National Technical University of ATHENS

School of Electrical and Computer Engineering
Computer Science Division

Doctoral Thesis

Byzantine Fault Tolerance in Autonomous Robots Evacuation Problems

Author:
Ioannis Papaioannou

Advisor:
Aris PAGOURTZIS

E＠NIKO METइOBIO ПO Υ TTEXNEIO
£ХОЛН НАЕКТРОЛОГЛN MHXANIKתN KAI MHXANIK Ω N $\Upsilon П О \Lambda О Г I \Sigma T \Omega N$

Au七óvo $\mu \omega \nu$ Poцлóт

 Пavarıótns Toaváras

Apıбтeións Пarouptちn’s
 K $\alpha \vartheta \eta \gamma \eta \tau n \dot{s}$ ЕМП

\qquad
Kavotavtivos Гecopyiou
Av．K $\alpha \vartheta \eta \gamma \eta \tau n \in s$
Toronto Metropolitan University

Паvarı（́trns T $\sigma \alpha v \alpha ́ x \alpha s$
K $\alpha \vartheta \eta \geqslant \eta$ nи́s ЕМП

Eupıriôņ Mápxou
Av．K $\alpha \vartheta \eta \gamma \eta \tau n \in s$
Паvетıбтท́nuo Өебба入ías

Euáryèos Kpaváxns
Kavnrntris
Carleton University

I $\omega \alpha ́ \nu \nu \eta$ N. Палаї $\omega \alpha ́ \nu \nu \circ \cup$

(C) 2024 Eधvıxó Meтбóßı Подитє久vєío
$\mathrm{M} \varepsilon \varepsilon \pi \iota \varphi \dot{\varphi} \lambda \alpha \xi ̄ \eta \pi \alpha \nu \tau o ́ s ~ \delta \iota \chi \alpha \iota \omega ́ \mu \alpha \tau о \varsigma$. All rights reserved.

 Подитеұレعíou.

Пєрі̀ŋүчף

 роипо́t Эа $\varepsilon \mu ф a v i \sigma o u v ~ \sigma ф a ́ \lambda \mu a t a . ~ \Delta ı \varepsilon \rho \varepsilon u v ต ́ v t a ı ~ \delta u ́ o ~ \delta ı а ф о \rho \varepsilon t ı к a ́ ~ \mu o-~$

 koıvตvia, Mŋ Aoúpuatๆ Eпıkoıvตvia, Kúk入os.

Abstract

This thesis studies search and evacuation problems involving autonomous robots tasked with locating and reaching an exit positioned at an undisclosed point within a specified territory. The primary focus is on the (n, f)-search and (n, f)-evacuation from a unit circle, where n robots operate collectively to discover or evacuate from an exit, despite the presence of up to f potentially faulty units. The problems are framed to challenge the robots against an adversarial setting that strategically places the exit and manipulates the faulty robots' actions - ranging from their movement trajectories to the dissemination of misleading information -to maximize the time required to complete the search or evacuation.

Two models of communication among the robots are considered: the wireless model, which allows instantaneous communication irrespective of distance, and the face-to-face model, which necessitates physical proximity for information exchange. This study develops optimal algorithms for the (n, f)-search on a circle with scenarios involving f crash faults or a single Byzantine fault, extending to algorithms for complex evacuation scenarios under multiple Byzantine faults. These algorithms are analyzed and lower and upper bounds are provided, particularly focusing on the worst-case completion time that is impacted by the adversarial control of faults.

Keywords: Search; Evacuation; Autonomous Robots; Fault Tolerance; Crash Faults; Byzantine Faults; Wireless Communication; Face-to-Face Communication; Circle.

Acknowledgements

 นou oпоuठஸ́v.

 каӨорıотıи่.

 пера́бацє $\mu \mathrm{a}$ і́.

 aveктípŋтף.

 xตpis autoús.

The current thesis involves studies that resulted from my cooperation with Pourandokht Behrouz, Konstantinos Georgiou, Orestis Konstantinidis, Evangelos Kranakis, Nikos Leonardos, Aris Pagourtzis, and Marianna Spyrakou.

Contents

Abstract 9
Extended Abstract in Greek 19
1 Introduction 27
1.1 Preliminaries and Notation 27
1.1.1 Location and Movement (Robot Trajectories) 28
1.1.2 Communication Models 28
1.1.3 Fault Types 29
1.1.4 Adversary 29
1.1.5 Search and Evacuation Problems 30
1.1.6 Symmetric-Persistent algorithms. 30
1.2 Related Work 30
1.2.1 Search on a Line 30
1.2.2 Search on a Circle 34
1.2.3 Faulty Searchers 36
1.3 Overview of Chapters 38
2 Optimal Circle Search Despite the Presence of Faulty Robots 39
2.1 Our Contribution 39
2.2 Lower Bound 40
2.3 Search under Crash Failures 41
2.4 Search under one Byzantine Failure 41
2.4.1 (3, 1)-search with a Byzantine-faulty robot 42
2.4.2 (4, 1)-search with a Byzantine-faulty robot 44
2.4.3 ($n, 1$)-search with a Byzantine-faulty robot, $n \geq 5$ 46
2.5 (n, f, b) - Mixed Search 50
2.5.1 Algorithm for ($n, f, 1$)-mixed search 50
2.6 Conclusion 54
3 Byzantine Fault Tolerant Symmetric-Persistent Circle Evac- uation 55
3.1 Our Contribution 55
3.2 Evacuation with One Byzantine Fault 56
3.2.1 A lower bound for symmetric-persistent algorithms 56
3.3 Evacuation with Two Byzantine Faults 58
3.3.1 Algorithm for ($n, 2$)-evacuation 58
3.4 Evacuation in the face-to-face communication model 71
3.4.1 Evacuation with crash faults 71
3.4.2 Evacuation with One Byzantine Fault 74
3.4.3 Evacuation with Two Byzantine Faults 78
3.5 Conclusion 82
4 Byzantine Fault-Tolerant Protocols for (n, f)-evacuation from a Circle 83
4.1 Our Contribution 83
4.2 Evacuating under Wireless Communication 84
4.2.1 Simulation Results for the Wireless model 95
4.3 Evacuating under Face-to-Face Communication 96
4.3.1 Comparison with the trivial algorithm 99
4.3.2 Simulation Results for the F2F model 101
4.4 Conclusion 102
5 Conclusion 103
Bibliography 105

List of Figures

$$
2.1 \text { (3, 1)-search: robot trajectories in case } t<\frac{2 \pi}{3} \text {. } 43
$$

2.2 (4, 1)-search: robot trajectories in case $t<y$. 44
$2.3(4,1)$-search: robot trajectories in case $y \leq t<\frac{\pi}{2}$. 45
$2.4(n, 1)$-search: robot trajectories in case $y \leq t<2$. 47
2.5 An announcement is made by a_{k} 52
$2.6 a_{k-2}$ will move through a chord to inspect the announce- 53
3.1 Inspector robots: one disputable announcement 61
3.2 Inspector robots: two disputable announcements 61
3.3 Evacuation: $A \longrightarrow E, t \leq 1$ 63
3.4 Evacuation: $A \longrightarrow E, t>1$ 64
3.5 Robots search the unit circle counter clockwise. Oneannouncement made by a_{0} (time $1+\partial$)66
3.6 Robots search the unit circle counter clockwise. a_{n-1}66
3.7 Robots search the unit circle counter clockwise. Secondannouncement made in the same sector by a_{n-2} (time$1+32)$67
3.8 Inspector robots move to inspect closest announcement. All other non-faulty robots move through a chord to the furthest announcement to evacuate. Their trajectory may alter according to inspector findings67
3.9 Robots search the unit circle counter clockwise. Oneannouncement made (time $1+2$)69
3.10Robots search the unit circle counter clockwise. Second69
3.11Robots search the unit circle counter clockwise. Thirdannouncement made in the same sector (time $1+32$)70

3.12 Inspector robots move to inspect announcements. All other non-faulty robots move through a chord to the furthest announcement to evacuate. Their trajectory may alter according to inspector findings70
3.13Each robot a_{k} move from their starting position (center of the circle) to point $k \delta$ of the circle $(t<1)$ 72
3.14Robots search the unit circle counter clockwise $(t<1+$$(f+1)$)72
3.15At least one non-faulty robot found the exit. Robotsrendez-vous at the center of the circle to share theirfindings $(t<2+(f+1) \partial)$73
3.16All non-faulty robots evacuate ($t<3+(f+1)$) 73
3.17Each robot a_{k} move from their starting position (center of the circle) to point $k \delta$ of the circle $(t<1)$ 76
3.18Robots search the unit circle counter clockwise ($t<1+$ 76
3.19Two claims in the same sector were made in the previousstep. Robots rendez-vous at the center of the circle toshare their findings $(t<2+(f+1) \partial) \quad77$
3.20After the information exchange about the exit, robotsmust visit both claims, in the worst case, to evacuate$\left(t<3+(f+1) 2+2 \sin \frac{\pi}{n}\right)$77
3.21 Each robot a_{k} move from their starting position (center of the circle) to point $k \delta$ of the circle ($t<1$) 80
3.22 Robots search the unit circle counter clockwise ($t<1+$80
3.23Two claims were made in the previous step. Robotsrendez-vous at the center of the circle to share theirfindings $(t<2+(f+1) \partial)$81
3.24After the information exchange about the exit, robotsmust visit both claims, in the worst case, to evacuate$\left(t<3+(f+1) \partial+2 \sin \frac{2 \pi}{n}\right)$81
4.1 Each robot a_{i} moves from their starting position (center of the circle) to point $i \delta$ of the circle $(t<1)$ 87
4.2 Robots search the unit circle counter-clockwise ($t<1+$ $(f+1)$) 87
4.3 After $\mathrm{f}+1$ rounds of search, announcements are present $(t=1+(f+1) \partial)$ 88
4.4 Evacuation paths of inspector robots and non-inspector robots, $(t>1+(f+1) \partial)$ 88
4.5 Maximum trajectory scenario 90
4.6 Honest robots move from the center of the circle to the first middle point M_{c+1} 94
4.7 Final evacuation trajectory of the honest robots, moving95
4.8 Total evacuation time using Algorithm [5] in different val-ues of n and f95
4.9 Each robot a_{i} move from their starting position (center of the circle) to point i io of the circle ($t<1$) 96
4.10Robots search the unit circle counter clockwise ($t<1+$$(f+1)$)97
4.11 After $\mathrm{f}+1$ rounds of search, announcements are present.Robots move to the center of the circle do discuss theirfindings $(t=1+(f+1)$)97
4.12 Evacuation path of non-faulty robots $(t>1+(f+1) \partial)$ 98
4.13Total evacuation time of Algorithm|6|for different valuesof n and f and comparison with the trivial algorithm . . 102

Extended Abstract（in Greek）

Eiбaүตүท่

 по入и́п入ока аотıка́ перıbá入入ovta．Ta autóvoua роипо́t $\mu п о \rho o u ́ v ~ v a ~ \varepsilon-~$

 каı прغ́пєı va μ порои́v va $\lambda \varepsilon ı t o u \rho \gamma o u ́ v ~ \sigma \varepsilon ~ a ́ \gamma v \omega \sigma t a ~ \eta ́ ~ \delta u v a \mu ı k a ́ ~ \mu \varepsilon t a-~$

 перівд́入入оvta．

 tou ε a ω S үúpo (round).

 ólous.

Movté入a entkolvตvias

 $\mu п \varepsilon \rho і ф о \rho \dot{v}$ пои пароибтá\}ouv ta $\rho о \mu п о ́ \tau: ~$

- $\mathbf{\Sigma \phi a ́ \lambda \mu a ~ o u v t p ı b n ́ s ~ (C r a s h ~ F a u l t) : ~ ' E v a ~ \rho о \mu п o ́ t ~ п о u ~ a v t ı и е - ~}$

Avtíralos

 опá $Ө \varepsilon ı a ~ \tau \omega v ~ \rho о \mu п o ́ t ~ v a ~ \varepsilon v \tau o п i \sigma o u v ~ k a ı ~ v a ~ k a Ө o \rho i \sigma o u v ~ t \eta v ~ a k p ı b \grave{~}$

- Прóbגпиа סıaфuүท́s

Bıвגıоүрафıки́ Avaбкórпоๆ

 ［11，17］，Baeza－Yates et al．［6］，غ́Xouv ૭と́oeı uıS ßáozıS tns $\dot{\text { épeuvas }}$

 סıáфopous a入үopiӨ
甲ท่S（turn cost）［46］．Епип

 ótav uпápxouv роипотıкá офáduata．

 pía.

 $1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n}$.

 عivaı μ ıа φ Өivouoa ouváptŋoŋ $\mu \varepsilon \mu \varepsilon ́ \gamma ı \sigma п \eta ~ т ı \mu ŋ ́ ~ \delta(4)=0.5687, ~ п о u ~ \mu \eta-~$

 үıa tŋv anóסooń tous.

Avtiocolxia 'Opwv

Chapter 1

Introduction

In an increasingly automated world, the deployment of autonomous robotic systems in search and rescue, surveillance, and exploration operations is becoming more prevalent. Such systems offer significant advantages in environments that are either too hazardous or inaccessible for humans. Examples include disaster-stricken areas, deep-sea and space explorations, and complex urban settings. Autonomous robots can perform tasks such as locating survivors in rubble, identifying exits in burning buildings, or exploring unknown territories on other planets. These scenarios often involve critical missions where the speed of locating an objective directly correlates with the success of the operation, be it saving lives, efficiently gathering data, or exiting a dangerous area promptly.

The study of search and evacuation problems addresses these challenges by developing algorithms that minimize the time required for a group of robots to find and reach specific targets or exits. The complexity of these problems is magnified by several realistic constraints: robots can have limited communication capabilities (in a confined or a highly structured setting such as a tunnel), they may encounter faults, and they must operate in unknown or dynamically changing environments. Understanding how to design efficient algorithms under such conditions is crucial for enhancing the reliability and effectiveness of autonomous robotic systems in unpredictable and often perilous environments.

1.1 Preliminaries and Notation

An extensively studied family of problems in mobile agent computing concerns situations where a group of robots needs to find one or more targets that are located in unknown points of a territory. The problem is considered particularly important in robotics and computer
science and a number of algorithmic and hardness results have been developed over the last few decades. In a particular case of interest, the target is an exit and the goal of the robots is either to locate the exit (search problem) or to leave the territory (evacuation problem), as fast as possible.

1.1.1 Location and Movement (Robot Trajectories)

In our work, we consider a set of n robots denoted as $a_{0}, a_{1}, \ldots, a_{n-1}$, f of which are faulty, all initially located on the center of a unit radius circle. The exit is located on the unit circle, which is the circumference of the disk. Robots possess the capability to perceive the perimeter of the disk and detect the exit if they happen to be in close proximity to it. In our algorithms, all honest agents move at the maximum speed 1, therefore at each time point, all agents know the location of every agent that follows the protocol. We assume that robots are equipped with pedometers for accurate distance measurement during movement. Let $\partial:=2 \pi / n$ represent an angle, and each robot a_{k} moves along a radius to the point $k \partial$ on the perimeter of the unit circle. The arc $[k \partial,(k+1) \partial)$ is defined as sector S_{k}. After 1 time unit, robot a_{k} positions itself at the beginning of sector S_{k}, completing the search within this sector in time $1+\partial$ while moving counterclockwise (ccw). We may refer to time ∂, the time that a robot needs to completely search a sector as a round.

It is assumed throughout that whenever an honest agent finds the exit it announces this fact, and whenever it realizes that an announcement of another agent is faulty it also announces this to everybody.

1.1.2 Communication Models

In this work, two distinct communication models are explored to facilitate interactions among the robots:

- Wireless Model: In the wireless communication model, robots can communicate instantly regardless of distance. Messages exchanged between robots carry various information such as locations, exit discovery, distances traveled, and more. Each message has a unique sender identifier that remains unchanged throughout the communication process. By analyzing these messages, robots can determine their relative positions.
- Face-to-Face Model: Also known as the non-wireless or local model, this communication model requires robots to physically gather in the same location simultaneously in order to exchange information. Unlike the wireless model where robots can communicate regardless of their distance, the face-to-face model necessitates direct physical interaction for information exchange.

Two other communication models, widely used in the exploration of graph environments are the pebble model and the whiteboard model. In the pebble model, robots are equipped with one or more pebbles (tokens), movable objects that uniquely identify a node or an edge and contain a single bit of information. Robots use the pebbles as communication devices in order to explore the graph [18, 53, 49, 19]. To explore graphs with memoryless robots, the whiteboard communication model is applied. Whiteboards, which can be movable or immovable objects, have sufficient memory for robots to exchange information [52, 25, 44, 51].

1.1.3 Fault Types

In our study, we take into account two types of faulty behaviors exhibited by the robots:

- Crash Faults: A robot experiencing a crash fault abruptly stops functioning, and becomes unresponsive, resulting in a complete breakdown of message communication.
- Byzantine Faults: A robot exhibiting Byzantine behavior engages in malicious activities including deliberately altering its trajectory and manipulating information to confuse the honest (non-faulty) robots. Additionally, a Byzantine robot can mimic the behavior of a crash-faulty robot.

1.1.4 Adversary

For the worst-case analysis of our algorithms, we consider an adversary who selects the location of the exit and the behaviour of the malicious robots (its trajectories as well as the messages they will broadcast) to maximize the resulting search and evacuation completion time. The adversary also chooses which robots are faulty, adding to the challenge.

1.1.5 Search and Evacuation Problems

Within the context of the (n, f)-evacuation problem on a circle with unit radius, two problems are defined, considering a total of n robots, with f of them being potentially faulty:

- Search Problem

In the case of a total of n robots, with f of them being faulty, we introduce the notation $S(n, f)$ to denote the time required to successfully solve the search problem. This represents the duration it takes for the non-faulty robots to reach the exit and ensure that all honest robots possess undeniable knowledge of the location of the exit. This collaborative effort of the robots to locate and establish the precise position of the exit is commonly referred to as group search.

- Evacuation Problem

Denoted as $E(n, f)$ involves n robots, including f faulty ones, and aims to determine the time required for a successful evacuation. In a complete evacuation, a non-faulty robot discovers the exit, and all non-faulty robots must safely reach the exit's location. It is important to note that the evacuation time $E(n, f)$ is inherently greater than or equal to the time required to find the exit $S(n, f)$, as finding the exit is a prerequisite for a successful evacuation.

1.1.6 Symmetric-Persistent algorithms.

As defined by Czyzowicz et al. [33], symmetric-persistent algorithms are a family of natural algorithms that force all robots to immediately go to the disk perimeter and only allow a robot to stop its exploration of the assigned sector if it receives information about the exit. Symmetric-persistent algorithms force all the robots to move in the same direction, either clockwise or counterclockwise.

1.2 Related Work

1.2.1 Search on a Line

There has been extensive literature on line search starting with the seminal papers of Beck and Bellman [11, 17] and Baeza-Yates et.al. [7].

Both cases are concerned with linear search: a single mobile agent searching for an exit placed at an unknown location on an infinite line; a problem also known as the cow-path problem. In the former case, the setting is stochastic, and in the latter deterministic.

Beck et al. furthered their contributions to understanding the linear search problem by examining various assumptions and conditions related to the searcher's strategy and the distribution of the target's location. In their study [12], they extend the basic model by considering different a priori distributions (uniform, triangular, and normal) and the impact these have on the optimal search strategy. In a subsequent work [13], they explore the implications of increasing the cost function associated with distance, suggesting that as search time increases, so does the penalty for continued searching. They also examine how this changes the strategy of the searcher when known distributions are involved. A game-theoretic approach is introduced [14] when the probability distribution of the target's location is unknown. A minmax solution is proposed to determine robust strategies against an adversary who may choose any distribution to maximize the searcher's expected loss. In a later work [15], the authors revisit the problem with a focus on nonlinear cost functions, demonstrating that the general strategies developed under linear assumptions hold even under more complex cost scenarios.

This line of research continued by several authors and culminated with the seminal books by Ahlswede and Wegener [2], Alpern and Gal [5], and Stone [84].

Czyzowicz et al. [42], consider a robot whose speed varies due to factors like travel direction or terrain profile (e.g. when the line is inclined, the robot can accelerate). In this work they design search algorithms that achieve good competitive ratios for the time spent by the robot to complete its search versus the time spent by an omniscient robot that knows the location of the target.

Several other models for line search algorithms were subsequently investigated. Demaine et al. [46], extends the classic linear-search problem by incorporating a directional change cost, d, into the search strategy. The proposed strategy guarantees finding an object on a line, at an unknown distance OPT from the searcher's starting point, with a total cost of no more than 9•OPT $+2 d$, which has the optimal competitive ratio 9 (as was first shown in [14]) with respect to OPT plus the minimum corresponding additive term. Their work includes solving an infinite linear program through a series of approximating finite programs to derive upper and lower bounds, leading to a proof
of optimality for the search cost. This approach is also applied to the "star search" (first solved by Gal [55]), or a variant of the cow-path problem, where an object is hidden along one of several rays emanating from a point. Here, a tight competitive ratio formula involving m, the number of rays, is derived.

Fuchs et al. [54], investigated the online matching problem on a line, where requests must be matched to a set of points on a real line in an online fashion. It disproves a previous conjecture suggesting that a competitive ratio of 9 could be achieved for this problem, similar to the "cow path" problem, where an optimal online algorithm with a competitive ratio of 9 exists. Instead, the paper establishes that no online algorithm can achieve a competitive ratio strictly less than 9.001 for the online matching problem.

Kao et al. [68], introduce the first randomized algorithm for the copath problem. Here, the cost function is unique as it considers the distance traveled between queries, which is more applicable to realworld problems, particularly in robotics. Previously, the problem was addressed using deterministic algorithms with a known optimal competitive ratio. However, this paper's randomized algorithm shows significant improvement, particularly for the case of two paths $(w=2)$, achieving a competitive ratio of approximately 4.5911 , which is nearly twice as efficient as the best possible deterministic algorithms. Their work also discusses the growth of the competitive ratio in relation to the number of paths w. In a subsequent work [67], they extend the classic cow-path problem to the case in which goal locations are selected according to one of a set of possible known probability distributions and present a polynomial-time linear programming algorithm for this problem, with potential applicability to other search problems as well.

Chrobak et al. [27], address the "group search problem" or "evacuation problem," where multiple mobile entities (MEs) begin at a common origin on a line and must locate and simultaneously reach a destination situated at an unknown distance either to the left or right of the origin. The main objective is to minimize the time required for all entities to reach this destination. This problem extends the "cowpath problem," which considers a single entity and has established that the minimum search time in the worst case is $9 d-o(d)$ where d is the distance to the target. The authors demonstrate that, contrary to what might be expected, increasing the number of MEs does not reduce the minimum search time needed; it remains at $9 d-o(d)$, even for k MEs. They explore scenarios with two MEs moving at different
speeds, showing that if the slower ME moves at least $1 / 3$ the speed of the faster, the $9 d$ time can still be achieved. The paper situates this problem within the broader context of search and rendezvous problems, highlighting how varying the speed of the MEs and their ability to communicate impacts the strategies and outcomes. Extending on this work, Bambas et al. [9], complement the case when the slower robot's speed is at least one-third that of the faster robot. In cases where the faster robot's speed is 1 and the slower robot's speed is greater than approximately 0.123 , this work finds that wireless communication can significantly enhance search efficiency. However, beyond this speed difference, wireless communication offers no advantage over the need for robots to meet to exchange information.

Gal [56], addresses the asymmetric rendezvous problem on a line, initially introduced by Alpern [3]. In this problem, two individuals, placed randomly in a known search region, aim to find each other by moving at unit speed. Gal establishes that in a two-player scenario, it is never optimal for one player to remain stationary, highlighting the importance of both players actively moving to reduce the time to meet. Gal then extends this analysis to consider the meeting time in an n-player scenario, demonstrating an asymptotic behavior of $n / 2+O(\log n)$ in the worst case. A later work by Alpern and Beck |4|, shows that the asymmetric rendezvous problem on a line (ARSPL) is strategically equivalent to a new problem they introduce, the double linear search problem (DLSP), where an object is placed equiprobably on one of two lines, and equiprobably at positions $\pm d$. A searcher is placed at the origin of each of these lines. The two searchers move with a combined speed of one, to minimize the expected time before one of them finds the object. The authors solve DLSP (and hence the ARSPL) for the case where the distance d is drawn from a known cumulative probability distribution G, convex on its support. Kan et al. [64], improved the bounds of the symmetric rendezvous search problem on the line using Markov chain theory and mathematical programming theory.

Spieser et al. [83], introduce the "Cow-Path Game," a variant of the competitive vehicle routing problem, exploring the strategic decisionmaking processes in multi-vehicle systems. Specifically, it focuses on scenarios where self-interested, mobile agents (illustrated as cows in a theoretical model) compete to locate a stationary target distributed on a ring. This model simulates real-world competitive environments, such as taxi drivers searching for fares in urban settings or shipwreck recovery boats seeking treasure. In the game-theoretic approach detailed in the study, each agent bases their search strategy not only
on their position and available information but also on the actions of competing agents. This approach leads to the development of strategies where agents may adjust their paths in response to the movements of others, aiming to maximize their own chances of success. The paper extends the analysis from a single-agent scenario to a competitive multi-agent context, highlighting the transition from cooperative search strategies to competitive ones.

1.2.2 Search on a Circle

The circle search model (considered in our work) for n non-faulty robots was introduced as an evacuation problem (completion time with respect to the last finder of the hidden exit) by Czyzowicz et al. [32] and analyzed in both the wireless and face-to-face communication models. This paper addresses the evacuation problem for a team of n mobile robots placed at the center of a circular disk with an unknown exit on its boundary. The robots, which share the same maximum speed, aim to locate and exit through this point, communicating amongst themselves to optimize the evacuation time. The paper presents algorithms and establishes bounds for $n=2$ and $n=3$ robots. Additionally, the paper derives nearly tight asymptotic bounds on the relationship between evacuation time and team size for large n. The results in detail appear in Table 1.1. In a later work, Czyzowicz et al. [39] refined the bounds of [32] in the case of two robots in the face-to-face communication model, leveraging a forced meeting strategy to streamline evacuation paths. The new upper bound is ~ 5.628, while the lower bound is now ~ 5.255.

n	Communication	Upper bound	Lower bound
$n=2$	face-to-face	~ 5.74	~ 5.199
	wireless	~ 4.83	~ 4.83
$n=3$	face-to-face	~ 5.09	~ 4.519
	wireless	~ 4.22	~ 4.159
large n	face-to-face	$3+\frac{2 \pi}{n}$	$3+\frac{2 \pi}{n}-O\left(n^{-2}\right)$
	wireless	$3+\frac{\pi}{n}+O\left(n^{-4 / 3}\right.$	$3+\frac{\pi}{n}$

Table 1.1: Results presented in 32

Pattanayak et al. [82], investigate the evacuation problem involving two robots tasked with locating and exiting through two unidentified exits spaced a distance d apart on the perimeter of a circle and considering wireless and face-to-face communication. They consider
both labeled and unlabeled exits, showing that labeled exits consistently result in faster evacuation times.

Brandt et al. [23], further investigate the evacuation problem for two robots, under the face-to-face communication model. This work introduces a new algorithm that omits the forced meeting strategy from [39], which had achieved an evacuation time of 5.628. This revised algorithm improves upon that time, achieving an upper bound of 5.625. For the class of algorithms with exactly one symmetric detour per robot, their numerical simulations suggest that this bound is optimal. Criteria, in order to identify potential worst-case exit placements, are introduced and used to simplify the analysis of evacuation algorithms. This work also discusses how evacuation time for a fixed algorithm and exit placement typically corresponds to complex equations that lack closed-form solutions, complicating analysis. The new criteria help mitigate these difficulties. A later work by Disser et al. [48], introduces a second detour through the interior of the disk, aiming to balance the evacuation time across different exit placements, protecting against the worst-case scenario. The new algorithm avoids forced meetings, allowing for independent movement through the disk's interior. That approach leads to an improved evacuation time of 5.6234 .

Lamprou et al. |73|, investigate the evacuation problem for two robots, under the wireless communication model. Robots can communicate instantaneously, allowing for coordination once one robot locates the exit. Their work introduces and analyzes strategies for the scenario where the robots have different speeds offering insights into the relationship between evacuation time and the robots' speed ratios.

Chuangpishit et al. [28] present a new framework for studying the evacuation problem of two robots in the face-to-face model from both worst-case and average-case perspectives, introducing new algorithms that balance these metrics for practical applications such as search-and-rescue operations. The paper proposes new algorithms that optimize the average-case evacuation time while ensuring the worst-case time remains bounded. These algorithms offer a continuous Pareto frontier, addressing the multi-objective nature of minimizing both average and worst-case evacuation times. The new algorithms outperform existing strategies in the multi-objective context, particularly improving upon algorithms introduced by Czyzowicz et al. [32].

1.2.3 Faulty Searchers

Fault tolerance in distributed computing has been the subject of extensive research $[72,65,76]$. An interesting variant of the linear search mentioned above involves faulty robots. The two main papers in this line of research are [41] for crash-faulty robots and [38] for Byzantine-faulty robots.

Czyzowicz et al. [41], address the problem of searching for a target on a line using multiple robots, some of which may be faulty. They aim to minimize the competitive ratio, which is the worst-case ratio of the arrival time of the first reliable robot at the target to the distance from the start to the target. They introduce a new class of algorithms called proportional schedule algorithms and provide specific algorithms for any combination of n robots and f faulty units. Their results show that if $n \geq 2 f+2$, a simple algorithm achieves a competitive ratio of 1 . For cases where $f<n<2 f+2$, they develop algorithms with detailed competitive ratios based on a formula. For the specific case where $n=f+1$, the algorithm is shown to be optimal with a competitive ratio of 9 , matching known bounds for a single robot. When $n=2 f+1$, the algorithm's competitive ratio approaches 3 , which they prove to be optimal. This result fills a gap in the existing literature by providing lower bounds for situations where $n \geq 3$, matching the best known upper bounds for these cases.

Czyzowicz et al. [38], focus on fault-tolerant parallel search by n robots on an infinite line, where f of these robots may exhibit Byzantine faults (failing to report a found target or making false claims about its discovery). Despite these challenges, the objective is to develop algorithms that minimize the time to locate a target at a distance d from the origin, ensuring that only non-faulty robots verify the target's discovery. The authors present several algorithms optimized for different ratios of faulty to total robots $\left(\frac{f}{n}\right)$ and establish corresponding lower bounds on the search time. These algorithms are proven to be optimal for certain densities of faulty robots. For cases where n is greater than or equal to $2 f+2$, a simple algorithm achieves a competitive ratio of 1 , signifying immediate discovery of the target by a non-faulty robot at its actual distance. For cases where f is less than n but greater than $2 f+2$, they introduce proportional schedule algorithms. These algorithms offer a competitive ratio that improves as the number of robots n increases, approaching an optimal ratio of 3 as n approaches infinity, closely aligning with theoretical lower bounds. In a later work, Kupavskii et al. [71] improve the bounds for crash-faulty robots (and as a result also for the Byzantine ones).

Directly related to our current work is [33]. In this paper, Czyzowicz et al. investigate the evacuation of three robots in the presence of one faulty, either crash or Byzantine robot. The robots must locate and reach an exit placed at an unknown location on the perimeter, communicating wirelessly throughout the process. The study's primary goal is to minimize the time it takes for the last non-faulty robot to reach the exit, ensuring reliable evacuation despite potential faulty behavior. The authors present two distinct evacuation protocols tailored to the specific types of faults, crash and Byzantine, and evaluate these protocols by establishing both lower and upper time bounds for each scenario. Their findings are summarized in Table 1.2 ,
Bonato et al. [20], study a variation of the classic cow-path optimization problem where a robot probabilistically fails to detect an item. It is shown that traditional monotone search strategies are not optimal when the search space is a half-line. The researchers introduce and analyze a new class of strategies, termed t-sub-monotone algorithms, which deviate from monotonicity and achieve progressively better performance with increasing parameter t.

Fault	Upper bound	Lower bound
Crash	~ 6.309	~ 5.082
Byzantine	~ 6.921	~ 5.948

Table 1.2: Results presented in |33|
There are numerous other research papers on search and evacuation that fall beyond the scope of this work. Examples include variations in the search domain such as in equilateral triangles [43, 29, 8], 2dimensional [1, 50, 66], in a grid [24], in a d-dimensional grid [30], in m-rays [22], in l_{p} unit disk [62], on graphs [77, 79], rings [80, 81, 69, 26, 10, 45], torus [70], trees [78], with variation on the termination criteria such as priority evacuation [35, 31, 36] and search-and-fetch [58, 59], with variation on termination costs [47, 21, 34, 63], using robots with asymmetric communication capabilities [57] to name a few. The interested reader could also consult the survey [37] for additional related literature.

1.3 Overview of Chapters

The subsequent chapters delve into specific aspects of the (n, f) search/evacuation problem. Chapter 2 explores optimal algorithms for (n, f)-search on a circle, addressing scenarios involving f crashfaulty, or 1 Byzantine-faulty robots. A mixed case is also presented [60, 61]. Chapter 3 extends the discussion to circle evacuation under 2 Byzantine faults, taking into account both the Wireless and Face-to-Face communication models [74, 75]. Finally, Chapter 4 introduces Byzantine fault-tolerant protocols tailored for the general case of (n, f)-evacuation on a circle under any number of Byzantine faults using both communication models addressed in this work. This Chapter presents detailed algorithms and conducts an in-depth analysis of their time requirements [16].

Chapter 2

Optimal Circle Search Despite the Presence of Faulty Robots

In this chapter, we consider (n, f)-search on a circle, a search problem of a hidden exit on a circle of unit radius for $n>1$ robots, f of which are faulty. All the robots start at the centre of the circle and can move anywhere with maximum speed 1. During the search, robots may communicate wirelessly. All messages transmitted by all robots are tagged with the robots' unique identifiers which cannot be corrupted. The search is considered complete when the exit is found by a non-faulty robot (which must visit its location) and the remaining non-faulty robots know the correct location of the exit.
We study two models of faulty robots. First, crash-faulty robots may stop operating as instructed, and thereafter they remain nonfunctional. Second, Byzantine-faulty robots may transmit untrue messages at any time during the search so as to mislead the non-faulty robots, e.g., lie about the location of the exit.
When there are only crash fault robots, we provide optimal algorithms for the (n, f)-search problem, with optimal worst-case search completion time $1+\frac{(f+1) 2 \pi}{n}$. Our main technical contribution pertains to optimal algorithms for ($n, 1$)-search with a Byzantine-faulty robot, minimizing the worst-case search completion time, which equals $1+\frac{4 \pi}{n}$.
We also present an algorithm for the mixed case, with one Byzantine and $f-1$ crash faulty robots with worst-case search completion time $1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n}$.

2.1 Our Contribution

For $n \geq 2$, we give optimal algorithms for (n, f)-search with only crash failures and for ($n, 1$)-search with one Byzantine failure. Our
main result is that $(n, 1)$-search on a circle with one Byzantine-faulty robot admits a solution with search completion time $1+\frac{4 \pi}{n}$ and this is worst-case optimal. We also study (n, f, b)-mixed search, where f robots are faulty, b of which are controlled by a Byzantine adversary. In Section 2.2 we prove a lower bound of $1+\frac{(f+1) 2 \pi}{n}$ for f crash-faulty robots, hence for Byzantine robots too, and in Section 2.3 we provide an algorithm that matches this bound assuming only crash failures. Then, in Section 2.4 we focus on upper bounds for searching with 1 Byzantine robot. In particular, in Subsection 2.4.1 we analyze the case of 3 robots, in Subsection 2.4.2 the case of 4 robots, and in Subsection 2.4.3 the general case of n robots; we prove that our algorithm matches the aforementioned lower bound. In Section 2.5 we provide an upper bound of $1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n}$ for (n, f, b)-mixed search. Finally, in Section 2.6, we conclude with a brief discussion and open problems.

2.2 Lower Bound

In this section we give a lower bound for our search problem. This result builds on the work in [33]; we extend their arguments to the case of f crash-faulty robots (hence, Byzantine too).

Theorem 2.1 (Lower Bound for (n, f)-Search). The worst-case search time $S_{c}(n, f)$ for $n \geq f+1$ robots exactly f of which are crash-faulty satisfies

$$
S_{c}(n, f) \geq 1+(f+1) \frac{2 \pi}{n} .
$$

Proof. (Theorem 2.1) Since the maximum speed of the robots is 1 , it takes at least time 1 for a robot to reach the perimeter of the disk. Further, every point on the perimeter must be traversed by at least $f+1$ robots; for if not, the adversary will make the at most f robots visiting this point all faulty in that they remain silent and therefore the non-faulty robots will miss the exit.
Let ℓ_{i} be the perimeter lengths explored by exactly i robots, where $0 \leq i \leq n$. It is clear from the above discussion that in the worst case $\ell_{0}=\ell_{1}=\cdots \ell_{f}=0$ and $\ell_{f+1}+\ell_{f+2}+\cdots+\ell_{n}=2 \pi$. The sum of the parts of the perimeter explored by the robots is $(f+1) \ell_{f+1}+(f+2) \ell_{f+2}+\cdots+n \ell_{n}$. If the robots accomplish this task by exploring the perimeter for time t (after the perimeter of the disk is reached for the first time), then it
must be true that

$$
\begin{aligned}
n t & \geq(f+1) \ell_{f+1}+(f+2) \ell_{f+2}+\cdots+n \ell_{n} \\
& \geq(f+1)\left(\ell_{f+1}+\ell_{f+2}+\cdots+\ell_{n}\right) \\
& =(f+1) 2 \pi .
\end{aligned}
$$

It follows that $t \geq(f+1) 2 \pi / n$. This completes the proof.
Since $S(n) \geq S_{c}(n, 1)$, we immediately obtain the following corollary.
Corollary 2.1 (Lower Bound for Byzantine (n, 1)-Search). The worstcase search time $S(n)$ for $n \geq 2$ robots exactly one of which is Byzantinefaulty satisfies $S(n) \geq 1+\frac{4 \pi}{n}$.

2.3 Search under Crash Failures

In this section we show how to match the lower bound of Theorem 2.1 in the case of crash faults only.

Theorem 2.2 (Upper Bound for (n, f)-Search under Crash Failures). The worst-case search time $S_{c}(n, f)$ for $n \geq 2$ robots exactly f of which are prone to crash failures satisfies

$$
S_{c}(n, f) \leq 1+(f+1) \frac{2 \pi}{n} .
$$

Proof. Let $\partial:=2 \pi / n$. Our algorithm is as follows. For each $k=$ $0, \ldots, n-1$, agent a_{k} moves to the point $k \oslash$ of the unit circle and searches ccw for $(f+1) \partial$ radians. When (and if) exit is found, it is reported instantaneously.
Clearly, every sector S_{j} of the circle would be visited by $f+1$ robots if they all followed the protocol. Since there are at most f faulty robots, there must be at least one honest robot that will visit S_{j} and announce the correct location. As there can only be crash failures there will not be any contradicting announcements.

2.4 Search under one Byzantine Failure

In this section we analyze upper bounds for our search problem in the presence of a single Byzantine agent. Our main theorem is the following.

Theorem 2.3 (Upper Bound for ($n, 1$)-Search under one Byzantine failure). The worst-case search time $S(n)$ for $n \geq 2$ robots exactly one of which is Byzantine-faulty satisfies

$$
S(n) \leq 1+\frac{4 \pi}{n}
$$

Thus, combining Corollary 2.1 with Theorems 2.3 , we conclude that the worst-case search completion time for ($n, 1$)-search satisfies $S(n)=$ $1+\frac{4 \pi}{n}$.
First observe that it is trivial to prove $S(2)=1+2 \pi$, for $(2,1)$-search since one of the two robots is faulty and the other non-faulty, hence the non-faulty has no other option but to search the entire perimeter.
In the next two Subsections 2.4.1 and 2.4.2 we show the upper bound for the cases $(3,1)$-search and $(4,1)$-search. Although the algorithms for these cases can be seen as special cases of the algorithm for the general case (Subsection 2.4.3), this is not the case for their analysis. In addition, presenting them separately allows to better clarify and illustrate the techniques and notions that we employ.

2.4.1 (3, 1)-search with a Byzantine-faulty robot

Lemma 2.1 ((3,1)-Search). The worst-case search time for 3 robots exactly one of which is Byzantine-faulty satisfies

$$
S(3) \leq 1+\frac{4 \pi}{3}
$$

Proof. We will prove the claim by presenting an algorithm for this case. Consider agents a_{0}, a_{1}, a_{2} and set $\partial=2 \pi / 3$. We describe below the agents' actions in phases (time intervals) [0,1), [1,1+ 1) and $[1+\partial, 1+2 \partial$) and we explain why all agents know the location of the exit at time $1+2 \partial$. Phase $[0,1)$: Each agent $a_{k}, k \in\{0,1,2\}$, moves along a radius to the point $k \oslash$ of the unit circle.

Phase $[1,1+\partial)$: Agent a_{k} searches ccw the arc $[k \partial,(k+1) \partial)$.
Phase $[1+\partial, 1+2 \partial)$:
(i) If no announcements were made in time interval $[1,1+\partial)$ then in time interval $[1+\partial, 1+2 \partial)$ either there will be one correct announcement or two announcements. In the latter case the third agent, say
a_{k}, is honest and the correct announcement is the one by a_{k+1} (otherwise, a_{k} would have seen in time interval $[1,1+\partial)$ the exit announced by a_{k-1}).
(ii) If exactly one announcement was made in time interval [1, $1+\partial$), say by agent a_{k-1}, then agent a_{k} moves directly (along a chord) to the location of the announcement and a_{k+1} searches ccw for another ∂ radians. This takes time at most $2<\frac{2 \pi}{3}$. If a_{k} or a_{k+1} confirms the announcement then it is correct; otherwise, a_{k+1} in this time interval announces the correct exit point. This case is depicted in Figure 2.1.| ${ }^{1}$

Figure 2.1: $(3,1)$-search: robot trajectories in case

$$
t<\frac{2 \pi}{3} .
$$

(iii) If two announcements were made in time interval $[1,1+\partial)$, then they are in consecutive sectors. The silent agent is certainly nonfaulty and will visit one of these sectors in this phase and will thus be able to determine which announcement was the correct one.

This completes the description of the algorithm and the proof.

[^0]
2.4.2 (4, 1)-search with a Byzantine-faulty robot

We will first describe an algorithm for this case. Let $\partial=\pi / 2$. Each agent a_{k} moves with speed one to its starting point $k ə$ and then continues ccw. We call the arc from one starting point to the next a sector. We think of each agent being responsible for the arc of length π that begins at its starting point and covers at most two consecutive sectors ccw.

Let t denote the length of the arc from the point of the first announcement to the starting point that corresponds to the agent that made the announcement (note, there is always an announcement for some $t \leq \pi$). If $t \geq \frac{\pi}{2}$, then each robot checks both sectors that are assigned to it. Otherwise, set $y=\pi-2$ and suppose an announcement is made by a_{0} (w.l.o.g.) at $t<\frac{\pi}{2}$. We consider two cases.
If $t<y$, then a_{1} and a_{3} will search the two sectors that each is responsible for and a_{2} will move along the diameter to check the announcement. This case is depicted in Figure 2.2 below.

FIGURE 2.2: $(4,1)$-search: robot trajectories in case

$$
t<y .
$$

If $y \leq t<\frac{\pi}{2}$, then a_{1} continues to cover distance $\sqrt{2}$ (unless $t \geq \sqrt{2}$) and then moves along a chord to check the announcement; a_{2} finishes its first sector and then moves back along a chord to its starting point and continues cw to check the arc that a_{1} didn't check; a_{3} continues searching its two sectors. This case is depicted in Figure 2.3 below.

This completes the description of the algorithm. We will now prove the correctness and the upper bound on the execution time.

Figure 2.3: $(4,1)$-search: robot trajectories in case

$$
y \leq t<\frac{\pi}{2}
$$

Lemma 2.2 ((4,1)-Search). The search time for 4 robots exactly one of which is Byzantine-faulty satisfies

$$
S(4) \leq 1+\pi .
$$

Proof. Recall that we denote by t the length of the arc searched on the circle by the agent who made the first announcement, at the time of the announcement.

For $t \geq \frac{\pi}{2}$ we argue that when every robot has checked the sectors it is responsible for (at time $1+\pi$), all of them know the location of the exit. First, note that if only one announcement is made, then it has to be a valid one. Therefore, assume two announcements are made (note that both are no earlier than $\frac{\pi}{2}$). Observe that they have to come from consecutive sectors: the exit must be at the first sector of the faulty robot, say a_{3} since nobody spoke earlier than $\frac{\pi}{2}$, and it is discovered by a_{2}, while searching its second sector, who makes a correct announcement. The only other announcement can be made by a_{3} and is faulty. Therefore, all agents know that the location is at the first of the two sectors in the ccw direction.

For $t<\frac{\pi}{2}$ suppose the first announcement was made by a_{0}. We claim that in this case the first announcement is checked by two more agents (namely, by a_{3} and either a_{1} or a_{2}) and every point of the perimeter is searched by one of the three other agents (unless a second announcement is made in which case it is not necessary to search the whole circle as one of the two must be correct). Assuming
this claim, if the first announcement is verified by any other agent, then clearly it is valid. If not, then two agents reject it, thus it must be fake. It follows that another announcement was made which has to be valid. We next verify the claim and the execution time.

Consider the case $t<y$. Note that y was defined so that a_{2} reaches the announcement in time less than $1+y+2=1+\pi$. Thus, the announcement is checked by a_{2} and a_{3} in time, while a_{1} and a_{3} search every point of the perimeter.
Consider now $y \leq t<\frac{\pi}{2}$. First, to see that every sector was searched by the first three agents by time $1+\pi$, we need to argue that a_{1} and a_{2} covered the first sector. Indeed, a_{2} searched an arc of length $\frac{\pi}{2}$ to finish his first sector, a chord of length $\sqrt{2}$ to go back to his starting point, and an arc of length at most $\frac{\pi}{2}-\sqrt{2}$ that was left uncovered by a_{1}; this sums up to at most $\frac{\pi}{2}+\sqrt{2}+\frac{\pi}{2}-\sqrt{2}=\pi$ as desired. Next, we need to argue that the announcement location was reached by a_{1} in time $1+\pi$. This is clear if $t \geq \sqrt{2}$. Otherwise, it is not hard to see that the worst case is $t=y$. In this case, the chord a_{1} walks corresponds to an arc of length $\phi=\sqrt{2}+\frac{\pi}{2}-y=2+\sqrt{2}-\frac{\pi}{2}$. Thus, the total time it needs is $1+\sqrt{2}+2 \sin \frac{\phi}{2}<1+\pi$.

2.4.3 ($n, 1$)-search with a Byzantine-faulty robot, $n \geq$ 5

We will first give the description of the algorithm for this case. For each $k \in Z_{n}$, agent a_{k} moves to the k-th starting point P_{k} located at $k \partial$, $\partial=2 \pi / n$, and then continues ccw. We denote the arc of size ∂ from the k-th starting point to the next by S_{k} and call it the k-th sector. We think of sectors S_{k} and S_{k+1} as being assigned to agent a_{k}, who is supposed to search them in the ccw direction.
Let t denote the length of the arc from the point of the first announcement to the starting point that corresponds to the agent that made the announcement. We now describe the trajectories of agents for the case that agent a_{0} makes the first announcement. We will argue later (in the proof of Theorem 2.3) that the information they exchange is enough for all agents to learn the exit location.

If $t \geq \partial$, then each agent checks both sectors that are assigned to it. Otherwise, set

$$
y=2 \partial-2 \sin \partial
$$

and suppose an announcement is made by a_{0} at $t<\partial$. Consider two cases.

If $t<y$, then each agent a_{k} with $k \notin\{0,2\}$ will search its two sectors, while a_{2} will start at time $1+t$ to move along a chord towards the announcement in order to verify it.

If $y \leq t<\partial$, define arc-lengths x_{k} (in S_{k} but not to be searched by a_{k}) recursively as follows.

$$
\begin{equation*}
x_{n-2}=0 ; \quad x_{k}=\partial+x_{k+1}-2 \sin \left(\frac{\partial-x_{k+1}}{2}\right), \tag{2.1}
\end{equation*}
$$

for $0<k<n-1$. Agent a_{1} continues to cover distance $\partial-x_{1}$ (unless $t \geq \partial-x_{1}$) and then moves along a chord towards the announcement in order to verify it; for $1<k<n-1$, agent a_{k} continues to cover distance $\partial-x_{k}$ (unless $t \geq \partial-x_{k}$), then moves along a chord back to its starting point, and finally searches in the cw direction the arc (of length at most x_{k-1}) that agent a_{k-1} didn't search; agent a_{n-1} continues with its two sectors. This case is depicted in Figure 2.4 below.

FIGURE 2.4: $(n, 1)$-search: robot trajectories in case $y \leq$ $t<2$.

This completes the description of the algorithm. We next show its correctness and the upper bound on its running time.

Lemma 2.3 ($n, 1$)-Search, for $n \geq 5$). The worst-case search time for $n \geq 5$ robots exactly one of which is Byzantine-faulty satisfies

$$
S(n) \leq 1+\frac{4 \pi}{n}
$$

Proof. (Lemma 2.3) We are going to argue about the correctness and the execution time of the algorithm described above.

If $t \geq \partial$, then all agents have searched the sectors assigned to them by time $1+2 \partial$. We need to show that all of them know the location of the exit. First, note that if only one announcement is made, then it has to be a valid one. Thus, assume two announcements are made. Observe that they have to come from consecutive sectors: one of them is the true one and was discovered by an honest agent, say a_{k}, while searching sector S_{k+1}. It follows that a_{k+1} is faulty (because it didn't make the announcement) and the other announcement must come from it. Therefore, the agents know that the location is at the first announcement encountered in the ccw direction.

Otherwise ($t<\partial$), suppose the first announcement was made by a_{0}. We claim the following.

The first announcement is checked by two more agents and every point of the perimeter is searched by at least one agent different from a_{0}, unless a second announcement is made.

Note first that if the first announcement is verified by one more agent, then it is proved valid to all. If not, then-assuming the claim-two agents reject it and a_{0} is proved faulty to all. Furthermore, every point of the perimeter will be searched by at least one honest agent. It follows-by the second part of the claim-that another announcement will be made and will be recognized by all as valid. We next verify the claim and the execution time for the two cases on t.

Consider the case $t<y$. Note that y was defined so that a_{2} reaches the announcement in time less than $1+y+2 \sin \partial=1+2 \partial$. This is because it will spend less than time y on its first sector and then move along the chord that corresponds to two sectors. Thus, the announcement is checked by a_{2} and a_{n-1} in time, while the other agents set forth to search every point of the perimeter.

Consider now $y \leq t<\partial$. First, we verify that every sector was searched by one of the agents a_{1}, \ldots, a_{n-1} by time $1+2 \partial$. It is clear that a_{n-1} searched sectors S_{n-1} and S_{0}. Next, we argue that, for
$0<k<n-1$, agents a_{k} and a_{k+1} covered sector S_{k}. Note that x_{k} is the length of S_{k} that was not searched by agent a_{k}. However, x_{k} is defined so that a_{k+1} has sufficient time to travel back to P_{k+1} and aid a_{k}. Indeed, the worst case for a_{k+1} is when $t \leq \partial-x_{k}$. (It is not hard to see that when $t>\partial-x_{k}$ he will have time to spare.) In this case, after reaching point $\partial-x_{k+1}$ of S_{k+1}, it must search a chord corresponding to an arc of $\partial-x_{k+1}$ radians and an arc of length x_{k}. Since it has $\partial+x_{k+1}$ time left, the definition of x_{k} is such that he can manage its task. Finally, we need to argue that the announcement was reached by a_{1} in time $1+2 \partial$. This is clear if $t \geq \partial-x_{1}$. Otherwise, it is not hard to see that the worst case is $t=y$. In this case, the chord a_{1} searches corresponds to an arc of length $2 \partial-x_{1}-y$. Thus, the total time a_{1} needs is

$$
T=1+\left(\partial-x_{1}\right)+2 \sin \left(\frac{2 \partial-x_{1}-y}{2}\right) .
$$

In the sequel, we will make use of the following simple facts.
Fact 1. For $x \in\left(0, \frac{\pi}{2}\right), \sin x<x$.
Fact 2. For $x \in\left(0, \frac{\pi}{2}\right), \sin x<2 \sin \frac{x}{2}$.
Fact 3. For $x \in\left(0, \frac{\pi}{4}\right), \sin x<x-\frac{x^{3}}{7}$.
Since, for $n \geq 4,2 \partial-x_{1}-y<\pi$, using Fact 1 (twice) and substituting $y=2 \partial-2 \sin \partial$ we obtain

$$
T \leq 1+\left(\partial-x_{1}\right)+\left(2 \partial-x_{1}-y\right) \leq 1+2 \partial-2 x_{1}+\sin \partial .
$$

To provide a lower on x_{1}, apply Fact 1 on the recursive definition to obtain

$$
\begin{equation*}
x_{n-3}=\partial-2 \sin \frac{\partial}{2} ; \quad x_{k} \geq 2 x_{k+1}, \text { for } 0<k<n-1 \tag{2.2}
\end{equation*}
$$

It follows that

$$
x_{1} \geq 2^{n-4}\left(\partial-2 \sin \frac{\partial}{2}\right)
$$

Combining with the upper bound on T, to show $T \leq 1+2 \partial$, it suffices to argue that

$$
2^{n-3}\left(\frac{2 \pi}{n}-2 \sin \frac{\pi}{n}\right) \geq \sin \frac{2 \pi}{n} .
$$

Using Fact $2, \sin \frac{2 \pi}{n} \leq 2 \sin \frac{\pi}{n}$. Substituting this and rearranging, it suffices to show that

$$
2^{n-3} \cdot \frac{\pi}{n} \geq\left(2^{n-3}+1\right) \sin \frac{\pi}{n} .
$$

In view of Fact 3, the sufficient condition simplifies further to

$$
2^{n-3} \geq\left(2^{n-3}+1\right)\left(1-\frac{\pi^{2}}{7 n^{2}}\right) \Longleftrightarrow\left(2^{n-3}+1\right) \pi^{2} \geq 7 n^{2}
$$

which holds for all $n \geq 9$.
Finally cases $n \in\{5,6,7,8\}$ have been verified computationally as follows. In the table below we list values $y, x_{1}, \ldots, x_{n-3}$ for $n \in\{5,6,7,8\}$. These values determine the algorithm for these cases. To verify the table, it suffices to verify $y \leq 2 \partial-2 \sin \partial, T \geq 1+\left(\partial-x_{1}\right)+2 \sin \left(\frac{2 \partial-x_{1}-y}{2}\right)$, $S(n) \leq 1+2 \partial$, and $x_{k} \leq \partial+x_{k+1}-2 \sin \left(\frac{\partial-x_{k+1}}{2}\right)$ (for $0<k<n-2$). With respect to the x_{k} values, note that those which are double the previous one (marked with an asterisk) need not be verified in view of inequality (2.2).

n	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	y	T	$S(n)$
5				0.0810	0.2285	0.611	3.51327	3.51327
6			0.047	0.135	0.3	0.36	3.07	3.09
7		0.029	0.085	0.17^{*}	0.34^{*}	0.2	2.74	2.79
8	0.02	0.04^{*}	0.08^{*}	0.16^{*}	0.32^{*}	0.1	2.56	2.57

This completes the proof of the lemma.
Now we can complete the rest of the proof of Theorem 2.3 .
Proof. (Theorem 2.3) Lemmas 2.1 and 2.2 prove the upper bound for $n=3,4$ robots respectively, and cases $n \geq 5$ are covered by Lemma 2.3.

$2.5(n, f, b)$ - Mixed Search

We define (n, f, b)-mixed search, to mean search for $n>1$ robots, of which f are faulty so that b among the f are Byzantine and the remaining $f-b$ are crash faulty.

2.5.1 Algorithm for ($n, f, 1$)-mixed search

We will now present an algorithm for ($n, f, 1$)-mixed search and then analyze its time requirements. Consider n robots $a_{1}, a_{2}, \ldots, a_{n}$ and set $\partial:=2 \pi / n$. Each robot a_{k} moves along a radius to the point
$k \partial$ of the perimeter of the unit circle. We call the arc $[k \partial,(k+1) \partial)$ sector S_{k}; that is, after 1 time unit, agent a_{k} will be located at the beginning of sector S_{k}. Robots make announcements if they find the exit and confirm/disprove the announcements of other robots accordingly. Every robot searches one sector in each round, moving counter clockwise (ccw). At any moment, if an announcement is confirmed by another robot, that announcement is correct, and the algorithm terminates as the exit has been found. Details of the main algorithm are as follows.

```
Algorithm 1 ( \(n, f, 1\) )-Mixed Search
    Robot \(a_{k}\) moves along a radius of the circle to the point \(k \delta\) of the
    unit circle.
    Robot \(a_{k}\) searches ccw for \(f\) rounds and makes an announce-
    ment if it finds the exit. It also disproves faulty announcements
    concerning sectors it has visited.
    At time \(1+f\) :
    if (there is exactly one unconfirmed announcement at the end of
    round \(f\) and no refutations of that announcement) or (there are
    two unconfirmed announcements at the end of round \(f\) in the
    same sector) then
    5: the robot which is two sectors away from the closest announce-
    ment moves through a chord to that announcement (inspector
    robot). All other robots search one more sector ccw.
    else
        all robots search one more sector ccw.
```

Lemma 2.4. If there are two announcements in different sectors, the correct one can be determined in time $1+\partial(f+1)=1+\frac{2 \pi}{n}(f+1)$.

Proof. Each sector has been searched by a group of $f+1$ robots. Let us assume that the sector with the first announcement is searched by a group A of robots, $|A|=f+1$, and the second announcement is searched by a group B of robots, $|B|=f+1$. Then $|A \cup B|$ is at least $f+2$ (since, otherwise we would have that $A=B$), meaning that it contains at least two honest robots. One of them, say h, must be different from the one which made the correct announcement. Thus, h must have searched at least one of the two sectors on which announcements were made, either confirming the correct exit, or disproving the Byzantine announcement. In both cases the correct exit is determined.

Theorem 2.4 (($n, f, 1)$-Mixed Search). The worst-case time for ($n, f, 1$)mixed search by Algorithm [1] satisfies

$$
S(n, f) \leq 1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n} .
$$

Proof. We consider the following three cases depending on the number of announcements made at the end of round f.
Case 1. No announcement by the end of round f. Then at round $f+1$ there will be one or two announcements. If there is one, that announcement is correct. If there are two announcements, they are in different sectors. By Lemma 2.4 the correct exit will be found.
Case 2 One announcement made at the end of round f. We consider two subcases depending on whether or not there are any refutations of the announcement.
Subcase $2 a$. Assume there are no refutations of the announcement:

Figure 2.5: An announcement is made by a_{k}

It can be deduced that all other robots that searched the announcement's sector are faulty. As a result at least one of the two next robots (clockwise to the announcement) is honest, resulting in honest majority.
The correct exit will be known in max time $1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n}$ (once the inspector robot visits the announcement location).
For the inspector robot to miss the exit, the next ccw robot must be faulty. In that case, the announcement was made by an honest robot, and the inspector robot will confirm it. If the inspector robot is faulty, the other two robots (the one that made the announcement and the

FIgURE 2.6: a_{k-2} will move through a chord to inspect the announcement
one that will visit the announcement at round $f+1$) will confirm the exit.

Subcase 2b. Assume there are refutations of the announcement: If there is no second announcement at round $f+1$, the first announcement is the correct one. If there is a second one, in a different sector, we can determine the correct one by Lemma 2.4. If the second one is in the same sector as the first announcement, then the correct one is the second (the first announcement will have 2 refutations).

Case 3. Two announcements made by the end of round f. We consider two subcases depending on whether or not the announcements were made in the same sectors.

Subcase 3a. Announcements were made in different sectors. We can determine the correct one by Lemma 2.4 .

Subcase 3b. Announcements were made in the same sector. In order to have two unconfirmed announcements by round f, one honest, one Byzantine and $f-2$ crash faults have searched that sector. As a result at least one of the two next robots (clockwise to the closest announcement) is honest, resulting in honest majority. The correct exit will be known in max time $1+\frac{2 \pi}{n} f+2 \sin \frac{2 \pi}{n}$ (once the inspector robot visits the announcement).

This completes the proof of the claimed time bound.

2.6 Conclusion

In this chapter we considered search on a circle with n robots, where either $f \geq 1$ of them are crash-faulty, or one of them is Byzantinefaulty, and we proved that the optimal worst-case search times are exactly $1+\frac{(f+1) 2 \pi}{n}$ and $1+\frac{4 \pi}{n}$, respectively. The optimality for the Byzantine case is quite surprising given that there are very few tight bounds for search on a circle even for the wireless model. We also studied the mixed-case search, where there can be several crashfaulty and one Byzantine-faulty robot, and we provided an upper bound which leaves a small gap compared to the lower bound. Closing this gap is a challenging open question. Extending the results to multiple Byzantine-faulty robots and the evacuation problem are two interesting open directions in the context of circle search.

Chapter 3

Byzantine Fault Tolerant Symmetric-Persistent Circle Evacuation

In this chapter, we consider (n, f)-evacuation from a disk, a problem in which $n>1$ robots, f of which are faulty, seek to evacuate through a hidden exit which is located on the perimeter of a unit disk.

We focus on symmetric-persistent algorithms, a common natural approach to search and evacuation problems. We consider two communication models: wireless and face-to-face. For the wireless model we first prove a lower bound of $1+\frac{4 \pi}{n}+2 \sin \left(\frac{\pi}{2}-\frac{\pi}{n}\right)$ for the case of one faulty robot. We also observe an almost matching upper bound obtained by utilizing an earlier search algorithm. We then study the case with two Byzantine robots and we provide an algorithm that achieves evacuation in time at most $3+\frac{6 \pi}{n}+\delta(n)$, where $\delta(n)$ is a decreasing function with maximum value $\delta(4)=0.5687$, vanishing for $n \geq 9$. For the face-to-face model we provide an upper bound of $3+(f+1) \frac{2 \pi}{n}$ for evacuation of n robots under crash faults, an upper bound of $3+\frac{4 \pi}{n}+2 \sin \frac{\pi}{n}$ for evacuation in the case of one Byzantine robot and an upper bound of $3+\frac{6 \pi}{n}+2 \sin \frac{2 \pi}{n}$ in the case of two Byzantine robots.

3.1 Our Contribution

In Section 3.2 we consider the evacuation problem for n robots, one of which is Byzantine, and we prove a lower bound of $1+\frac{4 \pi}{n}+$ $2 \sin \left(\frac{\pi}{2}-\frac{\pi}{n}\right)$ for symmetric-persistent algorithms. We also provide an almost matching upper bound of $3+\frac{4 \pi}{n}$. In Section 3.3 we present a symmetric-persistent algorithm for the case of evacuation of n robots with 2 Byzantine faults and we provide an upper bound of $3+\frac{6 \pi}{n}$
for $n \geq 9$ and $3+\frac{6 \pi}{n}+\delta(n)$ for $n<9$, where $\delta(n) \leq 2 \sin \left(\frac{3 \pi}{2 n}\right)+$ $\sqrt{2-4 \sin \left(\frac{3 \pi}{2 n}\right)+4 \sin ^{2}\left(\frac{3 \pi}{2 n}\right)}-2$. In Section 3.4 . we study the face-toface communication model and provide upper bounds for the problem of evacuating n robots under the presence of faults. We prove an upper bound of $3+(f+1) \frac{2 \pi}{n}$ when f crash faults are present. We also derive an upper bound of $3+\frac{4 \pi}{n}+2 \sin \frac{\pi}{n}$ for evacuation under the presence of one Byzantine fault, and $3+\frac{6 \pi}{n}+2 \sin \frac{2 \pi}{n}$ for the case of two Byzantine faults, leaving open the case of $f>2$ Byzantine faults.

3.2 Evacuation with One Byzantine Fault

We define (n, f)-evacuation, to mean evacuation of $n>1$ robots, of which f are faulty. In this work, we consider Byzantine faults, which include crash faults as a special case.

3.2.1 A lower bound for symmetric-persistent algorithms

As mentioned earlier, we focus on symmetric-persistent algorithms. In particular, we consider n robots $a_{0}, a_{1}, \ldots, a_{n-1}$ with starting position the center of a unit circle and set $\partial:=2 \pi / n$. Each robot a_{k} moves along a radius to the point $k \partial$ of the perimeter of the unit circle.$^{1} \mathrm{We}$ call the arc $[k \partial,(k+1) \partial)$ sector S_{k}. After 1 time unit, robot a_{k} will be located at the beginning of sector S_{k} and will have searched sector S_{k} in time $1+\partial$, moving counterclockwise (ccw). Robots make announcements if they find the exit and confirm/disprove the announcements of other robots accordingly.

Theorem 3.1. Any symmetric-persistent algorithm requires at least time

$$
\begin{equation*}
1+\frac{4 \pi}{n}+2 \sin \left(\frac{\pi}{2}-\frac{\pi}{n}\right) \geq 3+\frac{4 \pi}{n}-\frac{\pi^{2}}{2 n^{2}} \tag{3.1}
\end{equation*}
$$

for the evacuation of n robots, one of which is crash-faulty, from a circle of radius 1 .

Proof. Note that if $n=2$ the result is trivial, so we assume $n \geq 3$. Let us denote by $f(n)$ the left hand side of inequality 3.1.

[^1]Let point 0 be the position of robot a_{0} on the unit circle at time 1 and denote by x_{i} the length of the arc between robot a_{i} and point 0 in the ccw direction. Let ψ_{i} denote the length of the arc between robots a_{i} and a_{i+2} at a certain time. Since $\sum_{i=0}^{n-1} \psi_{i}=4 \pi$, there exists i such that $\psi_{i} \geq 4 \pi / n=2 \partial$. Without loss of generality, let $\psi_{0} \geq 2 \partial$ be the maximum among ψ_{i} 's and let $\psi=\psi_{0}$ (note that $\psi=x_{2}$ as well). For any $\epsilon>0$, if the adversary places the exit at point $\psi-\epsilon$, and robot a_{1} is faulty, then the exit will be discovered by robot a_{0} in time $1+\psi-\epsilon$.
We now consider two cases on ψ.
First, suppose $2 \partial \leq \psi<\pi$. By the maximality of ψ, there is at least one robot at distance x from 0 such that $x \in[\pi-\psi / 2, \pi+\psi / 2]$. The total time this robot will require to reach the exit is at least

$$
1+\psi-\epsilon+2 \sin \left(\frac{\pi-\psi / 2}{2}\right) \geq 1+2 \partial+2 \sin \left(\frac{\pi-\partial}{2}\right)-\epsilon=f(n)-\epsilon
$$

where the inequality follows because $\psi \geq 22$ and the left-hand side is increasing in ψ.
Next, we consider the case $\pi \leq \psi$. In this case, we will bound the time robot a_{2} will need, which is at least

$$
1+\psi-\epsilon+2 \sin (\psi / 2)
$$

time units. Note that this is increasing in ψ. It follows that it is at least $1+\pi-\epsilon+2$, which for $n \geq 4$ is clearly greater than $f(n)$. For $n=3$, it is at least $1+2 \partial-\epsilon+2 \sin \partial>f(n)-\epsilon$. The inequality holds since $\sin \partial=\sin (2 \pi / 3)>\sin \left(\frac{\pi}{2}-\frac{\pi}{3}\right)$.
Since the above hold for any ϵ, the bound in the left-hand side of inequality 3.1 follows. The right-hand side bound follows from the inequality $\cos (x) \geq 1-x^{2} / 2$.

To prove our next Theorem, we employ the following upper bound for $S(n, 1)$-Search under one Byzantine failure, proposed in [60]:

Theorem 3.2. The worst-case search time $S(n)$ for $n \geq 2$ robots exactly one of which is faulty satisfies

$$
S(n) \leq 1+\frac{4 \pi}{n} .
$$

Theorem 3.3. There exists a symmetric-persistent algorithm that requires time at most

$$
3+\frac{4 \pi}{n}
$$

for evacuation of n robots, one of which is Byzantine, from a circle of radius 1 .

Proof. We utilize Theorem 3.2, which provides a time bound of $1+\frac{4 \pi}{n}$ to find the exit, and add the length of the diameter for the furthest robot to evacuate. Also, that algorithm is symmetric-persistent as it forces all robots to move in the same direction (counterclockwise) and their trajectories change only after receiving information about the exit.

Remark 1. Note that the above upper bound is within $O\left(1 / n^{2}\right)$ from the lower bound of Theorem 3.1.

3.3 Evacuation with Two Byzantine Faults

3.3.1 Algorithm for ($n, 2$)-evacuation

We will now present an algorithm for the problem of Evacuating $n \geq 5$ robots, 2 of which are Byzantine faulty, and then analyze its time requirements.
Note that in the case of 2 Byzantine robots, if an announcement is confirmed by two other robots, that announcement is correct. Also, an announcement disproved by three other robots is invalidated (announcing a different exit also counts as a disproof). When three robots make different announcements, we can deduce that two of them are Byzantine and as a result the silent ones are honest. After $f+1=3$ rounds, all honest robots move via a chord to the exit to evacuate the circle and the algorithm terminates in time $E(n, 2)$.
Next, we will define disputable announcements and their maximum distance:

Definition 3.1 (Disputable announcement). An announcement is disputable when neither its validity nor its invalidity is deducible from the available information. An announcement that is not disputable is settled.

For example, if an announcement has neither $f+1$ confirmations nor $f+1$ disproofs it is disputable. Note that in cases where the
honesty of a robot can be deduced, its confirmations and/or disproofs result in the corresponding announcements being settled, therefore not disputable. Note also that, if only one announcement is made during the first $f+1$ rounds, then this announcement is also settled, as it must have come from an honest robot.

Definition 3.2 (Sector distance of two announcements). We define $d\left(S_{i}, S_{j}\right)=\min \{(i-j) \bmod n,(j-i) \bmod n\}$ to be the distance between sectors S_{i}, S_{j}. Let also the sector distance of two announcements be the distance between the sectors where the announcements occurred.

According to this definition, when the announcements are made in the same sector their sector distance is 0 , whereas when announcements are in adjacent sectors their sector distance is 1 .

Lemma 3.1. In the case of two or more disputable announcements, the sector distance of any two of them is at most 1 , in the case where $f=2$.

Proof. Let us assume that among the disputable announcements, there are two with sector distance of at least 2 . Each of the corresponding sectors has been searched by a group of $f+1=3$ robots. Suppose that one of these sectors is searched by a group A of robots, $|A|=f+1=3$, and the other is searched by a group B of robots, $|B|=f+1=3$. Then, since the sector distance is at least 2 , $|A \cup B| \geq f+3=5$. With at least 5 different robots searching the sectors with the two announcements, one of them must have at least 3 disproofs (as a reminder, a confirmation of an announcement also provides a disproof of any other announcement) and as a result that announcement would not be disputable, a contradiction.

Lemma 3.2. In the case where we have three disputable announcements, the maximum sector distance of any two of them is 0 , that is, they are all in the same sector, in the case where $f=2$.

Proof. Let us assume that the maximum sector distance of any two of the three disputable announcements is at least 1 . Suppose that the first sector is searched by a group A of robots, $|A|=f+1=3$, and the second sector is searched by a group B of robots, $|B|=f+1=3$. Then, $|A \cup B| \geq f+2=4$. Among the (at least) four robots that searched these two sectors, three of them made announcements. Since two of them
are faulty, it can be deduced that the robot that did not make any announcement is honest. That honest robot would had confirmed and/or disproved at least one announcement, resulting in fewer than three disputable announcements, a contradiction.

Utilizing Lemma 3.1 and Lemma 3.2 we can deduce that the only possible cases that include disputable announcements after $f+1=3$ rounds, are the following:

- Two disputable announcements in the same sector
- Two disputable announcements in adjacent sectors
- Three disputable announcements in the same sector

In any other case, after $f+1$ rounds of search, there must be only one settled announcement made by an honest robot. In that case, the search time is $1+3 \partial=1+\frac{6 \pi}{n}$ and the evacuation time is $3+3 \partial=3+\frac{6 \pi}{n}$, in the worst case.

Definition 3.3 (Inspector robot). We distinguish between two cases: (a) all disputable announcements are in the same sector, say S_{i} (b) there are two disputable announcements in two consecutive sectors, say S_{i} and $S_{i+1}(\bmod n)$. In both cases, for $k \geq 1$, the k-th inspector is the robot that is located at the beginning of sector $S_{i-k+1(\bmod n)}$ at time $1+33$, as shown in Figures 3.1-3.2.

Figure 3.1: Inspector robots: one disputable announcement

Figure 3.2: Inspector robots: two disputable announcements

Details of the main algorithm are as follows.

```
Algorithm 2 ( \(n, 2\) )-evacuation
    Set \(\partial=2 \pi / n\).
    Robot \(a_{k}\) moves along a radius of the circle to the point \(k \delta\) of the
    unit circle.
    Until time \(1+3 \partial\), robot \(a_{k}\) searches ccw and makes an announce-
    ment if it finds the exit. It also disproves faulty announcements
    made at sectors it visits (Staying silent when passing over an an-
    nouncement's location, counts as disproof).
```

 At time \(1+3\) :
 if there is a consensus regarding the position of the exit (no dis-
 putable announcements are present) then all honest robots move
 via a chord to the exit in order to evacuate.
 else
 Inspector(s):
 if two disputable announcements are in the same sector then
 the first and second inspector robots move via a chord to the
 location of the nearest announcement. If the exit is not there,
 they move via a chord to the location of the other announcement.
 else the first inspector robot moves via a chord to the location
 of the nearest announcement. If the exit is not there, it moves
 via a chord to the location of the next (ccw) announcement until
 it evacuates.
 Honest (non-inspector) robots:
 if two disputable announcements exist then all non-inspector
 honest robots move towards the point between the two announce-
 ments. When the exit's location is known according to the inspec-
 tor's findings, they move there to evacuate.
 else all non-inspector honest robots move via a chord to the
 location of the farthest announcement in order to evacuate and
 may alter their trajectory according to the inspector's findings.
 We define t as the time beyond $1+32$ needed to learn the position of the exit. If $t \leq 1$, the evacuation time is unaffected and is equal to $3+3 \partial$. If $t>1$, the evacuation time is increased by a function $\delta(n)$. The geometric calculation of $\delta(n)$ follows.

Lemma 3.3. The additional time $\delta(n)$ needed to complete the evacuation process when the position of the exit is known at time $1+\frac{6 \pi}{n}+t$ is defined as follows:

$$
\delta(n)= \begin{cases}0 & \text { if } t \leq 1 \\ t+\sqrt{t^{2}-2(t-1)(\cos (\pi / n)+1)}-2 & \text { if } t>1\end{cases}
$$

Proof. As shown in Figure 3.3, suppose at the end of round 3 the exit is not yet known, and possible exits are in points G and E of the circle. Robot a_{k} placed at point A , moves towards point D , placed exactly between points G and E , which is antipodal to point $\mathrm{A}(\mathrm{AD}=2$ as radius $r=1$). After $t \leq r$ the inspector robot moving from point F will determine the correct exit and robot a_{k} may need to change direction to point E (or G), but the new path that will travel is not larger than the diameter of the circle.

Figure 3.3: Evacuation: $A \longrightarrow E, t \leq 1$
We must show that $B E \leq B D$. All the following angles refer to interior angles of triangles. Triangle $C E D$ is isosceles ($C E=C D=r=1$) and angle $D \hat{E} C=C \hat{D} E$. As a result, angle $D \hat{E} B \geq D \hat{E} C$. In triangle $B E D$ it holds $D \hat{E} B \geq B \hat{D} E$, therefore $B D \geq B E$.

If $t>1$, the evacuation time is increased by $\delta(n)$.

Figure 3.4: Evacuation: $A \longrightarrow E, t>1$

As we can see in Figure 3.4, we need to calculate the distance of path ABE. We know that $A B=t$ so we need to determine $B E$.
In triangle $C B E, C E=1, C B=1-B D=1-(2-t)=t-1$. In the worst case (regarding evacuation), angle $E \hat{C} D=\partial / 2$. Now we can calculate $B E: B E^{2}=C B^{2}+C E^{2}-2 \cdot C B \cdot C E \cdot \cos (\pi / n)$.
Substituting $C B=t-1, C E=1$ we derive $B E^{2}=t^{2}-2(t-1)(\cos (\pi / n)+$ 1).

The total distance the robot will travel in order to evacuate is $A B+$ $B E=t+B E$ and that exceeds the length of the diameter by the quantity $\delta(n)$ defined below:

$$
\delta(n)= \begin{cases}0 & \text { if } t \leq 1 \\ t+\sqrt{t^{2}-2(t-1)(\cos (\pi / n)+1)}-2 & \text { if } t>1\end{cases}
$$

Theorem 3.4 (($n, 2$)-evacuation). The worst-case time of Algorithm 2 for ($n, 2$)-evacuation satisfies

$$
E(n, 2) \leq 3+\frac{6 \pi}{n} \text {, if } n \geq 9
$$

and $E(n, 2) \leq 1+\frac{6 \pi}{n}+2 \sin \left(\frac{3 \pi}{2 n}\right)+\sqrt{2-4 \sin \left(\frac{3 \pi}{2 n}\right)+4 \sin ^{2}\left(\frac{3 \pi}{2 n}\right)}$, if $n<9$.
Proof. If after time $1+3 \partial$, only one announcement is made, that announcement is correct because in that time, every point of the circle has been searched by at least one honest robot. All robots
move via a chord towards the exit, and evacuation is complete in time $3+3 \partial$ (In this case, search time is $S(n, 2)=1+\frac{6 \pi}{n}$ and evacuation time is $\left.E(n, 2)=3+\frac{6 \pi}{n}\right)$.
The same search and evacuation times also hold if no disputable announcements are present. Robots know the position of the exit by time $1+3 \partial$ and evacuation is complete in time $3+3 \partial$.

For any other outcome, we consider the following cases (utilizing Lemma 3.1 and Lemma 3.2) depending on the number and location of disputable announcements at time $1+3 \partial$ (i.e. after 3 rounds):
Case 1: Two disputable announcements in the same sector. Assume that a_{0}, a_{n-1} made the announcements in the previous rounds (say at first and second round).

- Inspector trajectory: At time $1+3 \partial$, Algorithm 2 instructs the next two robots in clockwise order $\left(a_{n-3}, a_{n-4}\right)$ to move via a chord in order to inspect the announcements. The location of the exit will be known when both inspectors visit one of the two announcements. This gives the worst-case Search time $S(n, 2)=$ $1+\frac{6 \pi}{n}+2 \sin (3 \pi / 2 n)$, yielding also the worst-case Evacuation time as explained below. Once the exit location is known, inspector robots move there via a chord to evacuate.
- Any other honest robot trajectory: At time $1+32$ all other robots move via a chord to the farthest announcement in order to evacuate and may alter their trajectory according to the inspectors' findings.
If $t=2 \sin (3 \pi / 2 n) \leq 1(n \geq 9)$, then $E(n, 2)=3+\frac{6 \pi}{n}$.
If $t=2 \sin (3 \pi / 2 n)>1(n<9)$, then $E(n, 2)=3+\frac{6 \pi}{n}+\delta(n)=$ $1+\frac{6 \pi}{n}+2 \sin \left(\frac{3 \pi}{2 n}\right)+\sqrt{2-4 \sin \left(\frac{3 \pi}{2 n}\right)+4 \sin ^{2}\left(\frac{3 \pi}{2 n}\right)}$. See Figures 3.5 . 3.8 .

FIgURE 3.5: Robots search the unit circle counter clockwise. One announcement made by a_{0} (time $1+\partial$)

Figure 3.6: Robots search the unit circle counter clockwise. a_{n-1} confirms a_{0} 's announcement (time $1+2 \partial$)

Figure 3.7: Robots search the unit circle counter clockwise. Second announcement made in the same sector by $a_{n-2}($ time $1+3$)

Figure 3.8: Inspector robots move to inspect closest announcement. All other non-faulty robots move through a chord to the furthest announcement to evacuate. Their trajectory may alter according to inspector findings

Case 2: Two disputable announcements in adjacent sectors. Assume that a_{0}, a_{n-1} made the announcements in the previous rounds (say, in the first and second round).

- Inspector trajectory: At time $1+32$, Algorithm 2 instructs the next robot in clockwise order (a_{n-3}) to move via a chord to inspect the nearest announcement. The location of the exit will be known when the inspector visits the announcement in time $S(n, 2)=1+3 \partial+2 \sin (\pi / n)$. When the location of the exit is known, inspector moves there to evacuate.
- Any other honest robot trajectories: At time $1+3 \partial$ all other robots move via a chord to the farthest announcement to evacuate and may alter their trajectory according to the inspector's findings.

$$
\begin{aligned}
& \text { If } t=2 \sin (\pi / n) \leq 1(n \geq 6) \text {, then } E(n, 2)=3+\frac{6 \pi}{n} \\
& \text { If } t=2 \sin (\pi / n)>1(n<6) \text {, then } E(n, 2)=3+\frac{6 \pi}{n}+\delta(n) .
\end{aligned}
$$

Case 3: Three disputable announcements in the same sector. Assume that a_{0}, a_{n-1}, a_{n-2} made the announcements in the previous rounds. That means that the Byzantine robot is one of a_{0}, a_{n-1}, a_{n-2} and all the other robots are honest.

- Inspector trajectory: At time $1+32$, Algorithm 2 instructs the next robot in clockwise order (a_{n-3}) to move via a chord to inspect the announcements. The location of the exit will be known when the deducible honest inspector visits two of the three announcements in the worst case $(S(n, 2)=1+3 \partial+4 \sin (\pi / 3 n)$). When the location of the exit is known, the inspector move via a chord to evacuate.
- Any other honest robot trajectories: At time $1+3 \partial$ all other robots move via a chord to the farthest announcement to evacuate and may change trajectory according to the inspector's findings. Because the extra time that the inspectors need to locate the exit is $4 \sin (\pi / 3 n)<1$ for $n \geq 5$, all the robots know the location of the exit before the furthest one (that needs a diameter to evacuate) reaches the center of the circle). As a result, the robots evacuate with no extra delay at time $3+38$ $\left(E(n, 2)=3+\frac{6 \pi}{n}\right.$). See Figures 3.93 .12 .

This completes the proof of the claimed time bound.

Figure 3.9: Robots search the unit circle counter clockwise. One announcement made (time $1+\partial$)

Figure 3.10: Robots search the unit circle counter clockwise. Second announcement made in the same sector (time $1+2$)

Figure 3.11: Robots search the unit circle counter clockwise. Third announcement made in the same sector (time $1+32$)

Figure 3.12: Inspector robots move to inspect announcements. All other non-faulty robots move through a chord to the furthest announcement to evacuate. Their trajectory may alter according to inspector findings

Some calculations follow that give (for $4 \leq n \leq 9$) the bounds obtained by the above algorithm for the $(n, 2)$ case in comparison with the lower bound obtained for the $(n, 1)$ case (which holds of course for 2 Byzantine robots as well):

n	$(n, 1): \mathrm{LB}$	$(n, 2): 3+3 \partial$	$(n, 2): \delta(n)$	$(n, 2): \mathrm{UB}$
4	5.5558	7.7124	0.5687	8.2811
5	5.1313	6.7699	0.2361	7.0060
6	4.8264	6.1415	0.0881	6.2297
7	4.5971	5.6927	0.0318	5.7246
8	4.4186	5.3561	0.0095	5.3657
9	4.2756	5.0944	0	5.0944

3.4 Evacuation in the face-to-face communication model

In the following section, we will present evacuation algorithms for n robots in the face-to-face communication model. In this model robots exchange information only when co-located.

3.4.1 Evacuation with crash faults

In the evacuation problem of n robots, f of which are crash faulty ones, we present Algorithm 3 for the face-to-face communication model.

Robots start at the center of the circle and move to the circumference at time 1. They search the circle for time $(f+1) \partial$ and return to the center to share their findings. At least one robot will know the position of the exit, and all robots will move there to evacuate. See Figures $3.13,3.16$.

```
Algorithm 3 ( \(n, f\) )-evacuation with crash faults (F2F)
    1: Define \(\partial=\frac{2 \pi}{n}\).
    Robot \(a_{k}\) moves along a radius of the circle to the point \(k \delta\) of the
    unit circle and start searching ccw.
    3: At time \(1+(f+1) \partial\) : all robots return to the center of the circle.
    4: At least one robot found the exit and it can inform the rest of the
    robots
    5: All robots move to the exit to evacuate
```


Figure 3.13: Each robot a_{k} move from their starting position (center of the circle) to point $k \delta$ of the circle

$$
(t<1)
$$

Figure 3.14: Robots search the unit circle counter clockwise $(t<1+(f+1)$) $)$

Figure 3.15: At least one non-faulty robot found the exit. Robots rendez-vous at the center of the circle to share their findings $(t<2+(f+1)$) $)$

Figure 3.16: All non-faulty robots evacuate $(t<3+(f+$ 1)д)

Theorem 3.5 ((n, f)-evacuation with crash faults (F 2 F)). The worstcase time for (n, f)-evacuation with f crash faults in the face-to-face model, satisfies

$$
E(n, f) \leq 3+(f+1) \frac{2 \pi}{n}
$$

Proof. Since the maximum speed of the robots is 1 , it takes at least time 1 for a robot to reach the perimeter of the unit circle. Furthermore, every point on the perimeter must be traversed by at least $f+1$ robots; for if not, the adversary will make the at most f robots visiting this point all faulty (in that they remain silent) and therefore the non-faulty robots will miss the exit.
As shown in [60], the search time for the (n, f) case with f crash faults is tight and equals $(f+1) \frac{2 \pi}{n}$. Robots need one additional time unit to rendezvous in the center of the circle (in order to exchange information about the location of the exit) and one more time unit to evacuate. This completes the proof of the claimed time-bound.

3.4.2 Evacuation with One Byzantine Fault

For the evacuation problem of n robots under Byzantine faults, we present Algorithm 4, We use that algorithm to prove an Upper Bound for the evacuation of n robots, one of which is Byzantine.
In a similar manner, robots after searching the circumference of the circle, rendezvous at the center to share their findings. Robots make claims about the location of the exit and check the validity of these claims. If they can deduce the location of the exit, they move there to evacuate. If not, in the worst case all honest robots must visit both the disputable claims to evacuate.

[^2]Lemma 3.4. In the $(n, 1)$ case, executing Algorithm 4, if there are two claims in different sectors, the correct one can be determined after search time of $\partial(f+1)=\frac{2 \pi}{n}(f+1)=\frac{4 \pi}{n}$.

Proof. Each sector has been searched by a group of $f+1$ robots. Let us assume that the sector with the first claim is searched by a group A of robots, $|A|=f+1$, and the second claim is searched by a group B of robots, $|B|=f+1$. Then $|A \cup B|$ is at least $f+2$ (since otherwise we would have that $A=B$), meaning that it contains at least two honest robots. One of them, say h, must be different from the one which made the correct claim. Thus, h must have searched at least one of the two sectors on which claims were made, either confirming the correct exit or disproving the Byzantine claim. In both cases, the correct exit is determined.

Theorem 3.6 ((n, 1)-evacuation with one Byzantine fault (F 2 F)). The worst-case time for (n, 1)-evacuation with 1 Byzantine fault in the face-to-face model, satisfies

$$
E(n, f) \leq 3+\frac{4 \pi}{n}+2 \sin \frac{\pi}{n}
$$

Proof. The following cases arise during the execution of Algorithm 4 :

1. Only one claim about the location of the exit is made in time $2+2 \partial$. That claim is correct, and all the robots move through the radius to evacuate. Evacuation is complete in time $3+\frac{4 \pi}{n}$.
2. Two claims about the location of the exit are made.

- Claims are in different sectors: In that case, we can deduce the location of the exit in time $2+\frac{4 \pi}{n}$ (Lemma 3.4). Robots move through the radius to evacuate in time $3+\frac{4 \pi}{n}$.
- Claims are in the same sector: In that case, that sector has been searched by one Byzantine and one honest robot. We can't deduce the location of the exit in time $2+\frac{4 \pi}{n}$. In the worst case, the other honest robots must visit both claims, moving via a chord, to find the exit. Evacuation is complete in time $3+\frac{4 \pi}{n}+2 \sin \frac{\pi}{n}$. See Figures $3.17,3.20$.

This completes the proof of the claimed time bound.

Figure 3.17: Each robot a_{k} move from their starting position (center of the circle) to point $k \not \partial$ of the circle $(t<1)$

Figure 3.18: Robots search the unit circle counter clockwise $(t<1+(f+1)$) $)$

Figure 3.19: Two claims in the same sector were made in the previous step. Robots rendez-vous at the center of the circle to share their findings $(t<2+(f+1) \partial$)

Figure 3.20: After the information exchange about the exit, robots must visit both claims, in the worst case, to evacuate $\left(t<3+(f+1) \partial+2 \sin \frac{\pi}{n}\right)$

3.4.3 Evacuation with Two Byzantine Faults

Continuing our work in the evacuation problem, we consider the ($n, 2$) case, where we also use Algorithm 4 to prove an Upper Bound when two Byzantine robots are involved.

Before the main analysis, we prove the following lemma:
Lemma 3.5. In the $(n, 2)$ case, $n \geq 5$, executing Algorithm 4 , if there are claims in different non consecutive sectors, the sector with the exit can be determined after search time of $\partial(f+1)=\frac{2 \pi}{n}(f+1)=\frac{6 \pi}{n}$.

Proof. In a similar way to Lemma 3.4, each sector has been searched by a group of $f+1$ robots. Assume that one sector is searched by a group of robots $A,|A|=f+1$, and the second sector is searched by a group C of robots, $|C|=f+1$. Then $|A \cup C|$ is at least $f+3$ (as non consecutive sectors), meaning that it contains at least three honest robots. Two of them must be different from the one which made the claim in the correct sector. Each of these two robots must have searched at least one of these two sectors, either confirming the exit or disproving the Byzantine claim(s) (even indirectly). As a result, one Byzantine claim will have at least three disproofs (direct or indirect) and the sector with the exit will be determined.

Corollary 3.1. In the ($n, 2$) case, $n \geq 5$, executing Algorithm4, if there are three claims in three different sectors, the exit can be determined after search time of $\partial(f+1)=\frac{2 \pi}{n}(f+1)=\frac{6 \pi}{n}$.

Theorem 3.7 ((n, 2)-evacuation with Two Byzantine faults (F2F)). The worst-case time for ($n, 2$)-evacuation with 2 Byzantine faults in the face-to-face model, satisfies

$$
E(n, f) \leq 3+\frac{6 \pi}{n}+2 \sin \frac{2 \pi}{n} .
$$

Proof. The following three cases arise during the execution of Algorithm 4

1. All claims in the same sector: In the worst case, honest robots must visit all disputable announcements to evacuate. Evacuation is complete in time $3+\frac{6 \pi}{n}+6 \sin \frac{\pi}{3 n}$ for 3 claims and in time $3+\frac{6 \pi}{n}+4 \sin \frac{\pi}{2 n}$ for 2 claims.
2. Claims made in consecutive sectors:

- 3 claims. Using Corollary 3.1 we know the location of the exit in time $2+\frac{6 \pi}{n}$. Evacuation is complete in time $3+\frac{6 \pi}{n}$.
- 2 claims. In the worst case robots must visit both disputable claims in the two consecutive sectors to evacuate. Evacuation is complete in time $3+\frac{6 \pi}{n}+2 \sin \frac{2 \pi}{n}$. See Figures $3.21-3.24$

3. Claims made in non consecutive sectors: By Lemma 3.5, we can deduce the sector with the exit in time $2+\frac{6 \pi}{n}$. If the sector contains two disputable claims, in the worst case, robots must visit both of them moving via a chord. Evacuation is complete in time $3+\frac{6 \pi}{n}+2 \sin \frac{\pi}{n}$.

This completes the proof of the claimed time bound.

Figure 3.21: Each robot a_{k} move from their starting position (center of the circle) to point $k \partial$ of the circle

$$
(t<1)
$$

Figure 3.22: Robots search the unit circle counter clockwise ($t<1+(f+1)$))

Figure 3.23: Two claims were made in the previous step. Robots rendez-vous at the center of the circle to share their findings $(t<2+(f+1)$)

FIgure 3.24: After the information exchange about the exit, robots must visit both claims, in the worst case, to evacuate $\left(t<3+(f+1) \partial+2 \sin \frac{2 \pi}{n}\right)$

3.5 Conclusion

In this chapter, we studied the evacuation problem of n robots with one or two Byzantine faults in the wireless model and provided a lower bound for the ($n, 1$)-evacuation case and an upper bound for the ($n, 2$)-evacuation case. An interesting possible direction after that would be to tighten our bounds or generalize for f Byzantine robots. In particular, we conjecture that $3+3 \partial$ is a lower bound for the $(n, 2)$ evacuation problem for infinitely many n. We also provided algorithms and upper bounds on the evacuation time in the face-to-face communication model. In particular, under the presence of crash faults and one and two Byzantine faults.

Chapter 4

Byzantine Fault-Tolerant Protocols for (n, f)-evacuation from a Circle

In this chapter, we address the problem of (n, f)-evacuation on a circle, which involves evacuating n robots, with f of them being faulty, from a hidden exit located on the perimeter of a unit radius circle. The robots commence at the center of the circle and possess a speed of 1 .

We introduce algorithms for both the Wireless and Face-to-Face communication models under any number of Byzantine faults. We analyze the time requirements of these algorithms and we establish upper bounds on their performance.

4.1 Our Contribution

In Section 4.2 we consider the evacuation problem for n robots f of which are Byzantine faulty in the wireless communication model, and we propose an algorithm for that case, proving the following upper bound

$$
E(n, f) \leq 1+(f+1) \cdot \frac{2 \pi}{n}+\max \left\{G_{e}\left(k^{*}\right), H_{e}\left(k^{*}\right)\right\}
$$

where $G_{e}\left(k^{*}\right)$ and $H_{e}\left(k^{*}\right)$ is the time needed to evacuate two crucial groups of robots, during the execution of our algorithm. For a more detailed analysis please refer to Theorem 4.1.
In Section 4.3 we propose an algorithm for the Face-to-Face communication model and in Theorem 4.2 we prove an upper bound of

$$
E(n, f) \leq 3+(f+1) \cdot \frac{2 \pi}{n}+\max _{2 \leq k \leq n}\left\{2(k-1) \cdot \sin \left(\frac{f-k+2}{k-1} \cdot \frac{\pi}{n}\right)\right\}
$$

We must note that our analysis and experimental results show that our proposed algorithm performs better than the trivial algorithm in cases detailed by Lemma 4.7.

4.2 Evacuating under Wireless Communication

We define (n, f)-evacuation, to mean evacuation of $n>1$ robots, $f<\frac{n}{2}$ of which are faulty. In this work, we study Byzantine faults.

We consider n robots $a_{0}, a_{1}, \ldots, a_{n-1}$ with a starting position at the center of a unit circle and set $\partial:=2 \pi / n$. Each robot a_{i} moves along a radius to the point $i \partial$ of the perimeter of the unit circle ${ }^{\eta}$ We call the arc $[i \partial,(i+1) \partial)$ sector s_{i}. After one time unit, robot a_{i} will be located at the beginning of sector s_{i} and will have searched sector s_{i} in time $1+\vartheta$, moving counterclockwise (ccw). Each sector search counts as a round. Each robot is tasked to search $(f+1)$ consecutive sectors. Robots make announcements if they find the exit and approve/disprove the announcements of other robots accordingly.

In our analysis, it is important to know the announcements' distance because in that way we can eliminate the number of unsettled announcements. We extend Definition 3.2 ,

Definition 4.1 (Sector distance of a set of announcements). We define $d\left(s_{i}, s_{j}\right)=\min \{(i-j) \bmod n,(j-i) \bmod n\}$ to be the distance between sectors s_{i}, s_{j}. Let the distance of a set of announcements X be the length of the shortest arc containing all announcements in X; let this arc be called $\operatorname{arc}(X)$. Finally, let the sector distance of X be the distance between the sectors where the two endpoints of $\operatorname{arc}(X)$ fall.

Since faulty robots are present, it is difficult for honest robots to differentiate between these announcements. To help our analysis, we will use disputable announcements (Definition 3.1) and the group of robots responsible for resolving them.

[^3]If there are k disputable announcements we will denote them as $X_{1}, \ldots X_{k}$, where X_{j} is before X_{j+1} in counterclockwise order (ccw), $j \in\{1, \ldots, k-1\}$ and X_{1} is the announcement with the maximum sector distance from its previous announcement ccw.

In case consensus is not reached after $f+1$ rounds (i.e. disputable announcements are present), we need more robots to visit and settle them. As also mentioned in Chapter 2, we call these robots inspector robots and we extend Definition 3.3 for k disputable announcements as follows:

Definition 4.2 (Inspector robots $-k$ disputable announcements). Assume that there are k disputable announcements, $X_{1}, \ldots X_{k}$. Let the first X_{1} be in sector s_{j}. Then the i-th inspector is the robot that is located at the beginning of sector $s_{j-i+1}(\bmod n)$ at time $1+(f+1) \partial$.

Based on the number of disputable announcements and their maximum distance, we will determine the number of inspector robots that are sufficient to settle the disputable announcements.

Lemma 4.1. Assume that after executing $f+1$ rounds of the algorithm there are $k=2$ disputable announcements with sector distance $d \leq$ $f-1$. Then $f-d$ inspectors are sufficient for all the honest robots to learn where the exit is.

Proof. At the $f+1$ rounds of the algorithm in total $f+1+d$ different robots searched the area of the 2 disputable announcements. Assume that among them there are exactly h honest robots, $1 \leq h \leq$ $f+1+d-(k-1)$.

Therefore each false announcement has at least $k-2+h$ disproofs, since each announcement is a disproof of any other announcement and all of the h robots have visited at least one of the two announcements. Since there are $f-d$ inspectors, there are at most $f-(f+1+d-h)=h-d-1$ faulty robots and at least $f-d-(h-d-1)=$ $f+1-h$ honest robots among them.

Hence each false announcement will have at least $k-2+h+f+1-h=$ $f+1$ disproofs.

As a result of Lemma 4.1, when we have $k=2$ announcements made with sector distance d, the number of inspectors needed is $f-d$. Because inspectors should be robots that have not previously visited any of the announcements, $n \geq f+1+d+f-d=2 f+1$.

Lemma 4.2. Assume that after executing $f+1$ rounds of the algorithm there are k disputable announcements with sector distance d. Then $f+2-k$ inspectors are sufficient for all the honest robots to learn where the exit is.

Proof. At the $f+1$ rounds of the algorithm in total $f+1+d$ different robots searched the area of the k announcements. We assume that the robots that searched the sector containing the first announcement, after the end of the $f+1$ rounds, will visit the rest of the announcements.
Therefore, $f+1$ robots know the location of the correct exit. Let f_{1}, $0 \leq f_{1} \leq f$ of them be faulty and $f+1-f_{1}$ be honest. From the rest $f+1+d-(f+1)=d$ robots that searched the area of the k announcements, let $f_{2}, 0 \leq f_{2} \leq d, f_{1}+f_{2} \leq f$ be faulty and $d-f_{2}$ be honest.

Since each announcement is a disproof for any other announcement, each false announcement has $k-2$ disproofs from the other $k-2$ false announcements, plus $f+1-f_{1}$ disproofs from the honest robots that search all the sectors with announcements.
Since there are $f+2-k$ inspectors then at most $f-\left(f_{1}+f_{2}\right)$ are faulty and at least $f+2-k-\left(f-\left(f_{1}+f_{2}\right)\right)=2-k+f_{1}+f_{2}$ are honest.
Therefore the number of disproofs that each false announcement has is at least:

$$
k-2+f+1-f_{1}+2-k+f_{1}+f_{2}=f+1+f_{2} \geq f+1
$$

and hence each false announcement is settled.
We now present Algorithm 55, for the problem of Evacuating n robots, $f<\frac{n}{2}$ of which are Byzantine faulty, in the wireless communication model and then analyze its time requirements. Figures 4.1-4.4 helps visualizing the steps of Algorithm 5 .

Figure 4.1: Each robot a_{i} moves from their starting position (center of the circle) to point $i \partial$ of the circle $(t<1)$

Figure 4.2: Robots search the unit circle counterclockwise $(t<1+(f+1)$ д)

Figure 4.3: After $\mathrm{f}+1$ rounds of search, announcements are present $(t=1+(f+1)$)

Figure 4.4: Evacuation paths of inspector robots and non-inspector robots, $(t>1+(f+1)$) $)$

```
Algorithm \(5(n, f)\)-evacuation
    Set \(\partial=2 \pi / n\).
    Robot \(a_{i}\) moves along a radius of the circle to the point \(i \partial\) of the
    unit circle.
    Until time \(1+(f+1) \partial\), robot \(a_{i}\) searches ccw and makes an an-
    nouncement if it finds the exit. It also disproves faulty announce-
    ments made at sectors it visits (Staying silent when passing over
    an announcement's location, counts as disproof). Every search of
    a sector \(\partial\) counts as a round.
    At time \(1+(f+1) \partial\) :
    5: if there is a consensus regarding the position of the exit (no dis-
    putable announcements are present) then all honest robots move
    via a chord to the exit in order to evacuate.
    else if there are \(k \geq 2\) disputable announcements and their dis-
    tance is \(d\) then
            Inspector(s):
            The \(f+2-k\) inspectors move via a chord to the location of the
    nearest announcement \(\left(X_{1}\right)\). If the exit is not there, they move via
    a chord to the location of the next nearest announcement \(\left(X_{2}\right)\).
    They continue until they find the exit and they evacuate.
            Honest (non-inspector) robots:
            The honest robots gather to the center of the circle. By the time
    they arrive, \(c\) announcements have been approved or disproved
    by the inspectors. Then they move towards the middle \(M_{c+1}\) of
    the chord that connects the announcements \(X_{c+1}, X_{k}\), and wait
    until \(X_{c+1}\) is approved or disproved by the inspectors, then move
    to the middle \(M_{c+2}\) of the chord that connects the announcements
    \(X_{c+2}, X_{k}\), and continue this process iteratively. If, at any point, the
    exit is discovered, the robots head toward it to evacuate.
```

After executing Algorithm 5 for $f+1$ rounds, it is expected that a range of 1 to $f+1$ robots will have made announcements. Some of these announcements will be settled, and some of them will be disputable. Regarding the distance of disputable announcements, we get the following lemmas:

Lemma 4.3. If $2 \leq k \leq f+1$ announcements are made, the maximum sector distance of any two of them, in order for all k of them to remain disputable is $f+1-k$.

Proof. Suppose there are k disputable announcements and consider the two of them at maximum sector distance D. For the sets A and B
of robots that were supposed to pass over each one, we have $|A \cup B|=$ $f+1+d$ where $d=f+1$ if $D>f+1$ and $d=D$ otherwise.
Any silent robot in this union casts at least one disproof to one of these announcements. Suppose z is the total number of robots that spoke, w of those confirming one and y the other. Since the $z-w-y$ announcements count as a disproof for both, the sum of disproofs for these two announcements is at least $f+1+d+z-w-y$. If this is greater than $2 f$, then one of them would have at least $f+1$ disproofs. Thus, $f+1+d+z-w-y \leq 2 f$, which implies $d \leq f-(z-w-y)-1$. The bound follows because $z-w-y \geq k-2$.

In order to calculate the worst placement of disputable announcements by the Adversary, we prove the following lemma.

Lemma 4.4 (Maximum Robot Trajectory). Assume that we have $k+1$ points on the circle that can lie in an arc of angle $a<2 \pi$. The maximum distance that a robot will traverse in order to visit all $k+1$ points is if the points are placed in equal distances in the arc of angle a.

Proof. Assume that $\partial_{1}, \partial_{2}, \ldots, \partial_{k}$ are the interior angles that are formed with the placement of the points, as shown in Figure 4.5. Then we must have that $\partial_{1}+\partial_{2}+\cdots+\partial_{k}=a$ and that $\partial_{i}<\pi, i=1, \ldots, n$

FIGURE 4.5: Maximum trajectory scenario

Then the distance that a robot will traverse in order to visit all points is:

$$
\begin{aligned}
D\left(\partial_{1}, \partial_{2}, \ldots, \partial_{k}\right) & =\sum_{i=1}^{k} x_{i} \\
& =\sum_{i=1}^{k} 2 \cdot \sin \left(\frac{\partial_{i}}{2}\right)
\end{aligned}
$$

Let $f(\partial)=\sin \left(\frac{\partial}{2}\right), \quad f^{\prime}(\partial)=\frac{1}{2} \cdot \cos \left(\frac{\partial}{2}\right), \quad f^{\prime \prime}(\partial)=-\frac{1}{4} \sin \left(\frac{\partial}{2}\right)<0$ when $\partial \in(0,2 \pi)$. Hence f is concave. We wish to find the angles ∂_{i} such that D is maximized. We will work on the maximization of the quantity

$$
\frac{D\left(\partial_{1}, \partial_{2}, \ldots, \partial_{k}\right)}{2 k}=\sum_{i=1}^{k} \frac{1}{k} \sin \left(\frac{\partial_{i}}{2}\right), \quad \text { w.r.t. } \partial_{1}, \partial_{2}, \ldots, \partial_{k}
$$

Now by Jensen's inequality, since f is concave, we have that:

$$
\begin{aligned}
\sum_{i=1}^{k} \frac{1}{k} \cdot \sin \left(\frac{\partial_{i}}{2}\right) & \leq f\left(\frac{\sum_{i=1}^{k} \partial_{i}}{k}\right) \\
& =\sin \left(\frac{\sum_{i=1}^{k} \partial_{i}}{2 k}\right) \\
& =\sin \left(\frac{a}{2 k}\right)
\end{aligned}
$$

We note that the equality holds $\left(\frac{D\left(\partial_{1}, \partial_{2}, \ldots, \partial_{k}\right)}{2 k}\right.$ is maximised) if $\partial_{i}=\frac{a}{k}, i=$ $1, \ldots, k$, since

$$
\begin{aligned}
\sum_{i=1}^{k} \frac{1}{k} \cdot \sin \left(\frac{\partial_{i}}{2}\right) & =\sum_{i=1}^{k} \frac{1}{k} \cdot \sin \left(\frac{a}{2 k}\right) \\
& =\frac{k}{k} \cdot \sin \left(\frac{a}{2 k}\right) \\
& =\sin \left(\frac{a}{2 k}\right)
\end{aligned}
$$

Therefore, we have that:

$$
\max _{\partial_{1}, \partial_{2}, \ldots, \partial_{k}} D\left(\partial_{1}, \partial_{2}, \ldots, \partial_{k}\right)=2 \cdot k \cdot \sin \left(\frac{a}{2 \cdot k}\right)
$$

Next, we will calculate the chord between two consecutive disputable announcements, in their maximum distance.

Lemma 4.5. Let n be the total number of robots, f be the total number of faulty robots and $2 \leq k \leq f+1$ be the number of disputable announcements of algorithm 5. Then the worst case maximum distance of two consecutive disputable announcements X_{j}, X_{j+1} is:

$$
x=2 \cdot \sin \left(\frac{d+1}{k-1} \cdot \frac{\pi}{n}\right)
$$

where d is the sector distance of X_{1}, X_{k}.
Proof. By Lemma 4.4, the worst placement of the announcements by the Adversary is when all the consecutive announcements are equidistant $\left(d\left(X_{j}, X_{j+1}\right)=d\left(X_{j}, X_{j-1}\right), j \in[2, k-1]\right)$.
The arc distance of X_{1}, X_{k} is $(d+1) \cdot \frac{2 \pi}{n}$. Therefore the chord that connects X_{j}, X_{j+1} has length $X=2 \cdot \sin \left(\frac{d+1}{k-1} \cdot \frac{\pi}{n}\right)$

Corollary 4.1 (Inspector Search Time). Inspectors need to check $k-1$ announcements in order to know the location of the exit, in the worst case. The time that inspectors need to search is

$$
G_{s}(k)=2(k-1) \cdot \sin \left(\frac{f-k+d+2}{k} \cdot \frac{\pi}{n}\right)
$$

Proof. By Lemma 4.4, the worst placement of the announcements by the Adversary is when the last inspector and the disputable announcements are equidistant. In that way, the Adversary maximizes the total required search time (and as a result the required evacuation time). By Lemma 4.2 the arc distance of the last inspector and X_{k} is $(d+(f-k+2)) \cdot \frac{2 \pi}{n}=(f-k+d+2) \frac{2 \pi}{n}$

We immediately gain the following corollary:
Corollary 4.2 (Inspector Evacuation Time). The time that inspectors need to evacuate is

$$
G_{e}(k)=2 k \cdot \sin \left(\frac{f-k+d+2}{k} \cdot \frac{\pi}{n}\right)
$$

Theorem $4.1((n, f)$ - Evacuation with Byzantine faults (Wireless)). The worst-case time of algorithm 5 for (n, f) - Evacuation with $n>2 f$ robots and f Byzantine faults in the Wireless model, satisfies:

$$
E(n, f) \leq 1+(f+1) \cdot \frac{2 \pi}{n}+\max \left\{G_{e}\left(k^{*}\right), H_{e}\left(k^{*}\right)\right\}
$$

where,

$$
\begin{array}{r}
H_{e}\left(k^{*}\right)=1+\sqrt{1-\sin ^{2}\left(\left(k^{*}-c-1\right) \frac{f-k^{*}+d+2}{k^{*}} \cdot \frac{\pi}{n}\right)} \\
+\left(k^{*}-c-1\right) \cdot \sin \left(\frac{k^{*}-f+d+2}{k^{*}} \cdot \frac{\pi}{n}\right), \\
k^{*}=\underset{k \in\{2 . f+1\}}{\arg \max }\left(2(k-1) \sin \left(\frac{f-k+d+2}{k} \cdot \frac{\pi}{n}\right)\right)
\end{array}
$$

Proof. First we prove the correctness of Algorithm5, and then its time complexity:

Correctness: For the correctness of Algorithm 5 it suffices to prove that all non-faulty robots will eventually evacuate. Since every sector of the circle is searched by $(f+1)$ different robots, by the end of round $(f+1)$, the exit is among the disputable announcements. By Lemma $4.2, f+2-k$ inspectors are sufficient to settle all the disputable announcements, hence all non-faulty robots will learn the location of the exit and evacuate.

Time Complexity: The worst case time of Algorithm 5 is analyzed as follows:

All robots move from the center to the perimeter of the circle in 1 time unit and conduct search for $(f+1) \cdot \partial$ time units. Then the inspector robots search for the exit among the disputable announcements and at the same time the honest robots move closer to the candidate exits in order to evacuate. The inspector robots by Corollary 4.2 need $G_{e}\left(k^{*}\right)$ time to evacuate.

The honest robots need at worst case H_{e} time which is analysed as:

- One time unit to get to the middle of the circle. By the time the robot arrives at the center $c=\left\lfloor\frac{1}{\left.2 \cdot \sin \frac{f-k+d+2 \cdot \frac{\pi}{k}}{k}\right\rfloor}\right\rfloor$ announcements have been approved or disproved.
-The robot moves to the middle point M_{c+1} of the line segment between

Figure 4.6: Honest robots move from the center of the circle to the first middle point M_{c+1}
X_{c+1}, X_{k} which has distance $\overline{O M_{c+1}}=\sqrt{1-\sin ^{2}\left(\left(k^{*}-c-1\right) \frac{f-k+d+2}{k} \cdot \frac{\pi}{n}\right)}$ (see Figure 4.6).

- The time needed to move through the middle point M_{j} of the line segments of $X_{j}, X_{k}, j \in\{c+2, k\}$ is $\left(k^{*}-c-1\right) \cdot \sin \left(\frac{k^{*}-f+d+2}{k^{*}} \cdot \frac{\pi}{n}\right)$. We note that the triangles $X_{k} X_{c}^{\Delta} X_{c+1}$ and $X_{k} M_{c} M_{c+1}$ are similar, since $X_{c+1} \widehat{X_{k}} X_{c+2}=M_{c+1} \widehat{X_{k}} M_{c+2}$ and $\frac{\frac{X_{k} X_{c+1}}{X_{k} M_{c+1}}}{=} \frac{\overline{X_{k} X_{c+2}}}{\frac{X_{k} M_{c+2}}{}}$ (see Figure 4.7. Therefore, by the similarity of the triangles, it holds that:
$\frac{\overline{M_{c+1} M_{c+2}}}{\overline{X_{c+1} X_{c+2}}}=\frac{\overline{X_{k} X_{c+2}}}{\overline{X_{k} M_{c+2}}} \Rightarrow \overline{M_{c+1} M_{c+2}}=\frac{1}{2} \overline{X_{c+1} X_{c+2}}=\sin \left(\frac{k^{*}-f+d+2}{k^{*}} \cdot \frac{\pi}{n}\right)$
Similarly, in order to move through the middle points $M_{j}, j \in\{c+2, k\}$ (Figure 4.7) the time required is:
$\overline{M_{c+1} M_{c+2} \ldots M_{k} X_{k}}=\frac{1}{2} \overline{X_{c+1} X_{c+2} \ldots X_{k}}=\left(k^{*}-c-1\right) \cdot \sin \left(\frac{k^{*}-f+d+2}{k^{*}} \cdot \frac{\pi}{n}\right)$

Figure 4.7: Final evacuation trajectory of the honest robots, moving through the middle points.

4.2.1 Simulation Results for the Wireless model

To complement our analysis about the performance of Algorithm 5 we simulated the running time as illustrated in Figure 4.8. Its effectiveness is demonstrated under varying ratios of n and f and is further compared with the trivial algorithm.

Figure 4.8: Total evacuation time using Algorithm 5 , in different values of n and f

Notably, our algorithm demonstrates its best performance as the percentage of faulty robots f decreases.

4.3 Evacuating under Face-to-Face Communication

For the evacuation problem of n robots under f Byzantine faults in the Face-to-Face communication model, we present Algorithm 6. We use that algorithm to prove an Upper Bound for the evacuation of n robots, f of which are Byzantine.

In Algorithm 6, robots start at the center of the circle and after searching the circumference of the circle for $f+1$ rounds (Figures $4.9-44.10$, rendezvous at the center to share their findings (Figure 4.11). Robots make claims about the location of the exit and check the validity of these claims. If they can deduce the location of the exit, they move there to evacuate. If not, in the worst case all honest robots must visit all the disputable claims to evacuate (Figure 4.12). Algorithm 6 is illustrated in Figures 4.9-4.12.

Figure 4.9: Each robot a_{i} move from their starting position (center of the circle) to point $i \delta$ of the circle ($t<1$)

Figure 4.10: Robots search the unit circle counter clockwise ($t<1+(f+1)$) $)$

Figure 4.11: After $\mathrm{f}+1$ rounds of search, announcements are present. Robots move to the center of the circle do discuss their findings $(t=1+(f+1)$) $)$

Figure 4.12: Evacuation path of non-faulty robots $(t>$

$$
1+(f+1) \partial)
$$

Algorithm 6 (n, f)-evacuation with Byzantine faults (F2F)

1: Define $\partial=\frac{2 \pi}{n}$.
2: Robot a_{i} moves along a radius of the circle to the point $i \partial$ of the unit circle and start searching ccw.
3: At time $1+(f+1) \partial$: all robots return to the center of the circle.
4: Robots that claim they have found the exit inform the rest of the robots
5: If a consensus about the location of the exit have achieved, all robots move to the exit to evacuate. Otherwise, robots must visit all the disputable claims.

The correctness and time complexity of Algorithm 6 is analyzed in the following theorem.

Theorem 4.2 ((n, f) - Evacuation with Byzantine faults (F2F)). The worst-case time for (n, f) - Evacuation with n robots and f Byzantine faults in the Face-to-Face model, satisfies

$$
E(n, f) \leq 3+(f+1) \cdot \frac{2 \pi}{n}+\max _{2 \leq k \leq n}\left\{2(k-1) \cdot \sin \left(\frac{f-k+2}{k-1} \cdot \frac{\pi}{n}\right)\right\}
$$

Proof. We will prove the correctness and the time complexity of Algorithm 6

Correctness: It suffices to prove that all honest robots will eventually evacuate. Since in Algorithm 6every sector is searched by $(f+1)$
different robots then, when the robots meet at the center of the circle after the $f+1$ rounds, the exit is among the disputable announcements. Therefore, by searching all the disputable announcements the robots will eventually find the exit and evacuate.
Time Complexity: The worst case time of Algorithm 6 is analyzed as follows:

- All robots move from the center to the perimeter of the circle in one time unit and conduct search for $(f+1) \cdot \partial$ time units.
- Then robots return to the center of the circle in one time unit to exchange information about the exit.
- If there is consensus on the exit, the robots move to the exit in one time unit.
- If there are $k \geq 2$ disputable claims, then the robots move to the perimeter of the circle to search all the disputable claims. By Lemmas 4.3, 4.5 the worst case time in order to visit all the claims is

$$
(k-1) \chi=2(k-1) \cdot \sin \left(\frac{f-k+2}{k-1} \cdot \frac{\pi}{n}\right)
$$

The upper bound follows.

4.3.1 Comparison with the trivial algorithm

The trivial algorithm for the face to face evacuation requires that every robot searches the perimeter of the circle until they find the exit, and therefore the worse time complexity is $\mathcal{T}(n, f)=1+2 \pi$. In this section, we will compare the worse time complexity of Algorithm 6 and the trivial algorithm.
In Lemma 4.6 we prove that if $f \geq 0.384209 \cdot n$ then the trivial algorithm has better performance than algorithm 6 and in Lemma 4.7 we prove that when $n>\frac{2 \pi}{\pi-1-2 \pi \beta}$ and $0<\beta<\frac{\pi-1}{2 \pi}$ if $f \leq \beta \cdot n$ then Algorithm 6 has better performance than the trivial algorithm.

Lemma 4.6. If $0.384209 \cdot n \leq f<n$, then the trivial algorithm has better worst time complexity than Algorithm 6 .

Proof. Let $f=\beta \cdot n$, for some $\beta \in\{0,1\}$. We will prove that if $\beta \geq 0.384209$ the trivial algorithm has better time complexity than

Algorithm 6. In case there are two announcements $(k=2)$ their maximum arc distance, by Lemma 4.3 is:

$$
\begin{equation*}
(f-k+2) \frac{2 \pi}{n}=n \cdot \beta \cdot \frac{2 \pi}{n}=2 \pi \cdot \beta \tag{4.1}
\end{equation*}
$$

Hence the adversary can place the two announcements with arc distance $2 \pi \cdot \beta$ so the time needed for the robots to visit the two disputable announcements is $2 \cdot r \cdot \sin \left(\frac{2 \beta \pi}{2}\right)=2 \cdot \sin (\beta \cdot \pi)$
Therefore, in this instance the time complexity of Algorithm 6is:

$$
\begin{align*}
E(n, f) & \geq 3+2 \cdot \sin (\beta \cdot \pi)+(f+1) \cdot \frac{2 \pi}{n} \\
& =3+2 \cdot \sin (\beta \cdot \pi)+2 \pi \cdot \beta+\frac{2 \pi}{n} \\
& >3+2 \cdot \sin (\beta \cdot \pi)+2 \pi \cdot \beta \tag{4.2}
\end{align*}
$$

Now we calculate the values of β for which the trivial algorithm is better than Algorithm 6, using the lower bound of Equation 4.2.

$$
\begin{equation*}
\mathcal{T}(n, f) \leq 3+2 \cdot \sin (\beta \cdot \pi)+2 \pi \cdot \beta \tag{4.3}
\end{equation*}
$$

By solving the above inequality we get that:

$$
\beta \geq 0.384209
$$

Lemma 4.7. If $f \leq \beta \cdot n$, for some $0<\beta<\frac{\pi-1}{2 \pi} \approx 0.34$ and $n>$ $\frac{2 \pi}{\pi-1-2 \pi \beta}$ then Algorithm 6 has better worst time complexity than the trivial algorithm.

Proof. Since $\sin (x) \leq x, \forall \beta \in \mathbb{R}$ we can bound $\max _{2 \leq k \leq n}\left\{2(k-1) \cdot \sin \left(\frac{f-k+2}{k-1} \cdot \frac{\pi}{n}\right)\right\}$ in the following way:

$$
\begin{aligned}
& \max _{2 \leq k \leq f+1, f<n}(k-1) \cdot 2 \cdot \sin \frac{f-k+2}{k-1} \cdot \frac{\pi}{n} \\
& \leq \max _{2 \leq k \leq f+1, f<n}(k-1) \cdot 2 \cdot \frac{f-k+2}{k-1} \cdot \frac{\pi}{n} \\
& =2 \cdot \frac{f \pi}{n} \\
& \leq 2 \cdot \beta \cdot \pi
\end{aligned}
$$

since the maximum is achieved for $k=2$.

Hence,

$$
\begin{equation*}
E(n, f) \leq 3+(\beta \cdot n+1) \cdot \frac{2 \pi}{n}+2 \beta \pi \tag{4.4}
\end{equation*}
$$

Now we calculate the values of β and n for which the trivial algorithm is worst than the upper bound of Equation 4.4.

$$
\begin{aligned}
3+(\beta \cdot n+1) \cdot \frac{2 \pi}{n}+2 \beta \pi & <\mathcal{T}(n, f) \\
3+(\beta \cdot n+1) \cdot \frac{2 \pi}{n}+2 \pi \beta & <2 \pi+1 \\
\frac{\pi}{n} & <\pi-1-2 \pi \cdot \beta
\end{aligned}
$$

Therefore it should hold that

$$
\pi-1-2 \pi \cdot \beta>0 \Rightarrow \beta<\frac{\pi-1}{2 \pi}
$$

and that

$$
n>\frac{\pi}{\pi-1-2 \pi \beta}
$$

4.3.2 Simulation Results for the F2F model

In this section, we present the simulation results obtained from our experiments, which aim to evaluate the performance of the proposed Algorithm 6 and compare it with the trivial algorithm. These simulations helped us to evaluate the gap between $f>0.384209 \cdot n$ and $f<\frac{\pi-1}{2 \pi} \approx 0.34$ to complement our analytical results (Lemmas 4.6, 4.7) where we proved that our algorithm outperforms the trivial algorithm.

By analyzing these results, we gain insight that our algorithm has a better performance than the trivial with regard to evacuation time when the number of faulty robots is bounded by one-third of the total n robots.

Figure 4.13 demonstrates a summary of these simulations, where Algorithm 6 is compared against the trivial algorithm, depicted in red. It also depicts in blue, orange and green the performance of our algorithm under different ratios of faulty robots. Note that these

- $f=0.38 n$
- trivial algorithm
- $f=0.34 n$
- $f=0.33 n$

Figure 4.13: Total evacuation time of Algorithm 6 for different values of n and f and comparison with the trivial algorithm
ratios are all set close to one-third in order to provide a more precise picture on when exactly our algorithm performs better.

4.4 Conclusion

The study presented in this chapter enhances our understanding of evacuation problems on circular topology and highlights the significance of addressing faulty robots in evacuation algorithms.

We introduce algorithms that cater to the general case of having f Byzantine faults among the n robots. These algorithms are designed for both the wireless and face-to-face communication models, considering the movement capabilities of the robots, which allows them to move anywhere on the platform with a speed of 1 . Our proposed algorithms contribute to the field by providing upper bounds in both communication models. Finding a lower bound for these cases and tightening the gap between them is a challenging open question.

Chapter 5

Conclusion

Throughout this thesis, we have explored search and evacuation problems involving autonomous robots on a circular topology, under various fault conditions. Our work covered two main areas: search problems and evacuation problems, each presenting unique challenges.
Considering search problems, our focus was on scenarios with n robots, where up to f robots could be crash-faulty or one robot could exhibit Byzantine behavior. We determined the optimal worst-case search time for f crash faults or a single Byzantine fault in the wireless communication model. We also studied a mixed-case scenario, combining several crash-faulty with one Byzantine-faulty robot, and established an upper bound that slightly deviates from the lower bound.

In our study of evacuation problems, we first addressed scenarios where n robots had to evacuate under the presence of up to two Byzantine faults. We provided algorithms and analyzed their time requirements leading to a lower and an upper bound for the ($n, 1$)evacuation scenario and an upper bound for the ($n, 2$)-evacuation scenario in both the wireless and the face-to-face communication models. After that, we studied the generalized case of (n, f)-evacuation with n robots, f of which are Byzantine faulty and provided upper bounds also under wireless and the face-to-face communication.

The family of symmetric-persistent algorithms that we explored in our work, can be investigated further, particularly in scenarios that incorporate variable robot capabilities, additional environmental constraints, or optimized performance metrics. Addressing these factors could lead to more robust and efficient search and evacuation strategies, potentially transforming how autonomous systems are deployed in complex and unpredictable environments.

Bibliography

[1] S. Acharjee, K. Georgiou, S. Kundu, and A. Srinivasan. "Lower Bounds for Shoreline Searching With 2 or More Robots". In: 23rd International Conference on Principles of Distributed Systems (OPODIS 2019). Ed. by Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller. Vol. 153. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 26:1-26:11.
[2] R. Ahlswede and I. Wegener. Search problems. Wiley-Interscience, 1987.
[3] S. Alpern. "The Rendezvous Search Problem". In: SIAM Journal on Control and Optimization 33.3 (1995), pp. 673-683.
[4] S. Alpern and A. Beck. "Asymmetric rendezvous on the line is a double linear search problem". In: Mathematics of Operations Research 24.3 (1999), pp. 604-618.
[5] S. Alpern and S. Gal. The theory of search games and rendezvous. Vol. 55. Springer, 2003.
[6] R. Baeza Yates, J. Culberson, and G. Rawlins. "Searching in the plane". In: Information and Computation 106.2 (1993), pp. 234252.
[7] R. Baeza-Yates, J. Culberson, and G. Rawlins. "Searching in the Plane". In: Inf. Comput. 106.2 (Oct. 1993), pp. 234-252.
[8] I. Bagheri, L. Narayanan, and J. Opatrny. "Evacuation of Equilateral Triangles by Mobile Agents of Limited Communication Range". In: Algorithms for Sensor Systems. Ed. by Falko Dressler and Christian Scheideler. Springer, 2019, pp. 3-22.
[9] E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, R. Klasing, T. Kociumaka, and D. Pajak. "Linear Search by a Pair of Distinct-Speed Robots". In: Algorithmica 81.1 (2019), pp. 317342.
[10] E. Bampas, N. Leonardos, E. Markou, A. Pagourtzis, and M. Petrolia. "Improved periodic data retrieval in asynchronous rings with a faulty host". In: Theoretical Computer Science 608 (2015). Structural Information and Communication Complexity, pp. 231254.
[11] A. Beck. "On the linear search problem". In: Israel Journal of Mathematics 2.4 (1964), pp. 221-228.
[12] A. Beck and M. Beck. "Son of the linear search problem". In: Israel Journal of Mathematics 48.2-3 (1984), pp. 109-122.
[13] A. Beck and M. Beck. "The revenge of the linear search problem". In: SIAM journal on control and optimization 30.1 (1992), pp. 112-122.
[14] A. Beck and D. Newman. "Yet more on the linear search problem". In: Israel Journal of Mathematics 8.4 (1970), pp. 419-429.
[15] A. Beck and P. Warren. "The return of the linear search problem". In: Israel Journal of Mathematics 14.2 (1973), pp. 169183.
[16] P. Behrouz, O. Konstantinidis, N. Leonardos, A. Pagourtzis, I. Papaioannou, and M. Spyrakou. "Byzantine Fault-Tolerant Protocols for (n, f)-Evacuation from a Circle". In: Algorithmics of Wireless Networks. Ed. by Konstantinos Georgiou and Evangelos Kranakis. Cham: Springer Nature Switzerland, 2023, pp. 87100. IsBn: 978-3-031-48882-5.
[17] R. Bellman. "An optimal search". In: Siam Review 5.3 (1963), pp. 274-274.
[18] M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan. "The Power of a Pebble: Exploring and Mapping Directed Graphs". In: Information and Computation 176.1 (2002), pp. 121.
[19] S. Bhatt, S. Even, D. Greenberg, and R. Tayar. "Traversing Directed Eulerian Mazes." In: J. Graph Algorithms Appl. 6 (Jan. 2002), pp. 157-173.
[20] A. Bonato, K. Georgiou, C. MacRury, and P. Pralat. "Probabilistically Faulty Searching on a Half-Line". In: 14th Latin American Theoretical Informatics Symposium, Lecture Notes in Computer Science (2020).
[21] P. Bose and J.-L. De Carufel. "A general framework for searching on a line". In: Theoretical Computer Science 703 (2017), pp. 1-17.
[22] S. Brandt, K.-T. Foerster, B. Richner, and R. Wattenhofer. "Wireless evacuation on m rays with k searchers". In: Theoretical Computer Science 811 (2020). Special issue on Structural Information and Communication Complexit, pp. 56-69.
[23] S. Brandt, F. Laufenberg, Y. Lv, D. Stolz, and R. Wattenhofer. "Collaboration without communication: Evacuating two robots from a disk". In: International Conference on Algorithms and Complexity (2017), pp. 104-115.
[24] S. Brandt, J. Uitto, and R. Wattenhofer. "A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration". In: 32nd International Symposium on Distributed Computing (DISC 2018). Ed. by Ulrich Schmid and Josef Widder. Vol. 121. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 13:1-13:17.
[25] P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. "Multirobot tree and graph exploration". In: IEEE Transactions on Robotics 27.4 (2011), pp. 707-717.
[26] J. Chalopin, S. Das, A. Labourel, and E. Markou. "Tight bounds for black hole search with scattered agents in synchronous rings". In: Theoretical Computer Science 509 (2013). Structural Information and Communication Complexity, pp. 70-85.
[27] M. Chrobak, L. Gasieniec, D. Krizanc, T. Gorry, and R. Martin. "Linear search with terrain-dependent speeds". In: Current trends in theory and practice of computer science, SOFSEM. Vol. 8939. Lecture Notes in Computer Science. Springer, 2015, pp. 164-176.
[28] H. Chuangpishit, K. Georgiou, and P. Sharma. "A Multi-Objective Optimization Problem on Evacuating 2 Robots from the Disk in the Face-to-Face Model; Trade-Offs between Worst-Case and Average-Case Analysis". In: Information 11.11 (2020).
[29] H. Chuangpishit, S. Mehrabi, L. Narayanan, and J. Opatrny. "Evacuating equilateral triangles and squares in the face-toface model". In: Computational Geometry 89 (2020), p. 101624.
[30] L. Cohen, Y. Emek, O. Louidor, and J. Uitto. "Exploring an infinite space with finite memory scouts". In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '17. Barcelona, Spain: Society for Industrial and Applied Mathematics, 2017, pp. 207-224.
[31] J Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. "Priority evacuation from a disk: The case of $n=1,2,3$ ". In: Theoretical Computer Science 806 (2020), pp. 595-616.
[32] J. Czyzowicz, L. Gasieniec, T. Gorry, E. Kranakis, R. Martin, and D. Pajak. "Evacuating Robots via Unknown Exit in a Disk". In: Distributed Computing - 28th International Symposium, DISC 2014, Proceedings. Ed. by Fabian Kuhn. Vol. 8784. Lecture Notes in Computer Science. Springer, 2014, pp. 122-136.
[33] J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis, D. Krizanc, W. Rytter, and M. Włodarczyk. "Evacuation from a disc in the presence of a faulty robot". In: International Colloquium on Structural Information and Communication Complexity. Springer. 2017, pp. 158-173.
[34] J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, M. Lafond, L. Narayanan, J. Opatrny, and S. Shende. "Energy Consumption of Group Search on a Line". In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Ed. by Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi. Vol. 132. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 137:1-137:15.
[35] J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. "God Save the Queen". In: 9th International Conference on Fun with Algorithms (FUN 2018). Ed. by Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe. Vol. 100. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - LeibnizZentrum für Informatik, 2018, 16:1-16:20.
[36] J. Czyzowicz, K. Georgiou, R. Killick, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. "Priority evacuation from a disk: The case of $n \geq 4$ ". In: Theoretical Computer Science 846 (2020), pp. 91-102.
[37] J. Czyzowicz, K. Georgiou, and E. Kranakis. "Group Search and Evacuation". In: Distributed Computing by Mobile Entities; Current Research in Moving and Computing. Ed. by P. Flocchini, G. Prencipe, and N. Santoro. Springer, 2019. Chap. 14, pp. 335370.
[38] J. Czyzowicz, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. "Search on a Line by Byzantine Robots". In: ISAAC. 2016, 27:1-27:12.
[39] J. Czyzowicz, K. Georgiou, E. Kranakis, L. Narayanan, J. Opatrny, and B. Vogtenhuber. "Evacuating Robots from a Disk Using Face-to-Face Communication". In: Discrete Mathematics \& Theoretical Computer Science. Vol. 22 (4). 2020.
[40] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, and J. Opatrny. "Search on a line with faulty robots". In: Distributed Computing 32.6 (2019), pp. 493-504.
[41] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, and J. Opatrny. "Search on a line with faulty robots". In: Distributed Computing 32.6 (2019), pp. 493-504.
[42] J. Czyzowicz, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, and S. M. Shende. "Linear search with terrain-dependent speeds". In: Algorithms and Complexity - 10th International Conference, CIAC 2017, Athens, Greece, May 23-26. Ed. by Aris Pagourtzis Dimitris Fotakis and Vangelis Th. Paschos. Vol. 10236. Lecture Notes in Computer Science. Springer, 2017, pp. 430441.
[43] J. Czyzowicz, E. Kranakis, K. Krizanc, L. Narayanan, J. Opatrny, and S. Shende. "Wireless Autonomous Robot Evacuation from Equilateral Triangles and Squares". In: ADHOCNOW. Springer, 2015, pp. 181-194.
[44] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. "Map construction of unknown graphs by multiple agents". In: Theoretical Computer Science 385.1 (2007), pp. 34-48.
[45] S. Das, R. Focardi, F. L. Luccio, E. Markou, and M. Squarcina. "Gathering of robots in a ring with mobile faults". In: Theoretical Computer Science 764 (2019). Selected papers of ICTCS 2016 (The Italian Conference on Theoretical Computer Science (ICTCS), pp. 42-60.
[46] E. D. Demaine, S. P. Fekete, and S. Gal. "Online searching with turn cost". In: Theoretical Computer Science 361.2 (2006), pp. 342-355.
[47] E. D. Demaine, S. P. Fekete, and S. Gal. "Online searching with turn cost". In: Theoretical Computer Science 361.2 (2006). Approximation and Online Algorithms, pp. 342-355.
[48] Y. Disser and S. Schmitt. "Evacuating two robots from a disc: a second cut". In: International Colloquium on Structural Information and Communication Complexity (2019), pp. 200-214.
[49] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. "Robotic exploration as graph construction". In: IEEE Transactions on Robotics and Automation 7.6 (1991), pp. 859-865.
[50] O. Feinerman, A. Korman, Z. Lotker, and J.-S. Sereni. "Collaborative search on the plane without communication". In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing. PODC '12. Madeira, Portugal: Association for Computing Machinery, 2012, pp. 77-86.
[51] P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc. "Collective tree exploration". In: Networks 48.3 (2006), pp. 166-177.
[52] P. Fraigniaud and D. Ilcinkas. "Digraphs Exploration with Little Memory". In: STACS 2004. Ed. by Michel habib Volker Diekert. Vol. 2996. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2004, pp. 246-257.
[53] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, and S. Tixeuil. "Space Lower Bounds for Graph Exploration via Reduced Automata". In: SIROCCO 2005. Ed. by Michel Raynal Andrzej Pelc. Vol. 3499. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005, pp. 140-154.
[54] B. Fuchs, W. Hochstattler, and W. Kern. "Online matching on a line". In: Theoretical Computer Science 332 (2005).
[55] S. Gal. "Minimax solutions for linear search problems". In: SIAM Journal on Applied Mathematics 27 (1974), pp. 17-30.
[56] S. Gal. "Rendezvous Search on the Line". In: Operations Research 47.6 (1999), pp. 974-976.
[57] K. Georgiou, N. Giachoudis, and E. Kranakis. "Evacuation from a Disk for Robots with Asymmetric Communication". In: 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Vol. 248. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - LeibnizZentrum für Informatik, 2022, 19:1-19:16.
[58] K. Georgiou, G. Karakostas, and E. Kranakis. "Search-andFetch with 2 Robots on a Disk: Wireless and Face-to-Face Communication Models". In: Discrete Mathematics Theoretical Computer Science 21.3 (2019).
[59] K. Georgiou, G. Karakostas, and E. Kranakis. "Treasure evacuation with one robot on a disk". In: Theoretical Computer Science 852 (2021), pp. 18-28.
[60] K. Georgiou, E. Kranakis, N. Leonardos, A. Pagourtzis, and I. Papaioannou. "Optimal Circle Search Despite the Presence of Faulty Robots". In: Algorithms for Sensor Systems - 15th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2019, Revised Selected Papers. Ed. by Falko Dressler and Christian Scheideler. Vol. 11931. Lecture Notes in Computer Science. Springer, 2019, pp. 192205.
[61] K. Georgiou, E. Kranakis, N. Leonardos, A. Pagourtzis, and I. Papaioannou. "Optimal Circle Search Despite the Presence of Faulty Robots". In: Information Processing Letters 182 (2023), p. 106391.
[62] K. Georgiou, S. Leizerovich, J. Lucier, and S. Kundu. "Evacuating from l_{p} Unit Disks in the Wireless Model". In: Theoretical Computer Science (2022).
[63] K. Georgiou and J. Lucier. "Weighted Group Search on a Line: (Extended Abstract)". In: Algorithms for Sensor Systems: 16th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2020, Pisa, Italy, September 9-10, 2020, Revised Selected Papers. Pisa, Italy: SpringerVerlag, 2020, pp. 124-139.
[64] Q. Han, D. Du, J. Vera, and L. F. Zuluaga. "Improved Bounds for the Symmetric Rendezvous Value on the Line". In: Operations Research 56.3 (2008), pp. 772-782.
[65] J. Hromkovič, R. Klasing, B. Monien, and R. Peine. "Dissemination of Information in Interconnection Networks (Broadcasting \& Gossiping)". In: Combinatorial Network Theory. Ed. by DingZhu Du and D. Frank Hsu. Boston, MA: Springer US, 1996, pp. 125-212.
[66] A. Jeż and J. Łopuszański. "On the two-dimensional cow search problem". In: Information Processing Letters 109.11 (2009), pp. 543547.
[67] M.-Y. Kao and M. L. Littman. "Algorithms for informed cows". In: Proceedings of the AAAI 1997 Workshop on Online Search. 1997.
[68] M.-Y. Kao, J. H. Reif, and S. R. Tate. "Searching in an unknown environment: An optimal randomized algorithm for the cowpath problem". In: Information and Computation 131.1 (1996), pp. 63-79.
[69] R. Klasing, E. Markou, and A. Pelc. "Gathering asynchronous oblivious mobile robots in a ring". In: Theoretical Computer Science 390.1 (2008), pp. 27-39.
[70] E. Kranakis, D. Krizanc, and E. Markou. "Deterministic symmetric rendezvous with tokens in a synchronous torus". In: Discrete Applied Mathematics 159.9 (2011), pp. 896-923.
[71] A. Kupavskii and E. Welzl. "Lower Bounds for Searching Robots, some Faulty". In: July 2018, pp. 447-453.
[72] L. Lamport, R. Shostak, and M. Pease. "The Byzantine Generals Problem". In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382-401.
[73] I. Lamprou, R. Martin, and S. Schewe. "Fast two-robot disk evacuation with wireless communication". In: International Symposium on Distributed Computing (2016), pp. 1-15.
[74] N. Leonardos, A. Pagourtzis, and I. Papaioannou. "Byzantine fault tolerant symmetric-persistent circle evacuation". In: Algorithms for Sensor Systems: 17th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2021, Lisbon, Portugal, September 9-10, 2021, Proceedings. Lisbon, Portugal: Springer-Verlag, 2021. ISBN: 978-3-030-89239-5.
[75] N. Leonardos, A. Pagourtzis, and I. Papaioannou. "Byzantine fault tolerant symmetric-persistent circle evacuation". In: Theoretical Computer Science 956 (2023), p. 113839.
[76] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
[77] E. Markou, N. Nisse, and S. Pérennes. "Exclusive graph searching vs. pathwidth". In: Information and Computation 252 (2017), pp. 243-260.
[78] E. Markou and A. Pelc. "Efficient Exploration of Faulty Trees". In: Theory Comput Syst 40 (2007), pp. 225-247.
[79] A. R. Molla, K. Mondal, and W. K. Moses. "Byzantine Dispersion on Graphs". In: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2021, pp. 942-951.
[80] A. R. Molla, K. Mondal, and W. K. Moses. "Efficient Dispersion on an Anonymous Ring in the Presence of Weak Byzantine Robots". In: Algorithms for Sensor Systems. Ed. by Cristina M. Pinotti, Alfredo Navarra, and Amitabha Bagchi. Cham: Springer International Publishing, 2020, pp. 154-169.
[81] A. R. Molla, K. Mondal, and W. K. Moses. "Optimal dispersion on an anonymous ring in the presence of weak Byzantine robots". In: Theoretical Computer Science 887 (2021), pp. 111121.
[82] D. Pattanayak, H. Ramesh, P. S. Mandal, and Schmid S. "Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication". In: Proceedings of the 19th International Conference on Distributed Computing and Networking (2018), pp. 1-4.
[83] K. Spieser and E. Frazzoli. "The Cow-Path Game: A Competitive Vehicle Routing Problem". In: 51st IEEE Conference on Decision and Control (CDC) (2012), pp. 6513-6520.
[84] L. Stone. Theory of optimal search. Academic Press New York, 1975.

[^0]: ${ }^{1}$ Figures in this work depict robot trajectories during the execution of our search algorithm. They are restricted to cases where the first announcement is made while robots search their first sector of length $\partial=\frac{2 \pi}{n}$, and no other announcement is made until time $1+\partial$. It is assumed that agent a_{0} makes the first announcement. A black square shows the location of the announcement; a white square shows the locations of other agents at that time. A solid dot shows the starting positions of the robots on the unit circle (starting from the center of the circle, they move directly, in time 1 , to their starting positions). Recall that the arc length between the starting position of a_{0} and the point of the announcement is denoted by t (hence, the announcement takes place in time $1+t$).

[^1]: ${ }^{1}$ Note that in fact we represent the circle points in polar coordinates; as the radius is always equal to 1 we give only their angle, for the sake of simplicity.

[^2]: Algorithm 4 (n, f)-evacuation with Byzantine faults (F2F)
 Robot a_{k} moves along a radius of the circle to the point $k \delta$ of the unit circle and start searching ccw.
 2: At time $1+(f+1) \partial$: all robots return to the center of the circle.
 3: Robots that claim they have found the exit inform the rest of the robots
 4: If a consensus about the location of the exit have achieved, all robots move to the exit to evacuate. Otherwise, robots must visit all the disputable claims.

[^3]: ${ }^{1}$ Note that in fact we represent the circle points in polar coordinates; as the radius is always equal to 1 we give only their angle, for the sake of simplicity.

