Q =
g W
2N
AR
< '\ ¥ z' a
c S 7
4 a s &

.

3

EONIKO METXOBIO I[TOATTEXNEIO
TMHMA HAEKTPOAOI'ON MHXANIKOQN KAT MHXANIKON
TIOAOTISTON

TOMEAY. TEXNOAOTTAY [IAHPO®OPIKHY: KAT YTIOAOTTETOQN
EPTAYTHPIO AOTIKHY. KAT EHIXTHMHY YTIOAOTTETON

Privacy and Auditability in Decentralized Payment Systems

AIITAQMATIKH EPT'AYTA

riQpProx
ITAITAAOYAHY

EnBrenwy: Apioteione Ioyovptlnc
Kodnynthc E.M.IL

Adva, Todviog 2024

EONIKO METXOBIO
ITOAYTEXNEIO

TMHMA HAEKTPOAOIQN MHXANIKON
KAI MHXANIKQN YIIOAOTIETON

TOMEAY. TEXNOAOTTAY I[TAHPO®OPIKHYE
KAI THHOAOTTIESTON
EPTAYXTHPIO AOTTKHY KAI EIIIXTHMHY.

TIIOAOTIEZTON

Privacy and Auditability in Decentralized Payment Systems

AIITAQMATIKH EPT'AYTA

riQprox
ITATTAAOYAHY

EnBAenwy: Apioteidne Hoyouptlhc
Kodnyntic E.M.IL

Evyxpldnxe and v tpwehn e€etactiny emtpony| tnv 201 louviou 2024

Apioteldne Hayovpetlic Nudraog Acovdpdog "Ayyehoc Kuoryide
Kodnyntic En. Kadnynthc KodnyntAc University of
E.M.II. E.M.II. Edinburgh

Adva, Todviog 2024

IMTanadoVANg Tikeyog
Awmhwpatotyoc Hhextpohdyog Mnyavinde xow Mnyovixde Trohoyotwv E.M.IL

Copyright © Iaradoline Fdpyoc, 2024.

Me empihagn novtog duanopotoc. All rights reserved.

Arnayopebeton 1 avtiypapy), anodrixeuon xou davour| Tne Topoloas epyasiag, € ohox-
Mpou A TuruaTog autrg, Yo eunopixd oxomd. Emteénetar 1 avatinwot, anodixeucn
20l BLAVOUT| YLoL OXOTO UN) XEEOOCKOTUNS, EXTIUDEVTIXNG 1) EPELYNTIXTC PUONE, UTO TNV
TpoUno¥ean Vo avapEEETOL 1) TINYT| TPOEAEUGNE Xal VoL BLTNEE(TOL TO TaPOY UrvupaL.
Epwtuata tou agopodv) yerion tne epyaoioc Yo xepdooxomxd oxond, npénel va
anevdivovton Tpog tov cuyypagén. Ou andelc xou Ta CUUTEPAOUATA TOL TEPLEYOV-
Tol O€ QUTO TO EYYEAUPO EXPEELOUV TOV GUYYpPaPE XL deV TEETEL Vo epunvevldel 6T
AVTITEOoWREVOLY Ti¢ emlonueg Véoelg Tou Edvixol Metodfiou Iohuteyveiou.

ITepirndm

H moapotoo dimhwpatixy cpyaocio efvan pior ERETN TWV WBLOTATWY BIWTIXOTNTOC XOol
ehéyyoL ot amoxeVIpwUEva cucThuaTa TANEKU®Y. llpoteivouye to AQQUA: éva
dnploxd oot TANEEUGY oL GUVBLALEL TNV WIWTXOTNTA Xat TNV duvaTdTnTa
ehéyyov. To AQQUA enexteiver to Quisquis, mpooiétovtag 800 apyée: pio yio
™V eyypapn xou uio yior Tov éheyyo. Autég ol opyéc dev mapeufBaivouy oTtny xodn-
pepwn eneepyaoio TwV oUVAAAAYOV- XATE CUVETELD, OEV BLUTUPICOETOL 1) ATOXEVTE-
wpévn @oon tou xpuntovouioyatoc. H xataoxeur) yoc Baoiletar oe Aoyoplaopolc.
Ou hoyapraoyol aroterolvton and éva updatable public key to omolo Aettovpyel we
XPUTTOYROPIXE AoUCYETLOTO PeUBOVUIO, X0t DEGUEVTELS YLOL TO UTOAOLTO, TO GUVO-
A6 TO0GO TV VOUOUATLY ToU BamavAUNXAy Xdl TO CUVOAXS TOGH TWV VOULOUATODV
mou eAiginoay. I va cuppetdoyel oo cboTnua, 0 XeNoTng dnuloupYel Evay apyixd
Aoyaplaoud otny apyl| eyypaprc. Lo v mpootacia tng WwTxdTNTAS Tou, xdde
popd mou YEAeL Vo TparyHATOTOINOEL GUVORAAYES BNuLovpYel VEOUS AoYaplacouolE Tou
Bev unopoly Vo cLYBEYODY HE TOV YENOTN, EVINUEPMVOVTIS TO dNUOCLO XAELS! TOU %ol
TOV GLVOMXS apLiUd TWV AOYUPLICUAMY TOU XATEYEL (TOU SlaTNEOVVTAL OF SEGUEUPEVT
popr)). H apynf ehéyyou unopel va {nthocet tov éheyyo twv yenotwv. O yehotng
npénel vo anodel€el pe undevixn Yvworn 6Tt GAol oL AoYdplacUol TOU GUUHOPPEVOVTAL
ue ouyxexpuéveg tohtixéc. Oplloupe TUTXE Evol LOVTENO AGPEAELOS YioL TG LOLOTNTES
ToU TIEETEL VoL SlardéTel Evar BWTIXG Xo EAEYYOUEVO YNPLoxd GUCTAPO TANPWHIDY Kol
avahboupe v aopdieta Tov AQQUA oe oyéon e auto.

A€Zeig xAewdLd: ngloxd CUCTAUNTA TANPOU®Y, XEUTTOVOUloUATA,

0L

WTXOTNTA, BUVATOTNTU EAEY YOV, AVAVEWOCLUA ONUOCLA XAEL-

oLd.

Abstract

This thesis is a study of privacy and auditability properties in decentralized pay-
ment systems. We propose AQQUA: a digital payment system that combines au-
ditability and privacy. AQQUA extends Quisquis, by adding two authorities; one
for registration and one for auditing. These authorities do not intervene in the
everyday transaction processing; as a consequence the decentralized nature of the
cryptocurrency is not disturbed. Our construction is account-based. The accounts
consist of an updatable public key which functions as a cryptographically unlinkable
pseudonym, and commitments to the balance, the total amount of coins spent and
the total amount of coins received. In order to participate in the system the user
creates an initial account with the registration authority. To protect their privacy,
whenever they want to transact they create unlinkable new accounts by updating
their public key and the total number of accounts they own (maintained in commit-
ted form). The audit authority may request an audit at will. The user must prove
in zero-knowledge that all their accounts are compliant to specific policies. We for-
mally define a security model for the properties that a private and auditable digital
payment system should possess and analyze the security of AQQUA in relation to
it.

Key words: digital payment systems, cryptocurrencies, privacy, auditabil-
ity, updatable public keys.

Euyaplotieg

Ohoxhnpwvovtag auth T Simdwuatxr Yo fdeha Vo euydploThHow Tov emBAETOVTa
pou xVplo Aptoteldr Iayouvptln mou you €dwoe v euxatpla var acyoAnide pe éva
TEOYUOTIXG. EVOLOPEPOY ol ETixouEo TEOBANUA, Yio TIC CUUBOVAEC TOU Xou Yl TNV
EUTLOTOCUVY TOU, 1) OTold PE TUIAEL ELALXPLVE. ZeywploTod euyaptoted otov Tavayldh
F'povtd xou otnv Aovdn Mmddho yia Tic ©Opeg TOL apiépwoay SOUAEDOVTAS Yid TO
project, yio t Sddeor va pou pou detouv e Aettovpyel wla epeuvnTix ouddo o
yioe Ty Borjdelo mou you mopelyav oe 6,tL duoxohio iy

Ye mpoowmxd eninedo, To xAo mou ytlotnxe 6AN TN Yeovid oto CoReLab ftoyv
TohD LAGEEVO xa Yalpopon TOAD TOL YVMELEN OAOL To ATOPO TTOU GUVTEAEGAY GE UTO.
Kielvovtog, n otiplen twv @Awy Lou ot g oXoYEVELSS Hou HTay XooploTixy ot
O TAL YEOVIAL TWV OTOUDBWY OV Kol TOUS EUYAPLOTE EVay TEOG EVay.

Contents

[Teptngn]
[Absfract]

VY ARLCTIEG

1 Extetopevn EAAnvixy LlegiAndn)
1.1 TowTtwotnta ota Lvotuota Iinewuoy .. o ..o o000 o0
1.2 "EAeyyoc ota Avoyvuuo Xuotnuato Hinowuoy . . o . 0 o000
1.3 AQQUA: Enextaon tou Quisquis ye v Avvototnto EAeyyou|. . . .

[2__Introductionl

13 Background|
3.1 Cryptographic Preliminaries|.
B.1.1 DLOG and DDH assumptions|.
3.1.2 Public Key Encryption|.

8.1.4 >-protocols|

BI15 Hash Functiond
8.1.6 Merkle Treesl

4 Privacy in Payment Systems|

4. PTIVACY| . . o o o v o e e e e e e e e e e e e e e e e

4.2.3 QUISQUIS|.
424 Comparison|« . o

["Auditability in Private Payment Systems|
.1 Centralized Authority|
BIT Zcashextensionl. oL

b.2.1 zkLedger|

12
12
14
17

22

24
24
24
24
26
26
26
27
27

29
29
30
30
32
34
37

6 AQQUA: Augmenting Quisquis with Auditability|

0.1 Overview

6.3 Definition of an Auditable Private Decentralized Payment System|

0.3.1 Fntities)
0.5.2 State

6.3.5 Policies|

6.4 Security Model|] o

0.4.1 Anonymity|

[6.5.2 Registration|. oo

653 Transactionsl

6.5.4 Auditi

6.6 Instantiating the Zero-knowledge Proof]

6.6.1 zk-proof of transactions|
6.6.2 zk-proof of Audit and Register]

[6.7 Analysis|
[T_Conclusion|

11

47
47
48
48
48
49
49
49
49
50
50
52
93
54
54
54
58
o8
o8
60
66
66
68
72
72

80

Chapter 1

Extetauevn EAAn VXY
ITepiAndn

3to mopdv xepdhato axohovdel plor exTeTAéVn EAANVIXY TopouaiocTy Tou mepleyd-
pevou authg g tmiwpotinic. To unoxegdiona €youv tnv (Bl dour| ue auth NG
Ay YAXNC eXDOYNC oL O AVOYVWOTNG TopUmEUTETOL oTa aviioTorya onueio g yia
oployéveg anodellelc xou Aentouépeleg mou €youv mapokneiel.

1.1 IswwtixdtnTa oto Yvotruata HIAnpwpoy

H wwotnta e Wbiwtixdtnrog ebvor mohd onuavter yia T U TAUNTA TANEOUODY,
xadg ol ouvolhayée mepéyouy ToAEC Qopéc eualodnta Tpoowmxd dedopéva TwV
xenotov. H Bidpeuoy| Tou umopel vo mpoxaiéoel dlaxploelc el Pdpog Twv Yenotov,
xardog xon emitpénel tne front-running eméoec xou ™ dnplovpyio tainted” vouio-
HATOV.

H mpddtn mpooéyyion v v eniteudn wbiwtixétnTag, 1 onola yenoylomolelton
ané o Bitcoin xaddde xou ta nepiocdtepa xpunTovouiopata, eivon U€cw PeudnVOULmY.
Kéde ypriotng umopel va xatéyel moAréc SlopopeTinég dlevdivoel oL oToleC OE TPWTY
oy de oyetilovtal Ue TNV TEAYHATIXY TOL TAUTOTATA.

‘Ouwg, éxet anodetyVel and didpopeg yekéteg i onolocdnnote unopel moEaxohov-
Bdvtag ta dnuodota ototyelor tou blockchain oe cuvduaoud pe Tt cuumeplpopd TwV
XeNoT®y va cuvdEaeL Tig Bidpopes dleudivoels xde yphotn petod Toug xan va Ze-
yweloel oe molov yerRotn avixouv.

Tt awtédY TOV AOYO0, TEOTEI KAV CUGTAUATO TANEWIMY TOU TUREYOLY LoYUPOTERES
EYYUHOELC IBLOTXOTATAS. XE oUTE ToL CUCTAUATA 1) EVVOoLa TNG LBLOTIXOTNTAG TEPLEYEL
800 WBLoTNTES:

o Avovupio: Amdxpudn twv PeUSOVULNOY TOV TEAYHATIXWY GUUHETEXOVTWY
oe yot ouvahhoyf. Emtuyydveton péow twv cuvohwy avevouiog (anonymity
sets) ta omola €Ly ouy xan dhhor Peudidvupo yior vor amoxplPouy ot cuvalAaYT
yia Vo amoxelPouy exelvol TOL ATOCTOAEN O TWV TUPUANTTOV.

e EunioteutixotnTor Anoxpudrn Tou 10600 Tou UETOPERETAL GE XddE GUVIA-
Y1) %o XOTA EMEXTACT) TWV UTOAOITWY TV Yenotdyv. Emtuyydveton péow tne
Yerone opouop@xdy deopeloenmy (commitments).

12

H eyxupdtnta twv cuvoAloy®dy ot cUoTHUOTO Ut eEAEYyETaL amd amodellele
undevixic Yvwone. Méow autdy twv amodel€ewy, dev YVnoTomolelton Xdnolo emnhéoy
TAnpogopia 0AAE TaUTOYEOVA Ol UTOAOLTOL YENOTEC UTopoLY Vo emPBeBatdcouy 6Tl
Loy Vouv xdmoleg Tpolmodéaelc amapPAlTNTES YLl TV EYXVEOTNTA TWV GUVOARNAY V.

Iopoxdte napoatideton plo ohvtoun Teplypa®n WOIWTIXMY CUCTNUATWY TANOWUMY.
Ilepiocdtepeg hemtouépeieg yia xdde cbotnua unopoly va Peedolv otny aviicTtolyn
eEVOTNTA TNG oy YALXAS EXBOYHC.

Zerocash

To Zerocash emtuyydvel Ty WBLOTXOTNTA HECW TOU XPUTTOYEAPLXOL EpYahelou TwV
cUvTouwY anodeiewy undeviic yvoorng zk-SNARKSs. ‘Oha ta vopiopota tou dnuiovp-
youvtaw 6to Zerocash anodnxebovton oe o dour| dedopévmv (merkle tree) xou mep-
LEYOLY UE XPUTTOYRAPTUEVO TEOTO EVAL LOVABIXS GELRLAXO ELIUO, TNV TYLH TOUS XAl TNV
dievduvon Tou avtio tolyel aTov xdtoy6 toug. O yproteg avti va elodyouy cav glcodo
oTN cLVIAAXYY) To (Blo To VoWoua anodelxviouy 6Tl xaTéyouy éva and To voplouato
mou efvon amodnxevuévo oty dour| ywelc va to mpoodlopicouy cuyxexpluéva. T va
T0 Eodédouv dnpoctonotoly pall pe Ty amddelln xou To povadixd oelplaxd aptiud
OoTE Vo Uy undpyel 1 duvatdétnta yio double spending. Téhog drnuoupyolv éva
XOUVOURYLO VOULOUA YLOL TOV TOQOAATTY Ue TNV (Do TLu.

To Zerocash mopéyel v péylotn duvaty avwvuula xodode to anonymity set
nepthapBavel 6ha Tar midovd voplopota. ‘Opwe, et 800 onuavtixd apvntixd otolyeia.
To mpdto givon 6t ta zk-SNARKSs emfBdiiouv trusted setup. e nepintwon mou yio
%4molov AOYo BLoppeloel G XAmoLoV oL TATPopoplec Tou setup TéTe auTodC Umopel va
OnUovpYoel 0pUég amodellelc ywplc Vo XaTEYEL TNV amapalTnTn WUoTXTH TANeoPOopia.
To debtepo apvntind elvon 6TL xade Be pmopel va Slaxprdel molo vowoua Eodedtnxe
oe xdde ocuvolhoyy, 1 dopr| dedopévwy peyorodver o xdde cuvalhoyr. Autd éyel
cav anotéheopa xdie xouPoc va meénel var anodnxelel €va GNUOVTIXG HEYHAO OYXO
OEBOUEVLV.

Monero

To Monero anotelel xou aUTO €val WBLOTIXG cUOTNUA TANEWUGY. Xe avtideon ue
To Zerocash e ypnowonolel zk-SNARKs odkd emituyydver tnv avwvupla yéow tng
XEHoNG Twv uToYpapny duxtuliou (ring singatures) xou Twv xpuedy dlevdivoewy
(stealth address) xou v epmoteuTindTnTo Héow Twv ring confidential transaction.

Ot unoypagéc doxtuhiou emitpénouy oe éva YENOS [loc ouddos vor uroypdipel ex
pépouc 6Anc tne ouddac. Ou undholnol yenotec unopolv vo emBefouudcovy OTL 1|
UTOYPPT) AVAXEL OE XATOLO PEAOC TNG OUABS Ywple OUKC Vo utopoly va Eeywplcouy
TO CUYXEXPWEVO UENOS. AUTS TO epYAAElD TPOOTATEVEL TNV VKOVULN TOU ATOGTOAEN.

Tiat v avevupler Tou TapolimTn yenotuonotolvta oL xpugés devdivoel (stealth
addresses). Autéc anoTehoLY éva XpUTTOYEUPXS EpYOAElO TOU ETLTEETEL TN dnuLovpYia
o xouvovpylag wag yenone dievuvong yia Tov anoctoréa, 1 onola TpoxUTTEL and
T0 dNPOCLo X! Tov AN évac eEmTEPXOS YPNOTNG OE UTOPEL Vo TNV CUVOECEL UE
aTo.

To Monero, moapduolo ye to Zerocash, €yel 1o (Blo mpélAinua Tou anatodUEVOU
Ywpou mou mpénel vo dlotneel xde xoufog Tou cuoTHATOC.

13

Quisquis

To Quisquis amotehel Lot LAOTOMON WBLWTIXOV GUC TALATOS TANEWUWY, 1) OTola ETLADEL
To TopANdvVe TEOBANUe Tou ancutoluevou ykeou. To metuyalvel pe tn yeron Twv
Updatable Public Keys. Méow autol Tou xpuntoypapixol gpydlelov ol ypoteg
umopolV Vo xataoxeLdlouy ToOAATAS dnudota xhewdid Tou potpdlovtar duwe évar 1t
oTo xhedl. To dnudota xhewdid mapdho mou xataoxeudlovion and To (Blo BTN
xhedl dev unopolv va cuoyeTiotovy and évav eZwtepxd mapatnenth (o omoloc de
yvwpilel To WBiwtind xhewdi).

Updatable Public Keys: Ilio cuyxexpiuéva éva oY fuo avaveEOOUwY SNUocLwy
xhedidv (UPK scheme) nepiéyet Tic e€hc botnec:

o OpVotnTon ‘Oho ta xAeldLd, mou €youv xataoxevaotel and tlgoue yeroteg,
enaAndedovion cwoTd.

o Avtiotaon otn Staxpiotpndtnta: ‘Evoc aviinahog dev urnopel va Swonpivel
HETAED eVOC xatvolpyYlou SNUOCLOU XAEWBLO Xol Ulag EVIUEPWUEVNS EXxDBoomg
evo¢ dnubdoLlou xAelBLob Tou 1HoT YVwellet

e Avtiotaon otnv tAacTtoyedpnor: ‘Evac aviinahog dev unopel va udde
T0 PUoTIXG XAeWdl evde evnuepmUévoL BNUoCLou xAedlol ywelc va yvwpeilel to
puoTxd xAedl Tou apyixol dnudclou xAelBLOV.

Y7o Quisquis ot cuvahAayE TEPLEYOLY ¢ EIGOBO AOYUPLIGHOUE, TTOU ATOTEAOVDY-
Tou oo pla Sievduvon (éva dnudoto xhewdi-upk) xoun o undroino Tou oyetiletan ye Tov
AOYOpLIOUO AUTOYV, TOU ATOCTOAEN, TWVY TOPUANTTOY XIS Xl GAAWY YENOTWY TOU
Aertouvpyolv w¢ anonymity set. Me to mou ypnowonowdel évoc Aoyoplacuds oe uia
GUVOAALYY| XUTAVAAOVETAL Xou dnutovpyeitar otn ¥éorn tou €vag xouvolpylog pe véo
Blevuvon Tou TEOXUTTEL UmO TNV AVAVEWST] TOU EXACTOTE TEOYNYOUUEVOU dNUOGIou
xhewol. Etol o yprnoteg ypewdleton va anodnxebouy uévo v teleutaior Exdoon
TV AOYUPLICHMY X0l O)L OAT TNV TATPOQOpld TOU TEQLEYEL X0 TOUG AOYUPLIUCHOUG
mou €youv 7o “Codeutel”.

1.2 ’'EAeyyog ota Avovupo Yuotripoata IHIAnpwpoy

To TAien WUWTIXE CUC TARATA TANEGOUGY, EVE EAUcAY To TEOBANU NG TpooTasciag
TOV WBLTXOV dedopévwy, dnuolpynoay xdmola véo mpoPfAnfuata xadag dev elvan
TAEOV EQIXTOC O EAEYYOC TWV YPNOTWY OTA CUYXEXPWEVA cuoTAata. Autd elye
WS OMOTEAECUO VoL YPNOWOTOLOVVTOL Ond XaxOBOVAOUS YPHOTES Yot TNV DeEaywyT
TOEAVOUKY BEACTNRLOTATOLY, OTWE Yio Toeddelypo " EETAup” Yenudtwy 1 napdvouo
eunoplo. ‘Etol, €yel anayopeutel amd dudpopoug opyaviopolc 1 xenforn ToAWY and
AUTOV TV GUCTNUATWY.

Emopévae, vy tnv xdhudn awtod tou xevol dnuoupyRdnxay cuotAuata mou
Tpoonadoly VoL GUYBLACOLY TNV WIWTIXOTNTO YE TNV duvatdTnTa EAEYYoL. TN Pif3-
Moypagpla dtaxpivovtar 800 Paowol tpdmoL yia Ty enitevdn Tou TapANdvVEe GTOYOU,
1 ewoaywyh wog xevipic opyfc (éumotn teltn oviétnta) # 1 eloaywyh YEVIXGY
eheyxtov (general auditor).

Kevtouwxr ‘Euniotn Apxn
O mo anhdg TpoToC Yl TNV EQUPUOYY TG dUVITOTNTUC EAEYYOU OE IWBIWTIXd CUGTY-

porter efvon 1) etoay oy plag xevipixc dpyc f o opddac xevipxdv apy@y (multi-

14

party computation). XOu@wva ge qUTH TN TPOCEYYLOT, OL YPHOTES EVOWUOTOVOUY ETL-
Théov TAneoopleg 0TIC CUVAAAAYECS, Ol OTIOIEC XPUTLTOYPAUPOUVTOL UE TO BNUOCLO HAELWDL
evoc xadoplouévou a€lomiotou eeyxt|. ‘Etol, to dedouéva TwV YpnoToy Tapauévouy
XEUQPA YL TOUG UTOAOLTIOUS CUUPETEYOVTEC OTO GUOTNUA, EXTOC amd TNV XEVTELXY
apyY), 1 omolo unogel vo anoxpuntoypagpnoel g Bonintinés mAnpogoplec avd mdoo
oty Ywelc ™ cuyxatdieon TV YENOTOV.

‘Eva nogddetypa tétolou cuothpatog etvor to Zeash extension. To cbotnuo avtd
enextelvel To Zerocash mpooVéviwvtag emmiéov mAnpogopleg oe xdde véulouo. e
autéc mepthauPdvovton ol counters mou amodnxedouv adpoloTixés TAnpoopiec Yo
xdde yprotn xou yenowomnoobvton Yl TNV emBoAY popohoyiog xou oplwv cUVAA-
oy v, xododg xou amopaltnTeg TANEOQOopieS Yiot TOV Ly VIAATNOT TwV cuvoAlay®y. Ou
emTAEOV TANEOPOP(EC EVOL XPUTTOYEUPNUEVES HE TO XAEW(plag EUmoTng Teltng ov-
To6TNTOG, N omola unopel OTOLUONTOTE GTLYUY| Vo BeL To Tepleyduevo toug. Béfoua, to
Zcash extension d{vel Ty SuvatdTnTa GTOLS YENOTES Vo Yvwpilouy ndte €xel aplel 7
avYLULA TOUC Om6 TNV oEY Y.

To xbplo apvnuxd autic e mpocéyylong elvar 6Tl OAn 1 TANpoopic GUYXEV-
TpwveTol ot Ula xeVTELXT apy Y|, UE AmOTENEOUA 1) TEAEUTALOL VO AmOXTA UEYEAT BUvop.
To yeyovée autd pnopel va Exel apynTind avtixtumo oTn npocTtasia TNS LBLOTIXGTNTOS
TV YENOTOV.

General Auditor

Tt vor amogeuydel 1 cUALOYH GALY TEV TANPOYOELDY ot Wiol xevtext apy) (1 oudda
apyGV), Teotdinxe pio deltepn tpocéyyior. Ilpdxettar yio éva Slabpao Tind TpwTéxolho
HETOEY TOU EAEYYOUEVOL YENOTYN XOU TOU EAEYXTY. X aUTH TNV TepinTtwo, 0 EAEYX-
¢, o omolog umopel va eivon omoldrinote oapyn eAéyyovu, umopel vo Yéoel cuy-
HEXPULEVES EQWTAOELS IOV TTPOEPYOVTAL 06 TS TOALTXEG TOoL cucThuatog. Ot ypfoteg
ATAVTOUV O AUTEC TIC EpWTAOELC PE amodeléelc undevixic yvoone mou Pastlovial o
dedopéva anodnrevyéva on-chain. To mpwtdxorho avtd npolnodétel Tn cLyXAUT-
Yeon xou TN cuvepyaolo Tou eheyyoduevou yerotn. Qotdoo, 1 analtnon outh dev
umopel vo yivel avTuxeluevo eXPETIANEUOTC AmO U1 CUUHOPPOVUHUEVOUS YPNOTES, OE-
Bopévou 6Tl 1 dpvnon ouvepyaoioc pe T apyéc unopel vo Yewpniel 1oodivaur ue
anotuyNUévo EAeYyO.

Iopoxdte mapoatideton plo chvtoun neplypoapy| TéTolwy cuctnudtwy. Ileplocdtepeg
Aentouépeleg Yo xde ol unopolv va Beedtody oto avtiotolyo onuelo g ayy-
Axie exdoyne.

zkLedger

To zkLedger emtuyydver va mopéyel mAHen Wwtixétnta otoug ypRotes (avwvoyio
X0l EUTULO TELTIXGTNTO) ot TToEEAANA TNV BuvartdtnTa eAEYyou xotd Tov omolo 1 dpyH
padodvel uOVo TNV andvTNoT 68 GUYXEXPLIEVES EPWTNOELS XOUu OYL TNV CUVOAXY TANEO-
popla TV Yenotwyv. Autd to metuyaivel uéow e ewinic popprc ledger mou mpo-
tetvel. Auth 1 poppt elvan €vog Thvoxog 6o oL GUVOAAAYES AVTIGTOLYOUY OE YEUUUES
xaL ol yenotec oe othiec. Kdde ouvahhayn nepihoufdvel mhnpogoplies yioa 6houg Toug
dM\houg ypriotes, axdun xa yio exelvoug mou dev ouppetéyouv. o v andxpudm
Twv yetoPBalouevey Too®y xadde xor Tou umololtou mou xatéyel xdde ypnoTng
xdde eyypapr, oe pla cUVAAAAYT) TeEpEyel Ui SEaUEUOY) o Wit o€l TOU YPEDVETOL 1)
notwvetat otov YeRotn. ‘Olec ol xatoyweRoELS Yia TOUC U CUUHETEYOVTEG €YOUV
deopeupévn T 0. Adyw e 1dnToc andxpudng TV deopeloenwy évag avtinolog

15

Oev pmopel vo dlaxpivel petadd yiog UNBEVIXAC Xat UG Un UNdevixhc deopeupévne
Twhe.

H Swdicacio eAéyyov nopovotdletar péoo and to endpevo napddelyuo. ‘Evag
eheyxTic Umopel va pwTthoeL Evay yenotn <lléca cupdd €yete otny xaToy cac TN
oty ti>. O ypotng amavtd pe pla T nepéyovtag pall xon pia oamddelén undevixnig
yvoong mou e€aopolilel Ty eyxuedtntd Tng andvinorg tou. O eheyxthc unopel vo
noAamhaoldoel 6Aec Ti¢ deouedoelc oto Aoyiotxd PiBAlo yia tov eheyyduevo ot
xon pnopel vo enaAndedoel av 1 anddelln xan 1 andvinon eivon Eyxupec. Aecdopévou
6Tl 1 oTHAT Tou BiBAlou avTitpoownedel 6ha To Tood mou €xel AdBel 1| damavioel
o avtloTolyog YeHotne, 0 eAeyxTic unopel va elvar BéBonoc 6TL 0 yprotng dev Vo
unopoviae vo anoxpelel xauio amd T CUVOAAAYES TOU XaTd TN SldpxELa ToU EAEYYOU.

To x0plo apvnTuind autol Tou GUGTHUNTOC elval GTL xdde GUVOANXYT| TEPLEYEL GAOUG
Toug YENOTES xou elvol amopalTNTO VoL ElValL YVWOTA 1) TEONYOVUEVY XATAOTACT) OAWY
TV YENOTOV Yio Vo Umopel vo npaypatonolndel n cuvohioyy. Enopévee, morhamiol
¥eNoTeEC BEV PmOPOUY Vo ToEdYoUV TapdAANhaL SLopopeTixés UVOAAIYES, xoddg oL
TOUTOYPOVEC GUVAAAXYES €Y OUV TEVTA GUYXPOVCELS.

PGC

To PGC axoloudetl pla Sioupopetint| npocéyyion. o va emitiyel anodotind EAeyyo
TWV YENOTWV Topayweel Ty avwvudic. Anlady) mopéyel Hévo TV eI TNG Y-
moteutixottag (confidentiality) 6cov agopd v npootasia g WOTMUSTNTAGC TV
yenotwv. H avewvouion otneiletar médh oty yerion anhdv $Peudwviuny. Me autdyv
ToV TEOTO 1) apyY| Unopel var uddel Tolol YeHOTEC CUUUETEYOUV OE Qe GUVOANAYT
oahAG Bev pardaivel To 1006 TOU GUVAAAGCGETOL XAdME XOL TO UTONOLTO TWV YPNOTEOV.

To PGC nogéyel tpla eldn moMtixdy (EpwtAoemy) Yiol TOV EAEYYO TOV YENOTEOV.

o ITohtixh opilou (limit policy): neplopiler o 6plo TV YpNUdTwy TOU
unopel vo yetagepdel amd xou Tpog Eval YeHoTN Yol Vel YPOoViXS BIAoTNUA.

o $oporoyia (tax policy): Eva nocd twv ypnudtwy tou déyeta évos yeRotng
oe x&le cuvakharyh) 1) oe €val Ypovixd BIACTNUA TEENEL VoL ATOG TENAETAL 0TO tax
office.

o IToAvtixA Enihextixrc AnoxdAudre (open policy): Anoxdiudn tne
Ting Tou etapépdnxe oe Aol GUVOAAOYY.

O éeyyoc mpaypatonoeitar we e€fg: H opyn Swokéyer pio Siedduvorn xar cuk-
Aéyel Ohec Tic ouvalhayég oTic onoleg ouupetelye 1 Biebuvon auth Y TO ETAEY-
HEVO Ypovixd BldoTnua. Xden otny WIOTNTA TOU TEOCUETIXO) OUOUOPPLOUOU TV
deopedoewy nou yenowdonolovvtal 6to PGC, n apyy unopel va Beel to ddpoiopa 6Awy
TV {NTOUUYEVKY TOGKY Yo Vo eapudoel T toAtixég limit xou tax. Iopddinia
unopel va Introel amd Tov YenoTn va amoxahlddel Ty Ty omd xdmolo {NTovuevn
ocuvodhayh. O ypeotng anavid ot epwTACEC NG dpyNe He amodel€elc undevixnic
YVOONG, YE ATOTEAEGHA VAL U1V SLoppéeTon xdmota emmAéov TAnpopopia.

Ipogavide T0 xuELdTERPO dEVNTIXG UTOL TOU GUOTAHUNTOS lvol 1) EAAELWYN TNG ov-
WYUPLHC TWV YENOTWV.

16

1.3 AQQUA: Enéxtaon Tou Quisquis pe tnv Avvatotnta
EA€yyou

Yy epyaocia auth tpoteivoupe plo véa tpocéyylon yiot TV eniteLEN TOU GUVBLAGUOD
NG WBWTXOTATAC XU TOU EAEYYOU ToU €YEL G OXOTO TNV ENAUCT TV TORATAV®
TROBANUETOY.

Anhody|, 0TOYEVOVUE OTNY XUTACKELY| EVOC AMOTENEGUATIXOY, AVCOVUUOU, EUTLO-
TELTIXOU Ol EAEYYOUEVOL GUG THATOG Tou Uropel enlone va unoo tneilel Tautdypoveg
cuvoAhayeg xan vor Slotneel éva otadepd péyedoc tou state aveEdptnTa and Tov op-
Wud TV XeNnoTtdV N 10 16TopXd TV cuvallaydy. [va Snuoveyoouue éva Té-
To10 cVotnua, mpotelvoude to AQQUA, to omnolo emexteivel to cbotnua Quisquis
pe évav yevixd eheyxtr. ‘Etol, o AQQUA cuvbudler tnv avevupio tou Quisquis
ME TNV eEXQEacTiXOTNTA TNG Toltixig xan T pOdwon tou PGC. Autd onualvel 611 o
eheyutic unopel var exteAel EQOTAUATH GYETIXA UE TO AVOTATO 6PLO TOU TOGOU TOU
anoo TEMeTon/ hopfdveton and Tov ypHotn ot o dedouévn Teplodo, oxeTIXS pe TN N
CUPUETOYY EVOC YeNOTN OE Wi dedouévn auvaiiayt| N} meplodo, XM xaL OYETIXA UE
v axpiP3n a&la Tou amooTéAkeTon/AopPdveTon GE piol GUVOANOY .

O oyediaopog tou AQQUA énpene va Eenepdoetl Ty axdroudn Bacuxr tedxinon,
dote vo emitpédel i Aettoupyieg eAéyyou, dlatnpdvtag TapdhAnia To andpENTO TOU
yerotn. Adyw tng WBoTNToC e avewvuplag, ol yerRoteg umopolv va amoxpldouy
TOUC AOYOEIIOUOUS TOUG XL XATE GUVETELN To TOOd mou efvon amogodtnTo yiot T
duadixacia ehéyyou. Emmniéov, dedopévou 4Tl to Quisquis elvon permissionless xou
BTG, Uiot apy | OV UTopel vor ETBAAEL XATOLES ATOTEAECUATIXES KUPMTELS YIoL TOUG
U1 CUUHOPPOVUEVOUS YPNOTEC.

I var Eemepaotel auth 1 TEoOXANGT, ElOAYOLUE Wa AEtTovpYiot EYYPAPNE OTO
Quisquis péow plog apyfc eyypaprc. Autd onuaiver 6Tt ol yproteg mpénel mpwTA
VoL EYYEApoUY 6TO CUCTNUA, ToEAdIBOVINS TNV TEAYUNTIXY TOUC TOUTOTATO. T
GUVEYELL HTOpOLY Vo ONUIoVeYNooUV VEOUS, U1 CUVOEBEUEVOUS AOYOQLUCUOUS TOU
YeNnowonoloUvTal Yl cUVaAAaYES €vtoc Tou cuotrhuatoc. H Aettovpylo eyypaprc
TOREYEL 0TO GUGTNUA EVOY TROTIO Vo YVeR(LEL TIOLOL YeHOTES YENOULOTOLOUY TO GUGTNU
XL VoL TOUG TULWEEL UE TPOTO oL Bev euninTel 0To MEdO EQUPUOYHC TOU CUC THUATOG.
Emnmiéov, 10 AQQUA ywpilel to state oe 800 olvoha. Atatneel to obvoro UTXO
Tou yenowonotettan oto Quisquis, to onolo mepiyel Toug " agbdeuTouc” AoyapLao-
pole Tou YEHoTY, ARG mpociétel emlong éva VEo olvolo mou mepLEyEl T DNudoleS
TAnpogoplec eyypaprc Tou yerfotn pall ye tic anopaltnTeg TANPOYopleS Yot VoL SLoo-
poAioel 6TL oL yeroteg dev Ymopolv va amoxplouv TAneogopieg xatd T dladixacio
eAEYYOUL.

ITio cuyxexpiéva, otny epyacio optlouvye auotned To oTotyelo VoG EAEY Y OUEVOL
%ot Wiwtixol DPS énwe to AQQUA.

Ovtotnteg - Entities
To AQQUA anotedeiton and tic e€hic ovtdnree:

o Apyf eyypagrc (RA): O pbhoc tne eivan va eyypdpel véoue yprotec oto
ocVotnua. O YeNoTEC EYYEAPOVTOL CTEAVOVTOS TIC TROYUATIXES TOUTOTNTAC
toug pall ye éva apyxd dnuoolo xhedl mou dnuoupyolv povor tove. H RA
armodnxedel autéc Tic mAnpogopleg off-chain. ‘Olol ou Aoyaplacpol pe Toug
omnoloug o ypHotng mpayuatomolel cuvoliayés Vo mpoépyovtan amd outéd TO
apyx6 dnubdoto xhedl, uéow tou unyaviopol avavéworne tov UPK oyfuatoc.

17

O oxondc tne duadixaciog eyypaphc elvar onuovtindg, xodde dnuiovpyel pio
oUvdeoT Peto€l Tou dNUOCLOU XAEWBLOU eVOC YeRoTN XAl TNG TEAYHATIXS TOU
TauToTNTAC, 1) onola Y yenotwonoinlel yio Ty mdov) Tiuwela Twv un cuppop-
QOVUEVLV YENOTOV.

o Apyfi ENéyyou (AA): O pdhoc tng eivan vo tporypatorotel tn Stodixacio eAéyyov
TEOXEWEVOL Vo eToANIeVEL OTL Ol YPNOTEC CUUUOPPWVOVTOL PE TG TONTIXEC
Tou cuoTHUaToS. Edv o twiel 6tL évag yefotng Tou cuoTHUaToS SeV cUY-
poppavetar, 1 AA ocuvepydletan pe v RA vy tnv emfBoly) twv oyetixody
HUPDTEWV.

o Xphotec (U): Xpriotee nou mporyatonotody cuvolhayéc YETAED TOUC.

State
310 AQQUA, to state anoteheiton and ta axdbrovdo chvora:

o UTXOSet: 'Evac nivaxag mou nepléyet toug ”ayenotwonointous” Aoyoplao-
polg, dnhadY) Toug Aoyaplaciols Tou €xouy xataypapel wg EEodol Wiag Eyxupng
ouvahhayhic, ahhd Sev €xouv (axdun) yenowonoinel we eicodot.

o UserSet: 'Evog nivaxag mou mepiéyet yio xdde Quoxd yehotn to apyixd dnuo-
olo xAedl Tou xou gl BEoueuon Yo Tov opiud TWV AOYUPLICHOY TOU TOU
AVHXOLV.

Aoyapiacpotl - Accounts

O hoyaptaouol yenotdv éyouv tn popen acct = (pk, , [out],), 6mou bl elvan

TO UTOAOLTO TOU AOYOPLoUOU Xou out, in elvon To GUVOAXS ToGO Tou €yel oTelhel xan
A&Bet o hoyaploouog, avtiotoiya. Ot napandve Tég anodnuedovial péoa oe deouev-
OElC WOTE Vo UnV Umopel xdmola e€wteplxr] ovtdTnTa Vo Uddel TNy TEayUaTXr Ty
touc. Kdlde ypriotne unopel va €yel mohholc hoyapiaouols ol onolol anodnxedovtol
oto UTXOSet.

Userinfo

Kdde yprotne ouvdéeton pe o mhedda e poppric userlnfo = (pk,), n onolo
anodnxebetar oto UserSet. To dnudoio xhewdl pk, elvan éva apyixd dnuocto xAeldi

Tou TapéyeTal Xatd Ty eyyeapr. To dnudoio xhedl xdde hoyopiaopod Tou avixeL
oTov yenhotn Yo yotpdletar o (Blo puoTd xAewdl pe To pk.

H tn #acces elvan o aprdude twv hoyaplaoudy oto UTXOSet nou avixouv otov
oot xau anolnxedetol we BECUEUST), WOTE va Tagopével xpuen. H xataypopy
Tou aplduol TV AOYUPLIGUOY TouU XaTéyel €vag yerotne elvon amapaftnTy yiot TNV
unooTAREY TOMTIXWY Tou oyeTilovTon Ue OpLol WOV, OTWC TO CUVOAMXS ToGH TOU
€yel AdPBel 1) otellel évag ypnotng oe wo ypovixh) mepiodo. AuopopeTtind, TéToleg
ToMTES Vol umopoloay eUxoAa Vo Topoxapploly yéow TNe dnutovpylag ELXoviXGyY
tavtotitwy (sybil identities). To dvorypo e déoueuvong #accs Yo amoxohupdel
u6vo otov AA xatd tn Swbixacio eAéyyou.

18

IToAwtixéc EAéyyou - Policies

‘Eva eheyyouevo DPS da npénel va urtootneilel éva mAoUolo GOVOAO TOMTIXGOY GUY-
uoéppwone. Autég unopolv vo amotunwdoly ©¢ xaTnyopiuate el €VOC opyLXol
ONUOCLOU AAEWBLOL Pk, ULAG YPOVIXNE TEELODOU TOU AVTITPOOWREVETAUL and €va state
évopéne state; xou éva state AEng statey, xar BoninTixddv mAnpo@opLdY aux moUL
eCapTdvTal and TNV EXAOTOTE TOMTIX. X OAAL TO XATNYOPHUATO, YENOLOTOLVUE
Tov ouuBolioud Al, A2 yio vo SNAOGOUUE T0 GUVORO TWY AOYUPLIGUMY GTNV XAUTdo-
Toom state; .UTXOSet, state,.UTXOSet mou avrixouv otov WB1oxThHTN TOU PK,.
Ot mohitixéc mou emteénel to AQQUA elvan ol e€vic:

o ITohitixh) oplou anocTtohMc feimit: Ileplopilelr To cuvohixé mood mou pnopel
Vo GTEIEL €VOC XPHOTNG TOU TEAYHATINO) XOOUOU PECH OF WLl CUYXEXPUIEVT
neplodo. Mnopel va xadopileton amd tnv AA exTOC AAUGIBAC XaL VoL OVAXOLVEIVE-
ToL OTOV YENOTY YLol Uiot oLYXEXPWEVT Tteplodo, avdhoya ye tnv epopuoyy. Ta
state,, state, efvan ol xatactdoelg Tou blockchain otnv apy”| xou 6T0 TéNOC TNC
nepLédou, avtioTouyo.

fetimit(PKy, (statey, statey), amas) =1 <= Z out — Z out | < amag
accte Ap accte A,

omou out elvar To dvorypa Tng déoueuong evo¢ hoyaplaouol acct, yenol-
HOTOLOVTAS TO WLWTIXG XAeWdl sk Tou Aoyaplacpon.

o ITohitix) oplou MING friimie: Ouolee, 1o cuvolnd nocd mou uropel va Adfel
évag ‘puoxdc’ yenotne.

frimit (P, (state;, state,), amee) = 1 < Z in — Z in | < anae
acct€ Ag accte Ay

6mov in elvor To dvolypa Tov yiat Tov Aoyaploopd acct, tou unoloyileton
YENOHLOTOLOVTAS TO WL TIXd XAEWL ToU Aoyoplacuol sk.

e Open policy fopen: Anmoxdiudm tne o&iag Tou Tocob oL anocTENAETUL 1| Aoy-
Bdveton amd €vay YeHoTn O Uiot GUVAAAAY.

(v={ > pl— > Db1)€EV

accte A, accte A,
fopen(PKg, (state;, statey), Uopen) =1 <=
open)) s Uopen Vo= Z bl — Z b1 | e V)
accte A, accte Ao

AU = Ugpen

6mou bl elvar To dvolypo Tou evocg acct.

o Oplo a&lac cUVOANAYAC fixiimit: AVOTATO GELO TOU GUVORLXOU PETAPEPOUEVOL
o600 ToU UTopel Vo OTAAEl OE Lot CUVOARAYT.

Sixtimit (DKo, (Statey, statey), Umax) = 1 <= (v = Z bl — Z bl | < Umax
accte Ay accte Ao

19

o Mn oupuetoyn frp: Mn cupuetoyn oe plor cuYEXEWEVT GUVAAAXYY tX 1) adpdvela
Tou Yero) Y éva ypovixd didotnua. O xatactdoelc state;, state, eivon ot
XUTUC TACELS TELY X0 UETE TNV EPIPUOYT| AC CUVOANXYAC 1) OTNV ap) Y| xou GTo
TENOC TG TEPLODOL.

A(> out— Y out>:0

accte A, accte Ao

/\(> oin—) in)zO

accte A, accte As

fop(PKy, (state;, statey)) =1 <=

Yuvaptroeic - Functionalities

‘Evor eheyyOUeVO WOLWTIXS ATOXEVTPWUEVO CUCTNUO TANEWHOY Vol Wiat TAELEDA oAYO-
plduwv ToAuwvLULIXOU Yedvou Tou optlovtal we e&ng:

o (statey,pp) < Setup(A): Anuioupyel TNV apyixf) XoTdOTAON TOU GUGTAUATOS
statey xou Ti¢ BNubdolEC TaPUUETEOUS PP, Ol omoleg divovtal éuueca we eloodog
oe 6houg Toug dAhoug ahyopiduouc.

o (sk,userInfo, acct,) < Register(): Xpnowonoweiton anéd évav ypAotn yio vo
dnplovpYHoel Tic TAnpogoplee eyypapnc userlnfo xou Tov TE®TO TOL hoYUPLICUS
acct.

e 0/1 + VerifyRegister(userlnfo, acct, 7, state): Xpnowomnoteitor and v Apyy
Evyypoapnc yio tmv enoarideuon tomv TANeoQOpLiY EYYRUPNE XL TOU AOYUELIO-
noU evoC YeHoTN.

e state’ < ApplyRegister(userinfo, acct, state): Xpnowonoteltow and v ApyH
Evypagnc v tnv mpootixn evog yenotn 6To cUCTNHO UETA TNV ETLTUYN
EYYPUPY) TOUL.

o tx = ({acct}™ ,{acct’} |, m) + Trans(sk,S,R, Vg, Vs, A): Xpnowonowelton ané
Tov anoctohéa (xdtoyo Tou WiwTixol xAewod sk) yia vor dnuoupYroel o
CUVOAAOLYY) TIOU OLVOIXOTOVEUEL ToL VOUIOPATd TOou amd Toug AoYoplacuols Tou
07O S 6TOUG hoYapLaoUolE TwY TapaAnTtey oTo R. Ta daviouoto Vs, Vh TEQL-
Yedpouy T oAayéc 0T TWES Twv S,R avtictoya. T v andxpudm twy
CURHETEYOVTOY NOYOpLIOU®Y, Eva 6UVONO avewvuplag A (anonymity set) Siveton
w¢ loodoc.

e txca = (acct, {userlnfo; }1*_,, {userInfo;}™ |) + CreateAcct(userlnfo, A):
Anuovpyel pa cuvolhory | yia T dnuovpyia EVOS VEou Aoyoplaorol Yo Tov 1d-
xThTYN Tou userlnfo.pk, xou eviuepdVel xaTIAANAAL TNV TWH TNS BEGUEUONS YLat
ToV apLipd TV AOYUpLICUMY Tou xaTéyEL, userlnfo.comyaces. Ilat Ty andxpudn
e oOVBeEoNE PETAEY TOU VEOU AoYaplacuoy acct xaL Tou avtioTolyou pk, dive-

Tou €val GUVOAO avevuUlog A.

o txpp = ({acct}? , {acct’}™ ;, {userInfo}™ ;, {userInfo’}7_ ;)
< DeleteAcct(sk, userInfo, acctp, acctc, A1, A2): Awrypagt] evOS AOYopLICUOD
undevixoL uoholmou acctp and to ovoro UTXO and tov Wbloxthtn Tou sk xou
Tpooun TV TANPoPopldY eréYyou Tou (out,in) ot évav dAAO NOYOPLACHO
acctc mou polpdleton To (Blo sk. To cOvola avevupiog A1, Ay TtepiauBdvovton
yia v amdxeudr tev accte xa userlnfo, avtictouya.

20

0/1 < VerifyTrans(tx, state): Efvau évag Snudotoc ahydprduog enahidevone tou
EAEYYEL TNV EYHVEOTNTO WLAG CUVOAAAYTC tX BEBOUEVNS TNE TEEYOUCUC XATAO-
taong state xou e€dyel 1 av xou wévo av etvon €yxupn.

state’ <— ApplyTrans(tx, state): Xpnotgonote{ton 1ol TV EQUPUOYTH OTHY TPEYOLGU
XOTAO TUOY) WLog OLVOANAY TGS tX, UETE TNV enoAridevoy| Tng.

H # #
auditinfo = (, #accsy, {accty; };o7 ", #accsg, {accty; oy "?)

+ Audit(sk, pkystate;, state,, (f, aux)): Xpnowonoteltoaw ond évav yeotn Ue
8L TG HAEWBL sk xon apyixd BNuooio xAeldl pk,, yio Tn Snutovpyia plag anddeldne
T YLOL TY) CUUUOPPWOT| HE TNY TOAMTIXY f, OYETHE UE ULol CUYXEXPWEVY YPOVIXN
neplodo mou oplleton and dvo otryuwodTuna blockchain state;, state,. H pyetof3h-
Nt aux mepéyet Tic Bonintinée mAnpogoplec mou amaTOVVTAL Yol TNV TOATIXY.

0/1 < VerifyAudit(pk,, state;, state,, (f, aux), auditInfo). Xenotwwonoweiton omd
v Apyr) EXéyyou yia va ehéy€el av o ypHotng e To apyixd dnudolo xheldi
Pk CUPUOPPOVETAL PE TNV TOATXT] f.

It Ty vhoToinoy Twv Topamdve aAyoplduwy 0 ovaY VOO TNG TUPUTEUTETOL GTO
avtioTolyo xepdhaio NS ay YA €xdoong.

Movtého Acpdieiog

‘Eva avéyvopo chotnua TAnpoucdy Yo npénel vo napéyel avmvuuio xou teohndn
évavt xhomic (theft prevention). H avewvupio tpotmodétel bt évog napotnenthc
TOL GUCTAUOTOC deV Umopel var Bpel TIC TAVTOTNTES TWV AMOCTOAEWY X TWV
TUPOANTTAOV WaS CUVORAAYNS, EAV BEV XUTEYEL TO WOIWTXO XAeWl Tou amoo-
TOAEQ, Xl OTL axOUn %ol O TUEUAATTNG WaC GUVAAAXYHC Bev Umopel vor yv-
wellel tov anoctoréa. H mpdhndn xhonic onuaivel 6Tl oL yproteg unopodv va
HETAPEPOLY YENUATO HOVO amtd AOYUPLAGHOUS TTOU TOug avixouy. Emniéov, éva
eheYyOUEVO cUOTNUA TANEWU®Y anontel TNV WOTNTA acpoleiog e opdoTr-
Tag Tou EAEYYOL, N omolo onpalvel 6Tl BeV pmopel vo UTdpEel €vog ETULTUY MG
enahnieuUévog EAEY YOG TIOU TOEAYETAL Al EVOLY (A1) CUUUOPPOUUEVO YENOTH.
Yty gpyooia SLATUTOVOLUE EVa QUOTNEG HOVTEAD ACPANELNG TOU TEELYPAPEL
w0 AQQUA xu Bdon tou omolou anodeixviouue 6t 10 AQQUA mhnpel Tig
TOEOTAVE LOLOTNTES.

21

Chapter 2

Introduction

Privacy vs Auditability: Addressing this dilemma becomes urgent, as blockchain
technology advances and decentralized digital payment systems (DPS) evolve and
gain in popularity. This prominence of DPS brings about integration with the
heavily regulated traditional financial systems. A major question that must be
answered is to what extent this can be achieved without sacrificing privacy and
decentralization.

All flavors of DPS have some built-in support for privacy and regulation, even
if it is rudimentary. Starting with Bitcoin [21] all DPS share the common feature
of depending on a globally distributed, append-only, public ledger to document
monetary transactions in a transparent, verifiable and immutable manner. The
underlying consensus mechanism used to settle exchange history and introduce
new transactions, along with the security properties of the cryptographic primitives
employed, makes sure that these systems adhere to some (simple) rules. Further
auditing can be achieved by merely inspecting this ledger, as everything is in the
clear. To protect their privacy, users rely on the use of renewable pseudonyms
to obscure their identities (but not the amounts exchanged). It has been shown,
though, that by combining publicly available data from the blockchain in a smart
way [20], anyone could link the pseudoidentities of the users and even uncover their
real-world identities.

To overcome this problem, privacy-enhanced cryptocurrencies (e.g. Zerocash |7],
Monero (23], Quisquis [13]) arose. These systems hide transaction identities and
amounts exchanged, thus providing privacy in a provable cryptographic manner.
At the same time, however, they allow malicious users to conduct illegal activities
(e.g. money laundering, unauthorized money transition, tax evasion). This misuse
of privacy has led to the need for a compromise, i.e. the creation of protocols that
combine user privacy and auditability. Such auditable privacy solutions [14} |11} |16,
17, [22] aim to guarantee that both the system and its participants comply with
financial regulations and laws, preventing them from engaging in illicit activities
without being accountable to the authorities. Financial regulations that are usually
supported in such schemes are KYC (Know-Your-Customer), Anti Money Launder-
ing (AML) as well as restrictions to the number or the value of transactions a single
user can make, or the total value that can be exchanged in a single transaction.

22

Our proposal. We propose AQQUA: a system to equip DPS with auditability,
without changing its decentralized, permissionless, and trustless nature. AQQUA
extends the well-known Quisquis [13] DPS with mechanisms to allow the auditing of
transactions and to enforce policies on the users. We achieve this by introducing two
more entities to the system: A Registration Authority (RA) and an Audit Authority
(AR). These authorities serve specific auditing-related goals, and do not interfere
with day-to-day transactions.

In order to transact in AQQUA, users must first register to the RA and pro-
vide their real-world credentials, thus fulfilling KYC. They acquire a cryptographic
pseudonym, a unique initial public key, which can be used to create new accounts
within AQQUA. The RA maintains a mapping between the total number of accounts
that belong to a particular user and their initial public key, but does not further
interfere with monetary interchanges, i.e. the RA cannot censor users after they
have enrolled to the system. To protect user privacy, the total number of accounts
for each registered user is maintained in committed form.

In order to ensure anonymous participation, each user can subsequently cre-
ate new accounts that are provably unlinkable to their registered public key. This
is achieved by utilizing updatable public keys, introduced in [13], which allow the
creation of new, provably indistinguishable and independent public keys, from an
initial key pair, without changing the underlying secret counterpart. While each
user can create accounts on their own, they must always update the number of
accounts that they use with the RA. AQQUA accounts consist of commitments
(for confidentiality) for the balance, the total amount of coins spent and the total
amount of coins received in the corresponding updatable public key. In AQQUA,
transactions can be thought of as ‘wealth redistribution’ between inputs and out-
puts, an idea originating from Quisquis [13]. Input accounts include the senders,
the recipients as well as an anonymity set. OQutput accounts are new, updated but
unlikable accounts for the senders, recipients, and decoys. To counter theft pre-
vention, the sender proves in zero-knowledge that they have correctly updated the
accounts and have not taken coins away from anyone except themselves.

Finally, the audit is executed by the AA asynchronously on the initial public
key of each user. During auditing, each user should prove in zero-knowledge that
for a specified period of time all of the their accounts are compliant to the system’s
policies using data that are only stored on-chain. Penalties for non-compliance can
then be enforced to the users.

23

Chapter 3

Background

3.1 Cryptographic Preliminaries

This section describes some necessary cryptographic tools used in the following
sections [1].

3.1.1 DLOG and DDH assumptions

In this section two important problem used extensively in cryptography, Discrete
Logarithm Problem and Decisional Diffie-Hellman Problem are defined.

Definition 1. Discrete Logarithm Problem (DLP)
Let G be a finite cyclic group and g one of its generators. Given h € G find
z < |G| such that g* = h.

Definition 2. Decisional Diffie-Hellman Problem (DDHP)
Let G be a finite cyclic group and g one of its generators. Given g*, g%, 97 € G

find if y=a-p.

If it holds that (G,-) < (Z;,-) and |G| = q where p,q large prime numbers
(at least 1024 bits) then the problems DLP, DDHP are considered computational
difficult.

Definition 3. Discrete Logarithm Assumption (DLOG)
The discrete logarithm assumption holds in a group G if for all PPT algorithms
A there exists a negligible function negl g such that:

Prlz « A1}, G, h, g)] < negla(\)

3.1.2 Public Key Encryption

The components of public key cryptography will be strictly defined in this section.
A cryptosystem is a tuple of the following three algorithms (KGen, Enc, Dec)
such that if m a message then:

e k< KGen()

e ¢+ Enc(k,m)

24

o m < Dec(k,c)
e Also it holds that Dec(Enc(m)) = m.

A public key encryption cryptosystem has the following properties:

The KGen algorithm produces a pair of keys, denoted as (pk, sk). sk is the private
key and must remain hidden, while pk is the public key and is known to everyone
using the system. When someone wants to send a message m to a particular
recipient, the sender encrypts m using the Enc algorithm under the recipient’s pk.
Only the owner of the corresponding sk can use the Dec algorithm and decrypt the
encrypted message to the original plaintext m.

The positive aspect of public key cryptography is that it does not require an
exchange of keys between each user of the system; as soon as a new person joins
the network, he only needs to publish his public key and can receive messages from
any other user.

An example of public key encryption scheme is the ElGamal cryptosystem.

ElGamal
ElGamal is based on DLOG assumptions. It consists of the following algorithms:

e Key-pair Generation - KGen():
1. Choose p, g large primes such that ¢|(p — 1) and a generator g of sub-
group G with order ¢ of group Zj.
2. Choose random z € Z,
3. Calculate y = ¢* mod p
4. Return key-pair (sk, pk) = (z,y)

e Encryption - Enc(pk, m):

1. Sample r < Z,

2. Calculate G = ¢g" mod p

3. Calculate M = my” mod p
4. Return ciphertext ¢ = (G, M)

e Decrypt - Dec(sk, ¢):

1. Given ciphertext ¢ = (G, M) and the owner of sk = z can calculate
M

It is obvious that Dec(sk, Enc(m)) = m since:

M my” m(g)"
—_— = T = = m
G (gr) gxr

There is also a variation of ElGamal encryption that returns as message ¢" in-
stead of m that is called exponential ElGamal. This variation is offers also additive
homomorphism.

25

3.1.3 Commitments

A commitment scheme is a tool that allows an entity to select a value without
revealing it and without having the ability to change it. More specifically, a com-
mitment scheme consists of the following algorithms:

o ck + KGen(1*): Creates the public commitment key ck.
e (c,0) < Commitc;(m): Binds message m to ¢ and produces an oppening o.

e 0/1 < OpenCom,;(c,0,m): Checks if the commitment ¢ corresponds to the
message m.

A commitment scheme should have the following properties:

e Hiding: This property ensures that the commitment hides the value from
the receiver until the committer chooses to reveal it. The receiver cannot
derive any information about the committed value from the commitment
alone.

e Binding: This property ensures that the committer cannot change the value
after the commit. This property protects the receiver.

3.1.4 X-protocols

Let R be a binary relation for instances x and witnesses w, and let £ be its cor-
responding language, i.e. £ = {z|3w : (z,w) € R}. A X-protocol for R is a
three-move public-coin protocol between two PPT algorithms P,V, whose tran-
script consists of the following phases:

1. Commit: P commits to an initial message a and sends it to V.
2. Challenge: V sends a challenge ¢ to P.

3. Response: P responds to the challenge with message z.

A Y-protocol must satisfy the following properties:

e Completeness: if z € L, V always accepts the transcript.

e Special Soundness: given two transcripts with the same commitment and
different challenges (a,c, z), (a,c’,2") one can efficient compute w such that
(z,w) € R.

¢ Special honest-verifier zero-knowledge (SHVZK): there exists a PPT
simulator Sim that on input x € L and a honestly generated verifier’s chal-
lenge ¢, outputs an accepting transcript of the form (a,c, z) with the same
probability distribution as a transcript between honest P,V on input z.

3.1.5 Hash Functions

Hash Functions play fundamental role in modern cryptography. They map elements
of a set with a large number of elements to another set with a smaller number of
elements. Therefore, these functions are of the form of H : X — Y, |X]| > |V,
where it is possible that | X| = co, while |Y| can be a finite set. It is obvious, that
exists some elements pf X that will be mapped tp the same elements of Y.

More specifically, a hash function is a function that has the following properties:

26

e Compression. The value H(z) has a specific length for any input x.

e Computationally efficient. There is a deterministic polynomial-time al-
gorithm A such that H(z) = A(H,x) V.

A Hash Function need to several additional properties in order to be useful:

e Pre-image Resistance: Given a hash value y, it is computational hard to
find z such that H(z) = y.

e Second Pre-image Resistance: Given an element x; and its hash value
H(x) it is computational difficult to find an element xo # x7 such that
H(irz) = H(l’l)

e Collision Resistance: It is computationally infeasible to find any two dif-
ferent inputs x1, x5 such that H(x;) = H(z2).

3.1.6 Merkle Trees

The Merkle tree is a structure that can be represented graphically in the form of a
regular binary tree. Its characteristic is that all information is stored in its leaves
and each non-leaf node stores the hash of its children’s values. Inductively, only
one value is stored at the root of the tree, which is obtained in the way described
above. It is obvious that the value of the root hash is influenced by all the data in
the leaves and is somehow representative of all the information.

Because of the collision resistant property of hash function, if two merkle trees
have the same root then with very high probability (approximately 1) they will
contain the same data. If the hashes of the roots are not identical, then again there
is a high probability that the information in the two trees is not the same, and a
binary search (following the different hashes) can efficiently find - in logarithmic
time to the size of the data - where the two data blocks differ.

Merkle trees can be used in order nodes to maintain a concise representation
of shared data.

3.2 Blockchain

The introduction of blockchain technology with the launch of Bitcoin [21] in 2008
has revolutionized the way digital transactions are conducted and is the backbone
of cryptocurrencies. Basically, blockchain is a distributed, immutable, append-only
ledger that contains transactions across a peer-to-peer network.

Before blockchain, traditional payment systems relied on a centralized author-
ity, such as banks, to ensure the validation of transactions. Blockchain technology
allows two willing parties to transact directly with each other without the need for
a trusted third party. This is achieved by using cryptographic techniques and a
consensus mechanism to ensure that once a transaction is added to the Blockchain,
it cannot be altered or deleted. All transaction are publicly available, as well as
publicly verifiable, and each participant, or node, maintains a copy of the entire
blockchain. This eliminates the need for a central authority and reduces the risk of
single points of failure

In payment systems, blockchain data contains the transactions of users. Trans-
actions are stored in blocks, and each block is linked to the previous block by
hashing its contents. In that way, a chain of blocks is created

27

m 0 m%:u al ‘9 ﬂif‘@ C icaly:|
» » @5 » » » »
g " =%a » al TR 2 s

(2]
[)

Someone The requested The network of A verified Once verified, The new block The transaction
requests transaction is nodes validates transaction the transaction is then added is completed
transaction broadcast to a the transaction can involve is combined with to the existing

P2P network and the user’s A other transcatic in, in

consisting of status using contracts, records, to create a new away that is

computers, known or other block of data permanent and

known as algorithms information for the ledger unalterable

nodes

Figure 3.1: How blockchain works [18]

Block Block
7*‘ Prev Hash ‘ ‘ Nonce‘ >} Prev Hash ‘ ‘ Nonce‘
LT T] LT ™

Figure 3.2: Blocks in Blockchain [21]

Permissioned vs Permissionless

The consensus mechanism ensures that all participants agree on the same ledger.
There are two categories of Blockchain, depending on whether those involved are
known or not known to the system.

e Permissioned: Permissioned blockchains are private networks where access
to the blockchain is restricted. In this type only authorized participants can
join the network. This ensures that all participants are known and trusted.

e Permissionless: In a permissionless setting, anyone can join the network,
participate in the consensus process, and view all transactions on the blockchain.
However, in a permissionless blockchain, a mechanism to prevent sybil iden-
tities is required to ensure the validity of the consensus algorithm, such us
Proof of Work (PoW) or Proof of Stake (PoS).

How to track ownership in Blockchain
In blockchains, there are basically two ways to do ownership tracking:

e UTXO model: In UTXO (Unspent Transaction Output) model transac-
tions contains inputs and outputs. Transaction inputs are references to pre-
vious unspent transaction outputs, meaning that they are constructed from
a transaction but have not been used as inputs in any previous transaction.
Each transaction consumes its transaction inputs and generates new UTXOs,
specifying the amount of the cryptocurrency and the recipient address. par-
ticipants need to maintain all unspent transactions and balance is the sum
of UTXOs destined to specific address.

e Account-based model: In the account-based model, each address has an
account on the blockchain associated with a balance that is updated based
on the currency transfer transactions that account issues or receives.

28

Chapter 4

Privacy in Payment Systems

4.1 Privacy

Privacy is a very useful and beneficial feature in payment systems. First and fore-
most, payment activities involve some sensitive personal information. Users usually
do not want this information to be disclosed in order to protect their personal infor-
mation, as it can be used to discriminate against individuals based on their financial
history or purchasing habits.

Apart from the protection of personal data, the lack of privacy raises concerns
in other areas as well [2]. It also has a negative impact on fairness by enabling
front-running attacks [12|. In these attacks, a malicious individual monitors the
transactions of other users and races to issue his own transaction, aiming to have
it confirmed first. An example could be racing to win an auction by exploiting this
advantage. It can also create "tainted” currency. That is, coins that no one wants
to own because they are associated with an undesirable coin history, such as being
part of an illegal trade.

The first level of privacy used by Bitcoin and most existing cryptocurrencies
is pseudonymity. In this approach, transactions hide neither the participants nor
the values transferred. Privacy relies on pseudonymous addressing, which aims to
break the link between the addresses of the system and the identities of real users.
Payment systems that use the permissionless setting allow and encourage users to
have more than one such pseudonym. However, even this provides a very weak
anonymity guarantee. Various de-anonymization attacks have been proposed in
the literature [19], [24], [26], [27], based on clustering by analyzing either the
inputs and outputs of the transactions or the behavior of the users [3].

Stronger privacy guarantees include the following properties: confidentiality
and anonymity. Confidentiality hides the transaction amounts, while anonymity
hides the pseudonyms of the real participants in a transaction. There are two
levels of anonymity, set anonymity and full anonymity. In set anonymity, the user’s
identity is either one of n possible identities, where n is the size of the set. Full
anonymity is provided when the participants can be any user of the system.

To implement privacy properties, private payment systems use the following
basic idea:

e confidentiality is achieved through homomorphic commitments, which aim
to hide the amounts transacted as well as the values of users’ accounts.

29

Pseudonymity - No Privacy

5BTC 4 BTC
2BTC
Alice Bob
3BTC 6 BTC
With Privacy
Confidentiality
: y @
c
? ?
z w ‘ .‘ .
Anonymity

Figure 4.1: Privacy in Payment Systems

e Anonymity is achieved through anonymity sets (e.g., shielded pools, ring
signatures) that hide the pseudonyms of the real participants in a transaction.

In addition, a necessary tool for private payment systems is zero-knowledge proof,
which aims to ensure the validity of transactions without revealing the above infor-
mation.

4.2 Private Schemes

Some typical examples of private payment schemes (Zerocash [7], Monero 23] and
Quisquis [13]) are presented below:

4.2.1 Zcash

Zerocash [7] is a novel proposal for a cryptographic protocol that addresses the
inherent privacy limitations of bitcoin. It introduces the concept of decentralized
anonymous payment (DAP) scheme, meaning a digital currency system where all
transactions are guaranteed to be completely anonymous. That is, the origin, des-
tination, and amount are all hidden from the public ledger.

Zerocash achieves privacy through the use of Zero-Knowledge Succinct, Non-
interactive Arguments of Knowledge (zk-SNARKSs). This cryptographic tool is
essential to prove that transactions are valid, without revealing any information
about the parties involved in a transaction and the amounts involved.

More specifically, Zerocash functions on top of any ledger-based currency (e.g.
Bitcoin). First, each user generates an arbitrary number of address key pairs. These
contain a public key pk that allows others to send payments to the user, and a secret

30

key sk that is used to receive payments sent to the corresponding public key. Then
Zerocash gives the ability to users to convert regular coins into anonymous coins
through the mint functionality. Afterwards, users can spend (move) this coins in
transactions without revealing any information.

Mint coins

When minting a coin, a user generates a secret trapdoor p, used to create a random
serial number unique for each coin (through a PRF) and two randomnesses r, s.
Then they create a commitment to the value of the coin, the recipient’s address and
the serial number in the two following steps. First, user computes an intermediate
commitment k using randomness r for the concatenation of the recipient address
and the trapdoor p, k = com(pk||p; 7). In the second step user creates a commitment
using randomness s for the concatenation of the coin’s value and the intermediate
commitment k, cm = com(v||k;s). Finally the user publish on the blockchain the
mint transaction txy iyt = (v, k, s, cm).

Anyone can verify that cm is a commitment to a coin of value v by checking
whether com(v]||k; s) is equal to cm. However, they will not be able to distinguish
between the owner pk and the serial number, since these values are hidden inside
the commitment k.

All of the minted coins are stored in a ”shielded pool” and are not deleted when
spend in order to provide anonymity.

Pour coins (Spend functionality)

In order to spend a coin anonymously, the user produces a zero-knowledge proof
(using zk-SNARK) for the statement: "I know the one opening (p,r) of a coin
commitment of the ”shielded pool” and the corresponding secret key sk such that
k = com(pk||p;r) and sn = PRF(sk, p).

After that user reveal the serial number sn. The serial number is used in order
to handle double spending. Zerocash allocates a unique sequence number to each
coin, which is published on-chain when the coin is spent. Therefore, an attempt
at double spending is indicated by a new transaction that produces a sequence
number(s) that has already been published.

Finally, user creates a new coin for the new recipient address with a new serial
number.

After confirming and recording the pour transaction in the ledger, the new
coins can be used for future transactions. Throughout this process, the use of zk-
SNARKSs and commitments guarantees that all details of the transaction, including
the coin spent and the recipient of the new coin, remain private and secure. This
process maintains user anonymity while preserving the integrity and validity of
transactions within the Zerocash system.

Merkle Tree

As mentioned above, to ensure anonymity, no one can tell which coin was used
in each transaction. Thus, the spent coins cannot be removed from the ”shielded
pool”. As a result, its size increases with each transaction. Therefore, the naive
approach to implement it as a list of coin commitments will lead to a linear growth
for the blockchain size.

31

\

Ct C2 C3 C4 Co-t Cn 0

Figure 4.2: Zerocash Merkle Tree of Coin Commitments

A more efficient implementation is the use of Merkle trees. Zerocash main-
tains an efficiently updateable Merkle tree over the growing coin commitment list

As a result, the space complexity is reduced to logarithmic.

4.2.2 Monero

Monero is also a privacy-focused cryptocurrency that provides both anonymity
and confidentiality. It uses a different approach than Zerocash. Instead of zk-
SNARKSs, Monero achieves its privacy through the use of ring signatures, stealth
addresses, and ring confidential transactions. Ring signatures and stealth addresses
provide anonymity and are described in more detail below. Ring confidential trans-
actions provide confidentiality by using pedersen commitments to hide the amount
and zero-knowledge proof to ensure the validity.

Users in Monero also own a key-pair of a public and a secret key, while its work
model is the UTXO model same as in Bitcoin.

Ring signatures

Monero users the ring signatures to hide the sender of the transaction, as well

as the transaction graph A ring signature is a cryptographic technique
that allows a member of a group to anonymously sign a message on behalf of the

group, while hiding the identity of the person signing the message. In other words,

32

3

(a) (b)

Figure 4.3: Ring signature example. |[Figure 4.3a] Either one of pky, pky sends

to pks, so none of them can be removed from utxo. There are
cases where anonymity is not guaranteed. Both pky, pk, is spent after second

transaction, so pks is the sender of the third transaction.

this primitive allows users to specify a set of possible signers without revealing
which member actually created the signature.

In order to create such a signature the signer executes the following steps. First,
they choose a set of public keys, including his own, called a 'ring’. Then, they use
their own private key to create a signature for the message. However, they combine
it with the public keys of others in the ring rather than signing directly with their
private key., in order to hide the real signer.

Anyone can publicly verify that the signer is a member of the ring by using
the public keys of the ring. However they cannot distinguish which corresponding
secret key was used to produce the signature.

So in Monero, when a user wants to create a transaction, they choose an
anonymity set that includes the public keys of other users’ utxo inputs, and creates
a ring signature with their own utxo input (corresponding to their public address)
and those in the anonymity set. Since no one can distinguish the utxo input that
was spent in the transaction, it cannot be removed from the utxo set either.

Stealth addresses

In order to improve its anonymity, each Monero transaction generates a one-time
destination address, known as a stealth address. This address is derived from
the recipient’s public key, but is unique for each transaction, ensuring that the
recipient’s public address remains private.

An example of such addresses is presented bellow implemented using elliptic
curves:

Let Alice be the sender and Bob the receiver. Bob owns a key-pair of the form
pk = (4, B),sk = (a,b) such that A = aG, B = bG where G is the base of the used
elliptic curve. Then Alice generates a random r and calculates P = HrAG + B,
where H is a collision-resistant hash function. Alice publishes P, R = rG together
with the transaction. Afterwards, Bob can check if P/ = HaRG + B. If the
transaction is destined for Bob then it holds that P’ = P.

33

Obviously, no one will know that this address is intended for Bob, but only Bob
can prove that this address is associated with him. In this way, Monero hides the
recipient address of the transaction.

4.2.3 Quisquis

Quisquis [13] is another approach to the construction of a decentralized private
payment system. It’s goal is to implement such a system without the disadvantages
of the aforementioned systems. These drawbacks relate to the trusted setup of zk-
SNARKSs and the limited storage scalability of the ever-growing list of UTXO set.

Quisquis working model is a hybrid one.In other words, it combines the account
model, since each user has several accounts with its corresponding balance, with the
UTXO logic, since transactions contain UTXO entries rather than accounts.This is
made possible by the use of updatable public keys, a primitive that makes it possible
to have a number of different public keys associated with the same private key. All
of these keys are derived from the same original public key. In this way, a user can
use the same private key to spend all of the UTXOs (denoted by the updated keys)
that belong to his or her account. Each public key is used a maximum of twice,
once during its generation on the output side and once during its use on the input
side of a transaction.

Anonymity is achieved through the combination of anonymity sets with the
use of the updatable public key primitive. More specifically, transactions can be
thought of as ”wealth redistribution” between inputs and outputs Input
accounts include the senders, the recipients as well as an anonymity set. Output
accounts are new, updated but unlikable accounts for the senders, recipients, and
decoys.

Confidentiality is achieved through a commitment scheme. Both the balances in
the accounts and the transacted amounts are given in a commitment form. A user
can change the corresponding commited value using the homomorphic property of
the commitment scheme.

Finally, each transaction includes zero-knowledge proofs derived from 3-protocols
in order to ensure its validity.

Updatable Public Keys

The concept of an UPK scheme is that public keys can be updated while remain-
ing indistinguishable from freshly generated keys. A UPK scheme is a tuple of
algorithms (Setup, KGen, Update, VerifyKP, VerifyUpdate).

e Setup generates the public parameters, which are implicitly given as input
to all other algorithms, i.e. pp < Setup(A). For instance, pp could be a
prime-order group (G, g, p).

e KGen generates a keypair (pk,sk). Concretely, it is implemented as: Sample

7, sk + F,, calculate pk = (g”, g") and output (sk, pk).

e Update takes as input a set of public keys {pk}"_, and a secret key and
generates a new set {pk'}"_, where pk} = pk = (g7, /") for all i.

o VerifyKP takes as input a keypair (sk, pk) and checks if it is valid, i.e. if pk
corresponds to sk. It is constructed by parsing pk = (¢’, #') and outputting

the result of the check (g)% <.

34

i

_ 0
3 on b;:(n(t:nts ° @a 5 ,RlsaTl
6"

Figure 4.4: Example of redistribution of value in Quisquis

=

VerifyUpdate takes as input a pair of public keys and some randomness
(pk’, pk,7) and checks if pk’ is a valid update of pk using 7. This is done

by checking if Update(pk;r) oK.

An UPK scheme must satisfy the following properties:

Correctness: All honestly generated keys verify correctly, the update pro-
cess can be verified and the updated keys also verify successfully.

Definition 4. A UPK satisfies perfect correctness if the following three prop-
erties hold for all (pk,sk) € [KGen]:

— VerifyKP(pk, sk) = 1;

— VerifyUpdate(Update(pk;), pk,r) =1 ¥r € R;

— VerifyKP(pk', sk) = 1 Vpk' € [Update(pk)].
Indistinguishability, meaning that an adversary cannot distinguish be-

tween a freshly generated public key and an updated version of public key it
already knows.

Definition 5. The advantage of the adversary in winning the indistinguisha-
. . 1

bility game is defined as: Adv'i4(\) =| Pr[Exp’t?((\)) = 1] — 3 |

A DPS satisfies indistinguishability if for every PPT adversary A, /—\dvij{d()\)

is negligible in .

Note that in indistinguishability game the challenger can update many
times the pk™ before creating pk, due to the fact that even with more updates
the pkq can be described as an update of pk* with a different randomness.

Unforgeability, meaning that for every honestly generated keypair an ad-
versary cannot learn the secret key of an updated public key without knowing
the secret key of the original public key. This is formalized by saying that the

35

Game 4.1: Indistinguishability game Expﬁ“d()\)

Input :)\
Output: {0,1}

b+ {0,1}

(pk™, sk™) «— KGen()
r<«$R

pko < Update(pk*;)
(pky,sky) < KGen()
b« A(pk”, pky)
return (b =1)

adversary cannot generate a public key for which he knows both the secret
key and the randomness required to explain that public key as an update of
an honestly generated public key.

Definition 6. The advantage of the adversary in winning the unforgeability
game is defined as: Advyf(\) =| Pr[Epo"f(()\)) =1]- B |

A DPS satisfies unforgeability if for every PPT adversary A, AdvuAnf()\) is
negligible in A.

Game 4.2: Unforgeability game Expinf (N

Input :)\

Output: {0,1}

(pk, sk) < KGen()

(sk’, pk’, 7) = A(pk)

return VerifyKP(pk’, sk’) A VerifyUpdate(pk’, pk, r)

If the DDH assumption holds in (G, g,p) then this construction satisfies cor-
rectness, indistinguishability and unforgeability.

Proof. Correctness is straightforward to verify. Indistinguishability derives from
the DDH assumption. An adversary A that can win the indistinguishability game
can be used to create B who can distinguish a DDH tuple. That can be proven
using the following reduction 4.3

If chl is a DDH tuple then pk’ is distributed identically to pk,. Otherwise pk’ is
distributed identically to pk;. Therefore, the reduction has the same non-negligible
advantage in the DDH as the A has in the indistinguishability game [4.1

Unforgeability derives from the DL assumption. An adversary A that can win
the unforgeability game can be used to create B who can win the DL game.
That can be proven using the following reduction 4.4

The winning condition of the unforgeability deﬁnition@requires that (hy = gik/)
and (g1, h1) = (g5, h5) = (g"t, k™) thus implying that ¢*'"* = h"* or equivalent that
h = ggk/7 meaning sk’ = s or that it is a valid solution to the DL oracle.

36

Algorithm 4.3: Adversary who wins DDH: B(chl)
Input : chl = (g,9%, 4¢¥,9%)
Output: {0,1}
r<$R
pk* = (9", 9"")
pk' = (", g*")
b + A(pk*, pk’)

return b

Algorithm 4.4: Adversary who wins DL: B(chl)
Input :chl = (g,h = g°)

Output: s

t+sR

(90, ho) = (g", ")

pk = (go, o)

(sk', pk’ = (g1, h1),7) + A(pk)
return sk’

4.2.4 Comparison

Of the three private systems mentioned above, Zerocash offers full anonymity, while
the other two offer set anonymity. However, both Zerocash and Monero suffer from
a very important limitation. This is the size of the storage cost that each miner
must maintain in the system. Since a UTXO input is not identified when spent (to
preserve anonymity), these two systems have a growing list of UTXOs. This fact
prevents miners from storing a concise version of the blockchain. The primitive
updatable public keys used by Quisquis provide a solution to this problem. As a
result, Quisquis manages to maintain a constant storage cost with respect to the
number of transactions.

37

Chapter 5

Auditability in Private
Payment Systems

Auditability plays a key role in ensuring payment system integrity, transparency
and compliance. In financial transactions where trust and security are paramount,
auditability provides critical protection against fraud, money laundering, and other
illicit activities. These regulatory functions that appear in the literature can be
categorized in transaction and user level.

On the transaction level regulatory functions can include data such as: value limits
(e.g. a threshold in the transfer amount), tracing tags, that provide links between
transactions, revealing the transaction value and/or participants, tax rate, deducting
a transaction’s value portion towards a pre-determined account.

On the user level regulatory functions can include: information of user’s sum of
values (e.g. total amount of funds received/spent in a specific period of time), user
revocation, meaning that specific policies are applied only to users in a ”blacklist”,
deriving statistical information (e.g. learning th average transacted value in a time
from user’s past transactions), revoking a non compliant user’s anonymity.

There are two approaches in order these regulation to be enforced, auditabil-
ity and accountability. On the one hand, auditability refers to a protocol where
an external auditor can learn the requested information through the data that are
stored on the blockchain. This protocol could be either interactive with the users,
meaning their consent is required, or non-interactive. On the other hand, account-
ability refers to the recurrent execution of policies by system functions when certain
predicate is met. In other words, transactions that do not comply with the system’s
policies are never verified and stored in the blockchain. Therefore, there is no need
for active participation of an external auditor, as policies are enforced during the
verification phase of the transaction.

Then, an overview of existing distributed payment systems that combine both
privacy and auditability is presented. Following the structure of [10], these systems
are divided into two categories depending on the power given to auditors from
the disclosed information: There are systems that requires a centralized trusted
desingated athority to perform the regulation functions and the systems that does
not assume any explicit auditor.

38

Centralized Authority

Alice P\ R Bob
N @

Auditor

Figure 5.1: Auditability - Centralized Authority

5.1 Centralized Authority

A common way to implement auditability in private systems is to introduce a
centralized authority or group of authorities (multi-party computation). Such au-
thority can either be an external designated auditor or can enforce the internal
policy rules in each transaction (accountability).

According to this approach, users embed auxiliary information in the trans-
actions, which is encrypted under the public key of a designated trusted auditor
(Figure 5.1)). Thus, the users’ data remains private to the rest of the system’s partic-
ipants, except for the central authority, which can decrypt the auxiliary information
at any time without the users’ consent.

This method can be a trivial solution for adding auditability to privacy-preserving
systems. However, all data is collected by a single centralized authority, which ac-
cumulates excessive power. This fact can have a negative impact on user privacy.

An example that implements this approach is presented below:

5.1.1 Zcash extension

[14] is an extension of Zerocash [7] to add privacy-preserving policy enforcement
mechanisms that ensure regulatory compliance. It provides a variety of auditability
features including regulatory closure, transaction spending limits, and accountable
selective user tracing. To achieve this, auxiliary information is added to each Ze-
rocoin (counter, regulatory type) as well as algorithms-policies that are executed
each time a coin is spent.

They introduce a new basic building block in Zerocash, Counters, which is
added to the coin data. Counters can store cumulative information either for a
specific physical user or for Zerocash addresses. In the first case, counters should
be tied to a specific (unique) identity and issued by a trusted third party. In the
second case, a user may have many addresses within the system, and an authority
should know the link between the user’s real-world identity and the set of internal
addresses. To preserve anonymity, these counters must be entered using the same
method as coin commitments, which involves proving their inclusion in a Merkle
tree.

Counters are important for enforcing spending limits and tax policies. Spending
Limit Policy enforces that no transaction with a transfer or counter value over a

39

specified limit is valid unless it is signed by an authority. This provides a form of
accountability as it can preemptively review transactions before they are entered
into the ledger. On the other hand, Tax belongs to the auditability type policy. All
outputs sent to other parties are summed up and a percentage of that amount is
added to a user’s tax counter. After that, the authority is responsible for auditing
the users for their tax compliance.

The second piece of information embedded in each coin is the regulatory type.
This data is used to achieve regulatory closure, meaning that the system can provide
enough information to guarantee the continuation of another regulatory framework
that can be enforced with or without zero-knowledge. This policy ensures that all
input and output coins in a transaction have the same regulatory type, and thus
an adversary cannot cause policies to operate on the wrong data.

Finally, [14] offers the ability of accountable coin tracing. The coins can also
contain tracing information encrypted under a unique key held by the tracing au-
thority. The authority could then trace these coins, along with all subsequent coins
resulting from transactions involving the original coins, without requiring any in-
teraction with the users. However, there is a mechanism that allows a user to find
out whether or not they have been traced. If a user is being traced, the key given by
the authority will be a randomized version of their public key, otherwise it will be a
randomized version of a null key. Users cannot tell which key they have received at
any given time without being aware of the randomness. However, if the authority
later reveals the randomness, users can definitively determine whether or not they
have been traced.

Although [14] allows the implementation of a wide variety of regulatory poli-
cies, it suffers from both efficiency and privacy limitations. Zerocash is already
an computationally intensive and storage expensive system since it has a mono-
tonically growing list of UTXO [2]. The addition of auxiliary information and the
requirement that transactions be validated by an authority before posting on-chain
adds additional communication and computation costs. In addition, the designated
authority has too much power with respect to user privacy, since it can learn any
transaction information and deanonymize the user. Furthermore, there is no mech-
anism to prevent censorship of certain transactions by the authority [10].

5.2 General Auditor

To avoid collecting all information at a centralized authority (or group of authori-
ties), a second approach has been proposed. This is an interactive protocol between
the user being audited and the auditor. In this case, the auditor, which can be any
auditing authority, can ask specified questions derived from the system’s policies.
Users answer these questions with zero-knowledge proofs based on data stored on

chain (Figure 5.2).

This protocol implies the consent and cooperation of the audited user. How-
ever, this requirement cannot be exploited by non-compliant users, since refusal to
cooperate with authorities can be considered equivalent to a failed audit.

Below are some typical examples of auditable private decentralized systems that
implement a general auditor:

40

General Auditor

specific period?

@

/ Auditor
Ledger m

R Policy f - Question
\ g e.g. Spend >= v coins in a

Figure 5.2: Auditability - General Auditor

5.2.1 zkLedger

zkLedger [22] is a permissioned, fully-private payment system that supports audit-
ing by a general auditor. It succeeds to provide strong transaction privacy prop-
erties, such as hiding the transfered amounts, the participants as well as the link
between the transactions (transaction graph), while allowing an auditor to compute
provably correct functions over the on-chain data. Audit procedure takes place as
an interactive protocol between the users and an auditor, where the latter queries
the former about its contents on the ledger.

Since an auditor cannot distinguish the participants of a transaction, zkLedger
should ensure that during auditing a user cannot leave out transactions that par-
ticipated, in order to be able to receive reliable answer to its queries.

The solution, that zkLedger proposed, to this problem relies on its unique
ledger. That is, a table where transactions correspond to rows, and Users (Banks)
correspond to columns. Each transaction include information for all other users,
even for those who do not participate. To hide the transfered amounts as well as the
assets each user holds each entry in a transaction are contains a commitment to a
value that is debited or credited to the user. All entries for the non-participants are
a commited value to 0 . Due to the hiding property of the commitments

an adversary cannot distinguish between a zero and a non-zero commited value.

Transactions

The transactions in zkLedger are publicly verifiable and must satisfy the following
invariants:

e Transactions conserves assets, meaning a transfer transaction cannot create
or destroy assets.

e The spending user gives concent to the transfer and actually own enough
assets to execute the transaction.

e After each transactions all users have enough information to open their com-
mitments for the audit functionality.

Therefore, transactions are formed via a combination of commitments and the

zero-knowledge proofs and have the following form tx = (em;, Token;, 72, 74, 7¢):

41

ID Asset Goldman Sachs JP Morgan Barclays

1 € Depositor, Goldman Sachs, 30M

2 € comm(-10M) comm(16M) comm(Q)
3 € comm(9) comm(-1M) comm(1M)
4 € comm(0) comm(-2M) comm(2M)

Figure 5.3: zkLedger Ledger - naive transaction example

e Commitment (cm;): (¢g¥*h™) a Pedersen commitment to the transfered
value.

o Audit token (Token;): (pk;)I used in order to enable user to create re-
liable answers to the audits without knowing the randomness used in the

commitment.

e Proof of balance (7?): a zero-knowledge proof asserting the preservation
of balance in each transaction Y ;_; vy = 0.

e Proof of assets (74): a zero-knowledge proof asserting that the sender
has the assets to transfer. In zkLedger a column in the ledger represents
all the assets the corresponding user has received or spent. So 74 is proven
by creating a commitment to the sum of values for the asset in its column,
including the current transaction. If the sum is greater than or equal to 0,
then the user has the right to transfer the amount.

e Proof of consistency (7¢): a zero-knowledge proof asserting that a mali-
cious user cannot add data to the ledger that would prevent another user to
be able to open their commitments.

Finally, whenever a transactions happens, a new row is added to the ledger.

Auditing

The Auditor has access to the ledger and interact with the users to calculate func-
tions on their private data. This functions allow the auditor to issues queries that
includes information about ratios of holdings, sums, average, variance, outliers,
changes over time. The account holder reveal only the value hidden in commit-
ment necessary for the question, without leaking any other information. However,
frequent auditing is possible to reveal more of a transaction contents.

illustrate an example. An auditor can ask a user ”How many euros
do you hold at time t7”. The user responds with an answer along with the validity
zero-knowledge proof. The auditor can multiply all the commitments on the ledger
for the audited user and can verify if the proof and the answer are valid. Since
each column of the ledger represents all the assets that the corresponding user has
received or spent, the auditor can be sure that user could not hide any of their
transaction during the audit.

42

ID Asset Goldman Sachs JP Morgan Barclays

1 € Depositor, Goldman Sachs, 30M
2 € comm(-10M) comm(16M) comm(Q)
3 € comm(©) comm(-1M) comm(1M)
4 € comm(0) comm(-2M) comm(2M)
How many Euros
do you hold?
: <
i >
— 3 million
Barclays
Open comm(©) x comm(1M) x comm(2M) to 3M
Figure 5.4: zkLedger - audit functionality example
Setbacks

Although zkLedger combines full privacy with auditability and offers a wide variety
of audit functionalities, suffers from very limited scalability. There are two signif-
icant costs that grow with the number of users. The verification of transactions
which increases with the number of the users as well as The sequential steps to
create transactions increase linearly.

Considering the verification, zkLedger requires each transaction to include com-
mitments and zero-knowledge proofs for all users. This fact, combined with the
ever-increasing ledger that grows with every transaction, results in large computa-
tional and storage costs. To overcome this problem an improvement of zkLedger
protocol has been proposed called miniLedger ﬂgﬂ

Concerning the second setback, in order a user to be able to produce a new
transaction (for exmample transaction n) they must use the state of the ledger
right before, meaning the must known the n — 1 transaction. Therefore, multiple
users cannot produce different transactions in parallel, since concurrent transactions
always have conflicts.

5.2.2 PGC

PGC |11] is a standalone auditable confidential payment system. In this work
they trade anonymity for highly efficient auditing only dependent to the number
of past user transactions. Privacy is offered in terms of confidentiality and use
pseudonymity as a feature assuming that auditors can link the account addresses
with real identities. It proposes two kinds of auditing mechanism: (i) regulation
compliance that is achieved through three audit functions, namely transaction lim-
its, tax payment and selective value disclosure. (ii) supervision (tracing function-
ality) that is achieved through including the necessary auxilary information in the
transaction structure. The cryptographic techniques that are used for its implemen-
tation is a variant of El Gamal encryption and zk-proofs composed of X-protocols.

43

Entities
More specifically, the system consists of the following entities:

e Users: Individuals that transact with each other and may control several
accounts within the system.

e Validators: Validators are responsible for checking the validity of proposed
transactions within the system. They ensure that transactions meet the
required criteria before being included in the blockchain.

e Regulators: Regulators interact with involved users to verify if a set of trans-
actions complies with system’s policies, without holding any secret informa-
tion.

e Supervisors: Supervisors have access to a global trapdoor, which allows them
to monitor and trace transactions without interacting with the involved users.

Accounts

In order to be able to interact with a system a user creates an account. Each account
is associated with a secret key sk, a public key pk, which represent the pseudonym
of the user within the system, an encoded balance C , and an incremental serial
number sn used to prevent replay attacks (acct = (sk, pk, C, sn)). The balance is
encrypted in order privacy to be achieved. Only the owner of sk can decrypt and
learn the value but all users should be able to change the encrypted value. PGC
implement this through homomorphic encryption.

Transactions

Users can use the accounts to transact within the system. A transaction take
place between two participants and need as input the secret key of the sender sk,
the transacted value v and the public keys of both sender and receiver (pk,, pk,.).
Given the input the algorithm produces (Cs, C;.) that are encoded transferred value
v under the public keys of sender and receiver (pk,, pk,.).

The legality of the transaction is proved through the creation of a a zk-proof
Tlegal- Tlegal consists of the following proofs: (i) Tequar: Cs, Cy contains encryption
of the same value v (ii) mpigns: the transfer amount v is within the allowed limits
(iil) 7solvent: the sender has enough balance.

Finally, to authenticate that the sender is the owner of the corresponding ac-
count the algorithm sign the (sn, memo = (pk,, pk,., Cs, C;), Tiegar) With the secret
key sk producing the signature o.

The final transaction is tx = (sn, memo, megal, 7).

In order to support supervision under a specified authority with a known public
key pk, the transaction can be extended with an encryption of transacted value C,
under the pk,. Then the supervisor can inspect any confidential transaction by
decrypting C, using sk,.

Policies and Audit

In PGC policies are represented as predicates f over a public key pk and related
transactions {tx;}?_, in which pk participates either as sender or as receiver. Let

44

signed message

AN
e memo Tlegal N

|24
. M
-~ =

pp opley sk sn o phoopk O 0 O Tegual Tright | Taolvent T

- [~
e '

optional to enable global supervision aux

Figure 5.5: Data structure of transaction in PGC

v; the transferred amount in tx;. They implement the following policies over the
values v;:

e Limit policy fiimit(pk, {tx}?_;): Checks that >_" v; < ez, Where apqq is an
upper bound depending on application. The prover can be either the sender
or the receiver of tx. This policy is a mechanism used for anti-laundering
money.

e Tax policy fiaz(pk,tx1,txa): Let pk be recipient in tx; and sender in txs.
Let vy, vy be the transfer amounts in each transaction. The policy checks if
vy /vy = p, where p is a rate depending on application. The auditor can use
this policy to ensure that user paid appropriate tax.

e Open policy fopen (pk,tx): Checks that the underlying transferred amount v
is equal to a v* (v = v*), where v* is an application-dependent value. The
prover can be either the sender or the receiver of tx. The auditor can use
this policy to enforce selective-disclosure.

Jiimit : Z:l:'l v < L Jrate ‘-'1.1“'2 =P .Jrapen ="
anti-money laundering tax payment selective disclosure
ctxg -
—_—
@
M Ctx; m Citx1 m chxo m ctx
s as i Al DFFICE G (¥)

ctx, -
Figure 5.6: Policies in PGC
In order the auditing to be efficient in PGC it is executed with the aid from the
auditee. In particular, it needs the consent of the auditee who creates a zk-proof

that proves that they are compliant with the specified policy. The zk-proofs are
implemented by using bulletproofs and Y-protocols.

45

Setback

Although PGC does not suffer from the scalability issues of zkLedger, it is not fully
private. As mentioned before, PGC offers only confidentiality when it comes to
privacy and trades anonymity in order to implement efficient auditability.

46

Chapter 6

AQQUA: Augmenting
Quisquis with Auditability

6.1 Overview

Objective

The solutions proposed in the literature that aim to combine privacy and auditabil-
ity using a general auditor rather than a centralized authority either suffer from
limited scalability or do not provide full privacy.

Therefore, we aim to construct an efficient, anonymous, confidential and au-
ditable system that can also support concurrent transactions and maintain a stable
state size regardless of the number of users or transaction history. To create such
a system, we propose AQQUA, which extends the Quisquis [13] DPS system with
a general auditor. Thus, AQQUA combines the anonymity of Quisquis with the
policy expressiveness and regulation of PGC [11]. This means that the auditor can
perform queries on the upper limit of the amount sent/received by the user in a
given period, on the non-participation of a user in a given transaction or period, as
well as on the exact value sent/received in a transaction.

We chose to extend Quisquis because, as already mentioned, it is a fully private
system, offering both anonymity and confidentiality, while having a constant storage
cost with respect to the number of transactions. Moreover, due to the fact that the
anonymity set used to hide the participants of a transaction does not include all the
users of the system, as in zkLedger, Quisquis can support concurrent transactions.

Challenges

The design of AQQUA had to overcome the following key challenge to enable au-
diting functionalities while still preserving user privacy. Due to the anonymity
property, users can hide their accounts and consequently the amounts necessary for
the auditing process. In addition, since Quisquis is permissionless and private, an
authority cannot enforce some effective penalties for non-compliant users.

To overcome this challenge, we introduce a registration functionality in Quisquis
through a registration authority. This means that users must first register with
the systems and provide their real-world credentials. They can then create new,

47

unlinked accounts that are used to transact within the system. The registration
functionality provides a way for the system to know which users are using the system
and to penalize them in a way that is outside the scope of the system. In addition,
AQQUA splits the state into two sets. It keeps the UTXO set used in Quisquis,
which contains the user’s unspent accounts, but also adds a new set that contains
the user’s public registration information along with the necessary information to
ensure that users cannot hide information during the audit process.

6.2 Preliminaries

6.2.1 Notation

We denote by A the security parameter. We denote by M the message space and
by R the randomness space of our cryptographic schemes. V = {0, ..., V} is the set
that defines the range of valid currency values, where V' is an upper bound on the
maximum possible number of coins in the system (|V| < |M|). When an element
z is sampled uniformly at random from a set X', we write x <3 X. Given a tuple
t = (a,b) we refer to its parts using the dot notation, i.e. t.a or t.b. We denote
(a®,b%) as t* = (a,b)*.

6.2.2 Commitments

We use a commitment scheme Commit relative to a public key pk that, given a
message m € M and randomness r € R, computes + Commit(pk,m;r). Our
commitments must satisfy the following properties:

e Computational hiding: An adversary has negligible advantage in distin-
guishing between Commit(pk, mg; ro) and Commit(pk, mq;71), where ro, 71 <$
R.

e Unconditional binding: A commitment cannot be opened to two different
messages, even with the knowledge of the secret key sk.

e Additively homomorphic: For given operation ® it holds that
Commit(pk, m;7) ® Commit(pk, m’; ") = Commit(pk, m +m’;r +1').

e Key-anonymity: An adversary cannot distinguish between
(m, pkg, pky, Commit(pky, m)) and (m, pky, pk,, Commit(pk,,m)) for any hon-
estly generated public keys pk, pk; and adversarially chosen message m.

We construct such a scheme using the unconditionally binding commitments
of [13]. They are defined in a prime-order p group (G, g,p) generated by g, where
the DDH problem is hard. In essence, ElGamal ‘encryption’ is used in the ex-
ponent where the public keys are of the form pk = (g,h) € G2. Specifically,
Commit(pk, m;) yields = (¢,d), where ¢ = g and d = g™h].

Using UKPs as the commitment public keys, one can verify and open commit-
ments using the secret key, without needing to know the randomness used.

e VerifyCom(sk, pk, com, m): Checks if com = (¢, d) is a commitment to m under
pk, by checking if d = g™ ¢ holds.

e OpenCom(sk,[m]): Given [m]= (c,d), calculates m by calculating dc~** and
brute-forcing to obtain m.

48

6.3 Definition of an Auditable Private Decentral-
ized Payment System

We now describe the components of an auditable and private DPS like AQQUA:

6.3.1 Entities

e Registration Authority (RA): The role of the RA is to enroll new users into
the system. Users register by sending their real-world identity information
together with an initial public key that they create on their own. The RA
stores this information off-chain. All the accounts that transact on behalf
of this real-world user will originate from this initial public key, through the

mechanism of The purpose of the registration procedure is
essential as it establishes a link between a user’s public key and their real
identity, to be used for the potential penalization of non-compliant users.

o Audit Authority (AA): Tts role is to initiate the audit procedure in order to
verify that users comply with the system’s policies. If a user of the system
is found to be non-compliant, the AA will collaborate with the RA to enforce
the relative penalties.

e Users (U): Users of the system that transact with each other.

6.3.2 State
In AQQUA, the state (denoted state) consists of the following two sets:

e UTXOSet: A table containing the ‘unspent’ accounts, i.e. the accounts that
are recorded as outputs of a valid transaction, but have not (yet) been used
as inputs.

e UserSet: A table containing one tuple for each physical user, which is com-
posed of the user’s initial public key and a commitment to the number of
accounts owned by the user.

6.3.3 Accounts
User accounts are of the form acct = (pk,, ,), where bl is the account

balance and out, in is the total amount that the account has sent and received, re-
spectively. Each user may own multiple accounts which are stored in the UTXOSet.
The following functionalities create, verify and update accounts.

e acct < NewAcct(pky;r1,72,73,74): takes as input a public key pk, and out-

puts a new account of the form acct = (pk, , ,), where pk =
Update(pky; rl), = Commit(pk, 0; 7“2), = Commit(pk, 0; 3) and =

Commit(pk, 0;74).

e 0/1 + VerifyAcct(acct, sk, bl,out, in): Parses acct as (pk, com;, comy, coms)
and outputs 1 if

VerifyCom(sk, pk, com;, bl) A VerifyCom(sk, pk, coma, out)A
VerifyCom(sk, pk, coms, in) A (b1, out,in € V)

49

’ . .
o {acct}}? ; « UpdateAcct({acct;, Vb14, Ving, Vouti freq; 71, T2, '3, T4) takes as in-

put a set of accounts acct; = (pk;, comp ;, COMgyt;, COMip;) and values Vii;, Vouts, Ving €
V and outputs a new set of accounts {acct;}? ,, where

acct, < (Update(pk; 1), comp;; © Commit(pk, vp1;;72),

COMgys; @ Commit(pk, Vousi; 7'3), comin; © Commit(pk, vin;;74)).

e 0/1 + VerifyUpdateAcct({acct}, acct;, Vuis, Vouti, Ving ooy} 71,72, '3, T4): OUb-
puts 1 if

{acct}?_, = UpdateAcct({acct;, Vb1, Vouti Ving Joe1; 71,7273, 74) A (|Vb1]s Vout, Vin € V).

6.3.4 User information

Each real-world user is associated with a tuple userInfo = (pko,), stored in
the UserSet. The public key pk, is an initial public key provided at the time of
registration. The public key of every account owned by the user will share the same
secret key with pk,.

The value #accs is the number of accounts in the UTXOSet that are owned by
the user, and is stored as a commitment so that it remains hidden. Keeping track of
the number of accounts a user owns is necessary in order to support policies related
to value limits, such as the total amount a user has received or sent in a period
of time. Otherwise, such policies could be easily bypassed through the creation of
sybil identities [10]. The opening of the commitment will be revealed only
to the AA during the auditing procedure.

The following functions create, verify and update userlnfo entries of the UserSet.

e (sk,userInfo,acct) « GenUser(): Picks ri,79,73,74,75 <% R and let ¥ =
(r1,72,73,74). Then runs (sk, pky) + KGen(), acct <— NewAcct(pk,; 7), calcu-
lates the tuple userlnfo = (pk,, Commit(pk,, 1;75)) and returns (sk, userlnfo, acct).

e 0/1 < VerifyUser((pk,, com), (sk, #accs)): outputs 1 if
VerifyCom(sk, pk, com, #accs) A (#accs € V)

o {userInfo;} | « UpdateUser({userInfo;, Vaaces, }i—1:7) takes as input a set
of user-value pairs where userlnfo; = (pky,, comgaccsi) and vygees; € V and
outputs a new set of users {userlnfo;}7_; = {(pk, , com}, ;) }1—; where

COMy, cs; = COMyaccsi © Commit(pky, Vaces;T)
e 0/1 < VerifyUpdateUser({userlnfo;, user;, Vaces; }=y;7) outputs 1 if

{userInfo’}7?_; = UpdateUser({userInfo;, Viaces; re1;7) A (Viaces € V)

6.3.5 Policies

An auditable DPS should support a rich set of compliance policies. They can be
captured as predicates over an initial public key pk,, a time period represented by a
starting state state; and an ending state state,, and auxiliary information aux which
is dependent on an specific compliance goal. In all the policy predicates, we use the
notation A;, A2 to denote the set of accounts in state; .UTXOSet, state,.UTXOSet
that are owned by the owner of pk,.

50

e Sending limit policy fgimit: The total amount a real-world user can send
within a specific period. It can be determined by the AA off-chain and an-
nounced to the user for a specific period, depending on the application. The
state;, state, are the states of the blockchain at the beginning and end of the
period, respectively.

feiimit (K, (state;, state,), amqg) =1 <= {(Z out — Z out) < amaz }

accte Ao accte Ay

where out is the opening of of an account acct, using the account’s
secret key sk.

e Receiving Limit policy fiimit: Similarly, the total amount a ‘physical’ user
can receive from other accounts.

Frimit (P, (statey, state,), amey) = 1 <= {(Z in — Z in) < amaz }

accte Ao accte Ay

where in is the opening of for account acct, calculated using the account’s
secret key sk.

e Open policy fopen: The value of the amount sent or received by a user in a
transaction.

(v(d>obi- Y bl>€V

accte Ay accte A,

fopen (P, (State;, statey), Uopen) =1 <= Ve (Z . Z b1> V)
accte Aq accte A,
AU = Ugpen

where bl is the opening of of an acct.

e Transaction Value Limit figimit: Upper bound to the total transferred amount
that can be sent in a transaction.

fixiimit (PKg, (State;, statey), Umax) = 1 <= {U = (Z bl — Z bl) < Umax }

accte A, accte Ay

e Non-participation fy,: Non-participation in a specific transaction tx or inac-
tivity of the user for a time period. The states state;,state, are the states
before and after a transaction is applied or at the beginning and end of the
period.

/\(> out— Y out)zO

accte Ay acct€ Ao

/\(> oin—) in>:0

accte Ay accte Ao

frp(PKy, (state;, statey)) =1 <=

o1

6.3.6 Functionalities

An auditable private decentralized payment system is a tuple of polynomial-time
algorithms defined as below:

o (statey,pp) < Setup(A): Generates the initial state of the system state, and
the public parameters pp, which are implicitly given as input to all other
algorithms.

e (sk, userInfo,acct, m) < Register(): Used by a user to create the registration
information userlnfo and their first account acct.

e 0/1 < VerifyRegister(userInfo, acct, 7, state): Used by the Registration Au-
thority to verify the registration information and the account of a user.

e state’ < ApplyRegister(userlnfo, acct, state): Used by the Registration Au-
thority to add a user to the system after their successful registration.

o tx = ({acct}? ,,{acct/}!" ,,7) + Trans(sk,S,R, Vs, Vg,A): Used by the sender
with secret key sk to create a transaction that redistributes their coins from
their accounts in S among the recipients accounts in R. The vectors vg, va de-
scribe the changes in the values in S, R respectively. To hide the participating
accounts, an anonymity set A is passed as input.

e txca = (acct, {userInfo; }7_,, {userInfo;}"_,,) < CreateAcct(userlnfo, A): Cre-

ates a transaction to create a new account for the owner of userlnfo.pk, and
appropriately updates the value of the commitment to the number of accounts
they own, userlnfo.comg,ccs. To hide the link between the newly created ac-
count acct and the corresponding pk,, an anonymity set A is given.

o txpp = ({acct}? , {acct’}™ ;, {userinfo}™_;, {userinfo’}7_ ;)
< DeleteAcct(sk, userInfo, acctp, acctc, A1, A2): Delete a zero-balance account
acctp from the UTXO set from owner of sk, and adding its auditing info
(out, in) to another account acctc that shares the same sk. Anonymity sets
Ay, A5 are included to hide acctc and userlnfo, respectively.

e 0/1 < VerifyTrans(tx, state): It is a public verification algorithm that checks
the validity of a transaction tx given the current state and outputs 1 if and
only if it is valid.

e state’ < ApplyTrans(tx, state): Used to apply to the current state a transac-
tion tx, after its verification.

e auditinfo = (7, #accs, {acctli}ficlcsl,#aCCSQ, {acctgi}fffs?)

<+ Audit(sk, pk,state,, state,, (f, aux)): Used by a user with secret key sk and
initial public key pk, to generate a proof m for being compliant with policy
f, concerning a specific period of time defined by two blockchain snapshots
state;, state,. The aux variable contains the auxiliary information needed for
the policy.

e 0/1 < VerifyAudit(pk,, state;, state,, (f, aux), auditinfo). Used by the Audit
Authority to check if the user with initial public key pk, is compliant with

policy f.

52

6.4 Security Model

An anonymous payment system should provide anonymity and theft prevention.
Anonymity requires that an observer of the system cannot find the identities of
senders and the receivers of a transaction if they don’t own the sender’s private
key, and that even the recipient of a transaction cannot know the sender. Theft
prevention means that users can only move funds from accounts they own. For
the definitions of the anonymity and theft prevention properties, we adapt the
definitions of Quisquis for the corresponding properties to AQQUA. Additionally,
an auditable payment system requires the security property of audit soundness,
which means that there cannot be a successfully verified audit generated by a user
who is non-compliant.

We formally define these properties, using security games where the adversary
has access to the following oracles.

e sk < OCorrupt(pk, state): Returns the secret key that corresponds to a public
key. The public key should belong either in an account or a user information
entry of the state.

e state «+ ORegister(): Creates a keypair and registers the public key. Returns
the new state.

o (txca,state) < OCreateAcct(userlnfo, A): Creates a new account for a userlnfo
entry using the anonymity set A. Returns the corresponding transaction and
resulting state after the transaction application.

e (txpa,state) < ODeleteAcct(userInfo, acctc,acctp, Ay, As): Creates and ap-
plies a transaction to delete an account by calling DeleteAcct. Returns the
transaction and the resulting state after the transaction application.

e (tx,state) < OTrans(S,R, Vs, Vg, A): Creates and applies a transaction, returns
the transaction and the new state.

e state <+ OApplyTrans(tx): Checks if a transaction is valid and if so, applies
it. Returns the resulting state.

e auditInfo < OAudit(pk,,, state;, state,, (f, aux)): Creates and returns an audit
proof.

Our games make use of bookkeeping functionalities that can be called by the
challenger and the available oracles. The bookkeeping keeps a list states of consec-
utive states created through oracle queries, a set entries containing all the secret
keys that control the accounts appearing in these states, and a partition of the keys
set into honest and corrupt (controlled by the adversary) keys, honest and corrupt,
respectively. The bookkeeping functionalities are:

o sk < findSecretKey(pk, state): Finds the secret key corresponding to a public
key present in a state.

e s« totalWealth(set, state): Counts and returns the total amount of funds of
the accounts of state that are owned by a set of secret keys (set = honest or
set = corrupt).

e 0/1 < verifyPolicy(pky, state, state,, (f, aux)): Checks whether pk, is com-
pliant with policy f for the time period represented by state,, state,.

53

The bookkeeping functionalities are presented in and the oracles
the adversary has access to are presented in jalgorithm 6.2 and in [algorithm 6.3]

6.4.1 Anonymity

In the anonymity game, the challenger first picks a bit b +$ {0,1}. The adversary,
after interacting with the oracles, has to output two sender accounts acctg,accty,
two receiver accounts acctf),acct'17 two amounts vg,v; and an anonymity set A.
Then, the challenger creates a transaction in which acct, sends amount v, to acct),
using AU {acct;_p} as the anonymity set. Finally, the adversary has to guess b, and
if they guess correctly, they win the game.

In the anonymity game, the following rules must be enforced or else the adver-
sary could trivially guess b.

e Both senders must be honest. If one of the senders were corrupted, the
adversary would be able to see whose account’s balance decreases.

e Both receivers are honest. If both were corrupted then acct = acct] and
vg = vyp. If one is corrupted, the adversary would be able to see which
account’s balance increased or the amount by which it increased.

The anonymity game is presented in Game [6.4]

Definition 7. The advantage of the adversary in winning the anonymity game is
defined as: Adv’°"(X\) =| Pr[Exp“"(\) = 1] — 3 |

A DPS satisfies anonymity if for every PPT adversary A, Advii°"(\) is negli-
gible in .

6.4.2 Theft Prevention

In order for the adversary to win the theft prevention game, they have to output a
valid transaction that, when applied, either increases the wealth of the users they
control, decreases the wealth of the honest parties, or alters the total wealth of all
the users (i.e. the adversary’s transaction either created or destroyed wealth). The
theft prevention game is presented in Game [6.5

Definition 8. The advantage of the adversary in winning the theft prevention game
is defined as Adv'°™(\) = Pr[Exp'S*™()\) = 1] A DPS satisfies theft prevention if

for every PPT adversary A, Adviett () s negligible in \.
A

6.4.3 Audit soundness

In order for the adversary to win the audit soundness game for a policy f, they
have to output a valid audit proof for a user that is non-compliant regarding the
particular policy. The audit soundness game is presented in Game [6.6]

Definition 9. The advantage of the adversary in winning the audit soundness game
for policy f is defined as: Advi{ljcound()\) = Pr[Expiﬁicound()\) = 1] A DPS satisfies
audit soundness for a policy f if for every PPT adversary A, Adv‘}fj?und()\) 18
negligible in .

54

Algorithm 6.1: bookkeeping functionalities

entries < () // set of all secret keys
corrupt <) // set of corrupt secret keys
honest < () // set of honest secret keys
states «+ [] // list of states, updated through oracles

Function findSecretKey (pk, state)

if state ¢ states then
| return L

for sk € entries do

for acct € state.UTXOSet do

if acct.pk = pk A VerifyKP(sk, acct.pk) = 1 then
| return sk

for userInfo € state.UserSet do

if userInfo.pk, = pk A VerifyKP(sk, userinfo.pk) = 1 then
| return sk

return |

Function totalWealth (set, state)

540
for sk € set do
for acct € state.UTXOSet do
if VerifyKP(sk, acct.pk) then
| 5+ s+ OpenCom(sk, acct.comp;)

return s
Function verifyPolicy (pk, state;, state,, f, aux)

if state;,state, ¢ states V state; is not older than state, then
| return L

Ay, Ag 0,0
sk < findSecretKey(pk, state;)
// Find accounts owned by sk in state;.UTXOSet and
state,.UTXOSet resp.
for acct € state;.UTXOSet do
if VerifyKP(sk, acct.pk) then
| Ay < A; U{acct}
for acct € state,.UTXOSet do
if VerifyKP(sk, acct.pk) then
| Ag + Ay U {acct}
if f(pky, (state;, state,), aux) = 1 then
// Check if f holds using A, As,sk

return 1
return 0

55

Algorithm 6.2: Oracles for security definitions (1)

Oracle OCorrupt (pk, state)
// pk should be a key of an account or user
information in state, aborts otherwise
sk < findSecretKey(pk, state)
honest <— honest \ {sk} ; corrupt <— corrupt U {sk}
return sk
Oracle ORegister ()
state < bookkeeping.states[—1] // most recent state of
bookkeeping
(sk, userInfo, acct, m) < Register()
if VerifyRegister(userlnfo, acct, 7, state) = 0 then
return | // cannot be registered given current
state
entries < entries U {sk} ; honest < honest U {sk}
state’ «+— ApplyRegister(userlnfo, acct, state);
states « states U [state’]
return state’
Oracle OCreateAcct (userinfo, A)
state < bookkeeping.states[—1] // most recent state of
bookkeeping
txca < CreateAcct(userlnfo, A)
if VerifyTrans(txca, state) = 0 then
‘ return 1 // transaction cannot be applied to state
state’ <+ ApplyTrans(txca, state); states < states U [state’|
return txca, state’
Oracle ODeleteAcct (userInfo, accte, acctp, A1, As)
state <— bookkeeping.states[—1]
sk < findSecretKey(acctc)
txpa < DeleteAcct(sk, userlnfo, acctc, acctp, A1, A2)
if VerifyTrans(txpa, state) = 0 then
‘ return | // transaction cannot be applied to state
state’ <— ApplyTrans(txpa, state); states <— states U [state’]
return txpy, state’
Oracle OTrans(S,R, vg, g, A)
state <— bookkeeping.states[—1] // most recent state of
bookkeeping
for sk € entries do
Take an arbitrary acct € S
if VerifyKP(sk, acct.pk) =1 then
tx < Trans(S,R, Vg, VaA) // If sk is not the owner
of all accounts in S, the transaction will not
be created.
if VerifyTrans(tx, state) = 0 then
return | // transaction cannot be applied to
state 56
state’ < ApplyTrans(tx, state); states +— states U [state’]

return tx, state’
return |

Algorithm 6.3: Oracles for security definitions (2)

Oracle OApplyTrans(tx)

if VerifyTrans(tx, state) = 0 then
| return L

state’ < ApplyTrans(tx, state)

states < states U [state/]; return state

Oracle OAudit (pk, state;, state,, f, aux)

sk < findSecretKey(pk, state;)

if state;, state, € states A state; is older than state, then
auditInfo <— Audit(sk, pk, state;, state,, f, aux)

if VerifyAudit(pk,, state;, state,, (f, aux), auditinfo) then
| return auditinfo
return | // pk, was invalid for the snapshots,

state;,state, were not valid or f was not satisfied

/

anon

Game 6.4: Anonymity game Exp?®"(\)

Input : A
Output: {0,1}

b+ {0,1}
(statey, pp) < Setup(A)
(accty, accty, accty, acct], A, vg, v1)
AOCorrupt,ORegister,OCreateAcct,ODeleteAcct,OTrans,OAppIyTrans(Stateo)
state < states[—1] // most recent state of bookkeeping
sky < findSecretKey(acct.pk, state);
sk, < findSecretKey(acct;.pk, state)
ski, < findSecretKey(accty,.pk, state);
sk} « findSecretKey(acct].pk, state)
if (sko € corrupt V sk, € corrupt) V ((sk; € corrupt V sk} €
corrupt) A ((acctf, # acct]) V (accty = acct] A vy #
v1))) V (acctp.bl < wp V acct;.bl < vp) then
| return L
for y € {0,1} do
Ay A
if sk, # sk; then
| A, <+ AU {accty_y}
if sk{, # sk} then
| Ay < AU{acct]_,}
txy < Trans(sk,, {acct,}, {acct] }, (—vy), (vy), 4y)
if VerifyTrans(tx,, state) = 0 then
| return L
state’ < ApplyTrans(tx, state)

b+ A(state’)
return (b =10')

57

Game 6.5: Theft prevention game Expf}feft()\)

Input :)\

Output: {0,1}

(statey, pp) < Setup(A)

tx AOCorrupt7ORegistenOCreateAcct,ODeIeteAcct,OTrans7OAppIyTrans(Stateo)
state < states[—1] // most recent state of bookkeeping
sp, < totalWealth(.honest, state)

Sc < totalWealth(corrupt, state)

if VerifyTrans(tx, state) = 0 then
| return L

state’ «— ApplyTrans(tx, state)

s), < totalWealth(honest, state’)

s!. + totalWealth(corrupt, state’)

return (s, < sp)V (s, > sc) V (s, + s}, # Sc + Sp)

6.5 Our construction

We now define AQQUA by realising the functionalities of an auditable payment
scheme.

6.5.1 Setup

The Setup algorithm takes as input the security parameter A and returns the output
of UPK.Setup and the initial state which contains an empty UserSet and UTXOSet.

6.5.2 Registration

In order for users to register in the system, they first use the Register algorithm to
create a secret key, a userInfo entry and a first empty account acct. The Register
algorithm also provides proofs that userInfo, acct have been properly created. Then,
the user sends userInfo, acct and the proofs to the RA and the RA verifies the proofs
using the VerifyRegister algorithm. If the proofs verify, the RA adds userlnfo to the
UserSet and acct to the UTXOSet using the ApplyRegister algorithm.

Register

The Register algorithm creates a secret key sk, the entry userlnfo = (pko,) that
will be later stored in the UserSet, the user’s first account acct = (pk,@, @7 @)
and a zero-knowledge proof 7 for the fact that the commitments of userInfo and
@, @,@ of acct are indeed commitments to the correct values. The proof 7 can
be posted on-chain for public verification.

The user must keep sk secret, and sends through a secure channel userlnfo, acct, ©
to the RA, together with their real-world identity information. The detailed descrip-
tion of the Register algorithm is depicted in [Figure 6.1

58

Game 6.6: Audit soundness game Expiﬁ?’und(A)

Input :)\
Output: {0,1}

b+ {0,1}

stateg, pp < Setup())

(pky, state;, state,, f, aux, auditInfo) <—
AOCorrupt,ORegister,OCreateAcct,ODeIeteAcct,OTrans,OAppIyTrans,OAudit(

if VerifyAudit(pk,, state;, state,, (f, aux), auditinfo) = 1 then

// run bookkeeping and check if f is satisfied and

that state,,state, are valid

if verifyPolicy(pk,, state;, state,, (f,aux)) = 1 then
| return 0

else
| return 1

state;)

else
| return L

The Register algorithm performs the following steps:
1. Run (sk, userlnfo, acct) + GenUser().

2. Create a zero-knowledge proof 7 of the relation R(x,w), where z =
(acct, userlnfo), w = (sk) and R(z,w) =1 if:

VerifyCom(userlnfo.pk, userInfo.comgaccs, (sk, 1)) =1
A VerifyKP (userlnfo.pk,, sk) = 1

A VerifyKP (acct.pk, sk) = 1

A VerifyCom(acct.pk, acct.comypy, (sk,0)) = 1

A VerifyCom(acct.pk, acct.comgys, (sk,0)) =1

A VerifyCom(acct.pk, acct.com;y, (sk,0)) =1

3. Return (sk, userlnfo, acct, 7).

Figure 6.1: The Register algorithm.

59

Verify Register

The VerifyRegister(userinfo, acct, 7, state) algorithm guarantees the validity of the
registration information. It first checks that the userinfo.pk, does not already exist
in a userInfo entry of UserSet. Afterwards, it executes the verification algorithm for
the NIZK argument 7 and returns its result.

Apply Register

The ApplyRegister(userlnfo, acct, state) algorithm runs after the registration verifi-
cation and adds a new record to the UserSet containing the userinfo as well as a
new record to the UTXOSet containing the newly created account acct.

6.5.3 Transactions

Trans Algorithm

Transactions enable a sender to redistribute their wealth to one or more recipients.
Similarly to Quisquis [13], transactions are composed of input and output sets,
which both include the sender and the intended recipients, and a NIZK proof that
the output list has been computed according to the protocol specification. We
assume that the size of each of the inputs and outputs sets is a predetermined
number n.

The Trans algorithm is used to create a transaction that redistributes a number
of coins from a set of sender accounts, which are owned by the same secret key,
to a set of receiver accounts. In order to substract an amount from a sender
account or add an amount to a receiver account, the homomorphic property of
the commitment scheme is used. Furthermore, in the algorithm the total amount
sent and total amount received of the sender and receiver accounts is also updated
appropriately. Finally, the account public keys are re-randomized in order to hide
the connection between the input and output accounts.

In order to hide the participating accounts, an anonymity set is included. The
balances of the accounts belonging to the anonymity set do not change, however the
commitments and the public keys are re-randomized in order to be indistinguishable
from the actual participating accounts. The account updates happen though the
invocation of the UpdateAcct algorithm, and the outputs set is composed of these
updated accounts.

The ordering of the accounts in the input and output sets should not remain
the same, since this trivially reveals the link between every account and its update.
Therefore, the input and output lists are always ordered in some canonical order.
This can be thought of as applying a random permutation to shuffle the updated
accounts.

The detailed description of the Trans algorithm is depicted in It
takes as input the sender’s secret key sk, the set of sender accounts S, the set of
receiver accounts R, two vectors vg, vz containing the desired changes to the balances
of the sender and receiver accounts respectively, and an anonymity set A. It returns
a transaction tx = (inputs, outputs,), where 7 is a zero-knowledge proof that
outputs is created correctly.

Due to the way transactions are generated, every address appears at most twice:
once when it is created in the output of some transaction, and once when included

60

The algorithm tx < Trans(sk, S, R, ¥g, Vg, A) performs the following steps:

1.

Ensure that for each acct € 8, VerifyKP(sk,acct.pk) = 1, and that |S] =
|vs], R = [vzl.

Let Is = {1,...,|S|}. For all ¢ € Is, calculate the opening of the committed
balance of acct; € S, denoted bl;.

Let V1 = Vs||vs, where || denotes vector concatenation. Let also Iy = {|S| +
1,...,|8| + |R|}. Ensure that:

(a) > ierqur, vori =0
(b) v’l € IR L Vplg S V
(C) Vi € Is: —Vp1; € VA bl; + Vp1i € v

. Construct voue, Via as follows:

(a) Vour = vs|[(0,...,0)]|(0,...,0)
—_——— ———
length |R| length |A]
(b) 7z = (0,...,0) [I]| 0. 0).
——— —_———
length |S| length [A|
Furthermore, expand ¥y; too with zero values for each acct € A.

Order P U A in some canonical order and let inputs be the result. Let also
Vo1 s Vout , Via' be the permutation of vy, Vous, Via in the same order. Let
15,15, I; denote the indices of the respective accounts of the sender, the
recipients and the anonymity set in this list.

Pick r1,79,73,74 <$ R and let 7 = (r1,72,73,74).
Perform UpdateAcct(inputs, Vo1, Vour', Vin'; 7), order the result in some
canonical order, and denote by outputs the final result.

. Let ¢ : [n] — [n] be the implicit permutation mapping inputs into outputs;

such that accounts acct; € inputs and acctﬁb(i) € outputs share the same
secret key.

Form a zero-knowledge proof 7r of the rela-
tion R(z,w), where = (inputs, outputs), w =
(Sk7 {b117 out;, ini}ieI;) ‘7;{/7 Voutl7 VLin}/7 ?7 ¢7 I;7 1;7 IX)a and R(l’, U)) =1
if

VerifyUpdateAcct(acct’y (), acct;, 0,0,0; 7) = 1 Vi € I,
A (VerifyUpdateAcct(acct’y (;y, accty, Vo1;, Voutss Ving; 77) = 1 A Vb1, Voutss Ving € V) Vi € I
A VerifyUpdateAcct(acct’y(;), accty, V15, Vout s, Ving; 7) = 1 Vi € Ig
A VerifyAcct(acct’ y(;), sk, bl; + Vo1, 0ut; + Vout, ing + Ving) = 1 Vi € I§
A Z vb1; =0
i€IF UL UL}
A Vo1; = Voury Vi € I
A Vo1 = Vin, Vi € I

/\Vout;‘: ! :OVZEI:

Ving

The transaction created is tx = (inputs, outputs, 7).
61

Figure 6.2: The Trans algorithm.

in the inputs of another transaction (regardless of whether it serves as the actual
sender or is only included for anonymity).

Our transaction construction is similar to the one of Quisquis |13], with the
difference that we introduce the vectors Veus,Vis to perform the updates to the
associated total amount sent and total amount received of the accounts.

Create Account Algorithm

Within the system every user can create a new account for any other registered
user, which improves the efficiency of the system [13]. Since each account can
appear only once as input in a transaction, if two concurrent transactions include
the same account in their input set, one of them should be rejected. As the number
of accounts within the system increases, the probability of a non-empty intersection
between two transaction input sets decreases. In addition, creating new accounts
allows users to own a fixed key that can be used to receive funds, instead of the key
constantly changing. Therefore, it improves the overall communication overhead.

New accounts are composed of updates of the initial public key stored in the
user’s userInfo and commitments to zero values for the other attributes related to
bl, out,in. Moreover, userInfo is updated, by increasing the committed value for
the number of accounts the user owns. This is achieved by using the homomorphic
property of the commitment scheme.

In order to hide the userlnfo that corresponds to the user, an anonymity set A is
used. The values of the commitments of the userInfo that belong to the anonymity
set are re-randomized without changing their committed values. That is, trans-
actions that create new accounts are composed of input and output sets, which
both include the intended user’s userInfo, and also the newly created account. The
userInfo updates happen through the invocation of the UpdateUser algorithm, and
the outputs set is composed of these updated userInfo.

The detailed description of the CreateAcct algorithm is depicted in
It takes as input the userInfo of the intended user and an anonymity set A. It returns
a transaction txca = (acct, inputs, outputs, 7).

Delete Account Algorithm

Allowing users to delete zero-balance accounts reduces the storage overhead of
AQQUA, since accounts that have no balance left to spend might be abandoned
and thus not needed to be stored in the UTXOSet. Furthermore, due to the fact
that senders usually create new accounts for their intended recipients, the number
of accounts in the UTXOSet increases if the option to remove zero-balance accounts
is not given. We note that users should be incentivized to delete the zero-balance
accounts they own and don’t need to keep. The mechanism to do so is left for
future work.

In order to delete an account, the information containing the total amount
out, in sent and received by the account must be transferred to another account
acctc of the corresponding owner. In order to hide acctc an anonymity set is
included.

The detailed description of the DeleteAcct algorithm is depicted in
The algorithm takes as input the secret key sk, the account to be deleted acctp,
the account acctc to which out, in of acctp will be transferred, and anonymity sets

62

The algorithm CreateAcct(userlnfo, A) performs the following steps:

1.

The

Pick r1,r9, 73,74 <$ R and let ¥ = (r1,rq,7r3,74). Let acct = (pk, @, @,@)

be the output of NewAcct(userlnfo.pk;)

Let inputs = {userInfo}UA in some canonical order. Let ¢, I, be the indices of
the chosen initial public key for which we wish to construct the new account,
and the anonymity set in this list.

Construct v as follows: v; =0 Vi € I, and v, = 1.
Pick r5 +$ R and let outputs be the output of UpdateUser(inputs, ¥;r5).

Form a zero-knowledge proof m of the relation R(z,w), where z =
(acct, inputs, outputs),w = (¢, V,7,75) and R(z,w) = 1 if Vi € {c} U
I,, userlnfo; € inputs, userinfo, € outputs we have that:

VerifyUpdateUser (userlnfo], userinfo;, 0;75) = 1 Vi € I,

A VerifyUpdateUser (userInfol, userInfo., 1;75) = 1

A VerifyUpdate(acct.pk, userlnfo..pkg,ri) =1

A Commit(acct.pk, 0; ro) = acct.comp;

A Commit(acct.pk, 0; 3) = acct.comgys A Commit(acct.pk, 0;74) = acct.com;,

final transaction returned by the algorithm is txca =

(acct, inputs, outputs, 7).

Figure 6.3: The CreateAcct algorithm.

63

A; for the UTXOSet and Ay for the UserSet respectively. It returns a transaction
txpa = (inputs, outputs, m).

Trans Verification

The VerifyTrans(tx, state) algorithm guarantees the validity of transaction tx. De-
pending on they transaction type (tx, txca,txpa) performs the following steps:

e if tx is an output of the Trans algorithm, then it first checks that all the
accounts listed in tx.inputs are deemed unspent in the current state, meaning
for each acct € tx.inputs, acct € state. UTXOSet. Afterwards, it executes the
verification algorithm for the NIZK argument m and returns its result.

o if txca is an output of the CreateAcct algorithm, then it first checks that all
the userlnfo listed in txca.inputs are registered, meaning, for each userinfo €
txca.inputs we have that userInfo € state.UserSet. It also ensures that
txca.acct & state.UTXOSet. Afterwards, it executes the verification algo-
rithm for the NIZK argument 7 and returns its result.

e if txpa is an output of the DeleteAcct algorithm, then it first checks that all
the accounts listed in tx.inputstxgges Pelong to state. UTXOSet and similarly
for inputs - Afterwards, it executes the verification algorithm for the
NIZK argument 7 and returns its result.

Apply Transaction

The ApplyTrans(tx, state) algorithm is executed after the verification of the transac-
tion. It applies the transaction tx by updating the current state, adding tx.outputs
and removing tx.inputs.

e If tx is the result of the Trans algorithm, it updates only the state.UTXOSet
with the new accounts.

o If tx is the result of the CreateAcct algorithm, it updates the state.UserSet
and adds the newly created account in the state.UTXOSet.

o If tx is the result of the DeleteAcct algorithm, it updates both state.UserSet
and state.UTXOSet.

Similarly to [13], upon receiving a new state, users whose accounts are in-
cluded in a tranction’s inputs should identify their updated accounts in outputs.
This can be accomplished by iterating through every acct € outputs and using
VerifyKP(sk, acct.pk). Once the user identifies an updated account, they can check
whether their account was used as part of the anonymity set or as a recipient, by
running VerifyCom(sk, acct.pk, acct.comy;, bl), passing as input the account’s pre-
vious balance bl. If the result is 1, then the account was used as part of the
anonymity set. Otherwise, the user must find out the new value for the balance.
The value is small enough so that the computation of its discrete logarithm takes
place in a reasonable time.

64

The algorithm DeleteAcct(sk, userlnfo, acctp, accte, A1, As) performs the following

steps:
1.

10.

For the account acctp, calculate the opening of the commitments
acctp.comyy,t, acctp.com;y,, denoted outp, inp, using the secret key sk.

. Let inputs|rxoses = {acctc }UA; in some canonical order. Let ¢*, I5; denote

the indices of the account to be added the information and the accounts of
the anonymity set in this list.

Construct vp1, Vour, Vin as follows:

e vpy =0Vie {c*}UIy,
® Vour = 0 Vi € Ip; and veoue .« = outp
e Vi, = 0Vi€ I, and viy.. = inp
Pick r1,72,73,74 8 R. and let ¥ = (r1,72,73,74). Let outputs txose D€

the output of UpdateAcct(inputsrxosers Vols Vouts Vin; 7') il some canonical
order.

Let ¢ : [n] — [n] be the implicit permutation mapping inputs rxoge 160
outputs rxoser; Such that accounts acct; € inputs|ygge and acctﬁb(i) €
outputsrxoses Share the same secret key.

Form a zero-knowledge proof 1 of the relation R(x,w), where
x = (acctp, inputs rxosets OUEPULS Tx0set) s W =

(sk, outp, inp, 7, %, c*, Ia1), and R(z,w) = 1 if
VerifyKP(sk, acctp.pk) = 1 A VerifyKP(sk, acct.«.pk) = 1
A VerifyUpdateAcct(acct’y(;), acct;, 0,0,0; 7) = 1 Vi € Iy,
A VerifyUpdateAcct(acct’ (o, accte, 0, outp, inp; 7) = 1
A VerifyCom(acctp.pk, acctp.comps, (sk,0)) = 1

Let inputsj, s = {userlnfo}UAs in some canonical order. Let s*, 1,5 denote
the indices of the chosen initial public key for which we wish to construct the
new account, and the anonymity set in this list.

. Construct ¥ as follows: v; = 0 Vi € I;5 and v = —1.

. Pick » <8 R and let outputsy,s, be the output of

UpdateUser(inputs . ser V5 7)-

Form a zero-knowledge proof ms of the relation R(z,w), where z =
(1DPUtS|jeerger, OULPULS jeerser), W = (Sk, 7, 8%, Ino) and R(z,w) = 1 if Vi €
{s*} U I,y userlnfo; € inputs e, se Userinfo; € outputs g, s, We have that:

VerifyKP(sk, userInfog-.pk,) = 1
A VerifyUpdateUser(userInfo}, userlnfo;, 0;7) = 1 Vi € I,
A VerifyUpdateUser(userInfo’. , userinfos«, —1;7) = 1

The final transaction returned by the algorithm is
txpa = (inputsUTXOSet7 outputSUTXOSe;j:inputsUserSet7 outputsUserSet’ = (7T17 7T2)).

Figure 6.4: The DeleteAcct algorithm.

6.5.4 Audit
Audit Algorithm

In the audit procedure, the AA selects a user by their initial public key pk, and a
time period which is represented by two snapshots of the blockchain (state,, state,).
For the policies that are applied to transactions (namely fidimit, fopen), the snapshot
state, should be the state that results from applying the transaction to state;. In the
case where the policy is applied to a specified period (for example in fejimit, frimits fop),
the snapshots state,, state, should be the states right before the beginning and after
the end of the period, respectively.

The user which participates in the auditing should open for each of the two
snapshots the committed value of the number of accounts they own (field
of userInfo). Then, they should reveal their accounts in each of the two snapshots’
UTXOSet. The number of accounts they reveal in each snapshot should be equal
to the opening of the corresponding commitment. Revealing the accounts does not
hurt the anonymity of the user, since from the indistinguishability property of the
UPK scheme and the hiding property of the commitment scheme, the AA cannot
link the accounts that will be revealed with updated versions of them that will
appear as a result of the user participating in any new transaction.

After opening the commitment and revealing the account, the user creates a
zero-knowledge proof that the sets of accounts satisfy the required policy predicate,
as defined in [subsection 6.3.51

The detailed description of the Audit algorithm is depicted in It takes
as input the user’s secret key sk, the two blockchain snapshots (state;, state,), and
the policy f along with the necessary information aux.

Audit Verification

The VerifyAudit algorithm is executed by the AA to check the compliance of the user
with a specific policy. Initially, the algorithm checks that the user has revealed
#accs accounts that belongs to each selected snapshot, calculate the necessary
values (i.e. multiplication of committed amounts), and then runs the verification
algorithm for the NIZK argument 7 and returns its result.

6.6 Instantiating the Zero-knowledge Proof
In order to implement the proof system of zero-knowledge arguments we use the
following Y-protocols defined in 13| as well as X-protocols for discrete logarithm

equality due to Chaum and Pedersen. For completeness we describe it below.

e Y,.: proof a valid update. Prover shows knowledge of w such that pk’ = pk®.

Prover(pk, pk’, w) Verifier(pk, pk’)

s +sTF),

o« pk® = (g%, h%)
< ces{0,1}"

Z4—cw—+ s =

Check pk* = (pk')¢ -

66

The algorithm auditinfo < Audit(sk, pk, state,, state,, (f, aux)) performs the fol-
lowing steps:

1. Ensure that VerifyKP(sk,pk). For each snapshot state;,j = 1,2
find the userlnfo; that contains pk,, and calculate #accs; =

OpenCom(sk, userlnfo.)

2. For each snapshot find the set of accounts A; = {acct; }#accsj that belong to
the user. That is, Vacct € state;.UTXOSet, 1f VerifyKP (acct.pk, sk) = 1, then
add acct to A;.

3. Form a zero-knowledge proof m; of the relation R(xz,w), where z =

(pky, {#accs]77 {acct;; 1o Z_1)sw = (sk) and R(z,w) =1 if:
VerifyCom(pk077 (sk,#accs;)) =1Vj € {1,2}

A VerifyKP(pk,sk) =1
A VerifyKP(acct;;.pk,sk) =1 Vi € {1, ..., #accs;}, Vj € {1,2}

If f € {fslimih frlimity fnp} then:

4. For each snapshot calculate = faclcsj acctﬂm
[T727 acct;i[in]
Then calculate | out™ | = | out? |- (outj) in* in3 (inj)

Finally, calculate out* = OpenCom((sk,)7 in* =

OpenCom(sk,) These values represent the total amount of
coins that the user spent/received in the selected period of time.

5. Form a zero-knowledge proof my of the relation R(x,w) where z =

({accty; }125°%7 | {accty; } 120, ,aux),w = (out*,in*) and

R(z,w) =1if:

f(pky, (state, state,), aux) = 1

If f € {ftxlimitv fopen} then:
4. For each snapshot calculate = Hjicfsj acctjl-.. Then calculate
=|blj | (bly) and bl* = OpenCom(sk,)

5. Form a zero-knowledge proof my of the relation R(x,w) where z =

({accty; }; accsj,{acctgl}#accsj , aux),w = (b1*) and R(z,w) =1 if:

f(pky, (state, state,), aux) = 1

The final output is auditinfo = (7 = (71, m2), #accsy, {accty; 1255, #accss, {accty; }29

Figure 6.5: The Audit algorithm.

67

® Y.om : proof of knowledge of two commitments of the same value v under
different public keys. Prover shows knowledge of w = (v,r1,73) such that
com; = Commit(pky,v;71), comg = Commit(pksy, v;72).

Prover(v,ry,r3)
vy, rh <8 T,

(ex, 1) ¢ (91,9 hy")
(e2, f2) ¢ (g5°, 9" hy’)

(Zva Zrl, ng) — 1’(’[],7’1,7’2) + (Ulvrlla 71/2)

pkl = (glahl)vcoml = (Clvdl)
pky = (g2, h2), comy = (c2,ds2)

«@
—
xr
%

(Z'u sZr1y2rg)
R L

Verifier

z <5 {0,1}"

Check for ¢ =1, 2:
g;" =cf el
g=hi" =di - fi

6.6.1 zk-proof of transactions

In each transaction created from Trans algorithm a prover essentially has to prove
that:

1. accounts in outputs are proper updates of inputs

2. the updates of balances satisfy preservation of value

3. balances in accounts of recipients and anonymity set do not decrease
4. the sender account in outputs contain a balance in V
5

. the vectors V', Vow, have the same values for the sender accounts and
Vo1s Vin for the receivers accounts and (Vour ,Vin) have zero value for the
rest.

Properties 3,4 can be proved by range proofs and we implement them with
Bulletproofs [8]. For the properties 1,2,5 we are doing the following analysis similar
to Quisquis|13].

Let the sender’s accounts be inputs,,...,inputs, and the receivers’ accounts
be inputs,, ,, ..., inputs,.

In order to easily verify the validity of the updates, the prover creates accounts
accts, where accts; = (pki,’ V14 Mvouti M Ving ‘) Now in order to prove property 5,

the prover shows that for accts1,...,accts s the values under the and
are the same. Respectively for the recipients, for accts s11,...,accts; the values
under the and are the same.

Since the sender-prover knows all the values of the accty, they can create com-
mitments for the same values under a different public key pk., = (g,h). So the
prover creates acct, where acct.; = ((g, h),‘ Vbli L,‘ Vouti L,‘ Ving L) Then they use

the homomorphic property of the commitment in order to prove the preservation of
value, since), vp1; =0 <= [[, 6 is a commitment of 0 under pk, = (g, h).

The values in accte 541, .. ., accte s will be used to prove that balances of recipients
set and anonymity set is not decreased, meaning vuic 541, -+, Volen € V-

68

Now in order to hide the sender’s and the receiver’s position in inputs and
outputs we first shuffle inputs list to inputs’ before the updates, then we execute
the updates to produce outputs’, and finally we shuffle again after the updates to
get outputs in arbitrary order. The first shuffle uses the aforementioned permu-
tation where senders’ accounts are first,followed by recipients’ accounts and then
the anonymity set. The second shuffle uses a permutation in order to order the
outputs lexicographically.

Therefore, we need some auxiliary functions for the proof that are defined as
following:

o CreateDelta({acct; }7 1, {vo1; 111, {Vouts 111, {Vins }7_): Creates a set of ac-
counts that contains the differences between accounts’ variables bl, out, in in
the input and output accounts, and another set of accounts that also contains
these differences but all with the global public key (g, h):

1. Parse acct; = (pk;, comp; ;, COMgyt ;, COMip ;).
Sample 7(p1jout|in), 15« -5 T(bllout|in),n—1 ¢$ Fp and set reijout|in)n =
= 2201 T(bajoutin) i-

2. Set accts; = (pk;, Commit(pk;, V15 7p1,i), Commit(pk;, Vouti; Tout,i),
Commit(pk;, Vins; Tins))

3. Set aCCtg)i = ((g, h), Commlt((g, h)7 Vplis ’I"b]_)i), COmmIt((g, h)7 Voutis routﬂ;)?
Commit((g,), Ving; Tin,i))

4. Output ({accts;}iy, {accte Hq, 15 Tous, Tin)

o VerifyDelta({accts,; }7 1, {accte i } 71, Vo1, Vout, Vin, b1, Tout, F'in): Verifies that
accounts created using CreateDelta are consistent:

1. Parse accts; = (pki,’ Vbls Hvoum H Ving ‘) and acct.; = (pk, ;, comc ;)

2. If H:»L:]_ come ; = (1, 1) and Vi = Commlt(pkz, Vb1is rbl,i) A =
Commit(pk;, Vouti; Tout,i) A : Commit(pk;, Ving; in:) A accCte; =
((g,), Commit((g, h), (vu14;7p1,;)) output 1. Else output O.

o VerifyNonNegative(acct,, vp1,7p1): Verifies that an account contains a bal-
ances in V:

1. If acct. = ((g, h), (g",g"h")) Av € V outputs 1. Else output 0.

e UpdateDelta({acct; }* 1, {accts; }1~,): Updates the input accounts by vu14, Vout s Ving
but with the public key unchanged:

1. Parse acct; = (pk;, comp ;, COMoyy 4, COMyp ;) and accts ; = (pk,'t-,‘vbli H Vout; Hvim- ‘)

2. If pk; = pk; Vi output {(pk;, comp ; -, COMloyt i -, comyp; -
)}, else output L.

e VerifyUD(acct, acct’, accts): Verifies that UpdateDelta was performed cor-
rectly:

69

/

1. Parse acct = (pk, comy), COmgys, cOm;y), acct’ = (pk, comy,, com, ., com},)

and accts = (pkg,‘ Vp1 HVout H Vin D

2. Check that pk = pk’ = pks A com{; = comy - [Ve1| A com,, =

COMoyt, * A comj, = comjy, - .

e VerifyDeltaSender(accts, v, rp1, rous): Verifies that sender’s value out is cor-
rect.

1. Parse accts = (pkg,| Vb1 |:[Vout |,[Vin])-

2. If = Commit(pkg, v; 1) /\ = Commit(pks, v; Tout) then return
1. Else return 0.

e VerifyDeltaReceiver(accts, v, 751, 71q): Verifies that receiver’s value in is cor-
rect.

1. Parse accts = (pk(;,‘ Vi1 M Vout Hvin ‘)

2. If = Commit(pkg, v;rp1) A = Commit(pkg, v; rin) then return
1. Else return 0.

Then the NIZK.Provertans(z, w) performs the following steps:

1. Parse z = (inputs, outputs), w = (sk, {bl;, out;, ini}ielg,m’,vout’,v_m)’,
7,0, 15,15, 15). If R(z,w) = 0 abort;

2. Let ¢ be a permutation such that (1) = [1,s],¥1(1%) = [s + 1,t] and
Po(I3) = [t + Ln;

3. Sample p1, p2, p3, ps <5 Fp and let 5= (p1, p2, p3, pa);
4. Set inputs’ = UpdateAcct({inputswl(i),0,0,0}i;p“);

> —3 —> _ / _ / —
5. Set vectors Vi1, Vout,Vin such that vy; = Vbly(i)> Vouti = Vouty(;)Vini =

Viny (i)’
6. Set ({accts;}, {accte i}, To1, Tout, Tin) < CreateDelta(inputs’, Vo1, Vout, Vin);

7. Update outputs’ < UpdateDelta(inputs’, {accts;});

_ —1) 7 / T2 —pP2 7 __ Tr3—ps3 7 _
8. Let ¢ = ¢y oth,p1 = Zt py —TelisP3 = T, T Toutin Py =
T4—pP4 7

2 — 1y and let o/ = (pf, py, P, p))-

9. Update outputs = UpdateAcct({outputsiMi), 0,0,0};; p_7)

70

10. Generate a ZK proof m = (inputs’, outputs’, accts, acct,, w1, w2, w3) for the
relation R; A Ry N\ R3 where:

Ry = {(inputs, inputs’, (¢1, p))|
VerifyUpdateAcct({inputs), inputs,, ;),0,0,0};;) = 1},
Ry = {((inputs’, outputs’, accts, accte), (sk, {bl,out, in}; o, Vo1, Vout, Vin, "1, Touts Tin))|
VerifyUD(inputs}, outputs}, accts ;) = 1 Vi
A VerifyUpdateAcct(inputs!, outputs’, 0,0,0; 1, b1 4, Tout.is Tins) = 1 Vi € [t + 1, 7]
A VerifyNonNegative(accte ;, V15, 751,5) = 1 Vi € [s + 1, 1]
A VerifyAcct(outputs!, (sk,bl; + vp1;)) = 1 Vi € [1, 5]
A VerifyDelta({accts; }, {accte,i}, Vo1, Vout, Vins To1s Touts Tin) = 1
A VerifyDeltaSender(accts i, V14, To1,i5 Tout,i) = 1 Vi € [1, 5]
A VerifyDeltaReceiver(accts i, V14, Tv1,i5 Tini) = 1 Vi € [s + 1,t]},
Rs3 = {(outputs’, outputs, (2, o))|
VerifyUpdateAcct({outputs,, outputsy, 5),0,0,0};;) =1}

Now R;, R3 can be proven using a slight modification of the Bayer-Groth shuf-
fle argument [5]. The Xg protocol that proves Ry consists of the following sub-
protocols:

1. X, trivial check of VerifyUD.

2. Ys: prover shows knowledge of Vo1, Vout, Vin, To1s Tout, Tin SUch that
VerifyDelta({accts; }_ 1, {accte i }' 1, Vo1, Vouts Vin, To1s Tout Tin) = 1.
Y.s can be implemented by using ¥.op,:
s = /\?lecom((Pks,ia com(;yz-), (Pke,m Come,i)§ (Vb17 To1,i5 Tbl,i))
/\;"1=1 Ecom((pké’ia Com&,i)a (Pke’m Come,i)§ (Vouta Tout,is Tout,i))
Ny Yeom ((Pks ;, coms i), (PK, ;, come ;); (Vin, Tin,is Tin,i)) » Dut the verifier ad-
ditionally checks that pk, ; = (g,h) Vi and that [}, [veri | = (1,1).

3. X¢,,.,: prover shows knowledge of 71,45 Tout,is Tin,s SUCh that

VerifyUpdateAcct(inputs!, outputs}, 0,0, 0; (1, 7v14, out,is "in,i)) = L.

The sub-argument can be written as follows:

given accty = (pkv‘ Vb1 ‘17‘ Vout ‘13 ‘ Vin ‘1)3 accty = (pkv‘ Vb1 ‘,)7‘ Vout ‘();‘ Vin ‘())7

the prover knows 71, Tout, 7in Such that ‘ Vb1 ‘1 = ‘ Vb1 L)-pk”’%‘ Vout ‘1 = ’ Vout ‘9-
Tout — Tin

oK™ [T, = [T, P

The equation is equivelant t0 A;—fp1 out,in} VerifyUpdate(pk, Som22 ;) = 1,

’ comy i’

hence can be done using AND-proofs of X,,,.

4. Eidsz prover shows knowledge of v, 71,4, Tout,i Such that accts; has the same
value under commitments 7. X! 4s can be implemented by using

Zcom((pk&qﬂa i), (pké,iv 7,)’ (Vbli7 Tbl,iv ’rout,i))~

5. Zz 4. prover shows knowledge of v, 71 ;, 7in,; such that accts; has the same
value under commitments [ve1 |,[via] X4, can be implemented by using

Ecom((Pka,m l.)» (Pka,iai); (Vbliv Tb1,i5 Tin,i))~

6. X ange: prover shows knowledge of acct, v, r such that VerifyNonNegative(acct,, v, r) =
1. In order to implement this we use Bulletproofs [8|.

71

7. Finally in order to prove VerifyAcct(acct, sk, bl):

(a) the prover shows knowledge of sk using Xg;04.

(b) Since sender may not know the randomness used to open his commit-
ment, the prover opens the commitment with the sk and finds the value
bl.

(¢) Chooses a new randomness r < F,, and constructs acct. = ((g, h),
Commit((g, h),bl;7)).

(d) Proves using X, that these two accounts has the same bl.
(e) Proves using X,qnge(accte,bl, r) that bl € V.
So Z7‘ange,sk = Zdlog A Zco’m A Z7‘ange~
Hence X = Xpua A B5 A (Afoe1Drange(@cctsi, vig;, mo1i)) A (Allpy1Ziero) A
(N X ange sk(outputs), bl; + vpy;,sk)) A (/\leilZ) A (/\’E:SJAE;UH). Yo is a

vds

public-coin SHVZK argument of knowledge of the relation Ry as follows from the
properties of AND-proofs.
The full SHVZK argument knowledge of Trans is then 3 := X1 A X5 A X3.

6.6.2 zk-proof of Audit and Register

Both the Register and Audit functionalities need a zero-knowledge proof for the
statements:

e VerifyKP(pk, sk): prover shows knowledge of a valid (pk,sk) key-pair. The
corresponding language can be written as:

Lyy:={pk=(X=¢",Y =¢"*") | Isk s.t. Y =X}

That can be proven through X4, with arguments (X, Y, sk).

e VerifyCom(pk, com, sk, v): prover shows knowledge of secret key sk that opens
the commitment com to value v. The corresponding language can be written
as:

Lopensk) i= {(com= (X = h",Y = g"h** "), v) | sk s.t. Y/g" = X}

That can be proven through g5, with arguments (X,Y/g",sk).

The proof needed for Register results from the composition of these ¥-protocols
and a range proof for showing that bl € V.

The Audit proof uses the same combination of these Y-protocols and appropriate
range pI‘OOfS for each pOhCy fslimita frlimita fopena ftxlimita ,fnp-

6.7 Analysis

Proof of anonymity

Intuitively, we argue that any PPT adversary A capable of distinguishing between
txp,tx; in the anonymity game (find if & = b) can be used to break either the
indistinguishability of UPK scheme, the hiding property of commitment scheme, or
the zero-knowledge property of the NIZK proofs.

72

Transactions consist of inputs, outputs, and a zk-proof 7 (and if it is CreateAcct
or DeleteAcct a newly created account acct). One way A could determine b is based
on 7, but that violates the zero-knowledge property of the NIZK proofs. Another
way that A could determine b is to distinguish between txg, tx; through the outputs
sets of each tx. The only differences in the two outputs sets txg.outputs, tx;.outputs
are the accounts which are used in P and in A as well as the amount v used to
increase/decrease the variables in the accounts of P. However, since both the ac-
counts’ amounts and transferred value v are presented in a committed form, if A
can determine b based on the different values vy, vy then the hiding property of the
commitment scheme is violated. In addition, since all the accounts participating in
the transaction are updated and randomly permuted, A cannot use Py, Ay, P, A to
distinguish the two transactions without violating the indistinguishability property
of UPK scheme.

Theorem 1. AQQUA satisfies anonymity, as defined in[7

Proof. We prove the theorem using a sequence of 14 hybrid games, as follows. Hy-
brid 0 and Hybrid 7 are the anonymity game for b = 0,b = 1 respectively. Each of
the rest hybrids differs in oracles’ functionalities in a way that the successive hybrids
are indistinguishable from the view of the adversary. We use these hybrids to prove
that the adversary cannot distinguish anonymity game for b = 0 and anonymity
game with b= 1.

Hybrid 0. The anonymity game for b = 0.

Hybrid 1. Same as Hybrid 0, but here we run the NIZK extractor on each trans-
action generated by the adversary. That means, when A runs the OApplyTrans(tx)
Oracle, the Oracle verifies tx by running VerifyTrans(tx, state) depending on the
transaction tx and if it is successful the oracle runs state’ < ApplyTrans(state, tx),
as well as uses the NIZK extractor to extract the witness used to generate tx, in-
cluding sk.

Hybrid 2. Same as Hybrid 1, but here the zero-knowledge arguments of the
each transaction is replaced with the output of the corresponding simulator of the
zero-knowledge property of NIZK. In order to achieve this we change the following
oracles’ functionality:

e when A or the challenger creates tx through the OTrans(S, R, Vg, ¥g, A) Oracle,
the Oracle runs tx < Trans(sk, S, R, Vg, Vg, A), but replaces the zero-knowledge
arguments in tx with a simulated argument.

e when A or the challenger creates tx through the OCreateAcct(userinfo, A)
Oracle, the Oracle runs tx < CreateAcct(userlnfo, A), but replaces the zero-
knowledge arguments in tx with a simulated argument.

Hybrid 3. Same as Hybrid 2, but now the challenger replaces the potential senders’
and receivers’ accounts of the challenge transaction txg (acctg, accty, accty, acct}),
with new accounts that have a freshly created key pair (sk, pk) derived from the
output of the KGen(). In order to achieve this we change the following oracles’
functionality:

e when A creates one of these accounts acct; through the OTrans Oracle (these
accounts are presented in tx.outputs), the Oracle runs tx < Trans(sk, S, R, Vg,

73

Vg, A), (pk}, sk;) < KGen and then return tx’, where tx’ = tx except that each
acct; € {acctg, accty, acct)), acct } is replaced with acct, = (pk, compy;, comousi,
COMjp;)-

e when A creates one of these accounts acct; through the OCreateAcct Oracle,
the Oracle runs tx < CreateAcct(userlnfo, 4), (pk}, sk}) +— KGen and then re-

turn tx’, where tx’ = tx except that each acct; € {accty, accty, accty), acct] } is

replaced with acct] = (pkg,@, @, @)

Hybrid 4. Same as Hybrid 3, but here the challenger replaces also the commit-
ments of the accounts (acctg, accty, accty, acct]) with newly created commitments
to the same values with different randomness. In order to achieve this we change
the following oracles’ functionality:

e when A creates one of these accounts acct; through the OTrans Oracle (these
accounts are presented in tx.outputs), the Oracle runs tx < Trans(sk, S, R, vg,
v, A), (r1,7m2,73) +$ R, bl; + OpenCom(sk, acct;.comy;), out; < OpenCom(sk,
acct;.Comgyt), in; < OpenCom(sk, acct;.com;y), comy; < Commit(pk’, bl;;7y),

com/ . + Commit(pk’, out;;rs), com), < Commit(pk’,in;;73) and then re-

turn tx’, where tx’ = tx except that each acct; € {accty, accty, accty, acct] } is
replaced with acct’ = (pk, comy;, com! ., com}). (pk = pk’ as in the Hybrid 3).

out?

e when A creates one of these accounts acct; through the OCreateAcct Ora-
cle, the Oracle runs tx < CreateAcct(userinfo, A), (r1,r2,73) <8 R, comp; <
Commit(pk'0; 1), com! . +— Commit(pk’, 0;73), com}, < Commit(pk’, 0;r3) and

then return tx’, where tx’ = tx except that each acct; € {acctg, accty, accty, acct] }
is replaced with acct’ = (pk, com(;, com’ ., com}). (pk = pk’ as in the Hybrid

3).

Hybrid 5. Same as Hybrid 4, but here also the updated accounts of (acct, accty, accty, acct)
in the challenge tx.outputs are replaced by accounts with freshly created public key

!/
pk'.
Hybrid 6. Same as Hybrid 5, but here also the updated accounts of (accty, accty, accty, acct))
in the challenge tx.outputs are replaced by accounts with freshly created commit-
ments to the same value.

Afterwards, we create Hybrids 7-13 that are the same with Hybrids 0-6 with
the difference that are made for the anonymity game with b = 1.

Note that in Hybrid 6 and in Hybrid 13 all accounts of the potential senders’ and
receivers’ accounts of the challenge transaction tx;, (both in inputs and outputs)
are fresh accounts, where in outputs have been generated with values corresponding
to the case b=0—b = 1.

Now we will prove that A has negligible advantage of distinguish Hybrid 0 and
Hybrid 7.

Lemma 2. Hybrid 0 and Hybrid 1 are indistinguishable.
Corollary 1. Hybrid 7 and Hybrid 8 are indistinguishable.

74

Proof. The adversary’s view in the two hybrids’ game are identical. O

Lemma 3. Hybrid 1 and Hybrid 2 are indistinguishable.
Corollary 2. Hybrid 8 and Hybrid 9 are indistinguishable.

Proof. Let A be an adversary that can distinguish Hybrid 1 and Hybrid 2 with
advantage €. We construct an adversary B that breaks the zero-knowledge property
of the NIZK proof 7 of transaction tx with probability e.

Let Ou(-) be an oracle that on input (tx.inputs,tx.outputs) creates a valid
zero-knowledge proof for the transaction. Then B wins if they can decide wether
O.«(+) is a prover or simulator oracle.

B takes as input the O(-) and runs as follows:

1. B generates state < Setup(A);

2. When A queries the OTrans(S, R, Vs, Vg, A) oracle then B runs tx < Trans(sk, S, R, Vg, Vg, A)
with the difference that B replace the proof with the output of O (tx[inputs], tx[outputs])

3. When A queries the OCreateAcct(userlnfo, A) oracle then B runs tx « CreateAcct(userlnfo, A)
with the difference that B replace the proof with the output of O (tx[inputs], tx[outputs])

4. B runs b + A(state);

If A answers Hybrid 0 then O,(-) is a prover oracle. If A answers Hybrid 1 then
Ou(+) is a simulator oracle. So B wins with probability e. O

Lemma 4. Hybrid 2 and Hybrid 3 are indistinguishable.
Corollary 3. Hybrid 9 and Hybrid 10 are indistinguishable.

Proof. Note that A cannot distinguish Hybrid 2 and Hybrid 3 from the fact that
commitments are under different public key on the grounds that this breaks the
key-anonymous property of the commitment scheme. Let A be an adversary that
can distinguish Hybrid 2 and Hybrid 3 with advantage e. We construct an adversary
B that breaks the indistinguishability property of the UPK scheme with probability
€.

In order to create B, we define five sub-hybrids. Let hy be Hybrid 2 and
for each i € {1,2,3,4} h; would be a sub-hybrid where we replace the account
accty, accty, accty, acct} respectively. In hybrid h4 all of the accounts will be changed,
therefore hy is Hybrid 3. Lets A be an adversary that can distinguish h; from h;4 1.
Let acct. be the account that we are replacing in this hybrid. Then:

B gets as input the tuple (acct*, accty) from the indistinguishability game and runs
as follows:

1. B generates state < Setup(}).

2. when A uses the ORegister Oracle to create the initial account that share the
same secret key with acct., B replaces this account with acct*.

3. when A uses OTrans or OCreateAcct Oracle to create the account acct., B
replaces acct, with accty.

4. B reply to all other queries in the oracles as in the Hybrid hg.
5. B outputs b’ + A(state).

75

We know that A did not query the corrupt oracle on acct, or on any other account
that shares the same secret key with acct. cause it would have immediately lost the
anonymity game. Note that if b = 0 then the distribution of the game is the same
as hybrid h; and if b = 1 then the game has the same distribution as hybrid A;1.
Hence B answer o' and solves the indistinguishability game with probability e. [

Lemma 5. Hybrid 3 and Hybrid 4 are indistinguishable.
Corollary 4. Hybrid 10 and Hybrid 11 are indistinguishable.

Proof. The only difference from this two Hybrids are the randomness to the commit-
ments of the real participants accounts. Therefore, they produce a computationally
indistinguishable distribution, due to the hiding property if the used commitment
scheme. O

Corollary 5. Hybrid 4 and Hybrid 5 are indistinguishable.
Hybrid 11 and Hybrid 12 are indistinguishable.
It can be proven the same way as Hybrid 2 and Hybrid 3 are indistinguishable.

Corollary 6. Hybrid 5 and Hybrid 6 are indistinguishable.
Hybrid 12 and Hybrid 13 are indistinguishable.
It can be proven the same way as Hybrid 8 and Hybrid 4 are indistinguishable.

Lemma 6. Hybrid 6 and Hybrid 13 are indistinguishable.

Proof. Hybrid 6 and Hybrid 13 differ to (1) the accounts that are included in P and
in A as well as to (2) the balances that are stored in the real participants’ accounts
in the challenge query (acct; =€ {accty, accty, accty, acct} }). Concerning the former
(1), in both Hybrids the inputs that A sees is obtained by permuting (P, U A;)
with a random permutation 1. But the union of these set in both cases (z = {0,1})
produces identical distributions. As a result A cannot distinguish the two Hybrids
from (1). The second change (2) produces a computationally indistinguishable
distribution, due to the hiding property of the commitment scheme. Therefore,
if A could distinguish these Hybrids based on (2) then A could break the hiding
property of Commit. O

Using the above lemmas and the triangle inequality, we prove that there is not

a PPT adversary A that can distinguish Hybrid 0 and Hybrid 7 with more than
negligible advantage.

O

Proof of theft prevention

Intuitively, we argue that any PPT adversary A capable of winning the theft-
prevention game can be used to break either the unforgeability property of UPK
scheme, the binding property of commitment scheme, or the soundness property of
the NIZK proofs.

In order to win the theft-prevention game, A should submit a transaction tx
that either increases the total balance of the corrupted users, decreases the balance
of honest users, or does not maintain preservation of value. This can happen in the
following ways: The first way is if the adversary is able to transfer some amount
from a honest user’s account. However, this means that A can compute the sk of

76

the honest account, thus the unforgeability property of the UPK scheme is violated.
Secondly, if A manages to transfer more coins than the corrupted account holds.
But in order for such a transaction to be valid, the adversary should either be
able to make a zk-proof that violates the soundness property, or to compute an
opening to a commitment with balance different from the real one, hence breaking
the binding property of the commitment scheme. The third way is by creating a
transaction that breaks preservation of value, but in order for such a transaction
to be valid, A should again be able to construct an unsound zk-proof or break the
binding property of the commitment scheme.

Theorem 7. AQQUA satisfies theft prevention, as defined in[8

Proof. Assume that there exists a PPT A that wins the theft prevention game of
Game with non-negligible probability. Using the notation of the game, we have
that A outputted a valid transaction tx that verifies and that results in one of the
three winning conditions of the game being satisfied.

We have that tx = (inputs, outputs,), where 7 is a ZK-proof for the re-
lation R(x,w) as defined in with = (inputs,outputs) and w =
(sk,bl,out, in, Vo1, Vout, Vin, 7, ¥, 1§, In, I5).

From the soundness property of the N&K argument of the Trans algorithm, we
can extract a witness w* = (sk™,bl*,--- | vi, - ,F, -++) such that R(xz,w*) = 1.

Let acct € inputs be the account such that VerifyKP(sk™, acct.pk) = 1. We
divide into two cases.

1. It holds that sk* € honest. In this case, we construct an adversary B that
breaks the unforgeability property of the UPK scheme with non-negligible
probability.

The reduction works as follows. The adversary B takes as input a public key
pk*. Tt also keeps a directed tree with root (pk*,1) and whose nodes will be
tuples of the form (pk,r). The tree will be updated so that for every edge of
the form ((pky,), (pkq, r2)) it will hold that VerifyUpdate(pk,, pky,r2) = 1.

B answers to A’s oracle queries as follows.

— When A queries the ORegister oracle and this query results in the
Register algorithm to generate sk, B replaces usernfo.pk, with pk*,
and when NewAcct is called in the procedure, B gives as input pk*.
The adversary B stores the public key of the newly created account and
the randomness used as a child of (pk*,1) in the tree. For the rest of
the ORegister queries, B answers honestly.

— When A queries the OCreateAcct oracle for an account whose public
key pk is contained in a leaf of the tree, B answers honestly and adds
a child to the leaf, composed of the updated public key of the updated
account and the randomness used.

— When A queries the OTrans oracle, the adversary B acts as follows.

+ If the public keys of the accounts in S are contained in leaves of
the tree, B creates an outputs set and creates a simulated proof for
the transaction. B also updates the tree by creating new children
containing the updates of the public keys and the randomness.

7

x If there exist public keys of accounts in the anonymity set that are
contained in leaves of the tree, B creates new children containing
the updates of the public keys and the randomness.

— When A queries the OApplyTrans with a transaction whose inputs con-
tain a leaf of the tree, B uses the proof contained in the transaction to
extract the witness. Then, B creates new children for the updates of
the public keys, storing also the randomness of the witness.

— For the rest of the oracle queries, B answers honestly.

Finally, when A outputs the transaction tx of the theft prevention game, B
finds the acct € inputs for which VerifyKP(sk*, acct.pk) = 1, and finds the
leaf (pk,r) of the tree for which acct.pk = pk. Let 7’ be the multiplication
of all randomnesses stored in the path from that leaf to the root. B returns
(pk, 7).

If A wins the theft prevention game, we have that VerifyKP(pk,sk*) = 1 and
VerifyUpdate(pk, pk*, ') = 1. Since A can win with non-negligible probabil-
ity, B breaks unforgeability with non-negligible probability.

2. It holds that sk™ € corrupt.

Assume w.l.o.g. that the transaction tx that .4 outputs is the first transaction
that results in winning the game (that is, there is no transaction submitted
to OApplyTrans oracle prior to this point that would result in A winning).

Since A wins the game, we have that the sum of the openings of the com-
mitted balances of all the accounts (stored in the bookkeeping) of inputs is
different from those of outputs.

From the soundness property of the NIZK argument of the Trans algorithm,

we have that for every sender account acct’ of outputs, VerifyAcct(acct’, sk*, b1*+
/%

vih,) =1

Since VerifyAcct returns 1, and also Y ,, sz vii = 0, and since A wins the

ViT Eviy

game, there exists an account acct € outputs for which acct.com,; has two
different openings: one resulting from the bookkeeping, and one derived from
the extracted witness (one of the values of the form bl* + vy} for some sender
account). This trivially breaks the binding property of the commitment

scheme.

O

Proof of audit soundness

Intuitively, we argue that any PPT adversary A capable of winning the audit sound-
ness game can be used to break either the binding property of commitment scheme
or the soundness property of the NIZK proofs.

In order to win the the audit soundness game, A should either create a valid
zero-knowledge proof without knowing the corresponding witness, or hide some of
their accounts from the AA. However, the former attack violates the soundness
property of the zero-knowledge proof. The latter requires the A to be able to open
their commitment to a different value, but this breaks again the binding
property of the commitment scheme.

Theorem 8. AQQUA satisfies audit soundness, as of[9

78

Proof. Assume that there exist a PPT A that wins the audit soundness game of
Game with non-negligible probability. Using the notation of the game, we have
that A outputted a proof m = (71, m2) that verifies but A is not compliant with the
specified policy.

A choose a policy f with its auxiliary parameters aux, an initial public key
pk, and two snapshots from the blockchain state;,state,. Then A constructs 7 =
(w1, ™) which as defined in[Figure 6.5]is a ZK-proof for the relations Ry (z,w), with
z = (pk, {#accs;,|#accs; ,{acctji}?icfsj 2_1) and w = (sk) and Ry(x,w), with

x = ({acCtu}?iclcsj , {acctgi}giclcsj ,[v] aux) and w = (sk,v), where v, aux are values

that depend on the policy.

From the soundness property of the NIZK argument of the 71, we can extract
a witness w* = sk* such that R;(z,w*) = 1. We have that every pk € {pk,} U
{acctji.pk}?iclcsj, VerifyKP(sk*, pk). Therefore similarly to theft-prevention proof
we can prove that if sk* € honest then A can be used to break the unforgeability
property of UPK scheme. Else if sk* € corrupt then since A wins the game, we
have that the opening to the commitment of is different from the one
that resulting from bookkeeping. This trivially breaks the binding property of the
commitment scheme.

From the soundness property of the NIZK argument of the 7y, we can extract
a witness w* = v* such that R;(x,w*) = 1. Again since A wince the game the
sum of the openings of the commited value of all the accounts that belongs to A is
different from the one that resulting from bookkeeping, so this breaks the binding
property of the commitment scheme.

O

79

Chapter 7

Conclusion

We presented AQQUA, a decentralized private and auditable payment system. Our
accounts extend Quisquis accounts in order to record (in hidden form) the total
influx and outflux. While we introduce two authorities in AQQUA, it remains de-
centralized since the RA and AA do not intervene in the normal flow of transactions.
A major direction for possible future research involves strengthening the privacy
provided by AQQUA even more. Firstly, the fact that the audit proofs leak ac-
count information between the audit states could be addressed. Secondly, another
direction could be to convert audit proofs to be designated-verifier [15] [4], [6]. As a
result, the AA will be able to simulate them, and thus it will be the only entity con-
vinced about the audit results. This may increase the privacy of the participants,
but it will interfere with the trust dynamics of the system. As a result, further
research is needed for this integration.

80

Bibliography

https://dx.doi.org/10.57713/kallipos-492.

Ghada Almashagbeh and Ravital Solomon. SoK: Privacy-Preserving
Computing in the Blockchain Era. Cryptology ePrint Archive, Paper
2021/727. https://eprint.iacr.org/2021/727. 2021. URL: https:
//eprint.iacr.org/2021/727.

Nasser Alsalami and Bingsheng Zhang. “SoK: A Systematic Study
of Anonymity in Cryptocurrencies”. In: 2019 IEEE Conference on
Dependable and Secure Computing (DSC). 2019, pp. 1-9. DOI: 10 .
1109/DSC47296.2019.8937681.

Danai Balla, Pourandokht Behrouz, Panagiotis Grontas, Aris Pagourtzis,
Marianna Spyrakou, and Giannis Vrettos. “Designated-Verifier Link-
able Ring Signatures with Unconditional Anonymity”. In: 9th Inter-
national Conference on Algebraic Informatics, CAI 2022. Vol. 13706.
LNCS. 2022, pp. 55-68. DOI: [10.1007/978-3-031-19685-0_5.

Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argu-
ment for Correctness of a Shuffle”. In: Advances in Cryptology — EU-
ROCRYPT 2012. Ed. by David Pointcheval and Thomas Johansson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 263-280.
ISBN: 978-3-642-29011-4.

Pourandokht Behrouz, Panagiotis Grontas, Vangelis Konstantakatos,
Aris Pagourtzis, and Marianna Spyrakou. “Designated-Verifier Link-
able Ring Signatures”. In: 24th International Conference on Informa-
tion Security and Cryptology - ICISC 2021. Vol. 13218. LNCS. 2022,
pp. 51-70. DOI: https://doi.org/10.1007/978-3-031-08896-4_3.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Tan Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized
Anonymous Payments from Bitcoin”. In: 2014 IEEE Symposium on
Security and Privacy. 2014, pp. 459-474. DOI: 10.1109/SP.2014. 36.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Whiille, and Gregory Maxwell. “Bulletproofs: Short Proofs for Confi-

dential Transactions and More”. In: 2018 IEEE Symposium on Secu-
rity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Fran-

81

https://dx.doi.org/10.57713/kallipos-492
https://eprint.iacr.org/2021/727
https://eprint.iacr.org/2021/727
https://eprint.iacr.org/2021/727
https://doi.org/10.1109/DSC47296.2019.8937681
https://doi.org/10.1109/DSC47296.2019.8937681
https://doi.org/10.1007/978-3-031-19685-0_5
https://doi.org/https://doi.org/10.1007/978-3-031-08896-4_3
https://doi.org/10.1109/SP.2014.36

[11]

[12]

[14]

cisco, California, USA. TEEE Computer Society, 2018, pp. 315-334.
DOI: |10.1109/SP.2018.00020. URL: https://doi.org/10.1109/SP.
2018.00020.

Panagiotis Chatzigiannis and Foteini Baldimtsi. “MiniL.edger: Compact-
Sized Anonymous and Auditable Distributed Payments”. In: Com-
puter Security - ESORICS 2021 - 26th Furopean Symposium on Re-
search in Computer Security, Darmstadt, Germany, October 4-8, 2021,
Proceedings, Part I. Ed. by Elisa Bertino, Haya Schulmann, and Michael
Waidner. Vol. 12972. Lecture Notes in Computer Science. Springer,
2021, pp. 407-429. por: 10.1007/978-3-030-88418-5_20. URL:
https://doi.org/10.1007/978-3-030-88418-5_20.

Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias.
“SoK: Auditability and Accountability in Distributed Payment Sys-
tems”. In: Applied Cryptography and Network Security: 19th Interna-
tional Conference, ACNS 2021, Kamakura, Japan, June 21-2/4, 2021,
Proceedings, Part II. Kamakura, Japan: Springer-Verlag, 2021, 311-337.
ISBN: 978-3-030-78374-7. DOI1:/10.1007/978-3-030-78375-4_13. URL:
https://doi.org/10.1007/978-3-030-78375-4_13.

Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. “PGC: Decen-
tralized Confidential Payment System with Auditability”. In: Com-
puter Security - ESORICS 2020 - 25th European Symposium on Re-
search in Computer Security, ESORICS 2020, Guildford, UK, Septem-
ber 14-18, 2020, Proceedings, Part I. Ed. by Liqun Chen, Ninghui Li,
Kaitai Liang, and Steve A. Schneider. Vol. 12308. Lecture Notes in
Computer Science. Springer, 2020, pp. 591-610. DOT1: [10.1007/978-
3-030-58951-6_29. URL: https://doi.org/10.1007/978-3-030-
58951-6_29.

Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. “Sok:
Transparent dishonesty: front-running attacks on blockchain”. In: Fi-
nancial Cryptography and Data Security: FC 2019 International Work-
shops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February
18-22, 2019, Revised Selected Papers 23. Springer. 2020, pp. 170-189.

Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Or-
landi. “Quisquis: A new design for anonymous cryptocurrencies”. In:
Advances in Cryptology—-ASIACRYPT 2019: 25th International Con-
ference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 812, 2019, Proceedings, Part I 25.
Springer. 2019, pp. 649-678.

Christina Garman, Matthew Green, and Ian Miers. “Accountable Pri-
vacy for Decentralized Anonymous Payments”. In: Financial Cryptog-
raphy and Data Security - 20th International Conference, FC 2016,
Christ Church, Barbados, February 22-26, 2016, Revised Selected Pa-

82

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-88418-5_20
https://doi.org/10.1007/978-3-030-88418-5_20
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1007/978-3-030-58951-6_29

[16]

[20]

pers. Ed. by Jens Grossklags and Bart Preneel. Vol. 9603. Lecture
Notes in Computer Science. Springer, 2016, pp. 81-98. DOI1: 110.1007/
978-3-662-54970-4_5. URL: https://doi.org/10.1007/978-3-
662-54970-4_5.

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated
Verifier Proofs and Their Applications”. In: Advances in Cryptology —
EUROCRYPT ’96. Ed. by Ueli Maurer. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 143-154. 1SBN: 978-3-540-68339-1.

Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. “PEReDi:
Privacy-Enhanced, Regulated and Distributed Central Bank Digital
Currencies”. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. Ed. by Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi. ACM, 2022, pp. 1739-1752. DOI: [10.
1145/3548606.3560707. URL: https://doi.org/10.1145/3548606.
3560707

Ya-Nan Li, Tian Qiu, and Qiang Tang. “Pisces: Private and Com-
pliable Cryptocurrency Exchange”. In: TACR Cryptol. ePrint Arch.
(2023), p. 1317. URL: https://eprint.iacr.org/2023/1317.

Making sense of bitcoin, cryptocurrency and blockchain. https://
www . pwc . com/us/en/industries/financial-services/fintech/
bitcoin-blockchain-cryptocurrency.html.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M Voelker, and Stefan Savage. “A fistful of
bitcoins: characterizing payments among men with no names”. In: Pro-
ceedings of the 2013 conference on Internet measurement conference.
2013, pp. 127-140.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. “A fistful
of Bitcoins: characterizing payments among men with no names”. In:
Commun. ACM 59.4 (2016), pp. 86-93. DOI: |10.1145/2896384. URL:
https://doi.org/10.1145/2896384.

Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”.
In: (May 2009). URL: http://www.bitcoin.org/bitcoin.pdf.

Neha Narula, Willy Vasquez, and Madars Virza. “zkLedger: Privacy-
Preserving Auditing for Distributed Ledgers”. In: 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
Renton, WA: USENIX Association, Apr. 2018, pp. 65-80. ISBN: 978-1-
939133-01-4. URL: https://www.usenix.org/conference/nsdil8/
presentation/narula.

83

https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://eprint.iacr.org/2023/1317
https://www.pwc.com/us/en/industries/financial-services/fintech/bitcoin-blockchain-cryptocurrency.html
https://www.pwc.com/us/en/industries/financial-services/fintech/bitcoin-blockchain-cryptocurrency.html
https://www.pwc.com/us/en/industries/financial-services/fintech/bitcoin-blockchain-cryptocurrency.html
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
http://www.bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula

[27]

Shen Noether. Ring Signature Confidential Transactions for Monero.
Cryptology ePrint Archive, Paper 2015/1098. https://eprint.iacr.
org/2015/1098. 2015. URL: https://eprint.iacr.org/2015/1098.

Fergal Reid and Martin Harrigan. An analysis of anonymity in the
bitcoin system. Springer, 2013.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a
Secret: Theory and Applications of Ring Signatures”. In: Theoreti-
cal Computer Science: Essays in Memory of Shimon FEven. Ed. by
Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 164-186. 1SBN: 978-
3-540-32881-0. poI: |10.1007/11685654_7. URL: https://doi.org/
10.1007/11685654_7.

Dorit Ron and Adi Shamir. “Quantitative analysis of the full bitcoin
transaction graph”. In: Financial Cryptography and Data Security:
17th International Conference, FC 2013, Okinawa, Japan, April 1-5,
2013, Revised Selected Papers 17. Springer. 2013, pp. 6—24.

Florian Tschorsch and Bjorn Scheuermann. “Bitcoin and beyond: A
technical survey on decentralized digital currencies”. In: IEEE Com-
munications Surveys & Tutorials 18.3 (2016), pp. 2084-2123.

84

https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/11685654_7
https://doi.org/10.1007/11685654_7
https://doi.org/10.1007/11685654_7

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Ελληνική Περίληψη
	Ιδιωτικότητα στα Συστήματα Πληρωμών
	Έλεγχος στα Ανώνυμα Συστήματα Πληρωμών
	AQQUA: Επέκταση του Quisquis με την Δυνατότητα Ελέγχου

	Introduction
	Background
	Cryptographic Preliminaries
	DLOG and DDH assumptions
	Public Key Encryption
	Commitments
	Σ-protocols
	Hash Functions
	Merkle Trees

	Blockchain

	Privacy in Payment Systems
	Privacy
	Private Schemes
	Zcash
	Monero
	Quisquis
	Comparison

	Auditability in Private Payment Systems
	Centralized Authority
	Zcash extension

	General Auditor
	zkLedger
	PGC

	AQQUA: Augmenting Quisquis with Auditability
	Overview
	Preliminaries
	Notation
	Commitments

	Definition of an Auditable Private Decentralized Payment System
	Entities
	State
	Accounts
	User information
	Policies
	Functionalities

	Security Model
	Anonymity
	Theft Prevention
	Audit soundness

	Our construction
	Setup
	Registration
	Transactions
	Audit

	Instantiating the Zero-knowledge Proof
	zk-proof of transactions
	zk-proof of Audit and Register

	Analysis

	Conclusion

