
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Enhancement of the Domain Generalization of

Vision Transformers through Advanced Data

Augmentation Techniques

Diploma Thesis
of

EVANGELOS G. FROUDAKIS

Supervisor: Athanasios Voulodimos

Assistant Professor, ECE NTUA

Athens, July 2024





National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Enhancement of the Domain Generalization of

Vision Transformers through Advanced Data

Augmentation Techniques

Diploma Thesis
of

EVANGELOS G. FROUDAKIS

Supervisor: Athanasios Voulodimos

Assistant Professor, ECE NTUA

Approved by the examination committee on 9th July 2024.

(Signature) (Signature) (Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Athanasios Voulodimos Georgios Stamou Andreas-Georgios Stafylopatis

Assistant Professor, ECE NTUA Professor, ECE NTUA Professor, ECE NTUA

Athens, July 2024





National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Copyright© – All rights reserved.

Evangelos G. Froudakis, 2024.

The copying, storage and distribution of this diploma thesis, exall or part of it, is

prohibited for commercial purposes. Reprinting, storage and distribution for non - profit,

educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Evangelos G. Froudakis

Graduate of Electrical

and Computer

Engineering, National

Technical University

of Athens

9th July 2024





Περίληψη

Η γενίκευση πεδίου (Domain Generalization) αποτελεί µια σηµαντική πρόκληση στον

τοµέα της µηχανικής µάθησης, όπου η απόδοση των µοντέλων ϐαθιάς µάθησης µπορεί να

υποβαθµιστεί σηµαντικά λόγω µετατοπίσεων στην κατανοµή των δεδοµένων, που προκαλούνται

από διαφορές στις συνθήκες εκπαίδευσης και εφαρµογής. Τα µοντέλα ϐαθιάς µάθησης

συνήθως υποθέτουν ότι τα δεδοµένα εκπαίδευσης και τα δεδοµένα που χρησιµοποιούνται

κατά την εφαρµογή προέρχονται από την ίδια κατανοµή. Ωστόσο, στην πραγµατικότητα,

αυτή η υπόθεση σπάνια ισχύει. Οι διαφορές στην κατανοµή των δεδοµένων, γνωστές ως

µεταβάσεις πεδίου, µπορούν να προκληθούν από διάφορους παράγοντες, όπως αλλαγές στο

περιβάλλον, στον εξοπλισµό ή στις διαδικασίες συλλογής δεδοµένων. Αυτές οι µεταβάσεις

µπορούν να οδηγήσουν σε σηµαντική µείωση της απόδοσης των µοντέλων όταν εφαρµόζονται

σε δεδοµένα που δεν έχουν δει κατά την εκπαίδευση.

Η γενίκευση πεδίου είναι Ϲωτικής σηµασίας για την ανάπτυξη ανθεκτικών συστηµάτων

µηχανικής µάθησης που µπορούν να εφαρµοστούν σε διάφορα πραγµατικά σενάρια. Οι

προκλήσεις που σχετίζονται µε τη γενίκευση πεδίου εµφανίζονται σε πολλούς τοµείς, όπως η

αυτόνοµη οδήγηση, όπου τα µοντέλα πρέπει να είναι ανθεκτικά σε µεταβαλλόµενες καιρικές

συνθήκες και συνθήκες ϕωτισµού, και στην αναγνώριση εικόνας, όπου οι µεταβολές στο

περιβάλλον ή τη γωνία λήψης µπορούν να επηρεάσουν την απόδοση του µοντέλου. Η

αντιµετώπιση αυτών των προκλήσεων απαιτεί καινοτόµες τεχνικές που µπορούν να ϐελτιώσουν

την ικανότητα των µοντέλων να γενικεύουν από την εκπαίδευση, σε πραγµατικές εφαρµογές.

Η γενίκευση πεδίου είναι επίσης κρίσιµη για εφαρµογές σε τοµείς όπου τα δεδοµένα

εκπαίδευσης µπορεί να είναι περιορισµένα ή να µην αντιπροσωπεύουν πλήρως την ποικιλία

των καταστάσεων που ϑα αντιµετωπίσει το µοντέλο κατά την εφαρµογή. Για παράδειγµα,

στη µετάφραση, τα µοντέλα πρέπει να αντιµετωπίζουν διαφορετικά στιλ γραφής και ϕράσεις

που δεν εµφανίζονται στα δεδοµένα εκπαίδευσης. Στην ιατρική απεικόνιση, όπου η συλλογή

δεδοµένων µπορεί να είναι δαπανηρή ή να υπόκειται σε νοµικούς περιορισµούς, η ικανότητα

ενός µοντέλου να γενικεύει από περιορισµένα δεδοµένα εκπαίδευσης σε νέα δεδοµένα είναι

ιδιαίτερα σηµαντική.

Η ανάγκη για ϐελτίωση της γενίκευσης των µοντέλων σε διάφορους τοµείς είναι σηµαντική,

και η σύγχρονη επιστήµη έχει ϐρει τρόπους ώστε τα συστήµατα τεχνητής νοηµοσύνης να

γενικεύουν σε άγνωστα δεδοµένα χωρίς να τα έχουν δει κατά την εκπαίδευση. Η επαύξηση

δεδοµένων είναι µία από αυτές τις µεθόδους που έχει οδηγήσει σε σηµαντικές ϐελτιώσεις στις

ικανότητες γενίκευσης των µοντέλων ϐαθιάς µάθησης. Η επαύξηση δεδοµένων στοχεύει στην

παραγωγή νέων δειγµάτων εκπαίδευσης µέσω τροποποίησης των υπαρχόντων δεδοµένων

µε διάφορους τρόπους, όπως µέσω περιστροφών, µεταφράσεων και ϱυθµίσεων χρώµατος,

δηµιουργώντας παραλλαγές που µπορεί να συναντήσει το µοντέλο σε πραγµατικά σενάρια.
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Περίληψη

Η παρούσα διατριβή διερευνά την ενίσχυση της γενίκευσης πεδίου στην κατάτµηση

εικόνων ιατρικής απεικόνισης µέσω προηγµένων τεχνικών επαύξησης δεδοµένων. Αυτή η

διπλωµατική εστιάζει στην αξιολόγηση του αντίκτυπου της επαύξησης δεδοµένων τόσο σε

επίπεδο εισόδου όσο και σε επίπεδο χαρακτηριστικών χρησιµοποιώντας µεθόδους όπως η

επαύξηση ϐασισµένη σε στυλ. Ενσωµατώνοντας αυτές τις στρατηγικές επαύξησης, στόχος

είναι να ϐελτιωθεί η ικανότητα των µοντέλων να χειρίζονται άγνωστες παραλλαγές στις ιατρικές

εικόνες, αυξάνοντας έτσι την ανθεκτικότητα και την αξιοπιστία τους σε πραγµατικές εφαρµογές.

Στις πειραµατικές διαδικασίες, χρησιµοποιήθηκε ένα µοντέλο vision transformer, του

οποίου η επίδοση ϐελτιώθηκε µε σύνολα δεδοµένων που επαυξήθηκαν µέσω συνδυασµού

επαυξήσεων ϐασισµένων σε στυλ όπως το MaxStyle και άλλων µεθόδων επαύξησης εισόδου,

όπως το AugMix. Αυτές οι τεχνικές ενισχύουν την ποικιλία των δεδοµένων εκπαίδευσης,

επιτρέποντας στο µοντέλο να µάθει ανθεκτικά χαρακτηριστικά που είναι λιγότερο ευαίσθητα

σε διάφορους τύπους µετατοπίσεων δεδοµένων. Η αξιολόγηση πραγµατοποιήθηκε σε σύνολα

δεδοµένων MRI προστάτη ως εντός πεδίου δεδοµένα και έξι επιπλέον σύνολα δεδοµένων ως

εκτός πεδίου δεδοµένα.

Τα αποτελέσµατα έδειξαν ότι τα µοντέλα που εκπαιδεύτηκαν µε επαυξηµένα δεδοµένα

παρουσίασαν σηµαντικά ϐελτιωµένη ανθεκτικότητα και γενίκευση σε δείγµατα εκτός πεδίου.

Ο συνδυασµός επαυξήσεων ϐασισµένων σε στυλ και άλλων µεθόδων επαύξησης οδήγησε

σε αξιοσηµείωτη αύξηση της γενικευσιµότητας. Αυτό υποδηλώνει ότι ο συνδυασµός και η

ενσωµάτωση σύνθετων τεχνικών επαύξησης δεδοµένων µπορεί να ενισχύσει σηµαντικά την

ανθεκτικότητα των µοντέλων κατάτµησης εικόνων ιατρικής απεικόνισης, καθιστώντας τα πιο

αξιόπιστα για κλινικές εφαρµογές.

Συγκεκριµένα, η µέθοδος MaxStyle που χρησιµοποιήθηκε για την επαύξηση χαρακτηριστικών,

ενσωµατώνει επαύξηση ϐασισµένη στο στυλ, µε ανταγωνιστική εκµάθηση, για τη δηµιουργία

επαυξηµένων εικόνων που δυσκολεύουν το δίκτυο κατάτµησης, ϐελτιώνοντας έτσι την ανθεκτικότητα

του µοντέλου έναντι άγνωστων αλλοιώσεων [1]. Επιπλέον, η µέθοδος AugMix που χρησιµοποιήθηκε

για την επαύξηση εισόδου περιλαµβάνει τον συνδυασµό απλών λειτουργιών επαύξησης και

έναν µηχανισµό συνέπειας απωλειών [2]. Αυτή η προσέγγιση εξασφαλίζει ότι το µοντέλο

µαθαίνει χαρακτηριστικά που είναι ανθεκτικά σε διάφορους τύπους διαφθοράς. Ο συνδυασµός

αυτής της µεθόδου µε τη χρήση ενός vision transformer όπως το ΣεγΦορµερ, ο οποίος έχει

σχεδιαστεί για να επωφελείται από τις µακρινές εξαρτήσεις και τα συµφραζόµενα, συνέβαλε

στην επίτευξη ϐέλτιστων αποτελεσµάτων [3].

Η µελέτη αυτή επισηµένει τη σηµασία των προηγµένων µεθόδων επαύξησης δεδοµένων

στην εκπαίδευση ανθεκτικών και γενικεύσιµων µοντέλων κατάτµησης εικόνων ιατρικής απεικόνισης.

Η ενσωµάτωση επαύξησης ϐασισµένης σε στυλ στη διαδικασία εκπαίδευσης έδειξε σηµαντικές

ϐελτιώσεις στην απόδοση των µοντέλων έναντι µεταβάσεων πεδίου, ανοίγοντας τον δρόµο για

πιο αξιόπιστες και ακριβείς λύσεις ιατρικής απεικόνισης.

Λέξεις Κλειδιά

Νευρωνικά ∆ίκτυα, Βαθιά Μάθηση, Κατάτµηση Εικόνας, Γενίκευση Πεδίου, Μεταφορά

Στυλ, Επαύξηση ∆εδοµένων
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Abstract

Domain generalization is a critical challenge in medical imaging, where the performance

of deep learning models can significantly degrade due to domain shifts—variations in data

distribution caused by differences in imaging protocols, equipment, or patient populations.

This issue is particularly problematic in medical image segmentation, where models

trained on a specific dataset often fail to generalize to new, unseen data, limiting their

practical applicability in clinical settings. Addressing this problem requires innovative

techniques to enhance model robustness and generalizability.

This thesis investigates the enhancement of domain generalization in medical image

segmentation through advanced data augmentation techniques. This study focuses

on evaluating the impact of data augmentation at both the input and feature levels

using methods such as style-based augmentation. By incorporating these augmentation

strategies, the goal is to improve the ability of models to handle unseen variations in

medical images, thereby increasing their robustness and reliability in real-world applications.

In the experiments, a vision transformer model was fine-tuned with datasets augmented

through a combination of style-based and other input-level augmentation methods. These

techniques enhance the diversity of training data, allowing the model to learn robust

features that are less sensitive to various types of data shifts. The evaluation was

conducted on prostate MRI datasets as the in-domain data and six additional datasets as

the out-of-distribution domains.

The results demonstrated that models trained with augmented data exhibited significantly

improved robustness and generalization to OOD samples. The combination of style-

based and other augmentation methods led to a notable increase in generalizability.

This suggests that integrating complex data augmentation techniques can significantly

enhance the robustness of medical image segmentation models, making them more

reliable for clinical applications.

Keywords

Neural Networks, Deep Learning, Image Segmentation, Domain Generalization, Style

Transfer, Data Augmentation
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Chapter 1

Introduction

I
n recent years, artificial intelligence has experienced a notable surge, revolutionizing

several aspects of science in many different scientific fields. This surge can be

attributed to many factors such as the increased computational power that researchers

have access to, and the abundance of data available for training artificial intelligence

models. Thanks to these advancements, new systems, known as deep learning systems,

have taken a prominent position in artificial intelligence applications.

Deep learning, involving large artificial intelligence models that analyze data with great

detail, has fundamentally transformed the field of computer vision in recent years, making

tremendous progress in image processing. However, modern models that typically exhibit

optimal performance either make certain assumptions during training that do not align

with realistic application conditions or are trained on a large volume of data, which is not

always easily obtainable.

One of the most fundamental issues in training tools capable of application in various

domains is the generalization of models. These systems must be able to withstand

any alterations in the data, which they may not have encountered during training.

Such alterations may arise from uncontrollable factors, such as weather changes in

autonomous driving applications. If such extreme cases are not taken into account during

training, they can lead to a significant decrease in performance during application.

Data scarcity is also a serious problem for the implementation of machine learning

models. The aforementioned problem is usually addressed by using a large volume of

diverse training data. However, for many fields, such as the medical field, collecting data

from multiple sources may be costly or even impossible, as there is not yet an abundance

of openly available data.

The need for more advanced methods of model generalization is significant, and

contemporary science has found ways for artificial intelligence systems to generalize to

unknown data without having seen it during training. Style transfer and adversarial

learning are two of these methods and have led to significant improvements of the

generalization abilities of deep learning models. However, there is a need for further

improvement, as performance is still low, and the cost and time of training are quite

significant. In such cases, data augmentation methods are employed, which alter the

content of the image with the aim of enhancing the robustness of the model.

Diploma Thesis 17



Chapter 1. Introduction

By utilizing data augmentation methods, one can improve performance with minimal

to zero additional costs in terms of time and training resources. However, complex

augmentations are avoided in the healthcare sector due to their impact on the semantic

content of the images. Nevertheless, numerous studies have demonstrated that introducing

significant complexity during training can lead to substantial improvements to the generalization

ability of the trained model. Therefore, it is intriguing to explore how such complex

augmentations, in combination with modern domain generalization methods, can lead to

improved performance without an increase in computational resources.

1.1 Objective of the Thesis

The subject of this thesis is to investigate the utilization of complex data augmentations

in medical images, specifically Magnetic Resonance Imaging samples, in combination

with modern style transfer and adversarial learning methods, aiming to create a more

robust system for unknown data and image alterations. The ultimate goal is to develop a

comprehensive, novel augmentation approach that can contribute, in a computationally

efficient manner, to the training of valuable tools for the medical domain. Such systems

could assist or potentially replace conventional methods in medical image segmentation

and serve as advisory tools for health care professionals, thus reducing diagnostic errors

and promoting high-quality healthcare.

1.2 Thesis Organization

This work is structured into seven chapters. In Chapter 1 is provided the introduction

to the thesis. Chapter 2 presents the theoretical background of the fundamental technologies

related to this thesis. Initially, the field of image segmentation is described, followed by the

problem faced by deep learning networks regarding generalization to unknown domains,

the types of resolution methods, and finally, the basic architectures used for image

processing. In Chapter 3, relevant works on the topic are initially described, followed

by the specific objectives of this work. In Chapter 4 are presented the datasets used and

their specific characteristics as well as the data preprocessing. Chapter 5 analyzes in

greater detail on the tools used in the research of this work, while Chapter 6 presents the

experimental results. Finally, Chapter 7 provides the contribution of this thesis, as well

as potential future extensions.
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Chapter 2

Theoretical Background

I
n this chapter, the theoretical background necessary to understand the work and

content of this body of work, as well as the methods and approaches implemented,

will be presented and analyzed.

Starting in Section 2.1, the main theory behind Deep Neural Networks (DNNs) will be

analyzed and several types of Deep Neural Networks will be presented. Following that,

the concept of Image segmentation will be investigated in Section 2.2. The basis of the

Domain Generalization problem will be analyzed in Section 2.3. Finally, in Section 2.4,

the Style Transfer technique will be analyzed. By the end of this chapter, all the knowledge

and information required to understand the work of this Thesis will have been presented

and analyzed.

2.1 Deep Neural Networks

An understanding of Neural Networks and Deep Learning Models is required to better

understand the following concepts and the work presented. Thus, it is appropriate to

present the main theory behind Neural Networks and some information on the main

Architectures that are being used for image processing.

2.1.1 Neural Networks

The Term Artificial Neural Networks represents a category of artificial intelligence

algorithms which creation was inspired from biological neural networks in the human

brain and its information processing mechanisms. They consist of interconnected nodes,

connected by interneuron ages, which carry specific weights. The manipulation of those

weights allows the network to learn from seen data through the activation functions.

Historical the first mention of Artificial Neural Networks was in 1943 form a neurophysiologist

Warren S. and a mathematician McCulloch and Walter Pitts on their paper "The Logical

Calculus of the Ideas Immanent in Nervous Activity" [19]. For several years after their

introduction, artificial Neural Networks failed to achive significant results. The last

decades researchers have made significant advancements on the field of Artificial Neural

Networks due to the introduction of new architectures and techniques, such as Convolutional

Neural Networks [20],[5] and others that are going to be presented and analyzed in the
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following subsections, but also due to the advancements of computer hardware such as

better Graphics Processing Units and Tensor Processing Units [21].

2.1.2 Convolutional Neural Networks

Developed to tackle the increasing complexity of data as well as the rising size of

datasets, Convolutional Neural Networks (CNNs) serve as the fundamental architecture

for image processing [20]. They superseded previous networks that relied on densely

connected layers, which became unwieldy due to their excessive connectivity. CNNs are

engineered to autonomously discern patterns and features from images and similar data

structures through convolutional layers and pooling operations. This hierarchical feature

extraction renders CNNs especially adept for tasks encompassing image classification,

object detection, and facial recognition [5].

The main workflow of a Convolutional Neural Network [4] consists of:

� The Input Image

� One or more Convolution Leyers (or Kernels)

� One or more Pooling Layers

� One or more Classification Fully Connected Layers

� The Output Layer

Figure 2.1. An example of CNN architecture[4]

The most important and unique parts of a CNN are the Convolution Layers and the

Pooling Layers. The functionality and usage of those types of layers is analyzed bellow.
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Convolution Layer (or Kernel)

The Convolution Layers of a CNN are based on the following algorithm. Let h,w,c

be the height, width and number of channels of the layer’s input respectively and K the

Convolved Feature a matrix with dimensions k×k. A convolutional operation is performed

on every Sth k×k sub-matrix of the input with K (Kernel), where S is the determined Stride.

For example if S = 2 then the convolution is going to be performed on every other k × k

sub-matrix, decreasing this way the size of the input by a factor of 2, but in a way that as

much of the original information is being kept, thanks to the carefully created Kernels.

When the number of channels c is greater than 1, as it is in RGB images, the Kernel

K should have the same number of depth. Finally, depending on the usage, rows and

columns may be added around the input image with specific values (0,1 or the average

of their neighbors) with the goal of not shrinking the dimensions of the output. Figure

2.2 depicts the convolution process that has been described above. The Kernel K has

dimensions 3 × 3 and depth 3 as the image input matrix has three layers. After the

convolutions take place, the sum of the three results is entered to the Output after the

Bias is added. In this case a single row of padding is being used with values 0.

Figure 2.2. An example of a convolution operation[4]

The main target of the convolution layer is to obtain high-level features from the input

image. High-level features can be lines, edges, blobs but also surfaces and characteristics

of images such as tires in cars and windows in buildings. In addition the layer also

performs an operation on low-level features such as color and gradient orientation.

Pooling Layer

Pooling layers works similar to Convolutional layers but do not implement convolution

of the input matrix with a kernel. A Pooling Layer replaces a sub-matrix of the input with
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a specific number. That number depends on the type of Pooling Layer, which there are

two:

� Max Pooling: It returns the maximum value of the elements in each sub-matrix

� Average Pooling: It returns the average value of the elements in each sub-matrix

Figure 2.3. An example of a Pooling Layer operation[4]

Usually, the input of a Pooling Layer is the output of a Convolutional Layer, and the

main functionality of a Pooling Layer is to decrease the size of its input. This way the

computational and spatial complexity of the following layers gets reduced. Additionally,

Pooling proves advantageous in extracting dominant features that remain invariant to

both rotation and position, underscoring the necessity for effective process maintenance.

Max Pooling is also used as a noise-suppresing operation, as it discards noisy activations.

Modern avances of Convolutional Neural Network

During the last years Convolutional Neural Networks have been advanced both in

terms of their architectural designs and overall performance capabilities. The availability

of larger and more diverse datasets has played a pivotal role in training more robust and

generalized models. Additionally, techniques like batch normilisation, data augmentation,

and implementations of regulirization methods have contributed to the improvment of the

learning process, and the models generalisation and robustnes. Morover, the evolution
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of network architectures towards deeper structures has allowed CNNs to capture more

complex patterns and features from input data. The introduction of deep pre-trained

models, including popular architectures like VGG [5], Inception [22], and ResNet [6],

has revolutionized the field by enabling researchers and practitioners to leverage transfer

learning methodologies, by finetuning models trained on one task to perform effectivly on

some ralated tasks.

Figure 2.4. An example of deep Convolutional Neural Networks’ architectures is shown. At
the bottom, the architecture of the VGG-19 model is depicted [5], in the middle is presented
a plain CNN with a 32-parameter layer, and at the top, the architecture of the ResNet model
is illustrated [6].

2.1.3 Fully Convolutional Neural Networks

As mentioned in Section 2.1, one of the main functionalities of Neural Networks

regarding image processing is image segmentation. Fully Convolutional Networks (FCN)

are created specifically for this task on pixel level. Their target is the classification of

each pixel of the input image to one of predetermined classes [7]. The main deference

between Convolutional Neural Networks and Fully Connected Neural Networks is that

Fully Connected Neural Networks replace the fully connected layers of Convolutional

Neural Networks with Convolutional Layers. This is done so that the final output of the

Network has the same dimensions as the input and the spatial information is preserved

throughout the Network.

Moreover, through the strategic implementation of skip connections, an approach in

which feature maps originating from the terminal layers of the model are refined and

fused with those from preceding layers, a Fully Convolutional Network can effectively

combine rich semantic context, predominantly extracted from deep layers, with nuanced

appearance cues meticulously captured from shallow layers. This harmonious integration

empowers the model to generate highly accurate and intricately detailed segmentations.

A remarkable implementation of Fully Convolutional Neural Networks for image segme-

ntation is U-Net, proposed by O. Ronneberger et al. [8]. It employed shrinking as well as
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Figure 2.5. An example of the basic architecture of a Fully Connected Network (FCN) [7]

expanding operations in a U-shaped architecture which is visible in Figure 2.6.

Figure 2.6. The original architecture of U-Net [8]. Each blue rectangle represents a
multichannel feature map. The white rectangles represent copied feature maps. Finally,
the arrows show the different kinds of operations.

The architecture consists of two main parts: a contracting path that captures the

context, and a symmetric expanding path that helps with the precise localization of each

class. The first part is similar to a traditional Convolutional Network and its purpose is
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to extract features using 3 × 3 unpadded convolutions, each followed by a rectified linear

unit (ReLU) and a 2 × 2 max pooling with stride 2 [8]. In each step of the contracting

path, the number of feature channels is doubled. The second part, consists of several

upsampling of the feature maps each followed by a 2 × 2 convolution which halved the

feature channels, a concatenation with the corresponding feature map from the first part,

and two 3 × 3 convolutions, each followed by a rectified linear unit (ReLU) [8]. Finally,

a 1 × 1 convolution is implemented to map each of the feature vectors to the number of

predetermined classes.

U-Net and other implementations of Fully Convolutional Networks have been used

extensively in the medical field on tasks like skin cancer segmentation [23], iris segmentation

[24], brain tumor segmentation [25], and Instance-aware Semantic segmentation [26].

Fully Convolutional Networks revolutionized how medical images are analyzed, making

it easier to accurately and automatically identify organs and abnormalities across different

types of scans like MRIs, CT scans, and X-rays [27]. Using FCNs, doctors and healthcare

professionals can speed up their work and improve diagnoses by creating detailed maps

of body structures and pinpointing areas of concern.

However, while Fully Convolutional Networks are widely used and effective, they do

have some limitations. One key issue is that they can’t process images in real-time,

which can be a problem for tasks needing immediate results. Also, FCNs face difficulties

in taking in all the necessary information from an image, particularly the broader context

that helps with accurate segmentation. Additionally, they are difficult to implement on

three-dimensional images, limiting their usefulness in certain situations.

To overcome these challenges, researchers have been working on improving Fully

Convolutional Networks. By refining their architecture and methods, they aim to make

FCNs faster, better at understanding context, and more adaptable to different types of

medical images. These efforts are driving innovation in the field, leading to new ways to

analyze medical images more effectively.

2.1.4 Encoder Decoder Models

Encoder-Decoder neural networks represent a fundamental element within modern

deep learning, significantly impacting various domains through their adeptness in seamlessly

converting data across diverse representations [28],[29]. The initial phase of this architecture,

the encoder, analyzes the input, whether it be an image, text, or sequence, compressing it

into a condensed form commonly referred to as the latent space or embedding. Through

intricate layers of processing, the encoder distills vital features while abstracting noise and

irrelevant details, thereby constructing a representation that encapsulates the essence of

the input.

In the landscape of image analysis, the encoder constituent of the architecture receives

inputs of high dimensionality, such as images, and meticulously processes them, gradually

molding them into a lower-dimensional embodiment known as a latent space. This

transformation, or encoding, transpires through a cascade of convolutional and pooling

operations, progressively distilling and consolidating salient features from the input domain.
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These condensed representations serve as encoding of essential insights about the input

while simultaneusly sieving out unneeded intricacies, thus facilitating the extraction of

pivotal features from convoluted datasets.

Figure 2.7. An example of the basic architecture of an Encoder Decoder Network [9]

Conversely, the decoder counterpart adeptly assimilates the diminished information

from the encoder and harnesses it to either recreate the original input or the apropeiate

outputs imbued with the desired attributes [28],[29]. In scenarios revolving around

images, the decoder typically comprises an assembly of convolutional layers that incrementally

amplify the latent representation, meticulously reinstating it to its pristine dimensions.

This regenerated output fulfills multifarious objectives, spanning from image rejuvenation

and chromatic enhancement to style emulation and resolution augmentation. In alternative

applications, such as linguistic translation within the realm of natural language processing,

the decoder utilizes the lower-dimensional information to engender textual sequences or

alternate manifestations of data.

Encoder-Decoder architectures furnish an adaptive framework for information compression

and exploitation, endowing a vast array of tasks with the capability for efficient feature

extraction and reconstitution.

2.1.5 Vision Transformers

A Transformer in machine learning is a deep learning model that uses the mechanisms

of self-attention. Self-attention allows the model to weigh the importance of different parts

of the input when processing them, enabling it to capture dependencies between parts in

a more flexible manner Convolutional Neural Networks.

Vision Transformers architectures consist of several steps. Firstly the input image

is devidet into a grid of fixed-size patches which then are flattened into sequences of

vectors. Each patch vector is associated with an embedding vector. Additionally, a

learnable embedding vector is associated with a special token called the "class" token,

which represents the entire image. Afterwords, ositional encodings are added to the

token embeddings to provide information about the spatial arrangement of the patches.
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This allows the model to understand the relative positions of the different patches within

the image. The token embeddings, along with the positional encodings, are passed

through a series of transformer encoder layers. Each layer consists of self-attention

mechanisms that allows the model to capture dependencies between different patches

and feed-forward neural networks that enable nonlinear transformations. The final

layers of Vision Transformers vary depending on the task of the model. For clasification

models the final layer can be a Multy Layer Presseptron Head chich takes the final vector

representation of the input image and outputs the propability of each class [10]. For

segmentation oriented models the final part of the model is a Decoder simila to Encoder-

Decoder architectures that outputs a matrix with the propabilities of each class for each

pixel of the original input image [3].

Figure 2.8. The architecture of ViT from the original paper [10] is shown. On the left,
an overview of the architecture and its different layers is depicted. On the right, there is a
close-up of the Transformer Encoder part and its different layers.

Self-attention based architecturs and in particular Transformers architectures originaly

started as an architecture for Natuarl Language Processing (NLP) tasks and quickly

bekame the de-facto standard approach [30]. Their computational efficiency and scalability

made the training of unpresidently deep modeles posible. Inspired my the succes Transformers

had in Natuarl Language Processing, works like [31], [32] and [33] tried to combine

self-attention with traditional Convolutional Neural Network archytectures, but without

succeading to overperform the best model at the time [6].

ViT was the first body of work that experimented with applayinf standar Transformer

arcitectures directly to images with as litle modifications as posible [10]. When trained on

large datasets, ViT overcomed its lack of inductive biases (which are inherit to Convolutional

Neural Networks) achived exelent resaultes, beatin the then state of the art ResNet and

opening a new field of Transformer architecturs on Image Processing.

Diploma Thesis 29



Chapter 2. Theoretical Background

2.2 Image segmentation

Image segmentation is one of the primary applications of deep learning systems in

computer vision, where an image is divided into different regions of interest at the pixel

level [34], [35]. This process is crucial for simplifying the representation of an image,

making it easier to analyze and interpret.

Image segmentation plays a central role in a wide range of applications. In autonomous

vehicles, image segmentation is essential for navigation on surfaces and pedestrian detection

[36],[37]. Additionally, it is used in security and monitoring applications involving satellite

images, helping to detect and track objects and changes in the environment [38]. In

medical image analysis, for instance, it is used to identify tumors and measure tissue

volumes in radiographs and other medical imaging techniques [39].

2.2.1 Image Segmentation Types

Semantic Segmentation

Image Segmentation can be analyzed in two basic categories based on the target of the

segmenting process. The first category is Semantic segmentation. Semantic segmentation

is a computer vision task that involves assigning a class label to each pixel in an image,

categorizing the image into different semantic classes like "road," "tree," or "building." This

task can be approached through supervised learning, which requires a labeled dataset

for training, or unsupervised learning, which doesn’t need labeled data and uses various

methods to learn labels.

The evolution of semantic segmentation models began with fully convolutional networks

(FCNs), which were adapted from image classification models. Subsequent advancements

include models like DeepLab, FastFCN, DeepLabV3, and newer transformer-based models,

each introducing improvements in accuracy and efficiency [40], [41], [42]. These models

are essential for applications in autonomous driving, medical imaging, and robotics.

Instance Segmentation

Instance segmentation is an image segmentation task that identifies and segments

individual objects in an image, assigning a unique label to each object and delineating

their boundaries. This approach relies on the appearance or context of objects to perform

segmentation. The Mask R-CNN architecture is a common model used for instance

segmentation [12]. This technique is increasingly applied in various fields, impacting

daily life.

2.3 Style Transfer

Each artist has a unique way of expression and thus, a unique style of art. Some like

to draw oil paintings with heavy strokes on canvas and others prefer sketching with a

pencil on a piece of paper. If you gave each one of them the task of drawing something
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Figure 2.9. Examples of Image Segmentations [11]. Specifically, the Semantic
Segmentation of the input images are depicted

specific, e.g. a dog, a lot of unique but in some ways similar pictures of dogs. But for an

artist to draw a Picasso sketch dog in the style of Van Goh’s Starry Night style, it requires

studying both artworks to find the unique characteristics that compose the dog sketch

and redraw them using the unique techniques that would make it appear as a Starry

Night style artwork.

Style transfer is a modern technique in computer vision and image processing that

enables the alteration of an image’s artistic style while maintaining its original content.

This idea gained significant attention with the development of neural style transfer algorithms,
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Figure 2.10. Examples of Instance Segmentations from the original paper that proposed
Mask R-CNN [12].

which utilize the capabilities of deep neural networks to produce visually striking and

artistic images. The use of Convolutional Neural Networks (CNN) for the reproduction

of images in the style of paintings was first proposed by Gatys et al. [13] in 2015.

They showed that a CNN can capture the content information of a photograph, the style

information of an artwork as a summary of feature statistics, and finally combine them to

reproduce a new image. Their work was the ground stone for the, now well documented,

field of Natural Style Transfer.

The fundamental concept of style transfer involves separating and recombining the

content and style of two distinct images to generate a new and unique composition. The

process typically involves two key components: the content image and the style image.

The content image holds the objects and elements to be preserved in the final output,

while the style image contains the stylistic features to be applied to the content. Neural

networks are essential in this process, as they analyze the content image to extract its

features and the style image to capture its stylistic elements. These extracted features

are then used to create a new image that merges the content from the content image

with the stylistic attributes of the style image [43]. By employing images from various

domains, style transfer can generate images from different fields, thereby enriching the

dataset and enhancing the model’s ability to generalize from a single dataset. The key

quantities involved are the mean and variance of the feature maps, as these metrics store

the information about an image’s style within the layers of a neural network [15], [1].

2.4 Out of distribution Problem

Deep learning models typically presume that the training data and the data used

during deployment share the same distribution. This assumption implies that the mean
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Figure 2.11. In this Figure from the original paper by Gatys et al. there are images with
the content of a photograph of Neckarfront in Tubingen, Germany A recreated influenced
by the style of five well known paintings [13]. The paintings used that provided the style
are shown in the bottom left corner of each generated image and are: B The Shipwreck of
the Minotaur by J.M.W. Turner, 1805, C The Starry Night by Vincent van Gogh, 1889, D
Der Schrei by Edvard Munch, 1893, E Femme nue assise by Pablo Picasso, 1910, and E
Composition VII by Wassily Kandinsky, 1913.

and standard deviation of the image features are consistent across both datasets /citeOOD1,/citeOOD2,/citeOOD3,/citeOOD6.

However, this is often not the case in practice, as various external factors, such as the

method of image acquisition and environmental conditions, introduce variations in the

image domain, known as domain shifts [44].

To illustrate, consider a model where the inputs and outputs are connected via

the joint probability distribution function P(X, Y ), with X representing inputs and Y
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representing outputs. During the training and validation phases, the inputs usually come

from the same distribution, which means there are no changes in the joint function.

However, when applying the model in a real-world context, the data used for training,

validation, and testing comes from the conditional distribution P(X, Y |Z ∈ U ). Here, Z is

a random variable that might not be observable and is not independent of Y and X , while

U is a subset of Z [45].

In the medical field, for example, this issue is evident when MRI scans from different

machines show significant discrepancies, even if they represent the same content. These

discrepancies are due to the noise and artifacts introduced by medical imaging devices,

as well as variations in the magnetic field. Such differences can lead to notable variations

during the training of an AI model, despite thorough preprocessing [46],[47].

As a result, the performance of deep learning models can significantly decline in

the presence of substantial domain shifts, preventing their practical and widespread

application [48],[49],[50]. One potential solution is to use images from a variety of

domains to make the model robust against such deviations. However, this approach

is often impractical due to the lack of sufficient and diverse data available [46].

To overcome this challenge, the field of deep learning has developed alternative approaches

that do not rely on extensive datasets for training. These methods, known as domain

generalization techniques, aim to enhance the model’s ability to generalize effectively

across different domains.

2.5 Domain Generalization

To mitigate the issues caused by domain shifts that was analyzed in Section 2.4

and the lack of diverse data, deep learning models often employ domain generalization

techniques. Domain generalization addresses the machine learning challenge of training a

model that can generalize to unseen domains by using only labeled data from a set of initial

domains during the training phase [51]. The objective is to develop a representation that

remains consistent across various domains, capturing their shared underlying structure

while being resilient to domain-specific variations. This approach is especially useful in

contexts where the target domain is unknown or inaccessible during training, such as in

medical diagnosis or autonomous driving.

The concept of domain generalization has its roots in the early 2000s, when Blanchard

et al. introduced it as a distinct machine learning problem [52]. The initial motivation for

domain generalization came from a medical application called automatic gating in flow

cytometry data. The goal was to create algorithms that could automate the classification

of cells in blood samples based on various properties, such as distinguishing between

lymphocytes and non-lymphocytes. This technology is critical for improving the efficiency

and accuracy of patient health diagnostics, as manual classification is labor-intensive and

requires specialized knowledge. Unlike domain adaptation or transfer learning, domain

generalization tackles scenarios where target data are not available during model training.

The literature extensively explores domain generalization, with numerous methods

developed for different applications. These methods are generally classified into four
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categories: feature-based methods, model-based methods, metric-based methods, and

meta-learning-based methods. Feature-based methods focus on learning a domain-

invariant feature representation by adding regularization terms to the loss function or

employing domain separation networks. Model-based methods are designed to train

models that are robust against domain shifts. Metric-based methods aim to establish a

metric space that is unaffected by domain shifts. Lastly, meta-learning-based methods

aim to train a meta-learner capable of quickly adapting to new domains with minimal

labeled data.

These approaches collectively enhance the capability of deep learning models to perform

reliably in real-world scenarios, despite the challenges posed by domain shifts and limited

data variety.
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Related work on Domain Generalization on images

I
n this chapter, a presentation and analysis of some state-of-the-art methods used in

Domain Generalization on Images are included, which have an effect on this work.

3.1 Ralated work

3.1.1 Adversarial Training

Adversarial training is a technique in machine learning aimed at improving the robustness

of deep learning models. Inspired by adversarial examples—inputs designed to mislead a

neural network—this approach involves exposing the model to these challenging examples

during training. This exposure forces the model to learn resilience against such perturbations.

The concept stems from the realization that even a slight, imperceptible noise added to

images can cause deep learning models to produce incorrect outputs, despite no visible

change to the human eye [53].

The primary function of adversarial training in enhancing robustness is its capacity

to improve model performance when encountering adversarial inputs or unfamiliar data

distributions. By integrating adversarial examples into the training data, the model learns

to identify and adapt to subtle changes and variations in input data, thereby reducing its

vulnerability to manipulation and exploitation. This approach strengthens the model’s

defense against adversarial attacks and simultaneously enhances its generalization performance.

Adversarial training is applied in various fields, such as computer vision, natural language

processing, and reinforcement learning.

Primarily, adversarial training has been applied within Generative Adversarial Networks

(GANs), where it addresses the issue of distribution minimization through a minimax

game involving two players [14]. This involves training a discriminator to differentiate

between real and generated fake images, while simultaneously encouraging the generator

to fool the discriminator. This method, used to enhance model robustness, is widely

adopted for domain generalization [54],[55], [56],[57]. In modern techniques, adversarial

learning can also be performed without a discriminator, relying instead on the "competition"

between two distinct errors during training [1].
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Figure 3.1. An example of the generation of an adversarial example from the original
paper [14]. The authors add to the original image x an imperceptible vector whose elements
are equal to the sign of the elements of the gradient of the cost function. This way the
classification of the input image changes to be faulty

3.1.2 Style Transfer

As analyzed in section 2.3, style transfer is a technique in computer vision that

involves creating a new image by merging the content of one image with the style of

another. The aim of style transfer is to produce an image that preserves the content of

the original image while applying the visual style of a different one [58].

Recent advancements in style transfer have led to its widespread use as a method

for domain generalization [59],[60]. Various generalization techniques like [61], [62], [63]

utilize pre-existing style transfer models, like AdaIN [60], or develop networks that learn

from examples to perform data augmentation with specific styles [1],[59]. Furthermore,

external styles are used to enhance the diversity of training data [64]. This technique

is quite beneficial, as it enables the creation of images representing different domains,

resulting in improved model generalization even with limited data.

Figure 3.2. In this 2-D t-SNE visualization of style statistics from the original paper that
proposed MixStyle [15] it is shown that the four different domains (Cartoon, Sketch, Art
Painting, and Photo) are clearly separated.
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3.1.3 Data Augmentation

Data augmentation involves the creation of new samples by altering the data in a way

that makes them different from the original but still retains the information they contain

[65]. Feature-level augmentation has emerged as a groundbreaking technique specifically

designed to address the challenges associated with domain generalization [15], [16].

Within the framework of domain generalization, feature-based augmentation operates

on the premise that CNN feature statistics encapsulate domain-related information. This

method seeks to improve the robustness and adaptability of models to unseen domains.

Two prominent examples of this approach are MixStyle and Mixup. MixStyle enhances

style augmentation by blending CNN feature statistics from instances across different

domains. MixStyle’s process enables models to adapt more effectively to new, unseen

domains by integrating a variety of visual styles and characteristics [15]. On the other

hand, Mixup performs augmentation at the pixel level and extends its influence to the

feature space, which allows for the seamless merging of instances from different domains

at the feature level [16]. This blending technique broadens the training distribution

by incorporating prior knowledge that the linear interpolation of feature vectors should

correspond to the linear interpolation of their associated targets.

The integration of feature-based augmentation strategies such as MixStyle and Mixup

has significantly advanced the field of domain generalization. These methods equip

models with the capability to perform reliably across a diverse range of domains without

necessitating extensive training on specific domains. By adopting these innovative approaches,

researchers have enhanced the ability of models to generalize effectively, thereby increasing

their robustness and overall performance in various applications.

AugMix is another method of image augmentation proposed by Hendrycks et al. [2].

It enhances model robustness and improves uncertainty estimates, easily integrating

into existing training pipelines. It uses simple augmentation operations, stochastically

sampled and layered, to create diverse augmented images. Furthermore, it employs a

consistency loss to ensure the model maintains stable predictions across these augmentations.

This approach results in improved model performance, robustness, and reliability.

3.1.4 Vision Transformers for Medical Imaging

The application of visual transformers in medical imaging, particularly for segmentation,

has shown significant advancements and promise. Transformers, originally designed for

natural language processing, have been adapted to the medical imaging domain due to

their ability to capture long-range dependencies and contextual information effectively.

This adaptation has led to the development of various transformer-based architectures

that excel in medical image segmentation tasks by addressing the limitations of convolutional

neural networks (CNNs) in capturing global relationships within images.

One prominent model in this field is the Vision Transformer (ViT), which has been

adapted for medical image segmentation [10]. ViT splits an image into patches and

processes each patch as a token, leveraging self-attention mechanisms to capture dependencies

across the entire image. This method contrasts with CNNs, which often struggle with
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Figure 3.3. In this figure, two examples of augmented images are shown. The left image
is created using Mixup [16], while the right is created using AugMix [2]. The fisrt one is a
combination of two different images, while the second is a combination of deviations of one
image.

capturing long-range dependencies due to their limited receptive fields. ViT-based models,

such as UNETR and TransBTSV2, have demonstrated superior performance in segmenting

complex medical images like MRIs and CT scans by effectively integrating global context

into their predictions [66], [67], [68] .

Another significant advancement is the development of hybrid models that combine

the strengths of CNNs and transformers. For instance, models like TransAttUNet and

Swin UNETR incorporate transformer blocks within the encoder-decoder framework of

traditional CNNs [69],[70]. These hybrids utilize CNNs for local feature extraction and

transformers for global context integration, resulting in highly detailed and accurate

segmentation maps. This approach addresses the issue of information recession commonly

seen in pure CNN architectures, ensuring that fine-grained details are preserved and

utilized effectively during the segmentation process [71].

The success of transformers in medical imaging is further highlighted by their application

across various imaging modalities, including X-rays, MRIs, and CT scans. Models like

TransAttUNet have been specifically designed for segmenting organs and lesions from X-

ray and CT images, utilizing multi-scale skip connections and guided attention mechanisms

to enhance the segmentation accuracy. These innovations are crucial in clinical settings

where precise and reliable segmentation can significantly impact diagnosis and treatment

planning [72].
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Chapter 4

Datasets

I
n Chapter 4, the datasets used for this work will be presented and analyzed. Additionally,

the methods used for preprocessing the training data of the experiments will be

presented, and their usage will be analyzed.

4.1 Prostate datasets

The main target of the proposed pipeline is to segment Magnetic Resonance Imaging

(MRI) samples of prostates. The data used from training end evaluating the models came

from four different public datasets which in total contained seven different data sources.

More specifically, the data where collected by 141 multiparametric studies, which are

enhanced versions of MRI aimed at better visualization of the subject.

Most of the data came from T2-weighted studies for the prostate. The T2 technique

refers to adjusting the MRI scanner to emphasize the tissue relaxation times [73]. T2

is defined as the time it takes for the activated tissue protons to realign after being

activated by radio waves. Tissue with high T2 time appear dark, while tissue with low T2

time appear brighter. These images are extremely useful for identifying soft tissues and

organs that retain fluids and are often used in detecting abnormalities.

The datasets used in this wwork are analyzed bellow.

4.1.1 NCI-ISBI 2013

This dataset contains MRI samples from two different sources. The first source was a

1.5T Philips Achieva with endorectal receiver coil stationed at Boston Medical Center. The

second source was a 3T Siemens TIM with surface coil stationed at Radboud University

Medical Center in Nĳman, Netherlands. The dataset was composed by the National Cancer

Institute’s (NCI) cancer imaging program in collaboration with the International Society

for Biomedical Imaging (ISBI), for the 2013 competition [74],[75],[76].

4.1.2 Initiative for Collaborative Computer Vision Benchmarking

Initiative for Collaborative Computer Vision Benchmarking (I2CVB) created this dataset

created collecting images from a 3T Siemens [75],[76],[77]. For improved representation

of the samples the following methods where used:

Diploma Thesis 43



Chapter 4. Datasets

� T2-weighted MRI (T2-W)

� Dynamic contrast-enhanced MRI (DCE)

� Diffusion-weighted MRI (DWI)

� Magnetic resonance spectroscopic imaging (MRSI)

4.1.3 Prostate MR Image Segmentation 2012

PROMISE12 contains samples from three different medical centers using different

capturing methods. This dataset was created for the PROMISE12 competition for medical

image segmentation for prostate [78],[75],[76].

4.1.4 Medical Decathlon

This dataset was created for the Medical Decathlon Dataset competition and contains

10 different datasets for different parts of the human body. The data was collected from

multiparametric studies. This dataset was used for the training of the models as the

ground truth domain and for the creation of the augmented data [18].

4.2 Data preprocessing

Image preprocessing is a fundamental step in the preparation of data for neural

network training. This process encompasses a range of techniques designed to enhance

the quality and uniformity of raw inputs, which typically suffer from noise, artifacts, and

variability. By implementing these preprocessing methods, the resulting dataset becomes

more conducive to effective and efficient neural network learning, thereby improving the

overall performance and reliability of the model.

Medical images, particularly MRI images, necessitate extensive preprocessing due to

their high noise levels and inherently problematic raw form for computational processing.

These images are usually examined by professionals who have the expertise to process

and interpret their contents without relying on software. For those reasons, it is necessary

to take actions for the proper preprocessing of the data as done in [1] and [79].

Beyond the standard image preprocessing steps, which will be detailed later, specific

algorithms play a crucial role in medical image processing. Initially, the N3 algorithm

will be presented, and subsequently the N4 algorithm, an improved version of the former,

which was utilized in this work.

4.2.1 The N3 Algorithm

The Non-parametric Non-uniform intensity Normalization algorithm (N3) is a pivotal

method for correcting bias fields in MRI images [80]. These images, obtained using strong

magnetic fields (typically 1.5 to 3 Tesla), suffer from non-homogeneous low-frequency

noise, commonly referred to as the bias field. This bias field can significantly degrade

image quality, making accurate analysis challenging.
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The N3 algorithm operates on the premise that the observed image u(x) can be

expressed as the product of the true image v(x), a smoothly varying bias field f (x), and

an additive Gaussian noise n(x):

u(x) = v(x)f (x) + n(x) (4.1)

where u(x) is the observed image, v(x) is the true image, f (x) is the bias field, and

n(x) is independent Gaussian noise. Assuming that a filter has been applied to remove

the white noise from the image:

û(x) = v̂(x) + f̂ (x) (4.2)

where

û(x) = log(u(x)) (4.3)

The goal of the N3 algorithm is to iteratively estimate and remove the bias field f (x),
thereby restoring the true image v(x) [80].

Retrospectively, the algorithm estimates the bias field using a smoothing function,

specifically a B-spline approximation. A "spline" is defined as a function that is piecewise

explained by polynomial functions. Splines are used in image smoothing, data interpolation,

and the approximation of complex shapes and curve fitting. The connecting points of these

polynomial functions are called knots. B-splines form the basis of splines, allowing any

spline to be described as a linear combination of multiple B-splines. In practice, splines

are a combination of flexible bands controlled by these connecting points.

Using these B-spline functions to approximate the bias field, the image is corrected

through the following iterative algorithm:

v̂n = û − f̂ n
e = û − S{û − E[û | ûn−1]} (4.4)

At each iteration, an estimate of the bias field is made using the B-spline approximation

of the expected value of the true image, given the estimate from the previous iteration.

This estimate is then subtracted from the corrupted image to eventually yield the corrected

image. Importantly, the algorithm works solely with the input image and the recursive

estimate, requiring no prior knowledge of the field or the image itself [80].

4.2.2 The N4 Algorithm

The N3 algorithm has gained popularity for correcting bias fields due to its proven

superiority over other methods and simplicity. However, this popularity led to a stagnation

in the development of improved algorithms. To counter this, researchers introduced

specific corrections and enhancements to the N3 algorithm, resulting in the N4 algorithm

[17]. Significant changes to the recursive process now characterize the N4 algorithm,

which operates as follows:
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ûn = ûn−1 − f̂ n
r = ûn−1 − S ∗ {ûn−1 − E[û ∥ ûn−1]} (4.5)

In experiments, the N4 algorithm demonstrated improved performance with increasing

bias field intensity and Gaussian noise [17]. Additionally, reducing the distance between

spline functions enhanced its effectiveness. Generally, the N4 algorithm significantly

outperforms the N3 algorithm by supporting multi-resolution field approximation and

incorporating an improved recursive process. This allows it to calculate noise levels more

effectively and address the N3 algorithm’s dependence on standard deviation.

One major change in the N4 algorithm is the approximation of the residual noise

field, as opposed to the total approximation in the N3 algorithm. Another change involves

replacing the distorted image with the approximately corrected one at each step, necessitating

the calculation of the residual field as the image undergoes recursive corrections. Furthermore,

the updated B-Spline approximator permits smaller distances between control points to

handle higher field intensities without risking algorithmic failure. This eliminates the

need for an artificial regularization parameter and allows for the definition of a weighted

regional mask for iterative segmentation frameworks. Additional advantages include

faster execution times due to the parallelization of the B-spline approximation algorithm

and a multi-resolution approximation strategy that fits successively higher levels of bias

field modulation frequencies hierarchically [17].

Overall, the N4 algorithm offers significant advancements over the N3 algorithm,

making it a valuable tool for preprocessing medical images, particularly in correcting

bias fields in MRI images.

Figure 4.1. This figure from the original paper visualises the differences between the
algorithms N3 and N4 [17]. The first column shows the original MRIs of the postmortem
hippocampuses from three different persons. The second and third columns show
the corrected samples outputted from the N3MNI algorithm and the detected bias filter
respectively. The fourth and fifth columns show the same elements as the second and third
columns but outputted from the N4ITK algorithm.
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4.2.3 Rescaling

The image intensities were rescaled according to the following formula:

(x − x2)/(x98 − x) (4.6)

x2 and x98 represent the 2nd and 98th percentile intensities of each image, respectively,

and x denotes the image. This rescaling process helps maintain information and ensures

similar intensity levels across images, particularly for MRI images, where intensity holds

significant informational value.

4.2.4 Resizing

A standard preprocessing step for images is resizing, particularly prevalent in deep

learning applications that handle images. Resizing is essential because it normalizes all

images to a consistent size, thereby reducing training costs. Moreover, it has been shown

that using lower resolution data can enhance the generalization capability of models. In

this work, resizing was executed in three dimensions by altering voxel distances, followed

by cropping in two dimensions to achieve a uniform size. For prostate images, the final

dimensions were set to 0.627×0.627×3.6 mm
3
. The final resolution for the 2-dimentional

slices was set to 288 × 288.

4.2.5 Photometric and Geometric Transformations

To optimize the training process of the networks, photometric filters were applied to

the images. These filters restricted certain frequencies while preserving the crucial ones

needed for accurate measurements. Moreover, geometric filters were employed to adjust

the shape and orientation of the images, ensuring they were formatted correctly for use.
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Implementation

I
n this chapter are going to presented and analyzed the main methods and techniques

used in this body of work.

5.1 Data Augmentation

Data augmentation is a fundamental technique in machine learning and computer

vision, particularly for improving the performance and robustness of models [65]. It

involves generating new training samples by altering existing data in various ways, such

as through rotations, translations, and color adjustments, to create variations that a

model might encounter in real-world scenarios. This process is essential for enhancing

model generalization, especially when the available dataset is limited or lacks diversity.

By simulating a broader range of data conditions, data augmentation helps in mitigating

overfitting and enables the model to learn more robust and invariant features. Recent

advancements also explore sophisticated methods like adversarial data augmentation,

which introduce subtle perturbations to challenge and improve the model’s resilience.

These techniques are critical for applications in fields like medical imaging, where data is

often scarce and expensive to obtain, yet high accuracy and generalization are paramount.

In this work, data augmentation methods on the input samples and on the feature levels

within model’s architecture were used.

5.1.1 Input level augmentation methods

The most prevalent methods of data augmentation involve making simple alterations

to the image and its label before they enter the model. The primary aim is to enhance

the dataset with variations of the existing images, thereby helping the model extract

the correct information for decision-making and increasing its robustness [81],[16],[2].

These techniques range from very simple to quite complex augmentations. Although

these methods are straightforward to use and implement, they usually do not result in

substantial improvements in model generalization for complex architectures and applications.

As a result, more advanced augmentation techniques or feature-level augmentation methods

are typically chosen.
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Tile Mixing

One of the simpler augmentation methods utilized in this work was augmented data

creation through tile mixing. This method involves taking two samples, x1 and x2, and

splitting them into N rows and M columns, thereby creating N ×M tiles from each sample.

Subsequently, the tiles from the two samples x1 and x2 were mixed to generate two new

samples, x̂1 and x̂2. The mixing process of the tiles involves only the exchange of tiles

between the original samples without altering the relative positions of the tiles. This

implies that if the input samples x1 and x2 are identical images, the output samples x̂1

and x̂2 will also be identical to the input samples.

For the test, N = M = 3 was used, thus splitting each input into 9 equal parts.

During the augmentation process, the samples were initially divided into three horizontal

slices, and then each slice was further divided into three tiles. The number s of tiles to be

switched between x1 and x2 was uniformly selected between zero and eight. Subsequently,

s positions p were selected from zero to nine to determine which tiles were to be switched.

A position p corresponded to the tile at pdiv3 row and pmod3 column.

AugMix

A more complex data augmentation method that was employed on this work is AugMix

[2]. AugMix is a data augmentation technique designed to improve the robustness and

uncertainty estimates of image classifiers, particularly when dealing with data distribution

shifts. The method enhances the diversity of training data through a combination of

simple augmentation operations and a consistency loss mechanism. The augmentation

process involves applying transformations such as rotations, translations, and other

basic image manipulations to create multiple versions of each input image [2]. These

transformations are applied stochastically, ensuring a wide variety of augmented images

that maintain the semantic content of the original images.

To further improve robustness, AugMix employs a mixing strategy where the augmented

images are combined using elementwise convex combinations. This approach generates

new images that blend multiple augmentations, thereby increasing the training data’s

diversity without veering too far from the original data distribution. Additionally, AugMix

integrates a Jensen-Shannon Divergence (JSD) consistency loss to enforce that the neural

network’s predictions remain consistent across different augmented versions of the same

image. This consistency loss minimizes the divergence between the probability distributions

of the original and augmented images’ predictions, ensuring that the model learns features

that are robust to various types of corruptions. By combining these techniques, AugMix

effectively enhances the model’s ability to generalize to unseen data shifts and improves

its overall reliability and performance.
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Figure 5.1. In this figure from the original paper, is presented a visualization of the
augmentation process of AugMix [2]. Augmentation operators such as translate_x and
rotate and weights such as m are randomly sampled. Those randomly selected operators
allow to explore the semantically equivalent input space around an image. Mixing these
images together produces a new image without veering too far from the original [2].

5.1.2 Feature level augmentation methods

MaxStyle

The mehtod that was used for feature level augmentation is MaxStyle, a compicated

implematation that invovles style augmentationin the feature level as well as adversarial

training [1].

The MaxStyle method represents a significant advancement in data augmentation

techniques aimed at enhancing the robustness of convolutional neural networks (CNNs)

for medical image segmentation tasks, particularly when facing out-of-domain (OOD)

datasets [1]. Unlike conventional methods that often require multi-domain datasets,

MaxStyle improves model robustness using only a single-domain dataset. This method

was proposed to tackle the challenges posed by domain shifts which can significantly

degrade the performance of CNNs when applied to unseen domains.

MaxStyle enhances the standard encoder-decoder architecture by integrating an auxiliary

image decoder. This decoder performs self-supervised image reconstruction and style

augmentation, which not only augments the training data but also forces the network to

learn robust, reconstructive features that contribute to improved OOD performance[1].

The core innovation of MaxStyle lies in its ability to expand the style space of training

images through adversarial style augmentation. This is achieved by introducing additional

style noise and conducting adversarial training to identify the worst-case style compositions

that could potentially degrade model performance. Formally, given a feature map fi

extracted from a certain layer of the CNN, MaxStyle augments fi by mixing styles and

adding noise:
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Figure 5.2. In the first to columns (A,B) it is depicted the original use of MixStyle [15]
as featur augmentation-based regularization method with a standard encoder-decoder
structure (A) and aplide to a regularize a dual-branch network with an auxiliary image
decoder. In the third collumn (C) it is depicted the proposed stracture changes to MixStyle
by the creators of MaxStyle. They proposed the addition of an auxiliary decoder for the
generation of stylized images for feature-to-point space data augmentation. As seen in the
examples on the botom of the figure, the proposed model outperformed the first two. [1]

Figure 5.3. On the left (a) is the architecture of MaxStyle [1]. MaxStyle reconstructs
the input with augmented deature styles via style mixing and noise perturbations in the
image decoder. In order to find ’harder’ style compositions, the authors applied adversarial
training. On the right (b) it is shown that MaxStyle generates samples with high corelation
to to original but able to fool the network to undersegment.

MaxStyle(fi) = (γmix + Σγϸγ) ⊙ f̄i + (�mix + Σ�ϸ�),

where f̄i represents the normalized feature map, γmix and �mix are the mixed style

statistics, and Σγϸγ and Σ�ϸ� denote the additional style noise sampled from a re-scaled

Gaussian distribution.

The adversarial training process involves optimizing the style noise and mixing coefficients
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to maximize the segmentation loss Lseg, thereby generating style-augmented images that

challenge the segmentation network [1]. This adversarial optimization is formalized as

follows:

ϸγ ← ϸγ + α∇ϸγ Lseg(p̂, y), ϸ� ← ϸ� + α∇ϸ�Lseg(p̂, y),

λmix ← Clip[0, 1](λmix + α∇λmix
Lseg(p̂, y)),

where α is the step size for the gradient ascent.

Extensive experiments on public cardiac and prostate MR datasets have demonstrated

that MaxStyle significantly improves OOD robustness against various unseen corruptions

and distribution shifts [1] [79]. Notably, MaxStyle outperformed several competitive

methods in both low-data and high-data training regimes, underscoring its efficacy and

generalizability.

In conclusion, MaxStyle provides a powerful and efficient solution for enhancing the

robustness of medical image segmentation models, making them more reliable for real-

world clinical applications. The integration of adversarial style augmentation into the

training process allows for a broader exploration of the style space, resulting in more

robust feature learning and improved model generalization.

Figure 5.4. This figure from the original paper visualises qualitative resaults from MaxStyle
compared to other methods [1]. As seen in the figure the MaxStyle not only outperforms all
other methods but the resaults are vary accurate, compared to the the graund-truth (GT)

5.2 Experiment Set-up

The objective of this study is to determine the effect of data augmentation on the input

and feature layers and how it impacts the generalization ability of image segmentation

transformers. Specifically, combinations of the methods described in Section 5.1 will be

evaluated on medical images, with a particular focus on prostate MRIs.

THe experimental process consists of two main parts. In the first part, the datasets

will be augmented using different combinations of the presented methods. The primary

method employed is the one proposed in MaxStyle [1], as all tests, except for the ground

truth, include images generated using this method. The second part of the experiment
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involves training an image segmentation transformer and testing it on images from unseen

domains. During the training phase, the Medical Decathlon dataset [18] will be used as

the IID domain. For testing, the other six datasets mentioned in Section 4.1 will be used

as unseen domains (OOD).
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Presentation and Analysis of the Results

I
n this chapter, the results from the experiments will be presented and analyzed. Before

that, critical information about the testing process will be mentioned.

6.1 Avaluation Metrics

Dice Coefficient

During the training and testing of the models, the Dice coefficient was chousen

as the primary evaluation metric [82], [83]. The Dice coefficient, also known as the

Sørensen–Dice coefficient or Sørensen index, is a formula that measures the similarity

between two different discrete data points. In the context of images, it quantifies the

similarity between two samples at the pixel level. The Dice coefficient of two samples is

defined as twice the number of elements common to both sets divided by the sum of the

number of elements in each set:

DSC =
2|X ∩ Y |

|X | + |Y |

where |X | and |Y | are the cardinalities of the two sets (in this case, the number of pixels

in each set). The segmented images contain only two classes: prostate and background.

Therefore, the Dice coefficient was used solely for the prostate class.

6.2 Experiment Results

For the test, the pretrained SegFormer model was used [3]. The pretrained transformer

was fine-tuned for 10 epochs, but in most cases, the best resulting model was selected

from an epoch before the final one. In all processes, the Adam optimizer was used [84].

The following tables show the results from the tests.
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Datasets IID OOD Average

G A B C D E F OOD

Ground Truth 0.862 0.811 0.842 0.815 0.876 0.684 0.611 0.773

MixStyle 200% 0.963 0.682 0.688 0.799 0.687 0.689 0.599 0.691

MixStyle 100% 0.978 0.750 0.722 0.822 0.750 0.682 0.605 0.722

MixStyle 50% 0.981 0.722 0.728 0.817 0.704 0.712 0.608 0.715

MixStyle 20% 0.978 0.730 0.793 0.837 0.750 0.683 0.607 0.734

Table 6.1. This table presents the results of the initial round of tests. The original dataset
from the Medical Decathlon (G) [18] was augmented using the MaxStyle method [1], thereby
increasing the dataset size by 200%, 100%, 50%, and 20%. Subsequently, the pretrained
SegFormer model [3] was fine-tuned for up to 10 epochs, selecting the best performing
stage. Finally, the fine-tuned model was evaluated on the remaining datasets mentioned
in Section 4.1: A: ISBI, B: ISBI_1.5, C: I2CVB, D: UCL, E: BIDMC, and F : HK. The best
performance for each dataset is highlighted in bold.

Datasets IID OOD Average

G A B C D E F OOD

Ground Truth 0.862 0.812 0.842 0.815 0.876 0.684 0.611 0.773

Tiles 100% 0.981 0.667 0.665 0.793 0.712 0.681 0.598 0.686

Tiles 50% 0.977 0.726 0.796 0.844 0.756 0.716 0.615 0.742

Tiles 20% 0.979 0.756 0.875 0.869 0.760 0.687 0.626 0.762

Table 6.2. This table presents the results of the second round of tests. The original dataset
from the Medical Decathlon (G) [18] was augmented using the MaxStyle method [1] followed
by the Tile Mixing method. The additional samples were generated by tile mixing between
the original samples and their corresponding MaxStyle-augmented samples. This approach
increased the number of samples in the dataset by 100%, 50%, and 20%. The augmented
dataset was then used to fine-tune a SegFormer model for 10 epochs. The fine-tuned model
was evaluated on the remaining datasets mentioned in Section 4.1: A: ISBI, B: ISBI_1.5,
C: I2CVB, D: UCL, E: BIDMC, and F : HK. The results indicate an increase in the model’s
generalization ability. The best performance for each dataset is highlighted in bold.

Datasets IID OOD Average

G A B C D E F OOD

Ground Truth 0.862 0.812 0.842 0.815 0.876 0.684 0.611 0.773

AugMix 50% 0.968 0.781 0.834 0.861 0.823 0.675 0.615 0.765

AugMix 20% 0.967 0.799 0.830 0.837 0.816 0.686 0.606 0.762

AugMix 10% 0.975 0.779 0.868 0.876 0.848 0.688 0.673 0.789

Table 6.3. This table presents the final and most successful round of tests. The same
steps as in the second round were followed, but this time the MaxStyle method [1] was
combined with the AugMix method [2]. First, the original dataset was augmented with
MaxStyle, increasing the number of samples by 20%. Then, during the fine-tuning of the
model, 50%, 20%, and 10% of the input were augmented with the AugMix method. As in
the previous tests, the augmented dataset was used to fine-tune a SegFormer model for 10
epochs. The fine-tuned model was then evaluated on the remaining datasets mentioned in
Section 4.1: A: ISBI, B: ISBI_1.5, C: I2CVB, D: UCL, E: BIDMC, and F : HK. The results show
an increase in generalizability to out-of-distribution (OOD) samples. The best performance
for each dataset is highlighted in bold.
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Epilogue

7.1 Conclusions

In this thesis, the significant challenge of domain generalization in medical image

segmentation was tackled, focusing on the robustness and adaptability of transformers

for prostate MRIs. Domain generalization is critical in medical imaging as models often

encounter variations in data distribution due to differences in imaging devices, patient

demographics, and environmental conditions. This study specifically explored advanced

data augmentation techniques based on style transfer to address this issue.

Through extensive experimentation and analysis, it was demonstrated that integrating

complex augmentation methods, such as MaxStyle and AugMix, enhances model performance,

particularly in out-of-distribution (OOD) scenarios. MaxStyle combines adversarial training

with style transfer, effectively broadening the style space explored during training, leading

to improved robustness against various unseen corruptions and distribution shifts. Models

trained with MaxStyle exhibited superior generalization capabilities compared to those

trained with traditional methods.

Furthermore, by incorporating AugMix, additional complexity was introduced during

training without compromising the semantic integrity of the medical images. This method

provided a diverse yet realistic augmentation strategy that further bolstered the model’s

ability to handle unseen data variations. The combined use of MaxStyle and AugMix

resulted in the highest generalization performance, as evidenced by the evaluation metrics

and comparative analysis.

Overall, this work highlights the importance of sophisticated data augmentation techniques

in developing robust and reliable medical image segmentation models. These findings are

particularly relevant for clinical applications where data variability and scarcity pose

significant challenges. By leveraging advanced augmentation strategies, models can be

created that not only perform well on known datasets but also maintain high accuracy in

real-world, unpredictable environments.

7.2 Future Work

In this work, not only the concept of domain generalization through data augmentation

based on style transfer was further explored, but also a fully functional pipeline for testing
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the developed theories. This research can be advanced in two main ways.

Firstly, the combination of additional techniques for achieving data augmentation

based on style could enhance the generalizability of downstream models. Studies like

ours and those by Spanos et al. have only scratched the surface of the numerous

possibilities in this field. Additionally, with the rapid advancement in the field of neural

networks and the increasing importance of robust applications in real-world scenarios,

new methods for data augmentation and domain generalization enhancement are being

published daily. As demonstrated in this thesis, the appropriate combination of these

methods can significantly improve the capabilities of neural networks.

Another way this work could be advanced is by testing the proposed theory in other

computer vision tasks, such as automated driving. As shown, the results of the executed

tests are promising. The generalization ability of the backbone model was successfully

increased by properly augmenting the single-domain dataset of prostate MRIs. This

indicates that the approach of this thesis, with appropriate modifications, could also

enhance the generalization ability of models used in various other computer vision tasks.
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Appendix A

Experiments

In Appendix A, all the different tests conducted within the scope of this work are

presented and analyzed. The data are presented in easy-to-understand Tables A.1 - A.6.

In Table A.1, the process for all 20 different tests is presented and explained. In Table

A.2, the training parameters for each of those tests as well as the results of the models

during training are presented. Tables A.3 - A.5 depict the results of each test during

the testing phase on out-of-distribution datasets. More specifically, in Table A.3, the

loss of the models trained on each test is shown. The loss is a smooth Dice coefficient

plus Cross-entropy. This loss was used as it helped the model during training but was

ultimately not the final evaluation criterion. In Table A.4, the F1 score achieved by the

models trained on OOD data is presented. Table A.5 depicts the Dice coefficient of the

models. As mentioned in the main body of this thesis, this was the final evaluation metric.

Finally, in Table A.6, the average of the three metrics shown in Tables A.3 - A.5, on all

out-of-distribution datasets is presented.

A.1 Experiment and Resault Presentation

A.1.1 Test Setup Analysis

In Table A.1, all 20 different tests executed within the scope of this work are presented.

Test 1 consists of training the model on the original data from the Medical Decathlon [18]

dataset without any augmentation. This model is used as the ground truth.

Tests 2 - 5

For Tests 2, 5-7, two different augmentations were used, both generated with MaxStyle

[1], one altering layers 2, 3, 4, and 5 for one iteration, and the second altering layers 3,

4, and 5 for one iteration. In all of those tests, those two augmentations contributed 50%

each to the augmented data. In Test 2, the generated data were 200% the size of the

original data (100% each type of augmentation). In Test 3, the generated data were 100%

the size of the original data (50% each type of augmentation). In Test 4, the generated

data were 50% the size of the original data (25% each type of augmentation). In Test 5, the

generated data were 20% the size of the original data (10% each type of augmentation).
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Tests 6 - 8

In Test 6, augmented the original dataset using only one of the two methods mentioned

above combined with the tile mixing method (Patches). All the dataset used for this test

was created using tile mixing, combining original samples with samples generated with

MaxStyle, altering layers 2, 3, 4, and 5 for one iteration. This means that no original

samples were used during the training of the model. For Test 7, the same process was

followed, using patches that combined original samples with samples generated with

MaxStyle, altering layers 3, 4, and 5 for one iteration. The dataset for Test 8 was created

as before, but both types of samples generated by MaxStyle contributed equally in the

augmentation with tile mixing.

Tests 9 - 11

For Tests 9 through 11, the dataset used for training the model was created by adding

to the original Medical Decathlon dataset, samples created by tile mixing. The generated

samples were created by mixing original data with MaxStyle generated data. Each of the

two types of MaxStyle generated data were used to augment 50% of the final augmented

data. The training dataset for Test 9 included all the original data from the Medical

Decathlon dataset and augmented data generated by tile mixing. The number of samples

generated by tile mixing was equal to the number of original samples, thus increasing

the size of the original dataset by 100%. Test 10 was performed with the same process,

but the generated data increased the original dataset by 50%. Finally, for Test 11, the

original dataset’s size was increased by 20% using the same tile mixing process as above.

Tests 12 - 15

At this point, the implementation of the AugMix augmentation process into the augmentation

pipeline began [2]. For tests 12 through 15, AugMix was implemented with the default

settings (severity=3, width=3, depth=-1, alpha=1) [2]. According to the authors of the

original paper [2]:

� severity: Severity of underlying augmentation operators (between 1 to 10).

� width: Width of augmentation chain

� depth: Depth of augmentation chain. -1 enables stochastic depth uniformly from

[1, 3]

� alpha: Probability coefficient for Beta and Dirichlet distributions.

The AugMix operations were implemented on the dataloader part of the pipeline. This

implementation ensured that all samples of the dataset had an independent probability

of being augmented with AugMix. It is important to note that the samples augmented

with AugMix were different in each epoch of the training process. This increased the

generalization ability of the model without increasing the necessary training time. In

three tests (12, 13, 14), the dataset used, before the AugMix augmentation, consisted
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of the original Medical Decathlon dataset plus an additional 20% of its size in samples

augmented with MaxStyle using both types of augmentations (altering layers 2, 3, 4, 5 and

altering layers 3, 4, 5). In test 12, AugMix-type augmentations were performed on 50%

of the data inputted to the model during training. For test number 13, the percentage of

samples that were augmented with AugMix before being inputted to the model for training

was lowered to 20%. During test 14, that percentage was further lowered to 10%. In test

15, the same process as in the above tests was followed, but the size of the original

dataset was increased by only 10% augmented samples by MaxStyle, compared to the

20% increase in tests 12, 13, and 14. The percentage of samples augmented by AugMix

during the loading from the data loader was 10%.

Tests 16 - 19

In Tests 16 to 19, the same pipeline as in tests 12 to 15 was maintained, and further

experimentation with the hyperparameters of AugMix was conducted. During all four

tests, the percentage of input samples augmented with AugMix was set to 10%. For tests

16 and 17, the severity of the augmentations from AugMix was increased from 3 (the

default) to 5. In test 16, the percentage of samples created with MaxStyle was 10% of the

original dataset, while in test 17, the samples added to the original dataset increased its

size by 20%. Test 18 was conducted with the severity of AugMix set to 2, a lower number

than the standard 3, which means that the augmentations performed by AugMix were

milder. The dataset for test 18 was increased by 20% of its original size by including

augmented data generated by MaxStyle. Finally, for test 19, the same dataset as in tests

18 and 17 was used, but the severity of AugMix augmentations was increased to 6.

Test 20

In test 20, the same setup as in test 14 was maintained and experimented with the

value that was monitored for the early-stop function, changing it from the F1 score during

validation to the loss during validation.
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Traind on

Test 1 Original

Test 2 Augmented 200% (100% each type)

Test 3 Augmented 100% (50% each type)

Test 4 Augmented 50% (25% each type)

Test 5 Augmented 20% (10% each type)

Test 6 Tiles (2345 only tiles)

Test 7 Tiles (345 only tiles)

Test 8 Tiles (50% each type)

Test 9 Og + Tiles (50% each type)

Test 10 Og + 50% Tiles (25% each type)

Test 11 Og + 20% Tiles (10% each type)

Test 12 AugMix 50% (OG + 20% augmented)(default settings)

Test 13 AugMix 20% (OG + 20% augmented)(default settings)

Test 14 AugMix 10% (OG + 20% augmented)(default settings)

Test 15 AugMix 10% (OG + 10% augmented)(default settings)

Test 16 AugMix 10% (OG + 10% augmented)(severity=5)

Test 17 AugMix 10% (OG + 20% augmented)(severity=5)

Test 18 AugMix 10% (OG + 20% augmented)(severity=2)

Test 19 AugMix 10% (OG + 20% augmented)(severity=6)

Test 20 AugMix 10% (OG + 20% augmented)(default settings)(monitor="valid/loss")

Table A.1. This table presents all the different tests conducted within the scope of this
work. The first column shows the number of each test, which is used to refer to each
specific test in the following tables and descriptions. The second column provides a coded
description of each test. The descriptions focus on the dataset that the model of the test
was fine-tuned on and the creation of that dataset. Information about the model, such as
hyperparameters, is presented in Table A.2.

A.1.2 Test Hyper-parameters Analysis

For all 20 tests, the same hyperparameters shown in Table A.2 were used.

� Batch Size: Batch size was set to 8.

� Learning Rate: Learning rate was kept at the standard 3e − 4.

� Weight Decay: Weight decay was kept at the standard 1e − 4.

� Total Epochs: The number of total epochs was kept to 10, as it was concluded that

in most cases, that was enough for the model to fine-tune properly.

The Best Epoch field corresponds to the epoch in which each model performed best.

This field is not the same in every test as it is not a hyperparameter set before the test,

but rather an outcome influenced by the learning ability and the overfitting of the model.

Table A.2 also demonstrates the performance of each model in its best epoch. Specifically,

it depicts the Validation Loss (V_Loss), the Validation F1 score (V_f1), and the Validation

Dice coefficient (V_dice).

An important observation is that the validation Dice score of test 20 is greater than

he validation Dice score of test 14. This means that the change of the monitored metric
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from validation loss to validation F1 score increased the segmentation ability of the model.

This increase was not transferred to the generalization ability of the model as model 20

has a lower average Dice score on OOD datasets than test 14.

Batch

size

Learning

rate

Weight

decay

Total

Epochs

Best

Epoch
V_loss V_f1 V_dice

Test 1 8 3e-4 1e-4 10 8 0.123 0.944 0.862

Test 2 8 3e-4 1e-4 10 7 0.168 0.926 0.932

Test 3 8 3e-4 1e-4 10 6 0.141 0.940 0.872

Test 4 8 3e-4 1e-4 10 6 0.138 0.939 0.872

Test 5 8 3e-4 1e-4 10 8 0.140 0.938 0.860

Test 6 8 3e-4 1e-4 10 5 0.132 0.937 0.865

Test 7 8 3e-4 1e-4 10 5 0.119 0.943 0.881

Test 8 8 3e-4 1e-4 10 9 0.139 0.936 0.870

Test 9 8 3e-4 1e-4 10 9 0.163 0.938 0.868

Test 10 8 3e-4 1e-4 10 6 0.128 0.939 0.880

Test 11 8 3e-4 1e-4 10 5 0.142 0.935 0.883

Test 12 8 3e-4 1e-4 10 7 0.144 0.930 0.839

Test 13 8 3e-4 1e-4 10 5 0.141 0.933 0.817

Test 14 8 3e-4 1e-4 10 7 0.138 0.936 0.822

Test 15 8 3e-4 1e-4 10 8 0.142 0.933 0.852

Test 16 8 3e-4 1e-4 10 7 0.133 0.936 0.857

Test 17 8 3e-4 1e-4 10 7 0.146 0.927 0.849

Test 18 8 3e-4 1e-4 10 7 0.152 0.930 0.873

Test 19 8 3e-4 1e-4 10 7 0.137 0.935 0.851

Test 20 8 3e-4 1e-4 10 3 0.118 0.946 0.851

Table A.2. This table presents important information about the training of the models for
each test. As mentioned in section 6.2, the SegFormer model was used in all experiments
[3]. The first column shows the number of each test (for reference, see Table A.1 and section
A.1.1). The second column indicates the batch size used during the training of each model.
The learning rate and weight decay chosen for each test are depicted in the third and fourth
columns, respectively. The fifth column shows the total number of epochs the model was
fine-tuned. The Best Epoch column shows the epoch after which the model achieved the
best performance on the validation set. The last three columns correspond to the validation
loss, the validation F1 score, and the validation Dice score each model achieved after its
best epoch. It is interesting to note that the best epoch numbers vary significantly between
different tests.
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A.1.3 Test Resaults Pesentation

In Tables A.3, A.4, and A.5, the results of the tests are presented. The models

were tested on the original Medical Decathlon dataset [18] as the IID and ground truth.

Additionally, to test the generalization ability of the models, they were tested on the

remaining datasets mentioned in section 4.1 as out-of-distribution datasets: A: ISBI, B:

ISBI_1.5, C: I2CVB, D: UCL, E: BIDMC, and F: HK.

Finally, in Table A.6, the average of each metric that each model achieved on the

six OOD datasets is presented. As mentioned in section 6.2, the best-performing models

were achieved in tests 14 and 17.

Loss G A B C D E F

Test 1 - 0.407 0.538 0.613 0.429 1.142 1.046

Test 2 0.062 0.740 1.164 0.735 0.736 1.437 1.332

Test 3 0.066 0.478 0.933 0.453 0.507 1.081 1.072

Test 4 0.065 0.505 0.942 0.444 0.628 1.057 1.034

Test 5 0.053 0.465 0.639 0.429 0.477 0.987 0.934

Test 6 0.070 0.426 0.826 0.457 0.522 0.994 0.842

Test 7 0.075 0.427 0.714 0.575 0.527 0.962 0.828

Test 8 0.060 0.571 0.789 0.606 0.645 0.918 0.897

Test 9 0.047 0.725 1.107 0.627 0.814 1.252 1.362

Test 10 0.056 0.483 0.673 0.452 0.494 0.963 0.918

Test 11 0.062 0.416 0.523 0.356 0.400 0.982 0.878

Test 12 0.074 0.360 0.444 0.288 0.371 0.698 0.744

Test 13 0.066 0.346 0.536 0.466 0.346 0.847 0.735

Test 14 0.072 0.385 0.440 0.363 0.368 0.749 0.689

Test 15 0.061 0.441 0.610 0.364 0.450 0.976 0.976

Test 16 0.066 0.443 0.601 0.420 0.395 0.795 0.752

Test 17 0.065 0.370 0.462 0.354 0.389 0.721 0.709

Test 18 0.057 0.494 0.817 0.502 0.461 0.996 0.897

Test 19 0.066 0.380 0.449 0.335 0.355 0.806 0.733

Test 20 0.070 0.591 0.705 0.484 0.501 0.829 0.872

Table A.3. In this table, the loss of the fine-tuned model of each test is depicted. The first
column shows the corresponding number of each test (for reference, see Table A.1 and
section A.1.1). The second column shows the performance of the model on the IID ground
truth dataset, while the rest of the columns show the model’s performance on the six OOD
datasets. In test 1, the loss of the model on dataset G is left blank because it is the same
as the loss during training, as this specific model (ground truth model) was trained on the
original dataset G without any augmentations. The loss of all models is significantly lower
on dataset G, which is expected as they all were trained on an augmented dataset based on
dataset G. Another meaningful observation is that in the first tests, the performance of the
models was worse than in the following tests, as clearly depicted by the losses in the last
couple of columns. This can be attributed to the increase in complexity and sophistication
of the augmentation techniques and combinations as the testing process progressed.
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F1 score G A B C D E F

Test 1 - 0.838 0.721 0.720 0.779 0.513 0.550

Test 2 0.975 0.777 0.603 0.717 0.697 0.516 0.539

Test 3 0.971 0.824 0.611 0.777 0.762 0.526 0.571

Test 4 0.971 0.803 0.561 0.785 0.684 0.511 0.541

Test 5 0.976 0.782 0.638 0.770 0.755 0.527 0.538

Test 6 0.968 0.824 0.577 0.762 0.704 0.512 0.547

Test 7 0.966 0.815 0.608 0.708 0.704 0.520 0.566

Test 8 0.973 0.734 0.539 0.693 0.659 0.511 0.541

Test 9 0.980 0.747 0.571 0.751 0.676 0.545 0.528

Test 10 0.975 0.760 0.599 0.750 0.719 0.514 0.542

Test 11 0.972 0.793 0.698 0.804 0.771 0.519 0.565

Test 12 0.967 0.809 0.725 0.832 0.783 0.589 0.587

Test 13 0.970 0.826 0.681 0.762 0.803 0.563 0.611

Test 14 0.969 0.812 0.737 0.803 0.797 0.601 0.608

Test 15 0.973 0.790 0.630 0.798 0.754 0.497 0.526

Test 16 0.970 0.786 0.675 0.789 0.788 0.569 0.623

Test 17 0.971 0.819 0.716 0.795 0.779 0.565 0.582

Test 18 0.974 0.755 0.552 0.730 0.738 0.510 0.538

Test 19 0.971 0.816 0.743 0.816 0.804 0.560 0.609

Test 20 0.969 0.684 0.571 0.728 0.697 0.508 0.504

Table A.4. This table presents the F1 score achieved by the different fine-tuned models.
As in Table A.3, the first column refers to the number of each test (for reference, see Table
A.1 and section A.1.1), the second column shows the F1 score of the models on the ground
truth dataset, and the final six columns show the F1 score of each model on the six OOD
datasets. In test 1, the loss of the model on dataset G is left blank because it is the same
as the loss during training, as this specific model (ground truth model) was trained on the
original dataset G without any augmentations.
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Appendix A. Experiments

Dice G A B C D E F

Test 1 - 0.812 0.842 0.815 0.876 0.684 0.611

Test 2 0.963 0.682 0.688 0.799 0.687 0.689 0.599

Test 3 0.978 0.750 0.722 0.822 0.750 0.682 0.605

Test 4 0.981 0.722 0.728 0.817 0.704 0.712 0.608

Test 5 0.978 0.730 0.793 0.837 0.750 0.683 0.607

Test 6 0.978 0.727 0.753 0.845 0.797 0.693 0.606

Test 7 0.976 0.736 0.740 0.789 0.760 0.690 0.609

Test 8 0.975 0.778 0.809 0.781 0.729 0.701 0.624

Test 9 0.981 0.667 0.665 0.794 0.712 0.681 0.598

Test 10 0.977 0.726 0.796 0.844 0.756 0.716 0.615

Test 11 0.979 0.756 0.875 0.869 0.760 0.687 0.626

Test 12 0.968 0.781 0.834 0.861 0.823 0.675 0.615

Test 13 0.967 0.799 0.831 0.837 0.817 0.686 0.606

Test 14 0.975 0.779 0.868 0.876 0.848 0.688 0.673

Test 15 0.977 0.745 0.793 0.863 0.753 0.690 0.606

Test 16 0.978 0.748 0.822 0.836 0.840 0.703 0.610

Test 17 0.978 0.833 0.879 0.839 0.869 0.694 0.619

Test 18 0.977 0.743 0.736 0.818 0.786 0.688 0.616

Test 19 0.974 0.815 0.860 0.857 0.812 0.660 0.620

Test 20 0.971 0.726 0.778 0.805 0.750 0.662 0.605

Table A.5. This table depicts the Dice coefficient that the models achieved in each of the
20 experiments. This is one of the most important parts of this work. The Dice coefficient
was the metric aimed to increase, especially in OOD samples and datasets. Following the
format of Tables A.3 and A.4, the number of each test is shown in the first column (for
reference, see Table A.1 and section A.1.1), the second column shows the Dice coefficient of
the models on the ground truth dataset, and the final six columns show the Dice coefficient
of each model on the six OOD datasets. In test 1, the loss of the model on dataset G is left
blank because it is the same as the loss during training, as this specific model (ground truth
model) was trained on the original dataset G without any augmentations. An important
observation is that even though tests 14 and 17 were, on average, the best-performing
models on OOD datasets, in certain datasets they were outperformed by other models.
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A.1.3 Test Resaults Pesentation

Average Loss F1 Dice

Test 1 0.696 0.687 0.773

Test 2 1.024 0.642 0.691

Test 3 0.754 0.678 0.722

Test 4 0.768 0.647 0.715

Test 5 0.655 0.668 0.734

Test 6 0.678 0.654 0.737

Test 7 0.672 0.654 0.721

Test 8 0.738 0.613 0.737

Test 9 0.981 0.636 0.686

Test 10 0.664 0.647 0.742

Test 11 0.593 0.692 0.762

Test 12 0.484 0.721 0.765

Test 13 0.546 0.708 0.763

Test 14 0.499 0.726 0.789

Test 15 0.636 0.666 0.742

Test 16 0.568 0.705 0.760

Test 17 0.501 0.709 0.789

Test 18 0.694 0.637 0.731

Test 19 0.510 0.725 0.771

Test 20 0.664 0.615 0.721

Table A.6. This table summarizes all the previous ones by presenting the average of each
of the three metrics (Loss, F1 score, and Dice coefficient) that the models achieved on OOD
datasets. According to this table and by focusing on the Dice coefficient, the best-performing
models were created in tests 14 and 17, achieving a Dice coefficient equal to 0.789.
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List of Abbreviations

CNN Convolutional Neural Network

FCN Fully Convolutional Network

GAN Generative Adversarial Network

DG Domain generalization

OOD Out-of-Domain

IID Independent and Identically Distribution
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