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AmaryopeleTal 1 avTiypo@r], arodnkevor Kot dtovopn| g Tapodoos epyaciag, €€ OAOKANPOL
N TUNHOTOG AVTAG, Y10 EUTOPIKO okomo. Emtpénetatl n avatummon, amodnKevuon Kot dtovoun
Yl0. GKOTIO UN KEPOOGKOTMIKO, EKTOLOEVTIKNG 1] EPELVNTIKNG VONG, VIO TNV TPoVTAOEST VoL
AVOPEPETOL 1 TTNYN TPOEAELONG Kol Vo dlatnpeitor 10 mapdv pnqvopa. Epotiuate wov
a@opPovV T XPNOT NG EPYOCING Yo KEPOOCKOTIKO OKOTO TPEMEL VO OeEVBVVOVTAL TTPOG TOV
ocvyypoapéa. Ot amOyelS Kol T0 GUUTEPAGUATO TOV TEPLEYOVIAL GE OLTO TO £YYPOPO
eKQPALoVY TOV cLYYPAPEN KoL OEV TPETEL VO EPUNVELOET OTL AVTITPOGOTEVOVV TIG EMICTLLES
Béoeig Tov EBvikov MetadBiov TTohvteyveiov.






Iepiinyn

H mopovca dimhopatikn epyacio e£etdlel TV amoTEAECUATIKOTNTO TNG AVIXVEVOTG
COVID - 19 and xatoypagss Py, xpNOHOTOIOVTIOG TEXVIKEG UNYAVIKNG Kot Babidg
naonong, oe po Tpocmdbeia vo pHelwdel o KOGTOG Kot 0 ¥POVOS OV OTOLTEITOL Y10l TN
dyvaon tov acBevovg. Emumiéov, eetaletar | epappoyn pebddwv tpocapoyng oe
LETATOTIGELG EVVOLDV, AOY® TV GUVEXDS UETAPUAAOUEVOV YOPOKTNPIOTIKAOV TOV 10V,
He 6TdY0 TN S1aTHPNON NG EMLO0ONS TV HOVTEA®V oV avantdccovtal. ['ia To okomod
avtd, dlepevvaTal 1 YPNoN OPOPETIKAOV PeBOdV pnyavikng (aAyopBpog toyoimv
daomv, moAV-enimeda dikTva perceptron) Kot Pfabidg pdbnong (GLVEAMKTIKA TEXVNTA
VELPOVIKA OiKTLd), KAOMG KOl TPOCEYYIcEMV UETOPOPAS Habnong péow g
aflomoinong mpo-ekmodevpévov  povtédwv. H oavamtuén kot afloddynon tov
povtédwv Poaociletor ot ypnon Tov ocvvorov dedouévov Coswara. o v
OVTYETMMION TNG UN LGOPPOTNUEVIG PVGNG TOV GLVOAOL JEJOUEVMV aEI0TOOVVTOL
TEYVIKEG TTopay®YNg ocvvletikav dedopéveov (SMOTE), pabnong pe evocbnoio
KOGTOVG Kot BEATIOTOTOINONG TOV KATOEAI®V Tavounong. H vymAdtepn emidoon pe
Baon to «xpumpio AUROC (80,21%) emrvyydvetor omd Ui OPYLTEKTOVIKY|
GUVEMKTIKOV VEVPOVIK®OV SIKTO®V TOL ypnoiponotel 1o mpo-gkrodevpévo VGG-16
¢ povtéro Paong. ' TNV TPOocapOY| OTNV UETATOMION TOV EVVOLDV, TA TEAEVLTOI
TUKVE GTPOUATO TOV HOVTEAOL EMOVEKTOOELOVTIOL LE YPNOT KATAAANANG peBOdoV
KOvoviKomoinong mov odnyei oe Pertioon tng emidoong Tov HOVIEAOL MG TTPOG TO

kpurpro AUROC £mc kat 5%.

Aé€erc Kherorwa

COVID - 19, To&wvounon Prxa, Ilpocappoyn petatdémiong €vvolosg, XVVEMKTIKG

Nevpovikd Aiktva, Pacpatoypdaenuo Mel
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Abstract

This thesis examines the effectiveness of COVID-19 detection from cough recordings
using machine and deep learning techniques in an attempt to reduce the cost and time
required to diagnose the patient. In addition, the application of methods to adapt to
concept drifts due to the ever-changing characteristics of the virus is examined, with
the aim of maintaining the performance of the developed models. To this end, the use
of different machine learning (random forests, multi-layer perceptron) and deep
learning (convolutional neural networks) methods, as well as transfer learning
approaches through the exploitation of pre-trained models are explored. The
development and evaluation of the models is based on the use of the Coswara dataset.
To address the unbalanced nature of the dataset, techniques for synthetic data
generation (SMOTE), cost-sensitive learning and classification threshold optimization
are exploited. The highest performance based on the AUROC metric (80.21%) is
achieved by a convolutional neural network architecture that uses the pre- trained VGG-
16 as the base model. To adapt to the concept drift, the last dense layers of the model
are retrained using an appropriate normalization method, which leads to an
improvement of the model's performance with respect to the AUROC metric by up to

5%.
Key Words

COVID - 19, Cough classification, Concept drift adaptation, CNN, Mel — Spectrogram
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Extetauévn eAigvikng mepiinyn

CoOVID - 19

Ot xopovoiol elvar pia peydan owcoyévela Lovokimvov, Betucoh vonuatog RNA 1ov pe
TEGGEPLS OOMKEG TPMTEIVEG TOL LOAVVOVV TOV GvBpwmo Kot £va evplh Ao LOwV.
Meto&d TV VITO-THTOV TOV KOPOVOIDV OV UTOopPovV VO LOAVVOLV ToV GvOpwmo, o
Tapdyovtag Kivdhvou TotkiAAel, KaOMOG TPOKOAOVLY AOUMEELS TNG OVOTVEVGTIKNG 0000
mov Kvpaivovtor amd Nmieg £wg Bavatneopes. Or Nmieg acBéveleg otov dvBpwmo
TEPILOUPAVOUY OPICUEVES TEPMTMGELS KOOV KPLOAOYNUOTOG, €V Bavatneopo
TEPIOTATIKA TPOKOAOVVTOL OO TIC AOWMEES TOV cOPapod 0EEOC OVOTVEVCTIKOD
ouvopopov (SARS), 1o omoio Eexivnoe omv Kiva to 2002, Kot Tov 0VOTVELGTIKOV
ouvopopov g Méong Avatoing (MERS) to 2012 pe mocootd Bvnodtntog nepinov
40% [1]. H COVID-19, o omoiog mpokoaieitot amd Tov VEO KOpovoid Tov cofapov 0&Eog
avamveLoTiKoL cLvopopoL 2 (SARS-CoV2), eppavictnke ylo tpdTn eopd ot Wuhan,
™ mpwtevovoa ¢ emapyiog Hubei tg Adikng Anpoxpatiog g Kivag, otig 27
Agxepppiov 2019.

Meradoon kor Ilpoinyn

H COVID-19 pmopei va eEamhmBel peta&d tov atdpmv pe ddpopovg tpdémove. H kopia
néBodog petddooong eival HEcw cOMATOIOV aépa, To 0moio Lropohv va HETad0B0HV Le
dpacTnPLOTNTEG OTMG N OptAia, 0 Bryag Kot To pTépvicpa. Ta copatiow avtd propovv
Vo TOPapEivouy oTov aépa £m¢ Kol TPELS MPeS Kot Kvpaivovtar oe péyebog amd
LEYOADTEPO OVOTVEVGTIKG GTOYOVIOID £0G KPOSKOTIKA agpoivpata. Ta poivouéva
AEPOADLOTO 1] OTOYOVIOW UITOPOLV Vo EIGEABOVY GTO AVOTVELGTIKO GUGTNUO EVOG
ATOUOV PEGM TNG HOTNG, TOV GTOLOTOG 1 TOV HOTLOV KOl Vo, Tpokarécovy Aoipwén. O
10G Umopel vo. SloVOGEL LEYOAVTEPEG OMOGTAGES GE TOAVGLYVOOTH 1 OVETOPKMG
aeplopeva ecmTepKd mepPaAlovto, oAAd petadidetor Kuping peta&d atdpmv Tov
Bpiokoviot o€ KOVTIV] AOGTOCT LETAED TOVG.

Eite éva dtopo pe tov 16 éxet cupntdpata gite oy, o 16¢ pmopet va petadobet amd avto.
Ta dtopo pe Mo CLUTTOUATA UTOPOVV VO LETAOMGOLV TN AOIH®EN 68 GAAOVG Yo
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UEYAADTEPO YPOVIKO SACTNHA, CALG TOL ATORO e GOPOPE GLUTTOUATO POIVETAL VO
gtvo o HETASOTIKA AlYO TPV ELOAVIGTOVV TOL GUUTTMOUOTO [2].

[Topd tovg d1apopovg TPOTOVE LOAVVOTG Kot TO YeYovog OTL ot dvBpwmol umopet vo
&xouvv poAvvOel amd tov 10 Kol vo. Tov petadidovv ywpig ot idtot va gupoavifovv
CUUTTMOUOTO, VITAPYOVV OLAPOPO. LETPOA TOV UTOPOVV VO, GTALOT|GOVV T1 HETAOOCT TNG
vocov. Ilpdta an' 6Aa, n ypnon pbokog Mrav pio amd TG TPMTEG TPOTEWVOUEVES
nedddovg katd ™ ddpkela g emdnuiag COVID-19 [3]. EmmAéov, 1 Pertioon tov
€€0EPIGLOV KOl TOV PIATPAPIGHOTOC TOV aEPO UTOPEL VO GUUPAAEL GTNV OTOTPOTN TNG
OLGOMPELONG COUOTIIIOV TOV 100 GE E6MTEPIKOVS YDPOoVG. Oplopéveg evEPYELES Yol
TNV OToPLYN TNG LYNANG CLYKEVIPMOOTG COUATIOIIMV 0EPO HOAVGUEVOV UE TOV 10
SARS-CoV-2, énwg avapépeton and ta Kévipa EAéyyov kot [TpoAnyng Noonudtov
(CDC), givaim ovyvn aAdoyn kot n xpron GiATpov mov givat KatdAAnio TomodeTnuéva
Kot map€yovyv vynAdtepn Ombnon oto ovotmuo Bépuavong, eEaepiopol Kot
KMapatiopod (HVAC), kabdg kat to dvorypo tov Topadipmy yio vo E16EPYETAL OGO TO

dVVaTOV TEPIGGOTEPOS EEMTEPIKOS AEPOLC.

2vunrouara

H cvvipumtikn mielovotta tov actevayv, cOUQ®vo pe po LeAétn mov deényon and
tovg Talukder et.al [4], mapovoidlovv N ovamvevotikd countdpata. Ta wo Tumikd
oLuUTTOUTO Elval 0 TVPETHC, 0 ENPOS PYX0C, N KOTWOOT Kot 1) ATOAELW TNG YEVONG 1Y/KOL
™G OGPPMNOTG- TO CLUTTAOUOTO TOV OVATEPOV CVATVEVGTIKOV GUGTIUATOS UTOPEL Vo
nepLapdvouy papuyyadyio, Tovoke@ailovg Kot poadyieg [S]. Ta coPapd copmtopato
g COVID-19 mepilapfdavovv dHomvola, amdAel AOYoL 1 KIVITIKOTNTOS, GVYYLON
Kot Bopakikd movo. Ta copmtdpato pmopel va eueoviotovy 2-14 nuépeg petd

HOAvVoT, e TO HEGO XPOVIKO dldotnua va eivar 5-6 nuépeg.

Arabéoueg Ogpameies

Téooepa  euPforio mov Exovv mapoybel omd Swweopetikés etapeieg, TV
Pfizer/BioNTech, T Moderna, tnv Johnson & Johnson/Janssen kot v AstraZeneca,
&xovv gykpiBet amod tov Evponaikd Opyaviopd @apudkmv (EMA) kot avijkovy o€ Evav
amd Toug Tpelg dbéoiovg Tomovg epforimv, o mRNA, tov adevoid Kot To U

avamopoyopevo ukd eupforo. Ta tpia mpodto euforio avarntdydnkav otig HITA,
17



TPOYWPOVV G KAWVIKN S0kl @dong 3 kot yopnyovvror evdopvikd (IM), eved to

tehevtaio avortoydnke oto Hvouévo Basiiero (UK) [1].

Kivytpo e Aimiwpatikyg

Ta ocvotuato vyelovouIKng mepiBoiyng TOYKOOUIMS OVIILETOTIGOV CNUAUVTIKEG
TpokANcelg Aoym ¢ mavonuiog COVID-19. Adym ¢ peyding {Rtnong o€ ypnyopeg
Kot 0KOAN TPOSPhoipeg dlayvmoTikég nedddovg, ot etarpeieg avénTuEav KIT Toyeiog
e&étaong mov Ba pmopovoav Vo ayopacstovv omd 101mTeG Yoo e£€Toon OTO OTiTL,
Tap€Xovtag TopdAAnAa o evodllokTtiky Avon yia tig dokipég RT-PCR ota wtpikd
gpyaotnpio. Av Kot ot toyeieg dokipég dev givar 10co axpiPeic 66o ot dokipég RT-PCR,
TAPAYoVV amoTeEAEGHOTA GE AMYOTEPO amd [l dpa, €vd Ol TeAevtaieg pmopel vo
YPEWGTOVV MG Kot 000 NUEPES. LGTOGO, TPOKEWEVOD £Va, ATOUO VO TOPAKOAOLOEL TNV
KATAOTOGT TOV, TOCO G TEPINTOOT £kBe0NG OGO Kot 6€ TepinTtwon poéivvong omd tov
10, TPEMEL va. dlevepyeiTol oNUovTIKOG apBpnog e€etdoewv, ol omoieg pokpompdeso
etvar damavnpéc, yxpovoPopeg kat emppencic oe avakpiPn omoteAEGHATA AOY® TNG U
opONc xpMong Tov oM 0D. 26 TPOTOG AVTIUETOTIONG 0VTOV TOV TPOPANUATOC, GTN
Tapovoo  SWTAMUOTIKY  €pYyacio, To OEOOUEVO, TOV  YPNOUYLOTOOVVTOL  gival
nxoypaenoelg acbevav pe COVID-19 kot vyidv atépmv amd 10 cOVoro dedopévav

nAnBovg Coswara.

Ot acBéveleg Tov avamvevotikoh pali pe o avamvevsTikd tpofAnpota yivovtor 6Ao0
KOL TO GLYVEG HE TNV TAPOS0 TOV ETMV Kot Ol AvOpmTOL TPEMEL VO EMCKENTTOVTOL
vocokopeio kot va eégtalovior copatikd and yurpd. I'a tovg Adyovg avtovg, 1
aviyvevon pe Baomn tov Nyo amod texvikég ML ko DL [6],[7], [8], [9] umopel va. peidoet
OMUOVTIKA TO KOGTOG Y10 TOLG AoHEVELG Kol VoL E£0IKOVOUNGEL TOAVTLLO YPOVO TOGO Y10

Tov 0cBev] 060 Kal ylo TOV emaryyeApatio vyelog.

Mo €101K1] KOt yopiot OE00UEVOV MYNTIKOV CNUATOV TOL YPNCLOTOIOVVTOL Yl
tagwounon eivor avt| tov kataypoaeov Prixe. O aviiktvrog tov Pryoe oto
OVOTVELOTIKO CUOTNHO TOWKIAAEL Kol amotelel KOO ovuntopo oe mive ornd 100
acBeveldV Kol GAA®V KoTAoTACE®V 10Tpikng onpaciog [10], onwg g COVID-19.
"Exovv viomomBel apretol akydpifpotl mov mpaypatorotovy didyveoon COVID-19 [11]
Ao MYMTIKES KataypaEs frya [12] pe ypnomn CLVEMKTIKOV VELPOVIK®V SIKTO®V, [13],

[14], [15], [16].



M xvpiopyn tpoxinon otig epappoyés ML kot DL, 6nwc, n aviyvevon PAafov, n
dyvaon, 1 mpoPreyn ¢ evamopévovoag oEEAUNG Cong o Propmnyovikd
eCopmuota KA. €ykertal ot U otabepn euon Tov TePPAALOVTOS GLAALOYNG PODOV
dedopévoy. Ot mopeKKAMOES €VVOlLDV, YVOOTEG KOl MG OLTieg Un  OTACIUmV
CLUTEPLPOPAYV, OQeihovTal € Qovopevo Omwg 1M emoxkoTNTa, 1 LroPdduion
awcOnmpov 1 eEapmmudtov, ot Bepuikéc PHeETOPOAEG KAl Ol 0AAOYEG GTOVS TPOTOLS
Aertovpyiog 1 ota evdlopépovta TV ypnotdv. To Eéomacua g mavonuiog COVID-
19, eivar éva opaKTNPIOTIKO TOPASEIYUO TOPEKKAICEDV OedOUEVOV pE TAN00G
EPELVMV VO, £XOVV TPULYHOTOTOMOEL Y100 TNV AVTILETOTLION TOL TPOPANUATOG ATOKAONG

gvvolbv otov COVID-19 [17], [18], [19], [20], [21], [22], [23], [24].

Ocwpntino Yrnofalpo

Mnyovikn MaOnon kor Babia MaOnon

To 1956, o opdda emotnUOVEOV TANPOEOPIKNG £0e0e Ta Bepéha yio v 13€a OTL Ot
VIOAOYIOTEG UmOopoLV  va  unfodv v  ovOpdmivy okéyn kol GLALOYIoUO.
Yrnoompi&av 01t "kdbe mrtuyn TG pdnong N omolodnmote GAAO YOPAKTNPIOTIKO TNG
vonpoovvng [Ba pumopovce], kKat' apynv, va meptypagel pe toon akpifelo dote o
unyxavn [va] pmopetl var tnv mpocopowwaoel”. [25]. Avt) 1 apyn €yve yvootn g
"teyvnt vonuoovvn" (TN). v ovoia, n TN amoteiel Evav Topéa aplepopévo oty
OLTOLOTOTTOMNGOT TOV JVONTIK®OV EPYOCSU®V TOV SVVHB®S ekteAobVTal Omd TOV
dvBpomo. 10 mhaicto avtod Tov Topéa, 1 ML kot 1 DL avadvoviol wg GUYKEKPIUEVES
neBodoroyieg MOV ATOCKOTOVV otV €miteLEN AVTOV TOV GTOYOL HE TN OldKpPloT

potifov and ta dedopéva yio T PeATioon TS amddoong o€ o TOIKIALL EPYACLOV.

To tuyaio ddcog 1 RF elvar emopévag po pébodog cuvoOrov TOv emekTeivel T
peBodoroyio TV SEVIPWV amOPACTG LLE TN ONULOVPYIO TOALUTADY SEVIPOV OTOPAONG.
Y avtifeon pe ) xpnom OA®V TOV YOPUKTPICTIKOV Yo TV KATAOKELT KAOE dEvipov
amoOPAoNGS, £vo TUYOIO dACOG YPNOIULOTOLEL £VOL VTTOCVUVOLO YOPUKTNPIOTIKAOV YLl TN
ONpovpYyic LEHOVOUEVAV SEVTPM®V. ZTN GLVEXELD, TO OEVTPO TPOPAETOVY GLALOYIKA TO.
amoTEAEGUATO TNG KAAONG Kol 1 TPOPAEYN NG EMKPOTOLGOG KAGONG HeTalld TmV

dévipav Kabopilel TNV TaEvOUNGN TOL TEAIKOD HOVTELOV.



"Eva. molverinedo perceptron 1| MLP, (Rosenblatt 1958), etvan éva povtéro texynton
VELPOVIKOD SIKTVOL HE TPOWOT), TO Omoi0 OmMOTEAEITOL OO TOAAUTAL CTPOUOTOL
VELPAOVOV TOV GLVOELOVTOL TANPMOG LLE TOVG ETOUEVOVS VEVPAOVEG G KAOE atpdpia. 'Evoag
apBuog dlacuvdedepévmv perceptrons cuvBétovv to MLP.

Mo egpyaciec mov apopovv TV avoyvoplon eikovov, Kabe gicodog oe éva ANN e
TPOPOOOTNOY| aVTIoTOXEL GE €val elkovooTolyeio - pixel péoa oty gwova. QotdGO,
aUTH N TPOGEYYION €XEL VO ONUOVTIKO HEOVEKTNUO: Ol SCLVOESEIS HETAED TMV
KOUPoV  eivor  avOTOPKTEG KOl EMOHEVEDS, YOVETOL TO YWOPIKO TANIGLO TOV
yopaxtnpotikov. [Ipokeévou va avipetoniotel ovtog o meplopiopds v ANN pe
TPOPOdOTN O, Elcdyovtar Ta Nevpovikd Aiktva ZvuveMktikng Awtdmong (ENN) mg
e€e1dIKELEVT] KATNYOPIO TV TPOTWV, IKOVY VO S10TNPEL T YOPIKT GUCYETION HETAED
TOV EIKOVOOTOYElOV oG ekovoc. Xe avtiBeon pe ta ANN mov emelepydlovran
pepovopéva ewkovoototyeio, to INN enelepyalovtarl Kot HETAOIOOVV TEPLOYES HLOG
EIKOVOG OE GUYKEKPYEVOVS KOUPOVG GE €MOUEVO GTPOUOTA, JTNPAOVING £TGL TO
YOPIKO TAAIG10 atd T0 omoio e£NyON TO XOPAKTNPLOTIKO.

Onmg avagépbnke Tponyovpévms, yio TNV EKTAideLon evog Lovtélov Padidg nabnong
ATOLTOVVTOL PEYOAQ, OYOMOGUEVO, GOVOAD O£SOUEVEOV TOV TPOETOAlovTOL amod
KAMVIKOUG 10Tpovg I epmelpoyvopoves. Ewdikd og topeig dmwg 1 wtpikn ameikdvion,
omov emapkelg moocoHTNTEG dedopévmv dev givar dueco owbéoipueg 1 amAdg dev
vapyovv axoun (m.y. Eéomacua g COVID - 19), kabictator avaykaio n kabiEpwon
H0G EVOAAOKTIKNG HEBOSOV Tov amartel Atydtepa 1 KaBOAov oyolacuéva dedopéva
YLoL TNV TTOPOYN TPOPAEYEDVY GYETIKA LE TN VEA £VVOLa. AVTN 1 GVYKEKPIUEVT TPOKANGN
™G ekpdnong wog véag évvolag xopig va Aapupdvovpe €K TOV  TPOTEPOV
TOPOOEYILATO, OTOPEVYOVTOG £TGL TV OOLTNON Y10 KOTAOTIKY GUAAOYT Oed0UEVOV

KoL ETOYYEALOTIKO GYoMacpo, ovopdletal Zero-Shot Learning (ZSL) [26], [27], [28].

To povtélo mov ypnoiponoteitar o€ avt TV Tpocéyyion ovopdaletal CLIP , to onoio
onpaiver Contrastive Language-Image Pre-training. To CLIP eivor éva NA mov
exkmadevke o€ 400 ekatoppdpla Levyn (ewodva, Keipevo). Asdopévng Hog ovag,
etvar og Béom va mpoPAEYEL, GE PLGIKT YAMGGA, TO MO CYETIKO OMOCTAGHO KEWEVO

yopic va ypetdleton va fedtioTonombel dpeca yio v epyacia.



Hopéxxiion Evvoimv

O 06poc '"upetatdmion evvoldV" ovaQEPETOl o€ OMPOPAENTEC UETOTOMIGES NG
VTOKEIUEVNG KATOVOUNG T®V OEOOUEVOV PONG HE TNV TAPodo Tov ypdvov. g
ATOTEAEG L0, OL TPOPAEYELS TOV HOVTEL®Y TOV EKTTALOEVTIKAY GTO TaPEABOV Pmopel va.
vivouv Ayotepo akpiPeilg kabmg mepvhel o Koupdg M pmopel vo yobovv evkanpieg
BeAtiowong g axpifetag. IIpotabnke apyucd amd tovg Schlimmer kot Granger [29] to
1986, o1 omoiot giyav wg 61dHY0 Vo emonudvovy 0Tt Ta. BopvPmddN dedopéva pmopel
TeEMKA va yivouv un BopuPddng mAnpopopia e dtapopetikd ypdvo. Emopévac, ta
HOVTEAD HaBnong mpémel va S1BETOVY UNXOVIGHOVG Y10 GUVEXN OlyveoTn TNG
amOd00MNG KOl VO UTOPOLV Vo TPOSapUOLoVTaL OTIG OAAAYEC TV OEOOUEVMV LE TNV
népodo tov ypovov. H €pguva oyeTikd pe v TopEKKAMON EVVOLOV TEPIAUUPAVEL T
onuovpyio HeBOd®V Yo TNV OviyVELOT), TNV KATOVONGN KOl TNV TPOGOPLOYN NG
TOPEKKALONG. 1] TOPEKKAIOT) EVVOLDV JLOKPIVETOL CLVNOMG GE TPELS KATNYOPIES:
¢ Ewovikég d1oMacOnoelg otig onoieg 1 katavoun tov dedopévev eilcddov PT (X)
aALaer pe to xpovo, eVvo 1 €K TOV VoTEP®V TBavoTTa TS €600V PT (Y[X),
TOV OVTITPOCSMTEVEL TN o)éom xapToypdenong peta&y XT kot YT, dev alddlet.
o Ilpaypotikég petatomicelg ot Omoieg 1 €K TOV VOTEPOV  KATOVOUN
mBavotntog PT (Y[X) petafdrietarl pe v mdpodo tov ypodvov, aveEdptnrta
ano Tic petaforég oto PT (X).
o  YBpuwikéc doMobnoelg ot omoieg cupuPaivovy TOLTOYPOVA EIKOVIKES KO

TPOYUATIKEG O10A1c0N o1 (01 VPPIOIKEG dloMcBnoelg eivat ot o cuvnBiopéveg

o€ Propumyovikég epapUoYEQ).

Agoouéva — Meboooioyia,

Aedouéva, Coswara

To obvoro dedopévav Coswara [30], [31], [32], eivar £va chOvoAo dedopévmv amd To
TAN00G oL TEPLEXEL 3 10N AVOTVELGTIKMV MY®V: XOVS Y0, AVATVONG Kol OLUALNG,
KaOdG Ko TAnpo@opieg HETA-OEO0UEVMV Yo KAOE ypnotn. AmoteAeital and deiypato
NYOL 7OV TTaPEXOVTOL OO 2746 S10POPETIKA avayveploTikd ypnot®dv (user ids). Kabe
YPNOTNG LIEROAE TIG AKOAOVOES 9 JAPOPETIKEG NXOYPAPNGELS, OV0 €idn Nywv Prya,
Bapid ko pnyd, 600 £idn Nywv avamvong, pnyd kot Badid, dvo £idn arapiBunong evog
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€m¢ elkoot ymoeionv, Koavoviko kot ypryopo Kot 3 Slopopetikovg pOdyyous povnévimv
pe mopatetopévn eovi. Kdbe mymrtikd detypo cvvodehetor amd mAnpopopieg peta-
ded0UEVMV OV TEPIAAUPAVOVY dNUOYPAPIKES TANPOPOPIES OTTMG, NAKia, OAO, YDOPO.
npoérevong K.Am., Tomo dokiung Covid-19 ko v tpéyovoa Katdotaomn vysiog Tov
yprotn. Ola ta mymTikd apyeio €govv a&oloynbet yepokivnta, OGOV apopd tnv
TOWOTNTO TOL MYNTIKOV OelylaTog Kot TNV katnyopio. otnv omoia ovikel, amd 13

oYOMaOTEG Le KaBe apyeio va oyolaletan pia opd.

Ilpo-eneepyacia

[Ma Tovg oxomovs TG mapovoag peAéne, novo ot dvo thmot detypdtwv Pryo (Papid,
pNYA) xpNoLoTOmONKaV o€ £va eviaio Voo dedopévmv. Ta delypata pe Katdotoon
oe o oamd TIg TPEg Kotnyopies, dnAadn Oetikd Mmoo, Oetikd pétpro Kot BeTikd
OACLUTTOUOTIKO, TOEWVOHOUVTOL oG BOeTikd, To Ogiypato mov SMA®VOVTOL LYW
TAPOUEVOLY MG £YOLV Kot To. bITdAouta deiypato amoppintovtatl. EmmAéov, 1o oynqua
0.1 mapovotdlel TNV KOTOVOUN T®V CLUUUETEYOVTIOV GE VYIELS - BeTIKEg eTIkETEG VAL
uva. [pokepévov va epapproctodv ot péBodol TPOGaPUOYNG TNG TAPEKKAIONG TNG
évvolog, ta dedopéva mov Kataypaenkay ard tov Oktdpplo tov 2021 mpdxettal va
YPNOLOTONB0HV MG GUVOAO TOPEKKALONG KOl GLVETTAOGS Ba e&apeBovv amd ta, cHvora

eKTaidevoNG, EMKVHPOONG Kot SOKIUNG,.



Distribution of COVID-19 Status over the months
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Ewéva 0.1: Katavoun derypdrov ovd pivoe

[Tpokeévov vo pembel n cuVOMKN JIIPKELD TOV NYNTIKOV OEOOUEVOV Y10, TNV
EKTTAIOEVOT), EPOPUOCTNKE TEPIKOTY| TNG GLOTNG. AvTd emMTEVYONKE LE TOV S0 ®PIGUO
TOV N0V KABE NYOYPAPNONG OTO UN CLOTNAG OLGTHATE TNG, YPNOULOTOIOVTAG EVOL
katoeA 30 dB g kpimplo yo ) S1dkplon TOV GLOTNAOV 0md To Un ClOTNAd
SCTALOTO, KOL TOL VTTOAOLTO TUALLATO GUVIEIM KOV HeTAED TOVS Y10 TV AVOKOTOUOKELT
™G NYoypaenons. Me tn yprion avtng s pHeboddov, amoppipdnke o pun ovcid®ING NYOG
Kol HEWMONKE M ovvolkn Owdpkeln TV myoypapnoewv. Térog, 66 kotoypapég
amoppieOniay Aoym tov 011 gite mepieiyav 0 devtepdrenta oL (60 kataypapss), eite
N dudpkeld Tovg NTav pkpotepn omd 0,35 devtepdrenta pe doyeto NYo (6 KoToypapég

TOV TEPLElYAY PWVES 1] SLGOLAKPITOVS NYOVG).
Ta evamopeivavta dedopéva daywpiotnkav otn cvvéyewn o 4 chvora, dniadr| To

OUVOAO EKTOUOEVONG, TO GUVOAO EMKVLPWONG, TO GUVOAO OOKIUNG KOl TO GUVOAO



napékkionc. H katavoun tov 6edopévav mov Tpoékuye topovctdleTol 6To akdAovbo

oynpa 0.2.
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Ewéva 0.2: Tehucog dStoympiopog dedopévov

Eéaywyn Xapaxtypietikov

[Tpokelpévov vo avTipeT®mIoTeL TO TPOPANUA TOV NYOYPAPNCEDV HE SLOPOPETIKA
pnKn dtapkelag, ypnopnonomdnke n pébodog mov tpotddnke and tovg M. Pahar et.al
[16]. Zvykexpuéva, amd «0be eyypagn e&ayetor évog otabepdg  aptBudc
YOPOKTNPIOTIKAOV F e TNV €@apoyn Tov PiKovg GAROTOG va £0pTATOL At TO UNKOG
™G MYNTIKNG YPOVOCEPAS oV €EAYETOL KOTA TN QOPTMOON TNG EYYPOENS KOl TO
delypata avé TuMqpo vo e£apTdvTat amd T SIIPKELD TOL NXOL. Me TV €papuroyn TS
npoavapepbeicas pebooov, o apBuds Twv davvoudteov mfce ava Tpuque Bo eivar o
1d10¢ Kot dgv amorteiton copuTANP®oN pe unodevikd. O apldudg TV TUNUATOV 0pIGTNKE
oe 100, n mapapetpog n_fft (uAKog Tov Tapabuptkov GNUATOG LETE TN CLUTANPMOOT) LLE
undevikd) opiotnke oe 1024 kot o puOudg detypatoinyiog opiotnke o 2250. Tvvolikd
e&nydnoav 42 yapakmmpiotikd, 13 MFCC, 13 MFCC Deltas, 13 MFCC Delta - deltas,
1 ZCR, 1 Kurtosis kot I RMS ywa ka0¢ éva amd ta 100 tpurpata, ta omoio abpoilovran

o€ £va oYNua xapokTNPoTik®dv (42, 100) yo kdbe Kotoypagn.



Dacuaroypapiuora Mel

o ta poviéda Pabuag pddnong, e&nydnoav ta  Mel-gacuotoypagpnipora
YPNOWoTolwvTaG 1T ovviptnorn librosa.feature.melspectrogram. O  pvOuog
detypatoAnyiog opiotnke og 22050, to n_fft g 1024, o ap1Buog tov tumudatov e 100

Kot TEAOG, O TUTOG Y10l TO UNKOG AALTOG fvat 0 1310¢ e TOV Tapoamdve.
MLP kou RF povtéio

[Ipdtov, ta dedopéva tvmomotovvtal pe T ypnon tov Standard Scaler amd
Biprodnkn sickit learn. Tumomotel Tar YOPAKTNPIOTIKG APALPOVTOS TH UECT) TN KoL
KAMpokdvovtag ot povadtaio Stoukdpoven.

Mo avtd ta povtéda ypnoono)dnke to TAaiclo PEATIGTOTOINONG VIEPTAPAUETPOV
Optuna mpokepévov va BpeBovv ot kadvtepec vieprapdpetpol. H tpdwpn dakonn
éxel oplotel og True kot M oLVAPTNON EMGTPEPEL TO GKOP auroc TOL GLVOAOL
emkvpoone. H pedétn éxel oprotel va ekteleitor yuoo 70 dokipég pe kotevbovon
peylotonoinon ¢ TWNG amddoonNG NG OVTIKEWEVIKNG ovuvdptnons. Emutiéov,
a&lomowovvtal o detypatonming TPE kot o khadevtig Hyperband [33]. Téhog, to
HOVTEAO pE TNV LYNAOTEPN Pabporoyio auroc 6To cHVOLO EMKVPOONG EMAEYETAL (OC

T0 TEMKO HOVTELO TTOL Bal SOKIOGTEL GTO GUVOAO SOKIUTNG.

H dwdwacio emavarapfavetot yioo v ektédeon dAlov 70 dokipumv, aAld vt )
eopa epappoleton n teyvikn Synthetic Minority Oversampling 1 SMOTE. Avt 1
TEYVIKY VIEP-OEIYUATOANYIOG YPNOIUOTOLEITOL VIO VO OVIUETONIGEL TV €AY
detypdtwv Covid-19 (khdon perovotmrag) kot étol vo fondhoel to poviéAo otnv
OTOTEAECUOTIKY  €KpAONoN TOov opiov amdpacng HeTalhd TV OV0 KAACEWV.
Yvykekpéva, 1 SMOTE Aertovpyel pe v emioyn evog tuyaiov mapadelyatog and
v KAdon pewovotrog Kot ot cuvéyela Ppiokovior k amd tovg mAnciéctepovg
veltoveg yia To ev Adym mapaderypa. Emdéyeton évag toyoio emAeypévog yeitovag Kot
dnpovpyeitan Eva cuvOETIKO TaPAdELy o o€ £vo TuYoio ETAEYUEVO onueio HETOED TV
V0 TOPASELYHATMOV GTO YDPO YOPUKTNPICTIKMV. ZTO TEAOG QVTNG TNG dtodikaciog ta

dedopéva ekmaidevong Ba etvar wwoppornuéva. H petafint k opiCeton o€ 5.



2vvedixtika Nevpwvikd Aiktoo

Aodyo ™ mnBopag mpo-ekmadevpevav ENN mov €yovv emTUXEL EEAPETIKA
amoteAEGHATO 6TO GUVOLO dedopévav ImageNet [34], anopacictnke 6Tl 1| YVAOOT TOV
anéktoay Bo propovoe va agtoronbel yia va Bedtiobel ) yevikevon ya v tpéyovca
gpyacio. Xvvoikd Oa dnpovpynBodv 6 SopopeTikd LOVTELN XPGLLOTOLOVTOG 3 TPO-
ekmadevpéva XNN o¢ povtéda Bdonc. Tpla amd ta €51 poviéda Ba £xovv Eva oTpdpaL
Gaussian Noise ¢ Kpu@d GTPAOLN GTNV APYLITEKTOVIKY, EVO Yo Ta. vtolowta to GS Ba
ypnoponomel wg oTpdpa £16000V. Me aVTOV TOV TPOTO UTOPOVLE VO GLYKpivovpe
oG 1 0¢om tov otpdpatog GS emnpedlel TNV 0TdI0GN TOL LOVTEAOV.

Ta povtéda mov ypnoomomdnkoy ®g pHoviéda Pdong yo tov TaStvounty eivot to
VGG-16, ResNet-50 kot Inception-ResNet-V2 and ) Biprodnkm epappoydv keras.
To povtého @opTdOVETAL E TO TPO-EKTALOEVUEVA BApT ad TV epyacio TaSvounong
ImageNet, aAAd ywpig T0 avdtepo otpdpo. Oha To oTpOUATO Eivol TAYOUEVO, DOTE
Vo unv givort eKodgHG L0 KoL Y10 VO NV KOTOGTPOPOVY 01 TANPOPOPIES TOV TEPLEYOLV
KaTé TN O1dpKELD LEAAOVTIKAOV YOpwV ekmaidevons. To povtédo Ba pudbel vo mapéyet
TPOPAEYELS Yol TNV TPEYOLGA EPYAGIN TPOGHETOVTAG LEPIKA EKTOUOEVGIUN CTPADOUATO
Tovo ond TO TOYOUEVO CTPOUATO. XE OVLTN TNV TEPITTOOY TO GTPAOUOTA TOL
npootifevtan eivar €éva otpopo Gaussian Noise He T TUMKNG OTOKAIONG TNg
Katavoung tov BopvBov mov €xet oprotel oto 0,1. Xt cuvéyela mpootédnke Eva
otpopo Global Average Pooling 2D, pe 2 Dense otpdpato vo OAOKANP®OVOLY TO
povtéro. To mpwto Dense layer amoteAeitar amd 1024 povadeg Kot po cuvaptnon
evepyomoinong "ReLu", evd 1o de0tepo amoteieiton amd 2 povadeg (pio yio kébe
KAdom) Kat tn cuvdptnon evepyomoinong "softmax". To poviého cvvtdocetan pe )
xpon tov Peitiotonomt "Adam" pe pvOud padnong 0,001 kot binary cross entropy
loss. Ta dedopéva avapaduiovior ypnopwonowwvrog to "ImageDataGenerator” kot
Bétovtag v mapapetpo rescale og 1.0/255.0. Téhog, to povtéro mpocappoletot yio
100 ko 200 emoyés, pe ta fapn TV KAAGEDV Vo £X0VV OPIGTEL MG TPOG TNV AVOAOYia!
TOV VYOV TPOG To. OETIKA OElYLOTO, TPOKEUEVOD VO OVTILETOTIGTEL TO TPOPANLA TG

AVIGOPPOTHOG TOV KAAGEWV.

H {010 dodwcocio emavarappdverarl pe ) dapopd 0Tt 10 otpdpa GS opileton TOpa

®G OTPMOUO EI0OO0V aVTi Y10 TO EKACTOTE LOVTELD Pdiomg.



Zero — Shot Learning

To mhaicio avorktov k@dwka OpenAl CLIP (Contrastive Language-Image Pretraining)
kot 1 BpAodnkn PyTorch ypnoonotodvion yio avtd to tunipa. Emidéystan éva mpo-
ekmadevéVo povtéro pe ypnon tov OpenAl CLIP pe v apyttektovikny ViT-B-32 kot
kaBopilovtat ta mpo-ekmadevpéva Papn ("laion2b s34b b79k"). EmimAéov, avaxtdrot
o tokenizer mov cyetiletal pe To emAeypEVO LovtéLo Yo TV enegepyacio TV £1660mV
kewévov. To mpog dokyn Cevyog Keévov-eTikéTag GLUPOAIKOTOEITOL KO OTN)
oLVEYELD EEAYOVTOL TO YOPOKTNPIOTIKA EIKOVOGS KOl KEWEVOL omd TO HOVTEAD. X1
ouvvéyela, vroloyilovtor ot softmax mBovotnteg To Keipevo va cvoyetileton pe v
ewova Ko 1 mpoPAemduevn kAdon kabopiletor amd Tov dgiktn TG HEYIOTNG
mBavotntoc. TéAog, N amdd0oT TOL HOVIELOL GE OYXEOM UE TIC ETIKETES TNG PACIKNG
aAnBeiag aglodoyeital pe Tov VTOAOYICUS TV amapaitTOV HeTptkdv. Ta dvo (edyn
He v KoAvTEpT anddoon Ba ypnoiponomBodv 6to chvoro dokiung. Beltiotomoinon

KATOEAIOL Ta&vounong

Teyvixéc Avrmuetomons Iopéxxiions Evvolag

To povtéro pe v vynAotepn Pabporoyia roc-auc 6to cHvVoro dokiuNg Ba emheyel Yo
Vo QOKIHOOTEL GTO GUVOAO TOPEKKAIONG, TPOKEWEVOL Vo OlomoTBel ov vIapyet
TaPEKKALON £VvOolag 1 OYL. XT1 GUVEXELN, TO GUVOAO TaPEKKAONG YwpileTan oTa cHVOLL
eknaidevong drift, emvpwong drift kou dokiung drift, pe to emieypuévo poviéro va
EMOVEKTAOEVETOL 0TO GUVOLO ekmaidevong drift. H xoatavoun tov dedopévaov mov

TPOKLITEL TOpOoVCLaleTal 6to oynua 1.3.

Katd ) dudpreta g emaveknaiosvong Oa e€etaoctel ) emovekmaidocvon Tov Tedevtaion
Kol TV 000 TEAELTOU®V TUKVOV GTPOUAT®V, HE TNV TPOocHnKn &vdg mapdyovio
KOvovikomoinong ota Bapn tov poviéhov. O mapdyovtag Kovovikoroinong 0o ivor m
dwpopd TtV véov Papdv peiov ta modd PBapn tov emumédov (o amdAvTo 1
TeTpoyOViKd péyedog) kKot Bo moldamiactaletar pe o otabepd pe tpég 0,01, 0,1 7
1,0.

Awkpivoupe Tig 600 ETPEPOVS TEYVIKES:

e Ola ta otpodpate KTOC 0md T0 TEMKO TLUKVO otpdpa (dense 1) Taydvouy kot

dlepeuvavtor ot akorovBeg pébodol kavovikomoinong emumédov (LRM)



YPNOLOTOIMVTAG TA BAPT| TOL GTPMUOTOG, TO OO0 VoL apyLKd amodnKeLUEVA,

¢ mold Bapn. To povtéro emavekmadevetal yio 100 kot 200 emoyés.

Ta &0 tedevtaio TUKVE CTPMOUOTO TOV EMAEYUEVOL LOVTEAOV

(dense «at

dense 1) emavekmodevovial Le TNV EPAPLOYT TOV HEBOO®MV KOVOVIKOTOINGNG

nmov mopovcidlovtor otov mivaka 1.1 oe kdBe otpopa. To povtéro

emovekmadevetot yio 100 ko 200 emoyéc.

Distribution of Labels in each Set for Retraining

100 A

80

Label
Healthy
COVID-19 Positive

v 60 82.4% 83.2% 9
2 (337) (89) e
g
40
20 A
17.6% 16.8% o,
(72) (18) e
0 T T T
Dift Train Set Drift Validation Set Drift Test Set
Ewéva 0.3: Atyopiopog 6ed0pEVOV TOPEKKAOTG Y10 EMOVEKTOIOELOT
Mivakag 0.1: MéBodot Kavovikomoinomng emmédon
LRM Equation
1 NeWyeights [0] = 1.0 X |newweights [0] — Oldweights [O]]
2 NeWyeights [0] = 0.1 x |newweights [0] — Oldweights [O]]
3 NeWyeights [0] = 0.01 X |neWweights [0] - 0ldweights [O]]
4 _ 2
newweights [0] =10 X (newweights [O] - Oldweights [0])
5 _ 2
newweights [0] =0.1x (newweights [O] - Oldweights [0])
6 _ 2
neWweights [0] =0.01x (neWweights [0] - Oldweights [0])




Beitieronmoinon Karweliov Taévounons

"Eva. povtého mov exmandeveTon yio va £pyo dvadikng tavounong, 6mws avTd Tov
avapépnkay Topamave, ETCTPEPEL Eva oKop TOAvOTNTAG TG LETABANTIG-GTOYOV
7oV detyvel Tdco mhavO givor va aviket To delypa og KaBe kKAdor. To Tumikd KatdheAt
7oV ypnotponoteitot yro va kaBoptotel av To detypo avikel 1 Oyl otn Betikr KAdon
etvar 0,5. Merafaiiovtaog 10 KatdOEAL ToEvopnons, oAAGCEl 1 amdO0GN TOV
ta&wvounty, aeob aAralovv kot ot Tég twv TP, TN, FP, FN mov gpepavifovtatl otov

mivoKa cOyYuomG.

Agdopévou 6tim tiun 0,5 dev givorl Thvto To 100VIKO KATMOAL, KO EKTOG 0md TO YEYOVOG
Ot1 10 VIO e&€taon £pyo etvan aTO TS aViIcOppomnG Tavounong, To tekevtaio Prpa
ot odkacio Tagvounong a sivar vo eEetaoctel katd Tésov 1 PeATioTONOINGT TOV
KatO@Aiov to&vopmong Ba Peitidoer v amddoon TV ToSVOuNTAOV. AVTO
EMTLYYAVETOL [LE TOV VIOAOYIGUO TOV KATOEAI®V TG KapumdvAing ROC yia 1o chvoro
EMKVPOONG KOl TN GLVEYELD LE TNV a&LOAOYNoN TG ATOd0GNG TOV LOVTEAOL o€ KAOE
KatOEA pe Paon ™ pébodo Pabpordynong tcoppommuévne axpifelac. Téhog, 0
KOTOEAL TOL HEYIOTOTOLEL TV 1ooppomnuévn Pabuoroyio akpifetag emAéyetar wg 10

VEO KOTOOA omd@AoNG KoL TO LOVTEAO SOKIHALETAL GTO GUVOAO SOKIUNG.

Anoteléouata — Lyol1acuog

[Mopovcialovtal To LOVTEAD [LE TOL KOADTEPO OMOTEAEGLLOTO OVAL KOTYOPiaL.
Anoreléopara MLP ko RF

Otav gpnoonoodviar 1060 1 Pertiotonoinon SMOTE 660 kot 1 Bertictonoinon
KATOEAIOV, Topatnpeitol onUavTikn PeAtioon 1060 TG TIHES evacnciog 6co Kot
oTig TWEG woppomnpévng akpifetag. o va sipoote mo akpiPeig, to poviého RF
emtuyydverl Babporoyia evaicOnociog 59,42% kot wooppomnuévn axpifeta 62,92%, pe
T1G 600 TIEG Vo amoTelohV TIg VYNAOTEPEG emTELYDEice PaboAoyieg oe avTEG TIG OVO
petpcés. [aporo mov n Pabuoroyio AUROC eivar oprokd younidotepn amod exeivn mov
emtuyydveral xopig m xprion tov SMOTE, avtd to poviého RF givar moAd kaAvtepo
omv opbn mpoPreym g OBetikng khdong (Covid-19). H evacbnoio Peitiobnie
neplocotepo and 10 eopég kot n Pabuoroyio 1oopponnuévng akpifelog sivor emiong

21,33% vynAdtepn, oe ocvykpion pe 1o poviého RF mov dev ypnoipomotel ovte
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SMOTE ovte ) Beltictomoinon kotoeiiov, kot 10,70% vynidtepn amd 10 Hovtéro
Tov yprnoiponotel povo 1o SMOTE.

Mivakag 0.2: Anoteléoparta poviédmv RF kor MLP pe epappoyn SMOTE kot BEATIGTOL KOTOEAL0D TO.SVOUNONG

Model | Accuracy Sensitivity Specificity Balanced AUROC Threshold

Accuracy

MLP | 74.71% 40.58% 83.39% 61.99%  65.13% 0.674
RF 65.00%  59.42% 66.42%  62.92% 69.42% 0.387

Amoteléopoara NN

O mivakag 1.3 anewovilet Tig peTpikéc anddoong yuo ta kpued povtédla GS - CNN pe
T0 V€O, BEATIOTO KOTOOALOL OV EPOPUOLOVTOL GTOV LVTOAOYIGUO T®V HeTPKAOV. Ot
wooppomnpéves Tég axpifelog kopaivovtor peta&y 65,48% o 72,07%. Avtd
VTOONAMVEL P KoAN otdkpion peta&d g 0eTkNg Kot TG apvnTIKnG Kotnyopiog, 1e
Lo JKPN TTOON VoL £ivoit ELEAViG OTIC EAAYIOTES Kol pLéytotes Tinég. EmmAgov, 1 tiun
evaoOnoiog kopaivetor amd 62,32% £mg 69,57% avaroya pe 10 factkd HOVTELO Kot
TOV 0POUO TOV ETOY®V TOV eKTAdeHovVTOL. OG0V 0popd TO LOVTEAO LE TV VYNAOTEPT
Babuoroyic AUROC, mapatnpeitoar Bertioon g tyng svastnoiog katd 9,31%.
YUVOMKA, M €QAPUOYY] €VOC PEATIOTOL KOTOEAIOV OV TPOKVHTTEL OO TO GUVOAO
EMKVPOONG POIVETOL VO EYEL OLAPOPETIKT EMIOPOAOT OTIG THEG TOV UETPIKADV, LE U0
YeEVIKOTEPT TdoM otV PerTioon g evaicinoiag.

MMivakag 0.3: Anoteléopata poviédwv ZNN pe kpueo otpdpa GS Kot BEATICTOTOMHEVO KATOPAL TOEVOUN GG

Base — Epoch | Accuracy Sensitivity Specificity Balanced AUROC Threshold
Model Accuracy
100 74.12% 62.32% 77.12% 69.72% 76.65% 0.827
VGG -16
200 74.41%  68.12% 76.01% 72.07%  80.21% 0.860
100 67.35% 62.32% 68.63% 65.48% 71.34% 0.568
ResNet
200 70.00% 63.77% 71.59% 67.68% 73.93% 0.742
100 70.29% 63.77% 71.96% 67.86% 77.14% 0.014
Inception

200 71.18%  69.57% 71.59% 70.58%  78.74% 0.003




Anoreléopara CLIP

Ta Cevyn 2 ko 7 emdéyniov AOym tng amddoons tovg otn petpiky] AUROC kot
e€eTdoTNKOV GTO GUVOAO JOKIUMY. ATO TO, ATOTEAECUATO TOV TOPOLGLALOVTAL GTOV
nivaxo 1.4 pmopel va d1omiotmbel 0TL VITAPYEL TTOGN THG ATOS0GNS OADV TOV UETPIKADOV
o€ OLYKPION WE TIC TWES OTO GLVOAO emkVpwong ywo. to (gvyog 2. To Levyog 7
emtuyydvel ehaepds kaavtepn Padporoyio AUROC (53,36%) kot tun evoucOnociog
15,94%. Evod 10 (gbyog 7 emtuyydvel KOADTEPES PETPNGELS GTO GVVOAO JOKIUMY Ot
10 (ebyog 2, eEaxorovbel va £xel TOAD Kakég emdocels ot ddyvmon tov Covid - 19

amo to pocuatoypoenuota Mel.

Mivakag 0.4: Anoteléoparta poviélov CLIP

Pair index | Accuracy Sensitivity Specificity Balanced AUROC
Accuracy

2 63.82% 18.84% 75.28% 47.06%  47.06%

7 75.59%  15.94% 90.77% 53.36%  53.36%

Amoreléopara Avtiuetomong lapéxkiions ‘Evvorag

Metd v epappoyn kabepidg and tig 6 peBOd0VE KavoviKonoinong ETmedov, paivetal
o6tin LRM 6 emrvyydver tipg AUROC 78,50% petd omd 100 emoyéc ekmaidevong kot
78,25% petd omd 200 emoyég exmaidevonc. Avtd  kabiepdver T péEB0dO
KOVOVIKOTOINoNG Tov tehevtaiov emmédov pe 100 emoyég exnaidevong og m pébodo
LE TIG KAAVTEPEG EMOOGELS. TVYKEKPIUEVO, GE GUYKPLOT| LE TNV U1 EQOpRoyn neBddov
kavovikoinong emumédov (LRM 0) pe 100 enoyég exnaidevong, n fadporoyic AUROC
BeAtidvetor kotd 5,02% ot katd 3,98% oe ovykpion pe v LRM 0 pe 200 gmoyéc

EKTTA{OEVOTG.

O ITivaxoag 1.5 amewoviler vymAdtepn evaicncio oAdd eAd@pOS YOUNAOTEPN
E0IKOTNTO AOY® €approyng PEATIoTOL KatweAiov. Ot onuavtikég PeATiOoE TV
evaoOncio, VITOINA®VOLY KOAVTEPN aviyveLOT OETIKOV TEPMTOGE®V UE TNV
epappoyn tov véov kotoeiiov. To LRM 6 mopovcidlel o pikpn peioon g
evaoOnciog Kot g woppomnuévng akpifetag otig 200 emoyés, evod otig 100 emoyég ot
petpkég eivar mavopoldtumes. o GAAN o popd, To amotéAeso TG PEATIGTOTOINGNG
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TOV KATOPAIOL Ta&vounong Pertidvel Ty evaicOnacia, evad peumvel v kot Te. H

LETPIKT 1GOPPOTNUEVG aKpifetag ToKIAAEL avdAoya LLE TO HOVTELO.

Mivakag 0.5: Atotedéopato emaveknoidevong TV dV0 TEAELTOI®V TVKVAY GTPOUAT®V ToL VGG-16 - 200 enoyés
- kpoppévov GS pe epappoyn BEATIoTOL Kat@eAoD Ta&vopunong.

LRM Epoch | Accuracy Sensitivity Specificity Balanced AUROC  Threshold
Accuracy
100 81.03% 88.00% 37.50% 62.75%  74.75% 0.171
’ 200 82.76% 90.00% 37.50% 63.75%  75.50% 0.957
100 84.48% 92.00% 37.50% 64.75%  75.50% 0.55
1 200 86.21% 94.00% 37.50% 65.75%  74.50% 0.004
100 75.86% 82.00% 37.50% 59.75%  73.25% 0.476
? 200 82.76% 90.00% 37.50% 63.75%  74.25% 0.138
100 87.93% 96.00% 37.50% 66.75%  77.75% 0.023
’ 200 87.93% 96.00% 37.50% 66.75%  76.00% 0.002
100 82.76% 90.00% 37.50% 63.75%  74.75% 0.052
* 200 82.76% 88.00% 50.00% 69.00%  73.37% 0.255
100 74.14% 78.00% 50.00% 64.00%  74.00% 0.788
’ 200 82.76% 90.00% 37.50% 63.75%  74.25% 0.041
100 79.31%  84.00% 50.00% 67.00%  78.50% 0.751
¢ 200 75.86%  80.00% 50.00% 65.00%  78.25% 0.706

2vunepaocuara — Meilovrikny ‘Epegova

210%0¢ TG Tapohoos SmAmpatikng epyociog stvar (1) m avamntoén peboddSwv
Mnyavikng Mabnong kot Babiag Mdabnong v ™ oidyvoon tov COVID-19 and
nnTd dedopéva ko (2) M epapuoyn pebddwv mpocapuoyng oricOnong mov Ba
dwmpnicovy v akpifeld Tov povtéAov mov avamTOYOnkKe, o un otabepd
nepipdAlovto, o OAn T Obpkeln Tov Ypodvov. [ v mpoomdbew avTy,
JOKIHAGTNKAY TOAAATAG LOVTELQ YPNCLOTOIMVTAG TOGO TAPUSOCIUKES VAOTOMGELS,

oniadn Random Forests kou Multilayer Perceptron, 6co kot apyrtektovikés CNN.

32



[Tpokelpévov va avtipetoniotel o TPOPANUO TOV OTOPPEEL GO TO. TEPLOPIGUEVOL
dwbéopa dedopéva, ypnooromdnke n texvikn Transfer Learning péow tg ypnong
TV povtéAwv VGG-16, ResNet-50 kot Inception-ResNet-V2, ta onoio apopodsav 1o
ovvolro dedopévev ImageNet. Eniong, ta poviéha RF kot MLP exmodebtnray pe kot
yopic v gpapuoyn oo SMOTE. EmumAéov, otnv mapodoa perétn ypnoylorondnke
N pabnon Zero-Shot Learning, pe tn ypnon tov povrédov OpenAl CLIP, yw va
egetaotel 1 anddoon avtig ™S peBddoL pabnong og éva €pyo 1TPIKNG Ta&vounong
K0l VoL GLYKPLOOVV TaL AOTEAECULATA TNG LE LOVTEAD TTOV £XOVV EKTTAOEVTEL 1] pLOLICTEL

€101KA Y10 QVTO TO €PYO.

Ta dedopéva mov ypnotpomombnkay Nrav deiypota Py amd T0 GHVOAO dedopéEVEV
Coswara mov mepteiye vy Kot poivopéva pe COVID-19 dropa. Ot petacynuoticpol
JESOUEVMV IOV TTPOYUATOTOMONKAV TV TOGO 1 EQYMYT| YOPAKTNPIOTIKAOV OO TIG
NYOYPAPNGELG OGO KOl Ol HETAGYNUOTIGHOL X0V o€ €1KOva. To kaldtepo LovTELD OV
emutevyOnke amd TN ypnon tov eEayfEVIOV YOpaKTNPIOTIKOV MG (6000 NTOV TO
HoVTéAO Tuyaiov ddcovg pe katmeil 0,367, to omoio odnynoe oe akpifela 66,47%,
evaoOnocio 47,83%, ewdwodmra 71,22%, coppormnuévn axpifera 59,52% ko
Babuoroyica AUROC 69,91%. H epappoyn oo SMOTE ota dedopéva ekmaidevong
elye ¢ OMOTEAEG LA TO LOVTEAO TVUY OV 8AGOVG, te Ty KotweAiov 0,387, va £yl tnv
KaAvTepn amddoorn. To povrého métuyxe axpifeia 65,00%, evaicOnocio 59,42%,
e11KoTNTa 66,42%, 160ppomnuévn axpifeta 62,92% kot Babporoyio AUROC 69,42%.
H gpappoyn tov SMOTE ka1 n Bedtiotonoinon kat@@Aiov amd T0 GHVOAO EXKVPWOONG

BeAtiwoav TG LETPIKES TV HOVTEA®V, av Kot pe optokT| peiwon tov AUROC.

Oocov agopd ta poviéha CNN mov dokipdotnkav pe tn ypron Mel - Spectrograms 1
KOADTEPT amdOO0GN EMTELYONKE OO TNV APYLTEKTOVIKN TTOL Ypnoiponotel to VGG - 16
¢ Pacikod - povtédo Kot Eva kpued otpmdpo Gaussian Noise. Ta amoteléopata givaol
T okpifelag 78,53%, svarcOnoia 62,32%, ewdwodtro 82,66%, 1coppomnuév
axpifera 72,49% ko yuy AUROC 80,21%. H ypnion evog otpdpatog Gaussian Noise
®¢ Kpueo otpdpa 0dnyet oe vymrotepes TEG AUROC (13% PeAtimon oto ENN pe
povtéro Baong 1o VGG-16 kot Inception-ResNet-V2) kat evaicOnciog oe cuykpion pe
m ypnon v GS o¢ otpoupa €c6dov. H ypnon Peltictomoinong KatweAiov
tagwounong Pertiooe tn Babporoyia evaicOnociog tov povrédov, evad pelmwoe oplakd
™ Babuporoyia 1ooppornpévng axpifetoc. Ot Babporoyieg mov mposkvyay pe T xpnon
kato@Aiov 0,860 Ntav 74,41% axpifewo, evocOncio 68,12%, ewdwkdmra 76,01%,
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woppornpévn  axpifei 72,07% ko g AUROC  80,21%. Xvvolikd, 1
BeAtioTomoinom Tov KaT®EAIov amd@acmg dev TETVYE TNV 1010 GuVoMKT Pedtivon ™G
petpikng O6mwg ota poviédo MLP kar RF. Zmv mepintoon towv poviédwv CNN
eaivetar va vrapyel €vag copPiPacudc peta&d gvaicOnoiog kot e101KOTNTOG, OAAL
AOY® TOV TTEGIOV EPAPLOYNG TOV HOVIEA®V LaG guvoeital o BeATiopévn evactnacio
EVOVTL JOG 0VENIEVNC EWOIKOTNTOC.

Téhog, N Ta&vounon undevikdv - Topofolicpumv pe xpron Tov poviélov CLIP éyet
YEPOTEPN EMIOOGTN GVVOAIKA GTO GUVOAO SOKIUMV, e CNULOVTIKY dlapopd peta&h Tov
Cevyaplov KePEVOL - ETIKETAG e TNV kKoAvTepN emidoor tov CLIP kot tov poviéhov pe

™ EPOTEPN EMIOOGT TOL TANPMG EKTALOEVUEVOL LOVTEAOVL.

Oocov agopd TV TPOCUPLOYYT] TNV TOPEKKAICT) TOV EVVOLADV, 1] EXAVEKTOIOEVOT| TOV
V0 TEAEVLTOI®V TUKVOV GTPOUATOV TOV HOVIEAOL pe TN HEB0SO Kavovikomoinong
emmédav 6 £6e1ée Pertioon katd 5% oty T AUROC (o€ chykpion pe ) un xpnon
nedddov Kavovikomoinong emmédwv) kot yperdomray 100 emoyég emavekmaidcvong
OTO 0EOOUEVO, EKTOUOEVONG TAPEKKALONG Yo VoL EMTELYOEL AVTO TO OMOTEAEG A, OVTi
vy ¢ 200 emoyég oL YPEWCTNKAY Yo, TV OPYIKN ekmaidevon tov povtédov. Ta
amoteAéopato mov emitevyOnkav Ntav axpifer 79,31%, svacOncia 84,00%,
ewwomta 50,00%, woppommuévn axpifeia 67,00% kot tiu AUROC 78,50%. H
¥PNOMN €VOG PEATIGTOTOMUEVOL LOVTEAOD KOTOOAIOV amd@aong dev AAAAEE TG TIHEG
TOV GUYKEKPIUEVOL HOVTEAOV, OAAG GUVOMK(, TOPOLGLACTNKE M0 OVTIGTAOUION
petald evaioOnoiog kot eWdkodTTOC, OTOL 1 gVvaAlcHNCia aVENONKE Kot 1) EOIKOTNTO
pewwdnke. H cvumepipopd g tooppomnpévng axpifetag diépepe avdioya pe to LRM
TOV YPNOLUOTOMONKE.

H peldovtikn épevva pmopel var cupmeptAdfet to cuvovacud Tomv Kataypapmv Py,
@OV Kol optMoag ov mapéyovial 6to oOvoro dedopévev g Coswara. H ypnron
SPOPETIKMV TNYDV OVOTVEVCTIKMV NY®V BaL LTopovoe va BEATIOGEL TNV ardO0GT TOV
tagwvountn, oedopévov O0tt to CNN 0Oa éyer peyoAdtepn mowidio mbavov
YOPOKTNPIOTIKAV Y1 Vo, EAYEL. Mo OMOTEAEGLOTIKT EQOPUOYN AVTAG TNG LeBddov Ba
UITOpovGE Vo, Topdyel £va LOVTELO [ KOADTEPES KOvVOTNTES O1dkpiong. EmmAéov, 1
TPOOTTIKT TNG TOAVTPOTIKNG TAEIVOUNGNS OV GLVOLALEL Ta Pacuatoypaerpate Mel
- He TO OEOOUEVO, KEWEVOVL TOL TOPEYOVTIOL Oomd Toug YpNoteg (evAo, mAiia,
CLUUTTOUATO K.AT.) B0 LTOPOVGE EVIEXOUEVAS VO ALENGEL TV aTGO0GT TOL LOVTEAOV,

a&1omolmVToS TapAAANAL TIG N)OT TAPEYOUEVEG TANPOPOPIES TOV 0cBeVdY OV EpEtvay
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aypnoomointeg otV mopovca peAéTn. EmmAéov, n yprion pebddmv cuvorov, dnwe n
ovvabpoion N M otoifaén poviéhwv, Ba pmopovoe va 0Bpoicel To. TAEOVEKTNLOTOL
TOALOTAGY Ta&vounT®V, €VIGYDOVTOS Tr GUVOAIKN OTOd00T| KOl TN OlyVOOTIKY
axpifero. Emmdéov, n die&oywyn TOAATADV EKTOOELCEDV GE SLUPOPETIKA GVVOAQ
dedopévov yuo to Pya COVID-19, ovumepirapfovopéveov mopov Omwg T0
COUGHVID «xot 10 Sarcos, 0o pmopodoe vo moapéyel TAOLOIOTEPO OESOUEVAL
EKTTAIOEVONG, EVIGYVOVTOAG TNV IKAVOTNTO TOV LOVTEAOL VO, YEVIKEVEL GE SLOPOPETIKOVS

TANBVGUOVG KOl KATOOTAGELS.

Téhog, M TPocApPLOY TNG TAPEKKAIONG TOV EVVOLOV GE GLVOVAGUO pe HeBddOLG
aviyvevong Bo pmopovoe vo SlucPUAicEL TNV AVOEKTIKOTNTO TOV HOVTEAOV UE TNV
TéP0d0 TOL YPOHVOV, EMITPENOVTOG GTO GUGTILO VO OVIXVEVEL KOl v Tpocapuoletal
oT1G ££EMOCOUEVEG KATAVOUEG OEOOUEVMV e eAdytotn eEmTtepikn aAinienidpacn. H
a&10moiNGoN Kol 0 GLVIVAGHOS AVTMV TV TEXVIKMV Ba pmopovoe va avoi&etl To dpopo
Y10l OTOTEAEGLOTIKOTEPA O10yVmOTIKE cvoThpata COVID-19 kot avakoveilovtag toug

OPYOAVIGHOVG VYEIOVOUIKTG TTEPIBAAYNG atd TNV TtieoT).



Covid-19

1.1 Introduction

Coronaviruses are a large family of single-stranded, positive-sense RNA viruses with
four structural proteins, as seen in figure 2.1, including envelope (E protein), membrane
(M protein), nucleocapsid (N protein), and spike (S protein) that infect humans and a
wide range of animals. The coronavirus belongs to the Coronaviridae family and the
Nidovirales order. The name stems from its crown-like surface glycoprotein. Among
the subtypes of coronaviruses that can infect humans, the risk factor varies, as they
cause respiratory tract infections that range from mild to fatal. Mild illnesses in humans
include some cases of the common cold, while fatal cases are caused by the infections
of severe acute respiratory syndrome (SARS), which originated in China in 2002, and
Middle East respiratory syndrome (MERS) in 2012 with a fatality rate of around 40%
[1]. COVID-19, which is caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV?2), first originated in Wuhan the capital of Hubei Province
of the People's Republic of China, on December 27, 2019. It appears that at the Wuhan
seafood market, where live poultry and wild animals were sold, SARS-CoV2 was able
to transition from animals to humans. The virus continued to spread and by the 11% of
March 2020, the World Health Organization (WHO) declared a pandemic situation
[35]. So far, there have been more than 774 million infected cases and around 7 million
deaths from SARS-CoV-2 infection have been identified [36]. The coronavirus is
transmitted commonly by respiratory droplets and can be asymptomatic between 2 and

14 days [37]. In addition, SARS-CoV-2 is able to modify the genomic sequence of



human cells during the time of replication, and thus several mutations of the virus have

emerged [1].

— Spike Protein

——Membrane Glycoproteins

Envlope Protein
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Figure 1.1: Structure of SARS-Cov-2

1.2 Transmission and Personal Infection Prevention Methods

COVID-19 can spread among individuals in several ways. The primary method of
transmission is by air particles, which can be spread by activities such as speaking,
coughing and sneezing. These particles can stay in the air for up to three hours and
range in size from larger respiratory droplets to tiny aerosols. Contaminated aerosols or
droplets can enter an individual’s respiratory system through the nose, mouth or eyes
and cause an infection. The virus can travel greater distances in busy or poorly
ventilated interior environments, but it is mainly transmitted between people in close
proximity to each other. This is because individuals frequently spend longer amounts
of time in these locations, and the virus's particles either linger in the air longer or spread
farther during that time. Contamination can also result by circuitous interaction. This
may occur from contaminated objects coming into direct or indirect contact with the
mouth, nose, or eyes through the hands. Whether a person with the virus has symptoms
or not, it can still spread from them. People with mild symptoms can spread the
infection to others for longer periods of time, but those with severe symptoms seem to
be more contagious just before symptoms appear [2]. Additionally, data have indicated
that SARS-CoV-2 transmission can also occur as a result of contact with contaminated

inanimate objects, also known as fomite transmission [38]. Stainless steel and plastic



surfaces seem to allow the virus to be detected for up to 48 and 72 hours respectively
[39].

Despite the various ways of contamination and the fact that people may be infected with
the virus and spreading it without showing symptoms themselves, there exist several
measures that can halt the transmission of the disease. First and foremost, wearing a
mask has been one of the firstly proposed methods during the COVID-19 outbreak [3].
A mask should be worn when an individual is either displaying symptoms of the disease
or is spending time in locations where contact with infected people is possible, such as
hospitals, public transport, etc. [38]. Furthermore, improving ventilation and air
filtration can help prevent virus particles from accumulating in indoor spaces.
Achieving better air ventilation and filtration can help reduce the possibility of infection
and transmission of the virus that causes COVID-19. Spending time outside, when
possible, instead of inside can also help, since viral particles spread between people
more readily indoors than outdoors [3]. Some actions to avoid high concentration of air
particles contaminated with the SARS-CoV-2 virus, as stated by the Centers for Disease
Control and Prevention (CDC), are frequent change and the use of filters that are
properly fitted and provide higher filtration in the heating, ventilation, and air
conditioning (HVAC) system, and opening windows to bring in as much outdoor air as
possible.

In the case of exposure to the virus the individual should abide by the following
measures, as suggested by the CDC [40]and the World Health Organization (WHO)
[41];

e Stay home and separate from others as much as possible.

e Self-isolate from symptom onset and comply with the self-isolation timeline
provide by your local and national authorities.

e If you have a fever, cough, and difficulty breathing, seek medical attention
immediately. Call by telephone first and follow the directions of your local
health authority.

e If you need to leave your house or have someone near you, wear a properly
fitted mask to avoid infecting others.

e Use a separate bathroom, if possible.

e Take steps to improve ventilation at home, if possible.

e Don’t share personal household items, like cups, towels, and utensils.
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1.3 Covid—19 Symptoms

Globally, 80% of the reported COVID-19 cases presented with mild respiratory
symptoms, 15% of cases required hospitalization and 5% cases were critical in nature
The vast majority of patients, according to a study conducted by Talukder et.al [4],
present with mild respiratory symptoms. The most typical symptoms are fever, dry
cough, fatigue and loss of taste and/or smell; upper respiratory tract symptoms can
include pharyngalgia, headaches, and myalgia [5]. Severe COVID-19 symptoms
include shortness of breath, loss of speech or mobility, confusion, and chest pain.
Symptoms may appear 2-14 days after contamination, with the average time interval
being 5-6 days. COVID-19 can infect a lot of different cells and systems of the body,
with the mostly affected parts being the upper respiratory tract (sinuses, nose, and
throat) and the lower respiratory tract (windpipe and lungs). What is more, it has been
observed that the severity of SARS-CoV-2 virus’ symptoms varies with regards to
biological factors such as gender, age, race, and even social factors as for example
income and social class [42]. While exhaustion, dyspnea, joint pain, and chest
discomfort are the most prevalent residual symptoms, reports of organ failure in the
heart, lungs, and brain have also been made. Thromboembolic disease and myocardial
damage have been documented in people with severe sickness. Regarding the long-term
effects of COVID-19 on the lungs, research suggests that patients may experience
prolonged symptoms, poor lung function, and radiological findings for as long as three
months after being released from the hospital. The aforementioned symptoms, i.e.
symptoms existing for more than 3 weeks, are labeled in literature as long COVID or
post—-COVID-19 syndrome. Additional chronic symptoms could be headaches,
myalgia, palpitations, chest and joint pains, cognitive and mental impairments, taste
and smell abnormalities, coughing, headaches, and problems with the heart and

gastrointestinal tract [43].

1.4 Available Treatments

Throughout the course of COVID-19 disease’s life several treatments have been tested
and utilized by clinicians. The choice of the treatment is tied to the severity of the
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symptoms, the patient’s medical history, as well as the variant of the virus with which
the individual has been infected with. A case in fact is since the prevalence of the
Omicron variant, treatments that were previously considered best practice, such as
bamlanivimab plus etesevimab, are no longer recommended [44]. Due to the ever-
changing nature of the disease, vaccinations have been proven to be the most effective
way to halt the advance of the virus and decrease the severity of the symptoms of

infected individuals [45].

Four vaccines produced by different companies, Pfizer/BioNTech, Moderna, Johnson
& Johnson/Janssen and AstraZeneca have been approved by the European Medicines
Agency (EMA) and belong to either one of the three available types of vaccine, mnRNA,
adenovirus and nonreplicating viral vectored. The first three vaccines were developed
in the USA, proceed to a phase 3 clinical trial and are administered intramuscularly
(IM), whereas the last one was developed in the United Kingdom (UK) [1].
Pfizer/BioNTech and Moderna vaccines utilize the new mRNA vaccine technology,
which differentiates their products from the competition. The fundamental mechanism
underlying the mRNA vaccine technology is based on a vehicle that enables the
delivery of a nucleic acid molecule encoding the antigen of interest into the target cell
in the human host, thus allowing the host cell to fabricate the target protein and express
the antigen to elicit the immune response. In this way, upon invasion by a pathogen
carrying the antigen, the immune system of the host can quickly trigger humoral and
cellular immune responses, thereby preventing the disease [45]. Both of these vaccines
were administered in two IM dosages, with an injection interval of 21 and 28 days
respectively [1].

On the other hand, the vaccine developed by Janssen used preexisting technology with
an adenovirus vector to trigger an immune response and offer protection for subsequent
infection [46]. This vaccine is administered in a single intramuscular dose. The vaccine
produced by AstraZeneca in collaboration with the University of Oxford is a
nonreplicating viral vectored vaccine candidate in clinical development. The
administration method is also in IM form with two dosages in the same timeframe as

the Moderna vaccine [1].

The following figure illustrates the incidence of suspected vaccine complications
recorded in the European database of suspected adverse drug reactions reports

(EudraVigilance) as of August 6, 2021. [47].
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Figure 1.2: All reported adverse effects per 1M vaccine doses [ 18]

1.5 Motivation of the current study

Healthcare systems worldwide faced significant challenges due to the COVID-19
pandemic. The initial wave was especially difficult due to the fact that a high number
of patients needed critical care, there were insufficient resources for patient
management and non-COVID-19 care procedures were seriously jeopardized [48].
Alongside this, there was a lot of uncertainty regarding the therapy and clinical path, a
lot of trepidation in the community, and a lot of rumors and false information about the
symptoms of the disease and the result validity of the rapid testing kits. Due to the high
demand in fast and easily accessible diagnostic methods, companies developed rapid
testing kits that could be purchased by individuals for home—based testing, while also
providing an alternative to RT-PCR tests in medical laboratories. Although the rapid
tests are not as accurate as RT—PCR tests, they produce results in under an hour,
whereas the latter may take up to two days. Another benefit of rapid test kits is the
ability to detect asymptomatic individuals, since they can be conducted relatively easily
from one’s home and provide accurate results, if the person follows the instructions
correctly [38]. However, in order for an individual to keep track of their condition, both
in case of exposure and infection to the virus, a significant number of tests needs to be
carried out, which in the long run is expensive, time consuming and is prone to

inaccurate results because of improper use of the equipment. As a way to combat this
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issue, several methods of COVID-19 detection have been proposed in recent studies
utilizing a variety of machine learning (ML) or deep learning (DL) techniques and data
types [49], [8], [11]. In the current thesis the data used are audio recordings of COVID—

19 patients and healthy individuals from the Coswara crowdsourced dataset.

1.5.1 Audio Signal Classification

Respiratory diseases along with breathing problems are becoming increasingly
common over the years and people are required to visit hospitals and be physically
examined by a doctor. In addition, the healthcare specialist may send the patient for a
chest x-ray which entails an increase in costs, technical equipment and human resources
usage and in waiting time for a diagnosis. This in combination with the fact that
according to WHO, 45% of its member states report having less than 1 doctor per 1000
people, which is the WHO recommended ratio [50], accumulate additional strain in the
healthcare system. For these reasons, audio—based diagnosis from ML and DL
techniques can significantly reduce costs for patients and save valuable time both for

the patient and the healthcare professional.

On a study by Mazi¢ et al. [7] a two-layer pattern recognition system architecture is
proposed, for the identification of asthmatic wheezing in children's respiratory sounds.
The first layer consisted of two parallel SVM classifiers in order to highlight the
differences between signals with comparable acoustic features, such wheezes and
inspiratory stridors. The proposed structure is further enhanced by the use of a digital
detection threshold in the second layer, which aims to improve wheeze detection. The
data used were obtained and recorded in the General Hospital of Dubrovnik, Croatia.
The recordings were then pre—processed and Mel-Frequency Cepstral Coefficient

(MFCCs), along with other audio features were extracted.

Aleixandre et al., on a systematic review paper [8] on COVID-19 detection from audio
signals, illustrates that neural network based algorithms were predominantly used by
researchers with Convolutional Neural Networks (CNNs) being the first choice among
them. Supervised machine learning algorithms were also widely used, with Support
Vector Machines (SVMs) and Random Forests (RF) taking the first and second place

respectively.



In another study conducted by McNulty et al. [6] regarding the correct inhaler use, an
automatic classification system was developed utilizing a quadratic discriminant
analysis (QDA) classifier. Recordings from 70 patients using a Diskus inhaler were
collected and split into 3 classes (blister, inhalation, interference). A total accuracy of

85.35% was obtained on the testing dataset.

Audio signals have also been used in the diagnosis of Alzheimer’s disease (AD), where
Shimoda et al. [9] collected 1,616 audio files in total; 1,465 audio data files from 99
Healthy controls (HC) and 151 audio data files recorded from 24 AD patients derived
from a dementia prevention program conducted by Hachioji City, Tokyo, between
March and May 2020. After the extraction of vocal features from the data, 3 ML models
based on extreme gradient boosting (XGBoost), RF, and logistic regression (LR) were
developed and the resulting areas under the curve (AUCs) for XGboost, RF, and LR
were 0.863 (95% confidence interval [CI]: 0.794-0.931), 0.882 (95% CI: 0.840-0.924),
and 0.893 (95%CI: 0.832-0.954), respectively.

1.5.2 Cough Classification

A special category of audio signal data used for classification is that of cough
recordings. The impact of coughing on the respiratory system varies and is a common
symptom of over 100 diseases and other conditions of medical significance [10], such
as COVID-19. The glottis may function differently, and the airway may become limited
or clogged due to lung disease, which may affect the vocal audio quality of speech,
breath, and cough [13], [51], [52]. This makes it more likely to recognize the coughing
sound linked to a certain respiratory illness, such COVID-19.

One study [14] aimed to use Artificial Intelligence (AI) to discriminate COVID-19
subjects, including asymptomatic individuals, solely from a forced-cough cell phone
recording. The researchers collected a dataset of COVID-19 cough recordings through
their website, resulting in the largest balanced dataset up to the date of the study with
5,320 subjects. Their Al framework leveraged acoustic biomarker feature extractors to
pre-screen for COVID-19 from cough recordings, which were transformed with
MFCCs, and provided personalized patient saliency maps for real-time monitoring. The
framework utilized a CNN architecture with transfer learning to improve COVID-19

discrimination accuracy. Validation showed the model achieved high sensitivity
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(98.5%), specificity (94.2%) and area under the ROC curve (AUC) (97%) for COVID-
19 diagnosis, with 100% sensitivity for asymptomatic subjects and 83.2% specificity.
The findings suggest that Al techniques could provide a free, non-invasive, and large-
scale COVID-19 screening tool, suitable for daily use in various settings such as
schools, workplaces, and public transportation, potentially aiding in containing the

spread of the virus.

What is more, Imran et al. in a 2020 study [15], introduced AI4COVID-19, an Al-
powered screening solution deployable via a smartphone app. The app records and
sends three 3-second cough sounds to a cloud-based Al engine, returning results within
2 minutes. The researchers showcased that the pathomorphological alternations caused
by COVID-19 in the respiratory system are distinct from other common respiratory
diseases and thus cough recordings can be utilized effectively in COVID-19 detection.
The application initially employs a cough detection CNN — classifier to distinguish a
cough from other environmental sounds by transforming the recordings into Mel —
spectrograms. The overall accuracy which the cough detector achieved is 95.60%. Then
the sound is forwarded to three parallel, different classifier systems, i.e., Deep Transfer
Learning-based Multi Class classifier (DTL-MC), Classical Machine Learning-based
Multi Class classifier (CML-MC) and Deep Transfer Learning-based Binary Class
classifier (DTL-BC). The DTL-MC and DTL-BC use Mel —spectrograms as input and
classify the audio as one of four possible classes in the first case (COVID-19, pertussis,
bronchitis, or normal person), and one of two in the second (COVID — 19 cough or not).
Lastly, the CML-MC uses a concatenated feature matrix of MFCCs and principal
component analysis (PCA) extracted features as input to a SVM classifier. The overall
accuracy of the three parallel classifiers is 92.64% for the DTL-MC, 88.76% for the
CML-MC model and 92.85% for the DTL-BC model. A mediator receives the output
from each of these three classifiers and only when all three classifiers produce identical
classification results can the app declare a diagnosis. In the case where the results are
not the same, the application returns "test inconclusive". While not a clinical-grade tool,
AI4COVID-19 offers versatile screening capabilities accessible to anyone, anywhere,
aiding in directing clinical testing and treatment to those in need, potentially saving

lives.

Pahar et al. in 2021 [16] introduced a machine learning-based COVID-19 cough
classifier capable of distinguishing COVID-19 positive coughs from both negative and
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healthy coughs recorded on smartphones. The Coswara dataset comprises 92 COVID-
19 positive and 1079 healthy subjects, while the Sarcos dataset, a smaller dataset from
South Africa, includes 18 COVID-19 positive and 26 COVID-19 negative subjects with
SARS-CoV laboratory tests. Addressing dataset skew with the synthetic minority
oversampling technique (SMOTE), seven machine learning classifiers were trained and
evaluated using leave-p-out cross-validation. Results reveal the ResNet-50 classifier
achieves the highest performance in discriminating between COVID-19 positive and
healthy coughs, with an area under the ROC curve (AUC) of 98%. Additionally, an
LSTM classifier (which has been proven effective in various medical tasks [53], [54])
effectively discriminates between COVID-19 positive and negative coughs, achieving
an AUC of 94% after feature selection. Given its cost-effectiveness and ease of
deployment, this non-contact cough audio classification holds promise as a practical

tool for COVID-19 screening.

A year later another study was punished by the same researchers [13], which
investigates the efficacy of transfer learning and bottleneck feature extraction in
detecting COVID-19 from audio recordings of cough, breath, and speech. This non-
contact screening method, deployable on consumer hardware like smartphones, does
not require specialized medical expertise or laboratory facilities. Pre-training three
DNNs (CNN, LSTM, Resnet50) on datasets lacking COVID-19 labels, the study fine-
tunes these networks with smaller COVID-19 labeled cough datasets or utilizes them
as bottleneck feature extractors. Results reveal ResNet-t50 classifier, trained via
transfer learning, achieves optimal or near-optimal performance across all sound classes
(coughs, breaths, speech), with ROC AUC scores of 98%, 94%, and 92% respectively.
Coughs exhibit the strongest COVID-19 signature, followed by breath and speech.
Transfer learning and bottleneck feature extraction with larger datasets enhance
performance and reduce standard deviation of classifier AUCs during nested cross-
validation, indicating improved generalization. The study concludes that deep transfer
learning and bottleneck feature extraction enhance COVID-19 audio classification,
facilitating automatic COVID-19 detection with improved and consistent overall

performance.



1.5.3 Non-stationary Data

A prevalent challenge in ML and DL applications such as, fault detection, diagnostics,
remaining useful life prediction in industrial components, etc. lies in the nonstationary
nature of the environments where data streams are gathered. Concept drifts, also known
as common causes of nonstationary behaviors, include effects like seasonality, sensor
or component degradation, thermal variations, and shifts in operation modes or user
interests. The outbreak of the COVID-19 pandemic, which has caused a rapid and
ongoing shift in conditions across industries ranging from financial services to
healthcare, is a prime example of data drift. When confronted with such nonstationary

environments and situations, the adaptation of ML models emerges as a pivotal concern.

In a study conducted by Duckworth et al. [17], the application of explainable machine
learning to monitor data drift during the COVID-19 pandemic is demonstrated through
the use of a ml classifier and SHapley Additive exPlanations (SHAP). Pseudonymised
patient attendance record of 82,402 adults from the Southampton General Hospital’s
Emergency Department occurring from the 1st April 2019 to the 30th of April 2020
were utilized in the study, with the data up to March 2020 being used as pre pandemic
training and test data and the rest as COVID-19 test set. An XGBoost model is trained
and evaluated in weekly bins throughout the complete test period and is able to achieve
an average AUROC score of 85.6% on the pre pandemic test set, and 82.6% on the
COVID-19 test set. The use of SHAP in explainable machine learning offers two key
benefits in healthcare settings: (1) tracking variation in feature SHAP values as a
measure of data drift, indicating the need for model retraining, and (2) identifying

emergent health risks by observing changes in feature importance.

Disabato and Roveri on their 2019 research paper [18], introduce an adaptive
mechanism enabling CNNs, which have been traditionally unsuitable for such systems
due to computational demands and training data requirements, to function amidst
concept drift. This mechanism employs an active approach, where adaptation is
triggered by detecting concept drift, and utilizes transfer learning to transfer knowledge
from the CNN before the drift to the one after, while retraining only the layers that
became obsolete. The effectiveness of this approach is evaluated on two CNN types

using two real-world image benchmarks, with a consistent increase in accuracy.

In [19] an unsupervised method called D3 (Discriminative Drift Detector) is presented,

which utilizes a discriminative classifier with a sliding window to detect concept drift
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by monitoring changes in the feature space. D3 is a straightforward method compatible
with existing classifiers lacking intrinsic drift adaptation mechanisms. A logistic
regression model is utilized to distinguish between the old and the new data sets which
are “contained” in a fixed size sliding window. A drift is detected with respect to
classifier’s performance regarding the AUROC score. This process is done repeatedly
as long as there is new data. Experimentation with eight datasets demonstrates that D3
outperforms methods such as ADWIN [20], DDM [21] and EDDM [22] resulting in

models with improved performance on both real-world and synthetic datasets.

Another novel approach to concept drift detection is presented in this study [23],
combining the development of online sequential extreme learning machines (OS-
ELMs) [24] with quantifying model modifications due to newly collected data. This
method is validated through synthetic case studies and applied to real-world datasets
and an energy production prediction problem from a wind plant. Results demonstrate
the effectiveness of the proposed method compared to alternative concept drift
detection techniques. Moreover, updating the prediction model upon detecting concept
drift improves the overall accuracy of the energy prediction model while minimizing

the frequency of model updates.



Theoretical Background Information

2.1 Audio Signals

2.1.1 Mel-Frequency Cepstral Coefficients — MFCCs

The Mel scale relates the perceived frequency or pitch of a pure tone to its actual
measured frequency. Humans are much better at distinguishing small changes in pitch
at low frequencies than at high frequencies. Incorporating this scale makes our features
more closely match what people hear [30]. The formula for converting from frequency

to Mel scale is:

M(f) = 1125 x In(1 + 7%

MFCC:s are a set of features commonly used in speech and music processing. They are
derived from the log mel spectrogram by applying the Discrete Cosine Transform
(DCT) to the mel filterbank energies. MFCCs capture the spectral characteristics of the

audio signal and are often used as input features for machine learning models [16], [55].

2.1.2 MFCCs Deltas and Delta — deltas

By calculating the first order MFCC features the Delta MFCC (velocity) features can
be extracted. Since audio signals are time-variant signals, delta features represent the
change in the cepstral features over time. Each of the delta feature extracted as the first

derivative of MFCC feature represents the change between frames. The only benefit of
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Delta features over MFCC features is that they represent the temporal information. One

common technique allowing to differentiate crossing trajectories are delta features.

Delta-delta features (acceleration) are derived by computing the second order of the
MFCCs, or by calculating the first order derivative of the delta. They illustrate the

change between frames in the corresponding delta features.

2.1.3 Kurtosis

Kurtosis is a statistical measure used to describe the distribution of data points in a
dataset, e.g. how steep or flat the peak of the curve is. If kurtosis is high, there are more
peaks in the signal and their amplitudes are greater. For audio signals, it indicates the
prevalence of higher amplitudes. In real-life conditions, a lot of vibrations are

characterized by signals with a kurtosis value higher than three (Gaussian random).

2.1.4 Root Mean Square Value - RMS

Root mean square is a metering tool that measures the average loudness of an audio
track within a window frame. The RMS value will provide a more accurate look at

the perceived loudness of the audio track for the average listener.

2.1.5 Zero-Crossing Rate — ZCR

The zero-crossing rate is the rate at which an audio signal changes from positive to zero
to negative or from negative to zero to positive and indicates the variability of the signal.
Its value has been used widely in both speech recognition and music information
retrieval, being a key feature to classify percussive sounds. ZCR is a very effective way
to detect vocal activity that determines whether a frame of speech is spoken, unheard,
or silent. The zero-crossing rate for unvoiced segments is much higher than for voiced
segments. In ideal conditions the ZCR for a segment of silence in a clear speech should

be equal to zero [30].



2.1.6 Audio to Image Transformation - Mel-Spectrograms

Mel — Spectrograms are spectrograms where the frequencies are converted to the Mel
scale. Humans do not perceive frequencies linearly but in a logarithmic scale. Although
the difference between two pairs of sounds, with the first one containing sounds of 500
and 1000 Hz and the second one of 7500 and 8000 Hz, equals 500 Hz in both cases, the
difference between the second pair of sounds is almost unnoticeable. The Mel Scale is
the result of transforming the frequency scale and constitutes a perceptual scale of

pitches, which are judged by listeners to be equal in distance from one another.
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Figure 2.1: Example of a Mel-Spectrogram

2.2 Machine Learning & Deep Learning

In 1956, a group of computer scientists laid the foundation for the concept that
computers could emulate human thinking and reasoning. They posited that "every
aspect of learning or any other feature of intelligence [could], in principle, be so
precisely described that a machine [could] be made to simulate it." [25]. This principle
became known as "artificial intelligence" (AI). In essence, Al constitutes a field
dedicated to automating intellectual tasks typically executed by humans. Within this
domain, ML and DL emerge as specific methodologies aimed at achieving this
objective by discerning patterns from data to enhance performance across a variety of
tasks. ML leverages historical data as input to facilitate predictions, information
classification, data clustering, and dimensionality reduction, among other functions.
The range of ML techniques available empowers software applications to refine their

performance iteratively.

Notably, ML finds extensive application across various industries. For instance,

recommendation engines employed by e-commerce, social media platforms, and news
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agencies rely on ML algorithms to suggest content based on users' past behaviors.
Moreover, in the realm of self-driving vehicles, ML algorithms and machine vision
constitute indispensable components, enabling vehicles to navigate roads safely. In the
arena of applied healthcare research, ML serves as a tool for automating and flexibly
analyzing complex data structures. This approach, characterized by its computational
intensity, is adept at identifying intricate patterns such as nonlinear associations,
interactions, underlying dimensions, or subgroups. This contrasts with "traditional"
parametric methods, which entail numerous statistical assumptions and necessitate a
priori specification of dimensions, functional relationships between predictors and

outcomes, and predictor interactions.

In ML, there are four commonly used learning methods (supervised, unsupervised,
semi—supervised, and reinforcement learning) [56] that are depicted in the following

figure 2.2, along with some of their respective applications.

Machine Learning Types

Unsupervised
Learning

Reinforcement
Learning

Semi-Supervised
Learning

Supervised Learning

Figure 2.2: Types of Machine Learning

2.2.1 Decision Trees & Random Forests

A decision tree is a supervised learning approach primarily utilized for classification
tasks, although it can also be used for regression tasks. Its structure commences with a
root node, marking the initial decision point for dividing the dataset, housing a singular
feature that optimally separates the data into distinct classes. Each division generates
an edge connecting either to a subsequent decision node, incorporating another feature
to further partition the data into homogeneous groups, or to a terminal/leaf node,
responsible for predicting the class. This recursive partitioning process distinguishes

the data into binary partitions.



Root node

Internal node Internal node

Figure 2.3: Decision Tree structure

A random forest or RF is therefore an ensemble method which extends the decision tree
methodology by generating multiple decision trees. Unlike using all features to
construct each decision tree, a random forest employs a subset of features to build
individual trees. Subsequently, the trees collectively predict class outcomes, and the

predominant class prediction among the trees determines the final model's

classification.
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Figure 2.4: Random Forest classifier structure



2.2.2 Multi-Layer Perceptron

A machine learning technique that draws inspiration from biological neural networks is
known as an artificial neural network (ANN). Every ANN is made up of nodes, which
are like cell bodies, and connections, which are like axons and dendrites, which allow
nodes to communicate with one another. Weighted connections between nodes are used
based on their capacity to produce a desired outcome, much like a biological neural
network where synapses between neurons are strengthened when their neurons have
correlated outputs (the Hebbian theory states that “nerves that fire together, wire
together”) [57]. Information from each node in the previous layer is passed to each node
in the next layer, transformed, and then fed forward to each node in the next layer. This
type of neural network is called a feedforward neural network. A multilayer perceptron
or MLP, (Rosenblatt 1958), is a feedforward artificial neural network model, consisting
of multiple layers of neurons fully connected to the next neurons in each layer. A
number of interconnected perceptrons make up the MLP. A perceptron is a ML
algorithm that looks for a line, plane, or hyperplane in a hyperdimensional space that

divides the data into classes after receiving a set of features and their targets as input.

Input Layer

Input Data— ~— Output

Output layer

|

Hidden Layers

Figure 2.5: Multilayer Perceptron example

An activation function is used to transform a node’s input into a preferred output. The
activation functions tested for this architecture are the hyperbolic tangent function or

Tanh and the rectified linear unit function or ReLLU.



Tanh is a non — linear function that takes a real number as input and, through the
formula shown below, transforms it into the range of [-1, 1] with its center being zero.
An issue with the tanh non — linearity is that when the neuron’s activation saturates at
either -1 or 1, the gradient at these regions is almost zero which causes the vanishing
gradient problem [58].
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Figure 2.6: Tanh activation function

ReL.U is another non — linear function that is less computationally expensive than tanh
and it avoids the vanishing gradient problem. Due to these two reasons, it has become
one of the most widely used activation functions within hidden layers of a neural

network. The formula of this function is given below.

relu(x) = max (0, x)
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Figure 2.7: ReLu activation function
2.2.3 Convolutional Neural Networks — CNNs

For tasks involving image recognition, every input to a feedforward ANN corresponds
to a pixel within the image. However, this approach has a significant disadvantage;
interconnections between nodes are non-existent, and thus the spatial context of the
features (with give meaning to the image) is lost. This is especially important since
neighboring pixels within an image exhibit higher correlation compared to pixels at
distant locations. In order to address this limitation of feedforward ANNSs,
Convolutional Neural Networks (CNNs) are introduced as a specialized category of the
former capable of preserving the spatial correlation among pixels in an image. Unlike
feedforward ANNSs that process individual pixels, CNNs process and transmit areas of
an image to specific nodes within subsequent layers, thereby maintaining the spatial
context from which the feature was extracted. These image areas or patches, known as
convolutional filters, are pivotal in discerning specific features and are extensively
utilized in a variety of image processing tasks, including image blurring, sharpening,
and edge detection. In the context of digital images, a grayscale image constitutes a
singular matrix, while a color image comprises three stacked matrices representing red,
green, and blue color channels. Convolutional filters, typically square matrices
(kernels) ranging from 2x2 to 9x9, are traversed over the original image, while element-
wise matrix multiplication is performed at each position. The mathematical description

of the convolution of a kernel k(z, w)and an image f(x, y) is depicted below.
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The resulting convolution output is mapped to a new matrix, referred to as a feature
map, indicating whether the convolutional filter detected relevant features or not. In
CNNes, filters are trained to identify specific features within images, such as vertical
lines or U-shaped objects, and annotate their positions on the feature map.
Subsequently, a deep CNN employs the feature map as input for the subsequent layer,
which employs new filters to generate another feature map. This iterative process
continues across multiple layers, where the extracted features progressively become
abstract yet valuable for predictive tasks. Ultimately, the final feature maps are
compressed and fed into a feedforward ANN for image classification based on the

extracted features a process commonly known as Deep Learning (DL).
Some more CNN layers beyond the convolution layer described above are:

The pooling layer which derives a summary statistic of the nearby outputs and uses it
as the output of the NN at certain locations. This technique is especially important in
reducing the spatial size of the representation, hence decreasing the required amount of
computation and weights needed. The pooling operation is processed on every slice of
the representation individually. There are several pooling functions such as the average
of the rectangular neighborhood, L2 norm of the rectangular neighborhood, and a
weighted average based on the distance from the central pixel. However, the most
popular process is max pooling, which reports the maximum output from the

neighborhood.

The fully connected layer (FC) or dense layer in which neurons are full connected
with all neurons in the preceding and succeeding layer. A matrix multiplication
followed by a bias effect is all that is need for the output of this layer to be computed.
The FC layer is used as the final layer in a CNN model because it helps to map the

representation between the input and the output.

Finally, another layer that is used in this thesis is the Gaussian Noise layer (GS) from
keras api library!. GS applies an additive zero-centered Gaussian noise, which could be
considered as a form of random data augmentation, if applied as an input layer, and is

useful in mitigating overfitting. It is also a natural choice as corruption process for real

Uhttps://keras.io/2.15/api/layers/regularization_layers/gaussian_noise/
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valued inputs. As it is a regularization layer, it is only active at training time. The most
common noise application is to the inputs of the model, but it can also be added to other
parts of the NN during training. In this study CNN model architectures are implemented
using the GS either as an input layer or as a hidden layer adding noise to the weights of
the model, which can be considered equivalent (under some assumptions) to a more
traditional form of regularization, encouraging the stability of the function to be learned
[59]. This technique has been implemented successfully in the context of recurrent

neural networks (RNNs) by Graves et al. [60], [61].

2.2.4 Transfer Learning

The theory behind transfer learning (TL), which is based on cognitive research, is that
information gained on related tasks can be applied and enhance performance on
unrelated tasks. Humans are known to be able to tackle comparable tasks by using prior
knowledge. The formal definition of TL is defined by Pan and Yang with notions of
domains and tasks. “A domain consists of a feature space X and marginal probability
distribution P(X), where X = {xi, ..., Xa} €X. Given a specific domain denoted by D =
{X, P(X)}, a task is denoted by T = {Y, f(-)} where Y is a label space and f () is an
objective predictive function. A task is learned from the pair {x;, yi} where xi € X and
yi € Y. Given a source domain Ds and learning task Ts, a target domain Dt and learning
task T, transfer learning aims to improve the learning of the target predictive function
fr () in Dr by using the knowledge in Ds and Ts” [62]. In similar fashion, one can learn
how to drive a motorbike Tt (transferred task) based on one’s cycling skill Ts (source
task) where driving two-wheel vehicles is regarded as the same domain Ds = Dr. This
does not mean that one will not learn how to drive a motorbike without riding a bike,
but it takes less effort to practice driving the motorbike by adapting one’s cycling skills.
Similarly, learning the parameters of a network from scratch will require larger
annotated datasets and a longer training time to achieve an acceptable performance [63].
Some of the advantages of TL, are reduced training time, improved neural network
performance (in most cases), and the absence of a large amount of data to accomplish
such performance. These advantages are the main reason why TL is used in this study

and why TL has shown promising results in the field of medical imaging [64].

TL with CNN involves the transfer of knowledge at the parameter level. Pretrained

CNN models employ the parameters of convolutional layers for new tasks, particularly
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in the medical domain. In TL with CNN for medical image classification, the
classification of medical images (target task) can be accomplished by leveraging the
generic features learned from natural image classification (source task), where labels
are available in both domains. In the scenario studied in this thesis, both domains
involve image analysis, and pretrained CNN models use ImageNet data for medical
image classification in a supervised manner. Broadly, two TL approaches exist for
leveraging CNN models: the feature extractor and fine-tuning methods. The feature
extractor approach involves freezing the convolutional layers, while the fine-tuning
method updates parameters during model fitting. Each approach can be further
categorized into two subcategories, resulting in four TL approaches. In the feature
extractor hybrid approach, the FC layers are discarded, and a machine learning
algorithm is attached to the feature extractor. Conversely, in the other types, the
structure of the given networks remains unchanged. Fine-tuning from scratch represents
the most time-intensive approach, as it updates the entire ensemble of parameters during
the training process [63]. In this thesis the structure of the pretrained CNN model or
base model remains unchanged and new layers are added on top of the base model, in

order to be trained on the new data.

2.2.5 Zero— Shot Learning

As it was previously stated, large, annotated datasets prepared by clinicians or experts
are required to train a deep learning model. Especially in areas such as medical imaging,
where sufficient data quantities are not readily available, or they simply do not exist yet
(e.g. outbreak of COVID — 19), it becomes necessary to establish an alternative method
that requires less or no annotated data at all to provide predictions on the new concept.
That particular challenge of learning a new concept without receiving any examples
beforehand, thus avoiding the requirement for labor-intensive data collecting and
professional annotation, is called Zero-Shot Learning (ZSL) [26], [27], [28]. This new
learning technique does not use examples from unknown categories in training, but
instead builds recognition models using information from previously encountered
categories and additional data. The additional data could be vectors of word labels,
characteristics, or textual descriptions. As a result, ZSL is intrinsically interdisciplinary,

combining textual and visual data as two complementary parts [27].



The process of employing phrases, keywords, or labels that the model can utilize for
making predictions is called phrase engineering and it is interlinked with the research
questions at hand. It is essential to acknowledge that identifying highly discriminative
phrases for ZSL can be laborious and may necessitate an iterative approach involving
various phrase adjustments. In cases where the model exhibits subpar performance in
the classification task, experimenting with certain phrases on manually annotated data
and documenting the phrases tested should be tried. In order to get more accurate
results, researchers can employ their experience, knowledge of the literature, data, and
theoretical frameworks, as well as some creativity, in phrase engineering. In this study
several phrases have been tested and compared so as to examine how different labels

can affect the prediction output of the model.

The model utilized on this approach is called CLIP?, which stands for Contrastive
Language-Image Pre-training. CLIP is a NN trained on 400 million (image, text) pairs.
Given an image, it is able to predict, in natural language, the most relevant text snippet
without having to be directly optimized for the task. In the original paper by Radford et
al., researchers showcased that CLIP can match the performance of the original
ResNet50 model on ImageNet “zero-shot” without using any of the original 1.28
million labeled examples [65]. The implementation approach of CLIP is depicted at
figure 2.8.

(1) Contrastive pre-training (2) Create dataset classifier from label text

Text
Encoder

the
ie pup Encoder i i i i

T | T ‘ T3

I LTy | LTy [Ty | . LTy
! S i PN (3) Use for zero-shot prediction

I, LT | LT | LTy | . LTy T | T

Image I LT | 1Ty | Iy T 1T,
3 3Ty | 3Ty | IpTy | L |3y Image
Encoder g > 1 LTy | 1T
W ‘ Encoder 0 s

Figure 2.8: CLIP
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In summary an image encoder and a text encoder are trained in tandem to predict the

correct couplings of a batch of (image, text) training examples. The goal is to maximize

2 https://github.com/openai/CLIP



the cosine similarity of the image and text embeddings of the correct pairs in the batch
while minimizing the cosine similarity of the embeddings of the incorrect (image, text)
combinations. At test time the learned text encoder synthesizes a zero-shot linear

classifier by embedding the descriptions of the target dataset’s classes.

2.3 Concept Drift

The term "concept drift" refers to unforeseen shifts in the streaming data's underlying
distribution over time. As a result, predictions of the models trained in the past may
become less accurate as time passes or opportunities to improve the accuracy might be
missed. It was originally proposed by Schlimmer and Granger [29] in 1986, who aimed
to point out that noisy data may eventually become no-noisy information at a different
time. Therefore, learning models need to have mechanisms for continuous diagnostics
of performance, and be able to adapt to changes in data over time. Research on concept

drift includes creating methods for drift detection, understanding and adaptation.

Changes in underlying data occur due to changing personal interests, changes in
population, adversary activities or they can be attributed to a complex nature of the
environment. In a study conducted by Uchida and Yoshida in daily infection data of
COVID - 19 in Japan [66] the concept drift detection points the extracted points appear
to correspond to new COVID-19 variants and other important state changes.. In the
traditional supervised learning methods, the training and the testing data come from the
same distribution. In real world scenarios though, the predictions need to be made
online and often in real time, without any guarantees that the data will belong in the
same distribution. Hence, at any point in time the testing data may be coming from a
different distribution than the training data has come, and the model’s predictive

capabilities may degrade severely [67].

Assuming that Xt is the input vector of an ML model at time T and Yt is the
corresponding output target vector, the concept drifts are typically distinguished into

three categories:

e Virtual drifts in which the distribution of the input data Pt (X) changes with
time, whereas the posterior probability of the output Pt (Y|X), representing the
mapping relationship between Xt and YT, is not changing.

e Real drifts in which the posterior probability distributions Pr (Y|X) varies over
time, independently of variations in Pr (X).
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e Hybrid drifts in which virtual and real drifts occur at the same time (hybrid

drifts are the most common in industrial applications).

With respect to the type of distribution modification, concept drifts are typically

classified as sudden, incremental, gradual, or recurring and are illustrated in Figure 2.9.
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Figure 2.9: Types of concept drift

Considering examples of sensor anomalies, an abrupt signal bias is a sudden drift, a
bias whose amplitude increases with time is an incremental drift, signal spikes with
increasing frequency before sensor failure constitute a gradual drift, and sensor readings

occurring during some periodic plant conditions constitute a recurring drift [68], [69].

In literature there exists significant amount of research in the accurate detection of when
a concept drift has occurred, but the current thesis’ focus is on examining strategies for
updating existing learning models according to the detected drift, which is known as
concept drift adaptation. There are three main groups of drift adaptation methods,
namely simple retraining, ensemble retraining and model adjusting, that aim to handle

different types of drift [68].

Reacting to concept drift often involves retraining a new model with the latest data to
replace the outdated one, which necessitates an explicit concept drift detector to
determine when retraining is necessary. Typically, a window strategy is employed in
this method to retain recent data for retraining while preserving old data for distribution
change testing. However, determining an appropriate window size is a challenging task

since, a small window better reflects the latest data distribution, whereas a large window
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increases the training data of the new model. ADWIN [20], a popular window scheme
algorithm proposed by Bifet and Gavalda, addresses this dilemma by dynamically
adjusting window sizes based on the rate of change between sub-windows, thus
eliminating the need for predefined window sizes. After finding the optimal window
cut, the window containing outdated data is discarded, allowing new model to be trained

with the latest data.

In cases of recurring concept drift, the preservation and reuse of old models offer
significant advantages over repeatedly retraining new models. This principle underlies
the use of ensemble methods in managing concept drift, which has garnered attention
in the stream data mining community. Ensemble methods entail a collection of base
classifiers that may vary in type or parameters, combining their outputs using specific
voting rules to predict incoming data. Adaptive ensemble methods have been developed
to address concept drift, either by extending classical ensemble methods or by creating
adaptive voting rules. Classical ensemble methods like Bagging, Boosting, and Random
Forests have been adapted to handle streaming data with concept drift, with approaches
such as online bagging [70] and Leveraging Bagging combining with drift detection
algorithms like ADWIN [71] to address concept drift. Furthermore, the Adaptive
Random Forest (ARF) algorithm extends the random forest tree algorithm with a
concept drift detection method, such as ADWIN, to determine when to replace an

outdated tree with a new one [72].

An alternative to retraining entire models is to develop adaptive models that can learn
from changing data, partially updating themselves as the data distribution shifts. This
approach proves more efficient when drift occurs in local regions. Many methods in
this category are based on the decision tree algorithm, leveraging trees' ability to

examine and adapt to individual sub-regions independently [73], [74], [75].

2.4 Optuna Hyperparameter Optimization Framework

Optuna’® is an automatic hyperparameter optimization software framework [76],
particularly designed for machine learning and deep learning. It features an imperative,

define-by-run style user API. Thanks to this API, the code written with Optuna is highly

3 https://optuna.org



modular, and the user of Optuna can dynamically construct the search spaces of the
hyperparameters. Another benefit of Optuna is that it is framework agnostic and thus it

can be used with any machine learning or deep learning framework.

In order for the framework to be utilized, the user has to wrap their model with an
objective function, where the hyperparameter search—space is specified using a trial
object and return the metric that is going to be used as an optimization criterion e.g.
accuracy, auc-roc score, mean squares error (MSE), etc. Lastly, the user creates a study
object, where the number of trials, direction of optimization (maximization or
minimization of the return metric) and other parameters are specified, and the
optimization can be executed. Optuna also offers the ability to save a study and continue
it later, prune an unpromising trial, use different sampling methods, as well as a plethora
of fast and useful visualizations.

The sampling method utilized is the Tree-structured Parzen Estimator algorithm or TPE
[77]. On each trial, for each parameter, TPE fits one Gaussian Mixture Model
(GMM) L(X) to the set of parameter values associated with the best objective values,
and another GMM G(X) to the remaining parameter values. It chooses the parameter

value X that maximizes the ratio L(X) / G(X).

2.5 Evaluation Metrics

There are four important values produced during predicting the class in which the
evaluation samples belong, and these are the number of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) predictions. The definition of the
aforementioned values is given below:

TP is a test result that correctly indicates the presence of a condition or characteristic.
TN is a test result that correctly indicates the absence of a condition or characteristic
FP is a test result which wrongly indicates that a particular condition or attribute is
present.

FN is a test result which wrongly indicates that a particular condition or attribute is

absent.

The above values are better depicted in a confusion matrix (figure 2.10). Each row of

the matrix represents the instances in an actual class while each column represents the
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instances in a predicted class. The name stems from the fact that it makes it easy to see
whether the system is confusing two classes. With the help of a confusion matrix, a
variety of classification metrics can be calculated. The definition of the metrics utilized

in the current thesis to evaluate the performance of each model are presented below:
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Figure 2.10: Confusion Matrix for binary classification

Accuracy is the ratio of the number of correct predictions to the number of total

predictions made and can be calculated using the following formula:

TP+TN
TP+ FP+TN+FN

Accuracy =

However, accuracy, solely used, is not a good indicator of a model’s performance when
the dataset used is imbalanced, as it is in the present study. This is due to the fact that
by classifying all the samples in the majority class (‘“healthy” in the current problem),
very high accuracy results could be produced, but the developed model would have no

discriminative ability between the two classes.

In health related tasks, a metric that is highly indicative of a model’s performance is
Sensitivity, or Recall or True Positive Rate. Sensitivity provides information about the
number of positive (covid-19) samples correctly predicted as positive, out of the total
number of samples belonging to the positive class.

TP

Sensitivity = TP+—F1V



Precision is another metric used, which calculates the number of correct predictions of
samples belonging to the positive class out of the total number of samples predicted to
belong to this class and is calculated using the following formula:

TP

Precision = m————=
TP + FP

In contrast with Precision, Sensitivity is a metric of higher importance, since predicting
a Covid positive sample as healthy can cause more undesirable consequences than

predicting a healthy sample as Covid positive.

What is more, Specificity is another useful metric that is indicative of the number of
negative samples predicted correctly by the classifier.

Specificity = L
TN + FP

Another very useful metric that incorporates two of the above metrics and is suitable

for imbalanced classification problems is the F1-score. The F1-score is the harmonic

mean of the precision and recall. It thus symmetrically represents both precision and

recall in one metric. The highest possible value of an F1-score is 1.0, indicating perfect

precision and recall, and the lowest possible value is 0 if either precision or recall are

zero. The formula to calculate the F1-score is the following:

Precision X Recall _ 2XTP
Precision + Recall 2 XTP + FP + FN

Fl1=2x%

Area Under the Curve (AUC) metric is also calculated. The AUC-ROC curve (Area
Under the Curve of Receiver Characteristic Operator) is a probability curve which plots

the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
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Figure 2.11: ROC curve
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values, with the Area Under the Curve (AUC) value measuring the ability of a classifier
to distinguish between the positive and negative class. The TPR equals the sensitivity
value, while the FPR can be calculated using formula 2.14 and depicts the percentage
of the negative class that was incorrectly classified.
FPR =1 — Specificity

The value of the AUC ranges from 0.0 to 1.0, with 0.0 being that the model predicts all
the positive samples as negatives and vice versa, while 1.0 means the model can
perfectly distinguish the two classes. A value greater than 0.50 means that the model
has some separation ability, with greater values depicting a better performance, while

scores less than or equal to 0.5 depict a model with no class separation ability.

Lastly, Balanced Accuracy is another metric used in binary classification tasks. It is
equal to the arithmetic mean of specificity and sensitivity. This metric is useful when
dealing with imbalanced data, such as the task examined in the current thesis. The
formula is given below:

Specificty + Sensitivity
2

Balanced Accuracy =



Data Analysis - Preprocessing - Methods

Implemented

3.1 Coswara Dataset

The Coswara* dataset [30], [31], [32] is a crowdsourced dataset containing 3 kinds of
respiratory sounds; cough, breath and speech sounds, and metadata information for each
user. The dataset is comprised of audio samples provided by 2746 different user ids.
Each user submitted the following 9 different recordings, two types of cough sounds,
heavy and shallow, two types of breath sounds, shallow and deep, two types of one to
twenty digit counting, normal and fast and 3 different sustained vowel phonations. Each
audio sample is accompanied by metadata information including demographic
information such as, age, gender, country of origin etc., Covid-19 test type and the
current health status of the user. All audio files have been manually assessed, with
regard to the quality of the audio sample and the category it belongs to, by 13 annotators
with each file being annotated once. The distribution of the Covid status labels (healthy,
no respiratory illness exposed, respiratory illness not identified, positive mild, positive
moderate, positive asymptomatic, fully recovered and under validation) is shown in

figure 3.1.

4 https://github.com/iiscleap/Coswara-Data

67



Distribution of Covid Status Labels
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Figure 3.1: Covid-19 status distribution of the recordings in the Coswara dataset

Furthermore, from the provided metadata it is observed that 69.19% of the users
identify as male, 30.74% as female and 0.07% as other. Regarding the country of origin
of the participants, the vast majority of samples are from India (91.59%), 3.17% from
the United States and the rest 5.24% are from other countries. In addition, from the
accompanying metadata information it can be derived that over half of the data were
recorded in 2020 (54.26%), a little over a quarter (28.04%) in 2021 and the last 17.70%
in 2022. Last but not least, due to the completion of the rest of the metadata information
not being mandatory [31] when submitting the recordings, meaningful distributions
about the medical background of the contributors cannot be produced. However, it
should be noted that when participants were asked whether they were a returning user
or not, 72.94% stated no, while only 2.29% replied yes and 24.76% did not answer the

question. The above information is schematically presented in figure 3.2.
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Figure 3.2: Metadata Statistics for the Coswara dataset

3.1.1 Data Cleaning

For the purpose of this study, only the two types of cough samples (heavy, shallow)
were utilized in a single dataset. The samples with a status in one of the three categories
i.e. positive mild, positive moderate and positive asymptomatic are classified as
positive, the samples declared healthy remain as is and the rest of the samples are
discarded. The constituting distributions regarding the Covid status and the metadata

statistics are illustrated in figures 3.3 and 3.4 respectively.
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What is more, the figure 3.5 showcases the healthy — positive label distribution of the

participants by month. In order to apply concept drift adaptation methods, the data

recorded from October 2021 are going to be used as a drift set and thus will be excluded
from the train, validation and test sets.
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Figure 3.5: Distribution of labels over the months

In order to reduce the total duration of the audio data for training, silence trimming was
implemented. This was achieved by splitting the audio of each recording into its non-
silent intervals, using a threshold of 30 dB as a criterion to distinguish silent from non-
silent intervals, and the remaining segments were concatenated in order to reconstruct

the recording. By using this method, non-essential audio was discarded, and the total
duration of the recordings was reduced.
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Figure 3.7: Detection of non-silent segments. The red line depicts the start of the non-silent event and the green
line the end.
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Figure 3.6: The reconstructed Positive Cough-Shallow recording

Finally, 66 recordings were discarded due to the fact that they either contained O
seconds of audio (60 recordings), or their duration was less than 0.35 seconds with

irrelevant audio (6 recordings which contained voices or indistinguishable sounds). The



remaining data were then separated into 4 sets, namely the train set, validation set, test

set and drift set. The resulting data distribution is showcased in the following figure 3.8.
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Figure 3.8: Final data split

3.1.2 Feature Extraction

For the classification task to be performed, features are extracted from the cough
recordings. The features utilized in this thesis are MFCCs, MFCC deltas, MFCC delta-
deltas, zero — crossing rate, kurtosis, and the root mean square value. In order to handle
the problem of recordings having various duration lengths, the method proposed by M.
Pahar et.al [16] was used. Particularly, a fixed number of features F is extracted from
each recording by implementing the /op length to be dependent on the length of the
audio timeseries extracted when loading the recording and the samples per segment to
be dependent on the duration of the audio. By applying the aforementioned method, the
number of mfcc vectors per segment is going to be the same and no padding is needed.
The librosa® library was used to handle the audio data feature extraction, along with

scipy stats® for the extraction of the kurtosis. For the librosa functions, the number of

> https://librosa.org/doc/latest/index.html

6 https://docs.scipy.org/doc/scipy/reference/stats.html
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segments was set to 100, the n_fft parameter (length of the windowed signal after
padding with zeros) was set to 1024 and the sampling rate was set to 2250. In total 42
features were extracted, 13 MFCCs, 13 MFCC Deltas, 13 MFCC Delta — deltas, 1 ZCR,
1 Kurtosis and 1 RMS for each one of the 100 segments, which accumulates to a feature

shape of (42, 100) for each recording.

3.1.3 Mel — Spectrograms

For the deep learning models, Mel-spectrograms were extracted using the
librosa.feature.melspectrogram function. The sampling rate was set to 22050, the n_fft
to 1024, the number of segments to 100 and last but not least, the formula for the sop

length is the same as above.

3.2 Classification Methods

For the proposed classification task, 6 different models were examined. MLP and
Random Forest models, 3 pre — trained CNNs namely, VGG—-16, ResNet—50, Inception
ResNet—V2 and CLIP, a zero — shot classifier.

3.2.1 Multilayer Perceptron — MLP

Firstly, the data are standardized using the Standard Scaler 7 from the sickit learn
library. This scaler standarizes the features by removing the mean and scaling to unit

variance.

For this model, Optuna hyperparameter optimization framework was used in order to
find the best hyperparameters for the model. The following table 3.1 showcases the
search space for the different hyperparameters in the implemented objective function.
Early stopping is set to True, and the function returns the auroc score of the validation

set. The study is set to run for 70 trials with the direction to maximize the return value

7

https://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.

html



of the objective function. In addition, the TPE sampler and the Hyperband pruner [33]
are utilized. Finally, the model with the highest auroc score on the validation set is

selected as the final model to be tested on the test set.

Table 3.1: MLP Hyperparameter Search Space

Parameter Search space
n_layers 1-10,step 1
hidden_layer sizes 32,64, 128, 256, 512, 1024, 2048
activation relu, tanh
solver sgd, adam
alpha 0.00001 - 0.1
learning_rate constant, invscaling, adaptive
learning_rate init 0.00001 - 0.1
max_iter 100 — 1000, step 100

The same set-up is used to run another 70 trials but this time the Synthetic Minority
Oversampling Technique, or SMOTE is applied. This oversampling technique is used
to handle the lack of Covid—19 samples (minority class) and thus assist the model in
effectively learning the decision boundary between the two classes. Specifically,
SMOTE works by choosing a random example from the minority class, then k of the
nearest neighbors for that example are found. A randomly selected neighbor is chosen
and a synthetic example is created at a randomly selected point between the two
examples in the feature space. By the end of this process the training data will be

balanced. The variable k is set to 5.

3.2.2 Random Forests

Firstly, the data are standardized using the Standard Scaler from the sickit learn library.

This scaler standardizes the features by removing the mean and scaling to unit variance.

For this model, Optuna hyperparameter optimization framework was used in order to
find the best hyperparameters for the model. The following table 3.2 showcases the
search space for the different hyperparameters in the implemented objective function.
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Early stopping is set to True, and the function returns the roc—auc score of the validation
set. The study is set to run for 70 trials with the direction to maximize the return value
of the objective function. In addition, the TPE sampler and the Hyperband pruner are
utilized. Finally, the model with the highest auroc score on the validation set is selected

as the final model to be tested on the test set.

Table 3.2: Random Forest Hyperparameter Search Space

Parameter Search space
n_estimators 100 — 4000, step 100
max_depth 5-20,step 1
min_samples_slpit 2-10,step 1
min_samples_leaf 1-10,step 1
max_features sqrt, log2
class weight balanced, balanced subsample
criterion gini, entropy, log loss

The same set-up is used to run another 70 trials but this time the Synthetic Minority

Oversampling Technique or SMOTE is applied with variable k set to 5.

3.2.3 Transfer Learning

Due to the plethora of pre—trained CNNs that have achieved great results in the
ImageNet dataset [34], it was decided that their gained knowledge could be exploited
in order to improve generalization for the current task. In total 6 different models are
going to be created using 3 pre — trained CNNs as base-models. Three of the six models
are going to have a Gaussian Noise layer as a hidden layer in the architecture, while for
the rest the GS will used as the input layer. In that way we can compare how the location

of the GS layer affects the model’s performance.

The first model utilized as a base-model for the classifier is VGG-16 from the keras
applications library. The model is loaded with the pretrained weights from the
ImageNet classification task, but without the top layer. All the layers are frozen so that
they are not trainable, and to avoid destroying any of the information they contain
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during future training rounds. The model will learn to provide predictions for our
current task by adding a few trainable layers on top of the frozen layers. In this case the
layers added are a Gaussian Noise layer with a standard deviation value of the noise
distribution set at 0.1. Then a Global Average Pooling 2D layer was added, with 2
Dense layers completing the model. The first Dense layer consists of 1024 units and a
“ReLu” activation function, while the second consists of 2 units (one for each class)

and the “softmax” activation function. The model architecture is depicted at Figure 3.9.

vggl6_input | input: | [(None, 224, 224, 3)]
InputLayer | output: | [(None, 224, 224, 3)]

vgglh input: | (None, 224, 224, 3)
Functional | output: (None, 7, 7, 512)

gaussian_noise | input: | (None, 7, 7, 512)
GaussianNoise | output: | (None, 7, 7, 512)

global_average pooling2d | input: | (None, 7, 7, 512)
GlobalAveragePooling2D | output: (None, 512)

dense | input: (None, 512)
Dense | output: | (None, 1024)

dense_1 | input: | (None, 1024)
Dense | output: (None, 2)

Figure 3.9: CNN with VGG-16 base model and hidden
GS layer

The model is compiled using the “Adam” optimizer with a learning rate of 0.001 and
binary cross entropy loss. The data are rescaled using “ImageDataGenerator” and
setting the rescale parameter to 1.0/255.0. Lastly, the model is fitted for 100 and 200
epochs, with class weights set to the ratio of healthy to positive samples, in order to

handle the class imbalance problem.

The same process is repeated with the exception that the GS layer is now set as the input
layer instead of the VGG — 16 base-model. The model architecture is shown at figure

3.10.



gaussian_noise_input | input: | [(None, 224, 224, 3)]
InputLayer output: | [(None, 224, 224, 3)]

gaussian_noise | input: | (None, 224, 224, 3)
GaussianNoise | output: | (None, 224, 224, 3)

vggl6 input: | (None, 224, 224, 3)
Functional | output: (None, 7, 7, 512)

global_average_pooling2d | input: | (None, 7, 7, 512)
GlobalAveragePooling2D | output: (None, 512)

dense | input: | (None, 512)
Dense | output: | (None, 1024)

dense_1 | input: | (None, 1024)
Dense | output: (None, 2)

Figure 3.10: CNN with VGG-16 base model and input GS
layer

The second model utilized as a base-model for the classifier is the ResNet—50 from the
keras applications library. The model is loaded with the pretrained weights from the
ImageNet classification task, but without the top layer. All the layers are frozen so that
they are not trainable, and to avoid losing any of the information they contain during
future training rounds. The model will learn to provide predictions for our current task
by adding a few trainable layers on top of the frozen layers. In this case the layers added
are a Gaussian Noise layer with a standard deviation value of the noise distribution set
at 0.1. Then a Global Average Pooling 2D layer was added, with 2 Dense layers
completing the model. The first Dense layer consists of 1024 units and a “ReLu”
activation function, while the second consists of 2 units (one for each class) and the
“softmax” activation function. The model architecture is depicted at figure 3.11. The

model is compiled using the “Adam” optimizer with a learning rate of 0.001 and binary
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cross entropy loss. The data are rescaled using the ImageDataGenerator and setting the
rescale parameter to 1.0/255.0. Lastly, the model is fitted for 100 and 200 epochs, with
class weights set to the ratio of healthy to positive samples, in order to handle the class

imbalance problem.

resnet50_input | input: | [(None, 224, 224, 3)]
InputLayer output: | [(None, 224, 224, 3)]

y
resnet50 input: | (None, 224, 224, 3)

Functional | output: | (None, 7, 7, 2048)

gaussian_noise | input: | (None, 7, 7, 2048)
GaussianNoise | output: | (None, 7, 7, 2048)

4
global_average pooling2d | input: | (None, 7, 7, 2048)

GlobalAveragePooling2D | output: (None, 2048)

dense | input: | (None, 2048)
Dense | output: | (None, 1024)

4
dense_1 | input: | (None, 1024)

Dense | output: (None, 2)

Figure 3.11: CNN with ResNet-50 base model and hidden GS
layer

The same process is repeated with the exception that the GS layer is now set as the input
layer instead of the ResNet — 50 base-model. The model architecture is shown at figure

3.12.



gaussian_noise_input | input: | [(None, 224, 224, 3)]
InputLayer output: | [(None, 224, 224, 3)]

gaussian_noise | input: | (None, 224, 224, 3)
GaussianNoise | output: | (None, 224, 224, 3)

y
resnet50 input: | (None, 224, 224, 3)

Functional | output: | (None, 7, 7, 2048)

4
global_average pooling2d | input: | (None, 7, 7, 2048)

GlobalAveragePooling2D | output: (None, 2048)

dense | input: | (None, 2048)
Dense | output: | (None, 1024)

4
dense_1 | input: | (None, 1024)

Dense | output: (None, 2)

Figure 3.12: CNN with ResNet-50 base model and input GS
layer

The third model utilized as a base-model for the CNN is the Inception ResNet—V2
from the keras applications library. The model is loaded with the pretrained weights
from the ImageNet classification task, but without the top layer. All the layers are frozen
so that they are not trainable, and to avoid destroying any of the information they
contain during future training rounds. The model will learn to provide predictions for
our current task by adding a few trainable layers on top of the frozen layers. These new
layers will learn to turn the old features into predictions on the new dataset. In this case
the layers added are a Gaussian Noise layer with a standard deviation value of the noise
distribution set at 0.1. Then a Global Average Pooling 2D layer was added, with 2
Dense layers completing the model. The first Dense layer consists of 1024 units and a
“ReLu” activation function, while the second consists of 2 units (one for each class)

and the “softmax’ activation function. The model architecture is depicted at figure 3.13.
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The model is compiled using the “Adam” optimizer with a learning rate of 0.001 and

binary cross entropy loss. The data are rescaled using the ImageDataGenerator and

inception_resnet_v2_input | input: | [(None, 299, 299, 3)]
InputLayer output: | [(None, 299, 299, 3)]

A
inception_resnet v2 | input: | (None, 299, 299, 3)

Functional output: [ (None, 8, 8, 1536)

gaussian_noise | input: | (None, 8, 8, 1536)
GaussianNoise | output: | (None, 8, 8, 1536)

global_average_pooling2d | input: | (None, 8, 8, 1536)
GlobalAveragePooling2D | output: (None, 1536)

dense | input: | (None, 1536)
Dense | output: | (None, 1024)

dense_1 | input: | (None, 1024)
Dense | output: (None, 2)

Figure 3.13: CNN with Inception-ResNet-V2 base model and
hidden GS layer

setting the rescale parameter to 1.0/255.0. Lastly, the model is fitted for 100 and 200
epochs, with class weights set to the ratio of healthy to positive samples, in order to

handle the class imbalance problem.

Lastly, the same process is repeated with the exception that the GS layer is now set as
the input layer instead of the Inception — ResNet — V2 base-model. The model

architecture is shown at figure 3.14.



gaussian_noise_input | input: | [(None, 299, 299, 3)]
InputLayer output: | [(None, 299, 299, 3)]

4
gaussian_noise | input: | (None, 299, 299, 3)

GaussianNoise | output: | (None, 299, 299, 3)

inception_resnet_v2 | input: | (None, 299, 299, 3)
Functional output: | (None, 8, 8, 1536)

global_average_pooling2d | input: | (None, 8, 8, 1536)
GlobalAveragePooling2D | output: (None, 1536)

A
dense | input: | (None, 1536)

Dense | output: | (None, 1024)

\
dense_1 | input: | (None, 1024)

Dense | output: (None, 2)

Figure 3.14: CNN with Inception-ResNet-V2 base model and
input GS layer

3.2.4 Zero— Shot Learning

The open-source framework OpenAl CLIP (Contrastive Language-Image Pretraining)
and the PyTorch library are utilized for this section. A pre-trained model using OpenAl
CLIP with the ViT-B-32 architecture is selected and the pretrained weights
('laion2b_s34b b79k') are specified. Furthermore, the tokenizer associated with the
chosen model is retrieved for processing text inputs. The text-label pair to be tested is
tokenized and then the image and text features are extracted from the model.
Subsequently, softmax probabilities of the text being associated with the image are
calculated and the predicted class is determined by the index of the maximum
probability. Finally, the model's performance against the ground truth labels is
evaluated by calculating the necessary metrics. The different text-label pairs tested on

the validation set are displayed in the following Table 3.3.



Table 3.3: CLIP Text - label pairs tested on the validation set
Pair index Healthy Covid - 19
0 Negative recording Positive recording
Negative Mel- Positive Mel-
: spectrogram recording  spectrogram recording
Mel-spectrogram ofa ~ Mel-spectrogram of a
5 cough recording of a cough recording of a
covid-19 negative covid-19 positive
person person
Negative Mel- Positive Mel-
spectrogram of a spectrogram of a
. cough recording of cough recording of
covid-19 covid-19
Negative Mel- Positive Mel-
4 spectrogram of a spectrogram of a
cough recording cough recording
5 covid-19 negative covid-19 positive
image of audio from image of audio from
6 covid-19 negative covid-19 positive
individual individual
7 healthy Covid-19 positive

3.3 Concept Drift Adaptation Methods

The model with the highest roc-auc score on the test set will be selected to be tested on
the drift set, in order to establish whether a concept drift is present or not. Then, the
drift set is split into drift-training, drift-validation and drift-test sets, with the selected
model being retrained on the drift-training set. The resulting data distribution is
showcased in figure 3.15. During retaining freezing the model and training only layer
dense 1 will be examined, as well as adding a regularization factor in the model’s
weights. To be more specific, the regularization factor is going to be the difference of
the new weights minus the old weights of the layer (absolute or squared) and multiplied

by a constant with values 0.01, 0.1 or 1.0.
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Distribution of Labels in each Set for Retraining
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Figure 3.15: Drift data split for retraining

3.3.1 Retraining only the final dense layer

All the layers except the final dense layer (dense 1) are frozen and the following layer
regularization methods (LRM) are investigated using the layer’s weights, which are

initially stored as old weights. The model is retrained for 100 and 200 epochs.

Table 3.4: Regularization methods

LRM Equation
1 neWyeignts[0] = 1.0 X [newyeignes[0] — 0ldyeignes[0]]
2 neWyeignts[0] = 0.1 X [newyeignes[0] — 0ldyeignes[0]]
3 neWyeignts[0] = 0.01 X [newy,eignes[0] — 0ldyeignes[0]]
4

2
newweights [0] =1.0X (newweights [O] - Oldweights [0])

2
newweights [0] =0.1x (newweights [O] - Oldweights [0])

2
neWweights [0] = 0.01 x (neWweights [0] - Oldweights [0])




3.3.2 Retraining the entire model

The selected model’s last two dense layers (dense and dense 1) are retrained with the
regularization methods shown in table 3.4 being applied each layer. The model is

retrained for 100 and 200 epochs.

3.4 Classification Threshold Optimization

A model trained for a binary classification task, like the ones mentioned above, return
a probability score of the target variable that indicates how likely it is that the sample
belongs to each class. The standard threshold used to determine whether the sample
belongs to the positive class, or not, is 0.5. By varying the classification threshold, the
classifier’s performance changes, since the values of TP, TN, FP, FN displayed in the

confusion matrix also change.

Since the 0.5 value is not always the ideal threshold, and in addition to the fact that the
task at hand is that of an imbalanced classification, the last step in the classification
process will be to examine whether optimizing the classification threshold will improve
the classifiers’ performance. This is achieved by calculating the ROC curve’s thresholds
from the validation set and then evaluating the model’s performance at each threshold
based on the balanced accuracy scoring method. Finally, the threshold that maximizes
the balanced accuracy score is chosen as the new decision threshold, and the model is

tested on the test set.



Results — Discussion

4.1 Models trained and tested using Extracted Features

The classification results obtained from the training of the 2 models described in
sections 3.3.1 and 3.3.2 using features extracted from the audio recordings, are
showcased in tables 4.1 and 4.2. The values of the metrics presented are acquired from
the best performing model after 70 trials using Optuna. The model with the highest
AUROC value along with the model with the highest sensitivity have been highlighted.

Table 4.1: Performance metrics for the RF and MLP models

Model | Accuracy Sensitivity Specificity Balanced AUROC

Accuracy

MLP 80.00% 5.80% 98.89% 52.35% 66.25%
RF 78.82% 5.80% 97.42% 51.61%  69.91%

Table 4.1 illustrates that the RF model achieves the highest AUROC score with a value
of 69.91% and balanced accuracy score of 51.61%. The balanced accuracy score is a
result of high disparity between the sensitivity and specificity metrics. Furthermore, the
sensitivity value for both models is 5.80%, indicating that the models cannot predict the
positive (Covid—19) class correctly. The low sensitivity scores coupled with the very

high specificity scores illustrate that once more both the MLP and the RF models cannot



discriminate between the two classes and classify almost everything to the majority

class (Healthy).

Table 4.2: Performance metrics for the RF and MLP models with SMOTE

Model | Accuracy Sensitivity Specificity Balanced AUROC

Accuracy

MLP 74.41% 40.58% 83.03% 61.80% 65.19%
RF 79.41%  18.84% 94.83% 56.84%  69.42%

Table 4.2 illustrates that the RF model once more achieves the highest AUROC score
with a value of 69.42% and balanced accuracy score of 56.84%. The application of
SMOTE on the training data improved the sensitivity and balanced accuracy metrics.
The former value of the RF model is 18.84% and of the MLP model is 40.58%.
Although the sensitivity metric is considerably higher for both models, it is still not
adequate enough to predict the positive (Covid—19) class correctly. The low sensitivity
scores coupled with the very high specificity scores illustrate that both the MLP and the
RF models cannot discriminate between the two classes and classify almost everything
to the majority class (Healthy). Overall, applying SMOTE significantly improved the
sensitivity (by 600.86% for the MLP and 225.38% for the RF model) and balanced
accuracy score (by 18.05% for the MLP and 10.13% for the RF model) metrics of the
two models, while decreasing specificity and slightly reducing AUROC.

Table 4.3: Performance metrics for the RF and MLP models with new thresholds

Model | Accuracy Sensitivity Specificity Balanced AUROC Threshold

Accuracy

MLP | 72.94% 44.93% 90.07% 62.50%  66.25% 0.202
RF 66.47%  47.83% 71.22%  59.52%  69.91% 0.367

Table 4.3 showcases that the application of classification threshold optimization had a
significant impact on the sensitivity and balanced accuracy values, achieving higher
scores than before. The RF model achieves the highest AUROC score with a value of

69.91% (the same as in table 4.1, as is expected) and balanced accuracy score of
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59.52%, a 15.33% increase when compared to table 4.1. The MLP model shows an
674.66% improvement in sensitivity and 19.39% in balanced accuracy score, while the
RF model achieves an 47.83% score on the sensitivity metric (an improvement of

724,66%).

Table 4.4: Performance metrics for the RF and MLP models with SMOTE and new thresholds

Model | Accuracy Sensitivity Specificity Balanced AUROC Threshold

Accuracy

MLP | 74.71% 40.58% 83.39% 61.99%  65.13% 0.674
RF 65.00%  59.42% 66.42%  62.92% 69.42% 0.387

Finally, when both SMOTE and threshold optimization are utilized, a significant
improvement is observed on both sensitivity and balanced accuracy values. To be more
precise, the RF model reaches a sensitivity score of 59.42% and a balanced accuracy
score of 62.92%, with both values being the highest achieved scores in those two
metrics. Although the AUROC score is marginally lower than the one reached without
the use of SMOTE, this RF model is much better at predicting the positive (Covid—19)
class correctly. Sensitivity improved more than 10 times when compared to table 4.1
and balanced accuracy score is also 21.33% higher, when compared to the RF model
that does not use neither SMOTE nor threshold optimization, and 10.70% higher than
the model that utilizes only SMOTE.

4.2 Models trained and tested using Mel — Spectrograms

The classification results obtained from the training of the 6 models described in section
4.3.3 using Mel — Spectrograms, are showcased in tables 5.5 and 5.6. The values of the
metrics presented have been acquired by training each model for 100 and 200 epochs.
The two models with the highest AUROC values along with the model with the highest
sensitivity have been highlighted. Tables 4.7 and 4.8 depict the new metric values after
the implementation of classification threshold optimization. The last column of the two
aforementioned tables display the optimal threshold value selected, using the validation

set.



Table 4.5: Performance metrics for the hidden GS - CNN models

Base — Epoch | Accuracy Sensitivity Specificity Balanced AUROC
Model Accuracy
100 67.94% 69.57% 67.53% 68.55%  76.65%
VGG -16
200 78.53%  62.32% 82.66% 72.49%  80.21%
100 64.12% 73.91% 61.62% 67.77%  71.34%
ResNet
200 55.88%  84.06% 48.71% 66.38%  73.93%
100 78.24% 57.97% 83.39% 70.68%  77.14%
Inception

200 77.65%  63.77% 81.18% 72.47%  78.74%

Table 4.5 illustrates that the CNN with the VGG—-16 as base model and trained for 200
epochs achieves the highest AUROC score, with a value of 80.21%. The second and
third highest AUROC values are achieved by the architecture using Inception as a base
model and trained for 200 and 100 epochs respectively. The balanced accuracy values
range between 66.38% to 72.49%. This indicates a good distinction between the
positive and negative class. What is more, the sensitivity value fluctuates from 57.97%
to 84.06% depending on the base model and the number of epochs trained. Since the
task examined in the current thesis is Covid—19 diagnosis the sensitivity metric is
important because it indicates whether the model can predict the positive (Covid—19)
class correctly. The architecture with the highest sensitivity value was trained for 200
epochs and used the ResNet — 50 model as the base-model. Regarding the different
training epochs, it should be noted that VGG -16 shows significant increase in accuracy,
specificity, balanced accuracy and AUROC, while sensitivity decreases by 7 points.
Overall, the performance of the model improves. Similarly, the Inception model
achieves better results with additional training, although accuracy and specificity
slightly decline. Finally, ResNet exhibits a trade-off with increased sensitivity but
decreased specificity and overall accuracy with more training. The slight increase in
AUROC suggests better performance in distinguishing between classes despite lower

accuracy.



Table 4.6: Performance metrics for the input GS - CNN models

Base — Epoch | Accuracy Sensitivity Specificity Balanced AUROC
Model Accuracy
100 74.12%  60.87% 77.49% 69.18%  74.46%
VGG -16
200 73.82% 46.38% 80.81% 63.59% 71.07%
100 68.82% 65.22% 69.74% 67.48% 72.53%
ResNet
200 72.65%  62.32% 75.28% 68.80%  74.82%
100 79.12% 30.43% 91.51% 60.97% 68.31%
Inception

200 75.29% 49.28% 81.92% 65.60% 69.41%

Table 4.6 illustrates that the CNN with the ResNet—50 as base model and trained for
200 epochs achieves the highest AUROC score. The second and third highest AUROC
values are achieved by the architecture using VGG-16 and ResNet—50 as base models
and trained for 100 respectively. The balanced accuracy values range between 60.97%
to 69.18%, depicting a higher disparity and lower scores than the models applying the
Gaussian Noise layer as a hidden layer. What is more, the sensitivity value fluctuates
from 30.43% to 65.22% depending on the base model and the number of epochs trained,
which illustrate a significant decrease when compared to the models using the GS as a
hidden layer (Table 4.5). The same can be observed for the acquired AUROC values.
As the epochs increase, VGG — 16 shows an increase in specificity and a decrease in
sensitivity suggesting a trade-off where the model becomes more confident in correctly
classifying the negative cases, at the cost of misclassifying the positive ones. On the
other hand, Inception displays an increase in sensitivity and a decrease in specificity.
Lastly, ResNet seems to be more robust to additional training epochs, since most

metrics show a consistent improvement.



Table 4.7: Performance metrics for the hidden GS - CNN models with new threshold

Base — Epoch | Accuracy Sensitivity Specificity Balanced AUROC Threshold
Model Accuracy
100 74.12% 62.32% 77.12% 69.72% 76.65% 0.827
VGG -16
200 74.41%  68.12% 76.01% 72.07%  80.21% 0.860
100 67.35% 62.32% 68.63% 65.48% 71.34% 0.568
ResNet
200 70.00% 63.77% 71.59% 67.68% 73.93% 0.742
100 70.29% 63.77% 71.96% 67.86% 77.14% 0.014
Inception
200 71.18%  69.57% 71.59% 70.58%  78.74% 0.003

Table 4.7 illustrates the performance metrics for the hidden GS — CNN models with the

new optimal thresholds applied in the metrics’ calculation. The balanced accuracy

values range between 65.48% to 72.07%. This indicates a good distinction between the

positive and negative class, with a slight drop being evident in the minimum and

maximum values. What is more, the sensitivity value fluctuates from 62.32% to 69.57%

depending on the base model and the number of epochs trained. With regards to the

model with the highest AUROC score, an improvement of 9.31% can be observed in

the sensitivity value. Overall, the application of an optimal threshold derived from the

validation set seems to have a varying effect in the metrics’ values, which is not

consistent from model to model or metric to metric.

Table 4.8: Performance metrics for the input GS - CNN models with new threshold

Base — Epoch | Accuracy Sensitivity Specificity Balanced AUROC Threshold
Model Accuracy
100 72.65%  72.46% 72.69% 72.58%  74.46% 0.998
VGG - 16
200 74.41% 46.38% 81.55% 63.96% 71.07% 0.978
100 69.71% 62.32% 71.59% 66.95% 72.53% 0.864
ResNet
200 70.88%  63.77% 72.69% 68.23%  74.82% 0.918
100 66.47% 60.87% 67.90% 64.38% 68.31% 0.003
Inception
200 70.29% 60.87% 72.69% 66.78% 69.41% 0.019




Table 4.8 illustrates the performance metrics for the input GS — CNN models with the
new optimal thresholds applied in the metrics’ calculation. The balanced accuracy
values range between 64.38% to 72.58%. This indicates a good distinction between the
positive and negative class, with models VGG — 16 and Inception scoring higher than
before. What is more, the sensitivity value fluctuates from 46.38% to 72.46% depending
on the base model and the number of epochs trained and are significantly improved in
4 out of the six models. Overall, the application of an optimal threshold derived from

the validation has improved the values of sensitivity and balanced accuracy metrics.

4.3 Zero — Shot Learning using Mel — Spectrograms

The classification results obtained utilizing the CLIP model described in section 4.3.4
using Mel — Spectrograms, are showcased in tables 4.9 and 4.10. Table 4.9 presents the
results acquired from testing the 8 text — label pairs, shown in table 4.3, on the validation
set. From these 8 sets, the two with the highest AUROC values were selected to be

tested on the test set and the results are depicted on table 4.10.

Table 4.9: CLIP performance metrics of the text-label pairs on the validation data

Pair index | Accuracy Sensitivity Specificity Balanced AUROC

Accuracy
0 73.32% 5.59% 98.39% 51.99%  51.99%
1 63.76% 22.98% 78.85% 50.92%  50.92%
2 67.62%  31.06% 81.15% 56.10%  56.10%
3 45.81% 50.31% 44.14% 47.22%  47.22%
4 42.79%  70.81% 32.41% 51.61%  51.61%
5 72.99% 0% 100% 50.00%  50.00%
6 72.99% 0% 100% 50.00%  50.00%
7 71.14%  11.18% 93.33% 52.26%  52.26%

Table 4.9 depicts that the AUROC scores range from 47.22% to 56.10%, with the top
two resulting from pairs 2 and 7. It is worth noting that pair 2 is the most descriptive of

the 8 text — label pairs utilized on the validation set, while pair 7 is the least descriptive.
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This indicates that a more thorough phrase engineering, stemming from the relevant
literature, could significantly improve the performance of the model. Furthermore, the
sensitivity values vary between 0% and 70.81%, meaning that the model can either not
predict at all TP samples or can achieve an adequate performance on that particular

metric.

Table 4.10: CLIP performance metrics of the text-label pairs on the test set

Pair index | Accuracy Sensitivity Specificity Balanced AUROC
Accuracy

2 63.82% 18.84% 75.28% 47.06%  47.06%

7 75.59%  15.94% 90.77% 53.36%  53.36%

Pairs 2 and 7 were selected due to their performance on the AUROC metric and were
examined on the test set. From the results presented on table 4.10 it can be stated that
there is a drop in performance of all metrics when compared to table 4.9 for pair 2. Pair
7 achieves a slightly better AUROC score (53.36%) than in table 4.9 (52.26%) and a
sensitivity value of 15.94%. While pair 7 results in better metrics in the test set than

pair 2, it still performs very poorly in diagnosing Covid — 19 from Mel — spectrograms.

4.4 Concept Drift Adaptation results

The model VGG — 16 trained for 200 epochs is selected, as the best model due to its
high AUROC score, to be used for concept drift adaptation. Initially, the model is tested
on the entire drift set in order to observe whether a drift is present. Table 4.11 illustrates
the aforementioned results. The classification results obtained after retaining the VGG-
16 200 epoch with hidden GS on the drift training data and tested on the drift test set,
with the methodology described in section 4.4, are showcased in tables 4.12 and 4.13
Table 4.12 presents the results acquired from retraining only the last dense layer of the
model and using the 6 regularization methods shown in table 3.4. Table 4.13 depicts
the results acquired from retraining the last two dense layers using the 6 regularization
methods shown in table 3.4. Tables 4.14 and 4.15 depict the new metric values after the
application of classification threshold optimization. The row with Layer Regularization

Method (LRM) 0 on all of the aforementioned tables shows the model’s performance
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if no LRM is applied on the layer(s). The models with the highest AUROC values,
along with the model with the highest sensitivity, have been highlighted.

Table 4.11: Performance metrics for the hidden GS VGG - 16 model trained for 200 epochs on the drift set

Base - Accuracy Sensitivity Specificity Balanced AUROC
Model Accuracy

VGG -16 | 37.63% 31.93% 65.31% 48.62% 54.66%

Table 4.11 clearly illustrates the existence of a concept drift. The classification metrics
decrease significantly when the model is tested on the drift set, with AUROC score
falling to 54.66% (a 31.85% decline when compared to the 80.21% AUROC score on
the test set).

Table 4.12: Concept drift adaptation results from retraining the last dense layer of VGG-16 - 200 epoch - hidden

GS
LRM Epoch | Accuracy Sensitivity Specificity Balanced AUROC
Accuracy

100 79.31% 84.00% 50.00% 67.00%  75.75%

’ 200 82.76%  88.00% 50.00% 69.00%  76.25%
100 81.03% 86.00% 50.00% 68.00%  73.50%

1 200 79.31% 84.00% 50.00% 67.00%  72.50%
100 77.59% 82.00% 50.00% 66.00%  76.00%

’ 200 79.31% 84.00% 50.00% 67.00%  74.50%
100 79.31% 84.00% 50.00% 67.00%  75.00%

’ 200 84.48% 90.00% 50.00% 70.00%  74.00%
100 79.31%  84.00% 50.00% 67.00%  76.25%

! 200 79.31% 84.00% 50.00% 67.00%  74.00%
100 75.86%  82.00% 37.50% 59.75%  76.25%

> 200 77.59% 84.00% 37.50% 60.75%  75.25%
100 81.03% 86.00% 50.00% 68.00%  74.75%

° 200 84.48%  92.00% 37.50% 64.75%  74.50%




Without any layer regularization method applied, retraining only the last dense layer of
the model an AUROC score of 75.75% is achieved after 100 epochs of training and a
score of 76.25% is achieved after 200 epochs. Sensitivity scores are considerably higher
when compared to the previous sections ranging between 82.00% and 92.00%. After
applying each one of the 6 layer regularization methods, it is illustrated that only LRM
4 and 5 achieve an AUROC value of 76.25% after 100 epochs of training. No other
model manages to achieve or surpass the AUROC score of LRM 0. In addition, the
specificity scores change between 37.50% and 50.00%, marking a significant drop

when compared to the previous sections.

Table 4.13: Concept drift adaptation results from retraining the last two dense layers of VGG-16 - 200 epoch -

hidden GS
LRM Epoch | Accuracy Sensitivity Specificity Balanced AUROC
Accuracy

100 77.59% 84.00% 37.50% 60.75%  74.75%

’ 200 77.59% 82.00% 50.00% 66.00%  75.50%
100 81.03%  88.00% 37.50% 62.75%  75.50%

1 200 82.76% 88.00% 50.00% 69.00%  74.50%
100 74.14% 80.00% 37.50% 58.75%  73.25%

’ 200 81.03% 86.00% 50.00% 68.00%  74.25%
100 81.03% 86.00% 50.00% 68.00%  77.75%

’ 200 77.59% 82.00% 50.00% 66.00%  76.00%
100 81.03% 86.00% 50.00% 68.00%  74.75%

* 200 82.76% 88.00% 50.00% 69.00%  73.37%
100 77.59% 82.00% 50.00% 66.00%  74.00%

’ 200 77.59% 82.00% 50.00% 66.00%  74.25%
100 79.31%  84.00% 50.00% 67.00%  78.50%

° 200 79.31%  84.00% 50.00% 67.00%  78.25%

Without any layer regularization method applied, retraining the last two dense layers of
the model, an AUROC score of 74.75% is achieved after 100 epochs of training and a

score of 75.50% is achieved after 200 epochs. Sensitivity scores are once more
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considerably higher when compared to the previous sections, ranging between 82.00%
and 88.00%. After applying each of the 6 layer regularization methods, it is illustrated
that LRM 6 achieves an AUROC value of 78.50% after 100 epochs of training and
78.25% after 200 training epochs. This establishes the last layer regularization method
with 100 epochs of training as the best performing one. Namely, when compared to
LRM 0 with 100 epochs of training, the AUROC score improves by 5.02% and 3.98%
when compared to LRM 0 with 200 epochs of training. Balanced accuracy scores vary

between 58.75% and 69.00%, with most values being 66% or higher.

Table 4.14: Concept drift adaptation results from retraining the last dense layer of VGG-16 - 200 epoch - hidden
GS with new thresholds

LRM Epoch | Accuracy Sensitivity Specificity Balanced AUROC  Threshold
Accuracy
100 84.48% 92.00% 37.50% 64.75%  75.75% 0.035
’ 200 82.76% 90.00% 37.50% 63.75%  76.25% 0.015
100 81.03% 86.00% 50.00% 68.00%  73.50% 0.528
1 200 87.93%  96.00% 37.50% 66.75%  72.50% 0.004
100 81.03% 88.00% 37.50% 62.75%  76.00% 0.030
? 200 82.76% 90.00% 37.50% 63.75%  74.50% 0.045
100 86.21% 94.00% 37.50% 67.00%  75.00% 0.004
’ 200 84.48% 92.00% 37.50% 64.75%  74.00% 0.013
100 84.48%  92.00% 37.50% 64.75%  76.25% 0.027
! 200 77.59% 82.00% 50.00% 66.00%  74.00% 0.673
100 82.76%  90.00% 37.50% 63.75%  76.25% 0.133
> 200 82.76% 90.00% 37.50% 63.75%  75.25% 0.138
100 81.03% 86.00% 50.00% 68.00%  74.75% 0.658
° 200 84.48% 92.00% 37.50% 64.75%  74.50% 0.222

Table 4.14 generally shows higher sensitivity at the cost of specificity, due to different
threshold settings compared to table 4.12. Both tables indicate the trade-off between

sensitivity and specificity (as shown in section 4.2), with threshold adjustments playing
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a significant role in the model’s performance metrics. In general, sensitivity tends to
improve with the optimal thresholds derived from the drift validation set, while
specificity often decreases. The balanced accuracy values range between 62.75% and

68.00%

Table 4.15: Concept drift adaptation results from retraining the last two dense layers of VGG-16 - 200 epoch -
hidden GS with new thresholds

LRM Epoch | Accuracy Sensitivity Specificity Balanced AUROC Threshold
Accuracy
100 81.03% 88.00% 37.50% 62.75%  74.75% 0.171
’ 200 82.76% 90.00% 37.50% 63.75%  75.50% 0.957
100 84.48% 92.00% 37.50% 64.75%  75.50% 0.55
1 200 86.21% 94.00% 37.50% 65.75%  74.50% 0.004
100 75.86% 82.00% 37.50% 59.75%  73.25% 0.476
? 200 82.76% 90.00% 37.50% 63.75%  74.25% 0.138
100 87.93% 96.00% 37.50% 66.75%  77.75% 0.023
’ 200 87.93% 96.00% 37.50% 66.75%  76.00% 0.002
100 82.76% 90.00% 37.50% 63.75%  74.75% 0.052
* 200 82.76% 88.00% 50.00% 69.00%  73.37% 0.255
100 74.14% 78.00% 50.00% 64.00%  74.00% 0.788
’ 200 82.76% 90.00% 37.50% 63.75%  74.25% 0.041
100 79.31%  84.00% 50.00% 67.00%  78.50% 0.751
¢ 200 75.86%  80.00% 50.00% 65.00%  78.25% 0.706

Table 4.15 illustrates higher sensitivity but slightly lower specificity due to different
threshold settings when compared to Table 4.13. The significant improvements in
sensitivity, indicate a better detection of positive cases with the application of the new
thresholds. LRM 6 shows a slight decrease in sensitivity and balanced accuracy at 200
epochs in Table 4.15 when compared to Table 4.13, while at 100 epochs the metrics are

identical. Once more, the result of optimizing the classification threshold generally



improves sensitivity, while decreasing specificity. The balanced accuracy metric varies

by model.



Conclusion — Feature Work

5.1 Conclusion

The current thesis’ aim is: (1) the development of Machine Learning and Deep Learning
methods for COVID-19 diagnosis from audio data and (2) the implementation of drift
adaptation methods that would maintain the developed model’s accuracy, in
nonstationary environments, throughout time. To that effort, multiple models were
tested using both traditional implementations, namely Random Forests and Multilayer
Perceptron, and CNN architectures. In order to handle the problem stemming from the
limited data available, the Transfer Learning technique was utilized through the usage
of the VGG-16, ResNet-50 and Inception-ResNet-V2 models, which were pertained on
the ImageNet dataset. Also, the RF and MLP models were trained with and without the
application of SMOTE. In addition, Zero-Shot Learning was employed in this study,
using the OpenAl CLIP model, to examine how this learning method would perform in
a medical classification task and to compare its results against models specifically

trained or fine-tuned for this task.

The data used were cough samples from the Coswara dataset containing healthy and
COVID-19 infected individuals. The data transformations performed were both feature
extractions from the audio recordings and audio to image transformations. The best
model using extracted features as input, without incorporating SMOTE, was the random
forest model with a threshold of 0.367, which resulted in 66.47% accuracy, 47.83%

sensitivity, 71.22% specificity, 59.52% balanced accuracy and 69.91% AUROC score.
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The application of SMOTE on the training data resulted in the random forest model,
with a threshold value of 0.387, being the best performing one. The model achieved
65.00% accuracy, 59.42% sensitivity, 66.42% specificity, 62.92% balanced accuracy
69.42% AUROC score. The application of SMOTE and threshold optimization from
the validation set generally improved the models’ metrics, although with a marginal
decrease in AUROC. On the extreme case where the models’ sensitivity values were
both 5.80%, the two aforementioned techniques achieved a sensitivity value 10 times
greater and an 21% increase in the balanced accuracy metric, which leads to a better

balance between sensitivity and specificity.

With regards to the CNN models tested using Mel — Spectrograms the best performance
was achieved by the architecture using the VGG — 16 as base — model and a hidden
Gaussian Noise layer. The results are an accuracy value of 78.53%, sensitivity of
62.32%, specificity of 82.66%, balanced accuracy of 72.49% and AUROC value of
80.21%. The utilization of a Gaussian Noise layer as a hidden layer leads to higher
AUROC (13% improvement to CNNs using VGG-16 and Inception-ResNet-V2 as base
models.) and sensitivity values when compared to using Gaussian Noise as an input
layer. The usage of a classification threshold optimization improved the model’s
sensitivity score, while marginally decreasing the balanced accuracy score. The
resulting scores using a threshold of 0.860 were 74.41% accuracy, sensitivity of
68.12%, specificity of 76.01%, balanced accuracy of 72.07% and AUROC value of
80.21%. Overall, optimizing the decision threshold did not achieve the same overall
metric improvement as it did to the MLP and RF models. In the case of CNN models
there seems to be a trade-off between sensitivity and specificity, but due to the
application domain of our models an improved sensitivity is favored to an increased
specificity.

Lastly, zero — shot classification utilizing the CLIP model has the worst performance
overall on the test set, with a considerable gap between the best performing CLIP text

— label pair and the worst performing fully trained model.

When it comes to concept drift adaptation, retraining the last two dense layers of the
model using layer regularization method 6 showed an improvement of up to 5% in
AUROC value (when compared to no layer regularization method being used) and
required 100 epochs of retraining on the drift training data to achieve that score, instead

of the 200 epochs needed for the initial model training. The results achieved were
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79.31% accuracy, sensitivity of 84.00%, specificity of 50.00%, balanced accuracy of
67.00% and AUROC value of 78.50%. The use of an optimized decision threshold
model did not alter the values of that particular model but overall, a trade-off between
sensitivity and specificity was showcased, where sensitivity increased and specificity
decreased. The balanced accuracy’s behavior varied depending on the LRM used.
Furthermore, it can be observed that the lower the value of the parameter c of the layer
regularization method, the better the model is performing. This could be attributed to
the fact that due to the change in concept, a new balance needs to be found between the
learned knowledge that should be maintained, and the new knowledge that must be
acquired in order for the model to perform the classification task accurately. Because
of the fewer data available in the drift set, and the significant change in class imbalance,
lower values of the regularization value ‘c’ (0.01) lead the retrained model to rely more
on the new data, whereas higher ‘¢’ values (1.0) lead the model to rely more on the

already seen data.

From the aforementioned results, it is evident that the CNN models utilizing transfer
learning can be effectively employed in the domain of Covid — 19 detection. They
outperform the Random Forest and MLP models and despite the limited and imbalanced
training data, they achieve AUROC scores north of 75%, even reaching up to 80.21%.
If these models were to be made publicly accessible, they could significantly increase
the speed of testing and decrease the pressure pout upon hospitals, health organizations

and testing centers.

5.2 Future Work

Future research may include the combination of cough, voice and speech recordings
that are provided in the Coswara dataset. The use of different sources of respiratory
sounds could improve the classifier’s performance since the CNN would have a greater
variety of possible features to extract. An effective application of this method could
produce a model with better discrimination abilities. Furthermore, the prospect of
multimodal classification that combines Mel — spectrograms with the text data provided
by the users (gender, age, symptoms, etc.) could potentially increase the model’s
performance, while also utilizing already provided patient information that remained

unused in the current study. Additionally, employing ensemble methods, such as model
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aggregation or stacking, could aggregate the strengths of multiple classifiers, enhancing
overall performance and diagnostic accuracy. Moreover, conducting multiple trainings
on different COVID-19 cough datasets, including resources like COUGHVID and
Sarcos, could provide richer training data, enhancing the model’s ability to generalize

across diverse populations and conditions.

Furthermore, worth investigating are also few-shot learning techniques, which enable
models to generalize from a limited number of examples, potentially benefiting
scenarios with scarce labelled data. Combining few-shot learning with accurate phrase
engineering stemming from the relevant literature could further enhance the technique’s
potential. Another area that could provide significant research potential is federated
learning. Allowing models to be trained across decentralized data sources without the
need for a centralized data aggregation could enable the preservation of data privacy,

enhance data security, and allow model training from data across different populations.

Finally, concept drift adaptation combined with detection methods could ensure model
robustness over time, enabling the system to detect and adapt to evolving data
distributions with minimal external interaction. Leveraging and combining such
techniques could pave the way for more effective COVID-19 diagnostic systems, thus
ultimately improving patient outcomes and alleviating pressure from healthcare

organizations.
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