EONIKO METXOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOTI'QN MHXANIKQN
KAI MHXANIKQN YITOAOT'TETOQN

TOMEAZXZ BIOMHXANIKQN AIATAZEQN &
2Y2XTHMATQN AITIODPAXEQN

N
P2
&

e
y " o &
4
NPOrHBOEY S
-Ij!nﬂxllworos

3

Evioyvtikn MaOnon yva lpopreyn ®@Oopag
Bropnyavikov EEomriiopnov

AITIAQMATIKH EPT'AXIA

Ava6Tdo10G AYYLOYAALOG

Emprénov: [pnyopiog Mévilag
Kobnynmg E.M.IL

Abnva, lovAog 2024

EONIKO METXOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOI'QN MHXANIKQN
KAI MHXANIKQN YIIOAOT'TETOQN

TOMEAZXZ BIOMHXANIKQN AIATAZEEQN &
2Y2XTHMATQN AIIODPAXEQN

o
(o)
3

v

v'\M

R . Jﬂ\, (
P nporMHBEY S
-‘lj!)ﬂ\llr¢orei§

s,

Evioyvtikn MaOnon yva Hpofreyn ®Oopac
Bropnyavikov EEomrAiiopov

AITIAQMATIKH EPT'AXIA

AvaoTtacloc Ayyroydrirog

Emprénov: [pnyopiog Mévilag
Koabnyntg E.MLIL

Eykpibnke amod v tpyedn eéetactikn enttpony v 15" lovAiov 2024.

(Yroypagi) (Yroypapi) (Yroypapn)
I'pnydprog Mévtlog Todvvne Yoppdc Anpntplog Ackodvng
Kadnynmge E.M.IL Kadnynmge E.M.IL Kabnynmg E.M.IL

AbnMva, lovAog 2024

(Yroypagr)

Avaotaocrog Ayyroydirog
Amhopotodyog Hiektpordyog Mrnyavikdg kot Mnyovikog Ymoroyiotdv E.MLIL

Copyright © Avaoctdotog Ayyloydirog, 2024
Me gmpviaén mavtog dwoudporog. All rights reserved.

Amayopevetal 1 avIypaor], amodniKevon Kot Slavoun TG Tapovcas epyaciog, €6 oAoKANpov N
TUALOITOC OVTNG, Yo EUmopikd okomo. Emitpémeton avotdmmon, amobfikevon Kot dtavour yio
oKOTO U1 KEPOOGKOTIKO, EKTALOEVTIKNG 1) EPEVVNTIKNG UGG, VIO TNV Tpolmdbeon va avapépetan
N YN TPoEAELONG KOl Vo dtatnpeital To mapov uivopa. Epotipata mov agopovv) xpnom e
€PYOOING Y0 KEPOOGKOTIKO GKOTO TPEMEL VO, AeLHVVOVTOL TTPOG TOV GLYYPAPEQ.

Ol amOWELS KOl TO CUUTEPAGLOT TOV TEPEXOVTUL GE OVTO TO £YYPAPO EKPPALOVY TOV GLYYPOPEN
Kol 0V wpémel vo. epunvevdel 0Tl avTmpoownevovy Tig enionueg Béoelg tov EBvikod Metoofiov
[ToAvteyveiov.

[Tepiinyn

Ytov kOGHo NG Propnyaviag, 60mov 0 otOY0g €ivar M peimon Ttov e£0dwV kal N gloyloTomoinon TV
OTOAELDV, 1] GLUVINPTON, AV KOl ATOPLTN T, GLYVE CLUPBAALEL GE avTA To 5000 Kot pmopet va dratapdéet
) odikacio mapaymyns. Emopévmg, n Peitictomoinon tov otpatnywdv cuvtipnong Bo mpéner va
OTOTEAEL TPOTEPALOTNTAL.

Ot TopadOCIOKEG OTATIOTIKEG KOl VIETEPLIVIGTIKES TPOGEYYIGELS Y10 TO OYeSOOUO GUGTNUATOV EAEYYOV
KOl TPOYPOUUOTIGHOD €lval TEPLOPIGUEVES GTNV OMOTEAEGUATIKOTNTA TOVG AOY® TNG TOAVTAOKNG, WUN

YPOULUIKNAG VOGS TOV TPOPANUAT®V GUVTHPNOTG.

IMaporo mov m Mmnyovikp Mdabnon (Machine Learning) mpoo@éper mbavég AVGES GE OUTEG TIC
TOAVTAOKOTNTEG, OV TADEL VO OTOTEAEL TPOKANGT 1 OTOKTNOT| EXAPKDY OEG0UEV®VY OITd EIOTKOVS, Y10 TNV
emPrenopevn Ko urn emPrenodpevn pdonon, odnydviag GuYVE GE TPOCEYYIGTIKESG KOl OVETOPKNG AVGELS.

H Evioyvtiki Mabnon (Reinforcement Learning) mopovotdlel £vov autdvopo punyavicpd pddnong mov
umopel va EEmePACEL LUEPIKOVE OO AVTODE TOVG TEPLOPIGHODS. H Topovca SIMA®UOTIKY ETKEVIPAOVETOL
o1 xpnon deopmv aryopiBuwv RL yio v avripetdnion evog tpopinuatog Ipoyvemotikig Zvvimpnong
(Predictive Maintenance), cuykekpipéva tny mpoPieym eBopdg tov flutes (ppelotpdnavav) oe didpopeg
epélec CNC vyning toyomtoc. Avty 1 wpoPreyn Pociletor oe dedopéva amd SvvaudueTpa,
EMTAYVVOLOUETPO Kot ocOnTipec aKovoTikig exmounrg. OAlot ot okyopiBuol Bo exkmaidevTodv Kot Ha
a&10h0yn0ovy YPNOYOTOIOVTOC TPaYHaTIKG dedouéva, kal Oo deloydel po gvupeia avaivon yo vo
e€etaotel 1 aMOTEAEGLOTIKOTI T TOVG.

Aé&Eaig Kheawona : [Ipoyvootikn Zvvtipnon, Evioyutiky Madnon, MDP, TTp6pieyn ®Bopdg, Mnyoavikn
Mdbnon

Abstract

In the world of manufacturing, where the goal is to cut down on any expense and minimize losses,
maintenance, although essential, often contributes to these expenses and can disrupt the production
process. Therefore, optimizing maintenance strategies should be a priority.

Traditional deterministic approaches to designing control and planning systems are limited in their
effectiveness due to the complex, nonlinear nature of maintenance problems.

While machine learning offers potential solutions to these complexities, the challenge of obtaining
sufficient labeled data from experts for supervised and unsupervised approaches often leads to
approximate solutions.

Reinforcement learning (RL) presents an autonomous learning mechanism that can potentially overcome
some of these limitations. This thesis focuses on employing various RL algorithms to address a predictive
maintenance (PdM) problem, specifically the wear prediction of the flutes in cutters of a high-speed CNC
milling machine. This prediction is based on data from dynamometer, accelerometer, and acoustic
emission sensors. All algorithms will be trained and evaluated using real-world data, and a broad analysis
will be conducted to examine their effectiveness.

Keywords: Predictive Maintenance, Reinforcement Learning, MDP, Wear Prediction, Machine Learning

Evyapiotiec

Me v 0AoKAPOOT) TNG SIMAOUATIKNG EPYAGTOG KOl MG GUVETELD TOL KOKAOV 6TTovd®v pHov, Ha n0gla va
EKQPACH TIG EMKPIVELG ELYOPIOTIEG LOV TTPOG OAOVS W TOVC, TOL GLVEPaAaY Kat foriBncav ce avtd T0
616Y0.

[Mpadta Kot Kopia, Bo Bera va guyopioticm Oepud tov emPAETOVTO TG SIMAGUOTIKNG OV EPYOTING,
Koabnynt . Fpnyopro Mévtla, yio tnv UmIGTOoHVN TOL Hov £5€1EE e TNV avabeoT Tng epyaciog Kot
TNV TOAVTIUN KaBodnynon tov, KaBoAn) ddpketa avtig s dadpoune. Emiong, Ba n0eha va
EVYOPIETHO® TOV d1daKTOpa K. AAEEUVOPO MTOVGHEKN Kot TOV vIToYNELo d1ddKTopa K. Xtépavo Kovto,
TV 0Toi®mV 01 GLUPOVAES, 01 TPOTAGELS KO 1] 0vOLY T 6TAGT amévavti pov pe fondncav va eEelMyBod mg
EPELVNTNG KO VO SIAUOPPADCH TNV EPYAGIO LOV e TOV KOAVTEPO dLVATO TPOTO.

Agv Ba pmopovoa va TapaAeiym Tovg yovelg pov, Ta adépeia pov Apioteion kot Koota kabdg kot tnv
Aydmn, Yo TV COUTOPACTACT] KoL TV KOTAVONOT] Y10, OA0 TO YPOVIN TOV 6TOVdI®V Hov. Xmpic eKEivovg
ciyovpa dev Ba elya Katapépel 6o Pndpeca.

[Swaitepec evyapiotieg 6€ GAOVE TOV PIAOVE LOV TTOL NTAV GTO TAELPS OV GE OAN TNV SLUPKELN TOV
oToLdMV Pov Kot pe fondnoav va Eemepdom kdbe eumoddio. Akoun, Ba nleia va evyapIoTIo® TOLG
€0TIOKOVG OV YEITOVEG KOl TNV TETPAmodn cuvodoudpo pov Rubia yo tnv cvveyn otipién og avto to
ta&iol. Téhog, vimbBw v avaykn va. euxaplotnom EExmplotd OAOVE 0GOVE TEPAGOUE OTELEIMTES MPEG
dwPacpotog pali oe owtd To TEVTE YPoOvia, KabdS KavaTe avt) TN S1od1Kacio TOAD o EVYAPIOTN Kol
€0KOAN.

Eiuar svyvoumv yuo) cvvepyocio kot v vaoothptén mwov hafa and 6A0VG Kot OAEG KOTA T J1GpKELN
OVTAG TNG EPEVVNTIKNG TPOoTADEING. AVTN 1) SITAMUATIKY EPYACI0 VL OTOTELEGA TNG OYGTNG GOC Kol
o0G TNV APLEPOVE.
AvooTa610Gg AyyAoyOAAOC
lovAog 2024

Table of Contents

L o700 11T DS SR 3
AADSTTACT ... E ettt n e r e 5
Extetaptévn EAANVIKN TIEPTAMWIT] oottt 25
ElO O YY) 1t 30
OEDMPNTIKO YTIOPUOPO 1.vveivieitieeiie ettt sttt s st be et e et eete e e ste e be e sbeesreesneesnaeanbeanteenreenreeas 25
TIPOGEYYION .ttt 30
YLOTIOUMNOT) & ATTOTEAEGLLOTOL .. e veveenresreeseeresseesresmesseesresrees e smeese e sesse e e e are e e e sneareesneareaneennesreenenneaneenrenres 36

D DUTTEPOLOLLOLTOL et et ettt ettt est e et et esheesbeese e ea ke e s bt e ab e e b e e b e £ eE e e e E s e £ h e e ek e e b e e ehe e she e e ReeeR bt e R e e beenbeenbrennneas 50
LUINEFOTUCTION ..ttt bbb et b bbbt b b e et e bt bt s bt bbb n e 52
2. Theoretical Background & Related WOIK...........cccviieiiiiiiiic sttt st sne s 55
2.1 PrediCtive IMAINTENANCEcveieieiieiisieste sttt ettt b bbbttt bbb nn e 55
2.2 MArkoV DECISION PTOCESSccueiitiiitiiieiit ettt bbb b e 56
2.2.1 MDP | Sequential DeciSion ProbI&Mccciiiiiiiiiieece e 56
2.2.2 Utility INTermMS OF TIME ...oocveie e st s re e be et ens 58
2.2.3 Optimal Policies and the utilities Of the SItUALIONScccveiviiiiiiie e 60

2.3 ReINTOICEMENT LBAIMINGeviieeiieiietiiiete sttt bbbttt nn e 62
2.3.1 Learning from REWAITS........c.ciiiiiii ittt ettt sbeeta e be s re e e be e e sreens 62
2.3.2 KEY CONCEPLS 1N RL ..ttt sttt b e 63

2.4 Reinforcement Learning in MaiNtENaNCEcccvoviiiiie ettt s 77
3L AAPPIOBCKN <.t E bbbt n e 80
TN A I 0 L= o] (<ot =TRSOOSR 80
3.2 Data structure and INPUL PAFAMETETScouirveieiiieieiesie sttt ettt b e 81
3.3 Pre-processing & Feature EXLFACION.........ccccviii ittt sttt s be et ne 82
3.3.1 Curse of DIMENSIONAIITYcc.iiiiieie ettt sreste e besreenresre e 82
3.3.2 TImMe dOMAIN FEAIUIEScviiiiiiiitiieeete et bbbttt bbb 84

KR AV Lo (=] [T T I I 1Y 5 OSSR 87
3.5 SOIVING WITN RL 1.ttt bbbttt ettt 89
3.5.1 VPG | Vanilla PoliCY Gratientcoeeiiiioiiieiiese et st 89
3.5.2 TRPO | Trust Region Policy Optimization............ccoerireieiieinisise e 91
3.5.3 PPO | Proximal Policy OptimMIZationcccceiiiiieiiiiiie ettt 95

3.5.4 A2C | AQVANTAGE ACLOT CEITIC ...c.vevieieeieieieies sttt 99

3.5.5 DDPG | Deep Deterministic POIICY Gradient...........ccceoveiieerininiiesieseeeeesese s 101

3.5.6TD3 | TWin Delayed DDPGcccoviiiiiiiie sttt nr ettt e e te e sreene 106
3.5.7 SAC | SOFt ACION CrITIC. ... iueitiiiiiteietitesi ettt e 109
3.5.8 Algorithms and the PAM taSKccccveiiiiiiiiisie e st 114

3.6 EVAIUALION IMIBLIICS ...ttt b e 114
4. Implementation, EValuation & RESUILS..........cc.iiiiiiiiiiee et 117
A1 TECN SEACK ...ttt 117
4.2 Data structure and iNPUL PArAMETEISooviieieiiisesesre et 121
4.3 Preprocessing & Feature EXIFACHIONcoiviiiii ittt st nre s 122
A4 MDP MOUEL ...ttt et et e s te e te e s e sbees e e tesRe e tesbeeneenaeereentenre s 125
4.4.1 Components O the IMIDPcviiiieiece e st re e be e sreens 125
4.4.2. Summary of the FOUr ENVIFONMENTScooiiiiiiiiiieeeees st 131

o S I\ [T [T B I - VT 1o TSSOSO 133
N (=11]SS SSSURPSSSI 173
5. ConClUSIONS aNd FULUIE WOTK.......c.ooiiiiiitiiiieee et 179

R EIEINCES ...ttt ettt et et e e e et e e e et e e e et e e e e et et e e e et et e e e e tateeeatrteeeae e teeea et eeeanareeaanes 180

Tables of Tables

Table 1:
Table 2 :
Table 3:
Table 4 :
Table5:
Table 6 :
Table 7 :
Table 8:
Table 9:

Zovaptnoels AELaG 6NV EVIGYUTIKN MAONOT] ..o s 29
EEayopevo XopoKTNPIOTUCR XPOVOU . ..eiuririiiiieieriieieiitesieestesteeiestestee st sbeesee st sseeseesbesseeseesbeesbesnens 38
The Pseudocode OF FUNCLION Qooviiiieiiieciesie sttt s nne s 62
Summary of Value FUNCLioNS USEA IN RLccocviieiecicii et 69
Input & Output of each step of the Proposed APProachccccovevrenerereisiisesese e 81
F AN O oY= TH o [0 oo o -SSRSO 100
Learning Rate of RL AIGOIthMScooiiiic e e 134
Performance of RL Algorithms in Corrective ENVIrONMENtS..........ccccooeveieieisieninencne e 175
Performance of RL Algorithms in Non-Corrective ENVIronmentscccoceevveveveevesesieesiene 177

Table of Figures

Figure 1: To dudypappo viomoinong tov IpoPAanuatog IpoPreyng ®Oopdc anvtig TG SITAMUOTIKNAG

EPYOLGTOIG. +.vtvveteeteente st est et ete e st ekt e s e s bt et et s bt et ek ek e e bt e R £ e R b SRt eE £ oA Rt SR £ e R b e R £ 4R £ e ARt SRS oAb e SR e eR e e R e eR e e b e nbeeneenheebe e b b 32
Figure 2 : TIpoyvootiky cuvtnpnon oto Thaioto g keumvAng P-F (Bousdekis, Apostolou, & Mentzas,
40720) TSRS R PP 25
Figure 3 : T'evikn} Avarapdotoon Awadikaciog Evieyvtikng MdaOnong (MathWorks, 2024) 28
Figure 4 : TTopoadeiypata ypoenudtov mov nuiovpynnkoy yio 6komong SEPELVNTIKT avIAVONG TV
OEOOLLEVIIV 1.ttt stttk ekttt eb e st s bt ettt s bt e et bt h e e bt e b e e s e e bt eb e oAb e eb £ o1 e e b e 4R e e A bt eE £ e R ke eb e e b e e bt ehe e b e bt e neeneeebe et nre s 39
Figure 5 : Zyedibypappa pe to €66€p0 S10popeTIKA TTeptBAALoVTa TG YAOTOINONG. vovveverevveee e 40
Figure 6 : Méon Adpxketo Eneicodiov ava timestep yio 6Aovg toug Adyopifpovg 6to Aophmtiko
TTEPIPAALOV LLE / Y OPIG KOBUGTEPTION . vvevrenrianrieiteestee it ettt et e ste e ste e ste e s bbbt et et e e b e et eesr e e neenbe e sbeesnnesnreannis 42
Figure 7 : Méon Avtapopn Encicodiov avd timestep yio 6lovg toug AAydpiBpovg 6to AtopBwtikd
TTEPIPAALROV LLE / Y OPIG KOBUGTEPTION . veervriurianriesteestee sttt ettt et ettt e bbbt et e st e sbe et e e e e e e beenbe e sbeesnnesnneanns 42
Figure 8 : Babupoioyioc Phm avd timestep yio 6hovg toug Adydpifuovg oto Atopbwtikd Iepifailov pe /
YOPIG KOBUDGTEDTOT] +nveetieeiieeitt e it ste et ettt ettt esbe e bt e he e et e e s bt e s bt e she e sh b e e ab e e a bt e b e e ebe e e b et emb e e nbeenbeesbeesanesnneanns 43
Figure 9 : Méon Adpketo Eneicodiov ava timestep yia 6Aovg tovg Akyopifpovg 6to Mn Atopbwtikd
TePBAAAOV LLE / YOPIG KOUBUOTEPTION veuveerrireenierieeieerestee ettt sr st sr e r e sb e et sr e e e sb e s e nesre e e nre s e e nrennes 43
Figure 10 : Méon Avtapoipn Enetcodiov ava timestep yia 6hovg tovg AlydpiBpovg 6to Mn Awopbwtiko
TTePIBAAAOY LE/NMPIG KOUBUGTEPTIOT - veveerrirreeniesteeieere st e ettt sttt r e ie e r et e et r e e sr e s s e nesr e e e e sre e e nrennes 44
Figure 11 : EmAoyn Mikpdtepov Evpovg e Méong Avtapong Engicodiov avd timestep yio 6Aovg tovg
AlyopiBpovg oto Mn AopBaticd [eptBdAlov pe / xOPic KABUGTEPTION .vevveerveeriiiriiiiieeie e 44
Figure 12 : BaBuoloyio. PHM avd timestep yia 6Aovg tovg alydpifuovg oto pn dopbmtikd nepifdilov
LLE / Y OPIG ODUGTEDTION]. -veeerieuri et et e st e st e sttt ettt ettt ekt e skt e b et e he e ekt e sbe e she e shb e s b b e ea bt e m b e e be e b e e nbeeebeeenneenneenbe e e 45
Figure 13 : “Smoothed” ypdonuo tng fabuoroyiog PHM avd timestep yia 6Aovg tovg aiyopiBuovg 6to
un 510p0TIKO TEPIPAAAOV LUE / YOPIG KOUDVGTEPTIOT]. 1eerreiiiiiriiiriieiieesieesieesiee et be et sb e sbeesreeenbeenaeeneee e 45
Figure 14 : A taxonomy of Reinforcement Learning for the Wear Prediction Problem of this thesis........ 53
Figure 15 : Predictive maintenance in the context of the P-F curve (Bousdekis, Apostolou, & Mentzas,
4072 0) OSSPSR 55
Figure 16 : General Representation of Reinforcement Learning Scenario (MathWorks, 2024).................. 64
Figure 17 : A non-exhaustive, but useful taxonomy of algorithms in modern RL. (Open Al, Kind of RL
ALGOTTNMS, 2024) ..ottt st e b et e s te e sb e s be e Rt e s beebe et e sbeere e beeteerenbeeaeenreeres 72
Figure 18 : Structure of the PropoSed APPrOACHcoviiiiiiiiiiie e 80
Figure 19 : Curse of DImensionality Graphcccoiieiiiiiic i e 83
Figure 20 : Time Domain Data ANAIYSIS.......c.ciiieiiiiiieieie ettt sre st sreere b s re e e sne e 84
Figure 21 : Pseudocode of the VPG Algorithm Implementation by (Open Al, Vanilla Policy Gradient,
A0 TSP TSPSN 90
Figure 22 : Pseudocode of the TRPO Algorithm Implementation by (Tensorflow, 2024)cccceeene. 94
Figure 23 : Pseudocode of the PPO Algorithm Implementation by (Open Al, Proximal Policy
OPIMIZALION, 2024)....... oottt sttt ettt et e te et e ebeemeeseeeteentesbeeseebeaneentesteaneesaeereentenneas 98

Figure 24 : Pseudocode of the DDPG Algorithm Implementation by (OpenAl, Deep Deterministic Policy
L= To [T o PR 2 SR 105

Figure 25 : Pseudocode of the TD3 Algorithm Implementation by (OpenAl, Twin Delayed DDPG, 2024)

... 108
Figure 26 : Pseudocode of the TD3 Algorithm Implementation by (OpenAl, Soft Actor Critic, 2024)...113
Figure 27 : Stable BaSeliNES LOGO........cceriiiiieieiisiisiesieste st 117
Figure 28 : Scalars Tab Tensorboard Ulccooviiicii it 120
Figure 29 : Time Series Tab Tensorboard Ul............ccoiiiiiiii e 120
Figure 30 : Tool Conditions Monitoring in high-speed Milling Process (Li, et al., 2009)...........c..c.c....... 122
Figure 31 : Part of the Graphs that were created during EDA ..o 124
Figure 32 : The four different ENVIFONMENTSccviiiiiiieeieee e 125
Figure 33 : The IMDP MOGE]cviiice ettt srears 132
Figure 34 : Episode Length Mean per Timestep of PPO Non-Corrective No Delay Model..................... 135
Figure 35 : Episode Reward Mean per Timestep of PPO Non-Corrective No Delay Model.................... 135
Figure 36 : PHM Score per Timestep of PPO Non-Corrective No Delay Modelc.cccoovevviviinnne. 136
Figure 37 : “Smoothed” Version of PHM Score per Timestep of PPO Non-Corrective No Delay Model
... 136
Figure 38 : Entropy Loss per Timestep of PPO Non-Corrective No Delay Model..............ccocooiieniinnee 137
Figure 39 : “Approximate KL Divergence per Timestep of PPO Non-Corrective No Delay Model........ 137
Figure 40 : Standard Deviation per Timestep of PPO Non-Corrective No Delay Model 138
Figure 41 : Mean Episode Length per Timestep of PPO Non-Corrective With Delay Model.................. 138
Figure 42 : Mean Episode Reward per Timestep of PPO Non-Corrective With Delay Model................. 139
Figure 43 : PHM Score per Timestep of PPO Non-Corrective With Delay Modelccccoovveiinnnne 139
Figure 44 : Entropy Loss per Timestep of PPO Non-Corrective With Delay Model..............cccccooeiennnne 140
Figure 45 : Comparison of Mean Episode Length per Timestep of PPO Non-Corrective With Delay and
NO DEIAY MOUEBIS. ...ttt bbbttt b bbb e 140
Figure 46 : Comparison of Mean Episode Reward per Timestep of PPO Non-Corrective With Delay and
NO DEIAY IMOUEBIS. ...ttt bbb bbbttt bt e 141
Figure 47 : Comparison of PHM Score per Timestep of PPO Non-Corrective With Delay and No Delay
17 L] OSSP 141
Figure 48 : Mean Episode Length per Timestep of SAC Non-Corrective No Delay Model 141
Figure 49 : Mean Episode Reward per Timestep of SAC Non-Corrective No Delay Model 142
Figure 50 : Mean Episode Length per Timestep of SAC Non-Corrective With Delay Model 142
Figure 51 : Mean Episode Reward per Timestep of SAC Non-Corrective With Delay Model 142
Figure 52 : Comparison of Mean Episode Length per Timestep of SAC Non-Corrective With Delay and
NO DEIAY IMOUEBIS. ...ttt bbbttt ettt ettt nn e 143
Figure 53 : Comparison of Mean Episode Reward per Timestep of SAC Non-Corrective With Delay and
NO DEIAY MOUEIS. ...ttt et s e st e e s e s beeteebe s beeseesbeaaeestesbeeneesbesteenbenreas 143
Figure 54 : Comparison of Actor Loss per Timestep of SAC Non-Corrective With Delay and No Delay
0o [£ SSRSTSPR 143
Figure 55 : Comparison of Critic Loss per Timestep of SAC Non-Corrective With Delay and No Delay
0o [S OSSRPS 144
Figure 56 : Comparison of Entropy Coefficient per Timestep of SAC Non-Corrective With Delay and No
DEIAY IMOTEIS ...ttt bbb bbbt s bbbt b et 144
Figure 57 : Mean Episode Length per Timestep of DDPG Non-Corrective No Delay Model 144

Figure 58 : Mean Episode Reward per Timestep of DDPG Non-Corrective No Delay Model 145

Figure 59 : PHM Score per Timestep of DDPG Non-Corrective No Delay Model.............ccccoceiiiinnnne 145

Figure 60 : Mean Episode Length per Timestep of DDPG Non-Corrective With Delay Model 145
Figure 61 : Mean Episode Reward per Timestep of DDPG Non-Corrective With Delay Model 146
Figure 62 : Comparison of Mean Episode Length per Timestep of DDPG Non-Corrective With Delay and
NO DEIAY MOUEIS. ... oottt e s e st e et e e be s be e s s e besaeesbesteeneesbesteentenneas 146
Figure 63 : Comparison of Mean Episode Reward per Timestep of DDPG Non-Corrective With Delay and
NO DEIAY MOUEIS. ...ttt ettt a e s beete e be s reessesbeeseeseesbeeneesbesreentennes 146
Figure 64 : Comparison of PHM Score per Timestep of DDPG Non-Corrective With Delay and No Delay
0o [£SO 147
Figure 65 : Comparison of Actor Loss (Log Scale) per Timestep of DDPG Non-Corrective With Delay
ANA NO DEIAY IMOUEIS.......cvieieeee bbbt sb e r e n e 147
Figure 66 : Comparison of Critic Loss (Log Scale) per Timestep of DDPG Non-Corrective With Delay
ANA NO DEIAY MOUBIS.......eeceieiie ettt e st et e st e e te e st e s re e stesbe e st e sbeataenbesreeneere e 147
Figure 67 : Mean Episode Length per Timestep of A2C Non-Corrective No Delay Model..................... 148
Figure 68 : Mean Episode Reward per Timestep of A2C Non-Corrective No Delay Model.................... 148
Figure 69 : PHM Score (Log Scale) per Timestep of A2C Non-Corrective No Delay Model 148
Figure 70 : PHM Score per Timestep of A2C Non-Corrective No Delay Modelcccovcviiiiiinnnns 148
Figure 71 : Mean Episode Length per Timestep of A2C Non-Corrective With Delay Model.................. 149
Figure 72 : Mean Episode Reward per Timestep of A2C Non-Corrective With Delay Model 149
Figure 73 : Phm Score per Timestep of A2C Non-Corrective With Delay Modelccccevviviiiennnane. 149
Figure 74 : Comparison of Mean Episode Length per Timestep of A2C Non-Corrective With Delay and
NO DEIAY MOUEIS. ...ttt bbbt b bbb e 150
Figure 75 : Shorter Range Selection of the Comparison of Mean Episode Length per Timestep of A2C
Non-Corrective With Delay and NO Delay MOEISccoeiiiiiiiiiiiieeees e 150
Figure 76 : Comparison of Phm Score per Timestep of A2C Non-Corrective With Delay and No Delay
0o [SRS 150
Figure 77 : Comparison of PHM Score per Timestep of A2C Non-Corrective With Delay and No Delay
17 L] OSSP 151
Figure 78 : Comparison of PHM Score (Log Scale) per Timestep of A2C Non-Corrective With Delay and
NO DEIAY MOUEIS. ...ttt et s e st e e s e s beeteebe s beeseesbeaaeestesbeeneesbesteenbenreas 151
Figure 79 : Mean Episode Reward per Timestep of PPO Corrective No Delay Model.............cccocvene.ee. 152
Figure 80 : PHM Score per Timestep of PPO Corrective No Delay Model............ccccoeviiiiniiiienciens 152
Figure 81 : Mean Episode Reward per Timestep of PPO Corrective With Delay Model......................... 153
Figure 82 : PHM Score per Timestep of PPO Corrective With Delay Model ..o 153
Figure 83 : Comparison of Mean Episode Reward per Timestep of PPO Corrective With Delay and No

=] P oo L= RS 153
Figure 84 : Comparison of PHM Score per Timestep of PPO Corrective With Delay and No Delay Models
... 154
Figure 85 : Comparison of Approximate KL Divergence per Timestep of PPO Corrective With Delay and
NO DEIAY IMOUEBIS. ...ttt bbbttt ettt ne e 154
Figure 86 : Comparison of Entropy Loss per Timestep of PPO Corrective With Delay and No Delay
0o [S OSSRPS 154

Figure 87 : Comparison of Standard Deviation per Timestep of PPO Corrective With Delay and No Delay
oo [RSOSSN 155

Figure 88 : Comparison of Clip Fraction per Timestep of PPO Corrective With Delay and No Delay

1T L] PSSRSO 155
Figure 89 : Mean Episode Reward per Timestep of SAC Corrective No Delay Model.............ccccceeeneee 155
Figure 90 : PHM Score per Timestep of SAC Corrective No Delay Model ... 156
Figure 91 : Mean Episode Reward per Timestep of SAC Corrective With Delay Model 156
Figure 92 : PHM Score per Timestep of SAC Corrective With Delay Modelcccccooiiiiiiinciens 156
Figure 93 : Comparison of Mean Episode Reward per Timestep of SAC Corrective With Delay and No
] F Y1 [T L] PSSR 157
Figure 94 : Comparison of PHM Score per Timestep of SAC Corrective With Delay and No Delay
1T L] TSROSO PRTT 157
Figure 95 : Comparison of Actor Loss per Timestep of SAC Corrective With Delay and No Delay Models
... 158
Figure 96 : Comparison of Critic Loss (Log Scale) per Timestep of SAC Corrective With Delay and No
DEIAY IMOTEIS ...ttt bbb bbbttt b et 158
Figure 97 : Comparison of Entropy Coefficient Loss per Timestep of SAC Corrective With Delay and No
DEIAY IMOTEIS ...ttt b bbbttt b bbb 158
Figure 98 : Mean Episode Reward per Timestep of DDPG Corrective No Delay Modelc....... 159
Figure 99 : PHM Score per Timestep of DDPG Corrective No Delay Modelcccocevvivieiveinciieinnae. 159
Figure 100 : Mean Episode Reward per Timestep of DDPG Corrective With Delay Model 160
Figure 101 : PHM Score per Timestep of DDPG Corrective With Delay Model..........c.cccooevviviiennnane. 160
Figure 102 : Comparison of Mean Episode Reward per Timestep of A2C Corrective With Delay and No
DEIAY IMOTEIS ...ttt bbb bbbttt b bbb 160
Figure 103 : Comparison of Phm Score per Timestep of A2C Corrective With Delay and No Delay
0o [ST SRSSPS 161
Figure 104 : Comparison of Actor Loss per Timestep of A2C Corrective With Delay and No Delay
0o [SRS 161
Figure 105 : Comparison of Critic Loss per Timestep of A2C Corrective With Delay and No Delay
17 L] OSSP 161
Figure 106 : Mean Episode Length per Timestep of A2C Corrective No Delay Model............ccccccevneee 162
Figure 107 : Mean Episode Reward per Timestep of A2C Corrective No Delay Model.......................... 162
Figure 108 : PHM Score per Timestep of A2C Corrective No Delay Modelcccccoeviiviiieiniieineane. 162
Figure 109 : Mean Episode Reward per Timestep of A2C Corrective With Delay Model....................... 163
Figure 110 : Shorter Range Selection of Mean Episode Reward per Timestep of A2C Corrective With
DEIAY IMOUEL ...t b bbbttt b bbb e 163
Figure 111 : PHM Score per Timestep of A2C Corrective With Delay Modelcccoovvviiiiiiieinnne. 163
Figure 112 : Comparison of Mean Episode Length per Timestep of A2C Corrective With Delay and No
DEIAY IMOTEIS ...t b b bbb bt s bbb bbb 164
Figure 113 : Comparison of Mean Episode Reward per Timestep of A2C Corrective With Delay and No
DEIAY IMOTEIS ...ttt bbb bbbt s bbbt b et 164
Figure 114 : Comparison of Phm Score (Log Scale) per Timestep of A2C Corrective With Delay and No
=] P oo L= RS 164

Figure 115 : Comparison of Entropy Loss per Timestep of A2C Corrective With Delay and No Delay

Figure 116 : Comparison of Standard Deviation per Timestep of A2C Corrective With Delay and No

] F Y1 oo L] PSSRSO 165
Figure 117 : Mean Episode Length per Timestep for all Algorithms in the Corrective Environment With /
INO DEIAY ...t R R et h et R R n e 165
Figure 118 : Mean Episode Reward per Timestep for all Algorithms in the Corrective Environment With /
INO DEIAY ...ttt b e R R R et n e R R b b e n e 166
Figure 119 : Phm Score per Timestep for all Algorithms in the Corrective Environment With / No Delay
... 166
Figure 120 : Mean Episode Length per Timestep for all Algorithms in the Non-Corrective Environment
WIEN 7 INO DEIAY. .ttt ettt a et e e s e s be e be et e sbeeseestesaeesbesbeeneesresteentennes 167
Figure 121 : Mean Episode Reward per Timestep for all Algorithms in the Non-Corrective Environment
WIEN 7 INO DEIAY ..ttt sttt et et e s e s beete et e sbeeseestesaeesbesbaeneesresteentenne s 168
Figure 122 : Shorter Range Selection of Mean Episode Reward per Timestep for all Algorithms in the
Non-Corrective Environment With / NO Delay...........ccocuiiriiiiiiiis e 169
Figure 123 : Even Shorter-Range Selection of Mean Episode Reward per Timestep for all Algorithms in
the Non-Corrective Environment With / NO Delaycoiriieiiiiiiiini s 169
Figure 124 : Phm Score per Timestep for all Algorithms in the Non-Corrective Environment with / no
(0[] Y SO SRP 170
Figure 125 : “Smoothed” Graph of Phm Score per Timestep for all Algorithms in the Non-Corrective
ENVIronment With / NO DEIAYccooiiiiiie ittt st st be e sresbe e sbeste et sre s 170

Figure 126 : Shorter Range Selection of Phm Score per Timestep for all Algorithms in the Non-Corrective
ENvIironment With / NO DEIAYc.oiiiiiiiieeee et 171

List of Abbreviations

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
Al Acrtificial Intelligence
Teyxvntm) Nonpoouvn
API Application Programming Interface
DDPG Deep Deterministic Policy Gradient
DON Deep Q-Network
EDA Exploratory Data Analysis
Atepgovnrikn Avaivon Agdouévav
HER Hindsight Experience Replay
MDP Markov Decision Process

Awdikootikd Zootua Anoedoswv Markov

ML Machine Learning
Mnyavikn Mabnon
PdM Predictive Maintenance
[Ipoyvootikn Zvvtrpnon
PHM Prognostics and Health Management
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
RL Reinforcement Learning

Evioyvtikn Mabnon

RMS Root Mean Square
RUL Remaining Useful Life

Yrolewmdpevog Xpnoyog Xpovog Zong
SAC Soft Actor Critic
SARSA State-Action-Reward-State-Action
S-MDP Semi-Markov Decision Process

S-POMDP Semi-Partially Observable Markov Decision Process

TD3 Twin Delayed DDPG
TRPO Trust Region Policy Optimization
Ul User Interface

VPG Vanilla Policy Gradient

25

Exterapévn EAlnvikn Hepiinyn

Ocopntikd YoPadpo
Ipoyvootikn Xvvtipnon

H mpoyvootiki) cuvtiipnon givar piot 6Tpatnyikn mpocEyyion mov YPNGILOTOLEL TV aviAVGT| dEOOUEVOV
YO TV OVixveELST avOUoAGV Kol TNV TpoPieyn Prafov eComiicpov. AnoteAel po pEB0S0 TPOANTTIKNG
GTPATNYIKNG GLUVTNPNOTG unyovnpdtov (oTikng onpaciog yuo tnv Blopnyavio.

Bonbd ot peiowon tov KOGTOVE, GTNV EANYIOTOTOINGTN TOL ¥POVOL OdPAVEING KOl GTNV EVIGYLON TNG
OCQUAELNG, EMTPETOVTOG TAPEUPAGELS CLVTIHPNONG KATA TO apPyIKA oTado TG Bopdg Tov e&omMopoD,
ono¢ amekovileton oty KoumovAn tov dwaypdupatog P-F (Potential Failure - Functional Failure).

A
NORMAL STATE DANGEROUS STATE
Degradation
start Potential
.# # failure
P /
\

c I
o |
O I :
> I |
o I
c |
) ! 1)
O : | Functional

! ; failure

: ! /

: : tf L'F

>
to td t2 t3 tp
I
Time Failure time /V

distribution
Figure 1 : Ilpoyvawotixi ovvtiipnon oto mloioio ¢ kourvdng P-F (Bousdekis, Apostolou, & Mentzas, 2020)

[Tapd ta 0QEAN TNG, 1| EPAPLOYT TNG TPOYVOCTIKNG CLVTHPNONG AVTILETOTILEL TPOKANOELS, OTTWE 1| AVAYKN
amokTNoNg véag texvoroyiag (0mmg kawvovpyror 10T aicOnthpec), onuovtikés apykés enevoLCELS Kot

26

eEapnomn omd eEEOIKEVUEVO TPOCOMIKO. Amontel emiong OOTUNUOTIKY GUVEPYOGiD Yyl Vo givol
OTTOTEAEGLOTIKY].

H evoopdtoon g Evioyvtikng Mabnong kot tov MDPS oty wpoyveootiky cuvinpnon umopel va
BeAtiotomomoetl T ANy amopdcemy vtd afePardtntao Kol vo BEATIMGEL T GUVOALKT OTOTEAECUATIKOTITO
TOV GTPUTIYIK®Y GLVTHPNOTC.

Awdkacio Amrogacng Markov

‘Eva dtadikootikd cvotnua amopdoswv Markov (MDP) givar puo dtakpith xpovikh d1081Kacio 6ToyaoTtikon
eréyyov. TTapéyetl éva pabnuotikd TAaictlo yuo T LOVIEAOTONOT TG ANYNG OTOPACEDY GE KATAGTAGELS
OOV TO AOTEAEGLOTA Efval €V UEPEL TVYOHO KOt €V HEPEL DTIO TOV EAEYYO TOL ANTTN T®V amopdcemv. Ta
MDP eivar ypriowa yuoo tn peAén mpoPAnudtev PeAtictomoinong mov emMADOVTIOL HECH SUVOULKOD
TPOYPOUUATICUOD.

XPNGLOTOLOVVTOL GE TOAAOVG TOLELS, GUUTEPIAAUPOAVOUEVOV TNG POUTOTIKTG, TOV CUTOLATOV EAEYYOV, TNG
owovopiag kot g Prounyoviog. To ovopa twv MDP mpoépyetar and tov Pdco pabdnuoatikd Avipét
Mdpro@ KaBdG amoTEAOVV ETEKTACT] TOV AALGId®V MdapKoQ.

e kaBe ypovikd Pripa, n Swdikacio Ppioketal 68 KATOW KATAOTOOT S, KOl 0 ANTTNG TOV ATOPACEDV
umopel va emé€el omoladnmote dpaon a givar dabéoun oty Kotdotaon s. H dadkacio aviamokpiverol
070 €NMOUEVO YPpOoVIKO Prpa petafaivovtag Tuyaio og pa vEd KATdoToot S’ Kot 0lvovtag GToV AT TV
anopacemv o avtictoyn aviapoPn R(s, a, s").

H mBavétra 1 dwdkacio va petaxvnel otn véa ¢ katdotoon s’ emmpedletorl omd v emAeyuévn
dpdom. Zvykekpuéva, divetar and) cvvaptnon petdfaocng katdotacng P(s'|s, a). ‘Etol, n endupevn
Kkatdotoon S’ e&apTdTol amd TV TPEYOVCH KATACTOOT S KAl T1 0pAGcT] TOV ANTTN TOV ATOPUCE®Y A, OAAL
O€J0UEVOL TMV S KoL @, EIvaL VIO OPOVG aveEAPTNTN amd OAEG TIC TPOTYOVUEVES KOTAGTAGELS Kol OpAoels:
ue dAha Adyia, ot petofacelg kotaotaong evog MDP tkavorotovv v d1dtta Mdapko.

Ta dodikaoctikd cvotiuata anoedosny Markov amotelodv pio enéktoon tov aAvcidmv Mdapkop: 1
dtapopd givar 1 TpocOnKnN SpaoemV (TOV ETLTPETOLY TNV ETIA0YN) Kol OVTALOLBOV (TOV TOPEYOVY KIvVNTPO).
Avtifétwmc, av vmdpyer povo pia dpdon yio kdbe katdoToon Kot OAEG ot avtapolPég eivar idieg, éva
dadikaotikod cvotnua oaropdoewv Markov peidvetat oe pia aAvcida Mdapkoo.

Yvvohikd, éva MDP givar éva S-tuple (S, A, R, P, po), 6mov:

S (State Space): givat T0 GHVOLO OOV TOV EYKVPOV KOTAGTAGE®DV,

A (Action Space): gival 1o 60Volo OAOV TV £YKVPOV dPAGE®V,

R:S X A X S — R givain cvvaptnon aviouolpng, ue . = R(S, At St +1)

P:S X A - P(S) eivoun cvvaptnon mbavomrag petdPaong, pe P(s'|s, @) va eivar n mbavotnto
uetdpoong otnv Katdotacn s° dedopévov 0TI BPIoKOUOCTE GTHV KATAGTAGT S Kol KAVOLUE TN
dpdon a,

27

® KOl po €lvaLl M KOTOVOUN TNG OPYIKNG KOTAGTAONS, dnAadn N mbavotnta vo Ppebodue oe pia
GUYKEKPLUEVT] S .

Evioyvtuic MaOnon

MaOnon ané Avrapoifég

2mv evioyutiky] pabnon, évog mpaktopag (agent) poboiver va AapPdver amopdoelg Aappdavovtog kot
gpunvevovtag onpote. avtapolprg (reward) Tov vrodelkvHovy TV TOOTNTO TV EVEPYEIDV TOL (action).
O otoy06 eivar va peyiotomomBei 1o abBpoiotikd dBpoispa TV LEALOVTIKGOV avTapolfmv. Avti 1 pébodog
elvar Wwaitepa ypnoun og mepPdArovia e Evay TEPACTIO ApOO TIOOVDOY KOTOCTAGE®DY, TOAAEC 0o TIg
OTO1EC O TPAKTOPOG EVOEXETUL VO, UMV EYEL AVTIUETOTIGEL TPOT|YOVUEVEG,.

Mo a&loonpeiot] €QopUOYn TNG EVIOYVLTIKNG MaOnong eivor oto okdkl. Avti va Pooiletonr om
emPrenopevn pdonon pe dedopéva yopakTnPIopéva and Tponyodueves maptides yio kdbe mbavr kivnon,
évag mpaxktopag RL pabaivel and to amoteAéoUata TV KIVIGEDY TOV, TPOGOPUOLOVTAS T GTPOTINYIKN TOV
Y10l VO LEYIGTOTTOINGEL TG AVTAUOPES, OTMG Vo KEPSITEL TO KEVIPO TNG CKOKIEPAG 1] YEVIKOTEPQ. TN VIKN GTO
woyvidlt. Avti n pébodog €xel moALd mAeovektnpato og ovvOeTa mepPdAlovto GTo omoio 1 AueoM
ddaokaAio eivor avEQLKTY, KaOMS EMTITPETEL GTOV TPAKTOPA VO AVOTTOEEL GTPUTNYIKES LECH OOKIUNG KOt
COAALOTOC PACIGUEVES GTIV OVATPOPOJOTIOT| TOV OVTALOPOV TOV.

Baowég Evvoieg atnv Evieyvtikiy MaOdnon

Y>mv RL, o mpdxtopoc oAANAETIOPA LE TO TEPIPAAAOV UEGM EVEPYEIDV KOl AUUPAVEL TOPOTNPNOEIS KoL
avtopolBés g avtoilayua. H molrtuaq (policy) tov mpdktopa, mov vroyopelet Tig eVEPYEEG ToV PAoet
NG TPEYOVOAG KOTAGTUGTC, EVIUEPMVETUL CLVEXDG PAGEL TNG AVATPOPOSHTNONG OO TO TEPLPAALOV, OTWG
(QOIVETOL GTO SLOYPOLLLAL.

28

// N
AGENT N\
| \
»—=@—Pp POLICY *—>
OBSERVATION ACTION
POLICY
UPDATE

REINFORCEMENT

L) LEARNING <
ALGORITHM

\ | Y,

REWARD

{ \

ENVIRONMENT <«

J

Figure 2 : I'evikn Avamapdotaon Awodikaciog Evicyvtikic MaOnone (MathWorks, 2024)

Yvototikd g Evieyvtikng MaOnong

"Evag AlyopiOuog Evieyvtikng MdaOnong amotereitar omo :

Kataotdoeig ko Hapatnpioeis: Ot katactdoelg (States) mopéyovv pua mAnpn Teptypaer| Tov
nepParlovtog, evd ot mapatnpnoelg (Observations) pmopei vo Tpos@épovy peptkn TANpoQopia.
Yy Badud RL, avtég avomapiotavol pe dSlovOGUATo, UNTPEG 1 OVATEPTG TUENG TAVVGTEC.
Xapor Evepyerav: Ot evépyeteg pumopel va gtvor dtakpités (memepacévo cOVOAO KIVIoE®V) 1
oLVEYELS (TPUYUOTIKES TIUES OlOVVOUAT®V), EXNpedlovtag TV ToAVTAOKOT T Kot TG eBOdovg
OV YPNCLUOTO0VVTAL GTOVS alyopifuovg RL.

Hohtikég: O moAtikég KaBodnyodv TG OmoPAcel; tov TpdkTopo Kot pmopel va etvol
VIETEPUIVIOTIKEG (oTabepég evépyelec) M otoyxaotTikée (katavouée mhovotnrag Tave omod
evépyeleg). Eivan mapopetpomonpéveg Kot PEATIOTOTO100VTOL Y10, Vo BEATIOGOLY TNV amdS0GT) TOV
TPAKTOPOL.

Awdpopéc/Ensrcoora: Mio dwdpoun sivor pior akolovdio KOTAGTACE®V KOl EVEPYEIDV TOL
npoypatonolel o mpdxtopac. O otdY0g TOV TPAKTOPO €ival VO LEYIGTOTOMOEL TNV 0fpOo1oTIKN
avTouolPn o€ aVTEC TIG OLOPOUEC.

Avtapopi ko Emoetpoen: H cuvéptnon aviapoing mapéyet avatpopodotnon Yo, Tig EVEPYELES
Tov wpaktopo. H emotpoen givar n abpototikr) aviopopn og pa dwdpoun, n onoio pmopei va
glvonl pe memepacpévo opilovta 1 dmepo opilovia (e€aptdpevo amd €vo mTapdyovio Y 7OV
amoxaAeiton discount factor).

29

To kevipikd mpoPfAnuo Bertictomoinong oty RL eivon va Ppebei pio moAtikn mov peyiotomotel v
avapevopevn emotpoen J (1) = [P(z|m) - R(7) = E;[R(T)]. Avté mepihopfaver Ty eéepedvnon
Kot v a&loloynon OSPOPETIKOV TOATIKMOV Y10, VO EVIOTIGTEL QTN TOL OMOdIOEL TIG LYNAOTEPEG
abpototikég avtapolBés, n PéAtiotn Tohtiky T = argmax, J(m).

Yovaptioeils Adilog
O mopakdto mivakag cuvoyilet Tig KOpleg cvuvaptnoels aiag otnv RL, ot onoieg eivon amapaitnres yio
v 0&1oAdyNoT Kot T PEATIOTOTOINGT TMV TOAITIKOV.

Yovapmiosig A&iag otnv Evieyutiki) MaOnon

V*(s) = E;-z[R(D)|s, = 5] H avopevopevn amddoon Eexvavtag omd Ty
KOTAGTOOT S VIO TNV TOAITIKN 7T

VE(s) = Eqere [Q7 (5, 0)]

Q™(s,a) = Erz[R(D)|s, = s,a, = a] |H avapevopevn arddoon Eexvavtog and mv
KOTAoTOOT S, KAVOVTOG TNV EVEPYELD A, KOL OT1)
GULVEYELN KOAOVOMVTAG TNV TOATIKY TT

V*(s) = max; V™ (s) H péyiot avapevopevn anddoon Eekivdvtog amd tnv
KOTAGTAGCT) SVTO TNV PEATIGTN TOALTIKN

Q*(s,a) = max, Q" (s, a) H péyiot avapevouevn anddoon EeKvaviog amd Tnv
KATAGTOOT S, KAVOVTOG TNV EVEPYELD A, KOL OT1)
GULVEXELD KOAOLOMVTOG TNV PEATIOTI TOATIKY|

Table 1 : Xvvoptijoeic Aliag otyv Evicyvtiki MaOnon

Evioyvtikiy MaOnon Xopic Movtého & Mg Movtéro

H evioyutikn pébnon pmopei va drokpiBel og 600 kOpieg katnyopies: yOPIc HovTéLo Kot pe povtéro. Xtnv
EVIGYVTIKN HAONoM e UOVTELO, O TPAKTOPAS YPMoluomolel €va, poviélo tov mepipdAloviog yio vo
TpoPAEYEL PETAPACELS KOTOOTACE®V Kol OVTUUOPES, EMTPEMOVING TOV TPOYPOUUOTIOUO KOL TN
BedtioTomoinon oTpatyIKOV. AVTH 1 TPOGEYYION UTOPEL VO PEATIOCEL GLAVTIKG TV 0T0d0TIKOTITO TOV
detypdrov, 6nog anodeikvietal and epapuoyig omwe to AlphaZero (éva amd ta KaADTEPO AOYIGHUKE Y10
okaxi, shogi kot go). Qotdoo, n dnuovpyior axplPods kot aEOTIGTOL HOVTELOL gival dOOKOAN Kot
YPOVOPOPa, Kol Umopel vor 00N yNGEL 6 VITOPEATIOTN 0mOd0oN AGY® HEPOANYinG 6TO LOVTEAD. AVTIOETOC,
1 eVIoYLTIKN PaBnom xwpig LOVTELOD, OV KOl XAVEL TIC SUVATOTNTEG TTOL TPOGPEPEL 1] XPNOTN LOVTEAOV, Elvarl
YEVIKA EDKOAOTEPT GTNV LAOTOINGT] KOl TPOGAPUOYT, Kol £xEL ovamtuyOel TepLocoTEPO.

Bektiotomoinon g Holtikig

O pébodor PBertiotomoinong moAttikng, 6mwg ot A2C kot PPO, mpocapudlovv Tig mapapétpovg g
TOMTIKNG <e queca péom oavodov khiong (gradient ascent) eite éupeca PEATIOTONOIOVTIOG TOMIKEG
npooeyyioelg ¢ amddoons. Avtég ot puébodot teivouv va givor mo otabepég kot a&ldmoTeg, av Kot
evdéyetal va givar AMydtepo amodotikég oe deiypata og ovykplon pe Tig pebddovg Q-learning mov

30

BeATIOTOMOI00V EUUESO TNV GOS0 TOL TPAKTOPO, EKTOIOELOVTOS TN cuvaptnon Q, YopaKINPISTIKO
napadetypa etvon o1 odyopiBpol SAC ko DDPG.

Evioyvtikiy MdOnon otnv Brounyavia

H evoopdtwon g evioyutikng pabnong ot cvvimpnon neptiappavet m ypnon miaciov 6w MDP,
POMDP, kot S-MDP ywo. T povielomoinon tov mepifdAloviog kol TV aviamtuén OTOTEAECUATIKOV
oTpATNYIK®V cuvtipnong. Toco ot pébodol evioyvuTikng Udbnong ympic Hoviélo 000 Kol HE HOVTEAO
propohv va EQAPLOGTOVV, e TIG LeBddous xwpig povtédo va eivar o TpoKTikES o oOvheTa mepifdirovia
OmOV 1 0KPIPNG LOVTELOTTOINGT Eival SDGKOAT).

Elcaynyn

To Industry 4.0 mepthapfdaver v evoopdtwon tov Internet of Things (10T) yw t dnpovpyio evog
GLGTIUOTOC CAANAETIOpaoNS LETAED TOL YNPLOKOD KOl TOV QUGIKOD Blropnyavikold k6GHov. Ot GLGKEVEG
10T pe evoopatmpévoug aentipeg yivovtor OAo KoL o TPONYHEVES KOt TPOOITES. ZOUPMVO. e To Statista
(Vailshery, 2024), vrdapyovv mepimov 15,9 dioekatoppvpio cuvdedepéveg ocvokevég 10T amd to 2023 kot
v enouevn dekaetio 0 apBudg ovtdg avapévetor va avénbdei og oyedov 40 dioekatopppio. Ot avoAvoelg
o€ TPAYUATIKO ¥pOVO G€ cLVOLACUO HE TN ¥pnon owctntipmv kot texvnty vonuoovvny (Al) emtpémovv
e€elyuéveg mhateopueg mov Pacilovrar oto Cloud. H enéktaon tng cuvoesiuotntag vyning tayxdtntog
5G devkolvvel TV vAomoinomn cvvletwv gpappoydv Al mov pmopodv vo Peitidoovy Tic Propnyavikég
Aertovpyieg Ko vo VTOSTNPIEOVY AMOTEAEGLLOTIKG EEAYLEVO GLGTILOTAL.

Yoppwvo pe toug (Burke , Hartigan, & Sniderman , 2017), éva. SmartFactory £yet oyedwaotei yo va
ovToPeATIoTOTOlEl TNV 0dd06N Tov pabaivoviog and TiG véeg cLVONKeS Kot TPocapudleTal oe GYedoV
wpaypotiko ypovo. To Predictive Maintenance (PdM) mepilopupdvet tnv avéivon dedopévmv amd d1apopeg
TNYEG -OT®G AGONTAPEG TOV EIVOL EYKOTECTNUEVOL GE KPIGLLOL UNYAVI|LOTO, TANPOPOPIEG OO CLUGTILOTA
TPOYPOUUATIOUOV emyelpnolokay mopwv (ERP), dedouéva moapaymyng kol cvotnuate otoyeipiong
GUVTNPNONG- Ylo. TNV TPOPAEYN KOl TNV TPOANTTIKY| OVTIHLET®MION PAafdv Tov eEomhopov. Avtd Ta
ocvothiuata owyeiptong SmartFactory ypnoomolobv wponyuéva, poviéla Tpofieyng yio v mpoPieyn
mOovOV TPOPANUGTOV KoL TN ANYN TPOANTTIKAOV UETPWV.

O1 (Ben-Daya, Dufuaa, & Raouf, 2012) dwomictmoov 0Tt 10 KOGTOG GUVTHPNCNG UTOPEL VOL OVTITPOCMTEVEL
petald 15% wxar 40% tov €£60wv mopaymyng ot dudeopovg kKAGdovg. Ilapd To opéln, moAlrol
KOTOoKEVOOTEG dlotalouvv va viobetioovy mpaktikég SmartFactory. Ot (Laape , Dollar, & Cotteleer , 2020)
avEQEPY OTL GYEOOV TO 65% TV KOTOOKELUGTMOV TOV CLUUETEIYOY GTNV £PEVLVA ELYOV CUEIDGEL UIKPT I}
kaBO6A0V TTPOOdo OTIG TPMTOPoLAiES Tovg Yoo To SmartFactory. Ot miécelg KOGTOVG OTN HETONOINOT

31

onuaivouv 0Tt 1 PEATIOT TPOANTTIKY cuviipnon Umopel vo cvuPdiel ot peimon TV Samavov
oLVTIPNONS, dtuc@aiilovtag TapdAANAa T GLVEXN TAPAY®YN.

‘Exouv ypnoyomomBel didpopec mpoceyyioels yio v avIHETOTIoN Tov mpokAncemv PAM. Xe avtéc
nepthapPavovtol TeVIKEG PEATIOTONOMONG UEIKTOV OKEPOIOV Kol TOALOTADV Kpumpiov, Omwoc M
Beltiotomoinon Pareto (Saydam & Frangopol, 2015) puébodor punyavikng pabnong (ML), 6mwg ta dévipa
amopdcewv (Frangopol, Lin, & Estes, 1997) ta random forests (Kabir , Foggo, & Yu, 2018), ta gradient
boosted dévtpa (XGboost) (Ma, Guo, & Mao, 2020) kot teyvikég ML yopig enipreyn, o0mwg 1 avdiven
kopwv cvvictocmyv (PCA) (Eke, Aka-Ngnui, & Glerc, 2017). 'Eyxovv eniong gpoppootei pébodot ML pe
enifreym, omwg 1 tolvdpounon (Susto, Wan, & Pampuri, An adaptive machine learning decision system
for flexible predictive maintenance , 2014) ka1 ot unyavég davoopdtav vroothpitne (SVM) (Ding, He, &
Zi , 2008), (Susto , Schirru, & Pampuri, A predictive maintenance system for integral type faults based on
support vector machines: an application to ion implantation, 2013). Teyvikég Babidc pébnong 6rwe n LoKpag
Bpayvrpobeounc uviung (LSTM) éxouv ypnotponomBel yio v eKTipuno” e EVOTOUEVOVGOS OQEAUNG
Cong (RUL) (Sayyad , Kumar, & Bongale, 2022), (Zheng , Ristovski, & Farahat, 2017) ka1 to vevpovikd
diktva ovveliemv (CNN) éxovv ypnouonombei yio regression (Sateesh Babu, Zhao, & Li, 2016).

O Tpmteg mpoomabeleg EMIALONG TETOLOL €100VG TPOPANUATMV YPNCUOTOOVGOY GUYVA VIETEPUIVICTIKES
TPOCEYYIOELS, Ol OTOIEG ElYOV TTEPIOPIGUEVT] OTOTEAEGLOTIKOTTO AOY® TNG TOAVTAOKOTNTOC KOl TNG N
YPOPMKOTNTOG TV Propunyovikdv depyacidv. H ewoayoyn g ML Beitiooe tn povielomoinon tov
GLGTNUATOV, CAAA M U ETUPKNG TOGOTNTO ETICT|LUCUEVOY OEDOUEVOV OO EUTELPOYVMDUOVEG OTOTEAOVGE
TPOPANLA, OONYDVTOG GE TPOGEYYIGTIKEG AVOELS,

H evioyvticn pabnon (RL), copmeptrapfavouévne e Pabidg evioyvtikng pabnong, eueoviletor og pio
TOAAG VTOGYOHEVT ADOT Yo AVTOVG TOVG TEPLOPIGHOVG. Ot mapadootakég uébodot Propnyavikov eAEYyoL
Kol GYXESOIOUOD adLVOTOUV VO ovTOmoKplOohy 6€ TOADTAOKEG Un ypoppkés dwdikaciec, adld n RL
TPOGPEPEL £VAV ADTOVOUO UNYOVIoUO nabnong yia Ty avantuén Bértiotov Acemv ympic poviéia (Lewis
et al. 2012, Sutton and Barto 2018). Agdopévov 6t 1 PAM mepthapfavel mpopAnuata Bektictomoinong, n
RL amotehei mbavn Avon yio TNV aVTIUETOTIGT QVTMOV TOV TPOKANGEMV.

To emikevipo g mapovoog SmA®patikig givar to TPoOPANua TpoPreyng g eBopdg pnyovov CNC
(Computer Numerical Control). Eva unyévnuo CNC givar évo, ovtopatomotnpévo epyaleio KoTookevng
OV (PNCILOTOLEL TPOYPULUUATIGUEVO AOYIGHIKO DTOAOYLIOTY] YO TOV EAEYYO TNG KIvNonG Kol TG Aettovpyiog
TOV unyavnuatov (tpuravia, epélec, Bivl), emtpémovtac v akpiPr Kot amrodoTikn Topoywyr cOvOsTmv
eapnuitov omd ddeopa vikd. Ta dedopéva mapéyovtar and tv PHM (Prognostics and Health
Management) Society kot aotéhecov pépog tov 2010 PHM Data Challenge. O otdyog givor va mpoPieqBet
n e0opd tov flutes (ppelotpdnavav) oe Siapopeg Ppilec CNC vynAng TaydTNTAS XPNCLLOTOLOVTOG
UETPNOELG amd oloONTNPES SUVAUOUETPOL, EMITAYVVGIOUETPOV KOl OKOVGTIKNG EKTOUTNG,.

10 mhaio1o TG SumAmuatikig yio Thv vlomoinom evog RL PAM Agent, ypnoiporombnke pia eEgtdikevpévn
otTaén, OTMG ameKoViLETOL GTO TAPOUKATM O1GyPOLLLLOL:

32

Objective

Wear
Prediction

Sensor Equipment
Condition Data

Pdm Objective

O o >
o >

Modeling the
system

Reinforcement Learning
Algorithms

Model - Free
o Off-Policy On-Policy

RL PdM Agent

Figure 3: To diaypoupa viomoinong tov Ipopfiiuarog Ipdfleyns ®Oopag ovtig T ImAGUOTIKNG EPYATIOG.

PdM Agent: Algorithm
development

e aut TV duiTaén, 0 TPOTAPYIKOS 6TdY0G ival n TPOPAeYN TG PBopdc, 1 omoia Paciletal og dedouéva
amd Vv mapokolovOnon g kotdotacng tov efomiiopov pe owsOntipes. Ta dedopéva ovtd
EVOOUOTOVOVTOL 6TO TAaicto dradikaciog andpacng Markov (MDP), to oroiov o porog givar 1 dtatdinmon
KOL 1] LOPPOTOINGT TOL TPOPANUOTOC HE TPOTO TOL VA Eival KATAAANAOG Yo aAYopiOUOVE EVIGYVTIKNAG
pébnong (RL).

Ot aAyopilBuor evioyvtikng pabnong mov epapupolovrar eivar efedikevpévor aiyopiduor mov dgv
ypnoomolovy poviédo (model-free). Avtoi ot aAdydpiBupol kotnyoplomolobvior ce uebddoVg £KTOG
noltikng (off-policy) ko oe pebddovg evtdc molttikng (on-policy). Ot off-policy péBodot meptlaupdvouvv
11¢ Deep Deterministic Policy Gradient (DDPG) xat Soft Actor-Critic (SAC), evd ot on-policy péfodot
nepiappavoouy Ttig Proximal Policy Optimization (PPO) ko Advantage Actor-Critic (A2C). O tehikdg
otoyoc eivan va avantuyBel Evag mpaktopag PAM pe Bdaon to RL, tkavog vo AapPavel ocvtdvores omoQpaocels
v Ty TPOPAEYN TNG POOPAS KOt TNV OTOTEAECUATIKT AMOPLYN TOAVAOV AEITOVPYIK®V PAAPOV 8 unyovég
CNC.

Y11c evotnteg mov axkoAovBolv, avt M odtaln Oo avamtuybel Aemtouepiotepa, cvlntdvtag Kabe
oVOTATIKO THG KOt TO POAO TOVL 6T SLpdOpPmon evog anotedespatikod RL PAM npdxtopa.

33

[Ipocéyyion

Ymv mapovca evotnta, Bo avaivdei n Sadikacio LovieLomoinong evog TPOPANLATOC EVIGYVTIKNG LABNnong
(RL) ypnowonoidvog dedopévo mov cvAléyoviol omd arcbntipeg. Apywkd, Bo mpayuoatomomndei n
emeepyacio TV dedopévav autdv Kot énetta Ba petatponel o TpoOPANUa o€ o S1adKacio amTOpauong
Markov (MDP). Xt cvvéyeta, péow tov MDP Ba avomtuyfei éva katdAAnio mepiBaAlov yio v epapuoyn
Stpopmv aryopiBuwv RL, ot omoiot Ba ekrtadevtovy 610 enelepyaciévo cuvoro dedopévov. Y otepa amd
NV ekmaidevomn, ot adyopdpot Oa agloloynBovv mtpokeévov va kaBopioTel 1) ATOTEAEGLOTIKOTNTH TOVG,
Edv n emidoon tovg etval KoAn TOTE UTOPOLY VA, YPNGOTOMNO0VV Y10, TNV EKTELECT] TPOPAEYEWDY CYETIKDV
LLE TNV TPOYVMOGTIKN GLVTIPNOT).

Agdopéva amd AreOnTipeg

Ta dedopéva cuiiéyovtar amd SIEopovg AGONTAPES GUVIESEUEVOVG GE UNYOVILOTO, KATOYPAPOVTOG
YPOVOGELPES TOPAUETPOV OTIMG dOVNAOELS, Beppokpacio kot mieon. Avtd to dedOUEVE, OPYOVAOVOVTOL GE
mivakeg 6mov kb cepd avTIGTOYKEL G (ol LETPNOT ooONTPO GE GLYKEKPIHEVO ¥poviko ddotnpa. H
GULVEYNG TOPUKOAOVONOT CVTAOV TOV TOPAUETPOV EMLTPETEL TNV AVIYVELCT] AVOLOALDYV.

H xatédAinin dwopopemon kot mpoene&epyacio TV ded0opEvav Tailel onuoviikd poho oty akpifeto Kot
a&lomiotio Tov TpoPréyemv. Avtd meptloufavel Tov kabapiopud Tav dedouévmy yio Ty aeaipgomn Bopvfov
Kol GOOAUATOV KOl TV KOvovikKomoinon ywa t dtuoediion cvvénelag. H ontikomoinon tov dedopévov
elvar to mpadTo Prjua otmv mpoemeEepyacia, kKaBDG emTpémel v €ePELVNON KOl KOTOVONGT TOV
YOPOUKTNPIOTIKOV, TOV KOTOVOU®MV KOl TOV TOUVOV OVOUIADV, OEVKOADVOVTOG TNV OViXVeELSN
COUALATOV KOl TNV EMAOYN TOV KOTOAANA®OV YOPOKTNPIOTIKAOV Yo TN UETEMELTA OVOALON Kot
povtelomoinon.

EneCepyoacio Agdopévav

H mpoenelepyacio kot 1 e&aywmyn xopakmploTK®VY givol Oepuehmon Puatae yio TV TPOETOWOCio TOV
OEJOUEVOV Y10l HOVTELD TPOYVOOTIKNG oLVINPNONG. Avtd to Pripate mepthapufdavovv ektog amd TovV
KaBapIoUd KOl TV KOVOVIKOTOINGT), KOl TNV £50Y®MYN] GYETIKMV YOPOKTINPIOTIKOV OO TO OKOTEPYUOTO
dedopéva, astnTpwv, TPOKEWEVOL Vo eVIeyLOEl 1| TO1OTNTA TV 0E60UEVOV KOl VO YIVOUV TTO KATAAANAQ
v povtéro pnyovikng padnong. H eEayoyn yopakmmpiotikedv fondd ot HeETATPONY| TOV OKATEPYOOTMOV
dedouévav oe UETOPANTEG OV €ivol 7O EVNUEPOTIKEG OYeTIKE pe tnv @Bopd Tov e€omiiopov M
GUUTVKVAOVOLV TNV TANPOPOPia.

Ta, yopoKTNPIETIKA aVTA Uropel va ival oToTloTIKG PEYED Omm HEGOC OPOC KOl SLUKDIOVGT), LETPLKEG
eneepyaociog onpatog 0nmg 1 pita pésov tetpaydvov (RMS) i e&etdicevpévor deixtec.

Méom TpooeKTIkNg Tpoemeepyaciog kol eE0y®yNG YapUKTNPIOTIKAV, dSNUIOVPYEITAL Eva TTO SLoyElPioLo
KOl EVNUEPMTIKO GUVOAO OEOOUEVAV, OMOPEVYOVTOG TNV "katdpo Tng odotaong’, m omoiad cuyva
GUVOVTATOL GTNV UNYOVIKT Labnon Adyo TV ToAvapliumy SlooTacemy TOV TPOPANUATOV ETIAVGTC.

34

Emedn 1o dedopéva omd tovg aicOntipec eivar OAa ypovoeLuptdueva, 1 KOADTEPT KaTnyopia
YOPOUKTNPLIOTIKOV GTNV TPOYVMOOTIKY] GLUVTHPNOT £ival To YopaKTNPloTikd oto ¥povikd medio. Aniadn
YOPOUKTNPLOTIKA TTOV EMLTPETOVY TNV AVAALGCT TV dES0UEVOV GE BAbog ypdvov.

Movtehomoinon g Awwdikaciog Aréacng Markov

Mo v mpdPreym g eBopds pe xpnom evioyvTikig pdbnong, ta mopakdt® cTotyeio piog Stodtkaciog
amoéeacng Markov mpénet vo kafopiotovv:

Koataotaon S;: H xatdotaon og kdbe ypovikd Prpa t avTimtpoc®mmedeTol amd TNV KOTAGTIO TV
eCapNUATOV NG UNYOVIG KOl TIG TIHEG TOV aeBnTpov mov gival GUVOESEUEVOL GTI UNYOVY.
[epraappdver OAeC TIC TANPOPOPIES TOV TEPIPAAAOVTOC TTOV EiVOL ATOPALTNTEG Y10, TNV TPOPAEYN
™mg eBopdc.

Evépyewa a;: O ydpog Tov evepyeldv amoteleitol amd va N-0146TATO YDHPO TOL OVIUTPOCOTEVEL
™ eBopd TV N e&opTnUdTOV TNg UNYavig Tov TopakoiovBoiue. H evépyeia eivar n TpoPreyn g
@Bopag kabe e&aptrnatoc og kae ypovikd Priua.

IMOavétyteg Metapaong (P): Ot mbavoteg petafoong kabopilovv mmg 1 Kotdotaon oAlalel
®¢ cLVETELD TV gvepyelmv. H petdfacn e&aptdtan amd TV TpEYOVCO KATAGTACT KOl TNV EVEPYELN
Kot Oyl amd TNV 10Topio. TV TPONYOVUEVOV KOTACTAGE®DY KOl EVEPYEIDV.

Avtopoipnq R;: H cuvaptnon oaviapoiig mopéyel ovaTpopodoTnor GTOV TPAKTOPo PACEL TNG
axpifelag tov mwpoPAéyedv tov. Mmopel va vmoAoyiotel pe Paon tn Swpopd petad g
TpoPAemouevng eBopdg Kat TG Tparypatikig eBopdg Tov mapatnpeital, XpNOLLOTOUDVTAG GUVOETES
ocuvaptioelg fadporoyiog.

ApYIKi] KOTAVOUTN KOTOOTAGEMY py: Kabopilel v mibavotnta TV apyik@v KoTaeTAGE®Y omd
T1G 0Toieg 0 TpdKTOopag EeKva TN dtoditkacio AynG amo@dce®y. AVTH 1) KATAVOUT EVOL GTHOVTIKN
YO TNV TPOOY®YN TNG PEAAOTIKNG EKTTAideVoNg Kal T PeATion Tng YeVIKELONG GE TPAYUATIKA
oevapa.

AlyoprOpor Evioyvtuciic MaOnong

H evotra avtn e€etdlel mdg n evioyvutikn pabnon epapuodletor oty tpdén Kot ovadvel T podnpotikn
Oeuerionomn tov kdbe akyopibuov. [eptnmtikd pmopov e Vo TEPTYPAYOVUE TOVG aAYOPiOUoVg ¢ EENG:

Vanilla Policy Gradient (VPG): TTpocapudlet Ti¢ mbovOTnTeS TMV EVEPYEIDV Y10, TN
LEYIGTOTOINGY] TV amoddcemv, podaivovtag amd Tig evépyeleg mov Aopfavovtal fdoet g
TPEYOVOUG TOALTIKNG.

Trust Region Policy Optimization (TRPO): Evnuepmvet tig moltikég Aappavoviag veoyn
dwpopd KL yio otafepn kol amoTteAeGUOTIKY HAbnoT, omoeebyoviag UEYOAEC SLOQOPEC OTNV
aTOO00M.

Proximal Policy Optimization (PPO): Beltiotonotei tig ToAMTIKEG e amlovotepeg pebdSove amd
10 TRPO, d106@aAilovtog 0Tt 01 VEEC TOMTIKEG OEV AOKAIVOUV GTUOVTIKA OO TIG TOAUOTEPEG
uéow kKumdpiopozog (clipping).

35

e Advantage Actor-Critic (A2C): Zuvévaler tavtdypovn cLAAOYT SedOUEVOV UE TAPEAANAOLG
epyalOUeVOLS Yo va PELDOEL T dtakOpaven Kot va otafepomotfoet T nadnon.

e Deep Deterministic Policy Gradient (DDPG): Xpnowonotei cuveyn StaGTHLOTO EVEPYEIDV KOl
ovvdLalet Tnv expadnon Q-function kot TOAMTIKAG Yo AOSOTIKY ARYN OTOPAGEDV.

e Twin Delayed DDPG (TD3): Behtiwvel v gvotddeia g pabnong o oyéon pe tov DDPG, ev-
copotdvovtag teyvikés onmg to Clipped Double-Q Learning, v kabvotepnuévn evnuépwon
TOMTIKNG, KOl TNV EE0LAAVVOT] GTOYOV TOAITIKTG.

e Soft Actor-Critic (SAC): Xpnoyomotel o 6TOY0GTIKN TOAITIKT IE KOVOVIKOTOINGT| EVIPOTING
Yo VoL TETOYEL o, .oopporio peta&y eepedvnong kot ekpetdiievonc. Avtod emitpénel 6to SAC va
npocapuoletor duvapkd ot petaforidpeves ovvinkeg, mpowbdviag T padnon Ko
OTOPEVYOVTOG TNV TPOMPT GVYKAIGT| G€ VIO PEATIOTEG ADGELG.

Kpwmprwo A&ohoynong

O1 Bacikég PETPLKEG TTOV YPNGLULOTOLOVVTOL Y10 THV AE0AGYN oM EIval TO péGO PNKOG ETELG0010V Kot 1) péo)
avtapolpr enercodiov.

To péco pnkog eneicodiov delyvel ™ pEoT OLAPKELD EVOG ETEICOOI0V TPV PTAGEL GE TEAKT KOTAGTAON.
Y10 mhaicto Tov PAM, éva enetcdd10 pmopei va avoroptotd Ty Tepiodo AEITovpyiag EVOG UNYOVILATOG
pw and Vv avaykn cvvinpnonc. ‘Eva peyoivtepo péco pnrkog eneicodiov mboavov va vmodniaovet 0Tt n
TOALTIKT| TTOV Epode 0 oAyOPOLOG EIVOL OTOTELECUATIKY GTNV OOTPOTY| PAUBOV KOl GTNV TAPATACT] TOV
xPOVOL Aettovpyiog Tov eE0MAMGHOD.

H péon avtopoifny emetcodiov ovimpoocwmevel) péorn abpolotikn aviopolpn mov Aoupdavetar ava
ene0010. 210 mhaicto tov PAM, 1 cvvaptmon avtapopng purnopel va teptAapuBavel mapayovieg Omms N
OTOSOTIKOTITO TOV UNYOVAUOTOS, TO KOGTOG GUVTHPNONG, O YPOVOS AOPAVELNS, 1 GUYVOTNTO EUQAVIOTG
BAapav kot to péyebog g eBopdg TV VAKGV. Mia vynAdTePN PECT avTapolBY] ETEIGOSI0V LTOSEKVIEL
OTL 1] TOMTIKN Elvol 0TOTELEGUATIKT GTNV €EIGOPPOTNGT CVTDV TOV TUPAYOVIMV.

H dwdikacio aoAdynong teptiapfdvet T chyKpIon oLTdV TOV HETPIKAOV GE dIIPOPOLS olyopiBovg Kot
nepipariiovta. H pon epyaciov a&lordynong neptroufavel tov opioud tov mepipdiloviog alloldoynong,
NV ekmaidevon ToMTIKGV pe ddpopovg aryopifuovg RL, T deaywyn moALOTADY €G0SV Kol TOV
VTOAOYIGUO T®V UETPIKOV KoLl TN GVYKPLoN Tovg. Ektog amd 1o péco PnKog emelicodiov kot tn péom
avtouolpn enelcodiov, AauPdavovior vadyn Kol 1 VITOAOYIGTIKY OmOd0TIKOTNTH, 1 KALUOUKOGIULOTNTO
(scalability) kou n TpocappocTiKéTTO TOV AAYOPIOU®Y.

36

Ylomoinon & Amoteléopata

Teyvukn Yrhomoinon

H vAomoinon tov mpoPAfpatog ypnotponotel £vo GUvVoAo texvoloyidv to omoio Paciletar oty Python,
a&lomowwvtag o1apopeg Piprodnkec kol mAaicwa yio v emeepyacio SESOUEVOV KOL TNV EVICYLTIKN
péonon.

O1 k0Opieg PondnTikég PBiprodnkeg meprapPdvouv tig: NUMPY yia apiBuntikoig vroroyicpote, Pandas yio
anodotiky| dayeipion dedopévav ko Matplotlib yio thv ontikonoinon dedopévov.

H evioyvtikn pébnon amotelei 1o facikd cuototikod Tov £pyov. Xpnoyonombnke n Bipiodnkn Stable
Baselines 3, mov Pacileton oto OpenAl Baselines. Avti 1 Bifflodnkn mapéyel a&dmioteg VAOTOMGELS
alyopibumv evioyvtikng pdbnong, 6mwg ot PPO, A2C, DDPG, ka1 SAC. To Stable Baselines 3 &ivat
Wuitepa PIAKS TPog ToV ¥pNoTn, Tpospépovtag Eva APl mov ariomotel T phOuon, v exmaidevon kot
mv a&lordynon tov poviéhov RL. H Bifliodnkn mepirapfavel exiong po oelpd omd fondntikd epyoleio
7oV d1evKoAVVOLV TN dradikacia avamTuéng RL.

H viomoinon ypnowonotei s1apopeg fondntikég Asttovpyieg amd to Stable Baselines 3, énwg to check_env
Yo T Sl Ao TG 6OOTG Asttovpyiog Twv TepBorldviwy, to VecFrameStack yio) otoifaén kopé
(frames), kot to evaluate_policy yio tnv a&10AOYNoN TOV EKTOIOEVUEVOV LOVTELDV.

EmmAéov, to TensorBoard ypnowonogitor yioo Ty mopakoAlovdnorn Kot OXTIKOTOINGT TOV HETPIKMV
exmaidevong poviéAwv og mpayuatikd ypovo. H texvoloyw otoifa mepiapPdaver emiong PipAiodnkeg
6mmg 0s kat Pathlib yuo Aertovpyieg cvotiuatog apysiov, kat to time yio) dwygipion XPOVOCKETIKMV
AELTOVPYIDV.

Yvolo Agdopévarv

To chvoAo 0edOUEVOV TTOL ¥PNCILOTOONKE Y10 TNV EKTAIOEVOT) TV HOVTEL®V, TPoépyetal amd To 2010
PHM Society Conference Data Challenge. To Data Challenge sotidlet 6tnv ktipnon tov evamopeivavtog
xpovov Long (RUL) taov epeladv vyning taydmrag CNC. Ot cvppetéyovieg fabuoroyndnkav pe Béon v
KOVOTNTA TOVG VO, EKTIUAGOLY TOV EVATOUEVOVTA ¥POvo (NG EVOC KOTTTIKOL €PYAAEIOL amtd BOAPPOULKO
kapPidto. v viomoinon avti, o otdyog dev givar M mpoPAeyn tov RUL aAdd g ¢Bopdg tov
QpelOTPOTOVOV TOV UNYOVILATOV.

To chvolro dedopévav mepiiapuPavel £€1 apyeio KomTikdv epyaieimv, and cl (cutter 1) £wg €6. 10
dtyovioud ta apyeio €1, ¢4 kot €6 ypnoiporoOnKoy ¢ ekTadevTikd dedopéva, v ta €2, €3 Kot €5
g dedopéva dokung. Kabe apyeio exmaidevong mepiéyet éva apyeio "wear" mov kataypdeetl T ehopd
HeTé omd kabe komy o€ yihootd (1073 m) kot éva pdxelo pe 315 apysia Sedopévov amodkTong, To
kaBéva yio kaOe komn. ['owtd to AdYo otnv LAOTOINGT 0VTH, dedOoUEVOL OTL OgV LIPYE TPOGPUGT GTa.
apyeia Bopdag ToL GLVOLOL JSOKIUNG, XPTCILOTOONKOY TO APYEIN TOV KOTTIKOV EPYUAEi®V 4 KOl 6 ®C
ovvolo dokiunc. ['a my exmaidevon Tov poviélwv, xpnotpomomdnke To apyeio C1 mov aviietoyel 6T0
KOTTIKO epyaleio 1.

37

Ta apyeio dedOUEVOV KOG TEPLEYOVY EXTO GTHAEG TTOL OVTIGTOLYOVV GE!

. Advapun (N) o ddotoon X
. Advapun (N) o ddotoon Y
. Abvoun (N) ot dibotoon Z

W N =

N

. Aévnon (g) ot dudotaon X
. Abvnon (g) ot dudotaon Y
. Advnon (g) ot ddctoon Z

o W

~

. AE-RMS (V)

Ot TapdpeTpot Tov KomTkoV epyaieiov rav tayvTnTa atpdktov 10400 RPM, taydtnta tpombnong 1555
mm/min, B&bog komic Y (aktvikd) 0.125 mm kot Pdbo¢ komic Z (a&ovikd) 0.2 mm. To dedouéva
aroktOnkav pe ocvyvotnta 50 KHz avd xavdil. o mepiocdtepeg mANpopopies GYETIKA LE TO TPOTO
Tapaywyng Tov cuvorov dedopuévov (Li, et al., 2009).

Ta dedopéva yuo va ypnoonombovv oty gknaidevon eneEepydotniay KOTAAANAL OGTE va pelwbel o
aplOpdc Tov duotdoewv oe kKabe KatdoTaon.

Enelepyacio Tov Acdopévav

Mo v amotelecpatiK) YPMON TOV EKTETOUEVOL GLVOAOL OedOUEVEOV OV TapEXETaL, XPEdleTal va
UETACYNUOTIGTOOV TO VYNANG S1A0TOONG OEG0UEVA TV XPOVOCEIPOV GE 10, OLOYELPIGIUT, OTOSOTIKY KoL
YOUNANG O140TAONG AVATOPACTOCT Yia KAOE Komn. AT 1 dwedikacio mepthappavel To akdiovba Pripata:

1. KaOapiopog Agdopévev:
To ohvoro dedouévav mov mapéyetol omd v PHM Society tov 116 "kobapd" ympic ehMmeic tipéc.
2. E€ayoyn XapaKT)ploTikoy:

Kd&0e apyeio komng tov cuvorov dedopévav teprraufaver mepimov 250.000 ypappéc, kabepio pe 7
TapaUETPOLS dedouévmv, odNymvTag g £va ToAOTAOKO Ydpo Tapatipnong 1.750.000 sactdoeswv. '
VO OVTILETOTIOTEL TO TPOPAN O TG VYNANG dtdoTacns Kot Vo eEayfobv GNUAVTIKA YapOKTNPIGTIKG,
emkevpobnkape oty e€aywyn 7 KPIoIUOV YOPAKTNPIOTIKOVY ¥POVOL Yo Kae TapapeTpo mov
KOTOypAQETOL amd TOVG acOnTnpeg:

E&ayopeva Xopaktnptotikd Xpodvov

Mean N

38

Root Mean Square (RMS)

Crest Factor

The average Power

=

i=

Skewness E[(x; — %)%
RMS3

Kurtosis 1 _
NZ{V:1(x i~ x)4

RMS*

Table 2 : E¢oyoueva Xapoxtnpiotid Xpovoo

E&dyovtag owtd ta yopaktnplotikd yio kabe pia and tig 7 mopapétpovg arstntipav (Avvaun o X, Y, Z
a&oveg, Advnon oe X, Y, Z dEoveg kau AE-RMS), 1 d1dotacn tov dedopévov petmdnke og 42
YOPUKTNPLIOTIKE OVA KOTTT).

3. Kavovikomoinon:

Metd v e€aymyn T@V YOPOKTNPIGTIKOV ¥POVOV, TPAyUaTonTomnke Kavovikomoinon og evpog 0 €mg 1
ypnooroldvtag Min-max scaling, yuo va eEac@aiiotei | opotopopeio kot vo Pedtiodei n amoddoon Tev
alyopiBuwv pédnong.

4. Evoopdtoon Asdopévav @0opdg:

Q¢ telkd Prpa enelepyociog Tmv dedopévav, ot TIEG eBopdg tov epeldv tepdnenkay 6to GhVOAO
dedopévav, dtoo@orlovtag Eva OAOKANPOUEVO GUVOLO dESOUEVOV TTOV TTEPIAapPaveL TOGO Ta eEayopeva
YOPOUKTNPLOTIKG OGO Kol TIC LETPNGELS POOPAC.

[IpécBeTn Avérvon Asdopévav:

[paypotomomOnke diepeuvntikn avaivon dedopévav (EDA) yio v amokdivymn tpotdinmy Kol 6xEGEmV
EVTOG TOL GLVOAOL JESOUEVAV. AVTO TEPILAUPOAVE TNV OTTIKOTOINON TOV TOPEYOUEVDV YOPAKTIPIOTIKOV
Kot TNV €EETAON T®V GLGYETICEWV UETAED SUPOPETIKMY YOPAKTNPLOTIKGV. ETtiong, avalvdnkav ta apyeia
@Bopag yio. TV KoTavonon g eEEMENG TS pOopdg petd and ke konr|, evromilovtog T HEYITTN Slopopa
@Bopag peTa&y S1000) KMV KOTADV, 1 0010 ¥PNCIHLOTOMONKE MG VITEPTOPAUETPOG o€ KB poviélo MDP.

39

Flute Max over Files

140

Flute Max Value
=
Y]
S

.
o
S

80

60

0 50 100 150 200 250 300
File Index

AE_rms vs. Flute Max Histogram of dyn_X_mean

o os * vt
*
160 J ’ 100

Flute M.
[/
.l

0.00 005 010 01s 020 025 0 20 a 60 80 100

Figure 4 : opadetyuoza ypognudtwy wov onuiovpyiOnkoy yia ckomois SlEpELVNTIKY aVAIVoNS TWV OEOOUEVDY

AvTd ta fpote TPOoETOOCTNG TV dE00UEVAOV dc@aAilovV OTL To cUVOLO dedouévmv glvar duoyelpiotpo
KoL 0odoTIKO Y10 TNV EKTaidELOT TOV aAyopiBUmV eVIGYLTIKNG Hadnong, Petidvovtag Tnv axpifeia tov
TpoPAéyemv BOPAG Kot TNV OTOSOTIKOTNTA TOV GTPATNYIKOV GLVTIPTONG.

Ta povrérha MDP

H evioyvtikn pabnon omortei Eva meptBaAiov Tpocopoinong 6ov 0 TPAKTOPUC UTOPEL Vo EvEPYEL Kot Vo
Aappdver avtopoléc. Avtd to TEPIPAALOV TPETEL VO, YPNOUOTOLEL TO EMEEEPYOOUEVO GUVOLO SESOUEVOV
KO VO GUUTTEPIPEPETAL [LE TPOTO TOL EMTPENEL GTOV TPAKTOPQ Vo LaBel va TpoPArémet pe axpifeia T pBopd
™™g CNC o¢péloc. 'Eva MDP umopei va ypnoyomoindei yioo vo LOVIEAOTOMGEL OMOTEAEGUOTIKG TO
nepifaiiov tov mpoPAnuatoc. I'ia va oprotel avtd to MDP, givatl anapaitnto va Tpocdiopiotodv Ta ENg:
KOTOOTAOELS, EVEPYELEC, TOAVOTNTEC LETAPAOTC Kot OvTOUOLPBES.

2V €QOPUOYn 0T, OMHoLPYoLVToL TEGGEPA meEPPdAlovTta Ta omoia ywpilovtal 6e dVO KVOPLEG
katnyopieg Pdoet e pebddov TPOPAEYNC Kot TOV VTOAOYIGHOD AVTOUOPOV.

40

Prediction Method Non Corrective
h

Reward Calculation With Delay No Delay With Delay No Delay
J

Figure 5 : Xyedidypouua pe ta téooepo. diapopetird Hepifidilovra e Yiomoinong.

1. Mé0odog Ilpopreyng:
o Awopbotikn [Ipopreyn: Ot Tpofréyelg Tov Tapdyovto dl0pBdvovTaL BAGEL TOV TPAYLOTIKOV
TILOV PBoPAG.
o Mn AopBotikni [IpoPreyn: Ot TpoPréyelc evep®VOVTUL GTOSIOKA BAGEL TV TPONYOOUEVOV
TPoPAEYE®V.

2. Yrmoloyiopog Avropopav:
o Xopic Kabvotépnon: Ot avtapopég vroroyiCovron dueca Pdoetl g akpifelog TpoPieymng.
o Me Kabvotépnon: Ot aviouolBéc mpocapudlovial pe Evav tpomonomt kabvoetépnong yio va
dMGOLVV EUPACT GTA LAKPOTPODEGLO OPEAT).

Kowd Xapakmpiotikd:
- Kartaotdoeig (S): H katdotaon tov mepBGAloviog EKTPOCHOTEITAL OO TOV YDPO TOPOTHPTONG
(observation space) kot amotedeitot 0o 42 YopaAKTNPLOTIKA XPOVOL 0o Ta dedouéva auodnTHpV.
- Evépyeiec (A): O ydpog evepyeldv eivar €vag cLVEYNG Y®POG TPV dtaotdcenv (0-1) mov
EKTTPOCOTEL TIC TPOPAEWELG TOL TTPAKTOPA Y10 T POOPA TPV Ppeldv.
- Apywn Katavoun Kotdotaong (p0): H apyikn katdotaon opiletor pe Bdon tic apyikéc Tiuég
@Bopdg mov TPOoKLATOLY ATO T, SEdOUEVAL.

EmnAéov xowd otoyyeio:
- Xvvdaptnon Eravapopdg: Eravagépetl to mepifaAiov otnv apyikn Kotdotaon.
- Tepuatiouds kot Amoxonn: To mepipdAirov tepuatiCeton dtav vrepPaivetar 0 HéyloTtog aptOpog
nudrov 1 gdv 1 avTapolPn eivotl ToAd younAn.
- Xvvdaptnon Avroapopng (PHM Score): Yroioyilel v avtapolpn Bdoet e axpifelog tov
TpoPAEyE®V, YPNOILOTOIOVTOG TNV 110 GuVApTHON ToL YpNoonoOnke oto Data Challenge

To técoepa TepIBAALOVTO TOV TPOKVTTOVV EivaLL:

41

Environments | MDP Ilegpipariov

O tpoPAréyetg dopBdvovtal PACEL TOV TPAYLOTIKOV TILDV
Corrective with Delay @Bopac Kot ot avtapoPéc tpocapuoloviat pe kabvotépnon.
Awopbotiké pe Kabvotépnon

O tpoPAréyetg dopBdvovtal PACEL TOV TPAYLOTIKOV TILDV
Corrective No Delay @B0pac Kot o1 avtapoPég voAoyilovrat dueoa.
Awopbotikd yopig Kabvotépnon

Non-Corrective with Delay O1 poPréyelg evnuepdvovtal BAcEL TV TPONYOOUEVOY
Mn Aopbotikd pe Kabovotépnon TpoPAEYE®V Kot oL avTapolBég Tpocapuolovial e
kaBvotépnon.

O poPAréyelg evnuepmvovtal PACEL TOV TPOTYOVUEVDV
Non-Corrective No Delay npoPréyemv kat ot avtouoBéc vroroyilovtat dpeca.
Mn AlopBotikd yopic
KoabBvotépnon

O o16y306 TOVL TPAKTOpO Etvar va TpoPAyet pe axpifela T POOPA TPLOV CLYKEKPIHEVOVY PpeloTPOTTOVOV
pe Paon ta dedopéva omd tovg awcOnTipeg, Kot n emtvyio Tov aSloloyeitanl Pdoet g axpifelag TV
npoPAéyewmv Tov. H akpifeia avt) petpiétol péowm tmv aviopopdv mov Aapupdvel o TopdyovTog, ol 0moieg
eCoptovrol and 10 mOco kovid Ppiokovior or TpoPréyelg Tov otig mpayuatikés Tég eBopdc. Ot
avtopoBég vodoyilovTal pe CLUYKEKPIUEVEG GUVAPTNGELG TOL AAUPBEVOLY VIOYN TIC S1aPOPES LETAED TV
TPOPAETOUEVOV KL TOV TPAYUATIKOV TIUDV ¢O0PAG.

Ta téocepa dlaPopeTika mePParrlovo mov dnpovpyronkay fonbodv oty ektiunon T@V SLPOPETIKMV
npoceyyicewv mPOPAEYNS Kol VITOAOYIGHOD AVTOUOPdV, ETITPEMOVTAS T GUYKPLoT Kot TV aSlohdynon
NG amod0TIKOTNTAG TMV aAYOopifumVY evioyvTikNg uddnong mov epapudlovroat.

Exnaidgvon AlyopiOpov Evioyvtikie Madnong

Ye ot TNV €vOTNTO TEPLYPAPETOL 1 Sl0dKAGIo EKTOIOEVOTG TOV HOVTEA®V EVIGYVTIKNG UAOnong.
Xpnowomomdnkay técoeplg olyopluol ce TEGGEPO, JPOPETIKA mePIPAALOVTO, LE OTOTELECUO VO
onuovpynBodv cuvolikd Odexaéll Owapopetikd povtéda. H exmoaidevon mpaypotomombnke oto
ene€epyocuévo ohvoro dedopévav tov komrn 1 (train set).

H Swdwoaoio exkmaidevong extedeiton oe emavoinyelg, pe kdbe emoviinyr va mepappdver évov
kabopiouévo aplOud ypovikdv Prudtov. Metd and kabe emavainyn, ta povtéda agloloyobvral Kot ot
UETPIKEG mOOO0TNG TOVG KATAYPAPOVTOL.

42

AvwpOoTiko Ieprfariov

rollout/ep_len_mean E| I;L ar
’ v — V'\f ’ - 4 U” :

100}

1027.87 x 500k ™ 1.5M ™M 2.5M 3m 3.5M 3832
i
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_corr_no_delay_0 34,56 314 314 314 ~0 0% 9,500 3,831,000
A2C_model_corr_with_delay_0 314 314 314 314 ~0 0% 21,500 3,822,500
® DDPG_model_corr_no_delay_0 314 314 314 314 ~0 ~0% 1,256 629,256
® DDPG_model_corr_with_delay_0 314 314 314 314 0 0% 1,256 663,168
® PPO_model_corr_no_delay_0 314 314 314 314 0 0% 2,048 1,177,600
® PPO_model_corr_with_delay_0 314 314 314 314 0 0% 2,048 2,160,640
[] SAC_model_corr_no_delay_0 314 314 314 314 0 0% 1.256 349,420
@ SAC_model_corr_with_delay_0 314 314 314 314 ~0 0% 1,256 279,734 P

Figure 6 - Méon Aidpreio. Encicodiov ava timestep yia 6iovg tovg ALydpibuovg oto AwopOwrtié Hepifidilov pe | yawpic
Kabvotépnon

To ypaenua deiyver v téomn tov poviéhov A2C "ywpig kabvotépnon” va mopovcldlel GNUAVTIKEG
dwkvpdvoels (n emioyn evpovg gival yopw ota 3,8 exatoppivpla frpata). Tavtdypova, to Sidypappo
delyvel 6TL OA0L o1 GALOL aAyOpIBuoL Statnpoby pio otadepn HECT) SLAPKELN EMEIGODIOV GTI UEYIGT TIUY
(314), n omoia etvan emBounty Kabdg £xovv KopeoTel.

rollout/ep_rew_mean B F o

133 % 10k 20k ok a0k 50k 60k 70k 80k 90k 1021
P
Run + Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_corr_no_delay_0 -15,418,906 -14.0199 21.417 -15418,906 415,418,884 583 471993550% 9,500 115,000
A2C_model_corr_with_delay_0 -7.2217 -6.2164 -7.2217 -6.2981 +0.5236 +-13% 21,500 115,000
® DDPG_model_com_no_delay_0 75178 -9.0253 75178 12,6649 162.5131 +-83% 1,256 101,736
® DDPG_model_corr_with_delay_0 265.5265 -8.0956 -38.5167 -265.5265 +227.0098 1589% 1256 101,736
@ PPO_model_corr_no_delay_0 259.0568 -14.0044 -259.0568 -14.0944 +244.9624 +-95% 2,048 102,400
@® PPO_model_corr_with_delay_0 122.3658 -6.3482 -122.3658 -6.3482 +116.0176 +-05% 2,048 102,400
® SAC_model_comr_no_delay_0 -237.4886 -5.4398 -237.4886 -5.4474 +232.0412 +-98% 1,256 101,884
@ SAC_model_corr_with_delay_0 -126.2699 23179 -126.2699 -2.3202 +123.9497 +-08% 1,256 101,884 P

Figure 7 : Méon Avrtouoiftn Encicodiov ava timestep yia 6Aovg tovg Alydpifuovg oto AwopOwrié Iepifdllov pe | yowpic
Kabvotépnon

To ypaoenuo deiyvel kabopd v mpoomdbelo tov poviédov A2C "ywpic xabvotépnon" yio peydin
egepevvnon (exploration). Eved to meprocdtepo poviéla telkd otabeponotovvial, 1o Kobéva Oeiyvel
dwapopeTikd eminedo Peltimong ¢ amddoons. To poviého A2C "ywopic kabvotépnon” ovipetonilel
OMNUOVTIKEG APVNTIKEG OVTOUOLPBES, OVTAVOKADVTOG TN OVGKOAIN TOL GTNV eKpabnon apyikd. Me Tov kKaipd,
Ao povtédla, Wiaitepa avtd pe dOpBwon kabvotépnong, deiyvouv mo otabepég PeATIDoES OTIG
avtopoPéc.

43

an

rollout/phm_score E' l} ar

le+
e+t

e+

100

100k 133 % 100k 200k 300k 400k 500k 600573 X
&
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® A2C_model_corr_no_delay_0 13.058 5,328,888,320 13.058 287,088,864 1287,088,850.942 +2198561071% 9,500 603,500
A2C_model_corr_with_delay_0 13.0439 14.0154 13.058 13.058 +0 +0% 21,500 590,500
® DDPG_model_corr_no_delay_0 8.1346 266.9668 13.058 8.1915 +4.8665 ¥-37% 1,256 600,368
@® DDPG_model_corr_with_delay_0 13.058 385.9457 13.058 385.9457 +372.8877 +2856% 1,256 600,368
@ PPO_model_corr_no_delay_0 11.4676 304.5105 304.5105 11.6496 +292.8609 +-96% 2,048 600,064
® PPO_model_corr_with_delay_0 11.3973 270.2987 270.2087 12.0185 1 258.2802 +-96% 2,048 600,064
® SAC_model_corr_no_delay_0 3.5183 232.3027 232.3027 3.8637 +228.439 +-98% 1,256 349,420
® SAC_model_corr_with_delay_0 4.2038 256.6743 256.6743 7.6279 +249.0464 +-97% 1,256 279,734 z

Figure 8 : Baluoioyia. PHM avé timestep yia 6lovg tovg ALydpibuovg ato AtopOwtiré Iepiffdliov ue | yopic kabvotépnon

o G e popd 1o A2C "ympig kabvotépnon” tapovoialetl peydreg dakvpdvoets, eved to A2C "pe
kaBvotépnon" mopoauével otabepd. To poviého DDPG "ywpic kabBvotépnon" apyikd moapovcoidlet
JKLUAVOELG 0AAG 0T cuvExela Tapapével otabepd, kot to DDPG pe kabvotépnon deiyver avénuévn
ekuet@Aievon (exploitation) mopouévovtag oxedov otabepd petd v apykn Eepevvnon. Kot ta dvo
povtéha PPO dwtnpovv otabepd youniés Paduoroyieg, vmodeikvdovtog woyvpn omodoon. To povéia
SAC eniong amodidovv kaAd pe otabepés, youniés fabporoyies. Zvvorkd, ta PPO kot SAC givan ta o
otabepd, pe ™ dopbmon kabvotépnong va Pertimvel T otabepotnta yio ta A2C kot DDPG.

Mn Awp8oTtiké Heprfpairov

rollout/ep_len_mean D l;l b

4.5M M 5.5M 5903:

#
Run + Min Max Start Value End Value AValue A% Start Step End Step
A2C_moadel_non_corr_no_delay_0 41.87 314 42.81 311.87 +269.06 +628% 21,500 5,880,000
@® A2ZC_model_non_corr_with_delay_0 157.28 314 157.28 308.91 +151.63 +96% 39,500 5,910,000
@® DDPG_model_non_cerr_no_delay_0 32.25 314 33.25 314 +280.75 +844% 133 1,064,325

® DDPG_model_non_corr_with_delay_0 18 23 2075 23 +2.25 +11% 498 510,251

@® PPO_model_non_corr_no_delay_0 48.26 314 48.26 313.29 +265.03 +549% 38,912 5,883,904
@® PPO_model_non_corr_with_delay_0 53.33 314 53.33 314 +260.67 +489% 12,288 5,902,336
® SAC_model_non_corr_no_delay_0 18.81 255.64 118.9868 22.51 +96.4768 +-81% 9,043 2,844,187

[] SAC_model_non_corr_with_delay_0 18.41 250.26 84.0833 28.69 +55.3933 +-66% 2018 1,019,921 A

Figure 9 : Méon Aidpreio. Encicodiov ava timestep yia dlovg tovg AXyépibuovg oo My AropOwtixoé Iepifaliov ue | ywpic
kabvotépnon

Ao TNV TOpamave GOYKPLoT TPOKOTTOVV To EENG:

e PPO: Eppavilel v mo otafepr| Kot 1oxvpn anddocm kot 6Tig 00 ekd00ELS (e Kot ympig
d1opBwon kabvotépnong), eTavovtag Tn LEYIoTN d1dpkeLd enelcodiov Twv 314, yeyovoc mov Tov
ka010Td ToV Mo 0E0TIoTO OAYOPIOUO Yo QLT TNV EPYAGIiaL.

44

e A2C: Ilapovoidlel onuavtikés Pertidoelg ot didpketo enelcodiov. H £kdoomn ympic d1dopbmon
KaBuoTEPTONG £XEL ELAPPDOG KAADTEPN AmOd00N, aALd 1 dtopBmon kabvotépnong Ponda ot
ypniyopn otobepomoinon.

e DDPG: To povtélo ympic d10pbmon kabuotépnong enttuyydvel T UEYIGTY SIUPKELN ETEICOSI0V
(314), evad 10 povtéro pe dtopbmon kabvotépnong tapovotldletl eAdyiotn Pertioon,
VTOJEIKVVOVTAG OTL 1) O10pBwon KaBvuatépnong dev @PeAEL.

e SAC: Kot ta 600 povtéda (e kot yopig s10pbmon kabuotépnong) £xovv oNUOVTIKY HEI®ON o1
SupKeLa EMELGOOI0V, VTOOEIKVOOVTAG OTL 0 AAYOPIOUOG OV TOG OEV EKTAOEVETAL KATAAANAQL.

rollout/ep_rew_mean D]F HH

0

Se+8

Te+d

19921 x 5M 10M 15M 20M 25M 30M 35M 39833600 X

7
Run T Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 -429,141,408 -17,250.9238 -808,457.3125 -106,195.6094 +702,261.7031 +-87% 21,500 26,750,000

® A2C_model_non_corr_with_delay_0 -1,462,147,968 -9,138.624 -1,052,587 625 -1,462,147,968 +1,461,095,380.375 +138810% 51,500 19,120,000

@® DDPG_model_non_corr_no_delay_0 -16,738,453 -3,074,173.75 -3,074,173.75 -16,738,453 +13,664,279.25 +444% 20,093 1,064,325

® DDPG_model_non_corr_with_delay_0 292,286,080 -651,064.0625 -651,064.0625 292,286,080 +291,635,015.9375 144794% 19,962 510,251

@® PPO_model_non_corr_no_delay_0 -2,375710.5 -3,986.1587 -785,004.625 -15,653.6504 4769,350.9746 +-98% 38,912 39,833,600

@® PPO_model_non_corr_with_delay_0 -54,153,960 -4,053.2996 -829,918.3125 -129,065.9141 +700,852.3984 V-B4% 12,288 16,967,680

@ SAC_model_non_corr_no_delay_0 -1,135,406,336 -843,728.125 -1,405,802 -574,543,744 +573,137,942 +40769% 28,791 3,819,951

@® SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 +557,377,954.375 +29501% 14,946 2,639,889

Figure 10 : Méon Avtouoifi Encicodiov avé timestep yia dlovg tovg AAydpi6uovg oto My AropOwiké Tepiféllov pe/ympic
kabvotépnon

rollout/ep_rew_mean El J'F‘ HH

\Vanwa =g ~ <~

2e+8

-de+8
bt 2t VLTS LY IR, ¥R TR
-Be+8

Te+d

19921 % 500k Y 1.5M M 2.5M 3M 35M 3700000 %

Run Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 -3,790,772.25 -47,070.875 -808,457.3125 -602,791.1875 4205,666.125 4-25% 21,500 3,691,500

® A2C_model_non_corr_with_delay_0 -989,238,400 -34,740.9297 -1,052,587.625 -1,186,827.75 +134,240.125 +13% 51,500 3,700,000

@® DDPG_model_non_corr_no_delay_0 16,738,453 -3,074,173.75 -3,074173.75 16,738,453 1 13,664,279.25 +444% 20,093 1,064,325

® DDPG_model_non_corr_with_delay_0 -292,286,080 -651,064.0625 -651,064.0625 -292,286,080 +291,635,015.9375 +44794% 19,962 510,251

@® PPO_model_non_corr_no_delay_0 -1,434,418.5 -785,004.625 -785,004 625 -1,280917.75 +495913.125 +63% 38,912 3,741,696

@ PPO_model_non_corr_with_delay_0 -1,823,630.75 -768,119.625 -829,918.3125 -1,742,058.375 1912,140.0625 +110% 12,288 3,698,688

@® SAC_model_non_corr_no_delay_0 -833,118,208 -843,728.125 1,405,802 -525,046,880 + 523,641,078 +37249% 28,791 3,699,952

® SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 +557,377954.375 +29501% 14,946 2,639,889

Figure 11 : Emidoyi; Mixpdtepov Edpovg tng Méong Avrapofic Ereicodiov avd timestep yia 6lovg tovg ALyépifuovg oo Mn
AopOwtid Tepifalrov e | ywpic kabvotépnon

Ot tpeig mapandve ekoveg omeikoviCovy) Méon Avtapoipn Encicodiov ava timestep. H npdt ekdva
delyvel To mANpeG €0pOG TNG EKTAIdEVLGNG, dEiYVOVTAG TNV TG00 TOV OKTMD LOVIEADV GUVOALK(L, LLE TOAAEG
dkvpdvoelg oty KAipoko tov onotedecudtov. H devtepn ewdvo eotidlel oe pKpoOTEPO €0POC,
TOPEYOVTOG L0, TTO AETTOUEPT EIKOVA, TNG OPYIKNG OO0 Kol TV (AcE®Y oTabepomoinong yuo ta

45

povtéra, pe to. A2C kot SAC va tapovcidlovv onpovtikn petapfintomro. H tpitn ewova tov povtéAny
amokaAvTTeEL 61 T0 povTéda 6mmg to A2C Kat 1o DDPG mapovcidlovv pacTikéG TTMGELS GTIG OVTUUOBEG
mhavmg AOY® g eepevvnong, 6mwc Tapatnponke ota Tponyovueva ypagpiuata, eve ta PPO kol SAC
elvar oxeTikd otafepd aALA delyvouv onuavTikn petafintdmra.

rollout/phm_score D];[HH

Te+8

1
MHI‘ L

i

leio

Tesd

10M 15M 20M 25M 30M 35M 39833600 X

133 %
7
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 0 3,935,591,168 0 30,639.4805 430,639.4805 A Infinity% 21,500 26,750,000
@® A2C_model_non_corr_with_delay_0 474.9217 6,790,013,952 21,823.1406 3,374,888,704 +-3,374,866,880.8594 +15464625% 51,500 19,120,000
® DDPG_model_non_corr_no_delay_0 0 4,959,841 0 4,959,841 +4,959,841 lnfinity% 133 1,064,325
@® DDPG_model_non_corr_with_delay_0 0 o 0 0 +0 NaN% 498 510,251
@ PPO_model_non_corr_no_delay_0 0 6,386,266.5 0 565.6765 1565.6765 Infinity% 38912 39,833,600
@ PPO_model_non_corr_with_delay_0 0 206,020,384 0 2,777.8508 +2,777.8508 Infinity% 12,288 16,967,680
@® SAC_model_nan_corr_no_delay_0 0 107,543,288 252,349.75 0 +252,349.75 +-100% 9,043 3,819,951
® SAC_model_non_corr_with_delay_0 0 5341,618,176 115,093.0938 0 4115,093.0938 +-100% 14,946 2,639,889

Figure 12 : BaGuoloyio. PHM ava timestep yia dAovg tovg (xﬂyo’pi@,uoug oto un oroplwrtiko mepifallov ue / ywpic koboatépnon.

rollout/phm_score E]F HH

le+8
e+

Te+d

133 % 5M 10M 15M 20M 25M 30M 35M 39833600 X
Run ™ Min Max Start Value End Value AValue A% Start Step End Step ’
A2C_model_nen_corr_no_delay_0 0 55,360,212.9076 0 30,636,905.3972 4+30,636,905.3972 AInfinity% 21,500 26,750,000
@® A2C_model_non_corr_with_delay_0 21,823.1406 147,271,019.9556 21,823.1406 93,594,384.123 “93,572,560.9823 4+428777% 51,500 19,120,000
® DDPG_model_non_corr_no_delay_0 0 4,954,853.8202 0 4,954,853.8202 +4,954,853.8202 4lnfinity% 133 1,064,325
® DDPG_model_non_corr_with_delay_0 o 0 0 a +0 NaN% 498 510,251
@® PPO_model_non_corr_no_delay_0 0 472,978.1049 0 24,131.2842 124,131.2842 Infinity% 38912 39,833,600
@ PPO_model_non_corr_with_delay_0 0 2,295,272 6857 0 845,879.8488 4845,879.8488 +lnfinity% 12,288 16,967,680
@® SAC_model_non_corr_no_delay_0 1,689.2414 32,404,227.9729 252,349.75 1,689.2414 +250,660.5086 +-99% 9,043 3,819,951
@® SAC_model_non_corr_with_delay_0 22,558.2696 784,422,693.061 115,093.0937 133,538.6964 +18,445.6027 +16% 14,946 2,639,889 z

Figure 13 : “Smoothed ” ypapnuo tne fobuoloyioc PHM ova timestep yia 6lovg tovg adyopifuovg ato un dopbwtixd mepifidilov
e / ywpic kabvotépnon.

O otoy0c etvan va ghayiotomoindei n Babuoioyio PHM, aAld Ady® g apytkomoinong e UETAPANTAG
phm_score g undevikn, n wpayuatik eldyotn T dev spgaviCetal edd. Qotdoo, gival 0KOA0 va
EVTIOMIOTEL YPOQPIKA GTO OUOAOTONUEVO YPAPNUE 7Ol HOVTEAD amodidovy kaAvtepa. To yePOTEPO
povtélo givar avapeieopnnro to poviého DDPG "ue kabvotépnon', To 0moio ©oté dev Katdpepe va pTAGEL
oe unkog encioodiov 314 ko cvvenmg dev Elafe moté Pabporoyioc PHM. Ola ta dAiia poviédo Exovv
(QTAGEL TO PEYIOTO UAKOG EMEIGOSI0V KOTA TN dtdpkewd g eknaidevons. To DDPG "ywpig kabvotépnon”
éxel o otabepd vynAn Pabuoroyic PHM, n onoia givar avemBountn. Ta A2C, SAC kot PPO gupavitovv
peydAn peTofANTOTNTO Kot LVYNAR cuyvotnTa YoUnAov Pobpoloyidv akolovBodpeves omd VYNAEG
KOPLPMOGELS. AV Kot VITAPYEL GLVEXNG PEATIOON GE OAEG TIG TEPMTAOGELS, 1| LEYAAN aoTdfeln VITOdNADVEL
ot T0. povtéra eSakolovBovv va etvar og Kdmolo Pabud atern.

46

KoAvtepa Movtéra Exnaidgvong

Ocov apopd tv exmaidevorn, o PPO eivar o kaAddtepog alyopibuog Adyw tov ypryopov ypdvov
exmaidevong ava Prpo xpovov Kol Tng GLVOAIKNG amodoTikotntdg tov. Eival amidg oty vAomoinon,
amontel Ayotepn VROAOYISTIKN o0 Kot emituyydvel otabepd vynAég kot otabepég aviapolPéc,
KaO1oTOVTAG TOV TNV 7o aSl0TIGTH EMAOYT Yo TO GLYKEKPIUEVO TPOPANUA EVioYLTIKAG Udbnong (avtd
ocvppaivel kaTd TV EKTAIGELOT, TO OTOTEAEGLOTA GTA SOKILACTIKA GUVOAL dedOUEVAV dgv Ba akorovBolv
70 1610 potifo). To SAC eivan 0 devTepog KaADTEPOG OAYOPIOLOG, delyvovTag eEapeTiKn amddooT LE TOV
TAYVTEPO YPOVO GUYKAONG KOL TOV AYOTEPO OplOd PUAT®V TOL OTOLTOVVTOL Yl T GVYKALGT. 26T000,
€1VOL 0 VTTOAOYIGTIKA OTOUTNTIKO Kol O TEPITAOKO GTNV VAomoinon. And tnv GAAn migvpd, to DDPG
elvar avapeiofnmra o yepoteEPog aAYOpIOUOGC Yoo QVTO TO GEVAPLO ¥PNONG. YTOPEPEL OO OVETOPKN
e€epevvnon, 0dNYOVTOG 68 KOKE OTOTEAEGUATO KOl VYNAOTEPES VITOAOYIOTIKES AMOLTNOEL, KAoTMOVTAG
TO OKOTAAANAO Y10, TO GLYKEKPLUEVO GUVOAO OESOUEVAV KoL TTPOPAN U pBopdC.

A&roroynon Tov Akyopidpomv

Kd&0e povtéro mov dnuovpyeiton yopiletor o€ Evav aptud vIopoviEA®v. AVTE T0 VTOUOVTELD TOPAYOVTOL
petd v eknaidevon tov adyopifuov evioyvtikhg uddnong (RL) ot éva ovykekpuévo nepipdriov. Katd
TN SUIPKELD TNG EKTOUIOELONG, TO O TPOGPATO VIOUOVTIELD POPTAVETOL KOl ONLOVPYELTAL VOl VEO TTEPITOV
kaOs 10.000 Prjuota. To mopdderypa, to poviého PPO Corrective No Delay éxst cuvolikd 1.117.000
YPOVIKA Pripata, Le omoTéAecpa vo amotereital and oyxedov 112 vopoviédra.

INao k&b éva amd ta 16 poviéda mwov dnpovpynonkay, Kabe vropoviélo a&loAoyEiTAL YPNCULOTOIDOVTOC
oo €101KG KATAGKEVAGUEVT Yoo TO mPOPAnua ocvvdptnorn Custom_Evaluate_Policy. Amd 1t
OTOTEAECLOTO TTOV EMCTPEPOVTOL, ETAEYETOL TO DTOUOVTEAD WUE TNV KAADTEPT amddooT). Ot TopoKATm
TVOKEG TOPOVGLALOVY T AMOTEAEGLOTO AVTNG TG O10OKAGTOG.

Corrective Environment | RL Algorithm Performance

Iepiparrov (Delay) & | Max Reward Min Phm Score Xpovog
>hvoro Agdopévev Exnaidevong &
Mnyavnpo - Kont Yvvolkd Timesteps
(Mrpcdovi o) T Timestep Ty Timestep P
PPO No c4 -17.21 | 40,000 16.99 40,000 3 dpeg
1,117,000 steps
c6 -16.21 | 70,000 18.00 70,000
With c4 -8.98 20,000 15.73 20,000 2 dpeg
2,160,000 steps
c6 -8.23 | 1,460,000 17.85 670,000

SAC No c4 -37.37 | 90,000 45.76 90,000 6.2 dpeg

47

c6 -14.80 | 30,000 16.36 30,000
349,420 steps
With c4 -10.94 | 20,000 23,07 20,000 5.3 dpeg
279,374 steps
c6 -8,21 110,000 16,22 110,000
DDPG | No c4 -18.84 | 20,000 19.32 20,000 12.67 opeg
629,256 steps
c6 -17.04 | 250,000 18.55 520,000
With c4 -10.75 | 20,000 19.36 20,000 11.5 dpeg
452,160 steps
c6 -8.83 20,000 18.12 20,000
A2C No c4 -17.84 | 700,000 18.33 700,000 13.7 dpeg
19,120,000 steps
c6 -16.33 | 7,000,000 18.12 7,000,000
With c4 -10.75 | 14,640,000 19.36 14,640,000 | 17.2 opeg
14,640,000 steps
c6 -8.83 14,640,000 18.12 14,640,000

To, KoA0TEPO, ATOTEAEGILATA TOPATIPOVVTAL KUPIWE GE GCLYKEKPIUEVO YPOVIKE Prpota Tapd 6To TEA0G TG
EKTTOUOEVONG, KATL TOV UTOPEL v opeileTal 6TO YEYOVOS OTL TO LOVTEAN VIEPEKTALOEVOVTOL TAV® GTO,
oedopéva tou test set. Avtd éxst ¢ amotélecuo 1o poviélo va poabaiver moAV koAd to dedopéva
EKTTOUOEVOTG, TO OTTOT0L OEV YEVIKEDOVTOL GE VEX 0E00UEVA OTIMG T GUVOLN dEdOUEV@V Cutter 4 kan cutter 6.

O PPO ¢yet Bertiopévn omddoon e kaBuoTépnon Kot ot VYNAOTEPEG AVTAUOPBES LTOSNADVOVY OTL UTOpPEl
VO TPOCOAPUOGEL TNV TOALTIKT] TOV HEC® TOV TEPPAAALOVTOG Yo o HoKpompdbeoueg avtapolPég mo
amoteleocuatikd. Elval emppenéc oe vaepeknaidgvuon Kot wapatnpovpe 0Tl ot vynidtepeg foduoloyieg
cuppaivovv ota apykd oTAd0 TG EKTAidELONG.

O SAC oeiyvel onuavtikn Pedtioon pe kabvotépnon, Ppickovtag PEATIOTA 0TOTEAEGOTA GE O10LPOPETIK
YPOVIKA BILOTO, DTOSEIKVIOVTOG L0 AVOVTIGTOLY IO OTIV 0TOS00T] TOV S0POPETIKMOV GUVOL®V dESOUEVMV
doxung. H wavomra tov SAC vo Beltictomotel ypiyopa evbuypoupiletor pe v eggpedvnon Pdoet
EVIPOTiOG TOV, KOOIGTOVTOC TO AYOTEPO EMPPEMES GE VIEPEKMAIOEVOT] KOl TO TPOCUPUOCILO GE
KkafvoTtepnpéEveg avTapolPBEc.

To DDPG emttuyydvetl to, KAADTEPO, ATOTEAEGUOTO YPIYOPO KOl TAPOAO TIC LOKPOYPOVIEG EKTOUOEVLTIKEG
EPLOdOLG, KATL TOL VLIOdNAMVEL 0Tt umopel va Asitovpyel vmoPéitiota. H otabepn amddoon ot

48

SPOPETIKEG oLVOTKEG LITOdEIKVOEL avBEKTIKOTNTO, av Kol yvopilovtag Tn dlodikacio ekmaidevong, 10
povtélo dev PertidveTon e TV Tépodo Tov ¥povov Kot eivol KOAANUEVO Gg éva TOTKO PEYIGTO.

O A2C éyer ypovikd peYOAEG EKTOIOEVTIKEG TEPLOOOVG KO LYNAG YPOVIKA PLOTa, LTOSEKVOOVTOG
OVOTTOTEAEGLLOTIKOTNTO OTT GUYKALOT 0AAGL cvuven amodoon. H Peitioon pe kabBuotépnon vmodnidvel 6Tt
pmopel va Peltictomomoet Tig pokponpdBeopes avtopolBég, aAld amoitel onpavTiKog VITOAOYIGTIKOVG
mopove. H ouvénela o dlopopeTikég cuvOnKkeg LITOdEIKVOEL AVOEKTIKOTNTO, EVD EIVOL TO LOVO LOVTELD OTTOV
o€ OAEG TIC OOKIUAGTIKEG TEPITTAOCELS 1) EKTAUOELTIKY SLodKaGio EVIoYVEL TNV amdd0cT. Agv vrdpyovv
TEPIMTAOGELS TTOL TO KOAVTEPO AMOTEAEGLO VO PPICKETAL GE TPMIUA YPOVIKA PritoTa, KATL TOL CNUAiveL OTL
TO HOVTEAO pabaivel Tpog 6T 6mOTYH Katevbuvon.

Non-Corrective Environment | RL Algorithm Performance
TepBarrov (Delay) | Max Reward Min Phm Score Saturated Xpovog
& (Yes / No) Exnaidevong &
XHvoro Agdopévav YuvolKd
(Mnyévnpo. - Timesteps
Kémmg) Value Timestep Value Timestep
PPO No c4 -25,255,715 38,730,000 | 35,497,029 38,730,000 Yes 17 hours
39,833,600 steps
c6 -163,762,286 | 20,000 233,645,404 20,000
With c4 -544,135,308 | 20,000 726,430,945 20,000 Yes 19.2 hours
16,967,680 steps
c6 -583,253,362 | 20,000 876,304,975 20,000
SAC No c4 -643 400,000 752 390,000 No 43.3 dpeg
3,819,951 steps
c6 -5,679 410,000 3140 460,000
With c4 -23,455 200,000 11,418 200,000 No 32.1 dpeg
2,639,889 steps
c6 -15,048 470,000 7,712 190,000
DDPG | No c4 -563,092,188 | 1,050,000 735,266,738 1,050,000 Yes 19.5 hours
1,064,325 steps
c6 -637,838,860 | 1,050,000 910,064,743 1,050,000
With c4 DNF - DNF - No 13.5 hours
510,251 steps
c6 DNF - DNF -

49

A2C No c4 -50,834,200 30,000 3,469,607 30,000 Yes 26,1 hours
26,750,000 steps
c6 -28,469,419 30,000 39,536,971 30,000
With c4 -550,755,354 | 19,110,000 | 735,266,790 19,110,000 Yes 22,8 hours
19,120,000 steps
c6 -606,030,553 | 19,110,000 | 910,064,743 19,110,000

Yta Mn Awpbotikd mepipdiiovio, to SAC deiyver v KoAVTEPT OTOS00T GTO HOVIEAO Y®PIG
kaBvotépnon, eved 10 PPO kot t0 A2C mapovcialovv onuavtikég dvckorieg. To DDPG amotvyydvel va
ovykAivel amotehespaTikd, Waitepa pe Kabvotépnon.

Ocov agopd 1o PPO, o1 ypovol eKmaidguong Kot 10 GUVOALKE ¥povIKd Pripota eivotl apketd kot exapkn. Ta
KOAOTEPO OMOTEAEGHOTA EPPAVIOVTOL VPG OTNV EKTOIOELOT], VTOSNAMVOVTOG VREPEKTAIOELOT Kot
avamoterecpotikotnTo. O KOpeGOG TOL Tapatnpeitan otV ekmaidevon delyvel 6Tt T0 PPO gtdvel o éva
onueio 6mov dev vVIApyEL TEPAUTEP® PeEATimON, TOOVAE AOY®D KOKNG TPOGUPLOYNAG GE QLTOV TOV TOTO
nep1Bdilovtog | TBAVNG KAKNG GUVAPTNONG AVTAPOPNG.

To SAC egivor pokpdv 10 KoAVTEPO pHOVTELD kol Eemepvd kdBe dAho alyopiBpo. Aelyver kakdtepn
TPOCAPUOCTIKOTNTA AOY® NG e€epevvnong mov Paciletal otnv gvipomia, 1 omoia fondd otn dayeipion
TOV KaOLGTEPTNUEVOV OVTOUOPOV Kot oTNV amo@Lyn vrepeknaidevone. H kaddtepn amddoon divetar 6To
onueio mov mapatnpeitor otabepdtnTa ot SdIKaciog ekmaidevons, to omoio delyvel cwo
TOPAUETPOTOINOT).

To DDPG avtipetonilel dvokolieg ocbykiiong oto un dopbwotikd meptPdiiov, €101k pe kabvotépnon.
Eivaito uoévo povtého mov dev Kotapepe vo OLOKANPAOGEL KoL VO, pTAGEL TO KOWUo 315, Kabdg Ta eme1010.
OTOLOTOVV TPV PTAGOVY GTO TEAKO KOWILO AOY® eE0PETIKA YapumANG avtopone. Ot vyniég apvnrucég
avtapolPéc ko ot faduoloyieg Phm vmodeikviouvy kakn amddoot, mhoavdg AMOym averapkong eEpedvnong.

To A2C mapovctdlel avomoTeEAESUOTIKOTNTA PE HEYAAOVG XPOVOLG EKTOIOELONG KOl EVIOVO, OPVITIKEG
avTOUoBES, LTOSNAMVOVTOG OTL Ol GUYYPOVICUEVEC EVNUEPMDOELS TOV OEV Eivol KOTAAANAEG Yo TO Un
oopboTikd TEPPUALOV, 0ONYDVTOG GE VIIEPEKTAIOELOT) KO KOKT YEVIKEVOT).

YUVOAIKA, cuvykpivovtog kdbe aAdyopifpo oe Oha To drpopeTikd mePPdAdovia, eival GaEéc OTL O
adyopBpog SAC amodider koAvtepa oto Mn Aopbwtkd [epipdilov, evdd o PPO vrepioydel oto
Aopbotikd Tlepipariiov. Ocov agpopd v kabvotépnon, to mepifdriov "ue kabvotépnon" emttuyyavel
KoAd amoteléopata o ypryopa Kotd tnv eknaidevon. 2otdG0, 6T PACT TOV SOKIUMV, 1] 0TOd0GT| TOV
nepPairovrtog e kabvotépnon cuvnbwg Eemepvigtol amd to mepPdilov "ympic kabvotépnon”, 1o omoio
EMTLYYGVEL KOADTEPQ OmoTEAEGATA OAAG Y pEIGlETOL TEPIGGATEPO XPOVO EKTOUOELONG.

50

2OUTEPAGLLOTOL

O o16Y0¢ aVTAC TG SMAMUATIKNAG NTAV 1 ¥PNON OPOpmV OAYOPIOU®Y EVIGYVTIKNAG HABnong Yo TV
emilvon evog mpofAnpatog Tpoyvmotikig cvvtipnong (PAM), cuykekpiuéva v tpoPreyn Bopdc towv
opelov og epélec vyming ToyvTag CNC. Avt n npoPreyn Paciotnie ce dedopévo amd SVVOUOUETPA,
EMTAYVVOIOUETPO KO oucOnthpeg ekmoumng axovotikng. OAot ot aAyoplOuol ekmoudevuTnKoy Kot
a&lohoynOnioay ypnotpomoudvtag dedopéva amd TpoyUatikes melpdpata kot d1e&nydn evpeia avaivon yuo
vo. EETACTEL 1] ATOTEAEGLOTIKOTN T TOVC.

Ta amoteléopata avéSEl&ay TNV AMOTEAEGUATIKOTITO OWTNG TG TPOGEYYIoNS, Lroypaupilovtag 6Tt ot
teyvikég RL pmopodv va givol amotelecpatikég Kot va mapdyouy afldmota amoteAécuato ympic va
amorteiton povtéro g eEeTalONEVNC UNYXOVAG.

INa va Behtiwbei Tepartépm 1 amddoon tov RL PAM Agent, purnopovpe gite va av&Roovpe Ty To60TnTa
TOV OESOUEVAOV TTOV YPTCLULOTOLOVVTOL Y10, TNV EKTAOEVOT), KATL TOL Bal Yivel o epiktd Kabdg avdvetat
ouvey®dg o aplBudg tov ocvokevav 10T kot m Pounyavioe cvveyiler vo vioBetel véeg TeyviKég
YPNOWOTOIOVTAG TEPLocotepn TeYvoAoyia 10T. M GAAN mpocéyyion elvar va mpoomabncovpe va
povtehomomoovpe 10 mepPdriiov tov CNC cuvepyalduevol pe Unyoavikoug DAIKOV Kot Unyovoidyoug
UNYOVIKOVG Y1t VoL OTILOVPYTGOVUE £Va LOVTEAO TTOV VoL TPOGEYYILEL TNV TPOYUATIKOTNTA. AV Kol VTN 1)
TPocEyylomn Oev eyyvdral v emruyia, Oo amattovce Aydtepa dedopéva.

YUVOAIKA, OV LVAPYOVY EMOPKT OEOOUEVA, 1| TPOGEYYIOT] X®PIC HOVTELD €ivol TPOTIUOTEPT AOY® TNG
KOBOAIKOTNTAG TNG KOl TNG EAAEYNG OVAYKNG Yl AETTOUEPT] YVAOT TNG CLYKEKPUEVG XPNONG KOl TOV
OAANAETIOPAGE®DY TNG UNYOVNG TToVL EeTdlETOt.

Meriovtikn ‘Epgvva

H pelovtikn épevva Ba pmopovoe va meptlapffavel T cOyKpPIoT SIPOPETIKMY TPOGEYYICEMV UNYOVIKNAG
uabnong pe v mpocéyyion RL ko v wbovn cuvdvootikr tovg ypnon. Emmiéov, n amdkmon tov
TANPOLG cuVOLOL dedopévov amd To PHM Data Challenge tov 2010 0o enétpene neportépm Pertioon g
0TTOS00NG TOV LOVTEAMV.

"Evag GAA0G evolopEPOV dPOUOG Y10, LEAAOVTIKT €PEVVA EIVAL 1] OVTILETOTION EVOG SIAPOPETIKOV GTOYOV
PdM yia v 8o pnyovi| xpnoHoTotdvTag To 1010 6UVOAO dESOUEVOV. ZVYKEKPIUEVA, 1| TPOPAEYN TNG
Yrohewmopuevng Xpriowng Zong (RUL) tav epelav, mov ftav o 6toyog tov doyovicpod PHM 1o 2010,
Ba umopobvoe va givar po YpNoIUN ETEKTOOT] AVTNG TNG OOVAELAS EVOMUOTM®VOVTOG TeXVIKEG RL yio tnv
emilvomn avtov ToL TPOPANUATOG.

51

52

1.Introduction

Industry 4.0 encompasses the integration of the Internet of Things (10T) to create a feedback loop between
the digital and physical worlds. 10T devices with built-in sensors are becoming more advanced and
affordable. According to Statista (Vailshery, 2024) there are approximately 15.9 billion connected 10T
devices as of 2023 and in the next decade this number is expected to grow to almost 40 billion. Real-time
analytics combined with edge sensors and artificial intelligence (Al) are enabling sophisticated cloud-based
platforms. The rollout of high-speed 5G connectivity opens the door for the implementation of complex Al
applications that can improve industrial operations and support effective cyber-physical systems.

According to (Burke , Hartigan, & Sniderman , 2017), a SmartFactory is designed to self-optimize its
performance by learning from new conditions and adapting in near-real time. Predictive maintenance
(PdM) involves analyzing data from various sources—such as sensors installed on critical machinery,
information from enterprise resource planning (ERP) systems, production data, and maintenance
management systems—to predict and proactively address equipment failures. These SmartFactory
management systems utilize advanced predictive models to forecast potential issues and take preventive
action.

(Ben-Daya, Dufuaa, & Raouf, 2012) found that maintenance costs can account for between 15% and 40%
of manufacturing expenses across different industries. Despite the benefits, many manufacturers are hesitant
to adopt SmartFactory practices. (Laape , Dollar, & Cotteleer , 2020) reported that nearly 65% of surveyed
manufacturers had made little or no progress on their SmartFactory initiatives. Cost pressures in
manufacturing mean that optimal predictive maintenance can help reduce maintenance expenses while
ensuring continuous production.

A variety of approaches have been used to address PdM challenges. These include mixed-integer and multi-
criteria optimization techniques like Pareto optimization (Saydam & Frangopol, 2015), machine learning
(ML) methods like decision trees (Frangopol, Lin, & Estes, 1997), random forests (Kabir , Foggo, & Yu,
2018), gradient-boosted trees (XGboost) (Ma, Guo, & Mao, 2020), and unsupervised ML techniques like
Principal Component Analysis (PCA) (Eke, Aka-Ngnui, & Glerc, 2017). Supervised ML methods such as
regression (Susto, Wan, & Pampuri, An adaptive machine learning decision system for flexible predictive
maintenance , 2014) and support vector machines (SVM) (Ding, He, & Zi , 2008), (Susto, Schirru &
Pampuri, 2013) have also been applied. Deep learning techniques like long short-term memory (LSTM)
have been used for estimating remaining useful life (RUL) (Sayyad , Kumar, & Bongale, 2022), (Zheng ,
Ristovski, & Farahat, 2017), and convolutional neural networks (CNNs) have been used for regression
(Sateesh Babu, Zhao, & Li, 2016).

Early methods often used deterministic approaches, which limited effectiveness due to the complexity and
nonlinearity of industrial processes. The introduction of ML improved the modeling of systems, but
sufficient labeled data from experts remains a challenge, leading to approximate solutions.

Reinforcement learning (RL), including deep reinforcement learning, is emerging as a promising solution
to these limitations. Traditional control and planning methods can struggle with complex nonlinear

processes, but RL offers an autonomous learning mechanism to develop optimal, model-free solutions
(Lewis , Vrabie, & Vamvoudakis, 2012), (Sutton & Barto, Reinforcement learning: an introduction, 2018).
Given that PdM involves optimal planning, RL has gained attention as a potential solution for addressing
PdM challenges.

The focus of this study is the CNC Machine Wear Prediction Problem. A CNC (Computer Numerical
Control) machine is an automated manufacturing tool that uses pre-programmed computer software to
control the movement and operation of machinery, allowing for precise and efficient production of complex
parts. The data is provided by the PHM (Prognostics and Health Management) Society and was part of the
2010 PHM Data Challenge. The goal is to predict the wear of the flutes in cutters of a high-speed CNC
milling machine using measurements from dynamometer, accelerometer, and acoustic emission sensors.

For the predictive maintenance (PdM) task in this context, a specialized taxonomy has been employed, as
illustrated in the diagram below:

Objective

Wear
Prediction

Sensor Equipment
Condition Data

Pdm Objective

Modeling the
system

MDP Framework
Formulation

Iy

Reinforcement Learning
Algorithms
Model - Free

PdM Agent: Algorithm o 4
development " Off-Policy On-Policy

RL PdM Agent

Figure 14 : A taxonomy of Reinforcement Learning for the Wear Prediction Problem of this thesis

In this taxonomy, the primary objective is Wear Prediction, which is based on data from sensor equipment
condition monitoring. This data is integrated into the Markov Decision Process (MDP) framework, which
is crucial for formulating the problem in a manner that is suitable for RL algorithms.

54

The reinforcement learning algorithms applied are specifically model-free algorithms. These algorithms are
categorized into off-policy and on-policy methods. Off-policy methods include Deep Deterministic Policy
Gradient (DDPG) and Soft Actor-Critic (SAC), while on-policy methods encompass Proximal Policy
Optimization (PPO) and Advantage Actor-Critic (A2C). The end goal is to develop an RL-based PdM agent
capable of making autonomous decisions to predict wear and avoid potential and functional failures in CNC
machines effectively.

In the sections that follow, this taxonomy will be elaborated upon in greater detail, discussing each
component and its role in formulating a reliable RL PdM Agent.

55

2. Theoretical Background & Related Work

2.1 Predictive Maintenance

Predictive maintenance is a proactive maintenance strategy that uses data analysis tools and techniques to
detect anomalies in equipment operations and predict future failures. It is an important enabler for Industry
4.0, providing significant benefits such as reduced costs, minimized downtime, and enhanced safety.
However, successful implementation requires overcoming technical and managerial challenges, integrating
it into a broader digital strategy, and fostering a culture that supports innovation and data-driven decision-
making.

N
NORMAL STATE DANGEROUS STATE
Degradation
start Potential

T e O

f

iion

Cond

Functional

/ failure
tr L'F
>
to td t2 t3 tp
|
Time Failure time /V

distribution
Figure 15 : Predictive maintenance in the context of the P-F curve (Bousdekis, Apostolou, & Mentzas, 2020)

The figure above displays the P-F curve (Potential Failure - Functional Failure), showing the transition from
a normal state to a dangerous state, highlighting key points such as the degradation start, potential failure,
and functional failure. This curve represents the concept that failure is a process that develops over time,
providing a window for predictive maintenance to “intervene”.

By addressing issues in this time window before they escalate into major failures, the overall lifespan of
equipment is extended, leading to increased equipment lifespan. This approach ensures that maintenance is
performed only when necessary, which in turn reduces labor and material costs, contributing to reduced

56

maintenance costs. Furthermore, by preventing unexpected breakdowns through proactive maintenance,
predictive maintenance minimizes downtime and ensures continuous operation, thereby boosting
productivity. Additionally, early detection of potential failures enhances workplace safety by reducing the
risk of accidents. The continuous monitoring and data analysis involved in predictive maintenance also lead
to enhanced knowledge about equipment behavior and performance, enabling better decision-making and
operational improvements.

Predictive maintenance, despite its benefits, presents several challenges. Implementing it requires additional
equipment, such as new sensors and monitoring devices, which can be costly and complex to integrate with
existing systems. There is also a significant initial budget required to transition to Industry 4.0, including
investments in hardware, software, and personnel training. Specialized personnel with expertise in data
science, IT, and maintenance engineering are necessary to install and operate the systems, which can be a
barrier for some organizations. Additionally, effective predictive maintenance requires cross-field
collaboration between IT professionals, data scientists, and maintenance engineers, necessitating strong
communication and teamwork across different departments.

To effectively implement a predictive maintenance strategy, integrating Markov Decision Processes
(MDPs) can be beneficial, as MDPs provide a robust framework for optimizing maintenance decisions
under uncertainty, further improving the efficiency and effectiveness of maintenance strategies.

2.2 Markov Decision Process

2.2.1 MDP | Sequential Decision Problem

A sequential decision problem in a fully observable, stochastic environment with a Markovian transition
model, (Russel & Norvig, 2021) and additive rewards is called a Markov Decision Process (MDP) and
consists of the following:

e State Space (with initial state s;): This is the set of all possible states that the system can be in. The
initial state, usually denoted by s, is the state from which the decision-making process begins.

e Action Space A(s): This is the set of available actions that the agent can take in each state. This
collection of actions may depend on the state.

e Transition Model P(s'|s, a@): This is the model that describes the probability of transitioning from
one state s to another state s” under the influence of action a. This model is essential for calculating
the expected return of each action.

e Reward Function R(s,a,s") : This function determines the reward that the agent receives when
performing action a and transitioning from state s to state s’. The reward can be positive, negative,
or zero, depending on the goal the agent is pursuing.

57

e Starting state distribution pg : It represents the probability distribution over the initial state from
which the decision-making process begins. It defines how likely each possible starting state is,
setting the initial conditions for the agent's interaction with the environment.

With these elements, a variety of decision-making problems can be modeled, and algorithms can be
developed to exploit the structure of Markov Decision Processes (MDPs) to find optimal decision-making
strategies.

Methods for solving MDPs typically involve dynamic programming, which simplifies a problem by
recursively breaking it down into smaller segments while retaining the optimal solutions of these segments.

Regarding the solution to the problem, no fixed sequence of actions can resolve the problem, as the agent
may end up in a state different from the goal state. Thus, the solution must specify the agent's actions for
any state it may encounter.

A solution of this kind is called a policy

The policy is denoted by m, and m(s) is the action that policy = recommends for state s. Regardless of the
outcome of the action, the resulting state will belong to the policy, and the agent will know what to do next.
Each time a given policy is executed starting from the initial state, the stochastic nature of the environment
may lead to a different history of the environment. Thus, the quality of a policy is measured in terms of the
expected utility of the possible histories of the environment generated by the policy.

An optimal policy is a policy that gives the highest expected utility, denoted by *. Given the policy *,
the agent decides what to do by examining its current perception, which indicates the current state s, and
then performs the action t*(s). The policy explicitly represents the agent function and is thus a description
of a simple reflexive agent, computed from the information used for a utility-based agent.

The introduction of uncertainty brings MDPs closer to the real world than causal search problems. For this
reason, MDP solving algorithms have been studied in various fields such as Al, Operations Research,
Economics and Control Theory.

The introduction of uncertainty is a key element that makes MDPs (Markov Decision Processes) more
representative of the real world compared to causal search problems. This is due to the fact that the real
world is often complex and uncertain, with many variables and fuzzy parameters. By introducing
uncertainty, MDP solving algorithms can take into account various scenarios and possible developments,
making them more flexible and realistic.

For this reason, MDP solving algorithms have been applied in many different fields, including artificial
intelligence, operations research, economics and control theory. The flexibility and adaptability of these
algorithms make them valuable tools for tackling real-world problems where uncertainty is present.

e Inthe field of Artificial Intelligence, MDP solving algorithms are used to develop systems that can
make decisions under uncertainty, such as robots and autonomous vehicles.

58

e In Operations Research, MDPs help analyze and optimize processes involving random factors, such
as inventory management or workflow in a factory.

e Infinance, MDP algorithms can be used for portfolio management and investment selection, taking
into account market uncertainty and price volatility.

e In control theory, MDPs help to model and design systems that must respond to unpredictable
changes or disturbances.

The use of MDPs in so many different domains highlight the need for decision-making methods that take
uncertainty into account, making them a valuable tool for addressing real-world challenges.

2.2.2 Utility in terms of time

It is essential to determine whether the decision-making process has a finite or infinite horizon. A finite
horizon indicates a fixed time N after which subsequent events are irrelevant, such as the end of a game
(examples are checkmate in chess or machine failure in PdM). Therefore

Value, = U([S,, 0y, S1,A1,---,Snik]l) = Va([So, Ao, 51,41, ---,Sn])
Foreachk >0

In the finite horizon case, the optimal energy in a given state may depend on the remaining time. A time-
dependent policy is called a non-stationary policy

In the case of a non-stationary time boundary, there is no reason to have different behavior in the same state
at different times. So, an optimal action depends only on the current state, and the optimal policy is
stationary. Thus, policies for the infinite horizon case are simpler than those for the finite horizon case.
However, the infinite horizon does not necessarily mean that all sequences of states are infinite, it just means
that there is some fixed deadline. That is, there may be finite sequences of states in an infinite horizon MDP
containing a terminal state.

To be able to calculate the utility Value_h for the sequences of states we will use addictive discounted
rewards.

The utility V;, is calculated as follows:
Vi([So, Qo) S1,a1,---1) = R(Sy, a4, S1) + YR(S1,a4,52) + yzR(sz,a2,53)+

The utility is calculated by summing up the rewards of each agent's action after multiplying it by a discount
factor.

Where the discount factor y is a number between 0 and 1. The discount factor describes the agent's
preference for current rewards over future rewards. When vy is close to 0, then far-future rewards are

59

considered insignificant. When vy is close to 1, then an agent is more willing to wait for long-term rewards.
When v is exactly 1, discounted rewards are restricted to the special case of purely additive rewards.

Some reasons why additive discounted rewards are very useful for solving the problem are empirical,
economic, and the most important and practical of all uncertainty. Both humans and animals seem to place
more value on short-term rewards than on rewards in the distant future. As far as economics is concerned,
if the rewards are monetary, then it is indeed better to receive them sooner rather than later, because the
early rewards can be invested and produce returns at the time we wait for the later ones.

A third reason is uncertainty. Uncertainty about the actual rewards that may never materialize for many for
many reasons that are not accounted for in the transition model

Finally, a fourth reason arises from a natural property of preferences relative to history. In the terminology
of multicriteria utility theory, each transition s, = s;,; can be viewed as a property of the history
ag

[So, Ao, S1,a4,...]. Theoretically, the utility function could depend on these properties in arbitrarily
complex ways. There is, however, a very plausible preference independence assumption that can be made,
namely that the agent's preferences between state sequences are stationary.

Suppose that two histories [s,, a,, s1,a4,...] and [s',,a’,, s'1,a’y,...] start with the same transition like
So = S'g,a9 = a'y and s; = s';. Then the stationarity for preferences means that the two histories should
be ordered in terms of preference in the same way as the histories [s;, a4, s,,...]and [s'y,a’1,s'5,...]. This
means that if you prefer a particular future to another future starting tomorrow, then you should still prefer
that future even if it were to start today. Stagnation is a fairly "innocent™ assumption, but one that is only
satisfied by additive discounting, which is the only form of utility for histories.

One such reason for using discounted rewards is that they conveniently eliminate certain unpleasant
"infinities". With infinite horizons there is a potential difficulty: if the environment does not contain a
terminal state, or if the agent never reaches it, then all historical environments will be infinite, and utilities
with additive undiscounted rewards will generally be infinite. Although we can agree that +oo is better than
—oo, comparing two sequences of states with +oco utilities is more difficult. There are three solutions of
which we have already seen two:

With discounted rewards, the utility of an infinite sequence is finite. To be precise, if y < 1 and the
rewards are blocked by +R,, ., then:

Rmax

Vi(l50,@g, 51,@1:-1) =) VR 5061) <) VR = 7o
t=0 t=0 4

Using the standard formula for the sum of an infinite geometric sequence.

If the environment contains terminal states and if the agent is guaranteed to reach a perfect state at some
point, then we will never need to compare infinite sequences. A policy that is guaranteed to supervene a

60

terminal state is called a proper policy. With proper policies we can use y = 1 (additive undiscounted
rewards). The existence of improper policies can make the usual algorithms for solving MDP fail in the
case of additive rewards, and thus provides a good reason for using discounted rewards.

Infinite sequences can be compared in terms of the average reward obtained per time step. The average
reward is a useful criterion for some problems, but the analysis of average reward algorithms is complicated.

2.2.3 Optimal Policies and the utilities of the situations

Knowing that the utility of a given history is the sum of the discounted rewards, policies can be compared
by evaluating the expected utilities obtained during their execution. Assuming that the agent is in an initial
state s, S;(a random variable) is defined as the state that the agent achieves at time t when executing a
particular policy . Obviously, Sy = s, the current state of the agent. The probability distribution for the
state sequences Sy, S5, ... is determined by the initial state s, the policy &, and the transition model for the
environment.

The expected utility obtained by executing policy m starting from state s is given by the formula

Ve(s) = E [X0 Y R(Se, (St), Se41)]

Where the expectation E depends on the probability distribution over the sequences of states defined by s
and 7. Now of all the policies that the agent could choose to execute starting from state s, one (or more)
will have higher expected utilities than all the others. The optimal policy will be denoted by m*g:

", = argmax;Vy(s)

A remarkable effect of using discounted utilities with infinite horizons is that the optimal policy is
independent of the initial state. (Of course, the sequence of actions will not be independent - the policy is a
function that specifies an action for each state.) This fact seems reasonably obvious: if policy *, is optimal
starting from state s, and policy *, is optimal starting from state s, then, when they reach a third state s5,
there will be no disagreement between the policies (¥, and *, or with a policy m*3) for the agent's next
move. The proof follows from the uniqueness of the utility function with respect to the states of the
environment. For this reason, we can denote the optimal policy as ™.

According to the above, the actual utility of a state is simply V,,«, the expected sum of the discounted rewards
that we will have if the agent executes an optimal policy.

Therefore, the utility function can be written as V+(s) = V(s)

2.2.3.1 Bellman’s equation

61

The utility function U(s) allows the agent to choose actions using the maximum expected utility principle,
to choose the action that maximizes the reward for the next step plus the expected utility of the subsequent
state of the environment:

n*(s) = argmaxgeas)y) P(s'ls,a)[R(s,a,s") +yU(s")]

N

From the definition of utility, it follows that there is a direct relationship between the utility of one state and
the utility of its neighboring states. The utility of a state is the expected reward for the subsequent transition
plus the discounted utility of the subsequent state, assuming that the agent always chooses the optimal
action.

The utility is also defined as:
V(s) = maxgeacs) Lsr P(s'ls, @)[R(s, a,s") + yU(s")]
This equation is called the Bellman equation in honor of Richard Bellman (1957)

The utilities of the states defined by the equation V,.(s) = E [X120 Y R(S, m(St), Se4+1)] , as the expected
utility of the consequent sequential states, are solutions of the set of Bellman equations.

2.2.3.2 Function Q

Another useful tool for solving MDP problems is the energy-utility function or function Q. Q(s,a) is the
expected utility from performing a given action in a given state. The function is related to utilities in the
following way:

V(s) = max,0Q(s,a)
Furthermore, from the function Q the optimal policy can be derived as follows:

n*(s) = argmax,Q(s,a)
We can also develop a Bellman equation for functions Q, noting that the expected total reward for

performing an action is its immediate reward plus the discounted utility of the outcome state, which in turn
can be represented by the function Q:

Qs =) P(s'ls, DIR(s,0,5) + V()]
Q(s,a) = ES:’S, P(s'|s,a)[R(s,a,s") + ymax,Q(s', a")]

Solving Bellman's equations for V (or for Q) provides what is to find an optimal policy. The function Q
appears all the time in MDP process solving algorithms, and the following definition (pseudocode) is used:

62

Table 3 : The Pseudocode of Function Q

Function Q_Value(MDP, States, Actions, V) :

Initialize Q_value to 0

For each next state in MDP.States:

transition_prob = MDP.Transition_Prob(state, action, next_state)

reward = MDP.Reward(state, action, next_state)

Q_Value += transition_prob * (reward + MDP.Discount * V(next_state))

End For

Return Q_value

End Function

2.3 Reinforcement Learning

2.3.1 Learning from Rewards

In RL a decision agent learns from a sequence of reward signals that provide some indication of the quality
of its behavior. The goal is to optimize the sum of future rewards.

The usefulness of reinforcement learning is seen in applications where the set of possible situations - states
in the environment is very large and the agent is likely to be led into a situation that has not been seen or
"taught™ before.

A typical example and success story is the use of RL in chess. So, let's consider the problem of learning
chess from an agent and let's say we use supervised learning to achieve our goal. Given that the chess-
playing agent's function takes as input a position on the chessboard and returns a move, we train this function
by providing it with examples of positions on the chessboard and returns a move, each of which is labeled
with the correct move. At the same time, we have a database of several million grandmaster games, each of
which is a sequence of positions and moves. The moves made by the winner are, with a few exceptions,
considered good, if not always perfect. Thus, we have a promising training dataset. The problem is that
there are relatively few examples (10%) compared to the space of all possible positions on the board (10°).

63

In a new game, we soon encounter positions that are significantly different from those in the database, and
the agent training function is likely to fail badly, mainly because the agent does not know what he is trying
to achieve with his moves (check or even mate) or, in even more detail, the effect his moves have on the
positions of the pieces. Chess is a miniature version of the real world. In more realistic problems, we would
need much larger databases of grandmaster games, which simply don't exist. For this reason, Yann LeCun
(Turing Award 2018) points out that “the Al revolution will not be supervised".

From the perspective of an Al system designer, providing a reward system to the agent is usually easier
than providing characterizing examples of how the agent should behave in a multitude of situations.

The reward function is often very comprehensive and easy to define as it requires only a few lines of code
to tell the agent playing chess whether it has won or lost the game. We also do not need to be experts and
able to perform the right actions in every situation (we do not need to be grandmasters), as would be the
case if we tried to implement supervised learning.

In practice, a little experience can make a significant contribution to reinforcement learning. The rewards
for winning and losing in chess are very sparse rewards, because in the vast majority of situations the agent
receives no informational reward signal (one per game). For this reason, we need to build a reward function
that accounts for other elements of the environment such as the value of each piece the agent holds and its
position (such as extra positive score for capturing a center). These intermediate rewards make learning
much easier.

As long as, we can provide the right reward signal, RL provides a very general way to build Al systems.
This is especially true for simulated environments, where the opportunities for gaining experience are
limitless. There are hundreds of different RL algorithms and many of them can be used as tools for a wide
range of learning methods.

2.3.2 Key Concepts in RL

In this section, the mathematics behind RL and its practical applications will be briefly analyzed.

2.3.2.2 RL Components

RL is the study of agents and how they learn by trial and error. It formalizes the idea that rewarding or
punishing an agent for its behavior makes it more likely to repeat or forego that behavior in the future.

64

AGENT

»—9—Pp POLICY *—>

OBSERVATION ACTION

POLICY
UPDATE

REINFORCEMENT

L) LEARNING <
ALGORITHM

\ J
J

REWARD

ENVIRONMENT <«

Figure 16 : General Representation of Reinforcement Learning Scenario (MathWorks, 2024)

In RL, the main characters are the agent and the environment. The environment represents the world in
which the agent resides and with which it interacts. During each interaction step, the agent observes a
(potentially partial) view of the world's state and then decides on an action to take. The environment changes
in response to the agent's actions but can also change independently.

The agent receives a reward signal from the environment, which measures the value of the current state.
The agent's objective is to maximize its cumulative reward, known as the return. Reinforcement learning
methods provide ways for the agent to learn behaviors that achieve this goal.

To explore the specifics of RL, additional terminology must be introduced. This involves discussing key
concepts and components that support the RL processes:

States and Observations
The complete description of the world is captured by a state s, ensuring all information is visible. In contrast,
an observation o provides only a partial description, potentially omitting certain details.

In deep RL, states and observations are represented by a real-valued vector, matrix, or higher-order tensor.
When the agent has access to the complete state, the environment is considered fully observed. If the agent
can only access partial information, the environment is called partially observed.

Action Spaces
Different environments allow different kinds of actions. The set of all valid actions in a given environment
is often called the action space. Some environments, like Atari and Go, have discrete action spaces, where

65

only a finite number of moves are available to the agent. Other environments, like where the agent controls
a robot in a physical world, have continuous action spaces. In continuous spaces, actions are real-valued
vectors.

The collection of all actions that are allowed within a particular environment is referred to as the action
space. For instance, environments like Chess and Go feature discrete action spaces, limiting the agent to a
finite set of moves (the legal moves on the board). Conversely, environments where the agent operates a
robot in the physical world have continuous action spaces, characterized by real-valued vectors for actions.

This difference significantly impacts methods in deep RL. Certain algorithm families are tailored for one
type of action space and would require extensive modifications to function in the other.

Policies

A policy guides an agent in selecting actions and can be either deterministic or stochastic. A deterministic
policy is usually represented by p:

ar = pu(s¢),
A stochastic policy, on the other hand, is typically denoted by m:
ar = 1([s¢).

The policy acts as the agent's decision-making mechanism, so "policy"” and "agent" are often used
interchangeably, such as saying, '"The policy is trying to maximize reward."

In deep RL, policies are parameterized, meaning their outputs are functions dependent on adjustable
parameters (e.g., the weights and biases of a neural network). These parameters can be fine-tuned using

optimization algorithms to alter the agent's behavior.

Parameters of such policies are frequently denoted by 0 or ¢, and this notation is included as a subscript
on the policy symbol to indicate their role:

ar = po(s¢)
ar ~ mo(|s¢)

Trajectories / Episodes
A trajectory T consists of a sequence of states and actions

T = (Sp, A, S1, A1y ---)
The initial state so is randomly drawn from the start-state distribution, often represented by po:

So ~ Po()

66

State transitions, which describe changes in the world from state s, at time t to state s;,qat time ¢t + 1, are
influenced by the most recent action a,. These transitions can be deterministic:

Sevr ~ f(Se,ae)
or stochastic,

Sev1 ~ PC| se,ar)
Actions are determined by the agent's policy.
Trajectories are often referred to as episodes or rollouts

Reward and Return
In reinforcement learning, the reward function R plays the role of a trainer. It relies on the current state, the
action taken, and the subsequent state:

Tt = R(St, at, Ses1)

However, this is often simplified to depend solely on the current state: v, = R('s;), or state-action pair
e = R(sp ar) .

The agent's objective is to maximize the cumulative reward over a trajectory. This cumulative reward is
R(7).

One type of return is the finite-horizon undiscounted return, which is the total sum of rewards obtained over
a fixed number of steps:

R(7) = ZZ=O Tt

Another type is the infinite-horizon discounted return, which considers all rewards the agent ever receives,
but discounts them based on how far into the future they occur. This is expressed with a discount factor y;
in (0,1):

T
R@ = > (re-m)
t=0

The inclusion of a discount factor is both intuitively appealing and mathematically convenient. Intuitively,
immediate rewards are often preferred over future rewards. Mathematically, without a discount factor, the
infinite-horizon sum of rewards may not converge to a finite value, making it difficult to handle in equations.
By applying a discount factor and under reasonable conditions, the infinite sum converges, simplifying the
calculations.

The RL Problem

67

The goal in Reinforcement Learning is to select a policy which maximizes expected return when the agent
acts according to it. No matter the choice of the reward function (return measure) and the policy the goal is
the same.

To discuss expected return, understanding probability distributions over trajectories is essential.

Assuming both environment transitions and the policy are stochastic, the probability of a T - step trajectory
is given by:

T-1
PGIm) = po(50) - | | PCseanlse a) - madse)

T : This represents a trajectory (episode), which is a sequence of states and actions over T steps. A trajectory
can be writtenast = (s, ag, S1, ¥4, ST—1, A7—1,ST)

7 : This is the policy that the agent is following. It defines the probability distribution over actions given a
state, m(a;|s;), for each time step t, this term represents the probability of the agent taking action a; given
the state s, according to the policy .

Po(s,) : This is the initial state distribution, that is the probability distribution over the initial state s,.
Meaning the probability the trajectory starts in the initial state s,. In some environments (like chess) this
probability is 1.

P(s:4+1]5: a¢) - This is the transition probability, that is the probability of transitioning to state s, given
the current state s, and action a,. For each time step t we calculate this term and we multiply it by m(a;|s;).

In essence, the formula P (T|m) combines the probabilities of starting in the initial state, taking actions
according to the policy, and transitioning between states according to the environment's dynamics, to give
the overall probability of the entire trajectory occurring under the policy 7t.

The expected return (for whichever measure), denoted by J (1), is then:

J(m) = j P(t|n) - R() = Ey - [R(D)]

The expected return J (1r) is a measure of how good a policy 7t is in terms of the cumulative reward it can
achieve over time.

P(z|m) : As mentioned above, this is the probability of a trajectory T occurring under the policy 7. It
encapsulates the dynamics of the environment and the behavior of the policy.

68

R(7) : This is the return of the trajectory T. The return is the cumulative reward obtained over the trajectory.
Depending on the specific problem, this can be the sum of rewards, a discounted sum of rewards (y), or
some other measure of cumulative reward.

f P(z|m) - R(7) : This represents the expected return over all possible trajectories T, weighted by their
probabilities under the policy 7.

Expectation E,..[R(7)] : This is another way of expressing the integral. It means taking the expectation
of the return R(T) over trajectories T that are sampled according to the probability distribution induced by
the policy 1.

The expected return J (1) quantifies the performance of a policy 7 by averaging the cumulative rewards
(returns) over all possible trajectories that the policy can generate.
The central optimization problem in RL can then be expressed by:

n* = argmax, J ()

The central optimization problem in reinforcement learning is to find the policy =« that maximizes the
expected return J ().

7" : This denotes the optimal policy, the policy that yields the highest expected return.
argmax, J(m): This expression means we are looking for the policy 7 that maximizes the function J (7).

The goal of the agent is to find the best policy m that maximizes its expected cumulative reward. This
involves exploring the space of possible policies and evaluating their performance to find the one that
provides the highest expected reward.

This is a classic optimization problem where the objective function is J (1), the expected return, and the
variable to optimize, is the policy .

Value Functions
Understanding the value of a state or state-action pair is essential. The value refers to the expected return
when starting in a specific state or state-action pair and subsequently following a particular policy

indefinitely. Value functions are a key component to nearly every RL algorithm.

There are four main functions of note here.

1. The On-Policy Value Function, V"(s), represents the expected return when starting in state s and
always following policy m:

69

V*(s) = Ern[R(D)]s, = 5]
E, ., : This denotes the expected value over trajectories T that are generated by following the policy .

R(7) : This is the return of the trajectory T. The return is the sum of rewards obtained over the trajectory.
Depending on the specific problem, it can be the total reward or the discounted sum of rewards.

S, = S . This specifies that the trajectory starts from a specific state

The on-policy value function V™(s) gives the expected return starting from state s and then following
policy m. It is an estimate of how good it is to be in a particular state S if you act according to policy 7.

By knowing V™(s), an agent can improve its policy by choosing actions that lead to states with higher
values.

2. The On-Policy Action-Value Function, Q™ (s, @), Represents the expected return when starting in
state s, taking action a (which may not originate from the policy), and then always following policy 7:

Q"(s,a) = Erx[R(D|s, = s,a, = q]

From the above, it can be deduced that the state-value function V™ (s) can be expressed as the expectation

of the action-value function Q™ (s, @) over all actions a taken according to policy n. Mathematically, this
can be represented as:

V™(s) = Equre [Q7 (5, @)]

This equation makes clear that V™ (s) is the expected return if the agent starts in state s and thereafter
follows policy =, considering all possible actions weighted by their probabilities under the policy.

3. The Optimal VValue Function, VV*(s), represents the expected return when starting in state s and always
following the optimal policy in the environment

V*(s) = max E; ;[R(7)|s, = s] = max, V"(s)

4. The Optimal Action-Value Function, Q" (s, a), Represents the expected return when starting in state
s, taking action a, and then always following the optimal policy in the environment:

Q*(s,@) = MaxyErr[R(DIs, = 5,0, = a] = max,Q"(s,a)
Table 4 : Summary of Value Functions used in RL

70

Value Functions
VT (s) Expected return starting from state s under policy
Q™ (s,a) Expected return starting from state s, taking action a, and then following policy .
V*(s) Maximum expected return starting from state s under the optimal policy.
Q*(s,a) Maximum expected return starting from state s, taking action a, and then following
the optimal policy

The Optimal Q - Function and the Optimal Action

A link exists between the optimal action-value function Q*(s,a) and the action chosen by the optimal
policy. By definition, Q* (s, a) represents the expected return for starting in state s, taking an arbitrary action
a, and then following the optimal policy indefinitely.

In state s, the optimal policy will choose the action that maximizes the expected return from that state.
Therefore, given Q* (s, a), the optimal action a*(s) can be directly determined as:

a*(s) = argmax, Q*(s,a)
There might exist multiple actions that maximize Q* (s, a). In such cases, all of them are considered optimal,

and the optimal policy may randomly select any of them. However, there always exists an optimal policy
that deterministically selects an action.

Bellman Equations

The value functions follow special self-consistency equations known as Bellman equations. These
equations are grounded in the concept that the value of the starting point comprises the expected reward
from that point and the value of the subsequent point reached.

Bellman equations provide a recursive framework that decomposes the value of a state or state-action pair
into the immediate reward and the expected value of the next state or state-action pair. These equations are

essential in RL as they illustrate how value functions change over time.

For the on-policy value functions, the Bellman equations are:

VT(s) = Eqen si~p [T(s,a) + yV7(s")]
Q"(s,a) = Eg-plr(s,a) + vE.r [Q"(s,a)]]

71

Where s’ ~ P is shorthand for s" ~ P(: |s, @), indicating that the next state s’ is sampled from the
environment’s transition rules, a ~ 7 is shorthand for a ~ 7 (: |s) and a’ ~ 7 is shorthand for a’ ~

(- |s)

The Bellman equation, in both cases V™ (s) and Q™ (s, @), decompose the value into the immediate reward

r(s,a) and the expected value of the next state or state-action pair s' or (s',a’) under the current policy 7.
Lastly, vy is the discount factor, which scales future rewards to reflect their diminished importance relative
to immediate rewards.

The Bellman equations for the optimal value functions are:

V*(s) = maxyEs . p[r(s,a) +yV*(s")]
Q*(s,a) = Es-p[r(s,a) + ymax,Q*(s',a’) |

In the case of optimal value functions, the Bellman equation considers the maximum over actions max, or
action-value pairs max,,, reflecting the fact that the agent aims to choose the action that maximizes the
expected return.

This inclusion of the maximum reflects the optimal decision-making process, where the agent selects actions
that lead to the highest possible value.

Advantage Functions

In RL, it's often more useful to understand how an action compares to others rather than assessing its
absolute value. This relative measure is captured by the advantage function.

The advantage function A™ (s, a) for a policy 7 describes how much better it is to take a specific action a
in state s, compared to randomly selecting an action according to 7z (- |s"), assuming you act according to

T forever after. Mathematically, the advantage function is defined by:
A%(s,a) = Q"(s,a) — V™(s)

This function helps to highlight the benefit of choosing a particular action over the expected value of
actions in that state. This can help in speed and the computational complexity of the algorithm.

72

2.3.2.2 A Taxonomy of RL Algorithms

RL Algorithms

¢ !
Model-Free RL Model-Based RL
¢) ¢ I}
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <— S > DQN 4’| World Models | \—% AlphaZero
— e DDPG - — - -
A2C/A3C <+« — ——> 51 — A |
— e TD3 - — -
PPO - ——— —> QR-DQN —>| MBMF |
s SAC - — -
TRPO D E— —> HER —*| MBVE |

Figure 17 : A non-exhaustive, but useful taxonomy of algorithms in modern RL. (Open Al, Kind of RL Algorithms, 2024)

A taxonomy of algorithms in modern RL is challenging to do due to the adjustable nature and uniqueness
of these algorithms.

This tree structure displays the basic design choices in RL algorithms regarding the learning objectives and
how to achieve them and to showecase the trade-offs involved in these choices.

Model-Free & Model-Based RL

A major branching point in RL algorithms is whether the agent has access to or learns a model of the
environment. A model of the environment is a function that predicts state transitions and rewards.

The main advantage of having a model is that it enables the agent to plan by forecasting the outcomes of
various possible choices and explicitly deciding among them. This planning can be formulated into a learned
policy. A well-known example of this approach is AlphaZero by DeepMind, which mastered chess, shogi,
and go (arguably the hardest board games). This method can significantly improve sample efficiency over
methods that do not use a model.

The main disadvantage is that agents usually lack a ground-truth model of the environment. To use a model,
agents must learn it from experience, which presents challenges. The most significant challenge is that bias
in the model can be exploited by the agent, leading to suboptimal or poor performance in the real
environment despite good performance with the learned model. Model learning is difficult by nature, and
substantial effort and resources may not always yield successful results.

73

Algorithms utilizing a model are called model-based methods, while those that do not are known as model-
free methods. Although model-free methods miss out on potential gains in sample efficiency from using a
model, they are generally easier to implement and fine-tune. As a result, model-free methods are more
popular and have been more extensively developed and tested than model-based methods.

Learning Objectives in RL

Another critical branching point in an RL algorithm is the question of what the agent should learn.
Learning Obijectives in Model-Free RL

There are two main approaches to representing and training agents with model-free RL.:

1. Policy Optimization. Methods in this category explicitly represent a policy as mg(a|s). They optimize
the parameters 6 either directly through gradient ascent on the performance objective J (), or indirectly,
by maximizing local approximations of J(mg). This optimization is typically performed on-policy,
meaning each update only uses data collected while following the most recent version of the policy.
Policy optimization often includes learning an approximator V,, (s) for the on-policy value function

V™ (s),which helps determine how to update the policy.
Examples of policy optimization methods that will be used for the CNC Wear predictor model are:
e A2C/ A3C, which performs gradient ascent to directly maximize performance,

e and PPO, whose updates indirectly maximize performance by optimizing a surrogate objective
function that provides a conservative estimate of how much j(mg) will change as a result of the
update.

2. Q-Learning. This approach focuses on approximating the optimal action-value function Q* (s, @) with

Qo (s, a). Typically, an objective function based on the Bellman equation is used. The optimization is
generally performed off-policy, allowing updates to utilize data collected at any time during training,
regardless of the agent's exploration strategy when the data was obtained. The corresponding policy is
derived from the relationship between Q* and 7™, this means that the actions taken by the Q-learning agent
are determined by:

a(s) = argmax,Qqy(s,a)

Trade-offs Between Policy Optimization and Q-Learning.

Policy optimization methods are good in their own approach, directly optimizing for the desired outcome.
This direct optimization tends to enhance stability and reliability. In contrast, Q-learning methods indirectly
optimize agent performance by training Qg to satisfy a self-consistency equation. This indirect approach
introduces various potential failure modes, making Q-learning less stable. However, Q-learning methods
are significantly more sample-efficient when effective, as they can reuse data more efficiently than policy
optimization techniques.

74

Interpolating Between Policy Optimization and Q-Learning.
Policy optimization and Q-learning are not mutually exclusive and can sometimes be equivalent. A range
of algorithms exists that blend the two approaches, allowing for a careful balance between their respective
strengths and weaknesses. Examples of such algorithms include:

e DDPG, an algorithm which concurrently learns a deterministic policy and a Q-function by using
each to improve the other,

e and SAC, a variant which uses stochastic policies, entropy regularization, and a few other tricks to
stabilize learning and score higher than DDPG on standard benchmarks.

Learning Objectives in Model-Based RL

Model-based RL encompasses a variety of methods that resist simple categorization into a few clusters.
Contrasting model-free RL, there are many unique approaches to using these models.

In the case of the CNC Wear Prediction Model, the environment is complex, so model-based reinforcement
learning is not a suitable choice because constructing an accurate and reliable model of the environment is
highly challenging. Complex environments involve numerous variables, intricate dynamics, and stochastic
elements that are difficult to capture accurately. Any inaccuracies or biases in the model lead to poor
decision-making and suboptimal policies, as the model's predictions will not accurately reflect the real-
world environment. Additionally, developing and maintaining such a model would be computationally
intensive and time-consuming, making model-based approaches less practical for complex environments
compared to model-free methods that directly learn from interactions with the environment using our Phm
Dataset.

2.3.2.3. Policy Optimization

The mathematical basis of policy optimization algorithms will be briefly analyzed in this section.

Deriving the Simplest Policy Gradient

Here, we consider the case of a stochastic, parameterized policy, Tg. We aim to maximize the expected
return.
Consider a stochastic, parameterized policy Tg with the goal of maximizing the expected return:

Jm) = [P(tim) R = B AlRE))

For this derivation, R(7) represents the finite-horizon undiscounted return. The process for deriving the
infinite-horizon discounted return is nearly identical.

Optimizing the policy through gradient ascent involves:

75

Ors1 =0 +a Vg J(mgle,)

The gradient of policy performance, Vg J(7g), is called the policy gradient, and algorithms that optimize
the policy this way are called policy gradient algorithms. Examples include Vanilla Policy Gradient and
TRPO. PPO (in an abstract way)

To implement this algorithm, an expression for the policy gradient that can be computed numerically is
required. This process involves two main steps:

o Deriving the analytical gradient of policy performance, which has the form of an expected value.

e Creating a sample estimate of that expected value, computed using data from a finite number of
agent-environment interaction steps.

Key facts that are useful for deriving the analytical gradient:

1. Probability of a Trajectory. The probability of a trajectory T = (s, ao, ..., St+1) given that actions
are drawn from g is:

P(t10) = po(so) - | | PCsenalsear) - mo(aelsy)
t=o0

2. The Log-Derivative Trick. This method leverages a basic calculus principle: the derivative of log(x)
with respect to x is i When rearranged and combined with chain rule, we get:

VoP(z]0) = P(]6) Volog(P(z]6))

3. Log-Probability of a Trajectory. The log-prob of a trajectory is:

log(P(z|m)) = log(po(so)) + Z(log(P(SHlISt' ar) +log(me(aclse)))
t=0

4. Gradients of Environment Functions. The environment has no dependence on 8, so gradients of
P0(S0), P(St4+11St, ar), and R(t) are zero.

5. Grad-Log-Prob of a Trajectory. The gradient of the log-prob of a trajectory is:

T
Volog (P(116)) = Vologtpstsdy +) (VologtPlommtsrrary + Vologlmy(als)))
t=0

76

Volog (P(z]0)) = Xi-oVelog(mg(arlst))
Combining the above, we derive the following:
Derivation for Basic Policy Gradient:

The derivation for the basic policy gradient starts with the objective to find the gradient of the expected
return with respect to the policy parameters 6:

Vo J(mg) = VoEr z[R(7)]

This expectation can be represented as an integral over all possible trajectories T:
Vobe-nlR(D)] = Vs [PEORE)

The gradient can be moved inside the integral:
f VoP(t|0)R(T)dT

Next, apply the log-derivative trick, which utilizes the identity Vo P(7]|0) = P(t|0)VglogP(7|0) :

]P(Tl@)VglogP(Tle)R(T)dT
This expression can be reformulated back into expectation form:
Er z[VologP(z|0)R(7)]

Recognizing that the probability of a trajectory P(7|8) under policy g can be decomposed into the
product of the probabilities of individual actions given states:

T-1
P(t10) = P(s,) | [mo(arlsoPsenlse e
t=0

Where g (a;|s;) represents the policy’s probability of taking action a; in state s;, the log-probability of

the trajectory is given by:
T-1

logP(z]6) =) logmy(als)
t=0

77

Substituting this back into the expectation:

T-1
Ever|Vo) logmy (at|st)R(r)]
t=0

Since the gradient operator is linear, it can be moved inside the summation:

ET~7T

T-1
D Vologm(arlsoR(®)
t=0

The final expression for the gradient of the expected return J(my) is:

Vo J(mtg) = Erere

> Vologm, (at|st)R(r)]
t=0

This represents the basic policy gradient theorem, indicating that the gradient of the expected return can be
estimated by sampling trajectories, computing the gradient of the log-probabilities of the actions taken, and
weighting these gradients by the returns. This method allows for the optimization of policy parameters in
RL by iteratively adjusting them to maximize the expected return.

To estimate the final expression, which is an expectation, a sample mean can be used. By collecting a set

.....

policy my, the policy gradient is estimated as follows:

T
1
3="1512. . Velogmo(als)R()

teD t=0

In this formula, |D| denotes the number of trajectories in D (in this case, Z).

This is the most straightforward version of the desired computable expression. Assuming the policy is
represented in a manner that allows calculation of Vglogmg(a;|s;), and the policy can be executed in the
environment to gather trajectory data, then the policy gradient can be computed, and an update step can be
performed.

2.4 Reinforcement Learning in Maintenance

RL has significant potential in the field of maintenance, particularly in predictive and preventive
maintenance strategies. In maintenance, RL algorithms can be used to optimize the scheduling of
maintenance activities to minimize downtime and extend the life of equipment. By learning from data on
equipment performance and failure patterns, an RL agent can develop policies that determine the best times
to perform maintenance tasks, balancing the costs of maintenance with the risks of equipment failure.

78

One key application is predictive maintenance, where RL models analyze real-time data from sensors to
predict when a machine is likely to fail and recommend precautionary actions. This approach helps in
avoiding unexpected breakdowns and reduces the overall maintenance cost. Additionally, RL can optimize
inventory management for spare parts, ensuring that the right parts are available when needed without
overstocking or understocking which results in downtime.

The application of RL in predictive maintenance is modeled in a structured manner to effectively address
the complexities of maintenance strategies. The structured approach proposed below outlines the key steps
and methodologies involved in implementing RL for predictive maintenance, ensuring a comprehensive
and efficient solution. The following taxonomy, adapted from various expert sources and demonstrated in
the paper (Siraskar, Kumar, Patil, Bongale, & Kotecha, 2023), illustrates the detailed process and
categorization of RL techniques used in predictive maintenance.

The model approach of RL in predictive maintenance is displayed below:

Objective

PdM Objective Anomaly Fault RUL

Sensor
Modelling the System Physics ‘ squipment Equipment
(e condition dala IEBER
MOP framewark
formulation 1 l l l
I MoP ‘ POMDP SMDP 5-POMDP
Reinforcement Leaming Machine Leaming + Othar
Algarithme techniquas
Model-Frae | Modeh-Basad | J
On-policy Off-palicy Leam the madel J Model is provided Heuristic: ules
+ Bayosian
PaM Agent. Algorithm B networks
. Policy lteration partie fotare
Value Beration Ant-colony
optimization
SARSA Q-Learning Swarm
)) optimization
A (el LETIA, CHH, RIS

PPO DDPG

TRPO HER Other techniquas

;ﬁl

|

RL PdM Agent I

Sum: O or & combination
o mukiple slermerts

Figure 1 A taxonomy of Reinforcement Learning in Predictive Maintenance

The diagram displays the approach for implementing RL in PdM, structured into key sections.

79

The primary objectives include anomaly prediction, fault prediction, and estimating the remaining useful
life (RUL) of equipment.

To achieve these goals, the system can be modeled using physics-based models, real-time sensor data, and
historical equipment meta-data.

Various frameworks for formulating the problem are employed, such as MDP, Partially Observable Markov
Decision Processes (POMDP), Semi-Markov Decision Processes (S-MDP), and Semi-Partially Observable
Markov Decision Processes (S-POMDP).

Reinforcement learning algorithms are categorized into model-free and model-based methods. Model-free
methods, which do not rely on an environment model, are divided into on-policy and off-policy approaches.
On-policy methods optimize based on data from the current policy and include techniques like policy
iteration, value iteration, SARSA (State—action—reward—state—action), A3C, PPO, and TRPO (Trust Region
Policy Optimization). Off-policy methods, such as Q-learning, DQN, DDPG, and HER (Hindsight
Experience Replay), use data from various policies.

Model-based methods utilize an environment model, which can either be learned from data or provided
beforehand. These methods allow the agent to plan by simulating different scenarios and optimizing its
actions based on the predicted outcomes.

In addition to RL algorithms, other techniques can be employed to enhance predictive maintenance
capabilities. The sum of these processes results in the creation of an RL PdM Agent.

The integration of various techniques within this structured approach results in an RL PdM Agent capable
of making informed, data-driven decisions, ultimately extending the lifespan of machinery and improving
overall operational efficiency. The proposed approach will be discussed in detail in the following
chapters, highlighting its potential benefits and implementation strategies in the context of predictive
maintenance.

80

3. Approach

3.1 The objective

This chapter analyzes the process of modeling a reinforcement learning (RL) problem using data collected
from sensors. Initially, this data will be processed and subsequently transformed into a Markov Decision
Process (MDP). Through the MDP, a suitable environment will be developed for the implementation of
various RL algorithms, which will be trained on the processed data set. The last step is, after the training,
the algorithms will be evaluated to determine their effectiveness. If their performance is satisfactory, they
can be utilized to perform predictions related to predictive maintenance.

This process is displayed in the figure below:

[(Objective: Wear Prediction) j

r A

Sensor Equipment
Condition Data

(" Section : 3.2
\‘Sectlon : 3.2)

Data Processing
& Reinforcement Learning

Feature Extraction Algorithms

Transformed Data

Section: 3.3)

MDP Environment

Section : 3.4

[RL PdM Agent w:
)

[Evaluation Section : 3.6/)

Figure 18 : Structure of the Proposed Approach

81

Table 5 : Input & Output of each step of the Proposed Approach

Section Step Input Output

3.2 Data Structure Sensor Signals Structured Data

3.3 Data Processing Structured Sensor Data Transformed Data

3.4 MDP Transformed Data Observation Space, Action
Reinforcement Learning Space, Reward Function,
Algorithm Episode Information

3.5 RL Algorithm Observation, Reward Action

3.6 Evaluation Trained RL Model Evaluation Metrics

3.2 Data structure and input parameters

In the context of predictive maintenance and degradation prediction, understanding the data structure and
input parameters is crucial. The dataset typically consists of time-series data collected from various sensors
attached to machinery. The data gathered from the sensors is formulated in a table form with each row
corresponding to a sensor value at a specific timeframe. These sensors capture critical parameters such as
vibrations, temperature, and pressure over time. By continuously monitoring these parameters, it becomes
possible to detect anomalies and predict equipment failures before they occur. The integrity and quality of
this data are paramount, as they form the foundation for subsequent analysis and predictive modeling.

The input parameters include not only the raw sensor readings but also derived features that help in
capturing the underlying patterns and trends in the data. These features can be statistical metrics, frequency
domain features, or other complex transformations that reveal more about the machine's operational state.
Properly selecting and engineering these features is a key step in building effective predictive models.
Features must be chosen based on their relevance to the wear and tear of the machinery, ensuring they
provide meaningful insights into the equipment's condition.

Proper configuration and preprocessing of these parameters are vital to ensure the accuracy and reliability
of the predictions. This process involves cleaning the data to remove noise and errors, normalizing it to
ensure consistency, and possibly augmenting it to create a more robust dataset. By meticulously preparing
the data, it is possible to enhance the performance of predictive algorithms, leading to more accurate and
reliable maintenance schedules. Thus, understanding and structuring the data appropriately is the first
critical step in the journey towards effective predictive maintenance.

In order to preprocess the data, it is essential to know what needs to be cleaned. Therefore, the first step is
to visualize the data. Visualization allows for the exploration and understanding of the data's characteristics,
distributions, and potential anomalies. By creating plots and charts, such as time series plots, histograms,
and scatter plots, patterns, trends, and outliers can be identified. This initial exploratory data analysis (EDA)
helps in recognizing any inconsistencies or irregularities that need to be addressed during preprocessing.
Visualization not only aids in detecting errors and noise but also provides insights into the data's structure,
which is crucial for effective feature engineering and subsequent modeling steps.

82

3.3 Pre-processing & Feature Extraction

Pre-processing and feature extraction are fundamental steps in preparing the data for predictive maintenance
models. These steps involve transforming raw sensor data into meaningful features that capture the essential
characteristics of the equipment's operational state derived from the sensor's feedback. The transformation
process typically includes cleaning, normalization, and extraction of relevant features. This is done to
enhance the quality of the data, making it more suitable for machine learning models. By reducing noise
and correcting for any inconsistencies, pre-processing ensures that the data accurately reflects the true
condition of the machinery (the true value of the sensors).

Feature extraction plays a critical role in this process by deriving new variables from the raw data that are
more informative for predicting equipment wear and failures. These features can be statistical summaries
like mean and variance, signal processing metrics like root mean square (RMS), or domain-specific
indicators. The goal is to distill the raw data into a set of features that provide the most insight into the
machine's health, thereby improving the predictive power of the models. This step is essential for handling
the high-dimensional nature of sensor data and focusing on the most relevant aspects.

Through careful pre-processing and feature extraction, it becomes possible to create a more manageable
and informative dataset. This dataset not only improves the accuracy of predictive models but also reduces
computational complexity. Efficient feature extraction techniques can significantly tackle the curse of
dimensionality and enhance the ability to detect early signs of wear and predict failures, leading to more
effective maintenance strategies. As such, pre-processing and feature extraction are irreplaceable steps in
the workflow of predictive maintenance.

3.3.1 Curse of Dimensionality

The "curse of dimensionality"” is a concept that describes the challenges and negative effects that arise
when working with high-dimensional data in various fields like machine learning and other fields. It was
first popularized by Richard Bellman in his book "Dynamic Programming"” (1957). As the number of
dimensions in a dataset increases, various issues emerge, complicating analysis and modeling.

83

Classifier performance

I.I‘IIJI.PIJ.III]JI.IIJI.III.

D T ;I T T ‘ T T T T 1 T T T T 1 T T T T 1 T T T T I
0 Dimensionality (number of features)
i

Optimal number of features

Figure 19 : Curse of Dimensionality Graph

First, computational complexity escalates dramatically with the increase in dimensionality. This
complexity arises from the exponential growth in the number of possible combinations or configurations of
data points as you add more dimensions. This exponential increase leads to higher demands on
computational resources, making tasks like searching, sorting, or performing clustering in high-dimensional
space increasingly time-consuming and resource-intensive.

Relevant Research done by (Beyer & Goldstein, 1999) demonstrated that common indexing techniques
used in low-dimensional spaces fail to work efficiently in high-dimensional spaces due to the exponential
increase in search complexity.

Another significant issue is the inherent sparsity that comes with high-dimensional data. When you expand
into more dimensions, data points are spread out over a larger space, resulting in fewer points within any
given volume. This sparsity makes it challenging to identify meaningful patterns or relationships among the
data. It also complicates statistical analysis, as you need more data points to achieve statistical significance
in a high-dimensional space. (Bellman, 1961) in "Adaptive Control Processes: A Guided Tour" discussed
how adding more dimensions makes it exponentially harder to estimate functions due to sparse data. Also,
(Aggarwal, Hineeburg, & Keim, 2002) illustrated how data becomes sparse in high-dimensional spaces,
affecting nearest-neighbor algorithms and clustering.

The distance measures and concentration of distances is another problem within the curse of
dimensionality. As the number of dimensions grows, the distances between data points tend to converge,
which can render distance-based metrics like Euclidean distance less effective. When distances become
similar, traditional methods for clustering or identifying nearest neighbors lose their discriminative power,
making it difficult to distinguish between similar and dissimilar data points.

In addition to computational complexity, sparsity, and the concentration of distances, high-dimensional data
often leads to overfitting in machine learning models. Overfitting occurs when a model learns the specific
noise or random fluctuations in the training data rather than capturing general patterns. With more

84

dimensions, models become highly flexible, capable of fitting data points precisely, but at the cost of
generalization. This risk of overfitting can result in poor performance on new or unseen data. (Beyer &
Goldstein, 1999) also analyzed how distances converge in high-dimensional data, leading to concentration,
which reduces the effectiveness of distance-based methods like k-Nearest Neighbors and clustering.
(Pestov, 2000) in his paper “On the geometry of similarity search: Dimensionality curse and concentration
of measure” discussed how traditional distance measures lose discriminative power in high-dimensional
spaces.

Lastly, High-dimensional data is hard to visualize, making exploratory data analysis more difficult.

Overall, the curse of dimensionality encompasses the various difficulties that arise when the dimensionality
of a dataset is very high, to tackle this problem the Time domain Features are a possible solution.

3.3.2 Time domain Features

Figure 20 : Time Domain Data Analysis

Time domain features are crucial in industry, particularly for predictive maintenance, where the goal is to
anticipate equipment failures and minimize downtime. In industrial settings, machinery and equipment are
monitored continuously, generating vast amounts of time-series data from sensors that measure vibrations,
temperature, pressure, and other critical parameters. Time domain features allow engineers and data
scientists to analyze this data efficiently, extracting meaningful patterns and identifying early signs of wear
or impending failure. Features such as mean, variance, root mean square (RMS), and zero-crossing rate
offer insights into the operational health of equipment. By monitoring these features over time, maintenance
teams can detect anomalies, such as an increase in vibration or a shift in temperature patterns, which often
indicate that a component is nearing failure. This early detection enables proactive maintenance, reducing
unscheduled downtime and extending the lifespan of machinery.

Time domain features refer to characteristics derived from analyzing time-series data - data points
collected or observed at different time intervals. These features are crucial for understanding the underlying
patterns, trends, and relationships in the data and are used in a wide range of applications.

85

Types of Time Domain Features

Time domain features can be categorized based on their function and purpose:

Basic Statistical Time Domain Features:

Mean: The average value over a given time period. It provides a sense of central tendency.
N
1
Mean = u = NZ X;
=1

Median: The middle value when data is arranged in ascending order, it is a good measure against
outliers.
Median = middle value of sorted {x{,x5,..., Xy}

Standard Deviation: Reflects the dispersion or spread of data around the mean, it is indicating
variability.

Standard Deviation = o =

Variance: Represents the average squared deviation from the mean, providing a sense of the
distribution's spread.

1 N
Variance = % = NZ(xi —n)?
i=1

Range: The difference between the maximum and minimum values in a time series, indicating the
total span of the data.
Range = Xmax — Xmin

Signal Processing Features:

Root Mean Square (RMS): This measures the square root of the mean of the squares of all values
in the time series. RMS is often used in engineering and signal processing to determine the
magnitude or energy of a signal, providing a more accurate measure of a signal's power compared
to simple averages.

RMS =

Zero-Crossing Rate: This feature indicates how frequently a signal changes sign, which is useful
in identifying high-frequency components or rapid changes in a signal. It is commonly used in audio

86

and speech processing to differentiate between voiced and unvoiced speech segments, among other
applications.

Zero — Crossing Rate = {X(t) <O0and X(t +1) > 0} or {X(t) < O and X(t + 1) > 0}
|X(@) - X(t+1)| > e,

where ¢ is a threshold to avoid miscounting zero crossing due to noise.
(Torres-Garcia, Mendoza, Reyes-Garcia, & Villasenor-Pineda, 2022)

Autocorrelation: This measures the correlation of a time series with its lagged version. It helps
identify repeating patterns, trends, or cyclic behavior in a dataset. Autocorrelation is valuable in
analyzing seasonality in time-series data or detecting hidden cycles.

N-7

1
Autocorrelation(t) = T— Z (x; * Xipr)
i=1

Energy: This is a measure of the total energy contained in a time-series signal. It provides insights
into the intensity or activity level of a signal, commonly used in vibration analysis and fault
detection.

Energy = Xilx{

Area Under the Curve (AUC): This is the total area between the time series and the x-axis over a
specified interval. AUC is useful for understanding the cumulative effect of a time series, often
applied in physiological data analysis to measure total activity or response over time.

t2
AUC = f x(t)dt
t

1

Crest Factor: This is the ratio between the peak value and the RMS value, indicating the dynamic
range of a signal. It is commonly used in mechanical engineering to detect anomalies in vibration
patterns.

max|[x;]

Crest Factor =
rest Factor RMS

Higher-Order Statistical Features:

Skewness: Indicates the asymmetry of the data distribution. A skewed time series may suggest
trends or biases.

E [(xi - 5)3]

Sk =
ewness RMS?

87

Kurtosis: Reflects the "tailedness" of the data distribution, which can reveal the presence of outliers
or extreme events.

1 <N 4

yli=(xi—x

Kurtosis = M
RMS

These time domain features serve as an essential tool for making sense of time-series data. They
provide a concise yet comprehensive way to understand the underlying patterns, detect anomalies,
and reduce data complexity, contributing to better insights and more effective applications across a
wide range of fields.

Understanding and structuring the data appropriately is the first critical step in the journey towards
effective predictive maintenance. Once the data has been cleaned, visualized, and features have
been extracted, the next phase involves modeling the problem as a Markov Decision Process (MDP)
to enable the application of reinforcement learning (RL) algorithms.

3.4 Modeling an MDP

In order to structure the Markov Decision Process, we need to carefully define the environment in which
the agent will take actions.

As it was mentioned in 2.2.1 MDP | Sequential Decision Problem, a MDP consists of the following
components: States Space, Action Space, Transition Model, Reward Function and the starting state
distribution po.

Therefore, an MDP is a 5-tuple, (S, A, R, P, po), where:

S is the set of all valid states,

A is the set of all valid actions,

R:S x A XS — R isthe reward function, with ., = R(s¢, a¢, St +1)

P:S x A - P(S) is the transition probability function, with P(s’|s,a) being the probability of
transitioning into state s’ if you start in state s and take action a,

and po is the starting state distribution.

In the context of the degradation prediction problem, the above parameters of the 5-tuple MDP need to be
configured and mapped to the following:

State S; : The state at any time step t is represented by the condition of the machine parts and the
value of the sensors attached to the machines at t. The intent is to predict the wear overtime so
specific information need to be observed in order to induce the further wear of the machine. The
vector containing all the information of the environment is called the state of the environment.

The set S contains all the valid states S; ,Vt of the environment, therefore it contains all the
different wear states and values the examined equipment may attain.

88

Action a; : The action space consists of a n-dimensional space representing the wear of the n
component of the machine we are monitoring.

a; = [actionq,action,,...,action,], where:

action, (prediction,) : The prediction of the agent for the additional wear of
the component 1 at timestep t

action, (prediction,) : The prediction of the agent for the additional wear of
the component 2 at timestep t

action, (prediction,) : The prediction of the agent for the additional wear of
the component n at timestep t

The action is the corresponding additional wear that the agent predicts for the component. This
vector can be either discrete or continuous depending on the PdM Obijective. In the case of wear
prediction, a continuous action space is more fitting, since the wear is not a discrete metric.

If the objective was a Remaining Useful Life Prediction the action space would be different, and
the vector might be of a different type (float, integer). However, the model would operate in a
similar manner.

Transition Probabilities (P): The transition probabilities define how the state changes in response
to actions. Depending on how the machine operates the resulting induced wear is a stochastic
phenomenon. Because it is a stochastic phenomenon, the way predictions are managed is through
calculating the probability of the given wear occurring given the current state. The name Markov
Decision Process refers to the fact that the system obeys the Markov property, which means that
transitions only depend on the most recent state and action, and not on prior history. The probability
of transitioning to state s;.; given the current state s; and action a; is denoted by P(s¢41 (St a¢)

Reward R; : The reward function is designed to provide feedback to the agent based on the
accuracy of its predictions. Depending on the objective a different reward function will be used,
penalizing bad behavior and rewarding good behavior-actions. Specifically for wear prediction, the
reward can be computed based on the difference between the predicted wear and the actual wear
observed. Although this is a credible method, more advanced ways of scoring the reward are usually
used called score functions. The score functions behave differently in the case of a bad action and
a good action in order to help the agent understand. The general formula of a reward can be:

R, = Scores(predicted value — actual value)

89

Starting state distribution po defines the probability distribution over the initial states from which
the agent begins its decision-making process in the environment. This distribution is crucial as it
sets the initial conditions and significantly influences the early stages of learning and exploration.

In the context of the degradation prediction problem, po represents the likelihood of various initial
wear conditions and sensor readings of the machine at the start of the monitoring period. The initial
state could be determined based on historical data, reflecting common starting conditions observed
in past machine operations. Alternatively, in a model-based approach it could be initialized
randomly within a feasible range defined by the physical and operational constraints of the
machinery.

A well-defined po ensures that the agent experiences a realistic range of initial conditions during
training, promoting robust learning and better generalization to real-world scenarios. It is important
to capture the variability and distribution of initial states accurately, as this affects how the agent
learns to handle different wear patterns and predict maintenance needs effectively.

To solve the degradation prediction problem with RL, it is essential to carefully design the environment in
which the agent will operate. The following sections will elaborate on how RL works in practice, and the
potential algorithms that can be used for this problem.

3.5 Solving with RL

In this section, we will explore how RL works in practice and examine the potential algorithms we can
use for this problem.

3.5.1 VPG | Vanilla Policy Gradient

The Vanilla Policy Gradient (VPG) algorithm (Sutton, McAllester, Singh, & Mansour, 2000) is founded on
the principle of adjusting the probabilities of actions to maximize returns. Specifically, the algorithm
increases the probabilities of actions that yield higher returns and decreases the probabilities of actions that
lead to lower returns. This iterative process continues until the optimal policy is achieved.

VPG is an on-policy algorithm, meaning it learns from actions taken based on the current policy. It is
versatile and can be applied to environments with either discrete or continuous action spaces.

The mathematical formulation of VPG involves defining a policy mg, with parameters 8 and the expected
finite-horizon undiscounted return of the policy, /(). The gradient of J(mg) is given by:

Vo J(1tg) = Erng [?:0 Volog mo(aclse) - A™ (s, ar)]
where 1 is a trajectory and A™ is the advantage function for the current policy.

The policy gradient algorithm updates the policy parameters through stochastic gradient ascent on policy
performance:

90

Ore1 = Ok + alVg J(mg,)

In practice, policy gradient implementations often estimate the advantage function based on the infinite-
horizon discounted return, although they use the finite-horizon undiscounted policy gradient formula.

VPG trains a stochastic policy (Schulman, Optimizing Expectations: From Deep Reinforcement Learning
to Stochastic Computation Graphs, 2016) in an on-policy manner, meaning it explores the environment by
sampling actions according to the latest version of its stochastic policy. The randomness in action selection
depends on the initial conditions and the training procedure. As training progresses, the policy typically
becomes less random, as the update rule encourages the exploitation of rewards that have already been
found. This can sometimes lead to the policy becoming trapped in local minimum, balancing the trade-off
between exploration and exploitation.

Pseudocode

Algorithm 1 Vanilla Policy Gradient Algorithm

1: Input: initial policy parameters #, initial value function parameters ¢

2: for k=0,1,.2,... do

3. Collect set of trajectories Dy = {7;} by running policy 7, = m(6},) in the environment.
4: Compute rewards-to-go R;.
5. Compute advantage estimates, A; (using any method of advantage estimation) based
on the current value function V5, .
Estimate policy gradient as
1 T
gr = |7 E Z Vg log Tre(at|=‘5't)|9k Ay
€Dy t=0
7. Compute policy update, either using standard gradient ascent,
Or+1 = Ok + e Gr,
or via another gradient ascent algorithm like Adam.
8: Fit value function by regression on mean-squared error:
2
Ori1 = arg mm E E () ,
|Dﬁ T
&Dg‘ t=0
typically via some gradient descent algorithm.
9: end for

Figure 21 : Pseudocode of the VPG Algorithm Implementation by (Open Al, Vanilla Policy Gradient, 2024)

Explanation of Pseudocode in the Displayed Steps

1: Initialization of parameters, the parameters are used to initialize the policy and the value function
that will be optimized.

2: The algorithm runs for k = 0,1,2, ..., looping and improving the policy.

91

3: A set of trajectories is collected by running the current policy in the environment. Each trajectory
iS a sequence of states, actions and rewards obtained by following the policy.

4: Calculate the rewards-to-go for each time step in the trajectory. The rewards-to-go represent the
cumulative future rewards from a given state.

5: Compute the advantage estimates using any method of advantage estimation, based on the current
value function. Advantage estimates indicate how much better or worse an action is compared to
the expected value from that state.

6: The policy gradient g, is estimated as the average of the gradients of the log-probabilities of the
actions taken, weighted by the advantage estimates.

7: Update the policy parameters 8 using any gradient ascent algorithm

8: The objective is to fit the value function by performing regression on the mean-squared error
between the value function predictions and the rewards-to-go. "Fit the value function" means to
update the parameters of the value function by minimizing the mean-squared error between the
predicted values and the actual rewards observed, ensuring the value function accurately reflects
the expected returns.

9: The process repeats, iteratively refining the policy and value function parameters to maximize
the expected return.

3.5.2 TRPO | Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) (Schulman, Levine, Moritz, Jordan, & Abbeel, 2015) updates
policies by taking the largest step possible to improve performance while ensuring the new and old policies
remain close. This closeness is measured using KL-Divergence, which quantifies the difference between
probability distributions.

Unlike standard policy gradient methods that keep policies close in parameter space, TRPO focuses on the
performance space. Small differences in parameters can lead to significant performance variations, making
large steps risky in vanilla policy gradients. TRPO avoids such pitfalls, ensuring more stable and efficient
learning.

TRPO is an on-policy algorithm suitable for both discrete and continuous action spaces.

Mathematical Formulation

Let 4 denote a policy with parameters 8. The theoretical TRPO update is:

Orx+1 = argmaxgL(By,0) such that Dy, (0]|0x) < 6

92

Here L£(8,, 0) is the surrogate advantage, measuring how the new policy g performs relative to the old
policy mq, Using data from the old policy 7g , :

mg(als)

L6k, 0) = Esa-ng, Iﬂe(—als)
k

Ak (s, a)l

Dy (0]16y) is an average KL-divergence between policies across states visited by old policy, the KL-
divergence constraint is:

Dy (0116) = Esemy, |Die (0 19)11mg, - 15))]

The theoretical TRPO update poses practical challenges, approximations are a good trick for quick
solutions. To address this, TRPO employs a Taylor expansion of the objective and constraint around 6,,:

L0k, 0) ~ g"(0—6y)
— 1
D (8116x) ~ 5 (8 = 0,)"H(— 1)

This results in an approximate optimization problem,

1
Or+1 = argmaxg gt (0 — 0)) such that > 6—0)THO—0,) <6
Solving this with Lagrangian duality (Boyd & Vandenberghe, 2009) gives:

28

g"H g g

Ok+1 = O +

A problem is that, due to the approximation errors introduced by the Taylor expansion, this may not satisfy
the KL constraint, or actually improve the surrogate advantage. TRPO adds a modification to this update
rule: a backtracking line search,

However, due to approximation errors from the Taylor expansion, this may not always satisfy the KL
constraint or improve the surrogate advantage. If we were to stop here, and just use this final result, the
algorithm would be exactly calculating the Natural Policy Gradient (Kakade, 2001). TRPO refines this
approach with a backtracking line search:

26

Ors1 = Op +a’ mH_lg

where a € (0,1) is the backtracking coefficient and j is the smallest nonnegative integer that meets the KL
constraint and produces a positive surrogate advantage.

93

Computing and storing the matrix inverse H~1 is computationally expensive, especially with neural network
policies involving thousands or millions of parameters. TRPO avoids this issue by using the conjugate
gradient algorithm to solve H, = g forx = H~'g. This approach requires only a function to compute the
matrix-vector product H, rather than the entire matrix H. This is achieved by setting up a symbolic operation
to calculate

Hy = Vo((V Dk, (0116:))"x)
This formula returns the current output without computing the whole matrix.

Exploration vs. Exploitation

TRPO is an algorithm that trains a stochastic policy following an on-policy method, exploring by sampling
actions according to the latest version of its stochastic policy. The randomness in action selection decreases
over time as the policy exploits known rewards. This gradual reduction in randomness encourages the policy
to leverage the rewards it has found, though it may sometimes get trapped in local minimum.

94

Pseudocode

Algorithm 1 Trust Region Policy Optimization
1: Input: initial policy parameters 6y, initial value function parameters ¢g
2: Hyperparameters: KL-divergence limit 4, backtracking coefficient ¢, maximum number
of backtracking steps K
3: for k=10,1,2,... do
4: Collect set of trajectories Dy = {7;} by running policy m}, = m(f) in the environment.
5. Compute rewards-to-go R,.
6: Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function Vj, .
7. Estimate policy gradient as

T
. 1
e = W Z Z Vg log mg(a

| reDy t=0

5*”& A,.

8. Use the conjugate gradient algorithm to compute

o

f’k =~ Hﬁ‘_lf}k

where H, is the Hessian of the sample average KL-divergence.
9: Update the policy by backtracking line search with

i 20
H;H_] = l.(?'j\\ + CI'J ATﬂ—AIk,
i .Hk;Ek

where j € {0,1,2,...K} is the smallest value which improves the sample loss and
satisfies the sample KL-divergence constraint.
10: Fit value function by regression on mean-squared error:

; T c
i1 = arg min |'Di|T Z Z (V;,-':(-f!’i) = !"f-,_)z-.

&
TeDy (=0

typically via some gradient descent algorithm.
11: end for

Figure 22 : Pseudocode of the TRPO Algorithm Implementation by (Tensorflow, 2024)

Explanation of Pseudocode in the Displayed Steps

1: The algorithm starts by initializing the policy parameters 6, and the value function parameters ¢,. These
are the starting points for the policy and value function that will be iteratively updated.

2: The KL-divergence limit §, backtracking coefficient a, and the maximum number of backtracking steps
K. These hyperparameters control the extent of updates and ensure that changes to the policy do not diverge
too drastically.

3: For each iteration k, the algorithm performs a series of steps to update the policy.

4: The current policy is used to run the environment and collect a set of trajectories.

5: The rewards-to-go are calculated for each time step. This involves summing future rewards, providing
an estimate of the total expected reward from each state-action pair.

95

6: Advantage estimates are computed using the current value function V,,, . The advantage function provides
a measure of how much better an action is compared to the average action at a given state.

7: The policy gradient is estimated by computing the gradient of the log probability of actions taken,
weighted by the advantage estimates. This gradient points in the direction of improving the policy.

8: To avoid the computational expense of directly inverting the Hessian matrix, the conjugate gradient
algorithm is used to approximate H™1g.

9: The policy is updated using a backtracking line search to ensure the new policy satisfies the KL-
divergence constraint. This step involves iteratively adjusting the step size to find the maximum feasible
step that improves the policy.

10: The value function parameters are updated by minimizing the mean-squared error between the predicted
values V,,(s;) and the rewards-to-go R;. This regression step helps the value function accurately predict
future rewards.

11: The loop continues until the algorithm converges or the maximum number of iterations is reached. The
policy and value function are iteratively improved through this process.

3.5.3 PPO | Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) is designed
to take the largest possible improvement step on a policy using the available data without risking
performance collapse. Unlike TRPO, which uses a complex second-order method, PPO employs simpler
first-order methods with additional techniques to ensure new policies remain close to old ones, achieving
similar performance with greater implementation ease.

PPO combines elements from A2C (using multiple workers) and TRPO (Trust Region for actor
improvement). The main idea is to keep the new policy not too far from the old policy after an update, using
clipping to prevent large updates.

PPO is an on-policy algorithm suitable for environments with both discrete and continuous action spaces.
There are two primary variants of PPO:

PPO-Penalty addresses the KL-constrained update similarly to TRPO but takes a different
approach by incorporating a penalty for KL-divergence directly into the objective function. Instead
of enforcing a hard constraint, it dynamically adjusts the penalty coefficient during training to
ensure it is appropriately scaled, promoting stable and efficient policy updates.

PPO-Clip avoids using a KL-divergence term or any hard constraints in the objective function.
Instead, it employs specialized clipping to prevent the new policy from deviating significantly from
the old policy. This method effectively maintains policy stability without the need for complex
calculations. Our implementation focuses exclusively on PPO-Clip due to its simplicity and
effectiveness within our Tech Stack (stable-baselines 3 library).

Mathematical Formulation
PPO-clip policies update with this formula:

96

9k+1 = argmaxGEs,a~n9k [L(S’ a, ek’ 9)]

This involves taking multiple steps of Stochastic Gradient Descent (SGD) (Bottou, 1991) to maximize the
objective. Here, L is given by:

mg(als)

_ [mplals)
L(s,a,0,,0) = mm(”ek(a|5)A (s,a),clip < @als)’ 1 s,1+s>A (s,a))

where ¢ is a small hyperparameter that limits how far the new policy can deviate from the old one.

The clipping function is defined as:

[me(als) >
clip| —=,1—¢,1+¢
p(ﬂek(als)

Tg(als)

o, (als)
exceeds this range, it is "clipped" to stay within the bounds. This constraint prevents excessive updates to
the policy, maintaining the new policy close to the old one, and thus avoids large, potentially destabilizing
updates. This is crucial for the stability and reliability of policy updates in PPO.

This function ensures that the ratio is constrained within the interval [1 —&,1 +]. If the ratio

The formula L(s, a, 8y, 8) is complex and it essentially helps to keep the new policy close to the old policy
by constraining the probability ratio. A simplified version of this objective (Achiam , 2018), which is the
one implemented in the code, is:

mg(als)

L(s,a,0,,0) = min
(6) <7T9k(a|5)

A"k (s,a), g(e, A0k (s, a)))

(1+e)-4,A>0

Where g(g,A) = {(1_8).,4 A<0

To understand this approach, it is useful to consider a single state-action pair (s, a) and examine different
scenarios.

Advantage is positive: If the advantage is positive for a given state-action pair, the contribution to the
objective simplifies to:

L(s,a,0;,0) =min < E ||)) (1+6)>A"9k(s,a)

Since the advantage is positive, the objective increases if mg(a|s) increases. However, the minimum
function limits this increase. When mg(als) > (1 + &), (als), the minimum function caps the term at

(1 + €)A™ (s, a). Therefore, the new policy does not gain by deviating significantly from the old policy.

97

Advantage is negative: If the advantage for a given state-action pair is negative, the contribution to the
objective simplifies to:
mg(als)

L(s,a,0,0) = max|————=,
() <7T9k(a|5)

1- 6)) A"k (s, a)

Since the advantage is negative, the objective increases if gy (a|s) decreases. However, the maximum
function limits this increase. When gy (als) < (1 — €)mg, (als), the maximum function caps the term at

(1 — €)A™k (s, a). Therefore, the new policy does not benefit from deviating significantly from the old
policy.

Clipping acts as a regularizer by eliminating incentives for dramatic policy changes, with the
hyperparameter e controlling the permissible deviation from the old policy while still benefiting the
objective.

Although clipping helps ensure reasonable policy updates, a new policy might still deviate excessively.
Different PPO implementations use various techniques to prevent this. In our implementation, a simple
method called early stopping is employed. If the mean KL-divergence between the new and old policies
exceeds a threshold, gradient steps are halted to maintain stability.

Exploration vs. Exploitation

The PPO algorithm trains a stochastic policy in an on-policy method, meaning it explores by sampling
actions based on the current stochastic policy. The randomness in action selection depends on initial
conditions and the training process. Over time, the policy becomes less random as the update rule
encourages exploiting previously discovered rewards. This reduction in randomness can lead to the policy
getting trapped in local minimum.

98

Pseudocode

Algorithm 1 PPO-Clip
1: Input: initial policy parameters 6, initial value function parameters ¢,
2: for k=0,1,2,... do
3: Collect set of trajectories Dy = {7;} by running policy m; = 7(f}) in the environment.
4: Compute rewards-to-go R;.
5. Compute advantage estimates, A, (using any method of advantage estimation) based
on the current value function V,, .
6: Update the policy by maximizing the PPO-Clip objective:

Clt L"t)
O = arg Max 1 min
|D ‘ ﬂ'ﬂk @y

reD, t=0 5t)

Tol0el31) pmy (s, a0, g(e,Awsham):

typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:

2
— d V) 0
Ok+1 fugmm \DHT Z Z(s(5t) ,

TED) t=0

typically via some gradient descent algorithm.
8: end for

Figure 23 : Pseudocode of the PPO Algorithm Implementation by (Open Al, Proximal Policy Optimization, 2024)

Explanation of Pseudocode in the Displayed Steps

1: 64,0, are initialized. These parameters will be updated in every loop to improve the police and value
function

2: For each iteration k, the algorithm executes the following steps to refine the policy.

3: The current policy is used to interact with the environment, generating a set of trajectories.

4: Calculate the rewards-to-go for each time step in the trajectories. This involves summing the future
rewards to estimate the total expected reward from each state-action pair.

5: Using the current value function, compute the advantage estimates. The advantage function indicates
how much better an action is compared to the average action at a given state

6: The policy is updated by optimizing the PPO-Clip objective function. This involves maximizing the
expected advantage while ensuring that the new policy does not deviate too much from the old policy. The
objective is to find the parameter 6 that balance exploration and exploitation, ensuring stable policy
improvement.

7: The value function parameter, ¢, is updated by minimizing the mean-squared error between the predicted
values and the computed rewards-to-go. This regression step ensures that the value function accurately
predicts the expected rewards, improving the quality of the advantage estimates used for policy updates.

8: The loop continues until a certain criterion is met, such as a set number of iterations or convergence of
the policy and value function parameters. This iterative process ensures continuous improvement of the
policy and value function, leading to better performance over time.

99

3.5.4 A2C | Advantage Actor Critic

Advantage Actor-Critic (A2C) (Mnih, et al., 2016) is a synchronous reinforcement learning algorithm that
enhances the Asynchronous Advantage Actor-Critic (A3C) by synchronizing data collection across multiple
parallel workers. This approach mitigates the high variance and noisy gradients seen in vanilla policy
gradients by incorporating a baseline, typically the value function, which stabilizes learning.

In A2C, the Actor updates the policy distribution based on feedback from the Critic, who estimates the
value function. The advantage function A(s,a) = Q(s,a) — V(s) quantifies how much better taking action
a in state s is compared to the average action. This advantage function helps calculate the policy gradient,
ensuring policy parameters are updated to maximize expected returns. The policy gradient formula is given

by:

Reducing Variance with a Baseline

One way to reduce variance is by subtracting a baseline from the cumulative reward, making the gradients
smaller and more stable. The state-value function V (s) is often used as the baseline, which helps stabilize
the learning process.

T
Vo Jo(T6) = Eemy) Vologmo(acls)Alse, ao)

t=0

The synchronous nature of A2C ensures efficient and stable training, suitable for various complex
environments. This method effectively balances exploring new actions with exploiting known rewards,
leading to robust and efficient policy learning.

Pseudocode for A2C
This code is an unofficial implementation of A2C unlike all the pseudocodes provided for all other
algorithms.

Algorithm: Advantage Actor - Critic (A2C)

Steps

1. | Initialize policy parameters 6 and value function parameters ¢

2. | for each episode:

a. Initialize state s from the environment

b. [Initialize lists to store log probabilities, values, and rewards

c. | for each step in the episode:

100

i. | Compute value V(s) and policy distribution 7 (a|s) using the Actor-Critic network

ii. | Sample action a from policy distribution (a|s)

iii. | Execute action a in the environment to get next state s’, reward r, and termination flag

iv. | Store log probability logm(a|s), value V(s), and reward r

v. | Update state s to s’

vi. | if termination flag is true, break the loop

d. | Compute rewards-to-go R, for each time step

e. | Compute advantage estimates A, = R, — V(s;)

f. | Update policy parameters 6:

i. | compute policy gradient Vo = %Zt LiVglogm(ae|sy) A,

ii. | Apply gradientascent: 8 = 6 + ag Vg

g Update value function parameters ¢:

i | compute value function loss L, = %Zt (v, — Rti:g)z

ii. | Apply gradient descent: ¢ = ¢ — a,,V,L,

3. end for

Table 6 : A2C Pseudocode
Explanation of the Pseudocode

Initialization: The algorithm starts by initializing the policy parameters 6 and the value function parameters
¢. These parameters will be updated iteratively throughout the learning process.

Episode Loop: For each episode, the algorithm resets the environment to get the initial state s. It initializes
lists to store log probabilities, values, and rewards collected during the episode.

Step Loop: Within each episode, the algorithm iterates through a series of steps:

101

1. Compute Value and Policy: The Actor-Critic network is used to compute the value of the current
state V(s) and the policy distribution (als).

2. Sample Action: An action « is sampled from the policy distribution.

3. Execute Action: The action is executed in the environment, resulting in a new state s’, a reward r,
and a termination flag indicating whether the episode has ended.

4. Store Values: The log probability of the action, the value of the current state, and the reward are
stored.

5. Update State: The current state is updated to the new state (s').

6. Check for Termination: If the termination flag is true, the step loop is terminated (break).

Compute Rewards-to-Go: After the episode ends, the rewards-to-go R, are computed for each time step.
This represents the cumulative future rewards from each state.

Compute Advantage Estimates: The advantage estimates 4, are calculated by subtracting the state value
from the rewards-to-go.

Update Policy Parameters: The policy gradient Vy is computed using the advantage estimates. The policy
parameters 6 are then updated using gradient ascent.

Update Value Function Parameters: The value function loss L,, is computed as the mean squared error
between the estimated values and the rewards-to-go. The value function parameters ¢ are updated using
gradient descent.

The episode loop repeats until the desired number of episodes is completed, continuously refining the policy
and value function to improve the agent's performance. This structured approach ensures robust and
efficient learning in complex environments.

3.5.5 DDPG | Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) (Silver , et al., 2014) (Lillicrap, et al., 2016) is an algorithm
that simultaneously learns a Q-function and a policy. Using off-policy data and the Bellman equation it is
learning the Q-function, and this Q-function is then used to optimize the policy.

DDPG is closely related to Q-learning, sharing the motivation that if the optimal action-value function
Q" (s, a) is known, the optimal action a*(s) in any given state can be found by solving:

a*(s) = argmax,Q*(s,a)

DDPG interleaves learning an approximator for Q*(s,a) with learning an approximator for a*(s),
specifically designed for environments with continuous action spaces. In such environments, computing the
maximum over actions in max,Q*(s, a) becomes complex due to the continuous nature of the action
space. DDPG addresses this by directly optimizing the policy using the gradients of the Q-function, enabling
efficient learning and decision-making in continuous action spaces, such as those in predictive maintenance
involving sensors in a machine.

102

Because the action space is continuous, the function Q*(s, a) is presumed to be differentiable with respect
to the action argument. This allows us to set up an efficient, gradient-based learning rule for a policy u(s)
which exploits that fact. Then, instead of running an expensive optimization subroutine each time we wish
to compute max,Q(s, a), we can approximate it with max,Q(s,a) = Q(s, u(s))

Given that the action space is continuous, we assume that the function Q* (s, a) is differentiable with respect
to the action variable. This assumption enables us to establish an efficient, gradient-based learning rule for
a policy u(s) that leverages this property. Consequently, instead of executing a costly optimization
subroutine each time we want to compute max,Q(s,a), we can approximate it using max,Q(s,a) =

Q(s, u(s)).

DDPG is an off-policy algorithm specifically designed for environments with continuous action spaces. It
can be considered as deep Q-learning adapted for continuous action spaces, making it highly effective in
such contexts.

Mathematical Formulation
The two components of DDPG, we'll delve into the mathematics behind this section: is learning a Q
function and learning a policy.

The Q-Learning Side of DDPG
First, a small revision on the Bellman equation describing the optimal action-value function, Q* (s, a). It’s
given by:

Q*(s,a) = Egp [r(s, @) + ymax,, Q" (s, a’)]

Here s’ ~ P indicates that the next state, s’, is sampled by the environment form a distribution P(- |s, a)

This Bellman equation is the starting point for learning an approximator to Q*(s,a). Suppose the
approximator is a neural network Q,(s,a), with parameters ¢, and that we have collected a set D of
transitions (s, a,r,s’,d) (where d indicates whether state s is terminal). We can set up a mean-squared
Bellman error (MSBE) function, which tells us roughly how closely @, comes to satisfying the Bellman
equation:

2
L((p,D) = E(s,a,r,sl,d)~D [(Q(p (5' a) - (T‘ +)/(1 - d) : maxalQ(p(S,' a,)))]

The evaluation (1 — d), follows the Python convention, where True evaluates to 1 and False evaluates
to 0. When d is True it indicates that s’ is a terminal state—the Q-function should reflect that the agent
receives no additional rewards after the current state.

Function approximator-based Q-learning algorithms, such as DQN (and its variants) and DDPG, focus
heavily on minimizing the MSBE loss function. These algorithms utilize two key techniques, which are
essential to understand. Additionally, there is a specific detail unique to DDPG that is noteworthy.

103

Replay Buffers.

Training a deep neural network to approximate Q*(s,a) typically involves using an experience replay
buffer, denoted as D. This buffer stores a set of previous experiences and should be sufficiently large to
encompass a diverse range of experiences. However, it is important to balance the size of the buffer. Relying
solely on the most recent data can lead to overfitting and instability, while using too much past experience
can slow down learning. Achieving the right balance may require some tuning.

DDPG, being an off-policy algorithm, leverages this replay buffer to include older experiences, even those
collected with outdated policies. This is possible because the Bellman equation applies universally to all
transition tuples, regardless of how the actions were chosen or what occurred after the transitions. The
optimal Q-function

Target Networks
Q-learning algorithms utilize target networks to stabilize training. The term:

(T‘ +y(1-4d)- maxarQ(p(S,' a,))

is known as the target. Minimizing the MSBE loss involves making the Q-function approximate this target.
However, since the target depends on the same parameters ¢ that are being trained, this can lead to
instability. To address this, a second network, called the target network, is employed. This network, with
parametersg,q,4, lags behind the main network, thereby providing a more stable target.

In DQN-based algorithms, the target network's parameters are copied from the main network at fixed
intervals. In DDPG-style algorithms, the target network is updated continuously using polyak averaging:

Ptarg < PPtarg + (1 - p)go
where p is a hyperparameter between 0 and 1, typically close to 1.

DDPG Detail: Calculating the Max Over Actions in the Target.

In continuous action spaces, computing the maximum over actions in the target is challenging. DDPG
addresses this by using a target policy network to compute an action that approximately maximizes Q‘Ptarg'
The target policy network is maintained similarly to the target Q-function, through polyak averaging of the
policy parameters during training.

As mentioned earlier: computing the maximum over actions in the target is a challenge in continuous action
spaces. DDPG deals with this by using a target policy network to compute an action which approximately
maximizes Q<pmrg- The target policy network is found the same way as the target Q-function: by polyak

averaging the policy parameters over the course of training.

Summing it up, Q-learning in DDPG is achieved by minimizing the following MSBE loss with stochastic
gradient descent:

104

L(@.D) = Esarsap [(Q<p (5@ = (1 +¥(1 = Dy, by, (s'))))z]

Where ugmgis the target policy.

The policy Learning Side of DDPG

Policy learning in DDPG is fairly simple. We want to learn a deterministic policy pg(s) which gives the
action that maximizes Q,, (s, a).Because the action space is continuous, and we assume the Q-function is
differentiable with respect to action, we can just perform gradient ascent (with respect to policy parameters
only) to solve

Policy learning in DDPG aims to develop a deterministic policy ug(s) that outputs the action maximizing
Q4 (s, a). Given the continuous action space and the assumption that the Q-function is differentiable with

respect to the action, gradient ascent can be applied to optimize the policy parameters. The objective is to
solve:

maxg Es~D [Q(p (S: Ho (S))]
In this context, the Q-function parameters ¢ are treated as constants.

Exploration vs Exploitation

In DDPG, a deterministic policy is trained in an off-policy manner. Due to its deterministic nature, the
policy might not initially explore a sufficient range of actions to gather valuable learning signals if explored
on-policy. To enhance exploration, noise is added to the actions during training. The authors of the DDPG
paper (Lillicrap, et al., 2016) recommended using time-correlated OU noise (Ornstein-Uhlenbeck process)
(Uhlenbeck, George, Ornstein, & Leonard, 1930). However, more recent findings indicate that uncorrelated,
mean-zero Gaussian noise is equally effective and simpler to implement, making it the preferred choice. To
improve the quality of training data, the noise scale can be gradually reduced as training progresses.
During testing, no noise is added to the actions, allowing the policy to fully exploit what it has learned.

105

Pseudocode

Algorithm 1 Deep Deterministic Policy Gradient
1: Input: initial policy parameters #, Q-function parameters ¢, empty replay buffer D
2: Set target parameters equal to main parameters Opyg < 0, Grag < ¢
3: repeat

4: Observe state s and select action a = clip(pg(s) + €, @Lows Qrrigh), Where € ~ N
5. Execute a in the environment
6: Observe next state s’, reward r, and done signal d to indicate whether s’ is terminal
7. Store (s,a,r,s',d) in replay buffer D
8. If s’ is terminal, reset environment state.
9: if it’s time to update then
10: for however many updates do
11: Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D
12: Compute targets
! f !
Jy(r" 5 1 {i) =r + r}(l - {i)Qf.':’tarp;{S 1 |u'91arp,(‘q))
13: Update Q-function by one step of gradient descent using
1 e
Vq‘»ﬁ Z (Qs(s,a) —y(r,s',d))
(s,ar8"d)eR
14: Update policy by one step of gradient ascent using
Vo 3 Quls, o))
0T s\ S, fals
Bl & o
seBb
15: Update target networks with
C.'jt-arg — :O(r'{’targ + [:1 - .0) (t’
Qtarg — pgtetrg + (1 - p)g
16: end for
17. end if

18: until convergence

Figure 24 : Pseudocode of the DDPG Algorithm Implementation by (OpenAl, Deep Deterministic Policy Gradient, 2024)

Explanation of Pseudocode in the Displayed Steps

1: Initialization of parameters

2: The target parameters for the policy 8.4,-4and Q-function ¢.,., are set equal to the main parameters.
3: Main loop

4: For the current state, the action a is selected by adding noise € to the deterministic policy ug(s),
ensuring exploration

5: The selected action aaa is executed in the environment.

6: The next state s’, reward, and done signal are observed.

106

7: The transition is stored.

8: If the new state is a terminal state, the environment is reset to start a new episode.

9: If it's time to update, proceed to the next steps

11: A batch of transitions is randomly sampled from the replay buffer.

12: For each transition in the batch the target y

13: The Q-function parameter ¢ is updated by minimizing the loss between predicted Q-values and
computed targets using gradient descent

14: The policy parameter 6 is updated by maximizing the expected Q-value using gradient ascent
15: The target networks are updated using a soft update mechanism

16: The update steps are repeated for the specified number of updates

18: Continue the main loop until the convergence criteria is met.

3.5.6 TD3 | Twin Delayed DDPG

TD3 (Fujimoto, Hoof, & Meger, 2018) is an off-policy algorithm designed for environments with
continuous action spaces and it is a variant of DDPG specifically designed to address some of the limitations
and instability issues. Although DDPG can achieve impressive results, it is often sensitive concerning
hyperparameters and other tuning factors. A typical failure mode involves the Q-function significantly
overestimating Q-values, resulting in a flawed policy that exploits these inaccuracies. Twin Delayed DDPG
(TD3) avoids this issue by incorporating three essential techniques:

Clipped Double-Q Learning. By maintaining two Q-functions and using the smaller value to form the
targets in the Bellman error loss functions, TD3 reduces overestimation bias.

“Delayed” Policy Updates. TD3 stabilizes training by updating the policy and target networks less
frequently than the Q-function, typically performing one policy update for every two Q-function updates.

Target Policy Smoothing. To avoid the policy's tendency to exploit Q-function errors, TD3 introduces
noise to the target action, smoothing out the Q-values with respect to action changes.

These techniques collectively enhance TD3's performance significantly compared to the baseline DDPG.

Mathematical Formulation

TD3 improves upon DDPG by concurrently learning two Q-functions, @, and Q,,, through the
minimization of mean square Bellman error. This process is almost identical to how DDPG learns a single
Q-function. To explain TD3's approach and highlight its differences from DDPG, we will analyze the loss
function from the innermost part outward.

One key aspect is target policy smoothing. The actions used to form the Q-learning target are derived from
the target policy Hyarg with added clipped noise in each action dimension. After incorporating the noise,

107

the target action is clipped to remain within the valid action range [aLOW, aHigh]- The target actions are thus
given by:

@/ (5") = clip(g,,,, (") + clip(€,~C,€), QLo Apign) ,€ ~ N(0,0)

To prevent bad behavior in DDPG, target policy smoothing serves as a regularizer for the algorithm. In
DDPG, if the Q-function approximator develops a false sharp peak for certain actions, the policy may
rapidly exploit this peak, leading to unstable or incorrect behavior. Target policy smoothing avoids this
issue by smoothing out the Q-function over similar actions, preventing the policy from exploiting these
incorrect peaks.

Clipped double-Q learning is another important technique. In this method, both Q-functions use a single
target, calculated using the smaller value from the two Q-functions:

y(r,s,d)=r + y(1 - d)mini=1,zQ<merg (s',a'(s")

Each Q-function then regresses towards this target:

L(p1,D) = Esarsrar-n | (Qp, (5,@) =y, D)’
L(p2:D) = Esarsray-n |(Qp,(5.0) = y(r, 5",)]

By using the smaller Q-value for the target and regressing towards it, this approach helps avoid
overestimation in the Q-function.

The policy in TD3 is learned by maximizing Q. :

maxg Eg_p[Qqp, (5, 1o (5))]

This process remains largely unchanged from DDPG. However, TD3 updates the policy less frequently than
the Q-functions, which helps reduce the volatility typically seen in DDPG due to policy updates affecting
the target.

Exploration vs. Exploitation

Training a deterministic policy in TD3 is done in an off-policy way. Due to the deterministic nature of the
policy, if the agent were to explore on-policy initially, it would likely not attempt a sufficient variety of
actions to obtain valuable learning signals. To improve exploration, noise is added to the actions during
training, typically in the form of uncorrelated mean-zero Gaussian noise. Adjusting the noise scale
throughout training can help in acquiring higher-quality training data, although some implementations,
like ours, keep the noise scale constant.

During testing, noise is not added to the actions, allowing the policy to fully exploit the learned behavior.

108

Pseudocode
Algorithm 1 Twin Delaved DDPG

1: Input: initial policy parameters #, Q-function parameters ¢y, s, empty replay buffer D
2: Set target parameters equal to main parameters fy,., < 0, G — @12 Crargz — P2

3 repeat

4: Observe state s and select action a = clip(pe(s) + €, Gpow, Guign), where € ~ N

5 Execute a in the environment

fi: Observe next state &', reward r, and done signal d to indicate whether &' is terminal
7 Store (s,a,r, s d) in replay buffer D

8. If 8" is terminal, reset environment state.

9: if it's time to update then

10k for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r, 5, d)} from D
12: Compute target actions

a'(s") = clip (;r.,qtm (¢") + elip(e, —¢,€), Ao, a m_e,.n-} . e~ N0,)

L Compute targets
ylr, s’ d) =r+~(1 —d) mi[} Qi (8 a'(5])

i=1, "

14: Update (Q-functions by one step of gradient descent using
1 : .
Vorg . (Quls.a)—ylrs d) for i = 1,2
| | [ERIERL TN

15: if j mod pelicy delay = () then
16i: Update policy by one step of gradient ascent using

‘Fg'%' Z (a5, Fffﬁ'-i*"'}}
scR

17: Update target networks with

Drargi PPrargi + (1 — p)os fori=1,2
'ﬂmrg {_ ﬂﬂmrp; + “ - ﬁ'}ﬁ

18: end if

19: end for

200 end if

21: until convergence

Figure 25 : Pseudocode of the TD3 Algorithm Implementation by (OpenAl, Twin Delayed DDPG, 2024)

Explanation of Pseudocode in the Displayed Steps:
1: Parameter initialization.
2: Target values initialization.

109

3: Main loop.
4: For the current state, select an action and use the policy with added noise for exploration.
5: Execute the selected action in the environment.

9: If it's time to update, proceed with the following steps.

11: Randomly sample a batch of transitions from the replay buffer.

12: Compute the target action using the target policy and clipped noise for stability.

13: Compute the target value y using the minimum of the two target Q-functions.

14: Update both Q-function parameters ¢, and ¢, by minimizing the loss between the predicted Q-values
and the computed targets using gradient descent.

15: If the update step is at the specified delay interval, proceed to update the policy.

16: Update the policy parameters 6 by maximizing the expected Q-value from Q,,,

17: Update the target networks using a soft update mechanism.

21: Continue the main loop until convergence criteria are satisfied.

3.5.7 SAC | Soft Actor Critic

Soft Actor Critic (SAC) (Haarnoja, Zhou, Abbeel, & Levine, 2018), (Haarnoja, et al., 2019) optimizes a
stochastic policy using an off-policy approach, creating a bridge between stochastic policy optimization and
DDPG-style methods. Although SAC and TD3 were published around the same time and are not direct
successors of one another, SAC incorporates the clipped double-Q trick. Additionally, the stochastic nature
of SAC's policy benefits from an effect similar to target policy smoothing.

Entropy regularization is a key feature of SAC. The policy is trained to balance expected return with
entropy, which measures the randomness in the policy. This balance is closely related to the exploration-
exploitation trade-off: higher entropy promotes more exploration, potentially accelerating learning in later
stages. Additionally, it helps prevent the policy from prematurely converging to suboptimal solutions.

SAC, the successor to Soft Q-Learning (SQL), incorporates the double Q-learning technique from TD3. A
distinguishing feature of SAC is its training objective, which maximizes a balance between expected return
and entropy, a measure of randomness in the policy. SAC is an off-policy algorithm. The version of SAC
implemented here is designed for environments with continuous action spaces. An alternative version of
SAC, with a slightly modified policy update rule, can handle discrete action spaces. An alternate version of
SAC, which slightly changes the policy update rule, can be implemented to handle discrete action spaces.

Mathematical Formulation
To understand Soft Actor Critic (SAC), the concept of entropy-regularized reinforcement learning must
first be introduced. In this context, the equations for value functions are slightly modified.

Entropy-Regularized Reinforcement Learning
Entropy quantifies the randomness of a random variable. In entropy-regularized RL, this measure is
incorporated into the learning process to balance exploration and exploitation more effectively.

110

Given a random variable x with a probability mass or density function P. The entropy H of x is computed
from its distribution P according to:

H(P) = Ex.p[—logP(x)]

In entropy-regularized reinforcement learning, the agent receives a bonus reward at each time step
proportional to the entropy of the policy at that timestep. This modifies the RL problem to:

" = argmaxy Er . [Z Y (R(St, g, Ser + aH (m(: |St)))]

t=0

Here a > 0 serves as the trade-off coefficient. It is important to note that an infinite-horizon discounted
setting is assumed for this formulation, and this assumption will be maintained throughout the explanation.
Consequently, the value functions in this setting are slightly modified. The value function V™(s) is
redefined to include the entropy bonuses from each timestep.

V() = Erere Zyt(R(StJatJSt+1) +aH (- |s))) | So = S]

t=0

Q™ is changed to include the entropy bonuses from every timestep except the first:

QT[(S: a) =E;n

D ViRt sen) +a) yHEC 1)) 150 = 5.0 = a]
t=0 t=1

With these definitions V™ and Q™ are connected by:

VT(s) = Eq-[Q™ (s,)] + aH (7 (- |5))
And the Bellman equation for Q7 is:
Q"(s,a) = EsieparnlR(s,a,5) +y(Q"(s',a") + aH (n(- [s")))]
Q"(s,a) = Eg-p[R(s,a,8") + YV (s")]

SAC simultaneously learns a policyry and two Q-functions @4, Q.. There are two standard variants of
SAC: one with a fixed entropy regularization coefficient « and another that adjusts a throughout training
to enforce an entropy constraint. For simplicity, the fixed entropy regularization coefficient version is used,
though the entropy-constrained variant is generally preferred by practitioners.

The Q-functions in SAC are learned similarly to those in TD3, but with some notable differences. Like
TD3, both Q-functions are trained using MSBE minimization by regressing to a single shared target. This

111

shared target is computed using target Q-networks, which are obtained by polyak averaging the Q-network
parameters over the course of training. Additionally, the shared target employs the clipped double-Q trick,
similar to TD3.

However, there are several differences. Unlike TD3, SAC's target includes a term from entropy
regularization. Furthermore, the next-state actions used in the target come from the current policy rather
than a target policy, as is done in TD3. Finally, SAC does not use explicit target policy smoothing. While
TD3 trains a deterministic policy and adds random noise to next-state actions to achieve smoothing, SAC
trains a stochastic policy, where the inherent noise from stochasticity provides a similar effect.

Understanding how entropy regularization contributes is crucial before presenting the final form of the Q-
loss. We begin by revisiting the recursive Bellman equation for the entropy-regularized Q™ and slightly
modifying it using the definition of entropy

Q"(s,a) = Esiepar~n [R(s,a,5") + y(Q"(s',a’) + aH (m(: |s)))]
This can be rewritten with the definition of entropy as:
Q"(s,a) = Esiopar~n [R(s,a,5") + y(Q7(s',a") — a - logn(a’|s")]
This is an expectation over next states (sampled from the replay buffer) and next actions (sampled from the

current policy, rather than the replay buffer). Since this is an expectation, it can be approximated with
samples.

Q"(s,a) =~ v +y(Q"(s"a) —a-logn(@'|sh), @ ~mu(|s)

The notation for the next action is switched to &’ to emphasize that the next actions must be sampled directly
from the policy, while r and s’ are obtained from the replay buffer.

SAC establishes the MSBE loss for each Q-function using this sample approximation for the target. The
only remaining question is which Q-function is used to compute the sample backup. Like TD3, SAC

employs the clipped double-Q trick and selects the minimum Q-value between the two Q approximators.
Combining all of the above, the loss functions for the Q-networks in SAC are:
L1 D) = Egsarsnayn [(Qp (5,0 = y (15", D))’
where the target is given by:
y(r,s,d)=r+y(1—-d) (minj=112’___Q(pmrg,j (s, a") —alogmy (c?’|s’)) , a ~me(-]sh)
Leaning the policy

In each state, the policy should maximize the expected future return plus the expected future entropy,
effectively maximizing V™(s). This can be expanded as follows:

112

VT(s) = Eq-n[Q" (s, @)] + aH (n(- |5))
VT(s) = Eq-x[Q" (s, @) — alog m(als)]

The way we optimize the policy makes use of the reparameterization trick, in which a sample from w4 (- |s)
is drawn by computing a deterministic function of state, policy parameters, and independent noise. To
illustrate: following the authors of the SAC paper, we use a squashed Gaussian policy, which means that
samples are obtained according to

To optimize the policy, the reparameterization trick is used. This involves drawing a sample from mg (- |s)
by computing a deterministic function of the state, policy parameters, and independent noise. Following the
authors of the SAC paper (Haarnoja, Zhou, Abbeel, & Levine, 2018), a squashed Gaussian policy is used,
where samples are obtained according to:

@g(s,§) = tanh(ug(s) +op(s) © §), & ~ N(0, 1)

The equation describes how to sample actions from the policy. Here, ug(s) is the mean of the Gaussian
distribution, which is a function of the state and policy parameters, while g (s) represents the standard
deviation, also dependent on the state and policy parameters. The variable ¢ is noise sampled from a
standard normal distribution N (0, I). The tanh function is applied to squash the output, ensuring that the
actions remain within a bounded range, typically [—1,1].

By doing the reparameterization trick, the expectation over actions, which is challenging due to the
dependence on policy parameters, is converted into an expectation over noise, thus removing this
dependency:

Eq-ny[Q (s, @) — alogmg(als)] = E¢.n[Q™0 (s, @g(s,$)) — alogme(@e(s, §)Is)]

This technique closely aligns with DDPG and TD3 policy optimization, but it incorporates the min-
double-Q trick, accounts for stochasticity, and includes an entropy term.

Exploration vs Exploitation

A stochastic policy with entropy regularization is used in SAC, enabling on-policy exploration. The
entropy regularization coefficient a plays an important role in managing the exploration-exploitation
tradeoff: higher values of a lead to increased exploration, while lower values encourage more
exploitation. Identifying the appropriate coefficient, which ensures the most stable and highest-reward
learning, can change across environments and usually requires meticulous tuning.

113

Pseudocode

Algorithm 1 Soft Actor-Critic
1: Input: initial policy parameters #, Q-function parameters ¢,, 2, empty replay buffer D
2: Set target parameters equal to main parameters Drarg,1 +— @1, Prarg2 & P2
3: repeat
4: Observe state s and select action a ~ wy(-|s)
5 Execute a in the environment
6
T
b
9

Observe next state &', reward r, and done signal d to indicate whether ¢ is terminal
Store (s,a,r,s',d) in replay buffer D

If s" is terminal, reset environment state.

if it's time to update then

10 for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r, &', d)} from D
12: Compute targets for the Q functions:

y(r,s'. d) =r+ (1 —d) (;EEJEQ%W(HJ_‘@) — alog 'JT&{&"|'&_,'J')) ,a ~me(e]s))

13 Update Q-functions by one step of gradient descent using
1 2 SR
"F’,Mm Z (Qg.(s,a) — y(r,s',d)) fori=1,2

(s,a,r8 d)EB
14: Update policy by one step of gradient ascent using
Vorg: 3 (min Qu, (s, 0(s)) — alogms (@(s)])).
|E| 5 =12 " ; .
:

where @p(s) is a sample from my(-|s) which is differentiable wrt # via the
reparametrization trick.

15: Update target networks with

(3;"1-31'{.;:.1. — .Irj'(;:'tarl.;,-.l + (1 - P}@’: fUI' i = 13 2
16: end for
17: end if

18: until convergence

Figure 26 : Pseudocode of the TD3 Algorithm Implementation by (OpenAl, Soft Actor Critic, 2024)

Explanation of Pseudocode in the Displayed Steps:
1: Initialization of parameters.

2: Initialization of target parameters

3: Main loop

9: If it's time to update the networks, proceed with the following steps.

11: Randomly sample a batch of transitions from the replay buffer.

114

12: Compute the target actions a’(s) using the target policy with added noise. Compute the target value
y(r,s',d) using the minimum of the two target Q-functions and the entropy term

13: Update both Q-function parameters ¢, and ¢, by minimizing the loss between the predicted Q-values
and the computed targets using gradient descent

14: Update the policy parameters 8 by maximizing the expected Q-value with the entropy term for
exploration. The term, a(s), isasample from mqy(als), differentiable with respect to 6.

15: Update the target networks using a soft update mechanism

16: End of Policy Update Check

17: End of Update Check

18: Continue the main loop until the convergence criteria are satisfied

3.5.8 Algorithms and the PdM task

In the context of Predictive Maintenance (PdM), advanced reinforcement learning algorithms such PPO,
A2C, DDPG, TD3, and SAC are suited for optimizing maintenance strategies and decision-making
processes. These algorithms enable the creation of intelligent systems that can learn from historical and
real-time data to predict equipment failures and recommend optimal maintenance actions.

Algorithms like DDPG and TD3 are particularly well-suited for environments with continuous action
spaces, such as the fine-tuning of maintenance schedules and resource allocation in complex industrial
systems. Their ability to handle continuous actions allows for precise adjustments and efficient management
of maintenance tasks.

SAC's incorporation of entropy regularization makes sure that a balanced exploration-exploitation trade-
off, which is essential for adapting maintenance policies to varying operational conditions. This balance
helps in discovering new maintenance strategies while still exploiting known effective actions, leading to
improved overall system performance.

The stochastic nature of algorithms like PPO and A2C allows for robust learning in dynamic environments,
where the conditions and data patterns continually evolve. This adaptability is important in PdM tasks where
equipment behavior and environmental factors can change over time, requiring flexible and resilient
maintenance policies.

By leveraging these RL techniques, PdM systems can significantly enhance predictive accuracy, optimize
maintenance interventions, reduce downtime, and ultimately extend the lifespan of critical machinery.
These improvements lead to cost savings, increased operational efficiency, and more reliable production
processes.

3.6 Evaluation Metrics

Evaluating and comparing the performance of different RL algorithms is the key to understanding the
effectiveness of the PdM approach. Several evaluation metrics are commonly used to assess and compare

115

the quality of the learned policies. The two universal metrics considered are mean episode length and mean
episode reward.

Mean Episode Length

Mean episode length is a metric that indicates the average duration of an episode before a terminal state is
reached. In the context of PdM, an episode could represent the operational period of a machine before a
maintenance intervention is required. A longer mean episode length could suggest that the learned policy is
effective at preventing failures and prolonging the operational time of the equipment.

For example, in PdM tasks, an RL algorithm that learns a policy resulting in longer mean episode lengths
would usually imply that the system is more reliable (this depends on the environment formulation).
Evaluating the mean episode length involves running multiple episodes with the trained policy and
calculating the average duration across these episodes.

Mean Episode Reward

Mean episode reward is another critical metric used to evaluate the performance of reinforcement learning
algorithms. It represents the average cumulative reward obtained per episode. In the context of PdM, the
reward function can be designed to encapsulate various factors such as operational efficiency, maintenance
costs, downtime, and the occurrence of failures.

A higher mean episode reward indicates that the policy is effective in balancing the trade-offs between these
factors, leading to more optimal maintenance strategies. For example, in a PdM setting, the reward could
be higher for policies that achieve minimal maintenance costs while ensuring high operational efficiency
and minimal downtime. The mean episode reward is calculated by averaging the total rewards obtained
over multiple episodes using the trained policy.

Evaluating Policies

Evaluating the policies learned by different algorithms involves comparing these metrics across various
runs and environments. The evaluation process workflow is:

1. Define the Evaluation Environment: Set up an MDP environment that reflects the real-world
operational conditions of the machinery. This includes defining the state space, action space, and
reward function relevant to the PdM task.

2. Train Policies: Use different RL algorithms (like PPO, A2C, DDPG, TD3, SAC) to train policies
within the defined environment. It is good to make sure that the training process is consistent across
algorithms in order to make fair comparisons. This can be done by using time limits or timestep
limits.

3. Run Multiple Episodes: For each trained policy, run a significant number of episodes in the
evaluation environment. This helps in capturing the performance over various scenarios and
conditions.

4. Compute the Metrics: Calculate the mean episode length and mean episode reward for each policy
by averaging the results across all episodes. Also compute other metrics from a unique score

116

function to the algorithm’s mathematical running core (like KL Divergence, Actor Loss, Critic
Loss, etc.). These metrics provide insights into the effectiveness and efficiency of the policies.

5. Compare Metrics: Compare the mean episode length and mean episode reward across different
algorithms. Policies with longer mean episode lengths and higher mean episode rewards are
generally considered more effective. In algorithms that share similar features like on-policy and
off-policy algorithms it is possible to compare additional computed metrics.

6. Analyze Variability and Robustness: In addition to mean values, it’s important to analyze the
variability and robustness of the policies. This involves examining the standard deviation and
distribution of the episode lengths and rewards to understand the consistency and reliability of the
policies. This is usually done by observing the graphs that were generated and looking for spikes.

Practical Considerations

While mean episode length and mean episode reward are essential metrics, other factors may also be
considered in an overall evaluation, such as:

e Computational Efficiency: The time and resources required to train the policy.
e Scalability: The algorithm's ability to handle larger and more complex environments.
e Adaptability: How well the policy adapts to changes in the environment or operational conditions.

By thoroughly evaluating these metrics, engineers can make informed decisions about which RL algorithms
are best suited for their PdM tasks, leading to improved maintenance strategies and enhanced operational
performance.

117

4. Implementation, Evaluation & Results

4.1 Tech Stack

The implementation of the CNC Machine Wear Problem utilizes a tech stack centered around Python, using
various libraries and frameworks to perform data manipulation and reinforcement learning.

At its core, the project is implemented in Python, which is a multipurpose scripting language and is known
for its extensive support in scientific computing and machine learning. The primary helper libraries used
for general tasks include NumPy for numerical computations and array handling, Pandas for efficient data
manipulation and analysis of table data, and Matplotlib for data visualization.

Figure 27 : Stable Baselines Logo

Reinforcement learning is a key component of the project, for which Stable Baselines 3 is employed. Stable
Baselines 3, a library based on OpenAl Baselines, is a robust library that provides reliable (stable)
implementations of RL algorithms in Python. It is built on top of the PyTorch framework and offers a big
arsenal of tools designed to help with the development and deployment of RL models. One of the primary
reasons for using Stable Baselines 3 is the standardized implementation of up-to-date RL algorithms, such
as Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), Deep Deterministic Policy
Gradient (DDPG), and Soft Actor-Critic (SAC). These implementations have been fully tested and are
known for their performance and stability.

The library is particularly user-friendly, featuring an API that simplifies the setup, training, and evaluation
of RL models. The ease of use makes it accessible while at the same time being reliable. Moreover, Stable
Baselines 3 is designed with extensibility in mind, allowing users to modify existing algorithms or

118

implement new ones with minimal effort. This flexibility is crucial for custom projects, like this one, that
often need to adapt algorithms to specific use cases or experiment with new approaches.

In addition to its algorithm implementations, Stable Baselines 3 offers a range of utilities that streamline
the RL development process. These include tools for environment checking, vectorized environment
handling, policy evaluation, and results plotting. Such utilities help ensure that the models are correctly
implemented, efficiently trained, and effectively evaluated, providing comprehensive support throughout
the RL model lifecycle. Overall, Stable Baselines 3 stands out as a valuable resource for anyone working
in reinforcement learning, combining reliability, usability, and flexibility in a single, cohesive package.

Additionally, the project makes use of several utility functions from Stable Baselines 3. The check_env
utility ensures that the custom environments adhere to the Gym API, while VecFrameStack is used for
stacking frames in environments with image observations. The evaluate_policy function is responsible for
the evaluation of the trained models, and DummyVecEnv allows for the parallel execution of multiple
environment instances. Last but not least, the plot_results and X_TIMESTEPS functions are utilized for
visualizing training progress, and the Monitor class is used to log information about the environment during
training.

To support file system operations, the project uses the os library for interacting with the operating system
and Pathlib for handling file paths for object-oriented purposes. The time library is also included to manage
time-related functions and measure execution time.

List of Libraries Imports

Helper Libraries matplotlib.pyplot

numpy

pandas

0s

time

Environment Building gymnasium

Env

gymnasium.spaces

Box

119

RL stable_baselines3

PPO

A2C

DDPG

SAC

stable_baselines3.common.env_checker

check_env

stable_baselines3.common.vec_env

VecFrameStack

stable_baselines3.common.evaluation

evaluate_policy

stable_baselines3.common.vec_env

DummyVecEnv

stable_baselines3.common.results_plotter

plot_results

X_TIMESTEPS

stable_baselines3.common.monitor

Monitor

torch

TensorBoard was used for the real-time monitoring and visualization of model training metrics.
Tensorboard is a visualization toolkit included with TensorFlow, it is created by Google and is designed to
help users understand and debug machine learning models. It allows the visualization of various training
metrics and provides insights into model performance helping in the optimization process.

120

TensorBoard operates through a logging process during model training. The training data are logged using
TensorFlow's “Summary Writer”. This data is stored in log files which are then visualized through
TensorBoard’s web interface, enabling users to monitor the training progress of their models in real-time.

TensorBoard TIME SERIES ~ SCALARS T
[Show data download links Q, Filter tags (regular expressions supported)
Ignore outliers in chart scaling

rollout I
Tooltip sorting methed: default -

ep_len_mean ep_rew_mean phm_score

tag: rollout/ep_Jen_mean 1ag: rollout/ep_rew_mean tag: rollout/phm_score
Smaathing

- ettt e—se——
— e 06 ser73 ||

Horizontal Axis .
RELATIVE WALL 0 T
Runs 0 0M 1SM 20W 25 30M 35M 40M 0 M 2M 3M som oM 20M 30M
Write a regex to filter runs =0 =EE =M
(O PPO_model_corr_no_delay_0 i

time "

(O PPO_model_corr_with_delay_0

QO A2C_model_corr_no_delay_0 fos

O A2€_model_cor_with_delay_0 tag: time/fps
[© DOPG_modelcom_no_delay 0

B O ©DPG_model_corm_with_delay_0

SAC_maodel_cor_no_delay_0

e

800

(O SAC_model_corr_with_delay_0
QO PPO_model_non_corr_no_delay 0

00

200

() PPO_model_non_corr_with_delay_0
TOGGLE ALL RUNS

oM 20w oM oM
2]

logs

Figure 28 : Scalars Tab Tensorboard Ul

The TensorBoard user interface (UI) comprises several dashboards and tools for the detailed monitoring
and analysis of model training. The Scalars Dashboard displays plots of metrics such as average reward and
average episode length over time, which is useful for tracking the model’s improvement with respect to the
number of training iterations.

TensorBoard TIME SERIES ~ SCALARS INACTIVE - C 80
Q, Filter runs (regex) Q Filter tags (regex) Al Scalars Image Histogram £ settings.
B fuwnr @ X pinned Settings X
B A2C_model_corr_no_delay.0 ® Pin cards for a quick view and comparison GENERAL

Horizontal Axis
R -
B A2c_modelcom_with_delay_0 ® rollout = cads | step -
B Enable step selection and data tabls
B A2c_medelnen_cor_no_delay_0 [] rolkut/ep lermean ae i i
(scalars anly)
1} ["
A2C_model_non_corr_wilg_delay_0 H B Enabie Range Selection
4 L - T T i
[tink oy step 39833600
B A2c_modelnen_cor_with_delay_0 o
200 3 Card Width
B 00PG_model_corr_no_delay.0 ® o)
—_— e
B ooPG_model_corr_with_delay_0 ® 00
SCALARS
B 00PG_modelnon_corr_no_delay_0 ® ? H Smoothing
1=x s o 5 2o e S0 s 0023800 . 0 |
B oope.modelnon.cor with delay.0 @ Run Min Max Start Value End Value AValue a% Start Step End Step - Toottip sorting mathod
@ A2C_model_corr_no_delay 0 3456 314 4 31327 4073 0% 9500 7,000000 [Mgrabetoat <]
B PPO_fixed_non_corr_no_delay_0 ®
® A2C_model_corr_with_delay_0 314 314 314 314 +0 0% 21,500 14,640,000
© Ignore outlers in chart scalin
® A2C_model_non_cor_no_delay_0 N7 314 1281 314 +27.9 +633% 21,500 26,750,000 Ow N
B Pro_fixed_non_corr_with_delay_0 []
~ O rastition nonmonotonic X axis
B Fro_model_cor_no_delay 0 ®
rollout/ep_rew_mean B F oo HISTOGRAMS
B Pro_model_corr_with_delay_0 [] o
: ode
B rromodemoncon o ey @ i | ofeet v

Figure 29 : Time Series Tab Tensorboard Ul

121

Additionally, the Time Series tab in TensorBoard allows for a more detailed examination of metrics over
time, providing thorough insights into how specific values change throughout the training process. This can
be particularly useful for identifying trends, anomalies, and areas where the model may require further
tuning or adjustment.

4.2 Data structure and input parameters

The dataset used to train the models is part of the 2010 PHM Society Conference Data Challenge dataset.

The PHM Data Challenge was a competition open to all conference attendees of the PHM society. In 2010
the challenge was focused on RUL estimation for high-speed CNC milling machine cutters using
dynamometer, accelerometer, and acoustic emission data. Both Student and Professional teams could enter
the competition.

Participants were scored based on their ability to estimate the remaining useful life of a 6mm ball nose
tungsten carbide cutter.

The dataset provided by the PHM Society is six individual cutter records, c1 to c6. Records c1, ¢4 and c6
are training data, and records c2, ¢3, and ¢5 are test data:

Each training record contains one “wear” file that lists wear after each cut in 10*-3 mm, and a folder with
315 individual data acquisition files (one for each cut). The data acquisition files are in .csv format, with
seven columns, corresponding to:

Column 1: Force (N) in X dimension
Column 2: Force (N) in Y dimension
Column 3: Force (N) in Z dimension
Column 4: Vibration (g) in X dimension
Column 5: Vibration (g) in Y dimension
Column 6: Vibration (g) in Z dimension

Column 7: AE-RMS (V)

The spindle speed of the cutter was 10400 RPM; feed rate was 1555 mm/min; Y depth of cut (radial) was
0.125 mm; Z depth of cut (axial) was 0.2 mm. Data was acquired at 50 KHz/channel. Background on the
apparatus and experimental setup can be found on the paper (Li, et al., 2009)

122

LY. -~,

Data Acqulsmon Card

Intelligent Predictive
Monitoring System

Figure 30 : Tool Conditions Monitoring in high-speed Milling Process (Li, et al., 2009)

For the training of the models, the file c1 was used corresponding to cutter 1, which is part of the training
set of the competition. Since we did not have access to the test set’s ‘wear’ data files we had to use cutter 4
and 6 as the test set

The input parameters of our dataset were the same as the ones provided from the competition’s dataset. We
preprocessed the accelerometer, dynamometer and Acoustic Emission data and used the dataset we created.

4.3 Preprocessing & Feature Extraction

To effectively use the extensive dataset provided, we need to transform the high-dimensional time-series
data into a manageable, efficient, and low-dimensional representation for each cut. This process involves
several steps including data cleaning, feature extraction and normalization.

Data Cleaning

The dataset provided by the PHM Society was already “clean” and contained no missing values. This
significantly reduced the preprocessing effort required, allowing the focus to be on feature extraction and
other important steps in the data preparation process.

123

Feature Extraction

Each cut file in the dataset consists of approximately 250,000 rows, with each row containing 7 data
parameters, leading to a highly complex observation space of 1,750,000 dimensions for the agent to work
with. To address the curse of dimensionality and extract meaningful features, the focus was on deriving 7
critical time-domain features for each input parameter recorded by the sensors.

The time-domain features extracted are as follows:

Extracted Time Domain Features

Mean 1

Root Mean Square (RMS)

Crest Factor

The average Power

[y

i=

Skewness E [(x; — %)3]
RMS3
Kurtosis 1 _
5 i — 0)*
RMS*

By extracting these features for each of the 7 sensor parameters (Force in X, Y, Z; Vibration in X, Y, Z;
and AE-RMS), the dimensionality of the data was reduced to 42 features per cut. This reduction in
dimensionality is crucial for making the dataset manageable and ensuring the efficiency of the learning
algorithms.

Normalization

After extracting the time-domain features, normalization was performed to a range of 0 to 1 to ensure
uniformity and improve the performance of the learning algorithms. Normalization was conducted using
min-max scaling, which adjusts the values in each feature to fall within the specified range, enhancing the
convergence rate of the training process.

Integration of Wear Data

124

As afinal step, the wear flute values were included into the dataset, ensuring a complete dataset that includes
both the extracted features and the wear measurements. This all-in-one dataset is more practical for the
training process as it contains all relevant information needed by the model.

Additional Data Analysis

An exploratory data analysis (EDA) was conducted to uncover patterns and relationships within the dataset.
This included visualizing the features provided and examining correlations between different features. EDA
helped gain a deeper understanding of the dataset's structure and its relevance to the model performance.

Flute Max over Files

120

Flute Max value

100
80
60

0 50 100 150 200 250 300
File Index

AE_rms vs. Flute Max Histogram of dyn_X_mean

Figure 31 : Part of the Graphs that were created during EDA

Additionally, to better understand the data and the progression of flute degradation after each cut, the wear
files provided in the dataset were analyzed. A function was developed to traverse each cutter machine's
wear files and identify the maximum wear difference between sequential cuts. This information is crucial
and will be utilized in the prediction process of the reinforcement learning agent. The maximum wear
difference recorded was used as a hyperparameter in every MDP model.

125

4.4 MDP Model

After creating the dataset, the next step is to model the problem. For the Reinforcement Learning (RL)
algorithm to function, a simulated environment is required where the agent can act and receive rewards.
This simulated environment should utilize the created dataset and behave in a manner that enables the agent
to learn to predict the wear of the CNC flute accurately.

A Markov Decision Process (MDP) can effectively model the CNC Machine Wear Problem environment.
To define this MDP, it is necessary to specify the following components within the context of the problem:
states, actions, transition probabilities, and rewards. Following the guidelines outlined in Chapter 3.3, the
5-tuple of the MDP will be tailored to the specific characteristics of the problem and the dataset created
during preprocessing.

4.4.1 Components of the MDP

Using the Gymnasium (formerly OpenAl Gym) library we design a custom environment for solving the RL
optimization problem. It simulates a system where an agent makes predictions about the wear on certain
components (referred to as "flutes') in a manufacturing process. The agent aims to predict wear accurately
based on historical processed data, with rewards and penalties assigned based on prediction accuracy.

In the context of Markov Decision Process (MDP) theory, the environment aligns with the MDP framework,
which is defined by a 5-tuple (S, A, R, P, po).

The environments created for the training of the RL algorithm in this implementation are four. They are
split into two major categories based on the Prediction Model and the Reward Calculation.

Prediction Method > Non Corrective
'\

Reward Calculation With Delay No Delay With Delay No Delay
J

Figure 32 : The four different environments

All the environments contain some similar features but differ in the two major categories mentioned. The
similar features are the State Space, Action Space and the Initial State Distribution:

126

Similar features
States (S):

e The State Space is completely represented by the observation space (fully observable
environment) and consists of 42 time-domain features derived from sensor data. All the data is
derived from the dataframe (df) that we provide to the environment class as an argument, which
is the processed dataset we have created after completing the steps of section 4.2.

self.observation_space = gymnasium.spaces.Box(low=0, high=1,
shape=(42,), dtype=np.float64)

e Observations are constructed from the current step's sensor data using the custom _get_obs()
method:

def _get obs(self):
obs = self.df.loc[self.current_step,
time_domain_features_columns].to_numpy(dtype=np.float64)
return obs

An observation is part of a row of the dataframe (df) which is the PHM dataset we have
processed. For each step in every episode, meaning for each cut we examine, we pick from
the data frame all the time domain features corresponding to the cut (the current step).

Actions (A):

e The action space is a continuous space with three dimensions, each ranging from 0 to 1.
These actions represent the agent's predictions for the additional wear on three flutes.

e The action space is defined as :

low_bound = np.array([0, ©, 0], dtype=np.float64)

high_bound = np.array([1, 1, 1], dtype=np.float64)

self.action_space = gymnasium.spaces.Box(low=1low_bound, high=high_bound,
dtype=np.float64)

The prediction of the additional wear of each flute will be used to calculate the overall wear
Initial State Distribution po :

e The initial state is set up by the _state_s@() method, initializing the environment with the
initial wear values:

127

def _state_sO(self):
self.current_step = ©

self.flute_1 (2*self.df.loc[@, "flute_1"]) -
self.df.loc[1, "flute 1"]
(2*self.df.loc[0@, "flute 2"]) -
self.df.loc[1, "flute 2"]
(2*self.df.loc[0@, "flute 3"]) -
self.df.loc[1, "flute 3"]
self.flute_max = (2*self.df.loc[@, "flute_max"]) -

self.df.loc[1, "flute_max"]

self.flute 2

self.flute_3

self.flute_1 pred = self.flute_1
self.flute_2 pred = self.flute_2
self.flute_3 pred = self.flute_3
self.flute_max_pred = max(self.flute_1, self.flute_ 2, self.flute_3)

self.pred_dif 1
self.pred_dif 2
self.pred_dif_3
self.pred_dif_max =

nm
[Y]

|
(]

self.score = @

For the initial flute wear values since there is no information about the initial conditions on the
data provided by the PHM, we set the value of every flute as:

flute-wear = wear_value(cut 0) - (wear_value(cut 1) - wear_value(cut 0))
= 2*wear_value(cut 0) - wear_value(cut 1)

Also, the variables of flute predictors (flute_i_pred) and flute prediction difference
(flute_pred_dif i) are initialized at certain values which will be useful for the reward calculation
process.

This approach ensures a consistent starting state across different runs.
Rewards (R):

e The reward function evaluates the accuracy of the agent's predictions. The closer the
predictions are to the actual wear values, the higher the reward.

e The reward is calculated using the score_function method described below, which are
called in the step method:

128

def step(self, action):
self. take_action(action)

reward flute 1

self.score_function(self.pred dif 1)
reward_flute 2 = self.score_function(self.pred_dif_2)
reward_flute 3 = self.score_function(self.pred dif_3)
reward flute max = self.score_function(self.pred_dif max)

reward = (REW_WEIGHT[@]*reward_flute 1) +
(REW_WEIGHT[1]*reward_flute 2) +
(REW_WEIGHT[2]*reward flute 3) +
(REW_WEIGHT[3]*reward_flute_max)

#delay modifier = (self.current_step / (MAX_STEPS-2))
#reward = reward without delay * delay modifier

return observation, reward, terminated, truncated, info

Additional Components

Each one of the environments created also has these additional components that are not mentioned in the
MDP theory but are required for the proper execution of the RL Algorithm:

e Reset Function:

o

The reset method reinitializes the environment to the starting state and returns the
initial observation and information:

def reset(self, seed=None, options=None):

super().reset(seed=seed)
self. state s0()
self.current_step = ©
observation = self. get obs()
info = self. _get_info()
return observation, info

e Termination and Truncation:

o

The environment terminates when the current step exceeds the maximum number of steps
(MAX_STEPS). This is done to ensure that we don't get a segmentation fault and the
index is out of range.

The environment can also be truncated if the episode reward is smaller than -200 million.
This is done in order to speed up the training process by cutting short poorly performing
training episodes, allowing the agent to focus on more productive actions.

129

def step(self, action):

if self.current_step > MAX_STEPS - 2:
MAX_STEPS - 2 = 315 - 2 = 313
terminated = True

if reward < -200000000: #200 million
truncated = True
return observation, reward, terminated, truncated, info

e Score function:

def score_function(self, delta):
if delta < ©:
return 1 - np.exp(-delta/10)
else:
return 1 - np.exp(delta/4.5)

Where & represents the difference between the predicted maximum
wear and the actual maximum wear.
(6 = Wear_Prediction_Value - Wear_Actual Value)

o The score function is the negation of the original score function used in the 2010 PHM Data
Challenge competition. The reason why the negation version of the function is used is that
the agent wants to maximize its reward and the original version is a minimization function.
It is designed to provide feedback to the agent based on the accuracy of its predictions,
specifically focusing on penalizing overestimations more severely than underestimations.

Analysis of the Score Function

1. Underestimation (Negative 9):
o When & < 0, the agent has underestimated the wear. The function 1 —

e(=8/10) j5 used, which grows slowly as & becomes more negative.

For example, if 6 =— 2:
S(=2) =1 — eC¥/10) = 1 — ¢(/10) ~ —(.2214

o The negative penalty is relatively small, reflecting a smaller punishment
for underestimation.
2. Overestimation (Positive d):
o When 6 > 0, the agent has overestimated the wear. The function 1 —
e(®/% is used, which grows faster as & becomes more negative.

130

For example, if 6 = 2:
S2) =1 - el®/*) =1 — ¢@/*5) ~ —0.5596

o The negative penalty is larger, returning a more significant punishment for
overestimation

The score function effectively penalizes overestimations more heavily than underestimations. This design
ensures that the agent learns to avoid predicting excessively high wear values, which can be more costly
and disruptive. The use of exponential functions provides a smooth gradient for learning, allowing the agent
to adjust its predictions incrementally and effectively.

Differences Between the Four Environments

The four environments are structured around two major categories: Prediction Method and Reward
Calculation. Each combination of these categories defines a distinct environment within the Markov
Decision Process (MDP) framework.

4.4.1.1 Prediction Method

e Corrective Prediction:
o In this approach, the agent's predictions are corrected based on the actual wear values
observed. This means that the agent adjusts its predictions by considering the current actual
wear, providing a more accurate and real-time adjustment to the state of the environment.

self.flute 1 pred = self.flute_ 1 + (action[©@] * MAX_DIFF)

self.flute 2 pred = self.flute 2 + (action[1] * MAX_DIFF)

self.flute_3 pred = self.flute_3 + (action[2] * MAX_DIFF)

self.flute max_pred = max(self.flute 1 pred, self.flute 2 pred,
self.flute_ 3 pred)

e Non-Corrective Prediction:
o This method involves updating the predictions incrementally based on previous predictions
without immediate correction based on actual wear values. It relies on the agent's previous
predictions to inform future predictions.

self.flute 1 pred += (action[@] * MAX DIFF)

self.flute 2 pred += (action[1] * MAX_DIFF)

self.flute_3 pred += (action[2] * MAX_DIFF)

self.flute max_pred = max(self.flute 1 pred, self.flute 2 pred,
self.flute 3 pred)

In both cases the action of the agent is multiplied by a MAX_DIFF variable which is provided by the
analysis we have done in the preprocessing phase of the implementation on the wear files of the PHM

131

dataset. It is the max additional wear between two cuts in all of the cutters. By multiplying the max
difference by a value on the range of 0 to 1 we can create the additional wear that should be predicted

4.4.1.2. Reward Calculation

e No Delay:
o Thereward is calculated directly based on the difference between predicted and actual wear
values, without any scaling factor related to the current step. This method focuses on
immediate accuracy without considering the long-term impact of actions.

reward = (REW_WEIGHT[@]*reward flute 1) +
(REW_WEIGHT[1]*reward flute 2) +
(REW_WEIGHT[2]*reward_flute_3) +
(REW_WEIGHT[3]*reward_flute_max)

The REW_WEIGHT values are equal for every environment and are 0,1 for each flute and 0,7 for the
flute_max.

e With Delay:
o The reward is adjusted by a delay modifier, which scales the reward based on the current
step within the episode. This method aims to emphasize actions that provide long-term
benefits by rewarding actions that have a positive effect later in the episode.

delay modifier = (self.current_step / (MAX_STEPS-2))
reward = reward without_delay * delay modifier

4.4.2. Summary of the Four Environments

Combining the two categories, the four distinct environments can be described as follows:

Environments

Corrective with Delay The agent’s predictions are corrected based on actual wear values, and
the rewards are adjusted by a delay modifier to emphasize long-term
benefits.

132

Corrective No Delay The agent’s predictions are corrected based on actual wear values, and
the rewards are calculated directly based on immediate prediction
accuracy.

Non-Corrective with Delay The agent’s predictions are incrementally updated based on previous
predictions, and the rewards are adjusted by a delay modifier to
emphasize long-term benefits.

Non-Corrective No Delay The agent’s predictions are incrementally updated based on previous
predictions, and the rewards are calculated directly based on immediate
prediction accuracy.

In conclusion, the environments simulate the CNC machine's wear prediction problem. The agent's
objective is to accurately predict the wear on three specific components (flutes) based on curated historical
sensor data. The state space consists of 42 time-domain features from sensors, offering a detailed
manufactured snapshot of the machine's condition after each cut. The action space is a three-dimensional
continuous vector, where each dimension (ranging from 0 to 1) corresponds to the agent's prediction for the
wear on one of the flutes. Rewards are calculated based on the accuracy of these predictions, with the reward
function favoring closer predictions and penalizing larger deviations.

| Agent ||
state reward action
S, R, A,

I S Y
<o Environment]47

Figure 33 : The MDP Model

State transitions are governed by the _take_action() method, which updates the environment based on
the agent's predictions. The initial state is set by the _state_s@() method, initializing the environment
with predefined wear values. The environment resets to its starting state at the beginning of each episode,
ensuring a consistent baseline for the agent's learning process. The step function executes one time step in
the environment, updating the state, calculating the reward, and determining whether the episode should
terminate or truncate. This setup provides a controlled simulation for training reinforcement learning agents
to optimize their prediction accuracy, illustrating a practical application of Markov Decision Process (MDP)
theory.

133

4.5 RL Model Training

In this section, the training process of the reinforcement learning (RL) models is described in detail. Four
algorithms were utilized within four different environments, resulting in a total of sixteen distinct models.
The training was conducted on the processed dataset of cutter 1 (train set).

The training process begins by creating an instance of the simulated environment using the preprocessed
dataset. Each environment allows the RL agent to interact with it and learn to predict the wear of the
machine.

The next step is to initialize the environment and set up a logging mechanism to track the progress and
performance of the models. A key aspect of this setup is defining the number of timesteps for training and
creating a directory structure to store the training logs and model files. A callback function was implemented
to log the score during training and to monitor the performance of the agent at various steps.

To ensure efficient and organized training, a function was developed to manage the creation and naming of
model files. This function also can load previously trained models, enabling the continuation of training
from the last saved state. During the training loop, models are periodically saved, and their performance is
evaluated to ensure they are learning effectively.

The training process is executed in iterations, with each iteration involving a specified number of timesteps.
After each iteration, the models are evaluated, and their performance metrics are logged.

Parameters

A compilation of constant parameters are used in training:

Global Parameters for CNC Custom Env
MAX_STEPS = len(df.loc[:, 'File'].values) #len = 315

MAX_DIFF = 20

REW_WEIGHT = [0.1 , 0.1 , ©.1 , ©.7] # flute 1-2-3 and flute_max
TIMESTEPS = 10000

logdir = "logs"

time_domain_features_columns = ['dyn_X _mean', 'dyn X rms', 'dyn_X crest',
"dyn_X_avg_power', 'dyn_X skewness', 'dyn_X kurtosis', ‘'dyn_Y_mean', 'dyn_Y_rms',
'dyn_Y_crest', 'dyn_Y_avg power', 'dyn_Y_skewness', 'dyn_Y_kurtosis', 'dyn_Z mean',
'dyn_Z rms', 'dyn_Z crest', 'dyn_Z avg power', 'dyn_Z skewness', ‘'dyn_Z kurtosis',
'acc_X _mean', 'acc_X_rms', 'acc_X_crest', 'acc_X_avg power', 'acc_X_skewness',
'acc_X_kurtosis', 'acc_Y_mean', 'acc_Y_rms', 'acc_Y_crest', 'acc_Y_avg_power',
'acc_Y_skewness', 'acc_Y_kurtosis', 'acc_Z mean', 'acc_Z_ rms', 'acc_Z crest',

134

'acc_Z_avg_power', 'acc_Z_ skewness', 'acc_Z kurtosis', 'AE_mean', 'AE_rms',
"AE_crest', 'AE_avg power', 'AE_skewness', 'AE_kurtosis']
flute _wear_collumns = ['flute_1','flute_2', 'flute_3', 'flute _max']

The MAX_STEPS parameter represents the maximum number of steps an agent can do in the environment,
and it is equal to the length of the data frame created in section 4.3.

The MAX_DIFF parameter sets the maximum allowable difference in the wear measurements, helping to
constrain the model's predictions within a realistic range.

The REW_WEIGHT parameter is a list of weights assigned to the reward components for different flutes.
The weights [0.1, 0.1, 0.1, 0.7] indicate the relative importance of the wear measurements for flute 1, flute
2, flute 3, and the maximum wear among the flutes, respectively. This helps prioritize the most critical wear
measurement in the reward calculation.

The training timesteps (TIMESTEPS) are constant for all models and the value is set to 10,000 steps. The
logdir parameter is the directory where the training logs are stored.

The time_domain_features_collumns is a list that contains the names of the columns representing the
time-domain features extracted from the dynamometer, accelerometer, and Acoustic Emission (AE) data.
These features are used as input to the RL model.

Lastly, the flute_wear_collumns is a list that includes the names of the columns representing the wear
measurements for the three individual flutes and the maximum wear among them. These measurements are

necessary for calculating agent’s rewards.

Also, the learning rate is constant in all models depending on the algorithm:

Learning Rate of RL Algorithms
PPO 0.0003
SAC 0.0003
A2C 0.0007
DDPG 0.001

Table 7 : Learning Rate of RL Algorithms

135

4.5.1. Non-Corrective Environments

4.5.1.1. PPO No Delay

rollout/ep_len_mean

(SRS
300 }‘—— e ..
250
200
150
s
100 //
>,
- o~
50
133 % M oM 15M 20M 25M 30M 35M 39833600 X
Run 1 Min Max Start Value End Value aValue A% Start Step End Step
® PPO_model_non_corr_no_delay_0 4826 314 4826 314 126574 +551% 38912 39,833,600

Figure 34 : Episode Length Mean per Timestep of PPO Non-Corrective No Delay Model

Initially, the episode length increases rapidly indicating the model's learning and improving performance.

After about 5 million steps, the episode length stabilizes around 314, suggesting that the model has
converged.

rollout/ep_rew_mean

B T o
WWWWWWW*WWWMMWWWW

5a+5

1.5e+6

2e+6

133 % 5M 10M 15M 200 25M 30M 35M 39833600 X

Run Min Max Start Value End Value s\ alue A% Start Step End Step

@ PPO_model_non_corr_no_delay_0 -23757105 -3,986.1587 -785,004.625 -15,653.6504 +769,350.9746 +-08% 38012 39,833,600

Figure 35 : Episode Reward Mean per Timestep of PPO Non-Corrective No Delay Model

At first, the rewards decrease sharply, indicating a period of learning and exploration. Around 5 million

steps, the rewards stabilize and maintain a consistent value with some fluctuations, suggesting that the
model has converged.

136

rollout/phm_score B
tess
2e+b
Te+5
de+5
2e+5
Te+rd
Ae+d
Ze+d4
7000
4000
2000]
700 ;
400
133 % M 10M 15M 20M 25M 30M 35M 39833600 %
&
Run 1 Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_non_corr_no_delay_0 1] 6,386,266 5 1] 5656765 + 565.6765 Infinity® 38912 39,833,600

Figure 36 : PHM Score per Timestep of PPO Non-Corrective No Delay Model

After applying “Smoothing” at value 0.99 we can easily observe a downward trend:
rollout/phm_score [SR

5e+5
de+5
3e+b

2e+5

Ge+d
TFe+d
Se+d
detd

Jerhd
Ze+d

133 x M 10m 15M 20M 25M 30M 35M 39833600 %
4
Run Min Max Start Value End Value s\ alue a% Start Step End Step
® PPO_model_non_corr_no_delay_0 0 472,978.1049 0 24,131.2842 +24,131.2842 + Infinity% 38,912 39,833,600

Figure 37 : “Smoothed” Version of PHM Score per Timestep of PPO Non-Corrective No Delay Model

The first graph shows the PHM score for the model with significant fluctuations throughout the training
period, indicating instability in minimizing the metric. The second graph, with smoothing applied, reveals
a clearer trend: the PHM score decreases gradually over time, despite initial high values and fluctuations.
This trend suggests that the model is progressively improving and learning to minimize the PHM score,
even though it is not immediately apparent in the unsmoothed data. The smoother graph demonstrates a
general improvement and convergence towards lower PHM scores, indicating that the training process is
heading in the right direction.

137

train/entropy_loss (3 %I

-~
500 x 5M oM 15M 20M 25M 20M 35M 39833600 %
4
Run 1 Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_non_corr_no_delay_0 -4.2544 -3.7519 42544 3773 +0.4813 +-11% 49,152 39,833,600

Figure 38 : Entropy Loss per Timestep of PPO Non-Corrective No Delay Model

Entropy loss measures the randomness in the policy's action selection. It starts at a lower value and gradually
increases over time, that is an indication of good exploratory performance. Later, the increase of entropy
loss is getting stabilized. This trend suggests that the model is converging and becoming more confident in
its decisions. Despite some fluctuations, the overall increase in entropy loss reflects the model's learning
process.

train/approx_kl [L H
Ted
le-6
Te8
Te-10
4096 X M 10M 15M 20M 25M 30M asM 39833600 x
s
Run + Min Max Start Value End Value AValue A% Start Step End Step
@ PPO_model_non_corr_no_delay_0 0 0.0016 0 1] +0 +615% 49152 39,833,600

Figure 39 : “Approximate KL Divergence per Timestep of PPO Non-Corrective No Delay Model

KL divergence measures the difference between the updated policy and the old policy, indicating how much
the policy is changing at each update. Especially in algorithms like PPO, KL divergence is often used as a
regularization term to ensure that the updated policy remains close to the previous policy during training.

Throughout the training period, the KL divergence fluctuates significantly, with no clear trend towards
stabilization. The fluctuation suggests that the policy updates are inconsistent, possibly due to the model
continuously adjusting its actions in response to the environment. Ideally, KL divergence should show a
decreasing trend or stabilize, indicating that the policy is converging. The current pattern indicates that the
model may still be exploring and adjusting.

138

train/std 1]1 aE
™
N
\\.
0.95
;\.J'/
e,
V'vhu-w'/ﬁw\\\k\
~
Y,
09 T
\Mv‘\a-\.\‘
"'\.N-._N\H
J_\”_,M\/\-’““- S e W
N
500 % M 10M 15M 20M 25M 30M 35M 39833600 %
“
Run 1 Min Max Start Value End Value aValue H% Start Step End Step

® PPO_model_non_corr_no_delay_0 0.8488 0.9992 0.9992 0.8559 +0.1433 +-14% 49,152 39,833,600

Figure 40 : Standard Deviation per Timestep of PPO Non-Corrective No Delay Model

Initially, the standard deviation starts at a higher value and gradually decreases, indicating that the actions
selected by the policy are becoming more consistent and less exploratory over time. This decline suggests
that the model is converging, and the policy is becoming more deterministic as it gains confidence in the
optimal actions to take. The smooth, downward trend signifies a reduction in exploration, aligning with the
expected behavior as the model learns and stabilizes. The decrease of about 14% from the start to the end
of the training period matches the progressive stabilization and confidence in the policy's actions.

4.5.1.2. PPO With Delay

rollout/ep_len_mean];[
300
250
200
50
100
133 X 1Y am 6M BM 10M 12M 14M 16M
“~
Run 1 Min Max Start Value End Value £Value A% Start Step End Step
@® PPO_model_non_corr_with_delay_0 53.33 314 53.33 314 260,67 1+489% 12,288 16,967 680

Figure 41 : Mean Episode Length per Timestep of PPO Non-Corrective With Delay Model

Starting at 53.33, the mean episode length increases rapidly and stabilizes at the max value of 314 cuts
around 4 million steps. The model maintains consistent performance (in this metric) at this maximum
episode length throughout the remainder of the training period, indicating efficient learning and stability.

139

rollout/ep_rew_mean D];L ar

R — AR L 0]

Se+7

364536 % 2M M &M am 10M 12M 14M 168 18267
4
Run Min Max Start Value End Value AValue L% Start Step End Step
® PPO_model_non_corr_with_delay_0 -54,153,960 -4 153 2996 -8299183125 1290659141 +700,852.3964 V-84% 12288 16,967,680

Figure 42 : Mean Episode Reward per Timestep of PPO Non-Corrective With Delay Model

Starting from a reward of -829,918, the model exhibits fluctuations with occasional significant drops,
especially around the 11 million step mark. Despite these drops, the overall trend shows an improvement,
ending at -129,065, reflecting an increase of 700,852.40 in the mean episode reward. This indicates that
while the model faces some instability, it generally improves over time.

rollout/phm_score (R -
e+8
e+7
eth
e+5
Bl
1000

133 % M am &M M oM 12M 14M 160
4
Run + Min Max Start Value End Value AValue A% Start Step End Step
@® PPO_model_non_corr_with_delay_0 0 206,020,384 0 2777 8508 +2,777.8508 +Infinity% 12288 16,967,680

Figure 43 : PHM Score per Timestep of PPO Non-Corrective With Delay Model

A direct correlation with the previous two figures can be drawn here, as the first PHM score value appears
around the 4 million step mark when the model reaches the maximum episode length. After reaching that,
a significant decrease in the score is observed, which coincides with the corresponding significant
improvement in the mean reward at similar timesteps.

Beyond the 4.5 to 5 million step mark, a lot of fluctuations can be observed, which indicate that while the
model learns and improves, it faces challenges in maintaining consistent performance in minimizing the
Phm score.

140

train/entropy_loss n o

500 % ™ 4M &M &M 10M ™ 14M 160

Run + Min Max Start Value End Value AValue A% Start Step End Step

® PPO_model_non_corr_with_delay_0 -4.2563 -4.0119 -4.2563 -4.1007 +0.1555 4% 16,384 16,967,680

Figure 44 : Entropy Loss per Timestep of PPO Non-Corrective With Delay Model
This trend indicates that the policy becomes more explorative and then deterministic over time, with the
fluctuations reflecting periods of exploration. The overall small increase of 0.1555 in entropy loss (a 4%

change) suggests the model maintains a balance between exploration and exploitation throughout the
training process.

PPO No Delay vs With Delay (Non-Corrective)

rollout/ep_len_mean VIGE

T e - A

300

250

EEmmmm

200
150
100
50
133 x 5M 10M 15M 20M 25M 30M 35M 39833600 x
s~
Run + Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_non_corr_no_delay_0 4826 314 48.26 314 +265.74 4+551% 38,912 39,833,600
® PPO_model_non_corr_with_delay_0 53.33 314 53.33 314 1260.67 ~489% 12,288 16,967,680

Figure 45 : Comparison of Mean Episode Length per Timestep of PPO Non-Corrective With Delay and No Delay Models

The model "with delay" reaches episode length of 314 faster than the "no delay™ model, suggesting more
efficient learning early on. Despite this, both models ultimately achieve the same final performance.

141

rollout/ep_rew_mean (] -IF HE
0 7 7 -er V'V T Y U T T T
Te+7
2e+7
347
de+T
Se+7
-364536 % M am 6M 8M 100 1M 1aM 16M 18267
Ea
Run 1 Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_non_corr_no_delay 0 -2,375.710.5 -8,176.3579 -785,004.625 -18,142.2168 +766,862.4082 +-98% 38012 18,286,502
@ PPO_model_non_corr_with_delay_0 -54,153,960 -4,053.2996 -829,918.3125 -129,065.9141 4-700,852.3084 +-84% 12,288 16,967,680

Figure 46 : Comparison of Mean Episode Reward per Timestep of PPO Non-Corrective With Delay and No Delay Models

The model "with_delay" exhibits significantly larger fluctuations, including deep spikes. Over time, both

models improve.

an
ar

rollout/phm_score £ J;[
Te+8
147
Te+b

Te+5

le+d

1000

133 X M 10M 15M 20M 25M 30M 35M 39833600 X

Run ~ Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_non_corr_no_delay_0 0 6,386,266.5 0 565.6765 +565.6765 Infinity% 38912 39,833,600
® PPO_model_non_corr_with_delay_0 0 206,020,384 0 2,777.8508 +2,777.8508 Infinity% 12,288 16,967,680

Figure 47 : Comparison of PHM Score per Timestep of PPO Non-Corrective With Delay and No Delay Models

The model "with delay" shows higher initial PHM scores and greater fluctuations compared to the model

"no delay". Over time, both models reduce the PHM scores. The delay correction may accelerate learning

initially, it results in higher variability and less optimal final performance in minimizing PHM scores.

4.5.1.3. SAC No Delay

rollout/ep_len_mean D];l b

250

200

150

100

. [N N
133 % 500k Y 1.5M M 25M 3M 35M am
Run Min Max Start Value End Value AValue A% Start Step End Step 7

@® SAC_model_non_corr_no_delay_0 18.81 255.64 118.9868 35.33 83.6568 +-70% 9,043 3,819,951

Figure 48 : Mean Episode Length per Timestep of SAC Non-Corrective No Delay Model

142

rollout/ep_rew_mean

0
-Se+8
Aerd
133 x 500k ™ 15M M 25M M 3.5M am
“
Run Min Max Start Value End Value Avalue A% Start Step End Step
@ SAC_model_non_corr_no_delay_0 -1,135,406,336 -843,728.125 -1,627,083.5 -574,543,744 +572,916,660.5 +35211% 9,043 3,819,951

Figure 49 : Mean Episode Reward per Timestep of SAC Non-Corrective No Delay Model

The SAC Non-Corrective No Delay model shows a big downward trend in the mean episode length and

the mean episode reward also falls down drastically. These difficulties in learning and maintaining good
performance suggest bad training.

4.5.1.4. SAC With Delay

rollout/ep_len_mean

200 \
150
100
50
e — B———
133 % 200k 400k 600k 800k ™ 12M 1.4M 1.6M 1.6M M 22M 2.4M
%
Run Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_non_corr_with_delay_0 18.41 245385 194.3816 34.83 +159.5516 +-82% 14,946 2,639,889
Figure 50 : Mean Episode Length per Timestep of SAC Non-Corrective With Delay Model
rollout/ep_rew_mean lr." HH
-5e+8
Te+9
133 x 200k 400k 600k 800k ™ 12M 1.4M 1.6M 1.8M M 22M 2.4M
Fd
Run Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 4557,377,954.375 +29501% 14,946 2,639,889

Figure 51 : Mean Episode Reward per Timestep of SAC Non-Corrective With Delay Model

The model initially explores different strategies, and it struggles to maintain longer episodes over time.
The drop in reward is matched by the exploration attempt at the 400,000-step mark. Similar to the No
Delay model, the learning process does not progress in the right direction and is stagnant.

143

rollout/ep_len_mean

B R oo
La
250
200
150
100
. S .
¥ v
133 % 500k ™ 1.5M M 2.5M 3M 35M M
Z
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@ SAC_model_non_corr_no_delay_0 18.81 255.64 118.9868 3533 +83.6568 +-70% 9,043 3,819,951
@® SAC_model_non_corr_with_delay_0 18.41 24585 1843816 3483 +159.5516 +-82% 14,846 2,639,889

Figure 52 : Comparison of Mean Episode Length per Timestep of SAC Non-Corrective With Delay and No Delay Models

rollout/ep_rew_mean

ra H
B r oo
0
-5e+8
Te+d
133 % 500k ™ 1.5M M 2.5M 3M 35M am
4
Run 1 Min Max Start Value End Value AValue A% Start Step End Step
@ SAC_model_non_corr_no_delay_0 -1,135,406,336 -843,728.125 -1,627,083.5 -574,543,744 +572,916,660.5 435211% 9,043 3,819,951
@ SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 +557,377,954.375 +29501% 14,946 2,639,889

Figure 53 : Comparison of Mean Episode Reward per Timestep of SAC Non-Corrective With Delay and No Delay Models

None of the models reached the 314-cut mark so the PHM score cannot be examined

train/actor_loss

SeE S I
La :
8e+10
Ge+10
4e+10
2e+10
0
464 x 500k ™ 1.5M M 2.5M 3M 3.5M 3819951 x 4M
~
Run Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_non_corr_no_delay_0 448,329.2813 68,223,971,328 448,329.2813 26,785,886,208 +26,785,437,878.7188 5874501% 9,043 3,819,951
@® SAC_model_non_corr_with_delay_0 403,940.5 89,741,172,736 694,773.6875 46,315,708,416 +46,315,013,642.3125 26666201% 14,946 2,639,889

Figure 54 : Comparison of Actor Loss per Timestep of SAC Non-Corrective With Delay and No Delay Models

144

train/critic_loss JF-
2e+17
Te+17 m
, Ml
464 X 500k ™ 1.5M M 2.5M 3M 3.5M 3819951 X 4M
4
Run T Min Max Start Value End Value AValue A% Start Step End Step
@® SAC_model_non_corr_no_delay_0 1,807,640,832 78,526,244,282,433,540 2,172,756,480 11,400,540,789,407 744 +11,400,538,616,651,264 +524703929% 9,043 3,819,951
@® SAC_model_non_corr_with_delay_0 2,226,850,816 281,147,700,202,700,800 2,226,850816 71,058,369,896,513,540 471,058,367,669,662,720 43190980157% 14,946 2,639,889

Figure 55 : Comparison of Critic Loss per Timestep of SAC Non-Corrective With Delay and No Delay Models

train/ent_coef -'l|TL
A
4647 P W\
/ \
s \
S
2e+7 // \\\
e
P g m
0 .
1256 % 500k ™ 1.5M M 2.5M M 3.5M 3819951 % 4M
i
Run Min Max Start Value End Value AValue A% Start Step End Step
@ SAC_model_non_corr_no_delay_0 15.0069 22,817,644 15.00869 9,480,854 19,480,838.9931 +63176633% 9,043 3,819,951
@ SAC_model_non_corr_with_delay_0 76.5747 52,836,676 76.5747 47,141,892 +47,141,815.4253 +61563199% 14,946 2,639,889

Figure 56 : Comparison of Entropy Coefficient per Timestep of SAC Non-Corrective With Delay and No Delay Models

The comparison of SAC non-corrective with delay and no delay models shows that both exhibit a downward
trend in mean episode length and rewards and both models have not reached the max episode length of 314.
The no delay model starts at 118.98 and ends at 35.33, while the with delay model starts at 194.38 and ends
at 34.83, indicating that both struggle to maintain longer episodes. Both models have highly negative
rewards, highlighting their poor performance. Actor loss and critic loss graphs for both models show
significant variability, this results in instability in learning and challenges in value function estimation. The
entropy coefficient graph indicates substantial changes in the exploration-exploitation balance for both
models. Overall, despite initial exploration, both models fail to progress in the right direction, demonstrating
significant difficulties in achieving good performance.

4.5.1.5 DDPG No Delay

rollout/ep_len_mean JF-
300
200
100
133 % 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1M
4
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 32.25 314 33.25 314 +280.75 +844% 133 1,064,325

Figure 57 : Mean Episode Length per Timestep of DDPG Non-Corrective No Delay Model

145

rollout/ep_rew_mean E];[H
0
-Set6
-le+?
-1.5e+7
133 % 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 11M
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@ DDPG_model_non_corr_no_delay_0 16,738,453 -573,151.75 -573,151.75 -16,738,453 +16,165,301.25 +2820% 133 1,064,325

Figure 58 : Mean Episode Reward per Timestep of DDPG Non-Corrective No Delay Model

rollout/phm_score D];[-
de+6
2e+6
0
133 % 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1.1M
Run Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 0 4,959,841 0 4,959,841 44,959,841 lnfinity% 133 1,064,325

Figure 59 : PHM Score per Timestep of DDPG Non-Corrective No Delay Model

The DDPG Non Corrective No Delay model demonstrates an initial fast learning phase in terms of
episode length but quickly converges to a suboptimal policy with poor rewards and high PHM scores.
This suggests that while the model can achieve long episodes, it fails to optimize the rewards metrics and
is stuck in a local minimum.

4.5.1.6. DDPG With Delay

rollout/ep_len_mean =] JF' HH
22
2
18
133 % 50k 100k 150k 200k 250k 300k 350k 400k 450k 500K
Run Min Max Start Value End Value AValue A% Start Step End Step

@® DDPG_model_non_corr_with_delay_0 18 23 20.75 23 +2.25 A11% 498 510,251

Figure 60 : Mean Episode Length per Timestep of DDPG Non-Corrective With Delay Model

146

rollout/ep_rew_mean J?
0
le+d
-2e+8
-3e+8
133 % 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
ra
Run Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_non_corr_with_delay_0 -292,286,080 -651,064.0625 -658,363.625 292,286,080 +291,627,716.375 +44296% 498 510,251

Figure 61 : Mean Episode Reward per Timestep of DDPG Non-Corrective With Delay Model

This model never reached the max cut 314 and therefore there is no PHM score graph.

The DDPG Non Corrective With Delay model is the worst performer in the training process, showing a
minor increase in mean episode length and severe decline in the mean episode reward. This model failed to
reach the maximum cut of 314, resulting in no PHM score record. Overall, the model has failed to train
effectively, demonstrating significant limitations in its learning process and effectiveness.

rollout/ep_len_mean IF-
300
200
100
133 x 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1IM
5
Run + Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 3225 314 33.25 314 +280.75 +844% 133 1,064,325
@® DDPG_model_non_corr_with_delay_0 18 23 20.75 23 +2.25 +11% 498 510,251

Figure 62 : Comparison of Mean Episode Length per Timestep of DDPG Non-Corrective With Delay and No Delay Models

rollout/ep_rew_mean -]-F
0
-le+8
-2e+8
e+l
133 % 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 11M
]
Run * Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_non_corr_no_delay_0 -16,738,453 -573,151.75 -573,151.75 -16,738,453 +16,165,301.25 +2820% 133 1,064,325
@® DDPG_model_non_corr_with_delay_0 -292,286,080 -651,064.0625 -658,363.625 -292,286,080 +291,627,716.375 +44296% 498 510,251

Figure 63 : Comparison of Mean Episode Reward per Timestep of DDPG Non-Corrective With Delay and No Delay Models

147

rollout/phm_score JF
de+6
2e+6
0
133 % 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1M
E
Run Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 4] 4,959,841 0 4,959,841 44,959,841 A Infinity% 133 1,064,325
@® DDPG_model_non_corr_with_delay_0 [} 0 0 0 +~0 NaN% 498 510,251

Figure 64 : Comparison of PHM Score per Timestep of DDPG Non-Corrective With Delay and No Delay Models

train/actor_loss]?

1e+10 e

- /

ﬁ—\

464 X 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1.IM
~
Run T Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 20,825.6172 16,853,906 20,825.6172 5047827 +5,027,001.3828 424139% 464 1,064,325
@® DDPG_model_non_corr_with_delay_0 44,001.1367 82,904,326,144 44,001.1367 82,876,825,600 +82,876,781,598.8633 +188351456% 498 510,251

Figure 65 : Comparison of Actor Loss (Log Scale) per Timestep of DDPG Non-Corrective With Delay and No Delay Models

train/critic_loss J;
T [
1e+15
1e+10
Te+5
464 x 100k 200k 300k 400k 500k 600k 700k 800k 900k ™ 1M
P
Run Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_non_corr_no_delay_0 79426938 4,070,952,402,944 1,920,370,816 1,799,887.375 +1,918,570,928.625 +-100% 464 1,064,325
@® DDPG_meodel_non_corr_with_delay_0 976.3956 456,673,770,820,599,800 9,516,695,552 451,382,577,270,358,000 +451,382,567,753,662,460 +4743059871% 498 510,251

Figure 66 : Comparison of Critic Loss (Log Scale) per Timestep of DDPG Non-Corrective With Delay and No Delay Models

The comparison of DDPG Non-Corrective With Delay and No Delay models reveals significant differences
in performance. The No delay model quickly achieves and maintains the maximum mean episode length of
314, while the With Delay model shows only a minor increase from 20.75 to 23. The actor loss graph
indicates that the no delay model stabilizes, while the with delay model continues to increase, showing
instability. Similarly, the critic loss graph shows that the no delay model stabilizes while the with delay
model fluctuates significantly. Overall, the No-delay model is better, but it fails to optimize the reward
metrics.

148

4.5.1.7. A2C No Delay

rollout/ep_len_mean

300 =
200
100
133 % 5M 10M 15M 20M 25M
“
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® A2C_model_non_corr_no_delay_0 41.87 314 42.81 314 +271.19 +633% 21,500 26,750,000

Figure 67 : Mean Episode Length per Timestep of A2C Non-Corrective No Delay Model

rollout/ep_rew_mean

u]“ T Al
le+d WW W
2648
3e+8
-4e+8
133 % 5M 10M 15M 20M 25M
&
Run Min Max Start Value End Value AValue A% Start Step End Step
@ A2C_model_non_corr_no_delay_0 -429,141,408 -17,250.9238 -808,457.3125 -106,195.6094 +702,261.7031 +-87% 21,500 26,750,000
Figure 68 : Mean Episode Reward per Timestep of A2C Non-Corrective No Delay Model
rollout/phm_score JF o E
ies8
I
Te+ | I |
erd 1181 | | | | i | ‘ | | ! |
133 X 5M 10M 15M 20M 25M
£
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_non_corr_no_delay_0 0 3,935,591,168 0 30,639.4805 430,639.4805 Infinity% 21,500 26,750,000

Figure 69

rollout/phm_score

: PHM Score (Log Scale) per Timestep of A2C Non-Corrective No Delay Model

4e+9
3e+9
2e+9
Te+d] i '
) Lol 1l B LJ | I | o
133 % 5M 10M 15M 20M 25M
4
Run Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_non_corr_no_delay_0 0 3,935,591,168 0 30,639.4805 130,639.4805 nfinity% 21,500 26,750,000

Figure 70 : PHM Score per Timestep of A2C Non-Corrective No Delay Model

149

The A2C Non-Corrective No delay model demonstrates rapid increases in mean episode length from 42.81
to the maximum value of 314, which is maintained throughout the rest of the training indicating quick
learning and the ability to sustain long episodes. However, the mean episode reward shows a significant
decrease with values dropping very low, suggesting convergence to a suboptimal policy with large negative
rewards. Additionally, the PHM score graph fluctuates significantly. Overall, the model shows initial rapid
learning in episode length but fails to optimize rewards and maintain stable health metrics, highlighting
significant limitations in its learning process.

4.5.1.8. A2C With Delay

rollout/ep_len_mean [I[[HH

Y ¥

250

200

133 % M am 6M aM 10M 12M 14M 16M 18M 20M
P
Run Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_non_corr_with_delay_0 176.86 314 183.93 269.89 +85.96 +47% 51,500 19,120,000

Figure 71 : Mean Episode Length per Timestep of A2C Non-Corrective With Delay Model

rollout/ep_rew_mean];[i
0
- WW\[\W
-le+9
133 x 2M M &M 8M 10M 12M 14M 16M 18M 20M
4
Run Min Max Start Value + End Value AValue A% Start Step End Step

® A2C_model_non_corr_with_delay_0 -1,462,147,968 -9,138.624 -1,052,5B7.625 -1,462,147,968 +1,461,095,380.375 +138810% 51,500 19,120,000

Figure 72 : Mean Episode Reward per Timestep of A2C Non-Corrective With Delay Model

rollout/phm_score [1;[1

Te+8

Te+6 H ‘ | ‘ | L

Te+d It |

133 ¥ M am oM 8M 10M 12M 14M 16M 18M 20M
&
Run ™ Min Max Start Value End Value AValue A% Start Step End Step

@ A2C_model_non_corr_with_delay_0 4749217 6,790,013,952 21,823.1406 3,374,888,704 43,374,866,880.8594 +15464625% 51,500 19,120,000

Figure 73 : Phm Score per Timestep of A2C Non-Corrective With Delay Model

150

The A2C Non-Corrective With Delay model reaches the max episode length quickly and then has slight
fluctuations which are seen as big downwards spikes in the reward graph. During the severe declines in the
mean episode reward, the PHM score graph fluctuates dramatically. Overall, even though the model
maintains long episodes, it cannot improve its rewards and that showcases poor learning process.

rollout/ep_len_mean

ra
SRR
300 Y vl v L A | ‘ ﬂ
200
100
133 X 5M 10M 15M 20M 25M
Fd
Run Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 41.87 314 42.81 314 +271.19 4+633% 21,500 26,750,000
@® A2C_model_non_corr_with_delay_D 176.86 314 183.93 269.89 +85.96 +47% 51,500 19,120,000

Figure 74 : Comparison of Mean Episode Length per Timestep of A2C Non-Corrective With Delay and No Delay Models

rollout/ep_len_mean

g
300
200
100
-56872 X 200k 400k 600k 800k ™ 1.2M 1.4M 1600000 X
s
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 41.87 314 42.81 308.94 +266.13 +622% 21,500 1,615,500
@® A2C_model_non_corr_with_delay_0 176.86 314 183.93 314 +130.07 +71% 51,500 1,611,000

Figure 75 : Shorter Range Selection of the Comparison of Mean Episode Length per Timestep of A2C Non-Corrective With Delay
and No Delay Models

rollout/ep_rew_mean

ra
= X o
0
-Se+8
-le+9
133 % 5M 10M 15M 20M 25M
Run Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_non_corr_with_delay_0 -1,462,147,968 -9,138.624 -1,052,587.625 -1,462,147,968 +1,461,095,380.375 +138810% 51,500 19,120,000
A2C_model_non_corr_no_delay_0 -429,141,408 -17,250.9238 -808,457.3125 -106,195.6094 +702,261.7031 +-87% 21,500 26,750,000

Figure 76 : Comparison of Phm Score per Timestep of A2C Non-Corrective With Delay and No Delay Models

151

rollout/phm_score =] 1;[1t
Ge+d
4e+9
2e+9
0] I II alad | A
133 % 5M 10M 15M 20M 25M
Ed
Run Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 a 3,935,591,168 1] 30,639.4805 +30,639.4805 Infinity% 21,500 26,750,000

@® A2C_model_non_corr_with_delay_0 474.9217

6,780,013,952

21,823.1406

3,374,888,704

4-3,374,866,880.8594

+15464625%

51,500

19,120,000

Figure 77 : Comparison of PHM Score per Timestep of A2C Non-Corrective With Delay and No Delay Models

rollout/phm_score E I[[ar
Te+8
1e+6
le+d

133 % 5M 10M 15M 20M 25M
&
Run Min Max Start Value End Value AValue A% Start Step End Step
AZC_model_non_corr_no_delay_0 Q 3,935,591,168 0 30,639.4805 430,639.4805 Infinity% 21,500 26,750,000

@ A2C_model_non_corr_with_delay_0 4749217 6,790,013952 21,823.1406 3,374,888,704 13,374,866,880.8594 +15464625% 51,500 18,120,000

Figure 78 : Comparison of PHM Score (Log Scale) per Timestep of A2C Non-Corrective With Delay and No Delay Models

The A2C models are the second fastest Non-Corrective models to converge after only the DDPG No Delay.
The no delay model initially shows significant variance in mean episode length but stabilizes at the
maximum value of 314, indicating that it eventually learns to maximize episode duration although slower.
Its mean episode reward graph, however, reveals large negative rewards, reflecting high variance and
instability throughout the training process. Also, the corresponding PHM score graph shows substantial
variability, indicating that the model often deviates from optimal behavior. On the contrary, the with delay
model, while showing similar initial fluctuations, converges more steadily and faster to a high mean episode
length and exhibits less reward instability, as seen in the smoother reward graph. This model’s Phm score
also indicates more consistent performance with fewer extreme values compared to the no delay model.
Together, these observations suggest that incorporating delay improves the stability and performance of the
A2C algorithm, although it still faces challenges in minimizing the Phm score.

4.5.2. Corrective Environments

The Mean Episode Length Evaluation Metric consistently reaches the maximum value of 314 across all
models, except for the A2C “no delay” corrective model. Therefore, displaying the graph of the mean

152

episode length for all other models is unnecessary, as it would simply show a straight line at the 314 value
for every timestep. A complete graph of Mean Episode Length will be presented in the Comparative

Analysis of Every Algorithm in the Corrective Environments section.

4.5.2.1 PPO No Delay

rollout/ep_rew_mean

ra
La

-100

-200

133 x 100k 200k 300k 400k 500k 600k 700k 800k 800k M 1.1M

Run Min Max Start Value End Value AValue A%

+247.3573 +-95%

Start Step

@® PPO_model_corr_no_delay_0 -259.0568 -11.5104 -259.0568 -11.6995 2,048

Figure 79 : Mean Episode Reward per Timestep of PPO Corrective No Delay Model

rollout/phm_score

300

200

100

End Step
1,177,600

133 % 100k 200k 300k 400k 500k 600k 700k 800k 200k ™ 1.1M

Run ™ Min Max Start Value End Value AValue A% Start Step

® PPO_model_corr_no_delay 0 11.396 304.5105 304.5105 11.7365 +292.774 +-96% 2,048

Figure 80 : PHM Score per Timestep of PPO Corrective No Delay Model

1.2M
End Step
1,177,600

The model converges quickly into the max episode length as seen in the first graph, with a significant
increase observed within the first 100,000 steps. The mean episode reward increases by 95% from its initial
value, indicating successful training. The PHM Score also follows a similar trend, rapidly decreasing to a
near-zero value within the same timeframe, which aligns with the reduction in variance and stabilization of
the policy. This behavior highlights the model's efficiency in reaching optimal performance quickly and

reliably.

153

4.5.2.2. PPO With Delay

rollout/ep_rew_mean D];[HH
-50
-100
133 % 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1.8M 2M 2.2M
Fd
Run Min Max Start Value T End Value AValue A% Start Step End Step
@® PPO_model_corr_with_delay_0 -122.3658 -5.9918 -122.3658 -6.0071 +116.3587 +-95% 2,048 2,160,640

Figure 81 : Mean Episode Reward per Timestep of PPO Corrective With Delay Model

rollout/phm_score D J;[ir
250
200
150
100
50
0
133 % 200k 400k 600k 800Kk ™ 1.2M 1.4M 1.6M 1.8M 2M 2.2M
K
Run * Min Max Start Value End Value AValue A% Start Step End Step
® PPO_model_corr_with_delay_0 9.6932 270.2987 270.2987 10.0517 ~+260.247 +-96% 2,048 2,160,640

Figure 82 : PHM Score per Timestep of PPO Corrective With Delay Model

Similarly to the No Delay, the PPO Corrective With Delay model demonstrates a rapid increase in mean
episode reward, reaching stability early and maintaining it throughout the training period. The reward
improves from -122.3 to -6.0, representing a positive change of +116.3 (95%). The PHM score also shows
a significant reduction from its peak, settling at around 10.05 with a decrease of 260 (96%).

rollout/ep_rew_mean - K o
100
200
133 % 200k 400K 600k 800K ™ 12M 14M 1.6M 1.8M M
4
Run Min Max Start Value ™ End Value AValue A% Start Step End Step
@® PPO_model_corr_no_delay_0 -259.0568 -11.5104 -259.0568 -11.6995 4+247.3573 +-95% 2,048 1,177,600
® PPO_model_corr_with_delay_0 -122.3658 -5.9918 -122.3658 -6.0071 4+116.3587 +-95% 2,048 2,160,640

Figure 83 : Comparison of Mean Episode Reward per Timestep of PPO Corrective With Delay and No Delay Models

154

rollout/phm_score [JF- - H
300
200
100
0
123 % 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1.8M M 2.2M
4
Run ™ Min Max Start Value End Value AValue Start Step End Step
PPO_model_corr_no_delay_0 11.396 304.5105 304.5105 11.7365 292774 2,048 1,177,600
PPO_model_corr_with_delay_0 9.6932 270.2987 270.2987 10.0517 +260.247 2,048 2,160,640

Figure 84 : Comparison of PHM Score per Timestep of PPO Corrective With Delay and No Delay Models

train/approx_kl

[R

08
06
0.4
02
byt e dd
1]
4096 x 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1.8M 2M 22M
il
Run ™ Min Max Start Value End Value AValue Start Step End Step
® PPO_model_corr_no_delay_0 0.0072 0.3907 0.015 0.0358 +0.0208 4,096 1,177,600
® PPO_model_corr_with_delay_0 0.0059 0.8503 0.0097 0.0322 -0.0225 4,096 2,160,640

Figure 85 : Comparison of Approximate KL Divergence per Timestep of PPO Corrective With Delay and No Delay Models

train/entropy_loss

[R

500 X 200k 400k 600k 800k ™ 1.2M
Run T Min Max Start Value End Value
PPO_model_corr_no_delay_0 -4.2255 2.2164 -4.2255 2.2164
PPO_model_corr_with_delay_0 -4.2269 2.5303 -4.2269 24326

1.4M

AValue
4+6.4419
+6.6595

1.6M

1.8M 2M 2.2M
Start Step End Step
4,096 1,177,600
4,096 2,160,640

Figure 86 : Comparison of Entropy Loss per Timestep of PPO Corrective With Delay and No Delay Models

155

train/std D 1} o
1
08
06
04
02
500 % 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1.8M 2M 2.2M
&
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@ PPO_model_corr_no_delay_0 0.1437 0.981 0.981 0.1437 +-0.8373 -B5% 4,096 1,177,600
@® PPO_model_corr_with_delay_0 0.1186 0.983 0.983 0.1234 +0.8596 +-87% 4,096 2,160,640

Figure 87 : Comparison of Standard Deviation per Timestep of PPO Corrective With Delay and No Delay Models

train/clip_fraction =] -; id

0.4

|
0.3 Nﬁ&
0.2 ‘*
‘I ' \,u
01 PRI !
mq'a x 200k 400k 600k 800k ™ 12M 1.4M 1.6M 1.8M 2M 2.2M
%

Run * Min Max Start Value End Value AValue AY Start Step End Step

@® PPO_model_corr_no_delay_0 0.0798 0.3972 0.1677 0.2952 201275 +76% 4,096 1,177,600

Figure 88 : Comparison of Clip Fraction per Timestep of PPO Corrective With Delay and No Delay Models

Both models exhibit efficient learning, quickly stabilizing their rewards and PHM scores, indicating
successful convergence and effective training in the corrective environment. The only slight difference is
that the with delay model is ever so slightly faster in converging.

4.5.2.3. SAC No Delay

rollout/ep_rew_mean (3| 1]1 HH
0
-50
-100
-150
-200
133 % 50k 100k 150Kk 200k 250k 300k 350k
]
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_corr_no_delay_0 -237.4886 -4.6806 -237.4886 -4.7083 42327803 +-98% 1,256 349,420

Figure 89 : Mean Episode Reward per Timestep of SAC Corrective No Delay Model

156

rollout/phm_score

200

150

100

133 % 50k

Run Min
® SAC_model_corr_no_delay_0 3.5193

Figure 90 : PHM Score per Timestep of SAC Corrective No Delay Model

Max

100k

232.3027

150k

Start Value
232.3027

200k

End Value

250k

AValue A%

+228.439 +-98%

End Step
349,420

The model demonstrates a rapid convergence in terms of mean episode reward, with a significant increase
up to around 237.4. The reward stabilizes quickly, indicating efficient learning. The PHM score also
shows a rapid decrease. Overall, this model shows effective and stable performance throughout the

training period.

4.5.2.4. SAC With Delay

rollout/ep_rew_mean

-50

-100

133 x

Run Min
® SAC_model_corr_with_delay_0

Figure 91 : Mean Episode Reward per Timestep of SAC Corrective With Delay Model

rollout/phm_score

250

200

150

100

50

133 %

Run Min
® SAC_model_corr_with_delay_0 4.2038

Figure 92 : PHM Score per Timestep of SAC Corrective With Delay Model

ra
La

50k

-126.2699

50k

Max
-1.7683

Max
256.6743

100k

Start Value

-126.2699

100k

Start Value

256.6743

-1.7683

7.6279

150k

End Value

150k

End Value

200k

AValue A%

+124.5016 +-99%

200k

AValue A%

+249.0464 N-97%

250k

250k

End Step
279,734

'
ar

End Step
279,734

157

The SAC Corrective With Delay model, shows a faster increase in the mean episode length per timestep,
but a slower and more gradual increase in mean episode reward, peaking at around -1.76 (perfect score).
The learning process appears to be slowed by the delay, resulting in slightly less efficient learning and lower
overall rewards compared to the no delay model. The PHM score similarly decreases but stabilizes at a
higher level of uncertainty than the no delay model, indicating less efficient convergence.

rollout/ep_rew_mean lr.'L i
-50
-100
150
200
133 X 50k 100k 150k 200k 250k 300k 350k
2
Run Min Max Start Value End Value AValue A% Start Step End Step
@® SAC_model_corr_no_delay 0 -237.4886 -4.6806 -237.4886 -4.7083 4232.7803 +-98% 1,256 349,420
@® SAC_model_corr_with_delay_0 -126.2699 -1.7683 -126.2699 -1.7683 +124.5076 +-99% 1,256 279,734

Figure 93 : Comparison of Mean Episode Reward per Timestep of SAC Corrective With Delay and No Delay Models

an

rollout/phm_score JTL ir

200
150
100

50

133 % 50k 100k 150k 200k 250k 300k 350k
4
Run T Min Max Start Value End Value AValue A% Start Step End Step
@® SAC_model_corr_no_delay_0 3.5193 232.3027 232.3027 3.8637 -228.439 +-98% 1,256 349,420
® SAC_model_corr_with_delay_0 4.2038 256.6743 256.6743 7.6279 +249.0464 +-97% 1,256 279,734

Figure 94 : Comparison of PHM Score per Timestep of SAC Corrective With Delay and No Delay Models

158

train/actor_loss D J';[i

e
I e S SR Py WPy Py N Sy S A - e

i

464 X 50k 100k 150k 200k 250k 300k 350k
4
Run * Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_corr_no_delay_0 -7.1572 4.1855 -5.7849 29704 +8.7553 +-151% 1,256 349,420
@® SAC_model_corr_with_delay_0 -12.3902 2.0691 -8.0893 1.2459 +9.3352 +-115% 1,256 279,734

Figure 95 : Comparison of Actor Loss per Timestep of SAC Corrective With Delay and No Delay Models

train/critic_loss D I[[i

Ted WW’W/\

464 X 50k 100k 150k 200k 250k 300k 350k
i
Run Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_corr_no_delay_0 0.0001 0.0879 0.0879 0.0001 +0.0879 +-100% 1,256 349,420
@ SAC_model_corr_with_delay_0 0 0.0462 0.0402 0 +0.0401 +-100% 1,256 279,734

Figure 96 : Comparison of Critic Loss (Log Scale) per Timestep of SAC Corrective With Delay and No Delay Models

train/ent_coef_loss D J;[HH

C 'J"V‘N A""r*\#'f“,l'“ !f\ ,’.\‘"n) 'l“"j\. Mr," {.X'VI ;,;‘U |

1256 x 50k 100k 150k 200k 250K 300k 350K
s
Run Min Max Start Value End Value AValue A% Start Step End Step
® SAC_model_corr_no_delay_0 -6.9027 1.6514 -1.6836 0.233 +1.9166 V-114% 1,256 349,420
@ SAC_model_corr_with_delay_0 -9.2221 23257 -1.7013 0.9541 +2.6555 +-156% 1,256 279,734

Figure 97 : Comparison of Entropy Coefficient Loss per Timestep of SAC Corrective With Delay and No Delay Models

Comparing the two models, it is evident that the No Delay model outperforms the With Delay model in
terms of mean episode reward and PHM score. The No Delay model converges faster and maintains higher
rewards. The With Delay model exhibits slower learning and higher uncertainty, highlighting the negative
impact of delay on the SAC model's performance. In the Entropy Coefficient Loss graph both models exhibit
fluctuation, which is due to the exploration-exploitation trade-off during learning. The No Delay model

159

initially shows a steeper increase in entropy coefficient loss but stabilizes faster, indicating a quicker
adaptation to the optimal policy. In contrast, the With Delay model shows more prolonged fluctuations and
a slower stabilization, suggesting that it takes longer to balance exploration and exploitation effectively.
This further reinforces the observation that the delay impacts the efficiency and stability of the learning
process in the SAC model.

4.5.2.5. DDPG No Delay

rollout/ep_rew_mean JF HH
20
-40
-60
133 % 100k 200k 300k 400k 500k 600k
&
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_corr_no_delay_0 -75.178 -8.4312 -75.178 -8.4651 +66.7129 +-89% 1,256 629,256

Figure 98 : Mean Episode Reward per Timestep of DDPG Corrective No Delay Model

rollout/phm_score I i
250
200
150
100
50
T — .
133 % 100k 200k 300k 400k 500k 600k
Run ™ Min Max Start Value End Value AValue A% Start Step End Step ’
® DDPG_model_corr_no_delay_0 8.1346 266.9668 13.058 8.278 +4.78 N-37% 1,256 629,256

Figure 99 : PHM Score per Timestep of DDPG Corrective No Delay Model

The model exhibits a significant increase in mean episode reward, improving from -75.1 to -8.46,
representing an 89% improvement. However, the PHM Score shows minimal improvement, with a change
of -37%. This model manages to perform better over time but does not reach the optimal performance level
of other models, as indicated by the relatively small decrease of PHM Score.

160

4.5.2.6. DDPG With Delay

rollout/ep_rew_mean J;[H
u
-100
200
133 % 100k 200k 300k 400k 500k 600k
]
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_corr_with_delay_0 -265.5265 -8.0956 -38.5167 -265.5265 +227.0098 4+ 589% 1,256 663,168
Figure 100 : Mean Episode Reward per Timestep of DDPG Corrective With Delay Model
rollout/phm_score D ‘]F ar
400
300
200
100
[i]
133 % 100k 200k 300k 400k 500k 600k
P
Run T Min Max Start Value End Value AValue A% Start Step End Step
@ DDPG_model_corr_with_delay_D 13.058 385.9457 13.058 385.9457 +372.8877 42856% 1,256 663,168

Figure 101 : PHM Score per Timestep of DDPG Corrective With Delay Model

The model demonstrates a severe drop in performance. The mean episode reward heavily decreases, and
the PHM Score increases dramatically. This model appears to be stuck in a bad policy, leading to poor
performance.

rollout/ep_rew_mean = q o
0
-100
-200
133 x 100k 200k 300k 400k 500k 600k
“
Run + Min Max Start Value End Value AValue A% Start Step End Step
@® DDPG_model_corr_no_delay_0 -75.178 -8.4312 -75.178 -8.4651 +66.7129 +-89% 1,256 629,256
@® DDPG_model_corr_with_delay_0 -265.5265 -8.0956 -38.5167 -265.5265 +227.0098 +589% 1,256 663,168

Figure 102 : Comparison of Mean Episode Reward per Timestep of A2C Corrective With Delay and No Delay Models

161

rollout/phm_score El 1;[ar

500
400

300
200

. LtL«_L \ P

133 % 100k 200k 300k 400k 500k 600k
Ed
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_corr_no_delay_0 B8.1346 266.9668 13.058 8.278 +4.78 +-37% 1,256 629,256
® DDPG_model_corr_with_delay_0 13.058 385.9457 13.058 385.9457 +372.8877 2856% 1,256 663,168

Figure 103 : Comparison of Phm Score per Timestep of A2C Corrective With Delay and No Delay Models

train/actor_loss J;[HH

60

40

20

1]

464 X 100k 200k 300k 400k 500k 600k
#4

Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_corr_no_delay_0 0.4 2.3507 0.4 2.3151 +1.9151 4+479% 1,256 629,256
® DDPG_model_corr_with_delay_0 0.517 71.9847 0.517 71.5867 71.0697 M13748% 1,256 663,168

Figure 104 : Comparison of Actor Loss per Timestep of A2C Corrective With Delay and No Delay Models

train/critic_loss 1;[o
02
0.15
0.1
0.05
0
464 X 100k 200k 300k 400k 500k 600k
#
Run Min Max Start Value End Value AValue A% Start Step End Step
® DDPG_model_corr_no_delay_0 0 0.008 0.0007 1] +0.0007 +-99% 1,256 629,256
® DDPG_model_corr_with_delay_0 0.0001 0.197 0.0008 0.0011 +0.0003 138% 1,256 663,168

Figure 105 : Comparison of Critic Loss per Timestep of A2C Corrective With Delay and No Delay Models

Comparing the two DDPG corrective models, the No Delay model shows better performance with a higher
mean episode reward improvement and a decent PHM Score. The With Delay model indicates poor
performance overall with significant drops in mean episode rewards and increased actor loss variability.

162

The comparison highlights that the discounted rewards as the With Delay model is not good in a DDPG

algorithm.

4.5.2.7. A2C No Delay

rollout/ep_len_mean

(SRR
300
200
100
133 x ™ M 3M am 5M oM ™
4
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® A2C_model_corr_no_delay_0 34.56 314 314 313.27 +0.73 +0% 9,500 7,000,000
Figure 106 : Mean Episode Length per Timestep of A2C Corrective No Delay Model
rollout/ep_rew_mean D 1;[M
0 ~ \Yg MV a4 "l
Setd W
Te+d
133 % i 2M M am 5M 6M ™
a
Run 1+ Value Step Relative
[] A2C_model_corr_no_delay_0 -21.417 9,500 0
Figure 107 : Mean Episode Reward per Timestep of A2C Corrective No Delay Model
rollout/phm_score EI rft r

Te+8

Te+s

Te+d

100

133 x ™ M 3M am 5M 6M ™
s
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_corr_no_delay_0 13.058 10,720,528,384 13.058 1,956.0343 +1,942.9763 +14880% 9,500 7,000,000

Figure 108 : PHM Score per Timestep of A2C Corrective No Delay Model

The A2C Corrective No Delay model is the only Corrective model that does not reach the max episode
length on the first few timesteps. It shows significant fluctuations in the mean episode length initially,
stabilizing after around three million timesteps. The mean episode reward graph indicates substantial
variations in reward values and the Phm score also demonstrates considerable variability, reflecting a

challenging learning environment.

163

4.5.2.8. A2C With Delay

rollout/ep_rew_mean g
62
64
66
68
7
133 % 2M am 6M 8M 10M 12M 14M
%
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_corr_with_delay_0 7.2217 -6.1942 -7.2217 -6.1942 +1.0275 v-14% 21,500 14,640,000

Figure 109 : Mean Episode Reward per Timestep of A2C Corrective With Delay Model

rollout/ep_rew_mean El J-F
6.4
6.6
68
7
92430 X 200k 400k 600k 800k ™ 12M 1.4M 1.6M 1.8M 2000000 X
s
Run Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_corr_with_delay_0 72217 -6.1942 7.2217 -6.1942 +1.0275 +-14% 21,500 1,992,500

Figure 110 : Shorter Range Selection of Mean Episode Reward per Timestep of A2C Corrective With Delay Model

rollout/phm_score]iI
14
138
136
134
132
13
133% 2M am oM M 10M 12M 14M
Run Min Max Start Value End Value AValue A% Start Step End Step ’
A2C_model_corr_with_delay_0 13.0439 14.0154 13.058 13.058 +0 +0% 21,500 14,640,000

Figure 111 : PHM Score per Timestep of A2C Corrective With Delay Model

The A2C Corrective With Delay model shows a consistent mean episode length near the maximum limit,
with minor early fluctuations. The mean episode reward graph indicates a stable performance with minor
improvements over time. The PHM score graph remains flat, indicating that the model did not significantly
improve in this metric, but it still has a good score.

164

rollout/ep_len_mean El Ir" BH E
300 ' ‘ I'
200
100
133 x ™ 4am &M &M 10M 12M T4M
i
Run Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_corr_no_delay_0 34.56 314 314 313.27 +0.73 +0% 9,500 7,000,000
® A2C_model_corr_with_delay_0 314 314 314 314 +0 +0% 21,500 14,640,000

Figure 112 : Comparison of Mean Episode Length per Timestep of A2C Corrective With Delay and No Delay Models

rollout/ep_rew_mean D J; o E
[."| - N v v vy
-Se+d.
-le+d
1549
133 % ™M am 6M am 10M 12M 14M
i
Run ™ Value Step Relative
® A2C_model_corr_no_delay_0 -21.417 9,500 0
o A2C_model_corr_with_delay_0 -7.2217 21,500 0

Figure 113 : Comparison of Mean Episode Reward per Timestep of A2C Corrective With Delay and No Delay Models

rollout/phm_score

Tesd

losd

100

Run *
® A2C_model_corr_no_delay 0
® A2C_model_corr_with_delay_0

B R o
S

™ an oM o oM Rl L

Min Max Start Value End Value AValue a% Start Step End Step

13.058 10,720,528384 13.058 1,956.0343 +19429763 +14880% 9,500 7,000,000

13.0439 14.0154 13.058 13.058 +0 *0% 21,500 14,640,000

Figure 114 : Comparison of Phm Score (Log Scale) per Timestep of A2C Corrective With Delay and No Delay Models

train/entropy_loss \Zl]'F‘ HH 5
O s s e R g
P i ~— S——
— M e————
5
10
-15
-20
500 X M am 6M am 10M 12M 14M
]
Run T Min Max Start Value End Value AValue A% Start Step End Step
® A2C_model_corr_no_delay_0 -19.4362 -3.8049 -4.1551 -19.2714 +15.1163 1364% 9,500 7,000,000
® A2C_model_corr_with_delay_0 -41142 -1.1203 -4.1142 3.2827 +0.8315 +-20% 21,500 14,640,000

Figure 115 :

Comparison of Entropy Loss per Timestep of A2C Corrective With Delay and No Delay Models

165

train/std

150

100

500 X
Run ™
@® A2C_model_corr_no_delay_0
A2C_model_corr_with_delay_0

Figure 116 : Comparison of Standard Deviation per Timestep of A2C Corrective With Delay and No Delay Models

Comparing the models above, we can see that the No Delay model demonstrates more significant
fluctuations in both episode length and reward, suggesting a harder learning process. In contrast, the With
Delay model shows stability but lacks significant improvement in reward values. The No Delay model has
significantly higher Phm scores which rule it out as the best model since this score is the true metric of the

implementation.

4.5.3. Comparative Analysis of All Algorithms

0.8664
0.3574

Y

158.2975

4.5.3.1 Corrective Environments

rollout/ep_len_mean

o0 0000

102787 x

Run ™
A2C_model_corr_no_delay_0
A2C_model_corr_with_delay_0
DDPG_model_corr_no_delay_0
DDPG_model_corr_with_delay_0
PPO_model_corr_no_delay_0
PPO_model_corr_with_delay_0
SAC_model_corr_no_delay_0

SAC_meodel_corr_with_delay_0

Figure 117 : Mean Episode Length per Timestep for all Algorithms in the Corrective Environment With / No Delay

The graph shows the tendency of A2C “without delay” model to fluctuate significantly (Range Selection is
around the 3.8 million timestep). Simultaneously, the diagram indicates that all other algorithms maintain
a stable mean episode length at the maximum value (314), which is desirable as they have saturated.

500k

™
Min
34.56
314
314
314
314
314
314
314

Max
314
314
314
314
314
314
314
214

&M

Start Value
0.9664
0.9562

1.5M
Start Value
314
314
314
314
314
314
314
314

M

End Value
149.846

Y

End Value
314
314
314
314
314
314
314
314

A A

2.5M am
AValue A% Start Step
+0 +0% 9,500
0 0% 21,500
0 0% 1,256
~0 0% 1,256
20 0% 2,048
+0 0% 2,048
~0 +0% 1,256
™0 0% 1,256

10M 12M 14M
2% Start Step End Step
41488796 ~15406% 9,500 7,000,000
+-15% 21,500 14,640,000

3.5M

End Step
3,831,000
3,822,500
629,256
663,168
1,177,600
2,160,640
349,420
279,734

3832
z

166

rollout/ep_rew_mean | 2
0 ﬁ
00
150
-200
133 = 20k 50k 80k 70k 80k 90k 1021
2
Run Min Max Start Value End Value AValue A% Start Step End Step
® A2C model corr_no_delay 0 15418906 -14.0199 21417 15,418,906 +15,418,884.563 +71993550% 9,500 115,000
A2C_model_corr_with_delay_0 72217 -6.2164 7.2217 -6.2081 409236 +13% 21,500 115000
® DDPG_model_corr_no_delay 0 75178 -9.0253 75.178 12,6649 4625131 +-83% 1256 101,736
® DDPG_model_corr_with_delay_0 -265.5265 -8.0956 385167 -265.5265 4227.0098 +589% 1256 101,736
® PPO_model_corr_no_delay 0 -250.0568 14,0944 -250.0568 14,0944 1244.9624 +-95% 2,048 102,400
® PPO_model_corr_with_delay_0 1223658 -6.3482 122.3658 -6.3482 +116.0176 +-95% 2,048 102,400
® SAC model corr_no_delay 0 -237.4886 -5.4398 -237.4886 -5.4474 42320412 +-98% 1256 101,884
@ SAC_model_corr_with_delay_0 -126.2699 23179 -126.2699 -2.3202 41239497 +-98% 1256 101,884

Figure 118 : Mean Episode Reward per Timestep for all Algérithms in the Corrective Environment With / No Delay

The graph clearly displays the A2C “without delay” model attempt of big exploration. While most models
eventually stabilize, they show varying levels of performance improvement. The A2C model “without
delay” experiences significant negative rewards, reflecting its difficulty in learning initially. Over time,
other models, particularly those with delay correction, show more consistent improvements in rewards.

rollout/phm_score El]F
Te+8
Te+b
Tevd
100
100k 133 x 100k 300k 400k 500k 600573 X
4
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
@® A2C_model_corr_no_delay_0 13.058 5,328,888,320 13.058 287,088,864 +287,088,850.942 42198561071% 9,500 603,500
A2C_model_corr_with_delay_0 13.0439 14.0154 13.058 13.058 +~0 +0% 21,500 590,500
@® DDPG_model_corr_no_delay_0 8.1346 266.9668 13.058 8.1915 +4.8665 +-37% 1,256 600,368
® DDPG_model_corr_with_delay_0 13.058 385.9457 13.058 385.9457 +372.8877 +2856% 1,256 600,368
@ PPO_model_corr_no_delay_0 11.4676 304.5105 304.5105 11.6496 +292.8609 +-06% 2,048 600,064
@® PPO_model_corr_with_delay_0 11.3973 270.2987 270.2987 12.0185 +258.2802 +-96% 2,048 600,064
@® SAC_model_corr_no_delay_0 3.5193 232.3027 232.3027 3.8637 +228.439 +-98% 1,256 349,420
@® SAC_model_corr_with_delay_0 42038 256.6743 256.6743 7.6279 +249.0464 +-97% 1,256 279,734

Figure 119 : PHM Score per Timestep for all Algorithms in the Corrective Environment With / No Delay

Once again A2C “without delay” fluctuates greatly, while A2C “with delay” remains stable. The DDPG
“no delay” model initially fluctuates but then remains steady, and DDPG with delay shows increased
exploitation remaining almost constant after the initial exploration. Both PPO models consistently maintain
low, stable scores, indicating strong performance. SAC models also perform well with stable, low scores.
Overall, PPO and SAC are the most robust, with delay correction improving stability for A2C and DDPG.

167

4.5.3.2 Non-Corrective Environments

rollout/ep_len_mean El JF EH

pi

100 |

i

|
et (7

133 % 500k 5M 5M 5.5 5003t
P
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 4187 314 4281 31187 +269.06 1628% 21,500 5,880,000
@® A2C_model_nen_corr_with_delay_0 157.28 314 157.28 308.91 +151.63 +96% 39,500 5,910,000
@ DDPG_model_non_corr_no_delay_0 32.25 314 33.25 314 +280.75 4844% 133 1,064,325
DDPG_model_non_corr_with_delay_0 18 23 2075 23 +2.25 1% 498 510,251
@ PPO_model_non_corr_no_delay_0 48.26 314 4826 31329 4265.03 4549% 38912 5,883,904
[] PPO_model_non_corr_with_delay_0 5333 314 53.33 314 +260.67 +489% 12,288 5,902,336
® SAC_model_non_corr_no_delay_0 1881 255 64 118.0868 2251 4964768 +-B1% 9,043 2,844,187
[] SAC_madel_non_corr_with_delay_0 1841 25026 84.0833 2869 +55.3933 +-66% 2,018 1,019921

Figure 120 : Mean Episode Length per Timestep for all Algorithms in the Non-Corrective Environment With / No Delay.

The graph above provides a comparison of the performance of the reinforcement learning algorithms (A2C,
DDPG, PPO, SAC) with and without delay correction in terms of mean episode length over training steps.
PPO (Proximal Policy Optimization) stands out for its consistent and strong performance. Both PPO
models, with and without delay correction, demonstrate significant improvements and stable learning
trajectories, stabilizing around the maximum episode length of 314. This indicates that PPO is highly
effective for the task at hand, with or without the additional reward scaling introduced by the delay
correction.

For A2C, the models show notable improvements in episode length, with the version without delay
correction achieving a slightly better episode length of 311.87 compared to the version with delay correction
(308.91). The delay correction helps the A2C model stabilize more quickly, suggesting that while it aids in
the learning process, the final performance is slightly better without it.

DDPG models exhibit more alternation in performance. The DDPG model without delay correction reaches
the max episode length of 314, indicating effective learning, though it has minimal fluctuations during
training. In contrast, the DDPG model with delay correction struggles, showing minimal improvement and
achieving only a slight increase from 20.75 to 23, suggesting that delay correction does not benefit DDPG
in this context.

SAC models perform poorly compared to the other algorithms. Both SAC models, with and without delay
correction, show a significant decline in episode length over time. The SAC model without delay correction
starts at 118.98 and drops to 22.51, while the SAC model with delay correction starts at 84.08 and drops to
28.69. This suggests that SAC struggles with this particular task and the delay correction aids in the decline
in performance.

168

In summary, PPO is the most robust and reliable algorithm for this task, showing excellent performance
with minimal sensitivity to the delay correction. A2C also benefits from delay correction for quicker
stabilization but ultimately performs slightly better without it. DDPG shows promise without delay
correction but suffers significantly with it. SAC underperforms in both configurations, indicating it may not
be well-suited for this specific application. The delay correction technique has mixed effects across different
algorithms, helping some (like A2C) to stabilize faster while hindering others (like DDPG and SAC).

rollout/ep_rew_mean]F

0

-Se+8

lesd

19921 x 5M oM 15M 20M 25M 30M 35M 39833600 X

Run Min Max Start Value End Value AValue A% Start Step End Step :
A2C_model_non_corr_no_delay_0 -429,141,408 -17,250.9238 -808,457.3125 -106,195.6094 2702,261.7031 +-87% 21,500 26,750,000

@ A2C_model_non_corr_with_delay_0 -1,462,147,968 -9,138.624 -1,052,587.625 1,462,147,968 41,461,095,380.375 +138810% 51,500 19,120,000

@ DDPG_model_non_corr_no_delay_0 16,738,453 -3,074,173.75 -3,074,173.75 16,738,453 +13,664,279.25 +444% 20,093 1,064,325

@ DDPG_model_non_corr_with_delay_0 292,286,080 -651,064.0625 -651,064.0625 -292,286,080 +291,635,015.9375 +44794% 19,962 510251

® PPO_model_non_corr_no_delay_0 2,375710.5 -3,986.1587 -785,004.625 -15,653.6504 1769,350.9746 V-98% 38912 39,833,600

® PPO_model_non_corr_with_delay_0 54,153,960 -4,053.2996 -829,018.3125 -129,065.9141 +700,852.3984 +-84% 12,288 16,967,680

@ SAC_model_non_corr_no_delay_0 -1,135,406,336 -843,728.125 -1,405,802 -574,543744 +573,137,942 +40769% 28,791 3,819,951

® SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 +557,377,954.375 129501% 14,946 2,639,889

Figure 121 : Mean Episode Reward per Timestep for all Algorithms in the Non-Corrective Environment With / No Delay

169

rollout/ep_rew_mean E']F H
A\l ~ Ll NN A
Ze+8
desd
ter8 AP S N A e A Ay o A
fetd
Te+g
19921 X 500k ™ 1.5M 2M 2.5M Y 35M 3700000 X
Run ™ Min Max Start Value End Value AValue A% Start Step End Step
A2C_model_non_corr_no_delay_0 -3,790,772.25 -47,070.875 -808,457.3125 -602,791.1875 +205,666.125 +-25% 21,500 3,601,500
® A2C_model_non_corr_with_delay_0 989,238,400 -34,740.9297 -1,052,587.625 -1,186,827.75 +134,240.125 +13% 51,500 3,700,000
@® DDPG_model_non_corr_no_delay_0 -16,738,453 -3,074,173.75 -3,074,173.75 -16,738,453 +13,664,279.25 +444% 20,093 1,064,325
® DDPG_model_non_corr_with_delay_0 292,286,080 -651,064.0625 -651,064.0625 292,286,080 4291,635015.9375 +44794% 19,962 510,251
® PPO_model_non_corr_no_delay_0 -1,434,418.5 -785,004.625 -785,004.625 -1,280,917.75 +495913.125 163% 38,912 3,741,696
® PPO_model_non_corr_with_delay_0 -1,823,630.75 -768,119.625 -829,918.3125 -1,742,058.375 +912,140.0625 +110% 12,288 3,698,688
@® SAC_model_non_corr_no_delay_0 -933,118,208 -843,728.125 -1,405802 -525,046,880 +523,641,078 +37249% 28,791 3,699,952
® SAC_model_non_corr_with_delay_0 -1,198,392,960 -427,509.4688 -1,889,373.625 -559,267,328 +557,377,954.375 429501% 14,946 2,639,880

Figure 122 : Shorter Range Selection of Mean Episode Reward per Timestep for all Algorithms in the Non-Corrective

rollout/ep_rew_mean @

Environment With / No Delay

- —
O\
-det8 \/\/
-6e+8
19921 % 50k 100k 150k 200k 250k 300k 350k 400k 4686
&
Run Min Max Start Value End Value AValue A% Start Step End Step
A2C_meodel_non_corr_no_delay_0 -3,790,772.25 -656,930.4375 -808,457.3125 -3,772,500.25 +2,964,042.9375 +367% 21,500 486,000
@® A2C_model_non_corr_with_delay_0 -754,371,200 -1,052,587.625 -1,052,587.625 -30,058,470 29,005,882.375 22756% 51,500 448,500
@® DDPG_model_non_corr_no_delay_0 -16,738,453 -3,074,173.75 -3074,173.75 -16,738,453 ¥13,664,279.25 ~444% 20,093 468,981
@® DDPG_model_non_corr_with_delay_0 -262,286,080 -651,064.0625 -651,064.0625 -292,286,080 +291,635,015.9375 +44794% 19,962 468,759
@® PPO_model_non_corr_no_delay_0 -882,022.1875 -785,004.625 -785,004.625 -882,022.1875 +97,017.5625 +12% 38912 471,040
@ PPO_model_non_corr_with_delay_0 -926,713.1875 -768,119.625 -829,918.3125 -926,713.1875 +96,794.875 ~12% 12,288 471,040
@® SAC_model_non_corr_no_delay_0 -29,557,516 -843,728.125 -1,405,802 -19,539,142 18,133,340 +1290% 28,791 461,640
@® SAC_model_non_corr_with_delay_0 -1,182,167,680 -427,509.4688 -1,889,373.625 -1,182,167,680 +1,180,278,306.375 62469% 14,946 473,045

Figure 123 : Even Shorter-Range Selection of Mean Episode Reward per Timestep for all Algorithms in the Non-Corrective

Environment With / No Delay

All of the three images depict the Mean Episode Reward per Timestep. The first image shows the full range
of timesteps, highlighting the performance of the eight models over a wide scale, with a lot of variation in
the scale of the results. The second image zooms into a shorter range, providing a more detailed view of the
initial performance and stabilization phases for the models, with A2C and SAC showing substantial
variability. The third image of the models, revealing that models like A2C and DDPG experience drastic
reward drops probably due to matching exploration as it was observed in the previous figures, while PPO
and SAC are relatively stable but still show notable variance.

170

rollout/phm_score

Ters
|
Te+s ' ‘ '
|
‘ 1, !l i | |lﬂ
| oM
‘ - ‘ : g LW
133 % 5M 10M 15M 20M 25M 30M 35M 39833600 X
Run ™ Min Max Start Value End Value AValue A% Start Step End Step

@ A2C_model_non_corr_no_delay_0 0 3,935,591,168 0 30,639.4805 +30,639.4805 Infinity% 21,500 26,750,000
@® A2C_model_non_corr_with_delay_0 4749217 6,790,013,952 21,823.1406 3,374,888,704 3,374,866,880.8594 4+15464625% 51,500 19,120,000
@® DDPG_model_non_corr_no_delay_0 0 4,959,841 0 4,959,841 44,959,841 AInfinity% 133 1,064,325
® DDPG_model_non_corr_with_delay_0 0 0 0 1] +0 NaN% 498 510,251
@® PPO_model_non_corr_no_delay_0 0 6,386,266.5 0 565.6765 +565.6765 A Infinity% 38912 39,833,600
@® PPO_model_non_corr_with_delay 0 0 206,020,384 0 2,777.8508 +2777.8508 nfinity% 12,288 16,967,680
@ SAC_model_non_cerr_no_delay_0 0 107,543,288 252,349.75 0 +252,349.75 +-100% 9,043 3,819,951
@® SAC_model_non_corr_with_delay_0 0 5,341,618,176 115,093.0938 0 +115,093.0938 +-100% 14,946 2,639,889

Figure 124 : Phm Score per Timestep for all Algorithms in the Non-Corrective Environment with / no delay

rollout/phm_score El JF i E

le+8

le+é
Tetd
133 % SM 10M 15M 20M 25M 30M 35M 39833600 X
F
Run Min Max Start Value End Value AValue A% Start Step End Step

@® A2C_model_non_corr_no_delay_0 0 55,360,212.9076 0 30,636,905.3972 +30,636,905.3972 Infinity% 21,500 26,750,000
@ A2C_model_non_corr_with_delay_0 21,823.1406 147,271,019.9556 21,823.1406 93,594,384.123 193,572,560.9823 +428777% 51,500 19,120,000
@ DDPG_model_non_corr_no_delay_0 0 4,954,853.8202 0 4,954,853.8202 14,954,853.8202 Infinity% 133 1,064,325
@® DDPG_model_non_corr_with_delay_0 0 0 0 1] ~0 NaN% 498 510,251
® PPO_model_non_corr_no_delay_0 0 472,978.1049 0 24,131.2842 124,131.2842 Infinity% 38912 39,833,600
@ PPO_model_non_corr_with_delay_0 0 2,295,272.6857 0 845,879.8488 845,879.8488 Infinity% 12,288 16,967,680
@® SAC_model_non_corr_no_delay_0 1,689.2414 32,404,227.9729 252,349.75 1,689.2414 -250,660.5086 +-99% 9,043 3,819,951
@ SAC_model_non_corr_with_delay_0 22,558.2696 784,422,693.061 115,093.0937 133,538.6964 18,445.6027 +16% 14,946 2,639,889

Figure 125 : “Smoothed” Graph of Phm Score per Timestep for all Algorithms in the Non-Corrective Environment With / No
Delay

171

rollout/phm_score E’ IF

1000

|
-19920 X 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1800000

Run ™ Min Max Start Value End Value AValue A% Start Step End Step

A2C_model_non_corr_no_delay_0 0 4,713,966.5 0 950.2375 +950.2375 +Infinity% 21,500 1,809,500
@® A2C_model_non_corr_with_delay_0 976.6667 547,701,760 21,823.1406 1,796.6844 +20,026.4562 +-92% 51,500 1,770,500
@® DDPG_model_non_corr_no_delay_0 0 4,959,841 0 4,959,841 4,959,841 +lnfinity% 133 1,064,325

DDPG_model_non_corr_with_delay_0 0 o] 0 +~0 NaN% 498 510,251
@® PPO_model_non_corr_no_delay_0 0 0 0 0 0 NaN% 38912 1,714,178
@ PPO_model_non_corr_with_delay_0 0 o 0 0 ~0 NaN% 12,288 1,796,096
@® SAC_model_non_corr_no_delay_0 0 107,543,288 252,349.75 2,510,267.75 12,257,918 1895% 9,043 1,795132
@ SAC_model_non_corr_with_delay_0 0 5341,618,176 115,093.0938 0 +115,093.0938 +-100% 14,946 1,801,550

4

Figure 126 : Shorter Range Selection of Phm Score per Timestep for all Algorithms in the Non-Corrective Environment With / No
Delay

The goal is to minimize the Phm Score but due to the initialization of the phm_score variable as zero, the
true minimum value is not displayed here. However, it is easy to spot graphically in the smoothed graph
which models behave the best.

The worst model is by far the DDPG “with delay” model which never managed to reach episode length of
314 and never got a Phm score. All other models have reached the max episode length over the training
process. DDPG “no delay” has a constant high Phm score which is undesirable. A2C, SAC and PPO all
display a lot of variability and high frequency of low scores followed by high spikes. Even though there is
a continual downward improvement in all cases, the big instability suggests that the models are still
imperfect to some extent.

4.5.3.3. General Commentary on the Training of the Models
Advantages & Disadvantages

PPO

PPO displayed a stable learning process and robust performance across all environments. The algorithm
compared to the other alternatives is relatively straightforward to implement and does not require extensive
hyperparameter tuning. Also, it is the least computationally demanding algorithm resulting in the fastest
training time per timestep. Consistently achieves high and stable rewards, making it a reliable choice for
reinforcement learning tasks.

As an on-policy algorithm, PPO requires a large number of samples, which can be computationally
expensive. While effective, handling very high-dimensional continuous action spaces (the action space is a

3-dimensional vector a; = [action,, action,,...,action,]) it can still be challenging.

SAC
SAC uses entropy maximization, encouraging exploration and often leading to better policy discovery in
complex environments such as the one examined. As an off-policy algorithm, SAC can reuse samples,

172

making it more sample-efficient compared to on-policy methods like PPO. It is particularly effective in
environments with continuous action spaces and the performance of the algorithm reflects that.

The implementation of SAC is more complex due to the need to maintain multiple networks (policy, Q-
function, and Value function). This results in higher training times as SAC can be computationally intensive,
requiring significant resources for training.

SAC is the algorithm with the observed fastest time to converge. At the same time, it required the least
timesteps to converge.

A2C

A2C benefits from using multiple parallel environments, which can speed up the training process and
stabilize learning. The algorithm is simpler compared to other actor-critic methods like SAC, making it
easier to understand and implement.

At the same time, A2C can be less stable than PPO, particularly in environments with high variance like the
one examined. As an on-policy method, it also requires fresh samples for each update (which is not the case
in this framework), leading to higher sample inefficiency.

DDPG

DDPG is specifically designed for environments with continuous action spaces, performing well in such
settings, however this is not the case in the dataset examined. DDPG is the worst of the four algorithms
examined in the thesis. It stays constant after some exploration and constantly exploits a local minimum.
The deterministic policy has led to insufficient exploration, requiring additional mechanisms like noise
injection for effective exploration. The need to manage both actor and critic networks, as well as the replay
buffer and target networks, adds to the complexity of DDPG.

In summary, DDPG is a highly computationally intensive algorithm, producing bad resulting scores,
making it a bad algorithm for this use case scenario.

Best Training Models

As far as training is concerned, PPO is the best algorithm due to its fast-training time per timestep and
overall efficiency. It is straightforward to implement, requires less computational power, and consistently
achieves high and stable rewards, making it the most reliable choice for the specific reinforcement
learning problem (this happens during training, the results in the test datasets in the section 4.5 will not
follow the same pattern). SAC is the second-best algorithm, showing excellent performance with the
fastest time to converge and the least number of timesteps required for convergence. However, it is more
computationally intensive and complex to implement. On the other hand, DDPG is undoubtedly the worst
algorithm for this use case scenario. It suffers from insufficient exploration, leading to poor results and
higher computational demands, making it unsuitable for the given dataset and degradation problem.

173

4.6 Results

Evaluation of the Trained Models

To evaluate the trained models, a custom evaluation function needs to be created. The library in use, Stable
Baselines 3, provides a built-in evaluation function called evaluate_policy(). This function checks the
policy of the selected algorithm for a specified number of evaluation episodes and returns the average
reward. Although this is useful for typical RL problems, the grading criteria for this problem are unique,
making the built-in evaluate_policy() function unsuitable.

The evaluation requires comparing the environment's or algorithm's score over the same episode length,
particularly up to the maximum episode length of cut 314. Therefore, a custom evaluation function has been
created to register the generated reward and PHM score only up to cut 314, as earlier scores should not be
considered. Additionally, for scenarios like the DDPG Non-Corrective With Delay where the model does
not reach the cut 314, the custom function also registers the average reward generated during the evaluation
episodes. The pseudocode below displays the above in practice:

def Custom_Evaluate_Policy(algo, , h_eval epsodes):
while not stop :

i = latest_model()
load_model i(algo,)

for episode in range(n_eval episodes):
obs = .reset()

while not done:

action, episode = model.predict(obs,
deterministic=True)
obs, reward, terminated, truncated, info =
.step(action)

episode_reward += reward
current_step, phm_score, = info.get('cut', 0)

if (current_step > MAX_STEPS - 2) :
phm_score_log.append([phm_score, i])
reward_314 log.append([episode_reward, i])
done = True

if (terminated or truncated) :
done = True

total_reward += episode_reward
reward = total_reward / n_eval episodes
reward_timestep_log.append([reward, i])

174

i=1i-1

if(i<=1):
stop = True

return reward_timestep_log, phm_score_log,
reward_314 log

The function Custom_Evaluate_Policy has the following parameters:

e algo: The RL algorithm being evaluated.
) : The environment (MDP Model) in which the policy is being evaluated.
: The number of episodes to run for evaluation.

The main loop loads every model for the given algorithm and environment starting from the latest. The
episode loop is the inner loop and for every model it evaluates it, iterating for the number of evaluation
episodes provided. This number is the same for every algorithm and it is 10 episodes.

For each episode the model predicts the next action based on the current observation, then it takes action
returning the new observation, the reward received, whether the episode has terminated, whether the episode
was truncated and additional information like the current_step (the current cut) and the Phm score.

The reward accumulates overtime for each episode. If the episode reaches the max cut, then it logs the tuples
of (reward, model number) and (Phm score, model number) and ends the episode loop. For special cases
like DDPG Non-Corrective With Delay an episode reward summary is being generated and logged. After
finishing the episode loop the outer loop checks the next model. When all the models have been checked
the function returns the logs generated

When an episode reaches the maximum cut, it logs the tuples of (reward, model number) and (Phm score,
model number) and ends the episode loop. For special cases, such as DDPG Non-Corrective With Delay,
an episode reward summary is generated and logged. After finishing the episode loop, the outer loop
proceeds to the next model of the same environment and algorithm (the previous one chronologically). Once
all models have been evaluated, the function returns the generated logs.

Each category of model created is divided into a number of submodels. These submodels are generated after
training the RL algorithm in a specific environment. As mentioned in Section 4.4, during training, the latest
submodel is loaded and a new one is produced approximately every 10,000 steps. For example, the PPO
Corrective No Delay model has a total of 1,117,000 timesteps, resulting in nearly 112 submodels.

For each of the 16 models created, every submodel is evaluated using the Custom_Evaluate_Policy
function. From the returned log files, the best-performing submodel is selected. The tables below showcase
the results of this procedure.

175

Corrective Environment | RL Algorithm Performance

Environment (Delay) & Max Reward Min Phm Score Training Time
Dataset (Cutters) & Total
]] Timesteps
Value Timestep Value Timestep
PPO No c4 -17.21 40,000 16.99 40,000 3 hours
1,117,000 steps
c6 -16.21 70,000 18.00 70,000
With c4 -8.98 20,000 15.73 20,000 2 hours
2,160,000 steps
c6 -8.23 1,460,000 17.85 670,000
SAC No c4 -37.37 90,000 45.76 90,000 6.2 hours
349,420 steps
c6 -14.80 30,000 16.36 30,000
With c4 -10.94 20,000 23,07 20,000 5.3 hours
279,374 steps
c6 -8,21 110,000 16,22 110,000
DDPG | No c4 -18.84 20,000 19.32 20,000 12.67 hours
629,256 steps
c6 -17.04 250,000 18.55 520,000
With c4 -10.75 20,000 19.36 20,000 11.5 hours
452,160 steps
c6 -8.83 20,000 18.12 20,000
A2C No c4 -17.84 700,000 18.33 700,000 13.7 hours
19,120,000 steps
c6 -16.33 7,000,000 18.12 7,000,000
With c4 -10.75 14,640,000 19.36 14,640,000 17.2 hours
14,640,000 steps
c6 -8.83 14,640,000 18.12 14,640,000

Table 8 : Performance of RL Algorithms in Corrective Environments

176

The best results are observed mostly at specific timesteps rather than the end of training. This could be due
to the models initially finding a good policy and then overfitting as training continues. This results in the
model learning the training data too well, including noise and anomalies, which do not generalize to new
data like the cutter 4 and cutter 6 datasets.

PPO performs efficiently, finding optimal results early in training without delay but requiring more
timesteps with delay, particularly on dataset c6. The improved performance with delay and higher rewards
suggest PPO can adapt its policy to long-term rewards more effectively. The need for extensive training
with delay indicates it can handle complex environments but may be susceptible to overfitting if not
properly managed.

SAC shows significant improvement with delay, finding optimal results at different relative timesteps,
indicating a mismatch of the different test dataset’s perfomances. SAC's ability to optimize quickly aligns
with its entropy-based exploration, making it less prone to overfitting and more adaptable to delayed
rewards.

DDPG achieves its best results quickly and requires long training times, suggesting it might be working
suboptimally. The stable performance across different conditions indicates robustness, though knowing the
training process as it was displayed above the model is not improving overtime and it is stuck at a local
maximum.

A2C has long training times and high timesteps indicate inefficiency in convergence but consistent
performance. The improvement with delay suggests it can optimize long-term rewards but requires
significant computational resources. The consistency across conditions indicates robustness, also it is the
only model where in all test cases the training process is amplifying the performance. There are no cases
of the best result being in early timesteps, meaning that the model is learning in the right direction.

Non-Corrective Environment | RL Algorithm Performance
Environment & | Max Reward Min Phm Score Saturated | Training Time
Dataset (Yes/No) | & Total
Timesteps
Value Timestep Value Timestep
PPO No cd4 -25,255,715 38,730,000 35,497,029 38,730,000 Yes 17 hours
39,833,600 steps
c6 -163,762,286 | 20,000 233,645,404 20,000
With c4 -544,135,308 | 20,000 726,430,945 20,000 Yes 19,2 hours
16,967,680 steps
c6 -583,253,362 | 20,000 876,304,975 20,000

177

SAC No c4 -643 400,000 752 390,000 No 43.3 hours
3,819,951
c6 -5,679 410,000 3140 460,000 steps
With c4 -23,455 200,000 11,418 200,000 No 32.1 hours
2,639,889
c6 -15,048 470,000 7,712 190,000 steps
DDPG | No c4 -563,092,188 | 1,050,000 735,266,738 1,050,000 Yes 19.5 hours
1,064,325 steps
c6 -637,838,860 | 1,050,000 910,064,743 1,050,000
With c4 DNF - DNF - No 13.5 hours
510,251 steps
c6 DNF - DNF
A2C No cd4 -50,834,200 30,000 3,469,607 30,000 Yes 26.1 hours
26,750,000 steps
c6 -28,469,419 30,000 39,536,971 30,000
With c4 -550,755,354 | 19,110,000 735,266,790 19,110,000 Yes 22.8 hours
19,120,000 steps
c6 -606,030,553 | 19,110,000 910,064,743 19,110,000

Table 9 : Performance of RL Algorithms in Non-Corrective Environments

For Non-Corrective environments, SAC shows relatively better performance without delay, while PPO and
A2C struggle significantly. DDPG fails to converge effectively, particularly with delay.

As far as PPO is concerned, the training times and the total timesteps are substantial. Also, the best results
occur early. The performance of the model especially in the “with delay” environment suggests overfitting
and inefficiency. The high saturation indicates that PPO quickly reaches a point where no further
improvement is observed, likely due to a poor adaptation to this type of environment.

SAC is by the far the best model and it is outperforming every algorithm. It shows better adaptability due
to its entropy-based exploration, which helps in managing delayed rewards and avoiding overfitting to some
extent. Like PPO the best performance is attributed to the earlier stages of the training process.

DDPG struggles with convergence in the Non-Corrective environment, especially with delay. It is the only
model that did not manage to finish and reach the cut 314, as it was truncated before reaching the final cut
due to extremely low reward. As shown in the Figure 127 and Figure 128 the model is stuck, the episode
length and the reward are not changing over time. The high negative rewards and Phm scores indicate poor
performance, possibly due to inadequate exploration.

178

A2C exhibits inefficiency with prolonged training times and large negative rewards, suggesting that its
synchronous updates are not well-suited for the non-corrective environment, leading to overfitting and poor
generalization.

Overall, after comparing every algorithm in all the different environments, it is clear that the SAC algorithm
performs best in the Non-Corrective Environment, while PPO excels in the Corrective Environment.
In terms of delay, the "with delay" environment achieves good results more quickly during training.
However, in the testing phase, the performance of the "with delay" environment is usually surpassed by the
"no delay" environment, which consistently achieves superior results.

179

5. Conclusions and future work

The objective of this thesis was to employ various reinforcement learning (RL) algorithms to address a
predictive maintenance (PdM) problem, specifically the wear prediction of the flutes in cutters of a high-
speed CNC milling machine. This prediction was based on data from dynamometer, accelerometer, and
acoustic emission sensors. All algorithms were trained and evaluated using real-world data, and a broad
analysis was conducted to examine their effectiveness.

The results demonstrated the effectiveness of this approach, highlighting that RL techniques can be sample-
efficient and produce reliable results without requiring a model of the examined machine.

To further improve the performance of the RL PdM Agent, we can either increase the amount of data used
for training, which will become more feasible as the number of 10T devices grows and the industry continues
to adopt new techniques using more 0T technology. Another approach is to attempt to model the CNC
environment by collaborating with material and mechanical engineers to create a model that closely
approximates reality. While this approach is not guaranteed to succeed, it would require less data.

Overall, if sufficient data is available, the model-free approach is preferable due to it being universal and
the lack of need for detailed knowledge of the specific machine's use and interactions.

Future Work

Future work could involve comparing different machine learning approaches with the RL approach and
possibly combining them. Additionally, obtaining the full dataset from the 2010 PHM Data Challenge
would allow for further improvement of the models' performance.

Another interesting path for future research is to address a different PdM objective for the same machine
using the same dataset. Specifically, predicting the Remaining Useful Life (RUL) of the flutes, which was
the objective of the 2010 PHM competition, could be a valuable extension of this work by incorporating
RL technigues to solve this problem.

180

References

Achiam , J. (2018). Simplified PPO-Clip Objective. From
https://drive.google.com/file/d/1PDzn9RPvaXjIFZkGeapMHbHGIWWW20Ey/view

Aggarwal, C., Hineeburg, A., & Keim, D. (2002). On the Surprising Behavior of Distance Metric in High-
Dimensional Space . Research Gate.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.

Ben-Daya, M., Dufuaa, S., & Raouf, A. (2012). Maintenance, modeling and optimization. Springer.

Beyer, K., & Goldstein, J. (1999). When Is “Nearest Neighbor” Meaningful? Database Theory ICDT'99
(pp. 217-235). Springer.

Bottou, L. (1991). Stochastic Gradient Ascent Learning in Neural Networks. AT&T Bell Laboratories.

Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Predictive Maintenance in the 4th Industrial
Revolution: Benefits, Business Opportunities, and Managerial Implications. IEEE.

Boyd, S., & Vandenberghe, L. (2009). Convex Optimization. Cambridge University Press.

Burke , R., Hartigan, M., & Sniderman , B. (2017). The smart factory. From Deloitte Insights:
https://www?2.deloitte.com/us/en/insights/focus/industry-4-0/smart-factory-connected-
manufacturing.html

Ding, F., He, Z., & Zi, Y. (2008). Application of support vector machine for equipment reliability
forecasting. 2008 6th IEEE international conference on industrial informatics (pp. 526-530).
IEEE.

Eke, S., Aka-Ngnui, T., & Glerc, G. (2017). Characterization of the operating periods of a power
transformer by clustering the dissolved gas data. : 2017 IEEE 11th International symposium on
diagnostics for electrical machines, power electronics and drives (pp. 298-303). SDEMPED.

Frangopol, D., Lin, K., & Estes, A. (1997). Life-cycle cost design of deteriorating structures. ASCE
Library.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic
Methods. arXiv.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor. arXiv.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., . .. Levine, S. (2019). Soft Actor-
Critic Algorithms and Applications. arXiv.

Kabir , F., Foggo, B., & Yu, N. (2018). Data Driven predictive maintenance of distribution transformers.
2018 China international conference on electricity distribution (CICED), (pp. 312-316).

Kakade, S. (2001). A Natural Policy Gradient. Gatsby Computational Neuroscience Unit.

Laape, S., Dollar, B., & Cotteleer , M. (2020). Implementing the smart factory. From Deloitte Insights:
https:/www?2.deloitte.com/us/en/insights/topics/digital-transformation/smart-factory-2-0-
technology-initiatives.html

Lewis, F., Vrabie, D., & Vamvoudakis, K. (2012). Reinforcement learning and feedback control: Using
natural decision methods to design optimal adaptive controllers. IEEE.

Li, X., Sim, B., Zhou, J., Huang, S., Phua, S., Shaw, K., & Er, M. (2009). Fuzzy Neural Network
Modelling for Tool Wear Estimation in Dry Milling Operation. Vol. 1 No. 1 (2009): Proceedings
of the Annual Conference of the PHM Society 2009 . PHM.

181

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . .. Wiestra, D. (2016). Continuous
Control with Deep Reinforcement Learning. arXiv - ICLR 2016 .

Ma, Z., Guo, J., & Mao, S. (2020). An interpretability research of the XGBoost algorithm in remaining.
2020 International conference on big data & artifcial intelligence & software engineering (pp.
433-438). ICBASE.

MathWorks. (2024). What is Reinforcement Learning. The MathWorks, Inc.

Mnih, V., Badia, A., Mirza, M., Graves, A., Lilicrap, T., Harley, T., . .. Kavukcuoglu, K. (2016).
Asynchronous Methods for Deep Reinforcement Learning. arXiv.

Open Al. (2024). Kind of RL Algorithms. From OpenAl Spinning Up:
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#citations-below

Open Al. (2024). Proximal Policy Optimization. From Open Al Spinning Up:
https://spinningup.openai.com/en/latest/algorithms/ppo.html#id3

Open Al. (2024). Vanilla Policy Gradient. From Open Al Spinning Up:
https://spinningup.openai.com/en/latest/algorithms/vpg.html

OpenAl. (2024). Deep Deterministic Policy Gradient. From OpenAl Spinning Up:
https://spinningup.openai.com/en/latest/algorithms/ddpg.html

OpenAl. (2024). Soft Actor Critic. From OpenAl Spinning Up:
https://spinningup.openai.com/en/latest/algorithms/sac.htmi

OpenAl. (2024). Twin Delayed DDPG. From OpenAl Spinning Up:
https://spinningup.openai.com/en/latest/algorithms/td3.html

Pestov, V. (2000). On the geometry of similarity search: Dimensionality curse and concentration of
measure . arXiv.

Russel, S., & Norvig, P. (2021). Artificial Intelligence, A Modern Approach . Pearson Education, Inc.

Sateesh Babu, G., Zhao, P., & Li, X. (2016). Deep convolutional neural network based regression
approach for estimation of remaining useful life. International conference on database systems
for advanced applications, (pp. 214-228).

Saydam, D., & Frangopol, D. (2015). Risk-based maintenance optimization of deteriorating bridges.
ASCE Library.

Sayyad , S., Kumar, S., & Bongale, A. (2022). Tool wear prediction using long short-term memory
variant and hybrid feature selection techniques . The Internation Journal of Advanced
Manufacturing Technology.

Schulman, J. (2016). Optimizing Expectations: From Deep Reinforcement Learning to Stochastic
Computation Graphs. University of California, Berkeley.

Schulman, J., Levine, S., Moritz, P., Jordan, M., & Abbeel, P. (2015). Trust Region Policy Optimization.
University of California, Berkeley, Department of Electrical Engineering and Computer Sciences.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization
Algorithms. arXiv.

scikit Learn. (2023). Stochastic Gradient Ascent. From scikit-learn: https://scikit-
learn.org/stable/modules/sgd.htmi

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic Policy
Gradient Algorithms. 31st International Conference on Machine Learning. JMLR: W&CP
volume 32.

Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for
predictive maintenance: a systematic technical review. Springer.

182

Susto, G., Schirru, A., & Pampuri, S. (2013). A predictive maintenance system for integral type faults
based on support vector machines: an application to ion implantation. 2013 IEEE international
conference on automation science and engineering (CASE) (pp. 195-200). IEEE.

Susto, G., Wan, J., & Pampuri, S. (2014). An adaptive machine learning decision system for fexible
predictive maintenance. 2014 IEEE international conference on automation science and
engineering (pp. 806-811). CASE.

Susto, G., Wan, J., & Pampuri, S. (2014). An adaptive machine learning decision system for flexible
predictive maintenance . IEEE International conferene on automation science and engineering
(pp. 806-811). CASE .

Sutton , R., & Barto, A. (2018). Reinforcement learning: an introduction. MIT, Cambridge.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy Gradient Methods for Reinforcement
Learning with Function Approximation. AT&T Labs.

Tensorflow. (2024). Trust Region Policy Optimization . From
https://spinningup.openai.com/en/latest/algorithms/trpo.html:
https://spinningup.openai.com/en/latest/algorithms/trpo.html

Torres-Garcia, A., Mendoza, O., Reyes-Garcia, C., & Villasenor-Pineda, L. (2022). Biosignal Processing
and Classification Using Computational Learning and Intelligence. Science Direct.

Uhlenbeck, George, E., Ornstein, & Leonard, S. (1930). On the theory of the brownian motion.

Vailshery, L. S. (2024). Number of 10T connections worldwide 2022-2033, with forecasts to 2030.
Statista.

Zheng, S., Ristovski, K., & Farahat, A. (2017). Long short-term memory network for remaining useful
life. 2017 IEEE international conference on prognostics and health management (ICPHM) (pp.
88-95). IEEE.

