Kubernetes-
based IoT system reveal the ability for everyone to deploy it using open-
source technologies that work in a distributed manner end to end across the
pipeline. These technologies have matured enough to be stable for production
purposes, enabling more and more people to use them and experiment with
them, without relying solely on proprietary software from cloud providers.

Such findings underscore the potential of Kubernetes and associated tech-
nologies for deploying scalable, resilient IoT infrastructures, paving the way
for future expansions and optimizations to accommodate growing operational
demands.

At the same time that these distributed and scalable technologies become
more stable and accessible, the IoT devices used for energy consumption
increase at a fast pace due to our efforts to mitigate the energy inefficiency
problem in big cities and power-hungry installations. IoT systems are set
to become as relevant as ever for city-wide clusters of sensors to be able to
function properly, but also for vast amounts of data to be collected from
them and used for machine learning models.

7.1 Conclusions
The findings of this work are summarized below, through the answering

of the initially stated Research Questions.

7.1.1 Research Question 1

Is it possible to use open-source production-level software that can
run in a distributed manner for all components of such a system ?

86

After the deployment of the designed system we proposed earlier, along
with the comparison between various technologies for each component, we
conclude that an IoT system can be designed to function in a Kubernetes
cluster with as low as 3 Nodes (1 Master and 2 Workers) by using open-source
software, for each of its core components, that can run in a distributed man-
ner among the Worker Nodes, whether that software is stateless or stateful,
meaning that it has to keep a state of its data permanently stored and repli-
cated.

Most of the used software contributors already offer the ability to deploy
it using a HELM Chart, which means that they have already considered it
being used in a distributed network of Nodes, which is what Kubernetes
represents.

Also, because of the Services in Kubernetes and the internal DNS service
it provides, it becomes a lot easier to perform service discovery for all the
different instances of the deployed applications, even if they change IPs.
This enables fast and easy deployment of not only existing production-grade
software made for Kubernetes but of custom-made components such as a
Kafka Connector or an API that needs to perform load balancing.

However, apart from the messaging brokers, the databases, and the state-
less applications, there are some applications such as a data lake, which stores
big amounts of data, that might not be ideal to get deployed in a distributed
manner, because of the overhead that would be created with the data repli-
cation and state synchronization. Of course, the number of replicas for each
stateful component matters, because on some occasions it can compromise
its performance by unnecessarily increasing its fault-tolerance.

All in all, we were able to prove that for the essential components of
an IoT System based on Kubernetes, there are mature enough open-source
solutions that can combine all the benefits of a containerized application in
the cloud and a distributed system.

7.1.2 Research Question 2

How does the system perform while using the minimum amount of
resources for its distributed components ?

First of all, we should note that Kubernetes, and especially K8s is a rel-
atively heavy container orchestration framework. There are lighter solutions
like k3s [63], but k8s is the one we used for this specific demonstration. The
main reason is that it uses a lot of controllers to provision the state of not
only the cluster itself but one of the deployed applications’ too. We note that,

87

because we should consider the extra memory, CPU, and network utilization
from the system itself, apart from the deployed components of the system.

With the main components of the messaging processing pipeline deployed,
we load-tested the system to conclude the load it could handle given the
memory we had available. With only 2 replicas for each component, the
system managed to successfully process around 370 concurrent messages per
second, which can translate to approximately 4000 homes transmitting every
1 minute, which is adequate for our pilot testing of the EHS system.

The messages that we were sending were relatively large compared to the
actual ones that will get sent by the MQTT devices because we incorporated
in them the schema that is needed for them to be inserted into our time series
database. By deploying and utilizing a schema registry, we should be able to
increase the throughput of the system even more.

The minimum amount of resources refers to the number of replicas for
each deployed component, which are only 2, but are able to scale horizontally
to tolerate higher message throughput. We discuss how we plan on upscaling
the system later in the ‘Future Work’ section.

7.1.3 Research Question 3

What are the practical limitations of such a system ?

Such a Kubernetes-based system poses many advantages, such as the easy
interconnectivity of the Nodes and Pods through the internal Networking and
DNS services or the better life-cycle of the containerized applications which
require minimal human intervention.

The purpose of this work, however, was to also exploit some of the limi-
tations of such a system where all components work in a distributed manner,
given the confined amount of computer resources that we were given and
which cannot grow indefinitely as they do in the cloud.

The limitations of such a horizontally scalable system usually lie in the
number of available resources. Given the fact that we build the system using
software that can run in a distributed manner, we should be able to scale
indefinitely given multiple nodes and multiple clusters.

However, we faced problems during our deployment, with the use of mem-
ory by some scheduled pods, which were using too much memory. The re-
sponse of Kubernetes was to evict them due to ‘Memory Pressure’ [SOURCE
- accessed 14-February-2024] in order to not cause disruptions in other Pods’
functionality. Memory pressure was the main deficit, of the system with the
number of Cluster Nodes being the second most important one, having 3

88

Nodes in total. It shouldn’t be a good practice to schedule Pods on the Mas-
ter Node, therefore, the two Worker Nodes were responsible for being able
to handle all the load of the deployed components. While in many stateless
applications, this is not a problem, in many cases a deployment needed at
least three replicas to be considered fault-tolerant. Usually, this happens in
stateful applications where there is a consensus protocol involved, like the
Raft protocol.

Additionally, concerning the open-source software, we faced problems re-
garding some bugs as well as inadequate documentation which was essential
in order to parameterize it. This is why we ended up using helm charts where
it was possible because they offered an almost out-of-the-box solution for the
deployment of most components and were easier to uninstall in case there
was a bug or something did not work as expected.

Finally, moving forward, we should also note that the actual IoT devices
will have different versions of mqtt with some providing a timestamp while
others don’t. So this is a challenging topic regarding an IoT system that has
to handle messages of various formats and protocols.

7.2 Future work
Our work demonstrates both the idealization and deployment of a Kubernetes-

based system for IoT applications using distributed solutions. It sets the
foundations for a truly distributed and horizontally scalable system that can
simulate those that are run by cloud providers and other closed-source devel-
opers. However, as we pointed out, there are still limitations in the proposed
solution that have to be addressed while we move towards a deployment for
a real-world scenario.

Hence, we suggest the following additions to our existing architecture:

7.2.1 Autoscaling

For automatic scaling of the pods, Kubernetes provides an auto-scaling
mechanism by implementing a Horizontal Pod Autoscaler (HPA), which is
implemented as a controller. There are many options and custom autoscalers,
whose primary job is to upscale or downscale individual deployments accord-
ing to some specified metrics, such as CPU utilization.

In the future, we plan on using the KEDA autoscaler in our system,
primarily for parts of it that are observed to have sudden spikes of requests,
such as the Frontend and Backend service.

89

KEDA [64] is a Kubernetes-based Event event-driven autoscaler that
works alongside the HPA and extends its functionality. With it, we will
be able to map the components that we want to scale in an event-driven
way.

7.2.2 Monitoring metrics

Because of the complexity of the system in terms of the number of com-
ponents, as well as the continuous flow of data, we need system metrics in
order to monitor them and scale the system dynamically.

Prometheus [65] works as a time series database that can collect data from
crucial components of the pipeline, such as the Kafka Brokers, and depict
them in a Grafana graphical interface or use them to alert the administrators
in case an error occurs.

7.2.3 CI/CD pipeline

Of course, we want the system to require as little human intervention as
possible, not only for maintenance but for deployment of updated versions of
its components too. That is why it is very important to utilize CI/CD tools
that allow the application developers to deploy an updated version of their
software without downtime of the system.

Such tools often come together with the repository manager in which we
store our code. For example, GitHub offers GitHub Actions [66] and GitLab
offers GitLab CI/CD [67].

7.2.4 Separate production and development pipelines

As in all traditional systems, we should offer to the developers that deploy
their applications to our system the availability of both a Development and
Production environment. In such a case, they will be able to deploy and test
their code for any bugs on the Development workspace and if it functions
as expected it should then be deployed in the Production workspace. More
specifically, the way we intend to implement this is by using the namespaces
in Kubernetes. Namespaces represent separated virtual environments inside
the cluster, but without blocking the connection between the Pods. There-
fore, we can deploy all the core components of the messaging pipeline in a
common namespace (the ‘default’ namespace for example) and create a ‘De-
velopment’ and a ‘Production’ namespace for all the components that reside
architecturally in the right most end of the system, such as the Frontend or
the Keycloak.

90

7.2.5 Stress testing of each component separately

In our testing process, we only addressed the throughput of the messaging
pipeline between the MQTT and the Kafka Brokers, because we only wanted
to test for the bottlenecks in this specific part and measure its performance.
However, moving forward, a production-grade system must have all its com-
ponents individually tested, so that we can map future problems that occur
with better precision, as well as focus on improving their individual perfor-
mance. In such a complex and distributed system, if one component creates
lag, then the rest will have decreased throughput too, just like a pipe system.

7.2.6 More Nodes

As good as it is to theorize about the scalability of the system, it is even
better to test in practice how it scales when we add more nodes to our system.
Right now, with 3 Nodes, our system is not very resilient, because even if
1 Node was taken down, then most distributed components would fail. In
the worst case that the Master Node fails then the Cluster will be unable to
heal pods or create new deployments. That is we should consider adding 2
more Nodes in our Kubernetes cluster, which will either get separated into a
Control Plane Node and a Worker Node, or both will act as Worker Nodes,
in case we want to emphasize increasing the maximum amount of messages
the system can handle per second.

7.2.7 Ingress Controller as a Daemon set

In our effort to create such a highly distributed system, we should also
emphasize in the balanced distribution of the networking components and
load balancing of the requests.

In the simplified base system we developed, we used an Nginx Ingress
Controller [SOURCE - accessed; 14-February-2024] as the reverse proxy that
handles all the incoming requests that come into our Cluster. We deployed
that controller as a single Deployment, meaning that we had a single Pod
running in the Master Node that handles all the requests and distributes them
accordingly. There is the option, however, to deploy the Ingress Controller
as a DaemonSet, which in theory, should ease the load of the Master Node
and make the system more performant, as multiple threads will handle the
request distributions.

91

7.2.8 Extend device support to LoRa WAN

The initial purpose of this work was to create a base for an IoT sys-
tem that should handle MQTT requests from energy consumption sensors
installed inside homes. There is, though, the potential for this architecture
to be used for the processing of different kinds of sensors and protocols, such
as the LoRa WAN [68] devices, which can be installed in a wider field of
range and are more suitable for smart city applications.

This adaptation would require the research of appropriate software that
can handle these different packet types and data connectors that will format
them as needed for the Kafka brokers to be able to process them.

7.2.9 Deploy a Data Lake

As mentioned earlier, part of the motivation for this work is not only to
process and aggregate data, but also to store them in a very rich format, so
that machine learning models can be trained on top of them.

For such a use case, we need to deploy a Data Lake, which is a type of
Database that can store, process, and analyze vast amounts of data ignoring
their data limits, in comparison to a standard SQL database which might
struggle to handle them. Its main advantage is the scalability and ability to
handle both unstructured and structured data (given a schema).

92

Bibliography

[1] Hasura Documentation, https://hasura.io/docs/latest/
index/, Accessed: 2024-02-16.

[2] Internet evolution timeline, https://blog.bytebytego.com/p/
a-crash-course-in-networking, Accessed: 2024-02-16.

[3] B. Safaei, A. M. Hosseini Monazzah, M. Barzegar Bafroei, and A.
Ejlali, “Reliability side-effects in internet of things application layer
protocols”, in 2017 IEEE International Conference on Smart Reliable
Systems (ICSRS), IEEE, 2017, pp. 1–4.

[4] Top iot development trends, https://www.ibaseit.com/blog/
top-iot-development-trends/, Accessed: 2024-01-25, 2023.

[5] Iot: The future of web development, https://www.knowledgehut.
com/blog/web-development/iot-future, Accessed: 2024-01-
25, 2023.

[6] D. Mlynka, “Iot device management using kubernetes”, in Diploma
Thesis, Masaryk University, Faculty Of Informatics, Adviser: RNDr.
Zdeněk Matěj, Ph.D., Brno, 2022.

[7] What is a Container?, https://www.docker.com/resources/
what-container/, Accessed: 2024-02-15.

[8] Container orchestration tools, https://www.redhat.com/en/
topics/containers/what-is-container-orchestration,
Accessed: 2024-02-15.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg”, in
Proceedings of the Tenth European Conference on Computer Systems,
ACM, 2015, p. 18.

93

https://hasura.io/docs/latest/index/
https://hasura.io/docs/latest/index/
https://blog.bytebytego.com/p/a-crash-course-in-networking
https://blog.bytebytego.com/p/a-crash-course-in-networking
https://www.ibaseit.com/blog/top-iot-development-trends/
https://www.ibaseit.com/blog/top-iot-development-trends/
https://www.knowledgehut.com/blog/web-development/iot-future
https://www.knowledgehut.com/blog/web-development/iot-future
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration

[10] M. Tavakkoli, “Analyzing the applicability of kubernetes for the de-
ployment of an iot publish/subscribe system”, in Master’s Thesis in
Computer Science, EIT Digital Master’s Programme in Cloud Comput-
ing and Services, Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, Delft University of
Technology and Nokia Bell Labs, Delft, The Netherlands, Oct. 2019.

[11] Kubernetes Authors, Customresourcedefinitions, https://kubernetes.
io/docs/concepts/extend-kubernetes/api-extension/
custom-resources, Accessed: 2024-02-01.

[12] Kubernetes Authors, Services - kubernetes documentation, https://
kubernetes.io/docs/concepts/services-networking/
service/, Accessed: 2024-01-25.

[13] Kubernetes Authors, Services in kubernetes - the service api, https:
//kubernetes.io/docs/concepts/services-networking/
service/#publishing-services-service-types, Accessed:
2024-01-25.

[14] Kubernetes Authors, Ingress - kubernetes documentation, https://
kubernetes.io/docs/concepts/services-networking/
ingress/, Accessed: 2024-01-25.

[15] Kubernetes Authors, Storage classes - kubernetes documentation, https:
/ / kubernetes . io / docs / concepts / storage / storage -
classes/, Accessed: 2024-01-30.

[16] Kubernetes Authors, Controllers - kubernetes documentation, https:
//kubernetes.io/docs/concepts/workloads/controllers/,
Accessed: 2024-01-30.

[17] Kubernetes Authors, Api concepts - kubernetes documentation, https:
/ / kubernetes . io / docs / reference / using - api / api -
concepts/, Accessed: 2024-01-30.

[18] Kubernetes Authors, Extending kubernetes - kubernetes documenta-
tion, https://kubernetes.io/docs/concepts/extend-
kubernetes/, Accessed: 2024-01-30.

[19] Kubernetes Authors, Operators - kubernetes documentation, https:
//kubernetes.io/docs/concepts/extend-kubernetes/
operator/, Accessed: 2024-01-30.

94

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

[20] M. Singh, Consensus is a critical concept in distributed systems, where
a group of nodes must work together, https : / / medium . com /
@mndpsngh21/consensus-is-a-critical-concept-in-
distributed-systems-where-a-group-of-nodes-must-
work-together-5c3b234df3b6, Accessed: 2024-01-29, 2023.

[21] PsiBorg Technologies, Healthcare solutions - psiborg, https://psiborg.
in/healthcare/, Accessed: 2024-02-15, 2024.

[22] B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems:
A survey”, in IEEE Access, IEEE, vol. 8, 2020.

[23] Mosquitto mqtt broker, https://mosquitto.org/documentation/,
Accessed: 2024-02-20.

[24] EMQ Technologies, Emq x documentation, https://www.emqx.
io/docs/en/latest/, Accessed: 2024-01-25, 2024.

[25] HiveMQ, Hivemq mqtt broker, https://www.hivemq.com/products/
mqtt-broker/, Accessed: 2024-01-25, 2024.

[26] VerneMQ, Vernemq documentation, https://docs.vernemq.
com/, Accessed: 2024-01-25, 2024.

[27] Apache kafka, https://kafka.apache.org/, Accessed: 2024-02-
20.

[28] Apache ZooKeeper, Apache zookeeper, https://zookeeper.apache.
org/, Accessed: 2024-02-8, 2024.

[29] Mqtt shared subscriptions guide, https://cedalo.com/blog/
mqtt-shared-subscriptions-guide/, Accessed: 2024-01-25,
2024.

[30] Kafka Connect, https://docs.confluent.io/platform/
current/connect/index.html, Accessed: 2024-02-24.

[31] Kafka connect concepts, https://docs.confluent.io/platform/
current / connect / index . html # connect - concepts, Ac-
cessed: 2024-01-26.

[32] Schema registry documentation, https://docs.confluent.io/
platform / current / schema - registry / index . html, Ac-
cessed: 2024-01-25.

[33] Apache kafka schema registry course, https://developer.confluent.
io/courses/apache-kafka/schema-registry/, Accessed:
2024-01-25.

95

https://medium.com/@mndpsngh21/consensus-is-a-critical-concept-in-distributed-systems-where-a-group-of-nodes-must-work-together-5c3b234df3b6
https://medium.com/@mndpsngh21/consensus-is-a-critical-concept-in-distributed-systems-where-a-group-of-nodes-must-work-together-5c3b234df3b6
https://medium.com/@mndpsngh21/consensus-is-a-critical-concept-in-distributed-systems-where-a-group-of-nodes-must-work-together-5c3b234df3b6
https://medium.com/@mndpsngh21/consensus-is-a-critical-concept-in-distributed-systems-where-a-group-of-nodes-must-work-together-5c3b234df3b6
https://psiborg.in/healthcare/
https://psiborg.in/healthcare/
https://mosquitto.org/documentation/
https://www.emqx.io/docs/en/latest/
https://www.emqx.io/docs/en/latest/
https://www.hivemq.com/products/mqtt-broker/
https://www.hivemq.com/products/mqtt-broker/
https://docs.vernemq.com/
https://docs.vernemq.com/
https://kafka.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://cedalo.com/blog/mqtt-shared-subscriptions-guide/
https://cedalo.com/blog/mqtt-shared-subscriptions-guide/
https://docs.confluent.io/platform/current/connect/index.html
https://docs.confluent.io/platform/current/connect/index.html
https://docs.confluent.io/platform/current/connect/index.html##connect-concepts
https://docs.confluent.io/platform/current/connect/index.html##connect-concepts
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/schema-registry/index.html
https://developer.confluent.io/courses/apache-kafka/schema-registry/
https://developer.confluent.io/courses/apache-kafka/schema-registry/

[34] Kip-301: Schema inferencing for jsonconverter, https://cwiki.
apache.org/confluence/display/KAFKA/KIP-301%3A+
Schema+Inferencing+for+JsonConverter, Accessed: 2024-
02-15.

[35] Streaming replication, https://wiki.postgresql.org/wiki/
Streaming_Replication, Accessed: 2024-01-29.

[36] High availability timescaledb & postgresql with patroni, https://
www.timescale.com/blog/high-availability-timescaledb-
postgresql-patroni-a4572264a831/, Accessed: 2024-01-29.

[37] The raft consensus algorithm, https://raft.github.io/?ref=
timescale.com, Accessed: 2024-01-29.

[38] Patroni documentation for kubernetes, https://patroni.readthedocs.
io/en/latest/kubernetes.html, Accessed: 2024-01-29.

[39] GraphQL: A query language for your API, https://graphql.
org/, Accessed: 2024-02-17.

[40] Introduction to graphql subscriptions, https://hasura.io/learn/
graphql/intro- graphql/graphql- subscriptions/, Ac-
cessed: 2024-02-16.

[41] Cilium, Ebpf - the future of networking, https://cilium.io/
blog/2020/11/10/ebpf-future-of-networking/, Accessed:
2024-02-15, 2020.

[42] C. Pahl, “Containerization and the paas cloud”, IEEE Cloud Comput-
ing, vol. 2, no. 3, pp. 24–31, 2015.

[43] Helm documentation, https://helm.sh/docs/topics/charts/,
Accessed: 2024-02-01.

[44] CircleCI, What is helm?, https://circleci.com/blog/what-
is-helm, Accessed: 2024-02-01, 2020.

[45] S. R. Nadaf and H. K. Krishnappa, “Deploying containerized applica-
tions in a kubernetes cluster running in a public cloud”, in International
Journal of Advanced Science and Computer Applications, UKInstitute,
vol. 2, 2023, pp. 7–18.

[46] Kubernetes, Creating a cluster with kubeadm, https://kubernetes.
io/docs/setup/production-environment/tools/kubeadm/
create-cluster-kubeadm/, Accessed: 2024-01-30, 2024.

[47] Kubernetes Ports and Protocols, https://kubernetes.io/docs/
reference/networking/ports-and-protocols/, Accessed:
2024-02-16.

96

https://cwiki.apache.org/confluence/display/KAFKA/KIP-301%3A+Schema+Inferencing+for+JsonConverter
https://cwiki.apache.org/confluence/display/KAFKA/KIP-301%3A+Schema+Inferencing+for+JsonConverter
https://cwiki.apache.org/confluence/display/KAFKA/KIP-301%3A+Schema+Inferencing+for+JsonConverter
https://wiki.postgresql.org/wiki/Streaming_Replication
https://wiki.postgresql.org/wiki/Streaming_Replication
https://www.timescale.com/blog/high-availability-timescaledb-postgresql-patroni-a4572264a831/
https://www.timescale.com/blog/high-availability-timescaledb-postgresql-patroni-a4572264a831/
https://www.timescale.com/blog/high-availability-timescaledb-postgresql-patroni-a4572264a831/
https://raft.github.io/?ref=timescale.com
https://raft.github.io/?ref=timescale.com
https://patroni.readthedocs.io/en/latest/kubernetes.html
https://patroni.readthedocs.io/en/latest/kubernetes.html
https://graphql.org/
https://graphql.org/
https://hasura.io/learn/graphql/intro-graphql/graphql-subscriptions/
https://hasura.io/learn/graphql/intro-graphql/graphql-subscriptions/
https://cilium.io/blog/2020/11/10/ebpf-future-of-networking/
https://cilium.io/blog/2020/11/10/ebpf-future-of-networking/
https://helm.sh/docs/topics/charts/
https://circleci.com/blog/what-is-helm
https://circleci.com/blog/what-is-helm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/reference/networking/ports-and-protocols/
https://kubernetes.io/docs/reference/networking/ports-and-protocols/

[48] Kubernetes metrics server, https://github.com/kubernetes-
sigs/metrics-server, Accessed: 2024-02-20.

[49] Rancher, Local Path Provisioner, https://github.com/rancher/
local-path-provisioner, Accessed: 2024-02-07, 2024.

[50] Rancher, Local Path Provisioner Tags, https://github.com/
rancher/local-path-provisioner/tags, Accessed: 2024-02-
07, 2024.

[51] Rancher, Local Path Provisioner v0.0.26 Docker Image, https://
hub.docker.com/layers/rancher/local-path-provisioner/
v0.0.26/images/sha256-9325057706239e408ed417b19356cd892ee67b046ee08ff11798777d67288bd5?
context=explore, Accessed: 2024-02-07, 2024.

[52] HiveMQ, HiveMQ Operator Helm Chart, https://github.com/
hivemq/helm-charts/tree/master/charts/hivemq-operator,
Accessed: 2024-02-08, 2024.

[53] Learn about kraft, https://developer.confluent.io/learn/
kraft/, Accessed on: 2024-02-08.

[54] Kafka leader election, https://levelup.gitconnected.com/
kafka-leader-election-4e7dfad2aa18, Accessed on: 2024-
02-08.

[55] Deploying a multi-broker kafka cluster in kubernetes, https://www.
mitrais.com/news-updates/deploying-a-multi-broker-
kafka-cluster-in-kubernetes/, Accessed on: 2024-02-08.

[56] Headless services, https://kubernetes.io/docs/concepts/
services-networking/service/#headless-services, Ac-
cessed on: 2024-02-08.

[57] Managing kubernetes objects using kustomize, https://kubernetes.
io/docs/tasks/manage-kubernetes-objects/kustomization/,
Accessed on: 2024-02-08.

[58] Configmaps, https://kubernetes.io/docs/concepts/configuration/
configmap/, Accessed on: 2024-02-16.

[59] Cert-manager docs, https://cert- manager.io/docs/, Ac-
cessed: 2024-02-23.

[60] Apache jmeter, https://jmeter.apache.org/index.html,
Accessed on: 2024-02-14.

[61] Mqtt jmeter plugin, https://github.com/emqx/mqtt-jmeter,
Accessed on: 2024-02-14.

97

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/rancher/local-path-provisioner
https://github.com/rancher/local-path-provisioner
https://github.com/rancher/local-path-provisioner/tags
https://github.com/rancher/local-path-provisioner/tags
https://hub.docker.com/layers/rancher/local-path-provisioner/v0.0.26/images/sha256-9325057706239e408ed417b19356cd892ee67b046ee08ff11798777d67288bd5?context=explore
https://hub.docker.com/layers/rancher/local-path-provisioner/v0.0.26/images/sha256-9325057706239e408ed417b19356cd892ee67b046ee08ff11798777d67288bd5?context=explore
https://hub.docker.com/layers/rancher/local-path-provisioner/v0.0.26/images/sha256-9325057706239e408ed417b19356cd892ee67b046ee08ff11798777d67288bd5?context=explore
https://hub.docker.com/layers/rancher/local-path-provisioner/v0.0.26/images/sha256-9325057706239e408ed417b19356cd892ee67b046ee08ff11798777d67288bd5?context=explore
https://github.com/hivemq/helm-charts/tree/master/charts/hivemq-operator
https://github.com/hivemq/helm-charts/tree/master/charts/hivemq-operator
https://developer.confluent.io/learn/kraft/
https://developer.confluent.io/learn/kraft/
https://levelup.gitconnected.com/kafka-leader-election-4e7dfad2aa18
https://levelup.gitconnected.com/kafka-leader-election-4e7dfad2aa18
https://www.mitrais.com/news-updates/deploying-a-multi-broker-kafka-cluster-in-kubernetes/
https://www.mitrais.com/news-updates/deploying-a-multi-broker-kafka-cluster-in-kubernetes/
https://www.mitrais.com/news-updates/deploying-a-multi-broker-kafka-cluster-in-kubernetes/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://cert-manager.io/docs/
https://jmeter.apache.org/index.html
https://github.com/emqx/mqtt-jmeter

[62] Resource metrics api, https://github.com/kubernetes/community/
blob/master/contributors/design-proposals/instrumentation/
resource-metrics-api.md, Accessed: 17-February-2024.

[63] K3s Lightweight Kubernetes, https://k3s.io/, Accessed: 2024-02-
014.

[64] KEDA, https://keda.sh/, Accessed: 2024-01-07.

[65] Prometheus, https://prometheus.io/, Accessed: 2024-01-14.

[66] Build your CI/CD pipeline with GitHub Actions in four steps, https:
//github.blog/2022-02-02-build-ci-cd-pipeline-
github-actions-four-steps/, Accessed: 2024-01-14.

[67] GitLab CI/CD, https://docs.gitlab.com/ee/ci/, Accessed:
2024-01-14.

[68] About LoRaWAN, https://lora-alliance.org/about-lorawan/,
Accessed: 2024-01-14.

98

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/resource-metrics-api.md
https://k3s.io/
https://keda.sh/
https://prometheus.io/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://docs.gitlab.com/ee/ci/
https://lora-alliance.org/about-lorawan/

© 2024 National Technical University of Athens. All rights reserved.

	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Πειραματικό Περιβάλλον
	Σχεδιασμός & Υλοποίηση
	Αποτελέσματα & Αξιολόγηση

	Introduction
	Thesis structure
	Motivation
	Research Questions

	Background & Related Work
	Internet of Things (IoT)
	MQTT Protocol
	Message Topics
	Message Structure

	Containers
	Container Orchestration Systems
	Kubernetes
	Components of Kubernetes
	CRD (Custom Resource Definition)
	CNI (Container Network Interface)
	Services
	Workload Resources

	Distributed Systems

	Design & Concepts
	EHS Architecture
	Why choose Kubernetes
	MQTT Broker
	Choosing an appropriate MQTT Broker

	Kafka Broker
	Distributed Kafka Cluster architecture

	MQTT to Kafka Connector
	Kafka Connect
	Task Rebalancing
	Workers
	Connectors
	Converters
	Schema Registry

	Kafka to TimescaleDB Connector
	TimescaleDB / Postgresql
	Replication
	Failover
	GraphQL

	Deployments
	How we expose the services
	HELM Charts

	Implementation
	Infrastructure
	Kubernetes Setup
	Dynamic Provisioner
	Deployment Instructions
	Usage Instructions

	MQTT Broker (HiveMQ)
	Deployment Instructions
	Usage Instructions

	Messaging Broker (Apache Kafka)
	Deployment Architecture
	Deployment Instructions
	Usage Instructions

	MQTT - KAFKA Connector
	Deployment Instructions

	Kafka Connect (with Timescale connector)
	Deployment Instructions

	TimescaleDB
	Deployment Instructions
	Usage instructions

	Cert-manager
	Deployment Instructions
	Usage Instructions

	Rest of components (Grafana, Hasura, Keycloak, Frontend, Backend)

	Testing & Evaluation
	Experimental Setup
	Performance Analysis
	Message Throughput
	Results

	Resource Management
	Required resources
	Resource optimization

	Network Bandwidth

	Conclusion & Future work
	Conclusions
	Research Question 1
	Research Question 2
	Research Question 3

	Future work
	Autoscaling
	Monitoring metrics
	CI/CD pipeline
	Separate production and development pipelines
	Stress testing of each component separately
	More Nodes
	Ingress Controller as a Daemon set
	Extend device support to LoRa WAN
	Deploy a Data Lake

