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Hepihndm

H avdntuin unohoyiotodv vinirc enidoone (High Performance Computing, HPC)
elvon évac TOpENg TNG EMOTAUNG TWV UTOAOYLOTGYV, Tou Topéyel AOOELC O TOAAL
mpofAfuata mou aviwetwnilovy ol olyypovol emoThUovee xou unyovixol. O ypdvog
oe ovothuata HPC elvon ouyvd évag axp3oc moépoc. T autdv Tov AdYO, Ylow va
peytotomoinUel 1 yeNon TETOWWY CUOTNUATWY, OL UNYOVIXOL XAl OL TEOYPUUUITIOTES
TEAAANAOU EQPUEUOY YV, ovathbouy ot oavalNToLY BEATIGTONOIOELS OTIC UPYLTEXTOVIXEG
xan Tor mopdhAnia mpoyeduuato. o Tov Blo Adyo, n cUvtoln poviélwv emldoong
elvow emiong w@eéhun. To poviého autd, YmopolLV va ToEEYOoUV TANEOYORIES YLol TN
A Blopdpwy anogdoewy, ywelc To x60T0¢ ToU TEOXUTTEL and TNV exTEAECT EVOQ
TEOY EAUUATOC.

H nopovoa Simhwpotiny epyoaocio mopouotdlet pia eig Bddoc avdhuon tne enidoong
ULOG OLXOYEVELAS TIUEAAANAWY EQOUQUOYOV YLOL LAl AEYLTEXTOVIXY XATOVEUNUEVNS UVAUNGC,
xadmg xan g tpoomdideia oOvtagng evog oviéhou entdoone. H teheutalar elvon wia
apxeTd tepinhoxn dladixacio Tou amontel Bordid xaTaUvONon TV QAULVOUEVKY TOU UTOEEL VoL
ouuPoly %xutd TNV EXTEAEDT) EVOC TURAAANAOU TEOYPAUUATOS, YU dUTO XL CUVOBEUTNXE
and tnyv npoavagepdeion avdhuon. H cbvtaln evog efoupetind axplBolc poviéhou eivou
e€apETXS YPNOWO ETUTEVYHA, woTHGO Yo évay unyavixd HPC, to ta&idt nou anouteiton
YioL QUTOV TOV GTOY0 Elvol amd UOVO Tou PEYAANG onuaciog xou e&icou weéhlo.

A€&eig KAewdid: cuotriuata TapdAAnAng enelepyaciog, TEOYRUUUATIOTIXG LOVTENOD
avtohhoyfic unvupdtwy, MPI, apyitextovixég xataveunuévng uviung, computer cluster,
NUI-EUTLEXS LOVTER, HOVTERD BEVOPWY amo@doewy, uévodol ensemble.






Abstract

High performance computing (HPC) is an area of computer science, that provides
solutions to a lot of problems present in contemporary sciences and engineering.
Time on HPC systems is often a costly resource. For this reason, to maximize
the usage of such systems, engineers and parallel software developers, analyze and
seek optimizations in architectures and parallel programs. For the same reason, the
compilation of predictive performance models is also of great benefit. Such models
can provide insights that are useful for making various choices, without the costs that
come with actually executing a program.

This thesis presents an in-depth performance analysis of a family of parallel
applications for a distributed memory architecture, as well as an attempt at the
compilation of a predictive performance model. The latter is quite a complex procedure
that requires a deep understanding of the phenomena that may occur during the
execution of a parallel program, which is why it was accompanied by the formerly
mentioned analysis. The compilation of a highly accurate model can be a great and
highly useful achievement, however for an HPC engineer, the journey required for this
goal is itself of great importance.

Keywords: parallel processing systems, message passing programming model, MPI,
distributed memory architectures, computer cluster, semi-empirical models, decision
tree models, ensemble method models.
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BEuyapiotiec

Oa Hleha vo euyoaplotiow Yepud tov emPBAénovta xoadnynty pou, I'ewpylo I'rodua,
yiao TNV xododHyNon ol TNV EUTLOTOCUVY TOU UOU TEOCEPEPE OE OAX T GTAOLA TNG
EXTIOVNONG TNS TopolouS epyaoiog.

Eniong 9o fdeha va suyaplotiow tov yévtopa xat giAo pou, Atéctolo Aéun, pe
Bordeia Tou omolou Euoior Vo OXEPTOUOL XaL VO TTEATTL UE Aoyixt| xou xodapdTnTaL.

Téhoc, OAn 1 oxadNuaixn pou mopela, de Yo NTay duvaty| ywelc TNV LTOoTARLEN TwV
yowov pou, Xmdpou xou Koteplvag, tou adeppol pou, I'wpyou xou twv @ikwv pou,
Topddvn o Aewvido.



Ewcoywyn

H avdntuén twv YTroloyiotdv Ydnire Enidoone (HPC) nailer évav peydho pdho
oty enthuor oLvieTa TEOBAAUATA TWV CUYYEOVWY ETOTNUWY. Bploxel yperoeig oe
poe TANYmea TOUEWY, OTWS 1 unyovixr wddnomn xou 1 TeXVNTY vonuooivn, TeplnAoxeg
TPOCOUOLWTELS PUOLXV QOLVOUEVKY Xk 1) XApaTixy) odlhayn. IIinowdlovtag ota guoixd
6plor Tou vopou tou Moore, 1 adnor Tng urtoloyloTixic entdoong pe Ty amhy adEnon
Tou aprdud Twv teavliotop elvan wa Unfudon otpatnyixr. Autd odrynoe otny
aVETTUEN TEPITEY VOV ORYLTEXTOVIXOV TOAUTIUENVOY CUCTNUATWY X0 ETLTOYUVTMOV TOU
xenowonowovvton toco oe ovotiuata HPC 6co xou oe niextpowixd eldrn cupeiog
AATOVIAWOTC.

Mo Yepgehddng tagivounon yia mohunenva cuothuata HPC, éyel vo xdver pe
TOV TEOTO 0pYAVWONG NG UVAUNG. LTO CUCTAUATA XOLVAGC WVAWUNG, ToAlol
nuprvee emelepyaciog ocuvdéovtar oe éva xowvo clotnuo pviunc. o avtode Toug
TUTOUS GLUOTNUATLY, Urtopel va Yivel wa Badltepn xatnyoplonoimon. Av 6lot oL TupHveg
enelepYaolog GUVOEOVTOL OUOLOUOPPI XL ATOXAELOTIXA GTNV XOLVOYENOTN UVAUY, TOTE
T0 olotnua éyel opolopopen tedoPoor otn uvAun (Uniform Memory Access, UMA).
And v dAAn, edv péen TOU CUCTAUATOS UVAUNG ElvaL TLO XOVTE GE OpLOUEVOUG
Tuprivec enelepyaoiog, TOTE To choTNUA EXEL UN-opoLtouop®n TedofaoT otn uvAun (Non-
Uniform Memory Access, NUMA). Y& toA\éc TEQITTOOELS, To GUGTAULNTA XOVAS UVAUNG
YENOWOTOLOUVTOL UE €VOY XOLVO YWEO BLELVUVOENY Yol OAEC TIC Dlepyaoied.

YE CUCTAUATA AATAVEUNUEVNG WVAUMG TOMEC Uovddeg enelepyaoioc Ue
TN On) Toug Lepapyion WOWTIXNAS UVAUNG, cUVBEoVTOL UECL OXTUOL BLCOVOESTS. XIS
TEQLOCOTEPES MEPINTWOELS, Xdde wovdda enelepyaoiog YeNOWOTOLEL €V WOLWTIXG YWOEO
olevdivoewy. Auty 1 amousia xowvig uvAung, odnyel otnV avTaAloyy) LUVNUATOY UECW
TOu BXTVOL BlaclVOESE, OTav elvol avayXolog O OLOLEUCUOS BEBOUEVLY UETOED
novddwyv enelepyactac. Mot dAAN €UEEWS Y ENOLWOTOLOVUEVY dp)LTEXTOVIXY elvan €va
LBEIBLO TV BVO TEOAVAPEPOUEVMLY. YE QUTAY TNV TERITTWOT), TOMA CUCTAUATI XOLVIS
UVAUNG CLVDEOVTAL YENOULOTOLWVTOG €val BixTuo dlacdvdeog, oynuatilovtog €Tol éva
CUOTNUO XATAVEUNUEVNS UVIUNG TO OTOLO XUAE(TOL COUTAEY L UTTONOYLOTWV.

"Evog Soypovinde meploplopds oe Ol autd to €ldn cuoTnudTwy, elvon 1 cuugpdenon
ToL dnuovpYElTol and TNV AVLCOTATA OTNY ToYLTNTA UETAED TNG UETAPORAS OEDOUEVLY
X0l TGOV UTOAOYLOUMY TOU TEOYUATOTOLOUVTAL G oUTA. XTO TEPLOCOTEPA CUYYPOVA
CUCTAUATA, OL HOVADEG eNMELEPYATIUC UTOPOLUY VoL EXTEAOVUY UTOAOYIOUOUE OE BEBOUEVAL
HE TOAD peyohlTERN ToyTNTA amd TOV pUIUOG UE TOV OTolo Tol BEBOUEVAL T UTOEOVY
VoL TACOLY OE QUTEC HECK TOU BLaAOL UVAUNG. Autd To mEOBANUO UTHEYEL XU OTa



CUOTAUATO XUTAVEUNUEVNS UVAUNG, OTIOU 1) UETADOOT) UNVUUATOY UTOREL VoL TEOXUAEDEL
ouupbdenon 160 6To dixtuo daolvieoNc 600 xou oTa (CUY VA XOLVOYENOTA) CUOTAUATY
UVAUNG TOV XOUBWY EVOC CUUTAEYUATOG.

Extéc amd tnv avdmtuén tng opytteXTovixng, N UEAETN o avAAUGCT| TOEGAANAWY
ahyoplduwy xou tng enidoong Toug, €xel eniong mohl peydin onupacioc. Méow autdy,
Evog Unyovixdg umopel va amoxthoel BadlTERn XATAVONOY OYETXA PE TO TS 1)
enidoon ahAdlel Ue TN XENON BLUPOPETIXWY APYLTEXTOVIXWY, XM ol vor 00Ny OEL OE
Behtiotonoioelc xodixa. Mio oxdun yerown xatevduver mou unopel vo oxolovdoel
xavelg, elvar n oOvieon povtéhwyv mpoPiedmne enidoonc. H ypron autdyv, propel va
Bonifoer otnv emAoyr tou tonou Ttou cuotApatoc HPC vy xdmolwo mapdiinio
TEOYPUUMA, XwplC TO X60TOC TN eXTEAEONE TOU Ot auTO. AUTd To LOVTEAA UTOEOLY
va efvon avohuTixd 1 vo Baoilovton o oTaTloTix ToAvdeounon xou GAAEC TEYVIXEG
unyovixic wdinong. I to teleutaio, 1 cuALOYY Bedouévwy Yior xdde BLUPOPETIXG
cOoTNU elvon avaryxodor Yior TNV EXTTBEVOT TOU WOVTEAOL.

e auTh TN OTAWUATIXY, 1 TEOCOYY| UG ETUXEVIPWOVETOL OTNY ETBOCT TUPIAANALDY
oahyoplduwy o CUCTAUATO XUTOVEUNUEVNG UVAUNG XL CUYXEXQUEVA GTNV oVAAUGCT)
TOU YPOVOU ETUXOLVOVING Yol TV THpAYOVIWY Tou Tov emneedlouv oe €va oloTNU
HPC. Yuyxexpuléva, eXTEAECTNXOY OLAPOPO TELRHUATA UE OXOTO TNV cLVUEOT nuL-
EUTIELPLXMY Xl EUTELPXMY HOVTEAWY oTov ARIS, éva ohumieypa Fat Tree. Ou teyvixéc
TOU YENOLOTOLAUNXAY Yiot TN GUAAOYY BEQOUEVMY XOL TN LOVTIEAOTOINGY), OL BLAPORES
TAEUTNENOELS TToU TEONADOY and To TEWRGUATA TOU EXTEAECTNXAY XAVOS ol 1) ETUBOON
TOV HOVTEAWY TIOU TEoEXLPAY, TEPLYPAPOVTOL AVOAUTIXA GTOL ETOUEVO XEPEALOL.



1. Owovyévelo Egopuoyav xoa Xwpoc Features

1.1 Egappoyeég Stencil

Auth 71 SIMAOUOTIXY] ETUXEVIPWVETAL OF ULl OLXOYEVELDL EQUQUOYWY YVWOTOV ®G
unohoytopol stencil. Yta stencil, n mpdcBoacn ota dedouéva elvon taxtixr. ‘Otoav
EXTEAOUVTOL OE CUCTHUATA XOLVAG UVAUNG, AUTA TA TROYRAUUOTO CLVAUWE TERLAUBAvouv
TOV Ol WELOUO TWV 0edouévwy ot éva TAéyua N dlaotdoewy. Kdde diardéoiurn diepyaoio
avohoBaVEL TOUG UTOAOYLOUOUS Ylal Lot UTODLHEEST) oUTOU TAEYUATOS OEDOUEVWLY.
ITohhéc amd autég Tig eQapuoyEs, dladétouv évay eEwtepind Bpdyo-for ypdvou. Xe xdie
enavIANY, ot diepyaoieg EXTEAOUY UTOROYLOHOUS Xl ETUXOLVWVOUY UE JANES YELTOVIXES
dladixaciec. Auth n emxowvovia cuvidwe amoutelton yiot TNV avtoAloyr) SedoUévwy ToU
Beloxovtar ota dplar xde uTocuVOLoL Bedouévey Tou "avixouv" oe pia diepyaoio.
‘Eva mapdderypa tétolog eqopuoyng elvon 1 uédodog Jacobi yia tnv emlluon yu
NV enlAuoT Yeauuxoy cuotnudtwy. O Kddixoac 1.1 napouctdlel tov Peudoxmdixa yia
ue vAonoinon MPI tou muphva Jacobi. H Aota Neighbours mepléyetl Tic YeELTOVIXES
Olepyaoieg, Tou ylo Evo TAEYU BEBOUEVMV XOUL DLERYAOLLY 000 BlaoTdcEWY, Yo unopoloe
va elvan [Bopdc, dvom, vétog, avatord]. H ocuvdptnon compute amoteleiton omd To
UTOAOYLOTIXO P€pOog TG x&le emavdAndng yedvou xou exteheiton yia xde otoyeio Tou
TAéyuatog Sedopévev. E€optdton and to YELTOVIXE GTOLYEl XU TOUS TEONYOUUEVES THIES
toug. To MPI Waitall, avaryxdZel tnv xdde Siadixacior var Tteplével vor ohoxhnpwdolyv
TOL ALTHUATO UNVUUETOVY TNS, TEOTOU UTORECEL VO EEXLVACEL TO UTOAOYLOTIXO XOUMATL.

for time:
for iNeighbour in Neighbours:
MPI_Irecv(iNeighbourBorderData, iNeighbour)
MPI_Isend(myBorderData, iNeighbour)

MPI_Waitall(MessagesToSend, MessagesToRecv)
for i in rows:

for j in columns:
compute(i, j, u_previous, u_current)

Koduxag 1.1 Yeudoxddixos yia plo homoinon tou muprva Jacobi pe MPI



Owoyévewn Egappoymv xon Xwpog Features 2

Ot 800 BLoxpLTég PAGELS YLl TNV ETUXOLVGWVIAL X0l TOUC UTOAOYLIOWOUE OTNY TAURATAVE
vhomoinon xahotolv oyeTixd €UXOAO TO VA YIVOUV TEOCUQUOYES GTOV XWOXA, WOTE
o QOETIA TWV UTOAOYLOMWY o TNg emxolvwviog vo elvar dwopoppwoiua. T tny
emxowvovia, ol mopduetpol elvan To péyedog xou to mAAYog Twv unvuudtwv. Ta
ATOTEAEOUATA TNG AAAXYTG AUTWV TWV TUQUUETEWY Elvon auTtovonta. ' To untoloyloTind
xouudtt, pio mapduetpoc unopel va eivar o apliuds Twv mpdewv (operations) mou
exteloUVTAL o€ xdUe oTolYElo TOU TAEypaTOC Bedouévwy. Edv autdg o aprdude eivon 1
(mpd&n avd otoiyelo), TOTE N ENIBOOT TOL UTONOYLOTIXOU TUAUATOC Elva YEVIXA Pearyévn
omd TN uvhAun (memory bound). Autéd cuyfoivel ENEST APLERHVETOL TEPLOGATEROS YPOVOG
Yoo TNV avdxtnon xdde otolyelov, amd Tov Ypbdvo mou YpeetdleTon Yio TNV exTéAEON plog
TpdEng oc autd. Kaddde o apriude tewv npdéewy auldvetat, T0 UTOAOYLOTIXG TUH U TELVEL
va yiveton 6ho xou TEpLoobTERO Ppayuévo and Tig tpdlel (compute bound), dedopévou
OTL TEPLOTOTEPOG YPOVOS dAmavdToL OTLE TRAEELS, Tapd oTNY avdxTnoT. ‘Evo npdypauua
HE aUTES TIC TapauéTeous Yo Umopoloe vor AettoupYHoeL we YEVVATEL dedouévmv (data
generator application) yio yerjon oe avdivon xou povieonoinor tne enidoorng.

1.2 Egappoyr Data Generator

Ytov Kodwag 1.2 galveton o Peudoxmdixag yia Tnv egopuoyy| dnuovpyiac dedouévmy
(Data Generator), ye Bdon tov muphva Jacobi. Xtn @don tne emxowvwviag, xdie
diepyaoio otéhvel unviuata otoug yeltoveg tng. Edv o emheypévog aptdudg unvuudtenyv
elvow yeyohOtepog amd tov apudud TwV YELTOVWY, TOTE emavohaufdvetan o mivaxog
Neighbours, péyet vo otaholv 6Aa tor unvouata. I'a To umoloyloTxd TuhAua, Eyel
npootelel évac eocwtepnde PBpdyoc, o omolog emavalouBdveton yiar Evav emAeyuévo
apriud emmiéov Tedlewy o€ xdde oTolyElo, OTWC TEPLYPAPNXE TEONYOUUEVWLC.

for time:

iNeighbourIndex = 0

while MessagesSent < NumberOfMessages:
if iNeighbourIndex > NumberOfNeighbours-1:

iNeighbourIndex = 0

iNeighbour = Neighbours[iNeighbourIndex]
MPI_Irecv(MessageSize, iNeighbour)
MPI_Isend(MessageSize, iNeighbour)
MessagesSent++
iNeighbourIndex++

MPI_Waitall(MessagesToSend, MessagesToRecv)

for i in rows:
for j in columns:
for NumberOfExtraOperations:
compute(i, j, u_previous, u_current)

Koduxcag 1.2 Weudoxmdixag tnyv e@oppoyt) dnuploupyloc dedouévenv

H Ewoéva 1.1 delyver to potifo emxovwviag mou axohoudeitar and xdie dicpyaocio
mou extelel Ttov Kodixag 1.2.
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P12 P13 P1y P15
*+ + 1 +
P L Pl Pl
P3 PO P1 P2 P3
________ N » > _—
P7 Py P5 P6 P7
-------- -+ S
P11 P8 P9 P10 P11
........ > > > —_— ® Message 1
@ Message 3
P15 P12 P13 P1y P15 ® Mossage 4
-------- - > > _

Ewxéva 1.1 Mot(Bo Enxowvwviag tne eqopuoyric dnuloupylog Sedouévey
1.3 EntAoveEg yia Ta REYEDT OEOOUEVELY

Axolovdmvrog wa Sudxplorn mou €yel Ko yivel, undpyouv 800 emhoyEég Yol Tar UeYEDM
0edopévewy mou meénel va yivouv. Mio yior To xopudtl Tng emxotvwviog xou éva pio
yia To unohoyloTxé xopudtt. ' To umoloyioTixd, emhéyUnxe va axolouviniel n
adVvopm xhpdxwor) (weak scaling). Auth elvon 1 Aoy emhoyT| Yo Ty eXTENEON
oe éva cbotnua cluster, dote va undpyel N TAHENS allonolnoy Twy dladéoiuny Tdpwy.
Avutéd onpaiver 6t To péyedog Tou unocuvélou dedopévwv xde diepyacioc (working
set) mopapeivel otadepd eved mpootidevtan meplocdtepec depyaoiec, €tol (OTE TO
cuvohixd uéyedoc tou TpofAruatoc vo audveton Ue Toug dlotéoious topous. o Ty
emxolvwvio, To uéyedog Twv unvuudtwy emhéydnxe va elvar cuvdptnon tou working
set, ouyxexpuéva xdmolo mohhamhdolo g TeTEaywVIXAC Tou pilag. Autd €ylve yia
vou pundolv mohAd mpoPifuata mou yenowonolodv stencil umoloyiopolg, émou Ta
dedouéva Tou avTaAAdocovTol UETOED TWY BIEQYACLOV EVAL ULOL YROUUN, WLt OTAAN ) oTNY
TERIMTWOT TELOV OLAOTACEWY, Uial ETLPAVELL EVOC TAEYUATOS DEDOUEVWV.

1.4 ANAeg napdpuetpor xaw Xwpog Features

Extéc amd Tic TMopoé€Teouc ETUXOLVOVIAG %O UTOAOYLOU®MY, WLl oXOUN XoTnyopla
TPAUETEWY €XEL VAL XAvEL Ue TO TEPBdAAOY extéreons. Aedouévou 6Tl To neplBdAhov
extéheong elvon €va cluster ye molundenvoug xoufoug, ol moapdueteol oTic onoleg Yo
goTdooupe elvor 0 aptdudg TV UTOAOYLIOTIXWY XOUPWY %o O dpLiUOC TWV BLEPYACLHOY
avd %x6puBo. LUVOTTIXd, oL BUVATOTNTEC TOU UToEOUY Vo dlopoppwdoly oto setup pag
elvon oL e€c:

*  Méyedoc tou Working Set (avd Siepyooio)

*  Apuoc Emnpdéodetov Ipdewmv
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Méyedoc Muvnudtev
IIdoc Muvnudteyv
Aprduoc KouPwv

Awepyaleg avd Koufo



2. llepBdhhov Extéheone xow Metprioeig

2.1 ITepBdirov Extéleong

Onwe avagéplnxe TEONYOUPEVKS, TO TERUUATIXG UEEOS QUTAC NG OLTAWUATIXAG
epyaotoc dieg&hydn oe xopfouc tou cluster ARIS Thin Nodes. 'Evog xéuBog autol tou
ovothpatog anoteleiton and dvo enelepyaotéc 10 muphvev (yweic hyper-threading).
‘Etot, x&le xoufoc umopel vo eunepiéyel €we xou eixoot diepyaoieg. Kdie enelepyaotic
€xel xowoypnotn xpuey puviun L3 25 MB petold 8éxa muprivev xon xdde xoéuBog
éyet 64 GB puvAunc RAM rnou podleton petald dbo encéepyactov. H yaptoypdpnon
TV BLERYACLOY avd xOUPO YEeNOOTOLRUNXE YLl TNV 0pYAVWOT) TWV BLEPYACLOY GTOUS
oldéaipoug mupriveg elvan ) map-by-node emhoyy) tou MPIL. Me autrv tnv avtiotolyion,
ol diepyaotec MPI powpdlovtar evorhdg petadl enelepyaotdv xou xouBov. H Ewdva
2.1 ouvodiler Ta mapandve yenowonoldvias 600 xouPouc we ToEddeLYUd, OTou Ta
TETEAYWVA AVTLTPOCWTEVOUV €vay Tuphva enelepyaoty] xat ot aptdpol tov MPI Bodué
(rank) Touc.

Node 1 Node 2

Processor Processor Processor Processor

25MB 25MB 25MB 25MB

3 L3 3 3
20 1 2 3 23
6 Interconnection
64GB Network
Tl
-
36 38

24 25 27

64GB
RAM

29 11 31

1 1 33 15 35

1 37 19 39

ikl
"ETT:

BT

slelelols
T
Slelslols
TR

Ewxova 2.1 Képfol tou ARIS yaptoypapnuévn ye to map-by node tou MPI

[ va axohoudndel o weak scaling pe tocopponnuévo tpoémo, oplotnxe pio Bdorn yio
T0 péyedoc Tou TEOBAAUATOS YLl TOV EAAYLOTO apIUO BLEPYUOLOY TOU EXTEAECTNXOY
newpdporta. Auty) 1 Bdon emhéydnxe, étol hote To working set size Bdong avd Siepyoocia
vo elvon 1 MiB. Ané exel, to péyedog tou npofAAuatoc TOAATAACIACTNXE YE TOV (BLo
TPy OVTA TTOU TOANATAXGLELETAL X0l TO GUVORO TV BIERYUOLN)Y, OL OTOIEC OPYUVOVOVTAL




[TepBdrhov Extéreone xou Metpnoeic 6

oe éva diodidotato mAéyua. O Iivaxoc 2.1 delyvel éva mopddelypa Tou TPOTOU UE TOV
omnolo ta peyédr dedouyévwy avtiotolyilovtal oe dSlapopeTixolg aptduols dlepyaotdy. Xe
aUTO TO TAPADELY UL, YeNoLoTololvToL TEcaERLS XOUPoL xat To uéyedog Tou TpoAfuatog
elvan 0 oprdude twv doubles (oxted bytes o xodévag) avd didoTtaon.

IMivaxag 2.1 Hopaderyuya Avtiotolynong Meyedov xoa Aprduold Algpyaotodv

Apvdudc Agpyaoidyy 8 16 32 64 80
Awdotaor Aepyooiwy 4 4 8 8 8

X

Aldotoorn Aepyooiodv 2 4 4 8 10
T

Méyedoc ITpoAfuatog 2048 2048 4096 4096 4096
X

Méyedog IpofBAfuatoc 1024 2048 2048 4096 5120
T

[N Tov apriud Twv BlepYaoLOY TOU HTOV UXEOTEEOL antd TO PEYLOTO BUVATO Yia Xde
apLlud xouPwy, emBeloudinxe OTL Tal TELEAUATH HTOV ATOUOVWUEVA X OTL xoia GAAN
olepyaoio de ypnowwonololoe Toug emmiéov nuprvec. Téhog, xahd elvan va onueiwdel 6Tt
Yo 6ha oL MELpdpaTo Yenotwonoinxay ol BiAtourixec openmpi 4.0.5 xou gnu 8.

2.2 Mé9dodog Metpricewv

To "uéyeboc xbotoug" mou  emhéyUnxe elvaw o ypodvoc.  Tuyxexpéva,
xenotonotinxay Teelc YeovoueTeNnTéS. O TeMTOC apopd TOV GUVOALXO YPOVO EXTEAECTC
Tou mupva TNe egoppoyrc Data Generator. O 0eltepog petpdel TOV YeOVO TOU
UTOAOYLOTIXOU TUAUATOSC YLt OAEC TG YEoVixée emavorndels, eved o tpitog xdviel to
Blo vy v emxovwvia. O Kodwag 2.1 delyvel Tov eudoxddixa tne epopuoyhc
CUUTEPLAAUBAVOUEVLY TWY YPOVOUETENTOV.
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gettimeofday(totalTimeStart)

for time:
gettimeofday(communicationTimeStart)
communication(NumberOfMessages, MessageSize)
MPI_Waitall(MessagesToSend,MessagesToRecv)
gettimeofday(communicationTimeStop)
communicationTime += communicationTimeStop - communicationTimeStart

gettimeofday(totalTimeStart)

computation(WorkingSetSize, NumberOfExtraOperations)
gettimeofday(totalTimeStart)

computationTime += computationTimeStop - computationTimeStart

gettimeofday(totalTimeStop)
totalTime = totalTimeStop - totalTimeStart

Koduxoag 2.1 Yeudoxmdxas tne epappoync Data Generator pe ypovéuetpa

Ye 6ha ta mepdparta exteroLVTaL 32 enavolielg ypovou. ‘Oheg ol Biepyaoieg €youv
TOUC BIXOUC TOUC YPOVOUETENTES KO YRAPOUY TO ATOTEAECUS TOUG OE €VOL XOLVOYENOTO
apyeto agol ohoxAnpwiel n extéleon Tou mpoyeduuatoc. Yotepa, Ol UETPNOELS TOU
AoBdvovton and xdde nelpopa enelepydotnray xou avohbdnxoay otn dadixacia Tou post-
processing.



3. Apywa Iewpdpato

3.1 YtatixoTix”] AvdAuon

Onwe avageépinue, xde Olepyaoio PETEdEL TOUC BOUC TNG YPOVOUC EXTEAECTC OF
xade melpopa. Xe authv TNV evoTnTa, Topouctdleton Wia OTATIOTXY AVEAUCT TETOLWY
HETENOEWY Yia DIAPORES TELOUATIXES DIATAEELS.

H Ewéva 3.1 mepiéyer ta box plots yio dudgpopeg twée tou working set size avd
olepyaoto, yio 64 xou 4 xoufouc. Ou Tiég yio Tig dAheg mapapéteoug elvan 20 diepyaoieg
avd xouBo (mAfpeic xo6uPol), pio medcn avd otoiyeio (étor dote vo éyoupe Memory
Bound vroloyiotxt| @don), 8 unvipata avéd emavdindn yedvou xou uéyedoc unvipatog
too ue v/ Working Set Size .

O d€ovag x mepthopfBdver Tic dlagpopeTixég Twée Tou working set size. Kdde onueio
AVTLTEOCWTEVEL Ular U€TENon yedvou emxolveviag and dlapopeTiny| diepyaoio. 'Etot, i
4 KouBouc xde box plot aviimpoownever 80 onuela xou yia 64 x6pfoug, 1280. O
oloxexopuévos poufoc péoa oe xdde box plot exqedlel Tnv TuTx amdxAion, ue N
OLoXEXOPUEVY Yeouur ot wéon va elvan 1 uéon Tn Tou xdde GUVOAOL UETPNOEMYV.

20 PpN

—~ 95- 4 Nodes
E
s 7
o 1.5- .
= &

- 5 [
= PP
g - i Yy [ ]
SH . 1 o = — Y=
o 64 Nodes
= 2.5-
g 15- .
g 0 5 ) ;
o ). B=— o= == _1T

2MiB 8MiB 32MiB 128MiB 256MiB 512MiB

Working Set Size per Process

Ewova 3.1 Box plots Xpévou Enuxolveviag
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Mo moipatipnon amd TG ToRATEVG YRAPIXES TUPACTACELS Elval OTL 0 YEOVOS ETLXOLVKVIAG
palveton vo auEdveton YEVIXd Ue To péyedog Tou working set. Aut) n ohharyr) mopatneeiton
oe Oha to mopadelyyata autod Tou xe@alalou. Autéd olyoupa ogelhetar 0TO YEYOVOS
0Tl 1o péyevog TV pnvuudtwyv elvon ouvdptnon Tou ueyédouc tou working set.
[Topdha autd, 1 extéleon ulag exdoYHC TOU TEPOYEAUUATOS OTOU To UeYEUrn Tou
UTIOAOYLOTIXOU TUAUOTOC %ol TOU TUAUATOS emxowvmviag elvon avedptnta, oautd TO
QoUVOUEVO aUENCTE TOL YedVou emixolVwviag Pe TNy avnor tou ueyédoug tou working
set Eavamapatneinxe, YeYovog mou delyvel OTL auTy| 1) CUUTERLPOEA OPElAeTOL KoL OE
GAAOUG TOPAYOVTEC.

Ané tny &Y, Topatneeiton OTL OL AVAPEROUEVOL YEOVOL ETUXOLVGVIAS %ol Yo TOUG dLO
apduoig x6ufwy xuualvovton (Blot TaEng ueyédouc, mapd To YEYOVOS OTL Ol GUVORLXEC
oiepyaoiec etvon 80 xan 1280. Autd elvon éva TpddTo oNuddL Yo wa mdavy| Teocéyyion
aVEALONG /LOVTEAOTOINONS, OTIOU YENOULOTOLOVTOS €Va uxped TUAUS EVOC cluster unopolyv
VoL ANguoly oploUéva GUUTERACUATA YIot TNV YEVIXT) TOU CUUTEQRLPORG.

M dAAn mopatrhenon t6c0o v Toug 4 600 xan yia Toug 64 xoufoug elvar 6TL TaL
OLAOTAUOTOL SLOXOUOVOTG TV UETEHOEWY YPOVOU Qalveton vor auidvovtal Ue To péyedog
tou working set (xou xotd cuvémewn to péyedoc Ty pnvuudtwy). Loty Baditepn
XATOVONOT AUTAC TS ahAayg, 1 Ewdva 3.2 Belyvel tor loTOYRAUUATO XATAVOUNS TWY
HETENoEWY, Yia xdie uéyedog Tou working set, Aaufdvovtag Tov yetpnuévo ypbdvo and
xde depyaoio, we tuyaia yetafAnth. Emnicov, xdlde plo and tig cuveyele yoouués
AVTLTPOCWTEVEL Lol XovoViXh xatavoph, N(u, 0°) e ta p and o {oo e tic avtiotouyeg
TWES TV TALUNOUOY TwV YeTPRoEWY Yo xdle yéyedog Tou working set

64 Nodes, 20 PpN

2MiB 8MiB 32MiB 128MiB 256MiB 512MiB

¥

0 0.5 1 1.5 2

Communication Time (seconds)

Ewova 3.2 Awdypoppo Katavourc Xedvwyv Emnxotvewvicg

Elvar mpogavég 6TL oL ypdvol Tou avagépovtan and OAeg Tic diepyaoiee, tpocouoldlouy
XAVOVIXES XOTOVOUES UE QUEAVOUEVT) HECT) TUUT Xol TUTIXT| AOXALOT). AUTH| 1) cuUTEELPOEd
TP TNEARUNXE YLt TOAAES DLOUPORETIXES TWES TWV TUQUUETEWY, EVEM ToRATNEHUNXE OTL Ta
TELPAUOT PE PEYAUAUTERO apldud Blepyaoldv (ko emopévee évag peyohitepoc aptdude
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detypdtov) wuodvton o PeYOADTERO Badud TNV xavovixh xatovour) ot oyéon PE To
TELEAUOTO UE WXEOTERO dPLUUO BELYUATMY.

Fevixd, outh 1 ogoldTNTA UETOEY TNG XATOVOURSC TWV UETENOEWY UE TNV XOVOVIXN
xatavour), ToVI(el OPLOUEVES ONUOVTIXEC TTUYEC OYETIXG UE TO TMELQOUATIXG BEGOUEVAL.
ITechtov, delyvel 6Tl oL PETENOELS AT OAEC TIC DIEQYAUCIEG EVOC TELPAUATOS EYOUV UL
XEVTELXY TdoT YUew TN péorn Th touc. Autd elvon Yetind xou xahotd tov yéoo 6po
WLl OYETXE XOAY) AVTITPOCWTEVTIX TN Yiot To xdde melpoyar, €dixd edy cuvodeleT
and v tumxy andxAlor. Mia dAAn Vet mapathipnon elvar OTL 1 xovovixr) xorTavou
elvol Uiot CUPUETELXY XATAVOUR, YEYOVOG TOU UTopel Vo UTODBEXVOEL OTL 1) TELQOUATLXY)
OudTadn elvon eniong CUPPETEIXT Xa OYETIXA TUY o, XOrMOTOVTAC TNV XATIAANAT Yia TN
GUANOYY| BEBOUEVLY YLt €VOL LOVTEND Unyovixhc uddnone.

Do var tedel auth T1) CUPTIERLPORE GTO TAXUCLO TWY CUYXEXPUEVLY TELOOUATOY, UTOREL
vo Yewpniel 6Tt péow authg, epgpavileton pio avicopponia x60TOUC ETXOIVGWVIAS 1) oTtola
EVIElVETAL amd T PEYOAUTEPO UEYEDY Ocdouévewy ol umopel var amodolel oe €vav
CUVOLACUO TOANGDY BLAPORETIXOVUE TOQAYOVTIWY. LTI EMOUEVEC EVOTNTEC axolouvlel pia
avaAuoT Yl BLAPOPES TELRUUATIXES BLUTAEELS AUTAOY TwV TapayovTIwy. Ilpdta e€etdlovto
oL TOEAPETEOL ToU EMNEEAOVY GUESA TNV ETLXOLVWV{O, Xou OTr cLVEYELn e€eTdleTon éva
oevdplo ToEEUPOAAC HETAEY TV QPACEMY EMXOLVOVING X0 UTOAOYLOUOU.

Mo onuovtixyy évvola mou meémel va Angdel unddn v Tic endueveg evoTnIEC,
elvor 0 cuvduaouds e avtioTolytong Twv diepyaoldy otoug topous (Ewmdva 2.1) xou
Tou potifou emxowvwviae (Ewdva 1.1). Kotd ) @don emxovwviag, uio Swodixooio
avtoahAdooel unvopata pe yeltoveg mou Bploxovton 1660 ctov Blo xoufo 600 xan o€
dhhoug xoufouc. Autod onpaivel 6Tl éva pépoc Tne emxolvwviag umopel va cupfel oto
BIXTLO BLCOVOEDTC, EVE EVAL GANO GTNY XOLVOYENOTY UVAUY EVTOG eVOC xOufou. O Adyog
HETAEY AUTOY TOV DLAPORETIXWY TUTIWY ETUXOLVLVIAS dlapépel amd dlepyasia oe dlepyaoia
AOYw Tou mapping. Auty| 1 etepoyévela, tailel onuavTixd pdlo oty enidoon TnNg PaoNg
ETXOLVWVIOG OE OPLOPEVES ATO TIC AXONOUVEC TEPLTTWOELS.

3.2 ITapdpetpor Emixolvwviog

Ye authy TV evotnTa, eEeTAlETOL 1) CUUTERLPORE TWV YPOVWV ETUXOLVWVIOS Yiol HUETES
AANAAYEC OTIC TOPAUUETPOUS eTXOLvwviog. AuTtéc ol mapduetpol elvon to Y€yedog ol To
TAAY0C TV unvupdtoyv. Xty Ewdva 3.3 @aivovtan dtorypdupata yio SLpopes TWES TwY
rapopéteny ot 64 mAfpelc xouPouc. Kdlde onueio elvon pia péorn Ty tou yetpnuévou
YPOVOU amd OAEC TIC Olepyaoiec mou cuupetéyouv ot xdl¥e melpapa xou or cuveyelc
Eyyewues Lodveg delyvouv Ty Tumxr] andxAion. Ou TES TwV Blapdpwy TUPUUETEWY
EMXOLVWVIOG ElVOL Ol axohoudec:

o apuubde unvopdtey = [2, 4, §]

*  uéyedoc pnvupdtov = [1, 5, 10, 50, 100] * /Working Set Size

Metd omd eétaon autdv TV YPUPNUAT®Y, elvol Teo@avéc OTL UTHPYEL WL
copnc Slopopd UETOED TV UEYORITEPWY XAl TOV UXPOTEPWY UEYEVMY UNVUUATODY.
DUYHEXQWEVQL, 1) AVOUEVOUEVY) CUUTEQLPORE OTIOU TMEPLOCOTEQN UNVOUATA UEYUAVTEQOU
ueyédoug €youv PeYdAn enldpaor 6ToV YedVo emixolvwviog, dev gaiveton vo eppaviCeto
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Eexdopa yia Tar xedTepa WeYEU. Miat SN ueydhn Sopopd ueTall TwV 800 XALUAXEY
ueyédoug etvon 1 Tumixf andxhon. To peyohitepa peyeédn éyouv wxpdtepn (oyETXd)
TUTUXY AMOXALOY) amd ToL UxEOTEPY HEYEDT. AUTEC oL Blaopég umopoLy vo anododoly
TOGO GTN UVHUN OGO XL OTN YENoN Tou dBxTOOou.



Communication Time (seconds)

Apynd Iewpdpoata

64 Nodes, 20 PpN

—*— 2 Messages —*— 4 Messages —*— 8 Messages

Message Size = 1 *\/Working Set Size

Message Size = 5 *y/Working Set Size

Message Size = 10 */Working Set Size

Message Size = 50 */Working Set Size

Message Size — 100 *y/Working Set Size

2MiB 8MiB 32MiB 128MiB 256MiB 512MiB

Working Set Size per Process

Ewova 3.3 Xpdvog Emixoivewviag yio Sidpopes TES TV TORoUéTewY ETXOLVWVING

12



Apywd Iewpdpoto 13

‘Ocov agopd 11 Yeron NG UWVAUNG, To UXEOTEEO UNVOUATA EVOEYETOL VO UTOPOUY Vol
Ywpéoouv ot dLdpopa eMIMEdN xEUPTE UVAUNG XaL va eTw@eAnioly Ty uPnidtepn
ToyUTNTA ToU TEOCPEPOLY. §20TOCO, axOUN oL OTNV TEP(MTWOY TMou BeV UTHEYOLY
TETOLOL WPEAUOL POULVOUEVOL ATd TNV XEUPT| UV, To uixpdTtepa ueyeldn dev mélouy T
uvAun ot 6pLd TN ue amotéleoua TNV TayOteen extéheot). ‘Oco to yeyédn unvuudteyv
TEAUEVOLY ULXEAL, AUTH 1) CUUTIERLPOPS TUPUUEVEL OYETLXA AUETIBANTY YL TO DLOPOPETLXSL
uey€dr. Autoé Yo e&nyolioe yiotl undpyouy dev UTdEYOUV UEYSAES Blapopég oTny enidoo
eEmXOLVOVIOG Lot Ta BLPOPETIXd UixpdTepa PEYEDT unvuudtwyv. Télog, 1 wxpedTeen
TUTUXY] AMOXALOT TOU ToEATNEE(TOL Yo ToL PEYSAX UEYEDN UNVUUATWY, EVOEYETOL Vo
TEOXAAELTAL Omd TO YEYOVOS OTL Yiar To HEYAAUTERA HEYEDT), 1) ENiBOOT TOL BXTUOL X
NG UVAUNG elvon Aryotepo tuyada.

3.3 ITapeufoAr emtixolvwViog ®xoll UTONOYLOWUM®Y

Ye authv TNV evoTNTa, TopouctdlovTalL OPLOUEV TELQUATH ToU Elyay ©¢ oxomd va
€€ETACOUY TG AAAAYES OTIC TOEUUETEOUS TOU UTOAOYLOTIXOU TUAUUTOS UTOROOV Vi
EMNEEACOLY TNV ETUXOLVWVIN, TOUEOAO TNG QPouvouevng aveoptnoiog Twv 800 auTeY
pdoewy extéheons. Me autdy 1o oxond, tpootédnxe éva unohoylotxd geayuo (barrier)
oty epapuoyr data generator, 6nwg alvetan otov Kodia 3.1 .

gettimeofday(totalTimeStart)

for time:
gettimeofday(communicationTimeStart)
communication(NumberOfMessages, MessageSize)
MPI_Waitall(MessagesToSend,MessagesToRecv)
gettimeofday(communicationTimeStop)
communicationTime += communicationTimeStop - communicationTimeStart

MPI_Barrier(custom_communicator); // synchronize a set of processes

gettimeofday(totalTimeStart)

computation(WorkingSetSize, NumberOfExtraOperations)
gettimeofday(totalTimeStart)

computationTime += computationTimeStop - computationTimeStart

gettimeofday(totalTimeStop)
totalTime = totalTimeStop - totalTimeStart

Koduwxag 3.1 Yeudoxwdixag e epapuoyrc Data Generator ue barriers

O custom_ communicator ctov onolo emBdhAeton To barrier, eivon €va unocivolo
Olepyaoleyv. Ou 800 TEPITTOOEL UTOCUVOAWY Tou e€etdotnxay elvar To cOvolo Tou
nepLéyel OAhec Tic diepyaoies (global barrier) xou tor Sidopa UTOGUVOA TV BLERYACLLV
TIOL AVAXOLY GTOV (BLo Puotxd eneepyaoty (socket barrier).

Ta mopandve barriers, yenowonoujinxay ce SL8Qopec TELCoUATIXES OLATAEELS TWV
TUNUATOY ETXOLVOVING xou UToAoYLoU®Y. ‘Ocov agopd To 8eltepo, and €86 xaL 6T0 eENG
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Yo xaholue Ta unohoyioTixd goptia Memory Bound étav autd eunepiéyouv ula mpdén
avd dedouévo xar Compute Bound X dtav nepiéyouv X mpdleig avd dedouévo.

Memory Bound

Yty Ewova 3.4 galvovtar oL ypopixeg TUpACTACELS YLl TOV YPOVO ETUXOLVOVIAG WG
ocuvdpTtnor peyédoug tou working set yia Tig TeElG BlapopeTXéC MEEITTWOELS barriers.
e auth TNV TepinTwor, €youv cuunepthngdel xou oL 500 xAloxeg YeYEDOUG UNVUUATOV.
Etvar mpogavég 6TL v to peyohltepo péyedog, tar barriers 8ev €youv onuovtixy
enidpaon otnyv enldoon. O Adyog yia autd Va e€etaoctel mopoxdTtw, aAAd mewmTa Yo
E0TIIOOVUE OTO UxPO UEYEVOC UNVUUATLY.

64 Nodes, Memory Bound

—o— No Barrier —®— Socket Barrier —®— Global Barrier
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Ewcéva 3.4 Xpdvol euxotvoviog yia didgopa barriers (Memory Bound)
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Do pixpdTepar UNvOUOToL, TO TOEATEVE dlary pduuoto dely vouy OTL Ta dlapopeTixd barriers,
€YOUV EMLPOY OTOUG YPEOVOUC EmxOVwViog. Xuyxexpléva, emBdilovtag to socket
barrier nopatneeiton plo Pertiwon tng enidoone oc OAeC TG BLUPOPETINES TWES TWV
dlepyaotdv avd x6pBo. Amé tnv dAAn, to global barrier gaiveton va €yel apvnTiny
enidpaon yio o apatoe x6uBoug xan Yaunhotepa ueyEdn dedouévwy. Mot dhAn yevixy
mapathpnon elvar 6Tl xaddg audveton 0 apLIUOS TV Blepyaolny avd xoufo, 1 Tumxy
ATOXUAOT| TWV AVAPEPOUEVLV YPOVMYV ETUXOLVOVIAG QAULVETAL VO LELOVETOL YL TIG EXDOTELS
ue to barriers. Avtideta, 1 €xdoor ywelc barrier mapouctdlel oyeTd LPNAY TUTLXY
andxALoT), YEYOVOC Tou YIVETOL TO EUQPAVES Yial UEYAUALTEQ UEYEDT BEBOUEVLV, ELOLXA
Yior HEYUAUTERO oo BlepyaoLdY avd x6ufo.

Ko to 800 barriers mpoctétouv évav avayxaoTixd cuyyeovioud PeToll Twv dLo
pdoewy extéheonc. Autd épyeton ue oplouéva TAEOVEXTAUATA Xou petovexThuata. To
x0pto mAeovEXTNUA lvon OTL BlVEL YpbOVO OTIC BlepYasieg var 0OAoxANe®oouy 1 wo pdon
TELY TEOYWEHOOLY GTNY AAAT, EVK TO XVUELO UELOVEXTNUO €lvol OTL ELOAYEL EVAY aBEUV
Xeovo avapovic. Me autdv Tov Tpomo, undpyel éva trade-off uetald tou adpavy| ypdvou
avoovhg xou TS YeTiXhAC eNBpoone TOU CUYYEOVIOUOD TwV TOpwY Tou Uoledlovio
peTagy Twv dlepyaoiwy mou Beloxovtal atov (Blo xoufo.

‘Eva ebhoyo oevdplo elvar 0Tl ywpelc ouyypovioud, oplouévec dlepyaoiec oe €vav
xOUBo 0AoXANEOVOLY TO Qdon emxovwviae (1 utohoylopol) Ayo vopitepa and dAles
xou Eextvolv Tov unohoylopd (A Ty emxowvovia). Otav ou undloinee diepyaoiec otov
{010 x6uPo OAOXANEWYOUY TN BXY TOUG PACT ETUXOLVOVIAC X0 ATALTOLY T YEHOT TWV
TOPWY TNG XOWAC UVAUNG, UTEEYEL ToeeBohY YETOEY NS EMXOLVOVIOG TOUC XOU TGV
UTOAOYLOPOV TV GAAWYV Olepyaolav. Emeldr) o ypdvog emxolvmvioag elvar €va uixpdTtepo
XAAOUA TOU GUVOMXOU YPOVOU OE GYEDT UE TOV YPOVO UTOAOYLOU®Y, elvon uaicintog
o€ T TNV TUEEUBOAY.

To yeyovog 6t to socket barrier yevuxd €yel xalltepn enldoon and T dhheg 600
exdooelg, utootnellel To Tponyoluevo cevdplo, xadwe autd To barrier elvon ouclaoTIXd
€VOC EOTIOUEVOC CUYYPOVIOUOSC OTN YpNom TWV XOWVOV Topwv. AT v GAAN, €V
to global barrier mpoogéper tov Blo cuyypovioud, To YEYOVOS OTL elvan AlydTepo
EOTIOUEVO, ELOAYEL €Val ETUTPOCUETO adpavy| Xeovo oe Ohoug Toug xoufouc. ‘Omwg
delyvouv Ta TEONYOUUEVY YRUPHUATI, AUTO TO ETTAEOV x0GTOG, GUYVE emioxtdlel Ta
TAEOVEXTHUATA TTOU TROGPEREL O GLYYPEOVIOUOG Ue socket barrier.

H auénuévn tumxn amdxhion tng éxdoong ywelc barrier evdeyouévwe vo npoxaieiton
and TO YEYOVOS OTL 1) TOAUTOYEOVN YEHOTN TWYV YOOV TOpwV UVAUNG €lodyel pio
afefodtnTo oty entdoon, onwe culnTAUNXE and GAAN OTTXA YWVIX GTNY TEONYOUUEVN
evotnra. H petopévn tumixy andxhon twv exddéoewy pe to barriers umopel vo elvan
€vag dAAog BElXTNG TOU TMOC O EEAVAYXACUEVOS CUYYPOVIOUOS UELWVEL TIC TopeUBOAES
ETXOLVWVIOC-UTOAOYLOUOD.

Téloc, 600V apopd TV EAheudr emppornc TwV barriers oTic TepITTOOELS UeYUNITERWY
UNVLUATOY, oUTH UTopel Vo ogelheTol GTO YEYOVOS OTL O AMOAUTOC YPOVOC ETULXOLVOVIAG
elvon yeyadltepog ota peyohlTepa HEYEYN xou €TOL AMYOTEQPO EMMIPETAC OTIC WMXEES
OLOXUPAVOELC.
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Compute Bound 16 and 32

Ta mopoxdte dlaypdupata delyvouv Tov ¥pdvo emxolvwviog yior Sdpopous aptduoig
dlepyaoty avd x6ufo, yio To utoloyloTixd goptio Compute Bound 16. Xe avtideon e
T0 poptio Memory Bound, oe authv tnv nepintwor, n emPBoir| barrier dev eivon Wowitepa
w@éhun oe xdnola tepintwon. H enldoorn yia To socket barrier xou tnv €éxdoor yweic
barrier elvou mapoduola oe TOAES eptnTHOELS, v To global barrier €yel ™ yedTeEn
enldoon 0E OAEC TIC TMEQLTTWOELS.

64 Nodes, Compute Bound 16

—o— No Barrier —®— Socket Barrier —®— Global Barrier
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Ewcéva 3.5 Xpdvog emxotvmviog yia Sidgpopa barriers (Compute Bound 16)

To clotnua €xetl Tapdupolo cuuneplpopd yia goptio Compute Bound 32, 6nwe gaivetan
otny Figure 3.6.
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64 Nodes, Compute Bound 32
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Ewcéva 3.6 Xpdvoe emxoivmviog yia Sidgpopa barriers (Compute Bound 32)

Avuth 1 ouuneppopd delyvel 6TL o mepinToel compute bound goptiou, dev uTdpyEL
copic Olaudyn HETOED TWV BIEQYUOLDV XL OTIC OVO OLUPOPETIXES QPACELS EXTEAEONC
(emxovmviag xat utoroytopwy). Evoac Aoyog yia autd unopel va elvon 6Tt eneldn n @don
unohoytopoU yia Too compute bound qoptio €yel onuovTixd YeyaAlTeERY OldpxEla O
oyéon ue évo memory bound goptio, o diepyaocies elvar mo mdavd vo ohoxinpwoouy
N @don vrohoyiopol mepltou TNV Blor Ty, Autod oucLaoTIXG onuaivel OTL LTEEYEL
€vac YohapdC LY YEOVIOUOG UETAED BLERYAOLOY Xl TWY dVO QACEWY EXTENEOTC.

3.4 YuunepdopaTa

YuvonTixd, péoo omd To TELPAUATA TWY TUPUTAVEL EVOTATWY, QAVNXE OTL 1) Oloudym
Yo TOUC %0LvoUC TOEOUE PETAED DLEPYAUOLOY TOCO OTO TANGCLO XOL TNG ETLXOLVKVIAG
600 YOl TWV UTOAOYLOU®Y, UTOEEl Vo TEOXOAESEL ONUAVTIXT ahAayEéC TNg enidoons tng
emxotvwviog. Ou ahhayég autég elvon mo mdavd va mapatnentdoldy 6tay 1) emxolvwvio
EyeL oyxeTwd uxpotepo péyedoc (uxpd pnvipata) B to umoloyloTxd TUAUa Elvon
OYETXA WxpdTepo xan memory bound. Mio axdun onuavtixy mopatiency, elvar 6Tt
xode augdvetan to péyedoc Tou working set, auvidveton xar 0 Ypdvog emxolvmvioc.
‘Evoag moapdyovtog vyl autd elvar To yeyovog 6TL to péyedoc Twv Unvuudtwy elvo
ouvdptnon tou Yeyédouc Tou working set, ahAd axodua xon av To péyedog unvuUdTLY
frav otodepd, auth N ahhayy) Yo e€oxolovdoloe va undpyel oe xdnoto Badud. Autd
ouuPalvel enewdn, €yovtag un-cuyyeoviouévee Odiepyaoiee ue 800 @doelc extéleonc,
TPOXONELTOL ULl Y POVIXY| HETATOTILOT| TTOU ETNEEALEL TO YPOVOS UVOUOVAS YLOL TOL AL THUATA
emxolvoviog xde Siepyoaoiac. Autd To QAUVOUEVO €lvol XATL TIOU €Vol OYeTXd AmAd
HOVTERO, TS €Vl amd AUTA oL TaPOUCLALOoVTOL OTO ENOUEVA XEQIAALOL (NUL-EUTELPXO),
unopel var unv xatapépel vo TeoBAEdeL.



4. Movtéha xor n A&lohdynor| Toug

Avutd 1o xepdiono epPodivel oto Véuo Twv Poviélwy, eEetdlovioc TIC OLdPOpES
TPOGCEYYIOELC HoVTEAOTOMNONG XAUMC Xl TS UETPLXES TOU YEMNOLLOTOLOOVTAL YLl TNV
alohoynoY| Toug.

4.1 Eidn Movtélwv
AvoruTtind Movtéra

Ta avolutixd povtéra etvan éva €ldog povtéAwy mou PBooctleton otor yordnuatind xou
Yewplo. Eyouv poper xhetotdv tinwy xou Bacilovia o pedodoroyieg and tnv Yewplo
YO VO OVOTOROOTACOUY T CUUTERLPORE Hiog TapdhANANG e@apuoYhc oe €va cOoTNUA
HPC. To yeyarltepo TASOVEXTNUA TOUG BploxeTol OTNV IXAVOTNTA TOUC VO ToREYOUY
TANEOYORIEC OYETIXA UE TIC VEUENMDDELS TTUYESC TNG CUUTERLYPORAS TNS EQPAUPUOYNC XAl
TOU OYEOLAOUOL NG AEYLTEXTOVIXNC YWEIC VO ATOUTEITUL EXTEVAC EUTELQIXOS EAEYYOC.
207600, %WVOC Ol CPYLTEXTOVIXEG XAl Ol EQUPUOYEC Ylvovtow TLo TOAUTAOXES, 1|
TeoBAedn yiveton mo BUGKOAN YLoL QUTE TAL LOVTEAX, TEOXOADVTOC UL OTROYY| TEOG TLO
eZehypéva epyaheia. Xto mhalolo g mapolcas Simhwuatixic epyaoctog, dev e€etdotnue
AVIAUTIXE ®ATOL0 avOALTIXG HoVTENO. Tlopdha auTd, Tor avaAUTIXA LOVTEAX amOTEAOUY
éva e€oupeTind mopddelyuo tou tradeoff yetolld tng moAumioxdtnToc xou g enidoong
mou Yo Eavagepdel apydtepa oe autd TO XEPIAAO.

Hp-epneipixé MovTtéro

Avutd to povtéha elvon To onuelo ouvdvinong g Vewplog XoL TWV TELRAUUOTIXDV
TapatneNoEwy.  Xuvdudlouv Bedopéva and TNV EXTEAECT] XATOLOU  TEOYEOUUITOS
avopopdc/dnuovpyiog dedouévev pe éva Yewpnuixd mialoo. Katd tn Sudpxeio g
XATAOUEVNC EVOS TETOLOU UOVTEAOU, O XAELGTOC TOTOC TOU GUVOLALETOL UE TOL TIELOOATLXGL
dedouéva, oynuotiletar amd éva Vewpltixd TANOLO Xt BEATIOVETAL YPNOULOTOLOVTAS T
eunelpixd oedopéva. Ilapdho mou autdc 0 cUVBLACUOC VEWPLUC XL TEUXTIXWY BEDOUEVHV
oaxolyeTon ooV o eEUEETIXY péoT ADOT, AUTE T HOVTEAX UTOPEl TEGYOLY amd TLG
(e aduvopicg mou €youv Ta aVOALTIXE UOVTEAX. XE TO TEPIMAOXES EQUPUOYES XoL
CUCTAUATA, 1) TEOBAEYT TLo TERITAOXWY PaLVOUEVWLY elvor Lo BOGXOAN ot O AELIUOS TRV
aveldptnTwy PeTABANTOY uropel vo auéndel, xahotodvtog To 80oX0N0 TOV CYNUATIOUO
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evoc tUmou. ‘Evo oyetind oamhd mopddelyyo ouTAC TNG TROCEYYLONG, oS ol Ui
e€étaon tNg TEOPBAENTIXAC TOU BUVAUNS, TUPOUCLALETOL GTO ENOUEVO XEQPAANLO.

Euneipuxd Movtéha - Mnyavixry Mddnon

2ty meplnTwon aUTAC TNG TEOCEYYLONG TU OEDOUEVA €YOUV TEOTEQUUOTNTA EVAVTL
e Vewplag. Autd Tt povtéha yenolwwomoioly éva cUVOAO Oedouévey Tou  EYEL
meoxOel and TNV exTEAECT, €VOC TPOYEAUMATOS Onulovpylag Oedopévev 1 evog
UETPOTROYEAUUATOS, VLo €VOL E0pOC TV TV ETAEYUEVWY avedpTNTwY YETOBANTOY/
features. Ou alydprduol unyavixic puddnone alonolodvton ylor Tov eviomioud potifwy,
CUOYETIOUMY XL TEOYVWOTIXWY ToQayovIwy ota 0edouéva. To yeyovog 6t t€tolol
ahyoprduol elvon mAHpwe aveldptntol Tou Yewpntixold undfodpou TOL QULVOUEVOU
TOU TEOXELTAL Vo Yovtelonoinlel, Toug xdvel dixono poyalpl. And tnv pio, unopolyv
€0XOAOL VAL TPOGUPUOCTOUV Yot Vo TEoBAEéQouy ue oxp(Beia €var Qauvouevo, axourn xou
He TV mopoucia o nepimhoxwy cLoYeTioEWY UETAHEY UTOXEUEVWY QoUVOUEVKDY ().
TopeUoréc uTohoylopoU /emxovwviag). And tny GAAN, 1 éNhewdn avdyxne v évo
YewpnTxd mhaiolo pmopel vor xdver autd Tor Yovtéha vor elvon e€oupeTind puiuiouéva
(overfitting) ota dedopéva Tou ypnotwomotfinxay xatd tn Sidpxela tne exnaidevone. T
TO AOYO QUTO, 1) EQUPUOYT IOV YENOLLOTOLELTOL Yo T1) dnpLovpylo SedouéVeY Yo TEENEL
Vo elva Xohd oyedlaopévr xou vor udpyel Bodid xatavénon auTthc, OOTE Vo UTopoLy
vo evtomiotolv midavée aotoyleg evog povtélou. Emmiéov, ta yovtéha unyovixhg
uddInong mTohd cuY VA TAoYOLY ATd ENAEWUATIXY EPUNVELCLLOTNTA XS Ol pordnuoTixot
UNYAVLOUOL TTOU YENOWOTOLOVUVTAL OE GUYOLACUS UE TO TARJOC TwV BedOUEVWwY, UTopel va
OMULOURYAOOUY Wlol POULVOUEVIXA YAOTIXT EXOVA TOU HOVTEAOU, WD O XATOLOV Ywelg
UEYAAT eunelpia e TéTolou eldoug pedddoug.

4.2 Metpwxég Enidoong Movtélwy

Ye authy TNV eVOTNTA, ToEOLGCLALOVTAL OPLOUEVES UETEIXES YO TNV ELOAGYNOT LOVTEAWY
mou Yo yenowonoindolyv ota emdueva xepdiona. o Tic yodnpatieée exgpdoeig mou
axohovtolv, n elvar 0 apLiudS TwV BeElYpdTwy ot éva cOVOAO PETPNOEWY, Y Eelval oL
HETPOVPEVES TYES (Tou amoteholy évay Thnduoud), ¥ elvon 1 péon T evog TAnduouo
xou Y elvan oL avtioTolyeg npoAenOueEVES TUES.

Méoco Tetpaywvixd Xgdipa (Root Mean Square Error, RMSE)
Avt 1 yetewn elvon éva uétpo Tou o@dipatoc TeéBiedne xou €xel TNV (Bl Lovado e

NV TeoAenduevr uetoBAnTr. Elvow évag tuminde tpdmog uétenong Tou oQaAUaToS VOGS
novtérou. Madnuoatxd exgppdleton we e€ng:

N
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ITocooTiaio Xpdipa xow Méco ITocootiaio Xpdiuo (Percentage Error
and Mean Percentage Error (MPE)

To nocootd opdhyatog elvar war TWr mou expedlel TN oyeTxn dlapopd UeTald HLog
TeolAedne xon tng meoypotec Twg. Mmopel va elvan xon cpvnTind xou Vetind. Mia
aEVNTIXY TIH UTOBNAWVEL OTL €va WOVTEAO LTER-TIEOPBAETEL, eV Wla YeTxr 6TL uTo-
mpofAénel. Alvetar and TNy axdhoudTn Exgppaon:

Yi — Ui
Yi

Percentage Error = 100%

Auth) n petpwh unopel vo ypnowonomlel ye ™ pop@r molhamhodyv oy (uio yio
x&0e yétpnomn) xou e eviada Yéon Tih, OTou PTopolUE Vo ABouue To H€oo ToGOGTINO
CQANUL:

— i
Yi

100% <X y;
MPE = N Z

=1

Yy meplntwon tou MPE, 1o detxd xon to apvntixd o@dipoto VOEYETOL VoL
avtiotadpicouvy to éva to dhho. I't 'autd To AoYO, M TWH XL TO TEOCNUO AUTAC TNG
adpoloTinhc YeTpc unopel va Yeweniel we évoeldn unep-npoBiedmne ¥ uno-npdBredng.

Méoco Andéiuto ITocootioio Tpdipo (Mean Absolute Percentage Error,
MAPE)

To péco anéiuto nococtiato opdhua elvar Tapduolo Ye Ty nponyoluevn uetewx) MPE,
HE TN OLpOEd OTL YENOUOTOLOUVTOL AOAUTES TWES OTNV EXPRICT):

100% < |yi — 3]
MAPE =
N ; il

Avuth n tur urnopet va yenowonowndel avtl yio to MPE 6tav 6 pog eviiopépet 1 €xgppaon
e unep/umd TEdBAedN Tou avapéeinxe xan Lbvo éva andhuTo UEYEVOC TOU GPIANIAUTOS
o€ mocooTlaleS TIES elval apxeTO.

Yuvteleotric ntpocdioptopoV (Coefficient of Determination, R2)

O ouvteheotrc mpoodloployol elvon ot TWY TOU  YpNOLMOTOLlE(ToL  CUYVE  OTN|
povtehonolnon xan SlveTon amd TNV ToEUXATE EXPEICT):

N .
2 im1 (Wi — 9:i)*
N -
> iz (Wi —9)?
O apriuntic e mopandve ovoroylag elvoar To ddpolopd TWV TETEUYOVOV TV

oQoAUdTLY Xxou Umopel vor exAn@del we pétpo Tou améAutou Addoug Twv TEOBAEDEWY.
O nopovopaocthc elvoar 10 cuvohixd dlpolopa TV TETPAYWVWY Xat €lvol avIAOYO

R2=1-
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ue TN Olaxdpavorn tou TANUuopoL Twv UeTeRocwv. Auth 1 padnuotixr €xgpoon,
avTLTOEOPBAAAEL TN «BLOOUOVOT» TWV TEOPBAETOUEVOY TWMY HE TN OLIXLUAVOT TOU
mAnduouold TV meayUoTxdY Tov. Me dAlo Adyia, quTh 1 UETEWH TopEyEl éva
HETEO TOU XAAOUATOS TNG BLoXOUAVONS TOU XUAUTTOLY oL TEofBAédels. XNy xohiTepn
nepinTwor, mou Ohec ot tpofhédelc Touptdlouv Ye OAEC TG TEAYHATIXES TUWES, 0 BEOTEPOG
6poc undeviCetow xau R2 = 1. Xtnv amhy) mepintworn 6mou dhec ou mpofiédeig elvou
loec ye ™ péon Ty Tou TANYUoPOD TwV PETPHoEWY, 0 delTEpOg bpog elvan (cog pe 1,
xalar Brancdyovor dev e€nyeiton and tig mpoPrédelc, xoau R2 = 0. Av ol npofBiédelg elvou
OUVOAMXS YELROTERES ATO TNV TEOTYOLUEVT] TERIMTWON TOU UEGOU OPOU, GGOV APOEY TNV
ave€ Y NTN SLaxVUAVOT), O CUVTEAECTNS TEOGOLOPIOUOU UTOREL VoL ELVAL Yol APV TIXOC.



5. Hu-Euneipoixd Movtero

e aUTO TO XEQPAAOLO, OVORVETOL EVOL NUL-EUTELRIXO HOVTEAO YLOL TOV YPOVO ETUXOLVOVIAC.
‘Onwe avagépinxe, yia éva T€tolo wovtého, yeeldleton o avahuTixn €xgpact), e Bdon
N Vewpla xan T YEVIXEC TURATNEHOELS, XAl OPLOUEVO BEDOUEVA, TTOU GUAAEYITUAY UETK
HLOG TIELQOUATIXAC OVEAUOTG YLt TLG OLAPOPES TOPAUUETPOUS TTOU UTOREL VoL UTLAEY 0LV GTOV
TUTO Tou pwovtélou. I'a To Teheutalo, yenowwomolinxay dedoUEva amd TNV EXTEAECT) TNG
x\dong Ezchange twv Intel MPI Benchmarks. ‘Ocov agopd tnv avalutixn €xgeoon,
VT CUVETAY VT UETA oo TNV AVIAUCT] TV DEBOUEVLV aVAPORAS.

5.1 Metponpoypoupa Exchange MPI
To "Exchange" arnotehel uépoc twv petponpoypopudtwy Intel MPI xou eivon amoteheitan

and potBo emxolvwviog mou elvon tapduoto ue Ty egopuoyr data generator. Autéd to
notifo galveton otny Ewxdva 5.1.

/yodic\cha-n\\
PR.I1 PR.I PR.I+1
MPI_Isend MPI_Isend MPI_Isend
MPI_Isend MPI_Isend MPI_Isend

AT MPI_Recv MPI_Recv MPI_Recv
MPI_Recv MPI_Recv MPI_Recv
MPI_Waitall MPI_Waitall MPI_Waitall

Each carries X bytes

Ewéva 5.1 Exchange Intel MPI Benchmarks
(ntny#: Intel MPI Benchmarks User Guide )

Elvon mpogavég 6t autd To potiBo emxolvewviag lvon Tapduolo Ue Tn gaoT emxolveviag
wog yeovixnie emavaindng tne egoppoyic data generator yio 2 unvopata. Kdie
olepyaoio avtodhdooel 600 unviuata e 5o YelTove.


https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/exchange.html
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O yetproeic and v extéreon autod Tou TEOoYEdUUATOC €Yve ot 64 xoufouc Tou
ARIS gaivovtou oty Ewdva 5.2. O yetpoluevog ypdvog emxotvwviog elvon o uécog 6pog
evoc ool emavalhewy xaw avtiotolyoly oto At tou epgaviCeton otny Ewdva 5.1. O
OLAPOPETING YPWUNTIOUEVES YROUUES AVTITPOCWTEVOLY BLAPORETIXG apLIUO DLERYATLLY
avd x6puBo mou exteEAéoTNXE TO PETEOTEOYpoUU. O avapepduevog ypdvos auvédveto
avdhoya Pe TO PEYEVOG TWV UNVURATWY Xl UE TOV oo TWV BLERYAOLOY avd XOUfo.

64 Nodes, MPI Exchange

Processes per Node 1 —e—2 4 8 —e— 16 —e— 20
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Ewova 5.2 Metpornpdypopua Exchange yio 64 KoufBoug
5.2 XztiovTtag pia avahuTtinn Expeacn

[ voe mpox el Lo avohuTIXY) €XQEAOT YLoL TO NU-EUTELRXO UOVTEAO, TO TpwTOo (Brua
elvon vo mpoadloploTtoly ot aveldptnteg UeToBANTéC Tou povtélou. Aedouévou 6Tl TO
Exchange eméyinxe we Bdon dedopévwv petprioewy, meénel va Angdolyv unédmny ol
TEAUETEOL UTOY Tou TpoYeduUatog. ¢ onuelo exxivnong umopolv vo Angdolv ol
TapdeTEOL oL avapépovTal otny Evétnta 1.4. And autég unopolyv va e&epedolv auéong
Ol TOPBUETEOL IOV EYOLYV VO XAVOUV UE TO UTOAOYLOTIXO TUNUA, APoL DEV LTHPYEL TETOL
@don oto npoypaupa Exchange. EmnAéov, to yeyovog 6t n emxowvmvia elvar ototixn
¢ TPOC ToV optdud unvuudtey, uropel va agaipedel xan auth 1 topdueteog. Téhog, apol
egetaleton 1 mepintwon yio 64 xoufoug, xou dedouévou Ot €yel derydel oe TponyolUEVO
xe@dhono (Evétnra 3.1) 6t 0 ypdvog emxovmviag Topauével 0To (Blo eVpog TMY 6Ty
N wovn ahhoy? elvon o aprdude Twv xOuBwv, uropolue eniong vo amoxAelcouue xou
ToV opLIUOS TRV XOUPWY K¢ ToEdueTeo. ATd To TapATdve, TEOXITTOLY oL axOAovdeg
TUEGUETEOL YL TO NUL-EUTELRINS LOVTENAL:

e Méyedoc Mnvupdtwy

e Aupyaoieg ava Koyfo
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Aigpyaocieg ava Koufo

Acedopévou 6Tl 0 UxpdTEPoS apLiUdS Blepyaotdy avd xoéufo elvon 1, pior doncIntixn
xatevduvor elvon 1 yeron Twv PETENOEWY Yia Ta dldpopa PEYEDT UnvupdTwy xou 1
PpN (process per node) w¢ Bdorn. Me avtév tov tpémo, o aptduds diepyaotdv avd
x6uPo, unopel va yenowonondel wg mtolhaniaciootic. o tov éheyyo av authg Tng
oyeong, o Iivoxag 5.1 delyvel pepind nopadelypaTa TOU UECOU UETENUEVOL YPOVOU YLa
évay YeTABANTO aprdud diepyaoimy avd xoufo.

ITivaxog 5.1 Aedoyéva tou Exchange vl Sidpopeg dlatdéelg

Meéyedog Aicpyoaocieg ava KouBo Meéocog ypdvog
RN VURET® Y enuxolvwviag (psec)
1 (64 processes) 27.49
2 (128 diepyoaoiec) 43.77
32 KiB 4 (256 Sepyootiec) 66.73
8 (512 diepyaoiec) 116.48
16 (1024 diepyaoiec) 235.55
1 136.91
2 250.50
256 KiB 4 453.08
8 923.11
16 1897.49
1 980.38
2 1900.20
2 MiB 4 3679.86
7520.41
16 15333.66

O mopandve Tiég delyvouv 6tL dimhacidlovTac Tov apuiud TwV dLEpYALOY avd xOufo,
o uéoog ypbdvog, ahAdlel emlong xatd évav ouvieAeoth xovid oto 2. H mapouacio
oafBefoudTNToc 0TO TMEWAUATING DEBOUEVA ETUTRETOUY Wlal DEXTIXOTNTA OTIS OLUPORES TOU
TEOXUTTOLY.
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64 Nodes, MPI Exchange

Processes per Node L —=2 4 8§ —e— 16 —e—20

¢ Prediction ® Measurement

40k -
30k -
20k -

10k -

Average Communication Time (microseconds)

Message Size

Ewcova 5.3 [lpdBredn tou Exchange e tic diepyaoies avd xépfo we napduetpo

H Ewoéva 5.3 delyver mpofAiédeic vy 10 péoo ypodvo Eemxoivwviag, Tou €YLvay
YENOWOTOLOVTOS TIC TWES Yio Wlor Blepyaoio avd xoufo xar yio Ao Tar BLapopETIXG
HEYEDN UNVLUATWY WS BACIXEC TEQLTTOOELS, OE Wlol EXPEAOT) TOU Yenolonolel To aptdud
OLERYAOLOV avd xOUPOo W TopdyovTo:

Communication Time(PpN, Message Size) = PpN * Base Case(Message Size)

H yevixr| euxxdvo mou dlvetan elvon 6tL oL tpofAédeic elvon apxetd xovtd oTic HETPOVUEVES
Téc. To «eumeipixd» Yépog autod Tou amhol uovtélou elval oL Bacixés TEPIMTWOELS
Yiol To OLUQPORETIXA UEYEDT) UNVUUATWY. LTNV €NOUEVN EVOTNTA, 1) Bocixn Tepintwor Yo
uewwel oe pla uovo pétenom, mpocvétToviac To PEYEVOS UNVUUATWY WS TUPSUETEO.

MeéyeBog pnvupdtwy

INo vo e€etaotel N enldpaon Tou peyéloug TwY UNVUUATWY OTO YpOVo Emxolvmviag,
anopovouevn and v enldpacn tng mopopéteou PpN, urmopel vo Angdel unddmy n
axohoudn avaroylo:

Communication Time
Base Time x PpN

Communication Ratio =
)

6TOL 0 Baoxdg YEOVOS Elvol ULol LOVOBIXT) TUT EVOC UETENUEVOU YEOVOU ETUXOLVWVIOG Yo
1 PpN xou éva cuyxexpiuévo péyedoc unvuudtwy, emieyuévo va eivar (oo ye 4 KiB. Me
T TNV avohoyia, UTOPOUUE VO XEAVOUUE TORATNENOELS YId TO TG O YPOVOG ETULXOLVOVIAG
oarhdlel e Tig ohhayée oTo PEYEVOC UNVUUETOVY YwelC Vo UTEEYOUY Ol dAAXYEC TOU
empépet 1 ohhayny tou PpN (oto mhaioto tou mpotetvduevou poviéhou). Autd ouufBaiver
OLOTL OTNV TEONYOVUEVY EVOTNTA QUTH 1) TUEIUETEOS ETUAEYUNUE WS TOMNATAACIACTHS
X0l OTOV TOEATAVE AOYO ETUXOLVOVIAS YenoloTotiuUnxe we dtanpétne. Mo dhAn yeroun
avahoylo mou Ya yenowwonowndel etvon 1 avohoyio peyédoug unviuatog mpog to péyedog
unvopatoc e Baowrc nepintwone (4 KiB):
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Message Size
Base Case Message Size,

Message Size Ratio =

O Iivaxog 5.2 mepléyel peEXd TapUBElYUATA TWV ToEATAVEL AOYwY Tou Bohinocay oTnv
ETAOYT TOU TS UTOREL Vo EXPEACTEL AVOALTIXA 1) ETUBEACT] TOU UEYEVOUS UNVUUATOV.

ITivaxag 5.2 Acdopéva tou Exchange pe Bonintixoidc Aéyoug

Aiepyacieg avd Meyedog Abvyog Bondntixoc
Koéppo Mrvuudtwy weYEYoug Adyog
UNVURATOV
256 KiB 64.0 22.44
512 KiB 128.0 41.53
1 (64 diepyaoiec) 1 MiB 256.0 80.11
2 MiB 512.0 160.71
4 MiB 1024.0 351.55
256 KiB 64.0 20.53
512 KiB 128.0 38.29
2 (128 diepyaotec) 1 MiB 256.0 78.47
2 MiB 512.0 155.75
4 MiB 1024.0 332.44
256 KiB 64.0 18.56
512 KiB 128.0 36.71
4 (256 diepyaoiec) 1 MiB 256.0 74.66
2 MiB 512.0 150.81
4 MiB 1024.0 327.50
256 KiB 64.0 18.91
512 KiB 128.0 37.90
8 (512 diepyooiec) 1 MiB 256.0 76.05
2 MiB 512.0 154.10
4 MiB 1024.0 333.18
256 KiB 64.0 19.44
512 KiB 128.0 38.49
16 (1024 depyooiec) 1 MiB 256.0 77.46
2 MiB 512.0 157.10
4 MiB 1024.0 334.86

[Mopatnewvtag Toug 2 AOYOUS Yial TIC OLUPORETIXESC TUIES TOU oELUHOU TWV BLERYACLHOY
avd xoufo, mapatnesiton éva potifo. Xuyxexpiuéva, 1 avohoylo YeyéUoug unvuudTwy
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gofveton va elvon otadepd xovtd oto TtEmAdoto tou Adyou emxoivwvios (ol
TUEUTNEOVUEVES TWES xupaivovTan and mepinov 2,8 €wg 3,2 QopES Yia TO DLUPOPETIXG
peyédn). Autd odnyel otnv axdroudn éxgppaot, 1 onolo cuvOLAlel Tic dlepyaoies avd
%x6uPo xou To YEyeog TV UNVUUATODV:

Message Size

1
Communication Time(PpN, Message Size) = PpN x 3 x Base Case

Base Message Size

)

onou base case eivon 0 ypdvog Yo ula diepyaotio avd xoufo xa 4 KiB.

H Ewova 5.4 delyver tic npofrédielc mou mpoxTTouY amd TNy MoQumdve oyéor. 2
cUYXQELOT UE TNV TEoNYOoUUEVN exdoyn, elvon @avepd OTL 1 mpoPAentixy| enldoon elvou
EAAPEOC YEROTERT], YEYOVOS TTOL OYelleTol otV Tedcveon piog aveldotnTng HETUBANTAG
xan oTn pelwon Tou mAdoug Twv base cases oe ila.

64 Nodes, MPI Exchange
Processes per Node L2 4 8§ —*— 16 —*—20

¢ Prediction ® Measurement

40k -
30k -
20k -

10k -

Average Communication Time (microseconds)

&

Message Size
Euwcova 5.4 Hu-eumpexd poviého Exchange (npohédeic xou ooy potinés TieS)
5.3 LOyxpLom pe TNV epappoyn data generator

Metd 1 olOvtadn Tou mopamdve HOVTEAOU, €YLVay OLAPOopES TEOOTAVEIES Yiot TNV
TeolAedm Tne enidoong Slatdewy Tou avTIeTOLY0UCAY Ot EXTEAETELS TNG EapuoYYc data
generator. Autéq ol TpooTdiEeleg ElyaY UN-LXAVOTIOLNTIXE ATOTEAECUOTO IOV Tapoucialay
otadepd LPNAG TmocooTilo o@dAUd. AuTO EVOEYOUEVLS VO OQElAETAL OTN BLopopd
TV egapuoy®yv Exchange xou data generator xou cuyxexpuéva otny éAAewpn @dong
UTIOAOYLOUGY TNG TEMTNG.



6. Movtéha Mnyoavixrc Mdidnonc

6.1 OswenTixd Yro6Badpo

O otoyoc mou éyer tevel elvon 1 Onuioupyla evog poviého mou va TEOBAEMEL
TOo YpOVO ETXOVGLVINS, OEBOUEVKV TWV TWOV oplouévewy mapauétpwy (features).
N autd, umopel va ypnowononiel omolodrmote Yoviélo emPBAenduevng udinong
ue mohvdpdunon (regression model). To povtéha autd Aettoupyolv TEEVOVTAC
enavalopBavouevo ta dedouéva tou dataset, emAéyovtag xou puduiovtog ulo xaTdAAnAn
cuVdETNoT avTloTolynone mou Tawpldlel xohltepa otor dedouéva, (Bdoer evoc loss-
function. Auth (pio loss-function) eivon plor cuvdptnon mou mocotuxonotel xdmoia
oahhayy) TV ave€deTnTwy UETABANTOV xatd TV exnoldeucy Tou Yoviéhou. Me autdv
TOV TPOTO, oL ahyopLiuol TaAvdeounons Beloxouv T xatdAANhec oyéaeig YETE) TwV
emheypévwy features (aveldptnrec petofintéc) xou tou label (eCoptnuévn petofBantr).
AwopogeTixol olydprduol yenoidonololy dlagopeTixée pedddous Yo vor Bpouv Tig
rpoavagepieioeg oyéoelg. I Ta povtéha mou Ya tapouciactoly, emAEYINXay LovTEA
TIOL YENOLOTOLOUY TOANS §évdpa amopdoewy (Decsion Trees) oe dudgpopes dlatdEelc.

Aévdpa Anopdoewyv (Decsion Trees)

To 0évdpa amogdoewv elvon wia teyvixy| emBAETOUEVNS pdnong mou umopel va
xenowomnowndel té6co oty Tagvouncrn 6co xo oTny moAlvdpounon. Baoiloviow otov
Ol WELOUO TOU GLVOAOU BEBOUEVWY oe uTocUVoAa. Katd tn dudpxeio tng exudinong,
10 oUvolo dedouévwy (dataset) ywplleton oe utooivaka pe Bdon Tic BIAPOPES TWES TV
features, dnurovpywvtog pla oelpd anopdocwy nou powdlel ye dévtpo. Kdde Sioywpetoude
emAéyeToL Yiot va ehaylotononVel 1 SlaxdpavoT eviog Tou xadevog xhddou /utocuvohou,
He oToy0 Vo undpyouv @OMa (telxol x6ufol) ue ouoloyevelc ¥/xou TopoUOlES TUEC.
Avty) 1 Swdixooia dioywpetopod cuveyiletar péypel va exnAnewiel éva tpoxaoployévo
XELTARLO DLUXOTAG, OTWC EVAG EAAYLOTOG apLIUOE BELYUATWY OE €val UARO 1) €var UEYLOTO
Baog dévtpou. ‘Eva 0évtpo anogdoewv mou yenowonolel features amd tnv egapuoy
data generator galveton otnv Ewxdva 6.1.
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Number_of_Messages >= 6.00000
value: 348273 (28)

Message_Size_(Bytes) >~ 319600

Message_Size_(Bytes) ~— 173760
value: 4.96117 (6) 1 essage_Size_(Bytes)

Computational _Load_Type value: 1.55792 (30)
Compute_Bound 1 Processes_per_Node >= 12.0000
value: 2.07544 (103) value: 1.89694 (97)

Number_of_Nodes = 24.0000
Message_Size_(Bytes) >— 434400 [ value: 1.28208 (26)
value: 1.01920 (39) 1 Number_of_Nodes >~ 24.0000
value: 0.493443 (13)

Number_of_Messages >~ 3.00000

Working_Set_Size_ (Bytes) ~— Jalue: 179562 (32
king _Set_Size_(Bytes) Message_Size_(Bytes) >= 122880 value: 1.79562 (32)
201327000 21143 (
value: 0.416489 (1084) value: 1.21143 (58) 11\1essag<=75ine7(n)vtes) -~ 30720.0

value: 0.192422 (26)
Working_Sct_Size_(Bytes) >—
83886100
value: 0.500021 (253) Message_Size_(Bytes) >— 153600

_(
Number_of_Nodes >= 48.0000 value: 0.475586 (56)

value: 0.288423 (195) Message_Size_(Bytes) >= 153600
value: 0.213019 (139)
Processes_per_Node >~ 18.0000
value: 0.242308 (981)
Processes_per_Node == 6.00000
Number_of _Nodes = 48.0000 value: 1.01927 (25)
value: 0.550310 (75) 1 Processes_per_Node >= 6.00000
value: 0.3T5831 (50)

Working Set_Size_ (Bytes) >

83886100 value: 0.151064 (323)

value: 0.152745 (72

value: 0.152745 (728) Working Sct_Size_(Bytes) >=
Processes_per_Node >= 6.00000 20971500 \
value: 0107083 (653) "\ Message_Size_(Bytes) > 76500.0

value: 0.0640358 (330)

Ewxova 6.1 Ilopdderyuo 8évdpou amdpaong
Mé9odol Ensemble pue A€vopa Anogpdoeswy

Ov Médodor Ensemble cuvdudlouv tic mpoPrédelc TOM®Y SLapopeTind pLIULOUEVGLY
HoVTEAWY piag owoyévelag, yia va 8oouy éva mo olomioto anotéAeoua. Y rdpyouy
000 %oTeLVVVOELS YLoL TO CLUVOLIOUO TOAAGDY BEVOpwY amopdoswy. H mpwmtn elvar o
LTAPGAANAOCY  CLVOLOOUOS, OTIOU TOAAS BEVOEX OLAPOPETIXWDYV BLATAEEWY Xdvouy uia
meoPBhedn. Totepa hauPdveton o péoog 6pog auTwV TwV TEoPAdewy wg 1 xlpla
TeoPBhedn tou povtéhou. Auth n uédodog elvon yYvwoth we Random Forest xou pio
oynuatxr e€fynon e galvetan otny Ewdva 6.2
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Training Dataset

Random subsets
and features

Tree 0 Tree 1 Tree N

Prediction 0 Prediction 1 Prediction N

!

Overall Prediction (Average)

Ewova 6.2 Yynpotixnd EE4ynon Random Forest

H Bedtepn xotedduvon elvoaw o «oxolovthoxdc»  oUVOLICUOS TOAAGY  BEVOPWY.
Yuyxexpwéva, oe xdde eminedo yivovtar mpoPBiédelc twv omolwyv unoloyiletow To
opdhua. Autd yenowonololvto we dataset yio o 8€vopo Tou enduevou emmédou. Auty
N wédodog elvon Yvwoth we boosting xou 1 urtoxatnyopia mou yenowworodnxe oe auTy
v OumAwpatxr elvon To Gradient Boostiny nou e€nyeiton oynuotixd otnv Ewxdva 6.3.

Training Dataset }

Prediction 0
(constant)
Calculate Calculate new Calculate new
Residuals Residuals Residuals
Tree 0 Tree 1
Prediction 1 = Prediction 2 =
Prediction 0 + wi * Predicted Residuals 0 Prediction 1 + w: * Predicted Residuals 1
l Calculate Weights wi for l Calculate Weights w for
Predicted Residuals 0 ———————————  Predicted Residuals 0 Predicted Residuals 1| ——————»|  Predicted Residuals 1

(optimization problem) (optimization problem)

!

Prediction N =
Prediction N-1 + we: * Predicted Residuals N-1

Ewcova 6.3 Yynpoati) EEQynon Gradient Boosting
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Ou viormoioele Twv 8U0 YOVTEAWY exUdUINcng cuvolou Tou yenotdorodnxay elvol
autée mou avogépovtan otny BiBModixn TensorFlow Decision Forests (TF-DF), n
omnola yenowonotel Ty BBAodrxn YDF Decision Forests. Xpnowwonowwvtog to dataset,
eyvay mepduata toco pe random forests 6co xou pe gradient boosting, yio mohhég
OLAPOPETIXES DLATAEELS TWVY UTERTUPAUETEWY xdUe povtéhou. Tehixd, n uédodoc gradient
boosting cuveymg TapHyE AVOTERYN TEOYVWOTIXY| ETDOOT), UE amOTEAEOUX Vo elvon N
emhoy? Yo Toe TEAXS povTéda. Ldotdoo, To random forests Aoy o e€atpeTixy elooy Y
oTig uevodoug ensemble, Aoyw TN anAdTNTdc Toug o alyxpLor e gradinet boosting.
Avutdé elvan éva dhho mapddelyuo Tou avagepduevou tradeoff yetadd tne ankéTnTag VoG
HovTEAOL Xa TNG ETBOONS TOU.

6.2 ZuAhovn xau PLATedpiopa AcdopnEVeY

Ta features mou ypnowonouinxay eivor autd mou avagépovtar oty Evotnta 1.4, e
uovn ahhayy| otov optdud eMTAEOV UTOAOYLOTIXWY TRAEEWY 0 omoio avTixoiotaton omd
TN HETUBANTA T¥moc vtodopiotixod poptiov Tou unopel va elvan eite memory bound eite
compute bound (ue 1 A 16 npdleic avtiotoiya). Ou Tiwée mou capdinxay yior G To
features eivar ov axdrovdec:

e Méyedoc Working Set = [2MiB, 8MiB, 32MiB, 128MiB, 256MiB, 512MiB]|

e ToOnoc Trohoyotxoh Poptiov = ['Memory Bound', 'Compute Bound'|

*  Méyedoc Mnvupdrov = [1, 5, 10, 50, 100] * +/Working Set Size
o Apwiudc Mnvupdrtov = [2, 4, §]

o Apiuoc KouBwv = [4, 8, 16, 32, 64]

o Auepyoaoiec avd KéuPBo = [2, 4, 8, 16, 20|

ITpoxewevou 10 YOVTEND YEOVOU ETUXOLVOVIAG VO EYEL TEUXTIXO VOTUOL XOL YLoL VOl
Eexadoplotel To dataset, xplnxe anapaitnTo To QUATEAELOUA 0XEUWY TEQITTWOEWY TOU
Tpoéxuoy xatd T cUAROYY| BeEdOUEVWY. Oewpolue axpaleg TEQITTOOELS, exElveg 6oL
0 Ypovog emxolveviag elvan elte TOAD LYNAS elte TOXD Yaunhd TOGOGTO TOU GUVOAXOU
Xeovou. Lty mepintwon Tou TOoAD youniol yedvou emxolwvwviog, 1 TeoBiedr evog
UxEoY T0c00TOV TOU GUVORXOU YpOVOoUL BeV €xelL VoMU (TT.). EGQY 0 CUVOAXOC YPOVOG
extéheong elvan 10 Beutepdienta xou 0 Ypbdvog emxolvwviog elvar otny teployy| Twv 0,01
deuTEPOMETTOV). Avtideta, évac mOA) UeYAhOS YpdVOS EMXOVKVINS TOU cUVOBEVETAL
and oyeTXd TOAD WxEd UTOAOYLOTIXG Ye6vo Oev elvan éva oevdplo mou cuufaivel oe
TpaypaTiXéc epapuoyes. ‘Etol, o xpithiplo yia To guitedpeiopa Tou dataset elvan to e€r¢:

Communication Time

1< < 0.
0.1 < Total Time < 08

H Ewova 6.4 delyvel to totoypdupato Tou dataset yio xde feature yetd to guitpdpioya.


https://www.tensorflow.org/decision_forests
https://ydf.readthedocs.io/en/latest/
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7. Anoteréopata xou Enldoorn tou Movtélou

Y& auT6 10 XEPEAoLO TUPOLGIALOVTAL TO ATOTEAEGUATA TOU LOVTEAOU TOU TPOEXUYE UE TN
Xenom Tou guitpoptouévou dataset, oe Eva xaid pudulopévo povtého Gradient Boosting.
YuunepthouBavovTal ol TWES OPLOUEVWY UETELXWY Tou €youv avageplel otnv Evotnta
4.2. Enlong, napatidevton ot Tipée onuavtixétnrog xdie feature, mouv npoxintouv and to
noon Bapttnta elye n xdde ave&dotnTn ueTaBANTH oTo TEAXO povTtéro gradient boosting.
Télog, ouumepthauPBdveton xou éva didypappa TEoBAEPewy xan oAILVOY THIOY.

ITivoaxacg 7.1 Metpiéc Movtéhou (Testing Set)

R2 RMSE MAPE
0.858 0.359 0.262

ITivaxog 7.2 Enpavuxotnta Features

Feature Importance
Message Size 0.66
Number of Messages 0.36
Number of Nodes 0.35
Processes per Node 0.29
Working Set Size 0.28
Computational Load Type 0.28

Ot petpixég TWwég anddoong UTOBEXVIOLY OTL TO LOVTEAOD EYEL IXAVOTOUNTLXY ETDOCT X
0¢ Tpog T dtoxduaver avedhynto dedopéva (LPNA6 R2) odhd xan we mpog Ty amdiutn
TEOYVWO TN Loyl (oyeTxd younhd andiuta xau tocootialo o@dhyata). 261600, aUTéG
oL YeTpNoelc a&lohoyolV TNV amddoaT TOU HOVTEAOU Yio DEGOUEVO TTOU TPOEPYOVTOL AT
To 0edouéva TG epapuoync data generator. Yto emoUEVO xe@dAono EAEYyETAL ) ETIBOOT)
Tou povtélou évavtl oty Peudocpapuoyr) NAS BT.
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Message Size © 40KiB  © 80KiB  © 16.0KiB © 20.0KiB ® 32.0KiB ® 40.0KiB © 45.2KiB
® 160.0KiB ® 200.0KiB ® 226.2KiB ® 320.0KiB ® 400.0KiB © 452.5KiB ® 640.0KiB
® 29MiB  © 3.IMiB ® 44MiB  ® 6.2MiB
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8. IpdBredn tne Yevdoegoppoyric NAS BT

Ye autd TO XEQPIANLO, N TEOYVWOTIXH LoY0C TOU UOVTEAOU EAEYYETOL EVOVTL TNG
gevdoegapuoyrc NAS BT. T tnv npdfredn tne enidoong tou BT, exteléotnrayv
TOAMEC BLOPOPETIXES DLATAEELS TNG EQUPUOYTC OE OlopopeTixég dlatdéelc extéheons. H
npoondieln TEOPBAedne tng enidoone auTAC NG EPaPUOYNS amautel TNV xaTavénon Tou
OO XL TWY YEOVWY TOU UETELOVVTOL, TEOXEWEVOU AUTOL, VoL TPOCUPUOGTOLY CLGTY
ota features tou yovtéiou pog.

8.1 Avdiuvorn touv nuprva NAS BT

Me n perétn tou xwduxa tng Pevdoepapuoyhc NAS BT, napatneridnxay opiopéveg
ouoloTNTES Ue TNV epapuoyn data generator. Apyuxd, o Kdowog 8.1 delyver plor yevixy
EIXOVOL YL TOV UTOAOYLOTIXO TURHVOL NG eMAEYUEVNS epapuoync. Auty, amotelelton
and Téooepelg dlaopeTixég pdoelc. H mpwtn anotehelton and yevixolc unoloyiouoic
oc OAo TaL DEDOUEVA, EVE) OL EMOUEVEC TEELC ELVOL TUPOUOLES YIOL TIC TEELC OLUCTAOELS
evoc 3D mhéypatoc dedopévmv. Lny mpaypatuxdTT, AUTEC oL @Qdoels, X/y/z-sole
anotelolvTan and dvo dhheg Uno-gdoels, Tic Forward (Gaussian) Elimination (FE) xou
Back-Substitution (BS).

for time:
rhs

xSolve
ySolve

zSolve

Koduxag 8.1 I'evixr) Euxxéva NAS BT

[ vo Angdodv xan vor TpocapuocToNY 0WOTA Ol HETPHOELS ATO TIC TOUEATAVG PACELS
tou NAS BT, ®ote va elvar oupfotéc e to poviého yog, mou yenouwsonolel dedouéva
and ta dedouéva data generator, avolnthinxe to potio Tou mMUEVA NS EQAUPUOYNC
(amhomownuévn otov 777). 'Etot, Beélnxe 6Tt oL 0o uno-gdoeic twv FE xou BS yio xdie
dtdotoon napouctdlouy autd To oTiBo oANS e StapopeTind peYEdn dedopévmv (Uéyedog
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working set xou pnvupdtwy) petalld touc. To Kddixac 8.2 delyver tov anhonomuévo
euvdoxwdxag yio T @dorn FE tou xsolve. H ¢@don BS eivou napduota ahhd pe dlopopetiny
HeYEDT) BEBOUEVWLY, EVG xaL Ol 800 AUTEC QPACELS ETOVOAUUPBAVOVTAL XAl Yol TS TEELS
olaotdoeig. H Ewdva 8.1 delyvel yia amhomoinuévn oynuatixy obyxeton tou BT xau tng
egoppoyrc data generator.

for xDimension:
xSolveCellFE // performs computations on the other two dimensions

xExchangeSolveFEInfo // exchange of 2D faces

MPI_Waitall(MessagesToSend,MessagesToRecv)

Kduxag 8.2 NAS BT: ¢@don FE

Node Data Generator Application

Communicate Communicate Communicate Communicate

Compute Compute Compute Compute

Communicate1

Compute1

Communicate2

Compute2

Communicatel

Compute1

Communicate2

Compute2

Communicatel

Compute1

Communicate2

Compute2

Ewcéva 8.1 BT xou Egapuoyry Data Generator

Communicate1

Compute1

Communicate2

Compute2
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8.2 AnoteAéopata

O mapaxdtey ypapée mapaotdoelg delyvouv Tic meoPiédelc mou €yivay oe dedouéva
TpocapUoouéva amd ToArEC BlagopeTixés Olatdel tou NAS BT. To Figure 9.2
opadonolel Tig SLdpopee BLATAEELS xaTd TOV aptdud TwV XOUPwY Tou Yenoworotinxay,
eve Tto Figure 9.3 emonualvel to améAuto o@dlpa HETOED TWV TEOYUATIXDY XL TGV
TEOPBAETOUEVODY TV,

Number of Nodes ® 4 ® 8 ® 16 ® 32 © 64 ® 150
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Color represents Absolute Error
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Ewxc6éva 8.3 NAS BT IlpoPédeic xou Hpaypotinée tiwée (Xpmpo: Tocootiodo Lepdua)

Ov twéc tou amdhuTou CPIANUATOS elvol POUUVOUEVIXA YoUNAES, OUwWS AaufdvovTtog
LTOPN TNV TEAYUOTIXG T TOAGY onueiwy, To poviého mpoPiénel Aavioouéva yio
évay peydho aptdud diatdlewv. Autd pnopel vo anodolel oe Sudpopous mopdyovteg,
CUUTERLAAUBAVOUEVNC TNS KOUPEAELACH TNE TROCUQUOY NG TWV BEQOUEVMY IOV TEQLYEAPTXE
otnv mponyoLuevr evotnta. ‘Evag dhhog mopdyovtag umopel vo xpUBeTan o o
TaEUTHENON Tou YiveTal Xotd TNV eMUEDENON TWY AVAPEPOUEVKV DEQOUEVKY antd TO
BT. Yuyxexpwéva, o€ TOAES TEPITTMOOELS UTHRYE UEYAAN andxhion (tdén ueyédouq)
peTagy TV peYioTwyY, TV eAayioTOV XaL TWV UECWY OpKY TOV YPOVKY TOU AVIPEROUY
OAeg oL diepyaociec. Xto mhalolo authg TNg Bmhwuatixig, emAEydInxe vo unv avaiuiel
Barditepa ot WoutepdtnTeG AL TS Peudoepapuoyhc. Avtideta, auth n Tpoondlela
va TeoBAeguel wlor eVTEAMC BLapopeTixY| eQapUoYY| NTay piot euxatplol Yot TNV XoTavono
TOU TWC UTOPEL VO CUUTERLYPEQOVTAL UTOAOYLOTIXOL TUPYVES UE TUEOUOLOL UEPT), JEXETA
dlapopeTind dtov cuvdudlovtal e SlapopeTixols TeoToug xou datdels. ‘Hrav eniong
wot axeoun anédelln tou tradeoff mohumhoxdtnrac/enidoone povtélou, 6mou 0 ATAGS



[TpéBredm e Yeudoegapuoyhc NAS BT 39

x0OLag TNE epapuoync data generator xou 1 anAr) TpocapUOYY) BEBOUEVLY OONYNOUY OE
un-xavorolntxy enidooT Tou HOVTEAOU.
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Introduction

The development of High Performance Computing (HPC) has had a significant impact
in the resolution of various complex problems of modern sciences. It finds usages in
a plethora of sectors including machine learning and artificial intelligence, intricate
multivariable physics simulations, climate change and genomics. Particularly as we
near the physical boundaries of Moore's Law, gaining performance just by increasing
the number of transistors is a nonviable strategy. This has led to the development of
elaborate multicore and accelerator architectures that are used in both HPC systems
and consumer electronics.

A fundamental classification for multicore HPC systems, has to do with the way
the memory is organised. In Shared Memory Systems, multiple processing cores
are attached to a common memory bank. For these types of systems, a deeper
categorization can be made. Namely, if all processing cores are evenly and exclusively
connected to the shared memory, then the system has Uniform Memory Access
(UMA). On the other hand, if parts of the memory system are closer to some processing
cores, then the system has Non-Uniform Memory Access (NUMA). In many cases,
shared memory systems are used with a global address space for all processes.

In Distributed Memory Systems multiple processing units with their own
private memory hierarchy, are connected using an interconnection network. In most
use cases, each processing unit uses a private address space. This absence of shared
memory, leads to data sharing between processing units through Message Passing on
the interconnection network. Another widely used architecture is a hybrid of the two
mentioned above. In this case, multiple shared memory systems are connected using
an interconnection network, thus forming a distributed memory system, commonly
known as a Computer Cluster.

An essential limitation in all these kinds of systems is the bottleneck created by the
disparity in speed between data transfers and computations. In most modern systems,
the processing units can perform computations on data with a much greater speed than
the rate at which data can reach them through the memory bus. This problem is also
present in distributed memory systems, where message passing can cause congestion
in both the interconnection network and in the (often shared) memory systems of the
nodes of a cluster, as it is a memory intensive task.

Apart from the development of the hardware architecture, the study and analysis
of parallel algorithms and their performance, is also of great importance. It can



provide an engineer with great insights into how performance varies across different
architectures, and lead them to code optimizations. One can also move towards
compiling performance prediction models. They can help in making the choice of the
type of HPC system for a parallel program, without the cost of having to execute it.
These models can be analytical, or rely on statistical regression and other machine
learning techniques. For the latter, data collection for each system is needed, in order
to train the model.

In this thesis, our attention is centered on the performance of parallel algorithms
within distributed memory systems, specifically analyzing communication time and
the factors influencing it in an HPC system. After reviewing the existing literature on
the modeling (both analytical and empirical) and analysis of communication time, we
experimented with semi-empirical and empirical models on ARIS, a Fat Tree cluster.
The techniques employed for data collection and modeling, along with the insights
derived from these processes and the performance of the resulting models, are all
detailed in the subsequent chapters.



1. Related Work and Goals of Present Study

1.1 Related Work

Communication performance analysis and modeling have been a topic of interest ever
since network communication became a necessity in distributed memory HPC systems.
[Culler et al., 1993] proposed the analytical LogP model, with parameters that depend
on the message size, the network bandwidth, processor overhead and the gap between
messages. Although this model addresses some major issues that have to do with
communication like limited bandwidth, it has limitations regarding the message size,
global network topology and effects, as well as how local computation may affect
communication (e.g. through cache effects or communication/computation overlap).
Still, LogP's approach to adapting to different machine parameters, paved the way
for a family of models which improved upon some of its deficiencies. For example
the LogGP model [Alexandrov et al., 1995] introduced an additional parameter in
the model, to account for longer messages, while LogGPS [Ino et al., 2001] added yet
another parameter, for synchronization. Throughout the years, there have been several
extensions to LogGP. However, contemporary network hardware and architecture, as
well as the variety of communication patterns found in applications, make it more
difficult to express communication performance analytically. This is a general problem
with analytical models, as there is a clear tradeoff between model complexity and
accuracy |[Hoefler et al., 2011]. That being said, Hoefler et al. also demonstrated that
they can be used for various optimizations throughout the lifecycle of an HPC system
and /or application.

Another approach that has gained popularity in more recent years is empirical
modeling. These models leverage data gathered from benchmarks or tailored "data
generator" programs for training. As a result, they are able to capture more intricate
conditions that can occur in an execution environment that may not be apparent
in large-scale systems. [Papadopoulou et al., 2017] proposed a methodology for
highly accurate predictive communication time modeling. This methodology involves
sweeping a selected benchmark over a space of features. The features had to do with
the application communication profile, the execution environment, and other machine-
specific parameters. The resulting dataset was fed into a model building process that
aimed to find the appropriate tree-based ensemble model for optimal performance
while simultaneously avoiding overfiting. The previously mentioned tradeoff is also
present in this methodology, where high-prediction accuracy comes at the cost of
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model "transparency" (especially for those not very familiar with machine learning).
Nevertheless, the great performance offered by such models makes them an appealing
option for more complex systems.

Finally, it should also be noted that |[Karapanagiotis, 2023|, where the main focus
was performance prediction in shared memory architectures, served as a starting point
and an inspiration for the present study.

1.2 Goals of Present Study and Outline

Models are mechanisms that provide an estimation of a phenomenon. It is undeniable
that designing a capable model requires a deep understanding of the selected
phenomenon. Delivering a model that produces accurate results is commendable, but
the journey that such a task requires is of equal importance. This thesis describes such
a journey, for the phenomenon of communication time in a cluster computer system.

The first chapters are an examination of the execution environment and the
measurement methods which include the compilation of a custom data generator
application. Subsequently, some important case studies of the execution of this
application are presented, in order to better understand the behaviour of a parallel
application in a cluster environment, as well as to how this application may be
deployed for data collection in a machine learning model. In the second half of
this thesis, the focus shifts to modeling, where a simple, benchmark-based semi-
empirical model is examined, before deploying a more advanced regression model.
The performance of this model is analyzed, from a statistical perspective, as well as
from a more practical standpoint, where we test the predictability for the BT pseudo
application of the NAS parallel benchmarks.



2. Target Applications and Feature Space

2.1 Stencil Applications

This thesis concentrates on a family of applications known as stencil computations. In
stencils, data access is regular. Parallel implementations usually involve partitioning
an N-dimensional data grid. Each available process is assigned a subdivision of
the data grid. A lot of these applications, feature an outer time loop. On each
time iteration, processes perform computations and communications with other
neighbouring processes. Communication is generally required for the exchange of data
located at the boundaries of each process's working set.

An example of such an application is the Jacobi method for solving a strictly
diagonally dominant system of linear equations. Listing 2.1 presents the pseudocode
for an MPI implementation of the Jacobi kernel. The iterable Neighbours contains
a list of the neighbouring processes, which for a 2D data grid, would be something
among the lines of [north, west, south, east]. The compute function consists of the
computational part of each time iteration and is performed for each element of the data
grid. It depends on the neighbouring elements and their previous values. MPI Waitall,
forces the process to wait for its message requests to be completed, before it can begin
computation.

for time:
for iNeighbour in Neighbours:
MPI_Irecv(iNeighbourBorderData, iNeighbour)
MPI_Isend(myBorderData, iNeighbour)

MPI_Waitall(MessagesToSend, MessagesToRecv)
for i in rows:
for j in columns:
compute(i, j, u_previous, u_current)

Listing 2.1 Pseudocode for an MPI implementation of the Jacobi kernel
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Note about Listings

The Listings presented in this thesis, are simplified snippets of pseudocode. The actual
programs were written in C using MPI.

The two distinct phases for communication and computation in the aforementioned
implementation make it relatively easy to make code adjustments, so that the
computation and the communication loads are configurable. For communication, the
configurable parameters are the message size and the number of messages. The effects
of changing these parameters are self-explanatory. For computation, one configurable
parameter can be the number of operations performed on each array element. If this
number is one (operation per element), then the task of computation is generally
memory bound. This is because more time is spent on fetching each element than the
time it takes to perform one operation on it. As the number of operations grows, the
task tends to become more and more compute bound, since more time is spent on
operations than on fetching. A program with these configurable parameters could act
as a data generator that provides data for analysis and modeling.

2.2 Data Generator Application

Listing 2.2 shows the pseudocode for the data generator application, based on
the Jacobi kernel. In the communication phase, each process sends messages to
its neighbours. If the chosen number of messages is greater than the number of
neighbours, then it re-iterates the Neighbours array, until all messages have been sent.
For computation, an additional nested loop has been added, that repeats for a chosen
number of extra operations on each element, as described previously.

for time:

iNeighbourIndex = 0

while MessagesSent < NumberOfMessages:
if iNeighbourIndex > NumberOfNeighbours-1:

iNeighbourIndex = 0

iNeighbour = Neighbours[iNeighbourIndex]
MPI_Irecv(MessageSize, iNeighbour)
MPI_Isend(MessageSize, iNeighbour)
MessagesSent++
iNeighbourIndex++

MPI_Waitall(MessagesToSend,MessagesToRecv)

for i in rows:
for j in columns:
for NumberOfExtraOperations:
compute(i, j, u_previous, u_current)

Listing 2.2 Pseudocode for the configurable data generator
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For the experiments that were conducted, a 2D Cartesian MPI communicator was
used. In order for the communication phase to be as homogenous as possible, processes
on the borders of the communicator, replace their missing neighbours with processes
on the opposite border. This communication pattern is shown in Figure 2.1 for 16
processes. Note that as shown in Listing 2.2 when the number of messages exceeds 4,
the communication pattern repeats from Message 1.

P12 P13 P1y P15
t + t ' +
i i i i
P3 PO P1 P2 P3
________ N » > _—
P7 Py P5 P6 P7
-------- > N _—
P11 P8 P9 P10 P11
........ - > > —_— ® Message 1
@ Message 3
P15 P12 P13 P1y P15 ® Mossage 4
-------- - > > _

Figure 2.1 Data generator communication pattern

For the sake of simplicity, the data generator application can be summarized into
the version presented in Listing 2.3. This representation summarizes the configurable
parameters for the phases of computation and communication. It also makes it clear,
that code-wise, there is no overlap between communication and computation. In an
ideal scenario of perfectly balanced resources, an unforced synchronization would occur
between processes, and this lack of overlap would also translate into the execution
of the parallel program. Some experimentation showed that this is not the case. This
subject will be expanded upon later.

for time:
communication(NumberOfMessages, MessageSize)

MPI_Waitall(MessagesToSend,MessagesToRecv)

computation(WorkingSetSize, NumberOfExtraOperations)

Listing 2.3 Simplified pseudocode for the data generator
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2.3 Choices for Data Sizes

Following a distinction that has already been made, there are two choices for data
sizes to be made; one for communication and one for computation. For computation,
choosing to follow Weak Scaling is the logical choice for executing in a cluster
system, to leverage the full potential of the available resources. This means that the
working set size of each process can remain constant while more processes are added,
so that the total problem size grows with the available resources. For communication,
the size of the messages was chosen to be a function of the working set size, namely
some multiple of its square root. This was done to imitate a lot of problems which use
stencil computations, where the data exchanged between processes is a row, a column
or in the case of three dimensions a surface of a data grid.

2.4 Other Parameters and Feature Space

Apart from the parameters of communication and computation, another category
of parameters has to do with the execution environment. Since the execution
environment is a cluster with multicore nodes, the parameters we focus on are the
number of computing nodes and the number of processes per node. In summary, the
features that can be configured in our setup are the following:

*  Working Set Size (per process)

e Number of Extra Computing Operations

* Message Size (depends on the working set size in the context of our experiments)
e Number of Messages

*  Number of Computing Nodes

* Processes per Node



3. Execution Environment and Measurements

3.1 Execution Environment

As mentioned before, the experimental part of this thesis was conducted on up to
64 nodes of ARIS Thin Nodes island. A node of this system consists of two 10-core
processors and hyper-threading was not used. This way, each node can facilitate up
to twenty processes. Each processor has a 25 MB L3 Cache shared between ten cores,
and each node has 64 GB of RAM shared among two processors. MPI's map-by
node option was used to organize the processes onto the available cores. With this
mapping, MPI ranks are shuffled alternately between processors and nodes. Figure
3.1 summarizes the above using two nodes as an example, where the squares represent
a processor core and the numbers the MPI rank of the corresponding process.
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Figure 3.1 ARIS nodes populated using MPI's map-by node option

To follow Weak Scaling in a balanced manner, a base problem size was set for the
minimum number of processes that the experiments ran. This base problem size
was chosen, so that the base working set size per process is 1MiB. From there,
the problem size was multiplied by the same factor that the total processes were.
Because a 2D Cartesian Communicator was used, there had to be a match between
the dimension of the communicator that was increased, and the dimension of the data
grid. For experiments with different working set sizes per process, the base of 1MiB
was multiplied appropriately on both dimensions of the data grid. Table 3.1 shows an
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example of how data sizes are matched with different numbers of processes. In this
example, four nodes are used, and the problem size is the number of doubles (eight
bytes each) per dimension.

Table 3.1 Example for the matching of data size and number of processes

Number Of Processes 8 16 32 64 80
X Rank Dimension 4 4 8 8 8

Y Rank Dimension 2 4 4 8 10
Problem Size X 2048 2048 4096 4096 4096
Problem Size Y 1024 2048 2048 4096 5120

For the numbers of processes that were less than the maximum possible for each
number of nodes, it was made sure that the experiments were isolated and no other
processes were using the extra cores. Finally, it should be noted that openmpi version
4.0.5 and gnu version 8 were used for all the experiments.

3.2 Measurement Method

The cost metric that was chosen is time. Specifically, there were three timers that were
used. One for the total running time of the kernel of the data generator application,
one for computation time and one for communication time. Listing 3.1 shows the
pseudocode including timers.

gettimeofday(totalTimeStart)

for time:
gettimeofday(communicationTimeStart)
communication(NumberOfMessages, MessageSize)
MPI_Waitall(MessagesToSend, MessagesToRecv)
gettimeofday(communicationTimeStop)
communicationTime += communicationTimeStop - communicationTimeStart

gettimeofday(totalTimeStart)

computation(WorkingSetSize, NumberOfExtraOperations)
gettimeofday(totalTimeStart)

computationTime += computationTimeStop - computationTimeStart

gettimeofday(totalTimeStop)
totalTime = totalTimeStop - totalTimeStart

Listing 3.1 Simplified pseudocode for the data generator with timers

In all the experiments, the number of time iterations is 32. All processes keep their
own timers and write their result in a shared file after completing all time loops. As
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a way to ensure that the above timers give an accurate result, Figure 3.2 shows the
measured communication time versus a derived communication time which originated
from subtracting the computation time from the total time. The points represent
different runs for different values of the available parameters. In this context, the
values are not relevant and will be explored in another analysis, further bellow. Each
point is an average of all the times reported by all ranks for a certain experiment.
It is apparent, that the derived and the measured communication times are almost
completely identical.

Color represents Processes per Node
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Figure 3.2 Derived vs. Measured communication time

The above phrase "an average of all the times reported by all ranks" is not a
light statement. In fact, averaging a cost metric without mentioning variance or a
confidence interval is a common fallacy [Hoefler, Belli, 2015]. For this reason, it was
deemed important to include a deeper analysis of some execution data, before moving
to data collection for modeling. This analysis is included in the next chapter.
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3.3 Different Parts of Communication Time

Finally, there is an important clarification that should be made about the parts of the
communication phase in the data generator application. Specifically, as Listing 3.1
shows, the timers for the communication phase, include the call to MPI Waitall. This
inclusion is necessary, since non-blocking communication is used. Communication does
not only consist of data travelling through the network or the memory, but also of the
procedure processes have to follow in order to send and receive messages. The former
part is what the call to MPI Waitall is: a process waiting for its communication
requests to be fulfilled. This concept will also be important in the next chapter.



4. Preliminary Experiments

4.1 Statistical Analysis

Figure 4.1 shows Box Plots for experiments with different values of the working set
size per process, for 64 and 4 nodes. The values for the other parameters are 20
processors per node (fully populated), 1 computing operation (so that the computation
phase is memory bound), 8 messages per time iteration and a message size equal to
v/ Working Set Size .

On the x-axis are the different values of the working set size. Each of the points
represents a communication time reported from a different MPI process. This way,
for 4 nodes each box plot represents 80 points and for 64 nodes, 1280. The dashed
rhombus inside each box plot expresses the standard deviation, with the dashed line
on its middle being the mean value of each population.
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Figure 4.1 Communication time box plots for various working set sizes

One observation from the above plots is that communication time seems to generally
increase with the working set size. This change will be seen across all the examples
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in this chapter. The obvious explanation for this behavior lies in the fact that the
message size grows with the working set size. However, to check whether there are
other factors at play, some experiments with constant message sizes were made and
are included in Section 4.2, “Communicational Parameters”.

On another note, the reported communication times for both numbers of nodes are
in the same order of magnitude, despite the total processes being 80 and 1280. This is
a first sign to an approach of using a small partition of a cluster to model behaviour
on a larger scale and is explored in the next chapters that focus on modeling.

Another observation for both 4 and 64 Nodes is that the spread of the reported
times seems to grow with the Working Set Size (and consequently the Message Size).
To examine the distribution of the reported communication times for 64 Nodes, Figure
4.2 shows the corresponding probability density histograms for each working set size,
by seeing the reported time by each process, as a random variable. Additionally, each
of the continuous lines represents a normal distribution N(u, 0°) with a u and ¢ equal
to the matching values from the data of each working set size.

64 Nodes, 20 PpN

2MiB 8MiB 32MiB 128MiB 256MiB 512MiB

16-
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0 0.5 | 15 2

Communication Time (seconds)

Figure 4.2 Communication time probability density histogram for 64 nodes

It is apparent that the times reported by all the ranks, mimic normal distributions
with an increasing mean and standard deviation. This behaviour was observed for
several different configurations of the parameters. During our observations, it was
deducted that configurations with a higher number of total processes, and therefore
a greater number of samples, imitate the normal distribution much more closely than
the ones with a lower number of samples.

Generally, this likeness between the distribution of the communications reported by
all processes in an experiment, and the normal distribution, highlights some important
aspects regarding the experimental data. Firstly, it shows that the data from all
processes from a single execution have a central tendency around their mean value.
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This is positive and makes the mean a relatively good representative value for each
experiment, especially if it is accompanied by the standard deviation. Another positive
observation is that the normal distribution is a symmetric distribution, this may
indicate that the experimental setup is also symmetrical and unbiased, making it
better for a machine learning dataset.

To put this behaviour in the context of our specific experiments, it indicates
a communication cost imbalance which is intensified by greater data sizes, that
can be attributed to a combination of several different factors. An examination of
some of them follows in the next sections. First we look into the parameters that
affect communication directly, and then a scenario of communication-computation
interference is explored.

An important concept to take into consideration for the next sections, is the
combination of rank mapping ( Figure 3.1) and the communication pattern ( Figure
2.1). During the communication phase of each time iteration, a process exchanges
messages with neighbours which are both on the same node and on other nodes. This
means that a part of the communication can happen on the interconnection network,
while another on the shared memory in a node. The ratio between these different types
of communication can vary from process to process because of the rank mapping.
This heterogeneity, plays a crucial part in the communication performance of some
of the following cases.

4.2 Communicational Parameters

In this section, the behaviour of the reported communication times is examined for
direct changes in the communication parameters. These parameters are the message
size and the number of messages. Figure 4.3 shows plots for several configurations in
64 fully populated nodes. Each point is a mean value of reported time by all processes
taking part in each experiment, with the continuous colored overlay bands showing
the standard deviation. The values of the different communication parameters are
the following;:

e number of messages = [2, 4, §|

* message size = [1, 5, 10, 50, 100] * v/Working Set Size

After an examination of these graphs, it is obvious that there is a distinct difference
between larger and smaller message sizes. Specifically, the intuitively expected
behaviour of more messages that have a greater size, having a great impact on
communication time, does not seem to occur in a regular manner for the smaller
sizes. Another great difference between the two message size scales is the standard
deviation. Larger sizes have a smaller (relative) standard deviation than the smaller
sizes. These differences can be attributed to both memory and network usage.
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Figure 4.3 Communication Time Plots for various
Message Sizes and Number of Messages (64 Nodes)
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When it comes to memory usage, smaller messages may fit in the different cache
memories and benefit from the high speed that they offer. However, even in the case
where there are no beneficial cache effects, the smaller sizes do not stress the memory
to its limits, resulting in better performance. As long as the message sizes remain small,
the benefits from these effects remain relatively unchanged for different sizes. This
would explain why there are no large differences in communication performance for the
different smaller message sizes. Finally, the smaller standard deviation observed for the
large message sizes, could be caused by the fact that for greater sizes, memory effects
are less random. Because of the general disparity in communication performance, some
examples from both message scales will be examined separately.

Large Messages

The first example presented in Figure 4.4, investigates the effect that varying the
number of processes in a node has on performance. In these plots, the number of
the total processes remains constant and equal to 128, while the number of processes
per node increases. The message size is equal to 50 * /Working Set Size . This setup
is useful because the problem size remains constant throughout all the variations.
Generally, the performance seems to worsen in more tightly populated nodes. The
effect is more prominent for 8 messages.

There are two things of interest happening as the number of nodes is higher and the
number of processes per node is lower. Firstly, the available memory on each node is
shared among fewer processes, and secondly, there is more communication facilitated
on the interconnection network instead of within the node using the shared memory.
Both of these conditions contribute to better performance.

Having more communication on the interconnection network (2 PpN in the plots)
results in a similarity between the different numbers of messages. This probably
has to do with the fact that the bandwidth of the network can easily handle the
communicational load, and the relatively small changes in the number of messages,
are not enough to stress it to its limits, or make a great difference in performance.
As the number of processes per node is increased and communication uses more and
more memory, the difference in the number of messages is more acute.
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Figure 4.4 Communication Time Plots for a fixed
Number of Processes (128 Processes, Large Messages)

Generally, even though the observations from the previous example stand, the changes
in performance are not of great magnitude, in contrast to the changes that can be
observed when changing other parameters (like the message size in the last two
subplots of Figure 4.3). A stark change in performance, for a fixed message size can
be seen in Figure 4.5, where the varying parameter is the number of processes per
node (for a fixed number of nodes equal to 64). In this case, the number of total
processes and the problem size, changes linearly. For large working set sizes (and
thus message sizes, since they are directly connected), this linearity seems to translate
to the communication time, as with each change in the PpN parameter; a similar
change seems to occur in the mean communication time. This behaviour is beneficial,
especially for predictability and modeling, since large changes in performance originate
from an interpretable change in the parameters.
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Figure 4.5 Communication Time Plots for various
Processes per Node (64 Nodes, Large Messages)

Small Messages

In the case of small messages, the number of messages does not play a significant role.
For this reason the following examples, retain a constant number of messages equal
to 8, and a message size is equal to 5 * «/Working Set Size . This was done to focus
on other effects that may play a more important role for small messages.

As mentioned previously, the performance for smaller message sizes, relies
on the memory usage. This way, memory contention between processes during
communication may have a significant impact. To explore this scenario, Figure 4.6
shows box plots for 4 different setups with 128 total processes, similarly to the first
example for the larger messages sizes.

A general trend that can be seen in these plots is that with more sparsely populated
nodes, communication time tends to decrease, especially for larger data sizes. This
is noteworthy, since the communication load (number of messages and message size)
and the number of total processes remain the same.

The effects of changing the node density that were mentioned for larger
messages, still stand. With sparser nodes, more communication is happening on
the interconnection network, and each process has more memory at its disposal.
On the one hand, just having more memory per process is enough to lower the
communication time. This is because communication (whether its happening locally
or using the network) is a memory intensive task that uses memory for send/receive
buffers among other things. On the other hand, more communication facilitated on
the interconnection network instead of within the node, may be a reason for the lower
communication time, even for the larger data sizes in more sparse configurations.
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Figure 4.6 Communication Time Box Plots for a fixed
Number of Processes (128 Processes, Small Messages)

One interesting change that can be observed in the above cases is the disparity within
the reported communication times on each separate working set size. Specifically,
in some plots, groups of reported times can be seen for relatively low data sizes.
A plausible scenario for these groups may be that each one of them represents
processes that have the same ratio of communication happening on shared memory to
communication happening on the network, or generally have a similar communication
cost. As the working set and message sizes grow, these groups become less discrete
because the data sizes become relatively larger and memory contention becomes more
intense, adding randomness and making the reported times sparser. To get a better
image of the distributions of the reported times, Figure 4.6 shows the probabilty
density histograms.



Preliminary Experiments 19

128 Total processes
2MiB 8MiB 32MiB 128MiB 256MiB 512MiB
2 PpN, 64 Nodes

60-
40-
20- —
_—
() 7\ I I I I I I :
0 0.02 0.04 0.06 0.08 0.1 0.12
4 PpN, 32 Nodes
200 - /
o / /\
0- 7 AY — S ———
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
8 PpN, 16 Nodes
150-
100-
50- /
0- p A—— —
0 0.05 0.1 0.15 0.2
16 PpN, 8 Nodes
40-
20-
() 7\ I I I \\¥\ I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Communication Time (seconds)

Figure 4.7 Communication Time Probability Density Histograms
for a fixed Number of Processes (128 Processes, Small Messages)

It is obvious that on sparser nodes, and for smaller data sizes across all the numbers of
nodes, the distributions of the reported times, are closer to a uniform distribution than
a normal distribution. As memory effects become greater, either because of memory
being shared among more processes, or because of larger data sizes, the distributions
start to have the bell shape of the normal distribution. This may be happening because,
as mentioned, memory effects add a degree of randomness. One peculiar observation
from the above distribution plots is the similarity for 32MiB, for 4, 8, and 16 Processes
per Node. The low standard deviation of the reported times may be caused by some
beneficial memory effect (e.g. the message size is compatible with the sizes of the
per-core caches). The fact that something similar is not observed for 2 PpN, where
communication is largely happening on the network, also supports this scenario of a
beneficial memory effect.
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Lastly, in similar fashion to the larger messages, Figure 4.8. shows the
communication times for a fixed number of nodes and various numbers of processes
per node.
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Figure 4.8 Communication Time Plots for various
Processes per Node (64 Nodes, Small Messages)

The behaviour of communication time loosely following the linearity of the change in
the PpN parameter, is present, as it was for larger messages. However, in this case,
there is a substantial increase in the standard deviation, especially when the nodes
become fully populated. This may be caused by various memory effects, as discussed
in the previous example.

Constant Message Size

Finally, to examine possible factors that cause the increase of communication time
with the working set size for both small and large messages, a set of experiments with
constant message size was conducted. The plots in Figure 4.9 show communication
times for constant message sizes for both size scales. It is apparent that for larger
messages, communication time remains relatively constant with a low standard
deviation. However, for smaller (and fewer) messages, the increase of communication
time with the working set size that has been observed in the previous examples can
be seen. Considering that no communicational parameters change this behaviour may
indicate that in the case of smaller communicational and computational loads, the
system can utilize the available resources in a way that benefits communication time.
This may happen by parallelizing the different parts of the communication phase
(Section 3.3, “Different Parts of Communication Time”). In any case, the fact that
communication time changes without any changes in communicational parameters,
motivates a deeper investigation in this matter.
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4.3 Computation-Communication Interference

Up until this point the sole focus has been communication performance without taking
computation into consideration. Instead, the changes in communication performance
that have been observed have been mostly attributed to memory, network and
mapping effects. While experimenting with an early version of the Data Generator
Application, on which, the message sizes remained constant and did not change with
the working set size, a change in communication time with the change of the working
set size occurred, as it does with the examples that have been shown thus far. At
the time, a logical possible explanation was that since nothing changed in terms
of communication parameters, this increase of communication time could be due to
computation-communication interference between processes on the same node.

In an attempt to determine if there is a computation-communication interference,
a small adjustment to the code of the Data Generator Application was made; forced
synchronization between the computation and the communication phases using a
barrier was added, as shown in Listing 4.1.

gettimeofday(totalTimeStart)

for time:
gettimeofday(communicationTimeStart)
communication(NumberOfMessages, MessageSize)
MPI_Waitall(MessagesToSend,MessagesToRecv)
gettimeofday(communicationTimeStop)
communicationTime += communicationTimeStop - communicationTimeStart

MPI_Barrier(custom_communicator); // synchronize a set of processes

gettimeofday(totalTimeStart)

computation(WorkingSetSize, NumberOfExtraOperations)
gettimeofday(totalTimeStart)

computationTime += computationTimeStop - computationTimeStart

gettimeofday(totalTimeStop)
totalTime = totalTimeStop - totalTimeStart

Listing 4.1 Simplified pseudocode for the Data Generator with Forced Synchronization

The custom communicator on which the barrier is imposed, can be any MPI
communicator, meaning any subset of processes. The ones that were chosen are a
global barrier for all the processes in the system and a socket barrier for processes
belonging to the same processor socket. The first one was chosen because it is a
common barrier and its effect is relatively straightforward. The second one was
chosen to examine the effects how processes on the same node may affect each
other during the two different phases of execution (communication and computation).
It was implemented using the OMPI COMM TYPE SOCKET split type with
MPI Comm_ split_type.
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Configurations that include these two barriers, as well as the initial no barrier
version, were executed for the three different computational load types. However,
before moving on to the results from these executions, it should be noted that for
these cases, derived communication time is used instead of measured communication
time. This way, the time that the system spent on barriers is included. That being
said, the measured communication time is also useful, in order to extract the time
spent on barriers. The above can be summarized by the following expressions:

derived communication time = total time - computation time
barrier time = total time - computation time - measured communication time

Since computation becomes relevant in this analysis, it should be noted that from
this point forward, configurations of the Data Generator Application which have only
one computation operation per time iteration, are going to be called Memory Bound,
whereas configurations with an X number of operations per iteration are going to be
called Compute Bound X.

Memory Bound

Figure 4.10 shows plots for the derived communication time as a function of working
set size for the three different cases of barriers, for a Memory Bound computational
phase and various processes per node. In this case, a small message size and a large
message size have been included. It is apparent that for the large message size, the
barriers have no significant impact. The reason for this will be examined further
bellow, but first we are going to focus on the small message sizes.
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Figure 4.10 Communication Time Plots for various Barrier Types (Memory Bound)
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For a small message size, the above plots show that the different versions of barriers
between the phases of execution, result to different communication performance for the
memory bound computational load. Specifically, imposing a socket barrier generally
yields a better communication performance compared to the other two versions across
all the different values of the processes per node parameter. On the other hand,
imposing a global barrier seems to have a negative effect for sparsely populated nodes
and lower data sizes. Another general observation is that as the number of processes
per node is increased, the standard deviation of the reported communication times
seems to decrease for the versions with the barriers. On the contrary, the no barrier
version shows a relatively high standard deviation, an effect which becomes more
prominent for higher data sizes, especially for a higher number of processes per node.
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Both of the barriers add a forced synchronization between the two phases
of execution. This comes with certain advantages and disadvantages. The main
advantage is that it gives processes time to finish one phase before moving to the
other one, while the main disadvantage is that it introduces an idle waiting time. This
way, there is a trade-off between the idle waiting time and the positive impact it has
on the resources that are shared among processes that reside on the same node.

A plausible scenario is that without synchronization, some processes on a node
finish the communication (or computation) phase slightly earlier than others and begin
computation (or communication). When the rest of the processes on the same node
are finishing their own communication phase and require using the shared memory
resources, there is interference between their communication and the other processes'
computation. Because communication time is a smaller fraction of the total time than
computation time (this will be expanded upon later), it is sensitive to this interference.

The fact that the socket barrier generally outperforms the other two
versions, supports the previous scenario, as the socket barrier is essentially
a focused synchronization between processes sharing resources and gets rid of
the aforementioned interference. While the global barrier does offer the same
synchronization, the fact that it is less focused, introduces an additional idle time
across all nodes. As the previous plots show, this additional cost, often overshadows
the advantages that the socket level synchronization offers.

On another note, the increased standard deviation of the no barrier version that is
seen for more processes per node and greater data sizes may be caused by the fact that
memory effects introduce uncertainty to the performance, as discussed from another
point of view in the previous section. The decreased standard deviation of the versions
with the barriers may be another indicator of how their forced synchronization reduces
the communication-computation memory interference.

Finally, when it comes to the lack of impact of the barriers on the case with
the large message size, it may have to do with the fact that the larger absolute
communication time that is caused by the greater sizes. Namely, this absolute delta in
communication time makes it more likely that processes on the same node finish the
communication phase without any time skew and that's why there is no interference
between communication and computation. This is a pattern that may be repeated in
a similar fashion by the computation phase, as discussed in the next paragraphs.
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Compute Bound 16 and 32

The following plots shows communication time for various numbers of processes per
node, for the computational load of Compute Bound 16. In contrast to the Memory
Bound load, in this case, imposing barriers is not particularly beneficial for any node
density. The performance for the socket barrier and the no barrier version is similar
in a lot of cases, while the global barrier has the worst performance across all cases.

64 Nodes, Compute Bound 16

—o— No Barrier —®— Socket Barrier —®— Global Barrier

4 PpN
0.6-
0.4-
0.2-
0_
8 PpN
0.6-

0.4-

&

0.2-

16 PpN

0.5-

Derived Communication Time (seconds)

&

20 PpN
g-
15-
- /
0.5- ﬁ._/ —r
2MiB 8MiB 32MiB 128MiB 256MiB  512MiB

Working Set Size per Process

Figure 4.11 Communication Time Plots for various Barrier Types (Compute Bound 16)

The system acts in a similar manner for Compute bound 32, as shown in an example
in Figure 4.12.
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This behaviour shows that in the cases of compute bound loads, there is no clear
contention between processes in the two different phases of execution. A reason for
this may be that because the computation phase for compute bound loads takes
significantly more time than the on one in a memory bound load, processes are more
likely to finish the computation phase at around the same time. This is essentially
a paraphrase of the previously proposed scenario for the behaviour observed for the
memory bound load; processes that are on the same node and on different phases of
execution contend for the resources because they are not strictly synchronized and
applying fine-grained synchronization is beneficial.

4.4 Insights Gained

In summary, through the experiments of the above sections, it was shown that there
can be resource contention in the context of both communication and computation,
that translates into a significant change of performance. This interference, is more
prone to happen when communication has a relatively smaller size (small messages)
or computation is relatively smaller and memory intensive. The other main takeaway,
is that as the working set size grows, so does communication time. One factor for this
is the fact that the message size is a direct function of the wokring set size, but even
if the message size was constant, this change would still occur at some degree. This
is because, having unsynchronized processes with two phases of execution causes a
time drift that affects the waiting time for each process' communication requests. This
phenomenon is something that a relatively simple model, as the one in the following
chapter, may not capture.



5. Models and their Evaluation

This chapter delves into the realm of modeling, examining various modeling
approaches alongside the metrics used for their evaluation.

5.1 Types of Models
Analytical Models

Analytical models are the types of models that are grounded in mathematics and
theory. They have closed form solutions and rely on formal methodologies to represent
the behaviour of parallel applications in an HPC system. Their strength lies in their
ability to provide insights into the fundamental aspects of application behaviour and
architecture design without requiring extensive empirical testing. However, as systems
and applications become more complex, the task of prediction becomes more difficult
for these models, prompting a shift towards more sophisticated tools. Examples of this
approach were mentioned in Chapter 1, Related Work and Goals of Present Study.
In the context of this thesis, we will not examine analytical modeling to a deeper
level; nevertheless it provides a great example of the model complexity /performance
tradeoff that will be mentioned later in this chapter.

Semi-empirical Models

These models are the meeting point of theory and observation. They combine
data from the execution of a benchmark/data generator program with a theoretical
framework. During the construction of such a model, this framework is refined
using empirical data to adjust how the different parameters affect predictions. The
empirical data may also be used to provide base-cases for making predictions. While
the combination of theory and practical data sounds like a great middle ground,
these models may suffer from the same weaknesses that analytical models do; as the
applications and systems get more complicated, capturing more complex phenomena
is more challenging and the number of independent variables may rise and make it
more difficult to form an expression. A relatively simple example of this approach, as
well as an examination of its predictive power, is presented in the next chapter.



Models and their Evaluation 29

Empirical Models - Machine Learning

ornckprc rpoekk

In the case of this approach data is prioritized over theory. These models use a
dataset constructed from the execution of a data generator program, for a range of
values of selected features/independent variables. Machine learning algorithms are
leveraged to identify patterns, correlations, and predictive factors within the data.
The fact that such algorithms are agnostic to the theoretical background of the
phenomenon that is to be modelled, makes them a double-edged sword. On the one
hand, they can easily adapt to accurately predict performance, even in the presence
of more complex correlations between underlying phenomena (e.g. computation/
communication interference). On the other hand, the lack of a need for a theoretical
framework may make these models over-trained to the data that was used during
training. For this reason, the application used for data generation should be well-
designed and deeply understood in order to be able to identify the pitfalls that
may occur. Additionally, machine learning models may lack the interpretability of
more theory-driven models, making it difficult to extract insights into the underlying
mechanisms of application behaviour.

Model Complexity /Performance/Range Tradeoff

Before moving on to model evaluation metrics, an important tradeoff in modeling
should be mentioned. Specifically, when designing and reviewing models, one can
observe a pattern when it comes to how complex a model is, how well it performs and
how many different cases it may cover. More complex models will probably perform
better than simpler ones, at the possible cost of being more targeted in specific cases.
This is a concept that is present in the design of any tool. For example, let's take
a screwdriver. The tool designer has to choose between what screw head they want
to cover. By choosing a flat-head screwdriver, we design a tool that can be used in a
different range of screws but not always efficiently. A philips or even a torx screw can
be undone by a flat driver with some extra effort, but the result is a damaged tool
and screw which is undesired. An argument can be made that it is better to design
specialized and more complex tools that have a well-defined purpose and range of
applications, even if the latter is relatively small. In the context of this thesis this
means that a machine-learning-based model for a specific family of applications and
computer architectures may be a better choice for an accurate model, while keeping
in mind the limits of where such a model can be used.

5.2 Model Performance Metrics
In this section, some common metrics for model evaluation that will be used in the

following chapters are laid out. For the mathematical expressions that follow, n is the
number of samples in a set of measurements, ¥ are the measured values (that comprise
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a population), ¥ is the mean value of a population, and § are the corresponding
predicted values.

Root Mean Square Error (RMSE)

This metric is a measure of prediction error that has the same unit of the predicted
variable. It is a standard way to measure the error of a model. Mathematically it is
expressed as follows:

N

Percentage Error and Mean Percentage Error (MPE)

The percentage error is a metric that expresses the relative difference between a
prediction an actual value. It can be both negative and positive. A negative value
denotes that a model over-predicts, while a positive one that it under-predicts. It is
given by the following expression:

Yi — Ui

Yi

Percentage Error = 100%

This metric can be used in the form of multiple values (one for each measurement)
and as a single mean value, where we can get the mean percentage error:

100% = i — B
MPE = — ; m
In the case of the MPE, positive and negative errors may offset each other. For this
reason, the value and the sign of this cumulative metric can be considered a bias of
over-prediction or under-prediction.

Lastly, one (maybe obvious but) important clarification regarding these metrics,
is that a negative value hides a greater absolute difference than the corresponding
opposite positive value does. We can see this in an example of +60% errors. In the
positive percentage, by performing the proper operations we get that § = 0.4 vy ,
whereas for the case of the negative percentage we get that ¥ = 1.6 y . This is
something that is a weakness of the following metric.

Mean Absolute Percentage Error (M APE)

The mean absolute percentage error is very similar to the previous MPE metric, with
the difference that absolute values are used in the expression:

100% < |yi — 3]
MAPE =
N ; |yl
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This metric can be used instead of the MPE when we do not care about the over/
under-prediction bias that was mentioned and just want an absolute size of the error
in percentage terms.

Coefficient of Determination (R2)

The coefficient of determination is a metric commonly used in modeling and is given
by the following expression:

N ~
Zi:1 (yi - yi)2

Zi\il(yl —9)?

The numerator of the above ratio is the sum of squares of residuals and can be
perceived as a measure of the absolute error of the predictions. The denominator
is the total sum of squares and is proportional to the variance of the population of
the measurements. This mathematical expression, pits the 'variance' of the predicted
values against the variance of the population of the actual values. In other words, this
metric provides a measure of the fraction of variance that our predictions cover. In
the best case, which all the predictions match all the actual values the second term
is zeroed, and R2 = 1. In the naive case that all the predictions are equal to the
mean value of the population of measurements, the second term is equal to one, no
variance is explained by the predictions, and R2 = 0. If the predictions perform worse
than the previous case of the mean in terms of unexplained variance, the coefficient
of determination can be negative.

R2=1-



6. Semi-Empirical Model

In this chapter, we explore the approach of a semi-empirical model. As mentioned,
for a for such a model, we need an analytical expression, based on theory and general
observations, and some data, collected via an experimental analysis for the different
parameters that may exist in the analytical expression. For the latter, data from the
execution of the FEzchange class of the Intel MPI Benchmarks was used. As for the
analytical expression, it will be deducted after an examination of the benchmark data.

6.1 Exchange MPI Benchmark

"Exchange" is part of the Intel MPI Benchmarks, and is a communication pattern
that is somewhat similar to the one in our custom data generator application; it can
be seen in Figure 6.1.

/yodic\cha-n\\
PR.I1 PR.I PR.I+1
MPI_Isend MPI_Isend MPI_Isend
MPI_Isend MPI_Isend MPI_Isend

AT MPI_Recv MPI_Recv MPI_Recv
MPI_Recv MPI_Recv MPI_Recv
MPI_Waitall MPI_Waitall MPI_Waitall

Each carries X bytes

Figure 6.1 Exchange Intel MPI Benchmarks
(source: Intel MPI Benchmarks User Guide )

It is apparent that this communication pattern is similar to the communication phase
of one time iteration of the data generator application. Each process exchanges two
messages with two neighbours. It should also be mentioned that for the execution of
this benchmark, the same map-by node option was used.


https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-2/exchange.html
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The measurements from the execution of this benchmark on 64 nodes of Aris can
be seen in Figure 6.2. The measured communication time is an average of a number
of repetitions that the benchmark performs, and is the At shown in Figure 6.1. The
different lines, represent a different number of processes per node that the benchmark
was run. As expected, the reported time grows with the message size and with the
number of processes per node.

64 Nodes, MPI Exchange

= Processes per Node 1 —e—2 4 8 —e— 16 —e— 20

=l

g

9]

]

52 40k -

=

&

g 30k-

=

=

S 20k-

=

=

ot

g

= -

g 10k

g

S

o ’_’.—/_o/.

o) 0- T

&0

] !

<% 7, £, % J@O o;,o @d)f 9% ; B @0 < 2, 904 Y04
1 ( 0 - . . .
© ® B B % N P N % %

Message Size
Figure 6.2 Exchange Benchmark Results on 64 Nodes
6.2 Building an Analytical Expression

To build an analytical expression for the semi-empirical model, the first step is to
identify the independent variables of the model. Since the Exchange benchmark was
chosen as a database of measurements, the parameters of this program have to be
taken into consideration. With that being said, the features mentioned in Section 2.4,
“Other Parameters and Feature Space” can be a starting point. From those, we can
immediately exclude the features that have to do with computation, since there is
no such phase in the benchmark. Additionally, the fact that communication is static
in terms of the number of messages, eliminates that parameter. Finally, since we are
examining the case of 64 nodes, and since it has been shown previously chapter (
Section 4.1, “Statistical Analysis”) that communication time stays on the same range
of values when the only change is the number of nodes, we can also rule out the
number of nodes as a parameter. All of the above, leave the following parameters as
the independent variables of the semi-empirical models:

e Message Size

e Processes per node
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Processes per node

Since the smallest number of processes per node is 1, an intuitive direction, is to use
the values measured for the various message sizes and 1 PpN as a base case. This way,
the number of processes per node, can be used as a multiplier. To check whether this
relationship stands, Table 6.1 shows some examples of the average measured time for
a variable number of processes per node.

Table 6.1 Exchange benchmark data for various configurations

Message Size Processes per Node Average Communication
Time (psec)
1 (64 processes) 27.49
2 (128 processes) 43.77
32 KiB 4 (256 processes) 66.73
8 (512 processes) 116.48
16 (1024 processes) 235.55
1 136.91
2 250.50
256 KiB 4 453.08
8 923.11
16 1897.49
1 980.38
2 1900.20
2 MiB 4 3679.86
7520.41
16 15333.66

The above values show that by doubling the number of processes per node, the time
reported, also changes by a factor close to 2. The presence of uncertainty in the
experimental measurements makes us more receptive to the differences that emerge.
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Figure 6.3 Exchange Benchmark predictions using PpN as a factor

Figure 6.3 shows predictions for the average communication time, made by using the
values of one process per node and all the different message sizes as base cases, in an
expression that uses PpN as a factor:

Communication Time(PpN, Message Size) = PpN x Base Case(Message Size)

The general image that is given is that the predictions are fairly close to the measured
values. The 'empirical' parts of this simple model are the base-cases for the different
messages sizes. In the next section, the base case will be reduced to only one
measurement, by adding the Message Size as a parameter.

Message Size

To examine the effect of the message size to the communication time, isolated from
the effect of the PpN parameter the following ratio can be considered:

Communication Time

Communication Ratio = Base Time « PpN

where the base time is a single value of a measured communication time for 1 PpN
and a certain message size, chosen to be equal to 4 KiB. With this ratio, we can make
observations on how communication time changes with changes to the message size
without having the changes that PpN has (in the context of the proposed model).
This is because in the previous section this parameter was chosen as a multiplier and
in the above communication ratio, it was used as a divisor. Another useful ratio that
will be used is the ratio of a message size to the message size of the base case (4 KiB):

Message Size
Base Case Message Size

Message Size Ratio =
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Table 6.2 shows some examples of the above ratios that helped in making the choice
for how the effect of the message size can be expressed analytically.

Table 6.2 Exchange benchmark data with aiding ratios

Processes per Message Size Message Size Communication
Node Ratio Ratio
256 KiB 64.0 22.44
512 KiB 128.0 41.53
1 (64 processes) 1 MiB 256.0 80.11
2 MiB 512.0 160.71
4 MiB 1024.0 351.55
256 KiB 64.0 20.53
512 KiB 128.0 38.29
2 (128 processes) 1 MiB 256.0 78.47
2 MiB 512.0 155.75
4 MiB 1024.0 332.44
256 KiB 64.0 18.56
512 KiB 128.0 36.71
4 (256 processes) 1 MiB 256.0 74.66
2 MiB 512.0 150.81
4 MiB 1024.0 327.50
256 KiB 64.0 18.91
512 KiB 128.0 37.90
8 (512 processes) 1 MiB 256.0 76.05
2 MiB 512.0 154.10
4 MiB 1024.0 333.18
256 KiB 64.0 19.44
512 KiB 128.0 38.49
16 (1024 processes) 1 MiB 256.0 77.46
2 MiB 512.0 157.10
4 MiB 1024.0 334.86

When observing the change of the 2 ratios for the different values of the number
of processes per node, a pattern can be observed. Namely, the message size ratio
seems to consistently be close to about three times the communication ratio (the
observed values range from about 2.8 to 3.2 times for the different sizes). This leads
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to the following expression, which combines the processes per node parameter and
the message size:

Message Size

1
Communication Time(PpN, Message Size) = PpN 3 x Base Case

Base Message Size

)

where the base case is the communication time measured for 1 PpN and 4 KiB.

Figure 6.4 shows the prediction this semi-empirical model makes versus the actual
times that were measured. Before looking into any performance metric of the model,
when comparing the general pictures that Figure 6.4 and Figure 6.3 show, the latter
seems more accurate. This is expected on one degree, since it uses more experimental
data, which capture the behaviour of the system on a deeper level when compared
to the analytical expression.
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Figure 6.4 Exchange Benchmark semi-empirical model predictions
Model Performance

Moving on to examining the performance of the semi-empirical model on the data
gathered from the Exchange benchmark, Figure 6.5 shows the percentage error for
the predictions made for all the different values of the parameters.

There are two general behaviours observed from this plot, that may have a common
cause. The first one is that as the number of processes per node grows, the percentage
error is reduced. Secondly, as the message size is increased, the percentage error
decreases up to a certain size after which it increases slightly. This means that for
a small number of processes per node and a small message size, the model under-
predicts, while for greater values of these parameters, the model slightly over-predicts.
One reason for these observations may be that for the smaller values of both of the
parameters, the value of time that is to be predicted is extremely low. This can be
seen in the previous plots (e.g. Figure 6.3), where the time vales for larger message
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sizes and higher numbers of processes per node grow significantly. This means that if
the absolute difference between the model predictions and the actual values, remains
in a low order of magnitude (which is what seems to be happening), the percentage
error will be larger when the actual value is in the range of the absolute difference.

In practice, this can be seen in the values of the percentage error, which starts off
at 50%-70% for small message sizes and few processes per node, and reaches values
in the range of £10% as the parameters grow.

MPI Exchange Semi-Empirical Model Prediction Error
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Figure 6.5 Exchange Benchmark semi-empirical model percentage error
6.3 Differences with the Data Generator Application

All in all, the proposed semi-empirical model, seems to have an acceptable predictive
performance when it comes to the Exchange benchmark. However, this is not
necessarily indicative of a good predictive performance in general. In this section, we
see that the model performs very differently when trying to predict the communication
performance of the data generator application, and we explore the reasons behind
these differences.

When trying to predict the performance of the data generator application, an
adaptation needs to be made to the analytical expression of the model. Namely, the
whole expression has to be multiplied by the number of time iterations (equal to
32), as the exchange benchmark (which is the basis of this model), only reports one
iteration of a communication phase. With this multiplication, we assume that all time
iterations have a similar performance. This is not an illogical assumption to make,
especially considering that the time reported by the exchange benchmark is a mean
value of several repetitions. After this adaptation, a prediction was made for several
different configurations of processes per node and message size. The model consistently
under-predicts the communication time of the data generator application, and the
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percentage error is in the range of 90%-100%. Some examples for a working set size
of 32MiB, 64 nodes and three different message sizes are shown in Table 6.3:

Table 6.3 Semi-empirical model predictions of the data generator application

Message Processes per Communication Prediction Percentage
Size Node Time (seconds) (seconds) Error (%)
2 0.065 0.00013 99.8
4 0.056 0.00026 99.5
32 KiB 8 0.085 0.00052 99.3
16 0.16 0.00104 99.3
20 0.35 0.0013 99.6
0.074 0.00104 98.6
0.077 0.00208 97.3
256 KiB 8 0.086 0.00416 95.1
16 0.17 0.0083 95.2
20 0.36 0.0104 97.1
2 0.12 0.0083 93.3
0.18 0.016 90.8
2 MiB 8 0.31 0.033 89.5
16 0.6 0.066 88.9
20 0.75 0.083 88.9

The predictions are constantly one or two orders of magnitude lower that the
actual values, in the above table. The contrast between this and the relatively good
performance of the model on the data from the exchange benchmark leads to the
direction of contemplating the differences between the data generator application and
the exchange benchmark.

The first step is to ensure that this change persists beyond the predictions of the
semi-empirical model. For this reason Table 6.4 compares the communication times
reported by both the exchange benchmark and the data generator application (32MiB
working set size, 64 nodes). For the smaller message sizes of these examples, the same
order of magnitude discrepancy can be seen, while for the larger message size, the
exchange benchmark still reports a smaller communication time, but the difference
is not as large. This difference between large and small messages probably has to do
with details discussed previously on Section 4.2, “Communicational Parameters”.
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Table 6.4 Data Generator Application vs. Exchange Benchmark

Message Processes Data Gen. App. 32 * Exchange
Size per Node Communication Time Benchmark Time
(seconds) (seconds)
0.065 0.00140
0.056 0.00214
32 KiB 8 0.085 0.00373
16 0.16 0.00754
20 0.35 0.00954
2 0.074 0.00802
0.077 0.01450
256 KiB 8 0.086 0.02954
16 0.17 0.06072
20 0.36 0.07620
0.12 0.0083
0.18 0.06081
2 MiB 8 0.31 0.24065
16 0.6 0.49068
20 0.75 0.61552

A brief comparison between the two applications can shed light into the discrepancies
observed in the previous example. With an inspection of Figure 2.1 for two
messages, and Figure 6.1, a similarity arises between the two communication
patterns. Nevertheless, there is a significant difference. The exchange benchmark
is only composed of a communication phase and no computation is involved. As
observed, this absence of computation significantly influences the performance of the
two applications, despite their seemingly similar communication patterns on paper.
Chapter 4, Preliminary Experiments inclined towards this difference, especially on the
sections that examined how the two phases of execution may interfere.

6.4 Conclusion

In this chapter, we saw a live example of the trade-off between simplicity and accuracy
in a performance prediction model. The semi-empirical model that was implemented
was fairly simple, both in terms of data collection and in the construction of the
analytical expression. While the model has an acceptable performance on predicting
cases of the benchmark used for its development, it performs poorly in predicting more
realistic execution scenarios. For this reason, in the next two chapters, we see how we
can deploy machine learning methods to capture more complex scenarios with more
independent variables for both computation and communication.



7. Machine Learning Models

In this chapter, we approach the problem of modeling from a machine learning
perspective. First, a theoretical background for the techniques that were used is
provided. After that, the selected type of model is presented. The data pre-processing
and some other needed details and strategies are also mentioned.

7.1 Theoretical Background

The task we want to achieve, is to create a model that predicts the communication
time, given the values of some parameters (features). For this, any supervised learning
regression model can be used. The way these models work in general is by iterating
through a given dataset and choosing/tuning a function that best fits the data, under
a loss function. A loss function is a function that quantifies an event or a change
of the independent variables during the training of the model. This way, regression
algorithms find the proper relationships between the chosen features (independent
variables) and the label (target variable).

Different algorithms use different methods to find the aforementioned relationships.
One coarse example of such a method is finding the optimized coefficients (by training
with a dataset) of a closed form function of the features (e.g. linear, polynomial
regression). To make predictions, these models plug in the values of the features to
the fitted function, and provide a prediction. Another, somewhat different approach is
making subsets of the provided data by splitting it based on the values of the features
in a way that minimizes a loss function. To make a prediction, the model considers
the given values of the features, matches it to the proper subset and provides the
subset's mean value as a prediction. This methodology is used by Decision Trees.

For our models, we chose the second approach due to the number of features, their
(sometimes) non-linear relationship with time, and how they may interact with each
other. Some details about decision tree algorithms and ensemble methods follow.

Decision Trees for Regression

Decision tree learning is a supervised learning technique that can be used both in
classification and regression. As mentioned, they are based on splitting the dataset
in subsets. During training, the dataset splits into branches based on feature values,
creating a tree-like structure of decisions. Each split is chosen to minimize the variance
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within each branch, aiming to have leaves (end nodes) with homogenous and/or
similar values. This process of splitting continues until a predefined stopping criterion
is met, such as a minimum number of samples in a leaf or a maximum tree depth. A
decision tree using features from the data generator application can be seen in Figure
7.1. Each node in this schematic example contains the condition of the next split and
the value of communication time provided by its subset. The green lines represent
cases where a condition of a node is met, and red lines the cases were it is not.
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Figure 7.1 Example of a Decision Tree

Behind the above shape, hides one of the major advantages of decision trees; they are
relatively easy to interpret as a series of conditions. However, these models are prone
to overfitting to the training data, especially when they are left to grow in depth. This
happens because at large depths, the nodes start representing smaller and smaller
subsets of data. One widely used method to avoid this is to use multiple decision trees.
The different methods that combine multiple trees are called Ensemble Methods.

Ensemble Methods based on Decision Trees

Ensemble learning in general is the combination of multiple predictive models into
one. As noted above, the specific use of this method with decision trees is of interest
for our modeling efforts.

One way to combine multiple decision trees is by making several different trees,
to be trained in parallel. In this case, each tree can have a different configuration
(e.g. a random subset of features, or a random subset of the training data). This way,
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different trees can cover a vast range of the cases present in the training dataset. To
make predictions, the average of the predictions made by all trees is taken. The model
that was just described is known as a Random Forest. Figure 7.2 shows a general
schematic explanation of this method.

’ Training Dataset

Random subsets
and features

Tree 0 Tree 1 Tree N

| | | | | | | | | | |

Prediction 0 Prediction 1 Prediction N

i

Overall Prediction (Average)

Figure 7.2 Random Forest Schematic Explanation

A different approach, is to arrange trees sequentially in a method called Boosting.
Specifically, during training, the model first makes a constant prediction on the
training dataset. The residuals (difference between predicted and actual value) for
these predictions are calculated for every element of the dataset. These residuals are
then used to train a new decision tree based on the values of the features. The newly
predicted residuals from this tree are added to the corresponding predictions made in
the previous step. This sum is then used in a one-dimensional optimization problem
that uses a loss function and aims to find the proper weight for this set of residuals,
depending on how close it moved the previous predicted values to the actual ones. The
resulting weighted residuals are added to the predictions made in the previous step.
Then, the new residuals are calculated and the process is repeated for a predetermined
number of trees. The above is a brief explanation of a Gradient Boosting model
and can also be seen inFigure 7.3. These simplified explanations for random forests
and gradient boosting were made using the proposals made by [Breiman, 2001] and
[Friedman, 2000| respectively.
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]

Training Dataset J
Prediction 0
(constant)
Calculate Calculate new Calculate new
Residuals Residuals Residuals
Tree 0 Tree 1
Prediction 1 = Prediction 2 =
Prediction 0 + wo * Predicted Residuals 0 Prediction 1 + wi * Predicted Residuals 1
l Calculate Weights wo for l Calculate Weights w for
Predicted Residuals 0 ———————————{  Predicted Residuals 0 Predicted Residuals 1 ——————|  Predicted Residuals 1
(optimization problem) (optimization problem)

!

Prediction N =
Prediction N-1 + wx. * Predicted Residuals N-1

Figure 7.3 Gradient Boosting Schematic Explanation

In general, ensemble models that use boosting outperform the ones that use bagging
(the general method used by the random forest). The main advantage boosting
provides is a kind of "memory", meaning that in every step, the model adapts based
on the predictions of the previous step. However, this does not come for free. Training
times are usually longer for boosting models, than they are for the ones that use
bagging.

The implementations of the two ensemble learning models that were used in this
thesis are the ones provided in the TensorFlow Decision Forests (TF-DF) library
which uses the YDF Decision Forests library. We experimented on our dataset using
both random forests and gradient boosting, for several different configurations of
each model's hyperparameters. Ultimately, the gradient boosting method constantly
proved to provide superior predictive performance, leading to it being the choice for
the final models. However, random forests were a great introduction to the area of
ensemble methods because of their simplicity compared to gradient boosting. This
is another example of the repeatedly mentioned trade-off between model simplicity
and performance.

Hyperparameter Tuning

Another machine learning concept that was used is hyperparameter tuning. It is a
process that aims at optimizing the parameters of a model that are not learned from
the data during training. In the context of decision tree ensemble methods, some
examples of these hyperparameters are the number of total trees and the depth of each
tree. This process involves searching through a space of hyperparameter values to find
the combination that yields the best performance, evaluated using cross-validation
techniques to avoid overfitting. The final models, have their hyperparameters tuned,
using a random search over a predefined hyperparameter space.


https://www.tensorflow.org/decision_forests
https://ydf.readthedocs.io/en/latest/
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In the remaining sections of the present chapter, we look at some details of the
dataset and some strategies that were followed for its best usage.

Feature Importance

Feature importances are numerical scores used in machine learning models that
express how important the features were during training. There are several different
techniques for all the different model types that produce different scores for each
feature. For our models, we used a Decision Forest specific method. Namely, each
feature's importance is calculated as the inverse of the average minimum depth of its
first occurrence across all the tree paths (INV_MEAN MIN DEPTH in the YDF
documentation).

7.2 Data Collection and Filtering

The features that were used are the ones mentioned inSection 2.4, “Other Parameters
and Feature Space”, with the only change being that the number of extra computing
operations is replaced by the variable Computational Load Type which can be either
memory or compute bound (with 1 or 16 computing operations respectively). The
values that were swept for all features are the following:

*  Working Set Size (per process) = [2MiB, 8MiB, 32MiB, 128MiB, 256MiB, 512MiB]|

e Computational Load Type = ['Memory Bound', 'Compute Bound'|

* Message Size = [1, 5, 10, 50, 100] * /Working Set Size
e  Number of Messages = |2, 4, §]

e Number of Computing Nodes = [4, 8, 16, 32, 64]

e Processes per Node = [2, 4, 8, 16, 20|

In order for a model of communication time to make practical sense and to clear up
the dataset, it was deemed necessary to filter out corner cases that occurred during
data collection. We consider corner cases, the ones where communication time is
either a very high or a very low fraction of the total time. In the case of very low
communication time, trying to predict a small proportion of the total time does not
make any sense (e.g. if the total execution time is 10 seconds and communication
time is in the range of 0.01 seconds). On the contrary, a very large communication
time that is accompanied by a very small computation time is not a scenario that
occurs in real stencil application problems. The criterion for the filtering of the data
set is the following:

Communication Time
01 < < 0.8
- Total Time -

After it is applied, we are left with about half of the initial dataset. Figure 7.4 shows
histograms for each feature on the filtered data. It is apparent that there are no


https://ydf.readthedocs.io/en/latest/cli_user_manual/#model-analysis
https://ydf.readthedocs.io/en/latest/cli_user_manual/#model-analysis
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significant anomalies or irregularities for the features, except for large working set
sizes. This is because in these cases, computation time increases extremely. This
peculiarity is also translated in the message size, as it is dependent on the working
set size.

Features Histograms
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Figure 7.4 Filtered Dataset Feature Histograms
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7.3 Model Scenarios

In this section we explore three different scenarios of how the collected dataset can
be used. The resulting performance for each of these cases is included in the next
chapter. It should be noted that a 60/40% training/testing split of the data (sub)sets
was used in all the following models.

Message Scale Scenario

Inspired by the evolution of the LogP model family and by the vast difference of
performance observed in Section 4.2, “Communicational Parameters” for the two
message size scales, the first scenario is one where the dataset is split into two subsets.
The first one includes experiments with larger messages while the other includes
configurations with smaller messages. Each of these subsets is then used to train
a different hyperparameter-tuned gradient boosting model. For the small scale, we
consider the instances where

Message Size = [1, 5, 10] * /Working Set Size

and for the large scale

Message Size = [50, 100] * /Working Set Size
Train Small/Test Big Model
In this scenario, the model is trained using data from [4, 8, 16| nodes, while
configurations with [32, 64| nodes are used to check the model performance. This
scenario is of great practical interest, as such a model would be able to provide
predictions without spending a lot of system resources.

Main Model

For this scenario, the whole dataset was used in a single model.



8. Model Results and Performance

This chapter presents the resulting models of the aforementioned scenarios.
Specifically, it includes performance metrics (discussed in Section 5.2, “Model
Performance Metrics”), a "Measured vs. Predicted Time" plot and the feature
importances along with some comments, for all cases.

8.1 Message Size Scale Models

Table 8.1 Message Size Scale Models Metrics (Testing Set)

Message Size Scale R2 RMSE MAPE
Small Messages 0.785 0.162 0.239
Large Messages 0.876 0.475 0.201

Comparing the performance metric values for the two models, the fact that the large
message model has a greater value of the R2 metric, means that it does a better job
at explaining unseen data variance. This may have to do with a behavior that was
mentioned in Section 4.2, “Communicational Parameters”, where for smaller messages,
performance differences for smaller message sizes were not as clear as they were for
larger messages. On the other hand, the smaller RMSE value of the small message
model is explained by the fact that communication times for smaller messages have

smaller absolute values.
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Table 8.2 Message Size Scale Models Feature Importances

Feature Small Message Model Large Message Model
Message Size 0.52 0.65
Number of Messages 0.27 0.26
Number of Nodes 0.3 0.23
Processes per Node 0.24 0.19
Working Set Size 0.2 0.16
Computational Load Type 0.19 0.16

In both message size scales, the message size is the most important feature. However,
in the case of smaller messages, some of the other features (especially the ones that
have to do with the execution environment), have slightly greater importance when
compared to the large message model. This was a behaviour also observed in the
experiments presented in Section 4.2, “Communicational Parameters”.

The following plots, show the predicted communicated times pitted against their
actual values. Each point represents a different experimental configuration. The points
that lie above the blue line are over-predictions, and the ones that lie beneath the line
are under-predictions. In both of the following plots, where the color represents the
message size, it is apparent that the points that are the furthest from the blue line
are for configurations for relatively larger message sizes. When examining these kinds
of plots for all the different feature color groupings, a general trend was seen (not
only for these message scale models, but across all the scenarios). The greatest miss-
predictions occur for the heavier communicational and computational loads and on the
configurations with more nodes that are tightly populated. These cases are the ones
that stress the system the most and thus may give way to relatively unpredictable
behaviours.
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Figure 8.1 Small Message Model (Prediction vs. Actual)
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Figure 8.2 Large Message Model (Prediction vs. Actual)
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8.2 Train Small/Test Big Model

Table 8.3 Train Small/Test Big Model (Testing Set)

Number of Nodes Subset R2 RMSE MAPE
4, 8, 16 0.854 0.326 0.241
32, 64 0.466 0.671 3.986

The above values, show that the model performs acceptably on the testing set of the
[4, 8, 16] nodes subset, but there is a drop in general model performance for [32, 64|
nodes. This is expected, since the model has seen no samples with the later number
of nodes parameter values during training. However, considering the context of this
scenario and after examining the results in the following plots, this approach may be
beneficial since it would use fewer system resources for building a dataset.

Table 8.4 Train Small/Test Big Model Feature Importances

Feature Importance
Message Size 0.7

Number of Messages 0.28

Number of Nodes 0.23
Processes per Node 0.21
Working Set Size 0.19
Computational Load Type 0.19

The above importances, show an expected behavior for a communication time model,
where the most important features are relevant to communication, then follow the
features that have to do with the execution environment and the computation phase
parameters are last.

The following plots, once again, show this model's predictions against their actual
values. For this scenario, the number of nodes color grouping was also included. This
was done to show that most of the discrepancies between predictions and actual values
occur for the unseen testing configurations of [32, 64| nodes. At the same time, the
size of messages color grouping shows that configurations with larger messages are
once again, more likely to be miss-predicted. The possible reason of maximum stress
on the system that was mentioned in the previous scenario still stands.
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Figure 8.3 Train Small/Test Big Model (Prediction vs. Actual, grouped by Number of Nodes)
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Figure 8.4 Train Small/Test Big Model (Prediction vs. Actual, grouped by Message Size)
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8.3 Main Model

Table 8.5 Main Model Metrics (Testing Set)

R2 RMSE MAPE
0.858 0.359 0.262

Table 8.6 Main Model Feature Importances

Feature Importance
Message Size 0.66
Number of Messages 0.36
Number of Nodes 0.35
Processes per Node 0.29
Working Set Size 0.28
Computational Load Type 0.28

The performance metric values indicate that the main model has an acceptable
performance for both unexplained data variance (high R2) and absolute predictive
power (relatively low absolute and percentage errors). However, these metrics evaluate
the performance of the model for data that originates from the data generator
application. As mentioned, in the next chapter the model's performance is tested
against the NAS BT pseudo-application.

When it comes to the feature importances, they seem to be somewhat more balanced
compared to the previous cases. This may be a result of the larger size of the dataset
that the main model is trained on. The greater dataset size may also have to do with
the better overall performance, also seen in the following plot.
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Figure 8.5 Main Model (Prediction vs. Actual)



9. Predicting the NAS BT Pseudo-application

In this chapter, the predictive power of the main model is tested against the NAS BT
pseudo-application. To predict the performance of BT, several different configurations
of the application were executed on different execution configurations. Attempting
to predict the performance of this application, requires an understanding of its code
and of the times that it reports in order to properly adapt each configuration to our
model's features.

9.1 Analysis of the NAS BT Kernel

One of the reason this pseudo-application was chosen, is that its computational kernel
bears some similarities to the data generator application kernel. By examining the
application's code and with the help of the analysis provided in [Van der Wijngaart
et al., 2012, a better understanding of BT's execution was gained. Specifically, there
are four distinct phases of execution that repeat over a time for-loop and occur in a 3-
dimensional datagrid as shown in Listing 9.1. The first phase is a stencil computation
on all data points, while the other three, x/y/z-solve have two sub-phases, Forward
(Gaussian) Elimination (FE) and Back-Substitution (BS) where both communication
and computation occur in a regular pattern on the three different grid dimensions.
For each of these phases (and sub-phases) communication and computation times are
measured separately.

for time:
rhs

xSolve
ySolve

zSolve

Listing 9.1 Overview of NAS BT's kernel



Predicting the NAS BT Pseudo-application 58

To properly adapt the measurements from the different phases of NAS BT to be
compatible with the main model that uses data from the data generator application,
a search for the pattern of the data generator application kernel (simplified in Listing
2.3) was conducted in all the above phases. It was concluded that the two sub-phases of
FE and BS for each dimension show this pattern but with different data sizes (working
set and message size) between them. Listing 9.2 shows the simplified pseudocode for
the FE phase of xsolve. As mentioned the BS phase is similar but with different data
sizes and both of these phases are repeated for all three dimensions. Figure 9.1 shows
a simplified schematic comparison of BT and the data generator application.

for xDimension:
xSolveCellFE // performs computations on the other two dimensions

xExchangeSolveFEInfo // exchange of 2D faces

MPI_Waitall(MessagesToSend,MessagesToRecv)

Listing 9.2 NAS BT xsolve FE phase

A similarity between Listing 9.2 and Listing 2.3 can be observed. Namely, the outer
time for-loop in the data generator application is replaced by an outer dimension loop
in the FE phase, and the computations and data exchanges occur in 2D data faces.

With those observations in mind, the way that data from BT was adapted, is
by taking the FE and BS phases for one dimension as two different data generator
configurations. For each of those, we consider the outer time and dimension loops as
one larger time for-loop and make the appropriate division to the measurements to
match the data generator application outer-loop. A simplified, schematic comparison
of the two kernels can be seen in Figure 9.1.



Communicate

Compute

Communicate

Compute1

Communicate2

Compute2

9.2 Results

Data Generator Application

Communicate

Compute

Communicate1

Compute1

Communicate?2

Compute2

Communicate

Compute

Communicate1

Compute1

Communicate?2

Compute2

Figure 9.1 BT vs. Data Generator Application

Predicting the NAS BT Pseudo-application

Communicate

Compute

Communicate1

Compute1

Communicate2

Compute2

99

The following plots, show the predictions made on data adapted from several different
configurations of NAS BT. Figure 9.2 groups the different configurations by the
number of nodes used, while Figure 9.3 highlights the absolute error between the

actual values and the predicted ones.
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Figure 9.2 NAS BT Main Model Prediction vs. Actual (Grouped by Number of Nodes)
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Figure 9.3 NAS BT Main Model Prediction vs. Actual (Colored Absolute Error)

While the values of the absolute error are seemingly low, considering the actual values
of several points, the model mispredicts a large number of the different configurations.
This can be attributed to several factors, including the 'naivety' of the data adaptation
that was described in the previous section. Another factor may hide in an observation
made when inspecting the reported data by BT. Specifically, in a lot of cases there
was a large discrepancy (order of magnitude) between the maximum, the minimum
and the average times reported by all processes. For the context of this thesis, it was
chosen to not dive deeper into the peculiarities of this pseudo-application. Instead,
this attempt to predict a whole different application served as an opportunity to
understand how kernels with similar parts may behave differently when combined in
different ways and configurations. It was also another proof of the model complexity /
performance tradeoff, where the simple code of the data generator application and the
simple data adaptation, attributed to the model under-performing.



References

The Intel® MPI Benchmarks

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
FEunice Santos, Ramesh Subramonian, and Thorsten Von Eicken LogP:
Towards a realistic model of parallel computation volume 28 ACM 1993

Albert Alexandrov, Mihai F Ionescu, Klaus E Schauser, and Chris Scheiman LogGP:
incorporating long messages into the LogP model—one step closer towards a
realistic model for parallel computation. In Proceedings of the seventh annual
ACM symposium on Parallel algorithms and architectures, pages 95-105 ACM
1995

Fumihiko Ino, Noriyuki Fujimoto, and Kenichi Hagihara LogGPS: a parallel
computational model for synchronization analysis. ACM SIGPLAN Notices,
volume 36 pages 133-142 ACM 2001

Torsten Hoefler, William Gropp, William Kramer, and Marc Snir Performance
modeling for systematic performance tuning. State of the Practice Reports,
page 6 ACM 2011

Nikela Papadopoulou, Georgios Goumas, and Nectarios Koziris Predictive
commumnication modeling for HPC applications. Cluster Computing, volume 2,
number 3, pages 2725-2747 2017

Efstratios Karapanagiotis and Georgios Goumas Parallel application performance
prediction in shared memory architectures. 2023

Michael McCool James Reinders Arch Robison Structured Parallel Programming:
Patterns for Efficient Computation (1st. ed.) Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. 2012

Torsten Hoefler and Roberto Belli Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC '15). Association for Computing
Machinery, New York, NY, USA Article 73, 1-12. 2015

Friedman Jerome Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, volume 29.

Breiman Leo Random Forests. Machine Learning, volume 45, number 1, pages 5-32
2001

R. F. V. der Wijngaart, S. Sridharan, and V. W. Lee Eztending the bt nas parallel
benchmark to exascale computing pages 1-9 2012


https://www.intel.com/content/www/us/en/developer/articles/technical/intel-mpi-benchmarks.html

	fbDraftGr.pdf
	Ανάλυση και πρόβλεψη παράλληλων εφαρμογών σε αρχιτεκτονικές κατανεμημένης μνήμης
	Περιεχόμενα
	Ευχαριστίες
	Εισαγωγή
	Κεφάλαιο 1. Οικογένεια Εφαρμογών και Χώρος Features
	1.1. Εφαρμογές Stencil
	1.2. Εφαρμογή Data Generator
	1.3. Επιλογές για τα μεγέθη δεδομένων
	1.4. Άλλες παράμετροι και Χώρος Features

	Κεφάλαιο 2. Περιβάλλον Εκτέλεσης και Μετρήσεις
	2.1. Περιβάλλον Εκτέλεσης
	2.2. Μέθοδος Μετρήσεων

	Κεφάλαιο 3. Αρχικά Πειράματα
	3.1. Στατικστική Ανάλυση
	3.2. Παράμετροι Επικοινωνίας
	3.3. Παρεμβολή επικοινωνίας και υπολογισμών
	3.4. Συμπεράσματα

	Κεφάλαιο 4. Μοντέλα και η Αξιολόγησή τους
	4.1. Είδη Μοντέλων
	4.2. Μετρικές Επίδοσης Μοντέλων

	Κεφάλαιο 5. Ημι-Εμπειρικό Μοντέλο
	5.1. Μετροπρόγρομμα Exchange MPI
	5.2. Χτίζοντας μία αναλυτική έκφραση
	5.3. Σύγκριση με την εφαρμογή data generator

	Κεφάλαιο 6. Μοντέλα Μηχανικής Μάθησης
	6.1. Θεωρητικό Υπόβαθρο
	6.2. Συλλογή και Φιλτράρισμα Δεδομένων

	Κεφάλαιο 7. Αποτελέσματα και Επίδοση του Μοντέλου
	Κεφάλαιο 8. Πρόβλεψη της Ψευδοεφαρμογής NAS BT
	8.1. Ανάλυση του πυρήνα NAS BT
	8.2. Αποτελέσματα

	Βιβλιογραφία

	fbDraftEn
	Performance Analysis and Modeling of Parallel Applications in Distributed Memory Architectures
	Table of Contents
	Introduction
	Chapter 1. Related Work and Goals of Present Study
	1.1. Related Work
	1.2. Goals of Present Study and Outline

	Chapter 2.  Target Applications and Feature Space
	2.1.  Stencil Applications
	2.2. Data Generator Application
	2.3. Choices for Data Sizes
	2.4. Other Parameters and Feature Space

	Chapter 3. Execution Environment and Measurements
	3.1. Execution Environment
	3.2. Measurement Method
	3.3. Different Parts of Communication Time

	Chapter 4. Preliminary Experiments
	4.1. Statistical Analysis
	4.2. Communicational Parameters
	4.3. Computation-Communication Interference
	4.4. Insights Gained

	Chapter 5.  Models and their Evaluation
	5.1. Types of Models
	5.2. Model Performance Metrics

	Chapter 6.  Semi-Empirical Model
	6.1. Exchange MPI Benchmark
	6.2. Building an Analytical Expression
	6.3. Differences with the Data Generator Application
	6.4. Conclusion

	Chapter 7. Machine Learning Models
	7.1. Theoretical Background
	7.2. Data Collection and Filtering
	7.3.  Model Scenarios

	Chapter 8. Model Results and Performance
	8.1. Message Size Scale Models
	8.2. Train Small/Test Big Model
	8.3. Main Model

	Chapter 9.  Predicting the NAS BT Pseudo-application
	9.1. Analysis of the NAS BT Kernel
	9.2. Results

	References




