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ITepiindm

H Avéxtnon IIknpogopusv Movoixrc (MIR) elvon évag topéoc épeuvag mou acyohleltan pe tnv elorywyr xau
AVEALOT TANEOPOELADY o TN Louotxy|. MeTtall dhhwy, nepthopfdvel TNy ToAvdpdunoT/ TaEvouUnon HouoIxic xou
ouyxexpwéva Ty aviyveuor Sidteong xon TNy avaryvoplon eldoug. TapdAAnio pe v avdntuén nou topatneeiton
otouc topelc e TeEXVnTAc vonpoolvne (Al), n MIR éyel eniong onuewdoel onuavixéc npoddous, cuUTEpLA-
ouPavouévng e SLdecOTNTAC EXTETAUEVKY CUVOANY DEBOUEVWY, TNG EVOWUATOONS VEWY TEYVOROYLOV XL
TONUTPOTUXWY TROCEYYIGEWY XM Kol TNG AVATTUENS XAl EQUPUOYHC TRONYHEVKDY UeVOBWY enednynotudTnTag.

Ye authy 1 dlatey), epPfardivouue TNy ENEENYNOT TONUTROTUXWY HOVTEAWY YLl TNV TOEVOUNCT TV cuVALeT-
HATOV ot TV ey tNg povoic. Ipdta an’ 6ha, avalntolue Slodéoiua cOVOAL BESOUEVKDY TOU TUREYOUV
TOALTPOTUXES X0 TONU-EpYactaxés duvatdtntes. Emhéyoupe to Music4All [54], tou npoopéper otiyous xou fyo
o) %ol HETUBEDOUEVO GUVOLOUNUATODV Xo EWBDY Yia xdde TEayoUdL, xou TEoYwWEdUE TNV avdiuor, Behtinon
xal EAPES ETEXTAOT WTOD TOL €pY0U. Xuveyi{oUUE YENOLOTOUIVTAS TROEXTIOUOEVUEVES UPYITEXTOVIXEG trans-
formers, dnhadr 1o Robustly Optimized BERT Pretraining Approach (RoBERTa) xou to Audio Spectrogram
Transformer (AST), v vo ta€vopricovye povowés dnuroupyiee o 9 Eexwplotéc xatnyopiec cuvaoinudtony
XU EWBMYV, YENOLUOTOUOVTAS TOUS OTiyous, Tov Yo xou Evay cuvduaoud twv dVo. Télog, avalntodue pedoddoug
v va e€nyrioouvde xde woviého xou mpotelvoupe €vav TeOTo Yia TN dnploupyio ToAutpoTxdY enenyfoemy
and otiyoug xou Ao, yenowonotwvtag T d0voun tou LIME [51] xau tnv nymted tou eqopuoyy| audioLIME
[25]. Téhoc Snuovpyolpe cuvohxole cuvdlaopoic [35] Twy e€nyfhioewv LIME, napéyovtag thnpogoplee yia tny
anodooT TWV LOVTEAWY Xl TNV IXoVOTNTA Toug v avtyvedouy yotiBa xar otolyelor mou elvon Sloxpttd yia xdde
xoTnyoplo.

AéZeig-xAedid —  Avdxmon Movowic IThnpogoplag, Bahd Mddnon, IToiuvtpomxdmre, TaZivounon
Movowiv Ewov, Tofwounon Luvaodnudtwv ot Mouvow, Tomxée Eneényroeic, Ilohvtpomxs| Eneényn-
oo TNTo






Abstract

Music Information Retrieval (MIR) is a field of research concerned with the extraction and analysis of
information from music. Among other tasks, it includes music regression/classification and specifically mood
detection and genre recognition. Alongside the growth seen in artificial intelligence (AI) fields, MIR has
also experienced significant advancements, including the availability of extensive datasets, the integration
of new technologies and multimodal approaches as well as the development and application of advanced
explainability methods.

In this thesis, we dive into explaining music emotion and genre classification multimodal models. Firstly we
look for available datasets that provide multimodal and multi task capabilities. We choose Music4All [54],
offering lyrics and audio as well as emotion and genre metadata for each song and proceed by analysing,
refining and slightly augmenting this work. We continue by utilizing pretrained transformer architectures,
namely Robustly Optimized BERT Pretraining Approach (RoBERTa) and Audio Spectrogram Transformer
(AST), so as to classify music creations into 9 distinct emotion and genre categories utilizing their lyrics,
their audio and a combination of the two. Finally, we look for methods to explain each model and propose a
way to generate multimodal explanations from lyrics and audio, using the power of LIME [51] and its audio
implementation auioLIME [25]. Finally we generate global aggregates [35] of LIME explanations, providing
insights into the models performance and the models ability to detect themes and elements distinct for each
class.

Keywords — Music Information Retrieval, Deep Learning, Multimodality, Music Genre Classification,
Music Emotion Classification, Local Explanations, Multimodal Explainability
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Euyaplotieg

Ye auto to onuelo Va Hieha va avagpepded o 6Aa exclva T dTopa, ywelc Ty cuyBoln Twv omolwy auto To épyo
dev Yo Aty Buvatd.  Tuyxexpipéva guyaplotd toug Avumepdto Baoihn xou Mevi-Maotpounyahdxn Opgéa,
unoriploug diddxtopec oty THMMTY tou EMII, vy tyv otev toug ouvepyasia, v mohdtiun xadodriynon
TOUG xou Oha Goa €xavay yia va lvar autol oL ufveg plor euydploT xan dnuLoupyixt Teplodog. Euyopiotd emlong
o Tor unohoua dropa 6to epyactiplo Teyvntic Nonuoolvng xow Luotnudtey Mddnong yia g oulnthceig ol
onolec ennpéacay xou Borincay otny dnutovpyia autod Tou €pyou.

Téhog euYAPLOTA TNV OOYEVELX X TOUG GIAOUC UOU YioL TNV GUVOLGUNUOTIXY] CUVELGQORE Xou TNV UTOGTARLEN
TOug, Oyl WOvVo Toug Teheutofoug prveg odha xardohn TNV Budpxela TG axadnuaLxic mopelag.  Luyxexpluéva
euyoeloTed Ttoug Avteea, Avrtpéa, Apddvr, I'dvvo xaw Kovotaviivo nou yéuloay autd ta ypovia Ue euydploTtes
AVOUVACELS %ol YENLO.

Ywthpou Beddupoc, Tovilog 2024
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 YroBadeo

1.1.1 "Evvoleg %ot BOUAELL AVAPORLXA E TNV UNYAVIXY] k&ddnoT, TNV LoVoLXT
XL TNV ENEENYNONUOTNTA

Mrovixd xow Bardid Mdadnon H Mnyoavni Médnon (MM) eivou évag xhddog e teyvnthc vonuooivng
mou eondlel otV avdmTuEn oAYopldUWY Yol CTUTIOTIXWY UOVTIEAWY TOU EMTRENOLY GTOUC UTOAOYLOTES VA
extelolv epyaoieg ywplc va axolovdolv cagelc odnylec. I'evixd, to yoviéha MM ypnowwonotobvton yia vo
xdvouv mpofAédelc Boopévwy xdmolowy dedopévwy elobdov. Mo cuvdptnoT opdiuatoc yenowdonoleiton yio
vo. a€tohoyrioel v xdde mpdPredn. To poviéro Behtotomoleiton mpocapuolovtas xdmoia BN ToL MOTE va
ENATTWOEL THY AoUp@eVior LeTadd XAmolwY TYWY Tou cuUVOLoL exmtaideuons xat Twv TEoBiédendv Tou. Auti 7
dradixaoio emovahopfdveton €we va TAnpolvTaL xdnoleg npounoVécel (m.y 1 axplBeio vo ptdoet wo Tr). Téhog
N MM unopei va ywplotel oe enonteudpevn (supervised), un enonteudpevn (unsupervised) xou NUETOTTEVOUEYN
(semi-supervised). H enonteudpevny MM ypnowonotel emonuoaouéve oOvola deBopévmy yior vo exTeldedoel ta
avtioTolyo LOVTEA, EVE 1) U] ETONTEVOUEVY) EXTALBEDETAL (OOTE Var avly veVeL LoTiBa xan opadomolfoelc ywpic T
avéyxn v avidpodnivn emonteion. H nuenonteudpevn cuvdidler to dhha d0o €{dn MM.

H Bahd Médnorn (BM) anoterél unocivoro tny unyovixhc udidnone. Xenotpwonotel vevpwvind dixtua pue ToAd
otpopata (€00 xou o "Bahd") yio va mpooeyyiocel Tov TpdTo oL Aettovpyel o avipdmivoe eYxEQoloc xa
vo avary vepllet, v xatnyoplomolel xan var teplypdipel ue axpifelar avtixeipueva twv dedouévev elo6dou. Auth 1
pedodohoyla éxel epappootel pe emtuyia oE Topelc OTWE 1 GpAoT LTOAOYIGTWY, 1 enelepyacio Quoxic YAOGGOC
XOL 1) VY VWPELOT) ouLhog.

Transformers

Ou transformers eivon évag TOMOC AEYITEXTOVIXAC VEUPOVIXDY BIXTUWY TOL enavactdtnoe tnv encéepyaoio
puowiic Yhdoooe (NLP). Xe avtideon pe ta nopadootaxd povtéha, dev Bacilovian oe yor Swadoyixh tpooéy-
Ylon, GAAE pmopolV va aveAUGoLY Ol Tor pépY WA TEOTAONS TaUTOYeOova. XTny xopedid evég transformer
Beloxetan n apyitextoviny xwdonomnth-amoxmdixonomnty. Kdlde otpdua péoa o autd to tufpota extehel ouy-
xexpiuéva xadpovta. To vndotpwua self-attention tou xwduonointy| avallel Tic oyéoel UeTAZ) TV AéEewy
oV elogpydpevn axolouvdo, eved to dixtvo feed-forward culhouPdver mo mepimhoxa potifa. Ou umoheiy-
HATXES CUVDBESELC oL 1) xavovixoroinon otpwuatog Bondolv oty anoteleopatixy] exnaidevor. To masked
self-attention Tou amoxwdixomolNTH ANOTEENEL TN BlaPEOY| TANEOPORLMY XAUTA TNV EXTUIBEUCT), XL 1) TEOCOYT
XWOXOTOUNTA-UTOXWOLXOTONTH TOU EMTEENEL VoL AaBAveL LTOYT TNV XWOXOTONUEVT] ELCERYOUEVY, TANROYOpLa
xatd T onwovpyia tng e€6dou. Auth 1 oTpWHATOTOMUEVY aAANAETBpooY HeTOED TNG XATAVONGTE TNS ELOOBOL
XL TN ¥eNHome autol Tou mhauciou Y TV mapaywyh €680 elvan auTd Tou xdvel Toug transformers té6co
Lloyveole yia epyaoieg enelepyaciog QUoAC YAMOGCUC.

H epyaocia "Attention Is All You Need" twv Ashish Vaswani xou cuvepyat(pt)dv [17] eiodyer to Transformer
povtélo. Auty n emhoyy| oyedlaong emitpenel auEnuévn napalknhonoinom xatd TNy eXTalBEUaT xol UEWVEL TOV
¥eovo mou amouteiton Yo Ty exnaidevor twv wovtéhwv. To yovtého Transformer embeviel avodtepn anddoon
oe epyaoiec unyovixic YETEPEAoNS, EMTUYYEVOVTOS anoTeAéopata auyuis T600 atr YeTdppaot omd AyyAixd
oe Depuavind 660 xan omd AyyAxd oe Todhxd, e onuovtind younhotepa x6otn exnaidevone oe olyxplon Ue
Tor uTdpyovTa wovtéda. Axoloudmvtog auth v epyaoia, to RoBERTa[38] (A Robustly Optimized BERT
Approach) Pooiletar otic Yhwoowée avanapaotdoeic tou BERT, eqopudélovtoc onpavtinée pedodoloyixéc
arhayég otn Sadixactio npoexnaidevong, ol onoleg BeATiddvouy onuavTixd tny anddoor oe didpopo benchmarks.
Ot tpornonoiroelc tepthopfdvouy TNy exnaideuot) TOU LOVTEAOU YLa HEYUADTERO YEOVIXS BLACTNUA, UE TEPLOCHTEQRL
dedopéva, oe PeEYONDTERES TapTidEG ot Ywplc TOV 0ToOY0 TNS TEOPBAEYNS NG EMOUEVNS TROTAONG, UE ATOTENEGUA
TN BEATIOUEVT AmOBOCT) Xol ATOBOTIXOTNTA TOU UOVTEAOU.

H emituyio tov transformers éyer odnyfoel axdun xou otny avidntuén twv Vision Transformers (ViT), gpépvov-
Tog mopdpota BUVAUTN TNV avdhuon exdvac, avietorilovtag Toug Topdpota P Tic axohovdiec Aéewy. Auth
7 Wéa mopovatdotnxe otny epyacia "An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale" [18]. Ot ViTs Aertoupyolv TunNUotonotdvIas Ti¢ Exdves ot otadepol ueyédoug tufuata, enelepyald-
pevol outd tor TwuoTa ¢ tokens avohoyuxd pe tar xeevind dedouéva oto NLP. Auth n pédodoc emtpénel
otov transformer va e@apudlel Tov 1oyLEo unyavioud avtonpocoyfc anevieiog ota TRt cUAAIUPBAVOVTAC
nepimhoxec ywewxés iepapyiec xan e€upthoelc HETAEY SLIPORPETIXDY HEPWY Uiog Exovas. Me tny exnaidevon oe
peydho aOvoha dedouévev xou Ty oflomoinom e uetapopds udinong, ot ViTs éyouv embellel avtaywvioting
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anddoon pe to mo mponyuéva dixtua cuvehx Tty vevptvewy (CNN), onuatodotdvrag wo ongovtxy odlayt
OTOV TEOTO YE TOV OTOl0 ToL LOVTEND Unyovixig uddnomng avtihouBdvovTon xou Xatavooly ta ontixd dedopéva. Bo-
olopévo atny teyvoroyia Twv ViTs eivar to Audio Spectrogram Transformer|22]. Ipwtonopel otn yperhor evic
xodapd Bacloyévou oe Tpocoy Y| LOVTEAOL, Ywelc CUVENXTIXES OTPWOELS, oL eqapuoletal aneuieiog ot NyNTXd
poopatoypdupata yio epyaoies tadvounons. Auth n npocéyyion emtpénet oto AST va xotoypder ovvieta
potiBa ool NyNTxd dedouéval, emTUYYEvOVTaS anoteléopata atyUic oe didpopa tpoTuTa Tavounong fyov. To
Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection (HTS-AT) [13] ov-
TiETONEL TIC TROXANCEL XAMAXWONE TWwY NYNTXOY transformers epopudlovtog wia tepapytxr) Sour Tou UELDVEL
onuavtind to péyedoc tou poviéhou xou 1 Sidpxeto extoaideuonc. Qotdoo, to Causal Audio Transformer[37]
(CAT) Booileton o auvthv tnv emtuyio, elodyovtog o eZEBIXEUPEVY TROCEYYION Yl TNV TAEWVOUNoT iy ov
pe oforoinon tne e€aywyhc yopoxtneotixdv Multi-Resolution Multi-Feature (MRMF) xou evéc oxovstixold
umhox mpocoyic, oyedlaopévo yio vo Bertiotonotel Ty enelepyaoia nyntxdyv onudtwy. To CAT evowyotdvel
oL ouTla) Lovada Tou o Toyelel ot BEATILOT TNG YEVIXEUGUOTNTOC TOU UOVTEAOU, TNG EPUNVEUCLOTNTAS %ol
o0TN UElWOT TNS UTEPEXTABEVGTE PECL TNS YPNONG AVTETBEAC TIXNE GUAROYLC TIXHC.

Téhog, Tpénet va avapépouye to Contrastive Language-Audio Pretraining model (CLAP) [19], éva tohutponixd
xon Yepehwdeg wovtélo yia mhnpogopiec povowxric. To CLAP padaivel nynuxéc évvolec amd tny enonteia
QUOIXAC YAWOGCOC, YPNOWOTOIWVTAS 800 XWOXOTONTES xou TNV aVTIIETIXY Uddnon Yio VoL GUVBESEL TN YAWGCOO
xalL ToV )0, SNUOLEYHOVTOS Evay X0v6 TOAUTEOTUXG YWpo. AuTY 1 Tpocéyylon emtpénct Tig npofiéleic Zero-
Shot, mou onuaivel 61 urnopel va TeoBAédel ywelc vo éyel exnandeutel pNTd oe GUYXEXPYEVES ETIXETES XATNYORl0C,
xat yevixelel oe molhoamholg topelg xan epyaoiec. To povtého exnandedeton pe 128k Lebymn Yyou-xeyévou xou
doxwdletan oe 16 unoypenaoelg, emdexviovtag onuavixés Bektiwoelc oty axp(Belo TaElvounone xan svehi&lo
otV tpoPhedn xotnyoplac xatd v teplodo emPefaiwong, ewdixd oe puduicels Zero-Shot.
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Figure 1.1.1: H apyitextovix) evdc xwdixonointi-anoxwdixomointy 6nne eugavileton otny dovletd "Attention
Is All You Need" [17].

IToAuTpomixdTnTa H tpomxdtnta avapépeton 6Tov TpdéTo Ue Tov onolo cupfaivel 1) Brdvetan xdtt xou cuvidwg
ouvdéeTan e Tic avipmnivee awodfoeic [7]. H nolutpomxdtnia oto mhaicto tne pnyevifc pdidnone xon tng
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avéhuone Sedopévwy avagépetal oty evomoinom xou enclepyaoia TAnpogopldv and molhamholc tonous de-
BoUEVLV | INYOV OTWS XelPEVO, EwOVES, HY0¢ oc olvola dedouévwy B ahyopriuoug. ‘Onwe avagépeTton oTny
epyaoio [47], ou tOnol ntohutpomixdtntae TepthoPBdvouy didpopes Baoixée mapalhayéc, 6w TohUTpOTIXY &l
6000, 6TOL TOMAATAEG LOPPEC BEBOPEVWY YpNoldonololvTal Yl THY Tpogodoacio wovtéhwy, toAutpomxy| é€0bo,
OTOU Tal LOVTEAN TPy oLV TANEOPORiES OE BLAPOREO LOPPOTUTA, UETAPEICT] ANd Wd TEOTUXOTNTA OE GAAY], TOU
Topodetyatilel TOV UETAOYNUATIONS SESOUEVWVY amd Wiol HopP1| OE Wit xatovonty avtiotolyn oe dhhn xou Tov
CUVOUOUO BLOPORETIXV TPOTUXOTHTWY OE Wil EVIALL VARG TAOT), TOU ATEOVILEL TNV EVOWUATKGT Blapopev
POWY DEDOUEVWLV.

EnreEnynoipodtnta

H ene€nynowodtnta otny teyvnt vonuooivr nepthopBdvel pior mouxhio uedddmv xon teyvixay, xadeuio ex tev
onolwv eEunnpetel dlaopeTixéc TTLYES NG dladvelos xon TN xatavonone. Mepuée xatnyoplec etvon ot e€ic
[52].

e 3tdyoc tne enedhymnons: O otéyoc e enelfiynone unopel va xotnyoptonomdel oe oyetildueveg
ME TNV evdooxoTNoT xa TN dconoroynor. H evbooxdmnorn nepthaufBdvel TNy avdAuoy TwWV ECWTEPXOY
BLOBIXACLV XAl YUPAXTNEIO TIXWY TOU HOVTEAOU Yiot TNV omoxTnom plag Boditepng xatavonong e Aet-
toupylog Tou xau Twv mdavody tpoxatalidedv tou. H Sixawohbéynom, wotdco, ecTidlel oY) Slocaphvion
TV ££60WV TOU UOVTEAOU UE TEOTO TOU VA BIXAUONOYEL TIC AMOPACEL, TOU GTOUS TEAXOUE YENOTES.

o ATOXAELOTIXOTNTA TV encdnyrocwy: O enednyroeic unopoly va egetootolv und To mplopa
TOV TOTUXWY EVOVTL TV oLVORXGOY ene€nyhoeny. H tomxy encénynowwdtnta eotidlel o cUYXEXpUIEVES
TEQINTACELS, TEOCPEROVTIC AenTOUEPElC TANPOpoples Yia T Slodixacio APNE amopdcewy Yo UELOVWUEVES
npoPrédelc, eved 1 ouvohixy emednynowdtnTa anooxonel oty anoxdiudn e cuvolxhc AoyixAg xou
CUUTERLPORES TOU UOVTEAOU, TOREYOVTOC UL EURUTERT] XUTAVONOT) TOU TEATOU AELTOUEYIAS TOU UOVTENOU
o€ OAEC TIC MEPLTTWOELS.

o EZdptnom and to povtero: O yédodol ene&nynotudtnroc uropotv va Swoxpldolv oe eEeldixeuuéveg
vyl T0 povieho xou aveEdptntee and to poviého. O e€edxeuuéveg Yo To povtého uédodol elvou
TPOCUPLOCUEVES OTLS LOLUTEPOTNTES EVOC GUYXEXPWEVOL TOTOU HOVTENOU, BELOTIOLOVTOS TOUS ECWTEPIXOUC
unyoviopolE Tou yia va dteuxptvicouv mie hapPdvovtol ot anogdoeic. Avtideta, ot aveldptntes and To pov-
t€ho npooeyyioeic oyedidlovton yio vor efvon xodohixd epapuooyles, tapéyovtog enegnynoel aveEopThTwg
TPOGPUONG GTNY ECWTERIXY) UPYLTEXTOVIXY] TOU LOVTENOL.

o Xpbvog egaproyAc tne enednynowwotntac: Télog, o yédodol enenynoydtTnTac xotnyopt-
omooVvtan pe Bdon to méte epappdloviar, dtaxplvovtog UeTaEl petayevéotepne (post-hoc) xou mpo-
vevéotepnc (ante-hoc) npooéyyione. H petayevéotepn enelnynowwdtnta epopudletar yetd tny exnaidevon
oL YovTéNoL, xplown Yo TohbTAoXa povTéha dTou 1 evBoYevAc epunveuctudtnta elvat S0oxoA. Avtideta,
1 npoyevéstepn (1 evdoyevic) enednynoudtnto nepthaBAvel TNV EVoOUATOOT e ENEENYNoWdTNTIC OF
€val HovTENo amtd Ty opyH (T.). dévipa ano@dcewy).

Ou teyvinée eneénynowwdtnrog aveldptnTteg and TO HOVIEAO TPOGHEROUV WL EVEALXTH TROCEYYLON Yo TNV
xatovénon twv mpofiédewy and Bidpopo moAdTAOX UoviEha.  Buyxexpwéva, ol Tomxéc Eneényroeig
AveZapthtwe Movtéhou [51] (LIME), ewcdyouv ma véa texvixh ene&iynone mou oToyelel 6To Vo XEvel Tig
TpoPBAEYPEIC TV HoVTENWY pMyavixrc wdinong xatavontée otoug avidpwnouvs. To LIME oyedidotnxe vy va
eZnyel tic mpoPrédeic onoloudrinote Ta€vounty| Ye évay epunvelollo TeoTo, TeoceYYI{ovTag TO HOVTEAD TOTX
pe éva eppnvedolwo yovtého. Auth 1 uédodog avtidetwnilel v TedXANCT TWV WOVTEADY unyovixric uddnong
Vo AELTOUEYOUV ¢ padpat XOUTLd, 6Tou ol Adyol Tlow and Tic meoPrédelc toug Bev elvon cagelc. Baolouévo
oto mhajoto touv LIME, to audioLIME [25] xou CoughLIME [64] nopéyouv eppnvedoyles oL axpodoules e&-
nyfoewc yia Tic TeoPAédels fyou. Luyxexpiwéva, to audioLIME npoo@épel epunvelotues, oxpodotues eEnyfoeic
v ouotAuata MIR yenoiwonowdhvtog daywetopd mnyoy yior T dnutovpyia dlatapoy vy, avTieTwrilovtog uio
povadx TTuY ) TV NYNTXGY dedouévewy Tou Tapahéneton and Tic napadootoxéc pedédous mou Baoilovian oe
pooyatoypdupata. And v dAin mhevpd, to CoughLIME éyel oyediactel yio vo napéyel nyomoinuéveg &-
nyhoes Yo Tic tpofBAédelc mou yivovtow and tagivountée Briye COVID-19. Ipooapudlet entong to LIME yia
nynTxd dedouéva, eaTidlovTag ouyxexpyéva oToug fyous Brya mou oyetilovta ye tov COVID-19, Surywel-
Covtog Tov Mo ot epunveloa cuotatxd. Lo pio Baditepn xotavonon tne enenyrowns texyntric vonuooiivng
Yoo mynTxée epyaoies, avatpédte oty avaoxomnon [4].
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Ot gpeuvntéc €youv onUeldoEL onuovTix Tpoodo oty eneénynodtnTa yioo Ty eneepyaoio povoxic TAnpo-
popioc (MIR), ue Sidpopec TEXVIXES VO TEOGPEROLY TANEOYORIES Yo TO TE TA HOVTEN PTAVOUV GTIC ATOPITELS
touc. O Lyberatos x.4. [39] napouctdlouv pio pot| epyaoiag yia TNy dUTOUAT ETLOAUOVOT] ouoxiic, divovTog éu-
(QOCT OTNV EQUNVEVCLUOTNTA PEGHL AVTIANTTIXWY YoROXTNELO TIXWY, EVOWUATOVOVTOC enelepyaoio onpatog, Badld
uddnon xou cupBoixy) yvworn. H npooéyyion delyvel avtaywviotiny anédoor e Yedodoug ouyunig oto ohvola
dedouévev MTG-Jamendo xou GTZAN, unoypopuilovtac v afio g EpUNVELCUOTNTAC TopEd TIC EVOEY OUEVES
Yuolec oty andédoon. O Dervakos .. [16] mopoustdlouv o TEONYUEVY TEOCEYYLON YLoL TNV OVAYVEELO
povov ewwy yenotwonowvtag CNNs. ‘Eva afloonueinwto onpelo e pehétng ebvan 1 e€epedvnon texvixdy
egnyfowne texvntic vonuoolvne (XAI) mou epapudéloviar oty taevéunon povoxoyv eldoyv. O epeuvntéc
Tpocappdlouy ddgpopes pedddoue enelnynowdtnroc petd v exnaidevorn (post hoc), cuunepthapBavopévev
twv Grad-CAM, LIME xa puac tponomomnuévne Fevetieric Tlpoypappatiopwot yia Exenynowotnra (GPX), yio
VoL tapé oLy TANeoopies yio T dtadixacio Mdne arogdoewy twv CNNs. O Chowdhury x.4. .[14] ewodyouv éva
povtéro Podide uddnone mou npofBiénel Tig cuvaoUnuoTixés TTUYES TNG Houog BACEL aVTIANTTIXGDY Y opuX-
TNELo TGOV pecaiou emnédou, otoyebovtag otny enednynoludtntoa oe cuothvata MIR. H épeuva yenotponotel
éva Bixtuo tomou VGG, Belyvovtog eAdyloTy om®AEL omo6d00TG XUTE THY EVOWUATWOY AUTOV TOV oVTLANT-
TIXWV YUEAUXTNELO TIXWY, Ta OTtolal AELToupYoUV xai epunvebolpa pe Bdon tny pouoixr. To povtého Sieuxolivel
TNV XOTAVONOT TV GUVILCUNUATXGDY TEoBAEPERY, dconohoymdvTag T Wxen Yelwon tne axpifelac npog 6pelog
e enelnynowédtnroc. Ov Zhang ».d. [65] ewodyer to BART-fusion, éva véo povtého mou drnuioupyel epun-
veleg TwV oTlywV TEOYOUBLOY EVOWUNTWVOVTIC £V TPOEXTAUOEVUEVO YAWCOIXO UOVTENO PEYIANG XAluoxag Ue
Evay xwOLXoTOINTY Myou Péow evdg unyaviopol npocoyns Slopdpny Hop@®y. AuTh 1 TPOCEYYLoN EMTEETEL
070 YovTého va xatovoel To Tparyoldla TOC0 and TNV TAEURE TV OTiY®V 600 XoL TOU 1Y0oU, OBNYWVIUSC O
axpiPelc epunvelec. Ta melpopatind amoTeAEOUAT DELYVOLY OTL 1) EVOWUATWOT TANEOPOELOY AYOU BEATLOVEL
TNV IXAVOTNTO TOU UOVTEROL VoL xortovoel xan var dnuroupyel epunvelec. Ou Won x.d. [63] npoteivouv éva pov-
TéAo emoOVeNG Houoixiic Tou yenotwornotel autompocoyn xan CNNs vl va evioyloel TV epunveucuoTnTa
BlaTned VT ToRdAANAa avTaywvio Ty anédoor. H opyitextovinn toug, oyediaouévn va xotayedpel 1660 T
TOTUXE YOPAXTNELO TIXE OGO O TIC UAXPOYPOVIEC OYETELC UEGO GTA LOUOIXE XOoupdTIa, TeptAaufdvel pnyéc ouve-
Axtxée otpwoelg axolovdolueves and cuoowpeupévous xwdixonontée Transformers. To povtélo umepéyel
OE EPUNVEUCIIOTNTO OE OYEDT] UE TIC TARUBOCLIXES TTPOOEYYIOELS TAYPWE CUVEMXTIXGY XAl ETOVIANTTIXWY VEUE-
VXDV BIXTUOY Ywplc va Yuotdlel tnv oxeifBela.

Ov Rodis et al.[52] moapéyouv por ohoxhnpwpévn avaoxémnorn e Holutpomndc Enelnyhowune Teyvntic
Nonuoolvne (MXAI), emonuaivoviag tic yedodoloyiée npoddous xou Tic HEMOVTIXES EPELVNTIXES XAUTEUDUV-
oelg Tou medlou. Auth 1 avaoxoTnoT avahlel cLoTHUOTXE TLe xVpleg TpoBAenTnés epyaoies, avola BeBouévev
xou pedodoue tne MXAL

YuvoarcOnuata xar Eidn otnv Mouowxy Awypovind 1 povowt| utneée avaugioBitnta éva uéco éx-
(QEUOTC Xl TPOXAN NS cuvaoUNudTwY. And Ta yehayyolxd oteléyn poc uekwdlag oe ehAdoova xAlona uéypel
TN yoeoluev evépyela eVOC YerYopou pulUo0, 1 HOUCIXY) UTOPEl VO UETAUPEREL XAl VO TUPOBOTHOEL €val EUPL
pdopa cuvanoinudtwy. O yerétec umodexviouy TN onuacia Tne ddxplone YeTald avTANTTOU xoL EmayOUE-
vou cuvatciuatoc ot povowée dnuovpyies. Avulnmté elvon To cuvaicUnuo Tou petopépeton and TNV (Blo
TN UOUCIXTH| EVE® TO emayduevo ouvaloOnua ebvar autd mou mpoxakel 1 pouowr) otoug axpoatés. Ou épeuveg
€YOULV YENOLLOTONoEL BLAPOEA CUVILGUNUOTIXG HOVTER YLot Vo teptypdpouy e yeyolltepn axpifela to wouoixd
ouvonoHpota [24]. Eva and ta npdto tétow €pya elvon 1o cuvonodnuotind daytulid tou Hevner, to onolo
yenowonotel 66 enideta cuvousInudtwy, Tadvoudvias ta ot 8 xatnyopiec [27]. To npdto poviého cuvouodn-
HATWY ToU OYEBLIoTNXE Yio cuvalodota Tou Tpoxarodvton and TN houoxn eivaw to Geneva Emotional Music
Scales (GEMS), mou mepthopfdver éva apynd oivoho 45 eTeTdY Tou Pmopolv vo opadomoundoly ot evvéa
SapopeTinéc Blootdoels [58]. QoT600, Tl XATNYOENUOTIXG LOVTENN CUVALGUNUSETOVY €XOUY TEAOCQOTOL TAUPAYX-
wviotel ano yovtéha cuvanoinudtoy diactdoewy. To épya twv Russel xou Thayer opyavdvouy Tic meplypopéc
e diddeong oe poviéha YaunAdy dlaotdoswy. Eldwdtepa, mou yenowwonoeitoan mo ouyvd oto MER, to xux-
Axé povtého tou Russell, ameixovilel ta cuvonodiuarte oe évay dioddotato ywpeo, émou o Badude evgpopiog
(mou xuuaivetan amd evydploTo Ewe BucdpeaTo) o N SEyepon (Tou xupoivetan and HPEUo EmC BlEYEQUEVD) Ael-
ToupyYoUV w¢ dZovec. To povtého aneixovileton oto oyfua 1.1.2 npocapuoouévo amd autd to dodpo [55]. ‘Alha
€pyo nepthapBdvouy uia tpltn Bidotaoy ¥ epapuoélouvy xatdtaly, xatovopés mdovothtwy xat Lebyn avTwviuwy
YL TNV EXPEOOT) LOUCIXADY cuvanonudtoy [24].

To pouoixé eldog xatnyoplomoLel XOPUATIOl LOUCIXAC UE BAoT XATol XOWVEL Y apaxTNRLo Tixd OTwS 1) EVopyY o Te-
won, 0 puiude, o puiude xou to TolTiowxd Thaicto. o mapdderyue, 1 Hip Hop yopaxtneileton and potiBa
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Arousal
Alarmed @ ® Aroused
Tense @ @ Astonished
Afraide Angrye & Eicitid
Annoyed ®
Distressed @
Frustrated @
@ Delighted
@ Happy
Valence
Miserable @ @ Pleased
Sad @
Gloomy @ ®Depressed
@ Serene
@ Content
® At Ease
@ Satisfied
Bved @ Relaxed
Calm
Droopy @
Tired® ® Sleepy

Figure 1.1.2: To »xuxhixé poviéhou tou Russell yio 1o cuvonotiuarta (tpocoppocuévo ano [55]).




1.2. Medodoroyia

ROCK ‘N’ ROLL
"R

GOLDEN AGE
IouAsSIC ROCK

POP music

HARDCORE runk

Figure 1.1.3: H npdoodn tou diabpaotixol diorypdupatog tou Musicmap.info [32]

pan xau mepLEyel Veépata Onwg 1 acTuvouxr Blo xou 1 xaTamlES), EVEK 1) NAEXTREOVIXY) HOUGIXT UTOREL VoL ovary' V-
wetotel ye ) ypron cuvdeodlep. Av xou autéc ol opddec fondolv Toug axpoatés va thony ol 6To anépavto
HoucLxS ToTio, Wl TETOL XATNYOELOTOINOT CUY VA UTOXEITAL O BLapPOPETIXES oVIPMTIVES EUTELPES Hol UEPIXES
(popéc elvan emxoAUTTOUEVT. T yior ohoxAnpwpévn e€epelvnoT TwY LOUCIXMY EWBGOY, TV OIMNAETBpdoewY, TNe
Lo Toplog Xot TV YapoX TP TGV Toug, To MusicMap.info yenoiuetel wg nohbTwog népoc [32]. H npdoodn tou
BLaBPAC TIXOV BLoYPAUUATOS TOU BNoLEYHUNXE and Toug CUVTEXTESC Tou Tdpou qafveton oto 1.1.3. Ta eidn mou
elvon mopduota tonodeTodvVToL XOVTA TO €Val UE TO GANO EVE O XATUXOPLPOC GEOVOE oS BIVEL ULol YPOVOAOYIXT
extiunon e Umapéng Twv ewdoY.

1.1.2 3Ovola Acdouévwy

To nedio e Avdxtnone Mouowdv Iknpogopirv (MIR) €yel onueidoet onpavtins avantuln, Ue AnoTENECUA THY
OmapEn wiog motxihiog eEBIXEUUEVWY GUVORWY BESOUEVWY TIOU XAAUTITOUY BLAPOPES EPELYNTIXES avayXeS. AuTd
Tt 6UVORd BEBOUEVWY, TO HOEVOL LOVADLXE XATUACKEVACUEVO, TEOCPEEOLY TATDEN TopwY. Aldpépouy TOAD K¢
TPOC TO TEPLEYOUEVO TOUS TOU XUUALVETOL OO Y opaxTNELOTIXG 0L o YeTadeBouEVa €w¢ To olvieTous TOToUg
dedopévey, OTwe oyohlacuols ot TohTiopixd mhaloto. Io dnotov Véhet va e€epeuvioet To edpog Twv Slardéoiuey
oLVoAwY dedouévev MIR, uo ohoxhnpwuévn Aiota pe obvtopeg teplypapéc Tou nepleyopévou Peioxeton oTov
wototono e Awedvoie Kowdtnrac yio Avéxtnon Mouvowdv IIknpogopidv (ISMIR) website[29)].

Yy €peuvd pog, ETEVTPOINXAUUE GTNY ETLAOYT GUVOAWY SESOUEVELY TIOL TEOGPEPOLY Lol TOLXLALAL TPOTUXOTHTWY
yia povoixd tporyoldla. Autd meplehduPove clvoha Bedouévmy mou mopelyoy TOAUTAES TEOTUXOTNTES EYYEVAC,
onwe fyo, otiyous xou MIDI, xodddc xan exelvee pe pio poévo tpomxdtnrar mou Yo pnopovoe vo emawniel
oeTXd exoha. Emmiéov, Yo frav Bavixd edv ta obvoha dedopévmy mapeiyay petadedouéva tou utootneilouv
Lol GELEGL OVIAUTIXY ERYACLMY 1) BIEUXOADVOLY TNV EUXONY OmOXTNOT TPOGVETWY peTodedopévev. Mo onuoy-
W TEdXANoT Tou avTieTwTicuue o auTHY TN Sadxacio Ntav ol teploplopol mou dnuioupyoloay 1 Umapén
TIVEUHOLTIXWY OXOUWUATY, ol omolol Tepldptooy T Siodectudtnto XatdhAnhwy cuvorwy dedopévwy. Ilopd ou-
ToUG TOUG TEPLOPLOMOVS, EVIOToOUE Uepixd utodhpia olvola dedopévwy. Ovopaotixd avtd Atov to Million
Song Dataset (MSD) [9], to GTZAN, to Free Music Archive (FMA) [8], to Database for Emotional Analysis
of Music (DEAM) [6], to MTG-Jamendo xou tého¢ to Music4All [54] 1o onolo xaw emhéyoupe va yenotponott
GOUYE.

1.2 MeOdodoroyla

Ou pédodol mou eqopudéoaue o€ AUTAY TNV BOVAELL CUUTERIAAUBEVOUY ol avohUTIXH UERETY XL XELTIXY TOU
apyxol cUVOLOL BEBOUEVKV, UeB6B0UC Yo exxaddplon xou enadENon TOu, TNV TEPLYPUPT] TWV HOVIEAWY TOU
exnoudedoope aAha xou Tic Ye¥dBoue emedRyNoNe TOU EQUPUOCIUE YLO VOl XATAVOCOUUE TNY CUUTERLPOEE TOUG.
H vhomoinon tou x@dua 6mwe xodde xou didpopa anoteAéopata Yropoly va Beedolyv otnv oehida pag oto

7


https://www.ismir.net/resources /datasets/
https://github.com/IamTheo2000/Diploma

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

GitHub.

1.2.1 Avdivorn xo enedepyacia Tou cuVOAoL dedonévwy Music4All

H Bdor dedouévwy MusicdAll [54] (M4A) ebvon évag ndpog mou éxel oyediaotel yio vor utoo tnpllet par totxihia
gpeuvidv otov touéa tou MIR. Tepéyel plor mhobolor GUANOYY| UETUBEBOUEVLY, ETIXETAY, TANPOPOELOVY ElBOoUC,
xA fyou 30 Seuteporéntwy, otiyoug xan TOAG dAAa, Tou GUAREYOVTAL Yol Eva EURY QAGHA LOUGIXDY XOU-
potidv. H avdmtuén e Bdong dedouévev mpaypatonoidnxe oe d0o @aoels: T ¢domn Tou YeRoTtn xou T gdon
TOU TEAYoudloL. LT QdoT Tou YEHOTN, CUYXEVTEOUNXAY Xl avewYuHoTowdn oy dedouéva oyYeTXd UE TO LO-
TOPIXS UXEOUOTC TWYV YENOTWY, EVO 1) PAon Tou Teayoudlol mepleAdufave T GUALOYY AETTOUERPDY SEBOPEVLV
Teayoudlol. To clivolo dedouévwy €yel extetopévo uéyedog xou Tepléyel dedopéva ylo teplocdtepa and 100.000
TeayoLudta. Ot ovory Vo Te¢ Tou eVBLUQEROVTOL YL TEPLOCOTERES AETTOUEQRELES TYETIXY UE TO GUVOAO BEBOUEVLVY
uropoly va Bpouv TeplocdTepes TANPoYopies oty epyasia toug [H4].

To clUvoho dedouévmv yapaxtneileton amd TNV ToLxhouoppio avapopixd Pe To €lB0g, TPOCPEROVTUS EWE XaL
oxT¢ eTxETEC ldoug avd xopudTt xou mepthaBdvovtag meplocotepa amd 600 povodixd eidn. e nepintioelg
omou drapopetind nedla elddv meptelyoy v Bl T yoe To Blov tparyolddl (r.y. "genre 1: rock" xou "genre
2: rock") Swtnpodye pévo pio mapousia tou eidouc. H xatavour twv 20 mo molumhnddv etixetdv eidoug
Tou cuvOlou Bedouévev palvetar oto Lyruo 1.2.1. Eivon onuavtixd vo onuewwdel 1 avicopponio Tou cuvéhou
dedopévwy, e xuplopyn Ty avarnopdotaoy Twy edwyv Pop xar Rock. Auth n andxiion unopel va amododel
oTNV gUpEld EMXEATNOY AUTHOY TWV EWBOY oTn wouotxn Blognyavio xoun 6Ty gupela xaTNYoplonoinoT Toug omod
un ewove.

Stacked Bar Plot of Genre Labels

M genre7
B genre6
genres
genre4
genre3
genre2
genrel

Count

g, Jz b, pe) A, [+
Ost, My g % Tog, Tng Ty “Oup,
Nap, Cop Y, & oc, Y
[ e g ¥

x-oq

Figure 1.2.1: Ewdva mou nepiéyel tny xatavour) twy ewdnyv. Kdde ypodua aviinpoonnedel Tny Xotavour| pHlag
eTétog yio xdde xotoyeno.

Or tée Barduol eugoplog xou evEpYELUC TTOL TEPLEYOVTOL GTO GUVOLO BedoUEVmY, oL Tpoépyovtal and to Spotify,
elvon ouveyele, xupaivovtar and 0 wg 1, xon nopoustdlouy Eeywpelotd potiBo xatavourc. O Baduoloyieg Baduold
evgoplag tefvouv va axohoutolv wa oyedoV xavovixr xatavour Ue plo xey) xAlon mpog Aydtepo yopolueva
Tporyolda (Tepintoels pe Badpol eugoplag < 0,5), dnwe gaiveton oto Lyfua 1.2.2a. Avtideta, n xotavout
evépyelag YoldleL Pe To oyfua Wog Yeouume ouvdptnong, mapouctdleton oto Lyfua 1.2.2b, xou unodewviel
AYOTERPO XOUUATIOL YUUNAAG EVEPYELNG o Uit TANUdpa auTdv pe LPnAn evépyela. Evo e&oywvind dSidypouua
Binning onewxovileton enlong oto oyfpa 1.2.2¢, mou avIiNpoCWREVEL TNV XATOVOUY TWV TWOV c¥évous xou
evépyelag oe Evay BLoBLAoTATO YWeo. AUTH 1 YEUPIXY| TUEdoTACT ATOXUAUTTEL OTL Tal TearyoLdLa LYNAoL clévoug
oMNG yonAfc evEpyeLog elvon omdvia, TOU UTOBEVIOVTAL AT TO POTELVS YEWH AUTOV TWY EEGYWVWY, EVE TA
Teayoudtor LPNAAC evépyetag oAl younhol o¥évoug elval To GUYVE Xt 1 EVTUOT] YPWUATOS TOU avTloTolou
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eZay@vou etvon VPNAGTEEN, UTOBNAGVOVTOC EAAELPT YORAPOTIXOY %ot NEEUWY UEAWDLMY. TO GUVOAO BEBOUEVWY.
Avtn n avicoppomia urnopel vo e€nyndel and Tic dnpopuielc Tdoelc TS HOLVGXNE, TOU EUVOOUV TLO KUGLOBOEA,
EVERYNTXE XOUUATIOL TOU 0BNYOUY OTNY UTEPEXTPOCWTNGCT| TOUSC OE GUAROYES Xl GUVOAN BEBOUEVLY.
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Figure 1.2.2: Katavoyéc Baduol eugopiog xan evépyetag xododg xan W Yeopuxy ToedoTtaor e€8ymvwy Tou
AVTITPOCWTEVEL TNV XATAVOUY| TV TWHOV GUEVOUC XL EVEQYELNS OE EVay SLODLAGTATO YWEO, OTOU 1) YPWUATIXT
évtoom xdle eaydvou avTloToLyel 0T CUYXEVTEWOT] TEoyoudlty e autd Ta enineda c¥évoug xat EVEPYELXC.

‘Oco mo oxolpo elval 10 YpWUd TOGO PEYOAUTERY EVOL 1) GUYXEVTEMGT TETOLWY TEAYOUBLHY.

2NV TE0GEY VIO UAC YId TUELVOUNOT) TWV EWBWV, Aoy VWEeIGoHE TNV avayXTn VoL GUUTUXVMGOUPE TO TToLx(Ao @doua
TV POUCX®Y EWBOY ot o YeEVIXEC xatnyoplec. Auth n amhomoinom elvon xplown Yyl TNV omoTeEAEoUATIXY
todvéunon xar avéhuor. T va xadodnyroovue Ty ovoxrotdtoln oS, XENOWOTOMOoUE TN YApTOYEd(pNnoN
eldouc mou elvan Swodéoiun ot Siedduvon Musicmap. Auth n mny? mopeiye wa TAnddpa TANEoGoptdY Xxadde
XOL L0l OTTLXY XATNYOELOTIOINGN TwV €8V Tou amodelydnxay yerowa yiot TNV evomoinon SLopopwy LoUCLX®Y
eWwy oe evvéa evpeleg xatnyopie. Autéc ol Td€elg emAEyInxay TEOCEXTIXG VLol VoL XOAUTITOUY TO €VP) PACUA
TWV HOUCLXWY GTUA, BlatneddvTag mopdhhnha Blaxpltéc xou onpavtixée xatnyoplee yior v xatdtol pog. Ot
ETIUETEC AUTWOV TWV TdEewV elva:

e Rock, mou mepthopfBdver rock 'n’ roll, golden age rock, classic rock xat contemporary rock.

e Pop, wa supeio xatnyopio mou nepthaufdvel dnuogihyy oTul povourc and tny dexoetio Tou 1950.

Hip Hop, xeAOntBvtag hip hop édmwe xou rap songs.

o Alternative Rock, cupnepirauBavouévou indie, alternative xou dhhot oTUN Tou Blapépovu amo Tty main-
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stream rock.

e Heavy Music, auth 1 euxéta ypnowonoieiton yiao metal, hardcore, and industrial youowr pe metal
ototyelo.

e Punk, arotehobuevn and punk rock xou new wave tporyoddia.

e Electronic, eunepiéyovtag electronic dance pouowr), downtempo xou industrial yovouwy| ue electronic
oTolYEl.

e Rhythm Music, anotehobyevr ano rhythm 'n’ blues, blues, gospel, jazz xou Jamaican pououxy.
e Folk, mou enlong nepthaydvel country youoixy.

e Other, n onola nepiéyetl dupopolueva xou dAlo €Bn Tou BeV avixoLV oe xoula and TIC TEOMYOVUEVES
xaTnyopleg.

‘Ocov agopd v Taglvéuncn e wouoixic ye Bdon to cuvalodnua, uetatpénovpe Ti¢ ouveyeic Tyég Baduod
evgoplag xau evépyelag oe dloxpltée ouvatodnuatinée etixétec. Autd emituyydvetan péow yiag xadoplopévng
YopToYedpnone nou ta€vouel xdde Tpayoldl o 9 CUVALGUNUATIXES XATACTAGELS CUUPOVA UE TO HOVTEAD XUXAOU
tou Russel. Zuyxexpiéva, xotaywerioec ye vhnhéd Padud evgpoplac (ueyohitepo and 0,65) yopoxtneilovtan
"Exciting" edv 1 evépyeid touc eivon enione udniA, "Relaxing" av n evépyeid toug eivan younhf (xdtew and
0,35) xou "Happy" Siagpopetind. T younhéd Bodud evgoplag (Mydtepo and 0,35) tar xouudtiar GEEOLY TNV
évoelgn "Angry", "Depressing" xou "Sad" edv €xyouv uPniéc, yaunhéc N evildueceS TYWES EVERYELOC AVTIOTOLYA.
INo T tée Pardud evgoplag oto pecaio edpog, ta tyvn Yewpolvtar "Tense", "Calm" 1 "Neutral" avtictoiyo.

Avtetoniooye xdnoleg TEoxAAoELS e TIC ETETES EIBOUC Xou cuvano¥iuatoc. Apynd avapopind Ue TIC ETIXETES
eldoug, oL dnulovpyol Tou M4A cUANEYOUY BebBoPéva oNUACUEV OTtO XeNOTES, Xou oYL edx0le, and To last.fm xou
oTNY CUVEYELL Ta PUATEdPoLY. Av xou To last.fm mogéyel Bdon yio Tic eTiétes, autd Topoeinovton and to M4A.
Erlong epdoov tig etinéteg tng €Bakary un ewduol elvan mdoavd va elvan YopuBadetg. To var avtiyetwnicovye outo
T0 mpofBinua Beloxouye enlong ta eldn xdde xoahhitéyvn ano to Spotify API xan dewpolue 6T xatdAAnAn eivou
N TewTN eTixéTa Tou epgavileton oto M4A xan undpyetl xon oty AoTa eTxeTdV Tou xahhitéyvn. ‘Ocov agopd
TIC ETMETEC CUVILOUNUATOS, OTWE TMEQUEVOUE, Tol BEOUEVA ToEoUCLIlouY VIOV avVLoOPEOTia Ue TOAL Alyo
"Relaxing" tpayoldia. T'a autdv tov Adyo dnuovpyRoope scripts yio emadEnomn Tou cuvdhov pag, Talpvovtag
o xau petadedopéva arno to Spotify API xou otlyoug and tnv dienogpr) tou GeniusLyrics.

AnuLoupYoUUe TO TEAXS Hag GUVOAO BeBoUEVmY Tou TEpLEYEL TOUS aTtiyoug pall Ye €var mymTind XA didpxelog
30 Seuteporéntwy Yio xdle xaTaydENom, xadode xou eTixétec didleong xou eldoug. Agaipolye tporyoldia Ye Ty
etwxéta eldoug "other". To chvolo dedouévmv pog nepthaufdver 9 etixétec cuvaloUNUATOY Yio xdde Tporyoldt Xou
9 etixétec eldouc. Anuovpyolue évay dloymploud Twy dedouévwy train-val-test, diaoparilovtag 6Tt xoAMTéyveg
Tou eugavilovton oTo Blaywploud train-val dev napovcidlovton eniong oo test set. Mia cOvodn tne Sradiaciog
mou axolovifinxe yia Tn Snuovpyio Tou GUVOROU BeEBOUEVKY pag palvetal oto oyfua 1.2.3.

1.2.2 Enhoyr xoeaxtnetoTixey, MoviéAa TaAVEpOUnoYG %ol OL dp)LTEX-
TOVIXEG TV TEAXWOY Moviéhwy xatrnyoplonoinong

It Vo XaTavoioouPE XAAd TNV OIOB00T) BDIAPOPETIXWY APYLTEXTOVIX®Y, LIOUETACHUE Ui TOGEYYLoT U0 oTadiwy.
Y10 Tp®To 61dd0, e€epeuvolpe Sudpopa Lovtéla modwdpdunone (regression) mou empoptilovton Ye Ty TEEP-
hedm Ty Badpod evpoplag xou evépyelag, WoTe vo TAnpogopendolue Yo tor Sedouéva xaL TS OYETELS YopoX-
TNELo XAV Yio xdie tpouxdtTnTa. Hpoxewévou va xadoplotoly Paoinés emdoaoeie, epapuélouvpe 800 YepeAnddeg
povtéha toug dummy xon mean regressors. O mpddtog xdvel tuyaieg TeoBrédelc evdd o deltepoc Yavtelel TNV
péon Ty Tou train set. Eniong ueketdue povtéla pe otiyoug we elcodo 6mwe elvon ta duo Long Short-Term
Memory (LSTM) povtéha mou mpoteivouv ol dnuiovpyol tou M4A [54] xou 1 epopuoyy) tou XLnet oe otiyoug
xatd avtiotouyia ue TNy Sovkeld Twv Agrawa x.d. [1]. Tuveyilovtoc uehetdpe nolutpomnés npooeyyioeis 6mwe
auth Twv Delbouys x.4. [15], tou cuvdidlouv Ta anotehéopata EVOE CUVERXTIXOD LOVTEAOU (QOOUOYROUUATIWY
He awTd evoe cuvdlaoTixoy poviéhou (cuvéMEn o LSTM) ue eloodo Word2Vec embeddings otiywv ohhd
xou TNy perétn tov Krols x.d. [31] nov evonpatdvouy uhnhol emnédou nymuxd yopouxtneio Tixd pall Ue yopox-
TNENOTIXA OTlY WY o TEOXUTTOLY amd pia dadixacto Yuyvotntag Opwy - Avtictpogne Xuyvétntoc Evypdepwy
(TF-IDF) oe eva Mulitlayer Perceptron (MLP). Aoxwdooype xou to MuLan, nou anodidel xahd o Sidgpopeg
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Get genre labels from M4A Get mood labels from M4A Get more data

M4A genre labels Spotify API artist labels

Map to 10 genre labels Map to 10 genre labels ata from Spotify

Remove as noisy

Get lyrics from Genius AP|

Choose this label

Final dataset
Discard

Figure 1.2.3: Mo nepiindm e ddixaciog mou axolovdficade yio Ty tpotonoinoyn tou M4A.

epyaoies, (28] napéyovtde tou otiyouc avtl v meptypoagpés Tou you. Télog ouvdidlopve eva Audio Spectro-
gram Transformer (AST) 22| povtého peto Robustly optimized BERT approach (RoBERTa) [38]. Auty 7
egepelivnon Poninoe oty emAoyn evog xatdAAnAou wovtélou yia xdlde TpOTXOTNTA, TO OO0 GTY) GUVEYELWL
npocapudo TNXE Yia epyaoieg Tavounong.

Metd and auth TNy eVOEAEYY| EPELUVO TPOYWEAKE OTO BEUTEPO GTABLO, TNV EXTABEUCT) EVOC HOVTEAOU XATNYOpL-
onolnong ylo xdde TpomxdTnTa xou Yo xdle epyaoia. Luyxexpuéva, To Avpixd povtého adlomolel T dOvaun
e opyltextovixnic roberta-large yia talivounon xewévou. Apyuxd mpoetodlovye To xelpevo elcaywyhc yia
tokenization petatpénovtac 6Aouc toug yopaxthpes o meColc yia var datnenel 1 CUVETELDL XoL, 0T CUVEYELX,
aponpoluE Tar onuela oTENG Yol VO UEWWCOUPE TNV TOAUTAOXOTNTO X Tov Tdavo YopufBo ota dedouéva. H
ouvdptnor tokenization, Sapoppuwuévn ye Yéyioto urxog oxohoudiag 256 Bloxpltixy, xwdixomolel To xadupod
XelUEVO OE Uil Lop®T) XUTAAANAT, yia éva oviého RoBERTa, Snutovpydvtoc aprdunuixd avory veploTixd xou pio
pdoxa Tou UTOBEVUEL ol dloxplTixd TpETEL Vo tapoxohoudel to povtého. Ipoywedue otny exnaidevon (fine-
tuning) tou povtéhou Ue BAoT TIC DIUPOPETINES XATNYORIES ETIXETHV TOU UTEPYOUY GTO UVOAO BEBOUEVWY Uag.
O optimizer emhoyvc elvar to AdamW, pe puduéd exuddnone 9e-7. To povtého exmoudeletan yior EVvEa ETOYEC
BLTNEMVTOG TNV XUTACTUOY) TOU HOVTEAOU ToU eTLTUYYdvel Ty udmhdtepn oxpifBeia emixdpnong. To povtého
nyou o&lonoiel Tov mpoexmoudeuuévo Audio Spectrogram Transformer yio taivounom fyov mou eyel poptwiel
ané to checkpoint "ast-finetuned-audioset-10-10-0.4593" mou napéyeton and to MIT. Xenowonolobye npwta
v xhdon ASTFeatureExtractor yio va petotpédouye apyela fyou oe paocyatoypdupata. Eivow ongovtind va
onuedel 6Tt uovVo €va pépog Tou apyLxol Hyou yenothonolelton ot auty T dladixacia. Me tumixd pudud derypa-
Tohndlag fyou 44100 Hz xon péyioto prixog 1024 yio to gaouotoypdgnua 6meg oplleton amd authv Ty xAdom,
uovo mepimou 10,2 Seutepdhenta Tou apy ol 1you 30 BEUTEPOAENTWVY YETNCUOTOLOUVTIL GTNV TEAYUATIXOTNTA
yia T Smutovpyla Tou gacpatoypduuotoc. H Bedtiotonoinon twy nopauéteny Tou poviélou avatidetor 6Tov op-
timizer Adam, yenowonowdvrag pudud expdinone 6e-6 xou exmaidevon yio cuvohxd b enoyée. H apyrtextoviny
TOU TEMXOU HOVTENOU WoC EXEL OYEDIUOTEL YLl VO EVOWUATOVEL xou Vo ToEvopel TOAUTPOTUIXES EL0GB0UC TEo0
amd TyEC fyou 600 xan amd mnyés xewévou. To povtého alonoiel ta mpoexnoudevuéva ASTModel, yia ¥iyo,
xat To RobertaModel, yio avdhuon xewpévou. O eloodol Hyou xar xeywévou unoBdilovton oe mpoeneéepyaoio ue
Tov (Blo tpdémo 6mwe oTig Yovdtponeg neplntoels. H ouyxevipwting é€odo¢ and to povtého fyouv xa to CLS
token améd To HOVTEAO XEWEVOL eTAEYOVTAL, XM TOPEYOLY Uidl OAOXATPWUEVY TeplAndn Tou mEpE OUEVOL
e avtiotoiyme poperc. Autd to embeddings otn cuvéyela cuvdudlovial oe éva EVOTOMUEVO BLdvuouol Xou
ene€epydlovtan amd YLl XePal) TaEVOUNOTNS, TOU Tal XavovixoTolel xou tar Tpowlel ot éva Thipwe cuVBEdEPEVO
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Input Feature Extraction Multimodal Model

Audio Mel-Spectrograms Audio Transformer

Classification Head

5 ut
Fully Connected

Normalization Layer

. ——=

Preprocessing Tokenization Text Transformer

0 Oy =2

Figure 1.2.4: H dwdwocia tne toAutpomixic npocéyyione. H oxouotind xupatopopy| xou ol otiyol
HETATEETOVTAL TTPOTAL OE Pacuatoyedupota mel xou tokens avtiotolyo. Xtn cuvéyela, xdde elcodog
TpomxoTNTog UnoBdAAeton o enelepyaoia and to avilotolyo npoexnaidevuévo transformer poviého. H
ouyyevtpn T €é€0do¢ Twv embeddings viyou mou mapdyovtor ano To ASTmodel xou to CLS token ano to
RoBERTa cuvevivovtan xou enelepydlovtar amo piot xegahf taivounong, mopéyovtog logits yio xdlde
xatnyoplo.

eninedo, mopdyoviag to tedxd logits (hoyaprduxéc mdavétnree) talvounone. H Swdwaocio auth propel va
pavel 610 1.2.4.

1.2.3 MeVYodoroyia Encgnyriocwy twv MoviéAwy

Av xon apxetéc teyvéc 6nwe to TextFooLer[30] xou to MiCE[53] e€etdotnxay yio Ty eneliynon dedouévev
xewévou, emhéEape va egappocovye enegnyfioeic LIME. To LIME Eexivd Snuiovpydvtag éva Suadixd Sidvuoua
e (00 pnfxog e To opyd oW XeWévou, e xdde Pnplo va umodeixviel Ty mopousio 1 Ty arousia AéEewy.
Y1 ouvéyela, to Lime Siotapdooetl tor dedouéva ELGOB0U EVERYOTOLOVTOC 1) AMEVERYOTOWWVTAS Tuyala A¢Eelg
(rapoloee A anoloeg) dnpovpydvtog évay xadoplouévo apldud derypdtwv Yopw and v apywl elcodo. Metd
™ dnuoupyio autdv, to LIME ypnowonotel 1o apyixd poviého yio va mpoPBAédel o amoteAéopoTa Yiot TO
xadéva, avuyetwnilovtog autés Tic TPOBAEPELS WG ETUETES Yot TNV EXTTUUOEVCT) EVOS ATAOUGTEPOV, EQPUNVEUCLLOL
povtéhou, cuviidme plog ypouwxic maAvdpdunone. Autd to egpunvelolwo HoVTERO €xel oYEBLIOTEL Yol Vol
npooeyyilel ) dadixacia APNC anopdoewy Tou TOAITAOXOU dEYIXOU UOVTENOU EVTOC TNG TOTUXOTNTOC TOU
napadelypatog lo6dou. Alvovtoc éugaot oe Slatapaypéva Selypato mou elval o xovtd oto dpyixd xeluevo
OGOV APOEE TOV YETACYNUATIOUEVO YOPO YopoxTnetoTixwy Toug, To LIME touc exyweel uPmidtepa Bden xotd
™ dudpxeto awthc TNg exmoudevone. Auth 1 diadixacio Siacpaiilel bt to poviého enelrynone eoTdlel oTIC O
oYETWES TOROAAYES TwV BEBOPEVKY £LG6B0L, TovilovTag Toleg AéEelc UUBEANOLY TILo GNUAVTIXE o TNV TEOBAEYN
Tou povtélou. ‘Eva napddetypo goiveton oto oynua 1.2.5. To mapddetypo aneixovilel éva pépog tTwv otiywv
"Come as You Are" twv Nirvana, ye pepiéc Aé€eig mou ennpéacay To HOVIENO Vo anogacioel TNy xatnyopla
"alternative rock", toviouéva pe umke ypopo. ‘Oco Aydtepo dlagavéc, 16c0 Yeyolitepo elvon to Bdpog tne
MZne. Egapuélovye howmdv tny pédodo LIME ota Suxd pac dedopéva yiar var tpooeyyloouue Tomuxd Tov Tpono
Mne anogdoewy tou RoBERTa.

Ytov topéa tng ene€riynong Yyov, to TadldL pag Eexvd ye Suvatdtnteg mou tpocépet ) LIME yio tnv enerynon
EXOVOV. Ye auThY TNV Teplntwon, avti va ywploel éva oouo xeyévou oe hé€eic, To LIME téuvel tig eixdveg
oe superpixel. Xtn cuvéyela, dnulovpyel Swotapayéc omou xdde superpixel evepyornoleltan 1) anevepyonoieiton
xar otoduiletan ye Bdon TNV emippor; Tou oty €£080 TOU POVTEAOU, UE TO MO OMUAVTIXA Vol EMONUAivOVTOL
otnv apywh emdva. Hpocoapudélovroc auth 0 uédodo otic avdyxes Yo, YENOLOTOLOVUE PUCUATOYEAPNUA, TOU
0UCLIG TS OO TENOUV OOTIEOUOUEES ELXOVES TYou. AuTd pog emitpénel va e@appocovue To LIME aneudeioc ota
NYNTLXS PG BEBOUEVA TOU AVTITPOCWTENOVTAL O HOpQY| pucpatoypapruatos. Eva napdderyuo @aouatoypeapr-
patog xadde xan 1 e€fynon omwe dnpoveyinxe and to LIME gaivovtoaw oto oyfua 1.2.6. o va AdBoupe
po axpodioudn e€Nynon and Ta Qacpatoypapiuata, epapuolovpe d0o otpatnyxés: H mpdtn nepthayBdvel tnv
npoomdieia avadnuovpyiag Tou fiyou and Ta emoNUAcUEVE PEPT TWV PACUATOYRUPNUETWY TTou e€dyovTon and
to LIME yenotwonowwdvtoc évay avtiotpogo petaoynuotiopsd Fourier Bpoayelog Sidpxelac. H deltepn otpatnyiny
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Come as you are, as you were

As | want you to be Local explanation for class alternative rock
As a friend, as a friend

As an known enemy 1

Take your time, hurry up doused
The choice is yours, don't be late bleach
Take a rest as a friend
As an old enemy Soaked
mud
Memory, memory
Memory, memory old
swear
Come [HGHSEd in mud
Soaked in bleach gun
As | want you to be As
As atrend, as a friend
As an old enemy youl
(a) Mépoc wv atiywv Tou Tpayoudlol 000 001 002 003 004 005 006 007 0.08
"Come as you are" twv Nirvana pe
ONUELUEVES TIS onpavTixés AéEelg. (b) To Bden twv onuewpéveoy Aewv ye Bdon to LIME.

Figure 1.2.5: 'Eva nopdderypo eneényfoeny xeyévou LIME ye to "Come as You Are" twv Nirvana wg
eloodo. Aé€elc mou ennpedlouy to Yovtélo va pavtédel Ty xAdor "alternative rock" emonuoaivovton pe prie
xeoua. ‘Oco Mydtepo Sogpavéc, 1060 peyahlitepo to Bpoc tne AMEne 6mwe gaiveton oto oyfua (b).

PLNTEAPEL TOV apytxd NYO OTE TO TUPAYOUEVO QUCUTOYEouUa Vo wotdlel e autd mou diver to LIME. Av xou
QUTEC Ol TPOCEYYIOEC AMéBWONY XATOLES UXPOJOWES EENYHOELS, TO ATMOTEAECUOTA TOUS, OTwe TapouctdlovTol
OTO EMOUEVO XEPIAALO, UTOBSNAGYOLY dTL uTdpyel Teptdtplo tepatépw Pehtiwong.

Mel Spectrogram with Mask Overlay

Mel Spectrogram

16384 +1de
+1dB

16384 8192
+1dB +1dB
8192 4096 +0dB

+0dB N

4096 T 2048 +0dB
§ +0dB

T 2048 +0d8 1024
048

1024 » 512
048 048

512 0

o 15 3 45 6 75 9
Time
0 15 3 45 6 75 9

0

Time.

(b) O onpavtixéc Tou TEpLoyéS Yo TNV amdpact pe Pdom
(a) To apywd gacuatoypdpnuo to LIME

Figure 1.2.6: Avo exdveg mou mopouctdlouy évo mel-gooyatoypdenua xou Ty avtiotowyt ene&iynon and o
LIME.

Acdopévou 6Tt to LIME yia ene€nyfoeiq exovev 8ev €B0GE IXAVOTIOWNTIXG OTOTEAECUAT, EEEPEUVHCOUE EVOA-
hooetixée pedodoue. H épeuvd pog pde odfynoe oto audioLIME [25], wa tapodhoyf LIME el8wd tpocapuocyévn
yia dedoyéva pouoixhc. e avtideon pe to napadooioxd LIME, to audioLIME biutapdooet dueca tov (Blo tov
fixo. H vhornolnorn twv cuyypagéwy yenowonolel v teyvohoyia doywpelopod mnydv spleeter [26] yio va
ATOUOVWOEL UEUOVOUEVA GTOLYElOl EVOS TEUYOUBLOD OIS QPWVNTIXG, VIPUUS, UTdoo xou mdvo. Emmiéov, To
audioLIME tunuatomnoel tov ¥yo oe ypovixd xopudtia. Téhog afohoyel tov aviixtuno xdde tuAuotog ot
dradixacion Admg amopdoewy tou povtéhou. Mo ewdva mou amexovilel authy T Sadixacia Unopel vo govel
oto oyfua 1.2.7. Qotdoo, avoyvwpilovioag Toug TEPLOPIoUONC GTNV XAVOTNTA TOL spleeter vor anocuvUETEL e
oxpifBeta obvieta ohpaTa fyou, EMAEEAUE VO EVOWUATWOOOUKE ULol O ETLTUYNUEVY] TEXVIXT| TApaYOVTOToinong,
T0 open-unmix [57] (UMX), o onolo elvon éva Bardt) vevpwvixd dixtuo oyediacuévo yia axpdr) Sty wplopd e
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Input Source Separation Interpretable Representation Compute labels

X € {0,1}¢
(1)Mapz'toz

(2) f(z) =label for z'

Perturb samples

z,={1,1,0, ..}

Train Interpretable model

z'={1,0,0, ..} a9(2) = f(z)

Figure 1.2.7: H dwdaocio mov axohovdel to audioLIME [25]. Axolouldel otevd tnv diadixacio tou LIME pe
TNV BLaPopd OTL YENOWOTOLEL BlayWELoUS TNYHC.

Source Separation
Input

Interpretable Representation Compute labels
Audio

X € {0,1)¢ ‘
ﬂ (1)Mapz'toz
(2) f(z) =label for z'

Perturb samples

: i 2;={1,1,0,
u Stiglindexing =t ! Train Interpretable model
f z'={1,0,0,..} 9(2) = f(z)

“This is a sample text”

“sample”,
“text”]

Figure 1.2.8: H diaduacio dnpovpylag noAuteomxedv enegnyrioewy. ‘Onng Qaivetol oTny eixove TpwTta
Y wellOVUE TOV Y0 GE YPOVIXA SLUCTAUATO Xl GTLC ETIEPOUE TNYES TOU %ol TO XEUEVO GE BLoXELTE CUCTATIXG
onwe Méelg. 'Emeita Onuiovpyolue epUnVEUCTUES AVATUPUOTACELS TWV YORUXTNELOTIXOVY Xl E@apudlovue To
LIME-base.

TnYAS AY0u.

‘Ocov agopd TNV TOAUTROTUXOTNTA Xt TLC ENEENYNOELS, EMNPEACUEVOL amd Tal EVOLUPEROVTA AMOTEAEGUATO TOU
LIME xa Tou audioLIME o7ti¢ povotpomxéc npoceyyioeic, npotelvouue évay Tpémo cuVBUACUO) TOUC TROXELUE-
vou va e&nyndel to toAutpomxd poviého xon va mapaydoly Tohutpomixée eENYHOELS. ZEXIVAUE SNULOVEYHOVTIC
€var Buadd Bidvuopa Tou LToBEXVOEL TNV Tapovasio | TNy anoucta evog yopaxtnelotxol. To didvuouo €xel
unxog (oo pe to ddpoioua Tou dEIHOL TWV YAPAXTNELOTIXWY XEWEVOU Xl TOU apttol TWV YApaXTNELO TLXMY
fiyou. T mopddelyua, ac unodécoupe 6TL €xouue Tov otiyo "Come as you are as you were" w¢ elooywy®
XEWEVOU Xol £VaL NYNTIXO XA D00 BEUTELOAETTWY, TOU EXEL OPLoTEL VAl YWEIoTEL and TOV EMEENYNTY OE TUAUATA
evoc deuteporéntou, va napayovionoinlel oe "vocals", "drums" xou "other". O cuvokixdc oprdude yopox-
NPTV elvon 13, 7 yopaxTneloTixd XeWWéVou Tou avTitpoowrebouy xdde AEEN xou 6 yopaxTneloTixd fyou
TOU AVTITEOGKTEVOLY TA PWVNTIXE, Tol TOUTOVOL xou Tor utdhotmar XA fyou 1 deuteporéntou. H Sobixaocio
dnuovpyiac eneényfoewy ouveyileton nopdpota ye to LIME, dnuoupydvtac Slatopoyéc twv el06dwy xan un-
ohoyiovtac ta Bden xde yapaxtneioixol. 2¢ anotéAeouo, UTtopolUE Vo TPOGOLOP{GOVUE TOLOL YUPAXTNELC TIXT!
elvon oNUOVTXG Yior TNV AndPooY) TOU TOAUTEOTUXOU LOVTENOU, Vol GUYXPIVOUUE TG TROTUXOTNTES XAl VO €Y OUUE
axpodotpes e€nyfoeic xadde xou xewevixés. H daduxaoto autr) anewxovileton oty exdva 1.2.8

Local explanations often fail to reflect the model’s overall behavior. For a more comprehensive understanding
of what features are influential across the model, rather than just specific instances we implement Global
Aggregations of Local Explanations as outlined in this paper [35]. The authors first mention the global
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1.2. Medodohoyia

average class importance for feature j and class ¢ defined as:
JAVG _ 2ies. Wil
C
/ ZiESu:WU?ﬁO 1

where S. includes all the instances ¢ classified as class c and W;; is the weight of that feature for that specific
instance. Another aggregation method described in this work begins by calculating the LIME the importance
for a class c for a feature j as

i€Se

The authors then calculate the vector of normalize LIME importance per class:

\/ 2oies. Wil
DPecj =
ZCGL \/Ziesc Wij|

where L is the set of all labels. The normalized LIME importance p; represents the distribution of feature
j’s importance over all classes ¢ € L. The Shannon entropy of this distribution is defined by:

Hj =- chj log(pe;)
ceL

and is used to asses the degree of homogeneity with which the feature attributions of a feature are distributed
over multiple classes. Finally in order make out cases where features appear only once in the test set the
authors calculate the homogeneity weighted importance for feature j and class c:

H; — Hy,;
H __ J min LIME
fey = (1 " Huax — Huin Hm> e

where Hpip, and Hyy,q, are the minimum and maximum entropy measured across all features. In short I.; H
addresses the issue of common features that may appear significant due to their presence rather than their
informative value and corrects for this by using entropy to penalize features that are uniformly distributed
across classes, highlighting those that are truly predictive of specific outcomes. It also addresses the assump-
tion that features uniformly affect model outcomes, by adjusting the importance based on the consistency of
their influence across classes and therefore penalizing features that show high variability across classes. This
method ensures that the global importance reflects genuine, consistent predictive value, especially in complex
multiclass scenarios.

Ot tomuxéeg e€nyHoELC CLYVE OTOTUYYAVOUY VoL OVTLXATONTROOLY T1 CUVOMXT] CUUTIERLPOEE Tou YovTélou. Lo
0L TILO ONOXATPWHEVT) EXOVOL, AVTL VLol UELOVWPEVES TEPLTTAOOELS, EPApUGLOUPE SUVORXOUS cuvdlaouole (global
aggregates) Tomx)Y eNEENYHOEWY OTWS TEPLYPAPETOL o€ aUTAY TN ouvield [35]. O ouyypageic avapépouy mpdhta
™V Tayxooyio Y€on onuacion xAAoNG YLl TO YopaxTNELoTIXG j oL T XAdor ¢ Tou opiletal wg:

JAVG _ ZieSc (Wil
C.
/ ZieSc:Wij3£0 1

omou 0 S, mepLhopPAvel GAEC TIC TEQINTAOOEL ¢ OV TaglvopolvTal ¢ xhdor ¢ xou Wi; elvan to Bdpog awtol Tou
YOPAUXTNELGTIXOU Yl TN cLYXexEWéV TepinTtwor. Mia dhAn pédodoc cuvdlpolong mou meplypdpeton oe oUTH
v epyaoio Eexiva pe tov unoloyioud e onpaciac touv LIME yio o xAdom ¢ yia évo yopoxtnelouxd j o

1€Se

Y ouvéyela, ot ouyypageic utoloyilouv To Bdvuoua g onuactag Tou xavovixorowuévou LIME ovéd xotn-
yoplo:
2ies. Wil

Dcj =
ZCGL \ ZieSC Wijl
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omou L elvan 1o ohvoro 6Awv Twv eTixetdyv. H xavovixonomuévn onuacio LIME p; avtinpocwnedel v xatavout
e onuaciog Tou yopaxtneloTixol j ot dheg Ti¢ xhdoec ¢ € L. H evtpornia Shannon autig g xatavourc
opiletan amd:
Hj == pejlog(pe;)
ceEL

xou Yenoldonotettatl yio va extipfioet Tov fadud ooloyEvelas P ToV 0molo oL AmOBOCELS YUPUXTNELO TIXWY XOTAUVE-
povton oe tolamhéc xhdoelc. Téhog, mpoxeévou va Sloxplloly TEQITTMOOELC OTOU To YUPAXTNELO TIXE ERPOV-
Covton povo pio popd 6T0 Glvolo doxuhc, oL cuyypagelc utohoyilouy T ctodulouévn onuacio OUOLOYEVELS
YOl TO YOQUXTNRIOTIXG ] Xal TNV XAJOT C:

H, — Hy;
IH =(1-= J min ILIME
I ( Hmax - Hmin) I

6mov Hypin xot Hppgg €lvon 1 eNdiylotn xou 1 UE€YLOTY eviponia Tou UeTpdtol yia OAa To YopoxTneloTixd. Ev
ouvtopia, t0 Io;H avuuetwnilel 1o (ATNUA TV XOWVOY YORUXTNPLOTIXGY TOU UTTOREl Vol @aivovTol onuavTixd
AOYw TNg Tapovsiog Toug xau Oyl AoYw TNE TANEOQOopLIXC ToUC a&log xou To SLopUMVEL XENOLLOTOLOVTAS EVTponia
Yo Vo TWLWENOEL YUeaxXTNELOTLIXA oL elval ooldpop@a xataveunuéva ot xhdoelc. Avtipetwnilel enlong tny
unodeon OTL ToL YoEAXTNELOTIXG ETNEEGLOUY OPOLOHOPQOL TO OTOTEAEGHATA TOL HOVTEAOU, TpocopudlovTag T
onuocio ye Bdon ) cuvéneld TS ETEEONE TOUS PETOED TWV TAEEWY Xl ETOPEVES TUHWPWVTAS YOEUXTNELOTIX
Tou ToEouctdlouy LVPNAY petoBAnTéTnTa ueTald TV TdEewy. Autr 1 pédodog dlacparilel OTL N ToyXOOULAL
onuacio avtavoxhd yvhoia, otadepn tpoyvwoTixg aglo, eWdxd oe TOAITAOXA CEVAPLY TOMMATAWY XATHYOPLOV.

1.3 AmnoteAéoupata

1.3.1 To teAix6 oc\UVOAO BEBOUEVWLY

Metd tig Sdixaoieg enadénong xau Eexaddenong tou cuvohou dedopévewy M4A, eluocte €Tolol v Topouatd-
coupe 1 olvodn Tou cuvdlou Bedouévev tou mpoxintel. O cuvolixdc apiude eyypapoy elvar 63760, tou
nephadvouy toug otiyous xadae xon ta Sroxprtind (tokens) tou RoBERTa poviéhou, tov fyo xadoe xou
TO QUOUATOYPOUUN Tou dnplovpyHinxe xan didpopa dAA UeTUdEDOUEVA, CUUTERLAUPBAVOUEVNE ULoG ETIXETAS
ouvooIuoatog xou piog eTxETos eldous yia xdie tparyoldl. H xotavour twv eTixeTdy cuvalcUNUATWY Xl TV
ETUXETOV ToU eldoug gafveton oTo Lyfua 5.1.1. Ynuewdvoupe dti nopd Tic tpoondielés poag vor GUAAEEOUUE Emi-
mhéov «relaxed» xoppdtia, TowoucldoTNxE BOOXONO VoL EUTAOUTICOUNE TO OET HaC UE TEpIocOTeEpa amd Tar 1020
nou cuumepNEPope ot autd (498 ex TV omolwy tpolnhpyay oto civolo dedopévev M4AA). Auth n éNkewn
Yo pnopoloe vo anodolel byt uévo oto yeyovog OTL TETol TpayoUudla Bev elvor TOAD SMUo@AY oTn duTxn
pouoxn, ahAd eniong UmOpel vor uny meplEyouy ayyAxols N xou xoddhou otlyous. Mmopolue eniong va Solue
Lot Topduolel ohAG ALYOTERO EVTOVY) avicoppoTia 61 Blavopr) Tou eldoug, ue UTEETANUY ToL «POP» TEPAyoLBLA EVE
Ta tpayoldia «hip hop» eugaviCovtar Mydtepo cuyvd. Amo dheg Tig xataywenoeic, 50660 yenoiuomoldnxay
WS OET EXTALBEVOTC Xl 1) ETOVOPORE HOLEGoTNUE PETAED TG ETXDPKONC Xl Tou oeT doxiuhc. Ot xodltéyveg
nou eppavilovrtal ot oeT exnafdevong xan emxdPWONS dEV TEQLAUBAVOVTAL OTO BOXIUACTIXO GET.

1.3.2 O enmdd0eElg TV LOVIEAWY AC

Avobovtog o anoTteréopoTa TwY TROPANUdTeY Takvdpdunone (regression), mou anewxovilovtan otov Hivoxa
1.1, xvouye Tic axdhouvdec napatneroeic. Ilpdtov, To péoo andiuto opdhua (MAE) tou mean regressor elvou
nepinou 0,2 yio npoPiédeic Tou Baduol evgoplag (valence) xou evépyelag (energy), yenowevet we Bdomn yio v
a&lohéynon o mepimhoxwy apyltextovixdy. Elvar afioonueinto ot n amhy apyitextovinyy MLP é8woe mohd
emituyNUéva anoteéopata. Amo TNy G mAeupd, Topd Tov xouvotdpo oyediooud tou MuLaN, n vhonoinoy
pog yenowonoiwvtac ) BBMotxn musiclm-pytorch odnyel oe yétpia anédoor. Téhog, N xahbTepn anddoon
¢ viomnoinone ROBERTA xaw AST, eldud yior mpofBiédeis Boduot eugoplag, pag 0dhynoe va tnyv viodethoouye
Yio TG EMERYOUEVES XUTNYOpLOTO|OELS Biddeomg xon eldoug.

Tevixd, tar povtéha fitay xohUtepa otny npdPiedn Ty evépyelag (energy) oe avtideon pe tov Badud eugoplog
(valence). Auth 1 andxhion propel va anododel oTo YupoxTNELe TIXE XUTAVOPAS TOU GUVOROUL Bedouévwy, 6Tov
Tor 8edopéva Barduol eugoplag Tapouclalouy Yla TLO OUOLOKOEPY) XUTAVOUT], EVEK Ol TWEC eVEpYELag elval cuoo-
WpELUEVES 00 1, OTwe avtavaxhdtor eniong otic teoPBAédelc Tou mean regressor. AZilel va onuelwdel 1 Toyela
Tpbodo¢ oTov touéa Twv transformer tng Bobide Mddnone.
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Distribution of emotion labels Distribution of genre labels
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(a) Katavouy etixetdv cuvoucdhuatog (b) Koatavoph etixetdv eldouc.

Figure 1.3.1: Katavouéc etixetddv ouvaiotipatog xa eldoug Tou tehixob cUVOLOU BEBOUEVLV.

Méco AnoAuto XpdAua TepomixotnTES

Movtého Badw. Evgoplag Evépysia Meéocog "Hyog Sitiyou

Dummy 0.314

Mean 0.206 =
Music4All LSTM 0.210 Embedding
XLNet 0.183 - - XLNet emb.
Conv. Net.* 0.158 0.107 Pacpatoypdupata Word2Vec emb.
MLP 0.157 0.085 Xoap /%8 Ydnhot Emnédov  Vader, TF-IDF
MuLaN* 0.195 0.148 Dacpoatoypdupata

AST + RoBERTa 0.140 0.099 Pacpatoypduuata RoBERTa emb.

Table 1.1: X0yxpion anod6cewy TV LoVTEAVEL xadde xou yprion tpomixdtntoc. To potvélo onpacuévo ye *
exmatdedTNXaY € LTOGVOVOAO TLWV BAYECUWY BESOUEVKY AOYW UTOAOYLOTIXO) XOCTOUC.

Ennpeacpévol ano ta napamdve extoudedouye xan aflohoyolue tar povtéha tadivounoic. Mo meplhndn g
anédoone auteyv unopeite va delte otov Ilivaxa 1.2. T'a va amoxtricovyue por Boditepn edvol T6V BUVITOTATLY
X0l TOV AOUVOLOY TWV HOVTEAWY UoC, TapéyOuUE Aemtouepelc TvareES GUYYUoNS %ol AVOPORES TAELVOUNCTG.
ooy wpdue emdeixviovtag xou avollovTag Tor povieha mou mpoxintouy. Ilepantépw €peuva oyetixd ue T
CUUTERLPOPE TwV HoVTEAWY propel vo Beelel oty enduevn evotnra, 6mou epapudlovue pedodouc enerynong
yior TNV €€y wY T axplBiV CUUTEPAOUATWY.

Ot avapopég Tagvdunong xou ot Tivaxeg oOYYUoNg YL To LovTELa cuvancOnudtwy aneixoviCovtal otov Hivoxa 1.3
xat oto oyfpe 1.3.2 avtiotoya. To povtého otiywy yia v tpdBiedn etixetdhv cuvanodnudtwy eivon to wovtého
e TN xewpdTepn anddoot and Ao, pe axpifeia emxdpwone woie 34,03%, uvrodnhdvovtog bt 1 aviyveuorn TAnpo-
poptdy cuvauoUNudTwy and to oTiyoueYHd Thalolo Sev elvar a€LOTIo TN Xt OTL TETOLEC TANPOYORIEC UTOPOVY Vi
aviyveudolv xahitepo HEGw TNS AVEAUONG YAUEaXTNRIo TIXWY Tyou. Autd urodnidveton emlong oyt uévo omod
T0 YEYOVOS OTL TO MyNTXO HovTélo Eemepvd oe peydho Bodud To Auplxd, oAAG xon amd TNy TapatienoT OTL 1
TOAUTEOTUXY| TPOGEYYLOT SEV UMOPEREL CNUAVTIXG XUAVTERA ATMOTEAECUOTA OO TNV MY NTXCN.

O avagopég ta€vounong otov mivaxa 1.4 xou ol mivaxeg oy yvong oto oyfua 1.3.3 anewxovilouv to anoteréo-
paTol TV HovTéAwy Tadivounone eldouc. To Aupixd poviého, av xal €xel oyeTxd Youniéc uetpinés, ue oxplBela
enVpwone 46,9% civon Widtepa emtuyic oty TEOBAEYN 0pLoPEVLV XUTNYOPLDY, cuYXeEXpEva «hip hop»
xat «heavy musicy. Av xou To povtého riyou dev elvan e&loou axpiBéc otic mpofiéelc tepintdoewy «hip hopy,
Eemepvd T Aupnd HoVTENO o€ Ghec TG dhhes xatnyoplag pe axpifela emxdpwone 55,3%. Télog, To nohutpomxd
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=

Movtého Axpieia Emxdpwone  Axpiewa Teot  Enoyéc (xahltepn)

Avpud Xuvonodnuatog 34.03% 32.33%
Hynrtixd Suvarodiuatoc 48.33% 48.29%

IToAutpomixéd Luvaucdruatog 49.05% 48.53%
Avpixd Eidouc 46.9% 45.14%

Hymtixd Edoug 55.63% 53.75%

IMohutpomixd Eidoug 60.33% 57.34%

Table 1.2: X0vodn tng anddoons Twv HOVIEAWY

Emotion Multimodal Confusion Matrix

Emotion Audio Confusion Matrix

Emotion Lyrics Confusion Matrix

Depressed

Frequency

Actual
Actual
Actual

200

100

& *,9"* > &
& & &

Predicted Predicted

£ P ® @ &
&

$ N
& &

&

",
%,

Predicted

(a) Avpxd Movtého (b) Hyntxé Movtélo (¢) Molutpomxd Movtéro

Figure 1.3.2: Ou nivoxeg obyynone tng ta€ivounone ouvaotijuoatoc pe Bdorn toug atiyoug, tov yo xo. Tov
ouvdlaoub Toug. PwtevoTEpa xOUTLE UTOdNAGVOLY Teptocdtepes TEoBAédels Tou wovtéhou. Idavixd povo 7
Slaryoviog Vo €npene var TEPLEYEL TWES oL O UTOAOLTOC Ttivoxag Vo elval xevoc.

povtéro Eemepvd xan tar dUo owtd povtéda pe oxpiBelo emxbpmwong 60,33% amodewxviovtag ot efvan oe Yéom va
aviyvedoel Thnpogoplec mou dev elvon eudldxplteg and Tic wovotpomxés npooeyyioels EexmwploTd.

Mepwd evbiapépovto potiBa TEoxVTTOLY and TIC UETPES TWY UOVTEAWY Yog UE Bdomn To oxomd TagVOULoTG.
Apywnd, to povtéha mou elvon umeduvar yiow Ty TEOBAEPN ETXETOY WGV EeMEPVOlY XoTd TOAD QUTA Yior ThHY
npoPhedn ouvatodnudtwy. Autéd to potifo emPeBoudver T SialoUnon poc 6Tl M amoTOTWOT TG CUVALCVT-
HATXTC TOAUTAOXOTNTAC TV HOUCLXMY XOUUATIOV UTopel vau efvat 800%0AT AOYw TG UTOXEWEVXTC QUONE TWV
vlpOTIVELY GUVILGUNUATEY Xt TN duoxohlag TopoyTig xadde Xt aviyVEUGNC YEVIXEUUEVMV, OVTIXEWLEVIXWY Ol
EMOUEVOC aXEUBMV EXTIUNCEDY TWY CUVACUNUATIXWY YUPUXTNEIOTIXWY TOL Umopel vor avTidngloly oL axpoutéc
oe éva xoppdtt [21]. And tnv AN mhevpd, o eviomopds Vepdtemv ou emixpatoly ot oplouéva €8N xat 6
ex T00T0U 1) 6o TH expdinon TEdBAedne eTixetdv elddv unopel va elvan mo emtuynuévn. Oo mpénel eniong
VO GNUELDCOVYE OTL TaL LOVTERD GUVALGUNUATOY LOTEPOVCY (WS Xol AOYW TNE TLO EVIOVNG AVIOOPEOTNG TWV
dedopévewy. Emmhéov, ol npoondieléc yag delyvouv 6tL xou i Tig dVo epyooieg ta Auped povtéla elyoy
YELROTERT] AOB0GT YO TA TONUTEOTXA PHOVTEAA TETUYAY To XoADTERA amoTEAEGHATA. AUTH 1) CUUTERLPOES. UoC
odnyel oto cuunépacyo 6Tl oL TAnpogoplec mou oyetilovton pe epyaoieg Tagvounone LOUCIXAC, EWBIXE Yia TNV
TalvounoT cuvorsUNUATeY, LTdEYoUY xUpine otov topéa tou Hyou. H anddoon tou cuvduaouol Twv TEdTWY
XEWEVOL xou HYou HTay 1 BEATIOTN amodeixviovTag TIC BUVITOTNTES TG TOAUTEOTXOTNTAS TN Beltiwon twy
ATOTEAECPATWY TOEVOUNONE HOUCIXAC.
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JuvaicOnua

Angry
Calm
Depressed
Excited
Happy
Neutral
Relaxed
Sad

Tense

Table 1.3: Avagopéc talivéunons cuvoLoUAUITOS TV TELWOY HOVTEAGY

Avpixod
AxpiBeia, Avdxinon, F1
0.40, 0.56, 0.47
0.37, 0.38, 0.38
0.24, 0.16, 0.19
0.35, 0.51, 0.41
0.34, 0.11, 0.16
0.25, 0.05, 0.09
0.42, 0.05, 0.08
0.22, 0.25, 0.24
0.27, 0.27, 0.27

Hytixo
AxpiBeia, Avdxinon, F1
0.52, 0.69, 0.59
0.51, 0.60, 0.55
0.59, 0.47, 0.52
0.48, 0.70, 0.57
0.46, 0.37, 0.41
0.37, 0.27, 0.32
0.50, 0.04, 0.07
0.45, 0.50, 0.47
0.47, 0.26, 0.33

IToAuTpoTIXS
AxpiBeia, Avdxinon,
0.54, 0.66, 0.59
0.66, 0.41, 0.50
0.57, 0.56, 0.57
0.50, 0.69, 0.58
0.48, 0.33, 0.39
0.33, 0.40, 0.36
0.38, 0.20, 0.26
0.47, 0.40, 0.43
0.44, 0.33, 0.38

Y roor.
F1
1203

Genre Lyrics Confusion Matrix Genre Audio Confusion Matrix

hythm music

(a) Avpixd Movtého (b) Hyntxé Movtélo (¢) Hohutpormind Movtélo

Figure 1.3.3: Ou nivaxeg olyynone tne tadvéunong eidoug e Bdon toug otiyous, Tov )0 xou TV cLUVBLACUO
Touc. PwtelvdTepa x0UTId LTOBNAGVOLY TEploadTeRES TEOPBAEYELC TOU WovTélou. I8avind povo 1 darydviog Ja
EMEENE VoL TEPLEYEL TWES %ol O UTOAOLTOG Ttivoxag Vo elval xevéc.

1.3.3 Emne€rynorn TV woviéAwy

‘Onwe mpoavagépdnxe da yenowwonoicovye to LIME, to audioLIME xou to cuvbiaotiné MusicLIME yua
VO UEAETHCOUUE TNV CUUTERLPOPE TwV HovTéhwy. Emmiéov, unohoyilouue xot Toug cUVOAIXOUE GUVBUAGHOUS
Tomxy enelnyoewy pe 8o uedodouc.

EexivedvTag Pe To hupind povtého medPledne elddy povoxrc, tapoucldloviag 1660 TomXéG eENYHOELC Yla el
heypéva mopadelyuato yio xdde ¥Adom 660 Xl TOUG GUVOAXOUS GUVBUICUOUE THPATNEOVUE XETOLO EVOLUPEROVTA
potiBa. Apywxd, n "hip hop" xatnyopio Eeywpeilel €vtova, Ye TNV avdAUCY LIS VoL AVABEXVUEL TNV IXAVOTHTA
Tou yovtélou va eviomioel Yepatoloyia napoloa oe oTlyous TETOWY TEAYOUdLOY. AUTH eunepléyel TNV T8,
xuplwe appoouepdvoy, Ye MEeg 6mwe "prison" xou "dead", v Lwn otov dpduo, my. ot Aeg "hood" xou
"block" dhhat xuplwg To LovTERD ETxEVTROVETIL OE Bwpoloyies, TpoaBAntind xou oegloTnd Aoyo. ‘Ocov agopd
Vv xAdom "heavy music" pot{Ba Blag, ue Aé€eic cav "blood", "wrath", "destruction" xou "killer", cuvaicin-
potixol mévou, ue Aé€elg dmwe "fear", "misery" xou "grief" xoun Yavdrou xou Ypnoxsutinéu yopuxtipa, ue el
onwg "dead", "grave", "evil" xou "cursed" qaiveton va emnpedlouv to poviého. I vy xotnyopia "rhythm
music" to poviého @aiveton vo aviyvelel xuplwg To Paoctagaplavé dvoua yia tov ©ed "Jah", mou €xel évtovn
napovsia oty tlapolixavy povour] xadde xou dAhec Aé€eic YpnoueuTIXOD o YEWYPUPIXOU TERLEYOUEVOU Xol
AéZeic mou avixouv otnv Kopdifuer didhexto. To yovtého enlong amodidel a&tonpens xotd Tic npoBAiéelc Tou
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Table 1.4: Classification Reports for Three Models

Avpixd Hytixo IToAuTpoTIXS
Yroo=.
JuvaicOnua AxpiBeia, Avdxinor, F1 | AxpiBeia, AvdxAnon, F1 | AxpiBeia, Avdxinon, F1

Alternative Rock 0.24, 0.41, 0.30 , 0.35, 0.30 0.30, 0.37, 0.33
Electronic 0.48, 0.20, 0.29 , 0.44, 0.51 0.58, 0.51, 0.55
Folk 0.50, 0.37, 0.42 , 0.48, 0.54 0.63, 0.60, 0.62

Heavy Music 0.63, 0.67, 0.65 , 0.73, 0.73 0.81, 0.75, 0.78
Hip Hop 0.86, 0.87, 0.86 , 0.82, 0.80 0.89, 0.89, 0.89
Pop 0.45, 0.59, 0.51 51, 0.60, 0.55 0.51, 0.66, 0.57
Punk 0.38, 0.17, 0.23 , 0.33, 0.43 0.61, 0.40, 0.49
Rhythm Music 0.61, 0.44, 0.51 , 0.61, 0.59 0.73, 0.57, 0.64
Rock 0.27, 0.35, 0.30 , 0.45, 0.41 0.38, 0.42, 0.40

yioe Ty xotnyopta "pop". Evtoniler popovtind Yépata, dnwe unodewvietoan ano ta Bden tewv hZewv "kiss",
"girlfriend", "sexy" x.a., Vépata avapopixd e TOv Yopd xou TNy daoxédaoct], mopoadelyuatog ydern "club",
"dance" xou "disco" oAAd xou Aéeic mou UTOBNAGVOLY cuvaicUNUoTIXéS eunelpiec xou u6da. T v "folk"
XATN Y0Pl GNUAVTIXOTERES YLOL TNV OTOQYUCT) TOU HOVTEAOU (alvetar vor efvan AEEeL amo avapépovTo oTny QUoT),
o€ TPOOWTXES OYEoEl; Xou otnV Lo oty (xerh) ToAn. Téhog To povtého BuoxoleVETAL VoL EVTOTOEL TEaryOUdLL
Tou avrxouv oTic xatnyopiec "alternative rock", "rock", "electronic" xou "punk" cuyyaiovtde tec elte petagd
Toug elte ye dhheg xotnyopieg. Katahryouue 6TL évag Badude obyyuone eivon avopevouevog 16co eneldy xdmolo
TEayoUdL UTopEel VoL aviXEL OE TOAAG. €101 600 xou ETELDY| DLopopeTind ldT) Umopel vor tepléyouv xolvd Véporta aAld
VoL BLapEPOUY GNUAVTIXG GTOV PUBHO, TIC XAHOXES TTIOL YPNOWOTOOVY Xl GE GARA LOUGLXA YORUXTNELO TIXE TTOL
dev elvan TopdvTa o€ Wit avdAuoT otiywy. ‘Eva nopdderyua tomxdy e€nyfioewy yia Ty xatnyopia "hip hop" vy
tela Tpayoldia Beloxovtoan oty edva 1.3.4 evdd oL 5 onuavtidtepeg AéEelg Yoo xde xotnyopia pe Bdorn Toug
cuvoAolg cuvduaopolg PBeloxovtan oty ewdva 1.3.5. Ltig eixdveg 1.3.6 divoupe dLo moapadelypato xAdoewv
Twv onolwv to Yépata elvon edxoha Stoywplota xou xhdoewy Tou dev Eeywpilouy 1600 Xahd.

! I
w!| I shit [ ] gove |
wi! ass | Eniyon ]
e ! [ chuck I point ]
wo | [l s . ko ]
balm 1 I —0110 70105 D.bO 0.b5 0.‘10 0.'15 you -

0.000 0.025 0.050 0.075 0.100 0.125 0.150 -0.05 0.00 0.05 0.10 0.15

(b) Poontang Boomerang twv Steel
(a) Bool, Balm & Bollective tou YG, Panther, tou avixe. otnv xatnyopio  (c) Lucid Dreams tou Juice WRLD,
0p0d mpofiendpuevo we "hip hop" pe  "heavy music" ddha n nedPredmn Nrav mou neoPrédnxe we "pop" ahio avrixet
APXETH GLYOUPLd. "hip hop". oty xatnyopia "hip hop".

Figure 1.3.4: Tomxéc e€nyfoeic v Ty xornyoploe "hip hop" yio tpio delypota tou teot suvohou: (a)
o Yetnd (b) heudne Jetnd xou (c) Peudne apynuxd. Ta ypagphuata Seiyvouv noiec AéEelc cUVELGPEPOLY
TEpLoG6TERO 610 Vo TpofBiédel To povtéro "hip hop".
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2D Visualization of Word Embeddings by Class Importance
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Figure 1.3.5: Ou 5 onuovtixdtepeg A€l you

xdde xatnyopla pe Bdon Toug GUVOAIXOUEC GUVBLIGUOUCE.
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heavy music
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(a) Ou 30 o onpavtixéc Ae€elc yia g xatnyopiec "hip hop" xou "heavy music" ye Bdon to
povtého. Ou Yepatoloylec elvan eixola doywplowuec.
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(b) Ou 30 mo onuavtixéc MéEeig yia Tic xatnyoplec "alternative rock" xon "rock" pe Bdon to

povtero. O Yepatohoyies 8gy elvon edxoha Sioywplowuec.

Figure 1.3.6: To t-SNE vpdgnua twv GloVe embeddings yia tic 30 mo onuavuxéc AEelg oployévemy
xhdoewv. Lty exdva (a) mapouctdlouye tig AéEelg Twv xAdoewy "hip hop" xou "heavy music" eved oty
exova (b) Tic MZeg Ty xhdoewv "alternative rock" and "rock".
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Av xau oL ene€nyfioeig Tou eldoug TopEyouy evBlapépovTa amoTEAESHATY, QUTO and TNV AvEAUGT, TOU AupLXoD
povTélou cuvalcUnudTey dev ftay napouota. Me avdhoyo tpdmo 6mwe mety, dnuiovpyolue Tomég enednynoelc
X0l GUVOAXOUC cLYBLACUOUE Vo EELYVIBCOUPE TOUC AOYOUC NS Xaxhc anddoone tou. lapatnpodue 6t to
povtého avayvopilel oxotevd xou poxdPBelo Yéuota, ue Aé€elc dnwe "dead", "destroy xou "bleed" xon tar amodidel
oty xatnyopio "Angry. Auth 1 cupneplpopd dixatoloyel To oyetnd uPNAd oxop F1 tou povtéhou yio authy Ty
xatnyoplo. Iapopoing, chAd ye uixpdtepn axp(Bela, To HoVTENO avory vpilet Yépoato ndpTt Xot Slaox€daons xat To
amodidel oty téEn "Excited" xau Ypnoxeutind Vépara, anodidovtde to oty té€n "Calm". Qotdoo, To poviéro
EyEL xaxh ano6doan oty avayvaopeloT Yeudtov mou oyetilovtal Ye Tic dAheg xhdoelc. Ta Bden twv cuvokxdy
CUVBLAOUOY TWV AEEWY TOU EMNEEACAUY TO UOVTENO Ylol TNV TEOBAEYT AUTOV TV XUTNYORLOY ATy YAUUNAL,
UTOBEYUOVTAC TN UY) AMOPUCIOTIXOTNTA TOU HOoVTEAOU. 2To oyfua 1.3.7 nopoucidlouvye T 5 YopoxTNEloTixd
HE TN peYohOTeEPN ETppoY| Yiol x&le TASYN. O TEETEL VO ONUELCOUUE OTL OPLOUEVD YOPUXTNELOTIXG TOV ElvoL
exgppacTixol fyol omwe "Mmm" 4 ovéuata énwe "Bethlehem" dev éyouv GloVe embedding xa emopévee dev
amewxoviCovton oty Ewéva.

H aduvapio Tou yovtéhou va amodwoel xohd unopel va anododel oe didgpopoug nopdyovies. Ilpwtov, n avayvode-
1o cLVAUCUNUETWY Vol EYYEVAOS TONOTAOXY o UTOXEWWEVIXT|, eEopTdTton oE peydho Bodud and tic avipndniveg
eunelplec xan epunveles, ol onoleg moiAAouy eVEEnc PETAED TWY ATOUWY [21]. IMopdho mou ol mo évotveg Aé€elc
unopel meploTactaxd va mopéyouv cagelc evdel€elg Yo Tic xAdoelg udmAnc evépyetag "Angry" xou "Excited, n
pouoxy ebvon war toAlmhever) pop@n téyvng. Ot atiyol, av xat onuavTixol, avTineocnmedouy Hovo wia dido TaoT
e pououxrc dnwovpyiag. Ot xplowes mAnpogopies Yo Ty oxpiBn Tavoéunon e Hovoxhc ouyva Peloxovto
Tépol and TO OTLYOURYIXO TEPLEYOUEVO EVE To BEBOUEVOL EXTIALBEVONE oL TEGT OYOMACTTNXAY AaufdvovTog Un-
on ™ wouox xan Oyt HOVO TO Auptxd COUA TV TEAYoudlwY. Avouévetal OTL GE TEPLTTOOEIC TOU oL GTiyol
TEOXOAOULY €V GUYXEXPLUEVO cuvaloUnua, ohhd o Hyog Toug exppdlel éva BlaopeTixd cuvaicinua, tpocdétouv
onpavtixy oyyvon oto povtého. Koatd cuvénela, To uovtého BuoxoleleTal Vo XAVEL ATOQUCLIO TIXES Xo axplBelc
TpoPBAédeic, xdt Tou elvan epgpavéc and Ty aduvopla edpeons Yepatoroyidv yia xdde tEEn.

2D Visualization of Word Embeddings by Class Importance
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YuveyiCoupe avahbovtde Tig eENyHoeic Tou NYNTXoU Yovtéhou Tou mpoBAénel etétee eldoug. Axpodotueg e&-
nyYoeic etvan Stodéoipeg oty oehido tou GitHub. T var éyoupe pior 0AoxANeoU€vn eixovo JEAETAPE TOCO TOTUXES
eENYNOELC TPOTOTUTILY Yia Xdde xatnyoplo 660 xou Toug GUVOAXOUE GUVBLUGUOUC 1, g wou I Q»VG. "Eva napdderypo
TETOLWY OLVOAX®Y e€nyNoewy yio TNy xhdon "hip hop" elvan Siardéoo otny exdva 1.3.8. Eexvdvtog Aotmdy
amd oauTAY TNV xAdom BAénoude 6Tl Tol PwYNTXE wolv To Hovtého 6To Vo TNV TpofiédeEl, LTOBNAGVOVTUS o)L
HOVO TNV CUUTNXVOUEVT TOEOLGIO PWVNTIXGOY GE TETOW TEAyoudla ahAd xou TNV xavdTnTa aviyvevong potiBa
par. Ytnv "heavy music" galveton ott pevnuixd xou "other" yapoxtnenotixnd mou teptéyouy xpauYES Xl iy oug
TAPOUOPPOUEVNE XLHdpoc lvol TLO GMUAVTIXG EVE AVTIOTOLY A YAUPUXTNEIO TIXA, (PUOLXS YE BLPOPETIXG TEQLEYO-
Hevo, cuvelopépouy xou atny TedBiedr "pop" xou "folk" tpoyoudiwv. H xhdon "rhythm music" gaiveton vo
dlvel Eupoor oe OAA TA YAUEAXTNELOTIXA EXTOC Omd Tl VIpoPS vy otny "electronic” ta "other" yopoxtneiotixd,
Ta onola cuVAYLE TeptE oLy Blaxpitéc pehwdies ouvieodlep. H "punk” xidon napoucidlel onpovter Bedtinon
CUYXELTIXY PE TO AUPXO LOVTENO UE EUpoon xUplwe oTta PuvnTixd eve oty "rock” ta "other" yapoxtnpiotind
delyvouv OTL N Nhexte| x1ddpa Exel xOplo PORO Yiol TNV ATOPACT] TOU YOVTEAOU. AV X0l TO UOVTENO oLy veLEL
otolyelo tne "alternative rock" Suoxoiéueton va ta Eeywploet ano autd e "rock" xhdong. Koatahhywvtag, to
NYNTH6 LovTtého aviyvelel ouoxd otolyela mou Eeywpllouy xdlde ¥Ador ahAd unepdelel xatnyoplec Tmou eivon
%x0ovtd petoll Toug. Kdtt tétolo elvon avoevOUEVO TS avaPEROUY XoL Ol GUYYPAYEC O auTHY TNV SoUAELd
[43].

Feature Weights Heatmap for hip hop

Feature Weights Heatmap for hip hop
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Figure 1.3.8: Ot cuvoluxdt cuvdiacpol Tomxwy enyfoewy yio Ty xAdor "hip hop". The first heatmap refers
to the homogeneity importance weights whereas the second heatmap refers to the average lime weights per
feature.

To yovtého Yyou mou mpoPAémel cuvaoUfuota eivon onuavtixd avdtepo oe clyxplon Ue To aviloTouyo
oTLYoVEYO, xS oplouéves xatnyopleg €youv Bertinon tou oxop F1 peyahbtepn and 0,3 povddec. Xtoug
GUVOAOUE GUYBLACUOUE TNG AVANUGTIC NYNTHDV YAUeaXTNELO TIXWY, oL xatnyopleg "happy" xou "excited" Paot-
Covton oe peydho Bodud oe yopoxtneoTind vipaus, we tnv "happy" vo divel enlong éugoaon ota QoVNTIXG,
umodnAdvovTag Wit loyupr oxéon uetald Tou puluol xon Twv VeTdv cuvaodnudtwy vdniic evépyelog. Ta
i "neutral” xou Tic "calm" xotnyopieg, xuplopyolv Ta yopoxtneloTxd "other", e to undoa yopoxTnEIo TIXd
Aydtepo onuavtxd vyl to "neutral" cuvototuato. Oo mpénel Vo GNUELOCOLUE OTL EPOCOV TO UOVTEAD OEV
xdver tohhéc "relaxed" mpoPiédeic oTo BoxooTind oOVORO, BeV €youpe cpxeTd dedouéva Yio Vo Tpocdlopi-
COULUE OPIOTIXG TN ONUAVTIXOTNTO TWV YoEUXTNEIC TIXGY. XTa cuvouoUfuata "angry" xou "tense", to "other"
Yoo TNElo TiXd elvon o onpoavTind, ahhd ta "tense" Sivouv éugpao enlong ota QEVNTIXG, LTOBEYOOVTAS EVal
neplmhoxo pelyua mou amontelton yiol vor UETABWOOEL apvNnTnd xan évtova cuvanotfuota. Ou xatnyopleg "sad"
xot "depressed" nopoucidlouv amoxiivovto potiBa. Ta vtpoue elvar Baowd yio "sad" tpayoldio aAAd ope-
ntéa yio "depressed", avadeviovTtag mog To eTinedo EVERYELNS ETNEEALOLY TN CUVAPELN TWV YARUXTNELO TLXWYV
autedv. Téhog, 1 xhdon "calm" mpooéyel Ta uvnTixd xou "other" yopaxtnploTind, ue meploTacloxy onuacio
TOU UTEO0L Xat TWV VTIpous, anewxovilovtag éva mouxiho pelypa fyou mou fondd otny mopaywyn evoc xotampav-
@0l cuvoucUnuatixol e@é. Télog, mopatneolue 6Tl oL Topuxelueves xatnyopiec oToV YdpTn cuVACUNUETLWY
oLy VA Yewpoly ToEOUOLY YORUXTNEIO T WS oNUaVTIX, Wialtepa 6tav potpdlovtol tapdpota enineda odévoug
1 evépyeLag.

‘Ocov apopd Tot TOAUTEOTUXE LOVTER, 1) dNULOUEYid CUVOMXGDY GUYBUAGHDY TOTUXOY EENYHOEMY YENOULOTOL)V-
Toc TNV onuacia otoduopévne opotoyévene (homogeneity-weighted importance) 8ev anotundver pe axp{Beta
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1.3. Amnoteréopota

™V emippot| Tou x&le yapoxtneotixol (feature). Auto cupPoivel Aoyw g Unaping d0o TOTWY yopaxTNELo-
Tiv: Aé€elg xan xopudtia fiyou. Eva ta nymtd yopoxtnelotind etvon mdvta ta (Bl 40, ol Aé€eig Slapépouy amo
nepintwon oe nepintwon. Autéd onuaivel 0Tl ToL QWYNTXG, Ta VIPoHs, Ta undoa xou ta "other" yapoxtnpiotixnd
Yo ennpeedcouy Ue TapoUolo TEOTo xdde TEEN ool €youv xal BlapopeTixd Tepleyouevo. Lo mopddelyya, éva
xopudtt "other" yopuxtneiotxod Ya unopoloe va nepéyel power chords xan va wdel to yovtéro oty "heavy
music" 1 Yo unopoloe vo TeptéyeL Ny ous caopnvou xaL EToUEVKS va wiel To wovtého oty "rhyhthm music".
Avuto onuaivel 6L Tar yapoxtneioTixd Nyou Yo Exouv LYNAY eviponio apol dNANDY| TOEATEUTOUY GE TOARATAES
xAhdoelc. Ao tnv Sk mAeupd, ot Aé€elg Eyouv yaunidtepn eviponio xadde opiouévee Aé€elg emnpedlouy uévo
ouyxexpévee xAdoelc. Autd odnyel oto va Yewpolvton ecpoiuéva ol Aettoupyieg fyou we Alydtepo onuayv-
wxéc. Emouévng, 1 Snuiovpyla CUVOAIXGY GUVBLICUGOY TOTUXGY EENYNCEWY YENOWOTOWOVTAS TNV péon onuacio

(average importance) etvou To xatdANAN yior TRV TohUTPOTUNXY TEpinTwoN T, f}VG.

INo voe xotoddPBouye av o mohutponixd poviého mou npolAénel etixéteg eldouc xatapépvel vo GUVBUAoEL TIC
EMPEEOUS TPOTUXOTNTES AVOADOUUE Ta amoTeEAEéCUATA TwY Yedodwy enelriynone. Xe xatnyoplec émou 1o Aupixd
povtého Moy o axpBéc amd To YOVTEAO YYOU, TU TUO OMUAVTIXE YOLUXTNEICTIXG Yl TNV OTOPACT) TOU TOo-
AUTEOTLXOU HOVTENOL QofveTon VoL eiVol Tol GTLYOVPYIXE YOpaxTNEloTXd, eVE o€ TAZES TOU TO AUpS LOVTEAO
elye younhétepn anddoor), To Lovtéro divel Tpocoyy| oTa yapaxtTneloTixd fyou. I mopddetypa, yior THY xoTn-
yopia "hip hop", ol cuvolixol cuvbuacuol, 6Twe tapouctdloviar oto Xyhua 1.3.9, delyvouv Eexddapa oTL Ta
OTLYOURYIXA YAUEUXTNELOTIXA €Youy UeyollTepy enidpoaoy. And tnv dhAn mhevpd, To poviého eoTidlel meplo-
GOTERO OE YopaxTNElo Td fyou yio "punk" teoyoldia, 6w gatvetar 6to Lyfua 1.3.10. Ye dAleg tepintwoel,
o6mwe N xA\dom "pop", tne onolac oL cuvokixol cuvduaopol elvar oto Lyua 1.3.11, to yopoxTnelo Txd ou xou
otlywyv emnpedlouv e&icou to povtéro. evixd, 1 TOAUTEOTUXY TPOGEYYLON XATAPEPVEL VO EVOWUATWOOEL XAk VO
oLVBUACEL TANPOPORIES ATO TA LOVOTEOTUXA HOVTEAA Y10l BEATILUEVA ATOTEAEGUATAL.

Top 20 Word Feature Weights for hip hop
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Figure 1.3.9: Ou cuvohixol cuvbuacpol Tomxwy e&nyfocny yio Tporyoldia Tadivounuéva we "hip hop" ano to
nolutpomxd wovtého. O mphtog ydptne epudtnroc anexovilel ta Bdpn Twy YoapoxXTELGTIXOY )0V, EVE TO
pa386ypoppa delyver tor Ben twv 20 mo onuavTixey hEZewy.
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Top 20 Word Feature Weights for punk

likes

beer.

Drinking

sell
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Figure 1.3.10: Ot cuvohixol cuvduacuol Tomuxwy eEnyHoewy yia Tporyoudio to€ivopnuéva wg "punk" amo to
noAuTEoTXO wovTého. O mphtog ydptng Vepuodtnrac aneixovilel Ta Bdpn TwY YapaxTELoTIXOY )0V, EVEK TO
pa3d6ypoppa delyver tor Bden twv 20 mo onuavTixay AZewy.

Top 20 Word Feature Weights for pop
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Figure 1.3.11: O cuvohixol cuvduacpol Tomxdv e€nyroewy yia Tparyoldia Tadivounuéva we "pop" amo to
noAuTpomxd wovtého. O mphtog ydptne depudtnroc anexovilel ta Bdpn TwY YapaXTELGTIXOY )0V, EVE TO
pa3d6ypoupa delyvel o Bden twv 20 mo onuavTixey AEZewy.

Télog Yo To TOAUTEOTING UOVTENO TOU TEOPBAENEL GUVALCHAUOTA TUEATNEOVUE OTL T MYNTLXA YOPOXTNELOTIXG
elvar o onpoavTixd. Av xou To povtélo anodidel xohiTepa and T HOVOTPOTUXESC TPOCEYYIoELS, 1) Slapopd Ue To
povtéhou fyou elvar oplaxr. Enione Brémouye xou amo toug cuvohixols cuVBLACUOUE TOTUXMY EENYNCEWY OTL TO
TOAUTEOTIXO HOVTENO Vewpel Tal NYNTLXS YAUPaXTNELOTIXG TiLo YEYIANS eniBpaong yiot Oheg Tic xatnyopleg. T tig
"happy", "depressed", "excited", "tense", "calm" xou "relaxed" toa 10 yopaxtreioTind e To peyahitepo Bdpog
elvar Gha Mymmnd. Xtig "sad" xou "neutral" uévo Ayeg héZeic €youv udhniéd Bdpoc. To to "angry" tpayoldia,
(podveTon OTL 0 GUYBUACHOE YOPOXTNELOTIXWY XEWWEVOL XaL Y 0u Vo elvon eEl00U oNuavTixd, Pe Ta NynTxd va elvou
O GYETUE, Ywplc duwe N anddooy Tou TOAUTEOTIX0) HOVTEAOUL Vo lvor XAAUTERT omd TO HOVTEAO HyOL.
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1.4. YulAtnon

1.4 Xuvlntnon

Ye auth v epyoaoio egepeuvicope TNV TOALTEOTIXY xaTnyopomoinon Wouoixic ue Bdorn to eldog xou To
ouvaloUnua. H épeuvd pag Eexwvd pe tnv Siepebivnon SLdpopnv LTOEYOVILY CUVOAWY Bedouévmv T omola
TPOCPEEOUY OTLYOUC ol NYNTIXO TEPLEYOUEVO xotdS ot ETETES eldoug xau cuvanodiuatos. Aol n Bdon
dedouévev ovopatt Music4All xahOnter i avdyxes pog, ouveyiloupe avahlovTtag xou aEloAoYOVTIS To TEPLEY G-
HEVE TNE. XTnv cuvéyela, tpoteivoupe Yedbdoug va to opadonolioouue ot 9 xatnyopiec cuvanodiuatog ue Bdon
70 Hovtéhou xOxAou Tou Pdoel xou oe 9 xatnyopieg eldoug. Emmiéov napoucidloupe tpdmoug yio enadEnom tev
dlardéoipwy dedopévwy Aoyw Tng undpyouoas avicopporiog oe eTxéteg ouvatodiuatoc xou va anodopuBonotn-
GOUUE 600V 0Popd TIC ETXETES eldouc. Av xou xatofdhaue évtoveg mpoondieleg yia TNV eMPEAELN TOU GUVOROU
BEBOUEVKY AUTOY, TO TEAXO UAS GUVOAO Elvol X0 TEAL AVIOOEPOTIO WS TEOG TO GUVALoUNUA XL TEPLEYEL apihoYES
eTiéTeg elBouc Yo pepixéc xataywphoels Tou. Autéd ogelhetar otny duoxohio va Beedoly "yohopd" (relaxing)
xon "Hpepa" (calm) tpayoldua uéow tne Siemagrc Spotify APT dhhat xaw oTo yeYOovoc dtt oM Tporyoldio ey-
nintouv ot neploobTEpa omd Eva ldn [60].

YuveyiCoupe Tic mpoondlelés Yag UEAETMOVTAC OYETIXES EPYAUOIEC TEVEL GTNV AVEAXTNOY HOUGIXOY TANEOPORLAY,
Eexvavtog and tny Tokvdpdunon (regression) cuvatoUnudtemy oty pouvowd. Iopdho mou Peloxouue mpbogates
texvohoylec anyunc xutd Ty Sradixacior auTy, ETAEYOUUE Vol axOAOUUGOUUE Lol TTROGEYYLOT UixpopLUUioNng
TPOEXTUDEUUEVGY OVTEAWY petaoynuatioth (tranformer), Snuovpydviac 3 povtéha yia x&de drodixaoio Tol-
vounong, €va Lovtélo xewwévou mou yenotwonolel to roberta-large, éva HOVTENO 10U UE PUOUOTOYQGUUATO WG
eloodo Baoiopévo oto AudioSpectrogramTrsnformer xouw éva nohutpomxd poviého cuvdudlovtog ta 8Vo TEo-
NYoUUEVa. D0UQWVa UE TNV EEEUVE Hoc, Elval 1) TEMTN Qopd Tou cuvBUElovTaL AUTE To LOVTEAA Yiot ToEVOUNOT
povowric. H teheutola mpooéyyion Eenepvd xou Tig 800 HOVOTEOTES, EVE TO LOVTENO pe elcodo Toug otlyoug elye
™V XepdTERT amddoo. 'evixd, n to€ivounon clugwva ue to eldog HTav mo emtuynuévn and tny Tagvouncn
CUUPOVAL PE TNV ETXETA cLUVALCYRUATOC.

Tt vou xaTavoiGOUPE TN CUUTEPLYPORE TWY LOVTENY ag, avalntolue uedddoug ene&hynone (explainability)
otov Topéa XEWEVOU xou fyou/exdvac. Atamotivoupe 6Tt o Tomxd Epunvetowes Aveaptitne Movtélou
Ene&nyfoeic (Local Interpretable Model-Agnostic Explanations) toupidlouv otic avdyxee poc. Enopévec,
epappolovpe enelnyfoeic LIME oto Aupixd povtého, yio va xataypddouye mowa Héuata elvor oyxetxd yia
xdde xhdomn. ‘Ocov apopd to edio Tou Ayov, avtl va avTeeTOni{oUUE TO QPUCUATOYRAPNHUO WG ELXOVES oL VO
dnuovpyolue eneénynoelg Yo autée, egapudlouvpe to audioLIME, pia npocéyyion mou Boaciletar oto LIME mou
Bloywpllel Tov o ot Ypovixd TUAUXTA Xou X3e TUARUA OE QOVNTIXG, VTIPUUS, UTAoo xou dAAA oTOLYElL xou Uog
napéyel axpbdaor e€nyoel. Hapouoidlouvue to MusicLime, évav tpéno cuvbuacuol twv 800 napandve Yedodwy
Yo TOROY WY TOAUTEOTUXOV TOTUXWY ETEENYNOEWY PE XelpeEvo xou povoixy) we eloodo. Téhog, dnuiovpyolue
xadoAx00c GUVBLACUOUE TOTUXMY ETEENYHOEWY YIOL VO EYOVUE Lo TO ONOXANEWUEVT] ELXOVAL.

H avdhuor auth moapdyel eviilagpépovta anoteéopata. Ilpdtov, ol pédodol ene€riynong otiywv xatopéovouy
v cUAEBouy optopéva Yépata yio xdde xhdom, Wialtepa autd ye évtovo Ae&ihdylo, Bwuoloylec xou Fdvato.
Qot600, N to€véunon e wovoxic wovo AopPdvovtag unddn to mepleyduevo Twv otiywy dev elvan Wiaitepa
emTUYNUEVY, xadde 1 pouotx) elvon mollmhevpr. Emmiéov, ou nyntixéc enednyrioeic Selyvouv 6Tl to poviého
NYou Umopel vo GUANEBEL Houoixd ooyl Eexwplotd Yo xdde xAdoT, OTMWS XPAUYEC TOU TEPLEYOVTOL GTA
povnuixd e «heavy musicy. To povtého mou tagvouel pe Bdorn to eldog mou oflomoiel otiyoug xau Yo
XOTAPERE VO CUVOLACEL Xa TIC BVO UopPéc xou va emitidyel BeAtiouéva anotedéopata. [l Ttov touéa tou
ocuvatoUfpatog, dedopévou 4Tl To Auped wovtélo Bev HTay TOAD oxplBéc, To TOAUTEOTUXG HOVTEND oxOAoUVEl
TOTE TNV TpooEyYLlon Tou aflomolel Yo yeyovde mou elvon enlong eupavic xotd ) @don e e€rynone. To
%xVpLo EUTOBLO Yol TNV XOADTERT AMOBOOT TWV UOVTERWY QalveTon Vo ElVol 1) AOGPELX TV ETIXETOY TOU UTAEYEL
xou oTig dvo epyaoiec. ‘Onwe avoypdgpouy otny dovkeld toug [21] "o npoodiopiopde eTétac o€ évol Loustxd
anéonacyo Ye Bdon to cuvaioUnua urnopel va efvon wia aooprc xou apeiduun doxnon Aoyw TN UTOXEWWEVIXAS
puonc ", Av xou ol eTixéteg elboug umopel vo palvovTon To BlaxELTEC amd TG ETIXETEC GUVALCUNUATWY, TOAAG
TEAYOUdLO EVOOUATWOVOLY oTolyela and Tohhd eldn xau SiapopeTixol edixol Unopel Vol YeNoULOTOL00Y BLUPORETIXY
xpLthpLo yiot Ty tadvéunon tou eldoug [60].
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1.5 MeAlrovtixéc Kateuddvoeic

To anoteréopata anoxoAlTTOVY eTloNe TOARES BLodouG Yol TEPALTEPL €peuval xou TOAVES XATELVVVOELS TOU
umopoly va Bektidoouy T Vepehlnddn Sovietd mou mapouatdleton €8¢. ApyIxd, TPOXEWEVOU VO AVTIHETOTICTEL
TO EUTOBLO TNG UOAPELIS TWV ETIXETAOV, N HEAAOVTIXY €peuva Yo unopoloe va emixevipwlel oTn dnuiovpyla evog
cLVOLOL BeBoUEVWY UE oY OMAoUoUC eldoug amd ewdinole. Av xa autol Yo unopoloay enlong vo €youv dlopnvieg
¢ PO To EIB80C 08 TOAAEC TIEQLTTAOOELS, €VaL TETOLO GUVORO dedopévwy Yo fitay capng PehTiwuévo o oyéon ue
ToL 0T LTdPYOVTA TOL TEPLEYOLY ETIXETEG amo gpacttéyves. Enlong, dedopévou 6TL moAAG Tpayoldia unopel vo
euninTouy o€ eTXETEC TOAAATAGDY EWBGDY, Yia Tapddetypa vo elvar xou "pop" xau "electronic", éva hoyixd enduevo
Briua Yo unopotioe vo elvor 1 EQAUpUOYT) TWV LOVTEAWY QUTAS TNG UEAETNG OE EVa TEQIBAANOY TOANATAGY ETIXETEV.
Emnhéov, otny epyooio poc tic avanapaotdoels yopeov (embeddings) xdde tpomxdtnrac xou oTn cLVEYEL
YENOUWOTOLOVPE ot xepahy Tadvounone yia va xdvoupe npofBiédeic. Ipoxewévou va Bektiwdel n anddoaon, ot
ueAlovtixéc mpoondideieg Yo pmopolcay Vo LEAETACOLY BLaQORETIXOUE TPOTOUE CUVBLACUOD TWY TEOTIXOTHTLY
(.. moAhamhaotaoude 1) mpoo¥fixn Twy avomopactdoeny pali). Télog, Ta yovtéla Tou yenoylomolodval elvou
Tpoexnoudeupéva ot dedouéva extde Tou topéa pouoixic (t.y. xelyeva otny wikipedia B gacpotoypdupato omo
Bivieo oto youtube). 'Eva mtohiyhwooo poviéro énwe 1o BERT npoexnawdevpévo oe otiyoug xa {owe ntoinon
xou Lo opyLteEXToVXY] transformer @aouatoypduuoatoc npoexnadeuuévn oe pouvoxd xoupdtia Yo unopodoe va
BOEL EVOLPEPOVTA ATOTEAECUOTAL.

Av xou o1 uédodol enerynong oe auty| T YeAéTn Edwaoay enapxl) anoteréopata, tedodeteg ueAéteg Yo uropovoay
vo anodetydoly yerowes. H Snuiovpyio tomxdv ene&nyfoewy pe to LIME anoutel Tov opiopd tng petoBintrig
Tou apttuod TV Setypdtey. Auth 1 HETHBANTA eAEY YEL TOV dpldud TWYV BELYUAT®Y XOVTE GTO dpyIXd CTLYULOTUTO
Tou TpOXELTAL Vo dnpoupynlolv. Méyer otypic, évac eZavtAntinde aprdpdc deryudtwy elvon amoryopeuTixde
YO HEYGAC LOVTERD UE TOMAG YapaxX TNELoTIXd ELo6Bou. Ot endueveg Yeréteg Yo unopolcay Vo BIEEELVHCOUY TOV
enapxn oprdud Setyudtwy B cuyxexpévoug tedmoug yia va datapayVel 1 elcodog, hote ol Touxée eEnyRoelc
vo elvan 660 To duvartoy o axpBeic. Emimhéov, unopel va anodelyVel xapnopdpo av ol tpocndieieg enegnynong
onulovpyolv eénynoelc pe Bdorn hupéc yoopués avtl yia ueovopéves AéEele.
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Chapter 2

Introduction

In the dynamic intersection of music and artificial intelligence (AI), music information retrieval (MIR) tasks
have emerged as vibrant areas of research. Music classification, music generation, music source separation
and other such tasks encompass a wide range of applications and have significantly impacted how we interact
with, consume, understand and create music. With the growing volume of music data and the increasing
reliance on Deep Learning (DL) models, there is a critical need for interpretability and explainability in these
MIR systems.

Our motivation for this thesis is driven by two distinct yet equally compelling aspects of music: its profound
emotional implications and its diverse genre categories. The capacity of music to evoke a wide range of emo-
tions and affect human experience deeply underscores the necessity to explore and understand its emotional
dimensions. Separately, the rich diversity within music genres, each representing unique stylistic and cultural
characteristics, presents a separate challenge that merits detailed investigation. Additionally, the inherent
multimodality of music, incorporating both lyrics and audio, adds a layer of complexity to its analysis. This
multimodal nature necessitates a sophisticated approach to explain and interpret how these different elements
contribute individually and collectively to the experience of music.

This thesis embarks on an exploratory journey into these domains, focusing on the intersection of music
classification and regression tasks, multimodality, and Explainable Artificial Intelligence (XAI). Firstly we
explore available datasets and methods for obtaining multimodal data, in addition to curating the Mu-
sic4all[54] dataset, which will be utilized throughout our subsequent experiments. We proceed by examining
how incorporating data of different modalities can impact the performance of music mood regression mod-
els. Leveraging insights gained in the previous steps, we implemented mood and genre classification using
audio, lyrics and their combination as inputs. Lastly, we delve into methods to gain insights into the models’
decision-making processes. We introduce MusicLime, a methodology to explain multimodal music classifi-
cation and regression tasks based on Local Interpretable Model-agnostic Explanations [51] (LIME), offering
a novel approach to understanding how different modalities contribute to model decisions in the context of
music.

In order to provide a foundation for understanding the motivation and results of our research efforts we
structure this thesis as follows:

e Firstly, we begin with an exploration of the background. We provide the theoretical underpinnings of
key concepts in machine learning that are foundational to our work as well as a thorough review of
related work on music datasets, multimodality, and explainability. In this manner we set the stage for
how our research builds upon these existing frameworks.

e We continue with detailing our methodology. This encompasses the meticulous curation of the chosen
dataset, the models employed for our regression and classification tasks and the explainability methods
for interpreting the models’ predictions, gaining insights into the models’ functioning.

e In this manner, we set the stage to present our findings in the final section of our work. This encompasses
the resulting modified dataset, the outcomes of our models and select examples from the explainability
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method employed to dissect and analyze the workings of our models.
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Chapter 3

Background

This chapter serves as the backbone for our work. We provide a thorough introduction to the core concepts and
algorithms of Machine Learning (ML) and in particular Deep Learning (DL) that are pivotal to our thesis.
Focusing specifically on the DL techniques, Explainability (XAI) methods and music genre and emotion
concepts utilized in our study, we aim to equip the reader with information required for a comprehensive
understanding of the processes followed in our research. Additionally, we dive into an exploration of music
datasets, with a particular emphasis on those that are multimodal and contain metadata regarding multiple
tasks. This investigation is critical, as it highlights the challenges and opportunities inherent in working with
complex, multimodal musical information. Furthermore, we present related work in the domains of music
regression and classification, multimodality, and explainability, examining how these studies have influenced
and shaped our own research trajectory. This discussion is intended to contextualize our work within the
broader academic landscape, demonstrating the contributions of our research for the MIR field.

31



Chapter 3. Background

3.1 Machine Learning and Music Concepts

3.1.1 Machine Learning and Deep Learning

Machine Learning (ML) is a branch of artificial intelligence that focuses on developing algorithms and statis-
tical models that enable computers to perform tasks without following explicit instructions. In general, ML
models are used to make predictions, based on some input data. An error function is utilized to evaluate the
prediction of the model. The model is optimized by adjusting it’s weights to reduce discrepancy between data
points of the training set and model predictions. This process can be repeated until certain conditions are met
(e.g. the accuracy surpasses a certain threshold value). Machine learning can be categorized into supervised,
unsupervised and semi-supervised. Supervised ML uses labeled datasets to train respective models, whereas
unsupervised ML models detect patterns and groupings in the data without the need of human supervision.
Semi supervised models combine the previous two categories.

Deep learning is a subset of machine learning. It utilizes neural networks with many layers (hence "deep") to
approximate the way human brains operate and to accurately recognize, classify and describe objects within
the input data. This methodology has been applied successfully in fields such as computer vision, natural
language processing and speech recognition, in contrast to traditional algorithms that struggled to perform
well.

3.1.2 Transformers

Transformers are a type of deep learning architecture that revolutionized natural language processing (NLP).
Presented in the paper "Attention Is All you Need" [61], they don’t rely on a sequential approach, but can
analyze all parts of a sentence simultaneously. At the heart of a transformer lies its encoder-decoder architec-
ture. The encoder’s self-attention sublayer analyzes relationships between words in the input sequence, while
the feed-forward network captures more intricate patterns. Residual connections and layer normalization aid
in efficient training. The decoder’s masked self-attention prevents information peeking during training, and
encoder-decoder attention allows it to consider the encoded input when generating the output. This layered
interplay has the advantage of requiring less training time than previous architectures setting transformers
at the forefront of NLP.

Transformers success has even led to the development of Vision Transformers (ViT). Bringing similar power
to image analysis, ViTs treat images similarly to sequences of words. This idea was introduced in the
paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" [18]. Vits work
by segmenting images into fixed-size patches, processing these patches as tokens analogous to textual data
in NLP. This method allows the transformer to apply its self-attention mechanism directly to the patches,
capturing complex spatial hierarchies and dependencies between different parts of an image. By training
on large datasets and leveraging transfer learning, ViTs have demonstrated competitive performance with
state-of-the-art convolutional networks, (CNN) marking a significant shift in how machine learning models
perceive and understand visual data.
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Figure 3.1.1: The transformer architecture as presented in the paper "Attention Is All You Need" [61].

3.1.3 Multimodality

Modality refers to the way something happens or is experienced and is usually connected with the human
senses [7]. Multimodality in the context of machine learning and data analysis refers to the integration and
processing of information from multiple types of data or sources such as text, images, audio in datasets or
algorithms. As mentioned in the paper [47] the types of multimodality encompass several key variations, in-
cluding multimodal input, where multiple data forms are used to feed into models; multimodal output, where
models generate information across different formats; translation from one modality to another, exemplifying
the transformation of data from one form to a comprehensible counterpart in another; and the combination
of different modalities into a unified representation, illustrating the integration of diverse data streams.

In music information retrieval, integrating different modalities such as lyrical content with audio features
can lead to more nuanced emotion recognition and genre classification, underscoring the practical benefits
of multimodal learning. While lyrical information is inherently included in the audio domain, the analysis
of audio is more demanding computationally and often restricted by the temporal limits of the models.
Typically, an audio model might only process up to 30 seconds of a song, while textual analysis can cover
the lyrics of potentially the entire song. This disparity highlights the practical limitations of current audio
processing technologies, which struggle to handle the full duration and complexity of audio data within
resource constraints. Furthermore, most datasets are more likely to provide complete lyrics than extensive
audio recordings, as collecting and storing high-quality audio data is more challenging than textual data. This
availability bias further complicates the development of robust audio models, making the integration of lyrical
text not only beneficial but sometimes necessary to enhance the model’s understanding and performance in
music-related tasks.

3.1.4 Explainability

The rapid development of Al systems in the last decade has revolutionized numerous fields, however, as Al
systems become increasingly integrated into critical decision-making processes, concerns about their trans-
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parency and interpretability have surfaced. Explainable AT (XAI) has emerged as a pivotal area of research
aimed at addressing these concerns by enhancing the transparency of Al models and algorithms. XAI seeks
to provide insights into how AI systems arrive at decisions, making their outputs understandable to humans.
The challenge of explainability is not purely technical; it incorporates insights from social sciences [45, 42]
to ensure that explanations are meaningful and useful to diverse stakeholders, including end-users, domain
experts, and regulators. Explainability in Al encompasses a variety of methods and techniques, each serv-
ing different aspects of transparency and understanding, addressing the diverse and sometimes conflicting
objectives of XAI [36, 40]. With the multitude of available methods, the evaluation of XAI approaches is
crucial and remains an active field of research to ensure their effectiveness and reliability in various contexts
[20]. Understanding the capabilities of an XAI method is crucial for its adoption and success. Some of the
differentiating characteristics of these XAI methods and techniques that allow us to better comprehend them
are the following [52].

e Aim of explanation: The aim of the explanation can be categorized into introspection and
justification-related. Introspection involves dissecting the model’s internal processes and character-
istics to gain a deeper understanding of its functioning and potential biases. Justification, however,
focuses on elucidating the model’s outputs in a manner that justifies its decisions to the end-users.

e Exclusiveness of explanations: They can be viewed through the lens of local versus global expla-
nations. Local explainability zeroes in on specific instances, offering detailed insights into the decision-
making process for individual predictions, whereas global explainability seeks to unravel the model’s
overall logic and behavior, providing a broader understanding of how the model operates across all
instances.

e Model dependency: Explainability methods can be divided into model-specific and model-agnostic.
Model-specific methods are tailored to the intricacies of a particular model type, utilizing its internal
mechanics to elucidate how decisions are made. On the other hand, model-agnostic approaches are
designed to be universally applicable, providing explanations regardless of whether there is access to
the model’s internal architecture.

e Timing of applied explainability: Finally, explainability methods are categorized based on when
they are applied, distinguishing between post-hoc and ante-hoc approaches. Post-hoc explainability is
employed after the model has been trained, vital for complex models where intrinsic interpretability is
challenging. In contrast, ante-hoc (or intrinsic) explainability entails baking explainability into a model
from the beginning (i.e. decision trees).

3.1.5 Music Emotion and Genre

Throughout the years, music has undeniably been a medium for expressing and evoking emotions. From the
melancholic strains of a minor key melody to the joyous energy of a fast-paced rhythm, music can convey
and trigger a wide range of feelings. Studies indicate the importance of distinguishing between perceived and
induced emotion in music creations. Perceived emotion means the emotion conveyed by the music itself while
induced emotion is the emotion that the music provokes among the audience. Researches have used various
emotional models to describe music emotion more accurately [24]. One of the earliest such works is Hevner’s
affective ring, that uses 66 emotion adjectives, arranging them into 8 categories [27]. The first emotion
model designed for music-induced emotion is the Geneva Emotional Music Scales (GEMS), which involves
an initial set of 45 labels that can be grouped into nine different dimensions and three higher-order factors
[58]. However categorical emotion models have been criticised by scholars so dimensional emotion models are
used more recently. Works by Russel and Thayer organize mood descriptors into low-dimensional models. In
particular, most commonly used in MER, Russell’s circumplex model, depicts emotions in a two-dimensional
space, where valence (ranging from pleasant to unpleasant) and arousal (ranging from calm to excited) act
as axes. The model is depicted in figure 3.1.2 adapted from this article [55]. Other works include a third
dimension in such models or implement ranking, probability distributions and pairs of antonyms to express
music emotions [24].

Music genre categorizes music based on shared characteristics like instrumentation, tempo, rhythm, and
cultural context. For example Hip Hop music is characterized by rap patterns and contains themes such as
police brutality and oppression, while electronic music can be identified by the use of synthesizers. Although
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Figure 3.1.2: Russell’s circumplex model of emotion (adapted from [55]).

these groupings help listeners navigate the vast musical landscape such a categorization is often subject to
different human experiences and sometimes is overlapping. For a comprehensive exploration of music genres,
their interrelationships, history and characteristics MusicMap.info serves as a valuable resource [32]. The
facade of the interactive diagram created by the authors of the resource can be seen in 3.1.3. Genres that are
similar are placed adjacently while the vertical axis gives us an chronological estimate of the genres existence.

3.2 Datasets

In the dynamic field of music information retrieval (MIR), the integration of multiple data modalities offers
a nuanced perspective, ideal for understanding and analyzing musical content. The primary objective of this
section is to illustrate the process undertaken in selecting an appropriate multimodal dataset, pivotal for
advancing our MIR tasks focused on regression and classification. We delve into the criteria that guided our
dataset selection .

The MIR field has witnessed significant growth, leading to the development of a diverse range of specialized
datasets catering to various research needs. These datasets, each uniquely crafted, offer a wealth of resources
for advancing MIR studies. They vary widely in their contents, ranging from audio features and metadata to
more complex data types like annotations and cultural context. For anyone looking to explore the breadth
of available MIR datasets, a comprehensive list with short descriptions of their contents can be found at the
International Society for Music Information Retrieval (ISMIR) website website[29]. This resource serves as
a valuable guide for selecting the most suitable dataset for specific MIR. objectives.

In our research, we concentrated on selecting datasets that offer a variety of modalities for music songs.
This included datasets providing multiple modalities inherently, such as audio, lyrics, and MIDI, as well as
those with a single modality that could be augmented to become multimodal. For example, datasets initially
offering only audio were considered with the potential of fetching additional data like lyrics to enrich the
modality. Additionally it would be ideal if datasets provided metadata supporting a range of analytical
tasks or facilitated the easy acquisition or scraping of additional metadata, thereby transforming them into
versatile resources for multitask research endeavors. Specifically we focused on datasets providing lyrics and
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Figure 3.1.3: The facade of the interactive diagram found at [32]

audio along with genre and emotion labels.

A significant challenge we encountered in this selection process was the constraints posed by copyright
restrictions, which limited the availability of suitable datasets. That is, most of the available datasets do
not include raw audio files but rather provide processed audio features, such as Mel Frequency Cepstral
Coefficients (MFCCs). Despite these limitations, we identified several candidate datasets that aligned with
our criteria.

The Million Song Dataset (MSD) [9] is a freely available collection of features and metadata for
one million contemporary popular music tracks. It provides information about the songs themselves,
including audio characteristics extracted through analysis and details like artist and genre. This dataset
serves as a valuable resource for researchers in the field of MIR. However, it’s important to note that
while the dataset offers a wealth of information about the music, it does not include the actual audio
recordings themselves.

The GTZAN dataset, since its introduction in 2002, has become an extensively-utilized public dataset
for music genre recognition (MGR) within the machine listening research community. Comprising 1,000
half-minute excerpts across ten genres, GTZAN’s widespread usage has not been without criticism due
to its lack of metadata, repetitions, mislabelings, and distortions as presented by Sturm[59]. Influenced
by these alongside the difficulty in acquiring additional metadata for the tracks we decide not to utilize
GTZAN.

The Free Music Archive (FMA)[8] is an expansive dataset designed for evaluating several tasks
in MIR, featuring over 106,574 tracks from various artists and genres, all under Creative Commons
licenses. It offers a hierarchical taxonomy of 161 genres and provides both full-length audio and pre-
computed features alongside rich metadata, including track, album, and artist details. However, we
did not select the FMA for our research primarily due to the obscurity of its tracks and the absence
of lyrics, which are essential for our multi-modal analysis. The challenge of sourcing publicly available
lyrics for these less-known tracks further complicated their potential use in our study.

The Database for Emotional Analysis of Music (DEAM) [6] dataset is notable for its dynamic
annotations of music, capturing changes in emotional content over time. It includes valence and arousal
annotations for 1,802 songs at a 2Hz time resolution, which allows for fine-grained analysis of emotional
trajectories within songs. The dataset’s contributions are particularly valued for research on dynamic
music emotion recognition, enabling the exploration of how emotions evolve throughout a piece of music.

The MTG-Jamendo dataset offers music and corresponding tags for genre, mood, and instruments.
Sourced from royalty-free Jamendo music, it includes over 55,000 tracks with labels in various categories.
This dataset is valuable for researchers in Music MIR tasks but the audio is provided (in MP3 format),
it’s important to note that this dataset as well doesn’t contain the lyrics.
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e The Music4All database,includes metadata, tags, genre information, 30-second audio clips, and lyrics,
providing a robust foundation for various MIR tasks such as music recommendation, genre classification,
and mood classification. With its extensive collection of over 100,000 tracks enriched with detailed
metadata and user-generated tags, Music4All stands out for its diversity of musical genres and depth
of data. Due to its rich multimodal offerings and the relative ease of data access compared to other
datasets, we chose Music4All as the primary dataset for our research endeavors, particularly valuing
its potential for supporting various multitask possibilities. We will describe in more detail in later
chapters.

3.3 Related Work

Understanding the vast landscape of MIR research is crucial for our work. This section delves into key areas:
(1) existing approaches for genre classification and emotion recognition using either one or multiple modalities,
(2) the potential of transformers for music and text analysis, and (3) the importance of explainability in
machine learning models. By examining these areas, we gain valuable insights and pave the way for our own
contribution to MIR.

3.3.1 Unimodal and Multimodal MIR

Unimodal techniques are a crucial foundation for MIR tasks, offering valuable insights and serving as a
basis for more complex multimodal methods. The study by Jacek Grekow|23] investigates the application
of RNNs for detecting emotions in music segments. Leveraging the Russell’s circumplex model, the research
explores the prediction of continuous values of emotions such as arousal and valence through trained regression
models. By extracting audio features and creating sequential data for learning networks with LSTM units,
the paper illustrates the utility of RNNs over traditional methods. Various experiments conducted with data
featuring different sets of features and segmentation approaches underscore the importance of data division
into sequences and the efficacy of recurrent networks in recognizing emotions in music. Moreover, the study
highlights the significant gains achieved by employing pretrained models for processing audio features before
training the RNN, demonstrating the advantages of this method in enhancing model performance for both
arousal and valence prediction. Agrawa et al. [1] use a transformer-based model employing XLNet (xlnet-
base-cased) to identify emotinal connotations of music based on lyrics. The inclusion of lyrics as a primary
source for emotion recognition addresses a gap in MIR, where lyrics have been underappreciated despite their
strong emotional cues. Their approach outperforms the existing methodologies available at the time of their
study. Finally, Dervakos et al.[16] explore the application of CNNs for genre recognition in symbolic music
representations like MIDI. The study introduces the Multiple Sequence Resolution Network (MuSeReNet), a
CNN architecture tailored for symbolic music data, focusing on optimizing network depth, width, and kernel
sizes while maintaining constant trainable parameters and receptive field sizes. The MuSeReNet processes
MIDI data at multiple resolutions, improving genre recognition performance on the topMAGD and MASD
datasets beyond state-of-the-art methods. The paper also ventures into the domain of XAI.

Research in multimodal MIR has explored various approaches that leverage different information sources
beyond single modalities, demonstrating the effectiveness of combining complementary data streams for
improved mood classification and genre prediction. Introduced in 2007 the paper[46] presents a method for
music genre classification that integrates both textual and audio features using machine learning techniques.
Specifically, it employs lyric text analysis alongside audio signal processing to extract features relevant to
genre. These features are then combined and fed into classifiers to determine the music’s genre. The study
showcases how the fusion of text and audio data can capture a broader range of characteristics inherent to
different music genres, leading to improved classification accuracy over approaches that rely on a single data
type. In 2013, Panda et al.[47] introduces a multi-modal approach to MER, leveraging audio, MIDI, and
lyrics information to classify music into emotional clusters. They developed an automatic method to create
a multi-modal music emotion dataset using the AllMusic database, organized into five emotion clusters as
defined in the MIREX Mood Classification Task. From audio data, 177 standard and 98 melodic features were
extracted, while MIDI files contributed 320 features, and lyrics analysis yielded 26 features. The research
demonstrates the effectiveness of combining these multi-modal features for MER, showcasing a significant
improvement in classification accuracy. Specifically, using only standard audio features achieved an F-measure
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performance of 44.3%, whereas the multi-modal approach enhanced results to 61.1%, using a subset of 19
multi-modal features.

In more recetnt work, Delbouys et al.[15] explore, in 2018, multimodal music mood prediction utilizing
both the audio signal and lyrics, employing deep learning techniques.The authors developed and tested a
bimodal deep learning model against classical models on a dataset of 18,000 songs, finding that their deep
learning model outperformed traditional models in arousal prediction and matched their performance in
valence prediction. Their audio-focused model utilizes mel-spectrograms with 40 filterbanks and 1024 time
frames, processed through two convolutional layers. On the other hand, their lyric analysis model employs
Word2Vec embeddings—trained on 1.6 million lyrics and incorporates a convolutional and LSTM layer to
effectively capture the semantic nuances of the lyrics. An important aspect of their work is the examination of
modality fusion strategies, where they identified that mid-level fusion significantly improves valence prediction
accuracy. In 2022, Pyrovolakis et al.[49] focuses on detecting music mood through leveraging both song
lyrics and audio signals. They employed deep learning architectures including CNNs for audio features,
and transformers (BERT) for lyrics, to classify songs into four mood categories: happy, angry, sad, relaxed.
Their study uniquely combines audio and lyrics data, previously processed separately, to enhance mood
detection accuracy. The models were trained and evaluated on the MoodyLyrics[12] dataset, which contains
2000 song titles with mood annotations. The multi-modal approach significantly outperformed single-modal
models, demonstrating that combining lyrics and audio information provides a more accurate representation
of a song’s emotional content. In 2021 Pandeya et al.[48] present a novel approach to classifying music
by genre and emotion, with multiple labels, through a DNN architecture that processes both music and
lyrics information. Their approach categorizes music into 44 coarse and 255 fine categories. By utilizing
a novel convolutional technique that separates channel and filter convolutions, their model achieves high
accuracy and low computational costs. The system was tested on the Music4All dataset, showing that the
integration of audio and lyrics significantly improves the classification and regression tasks. Finally, in 2023
the paper [31] employs 11 high-level audio features retrieved from the Spotify API, including valence and
energy, in conjunction with lyrics features like sentiment, TF-IDF, and Anew to predict valence and arousal
scores from the Deezer Mood Detection Dataset (DMDD). The methodology involves regression models to
assess the predictive power of these features, with a notable emphasis on the multi-modal approach combining
both audio and lyrics. The findings underscore that including multi-modal features, especially those involving
Spotify’s valence and energy, enhances the prediction accuracy for valence compared to utilizing audio features
alone.

MuLaN establishes itself as a state-of-the-art method for music emotion recognition. As detailed in the paper
[28], MuLan represents an advanced approach in the field of music emotion recognition, positioning it near
the pinnacle of current state-of-the-art methodologies. This model merges music recordings and weakly-
associated, free from text annotations into a unified embedding space. It takes the form of a two-tower, joint
audio-text embedding, trained utilizing contrastive learning to optimize the shared audio-text embedding
space. The audio tower processes log mel spectrograms of music, while the text tower processes tokenized
text sequences, each producing embeddings that are aligned through the learning process.

A comprehensive overview of multimodal machine learning can be found in the review by Baltrusaitis et al.[7].
The survey categorizes the challenges in multimodal learning into five core areas: representation, translation,
alignment, fusion, and co-learning. It critically evaluates recent advances in each category, introduces a new
taxonomy to organize the field’s developments and identifies future research directions.

3.3.2 Text and Audio Transformers

As mentioned in a previous section the work "Attention Is All You Need" by Ashish Vaswani and colleagues
[61] introduces the Transformer model, a novel architecture that significantly diverges from previous sequence
transduction models by relying entirely on attention mechanisms. The Bidirectional Encoder Representations
from Transformers (BERT) [17] utilizes the encoder from the transformer architecture. This model uses a
"masked language model" (MLM) pretraining objective. That is it randomly replaces a percentage of the
input tokens (either with the [MASK] token, with another random token or with the same token) and trains
itself to predict these tokens. Additionally, BERT also incorporates "Next Sentence Prediction" (NSP), a
training task that decides weather given two sentences, the second one is the next sentence of the first one
in the original document. BERT is pretrained on large corpora and can be fine-tuned to achieve impressive
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results in a variety of NLP tasks.

Following this work RoBERTa[38] (A Robustly Optimized BERT Approach) builds on BERT’s language
representations by implementing key methodological changes in the pre-training process, which significantly
improves performance across various benchmarks. Modifications include training the model longer, with
more data, on bigger batches, and without the next sentence prediction objective, resulting in improved
model performance and efficiency. Additionaly Generative Pretrained Transformer[11] (GPT) employs the
transformer-based architecture optimized for natural language understanding and generation. It leverages
unsupervised pre-training on a large corpus of text focused on predicting the next word given all previous
words. Followed by fine-tuning on specific tasks, GPT is able to understand and generate human-like text,
making it highly effective for a wide range of language tasks. Finaly, Text-to-Text Transfer Transformer|50]
(T5) reframes all NLP tasks as a text-to-text problem, where both the input and output are text strings.
By using a unified approach, T5 simplifies the processing pipeline for various tasks, including translation,
question answering, and summarization. This model is pre-trained on a diverse text corpus using a denoising
objective to predict the masked span of text, which is then fine-tuned on task-specific datasets. Given the
characteristics and performance of these models for our lyrical modality, we chose RoBERTa due to its more
lightweight nature.

Transformers have also extended their success in the audio domain. The Audio Spectrogram Transformer
(AST) [22] is a pioneering example, being the first model to apply a purely attention-based mechanism,
without convolutional layers, directly to audio spectrograms for classification tasks. AST is distinctively
pretrained on the ImageNet dataset, employing a cross-modality transfer learning strategy where vision
transformer weights are adapted for audio by averaging the weights for the three input channels to suit the
single-channel audio spectrograms. In its operation, AST converts audio into log Mel spectrograms, which
are then divided into overlapping 16x16 patches. These patches are each transformed into embeddings with
added positional embeddings to maintain sequence information. AST has proven highly effective, setting
new performance benchmarks in various audio datasets. Hierarchical Token-Semantic Audio Transformer for
Sound Classification and Detection (HT'S-AT) [13] addresses the scalability challenges of audio transformers
by implementing a hierarchical structure that significantly reduces model size and training duration. In-
corporating a token-semantic module, HT'S-AT not only excels in audio classification tasks, achieving new
state-of-the-art results on AudioSet and ESC-50 and matching top performance on Speech Command V2,
but also introduces the capability for sound event detection. However, the Causal Audio Transformer[37]
(CAT) builds upon this success, introducing a specialized approach for audio classification by leveraging
a Multi-Resolution Multi-Feature (MRMF') feature extraction and an acoustic attention block, designed to
optimize audio signal processing. CAT integrates a causal module aimed at enhancing model generalizability,
interpretability, and reducing overfitting through the use of counterfactual reasoning. This design allows CAT
to achieve or surpass state-of-the-art classification performance across several datasets, including ESC50, Au-
dioSet, and UrbanSound8K. While both HT'S-AT and CAT offer impressive capabilities, we opted for the
AST for its ease of use for our audio modality.

We should finally mention the Contrastive Language-Audio Pretraining model (CLAP) [19], a multimodal and
foundational model for music information. CLAP learns audio concepts from natural language supervision, by
employing two encoders and contrastive learning to connect language and audio, creating a joint multimodal
space. This approach enables Zero-Shot predictions, meaning it can predict without having been explicitly
trained on specific class labels, and generalizes across multiple domains and tasks. The model is trained
with 128k audio-text pairs and tested on 16 downstream tasks, demonstrating significant improvements in
classification accuracy and flexibility in class prediction at inference time, especially in Zero-Shot setups.

3.3.3 Explainability

Model-agnostic explainability techniques offer a versatile approach to understanding predictions from various
complex models. Local Interpretable Model-Agnostic Explanations[51] (LIME), is a seminal work that intro-
duced an explanation technique aimed at making the predictions of machine learning models understandable
to humans by approximating the model locally with an interpretable model. This method addresses the chal-
lenge of machine learning models acting as black boxes, where the reasons behind their predictions are not
clear. Additionally, the paper[62] "RELAX: Representation Learning Explainability" introduces RELAX,
a framework aimed at providing attribution-based explanations for representations learned through self-
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supervised learning, delivering superior explanations compared to gradient-based baselines. Recent works,
address the problem of explainability through the utilization of Knowledge Graphs [41, 33, 34, 44|, offering
a more structured approach to black-box explanations.

Another approach is contrastive explanations and adversarial examples that shed light on the decision-
making of natural language processing models. In particular, Minimal Contrastive Editing[53] (MiCE) is
introduced as a novel method for generating contrastive explanations of model predictions through minimal
edits to input text that result in a specified output change. This approach addresses the gap in existing
NLP model explanation methods by leveraging human-like contrastive explanations that are also minimal,
focusing on why a specific prediction occurred instead of another. MICE’s effectiveness is demonstrated
across various tasks including sentiment analysis, topic classification, and question answering. Furthermore,
TextFooler[30] is a simple but effective method designed to generate adversarial text. It demonstrates its
strength in attacking models across two fundamental natural language processing tasks: text classification
and textual entailment. TextFooler successfully attacks target models showcasing three primary advantages:
effectiveness in outperforming previous attacks by success rate and perturbation rate, utility preservation
by maintaining semantic content, grammaticality, and correct classification by humans, and efficiency by
generating adversarial text with computational complexity linear to the text length.

Building upon LIME’s framework, audioLIME and CoughLIME provide interpretable and listenable explana-
tions for audio predictions. In particular, audioLIME[25] offers interpretable, listenable explanations for MIR
systems by utilizing source separation to create perturbations, addressing a unique aspect of audio data that
is overlooked by traditional spectrogram-based methods. On the other hand, CoughLIME[64] is designed to
provide sonified explanations for the predictions made by COVID-19 cough classifiers. It also adapts LIME
for audio data, specifically focusing on cough sounds associated with COVID-19, by decomposing audio into
interpretable components. For a deeper dive into explainable artificial intelligence for audio tasks, refer to
the review [4]

Researchers have made significant strides in explainability for MIR, with various techniques offering insights
into how models arrive at their decisions. Lyberatos et al.[39] present a workflow for automatic music tagging
emphasizing interpretability through perceptual features, integrating signal processing, deep learning, and
symbolic knowledge. The approach demonstrates competitive performance with state-of-the-art methods on
the MTG-Jamendo and GTZAN datasets, underscoring the value of interpretability despite potential perfor-
mance trade-offs. Dervakos et al.[16] presents an advanced approach to music genre recognition using CNNs
as mentioned in a previous subsection. A notable aspect of the study is its exploration into XAI techniques
applied to music genre classification. The researchers adapt various post hoc explainability methods, includ-
ing Grad-CAM, LIME, and a modified Genetic Programming for Explainability (GPX), to provide insights
into the CNN’s decision-making process.

Innovative techniques are being developed to balance accuracy and explainability in MIR systems. Chowd-
hury et al.[14] introduces a deep learning model that predicts music’s emotional aspects based on mid-level
perceptual features, aiming for explainability in MIR systems. The research employs a VGG-style network,
showing minimal performance loss when incorporating these perceptual features, which serve as interpretable,
musically meaningful intermediaries. The model facilitates understanding of emotion predictions, justifying
the slight reduction in accuracy for the benefit of explainability. This approach illustrates how mid-level
features can offer insights into a model’s emotion predictions. Zhang et al.[65] introduces BART-fusion, a
novel model that generates interpretations of song lyrics by integrating a large-scale pre-trained language
model with an audio encoder through a cross-modal attention mechanism. This approach allows the model
to understand songs from both lyrics and audio perspectives, leading to precise and fluent interpretations.
Experimental results demonstrate that incorporating audio information improves the model’s ability to un-
derstand and generate interpretations. Won et al.[63] propose a music tagging model utilizing self-attention
and CNNs to enhance interpretability while maintaining competitive performance. Their architecture, de-
signed to capture both local characteristics and long-term relationships within music tracks, includes shallow
convolutional layers followed by stacked Transformer encoders. The model outperforms traditional fully
convolutional and recurrent neural network approaches in interpretability without sacrificing accuracy.

Rodis et al. [52] provide a comprehensive review of Multimodal Explainable Artificial Intelligence (MXAI),
elucidating its methodological advances and pointing towards future research directions. Their work system-
atically categorizes MXAI’s main prediction tasks, datasets, and methods, while offering a critical evaluation
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of current methods according to their handling of different modalities, the stage of explanation generation,
and the types of methodologies applied. This review is particularly invaluable for its thorough analysis of
the metrics used to evaluate MXAI methods, highlighting how these techniques not only advance our under-
standing but also improve the transparency and accountability of Al systems across various applications.

41



Chapter 3. Background

42



Chapter 4

Methodology

In this chapter, we aim to detail the systematic methods undertaken in our study. We begin with an in-
depth analysis of the original dataset, including an examination of the dataset’s label distributions, a critical
assessment of its structure and content, and a discussion on the necessity and methods for its refinement and
augmentation. Subsequently, we describe the models deployed for the regression and classification tasks. This
section outlines the architectural choices, the rationale behind these choices, and the specific configurations
employed, providing a clear view of how these models are expected to interact with our refined dataset.
Lastly, the chapter presents the explainability methods we implemented to scrutinize the decision-making
processes of our models. This multifaceted approach ensures a thorough understanding of the methodologies
driving our research, setting a solid foundation for the subsequent analysis presented in the results chapter.
Code implementation of our processes can be fount at our GitHub repository.
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4.1 Music4All dataset

The Music4All (M4A) database is a substantial new resource designed to support a variety of research in the
field of MIR. It contains a rich compilation of metadata, tags, genre information, 30-second audio clips, lyrics,
and more, collected from a wide range of music pieces. The development of the database was carried out in
two phases: the user phase and the song phase. In the user phase, data regarding users’ listening histories was
gathered and anonymized, while the song phase involved the collection of detailed song data. The dataset is
particularly notable for its extensive size, containing data on over 100,000 songs, and is equipped to facilitate
several traditional MIR tasks such as music recommendation, genre classification, and mood classification. In
this section we proceed to analyse the dataset’s contents relevant to our tasks and the methods undertaken
to slightly modify M4A and craft our dataset. Readers interested in further details about the dataset can
find more information in their paper [54].

4.1.1 Genre Distribution

The dataset is characterized by its diversity in genres, offering as many as eight genre labels per track and
featuring more than 600 unique genres. Instances where multiple genre fields contained the same value
(e.g., ’genrel: rock’ and ’genre2: rock’) were streamlined to retain only a single instance of the genre.
The distribution of the resulting dataset’s 20 most populated genre labels can be seen in Figure 4.1.1. It
is important to note the dataset’s imbalance, with a predominant representation of Pop and Rock genres.
This skew can be attributed to the widespread prevalence of these genres in the music industry, and their
broad categorization by non experts. A detailed genre mapping to more generic labels is discussed in a later
subsection.
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Figure 4.1.1: Figure containing the distribution of genres. Each color represents the distribution of one
label for each entry.

4.1.2 Valence and Energy Characteristics

The valence and energy values contained in the dataset, sourced from Spotify, are continuous, ranging from 0
to 1, and exhibit distinct distribution patterns. The valence scores tend to follow a quasi-normal distribution
with a slight inclination towards less happy songs (instances with valence < 0.5), as can be seen in Figure
4.1.2a. In contrast, the energy distribution resembles the shape of a linear function, presented in Figure
4.1.2b, indicating fewer low-energy tracks and an abundance of high-energy ones. A Hexagonal Binning
plot is also depicted in Figure 4.1.2¢, representing the distribution of valence and energy values in a two-
dimensional space. This plot reveals that high valence yet low energy songs are rare, indicated by the bright
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color of those hexes, whereas high energy but low valence songs are more frequent and the corresponding
hexagon’s color intensity is higher, suggesting a scarcity of relaxing and calm tunes in the dataset. This
imbalance can be explained by popular music trends, favoring more upbeat, energetic tracks leading to their
over-representation in collections and datasets.
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Figure 4.1.2: Distributions of valence and energy as well as a hexbin plot representing the distribution of
valence and energy values in a two-dimensional space, where each hexagon’s color intensity corresponds to
the concentration of songs with those valence and energy levels. The darker the color the higher the
concentration of such songs.

4.1.3 Dataset Customizing, Augmentation, Mapping and Balancing

In our approach to genre classification, we recognized the need to condense the diverse range of music genres
into more general categories. This simplification is crucial for effective classification and analysis. To guide
our reclassification, we utilized the genre mapping available at Musicmap. This resource provided a plethora
of information as well as a visual categorization of genres which proved useful for consolidating various music
genres into nine broad classes. These classes were carefully selected to encompass the wide spectrum of
musical styles while maintaining distinct and meaningful categories for our classification task. The labels of
these classes are:

e Rock, encompassing rock 'n’ roll, golden age rock, classic rock and contemprorary rock.

e Pop, a broad category that includes popular music styles prevalent since the 1950s.
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e Hip Hop, covering hip hop as well as rap songs.

e Alternative Rock, including indie, alternative and other styles that differ from mainstream rock.

e Heavy Music, this label is used for metal, hardcore, and industrial music with metal elements.

e Punk, consisting of punk rock and new wave songs.

e Electronic, involving electronic dance music, downtempo and industrial music with electronic elements.
e Rhythm Music, consisting of rhythm 'n’ blues, blues, gospel, jazz and Jamaican music.

e Folk, also including country music, thus encompassing both traditional and contemporary folk and
country songs.

e Other, which contains ambiguous and other genres that do not belong in any of the previous categories.

We encountered some challenges with the genre labels in the M4A dataset that could potentially impact the
accuracy and reliability of our genre classification models. In order to get genre labels, the creators of the
M4A dataset collect user annotated tags from the last.fm API. Then they filter the tags keeping genre names
available at Every Noise at Once. Although last.fm API returns weights alongside the tags, the M4A dataset
does not contain such weights and therefore it is hard to determine which genre label is more relevant for
each song. Furthermore, the tags can sometimes be incorrect since the annotators are users and not experts
in music, resulting in noisy labels. In order to tackle this problem, we also fetch the artist genres available at
the Spotify API. We reduce the artist genres in the 10 classes categories mentioned above. Lastly, we consider
a genre label in M4A dataset to be correct if it is also included in the artist genres. Considering the last.fm
API returns the tags sorted by their importance and therefore genre labels in the M4A dataset that appear
first represent a song more accurately, we consider a song’s primary genre the first genre label in M4A that
is also present in the artist genres by spotify API.

In the task of classifying music based on mood, we transition from continuous valence and energy values
to discrete emotional labels. This is achieved through a defined mapping that categorizes each song into 9
emotional states in accordance to Russel’s Circumplex Model. Namely entries with high valence (greater
than 0.65) are labeled 'Exciting’ if their energy is also high, 'Relaxing’ if their energy is low (less than 0.35)
and "Happy’ otherwise. For low valence (less than 0.35) the tracks are labeled *Angry’, 'Depressing’ and ’Sad’
if they have high, low or in between energy values respectively. For valence values in the middle range the
tracks are deemed "Tense’, ’Calm’ or 'Neutral’ accordingly.

As was expected, the process of mapping continuous valence and energy values to discrete emotional labels led
to an unbalanced dataset, particularly lacking in 'Relaxing’ and ’Calm’ songs. To address this, we developed
scripts to fetch more data from the Spotify API. Since Spotify doesn’t offer direct searching by valence and
energy, we iterated through a dozen genres for years ranging from 1950 to 2023. The API call returns up
to 50 most popular songs per year per genre, with an option to offset for subsequent sets of 50. We filtered
these songs based on desired valence and energy values, ensuring the availability of a 30-second audio preview
URL. Furthermore, we refined our dataset by removing non-English songs using the langdetect library and
then fetched their lyrics using the Genius Lyrics API, thus enhancing the representation of underrepresented
moods in our dataset.

To tackle the issues of over-represented classes and genre-ambiguity in the original dataset, we experiment by
sub-sampling the original dataset to contain a balanced number of songs for each class, with the requirement
that each track must be originally labeled under one specific genre. However training the models with this
approach did not have significant impact in the performance metrics. We create our final dataset containing
the lyrics alongside a 30s audio clips for each entry as well as mood and genre labels. We remove songs with
the genre label "other". Our dataset involves 9 emotion labels for each song and 9 genre labels. We create a
train-val-test split of the data, making sure that artists that appear on the train-val split are not also present
on the test split. A summary of the process followed to generate our dataset can be seen in Figure 4.1.3. The
resulting statistics and distribution of labels can be found in the next chapter.
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Figure 4.1.3: Summary of the process followed to modify the M4A dataset.

4.2 Feature selection and Model architecture

In recent years, the domain of deep learning (DL) has experienced tremendous growth, which has concurrently
driven advances in music information retrieval (MIR) technologies. This section outlines our methodical
approach to the selection, training, and integration of models within this vibrant technological landscape.
To thoroughly assess the capabilities of various architectures, our strategy entailed a two-stage approach.
Initially, in the first stage, we engaged with different regression models that focused on predicting valence
and energy levels within music tracks. This phase was crucial for us to understand how different data and
features interact within each modality, providing critical insights that guided our subsequent choices. The
knowledge gained from this exploration phase was instrumental in pinpointing the most effective models for
each modality, fine-tuning them not just for regression tasks but adapting them for classification challenges.
Following this preliminary exploration, the second stage concentrated on the meticulous training of three
distinct classification models. Each model was designed to harness the unique characteristics of its respective
modality (text and audio). Additionally, we developed a multimodal model that combined these modalities,
aiming to leverage their collective strengths for enhanced analytical depth and accuracy. We will now delve
deeper into the specific methodologies employed at each stage, discussing in detail the processes of data
preparation, model training, and rigorous evaluation.

4.2.1 Regression exploration

The aim of the models of this subsection is the prediction of continuous valence and energy values from
music. Our initial task is a regression problem with a multimodal input - the lyrics and audio of songs. For
a comprehensive understanding of our results, we present a variety of models spanning from rudimentary to
more sophisticated designs. Some models utilized only one modality for their predictions, allowing for a better
analysis of each modality’s contribution. Furthermore, due to computational and time limitations, many of
our models were trained on only a portion of the available data. A variety of loss functions were employed
during the training process. However to ensure a standardized comparison across all models we chose the Mean
Absolute Error as the metric for evaluating performance on the test dataset. This exploration of regression
models serves as the backbone for feature extraction methods and model selection in our classification tasks.
The results of this exploration are presented in detail in the next chapter.

In order to establish baseline performances for our suite of models, we implemented two fundamental re-
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gressors: a dummy regressor and a mean regressor. The dummy regressor generates predictions based on
random values within the expected range of our target variables, valence and energy. This model, devoid of
any learning or pattern recognition, provides a baseline to ensure that our more complex models are indeed
learning and not just randomly guessing. On the other hand, the mean regressor offers a slightly more in-
formed baseline. It predicts the mean value of the training dataset’s target variables, regardless of the input.
While simplistic, this approach gives us a benchmark of predictability based on the central tendency of our
dataset.

The creators of the M4A dataset [54] introduce an architecture for mood classification in Section III.C of
their publication, utilizing only lyrics. They chose two Long Short-Term Memory (LSTM) models, one to
infer valence values and the other for energy values. Each model contains an embedding layer, with an input
sequence size of 500 words and an output dimension set to 200 dimensions, an LSTM layer with 128 units,
and a dense layer utilizing the sigmoid activation function. The data was fed to the model with a batch size
of 2,048 over 100 epochs.

Agrawa et al. [1] use a XLNet (xInet-base-cased) to identify emotinal connotations of music based on lyrics.
Their approach outperforms the existing methodologies available at the time of their study. Inspired by their
work we explored the potential of XLNet in a regression task focused only on predicting valence values. Our
implementation sets the max length of the input sequences to 640 and trains the model for 10 epochs on a
subset of the available data.

In their study, Delbouys et al. [15] employ mid-level fusion to combine the capabilities of audio and lyric-
based features, leveraging the concatenated outputs from distinct unimodal architectures. Their audio-
focused model utilizes mel-spectrograms with 40 filterbanks and 1024 time frames, processed through two
convolutional layers. On the other hand, their lyric analysis model employs Word2Vec embeddings—trained
on 1.6 million lyrics and incorporates a convolutional and LSTM layer to effectively capture the semantic
nuances of the lyrics. We adapted this architecture based on an unofficial implementation available at the
following GitHub repository [56].

The paper [31] we base our next model on presents a novel multimodal approach to music information retrieval.
It focuses on the development of a model that integrates high-level audio features such as danceability and
acousticness, with lyric content to predict valence and arousal values. In our adaptation, we incorporated
metadata values obtained from Spotify to enrich our audio feature set. Regarding lyrical analysis, we also
employ Vader to extract sentiment information. Diverging however from the paper’s methodology, we replaced
the Pricipal Component Analysis (PCA) used in their Term Frequency - Inverse Document Frequency (TF-
IDF) process with Singular Vector Decomposition (SVD) and chose to omit the use of Affective Norms for
English Words (ANEW) features. These modifications fed into a Multilayer Perceptron (MLP) regressor
with three hidden layers of sizes 128, 64 and 32.

MuLaN, as detailed in the paper [28], represents an advanced approach in the field of music emotion recog-
nition. In our adaptation of MulLaN, we attempted to repurpose its methodology by feeding it lyrics instead
of natural language music descriptions, training the model over 70,000 steps with a batch size of 10 on half of
our available data. Our approach combined the latent features from the audio and textual streams, followed
by a regression analysis on these concatenated features.

In our venture to harness state-of-the-art techniques for music emotion recognition, we combined the strengths
of two powerful pretrained models: an audio spectrogram transformer based on the Vision Transformer (ViT)
architecture, detailed in [22], and the robustly optimized BERT approach, RoBERTa [38], both of which are
readily available on the Hugging Face platform. Our custom model integrates these two components: the
ASTModel processes audio spectrograms, while the RobertaModel from the roberta-base collection, tokenizes
and encodes our lyrics. The concatenated output features — the mean of the last hidden states from the audio
model and the first token’s hidden state from the RoOBERTa model — feed into a neural network with a linear
layer, dropout regularization, and sigmoid activation.

4.2.2 Final model architecture and training

After this thorough investigation of feature engineering and model architectures RoOBERTa and AST stand
out as front runners. To optimize classification performance, we devised three distinct models, each tailored
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Figure 4.2.1: The pipeline of our multimodal approach. The audio waveform and the lyrics are first
converted into mel-spectrograms and tokens respectively. Then each modality input is processed by the
respective pretrained transformer model. The pooled output of the audio embeddings produced by the

ASTmodel and the CLS token from roberta are concatenated and processed by a classification head,

providing the logits for each class.

to handle two specific tasks: one model is dedicated to analyzing lyrical content, the second model focuses on
processing audio spectrograms, and the third model integrates both data modalities for a holistic analysis.

The lyrical model leverages the power of the roberta-large architecture for text classification, namely
RobertaForSequenceClassification. We first prepare the input text for tokenization by converting all charac-
ters to lowercase to maintain consistency. punctuation is removed to reduce complexity and potential noise in
the data. Subsequently, newline and tab characters are replaced with spaces, and any superfluous whitespace
is condensed into a single space between words. The tokenization function, configured with a maximum
sequence length of 256 tokens, encodes the clean text into a format suitable for a RoBERTa model. This
function generates numerical ids and an attention mask that indicates which tokens should be attended to
by the model. We proceed to train the model by fine-tuning for sequence classification across the distinct
label categories present in our dataset. The optimizer of choice is AdamW, set with a learning rate of 9e-7,
to guide the learning process. The model is trained over a course of 9 epochs, with a persistent checkpointing
mechanism that monitors validation accuracy preserving the model state that achieves the highest validation
accuracy, thereby ensuring we retain the most performant model at the end of the training cycle.

The audio model leverages the pretrained Audio Spectrogram Transformer for audio classification loaded from
the checkpoint ’ast-finetuned-audioset-10-10-0.4593’ provided by MIT. We first use the ASTFeatureExtractor
class to convert audio data into spectrograms. It’s important to note that only a portion of the original audio
is used in this process. With a typical audio sample rate of 44100 Hz and a maximum length of 1024 for the
spectrogram as set by this class, only around 10.2 seconds of the original 30-second audio are actually used
to create the spectrogram. The optimization of the model’s parameters is entrusted to the Adam optimizer,
utilizing a fine-tuned learning rate of 6e-6 and training for a total of 5 epochs.

Our final model’s architecture is designed to integrate and classify multimodal inputs from both audio and
text sources. The model leverages pretrained components: the ASTModel for audio features and the Rober-
taModel for textual analysis. The audio and text inputs are preprocessed in the same way as in the unimodal
cases. The pooled output from the audio model and the CLS token from the text model are chosen as they
provide a comprehensive summary of their respective modality’s content. These embeddings, with sizes 1024
and 768 respectively, are then combined into a unified feature vector and processed by a classification head.
This component initially normalizes the combined features using a layer normalization step to stabilize the
learning process. Following normalization, a fully connected layer maps the normalized features to the desired
number of output labels (9 labels for both tasks), producing the final classification logits. The pipeline of our
approach can be seen in 4.2.1. We train the multimodal models for each task using the Adam optimizer with
6e-6 learning rate over a course of 6 epochs and keep the weights of the model on the epoch that performs
best on the validation set.

To train our models effectively, we leveraged the powerful computing resources available on Google Colab
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and Kaggle. Specifically, our configurations utilized NVIDIA’s V100 GPUs on Google Colab and P100 GPUs
on Kaggle. Kaggle provides users with up to 30 hours of free GPU usage each week, making it a cost-
effective option for our experiments. On the other hand, Google Colab requires a paid subscription to ensure
consistent access to its GPUs, which can be crucial for longer or more resource-intensive training sessions.
As part of our methodology, each model was trained with distinct learning rates and batch sizes, tailored
to optimize computational efficiency and model performance. The batch sizes varied across models, with
each requiring approximately 13 GBs of GPU RAM. Typically, models were trained for around 12 hours.
However, the multimodal models, due to their increased complexity and data sizes, demanded up to 24 hours
of training time. Looking ahead, future work could explore the potential benefits of reducing learning rates
and increasing the number of training epochs. This approach aims to minimize validation loss more effectively
and prevent the common pitfalls of overfitting and underfitting, thereby enhancing the overall accuracy and
reliability of our models.

4.3 Explainability Methodology

In this section of our report, we delve into the techniques and approaches employed to unravel the decision-
making processes of the Al models created. Our focus is on ensuring that these methods not only clarify how
decisions are derived but also enhance the transparency and trustworthiness of the models. We outline the
practical tools, mainly LIME, we have adopted to explain the lyrical and audio single-modal models. Also,
we propose an adaptation of these tools for the task involving both of those modalities. We finally outline
the method followed to get global aggregations of local explanations.

4.3.1 Lyrical Explainability Method

While several techniques like TextFooLer[30] and MiCE[53] were considered for explaining text data, we opted
to implement LIME explanations. LIME begins by creatinga binary vector with equal length to the original
corpus, indicating the presence or absence of words. For example, the phrase "Come as you are as you were"
would be converted into a vector of length 7. A vector representing the presence of all the words would be
[1, 1, 1, 1, 1, 1, 1] whereas a vector representing the absence of the words "Come" and "were" would be [0,
1,1, 1, 1, 1, 0]. Lime then perturbs the input data by randomly turning words on or off (present or absent)
creating a set number of samples around the original input. In the previous example LIME could create the
phrases "as you are as you" and "Come as you are" represented by the two-dimensional vector of vectors [[0,
1,1,1,1,1,0], [1, 1, 1, 1, 0, 0, 0]]. After generating these perturbed samples, LIME utilizes the original
model to predict outcomes for each, treating these predictions as labels for training a simpler, interpretable
model, typically a linear regression. This interpretable model is designed to approximate the decision-making
process of the complex original model within the locality of the input example. By emphasizing perturbed
samples that are closer to the original text in terms of their transformed feature space, LIME assigns higher
weights to them during this training phase. This process ensures that the explanation model focuses on
the most relevant variations of the input data, highlighting which words contribute most significantly to the
model’s prediction. An example can be seen in figure 4.3.1. The example depicts a portion of Nirvana’s
"Come as You Are" lyrics, with some words that influenced the model to decide the "alternative rock" class,
highlighted in blue. The higher the opacity, the higher the weight of the word.

In our study we employ LIME to provide local approximations of RoBERTa’s decision-making processes.
Given the max_length parameter in RoBERTa, which restricts the number of tokens the model can process
in a single input, we implement a truncation function to ensure that the input text to LIME is precisely
what RoBERTa evaluates. This truncation function carefully slices the text to fit within RoBERTa’s token
limit, ensuring that all perturbations generated by LIME are relevant and within the accepted input size of
the model. Additionally, since LIME requires not just perturbed texts but also the corresponding output
probabilities for each class, we have defined a wrapper function around RoBERTa. This function accepts the
perturbed texts as input and returns the class probabilities, facilitating a seamless integration of LIME with
RoBERTa to interpret the model’s predictions accurately.
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Figure 4.3.1: An example of LIME text explanations given Nirvana’s "Come as You Are" as input. Words
that influence the model to decide "alternative rock" as the class are highlighted in blue. The higher the
opacity, the higher the weight of the word as seen in figure (b).

4.3.2 Audio Explainability Methods

In the realm of audio explainability our journey begins with the insights offered by LIME for interpreting
image data. In this case, instead of splitting a text corpus into strings, LIME dissects images into superpixels.
It then creates perturbations where each superpixel is toggled on or off, similar to the word perturbations in
text. Fach superpixel is then weighted based on its influence on the model’s output, with the most impactful
ones highlighted in the original image to indicate their significance. Adapting this method to our audio
domain, we utilize spectrograms, which essentially serve as grayscale images of sound. This allows us to
apply LIME directly to our audio data represented in spectrogram format. An example spectrogram and
it’s masked version as generated by LIME can be seen in figure 4.3.2. To get a listenable explanation from
the spectrograms we implement two strategies: The first one involves attempting to recreate the audio from
the highlighted parts of the spectrograms outputted by LIME using an inverse short-time fourier transform
(STFT). The second strategy entails filtering the original audio to isolate the specific portions of the spec-
trogram that LIME highlights as the most influential. Although these approaches yielded some listenable
explanations, their results, as presented in the next chapter, suggest there is room for further refinement and
improvement.

LIME for image explanations did not deliver satisfactory results for our audio analysis needs. That is, despite
highlighting the part of the spectrogram most relevant for the model’s decision, the listenable explanations
generated were not of high quality. Therefore we explored alternative methodologies. Our research led us to
audioLIME[25], a LIME variant specifically tailored for music data. Unlike traditional LIME, which operates
on spectrograms, audioLIME directly perturbs the audio itself, enabling a more nuanced exploration of
sound components. It originally employs source separation technology using spleeter [26] to isolate individual
elements of a song such as vocals, drums, bass, and piano. Additionally, audioLIME segments the audio into
temporal segments. Finally, similar to how LIME calculates feature importance, audioLIME assesses the
impact of each segment on the model’s decision-making process. A figure depicting this pipeline can be seen
in figure 4.3.4.

However, recognizing limitations in spleeter’s ability to accurately decompose complex audio signals, we
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(a) Example Mel Spectrogram (b) The spectrogram with the mask generated by LIME

Figure 4.3.2: Two figures depicting a mel spectrogram and a masked spectrogram. The mask was generated
by LIME and presents the areas of the spectrogram that influence a model’s decision the most.
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Figure 4.3.3: The openunmix model for one source.

opted to integrate a more successful factorization technique, open-unmix [57] (UMX), which is a deep neural
network designed for precise audio source separation. It allows us to separate audio into vocals, drums,
bass and other instruments. The system’s architecture includes multiple models, each trained specifically
for a target source, which allows for customized training data for each source. The core of Open Unmix
is a three-layer bidirectional deep LSTM (Long Short-Term Memory) network that predicts the magnitude
spectrogram of a target from the mixed input. The model operates in the time-frequency domain, using
Short-Time Fourier Transforms (STFTs) to process the input signals. During separation, the network applies
a mask to the input spectrogram, and the output is optimized using mean squared error in the magnitude
domain. This model for one source can be seen in Figure 4.3.3.

Similarly to the textual approach, we create a function that receives the perturbed waveforms from audioLIME
(e.g. the original waveform without some vocal segments), converts them to spectrograms, feeds them to
our model and returns class probabilities. The result of this process are weights for each segment of each
source. We decide to split the audio in 10 temporal segments resulting in around 1.2 seconds of listenable
audio explanations. The components are labeled with the name of the source followed by a number denoting
the temporal sequence ranging from 0 to 9. For example the component label "vocals5" indicate that this
component contains the vocals of the audio clip from 4.8s to 6s. This combination of audioLIME and UMX
allows us to generate more accurate and insightful explanations of our audio data, providing clearer guidance
on the influential elements within each audio segment.
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Figure 4.3.4: The aduioLIME pipeline as presented in their paper|[25]. It closely follows the general LIME
approach with the key difference of using source separation.

4.3.3 Multimodal Explainability Method

We venture into the realm of multimodality and explainability. Influenced by the interesting results by LIME
and audioLIME in the unimodal approaches, we propose a way to combine them in order to explain the
multimodal model and get multimodal explanations. We begin by creating a binary vector indicating the
presence or absence of a feature. The vector has length equal to the sum of the number of text features and
the number of audio features. For example, suppose we have the lyric "Come as you are as you were" as text
input and a two-second audio clip, set to be split by the explainer into one second segments, factorized into
"vocals", "drums" and "other". The total number of features is 13, 7 text features representing each word
and 6 audio features representing the vocals, drums and rest of the 1 second audio clips. The process to
generate explanations continues similar to LIME, by generating perturbations of the inputs and calculating
the weights of every feature. As a result, we can determine which feature are important for the multimodal
model’s decision, compare the modalities and have listenable explanations as well as textual ones. The
respective pipeline is presented in Figure 4.3.5.

We should also mention that we experimented other forms of explanations. One such form was to access the
weights of the classification layer in order to determine which modality was more influential for each class.
Another approach was to keep one modality fixed and perturb the other modality’s input. These methods
provided some insights into the model’s behavior; however, the multimodal method mentioned above delivered
clear, textual, and audible explanations. These not only identify influential features but also allow for further
contextual, musical, and cultural analysis.

4.3.4 Global Aggregations of Local Explanations

Local explanations often fail to reflect the model’s overall behavior. For a more comprehensive understanding
of what features are influential across the model, rather than just specific instances we implement Global
Aggregations of Local Explanations as outlined in this paper [35]. The authors first mention three methods
to generate aggregates: (a) the Global LIME importance, (b) the Global Average Importance and (c) the
Global homogeneity-weighted importance. The Global LIME importance for a class ¢ for a feature j is

LIME
IEME = N Wyl
i€Se

This function assumes that features that occur more often are expected to have a larger effect on model
predictions than features that occur less often. In a scenario where the features are words, global LIME
importance will be unreasonably biased towards common words that appear more often. To address this
assumption the authors propose the global average class importance for feature j and class ¢ defined as:

IA-VG _ ZieSC |W1]|
“ ZiEScZWij?fO 1
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Figure 4.3.5: The pipeline of our approach to generate multimodal explanations. As seen in the figure we
first split the audio into it’s sources and into temporal segments and the text input into individual
components. We create interpretable representation of the combined features and utilize the LIME-base
pipeline.

where S, includes all the instances ¢ classified as class c and Wj; is the weight of that feature for that specific
instance. Finally, the authors then calculate the vector of normalize LIME importance per class:

>ies. IWisl
ZCGL Eiesc |Wij|

where L is the set of all labels. The normalized LIME importance p; represents the distribution of feature
j’s importance over all classes ¢ € L. The Shannon entropy of this distribution is defined by:

Hj == pejlog(pe;)
ceL

pcj

and is used to asses the degree of homogeneity with which the feature attributions are distributed over
multiple classes. Finally in order make out cases where features appear only once in the test set the authors
calculate the homogeneity weighted importance for feature j and class c:

H'_Hmin
Ig=<1——HJ — )I({,}IME

where Hp,in and Hp,q, are the minimum and maximum entropy measured across all features. In short I.; H
addresses the issue of common features that may appear significant due to their presence rather than their
informative value and corrects for this by using entropy to penalize features that are uniformly distributed
across classes, highlighting those that are truly predictive of specific outcomes. It also addresses the assump-
tion that features uniformly affect model outcomes, by adjusting the importance based on the consistency of
their influence across classes and therefore penalizing features that show high variability across classes. This
method ensures that the global importance reflects genuine, consistent predictive value, especially in complex
multiclass scenarios.

We implement these methods for our tasks to evaluate models’ behaviour and trustworthiness. Due to
the cost in time and computing power, the global aggregations were generated from a subset of our test
dataframe. Once again we utilize Google Colab and Kaggle to get the aggregates utilizing NVIDIA’s V100
and P100 respectively. For each model and for each task we first calculate ), s. |[Wij| which we then utilize
to generate the avarage and homogeneity-weighted class importance. For the lyrical models we utilized 608
instances of the test set with 5000 perturbations, for the audio models we utilized 232 instances with 2000
perturbations each and for the multimodal models 63 instances with 5000 perturbations. Each process took
approximately 12 hours to run. Although the number of instances was limited, particularly in the case of the
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multimodal model, the results of this process as seen in the next chapter were adequate. Future work could
not only implement a statistical analysis to determine the number of instances so that the global aggregates
are significant but also investigate the number of samples/perturbations necessary for a local explanation to
be accurate, given the number of features of the input.

To visualize the results, apart from studying the weights of each feature of the global aggregations, we also plot
the most important features for each class for the text features. To achieve that we utilize GloVe embeddings
and t-SNE for dimensionality reduction for the lyrical modality. K-means clustering was implemented to
identify and analyze the underlying themes that significantly influence the model’s decision-making process.
We should note that some words like exclamations or vocalizations and names do not have a GloVe embedding
and therefore do not appear in the corresponding plots. For the audio modality’s global aggregates, we provide
heatmaps visualizing the feature weights for every source accross the sequence of temporal segments.
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Chapter 5

Results

In this part of the thesis, we present the findings from the methodologies discussed in the previous chapter.
Here, readers can expect to find details on the final distributions of our dataset. Furthermore, we showcase
the metrics of the models used for each task as well as a comparison and discussion of those results. To
further analyze and understand these outcomes, we finally exhibit the in depth examination of these models
using the explainable methodologies. This section is particularly important as it highlights the efforts and
outcomes of our work across the areas of MIR, multimodality, and explainability. By laying out these results,
we aim to give a clear and comprehensive view of our research accomplishments and pave the way for the
detailed discussions that will follow.
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Chapter 5. Results

5.1 The Final Dataset

After the processes of augmenting and refining the M4A dataset described in Chapter 4 we are ready to
showcase the resulting dataset’s summary. There are 63760 total number of entries, containing the lyrics as
well as the RoBERTa tokens, the audio as well as the generated spectrogram and various other metadata
including one emotion label and one genre label for each song. The distribution of the emotion labels and
the genre labels can be seen in Figure 5.1.1. We note that despite our efforts to collect more 'relaxed’ tracks,
we found it challenging to enrich our set with any more than the 1020 we included in it (498 of which where
in the M4A dataset). This scarcity could be attributed to not only the fact that such songs are not very
popular in western music but also might not contain english lyrics or any lyrics at all. We can also see a
similar but less intense imbalance in the genre distribution, with a bias towards 'pop’ songs while "hip hop’
songs appear less frequently. Out of all the entries, 50660 were utilized as the training set and the reset were
split among the validation and the test set. Artists that appear in the train-val split are not included in the
test set.

Distribution of emotion labels Distribution of genre labels
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(a) The Emotion labels distribution. (b) The Genre labels distribution

Figure 5.1.1: Emotion and Genre label distributions of the final dataset.

5.2 Our Models’ Performance

In this section we present the performance of the trained models. We begin by analysing the regression
model’s results which led us to adopt RoBERTa and AST for our classification tasks. We continue with
the results of each classification model, providing confusion matrices and classification reports as well as a
summary and a discussion about the outcomes. Further investigation on model behaviour is present in the
next explainability section.

5.2.1 Regression models’ results

By analysing the results of our regression tasks, depicted in Table 5.1, we make the following observations.
Firstly, the Mean Absolute Error (MAE) of the mean regressor, around 0.2 for both valence and energy
predictions, serves as a baseline for evaluating more complex architectures. Remarkably the simple MLP
architecture yielded very successful results. On the other hand, despite the innovative design of MuLaN,
our implementation using musiclm-pytorch library lead to a moderate performance. Finally, the superior
performance of the ROBERTA and AST implementation, especially for valence predictions, led us to adopting
it for our upcoming tasks of mood and genre classifications.

Generally, the models were better at predicting energy values as opposed to valence. This discrepancy may
be attributed to the distribution characteristics of the dataset, where valence data exhibits a more uniform
distribution, whereas energy values are skewed closer to 1, as also reflected in the predictions of the mean
regressors. While further fine-tuning and training with more data could potentially enhance these models’
accuracy, such optimization is beyond the scope of our current research task. It’s worth noting the rapid
advancements in the transformer domain of Deep Learning. New implementation in this area, such as
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the Causal Audio Transformer (CAT) [37], have set new benchmarks in audio classification. However, the
absence of implementation code for CAT and the difficulty of recreating such a sophisticated model without
a comprehensive library presents a significant challenge in applying this technology to our current project.

Mean Absolute Error Modalities

Model Valence Energy Average Audio Lyrics

Dummy 0.328

Mean 0.200 -
Music4All LSTM 0.203 Embedding
XLNet - XLNet emb.
Conv. Net.* Nk Spectograms Word2Vec emb.
MLP High Level Features Vader, TF-IDF
MuLaN* Spectograms

AST + RoBERTa Spectograms RoBERTa emb.

Table 5.1: Model Performance Comparison and Modality Utilization. *Models marked with an asterisk
were trained and tested on a portion of the available data due to computational costs.

5.2.2 Final models’ results and discussion

We use the final dataset presented in the previous section to train and evaluate our models. A summary of
the performance of our models can be seen in Table 5.2. To gain a deeper insight into the strengths and
weaknesses of our models, we provide detailed confusion matrices and classification reports. We proceed by
demonstrating and analyzing the resulting models. Further investigation on model behaviour can be found
in the next section, where we implement XAI methods to draw accurate conclusions.

Model Valid Accuracy Test Accuracy Epochs
Lyrical Emotion 34.03% 32.33% 9 (5)
Audio Emotion 48.33% 48.29% 5 (3)

Multimodal Emotion 49.05% 48.53% 5 (3)
Lyrical Genre 46.9% 45.14% 9 (7)
Audio Genre 55.63% 53.75%

Multimodal Genre 60.33% 57.34%

Table 5.2: Model Performance Summary

The classification reports and confusion matrices for the emotion models are depicted in Table 5.3 and Figure
5.2.1 respectively. The Lyrical model tasked with predicting emotion labels is the worst performing model
of all with validation accuracy of only 34.03%, suggesting that capturing emotion information from lyrical
context is not reliable and that such information can be more optimally detected through audio feature
analysis. This is also hinted not only by the fact that the audio model greatly outperforms the lyrical one,
but also by the observation that the multimodal approach does not yield significantly better results than the
audio one.

The classification reports in table 5.4 and the confusion matrices in Figure 5.2.2 depict the results of the
genre classification models. The lyrical model although has relatively low metrics, with a validation accuracy
of 46.9%, is particularly successful in predicting certain classes, namely ’hip hop’ and ’heavy music’. This
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r ) \f@\ @’*& P &

predicted Predicted

(a) Lyrical Model (b) Audio Model (¢) Multimodal Model

Figure 5.2.1: The confusion matrices of the emotion classification lyrics, audio and multimodal models.
Brighter cells indicate higher concentration of model predictions. Ideally the diagonal of the matrix should
contain all the values and the rest of the matrix should be null.

Table 5.3: Classification Reports for Three Models on Emotional Classes

Lyrical Model Audio Model

Multimodal Model
Support
Emotion | Precision, Recall, F1 | Precision, Recall, F1 | Precision, Recall, F1
1203

Angry 0.40, 0.56, 0.47
Calm 0.37, 0.38, 0.38
Depressed 0.24, 0.16, 0.19

Excited 0.35, 0.51, 0.41
Happy 0.34, 0.11, 0.16
Neutral 0.25, 0.05, 0.09
Relaxed 0.42, 0.05, 0.08
Sad 0.22, 0.25, 0.24
Tense 0.27, 0.27, 0.27

0.52, 0.69, 0.59
0.51, 0.60, 0.55
0.59, 0.47, 0.52
0.48, 0.70, 0.57
0.46, 0.37, 0.41
0.37, 0.27, 0.32
0.50, 0.04, 0.07
0.45, 0.50, 0.47
0.47, 0.26, 0.33

0.54, 0.66, 0.59
0.66, 0.41, 0.50
0.57, 0.56, 0.57
0.50, 0.69, 0.58
0.48, 0.33, 0.39
0.33, 0.40, 0.36
0.38, 0.20, 0.26
0.47, 0.40, 0.43
0.44, 0.33, 0.38

could be attributed to the recurrent themes present in this kind of music. Although the audio model is not
as precise in predicting 'hip hop’ instances, it outperforms the lyrical model in all other class metrics with a
validation accuracy of 55.3%. Finally, the multimodal model surpasses both of these models with validation
accuracy of 60.33%, proving that it is able to detect information that is not discernible when each modality
is used independently.

Some interesting patterns emerge from the metrics of our models not only across the different modalities
but also across the different tasks. To begin with, the models tasked with predicting genre labels greatly
outperform the models responsible for emotion prediction. This pattern confirms our intuition that capturing
the emotional complexity of musical tracks can be challenging due to the subjective nature of human emotions
and the difficulty to provide as well as detect a generalized, objective and therefore accurate estimates of
the emotional characteristics listeners might perceive in a track [21]. On the other hand, detecting themes
prevalent in certain genres and as a result correctly learning to predict genre labels can be more successful.
We should also note that the emotion models lagged behind perhaps also due to the more intense imbalance
of the train data. Furthermore, our endeavours show that for both tasks the lyrical models had the worse
performance and the multimodal models achieved the best results. This behaviour leads us to infer that
information relevant to music classification tasks, especially for emotion classification, is present mainly in
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(a) Lyrical Model (b) Audio Model (¢) Multimodal Model

Figure 5.2.2: The confusion matrices of the genre classification lyrics, audio and multimodal models.

Brighter cells indicate higher concentration of model predictions. Ideally the diagonal of the matrix should
contain all the values and the rest of the matrix should be null.

Table 5.4: Classification Reports for Three Models

Audio Model

Lyrical Model i Multimodal Model S .
uppor
Genre Precision, Recall, F1 | Precision, Recall, F1 | Precision, Recall, F1
504

Alternative Rock 0.24, 0.41, 0.30 0.27, 0.35, 0.30 0.30, 0.37, 0.33

Electronic
Folk

Heavy Music
Hip Hop

Pop

Punk

Rhythm Music
Rock

0.48, 0.20, 0.29
0.50, 0.37, 0.42
0.63, 0.67, 0.65
0.86, 0.87, 0.86
0.45, 0.59, 0.51
0.38, 0.17, 0.23
0.61, 0.44, 0.51
0.27, 0.35, 0.30

0.60, 0.44, 0.51
0.61, 0.48, 0.54
0.74, 0.73, 0.73
0.78, 0.82, 0.80
0.51, 0.60, 0.55
0.60, 0.33, 0.43
0.57, 0.61, 0.59
0.37, 0.45, 0.41

0.58, 0.51, 0.55
0.63, 0.60, 0.62
0.81, 0.75, 0.78
0.89, 0.89, 0.89
0.51, 0.66, 0.57
0.61, 0.40, 0.49
0.73, 0.57, 0.64
0.38, 0.42, 0.40

the audio domain. The performance of combining the text and audio modalities was optimal proving the
potential of multimodality in enhancing music classification tasks and MIR tasks in general. We aim to
analyse the models’ behaviour even more in depth in the next section.

5.3 Explaining the Models

In this section our main objective is to shed light to the models’ decision making process. As mentioned in
the previous chapter we will implement LIME, audioLIME and the combinational MusicLIME in order to
analyze our results. We also calculate the global aggregates of such local explanations using two aggregation
methods. We analyse in detail the genre task’s results, providing figures presenting the local explanations of
some cherry picked instances or prototypes as well as the global aggregates for each class.

5.3.1 Lyrical Genre Model Explanations

We begin our analysis by presenting the results of the lyrical genre model explainability. For each class, we
first present some themes that characterize them. We then choose three instances: a True Positive, a False
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Positive and a False Negative and examine their local explanations. We combine the observations made for
those instances with the those made from the global aggregates of local explanations to find what themes
prevail for each class along with an evaluation of the model’s behaviour.

Hip Hop

In this lyrical analysis, no other class stands out as prominently as Hip Hop does. This genre, originating
as an anti-drug and anti-violence genre, includes some common themes such as social issues (poverty, racism
and police brutality), personal struggles and Lifestyle or Culture. These recurring themes could explain why
the model achieves almost 90% precision and recall on the test set.

To investigate this assumption we choose the following three songs and generate local explanations: Bool,
Balm & Bollective by YG, Poontang Boomerang by Steel Panther and Lucid Dreams by Juice WRLD. The
first song has a probability of 0.97 of being "hip hop" and serves as a true positive. The second one is
mislabeled by the model as "hip hop" when in fact it belongs to the "heavy music" class. The third song is
mislabeled "pop" by the model while it is an instance of "hip hop".

The feature (word) contributions for the "hip hop" class for each of these songs are depicted in 5.3.1. The
first-person singular subject pronoun "I" seems to prevail across all three examples and contribute to the
model’s "hip hop" prediction probability. At first glance, from a data analysis perspective, it may appear
worthy of being overlooked as a stopword. However this trend can be attributed to the genre’s emphasis
on personal experience, identity, self-expression and rivalry [2]. Moreover the presence of words associated
with violence and incarceration, such as "prison", "dead" and "grave", influences the model’s tendency to
categorize content as "hip hop" underscoring the genre’s connection to the systemic challenges that pervade
the lived experiences of many black artists. Further insights can be found in Michelle Alexander’s book [5].
Finally the model’s decision is influenced by the presence of African American Vernacular English (AAVE)
in lyrics like "yall" and "outta".

While the above themes are undoubtedly influential in the model’s decision, our analysis reveals a curious
trend. The model appears to prioritize the presence of profanity, racial slurs and misogynistic language in
this classification task. This is evident in the first example, with the prevalence of the racial slur with origins
in the African slave trade, followed by a word often used to disparage, women which appears on the first
two examples. Additionally, other curse words such as "shit" and "Ass" influence the model’s classification
towards deciding this category. These findings hint at the fact that hip hop music has a history of objectifying
women [3] and almost always contains explicit content.

This is also confirmed in our global aggregations analysis. The 4 most influential words for predicting "hip
hop" can be seen in Figure 5.3.6 and are all considered offensive language. The rest of the words do not
seem to sway the model’s decision as much as the first 4. Although not as impactful these words other than
profanity included cultural references, like "Brooklyn", hip hop’s influential artist Jay-Z’s nickname, "mic",
"low" referring to the rhythm and rhyme style of an artist and "bars". Other themes prevailing in our results
are Street Life and Social status, with words like "hood", "police", "block", "45" invoking the .45 caliber
firearm, "baller" and "pimp".
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(a) Bool, Balm & Bollective by YG,
correctly predicted as "hip hop" with
a lot of certainty.
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Figure 5.3.1: Local explanation for class "hip hop" for three instances of the test set: (a) is a true positive
(b) is a false positive and (c) is a false negative. These graphs depict which features (words) contribute
most to the class "hip hop".

Heavy Music

Following the model’s success in "hip hop", the next best performer is "heavy music" class. This class includes
hardcore, heavy metal and industrial metal music with their distinct identity and themes. Such songs give
away their genre through their lyrics, that delve into darkness, rebellion, social and political critique and
dystopian visions.

To investigate model behaviour we present again one true positive, one false positive and one false negative
instance for this class. The respective songs and their artists are Beautiful Mourning by Machine Head,
Sole Survivor by Blue Oyster Cult and Fiction by Avenged Sevenfold. The model is fairly certain, with a
probability greater than 0.9, that the first two instances belong to "heavy music" while it misclassifies the
last song as "rock".

The results of the local explanations, depicting the feature weights for class "heavy music" can be seen in
Figure 5.3.2. Words talking about death, emotional pain and darkness cause the model to skew its predictions
toward "heavy music", as can be seen on the first two examples. It is noticeable that yet again profanity
plays important role for this class. The last instance does not contain any of those themes and therefore is
misclassified by the model as rock. Positive emotions like "love" signal to the model that the instances likely
do not belong to "heavy music".
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(c) Fiction by Avenged Sevenfold, a
song predicted as "rock" but belongs
to class "heavy music".

(b) Sole Survivor by Blue Oyster
Cult, a song with label "rock" but
predicted as "heavy music".

(a) Beautiful Mourning by Machine
Head, correctly predicted as "heavy
music" with a lot of certainty.

Figure 5.3.2: Local explanation for class "heavy music" for three instances of the test set: (a) is a true
positive (b) is a false positive and (c) is a false negative. These graphs depict which features (words)
contribute most to the class "heavy music".

In our attempt to aggregate global features from local explanations, we recognize some patterns for the genre
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lyrical model. By investigating the most relevant features for the model’s decision, some of which can be
seen in Figure 5.3.6, several themes arise that align with the heavy music genre lyrics’ thematology. To
begin with words like "blood", "wrath", "destruction, "killer" and "torture" suggest that themes including
violence, aggression and conflict that are part of heavy music[10] influence the model to decide that a
song belongs in this class. This violent pattern extends into the emotional realm, where words such as
"fear," "misery," "grief," "despair," "sorrow,", "hatred" and "emptiness" indicate emotional pain, distress
and suffering. Furthermore, not only death and the macabre are detected by the model, e.g. "dead," "grave,"
"death" "rotting" and "cremation" but also occult and religious themes as demonstrated by the features
"evil," "cursed," "soul," "hell," and "prophecy". Finally, heavy music is characterised by rebellious, political
and social themes which are highlighted in our analysis with words like "refuse," "rise," and "unrelenting".
Finally, in our observations, apart from "darkness" and "nightmare" which yielded a high weight from the
global analysis, most other features were similarly influential. In summary, heavy music’s distinct dark themes
are detected by our lyrical model and boost it’s performance in comparison with other classes.

Rhythm Music

The "rhythm music" class as mentioned in previous chapters, encapsulates not only blue note music (Gospel,
Jazz and Blues) but also Jamaican/Reggae and R&B. These genres can cover a wide range of subjects ranging
from slavery and oppression to religious hymns. Our model, although not ass successfully as the previous
classes, seems to distinguish some of the patterns included in the lyrics of such music.

For this class we present the local explanations of Skankin’ Sweet by Chronixx, How Sweet It Is (To Be Loved
by You) by James Taylor and Ain’t Nobody by Rufus. The first instance is the true positive, the second one
is "rock" but the model thinks it is "rhythm music" and the final song was misclassified as "pop" although
it belongs to the "rhythm music" class. The most import features that influence the model towards deciding
"rhythm music" are depicted in Figure 5.3.3.

From this local analysis we can derive the following: The word "Jah" which is the Rastafarian name of
God leads the model with certainty to guess "rhythm music". This word is present in many Jamaican and
specifically Reggae lyrics. We also see that "dem" which is a variant of the English word "them", frequently
used in Jamaican Patois also similarly influences the model. Apart from the word to praise God "hallelujah",
"struggle" which might refer to the struggle of being a person-of-color and "reggae" which gives away the
song genre, not many other words seem to fall under similar thematic categories.
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music".

Figure 5.3.3: Local explanation for class "rhythm music" for three instances of the test set: (a) is a true
positive (b) is a false positive and (c) is a false negative. These graphs depict which features (words)
contribute most to the class "rhythm music".

To further investigate how the model behaves around this class we also investigate the global aggregations from
local explanations. We find that the word "Jah" has significantly more weight than other features. However
among these features we can detect some thematic categories that also match with the "rhythm music" class.
To begin with we find words with religious context such as "gospel", "pray", "saviour", "Galilee" and "lord"
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that most likely appear in gospel music. Furthermore we note the presence of Jamaican Patois or Caribbean
Dialect through words like "dem", "jammin", references of "jamaica", "bout" and "ya". The feature "Jah"
belongs in both of the previous categories, which might explain it’s high weight. Other categories include
geographic references such as "Mississippi" and "Tennessee" with roots in blues music and social issues such
as "ghetto" and "poor". In short, the model can easily recognize Jamaican and Gospel music but struggles
to pinpoint other genres that belong to the broad label "rhythm music".

Pop

The model also performs decently when trying to find instances that belong to the class "pop", with F1l-score
of 0.51 for the test set. Pop music often explores themes of romance and relationships, celebrating love,
heartbreak, and emotional connections. It also focuses on dancing and partying, capturing the energetic at-
mosphere of nightlife. Emotional experiences, including personal empowerment and resilience, are frequently
highlighted. Additionally, pop music often emphasizes fashion, glamour, and the modern lifestyle, reflecting
contemporary culture and trends.

To investigate if the model can capture those themes we present in Figure 5.3.4 Just a Touch by AlunaGeorge
which was correctly labeled as pop, Expectations by Lauren Jauregui which was misclassified as pop and
Bubble Pop Electric Gwen Stefani which was mislabeled as "rhythm music". Based on the local explanations,
the model appears to capture several key themes of pop music, such as emotional experiences with words like
"ery", "love" and "worry", nightlife and fun with words like "club", "fun" and "night" and relationships and
intimacy with words like "touch" and "bed".
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(a) Just a Touch by AlunaGeorge, (b) Expectations by Lauren Jauregui, (c) Bubble Pop Electric Gwen Stefani,
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Figure 5.3.4: Local explanation for class "pop" for three instances of the test set: (a) is a true positive (b)
is a false positive and (c) is a false negative. These graphs depict which features (words) contribute most to
the class "pop".

The global aggregations also bring forward some features that could be semantically grouped. To begin with,
the most influential group would be romance and relationships with words like "kiss", "girlfriend", "sexy",
"boy", "heart", "someone" and "beauty" showing attraction, love and emotional connections. Another
important group for the model’s decision is dancing and partying with words like "club", "dance", "dancin",
"disco", "bars" and "vegas" having relatively high weights. We finally discern words hinting emotional
experiences lie "forever", "heart", "hoping" and "cry" as well as themes of fashion and style like "dress",
"chic", "glitter" and "glow". The model’s focus in these themes could explain not only why the model can
adequately capture pop songs but also why these songs are sometimes confused with rock and alternative
rock songs which might have common themes.

Folk

The next class worth analyzing, in order to understand the model’s behavior is "folk". This class contains
the folk and country genres under a common label. Folk and country music encompass a wide variety of
themes, reflecting diverse aspects of human experience. Folk music often delves into social and political
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issues, preserving cultural traditions and heritage, and recounting stories of work and labor. It also explores
personal themes of love and relationships, as well as a deep connection to nature and the environment.
Country music, on the other hand, frequently focuses on everyday life, romantic love and heartache, and
expressions of patriotism and national pride. It also addresses themes of resilience and perseverance, social
gatherings and escapism, and spirituality and faith.

The local explanations of 3 instances are shown in Figure 5.3.5. Any Ol’ Barstool by Jason Aldean was
correctly labeled as "folk", Key To The Highway by Eric Clapton was misclassified as "folk" and Twinkle,
Twinkle Lucky Star by Merle Haggard was misclassified as "rhythm music" while it is "folk". From the
first two instances we see that themes regarding small town life, personal relationships and nature might be
detected by the lyrical model and classified as folk music. On the other hand we see that the last instance
does not contain such themes and therefore is misclassified.
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with a lot of certainty. music" but falsely predicted as "folk".  predicted as "rhythm music" but

belongs to class "folk".

Figure 5.3.5: Local explanation for class "folk" for three instances of the test set: (a) is a true positive (b)
is a false positive and (c) is a false negative. These graphs depict which features (words) contribute most to
the class "folk".

Our global aggregation analysis revealed that no single feature can definitively lead the model to predict this
class with certainty, since all feature weights are similarly low in value. However it is clear that to identify
this class the model recognizes themes realted to nature and environment with words like "river", "pastures",
"mountain", "woods", "trees", "leaves" and others, celebrating landscapes, flora and fauna. Moreover the
model recognizes themes regarding personal relationships with words such as "hurt", "Mary", "fell" and
"pretty" and small town life with words like "county", "town", "barley", "bakers" and others. Finally, words
like "Bethlehem", "Belfast" and "Government" suggest a connection to historical events. Those themes are
not exclusive to this category which could explain why the model does not decide "folk" with certainty when

coming across these features.

Alternative Rock, Rock, Electronic and Punk

Although the model performed relatively well in predicting the previous classes and found themes present in
the lyrics of each class, it struggles to find instances that belong in "alternative rock", "rock", "electronic"
and "punk" with each class’s Fl-score being lower than 0.3. The model confuses "alternative rock" music
with "rock", "punk" music with "heavy music", "pop", "rock" and "alternative rock", "electronic" with
"pop" and "alternative rock" and finally "rock" with "alternative rock", "heavy music" and "pop. In Figure
5.3.7 we present two examples. In the first example we present the t-SNE scatter plot of the word embeddings
for the 30 most influential features for "hip hop" and "heavy music". As can be seen inf Figure 5.3.7a the
themes that the model consider relevant for each class are clearly separable with a bit of confusion when it
comes to profanity. This fact justifies the model’s ability to distinguish between those classes. On the other
hand, the second example includes a similar plot for features that influence "alternative rock" and "rock".
As can be seen in Figure 5.3.7b the themes for each of these classes are not easily distinguishable from each
other and the model confuses "alternative rock" with "rock" instances and vice versa.
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2D Visualization of Word Embeddings by Class Importance
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Figure 5.3.6: Top 5 features of global aggregates of local explanations for each genre class.
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Some amount of confusion by the model is to be expected. This can partially be explained by the fact
that a single song can blend elements from various genres, making it challenging to classify it into just one
category. This can lead to a dataset that contains noisy instances and, consequently, a model that learns
from this noisy data. Moreover, while certain themes are unique to specific genres, the majority of semantic
groupings are shared across multiple genres. For example, songs about love can have similar lyrics but differ
in rhythm, timbre or even musical scale and therefore genre. Our global aggregate analysis for these genres
shows that, although some themes are present among the important features of each class (eg. "punkrocker",
"communist", "worker" and "manchester" for punk), the presence of generic and ambiguous words, combined
with a lack of strong imagery and themes, indicates that the model’s ability to identify those kinds of music
instances is limited. We conclude that lyrical thematology is only one part of a musical creation. Classifying
music into genres solely on lyrical content can be accurate for certain genres but in general it does not, and
should not, yield highly accurate results.

5.3.2 Lyrical Emotion Model Explanations

Although the genre explanations provide interesting results, as far as the model behaviour is concerned,
the analysis of the emotion lyrical model didn’t yield similar results. In an analogous manner as before we
generate local explanations and global aggregates in order to get a grasp of the model’s decision making
process and shed light to the reasons of it’s poor performance. This leads us to the observation that the
model recognizes dark and macabre themes, with words like "dead", "destroy" and "bleed", and attributes
them to the "Angry" class. This behaviour justifies the relatively high F1-score of the model for this class.
Similarly but less accurately the model recognizes party and fun themes and attributes them to the "Excited"
class and religious themes, attributing them to the "Calm" class. However the model performs poorly in
recognizing themes related to the other classes. The weights of the global aggregate of features influencing
the model to predict those classes were low, indicating the model’s undecidability. This difficulty in making
decisive classifications for this task is also hinted by the fact that even the highest probability scores during
the evaluation on the test set for these classes are low. In Figure 5.3.8 we present the 5 most influential
features for each class. We should note that some features that are expressive sounds like "Mmm" or names
like "Bethlehem" do not have a GloVe embedding and therefore are not depicted in the Figure.

The model’s inability to perform well on this task can be attributed to several factors. Firstly, the emotion
recognition is inherently complex and subjective, heavily depending on human experiences and interpreta-
tions, which vary widely among individuals. Even though stronger words might occasionally provide clear
indicators of the highly energetic classes "Angry" and "Excited", music is a multifaceted art form. Lyrics,
while important, represent only one dimension of music creation. Critical information for accurately classi-
fying music often lies beyond the lyrical content, encompassing elements like melody, harmony, rhythm, and
tempo, which are not captured in this domain. Since the training and test data were annotated considering
the whole music creations and not just the lyrical corpora of songs, it is to be expected that instances that
convey a certain emotion, but their audio expresses a different emotion, add significant confusion to the
model. Consequently, the model struggles to make decisive and accurate predictions which is evident by the
inability to find common themes for each class.
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2D Visualization of Word Embeddings by Class Importance
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Figure 5.3.8: Top 5 features of global aggregates of local explanations for each genre class. Words
representing town names might not be included.

5.3.3 Audio Genre Model Explanations

The main objective of this subsection is to determine what audio features influence the audio model to
make it’s decisions and evaluate and discuss if those features are indeed relevant for the specific genre. As
mentioned in the previous chapter, the local explanations in the audio domain are listenable. The XAI
technique implemented divides the audio into 10 temporal segments and separates it into vocals, drums,
bass, and other components. For example, a listenable explanation labeled as ’vocals6’ represents the 7th
(indexed from 0 to 9) temporal segment of the vocals of the song. Some explanations can be listened to at
our GitHub repository. We also provide two methods of aggregating local explanations, I?j and [ é}VG as
defined in the previous chapter.

Hip Hop

Surprisingly, the only class that performs worse in the audio domain is "Hip Hop." Aside from the prevalent
lyrical themes described previously, "Hip Hop" is also distinct in its audio characteristics. These include
rhythmic beats often syncopated to create a head-nodding groove, strong and driving drums with a kick
laying down the main pulse, and deep bass lines providing a low-frequency thump. The vocals in "Hip Hop"
are dominated by rhythmic and rhyming speech (rapping), with styles ranging from fast-paced and aggressive
to slow and poetic, depending on the artist and the mood of the song. For instance, the legendary rapper
Eminem is known for his rapid-fire delivery and intricate wordplay, while artists like Kendrick Lamar often
utilize a smoother flow with a focus on conscious lyrics. Other elements of "Hip Hop" might include sampling,
beatboxing, and turntablism.

In order to understand what is important for the model’s decision for this class, we identify a prototype from
the test set. The prototype instance is the song Statue of Limitations by 2 Chainz. By generating local
explanations and analysing the results, we find that the most important features for this prototype are the
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vocals dominating the first 10 spots in the feature importance leader board, with the first two most important
vocal features singing the lyrics "people’s girl" and "ex-athlete". The global explanations for this class show
a similar pattern. As can be seen in Figure 5.3.9 vocal features seem to consistently influence the model
when predicting "hip hop", while drum and bass features are not as important. This fact indicates not only
the continuous presence of vocals throughout the song but also that the model successfully detects rapping
in the those segments and therefore classifies the instance as "hip hop".

Feature Weights Heatmap for hip hop Feature Weights Heatmap for hip hop

(a) Homogeneity importance weights (b) Average weights

Figure 5.3.9: Global aggregates heatmap for class "hip hop". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Heavy Music

The model performs very accurately when predicting metal, hardcore and industrial music under the umbrella
class "Heavy Music". Characterized by its aggressive and intense audio features this class, includes heavily
distorted guitars often featuring heavy riffs and extended solos, rapid and complex drumming with a focus
on double bass and blast beats, and thick and distorted bass lines that add depth. The vocals range from
growling and screaming in metal and hardcore to more robotic and processed sounds in industrial music.
The use of unconventional instruments, synthesized effects, and dark atmospheric elements also distinguishes
industrial from other genres.

The prototype for this class is the song Tread Lightly by Mastodon. Yet again the local explanations attribute
high weights to the vocal segments, with 6 of them being in the top 7 most impactful features. The feature
with the highest weight is a shout of the lyrics "when there is", that is in higher pitch compared to the
rest of the vocals. We can also find a drumming pattern with high weight, as well as segments labeled as
other which mainly contain guitar power chords. The rest of the vocal segments that were not attributed a
high weight are mostly silent. Again we can generalize these observations by analysing the global aggregates
presented in Figure 5.3.10. We find that vocal and other features influence the model the most, as indicated
by the relatively high homogeneity importance weights. Drum and bass features seem to be more influential
in this class compared to the previous one, however the model’s focus on vocals and other features suggest
the ability to detect shouts, screams and distorted guitars which are important elements of this class.

71



Chapter 5. Results

Feature Weights Heatmap for heavy music os

Feature Weights Heatmap for heavy music

0046 0029 0046 0037 0021 | 0047

00

(a) Homogeneity importance weights (b) Average weights

Figure 5.3.10: Global aggregates heatmap for class "heavy music". The first heatmap refers to the
homogeneity importance weights whereas the second heatmap refers to the average lime weights per feature.

Pop

The model also generates better results when predicting "pop" instances. Pop music is characterized by
its catchy melodies, simple chord progressions, and polished production. It often features a verse-chorus
structure, with hooks that are easy to remember and sing along to. The beats are typically straightforward,
with a focus on danceable rhythms and a strong emphasis on the vocals. Pop songs frequently incorporate
electronic elements, such as synthesizers and drum machines. The genre is known for its broad appeal and
often blends elements from various other musical styles.

The prototype for this class is the song I Love You Always Forever by Betty Who. Once more, vocal features
are important for the model’s decision for this instance. The feature with the highest weight is the vocals
singing the lyric "you’ve" from the third verse of the song and seems to be very impactful compared to the
rest of the features. Some drum features also seem to play an important role, while bass features are the
least impactful. From the global explanations we observe the importance of vocal features regardless of their
temporal order. In comparison to the prototype instance we find that drums have a minimal impact on the
model’s predictions. Other features sometimes play a significant role in detecting instances that belong to
the pop class.

Feature Weights Heatmap for pop
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Figure 5.3.11: Global aggregates heatmap for class "pop". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Folk

The model Fl-score for this class is 0.54, increased by 0.12 compared to the lyrical model. Folk music,
including country, is characterized by its acoustic instrumentation and storytelling aspect. Traditional folk
often features acoustic guitars, banjos, fiddles, and harmonicas, creating a rustic and organic sound. Country
music builds on this foundation with additional elements like pedal steel guitars and prominent, twangy
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vocals. The melodies are typically simple and memorable, with a strong emphasis on lyrical content and the
vocals are typically natural and unprocessed. Drums can range from simple and brushed to more prominent
backbeats depending on the subgenre.

The prototype for this class is the song Throw It All Away by Brandi Carlile. Guitar elements heard in
"other" features and vocals are the most important influences for this class, with drums following suit while
bass features do not rank highly for this example. The global aggregates showcase vocal and other features as
impactful, suggesting the ability to detect banjos, harmonicas and of course guitar sounds prevailing in folk
music. The different methods to generate global aggregations disagree as to whether bass or drums influence
the model the most.

Feature Weights Heatmap for folk
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Figure 5.3.12: Global aggregates heatmap for class "folk". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Rhythm Music

"Rhythm music" includesR&B, jazz, blues, gospel, and Jamaican genres. R&B often features smooth, melodic
vocals over groovy bass lines and syncopated drum patterns. Jazz is marked by improvisation, complex
chord progressions, and instrumental solos, typically featuring saxophones, trumpets, and pianos. Blues
music highlights emotive guitar riffs, often using the pentatonic scale, with a strong backbeat. Gospel is
distinguished by powerful vocal harmonies and organ or piano accompaniment, while Jamaican music, such
as reggae, emphasizes offbeat rhythms and deep, resonant bass lines.

As a prototype for this class Power To The People - Demo Version by Curtis Mayfield was selected. The
most important feature according to the local explanations appear to be vocal, however the rest of the most
impactful features appears to be a mixture of vocals, bass and other features with emphasis on bass features.
The global aggregations show that drums are not influential for this class but do not highlight other features
as more important. In short the model seems to detect the presence of basslines in R&B instances, such as
our prototype instance, as well as the intricate vocals, saxophones and pianos of other subgenres in this class.
The global aggregates are seen in Figure 5.3.13.
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Figure 5.3.13: Global aggregates heatmap for class "folk". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Electronic

The audio model performs significantly better at recognizing "electronic" instances compared to the lyrical
model, with a 0.22 increase in the F1-score. Electronic music is defined by its use of synthetic sounds, created
and manipulated through digital and analog electronic instruments. It includes sub-genres like techno, house
and trance, each with its own distinct characteristics. The music is often built around repetitive rhythmic
patterns, deep bass lines, and layered synthesizer textures. Electronic tracks frequently feature effects such
as reverb, delay, and modulation to create immersive soundscapes. The genre is known for its danceability,
with beats ranging from the steady four-on-the-floor patterns of house music to the more complex and faster
rhythms of techno and drum and bass. Some electronic subgenres, like ambient or techno, may forgo vocals
entirely and when vocals are present they can be processed and manipulated with effects like autotune,
vocoders, or pitch-shifting to create unique timbres and textures.

Our prototype from the test set is the song Colourless Colour by La Roux. Although this instance’s original
label is ’electronic’, one could also argue that it belongs to the 'pop’ category, highlighting the correlation
between these two genres. According to the local explanations, the most important features for this instance
are "other" features. Those include the distinct synthesizer melodies present in this song. Once again, the
rest of the features seem to be of equal importance with an exception of drum features that have a lower
weight. This behaviour is present in the weights of global aggregates for this class presented in Figure 5.3.14
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Figure 5.3.14: Global aggregates heatmap for class "electronic". The first heatmap refers to the
homogeneity importance weights whereas the second heatmap refers to the average lime weights per feature.

Punk

This class shows a great 0.2 increase in the Fl-score compared to the lyrical model. Although the audio
model can distinguish better between "punk" and "pop" instances it still missclasifies "punk" songs as
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"rock", "alternative rock" and "heavy music". Punk music is known for its raw, energetic, and rebellious
sound. It typically features fast tempos, short song durations, and simple, power-chord-based guitar riffs.
The drumming is aggressive and straightforward, often featuring rapid-fire snare hits and cymbal crashes.
Bass lines are typically simple and follow the root notes of the chords. Vocals in punk are often shouted or
delivered with a snarly, confrontational tone.

The prototype song for this class is It’'ll Be A Long Time by The Offspring. All features in the explanations
appear to be relatively important, with 3 vocal features having the heavies weights. Those features present
drum, bass and guitar patterns unique for this class. The global aggregates show an emphasis on vocal
segments, with the rest of the features having similar importance weights.
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Figure 5.3.15: Global aggregates heatmap for class "punk". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Rock

Rock music, encompassing rock 'n’ roll and golden age rock along with their various subgenres also has better
metrics compared to the lyrical model. This class is characterized by the power of the electric guitar, often
featuring distinctive guitar riffs that lay the foundation for the song. For example Led Zeppelin’s "Immigrant
Song" or Guns N’ Roses’ "Sweet Child o> Mine" wouldn’t be the same without their iconic opening riffs.
Soaring guitar solos are another element, adding moments of virtuosity and excitement. While punk’s raw
energy might influence some rock subgenres, classic rock generally leans towards a more polished and layered
sound with the rhythm section providing a solid foundation for the guitars to take center stage. Furthermore,
a strong rhythm section of bass and drums create a driving beat and vocals can range from smooth to more
powerful singing.

Broadway by Goo Goo Dolls serves as the prototype of the test set for this class. As expected, other features
that showcase guitar chords mostly influence the model and vocals appear as the second most influential. The
heatmaps if Figure 5.3.16 also present other and vocal features as more important for this class, highlighting
the fact that guitars take center stage in this kind of music.
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Figure 5.3.16: Global aggregates heatmap for class "rock". The first heatmap refers to the homogeneity
importance weights whereas the second heatmap refers to the average lime weights per feature.

Alternative Rock

The audio model performed just as badly at predicting "alternative rock" songs as the lyrical model. Although
more precise, the model misclassifies more "alternative rock" songs as "rock". This genre is diverse and blends
elements from punk, post-punk, and mainstream rock, often characterized by its experimental approach to
sound and structure. It features the electric guitar as a core element, but it’s artists tend to be more
adventurous than their classic rock counterparts, experimenting with a wider range of influences. This music
might feature distorted guitars reminiscent of punk or metal, but with a distinct alternative rock flavor.
The rhythm section can be quite diverse as well, with some bands maintaining a strong rock foundation
with prominent drums and bass lines and others exploring more nuanced and textured rhythms, creating
a less predictable and more atmospheric soundscape. Vocals in alternative rock are just as varied ranging
from more powerful and emotional vocals to use a more dissonant or spoken-word approach. What mainly
distinguishes this class from "rock" is its experimental approach to sound and production, often featuring a
raw, unpolished aesthetic.

Stephens’s Malkumus Jo Jo’s Jacket is chose as the prototype for this class. Some drumming patterns seem
to influence the model the most for this instance but in general drum, vocal and other features (which once
again contain guitar sounds) seem to equally contribute to the model’s "alternative rock" decision. This
pattern is also present in the global explanations. While the model seems to decently capture some elements
of alternative rock, it cannot distinguish them from rock elements. This leads us to believe that the audio
model lacks the capability to assess production quality, which is a key difference between the two genres. As
can be expected, the model cannot identify the indie origins of a song, and the overlap in musical elements
between rock and alternative rock further complicates accurate classification.

Feature Weights Heatmap for alternative rock

Feature Weights Heatmap for alternative rock

0.034

0035 0027 003 002 0 0,038

(a) Homogeneity importance weights (b) Average weights

Figure 5.3.17: Global aggregates heatmap for class "alternative rock". The first heatmap refers to the
homogeneity importance weights whereas the second heatmap refers to the average lime weights per feature.

76



5.3. Explaining the Models

To conclude, the audio model performs better in every class except "hip hop". By observing the explanations
we find that the model indeed detects elements characteristic for each class whether it be the unique rhyming
pattern present in "hip hop" vocals or the distorted guitar sounds in "heavy music". The class "alternative
rock" does not perform better in the audio domain and it still gets mixed up with "rock" instances. The
authors of this paper [43] find that "art styles that are confused the most are styles that share common
characteristics" and that "Art movements inherited features from their predecessors and influenced their
successors". Similarly in music, rock and alternative rock not only share common characteristics but also
alternative rock is an evolution of classic rock. It is also important to mention that music categories are often
mixed and the boundaries between them are relatively fluid as mentioned in this work [60].

5.3.4 Audio Emotion Model Explanations

The emotion audio model is significantly superior compared to its lyrical counterpart with certain classes
having F1-score improvement of more than 0.3 units. In the global aggregates of our audio feature analysis,
"happy" and "excited" classes both heavily rely on drum features, with "happy" also emphasizing vocals,
suggesting a strong association between rhythm and positive, high-energy emotions. For "neutral" and
"relaxed" classes, features named "other" dominate, with bass features notably less important for "neutral"
emotions. We should note that since the model does not make many "relaxed" predictions on the test set,
we do not have enough data to conclusively determine feature importance for Relaxed. In "angry" and
"tense" emotions, other features are most significant, but "tense" also highly values vocals, indicating a
complex blend needed to convey negative and high-strung feelings. The "sad" and ’depressed" classes show
diverging patterns; drums are key for "sad" but negligible for "depressed", highlighting how energy levels
influence feature relevance. Lastly, "calm" class uniquely values vocals and other features, with occasional
importance of bass and drums, illustrating a varied audio component mix that aids in producing a soothing
emotional effect. We finally observe that adjacent classes on the emotion map often consider similar features
as important, particularly when they share similar levels of either valence or energy.

5.3.5 Multimodal Genre Model Explanations

In previous subsections we presented some elements that characterize each genre in the lyrical and in the
audio/music domain. We found that each unimodal model can detect some of these and make accurate
predictions. The lyrical model was less successful in general but could predict certain classes, with distinct
thematology very accurately. The audio model on the other hand was better overall and was able to identify
concepts that distinguish genres from one another. Here, we analyze the results of the explainability process
so as to determine what features influence the multimodal model the most and if it is able to combine both
modalities to be more accurate.

Generating global aggregates using the homogeneity-weighted importance does not accurately capture the
influence of features class. This is because we have two types of features: words and audio features. While the
audio features are the same 40 each time, word features can differ from instance to instance. This means that
vocal, drum, bass and other audio features will similarly impact each class due to their different content. For
example, an "other" feature could contain guitar power chords and contribute to the model deciding "heavy
music" or it could contain saxophone and therefore influence the model to decide "rhythm music". This leads
to audio features having high entropy meaning that audio feature attributions point to many classes. On the
other hand, word attributions have lower entropy since they are less homogeneous. This leads to mistakenly
consider audio features as less important. Therefore the global average importance is more suitable for the
multimodal case I Q-VG.

The local explanations as well as the global aggregates present some promising outcomes. In classes where
the lyrical model was more accurate than the audio model, the most impactful features for the multimodal
model’s decision appear to be the lyrical features, whereas in classes that the lyrical model underperformed,
the model pays attention to the audio features. For example for the "hip hop" class the global aggregates,
as presented in Figure 5.3.18, show clearly that lyrical features are more impactful. On the other hand, the
model focuses more on audio features for "punk" instances, whose global aggregates are presented in Figure
5.3.19. In other cases like the "pop" class whose global aggregates are available in Figure 5.3.20 the audio
and lyrical features equally influence the model. In general the multimodal approach manages to integrate
and combine information from the unimodal models for superior results.
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Figure 5.3.18: The global aggregates of local explanations for instances classified as "hip hop" for the
multimodal model. The first heatmap depicts the weights of the audio features while the barplot shows the

weights of the 20 most impactful word features.
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Figure 5.3.20: The global aggregates of local explanations for instances classified as "pop" for the
multimodal model. The first heatmap depicts the weights of the audio features while the barplot shows the
weights of the 20 most impactful word features.

5.3.6 Multimodal Emotion Model Explanations

For the reasons described in the previous subsection using the homogeneity-weighted importance does not
accurately capture the influence of features for each class. It is clear that the multimodal model considers the
audio features more important. Although the model has better performance than the unimodal approaches,
the difference is marginal. We observe from the global aggregates that the multimodal approach considers
audio features as more impactful across all classes. For the classes "happy", "depressed", "excited", "tense",
"calm" and "relaxed" the top 10 features with the highest weights are all audio features. For instances labeled
as "sad" and "neutral" only a few word features have high weights. For "angry" songs we find a combination
of text and audio features as important, with the audio ones being once again more relevant, and yet the
multimodal model’s score does not exceed that of the audio approach.
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Chapter 6

Conclusion

6.1 Discussion

In this work we explored genre and emotion, multimodal music classification. Our research begins by investi-
gating various existing datasets that offer both lyrical and audio content, as well as genre and emotion labels.
Since the Music4All dataset satisfies multimodality, enables the exploration of multiple tasks and is one of
the biggest datasets of its kind, we proceed by analysing and evaluating its contents. We propose methods to
group the dataset’s instances into 9 emotion categories and 9 music genres and also augment the dataset due
to it’s emotion imbalances and clean some noisy instances as far as the genre labels are concerned. Although
we went to great lengths in order to curate the M4A dataset, our final dataset is imbalanced especially
for emotion labels and contains some ambiguous genre instances. This imbalance can be attributed to the
fact that the distribution of music tracks in the respective industry favors certain categories, like "pop" or
"angry" songs, and makes it more difficult to find "relaxing" and "calm" songs using Spotify API. The genre
ambiguity lies in the fact that many songs fall into multiple genres [60] and selecting one label to represent
a track introduces confusion.

We continue our endeavours by studying related work on MIR tasks, namely music emotion regression.
Although during this procedure we find recent SOTA technologies we choose to follow a transformer finetuning
approach by creating 3 models for each classification task, a text model utilizing the pretarined roberta-large,
an audio model with spectrograms as input based on AudioSpectrogramTrsnformer and a multimodal model
combining the previous two. According to our research it is the first time those models are combined for
music classification. This approach outperforms both of the unimodal ones, while the lyrical model was the
worst performer for both tasks. In general, the classification of instances according to their genre was more
successful than the classification according to their emotion label.

In order to understand the behaviour of our models we look for explainability methods in the text and
audio/image domain. We find that Local Interpretable Model-Agnostic Explanations neatly fit our needs.
Therefore we implement LIME explanations on the lyrical model, to capture themes relevant for each class.
In the audio domain, instead of treating spectrogram as images and generate explanations for those, we
implement audioLIME, an approach based on LIME that separates the audio into temporal segments and
each segment into vocal, drums, bass and other components and provides us with listenable explanations.
We introduce MusicLime, a way to combine the two methods and produce multimodal local explanations
with text and audio as input. Finally we generate global aggregates of local explanations to have a more
complete view for each task.

Our analysis yielded interesting results. Firstly, the lyrical explainability methods manage to capture certain
themes for each class, particularly ones with strong words, profanity and death. However, classifying music
only taking into account lyrical content is not particularly successful since music is multifaceted. Furthermore,
the audio explanations, show that the audio model can capture music elements distinct for each class, such as
shouts and screams contained in the vocals of "heavy music". The genre model that utilizes both lyrics and
audio managed to combine both modalities and achieve superior results. For the emotional domain since the
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lyrical model was not very accurate, the multimodal model closely follows the audio approach which is also
evident during the explanation phase. The main hindrance to the models performing better appears to be
the label ambiguity present in both tasks. As mentioned in this paper [21] "tagging a musical excerpt with
an emotion label can be a vague and ambivalent exercise due to its subjective nature". Although genre tags
might seem as more discrete than emotion labels, many songs incorporate elements from multiple genres and
different experts might use different criteria for genre classification [60].

6.2 Future Work

The results also uncover several avenues for further investigation outlining potential directions for future
research that can improve upon the foundational work presented here. To begin with, in order to address
the label ambiguity impediment, future research could focus on building a dataset with genre annotations
from experts. Although they could also have disagreements as to the genre of many instances, such a dataset
would improve upon amateur labeled pieces of work. Also, since many songs might fall under multiple
genre labels, for example being both "pop" and "electronic", a logical next step could be to implement
the models of this study in a multi-label setting. Moreover, in our work we concatenate the embeddings
outputed from each unimodal model and then use a classification head to make predictions. In order to
improve performance future endeavours could study different ways to train the multimodal models which
might include different combinations of the modalities (e.g. multiplying or adding the embeddings together).
Finally, the models utilized are pretrained on data outside the music domain (e.g. Wikipedia corpora, or
YouTube video spectrograms). A multilingual BERT like model pretrained on lyrics and perhaps poetry and
a spectrogram transformer pretrained on pieces of music could yield interesting results.

Although the explanation methods and their global aggregates in this study gave adequate results, additional
studies could improve upon them. Generating local explanations with LIME requires setting the number of
samples variable. This variable controls the number of samples close to the original instance that are going
to be created. As of now an exhaustive number of samples is prohibitive for large models with many input
features. Subsequent studies could investigate what is sufficient number of samples, or specific ways to perturb
the input so that the local explanations are accurate. Also, such studies could also include a statistical analysis
to determine the appropriate number of instances to include in the global aggregates from the test set, so
that an accurate representation of the model’s behaviour is ensured. Furthermore explainability endeavours
might find it fruitful to generate explanations based on lyric lines instead of individual words. Furthermore,
exploring counterfactual explainability, that is altering certain features and observing how these changes
impact the model’s predictions, can offer a different perspective for emotion and genre recognition tasks.
Finally, continuation of this work could include human evaluations of the explanations through user surveys
providing insights into the perveived accuracy of the predictions from a listener’s/reader’s perspective.
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