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[epiindn

2.€ OPLOHEVA GEVEQLAL OVOLY VWPLONG AVTIXEWMEVWY, TO DEDOUEVA UE ETIXETEC UTOPEL VoL UNV XUAUTTOUV
bhec tig xatnyoplec. H Mdinon Xweic Iopadetypata (MXII) avtpetonilet autéd to {htnua atomol-
ovtag PorinTinég TANeogopieg Tou TEPLYEdpoLY XddE xaTryopia, ETOLOXOVTS TNV AVATTUEY EVOS
T vounTh ool vor avary voptlet detyuarta and xotnyopieg mou dev €youv emonuoviel e eTIXETeC.
H nuenayoywy MXII (Transductive ZSL) enexteiver auth tnv évvola avayvwpeilovtac Selyporo
Ao GYVWOTEC XATNYOPIES, YENOYWOTOWWVTNS TANEOPORIEG TOC0 amd 0PAUTEC OGO XAl ATd AOPUTES
xaTnyopleg xatd T OLdExELd TNG EXTAUOEUONC. XE UTH TN OLTAWUATIXY €pyooia, TEOTEVOUNE Wil
vea Tpocéyyion yio TN nuemay oYy MXII evowuatovoviag Evay and Toug xaAITEQOUS oAy OpL-
HOUC U1 EMBAETOUEVNC CUG TAOOTOINGNE XAl TPOTOTOWWVTOS TOV CUUPWYA UE TIC avayXeS ag. Ano
660 Yvopilouye, auty elvon 1 TEWTN TpooTdlela YEQPUEWONE TOU YAOUUTOS UETAUED TWY TEOODWY
otn BiBhoypagia un emBhenouevne custadonoinone xou e Mddnone Xwplc Iapadetypota.

Apywd, yenowwonolobue tov okydprduo cuCTIBOTOINGNG Yiol VO YWEICOUUE OAEC TIC ELXOVEC
OTOV OTTIXO YWEO OE LEYWPELOTA GUVORA. XT1 GUVEYEL, YPNOLLOTOWUUE TNV avTioTolyla UEToEY
OPIOUEVGY OUGOWY X0 YVWCTMY XUTNYORUDY, YL VO BEOUUE ULoL AUQLUOVOCTHOVTY] ATEXOVION) oo
TOV ONUACLONOYIXO YWEO, TIOU TEPLEYEL TEWTOTUTA Yo Xxdde xotnyoplo, oTIC OuddES TOU OTTIXOY
Y@eoL. XEeNOWOTOLWVTIS AUTHY TNV ATEOVICT), TEOBIAAOUUE To TPWTOTUTA ATd TOV OTUUCLOAOYLXO
Y PO OTOV OTTIXO YOO Xk TUEIVOUOUUE BENYHATA TWV Sy VWO TWY XATNYORUOY UE Bdon TNV andoTuct
TOUG amd aUTE Tol TEOBEBANUEVA TEWTOHTUTIAL.

Méow melpopdtwy og 800 civola BEBOUEVLY, BElYVOUUE TNV ATOTEAECUATIXOTNTA TNG TROCEYY-
wo1¢ pag oe nuenaywyxée MXII epyacieg. H pédodog pag emtuyydvel anddoorn cuyxpelowrn ue
dAhoug xopugaloug akyoplduoug MXII 6to civolo dedouévwy AwA2, yoplc vo atontelton exmol-
OEVOT) ATO GXPO OE UXEO 1) AETTOUERTC TPOGUEUOYT NS apyttextovixric ResNet101 .

Aé€eic xhewdid: Mdnon Xwpic Ioapadeiypata, Yuotadonoinor, Mnyovixr Mddnor, Neupw-
vixd Atxtua, ‘Opaon Trohoyiotwy, Eviuypduuon.



Abstract

In certain object recognition scenarios, labeled data might not cover all categories. Zero-shot
learning (ZSL) addresses this issue by leveraging auxiliary information that describes each cate-
gory, aiming to develop a classifier capable of recognizing samples from categories lacking labeled
instances. Transductive ZSL extends this concept by recognizing instances from unseen classes
using information from both seen and unseen classes during training. In this thesis, we propose
a novel approach for transductive ZSL by integrating a SOTA unsupervised clustering algorithm
and modifying it to our needs. To the best of our knowledge, this is the first attempt to bridge
the gap between the advances in Unsupervised Clustering literature and Zero-Shot Learning.

Initially, we employ the clustering algorithm to partition all images in the visual space into
distinct sets. Subsequently, we establish a correspondence between some clusters and known
classes to find a bijective mapping from the semantic space, which contains prototypes for each
class, to the visual space clusters. Using this learned mapping, we project prototypes from the
semantic space to the visual space and classify instances of the unseen classes based on their
distance to these projected prototypes.

Through experiments on two benchmark datasets, we demonstrate the effectiveness of our
approach in transductive ZSL tasks. Our method achieves performance on a par with other
state-of-the-art ZSL algorithms on the AwA2 dataset, without requiring end-to-end training or
fine-tuning of the ResNet101 backbone.

Keywords: Zero-Shot Learning, Clustering, Machine Learning, Neural Networks, Computer
Vision, Alignment.



Euyaplotieg

Koo ohoxhnpdvetar 1 goltnoy| pou otn Xyohny Hiextoohdywy Mnyovixwy xow Mnyovixay T-
Tohoyto TV Tou Edvixold MetodBou Hohuteyvelou, Yo fieha apyixd vo euyopiothow Yepud tov
Kadnynth x. [Iétpo Moaporyxé yia Ty EUmc 1000V TOU Hou EBELEE, EMITRENOVTAS UOU Vol EXTIOVHOW
NV epyacio auTr UTO TNV eTBAEPY| TOL Xou VLol TO EVOLAPEPOY TOU UOU XUAALEQYTOE Yol TNV ETUC THUT
NG 6PUCTIC UTOAOYIGTMY Xal TNG UNYavixnc wdinong. Oa fdeha enlong expedon TNV ellxpvy| Loy
EUYVWUOOUVY TPOC TOUG CUV-ETBAETOVTES Hov, Tov Enixoupo Kodnynth x. Ieodvvn Kopdwmvr xou
Tov Adxtopa x. I'idpyo Petowd. H xododrynor toug unrple mohdtin, 1660 %atd TNV EXTOVNOT
NG ToPOUCUS TTLYLAXAC EpYAClug 600 xou YEca amd T GUUPOLAES TOUG YioL TO UEANOV OU.

LNUOYTIXOTEPOL GUVODOLTOROL UOU GE AUTO TO oxadNPoixd Ta{dL, 6Twe xou o€ Ghat Lou Ta BruaTa,
ATV 1) OLXOYEVELS Wou. Euyoptotd Toug YOoVelg uou xaL Tov adep®d Hou Lol TNV adLdxoTr oTheLll
Touc. Téhog, Yo fieha va evyaptotiow T Xogla, Tov Nixdho, to Aewvida xou dAoug Toug @ihoug
HOU Yot TIC OUOPYES UVAUVACELS X0 TY) CLYTEOPLY TOUG.

IIétpoc 'ewpyoliac Pet
ToOhoc 2024
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CHAPTER 1. EKTENHY ITEPTAHWVH

Chapter 1

Extevnc Ilepiindm

1.1 Ewaywyn

H Teyvnth Nonuoolvn ebvar xhddog tng mhnpogopiniic. Aoyoleltar ue v avantuén oUoTNUATLY
Tar omolo Ymopolv va extehoLY gpyacieg mou, cuvAdwg, exteholy ol dvilpwrol. Koahintel Eva gupld
PAOUAL EQAQUOYWY OTIKG 1) EXUEINCT amd DEBOUEVA, 1) AVOY VWELOT] TROTUTIY, 1) XAUTAVONOT) YOl ETE-
Eepyaoio UOIKAC YADOTOC, KOl 1) ATOXWOLXOTOINGT) OTTIXMY ELGEOMY. 1TV TueYvaL TNg, 1 Teyvnth
Nonuocivn etvor 1 mpoomdieior dnurovpyiog ahyoplduwy xou Lovtéhwy To onola yenoyonotoly oL
UMY OVES YL VAL EXTEAECOULY OLERYUGIEC OTWS 1) AOYIXT], O TEOYEUUMUATIONOC 1| 1) TROCUPUOYY| OE VEEC
AATUO TAUCELG, UE TEPOTO TUROUOLO UE AUTOV TIOL OL AvIPmTOL EXTEAOUY Lol avTioTOLY T YVWO TIXT Ep-
yaota. H amapyr) e Teyvntric Nonuoolvng evtonileton ota mpmta ypdvia TS TANeo@opxhc. g
€x TOUTOU €YEl LTOOTEL TOMAEC OAAYEC UE TNV TdpoBo Tou yedvou e€autlag Tng avdmTuing oTny
UTOAOYIG TXH| oYU, OTOV OYX0 Xt OT1) SLECIUOTNTA-TEOCBUCIUOTNTA TV OEBOUEVKY, X0t AOY®
TNC avdmTuENG TNS VewENTIXHC XUTUVONOTG.

H Teyvnth Nonuoolvn unoget va yweto el yevixd o€ 500 Bacixoig Tinoug: orevﬁ/o@bvam TN
xon yevixi/toyvery TN. H adOvoun TN oyedidletar yio vor ovtipetwnilel ouyxexpyléves epyaoieg
OIS 1) VALY VOPLOT] OULALIC X0l TROGMTOU, 1) UETAPEACT] YAWCOAS 1 1) epunveio. Autd mepthaufBdvel
eovixolg Pondoie, urnpeoiec poric, alYopLILOUC CUCTAGEWY XAl AOYLOUIXO UVAY VOPRLOTS ELXOVOG
yiotaTewer| Sy vewor. Kodog etvon anoteheopotiny, HOVo G GUYXEXPUIEVO GEVAQLAL, DEV PECEL YEVL-
%1) YONUOGUYT xal OEV UTopEl var evepyrioel TEpa amtd TIC 00NYIEC TOU BIVOVTOL YLOL Lol GUYXEXPUIEV
OPAC TNELOTN T

A6 tny dAAN mhevpd, 1 yevr) TN 7 ioyuer) TN embicdxel Tov 6Téy0 TNe avdmTuing avip®dmivey
YVOOTIXGY IXVOTHTLY. AuTto onpalvel 6Tt évar oOoTNH UE YEVIXT) YonuooUvr Yo xataidBoive, Yo
uddouve xou Yo epdipuole yvoor o ToAlolg Toyels, delyvovTag dnuiovpyixdTnTa 6TKe oL dvlpwmot.
Hapdho mou 1 yevixr) TN elvon oxduor pior Yewentinr €vvota xon €vor onpovTind Véua €peuvag, 1
emBinEN oaUTO) TOU OPAUATOC ETLPEREL TPGOOO oTov Touéa. Emi tou mapdvtog, ueydho pépog tng
épeuvac otov Touéa TN TN eotidlel ot Yelwon tou ydopatog Yetalld otevig xou yevixhc TN,
£CEQEUVMVTOC VEX UOVTEND, ORYLTEXTOVIXES XAl EVUARAXTIXOUC TPOTOUC EXTAUBEVOTC, ToU BelyVouy
UTIOOYOUEVOL GTTV TEOGEYYIOT] THO YEVIXWV HORPWY VONUOCUOVNS.

To mpito autd xepdhono e€etdlel T etvan | Teyvnty Nonuooivn (TN) xou yroti eivon ONUOVTIXT
ofuepa. Ou e&nyfoouue Ue amholg Opoug TL ebvon 1 pmyavixr xan Bordid udinor, dVo and Toug
x0ptoug xhddoug e TN mou oyetilovton dueca pe autr Ty epyaocia. 3Tn ouvéyeta, Yo e&nyHoouue
) Mdinorn Xwele Ioapadelypoata, mou ebvar 1o xOpto Yo autric e dimdouatixric. Autd to
xepdiano Yo V€oel To TAAOLo Yo Yot TOAD TO AETMTOUERY| X0 ECTIAOUEVY) GLULHTNOY OTO ETOUEVO
AEPSALO.
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1.1.1  Mnyovixry Madnon

H pnyoviny| uddnon (Machine Learning - ML) eivou éva ONUAVTIXO UTOGUYOAO TNG TEYVNTHE VOTUO-
olvne (Artificial Intelligence - Al) mou eotdler otn Saoxohior TV unyovey Gote vo enelepydlo-
VTaL %o VoL EpUVEUOLY Sedopéva o amoteheopatind [19]. Xe avtideon pe tov napoadootond npo-
YEUUMOTIONS, 6TIoU Ol UTOAOYLOTES axohoLloLY ENTEC 00N YiES, 1) unyovixy| uddnon Toug EmTEETEL
vo pardabvouy amd dedouévar xan vor AauBdvouy anogdoeic ue Bdon to potifo mou avoxaAUTToUV.
2 pnyoviny| pdinot, éva tedypouua PEATIOVEL TNV amdd0GY| TOU OE €pYUoieC UE TNV TdEOBO TOU
YEOVOL, amOXTOVTOC eunelplor amd To mapadelyuato ota onola €yel extevel. Auth 1 Tpooéyyion
elvan WLadtepa Yprown 6tay avTipeTwriCovtar HeEYdAL xou TOAUTAOXA GUVOAA OEBOUEVWY, OTOU 1
yetpoxivntn avdhuon Ya Aoy dOoxokn. Kodng 1 dioadectudtnta eXTETOUEVLY GUVOAGDY DEDOUEVGLY
ouveyiler vo audveton, 1 {ATNOT Yiow unyovixn) pddnon auldveton xou ToAEC emyelpnoels o&lo-
TOLUV TNV EMGTAKN AUTA, Yo Vo e€4yoUY TOAUTIHES TANEOPORIEC amd To BEBOUEVY TOUC. LAUERA,
1 Unyovxr) wdinon etvon xdtt ye to omolo ot dvlpwmol aAANAETLOPOVUE XardNuEELVE, -CUY VA YwElg
VO TO GUVEIBNTOTOWOUUE- Xl ETNEEACOUACTE o’ aUTH OTIC EMAOYES UAC (améd to Mol TEOLOVTAL
XATUVOADVOUUE €S X0 TOLES TaViES TopaxOAOUIOUUE).

1.1.2 Boadid MdOnon

Iotopixd, ot cupPatixeg pedodol unyovixiic udidnong 1oy TEPLOPLOUEVES OTNV IXAVOTNTE TOUG Vo
yeetlovton axatépyaota dedopéva Ye dueco Tpomo. H xataoxeuy| evog oUGTAUNTOS avoryVERLoTS
TEOTOTWY 1 Unyavixic udinong, anoutoloe eEEBIXEVOT) OTOV TOUEN YLoL TOV GYESLIOUO TEOY Q-
METOV VY Vo EEGYOUY YORAUXTNELOTIXG X0 VO UETOTRETOUY ToL AXATERYUO T OedopéVa (dTwe oL
TWES TV pixel wiog EXGVOC) OE VXL OLAVUGUOL YOROXTNELO TIXWY XUTIAANAO Yior €vary okydorduo
expdiimone (o mopdderypo évay Tadvounty).

H Bordid pdinon etvan yror e€etdixeuévn Teployr) eviog Tng Unyovixng udinong mou odivel €u-
PooT) 0TI PO VEUPGVIXGY OIXTUWY UE TOMATAY eTineda, YVWoTd w¢ Potid vevpwvixd dixtua.
‘Eva onuavtind micovéxtnua e Badide udidnong ebvon 1 ixavotntd tng yiow autouatn exudinon
UVATOPAC TAOEWY PEGL TwV XpuPKV TS emtmédwy [9]. Ta Bardid vevpwmvixd dixtua xotooxeudlouv
LEQUPYIXEC OVATUPUO TUOELS TV OEDOPEVWY PECK TOANUTADY ETUTESWY, PE XdUe ETINEdO VoL GUA-
AoBdiver TpoodeuTixd o agnenuéve yapoxtneloTxd [9]. Auth 1 Sloduacto autépatng e€aywynic
YOUQOXTNELO TIXAV MELOVEL TNV oVAY XY Yiol ~ YELOTOINTA YopoX TNEO TG ol EEELOLXEVUEVY YVMOT)
TOU TOUEN, X4t To onofo xuhoTd TNV EXTTUlBEVOT) AUTWY TWV YOVTEAWY To duecT). Xe éva Bordl
VEUPOVIXO B{XTUO, Tar xpu@d eTiNEdA AELTOUEYOUY WC Ui GELRd QIATEwWY, BEATIOVOVTOC TIC avama-
EUCTAOELS TwVY OeBoUEVKDY oTadlaxd. o mopdderypa, To apyixd eminedo umopel var avaryvopiCouv
Boaowd wotifo dmwe oL oxuég oE Wi exova, eve ta Baditepa enineda umopoly Vo aviyvelouy To
oUVIETES DOUES OTIWE TOL UEQT) AVTIXELUEVWY.

Avuth 1 yedodohoyia elvan Wlaitepa amoTEAEoUATIX Yo TN Slayeipion ueydhwy, cOvIeTwY Gu-
VOOV BEB0UEVLY, YVKOoTd w¢ "big data", ta omola yivovtar 6ho xou mo drdéoipa ta TeAeuTAla
yeovia. H eugdvion twv big data €yel evioyloel onuovtind tic ntpoontixég tne Pothde pdinong,
%xo00¢ oL ahyderiuol auTol apte TEVOUY OTNY ATOXEAUPT XELUPDY TEOTUTIKWY GE EXTEVH GUVOAAL BEDO-
uévov. O ouvduaouog dpiovwy Sedouévwy xar adinong TNg UTOAOYIoTIXAS LoyLog €yel EmTREPEL
oto ovteha Podidc udinong vor ETITUY Y EVOUY AVOTERES ETLDOCELS OE GUYXPLOT) UE TOUS CUUBATIXO0S
oy bprdoue unyavixic udinoneg, o epyaoies 6mwe N avoryvodplon exovag [20], [21], n xatovonon
puotxic Yhdooog [21], n avoryvoplon opthiog [22] xon tohkéc dhhec [23)].
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1.1.3 Mdinon Xwelc Ioapadelypota

Ov EmBrendpevec Médodor Tagvéunone (EMT) otoyebouy otny xotnyoptonoinor twy Sedouévmy
oe BloxpLtd ovoha Bdoet mpoxadoplopévmy xotnyopley (1 xhdoewy), xou tpolnodétovy enap-
x1) 6edouéva exmaideuong v xde xatnyopio. O todivounthAc mou mpoxUnTeL MEpLopileToL GTNV
TEVOUNOY) TUPUBELYUATWY EVTOC TV XUTNYORPIOY TOU XAAOTTOVIAL ond TO GUVOAO EXTUBEUOTC.
(161660, GTNV TEUYUATIXOTNTA UTOPEL VOl EUPAVIOTOLY TEQLTTWOEL, OTOU OPLOUEVEC XAAOELS OEV
EXTPOCWTOLYTAU XIOAOL 6TO GOVORO EXTIUUBEVCTC.

Y& TETOLEC MEQITTWOELS, 1) EQaRUOYT EMPBAETOUEVWY PeVOBWY exudinong elvon addvaTo Vo EQap-
wootel. Tt var hudel awtd to mpdPinua, mpoteivetar  Mddnon Xwelc Hopadetyuoro (MXII).

Mot vor xartovoricoupe T pdidnon ywels mapadelypota, ag EETAGOUPE TO TORADELYUA EVOS ATOUOU
Tou dev €yel Bel moté o LBpa. Av xdmolog Tou mel 6Tt 1) LéBpa uotdlel ue dhoyo oahhd Ue LadpeS Xal
dompeg plyeg, UTopel Vo YENOWOTOWACEL AUTAY TNV TEQLYRAUPT VLo VoL TNV ovary Veploet, Bactopévog
OTNV TPOYEVEGTERY YVMOOT Tou Ylot To Tt elvon dhoyo xon Tt ebvan plyec. O dvipwmol uropolv va
e&dryouv xou vau yenotuonotoly TAneogopieg LYol emimédou yia vor avory vepilouv véa avTixeiueva,
oLVBLALOVTAS YVKOOTA yopaxTneloTd. Ouoiwe, o 6Toyog Tng pdinong ywelc mapadetypata etvo
var emTEéel oE Eval HOVTERD Uy ovixiic paimong vor ovary vopllel VEEC xatnyopleg, YeNoWOToIOVTIC
TEQLYQUPES 1) YARUXTNELOTIXG TIOU OL VEEC XAt YOopieC HolpdlovTal Ue GAAESC BT YVOOTES XAUTNYORIEC.
2T0 TPONYOUUEVO TORABELY A, oV €val OVTERD YVwp(lel yior Tar dhoya xou Ti¢ plyeg, ToTe VéAouue
VoL GUVOUGOEL QT T YOO Yo vor avaryvoploet pa CEBpa.

Enopéveg, o otéyoc tng udinong ywelc mapadelypato etvon vor e€dyel Yvaon and Ho1 YOO TES
ANAOELC XAl VOL TNV EPUPUOCEL OE QY VOO TEC. XQONOLIOTOLOVTUS TEPLYQUPIXES TANPOPORIES XAl YoEa-
xtneto T, tor wovteha MXII pymopoly va xdvouv utodécels yia véeg xatnyopieg Baclouéve oTig
OMOLOTNTES TOUC HE YVWOTEC. AUTH 1) TPOCEYYLON ETUTEETEL GTA GUOTAUATO UNyovixhAc Uddnong
vou efval Lo EUEAIXTAL, X0 VOL UTIOROUY VO EQUPUOCTONY GE EVal EVPVTERPO PACUN CEVAPIWY Ywpelg va
amoutoVy EEAVTANTXG GUVOR OEQOUEVWLY PE ETIXETES Yo xdde midavr) xoTryopia.

1.2 YroéBadpo

1.2.1 Nevpwvixd Alxtua

O Nevpwvag

Dendrite

Axon Terminal

Node of @ Je Inputs Weights
45

Ranvier X gi

1 Activation

r“ X, o 198 Sum Sunetisn Oqutf
wl X | f [ T(awx)

Schwann cell

Myelin sheath

Structure of a typical neuron Structure of artificial neuron

Yyhuo 1.1: Biohoywy Nevpwvee o Teyvnty| voupooivn (IInyh: [1])
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To vEupWVIXE BIXTUA, EUTVEUCUEVO ATO TNV UEYLTEXTOVIXT XaL TN Agttoupyio Tou avipmmivou e-
YUEPSAOU, ULIOUVTOL T1 CUUTEQLPORE TOV VELPMVMY. YE QT Ta OXTUN, T GTEWUAT TEYVITMV
VEUPWVOY oLVERYALOVTOL Yiol Vo ENECEPYUCTONY ELCEQYOUEVES TANEOPOPiES (eioodot) xou v o
edryouv eZepydueves mhnpogopies (¢€0dot). Kde vevpdvoc hopPdvel éva oivoho 1668wV, oL omoleg
rtolamhacidlovtan pe pudwmlopeva Bdpn mou urayopedouy TNV enidpacT xdde €l0680L GTO TEMXO
anotéheopo. Emmiéov, npootideton pa pudulouevn ndohwon (bias) o autd to otaduiouévo ddpot-
opo. To Tehixd anotéheoya TEEVE 6T GUVEYELX PEGK LI CLUVBRTNONG EVERYOTOINoNS, 1) OTolo TO
UETUTEETEL O it €000, 6w Wiar ThovoTnToL 1) Lol duadtxr| arndgact. Autdg o cUVIETOC unyovt-
OUOG ETUTEETEL OTA VEUPWVIXG BIXTUAL Vo Bloxplvouy TeplmAoxa TEOTUTA X0 VoL XAvouy TEOPBAEPELS
ue Bdom to GEBOPEVA TTOU AVAADOUY. JUYXEXQOWIEVA, OV T € R? etvon 1 eloodog ooV Vevpwva, TOTE
1 €€0d0¢ elvon

y=1f Zwﬂri-b = f(w'x +b) (1.1)

6mou [ ovopdletoan ourdptnon evepyoroinons, w = (wy,...,wy) € R? etvoar 1o Bépn mov mpog
udinomn xow b € R elvon n néAworn npog pdinon.

IToAvotpwpatixol Perceptrons

Hidden Layers

Input x Predictions y

Yyfuo 1.2: Avanapdotaon evog Holvotpwuatixol Perceptron (IIny#: [2])

‘Evo ITohuotpwpatind Aixtuo Perceptron (Multilayer Perceptron - MLP) etvou éva teyvnté veu-
ewVix6 dixtuo oTo omolo moAhaTAd emineda VELp®VLY oTo3dlovTon TO €vo UET TO GAAO, OTWG
pafveton oto LyAua 1.2. Ou vevpiyveg oe eva MLP opyavavovton oe enineda: €va eninedo eloddou,
€va 1) TeplocdTepa eMineda TOU ovoudlovTon xpupd eTineda, xou éva eninedo and To onoio Aaudvou-
ue TV €€0b0 (to otpmua €£6dou). Kdle vevpdvag oe éva eninedo ouvdéeton ue xdie veupvo oTo
enouevo eninedo, oynuatilovtog éva TAHews cLYOEdEUEVO dixTuo. Ol TAnpogopiec Tou TapéyovToL
oto MLP tpogodotoivtan 610 eninedo €i16660u, T0 onolo enelepydleton TEPUTERW TNV TATEOQOElN
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TEPVOVTAS TN U€oa and Ta xpu@d eninedo. Kdde éva and ta xpupd eninedo ahhdlel TNV avama-
EACTAOT) TNS TANPOPOEIIC YENOWOTOLWVTIS TO HOUNUATIXG POPUOAMGCUO TWY VEURWVGY X0k TENXY
ToEAYEL TNV €000 YENOILOTOLOVTAS TO ETUNEDO eEHBOU.

Mo éva 6edopévo eninedo, 1 €€od0¢ y uTohoyl(eTon YenoylomolwvTac TV e&lowaon:

y=f(Wz+b) (1.2)

omou W ebvan o mivocag twv Bapcv Tou GUVBEOUY TOUG VEURMVES TOU TEEYOVTOG ETUTEDOV, UE TOUG
VEURMVES TOU TROMYOUUEVOU ETUTEDOL, T efvan TO BLdvuoua E16OB0L, b elvar Eva BLEVUCUA TOAOCEWY
(bias), xou f elvon 1 cuvdptnon evepyornoinone mou eqopudletar oe xdde otolyelo Tou exdotote
olovoopoatog. Auty| 1 dladicactior emavaiauBdveTtar yio xde eninedo, ye Ty €0do vOg ETEDOU Vo
Aertovpyel w¢ €lC0BOC YLl TO EMOPEVO, ETUTEENOVTAC €T0L 6TO OixTUO var Yodaivel TOMOTAOXES, Un
YEUUUIXES CUVAPTACELS amd TNV elcodo oty €£000.

Bektiotonoinon I'ia Nevpwvixd Aixtua

Yny emPrenodpevn pnyovix udinor, o otdyog etvar va Bpolue TI¢ TapauETeoug f Tou ehayioTo-
mooLy To eunelpwd o@dipa. To euneipind opdiuo opileton W 0 YECOC OROC TNG CUVAETNOTC
ammAelog L yior Ohar tor mopadetypoto exnaideuone. Modnuotind, autd umopel vo exppoactel we:

70) = 37 LU, 0),) (1)

ES®, f etvon pia ouvéptnon mou xdver mpofiédes, ue mapapéteoug 6, n onola Aaufdvel wg eicodo to
x; xou TeoPAémeL pa €€odo ;. H ouvdptnon andietag L yetpd tn Slapopd UeTall Tng TeoBAeTOUEVS
£C600L ; AL TNS TEAYUUTIXNAC ETIXETOC Y.

Y70 TAAOL0 TV VEURPOVIXGY BIXTU®Y, 1 oLUVAETNOTY f AVTITPOCWTEVEL OAOXANPO TO BiXTUO,
TEPLEYOVTAG TOMATAS ETENEDA VEUPMVWY UE BLAPORES GUVIRTATELS EVERYOTOMOTS, EVE TOEAUETEOL
TepLhopfBdvouy o Bdpn 1o TIC TOAWGELS OAWY TWV VELPWVLY 670 dixtuo. O oTdyog TG EXTaldeVoTg
EVOC VEUPOWIXOU OLXTUOU EfVal 1) TPOCUPUOY T AUTOY TOV TUPUUETEWY OOTE TO EUTELOIXO CPIAUN
J(0) va ehoryiotonomdel, xdtt to onolo eAniloupe va 0dnyfoet oe oxplPelc mpoPfAédeic ota Bedouéva
Soxudv (test data).

Yuvaptioelg AndAeiag Ou ouvapthioeic anwietag nallovy xplowo pdho oty exnaidevon
UOVTEA®Y, xod®¢ UETEOUY TN Blaopd UeTaC) TNC TEOBAETOUEVNS €€600U Xl TOU TEOYUOTIXOU
otoyou. AldPopol TUTOL CUVAPTHOEWY ATMAELIG YETCUOTOOVOVTAL, AvEAOYA UE TO TEOBATUA TOU
AAAOVUAUOTE VoL AUGOULE.

Mo mpofBiruota Tokvdpounong, 6Tou o oToyog eivon 1) TEOBAedN cuVEY DY TV, pa cuyndL-
ouévn ouvdetnon amdietog eivon 1 Méon Tetpaywvinh) Andxhorn (Mean Squared Error - MSE)
xan opiCeTan we:

1 < A
Lyse = - Z(yz —9:)° (1.4)
i=1

ES®, 1 uetoBANTh 5 avTimeoowTelEL TNV TEoyUoTix T, §; €lvon 1) TooBAemouevn Tydr| xou n ebvou
0 LS TV BELYUATWY.

Mo mpofAfpota Suadxhg TAEVOUNOTS, 6TIOL 0 GTOY0G elval 1) TEOBAEdN pag amd Tig Vo Tavég
xatnyopleg, N mo TuUm| cuvdpTnon anwhelog etvan 1 Avaduer Atactavpoluevn Evrpornia (Binary
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Cross-Entropy - BCE) xou opiletot we:
1 n
BOE n;[y og i + (1 — y;) log(1 — 5] (1.5)
XNy mapamdve eElowon, N UETOBANTA y; aviimpoowrelel Ty tparydatxy etéta (0 4 1) xou 9
elvon 1 mpofAemouevn mavotnTa, 6Tl To Belypa avixel oty xatnyopio 1.
Téhoc, v TpoBAYjuoTo TaEVOUNOTNE TOAADY XATNYOPLWY, OTOU UTHPYOUV TEPLOGOTERES ATtO
dVo xatnyopiee, N Awotavpoluevn Evtponio (Cross-Entropy) yevixeleton yio vor yetptotel mohhéc
xhdoeg. H Awaotaupoiuevn Evtponio yia ta&vounon ToAamAoky xotnyoptdy diveton and Tov TUTo:

n C
Lo = —% Z Z Yic log(@i,c) (1-6)

i=1 c=1
Xy mopandve egiowon, C eivar 0 optduods Twy XoTNYoeLdy, ;. eivor o duadixog delxtne (0 ¥ 1)
gdv 1 eTéTo TN xoTnyoplog ¢ elvon 1 6woTH TAgVOUNCT Yl TNV TUEATARNON 4, XL J; . €lvon 1
TpoPBhemouevn miavoTnTo OTL 1) ToEATARNOT ¢ AVAXEL OTNV XaTryopld c.

Kavovixonoinon

H xavovixornolnor elvon pior Ty VIxT| TOU YENOWOTOLETOL YIa VO ATOTEATEL 1) UTEPTPOCUPUOYT] OTa
wovTéAa unyovixric udidnong. H unepmpocopuoyy ocuufaiver dtav éva poviého padalvel oyt uévo
Toe potifo otar Bedopéva exmaldevong, ohhd xon Tov Yopufo. AuTo E€yel we amoTEAEGUN EEUPETIXT
am6d00T) GTO GUVOAD TV BEBOUEVWY EXTIUBEVOTG A x0XT) YEVIXEUTT] OE Y VOOTO-VEN OEBOUEVAL.
H xavovixornoinon avtetwnilel autéd 10 TEdBANUa TeocUETOVTAC Ulal TOWVY) OGOV APoEd GTNV TO-
AUTAOXOTNTA TOU povTEAOU, amoapplvoviag To and To va Tpocopuootel otov YopuPo. Me Tov
TEPLOPIOUO TOV TUPUUETEWY TOU UOVTEAOU 1) TNV TeocUixrn EVOS 6pou TOWVHC G CUVAETNOT -
TOAELG, 1 xovovixomoinon Bondd otny exudinon amholoTERKY HOVTEAWY, Ta omtola yevixehovTal
xoNUTEPOL OE VEO DedoUEVa [24].

o L2-xavovixonoinorn H L2-xavovixomoinon Acitoupyel npocdétovtag évav 6po movic ot
OLVAETNOT UMMAELS, 0 oTolog elvol AVIAOYOC UE TO GUPOLOUO TWV TETPAYOVWY TWV TURo-
UETpwY Tou povtélou. Autd onualvel 6Tl Yo xde Bdpog w oTo BixTuo, 0 GPOg Aw? TPO-
otidetan o1 cUVAETNOT AMMAELAS, OTIOU A Elval 1) Loy UG TG XavovixoTolnoTg.

e Ll-xavovixoroinor H Ll-xavovixonoinon etvon pior GAAN Tey VX TOU yenoyloToLlElTaL Yol
TNV ATOTEOTY TNG UTERTEOCUPUOYNG o1 unyovixt| udinor. Ilpoc¥étel Evay dpo mowvrg o
elvon avdhoyog e To d¥pOoLoUa TV ATOAUTOY TYMY TWV TUPUUETEWY Tou Yoviéiou. 'Etol yia
x&e Bdpoc w, o 6poc A|w| npootideton 6T ouvdptnon anmielac. AuTth 1 TEY VXY eviapplvel
T OTIOPABIXOTNTA (sparsity) oTic TOEOUETEOUS TOU WOVTEROU, xodoS Telvel vor 0dmyel xdmota
and 1o Bden 0To UNBEY, TEAYUOTOTOWMVTOS OUCLIOTIXG emhoyY| Yopoxtnplotixwy (feature
selection).

o ITpbowen Awaxonn (Early-Stopping) H npdwen Staxony| eivon o Te) VY| xavovixomno-
{nong mou yENOLOTOLEITAL YL VOl ATOTEATEL 1) UTEQTROGUQUOYY| OTA VEUPMVLXS BIXTUA TTapo-
xOhOLVWVTAC TNV AmdO0cT TOU YOVTEAOU OE €val GOVORO ETXVPMONG Xl DIUXOTTOVING TNV
exnafdevon YOMG 1) amodoor opyloel va emdevidveTon. Auty| 1 uédodog allomolel TNy mo-
eaTAENOT), OTL EVK TO GPIAUN EXTIOUOEUCT) TUTLXG UELWVETAL PE TNV TEEOB0 TOU YEOVOU, TO
OQANIOL ETXVEWONG CLUY VA UEIOVETOL opYXd, oahhd TeAd apy (el var audveTon xodog To
wovtého opy(lel va mpocopuéleton LTERBOAXd OTal BEBOUEVL EXTUBEUCTC.
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O Kavovag tng AAucidag

Ac Yewphicoupe OTL x elvon €vag TEayUATINOS aptduog, xou 0Tt ot f xou g efvan GUVHPTACELS and ToV
R otov R. Ac unodéooupe 61t y = g(x) xu z = f(g(x)) = f(y). Téte o xavdvac tne ahuocidog
ONAWVEL OTL
dz dz dy
de  dy dx
MropoUue va YEVIXEUGOUUE AUTO TO UMOTEAEOUA OTNV TERITTWOT) GTIOU XATOLXL GUVEETNOT) TIodPVEL
Stavbopata we eloodo. Ag utolécoupe 6Tt g : R™ — R™ xau f: R — R. Téte, av 2z = g(y) xou
y = f(z), npoximter 61t

(1.7)

0z 0z 0y;
ox; - ; 8_% . 89ch (1.8)
Ye SavuouaTixr) Jopgt| autd unopel eniong vo yoapTel we:
V.2 = (@>T -Vyz (1.9)
ox v
61OV % etvon o ToxwBlovode mivoag e cuvdptnong g.

Koatdfaorn Kiiong (Gradient Descent) Ac vnodéooupe étL éyouye wior ouvdptnon f :
R™ — R. T va Bpolye v xatevduvtin nopdywyo tne f oty xatedduvon u oo onuelo z,
eZetdlouye TN cLVAETNON

g(t) = f(z +tu)

Yyfua 1.3: Ontixomoinon tne puedddou xatdBoone xhione. (Inyr: [3])
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H napdyeyoc e g(t) diveton and tn oyéon ¢'(t) = u'' V. f(x + tu). Troroyiloviac v oto
t =0, éyoupe ¢'(0) = 'V, f(z). Tw va Bpolue Ty xotebduvon u oty onola 1 f pewdveta
T UTEPYL, YPNOUOTOWUPE T0 YeYOovic 6t ul V. f(x) = ||ul|a|| VS (2)]]2 cos @ dmou 6 etvon 1) yoovia
UeTal) Twv 0Uo Btavuoudtoy.  Eivar mpogavég 6tu 1 mapamdve Exgpaot ehoyloTomolElTal T
T0 u Oetyvel oty avtidetn xoteduvon and aut g xAlong. Enopévwe, Yo mpemel vo ndpouue
u=—-V,f(z).

[ vor xatoddBoupe mog autd e@apuoleton otny Tedlr, o UTOVECOUUE OTL €YOUUE i BLapo-
olown ocuvdptnon f. Téte, yenowonowdvtog tnv oeied Taylor, éyouue otu:

f@(t) + Ax) = f(x(t)) + V(2)]a=ay A (1.10)

E&etdlovtac tny xatediuvon émou 1) f yewnveton ToyUtepa, Onwe culnthidnxe vopltepa, H€touue
Az = —aV f(x)|z = x(t), a > 0. Auté yac odnyel oTov xovéva eviépwonc:

2t +1) = 2(t) — aV f(2)|o=a (1.11)

%ol

flat+1)) = f(z(t) + Az) = f(2(t)) — al[V (@)l |2 < f(2(t)) (1.12)
LV medln, 1 emhoyr ToU xaTIAANAoU puduol udinone a eivor xplown Yo TNV amédo0T) TOU
alyopiuou xatdfBaong xhionc. Av o puiudg udnong etvar moAd wixpde, o akyderduog umopel
VoL GUYXAVEL e TOAD apYd TOTO, EVG av elvol TOAD YEYEAOS, O ahyOELiOC UTOREl GUVEY KOS Vo
uepPalvel To EAYLOTO XaL Vo AmOTUYEL Vor GUYXALVEL.

BeAtiotonoinon Bopwyv Nevpwvixod Awxtbou

Xpnowonowwvtog Tig tpoavagepieioes Paoinég évvoleg, Vo e&nyfoouue tog hertoupyet ) PertioTo-
Toinon ota veupwvixd dixtua, tapadétovtag oha Ta Bruota ue Aemtouépeta. Apyd Yupilouue Ot
0 0T6Y0¢ elvan GLUYHIWE VoL ENXYIC TOTOLACOUUE TO EUTELRXO GOAAUA XU OTT) GUVEYELX TTPOC TilETOU
€VaC OPOC AVOVIXOTIOINGNE VLol VoL AOQELYVEL 1) UTEQTEOCUPUOY:

ZL f(x:560),9:) + AR(6) (1.13)

Mo vor ehoryto tonotfiooupe o J(6) avtl vo ypnotuonotolue tov olyoprduo xotdBaone xhiong, ou-
VWS YENOWOTOOVUE Wiot TopoAAay T} Tou, Tou ovoudletar otoyaoTix xatdBaon xhiong - XKK
(Stochastic Gradient Descent - SGD). Av egapuélaye tov arhydprduo xatdBacne xhione otny mo-
pamdve e&lowon, tote Vo énpene vo unohoyioouue Ty mapdywyo e Bdon oha to delyporto {z; }y,
70 onolo og Yeydho olvola dedouévey yivetan utohoytoTd avégixto. O YKK e&etdlel uévo ua
TopTida derypdtwy ot xdde Tou Brua, To omolo mpoopépel eveMlla ot TéTolEg XuTaCTAoE. ‘Eva
oLy V6 TeoBANua Ttou oyetiCeton pe Tov XKK elvon 611 o1 evuepioeig Tou unopet va emipépouy Yopu-
Bo, ondte 0 akyoderipog TohavTOVETUL YOPw antd To edytoto. Do va Audel autd to TEOBAnua, oL
uévodol Bertiotonoinone 6nwe o Adam [25] yenoylonotoly opur (momentum) xo TEOGUEUOC TG
eviud pdinonc.

H omododiddoon (backpropagation) eivar o alyobpriuog mou yenotuonoteitat yia vor UTOAOYIoEL
TNV TOEAYWYO Yot XGUE TUPAUETPO GTA VELPWVIXG BIXTUA, ETITEETOVTNG TNV €QUQUOYT| UEVOOWY
Behtiotomoinong, onwe o YKK. H omovodiddoone otnpileton mAfpme 6Tov xavova Tng alucidag,
0 0oTol0C EMTEENEL OTIC TUEAYWYOUS VoL UETAdBOVTAL TEOC Tal THow, UESw Tou BixTOOU.
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1. Hpowdnon (Forward Pass): ot vo eqapudcovue tnv E€lowon 1.11 npénet va alohoyioouue
0 J(0) oto §,. Emnopévwe, unohoyilouye v €£080 tou BixTOOL TEEVOVTAC To dEBOUEVL
€10600U péoa and xde eninedo.

2. Trohoyioudc Andietac: Trohoyilouue TNy andAeta eTa&D Tng €£680U TOL BIXTUOU Xl TV
TEUYUOTIXMY ETIXETWY YPNOHLOTOLOVTAUC XATOL CUVEOTNOT XOGTOUC (n.X 1.4, 1.5).

3. Omododiddoon (Backward Pass): Ilpdhta unohoyilouye v mapdywyo tng omoAelog oe
oyéon pe TNy €000 Tou BIXTUOV. LT GUVEYELN, YENOWOTOLOVUE TOV XovOVA TN AAUGTBAS Yia
VoL JETAOMOOUNE AUTONE TIC TORAYWYOUS TPO¢ T Tow Yéou amd xdie eninedo, utohoyilovtag
TNV TOEAYWYO TOU GPINIATOS, O OYECT| UE XAVE TUPAUETEO.

Yuvehxtixd Nevpwvixd Alxtua

H yeron Hohvotpouatiney Perceptron’s (MLP) vy enelepyaoio eOVAC TUPOUCLALEL ONUAVTIXES
mpoxAhoelc [4]. Apyixd, ac utohoylcoupe T Slootaon g eleddou: yior edva e Vhog H, mAdtog
W o C ypopotind xovdha Yo anattodoe To TeoTo xpupd entinedo va et didotaon H xW xCx D,
omou D eivan 0 aprdudg Ty VELPGVKY 0To Te®To entinedo. Emniéov, to MLP’s 6ev elvon avorhoiota
oe yetaopéc (translation invariance) [4], [9]. Autd to yopoxtneioTind unopel vo ontixonowiel oto
Yyfuo 1.4, To var avTipetoniotoly autd Tor TeofAfuata, tpotelvovTon tar JuveAtxd Nevpwvixd
Atxtuo (ENA). H Baowr| toug 1déa ebvor 6Tt SLapoy Wior exdVa O ETUXANUTTOUEVES TEPLOYES XKoL
oTN CLVEYELN TIC oLYXplvouy e Uxpolg Tivaxeg Bapy, ol omolol cuvhtng ovoudlovial @idtpa.
Avtd ta @idTtpa umopolv va Yewpriolv we aviyveutée, mou avayvwellouv ot mowo Badud Eva
OUYXEXPWEVO YopaxTNEloTixo Bploxeton ot Wi exova.

OUTPUT

olo|=ae

&OQOO

[el=lelee[H === ele[H=]e]
x
[el=leleleleleRl el == =]

oo =0
S| = - -

oo = o

&ococ

BEEEEEEREEEEEREEE)

olo|=alo
o|l=alala

>
EECEEREEEEEREEEC
®

WEIGHTS WEIGHTS

Yyfuo 1.4: Ta MLP’s 8ev efvan petagopixd apetdBanta (Inyn: [4])

Yuveli&rn H dwoxpitr diodidotatn cuveMEn tepthouBdvel Vo mivoxeg xan oplleton amd Tov TUTO:

Avth 1 e&lowon onuatver 611 Tadpvouue Tov mivaxa TG edvag I xon To aveoTpoupévo gidteo K,
xou ytoe xdde Véon (i, j) otov mpoxintovta mivaxa S, urohoyiloupe to dlpolopa TV YVOUEVKV
TWV EMXAAUTTOPEVWY GTolyElwy and Ty [ xou 1o K. Awuotntixd, civar cav vor uetoxivoUue
TOV OVECTROUUEVO QIATEO T urxog Tng exovag, utoloyiCoviag to otaduicyévo dipoloua Twmv
oToyelwY TG Emdvag %dTe and To gihteo ot xdie Véom.
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YuveAxtixo Nevpwvixd Aixtuo wg E€aywyéag Avanapactdoswy

To Yuvehixtnd Nevpwvirnd Alxtua (XNA) €Y 0LV PEPEL EMAVAC TUCT) GTOV TOUEN TNG UTOAOYIO TIXNG
bpaone, emdexviovtag eEoupeTix| anb6doon o DIAPOPES GEVApLAL ooy Vidplong Exdvey [26], [27],
28], [29]. ‘Otav exnadebovton o€ peydha obvoha dedouévev, 6mwe to ImageNet [30], To onolo nept-
€yl exatoppdpta EXOVES PE ETXETES, Ta UNA €youy Bel€et Ty avotnTd va pordoatvouy Tohdmhoxa
ontxd mpotuna. ‘Evor yopaxtneiotind napdderyua autol etvan 1 apyttextovixf ResNet (Residual
Network) [31], n ontola €yet emitiyel x0pUPOLa ATOTENEGUATO GE DLy WVIOOUE TUEVOUNONG EXOVOV.

‘Onwe oulntdnxe TeonyouUEVLe, Eva omd To XU TAEOVEXTHUATO TOV OIXTUMY QUTWY, EYXELTAL
oty tepapyiny| exudinon yapoxtnolotixwy. To apywd enineda evog ENA cuvidwg padaivouv
VOL OVLY VEVOUY OAGL YOeaX TNELOTIXG. OTWE axPES, LPES ot Baowd oyruata. Koadog mpoywpolue
Bahitepa 670 BixTuO, Tor EMimEda apy oLV Vor GUANOPPBEVOLY THO TOADTAOXOL YAUEUXTNEIOTIXG, AT
uéen avtxetuévoy [4]. Autdc o tepapyinde tpémog pdinong, emtpénet ota NA vor dnutoupyolv
mholoteg Xt e UPNAS Bordud apalpeonc aVATUPAGTACELS TWY EXOVWY ELGOOOU.

Yy medén, ta XNA nou exnandevovion o€ PEYIANG xAipoxag ohvola BEDOUEVKY GUY VA Yenot-
MOTIOLOUVTOL (G EEXYWYELS YORUXTNPIOTIXDY. DUYXEXPIIEVA, To CUVENX TG entineda (cuvAdwe Ta
terevutoba) adlomololvial Yo TNV eE0yYH YoeaxTNElo Ty UPnhol emmnédou and exdvec. Autd
TOL YAUEOXTNPLG TG UTOPOUY GTY) GUVEYELXL VoL TRo@od0TNU00Y G dAAN LOVTEN UNyavIXAC Udinomng
1| Vol TPOCUPUOGTOUV YL CUYXEXPUIEVES epyaoiec. Auth 1 dtadwacio eivan Yvwo T ¢ PETapopd
uddnone (transfer learning) [32], 6mou éva tpoexmoudeupévo LNA yenotponoteiton yio Ty e€aymy
OTUOVTIXOY YARUXTNPIO TIXWY ATO VEX DEDOUEVA, UELOVOVTOG OTUAVTIXG TOV YEOVO eEXTIOBEVCTIS Kol
BeATIOVOVTAC TNV ambd0CT) OE EPYUCIEG UE TIEQLOPIOUEVOL DEDOUEVAL.

1.2.2 Mdinon Xwpeic INapadeiypota

Yt pdinon yoelc mapodeiypata - MXII (zero-shot learning), oto yopo v yopaxTnElo TixdY
UTtdpy oLV dedopéva Ye eTxéTol (EToNUAUoUEVa BElYHOTO) TOU TaRAMEUTOVY Ot YVwotéc otny MXII
xatnyopiec ol onoleg ovoudlovton Opatés Katnyopies. Emmhiéov, undpyouy un emonuacuéva dety-
UOTO OTOV (B0 YWOPO YAURaXTNELo TIXGY, To ontota oyeTilovTon Ue Eva EEYWELGTO GUVOAD XATIYORLOY
YVWOTEC 1S adpateg xatrnyopiec. O ympog yopaxTnelo Tixwy TepthoauBdvel SlavioUTo TOU oV TLTEO-
OoWTEVOLY xGUE delyua, To omola UTOVETOLVUE OTL aViXOLY GE Lol UOVO XAt yopia.

‘Eotw S = {c]|i =1,..., Ny} 10 60VORO TwV 0paT®Y XATNYORLOY, OToL Xdle ¢ eivon uLa opot
xhdon. ‘Eotww enlone U = {c}|i = 1,..., Ny} 10 00vor0O TV 0dpatmV Xatnyoptdy, 6mou xdde c;
elvon puar abportn xoTnyopio. Lnuetdvoupe 61t SNU = () [12]. 'Eoten X 0 yhpog yopoxTneto TIXy,
o onoloc eivar D-dractdoewy. Eotw D = {(x",yf") € X x S|li = 1,..., Ny} 10 00voho twv
ETUCTUAUOUEVWY DEDOUEVLY EXTIALDEUOTC TTOU AvVAXOUY OTI 0paTeg xatnyopieg. T'a xde emonueln-
uévo mopdderypa (X1, yl"), xI" elvar to TapdBeryUa 0TOV YORO YOEOXTNEO TIXGDY, EVG YiT elvor 1
avtiotoymn etxéta xhdone. ‘Eotw X" = {xI° € X|i = 1,...,Ni} 10 0Ovoro Twv Tapodery-
wdtwy doxtuddv, 6mou xdie xL° elvon éva TapddeLrypo BOXIUMY oTOV Y(hPo YopaxtneloTixdy. Eotw
Yie={ylceU]i=1,..., Ni.} oL avtiotoryec etinétec xatnyoplog yio tor X .

Optowoe 1.2.1 (Mdinon Xoplc Mapodeiypota [12]). O otdyog e udinong yweic mapadetyuorta

etvan va 0186Eet évay tadvounth fzsr () : X = U dote va unopel var toévourioet Selyporto Soxiuic
X' mou avixouv otic adpatee xatnyopiec U.

22



CHAPTER 1. EKTENHY ITEPTAHWVH

ITpbcVetn ITAnpopopia

[Mo vor avTipeTomioTel 1 amousior ETIXETOY oTar SElyUATo TWY AOPATOV XATNYORUOY OTN pddnom
Yweic mapadelypata, ot tpéoieteg TANpogopieg civor amapaitntes. O umdpyouoeg TpooEYYIoELS
ovTAOUV EUTVELDT] a6 ToV avip®OTIVO TROTO oXENE, OTOU Ol OTUACLOAOYIXES YVWOoES Bordoly
OTNY oVaYVOELOT Gy VeoTtey oviothtey [33]. T topdderyua, yvopllovtoc dtu “wo tiyen poldlel
UE Wit HEYSAT Ydtar pe plyec” EMTEETEL TNV VoY VELoT) Wi Thypng axdun xon Ywels mponyoluevn
exdeon o oYETHEC EMOVES, BaCLlOUEVOL GTT) YVWOT| TWV YUTWY, TwV MEYEIMY xat Twv woTBuv plyog
[5]. Luvenog, ot Bonintuég mAnpogopieg oTic pedodoug udinong yweic mapadelyuato cuvidong
TEPLAAUBAVOUY ONUACLONOYIXEC AETTOUERELES, Ol OTOlEG Oy NUATICOUY EVay ONUAcIoA0YIKS XWPO TOU
TepL opPdvel T600 TG 0PATES OGO oL TIG UOPUTES XATNYOP(ES.

Y TOV ONUACLONOYIXG YWEO0, xdle xhdor yapoxtneileton and Eva BlavioUa, TO OTOlo AVIPERETAL
0C TO TpwTdTUTO Katnyopiag. Xtn cuvéyeta, oxoloudolue to [34] yio va oploouye tov onuactolo-
YIXO YWEO X TO TEWTOTUTO ULIG XATNYO0RloG.

Ac¢ ovoudoouue T tov onuactohoyixd yweo. Trovétouue 6t o T elvon M-didotatog cuvideng
etvar 0 RM [12]. Ac ovopdoouye t§ € T 1o tpwtdtuno xatnyoplag yio Ty opoth| xatryopta ¢ xou
t¢ € T 1o mpwtotuTo yiow TV adpatn xatnyopta cff. Ac ovoudoouue T° = {t{|i = 1,...,S5} 10
00VOAO TIOU TEPLEYEL TOL TEWTOTUTOL TWV 0paTY xotnyoetdv xaw T = {ti|i =S+ 1,...,S + U}
T0 GUVORO TOV TEOTOTUTOY TV odpatwy Xotnyoptdyv. Ac oploovye ™ () : SUU — T w¢
wee ouvdptnon mpwtotinwy kKAdong mou Aopfdvel o elcodo ulo eTéTa xatnyoplag xat eEdyeL To
avtioTotyo TpwtdTUTo XAdoTc (T.y. T(LEBea) € RM).

Yevépia Exnaidsuong

‘Onwe dnhainxe otov opoud 1.2.1, o otdyog tng mapadoctaxhc udidnong ywelc mopadetyuato
(MXII) etvar vor 818&&oupe évay tadvountr f*(+). Xtnv mpddn urnopel vo tpoxipouv xatactdoelg
OTIOU UTIAPYOLY TATPOPOPLES YIaL OPLOUEVES AOPUTES XATNYORIES EX TwVY TEOTERWY. T'éTE TO YoVTELOD
elvon npuenaywyikd (transductive) oe oyéon Ue oUTEC TIC CUYXEXPWEVEC XNAoES. e auTh TNV
TeplmTWOT), €Youpe TANPOPOPlES XaL YL TIC AOPAUTEG XAUCELS XUT T1) OLEEXELL TNG EXTALDEUOTC.
Yuyxexppéva, ot Wang et al. [34] Suxpivouv tig oxdroudeg teptntdoelc:

Oplopog 1.2.2 (Zevdpio Enaywyxdy xhdoewv-Enaywydv Aerypdtwy). Mévo ta emonyetw-
uévor Selypara exmoidevone D xat T TpeTOTUT TwV 0potiv xatnyoptedy T* yenoyonoolvio
OTNV EXTUOEUCT) TOU UOVTENOU.

Oplopog 1.2.3 (Eevdpio Huemorywyxav Khdoewv-Huenaywydy Aetypdtov). To emonuew-
uévo detyporta D, 1o mpwtdTUTA TV 0patdY xatnyoptdy 1%, tor un entonuewpéve delypota X
X0 TO TEOTOTUTOL TOV AOQUTLY XATN YotV T yonoonolobvTon oTny EXTOUBEUCT] TOU HOVTELOU.

Yevdpia A&ohoynong

Yy mapadootloxt) pdinor ywelc mopadelyuata, T0 0OVORO BOXWY TEPLAOUBAVEL ATOXAEIOTIXG
OEly T 0O AOPUTES XUTNYOPIES, EVOL GEVAPLO TOU DEV ElVOL PEAALOTING OTIC TRV UUTIXES EPUPUOYES.
LNV Tpd&n, Tar OelyUoTol amd 0paTEC XATNYOPIES EVOL TILO GLYVE OTtO UTEL TCV AORUTEY XATNYOPLYV.
Enopévee, etvar xplowo vo avoryvewpilouue tautdypovo delypota xon and toug Vo TUTouS XAdoewy
xo Vo Uy E0TLECOUPE HOVO GTOL OELYUOTO TV A0pATOY XATNYoptwy. Autd To ceVdplo ovoudleTal
yevikeupérn udonon ywpis tapadeiyuata (generalized zero-shot learning - GZSL) [35].
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Optowodeg 1.2.4 (Ievixeupévn Mdinon Xople Hapodetyporta (I'MXII) [5]). O otéyoc tne yevi-
AEVUEVNC Udinong ywele mapadelypota etvar 1) xotaoxevy| evog tovount| fezsr : X — SUU mou
umopet vo tagivour|oel delyuato Tou X' mou aVAXOLY TOCO GTIC 0PATES XATNYOPEC S 600 Xl OTIC
aopaTeS xuTnYyopies U.

Visual Features Text (Word Vector) Semantic Features (Seen & Unseen)
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Unseen Images
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Lyfuor 1.5: (B) Kotd ) @don tne allordynong, n MXII uropel va avaryvepioet uovo delyporta omd
i adpateg xotnyopies, evd 1 (y) I'MXII uropet va avaryvewpioet Seiypoto 1600 and Tic opatéc 660
xou amo e adpates xatnyopies (InyR: [5])

H yevixeupévn pdidnon yoplc moapadetypata (I'MXII) Sev avogpéper ontd to chvolo mou yen-
oloTolelTal XaTd TN QAo TG exmaddeVong, TS xat 1) udinoNe ywelc TopadelyUoT (MXII). O
TORYOVTOG DLPOROTOMNGNG EYXEITOL OTO EPWTNUA ToU TIETHL GTO UOVTEAD XATE TNV BLEEXEL TG
Soxync [5]. By whaoowxd MXII, ot etixéteg Twv derypdtmwy Tou ouvorou Soxmy X' unotideto
OTL avhixouy Uovo oTig adpateg xatnyopieg U. Mty I'MXII dev yiveton auth 1 unddeor, ondte
ot eTxétec Tou X' umopel vor avixouy t6co oto S 600 xou oto U. Auth 1 Yepehddne dtopopd
ouvoiletar 670 *dTE Pépog Tou Lyruatog 1.5.

O A\yodprdpoc K-means

O oAyobpriuog cuotadonoinong K-means etvon pio uédodog mou yenoiponoieiton ot un emBAeTouevn
LaINom Yol Vo OUOBOTIOLAOEL DEDOUEVA OE GUOTADES UE TopdpoL YapaxTneotixd. O otdyog elvor va
xorrortun el éva ohvolo Sedopévmv oe K Bloxpttéc opddee (ouotdde) 6mou xdie onueio Sedouévmv
aviXEL 0T CLUCTAdN UE T TANctéoTtepn péon Twi. Auth 1 ouadonoinon Bondd otnv xatovénon
NG DOUNC TV BEBOUEVWY, OTOV EVIOTUOUS TEOTOTWY Xl OTNY ATAOTOINGT TOAUTAOXWY GUVOAWY
OEDOUEVLV.

Trdpyouv apxetol AdyoL Yyl Toug omoloug auTtdg 0 akyodpriuog ebvar yerowog:

o AnAotnta xouw Toaydtnto: O K-means etvar edxolo vo xoatavondel xar vor vhoroindel.
Aeitovpyetl eniong amodotixd oe peydho cUVOAa BEBOUEVLY, XAUNOTMOVTIS TO ULol TEOXTIXY
ETULAOYY| YLOL TOAAEG TR UUTIXES EPUPUOYES.

o Avayvaopion IlpotOnwy: Méow g opadonoinong mopduolwy dedouévey, o K-means

Bondd oty avory Vet TEOTUTWY Xal BOUMY UECH OTa dEdOPEVA Tou UTopel vor unv ebvou
QUECOL EUPOVY).
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e Meiwon Atactacixotntag: Av xa 0 x0plo¢ 6Tdy0g elivor 1) ouadonoinoy, To Tapoy OUEVY
#EVTPOL UTOPOLY Vo YeNotLoTondoly Yo Vol aVATOEACTACOUY TO GOVORO OEBOUEVWY OE TLO
ouumoyy| popen, Bondwvtag oty peiwon Tne SldoTaoc Toug.

Alatunwomn tou IlpofARuatog  Ag unotécouye 6Tt €youle Vo GUVORO DEBOUEVLY Ty, . .., TN
mou anotelelton and N mporyuatonotfoel pog tuyaiog D-0wdotatng petoAntic x. O otdyog
wog etvor vor Sty wpelcoupe to0 oOvoho dedopévwy o K cuotddeg. Tumxd, avalntolue K onue-
fo ft1,. .., i oto omofor oy ovardécouye tor onpela {1, ..., xn}, Yo ehaytotonoimnel évo pétpo
OQANIOTOS.

Axolovdovtoc 1o [15], yioo xdde onueio Sedopévwy ,, o eloaydyoude Tov Buadind deixtn
ok € {0,1}. Av 10 Bidvuopa x; avatedel otn cvotdda 7, Tote 15 = 1. Awgopetind, r;; = 0. Onwg
ouvAlwe oTn unNyovixy| uddnor, TeocTadoluE Vo ENUYIGTOTOLGOUUE XATOLL GUVAETNOT XOGTOUG.
Ye auth TNV nepintwon, N mo cuvnhouévn cuVdETNoT x6oTOUS Elvau:

N K
=3 raellen — il (1.15)

n=1 k=1

H rapandve e&iowmon avtinpoowrelel To dlpoloua TV TETRAYWVIXMY ATOCTACEWY TWY OTUEiwY
TOL GUVOAOL BEBOPEVKY 0T TO XEVTEO 6T omolo €youv avatevel. Ilpogavag, ol BéEATIoTeS TYEC Yia
TOL T X0 ft, €C0ETOVTOL 1) Wit a6 Ty dAAY. ot ouTtd To Adyo, yenoylomoteitar vag alyoprduog
000 oTadlwV.

Apywd, ag Beolue tic BEATIOTES TWES YL TA Ty OEDOPEVLV TWV XEVTPWY fi. O 6pol mou
ooV dLopoeTIXd BelypaTa 1 elvon aveldETnTOL, ETOUEVKC UTOROVUE Vo BEATIGTOTOL|COUUE Yo
%40 1 EEYWPLOTY EMAEYOVTAC TO Ty VoL Ebvan 1 i T k Ttou Btver Ty ehdiyotn T Tou ||z, — |2
Me dhho Aoy

Tnk:{ 1 éowk,::argminijn—usz (1.16)
0 oAALOC

1N cuveyew, og Beolue TIC BEATIOTES TYES VIO TU [y DEBOUEVWV TV AVOECEWY Thy. [t var
Beolue TN BEATIOTN TWH YL TO L, amAwS €Touue TNV Tapdywyo tou J wg Tpog To py fon e To
undév, to onofo divel:

N
2Zrnk(xn — ) =0 (1.17)
n=1

Advovtog Ty mapamdve e&lowon Teog fuy; Beloxouue

N
iy = 2n=t Tk (1.18)

ij:l Tnk
1.3 Xyetlopevn BiBAloypapeia

‘Onwe oulnthdnxe oto mponyoluevo xe@dhoto, n wddnon yowelc napodeiypoto (MXII) ebvor évog
OVABUOUEVOC TOPENS OTT) Ny ovixY) HddnoT mou avTieTomiler TNV TeodxAnom e Tadtvounone octy-
UdTwy oe xatnyoples yior T omoleg 1 wnyovr dev ebye detyuata pe euxéta (labeled samples) xatd
™ @don tng exnaideuone. Ou xOpieg mpooeyyioeg ot MXII uropolv va xatnyoplonotnioly o
000 xVpLoug TUTOUG: PEVOBOUC BACLOUEVES O AVUTOROGC TUOELS Xl TTUPAY WYIXES UEVOBOUC.
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e Mévodotl Paciopévec oe avanapactdoeic: Autéc ol uédodol oToycbouy va Beouv Evay xovo
XPUYO YOEO OTOV TOGO ToL OTTIXS YAUPUXTNEIOTIXS (T.Y. EOVES) G0 Xt Tol TEWTOTUT (TU.Y.
YOPAXTNPELO TG XaTNYoptdY 1) Btoviopato AEewmV) unopoly va teoBintdoliv. O otdyoc eivo
vo emitpamel 1 00YXELOT AUTWY TWVY TEOBOANMY YENOWOTOLWVTAS EVa UETEO opolotnTag. o
TORAOEY UL, EVOL LOVTEAD BUCIOUEVO OE AVATAPAC TAOELS TROPBAAEL Wial ELxOVaL VoS LMou adpa-
NG XAAONE XA TO TEWTOTUTO TN GE EVOY ONUACLOAOYIXO Y0po. To yoviého otrn cuvéyela
Tagvopel TNV exdva Ye Bdon Ty eYYLTNTE TG OTA TEMOTOTUTO OLAPORKY XAACEWY EVTOG
autoV Tou yweou. Tétoleg pédodol BaciCovton oe peydho Badud otnv ToldTNTA TOL YOEOU
OVATOPUC TAOEWY Xl OTO HETEO OUOLOTNTAC TOU YENOHIOTOLElTaL: CUVADWS TNV OUOLOTNTA CU-
vnutévou 1) v Buxeldeta andotaon. Emtuynuéva napadetyuato uedodwy Bactouévwy ot
AVUTOEUO TAOELS TEQLAOUBAVOLUY WoVTERD TTou YenotpoTotoly Badid VEupmvIxd dlxTua Yo Vo
uddouv autéc TIc TEOBoAES, cUAAUBAvVOVTaS TEpiThoXEC OYETELC UETALY TOU OTTTIXOU Xol TOU
onuactoloytxol yoeou [16], [36], [37].

o Ilopaywywés Médodor: Xe avtideon ye tic uedddouc BACIOUEVEC OE AVATUPAC TUCELS, OL
TOEUYWYINES TPOCEYYIOEC GTOYEVOUY TN GUVUEST] OTTIXWY YORUXTNELO TIXMY 1) XU Xol
ONOXANEWY EXOVWV YOl TIC AOPAUTES XATNYORIES, AElOTOLOVTAC TN YVWOT A TS 0PUTES Ko
TNYOpleC Xal TG ONUAUCLOAOYIXES TOUG TEQLYPUPES (to TpwTOTUTS TOUC). AnuiovpymvTog Oe-
bypora i Tig adpateg xatnyopleg, to mpoBinua MXII pyetotpénetar oe Eva mpoBAnue emBAe-
TOUEVNG Udnong, 6Tou o olvolo exmaideuong TAEov TepthauBdvel cuvieTind mapadelyuaTa
xou Twv abpatey xotnyoptdv. To Ievetnd Aviaywviotind Aixtuo (Generative Adversar-
ial Networks) [38] xat ot Metoffohxol Autoxwdixonointéc (Variational Autoencoders) [39]
Yenowonoolvto cuVAlwe ot aUTEG TIg YeVdBoUS Yior T drnutovpyia LPNATC ToLdTNTAC Xal
OLUPOPOTIONUEVLY OELYUATWY TIOU UaoLVToL 6 TeVE TeoryuaTd topadetypota. o topdderyua,
OEBOUEVNC HlaS YAWOOWAC TEpLY papnic evog adpatou (hou, éva GAN uropel va Snulovpyrioet
EXOVESC TIOU QVTLOTOLYOUV GE QUTHY TNV TEQLYRPAUPY|, TUPEYOVTUC ETOL ToL AmapaiTnTo BEdOUEVL
Yior TNV EXTUOEUOT) EVOC TaCVOUNTY UE ETBAETOUEVO TEOTO.

Aedopuévou 6Tt 1) uédodog pog Baoiletoun o avamapaotdoelc, Yo e€eTdooupe auTéc Tic Uetddoug
oe ueyahitepo PBdog xon Yo TopEYOUUE TEQIOCOTEREG AETTOUERELEG OYETIXA UE TIC CUVIPELC Ep-
yaoieg. 2671600, Yo Vo TUREYOUNE Lol OAOXANEWUEVY] ETLOXOTNCT ToL TEd{ou, Vo TapoUCIdcOUUE
oUVTOHA PEPIXES OmO TS THO OYETIXEC TUPAYWYWES UeDOd0US. O EVOLUPEQOUEVOS VY VIOGTNG
umopel vou SLofdoel To xEPIAMO 4 Yiol TEQIOCOTEPEC AETTOUEQRELES.

O A\ydprdpog SCAN

H pédodoc "SCAN: Learning to Classify Images without Labels" [40] etvon pior amd tic xahOtepee
ued6douc (SOTA) yua un emPrenduevn ovotadonoinon ewdvov. Auth 1 uédodoc mepthauBdver
Telo x0pLor Bripate: AUTOETUBAETOUEYY, PdUNGY), OUABOTONOT) UE TOUG TANCLECTEQOUG YEITOVES Xal
Beltiotonoinon Yéow autoemonueiwone (self-labeling).

Avarvtixr EERynon tng Awadixaciog

e AutoemiBAenopevn Mddnomn: Evo cuvehixtixd vevpwvixd dixtuo (ENN) exnadedeto
YENOWOTOLOVTG AUTOETBAETOUEVES epyacieg pdinong. Tétowou eldoug epyasieg etvar yia
TORAOELY U 1) TEOBAEY TN MEPLOTROPNC UIOC EXOVOC 1) 1) OLdXELON UETALD TORah Aoy UEVEKY
exdooewy Trg Blag exodvac. Autég ol epyaoteg avayxdlouv To dixTuo vor pdiel avomapo-
oTdoelc UPMAAC ToldTNTIC TOU GUAAAUBAVOLY GNUUVTIXG OTTIXA YUEAUXTNELO TLXAL.
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e Ouadornoinoyn pe toug IIAnoiéctepoug Ieitoveg: Metd v avtoemBAETOUEVN
udinom, e€dyovton yopuxTnelo Tixd and Tig etxdves. o xde edva, ol k-tAnciéotepol yeito-
veg g evtonilovTon Ye BAoT TNV OUOLOTNTO TWY YoRoXTNEIG TGV Toug. AuTtol oL TAncLéc Te-
eOL YEITOVES YENOLLOTOLOUVTAL GTY) GUVEYELX Yo TNV EXTU(OEVUCT) TOU O1KTUOU 01adoToInons.
H pédodog yenowonotel pla cuVEETNOT ATWAELIC TOU UEYIG TOTOLEL TNV OUOLOTNTA (ecwtepEXd
YWOUEVO) UETHED XEVE EXOVAC XUl TWV YORUXTNELO TIXWY TWV YELTOVKDY NS, evioppivovtag
70 0ixTVO Vo TaEdryEL BlaxpELTéC avard€oEl GUOTABWY.

e Beltiotonoinor péow Auvtoemionueiwong: O apyxéc cuotddeg mou oynuatilovto
oo T avodECEC TV TANCIECTERWY YEITOVKY YENOYoTolouVTaL Yiol T dnuioupyia (eudo-
ETIXETWV YL TIC €xOveS. AUTEC oL Peudo-eTinéTeC AELTouRYOLUY 1¢ AoVEVEIC ETIXETES Yo ETI-
Brendpevn Beitiotomoinom. To dixtuo otrn cuvéyelo BedtioTonoleltal Y€ow exnaideuone oTa
(beudo-emoNUEIOUEVA BEBOUEVA, YENOHIOTOWYTOS Ulol TUTIXY| CUVIRTNOY ATWAELIS TOEVOUT-
ong (T.y. cLVEETNON UMWAELIS BLUC TOHUPOVUEVNS EVTPOTIOG). Auth 1 emavoknmTin Stadixaoto
BehTidveL TIC oL TABES, xaddC To BixTuo Pardalvel v Tapdyet o axpYBelc Peudo-eTinéTeC OE
x&de emavdhnd.

Kivnteo

Ytov tayéwg eZeloobuevo topéa e pdinong yweic napadetyuata (MXII), ot uédodol nou Pacilo-
VIO GE TORAY WYWXE LoVTERX xuptapy oLy otn BiBAoypagioa. Autéc o pédodol o edixd exciveg Tou
eumhéxouy Hoaporywywd Avtoywviotixd Atxtua (GAN’s), €youv deilel evilappuvtind amoteléopora,
oLVIETOVTOC OTITLXGL YUPUXTNELO TIXYL Yol AOPUTES XATIYORlES Xt peToTeénovTag To TeoBANua MXII
o€ éva cupPatind TedAnua emBAentouevne pdinong. £26t6c0, cuy Ve avTiueTwTilovy TEoBARuaT
oo Tddetog xotd TNV exnaidevoT), Tou Unopoly Vo 0dNyHoouy oE aouveTY| anddoot). o Topdderyua,
oe wa perétn and toug Chochlakis et al. [41], wo npoonddeia var avamapoydoly to anotehéopor-
o0 Tne wev6dou auyuic (SOTA) £-VAEGAN [42] anoxdhude 6Tt T amotehéopata ovamoparywyic
Toug Ntav 4-8% YounhoTepo omd TNV AVaPEPOUEYY ambB0oT Tou apy ol Gedpou, avdAoyo UE TO
oUVORO OEBOUEVGY. AUTY 1) BLopopd Ol VEL TIC TPOXANCELS Xou TNV EVOEYOUEVY) avaloTo Tl TOU
oyetilovian Ue TIC TUPAYWYIXES TROCEYYIoELC.

Ané v &N mAgupd, ol pédodol mou BacilovTon OE AVATIPUC TAGELS TPOCHELOUY EVOL ATAOUGC TE-
0 %1 o EMOTTIXG Thadoto yio T Mdinomn Xwplg Iopadetypata. Autég ot uédodol Acttovpyolyv ue
i omA) apy ) avallNTOVTAS €Vay YWEO OTOV OT0(0 BLIPORETIXES XATNYOPlEC TapouGtdlouy EVEo-
xotnyopixr) oupmdyeto (intra-class compactness) xat Swa-xotnyopxt| Staywetowdtnta (inter-class
separability). Auth n euehddng 18€a, 1 onola expedoTixe YLt TEMOTN Popd omd Tov ohyopLiuo
TEDE [16], omote)et tn Bdomn nohkodv mpoceyyioewy Baciopévwv ot avanapaotdoes. H amhémta
auThg NG togag xahoté Tig ueVdBoUC BuCIOUEVES OF AVATUPAC TACELS TILO XAUTAVONTEG OE CUYXELON
UE TIC YEVETIXEC UEVOBOUC.

Boowléuevol oe auth TNy opyt), 1 €EEUVA Mg OTOYEVEL Vo AElOTIOLACEL TIC TPO6doUS oTr PBi-
Bhoypapio NG PN EMBAETOUEYNC CUGTUOOTOINCTC, 1) OTIO(OL EMIXEVTPOVETOL EYYEVMS GTNY ETUTEVEN
EVOO-XATIYORXNG CUUTIAYELIG XAk OLO-X AT YORIXTG Olaty wplouotnTag. Me Tov cuvduaoud Tng TeyvL-
xfig ouotadomoinong SCAN e tic pevddoug MXII mou PaciCoviar oe avamapas TUoELS, PLA0O0E0UUE
var ovamTOEoUpE €va o aflOmoTo TAaoo Yo TN pdinon ywels mapadetyuato. Luvodilovtog, eve
ot uédodol mou Bactlovion oe TaEUYWYIXd HOVTEAN £YOUY TA TAEOVEXTHUATY TOUC, Ol TEOXANCELS
actddetog mou eugaviCouy, LUTOBEXVIOUY TN OXOTUUOTNTO UG TEPETAPW EMUVEEETAONS TV TRO-
oeyyloewy Bactouévwy oe avanapaotdoec. Emniéov, motedouye 6Tt auTY| 1) TEOGEYYIOT ATAOTOLE
oNUAVTIXG TNV UEVOBOOY X TV YEVETIXDY HEVOOWY.
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1.4 Ilpotewopevn Médodocg

TNV TopoVoo SITAGUATIXT, AVTETOTICOVUE TO TEOBANUL TN NUETOYWYLXTS udinong ywels mopa-
Sefyporta - MXII (transductive zero-shot learning - ZSL). ¥t MXII, 1o povtého exnandetetar pe
€val GOVOLO XATIYORLOY, OAAG XOTE T1) BLAEXELNL TNG DOXUYNG OVAUEVETOL VoL OVaY VORICEL ot VoL To I-
VOUNOEL TORUOELY Ut amtd Xt yopleg Tou Bev €yel Ol xaTd TNV exmaldevor. Autd cuvendyeta OTL
TO LOVTENO TEETEL VAL YEVIXEVOEL TN YVWOT) TOU GE adputeC Xatnyopieg PactloUevo oe xdmola pop®
ONUACLONOYIXAS XATAVONONG. LTNV NUETAYWwYIXY Udinor, 1o povtélo oToyelel otny TEdBAEdN
ETIXETWY Yo €VOL OOVORO [N ETUCTUELWHUEVWY OEQOUEVLY, EXUETAAAEVOUEVO CUVATWS TIC OYECELS
UETOE) EMONUEIWUEVDY XL [N ETLOTUEIOUEVODY Bedouévov [43]. Autd Bagpéper and to alvnieg
OEVAELO TNG EMUY WYX S Hdinong, 6mou To ovTédo padalvel o yevixr| avTiototyio amd tnyv elcodo
oTnV €£000, BuCIOUEVT ATOXAEIC TIXE OF ETUCNUELWUEVO OEBOUEVOL. LTNV NUETAYWYWXT| Udinor, ol
TeoPBAédelc Tou povtéhou umopel vor e€0ETAOVINL UOVO ol TNV XATAVOUT| TWV U1 ETONUELWUEVWY
dedouévmv [43].

Yuvdudlovtag auTES TIC V0 EVVOLES, 1) NUETOYWYLXT) HdinoT ywelc TapadelyoTo oV TYETOTICEL
TO OEVAPLO OTIOL TO POVTEAO TRETEL VO TUELVOUTIOEL TORUOELYUATA OO TIC AOPAUTEC XATNYOPIES, EVE
€yel TEOGPuUOT GE EVal GUVOAD ETUCTUELWUEVKY OELYUATOVY TOU avAXOUV GTIC 0PUTEC XUTNYOopRlEC Xou
€Vl GUVONO 1] ETOTUELWHUEVWY BELYUATWY TOU UTOREL VoL AviXOUV TOGO GTIC OPUTEC OGO XAl OTIC
aopatec xatnyopiec. O otdyoc elvar va olOTO|COUUE TIC ONUACLOAOYIXES OYETELC UETAL) TV
OPUTAY 0L TV 0OPATOV XATNYORLWY, TEOXEWEVOU VoL BEATIOC0UUE TNV anddooT TaEvOUnong Tou
HovTéhoU, Topd TNV EAMAeU)n dUECTIC TPOOPBUOTC OF EMONUELWUEVH TORUOENYHOTA VLol TIC AOPATES
xaTnyopieg.

H mpooéyyior| yac meploufdvel Ty cuoTadonoinoT OAwY TV TEQITTOOEWY OTO TIC OPUTES
XU AOPATEC XATNYOPIES, YPNOHOTOLWVTOS €val diKTUO TuoTadoroinons, To onoto mepthauBdvel Uia
Tpoexnatdeupévn payoxoxahd (pretrained backbone) xou évo pixpd veupwvixd dixtuo otV xo-
ovpy| tne. Iho cuyxexpWEva, Ula TPOEXTALOEUMEVY] QO OXOXUMAL AVUPEPETUL OE [ULOL OPYLTEXTOVIXY)
VEUROVIXOU DIXTUOU TIOU €YEL EXTIOUOEUTEL OE Vol UEYHAD GOVORO BEBOUEVLV YLOL Lol CUYXEXPUIEVT]
epyaoto xon Tor pordnuéva B Tou YENoLIOTOLOLYTOL 6T GUVEYELX (OC APeTNElo Yia TNV e€aywYn Ya-
EUXTNELO TLXWY, GUY VA Yia Lo dapopeTixt| epyacio. H ypron plog mpoexmandeupévng poy oxoxaitdg
TEOGPEREL TOAG 0@éAY. Emtpénel Ty adlonoinom tng yvoong mou amoxthunxe and ueydho ohvola
0edopévwy, N ontola umopel va Bonifioel ot Bedtinon tng amddoong o EpYUCIES UE TEPLOPIOUEVY
oedopéva exmaideuone. Emmiéov, umopel va emtoydvel Tov ypovo exmaldeuong, 0e00oUEvou OTL 1
ea OxOXAALS Eyel NON Udlel vo eEyeL Yoo YopoxTNELO TIXd. TNV Topolod pyacia emAECoue
7o povtéro ResNet101 we tn poyoxoxold pag [44]. Axohovdwvtac to [40], OTNV XOPUYPT| TNG PO
YOx0xahLd¢ TeooTileTan Eval Uxed VELPWVIXO BiXTUO TO OTolo EYEL EVay TOM) GUYXEXPWIEVO GTOYO.
O oty0¢ elvon Vo xUTAGKEVACTEL EVAC Y MPOG OTIOU OL EXOVEG TIOU AVAXOLY oTNY (Btar xaTnyopla
elvan xoVTd PETAED TOUC, EVE) OL ELXOVES TIOU OV XOLY OF SLUPOPETIXES XATNYORiES Efvan ponptd 1) ulor
o6 TNV GAAN. Auth| 1 Teocgyyion allonolel T6G0 TN YEVIXY| YVOOT Tou Efval xwdWOTONUEVY TNV
TPOEXTIOUOEUUEVT) PO OXOXUALAL, OGO XU TIG CUYXEXPUIEVES UTOUTACELS TNG EQYACING TOU OVTLIET®-
miCovton amd To UxEd VELPWVIXO G{XTUO, TO OTOlO EWBLXEVETAL YIo QUTY) TNV EPYACIA, OONYWVTIC GE
war amoteAeouaTer) AOoT Yoo To TeOBANUe TNG cuoTadonolnoTg.

Metd and outd to Brjue, mpoBdhhouue OAEC TIC ELXOVEC OTOV OTTIXG YWEO ToU OnuloupYeito
amo TO EXTAOELPEVO BixTUO cuoTadoToinoNg. LTn cuvéyew, utoloyiCouue To péoo xdlde opatrg
xatnyoplag xou yenotdomoolue tov alyoprduo K-means yio va exTufoOUUE TOUC PECOUC TWV
AOPUTOV HATNYOELDY. Od AVAPECOUACTE OTIC HEOES TYEC TTIOU AVOPEQUUE TIO TAVL, WS OTTIXO0G
AVTLTPOCMTOUG.

‘Eyovtag Beet Toug ontxolg avTinpoo®rous, LToYETouue 6Tl Tar BelyuaTo TG EXAC TOTE XUTY-
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yoplog etvar xoAd opadomotuéva UETOEY TOUC, EVE Tar BElyoTo amd SLUPOPETIXES XATNYORIES Elval
Hoxpld to €val amd To dAho. Edv auty| 1 utddeon oylel, téTe oL ontixol avTimpdowTol elval avTi-
TEOCKWTEVTIXG. oruela Tou yopauxtneiouv xdie xAdon. Autd To onueior cuAAaPPdvouy TNV oucia
xdde xatrnyopla, EMTEENOVIAC YOC VO UETENOOUUE TNV OMOLOTNTA 1) TNV omOCTICT UETUE) ULaC
EMOVAG EI0600L XL Tou x€vTpou xdle xhdong. H tadwounon tote yiveton Véua tng avddeong
NG EXOVOS ELW0ODOU OTNV xaTnyopio TG omolag T0 XEVTEo elvol TANCIEGTERO, BEBOUEVOL XATOLOU
UETpou amboTaoNg, 6w N Euxheldela andoTtact 1 1 OUoOTNTH GUVNULTOVOUL.

'Etot, To npdBAnua xatokfjyel 6Tnyv avdieot) evOc ovOUToS xaTryoplag (n.x. oxUloc) o xdle
ontxd avunpéowno. H avtiotoyla YeTold TV YVWOTOV XATNYORUOY, TWY OTOlWwY Ol ETIXETES
YENOULOTOLOUVTOL XATA TNV EXTIUUBEVCT), XAl EVOG UTOGUVOAOU TWV OTITIXMY AVTITROCHOTMY Efvar HON
YVWOTH, OTWE KoL 1 AVTLOTOLY (o TOUC UE TAL YVOOTA ONUACLONOYIXA SLVOOUATA XATNYORUOY. AuTd
T0 GUVOAO avTIoTOLY WY UTtopel va Yewpniel we cuvdptnor, v omolo Yo Vélaue vor emexteivouue
UE TOV “UAAVTEQO’ BUVATO TEOTO, TEOXEWEVOU VoL AVTIOTOLYICOUUE TO GUVORO TWV GNUACLOAOYIXOY
OLUVUOUATODV TWV SYVWOOTOV XATNYOPLDY, GTO GUVOAO TV AYVWOTWY OTTIXMY AVIITPOCKOTMY, UE
évay au@uiovootuavto teémo. H urmoxeiuevn undeon eivon 6t oL B0 ydpot polpdlovton xdmola
HOP®T) BOULXNG OUOLOTNTOG, XYTL TOU OEV Efval BEBOUEVO.

To meprypapouevo TEOBANU TOEOUCLALEL OUOLOTNTES UE Il XU UEAETNUEVO TEOBANUA OTOV
Topéa tne enedepyaoiouc Quotxic YAWooug, YVwoto we bilingual lexicon induction (BLI) [45], [46].
To BLI otoyelel va Bpet avtiototyeg ACelc 1) gpdoelc o 800 BlapopeTinés YAOOOoES, cLUVATLS
and ouyxplowo oduata xeywévoy, yweic emiBiedn v 6ha to Lebyn [46]. ‘Onwe xou ot0 GEVAELO
HOC, OTIOU OTOYEVOUUE VO XHEPWGOUUE avTIGTOLY(EC UETOEY TV XEVTIPWY TWV CUCTAOWY X0k TWY
oNUAclohoYIXGY Bloavuoudtwy, To BLI a&ionolel Sopwéc opodtnteg Yetalld twv 800 YAOOGIXGY
YGEWVY YLOL VO CUUTIEQVEL OVTIoTOLY(EC.

Twodetwvtag tTeyvinée and mpdoates Tpoddouc atov topéa [46], 6twe 1 emBhenduevn evdu-
Yeduuion teoBoldv (supervised embedding alignment) xou v un emPrenduevn avuotolyion xoto-
vouwv (unsupervised distribution alignment), to miaiclo mou yenowponotolye Behtiotonotel and
%000 1600 TIC YVWOTEC AVTIOTOLY(EC, 600 Xal TIC BOUXES OPOLOTNTEC UETALY TOV GNUUCIOAOYL-
AWV XA OTTIXOV YOPWY, TEOXEWEVOL Vo Boelel uio apyinr| avTioTolyion and 10 GNUACLONOYIXO
Y(PO OTOV OTTIXG YWEO. TN CUVEYELX, Yenotonoleltar o aAyoprduoc Iterative Procrustes Re-
finement (IPR) [46], mpoxewévou vo euduypapiotolv Tpoodeutixd neplocdtepa Lebyn onueiny
xan vou BEATIUEL 1 avTio Tolytom PE Eval EVUAAOXTIXG Oy T|uc 800 G TadlmV.

Téhog, dtav Ao o onueio €youv avtioTowyloTel Ye T dladacia TOU TEPLYPAPNAE TUPATAVE,
TEOXUTTEL Mot TEAXT] avToTolylom, TNV omolo YENoHIOTOUUE Yiol Vo TEOBUAAOUNE Ta GNUAGCLO-
AOYIXE BLUVOOUOTOL GTOV OTTIXO Y(MPO. TN CUVEYEL, XdUe eixdva TokvoUElTal 6TO TANGIEGTEQO
TEOREBANUEVO ONUACIONOYIXG BLEVUGUAL.

Amé 600 yvwpeiloupe, undpyouv Uévo Alyeg puédodol oty emaywyr| udinon ywels Tapadely-
UaTar Tou yenotonooly Ty opadonoinon we Baowd ototyeio tne npocéyyiohc toug [47], [48]. T
oUTO TO AOYO, 1 UEV0BOC pag 1) omtola a&loToLel TNV UG TABOTOMOT TOTO YidL TIC ORPUTEC OGO XAl Yo
TIC AOPUTEC XUTNYORIES, AVTITPOCWTEVEL Utal GUUSBOAT GE AUTOV TOV TOPEN. LNUELOVOUUE OTL 1) TPO-
CEYYLION LG UOLRALETOL OUOLOTNTES UE T [49] Tou TEMOTN ECHYAYE TNV 1BEA TN avTioTolylong xde
TEMTOTUTOU XATNYORIAG O EVOL GUYXEXQWIEVO XEVTEO UE EVOY AUPLUOVOCTUNVTO TEOTO, YLENCHIOTOL-
OVTUG OOULXOUE TEPLOPIOUOUE YOl TOV OTTIXO XAl ONUACLOAOYIXO Y(p0. (216TOC0, BEV XATAPECUIE
VoL ENOANVEVCOUNE TA ATOTEAECUATY TNG TEOUVAUPECOUEVTS ERYIUCIIG OTOL TEWSUATE UaS.

Opwopog IlpofBAuatog Xtnyv neplntwon yog, €youde Ny emonueiwyéva Octyuata Dy =
{(x,y9)[i = 1,...,Ns}, 6mou 1o xf eivan o exxdva xou 10 yf € S = {1,2,...,5} ebvn n -

viioTtolyn eTixéTa 1 omolo avixel o pa and TIc S cLVoAxd opatég xatnyopieg. Emlong, uog
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divovtar N, un emonuewwpévo detyporta Dy, = {zf|i =1,..., N, } mou mpoépyovton amd Tic aopoTES
xornyoplec U = {S+1,...,S+U}. Enpewvetar 61t SNU = 0, ahkd ot xatnyopiec cuoyetilovto
O€ €VOV ONUACLOAOYIXO YWeo T . Xtoyoc Uag eivon va tpoAédoue Tic eTnétec y;' € U, SeBOPEVWLY
TWV EWOVOLY T € Dy %ot Twv oUVOAWY TewToTuTWY T xan T™.

1.4.1 Brpo Yuvotadoroinong

Y auT6 TO Briua TNe Yedodou pog, yenoyloroolue tov akyderduo SCAN yia vo opadomolticouue
bhec i edvec [40] (Belypato TOU AvAXOUY OE 0pUTEC XaL OOPATES XAUTNYOPIES). LUYXEXPEV,
ot Gasnbeke et al. [40] Zexivnoav mpoexnaudelovtag €vo VEUP®VIXG BIXTUO YENOIOTOWMVTAS TOV
aryoerduo SimCLR [50] A tov ahydprduo MOCO [51]. Metd 1 ¢pdorn tne npoexnaidevong, nopo-
meRdnrE OTL oL eixxdveg Tou avixouy oty (Bl xoTyopior Tetvouv va opodonotoUvtar poali [40].

YNy mopoloo HEAETY), AmOQUCICOUE VoL UNV YENOWOTONCOUUE TETOOUS ahyopriuous, xodmg
OTOUTOUV TN YENOT ETUEXAOS UEYGAOU peyEédoug mopTidag (batch size) xou evéc UEYSAOU VEURG-
vixoU dixtoou. Avt autol, allonoifooue o mpoexnoudeupévo dixtuo ResNet101, o omolo elye
exnondeuTel 070 exTETAPEVO GOvolo Bedopévey ImageNet. Auth 1 andgoon ehipin yio vo yen-
OLOTIOCOUUE TOL YoEaxTNEWOTiXd T omtola Ao €yel pdiel to dixtuo autd. To wotdypouua oTo
Yo 1.6 ametoviCel TNV XoTavour| TV CrOTMY YEITOVIXOY avTIo Toy®Y Yetald twv 20 TAnct-
€0TEPWY YELTOVWY xdle Selypotoc oto olvolo dedouévey AwA2 [6]. Kdie undpa oto totédypouua
AVTITPOOWTEVEL T1) CLYVOTNTA TOV DELYUETWY Yial To 0Tola EVIOTUG TNXE VUG CUYXEXPLIEVOG aptluoOg
OWOTOV YELTOVWY. Tat Topdderypa, Yo umdpor OE Lol CUYXEXQPUIEVY] T T UTOONAWVEL ToV apLiud
TWYV OELYHATOY UE AUTOV TOV axELB1) opriud GWoTMY YEITOVOV.

Histogram of 20 Distinct Values
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Yyfua 1.6: To yertovid detypotor tetvouy var avixouy otny oL xAdoon

ESaywy? IIAnoiéotepwy I'ettovoy

2TNV TEONYOUUEVY] EVOTNTA, AVUPEQUUE TT| YPNOT LG UEYSANG TOOEXTIOUOEVUEVNG PO OXOXIUALAS YLl
TNV AOXTNOT OOV YOEUXTNEWO TIX®Y. 20T600, 1) anhf egoupuoyy| Tou K-means oo Angdévta
YOPUXTNPELOTIXG, UTOREL Vo 0BNYNoEL 08 ex@UAMOUS cuotddwy [40]. Emmiéov, dnwe gaivetor oo
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oy 1.7, tor TeoxOmTOVTa Yoo TNEIo TixXd BeV efvon EmoEx®S Yeauuixd dtayweloa. Auth 1 €i-
Aeuhm caolc BLoywEelool UTOBEXVUEL OTL 1) a1} EQopUoYT) TNg ouadonoinone K-means e autd
10 mhaioto Vo Atay oxatdhhnin xan Yo umopoloe v odnyNoeL o avaxey3r| xou un BérTioTa amo-
tehéoparta. o autd t0 Adyo, uotetolue tov ahydpriuo SCAN [40], avalntdviag ua xohbTepn
uedodoroyia.

Yuyxexpéva, yenowonowvtas to poviého ResNetl01 |, éyouue amoxtioel mpofoiéc Yo o-
Ao¥ANEo T0 oUvolo Bedouévwy D = Dy U D,,. X1n cuvéyela, Yo x&le un emonuelmuévo delyua
x; € Dy, €€dyoupe TouC TANCLECTEPOUS YEITOVEC TOU GTOV OTTIXG YWeo Tou mopdyet To ResNet.
IIio cuyxexpiéva, dedouévou 6Tt UTOVETOUPE OTL OAAL TaL 1) ETUOTUEWWHEVOL DElYHOTA OVAXOLY OTIG
AOPUTEC XAUTNYOPIES, EMAEYOUUE POVO YEITOVEG ATt TO GUVOAO BEBOUEVWY Dy, xou Oyt amd oAOXATPO
T0 oOvoho Sedopévewy DU D,,. Topa, yia xdde delypa x; 0to cUvolo dedouévwy DyU D, optlou-
ue o obvoho Ny, ¢ e€ic: Av n etéta Tou ; ebvon Yvoo T, dnhady z; € Dy, 0 clvoho Ny,
TEPLEYEL Ot T DELYUOTA TTOL EYOUY TNV (Blal ETIXETA UE TO T ALPopeETd, oy TO BElypoL Elvor
ETONUELOUEVO, ONAadh ; € D, T0 clvoro N, mepiéyel Toug Tpoavapeplévieg K mAnoiéotepoug
vettoveg. Me dhha Aoyo

N = { {x 2w z; éyouv Ty Bl eTinéror} edv x; € Dy (1.19)

{z : x elvon évac and toug K TANGCIECTEPOUS YE(TOVEG TOU i} €dv x; € D,

Scatter Plot of Samples by Label

Feature 2
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Feature 1

Yyfua 1.7: Ontixonoinon TSNE tou cuvéhou dedopévev AwA2 [6]. Awxgpopetinéc xatnyoplec
omeovilovTal UE BIPORETING YPOUOL.

Yuvdetnon Anwietag O o1dyog elvan vor BIBGEOVUE UL GLVEETNOT ouadoToiNoNS g, 1) O-
Tolor TEPLYEAPETOL amd Eval VELPWVIXG bixTuo We Bdpn 0, dote va Tavouel évar Oelyua o; xou Toug
e€opuyuévouc yeltovée tou N, wall [40]. To gg xatalfyel oe pla cuvdpTtnon softmax yio va exte-
Mol o avddeon oTic oUGTEdES Xon enopévee go() € [0, 1S H miavétta to delypa 2; va
avatevel ot cucTdda k cuuBoiileTon wg gé?(a:,-). Mot var pddouye ta Bdpn tou gg, ehayloTomoLeltan
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T0 oxbhouto xbéotog [40]:

1 Flow o
L, = D] > D log(g@) - gow) +A Y gloggy

x€D yeN, ke{1,...,|SuU|} (1 20)

, / 1
6mou gy = ﬁ Z g5 ()

zeD

Efvar edxolo va Bel xaveic 6Tt 0 mpohTog dpoc otny ellowon 5.2 ehayicTomoleiton, av Ao Tor Oe-
typato € D avatedodyv otny Bl cuoTdda e Toug Yeitovég Toug Ny, ue Ty uPnAdTepn duvath
miavotnta. Enopévee, o mpdtog dpog otny eliowon 5.2 unopel va Yewpniel we évag dpog ou-
vémewas. O devtepog dpog umopet va Yewpenlel we n apvntixd eviponio tng Tuyolag peTaBAnthc gg“.
Eivar yvwoté otL 1 eviporia piog tuyaiog UETABANTAC UEYIOTOTOLETOL ol TNV OUOLOUORHT| XOTO-
voun. Enouévwe, o deltepog dpoc otny eéiowor 5.2 anoTpénel To HovTéAo amd TO Vo XATopEEUCEL,
avodetovtog Oha ta delypato v € D oe Ayeg ouotddec.
Mt oynuatier avamapdotact Tou TeoavagepVEvTog ahyopliuou gatvetor oto Lyfua 1.8.

. )%1, s T

S )
i % i ME
S
| : — _ _
¢ i —_— — E—
. .
3 [J 88 = -5
AT AL R

Yyfuo 1.8: Ameixdvion tou Briuatog opadonoinong tou adyopiduou poac. Aol emheyel éva cOvoho
YELTOVWY Yo xdde ExOVa 6T0 GUVOAO BEBOUEVMY, ETAEYETAL ot TUY Ol EIXOVAL %ol EVAC OO TOUC
yeltovég tne. H apyunr ewdva ugplotaton acdev mopaiiayt (augmentation), eve o yeltovdc g
vploToton toyvet| tapaihoyr (augmentation). Kou ot 0o exdveg otn cuvéyeta tepvoly omd v
mpoexmoudeupévr payoxoxahld ResNet101, n omola mopapéver morywuévn (frozen) xatd t Sdpxeto
¢ exmaldevong. Ot mpoxintouces TEoPoléC TeEpVOUY GTN GUVEYELXL GTO BIXTUO GUCTABOTONOTG
YLt vor UTOAOYIGTEL 1) amAELoL opadoTonoTS.

1.4.2 Enhoyn AvIiitpooHnwy

Metd tnv exnoideuon Tou Bixtiou gg, 0 GTOYOC Uag elvon Vo emAEEoupE €va ONUEl0 GTOV Y(OEO
TEOPBOANG oL TEOXUTTEL amd TO gy, Yl xd¥e xatnyopio. o Tov oxomd autd, anoppintouue To Te-
Aeutofo TARPWS GUVOEBEUEVO GTEMUA TOU OXTUOU gp. A OVOUAGOUUE TO UTOAOLTO HEPOS 0C gg. TO
TEMOTO Wog Briua efvan vor uTOAOY{GOUUE TIC TEOBOAES TOV BELYUITLY TWY 0RUTMY XATNYORUDY F° =
{96(x1), ..., gs(xy,)} %0 TV Serypdtwy Twv adputwy xatnyoptdv B = {g4(z}),. .., gs(2%;,)}-
[ xdde opath xatnyopla, EMAEYOUNE TN UECT) TYY| TNG WS TOV aVTIGTOLYO AvVTITPOCWTO, dNANDY)
v xqe k € S,

1 , s. .8
M = m Z 9o (), omov Xy = {zf :y; =k} (1.21)

Jyj=k
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Xenowonowsvtog Ty topardve e&iowar, unopolue va opicouue to aivoho M*® = {1, ..., pus},
0 onolo Vo OVOUdoouPE avTIMPoodToVS Twy opatdy katnyopidy. Ilopatnpolue 6t |M?®| = |S].
Aedoyévou 6Tl oL ETXETEC TOU oUVOLoL D, Bev elvon YVOOTES, OEV UmopolUE va axolouvdficouue
TEOUOLO TEOTO GLAAOYIOUOV. ETouévne, yenowonololue tov akyoptduo K-means, apyixonounvtog
TOV € TOV TRoryUaTixd apliud Twv adpatwy xatnyoplny. To mpoxintovia xévipa tor ovoudlouue
M* = {pss1,. .., psyv}. Oo avogpepduacte 010 alvoho M™ w¢ avTimpoodnovs twy adpatwy
katnyopidv. Ik, tapatnpolue 6t M| = |U|.

1.4.3 Evpeorn Mg Augipovooruavtng Aviictolyiong

O tedwde pag otéyog elvar va Tpocdloplcouye Ty avTioTolyla uetallh Tou cuvohou M xal Tou
ouvérou T (xou cLVETWS ToU GUVOROL U ), BedouEvne TNS avTioTolyiag HETHEY TwV cLVOALY M*
X0l TOU GUVOAOU TEWTOTUTWY TWV 0pUTOY xatnyopldv 1%, Autd to mpdinua uropel vo Vewpen-
Vel we éva nui-emPBrendyevo mpdBhnuo eviuypduuions empavelny [52] xou eivonr xahd YeEAETNUEVO
otov Topéa g Enelepyaoctac Puowrc I'hwooag, pe tn woppn tng diyhwoong petdppoaong hE€ewy
(bilingual word translation)[46], [45], [63]. Ytnv nepintwon yag, ta obvoho M?® xau T pmopolv
va Yewpniody wg sutuypouuioyévee tpoBoréc dlavuoudtey. Iho cuyxexpwéva, avalntolue Uio
ouvdptnom fy, n omola avticTolyel xdle oToLYElD TOU GUVOAOL TEWTOTUTWY TWYV AOPATLY XATYO-
oty T oe Eval HoVadIXO GTOLYEID TWV AVTITPOCOTMY TWV AOPUTWY XaTNYoetwy M, dedouévou ot
x3e oToLYElD TOU GLVOOU TEWTOTUTKY TWV OPATWY XATNYOoELOY T TEémeL Vo aneixovi{eTal oToV
avT{oTOLY O AVTITPOOKTO TNG 0PATAS XaTNHYoplag Tou cuvdiou M=,

[ vor pdrfoupe Tig mopapétpoue e ouvdptnone fy axohouvdolue Ty mpocéyylon twyv [46]
YENOWOTOLOVTOC U ETUBAETOUEVT OVTIOTOLYION XATAVOUWY Xl €VHUYRAUUOT YVWOTOY (EUYMY
MEewv.

My EmfBAendpevry Avtictolyion Katavopwy Acdoyévev twv cuvorwy MU M* xou
TUT™, nanwhew Lo p oTOYEVEL VAL aVTIGTOLY(OEL TNV XUTAVOUY) X0l TOV BU0 YOEOY. LUYXEXPWEVA,
ot mapdueTeot 6 Tou fy exmandevovTon HOoTE Vo e€amatoly Evay dloxptty| D, o omolog Ye T oglpd Tou
EXTULOEVETOL VL BLopOROTOLEL UETAED TWV ocvrmpoodmow MAUM™ xon TV ameoVIoE®Y TEOTOTUTWY

Jo(T2UTY) = {fo(t3),. .., fo(ts), fo(té,h), ..., fo(téiy)}. fo Ov fy xou D Bektiotomoolvton
EVOANGE YENOLLOTOLMVTOS TA TOQOXATE xplﬂ’]pta.

Low=—grp O lg(l—DUue)) -~ o > lg D)
zeTsUTv rEMSUMY
(1.22)
Lop=—5—5 O logD(fo(a)

zeTsUTv

Evduypduuulor] YVOOTOY AVIITPOCORWY UE YVWOOTA TE®TOTURA  Acdouévey Twy
ouvohwv M?® xou T, 1 cuvdptnon fy Vo mpeEnel va tpofdiiel To otolyelor Tou T 6o TO BuVATOHY
O «XOVTE» GTOUG AVTIOTOLYOUS 0pATOUS AVTITEOCMTOUS. Autd unopet vo Slatumwiel we e€hc:

Lojaii 1.23
ot = SZer AR 1)

H tehudr) ouvdptnom andAEog Yo T cLVEETNOT AVTIOTOLYIONG fi BlATUTOVETOL W¢ eEAC:

L = Lop + Lojatig + LD (1.24)
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1.4.4 Enoavainntixn BeAztiwon tng AvticTolyiong

M xowr) uédodog Behtiwone tng cuvdpTnong fo lvor 1) ETAVOANTTIX ETEXTUOY) TV OVTLOTOLYLOY
UETAC) TV ouvorwY M?® xar T xou otn ouvéyeta 1 Behtiwon g ouvdptnong TEoBoAlS fo wS
Brua peta-enelepyooiac [46], [45]. Auth n Swadaocio Bedtiwong apyixd Beioxel to Lebyoc onueiwy
ota oOvoha M*™ xan T mou TomoveTolVToL O XOVTE Omd TN CuVEETNON fy, X OTN GUVEYELX
EVNUEPWVEL TN oLVEETNOT fy AawPdvovtag unddm 1600 Tic avtioTtotyiec Tou T° pe to M* 600 xou
10 Véo (elyog omnuelwy.

"ot Tov o%0T6 AT, TO BLEVUCUA TUPUUETEMY TOU ATOTUTWINXE GTNY TopATdvw eVOTNTo 0plleTon
o¢ y. Ouolng, To sbvoha M* xou T umopoly va dewpenioldy wg apynd chvoha ywels avtiototyieg
xou oLVETWS Vo T oplooupe we T xou M. T'ot vo tocoTixonotcoupe TNV ouotoTnTo HETUE) TKV
onuelov ota MY xa T, Yewpolpe to ovoro Co = MY X fa (T3) € RP x RP, énou D eivau 1
dLdoTaom £600U ToL VELPWVIXOU BIXTUoU gy (BA. evotnta 5.3). Ag Vewpriooupe 6Tl 1 cuvdpTNON
sim(-) : RP x RP — R etvon o suvdptnomn opodinTog pe:
sim(x,y) = vy

P Talkllolle
AEeBOUEVOU TOU TUPAUTAVE UETEOU OUOLOTNTOC, AS ETMAECOUNE

(x1,11) = argmax sim(Cp) (1.25)
(@,y)eMY XTE
To endpevo Prua pog ebvor va oploouye tor «véay olvora M7 = Mg U {x1}, TY = 15 U {y1}
xou Mt = ME\{z1}, TV = T§ \ {y1}. Xtn ouvéyelo Behndvouue 1 ouvdptnon fy, Sedouévemv
TV VEwV ouvolov M7 xou T7. Tho cuyxexpéva, arotnxedouue o dlaviouata mou Beédnxay ota
oOvoha M7 xou fo(T7), otoug nivaxeg Xy xou Y7 o¢ othheg avtiotorya. Ou véeg mopduetpol ¢,
Beloxovtar Aovovtag to TpdfBnue Beitiotomoinong

0; = arg max Tr(X{Y)) (1.26)
0
6Tou
_ 251 Ks x Dx(S+1)
X1 = (nmm sl fo\m) € R™ 127
o fe(tD) fo(t3) folyr) Dx(S+1) '
Yi= (nfa‘(t%)u SR T ||f9(y1)Hz) €R

Kotd ouvénewa, ta obvora M xan 1T yenoylomololvton yiar vor tanptdgouy éva (elyog onueiwy
AmO TOUC OVTITROCMTOUSC TWV AOPUTWY XATNYOELOV XUl TU TEWTOTUTN TV 0ORATMY XATIYORUMY,
Yenowonotwvtog to fg,. Auth 1 Swodixacta cuveylleton emaymywd uéypl vo utdpel éva n € N,
této0 tou MY =T = (). Aedopévou 6t |M{| = |T¢| = U, eivon ebxoho va det xaveic 61t n = U.
Enopévmg, 10 TeEAxd SLEVUoUA TOQUUETEMY TOU ETAEYETAL YIo TN YapToYedpnon fo etvar 0.

1.4.5 Toa&wounon

Metd 1o Brua emavalnmtixrc Bertinong e YaeToyedgpnong, £YOUUE Wia uordnuévn TopdueTeo Oy .
Mo vor To€vounooupe wo eéva x € Dy, TpdTa TV TeoBdAAOUUE 0TOV OTTIXG Y(PEO TOU THEdYETOL
UTO TO EXTIAUDEUPEVO VEURMVIXO BIXTUO gg X0 OTT) GUVEYELY BIOXOVUE TO TANCLESTERO TPOREBANUEVO
TEWTOTUTO xoTNnYyoplag. Me dAho Aoy, 1 mpoBhenouevn xatnyopio ¢ dlvetar and

c* = argmax foy (m(0))" - go(x)
C§$UZ/{ { Hf@U (W(C))HzHgd)(gj)HQ} (128)

6mou (+) : SUU — T elvon pior oUVEETNOT TEWTOTUTWY XAAOTC.
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1.5 Ilewpapotind AmoteAéopoTa

1.5.1 3Uvola Asdopevwy

[ vor e€etdooupe 0 p€dodo o, Sleldyoupe TELRUTH O BU0 EURENS YPTOHLOTOLOUUEVO GUVOAX
dedopévwy otn MXII: Tho ouyxexpuéva, o AwA2 xou [6] xou to CUB [7]. Axolouddvtog tny (Bl
dour ue dhheg pedodoug, uodetoluar 500 BLUPOPETIXES OTEATIYIXES DL WELOUOU BEDOUEVWYV:

o Kavovixde Araywpeiopwds (Standard Split - SS): O xavovixde Bioywpeloude opo-
TOV/a6pUTHV XATNYORIWY TEoTddnxe TpdTa 6To [17] xou ot cuvéyetla yenoylototiinxe eu-
eéwe otic neplocdtepeg epyaoiec MXII [54],[55],[56],[14].

o Aiaywplopds nov npotddnxe oto [18] (Proposed Split - PS): Autéc o Bioyw-
PLOUOS TEOTAINXE VLol VoL APOLEEDEL TIC ETUXUAUTTOUEVES XUTIYOPIEC TOU GUVOROL DEBOUEVLV
ImageNet-1K, dedouévou 6tL ypnowdomote{ton yioo Tnv mpoexmaldevon tou woviéhou LNN,
ResNet101.

Y0Ovolho Acdopévwy "Animals with Attributes 2"

To oivoho dedopévewv "Animals with Attributes 2" (AWA?2) [6] anoteleiton and 37,322 etxbveg and
50 xatnyopieg Lowv, émou ol 40 xatnyoplec eivon opatéc xaTd TNV EXTUUBEVUCT], EVE Ol UTONOLTES
10 xatnyopleg elvan adpateg xatd tnv exmaldevorn. Kdde xatnyopla oyetiletan ye éva ocuveyécg
OLEVUCUOL YORUXTNELOTIXGDY 85 BLUCTUCEMY.

Frequency Distribution of Animals in the AwA2 Dataset
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Eyfua 1.9: Kotovour| cuyvétntog twy xatnyopudy 0to 6voho dedouévey AwA?2 [6]

Ebvar eggavéc and 1o oyfuo 1.9 6TL 1) XoTavour| TV XoTNYORLOY EVIOS TOU GUVOROU DEBOUEVMLY
elval UN-LOOPRPOTNUEVY], YEYOVOS TOU OMOTEAEl OMUAVTIXY TEOXANGCT Yiol TNV NUETOY WYX uddn-
on ywelc mapodeiypota (MXII). Avahutixdtepa, €vo un-tooppomnuévo oOVoho SeBOUEVKDY UTOPEL
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var 001 yrioeL ot pepohnmTixéc meolAédec Tou povtélou. Ot xatnyopleg Ye AyOTEQO TUROBELYUOTA
EVOEYETAL VO UMV EXTPOCKMTOVVTAL ETOPXMS XAT TNV EXTOUOEUCT), UE AMOTEAECUN TNV YELROTEQN
ATOBOOT| WG TEOG AUTES TIC XAJOELS xoTd TN doXuy). ['evixd, 1) UN-LloOQEOTNUEVT XATAVOUT) XATNYO-
ELOY ELOAYEL TOAUTAOXOTNTES TOGO 01| Sladacior Uddnong 660 xon 6T BUVITOTNTES YEVIXEUOTG
TV Jovtéiwy MXIL

YOvoho Acdopévey CUB

To clvolo dedopévev Caltech-SCSD Birds-200-2011 (CUB) nepiéyet 11,788 eixdveg amd 200 eidn
mtnvov. ‘Evag xhaooixde dlaywpioundc dtanpel autd tor eldn ttnvey oe 150 opatéc xotnyoplec xan
50 adpatec xatnyoplec. Ta xdde xatnyopio, Tapéyeton €va didvuoua 312 BlacTdoEWY.

Av xou 10 160 tdypayua Tou cuVeLou dedopévey (oyfua 1.10) uTodexvieL LOOPEOTINUEVY XoTo-
VOUT TV XUTNYORLWY, elvor onuavTind vo onuetwiel 6Tt xdlde xatnyopla nepihouBdver To mohd 60
octyyata. Me 1600 meproplopéva dedouéva avd xatnyopla, 1 txavoTnTa ToU JOVTEAOU VoL YEVIXEL-
Tel amoTEAECUOTIXNG OE aOpUTES XaTryopleg YiveTon To 80oXOAY), xadd¢ uTopel Vo BUOKOAEUTEL Vo
CUMGBeL TV TATeN METOBANTOTNTO Xa ToAUTAOXOTNTA XddE xaTnyopiog.

EmunAcov, n Aentouepric gUOT TOU GUVOAOU DEBOUEVLY EVTEIVEL TEPALTER® T1) duoxOoAla Tng €p-
yaotog. ‘Onwg gaiveton oto oyfua 6.3, oL xatnyopleg elvar OTTIXE TAPOUOLES, ATAUTWOVIUS UTO TO
UOVTENO vou Dloxpivel AemTég BLopopéc petad toug. Autéd amotehel éva onuavtind onueio mou Yo
oulntniel mepauntépry 0Tl EMOUEVOL XEQIALAL.

Frequency Distribution of Animals in the CUB Dataset
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Yyfuo 1.10: Kotavopr| ouyvotntog ey xotnyoptdy 6to oUvoho dedopévev CUB [7]

Aentopépeieg YAonoinong

Mo to mpwto PrAua g uedodou yog, emhéloue va yenowonotooupe 20 yeltoveg, 6mwg oTIC
TEPLOCOTEREG TEPLTTWOELS OV UEAETAUNXAY OTO [40]. H enidpaon Tng UeTABOAYC Tou apriuo) TwY
Yertovey Ya e€etaoTtel Aentougp®e oty Evotnta 6.4. Ot UAOTOACELS TWY VEUROVIXGDY BIXTUMY TOU
oulnTidnxay oo Teonyoluevo xepdhoto cuvodilovton otov Hivoo 1.1. ‘Oha tar veupwmvixd dixtua
exmoudelTNXayY yenotponowdvtog tov Bektiotonotti Adam [57] pe pudud uddnone 1074 O YOG
TEOPOAAC TOL gg, OTOL TpuyUaTOTOlElTAL N Tagvouno, elvon 2048 SaoTtdoswy, 600 eivor xou 1
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dLdoToom e£680uL Tou TpoexmondeuUEvou wovtéhou ResNet101. To Briua ouyadonoinomne tneg peddoou
uoc oflomotel dvo eldn evioyloewy (augmentations): ‘aclevAc’ xou ‘loyuer’. Axohouddvtog To
58], n ao¥eviic evioyuon ebvan pror tumixr evioyvon flip-and-shift. Ilio cuyxexpéva, avaotpépoupe
Tuyaio Tic exéveg optlovtia pe mdavotnta 50% xou tic petatonilouye tuyaia éwe 12.5% xdbeta
xou oplévtio. T tig ‘loyupéc’ evioyboec emiéyetar o RandAugment [59]. Autéc o ohydprdpog
emAEYEL TUY LA UETACYNUATIONOUE Yo Xde ExOVa, YENOWOTOWWVTAS Ulal UETABANTA Tou eAEyyel
70 PEYEVOC OAWY TWV TORUHOPPOCENY o Boloxetar ot éva mpoxadoplouévo ebpoc. H napduetpog
A mou Cuyilet Tov 6po evtpotiag otny e&lowon 5.2 tidetan 2,5. T'éco Ta draviopata mou Beloxovto
OTOV GYUAGIONOYIXO YOEO OGO XL GTOV OTTIXO Y WO (o Y @eo¢ TEOBOAYC Tou g¢,) HOVOVIXOTOLOUVTOL
OOTE Vo €youv vopua 1, mov to Briua eutuypduuiong.

Function Implementation
Jo FC + RelLu + FC + ReLu + FC + ReLu + FC + Softmax
fo FC + ReLu + FC + ReLu
D FC 4 ReLu + FC + Softmax

Hivocag 1.1: Aentouépeieg LAOTOMONE TWV TELOY VEUPWVIXWY OXTOWY Tou culnTAUNXAY 0TO Xe-
pdrono 1.4. FC onuaiver 611 €youue éva mAfpwe cudedepévo eninedo evey ReLu ebvar 1 yvewot
CLVEETNOT EVERYOTOMOTC.

1.5.2 Arnoteiécpata tagvounong

2T1¢ embueveg BV0 EVOTNTES, TUEOUCLACOUUE Tol TEAMXE OMOTEAEOUATE HoG TOOO GTO TIC GUUBATIXG,
660 1oL 070 YEVIXELUEVO oevdpto Mddnone Xowplc Hapadelypato. Yto cuyfoatind oevdpio MXII,
uTo¥ETOUNE OTL OAAL TOL TEOT BEYHATA OVIXOUY OTIC AOPUTES XUTNYOplES, EVK 0TO GeEVdplo I'evixeu-
uévne MXII, vmovétouye 6Tl Tar SelyoTol TECT AVAXOLY TOCO OTIC OPUTEG OGO X0 OTIS AOPUTES
xatnyopiec. Ta anotedéopouta yior T0 GUUBUTING GEVAQLO AVOPEPOVTAL UTIO TOV XAVOVIXO BLALY WELOUO
(SS) [17] xou tor amoTEAEOUATA YL TN YEVIXEUUEVT UG TOV TROTEWVOUEVO dlaywptopd (PS) [18].

H Méon AxpiBeia Katnyoplac (MCA) eivon 1 dnuogpuific petpixr a&tohdynone otn MXII [37].
Y10 oupfatind oevdplo, 1 MCA unohoyiletar H6VO GTOL TEGT BECOUEVWV TWY QORUTMV XUTIYOPLOV

(Y =U).

1

MCA = — E acc, (1.29)
U]

yeu

omou ace, elvon 1) top-1 oxplfBeta Tng xotnyoplog ¥ amd Tar TECT BEDOUEVA TMV AOPATHY XAUTTYOPUOV.

21TO YEVIXEUUEVO GEVHPLO, O YWEOG TWV ETIXETOY TROEPYETAL ATO TNV EVWOT] TWYV 0PUTMY X0l AOQUTWY

xotnyoptdv (Y =S UU) [37].

2% MCAy x MC Ay,
 MCA, + MCA,,

(1.30)

omou MC Ay, ebvan 1 péon axpifelar xotnyoplag TV TECT BEDOUEVOY TWV OPUTHOV XATNYOELHDY,
MCAy, eivan n péon axpiBetor xatnyoplag Twv TECT SEBOUEVOV TMV AORATWY XATNYORELOY ot (H)
elvon 0 apUoVIXOS Toug PECOS 6POC.
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Anotehéopata UTO TO XAACOLXO GEVAELO

Method AwA2 CUB
I | CONSE [60] 45.6  34.3
DAP [61] 441 40.0
SSE [62] 60.1  43.9
T | MEMR [63] - 47.5
SE-ZSL [64] 68.3 54.1
ALE_ trans [65] 70.7 545
GFZSL (G) (66| 78.6  50.0
TEDE [16] 775 67.8
Bi-VAEGAN (G) [67] | 95.8  76.8
ICPC (F) [37] 96.1  84.1
T | Ours 95.7  48.0

Hivoxag 1.2: Xoyxpeion anodoone MXII diagopetindy uedodny ota cUvoha dedouévmy AWA2 xo
CUB , o710 oupfotixd oevdpro MXII, yenoyonoidvtog tov xavovixd Suaywptoud [17]. (I) unoder-
xvUeL OTL ot pévodog elvon emaywyn, eved (T) umodewcvier oty pédodog elvon nuiemaywyxy.
(F) umodewcvier 6t o uédodoc extelel Bertiwon (fine-tuning) tne payoxoxahide ResNet101 xou
oLVETHOS 1) oUYxpton dev ebvon dixoun. (G) vmodetxvier 6Tt pior pédodog etvon yevetixr. (-) onuaivel
OTL o avtioTotya amoTeEAéoUaTo BEV avapEpinay.

O Tlivaxcag 1.2 mapéyel piar ouyxpLuxt| avdAuon dpdpny uedodwy MXII ota chvola SedOPEVELY
AwA2 xou CUB o710 oupfatind oevdpio MXIIL. Ou pédodol mou mopatidevton nepthopfdvouy ena-
yoywée (I) xou nuenaywywés (T) npooeyyioeic, pe tn éVodo Uac Voo avAXEL OTIC NULETOY WYIXEC.
Ynuetdvouue ebvan OTL o mivaxog mEpthopBdvel amoxAeloTind uevddouc Baclouévec o mpoPoAég
(embedding-based methods), extéc and tic pedddoue Bi-VAEGAN [68] xau GFZSL [66], mou
elvon xopugaieg yeveTixég mpooeyyioeg. H uédodog pag emdeviel avtaywvioTixy| anddooT), Eml-
Tuyydvovtag 95.7% oto alvolo Sedouévey AwA2 xa 48.0% oto olvolo dedouévev CUB, dmuc
avapépinxe ot Tdve amd 50 BoxuéS Yo Vo eEUCPUNOTEL 1) GUVETELX TWVY ATOTEAEGUATWY.

Ye olyxpion e Tic dhAec ueddoUC, 1) TPOGEYYIOT| UG UTEQEYEL EVOVTL UEXETMY EMAYWYIXWY
ueVOBwy xan ebvon ouyxpiown pe tig wedodoug ICPC [37] o Bi-VAEGAN [68], ot onoiec eivou
ahybpriuot ayuric (SOTA) oty Médnon Xweic Hopadetyyato.

Arnoteléopata und To 'evixsvpévo Xevdplo

O Mivoxag 1.3 mopouctdlel Ty anddoor Slpodpwy uedodwy MXII ota obvola dedopévwy AwA2
xou CUB o710 yevixeupévo oevdpto MXII. Ou pédodor elvon eite emarywyés (I) elte nuenayomyixée
(T) xaw xotnyoplonotolvtar w¢ Bactouévee oe mpoBoréc (E) | dmwe n i pog, 1 yevetxée (G).
To anoteléopota Tne yevddou yac ebvar o pécog époc 50 exteréoewy. XTo GUVOLO BEBOUEVLYV
AwA2 | n pédodoc poc emtuyydver 89.8% yio tic opotée xatnyoplec (MCA), 73.2% vy g
adpatec xatnyoplee (MCAy,) xau évav appovind péoo 6po (H) 80.7%. 1o clvolo Bedoyévwyv
CUB , n uédodoc pog emtuyydvet 51.6% yio MC Ay, 46.7% yioo MC Ay, xou évoy apuovixd Yéco
6p0 49.0%. Ebvor o€ioonueinto étu 1 pédodoc yac Eemepvd dhec tig enaywyixée pedddous, xdtt
TOU ElValL AVOUEVOUEVO, 0ol €YOUUE TPOCPUCY) OE TEPLOGOTEPES TANEOPOPlES (w] ETUOTNUACHEVAL
Oelypoto amd TIg adpaTeS Xt yoplEs).
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Method AWA2 CUB
eHho MCA,, MCA,, H | MCA, MCA, H
F-CLSWGAN (G) [69] | 8L.8 140 239 331 218 263

SP-AEN (G) [70] 909 233 371 386 249 303
I | DEM (E) [71] 864 305 451 256 343 205
ALE (E) [72] 689 521 594 | 366 426 394
LisGAN (G) [73] - - - | 378 429 402
DSRL (E) [74] - - [ 250 177 207
GFZSL (G) [66] - - - | 458 249 322
| ALE_trans (E) [65] 73.0 126 215 | 451 235 30.9
PREN (E) [75] 886 324 474 | 558 352 431
f-VAEGAN (G) [42] 88.6 848 86.7| 65.1 614 632
Bi-VAEGAN (G) [68] | 91.0  90.0 904 | 717 712 715
T | Ours (E) 898 732 807 | 51.6 467 49.0

ivocag 1.3: Xoyxpeion anodoone MXII Siapopetindy puedodnv ota cUvoha dedouévmy AwA2 xo
CUB, oo yevixeupévo aevdpio MXII, yenotpomoudvtog tov tpotetvouevo dioywetouo [18]. (I) uro-
dexviet 6Tt o pédodog ebvor emarywyixr, eved (T) umodewcvier ot wa pédodoc ebvar nuieTaywYLXH.
(F) unodemvie 6t wio pévodoc extehel Bedtimwon (fine-tuning) tng payoxoxahdc ResNet101. (G)
urodetxviel 6Tt pa pédodog etvon yevetxn. (-) onuodver 6t T avtiototya amotehéopoto dev ovor-

pERUMMALY.

Téhog mopatnpolue 6Tt €youue Uelwon tne etpxic MCA 660 agopd oTic adpUTEC HAJCELS
OTO YEVIXELUEVO GeVEpLo. AuTé elval TAREOC AVAUUEVOUEVD, hOYw Tou TeofAruatoc bias (Beite 10
xepdhono 3.2.6).

ITepropiopol

H uédodog pag PoaciCeton o peydro Bodud otov apynd apriud owoTOY YEITOVKY TOU ETAEYOVTOL
otov apyo Yweo tou ResNet101. Autd ouuPaivel enedr) to dixtuo opadomoinong npootadel va
avadéoel Eva Oebypor xon Toug ETAEYUEVOUS Ye{TOVES Tou oty (Bla cuoTdda. ‘Omwe Tapatneeiton oTo
Yo 6.9, oto chvoho dedopévwy CUB, meplocdtepol and toug pools yeltovee mou emhéydn-
XV AVAXOLY OF BLUPOPETIXEG XATNYORIES, YEYOVOC TOL Tpogaveg Va odnyNoeL ot urn BéATioTa
amoteréopata. oty eniiuom autol Tou TEOBAAUATOS, TELRUUUTIO THXAUE Ue alyoplduoug Tpoex-
nofdevong, dnwe mopathoyés v ohyopiduwy SimCLR [76] xou MOCO [77]. Qotéo0, autéc ot
uédodot amautolv peydhec naptides (batch size), mou unepéfnoay Toug LTOROYIOTIXOUE HoC TTOPOUC,
ue amotéheoyo TNV aduvapio Bertinong Tou apriuol Tmv cHoTOY YEIToVeY. Eminhéoy, eéepeuviioa-
ue dAheg mpooeyyioelg opadornoinong and T BuiBhoypapio TNg NU-ETPBAETOUEVNS CUC TABOTOINGOTG
(semi-supervised clustering)[78], [79], [80]. Ta anoteléoyatd Toug HTay TON) XATWTEPO A6 TNV
TEYVIXT| OMABOTONCNG TOU EQPUPUOCOE, ETIBEWVVOVTAS OTUavTIXd Younhotepoug deixtec ACC xan
NMI.

YulAtnon

Ye auth) TN YeAéT), emtUyaue aloonueiwTta anoteléouata 6T0 oOVORO BedOuEVLY AWA2, avTo-
ywwlouevor anoteheopotind ) pédodo Bi-VAEGAN [68], wa pédodo ayurc (SOTA) yevetxhc
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udinong, 1600 6T0 GUUBATIXG GCO XUl GTO YEVIXEUUEVO GEVIQLO. LUYXEXQWEVA, OTN cUUPuTIXG
oevdplo, N uédoddc pac urolelnovtay e Bi-VAEGAN [68] xatd pérc 0.1%. Qotdoo, o anote-
Aéopatd pag oto cUvolo dedouévewy CUB Atav oyetind younidtepa oe olyxpton ue dhhec SOTA
ued6douc. Autod amodideTon oTov apynd yweo tou ResNet101 , émou emhéEaue Touc TANcIEcTEROUC
yeltoveg yio xde un emonemonueiwuévo oetyua. To wotoypoppa 6.8 aroxdiude 6Tt TOAAG BelyyoTa
€Y 0LV PEYGAO a6 YELTOVOVY OO OLUPORETIXES XAUTIYORIES, TROXAUADYTOC TEOPAT T TOEVOUT-
ong. Autdc o meploptouog etvan ey yevic xadog yenotuonootue To ResNet101 w¢ tn payoxoxahid
TOU UOVTEAOU [ag.

Ipoomddeies yia TNV TEOEXTUUBEVCT) TNG POYOXOXUNAS YENOHLOTOLOVTAC alyoplduous dmwe oL
SimCLR [76] xou MOCO [77] tav avemtuyelc AOyw TEQLOPIOPEVHV UTOROYLOTIXGY TOpwY. AuTol
ot aly6prduot Yo umopolcay v Exouy BEATIOCEL TNV OUUBOTOINGT TV SELYUATOY ATt BLUPORETIXES
xatnyopleg, odnywvTag o BeATioUévn dpywonoinon tou aiyopiduou pog. Ia va evioydoouue
TEPAUTEP® TO ETUYElPNUA HOC, Ylal AVIAUGCT) avO)TATOU 0plou PETE TNV ouadoTolnoy €Bele 6TL Yio TO
oUvoho dedouévev CUB, to avetato dpto ftay 53.55%, ev T0 TEAMXO AmOTENEOUA TAELVOUNOTC UAC
frav 48.0%. Autd unodnhidver otL xahltepn ogadonoinon Ya urtopotoe va 0dnyfoet oe BeATiwpéva
AMOTEAEOUATOL TUEVOUNONG.
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CHAPTER 2. INTRODUCTION

2.1 Artificial Intelligence

Artificial Intelligence is a branch of computer science that deals explicitly with the development
of systems that can do tasks that, usually, humans have to execute|81]. It spans a broad spec-
trum of applications like learning from data, recognizing patterns, solving challenging problems,
understanding and processing natural language, and deciphering visual inputs. At its heart, Al
is the attempt to create algorithms and models that machines could use to perform behaviors
such as reasoning, planning, or adaptation to novel situations in a fashion quite similar to how
humans would go about performing a given cognitive task. The history of Al dates back to early
computer science [82]. It has therefore undergone many changes over time due to advances in
computational power, data volumes, availability, and theoretical understanding.

AT can be broadly divided into two basic types: narrow/weak Al and general /robust Al
[83]. Weak AI is designed to address specific tasks as in speech and facial recognition [84],
language translation [85|, or interpreting. This includes virtual assistants, streaming services,
recommendation algorithms, and image recognition software for medical diagnostics. As it is
narrowly efficient, it has no general intelligence and cannot act further than the instructions
given for a particular activity

On the other hand, general Al or strong Al pursues the goal of developing human-like cog-
nitive abilities [83]. This means that an Al with general intelligence would understand, learn,
and apply knowledge across a variety of tasks, showing creativity like humans. Although general
Al is still a theoretical concept and a major research topic, pursuing this vision drives many
advancements in the field [86]. Currently, much of the research in the AI domain focuses on
narrowing the gap between narrow and general AI, exploring new models, architectures and
training alternatives, which show promise in approximating more general forms of intelligence
[87].

This first chapter goes further into what Artificial Intelligence (Al) is and why it is essential
today. We will explain in straightforward terms what machine and deep learning are, the two
main branches of Al which are directly related with this thesis. Then, we will introduce zero-shot
learning, which is the main focus of our work. This chapter will prepare the reader for a much
more detailed and focused discussion in the next chapter.

2.1.1 Brief History

The term "Artificial Intelligence" itself was first coined by John McCarthy in 1956 at the Dart-
mouth Conference, starting Al as a formal academic field. Early research mainly focused on
problem-solving and symbolic methods, with the then-pioneering development of the Logic The-
orist by Allen Newell and Herbert A. Simon, capable of proving mathematical theorems. Al
developed considerably in the 1960s and 1970s with early machine learning algorithms and
natural language processing systems. For example, there existed programs like ELIZA, which
simulated human conversation, and SHRDLU, which manipulated objects in a virtual environ-
ment using natural language commands. However, by the mid-1970s, progress slowed, leading
to the "AI Winter" due to unmet expectations and technical limitations.

The 1980s saw a resurgence, where the technology was made to use Al to address particular
problems, an example being the expert systems built around MYCIN for medical diagnoses.
Interest dimmed again by the late 1980s because these systems required vast amounts of manual
effort. New momentum came in the 1990s and the early 2000s with better computational power,
more data, and advanced algorithms underpinning AI. Among them was IBM’s Deep Blue with
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its defeat of chess champion Garry Kasparov in 1997.

In the 21st century, Al has become attached to everyday life, with applications like virtual
assistants Siri and Alexa, autonomous vehicles, content suggestions and many more. Break-
throughs in deep learning, such as Google’s AlphaGo defeating a world champion Go player in
2016 and the release of ChatGPT in 2022, highlight AI’s potential.

5 the remalc!

Figure 2.1: World Chess Champion Garry Kasparov faces IBM’s Deep Blue in their historic
1997 rematch, a pivotal moment in the advancement of artificial intelligence (Source: [8]).

2.2 Machine Learning

Machine learning (ML) is an essential subset of artificial intelligence (AI) that focuses on teaching
machines to process and interpret data more effectively [19]. Unlike traditional programming,
where machines follow explicit instructions, ML enables them to learn from data and make
decisions based on the patterns they discover. In ML, a computer program improves its per-
formance on tasks over time by gaining experience from the instances it has been exposed to.
This approach is especially useful when dealing with large and complex datasets, where manual
analysis would be challenging. As the availability of extensive datasets continues to expand, the
demand for machine learning is increasing, and many industries are leveraging ML to extract
valuable information from their data. Today ML is something humans interact with on a daily
basis, often without realizing it, influencing choices from the products we browse to the movies
we watch.

The different types and algorithms of machine learning are shown in Figure 2.3 and Table 2.1
and will be explained in more detail below. Classical machine learning is categorized based on
how an algorithm improves its predictions, with four main methodologies: supervised learning,
unsupervised learning, semi-supervised learning and reinforcement learning [2].
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Method

Applications

Linear Regression

Fits a linear equation to observed data to predict con-
tinuous outcomes.

Decision Tree

Uses a tree-like model of decisions and their possible
consequences to classify data into categories.

Support Vector Ma-

Finds a hyperplane that best separates different classes

chine
Naive Bayes

in the feature space.

Applies Bayes’ theorem with strong independence as-
sumptions between features to classify data.

Classifies data based on the closest training examples in
the feature space.

K-Nearest Neighbors

Gaussian Mixture | Represents data as a mixture of multiple Gaussian dis-
Model tributions to capture complex patterns.

Artificial Neural Net- | Mimics the human brain by using layers of intercon-
work nected nodes to learn from data and make predictions.

Table 2.1: Summary of well known ML algorithms.

Categories and Algorithms
of Machine learning

Supervised Learning semi supervised Learning Reinforcement Learning

- Classification

- Classification
- Classification - Clustaring
- Clustering - Control
- Association

- Regression

| | 1 l

-0-Leaming
- Monte Carlo Tree Search
- Temporal Difference (TD)
- Asynchronous Actor-Critic Agents
[AAAC)

- Linear Regression
- Lagistic Regression
- Random Forest
- Netwark Neural

- uClassify
- GATE

i ing
-Association Rule

Figure 2.2: Different machine learning categories and algorithms (Source: [2]).

2.2.1 Supervised Learning

Supervised learning is a type of machine learning where the model is trained on a labeled dataset.
In this approach, each training example consists of an input paired with the correct output, which
serves as a guide for the learning process. The goal of supervised learning is to learn a mapping
from inputs to outputs that can be used to make predictions on new, unseen instances. Common
tasks in supervised learning include classification, where the model predicts discrete categories,
and regression, where it predicts continuous values. Typically, these algorithms are trained in
order to minimize some kind of error between the models outputs and the ground truth labels
which are provided.
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2.2.2 Unsupervised Learning

Unsupervised learning is a type of machine learning where the model is trained on data without
labels. Unlike supervised learning, where each training example comes with an associated correct
output, unsupervised learning algorithms must identify patterns and relationships in the data
on their own. The primary goal is to explore the underlying structure of the data, for example
through clustering or dimensionality reduction. In clustering, the algorithm groups similar
data points together, while in dimensionality reduction, it simplifies the data by reducing the
number of variables. The key difference between unsupervised and supervised learning is that
unsupervised learning does not rely on labeled data, making it particularly useful for tasks where
labeling is impractical or impossible.

2.2.3 Semi-Supervised Learning

Semi-supervised learning is a machine learning approach that combines both labeled and unla-
beled data during training. This method leverages the small amount of labeled data to guide the
learning process, while also utilizing the vast amounts of unlabeled data to improve the models
performance. By incorporating unlabeled data, semi-supervised learning can often achieve bet-
ter accuracy than purely supervised learning, especially when labeled data is scarce or expensive
to obtain [58|. This approach is particularly useful in real-world scenarios where obtaining a
fully labeled dataset is impractical, but there is an abundance of unlabeled data available.

2.2.4 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to make
sequential decisions by interacting with an environment to maximize cumulative rewards. Unlike
supervised learning, where the algorithm is trained on labeled data, or unsupervised learning,
where the algorithm discovers patterns in unlabeled data, RL learns through trial and error
feedback. The agent takes actions in the environment, receives feedback in the form of rewards
or penalties, and adjusts its behavior accordingly to maximize the long/short-term reward.
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2.3 Deep Learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Figure 2.3: Deep Learning versus Machine Learning versus Artificial Intelligence

Historically, conventional machine learning methods were limited in their ability to handle raw
data directly. Building a pattern recognition or machine learning system required careful engi-
neering and significant domain expertise to design feature extractors that transformed raw data
(like pixel values of an image) into an internal representation or feature vector suitable for the
learning subsystem (for example a classifier).

Deep learning is a specialized area within machine learning that emphasizes the use of neural
networks with numerous layers, commonly known as deep neural networks. A significant benefit
of deep learning is its capacity for automatic representation learning through its hidden layers
[9]. Deep neural networks construct hierarchical representations of data through multiple layers,
with each layer capturing progressively abstract features [9]. This automatic feature extraction
process minimizes the need for hand-crafted features and domain-specific knowledge, which
makes the training of such models more straightforward. In a deep neural network, hidden
layers act as a series of filters, refining data representations incrementally. For example, initial
layers might identify basic patterns like edges in an image, while deeper layers can detect more
complex structures such as object parts. This concept is illustrated in Figure 2.5.

This methodology is especially effective for managing large, complex datasets, commonly
referred to as "big data", which are becoming more and more available in recent years (see
Figure 2.4). The advent of big data has significantly enhanced the prospects for deep learning,
as these algorithms excel at uncovering hidden patterns in extensive datasets . The combination
of abundant data and advancements in computational power has enabled deep learning models
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Figure 2.5: Illustration of a deep learning model (Source: [9]).

to achieve superior performance than conventional machine learning algorithms (see Table 2.1) in
tasks such as image recognition [20], [21], natural language understanding [21], speech recognition
[22], predicting the activity of potential drug molecules [88] and many more [23].

2.4 Zero-Shot Learning

Supervised classification methods aim to categorize instances into distinct sets based on pre-
defined classes, assuming adequate training data for each category. The resulting classifier is
limited to classifying instances within the classes covered by the training set. However, practical
scenarios may arise where certain classes lack sufficient representation in the training set. The
following are some frequent application scenarios, where such a situation might arise:

o Large number of classes. In many applications, the number of possible classes can be
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extremely large, making it impractical to collect labeled examples for every class. For
instance, in fine-grained image recognition tasks like identifying bird species |7] or plant
varieties, the sheer number of categories can be overwhelming.

e Rare Classes. Some classes may be rare or infrequently encountered, leading to a scarcity
of labeled instances. For example, in medical diagnosis, rare diseases may have very few
documented cases, making it difficult to train a model using traditional supervised learning
methods.

e Dynamic Environments. In dynamic environments where new classes continually emerge,
traditional supervised learning models would require constant retraining with new labeled
data.

e High cost of labeling. A prime example is the image semantic segmentation problem [89].
This task entails pixel-level classification, making precise labeling challenging.

In such applications, there are classes with no labeled instances, which renders supervised
learning methods impossible to apply. To solve this problem zero-shot learning (ZSL) is proposed.

To understand zero-shot learning, let us consider the example of a person who has never seen
a zebra before. If someone tells them that a zebra looks like a horse but with black and white
stripes, they can use this description to recognize a zebra based on their prior knowledge of
what a horse looks like. Humans can naturally extract and use high-level information to identify
new objects by combining familiar characteristics. Similarly the goal of zero-shot learning is to
enable a machine learning model to classify new categories by using descriptions or attributes
shared with other known categories. In our previous example, if a model knows about horses
and stripes, then we would like it to combine this knowledge to recognize a zebra.

Therefore the goal of zero-shot learning is to extract knowledge from already known classes
and apply it to unknown ones. By using descriptive information and attributes, ZSL models can
make guesses about new categories based on their similarities to familiar ones. This approach
allows machine learning systems to be more flexible, by being applied to to a broader range of
scenarios without requiring exhaustive labeled datasets for every possible category.
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3.1 Neural Networks

3.1.1 The Neuron
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Figure 3.1: Biological neurons and artificial intelligence (Source: [1])

Neural networks, inspired by the architecture and functionality of the human brain, emulate the
behavior of neurons. In these networks, layers of artificial neurons collaborate to process inputs
and generate outputs. Each neuron receives a set of inputs, which are multiplied by adjustable
weights that dictate the impact of each input on the overall output. Additionally, a modifiable
bias is added to this weighted sum. The resultant combined input is then passed through an
activation function, which converts it into a meaningful output, such as a probability or binary
decision. This sophisticated mechanism enables neural networks to discern intricate patterns
and make informed predictions based on the data they analyze. Specifically if x € R? is the
input to the neuron, then the output is

y=1f (szx, +b> = f(w'z +b) (3.1)

where f is called an activation function, w = (wy, ..., wy) € R? are the learnable weights and
b € R is the learnable bias.

Activation Functions

Activation functions are a critical component of neural networks, serving to introduce non-
linearity into the model. This non-linearity enables the network to learn and represent complex
patterns in the data. Without activation functions, a neural network would simply be a linear
model, regardless of the number of layers it has, and would therefore lack the capacity to model
intricate relationships [9]. Some of the most common activation function are the following:

e Linear: The linear activation function is basically the identity function. It has the form:
flz) == (3.2)

e ReLu: The Relu activation function uses a threshold at zero with the form:
f(z) = max{0, 2} (3.3)
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e Sigmoid: The Sigmoid activation function maps all of R in the range (0,1). It has the
form:

1
f@) = 17—

In many occasions the output of this function is considered a probability.

(3.4)

e Tanh: The Tanh activation function outputs values between -1 and 1, mapping positive
values to (0,1) and negative values to (—1,0). It has the form:

et —e®

f@) = 27— (3:5)

et +e %

e Softmax: The softmax activation function f : R™ — R" takes as input a vector z € R"
and outputs a vector with the same dimension, whose components lie in (0,1). It is often
used in multiclass classification scenarios:

T

f(x)i = W

(3.6)

The function discussed above can be visualized in Figure 3.2
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Figure 3.2: Different activation functions
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3.1.2 Multilayer Perceptron

Hidden Layers

Input x : ¥ o Predictions y

Figure 3.3: Representation of a Multilayer Perceptron (Source: [2])

A Multilayer Perceptron (MLP) is an artificial neural network in which multiple layers of neurons
are stacked one after the other, as shown in Figure 3.3. Neurons in an MLP are organized into
layers: an input layer, one or more layers called hidden layers, and an output layer. Each
neuron in a layer is connected to every neuron in the subsequent layer, forming a fully connected
network. The input provided to the MLP is fed into the input layer, which further processes
the information and passes it through the hidden layers. Each of the hidden layers changes the
presentation of the information using the mathematical formulation of the neurons and finally
produces the output using the output layer.
For a given layer, the output y is calculated using the equation:

y=f(Wz+b) (3.7)

where W is the matrix of learnable weights connecting the neurons of the current layer to the
neurons of the previous layer, x is the input vector, b is a vector of learnable biases, and f is the
activation function applied element-wise (see section 3.1.1). This process is repeated for each
layer, with the output of one layer serving as the input to the next, thereby enabling the network
to learn complex, non-linear mappings from inputs to outputs.

3.1.3 Optimization For Neural Networks

In supervised machine learning, the goal is to find the parameters 6 that minimizes the empirical
risk. The empirical risk is defined as the average of the loss function L over all training examples.
Mathematically, this can be expressed as:

JO) =+ 3" LU0, 1) 5.9
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Here f is the predictive function parameterized by 6, which takes as input x; and predicts an
output g;. The loss function L measures the discrepancy between the predicted output g; and
the true label y;.

In the context of neural networks, the function f represents the entire network, containing
multiple layers of neurons with various activation functions. The parameters 6 include the
weights and biases of all neurons in the network. The objective of training a neural network is
to adjust these parameters such that the empirical risk J(6) is minimized, which we hope will
lead to accurate predictions on the test data.

Loss functions Loss functions play a crucial role in model training as they measure the
discrepancy between the predicted output and the true target. Different types of loss functions
are used depending on the specific task at hand.

For regression tasks, where the goal is to predict continuous values, the Mean Squared Error
(MSE) loss is commonly used and it is defined as:

n

Lyse = %Z(yz — 0:)? (3.9)

=1

Here y; represents the true value, ¥; is the predicted value and n is the number of samples.
For binary classification tasks, where the goal is to predict one of two possible classes, the
Binary Cross-Entropy (BCE) is a common loss, which is defined as

1 ¢ X X
Lpce = _E Z[?/z log g + (1 — yi) log(1 — 4;)] (3.10)
i=1

In Equation 3.10, y; represents the true binary label (0 or 1), and g; is the predicted probability
of the sample belonging to class 1.

Finally, for multi-class classification tasks, where there are more than two classes, the Cross-
Entropy loss is generalized to handle multiple classes. The Cross-Entropy loss for multi-class
classification is given by:

n C
1 .
Lop=—- DY yielog(iic) (3.11)
i=1 c=1
In Equation 3.11, C'is the number of classes, y; . is the binary indicator (0 or 1) if class label ¢ is
the correct classification for observation ¢, and ;. is the predicted probability that observation
1 belongs to class c.

Regularization

Regularization is a technique used to prevent overfitting in machine learning models. Overfitting
occurs when a model learns not only the underlying patterns in the training data but also the
noise. This results in excellent performance on the training set but poor generalization to unseen
data. Regularization addresses this problem by adding a penalty to the model’s complexity,
discouraging it from fitting the noise. By constraining the model parameters or adding a penalty
term to the loss function, regularization promotes simpler models that generalize better to new
data.
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e L2-regularization L2-regularization works by adding a penalty term to the loss function,
which is proportional to the sum of the squares of the model parameters. That is, for
every weight w in the network, the term Aw? is added to the loss function where ) is the
regularization strength.

e Ll-regularization L1 regularization is another technique used to prevent overfitting in
machine learning. It adds a penalty proportional to the sum of the absolute values of the
model parameters, so for every weight w, the term A|w| is added to the loss function. This
technique encourages sparsity in the model parameters, since it tends to drive some of the
weights to zero, effectively performing feature selection by excluding irrelevant features.

e Early-Stopping Early stopping is a regularization technique used to prevent overfitting
in neural networks by monitoring the model’s performance on a validation set and halting
training once performance starts to degrade. This method leverages the observation that
while training error typically decreases over time, validation error often decreases initially
but eventually starts to increase as the model begins to overfit the training data.

The Chain Rule

Let x be a real number, and let f and g both be functions mapping from a real number to a real
number. Suppose that y = g(x) and z = f(g(z)) = f(y). Then the chain rule states that

dz dz d_y

Rl A2
de dy dx (3.12)

We can generalized this result in the case where some functions take vectors as input. Sup-
pose that g : R™ — R"™ and f : R" — R. Then if z = g(y) and y = f(x) it follows that

0z 0z  0Oy;
_Zayj o (3.13)

J
In vector form this can be written also as:

dy T
Vez=(52) -V (3.14)

where dy/0x is the Jacobian matrix of the function g.

Gradient Descent Suppose we have a function f : R® — R. To find the directional derivative
of f in the direction u at point x, we consider the function

g(t) = fx +tu)
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Figure 3.4: Visualization of the gradient descent method. (Source: [3])

The derivative of g(t) is given by ¢'(t) = vV, f(z + tu). Evaluating this at ¢t = 0, we get
g (0) = u'V,f(z + tu). To find the direction v in which f decreases the fastest we use that
fact that uTV,f(x) = ||ul|o||Vf(x)||2 cos @ where 6 is the angle between the two vectors. It is
evident that the above expression is minimized when u points in the opposite direction of the
gradient. Thus we should take u = =V, f(z).

To understand how this is applied in practice, suppose we have a differentiable function f.
Then using Taylor’s series we have that:

fla@) + Az) = f(x(t) + Vf(2)|o=am A (3.15)

Considering the direction where f decreases the fastest, discussed earlier, we set Az =
—aV f(2)|z=2(t), @ > 0. This leads us to the update rule

:L‘(t + 1) = .I‘(t) - avf(m”:c:x(t) (316)
and
fla(t+1)) = f(a(t) + Az) = f(x(t) — al|V (@) lomaqn |3
< f(x(t))

In practice, choosing the appropriate learning rate a is crucial for the performance of the gradient
descent algorithm. If the learning rate is too small, the algorithm may converge slowly. If it is
too large, the algorithm may overshoot the minimum and fail to converge.

(3.17)
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Optimizing Neural Networks Weights

Using the aforementioned basic concepts, we shall explain how optimization works in neural
networks in a end-to-end fashion. Recall that the goal is usually to minimize the empirical loss.
Then a regularization term is added to avoid overfitting:

JO) = 37 LT 0), ) + AR() (3.18)

In order to minimize J(f) instead of using the gradient descent algorithm, a variant called
stochastic gradient descent (SGD) is usually used. If we applied equation 3.16 to equation 3.18
then the gradient with respect to all samples {z;}_; would have to be computed, which in large
datasets becomes computationally intractable. SGD only considers a batch of samples for each
gradient step, which offers scalability in such situations. An often related problem to SGD is
that the individual updates can be noisy, causing the algorithm to oscillate around the minimum.
To solve this problem optimization methods such as Adam [25] use momentum, and adaptive
learning rate.

Backpropagation is the algorithm used to compute gradients for each parameter in neural
networks, enabling the application of gradient-based optimization methods like SGD. The essence
of backpropagation is the chain rule of calculus, which allows the gradient to be efficiently
propagated backward through the network.

1. Forward Pass: In order to apply Equation 3.16 we must evaluate J(6) at ;. Therefore we
compute the output of the network by passing the input data through each layer.

2. Loss Computation: Calculate the loss between the network’s output and the true labels
(see for example Eq. 3.10, 3.9).

3. Backward Pass: Firstly compute the gradient of the loss with respect to the output of the
network. Then use the chain rule described in Equation 3.13 to propagate these gradients
backward through each layer, computing the gradient with respect to each parameter.

3.1.4 Universal Approximation Properties and Depth

Linear models use matrix multiplication to map features to outputs, inherently limiting them
to linear functions. This simplicity makes them easy to train since their loss functions typically
result in convex optimization problems. However, in many real world scenarios, the relation
between the input and the output might be highly non-linear. Feedforward neural networks
with hidden layers provide a solution, as showed by the universal approximation theorem ([9],
[4]). This theorem states that a feedforward network with a linear output layer and at least
one hidden layer employing a "squashing" activation function, like the logistic sigmoid, can
approximate any Borel measurable function with any desired accuracy, given a sufficient number
of hidden units [9], [4]. These networks can also approximate the function’s derivatives with high
accuracy.

According to Goodfellow et al [9], choosing a deep model conveys certain beliefs about the
nature of the function being learned. He points out that when we select a particular machine
learning algorithm, we implicitly assert assumptions about the function’s structure. He also
underlines that deep models encapsulate the belief that the function involves the composition
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Figure 3.5: Deep neural networks involve the composition of several simpler functions. (Source:

191)

of several simpler functions and that from a representation learning viewpoint, this suggests
that the learning task involves identifying a set of underlying factors of variation that can be
described in terms of other simpler factors.

3.1.5 Convolutional Neural Networks

Using Multilayer Perceptrons (MLP’s) for image processing presents significant challenges [4].
Firstly, consider the dimensionality of the input: an image of height H, width W and C color
channels would require the first hidden layer to have a dimension of H x W x C' x D, where D
is the number of neurons in the first hidden layer. Secondly, MLP’s lack translation invariance
[4], [9]. This characteristic can be visualized in Figure 3.6. To face these problems convolutional
neural networks (CNN’s) are proposed. Their basic idea is to divide an image into overlapping
regions and then compare them with small weight matrices, often called filters. These filters can
be thought of as detectors that recognise to which degree a particular feature lies in an image.
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Figure 3.6: MLP’s are not translation invariant (Source: [4])

Convolution Discrete two-dimensional convolution involves two matrices and is defined by
the formula:
SG,j) = (@ K)(i,5) = Y Y I(m,n)K(i —m,j—n) (3.19)

This equation means that we take the image matrix I and the flipped kernel matrix K, and for
each position (i, j) in the resulting matrix S, we compute the sum of element-wise multiplications
of overlapping elements from I and K. The operation slides the flipped kernel across the image,
calculating the weighted sum of the pixels under the kernel at each position.
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Convolution is communative [9], meaning we can also write the result as:
S(i,j) = (K ®I)(i ZZIZ—m]—n)K( n) (3.20)

This alternate form shows that the order of the matrices in the convolution operation does not
affect the result. It’s like keeping the kernel centered at (0,0) and sliding the image across it.
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Figure 3.7: (a) convolution of an 2D image with a 2D kernel. Padding and stride are set to
one. (b) convolution of an 2D image with a 2D kernel. Padding is set to one while stride is two.
(Source: [4])

Stride and Zero Padding Stride refers to the number of pixels by which we slide the kernel
across the input image. For example a stride of 1 means that we move the filter one pixel at a
time, resulting in a highly detailed feature map, as shown in part (a) of Figure 3.7. A stride of
2 (Figure 3.7 (b)) would lead to smaller output dimension, which would help in capturing the
essence of features while reducing the computational complexity. Zero padding involves adding
a border of zeros around the input image. It is a hyperparameter which further controls the
dimension of the output map. Both (a) and (b) in Figure 3.7 use zero padding of one.

Pooling layer A pooling layer is an essential component of CNN’s which reduces the spatial
dimensions of the input feature maps, thereby lowering the computational load and helping to
make the network more efficient to spatial variations. The pooling layer summarizes the features
within a particular region of the input, providing a form of down-sampling. Some of the most
common pooling layers are max pooling, an operation that selects the maximum value within
a defined window and average pooling, which computes the average of the values within the
window. Such layers not only significantly reduce the computational burden of the algorithm,
but also make the representation approximately invariant to small translations of the input [9].
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Figure 3.8: Example of the max pooling operation, using a kernel of size 2 x 2 and stride 2.
(Source: [10])

In practice, images are not strictly 2D but 3D, as they contain color channels. Thus, the
filters in a CNN must also operate in the depth dimension, and therefore the convolution is three
dimensional. The output of a 3D convolution is a 3D volume where each slice is a response to
the filter applied across the input.

Parameter Sharing in CNN’s One of the key features of CNNs is parameter sharing. In the
context of 3D convolution, parameter sharing implies that the same filter (set of weights) is used
across different spatial and depth locations of the input. This greatly reduces the number of
parameters and computations required, compared to fully connected layers, where each element
in the input volume would have a unique weight associated with it. This is another reason which
explains why these kind of networks can detect patters regardless of their position in the input
volume.

Convolutional Neural Networks as Feature Extractors
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Figure 3.9: Convolutional Neural Network Architecture for Image Classification (Source: [11])

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision, demon-
strating remarkable performance on various image recognition tasks [26], [27], [28], [29]. Trained
on large datasets, such as ImageNet [30], which contains millions of labeled images, CNNs have
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shown their capability to learn complex visual patterns. A prime example of this is the ResNet
(Residual Network) architecture [31], which has achieved state-of-the-art results in image clas-
sification competitions.

As discussed before, one of the key strengths of CNNs lies in their hierarchical feature learn-
ing. Early layers of a CNN typically learn to detect simple features such as edges, textures, and
basic shapes. As we move deeper into the network, the layers start to capture more complex
features, such as object parts [4]. This hierarchical learning allows CNNs to build a rich and
abstract representation of the input images.

In practice, CNNs trained on large-scale datasets are often used as feature extractors. Specif-
ically, the convolutional layers (usually the later ones) are leveraged to extract high-level features
from images. These features can then be fed into other machine learning models or fine-tuned
for specific tasks. This process is known as transfer learning [32], where a pre-trained CNN is
used to extract meaningful features from new data, significantly reducing the training time and
improving performance on tasks with limited data.

Figure 3.9 illustrates the process of using CNNs for feature extraction. There we can see
an input image being processed through several convolutional and pooling layers, with ReLLU
activations. The resulting feature maps from the convolutional layers are then flattened and
passed through fully connected layers for final classification. In this setup, the convolutional
layers act as the feature extractors, capturing intricate patterns and structures within the images,
ultimately enabling robust and accurate image classification.

3.2 Zero-Shot Learning

We emphasize that the analysis following in this particular section, heavily relies on the excellent
reviews of [5] and [34].

In zero-shot learning, labeled training instances exist in the feature space, covering classes
known as seen classes. Additionally, there are unlabeled testing instances in the same feature
space, associated with a separate set of classes known as unseen classes. The feature space
comprises vectors representing each instance, each assumed to belong to a single class.

Let S = {cf|i = 1,..., N} be the set of seen classes, where each ¢} is a seen class. Also denote
U={cli=1,...,N,} as the set of unseen classes, where each ¢} is an unseen class. Note that
SNU = 0 [12]. Denote X as the feature space, which is D-dimensional; usually it is a real number
space RP [12|. Denote D' = {(x!",y!") € X x S|li = 1,..., Ny} as the set of labeled training
data belonging to seen classes; for each labeled instance (x!",y!"), xi" is the instance in the
feature space, while 3!" is the corresponding class label. Denote X = {x!® € X|i =1,..., Ny}
as the set of testing instances, where each x!¢ is a testing instance in the feature space. Denote
Yie={yle eU|i=1,..., N} as the corresponding class labels for X*.

Definition 3.2.1 (zero shot learning [12]). The goal of zero-shot learning is to learn a classifier
fzsL(+) : X — U that can classify testing instances X' belonging to the unseen classes U.

From the definition, it’s evident that zero-shot learning primarily aims to transfer the knowl-
edge embedded in the training instances D', to the task of classifying testing instances. It is
interesting to point out that the label spaces covered by the training and testing instances are
disjoint, making ZSL a subset of transfer learning (TL) [32].

62



CHAPTER 3. BACKGROUND

3.2.1 Auxiliary Information

To address the absence of labeled instances of the unseen classes in zero-shot learning, auxiliary
information is essential. Existing approaches draw inspiration from human cognition, where se-
mantic background knowledge aids in recognizing unfamiliar entities [33|. For instance, knowing
that “a tiger resembles a large cat with stripes’ enables recognition of a tiger even without prior
exposure to relevant images, based on knowledge of cats and stripe patterns [5]. Consequently,
auxiliary information in zero-shot learning methods typically comprises semantic details, which
form a semantic space containing both seen and unseen classes.

In the semantic space, each class is characterized by a vector representation, which is referred
to as the class prototype of the class. In what is next, we follow [34] in order to define the semantic
space and the prototype of a class.

Denote T as the semantic space. Suppose T is M-dimensional; it is usually RM [12]. Denote
t; € T as the class prototype for seen class ¢j, and t} € T as the class prototype for unseen
class ¢¥'. Let T° = {tj|i = 1,...,S} be the set containing the prototypes of seen classes, and
T = {t!li=S+1,...,5 4+ U} the set of prototypes of unseen classes. Let 7(-) : SUU — T
be a class prototyping function that takes a class label as input and outputs the corresponding
class prototype (e.g w(zebra) € RM). In section 3.2.4 we will analyze different kinds of semantic
spaces.

3.2.2 Learning Settings

As stated in definition 3.2.1, the goal of traditional ZSL is to learn a classifier f*(-). In practice
situations can occur, where information about some testing classes is known a priory. Then the
model is transductive with respect to these specific testing instances. In this setting, information
about the testing classes is also known during training. Concretely Wang et al. [34] discriminates
between the following settings:

Definition 3.2.2 (Class-Inductive Instance-Inductive (CIII) Setting). Only labeled training
instances D' and seen class prototypes T are used in model training.

Definition 3.2.3 (Class-Transductive Instance-Inductive (CTII) Setting). Labeled training in-
stances D', seen class prototypes T, and unseen class prototypes T are used in model training.

Definition 3.2.4 (Class-Transductive Instance-Transductive (CTIT) Setting). Labeled instances
D' seen class prototypes T, unlabeled testing instances X%, and unseen class prototypes T
are used in model learning.

3.2.3 Testing Settings

In traditional zero-shot learning (ZSL), the test set exclusively comprises samples from unseen
classes, a scenario which is not practical real-world applications. In practice, data samples
from seen classes are more frequent than those from unseen ones. Therefore, it’s crucial to
simultaneously recognize samples from both categories rather than focusing only on the unseen
class samples. This setup is termed generalized zero-shot learning (GZSL) [35].

Definition 3.2.5 (Generalized Zero Shot Learning (GZSL) [5]). The goal of generalized zero-
shot learning, is to construct a classifier fazsr, : X — S UU that can classify testing instances
X' that belong to both the seen classes S and the unseen classes U.
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Figure 3.10: (b) During the test phase, ZSL can only recognize samples from the unseen classes,
while (¢) GZSL is able to recognize samples from both seen and unseen classes (adapted from

[5])

Generalized zero-shot learning (GZSL) as defined in Definition 3.2.5 does not explicitly men-
tion the set used during the training phase, just like the definition of zero-shot learning (ZSL)
(see definition 3.2.1). The differentiating factor lies in the query posed to the model during
testing [5]. In conventional ZSL, the labels of test set samples X' are presumed to belong to
unseen classes Y. In GZSL such an assumption is not made, so the labels of X' can be both in
S and U. This fundamental difference is summarized in the lower part of Figure 3.10.

3.2.4 Semantic Spaces

In section 3.2.1 we briefly mentioned the semantic space 7, where each class is represented as
an M-dimensional vector. In this section we will analyze how T is constructed

Attributes

In the context of zero-shot learning, the attribute space is a semantic space where each class
is represented by a set of human-interpretable attributes or factors that characterize it. This
method of representation is particularly advantageous because it aligns closely with how humans
perceive and categorize objects, making it more intuitive. For instance, in an animal classification
task, attributes might include features such as "has stripes," "has wings," "is aquatic," or "is
nocturnal." These attributes provide a clear and descriptive way to define each class, facilitating
easier understanding and manipulation by humans.

Consider the example of distinguishing between different types of animals. A zebra can be
characterized by attributes such as "has black and white stripes," "is a mammal," and "lives
in grasslands." In contrast, a lion might be described with attributes like "has a mane," "is a
carnivore," and "lives in savannas." When an unseen class, such as an okapi, is introduced, it
can be described using a combination of known attributes, such as "has stripes on legs" and "is
a mammal."

These attributes can be represented as a binary vector, where each element indicates the
presence (1) or absence (0) of a specific attribute. For example, if we define the attributes as
follows: |has stripes, has mane, is a mammal, is a carnivore, lives in grasslands, lives in savannas],
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a zebra could be represented by the binary vector [1, 0, 1, 0, 1, 0], while a lion would be [0, 1,
1, 1, 0, 1]. An okapi might then be represented as [1, 0, 1, 0, 1, 0], showing its similarity to the
zebra in terms of attributes. This idea can be visualized in Figure 3.11.

This attribute-based approach allows for the recognition and classification of new, unseen
classes based on their semantic similarities to known classes.

otter

black: yes
white: no
brown: yes
stripes: no
water: yes

eatzs fish: yes

polar bear

black: no
white: ves
brown: no
stripes: no
water: yes

eats fish: yes

zebra

black: yes
white: yes
brown: no
stripes: yes
water: no

eatzs fish: no

Figure 3.11: (b) During the test phase, ZSL can only recognize samples from the unseen classes,
while (¢) GZSL is able to recognize samples from both seen and unseen classes (adapted from

[12])

Word Vectors

Another approach to constructing semantic spaces in zero-shot learning involves using embed-
dings of class names. This method leverages natural language processing techniques to generate
vector representations of class names, enabling the model to capture semantic relationships be-
tween different classes. Techniques like Word2Vec [90] and GloVe [91] are commonly used for
this purpose in ZSL [54], [55]. These methods create word embeddings by analyzing large text
corpora, capturing the contextual meaning of words.

Word2Vec, for instance, learns word associations by predicting a word based on its sur-
rounding context within a sentence. This results in vectors where semantically similar words
are positioned close to each other in the embedding space. Similarly, GloVe (Global Vectors
for Word Representation) combines the benefits of both local context-based learning and global
statistical information, producing embeddings that effectively capture word relationships. When
applied to class names, these embeddings provide an alternative way to encode semantic infor-
mation in an unsupervised manner. For example, the class names "zebra" and "horse" might be
represented by embeddings that reflect their semantic similarity based on contextual appearance
in text.

This unsupervised technique simplifies the construction of prototypes, because it does not
require manual labeling of attributes. The embeddings provided, can then be used to infer
relationships between seen and unseen classes, based on their relative position in the semantic
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space.

3.2.5 Embedding Spaces

The embedding space in which classification will be conducted plays a crucial role in Zero-Shot
learning. Specifically most of the ZSL methods find a common embedding space in which both
the image feature vectors and class prototypes are projected, and then perform nearest neighbor
search [54],[55],[92],[93|. According to [5] there are three primary embedding spaces: the visual
space, the semantic space, or an intermediate latent space. Each of these has its weaknesses that
impact the effectiveness of classification in different ways.

[1d  [er)
[T [

a) Visual — Semantic Embedding b) Semantic — Visual Embedding

[
[

¢} Visual — Latent Space «— Semantic Embedding

L

....................................... 1
@ Visual vector B Semantic vector L Latent space :
1
i

V. Visual space  8: Semantic space
Figure 3.12: Different kinds of embedding spaces (Source: [5])

e Visual Space: In the visual space, features are extracted directly from images using
convolutional neural networks (CNN’s). This space is beneficial because it leverages rich
visual information that is often sufficiently discriminative for object classification [31].
However, visual embeddings can suffer from high variance and the presence of outliers as
we will see in chapter 6.

e Semantic Space: The semantic space utilizes high-level descriptions or attributes of
classes, attribute lists, or word embeddings (see section 3.2.4). In some cases this space
aligns with human understanding and leverages descriptive information to relate seen and
unseen classes. However, projecting data into the semantic space introduces the so-called
hubness problem, which we shall further analyze in section 3.2.6. In summary, this problem
arises when certain points in the semantic space become "hubs" that are nearest neighbors
to many other points. This causes the model to make biased predictions, reducing the
overall performance of the classifier.

e Latent Space: Latent embedding spaces represent an intermediate approach, where both
visual and semantic features are projected into a common embedding space, overcoming
the hubness problem. One issue with this approach is the potential bias towards the seen
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classes, especially when the model primarily focuses on labeled instances during training.
This can lead the algorithm to overfit the seen classes and therefore poorly generalize to
the unseen classes, undermining the end-goal of ZSL

3.2.6 Challenges In Zero-Shot Learning

Bias Towards The Seen Classes

~ = True connection ===== -+ Bias
3

Seal Orangutan Unseen

e i
e
—
-
-

 J

Semantic Embedding Space

Figure 3.13: A schematic view of the bias in ZSL (Source: [13])

One of the significant challenges in conventional ZSL (see def. 3.2.2,3.2.3) is the bias towards
seen classes. This bias occurs because the algorithm only has access to labeled samples from
the seen classes during training. The naive approach of simply training the model to project
the labeled visual samples as close as possible to their corresponding prototype, may cause the
model to inaccurately project samples from the unseen classes in the embedding space, away
from their prototype. Figure 3.13 illustrates this issue, where samples from unseen classes, such
as the seal and the cat, are incorrectly projected closer to seen class prototypes like otter and
lion respectively.

The Hubness Problem

As discussed in section 3.2.5, this problem arises when learning projection function from the
visual space to the semantic space. This problem is a particular aspect of the curse of dimen-
stonality [14], which renders some class prototypes as the nearest neighbors of the vast majority
of projected instances. In order to be precise, Zhang et al. [14] studied the simple case, where
one wants to connect the visual and the semantic, using ridge regression [94].

Specifically, he showed under the aforementioned formulation, that if samples from the visual
space are projected to the semantic space, then the mapped source data are likely to be closer
to the space origin than the target data (the prototypes). This can be visualized in Figure 3.14
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Figure 3.14: A schematic view of the difference between projecting to the visual-semantic space
(adapted from [14])

To overcome this issue, many authors opt to utilize the visual embedding space [14], or a
latent intermediate space [92].

3.3 The K-means algorithm

K-means clustering is a method used in unsupervised learning to group data into clusters that
have similar characteristics. The goal is to partition a dataset into K distinct groups (clusters)
where each data point belongs to the cluster with the nearest mean. This grouping helps
in understanding the underlying structure of the data, identifying patterns, and simplifying
complex datasets.

There are several reasons why this algorithm is useful:

e Simplicity and Speed: K-means is straightforward to understand and implement. It
also works efficiently on large datasets, making it a practical choice for many real-world
applications.

e Patterns Recognition: By grouping similar data points, K-means helps in identifying
patterns and structures within the data that might not be immediately apparent.

e Dimensionality Reduction: Although the primary goal is clustering, the centroids
themselves can be used to represent the dataset in a reduced form, aiding in dimensionality
reduction.

Problem Statement Suppose we have a data set {z1,...,zx} consisting of N observations
of a random D-dimensional Euclidean variable z. Our goal is to partition the data set into
K clusters. Formally, we seek K points g, ..., ux to which if we were to assign the points
{z1,...,xn}, a measure of disparity would be minimized.

Following [15] for each data point x,, let us introduce the binary indicator r,; € {0, 1}. If the
vector z; is assigned to cluster j then r;; = 1. Otherwise r;; = 0. As usual in machine learning,
We try to minimize some objective function. In this case, the most common objective function
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is v
=3 raellen — mll” (3.21)
n=1 k=1
Equation 3.21 represents the sum of squared distances of the dataset points, to their assigned
center. Clearly, the optimal values for {r,;} and {u} depend on each other. Therefore, a two-
stage algorithm is used.
Let us first find the optimal values for r,; given the centers p;. The terms involving different
samples n are independent and so we can optimize for each n separately by choosing r,; to be
1 for the k which given the minimum value of ||z, — yu||?. In other words

1 if k= argmin; ||z, — p5|?

Tk = { 0 otherwise (3.22)

Next, let us find the optimal values for {4} given the assignments {r,;}. To find the optimal
value for p; we simply set the derivative of J with respect to py to zero which gives:

N
2> " ro(an — ) =0 (3.23)
n=1

Solving this equation for py gives:

N
i = 2on=t Tk (3.24)

Zvjj:l T'nk
Becuse each stage of the algorithm reduces the objective function J and J > 0, it follows that
the algorithm will converge.
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Figure 3.15: Illustration of the K-means algorithm (adapted from [15])
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4.1 Zero-Shot Learning

As discussed in chapter 3 Zero-shot learning (ZSL) is an emerging field in machine learning
that addresses the challenge of classifying instances from classes that were not seen during the
training phase. The primary approaches in ZSL can be broadly categorized into two main types:
embedding-based methods and generative methods.

e Embedding-based Methods: these methods aim to find a common latent space where
both visual features (e.g., images) and semantic representations (e.g., class attributes or
word vectors) can be projected. The goal is to enable the comparison of these projections
using a similarity measure. For instance, an embedding-based model might map an image
of an unseen animal into a semantic space where the attributes of that animal, described
in words, are also mapped. The model then classifies the image based on its proximity to
the semantic representations of various classes within this space. Methods like these rely
heavily on the quality of the embedding space and the similarity measure used, typically
cosine similarity or Euclidean distance. Successful examples of embedding-based methods
include models that utilize deep neural networks to learn these projections effectively,
capturing intricate relationships between visual and semantic domains [16], [36], [37].

e Generative Methods: In contrast with embedding-based methods, generative approaches
aim to synthesize visual features or even entire images for the unseen classes, leveraging the
knowledge from seen classes and their semantic descriptions. By generating samples for
the unseen classes, the ZSL problem is transformed into a conventional supervised learning
problem where the training dataset now includes synthetic examples of the unseen classes.
Generative Adversarial Networks (GANs) [38] and Variational Autoencoders (VAEs) [39]
are commonly used in these methods to generate high-quality and diverse samples that
closely mimic real-world instances. For example, given a textual description of an unseen
animal, a GAN can generate images that correspond to that description, thereby providing
the necessary data to train a classifier in a supervised manner.

As our method is embedding-based, we review these in more depth and provide more details
on the associated advances. However, to provide a comprehensive overview of the field and
acknowledge the diversity of approaches within zero-shot learning, in what follows, we briefly
present some of the most relevant generative methods. These generative models, though not the
principal focus of our work, play a pivotal role in advancing ZSL from another direction.

4.1.1 Embedding Based Methods

One of the first approaches to solve the Zero-Shot Learning problem was the DAP [61] algorithm.
This algorithm operates by learning a set of probabilistic classifiers for each attribute based on
the training data, which consists of images from known classes and their corresponding attribute
vectors. For each attribute, a classifier is trained. These classifiers are then combined to form
a complete image-attribute model. To perform classification, the Bayes rule is used in order to
find the posterior probability of each unseen class given an image. The core idea of Akata et al.
[72] is to directly learn a linear function to measure the compatibility between images and the
label embeddings (prototypes). Then the learned compatibility function is used to assign each
image in the test set to the prototype which maximizes this function. The method SJE [55] tries
to optimize a billinear compatibility function optimizing a structural SVM loss. ESZSL [95] also
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learns a linear compatibility function. Yet another linear model was proposed by Li et al. [93]
who modeled inter and intra-class relations within a triplet loss framework. The classification is
conducted in a common latent embedding space.

In [96] these ideas were extended by introducing an auto-encoder framework. Even though the
model is still linear with respect to it’s parameters the authors proposed a novel reconstruction
loss which helps alleviating the bias problem (see section 3.2.6).

The Latent embedding Model (LATEM) [97] is a non-linear model, which extends the bilinear
compatibility models by incorporating latent variables. Instead of learning a single bilinear map,
this method learns multiple linear maps and uses latent variables to select the appropriate map
for each image-class pair, making the overall model piecewise linear. CVCZSL [98] generates a
prototype sample for each class, and trains a feedforward neural network that maps the class
semantic vectors from the semantic space to the prototypes in the visual space. Furthermore, an
episode-based training scheme is proposed to enhance the model’s generalizability to new ZSL
tasks.

ConSE [60] tried to leverage an existing n-way image classifier. The method maps images into
a semantic embedding space by using a convex combination of the class label embedding vectors.
Specifically, the classifier’s probabilistic predictions for different labels are used to compute a
weighted combination of these label embeddings, resulting in a continuous embedding vector for
each image. Another approach was proposed by Bucher et al. [99] who tried utilizing metric
learning in order to acquire a linear map, projecting the visual features in the semantic space,
and also a Mahalanobis distance matrix.

An example of transductive, embedding based methods is the QFSL algorithm [100], which
projects the visual features of the seen classes into a number of fixed points in a semantic space
using a MLP, while forcing unlabeled target data to map to other points, thereby reducing
the bias towards source classes (see section 3.2.6). The QFSL model is implemented as a deep
neural network that consists of a visual embedding sub-net, a visual-semantic bridging sub-net, a
scoring sub-net, and a classifier. The model is trained end-to-end, allowing for the optimization
of the entire network, including the visual embedding and the bridging sub-nets. The key idea
of the TEDE algorithm [16] is to construct an embedding space that ensures both intra-class
compactness and inter-class separability to improve zero-shot learning (ZSL) performance. The
method proposed involves a two-branch deep embedding model, which simultaneously maps
semantic descriptions and visual samples into a joint embedding space. This method extends to
the transductive scenario by using high-confidence predictions to iteratively refine the embedding
space. Their idea can be visualized in Figure 4.1.

leopard

Semantic deseription

Figure 4.1: The architecture of the two branch network used by the TEDE algorithm [16]
(adapted from [16]).

To the best of our knowledge there are only a few methods for transductive ZSL which
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use clustering at their core [48|, [49]. "Semi-Supervised Zero-Shot Learning by a Clustering-
based Approach" [48] seeks a linear transformation that maps class signatures onto deep visual
features, ensuring that mapped signatures of seen classes are close to their corresponding visual
features and that unlabeled data are close to the mapped signatures of one of the unseen classes.
Furthermore, a clustering algorithm assigns labels to instances of unseen classes based on the
proximity of these instances to the cluster centers, which correspond to the mapped signatures.
The method iteratively refines the mapping and label assignments. BMVSc [49] on the other
hand addresses the domain shift problem using a visual structure constraint. This method uses
the clustering property of visual features to ensure that the projected semantic vectors align well
with the visual feature centers, leading to better generalization to unseen classes. One of the
methods proposed is the bipartite matching based constraint, which ensures one-to-one mapping
between projected semantic centers and visual cluster centers using bipartite matching distance.

4.1.2 Generative Methods

The "Creativity Inspired Zero-Shot Learning" (CIZSL) [101] method uses a GAN framework
where a generator creates visual features from text descriptions, and a discriminator differentiates
between real and fake features while classifying seen classes. The generator is trained with a
creativity-inspired loss to produce realistic yet distinct features for unseen classes by maximizing
entropy over seen classes. Hallucinated text descriptions, created by interpolating between seen
class descriptions, guide the generator. This approach allows the generated features to be used
for training classifiers, effectively transforming zero-shot learning into a supervised learning
problem.

LisGAN [73] synthesizes fake visual features based on semantic attributes, and a discrimina-
tor distinguishes between real and fake features while ensuring inter-class discrimination. The
method introduces "soul samples" as invariant representations that regularize the generator to
produce realistic and semantically meaningful features. Soul samples act as meta-representations
for each class, ensuring generated features closely align with these prototypes.

f-VAEGAN [42] introduces a method that combines Variational Auto-encoders and Genera-
tive Adversarial Networks to combine the best aspects of both methodologies and enhance the
feature generating process.

4.2 The SCAN Algorithm

The method "SCAN: Learning to Classify Images without Labels" [40] is a SOTA method for
unsupervised image clustering. This method involves three main steps: self-supervised learning,
clustering with nearest neighbors, and fine-tuning through self-labeling.

Detailed Process Explanation

e Self-Supervised Learning: A convolutional neural network (CNN) is trained using self-
supervised learning tasks. Common tasks include predicting the rotation of an image
or distinguishing between augmented versions of the same image. These tasks force the
network to learn high-quality feature representations that capture important visual char-
acteristics.

74



CHAPTER 4. RELATED WORK

e Clustering with Nearest Neighbors: After self-supervised learning, features are ex-
tracted from the images. For each image, its k-nearest neighbors are identified based
on their features similarity. These nearest neighbors are then used in order to train the
clustering network. The method uses a loss function that maximizes the similarity (dot
product) between each image and its neighbors’ feature representations, encouraging the
network to produce consistent and discriminative cluster assignments

e Fine-Tuning through Self-Labeling: Initial clusters formed by nearest neighbor as-
signments are used to generate pseudo-labels for the images. These pseudo-labels serve as
weak labels for supervised fine-tuning. The network is then fine-tuned by training it on
the pseudo-labeled data, using a standard classification loss (e.g. cross-entropy loss). This
iterative process refines the clusters, as the network learns to produce more consistent and
accurate pseudo-labels with each iteration.

4.3 Motivation

In the rapidly evolving field of zero-shot learning (ZSL), generative-based methods have garnered
significant attention and are currently dominating the literature. These methods, especially
those involving Generative Adversarial Networks (GANs), have shown promising results by syn-
thesizing visual features for unseen classes and effectively transforming the ZSL problem into
a conventional supervised learning scenario. However, they often face instability issues during
training, which can lead to inconsistent performance. For instance, in a study by Chochlakis
et al. [41], an attempt to replicate the results of the state-of-the-art -VAEGAN method [42]
revealed that their replication results were 4-8% lower than the original paper’s reported per-
formance, depending on the dataset. This discrepancy highlights the challenges and potential
unreliability associated with generative approaches.

On the other hand, embedding-based methods offer a simpler and more intuitive frame-
work for zero-shot learning. These methods operate on a straightforward principle: seeking a
space in which different classes exhibit intra-class compactness and inter-class separability. This
fundamental concept, first articulated by the TEDE algorithm [16], is the cornerstone of many
embedding-based approaches. The simplicity of this idea makes embedding-based methods more
accessible and easier to understand compared to their generative counterparts.

Building on this principle, our research aims to leverage advancements in the unsupervised
clustering bibliography, which inherently focuses on achieving intra-class compactness and inter-
class separability. By integrating the SCAN clustering technique with embedding-based ZSL
methods, we aspire to develop a more reliable framework for zero-shot learning. In summary,
while generative-based methods have their merits, their instability challenges necessitate a re-
consideration of embedding-based approaches. Furthermore, we believe that this approach con-
siderably simplifies the underlying methodology of generative based methods.
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5.1 Algorithm Overview

In this thesis we address the transductive zero-shot learning (ZSL) problem. In ZSL, the model is
trained with a set of classes, but during testing, it is expected to recognize and classify instances
from classes that were not seen during training. This implies that the model needs to generalize
its knowledge to unseen classes based on some form of semantic understanding. In transductive
learning, the model aims to predict labels for a set of unlabeled data points, typically exploiting
the relationships between labeled and unlabeled instances [43]. This differs from the typical
inductive learning setting, where the model learns a general mapping from input to output,
based solely on labeled data. In transductive learning, the model’s predictions may depend
explicitly on the distribution of the unlabeled data [43].

Combining these two concepts, transductive zero-shot learning deals with the scenario where
the model has to classify instances from the unseen classes, while having access to a set of labeled
instances which belong to the seen classes, and a set of unlabeled instances which may belong
to both seen and unseen classes. The goal is to leverage the semantic relationships between
seen and unseen classes, in order to improve the model’s classification performance, despite not
having direct access to labeled examples for the unseen classes.

Our approach involves clustering all instances from both seen and unseen classes, using a
clustering network, which comprises of a pretrained backbone and a small neural network on top
of it. In more detail, a pretrained backbone refers to a neural network architecture that has been
trained on a large dataset, for a particular task and its learned weights are then used as a starting
point, in order to extract features, often for a different task. Using a pretrained backbone offers
several benefits. It allows leveraging knowledge learning from large datasets, which can help
improve performance on tasks with limited training data. Additionally, it can speed up training
time, since the backbone has already learned useful features. In this work we have chosen the
ResNet101 model as our backbone [44]. Following [40], on top of the backbone, a task-specific
neural network is added, to take advantage of the extracted features and fine-tune the entire
procedure for a specific task, which in this case is image clustering. The goal is to construct a
space, where images belonging to the same class are close to each other, while images belonging
to different classes are far away from one another. This approach leverages both the general
knowledge encoded in the pretrained backbone and the specific task requirements addressed by
the task-specific head, resulting in an efficient solution for the clustering task.

After this step, we project all images in the visual space generated by the trained clustering
network. After that, we compute the mean of each seen class and utilize the K-means algorithm
to estimate the means of the unseen classes. The means mentioned above, will be referred to as
visual representatives.

Having found the visual representatives we hypothesize that instances from the same class
are well clustered together, while samples from different classes are far away from one another. If
this hypothesis holds, then the visual representatives are compact and representative points that
characterize each class. These points effectively capture the essence of each class, allowing us to
measure the similarity or distance between an input image and each class center. Classification
then becomes a matter of assigning the input image to the class whose center it is closest to, in
terms of some distance metric, such as Euclidean distance or cosine similarity.

Thus the problem boils down to assigning a class name to each visual representative. The
correspondence between the known classes, whose labels are used during training, and a subset
of the visual representatives, is already known, and so is their correspondence to the known class
semantic vectors. This set of correspondences can be thought of as a function, which we would
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like to extend in the "best" possible way, in order to map the unknown class semantic vectors
set, to the unknown visual representatives set, in a one-to-one and onto fashion. The underlying
assumption is that the two spaces share some kind of structural similarity, which is not granted
for certain.

The problem described shares parallels with a well-studied task in the field of natural language
processing, known as bilingual lexicon induction (BLI) [45],[46]. BLI aims to find corresponding
words or phrases in two different languages, typically from comparable corpora, without explicit
supervision for all pairs [46]. Much like in our scenario, where we aim to establish correspon-
dences between image cluster means and semantic vectors, BLI leverages structural similarities
between the two language spaces to infer correspondences.

By adopting techniques from recent advancements in the field [46], such as supervised embed-
ding alignment and unsupervised distribution matching, the framework we use jointly optimizes
both labeled correspondences and underlying structural similarities between the semantic and
visual spaces, in order to find an initial linear mapping from the semantic space to the visual
space. Then, the Iterative Procrustes Refinement (IPR) algorithm is used [46], in order to pro-
gressively align more pairs of points and then refine the mapping in a two stage alternating
scheme.

Finally, when all points have been paired by the aforementioned procedure, a final mapping
emerges, which we then use to project the semantic vectors to the visual space. Then each image
is classified to it’s closest projected semantic vector.

To the best of our knowledge, there are only a few methods in transductive zero-shot learning
(ZSL) that utilize clustering as a core component of their approach [47], [48]. For this reason,
our proposed method which leverages clustering for both seen and unseen classes, represents
a contribution to this area. We note that our approach shares similarities with [49] that first
introduced the idea of matching each class prototype to a particular center in a one-to-one
fashion, using structural constraints of the visual and semantic spaces. However, we were unable
to verify the aforementioned work’s results in our experiments.

Problem Definition In this setting, we have N source labeled samples D, = {(xf,yf)|i =
1,..., Ny}, where 27 is an image and yf € S = {1,2,...,S} is the corresponding label within
total S source classes. We are also given N, unlabeled target samples D, = {z}|i =1,..., N,}
that are from target classes U = {S +1,...,5 + U}. From definition 3.2.1 it follows that
SNU = (), but the classes are associated in a semantic space T (see section 3.2.1). Our goal is
to predict the labels y¥ € U, given the images ¥ € D, and the prototype sets 7° and T (see
section 3.2.1).
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5.2 Clustering Step

In this step of our method, we use the SCAN algorithm in order to cluster all images [40] (seen
and unseen classes). Concretely, Gasnbeke et al. [40] began by pretraining a neural network
using the SimCLR, algorithm [50] or the MOCO algorithm [51]. After the pretraining phase, it
is observed that images belonging to the same class tend to be clustered together [40].

In our study, we opted not to engage in such algorithms, since they involve employing a
sufficiently large batch size and a sizable neural network. Instead, we leveraged the pretrained
ResNet101 network, which had undergone training on the extensive ImageNet dataset. This
decision was made to utilize the established features and representations already captured by
ResNet101. The histogram in figure 5.1 illustrates the distribution of correct neighbor matches
among the 20 nearest neighbors of each sample in the AwA2 dataset [6]. Each bar on the
histogram represents the frequency of samples for which a specific number of correct neighbors
was identified. For instance, a bar at a particular z-value signifies the number of samples with
that exact count of correct neighbors.
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Figure 5.1: Neighboring samples tend to be instances of the same semantic class

5.2.1 Mining Nearest-Neighbors

In the previous section, we motivated the use of a large pretrained backbone in order to obtain
some semantically meaningful visual features. However, naively applying K-means on the ob-
tained features can lead to cluster degeneracy [40]. Furthermore, as can be seen in figure 5.2, the
resulting features are not adequately linearly separable. This lack of clear separation indicates
that simply applying K-means clustering in this context would be inappropriate and may lead
to inaccurate and suboptimal results. Therefore we adopt the SCAN algorithm [40], opting for
a better methodology.

Concretely, by using the ResNet101 model, we have obtained embeddings for the whole
dataset D = D,U D,,. Then, for each unlabeled sample x; € D,, we mine it’s nearest neighbors
in the ResNet embedding space. In more detail, since we are assuming that all unlabeled samples
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belong to the unseen classes, we only select neighbors from the dataset D, and not the whole
dataset Dy U D,,. Now for each sample sample z; in the dataset D;U D, we define the set N,, as
follows: If the label of x; is known, i.e z; € D, the set N,, contains all the samples which have
the sample label as z;. Otherwise if the sample is unlabeled, i.e x; € D,, the set N,, contains
the aforementioned K nearest neighbors. In other words:

N, — { {z : x and z; share the same label} if x; € D; (5.1)

{z : x is one of the K nearest neighbors of z;} if z; € D,

Scatter Plot of Samples by Label

Feature 2

T T T T T
—100 —-75 —-50 —-25 0 25 50 73 100
Feature 1

Figure 5.2: TSNE visualization of the AwA2 dataset [6]. Different classes are plotted with
different color.

Loss function The goal is to learn a clustering function gg, which is described by a neural
network with weights 6- that classifies a sample x; and its mined neighbors N, together [40].
gp terminates in a softmax function to perform a soft assignment over the clusters and therefore
go() € [0, 1] The probability of sample x; being assigned to cluster k is denoted as g5 (z;).
In order to learn the weights of gy the following optimization objective is minimized [40]

Z Z log (go(x)" - go(y)) + A Z 96" log g

gceD YyEN ke{l,...,|SUU|}

|D\de

zeD

(5.2)
where g,f =

It is easy to see that the first term in equation 5.2 is minimized, if all samples © € D are assigned
to the same cluster as their neighbors N,, with the highest possible probability. Thus, the first
term in Eq. 5.2 can be seen as a consistency term. The second term can be seen as the negative
entropy of the random variable g;"’. It is well known that the entropy of a random variable is
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maximized by the uniform distribution. Therefore the second term in eq. 5.2 prevents the model
from collapsing, by assigning all the samples x € D to a few clusters.
A schematic representation of the aforementioned algorithm can be seen in Figure 5.3
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Figure 5.3: Semantic illustration of the clustering step of our algorithm. After a set of neighbors
is selected for each image in the dataset, a random image and one of its neighbors are selected.
The original image is weakly augmented, while its neighbor is strongly augmented. Both images
are then passed to the ResNet101 backbone which is kept frozen during training. The resulting
embeddings are then passed to the projection head, in order to calculate the clustering loss.

5.3 Representatives selection

After training the network gy, our goal is to select a point in the embedding space which
emerges from gy, for each class. For this purpose, we discard the last fully connected layer
of the network gyp. Let us denote the remaining part as g4. Our first step is to calculate the
embeddings of the seen class samples E* = {g4(z),...,gs(2%,)} and the unseen class sam-
ples E* = {gy(x}), ..., g4(z},)}. For each seen class, we select its mean, as the corresponding
representative, i.e: for each k € S,

1
= —— Z g¢(asj), where X, = {z} : y; = k} (5.3)

Using equation 5.3, we can define the set M* = {1, ..., us}, which we shall call the seen class

representatives. Observe that |M*| = |S|. Since the labels of the set D, are not known, we can
not follow a similar way of reasoning. Therefore we use the K-means algorithm, initializing it with
the real number of unseen classes. We denote the resulting centers as M* = {ugi1,..., tsiv}-

We shall refer to the set M", as the unseen class representatives. Again, we observe that

M| = .

5.4 Finding A Bijective Mapping

Our final goal is to identify the correspondence between the set M and the set 7" (and therefore
the set U), given the correspondence between the sets M*® and the seen prototypes set 7. This
problem can be seen as a semi-supervised manifold alignment problem [52] and it is well studied
in the field of Natural Language Processing, in the form of bilingual word translation [46], [45],
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[53]. In our case, the sets M* and T* can be seen as aligned vector embeddings. More specifically,
we are looking for a function fy, which maps each element of the unseen class prototypes set T
to a unique element of the unseen class representatives M", given that each element of the seen
class prototypes set T° should be mapped to it’s corresponding seen class representative of the
set M*.

In order to learn the parameters of the function fy we follow [46] utilizing unsupervised
distribution matching and aligning known word pairs.

Unsupervised Distribution Matching Given the sets M* U M* and T° U T", the loss
Lo p aims to match the distribution of both embedding spaces. In particular, the param-
eters 0 of f, are learned so as to fool a discriminator D, which in turn is trained to dif-
ferentiate between the representatives M*® U M" and the mapped prototypes fo(T° U T") =
{fo(t3), .-, fo(tE), fo(teyy), .-, fo(té,y)}. fo and D are alternatively optimized using the fol-
lowing objectives:

1 1
log(1 — D log D
Low =517 e%ﬂ og( (fo@)) = 5= G%MU og D() -
@ g 5.4
1
ﬁ@\D - S +U S IOgD(fg(iL'))

Aligning known class representatives-known class prototypes Given the sets M* and
T?, the function fy should map the elements of T, as “close” as possible to their corresponding
seen representative. This can be formulated as:

Loy|ati (5.5)
s Z 20 ||2 Tk
The final loss function for the mapping function fy is formulated as

L = Lo+ Lojaiig + Lo (5.6)

5.5 Iterative Mapping Refinement

A common method of improving the function fy is iteratively expanding the correspondences
between the sets M* and T and then refining the mapping function fy as a post-processing step
[46], [45]. This refinement procedure first finds the pair of points in the sets M* and T" that
are the closest matched by fy, and then updates fy by considering both the correspondences of
T with M? and the new pair of points.

To this end, the parameter vector found in section 5.4 is denoted as 6y. Similarly, the sets
M* and T" can be thought of as unmatched-initial sets and thus we shall denote them as 7}
and M{. In order to quantify the similarity between the points in M{ and 7' we consider the
set Cp = ME x fo,(T) € RP x RP where D is the output dlmensmn of the neural network g,
(see section 5.3). Let sim(-) : RP x RD — R be a similarity function with:

2Ty

sim(x,y) = ————
=9) = TRl
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Given the above measure of similarity, let us choose

(r1,y1) = argmax sim(Cp) (5.7)
(,y) MY X T

Our next step is to define the “new” sets M7 = M{U{x1}, TY = T¢U{y,} and M{* = M¥\{z,},
T =15\ {y1}. Afterwards we refine the mapping fy,, given the new sets M7 and 77. In more
detail, we store the vectors found in the sets M} and fp,(77), in the matrices X; and Y as
columns respectively. The new parameters 6, are found by solving the optimization problem

0; = argmax Tr(X{Y7) (5.8)
0
where
_ 251 Ks x Dx(S+1)
X1 = (||M1||2 sl H$11H2> eR7 5.9
o fetD) fo(t3) foly1) Dx(S+1) '
Y= (nfa‘(t%)u SR T ||f9(y1)H2) €R

Consequently the sets M* and T}* are used in order to match a pair of points from the unseen class
representatives and the unseen class prototypes, using fy,. This process continues inductively
until there is an n € N, such that M* = T" = (). Since |M¥| = |T§| = U, it’s easy to see that
n = U. Therefore the final parameter vector chosen for the mapping fy is 0.

5.6 Classification

After the iterative mapping refinement step, we are given a learned parameter ;. In order to
classify an image x € D, we first project it in the visual space generated by the trained neural
network g4 and then find the nearest projected class prototype. In other words the predicted

class ¢* is given by
T .
= argmax{ f@U(TF(C)) g¢(ZL‘) } (510)
cesuu [ foy (m(€))l]2ll90(2)]]2
where 7(-) : SUU — T is a class prototyping function (see section 3.2.1).

84






CHAPTER 6. EXPERIMENTAL RESULTS

Chapter 6

Experimental Results

Contents
6.1 Datasets . . . . . . . . e e e e e e e e e e e 87
6.1.1 Animals with Attributes 2 dataset . . . . . . .. ... ... ... ... 87
6.1.2 CUBdataset . . . .. .. . . . . . . 88
6.2 Evaluation Metrics . . . . . . . . . . L0 e e 90
6.3 Nearest-Neighbors selection . . . . ... ... ... ........... 91
6.4 Clustering Step . . . . . . . . .t i i i i e e e e e e e e e e 93
6.4.1 Effect of the number of neighbors selected . . . . . . . ... ... ... 95
6.5 Classification Results . . . ... .. ... ... 0000000 98
6.5.1 Classification Results for the AwA2 Dataset . . . . . . ... ... ... 99
6.5.2 Limitation of the CUB Dataset . . . . . . . .. ... ... ....... 100
6.6 Discussion . . . . . . . . o i i i e e e e e e e e e e e 102

86



CHAPTER 6. EXPERIMENTAL RESULTS

6.1 Datasets

To demonstrate the results of our method, experiments are conducted on two widely-used ZSL
benchmark datasets; AwA2 [6], and CUB [7]. Following the same configuration as other methods,
two different data split strategies are adopted:

e Standard Split (SS): The standard seen/unseen class split was first proposed in [17] and
then widely used in most ZSL works [54],[55],[56],[14].

e Proposed Split (PS): This split was proposed by [18] in order to remove the overlapped
ImageNet-1K dataset classes from target domain since it is used to pre-train the CNN,
ResNet101 model.

6.1.1 Animals with Attributes 2 dataset

The Animals with Attributes 2 dataset (AWA2) |6] consists of 37,322 images of 50 classes of
animals where 40 classes are seen for training while the remaining 10 classes are unseen during
training. Each class is associated with an 85-dimension continuous attribute vector. In figure
6.1 four random images from four different classes are shown for visualization and understanding
purposes.

(a) Image of an otter

(c) Image of an antelope (d) Image of a skunk

Figure 6.1: Four randomly selected images from the AwA2 dataset [6]
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Frequency Distribution of Animals in the AwA2 Dataset
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Figure 6.2: Frequency distribution of classes in the AwA2 dataset [6]

It is evident from figure 6.2 that the class distribution within the dataset is imbalanced,
which poses a significant challenge for zero-shot learning (ZSL). In more detail, an imbalanced
dataset can lead to biased model predictions. Classes with fewer instances may not be adequately
represented during training, resulting in a poorer performance during testing. Overall, the class
imbalance introduces complexities in both the learning process and the generalization capabilities
of ZSL models.

6.1.2 CUB dataset

The Caltech-SCSD Birds-200-2011 (CUB) dataset contains 11,788 images of 200 fine-grained
bird species. A standard split divides these bird species in to 150 seen classes and 50 unseen
classes. For each class, a 312-dimension continuous attribute vector is provided.

Although the dataset’s histogram (figure 6.4) indicates a seemingly balanced distribution
of classes, it’s essential to note that each category comprises no more than 60 samples. This
relatively small sample size per class presents a considerable challenge for the task at hand.
With such limited data per class, the model’s ability to generalize effectively to unseen classes
becomes more difficult, as it may struggle to capture the full variability and complexity of each
category.

Moreover, the fine-grained nature of the dataset further compounds the difficulty of the task.
As can be seen in figure 6.3 the classes are visually similar, requiring the model to discern subtle
differences between them. This is a focal point which will be further discussed in the following
chapters.
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(a) Image of a Great Crested Flycatcher (b) Image of a Gray Kingbird

(c) Image of a Chipping Sparrow (d) Image of a Canada Warbler

Figure 6.3: Four randomly selected images from the CUB dataset [7]
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Figure 6.4: Frequency distribution of classes in the CUB dataset [7]
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6.2 Evaluation Metrics

In our proposed method, we employ a multi-step approach to address the challenges of zero-shot
learning. By isolating each stage of the pipeline, we can identify which specific components may
be contributing to any discrepancies or sub-optimal performance in the final results. Assessing
each step individually is essential for ensuring the effectiveness of the proposed approach for
zero-shot learning. It allows us to identify and address potential issues, and iteratively refine
the methodology for better results.

For the first step, which involves selecting nearest neighbors in the ResNet101 embedding
space, we aim to evaluate the accuracy of this process in identifying similar instances within
the dataset. Specifically, we seek to ensure that the selected neighbors share the same label as
the instance under consideration. While there isn’t a specific metric tailored to this step, we
conduct visual evaluation of the resulting histograms to assess the efficacy of neighbor selection.

In the second step, we use a small projection head, in order to cluster images belonging to
the same class together. In order to access the resulting clustering quality we use the accuracy
(ACC) [102] and normalized mutual information (NMI) [103| metrics.

Finally, after the alignment step, the Mean Class Accuracy (MCA) [37] is used to evaluate
the classification results.

Function Implementation
Jo FC + ReLu + FC + ReLu + FC + ReLu + FC + Softmax
fo FC + ReLu + FC + ReLu
D FC + ReLu + FC + Softmax

Table 6.1: Implementation of the three non-linear mapping functions, discussed in chapter 5.
FC stands for a fully connected layer while Reliu is the known activation function.

Implementation Details

For the first step of our method, we chose to use 20 neighbors as in most cases studied in [40].
The impact of varying the number of neighbors will be explored in detail in Section 6.4. The
neural network implementations discussed in the previous chapter are summarized in Table 6.1.
All neural networks were trained using the Adam optimizer [57] with a learning rate of 107
The embedding space of g4, where classification occurs, is 2048-dimensional, consistent with the
output dimension of the pre-trained ResNet101 model. The clustering step of our method lever-
ages two kinds of augmentations: "weak" and "strong". Following [58|, weak augmentation is a
standard flip-and-shift augmentation. In more detail, we randomly flip images horizontally with
a probability of 50% and we randomly translate images up to 12.5% vertically and horizontally.
For "strong" augmentations RandAugment [59] is selected. This algorithm randomly selects
transformations for each image, using a magnitude that controls the severity of all distortions
which lies in a predefined range. The parameter A\ weighting the entropy term in equation 5.2
is set to 2,5. Both the vectors found in the semantic space and visual space (the g, embedding
space) are unit normalized before the alignment step (as discussed in chapter 5).

90



CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Nearest-Neighbors selection

Scatter Plot of Samples by Label Scatter Plot of Samples by Label
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Figure 6.5: TSNE visualization of all
samples from the AwA2 dataset [6].

Figure 6.6: TSNE visualization of samples from
50 random classes from the CUB dataset.

To generate the nearest neighbor sets discussed in the previous section, we utilize the pretrained
ResNet101 model [31] to project all images. This step is crucial in assessing the effectiveness
of our approach, as it directly impacts the clustering results. We employ the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [104] to visualize the distribution of the
projected samples. The degree to which samples of the same class tend to cluster together is of
utmost importance, as it influences the final clustering outcomes. This is particularly relevant
as we aim to cluster samples together with their neighbors, as described in Equation 5.2. Figure
6.5 presents the distribution of all samples from the AwA2 dataset, providing insight into the
overall structure of the data. Additionally, Figure 6.6 showcases the t-SNE plot for a subset of
50 randomly selected classes from the CUB dataset, as visualizing all classes is impractical, due
to their large number.
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Figure 6.7: correct neighbors histogram of
unlabeled instances from the AwA2 dataset
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Figure 6.8: correct neighbors histogram of
unlabeled instances from the CUB dataset.
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Figures 6.7 and 6.8 provide insight into the degree to which unlabeled samples tend to share
nearest neighbors with the same label, based on their 20 nearest neighbors. As we operate under
the assumption that all unlabeled samples belong to unseen classes, we restrict our search space
exclusively to the unlabeled set when mining nearest neighbors. This is because samples from
the labeled set are expected to belong to different categories.

Figure 6.9 illustrates the mean and standard deviation of correct neighbors in both datasets.
It is evident that in the CUB dataset, over half of the 20 neighbors selected for each image, do
not belong in the same class with it. This finding will significantly impact the effectiveness of
our proposed method, as will be discussed later on.

Mean and Standard Deviation Comparison
5.01

20+

15 ~

Values

10 1

AWA2 CUB
Dataset

Figure 6.9: bar plot of the mean and standard deviation of correct neighbors for both the AwA2
and CUB datasets. The Mean is represented using a blue bar for each dataset and the Standard
Deviation can be found in the black vertical line in each bar.
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6.4 Clustering Step

This section investigates the effectiveness of the clustering step in both datasets, which is based
on the results of the pretrained ResNet101 model discussed in the previous section. In each epoch,
the clustering efficiency is improved by minimizing the loss function presented in Equation 5.2.

ACC and NMI Metrics Over Epochs
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Figure 6.10: ACC and NMI Metrics Over Epochs on the AwA2 Dataset: The plot shows the
clustering performance of a neural network (blue circles and red lines) and K-means clustering
(yellow circles and purple lines) across 200 epochs.

Figures 6.10 and 6.11 present the clustering performance metrics of our neural network on
the AwA2 and CUB datasets over 200 epochs. The metrics displayed are Accuracy (ACC) and
Normalized Mutual Information (NMI).

The neural network’s ACC metric, represented by blue circles, shows a significant improve-
ment during the initial epochs. Specifically, there is a steep increase in accuracy from epoch 0
to epoch 20, after which the curve begins to stabilize. This trend indicates that the network
rapidly learns the distinguishing features of the dataset in the early stages of training.

Similarly, the NMI metric, denoted by red crosses, follows a comparable trend with an initial
sharp rise. By epoch 20, both ACC and NMI metrics reach a relatively high plateau, suggesting
that the network has captured the essential relationships within the data. The subsequent
epochs show minor fluctuations in both metrics, which may be attributed to the fine-tuning of
the network’s weights.
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ACC and NMI Metrics Over Epochs
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Figure 6.11: ACC and NMI Metrics Over Epochs on the CUB Dataset: The plot shows the
clustering performance of a neural network (blue circles and red crosses) and K-means clustering
(yellow circles and purple crosses) across 200 epochs.

In contrast with the dynamic learning process of the neural network, the performance metrics
obtained through K-means clustering remain constant throughout the epochs. The ACC metric
for K-means, shown by the yellow line, and the NMI metric, represented by the purple line,
provide baseline performance measures for comparison.

The K-means clustering results exhibit significantly lower values compared to the neural
network’s metrics. The constant values highlight the nature of K-means as an unsupervised
method that does not benefit from iterative learning across epochs. Unlike the neural network,
K-means clustering applies a fixed algorithm that does not adapt or improve over time.

In Table 6.2, we present the pseudo upper bound accuracy metrics for the unseen classes, for
both the AwA2 and CUB datasets, under the assumption of an optimal alignment between the
semantic space prototypes and the visual space means. These pseudo upper bounds represent
the best possible mean class accuracy (MCA) on the unseen classes if the alignment were perfect
after the representatives selection step (see section 5.3). Specifically, the alignment is considered
optimal under the assumption that the representatives chosen by the K-means algorithm remain
fixed. In other words, if we were to re-implement the K-means algorithm, the arrangement of
the representatives in the feature space would perhaps change, leading to a different set of upper
bounds. Therefore, from a mathematical perspective, these are not true upper bounds, which is
why we refer to them as pseudo upper bounds.

The table compares two approaches: Applying K-means clustering to the ResNet101 features
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and applying K-Means to the trained neural network’s embedding space (the g4 embedding
space discussed in section 5.2.1). The accuracy values shown for each method indicate the
potential maximum performance of our model under ideal conditions, for the zero-shot classes.
The results demonstrate a clear improvement in pseudo upper bound accuracy when using the
neural network compared to the original ResNet101 space. For the AwA2 dataset, the pseudo
upper bound accuracy with K-means is 87.68%), whereas it increases to 96.2% when using the
neural network. Similarly, for the CUB dataset, the pseudo upper bound accuracy improves
from 42.33% with K-means to 53.55% with the neural network.

These findings suggest that the neural network approach is more effective at capturing and
aligning the semantic relationships in the feature space compared to the simpler K-means clus-
tering method. The neural network likely benefits from its ability to fine-tune the extracted
features from the ResNet101 backbone, creating a more discriminative feature space that better
separates different classes, including those not seen during training.

The improvement in the pseudo upper bound accuracy metrics shows that using a neural
network for clustering, instead of just applying K-means directly to ResNet101 features, gives a
more accurate depiction of the underlying data structure.

Pseudo Upper Bounds | AwA2  CUB
K-means 87.68% 42.33%
Neural Network 96.2%  53.55%

Table 6.2: Pseudo upper bound comparison between simply applying K-means to the ResNet101
features and the features generated by the clustering network.

In summary, the results depicted in Table 6.2 highlight the advantage of incorporating a task-
specific neural network on top of the pretrained ResNet101 backbone. This approach improves
the feature space by increasing the potential classification accuracy for unseen classes in our
transductive zero-shot learning scenario.

6.4.1 Effect of the number of neighbors selected

The relationship between the number of neighbors selected for the set N, (see section 5.2 and 6.4
for the meaning of pseudo upper) and the ACC and NMI metrics for both datasets is illustrated
in the Figures 6.12 and 6.13. Tables 6.3 and 6.4 show the exact numerical results achieved by
the selection of different numbers of neighbors, when performing the clustering step.

AwA2
number of neighbors 2 5 10 20 50 100 200
ACC 80.36 85.53 84.11 84.54 82.82 83.10 83.47
NMI 93.65 94.92 94.80 95.18 94.52 94.24 94.71

Table 6.3: The exact value of ACC and NMI metrics achieved by selecting a different number
of neighbors regarding the AwA2 dataset.
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CUB
number of neighbors 2 ) 10 15 30 50 80
ACC 74.09 75.59 74.47 7573 76.26 73.89 73.16
NMI 87.12 88.60 88.34 88.68 88.87 88.45 87.93

Table 6.4: The exact value of ACC and NMI metrics achieved by selecting a different number
of neighbors regarding the CUB dataset.

From the plots, we observe that the fluctuations in both ACC and NMI metrics are relatively
minor across different number of neighbors. This indicates that the clustering method is robust
to changes in this hyperparameter, maintaining stable performance across a broad range of
neighbor values, as it was previously also noted in [40]. Such stability is positive, as it suggests
that the method does not require precise tuning to achieve satisfactory results, making it easier
to apply in various scenarios.

ACC and NMI vs Number of Neighbors
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Figure 6.12: Performance metrics ACC and NMI as a function of the number of neighbors in
the model for the AwA2 dataset. The blue line represents the ACC metric, and the red line
represents the NMI metric.

Analyzing Figure 6.12 which corresponds to the AwA2 dataset, we observe that the ACC
metric peaks around 20 to 30 neighbors, indicating an optimal range for this hyperparameter.
While the NMI metric exhibits fluctuations, it is the ACC metric that aligns more closely with
our final step. Furthermore, during training we also noted that the NMI metric fluctuates by
1-3% even with the same number of neighbors.
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For the CUB dataset, both the ACC and NMI metrics peak at around 30 neighbors, as it
can be seen in Figure 6.13. From Figure 6.4, it is evident that no class contains more than
60 samples. This limitation in class size explains why selecting a large number of neighbors is
sub-optimal. This phenomenon is evident in the plot, where performance metrics decline when
the number of neighbors surpasses 30. Therefore, keeping the number of neighbors within a
moderate range ensures that the selected neighbors are more likely to belong to the same class.

ACC and NMI vs Number of Neighbors
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Figure 6.13: Performance metrics ACC and NMI as a function of the number of neighbors in
the model for the CUB dataset. The blue line represents the ACC metric, and the red line
represents the NMI metric.

Figure 6.5 illustrates a TSNE plot of all classes using the pretrained ResNet101 network. We
observe that while there is some degree of clustering, the classes are not distinctly separated and
there is considerable overlap among them. This overlap suggests that simply using this pretrained
backbone might yield sub-optimal results. After applying our clustering step, however, a notable
improvement in the class structure is observed.

The classes in Figure 6.14 become more compact and distinctly separated, demonstrating
the effectiveness of the clustering method. This enhanced separation is crucial for downstream
tasks, as it facilitates more accurate classification and better overall performance. The transition
from overlapping to well-separated clusters underscores the capability of the algorithm to refine
the embeddings, making the classes more distinguishable, which is a desirable state for the final
step of our algorithm.
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Scatter Plot of Samples by Label
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Figure 6.14: TSNE visualization of AwA2 dataset after training the clustering network. (This
is the g4 embedding space).

6.5 Classification Results

In the following two subsections, we report our final results under both the conventional and
generalized Zero-Shot Learning settings. In conventional ZSL, all test instances are assumed to
belong to the unseen classes, while in the Generalized ZSL scenario, test instances are assumed
to belong to both the seen and unseen classes. Results for the conventional setting are reported
under the standard split (SS) [17] and results for the generalized under the proposed split (PS)
[18].

The Mean Class Accuracy (MCA) is the popular evaluation metric in Zero-Shot Learning
[37]. In the conventional setting, MCA is only calculated on the test unseen domain (Y = U).

MCA = ﬁ Zaccy (6.1)

yeu

where acc, is the top-1 accuracy of class y from test unseen data. In the generalized settings,
the label space comes from the union of the seen and unseen domains (Y = SUU) [37].
2x MCA;s x MC Ay,
H= ! d (6.2)
MCA; + MCAy,
where M C'A;, is the mean class accuracy of the test seen data, M C A;, is the mean class accuracy
of the test unseen data and () is their harmonic mean.
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6.5.1 Classification Results for the AwA2 Dataset

Results under the Conventional Setting

Method MCA

CONSE [60] 45.6

I | DAP [61] 44.1
SSE [62] 60.1
SE-ZSL [64] 68.3
ALE_ trans [65] 70.7

T GFZSL (G) [66] 78.6
TEDE [16] 77.5
Bi-VAEGAN (G) [67] | 95.8
ICPC (F) [37] 96.1

T | Ours 95.7

Table 6.5: ZSL performance comparison of different methods on the AwA2 dataset in the con-
ventional ZSL setting, using the standard split [17]. (I) indicates that a method is inductive
while (T) indicates that a method is transductive. (F) indicates that a method fine-tunes the
ResNet101 backbone, and thus the comparison is not fair. (G) indicates that a method is gen-
erative. (-) implies that the corresponding results were not reported.

Table 6.5 provides a comparative analysis of various Zero-Shot learning methods on the AwA2
dataset in the conventional ZSL setting. The methods listed include both inductive (I) and
transductive (T) approaches, with our method being transductive. It is noteworthy that the
table consists exclusively of embedding based methods (see section 4.1.1), except for the Bi-
VAEGAN [68] and GFZSL [66] methods, which are state-of-the-art generative approaches (as
discussed in section 4.1.2). Our method demonstrates competitive performance, achieving an
95.7% on the AwA2 dataset, as reported over 50 runs to ensure robustness.

In comparison to the other methods, our approach outperforms several inductive methods
and is on a par with the ICPC [37] and Bi-VAEGAN [68] methods, which are SOTA algorithms
in Zero-Shot Learning.

Results under the Generalized Setting

Table 6.6 shows the performance of different zero-shot learning methods on the AwA?2 dataset in
the generalized ZSL setting. The methods are either inductive (I) or transductive (T), and are
categorized as embedding-based (E) like ours, or generative (G). Our method’s results are aver-
aged over 50 runs. On the AwA2 dataset, our method achieves 89.8% for seen classes (MC Ayy),
73.2% for unseen classes (MCAy,), and a harmonic mean (H) of 80.7%. It is noteworthy that
our method outperforms all inductive based methods, which is after all anticipated, since we
have access to more information (unlabeled samples from the zero-shot classes).

Finally, the reduction in mean class accuracy for zero-shot classes in the generalized setting
compared to the conventional setting (Tables 6.5, 6.6), is justified by the bias problem, which
was discussed in section 3.2.6.
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AwA2

Method MCOA,. MCA, H
F-CLSWGAN (G) [69] | 818 140 239

| | SP-AEN (@) [0 9.9 233 371
DEM (E) [71] 864 305 451
ALE (E) [72] 68.9 521 594
ALE_ trans (E) [65] 3.0 126 215

| PREN (E) [75 88.6 324 474
£VAECAN (C) [42] 83.6 848  86.7
Bi-VAEGAN (G) [68] | 91.0 900 904

T [ Ouwrs (E) 808 732 807

Table 6.6: ZSL performance comparison of different methods on the AwA2 dataset in generalized
ZSL setting, using the proposed split [18]. (I) indicates that a method is inductive while (T')
indicates that a method is transductive. (G) indicates that a method is generative and (E)
means that a method is embedding based (see section 4.1.1).

6.5.2 Limitation of the CUB Dataset
Impact of Correct Neighbors for the CUB dataset

Upper Bounds vs. Correct Neighbors
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Figure 6.15: Mean Class Accuracy pseudo upper bounds vs. correct neighbors on the CUB
dataset.

Figure 6.15 shows the pseudo upper bounds of our method on zero-shot classes within the CUB
dataset, where our method’s performance has been suboptimal, after the representatives selection
step (see section 5.3 and 6.4 for the meaning of the term "pseudo upper bound"). These upper
bounds represent the mean class accuracy of zero-shot classes, given scenarios where 2, 4, 6,
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..., 20 neighbors are correctly identified for each sample out of the 20 selected. However, it is
important to note that this graph simplifies the problem considerably due to several assumptions:

1. Deterministic Number of Correct Neighbors: In the provided analysis, the number
of correct neighbors is fixed, resulting in zero variance. In practice, this is not the case, as
the number of correct neighbors would vary as we can see in Figure 6.9.

2. Random Selection of Correct Neighbors: The analysis assumes that the correct
neighbors for a sample are selected randomly each time. However, in reality, if for example
y is a nearest neighbor of x, then the probability of x being a nearest neighbor of y is much
higher.

Despite these simplifications, the analysis underscores the importance of increasing the num-
ber of correct neighbors in the initial step of our method. As illustrated in Figure 6.15, there
is a clear positive correlation between the number of correct neighbors and the pseudo upper
bounds of class accuracy. Improving the accuracy of neighbor selection can thus significantly
enhance the performance of our zero-shot learning method on CUB.

As per our previous conversation, the method heavily relies on the initial number of correct
neighbors selected in the original ResNet101 space. This is because the clustering network tries
to assign an instance and its selected neighbors to the same cluster. As observed in Figure
6.9, in the CUB dataset, more than half of the neighbors selected belong to different classes,
which obviously will lead to sub-optimal results. To resolve this problem we experimented
with pretraining algorithms such as variations of the SimCLR [76] and MOCO [77] algorithms.
However, these methods require large batch sizes, which exceeded our computational resources,
resulting in the inability to improve the number of correct neighbors. Additionally, we explored
other clustering approaches from the semi-supervised clustering bibliography [78], [79], [80].
Their results were far inferior to the clustering technique we applied, demonstrating considerably
lower ACC and NMI metrics.

Results under the Conventional Setting

Method MCA

CONSE [60] 34.3

I | DAP [61] 40.0
SSE [62] 43.9
MFMR [63] 47.5
SE-ZSL [64] 54.1
ALE_ trans [65] 54.5

T | GFZSL (G) [66] 50.0
TEDE [16] 67.8
Bi-VAEGAN (G) [67] | 76.8
ICPC (F) [37] 84.1

T | Ours 48.0

Table 6.7: ZSL performance comparison of different methods on the CUB dataset, in conven-
tional ZSL setting, using the standard split [17]. (I) indicates that a method is inductive while (T)
indicates that a method is transductive. (F) indicates that a method fine-tunes the ResNet101
backbone, and thus the comparison is not fair. (G) indicates that a method is generative.
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Results under the Generalized Setting

CUB

Method MCA, MCA, H
F-CLSWGAN (G) [69] | 33.1 218  26.3
SP-AEN (G) [70] 38.6 24.9 30.3

I | DEM (E) [71] 256 343 205
ALE (E) [72] 36.6 426 394
LisGAN (G) [73] 37.8 429 40.2
DSRL (E) [74] 25.0 177 20.7
GFZSL (G) [66] 458 249 322

T ALE_trans (E) [65] 45.1 23.5 309
PREN (E) [75] 55.8 352  43.1
EVAEGAN (G) [42] 651 614  63.2
Bi-VAEGAN (G) [68] | 717 712 715

T | Ours () 51.6 467  49.0

Table 6.8: ZSL performance comparison of different methods on the CUB dataset in generalized
ZSL setting, using the proposed split [18]. (I) indicates that a method is inductive while (T)
indicates that a method is transductive. (G) indicates that a method is generative and (E)
means that a method is embedding based (see section 4.1.1).

6.6 Discussion

In this study, we achieved notable results on the AwA2 dataset, competing effectively with
Bi-VAEGAN [68], a state-of-the-art (SOTA) generative method in the conventional setting.
Specifically, in this setting, our method was outperformed by the Bi-VAEGAN [68] method
by only 0.1%. However, our results on the CUB dataset were relatively lower compared to
other SOTA methods. We attribute this to the original ResNet101 space, where we selected the
nearest neighbors for each unlabeled sample. Histogram 6.8 revealed that many samples have
a large number of neighbors from different classes, causing classification issues. This limitation
is inherent as we use ResNet101 as our backbone, which is pretrained on the ImageNet dataset.
Since ImageNet contains only a few classes of birds, the model struggles to extract discriminative
features for the large number of different bird species in the CUB dataset, leading to a sub-
optimal embedding space.

Attempts to pretrain the backbone using algorithms such as SimCLR [76] and MOCO [77|
were unsuccessful due to limited computational resources. These algorithms could have enhanced
the clustering of samples from different classes, leading to an improved initialization of our
algorithm. To further substantiate our point, a post-clustering pseudo upper bound analysis
(see Figure 6.15) showed that for the CUB dataset, an increased number of correct neighbors
would lead to a significant increase in the pseudo upper bound of the Mean Class Accuracy
(MCA) metric on the unknown classes. The real pseudo upper bounds of our method are 96.2%
for the AwA2 dataset and 53.55% for the CUB dataset, while our results are 95.7% and 48%
respectively. This implies that the alignment step is effective, and the results of our method are
restricted by the structure of the ResNet101 space, especially for the CUB dataset.
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7.1 Conclusion

Zero-shot learning (ZSL) addresses a significant challenge in machine learning: the classification
of instances from classes that were not encountered during the training phase. This capability is
crucial for real-world applications where it is impractical to obtain labeled data for every possible
class. Examples include identifying rare species in ecological studies, detecting emerging cyber
threats, and recognizing novel objects in autonomous systems.

To tackle the ZSL problem, in chapter 4 we presented two primary approaches: embedding-
based methods and generative-based methods. Embedding-based methods aim to project both
visual features and semantic representations into a shared latent space, allowing for the compar-
ison and classification of unseen classes based on their proximity within this space. Generative
methods, on the other hand, synthesize visual features for unseen classes using models like Gen-
erative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), transforming the
ZSL task into a conventional supervised learning problem with synthetic data.

In this thesis, we propose a novel approach for transductive ZSL by integrating a state-of-
the-art unsupervised clustering algorithm, specifically the SCAN [40] algorithm, and adapting
it to suit our needs. To the best of our knowledge, this is the first attempt to bridge the gap
between advancements in the unsupervised clustering literature and zero-shot learning. Our
method leverages the strengths of SCAN to enhance the clustering of visual features, ensuring
better classification of unseen classes

Our proposed method demonstrates performance on par with other state-of-the-art ZSL
algorithms on the AwA2 dataset, achieving these results without the need for end-to-end training
or fine-tuning of the ResNet101 backbone.

In summary, while our method shows competitive performance on the AwA2 dataset, it is
constrained by the quality of initial neighbor selection in the ResNet101 space, particularly evi-
dent in the CUB dataset results. This limitation underscores the need for further improvements
through enhanced pretraining techniques or more effective clustering algorithms.

7.2 Future Work

The current study highlights several areas for future research to further enhance the performance
and applicability of our proposed zero-shot learning (ZSL) method.

Firstly, we aim to implement pretraining algorithms such as SimCLR and MOCO, which
have shown great promise in improving the clustering of samples from different classes. However,
these algorithms require significant computational resources that exceed our current capabilities.
Securing the necessary computational resources will enable us to leverage these advanced pre-
training techniques, potentially leading to better initialization and improved clustering results,
thereby enhancing the overall performance of our ZSL model.

Secondly, we plan to develop our method into an end-to-end framework rather than main-
taining the current modular structure. Currently, our approach involves two distinct steps: the
clustering step and the subsequent bijective mapping to connect the semantic space to the visual
space. Integrating these steps into a end-to-end model would reduce potential sources of error,
and likely improve the model’s accuracy. An initial attempt at creating an end-to-end method,
is briefly mentioned in the Appendix.

Finally, we intend to explore more state-of-the-art (SOTA) clustering algorithms. By exper-
imenting with a broader range of advanced clustering techniques, we aim to identify methods
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that can further enhance the clustering quality and, consequently, the performance of our ZSL
model.
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Chapter 8

Appendix

Analysis of an End-to-End Method

In our pursuit of improving the zero-shot learning (ZSL) framework, we experimented with an
end-to-end approach designed to integrate clustering into a unified model. Despite the theoretical
advantages of reducing potential error sources and enhancing model accuracy, our implementa-
tion of this end-to-end method did not yield the desired results.

The end-to-end method we explored comprises two distinct model: a clustering network
and a discriminator. The network’s role is to project samples from the visual space into the
semantic space. The discriminator operates within the semantic space, distinguishing between
the projected visual samples and the class prototypes that reside there. The training of the
clustering network is guided by an objective function with three key aims: (1) assigning an
image and its mined neighbors to the same cluster, (2) projecting images with known labels
close to their corresponding class prototypes, and (3) fooling the discriminator. Then a pseudo-
labeling strategy is adopted, to progressively incorporate the testing samples with pseudo labels
into the training scheme [16].

Problem Definition In this setting, we have N, source labeled samples D, = {(z5,y)|i =
1,..., Ny}, where 27 is an image and yf € S = {1,2,...,S} is the corresponding label within
total S source classes. We are also given N, unlabeled target samples D, = {z}|i =1,..., N,}
that are from target classes U = {S +1,...,5 + U}. From definition 3.2.1 it follows that
SNU =, but the classes are associated in a semantic space T (see section 3.2.1). Our goal is
to predict the labels y € U, given the images z¥ € D, and the prototype sets 7% and T" (see
section 3.2.1).

By using the ResNet101 model, we have obtained embeddings for the whole dataset D =
D,UD,. Then, for each unlabeled sample z; € D,, we mine it’s nearest neighbors in the ResNet
embedding space. In more detail, since we are assuming that all unlabeled samples belong to the
unseen classes, we only select neighbors from the dataset D, and not the whole dataset D,U D,,.
Now for each sample sample z; in the dataset D, U D, we define the set N,, as follows: If the
label of z; is known, i.e z; € D, the set N,, contains all the samples which have the sample label
as z;. Otherwise if the sample is unlabeled, i.e z; € D,, the set N,, contains the aforementioned
K nearest neighbors. In other words:

N, — { {z : x and z; share the same label} if z; € D, (8.1)

{z : x is one of the K nearest neighbors of z;} if z; € D,
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The goal is to learn a clustering function gy, which is described by a neural network with
weights 0- that classifies a sample z; and its mined neighbors N, together. gy terminates in a
softmax function to perform a soft assignment over the clusters and therefore gy(z) € [0, 1]/5%¥1.
The probability of sample z; being assigned to cluster k is denoted as gk(z;). In order to
have access to the embeddings generated by the clustering network and not only the resulting
probabilities, we denote the clustering network without the final linear and softmax layers as gy.

Finally there will be a discriminator D : T — [0, 1] which will be trained to distinguish
between the projected visual features and the class prototypes.

Optimizing the discriminator D Given the clustering networks weights 6, ¢
1
Lpwe.s = NN, > log(1 - D(ge(x))) — G > log(D(r(y)))

Y zeD,UDy yeSUU

Optimizing the clustering network 6, ¢ Given the discriminator D

1 ! ’
Loowo =~ TN >0 loglge(@) g +A D> gfloggy
s " zeD yeN, ) ke{1,....|SuU|}
cluste;i;g loss entropy ove:“rthe clusters
1 L |
—— Y fulgelad).m () - ——= Y logD(gs())
N Ns+ N,
(zf,y8)€Ds N 2E€DsUD, .
project the l;geled samples fool the d?s;riminator

close to their corresponding
class prototype

where g5 = 75 32, 95 (@)

Pseudo-Labeling After training the aforementioned models, a pseudo-labeling strategy is
adopted [16]. Specifically, all samples are projected into the semantic space. Unlabeled images
closest to the unseen class prototypes are selected and assigned these labels as pseudo-labels.
Then the two models are retrained using the augmented training dataset D%"9. Specifically we
select the top-M high-confidence testing samples that are predicted to belong to an unseen class,
using the similarity measure f,(g4(x}), 7(y)), where y € U. This process continues inductively,
until there are no instances predicted to belong to the unseen classes.

Results In the inductive setting, the results of our end-to-end method were not as promising
as anticipated. Specifically, the accuracy on the AwA2 dataset ranged from 60% to 65%, while
for the CUB dataset, the accuracy was between 31% and 34%. These outcomes indicate that
our approach, despite its theoretical advantages, struggled to achieve competitive performance
in practice, particularly on the CUB dataset.
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