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ITepiindm

To Nevpwvind Alxtua Tpdgpwv (NAT') €youv avaderyVel we éva onuavtixd LOVTEAO 0TOV TOUER TNG UNYAVIXAS
pddnone, Aoyw g €ueuTNG xavotntds Toug vo yetpllovton dedopéva dounuéva we yeapruatoa. H avaropao-
Tater} S0vaun twv NAT éyel odnyroel oe onuavtxr npdodo ot Bldpopous ToYElC, OTWS 1 AVAAUGT] XOVOVIXEY
SOV, to Blohoyixd dixtua, 1 poplont) ynuelor xou Ta cLCTAUATE GUOTACEWY. XToUg Topelc avtols, N obvodn
yedpwy mailer xodoploTind péAo TN dNULOLEYIH CUVOTTIXMV OVATOPUC TACENDY UEYAAWDY YEAPWY, DATNEYV-
Tog TORGAANAAL TG OUCLOBELS Bopég WLoTNTeg xou TAnpogopiec. Ta NAIL nopéyouv éva toyupd mhaicio yia
amodoTx o anotekeouatixy) alvor), EMTEETOVTOG TNV €AYMYT) OCNUAVTIXGOY TANEOPORLKY and cUVieTa Xou
MEYAANS XAloncag BeBoUéva YeapmY.

Yy nopoloa dimhwpating epyaocta, Yo aviigetwnicovye to TedBAnue e obvodng yedpwy eepeuvdvtas TNV
avamapoo Totixt) duvaun tev Axtiwy Avuotolyone Fedgpwy (AAT), evée egedixeupévou timou NAT nou un-
ohoyilel petpixéc ouyoldtnrag PeTaEld Leuymv YPdpwy PEow EVOS UNyoviolol avTtioTolylong Baciouévou otny
ooy UETHED YRAQwY. XUuyxexpluéva, Bedouévou evog cUVOROU BeBOPEVLY YRAPWY PE TOMNATAEC XAdoELS,
otoyebouue va e€orydyouue amd xdie ypdpo €vav LToYEAPo, o onolog dlatneel Ta Baoxd YoEUXTNELCTIXE TNG
xhdone oty onola avrxel o apyixos Yedpoc. T'a tov oxomd autd, exnadedouvpe éva AAT oe éva npdBinua
OUOLOTNTOC YRAPWY Xt avamTOGCOUUE HEVOBOROYIES VLol TNV avary Vidplon TwV HoTBwy Tou podolvel To wovtého
xatd Ty exnaidevon, ta omolo Yo xadodnyRoouv T dladixacior dnwovpeyiag cuvedewy. o v allohdynon
e anddoone TNE TEOCEYYLONC Hag, dNuloveyolue éva cuvleTind GUVORO SEBOUEVWV YEWUETEIXWY CYNUAT®Y,
evioyuuévo pe d6pufo, To onolo mopéyel éva eleyyduevo tepBdAlov ye yvewoté ground truth yio o3y al-
oAGYNOT, X To oLyxplvoude pe undpyovoes apyttextovinés NAT yio ) obvoldn ypdepwv. Emniéov, neipo-
ponilopaote pe to oivoro dedopévwy MUTAG, to onolo dev Swdtétel ground truth, ohhd Siadéter mpwtdTuna
(prototypes), xoodnydvtac v nowoTxh yac allohéynon. To anoteréopata, allohoynuéva 1660 o€ TocoTUX
600 Xl G€ ToLoTIXO eTinedo, LTodEVOOLY OTL To AAT €yel xahbtepn anddoor o GUYXELON UE Tol GAAO LOVTERA
xou ebvan oe Yéom var avayvwpeloel pe cuvémela axplfeic cuVOeELS TOU AVTITPOCWTEVOUY TIC XAJOELS, OL OToleg
TPOCPEEOUY TOAUTIHES TANEoQoples yior Tar poT(Bo mou yodolvel To wovtého xotd TNV exmaldeucy xou yio TiC
dradixaciec AMdme anopdoemdy Tou.

AéZeig-xhedid — Nevpwvixd Aixtua I'edpowv, Aixtua Aviictoiyiong 'edpwyv, Lovodn
I'edgpwv, Opordtnta I'pdpwyv, ITpwtéTuna Tedepwy






Abstract

Graph Neural Networks (GNNs) have emerged as a key model in the field of machine learning, due to their
inherent ability to handle graph-structured data. The representation power of GNNs has led to significant
advancements in diverse fields, including social network analysis, biological networks, molecular chemistry,
and recommendation systems. In these domains, graph summarization plays an important role in creating
compact representations of large graphs while preserving essential structural properties and information. In
this context, GNNs provide a powerful framework for efficient and effective graph summarization, enabling
the extraction of meaningful insights from complex and large-scale graph data.

In this thesis, we will address the problem of graph summarization by exploring the representation power
of Graph Matching Networks (GMNs), a specialized type of GNNs that computes similarity scores between
pairs of graphs through a cross-graph attention-based matching mechanism. Specifically, given a multi-
class graph dataset, we aim to extract a class-representative subgraph from each graph, that effectively
represents the class to which the graph belongs. To this end, we train the GMN on a graph similarity task
and propose two methodologies to identify the patterns learned by the model during training, which will
inform the summary creation process. To assess the performance of our approach, we create a synthetic
dataset of Geometric Shapes, enhanced with noise, which provides a controlled environment with known
ground truth summaries for precise evaluation, and compare it against existing GNN architectures for graph
summarization. Additionally, we experiment with the real-world MUTAG dataset, which lacks ground truth
summaries, but offers ground truth prototypes, guiding our qualitative evaluation. The results, evaluated
both at quantitative and qualitative level, indicate that the GMN outperforms the other models and is able
to consistently and accurately identify class-representative summaries, which offer valuable insights into the
patterns that the model learns during training and its decision making processes, enhancing its explainability.

Keywords — Graph Neural Networks, Graph Matching Networks, Graph Summarization,
Graph Similarity, Graph Prototypes
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O Hdeha va evyaplotion Yepud tov emPBrénovtd you, x. I'edpylio Xtduov, xou tov x. Adavdoio Bourddnuo
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

O\ npbogpareg eZehifeic otov topéa e Teyvntric Nonuoolvne (TN) éyouv empépel onpovtixés ahhayéc oe dud-
(opouc Topelc, 0dNYDVTIE o8 oNUAVTIX TEHOBO GE TEPLOYES OTLC 1) AVALY VOELOT ExdVaC, 1) enc€epyaoio puotxic
yhoooog xou 1 Blomhnpogopinf. Metadd autdv tov e€elilewy, ta Nevpwvixd Aixtua Tedgpov (NAT) éyouv
avadelyel wg Baowud epyohela yior TV avdAuon xou xatavdnoT cUVIETWY BEBOUEVKOY BOUNUEVLY WS YRAUPHUATA,
o&lomoldvTas TNV EUpuT tepapyin) TAnpogopla Tou umdpyel ot autd. ‘Eyouv dellel alloonuelntn emtuyia oe
TOMES EQUPUOYES, OIS 1 AVAAUGT] XOWOVIXDY dTOWY, To Brohoyixd dixtua, 1 avaxdAudn Qopudxwy xal To
CUGC THUATO CUCTHOEMV.

To enixevipo avthic e dimhwpatixic epyaociag Eyxelton 6NV AVTWETONTON Tou Tpofiiuatoc tne Xivodng
Fpdpwv. Aedouévou evog cuvOoU SeBOUEVHV YREPWY TOAATAWY XAJCEWY, 6TOYO0C Uag elvar vo avantOEoupe
pedodohoylec yio Ty e€aywyn evog unoypedpou and xdle YedPo TOL AVTITPOCKTEVEL AMOTEAECUATIXG TNV XAJOT)
otnv omnola autdg avrixel. To Pooixd woviéha mou Yo yenoylomothooupe o auTHY TNV epyaocia etvan tor Alx-
oo Avtistolyione Fpdgwv (AAT), évac eedixeuvuévoc tonog NAT nou, dedopévou evdc Ledyous Ypdpwy o
eloodo, unohoyilouv plo petper] ogoldtnTog YETOED TOUG PE TN YXENHOoT EVOS Unyaviopol avTiotolyione Baoto-
pévou otny mpocoy HeTald Twv Yedpwy. Exmudeboviac to poviého oe éva mpdBAnuo ogoldTnTaS Yedpwy,
otoyeboude vo avomtdEoude uedodoloyieg yior TNV avayvaetor xou eEaywyh Twv potiBwy mou €yel udldel to
HOVTEND, TPOXEWEVOU VoL BNULOULYNCOUUE TS CUVOTITIXES OVUTOPOC TACELS TOU AVTITPOGWTEVOLY TLC XAAOELC.

Emuniéov, 1 avgavopevn avdyxn yie Epunvetown Texyvnth Nonpootvn (XAI) éyer yivelr xplown MNoyo ng
EVOWUATOONG TV VELPWVIXGY dXTOWY 6 TOAOUS ToUels, 6mwe N uyetovouiny mepliohdmn xar tor autodvoua
oyfuato. H @bon tev poviéhwy autdv wg «uoadea xoutid» eyelpel epwtiuata oyetxd ue v oflomiotio Toug,
xaHloTOVTAS avoryxola TNV ovdnTugn UeVoBoAoYIOY TIOU EVIGYUOUY T1 SLUQAVELD XAl TNV XOTAVONCT TV Oi-
adootdv Adne anodoewy tov yoviédwv. H obdvoldn chvietwv yedpwy xou 1 dnuloupyio avandpactdoewy
TIOU AVTITPOCWTEVOLY Ti¢ XAdoELS, avaryvwpeilovtag Ta potifa mou €youy udldetl to NAT, uropel vo cuufdiel otnv
%xahOTERN XaATOAVONOT TwV TEOBAEYEDMY TOUG XU GTNY EVIOYUOY TNG EPUNVEVCIUOTNTAS TOUC.

1.1.1 Ocewpia F'pdpwy

Yo Soxpltd pordnpatind, €voc yedgoc 1N éva yedenuo elvol Wio a@nenuévy avamapdoTaor EVOS GUVOAOUL
oTolyelwy, 6mou pepxd Levyn otoyelwy cuvdéovta petadd toug pe deopole. Tumxd, évag Ypdpos onueldvetol
wc G = (V,E), énou V eivon éva alvoro xopupdv, xou E eivar éva aOvoho oxuddyv. Ot xopugéc u xou v (Lag
ooepric {u, v} ovoudlovtan dxpa tne oxuric. H oeipd evée yedgou etvon o aptiuds tewv xopugpny |V | xo cuvideg
ouuBohiletar we n. To péyedoc evde ypdpou elvon o aprdude twv oxudy |E| xou cuvidwe cupPorileton we m.

Avapopixd pe v cuvBesIUOTNTA, OTIOLEGONTOTE B0 XOPUPES GE Evary YEdpo Umopel vo cuvBEovTal ue xapia, uio 1
noAamhéc axpée. Ot ypdpot Tou emitpénouy ToAamAés oxuéc va €xouy Ta (dlat dxpa ovoudlovTat ToAUYpaphUoTa
1 ToAUYypagol. Mepinég gopéc, ol Yedgpot emtpénetol va tepléyouy Bpdyoug, ol onolol elvor axpég TOL EVEVOLY
Lol xopugy) Ue tov eautd te. O Bardude uiag xopupnc elvor o aptdoc TV axpdy Tou cUVBEoVTaL YE AUTAY,. 2E
évay Ypdypo tdine m, o péytotoc Podude xdde xopuphc elvar n — 1 (f n + 1 av emtpénovion ol Bpdyot, eneldt,
évoe Ppdyoc oupPdiier pe 2 otov Badud), xou o péyiotog aptdude oxpody eivan n(n —1)/2 (4 n(n +1)/2 av
emtpénovion ol Ppdyol).

Ot ypdopol unopolv va xatryoptomoindoly ye Bdomn v xatedduvor TV oxuoy Toug:

e Kateuduvépevor I'pdpor: Xtouc xareuduvopevoug yedgpoug, xdie axur éxet wa xotebuvorn cuvd-
edeuévn ue authv xou cuvidwe avoamaplotdtar Ye €va BEAog mou delyvel and T ulo xopuer TNy dAAN.
Avuth ) xotedduvon unodnAdvel Ty aouppetplo ot oyéom, Tou onuolvel 6T 1 GOVBEST Amd TNV XOPLYPY
U oY X0pUPY| v BEV UTOBNAGOVEL oOVEEST) Omd v OE w.

e Mn Katevduvouevor I'pdpor: Xtoug un xateuduvouevous Ypdpouc, ot oxués elvat Stmhig xatehuv-
ong, utodnAnvovtag 6Tl xde oLVdeoT elvan cuppetew. Etol, plo aur and u og v GUVETEYETOL AUTOUATA
HLOL oK) Ao U OE U.

"Evag yedpoc xadopileton mhipwe xou unopel vo avamopaotadel oand tov nivoxo yertvioong 1 tn Mota yelrtviaore
ToU:
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Figure 1.1.1: "Evo napdderypo xateutuvéuevou xon yn xateutuvéuevou yedgou.

o ITivaxag I'evtviaong: Evag mivaxae yeitvidong A evoc yedgou oeipdec n elvon évag mivaxog n X n
6Tou ToL Un Pndevxd otolyela uTodeEVOoLY TNV Topousia WS axpic HETAED TWV XOPUPMY. XTOUS UN
XATELDLVOUEVOUS YRAPOUS, AUTOS O Tivaag elvol CUUMETEIXOS.

o Alota I'evtviaong: H Aiota yerrvioong elvon évoc mo anodotinde tpdnog avandpdoTtaong Yedpwy,
Wiodtepa aponody yedpwy. Kdde xopupr diatneel wia Mota 6hwv Twv x0opup®y e Ti¢ onoleg elval dueca
oLVOEDBEUEVY, BlELXONDVOVTOG TNV ATOBOTIXOTERY) BldoyLoN.

Ot xopupég xaL oL axuég Pmopolv eniong Vo €Y0ouv YoeaxTneloTixd 1 Bden cuVOEDEUEVA YE AUTES, TTOU CUYV
AVATOELOTOVTOL w¢ Tivaxeg N AMoteg mou mepiéyouv dedopéva oyeTixd Ue xdVe xopuph Y axur. Autd to Bden
UTOPEl VO OVTITPOCKWTEVOLY, YLl TOEEDELYUd, XOOTOC, UiXN 1 XWENTXOTNTES, avdAoyo Ue To TEOBAnua mou
avtipetwnileton. Tétolol ypdgpot eugpaviloviar o ToAAG Thaiota, YLol TOEEDELYA O TEOBANUOTA CUVTOUOTERNS
dladpounc OTwe To TEOBANUA TOL TAUVODLIOU TWANTH.

o I'ettovid: H yertowd woag xopugnic v oe €vay ypd@o elvar 10 6UVOAO OAWY TWV XOPUPLY Tou efvol
vertovée pe Ty v. Tumnd, yio e xopueh v, 1 yertowd e N (v) opiletan we {u € V' | {u,v} € E}.

e Movondti: ‘Evapovondtt oe évay yedpo elvon gio axohoudio axpdv mou cuVEEEL pot axoloudo Slaxelttéyv
xopupoy. ‘Eva povordt elvon amhd av dhec oL xopupéc (xan emouévne dhec ol axuéc) elvon Sroxpitéc.

o ITepinatog: 'Evog nepinatog elvar pior oxoloudion axdv ol X0pUPGY OTOU EMLTEENETAL 1) ETOVAANYN
%x0pLPOVY xa oxuwy. Evoc nepinatog unopel vo etvar avolytde, av apyilel xou TeERELOVEL OE BlaPOPETIXES
XOPUGPES, 1 XAELOTOC, av dpy(lel xou TERELOVEL 6TV (Blal XOpPUEPY.

e KiUxhog: Evoc x0xhoc eivon éva xhelotéd Yovomdtt ywels enavolopfavopeves xopupéc 1 axués, extoc
amd TNV aEy x| XoL TEAXY XOpPLYY,.

e YTroyvpedpog: Evoc utoypdpog etvan évag yedpog mou oynuotiletol and éva UTOGOVOAD TWY XOPUPLY ol
XUV EVOC PEYANOTEROU Ypdpou. Av évac unoypdpog meplhauBdver dhec Tic oxués LETAZ) TV XOPUPKDY
7oL epavilovtal oToV aEyd YEAPo, 0VORdLeETaL ETOYOUEVOS UTOYRAPOC.

1.1.2  Avtiotoiyion xow Oporétnta I'pdpwy

H avtiotoiyion ypdewv nepthopfdver Tnv eVPECT] AVTLOTOLYIOV UETAED TLV XOPUPEY Yol TWV OXU®Y BU0 Yedpwy,
avtxatonte(lovtag T Sowxr| Toug oyoldtnta. Elvow Wbialtepa onuavting otny avayvopior wotifwy, v dpoon
UTOAOYLOTOV, TN BLOTANEOPORIXT Xl TNV AVIAUCT] XOLVeViXGy Bixtiwy. H avtiotolylon yedewy pnopel va elvon
oaxpBfic (LoouopLopde Yedpmy) f TEOCEYYIGTIXA.

AxpiBhc Avtictoiyion I'edpwv (Icopopgpiopdc Tedpwy)

H oxpiPric avtiotolylon yedewy, 1 LOOUOpPLoROS Yedpmy, amattel Wio EVa-Tpoc-éva avTlotolylon uetald tev
%x0puPHY 800 Ypdpwy ou datneel T yertovixétnta. Tumxd, S0o yedgor G1 = (Vi, Eq) xou Go = (Va, E»)
elvan Loopop@ixol €dv undpyet wa 1-1 o ent ouvdptnon f : Vi — Vi tétowa wote (u,v) € Ei av xou pévo av
(f(u), f(v)) € Es. Eva napdderypa anewxovileton oto Syfua 1.1.2.

To mpdfBinuo Tou ooUopPIopol UToYEApoL, To omolo amotehel YeVixeuorn Tou TEOBAAUATOC LOOUOPPLOUOV
yedpov, elvor yvwotd bt eivor NP-mifpec. To Teot Weisfeiler-Lehman (WL) xu o AAyéprdnog

3



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

\"D
v

— o an oo
Vv

+

NPHANUOUTWOooO =

+

O,

Figure 1.1.2: M ontixr} aneix6vior 800 LoOUOp@IXmY YRAPwY.

VF2 eivau a€loonuelntes tpooeyyloels yia Ty aviyVeEuon LOOUORQIOUMY, UE TOV TEAEUTOLO VoL EVOL AOBOTLXOC
oTNY TEdEN Tapd TNV eX¥ETIXY] TOU TOAUTAOXOTNTA OTNY YEWOTERY TERTTWON.
Anéoctacn Enciepyacioc I'pdpwy

H Anéotaorn Enelepyacioc Ipdpwy (GED) [59] petpd v opotdtnto uetald 800 Ypdpwy we tov eNdyloto
aptdpd hertovpyloy enelepyaciog TOU AmALTOUVTOL YIoL VO HETOTEANEL €vog apyixos Ypdpog oe évay TEAXO.
Avutéc ol Aettoupyieg meplhauBdvouy mpooixes, Slorypapés XL avTIXATAOTAGELS XOUPLY xat axuodv. Tumxd, 7
GED petalt dbo ypdpwv Gy = (V1, E1) xow Gy = (Va, E3) elvow:

d(G1,G2) = mi? Z c(e)

6mov T' elvat T0 6OVOho GV Twv Suvatdy oxohovhody hettovpyudy enciepyaoiog, xa c(e) elvar To x60T0C TNe
hertovprylag eneepyoaoiag e. To Eyrua 1.1.3 anewxovilel authy Tnv évvola.

Figure 1.1.3: Anéotaon Enegepyacioc I'edpwy petald evog Lebyoug yedpwy.
O vnohoyiopéde tne GED efvor NP-hard, o8nydvtag otny avdntuér EUpETIXGY Xl TEOGEYYLOTIXWY oAyoplduwy.

IMuerivec Tedpwv

O nuprveg ypdpwy elvol Wat GAAT TEOGEYYLON Yo TN UETENOY TNG OHOLOTNTAC YRAPwWY, Wlultepa Yerown o
pnyeviery wdinom. Avtiotouyilouy Toug YEAQOoUS GE YMEOUS YopoXTNELOTIXGY VPNAHS SldoTaons, ETTPETOVTOS
™ xphon ahyopiduwy 6nwe to Support Vector Machines (SVMs). O Snpogiheic muprives ypdopwy mepthoufd-
vouv:

e ITupAvec Tuyaiwy Iepindtwy [28]: Metpolv v opodtnta Bdoet Tou ool twv aviioTolywy
Tuyaiwy tepindtwy ot 8Vo YEdpous.

o ITupAivec Xuvrouwdtepov Movornatiol [7]: Buyxpivouv TIC XATOVOUES TWY GUVTOROTEPGVY
HoVOTATIOV ot 800 YEapOoUC.
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e ITuprivec Weisfeiler-Lehman (WL) [61]: Xenowonotolv to te0T toogopgiopol Weisfeiler-Lehman
yioe vou xorTarypdpouy Souixée mAnpogopleg.

o ITupAvec Yroyvedpwy [41]: Buyxpivouv 11 cuyxvétnta Slapdpwy LoTBwY LTOYEEPLY Péca oTOUC
yedpouc.

Meéviotoc Kowvdg Troypdepog

To npdéfinue Touv Méyiotov Kool Yroypdgpou (MCS) nepihopfdvel tnv e0peot) ToU HEYOADTEPOL UTOYEAPOL,
xolvol oe dUo Bedouévouc yedgpouc. ‘Eyxel epapuoyéc otn ynuelomAncopopxt|, T PLOTANEOQORIXY Xl TNV
avaryveelon potiBev.

e Méyiotoc Kowog Ernayoduevoc Yrnoyvedpog (MCIS): To mpdPinua MCIS emdibdxel tov
HEYOADTEPO ETAYOUEVO LTLOYRAPO, X0V Xal OTOUE B0 apylxols Yedpoug. Tumixd, Bedopévmy d00 yedpwy
G = Vg,Eg) naw H= Vg, Ex), o otéyoc eivan va Ppedei évac ypdgpoc I = (V, Er) tétowog wote I va
elvow €éval enaryOuevog unoypedpog t6co tou G 600 xou Tou H xon va €xel Tov PEYLOTO apitud xopUPKDY.
To mpéBinua avalitnone tou MCIS eivan NP-hard, xouw olybpripol 6nwe o ahydprduoc McSplit [51]
YENoHoToloUVTAL Yiot TNV €MLAUGY| TOL.

e Mévyiotoc Kowode Yroyvpdgpos Axphc (MCES): To npdPinua MCES enixevipdvetar ot
peylotonolnom tou aplduol TV XoVOY oxuey UETaED 800 yedpny, avelupTAtwe Tou aptduol Twv xo-
eLpAV. Eivar ypriowo oe cevdpla 6Tou oL GYECELS XY Elval IO ONUAVTIXES amd TIC x0pUPES. ‘OTwe xou
vt To MCIS, 1o mpdPinue avalftnone tou MCES etvow NP-hard.

1.1.3 Nevpwvixd Aixtua I'edpwv

‘Onwe éyel NON avagepdel, ol ypdpot elvon Sodedouévol oe moiudprduoue Topelc, cuuneptAUUPovVoUEVEDY TKY
XOWOVIXWV BIXTOWY, TV BLOAOYIXGY BIXTUOV, TRV YRAQWY YVOONC X0l TWV CUCTNUATOY cuotdoewy. Ta nopo-
dootaxd veupwvixd dixtua dev elvon eYyevOC oyedlaopuéva yio Tn dloyelplor Bedouéveny dounuévey oe Yedpoug,
NoYw e anadtnorc Toug yia gicodo e otadepd péyedoc. Autol ol neptoplopol odRynoay oty avdntun Twv
Nevpwvindv Awxtiwy T'edgov (NATY), to onola efvan oyediacpéva va eneepydlovton dueca TiG SOUES Ypdpwy.

H x0pla Aettovpylo mou ypnowonototy ta NAT yia va ene€epyaotolyv xor Vo avollcouy dedouéva oe Lop®h
yedpov elvon 1 Zuvéhén Fedgwy (Graph Convolution). ‘Onwe utodnidver xou to dvopd tne, elvon 1 avtioTtoryn
Aettoupyia TNe cuVEAMENS oNudTeY (6Twe auty| Tou egoapudleton oo Buvehixtind Neupwvixd Aixtua yio etxoves),
oM pe Tig omopaitnTeS BlapopomoLfoEls, MOTE Vo Umopel va e@appoctel o ypdgpous. Auth 7 hertovpyia
emtpénel ota NAL vo pordodvouy xow vor eEarydyouy yapaxtnelotixd and xOufoug xou Ti¢ TOTUXES TOUG YELTOVIES,
EXMETOARNEVOUEVAL TIG OYETELS IOV UTHEYOLY GTOV YRAPO.

‘Onwe xou Ye v xhaooixh cuvélen, n Luvélin I'edgwy propel vo yehetniel 1660 010 YwEWd Tedio, 660 xou
070 Qaopatixd tedlo. Lto gacuatixd medlo, n avdhuon evoc NAT cuunepihopfdvel Tov oploud tng cuvdetnong
Tou eqopuolet, agol yivel o xatdhhnhog yetaoynuotiouéds Fourier (yio tnv cuyvotixd uekétn). Aedouévou tou
Meraoynuatiopol Fourier ypdpou [54], [19], [6], evoc ofuartog ypdypou x xou evéde gpiltpou g € R™, 1 cuvehxtixt
Aettovpyla pmopel var exgppactel we:

rxg=U(U"g) @ (U"a))

YupBolilovtac o gikteo ue dpouc Wlotdy, go(A) = diag(UT g), n ouvehuctind Suadixacio uropel var amhomot-
noel oe:
x*xgg =Ugp UTy

6mou, gg = diag(f) elvon o diorydGVIOg TVOXOC IOV AVTIGTOLYEL GTOUC CUVTEAESTES TOU QUoUATIXOU QiATEOU.

Tt v avdluon oto yweind medio, Ta NAT expetodhebovton tn uédodo MetdBaone Mnvuudtov [29], dniadt
BLadidouv v TAnpogopia Tou éyel o xdde xépfog, oe Ghoug Toug Yeltovég tou. H podnuatien €xppoon upiog
TETOlC oLVAPTNONG ElvaL:

t+1 t)
( '= Z M, hE ’ J ’eij)
JEN (1)
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R+ Ut(h(t) m(t+1))

6ToU hl(. ) eivou 1 avoanapdotact tou x6pfou i ato Bua t, e;; elvar To Sidvuoua TG xS LETAED TV XOUBwy
7 xan J, xou ot My xon Uy elvon ol padiolpeg ouvapthoele.

Ta neplocdtepa ywped NAT, unopodv va ypapoldy wg tia TopoAAoy ) TNS THEATAvVe Ladnuotixic Exgpaong.
To mo dadedouéva and autd elvon tor oxdAouvdor:
e To Graph Convolution Network (GCN) [38] amhonotel T cuVEMEN YpdpwY 0To Paopotixd eninedo,

npoceyY(lovtag TN cUVENXTIXT AELTOURYId UE ULl TOTIXT TROsEYYLoT Tewtng Taéng. O xavdvog diddoong
vt To GON Biveton amd ) oyéon:

HH) = 4 ([)—%AD—%H(”W(”)

omou A = A+ I elvou o mivoxag yertvioone pe npootdéueves auto-ouvdéoele, D elvan o mivaxog Bodpod
tou A, HO eivor o mivaxac yopmxtnetotindy xéufev oo eninedo 1, WO eivon évag padedoywoc mivoxog
Boptv oo eninedo [, xou o elvon piar gn yeauixy) cuvdptnor evepyomnoinong.

e To NAT Graph Attention Network (GAT), npotddnxe to 2017 [65], xou 1 xdpla déa HTay 1 Yehion
TOU UNYoVIoHo) TPOCOYHC, Xou cUYxexpuéva tou multi-head attention [64]. O unyoviopdc mpocoyhic
yenothonolelton yiar vo dnplovpyroet ta Bden mou amodidel o xdde xdufog otoug yeltovég Tou. H evnuep-
wpévn xatdotao tou x6pfou i TeoxinTtel Thea and TNV axdioudn e&lowon:

hEH_l) =0 Z OéijWh_gl)
JEN (D)
OmoUL o elvou Wiot U YEUULXOTNTA Xou a5 elvon tar Bden mpocoyng, Ta omolo utohoyilovton we e€ng:

. exp(LeakyReLU(a” [Wh;||Wh;]))
> reni) exp(LeakyReLU (a” [Wh[|[Why]))

Qg5

omou a xan W elvon exnondedolueg mapdleTool.

e To GATV2 rou tpotddnxe oto [8] anédele dtt To apyxd poviéro GAT [65] unohoyilel otatixd| npocoyA
peTtagd Twv x6uPwv tou yedgpou. To nedBinua nou nopgouctdletl to poviého GAT elvou 6Tl 1 cuvdpTtnon
npocoyfc opllet o otardepn xotdtoln TwvV xOuPwy, Ywelc auth vo eaptdton and Tov xOuBo i ToU EpWTY-
potog xde gopd. LNy mpedln, autd onuaiver dti undpyet évag xOuBog v oTOV YPdYo, oTov omolo Ghot ot
uréhowtol xépPol anodidouv 1o VPNAGTEPO oX0p TPOCOYHE XU aUTH amodeviETL avoluTid oto [8]. H
TEOTIOTOMNUEVT EXDOYY) Yo TOV UTOAOYLOUS TwVY Bapddv Tpocoyfic mou Advel To npofBinua autd elvon 1) e€ng:

B exp(a’ LeakyReLU([Wh;||Wh;]))
S ey Xp(a LeakyReLU (W [WWhi])

Oéij

e Té)oc, To Graph Isomorphism Network (GIN) [66] eivar 1) npddtn yopx TEOCEYYLON TOU AVTLHETL-
nilel TNV aduvoula TEONYOUUEVWY YWEXDY UOVTEAWMY VO XEVOUVY BLAXELIOT, UETOED BLOUPOPETIXDY SOUWDY
yedpwy Ue Bdomn Ti¢ evowuatwoelg tou nopdyovton. Tar var yiver autéd, to GIN yenowonolel plor amhy
TEYVIXY, TeooVETOVTOG Wia TopdueTEo Bdpouc yia Tov xevipixd x6pufo tne ocuvéhine. H Aertoupyia opile-
Ton TopodTed, OToU € elvon To Bdpoc:

JEN (@)

To GIN oamodewvietan 6Tt elvon e€loou LoyUpd PE TO TEGT Loopop@lopol Yedpwy Weisfeiler-Lehman,
ONAodY| TaPAYEL DLOUPOPETINES EVOWUATOOELS XOUBWY OTAY Ao OAOUUACTE UE UT) LOOROPPLXOUS YRA(POUC.
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Aixtua Avtictoliyiong I'edgpwyv

To Aixtua Avuotoiylone Tedgpwv (AAT), nou npotddnxay and touc Li et al. [46], aviinpocwnebouy o e€et-
dixeupévr tpocéyyion oto NAT, oyedlaouévr yio TNV aVTHETOTION ToL TEOBAAUATOC TS UAUNoNg opoLoTnTaS
yedpwy. Xe avtiVeon ue ta nopadooiaxd NAT', nou avtiotowyilouv xdie yedgpo aveldptnto oe évav dlovuo-
potxd oo, toe AAT aflomoolv évay unyaviopd mpocoyfc Hetalld ypdpwy. Autd xadotd to AAT Witepa
AmOTEAEGHATIXG Vit EpYacieg 6mou 1) oyéom UeTadd TwV BopdY TwV Yedepwy nailel xadoplotnd pdho 6Tov TpOso-
dloploud e opototnrac. To AAT elvon to x0plo poviého NAT mou Yo ypnoluonolicouye oTa TELRAUOTd HoC
OTA EMOUEVA XEPHAOULAL.

ApyrtexTtovixr AuxtOwy AvTictoiyiong Ledgpwv: Toa AAT evioybouv t0 Bacind LoVTENO TV Topo-
dootonwyv NAT, evowpatdvovtag évay Unyaviowd npocoyhc YETAED yYpdpwv, tou avtotolyilel Toug xoufoug
eVOC Ypdpou e Touc xouPouc Tou dANou Yedpou.

1. Ilpocoyn petall Iepdpwv: Ta xdde x6ufo oc xadévay and Toug B00 YEAPOUS, O UNYAVLOUOS
npocoyc yetall ypdpwy urohoyilel évav cuvteleoth tpocoyfc e xdde x6uBo atov dhho ypdgpo.

exp(sim(h{?, h{MY)

i 'Y

>, exp(sim(h{", h)))

(R ]

Q5 =

® 5

, ’
LY ELVOL OL QVOTIARAGC TO-

6mou sim elvon Lot GUVEETNOT OUOLOTNTOC, OTIWE 1) OUOLOTNTO GUVNIULTOVOL, Xal h
Ol TV XOUPwY ¢ xau j oo eninedo t.

2. Avdvuopa AvTiotoiyiong: To didvuoua avtiotoiylong pj—, aviixatontellel oe moov Badud toup-
et évoc xouPog oTov éva Ypdpo e évay Y TeEploa6TEPOLS xOUBouc GToV GAho YEdo.

Hj—i = Aj—q - (hz(‘t) - h;t))

3. Evnuépwon Awaviopatoc KouBwv: Ta Swviopota twv x6ufwyv evnuepmvovior Aaufdvovtog
UTOYT TOGO TAL GUYXEVTOWUEVO UNVOUATOL OO TN YELTOVLA ToU XOUfou, 660 ot To Sldvuoua avtloTolyiong:

WY = Faode hgt),zijhZMj’ai
J J’

4. YuoowpevTthc: Metd and évay cuyxexplpévo apriud T emnédwy diddoong, €vag cUGCWEEVTAS AauPBdvel
10 GOVOAO TWYV AVATUPACTICEDY XOUPwY {hET)} wc eloodo, xou utohoyilel plo avanopdotacy ot eninedo
yedpou hg = fg({hET)}). Xenowomnoteiton o axdroudoc cuoowpeuthc [45]:

he = MLPg (Z o(MLP goe (W) © MLP(hE“)) :
eV

o omnolog yetaoynuatifel Tic avanapaoTdoelc XOUPwy xou otr cLVEyeld yenotwomolel éva otadulouévo
Gpolopa pe droaviopoto TOANG Yio VO CUYXEVTEOOEL Tig TANpo@opieg and Touc xoufous. To otaduiouévo
ddpoloua unopel vo Bondioel 0To PIATEAELOUA TWV ACYETWY TANEOPOELAY, EVAL TLO LoYUES and Eva amhoé
Gdpoloua xan Aettovpyel emlong oNUAvVTIXG XUAVTERO EUTELRIXT.

5. Avanapdotaon xow Yroloyiopnos Opordtntag I'pdpwyv: O avanopactdoeic ot eninedo yed-
pou hg, xu hg,, YENOWOTOLOLYTOL VIOt VoL UTOAOYLOTEL 1) UETEIXY] OPOLOTNTAC.

S(leGQ) = fs(hGlthz)

omou fs elvon W oUVEETNOT OUOLOTNTOL.
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vector space similarity vector space similarity

graph vectors  [Cmmam =n= =l (a5 “ws] lans sl

propagations

Figure 1.1.4: Anewévion evoe Nevpwvixold Awtdou Tpdgwv (aptotepd) xou evée Auxtdouv Avtiotolyiong
Tpdgpwyv (deiid) [46].

Exrnaidcvon AwxtOwv AvTiotoiyione Tedpowv: H exnaldevon twv AAD nepihopfBdver
Behtiotomoinom wog cuvdpTnoNg anwAelag Tou eviapEUVEL ToPOUOLOUS YRdpoug Vo €xouy udniég Baduoloyieg
OUOLOTNTOC XOl BVOUOLOUC YRdpoug VoL €xouy Yauniés Baduohoyieg oyotdtntoc. AVo xOLVEC CUVAPTHCELS AMWOAELNS
ebvou:

1. AndAieia Zevyodv: Acdopévov (euydv ypdewy ue euxéta t = 1 av elvon dpotol ¢t = —1 av elvou
AVOUOLOL:

Lypair = E(Gl,Gz,t) [max{0,y —t(1 — d(G1,G2))}]
6mou d(G1, G2) elvou 1 oambotoom uetodd Twv SlvuoUdTenY Yedpwy Xt v elvon puot tapdpetpos teptdwpiou.

2. Andreta Terddwv: Aedopévov tplay Yedgov (G1, Ge, G3) 6mou o Gy elvon mo bpotog pe tov Go ond
6,t ye Tov G3:

Liriplet = E(Gy,¢0,65) (max{0,d(G1, G2) — d(G1, G3) + v}]

1.1.4 XOvodn 'edpwy

H civodm yedpwy avapépetoar otn dradcacio Snuiovpyiog plag cuVoTTIXAS avanapdo Taong EVOS YEYIAOU Ypd-
(pou, dlatnewvTog mapdAinia Booixés Sowxéc W6LOTNTEG xou TAnpogoplec. 'Eyel eupeleg eqopuoyée, omwg n
ouadomoinoy, 1 ta€vouncT xo 1 avlyveuon xowoTHtwv oe ToUelc OTWE 1) AVIAUGT] XOWOVIXGY SIXTU®Y, T
Blohoyixd dixTua, oL Yedpol YOOGS, Tot CUCTHUNTA CUCTACEWY X0l 1| BLOTANROQOELXY,.

Ou olybpLipot obvodne Yedpwy cuvridng Topdyouy elte GUVOTTIX0VE YEAPOUS UE TN LOPPY| UTER-YREPWY 1 opat-
WUEVOY YRAPLY, elte pa Moo aveEdotntoy Sounv. Ot eupltepa ypnotdomolotueveg uédodol elvar ot oxdhoudeg:

e Graph Pooling: To graph pooling efvor g texvixr} mou yenotwonoleiton xuplwg oto mhaiolo apyitex-
Tovxdv NAT pe otdyo ) dnuiovpyio Ulog cUVOTTIXGTERPNE OVATUPAC TAONG EVOS YRAPOU, OUIDOTOLVTOG
7 emAéyovtag xéuBouc 1 yapaxtneotixd. To graph pooling cuyxevtphvel TAnpogoplec and éva chvoro
xOUBWY OE PLoL LOVADLXY] OVOTOEEC TUOT), BNULOVEYWVTAS WLol Lepapyid TEOOBEUTIXG IXEOTERWY YEAUPWLYV.

e Graph Clustering: To graph clustering otoyelel oty Swalpeon Twv x6ufwv evéc ypdpou ot ouddeg,
étolL Gote oL xouPol evtde tne (Blog ouddoc vo elvar TeplocbTEpo GpotoL UETOEY Toug amd 6,TL Ue ouTOoUC
oe dhheg ouddec. H opotdtnra pnopel vo Bactleton o didpopa xpLthpla, OIS 1) GUVBECLLOTNTA, TA XOLVA
YORUXTNELOTIXG 1) OL x0Lvol PONOL EVTOE TOU YEAPOL.

e Graph Prototyping: To graph prototyping ctoyelel 6TOV EVIOTIOUS AVIITPOCWREVTIXWY UTOYRAQWY,
TOU OVOUALOVTOL TEOTOTUTA, Ol OTOlOL ATOTUTVOLY Ta BACIXd YopaXTNELOTIXE EVOC UEYAAOU YEAPOU.

To medlo e olvodne ypdpwv éxel pehetniel extevide, Ue TOAMES TEOCEYYIOELS Vo TPOTEVOVTAL Lo GUYXEVTE-
o), opadomolnoT xaL dnuLoveYid TEWTOTUTWY.




1.1. Bewpnuxd TndBadpo

IMapadoociaxéc MéJodot

O napadootoxée uédodol €youv mpoo@épel dldpopes TEYVIXEC Yl TNV amhomolnoy xou epunveld Twv SOy
yedpwv. Oplouéves napadootaxéc pédodol yio TNy ogadonoinon yedepwy nepthouBdvouy:

e Ouadornoinon Me Bdorn To Modularity: Alyéprduor 6noc n pédodoc Louvain [5] yeyiotonotodv
1o modularity, éva p€tpo TNE TUXVOTNTAC TWV CUVOECEMY EVTOC TWV OUAOWY OE GUYXPELOT| UE TIC CUVBEDELS
pETaD TWV OUddwY.

o Poopatixry Opadoroinon: Auth 1 teyvny [49] xenowonotel tic Wlotée Tou Aamhactovol Tivoxa
TOU YPAPOU Yol TN Uelton TwV BlHCTICEWY TPV TNV EQPUPUOYT| Tapadootox®y Uedodwy opadonoinong,
6mw¢ To k-means.

o Ispopyixr Opadonoinoy: Ly epapyixt| opadonoinom [69], ou xéufot opadornotobvton 1 Srorywellov-
Ton dadoyixd pe Bdon ) cuvdeodtnTé Toug, oynuatiloviac éva 3évipo ouddwy (SevBpdypopuua).

¢ Opadoroinorn Me Bdorn Trv ITuxvéotnto: Médodol 6nwe n DBSCAN [24] evtonilouv opddec pe
Bdon Ty TUXVOTNTA TV XOUPWY GTOV YRUPo.

MeéOdodolw Baociouéveg e NAT

Ou mpéogareg e€ehileig ot Podid pddnom €xouv odnyhoel oty avdmtuln uedddwy Poaoctouévey oe NATL yia
obvon yedgpwy [60], [48]. Autéc ol teyvinéc a€lomololy v wavotnta Twv NAT va culhopfdvouy clvideta
potifa xou oyéoelg EVIOC TV YEAPWY.

Graph Pooling »xouw Clustering

Optopévec and Tic eupltepa yenotdonotovueves pedodouc yia Graph Pooling xan Clustering elvan ol axéioudec:

¢ MinCutPool: H pédodoc MinCutPool [4] Slatumedver g YEVIXELOT] TOU XAVOVIXOTOLNUEVOL TRoBAAuaTog
e eAdytotne Topnc xou exnondedet éva NATL yia v Slaywploer Toug xépfouc oe ouddec. H ouvdptnon
anwietog e MinCutPool elvau:
.
Tr (S745) sTS Iy
1STSlr VK

"

Lyc = — ;

Tr (STDS) F

, . , L 11 5 Lo i
émou ||-|| eivon n vépua Frobenius, A = D~ 2AD~2 xou D eivou o Bodude nivaxa tou A.

e DMoN: H uédodoc DMoN [63] BeAtiotonolel pior cuvdptnon anwhelos Bootouévn oto modularity:

Tr (STAS) K
Lpmon = ———F5-—>+ vE st -1,
2F N ,
i F
6mou ||-|| etvan n vépua Frobenius, A = A — DTD xou D eivos o degree matrix tou A.

e JustBalance: H pédodoc JustBalance [3] npoteivel yio amhonoinomn 6Tov unohoylopd tne cuvdptnong
anwhelog o obyxplon pe to MinCutPool:

£JB = —TI‘(V STS)

e TopK: H pédodoc TopK [39], [12], [26] emAéyer Toug onpavuxdtepous xduPouc evée yedgou Bdoet Twv
XAUEOXTNELGTINDY TOUC. AuTh 1 u€00B0C UEWVEL TO UEYEVOC TOU YRAPOU BIATNEMVTAS CNUUVTIXEG SOUXES
Thnpogoplee, Slotnewvtac xoufoug pe tig uPnhotepee Podpohoyieg ye Bdon évav nivoxa tpofoirc.

Graph Prototyping

Ipbogateg epyaoieg €youv eepeuvnoet Sldpopeg pedodoroyieg yio Tnyv eniteuén anoteleopatixnc dnuovpyiag
TeWTOTOTWY eVvTég Tou mhatoiov Twv NAI'. Ye autd to mhaloto, onuavtixés GUVELGPORES €xouv YiVEL XeNnot-
pomoLdvTaS TEXVIXES Baotouéves ot yedpoug Yo EEnyfoeic e Avtinapadelyyata (Counterfactual Explanations
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Message-passing  MinCutPool Message-passing

Figure 1.1.5: Mo apyitextovixy NAT' 6nou ta enlnedo petapopds unvuudtewy axohovdolvtal and éva eninedo
MinCutPool [4].

- CE). Ot Dimitriou et al. (2024) [18] mpoteivouv Wiot TpoGEYYIoN TOU YENOLWOTOLE! ONUAGIOAOYIXOUS YEd(POUS
yior var avamoapoao Thoel exoveg xa oflomotel o NAI yia anoteheopatnd unoloyloud e Andotaong Encep-
yaoiouc Dpdpwy (GED) yior tny avéxtnon aviimopadelyhdtony péow ehayiotwy enelepyaotdy ypdpwy. Ouolwe, ol
Dimitriou xou Chaidos et al. (2024) [17] tparypotonolody o suyxpttixs] LEAETN Dtapdpwy ohyopiduey unyavixnhc
pdinone yia ypdpoug yio vor xodoplcouy TNV o omOTEAEGUATIXY TEOCEYYIOT Yiot TN dnutovpyio e€nyroewy ye
avTinopadelyoTa UEow ENEEEQYUOLIV YEAPOV.

Emnmiéov, €youv mpotadel didgpopeg pédodol mou olionolotv tic duvatdtntee twv NATD yia tn dnuiovpyla av-
TITPOCWTEVTIXWY UTOYRAP®Y Tou cUAAopfdvouy ta Poacd potiBo twv dedouévwy, BeAtiddvoviag Ty epun-
VEUCLHOTNTA TOUC. LNUAvTXéS TpooeYYIoele nepthaufdvouy:

e ProtGINN: To ProtGNN [70] yenotponotel npwtdTuna o€ €vay SLavUsHOTIG YMP0 TPOXEWEVOU VoL XEVEL
o NAT" mo epunvedola.

e PxGNN: To PxGNN [14] emxevtpdveton 6t udinon mewtoTinmy ToU AmoTUTOVOUY OV TITPOCWTEUTIXS
Yoo TnEloTNd xdde xhdomne.

e PAGE: To PAGE [62] avoxolOntel epunvedolpo and tov dvlpnno mpwtdtuna yio Ty e€fynon tne
ouumeptpopdc twv NAT.

e CPCA: H pédodoc CPCA [55] xotaoxeudlet mpwtdTuna xhIoemy Xt yenotponotel evioyuor tpmtotinemy
yia TN dnplovpyio EoVIXDY XAACEDVY.

1.2 Ilpozewdpeveg llpooceyyioeig

1.2.1 3Xvuvelocpopd
O x0plec ouvelopopéc authc e datpPhc ouvolilovton mopaxdTe:

o Xonowornototue ta Aixtua Avtiotoiyione Fedgwy (AAT) yio ™y avtgetdnon tou tpoliiuatoc tne
ocUvone yedpwy, TopéyovTac Wi Aentouept] EToXOTNON TOU TEOBAAUATOC Xal TwV UEVOBOAOYLOV TOUL
e@apuoéloupe yia TNV eniAucY| TOL.

o Exnoudetouye 1o AAI oe éva mpdBAnua opoldTnTog Yedpmy Yol Vo aELOTOGOUUE THY IXAVOTNTE TOU Vol
pordobvel onuavTixd potiBo oL YopaxTNeloTixd, To omolo 6T GUVEYELX YeNouoTolo0vTaL Yiot TNV e€aywyn
ONUAVTIX®Y UTOYEAPWYV.

o Ilpotelvouye xau a€lohoyolue 800 pedddouc e€aywyne cuVOPewY YEAPWY omd Tol BLoVOCUATO TWY YRAPEY
éneita oo népacya and to poviého. H npdhtn uédodoc nepihouBdvel ) dnurovpyio unodnelny cuvddeny
xenowwonowdvtag TopK pooling xau tnv emdoyn tng xahlteene. H deltepn uédodog emexteivel €vay
undpyovto ohyopLduo Méyiotou Kool Troypdgpou (MCS) pe v emfolf; npdodetov Teploplopddy mov
Baoilovtar 6Ny mpocoy ) UETAUED TV YEPLY.

o Anuoupyolue éva ahvoho dedopévev e I'enpetpnd Xyruato xan tuyaio 96pufo, émou elvon Yvewotd to
ground truth, yia va a€lohoyooupe T TPoTELVOUEVES ueVdBoUC.

10



1.2. Ilpotewépevee Ilpooeyyioeig

1.2.2 Oplopog IpoBAruatog

To npéBAnua TOL ETUBLOXOVUE VoL AVTHIETWTICOVUE elvol 1) oVOLy VLo UTOYEAP®Y TOU Vol AVTITPOCOTEUTIXG
yia uiot xhdom oe éva GUVORO BEBOUEVWY TOANATAGY XAACEWY, OTOU XATe YPAUPOS AVAXEL OE L0l CUYXEXPUIEVT
xhdon. O x0plog otdyoc elvon 1 e€aywy EVOS UTOYEAPOL and xdde YpdPo, TOU VO AVTITPOCKWTEVEL ATOTENED-
HATE TNV XAGOT) OTNY ontola aVAXEL O YEAPOC.

Tumxd, 8edoyévou evéc ouvohou Yedpwy G = {G1,Ga,...,Gn}, émou xdde ypdpoe G; elvon emonuacuévos
pe wa xhdon ¢; € C (pe C va glvon 10 oOvoho GAwV TV ¥AdoEWY), 0 oToY0C elvor va avartiZoupe petddoug
yia va e€orydyouye évay utoyedgo S; C G yia xde ypdgo G;. O e€ayduevog unoypdgpoc S; G npénel vo elva
LWBLO{TEPO AVTITPOCWTEVTIXG TNG XAJOTS C;.

1.2.3 IIpozewvépevo Movtéro

To NAT nou yenowonowlpe Booiletan oty apyttextovixr) tou Awtiou Avustoiyone Tedgwy [46] xou
anoteAetton and nodhanhd enineda Graph Matching Convolution, ta onola nepihopfdvouy évay unyovioud
ooy N HETAED TWV Yedpwy, axolovdolueva and évav Graph Aggregator.

Exnaidcuon

Yougwvo ue TNV Tpocéyylon tou eplyeddope tponyouuévee, to AATD exnandedeton oe €vo TEOBANUA OUOLOTY
Toc Ypdpwy. To povtého haufBdvel Levyn ypdpwv pe Yeuxée (B xhdon) B apwnuxée (drapopetind xNdon)
euxétec. O ot6)0¢ elvan vor TpoPBAédel udmir) ogoldtnta yior Tar Yeted Lebyn xan yaunAh yior to apvntd Levym,
EAAYLOTOTOLOVTOE TNV TORUXATC CUVARTNOT OTOAELC:

Lypair = B(a,,Gy.t) [max{0,y — t(1 — d(G1,G2))}]

omou d(G1, G) elvan 1 andotaon Petalld Twv Yedowy otny eloodo, v elvon wo napdpetpos teptdwplou, xou t
elvon 1 vy Yetixd Lelyn xoun -1 yior apvnuxd Ledym.

Hebpredm

Kotd v mpdBiedn, to povtéro hopPdver évo Ledyog Ypdpwy Tou UTopel vor avixouy oTtny (Bia 1 oe BlapopeTixég
x\doewc. To Ledyoc mepvd péoa amd to povtého xou YeTd amd xdde eninedo, To EVNUEPOUEVO dlavioUATA TWVY
OBV xou 1 TPocoy | UETAED TV YedpeY UTohoyi{ovTal xou ¥pNoteoTolobvToL Yio T dnuoupyia Twv cuvoewy
yedpwv. Ot 80o npotewvopevee pédodot yio T dnoupyior cuvoPewy Yedpwy Teplypdpovtal axolodiwe.

Medodog I: Xty npdtn uédodo, emdidxovpe va eEorydyoupe pia oOVOPn YPAPoU OVTITEOOWREVTIXY TNG
xhdone and éva Lebyog ypdpwy atny elcodo, yenoyomoudvtas ta doviouato xouBwy mou urnoroyilovto oe
xdde eninedo xotd TN ddpxelo Tou forward pass.

1. Forward Pass: To Lebyoc ypdgwy (G1, G2) tepvd péoa and éva povtého ye L eninedo. Metd and xdde
eninedo, e€dyovton ta dlaviopata xOuBwy.

2. ITeoBAedm k: O apriude Twv onpavtixwy x6uBwy k tpoBAéneTtol yenolonolnvTag To Sloviouota xouBny
X!y XL, T xéde eninedo I

o [ xdde x6pPo otoug yedyoue G xau Ga, unoroyllovta Baduoloyieg, ue Bdon tn onuacia toug,
Yenowonoudvtag évay didvuopa tpofohric w, mou elvon éva Sldvuouo Bapddv Tou opyLxoTolelton Ue
Bdon wa opgoldpopen xotavour. To didvucuoa mpoBolfic w apyixomolelton avTAOVTIS TWWES omd Wial
OUOLOUOPYPY) XATOVOUY| EVTOE TOL EDPOUC [—ﬁ, ﬁ], 6mou d elvo 1) SLAC TAGT) TWVY BLAVUCUATLY XOUBWY.
Ot Boduoroyiec onuociog divovton and:

S1= —oar 0 S24i —

o Avutéc ol Badporoyiec xovovixoTolOUVTAL GTH GUVEYELN YENOWOTOLOVTAG TN cuVdpTnon softmax:
l
eS1,i eS2,i
al sl —
$10 = SN, o 0 5247

ety 2 e 5
Z]_l 3 Z;\I_l 3
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o Ou x6uPol ta€ivopoldvton oTn GUVEYELX BAoElL TwY Xovovixomonuévwy Boduoloyidy ue pdivouoa

;o ~l,sorted ~l,sorted , . ,
ocpd. Eotw 577 xan 857 oL Tagvounuéveg xavovixonoinuéveg Poduoroyieg yioo Gi xan Go

avtioTolyo.

o To cwpeutixd dlpoloua TwV TUELVOUNUEVWY X0 XAVOVIXOTIOUNUEVKY Borduoloyidy urtohoy(leta yia
TOV TPOGOLOPLoPS ToL K ¢ Tov pixedtepo apldud xOufwy mou amattolvTol Yio Vo QTEcouV €va

HATWOPAL T
n
. slsorted
k! =min{n E s >

i=1
kL = min {n

n
~l,sorted
E :52,1' >T
To xat®AL T elvor Yo UTEPTUPAUETEOEC TOU LOVTEAOL.

i=1

Metd v andxtnon tuodv k yio xdde eninedo xou yio Toug dUo ypdpoue, to tTelxd k unoloyiletal wg o
péoog bpog GAWY TwV TEOBAETOUEVWY TWOY k:

k= L Lkl k!
= ﬁ;(l"’ 2)

3. Anwoveria YTroyedpwv: T xdde otpdua [, dnpoupyoivior oL uroypdgpor St xou S4 yio Toug
yedypoug G xan G yenowonowdvtag éva otpdpa TopK pooling ue to k nou npofrépdnxe:

S} = TopK(X{, k),
S5 = TopK (X3, k)

Avtol ot uroypdgol Aettoupyolv we uodriplol uToypdpot and Toug onoloug Vo Tapoaydel 1 Telxr chvoln,.

4. "Exeyyog Ioopoppiopot: Ye xde eninedo [, oL unoypdgpol ST xou S ehéyyovta yio loopopploud.
Bdoel eunelpixddyv napatneioewy, edv ol unoypdyol ot €va eninedo elvan loogoppixol, cuvitwe tautilov-
tow pe to ground truth. Enopévoc, edv St ~ S4, o unoypdgpoc S' emotpépeton. Edv dev Bpedodv
loopop@ol unoyedpol ato Blo eninedo, egetdlovye Oha Ta eninedo, npoonadviag va Bpolue 0moloVC-
01mote LTOYPAPOLC Omd TOV YEdpo 1 Tou elvol loouopPixol Ye oTolOVEYTOTE LTOYEAPO and ToV YEdPo 2:
i1, 15 6nee S~ S, Ye authy Ty mepinToT, emoTeéPETon 0 To GUYVE EUPoVilOUEVOS LGOUOPRIXAS
UTOYPAPOC.

5. Emihoy? Tehuxnc ZOvodng: Edv dev Peedel Lebyoc ooyoppintdy unoypdgwy oe 6la to enineda,
EMOTEEPETOL O TO CLUY VA EUPAVILOUEVOC LOOUORPIXOC UTOYRA(POS ot AloTa TwV LTOYPNPLWY GUVOPENY.

S* = arg max count(S).
Se{P,P?,.. PL}

Medodog II: Xt deidtepn wédodo, yenouwomololye Ty mpocoyy| Ueta€d TV Yedpwy mou uroloyilovtal
and To YOVTENO PETS amd xdie emimedO Yiot VAL XATAGKEVACOUUE T CUVOPELS YRAPWY.

AXyoéprdpmog MCS: O arydprdpoc MCS mou viomoljoope elvar pLo enéxtacy tou alyoplduouv McSplit
[51], oyediaopévoc va BpeL TOV PEYLOTO XOLVG ENAYOUEVO LTOYEAPO UE ETUTAEOV TEPLOPLOUOUS. AUTY 1) ETEXTOON
hoPBdver utddm Oyt LOVO TOV aELdUO TWV XOUPBEY CAAE XaL TOV JELIUS TV oXUMY, BIVOVTUC TEOTEPUATNTA GTOUG
o muxvolg unoypdgoug 6tav Beedoly molhamiol uroypdgol Tou Blou yeyédoug, xadng auTh 1 Tpocéyyion
OTOTUTVEL XaNDTEPDL TN dopixt| onuacio ot oplopéves egappoyéc [56], [22], [13]. H Swdixaocia nepthayuBdver dvo
xOplat Bripata: Tov tpoadioploud Leuydv avtioTolyiong LeTadd Twy 800 YEdPWY Xl TNV EXTEAEST] TOU ahyOpLdou
yenowonoudvtog oautd to VYN S TERLOPLOHOVE.
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Candidate Summaries 1

& &

Propagation Propagation
Layer Layer
Input Graph 1

‘/ M r
‘\

Input Graph 2

y

" Propagation

Layer

Candidate Summaries

2

Figure 1.2.1: Emoxémnon e Medodou 1.

Aggregator

— E Predicted Summary

-

e ITpoodopiopds Zevydv Avtiotoiyiong: Eva {edyoc x6uPowv, évac and xdie ypdpo, dewpeiton
Lebyoc avtioTolytong €dv ol xépPol napoustdlouv uPniéc Badpohoyiec Tpocoyrc o évag mpog Tov dhhov
xon otic 800 xatevdivoete. Autd ta Lebyr avtiotolylone oynuatilouvv to cbvoho MP.

Tunxd, éotw a;; n Baduoroyia npocoyfc amd tov xépPo i € Vi otov xouPo j € Va. Ta Lebyn avtio-

tolytone mpoodlopilovton we e€hc:

— T %dde x6uPo v; € Vi, mpoadlopilovian ol xéuPot oo Vi mpog toug omoloug divel mpocoyn ue

Barduoroyia mhvew and éva xatde 6.

— TNt xdde x6pPo v; € Va, mpoodiopilovtan or xépuPol oto Vi mpog toug onoloug divel mpocoyt| e

Baduoroyla méve and éva xotgit 6.

— "Eva Lebdyoq (v, v;) Yewpelton touptaotd Lebyog edv oy > 6 xou oy > 6.

o ANyopripog MCS: Xpnowonoldvtoag o cUvolo twv {euyov aviiotolylong MP and oha ta enineda
w¢ meploptopole, o alyoprdpoc MCS Beloxel Tov péyloto xolvéd enayouevo Loypedpo uetald 800 YedpwY
G xou Ga. O ahyoprdpog mapouctdleton Topaxdte:

Algorithm M¢éyiotoc Kowoe Troypdgoc ue neploptopoic

=

Procedure Search(future, M, E, mp)
begin

if |[M| > |best _mapping| or (|M| == |best_mapping| and E >best edge count) then

best mapping < M
best edge count < E
end if
bound < |M| + E(G,H)Efuture m1n(|G\, ‘H|)
if bound < |best mapping| then
return
end if

: (G, H) < SelectLabelClass(future)
: v  SelectVertex(G)
13:

for w € H do
if (v,w) ¢ mp then
continue
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16:  end if

17:  future’ + 0

18:  for (G, H') € future do
19: G+ G'NN(G,v)\ {v}

20: H" «+ H NN(H,w)\ {w}

21: if G’ # 0 and H"' # () then

22: future’ < future’ U{(G", H")}
23: end if

24: G" + G'NN(G,v)\ {v}

25: H" + H' N N(H,w) \ {w}

26: if G # 0 and H"' # () then

27: future’ < future’ U{(G"”, H")}
28: end if

29:  end for

30:  Search(future’, M U{(v,w)}, E 4+ new_edges(M, (v, w)), mp)
31: end for

32: G' + G\ {v}

33: future < future \{(G, H)}

34: if G’ # () then

35:  future + future U{(G’, H)}

36: end if

37: Search(future, M, E, mp)

38: end

40: Procedure McSplit(G, H)

41: begin

42: best__mapping < 0

43: best edge count < 0

44: Search({(V(G),V(H))}, 0, 0, mp)
45: return best_mapping

46: end

IMo va amogiyouue v e€epebivnor utoypdpwy tou éyouv 1Hon e€epeuvniel, opiletar wior xovovixy Lopey yia
xdde avtioTolylon. Auth 1 xovovixy) pop®r Snulovgyeitan ge Ty avadldtodn TV XouBwy ToU UTOYEAPOL TTou
npoxakeiton omd MV avtioTolyton M pe cuveny TpdTo, €10l WOTE LGoUopPixol uToYEdpoL vo Exyouy Ty (Bla
AVATOREGTOOT).

EZaywy” Baocwxol YTroypdpou: I'a va Bektidcouye Tepaitépn TNV ATOTEAECUATIXOTNTA TNE Uedodou,
TeLpaoTlOUOOTE PE ot TEOCEYYLOT Yiot Vo TOpdyOUpE (ol TEAXY) ouvodm avaryvwptlovtag tov péyloto Baocixd
unoYpdpo and uia oudda cuvddewy. O péyiotog Baoxdc unoypdpoc opileton we 0 Ypdpoc amd TNV oudda
oLVOPEWY TOV EUPAVIZETOL TTLO GUYVE (¢ UTOYEAPOS TV dAAwY cuVOPewy. Xe Teplntwon LooToADY, EmAEyeTol
0 peYahltepog Yedpog etadd Twv UToYedewy tou elva todmahot. Tumxd:

S* = I(SCSt
arg SG{SlI,I}S%X Sny} (Z (S< )>

.....

6mou T elvan 1 ouvdpTnom delxtn Tou emoteégel 1 av S elvan utoypdpog Tou S xau 0 BLaupopeTixd.

Edv undpyouv mohhamiol ypdpol pe tov (Blo uéytoto aptdud umoypedpny, o uéylotog Bacixde unoyedpog S**
opiletan we:

S = V(S)|

arg max ‘
SE{S|Tr, I(SCS) =1, I(5*CSH)}

6mou |V (S)| ouuBorilet tov aprdud xopupdy otov Ypdypo S.
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Figure 1.2.2: Emoxénnon tng Medédou II.

1.3 Ileipopotind puegog

1.3.1 30Ovolo Acdopévwy

To 800 cbvola dedopévmv mou Ya ypnowponoiooupe oto newpduatd yag eivar to MUTAG [15] xou Geometric
Shapes.

Geometric Shapes

I var mpoceyyioouye xahOTERO TN CUYXEXPUEVY PUOT] TOU TEOPBAAUUTOC pag, dnuovpyooue éva cuVIETIXG
oUvoro Bedopévwy e I'ewpetpnd Yynuota. Autd 10 cOVORO BEBOPEVKLV AMOTEAELTAL OO YPAPOUSC TOU VO
TAELO TOOV TEGCERA DLOPOPETIXG YEWUETELXA OY AT XUXAOUG, YRUUUES, aoTépla xau TANpelg Ypdgpoug. T va
npoc¥écoupe mowhopoppla, mpooUétoupe Yo6puBo pe TN LopRY TuYolwY xOUBLVY o XUy oe xdde yedpo.
Avutéc oL axuég pmopoly va uvBEoLY 8o xOUPoug TwY Baody oyxMudTey, 8o xoufoug YoplBou A évay xéuBo
and xdde wAdon. Ilewpopatiothixope ye dVo mpooeyyloels Yo To YAPAXTNELOTIXG TWV XOUPwy. 2Ty Ted
TPOGEYYIOY], OAOL Ol XOUPBOL EYOUV YoEUXTNELCTIXA Tou armoteholvion and 1. Xtn deltepn MpooEyyion, YeNot-
ponotolpe to Node2Vec [31] yia va Snuiovpyfiooupe yopoxtnpio tixd xouov. H mpdtn and tic dbo npooeyyioeic
elye ®OAUTEPO AMOTEAEOUATA, GUVETWE OXOAOUTACOUE OUTYH OTA TELRSUATE YaC.

Auto poag mapéyel Eva eheyyopevo epBdiiov 6mou yvwpllovye to ground truth xdde ypdpou, xou poc enttpénel
VoL AELONOYHOOLUE UE PEYONDTERY) 0XEIBELOL TNV AMOTEAEGUOTIXOTITO TOU TPOTEWOUEVOU LOVTEROU Xoll TLV UEVOBwWY
pog. Anplovpyrooue Teelg exBOoelg Tou cuVoAoL dedouévwy Geometric Shapes, e Pooixd YewUeTEXE oy AuoTa
nou amotehovvtaw and 8, 15 xou 25 xouPoug, avtiotoiya. Kdde éxdoon nepiéyer 360 ypdgpouc, ue 90 ypdpoug
avd xhdom. o To chvoho dedouévwy pe oyfuata 8 x6ufwy, npociéoaue 2-4 x6uPoug Boplfou xou 1-3 axuég
YopUBou avd tpooTidépevo x6uPo. Koadoe to yéyedoc twv Paoixdy oynudtwy avidvetar oe 15 xou 25 xépfoug,
awEroaue Tov aptipd TV TEOo TWEUEVLY XOUBLY Xot oy YopdBou Yia vo BlatnecouUe tia oYeTixd o tadepn
avaroyio YopUBou oe ayéon pe to Poaoixd oyrua.

MUTAG

To MUTAG [15] efvan pior SUNNOYT VITPOOPWUOTIXOY EVOCEMY Xt 0 0Tdyog elvan vor mpoflheplel 1 yetoh-
hagloyovoe dpdon toug ot Salmonella typhimurium. O ypdgol yprnouylonotodvial YLol VoL oVOmopoo THoOOLY
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Cyclic Graph Complete Graph Noisy Cyclic Graph Noisy Complete Graph

Line Graph Star Graph Noisy Line Graph Noisy Star Graph

v

Figure 1.3.1: Ta téooepa Baocixd YEOUETEIXE OYHUATE GTO GUVOAOL dedouévewy Geometric Shapes xou
TapadelyuoTo Yedpwy ye Yopufo.

YNUHES EVOOELS, OTIOL OL XOPLPES AVTITPOCKWTEVOUY GTOUA Xol EVOL ETLONUACUEVES UE TOV TUTO TOL oT6UOoL (Tou
mpoxUTTEL e one-hot encoding), eved oL axpéc UETUEY TOV XOPUPHY AVITOELOTOVY BECUOVE UETOED TwV avtio-
TolY WV atouwy. lleplauBdver 188 delyuoto ynuixdy evioewy ue 7 Swoxpitée etxétee xouPuv. Kdlde yedgpoc
emonpoivetar we efte petahhalloydvoe (Vetnh xhdom) eite pn petolhodloydvoe (cpvntind ¥hdom), unodexviov-
TS €QV 1) Eveon Exel UETAAAAELOYOVO ETBRUOT] GE £VOY GUYXEXPLUEVO OPYOVIGHO.

To dataset MUTAG 8ev nepthapBdvel ground truth unoypdpoug mou aviinpocwnebouv tny xhdom, oAl Tapéyel
ground truth npwtdtuma, xahotodvtoc To Wialtepa xatdhinho yia mewpduoata ye tn Médodo II.

Non-Mutagentic Mutagentic Prototypes

N AN
/) SV —

e e \ /
S I/

C
N

o

2a-"

Figure 1.3.2: TTapodeiypato ypdpwv and xdde pio and tic 300 xhdoeic oto ovvoho dedopévewy MUTAG (un
petodhogloydvog xou petodhoiloydvos), wall ue To TEWTOTUTY TOU GUVOAOU JESOUEVMLYV.

1.3.2 Metpwxég A&woAdynong
AxpiBeia

Ity a€lohdyNom TG AMOTEAEGUATIXOTNTAS TWV TEOTEWOUEVWLY PEVOB0Y, Yenotponotolue pla petei axpifelog
TPOCUPUOGUEVY] 6T0 TEOPBANud pac. T'a xdde xAdorn oto chvoro Bedouévwy, mapéyeton évac ground truth un-
oypdgpoc. H axplBeia tou yovtélou xadopiletar pe 0 cOYXEION TWV XOUPKY TOU ETAEYOVTAL OT6 TO UOVTEAO
amd Tov apyixd Yedpo e toug xéuPouc otov ground truth uroypdgo. Edv o emleyuévol xépfol touptdlouy
ue Tov ground truth umoypdgo, 1 oxp{Bela Yo autd Tov Yedpo Vewpeitan 6T ebvon 1- drapopetind, etvan 0. H
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1.3. Iewapatixd pépoc

ouvohuxt] oxpifeio utohoyiletan ot CUVEYELM WEC O UECOS OPOC ATV TWV TWOY 68 GAOUS TOUS YRA(POUE TOU
ouvoroL aflohdYNoNg. Oswpolue dVo Tinoug axpeifelac, Axplph xou Ilpoceyyiotind. H AxpBric avagpépeton oTic
TEQLTTOOELS OTOV 1) cUVOYPN 1oL TopdyeTal omd To LoVTEAO elval TO OWOTO GYAU Xl EXEL TOV 0woTo aptiud
x6puPwyv, toupidlovtag axelBoe ye to ground truth, eved n Hpooeyyiony| avagépetal 0TI TEQITTAOOELS OTOU )
olvor elvon 10 owoTod oYfue, ahhE ETLTEETETOL Wiol WiXpT| andxAion oTov aptdud Twv x6uPwy (£1 xépPot oe
oyéon e to ground truth).

Iiot vor sLYAEIVOUUE TO LOVTEND Yo Ue BAAeg ueddBous cUVOYNG YEAPWY TOU TUEOUCLECTNXAY TEOTYOLUEVKS, Ol
omoleg Tapdyouy cuvdels avadétovTtag ETXETEC GTOUC XOUPBoUC xou opadoTolVTAS XOUBouc Ue TNy (Blo eTnéta,
TpocVécaue ETIXETEC GTOUC XOUBOUC TWV YRAPwY To cUVORO dedouévmy. Muyxexpéva, ot xdde xouPo oto
Baoxd YEWUETEIXO oyNd ToL Yedpou avatideton pia wovadixy etxéta. Xe xdde xoufo HoplfBou avotidevto
ETXETEC OV TEOXVTTOLY ANd TNV EVWOT TWV ETIXETOY TwV xOuBwv Ye Toug onoloug cuvdéetan. Me autdv tov
TEOTO, TO HOVTENO TRETEL POVO Vol TpoBAédet yio évary x6pfo YopiBou tny (Bla eTixéta pe évay amd Toug x6uoug
Tou Booinod oyYNuTog 6ToV onolo €xEl Ui Sladpour| HEcw AWV XxopuPBwy YopiBou. Me Bdon autéc Tic eTixéteg,
unohoy{lovue v axpifeior Tou povtélou. Auth 1 uetpur oxpifeloc elvar Wwior yahdpwon e mopadoctaxhc
axpifBetag mou yenowonolelton otny taivounon xoufwy, xadag évag xépfog Yewpeitar cwotd TaEivounuévog
gdv T0 povtéro npoPAédel owoTd onoladNnoTe and TIC ETIXETES TOL Tou €YouV avortelel.

1.3.3 Boaowd MovtéAa

INo vo a€lohoyricouye Ty amddoon tou meotevdpevou poviehou AATL, to cuyxplvouue pe oplopévec xohep-
wpévee uedodoug ahvodne Yedpwy, Tic onoleg €youue avahloEL TEONYOUREVWS. DUYXEXPUIEVA, EQIOUOCOUE TG
apyrtextovixéc NATL mou mpotddnxav otic avtioToiyes epyaoiec mou ewofyoyav to enineda pooling MinCut
[4], DMoN [63], xou JustBalance [3] yiat v opadonoinom yedpwy, x8vovias Wxpéc TPOTOTOROELS Yot VoL TIC
TEOCUPUOCOUNE GTO GUVORO BEDOUEVKV [ag.

Emuniéov, cuyxpivouye 1o goviého pog ue éva napoadootoxd poviého GAT [65]. Aedopévou btt xon tar 800 pov-
TENOL YPNOWOTOO0Y UNYOVIOUOUS TTpOGOoY NG, AUTY 1) GUYXELOT KOG ETLTEETEL VUL AELONOYHOOUUE €AV O UNYOVIOUOC
avuiotolylone pe Bdon v npocoyy| uetold yedpwv tou npotddnxe and touc Li et al. [46] nopéyer xahbtepn
anoteAéopata o oOYXELON UE TOV UNYOVIOUO auTo-Teocoy e Tou yenowonoteltan oto GAT. Aebouévou 6T
t0 povtého GAT enelepydleton évav povo Ypdpo we elcodo xau dev pmopel vo exmoudevtel oe évo mpdBAnua
OUOLOTNTOG YRAPWY, TO EXTUBEVCUUE GE €val TREOBANUA TaEVOUNONS YEAPWY Xou allOAOYHoUUE TNV anddooy] Tou
otV lVOPN YPAPWY YENCUOTOLOVTAC TNV TEOTEWOUEVY TPOCEYYIOT| WaS Tou Teplypdpetan oty Médodo I e
UXPEC TPOTOTIOACELS Yl VoL Tpocdpuoctel and Lebyn Ypdpwy o8 UEUOVOUEVOUS YEAPOUG.

1.3.4 Aentouépeiec MovtéAwy
Aixtua AvTiotolyione 'edypwv

Exnaidevor: Exnoudeboupe to AAT [46] oe éva mpdfinuo opotdtntas yedewy. Ta to dVo cUvoha Se-
dopévmv, oynuatilovue naptides and tuyaia emheypéva Ledyn xou TIC AVTIOTOLYES ETIXETES TOUG, OL OToleS Elvan
1 av oL 800 ypdpol avixouv atny Blo ¥Adom 1) -1 SapopeTind.

Ot urepnopdueteol mou yeedotnxay evduion teptlopfdvouy TNy mapdueteo mepldwplou v, TN BldoTaoY TGV
XPLUPWY EMTEDWY TOU WoVTéAoL, Tov aptiud Twv emnEdwy, Tov puUd uddnong, to péyedog tng moptidog xou
ToV 6UVOAIXS aptdud Ceuymyv. o ) Behtiotononon autdy TeV UTEpTUpUUETEwY, AdPBoue uTodn TV anddoaon
Tou wovtélou 1660 GTo TEOPBANUA EXTAlBEVCTC OPOLOTNTOC YEAPWY G0 xaL 6To TEOBANUL e€aywYNc cuVOPEwY.

I v mopdpetpo meprdwplou v, To oVTENO TPOCUPUOCTNUE Xohd OE BLapOopES TWWES XaTd TN BLdpXEld TNS EX-
naidevong aAAd anédwoe xahltepa 6T0 TEOBANUA eEaywyic cLVOPewy e Yaunhotepn Tiwn, cuyxexpiéva 0.2.
H Sidotoom Twv xpupoy emnédwy Tou yoviéhou oplotnxe ot LPNAOTEET TIWY|, cuyxexpyéva 32, and TN dido-
TUOT TOV YOPUXTNELOTIXOV TWV XOUBWY TOU GUVOAOU SeBOUEVKVY Yia Vo eTLTEEPEL UEYAUNDTERT EXPEUC TIXOTNTA.
AeBopévou Tou pxpol peyEédoug Tou cuvohou dedouévwy, emhégape évay uPnidtepo pudud pdinone (0.01), xau
pxpbTeEpES TWES Yo To uéyedog e maptidag (64). Emmiéov, emhéZoue puxpbdTepES TWES Yol TOV apidud Twv
Ceuy v, ouyxexpéva 400, oto ohvolo exnaldeuong yia vo anogUyoupe Ty unepnpocopuoyy. Iopotneriooye,
eniong, OTL OL APYLTEXTOVIXEC HOVTENWY PE Teplocdtepa entinedo (5-7) anédwoav xahldtepa oTo TEEBANUa e€ay-
wYhc ouvOenY, xon emhéEope we el T to 7. Téhog, yenowonotioaue tov Behtiotonomt Adam [37],
Yétovtoc TNV TN TS amocLVdeong Twy Paptv ot 1075,
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

IMe6BAredm: Katd tv npdPiedn, éva (ebyoc ypdpwy napéyetal w¢ eloodog oto povtého. Kadde to Lebyoc
petofolvel and évo eninedo GTo ENOUEVO, Tal BLovOGUATO XoU Ol TPOGOYES UeTAE) Ypdpwy utohoyilovton uetd omod
e enlnedo xou ot cuVEyELX YpnoulonolovvTal Yo T e€aywyr| Twv cuvddewy obupova pe tic Medddoug I
xou II. O 800 ypdpol oto Lebyog avixouy otny (Biat ¥AdoT), EMITEENOVTAG Mg VoL AELONOYHCOLUE TNV LXAVOTNTA
TOU HOVTENOU VoL avary Vpllel UTOYPEPOUS TOU AVTLTPOCWTEVOUY TNY XAJOT).

Iiot var xototvoficoupe TERULTERE TN GUPTEPLPORE TOL LovTéhov, e€etdloupe enlong Tic cuVOELS TOL TapPdyoVToL
oe xdde eninedo 6tav T0 LeUyoC €l06B0L amotele(ton Amd YPAPOUC BLaPOPETIXWY XhdoewY. AuTH 1 avdluon
TpEYEL TANEOYOPRIEC Yl TO TS TO UOVTEAO EVNUEPMOVEL Tal SLovOCUOTA TV XOUPwv dTav 1) TeoBAEToUEVT
ouoldTNTA PETAED TV Yedpwy oty €lcodo elval younA xaL eV aUTEC OL EVNUERPOOELS 081 YoUY oTn dnutovpyia
ouolao TV cLVOYewy ot xdle eninedo. Ta AMOTENECUATA QUTWV TWV TELRUUETWY, CUUTEPLAUUBUVOUEVKDVY To-
PAUBELYUATOVY TWV GLVOPENY ToL TapdyovToL Yiat LebYN Ypdpwy tng (Blag xhdong, topoustdlovtal xou culntodvto
axohovVwC.

Baowd Movtéla

Exnaidcsvon T@o tig apyitextovixéc nou mpotddnxay oTic avtloTtolyes epyaoiec mou elofyayay to eninedo
pooling MinCut [4], DMoN [63] xou JustBalance [3], exntoudetooye To LOVTELA YpNOWLOTOUOVTOS ELTE TNV ATOAEL
TV emnédwy pooling uévn e, dnwe tpotdinxe apyxd, elte Evay cuUVBLACUS TNG ATMWAELAS TWV EMNEDWY Pool-
ing xou pag andretog todvounone yedgwyv. To poviého GAT [65] exnoudeltnne oe évor mpdPAnua Ta&vounons
yedpwy. Aedopévou o1t T0 poviého GAT ene€epydleton évay povo Ypdpo we elcodo xan dev unopel vo ex-
nauwdevtel dueca oe €va TEOBANUA OUOLOTNTOC YRAPWY, AUTY 1) TEOCEYYIOT| wos enétpede va a&loNOYCOVUE TNV
an6doot| Tou Ye ouyxplowo TedTo Ye To mpotewvouevo AAT.

IMeb6BAedm: Katd v mpofiedn, ot apyitextovinéc mou yenowonototy ta eninedo pooling MinCut, DMoN
xat JustBalance éhaPav évav ypdgo, o onofog diépyetan omd to dixtuvo. Xto Téhog tng dadixactag,  cvvodn
Tou TmopdyeTon and To eninedo pooling houfBdvetan we N mpoPienduevn clvodn yedgou. Io to poviého GAT,
évac Yedpos diépyetan amd To dixtuo xou, 6uolo pe to AAT, uia ohvoldr Snuiovpyeiton oe xdide eninedo yenot-
ponoldvtog évay unyoviowd TopK pooling. H mo cuyvr cOvoldrn oe 6ha to enineda emhéyetar oTn cuvEXEL,
axorovdovtoc wo pedodoroyia tapduola ye v Médodo I nou yenotwonoieitan yia to AAT. Auty| n mpocéyyion
poc enétpede va datneiooude TN cuvéneta ot Sadxacio afloldynone xou va eZaopaicovpe dixoun oUyxpelon
N andBOONC TWV UOVTIEAWY.

1.3.5 AmoteAéopata

ITocotixd Anoteréopato

Apywxd, Yo mapovcidooupe Tic axplBelc xat T mpooeyylotixée Baduohoyieg oxplBelac mou emttedydnxay and to
AAT, yenowonowwvtog tic Metddoug I xou 1T, xou tor Bacixd povtéha oto ohvoro dedopévwy Geometric Shapes.
Kdde povtého avtiotolyel oto BéRTioTo povtého nou emtelydnxe Yetd tnv pdduion Twv uneprnopopétewy. To
anoteléopata napouotdlovto otov Iivoxa 1.1.

Model Geometric Shapes (8) Geometric Shapes (15) Geometric Shapes (25)
AAT (Method I) 0.622 0.539 0.452
AAT (Method II) 0.695 0.687 0.641
GAT 0.488 0.436 0.388
GNN with MinCut 0.194 0.092 0.049
GNN with DMoN 0.203 0.097 0.050
GNN with JustBalance 0.231 0.103 0.052

Table 1.1: Xuvohuég Baduoloyiec axpBole xan npooeyylotxrc axpifelog o OAeg TIC *¥AAOELC Ylow OAAL T
novtéha oto dataset Geometric Shapes.

H mpdytn nopoatienon etvan 611 1600 10 AAT 600 xau 10 GAT Eemepvolv onuovtind ta wovtéla nou Bacilovton
o7o clustering xou 6Ti¢ TeELS EXBOTELC TOU GUVOAOU BEBOUEVWY. AUTO UTOBNAGVEL OTL 1) EXTIUBEVCT) TOV HOVTEAWY
NAT Behtotomoudvtag T0 exdoTote TEOBANU Tou Yoviehonotoby to avtiotolya enineda pooling dev odnyel
dueoca oe cuvoelc mou va tpooeyyilouv o ground truth.
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Suyxpivovtac to povtéha AAT xaw GAT, to AAT e tnv Médodo II emtuyydver otadepd upnhdtepn oxplBela
xa Pe Tig 800 pedodoug oe OhEC TiG TEELS EXBOCELS TOU GUVOAOL dedouévwmy. Ta va amoxthooupe Wi Barditeen
xaTovdNoT TN amoBOoNE AUTWY TV YOVTEAWY, Ol UETEIXEC oxpifelag yio xdde xAdon moapoucidlovial GTov
Mivaxa 1.2 (ITpooeyyiotinh) xou otov Iivoxa 1.3 (Axpfc).

(a) Geometric Shapes (8)

Model Cycle Complete Line Star Total
GMN (Method I)  0.607 (0.806) 0.977 (0.977) 0.491 (0.751) 0.416 (0.816) 0.622 (0.838)
GMN (Method 1) 0.713 0.764 0.763 0.541 0.695
GAT 0.573 (0.722)  0.418 (0.567) 0.457 (0.713) 0.502 (0.688) 0.488 (0.672)

(b) Geometric Shapes (15)

Model Cycle Complete Line Star Total
GMN (Method I)  0.407 (0.452) 0.971 (0.971) 0.285 (0.454) 0.493 (0.753) 0.539 (0.658)
GMN (Method 1) 0.682 0.764 0.753 0.516 0.687
GAT 0.483 (0.612) 0.344 (0.578) 0.465 (0.632) 0.453 (0.657) 0.436 (0.620)

(c) Geometric Shapes (25)

Model Cycle Complete Line Star Total
GMN (Method I)  0.235 (0.274) 0.948 (0.948) 0.220 (0.293) 0.477 (0.613) 0.452 (0.532)
GMN (Method II) 0.662 0.738 0.727 0.438 0.641
GAT 0.451 (0.607)  0.268 (0.564) 0.406 (0.491) 0.425 (0.694) 0.388 (0.587)

Table 1.2: ITpooeyyiotixéc Boduoroyiec axpifetoc avd xAdon yia AAT xouw GAT oto chvoho dedopévwv
Geometric Shapes. Ou tipéc oe nopeviéoelc avtinpoonwnelouy 10 T0G00TO Twv Leuy®Y 6nou To ground truth
eupavicTnue TOLUAGYLGTOV [l Popd GTOUS LTOYEAPOLE TToL BNuLoVEY UMY UeTd and xdde eninedo.

Yuvohixd, to anotehéopota Oelyvouv 6Tl Tar SlopopeTind povtéha xan ol pédodol mapouctdlouy BlaPopETIX
enineda anddoone avdhoyo Ue T xhdoeg xou tor cOvola dedouévwy. Amé ta tpla, to AAT pe ) Médodo
II Atav to Mo ocuvenéc oe 6ha tor olvoha dedouévmv, emTuyydvovtoas T uPniotepec Baduoloyies axpyBoic
axpifBetag o 6heg T ¥Adoelg extog and v xhdor "actépt”, 6mou to yovieho GAT elye Aiyo xahltepn eni-
door. Emniéov, ol Badporoyieg axpfoic xou mpooeyyio txrc axplBeloc yio xdite xAdom elvan ntopduotee, To onolo
ogeihetol 0TO YEYOVOS OTL 6Ty oL TEoPBAendueVES GUVOYELS deV elvan andhuTa 6O TES, WIWS Yia To Ao TEPLAL, TER-
thaBdvouv oLy vd xépfous YoplBou nou tawptdlouv petadd twv 800 Yedpwy, dtne Ya delfouue pe napadelyuoTa
OTNV EMOUEVY] EVOTNTA. LUVETAS, 6Tay 1 npoBhenduevn cvvodn dev €xel Tov oxen apidud xouBwy, cuvidune
ATOTUYYAVEL VAl BLATNPHOEL XAl TO OWOTO Y.

H Mévobdog I, and tnv dAAN mAcupd, anodldet xahd oty Tpooeyyiotixt| axpifeia, Wlwg Yo TAHRELS Yedpoug, aAAd
€xeL yeodTepa anotehéopata otny axel3r) axelBeta. Ilapdho mou cuyvd mpoPAénel Tov 6woTd aptiud xOUBwv
(k), n oxpiPric oxpifeia tng dev elvon 1600 LN boo avapevotay. Qotdéoo, N Médodog I eZaxohoudel va
anodidel xahd dtav o npoPienduevoc apttuog xOuPwy elvor evioc tou £1 tou cwotol aprduol, uTodexVioVTAC
OTL AMOTUTIWOVEL AMOTENECUATIXG TN} YEVIXY| Bou.

Téhog, 1o yovtého GAT mopoucidlel cuveNY| anddooT Ge BLaPOPETIXES XAATELS, AMOBIBOVTAC XS aTNY oxELS3n
oxpifela, 6tay npofAéneton owotd o apldudec Twv xépPrv (k), cuyvd utepPaivovtae ) Médodo I. Qotéoo, dev
anodidel xaAd 6Tay 0 apltudS TV xOUPwY Bev TEOBAENETIL CWOTY, ATOTUYYAVOVTAC Vo BNULOUEYHOEL OUCLIOTIXES
ouvdeLs, 6T LTOdNADVETAL ad T TOAD mapdpotes Baduoloyiee axpBolc xou tpooeyylotxhc oxp{Beloc, o
avtideon ye to AAT ye ) Médodo I, mou unopel axdun va napdéel oyetind axpBelc cuvoleig axdun xau e
pxpec anoxiloelc oto k.

Y ouvéyew, e€etdloupe TN ouumeptpopd tou poviéhou AAL 6tav to Lebyoq eioddou amoterelton and Ypd-
(POUG IOV OVAXOULV GE BLapopeTIXéC xAdoels. Aedopévou Ot autol oL YedpoL avixouv e BLapopeTixés XAJOELS,
ot Médodot I xau II Sev unopolv va yenowonomdolv dueca yia v aflohdynon tne oxplBelac tou poviéhou.
Yuvenog, axohouolue Uio ATAOTONUEVT TPOCEYYLOT TUEOHOLL UE TaL dpyxd Briwata tng Meddbou I, dnuovpyodv-
ToG UTOYREPOUS Yia Toug 800 Yedpous petd and xdde eninedo [. 3tn cuvéyeta, yetpdue Tov aptiud twv (euydy
6oL oL TapayGuevoL utoypdpol tatptdlouy pe to ground truth. Xuyxexpyévo, petpdue ndéco cuyvd eupavile-
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(a) Geometric Shapes (8)

Model Cycle Complete Line Star Total
GMN (Method I)  0.607 (0.806) 0.760 (0.773) 0.474 (0.713)  0.331 (0.708)  0.543 (0.750)
GMN (Method IT) 0.713 0.764 0.721 0.486 0.671
GAT 0.573 (0.722) 0.418 (0.567) 0.446 (0.656) 0.493 (0.615) 0.482 (0.640)

(b) Geometric Shapes (15)

Model Cycle Complete Line Star Total
GMN (Method I)  0.407 (0.452) 0.286 (0.295) 0.239 (0.425) 0.279 (0.448)  0.302 (0.405)
GMN (Method II) 0.682 0.764 0.746 0.421 0.653
GAT 0.483 (0.612) 0.344 (0.578) 0.451 (0.586) 0.436 (0.641) 0.429 (0.604)

(c) Geometric Shapes (25)

Model Cycle Complete Line Star Total
GMN (Method I)  0.235 (0.274) 0.583 (0.583) 0.207 (0.276)  0.237 (0.335)  0.316 (0.367)
GMN (Method 1) 0.662 0.738 0.704 0.396 0.625
GAT 0.451 (0.607) 0.268 (0.564) 0.393 (0.477) 0.418 (0.668) 0.382 (0.579)

Table 1.3: AxpiBeic Boduoroyieg axplBetag avd xhdon yia AAT xow GAT oto clvoho dedopévev Geometric
Shapes. Ot tipég oe napeviEcelc avTInPOoKNEVOVY TO T0600TH Twv LeuYdY dmou To ground truth
eupaviocTnue TOLUAGYLGTOV [l Popd GTOUE LTOYEAPOLE oL BNuLoVEY UMY UeTd and xdde eninedo.

Tor To ground truth yua xdde ypdpo, xadng xou néco cuyvd eugpaviCovton to ground truths xou yia toug do
yedgoue. Ta anoteréopoarta napovotdlovton otov Iivaxo 1.4

Classes Geometric Shapes (8) Geometric Shapes (15) Geometric Shapes (25)
1 2 Both | 1 2 Both | 1 2 Both
Cycle (1) xow Complete (2) 0.62 0.97 0.61 0.51 0.89 0.49 0.29 0.83 0.27
Cycle (1) xou Line (2) 0.66 0.46 0.34 0.38 0.32 0.13 0.31 0.27 0.08
Cycle (1) »xou Star (2) 0.53  0.59 0.33 041 0.55 0.27 0.36  0.57 0.27
Complete (1) »xow Line (2)  0.97 041 0.40 0.83 0.35 0.32 0.85 0.33 0.31
Complete (1) »ouw Star (2) 0.96 0.53 0.52 0.86 0.47 0.42 0.80 0.64 0.56
Line (1) xou Star (2) 047 0.54 0.23 0.32  0.46 0.18 0.24  0.60 0.17

Table 1.4: Anoteréoparta tou AATL ye Ledyn ypdopwv ond SlapopeTinég xAAGeC 6TO GUVOAOU deBOUEVWY
Geometric Shapes. Ot othheg "1" xou "2" Belyvouv t0 T0G00TH TwV LeuyWV 6ToL To ground truth yia tov
TEAOTO X ToV BelTERO YRAPO, avtioTolya, eupavicTnXe TOUAGYLIGTOV Uiol QOpd GTOUC TORYOUEVA UTOYEA(POUS.
H othiin "Both" unodewxviel 1o tocootd twv Leuydv dmou to ground truth xou yio Toug do yedgpoug Atay
TapoVTAL.

Mo yevixn) mapathienon nou npoxintel and tov Ilivaxa 1.4 elvan 6t oL yetpinée oxplBelog mapopévouy oyetind
otadepéc v xdde xhdom, aveldptnTa and TNV xhdon Tou dhhou ypdgou oto Lebyoc. Emmiéov, autéc ol
petpixég axpBetag elvan ouyxplowes ye exeiveg mou mopatneinxay 6tav xou ot 8Vo yedpol oto Lebyog avrixouy
otnv Bla xhdor, omwe gaivetan otov Ilivoxa 1.2, Auth 1 cuvénela untodeixviel 4Tl 1 XAVOTNTO TOU HOVTENOU
VoL avory vwp(lel UToYPAPOUS TTOL AVTITEOCWTEVOLY TNV XAACT elvon GUVETHS Xl Bev ENNEEGLETAL CTUAVTIXE ontd
Ny nopousia Ypdpwy and dlapopetixh ¥Ador 6to Lebyog. To poviého avayvwpellel anoteheoyatind to oyeTixd
YOPAUXTNELOTIXA UTOYRAP®Y TOU avTLoTOLY 00V ot Xdde XAdoT, axour) xol TUeousior SUVNTIXG TUPAUTAXVITIXY
TIANPOPOPLOY a6 BLAPORETIXY| XAJOT).

ITorotixd AnoteAécpata

Téhog, v va aflohoyfioouue molotixd Tt MéGodo II, 1 omola €yel tnv xahbtepn anddoor oto cUvolo Oe-
dopévwyv Geometric Shapes, napovoidlovue Topadelypata and TG TapayOUEVES GUVOPELS amd TO AUTO TO GUVONO
OeBOUEVKV X OPLOUEVD, ATOTEAESHATO amd ToL TELPAUATE Hog 6T0 cUvVoho dedouévv MUTAG.

20



1.3. Iewapatixd pépoc

Geometric Shapes

Eexwvovtag ye to olvoho dedopévwv Geometric Shapes, enonuaivoupe neptntddoels énou 1 pédodoc amodidel
x0AG, avaryvwpeilovtag to ground truth, nepintddoeg dnou tanpdlel eniong xoufoug YoplBou uetald Twv dLo
Yedpwy, odnywvtag elte oe npooeyYloTixég elte o Aavlaouévee ADoELS, ol TERINTOOoE 6Tou Peioxel npooey-
yioTxég Aoelg avay vwpilovtag éva utocivoho Tou ground truth nou diatnpeel To cwotd oyfuo. Hapouoidlouvue
eniong mEpIMTWOELS 6TToL 1) Topay OUEVY cUvom elvon Aavdaopévn. o xahbtepn euxplvela, topouvaldlouye xuping
napodelypoTa and 1o glvoho dedouévev ue Baowd oyfuata 8 xouPwv, ahhd topdpol potiBa xou TapaTNENoELS
Begdnxav xau ot exddoelc Tou cuVOLoL Bedouévey Ye 15 xan 25 xépfBouc.

_—R
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G2 G2 )
(a) Exact match example for the Cycle class. (b) Exact match example for the Complete class.

Figure 1.3.3: IMapadelypato axpPolc tapdopatoc yia To obvoho dedopévewv Geometric Shapes (8).

Y10 Eyfua 1.3.3, napoucidoupe 800 mopadelyuota dmou to ovtého mpofiéncet ue axp{Beia To ground truth. Xto
pecalo Tpnpa, 6mou aneixoviCoupe TIC TPOGOYES UETAED TWVY YRAPWY, TapatneolUe 6Tl ol x6ufol YoplBou, Tou
oev elvan pépog tou ground truth, eite dev "npocéyouv” xavévay xouBo amd tov dhho yedyo elte "tpocéyouv"
x6pPouc pe toug onoloug dev Tauptdlouy. Emouévee, av xat 0 U€YIoTOC X0vo¢ LToYEdPoc Twv Yedpwy G Xt
G4 elvan éva utepovolo tou ground truth, to toupdopoato Tou mpoxdnToLY and T BIEAEUCY| TOUC UECL TOU
NAT pog emitpénouv va mpofAédouye pe axpifeia T owoth cOvodn.

N y
G1 G2 N\ / G1 G2

o | /N T )
J \. \ N P
o °
/‘/t
f/‘
(a) Mopddelypa TEOCEYYIOTIXOU (b) Hopdderypa TpoceYYLoTIXO0
TOUELAOUOTOS YL AOTEPOELDT] YEAPO. TUELAOUOTOS Yiol YEAPO YEAUUUN.

Figure 1.3.4: TTapoadelypato npoceyyloTxol toupldouatoc yio 1o ovolo dedopévey Geometric Shapes (8).

Y1 ouvéyela, oto Yyfua 1.3.4 napovoidlouue 0o mapadelyyota 6mou ol mapaydueves cuvddelc Talptdlouy
npooeyYloTxd pe to ground truth, Sniady) Siatneolv o cwoTd oyfua Al dlapépouv oTov apttud xoubwy
xatd £1. Ilo ouyxexpyéva, oto Lyfua 1.3.4a, n mopoyduevn aotepoeldnc alvodn éxet 7 xouBous, oe olyxpLon
pe Toug 8 Tou ground truth. Autr n Sapopd ogpeiletan 6To YeYOVHS dTUL OL TPOGOYEC PETAED TV x6UPwY Yoplfou
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(a) Aavdaopévo mopddelypo Yo (b) Aavdacuévo mapddetypa yio
xUXAXS Ypdpo. Ao TEPOELSY) YPdPO.

Figure 1.3.5: Aavdaopéva nopadeiypata yio To oOvoho dedopévewv Geometric Shapes (8).

TV dV0 Ypdpwv @uktpoplotnxay and 1o dplo mou Yécope, ohAd To (Blo PIATEAPLOUN ETNEEATE ol EVAY OO TOUG
%x6uPoug Tou GUVBEOVTAL UE aUTOUS OE XEUE Ypdpo, UE amoTENETUA ULo UixpOTERT 0o TEROELDT| alvoldr. Avtideta,
o710 Yyhua 1.3.4b, n noporydpevn obvodn éxet 9 xduPouc avtl yia 8, xodde, extodc and Tic npocoyéc Yetoll Twv
x6uPBwv ToL Baoxol oYHUaTog, ol Tpocoyéc uetalh evog Levyous xoufwy Yoplfou mou enéxTevay T YEUUUN
ftay enlong méve and to GpLo mou Vécope, odNYOVTIS OE Wi WeYoAUTEPY Tapary duevn alvoln.

Téhog, oto Eynua 1.3.5, napovoidlouvue dUo mapadelyyota 6mou ol mapayoueves cuvodels elval Aovioouéves.
‘Opota pe 1o Lyfua 1.3.4b, ol npocoyéc petald twv x6uBwv Bopifou mou taupidlouy otoug 8Vo yedgpoug elval
Tdvew amd To 6pLo Tou Vécope. 26T600, OE AUTES TIC TEQINTAOCELS, oL xoufol Yopiou dev enextelvouv To Poacixd
oo ahhd to dtapdooouy, e anotéheoya pio YopuBndn, haviaouévn mapoyduevn clvoldn.

MUTAG:

Abyw g xolrc anddoong e Medddou II 6to ohvoro Geometric Shapes, TEoyUOTOTOOOUE XETOLOL TELOAUOTOL
oto MUTAG, Yy t0 onolo n Médodog I dev mapeiye xohd anoteréopata. Av xou 1o MUTAG dev éyel ground
truth cuvéelc mou avtimpoowREYOUY Tic XAACELS, Yo Vo cuYxplvouue to amoteréopatd yog, 1 Médodog 11
TORHYAYE OYETXA GUVETEC CUVOYEL TTOL QUIVETOL VO AVTITPOCKWTEVOUY UMOTEAECHATIXG Xdde xhdom xan va
ATOTUTWVOLY TIS ONUAVTIXES TANEOYPORIES amd TOUG Yedpous oTtny elcodo.
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Figure 1.3.6: Axp31 nopadelyparto yio tnv un petodladloydvo xhdomn tou cuvorou dedopévov MUTAG.
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Figure 1.3.7: Axp\3v) napadelyporto yia tny petahhadloyovo xhdon tou dataset MUTAG.

Yo EyAuarto 1.3.6 xou 1.3.7, napatnpolye 6Tt yiar T un Letarhalloydvo xhdor, ol mopaydueves cuvoels elvat
ouvenelc xar cuvAdwe oynuatilovtar we évwon evdc napadelypotog xdlde evoc and ta dVo tpwtéTuna. [ T
petala€loyovo xhdor, ol mapaydueveg cuvOPElS oLy Ve Tapouatdlouy mapouota potiBa xal amotehodvTal oo
TOAMTAS TopadelyoTa TV 800 TPWTOTUTWY, TOU AVTLTPOCKTEVOUY GWOTA Tol LETOANAELOY OV YopaXTNELOTIXG.
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Figure 1.3.8: Aavdaopéva mopadelyyota e TeplocdTEROUE XOUBOUS Yot TNV U HETAAAAELoYOVO XhdoT
(aprotepd) xon TNV petarhalioydvo xhdom (Selid).

Qo1600, buota pe To ghvoho Bedopévwy Geometric Shapes, ov mapoyoueveg cuvodeig yia to MUTAG unoget
enfone va nepthauBdvouv xouPouc mou dev mpénel va elvan Pépog Twv cuvdPewy, xadde oL Tpocoyéc uetadh Toug
elvon Téve and to dplo mou Yéouue, N va Tapakeinovy xOufouc Tou TEENEL Vol TEpLAOUBAVOVTAL AGY W TOU OTL OL
TPOGOYES TOUG elvon xdTw amd To 6plo Tou Yéoope. Autd o napadelypata topouotdlovton oto Lyhue 1.3.8 xou
oto Yyfua 1.3.9.

Téhoe, éva eviiapépov wotifo mopatneRinxe xatd tn Sdpxela Tne avdhuong, ep@ovilOUeEVO O GUYVE OTHY Un
petahha€loyovo xhdon. ‘Otav dnuouvpyolue Tic obvolele, av ypnoldonotioouue tpodto to LEVYN avTioTolylone
amd TO TEMOTO EMUNEDO UOVA TOUC, 1) TopAYOUEYY cuVoN elvan cuyVE Eva omd To 800 TEMTOTUTA, GUYXEXRLUEVAL
1 MXEOTERY), Yeouuixh dop (aVTITpooWTEUGUEYY omd TOUC TPACLYOUG ol UTAE XOUPouUC oTo oY AHaTe). 2T
CUVEYELN, apotpdvTaS awtols Toug xouBoug and ta Lebdyn avtiotolylone tou debtepou emnédou, To UTGAOLTA
Lebyn avtiotolylone ouyvd mapdyouv to dhho TewmTdTUTO, dNAadH 1 xuxhx douh (avTinpocwreubUeEYY otd
TOUS XOXUVOUS xGUPous oTa oyfuata).
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Figure 1.3.9: Aovdoouéva napodelyyata pe Aydtepous x6ufous yio Ty un petahholloyévo xhdom (apiotepd)
xou TNy petahhagloydvo xhdon (Seid).

Auto 1o potlBo Beédnxe va elvon oyeTnd cuvenée, Wwiwg to 6Tl ta Lebyn aviioTolyiong and To TpKTo eninedo
TaEdYoLY TN WxEOTERT), Yeuuuxr dour. Autd cupPaivel cuyvd xou oTic 800 xAdoELS, xaddC oL apyLxéS Loy LEES
avtioTtolyloelg mou avayvweilovion and to Yovtélo elvar cuvdwe ol xoufol mou oynuatilouy aUTH T YEoUWXT
doph. Auth n mpooéyyion e ddoyinic yeone Levydyv avtioToiyione mopéyel pa evohhoxtiny uédodo yia
TNV OVOLY VOELOT] (XPOTERKY BaciXdY LTOYRAPWY TV YedPwY 6To cUVOAo dedouévwy. 'Eva nopddelryuo autig
e dwdaoiog mopouvcidletar oto Uyhua 1.3.10.
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(a) Lovodn nou dnuovpyHdnxe e€dyovtac wa chvodn 6To tEhoC yenotponoldvtas dha to Lebyn aviiotolylone.
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(b) Buvéderc mov dnpovpyRdnxay Sradoyixd and ta Lebyn aviiotoiytone oe xdde eninedo. O cuvédelg
avtiotoyilovTal YUe To TPWTOTUTA.

Figure 1.3.10: X0Oyxpeion uedodwy dnuovpyiag cuvodewv. To npodto oyfua delyvel tn obvoln mou
dnwovpyinxe egdyovtag pa obvodn oto téhog, yenoylomoldvtas 6ia ta Levyn avtiotoiytone. To Sedtepo
oyfuo delyver T dradoyr dnuovpyic cuvdewy and ta Ledyn aviiotolylone ot xdde eninedo.
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1.4. Xuyurepdoporo

1.4 Xvunepdopata

1.4.1 3ul7nonm

Ye auth) ) Simhwpotixd epyaoio, aoyoknixaue ye to npdBinua tne Lovodne Ledpov péow twv Aoy Av-
Tiotolytone Fedpwy (AAT). Tuyxexpwéva, emxevipwdixaye otny avdntuin pedodoloyidv yia ) dnuoveyia
OLVOPEWY OV AYTITPOCWTEVOLY TNV XAAoT| and GlvVoha BEBOUEVKY YRAPKY, eEdYOVTAS UTOYRAPOUS amd xdie
YedPo TOL AVTLTEOCKWTEDOLY UTOTEAECUATIXA TNV XAdon oty omola autdg avixet. ['ia tov oxond autdv, ex-
noudevoape évo Aixtuo Avtiotolytone I'edgwy oe éva mpdBinua opoldtnTac Yedpwy, e oTtdyo TNy eEepelvnon
e ovdTNTAC TOU wovTélou va padalvel onuovtnd potiBa oe Lebyn Ypdpwy xatd tny exnaideuor. Xtn cuvéyeld,
avantOEope 500 uedodoroyieg Tou aZloToloVY Tot SLUVOGHUATA TWV XOUPBMY Yo TNV AVOY VOPLOT) QUTGY TwV LoTBev
xa T dnwovpyia Twy TeAx®y cuvodewy. H Mébodog I yenowonotel to dlaviouota 1ev xufwy twy 600 yedpwy
oe xdie eninedo e apyLTEXTOVIXNC YLot T Sntovpyio utodhpLwy cuvodewy, yenowonouwvtac éva entnedo TopK
pooling, arné ti¢ onoleg npoxintel 1 tehxny cUvodn. H Médodoc IT emxevtpdvetar 6Tov evioniond (euydy avTi-
otolytong otoug 800 yedpous, dnhadt Leuydy xouBwy tou epgoavilouv VPNAE au@idpoua oxop Tpocoy e LeTald
TV Ypdpwy. Xenowornowdvtae to Leuydplo autd we Teploptopols, Beloxouue tov uéyloto xowvd emoryduevo
UToYEAPO YeTAED TV B0 Yedpwy pe Tov aryopriuo McSplit.

oty aglohdéynon tng omddoone TOU UOVIEAOU Xl TGV TROTEWOUEVKY PEVOBWY, BNULOVPYNOUUE EVOL GUV-
Yetnd cUvoho dedouévwy I'ewpetpdv Xynudtwy, nou arotekelton and téooepa Bacixd oyfuota: XUXALXOUC,
TAREELS, YeopuxoUe xal oo Tepoetdelc yedpoug. Ilpootécaue G6puBo ye tn pop®n Tuydiny xOUBWY Xou Uy
oToug Yedpoug autols. Autd To clUvolo Bedopévwy mopelye éva eEAeyyOUEVO TERBdAROY UE YVWo T ground
truth, emtpénovtac axpBéotepn allohdynon. Emniéov, npayyatonoioaye Telpduata 0Tto Tpoypotixd ohvolo
oedopévey MUTAG, nou meplauPdver uetohholloydveg xon pn UeTologloyoveg ynuixéc evaoels. Av xou to
ocUvoho dedopévwy MUTAG dev nepthapPdvel ground truth, mepiéyel mpwtodtuma, TOL xoodynoay TNV not-
oty a€loAOYNON TWwV cLVOPEWY Tou TEOPBAENEL TO LOVTEND UOC.

Yuyxplvaye to povtéro pog ue apyittextovixéc NAI mou yenowomowody enineda pooling, cuyxexpyévo to
DMoN, MinCut xou JustBalance, yia tn opadonoinon tewv x6uBwv xou tn dnuiovpyia cuvédewy ypdpov. o va
a&tohoyriooupe T onpacio Tou uNyoviopol Tpocoy e HETAED Ypdpwy tou eladyetar and T AAL, vhonoiiooye
eniong wa anhovotepn apyttextovixy) GAT, tny onola a€loAoYCoUE YENOULOTIOLOVTOS UL TEOGEY YLOT| TUPOUOLNL
pe ) Médodo 1. Xto olvolo dedopévwv Geometric Shapes, to AAT pe ) Médodo II rav moAl cuvenéc xou
Eemépaoe Tal GANoL LOVTEAX OE OAEC TIC EXBOTELS TOU GUVOIOL debouévwy. IIétuye vdmidtepa oxop axpelfBetag
OTIC MEPLOTOTERES XNAOELS, PE AiYES eaupéoelc oTI XAdoELS TAApwY %o ACTEPOEWWY YpdpwY, 6mou To AAT ye
) Médodo I xau to GAT avtictoiya anédwoav xahltepa. Ta NAT mouv Basilovtar 6to pooling elyav younih
an6d0aT), UE ONUAVTIXG YUUNAdTERA o%0p axpifBElag o GUYXELON UE TIC TPOTELVOUEVES PEBOB0UEC Hag.

Aoyw g xodAc anddoong tou AAI pe  MéGodo II oto olvoho dedouévwyv Geometric Shapes, mpory-
patonotiooye melpduata oto olvoho dedopévwy MUTAG. To poviého anédwoe xahd, cuyvd avayvewpeilovtag
cuVHPELC TOU amoTEAOUVTAY E(TE amd Vol TUPABELYUN TWV TEWTOTONWY Yio TV U UetaAlo&loydvo xhdom, elte
omd TOANUTAS TopadelyorTa Yiar T Yetahhalloydvo xhdor. Autd To anoteAéopato avtovoxholy ue axp{Beta
QOO TV 800 xaTNYoELOY. (20TdC0, dUOLd UE Ta AmOTEAEOUATA GTO 0UVOAO dedouévwv Geometric Shapes, ol
TpoPiendueveg ouvodelc tepthdufovay Uepixéc Popeg xOUBOUC TOU BEV AVAXOUY OTO TEMTOTUTA 1) TUPEAELTAY
x6pPouc mou avixouv, AoYw Tou OTL oL TPOCoYES HETAED YEdpwy ftay LYNASTERES X YOUNAOTEPES and TO Xo-
Yoplouévo dplo, avtiotorya. Téhog, éva evbiapépov potiBo mou mapatnerinxe xotd TN ddpxeia NS avdALoNC,
Wiaitepar 0N un petahhalloydvo xAdon, Atav 4ti, dnuiovpydvtoe dadoyixd cuvddelc oe xdie eninedo yenot-
pomoldvtae tar avtioTorya (edyn aviiotolyione xan eoupmdvtac Toug xépfouc toug and Ta emdpeva emineda,
UTOPOUUE VO XUTAOHEUGCOVUE TU TEWTHTUTAL TOU GUVOAOU DEBOUEVWV.

Yuvolilovtag, 1o AAT, waitepa pe tn Méboodo 11, enépepe xard amoteréopata xa itav oe 9€an va avary vwploet
ue axpifeta cuvddelc Tou avtitpoowtedouy TiC xhdoels. Autéc ol cuvolelg Topéyouv TohOTIUES TANPOPOples YLot
To potiBo mou avary vepllet xou pardaivel To povtého xotd Ty exnaldeuon oTto TeEdBANUA ouoldTNTAS Yedpwy. Autd
EVIOYVEL TNV EPUNVEUCLUOTNTA TOU HOVTENOU, XOIOTOVTOC T CUUTERLPOPE TOU Xatd TNy TedBAedrn ogoldtnTog
o Btapovy xou e€nyoun.
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1.4.2 MeArovtixéc Kateuddvoelc

INo yehhovixée epyaoieg, umopolv va e€epeuvniolv apxetéc xatevdivoelc yio va evioyudel mepoutépw 1
XxoTAVONOoY Yo 1 opuoy) Tov Awtiny Avtiotolylong I'edgwy otov topéa e obvodne yedpwy, oAld xou
Tépav auToL:

e Behtiwon Alyopiduwv Méyiotou Kowvod Yroypdgou (MCS) pue NAT: Eve 1 avoryvodp-
o1 PEYIOTOVY xoveY untoyedgpeny (MCS) yenoylomoldvTos Tl Tpocoyéc LeTaE) Yedpnv we TEpLopLouols
anédwoe ®oAd anoTEAECUATA 0T TELRSRATE Hog, TO TedBAnue Tou urohoylouol tou MCS elvar yvwot6
6t elvon NP-hard [27], avEdvovtag onpovtind To LTONOYLOTIXG x6GTOC Yl YEYOAUTEpOUS Ypdpouec. H
eZepelivnon npooeyyioewv yia v aviyveuon MCS yenotponowdvtac NAT, énwe to GLSearch [1], givou
wot ooy Ouevn xoatelBuvor yia T BEATON TNC AMOTEAECUATIXOTATAS TV HEVODWY UaC.

o ITepoutépw Ileipapationdc o Ipaypatind Acdopévor H Sieloywyn nelpopdtwy o neplo-
obtepa TEAYPUTIXE cUVOR dedopévey, 6nwe To BA-Shape [68] xou to Benzene [58], unopel va fondioel
OTNY TEPALTERL AELOAOYNOY) TV TEOTEWVOUEVKLY UeTddwY, Tapéyovtac Bardltepn Xatovonon NS CUUTERL-
(p0opAC TOU YOVTEAOL %ol TwV LoTiBwy Tou etvor oe B€on va uddel oe mo clvieteg xou TOLAAOUOPPES BOUES
Yedpwy.

o EZcpeivnon IMoaparhaywdyv AAT nou Emitpénouy tnv Mn EmPBAenduevn Exndudesvon
pe Xenon Avtidetixnic Mdadnoneg: H diepebvnon avtidetixody napahhaywyv AAT, 6nwe to CGMN
[33], Yo pmopoloe va emiTpédeL TNV EQaPUOYT TeV LEVOBWY YOS OF U EMLOTUACUEVA GOVONS SESOUEVLV, 0E-
LOTIOLVTAS TEYVIXES avTLIETIXNAC Udinong Yo vo evioyuldel 1 ixavédtnta Tou povtélou va podalivel yenoules
AVOTIOEOC TAGELS Y WEIC VoL AToUTOUYTOL ETULOTUACHEVOL BEDOUEVOL.

Axoloudivtog autég Tig UEAAOVTIXES xoTELIVVOELS, UTOROUUE VoL GUVEYICOUUE Vo EEEpELVOUUE TO TEOBANUA TNS
cLVONE YRRV, BEATLOVOVTAS TNV OMOTEAECUATIXOTNTA Xl TNV axp(Belo Twv TEYVIXGY cUvodng o SLdpopoug
Topelg, xau evioybovtag TNy e&nynodTnTa xan TNV epunvevouotnTa v NAT.
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Chapter 2

Introduction

Recent advancements in the field of Artificial Intelligence have been transformative for various domains,
leading to significant breakthroughs in areas such as image recognition, natural language processing, and
healthcare. Among these advancements, Graph Neural Networks (GNNs) have emerged as powerful models
for analyzing and understanding complex graph-structured data, leveraging the inherent hierarchical infor-
mation present in them. They have shown remarkable success across numerous applications, such as social
network analysis, biological networks, drug discovery, and recommendation systems.

The focus of this thesis lies in addressing the problem of Graph Summarization. Given a multi-class graph
dataset, we aim to extract a class-representative subgraph from each graph, that effectively represents the
class to which the graph belongs. The core models we will work with are the Graph Matching Networks
(GMNSs), a specialized type of GNNs that, given a pair of graphs as input, computes a similarity score
between them by jointly reasoning on the pair through a cross-graph attention-based matching mechanism.
By training the model on a graph similarity task, we aim develop methodologies to identify and extract
patterns that the model has learned, in order to inform the creation of the class-representative summaries.

Furthermore, the increasing demand for Explainable AT (XAI) has become critical due to the integration of
neural networks in sectors such as healthcare and autonomous vehicles. The black-box nature of these models
raises questions about their reliability and trustworthiness, necessitating the development of methodologies
that provide insights into the models’ decision-making processes. Summarizing complex graphs and creating
prototype-like class-representative summaries, by identifying patterns that GNNs have learned, can contribute
to better understanding their predictions and enhancing their explainability.

The outline of this thesis is as follows:

e We will begin by providing the theoretical background necessary for the methods and models we will
use for the experiments, including foundational knowledge in Machine Learning and Deep Learning
theory, in Graph Theory and in GNNs and their architectures.

e Subsequently, we will provide a comprehensive overview of the field of Graph Summarization and its
subfields, covering existing traditional and GNN-based approaches.

e Lastly, we will provide a formal definition of the problem we aim to address, describe the GMN model
we will use and present the proposed methodologies. We will evaluate our approach on a synthetic
dataset tailored to the problem, comparing it to existing methods on the field of graph summarization,
apply it to a real-world dataset, and present the quantitative and qualitative results.
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Chapter 3

Background

The field of Artificial Intelligence (AI) encompasses a variety of technologies and methodologies aimed at
emulating human-like intelligence through computational means. At its core, Al strives to enable machines
to perform tasks that typically require human intelligence, such as visual perception, speech recognition,
decision-making, and language understanding.

Machine Learning is a branch of Al focused on algorithms and statistical models that enable computer systems
to effectively perform specific tasks by learning from data. This capability to learn and make decisions with
minimal human intervention is what distinguishes ML from traditional computational approaches. Within
the domain of Machine Learning, further advancements have led to the evolution of Deep Learning (DL).

Deep Learning utilizes model architectures with multiple layers, called deep neural networks. Inspired by
the human brain, deep neural networks can learn from large amounts of data, allowing them to capture
complex patterns and make decisions based on them. The depth of these models, which refers to the number
of processing layers, enables the handling of vast complexities in data, making deep learning particularly
effective for tasks that involve high-dimensional data such as images, sound, and text.
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Chapter 3. Background

3.1 Machine Learning

Machine Learning (ML) encompasses various methodologies that allow systems to learn from data and im-
prove their performance. This section covers the different types of learning methodologies and the various
data types used in ML.

3.1.1 Categories of Learning

Machine learning encompasses various paradigms, each tailored to different objectives and data types. The
primary distinguishing factor among these paradigms is the presence or absence of supervisory signal during
the learning process. The most common learning paradigms are detailed below.

Supervised Learning

Supervised learning involves training a model f on a dataset containing input-output pairs (z,y), where z
represents the input features and y the corresponding labels. The goal is to learn a mapping f : X — Y that
makes accurate predictions for y given new x values. Commonly, this involves minimizing a loss function
L(y, f(x)) that measures the prediction errors over all examples in the training set. This framework is
commonly used for classification and regression tasks.

Unsupervised Learning

Unsupervised learning algorithms operate on data without labels, aiming to discover the intrinsic structure
within the dataset. The objective is to identify underlying patterns or structures within the data. Clustering
and dimensionality reduction are common tasks in unsupervised learning. Algorithms like k-means clustering,
hierarchical clustering, and principal component analysis (PCA) are popular in this category.

Semi-Supervised Learning

Semi-supervised learning is a hybrid approach that leverages both labeled and unlabeled data during training.
Typically, a small amount of labeled data is supplemented with a large amount of unlabeled data. This method
can significantly improve learning accuracy when labeled data is scarce or expensive to obtain. Techniques in
semi-supervised learning include self-training, co-training, and graph-based methods. Applications include
text classification, image recognition, and bioinformatics.

Self-Supervised Learning

Self-supervised learning is a type of unsupervised learning where the data itself provides the supervision. The
model learns to predict part of the data from other parts, effectively creating its own labels. This approach is
particularly useful for pre-training models on large datasets where manual labeling is not feasible. Examples
include predicting missing words in sentences or predicting future frames in a video. This type of learning is
commonly used in fields like natural language processing and computer vision.

Reinforcement Learning

Reinforcement learning (RL) involves training an agent to make a sequence of decisions by rewarding it for
good actions and penalizing it for bad ones. The agent learns to maximize cumulative rewards over time,
interacting with an environment that provides feedback in the form of rewards or punishments. RL algorithms
include Q-learning, policy gradients, and deep reinforcement learning. This type of learning is prominently
used in robotics, game playing, and autonomous systems.

3.1.2 Data Modalities

In the diverse field of machine learning, data modalities represent the various forms and sources of data that
algorithms can process to learn and make predictions. The most common datatypes and their applications
are detailed below.
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Structured Data

Structured data refers to information that is highly organized and easily searchable in databases. This type of
data is typically stored in tabular formats with rows and columns, such as spreadsheets or relational databases.
Machine learning models utilize structured data effectively for predictive analytics, where attributes directly
inform the predictive models.

Unstructured Data

Unstructured data lacks a predefined format or organization, making it more challenging to collect, process,
and analyze. This type of data includes text, images, videos, and audio files. Natural language processing
(NLP) and computer vision techniques are often used to extract meaningful information from unstructured
data, enabling tasks such as sentiment analysis, text summarization, and language translation.

Image Data

Image data consists of visual information captured in the form of pictures or frames from videos. It is
typically represented as pixel arrays, where each pixel contains color and intensity values. Image data is used
in various applications, such as medical imaging, facial recognition, and autonomous driving. Convolutional
neural networks (CNNs) are a popular architecture for processing and analyzing this type of data.

Time-Series Data

Time-series data is a sequence of data points collected or recorded at specific time intervals. This type of
data is often used in forecasting and trend analysis. Examples include stock prices, weather data, and sensor
readings. Specialized models like ARIMA for forecasting, and Long Short-Term Memory networks (LSTMs),
a type of recurrent neural network, are often used to predict future data points in a series.

Graph Data

Graph data represents relationships between entities and is structured as nodes (vertices) and edges. This
type of data is used to model networks such as social networks, communication networks, and biological
networks. Graph-based algorithms and techniques are employed to analyze the structure and dynamics of
these networks. Graph neural networks (GNNs) have emerged as powerful tools for learning and inference
on graph-structured data.

3.2 Deep Learning

Deep Learning, a significant advancement in the field of Machine Learning, has emerged from the need
to handle and learn from large volumes of data with high complexity. Building on the foundation of
traditional machine learning, deep learning utilizes neural networks with many layers to automatically learn
representations and features from raw data. This approach has proven particularly effective in domains such
as computer vision, natural language processing, and speech recognition, where it significantly outperforms
traditional methods.

Driven by the availability of large datasets, powerful computational resources, and improved algo-
rithms, deep learning models have become essential tools in Al research and applications. Their ability
to process and analyze complex data has led to breakthroughs in various fields, making deep learning a
cornerstone of modern artificial intelligence.

3.2.1 Core Components of Neural Networks

Deep learning models are constructed from fundamental elements known as artificial neurons. These neurons
are organized into layers and networks and are linked by weights that are adjusted during training, enabling
them to learn complex patterns from data.
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Neurons and Perceptrons

Artificial neurons, inspired by biological neurons, are the basic units of neural networks. A single artificial
neuron, or perceptron, performs a mathematical operation on its inputs to produce an output. This operation
involves calculating a weighted sum of the inputs and applying an activation function.

Mathematically, a perceptron takes a vector of inputs x = [z1, za, ..., z,] and computes a weighted sum:

z= iwimi +b
i=1

where w; are the weights associated with each input, and b is the bias term. The output is obtained by
applying an activation function ¢ to this weighted sum:

Dendrites

Output

Linear Activation
function function

Nucleus @

Figure 3.2.1: An illustration of the structure of a biological neuron and an artificial neuron (perceptron).

Activation Functions

Activation functions play an important role in the architecture of neural networks, as they introduce non-
linearity to the model, which is essential for learning complex patterns and relationships in data. Without
non-linearity, a neural network would simply behave like a linear model, regardless of the number of layers,
and would be unable to capture the intricate structures and dependencies inherent in real-world data. The
most commonly used activation functions are presented below.

e Sigmoid: The sigmoid function outputs values in the range (0, 1), making it useful for binary classifi-
cation tasks. Its mathematical form is:
1
z2)=——
o(2) 1+e 2
It is differentiable everywhere in its domain, which makes it compatible with gradient-based optimiza-
tion techniques like backpropagation. However, it can suffer from vanishing gradients, which slows

down learning in deep neural networks.
e Tanh: The hyperbolic tangent function outputs values in the range (—1,1). It is zero-centered, which
helps during optimization. Its form is:
e — e %
tanh(z) = ——
e +e” %

Like the sigmoid function, tanh can also face issues with vanishing gradients.
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3.2. Deep Learning

e ReLU (Rectified Linear Unit): The ReLU function outputs the input directly if it is positive;
otherwise, it outputs zero:

ReLU(z) = max(0, 2)

ReLU helps mitigate the vanishing gradient problem and is computationally efficient, making it widely
used in deep learning. Variants like Leaky ReLU and Parametric ReLU aim to address its tendency to
output zero for all negative inputs.

e Leaky ReLU: This variant allows a small, non-zero gradient when the input is negative:
Leaky ReLU(z) = max(az, z)

where « is a small constant. It mitigates the "dying ReLU" problem where neurons could become
inactive during training.

The choice of activation function can significantly impact the performance and training dynamics of a neural
network and is influenced by the specific characteristics of the problem at hand and the network’s architecture.

Basic Layers

Neural networks are composed of layers of neurons, each serving specific functions to collectively create a
powerful model. The various types of layers are designed to handle different aspects of data processing,
enabling the network to learn and represent complex patterns and features effectively. The most commonly
used layers are presented below.

e Fully Connected (Dense) Layers: In a fully connected layer, every neuron is connected to every
neuron in the previous layer. The operation performed by a dense layer is a matrix multiplication
followed by an activation function:

y = ¢(Wx + b)

where W is the weight matrix, b is the bias vector, and ¢ is the activation function applied element-wise.
Fully connected layers are typically used in the final stages of a neural network to combine features
learned in previous layers and make predictions.

e Convolutional Layers: Convolutional layers are primarily used in image processing tasks. They
apply convolution operations to the input, which involves sliding a filter (or kernel) over the input and
computing the dot product between the filter and local regions of the input. This helps capture spatial
hierarchies and patterns in the data.

e Pooling Layers: Pooling layers reduce the spatial dimensions of the input, which decreases computa-
tional load and helps control overfitting. Max pooling and average pooling are common types.

e Recurrent Layers: Recurrent layers are designed for sequential data, such as time series or text.
They maintain hidden states that capture information from previous steps in the sequence. A basic
Recurrent Neural Network (RNN) operation is:

hy = ¢(Wrhe—1 + Waz, + b)

where h; is the hidden state at time step t, x; is the input at time step ¢, and Wy, W,,b are the
parameters of the network.

These components form the foundational elements of deep learning models. By combining different types of
layers and activation functions, deep learning models can learn to perform a wide range of tasks.

3.2.2 Training Neural Networks

Training a neural network involves adjusting its parameters to minimize the error between predicted and
actual outputs. This process includes various techniques such as using loss functions, gradient descent,
backpropagation, and regularization methods, which are detailed below.
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Figure 3.2.2: An illustration of the diagrams of the discussed Activation Functions.

Loss Functions

In deep learning, a loss function, also known as a cost function, quantifies the differences between the
predicted outputs of the model and the actual target values. It serves as a guide for the optimization process
by providing a criterion that the model aims to minimize during training. The choice of loss function depends
on the type of problem being solved, such as classification or regression.

e Mean Squared Error (MSE): Commonly used for regression tasks, it calculates the average of the
squares of the differences between the predicted and actual values. The formula for MSE is:

1 N
MSE = — S (4 —
S N;(y

where ; represents the predicted value, y; is the actual value, and N is the number of observations.
MSE is sensitive to outliers due to the squaring of differences.

e Cross-Entropy Loss: Cross-entropy loss is widely used for classification tasks, particularly in binary
and multi-class classification. For binary classification, the cross-entropy loss is defined as:

N
1 )
=% Z yilog(§:) + (1 — yi)log(1 — ;)]

For multi-class classification, the categorical cross-entropy loss generalizes to:

1 N C
_NZZyZCIOg yzc

i=1 c=1

where C' is the number of classes, y; . is a binary indicator (0 or 1) if class label ¢ is the correct
classification for observation i, and ¢, . is the predicted probability that observation ¢ belongs to class
c.

Gradient Descent

Gradient Descent is an optimization algorithm widely used in machine learning and deep learning for mini-
mizing the loss function of a model. The method updates the parameters of the model iteratively to find the
minimum value of the loss function.
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The basic idea behind gradient descent is to update each parameter in the model in a direction that reduces
the loss function, which is determined by the negative gradient of the loss function at the current point. The
update rule for gradient descent is:

0 =0—n- VeI (0)

where 6 represents the parameters, 7 is the learning rate (a scalar that determines the step size during the
minimization process), and VyJ(0) is the gradient of the loss function.

There are several variants of the Gradient Descent algorithm, which can improve its efficiency and conver-
gence:

e Batch Gradient Descent: Computes the gradient of the loss function using the entire dataset. This
method is precise but can be very slow and computationally expensive with large datasets.

e Stochastic Gradient Descent (SGD): Computes the gradient using a single sample at a time. This
helps to speed up the computations and can lead to faster convergence, especially with large datasets.
However, the updates can be noisy due to the high variance of the gradients based on single samples.

e Mini-Batch Gradient Descent: A compromise between batch and stochastic gradient descent, this
method uses small batches of samples to compute the gradient. It balances the efficiency of batch
processing with the reduced variance of the estimates from stochastic processing.

Backpropagation

Backpropagation [57] is an algorithm used for training neural networks, enabling the efficient computation of
gradients of the loss function with respect to the weights. It is primarily used in conjunction with optimization
methods like gradient descent to adjust the weights of the network based on the error between the predicted
outputs and the actual outputs.

The backpropagation process involves calculating the gradient of the loss function at the output and prop-
agating this error backward through the network, layer by layer. It computes the partial derivatives of the
loss function with respect to each weight by applying the chain rule from calculus:

01 _ 0J 0a; 0z
6wij B 8Clj 8Zj 6’U)L]

where:
e J is the loss function,
e w;; is the weight between the i** and ;" neurons,

aj is the activation of the j'" neuron,

zj is the input sum to the 4t neuron.

This gradient information is used to update the weights in a direction that aims to reduce the loss:

o
n@wij

! — ..

where n is the learning rate. This weight update rule is applied iteratively across the network, updating all
weights to minimize the overall loss.

Generalization, Overfitting, and Underfitting

When training neural networks, achieving a balance between model complexity and performance is crucial
to ensure that the model generalizes well to new, unseen data. Generalization refers to the model’s ability
to perform accurately on data that it has not encountered during training. However, models can suffer from
overfitting or underfitting, which adversely affect generalization.
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Overfitting occurs when a model learns the training data too well, including its noise and outliers. This results
in excellent performance on the training data but poor performance on validation and test data. Overfitted
models are typically too complex for the amount of training data available. To mitigate overfitting, techniques
such as regularization are employed.

Conversely, underfitting happens when a model is too simple to capture the underlying patterns in the data,
leading to poor performance on both training and validation/test data. Underfitted models fail to learn
from the training data adequately. Addressing underfitting involves increasing model complexity, reducing
regularization strength, improving feature engineering, and ensuring sufficient training time.

Regularization

Regularization techniques are methods used to prevent overfitting, ensuring that the model generalizes well
to new, unseen data. Overfitting occurs when a model learns the detail and noise in the training data to the
extent that it negatively impacts the performance of the model on new data. Regularization provides a way
to constrain or regularize the learning process, typically by adding a penalty on the complexity of the model.
The following are commonly used regularization techniques in deep learning:

e Dropout: Dropout is a regularization technique that involves randomly setting a fraction of the
neurons’ activations to zero during each training iteration. This prevents the network from becoming
too reliant on particular neurons.

Mathematically, for each training sample, dropout modifies the forward pass as follows:

l 1
adropout =a or

where r is a vector of Bernoulli random variables with probability p of being 1 (kept) and 1 — p of being
0 (dropped). During testing, all neurons are used, and their outputs are scaled by p.

e L1 and L2 Regularization: L1 and L2 regularization add penalty terms to the loss function to
constrain the magnitude of the weights.

— L1 Regularization: Adds the absolute values of the weights to the loss function, promoting
sparsity.
Liotal = L+ XY |w]
i

— L2 Regularization (Ridge Regression): Adds the squared values of the weights to the loss
function, encouraging smaller weights.

Liotal = L + /\wa

where L is the original loss function, w; are the weights, and A is the regularization parameter controlling
the penalty’s strength.

e Early Stopping: Early stopping involves monitoring the model’s performance on a validation set
during training and stopping the training process when performance stops improving. This prevents
the model from overfitting the training data.

e Data Augmentation: Data augmentation generates new training samples by applying random trans-
formations such as rotations, translations, and flips to the existing data. This technique is particularly
useful in image classification tasks, as it increases the diversity of the training set and reduces overfitting.

Hyperparameter Tuning

Hyperparameter tuning involves selecting the optimal values for parameters like the learning rate, batch size,
number of layers, and regularization strength, which are set before training begins. Proper tuning of these
hyperparameters can significantly enhance a model’s performance and generalization capability. Common
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methods for hyperparameter tuning include grid search, random search, and Bayesian optimization. These
methods systematically explore different combinations of hyperparameters to find the best configuration.

3.2.3 Evaluation and Validation
Training, Validation, and Test Sets

Proper evaluation of a neural network’s performance requires dividing the available data into three distinct
sets: the training set, the validation set, and the test set. This division ensures that the model is trained,
validated, and tested on different subsets of data to accurately assess its performance and generalization
ability.

e Training Set: The training set is the subset of data used to train the neural network. The model
learns from this data by adjusting its parameters (weights and biases) to minimize the loss function.
Typically, the majority of the available data is allocated to the training set.

e Validation Set: The validation set is used to tune the model’s hyperparameters and to provide an
unbiased evaluation of the model during the training process.

e Test Set: The test set is a separate subset of data used to evaluate the final model’s performance after
training and validation. It provides an unbiased estimate of the model’s generalization ability to new,
unseen data.

Performance Metrics

Evaluating the performance of a neural network on classification tasks requires metrics that reflect the
model’s ability to correctly predict the classes of new, unseen data. The most common performance metrics
are presented below.

e Accuracy: Accuracy is the ratio of correctly predicted instances to the total number of instances. It
is a simple and intuitive metric but can be misleading when dealing with imbalanced datasets.

TP + TN
TP + TN + FP + FN

Accuracy =

e Precision: Precision measures the proportion of true positive predictions out of all positive predictions.
It is useful for scenarios where the cost of false positives is high.

TP

Precision = W

e Recall: Recall measures the proportion of true positive predictions out of all actual positives. It is
useful when the cost of false negatives is high.

TP

Recall = m

e F1 Score: The F1 score is the harmonic mean of precision and recall, providing a balance between the
two. It is particularly useful for imbalanced datasets.

Fl-Score — 2 x Precision x Recall

Precision + Recall

where TP represents True Positives, TN represents True Negatives, FP represents False Positives, and FN
represents False Negatives.
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3.2.4 Embeddings

A key concept we will often refer to in the context of this thesis is embeddings. Embeddings are continuous
vector representations of data in a lower-dimensional space, a transformation that facilitates its efficient
processing and analysis by neural networks. The goal of embeddings is to bring semantically similar objects
closer together in the embedding space, by effectively capturing the semantics of the input.

Embeddings are most commonly used in the field of natural language processing (NLP), serving as word
or sentence representations. They generally are real-valued vectors representing the semantic meaning of
words in such a way that maps words with similar meaning closer together in the vector space. With the
emergence of Graph Neural Networks (GNNs), a class of models we will cover in a later chapter, the concept
of embeddings has been extended beyond NLP. In GNNs, embeddings can represent node features, capturing
the intrinsic characteristics of individual nodes within a graph, and edge embeddings can encapsulate the
properties and relationships between connected nodes. Furthermore, graph-level embeddings can summarize
subgraphs or entire graphs, encoding structural and feature information in a compact form.

3.2.5 Transformers

The Transformer architecture, introduced by Vaswani et al. [64] in 2017, has revolutionized natural lan-
guage processing (NLP) and various other fields. Its self-attention mechanism enables capturing complex
dependencies in sequential data, making it particularly effective in tasks such as language translation, sum-
marization, and image processing. Moreover, as we will see later on, the attention mechanism inspired the
Graph Attention Networks [65].

The Transformer architecture is summarized below:

e Input Representation: The input sequence is first embedded into continuous vector representations.
Positional embeddings are added to these embeddings to provide information about the position of each
token in the sequence.

e Encoder: The encoder consists of a stack of identical layers. Each layer has two sub-layers:

— Multi-Head Self-Attention: This mechanism allows the model to focus on different parts of
the input sequence simultaneously. The mathematical formulation for self-attention is as follows:

Given an input sequence of token embeddings X = [x1,Xa, ..., X,], the self-attention is computed
as:

Attention(Q K \/) = softmax V
) )
vV dk

where Q (queries), K (keys), and V (values) are linear transformations of the input X:

Q =XW¢,
K= XWX,
VvV =XWV"

Here, W?, WX and WV are learnable weight matrices, and dj, is the dimension of the key
vectors. The scaled dot-product attention is computed by taking the dot product of the query
and key vectors, scaling by /dy, applying a softmax function to obtain the attention weights, and
then multiplying by the value vectors.

— Position-wise Feed-Forward Neural Network: After the attention mechanism, each token’s
representation is passed through a position-wise feed-forward neural network. This introduces
non-linearity and further refines the token representations.

Residual connections, followed by layer normalization, are employed around each of the sub-layers.
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3.2. Deep Learning

e Decoder: The decoder also consists of a stack of identical layers, each containing three sub-layers:

— Masked Multi-Head Self-Attention: This sub-layer acts similar to the corresponding encoder’s
sub-layer but with a mask applied to prevent attending to future positions during training.

— Multi-Head Encoder-Decoder Attention: This sub-layer focuses on the encoded input se-
quence, allowing the decoder to consider the relevant parts of the input during sequence generation.

— Position-wise Feed-Forward Neural Network: Similar to the encoder, this sub-layer follows
the attention mechanisms.

As with the encoder, residual connections are used around each sub-layer, followed by layer normaliza-
tion.

e Output Generation: The output of the final decoder layer is transformed into probability distri-
butions over the output vocabulary using a linear transformation followed by a softmax activation.
Throughout the training process, the model is fed with a word sequence as input to predict the subse-
quent word.

Transformers have found applications across a wide range of fields due to their ability to model long-range
dependencies and handle large-scale data efficiently. In natural language processing (NLP), they are used for
tasks such as machine translation, sentiment analysis, and text summarization. Beyond NLP, transformers
are also employed in computer vision for image classification and object detection, as well as in the healthcare
sector for tasks like medical diagnosis and protein structure prediction. Their versatility and effectiveness
have made transformers a foundational model in many state-of-the-art Al systems.
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Figure 3.2.3: An illustration of the Transformer - model architecture, as presented in [64].
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Chapter 4. Graphs

4.1 Graph Theory

Graphs are fundamental mathematical structures used to model pairwise relations between objects. Formally,
a graph is denoted as G = (V, E), where V is a set of vertices, also known as nodes or points, and F is a set
of edges, also known as links or lines. The vertices « and v of an edge {u, v} are called the edge’s endpoints.
The order of a graph is its number |V| of vertices, usually denoted by n. The size of a graph is its number
|E| of edges, typically denoted by m.

In terms of connectivity, any two vertices in a graph may be connected by zero, one, or multiple edges.
Graphs that allow multiple edges to have the same endpoints are called multigraphs. Sometimes, graphs are
allowed to contain loops, which are edges that join a vertex to itself. The degree of a vertex is the number
of edges connected to it, which helps define its connectivity within the graph. In a graph of order n, the
maximum degree of each vertex is n — 1 (or n + 1 if loops are allowed, because a loop contributes 2 to the
degree), and the maximum number of edges is n(n — 1)/2 (or n(n + 1)/2 if loops are allowed).

Graphs can be categorized based on the directionality of their edges:

e Directed Graphs: In directed graphs, each edge has a direction associated with it, typically repre-
sented with an arrow pointing from one vertex to another. This direction indicates the asymmetry in
the relationship, meaning the connection from vertex u to vertex v does not imply a connection from
v to u.

e Undirected Graphs: In undirected graphs, edges are bidirectional, implying that each connection is
symmetric. Thus, an edge from v to v automatically entails an edge from v to .

ONESOONING
O ® O~ ©
S b)

a

Figure 4.1.1: An example of a directed and an undirected graph.

A graph is fully determined and can be represented by its adjacency matrix or its adjacency list:

e Adjacency Matrix: An adjacency matrix A of a graph of order n is a n X n matrix where non-zero
elements indicate the presence of an edge between the vertices. In undirected graphs, this matrix is
symmetric, which simplifies certain computations.

e Adjacency List: This is a more space-efficient way to represent graphs, particularly sparse ones. Each
vertex maintains a list of all vertices to which it is directly connected, facilitating efficient traversal and
modifications.

Vertices and edges can also have attributes or weights associated with them, which are often represented as
matrices or lists that hold data relevant to each vertex or edge. Such weights might represent for example
costs, lengths or capacities, depending on the problem at hand. Such graphs arise in many contexts, for
example in shortest path problems such as the traveling salesman problem.

Furthermore, the following key concepts describe the relationships and structures within graphs:

e Neighborhood: The neighborhood of a vertex v in a graph is the set of all vertices adjacent to v.
Formally, for a vertex v, its neighborhood N(v) is defined as {u € V' | {u,v} € E}.

e Path: A path in a graph is a sequence of edges that connects a sequence of distinct vertices. A path
is simple if all vertices (and hence all edges) are distinct.
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e Walk: A walk is a sequence of edges and vertices where repetition of vertices and edges is allowed. A
walk can be open, if it starts and ends at different vertices, or closed, if it starts and ends at the same
vertex.

e Cycle: A cycle is a closed path with no repeated vertices or edges, except for the starting and ending
vertex.

e Subgraph: A subgraph is a graph formed from a subset of the vertices and edges of a larger graph.
If a subgraph includes all edges between the vertices that appear in the original graph, it is called an
induced subgraph.

4.2 Graph Similarity

Graph similarity measures are mathematical tools used to quantify the similarity between two graphs. These
measures are essential for comparing and analyzing the structural properties of different graphs, enabling
tasks like graph classification, clustering, and matching. Traditional methods for graph similarity include
Graph Edit Distance (GED) and Graph Kernels, which are detailed below.

4.2.1 Graph Edit Distance

Graph Edit Distance (GED) is a widely-used method for measuring the similarity between two graphs. The
first mathematical formulation was introduced by Alberto Sanfeliu and King-Sun Fu in 1983 [59]. It is
defined as the minimum number of edit operations required to transform one graph into another. These edit
operations include insertions, deletions, and substitutions of nodes and edges. The GED between two graphs
Gy = (V4,E1) and Gy = (Vi, E3) can be formally defined as:

d(G1,G2) = {ynEllI"l Z c(e)

ecy

where T" represents the set of all possible sequences of edit operations that transform G; into Go, and c(e) is
the cost associated with the edit operation e. The main edit operations include:

e Node Insertion/Deletion: Adding or removing a node from the graph.
e Edge Insertion/Deletion: Adding or removing an edge from the graph.

e Node Substitution: Replacing a node in one graph with a node from another graph, which might
involve changing its label or attributes.

e Edge Substitution: Changing an edge in one graph to match an edge in another graph, which might
involve altering its weight or attributes.

The cost of each operation can vary depending on the application and the specific characteristics of the
graphs. For example, in some applications, node substitutions might be more expensive than edge insertions,
reflecting the relative importance of preserving node identities.

While GED is a powerful measure, computing it is NP-hard, which makes its exact computation is infeasible
for large graphs. Therefore, various heuristic and approximation algorithms have been developed to make
GED computation more practical. These methods often trade off exactness for efficiency, providing near-
optimal solutions while reducing the time complexity.

Exact Algorithms for GED Calculation: Exact algorithms for computing GED typically involve combi-
natorial search techniques that explore all possible sequences of edit operations. These algorithms guarantee
finding the minimum edit distance but are computationally expensive and impractical for large graphs. One
commonly used exact algorithm is the A* Search Algorithm, which is an informed search algorithm that
uses heuristics to guide the search process towards the most promising paths, thereby reducing the number
of states explored. In the context of GED, the algorithm maintains a priority queue of partial edit sequences
and expands the most promising sequence based on a cost function f(n) = g(n) + h(n), where g(n) is the
cost of the sequence so far, and h(n) is the heuristic estimate of the remaining cost to reach the goal.
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Figure 4.2.1: Graph Edit Distance between a pair of graphs.

Approximate Algorithms for GED Calculation: Approximate algorithms for GED aim to find near-
optimal solutions more efficiently by reducing the search space or using probabilistic methods. These algo-
rithms include:

e Hungarian Algorithm: The Hungarian algorithm [42], also known as the Kuhn-Munkres algorithm,
is used for finding the maximum matching in a bipartite graph. In the context of GED, it can be
applied to match nodes of the two graphs, minimizing the total cost of the edit operations. Although
it provides an exact solution for the matching problem, it is used as a subroutine in approximate GED
algorithms to improve efficiency.

e A* Beamsearch: A* Beamsearch, introduced in [53], is a variation of the A* search algorithm that
limits the number of paths explored by keeping only the most promising paths at each level of the
search tree. This approach significantly reduces the computational complexity while still providing
good approximate solutions for the GED.

e Bipartite Matching: Bipartite matching algorithms [35] are used to find maximum matchings in
bipartite graphs. These algorithms can be adapted to approximate GED by treating the nodes of the
two graphs as bipartite sets and finding a matching that minimizes the edit distance.

4.2.2 Graph Kernels

Graph Kernels provide another approach to measuring graph similarity, particularly useful in the context of
machine learning. They map graphs into a high-dimensional feature space and compute similarities using
inner products. This approach leverages the power of kernel methods, making it possible to apply algorithms
like Support Vector Machines (SVMs) to graph-structured data. Some popular graph kernels include:

e Random Walk Kernels: Random walk kernels measure similarity based on the number of matching
random walks in two graphs. The most widely-used kernel from this family is the Geometric Random
Walk Kernel [28] which compares walks up to infinity assigning a weight A*¥ (A < 1) to walks of length
k in order to ensure convergence of the corresponding geometric series. Given graphs G; = (V;, E;) and
G; = (V}, Ej), their product graph Gx = (Vx, Ex) has the vertex set Vi = {(vi,v;) 1 v; € Vi Av; €
Vi ANl(v;) = L(v;)} and the edge set Ex = {((vi,v;), (i u;)) : {vi,u;} € E; A{vj,u;} € Ej}. The
geometric random walk kernel is defined as:

=T (I =M ) te

pq

[V | 00
K260 Gy = 3 [ZMX)
0

p,q=1 Ll=

where [ is the identity matrix, e is the all-ones vector, and A is a positive, real-valued weight. The
geometric random walk kernel converges only if A < ﬁ where Ay is the largest eigenvalue of A, .
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e Shortest Path Kernels: Shortest path kernels [7] transform graphs into shortest-path graphs S, where
edges represent shortest paths in the original graph G. Given graphs G; and G; with shortest-path
graphs S; and S, the kernel is defined as:

K(SuS) =Y 3 kl(eie))

e;€E; e;€EE;

where ksvlglk(ei, e;) compares edge lengths and endpoint labels:

k(i (eineg) = ko (€(0), £(v)) ke(£(ed), £(e5)) Ko (E(ui), £(u;))
+ e (0(03), €(uy) ke (€(es), £es)) o (E(us), €(v;))

with k, and k. as vertex and edge label comparison kernels.

e Weisfeiler-Lehman (WL) Kernels: Weisfeiler-Lehman kernels [61] use the Weisfeiler-Lehman test
of isomorphism to create graph representations that capture structural information. For graphs G and
G’, and a base kernel k, the Weisfeiler-Lehman kernel with h iterations is:

kWL(Ga G,) = k(G07 GE)) + k(Glz Gll) ot k(G}u G;L)

where {Go,G1,...,Gr} and {G|, G, ..., G} are the Weisfeiler-Lehman sequences of G and G’. This
kernel leverages the Weisfeiler-Lehman subtree kernel for efficient graph classification.

e Subgraph Kernels: Subgraph kernels [41] compare the frequency of various subgraph patterns within
the graphs. These patterns could be small, predefined structures like triangles, cliques, or more com-
plex motifs. Subgraph kernels are effective in capturing specific structural properties relevant to the
application domain.
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b
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Figure 4.2.2: An illustration of the computation of the Weisfeiler-Lehman kernel for two graphs [61].
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4.3 Graph Matching

Graph matching is the problem of finding correspondences between the vertices and edges of two graphs
in a way that reflects their structural similarity. It is fundamental in many applications, such as pattern
recognition, computer vision, bioinformatics, and social network analysis. Graph matching can be categorized
based on the strictness of the correspondence criteria into exact and approximate matching.

4.3.1 Exact Graph Matching (Graph Isomorphism)

Exact graph matching, also known as graph isomorphism, is the problem of finding a one-to-one corre-
spondence between the vertices of two graphs such that the edge connectivity is preserved. Two graphs
Gy = (V4, Ey) and Gy = (V;, E») are isomorphic if there exists a bijection f : V3 — V5 such that (u,v) € Ey if
and only if (f(u), f(v)) € Eq. This kind of bijection is commonly described as "edge-preserving bijection", in
accordance with the general notion of isomorphism being a structure-preserving bijection. If an isomorphism
exists between two graphs, then the graphs are called isomorphic and denoted as G ~ Gs.

Formally, the problem can be stated as finding an isomorphism f that satisfies:

G1 ~ Gy < 3f :V§ — Vi such that (u,v) € By <= (f(u), f(v)) € Es

Graph isomorphism is an equivalence relation on graphs and, as such, it partitions the class of all graphs into
equivalence classes. A set of graphs isomorphic to each other is called an isomorphism class of graphs.
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Figure 4.3.1: A visual illustration of two isomorphic graphs.

The question of whether exact graph matching can be determined in polynomial time is an unsolved prob-
lem in computer science, known as the graph isomorphism problem, and its generalization, the subgraph
isomorphism problem, is known to be NP-complete.

The Weisfeiler-Lehman (WL) Test [20] is a heuristic test for the existence of an isomorphism between
two graphs. If the test fails, the two input graphs are guaranteed to be non-isomorphic. If the test succeeds,
the graphs may or may not be isomorphic. There are generalizations of the WL test algorithm that are
guaranteed to detect isomorphisms, although their run time is exponential.

A well-known algorithm for graph isomorphism is the VF2 Algorithm, developed by Cordella et al. in 2001
[25]. The VF2 algorithm is a depth-first search algorithm that tries to build an isomorphism between two
graphs incrementally and uses a set of feasibility rules to prune the search space. The VF2 algorithm has
been used in a wide range of applications, such as pattern recognition, computer vision, and bioinformatics.
While it has a worst-case exponential time complexity, it performs well in practice for many types of graphs.
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4.3.2 Inexact Graph Matching

Inexact, or approximate, graph matching seeks to find the best possible match between two graphs when
an exact match is not feasible. This situation often arises when the graphs differ in size or contain noise
and imperfections. Inexact matching is particularly useful in fields like image recognition, where the data
graphs generated from image segmentation typically have a different number of vertices compared to the
model graphs they are matched against. In attributed graphs, even if the number of vertices and edges are
identical, matching may still be inexact due to differing attributes.

Inexact graph matching methods can be broadly categorized into two groups: those based on identifying
possible and impossible pairings of vertices and those that formulate the problem as an optimization task.
Search-based methods focus on identifying feasible vertex pairings by using heuristics and constraints to
prune the search space. Contrarily, optimization-based methods aim to find the best possible correspondence
between graphs by optimizing a similarity or cost function. Graph Edit Distance is a notable example of an
optimization-based method, where, as previously discussed, the objective is to minimize the number of edit
operations needed to transform one graph into another.

4.4 Maximum Common Subgraph

The Maximum Common Subgraph (MCS) problem is a fundamental problem in graph theory, which aims to
find the largest subgraph common to two given graphs. This problem has significant applications in various
domains, such as cheminformatics, bioinformatics, and pattern recognition, where it is used to identify similar
structures within different graphs.

There are two primary versions of the MCS problem: Maximum Common Induced Subgraph (MCIS) and
Maximum Common Edge Subgraph (MCES). Each version has its own specific constraints and applications,
which we will explore in the following subsections.

4.4.1 Maximum Common Induced Subgraph (MCIS)

The Maximum Common Induced Subgraph (MCIS) problem seeks to find the largest induced subgraph
common to both input graphs. An induced subgraph is a subset of the vertices of a graph along with all
the edges connecting pairs of vertices in that subset. More formally, an induced subgraph I = (V;, Ey) of a
graph G = (Vig, E¢) is defined such that V; C Viz and E; consists of all edges (u,v) € Eg where u,v € Vj.

Formally, given two graphs G = (Vg, Fg) and H = (Vg, Ey), the MCIS problem aims to find a graph
I = (V;, Ey) such that:

e [ is an induced subgraph of both G and H, and
e [ has the maximum number of vertices among all such subgraphs.

The MCIS problem is NP-hard. The associated decision problem is also NP-complete [27]: given two graphs G
and H and a number k, it is computationally infeasible to determine whether G and H have a common induced
subgraph with at least k vertices. Due to its complexity, the MCIS problem is also hard to approximate [34].

One approach to solve the MCIS problem is to construct a modular product graph of G and H. In this graph,
the largest clique corresponds to a maximum common induced subgraph of G and H. Therefore, algorithms
designed for finding maximum cliques can be adapted to find the MCIS [2]. Additionally, modified maximum-
clique algorithms can be used to find maximum common connected subgraphs [52].

The McSplit algorithm and its variant McSplit| [51] are forward-checking algorithms that do not rely on the
clique encoding. Instead, they use a compact data structure to keep track of the vertices in graph H to which
each vertex in graph G may be mapped. These algorithms often outperform clique-based methods for many
graph classes.

4.4.2 Maximum Common Edge Subgraph (MCES)

The Maximum Common Edge Subgraph (MCES) problem, on the other hand, focuses on finding the largest
subgraph based on common edges rather than vertices. In this version, the goal is to maximize the number
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(a) Undirected graphs G and H.

e’
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(b) Different MCS mappings for G and H.

Figure 4.4.1: Given the graphs G and H presented in Fig.(a), Fig.(b) reports 4 different possible MCSs. [50]

of edges in the subgraph that are common to both input graphs, regardless of whether all connecting vertices
are included.

Given two graphs G = (Vi, Eg) and H = (V, Eg), the MCES problem aims to find a subgraph S = (Vg, Es)
such that:

e S is a subgraph of both G and H, and
e S has the maximum number of edges among all such subgraphs.

The maximum common edge subgraph problem on general graphs is NP-complete, as it is a generalization
of subgraph isomorphism.

The MCES problem is useful in scenarios where the relationships or interactions represented by the edges are
more significant than the specific vertices involved, such as in social network analysis or biological interaction
networks.
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Chapter 5

Graph Neural Networks (GININ)

As established in the previous chapters, graphs are prevalent in numerous domains, including social networks,
biological networks, knowledge graphs and recommendation systems. Traditional neural networks are not
inherently suited for handling graph-structured data, due to their requirement for grid-like inputs with fixed
size. These limitations have led to the development of Graph Neural Networks (GNNs), which are designed
to directly process graph structures.

GNNs fall under the broader field of Geometric Deep Learning (GDL) [10], [9], which aims to generalize
deep learning techniques to non-Euclidean domains such as graphs, grids, groups and manifolds. GDL
aims to extend the capabilities of deep learning to complex geometric structures by incorporating their
intrinsic properties into the learning process, allowing models to effectively learn from and generalize to
graph-structured data.

Building on these principles, GNNs are designed to capture the dependencies between nodes (vertices) and
edges in a graph through message passing, aggregation, and update functions. These networks iteratively
aggregate information from a node’s neighbors to learn node, edge, or graph-level representations, enabling
tasks such as node classification, link prediction, and graph classification.
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5.1 Machine Learning on Graphs

5.1.1 Motivation

The motivation for the development of Graph Neural Networks (GNNs) can be attributed to the remarkable
success of Convolutional Neural Networks (CNNs) [44] and the concept of applying convolutional filters to
images. Images, on which CNNs operate, can be viewed as a special instance of graph-structured data, where
nodes are pixels and edges represent adjacency between pixels. Convolutional filters in CNNs exploit the
spatial locality of pixels by sliding rectangular kernels with a small receptive field over the image to produce
feature maps, capturing spatial hierarchies and local patterns effectively.

While CNNs have demonstrated unparalleled efficiency in handling grid-like Euclidean data, many real-
world data structures, such as graphs, are inherently non-FEuclidean. These structures do not conform to
the grid-like patterns of images and require a more generalized approach for processing and learning. GNNs
emerged as a natural evolution of CNNs, generalizing the convolutional framework to graphs. This adaptation
enables the extraction of meaningful features and relationships from complex networks. Specifically, GNNs
define an embedding vector for each node, usually initialized with inherent node properties, which are then
transformed by a sequence of learnable layers. This process involves iteratively gathering information from
neighboring nodes through message passing, effectively capturing the local and global structure of the graph.
However, unlike grids, graphs do not have an inherent ordering of their nodes, and the number of possible
permutations increases factorially with the number of nodes. To address this, GNNs incorporate notions such
as permutation invariance and equivariance in their architecture, ensuring that the learned representations
are robust to the different permutations of the nodes.

(C D)

N 254

(a) (b)

Figure 5.1.1: A comparison between a FEuclidean and a Non-Euclidean space.

5.1.2 Permutation Invariance and Equivariace

As established in section 4.1, a graph with N nodes can be represented by its NV x N adjacency matrix
A and the nodes features can be represented by the N x D feature matrix X, where row n corresponds
to the D-dimensional feature vector z,, of node n. In order to use this representation, an ordering of the
nodes should be predefined. However, the graph and its properties remain the same regardless of the decided
ordering of the nodes. In order to address this challenge, the neural network should learn a function which
preserves the various symmetries of the graph.

A permutation matrix P specifies a particular permutation of the node ordering and has the same dimen-
sionality with the adjacency matrix. It is a square binary matrix that has exactly one entry of 1 in each row
and each column with all other entries being 0. For example, if we have a graph with 4 nodes we can define
P as:
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If we name the nodes (A, B, C, D), this permutation matrix corresponds to the transformation (A4, B, C, D) —
(B,C, D, A). When we perform such a node re-ordering, this results in the permutation of the rows of the
feature matrix X, which can be expressed by the following matrix multiplication:

X =PX

This re-ordering also results in a permutation of both the rows and columns of the adjacency matrix A, which
is expressed by the following matrix multiplication:

A=PAPT
GNNs aim to learn a function f that is not dependent on the ordering of the nodes, which should therefore
be permutation invariant.

Permutation Invariance: A function f is permutation invariant if its output remains unchanged under
any permutation of its input. Formally:

fF(PX) = f(X),

for any permutation matrix P. This property is important for graph-level tasks such as graph classification,
where the order of nodes should not affect the final output. However, although a permutation invariant
function ensures that any global property of the graph does not depend on the node ordering, it can lead to a
loss of information for individual nodes. This is because it treats nodes as sets and not each one individually,
potentially overlooking node-specific information.

Therefore, for node-level tasks, a re-ordering of the nodes should be reflected in the output predictions by
correspondingly permuting the node features. This leads us to the notion of permutation equivariance.

Permutation Equivariance: A function f is permutation equivariant if permuting the input results in a
corresponding permutation of the output. Formally:

f(PX) = Pf(X),

for any permutation matrix P.

Extending these definitions to include both the feature and adjacency matrices, we have the following defi-
nitions:

e Permutation Invariance: f(PX,PAPT) = f(X, A)
e Permutation Equivariance: f(PX,PAPT) = Pf(X,A)

Graph neural networks typically consist of several equivariant layers, and when predictions at the graph level
are needed, a global pooling layer invariant to permutations is applied.
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Figure 5.1.2: Geometric Deep Learning blueprint, exemplified on a graph. A GNN architecture may contain
permutation equivariant layers, local pooling, and a permutation invariant global pooling layer [10].

5.2 Graph Convolution

Graph convolution is the fundamental operation that Graph Neural Networks (GNNs) employ to process and
analyze graph-structured data. This operation enables GNNs to effectively learn and extract features from
nodes and their local neighborhoods, leveraging the relationships inherent in the graph.

From a Graph Signal Processing (GSP) [54], [19] perspective, graph convolution can be understood as a
function acting on a graph signal. A graph signal assigns values to the nodes of a graph, representing various
attributes or measurements associated with these nodes. The convolution operation involves aggregating and
transforming these node values, taking into account the graph’s structure defined by its edges.

There are two primary approaches to defining graph convolution: spectral and spatial. Each approach offers
a different perspective and set of techniques for implementing convolution on graphs, which we will analyze
in this section.

5.2.1 Spectral Graph Convolution

Spectral graph convolution is one of the primary approaches to defining convolution operations on graphs,
grounded in the principles of Graph Signal Processing (GSP). This approach leverages the spectral properties
of graphs, particularly the eigenvalues and eigenvectors of the graph Laplacian matrix, to perform convolution
in the frequency domain.

Graph Fourier Transform

The foundation of spectral graph convolution lies in the Graph Fourier Transform (GFT). The GFT general-
izes the classical Fourier transform to graph-structured data. It uses the eigenvectors of the Graph Laplacian
to define a frequency domain for graph signals.

The Graph Laplacian is a mathematical representation of an undirected graph and is defined as:

L=D-A,
where D is the degree matrix, which is a diagonal matrix with D; ; = > j A;j, and A is the adjacency matrix.
However, usually the normalized Laplacian is used. Normalizing the Laplacian makes the spectral properties
of the graph less dependent on the scale of the graph. It allows for better comparison between graphs of
different sizes and structures and it often leads to more interpretable spectral properties. The normalized
Laplacian is defined as:
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The nomarlized Laplacian is real, symmetric and positive semidefinite, implying that all its eigenvalues are
non-negative and it can be diagonalized. The eigen-decomposition of the Laplacian matrix L is:

L=UAUT,

where U is the matrix of eigenvectors and A is the diagonal matrix of eigenvalues. The columns of U represent
the orthogonal basis for the graph signal space, and the eigenvalues in A correspond to the frequencies of
these basis components. The eigenvectors of the normalized Laplacian matrix form an orthonormal space
because the Laplacian L is normalized and thus UTU = I.

The Graph Fourier Transform of a graph signal = € RY, which assigns a value to each node, is defined [54],
[19], [6] as:

i=U"z
This transformation projects the graph signal x onto the orthonormal space defined by the eigenvectors of the
normalized laplacian, converting the signal into the graph’s frequency domain. The inverse Graph Fourier
Transform is given by:

z=Uz

which reconstructs the original graph signal from its frequency components.

In the spectral domain, the convolution of a graph signal x with a filter g can be interpreted as a multiplication
in the frequency domain. According to the convolution theorem, the Fourier transform of a convolution
between two signals corresponds to the pointwise multiplication of their Fourier transforms. Applying this
to graph signals, we define the spectral graph convolution as follows:

Given the Graph Fourier Transform, a graph signal x, and a filter ¢ € R", the convolution operation can be
expressed as:
rxg=U(U"g) @ (U"a))

where ® denotes the element-wise Hadamard product. By representing the filter in terms of the eigenvalues,
go(A) = diag(U” g), the convolution can be simplified to:

Tx gy = UggUTx

Here, g9 = diag(f) is a diagonal matrix containing the filter’s spectral coefficients. This spectral filter is
critical, as different selections of gy lead to various implementations of spectral-based Graph Convolutional
Networks (GCNs), which we will analyze in the next section.

5.2.2 Spatial Graph Convolution

Spatial graph convolution is an alternative approach to defining convolution operations on graphs, which
directly utilizes the graph structure in the spatial domain. Unlike spectral methods that rely on the eigen-
decomposition of the graph Laplacian, spatial methods operate on the local neighborhood of each node,
making them more intuitive and often computationally more efficient.

Neighborhood Aggregation

The core idea behind spatial graph convolution is neighborhood aggregation, introduced by Kipf et al. in
2016 [38]. Each node aggregates information from its neighbors to update its feature representation. This
process can be expressed as:

(1+1) _ R OO NET0)
hitV =0 g;(.)cijw hi’ +b
j 4

where hEHl) is the feature of node ¢ at layer [ + 1, NV(i) denotes the set of neighbors of node i, ¢;; is a

normalization constant (often set to \/d;d;, where d; and d; are the degrees of nodes ¢ and j, respectively),
W® is a learnable weight matrix, b is a bias term, and o is a non-linear activation function. The normal-
ization constant c;; helps in stabilizing the training process by ensuring that the aggregated features remain
appropriately scaled.
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Message Passing Neural Networks (MPNNs)

Message Passing Neural Networks (MPNNs) [29] generalize the neighborhood aggregation framework by
defining a more flexible and powerful approach to propagate information through the graph and are a general
framework describing the family of Convolutional GNNs. The MPNN framework consists of two main phases:
message passing and readout.

During the message passing phase, nodes exchange messages with their neighbors over multiple iterations.
The message passing phase for node ¢ is defined by the message function M; and the vertex update function

UtZ
mgt-’_l) = Z Mt(hl(t), h;t),eij)
JEN(3)
h(t+1) _ Ut(h(-t) m(t+1))

where hl(-t) is the hidden state of node 7 at time step ¢, e;; is the feature of the edge between nodes 7 and j,
and M; and U, are the learnable message and update functions, respectively.

In the readout phase, a feature vector for the entire graph is computed using a readout function R:
. ).
§=R({h"li € G})

where hET) is the final hidden state of node i after T iterations, and R is a readout function that aggregates
the node features to produce the final output, ensuring permutation invariance. The readout function is
optional and it is used when graph level predictions are required.

Most existing spatial-based ConvGNNs, which will be presented in the following section, can be viewed as
variations of MPNNs by appropriately setting the message function M;, the update function U;, and the
readout function R.

5.3 GNN Architectures

Building on the spectral and spatial approaches discussed in the previous section, in this section we will
describe some of the most important GNN architectures that leverage these techniques to effectively learn
from graph-structured data.

5.3.1 Spectral Variants

As explained in the previous section, spectral-based GNNs utilize the spectral properties of graphs, par-
ticularly the eigenvalues and eigenvectors of the graph Laplacian, to define convolution operations in the
frequency domain.

Spectral Convolutional Neural Network

The Spectral Convolutional Neural Network (SCNN), introduced by Bruna et al. [11], is one of the earliest
attempts to generalize CNNs to graph-structured data using spectral methods. SCNNs perform convolution
in the spectral domain by transforming graph signals using the eigenvectors of the graph Laplacian. The
spectral convolution operation is defined as:

zxg=Ug (AU z

where U and A are the eigenvectors and eigenvalues of the graph Laplacian, respectively, and gg(A) is
the spectral filter applied in the frequency domain. The parameters of the SCNN include the learnable
spectral filter coefficients §. However, this method suffers from high computational complexity because
eigendecomposition is computationally expensive, depends on the input graph’s structure, and has non-
spatial locality.
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ChebNet

ChebNet [16] uses Chebyshev polynomials to approximate spectral filters, reducing the computational com-
plexity associated with the eigen-decomposition of the graph Laplacian. The convolution operation in Cheb-
Net is defined as:

K
T*x gy~ Z eka(i)LL‘
k=0

where T}, (1:4) are the Chebyshev polynomials of the rescaled Laplacian L.

Graph Convolutional Network

The Graph Convolutional Network (GCN) [38] simplifies spectral graph convolutions by approximating the
convolution operation with a localized first-order approximation. The propagation rule for GCN is given by:

HHD — 4 (D*%AD*%HWW(”)

where A = A + I is the adjacency matrix with added self-connections, D is the degree matrix of A, H® is
the matrix of node features at layer I, W) is the learnable weight matrix at layer I, and ¢ is a non-linear
activation function.

Spectral Attention Networks

Spectral Attention Networks [40] extend spectral-based GNNs by incorporating attention mechanisms in the
spectral domain. These models leverage the eigenvalues and eigenvectors of the graph Laplacian to focus on
important frequencies, enhancing the model’s ability to capture relevant patterns in the graph data.

In Spectral Attention Networks, the attention mechanism assigns different weights to different frequency
components, allowing the network to focus on the most relevant parts of the graph signal. This is achieved
by learning attention coefficients in the spectral domain.

5.3.2 Spatial Variants

In this subsection we will present some of the most prevalent spatial-based GNNs, the majority of which can
be derived as a variant of the MPNN.

GraphSAGE

GraphSAGE (Graph Sample and AggregatE), introduced by Hamilton et al. in 2017 [32], is designed to
generate node embeddings by sampling and aggregating features from a fixed-size set of neighbors. This
approach supports efficient computation on large graphs and generalization to unseen nodes, making it
scalable and applicable to various real-world scenarios.

GraphSAGE’s key innovation lies in its ability to perform inductive learning. Unlike transductive methods,
which require retraining to incorporate new nodes, GraphSAGE can generalize its learned representations to
previously unseen nodes through its sampling and aggregation strategy.

GraphSAGE employs a two-step process at each layer: sampling a fixed-size set of neighbors and then aggre-
gating their features using a specified aggregation function (e.g. mean, LSTM, pooling). These aggregation
functions are learnable, allowing the model to adapt and refine its strategy based on the graph’s characteris-
tics. This flexibility, combined with its efficient neighborhood sampling, makes GraphSAGE scalable to large
graphs with millions or even billions of edges.

The inductive learning capability of GraphSAGE enables it to generalize learned representations to nodes
that were not present during training. This property makes GraphSAGE highly versatile for tasks such as
node classification, link prediction, and graph classification, where new nodes may frequently appear.
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GAT

Graph Attention Networks (GAT), proposed by Velickovié et al. in 2018 [65], incorporate an attention mech-
anism, first introduced in [64], to assign different weights to different neighbors. This attention mechanism
enables the network to focus on the most relevant nodes for each target node, allowing for more flexible
aggregation of neighborhood information.

In GAT, the attention mechanism is implemented as follows:

1. Attention Coefficients: For each node 7 and its neighbor j, the attention coefficient o;; is calculated
using a shared attention mechanism. This coefficient represents the importance of node j’s features to node
i
B exp(LeakyReLU(aT[Whi||Whj]))

> reni) exp(LeakyReLU (a” [Wh||[Why]))

Qg
where || denotes concatenation, W is a learnable weight matrix, a is a learnable attention vector, and
LeakyReLU is the Leaky Rectified Linear Unit activation function.

2. Neighborhood Aggregation: The node features are then updated by aggregating the features of the
neighboring nodes, weighted by the attention coefficients:

=0 Z O{ijWh;l)
JEN(9)

B+

)

where o is a non-linear activation function, and hl(-l+1 is the updated feature of node i.

3. Multi-Head Attention: To stabilize the learning process and improve the model’s expressive power,
GAT employs multi-head attention. Multiple attention mechanisms, or heads, are applied in parallel, and
their outputs are concatenated or averaged:

I+1 k 1
P =g | Y W)
JEN(3)

K
vy _ o 1 (k) 1pr(k) 7, (1)
hy =1 KZ Z az; WP hy
k=1jeN(3)

)

where K is the number of attention heads, and afj and W®*) are the attention coefficients and weight

matrices for the k-th head, respectively.

concat/avg /7~
h}

Figure 5.3.1: Left: The attention mechanism oz(WfLi, szj) employed by GAT, parametrized by a weight
vector @ € R2F" | applying a LeakyReLU activation. Right: An illustration of multi-head attention (K=3
heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention
computations. The aggregated features from each head are concatenated or averaged to obtain fz’l [65].
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GATv2

GATv2 [8] is an extension of the original Graph Attention Network (GAT), introduced to address certain
limitations and improve performance. GATv2 enhances the original attention mechanism by introducing
dynamic attention coefficients that are more expressive and capable of capturing complex relationships in
graph-structured data.

In the original GAT, the attention coefficients are static, meaning they are solely determined by the initial
features of the nodes and remain fixed during each layer’s forward pass, which can limit the flexibility and
adaptability of the model. Contrarily, GATv2 introduces dynamic attention coefficients that can change
during training, which allows the network to adapt the importance of neighbors throughout the learning
process. The proposed function that computes the attention weights oy is:

B exp(a’ LeakyReLU([Wh;||Wh;]))
Zke/\/(i) exp(a® LeakyReLU([W h;||W hi]))

C‘fij

where || denotes concatenation, W is a learnable weight matrix, a is a learnable attention vector, b;; is an
additional learnable parameter specific to each pair of nodes, and LeakyReLU is the Leaky Rectified Linear
Unit activation function. The key difference here is that a’ is now outside the non-linearity effectively
computing dynamic attention. This is much more expressive than the GAT layer with the same number of
parameters.

GIN

Graph Isomorphism Network (GIN) [66] addresses the challenge of achieving the same discriminative power
as the Weisfeiler-Lehman (WL) test for graph isomorphism. The goal of GIN is to map different graphs
to distinct embeddings if they are determined to be non-isomorphic by the WL test. GIN is the first
spatial approach designed to match the discriminative capacity of the WL test, providing strong theoretical
guarantees for distinguishing between different graph structures.

The WL test iteratively updates node labels by aggregating the labels of neighboring nodes, a process that
continues until the labels stabilize. If two graphs have different sets of labels at the end of this process, they
are considered non-isomorphic. GIN’s update rule, which is inspired by this iterative process to ensure the
model’s expressiveness, is as follows:

l l l
WD =MLP [ (146 -n" + > Al
JEN (i)
0

where MLP denotes a multi-layer perceptron, € is a learnable parameter or a fixed scalar, h;’ is the feature

of node 7 at layer [, and N (7) represents the set of neighbors of node 1.
Key aspects of GIN include:

1. Injectivity: GIN’s sum-based aggregation ensures that the aggregation function is injective, meaning it
can uniquely represent different multisets of node features.

2. Learnable Parameter e¢: The parameter € allows control over the relative importance of a node’s own
features versus its neighbors’ features, which can be fixed or learned during training.

3. Multi-Layer Perceptron (MLP): Using an MLP for updating node features allows GIN to perform
complex, non-linear transformations on the aggregated features.

To obtain graph-level representations, GIN aggregates node embeddings from all layers of the network. This
aggregation is performed by summing the node embeddings at each layer and concatenating them to form
the final graph embedding:

he = 1%, (READOUT({hg% e G}))

where READOUT is a function that aggregates the node embeddings, and || denotes concatenation of these
aggregated embeddings across different layers.
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5.4 Graph Matching Networks

Graph Matching Networks (GMNs), proposed by Li et al. [46], represent a specialized approach within GNNs,
designed to address the problem of graph similarity learning. Unlike traditional GNNs, which independently
embed each graph into a vector space, GMNs leverage a cross-graph attention mechanism that allows for
joint reasoning across graph pairs. This makes GMNs particularly effective for tasks where the relational
structure between graphs plays an important role in determining similarity. GMNs are the primary GNN
model we will use in our experiments in the following chapters.

5.4.1 Graph Matching Network Architecture

GMNs enhance the basic embedding models by incorporating a cross-graph attention mechanism, which
aligns nodes from one graph with nodes in the other graph. The key components of the GMN architecture
are outlined below:

1.

Cross-Graph Attention Mechanism: For each node in each of the two graphs, the cross-graph
attention mechanism computes an attention score with every node in the other graph:

exp(sim(hgt), hgt)))

Y, exp(sim(h{”, h{})))

v ) J

Aj—i =

where sim is a similarity function, such as cosine similarity, and hl(-t), h§»t) are the representations of

nodes ¢ and j after layer t.

. Matching Vector: The cross-graph matching vector p;_,; measures how well a node in one graph can

be matched to one or more nodes in the other:

Hj—i = Qj—i * (hz(‘t) - hg‘t))

. Node Update Module: The node update module takes into account both the aggregated messages

on the edges for each graph, as in traditional GNNs, and the cross-graph matching vector:
1
hz(-H ) = faode hEt), E My s, E Mo s
J J’

Aggregation: After a certain number T rounds of propagations, an aggregator takes the set of node

representations {hz(-T)} as input, and computes a graph level representation hg = fg({hET)}). The
following aggregation module, proposed in [45], is used:

hg = MLPg (Z o(MLP g0 (h{")) © MLP(hET))> :
eV

which transforms node representations and then uses a weighted sum with gating vectors to aggregate
across nodes. The weighted sum can filter out irrelevant information, it is more powerful than a simple
sum and also works significantly better empirically.

. Graph Representation and Similarity Score: The aggregated graph-level representations hq, and

hg, are then used to compute the similarity score.

S(Gl, GQ) = fs(hGlahG2)

where f, is a similarity function applied to the graph-level embeddings.
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vector space similarity vector space similarity
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Figure 5.4.1: Tllustration of the graph embedding (left) and matching models (right) [46].

5.4.2 Training Graph Matching Networks

Training GMNs involves optimizing a loss function that encourages similar graphs to have high similarity
scores and dissimilar graphs to have low similarity scores. Two common loss formulations are:

1. Pairwise Loss: Given pairs of graphs labeled as similar (¢ = 1) or dissimilar (¢t = —1):
Lpair = E(G, 5.1 [max{0,7 — #(1 — d(G1, G2))}]

where d(G1,G2) is the distance between the graph embeddings, and v is a margin parameter.

2. Triplet Loss: Given triplets of graphs (G, Ga, G3) where G is more similar to G5 than to Gs:

Liriplet = E(Gy,G0,64) [max{0,d(G1,G2) — d(G1,G3) +7}]

The authors of the paper evaluated the GMN model using the Graph Edit Distance (GED) [59], on a synthetic
dataset that was generated by creating random binomial graphs G; with n nodes and edge probability p,
using the Erdds—Rényi model [23]. Positive examples G were created by substituting k, edges from G; with
new edges, while negative examples G5 were created by substituting k,, edges, where k, < k.

The model was trained to predict a higher similarity score for positive pairs (i.e., pairs with small GED)
than for negative pairs, and the results were compared against the Weisfeiler-Lehman (WL) kernel [61].
Performance was measured using two metrics: pairwise AUC (Area Under the ROC Curve) for classifying
pairs as similar or not, and triplet accuracy for correctly ranking the similarity of triplet sets. GMNs
consistently outperformed both the WL kernel and the graph embedding models, especially with a higher
number of propagation steps.

Figure 5.4.2: Visualization of cross-graph attention for GMNs after 5 propagation layers. In each pair of
graphs the left figure shows the attention from left graph to the right and the right figure shows the
opposite [46].
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Chapter 6

Graph Summarization

Graph summarization refers to the process of creating a compact representation of a large graph while
preserving essential structural properties and information. This technique offers numerous benefits, including
faster runtime of algorithms, reduced storage needs, and noise reduction. It has extensive applications,
such as clustering, classification, community detection, outlier detection, pattern mining, finding sources
of infection in large graphs, and visualization across various domains, including social network analysis,
biological networks, knowledge graphs, recommendation systems, and bioinformatics.

Graph summarization algorithms often produce either summary graphs in the form of supergraphs or spar-
sified graphs, or a list of independent structures. Commonly employed methods in graph summarization
include graph pooling, graph clustering and graph prototyping, which will be described in the following
sections.
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6.1 Definitions

Graph Pooling

Graph pooling is a technique primarily used in the context of GNN architectures that aims to create a re-
duced representation of a graph by combining or selecting nodes or features. The term "pooling" originates
from CNNs, where it refers to operations that downsample feature maps by aggregating information, typi-
cally through operations like max pooling or average pooling. In the context of graphs, pooling aggregates
information from a set of nodes into a single representation, effectively creating a hierarchy of progressively
smaller graphs.

Graph Clustering

Graph clustering aims to partition the nodes of a graph into clusters such that nodes within the same cluster
are more similar to each other than to those in other clusters. This similarity can be based on various criteria,
such as connectivity, shared attributes, or common roles within the graph. Recent works on graph clustering,
which we will explore in the following section, are based on GNNs and utilize pooling layers as part of the
overall architecture. Graph clustering is applied in social network analysis to identify groups of nodes forming
distinct communities, and in biological networks to reveal functional modules within pathways.

Graph Prototyping

Graph prototyping is the process that aims to identify representative subgraphs, called prototypes, that
capture the essential characteristics of different regions or aspects of a large graph. These prototypes serve
as archetypes or typical examples, summarizing the key structural and functional patterns present in the
original graph, that serve as compact and interpretable summaries of the data. Each prototype represents
a significant and recurring substructure within the graph, and the collection of prototypes can be used to
approximate the original graph’s properties. Unlike graph pooling and clustering, which primarily focus on
node aggregation or partitioning, graph prototyping focuses on extracting key substructures that can act as
exemplars of the graph’s overall structure and information.

This method is particularly useful in tasks such as graph classification, where the prototypes can serve as
reference points for comparing different graphs, in anomaly detection, where deviations from the typical
prototypes can indicate unusual patterns or outliers, and in the generation of new graph instances that
adhere to the learned structural properties.

6.2 Prior Work

The field of graph summarization has been studied extensively over the years, with several approaches
proposed for pooling, clustering, and prototype creation. In this section, we will present an overview of
both the traditional methods and the more recent GNN-based methods that have emerged with the rapid
advancements in deep learning.

6.2.1 Traditional Methods

Traditional methods have laid the groundwork for graph summarization by providing various techniques to
simplify and interpret graph structures. This subsection highlights key clustering and prototyping strategies
that have been foundational in the field.

Graph Clustering
Several traditional methods are commonly used for graph clustering:

e Modularity-Based Clustering: Algorithms such as the Louvain method [5] maximize modularity, a
measure of the density of links inside clusters compared to links between clusters.

e Spectral Clustering: Spectral Clustering (SC) [49] uses the eigenvalues of the graph Laplacian matrix
to perform dimensionality reduction before applying traditional clustering methods like k-means.
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e Hierarchical Clustering: In hierarchical clustering [69], nodes are successively merged or split based
on their connectivity, forming a tree of clusters (dendrogram) from which a final clustering can be
derived.

e Density-Based Clustering: Methods like DBSCAN [24] identify clusters based on the density of
nodes in the graph, making them effective for graphs with irregular cluster shapes.

Graph Prototyping
Key traditional methods for graph prototyping include:

e Frequent Subgraph Mining: Frequent Subgraph Mining identifies subgraphs that frequently occur
within the original graph. Techniques like gSpan [67] and Frequent Subgraph Discovery (FSG) [43]
are used to discover frequent substructures that can serve as prototypes representing common patterns
within the graph.

e Graph Partitioning: Graph Partitioning divides the graph into smaller, representative subgraphs
using partitioning algorithms. Algorithms like METIS and the Kernighan-Lin (KL) [36] algorithm aim
to minimize edge cuts while partitioning the graph, resulting in subgraphs that can act as prototypes.

6.2.2 GNN-based Methods

Recent advancements in deep learning have led to the development of GNN-based methods for graph summa-
rization [60], [48]. These techniques leverage the capabilities of Graph Neural Networks to capture complex
patterns and relationships within graphs. In this subsection we present the latest work in graph pooling,
clustering and prototyping.

Graph Pooling and Clustering

Liu et al. [47] and Grattarola et al. [30] provide comprehensive overviews of the most prominent pooling
methods utilized in GNN architectures for node and graph-level tasks. These methods can be broadly
categorized into global pooling and hierarchical pooling.

Global pooling techniques [21], [66], such as max pooling, average pooling, and sum pooling, aggregate the
features of all nodes in the graph to create a single vector representation. For example, max pooling takes the
maximum value of each feature across all nodes, while average pooling computes the mean. These methods
are effective for summarizing the entire graph into a fixed-size representation, which can be used for tasks

like graph classification.
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Figure 6.2.1: An illustrative example of graph pooling [47].

Contrarily, hierarchical pooling methods aim to preserve the hierarchical graph’s structural information by
iteratively coarsening the graph into a new graph of smaller size, allowing for multi-scale representation
learning. These methods are divided into node clustering pooling, which considers graph pooling as a node
clustering problem that maps nodes into a set of clusters, and node drop pooling, which uses learnable scoring
functions to delete nodes with comparatively lower significance scores.
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MinCutPool: One significant node clustering pooling method is MinCutPool, proposed by Bianchi et

[4]. MinCutPool formulates a continuous relaxation of the normalized minCUT problem and trains a
GNN to compute cluster assignments by optimizing this objective. The pooling layer computes soft cluster
assignments, which are then used to generate a coarsened graph. This method overcomes limitations of
traditional spectral clustering by being fully differentiable and not requiring the spectral decomposition of
the Laplacian. MinCutPool computes soft cluster assignments as follows:

S = softmax(MLP(f(, @]v[LP)) e RV*K

where K is the number of clusters, X is the node feature matrix generated by the Message Passing (MP)
layers of the GNN and MLP(-) is a Multi-Layer Perceptron with trainable parameters © /7, p. MinCutPool
optimizes the following unsupervised loss function:

CMC:—
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where ||-|| is the Frobenius norm, A= D_%AD_% and D is the degree matrix of A. The first term, £,
(MinCut Loss), minimizes the Local Quadratic Variation (LQV), while the second, £, (Orthogonality Loss),
is a balancing term. The computational complexity of MinCut is O(N?K + NK?), which is reduced to
O(EK + NK?) when using sparse operations.

DMoN: Another notable node clustering pooling method is DMoN, proposed by Tsitsulin et al. [63]. DMoN
optimizes a modularity-based loss composed of a local quadratic variation (LQV) term and a balancing term.
The pooling layer assigns nodes to clusters, ulitizing an MLP layer, such that strongly connected components
are grouped together, while the balancing term ensures clusters of similar size. The mathematical formulation
of DMoN’s loss function is:

(STAS
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where ||-|| is the Frobenius norm, A = A — DTD and D is the degree vector of A. As with MinCut, the
computational complexity of DMoN is O(N?K + NK?), or O(EK + NK?) when using sparse operations.

JustBalance: The last node clustering pooling method we will cover is JustBalance pooling, introduced by
Bianchi [3]. JustBalance, which is inspired by MinCutPool, calculates the soft cluster assignments S ulitizing
an MLP layer, similarly to the previous methods, but proposes a simplification in the calculation of the loss
function, which consists only of a balancing term:

ﬁJB = —TI‘(\/ STS)

Because the LQV term is removed in the above loss function, the computational complexity of JustBalance
is O(NK?), which is lower than that of the other two pooling layers for most graphs, without significantly
sacrificing performance on most tasks.

TopK: In contrast, a significant node drop pooling method is TopK pooling [39], [12], [26], which is serves
as a foundational method, upon which many subsequent node drop pooling methods are based. It is a pooling
operator designed to select the most important nodes based on their feature representations. This method
reduces the graph size while preserving significant structural information by retaining nodes with the highest
scores according to a learnable projection. The projection scores for the nodes are computed as:

=7 (i)

where X is the node feature matrix, p is a learnable parameter vector, and o is the sigmoid function. This
projection assigns a score to each node based on its features. Nodes with the top k scores are selected using;:

i = top(y)
64




6.2. Prior Work

where top,, is an operation that selects the indices of the top k values in y, based on a user-defined pooling
ratio r, such that £ = [r - N'], with N being the number of nodes. The node features and adjacency matrix
are then updated to include only the selected nodes:
X' = (X ® tanh(y));
A= Ay

where ® denotes element-wise multiplication and A; ; is the submatrix of the adjacency matrix corresponding
to the selected nodes.

N

Message-passing  MinCutPool Message-passing

Figure 6.2.2: A deep GNN architecture where message-passing is fol- lowed by the MinCutPool layer [4].

Graph Prototyping

Recent works have explored various methodologies to achieve effective graph prototyping within the frame-
work of Graph Neural Networks (GNNs). In this context, significant contributions have been made using
graph-based techniques for counterfactual explanations (CE). Dimitriou et al. (2024) [18] propose a model-
agnostic approach that uses semantic graphs to represent images and leverages GNNs for efficient Graph Edit
Distance (GED) computation to retrieve counterfactuals through minimal graph edits. Similarly, Dimitriou
and Chaidos et al. (2024) [17] conduct a comparative study on various graph machine learning algorithms
to determine the most effective approach for generating minimal and meaningful counterfactual explanations
based on graph edits. The findings and challenges addressed in these works have greatly influenced the
problem we present in this thesis and the approaches we follow to solve it.

In addition to these works, several methods have been proposed that leverage the capabilities of GNNs to
create representative subgraphs that capture essential patterns in the data, enhancing their interpretability.
Notable approaches include:

ProtGNN: One notable approach is ProtGNN [70], which introduces a self-explaining mechanism by in-
tegrating prototype learning with GNNs to provide built-in interpretability. Unlike post-hoc explanation
methods, ProtGNN uses prototypes in the latent space to make predictions based on the similarity between
input graphs and learned prototypes. The architecture includes a graph encoder, a prototype layer, and a
fully connected layer. The graph encoder maps the input graph to an embedding vector, and the prototype
layer computes similarity scores between this embedding and predefined prototypes. The similarity function
used is:

Il — hlI3 + 1>

sim(pi, 1) = log ( Ix A3+ e

The final classification is achieved using a softmax function. The learning objective combines cross-entropy
loss with cluster, separation, and diversity costs to ensure meaningful and diverse prototypes. ProtGNN--
further enhances interpretability by using a conditional subgraph sampling module to identify subgraphs
most similar to prototypes.
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PxGNN: Building on the idea of prototype learning, PxGNN [14] focuses on learning prototype graphs that
capture representative patterns of each class. PxGNN uses a prototype graph generator to create prototype
graphs from learnable prototype embeddings, ensuring high-quality prototypes through self-supervision and
graph reconstruction. The architecture of PxGNN includes an encoder to match test graphs with generated
prototypes and optimizes a combination of classification loss and reconstruction loss to enhance the quality
of the prototypes, ensuring both high prediction accuracy and reliable explanations. The overall loss function
for PxGNN is given by:

mlll Ec + a‘crec + BERa
0,H

where L. is the classification loss ensuring accurate predictions by making the graph more similar to its class
prototypes, Lo is the reconstruction loss composed of attribute and adjacency matrix reconstruction losses
to ensure the quality of the generated prototype graphs, and Lg is a regularization term to maintain the
stability and generalizability of the prototype embeddings. In this formulation, 6 and #H denote all model
parameters and the set of learnable prototype embeddings, respectively, while o and 8 are hyperparameters
controlling the contribution of the reconstruction loss and the regularization term.

PAGE: Another significant contribution in this area is PAGE [62], which provides model-level explanations
for GNNs by discovering human-interpretable prototype graphs. PAGE’s methodology involves clustering
graph-level embeddings using a Gaussian Mixture Model (GMM) and selecting k-nearest neighbors to repre-
sent each cluster. The prototype discovery phase uses a prototype scoring function:

s(v1, ..., 0) =1T(’U1®"'®Uk)

to iteratively search for common subgraph patterns. The final prototype graph is the subgraph with the
highest matching score among the selected candidates. PAGE effectively explains the GNN model’s behavior
by identifying class-distinctive subgraph patterns within the graph dataset

CPCA: Lastly, the Class Prototype Construction and Augmentation (CPCA) method [55] addresses class-
incremental graph learning by constructing class prototypes to represent past data and employing prototype
augmentation (PA) to create virtual classes. These prototypes mitigate catastrophic forgetting while main-
taining data privacy by avoiding the need to store raw data. Prototypes are constructed as multivariate
Gaussian distributions N (u;,0?), capturing the mean and covariance of class embeddings. PA generates
embeddings hyir,, of virtual classes by interpolating between existing class embeddings:

where A is sampled from a Beta distribution. The total loss function combines classification loss, old data
loss, and knowledge distillation loss:

L = Laspa + aloa + BLxka

CPCA enhances model adaptability to new classes by enriching the embedding space with virtual classes.
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Chapter 7

Proposal

In this chapter, we provide a formal definition of the problem within the field of graph summarization we aim
to address, describe the architecture of the Graph Matching Network, which is trained on a graph similarity
task, and propose the two methodologies we will use to create the graph summaries, utilizing the patterns
that the model has learned during training. In the following sections, we first highlight the main contributions
of this thesis and, after that, we present the model architecture and the proposed methodologies in detail.

7.1 Contributions

The key contributions of this thesis are summarized below:

e We employ Graph Matching Networks to address the problem of graph summarization. To our knowl-
edge, there has been limited academic focus on utilizing GMNSs to tackle this problem. Therefore, our
objective is to provide a comprehensive overview of the problem we aim to address, and the method-
ologies we employ to solve it.

e By training the GMN on a graph similarity task, rather than explicitly on a graph summarization task,
we aim to leverage the model’s ability to learn important patterns and features across pairs of graphs.
The learned patterns are then used to extract meaningful subgraphs, with the expectation that these
subgraphs will form summaries that are highly similar for graphs within the same class. This approach
can enhance the explainability of these models by highlighting nodes and patterns across the graph
pairs that are most influential in computing their similarity.

e We propose and evaluate two methods for extracting graph summaries from the learned embeddings.
The first method involves generating candidate summaries using TopK pooling and selecting the best
based on specific criteria. The second method extends an existing Maximum Common Subgraph (MCS)
algorithm by imposing additional constraints based on the cross-graph attentions to extract the sum-
maries.

e We create a dataset of Geometric Shapes with added noise, where the ground truth summaries are
known, to evaluate the proposed methods. Additionally, we use an accuracy metric that considers both
exact and approximate matches to compare our methods to existing works on graph summarization.

7.2 Problem Definition

The problem we aim to address is identifying class-representative subgraphs within a multi-class graph
dataset, where each graph is associated with a specific class. The primary objective is to extract a subgraph
from a given graph that effectively represents the class to which the graph belongs. The extracted subgraphs
for graphs within the same class should be as similar as possible, ideally being identical.
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Formally, given a graph dataset G = {G1,Ga,...,GN}, where each graph G; is labeled with a class ¢; € C
(with C being the set of all classes), the goal is to develop methodologies to extract a subgraph S; C G;
for each graph G;. The extracted subgraph S; should be highly representative of the class ¢; and, therefore,
subgraphs of graphs within the same class should have high similarity between them.

While the problem shares similarities with graph prototyping in identifying representative structures, our goal
is, for each graph, to find one representative subgraph that best characterizes the class the graph belongs to,
instead of the multiple smaller subgraphs found by graph prototyping, which are often present in more than
one classes. Additionally, the proposed approach draws elements from graph pooling methods we covered in
the previous chapter, as one of the two proposed methods uses a node drop pooling operator as part of the
architecture to isolate a subgraph that is representative of its corresponding class, using the node embeddings
learned by the model.

7.3 Proposed Model

The GNN model we experiment with is based on the Graph Matching Network [46] architecture and consists of
multiple Graph Matching Convolution layers, which include a cross-graph attention mechanism, followed
by a Graph Aggregator. Each Graph Matching Convolution layer transforms node features with linear
layers, batch normalization, and ReLLU activation functions, while the cross-graph attention mechanism allows
node feature interactions across different graphs by passing messages along edges and combining them with
the original node features. Dropout is applied after the linear transformations within these layers to prevent
overfitting. Finally, the Graph Aggregator condenses the node embeddings into graph-level embeddings using
a gate mechanism and mean aggregation and the graph-level embeddings are used to compute the similarity,
using a similarity function. This architecture explicitly determines the way the models are trained and
inferenced.

Training

Following the approach outlined in Section 5.4, the GMN is trained on a pairwise graph similarity task. It
receives pairs of graphs labeled as positive (similar) if they belong to the same class, or negative (dissimilar)
otherwise. The model learns to predict high similarity for positive pairs and low similarity for negative pairs
by minimizing the following pairwise loss:

Lypair = E(Gl,Gg7t) [max{0,y —t(1 — d(G1,G2))}]

where d(G1,G2) is the distance between the graph embeddings, 7 is a margin parameter, and ¢ is 1 for
positive pairs and -1 for negative pairs. It is important to note that the training is strictly focused on the
similarity task and does not involve explicitly forming and evaluating clusters.

Inference

During inference, the model is provided with a pair of graphs that can either belong to the same or to
different classes. The pair is passed through the model and after each propagation layer, the updated node
embeddings and the cross-graph attentions are calculated and utilized to create the graph summaries. While
the model is not explicitly trained to create these subgraphs, the expectation is that the features learned
during the training on the graph similarity task will naturally lead to similar summaries for graphs of the
same class. The two proposed methods for graph summary creation we experimented with are outlined in
the following subsections.

7.3.1 Method I

In the first method, we aim to extract a class-representative graph summary from a pair of input graphs by
leveraging the node embeddings computed at each layer during the forward pass of the model. The process
involves predicting the number of important nodes that the summary should consist of, creating subgraphs
using TopK pooling and, from them, selecting a final summary.
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Figure 7.3.1: Overview of Method I.

The steps of the method are as follows:

1. Forward Pass: The pair of graphs (G, G2) is passed through the GMN model with L layers. After
each layer, the node embeddings are extracted. Let X! denote the node embeddings of G; and X}
denote the node embeddings of G2 after layer I.

2. Predicting k: The number of important nodes k is predicted using the node embeddings X! and X1.
For each layer I:

e For each node in G; and G5, importance scores are computed using a projection weight vector
w, which is initialized by drawing values from a uniform distribution within the range [—ﬁ, %},
where d is the dimension of the node features. The importance scores are given by:

l
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e These scores are then normalized using the softmax function:
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e The nodes are then sorted based on the normalized scores in descending order. Let §75° and

ol,sorted . .
5% denote the sorted normalized scores for G; and Ga, respectively.

e The cumulative sum of the sorted, normalized scores is calculated to determine k as the smallest
number of nodes needed to reach a threshold 7:

k:ll = min{n
kL = min{n

The threshold 7 is a hyperparameter of the model.

n
~l,sorted
g 575 >T

i=1

n
~l,sorted
E 39 >T

i=1

69



Chapter 7. Proposal

After obtaining k-values for each layer for both graphs, the final k is computed as the average of all the
predicted k-values:
L
1
= [ o )
1=1

3. Creating Subgraphs: For each layer [, the subgraphs S} and S for G| and G are created using a
TopK pooling layer with the predicted k:

S} = TopK (X1, k),
S5 = TopK(X3, k)

These subgraphs act as candidates from which the final summary will be derived.

4. Isomorphism Check: At each layer [, the subgraphs S! and S} are checked for isomorphism. Based
on empirical observations, if the subgraphs at a layer are isomorphic, they are often the ground truth
summary. Therefore, if S ~ S, the combined graph summary S’ is returned. If no isomorphic
subgraphs are found at the same layer, we then look across all layers, attempting to find any subgraphs
from Graph 1 that are isomorphic with any subgraphs from Graph 2: 3y, l> such that Sil S Séz. In
this case, we return the most frequently occurring isomorphic subgraph.

5. Final Summary Selection: If no pair of isomorphic summaries is found across all layers, the most
frequently occurring summary in the list of potential summaries is returned.

S* = arg max count(S).
Se{P,P?,.. PL}

7.3.2 Method II

In the second method, we utilize the cross-graph attentions calculated by the GMN model after each propa-
gation layer to construct the graph summaries.

The MCS algorithm we implemented is an extension of the McSplit algorithm [51], designed to find the
maximum common induced subgraph between two graphs, with additional constraints. This extension not
only considers the number of matching nodes but also the number of edges, prioritizing denser subgraphs
when multiple subgraphs of the same size are found, as this approach better captures the structural relevance
in certain applications [56], [22], [13]. The process involves two main steps: deriving matching pairs between
the two graphs and executing the algorithm using these pairs as constraints.

Deriving Matching Pairs: The matching pairs are derived using the cross-graph attentions obtained
from the GMN after each propagation layer. A pair of nodes, one from each graph, is considered a matching
pair if they exhibit high attention scores towards each other in both directions. This is determined by a
threshold 7, which is a hyperparemeter of the model. These matching pairs form the set MP.

Formally, let «;; represent the attention score from node i € V; to node j € V5. The matching pairs are
determined as follows:

e For each node v; € Vi, nodes in V5 that it attends to with a score above a threshold # are identified.
e For each node v; € V5, nodes in V; that it attends to with a score above 6 are identified.

e A pair (v;,v;) is considered a matching pair if a;; > 6 and «a;; > 6.

70



7.3. Proposed Model

MCS Algorithm: Using the set of matching pairs MP across all layers as constraints, the MCS algorithm
finds the maximum common induced subgraph between two graphs G; and G5. The algorithm proceeds as
follows:

Algorithm Maximum Common Subgraph with constraints

1: Procedure Search(future, M, E, mp)

2: begin

3: if |M| > |best _mapping| or (|M| == |best_mapping| and E >best edge count) then
4:  best mapping < M

5.  best edge count +— E

6: end if

7: bound < [M|+ > ¢ myetuture (|G|, [H])
8: if bound < |best mapping| then

9: return

10: end if

11: (G, H) + SelectLabelClass(future)

12: v < SelectVertex(G)

13: for w € H do

14:  if (v,w) ¢ mp then

15: continue

16:  end if

17: future’ < 0

18:  for (G’, H') € future do
19: G" +— G' N N(G,v) \ {v}

20: H" + H' NN(H,w)\ {w}

21: if G # 0 and H"” # () then

22: future’ + future’ U{(G", H")}
23: end if

24: G" «+ G'NN(G,v) \ {v}

25: H" « H' N N(H,w) \ {w}

26: if G # 0 and H" # () then

27: future’ «+ future’ U{{(G", H")}
28: end if

29:  end for

30:  Search(future’, M U{(v,w)}, E + new _edges(M, (v, w)), mp)
31: end for

32: G' + G\ {v}

33: future + future \{(G, H)}

34: if G’ # () then

35 future + future U{(G’, H)}

36: end if

37: Search(future, M, E, mp)

38: end

40: Procedure McSplit(G, H)

41: begin

42: best mapping < 0

43: best edge count + 0

44: Search({{V(G),V(H))}, 0, 0, mp)
45: return best _mapping

46: end

To avoid exploring subgraphs that have already been explored, a canonical form for each mapping is defined.
This canonical form is created by relabeling the nodes of the subgraph induced by the mapping M in a
consistent manner, so that isomorphic subgraphs have the same representation.
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To further improve the robustness of the method, we experiment with an

approach to derive a final summary by identifying the maximum core subgraph from a group of predicted
summaries. The maximum core subgraph is defined as the graph from the group of predicted summaries that
appears most frequently as a subgraph of the other predicted summaries. In case of ties, the largest graph
among the tied subgraphs is selected. Formally:

i=1

n
S* = arg Se{sl,ngaz}f“,sn} <Z I(S C SZ))

where I is the indicator function that returns 1 if S is a subgraph of S and 0 otherwise.

If there are multiple graphs with the same maximum subgraph count, the maximum core subgraph S** is

defined as:

arg max V(9
Se{S|Xr, [(SCSH=3"", I(S*CS)}

where |V(S)| denotes the number of vertices in the graph S.
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Chapter 8

Experiments

In this chapter, we will provide a thorough explanation of the experiments we conducted to assess the proposed
model and methods, and compare them to existing approaches for graph summarization. In the first section,
we will present preliminary information about the MUTAG Dataset [15], which has been extensively used
in many existing works as a benchmark for evaluating methods in graph classification, and the synthetic
Geometric Shapes Dataset we created that is tailored to the specific nature of our problem.

Subsequently, we will analyze the details for the training and the inference of GMN model and its hyperpa-
rameters. Finally, we will evaluate the effectiveness of the proposed methods and present the quantitative
and qualitative results of our experiments.
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8.1 Preliminaries

8.1.1 Datasets

The two datasets we will use in our experiments are MUTAG and Geometric Shapes.

Geometric Shapes

To better address the specific nature of our problem, we created a synthetic dataset of Geometric Shapes.
This dataset consists of graphs representing four different geometric shapes: cycles, lines, stars, and complete
graphs. To introduce variability, we add noise in the form of random nodes and edges to each graph. These
edges can connect two nodes of the basic shapes, two noise nodes, or one node from each category. We
experimented with two approaches for node features. In the first approach, all nodes are assigned features
consisting of all 1s. In the second approach, we use Node2Vec [31] to generate node features, aiming to
capture the structural context of each node within the graph. The former provided better results, so this
was the approach we followed during the experiments.

This setup provides a controlled environment where we know the ground truth class-representative summary
for each graph, and allows us to more accurately evaluate the effectiveness of our proposed model and
methods. We created three versions of the Geometric Shapes dataset, with basic geometric shapes consisting
of 8, 15, and 25 nodes, respectively. Each version contains 360 graphs, with 90 graphs per class. For the
dataset with 8-node shapes, we add 2-4 noise nodes and 1-3 noise edges per added node. As the size of the
basic shapes increases to 15 and 25 nodes, we slightly increase the number of added noise nodes and edges
to maintain a relatively consistent proportion of noise relative to the basic shape.

Cyclic Graph Complete Graph Noisy Cyclic Graph Noisy Complete Graph

9

Line Graph Star Graph Noisy Line Graph Noisy Star Graph

v

Figure 8.1.1: The four core geometric shapes in the Geometric Shapes dataset and examples of noisy graphs.

MUTAG

MUTAG [15] is a collection of nitroaromatic compounds and the goal is to predict their mutagenicity on
Salmonella typhimurium. Input graphs are used to represent chemical compounds, where vertices stand for
atoms and are labeled by the atom type (represented by one-hot encoding), while edges between vertices
represent bonds between the corresponding atoms. It includes 188 samples of chemical compounds with 7
discrete node labels. Each graph is labeled as either mutagenic (positive class) or non-mutagenic (negative
class), indicating whether the compound has a mutagenic effect on a specific organism.

The MUTAG dataset does not include ground truth class-representative subgraphs. However, it does provide
ground truth prototypes, making it particularly suitable for experiments with Method II.
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Figure 8.1.2: Examples of graphs from each of the two classes in the MUTAG dataset (non-mutagenic and
mutagenic), along with the prototypes of the dataset.

8.1.2 Evaluation Metrics
Accuracy

To evaluate the effectiveness of the proposed methods, we employ an accuracy measure tailored to the
problem. For each class in the dataset, a ground truth subgraph is provided. The accuracy of the model
is determined by comparing the nodes selected by the model from the original graph with the nodes in the
ground truth subgraph. If the selected nodes match the ground truth subgraph, the accuracy for that graph
is considered to be 1; otherwise, it is 0. The overall accuracy is then computed as the average of these values
across all graphs in the evaluation dataset. We consider two types of accuracy, Exact and Approximate. Exact
refers to the cases where the summary produced by the model is the correct shape and has the correct number
of nodes, matching the ground truth exactly, while Approximate refers to the cases where the summary is
the correct shape, but a slight deviation in the number of nodes is allowed (£1 node compared to the ground
truth).

To compare our model with other summarization methods introduced in Section 6.2.2, which generate sum-
maries by assigning labels to nodes and clustering nodes with the same label, we added labels to the nodes of
the graphs in the Geometric Shapes dataset. Specifically, each node in the basic geometric shape of the graph
is assigned a unique label. Each noise node is assigned the union of the labels of the nodes it is connected to.
This way, the model only needs to predict for a noise node the same label as one of the basic shape nodes
to which it has a path through other noise nodes. Based on these labels, we calculate the accuracy of the
model. This accuracy metric is a relaxation of the traditional accuracy used in node classification, since a
node is considered correctly classified if the model predicts any one of its assigned labels correctly.

8.1.3 Baseline Models

To evaluate the performance of our proposed GMN model, we compare it against several established graph
summarization methods, which we have already described in Section 6.2.2. Specifically, we implemented
the GNN architectures proposed in the respective papers that introduced the MinCut [4], DMoN [63], and
JustBalance [3] pooling layers for graph clustering, making slight modifications to better suit our dataset.

Additionally, we compare our model against a traditional GAT model [65]. Since both graphs use attention
mechanisms, this comparison allows us to assess whether the cross-graph attention-based matching mechanism
proposed by Li et al. [46] provides better results compared to the self-attention mechanism used in GAT.
Since the GAT model processes a single graph as input and cannot be trained on a graph similarity task,
we train it on the graph classification task and evaluate its performance on graph summarization using our
proposed approach described in Method I, generating candidate summaries at each layer and selecting the
most frequently occurring one.
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8.2 Training and Inference Details

8.2.1 GMN
Training

As outlined in Section 7.3, we train the GMN model [46] on a graph similarity task. For both datasets, we
form batches of randomly selected pairs and their corresponding labels, which is 1 if the two graphs belong
to the same class or -1 otherwise.

The hyperparameters that required tuning included the margin parameter v of the pairwise loss, the dimension
of the model’s hidden layers, the number of layers, the learning rate, the batch size, and the total number
of pairs. To optimize these hyperparameters, we considered the model’s performance in both the graph
similarity training task and the downstream graph summarization task.

For the margin parameter v, the model adapted well to different values during training but performed better
on the downstream task with a lower v value. The dimension of the model’s hidden layers was set to a higher
value than the dimension of the node features of the dataset to allow for more expressivity. Given the small
size of the dataset, we chose a higher learning rate and smaller values for the batch size. We also opted for
smaller values for the number of pairs in the training split to avoid overfitting. Finally, we observed that
model architectures with more propagation layers (5-7) yielded better results in the downstream task.

Specifically, for the training of the final model, the selected value for the v parameter was 0.2, the learning
rate was set to 0.01 and the batch size was set to 64. Moreover, we trained the model on 400 pairs of graphs,
which were formed by randomly sampling graphs from the training split. The dimension of the model’s
hidden layers was set to 32 and the number of layers in the architecture was set to 7. Lastly, we used the
Adam optimizer [37], with the weight decay parameter set to 1075.

Inference

During inference, a pair of graphs is provided as input to the model. As the forward pass progresses, the
embeddings and cross-graph attentions are calculated after each propagation layer, and are then used to
extract the summaries according to Method I and Method II. The two graphs in the pair belong to the same
class.

To further understand the model’s behavior, we also examine the summaries generated at each layer when
the input pair consists of graphs from different classes. This analysis provides insights on how the model
updates the node embeddings when the predicted similarity between the input graphs is low, and whether
these updates lead to the generation of meaningful summaries at each layer.

The results of these experiments, including examples of the summaries generated for same-class graph pairs,
are presented and discussed in the following section.

8.2.2 Baseline Models
Training

For the architectures proposed in the respective papers that introduced the MinCut [4], DMoN [63], and
JustBalance [3] pooling layers, we trained the models using either the loss of the pooling layers alone, as
originally proposed, or a combination of the pooling layer loss and a graph classification loss. The GAT
model [65] was trained on a graph classification task. Given that the GAT model processes a single graph
as input and cannot be directly trained on a graph similarity task, this approach allowed us to evaluate its
performance in a comparable manner to our proposed GMN model.

Inference

During inference, the architectures utilizing the MinCut, DMoN, and JustBalance pooling layers were pro-
vided with a graph, which was passed through the network. At the end of the process, the cluster produced
by the pooling layer was obtained as the predicted graph summary. For the GAT model, a graph was passed
through the network, and, similar to the GMN, a summary was generated at each layer using TopK pooling.
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The most frequent summary across all layers was then selected, following a methodology similar to Method
I used for the GMN. This approach allowed us to maintain consistency in the evaluation process and ensure
a fair comparison of the models’ performance.

8.3 Results

8.3.1 Quantitative Results

First, we will present the Exact and Approximate Accuracy scores achieved by the GMN, using Methods I
and II, and the baseline models on the Geometric Shapes dataset. Each model corresponds to the optimal
model obtained after hyperparemeter tuning. The results are shown in Table 8.1.

Model Geometric Shapes (8) Geometric Shapes (15) Geometric Shapes (25)
GMN (Method T) 0.543 (0.622) 0.302 (0.539) 0.316 (0.452)
GMN (Method II) 0.671 (0.695) 0.653 (0.687) 0.625 (0.641)
GAT 0.482 (0.488) 0.429 (0.436) 0.382 (0.388)
GNN with MinCut 0.194 0.092 0.049

GNN with DMoN 0.203 0.097 0.050

GNN with JustBalance 0.231 0.103 0.052

Table 8.1: Total Exact and Approximate Accuracy scores across all classes for all the models on the
Geometric Shapes dataset.

The first observation is that both the GMN and GAT models significantly outperform the clustering-based
models across all three versions of the dataset. This suggests that training the GNN models by optimizing
the loss corresponding to the problem that the pooling layers formulate does not directly produce summaries
that closely match the ground-truth.

Comparing the GMN and GAT models, the GMN with Method II consistently achieved higher accuracy
with both methods across all three versions of the dataset. To provide a more detailed understanding of the

performance of these models, the accuracy metrics for each class are presented in Table 8.2 (Approximate)
and Table 8.3 (Exact).

(a) Geometric Shapes (8)

Model Cycle Complete Line Star Total
GMN (Method I)  0.607 (0.806) 0.977 (0.977) 0.491 (0.751) 0.416 (0.816) 0.622 (0.838)
GMN (Method II) 0.713 0.764 0.763 0.541 0.695
GAT 0.573 (0.722)  0.418 (0.567) 0.457 (0.713) 0.502 (0.688) 0.488 (0.672)

(b) Geometric Shapes (15)

Model Cycle Complete Line Star Total
GMN (Method I)  0.407 (0.452) 0.971 (0.971) 0.285 (0.454) 0.493 (0.753) 0.539 (0.658)
GMN (Method IT) 0.682 0.764 0.753 0.516 0.687
GAT 0.483 (0.612)  0.344 (0.578) 0.465 (0.632) 0.453 (0.657) 0.436 (0.620)

(c) Geometric Shapes (25)

Model Cycle Complete Line Star Total
GMN (Method I)  0.235 (0.274) 0.948 (0.948) 0.220 (0.293) 0.477 (0.613) 0.452 (0.532)
GMN (Method 1) 0.662 0.738 0.727 0.438 0.641
GAT 0.451 (0.607)  0.268 (0.564) 0.406 (0.491) 0.425 (0.694) 0.388 (0.587)

Table 8.2: Approximate Accuracy scores by class for GMN and GAT on the Geometric Shapes dataset. The
values in parentheses represent the percentage of pairs where the ground truth summary appeared at least
once in the subgraphs generated after each layer.
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(a) Geometric Shapes (8)

Model Cycle Complete Line Star Total
GMN (Method I)  0.607 (0.806) 0.760 (0.773) 0.474 (0.713)  0.331 (0.708)  0.543 (0.750)
GMN (Method IT) 0.713 0.764 0.721 0.486 0.671
GAT 0.573 (0.722) 0.418 (0.567) 0.446 (0.656) 0.493 (0.615) 0.482 (0.640)

(b) Geometric Shapes (15)

Model Cycle Complete Line Star Total
GMN (Method I)  0.407 (0.452) 0.286 (0.295) 0.239 (0.425) 0.279 (0.448)  0.302 (0.405)
GMN (Method II) 0.682 0.764 0.746 0.421 0.653
GAT 0.483 (0.612) 0.344 (0.578) 0.451 (0.586) 0.436 (0.641) 0.429 (0.604)

(c) Geometric Shapes (25)

Model Cycle Complete Line Star Total
GMN (Method I)  0.235 (0.274) 0.583 (0.583) 0.207 (0.276)  0.237 (0.335)  0.316 (0.367)
GMN (Method 1) 0.662 0.738 0.704 0.396 0.625
GAT 0.451 (0.607) 0.268 (0.564) 0.393 (0.477) 0.418 (0.668) 0.382 (0.579)

Table 8.3: Exact Accuracy scores by class for GMN and GAT on the Geometric Shapes dataset. The values
in parentheses represent the percentage of pairs where the ground truth summary appeared at least once in
the subgraphs generated after each layer.

Overall, the results indicate that different models and methods exhibit varying levels of performance across
classes and datasets. Among the three, the GMN with Method II was the most consistent across all datasets,
achieving the highest exact accuracy scores in all classes except for the star shaped class, where it was slightly
outperformed by the GAT model. Additionally, the exact and approximate accuracy scores for each class
are very similar. This similarity in accuracy scores is due to the fact that when the predicted summaries are
not entirely correct, particularly for star shapes, they often include noise nodes that match across the two
graphs, as we will showcase with some examples in the following section. Consequently, when the predicted
summary does not have the exact number of nodes, it usually fails to maintain the correct shape as well.

Method I, on the other hand, performs well in approximate accuracy, particularly for complete graphs, but
struggles with exact accuracy. Although it often predicts the correct number of nodes (k), its exact accuracy
is not as high as expected. Despite this, Method I still performs well when the predicted number of nodes is
within +1 of the correct value, indicating that it effectively captures the general structure.

Lastly, the GAT model exhibits consistent performance across different classes, performing well in exact
accuracy, when the correct number of nodes (k) is predicted, and often outperforming Method I. However,
it performs poorly when the number of nodes is mispredicted, failing to generate meaningful summaries,
as highlighted by the very similar exact and approximate accuracy scores, unlike Method I, which can still
produce relatively accurate summaries even with minor deviations in k.

Classes Geometric Shapes (8) Geometric Shapes (15) Geometric Shapes (25)
1 2 Both | 1 2 Both | 1 2 Both
Cycle (1) and Complete (2) 0.62 0.97 0.61 0.51 0.89 0.49 0.29 0.83 0.27
Cycle (1) and Line (2) 0.66 0.46 0.34 0.38 0.32 0.13 031 0.27 0.08
Cycle (1) and Star (2) 053 0.59 0.33 041 055 0.27 0.36  0.57 0.27
Complete (1) and Line (2) 097 0.41 0.40 0.83 035 0.32 0.85 0.33 0.31
Complete (1) and Star (2) 096 0.53 0.52 0.86 0.47 0.42 0.80 0.64 0.56
Line (1) and Star (2) 047 0.54 0.23 032 0.46 0.18 024 0.60 0.17

Table 8.4: GMN results with pairs of graphs from different classes on the Geometric Shapes dataset.
Columns "1" and "2" show the percentage of pairs where the ground truth summary for the first and
second graph, respectively, appeared at least once in the generated subgraphs. "Both" indicates the
percentage of pairs where ground truth summaries for both graphs were present.
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Subsequently, we examine the GMN model’s behavior when the input pair consists of graphs belonging to
different classes. Since these graphs belong to different classes, Methods I and I cannot be directly used
to evaluate the model’s accuracy. Instead, we follow a simplified approach similar to the initial steps of
Method I, generating subgraphs for the two graphs after each layer . We then count the number of pairs
where the generated subgraphs match the ground-truth summaries. Specifically, we measure how often the
ground-truth summary for each graph appears, as well as how often the ground-truth summaries for both
graphs appear. The results are presented in Table 8.4

A general observation is that the accuracy metrics remain relatively consistent for each class, regardless of the
class of the other graph in the pair. Additionally, these accuracy metrics are comparable to those observed
when both graphs in the pair belong to the same class, as shown in Table 8.2. This consistency indicates that
the model’s ability to identify class-representative subgraphs is robust and not significantly affected by the
presence of a graph from a different class in the pair. It effectively identifies the relevant subgraph features
corresponding to each class, even in the presence of potentially distracting information from a different class.

8.3.2 Qualitative Results

Lastly, to qualitatively evaluate Method II, which has demonstrated the best performance across the evaluated
datasets, we present examples of predicted summaries of graph pairs from the Geometric Shapes dataset and
some results from our experiments on the MUTAG dataset.

Geometric Shapes

Starting with Geometric Shapes, we highlight cases where the method performs well by identifying the exact
ground truth, instances where it also matches noise nodes across the two graphs, leading to either approximate
or incorrect solutions, and cases where it finds approximate solutions by identifying a subset of the ground
truth that maintains the correct shape. We also discuss scenarios where the predicted summary is incorrect.
For better visual clarity, we present examples from the dataset with ground truth graphs of 8 nodes, but
similar patterns and observations are also found in the dataset versions with 15 and 25 nodes.
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(a) Exact match example for the Cycle class. (b) Exact match example for the Complete class.

Figure 8.3.1: Exact match examples for the Geometric Shapes (8) dataset.

In Figure 8.3.1, we present two examples where the model accurately predicts the exact ground truth sum-
mary. In the middle section, where we visualize the cross-graph attentions, we observe that the noise nodes,
which are not part of the ground truth, either attend to no nodes from the other graph or attend to nodes
that are not meaningful, as their neighborhoods do not match. Therefore, although the maximum common
induced subgraph of the input graphs GG; and G5 is a superset of the ground truth, the matching pairs we
derive from passing them through the GMN allow us to accurately predict the correct summary.

Subsequently, in Figure 8.3.2 we showcase two examples where the predicted summaries approximately match
the ground truth, meaning they maintain the correct shape but differ in the number of nodes by +1. More
specifically, in Figure 8.3.2a, the predicted star-shaped summary has 7 nodes, compared to the 8 of the
ground-truth. This discrepancy arises because the cross-graph attentions between the noise nodes of the
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Figure 8.3.2: Approximate match examples for the Geometric Shapes (8) dataset.

two graphs were filtered out by the threshold we set, but the same filtering also affected one of the nodes
connected to them in each graph, resulting in a smaller star-shaped summary. Conversely, in Figure 8.3.2b,
the predicted summary has 9 nodes instead of 8. This occurred because, in addition to the cross-graph
attentions between the nodes of the basic shape, the cross-graph attention between a pair of noise nodes that
extended the line were also above the set threshold, resulting in the larger predicted summary.

Finally, in Figure 8.3.3, we present two examples where the predicted summaries are incorrect. Similar to
Figure 8.3.2b, the cross-graph attentions between the matching noise nodes in the two graphs are above the
set threshold. However, in these cases, the noise nodes do not extend the basic shape but rather disrupt it,
resulting in a noisy, incorrect predicted summary.
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(a) Incorrect example for the (b) Incorrect example for the
Star class. Line class.

Figure 8.3.3: Incorrect examples for the Geometric Shapes (8) dataset.

MUTAG

Following the good performance of Method II on the Geometric Shapes dataset, we conducted some exper-
iments on MUTAG, for which Method I did not provide good results. Although MUTAG does not have
ground truth summaries to compare our results to, Method IT produced relatively consistent summaries that
appear to effectively represent each class and capture the important information from the input graphs.

In Figure 8.3.4, we observe that for the non-mutagenic class, the predicted summaries are consistent and
typically formed as a union of one instance of each of the two prototypes. Similarly, in Figure 8.3.5, the
predicted summaries for the mutagenic class often exhibit similar patterns and consist of multiple instances
of the two prototypes, which correctly represent the mutagenic characteristics.
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Figure 8.3.6: Incorrect examples with more nodes for the non-mutagenic (left) and mutagenic (right) classes.
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However, similar to the Geometric Shapes dataset, the predicted summaries for MUTAG can also include
nodes that should not be part of the summaries, due to their cross-graph attentions being above the set
threshold, or omit nodes that should be included due to their cross-graph attentions being below the set
threshold. These examples are presented in Figure 8.3.6 and Figure 8.3.7.

~ —
| / AN N
. ] A\ [oo{ U y @
‘ /‘/ ’/ [ / / \”‘ o
\\/\x/ | /1/‘ I ] /
T

Figure 8.3.7: Incorrect examples with less nodes for the non-mutagenic (left) and mutagenic (right) classes.

Lastly, an interesting pattern was observed during the analysis, appearing more frequently in the non-
mutagenic class. When creating the summary, if we first use the matching pairs from the first layer alone,
the resulting summary is often one of the two prototypes, specifically a smaller, linear structure (represented
by the green and blue nodes in the figures). Then, by excluding these nodes from the matching pairs of
the second layer, the remaining matching pairs frequently produce the other prototype, a cyclic structure
(represented by the red nodes in the figures).

This pattern was found to be relatively consistent, especially the matching pairs from the first layer resulting
in the smaller, linear structure. This occurs frequently in both classes, as the initial strong matches identified
by the model are typically the nodes forming this linear structure. This approach of sequentially using
matching pairs from subsequent layers provides an alternative method for identifying smaller core subgraphs
of the graphs in the dataset. An example of this process is demonstrated in Figure 8.3.8.
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(a) Summary generated by extracting one summary at the end using all matching pairs.
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(b) Summaries generated sequentially from matching pairs at each layer. The summaries match the ground truth
prototypes.

Figure 8.3.8: Comparison of summary generation methods. Subfigure (a) shows the summary generated by
extracting one summary at the end using all matching pairs. Subfigure (b) demonstrates the sequential
generation of summaries from the matching pairs at each layer.
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Chapter 9

Conclusion

9.1 Discussion

In this thesis, we addressed the problem of Graph Summarization through the lens of Graph Matching
Networks. Specifically, we focused on developing methodologies to generate class-representative summaries
from graph datasets by extracting subgraphs within individual graphs that effectively represent the class to
which the graph belongs. To this end, we trained a Graph Matching Network (GMN) on a graph similarity
task, aiming to explore the model’s ability to learn important patterns across pairs of graphs during training.
Subsequently, we developed two methodologies that leverage the learned embeddings to identify these patterns
and form the final summaries. Method I utilizes the node embeddings of the two graphs at each layer of
the architecture to create candidate summaries, using a TopK pooling layer, from which the final predicted
summary is derived. Method II focuses on identifying matching pairs of nodes across the two graphs, i.e.
pairs of nodes that exhibit high bidirectional cross-graph attention scores. Using these pairs as constraints,
it finds the maximum common induced subgraph between the two graphs with an extension of the McSplit
algorithm.

To evaluate the performance of our model and proposed methods, we created a synthetic dataset of Geometric
Shapes, consisting of four basic shapes (cyclic, complete, line, and star graphs), to which we added noise in the
form of random nodes and edges. This dataset provided a controlled environment with known ground truth
summaries, allowing for more accurate evaluation of the proposed methods. In addition to the Geometric
Shapes dataset, we conducted experiments on the real-world MUTAG dataset, which comprises mutagenic
and non-mutagenic chemical compounds. Although the MUTAG dataset lacks ground truth summaries, it
provides ground truth prototypes, which guided the qualitative evaluation of the summaries predicted by our
model.

We compared our model against GNN architectures that utilize pooling layers, specifically DMoN, MinCut,
and JustBalance, to cluster the nodes and create graph summaries. To evaluate the importance of the
cross-graph attention mechanism introduced by GMNs, we also implemented a GAT architecture, which we
evaluated using an approach similar to Method I. On Geometric Shapes, the GMN with Method II was very
consistent and outperformed the other models in all versions of the dataset. It achieved higher accuracy scores
in most classes, with few exceptions in the complete and star graph classes, where the GMN with Method I
and GAT, respectively, performed better. The clustering-based GNNs performed poorly, with significantly
lower accuracy scores compared to our proposed methods.

Following the strong performance of the GMN with Method IT on the Geometric Shapes dataset, we conducted
experiments on MUTAG. The model performed well, often identifying summaries that consisted of either one
instance of the ground truth prototypes for the non-mutagenic class, or multiple instances for the mutagenic
class. These results accurately reflect the nature of the two classes. However, similar to the results on
Geometric Shapes, the predicted summaries sometimes included nodes that did not belong to the prototypes
or omitted nodes that did, due to the cross-graph attention scores between them being higher or lower than
the set threshold, respectively. Lastly, an interesting pattern observed during the analysis, particularly in
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the non-mutagenic class, was that by sequentially creating summaries at each layer using the corresponding
matching pairs and excluding their nodes from subsequent layers, we were able to construct the ground truth
prototypes of the dataset.

In summary, the GMN, particularly with Method II, performed well and was able to accurately identify
class-representative summaries. These summaries provide valuable insights into the patterns that the model
recognizes and learns during training on the graph similarity task. This enhances the explainability of the
model, making its behavior when predicting similarity more transparent and interpretable.

9.2 Future Work

For future work, several paths could be explored to further enhance the understanding and application of
Graph Matching Networks in the field of graph summarization and beyond:

e Improving Maximum Common Subgraph (MCS) Algorithms with GNNs: While identifying
maximum common subgraphs (MCS) using cross-graph attentions as constraints yielded good results
in our experiments, the problem of computing the MCS is known to be NP-hard [27], significantly
increasing the computational cost for larger graphs. Exploring approaches for MCS detection using
GNNs, such as GLSearch [1], is a promising avenue to improve the efficiency of our methods.

e Further Experimentation on Real-World Datasets: Conducting experiments on additional real-
world datasets, such as BA-Shape [68] and Benzene [58], can help further evaluate the proposed meth-
ods, providing deeper insights into the behavior of the model and the patterns it is able to learn in
more complex and diverse graph structures.

e Exploring GMN Variants that Enable Unsupervised Training Using Contrastive Learning:
Investigating contrastive GMN variants, such as CGMN [33], could enable the application of our meth-
ods to unlabeled datasets, leveraging contrastive learning techniques to enhance the model’s ability to
learn useful representations without requiring extensive labeled data.

By exploring these future directions, we can continue to advance the field of graph summarization, improving
the efficiency, accuracy, and applicability of summarization techniques across various domains, and enhancing
the explainability and interpretability of GNN models.
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