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ITepiindm

Ye wo emoyh) 6mov ta Meydha Mwoowxd Moviéha (Large Language Models-LLMs) nopdyouv xeipevo mou
ppelton xatd TOAD Ty avip®dTive YAGOOW, 1 XPNOWOTNTA TOL XEWEVOL TOU ToEdYETOL And CUCTAUATA TEYVNTAC
vonpoovne(TN) exteiveton oe Towihes egappoyéc, and Tic eldrfioelc wéypt xployoug Topelc T xowvwviog 6mwe
0 Voo xou o exntardevtixdec. Qotdéo0o, 1) poydaio avantuEn twv LLMs eyeiper eniong onuoavtixoie xvdivoug,
omwe ou Peudelc ewldroeic(fake news), n avdueiln xewévou moapayduevou omd cuvothuata TN oty oxodrnuaixt
gpeuva o Bidpopa cuoThuata andtng. Lo TRV xatamoréunon aut®dy TV omelhody, elvar {oTixhc onuaciog
7 Sudxpton petoll avipodnivou xelévou xat xelévou mopayouevou ond TN. H nopoloo yerétn diepeuvd tnv
ATMOTEAEGUATIXOTITA XAk TNV EVPWOTIOL SLUPAHEMV AVLYVEUTHOV XEWEVOU TEYVNTAC VONuoouvne, ecTldlovTtac oTtny
IXAVOTNTA TOUG Vo VTLOTEXOVTOL OF eTYEoELS Topoppdoewy and yprotec-aviimdhous.  Algpeuvolue eniong
¢ N neptmhoxdTnTa xewévou (text perplexity) , éva uétpo tou néoo anpdfiento elvor evo xelpevo yio éval
povtého TN, umopel va yenowedoel wg alldmotn Peteixn yiot Ty aviyveuor xeyévey napayoyevey and TN
%o TEoVGtdlouue Evay oviyveuth ue Bdorn v mepimhoxdtnTa mou avtoywvileton mo clvieta povtédo TN.
Eminhéov, e€etdloupe Tov poho Tewv uedddwy eEnyfowne texvntic vonpooivne (XAI) oty xotavénon xou
Behtiwon twv unyoviopoy aviyvevong. Méow poc épeuvag yenot®y, cuyxelvoude Tic embddoelc Tou avidpnnou
X0 TNG TEYVNTAC VONUOSUVNG OTNY aviyVEUST] XEWEVOU, XUTAVOOUUE TIC YVOOTIXES ANMOPICELS TWY avIpMOT®Y
oto medio autd xan aflohoyolue Tic duvatdtnteg Twv eV XAL yio ) Bedtiwon e avipdmivne Mdne
amo@dcewy. AuTy 1 OAOXANPOUEVT AVIAUOY) ATOGXOTEL TNV EVIOYUGT TNE AVATTUENS LOYLEWY XAl EPUNVEVGLULY
ocuoTnudTwy aviyveuone xewévou TN, eacgurilovtac tnyv adlomotio TOUC GE EQUEUOYES TOU TEOYUOTIXOV
%x6GUOL.

AgZeig-xhedid — Meydha Nhwoowd Movtéha , Aviyvevon xewévoy TN, EEnyfown Teyvnti Nonuooivn,
E&nyhoeic pe Avunopdderypa, Hepimhoxdtnta xewévou
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Abstract

In an era where Large Language Models (LLMs) generate text that closely mimics human language, the
utility of machine-generated text spans diverse applications, from news composition to critical fields like law
and education. However, the proliferation of LLMs also raises significant risks, such as fake news, fraudulent
schemes, and academic dishonesty. To combat these threats, it is crucial to distinguish between human and
Al-generated text. This study explores the efficacy and robustness of various Al text detectors, focusing
on their ability to withstand adversarial paraphrasing attacks. We also investigate how text perplexity, a
measure of unpredictability of text for a model, can serve as a reliable metric for detection and introduce
a perplexity-based detector that competes with more complex models. Additionally, we examine the role
of explainable artificial intelligence (XAI) methods in understanding and improving detection mechanisms.
Through a user survey, we compare human and Al performance in text detection, understand the cognitive
decisions of humans in the task of and assess the potential of XAI techniques to enhance human decision-
making. This comprehensive analysis aims to bolster the development of robust and interpretable Al text
detection systems, ensuring their reliability in real-world applications.

Keywords — Large Language Models, Al text detection, Explainable AI, counterfactual explanations,
adversarial attacks, text perplexity
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Chapter 0

Extetoapevn Iepiindn oto EAAN VX

Yn obyypovn enoyf, o xelueva mou Topdyovion omd peydha yhwoowd poviéha (LLM) yivovtor 6ho xou
mo duodldxetta and TNV avipdmvy YAMOoO, UE amoTENECUA TNV eupeia ¥@eMoTn Toug Ot BLAPOPES EPUPUOYEC,
omwe 1 olvtaln eldRoewy, 1 dnuiovpyia LoTopldy, 1 dnuovpyia xMIx xou xployo Tedla dTwe 1 vouxh xat 1
exnaldevon. Mo tpdogatn épeuva €deile adEnom xatd 57,3% twv eldnoeoypupixdy dpdpwmv mou dnuovpyodvTal
ané LLM oe otétonoug yevixol evdlagépovtoc petadd Iavovaplou 2022 xou Mofou 2023, avadetxviovtag tnv
QUEAVOUEVT] ETIEPOY| UTHOV TWV HOVIEAWY O EMOYYEAUATIXE TAdiola ohhd xan mAalolo NG xonuepLlvoTNTaC.
Qotéoo, N audnuévn tpdoPact tou xowvob ota LLM eyeipel enlong avnouyiec oyetind ye tnv xoaxdBoukn yeron
TOU XEWEVOU TTOU TapdryeTal amd Wnyovés, cUUTEpLAUUBAVOUEVKDY TwY Peudtv eldfoewy, Twv Peuddy XxpLTXdDY,
TWV OXOBNUAIXDY EQYACUDIY IOV YRAPOVTOL YE TEYVNTY VONUOGUVY] Xl GAAWY AUPLAEYOUEVKDY DRAoTNELOTTWY.

Iot TNV QVTIHETOTIOT QUTWY TWV ATELADY, 1) BLdxELom) HETAUED avIpMTLVOU X0 UNYOVIXE TOEAY OUEVOU XEWLEVOU Xa-
Yo taton anapoitntn. To épyo autd ocuyvd Swpoppdvetar we évo tpdBAnue Suadifc tagvounone (binary classi-
fication), 6mou ot aviyveuTég avoryvepllouv xat QUATEdEOoUY To Xeluevo Tou TapdyeTon and unyavés Ue xax6Bouin
npdieon. Evdd ol onuepvol aviyveutég xelévou TexyNnThg YONUooUYNG UTopoly Vo dnodnhcouy aEloonueiwTo xahd
OE U1 TPOTOTOLNUEVO XE(UEVO TOU TAUPAYETOL Ad TEXVATH VONUOoUHVY), avTUeTOTi{ouy oNUAVTIXEC TROXATOELS
otav épyovral avTéTwnol pe emdéoelc nopdpeaons. Autég ol emdéoelc nepthouBavouy AenTEC aVaBIATUTWCELS
Tou Xelévou mou mapdyeton and TN yio var ano@lyouy TNy aviyveuon 1N luxeég oAlayéc o XEUEVO YROUUEVO
and Gvdpwno yio vo tpoxorécouy Peudic Yetnd anoteréopata, EXUETAAAEUOUEVOL TIC TpoxaTahAPeEl XaL TiC
Tdoelg UTEPBONXNC TPOCUPUOYHS TWY HOVTEAWY aviyveuong.

H auEoavépevn molumhoxdtnto twv enidécewy mopdppaons avadetxvier TNy avdyxn yio mo oviextixols xou
dapopomoinuévoug unyaviopoig aviyveuong xewévou TN. Ta yehhovtind povtého aviyveuone mpémel var elvon
eova vou Blaxelvouy T AETTEC GUYXUPLIXES XAl UPONOYIXES ATOYPWOELS OV TopaUEvouy oTadepée mopd TNy
ropdppact. Emniéov, to {htnua tng eneénynupatixdtnroc otny aviyvevon xewwévou TN elvon {otinng onpaciog.
Kodoe ta yovtéha yivovtar mo mohbmAoxa, ol anogdoelg Toug yivovion mo BUoX0A0 Vo EpUNVEUTOUY, TEdyU
mou elvon TpolAnpaTind, dedopévmy Twv cofupty EMTTOOENY TNS Aavlaouévne Tokvounong XeWWwévou, OTne 1
auELoBhTNOT TNS axodNoixg axepondTNTAS.

H nopoloo epyacio anooxonel otny xahOTepn XATAVONOY TOV YOLUXTNELOTIXWY TOU SLETOLY TNV aviyveuon
xeyévou TN xou Tou TEéTOL Pe Tov omolo T LoVTEAN PNy avixhc Udinone BaciCovtar o auTd yio vo emTOYOLY
N axpiBela. Me 0 Biepetvnon emtdéoewy Bacloyévwy oe avtimapadelypota, a&loAoyYolUe TNV oviexTixdTnTa
TWV ONUERLVOY ohyoplluwy aviyvevong xat evtoniloupe to otolyeio Tou 0dNYoLY GTNY TAELVOUNGY) TOU XEWWEVOU
o¢ xewévou mou €yel dnwovpyndel and TN 1 and dvipwno. E&etdlouue enlong v nepimhoxdtnto xewwévou
¢ Poo petpwn i T dudxpton yetoll xeévev mou éyouv napaydel and TN xou ovdpdniveov xelwévey,
npotelvovtag évay anhd aviyveutr) mou Booiletol oTny mEPITAOXOTNTO Xou €XEL OLYXPlOWES EMBOCELC YE TLO
TEONYUEVA LOVTENA.

Emnmiéov, Biegdyouue Piot Epeuval Yenotodv Yol Vo olohoyHoouue Tl ovlpdniveg emdooel oty aviyveuon
xewévwy TN xou diepeuvolyue to xpltiplal oL Yenowonoloby ol dvipwrol oe clyxplon Ue exelva Tou yenol-
ponotolv ot aviyveutés mou Pooilovton oe LLM. Avahbovtoag tig euduypouploec xou Tig amoxhioelc yetald
Twv olohoyRoewy Tou avipnnou xou Touv Yovtéhou, oToyelouUe TN BEATWON TwV EMBOCEWY TOGO TOU ov-

1



Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

Ypwdnou 660 xou NG Unyavic xotd Ty aviyveuon xewwévwy tou dnwovpyodvton and TN. Auth 1 ohoxknewuévn
TPOGEYYLOT) EMBLWXEL VoL EVIOYVUGEL TNV EUpwCTlal Xou TNV a€lomioTiot TV GG TUATWY aviyveuong xewwévou TN,
TeowdmVTag TeEAd TNV unebduvn dlaxuBépvnon otny emoyr) tne TN.

Xy evotnra 0.1 nopouscidleton cuvontind to Yenpntind utdBalpo ot 6TL aPoPd CUCTARATO TAUPAYWYNE XEWEVOL
TN oA xa To GUGTARATA 0VEY VEUOTC TTOU €Y 0UV ETLXPATNOEL, xS xou dAAo oToLy el TO OOl YENOLLOTOLOUNE
oty epyaocio pag. Xtny evotnta 0.2 napouctdlovtol To TELPHUOTA IOV TEAYUUTOTOLACUUE T8V OTO GUGTHUT
awTd, eved oty evotnta 0.3 napouaidleton 1 peuva yenotdv tou diedyoue xododg xa T anotehéouatd Tne.




0.1. Oewentnd vToBadpo

0.1 Oswpntxd vrofadpo

0.1.1 XuoTALATA TAEAY WYNS XELLEVOU

H mopoloa epyacio emixevtpdveton oe cuoThota Tou To€voldoly xeluevo elte we avipnnivig napaywyhc elte
e TopayOUevo and yeydha yAwoowd yoviéha (LLM). Tétow ovothyato avagépovtal ¢ "aviyveutés Xelué-
vou"(text detectors) A amhade "aviyveutéc" (detectors). Ta v amoteheopatind Swapoponoinon LeTall xeuévou
TOU TAPAYETAL amd Tov AvIpwTo Xal XEWEVOU TOU TUPAYETAL Ad UNYAVES, Vol amapaiTnTO Vol XATAVONCOUNE
Tov TpoéTo Ye Ttov onolo toe LLM mapdyouv xelyevo. To mo cuyvd yenoueonoloVueva Hovtéha, OTwe 1 CeLpd
GPT, ypnouonololyv oo lTeXTOVXES PETAOY NUATIOT®OY Hovig xatedtuvong mou tpofAénouy 1o enduevo Ty
XEWEVOL UE BAoT Tol TEOTYOVUEVA YENOUOTOLOVTAS auToEmPBAETOUeV uddnor. Apyixd, n mapoywyy xEWévou
Baototnxe oe vietepuo Tixéc wedddoug dnwe 1 dninotn avalhtnon xa 1 avalitnon pe déoun(beam search), ot
omolec 6UwS oL VA 0dnyouoay oe enavahaufovéuevo xelpevo. Avtideta, to obyypova Loviéla YeNoHLoToL0Y
O TOY Ao TES TPOCEYYIOELS, 1) BELyHoTOANlar TUEYVAL, YioL TNV TR WYY TLO PEUGTOV X0l GUVEXTIXOV XEWWEVOU.

Or e€ehielc ota povtéha mapaywYNS XEWEVOU €Y0UV ELOAYEYEL TEYVIXEC OTWC 1) ¥AUdxworn e Veppoxpaciog
[23], n omolo puduiler TV TuyawdTNTL TG €€6B0L, Xou N Mpo-exToddEUOY YEYSANG Xh{axas Tou oxoloudeiton
amd Aentopept] pUULoN o8 CUYXEXPUEVES epyaoieg 1) Topelc. Autég ol pédodol BEATIOVOUY THY aVOTNTO TRV
HOVTENWY Vo Ttopdyouv mowx(ho xat oyetixd pe to mhadoto xelpevo. Do mopdderypa, poviéha omwe to T5 [66]
emdeviouy aloomnuelnTn evehiéio alomoldVTaS TOGO TN YEVIXYH YVOOY ToU TapéyETol and TNV TEo-exmalbeuoT),
©oddS xou TN AemTopERT PUVMLOT Yiot cuYXEXPWEVES epyaoiec. Emmhéov, 1 evioyutiny wdidnon and aviedmivn
avatpogoddtnon (RLHF), énwe gaiveton oto InstructGPT [65], seuduypoppiler to napayduevo xeiyevo pe Tic
aVIpWTLVES TEOTWUACELS EVOWUATOVOVTIS dEBoPEVA TToL TapgyovTal and Tov dvipwro oTn dladacia exnaldeuvong.

Avutéc ol e€ehilelg otV ToRUY WYY XEWEVOU, EVE BEATUOVOUY TNV TOWGTNTO XAl TN CUVOYT TOU XEWEVOU TOU
TOEEYETOL AN TEYYNTY VONUOCUVY), TapOoUGIdlouy ONUAVTIXEC TEOXANCELS YLol TOUG avlyVeuTtéc xewévou. H
ouveyhc Behtiwon Twv yedddwy derypotoAndlac, 1 oTeatnyX| XeNoT TNE TRo-exTalBEVoNS Xl TNE TEAELOToinoNG
X0 1) EVOWUATOON TNG aVvIpOTLYNG ovaTEOPOBOTNONE £YOUV EVIOYUCEL CUAAOYIXA TIC BUVATOTNHTEC TapAYWwYHS
twv LLMs. Koatd cuvénela, ot aviyveutée xeyévou mpénel vo egehlocovtar dote vo cupfodilovy pe autd ta
eZehyuéva povtéda, eaopoiilovtag ty oxpBn dapopomnoinom petald xewwévou mou €yel mopayVel ond Tov
dvipwno xan xewwévou mou €xel mopoydel oand cuothuata TN, nopd tnv auavouevn duoxoiia mou YETouv ol
TEONYUEVES TEYVIXEC TOROYWYNG.

0.1.2 Aviyvevon xeipévov TN and dvipwro

ITpoTol emixevipwdolyue ANOXAELGTIXG OE QUTOUATOTOMNUEVES HEVOBOUE AV VEUCTC VLo TOV EVIOTULOUO XEWWEVLV
TIOU TTOEGYOVTOL altd UNYOVES, EVAL ONUAVTIXG VoL Avay VweloouUE To pdAo Tou pnopel va dladpapatioet o dvdpwnog
oe auté 10 €pyo. Ot dvipwnol wg CUVTOVIOTES, Yio TOEABELYUA, UTOEOLY Vo ETUBAETOUVY To AUTOUATOTOLNUE VL
CUCTAPOTA, TapEyovTag Lol avipdmivn Tvelld o TeptBdAhovTa OIS T UEGO XOLVWVIXAS BixTlmang, dmou 1)
ouvepyaoio LeTa D TV avIpOTLYLY XOLTOV Xl TRV QUTOUATWY VLY VELTEOY elvor amapaltnTn Yo Ty e€dhetdn Tou
%xox6B0oUNOL TEpLEYOUEVOL IOV TopdyeETAL and Unyavéc. Meléteg €xouv e€etdoel Tig emBOTELS TV aVIPMTLVLY
aELOAOYNTMY OTOV EVIOTUOUS XEWEVMY TOU BNLOURYOUVTAL UE TEYVNTH VONoolvr, utoypopuilovtas Ty ovdyxn
yia ovlp@mvy cupueToy | Tapd Tic e€ehielc oTo avToyaTonoMmuéva Epyohela.

"Eyouv avantuydet Sidpopa epyoheia yior Tny evioyuon tng ovlpdmyng IXavOTNTAUS GTOV EVIOTULOUS XEWWEVOU TOU
nopdryetan and TN. Eva aZloonueinto napdderyua eivan to epyareio GLTR (Giant Language Model Test Room)
[20], o omolo ypnowonolel otatioTnéc avopahies oTo xelpevo tou napdyeton and poviéia énwe to GPT-2 vy
va Boninoel touc aviponivoug afioroyntéc. To GLTR ontixonolel tnv mdavétnta eupdvione xdde Aé€nc oe
éva xelyevo, Bonldvtag Toug yefotee va evtonioouy wotiBa evOETIXd TOU TeplEOPEVOLU TIOU ToRdYETAUL omd
unyovéc. Qotdoo, autd o epyareio avupetoniler Tpoxhioelc Ye o tponyuéva poviéha 6mwe to GPT-3 xou
vebTepa, Ta ontola ypnoonotody detypatolndio top-p (tuprivar) avti yia derypatolndia top-k, xahotdvioc tny
aviyveuon mo BVoxoAn yio Toug avipnnoug topd T Bordeia Tou epyakeiou.

O emdooeig twv avipodmivey aflohoyntev towilhouv onuavtixd. Oplouéveg peréteg, omwe pla mou apopd
xelpevo nou topdyeton ond 1o GPT-3 [10], Swmictwoay dtt ol un extoudeupévol dvdpwrol dev éxouv xahitepn
anédoor and v Tuyalo emhoyn. Avtideta, o dAAN peAéTn oe @oltnTég Tavemotnuiou €8eie 6TL ol dvipwmol
UTopoY VoL avory veploouv xeluevo mou mopdyetan and unyovée e oxpiPewa nepinov 70%. To epyodeio RoFT
(Real or Fake Text) [13] a&iohoyel tic avlpdnivee emBOCELS GTNV avary VLT ToU 0plou GTOV To XE(UEVO TTOU
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€yel ypaptel amd dvipwno petanintel oe xeluevo mou éxel mapoy Vel and unyovh. Autd to epyaieio delyvel ot
oL dvipwrol €youv xahltepeg embddoelg and TNy tuyaio emAhoyn, av xou 1 euxohia g aviyveuong ennpedleton
and TNV TOAUTAOXOTNTO TOU UOVTENOU, UE TA UXPOTEQN WOVTEAX Vo Elvol EUXOAOTERA OTNV aviyVeuaoT,.

H npbogatn €peuva delyvel 6Tl evd ol dvlpwmol unopoly va anodwoouy xaAbTepa and TNy Tuyaio emhoyt
oTnV aviyveuon xewévou mou mopdyeton and unyovr, 1 axelBeld toug pewwdvetor xoede tao LLM yivovtoar mo
neplmhoxa. Axoun xat ot exmadeupévol avipmdnivol xpltée Buaxohebovtal va QTdcouy Ty axplBela TV TEAEU-
Tofog TEYVOROYIOC AUTOUATOTONUEVGY AVLYVEUTWY, Ol OTIOlOL UTEPEYOUV OE XATACTACELS OTou oL dvipwnol ef-
vou o mdavé va e€omatniolyv and xelpevo mou poldlel ye avdponivo. Emmiéov, n enextacipdtnta anotelel
ONUAVTIXY TEOXATION YL THY aviyVEUST) avip®dTVOU TEPLEYOUEVOU- XIS 0 GYXOC TOU TERLEYOUEVOL aEVETAL,
OL QUTOUATOTOWNUEVOL aVLYVELTES Elvon omapadTtnTol yior TNV amoteheopotiny| enelepyaoio UEYSIAWY TOCOTHTLY
xewévou. Qotd600, 0 cuVdLACHOS TN avipndmivng eniBAedne Ye TNV AUTOUATOTOMUEVY AViYVEUGY) TORUUEVEL
Cotxhc onuaciog, xadde ol avipdrivol Xeitég Umopoly Vo YEIRLoTOOV axpaieg TEpITTHOoELS, Vo enaAnleboouy
TIC QUTOUOTOTIONUEVES OMOPATELC ol VoL EAEYEOLY Ylal Tpoxatahielc atoug alyopldpous teyyntic vonuoolhvng.

INo va avTPETOTOTOUY auTég oL TEOXANOELS, 1) TapoLoa UEAETY] TEQLAOMBAVEL Lol EQEUVAL YPTNOTKY, OTOU OL
CUHETEYOVTES AVOAOUBAVOUY TNV aviyVEUST) XEWEVOU TEYYNTAC VONHooOvNg oe BLdpopoug Topelg xou mAalola.
Avt 1 épeuva anooxomel 0T GOYREIOTN TV AVIPOTIVKDY ETBOCEWY PE TOUSC AUTOUNTOTONUEVOUS OVLY VEUTES X0l
oTN CUANOYT] BEBOPEVODY GYETXE YE TO TL EMNEEGLEL Ti¢ AVUPMTIVES AMOPACELC XATE TNV ToEWVOUNGT) XEWEVWY.
Ta evprpota authc e €peuvac Yo Bondoouv otn Behtioon tou oyedlacpold TV CUCTNUATOY avlyveuong
xon Yo Topdoyouy Thnpogopie oyeTnd ue Tic avipdmiveg YvwoTixée Siepyaoieg otny aviyveuvon xewwévwy TN.
Evowpatdvovtag Tic avip®nves YVOoELS UE Tponyuévous alyoplluoug aviyveuons, o oty og Vol VoL avamTuy-
Vel pio To ONOXANEWUEVY X0 ATOTEAECUATIXY] TROCEYYLOT| YLl TOV EVTOTIOUS TEQLEYOUEVOU TOU ToRdYETOL Amd
unyavée. H hemtopepric avdhuom xan Tor amoTEAEGUATA TG EPEUVAS XeNOTHOVY Topouctdlovton otny evotnta 0.3
oTA ENANVLXE XOU TILO OVIAUTLXG GTO XEPIANLO 5 oTol Ay yAd.

0.1.3 Avtopatonoinuéveg pnédodol aviyvevong

To épyo tne Biudxprione Petadd avipdmvou xou UNyavixd Tapay GUEVOU XEWEVOU EYEL GUYXEVTPMOEL CNUAVTIXG
evolapépoy and Ty xotvotnta Tou NLP, ye anotéheoya va €yel dSnutovpyniel €vo eupl @dopo Te) VXY TeyvNTAC
VONUOGUVNC Yol UNyovIXrc uddnong.

Aviyvevor Bdoel YoapaxTNELoTIX®Y

M e&éyovoa npocéyylon elvon 1 aviyveuor BACEL YAUpUXTNELOTIXGDY, 1) OTOlA ETUXEVTRPOVETOL GTOV EVIOTIOHO
CUYXEXPWEVLV YORAXTNELOTIXGDY ToU dlapoponolody To avlpmnivo xeluevo and autéd xelyevo mouv nopdyeton and
unyevy. Autd T yopoxTneLo TG GUY VS avadeElxvUouY eYYEVELS aBUVAIES OTO TEPLEYOUEVO TTOU TORAYETOL OO
TN, 6nweg n éhhewn ouvtoxtinic xou AeEIAOYIXAC TTOLXAOHOP®IAS, CUVOYTNE oL GXOTOU, Xo®E xot {NTAUTA
enavaanmTixdémtag. To avdpdnivo xelyevo mapouctdlel yevixd éva uplTepo PAoUO BOUMY TEOTACEWY XoL
AeZuhoylou, BSiotnpel pia hoyxr pot| xou amo@eyeL Tic TepLTTéS emavalfidels, xohotdvtoe To To TAoUCLO Xou
WO EAXUOTIXG GE CUYXELON PE T ovTIoTOLY O XEUEVO TOU ToEdYOVTAL Ud UNYAVES.

Ou uédodor aviyvevong pe Pdon ta YUEoXTNELOTIXG TOCOTIXOTOLOUY QUTEC TLC OLPORES YLl TNV ovAmTuEn
xprtnelwy avayvoplong xeévou mou mapdyetal and pnyovidata. Do mopddetypa, 1 Uétenon tTne emavoknm-
TIXOTNTOC TV N-grams Pnopel vo amoxahidel TNy unepBolxr] Yerion 0pLoUEVKY QEAGEWY, EVaL X0V YaeaX TNELo-
TX6 OTO TMEPIEYOUEVO TOL TapdyeTar amd TeXVNTH vonuoolvy. Meléteg €youv deilet 6Tt auth N Tpooéyyion
unopel va emtiyer LPNAT oaxp{Bela, it pe ToHAodTEPA LOVTENR TTOU YENOWLOTOLOVUY GTEATNYIXES detypatorndioc
top-k. Mot dhAn uédodoc mepthaufBdver Ty €€€Taon TG CUYVOTATAC XL TNS XATOVOUNG TWV YOEaXTAR®Y, M
omnola uropel va dapépet avdroya ye T uédodo detypatodndlac mou yenowonotel 1 TN. Xtuhopetpind yopox-
TNELWO TG, OTWS TO UECO UNXOC TROTAOTS ot 0 aptdudc Twv onuelnv otiéng, €youv enlone yenowonowndel yio
ToV eviomioud Baopdv, Wine ot uxpdtepa xelpeva 6mne ta tweets.[39],[63]

Iopd v oy Toug emtuyla, ot napadoctoxée wédodol mou Bacilovtar G YapaxXTNELOTIXG €YX0UV XUTACTEL
oe ueydho Boadud mopwyNuéveg EVavTl TEONYUEVKY LOVTEAWY xal eEehyuévwy Texvixdv derypotoindioc. Ta
olyypova taparywyd LLM, Blwe exeiva nou yenowonotoly derypatohndio top-p (tuphva), napdyouv xeipevo
nou efvon o mowxiho xou xatdhinho yia To mhaloto Ilou tileton, YeLdVOVTAC TNV AMOTEAESUATIXOTNHTA QUTWY
oV Peddny. Kaldde ta yAwoowd poviéha éyouv yivel peyolltepo xon mo eEehiyuéva, To €pyo Tne aviyvevone
éxeL yivel 6ho xat mo dvoxoho. O pédodol mou Bacilovtar oe yapaxtneloTixd, ov xou e€oxoroutoly va elvon
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Yerowes wg Pétpo alyxplong, €youy Eenepaotel and mpomnyUévo Lovtéha unyovixic uddnone 6cov agopd v
oxpiBeto xou TNV avdextixdtnta oe emtdécels.

ITap’ 6hot autd, ot mapadootaxés uévodor mou PBaocilovton ot yopoxTneloTxd diatneoly xdnowa adio Adyw e
anhdTnToac xou e euxohlog mewpopatiowol Tous. Ilapéyouv éva yprowo onuelo avagpopds yio Ty a&loAdYNoN
NS anddoang To GUVIETWY oy VELTQDY, Slac@ahilovtag dti ol tponyuéveg uédodol anodidouv TouldyLoToV TO
{Blo xoA& pe Tic amholotepeg mpooeyyioelc. Xe OploUéveC TMEPITTWOELS, 0 GUVOUNOUOS UeYOdwWY BacLoUéveY
OE YOPAUXTNELOTIXA PE TEONYUEVAL EpYOoAelol, OTWC LOVTEAN UETACYNUATIOTGY, Uropel vo Bektidoel tnyv oxp{Bela
aviyvevong. H otuhopetpunr| avdivon cuveyilel va eivon onpoavtixy, Wiwe oe teplntooelc 6mou ol uédodol Tou
Baotlovtar o LLM unogel va elvar Ay6Tepo amoTeEAEOUTIES, OTWS ToL TOAD GUVTOUA XElpevaL.

Ev xatoxhel®t, eved ol yédodol aviyveuorng pe Bdom ta yopaxtnelotxd dev anoteholy mAéov 0 Abom ouyunc,
ToEoEVOUY €val TohdTo epyalelo oTn cuveytl{oUevy mpooTdielo aviyVELUOTC XEWEVWY TIOL TAEAYOVTOL ond
TeYVNTA vonuoolvy. H euxolla yefong Toug, 1 ixavédtnTd Toug Vo Ypnowelouy we onueio avoapopds xon 1
BUVATOTNTA EVOWPATWONS UE To TponYréves teyvinés dtaopaiilouy 6t e&axohovdoiv va dwdpoapatilouv pdro
TNV AVETTUEY LOYVPKOY CUGTNUATWY aviyVveuong.

Aviyvevor pe ped0d0ug UNBEVIX®OY dELYUATWY

Ot pédodol aviyveuomns UNBeEVIXDY BELYUATWY YIA TNV 0VOLY VPO XEWEVOU TIOU TPy ETOL OO UNYAVES 0ELOTOLOVY
Ta exnoudevpéva Yhwoowd povtéha (LLM) yweic npdodetn hentouepy| exnaidevon ye delyporta xeuévey. Mo
TEOWY| TEOCEYYIOT| TETOWWY HEVOBWVY YpNotdonololoe T cuvohixy Aoyapuduixh TdavoTnTa TOU XEWEVOU, EPap-
HOLoVToG €V XATOPAL YIoL TNV TAEVOUNGCT| TOU XEWEVOU WS TRy OUEVOU amd pnyavr, €dv 1 mdavotntd Tou fray
TO XOVTE GTO UEGO RO TOU TOEAY OUEVOL ATtd Unyavh XeWWEVoU amd 6,TL Tou avlp®nivou xelévou. 2oTt6c0, auTh
n wédodoc bev unepelye oe oyéon ue TiC Topadoolaxés TexVXES Tou Booilovtal o YopuXTNELo T, LnuavTixy
Tpdodoc oTNy aviyveuot pe pedddouc Undevixddv Serypdtmy onpetdydnxe pe Ty etlsaywyy| Tou Detect GPT[57], o
omolo aviyvelel xelpevo tou dnuovpyHnxe and unyoavhipata eEeTdlovTas TIC TEPLOYES JPVNTIXNG XOUUTUAGTNTAC
e Aoyaprduxhc miavotnrag Tou poviéhou. To Detect GPT diatopdooet ehagpddc To xeluevo xau to Podporoyel
S UNYOVIXA TRy OUEVO EQV aUTES oL Blatopayég €xouy YounhoTepeS Aoyaptiuxés miavdtnTeg and To apyLxod
XE(UEVO, EMTUYYAVOVTOSC OVOTERES EMUDOOEL, 08 cUYXELON PE SAAEC UeFOB0US UNBEVIXGDY BELYUATWY XaTd TNy
xuxhogopia Tou.

ITapd v apywxn Tou emtuyia, To Detect GPT €yel apxetolc neploptopois. Anautel tn YvoOGN ToU GUYXEXPWEVOU
LLM mou yenowwonoteiton yia T dnutovpyia xeyévou, xotode ta Sdpopa Hovtéha Topouctdlouy SLopopeTIXES
mdoavétnee Yo Aéelc pe Bdom o dedouéva exmaldeuchc Toug. Autd To xathoTd U1 TEOXTIXS VLo GEVAELL TTOU
nepthapBdvouy moAhamhd 1) dyvwota LLM. Emniéov, to DetectGPT elvon unohoyiotnd oxpi3é, xardde xon
evdhwto ot emdéoelc ToEdPEIoNS, OTOU EAAPENOS TEOTOTONUEVO xeluevo egamatd tov aviyveuty. lapdho mou
€youv mpotodel Behtidoeic 6nwe 1 anotereopatixny devypatoindio [3] xon tor unoxatdotato povtéha Bayes|54],
autég ol Bedtiwoel avtgetwnillouy uévo ev pépet ta teofriuata evpwotioc xou e€dptnone tou DetectGPT
and To CUYXEXEWWEVO wovTého, eplopllovTac TNy mpoxtxr Tou Yenom. Ilapdhnha ,exouv eupaviotel xou dAheg
pédodol aviyveuons undevixddv deryudtwy, 6mwe 1 allotoinon tne mAnpogoplac xatdtaine Aoyaplduou xau 7
extiunomn e eyYeVOUS SLICTATIXOTNTOS TWY EVOWUATMOEWY XEWWEVoU. Autéc ol mpooeyyioels elvar TOAAG
UTOOYOUEVES, OAAG OmoUTOVUY TEPALTER® DOXWES O TPaxTixd TepBdAlovTa.

H avdhuon tng neptmhoxdtntoc Xewévou etvor plor dhAn anoteAecpatint| uédodog undevixwmy detypdtwy. Metpd
™V anpoBAenTn GUOY TOU XEWEVOL, HE LPNAGTERT TEpITAOXOTNTA Var UTOBELXVOEL TIERLEY OUEVO IOV €yl mapoy Vel
amo pnyavh. Ot aviyveutée mou Bactlovtol 6Ny TERLTAOXOTNTA GUYXEIVOUY TNV TEPLTAOXOTNTA EVOG GUYXEXQLUE-
VOU XEWEVOU UE THES XATWPAIOU TTOL TEOERYOVTAL U YVWGC Td Xelueva o €youv mapoydel amd avipmroug xou
unyoavée, avayvopilovtag aflémota xefyevo tou €youy mapoy Vel and Te) VT VvoNuooivr oe TOAES TEPLTTWOELS.

Or aviyveutéc mou Poaotlovtar otny TepTAoXOTNTA TOL XEWEVOU €xouv anodetyVel 6Tl elvan and toug xahltep-
0UG OVLYVEUTEC UNBEVIXMY DELYUATOVY. DTNV epyosio Wog, Topouctdlouye €vay amhd oviyveutr Boclouévo otny
TEQLTAOXOTNTO XEWEVOU, AMOBEXVUOVTAS TNV anddoct] Tou oTto (Blo enminedo pe To XUAUTEPY AEMTOUEPMS EU-
Yuouéva povtéha oe dldgpopouc touelc. Autd avadexviel T SuvatoTnTa Twv Pedodwy aviyveuong undevixwmy
BelyUdTLY v Topopelvouy anotehecpatixés xadde ta YAwoowd povtéla cuveyilouv vo egeMocovton, Tpoo-
(PEPOVTAC Lol TIEOCTIXT Xtk EUXOAN XALAXOVUEVT AOOT VLol TNV vl VEUCT) XEWEVWY TEYVNTAHSC YONUOCHVIC.
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Aviyvevorn ue Aentopep? pUOULOT ROVTEAGY UNYAVIXAS nddnong

H npocéyyion nov Yewpeiton anoteheopatindtepn otny aviyveuon xewwévev TN eivon n hentopepric pvdpon(fine-
tuning) mEo-exTUBEVUEVWY YAWOOIXOY HovTEAwY, 6Twe To BERT 7 to RoOBERTa[83]. Auty nepihopPdver v
exmafBeUcT) AUTOY TWV HOVTEAWY pe Topodelypota aviyveuone uné eniBiedn. H mpooéyyion éxel deilel yeydin
ATOTEAEOUATXOTNTA, Wie Ye povtéha mou aviyvebouv xeluevo amd Ta Bla ¥ mopdpota wovtéda. Meréteg
gyouv dlamotooel 6Tl N Aentopepric pdduion Tou RoBERTa oe mopadeiyuota devypatohndloc top-p ynopel va
emitOyel VPN axpifeia oe Bidpopes pedodouc detypatoindiog, EenepvidvTtag axdur xaL T Aettouept| pUulon Tou
povédpopou wovtéhov GPT-2. Qot600, ol aviyveutéc Aemtouepols phduiong anontoby onuavTxd rtapadelyuoro
exmaidevone avd ¥Adon yio BEATIOTN anddoon ot eVIEYETAUL Vo BUCXOAEDOVTOL VO YEVIXEUGOLY GE BLAPOpOoUS
Topelc.

M onuavtixy Tedxhnom ge Toug AemTouep®s puUpLouévoug aviyveuTég eivon 1 e€edixeuct| Toug- telvouy va
anodidouv e€aipeTind xoAd 6TOV TOPEN GTOV OTOl0 EXTAUBEUTIHAY, OAAG ALYOTEPO OMOTEAEGUATIXG EXTOC AUTOU.
INo mopddetypa, eved ol aviyveutée ue Bdon to RoBERTa unepéyouv oe epyaoiec dnwe 1 aviyveuor eudov
eWdfoewy 1 1 avdhuoT axodnuoindy eYyedpov[46][47], n andédoon tous tépTeL oe eupltepa TAdiow. Autéc o
ouuPiBaopos wetald e axpifelog o cUYXEXPWEVO ToUEd xou TG Yevixeuong elvor Lwtixig onuaciog xou oTta
TELRdUoTd pag yenotponotovue t6co to RoBERTa, 660 xau pixpdtepoug aviyveutég nou Pacilovta atov BERT
yia vor xatadei&ouye avtéd to onuelo.

Emniéov, ol Aemtoueptdc cuvToviopévol avtyveutéc avtietonilouvy {ntiuata evpwoTtiog. Aedopévne tne bong
TV HOVTEAWY avoixTol xodxa 6nwe to BERT xou to RoBERTa, uropel va eivon gudhwta og endéoelg and
avTidAoug, 6Tou Wwia xen Topdpeoor xewwévou unopel va egamathioel Tov aviyveuty. Ilopd tic tpoxifoeis autéc,
n Aemtouepric pVduLon mopouével wo eEéyouoo UEVoBOC Yio TNV oviyVEUGT XEWEVOU UE TEXVNTY VONUOoUVY,
1Blwg oe ouyxexpévoug topeic omou N udmAY axpBeta elvan LwTinng onuaciog xou undpyouy endpxy) dedopéva
exnaldevone. H npocopuooctixdtnta authc tne uedddou ota elBLxd YopaxTNELGTIXG TOU TOEd NG EMLTEENEL Vol
EMTUYYAVEL AVOTERES EMBOOELS 68 oUYXELON UE Lo YeEVXEC Tpooeyyioele aviyveuorg.

Aviyvevorn pe LOVTEAA AVTLYATIXNG EXTTOUBELOTNG

IMaiowr érewe 1o RADAR|[27] xou to OUTFOX|[37] eivon mpwtondpa otny e€EAEN TV 0L VEUTMY XEWWEVOL TEY V-
NTAC YONUOGHVNG HECH OVTLPATLXGY TUPAUSELYUATWY exmaldeuone. Autd to mhaiola Ypnoulonoloy yila Tpocéy yion
BLmA0l LoVTENOL: Evay oVl VELTH TTou exTaudeVETOL Yiar Vo avory vp(let xelpevo mou mapdyeton and TN xou évov
ToEoPEACTY) TTOL exmatdedETAL Yol Vo Tapdiyet xelpevo mou pmopel vo e€anatrioel Tov aviyveuty. Exnadedovtog
EMAVOUANTTIXG QUTE ToL LOVTEAN OF AVTLTOEAIEDT), TEOCOUOLWOVOUY AVTICTOLY A GEVAQLAL TOU TEAYHATX0) XOGUOU,
evloy0oVTaS TNV aVIEXTIXOTNTA TOU aviyVELTH amévavtl ot e€elyuéveg emdéoeic, ouunepthoauBavouévmy e
TOPAPEUOTS X TNS XEpayWyNnone Bdoet npotpomic(prompt manipulation).

Ot pé€dodot avtipatinic exnaldeuong tpocoyoldvouy cevdpla entdeong xatd T didpxelo TG exnaldeuong, 6Tou
0 TopaPEacTAS TaEdYEL ToEAdElYUATA TOU TEOXOAOUV TOV avLYVEUTH HE 0To)0 TNV eandtnot tou. Auth 7
AVTLPATLXY TREOCEYYLOT O)L Wovo BehTidvel Tnv oxp(Bela Tou aviyveuty| oe dpyxéc epyaoie aviyvevone, aAAd
X0l EVIOYVEL ONUOYTIXG TNV avIEXTXOTNTE TOU EVAVTL AVTLQATIXWY ETVECEWY G GUYXELOT UE TIC TOEAUSOGLUXES
pedddoug hemtopepole plduione. Auth 1 ovdextxdtnta elvon Wiaitepa xplowun oe TEaXTXES EQUPUOYES OTOU
To %elyevo Tou mapdyeTon amd TEYYNTY vonpoolvn uropel va yetpaywyndel yior va ano@lyel Ty aviyveuon.

X1 8w pag €peuva, divouye Eugaon otny aloAdYNoN TV avly VELTOY tou Bacilovion oTny avTigatixy udinon,
onwe 1o RADAR, yio vat eXTIACOVUE TNV ATOTEAECUATIXOTNTE TOUS EVAVTL AVTLQATIXGY ETIUEGEWY TTOU Holdouy
e napappdoetc. Autd avadexvieL Wa 6TPoPT| Teog To eeAlypéva Thaiota aviy Veuong Tou UTopoly vo avtéEouv
¢ e€ehloobuevec anethéc mou Baoilovtan oe xelyevo mou mopdyetar and texvnTH vonpoolvr, eacpoiilovtag
€tol o a€LOMOTOUS Xou avieXTe00C Unyaviodols avlyveuang yia Touxileg epapuoyec.

Aviyvevon pe vdatocHuaAvVoT

H vdartoorpovorn (watermarking) éyet avodetydel ¢ plar véa TPOGEYYLON Yiot THY OVTLIETOLOT TOU ONOEVOL XAl
mo mohdTAoxoL €pyou TNne Bidxplone xewwévou nou mapdyeton we TN and mepleyduevo ypouuévo amd tov dvipe-
wro. H teyvixh auth) neplhopfdvel TNy eVOWUATWOT XpUPEDY DETOY 0TO XE(UEVO TOU TUPAYETOL Ad UEYHAL
yiwoowxd poviéda (LLM), o onolot eivar averaiodntol and toug avdp®drivoug avay vaotee odld avtyvedovTol
ané eldixole alyopituoue. Ipwtapyixde otdyog eivon 1 dnuoupyio piog oatdToTNG UTOYPUPHS TOU UTOBEXXVUEL
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TNV TROEAELaT) Tou XeWévou, Bondwvtag €Tol oty aviyveuon xai Tn pUUULOY TOU TEPLEYOUEVOU TTOU TURYETAL
and TN. T napdderyuar, 1 uédodog mou TeptypdpeTton AETTOUERNOS 6TO [35] XaTNnYOplOTOLEL To TUAUOTO EVOS XEWLE-
vou oe "npdolvec" xou "xdxuxivec" Moteg yenoiponoldvtoe Tuyaonoinom, dlao@aiilovtag 6Tl To LBATOY AP
TUPAUEVEL XPUPO YLoL TOUC avipdToUS ahAd avary VOE(OLUO b dUTOUATOTONUEVOUS OVLY VEUTES TToU elvor e€oixel-
wpévol ue Tic MoTec.

Qot600, N evpelor LLOFETNOT TG UBATOCHUAVENG GE TEEYOVTA LOVTEAN TRy WY NS XEWWEVOU TEYYNTAS YONUOGUVNG
onwe 1o ChatGPT nopauéver meploplogévn AoYw Slapdpwy TEOXAACEWY. XTol TEY VXS eunddio tepihopBdveton
N AVETTUEN LVBUTOYEUPHUNTOS TOU elvol T6G0 avilexTixd amévavTl o BLdPopOUS YELPIOUOUE TOU XEWEVOU OGO
Ol OEXETE U1 vty VedoLo OoTe var puny uroPaduilel TNy guy€pelal xou TNV TOLOTNTO TOU ORIy OUEVOU XELWEVOU.
Emniéov, nhxol npofAnupatiopol yOpw and tny mdovr) xatdyenoyn Tou uBATOYEUPNUEVOU TEPLEYOUEVOU XAl
avnouylec oyeTd Ye ToV avtixTuNo oTIC ETBOOELS TEPITAEXOUY TEPUUTEPW TNV uppoYn Tng. Ot mpoomddeieg
GUVTOVLOPOU Ylol TNV TUTOTOINGY O SLopopeTind Hovtéha xo meptBdilovta avdntuing Vétouv enlone mpoxtixd
EUTODLAL.

Iopd tic mpoxioelg autée, 1 vdatoouavon cuveyilel va epeuvdton xou vo Behtidveton evepyd. Ilpbogateg
peEAETES BlepeuvolY TNV avIEXTIXOTNTO TWV UBATOOTUATKY UTd Towxiheg cuvinxes, OTwe 1 avipdTvy ETovod-
aTOTWoT, N TUEAPEACT| ATd W) UBATOCTUACUEVA LOVTENS 1} 1) EVOWUETWOT OE £YYpapo ueYollTEPNS Sidpxetoc36].
Ou npoonadeieg yio ™ PBektinon Twv aryoplduwy LBATOCHUAVONC ATOGXOTOLY GTY) BIUCQAAICT] TNG ONOTEAEC-
HOTIXOTNTAC TOUC GE DLAQOpa GEVARLOL XAl GTNV OVTWETOTOY {NTNUETLY ac@dlelng, OTKS 1) AnoTEoT TNng
aviyVEUOTC TAAGTWOV EYYRAPWY 1 TNS U1 EE0UCIOBOTNUEVNC YELRAY DY NOTC.

Ev xatoxheldl, eved 1 UBATOCHUAVOY, UTOCYETOL TNV TEdodo TeV duvatoThTwY aviyveuons xewévou TN, 7
TEEYOUCA EQPUOUOYT| TNG OF EMXEAUTOOVTA UOVTEAN TUQUUEVEL TMEQLOPLOUEVT AOYW TEYVIXMY TEPLTAOXWY XoL
TEAXTIXWY exTNoEwY. O Tpéyouces gpeUVNTIXES TPOCTIAYEIES AMOOXOTOUY GTNV OVTIUETMOTION AUTOY TWV
TEOXAACEWY, AVOlYOVTAC EVOEYOUEVWS TO BEOUO Yia TNV €VEVTERT) LLOVETNOT oL EVOWUATWST) TN UBXTOYRAPNONG
0¢ gpyaAelou Yo Ty evioyuomn g ynhaoydtntag xan Tne pUong Tou xeyévou nou topdyetal and TN oto
HENNOV.

0.1.4 TIlepimhoxoTNTA XELWUEVOL

H nepimhoxdtnta xewévou (text perplexity) yenowuelet we Yepehddne petpit otny enelepyaoio puoxhic YAOo-
oac (NLP), dilwe yior tnv allohdynom e TpoPAETTIXAS XavOTNTAS YAWOOIXOY HovTéhwy, 6nwe to GPT-2 1
10 OPT, 1o omola Aettoupyolv pe outomohvdpowxd (auto-regressive) tpémo. ITocotuxonoiel ty ofefoudtnra
QUTWY TWY HOVTEADY Xatd TNV meoBiedm tne enduevng Aé&ng 1 Tunuatog pe Bdon o mponyoluevo cuupeald-
peva. Miot younhotepn Boduoroyia tepimhoxdtntog UTOSNAGVEL 6TL TO LOVTEAO TEOPBAENEL TNV oxohoudio xelué-
vou Ue peyahbtepn axpifeia, yeyovog mou unodnidvel udmidteer) TEOBAEPUOTNTA X, CUVETKC, EVOEYOUEVKC
uTOdNAGDVEL 6TL To Xeluevo dnurovpyinxe and to Blo To wovtého. Avtideta, éva udnhdtepo oxop TEPLTAOXOTH-
ToG oNpolveEL o omEOPBAENTY CUUTERLPOEE, UTOBNAGVOVTAG 60Tl To xeluevo umopel va poldlel meplocdTepo Ye
avlpdmvo, xodig ol dvdpwrol cuyvé tapdyouy AMyotepo teoBédiuc YAWGOXE TedTUTA.

H egopuoy?| tne nepimhoxdtntog eival oTeVd GUVBEBEUEVT UE TNV AEYLTEXTOVIXTH TOU YAwooxol poviéhou. Ta
povTé autopaTnG Tovdpdunone tpoBiénouy ta tuuata MéEewv (tokens) Swdoynd, pe xdde mpdPredm va
e€aptdton and To mponyoLueva TuhUata. O tOmog Tng mEPImAOXOTATAS AvTIXATONTE(CEL aUTH TO YEYOVOS UT-
ohoyilovtac v apvnTixd Aoyoprdum) mdavétnta xéde token Sedopévou tou mponyolpevou mhawctiov. Autd
xoo T TNV TEPLTAOXOTNTA XUTAAANAO UéTEo Yia TNV aloAGYNOoY ToU OG0 Xohd €val LOVTEAO GUUUOPPEVETAUL
ME TOL CTATIO TG TEOTUTIAL TNE PUOLXNC YADGOAC.

Ye npbéogateg Yehéteg, N nepimhoxoTnTa €xel alonoiniel népa and v o&loAdYNoT| LOVTEAWY Yia Vo Bonivoel
oty aviyveuon xewévey texvnic vonpooivne. Do nopdderypa, to HowkGPT[85] yenowonotel tnv avéiuon
neptmAoxOTNTOG Yoo Vo dlaxpivel T gpyaoiec mou dnutovpyolvton and to ChatGPT anéd exelvec mou €youv
yoaptel and avdpdrove. H mpocéyyion auth alonotel v mapadoyn 6Tt to xelyevo mou mopdyetar and TN
telvel va eppaviler younidtepee Badpoloyleg nepimhoxdtnrog Aoyw tne npofBiédiung @bong tou, oe avtideon e
Vv udPnAdteen mepITAOXSTNTA o amedPBAen T PUOT OV GUVAYKE CUVAVTATOL GTO XELUEVO TOU TaPdYETHL OO
dvipwrno.

Emuniéov, gunopxol aviyveutéc énwe o GPTZero[80] éxouv evonpatmoel oxetixéc petpiéc 6mne 1 "éxenin",
7 omola avTXaToTTE(lEL TN GUYVOTNTO TKV ETAVIAIUBUVOUEVRY PEACEWY GE TUAUATO XEWEVOU TIOU TOREYOVTOL
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ané TN. Autéc oL UETPIMEC GUUTANEMOVOLUY TNV TEPLTAOXOTNTA OTOV EVIOTOUS UoT{BwY Tou Slapoponololv
TO TEPLEYOUEVO TIOU TIORAYETOL OO UNYOVES 0L TO TMEPLEYOUEVO TOU YEdpeTol omd tov dvdpwro. Axdun mo
Tponypéves ulomowoels, 6w o aviyveuthc Binoculars[25], mpoywpolv éva Bua mopanépo elodyovTag TV
avdAUGoT) TNG BLIOTAVEOVUEVNE TEPLTAOXOTNTAC. LUYXEIVOVTAS TNV TEQITAOXOTNTA EVOC BEYUAUTOS XEWEVOU TTOU
TopdyeTon omd €vol ovTélo Ue exelvr evog dhAou povtélou, autol oL aviyVeuTéC evioylouy Tnv axpifeia ot
dudxpromn petall xewévemv mou €xouv mopoydel and TN xa xewwévwy nou éyouv ocuvtaydel and davipwro oe
BLdpopar GUVONaL BEBOUEVWY.

Yy €peuvd pag, ovaADOUUE TNV AMOTEAECUATIXOTNTO TNG TEPLTAOXOTNTOC W¢ Baolno) YopaxTnelo ol oTny
aviyveuon xewévov TN. Thonololue €vay anhd aviyveuth ue Bdorn v mepimAoxOTNToL TOU UOoLdLEL UE TOV
HowkGPT xat a€iohoyolye tnyv anddoot| Tou oe Tolamhd oOvoha dedopévwy. H allohdynomn auth neptlauBdvet
TN oUYXPLON TV AMOTEAEOUATOVY TOU Ue exelva and eEehyuévoug aviyveutée 6mwe to Binoculars, ot omoiol
TEEYOLY TANEOPORIEC TYETUE UE TNY EVEWO TIO XAk T1) BLAXELTLXY LXAVOTNTA TNE TEPLTAOXOTNTAC GTNY AVALY VOP-
o xewévou nou €xel dnwovpyndel and TN. Méow 0AoXANPOUEVKY BOXYOY Xol GUYXEIOEWY, GTOYXEDOLUE VA
dlapwticovye tov TPéTo e Tov onolo 1 tepttAoxdTNTA GUUBEAAEL 6TO EVEVTEPO TOTO TNE aviyVELUONC XELWEVOU
TN, avadexviovtag to Suvatd onuela xaL Toug Tidavols TEPLORIOHOUS TNG OE TEUYUNTIXESC EQUPUOYES.

Tehxd, evéd N neptmhoxdtnTa Topopéver o Bootx) HeETexh] yia TNV aloAGYNoT TV ETUBOCEWY TWV YAWOOLXMY
HOVTEAWY, 1) eQopuoyh Tne oty aviyveuon xewévey TN uroypauuilel ) yenowdmtd tng otn Sapopomoino
peTal xewévewy Tou €xouy mapay Vel and unyovéc xou XeWEVKDY Tou €youv cuvtaydel and avdpwnoug. Ko-
Vde 1 €peuva oTov Topéa tng enelepyooiug uorc YAdooac ouveyilel va e€ehiooeton, 1 evowudtwon Tne
TepLmAOXOTNTAG o€ TAlol avlyvevong pall ue dhheg mponyuéveg Teyvixéc unodoyetal vo Bedtiwoel Ty axp(Bela
xat Ty oflomotiot 6ToV EVTOToNS TEplEoUévou Tou €xel dnuiovpyndel ané TN oe didgpopous Topelc.

0.1.5 Enudéoelg napdppaong

H mpbxknon tng axpBolc aviyveuong xeWEvou Tou TApdyeTol omd TEYVNTH VONUOCSUVY EV UEGK ONOEVA XA
mo e€elMypévov endéoewy, dnwe 1 napdpeac, eEoxohovdel va amotehel onuavtind mEOBANUA oTNV EpEUVA
e enedepyoacioc uoic Yhwooug. O emdéoeig napdppaong tepthagBavouy 0 ¥eNom EAAPENOY VEURKVIXOY
BTV YLOL TNV TPOTOTOINGT] TOU XEWEVOU TOU TOPAYETOL omtd HEYSA YAwoowd wovtéha (LLM) pe tpbénouc mou
anogelyouy clyypovous aviyveutéc xeytévou TN. Tlpdogatee perétee [70] xatadewviouy bt o emtdécelc autée
umopoly vo tapoxdudouy ye emtuyia towihes ued6douc aviyveuone, cuunepthapBavouévne e udatooRuaveng
o TV oy veutdy mou Booilovton ot veupwvixd dixtua dnwe to DetectGPT ¥ ou aviyveutéc pe Aemtouepn
pUdutomn. Autd avadetxvier TNV avIEXTIXOTNTO TWY TEXVIXMY Topdpeaons xaL T duoxohia enlteving Loyuehc
aviyvevong anévavtl oe T€Tolou eldoug YEPLoUOUC.

Y70 [38] mpoteiveton plar oTRATNYIXE GUUVOC KE TNV AVEXTNOT, CNUUCLONOYIXS TUPOUOLOU XEWEVOU TOU TapdyE-
ton and éva LLM, vnodétovtag 6t to xelpevo autd Go mopouctdlel yopoxtnelo Tixd mou eivon mo Tumxd ylo
nepleydpevo Tou mopdyetol and tov dvipwno. otdco, auTH 1 TEOCEYYIOT £lval EWBIX YO TO UOVTEAO XoUL
eyelpel avnouvylec Yo Ty mpoctacia g WwTdTNTAG MY TN e€8pTnonc Tne and TNy TpdoBaon oTic e€6douc
tou LLM. Ev e peto€d, cuveyiCovtan oL culnthcelc oyetixd ue TNy Ta€vounom XEYEVOU ToU EXEL TOROPEACTE
and avipdmoug PeTtd TV apyx mopaywyh Tou ané LLM. Tétowo xelyevo, mou yenowonolelton cuyvd oe ex-
nadeuTed mhaiota, YoAdvel T Sudxpion petald nepleyopévou mou €yel mopoydel and TeEXVNTH vonuoolvn xa
nepleyopévou mou €yel ouvtaydel and avipwno, nepimhéxovtog Ti¢ npoonddeleg aviyveuong.

Q¢ andvnon oe auTég TIC TPOXAHOELS, 1) €pELVE Hag BlepeUVd ETIECELS UE AVTITUQADELY AT TOU UUOUVTOL TNV
Topdpeact Yl Ty oloAoYNon NG EUTAYELNG TV aviYVeuT®Y. ALTGTOVOUUE OTL, EVM OL AVLYVEUTEC TOU
Baoilovton oe vevpwvixd dixtua unopoly Vo yelpaywynNloly Ue A Lo TES SLOTAUPUYES HEWEVOU, TETOLEC OANOLGD-
oelg unopel vo unoPoduloouy TNV TOGTNTA TOL XEWEVOU, TEPLOPICOVTIC £TOL TNV TEUXTIXOTNTA TWV TUXTIXWY
ATOPUYNG OF TRAYUATIXEG eQapuoYéc. Emniéoy, Biepeuvolye Tov avtixtumo autdv Twv emdéocny enideone oe
XOUTAVOUES TEPLTAOXOTNTUC HEWEVOU, UE OTOYO VA XATAVONCOUUE TGO ATOTEAECUITIXG Ol UETEWXES TIEPLTAOXOTY-
Tog Umopolv va dlaxpivouv yetagd xewévou mou €yel mopoy Vel and tex VT VoNuoclvy xou XEWEVOL Tou EYEL
napay Vel and dvitpwno oe oevdpla enldeonc.

Yuvohixd, 1 nepiiynorn oto tomlo tng aviyvevone xewwévou TN xou g amopuyAc TopaPEIcEDY ATALTEL TNV
ellooppbmnoT twv texvixdy eEehifewy e nhuée extroeic xou tpaxtixols meploptopols. Kaldde o topéac
e€eMooETol, 0 EVIOTIOUOS EYYEVV YOPUXTNELOTIXMY TTOU dlapopontotoly aftémoto HETAE) XEWWEVOU Tou €xEL

8



0.1. Oewentnd vToBadpo

Topoy Vel and texvnT vonuoolvn xat xeévou tou €yet tapoayVel and dvipwno napauével Lwtixhc onuaciog ylo
™V avdntuén oyve®y Pedodny aviyveuong ixavedy va avtéyouv oTic eEEMOCOPEVES TUXTIXES TWV AVTITIAWY.

0.1.6 E&nyrowwn Teyxyvnty Nonpooivn

H epyaolo auty| emxevtp®dveTol 0Ty xatovdnoT) Twv Paditepny unyaviodony mou xeUBovtol tiow and Tov TeoTo
e ToV omtolo Ta XelUeva TAELVOUOUYTOL WS TORAYOUEVA oo TEY VT Vonuoalvn 1 ¢ avipmmniva, divovtag éugacn
otn onuooia e eppnvevodtTac xan twv uedoduwv Einyhowne Teyvntrhic Nonuooivne (Explainable Al -
XAI). H epunvevoipdtnta oty TN avagépetar oto va yivouv ot dtadixasiec Mdne anogdoewy 1wy cuotnudtey
TN Supavelc xou xatavontée otoug avipdnoug, TapéyovTag Capeic, avayvaoIUeS and Tov dvipnto eEnyhoelg
yioo T mpoPBAédeic Tou povtélou. Auth 1 dlagdvela elvon Lwtinic onuocioc i ™) BeAtinon twv yoviéhwy,
anoxohintovtog mpoxatalfdelc ¥ aduvoples, evioyoVToS TNV EUTLOTOCUVY 6T CUGTAUOTA QUTOUATOTONUEVNC
VY VEUOTC XOUL TIOREYOVTOG TANPOQOEIES Yiol TA YOPAUXTNELOTIXG TTIOL BLAPOEOTOLOLY TO avipWTvo XelUevo omod
To xelyevo mou mapdyeton and Ty TN.

H epunvevodtnta elvon Wiodtepo onuavting oe tepi3dhhovta uhnhod xvdivou, OTeg oL EAEYYOL axXadNUiXNAC
OAXEPUUOTNTOG, 1) ETUAUEVGT) VOUIX®Y EYYEAPWY Xol Ol aELONOYNTELS TNG AVIEVTIXOTNTOS TWYV EWBNCEWY. X aUTd
Ta mAadota, 1 duvatdtnta eERynone tou AéYou yia Tov onolo éva xeluevo TavouONXeE HE EVay CUYXEXPLIEVO
Teémo elvon anapodtnTn Yo T Aoyodoaoia xou TNy anodoyr and Toug yprotec. Kdvovtag tic Aettouvpyieg twv
CUOTNUATWY avlYVEUONG TEXVATAS VONUOCUVIC XATAVONTES, OL EVOLUPEPOUEVOL UTOPOUY VO EYUTLOTEVOVTOL XOL VOl
enahndelouy Tol amOTEAEGUATO TOU GUGTHUNTOS, Tedyud JwTixhg onuaciag yiot TNY AmOTEAECUTLIXY avaTTUEN
TOUG.

O pédodot e&nynowune teyyntic vonuoolvrg unopoly va xotnyoplonotndoly oe 8o xlpleg mpooeyyloec: ep-
UNVELCLUOTNTA IOV ETUTUYYAVETOL amd TO (BlO TO UOVTEAO %O EQUNVEUCUOTNTO TOU EMTUYYAVETAUL UECW UETA-
yevéotepne avdivong [58]. H mpdtn nepthapuBdvel Tov oyedlaoud povtéhmy mou eivon Stapoavi| xon eOXONoL T
velolpa and TV apyt, OTWE Tol BEVTEA UTMOPACEMY, 1| YRUUMXT| TahtvdpoUNon Xou Ta cuc Thuata Tou Bactlovta
o xavoves. Autd to povtéla Tapéyouy aniég, xatavontég and tov dvipnro eENyHoelc Twy dlabixaoliy AMdng
ATOPIOERY, XUNCTOVTOC TA EYYEVOC XOTAVONTA.

H petoryevéotepn epunvela (post-hoc interpretation), and tny dhhn mhevpd, mepthoafdver TNy avdAucT) TOU LOV-
TENOL UETE TNV OAOXUAHPWOT) TKV BladLXACLOY extaldeuone xat Tagvounonc. Auth n npocéyylon eivon anoapoltntn
Yio ToL OVTEAQ Yotdpou %ouTiol, 6mwe etvor tar Barhd vevpwvixd dixtua, Tor ool emTuYYdvouy LPNAY axpifBela
ahhd Bev elvan e0xola xatavontd. Ot post-hoc pédodor nepthaufdvouy v avdhuon tne onuacioc Twv yopox-
TNELOTIXY, TNV OTTIXOTOINCY TV UNYOVIOUWY TEOCOY NG ol T dNULOURYIo XEWEVIXMY 1 OTTIXOY EENYNOEWY
NG CUUTERLPORES TOU HOVTEAOU. AUTEC oL TeyVXEC UTOpOLY ETHONE VoL EVIOYUCOUY To EYYEVHS EPUNVEVCLUY
HOVTEND TIOREYOVTAS TPOCUETEC YVOOELS.

AcBouévou 6Tl Tar YovTERa Uadpou xouTiod mpoo@épouv cuvilwe TV udnidtepn axpiBela oty aviyveuvon
xewévwyv TN, n nopoloa epyasia emxevipidveton xuplwe otnv post-hoc epunvela yior ™y ene€nynuatxdTnTa.
H xotavénomn xou 1 €€Aynon Twv ano@doewy auTiY TV TOAUTAOX®Y LovTEAnY elvar {oTue onuaciag, 18l
oe evaioVnteg epapuoyéc dmou to daxuBeldpata elvar LPNAL. AZonowdvTog Tig post-hoc yedddoug, oroyeboupe
VoL BLUCPAUACOUPE TNV EUTLOTOOUVY) OTA AMOTEAECUATO TTOU ToRAYEL X3 GOOTNHUA X0 VO TIORE Y OUIE CUPELS oUTL-
ohoyNoelg yio xde andpacy TaEvOUnong, eVioyoVTag TOGO TNY AMOTEAEOUATIXOTNTY 600 Xou TNV afloTio Tl
TV cvoTNUdtwy aviyvevone xewévouv TN.

Epunveboipa Moviéla

O euxoldtepog tpdémOC Yo Vo emiteuyVel epunvevolpdtTta ota wovtéha TN elvon va oyedlactoly ye cagpelg,
xoTavonTole alyopldpous, 6Twe 1 yeouxn 1 1 AoYLo T TOAVOEOUNOT], T BEVTRU AMOPACEWY XAl ToL CUCTY-
potal xavovwy. Autd To povTéla Topéyouy Slagpaveic e£600U¢ TOU UTopPoLY EVXOAN Va avayYoLY GE YoEAUXTNELO-
Txd etobédou. T v aviyveuon xewévwyv TN, ou pédodot Poaciopéves oe yopaxtnelotxd, ot onolec aflomololv
xaTovonTéS and Tov dvipwno WLOTNTES, OTwe 1 AeEhoY | ToAopop@la XaL To. CUVTOXTIXA TRoTUTA, Elvol
eyyevoe eneényfowes. H avdivon pe Bdon tny mepimhoxdTnTa, TOU YENOLLOTOLETOL G 0pLOUEVOUC OVLY VEUTES
XEWEVOL TEYYNTAC YONHOGUVNG, TEOCPEREL Ui B€am A0oT UETOED EQUNVEVCUOTNTAS Xl TOAUTAOXOTNTOS. Eve
7 opnyavior Topéyet yior capy) aptduntixny €vdeln e ofefoudTnTac evoc LOVTENOL, amauTel EYYEVH YVOOY TOU
YAWOGLXOU HOVTENOU TIOU YENOoHIoTOoLE(ToL, X&Tt ToL TNV Xao T Un Thews eEnyrowun.
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Qotéoo, 6mwe mpoavagépdnxe oty evétnta 0.1.3, ov pédodol mou Baoilovtor oe yapaxTnELoTiXd, Topd TN
Blapdveld Toug, ouyvd votepolv oe axpifela o GUYXELOT UE TA TEONYUEVA HOVTENN unyovixic uddnong xou
elvon evdhwteg oe yelpaydynom, énwe ol emdéoelg mapdppaonc. To eyyevds epunvedolua poviéha unopolv
ebxoha vo e€amatndoly and yprioteg mou xotavoolv Tt Aettoupyia Touc. Etol, evd npocpépouy Slagpdvela, ol
Teploplopol Toug xahotoly avayxaio T Yerorn TeXVixwy post-hoc epunvevodTnToc Yo o toyuer| xou oxpl3h
aviyveuon xewévou TN, diaocporilovtag 6Tt axdun xou oL ANOPACELS TV TOMNITAOXWY UOVTEAWY UTOPOUY Vol
yivouv xatavontéc xot aflOTOTES.

Post-hoc sppnvevoipdtnTta

Ou uédodot post-hoc epunveloc mpoc@épouy onuavtind mhcovexthpoara, xodode Bactlovtol anoxAelcTxd oty
eloodo xou v €€000 evog povtéhou xou Oyl oTic eowTepxés Aettoupyleg Tou. Autd emitpénel T yperon Tev
o axpBov Sladéoluny wovtéhwy ywelc v teplopilovton amd Ty avdyxn eyyevolg epunvevoipottoc. Kadde
1 TOAUTAOXOTNTOL TWV HOVTEAWY PNy ovixhc pddnong awgdvetar, ol pédodol mou ebvon ave&dptnteg and 1o Yov-
t€ho yivovion 6ho xou mo mpaxtixéc. O post-hoc pédodol pnopolv vo ywplotoly ot xoJoNXES KoL TOTUXES
egnyfoeic: oL xadohxée pédodot TapéyouV Wial CUVONXT) XATOVONOT) TOU TEOTIOU UE TOV OTOLO TOL YUEUXTNELO TIXY
enneedlouv Tic TpoBAEdelc EVOC HOVTENOL XOTA UECO 6RO, EVE oL ToTXES YéDodoL ETXEVTPMOVOVTAL oTNY EERYNON
CUYXEXQPUEVWY PELOVLPEVKDY TeoBAédewy. Topadeiyuato xoadohxwy pedoduwy nepthoauBdvouy Ta UTOXATIC AT
povtéha xou to SHAP yia tnv noryxdoyie onpacio v yopaxtneotxdy, eve 1o LIME[68] eivar piot dnpoguifc
Tomuxt] Y€dodoc mou mapdyel spunvelolues eENyNHoel TpooeyYIovTag Tr CUUTEELPORE TOU UOVTEAOL Uabpou
®0UTLOY YU amd €V CUYXEXPUIEVO OTUElD DEBOUEVWY.

Yy aviyvevon xewévewy texvntic vonpoosivng, ol uédodol uetayevéotepng epunvevoudTntag elvon Wiaitepa
YENOWES YLol TNV XATAVONOT] TV OmoQAcE®Y Tou poviehou. [ mopdderyua, 1 avdivon tng onuaciag Tev
YoeaxTnelo oy €yet Sellel 6TL 1 mepimhoxdTTa elvon €vag Boaoixde nopdyoviag otny taEvounon xewwévwy TN,
av xou dev elvon eyyevag epunvedor. Doty evioyuvon tng diagdvelag, uédodol 6nwe to LIME pnogolv va
dnwovpYHooLY YpaphuoTe otoudatdtnTas AEewy, emonualivovTas Toleg AMEeLS eTnpéacay TEpLoGOTERO TNY TEOR-
hedm Tou TaEvopnT. Auty 1 TPOGEYYLON, TNV OTOld YENCULOTIOLOVUE GTNY EREVVE WS, TAPEYEL CUPECTERT) ELXOVAL
TWV CUYXEXPUEVODY YOPAUXTNELO TIXMY TOU XEWEVOL oL Xardodnyoly TLC ano@doelc Tou HoVTERoU, xaho TOVTAC
TOL TOAOTAOXOL LOVTER TILO XOTAVONTA Yol AELOTUOTA OE TEAXTIXEC EQUPUOYES.

Epunvevoipdtnta he aviipatixég eEnyrnocig

Ou avuipatxée e&nyroeic (counterfactual explanations) efvon wa petayevéotepn pédodoc post-hoc epur-
VEUGLUOTNTAC TOU EMUXEVIPOVETAL OTO TOlEG aAAayéc otny eloodo Yo dAhalav v medPAiedn evog poviéhou.
Avtéc ol e€nyroeig elvon aveldptnteg and 1o wovtéro xou Wlaktepa GLAxEC TRog Tov dvipwro AdYw TN avTi-
YeTrc Toug QuoNE, xAhoTWOVTAC TG EQUPUOCIES OE €val EVPD QPACHUA CUC TNUATKY, AXOUY) Xou OE EXElVOL IOV BEV
Yenowonoloty unyavix uddnorn. Xto miaico tne aviyvevong xewévou TN, ov avuipatixéc e€nyroeic unopolv
vo Bondnioouy toug yeroteg va xatavorioouy Tu mpénel va odAdEet yior v Tavounlel Slopopetind €var xeluevo,
TOREYOVTAC ULl GOpT| Xon BlonoUnTixn xotavonon tne Sladuxaciog APNE anogdoewy Tou OVTELOUL.

Ye mpaxtixés epapuoyés, n xowdtnta NLP éyer avantidlel mhaioto yia Ty ulomoinom avtipotixdy eEnyfoewy
HE TN xeNoN YAWGOIXMY HOVTEAWY Tapaywyhc Xelwévou. ‘Eyouv mpotadel texvinéc dnwe n andxpudn tunudtev
TOU XEWEVOU xau 1 BeATioToNONoT TWY AVTIXATACTACEWY Yo TNy ahhayt Tng €€600u, dnwe Qaiveton oe €pya
omec [69] xau [6]. Emmiéov, yevinée npooeyyioeic 6nwe to Polyjuice [89] Snuiovpyoiv dratapoyéc nou odidlouv
TN onuactohoyio wiag TedTaoTg Ywelc Vo 0TOXEVOUY GE CUYXEXPLUEVO TEOYVWOTIXG THEAYOVTA, TEOCPELOVTAS
evehi&io ot dnwovpyia avTipaTixdy eEnyHoewy.

O avtipotixég e€nyroeic eunneetoly Sldpopoug GXoToUE, GUUTERLAUBAVOUEVNE TNE EXTANIPWGNE TOU OTOTEAEC-
portog, tne diepedivnong Tou cuoThaToc xou tne aviyveuone eutadedy. [50] H aviyveuon tpwtdv onueinv, tou
ouvdéetan otevd pe Tic avtidetinée emdéoeic (adversarial attacks), evtoniler mbavéc aduvoples oe éva oot
O avtidetinée emdéoeic, dnwe autée mou dnuovpyolvton ard to TextFooler [33], arooxonolv oty dnuovpyia
dartopary v mov exdétouv {niuata evpwoTtiog oto povtéha. Autéc ol emdéoelg Sev mopdyouv amopaitnTo
eNdyloTeg 1 pEVOTEC ahhayEg, xou pmopel vor ewodyouy VopufBo, ot avtideon e Tic avtipotinés eEnyRoeic, ot
oToleg ETUBLWHOVY ENAYLOTES X0 OUCLUO TIXES OANAYES.

Ynv napoloa YehéTy, yenotponolotvTal avitdeTinéc emtdéaeic péow tou mhatclou TextFooler yio tn diepebvnon
BLOPOPETIXMV TEEQITTMOOEWY YPHONG TV avTpaTxdy eEnyfoewy. Ltdyoc eivon vo avadetydolv {nthAuato evp-
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woTtiog, vo aroxtndoly Baditepe YVOOEG oyeTid pe TI¢ TEoPBAEYels Tou aviyveuth) xeyévou e TN xou va
dovoly e&nynoeig atoug avipwroug. o vo alohoyniel 1 anoteAeouaTINOTNTO QUTOY TV EENYHOEWY, Blegdye-
TOlL L0l EPELVAL YENOTWY OTIOU 0L GUUPETEYOVTES EXTENOVY aviyveuon xewévou Al téo0 ywelc Bordeio 660 xou ue
™ Bordela avtipatixdy e€nyroewy xou e€nynoewyv LIME. H yekétn aut| anooxonel va xadoploel xatd nécov
autéc oL pédodol epUNVELCLUOTNTOC UTOPOUV VOl EVIOYUGOLY TIC aVIPOTIVES EMBOCELS OTNY V(Y VEUGT XEWEVOU
nou mopdyeton and TN, npocpépovtag mohdTipeS TANEoPopies Yio TN BeATiwon TV cuaTNUdTLY aviyvEuoNg
xewévou TN.

YOvodhn

H mpdopatn BiMoypapia €xel BIEGEUVATEL TO GUVBLIOUS BLAPORETIXDY HEVEDWY EQUNVEUCOTNTAS Yio Vol BEATLE-
OEL TLC YVOOELS WS YUpw amd Tal ovTéAa Unyavixhc Udinong podeou xoutiol. ‘Eva agloonueiwto mopdderyua sivou
7 epyooio [4], n onola evowuatdver Thy Toux onuacia TV YoeaxTnelo Tixdy, énee tapatneeitar oto LIME, ye
Tig avTipatxeg eEnynoeic. Auth 1 uBeWun tpoaéyyion afloloyel T onuavTIXGTNTA TNG dAAay g cupfolopod
HeTAE) Wag TERIMTWONE XL TOU AV TLTUPADELYUOTIX0U BElyUaTOC, TPOCPECOVTOC WLa BLUPOPOTIOINUEVY] XATAVONOT
™S OUUBOMGC TV HELOVWUEVLY YOPUXTNPIO TIXWY 0TI ATOPICELS TOU Uoviéhou. Autde o cuvduoaouds ye-
(PUEWVEL TO Ydopo UETAED TOTUXAC Xat XAJOMXAC EPUNVEVGUUOTNTIGS, TUREYOVTOS TLO OAOXATPWUEVES Xol PLAXES
mpog tov xphotn e€nyfoec. Luvodilovtog, 1 XaTavénon Twy UNYaviopdy iow and Ty TagvouncT Xelévou
mou onwovpyeitan and TN 1 and tov dvipwno eivon Lot onuaciog yior T Bedtinon g Slapdvelog xou e
c€lomiotlag TV cLoTNUATWY TeEYYNTAS vonuoolvne. Ou post-hoc pédodol, énwe to LIME xou ot avtigpatixég
e€nynoelg, BEATIOVOUV ONUOVTIXE TNV EPUNVEUCILOTNTO TOU UoVTéAOU, eENYWVTAC TIC EMUEpous TpolBAédelc xau
TpotelvovTag NGy LoTES oAAaYEC €GOB0U Yol TNV aARaYT) TwV amotehecudtwy. Autd dyi uévo Bondd otny
xoTavonon xat T Bertiworn Twv emdOcEWY Tou YOVTEAOU, GAAE xou eVIOYUEL TNV EUTLOTOOUVY TWV YENOTWY
xadlotdvtag Tig anogdoeg tng TN mo Swgpaveic. Me v evowudtnon autedv tev yedddwy, 1 epyacio pog
anooxonel ot BeAtinon TV SUVATOTATLY aviyYVEUONC X0 TNG EPUNVEVCLLOTNTIC TV oviyVeutody xewwévou TN,
e pat €peuva yenotdv otny evotnta 0.3 (1 mo avahutid oto Kegdhowo 5) vor Slepeuvd Ty anote \ecuatindtnd
Toug oTny umoBorinor tne avlpdmivng anddoorne otny aviyveuon xeluévou tou nopdyeton and TN.

0.2 Ilepapatixd Mégog

0.2.1 Emoxomnon TwV TELRAUATOY

Apyixd, Yewpolyue onuovTind vo SOCOUPE €vol TERIYPOUO TWY TELPAUUETWY ToL BleEdyovTal, WOTE Vo ATOCupT)-
viotel YUpw amd molov dEova EXTEAOUYE To TELRGPOTY Xat T cuvdudlouye tig pedodoroyiec mou culntrdnxay
GTNY TEONYOVUEVT) EVOTNTA .

Aoty wpilovye Tol TELPSUATO TOU TEAYUATOTOCUUE O 2 XaTNYopieg: oTNY eEEPELVNOT TWYV VLY VEUTWV XEWWEVOU
TN pe avtdetinéc emdéoeig xan otny avdddon ye Bdon TNy TepltAoXOTNTA XEWEVOU. LTNV TROTN XoTnYopld,
YENOWOTOLOUHE ¢ xVpLo epyoheio to Thaioto TextFooler [33], to onolo Baciletar otny adhory?) Sopdpwy AéEewv
OE Lol TEOTOOT UE CUVAVLULL, Ews Tou 1 TEdBAedm evog povtéhou arhdiet. To epyohelo autd éxel doxpaoTtel
oe moANEC epyaoiec otov Topéa e TN, dnwe 1 cdhayn Tou cuvanodnuoatixod Thawolov xdmolou xewwévou 1
7 petotpony) Wwog Vet xplitixne oe apvnter. Epelc alonololye 1o cbotnyo autd Yiol Vo TUPATAAVACOUUE
aviyveutég xeévou TN, odidlovtog tnv npofiedn Toug and xeipevo TN oe avipdnivo xon avtictpoga.

O Paocwol aviyveutée xewévov TN mou yenowonowlpe eivar 1o RADAR|27] xouw to RoBERTa, eved ex-
nawdedoupe xou wxpdtepa povtéha DistilBERT yio vo mpocoyouwdoouye to poviéha Aemtopepolc pliuiong.
Enlong, yenotpomowolue 6 Booixd chvora dedopévwy and tn PiBAoypapio, to omoio avTinpocnmnelouy delypota
and dLopopeTeoVg ToPElC YPUmToU AdYou €10l (OOTE Vo £YOUUE Uiot TANEECTEPT) EXOVA TNG ATOBOOTG OANS Xa
e evpwotiog Twv aviyveutdy xewévou TN. Ilepioodtepec mAnpogopleg yior Tot GUVORA BEBOUEVWY LTy oLV
oY evotnTa 3.3.

XN deltepn xatnyopla TMEWUUATWY YPNOWOTOWOUE TNV AVAAUOT] TEPLTAOXOTNTAS YLOL VoL OLEPELVACOUUE TNV
unddeon 6L 1 meptmhoxdTnTa xewévou (text perplexity) elvon evdewtixd Twv eyYeVOY dlapopdv petadd ov-
VeOTVOU Xo YNy ovixd TopayOUEVOL XeWévou, Bondovtac otny axplB] tadvounor. Lt Bdon auvtrh oyedidlovue
évay ohyépripo ohodaivovtog napadipou mpoceyyilovtog TNy TeoyloTiny) auToTaAVdpoUixY| anocUVIEST, TLV
mdavotitwy axohovdioc. Tpomonololue autdv Tov olybprdpo oe aviyveuty| xeyévou TN npocdopilovtac éva
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BértioTo ot yia Ti¢ Porduoloylec axatoAANAOTNTUS Y PN OLULOTOLW VTS BedoUEVa EXTUUBEUCTC, EMUTEENOVTAS
pog var TeEvouooupe xeldeva we napaydueve and TN 7 avipmdrivo.

INo va emixvpooouye nepontépw Tt p€dodo yac, tn cuyxplvouue Ue o TEONYUEVES TEYVIXES, OTWE 1) cUYXELOT
NG TEPLTAOXOTNTAS UE CUUTANEOOELS xeWévou and LLMs, énwe pehethidnxe oto [25]. Me tov nposdiopiopd tev
BEATIOTOV XTIV €8Xd YLt Toug ToUels xeyévou, unoypauuiloupe ) onuacia TV cLUPEAlOUEVWY TNV
Taglvounon ue Baomn TNV TEPLTAOXOTNTA XAl TROGPEROLPE Uiol Vepehtcddn uédodo yia Ty aLoAGYNoT ALy VEUTOVY
xewévou TN. Auth n Baowr yeaupr uropel va Bondnoel toug epeuvntéc otny alohdYnoT TN evpwotiag xou
TNG AMOTEAECUATIXOTNTAS TWV OVLYVEUTMY TOUG EVAVTL SLpOpwY CUVORWY BEBOUEVWLV.

0.2.2 IIocoTixd AMOTEAECUATA TNG AVAAVOTG AVLY VELUTWY

Apywd o&tohoyolue TNy anddoor TwV SLEPopwY AVLYVELTMV OTA GUVONX DEBOUEVMV HAC, YE TO ATOTEAECUOTO
va atvovton otov Iivanca 1.

Table 1: Yuyxevtpwtxd anoteAEoUATa ATOBOCTG AVLYVELTWY avd LOVTERO Xal GUVORO BEBOUEVKY

Model/Dataset 1 2 3 4 5 6
RADAR 56.5% | 95% 7% | 71.5% | 84% | 63%
RoBERTa 70% | 83.25% | 9% | 46.5% | 78% | 51%
DB-1 92.5% | 50% 72% | 57.5% | 61% | T1%
DB-2 54% | 96.5% | 48% | 74% | 50% | 38.5&
DB-3 58.5% | 96% | 100% | 70% | 58% | 40%

OhoxAnpmvovTtag TV QAo AUTr TOU TELRAUATOS, TUPATNEOVUUE OTL EVE oL TEAEUTAlAS TEYVOROYIUS oviyVEUTES
umopolV va Bloxpivouy amoteAeouaTxd PETAE) TWV TEPLOCOHTEQMV XEWEVGWY TOU TAUPAYOVTUL Om6 TEYVNTH
VONUOGUVY Yol TV ovIpOTIVWY XEWEVWY, UTEEY0oUV dlapopeTind eninedo emtuyloc avdhoya UE TOV TOUER, TO
oUVOAO BEDBOPEVLY, TO UOVTEND XL TNV TeY VX Tou Yenoiwonoielton. Tao povtéla mou €youv mpo-exmoudeutel
o€ EVaY CUYXEXPLIEVO TOPEN 1) GUVOAO BEBOUEVGY ETULTUY YAVOLY UeyohlTepT axp(Belol 6TOV cUYXEXPUEVO TouLY,
oAAG 1 axpifelar Toug Bev yevixeleton extég owtol. Ev 1o uetagld, ueyalbtepa poviéla nou €youy puduiotel Aen-
Topep®C Yia TV aviyvevon xeéveov TN yevixd ahhd Oyl Yo Eval GUYKEXPLIEVO GOVOAO BEBOUEVLY ETLTUY Y EVOUV
xOAUTERES ETUBOOELC OTY YeEVXN TEpinTtwon ahhd oTig e€elBixeUUEVES TeplnTWoelS dev efvan TOAD xovtd oe évay
téheto todvounth. Aveldptnta and to cOvoho BEBOUEVMV XAl TO HOVTEAO TIOU YENOULOTOLEITOL, €Vag YeHoTNG
mou emJuuel Vo YENOLLOTOLACEL OTIOLOVONTOTE OmG AUTOVS TOUC OVLYVEUTEG OF €Vl PEUALGTIXG GEVAPLO TRETEL
VO IO WENHoEL TOAU TpooeXTIXd, xadwe gaivetar 6Tl e€axoloudolv va Utdpyouv onpavTxol Teploplouol Tou
TopeUTOdLouY TNV anoTEAECUATIXGTNTE TOUS, OTwe To xpd xelpeva (ewdxd yio to RADAR), o xelpeve amd un
puotxolc oNTéS TS ayYAic YADooog 1 to xelueva and dagopetind LLM xou topelc (6mwe napovoidleton
ot0 oUvoho dedopévwy MAGE oto omolo ol aviyveutée yevixhic xprione Suoxohebovial TEpIOCGTERO).

Y1n ouvéyela, mpaypatonoolue avTeTiny enldeon otoug aviyveutéc uéow tou miwciou TextFooler. H Spo-
potix) oAAYT) 0T TOGOGTA ETUTUYING TWV VLY VEUTWY Topouctdletal oTov mivaxa 2.

Table 2: Anédoon aviyveutodv yetd tic emtdéoelc TextFooler

Model/Dataset 1 2 3 4 5 6
RADAR 18% | 0% | 0% 0% 0% | 5.5%
RoBERTa 1% | 0% | 2% 2% 7.5% | 2%
DB-1 20% | 0% | 3% 0% 0% 0%
DB-2 16% | 22% | 29% | 1.5% | 14% | 9.5%
DB-3 44% | 29% | 38% | 11.5% | 44% | 22%

‘Onwe mpoxdntel and avtd to anoteAéopota, to TextFooler xatapépver va avtioteéder tnyv mpofiedm Twy
VLY VEUTOV GTY CUVTELTTIXY TAElodPn@lo TV TElpopdtoy oTa onold 0 TEOYVWO TGS UNYavioudc elye apyixd
oA oxpifela. Amd auTéc TIC TEPITTAOELS, To xpdTeEpa Tpo-exmoudeupévo povtého (DB-1,DB-2,DB-3) gaiveto
vou elvor EAaPEAOS TO avIex TS OTIC dlaTapay€g amd ToL LOVTEAX YEVIXTC YeN\OMS, QPOUVOUEVO TO omtolo umopel va
anodidetal 0TO OTL EXTAUBEDOVTOL GE EVOL UXEO CWUIL TUPOUOLWY BESOUEVGLY %ol EMOMEVWS EfVal TILO ETUEPETY o€
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unepnpocopuoyt(ovefitting). Eve 1 uneprnpocopuoyt| etvan yevixd avemdount, Ya unopovoe va onuoaiver 6L ta
TEOTUTIOL TTOL Yordalvouv ouTE To LOVTEAX ElVol TTOAD CUYXEXPUIEVA X0, ETOUEVES, oL avTideTixés emdéoel Tou
Baoilovton aniode oe ahhayéc MEN mpoc AEET umopel va elvan Aly6tepo amoteheoyatixés evavtiov toug. Qotdoo,
oOmwe QafveTal, axour xou oty Yelpdtepn mepintwon to TextFooler xatagépvel va pléel tny anddoorn dhwv Twv
VLY VELTOY XdTe and To 50%, Tpdyua tov onualver 6Tt pe anhéc entdéocic avTnatdo taonc AEEMY oL vy VEUTES
anodlBouV YElpOTERO axOUN Xol amd TNV Tuyolo ETAOYT).

Emniéov, napatneoiue 6t to TextFooler odhdlel Aydtepo and 10 10% twv AMEewv evOE XEWEVOU XaTd WEGO PO
Yl vor TopamAaviOEL ETLTUY OGS €vary aviyveuTy. To mpo-exmoudevuéva wxed povtéha telvouv va €youv udmidtepo
PEcO TOC0OTO ANy UEVWY AEEEWY Xa EWBXE 0Tal cOVOAX BEBOPEVWY GTA OTolol €YUV TRO-EXTUBEVTEL, YEYOVOS
Tou ovoyetiletar e T yYevix! Swamiotwon ot elvon o avdextixd oe avtdeTinés emIECELS amd TOUC OVLYVEUTEC
vevrc yerone. Metald tov aviyveutdy yevixol oxonol , to RADAR gaivetar va anantel yeyohltepo 1ocootd
MeZewv mou aAAGLouv xat PeYoAUTERO aptiud epwtnudTwy tpog extéleon(queries) and to RoBERTa, yeyovéc
TIOL UTOONAWYVEL OTL elvor o avdeEXTIXOS aviyveuTrc. Autd pmopel va anododel otny avtidetinr] exnaideuct| Tov,
1 omolo mdovede adénoe TV XVOTHTE TOU VoL NV TUEATAOVETAL Atd WXEEC BIATOQOUYES TOU XEWEVOL.

OloxAnpe®@vovtoc TNV TN QAcT) TOU TEWRGUATOS, EiVal TEOPAVES OTL OL TEAEUTALOG TEYVOAOYIUS OVIYVEUTEG
XEWEVOU TEYYNTAS YONUOGUYNG AvTETOTILOUY €Val GNUAVTIXG EUTOBLO GE OTL APOpd TNV EVpKGTio ot avTdeTINég
emdéoel, To onolo ouPPLVEL pe To eupuaTa TOAGY TEdouTwy epyaotdy étwe 1 [28]. Aslyvouue oti amhéc
emdéoelc avTixatdotaong MEEmY Unopoly Vo eEanatAo0UY aviy VeUTES Tou amodidouy pe axpifela téve and 70%
xou wéyet 100%, mpoxeiuévou va petdoouy v axpiPeld toug ot entinedo uxpdtepa and tny tuyoia emhoy. Emt-
TAéoV, BLepeuVolPE TiC Blapopés UETAUE) TEO-EXTIOUDEUUEVWY ULXPOTERY OVLY VEUTHV X0l UEYUNITEQMV VLY VEUTHV
YEVIXNC XPHONE %Ol DLAMIO TWVOUUE OTL Ol ULXPOTEPOL aVLY VEUTES elvol eAapen o avdextixol otig avtetinég
datapayéc. Autd mioavdg ogelleton oty unepBolix TEOGUPUOYY GTOV Wixpd 6YX0 Bedouévev exmaldevong,
1 onola xahoTd TOUC AVLYVEUTEC TO GlyoupouS Yol TLc TPOBAEYELC TOUC Xal, EMOYEVWS, Tl BUGXOAO vV Tapa-
mhavnBolyv pe amhég avixataotdoelc MEewy. 261600, OTNC CNUEWCOHUE TEOTNYOUUEVKS, dUTO deV onpalvel &t
TOL UXPOTEPA TIRO-EXTIUBEVUEVA LOVTEN elvar XUAUTEPOL ALY VEUTES, X3¢ cLY VA €YOUV TOAU XaxEC EMBOCELS
extéc Tou medlou exnaldeucTc Toue.

0.2.3 Anoteréopata TNG AVAALONG TERLTAOXOTNTAS XELUEVOL

Yt Seltepn OElPd TELPUUATWY BLEEEUVOUUE BLAPOP YAUPAUXTNELOTIX YE ETMIXEVTRPO TNV TEQLTAOXOTNTA XEWEVOU,
onwg e€nyeltoan oty evotnra 0.1.4. Ilpdtov, doxwdlovpe tnv unddeon 6tL Ta xelyeva mou tadivopolvto
w¢ mapaydpeva and TN mepéyouy cuvidwe mo mpoBiédiuec Aé€elc mou odnyolv o onuavTxd younidteen
neptmhoxotnTa. €dc ex ToUToU, Yenoidonololue to poviého GPT-2 yio va yetpriooupe v neptmAoxdtnTa Tou
xeyévou oto delypata and 6la ta olvola dedopévev pac. To cuyxevipwtxd anoteléopato Tapovatdlovta
oTov mivaxa 3 TopoXdTw.

Table 3: Méon nepimhoxdtnta xewwévwy TN xou avidpwnou avd chvoro dedopévwy

Dataset PPL of Generated Texts | PPL of Human Texts
Autextification 49.6 171.86
Human vs. ChatGPT 15.54 75.82
GPT Classification 11.12 40.03
ChatGPT Detector Bias 25.9 35.67
HC3 10 57.9
MAGE 31.36 43.98
Average 23.92 70.88

‘Onwe mpoxdntel and Tov Topandve Tivaxa, 1 UECT TEPLTAOXOTNTO XEWEVOU Elvol TEAYUOTL GNuavTiXd LPNAdTERN
yioe T avdpomiva xefyeva and 6,TL Yo Tol XelPEvo ToU TaedyovTon and TEXYNTY VONUooUVY GE OAa Tol GOVORY
dedouévov. T vor xaTavoiooupE TEPALTER® TIC XUTAVOUES TNE TIEPLTAOXOTNTOC XEWWEVOU e xdlde Belyuo cuvohou
dedouévev, ameixovilouvue TiC TepTAoXOTNTES O Wopt| Yeaphuatog. Ta anoteAéopata nopovctdloviol ot
Yyfupata 0.2.1-0.2.6.
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Distribution of Perplexity by Class, AuTexTification dataset
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Figure 0.2.1: Katovouy mepimhoxotntoc xeywévou
oto oUvoho dedouévev AuTexTification

Distribution of Perplexity by Class, GPT Classification dataset
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Figure 0.2.3: Katovouy mepimhoxotntoc xeywévou
oto olvoho dedopévwv GPT Classification

Distribution of Perplexity by Class, HC3 dataset
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Figure 0.2.5: Katovouy mepimhoxotntoc XeWwévou
670 oUvoho dedouévwv HC3

Distribution of Perplexity by Class, Human vs. ChatGPT dataset

m Generated
= Human

Frequency
5

20 a0 60 80 100 120 140
Perplexity

Figure 0.2.2: Katavour, nepimhox6tntog Xeévou
o710 cUvoho dedopévewyy Human vs. ChatGPT

Distribution of Perplexity by Class, GPT Detector Bias dataset
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Figure 0.2.4: Katavour nepimhox6tntog xeuévou
010 olvoho dedopévwyv ChatGPT Detector Bias

Distribution of Perplexity by Class, MAGE dataset
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Figure 0.2.6: Katavour, nepimhox6tntog xetuévou
o710 olvoho dedouévey MAGE
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0.2. Ilewpopatind Mépog

E&etdlovtac mo mpooexTind autd Tol oY HUATO, UTopOVUE Vo BOUUE OTL THpOAO TOU ToL XE(HEVA TTOL BNLOUEYOUVTOL
ané vy TN (onueiopéva ye x6xxvo ypwuo ota dlorypdupota) elvar YEVIXS TEQLOGOTERO TPOC TNV APLOTERT
Theupd (younhotepn teptmhoxdtnTa) amd Tor avipdmive xeluevo (oNUeElpéva ue TEdovo Ypoud), xdde clvolo
OEBOUEVLV €YEL TN BIXT| TOU XATUVOUT TEPLTAOXOTNTAS TTOU TAPOUGLALEL OPLOUEVAL EVOLAPEPOVTAL YORUXTNELOTIXG.
ITio ouyxexpiuéva:

e To cOvora dedopévev 2, 3 xou 5 (Human vs. ChatGPT , Gpt Classification xou HC3) napovcidlouv
TOAD puxeY) emxGALdN HETOEY TNS TEPLTAOXOTNTOC TWY XEWEVWY TOU TAEdYOVTaL antd TEYVATH YONUOoUVY
%ol TV aviedTvey XelWwévey. Enopévwe, avauévouue 6Tl évag aviyveutnc pe Bdon tnv nepimhoxotnTa Yo
elvar oe 9€om va Slaxpivel ToN) anoteAeopotixd YETAE) TV XACEWY, EGV ETAEYEL TO GWOTO HATWEAL.

o Yta olvoho OBedopévev AuTexTification xow MAGE vundpyer onupovtixd emxdhudn petofd tng
TEQLTAOXOTNTAC TWY XEWEVKY TKVY 800 ¥Adoewy. Av xou Yevixd Loy Vel 6Tt GO TLO APLOTEPS XVOUUACTE GTA
Blorypduporto (younhotepn meptmhoxdtnra) téoo mo xuplapyn yivetaw 1 xhdon Al-Generated (xxxvn),
avapévoupe o0t Yo ebvor Tohd 80Gx0A0 Yiot Evay aviyveutr) mou Baolleton 0Ty meplmAoxdTNTA Vo efvan oE
V€om va Blaxpivel YeTal TV XAAoEwY ot auTE Tot GOVOAIL BESOUEVMV.

e Y10 oUvoro dedopévewy ChatGPT Detector Bias, undpyel xdmoio emixdhun uetagd 10V TEQITAOXOTATOVY
XEWEVOL TV B0 XAAoEWY, dhAd Atydtepo and to cUvola dedouévev 1 xou 6. Enlong, yivetow eppavég 6Tt
T avidpomiva xelyevo 68 auTé To GUVOAO BEBOUEVWY WVOUVTAL TEPLGCATERO TPOC TNV apLOTERY TAEURd,
XJTL TTOL EIVAL AVOUEVOUEVO, DEDOUEVOLU OTL AUTO TO GUVOAO Bedopévwy TeplhopBdvel TOANG xelyevo Tou
npoépyovTal and N Puoxols owANTéS NG AyyAc YAOOGS, To Xel(UEVa TwY Tapoualdlouvy yaunAdTeen
TEQLTAOXOTNTA AMO TNV XUVOVIXT.

0.2.4 Aviyveutng Qe Bdor TNV TEPLTAOKOTNTA XELLEVOL

To enduevo Briuo elvon Voo XOTHOXEVAGOVUE EVOLY AVLY VELTH| PE BAOT TNV TEQLTAOXOTNTA, (GTE VO UTOPEGOVUE VA
éyouye éva onueio avapopds mou Yo xodopilel 1660 UM UTOPEL 1 TEQLTAOXOTNTOL XEWEVOU VoL SLoxplVel UeTal
XEWEVRY TIOU ONULoVEYOoUVTOL amd ToV dvipmTo xol XEWEVKY Tou dnulovpyolvtal and v TN. Eextvdue pe to
aperéc melpapa e avdalpetng emAoyhc plag THAG G XATWOEAL YLoL TOV VLY VEUTY Wog, 0 omolog Yo Tallvouroel
uqe xelpevo ye aumnyovior xdtew and autd 10 XATOPAl we topayduevo and TN xou xdde xelyevo e opunyoavio
Tvew amd auTO TO AATOPM KOS avipndmvo. XN cuvéyel, cuyxelvaue tov agelr aviyveuth pog pe tao LLM
yevurc xerong mou yenowonowjoaue otny evétnta 0.2.1. Ta anoteréopata autod TOU TEWRIUATOC UToEOVY
va topartnendoly otov Iivoxa 4 napaxdte, 6Tou Ye €viovr Yeopr UTOBEXVOETOL O OVLYVEUTHC TOU TETUYE TNV
uPnioTeen axp{Bela.

Table 4: An6doomn apehddy oV VEUTOVY TERITAOXOTNTAG CUYXPLYOUEVY He Toug aviyveutée LLM yeviic yerione

Model/Dataset AuTex | Human vs GPT | GPT-Class | GPT-DB3 | HC3 | MAGE
RADAR-Vicuna-7B 56.5% 96.06% 7% 71.5% 80.5% 63%
ROBERTA-large 69% 83.2% 81% 46.5% 78% 57.5%
Naive Perplexity (t=20) 57% 88.6% 96.5% 51% 96% 53.5%
Naive Perplexity (t=40) 58% 99.26% 71.5% 67% 78% 61.5%

H avéuon twv dedouévay oty delyvel 6Tl axduo xou oL ageheic aviyveutée mou Bacilovtal oty TeptmAoXOTHTA
UTEPTEPOLY TwV oviyveutdv LLM yevixrc yprione oe clvoha dedopévemv 6mou undpyel cophc didxplorn wetald
TWV XATOVOUMY TEPLTAOXOTNTAG oL dntovpyolvtor and tov dvitpwno xou v TN. Xe mo anatntixd chvoha de-
OOUEVWV UE ETUXUNUTITOUEVES XATAVOUES TEPLTAOXOTNTAS, oL avtyveuTtéc LLM napoucidlouv ehappetdc xakitepeg
emdboels, av xou dev Eenepvolv Ty axpiBela tou 75%. Autéd vnootneilel v unddeoy| pag 4Tt 1 TepITAOXSTHTA
xeWwévou elvan €val onuavTxd YopaxTneloTixd yio T dudxplon xewwévou mou éxel mopoyVel ané TN ond ov-
Yeodmvo xefuevo. Qotdoo, 1 dwocduavon e axpifBelag TwV oviYVEUTHOY ot BLUPopeTXd GUVOA BEBOUEVLY
UTOBNAWVEL OTL OL apeRelc aviyVEUTES TeplmAoxdTNTG elvor axatdAAn oL yior TeaxTixy) Xenom Ywelc TEpuuTépw
npocappoYn. Alopopetixol Topel XEWEVOU €YOUY BLUPOPETING YoPUXTNELO TN TEQLTAOXOTNTAS, YEYOVOS TOU
anattel ouyxexpléva dpta yia axer tagwounocr. Katd cuvéneia, to enduevo Bripa pag ebvon vor avartoEouue
évay aviyveuth ue Bdon v meptmhoxdtnTa Tou xadop(lel To BEATIOTO XaTd@AL pe Bdomn To cOVoOho BeBOPEVLV,
onwe 1 pédodoc nou yenotponoteiton 610 HowkGPT[85] 610 mepBAhhoy Twv oxodnuUoixdy EpYUoLOV.

15



Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

H pédodoc mou ypnowonotodue yio va tpoceyyiooupe autd to mpdfinua eivon va "exmoudedoouue" tov tali-
VounTy| TEQLTAOXOTNTAC UE TEPOTO TAHPOUOLO UE TOV TEOTO TOU EXTOUOEVOVTUL TO LOVTEA TEXVNTAC VONUOCUVNG,
TEOXEWEVOL v BpolUE TO VXS XUTOEAL Yiot xdde cUvolo dedopévwy. Ilo cuyxexpéva, ywellovye xdde
delypa cuvohou dedouévev oe clvola exntaideuone xou doxu®y, étou 1o 80% Tou cuvdlou yivetor To clvolo
exnaldeuone xou To undroino 20% yivetar To chvoho Boxdv. TN cuvéYELd, LTOAOYI{OUUE TNV TEPLTAOXSTAHTAL
v xdde xelpevo oto obvolo exmaldevong xan emavohaudvoupe €va eVpog TUAVEY XATHOPAWY, XEATOVTIC TO
XoNOTEPO XATOPM (Tou Topéyel TV xahltepn axpifelo oto clvolo exnaldeuonc). Télog, yenoonoolue o
Béhtioto xatwdehl mou Beédnxe oto cUvolo exmaideuong yio va a&lohoyooude v oxpifBeio g pedodou pog
070 cUvVoho doxunic, To onolo amotehel xouvolpla(unseen) SESOPEVA YL TOV VLY VEUTH.

Ta anoteréopata authc TNS TEOCEYYLoNG ot xdde éva and ta 6 chvola BedoPévwy Yac TapoucLdlovTal GTOV
TTivoea 5.

Table 5: Méon nepimhoxdtnta xewwévev TN xou avipdnivwy avd cUvolo Sedouévewy

Dataset Optimal threshold | Training accuracy | Test accuracy
AuTexTification 170 56.88% 57.5%
Human vs. ChatGPT 39.12 99.07% 100%
GPT Classification 21.48 98.12% 97.5%
ChatGPT Detector Bias 35.22 65.62 80%
HC3 16.32 98.12% 100%
MAGE 65.84 71.25% 65%

'Onwe npoxintel and to anotehéopata, 1 oavdhuon nepimhoxdtntac odnyel otnv xahbteen N mohd xovtd otnv
xohOtepn axp{Beio oe xdde cOvoro Bedouévwy extde and to obvoro dedopévwv 1 (AuTexTification) xou to
olvoho dedouévwy 6 (MAGE). Adyw Tou pixpol ufixoug Twv xeWwévwy oto obvoho dedouévwy AuTexTification
X0 TNG EYYEVWE TEPLOPLOPEVNC TTOGOTNTAG cLUPEalouévwy, 1 TeptmhoxdtnTa dev anotehel Bavixd Yétpo yia Tov
Tpoadloploud Tou xatd nécov éva xelpevo €yel nopaydel and texvnTH vonuooivy 1 and dvipnto oe auTdV ToV
CUYXEXPWEVO TOUEN XalL, ETOUEVKS, E(VOL TOAD TPOTHLOTEPOL OL €8IS PUIULEHEVOL OVLY VEUTES Yid Uixpd Xelpeva,
onwe pmopel vou gavel amd Ty uPNAY axplBela Tou emtuyydvetan and to DB-1. And v dhhn mAeupd, xavévog
VLY VEUTAG amd aUTOUE TTOU BOXUACTNXAY BEV ETULTUYYEVEL dpxeTd aflompeny] axp(Bela 6To GUVOAO BEBOUEVLV
MAGE, xaddc 1o xohitepo anotéheopo Tou 71% tooduvauel oyedov ye tny mhetodmeixn xhdom, dedopévou 6Tt
nepinov to 70% Twv xeywévwy oe autd 10 cUVoho dedouévwy ntapdyeton and TN.

Etvon o€toonuelwto and ho o Yéypel Tipa AnoTEAESUATE Hog OTL HETAUED TV GUVOAWY BEBOUEVKY TIOU ETAEEUE
oL VLY VEUTES BUOKHONELTNXAY TOAY TEPLOGOTERO VoL emTOYOUV Xah) oxpifeia ota oUvola dedopévewv AuTex-
Tification xow MAGE. Kdvouye v unddeon 6t autd pnopel vo ogelletar oto yeyovde 6Tl awtd tor cOVoha
dedouévev mepthopfdvouy xelyevo ané LLM mou eivan extdc tne owoyévetag poviéhov GPT, xou emopévee
elvoaw o dboxoho vo aviyveudel and 6Tt xelpyevo and to ChatGPT 7 diho povtéra tne OpenAl, ota onola
€xel eTXEVTPWUEL 1) CUVTELTTIXY TAELOVOTNTA TWV EPYUCLIV AViYVEUGNC XEWEVOU, BEBOUEVOL OTL XUpLIEYOLY OTN
degopev) tewv LLM.

o va eléyEouue auth v unddeoy, emextelvoupe tov ahydprduo aviyveuone mepimhoxdtnrog BEATIOTOU
xatwehiov yog, o onolog unohoyiletan yenotwonowdvroe g Padporoyies tou GPT-2, oe o LLM |, 6mwe
to Palmyra (ané tmv Writer Al), to OPT (ané tnv Meta AI) xou to GPT-NeoX (oné v EleutherAI). H
AnOBOOT TWV AVLYVELTWY oUT®Y Topovatdletar ota yeagphuota 0.2.7 xou 0.2.8, yia to cbvolo exmaldevone xou
T0 6UVOLO oWV avtioTolya.

‘Onwe galvetar ot autd to oy uota, 1 emioyh LLM yia tov unoloyiopd temv etpinoy neptthoxdtntag dev odrnyel
oe onuovtég dapopéc. H axplfBeta mou emituyydveton, oo ota dedopéva exnaldeuong 660 xou oTa dedouéval
doxwnc, elvon apxetd mapdpola oe Ao tar wovtéda, pe 1o GPT-2 va €yel oploxd xalbtepeg emddoelg and to
umohoima. Autéd To anoTtéheoua elval aVOEVOUEVOD, BEBOUEVOU OTL 1] TAELOVOTNTO TWV XEWEVWY TIOL TOREYOVToL
ané TN ota cOvola dedouévwy pog meoépyeton amd Tt Yevid GPT. Xuvokxd, 1 Swopopd yetagd "ebxolwv" xou
"80ox0 V" GUVOAWY BeBOPEVWY Elvor EPQAVAC: GAa ToL LOVTEAX BUGKOAEDOVTOL VO BLOPOPOTIOLACOUY Tal GUVOAXL
dedouévev 1,4,x0u 6 YeNOWOTOUOVTIS HOVO TNV TEPLTAOXOTNTA, XETL TOU BiXaMONOYE{TOL EUXONA oy EEETACOLUE
TIC OYETXEC XOTAVOUES TOUG UETAED TWV XAJCEWV.

16
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Accuracy on Training Data by Dataset
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Figure 0.2.7: Axpifeio 6t0 oUvolo exmoldevong, avéd Lovtého xou GUVOAO BeBouévwy

Accuracy on Test Data by Dataset

100 A
90 1
)
S 80
=
[¥)
o1
<
o
W
70 4
—e— GPT-2
60 Palmyra
—e— OPT
—8— GPT-NeoX

T T T T T
AuTex HvC GPT-Class GPT-DB3 HC3 MAGE
Datasets

Figure 0.2.8: AxpiBeio 610 oUvolo exnoidevong, avéd Lovtého xou GUVOAO BeBoPEVWY

Téhoc, mpaypoatonololue avdhuor ue Bdon tov aviyveuts Binoculars [25], o onoloc yenowonotel Ty dlootow-
poluev meptmhoxdtnta (cross perplexity) we uétpo tou mbéoo anpbdfBhentes elvor ol TpoPAédEls TwV ETOUEVLDV
TUNUATOV XEWEVOU EVOC HOVTEROU Yla €Val GAAO POVTENO OTay ot Ta 800 Aettoupyoly oTo (Blo xeluevo. Yuy-
xplvovtac v mepimhoxoTnTo Wac cuYPolocelpds amd €vol HOVTENO UE TO TS TNV avTihouBdvetan €vor dAAo
povtého, 1 uédodog umopel va aviyveboel ue peyalbtepn oxplBela av to xeluevo €yel napaydel and unyovy 1
€xel yeaptel and dvipwro, Wwiwg oe TepitT®oelc 6Tou Tpoxakeiton peToAnTédTNTA AOYW TeoTEoTC. §oTdo0, TA
ATOTEAEGUATA TOU CUYXEXEHIEVOU aVLYVEUTY) BEV BLUQEPOLY CNUAVTIXG OO TOV UTAG OVLYVEUTH| TEQLTAOXOTNTAC,
xadéd¢ xou o Binoculars Suoxoheteton ota (Blar "Soxora" chvola Bedopévev, EVE EMTUYYAVEL GYEGOY TEAELO
Sy wplopd ota "edxola" cUvora dedopévev.

0.2.5 X0Ovodrn xou eMTAEOV BLATLOTWOELS

M oOvodn e oxplBelag OAWY TWY AVLYVEUTWY UE TOUS OTOOUC TELUUOTIOTAXAUE OTO TELROHATIXG UEPOS
napovctdleton o pop@n yeaphuatos oto oyfua 0.2.9 mopoxdtw. H pmhe ypaupr avunpoownelel xat toug 3
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aviyveutég DistilBERT, Aopfdvovtoag 1o ox0p TOU TEo-eXTUdEVIEVOU AVl VEUTY) O xdUe GUVOAO BESOUEVMY.

Accuracy of all detectors on Test Data
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Figure 0.2.9: An68001 6A®Y TWV VLY VELTOV GE BOXUACTIXG dedouéval

‘Onwe gaivetor oe autd to oyfua, ol aviyveutés mou Boaoilovton oty meptmhoxdtnTa (BEATIOTO HATAOPIL xou
Binoculars) mopovoidlouv xahltepee emdboelc and toug aviyveutéc mou Pooiloviar ota LLM ota chvola
OEBOUEVKV GTA OTOlOL Ol XATAVOUES TIOU BNUIOUEYOVVTAL amtd Tov AVIpWTOo ot TNV TEXVNTY VONUOCUVY elvol
draxpltés. Metall toug Bev umdpyouv oNUAVTIXES BLopopés, YEYOVOC Tou umopel vo amodovel 6To 6Tl dev
utdpyouy meptTmoelc Tou "tpoPAfuatoc capybara" [25], v tic omolec o awviyveuthc Binoculars Yo frav
evdeYOUEVKC To xortdhAnhoc. Emniéoyv, anodeixvieton 6TL 1) Aemtopepric pOOULon evog aviy VEUTY Ylo TNV epyaoia
aviyveuong xewévou Al oe éva cuyxexpluévo chvolo dedouévwy 0dnyel enione oe TOAD LoyveY| anddoor oe autd
10 0OVOAO BEBOUEVKV, OANE EYEL WC XOOTOG TN ONUAVTLXG WXEOTERT WavdTNTA YEViXEuoNS, Omwe eEnyinxe
oty evotnra 0.2.1.

Arnodexviouue hoimdv 6Tl 1 avdAuoT TNS TERLTAOXOTNTAC XEWEVO, Topd TNV anAdTNTd Tng, Ymopel Vo GUA-
AiBel anoteheouatind Slapopéc oto xelpevo mou cuoyetiCovtal Ue mepleyouevo nou Exel dnuovpeyniel and TN
oTNV TheloVOTNTA TV Tepnthoewy. Ilupdlo mou dev avtoywvilovton mdvTa yia Tnv LPnioteen axplBeia, ot
aviyveutég mou Paoctlovial 6Ty oaxaTOAANAGTNTA Unopoly Vo YENOHEVCOUV WS¢ OUCLHOTIXG ONUElD avapopds 1)
pétpo obyxplong otnv epyaoia aviyvevone xewwévou TN. H udmhn axplBeta twv aviyveutdv mou Basilovtou otny
TEQLTAOXOTNTA OE €Vl GUVOAO BEBOUEVWV UTORE! Vor UTOBNAGVEL Tl TO GUVOAO BeBouévewy Umopel va elval TOAD
e0x0A0o Yl To eEEMYUEVOUC OV VEUTESG, EVOEYOUEVWLE HE ENAEWT Toixthopopplac 1 mohumhoxdtntac. Autod
unopel vo xadodnyrioer ) dnwovpyio mo dUoxohwV cUVOAWY dedouévwy Tou avtixatontellouy xaAlbTepa To
oeVEpLa TOL TEAYUATIX0V XOGUOoU, OToU 1) BLdxplon UeTaED TeYVNTOL Xt avlp®Tivou XEWEVOL elval Lo SUGXOAN.

Emniéov, 1o TextFooler amoxolintel Boocixéc mhnpogoplec oyeTind ye Toug TaglvounTtéc xeyévou, delyvovtag
6Tl oL avtrdeTinéc eméaeic unopoly va Y€couv ae x(vBuvo TNV eUYEEEL TOU XEWWEVOU YLOL VO TUPATAUVACOUY
Toug Todvountés. Autd unoypoppiler ot Ta xelpeva and owhntéc e AyyAhc w¢ deltepn YAhooo elval mo
ETUPPETY| OE ECPAUAUEVT] TadvounaT, evduypaumulouevo ue napatnenoelg and mponyoluevee pehéteg. Emmhéov,
To xelpeva ye avdpdmivr cuyypoapr cuyvd dladétouy mo avenionun yAdooa, 1 onola etvar Aydtepo cuvnhouévn
oto Topay Wy yYhwoowd povtéda (LLM). Toa LLM nopdyouv cuvidune mo enionun xou dopnuévn yAdood,
oLUBEANoVTOG GTNY VPNAOTERT AmdBOoT) TWY AVLYVEUTHOV XEWEVOL O EMOTNUOVIXES Tepthidelc xau dpldpa, Ta
omnola éyouv otadepd Vyoc. O tapatneoelc avtée utootneillovton and TaEAdElYUaTO XL oY RUATO TTOL ATEXOVI-
Couv Tov avTixTuTo ToU YAWoG0) UPous TNy anddoacT TV THEVoUnTaY, Ta onola Bploxovia otny Evotnta
4.3.

Enlong, ov yetprioeic ye Bdon v nepimioxdtnta e€etdotnxay enlong mapdhinia e Ti¢ meoPBiédelc Twv
aviyveutedv LLM. Yuyxeldnxe n péorn neplmhoxdtnTta TV oAAAYUEVLV X0l TWV TEWTOTUTWY XEWEVKY, delyvov-
TOG Lol ONUOVTIXT Slapopd LeTaE) TV XEWEVEwY Tou dnutoupyROnXay UE TEYVNTH VOMUOGUV XUl TV XEWEVKY
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mou cuvtdyUnxoay and avlpdroug oe Gha Tt cUvola dedouévwy. Auth 1 Slopopd mapéucive ot peydho Po-
Yo auetdBAnTn and Tig datapayéc tou TextFooler, umodewviovtag 6tL ta cuoTiuato ou Pasilovron oty
nepimhoxotnta, 6nwe to GPTZero ¥ to Binoculars, eivar Aiydtepo mdovd va mapamhavndolv and autés tig
emidéoec. 261600, Ol aVLYVEUTEC UAlPOU XOUTIOU NToY EUGAWTOL OTLC BLUTAUPAYES, YEYOVOS TOU UTOSNAMVEL
OTL YENOWOTOOUY XpLTAPLY TEPAY TNE TEPLTAOXOTNTOS Yior TNV Togwvéunon. Tao euphuata UTOBNADVOLY OTL, EVE
1600 oL aviyveutég mou Bacilovton oty nepimhoxdtnta 660 xan oL vy veutée ML unopolv va emtiyouy udnin
oxpiBeLa, TO EMTUYYEVOUV AELONOYWOVTAS DIUPOPETING YOEUXTNELO TIXE XELWEVOU. LUUTERUCUOTIXG, 1) EVOWUATKOT
%ot TV 800 pedodnv Yo unopoloe vo eVioyUoEL TNV AVIEXTIXOTNTA TWY UG TNUATOY ToEVOUNGTG XEWEVOU EVOVTL
ex Yooy emtdéocnv a€loTOLBVTIS TOL CUUTANPOUOTIXG TOUC TAEOVEXTAUATAL.

0.3 ’‘Epsuva yenotwv

H avdpdmvn cupuetoyn xou enifiedn elvon xplown otn daduacio aviyvevone xewévou TN Aove twv ndudv
EMNTOCEWY Xl TV {NTNUdTeY evpwotiog mou oyeti{oviol YE TO AUTOUNTOTOINUEVY CUGTAUOTY aviyVEUOTC.
O avipwmivol xpitée mapéyouv éva ouotaotixd eninedo enaidevonge, yetpidlovtoe Tic mdavée mpoxatahiders,
OTWC AUTES XATE TWV U1 QPUOLXDY OUANTOV, xou eEacparilovtag dlagpdvelo xou UTEVYIUVHTNTO OTIC ATOPICELS TNS
TN. Tt v mepautépw Biepelivion autold tou Yéuatog, dielrydn épeuva YenoT®V Ye oxond TNy alloAoyYNnon Tev
vlpOTVGY ETBOCENMY GTOV EVTOTLOUS XEWEVKY Tou £xouv dnuovpyndel oand TN, tnv xotavonon twy oYETXOY
YVOOTXOV BLBXOCLOY X0 TOV EVIOTULOUO TWV YORUXTNELOTIXOY ToU VewpolvTal EVOETIXd TNS dnutovpyiog
TN. O oyedlaopoc xou o ATOTEAECUNTA NG EPELVAC TEPLYPAPOVTOL TAUPAUXAT®, UE OTdYO TNV evioyuoT Tng
OmOTEAECUATIXOTNTOC Yo TNG opEpOANloc TV cuaTNUTWY aviyvevong xewwévou TexvTiS VONuocivng.

0.3.1 Aou7 gpsuvoag

H épeuva yenotdv og diepeuvd Tic avipdmivee emdocel GTNY aviyveuoT xewwévou tou €yel dnutovpyniel and
TEYYNTA YONUOGHVY) XU TNV ATOTEAEGUATIXOTHTO TWV OVLYVEUTWY TEYVNTAC VONUOCUVNG, UE GTOYO TNV XATAVONON
TOV YVOOTIXOV BLABLXAOLOY XOL TWV YAPAXTNPLOTIXGY TIOU Yenolponololy ol dvipwrol ot autd to épyo. H perétn
aut) mopovelton and Tty aulavduevn onuacio tng Sdxplong YeTaED avdpdmvou xou TeXVNTASC YONUooHvng
TOEOLY GUEVOU TEPLEYOUEVOL MOYW TwV Tayéwy eEehewy oty texynth vonuoolvr. AZlomoldvrag ta TpéyovTta
olUvoAa debouévwy otny gpyacio pog mou €youy doxwpaotel pe aviyveutée TN, otoyeloupe va cuyxplvouue
Mn arnogdoewy and tov dvdpwro xou v TN otnv aviyveuon xewévou, Tapéyovtog pla oaxplBy) avdAuon Twy
BUVITOTHTWY XAl TWV TEQLOPLOUWDY TOUG.

H épeuva elvon dounuévn oe téooeple EVOTNTES: EloaywYT, BUo epyaoieg aviyvevone xewévou TN xou plor Tednr
epyooia nopdpeacng. Ou ouupetéyovieg Eextvolv TapEyYovTag TANEOPOoRles Yia TNV eUTelpla TOUS UE To LOVTEAD
TN xou v anoteheoyatndnTtd TOUC 0T dlapoponoinoy UETUED avipMOTLVWY oL TEXVNTOV XEWEVWY. 2T
OUVEYELNL TIPOYWEOUY oty TpdTn epyacio aviyvevong, 6mou tadvouolv 10 xelyeva eite wg avipodniva eite
o¢ mapoyopevo and TN xau e€nyody to oxentixd Toug. XTn dedtepn epyaocia aviyveuons, oL GUUUETEXOVTES
haBdvouy mpdoteteg e€nyroelg amd aviyveutéc TN, onwe eEnyHoels avTLPUTIXGY TUPABELYUAT®Y XL eENYNoELS
LIME, xou otn cuvéyeta tagivopoly éva AN cOVOAO XEWWEVLV.

To ooy xEWEVLY Yia TNV EEEUV TEQLAUUPBAVEL Uiat TOWX(AT] EXTPOCKTNGCT] TOPEWY Xl GLUVOAWY Bedopévev. H
gpeuva yenotpornotel 50 droaheyuéva xelpeva mou ywpellovial opolduoppa oe TEVTE GUVOAN, CUUTERLANUBOVOUEVEVY
tweets, ocodnUoix®y TEPMAPEWY, XEWEVWY and UN QUOLXOVUS OUANTES TNG oy YAXAS YAWOGGCOC, XEWEVWY TOU
onuovpyHdnxav and Al povtéha mou dev avixouv ot oelpd GPT xou mopodelypdtov mou mopamhdvnooy
aviyveutég AL Kdde Suaywptopdc Slacpailel yio .GOPROTNUEVT] EXTPOCOTNGCT] XEWEVWY TOU THEdYOVToL ond
avdpdroug xan TN, Slatnedvtog TV oxplBeio TwV aviyVeELTOY YEVIXAS XPHoNG XL TWY ALy VEUT®OY Tou Bactlov-
Tou 6TV neptTAoxdTNToL ueTall 80-90%.

TéNog, oL GUUUETEYOVTEC XUAOUVTAL VO TURUPEACOUY GOVTOUES TapAYedpoug Tou Tapdyovton and Ty TN yio va
TI xd&vouy vo gatvovtal o avipodniveg, doxiudlovtag TV xatavonoy| Toug yio To Ti dloxplvel éva xelpevo mou
potdlel e avdpodmvo. To anoteléoyata Tng EpeUvac, Ta omola AVOADOVTOL ToEUXATw, Vo ToEdoyoLY TANEOYORiES
oyetxd pe Tic avlp®dmiveg duvatdHTNTES aviyveuone mepteyopévou mou mapdyetar and TN xou Yo evnueptdoouv
YioL TNV AVETTUEN TILO AMOTEAEGUOTIXGDY Xou Bixawy cuoTnudtey aviyvevong xewévou TN.
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0.3.2 AmnoteAEéopata EQELVAS XEPNOTWYV

To ewoaywyd pépoc tne épeuvag amoxdiude TAnpopopiec oyetind pe v e€oixelwon TV CUUPETEYOVTLY Ye
TOL LOVTENA TEYVNTAS VONUOGUYNG X0 TNV EUTLGTOGOVY) TOUS OTLC BUVATOTNTES AVl VEUONC XEWEVOU UE TEYVNTY
vonuoolvn. H xatavoun tov anavticewy oyetixd ye v e€owxelwon pe ty TN xou ta povtéda dnuiovpyiog
XEWEVOU ax0A0UUNGE Lol TERITOU XAVOVIXY) XATOVOUT], UTODEIXVIOVTAG (L0l LOOPROTINUEVY) EXTIPOCWNNGT| GE Bid-
popa enineda e€oelwons. Lnuavtind UEpog TV CUPPETEYOVTIOV OVEPEPE TaXTXY| YENON LOVTEAWY Tapay YRS
xeyévou 6nwe to ChatGPT oty epyacia 1} Ti¢ omoudég Toug, unoypoapuilovtag TNy eupeio LIYETNON Toug Tépa
and eZedixeupévoug topeic TN. ‘Ocov agopd Ty eumiotocivn oTNY aviy VEUST) XEWEVOU UE TEYVNTH VONLOCUVY),
Ol CUUUETEYOVTES EDEIZ0Y UEYUADTERY EUTLOTOOUVY OTA AUTOROTOTOMNUEVY HovTéra (uéom Baduohoyia 3,41) oe
olyxplom Ue Tic dxég Toug xavétnTes (péom Paduoloyio 2,78). Auth 1 Sopopd uodNAGVEL Wit GUYXEOTUEV
aolodolia e TEOC TIE BUVITOTNTES TWV AUTOUATOTONUEVRDY UG TNUATWY va Sloxplvouy to xelueva tou napd-
yovTal pe TeEYYNTA vonpoolvn and ta avipdmiva xelyeva, 1 otola yetpldletal and Ty enlyvworn Twv TeEYOVInY
TEPLOPLOUMY X0 TWV TPOXANGEWY oL cLLNTAUMXAY O TEONYOUHEVO XEPEAALIL.

Tao anoteléopato TG €PEUVEC UaC AVABEYUOUY TIC ONUAVTIXES TROXAHOELS TOL aVTIIETWTI oLV oL avilphmivol
xpltéc oty axplfr) Budxplon petall xeyévou mou €yel mapayVel amd TEYYNTY YONUOCUYY Xal XEWEVOU TOUL
éyel ypoptel and dvipwno. Ilapd tov oyohaoud cuvohxd 540 xewévwy and 27 GUUPETEYOVTES, 1 CUVOALXN
oxpifela topépetve oto 52,96%, pévo optoxd méve and autd mou Yo emituyyavdtay pe tuyaio pavtedud (50%).
H xatavou?| tov Boduohoyidy twv yenotov napouctdletoa oto Xyruo 0.3.1.

Score Distribution

Frequency

20 25 30 35 40 45 50 55 60 65 70 75 80 85
Scores

Figure 0.3.1: Katavouy, anédoone Twv CUPUETEYOVIWY GTNV EEELVA YENOTOV

To ebpnua awtd épyetan oe avtideon pe mohoudtepes peréteg mou diehyinoay mewv and tnyv edmhwon npony-
pévey povtéhwv TN 6nwg to ChatGPT, ol omoleg €detyvay 6Tt oL dvlpwrol unopoloay Vo eEXTEAEGOUY oELOTIGTA
tétolec epyooiec. Avtileta, to anoteréopatd pac evduypappilovion ye v mpdogoty avtiindrn mou delyvel bt
xodwg N nopoywyh xeywévou and TN éyel e€elydel, n Sldxplon TwV ANOTEAECUATWY TNE and TNy avdpdmiv
yoopt| €xet Yiver 6ho xau mo BUoXOAY Yio Toug avipdToug.

H avdhuon twv enddoewy tv cURHETEXOVTKY oTic dVo Eeywpetotéc epyaoiec aviyvevone xewévou €deile oto-
Yepd tocootd axplfelac 53,7% xau 52,2%, avtiotorya, utodeiviovtag éti oL npdoletee e€nyfoec mouv doUNXaY
xoTd TN Sudipxelor e Bedtepng epyaoiog dev Behtiwooy Tig emdboelc. Autd uTodNhGVeEL O6TL, eV e&nyRoeic 6w
o ovTLpoTixd opodelypatar xou ot eénynoeic LIME unopolv va dlagpwticouv Tig ano@doeic aviyveuons xelué-
vou ¢ TN, dev petagpedlovto anapoitnta oe BeAtiwpévn axpifela yio Toug avipwmivoug xpitéc. Emmiéoy, n
BlepelivNoT TOU TEOTIOU PE TOV OTO{0 TO YOPUXTNPIO TXE TWY CUUHETEXOVTWY, OTwe 1) efowxelwon pe v TN
xou Tt HeYdAa YAwoowd povtéha (LLM), ennpéacay v anddoon dev amoxdiude xopio dioxprth cuoyétion. Ot
ouUPETEYOVTES Ot BlapopeTind entineda efowxeinong ue ta LLM napousiacay napoUoles XoTtavoueg EmBOcEWY,
YeYOVOC Tou LTOBNAGVEL 6TL 1 e€eldixeuon otic teyvoroyiec TN and uévrn tne dev npocdidet Theovéxtnua oe auTH
N ouyxexpwévn epyaoia.H pévn cuoyétion mou npoéxulde Arav auth uetadd NG EUTOTOOUVNG TWV CUUUETE-
YOVTIwV oTig TagvouNoELS TOUS Xot TwV ETLBOGEMY Toug, ue Ta uhnidtepa enineda eunioToo0VNG Vol AVTIOTOLY OV
oe xohOtepn axpifelo. Autd o cupmepdopota uroypaupilouy TNV ToAumhoxdTNTa TS TEOXANGNE aviyveuong
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xeywévey TN xan urodeixviouy dpduoug yia Tepontépw €peuva Yio T Bedtiworn 1600 Twv avipdhmveny 600 X
TWV QUTOUATOTIOMNUEVKY UEVOBWY Yol TN Sudxpion Uetadd xelévwy mou dnuplovpyolvton and TN xou avipdnivev
HELLEVWV.

0.3.3 Anoteréopata avd xatnyopia xelwévou

H avéiuon tov avlpdmivev eniddoewy oe Bidpopes xatnyopleg XeWEveny otny €peuvd yag utoypauuilel t6co
TIC TPOXANOELC OO0 XAl TIC ATOYPOCELS ToU elval €YYEVEIC OTN BLdXELOT XEWEVWY TTOU TORdYoVToL amd TEYVNTH
VONUOoUVT and TEQLEYOUEVO oL el YoapTel and Tov dvdpwno. To cuyxevipwTixd artoteAéopota avd xotnyopio
napoucidlovton 6to Uyrua 0.3.2.

User Accuracy by Text Category

User Score

ABSTRACTS Non-Native Non-GPT DetFool PerpFool
Text Categories/Domains

Figure 0.3.2: Katavour, anédoong Twv CUUUETEYOVTWY avd xatrnyopla dedouévey

Yuvolxd, ot avdpwmivol aflohoyntée enédetlay emdooelc oploxd xahltepeg amd v tuyaior emAoyn, ue péon
axpifela 52,96%. Qotéoo, ol emdboeic dépepay onuavtind petalld twv dlopdpwy Timwy xewwévou. To olv-
Topa xelyeva, 6mme to tweets, anodelydnxoay oyxetnd euxoldtepa yia Toug avipwroug, emttuyydvovtag axpifBela
64,8%. Auth 1 udnidtepn axpiBero mdovdy va 0QeEileTon GTO TEPLOPIOUEVO TEPIEYGUEVO TWY GUVTOUMV XEWEVWY,
T0 omnolo umopel vo ueyedOvel T anoxAoelc 6T YAWCOIXY TOLOTNTO OV €lVal YopaXTNEICTIXES VLo TO TEPLEYO-
pevo mou mapdyetan omd TN.

Avtideta, ol emotnuovixéc Tepthidelg anotéhecay Wiat o dUOXOAT TEOXANGT), UE TOUG avlpOTIVOUS XELTES VA
emTUYYdvouy axpifela 52,7%, n onolo eivon TopduoLa UE TOV GUVORXS Uéco Gpo Touc. AuTé épyeTan ot €vTovn,
avtideon pe toug autopatonoinuévoug aviyveutég ue Bdon v TN xou ta custAuate mou Bacilovton otnv
TEQLTAOXOTNTA, TA OTOLOL UTEREYOUY GTOV EVTOTUOUS HOT(Bwv ot Sounuéva oxadnuaixd xelpeva. Evdlagpéoov €yel
1 TopaTAENON OTL Tal XE(UEVA TOU TapdyovTaL antd Hovtéla extog TNne oelpdc GPT and ahvola dedoyévwy dnwe To
MAGE odfynoav oe afloonueinta xaxés emdboeic toug aflohoyntée, ol omolot onpelwoay uéic 29,6%. Autd
uTodNAGVEL TN W) e€0eltoN TWV GUUUETEXOVTOV UE aUTA Tot Ay dTERO SLodedopéva povtéha TN xou uroypouuilel
NV e€eAMOGOUEVT] TOAUTAOXOTHTO OTY) BlapopoToinoy UETAED XEWEVmY Tou TopdyovTal and avipnroug xa TN
ot SLdpopa GOVOAIL BEBOUEVMV.

Emuniéov, 1 Swoocdpavon twv emdocewy o xelyevo mou Eeyélaoay Toug mopadootaxols avly VeuTtée tou Baoi-
Covtan otnv TN (59,25%) évavtt twv aviyveutdv nov Baciloviar oty meptmhoxdtnta (39,81%) mpoogpépet
evblapépouoeg Thnpogoplec. Trodeiviel 6T, eve ol mapadoctoxol aviyveutég mou Bacilovton otny TN xau ot
dvitpwnot unopel vo evduypaupllovton Ayotepo dtav ta xelueva elvon LBLUTEPR ToEATAAVNTIXG, ToL CUC THUATA TOU
Baotlovtow otnyv mepttAoxoTnTa, Tot omolar aELOAOYOUY TNV EUYERELA XOUL TY) CUVOYT| TWV XEWEVLY, OmOTENOUV EV-
TEAOS BLopopeTin TpoxAnan. Auth 1 diapopd utoypouuiler TY avdyxn Yio TEEULTERE EPELVA YioL TN DLEPEUYNON
TOU TPOTOU UE Tov omolo oL dldpopeg uevodohoyleg aviyveuong ahANAETOEOUY UE TIC AVIPWOTIVES YVWO TIXES
dladxacieg, evioy0oVTag €TOL TNV AvamTUET TILO LOYUPWY CUCTNUATWY aviyveuong xewwévewy TN.

Yuvohixd, Ta gupruato avadexviouy TNy meplnioxy @lor g aviyvevong xewévou TN, énou ol avipdniveg
EMBOOELC DIAPECOUV ONUAVTIXE AVANOYOL UE T YORUXTNELO TIXE TOU XEWWEVOLU ot TI¢ pedodoloyiec aviyveuong.
Avutéc oL yvdoelg oyt pévo unoypopilouy Toug onuepvolc TERLOPLoUOUE OTLS OVDPMTIVES AELOAOYIXES IXAVOTNTES
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o€ GUYXELON PE TA UTOUATOTOLNUEVO GUC THUOTA, AAAG uToYpauuilouy eniong Tl TOAUVTAOXOTNTES TOU GUVETAYE-
Tl 0 oyedlouog anoteheouatiniy epyorelwv aviyveuone TN, wavedv va Swxpivouy dho xon o e€ehiypévo
nepleyopevo Tou mapdyetan omd TN.

0.3.4 TIevixd cuunepdopaTe

Yy €peuvd pag, Slepeuvioaue TS OVTIAPELC XoL TIC OTEUTNYIXEC TWV CUUUETEXOVTWV Ylol TN BLdxplor Twv
XEWEVOY OV ONuLovpyolvTol and TEXYNTH Vonuoouvn and excliva mou €youv yeaptel and avdphdroug, plyvovtag
PuC TG00 OTIC TPOXANOELS 660 XU OTIC WEES YloL TNV aviyVeuon xeyévey texwntrc vonpoouvng. A&ilel va
onuewwdel 6tL, eved oL eEnyroelg mov BdUNxay xatd TN Sidpxeta T Epeuvag Bev Beltinoay onpavTind Ty axpBela
TWV GUUUETEYOVTWY, N oVATROPOBOTNOY OYETWXE UE aUTEG TG eENYNOELS HTAY AvAUeEXT, UE TNV TAetodnpla
v Tig aflohoyel we uétpla yerowwes. Elvar evbiagépov 6T, 6tav toug Intiinxe va emié€ouv petall twv
e€nynoewy avimopadelyudtwy xor LIME, éva onuavtixd uépog Twv cuPPETEYOVTWY Yedpenoe xa Tig dbo e&loou
WPENPES, EVE EVOL GANO ONUAVTIXG PEPOS TWV CUUPETEXOVTWY VeMpNoe Tig eENYNOELS UE AVTLTOPADELYUO WS TILO
yerowes. To yeyovdg awto UTOBNAGDVEL Uit LGOPROTNUEVY TpoTiUNGN Yla Tig avTimapadelryyatnés eEnyroels
TOU aVaBEVOOUY TIC BLapopeg HETAEY TV XeWwévwy mou dnpovpyolvtar and v TN xou tev avipdmivev
xewéveyv. Autd evduypopuileton pe mpomnyolueveg épeuveg mou Belyvouv 6Tl ol avtinopodetixéc eénynoelc, ot
omnolec aneovi{ouy Tov TEOTO YE TOV OTOlo 1 CANAYT| OPLOUEVOV YOLUXTNELOTIXWY ENNEEGLEL TO ATOTEAECUA,
elvon ouyvd mo BlanoUnTiég Yo Ty avipodnive xatavonor o epyacieg TexvNTAS VONUoosOVNC.

Qot600, Topd TN SdeolpotTnTa TRV eENYRowy, N cuvolxy axp(BEld TWY CUUUETEXOVTWY OTr BLdxpLon TwV
XeWEVKY Tou dnwovpyiinxay and TN ftay uévo oploxd néve and tny toyT. Auté unoypouuilel T duoxoiia tou
avtpeTmrilouv ot dvlpwrot vo dlaxpivouy uetadl Tou TEoNYUEVOL TEplEYOpEVOL Tou Ttapdyeto omd Ty TN xou
Tou auldevTixol avdpwmivou ypantol Adyou. H avdhuon tewv anavtAcewy avoxtod TUTOU TwV CUUHETEXOVTWY
nopelye mepattépw TANpoQopiec oyeTXd Ue Tic otpatnyxée Tadvounchc tous. O ouupetéyoviee Paocilovtov
OUYVE OE YAWOOWMES Xl YROUUATIXES EVOE(EElg, OMUELdYOVTOS OTL Tol Addn 1 oL doUVETEES Ot Yehon TNng
YADOGUS T TEPLEGHTERO EVOEXTIXE TV avpMTLVKY XEWEVKY, xadng Ta woviéha TN cuvidwe napdyouy mo
"yuohiopéva ol YeaupaTxd owotd anoteAéopata. H mopatienon auth Arav bialtepa onuavtixy oto tAalolo
ULXPOTERPWY XEWEVWY 0TS Ta tweets, 6Tou To TEpLOpLoPEVO TAXLGLO Xat 1) avemionun YAwaoaouxy yerion unopel vo
EVLOYVOOUY TUYOV AMOXAICELS amd T YUOLXT| avip®TLVY YEUPY.

Emuniéov, to upohoywd otoiyela énaiay xodoplotind poAo oTic aZlOMOYNOELS TV CUUUETEXOVTWY. Xuyvd
enechpoavay 0Tl Tar efpeva mou mopdyovtar and v TN teivouv vo mapoucidlouv éva mo tunomonuévo 1
dounuévo LPog, LUTOBNAWYOVTUSC OTL Ta XelPEVa TOU TNEOLY GTEVA TEOXUOPLoUEVA TEOTUTA | YEYOWOTOLOUY
egedixeuuévo he€hdyio Vo pmopodcay Vo onpatodoTtody T unyavixh mapaywyh. Avtideta, to xelyeva mou
Yewpolvtay mo ehebdepa 1) mpoowmxd Htav mo mbovd va tadivoundolyv we oavlpdmiva, avTovoxh@OVTaS TLC
Tpocdoxieg TwV CUPUETEYOVTWY Yo Tar povtéha TN nou aywviCovton va suAAEBoLY TN AenTy), TpocwWNLXY TLVENLY
TIoU oUY VA yopoxTNEilet TNy avdpdmivn emxolvwvia. H didxpion auth avadewviel Tic e€ehlocdpueves BuvatdTnTeg
TV YAwoowxdy wovtéhwyv TN, ta onola unopolv va napdyouy cuvextiné xon xatdAAnAes yia To cUppaloueva
amavTACELS OE €V EUPY PACUA TEOTEOTY, YOAMVOVTAS EVOEYOUEVKC Tal dplat UETAUED avUp@TLYNG Xol UNYAVIXAC
CUYYEUPHG.

Emmiéov, Ta cuvonodnuatind xor mpoowmxd otoiyelor oto xelyevo avagépdnxay og onuoavtixol delixteg tng
oavlpdmivng €vavtl g TeYYNTAC vonuoouvng. O cuppetéyovteg onueimwoay 6Tl ta xelueva mou UeTapéPouy
ocuvatoUfpata 1 tpocwmixéc anddels elvar mo mdavd vo elvar avipdmivne dnwovpyioc, xadoe to povtéha TN
cLVHYWE BUoXOAEVOVTAL VoL AVATAEAYOLY AU TEVTIXG Tal AV RMOTLVO GUVALGTAUATO Yol TLC UTIOXEWWEVIXES eunElpleg.
Qo1600, Ta eUPHOTA TNG EpEUVC amoxdAuday eTlong TEoXARoELS GTNY XoOAXY EQUPUOYY VTV TwY XELThEiwY,
WBlwe dtav avtpetoniloviar cbvola dedouévev 6mwe 10 MAGE, dmou ta xelpeva mou dnurovpydnxay and tnv
TN upodvtay TpocKTXES AP YHOELS AEXETY ATOTEAEOUATING WOTE VA TORATAAVOUY TOAOUC GUUUETEYOVTES.

LUUTEPACPOTIXG, EVE OL CUUUETEYOVTES YENOWOTONoAY TOIAES OTRUTNYIXES ~YAWGOWXY eEETAGT], LYOROYLIXT
avdAuom xou cuvateUNUaTIX aELOAGYNoT- Yol Vo Slopopomolioouy Tar xelyeva tou napdyovton ond v TN and
Ta avipodmiva xelgeva, oL emBOcE; Toug fTtay cUVolxd uétpleg. Autd unoypouuilel Ty mohumhoxdtTnTa TNg
epyooiag aviyveuone xewévwy TN, n onolo ennpedleton and Ty toyela tpdodo twv duvatottwy e TN xo
dlapopomolnuévn Qoo Tng xotavonone e aviedmvng YAdooag. O yerhoviixée epeuvnuinég npoondieieg Yo
TPETEL VoL GUVEY(oOLY Vot Blepeuvoly auTég Tig Tadivounoels xou vo Bedtidovouy ta epyoheia aviyveuone TN yio va
evioy0ooLy T cuvepyaoio HETAHED TV avipdTVwY xpttdv xot Twv cuotnudteny TN, BeAtidvovtac Tedxd v
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o&tomioTior XoL TNV AMOTEAEGHATIXOTNTA TWV AELOAOYNOEWY TNS AUIEVTIXOTNTAUC XEWEVOU GE BLAPOpOUS TOUELS.

0.3.5 Amnoteléopata epyaciog MARAPEACTNE XELAEVOU

Y10 teEheuTHlO HOUUATL TNE EPELVAC HAC, OL CUUPETEYOVTEC TMHEAY U£p0¢ OF €vol Telpouo Topdpeoone XeEWLE-
VOU UE OTOYO VA amOPUYOLUV TNV aviYVEUST TOU ¢ TEOldV Tng Texvntic vonuoolvng. To anotehéoparta
amoxdiuay dapopetinoic Boduoic emtuylag oty napamhdvnon 800 BlapopeTin®y UeVddwy aviyvevong: tou
yvevurc xenone LLM aviyveuty RoBERTa xaw evéc aviyveutn pe Bdorn tnv mepimhoxdtnra, Behtio tononuévo
Y 10 oLYXeXEWEVO cOvolo dedopévwy. T'a To TpKTo XEelUevo, oL CUUPETEYOVTES XUTAPEQIY VoL EEATATHCOLY
Tov aviyveut i RoOBERTa 9 otic 15 gogég xau Tov aviyveuty| nou Pociletoar otny nepimhoxdtnta 6 oTic 15 popéc.
AZ{lel vo onerwdel 6t Ta xelpevo pe mocooTd opodTnTag xdtw Tou 85% pe To apyixd xeluevo unopolv va
Yewendoly onuavTixég avablaTUTHOOELS Xal O)L ENAPEES TOEAUPRACELS, UTOBNAWMVOVTIS OUCIIC TXEG OAAAYES TTOU
evowudtovay neplocdtepa avipdmivar otolyela.  ‘Otav emxevipwdixope ota xelyevo mou dotnpolvoay un-
AOTEPA TOGOCTE OUOLOTNTAG, Ol CUUUETEYOVTES opanAdvnoay To RoBERTa 6 otic 11 @opéc, eve o aviyveuthc
mou Pooiletor oty meptmhoxdTnTa TopamAavidnxe wovo 2 otic 11 gopéc. Auth n avtideon avadewvier Tig
npoxhfoelg aviextxdtnrag mou avtipetwnilet to ROBERTa ye ti¢ ehagpéc napagpedoets, unoypauuilovtog vy
OMOTEAEGUATIXOTNTA TOU vy VELTY Tou Baoileton oTNY TEPLTAOXOTNTA GTNV AVIYVEUCT] TLO AETTCOV OAAXY@DV.
Y tn 8elTeEEn QAT TOU MELPGUATOS, Ol CUUUETEYOVTEC AVTUETOTLONY EVa BLopopeTixd xeluevo, ue atédyo enlong
vou amo@iyouy Ty aviyveuor Tou we xelpevo TN . Ebw, n nepimhoxdtnta Tou Boacixod xewwévou fray uPniotepn,
UTOdEYUOVTOS €Vl XEUEVO TLO XOVTA GTNY avipdTivy YeoupT], To otolo Yewentixd Yo €npene va elvon mo eUxoho
va topopeaotel. Ilopdha autd, oL CUUUETEYOVTES AVTIIETOMIONY duoxohles, xadng uévo 7 and toug 11 xatdpepay
VoL Tapatpedioouy To Xelpevo pe emtuyio ywelc vor To TpoTOTOooLUY GNUAVTIXE XaL DlTNEMVTAC UPNAG T060GTH
opotdtnag dve tou 85%. Axdun xau oe autd To GeVdpLo, dmou Ta xelpeva Aoy KON o avdpdmiva, oL GUY-
peTéyovieg Nrav Aydtepo emtuyelc 0TO Vo mapamAavoly Toug avlyveutéc e ouvénela, ue to RoBERTa xou
Tov avtyveuty nou Baociletar oty nepttAoxdTNTa Vo EUMATOVTAL OE AlYOTERES TMEQLNTAOOELS OE GUYXELOT UE TO
TpdTo Telpopa. Autéd To anotéheoya uToYpopUilel TIC TPOXAACELS TOU CUVETEYETOL 1) TPOTOTOINOT XEWWEVOU UE
TOWTOYEOVY BLUTAENOY] TOU OEYLXO) YONUITOC Xat TNES QPUOLXOTNTAS TOU. XUVOAXE, To Telpoua Tng mopdpeaong
avédelle Tig mohumhoxdTnTeg Tou cuvendyeTon 1) amouyT e aviyveuong TN uéow tne tpomonoinong xeluévou.
Eve ov oupuetéyovieg emédelay TV ovdTnTo VoL auEEVOUY TNV TEPITAOXOTNTA TV BUoXOdY XEWEVGDY, UT-
OBdNAGVOVTAG €TOL Uit TLo avOpAOTLVY TOEUY WYY, 1) ATOTEAECUATIXOTNTO DLEPERE UETUED BLUPOLETIXOV UOVTENWY
aviyveuone xou xeevixoy mhatoiwv. To evpuoata avtd vroypopwilovy ™ cuvellouevn avdyxn YLo LoyYURES
pedddoue aviyveuone mov pnopoly vo Blaxplvouy AenTég mapaAlayés o xelueva mou mopdyovion ond Tov dv-
Yowmo xou v TN, xodde xou 0 AenTh xotovdnon TNE YAWOCUS TOU amouTelTon Yol TNV ETTUYT TMApdpEAoT
XEWEVOL o€ peahloTiXd epBdAlovTaL.

0.4 Xvprmepdopota

Ev xotoxAeldi, n extetopévn avdAuch pog oxetixd Ue tnv epyooia aviyvevone xewévou TN rnopelye onpav-
Tixéc mAnpogoplec oyxetxd pe T Tpéyovoes mpoxhoelc xou Tic mdavée Bedtidoelc. EZetdoope SieEodxd tic
avtietnég emdécelc Tou GToYEVOLY GTA GUYYPOVI CUCTHUITO UTOUATOTOMNUEVNG aviYVEUOTIC, BIEPELVAOVTOC
™ Aenty| toopponio yetadlh e emlteving udniic axplBeloc, e yevixevong xan tng evpwotilag, evrtonilovtag
TapdAANA cuYXEXEIEVES aduvaulec. E&etdlovtag Ty mEpITAOXOTNTA XEWEVOL WS GELOTIO T UETELXY Ylol TN
pétenom e un mpoPredudTTog EVOC XEWEVOU OTA TOEAYWYIXE LOVTEND, ovamTOEoE EVOy OmAG oV VEUTH
xewévou TN. Autdc o aviyveutic oyl povo yenotpelel we évo otodepd onuelo avopopds yio LeANoVTIXOUGE,
o e€eMyUEVOUS aviyVeEUTES, aAAd emtiong ovadelxviel OTL Tol TREYOVTA GUVOAX ESOUEVLV TIOU YENOLHOTOL00V-
ToL oe oWTO TO €pyo Unopel vo uny avtixatontpllouvy e axplfelo peakloTind oevdplo. Emmiéov, 1 épeuvd pog
vl toug Yproteg, mou potdlel ye éva oUyypovo "teot Turing" yia mponyuévo LLM, anoxdiude bt 1 ov-
Yedmvn anddoor aviyvevong etvar nepinou ota eninedo g Tuyaiog emhoyc, uTodeviovtag TNy avadlomotio
Toug og aUTOV Tov Topéa. Ta mewpdpota pe pevddoug XAl nou amooxomoly otnyv evioyuon e axpifeloc
TV oavipdnvey aviyveutoy dev €deilov onupavtixy enidpaor, av xau 1 Badltepn avdhuon Twv EMBOCEWY TKV
VIpOTIVWY ALy VEUT®OVY Topelye TOAUTIHES TANPOPOopieg Tou Yo umopoloay Vo xododnyRoouy Ty avamTudn
XOAOTEQWY EMEENYNUUTIXGY epYaAelwy oTo uéAlov. Téhog, mapatnedvioas avitp®drous vo Topapedlovy xelueva
nou dnuovpyoLvton and TN yia va gofvovton cav avipdnive, a&lOAOYNCOUE TNV ATOTEAECUATIXOTNTE TOUG OTNY
TEATAAYN O] BLOPORKY CUCTNUATWY VY VELCTC, CUUBAAAOVTUC TECULTERW GTNY XUTAVONOT| TNS AAANAETIDEaoTC
HETOED TWV avDpOTIVOVY XAl TV QUTOMATOTOMUEVLY duvatotiTtwy aviyveuone xeyévou TN.

23



Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

0.4.1 >vul7Tnonm

Iapd ™ onpovTixn Tedodo Tou GNUELINXE OTNY XATAVONCT) TV TEQLTAOXWY TNG ERYUTLIg vy VEUONG XEWWEVOU
TN, 1 epyacia pac €xel apxetolc neptopopols. Ilpdtov, emxevipwiixaue oto mhalowo entdeone TextFooler
AOYw e xowAc Yperone, T™e YounAAc anaitnong tou oe mépoug xou Tng euxollog yenone tou. QoTdco, ol
UTOVETELS IOV EYLVOY OYETIXE UE TNV EUYEPELX XEWLEVOU EVOEYETOL VoL EIVOL YOROXTNELOTIXG EWBXA TOL TAatslou.
Autd ta yopaxtneloTixd Unogel Vo uny euQavioToly eqy yenolponotovtay dhha mhaloto avtieThndy entdécewy
pe xahbtepn euyépeta, 6mwe to MiCE. Autd unodnhdvel 61t Ta CUUTEPAOUATS LoC OYETIXS UE TNV EUYEQELA Xa
TNV avtyveuotudtnta urnopel va e€opTdvTal and To TAAloLo xal 6Tl Tepaltépw Epeuva UE T YeYom EVOC ELPLTEPOL
pdopatog avtinahwy epyahelwy elvon anapaltnTn Yio TO YEVIXEUUEVA CUUTERAOUITA.

Emmiéov, Ta amoTteAéouota xol oL UTOVETEC oG elval EYYEVMS oUVOEDEUEVA YE Ta oUVORA BEBOUEVWY TOU
xenowonolfoaue. Ta yopoxTneio Txd xon oL AeTTOUERELE UTOPEL VoL BLaPEPOLY ONUUVTIXG avdAOYa UE TO TAoL-
oto xdde cuvdlou Bedouévev, YL auTo XL cuunepAdBope Eva eupl PACUO CUVOAWY SESOUEVWY TOU XOAUTTOUV
didpopar wixn xewwévou xan Topeic (tweets, dpdpa eldfocwy, emotnuovind dpdpo x.A.). Auth 1 Towahopoppia
ATOOXOTIOUCE GTNY TUPOY 1 oG ONOXANPEWUEVNE ETLOXOTNONG, WOTHCO TA EVPHUATE Hog LToYpauilouy Toug Te-
ploptopole TOMGY cUVRBS YpNoteoTololUeEVwY VOV Bedopévev. Eldxotepa, 1 yehétn yac amoxdhude
ot 10 alvoho dedouévy MAGE nupoucidler onuavtixée mpoxANoel TOG0 Y TOUG OVLYVEUTES TEYVNTAC
vonpooUvne 6co xat yio toug avdpnrouc. H e€ehrypévn pnyavixd npotpomic (prompt engineering) mou ep-
TAéxeTow ot dnplovpyia Tou cuvdhou dedopévewy MAGE efanatd anoteleopatind téco toug avdpndnoug éco
O TOL QU TOPATOTIOLNUEVD GUG THKATA aviyveuone. Eve n epyoasia otny onolo eLodyeton T0 CUYXEXPWEVO GUVOAO
dedouévmv UTOBNAGVEL 6Tl 1 Aemttopephc pUUMION EEEIBIXELUEVWY VLY VEUTMVY Yior YEYGAA Xelpeva umopel vo
emtOyel emdboelc mdvew and 85%, mpémel va onuetwdolv ol epoplopol authAc e uedddou. e pealoTixd
OEVAPLO, 1) XATAVOUT| OO TNV omola TeogpyeTon €va XEUEVO ToU eVdEyOoUéVws €xel dnpovpynldel and texvnti
VONUOooUVT elvol cUY VA Ay Voo Ty, teptopllovtoc T mpaxTixdTnta TéTolwy npoceyYloewy Aentouepols pliuiong.

Téhog, o mpoxAfioelc mou Véter to olvoho dedopéveoy MAGE Beiyvouv ét o epyaociec aviyveuone xewwévou
Yo yivovton 6ho xou mo BUoXOAEC Tol EMOUEVA YpoVia. Autd, 0E GLUVBLAOUS UE TIC avaELOTLOTES ETLBOOELS TWV
avlpOTEY GTO DL WELOUS XEWEVWY, UTOSNADVEL OTL 1) Tpo T aviy veuaT) unopel cOVTOMA Vo XUTAGTEL avEQuXTY).
Y16 1o npiopa aUTOY TwWV TEoXAAcELY, (owe Hede N dpo va e€etacTtoly véee xatevdivoels, Onwe 1 EQUPUOYY
and Touc ouyypagelc Tou LLM unyoviopdy yior TRV avlyVEUST] TV BIXMY TOUS THPAYOUEVOY XEWEVWY, OTWE OL
TEYVIXEG LBOTOoRUAVONG. AUTA To TPOANTTIXE €T Vol UTOPOVOAY VoL TROGPEROUY Lol TiLo LoyueY ADor otny
eZehlooouevn toAuthoxdtnta tng aviyveuons xewévewy TN, e€acpaiilovtog v axepandtnta xou TNy aflomoTtio
TOU TOPAYOUEVOL TIEPLEYOUEVOU.

0.4.2 MeAlhovtixeg xateLIVVOELS

H epyaoio auth) avolyel to dpduo yia tohudprdues uehhovinée perétec oto mAaiolo TS aviyveuong Xelévmy
TN, ot onoleg Yo unopoloay Vo €youv GNUAVTIXEG ETUTTWOELS oTNV xotvwvie. Ou cuyxpeloelc yoc yetald twv
cUYYPOVWY avLYVELTWYV xeWévou e Bdaon ty TN xouw tou dixod pog aviyveuth pe Bdon Ty mepLmAoXOTNTA
UTOBNADVOLY OTL, EVE EMUTUY Y AVOUV TapoUota UPNAT axp{BELd, TO EMITUYYAVOUY HEGE BLUPOPETINWDY UINY AVIGUMY.
Ou emibdéoeig mou €youv oyediaotel Yo va emttedoly o évay TOTO aviyveuth cuvidwg dev e€amatody Tov dhho.
Ot yvdoelg and v €peuva yenoTt®y pag delyvouv éti ot aviyveutée tou Bacilovtor oty neptmhoxdTNTo UNopE!
va elvon o avdextixol otic avip®dniveg aAAOYES X0 VO AELTOVEYOUY TILO TOPOUOLA UE TOV TPOTO YE TOV OTOLO Ol
Svidpwnot avaryvewptlouy xou emonuaivouy ta Suvnuxd xelpeva Tou topdyovtor and unyavée. Einilovue auth n
HEAETT VoL eVIapEUVEL TNV TEPAUTEPW EPELVAL OE CUGTAUATA BUCLOUEVA OTNY TEQITAOXOTNTA, OTKC 1) EVOWUATWOT)
plag apuvtixic "xepxdmoptoc" Baclouévng oty nepimhond T o8 ToEAd0CLlax0ls oy VELTES Bactopévous oTd
LLM. Kdéri tétoio Yo pnopotoe va yetpidoet ta {nripato evpwotiog, xadoe onolodrrote aviinain entdeon otov
aviyveutr) o meénel enlone va mopoxdudel To QiATEo TEPITAOXOTNTOG.

Mo dAAn TOANE uTOOYOUEVY XATEUDUVOT YLol UEAAOVTIXY EPEUVE TEOXUTTEL amd TNV avdAUCT, NG €PEUVIS
XENOTAOV. ALMOTOCUUE OTL 0L TEYVIXES TOTUXNAG EQUNVEVCLUOTNTAS, OTWE 1) TOTUXY ONUAOIA Y oUPUXTNELO TLXV
xalL oL avTLpaTixég enednynoelg, dev elvon moh) anotelespatiné otnyv unoPorinon twv avipnnwy ot gpyaoieg
aviyveuvong xewwévou TN. Qotdoo, 1 avdiuoy Twv avlp®dTvwY oToPAacEnmY Tou xdavaue amoxdhude 6Tl oL dv-
Yewmnol Baoilovtal nepiocdtepo oe xadohxolc Beixteg, OMWE 1 YAWMOOW, 1 YEOUUATXY, To UQOC, O TOVOS Xal
1 ocuvolx)) alodnon Tou xewévou. Autol ou Tapdyovieg elvon ouyYevelc pe Tic mopadootaxés puedddoug Tou
Baotlovton ot yopaxneloTixd xo oThoUeTeéS Yedddous. Auty 1 Sunio tworn utodnAnveL TL oL xadohixég e&-
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NYhoels, 6nwe Ta cuo thpata tou Bacilovto oe xavéves, Yo uropoloay va topéyouy xahiTepn UTOC THELEN 0TOUC
avipdrvoug xpitég, evtuypopullouevol TeEplocOTERD UE TG QUOIXES Bladixacies aflohdynornc Toug. Emouévue,
7 Blepedivnom TeEYVIXOY opaipxmy eEnyrioewy Yo umopoloe va eVioyUoeL TNV avlpdTivy XAToavONoT %ol omOTE-
AECUOTIXOTNTO GTOV EVIOTUOUS XEWEVWY TIOU BNLOUEYOUVTOL altd TEYVNTY VONUOoUHVY).

Téhog, To teheutaio wépoc tne epyaciog Lo avEDEIEE TIC ONUAVTIXES DUVITOTNTES XATAVONONG TOU TPOTOU UE
Tov omolo ot dvipwnot mapapedlouv mepleyduevo Tou mapdyeton and TN. Me tnv avgavéuevr enxpdtnomn e
yerione twv LLM yio tnv teletonolnon xeywévewy yeaduéveny and avilpdtoug oe didgpopoug touels, 1 e&étaon tne
alnheniSpaong petall avipdmvng xou Pnyovixic cuyyeapnc anoTtehel évay evilapépovTa Touéd Yiot LEANOVTIXG
nelpapationd. H xatavdnon authic tne Suvaixic Unopel vor eVER®OEL TNV avamtuén o e€eMypévmy epyalelny
aviyveuong xou vo cUUPBAAEL 0Tn BlATHENOT TNG AXEPAULOTNTAS TOU TEPLEYOUEVOL ToU Topdyeton and avipdtoug
xou unyovée. ‘Etot, n ueAhovixn épeuva pnopel va Boactotel oTa EUpHUATA Yoc yiar TN dnuiovpyia To Loyue®y,
oELOTLOTWY Xol PLIAXDY TEOS TOV YENOTH cuoTNUdTLwY aviyveuons xewévou TN.
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Chapter 1

Introduction

In the current age, as the text produced by large language models (LLMs) increasingly approaches the style
of human language, machine-generated text becomes more and more useful in a wide range of applications,
such as news and story composition, code generation, or even domains that are essential to human society
such as law [12] and education [79]. A recent survey indicated that between January 1, 2022, and May 1,
2023, the relative number of LLM-generated news articles increased by 57.3% on mainstream websites [24].
It is therefore apparent that the rapidly developing text generation capabilities of LLMs have caused them
to become pivotal in many sectors of everyday life, as well as professional workflows.

However, it must also be acknowledged that as these models’ availability to the public increases, so does the
risk of malicious use of machine-generated text for various purposes, including but not limited to: fake news
generation, fake product reviews, Al-written academic papers, online influence campaigns, online fraudulent
schemes (DeepFake) [87] , spam/harassment and other potential threats. Furthermore, even if the intended
use of machine-generated text might not be malicious, it has been shown that machine-generated text can
be susceptible to fabrications [32], relying on outdated or wrong information, or over-relying on prompts. A
comprehensive review of threat models enabled by machine-generated text is available in [11].

It is therefore essential to be able to differentiate between human and machine-generated text output, in
order to be able to combat the threats posed by malicious use of LLMs. The commonly used approach is to
formulate the problem of distinguishing human and machine-generated text as a (binary) classification task,
where the classifier, also called a detector, will recognize and remove machine-generated text if the intent of
such text is malicious. [31] This task has become a major focus point of the NLP community recently, with
plenty of research put into finding the most ideal detector possible. It has been suggested that the ability of
humans to effectively identify LLM-generated text is not strong enough as LLMs continue to improve, which
creates a demand for Al-based machine-generated text detection. Establishing a robust mechanism to detect
Al-generated text is pivotal to mitigating LLM misuse risks and fostering responsible Al governance in the
LLM era [76].

The detectors currently employed for this task use a variety of methods and techniques, ranging from utilising
statistical features of the input text such as word frequency, log rank or text perplexity, performing zero-shot
detection in various ways, as well as fine-tuning LLMs for the classification task. In very recent literature
there have been a number of different detection methodologies proposed, which, depending on the datasets
and metrics used, can achieve very high performance, very close to 100% on some datasets and better than
humans in almost every dataset.

However, recent research has highlighted significant robustness challenges faced by Al text classifiers, partic-
ularly in the context of paraphrasing attacks. These attacks involve a human paraphrasing text generated
by an LLM in order to avoid detection, either independently or with the assistance of another system, which
can also be an LLM. Research has shown that even prominent detectors, which otherwise perform well on
unaltered Al-generated text, can be easily deceived by such paraphrased content, thus failing to flag it as
Al-generated. [70] [28]
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A less common but equally concerning type of paraphrasing attack involves making subtle edits to human-
written text to trigger false positives in detection algorithms, causing them to flag the text as Al-generated.
This type of attack can exploit overfitting or biases within detection models, where certain human linguistic
patterns are incorrectly identified as indicative of Al-generated content. Studies have shown that these
modifications can successfully deceive state-of-the-art detectors, leading to misclassification of genuine human
text.

The increasing sophistication of paraphrasing attacks underscores the necessity for more nuanced and resilient
AT text detection mechanisms. As the boundaries between human and Al-generated text continue to blur,
the reliability of current detection models is called into question. It is imperative to develop detection
strategies that are not only accurate under normal conditions but also robust against adversarial tactics
such as paraphrasing. This involves enhancing the models’ ability to discern subtle contextual and stylistic
nuances that remain consistent despite paraphrasing.

An additional and less thoroughly explored dimension of Al-generated text detection is the issue of explain-
ability. As previously noted, machine learning (ML) models have already surpassed human capabilities in
identifying Al-generated text, and it is reasonable to anticipate that these models will continue to grow in
size, complexity, and sophistication. However, this advancement comes with a significant trade-off: as models
become more complex, their predictions become increasingly difficult to interpret and understand.

Given the sensitivity surrounding Al text detection, the importance of explainability cannot be overstated.
For instance, consider the potential consequences if an essay or study submitted to an academic institution is
flagged as Al-generated. Such a detection could carry serious implications, including questions of academic
integrity and potential disciplinary actions. Therefore, it is imperative to approach the deployment of Al text
detection models with caution and prioritize the development of methods to elucidate the reasoning behind
model predictions.

The field dedicated to creating techniques for interpreting and explaining the behavior of complex AI models
is known as eXplainable Artificial Intelligence (XAI)[59]. XAT aims to provide transparency into the decision-
making processes of Al systems, enabling stakeholders to understand and trust the outcomes produced by
these models.

The general-purpose goal of this work is to better understand the underlying features of the Al text detection
task and how ML models rely upon them to obtain sufficient accuracy to surpass humans. Specifically, we
explore adversarial perturbation-based attacks on text detection algorithms as a means to not only evaluate
their robustness but also to gain insight into the specific elements that lead a detector to classify text as
Al-generated or human.

Additionally, we also analyze text perplexity, a measure of the unpredictability of text, as a key metric in
distinguishing between Al-generated and human texts and as an approximation of the "humanness" or "Al-
ness" of a text. In particular, we examine how variations in the text perplexity distribution of the input text
can affect the performance of detector models, ultimately contributing to the development of more robust
and reliable Al text detection systems.

Moreover, we present a simple text perplexity-based Al text detector which performs comparably to general-
purpose LLM detectors across most datasets. This finding positions text perplexity as a straightforward
and interpretable benchmark for evaluating the performance of future detection methods. By establishing
text perplexity as a baseline, more advanced detection methods can be evaluated more rigorously. If a
method for AT text detection significantly outperforms the perplexity baseline, it demonstrates the added
value of the complexity and the additional features used by the more advanced method . Conversely, high
accuracy of a simple perplexity-based detector on a dataset suggests that the dataset might be too easy for
more sophisticated detectors, potentially lacking in diversity or complexity. This can guide the creation of
more challenging datasets that better reflect real-world scenarios where Al and human text are harder to
distinguish.

To complement our technical analysis, we conduct a user survey, the main of part of which consists of the users
performing the AI text detection task on various examples and explaining their thoughts. Additionally, we
utilise XAI techiques such as counterfactual explanations and feature importance graphs in order to examine
if such techniques can help improve human performance in the task.
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The purpose of the survey is not only to assess the effectiveness of human detectors on differentiating between
Al-generated and human text on various domains, but also to understand the criteria humans use to classify
text as one of the two categories and to compare these criteria with those utilized by LLM-based detectors
when making the same decision. By examining the alignments and discrepancies between human and model
evaluations, we gain a comprehensive understanding of the detection process and the potential areas for
improvement in both human and machine performance in the task.
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Chapter 2

Background and related work

2.1 Text generation models

In this work we are concerned with systems that, given a textual input, attempt to classify if that input
belongs to a human or a generative LLM; we will henceforth refer to those as text detectors or simply
detectors. Below, we provide a general categorization of these detectors along with the related literature, and
select the most suitable ones for our experimental setup.

In order to be able to effectively differentiate between human and machine-generated text, we first need
to understand how LLMs generate such text. The most commonly used text generation models are uni-
directional Transformer models (such as the GPT lineage, GROVER or GPT-NeoX) which perform self-
supervised distribution estimation to predict the next token based on the previous ones. The probability of a
given text can then be expressed as the conditional probability of the final token, given each previous token.
[11]

Early attempts to generate text were using deterministic approaches, where the continuation is fully deter-
mined by the parameters given to the LLM and prefix, either by always selecting the highest probability
token (called greedy search) or by having a fixed-size set of partially decoded sequences and selecting the one
with the highest probability (called beam search). However, these methods depend highly on the underlying
model probabilities and often result in repetitive text.[31],[26]

The state-of-the-art models, such as the GPT lineage, instead use stochastic approaches, which sample from
a model-dependent distribution at each time step. There are two main strategies used for the sampling:
top-k sampling, where sampling is limited to the k most probable tokens (with k fixed), or top-p (or nucleus)
sampling, introduced in [26], where sampling is limited to the smallest set of tokens with a total mass above
a threshold p. Thus, the number of candidate tokens varies depending on the context, which results in more
fluent and coherent text. However, this sampling method can also lead to more nonfactual sentences as shown
in [49].

The evolution of text generation models has seen significant advancements beyond these basic sampling
methods. For instance, the introduction of temperature scaling [23] allows further control over the randomness
of the generated text by adjusting the model’s output distribution. Lower temperatures make the model
output more deterministic, while higher temperatures increase randomness, potentially improving creativity
but also increasing the risk of generating incoherent or irrelevant text.

Another significant milestone in the development of text generation models is the integration of large-scale pre-
training followed by fine-tuning on specific tasks or domains. This two-step process allows models to leverage
vast amounts of general knowledge during pre-training, while fine-tuning adapts the model to generate more
domain-specific or task-specific text. Models like T5 (Text-to-Text Transfer Transformer) exemplify this
approach, demonstrating remarkable versatility and performance across various text generation tasks. [66]

Moreover, recent developments have focused on incorporating reinforcement learning techniques to fine-
tune these models based on human feedback. Reinforcement Learning from Human Feedback (RLHF) has
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been applied to improve the alignment of generated text with human preferences, as demonstrated in the
development of models like InstructGPT. [65] This approach utilizes human-provided data to guide the
model’s training, enhancing its ability to produce high-quality and contextually appropriate text.

Overall, the continuous improvement in sampling methods, the incorporation of human feedback, and the
strategic combination of pre-training and fine-tuning have collectively advanced the capabilities of text gen-
eration models, making them more adept at producing coherent, contextually relevant, and high-quality text.
These advancements, while enhancing the models’ generative abilities, also pose significant challenges for text
detectors aiming to distinguish between human and Al-generated text.

2.2 Human detection/classification of machine generated text

Before turning our attention to purely automated detection methods, it is important to note that humans can
also play a role in machine-generated text detection, potentially that of overseeing an automated system and
providing the human element (for example, in a social media framework where a human moderator would work
together with an automatic detector to ensure malicious machine-generated content is deleted). Numerous
studies and publications have reviewed the performance of human evaluators on the task of machine-generated
text detection.

At the same time, several tools have been designed to enhance human capability in detecting Al-generated
text. One notable example is the GLTR (Giant Language Model Test Room) tool [20]. GLTR leverages
statistical irregularities in text generated by models like GPT-2 to assist human reviewers. By visualizing
the likelihood of each word in a text, GLTR helps users identify patterns that are characteristic of machine-
generated content, thus improving their detection accuracy. Despite its effectiveness with text generated
from GPT-2, GLTR’s approach faces challenges with more advanced models like GPT-3 and beyond, which
utilize top-p (nucleus) sampling rather than top-k sampling. This shift in sampling methods makes it harder
for human reviewers, even with tools, to detect text generated by the latest models.

The performance of human evaluators in detecting Al-generated text varies significantly. In fact, a study
conducted with GPT-3 generated text [10] found that untrained humans do not perform better than random
chance. However, another study where the reviewers were university students contradicts this finding and
suggests that humans can still recognize machine-generated text at about 70% accuracy. [30]

The RoFT (Real or Fake text) tool [13] [14] evaluates human performance on the related task of recognizing
the boundary at which a human-written text becomes machine-generated. In this tool, which is publicly
available () the reviewers can also provide feedback, as to why a sentence is machine-generated. The study
associated with the tool [14] also finds that reviewers do perform better than random chance on all domains.
However, we have to note that machine-generated text for this tool is also provided by GPT-2, which as
mentioned is significantly easier for humans to detect. This study also finds that text generated from smaller
models is easier to detect for humans.

All in all, recent research has shown that while humans probably still perform somewhat better than random
chance in the text detection task, as LLMs grow larger and more sophisticated, the accuracy of human
reviewers is bound to decrease significantly. Human reviewers, even specifically-trained ones, still have worse
accuracy than the state-of-the-art automatic detectors, which in fact perform better in the exact situations
where humans are most likely to be fooled: the more “human-like” a text is to humans the more easily
recognizable it is for an automated detector.|[30]

Another significant challenge with human detection is scalability. As the volume of content generated by
large language models (LLMs) grows, relying solely on human reviewers becomes impractical. Automated
detectors offer a scalable solution, processing vast amounts of text quickly and efficiently. However, the
combination of human oversight and automated detection remains essential. Human reviewers can handle
edge cases, verify the decisions made by automated systems, and provide a check against potential biases in
AT algorithms.

Additionally, despite the superior performance of automated detectors, human reviewers bring unique in-
sights that can inform and improve these detectors. Humans can identify subtleties and contextual nuances
that might escape purely algorithmic approaches. By analyzing the reasons behind human decisions in de-

32



2.3. Al-based detection of machine generated text

tecting machine-generated text, researchers can gain valuable information to refine detection algorithms. For
instance, patterns and anomalies that humans notice can be translated into features for machine learning
models, enhancing their accuracy and robustness.

In this direction, we opted to include a user survey in this study where participants are tasked with Al text
detection across various domains and contexts, with the aim to compare their performance to automated
detectors, but also to extract more data on what influenced their decisions in classifying the texts.

Our aim is that the findings from this survey will not only help improve the design of detector systems in
the future but also provide a deeper understanding of human cognitive processes in the context of Al text
detection. Detailed analysis and results of the user survey can be found in Chapter 5. By integrating human
insights with advanced detection algorithms, we aim to develop a more comprehensive and effective approach
to identifying machine-generated content.

2.3 Al-based detection of machine generated text

Due to the heavy interest from the NLP community in the AI text detection task, there is a broad and diverse
range of methods in which it has been attempted to use Al and machine learning techniques to differentiate
between human and machine-generated text. We present the most prominent ones below.

2.3.1 Feature-based detection/classification

A feature-based approach to the detection task emphasizes identifying and leveraging specific characteristics
that differentiate human from machine-generated text, often viewed as intrinsic flaws of the latter. One
notable feature is the lack of syntactic and lexical diversity [18]. Machine-generated text frequently exhibits
limited variety in sentence structures and vocabulary compared to human-written text. This leads to a more
monotonous and predictable style, whereas human authors typically employ a broader range of sentence
constructions and vocabulary, contributing to richer and more engaging content.

Another critical feature is the lack of coherence in Al-generated text. Coherence refers to the logical flow
and consistency of ideas within a text, which machine-generated content can struggle to maintain, especially
over longer passages. This might result in abrupt topic shifts, disjointed sentences, or contradictions that
disrupt the narrative flow. In contrast, human writers generally construct coherent arguments and narratives,
ensuring that their writing remains focused and logically connected. Additionally, another common issue
with machine-generated text is repetitiveness. Al models might repeat phrases, ideas, or sentence structures,
creating a sense of redundancy. This happens because the model may lack the nuanced understanding of
context and progression that human writers possess, who tend to vary their language to avoid unnecessary
repetition and maintain reader interest.

Machine-generated text can also sometimes appear aimless or generic and be characterized by a general lack
of purpose. While human authors write with specific goals, intentions, and audiences in mind, Al-generated
content might miss this direction, resulting in text that feels purposeless. Human-written text typically
conveys a clearer sense of intention and is tailored to address specific topics or audiences.

These features—syntactic and lexical diversity, coherence, repetitiveness, and purpose—can be quantified and
used to develop criteria for distinguishing human from machine-generated text without necessarily training
traditional ML models. For example, the repetitiveness of n-grams (sequences of n words) can be measured
to identify the overuse of certain phrases, which is more common in machine-generated text. This method
used in [19] resulted in over 90% precision for top-k sampling strategies and over 80% for nucleus sampling.

Another related approach is to target the machine configuration parameters. Different modeling techniques
can leave artifacts that are detectable in the generated text. [26] An example of that is token frequency:
machine-generated text often does not mirror the distribution of tokens that a human-produced text has, but
instead can vary depending on the chosen sampling method. Therefore, token distribution provides useful
information, particularly when there is a large amount of text considered. [11]

Another method of trying to identify those artifacts is the use of stylometric features. This includes features
such as average sentence length, stop word count, punctuation count and many others, which have been used
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in studies to try and detect differences between human and machine-generated text especially in texts of
shorter length like tweets [39], [63].

In general however, traditional feature-based methods for detecting Al-generated text have largely become
obsolete, particularly when dealing with advanced models and sophisticated sampling techniques. These
methods were more effective against earlier generation models that used top-k sampling, which tended to
over-generate common words and thus made detection easier. However, as language models have grown larger
and more advanced, detection has become significantly more challenging. Text generated by large language
models (LLMs) that are fine-tuned for specific domains tends to be more human-like and harder to detect
than text produced by general-purpose models. [75]

The widespread adoption of top-p (nucleus) sampling in modern generative LLMs has further diminished the
effectiveness of these detection methods. Top-p sampling generates text that is more varied and contextually
appropriate, reducing the likelihood of the repetitive patterns and lexical limitations that feature-based meth-
ods rely on. Consequently, these traditional methods have been surpassed in both accuracy and robustness
by more sophisticated detection techniques that involve advanced machine learning models.

Despite their limitations, traditional feature-based methods still hold some value. They are relatively easy
to use and experiment with, providing a useful baseline for evaluating the performance of more complex
detectors. Ensuring that advanced detection methods perform at least as well as these simpler approaches
helps validate their efficacy. In some cases, feature-based methods can even be combined with more advanced
tools such as a transformer model to increase accuracy [55]. Moreover, stylometric analysis is still being used
even in very recent studies, especially in cases where methods based on large language models might not be
as effective, such as very short texts (like tweets).

Thus, while no longer the cutting-edge solution, feature-based methods remain a valuable tool in the ongoing
effort to detect Al-generated text.

2.3.2 Zero-shot detection/classification

In this setting, a pretrained text generative LLM (such as GPT-2 or GROVER) is employed without fine-
tuning to detect generations from itself or similar models. The original idea, as demonstrated in [75], was
to use total log probability and apply a threshold based on this for classification. Text was predicted to be
machine-generated if the overall likelihood of the text according to the model was closer to the mean over
all machine-generated text than the mean over all human texts. However, classifiers based on this did not
match the standards of even traditional feature-based methods.

A more recent study, following the release of OpenAl’s ChatGPT, suggested an innovative methodology
for zero-shot detection. DetectGPT [57] operates on the principle that machine-generated text often lies in
negative curvature areas of the model’s log probability. Therefore, it generates multiple perturbations of
the considered text, and scores it as machine-generated if those minor rewrites of the text have lower log
probability than the original text. At the time of its release, Detect GPT significantly outperformed the best
traditional zero-shot methods and was comparable to some of the state-of-the-art fine-tuned LLM classifiers
[57].

However, DetectGPT has been found to have several shortcomings. [8] First, it relies on knowledge of the
specific LLM used to generate the text, as different LLMs exhibit different likelihoods for various words or
tokens depending on their training data. Experiments with different LLMs have shown that DetectGPT
cannot accurately detect generated text if it is unaware of the generative model that produced it. In a
realistic scenario, one would need to compare with all existing LLMs, which is impractical. Other issues with
DetectGPT include its intensive computational costs [3] and its inherent vulnerability to various kinds of
paraphrasing attacks (explained more thouroughly in Section 2.5), where the LLM user slightly paraphrases
the text in order to deceive the detector. Provided the paraphraser is good enough, the original LLM-
generated phrase will show up in the algorithm’s perturbations, thereby deceiving DetectGPT into classifying
the input as human.

Despite these problems, DetectGPT has inspired further research into zero-shot detection. Many improve-
ments on the base algorithm of DetectGPT were suggested, including making the perturbation step more
efficient using sampling [3] and incorporating a Bayesian surrogate model in the sampling process [54]. These
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methods generally lead to some improvement over the base algorithm, but key problems, such as robust-
ness issues and reliance on knowledge of the generating LLM, remain. Consequently, the practical use of
DetectGPT-based algorithms is limited, and they are now primarily used as baselines for other detectors to
compare against.

Of course, zero-shot methods in general have significant advantages, like the ability to be deployed instantly
without the need of training data and their generalizability to different (even unknown) models. Therefore
other methods of zero-shot detection have also been explored in recent literature, including leveraging log
rank information [77] and using intrinsic dimensionality estimation of the text embedding manifolds [81],
which show promising performance in early experiments but have yet to be tested in practical situations.

Another subcategory of zero-shot detection methods involves utilizing text perplexity analysis. Text perplex-
ity is a metric that measures the unpredictability of text given the context, reflecting how well a language
model predicts a sample. In essence, lower perplexity indicates text that is more predictable and aligned
with human writing, while higher perplexity suggests text that is less predictable and more likely to be
machine-generated.

Text perplexity has shown to be a reliable indicator of whether a text is Al-generated in many cases.
Perplexity-based detectors work by calculating the perplexity of a given text using a language model and
comparing it against threshold values derived from known human and machine-generated texts. If the per-
plexity of the text falls within a range typical of machine-generated content, it is classified as such. More
about text perplexity is explained in Section 2.4.

Text perplexity-based detectors are considered some of the best performing among zero-shot detectors. In
this work, we introduce our own simple text perplexity based detector and show that it can perform as well as
the best fine-tuned models for text detection in most domains, thereby highlighting the potential of zero-shot
detection methods to remain a reliable solution for AI text detection as language models continue to evolve.

2.3.3 Fine-tuning LLMs for classification

In this setting, a pretrained language model, typically a bidirectional one such as BERT or RoBERTa, is
fine-tuned to detect text generation from itself or similar models. Unlike zero-shot setups, this approach
necessitates further supervised detection examples for training [31].

Early studies involving BERT and GROVER concluded that such models excel at detecting their own gen-
erated text but are less effective at identifying text generated by other models [83].However, in [75] it was
demonstrated that fine-tuning the RoBERTa detector on top-p examples can also yield high performance
across other sampling methods, achieving a 95% accuracy in identifying GPT-2 model generations. This
performance surpassed even the fine-tuning of the unidirectional GPT-2 model itself, contradicting earlier
findings. Generally, the RoBERTa-based detector performs well across various domains and was consid-
ered state-of-the-art at the time of its release. Nonetheless, a significant drawback is its requirement for a
substantial amount of training examples per class to achieve optimal performance [31].

The scalability of these fine-tuned detectors to newer language models remains a pertinent issue. For instance,
OpenAl fine-tuned a GPT model for text detection in 2023, but it was eventually removed due to its low
accuracy [64]. However, despite the advent of newer models such as ChatGPT, RoBERTa-based detectors
continue to exhibit superior accuracy in specialized sub-tasks like fake-news detection [86], and in specialized
domains such as academic papers [47] or homework exercises [46].

A major concern with fine-tuned detectors is their extreme specificity. Fine-tuning a detector on a particular
domain or dataset often results in compromised performance outside that domain. This trade-off between
domain-specific accuracy and generalizability is crucial. In our experiments, we utilize a RoBERTa-based
detector as one of our main detectors to represent the fine-tuning method, alongside smaller BERT-based
detectors which we fine-tune on specific data sets for preliminary experiments. This approach demonstrates
the trade-off introduced by the extent of fine-tuning: a model fine-tuned on the detection task without specific
domain constraints is expected to exhibit better generalizability, whereas fine-tuning a model on both the
task and a particular domain is likely to increase accuracy within that domain but decrease it outside of it.

Another critical consideration when employing these detectors in realistic scenarios is their robustness. Given
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the open-source nature of the BERT /RoBERTa architecture, malicious actors can access the model weights
and understand how these change with various inputs, potentially making the models susceptible to manip-
ulation. In our study, we employ adversarial attack tools to demonstrate that even fine-tuned detectors can
be easily deceived into producing incorrect outcomes if the text is paraphrased with the intention to fool the
detector.

Despite these challenges, fine-tuning an LLM remains one of the most prominent methods for Al text detec-
tion, particularly when high accuracy is required within a specific domain of texts, provided that sufficient
data is available to train the model effectively. This method’s ability to adapt to specific characteristics of a
domain enables it to achieve superior performance compared to more general approaches, making it a vital
tool in the ongoing effort to detect Al-generated text accurately and efficiently.

2.3.4 Adversarial learning methods

The aforementioned robustness issues of Al-generated text detectors against paraphrasing attacks have in-
spired the development of novel approaches based on adversarial training. Frameworks such as RADAR
[27] and OUTFOX [37] attempt to construct robust Al text detectors by employing an adversarial training
paradigm. In these frameworks, two models are trained in parallel: a detector, whose objective is to identify
Al-generated text, and a paraphraser, whose goal is to generate text that deceives the detector into making
incorrect predictions. The detector and paraphraser are trained separately and iteratively, following classic
adversarial learning practices.

Adversarial learning methods enhance the robustness of Al text detectors by simulating attack scenarios dur-
ing training. The paraphraser model generates challenging examples that the detector must learn to handle,
thereby improving its ability to withstand real-world adversarial attacks. These methods are designed to
address not only word substitution attacks (paraphrasing) but also more sophisticated instructional prompt-
based attacks [74]. For instance, [90] leverage human texts polished by ChatGPT to train a RoBERTa-based
detector, enhancing its accuracy and robustness against paraphrased text.

Experimental evaluations of adversarial learning methods typically show that models trained using these
techniques retain state-of-the-art accuracy on original detection tasks while demonstrating significantly im-
proved robustness against paraphrasing attacks compared to traditional fine-tuning methods. This increased
resilience is a key advantage in practical applications, where adversarial attacks are a common threat.

In our research, we conduct extensive experiments with adversarial attacks, which are similar to paraphrasing.
Consequently, it is imperative to include an adversarial learning-based detector in our study to assess its
effectiveness in withstanding such attacks. We therefore select the RADAR detector for inclusion in our
experiments, as it represents a versatile and general-purpose adversarial-based detection framework.

This approach underscores the evolving landscape of the task, where adversarial training emerges as a promis-
ing solution to address the vulnerabilities of conventional methods. As adversarial attacks become increasingly
sophisticated, the integration of adversarial learning into detection frameworks will be crucial in developing
resilient and reliable Al text detectors.

2.3.5 Other attempts

As Large Language Models (LLMs) become increasingly proficient at generating human-like text, the difficulty
of accurately detecting Al-generated content escalates. A proposed solution to facilitate this detection task
for the community, most prominently detailed in [35] involves watermarking the text produced by LLMs. This
method embeds hidden markers within the generated text. These markers are designed to be imperceptible to
human readers but can be detected by specific algorithms, thus identifying whether a text was generated by
a particular Al model. The primary objective of watermarking is to provide a reliable and easily detectable
signature indicating the origin of the text, thereby aiding in the identification and regulation of Al-generated
content.

The method proposed in the original paper categorizes tokens into “green” and “red” lists using a random
number generator. Watermarked models are more likely to select tokens from the green list, resulting in a
watermark that remains undetectable by human readers but is easily identifiable by an automated detector
with knowledge of the list, even after some degree of paraphrasing.
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This attempt opens up unexplored avenues for the Al text detection task, although it is still far from being
a realistic scenario. As of now, text-generating models like ChatGPT do not typically employ watermarking.
There are several reasons for this, including the technical challenges presented by the need of an unde-
tectable and robust watermark, concerns that watermarking will decrease the fluency and performance of
text generation models, and ethical implications involving the potential misuse of watermarked texts. Ad-
ditionally, the practical deployment of watermarking in widely used models requires significant coordination
and standardization efforts.

While watermarking is not widely employed in current Al text generation models, it remains an active area of
research, with ongoing efforts aimed at developing more sophisticated algorithms for embedding and detecting
watermarks that are robust against a wide range of text manipulations. For example, a follow-up study to
the original watermarking paper examines the robustness of watermarked text after being rewritten by
humans, paraphrased by a non-watermarked LLM, or incorporated into a longer handwritten document [36].
Additionally, [45] proposes a publicly verifiable algorithm using two different neural networks for watermark
generation and detection, addressing concerns about counterfeiting the watermark during public detection
and potential security breaches from having only one key.

In summary, watermarking is a promising technique for Al text detection, offering a potential solution to
the growing challenge of distinguishing human-generated text from Al-generated content. However, it faces
significant technical and practical challenges. Current models like ChatGPT do not typically employ water-
marking, but ongoing research and development may lead to more widespread adoption in the future. Such
advancements could provide an additional layer of security and traceability in Al-generated text, ultimately
contributing to more effective regulation and identification of Al-generated content.

2.4 Text perplexity

A commonly used metric in NLP for evaluating language models is text perplexity (PPL). This metric
quantifies how effectively a language model can predict a given text sample. Originating from the field of
information theory, perplexity measures the uncertainty of a prediction model when provided with the actual
outcome [85]. In this context, a lower perplexity score indicates that the prediction model can predict the
text sample well, whereas a higher perplexity score suggests that the sample is more "unpredictable" and
thus more challenging for the model to anticipate.

When applied to Large Language Models (LLMs), the concept of text perplexity is adapted to measure the
average uncertainty of an LLM when predicting the next word or token based on the preceding sequence
of words or tokens. This metric is particularly relevant to classical (auto-regressive) language models such
as GPT-2 or OPT, where the prediction of future tokens is based on the context provided by the preceding
tokens. In this framework, a lower perplexity score signifies that the text sample is more "predictable" to the
LLM, suggesting that it is more likely to have been generated by the LLM (or a similar model). Conversely,
a higher perplexity score implies that the text is more "unpredictable" to the LLM, indicating a higher
likelihood of being generated by a human.

It is important to note that the applicability of perplexity as a metric is inherently tied to the architecture
of the language model in question. For auto-regressive models, perplexity provides a clear measure of how
well the model can predict the continuation of a text sequence. However, for bidirectional models such as
BERT or RoBERTa, the concept of perplexity is potentially less well-defined [29]. Bidirectional models do
not predict the next token in a sequence in the same manner as auto-regressive models; instead, they consider
the entire context of the sentence or paragraph simultaneously, making the direct application of perplexity
less straightforward.

By quantifying the predictability of a text sample, perplexity offers valuable insights into the model’s ca-
pability to generate human-like text and aids in distinguishing between Al-generated and human-generated
content. This metric’s relevance and applicability are contingent on the architectural nuances of the language
models under consideration.

Formally, perplexity is defined as the exponentiated average negative log-likelihood of a sequence. In the
NLP context we can assume a sentence as a tokenized sequence X of length ¢, consisting of ¢ tokens or words.
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X = (zo,21,...,2¢)

Then, we can define the perplexity of X with the following formula :

PPL(X) = exp {—1 Zlogpe(xi | 33<i)}

i=1

where
logpg(z; | x<i)}

is the conditional log likelihood of the token i given all previous tokens in the sentence. This is also equivalent
to the exponentation of the cross-entropy between the data and model predictions. [29] Of course, using this
formula means that the tokenization process has a big impact on perplexity calculations and should always
be taken into consideration.

Perplexity has been frequently employed as a comparative measure for evaluating model perfromance across
various tasks. More recently, it has also been suggested that it could be a good indicator of whether an Al has
generated a particular text segment, on the premise that a lower perplexity score implies a higher likelihood
of the model generating the text[20]. There have been some studies in the recent literature that utilise this
in order to create an Al text detector. A good example is HowkGPT [85], which utilises perplexity analysis
to identify homework assignments generated by ChatGPT. Perplexity is also being used by commercially
available, closed-source detectors such as GPTZero [80], which also uses the related metric they call burstiness,
which is a metric referring to Al-generated text displaying a higher frequency of clusters or bursts of similar
words or phrases within shorter sections of the text.

A more advanced implementation of perplexity in the AI text detection task is the Binoculars detector [25],
which computes the log perplexity of a text using an LLM and then compares it to the perplexity of another
LLM’s choices when completing a text sample (called cross-perplexity in their study) . If the text is written
by a machine the two perplexities are expected to be similar, whereas if it is from a human source then the
two metrics should differ significantly. Using this principle to build a zero-shot detector, they achieve good
accuracy on a number of datasets and a very high TPR (true positive rate) when set to a really low FPR
(false positive rate).

In this work we do attempt to look into the possibility that text perplexity could be an underlying feature that
makes models, which do not directly employ perplexity analysis, classify a text as human or Al-generated,
and therefore serve as an indicator of what makes a text intrinsically human or generated. We do construct a
perplexity-based detector (similar to HowkGPT), and evaluate its performance across a number of datasets,
comparing and contrasting with detector performance to determine the usefulness of perplexity in the Al
text detection task. We also do run a number of datasets through the Binoculars detector [25] to compare it
both to the simpler perplexity baseline and to other detectors tested on the same dataset.

2.5 Paraphrasing attacks

It is important to note that even state-of-the-art Al text detectors can be vulnerable to various attacks, where
a malicious actor manipulates the input or the detector to misclassify Al-generated text as human-generated
(or, less commonly, vice versa). The most prevalent of these attacks is the classic paraphrasing attack. In
this scenario, a lightweight neural network model, known as a paraphraser, is applied on top of a Language
Model (LLM) with the specific goal of evading detection. Recent research, such as [70], demonstrates that
such a setting can evade a broad range of detectors, including watermarking schemes, neural network-based
detectors, and zero-shot detectors like DetectGPT. They also mathematically prove the impossibility of the
detection task when the total variation norm between human and machine-generated text distributions is
small, thus providing an upper bound for the detector’s efficiency.

In [38] it is also argued that a lightweight paraphraser can bypass various detection schemes. Therefore, they
propose retrieving semantically similar text generation by an LLM as a means of defense against paraphrasing
attacks. However, this method has limitations, such as being specific to each LLM and raising privacy
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concerns. In [9] it is argued that while the impossibility result of [70] holds,it is insignificant in the broader
context. They assert that text detection will always be possible given sufficient data samples, although
another study [8] argues that methods of text detection will always be susceptible to tampering.

It should be noted that paraphrasing can also be performed by humans. For example, a student might
generate an essay for homework using an LLM like ChatGPT, which would likely be flagged as Al-generated
by a detector, and then edit it to add context, improve style, and clarity. There is ongoing debate about
whether this kind of text should be flagged as Al-generated. Such text occupies a hybrid space between
purely Al-generated text and human text and can potentially be viewed as either. Most studies on Al text
detection consider such text to be human-generated, so the primary focus of research on paraphrasing is on
LLMs paraphrasing content to appear as human text. Cases where human text is paraphrased to appear
Al-generated are less common and have fewer practical implications. However, it is crucial to distinguish
between human paraphrasing of human text (which ideally should not deceive a detector) and an LLM editing
human text (which might occupy the hybrid space).

In our work, we explore adversarial attacks against detectors, which function similarly to paraphrasing.
Our experimental results indicate that state-of-the-art neural network-based detectors are vulnerable to
paraphrasing, as their classification labels can be altered with minimal text perturbation. However, for some
detectors, such perturbations may degrade the text quality, making them impractical in real-world scenarios
and thus rendering the detector robust in practice. We also experiment with perplexity analysis to examine
how paraphrasing (simulated through adversarial attacks) impacts text perplexity distribution, which could
represent the distribution of texts discussed in [70].

In practice, Al text detection and Al text paraphrasing to avoid detection are two sides of the same coin,
with many studies and commercially available software dedicated to one task or the other. In this work,
we emphasize the importance of identifying the intrinsic qualities that differentiate Al-generated text from
human-generated text without necessarily focusing on developing the most accurate detector or paraphraser.

2.6 Explainable AI methods

The main focus of this work is understanding the deeper mechanisms beyond how texts are classified as Al-
generated or human. As such, the study is also related to the concept of interpretability and Explainable Al
(XAT) methods. Explainability in AT refers to the ability to make the decision-making processes of Al systems
transparent and understandable to humans. This involves providing clear, human-readable explanations for
why a model made a particular prediction or classification, making it easier to trust and verify the system’s
outputs.

In the context of Al text detection, explainability is crucial. It allows researchers and users to understand why
a certain text was classified as Al-generated or human. This transparency is essential for several reasons: it
can help improve the model by revealing biases or weaknesses, it fosters trust in automated detection systems
by making their operations comprehensible, and it provides valuable insights into the features and patterns
that differentiate human text from Al-generated text.

Moreover, explainability is particularly important in cases where the detection system is used in high-stakes
environments, such as academic integrity checks, legal document verification, or news authenticity assess-
ments. Here, being able to provide a clear rationale for each classification decision can be crucial for account-
ability and user acceptance.

Explainable AT methods can be classified according to various criteria. The most commonly used taxonomy,
as outlined in sources such as [58] and [21], distinguishes between two primary approaches: interpretability
achieved by the model itself, and interpretability achieved through post-hoc analysis.

Interpretability achieved by the model itself involves restricting the complexity of the model to ensure that
its operations are inherently understandable. These models are designed to be transparent and easily inter-
pretable from the outset. Examples include decision trees, linear regression, and rule-based systems, which
provide straightforward, human-readable explanations of their decision-making processes.

On the other hand, post-hoc interpretation involves analyzing the model after the training and classification
processes are complete. This approach is particularly important for black-box models, such as deep neural
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networks, which achieve state-of-the-art results in many machine learning tasks, including AT text detection,
but whose internal workings are not easily understood. Post-hoc methods can include techniques like feature
importance analysis, visualization of attention mechanisms, and generating textual or visual explanations that
describe the model’s behavior, including counterfactual explanations. These methods can also be applied to
inherently interpretable models to provide additional insights.

Given that black-box models typically the highest accuracy and effectiveness in the Ai text detection task, the
main focus of this work regarding explainability is on post-hoc interpretation. Understanding and explaining
the decisions of these complex models is crucial, especially in sensitive applications like our task, where the
stakes are high, and trust in the system’s outputs is essential.

2.6.1 Interpretable Models

Naturally, the easiest way to achieve interpretability is to implement it intrinsically into the model algorithms.
Some of the most common interpretable machine learning algorithms include linear or logistic regression,
decision trees, and rule-based systems. These models are designed to provide clear, understandable outputs
that can be easily traced back to the input features. When applied to the AT text detection task, as examined
in the first part of this study, basic feature-based detection methods, explained in Section 2.3.1, are usually
inherently explainable. These methods leverage straightforward, human-understandable features such as
lexical diversity, syntactic patterns, and text coherence, making their decision-making processes transparent.

Perplexity-based analysis, which underpins some AI text detectors such as [80], [85], and [25], occupies a
middle ground between fully interpretable models and black-box models. Perplexity is a mathematical,
quantitative metric that measures how well a language model can predict a text sample. In this sense, a
perplexity-based detector is more interpretable than black-box classifiers like a fine-tuned RoOBERTa model,
as it provides a clear numerical indication of the model’s uncertainty regarding a text. However, calculating
perplexity requires intrinsic knowledge of the LLM used to compute it, as it depends on the probabilities
assigned to tokens by the model. While any LLM, including older open-source models like GPT-2, can
be used to compute perplexity, the metric itself is not fully interpretable. The threshold for classifying a
text as human or Al-generated can vary depending on the style and context of the text, making it less
straightforward.

As noted in Section 2.3.1, although feature-based methods might be sufficient to accurately detect text gen-
erated by smaller or older LLMs, they usually lag behind "non-interpretable" methods that utilize advanced
ML models in terms of accuracy. Additionally, there is a distinct weakness in using interpretable models for
the AI text detection task concerning paraphrasing. If a malicious user fully understands how a detection
model works, they can manipulate the text to deceive the model and evade detection.

In conclusion, while intrinsically interpretable models and methods offer clear advantages in terms of trans-
parency, their limitations in accuracy and vulnerability to manipulation necessitate the use of post-hoc
interpretability techniques for robust Al text detection.

2.6.2 Post-hoc interpretation

Post-hoc interpretation aims to separate the explanation from the model itself, which can have significant
advantages [68]. The primary benefit of post-hoc methods is that they are model-agnostic; they are inde-
pendent of the model used to make a classification and rely solely on the input and output of said model.
This independence allows us to use the most accurate methods available for a given task, without being
constrained by the need for inherent interpretability. As machine learning models become larger and more
diverse, relying on white-box methods that require intrinsic knowledge of specific models will become in-
creasingly impractical. The flexibility offered by model-agnostic methods is particularly advantageous in an
industry dominated by black-box models.

Post-hoc interpretations can be further categorized into global and local explanations. Global methods
describe how certain features affect a model’s predictions on average, providing a broad understanding of
the model’s behavior. Local methods, on the other hand, focus on specific predictions, offering detailed
insights into individual decisions [58]. An example of a global method is using an interpretable model, often
referred to as a surrogate model, to approximate the predictions of a black-box model. This approach helps
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to provide an overall understanding of the model’s decision-making process. Another example of a global
explanation method is the utilization of knowledge graphs to generate rule-based explanations [42],[43],[51]
where the rules are derived from the model’s decision logic and contextualized using domain knowledge.
Additionally, global feature importance methods, such as SHAP [48] can offer insights by showing the average
impact of each feature on the model’s predictions, further enhancing the interpretability of complex models.
Another approach to global explanations is prototype explanations, where recent works [53] utilize semantic
descriptions of data, to select prototypical data points that are representative of each class, offering a better
understanding of the distribution of both the data and the model’s output.

Local methods aim to explain individual predictions of the black-box model. One popular local method
is LIME (Local Interpretable Model-agnostic Explanations) [67], which generates a dataset of perturbed
samples around a specific data point and trains an interpretable model on this dataset. The trained model
should approximate the black-box model’s behavior locally, producing feature importance graphs that can be
interpreted by human researchers. However, the effectiveness of this method is contingent on the accuracy
of the surrogate model; if the surrogate model does not accurately mimic the black-box model, the local
explanation may not be reliable. Despite this limitation, LIME and other feature importance techniques
remain valuable tools for enhancing the interpretability of complex models.

In the context of Al text detection, post-hoc interpretability methods can be particularly useful. For example,
[1] used feature importance analysis to identify the key factors that AI text detectors use to classify texts.
The study found that perplexity was largely the most significant feature the classifiers used. However, as
previously discussed, perplexity is not inherently an interpretable feature, necessitating additional methods
to enhance transparency. In our work, we employ LIME [67] to generate word importance graphs, which
highlight the words in a text that most influenced the classifier’s prediction. This approach aims to provide
clearer insights into the specific parts of a text that drive the model’s decisions.

Counterfactual explanations and adversarial attacks

Another family of post-hoc interpretations that can be used to explain a model is counterfactual explanations.
These explanations emphasize what should be different in the input to change the model’s output (the
prediction). Formally, a counterfactual explanation of a prediction describes a change to the feature values
that alters the prediction to a predefined output.

Counterfactual explanations have numerous advantages as an explainability method. Firstly, they are com-
pletely model-agnostic and can be employed in any system that has an input and an output, even systems
that do not use ML methods at all. Additionally, counterfactual explanations are very human-friendly due
to their contrastive nature.[44] ,[56]. Applying this to our task, humans potentially seeking an explanation
of why a text is Al-generated (or not) will think contrastively, considering "what should have been different
for this text to have been classified as human (or Al-generated)".

Given these advantages, it is natural that the NLP community has attempted to employ these methods in
practice using text-generating LLMs. Frameworks such as [69] and [6] attempt to perform counterfactual
edits by masking parts of the text and optimizing the proposed replacements to change the output of a given
predictor, which in our case is an Al text detector. A more general approach to counterfactual edits in
text-to-text models is Polyjuice [89], which identifies perturbations that can change the general semantics of
a sentence without necessarily targeting a specific predictor.

Counterfactual explanations can have various use cases. In [50], three basic use cases are examined: outcome
fulfillment, where the end-user seeks advice on how to modify an input to achieve a desired output; system
investigation, where the user seeks to understand model behavior; and vulnerability detection, where the
end-user seeks to identify potential weaknesses in a system.

The use case of vulnerability detection is closely related to adversarial attacks. There is a family of editors
that aim to generate adversarial examples to improve ML models. These perturbations of text are usually
used to identify potential robustness issues with the models and/or inherent vulnerabilities. The difference
between adversarial attacks and counterfactual explanations is that adversarial attacks do not necessarily
edit inputs minimally or fluently, which can result in unwanted features in the perturbations (noise) [16].
An example of an adversarial attack framework is TextFooler [33], which is considered the most effective (in

41



Chapter 2. Background and related work

terms of flip-rate) and utility-preserving (in terms of semantic content preservation) adversarial editor, and
is also the one we choose for this work.

Specifically in the AI text detection task, there have been recent papers leveraging adversarial attacks,
running concurrently with this work. [5] uses a simple adversarial attack of inserting a space in a text before
a random comma and successfully manages to flip the prediction of many Al text detectors. While this
highlights the robustness issues some Al text detectors may have, it does not provide any explanations as to
the underlying mechanisms that make a detector classify a text as Al-generated or human. A more recent
study [28] examines adversarial attacks on AI text detectors more deeply and proposes a reconstruction
network for additional robustness against them.

Our work utilizes adversarial attacks via the TextFooler framework, as explained in Section 3.1. Using
them in different circumstances, we attempt to fulfill different use cases for these explanations: highlighting
potential robustness issues, understanding the way detectors make predictions on a deeper level, and providing
explanations to humans. This is why, in the final part of the study, a user survey is conducted where users
are asked to perform the Al text detection task, both unaided and aided by counterfactual explanations as
well as LIME explanations. One purpose of this work is to identify whether such methods could improve
human performance in detecting Al-generated text.

2.6.3 Hybrid attempts

In addition to the methods mentioned earlier, there have been recent attempts in the literature to combine
different explainability methods to provide better insights into black-box ML models. One such example is
found in a recent work, [4], which enhances interpretability by combining local feature importance, as used
in LIME [67], with textual counterfactual explanations. This hybrid approach aims to make the explanations
more intelligible and comprehensive.

The method involves assessing token change importance between the instance to be explained and its coun-
terfactual sample. By evaluating which token changes are most influential in altering the prediction, this
approach provides a nuanced understanding of how individual features contribute to the model’s decisions.
This combination of LIME and counterfactual explanations helps bridge the gap between local and global
interpretability, offering a more detailed and user-friendly explanation of the model’s behavior.

In summary, understanding the deeper mechanisms behind how texts are classified as Al-generated or human
is vital for improving the transparency and reliability of Al systems. The integration of interpretability and
Explainable AT (XAI) methods plays a crucial role in achieving this goal.

Post-hoc methods like LIME and counterfactual explanations provide significant insights into model behavior
by explaining individual predictions and suggesting minimal changes to inputs that could alter outcomes.
This not only aids in understanding and improving model performance but also enhances user trust by making
AT decisions more transparent and comprehensible.

By incorporating these methods in our work, we aim to enhance both the detection capabilities and the
interpretability of Al text detectors. The user survey conducted in this study, analyzed in Chapter 5, further
explores the effectiveness of these methods in aiding human performance in detecting Al-generated text,
underscoring the practical benefits of explainable AI techniques.
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Methodology

As outlined in previous sections, the task of Al text detection remains an open problem for the NLP com-
munity. This challenge involves achieving high accuracy in detecting Al-generated texts, a necessity given
the significant societal impacts of this task. Effective Al text detection has applications in various areas such
as academic integrity, legal document verification, and news authenticity, making precision and reliability
essential.

To address this multifaceted problem, we conducted a series of experiments aimed at testing the accuracy
and robustness of various detection techniques. Our goal was to explore both traditional and state-of-the-art
methods, evaluating their effectiveness under different conditions. Additionally, we sought to understand the
intrinsic differences between human and machine-generated texts, aiming to uncover how models identify and
interpret these distinctions.

In this chapter, we provide a comprehensive outline of the methodologies, frameworks, detectors, and datasets
we utilized in our experiments. In the following chapter (Chapter 4), we present the results of our experiments,
highlighting key findings and insights. This includes an analysis of the performance of different detectors
and the impact of various text features on detection accuracy. Through this detailed examination, we aim to
contribute valuable knowledge to the field, advancing the understanding of Al text detection and providing
a foundation for future research.
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3.1 Adversarial attack framework-TextFooler

A substantial part of our experiments is centered around an adversarial attack framework, specifically
TextFooler [33]. Adversarial attacks, as an explainability method, can be linked to counterfactual expla-
nations (see Chapter 2.6). In our specific task, they provide valuable insights into why a text is classified as
human-written instead of Al-generated, and vice versa.

The adversarial attack framework we use in the experiments is TextFooler, implemented through the Tex-
tAttack Python module [60]. We employ this framework with various datasets and language models, which
are outlined in later chapters.

The basic premise of TextFooler involves perturbing various words in a sentence with synonyms using a word
embeddings list until the label flips. Originally, this framework was tested in sentiment analysis tasks, where
it could, for instance, turn a positive review into a negative one, providing the user with insights into what
words would need to change for the "feeling" of the sentence to differ. However, as the authors of TextFooler
note, the framework can be adapted to "fool" any text-to-text classifier. We leverage this capability to fool
AT text detectors.

The parameters for our TextFooler experiments are the default settings used in the TextAttack module,
which can be found in their documentation here. Specifically, the word embeddings used are counter-fitted
PARAGRAM SL999 vectors, and the words are swapped with their 50 closest neighbors in those embeddings,
provided they are the same part of speech (or nouns with verbs).! The TextAttack module employs the
Universal Sentence Encoder [7] with a minimum angular similarity of € =0.5. The goal is set to "Untargeted
Classification," and the search method is "GreedySwapWordWIR," which uses word importance ranking to
swap words greedily.

Since TextFooler was not designed with explainability as its primary purpose, it might generate perturbations
that lead the detectors to out-of-distribution texts to fool them. We acknowledge that a similar result could
have been achieved using a more sophisticated counterfactual framework, such as MiCE [69], or an LLM-based
paraphraser like DIPPER, [38]. However, we chose TextFooler due to its simplicity, open-source availabil-
ity, compatibility with custom classifiers, and its light resource requirements, given our limited computing
resources.

Despite its limitations, we believe TextFooler provides a solid baseline to simulate more advanced adversarial
or counterfactual frameworks for our purposes. The primary goal of this experiment is not to fool detectors
in the most precise manner possible but to demonstrate that state-of-the-art detectors can be fooled and to
gain insights into how this can be achieved. Therefore, this should be considered more of a proof-of-concept
baseline experiment, upon which future work and studies can expand.

3.2 Models used

Our research is focused on explainability of black-box AT text detectors. For the reason, we opted to use the
most commonly referenced state-of-the-art models for the task, based on our review of the relevant literature
(see Chapter 2). We choose RoBERTa [75] as it has been the detectors that has gotten the highest accuracy
scores consistently among fine-tuned AT text detectors, and the recent RADAR [27] as it seems to achieve the
highest robustness among all Al text detectors, while also representing a novel method in the task (adversarial
training). The version of RoOBERTa we use is roberta-large-openai-detector, which has been fine-tuned on
GPT-2 text. The version of RADAR we use is RADAR-Vicuna-7B, as it is the only available open-source
version.

In addition to those two models, for some of our experiments we also fine-tune a language model on some of
our specific datasets each time, in order to attain higher accuracy in case the specifics of the dataset prevent
the general purpose classifiers from that. Since the BERT lineage has proven to be the best when it comes
to Al text detection, we use a lighter model of this lineage, DistilBERT[71], in order to create 3 fine-tuned
models. We denote those DB-1 (trained on the AuTexTification dataset [72]), DB-2 (trained on the Human

1We initially attempted to modify the constraints to disallow word-noun substitutions in hopes of increasing the coherence
of the perturbed text. However, the difference was negligible, and we preferred to keep the default settings for simplicity and
reproducibility.
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vs. ChatGPT dataset [1], and DB-3 (trained on the GPT Classification dataset, sentence level [62]). In order
to train the models, we use TextAttack [60]‘s train module, with a max sequence length of 300 (so that all the
data fit into this) ,a batch size of 128, and 3 clean epochs for the model to be trained. Despite keeping both
the size of the model and training time to a minimum there is noticeable difference in performance between
models fine-tuned on these specific datasets and general-purpose models, which was what we attempted to
showcase by training these models.

Furthermore, we also run some samples of our datasets on the Binoculars detector [25] in order to test its
performance against the fine-tuned models. While not being a LLM classifier per se, the Binoculars detector
does utilise two other state-of-the-art LLMs and their perplexity calculations to make its prediction. The
version of Binoculars we use is the one available on HuggingFace Spaces, and we choose the "high accuracy"
mode (designed to maximise the F1 score on their study and therefore the highest accuracy). Finally , we
also create a simple perplexity-based detector, which is described more in depth in Section 3.4.

3.3 Datasets used

The majority of works related to Al text detection use piles of human text from datasets originally designed
for other tasks such as Wikipedia[17] or bookcorpus[92] and then use prompting with an LLM of their choice
(usually of the GPT lineage) to modify them, thereby generating the machine-generated text [88]. That
essentially means that each study on Al text detection generates a new dataset, making it very hard to
compare the performance of detectors in the task in general rather than on the specifics of each dataset.
In our work we have chosen between existing and easily available datasets as a way for our experiments to
be reproducible, since there are endless possibilities of adversarial attacks combining various datasets and
models. We therefore attempt to use open-source datasets from HuggingFace or Kaggle. We use the datasets
outlined below for our experiment: For all datasets, we use a 80%-10%-10% allocation for train, validation
and test splits, where applicable.

1. AuTexTification dataset: The AuTexTification [73] (Automated text Identification) task was part of
IberLEF 2023, the 5th Workshop on Iberian Languages Evaluation Forum. The task was organized by
Symanto and Universitat Politecnica de Valencia as a competition for Al text detection with two sub-
tasks, one being the binary classification task we examine and the second being an author attribution
task, where each participant had to assign a label to a text corresponding to either human-generated text
or a particular LLM from a choice of six. Both tasks were available in English and Spanish, and the data
was made available following the conclusion of the competition|72]. We utilize the detection en/train
subset of the dataset, which contains about 33.800 texts, with 50.4% of them being human and the rest
being AI- generated. The texts come from various sources such as tweets, legal documents and wiki
articles. The average length of a text in this dataset is 54.3 words, with a standard deviation of 29.

2. Human vs. ChatGPT (HvC) dataset: This dataset was created for the research article Detecting
AT Authorship: Analyzing Descriptive Features for AI Detection [1], with the human text taken from
the arXiv database managed by Cornell University, which is available as a dataset on Kaggle|[78]. The
Al-generated text was created by OpenAl’s ChatCompletion GPT-3.5-turbo v. 0.27.6 model, with a
temperature of 0.7. The texts come from academic papers’ abstracts. The full raw dataset, with 4051
texts (51.8% of them being human and the rest Al-generated) is available on Kaggle. [2] The average
length of a text in this dataset is 126.6 words, with a standard deviation of 43.5.

3. GPT Classification (GPT-Class) Dataset: This dataset, created for [62] consists of textual articles
including terminology, concepts and definitions in the broader computer science field. Human-generated
text was collected from different computer science dictionaries and encyclopedias including “The Ency-
clopedia of Computer Science and Technology” and "Encyclopedia of Human-Computer Interaction".
Al-generated text was then produced by prompting OpenAI’s ChatGPT and manually documenting the
resulting responses. Then, in order to evaluate the performance of detectors in shorter, sentence-level
data points, each article was divided into its sentences and was labeled accordingly. The sentence level
dataset, as well as the full article level dataset, are available on Kaggle [61]. We utilize both datasets.
The sentence-level dataset consists of 7266 texts (sentences) , with 45.4% of them being human and
the rest being Al-generated. The average length of a text in this dataset is 21.7 words, with a standard
deviation of 9.72. The article-level dataset consists of 1014 texts (articles) , with 50% of them being
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human and the rest being Al-generated. The average length of a text in this dataset is 155.8 words,
with a standard deviation of 69.

4. ChatGPT Detector Bias (CDB) Dataset: This dataset was created for the study [41]. The study
authors carried out a series of experiments passing a number of essays to different GPT detection
models. Juxtaposing detector predictions for papers written by native and non-native English writers,
the authors argue that GPT detectors disproportionately classify real writing from non-native English
writers as Al-generated. The dataset is available on Kaggle and HuggingFace[41] and consists of 607
texts, with 41.1% of them being human and the rest being Al-generated. The average length of a text
in this dataset is 177.2 words, with a standard deviation of 145.9.

5. HC3 Dataset: The Human-ChatGPT Comparison Corpus (HC3) was introduced in [22]. In this
paper, the authors collect thousands of comparison responses from human experts and ChatGPT, with
domains ranging from open-domain, financial, medical and psychological areas. The dataset has an
English and a Chinese subset, and we utilise the English version. The meta-information for the English
given in [22] show that the human answers come from a number of other datasets for other tasks, such
as question answering with the ELI5 dataset [15] or the WikiQA dataset [91]. The ChatGPT answers
in this dataset come from prompting ChatGPT to answer the questions the humans have answered in
their text, often aligning with the concept of the human dataset to blend in more (for instance, the
ChatGPT counterparts to the ELI5 dataset are generated adding "Explain like I'm five" to the end of
the ChatGPT prompt). The HC3 dataset has been mentioned and used in a number of studies and
surveys and will provide a good benchmark for all experiments. The version we use contains 24322
human texts and 24322 generated text for a 50%=50% balance.

6. MAGE Dataset: The MAGE dataset, introduced in [40], is a comprehensive testbed designed specif-
ically for AI text detection, by collecting human-written texts from 7 distinct writing tasks (opinion
statements, reviews, news articles, question answering, story generation, common sense reasoning and
scientific writing) as well as machine-generated texts from 27 different LLMs including LLMs from dif-
ferent families than the commonly used GPT lineage. This dataset differs from other datasets as it uses
a variety of domains and LLMs and therefore it is expected that the detector will have a more difficult
time differentiating between human and machine texts. The MAGE dataset contains over 400000 texts,
with the majority of them (70.8%) being generated and the rest being human text.

3.4 Perplexity analysis

In addition to experiments performed on the adversarial attack framework we also want to run a text
perplexity-based analysis on our data. As explained in Section 2.4, we want to examine the hypothesis
that text perplexity is indicative of an underlying intrinsic difference between human and machine-generated
text, that guides the detectors in classifying texts with high accuracy.

To compute text perplexity we utilise various LLMs that can be accessed in an open source way, most
notably GPT2-large, since most of the machine-generated text in our datasets comes from the GPT (OpenAl)
lineage. We also compute perplexity stats with other LLMs such as Palmyra (from WriterAI), OPT (from
Facebook/Meta) and GPT-NeoX (from EleutherAl) in order to see if choosing a particular model has any
impact on the results and calculations.

For the computing algorithm we utilise the algorithm given by HuggingFace in [29] given the limitations by
the models’ context size. More specifically, we use a strided sliding window strategy, moving the context for
the perplexity calculation by a fixed stride in order for the model to always have a large context to make
predictions at each step. This algorithm, as reported in HuggingFace’s work, is calculating perplexity in a
way that is close to the true auto-regressive decomposition of a sequence likelihood.

In addition, we modify the algorithm in order to make it into a classifier that can compare to an Al text
detector. This can be done in two ways: the simpler way is to arbitrarily choose a number as a threshold and
classify every text with a perplexity score below that number as generated and every text with a perplexity
score above that number as human. However, although in some datasets even arbitrarily choosing the
threshold could yield surprisingly good results, the ideal threshold is most likely different for each domain of
texts: scientific articles will have a different perplexity distribution than tweets or question answering texts.
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Therefore, we adapt the algorithm to determine the optimal threshold based on training data which we extract
from the dataset. We split the dataset into train and test splits and use the accuracy of the perplexity detector
in the test split, with the optimal threshold defined on the training split. This is comparable to perplexity-
based detectors such as HowkGPT [85], which used a similar method to obtain a threshold for homework
essays.

We believe such a method is a good baseline to determine how "easy" it should be for a detector to make a
correct prediction in a dataset. Of course, finding the optimal threshold in a realistic scenario would require
knowledge of the dataset the text came from, which is not always available. A more advanced method that
should work regardless of dataset is comparing the perplexity of the given text to a similar text from a text
completion LLM, which is extensively studied in [25]. We also compare our results with this detector, but
we should note that our aim is not to compete for the highest accuracy in the detection task, but rather to
provide a simple baseline accuracy for future researchers to consider when reviewing their detectors against
particular datasets.
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Chapter 4

Experimental results & insights

In this chapter, we describe and present our experiments one by one, record our results and findings and try
to delve into their deeper meaning. All experiments described here were conducted using Google Colab’s T4
GPU module and therefore memory limitations as well as disk space limitations should be taken into account.

4.1 Adversarial attack experiment

The first series of experiments is conducted on the TextFooler adversarial attack framework that is described
in Section 3.1. Before conducting the experiments, we train the 3 DistilBERT models on datasets 1,2 and 3
as described in Section 3.2.

4.1.1 Detector accuracy experiments

In the first phase of the experiment we evaluate the detection accuracy of our LLMs in each one of our
datasets. This is conducted on 200 examples of the test split of each dataset and we measure the overall
accuracy (percentage of correct predictions) as well as various other commonly used metrics for the task
listed below.

Metrics used in the experiment

In calculating those metrics, we assumed that the positive class always represent the machine-generated texts
and the negative class always represents human texts. Of course, this can always be changed by flipping the
labels on our datasets.

1. Machine Precision (MPrec):
TP

MPrec = ——+
= TPy FP

where TP (True Positives) are the correctly predicted machine-generated texts, and F'P (False Posi-
tives) are the human texts classified as machine-generated. Machine precision measures the accuracy
of the detector in identifying Al-generated content.

2. Machine Recall (MRec):
TP

MRec = ——+
Ree = 75 T 7N

where F'N (False Negatives) are the machine-generated texts that were incorrectly classified as human.
Machine recall measures the ability of the classifier to identify all AI-Generated texts.

3. Human Precision (HPrec):
TN

HPrec = — —
T TN Y FN
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where TN (True Negatives) are the correctly predicted human texts, and FN are the machine-generated
texts that were incorrectly classified as human . Human precision measures the detector’s accuracy in
identifying human texts.

4. Human Recall (HRec):
TN

TN+ FP

where F'P (False Positives) are the human texts that were incorrectly classified as machine-generated.
Human recall measures the ability of the classifier to identify all human texts.

5. F'1 Score:

HRec =

F1 Score = 2 - Precision - Recall

Precision + Recall

The F1 Score is the harmonic mean of precision and recall, providing a single metric that keeps the
balance between them. It is particularly useful when there is an uneven class distribution. The harmonic
mean is chosen over the arithmetic mean because it punished extreme values more (so a detector
classifying everything as human text or everything as machine-generated text is punished) , thus making
the F1 Score a robust measure of a classifier’s accuracy.

6. AUROC (Area Under the Receiver Operating Characteristic Curve):

AUROC represents the probability that a randomly chosen positive (in our case, machine-generated)
text is ranked higher than a randomly chosen negative (in our case, human) text by the classifier. The
ROC Curve is a plot of the true positive rate (recall) against the false positive rate at various threshold
settings. AUROC quantifies the overall ability of the classifier to discriminate between the classes.
An AUROC of 0.5 suggests no discriminative power (equivalent to a random classifier), whereas an
AUROC of 1 indicates a perfect classifier. AUROC, in addition to the F1 score and accuracy, are the
metrics that are used in most studies to compare between detectors and thus are the metrics that we
turn most of our attention to.

DistilBERT results

The results of our three DistilBERT models are shown in Tables 4.1-4.3. DB-1 is the model trained on the
AuTexTification dataset (comprising mostly of tweets, legal documents and wiki articles), DB-2 is the model
trained on the Human vs. ChatGPT dataset (comprising of academic papers’ abstracts) and DB-3 is the
model trained on the sentence-level GPT Classification dataset (comprising of sentences taken from scientific
articles).

Table 4.1: DB1 Evaluation Metrics

Dataset /Metric MPrec | MRec | HPrec | HRec | F1 Score | AUROC | Accuracy
Autextification 0.8654 | 0.9890 | 0.9896 | 0.8716 | 0.9268 0.9303 92.5%
Human vs. ChatGPT | 0.4819 | 1.0000 | 1.0000 | 0.0654 0.1228 0.5327 50%
GPT Classification 0.6627 | 1.0000 | 1.0000 | 0.3778 0.5484 0.6889 72%
GPT Detector Bias 0.6000 | 0.8926 | 0.3500 | 0.0886 0.1414 0.4906 57.5%
HC3 0.5740 | 0.9417 | 0.8065 | 0.2577 0.3906 0.5997 61%
MAGE 0.7356 | 0.9143 | 0.5385 | 0.2333 0.3256 0.5738 71%

As it is evident from these results, the small DistilBERT models are very efficient in classifying texts of the
domain in which they have been trained on, but in most other domains they are not very effective, since they
seem to perform similarly to a random classifier in most datasets.

In particular, the first model (DB-1) has very high Machine Recall (MRec) and Human Precision (HPrec).
This combined with the low accuracy scores indicates that this detector is skewed towards predicting most
of the out-of-domain texts as machine generated. We have to note here that the 71% accuracy score on the
MAGE dataset should not be considered a good one (as also suggested by the low F1 and AUROC scores),
since as mentioned in Section 3.3 about 70% of the texts in that dataset are machine-generated, therefore a
detector that classifies every text as machine-generated would have a similar score.
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Table 4.2: DB2 Evaluation Metrics

Dataset/Metric MPrec | MRec | HPrec | HRec | F1 Score | AUROC | Accuracy
Autextification 0.4762 | 0.1099 | 0.5475 | 0.8991 0.6806 0.5045 54%
Human vs. ChatGPT | 0.9388 | 0.9892 | 0.9902 | 0.9439 | 0.9665 0.9666 96.5%
GPT Classification 1.0000 | 0.0545 | 0.4639 | 1.0000 0.6338 0.5273 48%
GPT Detector Bias 0.9268 | 0.6230 | 0.6102 | 0.9231 0.7347 0.7730 74%
HC3 1.0000 | 0.0309 | 0.4748 | 1.0000 0.5441 0.5008 50%
MAGE 0.7931 | 0.1643 | 0.3158 | 0.9000 0.4675 0.5321 38.5%

Table 4.3: DB3 Evaluation Metrics

Dataset/Metric MPrec | MRec | HPrec | HRec | F1 Score | AUROC | Accuracy
Autextification 0.9000 | 0.0989 | 0.5684 | 0.9908 0.7224 0.5449 58.5%
Human vs. ChatGPT | 0.9464 | 0.9815 | 0.9773 | 0.9348 0.9556 0.9581 96%
GPT Classification 1.0000 | 1.0000 | 1.0000 | 1.0000 1.0000 1.0000 100%
GPT Detector Bias 0.8780 | 0.5902 | 0.5763 | 0.8718 0.6939 0.7310 70%
HC3 1.0000 | 0.2000 | 0.5056 | 1.0000 0.6716 0.6000 58%
MAGE 0.8000 | 0.2222 | 0.3000 | 0.8571 0.4444 0.5397 40%

On the other hand, the second model (DB-2) has high Machine Precision (MPrec) and high Human Recall
(HRec). This suggests that it behaves in a way opposite to DB-1 and classifies most texts as human-
generated, when they are out of its training domain. Despite that, it manages to perform distinctively better
than random chance on the GPT Detector Bias dataset (F1, AUROC and accuracy scores all higher than
0.7). This can be attributed to the domain of the dataset (essays) being similar enough to the training
domain of the classifier (scientific abstracts).

Looking at the results of the third model, we can see it behaves pretty similarly to the second model,
classifying most texts as human when they are out of its training domain. Despite being trained only on a
sentence-level dataset. it achieves the best scores out of the small models in many datasets. This suggests
that the training data used for this model (sentences from articles) is close enough to many of the domains of
our other datasets, in comparison to tweets for DB-1 (which differ a lot both gramatically and in style than
most other datasets) and scientific abstracts for DB-2, where their very rigid structure can be something that
a small model can overfit to (and therefore be easily driven out of its domain). A good example for this can
be noticed in the DB-3 model performing well on the Human vs. ChatGPT dataset (the training domain of
the DB-2 model), while the reverse does not hold true.

Concluding, we can see that training small sequence classification models on the text detection task and
on a specific domain can lead to very good accuracy on that domain, but also usually comes with a very
significant decrease in efficiency when continuing to perform the task outside of the domain. This renders
such an approach ineffective unless we have a lot of very similar data to what we want to classify, which
might not always be practical in a realistic situation. We therefore turn our attention to larger models that
have already been fine-tuned on the text detection task, but their larger training corpus allows for more
general-purpose use, which is why they are widely regarded as the state-of-the-art Al text detectors among
pretrained LLMs.

RoBERTa results

The results of using RoBERTa-large-openai-detector on our datasets are shown in table 4.4. We note that
the model was not fine-tuned on any of our datasets, as we want to measure accuracy levels when a large
model has just been fine-tuned on the text detection task without any particular domain specification.
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Table 4.4: RoBERTa Evaluation Metrics

Dataset/Metric MPrec | MRec | HPrec | HRec | F1 Score | AUROC | Accuracy
Autextification 0.8286 | 0.5421 | 0.6231 | 0.8710 | 0.7265 0.7065 70%
Human vs. ChatGPT ' | 0.9778 | 0.6701 | 0.7601 | 0.9856 | 0.8583 0.8278 83.25%
GPT Classification 0.9706 | 0.6226 | 0.6970 | 0.9787 | 0.8142 0.8007 79%
GPT Detector Bias 0.7917 | 0.1570 | 0.4205 | 0.9367 0.5804 0.5469 46.5%
HC3 1.0000 | 0.5728 | 0.6879 | 1.0000 | 0.8151 0.7864 78%
MAGE 0.8966 | 0.3611 | 0.3521 | 0.8929 0.5051 0.6270 51%

As is evident in these results, the RoBERTa classifier achieves significantly better than random results in
the majority of the datasets, although it performs slightly worse than the pretrained small models in the
specific domain they were trained on. This suggests a trade-off between higher accuracy in specific domains
and improved generalizability among all domains. Since RoOBERTa has a much larger training corpus than
the small models it will maintain its performance across more domains and datasets.

However, we notice that RoOBERTa does not perform better than random chance on the GPT Detector Bias
dataset, which is in agreement with [41] where it was suggested that text written by non-native English
speakers might confuse Al text detectors. However, although in this study it is argued that such text might
be flagged as machine-generated by detectors, our experiments with the RoBERTa detector suggests that
most of the texts on this dataset are flagged as human, and in fact the reason RoBERTa does not obtain a
good score in this dataset is that it classifies machine-generated texts as human texts. Regardless, it seems
to be necessary to proceed with caution as even the state-of-the art detector fine-tuned on the text detection
task can struggle with unseen domains, in which fine-tuning a detector for the specific domain might be the
only way to achieve substantial results.

In addition to unseen domains, another reason that Al text detectors might struggle to classify texts correctly
is unseen models, as is evident from the MAGE dataset results. RoBERTa is fine-tuned to identify text coming
from the GPT lineage (originally from GPT-2, but it does not seem to struggle with more modern GPT
models) while the MAGE dataset contains texts from many different Non-GPT models. Despite RoOBERTA’s
accuracy being 20 points lower than DB-1 on the MAGE dataset it has better F1 and AUROC scores than
it, suggesting that ROBERTA does a slightly better job at classifications than DB-1, but its accuracy score
drops because it has a slight bias for classifying text as human, whereas 70% of texts in the MAGE dataset
are machine-generated.

RADAR results

The results of using RADAR-Vicuna-7B on our datasets are shown in table 4.5. Again, as with RoBERTa,
we take the raw model that has been fine-tuned on the models authors’ datasets, and not on our own.

Table 4.5: RADAR Evaluation Metrics

Dataset /Metric MPrec | MRec | HPrec | HRec | F1 Score | AUROC | Accuracy
Autextification 0.5521 | 0.9907 | 0.8750 | 0.0753 0.1386 0.5330 56.5%
Human vs. ChatGPT | 0.9289 | 0.9949 | 0.9949 | 0.9282 | 0.9604 0.9616 95%
GPT Classification 0.7206 | 0.9245 | 0.8750 | 0.5957 | 0.7089 0.7681 7TT%
GPT Detector Bias 0.7500 | 0.7934 | 0.6528 | 0.5949 0.6225 0.6942 71.5%
HC3 0.7746 | 1.0000 | 1.0000 | 0.6444 | 0.7838 0.8222 84%
MAGE 0.7661 | 0.6786 | 0.4079 | 0.5167 0.4559 0.5976 63%

As we can see from these results, the RADAR classifier also performs significantly better than random on the
majority of datasets, including achieving close to perfect accuracy on the Human vs. ChatGPT dataset, very
close to the pretrained model on that dataset. Additionally, in contrast to the RoBERTa classifier it does
perform better than random on the GPT Detector Bias dataset, and also slightly outperforms RoBERTa in
both the HC3 and MAGE datasets. However, it exhibits noticeably poor performance on the AutexTificiation

ITest was done on 400 instead of 200 examples
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dataset, classifying almost every text as Al-generated and thereby performing only marginally better than
random chance.

This can be attributed to this dataset consisting of mostly short texts (e.g. tweets). During the study it
became apparent that this classifier has an inherent bias to classify short texts disproportionately
as Al-generated, both in its RADAR-Vicuna-7B version as well as the other versions available in the online
demo. To confirm that, we also tested this classifier on the sentence-level GPT Classification dataset, where it
achieves only a 56% accuracy (compared to 77% on its article-level counterpart), classifying texts dispropor-
tionately as Al-generated. To further confirm the inherent bias we also gave RADAR short paragraphs from
this work that have not been in any way produced by an LLM; we notice that it flags all short paragraphs as
Al-generated, but when the same detector is given a long text comprising of all the paragraphs put together,
it correctly classifies it as human text. An example of that can be given in Figure 4.1.1 below. Out of the
long-text datasets, the only one to give significant difficulties to the RADAR detector is the MAGE dataset,
in which it achieves an accuracy of just 63%, which is less than the majority class baseline of 70% (which is
the accuracy a detector that classified every text as Al-generated would get on this dataset).

For each text we show how likely each model thinks, the text is generated by AL A value close to 1 indicates "most likely AI", a value close to 0 means "most likely human". When the mo(
show very different results, it's most likely human as well.

Dolly V2 Camel Dolly V1 Vicuna
3B 5B 6B 78

D.0545

Figure 4.1.1: Examples of RADAR’s bias to classify short texts as Al-generated. The larger human-written
paragraph is split into 3 smaller parts, and each part of them is classified as Al generated by RADAR.

Experiment summary

The overview of the overall accuracy results, per model and dataset can be viewed on Table 4.6.

Table 4.6: Overall accuracy results, per model and dataset

Model/Dataset 1 2 3 4 5 6
RADAR 56.5% | 95% 7% | T1.5% | 84% | 63%
RoBERTa 70% | 83.25% | 79% | 46.5% | 78% | 51%
DB-1 92.5% | 50% 72% | 57.5% | 61% | T1%
DB-2 54% 96.5% 48% 4% | 50% | 38.5%
DB-3 58.5% | 96% | 100% | 70% | 58% | 40%

Concluding the first phase of the experiment, we notice that while the state-of-the-art detectors can effectively
discriminate between most Al-generated and human texts, there are varying levels of success depending on
the domain, dataset, model and technique used. Models that are pre-trained on a specific domain or dataset
achieve higher accuracy in the specific domain but suffer from poor generalization outside of it. Meanwhile,
bigger models that have been fine-tuned on the task in general but not on a particular dataset achieve better
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performance across all datasets but in most cases are not very close to a perfect classifier. Regardless of the
dataset and model used, a user wishing to use any of these detectors in a realistic scenario must proceed very
carefully, since it appears that there are still major limitations that hinder their efficiency, such as short texts
(for RADAR in particular), text from non-native English speakers or text from varying LLMs and domains
(as exhibited in the MAGE dataset in which general-purpose detectors struggle the most with).

4.1.2 Accuracy after TextFooler attacks
Accuracy on perturbed texts

In this phase of the experiment we perform adversarial attacks on the models used, with the help of TextFooler
from the TextAttack module as described in Section 3.1. TextFooler’s interface splits attack results into three
categories: successful attacks (texts in which TextFooler successfully managed to flip the prediction label with
adversarial attacks), failed attacks (texts in which TextFooler failed to flip the prediction label, despite trying
all possible adversarial attacks within the constraints used), and skipped attacks (texts in which the original
decision of the predictor is wrong, and TextFooler does not try to attack a wrong prediction). For our
purposes, the accuracy of the models after the attack corresponds to the perecentage of failed attacks.

The accuracy of the models on the perturbed texts (percentage of failed attacks) is presented in Table 4.7.
Bold numbers indicate the model/dataset combinations where the original detector achieves an accuracy
exceeding 70% and an AUROC of 0.67 or higher. Those are the only relevant numbers in the table, since it
is beyond the scope of this analysis to evaluate the robustness of a detector that does not have an adequate
accuracy from the outset.

Table 4.7: Accuracy of text detectors on perturbed text from TextFooler

Model/Dataset 1 2 3 4 5 6
RADAR 18% 0% 0% 0% 0% 5.5%
RoBERTa 1% | 0% | 2% 2% 7.5% | 2%
DB-1 20% | 0% | 3% 0% 0% 0%
DB-2 16% | 22% | 29% | 1.5% | 14% | 9.5%
DB-3 44% | 29% | 38% | 11.5% | 44% 22%

As can be seen in these results, TextFooler manages to flip the prediction label in the vast majority of
experiments in which the predictor originally had a good accuracy. From those cases, the smaller pre-trained
models seem to be slightly more robust in perturbations than the general-purpose models, which can be
attributed to them being trained on a small corpus of very similar data and therefore being more prone to
overfitting. While overfitting is generally undesirable, it could mean that the patterns these models learn are
highly specific and therefore adversarial attacks that simply rely on word-for-word perturbations might be
less effective against them. However, as can been seen even in the worst case TextFooler manages to drop the
performance of all detectors to below 50%, which means that with simple word substitution perturbations
the detectors perform worse than even random chance.

Average perturbed word percentage / Queries

Two more metrics that can be used to determine the detectors’ robustness to adversarial attacks are average
perturbed word percentage and the number of queries executed.

Average perturbed word percentage (APWP) denotes the proportion of words in a text that were
perturbed (replaced with synonyms) during a successful adversarial attack. As the number of perturbations
increases, the text inevitably undergoes some degree of semantic alteration. Therefore, a high average per-
turbed word percentage suggests a more robust detector, and vice versa, since this implies that in order to
successfully deceive the detector, an attacker has to alter the text semantically.

Average number of queries (ANQ) represents the average number of adversarial attack quries for a
sample of the dataset. A higher number of queries indicates that the model is more robust, since it requires
more effort by an attacker to find a successful perturbation that alters the model’s prediction.
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On table 4.8 below you can find detailed statistics on these two metrics for every model/dataset combination
that results in an accuracy above 70% and an AUROC of 0.67 or greater.

Table 4.8: Average perturbed word percentage and queries executed

Model/Dataset Combination APWP | ANQ
DB1 / AuTexTification 10.59% | 260
DB1 / GPT Classification 5.12% 401
DB2 / Human vs. ChatGPT 20.15% | 981
DB2 / ChatGPT Detector Bias 8.85% 989
DB3 / Human vs. ChatGPT 4.35% 709
DB3 / GPT Classification 5.37% | 1089
DB3 / ChatGPT Detector Bias 5.56% 1402
RoBERTa / AuTexTification 4.33% 93
RoBERTa / Human vs.ChatGPT 2.67% 176
RoBERTa / GPT Classification 2.64% 203
RoBERTa / HC3 2.8% 616
RADAR / Human vs. ChatGPT 5.5% 265
RADAR / GPT Classification 7.21% 303
RADAR / ChatGPT Detector Bias 3.8% 293
RADAR / HC3 4.04% 354

As is evident in the table above, TextFooler perturbs less than 10% of words in a text on average in order
to successfully deceive a detector. Pre-trained small models tend to have a higher average perturbed word
percentage and especially on the datasets they have been trained on (denoted in bold) which correlates with
the general finding that they are more robust to adversarial attacks than general-purpose detectors. Among
the general-purpose detectors , RADAR seems to require a bigger percentage of words to be perturbed and
a higher number of queries to be executed than RoBERTa, which indicates that it is a more robust detector.
This can be attributed to its adversarial training, which presumably has increased its ability to not be
deceived by slight text perturbations.

Concluding the second phase of the experiment, it is evident that the state-of-the art Al text detectors face a
significant obstacle in the form of robustness to adversarial attacks, which is in agreement with the findings
of many recent works such as [28]. We show that simple word substitution attacks can deceive detectors that
perform at an accuracy above 70% and up to 100% in order to lower their accuracy to levels less than random
chance. In addition, we explore the differences between pre-trained smaller detectors and general-purpose
larger detectors and find that smaller detectors are slightly more robust to adversarial perturbations. This is
likely due to over-fitting to the small amount of training data, which makes the detectors more confident in
their predictions and therefore harder to be deceived with simple adversarial perturbations. However, as we
noted before, this does not mean that smaller pre-trained models are better detectors, since they are often
performing very poorly outside of their training domain.

4.2 Text perplexity experiment

4.2.1 Text perplexity distributions

In the second series of experiments we explore various features centered around text perplexity, as explained
in Section 3.4. Firstly we test the hypothesis that the texts classified as Al-generated usually contain more
predictable words leading to significantly lower perplexity. Therefore, we use the GPT-2 model to measure
the perplexity of the text in the samples from all of our datasets. The results are presented in Table 4.9
below.

As is evident from the table above, the average text perplexity is indeed significantly higher for human texts
than for Al-generated texts. We can also extract some additional insights from this data:

e As can be seen, the AuTexTification dataset has the highest average text perplexity, both for Al-
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Table 4.9: Average perplexity of generated and human texts per dataset

Dataset PPL of Generated Texts | PPL of Human Texts
Autextification 49.6 171.86
Human vs. ChatGPT 15.54 75.82
GPT Classification 11.12 40.03
ChatGPT Detector Bias 25.9 35.67
HC3 10 57.9
MAGE 31.36 43.98
Average 23.92 70.88

generated as well as for human texts. That can be attributed to a large number of texts from this
dataset being very short and therefore harder for the model to predict, especially for tweets (which
comprise a large part of this dataset). Tweets typically have higher text perplexity than most other
text formats (e.g. scientific articles) since they use informal language, abbreviations, and a lot of non-
standard phrases. Furthermore, most tweets are limited to a certain number of characters. This can
lead to incomplete or missing context, which makes it much harder for a generative LLM to predict the
next sequence in a sentence coming from a tweet.

e The ChatGPT Detector Bias dataset exhibits the lowest average perplexity of human texts among all
datasets. This is a dataset that includes a number of human texts coming from non-native speakers.
Such text is expected to have lower perplexity than text from native speakers, since non-native speakers
often use simpler vocabulary and grammatical structures, making it easier for LLMs to predict their
sentences. In additions, since these texts came from language exams it is expected that the authors
would avoid typos, colloquialisms or idiomatic expression as much as possible, which adds to the
predictability of the texts.

e The MAGE dataset exhibits (after AuTextTification) the second highest average perplexity of Al-
generated texts. This can be attributed to the Al-generated texts from this dataset coming also from
LLMs outside of the GPT lineage, and therefore harder to predict for our predictor model (GPT-2).
This is explored more in depth later.

e The Human vs. ChatGPT, GPT Classification and HC3 datasets all exhibit a very low average per-
plexity for Al-generated texts. This might be due to their scientific-related domain. Scientific essays
and articles tend to have lower perplexity than the average text, because they follow a particular fromal
and standardized style, which can be easier for models to predict and generate. In addition, they often
use specific terminology, which if the predictor model is familiar with can significantly reduce text
perplexity further.

To further understand the distributions of text perplexity within each dataset sample we plot the perplexities
in graph form. The results are presented in Figures 4.2.1-4.2.6.

By examining these figures more closely, we can see that although Al-generated texts (marked with red color
in the plots) are generally more towards the left side (lower perplexity) than human texts (marked with
green color), each dataset has its own perplexity distribution which exhibits some interesting features. More
specifically:

e Datasets 2, 3 and 5 (Human vs. ChatGPT , Gpt Classification and HC3) exhibit very little overlap
between the perplexity of Al-generated and human texts. Therefore, we expect a perplexity-based
detector to be able to distinguish between the classes very efficiently, if the correct threshold is chosen.

e In the AuTexTification and MAGE datasets there is significant overlap between the text perplexities
of the two classes. Although it generally holds true that the more we move to the left of the diagrams
(lower perplexity) the more dominant the Al-Generated (red) class becomes, we expect it to be very
hard for a perplexity-based detector to be able to distinguish between the classes in these datasets.

e In the ChatGPT Detector Bias dataset, there is some overlap between the text peplexities of the
two classes, but less so than Datasets 1 and 6. Also it becomes apparent that the human texts in
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Distribution of Perplexity by Class, AuTexTification dataset Distribution of Perplexity by Class, Human vs. ChatGPT dataset
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Figure 4.2.3: Text perplexity distribution in the
GPT Classification dataset

this dataset are more pushed towards the left side ,which as described previously is expected since
this dataset includes many text coming from non-native speakers which exhibit lower perplexity than
normal.

4.2.2 Perplexity-based detector

Naive approach

The next step is to construct a perplexity-based detector, in order to be able to have a baseline that determines
how well can text perplexity distinguish between human and Al-generated texts. We begin with the naive
experiment of arbitrarily choosing a value as the threshold for our detector, which will classify every text
with perplexity below that threshold as Al-generated and every text with perplexity above that threshold
as human. We then compared our naive detector with the general-purpose LLMs we used in Section 4.1 .
The results of this experiment can be observed in Table 4.10 below, where bold indicates the detector than
achieved the highest accuracy.

As can be seen in the table above, the naive perplexity-based detectors achieve a better accuracy than the
general-purpose LLMs in the datasets in which there is no significant overlap between the human and Al-
generated perplexity distributions. In the datasets in which the two perplexity distributions overlap, the
general-purpose LLLM detector perform slightly better, but we have to note that even this performance is not
very high (lower than 75% in all 3 of them). From this we can possibly come to the conclusion that:
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Distribution of Perplexity by Class, HC3 dataset Distribution of Perplexity by Class, MAGE dataset
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Figure 4.2.5: Text perplexity distribution in the
HC3 dataset

Figure 4.2.6: Text perplexity distribution in the
MAGE dataset

Table 4.10: Accuracy of naive perplexity detectors compared to general-purpose LLM detectors

Model/Dataset AuTex | Human vs GPT | GPT-Class | GPT-DB3 | HC3 | MAGE
RADAR-Vicuna-7B 56.5% 96.06% 7% 71.5% 80.5% 63%
ROBERTA-large 69% 83.2% 81% 46.5% 78% 57.5%
Naive Perplexity (t=20) 57% 88.6% 96.5% 51% 96% 53.5%
Naive Perplexity (t=40) 58% 99.26% 71.5% 67% 78% 61.5%

e When the dataset is "easy" (that is, both the LLM detectors and the perplexity-based detectors achieve
a high score), the perplexity-based detectors perform at at least an equally high level to the LLM
detectors, and most probably at a higher level.

e When the dataset is "hard" (that is, both the LLM detectors and the perplexity-based detectors achieve
a lower score), the LLM detectors are slightly more accurate than the perplexity-based detectors, but
in any case probably not accurate enough to make a confident prediction in a realistic scenario (for
which someone would probably need to fine-tune a model on the specific domain/dataset)

Therefore, our hypothesis that text perplexity is a significant enough feature that can be used to differentiate
between Al-generated and human texts is confirmed.

It is however important to recognize that the naive perplexity detectors are likely unsuitable for practical
application. As demonstrated, the detectors’ accuracy varies considerably across different datasets. This
variation is anticipated, as each domain has different intricacies and characteristics and therefore necessitates a
different text perplexity threshold. For instance, scientific articles and essays typically exhibit lower perplexity
on average compared to general-purpose texts such as question-answering content, and significantly lower than
tweets. Therefore, the next step in our study is to construct a perplexity-based detector that determines the
ideal threshold based on the dataset provided. This is very similar to the work presented in [85] where they
specifically find an optimal perplexity threshold on their dataset consisting of academic homework.

Optimization of the perplexity-based detector

The method we use to approach this problem is to "train" the perplexity classifier in a way similar to how
AT models are trained, in order to find the ideal threshold for each dataset. More specifically, we split each
dataset sample into train and test sets, where 80% of it becomes the training set and the remaining 20%
becomes the test set. Then, we compute the perplexity for each text in the training set and iterate over a
range of potential thresholds, keeping track of the best threshold (providing the best accuracy in the training
set). Finally, we use the optimal threshold found on the training set to evaluate the accuracy of our method
on the test set, which constitutes unseen data for the detector.
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The results of this approach in each one of our 6 datasets are presented in Table 4.11.

Table 4.11: Average perplexity of generated and human texts per dataset

Dataset Optimal threshold | Training accuracy | Test accuracy
AuTexTification 170 56.88% 57.5%
Human vs. ChatGPT 39.12 99.07% 100%
GPT Classification 21.48 98.12% 97.5%
ChatGPT Detector Bias 35.22 65.62 80%
HC3 16.32 98.12% 100%
MAGE 65.84 71.25% 65%

As anticipated, such an approach results in almost perfect accuracy on the "easy" datasets, where there is
almost no overlap between the Al-generated and human text perplexity distributions. We can also see that
on the "hard" datasets (in particular AuTexTification and MAGE) the algorithm finds a much higher optimal
threshold than normal, which would only filter out texts that have a very high perplexity and therefore are
indistinguishably human. However, since there is significant overlap between the distributions the perplexity
detector cannot distinguish between the two classes effectively.

We also should note that by optimising the threshold we have indirectly given the detector access to the
training data of the dataset, since the optimal threshold is obtained based on them. Therefore this method
requires at least some knowledge of the dataset as opposed to the naive perplexity detectors, and can more
effectively be compared to fine-tuned detectors like the DistilBERT models we used in the experiments of
Section 4.1. In Table 4.12 below we present the accuracy for each dataset for each detectors, including fine-
tuned detectors, general-purpose detectors and the optimal perplexity detector. For the optimal detector we
obtain its accuracy on the test results, since those are unseen by the detector at the time of classifying.

Table 4.12: Overall accuracy results, per model and dataset

Model/Dataset 1 2 3 4 5 6
RADAR 56.5% 95% 7% | 71.5% | 84% 63%
RoBERTa 70% 83.25% | 79% | 46.5% | 78% 51%
DB-1 92.5% 50% 2% | 57.5% | 61% 71%
DB-2 54% 96.5% 48% 74% 50% | 38.5%
DB-3 58.5% 96% 100% | 70% 58% 40%
Perplexity 57.5% 100% | 97.5% | 80% | 100% | 65%

As is evident from the results, perplexity analysis leads to the best or very close to the best accuracy in every
dataset except Dataset 1 (AuTexTification) and Dataset 6 (MAGE). Due to the short length of the texts in
the AuTexTification dataset, and the inherent limited amount of context, perplexity is not an ideal measure
of determining whether a text is Al-generated or human in this particular domain, and therefore specifically
fine-tuned detectors for short text are much more preferable, as can be evident by the high accuracy obtained
by DB-1. On the other hand, no detector of those tested achieves a decent enough accuracy on the MAGE
dataset, since the best result of 71% is equivalent to the majority class predictor since about 70% of the texts
on this dataset are Al-generated.

4.2.3 Non-GPT LLMs as perplexity-based detectors

It is noticeable from all of our results so far that among the datasets we have picked the detectors have
struggled much more to obtain good accuracy in the AuTexTification and MAGE datasets. We make the
hypothesis that this might be due to those datasets including text from LLMs that are outside the GPT
lineage, and therefore harder to detect than text from ChatGPT or other OpenAl models, which is what the
vast majority of the text detection task has focused on since they dominate the LLM pool.

To test this hypothesis, we extend our optimal threshold perplexity detector algorithm which is calculated
using GPT-2’s scores to other LLMs , such as Palmyra (by Writer AI), OPT (by Meta AI) and GPT-NeoX
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(by EleutherAT). The results are presented in graph form below, in figures 4.2.7- 4.2.9.

Optimal Perplexity Threshold Value by Dataset
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Figure 4.2.7: Optimal perplexity threshold, by model and dataset
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Figure 4.2.8: Accuracy on the training set, by model and dataset

As demonstrated in these figures, the choice of LLM for computing perplexity metrics does not result in sig-
nificant differences. Although there are some variations in the optimal threshold values within the AuTexTifi-
cation dataset, they are largely inconsequential, as none of the models exhibit significantly high performance
on this specific dataset. The accuracy obtained, both on the training and test data, is quite similar across
all models, with GPT-2 performing marginally better than the others. This outcome is expected, given that
the majority of Al-generated texts in our datasets originate from the GPT lineage. Overall, especially on
the accuracy plots (Figures 4.2.8 and 4.2.9), the difference between ’easy’ and ’hard’ datasets is evident: all
models struggle to differentiate datasets 1,4,and 6 using perplexity alone, something that is easily justified if
we look at their relevant distributions between the classes.
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Accuracy on Test Data by Dataset
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Figure 4.2.9: Accuracy on the test set, by model and dataset

4.2.4 Cross-perplexity and the Binoculars detector

The next step above in complexity is to perform cross-perplexity analysis in addition to simple perplexity
analysis. As explained before, perplexity is a measure of how "surprising" a string of text is to a language
model. Cross-perplexity on the other hand was introduced in [25] as a measure of how surprising the next
token predictions of one model are to another model when both are operating on the same text. The approach
the authors use in this study involves calculating the average per-token cross-entropy between the outputs of
two models. By comparing the perplexity of a string from one model with how another model perceives it,
the method can more accurately detect whether the text is machine-generated or human-written, especially
in cases where prompt-induced variability is induced. This helps mitigate issues like the "capybara problem"
described in the study, where the context provided by prompts can significantly alter perplexity scores,
making it difficult to distinguish between human and machine-generated text based on perplexity alone.

In our work, we run our dataset samples through the Binoculars detector that is available on HuggingFace
Spaces. The models used there are Falcon-7B and Falcon-7B Instruct, and we use the high-accuracy mode
of the detector since we want to compare to our other detectors. The result of this experiment is shown on
Table 4.13.

Table 4.13: BINOCULARS accuracy by dataset

Dataset Accuracy of BINOCULARS detector
Autextification -2
Human vs. ChatGPT 100%
GPT Classification 96%
ChatGPT Detector Bias 81%
HC3 99%
MAGE 60%

As presented on the table above, the Binoculars detector also exhibits very high accuracy in the ’easy’
datasets, but struggles on the ’hard’ ones as much as all the other detectors.

An overall summary of the accuracy of all detectors we experimented with in Sections 4.1 and 4.2 is presented
in graph form on Figure 4.2.10 below. The blue line represents all 3 of our DistilBERT detectors, taking the

2Binoculars does not support text shorter than 32 tokens for perplexity calculations, and therefore we were unable to conduct
the experiment in a fair way on this dataset, since a singificant portion of the texts are shorter and thus unable to be analyzed.
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score of the pre-trained detector on each dataset.

Accuracy of all detectors on Test Data
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Figure 4.2.10: Accuracy of all detectors on test data

As demonstrated in this figure, the perplexity-based detectors (optimal threshold and Binoculars) exhibit
better performance than LLM-based detectors in the datasets in which the human and Al-generated distribu-
tions are distinguishable. Between them there are no significant differences, which can be attributes to there
being no instances of the "capybara problem" [25], for which the Binoculars detector would potentially be
more suited. Moreover, it is shown that fine-tuning a detector for the Al text detection task on a particular
dataset also results in very strong perfromance on this dataset, but comes at the cost of significantly less
ability for generalization as explained in Section 4.1.

In summary, we demonstrate that text perplexity analysis, despite its simplicity, can effectively capture
differences in text that correlate with Al-generated content on the majority of cases. While not always
competing for the highest accuracy, perplexity-based detectors can serve as an essential baseline or benchmark
in the AI text detection task. High accuracy of perplexity-based detectors on a dataset might suggest that
the dataset might be too easy for more sophisticated detectors, potentially lacking in diversity or complexity.
This can guide the creation of more challenging datasets that better reflect real-world scenarios where Al
and human text are harder to distinguish.

4.3 Additional insights from the experiments

Examining the outputs produced by TextFooler reveals additional insights into the functioning and limitations
of text classifiers. For instance, some examples demonstrate that TextFooler occasionally compromises text
fluency to flip the predictor label. This suggests that texts with less than perfect fluency are more prone to
misclassification, a phenomenon also noted by [41] The degradation in fluency caused by TextFooler indicates
that adversarial attacks can exploit the fluency aspect of text to fool classifiers, making it an essential factor
to consider when developing robust text classification models.

Moreover, it is evident that texts classified as human often contain oral and informal language, which is
uncommon in formal written contexts. This contrasts with generative language models (LLMs), which
typically avoid such expressions in their outputs. The preference of generative LLMs for more formal and
structured language might be one reason why text detectors generally perform best on scientific abstracts
and articles. These types of documents exhibit a consistent style of language that detectors can readily
adapt to, making it easier to identify deviations from the norm. Examples supporting these observations are
provided in Figure 4.3.1, illustrating the differences in language style and the resulting impact on classifier
performance.
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Example of syntax errors introduced, which makes the
detector classify the text as human-written:

Generated (98%) to H

(...) Meanwhile, | relish discovering the profound messages
woven into dramas, uncovering the true essence behind each
scene. | become deeply connected to the characters (...)

(..) Meanwhile, mec relish discovering the profound
messages woven into dramas, uncovering the true essence
behind each scene. me become deeply conmected to the

characters (...)

Example of oral expressions used, which make the classifier
believe the text is human-written:

Generated (78%) to H
XDILLIGAFX13X: My car wont start, it doesnt turn over,
it gives a clicking sound, keeps tuming over but wont start,

HELFP

XDILLIGAFX13X: My car uldnt start, 1t doesnt turn
over, it gives a clicking sound, keeps tuming over but wont
start, HELP

Example of formal language used that makes the classifier
believe the text 1s generated:

Human (73%) to Generated (68%)

@hundredreasons tho nothing could get better than The
Chance, I was o, The Prance is the most beautiful song
I ever

@hundredreasons tho nothing could get better than The
Chance, 1 was undue, The Prance is the most beautiful song
I ever

Figure 4.3.1: Examples of TextFooler perturbations

Additionally, we examine perplexity-based metrics in conjunction with the predictions made by LLM detec-
tors. Specifically, we measure the average perplexity of the perturbed texts and compare it to the average
perplexity of the original texts within the same dataset. Perplexity, which quantifies how well a probability
distribution or model predicts a sample, serves as an indicator of the text’s fluency and predictability. The
results of this measurement are presented in Figures 4.3.2 and 4.3.3 below.

As can be seen in these figures, there is a significant difference in perplexity between Al-generated texts and
human-authored texts across almost all datasets. Furthermore, this difference remains mostly unchanged
by TextFooler perturbations. This implies that a perplexity-based system, such as GPTZero or Binoculars,
would likely not be "fooled" by these perturbations. However, since the black-box detectors used in our
experiment can be "fooled," it suggests that perplexity-based metrics do not fully capture the criteria that
black-box detectors use to classify text.

These findings suggest that perplexity-based detectors and machine learning (ML) detectors achieve high
accuracy through fundamentally different mechanisms. Perplexity-based detectors likely rely on the fluency
and predictability of the text, capturing how well the text aligns with typical language patterns. On the other
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Perplexity values of original and perturbed Al-Generated Text
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Figure 4.3.2: Perplexity values of Al-generated text
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Figure 4.3.3: Perplexity values of Human text

hand, ML detectors might leverage a more complex set of features, including semantic coherence, syntactic
structure, and context-specific cues. The fact that adversarial perturbations affect these systems differently
indicates that while both types of detectors can achieve similar levels of accuracy, they do so by evaluating
distinct aspects of the text. This divergence in their approaches provides a complementary layer of defense,
suggesting that integrating both methods could enhance the robustness of text classification systems against

adversarial attacks.
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Chapter 5

Al text detection from a human
perspective

An aspect of the Al text detection task that is less extensively studied is the role of human participation and
review in the overall classification process. Given the critical implications that Al text detection can have in
various circumstances, it is clear that decisions cannot be left solely to automated detector systems, especially
considering the robustness issues explored in Chapter 4. Human reviewers are essential to provide a second
layer of verification on a case-by-case basis, ensuring that decisions with substantial ethical implications are
judged appropriately.

Human reviewing plays a crucial role in mitigating potential biases inherent in AI detection systems, such
as a potential bias against non-native speakers [41]. Additionally, decisions made by Al systems must be
transparent and accountable. Human involvement ensures a clear chain of responsibility for decisions made
by the AI, which is vital for ethical governance.

To explore this further, we are launching a user survey aimed at investigating human performance in the
AT text detection task. The survey also seeks to understand the cognitive process involved when human
reviewers detect Al-generated text and to identify the features of a text that the population perceives as
indicative of Al generation. Section 5.1 provides detailed information on the design of the user survey, while
the results and analysis are presented in Section 5.2. We hope that this survey will not only shed light on
human capabilities and perceptions in this domain but also inform the development of more effective and fair
AT text detection systems.
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5.1 Motivation, aim and meta of our user study

5.1.1 Introduction

Studies examining whether an Al system’s output can be perceived as human stem from the original Turing
test [82]. With the rapid advancements in Al in recent years, such tests have become increasingly relevant as
the lines between human and machine continue to blur. In the context of the AI text detection task, recent
works have evaluated human performance in specific domains, such as news articles [84] and conversations
[34]. However, the constant advancement of AI systems necessitates that this topic be reviewed frequently,
especially as most of the studies still leverage Al-generated content from older models such as GPT-2.

In our work, we utilise our datasets that have already been tested against current Al-based text detectors.
Therefore, we can compare and differentiate how humans and AI detector models make their decisions in
the text detection task, to provide a more accurate and relevant analysis of the current capabilities and
limitations of both human reviewers and Al systems.

5.1.2 Survey structure

The survey is divided into four sections: an introductory part, two Al text detection tasks, and a final
paraphrasing task.

Participants start by providing general information about their experience with ATl and Al models, particularly
text generation models like ChatGPT. They also rate how frequently they interact with such models in their
work or study environment. Next, participants estimate their confidence (on a five-point scale) in the existence
of an algorithm or model capable of effectively differentiating between human and Al-generated texts, as well
as their confidence in their own ability to perform the same task. The introductory section concludes with
an optional open-text question, where participants can suggest features they believe can help discern human
from Al texts.

After the introduction, participants receive basic instructions and examples of human and Al-generated text
with annotations. Then, they proceed to the first Al detection task, where they are given 10 texts and
asked to identify whether each text is human or Al-generated. The survey includes 50 texts, divided into
five sets. Participants choose a random number between 1 and 5 to determine which set they will annotate.
After completing this task, participants are asked to rate their confidence in their answers and provide
reasoning behind their decisions. This reasoning is mandatory, as participants are encouraged to explain
their classifications, even if they were made randomly.

In the second Al detection task, participants again select randomly from the five sets and annotate a different
set of texts. This time, they are provided with additional annotated examples by a detector, with explanations
on why the detector classified a text as human or Al-generated. The explanations come from two sources:
counterfactual explanations (using examples from TextFooler) and LIME explanations (providing a word
importance graph for short sentences annotated by an Al text detector like RADAR or RoBERTa). These
explanations remain visible at the top of the page during the task. Participants then annotate 10 different
texts from the dataset. Examples of both explanations that were given to the participants are presented in
Figures 5.1.1 and 5.1.2 below.

After the second Al text detection task, participants again rate their confidence and explain the features
they considered in their classifications. They also evaluate the helpfulness of the provided explanations and
indicate which form of explanation (counterfactual or LIME) they found more useful.

Finally, participants move on to the paraphrasing task. Here, they are given a short Al-generated paragraph
flagged by AI detectors and asked to rewrite it to make it sound more human while preserving its meaning.
This task tests participants’ understanding of what makes a text identifiable as Al-generated and their ability
to modify it to pass as human. Given that this task involves substantial writing and that most participants
are non-native English speakers, it is optional.
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Al-Generated Text:

Would be classified as Human text if
changed like this:

This can be especially helpful if you're having
trouble understanding more complex
conversations. So, to summarize, leaming a
new language takes a lot of practice and
patience. But with time and effort, you can
start to understand more and more just by
talking to people who are fluent in the
language

This can be especially helpful if you're having
trouble understanding more complex
conversations. Thereby, to summarize,
leaming a new language takes a lot of
practice and patience. But with time and
effort, you can start to understand more and
more just by talking to people who are fluent
in the language

The vowel sound at the beginning of the
word "European” is actually made by the
lettery," which is a consonant. The letter "y"
makes a vowel sound when itisused as a
consonant, as in the word "yes." In the word
"European.” the "y" makes the vowel sound
“ee," which is a consonant sound. Therefore,
we use the article "a" before the word
"European.™]

The vowel sound at the outset of the word
"European” is actually made by the letter "y."

which is a consonant. The letter "y" makes a
vowel sound when it is used as a consonant,
as in the word "yes." In the word "European.”

the "y" makes the vowel sound "ee,” which is
a consonant sound. Alike, we use the article

a" before the word "European.

somy forthe questioni am not sure ifthisisa
bug or something else. | have just started
with Android Studio and

somy forthe questioni am not sure ifthisis a
bug or something else. me be just waging
with Android Studio and

Motivation, aim and meta of our user study

Figure 5.1.1: Example of counterfactual explanations provided in the survey

Text with highlighted words
You can cover the upper half of the door [illlll a plastic wrap or a tarp and secure it in place [illlll fape or Saples

Text with highlighted words

is loving how 1 met your mother. the show 1s completely awesome. watching a couple of gps and heading to bed

Figure 5.1.2: Example of LIME explanations provided in the survey. Blue indicates swaying the prediction
towards AI-Generated, while orange indicates swaying the prediction towards Human, with darker shades
indicating larger importance

5.1.3 Data used in the survey

The text corpus for our user survey was provided by our datasets which are described in Section 3.3. More
specifically, the annotated examples given at the beginning were randomly generated from all datasets (being
the first examples on the dataset after a data reshuffle) and are the same for all participants.

The text corpus for the survey is drawn from our datasets described in Section 3.3. The initial examples are
randomly generated and the same for all participants. The 50 texts for the detection tasks are hand-picked
from all datasets and uniformly split into five sets to ensure a diverse representation of domains and datasets.
Each set contains at least:

e 2 tweets/short texts (taken from the AuTexTification dataset)

e 2 academic abstracts (taken from the Human vs. ChatGPT dataset)

e 1 human text written by a non-native English speaker (taken from the GDB dataset)
o 1 Al-generated text written by a non-GPT model (taken from the MAGE dataset)

e 1-2 examples that fooled a general purpose Al text detector, like RADAR or RobERTa (taken from all
datasets)
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e 1-2 examples that would deceive our perplexity-based detector, on the optimal threshold setting. That
means Al-generated texts with perplexity higher than the optimal threshold for their dataset or human
texts with perplexity lower than the optimal threshold for their dataset.

The accuracy of both general-purpose detectors and the perplexity-based detector is between 80-90% for each
dataset split. Each split includes at least 4 human and 4 Al-generated texts to prevent participants from
guessing a single class and achieving a good score.

The two short paragraphs for the paraphrasing task are ChatGPT-generated examples from the HC3 dataset,
and they are the same for every participant to ensure consistency in comparison. They are shown in Figure
5.1.3 below.

Please rewrite the following to appear more human-like, keeping the meaning of the sentence the
same:

"Acne is caused by a combination of factors, including hermones, genetics, and the environment.
Some people are more prone to getting acne because they have higher levels of certain hormones,
or because they have inherited genes that make them more likely to get acne. Other things that can
cause acne include using certain types of makeup or skincare products, or not washing your face
properly. Some people are just luckier and don't have to deal with acne as much as others.”

Keipevo pakpookeholg andvtnang

Please rewrite the following to appear more human-like, keeping the meaning of the sentence the
same:

"Our brains are wired to recognize patterns and associate them with familiar objects, like faces. This
helps us make sense of the world around us and understand what's happening. It's a natural instinct
that we've developed over time to help us survive. When we see a pattern of lights that looks like a
face, our brains automatically recognize it as a face and we might think the car looks angry or
excited or sad. It's just our brains trying to make sense of what we're seeing.”

Keipevo pakposKeAolE andvinang

Figure 5.1.3: The short paragraphs that participants were asked to rephrase in our survey

5.2 User study results and insights

Our survey was conducted from June 29, 2024, to July 9, 2024, during which a total of 27 people participated.
Each participant performed 20 text annotations, resulting in a total of 540 annotations. This sample size is
considered significant for our analysis.

An aspect of our survey design was the random number selection process for text splits, ensuring that
no participant annotated the same set of texts twice. This approach, combined with the requirement for
participants to provide their reasoning for each classification in the open-text questions, helped ensure that
all participants were attentive and engaged throughout the survey. The optional paraphrasing part was
completed by 15 participants.

5.2.1 User analytics

In the introductory part of the survey, participants were asked about their familiarity with AT models and
text generative models in general, using a 5-point scale. The distribution of responses is shown in Figure
5.2.1.

We observed that this distribution roughly follows a normal curve, which is expected when surveying a
mixed audience. This ensures a balanced user base, incorporating responses from both individuals with no
background in AI and those who are more familiar with AI and generative models. The slightly higher
average response for the second question can be attributed to the widespread use of generative models like
ChatGPT, which have become popular beyond Al circles and are frequently used by non-experts. This trend
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How would you rate your familiarity with Al/Al models? IO avuypaei

27 anavircelg
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10 (37%)
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1 4 5
How would you rate your familiarity with text generative LLMs (like ChatGPT, IO avoypasn
Llama, etc.)

27 anavncels

15

2 11 (40,7%)
ApBpdc T

7 (25.9%)

1(2.7%)

o —
1 2 3

6 (22.2%)
2 (7.4%)
4 5

Figure 5.2.1: Users’ familiarity to AI and LLMs

is also reflected in the responses to the question about the frequency of using text generative models in
work or studies: 33% of participants reported using generative models at least once per week, 30% indicated
occasional use, 22% mentioned rare use (once per semester or less), and only 15% stated they never use Al
models in their work or studies.

Participants were also asked about their confidence in the ability of automated models to detect Al-generated
text and their own confidence in performing this task. The distribution of responses is shown in Figure 5.2.2.
The average confidence score on the 5-point scale for trust in automated models was 3.41, whereas the average
score for trust in their own ability was 2.78. This suggests that while users have more confidence in automated
systems than in themselves for Al text detection, their overall trust in Al text detection models is still far
from absolute. This skepticism is understandable, given the current limitations of Al text detectors, such as
issues with robustness and cross-domain performance, as discussed in Chapter 4.

5.2.2 Performance results

To measure the performance of participants in our survey during the text detection tasks, we assigned each
participant a percentage score corresponding to their accuracy. Given that each participant annotated a
total of 20 texts, each correct classification contributed 5 points to their score. The distribution of scores
among the 27 participants is illustrated in Figure 5.2.3, which reveals that the overall performance of human
reviewers was only marginally better than random chance. Specifically, out of 540 annotations, there were
286 correct classifications and 254 incorrect ones, resulting in an overall accuracy of 52.96%. Considering
that a random classifier would achieve a 50% accuracy rate, our findings suggest that human performance in
this task is not significantly better than chance.

These results contrast with earlier studies that were conducted before the release of ChatGPT that suggested
humans might be able accurately perform Al text detection tasks. Instead, our findings align with the
more recent consensus that distinguishing Al-generated text from human-written text has become nearly
impossible for human reviewers. As shown in the score distribution, most participants’ scores fell between
40% and 65%, with the highest score being 80% and the lowest score being 25%.

We also analyzed participants’ performance separately for the first and second text detection tasks. Par-
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How confident are you in the existence of an algorithm or model capable of O avtypagn
reliably distinguishing between human text and Al-generated text produced by
the latest text generative LLMs, such as ChatGPT?

27 anavihosig
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1(2,73%)
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How confident are you in your ability to differentiate between Human and Al 0 avtypagn
generated text produced by the newest text generative LLMs (like ChatGPT)?

27 anavThoELg
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Figure 5.2.2: Users’ confidence on models and themselves in the Al text detection task

Score Distribution
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Figure 5.2.3: Distribution of percentage scores in our survey

ticipants achieved an accuracy of 53.7% on the first task and 52.2% on the second task, indicating no
improvement. This suggests that the explanations provided to participants during the second task did not
enhance their accuracy.

Furthermore, we attempted to correlate participant performance with their responses in the introductory
part of the survey. However, filtering by familiarity with AT and large language models (LLMs) did not affect
performance, as demonstrated in Figure 5.2.4. This figure shows performance scores across different levels of
familiarity with text generative LLMs, with the red horizontal line indicating the overall average accuracy.

Similarly, graphs depicting the distribution of percentage scores by general Al familiarity and LLM usage
appeared uncorrelated, with scores clustering randomly around the average accuracy of 52.96%. Therefore,
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these graphs do not provide additional helpful information and are not shown.

The only metric that appeared to correlate somewhat with user performance was the participants’ confidence
in their classifications. Figure 5.2.5 illustrates that higher confidence levels were associated with better
accuracy. This suggests that participants who felt more certain about their classifications tended to perform
better.

Accuracy by Familiarity to LLMs

Familiarity to LLMs on a 5-point scale

Figure 5.2.4: Distribution of percentage scores by LLM familiarity

Accuracy by User Confidence Level

Score

2 3
User Confidence Level on a 5-point scale

Figure 5.2.5: Distribution of percentage scores by user confidence scores

In summary, our analysis indicates that human reviewers struggle to accurately distinguish between human
and Al-generated text, performing only slightly better than random chance. The provided explanations in
the second task did not significantly improve accuracy, and familiarity with AI and LLMs did not impact
performance. The only factor that showed a correlation with performance was participants’ confidence in
their answers.

5.2.3 Results by category

We also analyzed the performance of users across different text categories to examine in which domains or
text formats humans perform better or worse. It’s important to note, as discussed in Section 5.2.2, that
overall, humans perform only marginally better than random chance.

The results, presented in Figure 5.2.6, reveal significant discrepancies in human performance across different
categories, revealing further details behind the apparent randomness in their ability to detect Al-generated

71



Chapter 5. Al text detection from a human perspective

texts.

More specifically:

Short Texts: Participants performed slightly better than random chance with an accuracy of 64.8%.
This suggests that short texts, like tweets, are somewhat easier for humans to detect as Al-generated.
The limited context in short texts often degrades the quality of Al-generated content, making it more
detectable.

Scientific Abstracts: Participants scored 52.7%, which is no better than their average performance and
only marginally better than random chance. This contrasts sharply with Al-based text detectors and
perplexity-based detectors, which achieve their highest performance on academic texts.

Non-Native English Speaker Texts: Human reviewers performed slightly better than random chance
with an accuracy of 66.6%. These texts, often from essays, may appear more personal and human-like
to reviewers. Additionally, since the majority of our participants are non-native English speakers, they
may find the writing patterns relatable and therefore be more likely to classify such texts as human.

Al-Generated Texts from Non-GPT Models: Participants had a very poor performance, scoring only
29.6%. This suggests that participants are not familiar with these models, as ChatGPT and its deriva-
tives dominate the text generation landscape. Additionally, these texts come from the MAGE dataset,
which has been proven to be challenging for both Al-based and perplexity-based detectors. This indi-
cates that the distinction between human and Al text in this particular dataset is significantly blurred.

Texts that Fooled Traditional Al-Based Detectors: Participants performed slightly better than average
with an accuracy of 59.25%. This supports the observation in [30] that automatic Al text detection is
easier when humans are fooled and vice versa. However, this effect has largely diminished over time as
AT generation and detection techniques have evolved.

Texts that Fooled Perplexity-Based Detectors: Participants scored poorly, with an accuracy of 39.81%.
This, in conjunction with the previous point, suggests that perplexity-based systems align more closely
with human thinking since they utilize textual patterns rather than relying solely on training data.
However, further research is needed to explore this phenomenon thoroughly.

User Accuracy by Text Category
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Figure 5.2.6: Distribution of percentage scores by category

Overall, although humans do not achieve the high accuracy levels of automated detector systems (80-90%) in
any domain or dataset, the discrepancies in human performance across different domains highlight significant
aspects of their cognitive process in performing the Al text detection task. We delve deeper into understanding
this process in the next section.

5.2.4 Other insights and open question answers

In this section, we attempt to use open question answers and other insights provided by participants in the
survey to further illuminate what informs their classifications.
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Firstly, as observed in section 5.2.2, the explanations given to the users did not improve their accuracy.
When questioned about the overall helpfulness of the explanations, participants assessed them with an
average of 2.62 on a 5-point scale, indicating that the majority did not find the explanations particularly
helpful. However, when asked which kind of explanations they found more helpful, 44.4% of participants
responded that both counterfactual and LIME explanations were equally helpful, 37% favored counterfactual
explanations, and only 18.5% noted that neither was particularly helpful. No participant indicated that
LIME explanations were more helpful than counterfactual explanations.

This finding supports studies on counterfactual explanations, which suggest they are a more intuitive way of
providing explainability to humans, who naturally think contrastively [44]. However, it is possible that our
counterfactual explanations, provided by TextFooler and designed primarily for robustness evaluation and
exploration, lacked qualities necessary for being truly helpful to humans in the context of outcome fulfillment
[50] .Providing explainability in the AI text detection task remains an open question. A potential direction
for future research could involve experimenting with global explanations, since the explanations provided in
this survey were local. Global explanation systems might be able to elucidate the general decision-making
process of Al text detectors in a way that is more interpretable and understandable to humans. Providing
explainability is not a simple technical task; it may incorporate various insights from other domains such as
social sciences [52] to ensure that explanations have meaningful impact for stakeholders and users.

Additionally, we can further attempt to understand the process of human detection of Al-generated texts by
analyzing the open question answers, in which the survey participants were asked about what features made
them classify the texts as Al-generated or human.

Based on the participants’ answers, we can categorize the features they used to classify texts into three main
categories: language and grammatical features, stylistic elements, and emotional and personal touch. Below
are the categories with example texts and brief explanations for each:

e Language and Grammar: Participants often relied on grammatical and syntactical cues to determine
whether a text was Al-generated or human-written. Below are three such examples of such descriptions:

— Example 1: "A text with grammatical, syntactical and spelling errors is far more likely to be
human."

— Example 2: "Human text can have flaws in grammar and vocabulary that the Al-generated one
cannot have (at least in my experience)."

— Example 3: "In Human text flow is not perfect, it may have some inconsistencies."

Overall, participants believe that grammatical and syntax errors are more likely to be indicators of
human text, as Al would automatically correct such errors. This contrasts with the early days of text
generative LLMs, which tended to make many such mistakes. These observations might have helped
human reviewers, especially with short informal texts like tweets.

e Stylistic Elements: Participants looked at the style, structure, and formatting of texts to identify
their origins. Below are three more examples of such descriptions:

— Example 1: "Al-generated text is more formulaic and quite often far more polished than a human-
written one."

— Example 2: "AI loves to use some keywords like ’embark’. One can see usage of particular words
being higher after introducing text generative LLMs."

— Example 3: "Each paragraph structure Al-generated text has a more uniform paragraph structure
with a beginning and a conclusion."

In general, participants judged more coherent and polished texts as more likely to be Al-generated,
and more free-flowing texts as more likely to be human. However, this might be a misconception, as Al
models can easily write free-flowing text with the right prompts, especially in text completion mode.

e Emotional and Personal Touch: Some participants pointed out the emotional tone and personal
touch as key differentiators for human texts. Below are three such examples:
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Example 1: "The human text is much more personal, it may even contain a point of view from an
emotional side."

— Example 2: "Differing factors on each text, but mostly texts that appear more personal I classified
as human."

Example 3:"The ones that feel more ’bland’ and with less emotion seem like they are Al-generated
ones."

There seems to be a common feeling among some participants that more personal and emotional texts
are human-generated, since Al cannot imitate human emotions precisely. However, this might be why
most participants were deceived by the texts in the MAGE dataset, which contained personal-looking
stories. Modern Al models are capable of writing in a personal style with the right prompt.

In conclusion, participants in our survey employed various clues—linguistic nuances, stylistic elements, and
emotional tones—to distinguish between Al-generated and human-written texts. Despite these efforts, their
overall accuracy in text classification remained only marginally better than random chance. This underscores
the complexity of Al text detection, where modern models can simulate human-like language and styles with
remarkable fidelity. The discrepancies in human performance across different text categories also highlight
the evolving nature of Al capabilities and the need for deeper understanding of human cognition in assessing
text authenticity. Future research should further explore these nuanced classification strategies to enhance
the effectiveness of Al tools, ultimately improving collaboration between human reviewers and Al systems in
text detection tasks.

5.2.5 Text paraphrasing task

Finally, we report on our results and findings on the final task of the survey, which involves users paraphrasing
two short texts. The first short paragraph generated by ChatGPT was paraphrased by 15 different users in
order to evade possible Al detection. These paraphrased paragraphs were then inputted into the RoBERTa-
large-openai-detector and into our perplexity-based detector, which is optimized for this specific dataset with
a threshold of 16.32. The perplexity of the base text was 8, placing it well within the Al-generated text zone.
Additionally, ChatGPT-40 was instructed to create a similarity percentage metric based on the number of
common words between texts, divided by the total words of each text. The results of this experiment are
shown in Table 5.1 below.

Texts | Text PPL | Fooled PPL | Fooled ROBERTA | Similarity percentage
Text 1 23 Yes Yes 78%
Text 2 10 No Yes 98%
Text 3 15 No Yes 96%
Text 4 17 Yes Yes 95%
Text 5 26 Yes Yes 93%
Text 6 14 No Yes 92%
Text 7 44 Yes Yes 85%
Text 8 12 No No 99%
Text 9 11 No Yes 95%
Text 10 11 No No 99%
Text 11 29 Yes Yes 64%
Text 12 9 No No 99%
Text 13 9 No No 99%
Text 14 18 Yes No 78%
Text 15 9 No No 99%

Table 5.1: Text paraphrasing experiment - Text 1

As observed in the table, the participants managed to fool the RoBERTa detector 9 out of 15 times and the
perplexity-based detector 6 out of 15 times. Notably, texts with a similarity percentage below 85% should
not be considered slight paraphrasing but rather a rewriting of the text, incorporating significant human
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elements. If we disregard the 4 texts that are significantly rephrased, RoBERTa was deceived 6 out of 11
times, while the perplexity-based detector was fooled just 2 out of 11 times. This highlights the robustness
issues that RoBERTa might have with slight paraphrasing, which were explored more thoroughly in Section
4. Tt suggests that a perplexity-based detector is harder to deceive, especially considering that one of the two
cases where it was deceived was borderline (at perplexity 17). Additionally, the decent accuracy of our users
in paraphrasing is noteworthy, as many of them managed to fool at least one detector, and everyone produced
a text with higher perplexity than the base text, indicating a higher likelihood of being human-written.

The second short paragraph was paraphrased 11 times. We repeated the same process as for Text 1. The
perplexity of this paragraph was 12, while the threshold remained at 16.32. Therefore, we hypothesized that
this paragraph might be easier to paraphrase. The results are shown in Table 5.2 below.

Texts | Text PPL | Fooled PPL | Fooled ROBERTA | Similarity percentage
Text 1 32 Yes Yes 61%
Text 2 22 Yes Yes 95%
Text 3 13 No No 100%
Text 4 23 Yes Yes 93%
Text 5 47 Yes Yes 85%
Text 6 13 No No 91%
Text 7 27 Yes Yes 81%
Text 8 14 No No 98%
Text 9 20 Yes Yes 73%
Text 10 13 No No 96%
Text 11 48 Yes Yes 59%

Table 5.2: Text paraphrasing experiment - Text 2

As shown in this table, the same texts managed to fool both the RoBERTa and perplexity-based detectors.
Despite this text being closer to human text in theory and thereby easier to paraphrase, only 7 participants
managed to paraphrase it correctly without changing too much of the text and maintaining a similarity
percentage above 85%. Of these, 2 out of 6 participants managed to fool the detectors. Notably, some
participants who successfully perturbed the first text felt that the second text already appeared human and
were unsure how to change it. Overall, all participants were on the right track, increasing the perplexity of
the base text.

This part of the study demonstrated the challenges and nuances involved in paraphrasing texts to evade
AT detection. While participants were relatively successful in fooling the RoBERTa detector with slight
paraphrasing, the perplexity-based detector proved in general more robust. The difficulty in paraphrasing
varied between texts, with some participants finding the second text inherently more human-like and thus
harder to modify without losing its original meaning. This finding suggests that while Al detectors can be
deceived through strategic paraphrasing, the effectiveness of this approach varies, highlighting the importance
of understanding the intricacies of human language and pattern recognition.
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Conclusion

In conclusion, our extensive analysis of the Al text detection task has provided significant insights into its
current challenges and potential improvements. We scrutinized adversarial perturbations targeting state-
of-the-art automated detection systems, exploring the delicate balance between achieving high accuracy,
generalizability, and robustness while identifying particular weaknesses. By examining text perplexity as a
reliable metric to gauge the unpredictability of a text to generative models, we developed a simple threshold-
based detector. This detector not only serves as a solid baseline for future, more sophisticated detectors but
also highlights that current datasets used in this task may not accurately reflect realistic scenarios. Addition-
ally, our user survey, akin to a modern-day "Turing test" for advanced LLMs, revealed that human detection
performance is approximately at random chance levels, indicating their unreliability in this task. Experi-
ments with XAI methods aimed at enhancing human reviewer accuracy showed no significant effect, though a
deeper analysis of human reviewer performance provided valuable insights that could guide the development
of better explanatory tools in the future. Lastly, by observing humans paraphrasing Al-generated texts to
appear human-like, we assessed their effectiveness in deceiving various detector schemes, contributing further
to our understanding of the interplay between human and automated detection capabilities.
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6.1 Discussion

Despite the significant advancements made in understanding the intricacies of the Al text detection task, our
work has several limitations. Firstly, our focus was on the TextFooler adversarial attack framework due to its
common usage, lightweight nature, and ease of use. However, the assumptions made about text fluency might
be artifacts specific to this framework. These artifacts may not occur if other adversarial or counterfactual
editors with better fluency, such as MiCE, were used. This suggests that our conclusions regarding fluency
and detectability might be framework-dependent, and further research utilizing a broader range of adversarial
tools is necessary for more generalizable insights.

Additionally, our results and assumptions are inherently tied to the datasets we used. Features and nuances
can vary significantly depending on the context of each dataset, which is why we included a diverse range
of datasets covering various text lengths and domains (tweets, news articles, scientific articles, etc.). This
diversity aimed to provide a comprehensive overview, yet our findings underscore the limitations of many
commonly used datasets. Notably, our study revealed that the MAGE dataset presents significant challenges
for both AI and human detectors. The sophisticated prompt engineering involved in generating MAGE
dataset entries effectively deceives both human and automated detection systems. While the dataset’s in-
troduction paper suggests that fine-tuning specialized detectors for long texts can achieve performance over
85%, this method’s limitations must be noted. In realistic scenarios, the distribution from which a potentially
Al-generated text originates is often unknown, limiting the practicality of such fine-tuning approaches.

Moreover, the challenges posed by the MAGE dataset indicate that text detection tasks will become in-
creasingly difficult in the coming years. This, coupled with the unreliable performance of human detectors,
suggests that practical detection may soon become unfeasible. In light of these challenges, it might be time to
consider new directions, such as LLM authors implementing mechanisms to detect their own generated texts,
like watermarking techniques. These proactive measures could offer a more robust solution to the evolving
complexities of Al text detection, ensuring the integrity and reliability of generated content.

6.1.1 Ethics Statement

We acknowledge that using adversarial attack frameworks on Al text detectors might produce text that
can often be misclassified by various detectors. We do not endorse the use of such text produced by those
frameworks to evade detection of Al written content, or misrepresent human content as Al-written, for any
purposes outside of research in the direction of better and more nuanced understanding of text detection.

6.2 Future Work

This work paves the way for numerous future studies in the context of Al text detection, which could have
significant implications for society. Our comparisons between state-of-the-art Al-based text detectors and
our perplexity-based detector suggest that while they achieve similarly high accuracy, they do so through
different mechanisms. Perturbations designed to attack one type of detector typically do not deceive the
other. Insights from our user study indicate that perplexity-based detectors might be more robust to human
perturbations and function more similarly to how humans identify and flag potentially machine-generated
texts. We hope this study encourages further research into perplexity-based systems, such as integrating a
perplexity-based backdoor into traditional Al-based detectors. This integration could mitigate robustness
issues, as any adversarial attack on the detector would also need to bypass the perplexity filter.

Another promising direction for future work arises from our user survey analysis. We found that local
explainability techniques, like local feature importance and counterfactual explanations, are not very effective
in assisting humans with Al text detection tasks. However, our analysis of human decisions revealed that
humans rely more on global indicators, such as language, grammar, style, tone, and the overall feeling of
the text. These factors are akin to traditional feature-based and stylometric methods. This insight suggests
that global explanations, such as rule-based systems, might provide better support for human reviewers
by aligning more closely with their natural evaluation processes. Therefore, exploring global explanation
techniques could enhance human understanding and effectiveness in detecting Al-generated texts.

Finally, the last part of our work highlighted the significant potential of understanding how humans para-
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phrase Al-generated content. With the increasing prevalence of using LLMs to refine human-written texts
across various fields, examining the interplay between human and machine authorship presents a valuable
area for future experimentation. Understanding this dynamic can inform the development of more sophisti-
cated detection tools and contribute to maintaining the integrity of human and machine-generated content.
By addressing these areas, future research can build on our findings to create more robust, reliable, and
user-friendly Al text detection systems.
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