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[TepiAnuwn

Ye autr] ) HatpBr) pedstape npoBArpata avadhnong Kat dtapuyng
AUTOVOU®V POPTTOT, d1Aadr) KATaoTdoelg OITOU Pid opada POPITOT ITPETTEL
va Bpet évav 1) meP1o00TEPOUS OTOXOUG ITOU BpioKovial 0e Ayveota or-
Hela pag meploxng. NV mepIntaon) Iou pag evolapEpet, 0 otoxo0g eivat
Ha €§060G KAt 0 0TOX0G TRV POUITOT £1val €1TE VA va EVIOTHOOUV TV £80-
60 (mpoBAnpa avadrinong) 1 va eyratadeiypouv v nieploxn (mpoBAnpa
drapuyng) 6oo to Suvatdv ypnyopotepa. Tinv PeAETn autr), esetaloupie
v (n, f)-avalnnon kat mv (n, f)-6taduyn ano évav KUKAO, O1ou n
POUITOT ouvepyalovial yia va va eviortioouv v £§060 1) va dtagpuyouv
HEo® g £§060U Kat f arod autd propet va eppavicouv opdipata. Ta
NV avdduor g XEPoTepng MePinoong towv aAyopifpev pag, Sswpo-
Upe évav avtinalo rou ermdéyet ) 9o tng £§660u Kat ) ouprnePipopd
1OV EOPAAPEVOV POUTIOT (TIG TPOX1ES TOUG KAB®S Kal Ta Pnvupatd rou
9a petadmoouv) pe OtOX0 TNV PEYIOTONOINON TOU XPOVOU avadrinong
Kat odorAnpwong g dwaguyng. O avtimadog ermdéyel emiong moila
pournot 9a spgpavicouv opaApata. Atgpeuvavial 6U0 61aPpopeTkA 110-
VIEAA erkowvaviag yla t 8ieukoduvon tov adAndermubpdoenv petadu
TV POUTTIOT: TO ACUPHATO HMOVIEAO OTIOU TAd POUTIOT UITOPOUV Vd EITIKO1-
VEOVOUV ApE0a avedaptriog anootaong Kat 1o poviédo Face-to-Face rou
arattel aro ta POUrot va cuvavindouv tautdyxpova oty idta tortobe-
ola ipokepévou va avtaddagouv mmAnpogopieg. Ilapéxoupe BEAtiotoug
aAyopiBpoug yia v (n, f)-avalfnon oe Eévav KUKAO aviPetomnidoviag
oevapla rou nepldapBavouv f opdadpata cuvipBng 1 éva Bulavtivo
opdaApa. Enekteivoupe ) oudninon oty diadpuyn ano KUKAo umod éva
kat 6vo Bulavuva opdaipata kat und f Budaviiva opaApata mapouot-
adovtag Asmmtopepeis aAyopifpoug Kal mpaypatornotmviag pia 1§ fabog
AVAAUOT] TOV XPOVIKWV TOUG ATIATTHOEDV.

Aggerg RAeS1a: Avalfmon, Alaguyn, Autdévopa Poumodr, Avoyr oe
ZedaApata, Zeaipata ZuvipBrg, Bulavuvd ZgdApata, Acuppatn Ermt-
Kowwvia, Mn Acuppatn Emkowevia, KuxkAog.






Abstract

This thesis studies search and evacuation problems involving au-
tonomous robots tasked with locating and reaching an exit positioned
at an undisclosed point within a specified territory. The primary fo-
cus is on the (n, f)-search and (n,f)-evacuation from a unit circle,
where n robots operate collectively to discover or evacuate from an
exit, despite the presence of up to f potentially faulty units. The
problems are framed to challenge the robots against an adversarial
setting that strategically places the exit and manipulates the faulty
robots’ actions — ranging from their movement trajectories to the dis-
semination of misleading information —to maximize the time required
to complete the search or evacuation.

Two models of communication among the robots are considered: the
wireless model, which allows instantaneous communication irrespec-
tive of distance, and the face-to-face model, which necessitates phys-
ical proximity for information exchange. This study develops optimal
algorithms for the (n, f)-search on a circle with scenarios involving
f crash faults or a single Byzantine fault, extending to algorithms
for complex evacuation scenarios under multiple Byzantine faults.
These algorithms are analyzed and lower and upper bounds are pro-
vided, particularly focusing on the worst-case completion time that
is impacted by the adversarial control of faults.

Keywords: Search; Evacuation; Autonomous Robots; Fault Tol-
erance; Crash Faults; Byzantine Faults; Wireless Communication;
Face-to-Face Communication; Circle.
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Extended Abstract (in Greek)

Ewcayoyn

Ye évav 0A0 KAt ITo AUTOPATOTIOUHEVO KOOHO 1] AVATTTUSH aUuTOVOUGV
POUITOTIK®V CUOTNPATOV OF EIXEIPNOEIS £PEUVAG KAl H1A0MOTG, EITL-
mpnong Kat e§epevvnong yivetat 6do kat rmo Swadedopévn. Ta ou-
OINATA AUTA TIPOCPEPOUV ONHAVIIKA TTIAEOVERTNATA Ot TieplBaAAovia
rou eivat eite MoOAU ermikivduva eite anpodotta yia toug avbpwrioug. Ta
napadeiypata nmeptdapBavouv meplox€G mou IMANTIOVIAl Ao Kataotpo-
&g, egepeuvnoetg oe peydda Saddootla BAOn 1 oto draoctnpa Kabwg rat
MOAUTIAOKA aoTikA riepiBaAAovia. Ta autovopa pounot PUropouyv va e-
KTeEAOUV KaBKOVIa OTIOG O EVIOTIIONOG ETI{OVI®V O GUVIPIPHLA, O EVIO-
opog £§086mV 0e PAeyopeva Ktipla 1 1) §epeUvnOr AYVROT®V TTEPIOX DOV
oe aAloug rmAavnteg. Autd ta oevdpla ouxvd repldapBavouv Kpiotpieg
ATTOOTOA£EG OITOU 1) TAXUTNTA EVIOITIOHOU £VOG OTOX0U OUOYXET¢eTatl apeoa
He v ermtuyia g ermyeipnong, eite ya ) 61aowon {@ov Kat v dpe-
on daguyr ano pia ermkivéuvr TEPLOXI) €1TE YA TNV ATIOTEAEOPATIKY)
oulloyr) debopévav.

H peAén tov npoBAnpdtev avaditnong kat S1adpuyng avilpetonidel au-
T€G TS MPOKATOEIS HE TV AvATTtudn alyopibpev, mou eAax10Tornotouy
T0 XpOvo Tou aratteitatl yla pia opada popndt va €viOoriosl Kat va
IPOOEYYI0El OUYKEKPIPEVOUG 0TOX0UG (1] €§660ug). H moAurdoxkounta
autoVv TV PoBAnpdtov peyefuvetal and 51apopoug peaAloTikoug me-
PlOPLOPOUG: TA POUIIOT HITOPEl va €XOUV TEPLOPIOPEVEG HUVATOTITEG
ermKOwWeViag (oe éva Tieploplopévo 1) 181aitepa TUKRVA Sopnpévo mept-
BaAdov, 1.X. Of pla onpayya), PIopel va avipetoioouv opaipata
KAl MPETEL va PITOPOoUV va AEITOUPYOoUV Og ayveota 1) Suvapika peta-
BaAAopeva riepiBardovia. H katavonorn 1ou tportou oXe61a010U arnote-
Asopatikev adyopifpev umno t€toleg ouvOnkeg eival {(OTIKNG onpaociag
yla v evioxuon g adlormotiag Kat tng artioteAEOPAtiKOTNTAS TV AU-
TOVOP®V POUTIOTIKGOV OUCTHAT®OV O£ ATIPoBAETITA KAl oUXVA ermKivouva
riepiBaidovra.

Mia eKTEVQOG PEAETNHIEVI OIKOYEVEL TIPOBANIAT®OV OE AUTLV TNV EITOTL)-
HOVIKN] TIEP10XT] adopd KATACTACELS OTTOU H1d opdda pourot TIPETEl
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va Bpet Evav 1] EPLOCOTEPOUG OTOXO0UG TTOU BpioKovial oe Ayvoota on-
peila plag meploxnsg. To mpoBAnpa Sewpeital 16laitepa onpaviiko otn
POUTIIOTIKI] KAl OTNV EMIOTHI TOV UTTOAOYIOTOV €V TIS teAeutaieg de-
Kaetieg €xouv datunwbdel apretd adyoplOpikd arotedéopata. e pa
evdlapépouoa mepinmwon o0 otoxog eivatl pia €§060¢ Kal 0 OKOIOG TRV
POUITOT gival eite va evrorticouv v €§060 (mpoBAnpa avalfnong) site
va eyKataAeipouv v reploxr) péo® g £§060u (mpoBAnpa Siagpuyrg),
000 10 Huvatov ypnyopotepd.

@£0n Kat Kivnon TV poumnot

Zinv epyaocia pag Se@poupie €va cUVOAo amo n Pourot (cuxva avage-
POPAOCTE 08 AUTA ®G ITPAKTOPEG) TIOU cupBoAidovial g ag, Ay, . .., An_1, f
€K T®V OTIOIOV £1val EAATIOUATIKA, OAQ APX1KA TOTIOOETNIEVA OTO KEVTPO
€VOg KUKAOU povadiaiag axktivag. H €806og Bpioketal otov povadia-
io kUKo, Tou eival n nepipépela 1ou 6iokou. Ta poumodt €xouv v
Kavotnta va avuldapbdavovial v mepiperpo 1ou 610KOU KAl va €Vio-
ntidouv v £6060 av tuxel va Bpebouv otnv 9éon ng. Ltoug alyopid-
Houg pag oot ot pun eopadpévol (honest) mpAKtopeg Kivouvial Pe N
péylotn taxumta 1, emopéveg oe KAbe XPOVIKY OTLyI), 6A01 01 IIPAKTO-
peg yvopidouv tn dfon kaBe mpdktopa 1rmou akoAoubel 10 TPOTOKOAAO.
YroBétoupe 6t ta poprndt ivat e§ormAtopéva pe alobnrpeg ya ty a-
KP161] pETpnon g arnootacng Katd i diapkela ing Kivnong. Eote ot
10 8 := 271/Nn avuIPooRIEVEL pia yovia Kat Kabe poprot ay Kiveitat
KAtd PHKOG P1ag aktivag 1mpog 1o onpeio kd otnv mepiperpo tou pova-
dlaiou kUkAou. To oo [k, (k + 1)8) opiletatl wg topéag Si. Metd ano
1 xpovikr) povada, 1o pourot a, torobeteital otnv apxr tou Touéa Sy,
O0AOKANPAOVOVIAg TV avad)tnorn eviog autou Tou topéa oe Xpovo 1 + &
EV® Klveltal aplotepootpoda (ccw). Zuxvd avapepopacte oto Xpovo 8,
10 Xpovo dnldadr) rmou xpetadetal Eva pouriot yia va Pasetl minpng Evav
Topéa @g yupo (round).

YroBétoupe ka® 6An ) Sidpkrela g eKtéAeong T@V adyopibpwv ot
KAOe opd 1ou €vag un eodpaipévog rpdaxktopag Ppioket v €§060, 1o
aVAKOWOVEL KAl KAOe @opd 1ou avtidapBavetal 0Tt 1] avakoiveor) evog
AaAAou mpdktopa eival eopaApévr, aAvakolvevel v dapevia Tou oe
oloug.

MovtéAda emkolveviag

Ze auty] v gpyaocia diepeuvavial HU0 H1aPOPETIKA POVIEAA ETTIKOIVR-
viag yia ) 61eukoAuvon v aAAnAerudpdcemv PETASU TOV POUITOT:
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e Movtélo aocuppatng ermkowvoviag (Wireless): 1o poviédo a-
oUPPATNS ETIKOIVAOVIAG TA POUIIOT UITOPOUV Vd EITIKOIVOVOUV Ale-
oa aveapt)wg andotaong. Ta pnvupata mnou aviadlddacooviat
HETAdU TV POUIOT PETadPEPOUV §1apopeg ANPOPopieg, OIwG TO-
noBeoia, avakaduyn £§odou, diavubeioeg amootaoelg K.a. Kabe
PHVUpa €xet éva povadiko avayveplotiko arnootodéa (ID) mou na-
papével apetdBAnto. Avaduoviag autd ta pnvupdaild, td POUIot
HITOPOUV Vd TIPOCO10PI00UV TIG OXETIKEG TOUG JE0ELG.

e Movtéldo pn aouppatng emkrowvoviag (Face-to-Face): I'vo-
0t0 KAl ®G TOTIKO POVIEAO, AUTO TO POVIEAO EMKOVOVIAG artattet
ano ta popnot va Bpiokovratl puoikd oty i6ia tortoBeoia v da
XPOVIKI] OTIY1I], TIPOKEIEVOU va aviaAAddouv mAnpodopieg.

AU0 dAAa poviéda EMKOVEOVIAG TTOU XPNOTHOMO0UVIAL EUPERG OTNV €-
Sepeuvnon ypadpnuatev eivat to poviédo Botoaido (pebble) kat to po-
vtédo mivakag (whiteboard). Xto poviédo pebble ta popndt eivat
eCormAiopéva pe éva 1) meploodtepa POtoada, Kivntd AVIIKEIPEVA TTOU
npoodilopidouv povadika évav KOPBo 1] Pla aKpr Kal MEPEXOUV &va
povo bit mAnpogopiag. Ta pourot xpnoiporolouv ta Botocada ®g ou-
OKEUEG EMKOIVOVIAG TIPOKEIPEVOU va €EEPEUVIIOOUV 1O ypadnua [18,
53, 149, 19]. Ta v e§epevivnon ypadnpdiov Pe pOouot Xepig pviun
epappodetal 1o POVIEAD EmKOIVeViag Tou mivaka. Ot mmivakeg ot oroiot
propet va etvat Kivntd 1 akivnta avikeipeva, €Xouv enapKn Pvipn ya
Vv avtaddayn mAnpogopi®v Petadu v pourort [52] 25| 144, 51].

Z¢paipata

Zin epyaoia avt] AapBavoupe unioywn U0 TUMOUG EAATIOPATIKOV OU-
HIEP1POP®V TIOU TTAPOUC1AOUV Td POUITOT:

e Z¢paApa ouvrpiBrig (Crash Fault): 'Eva poprdt rou avupe-
Tenidel opdApa ouvipBrg otapatdel andtopa ) Asttoupyia tou.
Aev petaxkiveital dAAo KAl oTapatd orotadnote EmKovevia.

¢ Bulavtuivo opaipa (Byzantine Fault): 'Eva poprndt nou epga-
vider Budavtivo opdApa srudidetal oe kakdBoudeg dpaotnplotnteg,
ouprnepAapBavopévay Tng OKOTIING AAAayTg TG TPOX1AS TOU Kat
MG XEPAYWYNONGS TANPOPOPIDV Yid va PIEPSEPEL Ta U1 EOPAA-
péva poprnot. EmmmAéov, éva pounot pe Budaviivo opdApa pmopet
va ppnOet t ouprneptpopd evog POUIIOT pe opaApa ocuviplBrg.
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Avtinalog

Ia v avdduon g XEpotepns MEPIMIOOoNG TV aAyopibpnv pag den-
poupe évav avtirnado (adversary) rou ermdéyet ) 9€on ng £§6dou kat
T OUNITEPLPOPA TO®V KAKOBOUA®V poprot (tig Tpox1€ég tou Kabwg Kat ta
pnvupata mou Ya petad®oouv) ®oTe va PEYIOTOO0El TOV IIPOKUITIO-
via Xpovo avadnnong Kat oAokAnpwong g dwaguyng. O aviinadog
EMAEYEL MTIONG TTO1A POUITIOT €ival eoPpadpéva.

IIpoBAnpata Avalfitnong kat Atagpuyng

Zto mAaiolo tou mpoBAnpatog (n, f)-dtapuyng oe kKUKAO pe povadia-
ia axtiva opidovrat 6Uo npoBAnuata, AapBavoviag unoyn CUVOAIKA n
POUTIOT, HE f armd autd va eivatl Suvnukd eopaipéva:

e IIpoBAnpa avalnitnong

Zinv mepimoon evog oUVOAOU N POPTOT, HE f armo autd va givat
eopalpéva, elodyoupe tov oupBoAiopo S(n, f) yia va dnAocoupe
TOV XpOVO TTOU aratteital yia v ermtuyr) emniAuon tou ipoBArpa-
T0g avadfnong. AUto avIiUIpoo®ITEVEL T d1apKela rmou Xpetddetat
yla ta pn eogpadpéva popurot va @racouv oty £606o kat va 6ia-
opadicouv 611 6Aa ta pn eopaipéva popnot Stabétouv adapdi-
oBnintn yvoorn g 9€ong tng e§6dou. Autr) 1] CUVEPYATIKY| ITPO-
orndbeld TV POUIOT va EVIOITIOOUV Kal va Kabopicouv tnv akpibr)
9éon g €§0dou avapépetatl ouvnBwg wg opadikr avadrnorn.

e IIp66Anpa drapuyng

ZupBodidetal wg E(n, f) meptdapBavel n pounodt, cuprnieptdapba-
VOUEVGV TOV f €0PAAIEVEV, KAl ATIOOKOIIEL OTOV ITP0CGH10010110 TOU
XpOvou mou arnatteital ylia pia ermruyn diaguyn oty oroia éva
BN eAdTiOUAatiko POUIOT avakaAurtel v €§060 kat 6Aa ta pn
EAATIOPATIKA POUTIOT TIPETIEL VA PTACOUV P acpdAela otn 9éon
g €§06ou. Eivatl onpaviko va onpeindei 6t o xpodvog dradpuyng
E(n, f) elvat eyyevog peyadutepog 1) 100G e T0 XPOVO TTOU ATTAlTE-
ftat yla myv eupeorn g €§66ou S(n, f), kabwg n evpeon g §06ou
arntoteAel mpoUnobeon yia v ermtuyn Siaduyr.



23

B1BAloypa¢diky) Avacronnon

Ta rpoBAfjpata mou MapoUcIAod e TIAPATIAVE SEKIVNOAV va PeAETOVTAl
apxwka ot miepiBaddov gubeiag. To mpdBAnpa tng avalfinong ypap-
HNG, TO OTI0I0 ETTIKEVIPMOVEIAL O €vaV HPEPOVOUIEVO KIVNTO TIPAKTIOPd,
nou avalntd pa ayveotn €060 oe pia eubeia, £xel peAetnOel eKTEVAOG
ot BBAoypagia. Ot mpwtonoplakeg epyaoieg twv Beck kat Bellman
[11}, [17], Baeza-Yates et al. [6], €éxouv 9éoel 1ig Paoeig ng Epeuvag
OlepeuveVIag 1000 OTOXAOTIKA 000 KAl VIETEPHUIVIOTIKA TiepiBaAAdovra.
Aoonpeinteg eivatl ot ouvelopopég twv Ahlswede kat Wegener [2],
Alpern kat Gal [5], Stone [84], mou é¢xouv obnyroet oe onpavti-
kég dnpootevoelg kat PBAia. Ilepattépem €peuveg £xouv Oiepeuvnoet
dtagpopoug aAyopibpoug avalninong ypappng, oupneptAapbavopevay
TUXA10TIONPEV®V TIPooeyYioewv [68] Kal eKTPNoe®V TOU KOOTOUG OTPO-
e1g (turn cost) [46]. ErumAéov, to poBAnpa tng avadftnong ypapung
EMEKTAONKe, Oote va e€etalel Kal v napouoia oPaAPEVeOV POUTIOT,
0dNydvIag oe evO1aPEPOUOES EPEUVEG OXETIKA HE TA POUITOT TTIOU TTAPOU-
otadouv opdApata ouvipbrg [40] kat ta poprnot pe Budavuva opdApata
[38]. Autég o1 pedéteg pixvouv OGS OTIS TIPOKATOE1G KAl TIG OTPATNYIKES
TIOU EPMAEKOVIAL OINV EMMIAUCT] TOU TIPOBATIATOS avadlninong YPapuung
OTaV UTIAPX0UV POUTIOTIKA opAApatd.

A%iel va onuewwbei o6t 10 TPOBANPa Sraduyng polpddetal pa otevh
oxéon pe 1o poBAnpa avadninong, pe ta 6Uo TPoBArpATa va ermKka-
Aurttovtat étav eprnAéretatl povo eva poprnot. H pedétn g Stapuyng
0 KUKAIKEG TOTOAOYieg §eKivnoe He TV MP®IONOPlaK) epyaoia [32],
orou ol ouyypageig diepevvnoav toco 10 aocuppato 600 KAt 10 {1r) a-
ouppato poviédo ermkowveviag. H epyaocia autr) €0eoe 1a Sepédia yua
T PETEMELTA £PEUVA OXETIKA HE TNV dlrauyr| os rep1BAAAOV KUKAOU, Tie-
ptAapBavoviag 6iagopa oevdapla. I'a pia oAOKANPGOUIEVI] EMTIOKOTNON
NG MEPLOXHS OUVIOTOUE va avatpédete oto [37].

H napouoca 618aktopikr) diatpiBr) ouvbéetal otevd oTo TIAAIC10 TV TIPO-
BANpAtOV d1aPuyng o KUKAIKEG TOOAOYieg UTIO TV mapoucia opal-
patev pe my epyaoia [33]. tn pedétn toug ot ouyypadeig emKevipOn-
Kav oto rpoBAnia rou reptdapBavet 1pia pourtot, K TV OOV TO £va
eivar eopadpévo. Ilapeixav dve Kal KAT® @pAypatda 1000 yla td oe-
vapia 1ou neplAapBavouy pounot pe opadpata cuvipibng, 600 Kat yia
11§ miepirttwoelg Bulaviivou opdApatog.



24

Emoxonnon Kegpadaiov

Zto Kegpalaio [1| meprypddetal avaAutika 10 HOVIEAO TRV MIPOBANIATOV
TTOU PEAETOUNE KAOWG KAl TIAPOUCIAETAl EKTEVMG 1] OXETIKT] B1BAtoypa-
oia.

Zto Kegpadaio [2| e§etaoupe 10 ipoBAnpa (n, f)-avaditnong oe kukAo,
éva mpoBAnpa avalinong piag Kpuprng e50dou oe €évav KUKAO pova-
dailag axtivag yua n > 1 pounot, f ek towv onoilwv eival eopaipéva.
‘OAa ta pournodt EeKvouUv arod 10 KEVIPO TOU KUKAOU KaAl UITOPouV va
KivnOouv ornoudrnote pe péyilotn taxvtnua 1. Kata ) Sidpkea ing
avadninong, ta POHUIOT PUITOPOUV va EMKOIVOVOUV acuppata. ‘OAa ta
pnvupata ou petadiboviatl amod 0Aa Ta poPnot emonpaivoviat pe ta
povadikd avayveplotikd tov pOUIToT, ta oroia dev pPropouv va adAoie-
Souv. H avalfjmon Sewpeitat oAorAnpopévn otav n £€§0dog Ppebel arod
éva pn eoPpaApévo popurot (to oroio mpérnet va ermokedOet t 9€on g e-
£660u) kat ta urddotra pn eoPpadpéva popunot yveopilouv i owotr) 9éon
g €§660u. Medetdpe Katl ta U0 poviéda sopaipévav pournot. ‘Otav
UTIAPXOUV HOVO POUTIOT PE opAApa ouvipiBrg, mapexoupe BEATIOTOUG
aAyopiBpoug yia to mpoBAnpa avalnnong (n, f), pe PEAtioto xpovo o-
AoxAnpwong g avadninong ot Xelpotepn nepimwon 1 + (f“)zn H
KUpla TEXVIKI] oUuvelopopd pag adopd BEAtiotoug aAyoptGuoug yla v
(n, 1)-avalninon pe éva poprnot pe Bulavivo opddpa, edayiotortot-
®VIag TOV XPOVOo oAOKAr']pmor]g NG avadninong otn XEPOoTeP IEPITIR-
on, o oroiog 1woutat pe 1 + 2&. [Tapouoiddouyie emiong évav aAyopif1o
yla ) Pkt nepintoon, pe eva Bulavtvé kat f — 1 opdApata ouvipt-
Brig, P& XPOVO 0AOKANP®ONG TG avadr)tnong otV Xe1potepr] IePintoon
1+ 2Ef + 25in 2

Zto Kepadato [3egetdoupe 1o poBAnpa (n, f)-6taguyrc ano éva KUKAo,
éva mpoBAnpa oto oroio n > 1 pounort, f ek twv onoiwv eivat eodpal-
péva, rpoortabouv va s1aPpuyouv PEok piag Kpudrg e§odou ou Ppioke-
Tal otV TEPIPETPO £vog povadilaiou KukAou. Ta to aoﬁppato poviedo
EIMKOVOVIAG armode1kvuoupe apX1ikd éva KAte gpaypa 1+ 22 — +2sin(3 —

=) ya v nepinoon evog eopaipévou popmnot. I quexaa ue)xempe
Vv neptmwon pe duvo Buldavuiva popmnot kat r[apéxoups évav alyop16-
10 Iou ermTuyxdvel S1aduyr] oe Xpovo 1o TIoAU 3 + & + §(n), drou 6(n)
etvat pa @pBivouca ouvdptnon pe PEYotn TN 6(4) = 0.5687, nou un-
devidetal yia n > 9. T'a 10 pn acUppato Poviedo ap€Xoupe éva Ave
epaypa 3+(f+ 1)27I ya myv dapuyn n pO}lHéI urté Vv apouoia opai-
Hatev ouvtBng, éva ave gpaypa 3 + & + 2sin = = ya my 61aq)uyn O'EI]V
niepinmworn evog Bulavtivou poprot KCll &va ave cppayuq 3+5¢ T+2 sin 22
otnv nepinowon dvo Bulavtiveov poprnot.
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Tédog oto KepaAaio 4| pedetoupe 1o nipoBAnpa tng (n, f)-dtapuyng oe
KUKAO unio omnotodrnote apifpo Bulavuveov opaipatev. [Tapouoialou-
He aAyopiBpoug 000 yia T0 POVIEAO acUPHATNG EMTIKOIVAVIAG 000 KAt
yla T0 POVIEAO Hn acuUppatng ermKovaviag. AvalUoupe TG XPOVIKEG
Aratoelg avtev Tev alyopibpev kat npoodiopidoupe ave @paypata

yla v anodoot| toug.

Avtiotoyia 'Opwv

Mestagpaon
avadftmon
avtirnalog

ave @paypa

aplotepootpoda
Bulavtivo opaipa
BeATiotog
YUpog
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KAT® @epaypa

B €0PAAPEVO POUTIOT
PAKTOPaAg
odpdApa
opalpa ouvipBng
TopEag
1680
xopdn

AyyAikog opog
search
adversary
upper bound
ccwW
Byzantine fault
optimal
round
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lower bound
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Chapter 1

Introduction

In an increasingly automated world, the deployment of autonomous
robotic systems in search and rescue, surveillance, and exploration
operations is becoming more prevalent. Such systems offer signif-
icant advantages in environments that are either too hazardous or
inaccessible for humans. Examples include disaster-stricken areas,
deep-sea and space explorations, and complex urban settings. Au-
tonomous robots can perform tasks such as locating survivors in
rubble, identifying exits in burning buildings, or exploring unknown
territories on other planets. These scenarios often involve critical mis-
sions where the speed of locating an objective directly correlates with
the success of the operation, be it saving lives, efficiently gathering
data, or exiting a dangerous area promptly.

The study of search and evacuation problems addresses these chal-
lenges by developing algorithms that minimize the time required for
a group of robots to find and reach specific targets or exits. The
complexity of these problems is magnified by several realistic con-
straints: robots can have limited communication capabilities (in a
confined or a highly structured setting such as a tunnel), they may
encounter faults, and they must operate in unknown or dynamically
changing environments. Understanding how to design efficient algo-
rithms under such conditions is crucial for enhancing the reliability
and effectiveness of autonomous robotic systems in unpredictable
and often perilous environments.

1.1 Preliminaries and Notation

An extensively studied family of problems in mobile agent computing
concerns situations where a group of robots needs to find one or more
targets that are located in unknown points of a territory. The prob-
lem is considered particularly important in robotics and computer
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science and a number of algorithmic and hardness results have been
developed over the last few decades. In a particular case of interest,
the target is an exit and the goal of the robots is either to locate the
exit (search problem) or to leave the territory (evacuation problem),
as fast as possible.

1.1.1 Location and Movement (Robot Trajectories)

In our work, we consider a set of n robots denoted as ay, a;, ..., d,_1,
S of which are faulty, all initially located on the center of a unit radius
circle. The exit is located on the unit circle, which is the circumference
of the disk. Robots possess the capability to perceive the perimeter of
the disk and detect the exit if they happen to be in close proximity to
it. In our algorithms, all honest agents move at the maximum speed
1, therefore at each time point, all agents know the location of every
agent that follows the protocol. We assume that robots are equipped
with pedometers for accurate distance measurement during move-
ment. Let & := 2n/n represent an angle, and each robot a, moves
along a radius to the point k& on the perimeter of the unit circle. The
arc [k9, (k + 1)9) is defined as sector Si. After 1 time unit, robot aj
positions itself at the beginning of sector S, completing the search
within this sector in time 1 + & while moving counterclockwise (ccw).
We may refer to time 8, the time that a robot needs to completely
search a sector as a round.

It is assumed throughout that whenever an honest agent finds the
exit it announces this fact, and whenever it realizes that an an-
nouncement of another agent is faulty it also announces this to ev-
erybody.

1.1.2 Communication Models

In this work, two distinct communication models are explored to fa-
cilitate interactions among the robots:

e Wireless Model: In the wireless communication model, robots
can communicate instantly regardless of distance. Messages
exchanged between robots carry various information such as
locations, exit discovery, distances traveled, and more. Each
message has a unique sender identifier that remains unchanged
throughout the communication process. By analyzing these
messages, robots can determine their relative positions.
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o Face-to-Face Model: Also known as the non-wireless or lo-
cal model, this communication model requires robots to phys-
ically gather in the same location simultaneously in order to
exchange information. Unlike the wireless model where robots
can communicate regardless of their distance, the face-to-face
model necessitates direct physical interaction for information
exchange.

Two other communication models, widely used in the exploration of
graph environments are the pebble model and the whiteboard model.
In the pebble model, robots are equipped with one or more pebbles
(tokens), movable objects that uniquely identify a node or an edge
and contain a single bit of information. Robots use the pebbles as
communication devices in order to explore the graph [18, (53| 49, [19].
To explore graphs with memoryless robots, the whiteboard commu-
nication model is applied. Whiteboards, which can be movable or
immovable objects, have sufficient memory for robots to exchange
information [52, 25, |44, 51].

1.1.3 Fault Types

In our study, we take into account two types of faulty behaviors ex-
hibited by the robots:

e Crash Faults: A robot experiencing a crash fault abruptly stops
functioning, and becomes unresponsive, resulting in a complete
breakdown of message communication.

e Byzantine Faults: A robot exhibiting Byzantine behavior en-
gages in malicious activities including deliberately altering its
trajectory and manipulating information to confuse the honest
(non-faulty) robots. Additionally, a Byzantine robot can mimic
the behavior of a crash-faulty robot.

1.1.4 Adversary

For the worst-case analysis of our algorithms, we consider an ad-
versary who selects the location of the exit and the behaviour of the
malicious robots (its trajectories as well as the messages they will
broadcast) to maximize the resulting search and evacuation comple-
tion time. The adversary also chooses which robots are faulty, adding
to the challenge.
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1.1.5 Search and Evacuation Problems

Within the context of the (n, f)-evacuation problem on a circle with
unit radius, two problems are defined, considering a total of n robots,
with f of them being potentially faulty:

e Search Problem

In the case of a total of n robots, with f of them being faulty,
we introduce the notation S(n,f) to denote the time required
to successfully solve the search problem. This represents the
duration it takes for the non-faulty robots to reach the exit and
ensure that all honest robots possess undeniable knowledge of
the location of the exit. This collaborative effort of the robots to
locate and establish the precise position of the exit is commonly
referred to as group search.

e Evacuation Problem

Denoted as E(n,f) involves n robots, including f faulty ones,
and aims to determine the time required for a successful evac-
uation. In a complete evacuation, a non-faulty robot discovers
the exit, and all non-faulty robots must safely reach the exit’s
location. It is important to note that the evacuation time E(n, f)
is inherently greater than or equal to the time required to find
the exit S(n,f), as finding the exit is a prerequisite for a suc-
cessful evacuation.

1.1.6 Symmetric-Persistent algorithms.

As defined by Czyzowicz et al. [33], symmetric-persistent algorithms
are a family of natural algorithms that force all robots to immediately
go to the disk perimeter and only allow a robot to stop its explo-
ration of the assigned sector if it receives information about the exit.
Symmetric-persistent algorithms force all the robots to move in the
same direction, either clockwise or counterclockwise.

1.2 Related Work

1.2.1 Search on a Line

There has been extensive literature on line search starting with the
seminal papers of Beck and Bellman [11},/17] and Baeza-Yates et.al. [7].
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Both cases are concerned with linear search: a single mobile agent
searching for an exit placed at an unknown location on an infinite
line; a problem also known as the cow-path problem. In the former
case, the setting is stochastic, and in the latter deterministic.

Beck et al. furthered their contributions to understanding the linear
search problem by examining various assumptions and conditions
related to the searcher’s strategy and the distribution of the target’s
location. In their study [12], they extend the basic model by consid-
ering different a priori distributions (uniform, triangular, and normal)
and the impact these have on the optimal search strategy. In a subse-
quent work [13], they explore the implications of increasing the cost
function associated with distance, suggesting that as search time
increases, so does the penalty for continued searching. They also
examine how this changes the strategy of the searcher when known
distributions are involved. A game-theoretic approach is introduced
[14] when the probability distribution of the target’s location is un-
known. A minmax solution is proposed to determine robust strategies
against an adversary who may choose any distribution to maximize
the searcher’s expected loss. In a later work [15], the authors revisit
the problem with a focus on nonlinear cost functions, demonstrating
that the general strategies developed under linear assumptions hold
even under more complex cost scenarios.

This line of research continued by several authors and culminated
with the seminal books by Ahlswede and Wegener [2], Alpern and
Gal [5], and Stone [84].

Czyzowicz et al. [42], consider a robot whose speed varies due to
factors like travel direction or terrain profile (e.g. when the line is
inclined, the robot can accelerate). In this work they design search
algorithms that achieve good competitive ratios for the time spent by
the robot to complete its search versus the time spent by an omni-
scient robot that knows the location of the target.

Several other models for line search algorithms were subsequently
investigated. Demaine et al. [46], extends the classic linear-search
problem by incorporating a directional change cost, d, into the search
strategy. The proposed strategy guarantees finding an object on a
line, at an unknown distance OPT from the searcher’s starting point,
with a total cost of no more than 9-OPT +2d, which has the optimal
competitive ratio 9 (as was first shown in [14]) with respect to OPT
plus the minimum corresponding additive term. Their work includes
solving an infinite linear program through a series of approximating
finite programs to derive upper and lower bounds, leading to a proof
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of optimality for the search cost. This approach is also applied to the
"star search" (first solved by Gal [55]), or a variant of the cow-path
problem, where an object is hidden along one of several rays emanat-
ing from a point. Here, a tight competitive ratio formula involving m,
the number of rays, is derived.

Fuchs et al. [54], investigated the online matching problem on a line,
where requests must be matched to a set of points on a real line in
an online fashion. It disproves a previous conjecture suggesting that
a competitive ratio of 9 could be achieved for this problem, similar
to the "cow path" problem, where an optimal online algorithm with
a competitive ratio of 9 exists. Instead, the paper establishes that
no online algorithm can achieve a competitive ratio strictly less than
9.001 for the online matching problem.

Kao et al. [68], introduce the first randomized algorithm for the co-
path problem. Here, the cost function is unique as it considers the
distance traveled between queries, which is more applicable to real-
world problems, particularly in robotics. Previously, the problem was
addressed using deterministic algorithms with a known optimal com-
petitive ratio. However, this paper’s randomized algorithm shows sig-
nificant improvement, particularly for the case of two paths (w = 2),
achieving a competitive ratio of approximately 4.5911, which is nearly
twice as efficient as the best possible deterministic algorithms. Their
work also discusses the growth of the competitive ratio in relation
to the number of paths w. In a subsequent work [67], they extend
the classic cow-path problem to the case in which goal locations are
selected according to one of a set of possible known probability distri-
butions and present a polynomial-time linear programming algorithm
for this problem, with potential applicability to other search problems
as well.

Chrobak et al. [27], address the "group search problem" or "evacua-
tion problem," where multiple mobile entities (MEs) begin at a com-
mon origin on a line and must locate and simultaneously reach a
destination situated at an unknown distance either to the left or right
of the origin. The main objective is to minimize the time required for
all entities to reach this destination. This problem extends the "cow-
path problem," which considers a single entity and has established
that the minimum search time in the worst case is 9d — o(d) where d
is the distance to the target. The authors demonstrate that, contrary
to what might be expected, increasing the number of MEs does not
reduce the minimum search time needed; it remains at 9d—o(d), even
for k MEs. They explore scenarios with two MEs moving at different
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speeds, showing that if the slower ME moves at least 1/3 the speed
of the faster, the 9d time can still be achieved. The paper situates
this problem within the broader context of search and rendezvous
problems, highlighting how varying the speed of the MEs and their
ability to communicate impacts the strategies and outcomes. Extend-
ing on this work, Bambas et al. [9], complement the case when the
slower robot’s speed is at least one-third that of the faster robot. In
cases where the faster robot’s speed is 1 and the slower robot’s speed
is greater than approximately 0.123, this work finds that wireless
communication can significantly enhance search efficiency. How-
ever, beyond this speed difference, wireless communication offers no
advantage over the need for robots to meet to exchange information.

Gal [56], addresses the asymmetric rendezvous problem on a line,
initially introduced by Alpern [3]. In this problem, two individuals,
placed randomly in a known search region, aim to find each other by
moving at unit speed. Gal establishes that in a two-player scenario,
it is never optimal for one player to remain stationary, highlighting
the importance of both players actively moving to reduce the time to
meet. Gal then extends this analysis to consider the meeting time
in an n-player scenario, demonstrating an asymptotic behavior of
n/2 + O(log n) in the worst case. A later work by Alpern and Beck [4],
shows that the asymmetric rendezvous problem on a line (ARSPL) is
strategically equivalent to a new problem they introduce, the double
linear search problem (DLSP), where an object is placed equiprobably
on one of two lines, and equiprobably at positions +d. A searcher is
placed at the origin of each of these lines. The two searchers move
with a combined speed of one, to minimize the expected time before
one of them finds the object. The authors solve DLSP (and hence
the ARSPL) for the case where the distance d is drawn from a known
cumulative probability distribution G, convex on its support. Kan et
al. [64], improved the bounds of the symmetric rendezvous search
problem on the line using Markov chain theory and mathematical
programming theory.

Spieser et al. [83], introduce the "Cow-Path Game," a variant of the
competitive vehicle routing problem, exploring the strategic decision-
making processes in multi-vehicle systems. Specifically, it focuses on
scenarios where self-interested, mobile agents (illustrated as cows in
a theoretical model) compete to locate a stationary target distributed
on aring. This model simulates real-world competitive environments,
such as taxi drivers searching for fares in urban settings or shipwreck
recovery boats seeking treasure. In the game-theoretic approach de-
tailed in the study, each agent bases their search strategy not only
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on their position and available information but also on the actions
of competing agents. This approach leads to the development of
strategies where agents may adjust their paths in response to the
movements of others, aiming to maximize their own chances of suc-
cess. The paper extends the analysis from a single-agent scenario
to a competitive multi-agent context, highlighting the transition from
cooperative search strategies to competitive ones.

1.2.2 Search on a Circle

The circle search model (considered in our work) for n non-faulty
robots was introduced as an evacuation problem (completion time
with respect to the last finder of the hidden exit) by Czyzowicz et
al. [32] and analyzed in both the wireless and face-to-face commu-
nication models. This paper addresses the evacuation problem for a
team of n mobile robots placed at the center of a circular disk with
an unknown exit on its boundary. The robots, which share the same
maximum speed, aim to locate and exit through this point, commu-
nicating amongst themselves to optimize the evacuation time. The
paper presents algorithms and establishes bounds for n = 2 and
n = 3 robots. Additionally, the paper derives nearly tight asymptotic
bounds on the relationship between evacuation time and team size
for large n. The results in detail appear in Table In a later work,
Czyzowicz et al. [39] refined the bounds of [32] in the case of two
robots in the face-to-face communication model, leveraging a forced
meeting strategy to streamline evacuation paths. The new upper
bound is ~ 5.628, while the lower bound is now ~ 5.255.

’ n \ Communication | Upper bound \ Lower bound ‘
=9 face-to-face ~ 5.74 ~5.199
wireless ~ 4.83 ~ 4.83
n=3 face-to-face ~ 5.09 ~ 4,519
wireless ~ 4.22 ~ 4.159
large n face-to-face 3+ 2 3+ 2 —-0(n™?)
wireless 3+ L+ o(n~*/3 3+%

TaBLE 1.1: Results presented in [32]

Pattanayak et al. [82], investigate the evacuation problem involving
two robots tasked with locating and exiting through two unidenti-
fied exits spaced a distance d apart on the perimeter of a circle and
considering wireless and face-to-face communication. They consider
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both labeled and unlabeled exits, showing that labeled exits consis-
tently result in faster evacuation times.

Brandt et al. [23], further investigate the evacuation problem for two
robots, under the face-to-face communication model. This work in-
troduces a new algorithm that omits the forced meeting strategy from
[39], which had achieved an evacuation time of 5.628. This revised
algorithm improves upon that time, achieving an upper bound of
5.625. For the class of algorithms with exactly one symmetric de-
tour per robot, their numerical simulations suggest that this bound
is optimal. Criteria, in order to identify potential worst-case exit
placements, are introduced and used to simplify the analysis of evac-
uation algorithms. This work also discusses how evacuation time for
a fixed algorithm and exit placement typically corresponds to com-
plex equations that lack closed-form solutions, complicating analy-
sis. The new criteria help mitigate these difficulties. A later work by
Disser et al. [48], introduces a second detour through the interior of
the disk, aiming to balance the evacuation time across different exit
placements, protecting against the worst-case scenario. The new al-
gorithm avoids forced meetings, allowing for independent movement
through the disk’s interior. That approach leads to an improved evac-
uation time of 5.6234.

Lamprou et al. [73], investigate the evacuation problem for two robots,
under the wireless communication model. Robots can communicate
instantaneously, allowing for coordination once one robot locates the
exit. Their work introduces and analyzes strategies for the scenario
where the robots have different speeds offering insights into the rela-
tionship between evacuation time and the robots’ speed ratios.

Chuangpishit et al. [28] present a new framework for studying the
evacuation problem of two robots in the face-to-face model from
both worst-case and average-case perspectives, introducing new al-
gorithms that balance these metrics for practical applications such as
search-and-rescue operations. The paper proposes new algorithms
that optimize the average-case evacuation time while ensuring the
worst-case time remains bounded. These algorithms offer a contin-
uous Pareto frontier, addressing the multi-objective nature of mini-
mizing both average and worst-case evacuation times. The new algo-
rithms outperform existing strategies in the multi-objective context,
particularly improving upon algorithms introduced by Czyzowicz et
al. [32].



36 Chapter 1

1.2.3 Faulty Searchers

Fault tolerance in distributed computing has been the subject of ex-
tensive research [72] |65, 76]. An interesting variant of the linear
search mentioned above involves faulty robots. The two main papers
in this line of research are [41] for crash-faulty robots and [38] for
Byzantine-faulty robots.

Czyzowicz et al. [41], address the problem of searching for a target on
a line using multiple robots, some of which may be faulty. They aim
to minimize the competitive ratio, which is the worst-case ratio of the
arrival time of the first reliable robot at the target to the distance from
the start to the target. They introduce a new class of algorithms called
proportional schedule algorithms and provide specific algorithms for
any combination of n robots and f faulty units. Their results show
that if n > 2f+2, a simple algorithm achieves a competitive ratio of 1.
For cases where f< n < 2f + 2, they develop algorithms with detailed
competitive ratios based on a formula. For the specific case where
n = f+1, the algorithm is shown to be optimal with a competitive ratio
of 9, matching known bounds for a single robot. When n = 2f + 1,
the algorithm’s competitive ratio approaches 3, which they prove to be
optimal. This result fills a gap in the existing literature by providing
lower bounds for situations where n > 3, matching the best known
upper bounds for these cases.

Czyzowicz et al. [38], focus on fault-tolerant parallel search by n
robots on an infinite line, where f of these robots may exhibit Byzan-
tine faults (failing to report a found target or making false claims
about its discovery). Despite these challenges, the objective is to de-
velop algorithms that minimize the time to locate a target at a distance
d from the origin, ensuring that only non-faulty robots verify the tar-
get’s discovery. The authors present several algorithms optimized for
different ratios of faulty to total robots (Jr—cl) and establish correspond-
ing lower bounds on the search time. These algorithms are proven
to be optimal for certain densities of faulty robots. For cases where
n is greater than or equal to 2f + 2, a simple algorithm achieves a
competitive ratio of 1, signifying immediate discovery of the target by
a non-faulty robot at its actual distance. For cases where f is less
than n but greater than 2f + 2, they introduce proportional schedule
algorithms. These algorithms offer a competitive ratio that improves
as the number of robots n increases, approaching an optimal ratio
of 3 as n approaches infinity, closely aligning with theoretical lower
bounds. In a later work, Kupavskii et al. [71] improve the bounds for
crash-faulty robots (and as a result also for the Byzantine ones).
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Directly related to our current work is [33]. In this paper, Czyzowicz
et al. investigate the evacuation of three robots in the presence of one
faulty, either crash or Byzantine robot. The robots must locate and
reach an exit placed at an unknown location on the perimeter, com-
municating wirelessly throughout the process. The study’s primary
goal is to minimize the time it takes for the last non-faulty robot to
reach the exit, ensuring reliable evacuation despite potential faulty
behavior. The authors present two distinct evacuation protocols tai-
lored to the specific types of faults, crash and Byzantine, and evaluate
these protocols by establishing both lower and upper time bounds for
each scenario. Their findings are summarized in Table [1.2]

Bonato et al. [20], study a variation of the classic cow-path optimiza-
tion problem where a robot probabilistically fails to detect an item.
It is shown that traditional monotone search strategies are not opti-
mal when the search space is a half-line. The researchers introduce
and analyze a new class of strategies, termed t-sub-monotone algo-
rithms, which deviate from monotonicity and achieve progressively
better performance with increasing parameter t.

Fault Upper bound ‘ Lower bound ‘

Crash ~ 6.309 ~ 5.082
Byzantine ~6.921 ~ 5.948

TaBLE 1.2: Results presented in [33]

There are numerous other research papers on search and evacuation
that fall beyond the scope of this work. Examples include variations
in the search domain such as in equilateral triangles [43, 29, 8], 2-
dimensional [1}, 50, [66], in a grid [24], in a d-dimensional grid [30], in
m-rays [22], in [, unit disk [62], on graphs [77, 79], rings [80, |81}, 69,
26, |10, 45], torus [70], trees [78], with variation on the termination
criteria such as priority evacuation [35, [31, |36] and search-and-fetch
[58] 59], with variation on termination costs [47, 21, (34} 63], using
robots with asymmetric communication capabilities [57] to name a
few. The interested reader could also consult the survey [37] for
additional related literature.
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1.3 Overview of Chapters

The subsequent chapters delve into specific aspects of the (n,f)-
search/evacuation problem. Chapter [2| explores optimal algorithms
for (n, f)-search on a circle, addressing scenarios involving f crash-
faulty, or 1 Byzantine-faulty robots. A mixed case is also presented
[60, 61]. Chapter |3| extends the discussion to circle evacuation un-
der 2 Byzantine faults, taking into account both the Wireless and
Face-to-Face communication models [74, 75]. Finally, Chapter in-
troduces Byzantine fault-tolerant protocols tailored for the general
case of (n,f)-evacuation on a circle under any number of Byzan-
tine faults using both communication models addressed in this work.
This Chapter presents detailed algorithms and conducts an in-depth
analysis of their time requirements [16].
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Chapter 2

Optimal Circle Search Despite
the Presence of Faulty Robots

In this chapter, we consider (n, f)-search on a circle, a search problem
of a hidden exit on a circle of unit radius for n > 1 robots, f of
which are faulty. All the robots start at the centre of the circle and
can move anywhere with maximum speed 1. During the search,
robots may communicate wirelessly. All messages transmitted by all
robots are tagged with the robots’ unique identifiers which cannot
be corrupted. The search is considered complete when the exit is
found by a non-faulty robot (which must visit its location) and the
remaining non-faulty robots know the correct location of the exit.

We study two models of faulty robots. First, crash-faulty robots may
stop operating as instructed, and thereafter they remain nonfunc-
tional. Second, Byzantine-faulty robots may transmit untrue mes-
sages at any time during the search so as to mislead the non-faulty
robots, e.g., lie about the location of the exit.

When there are only crash fault robots, we provide optimal algorithms
for the (n, f)-search problem, with optimal worst-case search comple-
tion time 1 + @ Our main technical contribution pertains to op-
timal algorithms for (n, 1)-search with a Byzantine-faulty robot, min-
imizing the worst-case search completion time, which equals 1 + 4_:'

We also present an algorithm for the mixed case, with one Byzantine
and f — 1 crash faulty robots with worst-case search completion time
1+ 2Ef + 25in 2E,

2.1 Owur Contribution

For n > 2, we give optimal algorithms for (n,f)-search with only

crash failures and for (n, 1)-search with one Byzantine failure. Our
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main result is that (n, 1)-search on a circle with one Byzantine-faulty
robot admits a solution with search completion time 1 + 4—: and this
is worst-case optimal. We also study (n, f, b)-mixed search, where f
robots are faulty, b of which are controlled by a Byzantine adversary.
In Sectionwe prove a lower bound of 1 + @ for f crash-faulty
robots, hence for Byzantine robots too, and in Section [2.3 we provide
an algorithm that matches this bound assuming only crash failures.
Then, in Section [2.4] we focus on upper bounds for searching with
1 Byzantine robot. In particular, in Subsection we analyze
the case of 3 robots, in Subsection the case of 4 robots, and
in Subsection the general case of n robots; we prove that our
algorithm matches the aforementioned lower bound. In Section
we provide an upper bound of 1 + 2£f + 2sin 2E for (n, f, b)-mixed
search. Finally, in Section we conclude with a brief discussion
and open problems.

2.2 Lower Bound

In this section we give a lower bound for our search problem. This
result builds on the work in [33]; we extend their arguments to the
case of f crash-faulty robots (hence, Byzantine too).

Theorem 2.1 (Lower Bound for (n, f)-Search). The worst-case search
time S.(n, f) for n > f + 1 robots exactly f of which are crash-faulty
satisfies

Sc(nf) 21+ + 1)277[.

Proof. (Theorem Since the maximum speed of the robots is 1, it
takes at least time 1 for a robot to reach the perimeter of the disk.
Further, every point on the perimeter must be traversed by at least
S + 1 robots; for if not, the adversary will make the at most f robots
visiting this point all faulty in that they remain silent and therefore
the non-faulty robots will miss the exit.

Let ?; be the perimeter lengths explored by exactly i robots, where
0 < i £ n. Itis clear from the above discussion that in the worst case
bo=20 =---ly=0and y, +{r o+ -+, = 2m. The sum of the parts of
the perimeter explored by the robots is (f + 1)y +(f +2)8pi0+- - -+ 1by.
If the robots accomplish this task by exploring the perimeter for time
t (after the perimeter of the disk is reached for the first time), then it
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must be true that

nt>(+ Dl +(fF+2)p0+---+ 1l

>+ D + o+ -+ 8y)
=(f+1)2m

It follows that t > (f + 1)2n/n. This completes the proof.

Since S(n) > S.(n, 1), we immediately obtain the following corollary.

Corollary 2.1 (Lower Bound for Byzantine (n, 1)-Search ). The worst-
case search time S(n) for n > 2 robots exactly one of which is Byzantine-
Saulty satisfies S(n) > 1 + 4—:.

2.3 Search under Crash Failures

In this section we show how to match the lower bound of Theorem [2.1]
in the case of crash faults only.

Theorem 2.2 (Upper Bound for (n, f)-Search under Crash Failures).
The worst-case search time S.(n, f) for n > 2 robots exactly f of which
are prone to crash failures satisfies

Snf) <1+ (f + 1)2—:.

Proof. Let & := 2m/n. Our algorithm is as follows. For each k =
o,..., n — 1, agent a, moves to the point k8 of the unit circle and
searches ccw for (f + 1) radians. When (and if) exit is found, it is
reported instantaneously.

Clearly, every sector S; of the circle would be visited by f + 1 robots if
they all followed the protocol. Since there are at most f faulty robots,
there must be at least one honest robot that will visit S; and announce
the correct location. As there can only be crash failures there will not
be any contradicting announcements.

2.4 Search under one Byzantine Failure

In this section we analyze upper bounds for our search problem in
the presence of a single Byzantine agent. Our main theorem is the
following.



42 Chapter 2

Theorem 2.3 (Upper Bound for (n,1)-Search under one Byzantine
failure). The worst-case search time S(n) for n > 2 robots exactly one
of which is Byzantine-faulty satisfies

4n
S(n)<1+—.
n

Thus, combining Corollary [2.1] with Theorems [2.3] we conclude that

the worst-case search completion time for (n, 1)-search satisfies S(n) =
4

1+ =t

First observe that it is trivial to prove S(2) = 1 + 2m, for (2, 1)-search

since one of the two robots is faulty and the other non-faulty, hence
the non-faulty has no other option but to search the entire perimeter.

In the next two Subsections (2.4.1| and [2.4.2) we show the upper
bound for the cases (3, 1)-search and (4, 1)-search. Although the al-
gorithms for these cases can be seen as special cases of the algorithm
for the general case (Subsection , this is not the case for their
analysis. In addition, presenting them separately allows to better
clarify and illustrate the techniques and notions that we employ.

2.4.1 (3,1)-search with a Byzantine-faulty robot

Lemma 2.1 ((3,1)-Search). The worst-case search time for 3 robots
exactly one of which is Byzantine-faulty satisfies

4
5(3)31+§

Proof. We will prove the claim by presenting an algorithm for this
case. Consider agents ag, a;, a, and set d = 2n/3. We describe below
the agents’ actions in phases (time intervals) [0, 1), [1,1 + 8) and
[1+8,1+28) and we explain why all agents know the location of the
exit at time 1 + 28. Phase [0, 1): Each agent a,, k € {0, 1, 2}, moves

along a radius to the point k& of the unit circle.
Phase [1, 1 + 8): Agent a, searches ccw the arc [k9, (i + 1)8).

Phase [1 + 8, 1 + 28):

(i) If no announcements were made in time interval [1, 1 + §) then in
time interval [1 + 8, 1 + 29) either there will be one correct announce-
ment or two announcements. In the latter case the third agent, say
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ay, is honest and the correct announcement is the one by a;,; (other-
wise, a, would have seen in time interval [1, 1+ 8) the exit announced
by a._1).

(ii) If exactly one announcement was made in time interval [1, 1 + 8),
say by agent a;_;, then agent a, moves directly (along a chord) to the
location of the announcement and a,,; searches ccw for another &
radians. This takes time at most 2 < % If a). or ay,; confirms the
announcement then it is correct; otherwise, a,,; in this time interval
announces the correct exit point. This case is depicted in Figure E]

FIGURE 2.1: (3, 1)-search: robot trajectories in case
t< 20
=

(iii) If two announcements were made in time interval [1, 1 + 8), then
they are in consecutive sectors. The silent agent is certainly non-
faulty and will visit one of these sectors in this phase and will thus
be able to determine which announcement was the correct one.

This completes the description of the algorithm and the proof.

IFigures in this work depict robot trajectories during the execution of our search
algorithm. They are restricted to cases where the first announcement is made while
robots search their first sector of length 8 = 27” and no other announcement is
made until time 1 + 8. It is assumed that agent ap makes the first announcement.
A black square shows the location of the announcement; a white square shows
the locations of other agents at that time. A solid dot shows the starting positions
of the robots on the unit circle (starting from the center of the circle, they move
directly, in time 1, to their starting positions). Recall that the arc length between
the starting position of ay; and the point of the announcement is denoted by t
(hence, the announcement takes place in time 1 + t).
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2.4.2 (4,1)-search with a Byzantine-faulty robot

We will first describe an algorithm for this case. Let 8 = n/2. Each
agent a;, moves with speed one to its starting point k& and then con-
tinues ccw. We call the arc from one starting point to the next a
sector. We think of each agent being responsible for the arc of length
7 that begins at its starting point and covers at most two consecutive
sectors ccw.

Let t denote the length of the arc from the point of the first announce-
ment to the starting point that corresponds to the agent that made
the announcement (note, there is always an announcement for some
t<m. Ift> g then each robot checks both sectors that are assigned
to it. Otherwise, set y = m—2 and suppose an announcement is made
by ay (w.l.o.g.) at t < g We consider two cases.

If t < y, then a; and as will search the two sectors that each is
responsible for and a, will move along the diameter to check the
announcement. This case is depicted in Figure below.

FIGURE 2.2: (4, 1)-search: robot trajectories in case
t<uy.

If y<t< Z, then a; continues to cover distance \/5 (unless t > \/5)
and then moves along a chord to check the announcement; a, fin-
ishes its first sector and then moves back along a chord to its starting
point and continues cw to check the arc that a; didn’t check; a3 con-
tinues searching its two sectors. This case is depicted in Figure [2.3
below.

This completes the description of the algorithm. We will now prove
the correctness and the upper bound on the execution time.



2.4. Search under one Byzantine Failure 45

FIGURE 2.3: (4, 1)-search: robot trajectories in case
yst<g.

Lemma 2.2 ((4,1)-Search). The search time_for 4 robots exactly one of
which is Byzantine-faulty satisfies

S(4)<1+m

Proof. Recall that we denote by t the length of the arc searched on
the circle by the agent who made the first announcement, at the time
of the announcement.

For t > 7 we argue that when every robot has checked the sectors

it is responsible for (at time 1 + n), all of them know the location of
the exit. First, note that if only one announcement is made, then
it has to be a valid one. Therefore, assume two announcements are
made (note that both are no earlier than g). Observe that they have
to come from consecutive sectors: the exit must be at the first sector
of the faulty robot, say as since nobody spoke earlier than 7, and it
is discovered by ay, while searching its second sector, who makes a
correct announcement. The only other announcement can be made
by a; and is faulty. Therefore, all agents know that the location is at
the first of the two sectors in the ccw direction.

For t < Z suppose the first announcement was made by a,. We
claim that in this case the first announcement is checked by two
more agents (namely, by as and either a; or ay) and every point of
the perimeter is searched by one of the three other agents (unless a
second announcement is made in which case it is not necessary to

search the whole circle as one of the two must be correct). Assuming
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this claim, if the first announcement is verified by any other agent,
then clearly it is valid. If not, then two agents reject it, thus it must
be fake. It follows that another announcement was made which has
to be valid. We next verify the claim and the execution time.

Consider the case t < y. Note that y was defined so that a, reaches
the announcement in time less than 1 + y+ 2 = 1 + n. Thus, the
announcement is checked by a; and asz in time, while a; and as
search every point of the perimeter.

Consider now y < t < 7. First, to see that every sector was searched
by the first three agents by time 1 + n, we need to argue that a; and
ay covered the first sector. Indeed, a, searched an arc of length g to

finish his first sector, a chord of length V2 to go back to his starting
point, and an arc of length at most 7 — V2 that was left uncovered by
a;; this sums up to at most 7 + V2 + 5 - V2 = m as desired. Next, we
need to argue that the announcement location was reached by a; in
time 1+ m. This is clear if t > V2. Otherwise, it is not hard to see that
the worst case is t = y. In this case, the chord a; walks corresponds
to an arc of length ¢ = V2 + 5-Yy=2+ V2 - 5. Thus, the total time

it needsis 1 + \/§+2sin§< 1+ m

2.4.3 (n, 1)-search with a Byzantine-faulty robot, n >
5

We will first give the description of the algorithm for this case. For
each k € Z,, agent a, moves to the k-th starting point P; located at k&,
8 = 2n/n, and then continues ccw. We denote the arc of size 8 from
the k-th starting point to the next by S, and call it the k-th sector.
We think of sectors S, and Si,; as being assigned to agent a,, who
is supposed to search them in the ccw direction.

Let t denote the length of the arc from the point of the first announce-
ment to the starting point that corresponds to the agent that made
the announcement. We now describe the trajectories of agents for
the case that agent a, makes the first announcement. We will argue
later (in the proof of Theorem that the information they exchange
is enough for all agents to learn the exit location.

If t > 8, then each agent checks both sectors that are assigned to it.
Otherwise, set
y=28—-2sind
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and suppose an announcement is made by ag at t < 8. Consider two
cases.

If t < y, then each agent a; with k ¢ {0, 2} will search its two sectors,
while a, will start at time 1 + t to move along a chord towards the
announcement in order to verify it.

If y < t< 9, define arc-lengths x; (in S, but not to be searched by ay)
recursively as follows.

. (O = Xicr1
Xno =0; Xc=08+ Xgey1 — 2sm(—)

, 2.1)
for 0 < k< n—-1. Agent a; continues to cover distance d — x; (unless
t > 8 — x1) and then moves along a chord towards the announce-
ment in order to verify it; for 1 < k < n - 1, agent a, continues to
cover distance 8§ — x; (unless t > 8 — x;), then moves along a chord
back to its starting point, and finally searches in the cw direction the
arc (of length at most x;_;) that agent a,_; didn’t search; agent a,—;
continues with its two sectors. This case is depicted in Figure 2.4
below.

—To—

ap

FIGURE 2.4: (n, 1)-search: robot trajectories in case y <
t<a.

This completes the description of the algorithm. We next show its
correctness and the upper bound on its running time.
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Lemma 2.3 ((n, 1)-Search, for n > 5). The worst-case search time for
n > 5 robots exactly one of which is Byzantine-faulty satisfies

4ar
S(n) <1+ —.
n

Proof. (Lemma We are going to argue about the correctness and
the execution time of the algorithm described above.

If t > 8, then all agents have searched the sectors assigned to them
by time 1 +28. We need to show that all of them know the location of
the exit. First, note that if only one announcement is made, then it
has to be a valid one. Thus, assume two announcements are made.
Observe that they have to come from consecutive sectors: one of them
is the true one and was discovered by an honest agent, say a,, while
searching sector Sy,;. It follows that a,; is faulty (because it didn’t
make the announcement) and the other announcement must come
from it. Therefore, the agents know that the location is at the first
announcement encountered in the ccw direction.

Otherwise (t < 8), suppose the first announcement was made by ay.
We claim the following.

The first announcement is checked by two more agents
and every point of the perimeter is searched by at least one
agent different from ay, unless a second announcement is
made.

Note first that if the first announcement is verified by one more agent,
then it is proved valid to all. If not, then—assuming the claim—two
agents reject it and aq is proved faulty to all. Furthermore, every
point of the perimeter will be searched by at least one honest agent. It
follows—by the second part of the claim—that another announcement
will be made and will be recognized by all as valid. We next verify the
claim and the execution time for the two cases on t.

Consider the case t < y. Note that y was defined so that a, reaches
the announcement in time less than 1 + y + 2sind = 1 + 28. This
is because it will spend less than time y on its first sector and then
move along the chord that corresponds to two sectors. Thus, the
announcement is checked by a, and a,-; in time, while the other
agents set forth to search every point of the perimeter.

Consider now y < t < 8. First, we verify that every sector was
searched by one of the agents a, ..., a,_; by time 1 + 28. It is clear
that a,-; searched sectors S,-; and Sy;. Next, we argue that, for
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0 < k< n-1, agents a, and ai;; covered sector S,. Note that x; is
the length of S, that was not searched by agent a,. However, x; is
defined so that a,,.; has sufficient time to travel back to P,,; and aid
a,. Indeed, the worst case for a,,; is when t < 8—x;.. (It is not hard to
see that when t > 8 — x; he will have time to spare.) In this case, after
reaching point 8 — xj;; of Sk, it must search a chord corresponding
to an arc of & — x;; radians and an arc of length x,. Since it has
8 + xi.+1 time left, the definition of x; is such that he can manage its
task. Finally, we need to argue that the announcement was reached
by a; in time 1 + 28. This is clear if t > 8 — x;. Otherwise, it is not
hard to see that the worst case is t = y. In this case, the chord a,;
searches corresponds to an arc of length 28 — x; — y. Thus, the total
time a; needs is

28— x; —
T=1 +(a—xl)+2sin(#).

In the sequel, we will make use of the following simple facts.

Fact 1. For x € (0, 7), sinx < x.

Fact 2. For x € (0, 7), sinx < 2sin 3.

Fact 3. For x € (0, %), sinx < x — §

Since, for n > 4, 26 —x; —y < m, using Fact 1 (twice) and substituting
y = 28 — 2 sin  we obtain

T<1+@—-x1)+280—-—x—y)<1+28—-2x; +sinéd.

To provide a lower on x;, apply Fact 1 on the recursive definition to
obtain

o)
xn_3:8—2sin5; X > 2x41,for O < k< n—1. (2.2)

2 ( i )
2 ’

Combining with the upper bound on T, to show T < 1+ 29, it suffices

to argue that

21 LT . 2m
2”‘3(— — 2sin —) > sin —.
n n n

Using Fact 2, sin 2—: < 2sin . Substituting this and rearranging, it
suffices to show that

21’[—3 .
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™
> (2" + 1) sin —.
n
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In view of Fact 3, the sufficient condition simplifies further to

2

T
2n—3 > (2n—3 + 1)(1 _ _) P—— (2n—3 + 1)T52 > 7n2,
7n?

which holds for all n > 9.

Finally cases n € {5, 6, 7, 8} have been verified computationally as fol-
lows. In the table below we list values y, x, ..., x,_3 forn € {5,6, 7, 8}.
These values determine the algorithm for these cases. To verify the
table, it suffices to verify y < 26—-2sind, T > 1+(8—x;)+2 sin(za_%’),
S(n) < 1+28, and x;c < 8+ X1 — 2 sin(%) (for O < k < n—2). With
respect to the x;, values, note that those which are double the pre-
vious one (marked with an asterisk) need not be verified in view of

inequality (2.2).

X5 Xy X3 X, X1 y T S(n)
0.0810|0.2285|0.611|3.51327 | 3.51327
0.047|0.135 |0.3 0.36 3.07 3.09

0.029/0.085|0.17* |0.34" 0.2 2.74 2.79
0.02/0.04" |0.08" |0.16" |0.32" 0.1 2.56 2.57

XIN|O |0 I

This completes the proof of the lemma.
Now we can complete the rest of the proof of Theorem [2.3]

Proof. (Theorem Lemmas and prove the upper bound
for n = 3,4 robots respectively, and cases n > 5 are covered by
Lemma [2.3]

2.5 (n,f,b) - Mixed Search

We define (n,f, b)-mixed search, to mean search for n > 1 robots,
of which f are faulty so that b among the f are Byzantine and the
remaining f — b are crash faulty.

2.5.1 Algorithm for (n, f, 1)-mixed search

We will now present an algorithm for (n, f, 1)-mixed search and then
analyze its time requirements. Consider n robots a;, as, ..., a, and
set & := 2n/n. Each robot a, moves along a radius to the point
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k& of the perimeter of the unit circle. We call the arc [k9, (k + 1)9)
sector Sy; that is, after 1 time unit, agent a;, will be located at the
beginning of sector S;. Robots make announcements if they find
the exit and confirm/disprove the announcements of other robots
accordingly. Every robot searches one sector in each round, moving
counter clockwise (ccw). At any moment, if an announcement is
confirmed by another robot, that announcement is correct, and the
algorithm terminates as the exit has been found. Details of the main
algorithm are as follows.

Algorithm 1 (n, f, 1)-Mixed Search

1: Robot a;, moves along a radius of the circle to the point k& of the
unit circle.

2: Robot a, searches ccw for f rounds and makes an announce-
ment if it finds the exit. It also disproves faulty announcements
concerning sectors it has visited.

3: At time 1 + fO:

4: if (there is exactly one unconfirmed announcement at the end of
round f and no refutations of that announcement) or (there are
two unconfirmed announcements at the end of round f in the
same sector) then

5: the robot which is two sectors away from the closest announce-
ment moves through a chord to that announcement (inspector
robot). All other robots search one more sector ccw.

6: else

all robots search one more sector ccw.

N

Lemma 2.4. If there are two announcements in different sectors, the
correct one can be determined intime 1 +8(f + 1) =1 + z—r:‘(f + 1).

Proof. Each sector has been searched by a group of f + 1 robots. Let
us assume that the sector with the first announcement is searched
by a group A of robots, |A| = f + 1, and the second announcement
is searched by a group B of robots, |B| = f + 1. Then |A U B| is at
least f + 2 (since, otherwise we would have that A = B), meaning
that it contains at least two honest robots. One of them, say h, must
be different from the one which made the correct announcement.
Thus, h must have searched at least one of the two sectors on which
announcements were made, either confirming the correct exit, or dis-
proving the Byzantine announcement. In both cases the correct exit
is determined.

Theorem 2.4 ((n, f, 1)-Mixed Search). The worst-case time for (n, f, 1)-
mixed search by Algorithm[]] satisfies
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2n . 2
S(n,f) <1+ —f+2sin—.
n n

Proof. We consider the following three cases depending on the num-
ber of announcements made at the end of round f.

Case 1. No announcement by the end of round f. Then at round
f + 1 there will be one or two announcements. If there is one, that
announcement is correct. If there are two announcements, they are
in different sectors. By Lemma the correct exit will be found.

Case 2 One announcement made at the end of round f. We consider
two subcases depending on whether or not there are any refutations
of the announcement.

Subcase 2a. Assume there are no refutations of the announcement:

A1

Af—2
FIGURE 2.5: An announcement is made by ay

It can be deduced that all other robots that searched the announce-
ment’s sector are faulty. As a result at least one of the two next robots
(clockwise to the announcement) is honest, resulting in honest ma-
jority.

The correct exit will be known in max time 1 + 27” f + 2 sin 2—: (once the
inspector robot visits the announcement location).

For the inspector robot to miss the exit, the next ccw robot must be
faulty. In that case, the announcement was made by an honest robot,
and the inspector robot will confirm it. If the inspector robot is faulty,
the other two robots (the one that made the announcement and the
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Ak—1

Af—2

FIGURE 2.6: aj_o will move through a chord to inspect
the announcement

one that will visit the announcement at round f + 1) will confirm the
exit.

Subcase 2b. Assume there are refutations of the announcement: If
there is no second announcement at round f + 1, the first announce-
ment is the correct one. If there is a second one, in a different sector,
we can determine the correct one by Lemma [2.4] If the second one is
in the same sector as the first announcement, then the correct one
is the second (the first announcement will have 2 refutations).

Case 3. Two announcements made by the end of round f. We con-
sider two subcases depending on whether or not the announcements
were made in the same sectors.

Subcase 3a. Announcements were made in different sectors. We can
determine the correct one by Lemma 2.4

Subcase 3b. Announcements were made in the same sector. In order
to have two unconfirmed announcements by round f, one honest,
one Byzantine and f — 2 crash faults have searched that sector. As
a result at least one of the two next robots (clockwise to the closest
announcement) is honest, resulting in honest majority. The correct
exit will be known in max time 1 + 27” f + 2sin 2—: (once the inspector
robot visits the announcement).

This completes the proof of the claimed time bound.
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2.6 Conclusion

In this chapter we considered search on a circle with n robots, where
either f > 1 of them are crash-faulty, or one of them is Byzantine-
faulty, and we proved that the optimal worst-case search times are
exactly 1 + @ and 1 + 47”, respectively. The optimality for the
Byzantine case is quite surprising given that there are very few tight
bounds for search on a circle even for the wireless model. We also
studied the mixed-case search, where there can be several crash-
faulty and one Byzantine-faulty robot, and we provided an upper
bound which leaves a small gap compared to the lower bound. Clos-
ing this gap is a challenging open question. Extending the results to
multiple Byzantine-faulty robots and the evacuation problem are two
interesting open directions in the context of circle search.
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Chapter 3

Byzantine Fault Tolerant
Symmetric-Persistent Circle
Evacuation

In this chapter, we consider (n, f)-evacuation from a disk, a problem
in which n > 1 robots, f of which are faulty, seek to evacuate through
a hidden exit which is located on the perimeter of a unit disk.

We focus on symmetric-persistent algorithms, a common natural ap-
proach to search and evacuation problems. We consider two commu-
nication models: wireless and face-to-face. For the wireless model we
first prove a lower bound of 1 + 4—: + 2sin(3 — %) for the case of one
faulty robot. We also observe an almost matching upper bound ob-
tained by utilizing an earlier search algorithm. We then study the
case with two Byzantine robots and we provide an algorithm that
achieves evacuation in time at most 3 + 6—: + 6(n), where 6(n) is a
decreasing function with maximum value 6(4) = 0.5687, vanishing
for n > 9. For the face-to-face model we provide an upper bound of
3+ + 1)2—: for evacuation of n robots under crash faults, an upper
bound of 3 + 4—: + 2sin £ for evacuation in the case of one Byzan-

tine robot and an upper bound of 3 + G—r’f + 2sin 2—: in the case of two
Byzantine robots.

3.1 Our Contribution

In Section we consider the evacuation problem for n robots,
one of which is Byzantine, and we prove a lower bound of 1 + 4—: +
2sin(3 — %) for symmetric-persistent algorithms. We also provide an
almost matching upper bound of 3 + 47”. In Section we present a
symmetric-persistent algorithm for the case of evacuation of n robots

with 2 Byzantine faults and we provide an upper bound of 3 + 6—:
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for n > 9 and 3 + 6—: + 6(n) for n < 9, where 6(n) < 2sin(%) +

\/2 — 4sin(35) + 4 sin® (2£) — 2. In Section (3.4, we study the face-to-
face communication model and provide upper bounds for the problem
of evacuating n robots under the presence of faults. We prove an up-
per bound of 3 + (f + 1)2—r:I when f crash faults are present. We also
derive an upper bound of 3 + 4—: +2sin £ for evacuation under the
presence of one Byzantine fault, and 3 + 6—: + 2sin 2% for the case of
two Byzantine faults, leaving open the case of f > 2 Byzantine faults.

n

3.2 Evacuation with One Byzantine Fault

We define (n, f)-evacuation, to mean evacuation of n > 1 robots, of
which f are faulty. In this work, we consider Byzantine faults, which
include crash faults as a special case.

3.2.1 A lower bound for symmetric-persistent algo-
rithms

As mentioned earlier, we focus on symmetric-persistent algorithms.
In particular, we consider n robots ag, a;, . . ., a,-; with starting posi-
tion the center of a unit circle and set 8 := 2n/n. Each robot a,, moves
along a radius to the point k& of the perimeter of the unit Circle.E] We
call the arc [k8, (k + 1)8) sector Si.. After 1 time unit, robot a; will be
located at the beginning of sector S, and will have searched sector S;
in time 1+8, moving counterclockwise (ccw). Robots make announce-
ments if they find the exit and confirm/disprove the announcements
of other robots accordingly.

Theorem 3.1. Any symmetric-persistent algorithm requires at least
time

4n V2L 4n I3
1+—+2s1n(———)>3+——— (3.1)
n 2 n
for the evacuation of n robots, one of which is crash-faulty, from a circle

of radius 1.

Proof. Note that if n = 2 the result is trivial, so we assume n > 3. Let
us denote by f(n) the left hand side of inequality (3.1).

INote that in fact we represent the circle points in polar coordinates; as the
radius is always equal to 1 we give only their angle, for the sake of simplicity.
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Let point O be the position of robot ay on the unit circle at time 1 and
denote by x; the length of the arc between robot a; and point O in the
ccw direction. Let y; denote the length of the arc between robots q;
and a;.» at a certain time. Since Z?:_Ol y; = 4mn, there exists i such
that y; > 4n/n = 28. Without loss of generality, let g, > 28 be the
maximum among ;’s and let ¥ = yy (note that ¥ = x, as well). For
any € > 0, if the adversary places the exit at point y — ¢, and robot a,
is faulty, then the exit will be discovered by robot a, in time 1+ y —e.

We now consider two cases on .

First, suppose 28 < y < n. By the maximality of y, there is at least
one robot at distance x from O such that x € [k — w/2, ® + @/2]. The
total time this robot will require to reach the exit is at least

T —

(= y/2 . d
1+l//—e+251n(—w/)21+28+251n( )—e:f(n)—e,

2
where the inequality follows because y > 28 and the left-hand side is

increasing in .

Next, we consider the case m < . In this case, we will bound the

time robot a, will need, which is at least
1+yw—e+2sin(y/2)

time units. Note that this is increasing in . It follows that it is at

least 1 + © — € + 2, which for n > 4 is clearly greater than f(n). For

n=3,itis atleast 1+28—-¢€+2sind > f(n)— e. The inequality holds
1 T

since sin 8 = sin(2m/3) > sin(5 — %).

Since the above hold for any e, the bound in the left-hand side of
inequality follows. The right-hand side bound follows from the
inequality cos(x) > 1 — x?/2.

To prove our next Theorem, we employ the following upper bound for
S(n, 1)-Search under one Byzantine failure, proposed in [60]:

Theorem 3.2. The worst-case search time S(n) for n > 2 robots exactly
one of which is faulty satisfies

4
S(n) <1+ —.
n
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Theorem 3.3. There exists a symmetric-persistent algorithm that re-

quires time at most
4n
3+ —
n
Jfor evacuation of n robots, one of which is Byzantine, from a circle of

radius 1.

Proof. We utilize Theorem which provides a time bound of 1 + 4—:
to find the exit, and add the length of the diameter for the furthest
robot to evacuate. Also, that algorithm is symmetric-persistent as
it forces all robots to move in the same direction (counterclockwise)
and their trajectories change only after receiving information about
the exit.

Remark 1. Note that the above upper bound is within O(1/n®) from
the lower bound of Theorem|3. 1

3.3 Evacuation with Two Byzantine Faults

3.3.1 Algorithm for (n, 2)-evacuation

We will now present an algorithm for the problem of Evacuating n > 5
robots, 2 of which are Byzantine faulty, and then analyze its time
requirements.

Note that in the case of 2 Byzantine robots, if an announcement is
confirmed by two other robots, that announcement is correct. Also,
an announcement disproved by three other robots is invalidated (an-
nouncing a different exit also counts as a disproof). When three
robots make different announcements, we can deduce that two of
them are Byzantine and as a result the silent ones are honest. After
f + 1 = 3 rounds, all honest robots move via a chord to the exit to
evacuate the circle and the algorithm terminates in time E(n, 2).

Next, we will define disputable announcements and their maximum
distance:

Definition 3.1 (Disputable announcement). An announcement is dis-
putable when neither its validity nor its invalidity is deducible from the
available information. An announcement that is not disputable is set-
tled.

For example, if an announcement has neither f + 1 confirmations
nor f + 1 disproofs it is disputable. Note that in cases where the
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honesty of a robot can be deduced, its confirmations and/or disproofs
result in the corresponding announcements being settled, therefore
not disputable. Note also that, if only one announcement is made
during the first f + 1 rounds, then this announcement is also settled,
as it must have come from an honest robot.

Definition 3.2 (Sector distance of two announcements). We define
d(S;, S;) = min{(i — j) mod n, (j — i) mod n} to be the distance between
sectors S;, S;. Let also the sector distance of two announcements be
the distance between the sectors where the announcements occurred.

According to this definition, when the announcements are made in
the same sector their sector distance is 0, whereas when announce-
ments are in adjacent sectors their sector distance is 1.

Lemma 3.1. In the case of two or more disputable announcements,
the sector distance of any two of them is at most 1, in the case where

f=2.

Proof. Let us assume that among the disputable announcements,
there are two with sector distance of at least 2. Each of the corre-
sponding sectors has been searched by a group of f + 1 = 3 robots.
Suppose that one of these sectors is searched by a group A of robots,
|Al = f + 1 = 3, and the other is searched by a group B of robots,
IBl = f+1 = 3. Then, since the sector distance is at least 2,
|JAUB| > f+ 3 = 5. With at least 5 different robots searching the
sectors with the two announcements, one of them must have at least
3 disproofs (as a reminder, a confirmation of an announcement also
provides a disproof of any other announcement) and as a result that
announcement would not be disputable, a contradiction.

Lemma 3.2. In the case where we have three disputable announce-
ments, the maximum sector distance of any two of them is O, that is,
they are all in the same sector, in the case where f = 2.

Proof. Let us assume that the maximum sector distance of any two of
the three disputable announcements is at least 1. Suppose that the
first sector is searched by a group A of robots, |A| = f +1 = 3, and the
second sector is searched by a group B of robots, |B| = f+1 = 3. Then,
|AUB| > f+2 = 4. Among the (at least) four robots that searched these
two sectors, three of them made announcements. Since two of them
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are faulty, it can be deduced that the robot that did not make any
announcement is honest. That honest robot would had confirmed
and/or disproved at least one announcement, resulting in fewer than
three disputable announcements, a contradiction.

Utilizing Lemma [3.1] and Lemma [3.2] we can deduce that the only
possible cases that include disputable announcements after f +1 = 3
rounds, are the following:

e Two disputable announcements in the same sector
e Two disputable announcements in adjacent sectors

e Three disputable announcements in the same sector

In any other case, after f + 1 rounds of search, there must be only
one settled announcement made by an honest robot. In that case, the
search timeis 1+38 = 1+ 6—: and the evacuation time is 3+38 = 3+ 6—:,
in the worst case.

Definition 3.3 (Inspector robot). We distinguish between two cases:
(a) all disputable announcements are in the same sector, say S; (b)
there are two disputable announcements in two consecutive sectors,
say S; and Si;1 mod ny- In both cases, for k > 1, the k-th inspector is
the robot that is located at the beginning of sector S;_j.1 (mod ny at time

1 + 39, as shown in Figures[3.1]-[3.2,
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Disputable announcement

1st inspector

2nd inspector

FIGURE 3.1: Inspector robots: one disputable an-
nouncement

Disputable announcement

Disputable announcement

Ist inspector

FIGURE 3.2: Inspector robots: two disputable an-
nouncements
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Details of the main algorithm are as follows.

Algorithm 2 (n, 2)-evacuation

1: Set & =2n/n.

2: Robot a, moves along a radius of the circle to the point kd of the
unit circle.

3: Until time 1+ 39, robot a, searches ccw and makes an announce-
ment if it finds the exit. It also disproves faulty announcements
made at sectors it visits (Staying silent when passing over an an-
nouncement’s location, counts as disproof).

4: At time 1 + 38:

5: if there is a consensus regarding the position of the exit (no dis-
putable announcements are present) then all honest robots move
via a chord to the exit in order to evacuate.

6: else
7: Inspector(s):
8: if two disputable announcements are in the same sector then

the first and second inspector robots move via a chord to the
location of the nearest announcement. If the exit is not there,
they move via a chord to the location of the other announcement.

9: else the first inspector robot moves via a chord to the location
of the nearest announcement. If the exit is not there, it moves
via a chord to the location of the next (ccw) announcement until
it evacuates.

10: Honest (non-inspector) robots:

11: if two disputable announcements exist then all non-inspector
honest robots move towards the point between the two announce-
ments. When the exit’s location is known according to the inspec-
tor’s findings, they move there to evacuate.

12: else all non-inspector honest robots move via a chord to the
location of the farthest announcement in order to evacuate and
may alter their trajectory according to the inspector’s findings.
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We define t as the time beyond 1 + 38 needed to learn the position of
the exit. If t < 1, the evacuation time is unaffected and is equal to
3+ 398. If t > 1, the evacuation time is increased by a function 6(n).
The geometric calculation of 6(n) follows.

Lemma 3.3. The additional time 6(n) needed to complete the evacua-
tion process when the position of the exit is known at time 1 + 6—: +tis
defined as follows:

0 ift<1
6(n) ={ ,
t+ t2—2(t— 1)(cos(m/n)+1)—2 ift>1

Proof. As shown in Figure [3.3] suppose at the end of round 3 the
exit is not yet known, and possible exits are in points G and E of the
circle. Robot a, placed at point A, moves towards point D, placed
exactly between points G and E, which is antipodal to point A (AD=2
as radius r=1). After t < r the inspector robot moving from point
F will determine the correct exit and robot a, may need to change
direction to point E (or G), but the new path that will travel is not
larger than the diameter of the circle.

FIGURE 3.3: Evacuation: A— E, t <1

We must show that BE < BD. All the following angles refer to interior
angles of triangles. Triangle CED is isosceles (CE = CD =r = 1) and
angle DEC = CDE. As a result, angle DEB > DEC. In triangle BED it
holds DEB > BDE, therefore BD > BE.

If t > 1, the evacuation time is increased by 6(n).
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FIGURE 3.4: Evacuation: A — E, t> 1

As we can see in Figure we need to calculate the distance of path
ABE. We know that AB = t so we need to determine BE.

In triangle CBE, CE =1, CB=1-BD =1—-(2—-t) = t—1. In the worst
case (regarding evacuation), angle ECD = §/2. Now we can calculate
BE: BE? = CB? + CE?2 -2 - CB- CE - cos(n/n).

Substituting CB = t—1, CE = 1 we derive BE? = t>—2(t—1)(cos(rt/n)+
1).

The total distance the robot will travel in order to evacuate is AB +

BE = t + BE and that exceeds the length of the diameter by the
quantity 6(n) defined below:

0 ift <1
6(n)={ -
t+ t2—2(t-1)(cos(m/n)+1) -2 ift>1

Theorem 3.4 ((n, 2)-evacuation). The worst-case time of Algorithm
for (n, 2)-evacuation satisfies

(63,4
E(n,2) <3+ , ifn>9

n

and E(n,2) < 1+ % + 25in(3E) + \/2 —4sin(25) + 4sin® (&), ifn < 9.

Proof. If after time 1 + 38, only one announcement is made, that
announcement is correct because in that time, every point of the
circle has been searched by at least one honest robot. All robots
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move via a chord towards the exit, and evacuation is complete in time
3 + 38 (In this case, search time is S(n,2) = 1 + & and evacuation

n
time is E(n,2) = 3 + 67").

The same search and evacuation times also hold if no disputable
announcements are present. Robots know the position of the exit by
time 1 + 38 and evacuation is complete in time 3 + 38.

For any other outcome, we consider the following cases (utilizing
Lemma [3.1] and Lemma depending on the number and location
of disputable announcements at time 1 + 39 (i.e. after 3 rounds):

Case 1: Two disputable announcements in the same sector. Assume
that ay, a,-; made the announcements in the previous rounds (say
at first and second round).

e Inspector trajectory: At time 1 + 39, Algorithm [2] instructs the
next two robots in clockwise order (a,,_s,a,,—4) to move via a chord
in order to inspect the announcements. The location of the
exit will be known when both inspectors visit one of the two
announcements. This gives the worst-case Search time S(n, 2) =
1+ 6—: +2sin(3m/2n), yielding also the worst-case Evacuation time
as explained below. Once the exit location is known, inspector
robots move there via a chord to evacuate.

e Any other honest robot trajectory: At time 1+ 38 all other robots
move via a chord to the farthest announcement in order to evac-
uate and may alter their trajectory according to the inspectors’
findings.

If t = 2sin(3/2n) < 1 (n > 9), then E(n,2) = 3 + &,

If t = 2sin(3n/2n) > 1 (n < 9), then E(n,2) = 3+ & 4+ §(n) =
1+ %8 +25in(3E) + \/2 — 4sin(25) + 4 sin® (22). See Figures (3.5
3.8l
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(%)

ap—1

ap—3

FIGURE 3.5: Robots search the unit circle counter clock-
wise. One announcement made by ag (time 1 + 8)

Ap—2

Qp—4

FIGURE 3.6: Robots search the unit circle counter clock-
wise. a,_; confirms agp’s announcement (time 1 + 29)
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/a’n—ﬁl

_/

FIGURE 3.7: Robots search the unit circle counter clock-
wise. Second announcement made in the same sector
by ap—s (time 1 + 39)

FIGURE 3.8: Inspector robots move to inspect clos-

est announcement. All other non-faulty robots move

through a chord to the furthest announcement to evac-

uate. Their trajectory may alter according to inspector
findings

Case 2: Two disputable announcements in adjacent sectors. Assume
that ay, a,-; made the announcements in the previous rounds (say,
in the first and second round).
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e Inspector trajectory: At time 1 + 38, Algorithm 2| instructs the
next robot in clockwise order (a,_3) to move via a chord to in-
spect the nearest announcement. The location of the exit will
be known when the inspector visits the announcement in time
S(n,2) = 1+ 38 + 2sin(n/n). When the location of the exit is
known, inspector moves there to evacuate.

e Any other honest robot trajectories: At time 1 + 38 all other
robots move via a chord to the farthest announcement to evac-
uate and may alter their trajectory according to the inspector’s
findings.

If t = 2sin(n/n) < 1 (n > 6), then E(n,2) = 3 + 5Z.
If t = 2sin(/n) > 1 (n < 6), then E(n,2) = 3 + &£ + §(n).

Case 3: Three disputable announcements in the same sector. Assume
that ag, a,-;, a,_» made the announcements in the previous rounds.
That means that the Byzantine robot is one of ay, a,-;, a,—» and all
the other robots are honest.

e Inspector trajectory: At time 1 + 38, Algorithm 2| instructs the
next robot in clockwise order (a,_3) to move via a chord to in-
spect the announcements. The location of the exit will be known
when the deducible honest inspector visits two of the three an-
nouncements in the worst case (S(n,2) = 1 + 39 + 4sin(i/3n)).
When the location of the exit is known, the inspector move via
a chord to evacuate.

e Any other honest robot trajectories: At time 1 + 38 all other
robots move via a chord to the farthest announcement to evac-
uate and may change trajectory according to the inspector’s
findings. Because the extra time that the inspectors need to
locate the exit is 4sin(n/3n) < 1 for n > 5, all the robots know
the location of the exit before the furthest one (that needs a
diameter to evacuate) reaches the center of the circle). As a
result, the robots evacuate with no extra delay at time 3 + 38
(E(n.2) = 3 + %), See Figures 3.12

This completes the proof of the claimed time bound.
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FIGURE 3.9: Robots search the unit circle counter clock-
wise. One announcement made (time 1 + 9)

\anl
/a7L2

/ZLn_g

FIGURE 3.10: Robots search the unit circle counter
clockwise. Second announcement made in the same
sector (time 1 + 28)

_—
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FIGURE 3.11: Robots search the unit circle counter
clockwise. Third announcement made in the same sec-
tor (time 1 + 39)

FIGURE 3.12: Inspector robots move to inspect an-

nouncements.  All other non-faulty robots move

through a chord to the furthest announcement to evac-

uate. Their trajectory may alter according to inspector
findings
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Some calculations follow that give (for 4 < n < 9) the bounds obtained
by the above algorithm for the (n,2) case in comparison with the
lower bound obtained for the (n, 1) case (which holds of course for 2
Byzantine robots as well):

n{(nl:LB|(n2):3+39|(n2):6n) | (n2):UB
4 5.5558 7.7124 0.5687 8.2811
5| 5.1313 6.7699 0.2361 7.0060
6 | 4.8264 6.1415 0.0881 6.2297
7| 4.5971 5.6927 0.0318 5.7246
8| 4.4186 5.3561 0.0095 5.3657
9 4.2756 5.0944 0 5.0944

3.4 Evacuation in the face-to-face commu-
nication model

In the following section, we will present evacuation algorithms for n
robots in the face-to-face communication model. In this model robots
exchange information only when co-located.

3.4.1 Evacuation with crash faults

In the evacuation problem of n robots, f of which are crash faulty
ones, we present Algorithm (3| for the face-to-face communication
model.

Robots start at the center of the circle and move to the circumference
at time 1. They search the circle for time (f + 1)@ and return to
the center to share their findings. At least one robot will know the
position of the exit, and all robots will move there to evacuate. See

Figures [3.13/{3.16,

Algorithm 3 (n, f)-evacuation with crash faults (F2F)

1: Define § = 2E,

2: Robot a; moves along a radius of the circle to the point k& of the
unit circle and start searching ccw.

3: At time 1 + (f + 1)9: all robots return to the center of the circle.

4: At least one robot found the exit and it can inform the rest of the
robots

5: All robots move to the exit to evacuate
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az

a3

FIGURE 3.13: Each robot a; move from their starting
position (center of the circle) to point k& of the circle
(t<1)

az ai

a3 aq

FIGURE 3.14: Robots search the unit circle counter
clockwise (t< 1+ (f + 1)8)
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FIGURE 3.15: At least one non-faulty robot found the
exit. Robots rendez-vous at the center of the circle to
share their findings (t < 2 + (f + 1)9)

FIGURE 3.16: All non-faulty robots evacuate (t < 3+ (f +
1)9)
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Theorem 3.5 ((n, f)-evacuation with crash faults (F2F)). The worst-
case time for (n, f)-evacuation with f crash faults in the face-to-face
model, satisfies

E(n.f) <3+ (f+ 1)27“

Proof. Since the maximum speed of the robots is 1, it takes at least
time 1 for a robot to reach the perimeter of the unit circle. Further-
more, every point on the perimeter must be traversed by at least f + 1
robots; for if not, the adversary will make the at most f robots visit-
ing this point all faulty (in that they remain silent) and therefore the
non-faulty robots will miss the exit.

As shown in [60], the search time for the (n,f) case with f crash
faults is tight and equals (f + 1)2—:. Robots need one additional time
unit to rendezvous in the center of the circle (in order to exchange
information about the location of the exit) and one more time unit to
evacuate. This completes the proof of the claimed time-bound.

3.4.2 Evacuation with One Byzantine Fault

For the evacuation problem of n robots under Byzantine faults, we
present Algorithm[4] We use that algorithm to prove an Upper Bound
for the evacuation of n robots, one of which is Byzantine.

In a similar manner, robots after searching the circumference of the
circle, rendezvous at the center to share their findings. Robots make
claims about the location of the exit and check the validity of these
claims. If they can deduce the location of the exit, they move there to
evacuate. If not, in the worst case all honest robots must visit both
the disputable claims to evacuate.

Algorithm 4 (n, f)-evacuation with Byzantine faults (F2F)

1: Robot a, moves along a radius of the circle to the point k& of the
unit circle and start searching ccw.

2: At time 1 + (f + 1)8: all robots return to the center of the circle.

3: Robots that claim they have found the exit inform the rest of the
robots

4: If a consensus about the location of the exit have achieved, all
robots move to the exit to evacuate. Otherwise, robots must visit
all the disputable claims.
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Lemma 3.4. In the (n, 1) case, executing Algorithm[4, if there are two
claims in different sectors, the correct one can be determined after
search time of 3(f + 1) = 2—:(f+ 1) = 47".

Proof. Each sector has been searched by a group of f + 1 robots. Let
us assume that the sector with the first claim is searched by a group
A of robots, |A| = f + 1, and the second claim is searched by a group
B of robots, |B| = f + 1. Then |AU B| is at least f + 2 (since otherwise
we would have that A = B), meaning that it contains at least two
honest robots. One of them, say h, must be different from the one
which made the correct claim. Thus, h must have searched at least
one of the two sectors on which claims were made, either confirming
the correct exit or disproving the Byzantine claim. In both cases, the
correct exit is determined.

Theorem 3.6 ((n, 1)-evacuation with one Byzantine fault (F2F)). The
worst-case time for (n, 1)-evacuation with 1 Byzantine fault in the face-
to-face model, satisfies

an . I
E(n,f) <3+ — +2sin—
n n
Proof. The following cases arise during the execution of Algorithm

1. Only one claim about the location of the exit is made in time
2 4+ 28. That claim is correct, and all the robots move through
the radius to evacuate. Evacuation is complete in time 3 + 4—:.

2. Two claims about the location of the exit are made.

e Claims are in different sectors: In that case, we can deduce
the location of the exit in time 2 + 4—: (Lemma . Robots
move through the radius to evacuate in time 3 + 4—:.

e Claims are in the same sector: In that case, that sector has
been searched by one Byzantine and one honest robot. We
can’t deduce the location of the exit in time 2 + 47”. In the
worst case, the other honest robots must visit both claims,
moving via a chord, to find the exit. Evacuation is complete
in time 3 + 2F + 2sin £. See Figures

This completes the proof of the claimed time bound.
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az

as

FIGURE 3.17: Each robot a; move from their starting
position (center of the circle) to point k& of the circle
(t<1)

az ai

as Q)

FIGURE 3.18: Robots search the unit circle counter
clockwise (t< 1+ (f + 1)9)
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FIGURE 3.19: Two claims in the same sector were made
in the previous step. Robots rendez-vous at the center
of the circle to share their findings (t < 2 + (f + 1)9)

FIGURE 3.20: After the information exchange about the
exit, robots must visit both claims, in the worst case,
to evacuate (t < 3 + (f + 1) + 2sin )
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3.4.3 Evacuation with Two Byzantine Faults

Continuing our work in the evacuation problem, we consider the (n, 2)
case, where we also use Algorithm (4| to prove an Upper Bound when
two Byzantine robots are involved.

Before the main analysis, we prove the following lemma:

Lemma 3.5. In the (n,2) case, n > 5, executing Algorithm[4}, if there
are claims in different non consecutive sectors, the sector with the exit
can be determined after search time of 8(f + 1) = 2£(f + 1) = &£,

Proof. In a similar way to Lemma (3.4} each sector has been searched
by a group of f + 1 robots. Assume that one sector is searched by
a group of robots A, |A| = f + 1, and the second sector is searched
by a group C of robots, |C| = f + 1. Then |[AU C| is at least f + 3
(as non consecutive sectors), meaning that it contains at least three
honest robots. Two of them must be different from the one which
made the claim in the correct sector. Each of these two robots must
have searched at least one of these two sectors, either confirming
the exit or disproving the Byzantine claim(s) (even indirectly). As a
result, one Byzantine claim will have at least three disproofs (direct
or indirect) and the sector with the exit will be determined.

Corollary 3.1. In the (n, 2) case, n > 5, executing Algorithm[4] if there
are three claims in three different sectors, the exit can be determined
after search time of 8(f + 1) = 2—f(f+ 1) = 6—:.

Theorem 3.7 ((n, 2)-evacuation with Two Byzantine faults (F2F)). The
worst-case time for (n, 2)-evacuation with 2 Byzantine faults in the
face-to-face model, satisfies

6m . 2m

E(n,f) <3+ — +2sin—.

n n
Proof. The following three cases arise during the execution of Algo-
rithm [4:

1. All claims in the same sector: In the worst case, honest robots
must visit all disputable announcements to evacuate. Evacua-
tion is complete in time 3 + 6—: +6sin - for 3 claims and in time

3+ 67” + 4 sin £ for 2 claims.

2. Claims made in consecutive sectors:
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e 3 claims. Using Corollary we know the location of the
exit in time 2 + &, Evacuation is complete in time 3 + £,

e 2 claims. In the worst case robots must visit both dis-
putable claims in the two consecutive sectors to evacuate.
Evacuation is complete in time 3 + 6—: +2sin 2—: See Figures
3.21H3.24]

3. Claims made in non consecutive sectors: By Lemma we
can deduce the sector with the exit in time 2 + 67”. If the sector
contains two disputable claims, in the worst case, robots must
visit both of them moving via a chord. Evacuation is complete
in time 3 + %€ + 25sin £,

n

This completes the proof of the claimed time bound.
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a

as

FIGURE 3.21: Each robot a; move from their starting
position (center of the circle) to point k& of the circle
(t<1)

a2 ai

as ag

FIGURE 3.22: Robots search the unit circle counter
clockwise (t < 1+ (f + 1)9)
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FIGURE 3.23: Two claims were made in the previous
step. Robots rendez-vous at the center of the circle to
share their findings (t < 2 + (f + 1)9)

FIGURE 3.24: After the information exchange about the
exit, robots must visit both claims, in the worst case,
to evacuate (t < 3+ (f + 1)d + 2 sin 2_:)
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3.5 Conclusion

In this chapter, we studied the evacuation problem of n robots with
one or two Byzantine faults in the wireless model and provided a
lower bound for the (n, 1)-evacuation case and an upper bound for
the (n, 2)-evacuation case. An interesting possible direction after that
would be to tighten our bounds or generalize for f Byzantine robots.
In particular, we conjecture that 3 + 39 is a lower bound for the
(n,2) evacuation problem for infinitely many n. We also provided
algorithms and upper bounds on the evacuation time in the face-
to-face communication model. In particular, under the presence of
crash faults and one and two Byzantine faults.
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Chapter 4

Byzantine Fault-Tolerant
Protocols for (n, f)-evacuation
from a Circle

In this chapter, we address the problem of (n,f)-evacuation on a
circle, which involves evacuating n robots, with f of them being faulty,
from a hidden exit located on the perimeter of a unit radius circle.
The robots commence at the center of the circle and possess a speed
of 1.

We introduce algorithms for both the Wireless and Face-to-Face com-
munication models under any number of Byzantine faults. We ana-
lyze the time requirements of these algorithms and we establish upper
bounds on their performance.

4.1 Our Contribution

In Section we consider the evacuation problem for n robots f of
which are Byzantine faulty in the wireless communication model, and
we propose an algorithm for that case, proving the following upper
bound

Enf)<1+(f+1)- 2—: + max {G.(k"), H.(k")}

where G.(k*) and H,(k") is the time needed to evacuate two crucial
groups of robots, during the execution of our algorithm. For a more
detailed analysis please refer to Theorem [4.1}

In Section we propose an algorithm for the Face-to-Face commu-
nication model and in Theorem we prove an upper bound of
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E(nf) <3+ (f+ 1)-2_:+ max {2(k_1).sin(ﬂ.f)}

2<k<n k-1 n

We must note that our analysis and experimental results show that
our proposed algorithm performs better than the trivial algorithm in
cases detailed by Lemma (4.7

4.2 Evacuating under Wireless Communica-
tion

We define (n, f)-evacuation, to mean evacuation of n > 1 robots, f< 3
of which are faulty. In this work, we study Byzantine faults.

We consider n robots ag, a;, ..., a,-; with a starting position at the
center of a unit circle and set 8 := 2n/n. Each robot a; moves along
a radius to the point 9 of the perimeter of the unit circle.E] We call
the arc [i8, (i + 1)8) sector s;. After one time unit, robot a; will be
located at the beginning of sector s; and will have searched sector
s; in time 1 + 8, moving counterclockwise (ccw). Each sector search
counts as a round. Each robot is tasked to search (f + 1) consecu-
tive sectors. Robots make announcements if they find the exit and
approve/disprove the announcements of other robots accordingly.

In our analysis, it is important to know the announcements’ distance
because in that way we can eliminate the number of unsettled an-
nouncements. We extend Definition 3.2}

Definition 4.1 (Sector distance of a set of announcements). We de-
fine d(s;, s;) = min{(i — j) mod n, (j — i) mod n} to be the distance be-
tween sectors s;, s;. Let the distance of a set of announcements X be
the length of the shortest arc containing all announcements in X; let
this arc be called arc(X). Finally, let the sector distance of X be the
distance between the sectors where the two endpoints of arc(X) fall.

Since faulty robots are present, it is difficult for honest robots to
differentiate between these announcements. To help our analysis,
we will use disputable announcements (Definition[3.1) and the group
of robots responsible for resolving them.

INote that in fact we represent the circle points in polar coordinates; as the
radius is always equal to 1 we give only their angle, for the sake of simplicity.
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If there are k disputable announcements we will denote them as
Xi....X,, where X; is before Xj,; in counterclockwise order (ccw),
jef{l,..., k- 1} and X; is the announcement with the maximum
sector distance from its previous announcement ccw.

In case consensus is not reached after f + 1 rounds (i.e. disputable
announcements are present), we need more robots to visit and settle
them. As also mentioned in Chapter 2, we call these robots inspector
robots and we extend Definition for k disputable announcements
as follows:

Definition 4.2 (Inspector robots - k disputable announcements). As-
sume that there are k disputable announcements, Xi,...X,. Let the
Jirst X, be in sector s;. Then the i-th inspector is the robot that is located
at the beginning of sector S;_i,1 (mod n) at time 1 + (f + 1)8.

Based on the number of disputable announcements and their maxi-
mum distance, we will determine the number of inspector robots that
are sufficient to settle the disputable announcements.

Lemma 4.1. Assume that after executing f + 1 rounds of the algorithm
there are k = 2 disputable announcements with sector distance d <
f — 1. Then f — d inspectors are sufficient for all the honest robots to
learn where the exit is.

Proof. At the f + 1 rounds of the algorithm in total f + 1 + d different
robots searched the area of the 2 disputable announcements. As-

sume that among them there are exactly h honest robots, 1 < h <
f+1+d-(k-1).

Therefore each false announcement has at least k — 2 + h disproofs,
since each announcement is a disproof of any other announcement
and all of the h robots have visited at least one of the two an-
nouncements. Since there are f — d inspectors, there are at most
f—=(+1+d—-h) = h—d—1 faulty robots and at least f —d—(h—d—1) =
f + 1 — h honest robots among them.

Hence each false announcement will have at least k—2+h+f+1—h =
S + 1 disproofs.

As a result of Lemma [4.1], when we have k = 2 announcements made
with sector distance d, the number of inspectors needed is f — d.
Because inspectors should be robots that have not previously visited
any of the announcements, n > f+1+d+f—-d=2f+ 1.
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Lemma 4.2. Assume that after executing f + 1 rounds of the algorithm
there are k disputable announcements with sector distance d. Then
f+2—k inspectors are sufficient for all the honest robots to learn where
the exit is.

Proof. At the f + 1 rounds of the algorithm in total f + 1 + d different
robots searched the area of the k announcements. We assume that
the robots that searched the sector containing the first announce-
ment, after the end of the f + 1 rounds, will visit the rest of the
announcements.

Therefore, f + 1 robots know the location of the correct exit. Let fi,
0 < fi £ f of them be faulty and f + 1 — f; be honest. From the
rest f+1+d-(f+ 1) = d robots that searched the area of the k
announcements, let f, 0 < f; < d, fi + fo < f be faulty and d — f; be
honest.

Since each announcement is a disproof for any other announcement,
each false announcement has k — 2 disproofs from the other k — 2
false announcements, plus f + 1 — f; disproofs from the honest robots
that search all the sectors with announcements.

Since there are f + 2 — k inspectors then at most f — (f; +f2) are faulty
and atleast f+2—-k—(f - (fi +f2)) = 2 - k+ fi +f; are honest.

Therefore the number of disproofs that each false announcement has
is at least:
k—-2+f+1-fi+2-k+fi+tfo=f+1+for>2f+1

and hence each false announcement is settled.

We now present Algorithm [5] for the problem of Evacuating n robots,
J < 5 of which are Byzantine faulty, in the wireless communication
model and then analyze its time requirements. Figures - helps
visualizing the steps of Algorithm
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(I-l\

ay

(p—1 /

FIGURE 4.1: Each robot a; moves from their starting
position (center of the circle) to point i® of the circle
(t<1)

p—1

FIGURE 4.2: Robots search the unit circle counter-
clockwise (t< 1+ (f + 1)9)



88 Chapter 4

N

FIGURE 4.3: After f+1 rounds of search, announcements
are present (t =1+ (f + 1)9)

inspector ¥
robots

\ non-inspector
‘. robots

,
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FIGURE 4.4: Evacuation paths of inspector robots and
non-inspector robots, (t > 1+ (f + 1)8)
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Algorithm 5 (n, f)-evacuation

1: Set & = 2mn/n.

2: Robot a; moves along a radius of the circle to the point i of the
unit circle.

3: Until time 1 + (f + 1)8, robot a; searches ccw and makes an an-
nouncement if it finds the exit. It also disproves faulty announce-
ments made at sectors it visits (Staying silent when passing over
an announcement’s location, counts as disproof). Every search of
a sector & counts as a round.

4: At time 1 + (f + 1)8:

5: if there is a consensus regarding the position of the exit (no dis-
putable announcements are present) then all honest robots move
via a chord to the exit in order to evacuate.

6: else if there are k > 2 disputable announcements and their dis-
tance is d then

7: Inspector(s):

8: The f + 2 — k inspectors move via a chord to the location of the
nearest announcement (X;). If the exit is not there, they move via
a chord to the location of the next nearest announcement (X5).
They continue until they find the exit and they evacuate.

9: Honest (non-inspector) robots:

10: The honest robots gather to the center of the circle. By the time
they arrive, ¢ announcements have been approved or disproved
by the inspectors. Then they move towards the middle M., of
the chord that connects the announcements X.,;, X, and wait
until X.,; is approved or disproved by the inspectors, then move
to the middle M., of the chord that connects the announcements
X.+2. Xk, and continue this process iteratively. If, at any point, the
exit is discovered, the robots head toward it to evacuate.

After executing Algorithm |5/ for f + 1 rounds, it is expected that a
range of 1 to f + 1 robots will have made announcements. Some
of these announcements will be settled, and some of them will be
disputable. Regarding the distance of disputable announcements,
we get the following lemmas:

Lemma 4.3. [f2 < k < f + 1 announcements are made, the maximum
sector distance of any two of them, in order for all k of them to remain
disputable is f + 1 — k.

Proof. Suppose there are k disputable announcements and consider
the two of them at maximum sector distance D. For the sets A and B
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of robots that were supposed to pass over each one, we have |AU B| =
f+1+dwhered=f+1if D> f+1and d = D otherwise.

Any silent robot in this union casts at least one disproof to one of
these announcements. Suppose z is the total number of robots that
spoke, w of those confirming one and y the other. Since the z—w -y
announcements count as a disproof for both, the sum of disproofs for
these two announcements is at least f + 1 +d + z— w — y. If this is
greater than 2f, then one of them would have at least f + 1 disproofs.
Thus, f+1+d+z—-w-y < 2f, which impliesd < f - (z—-w—-y)— 1.
The bound follows because z— w—y > k — 2.

In order to calculate the worst placement of disputable announce-
ments by the Adversary, we prove the following lemma.

Lemma 4.4 (Maximum Robot Trajectory). Assume that we have k+ 1
points on the circle that can lie in an arc of angle a < 2n. The maximum
distance that a robot will traverse in order to visit all ik + 1 points is if
the points are placed in equal distances in the arc of angle a.

Proof. Assume that 8;, 8., . . ., 8y are the interior angles that are formed
with the placement of the points, as shown in Figure 4.5, Then we
must havethat 8, + 9, +---+ 9 =aand that ;< m, i=1,...,n

Xk—1

FIGURE 4.5: Maximum trajectory scenario
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Then the distance that a robot will traverse in order to visit all points
is:

k
D(al,az,...,ak):in
lkl
Sl
i=1

Let f(8) = sin(2). f'(®) = 5 -cos(8). f’(8) = —3sin(3) < 0 when
d € (0,2m). Hence f is concave. We wish to find the angles §; such
that D is maximized. We will work on the maximization of the quantity

D(&,,85,...,0 1 8;
O ;k k):Z—sin(j), w.r.t. 81,82,...,0%

Now by Jensen’s inequality, since f is concave, we have that:

k1. T8
ZAE 2_(k)

sin( izzllcai)

= sin(z%c)

D(81,82,....9k) :
2k

We note that the equality holds ( is maximised) if §; = 2, i =

1,...,k, since

1 o 1 a
X sin5) = D i)

i=1

Therefore, we have that:
max ’ 90 0 0 g N - S1n
! 2 * k

81,89,...,91

Next, we will calculate the chord between two consecutive disputable
announcements, in their maximum distance.
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Lemma 4.5. Let n be the total number of robots, f be the total number
of faulty robots and 2 < k < f + 1 be the number of disputable an-
nouncements of algorithm[5 Then the worst case maximum distance
of two consecutive disputable announcements X;, X, is:

9. si (d +1 n)
=2 -sin -
X k-1 n
where d is the sector distance of X;, X.

Proof. By Lemma the worst placement of the announcements
by the Adversary is when all the consecutive announcements are
equidistant (d(X;, X+1) = d(X;, X;1),j € [2, e — 1]).

The arc distance of X;, X is (d + 1) - 2X. Therefore the chord that

n
connects X;, X;,; has length x =2 - sin % 1)

Corollary 4.1 (Inspector Search Time). Inspectors need to check k—1
announcements in order to know the location of the exit, in the worst
case. The time that inspectors need to search is

G(k) = 2(k — 1) - sin J-k+d+2 &

k n
Proof. By Lemma the worst placement of the announcements
by the Adversary is when the last inspector and the disputable an-
nouncements are equidistant. In that way, the Adversary maximizes
the total required search time (and as a result the required evacua-
tion time). By Lemma the arc distance of the last inspector and
Xeis(d+(f—k+2)- 2 =(f-k+d+2)%

We immediately gain the following corollary:

Corollary 4.2 (Inspector Evacuation Time). The time that inspectors
need to evacuate is

f-k+d+2 ®

G.(k) = 2k - sin
k n
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Theorem 4.1 ((n,f) - Evacuation with Byzantine faults (Wireless)).
The worst-case time of algorithm 5| for (n, f) - Evacuation with n > 2f
robots and f Byzantine faults in the Wireless model, satisfies:

Enf)<1+(+1)- 2—: + max {Ge(k"), He(k")}

where,

He(k') = 1 + \/1 — sin? ((k* -c- 1)JM . E)

I n
K'—-f+d+2
+(lk* —c—1)-sin (f— . E),
I n
—-k+d+2
k" = arg max (2(k —1)sin (f— . E))
ke{2 f+1} k n

Proof. First we prove the correctness of Algorithm 5] and then its time
complexity:

Correctness: For the correctness of Algorithm [5] it suffices to prove
that all non-faulty robots will eventually evacuate. Since every sector
of the circle is searched by (f + 1) different robots, by the end of round
(f + 1), the exit is among the disputable announcements. By Lemma
f + 2 — k inspectors are sufficient to settle all the disputable
announcements, hence all non-faulty robots will learn the location of
the exit and evacuate.

Time Complexity: The worst case time of Algorithm [5]is analyzed as
follows:

All robots move from the center to the perimeter of the circle in 1 time
unit and conduct search for (f + 1) - 8 time units. Then the inspector
robots search for the exit among the disputable announcements and
at the same time the honest robots move closer to the candidate exits
in order to evacuate. The inspector robots by Corollary need
G.(k*) time to evacuate.

The honest robots need at worst case H, time which is analysed as:

- One time unit to get to the middle of the circle. By the time the

robot arrives at the center ¢ = {WJ announcements have
-sin ——=-%

n

been approved or disproved.

- The robot moves to the middle point M., ; of the line segment between
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FIGURE 4.6: Honest robots move from the center of the
circle to the first middle point M.,

X.+1, X, which has distance OM,,; = \/ 1 — sin® ((k* —c- l)JLder2 -z
(see Figure |4.6).

=E!
N—

- The time needed to move through the middle point M; of the line

segments of X, Xy, j € {c+2,k} is (k" —c— 1) - sin(% . er)

A A
We note that the triangles X, X.X.,; and XM M., are similar, since
XC+J(ZXC+2 = MC+15(;MC+2 and 2fe = XXe2 (gee Figure |4.7). There-

XicMe+1 XicMe+a
fore, by the similarity of the triangles, it holds that:

MoiMors XX 1 (K- frd+2 =
c+1 c+2 — IeAc+2 ﬁ MC+1MC+2 = EXC‘F IXC+2 = Sln (fT : _)
XC+ 1X0+2 XkMC+2 "

Similarly, in order to move through the middle points M;, j € {c+2, k}
(Figure the time required is:

1 . (K —f+d+2 &
M 1Mo ... Mi X = EXMXC+2 o Xe=(Uc*-c-1)-sin| ———-+—— . =

kc* n
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FIGURE 4.7: Final evacuation trajectory of the honest
robots, moving through the middle points.

4.2.1 Simulation Results for the Wireless model

To complement our analysis about the performance of Algorithm [5]
we simulated the running time as illustrated in Figure 4.8 Its ef-
fectiveness is demonstrated under varying ratios of n and f and is
further compared with the trivial algorithm.

7.0
° 6.5 —— trivial algorithm
£
S
26.0 — 1/3 Faulty
c
c
2
>3 —— 1/4 Faulty
5.0
0 200 400 600 800

n: total number of robots

FIGURE 4.8: Total evacuation time using Algorithm
in different values of n and f

Notably, our algorithm demonstrates its best performance as the per-
centage of faulty robots f decreases.
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4.3 Evacuating under Face-to-Face Commu-
nication

For the evacuation problem of n robots under f Byzantine faults in
the Face-to-Face communication model, we present Algorithm [6| We
use that algorithm to prove an Upper Bound for the evacuation of n
robots, f of which are Byzantine.

In Algorithm|6] robots start at the center of the circle and after search-
ing the circumference of the circle for f + 1 rounds (Figures[4.9-[4.10),
rendezvous at the center to share their findings (Figure [4.11I). Robots
make claims about the location of the exit and check the validity of
these claims. If they can deduce the location of the exit, they move
there to evacuate. If not, in the worst case all honest robots must
visit all the disputable claims to evacuate (Figure 4.12). Algorithm [6]
is illustrated in Figures 4.9]- [4.12]

ay b

ap—1 ,

FIGURE 4.9: Each robot a; move from their starting po-
sition (center of the circle) to point id of the circle (t < 1)
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p—1

FIGURE 4.10: Robots search the unit circle counter
clockwise (t< 1+ (f + 1)9)

FIGURE 4.11: After f+1 rounds of search, announce-
ments are present. Robots move to the center of the
circle do discuss their findings (t = 1 + (f + 1)9)
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FIGURE 4.12: Evacuation path of non-faulty robots (¢ >
1+(+1)5)

Algorithm 6 (n, f)-evacuation with Byzantine faults (F2F)

1: Define 8 = 2E,

2: Robot a; moves along a radius of the circle to the point i® of the
unit circle and start searching ccw.

3: At time 1 + (f + 1)8: all robots return to the center of the circle.

4: Robots that claim they have found the exit inform the rest of the
robots

5: If a consensus about the location of the exit have achieved, all
robots move to the exit to evacuate. Otherwise, robots must visit
all the disputable claims.

The correctness and time complexity of Algorithm [6]is analyzed in the
following theorem.

Theorem 4.2 ((n,f) - Evacuation with Byzantine faults (F2F)). The
worst-case time for (n, f) - Evacuation with n robots and f Byzantine
faults in the Face-to-Face model, satisfies

E(nf) <3+ (f+ 1)-2_:+ max {2(k_1).sin(ﬂ,f)}

2<ks<n k-1 n
Proof. We will prove the correctness and the time complexity of Algo-
rithm

Correctness: It suffices to prove that all honest robots will eventu-
ally evacuate. Since in Algorithm [6]every sector is searched by (f + 1)
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different robots then, when the robots meet at the center of the circle
after the f + 1 rounds, the exit is among the disputable announce-
ments. Therefore, by searching all the disputable announcements
the robots will eventually find the exit and evacuate.

Time Complexity: The worst case time of Algorithm [6]is analyzed as
follows:

e All robots move from the center to the perimeter of the circle in
one time unit and conduct search for (f + 1) - 8 time units.

e Then robots return to the center of the circle in one time unit to
exchange information about the exit.

e If there is consensus on the exit, the robots move to the exit in
one time unit.

e If there are k > 2 disputable claims, then the robots move to
the perimeter of the circle to search all the disputable claims.
By Lemmas the worst case time in order to visit all the
claims is

Cok—1) . sin[f =2 "
(k—-Dx=2(k-1) sm( 1 n)

The upper bound follows.

4.3.1 Comparison with the trivial algorithm

The trivial algorithm for the face to face evacuation requires that
every robot searches the perimeter of the circle until they find the
exit, and therefore the worse time complexity is 7(n,f) = 1 + 2n. In
this section, we will compare the worse time complexity of Algorithm
[6] and the trivial algorithm.

In Lemma we prove that if f > 0.384209 - n then the trivial al-
gorithm has better performance than algorithm [6| and in Lemma [4.7
we prove that when n > n_f_’;nﬁ and 0 < B < ”2;711 if f < 8- n then
Algorithm [6| has better performance than the trivial algorithm.

Lemma 4.6. [f0.384209 - n < f < n, then the trivial algorithm has
better worst time complexity than Algorithm[6,

Proof. Let f = B n, for some B8 € {0,1}. We will prove that if
B = 0.384209 the trivial algorithm has better time complexity than
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Algorithm [6] In case there are two announcements (k = 2) their
maximum arc distance, by Lemma is:

(f—k+2)2—n:n~j3-%:2n~ﬂ 4.1)
n n

Hence the adversary can place the two announcements with arc dis-
tance 213 so the time needed for the robots to visit the two disputable
announcements is 2 - r - sin (212:2) =2-sin(B- m)

Therefore, in this instance the time complexity of Algorithm [6]is:

E("’f)23+2'sin(6~n)+(f+1)-2_:

. 2
=3+2-sin(B-m)+2n- B+ —
n

>3+2-sin(B-m)+2m- B 4.2)

Now we calculate the values of S for which the trivial algorithm is
better than Algorithm [6 using the lower bound of Equation [4.2]

T(nf)<3+2-sin(B-m)+2m-fB (4.3)

By solving the above inequality we get that:

B>0.384209

Lemma 4.7. If f < 8- n, forsome 0 < B < Z1 ~ 0.34 and n >
2n

p— then Algorithm @ has better worst time complexity than the
trivial algorithm.

Proof. Since sin(x) < x, ¥ € R we can bound maxs<j<n {2(k -1)- sin(
in the following way:

. f-k+2 =@
max (k—1)-2-sin——— - —
2<k<f+1, f<n k-1 n
-k+2 =w
<  max (k—l)-2-f—-—
2<k<f+1, f<n k-1 n
T
_q. I
n
<2-8-m

since the maximum is achieved for k = 2.

Jokt2
k-1

SAE]
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Hence,
21
Enf)<3+(B-n+1)- — +2Bn 4.4)
n

Now we calculate the values of 8 and n for which the trivial algorithm
is worst than the upper bound of Equation [4.4}

21

3+(B-n+1)- + 281t < T (n,f)

3+(B-n+1)-

n

2n

—+2nB<2n+1
n

T
—<n-1-2n-8
n

Therefore it should hold that

n—1
21

n—-1-2n-8>0= B<
and that

n> —
n—1-2nf

4.3.2 Simulation Results for the F2F model

In this section, we present the simulation results obtained from our
experiments, which aim to evaluate the performance of the proposed
Algorithm [6] and compare it with the trivial algorithm. These simu-
lations helped us to evaluate the gap between f > 0.384209 - n and
f< ”2;7[1 ~ 0.34 to complement our analytical results (Lemmas
where we proved that our algorithm outperforms the trivial algo-

rithm.

By analyzing these results, we gain insight that our algorithm has
a better performance than the trivial with regard to evacuation time
when the number of faulty robots is bounded by one-third of the total
n robots.

Figure demonstrates a summary of these simulations, where
Algorithm [6] is compared against the trivial algorithm, depicted in
red. It also depicts in blue, orange and green the performance of
our algorithm under different ratios of faulty robots. Note that these
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e f=038n

trivial algorithm

[ f= 0.34n

running time
~
o
)
‘

L] f= 0.33n

0 100 200 300 400 500 600 700 800
n: total number of robots
FIGURE 4.13: Total evacuation time of Algorithm |§I for

different values of n and f and comparison with the
trivial algorithm

ratios are all set close to one-third in order to provide a more precise
picture on when exactly our algorithm performs better.

4.4 Conclusion

The study presented in this chapter enhances our understanding of
evacuation problems on circular topology and highlights the signifi-
cance of addressing faulty robots in evacuation algorithms.

We introduce algorithms that cater to the general case of having f
Byzantine faults among the n robots. These algorithms are designed
for both the wireless and face-to-face communication models, con-
sidering the movement capabilities of the robots, which allows them
to move anywhere on the platform with a speed of 1. Our proposed
algorithms contribute to the field by providing upper bounds in both
communication models. Finding a lower bound for these cases and
tightening the gap between them is a challenging open question.
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Conclusion

Throughout this thesis, we have explored search and evacuation
problems involving autonomous robots on a circular topology, under
various fault conditions. Our work covered two main areas: search
problems and evacuation problems, each presenting unique chal-
lenges.

Considering search problems, our focus was on scenarios with n
robots, where up to f robots could be crash-faulty or one robot could
exhibit Byzantine behavior. We determined the optimal worst-case
search time for f crash faults or a single Byzantine fault in the wire-
less communication model. We also studied a mixed-case scenario,
combining several crash-faulty with one Byzantine-faulty robot, and
established an upper bound that slightly deviates from the lower
bound.

In our study of evacuation problems, we first addressed scenarios
where n robots had to evacuate under the presence of up to two
Byzantine faults. We provided algorithms and analyzed their time
requirements leading to a lower and an upper bound for the (n, 1)-
evacuation scenario and an upper bound for the (n, 2)-evacuation
scenario in both the wireless and the face-to-face communication
models. After that, we studied the generalized case of (n, f)-evacuation
with n robots, f of which are Byzantine faulty and provided upper
bounds also under wireless and the face-to-face communication.

The family of symmetric-persistent algorithms that we explored in
our work, can be investigated further, particularly in scenarios that
incorporate variable robot capabilities, additional environmental con-
straints, or optimized performance metrics. Addressing these factors
could lead to more robust and efficient search and evacuation strate-
gies, potentially transforming how autonomous systems are deployed
in complex and unpredictable environments.
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