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HepiAndn

Yy napoloa Simhwyotixy epyacio, egetdlouue v andédoon twv prophet inequalities
oe Yuvduao tixég Anuonpacicec 6tav ol aEloAoYHOES TUEOLCLALOLY GUUTANEWOUATIXOTNTES
xan Tar avTixelyeva ebvon dlodéoipa o mohhd avtiypago. Eotidloupe oto mapadelyyoti-
%6 TEOBANUA NS dUESTC BEOMOAOYNONS o EAEYYOU ATOBOYHC O BIXTU OTAV Ol OXUES
Exouv ywentxdtnTa mou elvan Aoyaprduxd ueydhn oc oyéor Ye 1o TANUOC TV UXUOY
xat yvopilouye Ty xatovour] Twv atnudtwy. H hoyoprduixd peydin yoentxotnto pog
ETUTEETEL VO AUGOUUE TROCEYYIOTIXE TNV XAACUATIXY YAASEWGT] TOU TROBAAUATOS TOU oG
olver mavdTNTEG OE YUOVOTIATIO XaL TTROCEYYIOTiXd TopdyovTa (0o e 1 + €. Trovétovrtog
OTL €YOUUE YVWOT] TWV CUVOMXOV alTNnUdtwy mou €pyovtal oc xdde (euydpl xoufwy, é-
TELTOL YENOWLOTOWOVPE TNV évvola Twv balanced prices, énwe optlovtou 610 [32] o onoieg
unoloyilovtan e Bdorn ta povomdtia, xan amoSoUOVUE TO TEOBANUN OE GTIYULOTUTIOL TOU
TEOXTIXA CUUTERLPEROVTAL WG AVEEZETNTA Xl AELTOUPYOUV w¢ unit-demand.

Aggeig KAewdid: Yuvdvaotixéc Anuonpaoice, Yyediaopoc Mnyaviouov, ‘Eleyyog A-
nodoyrc, Apouohdynon oe Aixtua, Prophet Inequalities, Balanced Prices, unit-demand






Abstract

In this thesis, we examine the performance of prophet inequalities in combinatorial auc-
tions where valuations exhibit complementarities and items are available in multiple
copies. We focus on the exemplary problem of online routing and admission control
in networks where the edges have capacities that are logarithmically large relative to
the number of edges, and we know the distribution of requests. The logarithmically
large capacity allows us to approximately solve the fractional relaxation of the problem,
which provides probabilities for paths and an approximation factor of 1+ ¢. Assuming
knowledge of the total requests for each node pair, we then use the concept of balanced
prices, as defined in [32|, which are calculated based on the paths, and decompose the
problem into instances of node pairs that practically behave as independent and func-
tion as unit-demand.

Keywords: Combinatorial Auctions, Mechanism Design, Admission Control, Rout-
ing in Networks, Prophet Inequalities, Balanced Prices, unit-demand
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Chapter 1

Extevic EXAnvixn Ilepidndn

1.1 Ewoayoynq

Mrnopolue va mpofNédouue T GUUTERLPOREE ol TNV XATACTUCT EVOG CUCTHUATOS TOU
anoTeelTon and oTEATNYLX00C TAUIXTES TOU OANNAETLOPOUV ETUOLOXOVTAS VO ETUTOXOLY TO
To TEOTIUMUEVO Yia auTolg anoténeoua; O John F. Nash oto Ppafeupévo ye Nournek
€pyo Tou amédelle OTL, aveldpTnTa and To TGO TEPTAOXO elvar To GOGTNUA, Ol TEEXTORES
OAANAETUOPOUY UE TEOTO TOU TENLXE PTAVEL OE LA XATACTAOY, OOV Xovel Oev UTOpE!
vor eTTUYEL XAADTEPO amOTENECUA OANGLOVTOG Hovouepws TN otpatnyxr Tou. H évvola
auth ovoudleton loopponion Nash xou Beloxeton otnv xapdld Tou medlou Twv YodnuaTXGy
mou ovopdletar Oswplo HHaryviwv. H éxevorn tou dobixtiou €pepe TARBOC EQopUOYWY
e Ocewplog IHouyviov, emeldy| npdxeitan yia €vo GUGTNUA OTO OTOO Ol GUUUETEYOVTEG
OANNAETUOPOUY CTEATIYIXS YLt Vo TO xateLBUvouy Tpog ta embuuntd anoteréopata. Eva
ONUAVTIXO EQMTNUA NOLTOY ATy, oV UTOEEl AVElS Vo UTONOYIOEL AMOTENECUAUTING TNV
wopponio Nash (mou elvan eyyunuéva umopxT) EVOC CUGTAUATOS TOU amOTENE(TOL oo
otpatnyolg maxteg. To epdtnua autd, Tou TEhNKE xUplng amd EMC TAUOVES TNE TANEOYO-
PNC, €8waE To Evauoua yio T dnpoupyia Tou tedlou tne AlyoplBuixrc Oswplog Ilouyvimy.
H drodm auty), avoklel cuotiuata tou undeyouy "otn @lon” xou avalntd uedodous yio
TNV amoTeENEcpATX TEOPBNedN TN €xPacric Toug YeTd amd éva xpovixd didotnua. 2oTdoo,
TL B ywvoTay av oANGlope OTTIXY Yool xou ovoNaAvaue To pONO TOU GYEDLACTY| TOU
ouo THuatog; Topa To ep®TNUA YivEToL, UTOEOUUE, EEOTALCUEVOL UE T1) DUVAUT VoL PTIAEOUUE
10 du6 Yo mawyvidt (1 ovotnua), va emPBENoupe Yiot EmBLUNTH CUUTEPLPOEE TOL X TN
xa €vo emBuuntoé anotéleouo Tou cuaThUatog; To xategoyny mapddetypa andvinone oe
auTo TO ep@TNUa elvar ol Onuompacieg. Amd TN oxomd Tou TEANTA, elval BUVATOV v
OYEOLACOUUE XAl VO UTONOYICOUUE OTMOTENECUATIXG TOUG XOUVOVES WLAS ONUOTEaCToG XoTd
TEOTO O TE 1) TROTWOTERT] EVEQYELX TV TAELOOOTMV VAL EIVAL VO AVAPEROUY TIG TIOOYUATLIXEG
Toug anotinoelg; To epodtnua autd yévvnoe tov topéo Tou ANyoplBuixol Xyediaouol
Myaviouwy, o onolog cuyvd aroxaeitar xar avtiotpopn Ocswpla Mouwyviwv. Xto mhaicto
TWV ONUOTEAGLLY, YOl TNV EQUEUOY T TNS PINOATDELNS KENOULOTIOLOVVTOL XENUATLXE AV TOANGY-
HOTA OO TOUG TAELODOTEC PO TOV TWANTA. Me dAXa Noyia, 0 TOANTAC TEENEL Vol
AMOPAGIOEL TOUG VIXNTES XL TIC TANEWUES YO VO TTROXUNECEL TNV GINOANTDeLaL. 270
Yyedooud Mnyoaviouov e Xprjuota, To epuehimdeg €pyo evog dilou vounenlota, tou R.
Myerson [53], ébece ta Bepélio yio To medio autd, yapaxtnellovtog TARens Tic PUNaNYBelS
Onuonpacicec 6To TANCLO WoC TUPUUETEOU, OTIOU OL ATOTWNOELS TV TEOCPEROVTMY TEQLY Ed-
povton and évay povo aplfud. O Myerson amédelée OTL av €Vog XAVOVIS XATAVOUNS TWV
ayofov etvar ablwv oe oyéon pe Tony aloNGYNOT, TOTE UTAEYEL EVAS UOVIBIXOS XAVOVAS
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TANewUNS, 0 onolog 6Tov GUVBLALETOL UE TNV EV AOY® Xatovou) xablotd Tov unyavioud
QaAOn. H egopuoyy| tou yapoxtneiopol tou Myerson oe dnuonpacieg evog atolyeiou
diver ) Sudonun dnuornpacia Vickrey # dnuompoocio devtepne vhmhotepne twre [60]. O
Vickrey, Clarke xou Groves [60, 20, 40] yevixevoav to amotéeopo tou Myerson oe
TERLBAIANOVTA TONNGDY TOROUETEMY, OTOU OL anoTIhoElC elvan cuvaptoelg. O unyoviouodg
VCG, o omnoloc nhpe t0 dvoud tou amd ta apyxd toug, xopaxtneilel Toug @UNaNhBELC
UNXAVLOUOUE TIOEEYOVTAS TANPWUES AVANOYES WE TNV Tep(nTtwon evoc otovxelou. H povn
empONaCT elvon OTL ylor var Aettovpyrioel o unyoviopos VCG, anoutel tn BENTIoTn Ao
Tou unoxelpevou mpoPifuatoc Bertictonoinone. Autéd etvon éva NP-80oxolo épyo v
TIC TEPLOOCOTERES XaTryopleg anotiunone. Ag onuewdoouue 6Tl OXoL oL Tpoavapepdévteg
UNXAVIOUOL UEYIOTOTOOUY ETONG TNV XOoWvwVixY| eunuepia, 1 omola elvon To ddpoloua Twv
ATOTIUACEWY TV VIXNTOV. 2T0 xe@drato 3 o oplcouye enionua oplopéves Baoixég évvoleg
o070 Xyedloud Mryaviouwy, ol onoleg elvan ypnolues oe OXN TNV epyaocia.

Pavtacteite 6Tl elote WoxTATNG pLog alBoucos cuvauidy xar BENeTE var ToUNoETE
eloLthpLa (Tou avtiotoryoVv ot Béoelc péoo otny aifouvoa) yia Ty encpyduevn ouvaviio. H
CUNNOY WY oG eUmeLplor amd TNy mpory patixr) Lwi) uTory 0pevel OTL 0 TWANTHG BEV BLOPY AVEIVEL
onuomnpacia Yol Vo TOUNACEL ELCLTARLYL, ATAMS XOL UOVO ETELDY| UTHRXEL EVOC EUXONOTEQROG
XL TO BLoUoONTIXOC TEOTOC TWANONG: ONUOCLEDCTE TWES XOU APHOTE TOUS AYORUCTES VAL
Olané€ouv Béoelg xou var ayopdoouy Ta elotthpla. TIoONNEG SANEC PEANIOTIXES TEQIMTWOELG
OTWE 1) TUPATAVE UTOBNAWYOLY TNV avdyxn va Beebolv anhodotepol unyaviopol yia Tnv
TWANON o€ oTEaTNYoUS ayopactéc. I To oxond autd, umdpyel Ulo TEEAOTIA OELEd
EPEUVV GE WLOL GUYXEXPLUEVT] XoTTyopla unyaviolov tou ovopdletar Posted-price. Mali
HE TLS €YY UNOELS XWVATEWY TOU TOREY0UY, OL Unyaviopol dnuooteupévne tuhc (posted-price)
TUEEYOUY  TTONUMVU-UIXO UTONOYLOUO TV TWMOV ot amhoTthnta. To peiovéxtnua elvor 6Tt
Tpooceyy(louv pévo tn BENTIO TN xovwvixT| eunuepia, woTOC0 TEToloL Unyoviouol elval ToND
yeNowol o TNy Tedén xat TuEodoTolY TN GLLHTNOY Yid TOUS AmA0DE EVavTl TwV BENTIOTOV
unxoviopwy. Xto Kegpdhawo 4 Oo epufoadivoupe oTig NeTTOPERELES TETOLWY UNYAVIOUMDY Xl
O T AMOTENECUATA AUTAS TNG EPELVITIXNAS Y RAUUUNS.

Ta epyaeio TOU YENOWOTOLOVOVTAL YIa TNV AVAAUCY] TV ETUOOCEMY TWV UNYAVIOUWY
ONUOCLEVUEVLY TV elvon To TAalolo tov Prophet Inequalities, to onolo eionfydn yia
TN Popd and Touc pabnuatixovc Krengel, Sucheston xou Garling [46, 47] tn Sexaetio
tou '70. To mhaloo mephapPdver Evav AATTN BLadOYLXWY ATOPACEWY TOU TUEAUTNEEL TIg
TIWES PE JUETO TPOTO %O TEETEL VO ATOPAGIOEL YLot Wial BENTIO TN O TETNYIXT BLUXOTHC IOV
elvan mpooeyyloTixd BENTIOTN O GUYXELOT UE EVaY TEOPNTY TOU UTOEEL Vo BEL TO UENNOV
xan matpvel mavta To PéNTIoTo amotéheopa. To Prophet Inequalities €ywvov onuoavtixd
OTOV TOMEN TNE ETUOTAUNG TOV UTONOYICTOV OTaY avoxanlpinxe 1 odvdeoy| Toug Ue Tig
OLadOYIXES ONUOCIEVMEVES TUES. TTap€youV TIC XATIANNAES TEYVLXES YLOL VAL ETILXELENUATONO-
YAOOUUE YLl TOV AOYO TROCEYYIONG TOU EMTUYYXAVOUV Ol TWES, LTS Tnv unobeor Ot
Ol AMOTIUACELS TV OYORACTWY TEOEEYOVTAL U0 YVWOTEC AVEEAPTNTES XATAVOUES. XTO
Kegdhawo 5 mpdxertar va diepeuvijooupe Boowxd amoteNéopata tne Pifhoypaploc yio ta
Prophet Inequalities ta omola mapéyouv mANEOYopElec Yiol TO OYEDLAOUO UNYAVIOUDY UE
BerTiouéveg eyyunoElg TPOCEYYIONS OE BLAPOEA TONUTIUPUUETEXS TERLBAANOVTOL.

‘Eva onuoavtind xan dxpwe evdlagépov €pyo ota Prophet Inequalities €xel Beticdoel
TOUG OUVTENECTEC TPOGEYYIONG YLol TOUG UNYAUVIOHOUS ONUOCLELUEVLV TUWY GE OLAPOopa
m ool Eva xowd yapoxtneloTixd Tov TEplocoTépwy amd ouTd Tor mAafolo efvon OTL
TEOVGLEALOLY U1 CUUTANPOUATIXESC ATOTIUNOELS, OTIOG OTIC LUVOLac Txée Anuonpacies Ye
submodular ayopactéc. Avtifeta, uTdpyouv ToNUdELBU TEOXTIXA OOV TIXE ToEadElYpoTa
omou ol 0&lEC TWY AYOPUC TV VAL CUUTANEWHATIXES, ONAADT €va oTolyelo amoxTd aflo



uovo 6tav aryopdleton o8 GUVOLACUS HE dANa oTovxela. 2Xto Kepdhato 6 Siepeuvolye éva
meptBdANov mou mapoualdlel ouUTATEOUaTXOTNTA. Ot ayopaoctég €xouv wa alia plog
Tapa€TEOU Ylot Vo Yivouv Bextol xou vo dpopoloynfolv oe éva BIXTUO xou €XOLUV N
undevixy| agio uévo av toug avateldel ylor Sladpour| Tou GUVBEEL TNV aPeTNElol TOUS UE TOV
x6ufo mpooplopod Toug. Xe aUTO TO TAALCLO, OTOLAOHTOTE BECUN OXUWY EYEL U1 UNOEVLXY
o&la wévo av oynuatiletl Eyxupo povordtt mou eEunneeTel évay ayopao . A&lonoudvtog To
maalolo Twv Prophet Inequalities, e&etdlouye Tot GUO TAUATA TYLONOYNONG XA TIS EYYUNOELG
TEOGEYYIONE TOUG OE OPOUS XOWVMVIXTG EUNUERLOC.

1.2 Ta Ogpelia Tou YyediaocroL Mnyavicuwy

Av xou to Prophet Inequalities efvon éva mhaiolo avegdptntou eviiagépovtog, 1 cUVOEST)
NG UE TO OYEBLIOUO UNXoVIOUOV €TLBAANEL Vo oploouue oplouéves BeUeddELS €VVoLleg
Tou TEdlou. ZerWVAUE PE TNV Mooy €VOS YEVIXOU OPLOMOU GYETIXA UE €val TeoAnua
2xedloounv Mnyavioumy. 2T GUVEYELDL, TEXYUATOTIOLOVUE OPLOUEVES TUTILXES ATTAOTIOLY|OELS
TPOXEWEVOU VoL XATONAEOVUUE OE OUCLIC TIXE amoTENETUTA. AXxoNoLBEL wlor yevinY BidTadn
yior €vol TEOBANU OYEBACUOL UNYAVICUOD.

Definition 1.2.1 (Ievixfy Awdtaln). Ac unobBécoupe 6L €xoupe n TpdxTopeS xaL Evay
xwpo anotereopdtwy Q. Kdbe npdxtopog éxet évay wbiotxd tino anotiunong v; : @ — RT
TIOU OVTITPOCWTEVEL TNV a&lol TOU 0 TEdXTOPAC AVINEL amd Eva AMOTENECHA, XOU EVOL GUVONO
evepyetwv A;. O umyavioudc cuNNéyel éva didvuopa dpdoewv: a = (ar, as, ..., a,),a; € A;
xa ovTio toly(lel auTéc TG OpAOEIc O AMOTENEGUATO XPNOWLOTOLOVTOS Uiot cuvdptnon f :
(A, Ag, .oy Ay) — Q. O umyaviopol amogasilouv entiong yla évay xavova ToNdynong
p = (p1,p2,---,Pn) OT0L Yot x80E 7, p; ¢ (A1, A, ..., A,) — RT. Kdbe npdxtopac i éxel
KL XeNOWOTNTA U;, TNV OTolal DENEL VO UEYIOTOTOL|OEL EYWIGTLIXY, TTOU TOCOTIXOTOLEL TO
%€p00C TOL amd TNV TEpLypapouevy dladixacto. E€uptdtor and to anotéleopa, Tov xovdvo
TWONGYNoNS Xou TNV WLt Tou anotiunon. To Lebdyoc (f, p) opllet évav pnyavioud.

[Tpoxeévou va gpyac TOVUE UE TO TOUPATAVEL TAXUCLO TRETEL VO XAVOUUE XATOLES ATAOTIOL-
foec. Ipota an’ 6Xa, Ba oploouvue xou Ba unobécouye yia To undNomo e dlatelPrg
TNV MU=V RUUUXT] XENOWOTNTO TOV oyORUC TV, ATUTA, 1) NUL-YROUULXY| XENOWOTNTA EVOS
TAELOBOTY YloL €va amoTENECUA efvan amAd 1 o&lal Tou Uelov TNV TR TOU TANPWYVEL YLoL TO
ATOTENECUA AUTO.

Definition 1.2.2 (Quasi-linear utility). Eotw (f,p) évac unyoavioude, v; : @ — R
ML LOWWTIXT) GLVEETNOT] amoTUNoNS xou a €va dldvuoua dpdong. H yenowodtnta u; evég
TIAEL00OTY ¢ elvon quasi-linear, ov

u; = v;(f(a)) — pi(a)

1.2.1 3Xvuvoptroeig AZo\oymnong

e autd to AU TG epyaciog 0pllouue XATOLES Ao TIC THO ONUAVTIXES XNATELS 0AELONOYHOEWY
ToU UTODETOVPE YLl VoL EYOUUE ATMOTENECUATA Lot TOUC ayopaoTéC. O mapoxdto elvon
enlong optopéveg e Bdon tnv mporypatixy| Loy, Yeyovog mou teooTololue Vo aTIONOYHOOUUE
uE TapadelypaTo UETE ToV xd0e oploud.



Definition 1.2.3 (Submodular cuvdptnor). M cuvdptnon anotiynone v : 2M — RF
elvow submodular av yia xé&be S, T C M, ye S C T xou x80e otowyelo j ¢ S

v(SU{j}) —v(S) 2 v(T"U{j}) —v(T)

Avuth n xatnyoplo mepiéyel 1600 mpocheTinég 600 xou povadialeg anotiurioeg. Elvou to
OLAXELTO AVENOYO TV XOINDY CUVORTACEWY XOL ATMOTUTMVEL TNV €vvola Tng @llvoucog
anodoorng: 1 npdcbetn alla yio éva véo otouelo peldveTton xabng Ta GOVONA UEYOUNDVOUV.
Trootneiletow OTL aUTH N XAdOM elval CEXETE EXPEACTIXY YLt VO UOVIEANOTOLACEL TOV
TpoYUoTiXd xbopo. Lxe@teite 1o axdoloubo mopdderypa: H Alice éxer 08, o Bob éyet
1.000.000$ - xou extipolv o yphpata ue Tov dio tpoémo. Topa ddote 5038 otov xabéva
touc. Ilolog mapatneel yeyobtepn adénon otny okia Tou;

Definition 1.2.4 (Zuvdptnon XOS). Mo cuvdptnon anotiynornc v : 2M — RT etvor XOS
oV UTHEYEL MLt GUNNOYT) OO @y, g, . .., 4; TEOCOETIXEC CUVAPTHOES anoTiUNCNG TETOLEG
wote v xdbe S C M

v(S) = max a;(5)

1<i<l
Etvou 80oxolo va Bpolue diadodnom yio auth Ty xatnyoplio anotiunong. 2otéc0, auty 1|
YN&oM elvon EVaL UTERGUVONO TWV UTIOBLUUETEIXY ATOTWACEWY X0 (VoL GUYVE EUXONOTERO
VoL EQYOC TOUUE UE

Definition 1.2.5 (Subadditive cuvdptnor). M cuvdptnon anotipnone v : 24 — RF
elvow subadditive av yw xédbe S, T C M

v(SUT) <wv(S)+v(T)

Avuth n xotnyopla ebvon 1 o yevixr) mou xenowwonoteiton oty Pipioypapio. Ilepiéyet
anotiwnoeic XOS xou meptypdpet TN £Vvolo TwV AToTACEOY Ywelc ouuTAfowu. Aniody,
1 opadomnoinoy 800 cUVONWY GTolyElwY BV unopel vor avéroel TNy o&lo xdbe Yepovwuévou
cuvorou. Ilopd 1o yeyovog 6T elvon 1) IO YEVIXT XACT] UTHEYOLY TEOXTLXG ATOXAUNUTTLXEG
TEPLTTWOELS CUUTANPOUOTIXOTNTOG. Lxe@Telte Tor axdlovba: 'Evog ayopaocthc Béhel va
AYOPAUCEL €VAL UOVOTIATL TTOU TOV GUVOEEL amb €vay apyxd x6ufo s o évav teNixd xoufo
t. Evo dev éxel xaplo adio yio uepovopéves axpéc , 0tay wa dEoun axuoyv oynuatiCel éva
€QUXTO HOVOTIATL amd To S 6To L, 1 o&la Tou Eapvind yiveton un UNdevix. Anhadr, oL axuég
OAANAOCUUTIANPWYOVTOL YLot Vo ddcouy aio. Autd Ba elvon to mapdderypa xivnteo yia
T0o Yeyan0Tepo Yépog tng datpPric. O axdrouvbog oplouds tov single-minded mpoxtoépwy
ATOTUTWVEL TO TOQOTAVE THRAOELYUAL.

Definition 1.2.6 (Single-Minded cuvdptnon). Eoto v* € RT xou S* éva oOvolo avtixeiy-
évov. Téte 1 ouvdptnon anotipnone v : 2M — RY elvau single-minded av yio %80 chvoro
S, av M DS D S*t6te v(S) = v* xaw v(S) = 0, dopeTind. Anhady), €vac ayopaotic
UE povomheupr oxédm €xel un undevixr adio av xou wévo av Ttou diatebel évar ochvolo
AVTIXELIEVOY TIOU TEELEXEL TNV eTOLUNTY| BEou.

1.2.2 Moavzeix

Ané tov opiopd TV CUVOETACEWY amoTiunong i TIC 2YuvduoaoTixég Arnuonpacied,
TapatnEolUE auéons OTL 1 TEpLYpa@r Touc elvor exBeTixf oto péyebog tou m.! Eatioc

T Ty ooplBetar, LTEEYOLY XNOELS amOTUNONS TOU Elvol TONVOVUPIXES GTNY TEPLYEapH TOUS (TTy. Lot
Tic npoobetinéc amotiuhoelc ypelalduacTte pévo m optbuole, Evay yio xdbe pové chvoro), oANd auTéc ot
¥\doelg Bev ebvar oUTe YeEVIXéC 0UTE apXETd exppucTnés oc oyéon pe Ti¢ subadditive X submodular, yix
TOEADELY L.



autoU, cuvhfug unotifeton 6Tl UTdpEyEL TpdcPact o pavtelo. Mnopolue va Bewprjcouue
Tor povTela wg epyoeior oTa XEQLAL TWV oY OPAC TCV TTOU TEETEL VO UTONOY OOV TN BENTIO TN
vV outolg andgact, dn\ady moia déoun dlbéoluwy oToryelwy va emiééouv. T to
ox0m6 aUTO, TaPUXdTw Bo oploovue oplopéva amd Ta YavTELd TOU YENCWLOTOOVTOL GTN

BuBAioypapia.

Definition 1.2.7 (Mavteio tudv). ‘Eva pavteio tipdv déyeta o eloodo éva oivoro S
xan €€dryel évay aplud: TNy T TN cLVEETNONS TNE amoTiunone oo cUvoro S, dnAadY

Definition 1.2.8 (Mavteio {ftnong). ‘Eva pavteio {Atnong déxeton we elcodo éva didvuouo
WOV P = (P1,D2, - - -, Pm) xou €E&yeL o déoun LATnone xdto and autés Tic Tués, dnhady
éva obvoro S C M mou peyiotonotel 1o vi(S) — Y g Ppj, T0 omolo elvon M xeNoWdTNT™
TOU QYORACTH XATW omd QUTES TIC TUIES.

O moapamdve oplopdc LoyUEL YLl TWES OVTIXEWEVDY, WOTOCO O OPLOHOC UTOpPEL va
enextolel MOTE Vo CUUTERINAPEL TNV TYWONOYNOT) BECUIBWY, dNAABT OTAY 1) TLY| WULaS OECUNG
0ev unopel amopaltnTa var ex@eac Tel g A0POLoUN TOV TYWWY TWV AVTIXELIEVOY TOU TEQLEYEL.

Definition 1.2.9 (XOS Mavteio). o o XOS ouvdptnon v;, to pavieio déxetan wg
eloodo éva olvoho T xou emoTEéPel TNV avtloTolyn TEOCHETIXY AVTITPOCKOTELUTIXT
ouvdptnon v to obvoho T, dnhady| wa tpoobetnr| ouvdptnon A;(-) tétow dote (i)
v;(S) > Ai(S) v xdbe S C M, xou (ii) v;(T) = A(T).

Ta XOS oracles dev yenoipomnotoivion evpéng otn Biphoypagpio, wotdéco ta opillovue
EMELDT] OploPEVA amd Ta ATOTENECHATA ToU Bo ToEOUCLHCTOUY G T GUVEYELD AToUTOOY
Tpocfaon oe autd. Eva eviiagépov yeyovog efvon OTL ylol UTOTONNATAAOLES ATOTWNOELS
éva XOS yavteio purnopel va uhononfel Y€ow TONLWVUULXE TOANDY EQWTNUATWY OE €Val
uavTelo TYV.

1.2.3 Meyiotonoinon Kowowvixrg Qeéleiog xaw Ecodwy

Ané tn oxomd Tou SNUOTEATY, O ATWTEPOS GTOYOS UG ONUOTEUCC Elval VoL TOEAYEL Uial
avdBeoT) AVTIXEWEVWY OE TOUXTES Xl TANPOUES TOU UEYLIOTOTOLOVY VoY GUVONXO GTOYO,
ON\adY) vy 0 TdY0 oL eEUPTATOL TG TO GUVONLXO ATOTENEGUA TOU unyoviopol. O d)o To
oLy V8 yenoonotoluevol otoyot elvor ol e€hc: 1) éooda, mou elvar oL GUVONIXES TANPOUES
TIOU TEAYHATOTOLOUV OL Oy OPACTES GTOV UNYAVIOUO Xau 2) xowwyixt) wpéleta 1 GUVONXN
ollo mou e€dryeton amd €va cuyxexpldévo anotéeopa. lloapoxdtw opilouue enionua Toug
TORATIAV® G TOYOUC

Definition 1.2.10 (Kowowvixh Qeéxewr). Eoto (f,p) évac unyoaviopds. H Kowwvixd
Qeélela evog anoteéopatog w € ) efvou:

SW = Zvi(w)

H peyiotonoinon tne xowvovixic wgpélelas onuaivel 6Tt avalnTolUe AmOTENEGUATO TOU
Behtiotomololy TN cuvoluxn adla Tev ayopactdyv. Koatd pio évvolr, oe éva BéltioTto
ATOTENECUA EUNUERLAC OL oy 0PAT TES EIVOL GUANOYLXE EVYXAELC TNUEVOL UE QUTO TOU TTOUEVOULV.

Definition 1.2.11 ("Ecoda tou nwint). Eoto (f,p) évac unyoviopods. To écodo tou
TOANTA YLt Tov unyoviopwd (f,a) yio évo dedouévo didvuoua dpdone b etvou:

Rev =73 pi(a)



H peyiotonolnoyn twv €560wv xaL 1 HEYIoTOTOINON TNG XOWWVIXAC w@ENELS efvon 800
EVIEAWS OlaopeTixol otdyol. Ou TEYVIXEC TOU XENOLLOTOIOLVTAL YO TNV AVAAUGY] TOU
TpwTOoL efvar TOND BlopopeTIXéC e oUyXpLom Ue Tov deVTepo. Emeidy| dev elvon to x0plo Béua
e epyaoiag Oo oulnTioouye ev cuvTouio YLl TETOLOUG UNYAVICIOUE G TOL ETOUEVO XEPANLQL,
OANG TE@TOL LOC NETEL €Vl TOND ONUAVTIXG GUCTATIXO TOU GYEDLACHUOU UMYOVIOUWYV: T
xivntea.

1.2.4 Pialrfsia xow Atopixn) OpBoroyixdtnta

O Topéoac Tou Xy edlacuol My avioumy ETXEVTROVETU XUROE OTNY EVOWHATWOT XV TEWY
G670 OXEOLOUO aNYOoplOuwY. XNV TEoNYOUUEVY] EVOTNTA, EIDOUE OPLOUEVOL ATOTENECUOTA
TOU UEYLOTOTOOUV TNV XOWWVIXT EUNUEP(ol OTAY Ol CUVORTACELS anoTiUNcNG OOV TV
Tapary OVTWYV elvol dnudoilo yvoo tég. Aniodr, Ta tpoavapepbévta anoteréopota oynuatilouy
xa ETAVOLY Eva TEOBATUA BENTIC TOTOINOTE YLl TOV TEOGBLOPLOUO TWV VIXNTWY TNG ONUOTE0-
olac. 201660, 0L GUVAPTHOELS ATOTUNONE ATOTENODY LWOLWTIXTH TANEOPOELNL YL TOUS TOUXTES.
An\odr), o€ Evay UNYOVIoUO GUECTC ATOXAAUPNG, OL TAELOBOTES UVAUPEPOLY TIC TROCPORES
Toug (oL omolec umopel v elvon SLPOPETIXES OO TIC TEAYUAUTIXES TOUS AMOTUUNOELS) Xol
O UNYOVIOUOG TIC CUANEYEL, AANG Oev €xel TpdaPocT OTIC TEOYUATIXES TOUG TEOTWNOELS.
Enopévag, n x0pia TpdxANoT TOU OYEDLAGUON TOU UNYAVIOHOU EYXELTOL GTO TS O GYEDIC TAS,
eodlaouévog pe v e&ouvato vo xabopilel TV xatovour) xon Tic TANPwUES, dlvel xivntea
v TV amoxdaudn e okribetag.

ITechtov, oL ayopactég Ou meenel v £xouv xVNTEO Vo CUUUETEXOUY GTOV UMY OVIOUO.
ITio cuyxexpwéva, xdbe TAELBOTNG BeV O TEENEL TOTE Vo TopATNEEL AEVYNTIXY| XENOWOTNTA
ave€dETNTA OO TO OTMOTENECUO TOU UNYAVIOHOU, dNAadn dev Bor mpémel va xdver ypruota
amAGG xan wovo cupuetéyxovtog. H évvolr auty ovoudleton atouixr) opholoyixdtnta xou
oplletan enionuo TopUXdTW.

Definition 1.2.12 (Atopxr) Opfoloyixdtna). ‘Evac unyaviopoc (f, p) elvon individually
rational v yiot xd0e TNEWODOOTY ¢, amoTiunon v; xou Sidvuoua bit b_; Twv IAAwV TAEl0d0T®Y

vi(f(vi, b)) = pi(f(vi,by) >0

H @uhoriBetar umopel var opto Tel e Bidpopous TeoTouUS Tou e€AETOVTAL AN TIC TANROQO-
elec mou yenowonotel évag medxtopag xatd T MAYn g andgacrc tou. H évvola tng
oupPatoTnrog xvhTewy xuplaeyng o TeatyAg elvon Beuelimdng oTov Touga Tou oxEBLAGUOU
unxoviop@y. Averionua, cuvendyeton 0Tl xdbe mpdxTopag Sev unopel va elvon yELeOTEPOC
and To Vo amoxo\UEL Tov mparyuoTixd Tou TOno, aveldptnTa and TO TL TPOGPELOLY OL
dANoL meduTopES.

Definition 1.2.13 (Dominant Strategy Incentive Compatibility ( DSIC )). Evac unyovio-
uog etvon oyufaroc pe ta xivnroa Tns xVLaEyNS oTEATNYKNG AV 1) ATOXSALYT TN oNriBetag
elval TPOC TO GUUYPEEOY EVOC TEAXTOEA AXOUN XOL APO) O TEAXTOPUS TAUPAUTNEHOEL TOUG
TOTOUG TV ALV, Tumxd, yia OXa T 7, v;, by, %o ONeg Tig TpooPopéc b_; Twv ANV
bidders :

vi(f(vi, b-i)) — pi(vi, bi) > v;(f(bi, bi)) — pi(bi, b_s)

Yuyvd Ba avagpepduacte oe unyaviopols tou etvow DSIC we gulaindes f un otoarnyucois.
Emn\éov, évog unyaviouog mou etvon DSIC vnovoeiton eniong ot elvan atopixd opboloyinde,
EXTOC AV AVOPEQETOL OLUPOLETINSL.



1.3 PiaAN0sic Mnyaviowpol yiao MeyioToroinon
Kowovixng Qgeleieag

Apyd, Ba e€etdooupe tny évvola tne Ouapactavic Ieoppomioc. O xobopiopds twv Tiumy
¢ Ovakpaotavic Iooppomiog yio Tor avTixelueva xon To VoL aprioOVUE ATAS TOUC TAELOOOTES
vau tdpouy 6,TL {nToldy, @alvetol cov €vag amAOg xat @INONAONG unyoviouos. Avotuyog,
wo Ovakpaoiavy| Ioopponia dev undpyetl Tava, 6nwe Qalvetow 6To axdNoubo ToEddeLyUa.

Example 1.3.1 (Mn Vnopén Ovorpaotavic Ioopporniog). Eoto dVo ayopactéc, n Alice
xat 0 Bob xou 800 avtxeipeva a,b. H Alice éxer adio 2 yia xdbe un xevd olvoro xou o
Bob éyet o&ia 3 pévo yia oNoxAnen ™ déoun {a,b}. Awxpivoupe 800 nepintdoeis: Edv
n avtiotoylo {htnong tou Bob dev elvon xevi,téte 1 avtiotoiyia tng Alice elvon xevy.
Enopévog, 1o dhpoloua twv Tiwnv oty Ioopponia elvon 1o moX0 3. Téte umdpyer €va
otovxelo To omolo €yel T o moAD 1,5. Autd onuaiver étL autd To otovxelo Peloxetan
enlone oty avtiotoiyla {hnone tne Alice, npdryuo mou anotelet avtigaon. Av naviiotouylo
Chtnong tou Bob elvar xevr, autd onuaivel 6TL To dbpotoua Twv Ty efvor YEYINDTERO Ao
3. Enopévac, n Titnon tne Alice dev pnopel va nepiéyetl {a, b} agpol éxer twh 2. H Alice
unopel va {ntioel uévo éva Tolyelo, ac Tolue b yio T wxpodtepn and 2. Katd cuvénela,
TO OTOLKEID @ TUPAUUEVEL ATOUNNTO, AANG €YEL U1 UNOEVIXY TUT, TEdyUo TOU ATMOTENEL %o
AL avTipao.

Av xou 1 Omopén Tipov exxabdpiong Tng ayopdc dev elvol TEVTA €YY UNUEVY), Topouctdlouue
€00 600 BewpAUATo XOWVOVIXAS WPENELNS TIOU TUPEYOUY avaryXalee xou Lxavég cuvlnxeg
v Ty Omaedn xan T BéXTIoTN Aettoupyia wlog Tétolag Looppomiog, yopoxtnellovTag
€tol TAfpwe TNV évvola. Oa amodetloupe ta 800 Bewpruota xotagedyoviac otn Ocwplo
Cpopuixot Ipoypoupatiopod. Ag ndpoupe to 8Uix6 tou LP Stapiéo@pwons mou Tapouctdo THXE
o1n delTeEn evoTnTa. OL Meploptopol yia xdBe avtixelpevo j xa xdbe oryopac T ¢ yetappdlo-
viow o Ouixég petaPntéc p; xou u; aviiotowxa. ‘Onwg Bo anodeilouye, o petafantéc
auTég Umopoly vo Bewendody wg TUES AVTIXEWEVOY ol YXENOWOTNTA ayopacT®y. To
OUX6 Tpdypouua lval To axd oubo:

min ZUHFZP]‘ (1.1)
i=1

jeM

st u; + ij > ;(.9) Vi, S (1.2)
jes

p; >0 Vje M (1.3)

u; >0 Vi € [n] (1.4)

To npwto Oswpnua Qgéelag woyuplleton ot wor Ovarpaaiavi Ioopponia yeyiotonolel
TNV XOWWVIXT) OPENELA HETAUED ONWY TWV EQPLXTOV XNACHATIXOV AUoewy. H tumixy dh\wor
axoXoLBeL.

Theorem 1.3.2 (Ilpdto Bedpnua wpéreiac). Eotw (N, M, v) wa ovvévaotien dnpompacia
xar (S*,p*) wa Ovaitgaoiarn woggomia ya avey tn dnuomgaocia. Téte ya xdde epuern
xlaoparixt) Avon g Suapdopwons LP {x;s}is woyder dr Y, vi(SF) > 2, o i svilS)

Proof. Ytafeponotolye tov ayopaoth i. Aedouévou dtu (S*, p*) eivon o Ouakpaotovt
woopporia oylel €€ oploygol OTL UEYIOTOTOLEL TN YENOWOTNTE ToL:



=0 zulS) =Y p;

jes; jes

v xdfe S C M. IHoxamhaoidlovtac xo Tic dU0 TAEUEES Ue x; 5 xau abfpollovtag o
OXa T 7, .S €youuE:

Z%S Uz S* szls p]>zx15 Ul )—ZZ%,SP;

i,S jes; i,S jeS

Aol D g xis < 1y O\ oL i, ExOUYE:

28D =2, 2 vz ) s ul®) =20 s 1)

0,9 i jes: i,S jes

Ernopévog, apxel vo dei€oupe dtL ) . ZjESZ P52 D052 es Tis Py By Ouvodpaotovi
Ioopponia, xdle otovyelo nephoufdveton o €va To TONU GOVONO, xou YloL ONOL TAL G TOLXEL
J mou dev avatifevion oe xavevay woyler 6Tl pi = 0, ETOPEVWC TO UPLOTEPO PEPOC TNG
nopamdve avioétntac elvon (oo pe Y-y, pj. H 8eud mheupd uropel va enavodiotutwbel wg
€€t D jenr P} Di Dos|jes Ti,s TO omolo elvon To TOND 370, p) omd TOV TEMTO TEPLOPLOUS
e mpwtapyxrc LP. ]

Y7o [pchto Oewpnua Qoénetag detloue 6TL oL Ovakpaciavég Ioopponiee, dtav undpyouy,
Topéy oLy po BENTIO TN axépata Ao o T Slopdpgwon LP. Yto Acltepo Oedpnua Qpénetag
B Belloupe bTL 1oy lel xou To avtioTpopo: av LTdEyEL wlo BENTIo TN axépana AUoTn oto LP,
t6TE N Noom auth elvon i Ovakpaoiovr) Ieopponio. Anhady), or Ovakpaciavée Ioopponieg
UTdEY 0LV €4V xou wévVo edv 1 BENTIoTN NUom tng LP diapdppoong etvon axépoua.

Theorem 1.3.3 (Aeltepo Bedpnua wgérewc). Eotw (N, M, v) wa Xvvdvactixh Anpompaoia,
ToTe av vrdoyel a Pértiorn axéoara Avon otn daudppwon LP, téte vmdoyer emions wua
Ovatgaoarn Iooggomia.

Proof. 'Ecto S* = (57,55, ...,5%) wa Béxtiotn axéporo AUor Tou Siveton and To TpwTEUoV
LP xow p* = (p}, ps, - . ,p;), ut = (uj,ud,...u}) vaetvou n avtiotoryn Noon tou duixo’ LP.
Oa deioupe 6T (S*, p*) eivan ot Ovapaotavh Ioopponio. Etabeponowolue tov ayopaoty
L Mopgova pe Tic comlementary slackness ocuvbrixec, x;sx = 1 ouvendyetu oL u; =
v;(SF) — ZjeS; p;. Emopévoc, vi(S]) — Zjesg p; = vi(T) = 3 jerpj v xdbe T C M.
Emn\éov, av éva otoiyelo 7 dev €xel avatebel, o mpwToC TEploplopos Tou npwtedovtog LP
oy LeL awoTned pe aviodtnTa xou and to complementary slackness autd cuvemdyeton 6Tl
p; = 0. Me 7o napandve envyeipnua, cuurepaivoupe 6L (S*, p*) elvon o Ouvakpaciovi
Iooppomia. ]

Ta 800 Bewpripata wpéretag LTodNAGVOLY 6Tl UTdEYEeL Ouvakpactavy) Iooppomio av xon
uévo av to integrality gap tou LP elvou undév. Emniéov, to deltepo Bedpnua pog mapéyel
évay teomo va Bpolue wa Ovakpaoiov] Iooppornio: Abcte TNV xhaouatin XoaAdewoT)
¢ LP Swopdpgpoone. Edv n Bétiotn Ao tuyalver va elvon axépona, téte NVoTe TO
OUIX6 Tpdypopua Yo va Peeite Tic TWéS Twv oToyelwv Tou emPdikouv tnyv Ioopponia. O
Ovapaoiavég IooppoTieg elvan eyyunuévo OTL UTEEYOLY Yol PLot XATTY 0Pl CUVORTHCEWY
arotiunone nou ovoudlovton gross-substitutes (mou mepiéyet unit-demand xou additive)
[55]



H yeywotonoinon tng xowvwvixic o@élelns xoplc vo utobétouue OTL €YOUNE EX TWV
TREOTEPMY TANPOPORIEC GYETIXA UE TIC XATAVOUES TLHAVOTNTOC TWV ALONOYNOEWMY TWV oy OO~
otV éxel enlong yeretnbel extevae otn Pifhoypagioc. T Tic anotiwroeic XOS, ol
ouyypapeic 6o [29] anédeilay wa tpocéyyion O(log® m) to 2006. Metoryevéotepn epyaoia
0 2007 [24] BeXtiovoe tnv mpornyoluevn eyyimon npocéyyione ot O(logmlogloglogm) .
Ko ot 800 pnyaviopol eivar Tuxatomonuévol, ETOUEVOE ETULTUYYAVOUY QUTY| TNV OVOUEVOUEV
avoroyla mpooéyyione. To 2012 o Krysta xaw Vocking [48] €8eilav évav O(logm) -
TPOCEYYLOTIXG TUYLOTIOPEVO Ui oviops o ornolog Bektiddnxe neputépw oe O(y/logm)
oné tov Dobzinski to 2016 [26]. I npbdogotn epyacia oto [4] Behtiwoe exbetnd o
anotéleoya Tou Dobzinski anodexviovtac évav O((log log m)?)-npoceyyiotind TuymonoL-
NUEVO unyaviops. ‘OXot oL topandve unyoviopol tponofétouy npdcBact 1000 oe pwTYUa-
Ta o&log 600 xou o epwThAuata (htnong xou eivan enione xabolixd guxaandeic. To 2021, ol
ouyypawelc oo [5] amédeilay évav O((loglog m))?-tpocey 1o Tind TUYAUOTONULEVO GUNGATOT
unyoviopd yia subadditive anotiuroeig o onolog éonace To TEOPANUA TOU NoyoplduLxol
pedrypotog o onolo frav and to 2007 6tav o Dobzinski [24] anédeile wa mpooéyyion
O(logmloglogm). Ac onuewwbel 6L 1 epyaoia auth PeNTUOVEL ETIONE TOV GUVTENECTY
tpocéyyione v Tic anotphoeic XOS, and O((loglogm))?® oe O((loglogm))?. TéXoc,
n [5] etvor enlong n teéyovoa epyacio ayulc o mpooeyyloTixd BéNTioTOUS, oAnbelc,
TUXALOTOINUEVOUS Uny aviololg Yo utoabpoloTixég xar XOS cuvduao Tixég dnuonpaoies.
Ao to Topamdve amoTENECUOTA UTOPOVUUE VAL TOQATNEHCOUUE TO EXPEIC TIXO TAEOVEX T
e {ATNONG EvavTt TV xeno Ty pavietov. o va yivoupe o cuyxexpiuévol, ol cuyypa-
pelc 070 28] mapéyouv évay alydelBro Tou EMITUYYAVEL €VOL TPOGEYYLIOTIXG XATK PEdry
O(y/m) o 10 TeoPANUA TS GAeNhBou ueyLoTonoinoNe TNE xovwvixic eunueplac XeNolo-
TolwvTog povo pavteio allag, To onolo ot cuvéyela anodelydnxe To xaNlTEPO BUVATO Yia
epwTAUATO oloG OXOUT XoL OV YENOHIOTOLOVYTAL TUYOLOTIONUEVOL Unyoviouol [25].

1.4 To mAaiocto epyaciog Twv Prophet Inequalities

Tao Prophet Inequalities eivon €éva mpdPAnua and tn Hewplo BENTIOTNE BloxomHE TOU Voo -
pBnxe tn dexoetio Tou 70 and toug Krengel, Sucheston xou Garling. [46, 47]. Ilepihapfdver
éva maixTn xou €vo meoenTn. Améd tn pio Thevpd, o maixtng Peloxeton aVTUETWOTOC UE Wil
axoloubia n tuxaiov yetafintody, X;. Autéc ol tuyalec yetafAnTtég elvan delypato mou
Tpogpyovtan and aveldeTtntes (OANG Oy amapaliTnTa TAUTOONUES) YVWO TS Xatavoués D;.
Kotd v dpign xdbe tuyalac petafintrc, o nalxtng mpénel va anogaocioel uetadd tomv
000 AXONOUBWY EVONNOXTIXWDV NDCEWV: ElTE Vo el TNV Ty ToL delyuatog TN Tuyalog
petoPANnTAc xau var otapoathoet (xoplc vo mapatnefioel HEANOVTIXES Tuyades HETAPANTES)
elte va anoppidel v tuyaio ueTaPANTH xon vou xdoel TNy T TN yia TévTa, cuveyilovTag
TIC EMOMEVES. ATO TNV GANT TAEVP, 0 TEOPATNS Elvan Tavtoyvdo e (dn\. umopel vo del
T0 UENNOV) xou Stexdixel mavtar Ty tuyado petofPAnTy ue Ty vdmioteen TR H aviedtnta
Tou RO TN elval To TEOPANUA TN EVPEONE WG PEATIOTNG oTRATNYIXNG SLaXOTTHG (Lo TOV
loyad6po Tmou cUANEYEL o&ia Tou elvon cuyxpiown pe T BENTIO TN X TOV LOTEPWY (BNA.
ue awth mou malpver o mpopRtng). Ou Krengel xou Sucheston €deilav pio otpotnyxi
Tou eyyudton 6t N avtapolPr tou tloyaddpou elvan ToundyoTov 50 % tne avtopolBic
Tou meo@hTn. H BéNTiIoTn oTpatnyy) mou emTUYXAVEL TNV TEONYOUUEVY] TEOGEYYLON
olvetow Ue avadpourn emaywyr. Edv o malxtng @tdoet otnyv tuyaio yetofinty X, elvou
BéXTiIoTO Vo TNV amodeybel, xabde dev undeyouv INAeC peTABANTES oL Bo oxoNoub- noouv.
Topa 0 emaywyxds oplouds TG oTEATNYXNC €xel we e€Xc: o malxTng amodéyetar Ty X;
oV XU UOVO oy 1) THY TNG elvon UEYONOTERYN Ao TNV AVUUEVOUEVY aiol TOU ELOTEATTEL



Eexwvovtog and v Xty éoc Ty X,,. TNV TeoyoTixOTNTA, YE EVOL AMAO TOEddELYUL
umopolpe va delloupe 6TL 0 ToEdyovToag 2 elval 0 XOUAUTEPOS BUVATOS YLol TO TEOBANUAL.
Ocwpnote Tig axoroubeg dVo Tuyaleg petafANTéC oL omolec @YTAVOUV UE TN OELRd ToU
etvon dewxtodotnuéves: X elvon vreteppviotnd 1 xou Xy ebvan L pe mbovétnra € xoun 0
oLapopeTiXd. OToladYToTE GTEATNYLXY| OLUXOTHC ATOBIDEL GTOV TAUiXTY) AVAUUEVOUEVA XEEDN
e Twnig 1. Ao v NAN mhevpd, o mpognTNg, 0 omolog EMAEYEL TAVTOTE TN UEYLOTY
Tparypotonombeloa aio, Noufdver avapevouevn olla 2 — €.

Y dexaetio tou ‘80, o Cahn [59] yeXétnoe tnv amddoon TOV GTRUTNYLXWY TOU
BooiCovtan og €va XUTOPAL, ONAADT) TOV G TEATNYIXWY TOU XETNOULOTOLOVY VO UOVO XATOPAL
v v amogacicouy av o anodeytoly 1| Bo arnoppldouv wa Tuyala yetoffAnth. Anédelle
oTL B€TovTog €va XATOEAL ToU Elvol 1) BLIUECOS TNG XOTAVOUNC Max; X; Xl ETAEYOVTOG
TNV TETN Tuyodo UETABANTY oL 1) TWH TG elval VW amd aUTO TO XATOPAL ETUTUY Y AVETO
enlong wa mpocéyyion 2. 20TO00, TO TNEOVEXTNUO QUTAS TNS OTEATNYIXAS EVOVTL AUTHG
twv Krengel xou Sucheston, elvon 611 1) mpocéyyion mopouével avolholwTn oxdun xan av
N oepd Tov Tuyxalov petafAnTov etvon oawbalpetn. Enouéveg, wa tumxy undbeon ot
BiBXwoypagia twv Prophet Inequalities efvon 6TL 1 ogpd emhéyetan and évav aviinaro, o
onolog UTopEel VoL ElVoL TEOCUPUOT TIXOG, ONNADY| 1) ETLAOY T TNG ENOUEVTS TuYloC HETABANTAS
otnv axolouBia uropel va e€opTdTon amd T TWES TV TEOTYOVUUEVOY TuXaiwY UETOANTOV
XL TIC AMOPACELS TOU TOUXTY).

Apxetéc dexaeties petd ta anotenéopota tov Krengel, Sucheston xou Cahn, ol cuyypa-
pelc o7o [41] Swomiotwoay pia ovdeom uetald tov Prophet Inequalities xot twv unyovioudv
TV avapTNUévey Tuov. Tapatiencay ot ot ayopeibuol tou Bacilovton oe xatdTato Gpta
YL TNV aviedTNTAL TOU TROQHTY unopolv vo Bewenbolv o twéc yia évay (Stadoyxd)
unxaviou6 avoaptnuevey toyv. Ildpte, yia mapdderyua, to axdlovbo cevdplo. Trdoyel
€V TOANTAC TTOL EYEL GTNY XUTOY Y| TOL Eval adtabpeTo avTixeluevo. O oryopao tég xatopdd-
Vouv évoc-évog pe aubalpetn oelpd, éxovtag avedptnta (Xt byl amopaltnTo ToVOoRoLOTUTA,)
XATAVEUNUEVES TWES Yot To avTixelpevo. Ou xatavopés elvol YVwoTtée GTOV TOANTY, O
omnolog unoroyilet xou dnuootedel o T, Kotd v dgiln xdbe aryopasty|, To aviixeipevo
TONelTL 08 aUTOV v xou wovo €dv 1 olla Tou elvon Tove omd TNV avoeTUEVY T
(xaw Sev €yxel moAnbel oe xdmolov mpomnyolueEVo ayopaoTh). LTOX0C TOU UNYAVIOHOU
elvar n peyiotononoy g ouvoluxnic aflag mou egdyeton, o€ GlYXELOT UE TO XONUTEPO
eX TV LoTéPwV BéNTIoTO, BNAAdN TN péyioTn mpoypatonoindeico allo xdbe aryopaoTy.
[Topatnpolue 6TL 0 UNYAVIOUOS TOU TEPLYPAPETOL TORATAVW OV {NTE amd TOUG Ay 0RO TEG
Vo amoxoAUouy Toug TOTOUE TOUS, Aoy 1 WOVY TANEOYOopia TOU XENOWOTOLEl YLo Vol
TopdryeL pior xotavopn) etvon av 1 olor elvan Ve 1) xdTw On6O TO EMAEYUEVO XATOPAL.
Mrnopolue va CUUTERAVOUPE OTL EVOC UNYXAVIOUOS UE OTAY ONUocieuor TV Blvel uia
Tpocéyylon 2 ot PéNTIo TN eunuepia. Eminmiéov, autd To anotéleoya elvon opuyTd, Ue TNV
EVVOLOL OTL XAVEVAS BANOG UMY AVIoUOC BeV UTopel vor BENTIOOEL auTY| TNV £y 0NOT, xdTL TOU
unopel €0xoXa var YIveL avTIANTTO amd TNy anddelln TN CPLYTOTNTIS TNG OVICOTNTAS TOU
TEo@NTN: BewPNOTE EVay AyORAUGTY) TOU €)EL ULt VIETEQUIVIO TLXY| TIY] 1 yiar To avtixeiyevo
xan €pyeton mpwtog. Onolocdnnote unyoviouds o mpénel vo anogacioet av Ho dwoet 1) oL
TO AVTIXEUEVO GTOV TEKOTO AYOPACTY|, AMOOBOVTSC TO XUUNAOTERO OpPLO.

Abdyw g oOVOESTC TOUC HPE TOUG UNYXOVIOUOUS OVORTAUEVWV TV, Ol OVIGOTNTES
TEOPNTAV EYLVAY EVA GYETIXO XAl £YXVEO EQELYNTIXO UOVOTIATL GTOV TOUEN TOU 0Ny 0pLOULXOU
oyedaopol unyaviopmy. To 2012, ow Kleinberg xow Weinberg [45] é8woay évol vEo xatdpht
Yl TO oEYLX0, UOVOTUPUUETEXO TEPLBAANOY, Tou emituyydvel Tov (Blo mopdyovta. O
xafopiopds Tou xatogiiou (oou pe tE[max; X;| elvon enione pia mpooéyyion 2.

2O ETMOUE VL YEOVLYL, OL UETAYEVEC TERES EQYACIES YEVIXELTAY TA TUPATAVW ATOTENECUATOL



OE UNTEOELDY, TOAUUTEOEWY xou dactadpwon unteoedwy [45, 30|, knapsack [32], k
matroid [39] xou mpoc Ta xdT® YNEWTE pE TEPLOPLOUEVO PEYIoTO péyeBoc cuvorou [57]
neptopiopolg feasibility.

[Mo Yuvduao tixée Anuonpacies pe anoturoeic XOS (oL onoleg nepthopfdvouy enione
ic submodular) ou cuyypagelc oo [38] mopéyouy wat 25-avtorywviotixd Prophet Inequal-
ity mou npoimobéter npdofaom black-box oe évav oarydpbuo tou Vondrak [61] -o onolog
em\lel BéNTioTo To offline mpdPAnuo- xou éva pavtelo mou anavtd o cpwthuata XOS.
H petoryevéotepn epyacio oto [32] BeXTOVEL TO TRONYOUUEVO OTOTENECUO TOPEYOVTOG
wa 2-avtayoviotixy) Prophet Inequality yio arotiuroeig XOS, unoBétovtag npdcPaor o
mavteio Chtnone. Autod taupldlel Ue TO XATOTERO HELO VLo QUTY TNV XATNY0pld ATOTUNOEWY
TOU xAnpovoyeltan and TNV mepinTwon evdc wovo otovxelou. Ou ouyypageic oto [32]
Tapéy 0Ly entioNg pLa evoToln Ty Teocéyyiom yio Ty anddelln Prophet Inequalities ewodryo-
vTag TNy évvola Twv balanced-prices. To emuyeiponud toug nepthouPdvel wiar avory wyr omd o
mhoiolo Bayes oty mAAen TANeopoenon xou plo anddelEr OTL OToY UTHEY0UY "XANES” TWIES
YOl TO TENEUTOUO, XATIANNNAL XNLUOXWTES EXDOYES AUTAOV elvon €TLONG "XONES” YLlol TO TR(TO.
TéN\oc, n mponyoluevn yeauun epyaotac cuvendyeton enione wa O(logm) -avtayovio i
Prophet Inequality yia subadditive anotiuroeic tpoceyyilovtac Tic subadditive pe XOS
arotuhoels [9).

[No subadditive amothoewc, n [31] emtuyydver exbetinfy Betiwon anodewxvioviog
wa o(loglogm) Prophet Inequality. To amotéheoud touc elvon emiong umoloyioTxo:
e€etalouv To dUXO Tpdypopuo e LP Swopdppuone xow delyvouv mweg va utoloyilouv
ATOTENECUATING TIC TWES EXTENDVTAC ToV EXNeu)oedr) ANydplbuo pe éva separation oracle
Tou unopel vor uhoroindel yenolwomoldvTag epwTidata (ATNONG. LTNV TEOYUATIXOTN T, OF
autd To TAAloLo, To HavTelo {RTNong xou To wavTelo dwpelool cupnintouv. Iapatneiote
6TL T0 BUIXG Edypauus (OTNY TERITTWON TV GUVBLUC TV dNUOTEACLOY) ExEl eExBETIXS
TONNOUC TEELOPLOUOUS - €vay ylot xdBe mhovd LUTOGUVONO OVTIXEWWEVOVY XAl AryOPACTY.
Aedouévng piog oxoroubiog THOY AVTIXEWEVWY D1, P2, - - . ; Dm, TO HAVTELO Sloywplool Tou
yenowotoLeital and tov aryoplduo exkeufoeldoie, Tpénel vo unoloyicel To cbvolo S; Tou
UEYLOTOTOLEL TN XENOWOTNTA ¢ TOU ayOpAOTH XATw omd auTéS T TWwéS. Autdg axplBog
elvar 0 oplopde tou pavtelou {Atnong oto onolo ol cuyypageic utobétouv mpdcPoo
e Tov anyoplud touc.  Ilpbogatn epyocia oto [21] anodewvier Ty Unapln wog 6-
TPOCEYYIOTIXNG TpogNTIXNS avicdTnTag Yo subadditve allohoyroeic, emhbovtog €tol éva
XEVTEWXO ovolyTd TedPANua oty meptoy. H emaxdlovbn epyooio oto [7] delyver md
unopel va yIVEL TO TEOYYOUUEVO ATOTENECUA UTONOYLIO TIXO, ATOOELXVVOVTAC OTL OTOLAOTOTE
Prophet Inequality uropel va e@apuoc tel wg unyaviouog avopTUEVOY TUMY UE TOUNSYLC TOV
e€loou xoNY) eyyYUNoT XOWwViXAS EunUEplas.

1.5 Prophet Inequalities yia SpooNoyMnom %o EXEYY O
ATOBOYNAG OE BIXTLA UE KWEYNTIXOTT T

Yxegrelte éva Temxowvovioxd dixtuo mou eCunneetel anthuata. To dixtuo amotedeltol
and x6uPoug, oL onolot yLo toeddeLyUo Umopet va efvar SpopoloynTég, xou diuepeic cUVOETELS
peTaE) TV xOUPov Tou Swbétouy éva cuyxexpiuévo ebpoc Lodvne. To edpoc Ldvne elvan
OVTITPOCWTEVTIXG TNG xavoTNToG Tng obvdeong va e€unnpetel Tautdypoveg awtridota. To
Tt @Odvouv Bladoyxd otoug xoufoug exxivnong, aAmoUTOVTAS Vo dEopoNoy ol
oe W dladpopr; mou Bo Tor 0dnyHoeL oTouC TEPUATIXOUE XOuPouc Touc. Meketdue TO
TEOPBANU and TN oxomd TOU GYEBIUOUOD UNXaUVIoUWY: xdbe altnuo TpoépyeTal and €vay



ayopao T Tou €xel xdnota WiwTx ol vor AEfBel €vol LOVOTTL TOU TOV GUVOEEL UE TOV
embuuntd mpooptoud tou. O unyaviopos diexdixel un undevixn ofla and Tov aryopaoTy,
€AV oL UOVO EQV BPOUONOYHOEL TO aftnua Tou ayopas Ty 6To dixTuo. Yrobétovioag 6Tl ol
o&lec avThoLvTon ave&deTnTo omd BNUOCLA YVWO TEC XATAVOUES, UTOPOVUE VO OYEDICOUUE
EVOLY UNYOVIOUO ONUOCLEVUEVNS TWUNG TOL Vo TYONOYEL T cUVDETELS ebpoug LWVNG WOTE
Vo ueyloTonolel (xatd mpocéyyion) TV xowwvixh wgéleta; Ot Yo xbplot Xoyol yio Ty
TWONGY MO TV ouVBEcEwY (avtl Twv povoratidyv) elvon ot e&fc:l)umdpyouv exbetind
TOANEC OLOUPORETIXG HOVOTIATIOL GE €VaL DIXTUO, EVE UTEEYOLY UOVO TONUWMVUULXA TOANEG
ouvdéoeLls, 2) dlapopeTixol xOuPoL UTopel Vo avAXOUY GE BLaPOPETIXOUE TTaPGY0US UTNPESLHY,
enopévang yia xdbe x6ufo mou avrixel oe évav ndpoyo, o tereutalog Ba mpénel va yvwpeilel
HOVO TIC TWES TV CUVBECEMY TPOG TOUC duecoug yeltoveg xdbe xoufou. Xta mpornyodueva
xepdnouo eldape OTL €xel yivel TepdoTia Souield ota Prophet Inequalities ye complement-
free a&lohoyroewc, ye anoxoplgwua éva Prophet Inequality yio subadditive ye otofepo
competitive ratio. Autéd 1o xe@diouo, and TNV AN TAELEd, e&eTdlel BeTind xou aEVNTIXG
anoteréopota yio Prophet Inequalities pe anotiuioeic mou tapouctdlouy GUUTANPOUATIXO-
. Hopatnerote 6T 60 napandve cevdplo, uio cLVIEST) €xel a&lor WbOVO av aryopas Tel
pall ue dANEC cUVBEGELS UE TEOTO ToU v o NUaTilouY €yXUEO LOVOTHTL.

E&etdloupe to unoxeiyevo npdPanua Bertiotonoinong. Ankadr, unobétouye 6Tl yvwpll-
OLUE TO GUVONO TNE ELOOBOL TV WUTACEWY 7; Xl OENOULUE VoL UEYLOTOTOLCOUNE TNV
XOWOVXY WPENEL UE Bdon Toug Teploplools Tou eTBANNOVIOL ATO TS XWENTIXOTNTES
v xdbe axpn. Opilovue we fi(v,w) ™ pofy and to altnua r; otnv oxuh (v,w) E. H
olatumwor tou Feopuixol Ipoypdupatog, lvar 1 axd ovdn:

max Z Z v fi (s, w) (1.5)

s Z;E(va) < c(e) V(v,w) € E (1.6)
ZZ: fiv,w) = fi(w,v) =0 Vi € [k], Vv # si, (1.7)
iﬁ-(si,w) = wai(w,ti) Vi € [K] (1.8)
Zw:fi(si,w) <1 Vi € [K] (1.9)
f:Ev,w) € [0,1] V(v,w) € E (1.10)

H mapandve diatdnoon unopel va Bewendel we éva npdPinuoa multi-commodity flow,
vioe o onolo yvopilovpe 6Tt etvon NP-80oxolo vo Beebel pa BéENTIo TN aéponar Noon [34].
Y10 xhaopotind xabeotde undpyouv Aooelc Tou Baciloviar oty enthuon Tou LP, xabig
Ao OYAKOTA TPOCEYYIONG OE TAHEWS TONUOVUIXS Ypovo [43].

Qo1600, €va Eyxupo EpOTNUO TOLU €EETALOVUE GTO UTONOLTO NS TAEONCOS EVOTNTOC
elvan To axdlovbo: T ovyPaivel ot BENTIO TN NUom Tou Tapamdve LP xabog ol ywentixdtntee
augavovtal; AlucOntixd, av oL xwentixdTnTeg elvon apxeTtd Yeydheg To TEOBANUa yiveTou
EUXONOTERO.  AUTO OQelNeTol GTO YEYOVOS OTL UE UEYOUNUTEQES YWENTIXOTNTES €YOUUE
TEPLOCOTERO "TEPLOMELO VIOl CQAINUATA: 1) XAUTAVOUT EVOG U BENTIOTOU UTHUATOS OEV
PXdnter téc0 moX ™ Noon pac. Kat’ apydc, 0o yetatpédouye to mapandve LP oe po
LooBUVOUY), OANG TLo BONLXY| Lop®.

Ytoyoq pag etvon vo petatpédoupe plor BENTIOTN ADOT TOL TEPLYEAQPETAL and TS POEG
oV fi(v, w) o€ par toodhvaun Nor Tou TEpLYpdPETAL ANd TIC POES HOVOTATIOV fi ), VLo



ONEC TG UWTNOELS 77 X YLot ONeC Tic dadpoués p € Pi. Autd yivetan ye tov oxdoubo
Ny 6pLfuo.

Algorithm 1 Path Decomposition Algorithm

input f
1: for all requests r; do
2:  while there is a s; — t; path p using only edges with f;(¢) > 0 do

3 fip < minge, fi(e)

4: for e € p do

5 file) < fi(e) — fiy
6 end for

7. end while

8: end for

output f;, for each request, for each path

Extehddvtog tov anyopibuo petatpédope to npwto LP oto axdlouvbo:

max ZZvif,-,p (1.11)

i peP;
s.t Z Z fip < c(e) Vee E (1.12)
i pEP;lecp
d fip<t Vi € [k] (1.13)
PEP;
fip €10,1] Vi e [k],Vp e P; (1.14)

And €86 xan oto €€fc Ba yenowomnoolye auth TV mo Bolxy), aANd mopdNa auTd
loodUvoun), wopyh Tou LP xou umopolue va exgedooupe TN BEXNTIOTN xhaopatixr Ao
o€ 6pOUC POWY HOVOTUTIWY fi,. BEpunvebouue tic poéc f;, 0¢ xatavoués mbovotiTwy
oto povomdtia. Ankadr), eEXTENOVUE Wo Tuyala oTtooyyvAomoinon TS xNaouaTixic NOong
e LP g e€hc: to altnua r; malpver to povormdt p € P; ue mbavotnta f;, xou dev
nadpver Tinoto pe mbovotnto 1 — 3 - p fip. Hopotnpolpe apeows 6L N avopevouevn T
aUTAC NS oTPOYYUNOTOiNoNG elvan {on pe ™ péyioTn TWr Tou emtuyydveton and v LP
(E€lowon 1.11). Qotdéo0, 1 6.8 xavornoteiton eniong xat’ avouevouevn tiuh. Autd onuaivel
OTL UTAPYOLY TEPLTTOOCELS OTOU 1) TUYOLOTIONUEVY] O TpOYYUNOTolnon poc mopafialel Toug
TEPLOPLOHOUE YwenTxoTnTog. [at vor avTtipetonicoupe owtd to TEOPANIY, NEWCOUIE ONES
TIC YOPNTXOTNTES xuTd évay mapdyovia 1 — ¢, 6mou 0 < e < 1. M véa Noon fi, =
(1 —€)fip wmavomotel Tic 6.8 xou 6.9 xou elvan enione wa npocéyyion 1 — e e PétioTng
Aorng. Xuveyilouue delyvovtag 6t To yeyovog tne nopaflaone tne 77 dev oupPolvel pe
weydan mbavétnta. Opilouue X, € {0, 1} v tuyada yetafAnts mou delyver av to altnuo
r; OpoUoNoYElToN 6TO wovoTdTL p € Py, yiot ONL T 4. DUVETWC,

PT[XLP = 1] = fz’l,p'
Emn)éov, v xdfe waur e, opiloupe Le = > ;> cpijecp Xip VO Elvan T0 goptio Tng
oaxung, ONAadh To TocH TV TALTOYEOVWY aThocwy Tou uetaépel. Ilapatneriote oTL
E[Le] < (1 —¢€)c(e). Adyw Tou yeyovétog ot 3o Xip < 1, SNNad 1 TuycnomoLnuévn
OTEOYYUNOTOINOT EMOTEEPEL TO TONY évar povordtt yio x8fe altnue, { X, }pep, lvon éva



oUVONO apvNTXd e€opTNUéVeY TuXawY PETABANTOV v OXa ta 7. Emmiéov, ou X, xon
X p elvon aveldptnreg yio xd0e i # j. Emouévog, umopolue va e@apldcouue To axd oubo
6pto Chernoff ané to [19].

Theorem 1.5.1. Eotw X 7o digoopa n avebdotntwy (1 xatvtepa) tvyalwy petapinrdy
ue péon run Bl X| < p. Tére wyder ér

N

PriX = (1+0)u] <ezr
Eqapuélovtac 1o Oewpnua pe X = Le,d = 7= xou = (1 — €)c, éxouye 6t

2
(1;76)2(1*5)05

PrlL,>c]<e ?*r=

_t ce

2—e¢

Il
[

_€& ¢Ce

IA
o

Optlovpe € =

4logm 4 /2 4 ’ 4
—o Egboov € < 1 and v unbbeon, anatodpe 6t ¢, > 4logm.

Me auth v emhoyt| Tou € éyovye: Pr[L, > ¢] < —5. Egopuélovrog éva union bound
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Chapter 2

Introduction

Can we predict the behavior and state of a system that consists of selfish and strategic
agents that seek to derive their most preferred outcome? John F. Nash in his nobel-
winning work proved, that no matter how sophisticated the system, agents interact in
a way that eventually reaches a state where no one can obtain a better outcome by
unilaterally changing his strategy. This concept is called a Nash Equilibrium and lies at
the heart of the field of mathematics called Game Theory. The advent of the internet
has brought forth a multitude of applications of Game Theory because it is a system
in which participants interact strategically to steer it toward their desired outcomes.
An important question then was, if one can efficiently compute the Nash Equilibrium
(that is guaranteed to exist) of a system comprising strategic players. This question,
primarily posed by computer scientists, gave rise to the field of Algorithmic Game The-
ory. This point of view, analyzes systems that exist ”in nature” and seeks methods to
efficiently predict their outcome after a period of time. However, what if we changed
perspective and assumed the role of the designer of the system? Now the question
becomes, can we, equipped with the power of customizing our own game (or system),
enforce a desired agent behavior and system outcome? The quintessential example of
an answer to this question is auctions. From the seller’s perspective, is it possible to
design, and efficiently compute, the rules of an auction in a way that bidders’ most
preferable action is to report their true valuations? This question gave birth to the
field of Algorithmic Mechanism Design, which is often also called inverse Game Theory.
In the context of auctions, monetary transfers from the bidders to the seller are used
in order to implement truthfulness. In other words, the seller must decide the win-
ners and the payments to induce truth-telling. In Mechanism Design with money, the
seminal work of another Nobel laureate, R.Myerson [53], laid the grounds for the field
by fully characterizing truthful auctions in the single-parameter setting, where bidders’
valuations are described by a single number. Myerson proved, that if an allocation rule
is monotone, then there is a unique payment rule, that when it is paired with that
allocation renders the mechanism truthful. The implementation of Myerson’s charac-
terization to single-item auctions yields the famous Vickrey or second price auction [60].
Vickrey, Clarke and Groves [60, 20, 40| generalized Myerson’s result to multi-parameter
settings, where valuations are functions. The VCG mechanism, which is named after
their initials, characterizes truthful mechanisms by providing payments analogous to the
single-item case. The only caveat is, that for the VCG mechanism to work, it requires
the optimal solution to the underlying optimization problem. This is a NP-hard task
for most valuation classes. Let us note that all of the aforementioned mechanisms also
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maximize social welfare which is the sum of the winning bidder’s valuations. In Chapter
3 we are going to formally define some key concepts in mechanisms design, which are
useful throughout the thesis.

Imagine that you own a concert hall and you want to sell tickets (that correspond
to seats inside the hall) for the upcoming concert. Our collective real-life experience
dictates that the seller does not host an auction to sell tickets, simply because there
is an easier and more intuitive way to sell: post prices and let the buyers pick seats
and buy the tickets. Many other realistic instances like the above suggest the need to
find simpler mechanisms to sell to strategic buyers. To this end, there is a huge line
of research in a specific class of mechanisms called Posted-price. Along with their in-
centive guarantees, posted-price mechanisms provide polynomial computation of prices
and simplicity. The downside is that they only approximate the optimal social welfare,
however such mechanisms are very useful in practice and spark the debate of simple
vs optimal mechanisms. In Chapter 4 we are going to delve into the details of such
mechanisms and the results of this line of research.

The machinery used to analyze the performance of posted-price mechanisms is the
prophet inequality framework, first introduced by mathematicians Krengel, Sucheston
and Garling [46, 47| in the 70’s. The setting involves a sequential decision maker who
observes values in an online manner and needs to decide on an optimal stopping strategy
that is approximately optimal compared to a prophet who can see the future and always
take the optimal outcome. Prophet inequalities became relevant in the field of computer
science when their connection to sequential posted-pricing was discovered. They provide
the appropriate techniques to argue for the approximation ratio that prices achieve, un-
der the assumption that buyer’s valuations come from known independent distributions.
In Chapter 5 we are going to explore key results in the Prophet Inequality literature, that
inform the design of mechanisms with improved approximation guarantees in various
multi-parameter settings.

A significant and highly intriguing body of work in Prophet Inequalities has en-
hanced the approximation factors for posted-price mechanisms across various contexts.
A common characteristic of most of these contexts is that they exhibit complement —
free valuations, such as in Combinatorial Auctions with submodular buyers. Conversely,
there are numerous practically relevant examples where buyers’ values are complemen-
tary, meaning an item gains value only when purchased in combination with other
items. In Chapter 6 we explore a setting that exhibits complementarity. Buyers have
a single-parameter value for being admitted and routed in a network and claim their
value only if they are assigned a path that connects their start to their destination node.
In this context, any bundle of edges has a non-zero value only if it forms a valid path
that serves a buyer. Utilizing the Prophet Inequality framework, we examine pricing
schemes and their approximation guarantees in terms of social welfare.



Chapter 3

Basics of Mechanism Design

3.1 Preliminaries

Although the prophet inequality is a framework of independent interest, its connection
with mechanism design dictates that we define some fundamental concepts of the field.
We begin by providing a general definition about a mechanism design problem. Then
we perform some standard simplifications in order to arrive to meaningful results. The
following is a generic setup for a mechanism design problem.

Definition 3.1.1 (Generic setup). Suppose we have n agents and an outcome space
Q). Each agent has a private valuation type v; : Q — R™ that represents the value that
the agent derives from an outcome, and a set of actions A;. The mechanism collects
a vector of actions: a = (aj,as,...,a,),a; € A; and maps these actions to outcomes
using a function f : (A, Ay, ..., A,) — Q. The mechanisms also decides on a pricing
rule p = (p1,p2,...,pn) where for each i,p; : (A1, As, ..., A,) — RT. Each agent i
has a utility u;, which he wants to selfishly maximize, that quantifies his gain from the
described process. It depends on the outcome, the pricing rule and his private valuation.
The pair (f, p) defines a mechanism.

In order to work with the above setting we need to perform some simplifications.
First of all, we are going to define and assume for the rest of the thesis the quasi-linear
utility of the bidders. Informally, a bidder’s quasi-linear utility for an outcome is simply
his value minus the price he pays for that outcome.

Definition 3.1.2 (Quasi-linear utility). Let (f, p) be a mechanism, v; : Q@ — R a pri-
vate valuation function and a an action vector. The utility u; of a bidder 7 is quasi-linear,
if

u; = vi(f(a)) — pi(a)

An intuitive example of a mechanism design problem is that of Combinatorial Auc-
tions. In a Combinatorial Auction, the auctioneer possesses a set of items and agents
have valuation functions for each one of the subsets of items they might get. The auc-
tioneer (or equivalently the mechanism) should decide an allocation of items to agents
and their payments. Below we define Combinatorial Auctions formally.

Definition 3.1.3 (Combinatorial Auction). A Combinatorial Auction consists of a set
of buyers, which we denote by N, a set of items, which we denote by M. We denote
|N| = n the cardinality of the buyers and | M| = m the cardinality of the items. A vector
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v = (v1,v2,...,V,) consists of n valuation functions, one for each buyer. Each valuation
function v; : M — R™ maps every subset of items to a non-negative value, is normalized
and non-decreasing, i.e for each buyer i v;(()) = 0 and for all S,7, S C T C M implies

The outcome of a mechanism is a feasible allocation of items to buyers. Below we
define the feasible allocation of a Combinatorial Auction

Definition 3.1.4 (Feasible Allocation). Let (N, M, v) be a Combinatorial Auction. A
Feasible Allocation X = (X3, X5...X,,) is a vector of n disjoint sets, Vi # j, X;NX; = 0,
where each X; denotes the (possibly empty) set of items each buyer gets from the
mechanism.

In a Combinatorial Auction (and mechanism design, in general) buyers seek to max-
imize their utility. For a given price vector p the demand correspondence or simply
demand of buyer is the set that contains every bundle that maximizes his utility. Below
is a formal definition.

Definition 3.1.5 (Demand correspondence). Given an item pricing vector p = (pj)jE o
and valuation function v; of buyer 7. The demand correspondence of buyer i is the set

Di(p) = arg max {vi(S) - ij}

jes

Observe that by definition, the demand correspondence is allowed to contain more
than one bundles. We will say that a buyer 7 is indifferent between bundles S and T
under pricing p if S € D;(p) and T' € D;(p).

A mathematical economist of the 19th century, Leon Walras considered an ideal
equilibrium concept: select the right prices (and respective allocations) such that each
buyer receives a bundle inside his demand correspondence. In this way, demand equals
supply and the market clears. Observe that this equilibrium is Pareto Optimal, in that
every buyer does not benefit by changing the bundle allocated to him as he cannot
observe higher utility. This notion is called Walrasian Equilibrium (named after the
person who invented it) and the prices of such an Equilibrium are often called market
clearing prices. Below is a formal definition.

Definition 3.1.6 (Walrasian Equilibrium). Let (N, M, v) be a Combinatorial Auction,
pi...,ps, beitem prices and S§, ..., S’ be bundles allocated to buyers in [n], such that
S;NSy = () for all i # j. The tuple (S*, p*) is a Walrasian Equilibrium iff for all buyers
i, S; € Di(p) and for items that are not allocated, i.e j ¢ |J; S}, it holds that p} = 0

A very well studied class of mechanisms is direct-revelation mechanisms. In these
mechanisms agents’ actions are simplified to be bids, which are are what they claim
their private valuation function to be. Mechanisms under this assumption are called
direct revelation because they ask from the bidders to directly reveal their types. A
canonical example of a direct revelation mechanism is a sealed-bid auction where each
bidder writes an offer that represents his valuation in a piece of paper. The mechanism
collects every piece of paper and determines the winner and the price of the good to be
sold.

Definition 3.1.7 (Direct Revelation Mechanism). A mechanism (f,p) is a direct rev-
elation mechanism, if each bidder’s action is to report b; :  — R*.



There are mechanisms that are not direct-revelation, for example posted-price mech-
anisms do not collect bids. This class of mechanisms is going to be furthered explored
in the following chapter.

3.2 Valuation Classes

Every mechanism should be able to compute a feasible allocation efficiently. However,
performing this task when the valuations are general, can be computationally hard.
Therefore, we define interesting valuation classes and reason about the extent they
align with reality. For the following definitions M is the set of items.

Definition 3.2.1 (Additive Function). A valuation function v : 2" — R7 is additive if

for every S C M
o(8) = S vl
j€s

That is, the value of any set is completely defined by the value of the singleton sets it
contains. Nevertheless, this is not a realistic model of buyers’ valuations. Consider the
following example: Alice wants to buy 10 slices of cheese. She participates in a weird
auction that sells cheese and she ends up going home with 50 slices. It cannot be the
case that her value for 50 slices is 5 times her value for 10: she cannot consume all 50
before they go bad. Simply put, in the real world values do not scale linearly.

Definition 3.2.2 (Unit-Demand Function). A valuation function v : 2" — R* is unit-
demand if for every S C M

v(S) = maxv({j

() = maxo({7})

This valuation class is the complete opposite of additive: it derives its name by the fact
that for each subset, buyers only want the item for which they have maximum value.
However, in the above scenario Alice is indifferent between 1 slice and 10 slices of cheese,

which is also not very practical.

Definition 3.2.3 (Submodular Function). A valuation function v : 2 — R is sub-
modular if for every S, T C M, with S C T and any item j ¢ S

v(SU{j}) —o(S) =2 (T U{j}) —o(T)

This class contains both additive and unit-demand valuations. It is the discrete analogue
of concave functions and captures the notion of diminishing returns: the additional value
for a new item decreases as sets grow larger. It is argued that this class is expressive
enough to model real world. Consider the following example: Alice has 0$, Bob has
1,000,000% - and they value money the same way. Now give 50$ to each one of them.
Which person observes a greater increase in their value?

Definition 3.2.4 (XOS function). A valuation function v : 2% — R is XOS if there
exists a collection of ay, as, . . ., a; additive valuation functions such that for every S C M

v(S) = max a;(5)

1<i<1

It is hard to find intuition about this valuation class. However, this class is a superset
of submodular valuations and it is often easier to work with



Definition 3.2.5 (Subadditive Function). A valuation function v : 2¥ — R is subad-
ditive if for every S, T C M

v(SUT) <wv(S)+v(T)

This class is the most general used in the bibliography. It contains XOS valuations and
describes the notion of complement-free valuations. That is, bundling two item sets
cannot increase the value of each individual set. Despite being the most general class
there are practically revelant instances of complementarity. Consider the following: A
buyer wants to buy a path connecting him from a start node s to a terminal node t.
While he has no value for individual edges , when a bundle of edges forms a feasible
path from s to ¢, his value suddenly becomes non-zero. That is, edges complement each
other to give value. This is going to be the motivating example for the most part of the
thesis.

The following definition of single-minded agents captures the above example.

Definition 3.2.6 (Single-Minded Valuations). Let v* € R* and S* be a set of items.
Then the valuation function v : 2 — R* is single-minded if for every set S, if M D
S D S*then v(S) = v* and v(S) = 0, otherwise. That is, a single-minded buyer incurs
non-zero value if and only if he gets allocated a set of items that contains his desired
bundle.

3.3 Oracles

By definition of the valuation functions for Combinatorial Auctions, we immediately
observe that their description is exponential in the size of m.! Because of that, it is
usually assumed access to oracles. We can view oracles as tools in the hands of the buyers
who need to calculate the optimal decision for them, i.e which bundle of available items
to choose. To this end, below we define some of the oracles utilized in the literature.

Definition 3.3.1 (Value Oracle). A value oracle takes as input a set S and outputs a
number: the valuation’s function value on set S, i.e v;(5).

Definition 3.3.2 (Demand Oracle). A demand oracle takes a input a price vector
p = (p1,p2,---,pm) and outputs a demand bundle under these prices, i.e a set S C M
that maximizes v;(5) — >, pj, which is the buyer’s utility under these prices.

The above definition is for item prices, however the definition can be extended to
include bundle pricing, i.e when the price of a bundle cannot necessarily be expressed
as a sum of the price of the items it contains.

Definition 3.3.3 (XOS Oracle). For an XOS function v;, the oracle takes as input a set
T and returns the corresponding additive representative function for the set T, i.e., an
additive function A;(-) such that (i) v;(S) > A;(S) for any S C M, and (ii) v;(T) = A;(T)

XOS oracles are not widely used in the literature, however we define them because
some of the results presented later on require access to them. An interesting fact is that
for submodular valuations an XOS oracle can be implemented via polynomially many
queries to a value oracle.

'To be precise, there are valuation classes that are polynomial in their description (e.g for additive
valuations we only need m numbers, one for each singleton set) but these classes are neither general nor
expressive enough compared to subadditive or submodular, for instance.



3.4 Maximizing a global objective

From the auctioneer’s perspective, the ultimate goal of an auction is to produce an
allocation and payments that maximize a global objective, that is an objective that
depends on the aggregate outcome of the mechanism. The two most commonly used
objectives are: 1) revenue, which is the total payments made by the buyers to the
mechanism and 2) social welfare the total value extracted by a specific outcome. Below
we formally define the above objectives

Definition 3.4.1 (Social Welfare). Let (f, p) be a mechanism. The Social Welfare of

an outcome w € () is:
SW = Zvi(w)

Maximizing social welfare means that we search for outcomes that optimize the
buyers’ aggregate value. In a sense, in a welfare optimal outcome buyers are collectively
happy with what they get.

By defining the above objectives we make a step towards meaningful problems and
results: Consider, for instance, a Combinatorial Auction. Up to this point, we could
set all payments to zero and produce a random feasible allocation. On the contrary,
now we can formulate an optimization problem that requires that we produce a feasible
allocation that maximizes social welfare, for example. The following linear program,
which from now on will be referred as the configuration LP formalizes the underlying
optimization problem.

max z”: Z (S (3.1)

i=1 SCM

st Y wsg<l Vje M (3.2)
i=1 S|jeS
d s <1 Vi € [n] (3.3)
SCM
zis € 10,1] Vi€ [n],S C M (3.4)

Observe that since the variables x; g € [0, 1] the above is the fractional relaxation of
the integer program. Equation (5.24) tells us that, in the optimal integer solution, for
every i,j with i # j, X; N X; = (), where X, is the (possibly empty) bundle allocated
to buyer 7 in the optimal solution. Equation (5.25) is to ensure that every bundle is
(fractionally) allocated at most once.

Welfare maximization for combinatorial auctions with subomodular valuation func-
tions is NP-hard [50], while the optimal welfare cannot be approximated to a fac-
tor better than 1 — 2 unless P = NP [44]. Moreover, the authors in [52] prove an
information-theoretic lower bound of 1 — %, regardless of whether P = NP, where a
better approximation ratio would require exponentially many value queries.

Using only value oracles, Dobzinski and Schapira [27] show a 3"5-approximate algo-
rithm and an (1 — 1/e)-approximate algorithm for the special case in which the agent’s
valuations are set coverage functions. Vondrék [61] proves an algorithm that is (1 — %)—
approximate with high probability.




In the demand oracle model, Dobzinski and Schapira [27] also give a polytime
(1 — 1/e)-approximation which was subsequently improved to 1 — 1/e + € by Feige and
Vondrak [36]

For subadditive valuation functions [52] prove that a #—approximation would re-
quire exponentially many value queries. In the demand oracle model, Feige [35] presents
a way of rounding any fractional solution to an LP relaxation to this problem to a fea-
sible solution with welfare at least 1/2 the value of the fractional solution. This gives
a 1/2-approximation for general subadditive agents, and (1-1/e)-approximation for the
special case of XOS valuations.

For single-minded valuation functions it is NP-hard to maximize social welfare (re-
duction from set packing). It cannot be approximated within a constant factor and the
best known algorithm approximates it within a factor of O (v/m) [55].

The primary concern of this thesis is about mechanism that maximize social welfare.
However, a practically relevant (and perhaps more realistic) objective of a mechanism is
to maximize the seller’s revenue. Revenue maximization is what the auctioneer strives
for, especially when auctions are run online by large companies e.g E-bay, Amazon,
Google. Observe that revenue does not depend on the outcome (or allocation) but
rather on the payments. Below we formally define this objective.

Definition 3.4.2 (Seller’s Revenue). Let (f,p) be a mechanism. The revenue of a
mechanism (f,a) for a given action vector b is:

Rev =73 pi(a)

Revenue and welfare maximization are two totally different objectives. The tech-
niques employed to analyze the former are very different compared to the latter. Since
it is not the main subject of the thesis we are going to briefly discuss about such mech-
anisms in the following chapters, but first we are missing a very important ingredient
of mechanism design: incentives.

3.5 Incentive Compatibility and Individual Ratio-
nality

The field of Mechanism Design primarily focuses on incorporating incentives into Algo-
rithm Design. In the previous section, we saw some results that maximize social welfare
when the valuation functions of all agents are publicly known. That is, the aforemen-
tioned results form and solve an optimization offline problem to determine the winners
of the auction. However, valuation functions are private information for the bidders.
That is, in a direct revelation mechanism, bidders report their bids (which can be dif-
ferent from their true valuations) and the mechanism collects them, but it has no access
to their true preferences. Therefore, the main challenge of mechanism design lies on
how the designer, equipped with the power of determining the allocation and payments,
incentivizes truth-telling.

Firstly, bidders should have an incentive to participate to the mechanism. To be
more specific, every bidder should not ever observe negative utility regardless of the
outcome of the mechanism, that is one should not lose money by simply participating.
This concept is called Individual Rationality and it is defined formally below.



Definition 3.5.1 (Individual Rationality). A mechanism (f, p) is individually rational
if for every bidder 7, valuation v; and bit vector b_; of the other bidders

vi(f(vi, bi)) = pi(f(vi,b_y) >0

Truth-telling can be defined in various ways that depend on the information an agent
uses in making his decision. The concept of Dominant Strategy Incentive Compatibility
is fundamental in the field of mechanism design. Informally, it implies that every agent
cannot be worse of revealing his true type, regardless of what other agents bid.

Definition 3.5.2 (Dominant Strategy Incentive Compatibility (DSIC)). A mechanism
is dominant strategy incentive compatible if truth-telling is in an agent’s best interest
even after the agent observes the types of others. Formally, for all 7, v;,b;, and all bids

b_; of other bidders :
v (f(vi, b)) — pi(vi, b_;) > v;(f(bi,b_;)) — pi(bi, b_;)

We will often refer to mechanisms that are DSIC as truthful or strategyproof. More-
over, a mechanism that is DSIC is also implied to be Individual Rational, unless stated
otherwise.

Mechanism design often needs to employ randomness, that is there are random-
ized mechanisms that flip coins to decide on the allocation and payments. Below, for
completeness, we define truthfulness for such mechanisms.

Definition 3.5.3 (Truthful in Expectation). A randomized mechanism is truthful in
expectation if every bidder maximizes his expected utility by bidding truthfully.

Definition 3.5.4 (Universally truthful). A randomized mechanism is universally truth-
ful if every bidder maximizes his utility regardless of the instantiation of the mechanism’s
randomness. Randomized universally truthful mechanisms are probability distributions
over deterministically truthful mechanisms.

3.6 Extension to the Bayesian Setting

In this section, we are going to assume that agent’s types are independently drawn
from publicly known distributions. Because of its statistical nature, this field is called
Bayesian Mechanism Design and is formally defined as follows.

Definition 3.6.1 (Bayesian Mechanism Design). A (direct-revelation) mechanism (f, p)
is Bayesian if agents’ types v ~ F, where F is a (joint) product distribution, i.e F =
Fy x Fy--- x F,, with v; ~ F;. We also assume quasi-linear utility as in the standard
setting.

It is not totally unrealistic to assume that the mechanism has access to some distri-
butional information about the agent’s types. For example, large corporations that run
auctions daily, are able to collect statistical data about the bidders who participate. Be-
sides, revenue maximization depends critically on this distributional assumption. Now
we need to redefine truthfulness to account for the stochasticity of valuations.



Definition 3.6.2 (Bayes-Nash Incentive Compatibility (BNIC)). A mechanism is Bayes-
Nash incentive compatible if truth-telling is in an agent’s best interest before observing
the types of the others. Formally, for every bidder i, for every bid b; the following holds:

E [vi(f(vi,v_) —pi(vi,v_i)] > E  [vi(f(bi, v=i) — pi(bi, v_i)]

V_Z'NF_Z' V_,L'NF_Z'
where the expectation is taken over the types of all bidders except bidder i.

We observe that 3.5.2 defines a stronger notion of incentive compatibility than 3.6.2.
The experienced reader might observe that these definitions refer to an equilibrium
notion (i.e Bayes-Nash equilibrium and Dominant Strategy equilibrium, respectively).
These two definitions differ in the amount of information they use. In the Bayesian
setting, the designer designs the mechanism based on the information about agents’
distributions. Then, agent’s types are instantiated (a sample from buyers’ product
distribution is drawn). Finally, the mechanism is run on the sample from the distribution
and outcome and payments are generated. When we refer to a quantity ex ante, we are
referring to its expected value before the agents’ types have been instantiated, where the
expectation is taken over the distribution from which types are drawn. Interim refers
to the time after the agents’ types have been instantiated, but before the mechanism
has been run; In particular, at this time, agents know their own types but not each
others’ instantiated types, and so the final outcome of the mechanism is as yet unknown
to them. Ez post refers to the final realized value after the mechanism has been run.
Similarly to incentive compatibility, individual rationality can be satisfied ex post or
interim. From this point onward in this thesis, when referring to a mechanism as BNIC,
it is implied to be individually rational, unless explicitly stated otherwise.

The global objectives defined in a previous section, can be redefined to be an expec-
tation on bidders’ types in order to hold in the Bayesian setting. That is, a mechanism
designer seeks to maximize the expected social welfare (or revenue). Let us also remark
that if a mechanism design problem is confined into a specific class of valuations (e.g
submodular), then the distributions we consider are only on valuations from that class.



Chapter 4

Truthful Social Welfare

Maximization

4.1 Mechanism Design meets Linear Programming

In this section we are going to revisit a concept defined in the previous chapter: the
Walrasian Equilibrium. Setting Walrasian Equilibrium prices for the items and simply
letting the bidders take what they demand, seems like a simple and truthful mechanism.
Unfortunately, a Walrasian Equilibrium does not always exist, as it is shown in the
following example.

Example 4.1.1 (Non-existence of Walrasian Equilibrium). Consider two buyers, Alice
and Bob and two items a,b. Alice has value of 2 for any non-empty set and Bob only
has value of 3 only for the whole bundle {a,b}. We distinguish between two cases: If
Bob’s demand correspondence is not empty,then Alice’s is. Therefore, the sum of prices
at Equilibrium is at most 3. Then there is an item which has a price of at most 1.5. This
implies that this item is also in Alice’s demand correspondence which is a contradiction.
If Bob’s demand correspondence is empty, this means that the sums of prices is greater
than 3. Hence, Alice’s demand cannot contain {a,b} since she has value of 2. Alice
can only demand one item, say b for a price less than 2. Consequently, item a remains
unsold, but it has a non-zero price which is again a contradiction.

Although the existence of market clearing prices is not always guaranteed, we present
here two welfare theorems that provide necessary and sufficient conditions for the exis-
tence and optimality of such an equilibrium, thus fully characterizing the concept. We
will prove the two theorems by resorting to Linear Programming Theory. Let us take
the dual of the configuration LP presented in the second section. The constraints for
each item j and each buyer ¢ translate into dual variables p; and wu; respectively. As
we will prove, these variables can be seen as item prices and buyer utility. The dual
program is the following:
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min Zuz + Zp] (4-1)

JjEM
stui+ Y p;>vi(S) Vi, S (4.2)
jes
p; >0 Vie M (4.3)
u; >0 Vi € [n] (4.4)

The first Welfare Theorem asserts that a Walrasian Equilibrium maximizes social
welfare among all feasible fractional solutions. The formal statement follows.

Theorem 4.1.2 (First Welfare Theorem). Let (N, M,v) be a Combinatorial Auction
and (S*, p*) be a Walrasian Equilibrium for this auction. Then for any feasible fractional
solution of the configuration LP {x;s}s it holds that y_; vi(S7) > >, s i svi(5)

Proof. Fix buyer i. Since (S*, p*) is a Walrasian Equilibrium it holds by definition that
it maximizes his utility:

=> P >ulS) =)

jes: jes

for every S C M. Multiplying both sides by z; ¢ and summing over all ¢, S we get:

szs vi(SH) =D ) wis pj>zxzs vi(S) =D wisep)

i,S jeS! 1,5 jES

Since ) g x; 5 <1 for all 4, we get:

PBLCIED BB Z%s wl(S) =)D ais ;
7,5 i jES! i,S jES
Hence, it suffices to show that ), ZJES; P; 2> D52 jesTis - Py At Walrasian
Equilibrium, every item is included in at most one set, and for all items j that are not
allocated it holds that p; = 0, therefore the left hand side of the above inequality is equal
to > earPj- The right hand side can be rewritten as follows: > . pj 22 D gjjes Tis
which is at most jen Dj by the first constraint of the primal LP.

In the First Welfare Theorem we showed that Walrasian Equilibria, when they exist,
provide an optimal integral solution to the configuration LP. In the Second Theorem
we are going to show that the converse is also true: If there exists an optimal integral
solution to the LP, then this solution is a Walrasian Equilibrium. That is, Walrasian
Equilibria exist if and only if the optimal solution of the configuration LP is integral.

Theorem 4.1.3 (Second Welfare Theorem). Let (N, M,v) be a Combinatorial Auction,
then if there exists an optimal integral solution to the configuration LP, then a Walrasian
FEquilibrium also exists.

Proof. Let S* = (S7,S55,...,5%) be an optimal integral solution given by the primal
LP and p* = (p},p5,...,p5), u* = (uj,ul,...u’) be the respective solution to the
dual LP. We will show that (S* p*) is a Walrasian Equilibrium. Fix buyer i. By the



complementary slackness conditions, x;s: = 1 implies that u; = v;i(S}) — > . g D}
Hence, v;(S}) — ZjES;‘ p; = vi(T) = > crpj for every T'C M. Furthermore, if an item
J is not allocated the first constraint of the primal LP holds strictly with inequality
and by complementary slackness this implies that p; = 0. By the above argument, we
conclude that (S*, p*) is a Walrasian Equilibrium. ]

The two theorems imply that a Walrasian Equilibrium exists if and only if the
integrality gap of the LP is zero. Furthermore, the second theorem provides us a way to
find a Walrasian Equilibrium: Solve the fractional relaxation of the configuration LP. If
the optimal solution happens to be integral, then solve the dual to find the item prices
that impose the Equilibrium. Walrasian Equilibria are guaranteed to exist for a class
of valuation functions called gross-substitutes (that contains unit-demand and additive)
[55]

4.2 An introduction to Posted-Price Mechanisms

Imagine that you’re in possession of an indivisible good, for instance a car or house,
which you want to sell. The simplest and most natural mechanism is to decide on a
price for the good and "post” it, that is to make a take-it-or-leave-it offer. Buyers arrive
sequentially, they meet with you on a daily basis, having a valuation for the good which
is of course not public knowledge. If the price is less than their valuation they buy,
otherwise they do not. From the seller’s point of view, the problem lies on how we
decide (and efficiently compute) a price that (approximately) maximizes social welfare,
which in this case is finding the buyer with the highest valuation.

The above is a simplified example if a posted-price mechanism. In the context of
Combinatorial Auctions, posted-price mechanisms need to compute a price per item and
extend these prices to bundles linearly. As it might be evident from the example, the
challenge that the seller faces is to determine the right price: on the one hand, if the
price is too high the good might be left unsold. On the other hand, if the price is too
low, it might be the case that is is sold to a buyer with low valuation, simply because
he arrived earlier than a higher-valued buyer.

In designing posted-price mechanisms, the seller needs to decide on the nature of
the prices. Consider the example in the previous paragraph, does the price of the good
change if it remains unsold after a period of time? Furthermore, do prices depend on
the ordering of buyers, or do prices depend on the identity of buyers? As far as the last
question is concerned, observe that the seller might benefit from increasing the price
for certain types of buyers. For instance, a buyer who has an expensive car or a well-
paid job is likely to have a high valuation. We proceed by giving a formal definition of
posted-price mechanisms and the different types of prices.

Definition 4.2.1 (Posted-Price Mechanism). Let i = 1,...,n be an arbitrary ordering
of buyers, F an arbitrary downward-closed feasibility constraint, x = (z1...,2,) a
(partial) allocation. For each buyer ¢ we also define x;_y) = (z1,...,2,-1,0,...,0),
that is the allocation confined to the first ¢ — 1 buyers, according to the ordering. A
posted-price mechanism M (x, p) prices allocations x, and buyers arrive with respect to
the ordering, having quasi-linear utility, and purchase their most preferred bundle. We
define p;(x; | y) as the price of outcome z; offered to buyer i given partial allocation
y € F. We require also that p;(z; | y) = oo for every outcome (x;,y) ¢ F.



Definition 4.2.2 (Anonymous vs Discriminatory Pricing). Let M(x,p) be a posted-
price mechanism. The pricing scheme p is said to be anonymous, when the price of
an allocation does not depend on the identity of the buyer. Formally, for each buyer
i and each buyer j, ¢ # j, x; = x; implies p;(x;) = pj(x;). Otherwise it said to be
discriminatory.

For instance, item pricing for Combinatorial Auctions is an anonymous pricing
scheme because the price of each bundle depends only on the items it contains. In
the context of Combinatorial Auctions we also need to differentiate between item and
bundle pricing.

Definition 4.2.3 (Item vs Bundle Pricing). Consider a posted-price Combinatorial
Auction on a universe of |N| = n buyers, | M| = m items and a pricing scheme p : 2" —
R>(. The pricing scheme p is said to be an item pricing scheme if for every bundle
S CM,p(S) = Zjesp{j}. That is, the price of every bundle is the sum of the prices
of its singletons. Otherwise, the pricing scheme is said to be a bundle pricing scheme.

Definition 4.2.4 (Dynamic Pricing). Let M(x, p) be a posted-price mechanism. The
pricing scheme p is said to be dynamic, when the price of an allocation to buyer i depends
on the allocation to buyers 1,...,7—1, where buyers are indexed in the order they arrive.
Formally, we denote the dynamic price of allocation x; to buyer i by p;(z; | X—1)), where
x[;—1] denotes the allocation to previous buyers.

Definition 4.2.5 (Static Pricing). Let M(x,p) be a posted-price mechanism. The
pricing scheme p is said to be static when the price of allocation x; to buyer ¢ does not
depend on the allocation to previous buyers. Formally, price p; is static if and only if

Di (lfz | X[z’ﬂ]) = pi(z;).

4.3 Posted-Price mechanisms and incentive guaran-
tees

The simplicity and practical relevance paired with their strong incentive guarantees
renders posted-price a compelling class of mechanisms. In this section we define the
notion of obviously strategy-proof mechanisms, first introduced by [51]. To this point, we
have defined truthfulness with respect to direct revelation mechanisms, i.e mechanisms
in which buyers report bids. In posted-price mechanisms, the seller does not rely on
bids in fact, the only amount of information exchanged between the mechanism and
the buyers is whether a buyer buys at the posted prices or not. Below is the formal
definition of obviously strategy-proof mechanisms

Definition 4.3.1 (Obviously Strategyproof mechanism). A mechanism is called obvi-
ously strategyproof if the optimality of truth-telling can be extracted without contingent
reasoning.

The intuition behind this definition is the following: Suppose we want to explain
to a non expert the optimality of his bidding his true valuation. This is harder when
we design a second-price auction compared to a posted-price mechanism. Informally,
contingent reasoning means to keep track of previous bids and results to make our
current decisions. According to the previous observation, it is easy to see that posted-
price mechanisms do not need contingent reasoning. All we need to decide is if we take



or leave each item, depending on their price at the time of our arrival. Therefore, in
contrary to a second-price auction, posted-price mechanisms are obviously strategyproof.

Truthfully maximizing social welfare without assuming any prior information about
the probability distributions of bidder’s types has also been extensively studied in the
literature. For XOS valuations, the authors in [29] proved a O(log® m)-approximation in
2006. Subsequent work in 2007 [24] improved the previous approximation guarantee to
O(logmloglogm) . Both mechanisms are randomized, thus they achieve this approx-
imation ratio in expectation. In 2012 Krysta and Vocking [48] showed an O(logm)
-approximate randomized mechanism which was further improved to O(y/logm) by
Dobzinski in 2016 [26]. More recent work in [4] exponentially refined Dobzinski’s result
by proving an O((loglogm)?)-approximate randomized mechanism. All of the above
mechanisms assume access to both value and demand queries and are also universally
truthful. In 2021, the authors in [5] proved an O((loglogm))*-approximate random-
ized truthful mechanism for subadditive valuations which broke the logarithmic barrier
problem which was from 2007 when Dobzinski [24]| proved an O(logm loglogm) ap-
proximation. Let us note that this work also improves the approximation factor for
XOS valuations, from O((loglogm))? to O((loglogm))?. Finally, [5] is also the current
state-of-the-art work in approximately-optimal, truthful, randomized mechanisms for
subadditive and XOS Combinatorial Auctions. From the above results we can observe
the expressive advantage of demand over value oracles. To be more specific, the authors
in [28] provide an algorithm that achieves an approximation bound of O(y/m) for the
problem of truthfully maximizing social welfare using only value oracles, which sub-
sequently was proved tight for value queries even if randomized mechanisms are used
[25].

4.3.1 A brief overview of an O(logm)-approximate mechanism
for XOS Combinatorial Auctions

The purpose of this section is to provide a brief presentation of the result of Krysta and
Vocking [47]. The authors provide a simple algorithm that is O(logm)-approximate to
the optimal social welfare of a Combinatorial Auction with XOS valuations. We choose
this particular algorithm, of the list stated above, due to its simplicity and elegance.

A high level idea of the algorithm of Krysta and Vocking is that it is a procedure that
"learns” the correct prices. Suppose we have multiple copies of each item: every time an
item gets sold we double its price. This guarantees that at some point we sell the item
for the last time, the price doubles and no buyer wants to buy. Therefore, the last time
we sold it, it got sold at a correct price. However, there is an obvious problem here:
we oversell the item which in the original setting exists only in one copy. The authors
solve this problem by employing randomization: every time a buyer wants an item, flip
a coin with success probability ¢. If the coin flip is a success, sell the item (thus making
it unavailable for future buyers) otherwise don’t. This modified procedure, ensures that
the allocation returned by the algorithm respects the supply constraint. By fine-tuning
q, for XOS valuations they get the desired approximation ratio. The following is the
overselling algorithm that produces an infeasible solution.

The following is the overselling algorithm with the oblivious randomized rounding

we describe to produce a feasible allocation.

Setting ¢~ = O(logm) we get the desired approximation ratio for XOS valuations.



Algorithm 2 Overselling MPU algorithm

1: For each good e € U do p! = py

2: For each bidder : = 1,2,...,n do

3: Set S; = D;(U;, p'), for a suitable U; C U
4 Update for each good e € S;: pitt =2 p!

e

Algorithm 3 MPU algorithm with oblivious randomized rounding

1: For each good e € U do p. = po.

2: For each bidder i = 1,2,...,n do

3: Set S; = Di(Ui,pi), for U; = {6 elU | bé > O}
Update for each good e € S;: pitt =2 pi.

With probability ¢ set R; = S; else R; = 0.
For each good e € R;: reduce its multiplicity to zero.

4.4 Truthful Revenue Maximization

Although the thesis is on social welfare maximization, in this section we briefly discuss
some results in the area of truthful revenue maximization. Remember that in the
previous chapter we commented on revenue and social welfare being two very different
objectives as far as mechanisms and techniques are concerned. However, due to the fact
that we do not live in an idealistic world, it is of great practical relevance to assume
that sellers (which often are large corporations) seek to maximize their earnings. Below
we state an example that showcases the difference between welfare and revenue.

Example 4.4.1 (Social Welfare vs Revenue Maximization). Consider a trivial example
of an auction: one buyer, one item. We need to decide on a price p for the item. If
we seek to maximize social welfare, the answer is very simple: set p = 0 and give the
item for free. However, how does one maximizes revenue in this setting? Since we claim
revenue p, if and only if there is a successful purchase we need to set a non-zero value
for p. However, any value could be bad because we do not know anything about the
type of the buyer. To be more specific, if the buyer’s value is greater than p we have
good revenue, but if it is not, we have revenue of 0.

The above example is to show a crucial difference between welfare and revenue.
In the former, we seek the maximum valuation, in the latter we also care about the
magnitude of the maximum valuation. The above example is to justify that, in order to
produce non-trivial results, revenue maximization must be studied under the Bayesian
setting, defined in the previous chapter. The pioneering work of Myerson [53] also
introduced Bayesian Mechanism Design. Myerson proved in the single-parameter setting
a reduction from (truthful) revenue maximization to welfare maximization via the use of
virtual valuations. To be more specific, he managed to show that revenue maximization
is virtual welfare maximization. However, Myerson’s result does not hold in multi-
parameter settings. One reason for that is that in the single-parameter settings the
optimal mechanism is deterministic, whilst this is not true for multi-parameter settings.
Firstly, optimal multi-dimensional mechanisms are not always deterministic, and do
not permit succinct representations. Secondly, a deterministic mechanism for a single
agent prices each outcome at a certain price, and lets the buyer choose which the utility
maximizing outcome. A randomized mechanism can set a random price for each possible



outcome. But, interestingly, in addition it can also price random allocations or lotteries.
A lottery is a distribution over outcomes. Selling lotteries can increase the seller’s
expected revenue [56]. In a series of papers by Cai, Daskalakis and Weinberg[11, 12, 13|
give a reduction from revenue maximization to social welfare maximization that is black-
box in the sense that the reduction is “generic” and does not need to understand the
inner functioning of the algorithm for social welfare. The approach also has similarities
with Myerson’s approach for single-parameter revenue maximization in that it queries
the social welfare algorithm at value vectors that are not the agents’ real values, but are
functions of the real values; these “fake” values can be thought of as virtual values. We
comment that in revenue maximization settings, truthfulness is with respect to Bayes-
Nash equilibria or in other words, they are (approximately) BNIC, as defined in the
previous chapter.



Chapter 5

The Prophet Inequality Framework

5.1 Introduction

The prophet inequality is a problem from optimal stopping theory that was discovered in
the 70’s by Krengel, Sucheston and Garling. [46, 47]. Tt involves a gambler and a prophet.
On the one hand, the gambler is faced with a sequence of n random variables, X;. These
random variables are samples drawn from independent (but not necessarily identical)
known distributions D;. Upon arrival of each random variable, the gambler must decide
between the two following alternatives: either claim the value of the sampled random
variable and stop (without observing future random variables) or discard the random
variable and forfeit its value forever. On the other hand, the prophet is omniscient
(i.e can see the future) and always claims the random variable with the highest value.
The prophet inequality is the problem of finding an optimal stopping strategy for the
gambler that collects value that is comparable to the optimum in hindsight (i.e to what
the prophet gets). Krengel and Sucheston showed a strategy that guarantees that the
gambler’s reward is at least 50 % of the prophet’s reward. The optimal strategy that
achieves the previous approximation is given by backward induction. If the gambler
reaches random variable X,, it is optimal that he accepts it, as there are no other
variables to come. Now the inductive definition of the strategy is as follows: gambler
accepts X; if and only if its value is greater than the expected value he collects starting
from X;,; to X,,. In fact, with a simple example we can show that the factor of 2 is
tight for the problem. Consider the following two random variables which arrive in the
order they are indexed: X is deterministically 1 and X is % with probability € and 0
otherwise. Any stopping strategy yields to the gambler expected winnings of value 1.
On the other hand, the prophet, who always chooses the maximum realized value, gets
value of 2 — € in expectation.

In the 80’s, Cahn [59] studied the performance of single-threshold based strategies,
i.e strategies that use a single threshold to decide wheter to accept or reject a random
variable. He proved that setting a threshold that is the median of the distribution of
max; X; and picking the first random variable that its value is above this threshold
also achieves a 2-approximation. However, the advantage of this strategy over that of
Krengel and Sucheston, is that the approximation remains invariant even if the order
of the random variables is arbitrary. Therefore, a standard assumption in the prophet
inequality literature is that the order is chosen by an adversary, who can be adaptive,
that is, his choice of the next random variable in the sequence can depend on the values
of the previous random variables and the decisions of the gambler.
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Several decades after the results of Krengel, Sucheston and Cahn, the authors in [41]
established a connection between the prophet inequality and posted price mechanisms.
They observed that threshold-based algorithms for the prophet inequality can be viewed
as prices for a (sequential) posted price mechanisms. Take, for example, the following
scenario. There is a seller who is in possession of an indivisible item. Buyers arrive
one-by-one in an arbitrary order, having independently (and not necessarily identically)
distributed values for the item. The distributions are known to the seller, who calculates
and posts a take-it-or-leave-it price. Upon arrival of each buyer, the item is sold to
them if and only if their value is above the posted price (and it was not sold to some
previous buyer). The mechanism’s objective is to maximize the total value extracted, in
comparison to the best hindsight optimum, that is the maximum realized value of any
buyer. We observe that the mechanism described above does not ask from the buyers
to reveal their types, since the only information that it uses to produce an allocation is
whether the value is above or below the chosen threshold. We can deduce that a simple-
posted price mechanism gives a 2-approximation to the optimal welfare. Moreover, this
result is tight, in the sense that no other mechanism can improve this guarantee, which
can be easily seen by the tightness proof of the prophet inequality: consider a buyer
who has a deterministic value of 1 for the item and comes first. Any mechanism should
decide whether or not to give the item to the first buyer, yielding the lower bound.

Because of their connection to posted price mechanisms, prophet inequalities became
a relevant and valid research path in the field of Algorithmic Mechanism Design. In
2012, Kleinberg and Weinberg [45] gave a new threshold for the original, single-item
setting, that achieves the same ratio. Setting the threshold equal to %E[maxi X;] is also
a 2-approximation.

In the following years, subsequent work generalized the above results to matroid,
polymatroid and matroid intersection [45, 30], knapsack [32], k matroid [39] and down-
ward closed with bounded maximum set size [57| feasibility constraints.

For Combinatorial Auctions with XOS valuations (which also include submodular)
the authors in [38] provide a %—competitive prophet inequality that assumes black box
access to an algorithm by Vondrék [61]-which optimally solves the offline problem- and
an oracle that answers XOS queries. Subsequent work in [32] improves the previous
result by providing a 2-competitive prophet inequality for XOS valuations, assuming
access to demand oracles. This matches the lower bound for this class of valuations
inherited by the case of a single item. The authors in [32]| also provide a unifying
approach to proving prophet inequalities by introducing the notion of balanced prices.
Their argument comprises a reduction from the Bayesian to the full information setting
and a proof that when "good” prices for the latter exists, appropriately scaled versions
of these are also "good” for the former. Finally, the previous line of work also implies an
O(log m) -competitive prophet inequality for subadditive valuations by approximating
subadditive with XOS valuations [9].

For subadditive valuations, [31] achieves an exponential improvement by proving an
o(loglogm) prophet inequality. Their result is also computational: they consider the
dual program of the configuration LP and show how to compute prices efficiently by
running the Ellipsoid Algorithm with a separation oracle that can be implemented using
demand queries. In fact, in this context, the demand oracle and the separation oracle
coincide. Observe that the dual program (in the case of Combinatorial Auctions) has
exponentially many constraints - one for each possible subset of items and buyer. Given
a sequence of item prices pq,ps,...,Pm, the separation oracle utilized by the Ellipsoid



Algorithm, needs to compute the set S; that maximizes buyer’s i utility under these
prices. This is precisely the definition of the demand oracle to which the authors assume
access for their algorithm. Recent work in [21]| proves the existence of a 6-approximate
prophet inequality for subadditive valuations, thus resolving a central open problem in
the area. Subsequent work in [7] shows how to make the previous result computational,
by proving that any prophet inequality can be implemented as a posted price mechanism
with at least as a good welfare guarantee.

5.2 A proof of the singe-item case

In this section we provide a formal proof of the pricing scheme used in [45] for the single-
item case. But first, we need to formally define an a-competitive prophet inequality.

Definition 5.2.1 (The Prophet Inequality). Let v = (vy,...,v,) be a sequence of
n valuation functions drawn independently from publicly known distributions D; € A,
where A is the set of all distributions over R>. We also denote D = Dy xDs, ..., xD,,_1x
D,, to be the product distribution. Since we have independently drawn samples from
each individual distribution we can equivalently claim that the vector v is drawn from
the product distribution D. Consider an online algorithm (the gambler) over the input v.
We denote by v(ALG(v)) the social welfare that the algorithm achieves when presented
with vy, v9,...,v, in the order they are indexed. Accordingly, we define v(OPT(v)) to
be the optimal social welfare (the offline optimal on input v). We say that ALG is
a-competitive, a > 1 when:
Eyvp[v(OPT(v))]

S E VAL ="

The online algorithm used in the definition is not necessarily a single-threshold strat-
egy but it can be any rule that decides without having information about future events.
However, we often analyze the performance of posted-price mechanisms for ALG, due
to their strong incentive compatibility properties.

We will often refer to « as the (stochastic) competitive ratio of the algorithm. That
is not to be confused with the competitive ratio defined in classic online algorithms.
There are two subtleties: 1) the input in the above definition is assumed to come from
known distributions, whereas competitive analysis assumes worst-case inputs, 2) the
ratio is achieved only in expectation, that is, there might be sequences that produce a
ratio greater than «. The prophet inequality, however, analyzes average perfmormace.
On the other hand, competitive analysis gives guarantees that hold under any worst-
case sequence. Let us also remark, that if the expected performance of ALG is zero, we
will refer to the competitive ratio being unbounded or infinite.

Theorem 5.2.2 (Single-Item Prophet Inequality [45]). Let V* = max;v; be the maz-
imum of the n realized values. Let x* = max{x,0} be the positive part of variable x.
Then, the policy that sets price p = %E[V*] and accepts first buyer with value above p is
2-competitive. Furthermore, this is independent of the decision to sell or not, when a
value is equal to 3E[V*].

Proof. We denote E[SW] as the expected social welfare of the policy. We break the
expected social welfare into two parts: the expected revenue of the mechanism, i.e the
price it charges when it allocates the item, and the expected surplus of the buyers,



that quantifies how much additional valued we gain by allocating to a buyer ¢ who has
(v; — p)* units of value above the posted price. It is easy to see that, by quasi-linear
utility: E[SW] = E[Rev] + E[Surplus]. We proceed by bounding the two quantities
independently.

Revenue: The expected revenue of the mechanism is the price for the item multi-
plied by the probability it gets sold.

E[Rev] = p - Plitem is sold| (5.1)
1
= EE[V*] - Plitem is sold] (5.2)

Surplus: The expected surplus of the mechanism is the sum of buyer’s utilities,
conditioned on the event that the item is still available when buyer i arrives.

E[Surplus] = Z Elu;] > Z E[( p)t1{iseesitem}] (5.3)
= Z E[(v; — p)*] - Pli sees item)] (5.4)
> Z E[(v; — p)*] - Plitem is not sold] (5.5)
> ]Ez[m;aX(Ui —p)] - Plitemis not sold] (5.6)
> %E[V*] - Plitem is not sold| (5.7)

Where (5.4) is because the value of buyer i is, by assumption, independent of the
values of previous buyers and therefore independent from the event of the item being
unsold when he arrives. (5.5) reduces the probability to the item remaining unsold at
the end of the process, (5.6) reduces the summation to a maximum after taking linearity
of expectation and (5.7) is by definition of p and V*.

Summing (5.2) and (5.7) yields the theorem. Observe that since the probability
terms in the above analysis cancel each other out, this pricing is indeed robust to any
tie-breaking decision. This decision influences the probability that the item is sold or
unsold. However, the competitive ratio is independent of this decision. Il

The above proof implicitly assumes that, by having full knowledge of the underlying
distributions of buyer’s valuations, we can efficiently compute the mean value. Here we
need to compute the expectation of the maximum value E[V*]. However, the realistic
assumption to make is that our online algorithm (or gambler’s strategy) only has sample
access to each of the n independent distributions. What we want is that if we post a
price p such that [p —p| < ¢, for all e € (0,1), we will incur an additive loss in the
competitive ratio. Then p will be an estimation of p (i.e the empirical average) which
by standard concentration bounds can be found by using poly(n, 1/€¢) number of samples.
Observe that in our analysis, if we substitute p with p — € in the revenue part and p with
p+ ¢ in the utility part, we will get that the algorithm collects value at least 1E[V*] —e.

5.3 Extension to k-uniform matroids

Our first extension is to consider the k-uniform matroid feasibility constraint. A k-
uniform matroid is a matroid where any subset of at most k items is an independent



set. To put it simply, the gambler can choose up to k out of n boxes, he claims a prize
that is the sum of the prizes of the collected boxes and he compares with an omniscient
prophet that always chooses the k-larger prizes. The mechanism design analogue here
is the sequential k-unit auction where n buyers arrive sequentially in an arbitrary order
and each one wants to buy a unit. A simple generalization of the proof in [45] gives
a 2-approximation policy for the gambler. However, better approximation guarantees
should exist as k increases. Intuitively, as k increases, the gambler has more choices of
boxes to choose and consequently he has more "room for error”, that is selecting sub-
optimal boxes hurts increasingly less the performance of the gambler compared to that

.. . . . . logk
of the prophet. Hajiaghayi et.al [41] formalize that idea by proving an (1 + O(y/=F))-
competitive prophet inequality for k-uniform matroids, which is asymptotic. This line

of work in k-uniform matroids prophet inequalities will be useful for the main part of
the thesis, therefore we present the proofs of the above claims.

First we are going to extend the proof of Kleinberg and Weinberg [45] to derive the
classic 2-approximation result.

Let V* = maxg. s|<t Zie 5 v; the sum of the top-k of n realized values. It follows that
the prophet collects expected value equal to E[V*], where the expectation is taken over
the randomness of the valuations.

Theorem 5.3.1 (k-Prophet Inequality). The policy that sets price p = iE[V*] and
accepts buyers

with value above this threshold, while supplies last, yields social welfare that is at
least sE[V*], which is half the optimum.

Furthermore, this is independent of the decision to sell or not, when a value is equal

to 1E[V™].

Proof. The analysis is almost identical to the case of a single item. Once again we are
going to invoke the "revenue-surplus” argument to account for the total value collected
by the gambler in expectation. The only difference here is the slightly richer feasibility
constraint. Let A; = {j | j < i and v; > p} be the set of buyers accepted upon arrival
of buyer i € [n]. We also define A, ;1 to be the total buyers accepted at the end of the
process. Now we are ready to proceed to bound the revenue.

Revenue: The expected revenue of the mechanism is the price for the items multi-
plied by the probability that all of them get sold.

E[Rev] = kp- Pl| Aupr | = K] (5.8)
= JE(V] B vt | = K (5.9)

Surplus: The expected surplus of the mechanism is the sum of buyer’s utilities,



conditioned on the event that supplies last when buyer i arrives.

E[Surplus] = ZEul | > ZE )FI{] A | < kY] (5.10)

= ZE P[| A; | < k] (5.11)

> ZE[(w — )] Pl Api | < K (5.12)

> E[s%?fk (vi = p)] - Pl| Angr | <] (5.13)
= es

> CE[V']Bl| Aut | < 4 (5.14)

Where (5.11) is because the value of buyer i is, by assumption, independent of the
values of previous buyers and therefore independent from the event that k items were
sold before he arrived. (5.12) reduces the probability to some of the items remaining
unsold at the end of the process, (5.13) reduces the summation to the maximum of the
top-k values after taking linearity of expectation and (5.14) is by definition of p and V*.

The events of accepting at most k—1 buyers and exactly k buyers are complementary,
since no algorithm can allocate more than k units and each buyer receives at most one
unit. Therefore, summing (5.9) and (5.14) cancels out the probability terms and yields
the theorem [

Now we are going to present a theorem that asymptotically improves the previous
result, thus validating our intuition described in the introduction.
First, we are going to need the following Chernoff bound from [19]:

Theorem 5.3.2. Let Xi,..., X, be independent {0,1} random wvariables. Let X =
X1+ Xo+ -+ X1+ X, and p = E[X].Then for any 0 < e < 1:

Pr{|X — p| > ep] < 2e= /3
Now we are ready to state and prove our main theorem.

Theorem 5.3.3. For the k-prophet inequality problem there is a price p such that
accepting the first k values above p gives with probability 1 — % value V that satisfies the
following:

121nk) .
k

Proof. Fix a price p. Define the set S, = {i € [n] | v; > p}. The idea of the proof is to
reduce the supplies by a fixed amount ¢ and find a price p such that E[| S, || = k —§.
Then by applying a Chernoff bound we argue that the buyers that belong to the set
S, are concentrated around the mean value with high probability. Define the random
variable X; = 1{i € S, }, that is a 0-1 random variable that is equal to 1 when buyer ¢
is in S,. The defined {X;}c}n are independent 0-1 random variables. Set X = |S,| =
X1+ Xo+...X,, and u = E[X] = k — 9, we have the following:

V>(1-

P| X — | > eu] < 2e7H/3
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By setting ¢ = ki—a we have that X € [k—20, k] wp 1— ¢ 309 >1-— 28_%. Therefore,
we set 0 = v3kInk and the previous probability becomes at least 1 — %

Now we know k& — 20 < |S,| < k with high probability.

For the analysis below we are going to adopt the "revenue-surplus” approach.

Revenue: Since S, > k — 20 we have that Rev > (k — 20)p.

Surplus: Since |S,| < k we accept every buyer above p. Also since |S,| > k — 26 we
accept at least k — 20 buyers. These buyers get also accepted by the optimal algorithm
of the prophet that we denote by V*. This is easy to see by an exchange argument since
the prophet uses a greedy algorithm, he simply selects the top-k realized values. That
is, the algorithm collects value which is at least a k_T% fraction of the optimal. Hence
for our price choice we achieve surplus:

Surplus = Z(UZ —p) > (k — 26) V= (k—=20)p=(1—- %5)‘/* —(k—20)p
i€Sy

Adding revenue and surplus gives us value

vz(1—%)v*

12ink
V> (1-/ k” W

Hajiaghayi et.al [41] also provided a lower bound for this setting. Subsequent work
by Alaei [1], showed an (1 — \/klw)—approximate prophet inequality for the setting which

For 0 = v3kInk we get:

]

asymptotically matches the lower bound given in [41]. Observe that for £k = 1 Alaei’s
result is optimal. His algorithm is adaptive, i.e he selects a price for buyer ¢ that depends
on the realizations of the values of the previous buyers. Let us remark that Jiang, Ma,
Zhang [54], solved the k-uniform case completely by proving tight guarantees for all k,
instead of asymptotically optimal ones.

5.4 Introducing Balanced Prices: a unified approach

So far we have seen a standard pattern in our proofs of prophet inequalities: we break
the value collected into two parts, that is revenue and surplus and we lower bound each
one of these quantities separately. The probability terms cancel out and we end up with
a lower bound for the initial aggregate value. However, it is not clear how this tech-
nique generalizes to richer feasibility constraints and more expressive valuation classes
(eg. matroid constraints and submodular functions respectively). In 2017 Diitting et.al
[32] provided a unifying approach to proving prophet inequalities, that generalizes the
“surplus-revenue” argument to more general valuation classes and combinatorial feasibil-
ity constraints. In this section we are going to present some key parts of their work and
the results when their technique is applied to specific problems.The following definition
of balanced prices is key to their contribution.
Let F be an arbitrary downward-closed feasibility constraint. We also define OPT (v | x)

to be the optimal residual allocation, i.e the allocation that maximizes ), v;(x]) over
x' € F with x,x" disjoint and x Ux’' € F



Definition 5.4.1 ((«, §)-balanced prices). Let a,, 8 > 0. A pricing rule p¥ = (py},...,pY),
where pY : 2M — Ry, is (o, B)-balanced with respect to a valuation profile v if for all
x € F and all X’ € F with x,x" disjoint and x Ux’ € F the following hold:

o >0 (xi) = 5 (V(OPT(v)) = v(OPT (v | x))

o > (x) < Bv(OPT (v | x))

The intuitive meaning of the optimal residual allocation denoted by OPT (v | x) is
the following: Consider an auction where buyers arrive having a value vector v, but
for some reason a subset S C M of the items is not available to them. The quantity
OPT (v | S) then denotes the optimal allocation of the remaining S" = M \ S set of
items, while v(OPT (v | S)) denotes the value.

The first condition of Definition 5.4.1 generalizes the notion of high revenue, while
the second condition generalizes the notion of high surplus. To see the previous fact
more clearly, consider the full-information case of a sequential combinatorial auction.
Each buyer has a valuation v; known to us, but buyers arrive in a an arbitrary order.
Let OPT; denote the items that buyer ¢ gets at the optimal allocation. Because of
the sequential nature of the auction, there might be some items j € OPT; that end
up being purchased by buyers that arrived previous to buyer i. Hence, we want the
aggregate price of such items to be high enough so as to cover the welfare lost due to
allocating them suboptimally. The right-hand side of the first condition (without the
multiplicative 1/« term) is precisely the welfare lost due to the aforementioned fact.
Furthermore, the second condition formalizes the fact that prices should be low enough
so that buyers can afford their optimal allocations. In line with the following example,
consider buyer ¢ arriving, when only a subset of O PT; being available. Nevertheless, he
should be able to purchase the remaining items inside O PT; in a price that guarantees
a high utility. To be more accurate, the second condition of Definition 5.4.1 requires
that the aggregate utility of buyers (i.e the surplus) be high, that is, buyers collectively
can pay for their optimal outcomes.

The novel contribution of this approach is that it completely decouples the Bayesian,
from the full information setting. That is, as it is proved in Theorem 5.4.2, in order
to prove a prophet inequality for the stochastic setting, it suffices to find balanced
prices for the full information, non-stochastic setting. Furthermore, this definition as it
generalizes the "revenue-surplus” approach, is natural and intuitive. Previous work from
Kleinberg and Weinberg [45], introduced a similar definition of balanced thresholds,
which, however, applied directly to the stochastic setting, thus making the argument
probabilistic. As we mentioned previously, using the above definition gives us the power
to argue about the simpler, full-information setting. Below we state the theorem which
reduces the stochastic to the full-information setting.

Theorem 5.4.2. Consider the setting where valuations are drawn from product dis-
tributions. If there exists a pricing rule pY¥ that is («, 3)-balanced with respect to a
valuation profile v. Then posting prices:

a
14+ ap

pi(z;) = Esp[p} (2;)]

yields welfare at least HlaBE[V(OPT(V))]




Proof. Once again, we are going to break the value into revenue and surplus and lower

bound them separately. The novelty in the argument is that we are going to use the

pointwise inequalities that Definition 5.4.1 requires for («, 5)-balanced prices.
Revenue:

>_pilei(v) = Haaﬁ ;Eo[ﬁ(%)] (5.15)

1EN ) ) ) ) )
> mEo[V(OPT(V)) —V(OPT(v | 2(v)))] (5.16)

Where the inequality is by the first condition of balanced prices. Taking expectations
on both sides of Equation 5.16 we get:

1 . . 1 . .
sz xi(v ] > mE{,[V(OPT(V))] - WEV,‘; [V(OPT(v | z(v)))] (5.17)

Surplus: To lower bound the expected surplus we consider the bundle a buyer ¢
could have bought upon his arrival. First, we consider an independent sample v/ ~ D
from the distribution. Now when ¢ arrives, he can choose to buy nothing, thus obtaining
non-negative utility, or he can choose to buy the bundle: OPT;((v;, V") | (v}, v_;)).
Therefore, his expected utility can be lower bounded as follows:

Eufus(v)] > Evw [MOPT((U“ ) | allvo) - P(OPT (0, >|w<vg,v_i>>>]

(5.18)

o
14+ af

Now summing over all buyers and by observing that Ey, [>°, vi(OPT;((v;, v_,) | (v}, v_y)))] =
Evv [V (OPT (V') | z(v))]:

E, >Eyv |V (OPT (V') | z(v)) —

Z w;(v)

i

1+B

> n(OPT( )| x(v;,v_»))]
(5.19)

By invoking the second condition of balanced prices we can upper bound the second
term in the right-hand side of Equation 5.19:

sz OPT((vi, v2,) | 2(vj,v—))) < B Eg [V(OPT(V | 2(v)))] (5.20)

Taking expectations on both sides an replacing v with v/ we get:

Eyv sz OPT((vi,vy) [ 2(vj,v=i))) | < B By [V(OPT(V' | 2(v)))] (5.21)

Combining 5.19 and 5.21 we finally get:



E,

Zuxv)] > 5 B V(OPT(Y | 2(v))] (5.22)

i

Putting it all together, we replace v with v/ in 5.16 (and we are allowed to, because
they are independent samples from the same distribution) and we sum 5.16 and 5.22 to
conclude the proof.

]

In general, prices can be dynamic, that is, the price that buyer i sees can depend on
the partial allocation to previous buyers. Moreover, balanced prices can also be defined
with respect to an algorithm, which we denote by ALG, that computes an allocation
x(v) = ALG(v) which respects the feasibility constraints but is not necessarily social
welfare maximizing. For the sake of completeness, we state refined versions of Definition
5.4.1 and Theorem 5.4.2 which incorporate the aforementioned observations.

First, we need some more notation. Let x = (z7...,z,) be a (partial) allocation.
Then for each buyer i we define x;_y) = (21,...,2,-1,0,...,0), that is the allocation
confined to the first i — 1 buyers. We define p;(x; | y) as the price of outcome z; offered
to buyer ¢ given partial allocation y € F. We require also that p;(x; | y) = oo for every
outcome (x;,y) ¢ F. That is, we cannot price outcomes that violate the feasibility
constraints. Finally, we use an exchange-compatible set Fy to denote all the outcomes
y that remain feasible after partially allocating x. In general, the following definition
takes into account that prices can be dynamic and discriminatory.

Definition 5.4.3 ((«, §)-balanced prices (general case)). Let a > 0, § > 0. Given a
set of arbitrary downward-closed feasibility constraints F and a valuation profile v, a
pricing rule p is («, 8)-balanced with respect to an allocation rule ALG, an exchange-
compatible family of sets (Fy) and an indexing of the players i = 1,...,n if for all

e F:

xeX

o >, piwi | xi1y) > 5 (V(ALG(v)) = v(OPT (v, Fy)))
o Vx' € Fu: Y. pi() | xp—qy) < BV(OPT (v, Fx))

Theorem 5.4.4. Suppose that the collection of pricing rules (pY),e for feasible out-
comes F and valuation profiles v € V is («a,f)-balanced with respect to allocation
rule ALG and indexing of the players i = 1,...,n. Then the posted-price mecha-
nism with pricing rule %5 - P, where pi(z;|y) = Es[pY (z:]y)], generates welfare at least
ﬁEV[V(ALGTV))] when approaching players in the order they are indezed.

We omit the proof of the theorem above, as it is almost identical to that of Theorem
5.4.2. Observe that xj_;) does not depend on v;. For completeness we also state the

definition of weakly balanced prices and the respective theorem.

Definition 5.4.5 (weakly (o, 1, 32)-balanced prices (general case)). Let o > 0,
b1, P2 > 0. Given a set of arbitrary downward-closed feasibility constraints F and a
valuation profile v, a pricing rule p is weakly (a, (1, B2)-balanced with respect to an
allocation rule ALG, an exchange-compatible family of sets (Fx) and an indexing
of the players i = 1,...,n if for all x € F:

xeX?



o 3ipi(wi | xion) 2 3 (V(ALG(v)) = v(OPT (v, 7))
o Vx' € Fui Y0 | xp—q)) < Piv(OPT (v, Fx)) + Bov(ALG(V))

Theorem 5.4.6. Suppose that the collection of pricing rules (p¥),c, for feasible out-
comes F and valuation profiles v € V is weakly (o, By, Ba)-balanced with respect to
allocation rule ALG and indexing of the players i =1...,n with 8, + P > é Then for
0= m the posted-price mechanism with pricing rule 0 - p, where p;(x;|y) =
Es[pY (xi]y)], generates welfare at least o

2611+452)Ev [V(ALG(v))] when approaching play-
ers in the order they are indexed.

The proof of the above theorem is similar to that of 5.4.2 and is thus omitted.

Again in this case, if a price vector p is balanced with respect to an allocation
rule, we can compute a price vector P, for which it holds that ||p — p||e < € using
poly(n,m, 1/¢) samples. Then by standard concentration bounds we achieve an additive
loss of O(ne) in the competitive ratio.

5.4.1 Applying balanced prices to XOS Combinatorial Auc-
tions

In this part we use the balanced prices machinery to obtain a posted price mechanism
that is a 2-approximation to the optimal social welfare of a Combinatorial Auction with
XOS buyers. Observe that this approxiamation ratio is the best possible as the setting
inherits the lower bound of the single-item prophet inequality. The authors in [32] prove
the following theorem

Theorem 5.4.7 (Combinatorial Auctions with XOS valuations). For Combinatorial
Auctions with XOS valuations a (2+ €)-approximate posted-price mechanism, with static
item prices, can be computed in poly(m,n,1/e) demand and XOS queries.

The authors make use of a fractional solution to the configuration LP of Combina-
torial Auctions which is the following:

max Z Z v;(S)wi s (5.23)

i=1 SCM

sty Y wg<1 Vjie M (5.24)
=1 S|jes
d s <1 Vi € [n] (5.25)
SCM
z; s € [0,1] Vi€ n],SCM (5.26)

Let’s assume for simplicity that we have the optimal integer solution which we denote
by S* = OPT(v). Let w be the representative additive function of buyer i on set S
according to the definition of XOS valuations. Firstly, we prove the foolowing lemma:

Lemma 5.4.8. Fix a valuation profile v and an exchange-compatible family of sets
defined as Fx ={y € F | (U;z:) N (U;v:) = 0}. The prices p; = wf" ({j}) if 7 € S; are
(1,1)-balanced with respect to OPT and Fx.



Proof. Observe that we can lower bound v(OPT (v, Fx)) by considering the set S} \ |, z;
for buyer <. Hence,

V(OPT(v,F)) > > uil(Si \ Umzz ST wk{h

keN keN jeSi\(U; =:)

Where the second inequality is by definition of XOS functions. For each set of goods x,
the prices extend linearly, i.e p(x) = >_;csp({j}). For each agent i and allocation x;,
we will have p(x; | z) = p(z;) whenever z; is disjoint from z and oo otherwise. For the
first condition of balanced prices, take an allocation y € Fy, then

Zp(yz- %) =Y "> p({s}) (5.27)

1 JEY;

=33 3w (5.28)

ik jeSny;

>SS wHGH =Y > wtH{Y) (5.29)

kEN jES; keN jeSE\(U; =)
> v(OPT(v)) — v(OPT (v, Fy)) (5.30)

For the second condition of balanced prices for all x and all x’ € F, we have the
following:

> p(hx) =Y p({s}) (5.31)

% i ]G:E

=322 > wiy) (5.32)

ik jeSNy;

>SS W EH -3 Y wr{eh (5.33)

kEN jES; keN jeSi\(U; 1)
> v(OPT(v)) — v(OPT (v, Fx)) (5.34)

5.5 Walrasian Equilibrium vs Prophet Inequality

A Walrasian Equilibrium is a set of allocations and item prices such that the market
clears, or in other words demand equals supply. Due to this fact, it is instructive we
compare Walrasian Equilibrium to the Prophet Inequality framework. Let us consider
the single-item setting, where buyers arrive having a value for getting the item. We also
study the full-information version of the problem where buyer’s valuations are a priori
known. Now any price between the largest value and the second largest (assuming buyers
buy in case of indifference) value yields the optimal outcome: the item is allocated to
the bidder with highest value. In comparison, prophet inequalities only guarantee an
approximation to the optimal social welfare, but they hold even when buyers’ values
are stochastic.

A second important difference between Walrasian Equilibrium and Prophet Inequal-
ities lies in tie-breaking. On the one hand, Prophet Inequalities provide results that do



not depend on the nature of tie-breaking ' (e.g the decision when a realized value is
equal to the price). On the other hand, Walrasian Equilibrium rely on tie-breaking. In
[42] it is argued that prices of a Walrasian Equilibrium cannot on their own coordinate
a market. That is because, a buyer’s demand correspondence might contain more that
one bundles. If we allow buyers to arbitrarily choose one of them, that might lead to
an over-demand of items and loss in welfare due to lack of coordination. Furthermore,
consider the example of the previous paragraph: one could claim that posting a price
that is strictly between the largest and the second largest value will coordinate the mar-
ket and will yield the optimal outcome. However, when buyers arrive sequentially in
markets, it is impossible to know the largest and second largest value without relying
to an external coordinator that knows the values of all bidders. The authors also prove
that for every tie-breaking rule there is an instance where the over-demand is Q(n), i.e
every item is demanded by every buyer. Finally, they develop sufficient conditions for
the valuations that the over-demand is bounded by one.

5.6 Extensions and Variants

In this section we are going to briefly explore some extensions and variants to the classic
prophet inequality framework. The variants tweak the assumptions on the ordering of
buyers and the distributions. Furthermore, we explore a variant where we can use only
a limited number of samples of each underlying distribution, an assumption that is
more practically relevant than knowing the exact distribution for every buyer. Last but
not least, we extend the prophet inequality framework for the revenue maximization
objective.

5.6.1 Prophet Secretary

The first variant of the prophet inequality lies on the relaxation of the assumption of
worst-case (adversarial) ordering of buyers. While this assumption gives the seller a
machinery that is robust to market manipulation, it is too constricting. In practice,
buyers arrive in a uniformly random order because the choice of when to arrive is
influenced by random real-life noise. It turns out that if we modify the original setting
of prophet inequality assuming that the order is random we can do better than a 1/2-
competitive algorithm for the single-item setting. The new setting is called prophet
secretary and takes its name due to its resemblance to the folklore secretary problem.
Esfandiari et.al [33] prove a 1 — 1/e competitive ratio, which is not tight. The current
state-of-the-art is 0.669, due to Correa et. al [22], via a multiple-threshold strategy (note
that 1 —1/e ~ 0.632). In the same paper, they also show an upper bound; no algorithm
can achieve a competitive ratio better than V3 —1 ~ 0.732. For the cardinality case
of selecting at most k values (or selling at most k items) Arnosti and Ma [3] showed
that if one sets a single threshold T such that, in expectation, we have k - 7 realizations
above T, where v, =1 — e‘k’Z—T, then one obtains a ~y,-competitive ratio and this is tight
for every k among single-threshold strategies. Observe that for £ = 1, we retrieve the
known 1 — 1/e ratio.

!That is not completely true, since the threshold set by Samuel-Cahn depends on tie-breaking: they
consider two policies that either accept or reject respectively and show that one of them yields a 2-
approximation but neither works all of the time. However, the proof of Kleinberg and Weinberg and
balanced prices do not rely on tie-breaking.



5.6.2 The I.I.D case

In this variant, we assume that each one of the n random variables is a sample of the same
distribution, i.e Dy = Dy = ... D,, = D. Here the concept of order arrival is irrelevant
because we have n samples from the same distribution. We simply draw n samples from
D, randomly permute them and give them as input to the online algorithm. Correa
et.al [23] obtain a tight 0.745-approximation via an adaptive multi-threshold algorithm
(which translates into a dynamic posted pricing scheme). Their proof formalizes the
intuition that characterizes an optimal multi-threshold strategy. If ones arrive at the last
buyer without having sold the item, give it to the last buyer for a price of 0. Otherwise,
the threshold (or equivalently price) for the i — th buyer should be the expected value
achieved when running the optimal online algorithm on the following n — ¢ buyers.

5.6.3 Prophet Inequalities with limited information

Pioneered by the work of Azar, Kleinberg and Weinberg [6] this variant examines the
prophet inequality setting where the gambler has access to a limited number of samples
from each distribution. Azar et al. [6] showed that there is a connection between this
model and the secretary problem, as many algorithms for the secretary problem can
be adapted to obtain constant-factor sample-based prophet inequalities. The authors
prove prophet inequalities with constant, but not optimal, competitive ratio for classes
of matroids using only one sample. Surprisingly, Rubinstein, Wang and Weinberg [58|
manage to retrieve the optimal 2-competitive ratio for the single-item case using only
one sample. Caramanis et al. [15] consider sample-based greedy algorithms, which are,
in a sense, a refinement of the framework of Azar et al [6]. With this framework, they
obtained improved factors for various classes of matroids.

5.6.4 Prophet Inequalities for Revenue Maximization

The mechanism design implications of prophet inequalities to social welfare have been
the exclusive topic of study in this thesis. However, we are going to briefly discuss
work on prophet inequalities that inform the design of posted price mechanisms for
(approximate) revenue maximization. For single-parameter settings, the connection to
revenue maximization makes use of Myerson’s theorem that equates expected revenue
with virtual value [53]. For each buyer ¢ we can define a virtual value function that
depends on D;, the distribution over agent i’s value, and maps each value to a (possibly
negative) virtual value. A standard result in Bayesian mechanism design equates the
revenue of a mechanism with its expected virtual welfare. One can therefore approximate
the revenue of the optimal mechanism by applying the prophet inequality policy to
the virtual values, rather than the original values. E.g., for a single item, one could
accept the first prize whose virtual value is greater than half the expected maximum
virtual value. This yields an order-oblivious posted-price mechanism, albeit one with
potentially personalized prices. We refer the interested reader to [17] for more details
on this approach. An interesting question is how well one can approximate the optimal
revenue using an anonymous price, rather than personalized prices; Alaei et al. [2]
show that an e-approximation is possible using a single posted price, under a standard
regularity assumption on the value distributions.

Myerson’s characterization does not generally apply in multi-dimensional settings,
so prophet inequalities cannot be directly used for revenue maximization in these cases.



However, there have been significant advances in applying prophet inequalities to specific
revenue-maximization problems. One of the pioneering innovations was the development
of an approximately revenue-optimal sequential posted-price mechanism for matching
markets, assuming that each agent’s values for the items are independent of each other
[16, 17]. This approach directly bounds the optimal revenue in the unit-demand scenario
by relating it to a single-parameter problem. Chawla et al. [17] also demonstrate the
use of prophet inequalities, utilizing virtual values in the single-parameter problem,
to achieve an approximation result for revenue. These techniques have been extended
beyond the unit-demand case to situations involving, for instance, matroid constraints,
still assuming independence of values across items.

Further research in algorithmic mechanism design has strengthened the link between
virtual welfare and revenue for multi-dimensional problems. This connection interprets
virtual values in terms of marginal revenue and dual solutions in a related allocation
program [13, 14]. This development has led to better upper bounds on optimal revenue
in multi-item mechanism design problems, paving the way for approximation results and
the use of multi-dimensional prophet inequalities for revenue maximization. This line of
inquiry has produced constant approximations to optimal revenue using posted prices
in broader classes of multi-item problems. For instance, Cai and Zhao [10] demonstrate
that sequential posted price mechanisms can O(1)-approximate the optimal revenue in
submodular Combinatorial Auctions and other contexts, assuming independence across
items.



Chapter 6

Prophet inequalities for routing and
admission control in capacitated
networks.

6.1 Introduction

Consider a telecommunication network that serves requests. The network comprises
nodes, which for instance could be routers or hubs, and bilateral connections between
nodes that possess a certain bandwidth. The bandwidth is representative of the capacity
of the connection to serve concurrent requests. Requests arrive sequentially to their
start nodes, demanding to be routed in a path that gets them to their terminal nodes.
We study the mechanism design version of the problem : each request comes from a
buyer who has some private value of getting a path that connects him to his desired
destination. The mechanism claims non-zero value from the buyer, if and only if it routes
the buyer’s request in the network. Assuming that values are drawn independently
by publicly known distributions, can we design a posted-price mechanism that prices
bandwidth connections in order to (approximately) maximize social welfare? The two
main reasons behind pricing connections (instead of paths) are the following: 1) there
are exponentially many different paths in a network, while there are only polynomially
many connections, 2) different nodes might be owned by different service providers,
hence for every node owned by a provider, the latter should only know the prices of
the connections to the immediate neighbors of each node. In previous chapters we
saw that there has been tremendous work in prophet inequalities with complement-free
valuations, culminating in a prophet inequality for subadditive bidders with constant
(stochastic) competitive ratio. This chapter, on the other hand, examines positive and
negative results for prophet inequalities with valuations that exhibit complementarity.
Observe that in the above scenario, a connection has value only if it is bought together
with other connections in a way that they form a valid path.

6.2 Model

In this section we define a model which formalizes the problem we described in the
introduction. Let G = (V, E) be an undireccted graph defined on a set of |V| = n
vertices and |E| = m edges. Furthermore, let ¢ : E — R be an edge capacity function,
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which quantifies the bandwidth of a connection. Let r; = (s;,t;,v;),4 € [k] be a request
form start node s;, to a terminal (or destination) node t;, which carries value v; and
P; be the set of all s; —t; paths. We can think of requests as buyers who want to be
routed in the network and have a value for doing so. We will use the terms requests and
buyers interchangeably. A feasible allocation assigns bundles of edges to each buyer in
a way that capacities are not violated. For each buyer i we define his valuation function
w; : 28— Ry as follows: for any bundle S, if there exists a subset of edges S’ C S
such that S" € P; then w;(S) = v;. For any other bundle T, w;(T) = 0. That is, a
bundle yields value to buyer ¢ if and only if it contains a valid s; — ¢; path. Since it is
a single-parameter valuation function, from now on we will describe buyers’ valuations
with a single number: v;. We study the problem under the prophet inequality paradigm
by evaluating pricing schemes on their (stochastic) competitive ratio o as defined in
Definition 5.2.1. Unless stated otherwise, we assume that the order in which the requests
are processed by the online algorithm is chosen by an adaptive adversary.

6.3 LP formulation

In this section we address the underlying optimization problem. That is, we assume
that we know the whole input of requests r; and we want to maximize social welfare
subject to the constraints imposed by the capacities for each edge. We define f;(v,w)
to be the flow by request r; on edge (v,w) € E. The Linear Programming formulation,
is the following:

max Z Z v; fi(ss, w) (6.1)

5.t sz(;w) < c(e) Y(v,w) € E (6.2)
i fiv,w) = fi(w,v) =0 Vi € [k], Vv # 84,1, (6.3)
ifi(si’w) = wai(w,ti) Vi € [k] (6.4)
zw: fi(si,w) < 1w Vi € [k] (6.5)
filzv, w) € [0,1] Y(v,w) € E (6.6)

Where Equation 6.1 maximizes the value of request r; multiplied by the total amount
of flow leaving s;, equation 6.2 formalizes that concurrent flows in an edge should not
violate its capacity. Equations 6.3 and 6.4 are the flow conversation constraints of
any intermediate node that the flow passes and of the start and the terminal node
respectively. Finally, equation 6.5 restricts the total flow exiting start node s; to at
most 1 and equation 6.6 is because we study the fractional relaxation of the integer
program.

The above formulation can be seen as a multicommodity flow problem, which we
know that it is NP-hard to find an optimal integer solution [34]. In the fractional
regime there exist solutions based on solving the LP, as well as Fully Polynomial Time
Approximation Schemes [43].



However, a valid question we examine in the rest of this section is the following: What
happens to the optimal solution of the above LP as capacities grow larger? Intuitively,
if capacities are large enough the problem becomes easier. That is because with larger
capacities we get more "room for error”: allocating a suboptimal request does not hurt
our solution that much. Firstly, we are going to transform the above LP to an equivalent,
but more convenient, form.

Our objective is to transform an optimal solution that is described by edge flows
fi(v,w) to an equivalent one that is described by path flows f;,, for all requests r;, and
for all paths p € P;. This is done by the following algorithm.

Algorithm 4 Path Decomposition Algorithm

input f
1: for all requests r; do
2:  while there is a s; — t; path p using only edges with f;(¢) > 0 do

3 fi,p <~ miner fz(e)

4: for e € p do

5 file) < fie) = fip
6 end for

7. end while

8: end for

output f;, for each request, for each path

Running the algorithm we have transformed the first LP into the following;:

max Z Z Uifi,p (67)

i pEP;
s.t Z Z fip < c(e) Vee E (6.8)
i pEP;lecp
d fip<t Vi € [k] (6.9)
pEP;
fz‘,p € [0, 1] Vi € [k],Vp eP; (610)

From now on we will use this more convenient, but nonetheless equivalent, form of
LP and we can express the optimal fractional solution in terms of path flows f;,. We
interpret the flows f;, as probability distributions on paths. That is, we perform a
randomized rounding of the fractional solution of the LP as follows: request r; gets path
p € P; with probability f;, and gets nothing with probability 1 — Zp€P¢ fip- We imme-
diately observe that the expected value of this rounding is equal to the maximum value
attained by the LP (Equation 6.7). However, 6.8 is also satisfied in expectation. This
means that there exist instances where our randomized rounding violates the capacity
constraints. To address this issue we scale down all the capacities by a factor of 1 — ¢,
where 0 < € < 1. A new solution f;, = (1 — €)fi, satisfies 6.8 and 6.9 and is also an
1 — € approximation of the optimal solution. We proceed by showing that the event of
violating 6.8 does not happen with high probability. We define X;, € {0,1} the random
variable that indicates if the request r; gets routed path p € P;, for all 7. Hence,

Pr(Xip,=1]=f;

l?p'



Furthermore, for each edge e, define L, = ), ZpemeEp X, to be the load of the edge,
i.e the amount of concurrent requests it carries. Observe that E[L.] < (1 — €)c(e). Due
to the fact that Zpé?’i Xip <1, i.e the randomized rounding returns at most one path
for each request, {X;,},ep, is a set of negatively dependent random variables for all i.
Additionally, X, , and X, are independent for every i # j. Therefore, we can apply the
following Chernoff bound from [19].

Theorem 6.3.1. Let X be the sum of n independent (or better) random variables with
mean value BE[X| < . Then it holds that

Pr(X > (14 0)y < e
Applying the theorem with X = L., 6 = 1< and p = (1 — €)c, we have that:

2
(1776)2(1*5)%

Pr[Le 2 Ce] <e R

= 6_ 2—¢

<e 2

Set € = \/41(257“. Since € < 1 by assumption, we require that ¢, > 4logm. By this

choice of € we obtain: Pr[L. > ¢.] < # Applying a union bound on the set of edges
E, we obtain that the probability a capacity of any edge is violated is at most %

In this section, we examined the complete information, offline optimization problem
of our original sequential stochastic setting. We showed that if the capacity of every
edge is 2(logm) then the problem admits an (1-¢)-approximation, with the means of
a randomized rounding algorithm that rounds carefully the optimal fractional solution
produced by the LP. Despite being NP-hard in the general case, if the resources are
large enough we can get as close as we want to the optimal solution. The question now
becomes: Is it possible to use this positive result to design a sequential posted-
price mechanism for our stochastic setting that achieves the same welfare
guarantee, is order-oblivious and prices items? In the following sections, we try
to answer this question.

6.4 An O(m)-approximate item pricing

The problem formulation that we introduced in the previous section falls into the class
of Packing Integer Programs (PIPs). The column sparsity d of a PIP is defined to
be an upper bound to the number of constraints a variable (here f;,) can participate.
Since, in general, we can have a graph with only long paths, and 6.8 sums on all edges
that belong to a path, the sparsity of our packing program is d = ©(m), where m is
the number of edges in the graph. The authors in [§] give an (non-truthful) algorithm
for the optimization problem that has an approximation factor of O(d"/*) where b is
the minimum capacity. Furthermore, they prove that this approximation ratio is tight
(up to constant factors) by proving an integrality gap of Q(d'/®). Observe that for
b = Q(logm) and d = ©(m), the approximation factor becomes constant. A similar



problem that involves multiplicity is Combinatorial Auctions when each item has b
copies. The complexity theoretic lower bound for the problem, proved in [55] is Q(m!/%).
The framework of Lavi and Swamy [49] gives mechanisms that match this lower bound,
but are only truthful in expectation.

Diitting et.al [32] prove a 8d — competitive prophet inequality for d-sparse packing
problems using balanced prices as defined in Section 5.4. Below we present their argu-
ment, tailored to our model. We assume that the sparsity d = ©(m) and that for all
edges e € E, c. = Q(logm).

We assume that we have access to an allocation f* = ALG(v) given by an offline
algorithm that is given as input the valuation vector v. For now, we can think of ALG
as the optimal fractional solution that can be computed by solving the LP.Then the
following theorem holds

Theorem 6.4.1. For the d-spare linear packing program defined in the previous section
and F being all fractional solutions, there exist (1,0, d)-balanced prices with respect to
ALG. The prices can be computed by running ALG once.

Proof. Let Fy = {Z | > ZpEP”eEp('ri:p + 2ip) < c(e) Ve} Let p. = ﬁ > EpEPﬂer Vi fip
be a per-edge pricing scheme. Observe that prices tend to grow bigger when the cor-
responding edge participates in many paths. Then p;(f;) = Zpepi Zeep fipPe, Where
fi = (fip),ep,- For the first condition of balanced prices we define a residual allocation
z as follows:

2. 2.

i p'ePyle'ep’

*
Zin = I 1 — max
“p f”p e'ep Ce

. Then z € F, because for every edge e € E we have:

2. > fuw

i p'ePyle’ep’
3 1
E: E: fi,p*E: E: ZWZE: E: fi7p+§: E: fip 1_2}2;{ Cor
i pEP;leep i pEP;leep i pEP;lecp t  peP;leep ¢
2. 2. fw
i p'€P,lecp’
* (3

<D0 fwt ) D faf1- ;

e

i pEP;ile€p i pEP;le€p

<g¢

— e

Where in the fist inequality we reduced the maximum, to edge e that is in path p. Now



it follows that:

Zpi(fi) = Z Z Zfi,ppe (6.11)

i peEP; e€p

—Zpe Z Z fip (6.12)

it pePle€p

Y Y wi ] (XX fu (6.13)
e i’ p'eP,lecp’ i peP;leep

SIDID I D S P (6.14)
i p'ePy ecp’ i peP;|le€p

Z Z Z Ui/ i’,p’ - Zi/’p/) (615)
i’ p'€Py

> v(ALG(v)) — v(OPT (v, Fx)) (6.16)

The first and third equality are by definition of p;(f;) and p. respectively. The second and
fourth equality are rearranging terms. The last inequality follows from the fact that z &
F. and the welfare from allocating z is upper bounded by the optimal v(OPT (v, Fy)).
The first inequality holds because:

2. 2

i peP;le’ep
>0 > f”7>m |
Cet

- e'ep’
ecp’ 1 pGP\eEp

and
> > fu
i peEP,le’eEp
* * 7
fiy — 2y = [, | max
vap P vop e'ep/ Cer

Now for the second condition of balanced prices:

Do) =23 D flure (6.17)

i peP; eep

Y Y 615)

i pEP;leep

<> pece (6.19)
=>> > uf, (6.20)

e i pePleep
P IPILI (6.21)
i pEP; e€p

< d-v(ALG(V)) (6.22)

Where the first inequality is the capacity constraint and the second is by the sparsity
definition. The first,second and fourth equalities are rearranging terms, while the third
is by definition of p, ]



Combining Theorem 6.4.1 with Theorem 5.4.6 we get the following corollary.

Corollary 6.4.1.1. Let ALG be the (optimal) fractional allocation rule. For § = i the
posted price-mechanism with pricing rule 0p where p;(f;) = Eq[p} (f;)] generates welfare
at least ﬁEV[V(ALG(V))] when approaching the players in the order they are indezed.

Observe that since ALG is the optimal fractional solution (which can be computed
in polynomial time) the corollary implies an 4d-competitive prophet inequality for the
fractional d-sparse packing problem.

Now let us prove the theorem for integral solutions. We consider ALG to be an
approximation algorithm to the k-sparse packing problem (eg. the algorithm in [8])
which, obviously, produces an integral solution.

Theorem 6.4.2. For the d-spare linear packing program defined in the previous section
and F being all integral solutions, there exist (2,0, d)-balanced prices with respect to
ALG. The prices can be computed by running ALG once.

Proof. To define Fy, let for all edges e € E: d(e) = cle) if 32,37 cp e, fin < 1 and

2
c(e) = 0 otherwise. That is, an edge keeps its capacity if and only if it is at most

half full after adding x. Then, 7, = {z | >0, > cp,ec,(®ip + 2ip) < (e)}. Define
zip = [, i D2 Zp’epﬂeep’ fup < % Ve € pand z, = 0 otherwise. Observe that

Zi7p Z f::p <1 — 2 maXeEp Zi/ Zp/e'p“eep/ fi’,p’)
Now the calculations are identical with the fractional case.



For the first condition of balanced prices we have:

Zpi(fi) = Z Z Zfi,ppe (6.23)

i p€EP; e€p

_Zpe Z Z fzp (6'24)

it peP;lecp
- Z Z Z virf, 4 p Z Z fim (6-25)
e i p'ePylecp’ i pePlecp
SIDIDIEC DS S (6.26)
i’ p'ePy ecp’ it peP;lecp
> S wlfiy ) (6.27)
i p'€Py
> % (V(ALG(v)) = v(OPT(v, F))) (6.28)

The first and third equality are by definition of p;(f;) and p. respectively. The second
and fourth equality are rearranging terms. The last inequality follows from the fact that
z € F, and the fact that the welfare from allocating z is upper bounded by the optimal
v(OPT(v,Fx)). The first inequality holds because:

; Z 2,
Jip v pePle’ep
SN fs g e

ecp’ 1@ peP\eep

and

2. 2

i pePyle’ep

* *
f‘/ r — Zil pt S 2f/ / max
vaP ©op vop e’ ep’ Ce/

For the second condition of balanced prices we have:

Do) =323 flure (6.29)

i peP; e€p

—Zpez > i (6.30)

i pEP;leep

<Y pece (6.31)
=> > > uf, (6.32)

e i peP;le€p

=3 > wfi (6.33)

7 pEPi ecp

<d-v(ALG(v)) (6.34)



Where the first inequality is the capacity constraint and the second is by the sparsity
definition. The first,second and fourth equalities are rearranging terms, while the third
is by definition of p, ]

Combining Theorem 6.4.2 with Theorem 5.4.6 we get the following corollary.

Corollary 6.4.2.1. Let ALG be the algorithm in [8] for d-sparse packing that produces
an integral allocation rule. For § = ﬁ the posted price-mechanism with pricing rule ép
where p;(f;) = Eg[p} (f;)] generates welfare at least S5E,[v(ALG(v))] when approaching
the players in the order they are indexed.

Observe that since ALG is an O(d'/®) - approximate algorithm, which is also the
optimal approximation ratio, the corollary implies an O(d"/ b+1)_competitive prophet
inequality for the integral d-sparse packing problem.

However, instead of relying to an offline approximation algorithm, we can derive
pricing schemes for the integral version of the problem based on the (optimal) fractional
solution. The technique we use is essentially randomized rounding: we define z;, = 1*
with probability f7 if >, Zp/ePg|eep' fipy < % Ve € p and 7, = 0 otherwise. Hence,
Fx contains distributions over outcomes. Performing the same calculations as before we
can derive a 8d-competitive prophet inequality, which this time is with respect to the
fractional optimum.

Another example, from the same paper, in which assuming black-box access to an
offline algorithm yields worse results is the case of Combinatorial Auctions with XOS
(or submodular) bidders. Using the algorithm of Vondrék [61] gives an i—el—competitive
prophet inequality, while rounding the fractionally optimal solution of the configuration
LP, gives an improved competitive ratio of 2. The latter is also the best possible, as the
setting inherits the lower bound from the single-item case.

6.5 Going beyond O(d)

To improve the competitive ratio, we need to modify our approach. The problem with
our current method is that we argue for item pricing, where the price of a bundle is
the sum of the prices of the items it contains. However, the complementarity of value
that our model exhibits calls for bundle pricing. Intuitively, if items have increased
value when they are bundled together (consider, for example, that single-edges have no
value unless they are bundled in a way that results in feasible paths) bundling should
help in terms of social welfare. Firstly, we are going to prove that the O(d)-competitive
anonymous, static item pricing from the previous section is tight (up to constant factors)
when we are using item pricing. Let P be a single path of ©(d) edges. Consider buyers
arriving that belong to exactly one of the following categories: 1) buyers that demand
only the whole path P and each one of them has valuation ©(d) - for example, consider
buyers that arrive on the leftmost node of path P, wanting to go to the rightmost node,
2) buyers that only demand a single edge e € E, all of them the same, and each one of
them has value 1+ €. If for all edges e € P p. > 1 then no buyer gets routed and we
obtain total value of zero. Therefore, any item pricing that produces a finite competitive
ratio should price each item below 1, i.e p. < 1 for all e € E. Now consider O(logm)
buyers of category 2 arriving first. Because we have assumed that ¢, = Q(logm) and
we set p. < 1 all of them get allocated edge e € E. Now e is at full capacity. This
means that no one of the O(logm) subsequent buyers of category 1 get allocated the



path, due to the fact that an edge inside the path is no longer available. Hence, the
social welfare achieved in this scenario is ©(logm). However, the optimal social welfare
is O(dlogm), achieved by allocating the ©(logm) buyers of category 1. We conclude
that, item pricing cannot achieve a better than linear, competitive ratio.

Chawla et. al [18] consider a simpler model where the graph is a tree. They define
H = % and the prove an O(log H) competitive ratio for unit capacities and that this
ratio decreases linearly with capacity, that is O(% log H), where B = min, ¢,. Observe
that if B = Q(log H) the competitive ratio is constant. For the unit-capacity setting

d
logd

they also prove a ) < ) lower bound on the competitive ratio. This work is the

first one that resembles our model and validates our intuition that augmented resources
(e.g if we have at least logarithmic capacity) help the competitive ratio of our online
algorithm. Feldman et. al [37] also use bundling to tackle complementarity. They
extend the definition of a Walrasian Equilibrium in a way that it is on bundles and not
individual items. They prove that, despite the fact that the market may not clear, there
is a polytime algorithm that achieves a 2-approximation to the optimal social welfare
for any valuation class. The difference in their setting is that they consider the full
information case, hence their algorithm is offline.

6.6 Warmup: Deterministic-like distributions

We study a simplified version of our problem. Firstly, we assume that all edges have the
same capacity, which we denote by B. We also assume that buyers arriving at nodes can
only have k discrete values. Let {(aj;,vj;)};er for path p;. This means that the amount
of buyers demanding path p;, and have value vj; is a;;. The underlying optimization
problem must decide a fraction y;; of the a;; demands to accept, for each path and
each of the k discrete values, in order to maximize the aggregate value, subject to not
violating the capacity constraints. The linear program capturing these constraints is
the following:

k

max Z Z Qj; Vji Yjs (635)

i =1

k
s.t Z Zaﬁyﬂ S B Ve (636)

pile€p; =1

We study the admission control problem: Buyers arrive at nodes sequentially and in
an adversarial order, demanding to be routed. Our objective is to design a strategy that
irrevocably decides whether to accept or reject a buyer, without knowing the future,
and compare its total value with the offline optimum, i.e an omniscient prophet that can
select the best combination of buyers to maximize total value. We design a threshold-
based algorithm that achieves at least half the value of the offline optimum.

Let y* be the optimal fractional allocation given by the LP above. W.l.o.g, for
each path p; we relabel in terms of the index j, so that the vector {y;i}je[k] has its
components in increasing order of value. By a simple greedy-exchange argument we
observe that these vectors, indexed in the way mentioned before, have some zeros in the



first components, then a single fraction and a suffix of all ones. Let m; = arg min, {y}; #
0} be the index of the first non-zero entry of the vector. Now we are ready to state our
theorem.

Theorem 6.6.1. The following prices:
Pi = Uy

where j; = argmax;_,, ... 1{Vji - Zf:j ajiyy;} yield a 2-approxvimation with respect to
the optimal fractional allocation.

Proof. Let OPT; = Zle aj; vji y;;- be the welfare of the optimal fractional alloca-

tion for requests s; — t; and ALG,; be the welfare that the algorithm with the above

threshold achieves . By definition of m; OPT; can be equivalently written as OPT; =
Zf:m aj; vji y;;- We distinguish between two cases:

4 . k « k ,

e If j; = m;+1 because any algom:hm allocates at most Zj:mi ajiys; = Zj:miH ajiys;

it produces welfare at least » Jemitl

a;;vj; at price pj, ;
o If j; = m,; any algorithm produces welfare at least vy, ; - Zf:m ajiys;

Adding the two cases gives:

k k
Z a5;Vj; + Umy,i* Z ajz-y;-‘i (638)
Jj=m;+1 j=m;
k

= ) 4ji(Vji + V) + Vil i (6.39)

j=m;+1

k
S 2 Z CLjinZ' + 'Umi,iami,iy:(ni,i (640)
Jj=m;+1

< 20PT; (6.41)

Where inequality 6.40 follows from the fact that we have relabeled j in increasing order
of value, hence v,,,; < v;, for all j > m; and 6.41 is by definition of OPT;. We also
observe that 6.39 is lower bounded by OPT;. By taking the maximum of the two
above cases we have that ALG; > %OPTi. Summing for all s; — t; requests, yields the

theorem. []

6.7 Reduction to the k-unit Prophet Inequality

In this section we are going to reduce our setting to the k-unit prophet inequality and
then prove (1, 1) — balanced prices for this setting. We look into pairs of nodes, namely
s;—t;, where we know a priori that n; are expected to come. From these requests we solve
the fractional relaxation with the reduced capacities to decide a fraction a} = Zp fip of
the n; requests to accept. We define for each node pair k; = ajn,. We price each pair
independently with prices defined as:

We proceed by showing that this pricing scheme is (1,1) — balanced



Theorem 6.7.1. The above pricing scheme is (1, 1)—balanced with respect to a valuation
profile v and the algorithm that rounds the fractional relaxation of the LP formulation.

Proof. Fix a node pair ¢. Without loss of generality we sort the values in decreasing
order: vy,vy,...,0,,...,U,,. The allocation x might allocate to buyers that are not in
the top-k; of valuations. Hence if x allocates to j < k; suboptimal buyers we have that
v(OPT(v)) — v(OPT(v | x)) = VUp,—j41 + - -+ + vk, because after allocating x we can
still select the top-(k; — j) remaining buyers that the optimal also selects. The total
amount of payments for this allocation is >, p; = k%_(vl + -+ vy,). We can break the
sum into chunks of k? valuations and because of the decreasing order of values we have,
for example, % CUk—jr1 S UL+ e+, and ki Upi—jt2 < Uk, /j41 + -+ + Uag, /5 and so
forth. Hence the first condition of balanced prices is fulfilled. For the second condition
we take an allocation x’ € F, that can be feasibly added to a partial allocation x. If
there are j buyers remaining to be allocated after allocating x then v(OPT (v | x)) =
v+ -+ vy and Y pi(a)) = k%(vl + -+ vg,), we can prove by induction that the
> pi(zh) < v(OPT(v | x)). The idea comes from the fact that since we have the values
in decreasing order, for example %(vl +vg) < vy, %(vl +vo+v3) < vy 4wy and so forth. [

We use this pricing scheme to provide admission control inside the network: when a
request arrives we route it in any s; —t; path available provided that it is above the price.
In the previous sections we showed, that by doing so for each node pair independently
we violate the reduced capacity constraints. By the same Hoeffding bounds we show
that we violate with high probability by at most ec. which is feasible in terms of the
original capacities. Since we prove (1, 1) — balanced prices for each pair of nodes we get
a factor of 2 that is due to the theorem of [32]. We know that in the high-k regime we
have results that are asymptotically optimal with respect to the prophet, however we
analyse for the worst case of k; for any s; —t; pair, which can be in the low-k regime, for
instance it might be k; = 1, where the best possible is a 2-approximation. That is the
reason, our approach yields necessarily an approximation factor of 2 in the worst case.

6.8 Conclusions and Open Problems

We comment on our pricing scheme not being truthful in terms of paths. That is, a
buyer might have an incentive to buy a superset of his desired path at a lower price.
The prices are not monotonically increasing on paths as it is showcased by the following
example:

Example 6.8.1 (Non-monotonic pricing scheme). Consider a path graph with m edges
where 3 buyers with value 9 and 3 buyers with value 12 want the whole path, for
simplicity we represent them as (3,9), (3,12) and 4 buyers with value 12, that is (4,12),
who want only the edge in the middle of the path. This edge has capacity 10 and all
the other edges have capacity 6. The optimal solution prices the big path at a price
of 9 or lower,i.e accepts both (3,9) and (3,12), and prices the edge in the middle at a
price lower than 12, i.e accepts all (4,12) buyers. Observe that we respect the capacity
constraints. However, if (4,12) buyers arrive first they see a path that contains their
desired path, namely the big path, at a lower price (it has a price of at most 9, compared
to a price of 12). As a result they have an incentive to buy the big path, thus excluding
4 of the 6 in total buyers originally wanting that path.



This thesis identifies the non-monotonicity of pricing paths as an unresolved issue and
thus an open problem for future research. In conclusion, despite the amazing work that
has been done in the Prophet Inequality regime for complement-free valuations, very
few work tries to address complementarity. Specifically, we mention that [18] is the only
work that starts the discussion of pricing intervals and paths. However, as it is showcased
by our paradigmatic problem of online network routing and admission control, there are
relevant instances in real life which we need to price for complementary items. We
show that, if we have a logarithmically large supply of items (in our problem this is the
capacity) this allows us to solve a fractional releaxation that is a good approximation to
the integral due to the small integrality gap. Then by pricing, node pairs independently
we reduce the problem to the unit-demand setting (which by the way is the high level
technique used in [18]) and invoke the k-unit Prophet Inequality for each separate pair.
We achieve a 2(1 + €)-approximation to the optimal social welfare, where the factor 2
comes from the k-unit prophet inequality and the 1 + € comes from the approximation
of the underlying multi-commodity flow problem. Are there any other settings that
exhibit complementarity, that have a small integrality gap (perhaps by assuming a
large enough supply like in our setting) that can translate into a constant-approximate
prophet inequality. Is there a way, by means of a different technique and analysis, to
improve the factor 2 in the approximation ratio of our setting?
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