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Iepidnyn

H Andvinon oe Ormukég Epotioeg (VQA) Bpiloketal 0to IIPOOKNVIO NG TIPOAY®YHS TS
Fevikng Texvnug Nonpoouvng (AGI), cuvduddoviag Tov Topéa g UTIOAOYI0TIKNG OpAoTG HE
Vv eneepyaoia QUoIKAg yAwooag.

Ta tpéxovia povieda oto VQA ermtuyxdavouv uyniég ermbooelg o KAAoKA ouvola Se-
Sopévav, adda ouyxvd nepilopilovtal ard v e€APTNOr TOUG 0TI OUOYXETIoES g YAwooag
ota Sebopéva eknaibeuong. Zuyvd anaviouv Xopig va AapBavouv umoyrn TG £1KOVEG, e
AIOTEAECIA VA ATIOTUYXAVoUV ot T01KiAa repiBailovia Sokipwv. Autn 1) SiatpBr) aviipet®-
midel autég TG mPoKANoelg, eotiadoviag otn yevikeuorn ot VQA, 18iaitepa og oevapla eKtog
KATavoprg.

H Sudeopatkr) epyaocia ekva amnod depedimdelg £vvoieg g Pnxavikrg pabnong xat ot
ouvéxela, H1e§dyel pa opaipikn B1BAOYPAPIKI) AVACKOIOT) TOU TOREA YEVIKEUONG OTO AvTl-
Keipevo tou VQA, pe 0T0X0 v Katavonon tov 81agopnv pebodnv yevikeuong oe dedopéva
€KTOG KATAVOUNG KAl EMAVEKTEAEOELG KAVOTOP®V PEB0dmV. AvadEpoulie oplopéva euprjpiata
Kal ouprniepdopata faciopéva ota arotedéopata v pefodav ota ouvoda debopévov GQA
OOD xkat VQA-CPv2.

AxoAouBouv, apxikd relpdpata oty SnEoupyia oMKV EPETHOEMV G TEXVIKI] EMAUSH-
ong Sebopévav Kat Avaduon) T®V ATTOTEAEOHATOV.

To KUpPO aviKeipevo autrg g epyaociag eivat n avarudn pag véag pebodoroyiag
PAoKAG AVUIKETPIEVROV E1IKOVAG, TIOU S1adEpet amo TG mapadootakeg poosyyioetg. Ot ipooap-
poopéveg péEBodot pag Baciloviatl OTov EVIOIMIONO CNHIAVIIKGOV AVIIKEIPIEVROV 11€06 KAAUWYERV
kat ot dnuoupyia Setkov kat apvnuikev 1ptddev Ewkovag-Epotnong. Xpnowponoteitat pia
OUVAPTN 0L KOOTOUG TPUTAGV ATI®AEI®OV, 1] ortoia AN oladet 11§ TOAUS1A0TATEG AVATIAPACTACELS
TV MPAYHATIKOV SEYHPATOV 10 KOVIA otd deTikd deiypata kat pakpid anod ta apvnukd. Em-
A£0V, XPNOIHOIIO0A}ie Pd OUVAPTN o1 KOoToug entaudnong Sedopévov pe detkd Setypata.
T£Aog, MEPAPATIOTAKAPE PE pla tuxXaia pébodo pdaokag rmou £6ele onpaviikeég PeATIOoelg
otV anodoor), oe cuvduacopo Pe Vv apxikn pag pebodoloyia.

Ta mpotevopeva poviéda pag ouvduddoviag tig avagpepbeioeg peBodoloyieg 0dnyouv oe
ONPAVIIKEG BEATINOELG 08 OUVONKEG EVIOG KAl EKTOG KATAVOULG OT0 oUvolo dedopévav GQA
OOD.

Zuvoyidovtag, autn n dwatpiBr] eptAapBavel T VEEG OUVEICHOPESG HAG OTOV TOHEA TOU
V@A, avaluoviag ta KUpla €uprpatd pag Kat IPoTeEivoviag Kateubuvoelg yia PEAAOVIIKT)

€PEUVA V1A Va BEATIOOOUV TIEPATTEP® TIG HUVATOTNTEG YEVIKEUONG TRV P1OVIEA®V VQA.

Aégerg KAe1dua

Anavinon oe Onttikég Epotioelg, Kaduyn onmmuikov avuikepévev, Fevikevor), Asdopéva

€KTOG KATAVOUNG, ZUVAPTNOL KOOTOUG TPUTAGV arwleiwv, Texvikeg enauinong Sedopévav
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Abstract

Visual Question Answering (VQA) stands at the forefront of advancing General Al,
blending visual perception with linguistic analysis. VQA requires a deep understanding
of visual content and natural language queries, demanding an advanced level of object,
scene, and activity recognition and contextual understanding.

Despite the progress in VQA, current models often struggle with out-of-distribution
conditions, relying heavily on spurious correlations and language biases. This thesis
addresses these challenges by focusing on generalization in VQA, particularly in out-of-
distribution scenarios.

The thesis is structured to gradually build the reader’s of fundamental machine
learning concepts and afterwards, we conduct a comprehensive survey of the existing
methodologies of generalization in VQA and reimplement several key approaches on the
out-of-distribution datasets VQACPv2 GQA OOD. We report certain findings and conclu-
sions based on our survey the entire field and our reimplementations.

Our initial experiments include an augmentation strategy using question generation
based on image and answer features. Our experiments in visual question generation
showcase that trying to perturbate the question without changing the answers resul-
ted in suboptimal performance and we propose an alternative augmentation strategy for
constructing new question-answer pairs.

The core contribution of this thesis is developing a novel image object masking me-
thodology that diverges from traditional approaches. Our custom masking methods are
based on identifying important objects by leveraging annotations in our dataset and using
masking to construct positive and negative Image-Question tuples. It leverages a triplet
contrastive loss function responsible for pulling the multimodal representations of the real
samples closer to the positive samples and away from the negative ones. Additionally, we
leveraged an augmentation loss using only the positive samples. Lastly, we experimented
with a random masking approach that showcased significant performance improvements
paired with our initial methodology. Our proposed models combining the mentioned
methodologies lead to significant performance improvements under out-of-distribution
conditions in the GQA OOD dataset.

In summary, this thesis encapsulates our novel contributions to the VQA field, de-
tailing our primary findings and proposing directions for future research to improve the

generalization capabilities of VQA models further.

Keywords

Visual Question Answering (VQA), Masking of visual objects, Out-of-distribution data,

Triplet loss function, Data Augmentation
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Kegalato m

Extetapévn EAAnvikn IlepiAnyn

0.1 Ewayoyn

0.1.1 Kivntpo

H Anavinon Epetosov yia Ewkoveg (VQA), SnAadn) n andvinon peIoe®V OXETKA HE
10 IEPIEXOHEVO P1AG €1KOVAG, £ival évag ard Toug ONPAaviKOTePOUS Topelg emnedepyaoiag
€1KOVAG-YA®Oooag Kat pia Kevipikn pébodog mpog v nopeia yia ) evikr Teyxvn Nonpo-
ouvr). ITapoAo ou Ta CHUAVIIKOTEPA POVIEAA PITOPOUV VA EMMITUXOUV KAAd ArtoteAéopata otd
VQA benchmarks o6niwg 1o VQA v2, ocuxvd PBaocidoviat os ouykekpipiéva biases tou ouvoiou
6edopévev ToUg KAt Katd ouvenela uneparnodidouv otov topéa 1.D, addd ‘vunoanodibouv” oe
Slapopetikeég ouvOrkeg e&étaong.

Ta mapanave evioXUovVIdl dIto TS YA®OOIKEG TIPOKATAANYELG TTOU UTApX0oUV ot diadopa
VQA ouvola Sedopiévev kat v EAAelPn KATAAANA@V PETPIKOV Yla T PEIPNON tng anodo-
ong. Emedn) n yAoooa eivat eukoAdteprn oty enedepyacia Kat ouxvd IO ONHAVIIKL yid
TG H0KIPAOIEG EPWOTIOE®V KA1 ATIAVINOERDV, 01 TIEP1000TEPES Kopudaieg peBodor VQA teivouv
va egaptovial UrepBoAIKA Ao AUTEg TG YAWOOIKEG TIPOKATAANWELG KAl va eKpeTtaAdgvoviat
OUVIOH1EG V1A va ETUTUXO0UV KAAUTEPT ATTOd00T, 1€ ATIOTEAECHA TV AVETTAPKI] OTTTIKY| avtiAn-
wrn). I'a napadetypa, deixvoviag pia eikova and rpaoiveg Ayoupeg PITAVAVEG, OTHV EPMTNON
"Tt xpopa sivat o1 priavaveg”,ta meplocotepa povieda Sa anavirjoouv “Kitpivo™ Xopig va
€0t1alouv oTig KATAAANAEG TEPLOXEG TG E1KOVAG, €MEd) £lvaAl 1] TTIO OUXVI] ATIAVINOT] OXETIKA
€ auT) TV OUYKEKPIIEVT £pATNOT) oto oct eknaibeuong. Katd ouvéneia, 1o poviédo Sewpn-

TiKA 9a ermtuyxdvel oAU uynAr akpiBela mapd v KAk OITTIKI KATavOonor ToU HOoVIEAOU.

What color are the bananas? A:><w

Zxnpa 1: Kown Aadog aravinon poviélov vrngpboiuka s§aptnucvav ano m yioooa.
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0. Extetapévn) EAAnvikr) Iepidnyn

Me autd 1o kivnipo, armopacioape va epBabuvoupe otg peBodoug yevikeuong mou Xpn-
owportolovvial oto VQA kat va rpoteivoupe tig 81kég pag pebodoloyieg yia ) Bedtioon g

anodoong oe oUVONKeg £KTOG Katavoung (out-of-distribution).

0.1.2 ZuvelogopEg

Autr) n SUMA@PATIKN €pYaAcia TIPOOPEPEL CNIAVIIKEG OUVEICPOPES OTOV TopEA TG OmMIKAG
Andvinong Epotrioswv (VQA). Apxikd, 81e€nx0n pia extevrg €épeuva tng oxeukng BiBAioypa-
elag, emkevipepévn otig undpyxouoeg pebodoldoyieg yevikeuong yia VQA.

[Tio ouykekpléva, MPAYHATOIIOW|OAE Pl OUVOALKY avaAuon g oXeukng BiBAloypa-
(1lag Kal emaveKTeEAEOAE APKETEG ONPAVIIKEG NeBOHOUG TOU avapépovtal o AUV, ITAPEXO0-
viag éva otafepd YeP€Ao yia v MEPAPATIKY pag avaluor, avaduvoviag, rmapdAinda, ta
TAEOVEKTI|PATA KAl TA PEIOVEKTINHATA TOV KUPIAPX®V TEXVIKOV YEVIKEUONG OTNV AIIAVINOT)
OITTIKGOV EPRTHOEDV.

Auto anotédeoe ) BAon yia tv avarudn piag Kawvotopou pebododoyiag “arndkpuyng”
(masking) avukeipévov eikovag. AUTH 1] VEd TIPOCEYYIOT ATIOKA{IVEL Ao 11§ TTapadoolaKreg
1eBodoug, evorpnat®voviag eupUI) Kat tuxaia ototxeia, evioxuoviag v avOEKTIKOTTA KAl TIG
duvatodnteg yevikeuong tou poviédou. H nepapatikr pag epyaoia pe auvtr) ) pebodoroyia
enédelle onuaviukég PeAtoelg otny anddoon Tou PoViEAOU Ot OUVOTKEG EKTOG KATAVOUTG
oto GQA OOD dataset. 'Eva onpavuko otoixeio autng g pebodoAoyiag eivatl n xpron
g nipoogyylong triplet loss, n oroia kataokeuddet Eva TPUTALTO IPAYHATIKOV, JEUKOV Kal
apvnukov deypdtov. Me v peyiotonoinorn/sAayiotonoinon g apoBaiag rmAnpogopiag
Hetadl TV PAYHATIKOV KAl SETIKOV/apvnTKOV SElyPIAT®V aviiototyd, IapEXoulie éva onpua
KaBodnynong 10U POVIEAOU OTINV AVEUPECT] ONIAVIIKAOV OMTK®V TANpodoptev. ErmmAtov,
Xpnotpomnoteital piia anwisia evioxuong, BeAtidvoviag mepattépe v artodoor T0U PHOoVIEAOU.
Autég 01 oUVElOPOPEG OUVOAIKA TTPOAYOUV TNV KATAVONOI] KAl TNV AMOTEAEOUATIKOTTA TOV

ouotnpatwv VQA, 18iaitepa v yevikeuorn toug oe TieplBAAAlovia eKTOG KATAVOULS.

0.2 Anavinon Epotiosnv IIave os Elkoveg.

H Anavinon Epotioeswv [Tave oe Ewkoveg (VQA) amoteAel €vav topéa tng TEXVNTHG VO -
poouvng (Al), rou o otdxog £ival 1 AVAITUSH CUCTRATOV IOV £ival IKAVA VA AraviouV O
EPWTIOEIS OXETIKA HE TO TEPIEXOHEVO e1KOVMV. [Ipokertal yia €va mepimdoxo task rmou ouv-
duddet v UTIOAOY10TIKY] OPAOCH KAl TNV EMEEEPYATia PUOIKNAG YA®OOAg, analtoviag arod tg
Hnxavég va avayvepi{ouv 0yt povo ta ototxeia eviog piag £1kovag aAAd Kal va Katavoouv ta
XAPAKTNPIOTIKA TOUG KAl TIG EMPIEPOUSG OXEOEIG PETASU TOUG.

IMa apadetypa, oto Zxfpa 2 priopoupe va Soupe Siapopetikeg anaviroelg va divoviat
yla myv 16la epdtnon KAt yla rnapopoleg addd d1adopetikeég ekoveg. Ia va propéocet to
HOVIEAO VA OUVAYEL TV O®OTL) AITAVIN o) Kat OTlG SU0 MEPUTIMVOELG, IIPETIEL VA PNV avayvepilet
povo pe akpiBela ta avukeipeva adAd Kal va oUvAYEl, PEO® TOV OXETIKOV JE€0e®V TOUG KAl
NG TOOBETNONG TOU XEPIOU TOU KOPITO10U, OTL 1] 0XE0T TOUG ival mpaypatika ‘walking”, to

ortoio petapopikd xprnotporoieital yia v odiodnon tou rmodnidtou oto §popo.
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0.3 Baowo6 Movtédo - Bottom Up Top Down Attention

Answer: No Answer: Yes

complementary scenes

\/

Tuple: <girl, walking, bike>
Question: Is the girl walking the bike?

Zxnpa 2: 'Eva mapadetypua ontkng anavinong E0RTHOE®V XPNOOToLOUTAS Y 161a Ep@dTNnon
ya dtagpopetikég eikoveg. To poviéfo aomoiel ™ oxetkn 9éon tov modnAdatov oe oUyKplon
ue 10 Kopitol yia va ovvayel 6Uo Sragopetikés amavirioelg. Ilpooapuoougvo ano nttne://
TOMEROWLTNCOOE.COU/ TUOK /LOUOA- Y UES TLOV- VO WERLVY .

0.3 Baoiko Movtéldo - Bottom Up Top Down Attention

‘Eva amo ta onpaviukotepa povieda tou rediou tou VQA eivatl to Bottom Up Top Down
Attention 1o oroio Baocidetal otnv 16¢a tou bottom-up attention kat top-down attention .

To povtédo UpDn agiomoiei toug prnxaviopoug bottom-up kat top-down yia va evow-
PAT®Ooel amoTEAEOPATIKA OITTIKA KAl KEWHEVIKA YXapakinplotikd. O pnyaviopog bottom-up
ETIKEVIPOVETAL OV KATATHUIN O] TG £1KOVAG O OITIKA AVIIKEIPEVA-TIEPIOXEG KAl OV £§a-
YOV ONUAVIIKOV XAPAKINPIOTIK®V Yld autd, Xphnotponowwviag 1o poviédo Faster-RCNN
ev® 0 top-down pnyaviopog rnpocoxng ouvduddel 1a MmepPlEXOPEVA TOV OITIIKOV AVIIKEIPEVEV
HE TNV avanapdotaorn tg ewkovag, sgayopevr ard éva RNN yia va kataAngetl oty tedikn
andvinorn).

To 1eAd1k6 artotédeopa tou diktuou, @aivetat oto Zynpa 3, Emdéape 10 napandve po-

VIEAO AOY® TG IKAVOTNTAG TOU vd YEVIKEVUEL eUPERG ot task eikovag kal yAwooag.

L
R 14 14:300 72N 512
Question —# Word embedding {cru L @»\
512

Top-dewn attention weights M
S @@ Lk
f--] 51—? Pradicted scores of

2048 B !
Image features ——» E—w candidate answers
Concatenation \Weighted sum over  Elemeat-wise
image locations prodect

Zxnua 3: Bottom Up- Top Down attention architecture.
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0. Extetapévn) EAAnvikr) Iepidnyn

0.4 Zuvolda AeSopévmv YEViKEUOTG.

Zto mAaioo g Sutdopatkng epyaciag 9a acxoAnboupe pe ta 6U0 KUPlotEPA oUVOAA

dedopévav yia texvikég yevikeuong oto VQA.

To ouvoAo dedopévov VQA-CPv2 arotedei pia napaddayr) tou VQA v2 dataset, rou
dnuoupyrOnke yia va avupeteniost tnyv uvniepBoAikr) e§dptnorn aro 1 yA®ooad rmou mapatr)-
pHBnke oto apXikoé VQA dataset. Ze auto 1o ouvodo debopévwv, Kabe epwinor ocuvbéstal pe
éva (euydpl TAPOPolMV E1KOVAOV TTIOU 001youVv ot dladopetikeég anavinoelg oe train kat test
set. Ot Baoikég perpikég eivatl to accuracy oe 3 faoikég katnyopieg epwtrnoewv Yes/No™,
‘Number”, ‘Other”. ITepiExel eUpOGg £POUOEWV Y1d TTOAAATTAEG KATNYOPIEG KAl OXEOELG PETASU
AVTIKETIEVDV.

To maparndve ouvolo dedopévav £xel dexOel kpttikn oty PBAoypadia [1, 2, 3] kat ot
ETIAVUAOTIO0E1G TTIOU MPAYHATONO|oae O€ TIapopiola ocupnepaopata. Enopéveg, yua v

KUpla pebodoAoyia pag Baciotkape oto napakdtm ouvolo Sedopévev.

To ouvodo 6edopévaov GGA 00D eival pia e§€AEN tou ouvodou Sedopévav GQA, oxebia-
OP€VOo yia Vv a§loAdynon oruiknAg JepeAinong Kat CUAAOYIOTIKLG 08 TPAYHATIKA ggvapta.
Auto 1o ouvolo dedopévav Sokipalet ta povieda VQA oe ouvOrKeg eViOg KAl EKTOG KATAVOULG
(ID ka1 OOD), neprdapBavoviag 51ax®P1010Ug Yia EMKUPOON 08 appotepeg ouvOnkeg. Ilept-
AapBdverl ertiong, empodobeteg MANPOPOpPieg yia TG E1KOVeG (scene graphs) kat o1 epatHoelg
etvatl ypappéveg Kat oe AOY1KI) TPOYPAPPATOV.

H xupla katavopn tou ouvodou dedopévav Siakpiveral os dUo tpnpata:

Kegpadn tng Katavopng: Avagipetal oe Se1yPidta OUXVeV ardaviroemv KAl avilipoo®-
nevouv 11§ ouvrBeig nepirttooetg (ID).

Oupa tng Katavopng: INepiéxet 11§ onavidtepeg AmAVITOElg, AVIIIPOOMITIEVOVIAS A0U-

vnO10TEG 1) EKTOG Katavoung nepurttwoetg (OOD).

Elodyovial véeg petprioelg anodoong yia v akpibeia oe ouvOnkeg ID (Acc-head) kat

OOD (Acc-tail), kaBag kat pa petpikn (A) ou deixvetl ) dapopd arovdoong petaiy auvtov
AcCHead —ACCTail

Vv 6U0 oevapiov. Zuykekppéva, A =
p VKERPTH ACChon

H ouvdptnorn kéotoug 1ou xprnotpoteital eupéwg otn PiBAoypadia yia ta ouvola Sedopévav
autd, ovopdadetat Binary Cross Enropy Loss kat avinpoooieUet tyv Katavopr) mbavotntag
nave otig mbaveg anavinoelg Kat avatibetat oe pia ouvaptnorn anwietag duadikng Sraotau-

peuévng eviportiag. H ouvdptnon anwoisiag Siapoppovetal og e§ng:

c
Lpce = — Z yilog(py) + (1 — yy) log(1 - py) (0.1)
i=1

orou C givatl o ap1Opog v tagewv andvinong, y; £ivat ) mpaypatiky eUkEwa yla ty tagn
i, Kat p; eivat n npoBAenopevn) rubavotnta yua v tadn i ano 1o poviedo. Autr) ) ouvaptnon
anoAsiag vrodoyidetl m Sractaupwpévn eviportia petal v mpoBAeropevav mbavottev
KAl TOV IMPAYHATIKOV ETKETOV, TIHOPOVIAS ATOTEAECHATIKA TIG TIPOBAEYPELS TIOU ATTOKATVOUV

aro TG MPAYHATIKEG ETIKETEG.
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0.5 Zxeuxkn PBAoypadia

0.5 ZIxetiky PiBAloypadia

H BBAoypadia oe oxéon pe v yevikeuor oe VQA propel va katavepnBet o 4 KUpleg
Kawnyopieg . Z10 mAaiolo g Sumdepatikig pou Sa acyoAnboupe Katd KUplo AGYo HE TG
MAPAKAT®

Language debiasing ensemble based methods: O1 pébobor tng katnyopiag auvtrg
Baotlovtat onv 18éa 611 péow £vog poviédou 1o oroio BAémet povo yAwooa, wBoupe ta VQA
povtéda rou raipvouv oav £10060 YA®OOoa Kat £1KOvVA va TIPOBAETIEL H1APOPETIKEG ATIAVITOELG
pe v edmniba va arnooupridexOei to poviédo and v unepBoAikr) e§aptnon oty yAoooa
(epotnon). Ot onpavukotepeg pEBodot autrg g katnyopiag eivat LMH, RuBi, AdvReg, Ot
1éBobo1 autég odnyouv oe TOAU UYnAn avdnorn g akpiBeiag oto dataset VQA-CPv2 adAa
€xouv dexBel opobpr) kpuky [2, 1, 4, 3].

M£00o6o1 enauinong Sedopévav (augmentation): O péBodor autég nowkidouv. Karoteg
€€ autwv Paoidoviatl oe teXvikEg yla perturbations, ot oroieg opwg @aivetat va odnyouv oe
KAAUTEPA AMOTEAEOPATA OE OUYKEKPIEVEG ouvOnKkeg [5, 6, 7], eved dAAeg rou Sa avaluBouv
otV ouvéxela, faoidovral otnv Kataokeun aviilBetikaov (counterfactual) dsiypatev [8, 3, 9].
TéAog, n 1€60Sog tou Mutant [10] Baoiletatl otnv apadAayr] 1OV UIIAPXOVIOV SeS0EVQOV 11e
TTOKIAEG TEXVIKEG O1 OTTO1EG, OPWG, £ival OUYKEKPIIEVEG avapopika pe to dataset VQACPvV2,
Kat apa givat 8Uokodo va epappootolv oe aAda ouvoda Sebopevav.

Answer Reranking: Ot pébobor avtég [11, 12] aoxodouUviat Katd KUupto Adyo pe To
ouvbuaopod g £1KOVAG KAl Andvinong o€ Pid OUVOAIKY YA®OOIKN Teptypadr. H avadua-
Hopdwon NS YA®OO1KNG TIAnpodopiag odnyel oe kaAutepa aroteAéopata, aidd ta poviéda

autd eivat rieplopiopéva AOY® ToU audnPévou UIMOAOY10TIKOU KOOTOUG.

0.6 EnavexkteAéocsig pe0odwv rKat TX0Alaopog

To repdldaio mepldapBavel ta MPOTA MEPAPATA PAG OXETIKA HE TV EMAVUAOIOINOT)
S1APOP@V EPEUVITIKAV £pYAOI®V Yid T PeATioon tng yevikeuong oto ouvolo Sedopiévav
VQACPV2. 'Exovtag dex0el éviovn Kp1uKn yid TV EKPETAAAEUOT) ITPOKATAANWPERDV OTO CUVOAO
6edopévav VQACPV2, autég ot pebodot Sa emavauldomnotr)Bnkav oto ouvolo dedopevav GQA-
OOD y1a v agloAdynon g anodoorg 1oug ot H1aPoPeTIKEG OUVOnKeg KTOG Katavourg. Ot

1€Bob6o1 rou ertavudornoindnkav PIropouv va ouvoPlotouv ®¢ £§1g:

e Ta Rubi [13] xat LMH [14] eival ta onpavukotepa PoviEAd g peng rpoavapepbe-

ioag katnyopiag (Language debiasing ensemble based methods).

e To CSS [9] Paocidetar ounv kataokeur] counterfactual deypdiov péom 10U paoka-
PloOATOG CUYKERPIIEVOV TIEPIOXAV TNG E1IKOVAG 1) ALV NG EPAOTNONG KAl TG XP10NG

WPEUBOETIKETWV Y1a erMiBAeyr).

e To SSL [8] Baoiletal oV KATAOKEUT] KAl OV Anaitnon va pnv mnpoBAepdst kapia

ooty anavinon péow self-supervision.

Ta poviéda odrynoav oe napopola aroteAéopata pe ta Snpooteupéva, oto Suvodo Se-

dopevov VQACP-v2 To povtédo [8] xpnowoteitat €nmetta and pre-training pe 1o kAaowo B'E
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0. Extetapévn) EAAnvikr) Iepidnyn

Aoaog, kat dev pooedepe Pedtinon oto validation loss pie anotéAeopa va pnv oupneptAndOet
otov mtivaxka. To poviédo SAR [12] enavetetaotnke, aAAd v katapEpaiie va 0AOKANP®OOUE

Vv eKnaideoun AOYy® TOU PEYAAOU UTIOAOY10TIKOU KOOTOUG, OIS avapepOHnKe mapanave.

Model Baseline GQA-OOD test results
Acc tail Acc head Acc all Delta
Baselines

UpDn UpDn | 42.545.;6 49.668.12 46.96.15 16.928.4,
Ensemble based methods
Rubi UpDn 30.78123 39.52,94  36.2.3; 22.10447
LMH UpDn | 27.621.,05 38.41.19 34.3l.207 28.09:39
Data augmentation methods
CSS UpDn 41.75:16 49.114,9 46.31:13 14.95.98
LMH+CSS UpDn 29.1943 37.67.20 34.45.93 22.49.37

O1 pebobot autég Hev 0brynoav oe Bedtioon tov arotedeopdatov oto GQA OOD dataset
delyvovtag o1 ) Xpron language biased ensemble based models aAAd kat 1) Xp1i01 TEXVIKOV
yla avuBetukd napadeiypata 8ev yeviKEUOUV 0g OAEG TIG TMEPUTIVOELS EKTOG KATAVOULG, TO

ortoio ouvadet pe v avtiotorxn BBAloypadikn kprukn [2, 1].

0.7 IHapaywyn Néwv Epotniocwv péow {eUyoug £1KOvVag Kat a-
navtnong.
Ta apyika pag nepdpata reptdapBavouv v pEB0do mMapaywyng OMIK®V EPWICEDV

armod €1KOvVa KAl AMAvinor HE OKOMO v dnpioupyia Kawvoupylev Aapeppepmv Selypdtov

yla evioyuon debopévav data augmentation.

0.7.1 Zuvolo 6cdopiveov rat Baseline Movtédo
IMa v napaymyr) EpOTHos®V XPNOHOIIOINOaHE £vd armAoIKO apX1KA poviedo dtapbpw-
Hévo wG £E1g:

e Language Encoder: Mectatpémnel 11§ anavirosig oe oepd and Glove embeddings kat
1a mepvast anod éva LSTM yua va kataokeuacet embeddings andvinong otov Kowvo

X®OPO XAPAKINPIOTIKOV .

¢ Image Encoder: ESayoyr) xapaktplotkev aro Faster-RCNN yia ta avukéeva g

€1KOVAG KAl MEPpaocpa Tou PEcoU Opou ToUg arod £va 1) YPappKo layer.

e Fusion Layer: 'Eva uroloyiotikd pépog ano MLP yia v dnpioupyia kowvou 6ia-

VUOopPatog XapaKINploTIKOV Yld £1KOVd, ATIAvVinor).

e Generator LSTM Network: 'Eva generator LSTM rou xpnoworotei to Kowo diavu-

opd XAPAKINPIOTIKOV yid va TPoBALWPEL TV TApAPPACHEVT] EPWTNOT).

IMa 1o VQA task xpnowyonowjoape to poviédo Bottom Up Top Down Attention mou

avapepbnke napandave.
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0.7.2 MebBoboloyia

0.7.2 MeOobolAoyia

H peBodoAoyia autrg ng épeuvag neplAapBavel apKeTA ONPAVIIKA OToXela :

1. IIpooeyyioelg Exrnaidevong: To poviedo VQG eknadeutnke Xpnotponooviag 81-
adopeg pebodoug: pe ) Xprjon daokdldou (teacher forcing), xopig ) xprjon daokadou
(no-teacher forcing) kat péow didaxktikrg e&€A€ng (curriculum learning). Xwpig v
Xpron dackdAou, @AvnKe 0Tt Ta POVIEAA HUCKOAEUOVIAV va KATAOKEUACOUV ONacto-

AOy1KA 1] Ypappatikd opbEg epwIoeg -

2. Avdduon Emuntdoswv otoug Tunoug Epwtioswv: 'Erncita anod eknaideuor tou
UpDn povtédou pe ta napayopeva dedopéva mapatnprjoapie onpaviikiy peioon mg
arodotikotntag Tou poviedou. Ilpaypatonow)dnke pia €Ktevhg avdduorn yla v a-
SloAoynon v ermdpdoswv tou VQG oe 51apopoug TUIOUS EPWINOE®V PECA OTO OLT
debouévav. Autr) n e§€taon armorAAuye 0Tl CUYKEKPIEVA £16n epatjoe®v Snutoupyo-

voav Vv Mo anodoor) auvty).

3. E¢pappoyn tng MecB6Gou Beam Search: [a va auinBel nepattépe n nowkidia tov
Mapayopevev epRTtHoenv Kabog ta poviéda pag aduvatovoav va rmapagouy mapanave
amnod éva véo Betypa, vdormow|Onke 1 péBodog beam search n omoia mapéyetl v du-
vatoIa mapaynyng neplocotepeVv d1apopetikeov detypdtav. Ilapotu katadpepape va
napAagoupe PeyaAutepn MOKIAIG EPATNOEDV ATIAVIIOEWY, 081YT0E TEAMKGOG OE XEPOTE-
pa teAka anoteAéopata, mbavev A0y g MAPAY®YNG val Pev S1apopeTikOdV adAd

XEPOTEPG TOOTNTAG SEYPATOV.

Kdanota napadeiypa v mapayeyng EpWIroe®v PIopouV va @avouy MapaKkAte oto Tynpad:

0.7.3 AmnotsAéopata

Model All Yes/No | Num | Other

UpDn (Baseline) 41.53 43.45 13.64 | 48.18

Updn + base_VQG (all questions) | 38.7 42.34 9.4 43.21
UpDn + base_VQG 41.21 | 42.73 14.08 | 48.01

UpDn + 3-beam 40.64 | 42.60 13.32 | 47.12

0.7.4 ZIX0Alwaopog

Ta aroteAdéopata Urmodeikvyouy 0Tl I avadlatuneor epRTHoeev PEo® g VQG bev BeA-
TIOVEL ONIAVIIKA, KAl PItopel akopn Kat va erudevwoet, v arodoon g VQA os ouvOrnkeg
OOD. H epyaoia kataAryet oto cupmnépaopa ot yla kadutepa anotedéopata OOD, mpénet va
£PapPooTeEl P oTPATNYIKY TTOU OSnpioupyel véa (YN €PMOTIOEDV-ATIAVIIOE®V, OTIOG OTNV
niepintwon tou [10], kabog n Snpoupyia epwtoewv pe v id1a avapevopevn andavinon

ieplopidel onpavika i) dadikaoia yevvniplag.
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Ground-Truth question: is
this a day or a night scene
Generated question: is it day
time or night time

Ground-Truth question: what
is the man catching
Generated question: what is
the boy throwing

Ground-Truth question: What
is the shape around the dog
Generated question: what is
on the dogs neck

Answer: Heart

Answer: Day Answer : Baseball

Zxnpa 4: Xe auto 1o oxnua, Umopouue va SOUUE OTL TO TP®TO TapddElyua elvat pia tapappa-
ougvn €K600N NG APXIKNG E0WTNONG. ETo OeUTEPO Tapadeyua yia v anavinon ‘undia’, n
SNUIOUPYNUEUN £0WTNON avagEpeTal 0To ayopl avti yla Tov dvipa (1o omolo givat emduunTo),
Kat onv teflevtaia poTnon, 10 uovtéio Aavdaousva avagepetatl oto KoAE Tov okuAoU avtl
yla 1o ox£610 TNV AULO.

0.8 IIpoteivopevn M£006og: Tevikeuon PEC® AMORPUWYNG O-

MTTIKOV AVILKELPHEVQV.

'Enettal anod v POooEKTIKY enavulornoinon pebodav yla language debiasing kat ou-
YKEKPIPEVROV PeOOOmV TTOU apopouv v nmapayeyr rnapaddaypévev dsiypdtov augmented
samples, anopacicapie va ermkevipaBoulie os pia 1EB060 rapaAAdyrg E1KOVAV PIE OKOITO TNV
XPHon SETKOV KAl APVITIKGOV SEYHATOV PEOR® S1APOopeV TEXVIKOV Yia arokpuyn masking

onpavukev aviikepévav. H 11€0o0dog autr) vdoro|Onke oto dataset IXA OOA.

0.8.1 ZuUvoldo Acdopivav

[Ma 1o ouvoldo Sedopévev pag, xpnoporooupe 1o GQA-OOD, to oroio Siapopdavetat
®G Ha gpyaoia ta§ivopnong povrg etkétag VQA. TeptlapBavet erurAéov enednyrjoeig ou
rePAapBAVOUV EPWTNOELS WG ONIACI0AOYIKA IIPOYPAPHATA TTOU avapEPOVIAL O aVIKEipeva

rou rieptAapBavovtat otig EMeSnyroelg 10U yPAPoU OKNVIS TG EKOVAG.

0.8.2 Kataoreun 9€TIROV KAl APV TIKAOV napadetypdatov

Eprnveuopévot ano v e§étaon v exvikav [9, 15], Snuioupyoupe mapodpola Kat av-
patka dsiypata yla kabe eikova BACEL ONIAVIIKOV TIEPLOXMV ELKOVOV.

EdQv £€xoupe 10XUpOTEPEG ONUEIMOELS PE KATOW HOPPL) OIMUKIG €§HYNONG, HIIOPOUNE
va evioriooupe dpeoa Ti§ onpaviikeg neploxég. To oet Sedopévav GQA mapéxet ta Brjpata

oUAAoy1lop0U (ipoypappiata) yia KAOs ep@Ttna KAl Td ETUAEYHEVA AVIIKEIPEVA PETA Ao KAOe
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0.8.3 Zuvaptroeig AntwAsiag yia Regularization

Brina. Xpnoworoovpe autd ta Brjpata cudAoylopou yia va e§ayoupe 0Aa ta OXETKA KAt
I OXETIKA AvilKeipeva yid 10 epOTIa. T OUVEXELA, PITOPOUHE VA XPNOOIIO|00UE £va
PNXaviopo ermkdaAuyng miatoiov avadopdg yia va taiptdfoupe ta avikeipeva tou Faster-
RCNN pe ta mpaypatkd. IToAdég peBododoyieg oto oet Sedopévav GQA Xpno1pornolovv
tov deiktn IoU mapopoing wg ermrmAéov mAnpogopia yia tig aviiotorxeg pebodoloyieg toug
[16, 7]. Qotdoo, o deiking IoU Sev eival amtapaitnta o KAtdAAnAog Pnxaviopog emMKAAUYnNg
yia ) pebodo pag. Ze avtibeon pe 1o [16], dev mpoomaBoupe va ektedécoupe pua 1-1
QAVTI0TOIX101] PETASU MPAYHATIKGV KAl E§ayOIEVOV avTIKEINEVOY, adAd 9¢doupe va eruAé§oupe
0Ad Ta aviikeipeva pe ToUAdX1otov KATo1o Babud ermkaAuyng pe ta MPaypatikd Kat va td

KATNYOP10IIo|00U e @G onpaviikd. H petpikr) rmou xpnowpornowjoape eivat :

ObjectArea N ExtractedObjectArea
ObjectArea

Overlap =

'Onwg paiveral oty €1KOva 5 , ArMOKPUITIOUHE Td ONIAVIIKA AVIIKEieva dnpioupyaviag Eva
apvnTIKoO Selypa e1KOVAG-arAvinong Katl aviifeta arnokpUIioviag td 11 ONPavilkd aviiKe-

ipeva dnuioupyoupe éva Setiko Setypa.

xnua 5: Is the hair brown and thin?: yes

How long is the child’s hair?: short

question specific
annotation
preprocessing

Overlap
blue chair  plaid shirt Mechanism

0.8.3 Zuvaptnoelg AnwAcilag yia Regularization

Xpnoworooviag S1aPopeg oUVAPTHOEIS ATIOALIAG, EEEPEUVOULIE TEOOEPIS KPIOIEG TTTU-
X€S NG YEVIKEUONG OTNV AIIAVIN O] OITIKOV £patHosnv (VQA).

Autég o1 rtuxég nepldapBavouv v afloAoynorn g avibeukotag 1oV apvNTIKGOV Ia-
paderypdtev, ) duvatotnta xprong Jetkav Selypdiev yia evioxuor), IV yKUpotnid ToV
UNOO£0E®V TTOU UTIOKPUIITOVTIAL Oty anwieia tp1adag, Kat ) pubption ng duvatottag tov

xaiov pnyxaviopov pdokag. Ag eSetdooupe KaOe Uy avalutika :
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Counterfactual Losses

XpnowyornoloUpe ta egayopeva apvnukda deiypata og aviibetukd (counterfactual) oe tpetg
O1aKPITEG TIEPUTIROOEIG.

Self-Supervised Loss H napakdte ouvaptnon Kootoug urodndovetl ot yia éva avide-
KO {euydpt Sa mpenetl va va mpoBAErnel Pndevikr] KATavopr] yid 10 0UVOAO @V ATIAVINOERV

Katl ¥pnotporotribnke oto SSL povtédo [8].
L &
Lya = N Z P(Ai|Q, Iio)
i=1

émou Q; eivat 1) epatnon, lip n avubetky andvinon kat P(A;) n ¢£060¢ T0U S1KTUOU yid TV
aravinon A; .

Gradient Supervision H anowAsia Enomteiag KAiong (GS), n oroia xpnowomnoteitatl o
ouvbuaopod pe detypata avubetikov napadslypdiov, eival pa pabnpatkr pébodog mou
Xpnotpornotet aviifetikd mapadeiypata yia va odnynoet 1) kKAion tou d1ktuvou os Kabe onpeio

e100dou subuypappidetat pe éva ground-truth Sidvuopa xkiiong.

gi " i

- > 0.2)
llgillllGll

Las(gi. G0 =1
OTIoU g €ival n avarnapdotaon ToU avilBeTkoU napadelylatog Kat g ivat 1 avarapaotaon)
TOU MPAyPATIKOU.

TéAog, ounv avapopd [9], xpnopomnolovv supervised loss yia ta counterfactual detypa-
ta. Ta counterfactual labels eivat to avtiotpodo 1wV KaAUTep®V k PpoBALPe®V TOU PNOVIEAOU
ano v enegepyaoia tou Yetkov deiyparog. o rmAaioto tou G@QA, orou 1 taivopnorn roA-
AarmAov euketov dev gival epappoon,to loss function mou avagépestatl otig rponyoupeveg
evotnteg ardoroteitat. a éva {euyog VQA, avabétoupe a = 1 eav n owotr) anavinon 6ev
npoBAfTieETal 0OTd. AVUoTpOd®g, £Av 1 anavinon npoBAénetal owotd, avadstoupe a = 0.
AUTO aVTUITPOOWIIEVEL [11d TIPOCEYYI0T] AvIioTpogng emonpavong, orou a = 0 SnAdvel

owoteg TipoBAEYetg kat a = 1 dnAevel AavBaopéveg ipoBAgyetg,

Octika Asiypata ©¢ TeXVIKN augmentation

[Tportovoupe 10 poviedo pe ta detkd mapadeiypata, PETaTperoviag v ermBAEOpEevVn
1€6odo supervised BCE loss o¢ pia texvikr) evioxuong.
Triplet Loss

To Triplet loss mou xpnowonoijoajie, anotedel pa mo otabepr] avadlapopPpmor Tou
rAaowkou triplet loss [17] xpnowornowviag tov pabnpatkod PetaoXnpatiopo tou cosine

similarity otov nmoAudidotato xwpo rpwv tov classifier kat datunidvetal og €€ng:

es(ap)
Le =Epnal|—log (m)

H 16¢a tou Baocidetat oty umobeon ot ta Setika Setypata Sa émpene va Bpiokoviat mo

m Awtflopatkn Epyaoia



0.8.4 TIlepdpata

KOVTA 01OV MOAUS1A0TATO XOPO XAPAKINPIOTIK®OV OTd MpAyHatikd deiypata os oxéon pe ta

apvnuka delypata Kat anotunevetatl ypadika oty ekova 6.

Zxnua 6: Is the hair brown and thin?: yes

Is the hair brown Glove
and thin? T

————————————— > Triplet loss

Training Objective
Ia o6Aeg g pebodoug pag, n ocuvaptnon anoielag diapopPovetatl og 1o ddpoiopa g

anwAeiag BCE pe myv emBapupévn pag anoAeia KavoviKoIoinong amno pia mapapeipo fAreg:
L= qua + ﬂreg X Lreg

0.8.4 Ilsipapata

Ta niepdpata pag Stapbpmbnkav wg eEng:

Avtifstiky) Mabnon H avubsukr pabnon ocuprnepiddaubave melpdpata pe avurapa-
detypatika delypata kat ta aviiotoyxa counterfactual losses, petaBdAAdoviag v urepna-
pduetpo Bapoug (A). YwnAdtepeg tipég tou A obrnynoav oe xapnAdtepn anddoorn, v
XApnAotepeg TipEg £6e1§av mapopola arodoor] Pe 10 PAciKO POVIEAO.

IIewpapata Triplet Loss: I[Tapatnprjoapie pia ocapr tdon OXEUKA He ) pubpion ng
UIEPIIAPAPETPOU A, 1] OItola €AEYXEL T OUVEIOPOPA T1G AMIMAEIAG TPUTAETAG OT OUVOAIKN
ouvaptnon anwielag. Xapndotepeg tipég tou A (0.1, 0.2) £6edav adloonueinteg Bedtimoeig
0€ OAeg TIG PETPTOELG.

IIepapata pe emiBAenépevn padnong XPnoPoONolOVIAg TEXVIKEG enavinong: Zc
ouvbuaopo pe ta apyxika dedopéva, xpnoornolovpe éva BCE supervised loss yia ta detika
napadetypata. H pébodog autr) propel va 9swpnBel pébodog ermauinong PeAtiwvoviag ta
ATIOTEAE0IATA OE OAEG TIG PETPIKEG.

IIepapata tuxaiag paocrag: a va doxkipdooupe v eniboon tou custom masking

pag anogaocioape va XP1ol0IO|00UHE TUXAIEG PIAOKEG OTAd AVIIKEIPEVA g €1KOVAG HE

MinAouatxny Epyaoia
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Baon kanowa mbavonta. H xprjon tuxaiov pdaokov toco yua augmentation kat triplet loss
0dnynoe oe kadutepa arnotedéopata. [lepapati{dpevol e 10 ITOCOOTO TOV TUXAIOV LACKOV
napatnproape ot 1a KaAutepa arnotedéopata eixape yla mbavotnta 0.82 nou eivat avtiotot-
XI] L€ TNV P€00 I0C00TO ONHAVIIKOV AVIIKEIHEVOV O OXEOT) € Td CUVOAIKA AVUIKEIPEVA OTO
dataoet pag.

TeAka Movtélia

Ta teAdikd poviédda, e ta KaAUtepa AnoteAéopatd, Imou IIPOEKUYAV Ao v repapata-

TIKY) peAétn pag, Siagpaivovial otov napakdte mivaka Kat eiva:

1. Xpnon BCE loss pe augmented Setikd detypata yia tuxaieg paokeg pe packapiopatog
mbavotnta 0.82.

2. Xpnon BCE loss pe augmented Setika derypata pe tuxaieg paokeg kat xpnorn triplet

loss pe custom pAokeg.

3. Xpnon BCE loss pe augmented 9stuika derypata pie QUOTop paokeg Kat xpron triplet

loss pe custom pdokeg.

GQA OOD
Loss Model Acc tail Acc head Acc all Delta
BCE UpDn | 42.545.,6 49.668.,5 46.96.15 16.928.35
BCE+Augm Rand UpDn | 44.803.97 52.352.0g 49.482.04 16.898.33
BCE+ Augm Rand +Triplet with Heur. | UpDn 45.2, 5 52.284.05 49.704.05 15.369.4¢
BCE+ Augm + Triplet with Heur. UpDn | 44.73.047 52.26.065 49.41.0.42 14.4.5 o5

Zto Zxnpa 7 priopoupe va Sovpe karola napadetypata tou povieAou 3 o€ oxEon HE TO
baseline kat v 1KAvOTNTA TOU va EMMIKEVIPWVEL KAAUTEPA OE ONHAVIIKOTEPES TIEPLOXES TNG

E1KOVAG.

0.9 ZTupnepaopata

Emokonnon BiBAloypadiag kat Avanapaywyrg YAonoupévev Me0odwv: H £peu-
VA pag ToViZeL TV KPLoTOTNTd TG IIPOCEKTIKIG AVIHETIMITONG TOV YAQOOIK®V TIPOKATAALYE-
®V OTa POVIEAA OITTIKAG ATIAVINONG £paToenV ( VQA). Auto 1o Sépa eivatl idlaitepa £viovo
ota povieda cuvolou 1ou Baocilovial 6e aviloTPodpr] AMTOTEAECHAT®OV HIE POVIEAA TIPOKATEIAT -
Héva ot yAwooa, ta oroia Seixvouv peiwpévn amotedeopatikotta o oevapia GQA-OOD
KAt €ival IEPLOPIoPEVA OF EUPUTEPES EPAPHOVES.

Znpavuko, €mong, £ivat va punv yvepidoups v katavopn tou test set oe ox€on pe 1o
train set e§apxng, KaBMOG TEXVIKEG EEAPTOHEVEG OE QUTY| TV CUYKEKPIIEVE adAayr) evdexetal
va 0dnyroet oe MAaopatike auinon ermdooe®v 1ou dev yevikeUel o dAAa ouvolda Sedopévav.

H emokoénnor) pag avayvepidet 1o Suvapiko tov pebodav Paoifopevev o data augmen-
tation oto VQA. Qot600, 010G TeEKpnplovetal ano v BiBAloypagia, onpaviikeg Bedtiwoelg
arnodoong replopidovial oe CUYKEKPIPEVEG OTPATNYIKEG augnong Kat dev eival yevikd epap-

pooeg oe 0Aeg TG epyaoieg VQA. Tédog, ot 1€Bodot yia answer reranking €xouv riepibopla

m Awtflopatkn Epyaoia




0.9 Zupnepdopata

Question: On which side of the picture is the white car? - Answer: left

100 4 100 4

200

Question: What is on the soft bed? - Answer: pillow

pillow
0.034000

100 100

200 0.081000 200 0.135000

)0 0.079000 ° 0.425000

400

Zxnpa 7: O xaping mpoooxng tou teAdtkou povtéflou 3 Seiyvet OTL anavid 0mOota ylati ETKE-
VPOVl KAAUTEPA 0 ONUAVTIKOTEPES TIEPLOXES TNG EIKOVAS.

BeAtinong anoteAeopdtov aldd xpelddetal avanpooapiioyr] Toug Wote va KATanoAepnOet to
peyddo Bapog XpOoViKIG Katl Tormkng roAurnokotntag (hardware requirements and training
time) mou erPpEépouv ota povigAa.

Mapayey Onukov Epotioenv: Ta rielpdpatd p1ag oty mapayeyr) OrikoV EpRTHoe-
@v detyvouv Ot 1 rpoorntabeia yla datapayn g epwINong X®PIS aAAayrn eV aravirosmv
0dnynoe oe unoBéAtiotn anodoor). Enopévag, Sa mpénet va vAonoinbouv pebododoyieg rou
Snpoupyouv véa mapopola VYN £PATNONG-ATIAVINONG Ao Ta apXKA pag deltypata oote
VA EKPETTIAAEUTOUNE TIANP®OG TNV EMITALOV MTANPOPOPia TIOU EVOEXOEVOV VA TIPOCEPEPE Eva
{eUyog £1KOVAG-£PWTNOTG-ATTAVINONG.

Zupnepdopata yla Kupia pe@odoldoyia: H exktetapévn pag melpapiatiky) epyaoia otov
TOPEA TV OITIIKMV EPATICEDV KAl AITAVINOE®V £XEL 0ONYIOEL O APKETA ONPAVIIKA EUPTHA-
ta. ITio ouykekpipéva, ta mepapata Seixvouv 0Tl tTa apvnTika Selypata mou Xprnotonot-

HOnkav ot pedéw pag Sev propouv va Jepnbouv eviedmg avilfetikd, kabng ot pEBodot

AinAouatxny Epyaoia m
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Baolopéveg oe ouvaptnoelg KOoToug avilfetkov rapadetypatev dev odnyouv oe Bedtidoelg
artedeopdtov. Auto odeidetal, 100G, 0T0 Yeyovog OTL aKOUn Kal e paokapiopéva ta onpa-
VUIKA AVIIKEPEVA 81atnpouV onuavilkeg mAnpopopieg e1KOvag rmou e§ayovial PEow® HOVIEA®Y
CNN. Autr] n napampnon uvnodnAovel pia rmbavr) EPIOPIOTIKY §1aoTaon oty MPOooEyyi-
on pag yua ) dnpoupyila apvnukov detypdtov, n onoia propet va mpoxkalel urtepBoAikr)
dlappor MAnpopopiwv.

O1 custom kat tuxaieg TeEXVIKEG paokapiopatog odrynoav oe BeATioon AroTteAeoPATOV.
Ag1toupyoUVv ®G TEXVIKEG KAVOVIKOIIOINONG, EVIOXUOVIAG TV avOEKTIKOTTA KAl TNV arodoon
tou povtedou. H evioyupévn anodleia BCE (augmentation loss), daitepa otav cuvbudde-
Tal pe tuxaio paokapiopa, Asttoupyel mapopola pe pa exkAerrtuopévn pébodo dropout kat
augAveEL ONUAVTIKA TI YEVIKEUTIKEG Suvatotnieg tou poviedou. Eriong, n custom texvi-
K1l pHaokapiopatog @aivetal va Bondd 1o POVIEAO va €0TIACEL TIEPIOCOTEPO OF ONILAVIIKEG
TIEPLOXES TG £1KOVAG, PeATidvoviag €101 TIG 1KAVOTNTEG TIPOCOXIG TOU.

ErurmAéov, n pebodoAoyia triplet loss pag BeAtiovel ta oUVOAKA aroteAéopata Kat UIto-
pet va ouvduaotel anoteAeopatika P v IPOCEYY1on) evioxuong. Av Kal 0§ povadikn pebo-
8og kavovikoroinong, mapouctddel xepotepa anotedéopata amno tg pEbodoug Baoifopeveg
o€ gvioxuor), anodsikvuet ) PeydAn BeAtioon otnv tipn Delta, 1) omoia eivat kpiown yua v
eriteudn napopolag andédoong oe oevdpla ektog katavopng (OOD) kat eviog katavour|g (ID).
Qot600, 1a MEPAPATd Pag PE AMMALIEG AVIIPATIKAOV MIEPIOTACERDV UTTIOONA®VOUV 0Tl PIope-
1 va pnv a§ornolovpe rmAnpawg to triplet loss Adyw tng rmbavotntag Xpriong uro-BEAtiotev

ApVNTIKOV Iapadelypnatmv.

0.10 MeAAOVTIREG MPOEKTACELS

Zto péAAov, o1 eMeKTAOELS TNG £PpYAOIAS PAg PITOPOUV va repltdapBavouy:

e BeAtidoelg otn Anpoupyia Apvnurev Astypatev: H exknaidevon pe avubeuxeg
peboboug yla ta apvnuika detypata 6ev BeAdtimos 1a ouvodika anotedéopata, deixvo-
viag ot n anwlela tputAétag (triplet loss) 6ev xpnowonoinOnke minpwg. Ot mepa-
patopoi pag Sa propoucav va repAdpBAvouV o AETTTOPEPEIS APVITIKEG EIKOVEG 1)
EPWINOEIS Yla Ta TPpUTAéta pag. ®a propovoape €riong, va MEPAPATIOTOUHE HE T
PAoKA ONPAvVIIK@V AEKTIK®OV OTOXEI®V EKTOG ATIO TI) PAOKA TOU MEPIEXOHEVOU NG £1-
KOVAG 1)/Kat T PAOKA AVUKEPEVOV TTOU £€Xouv Vv 161a KAAoN HE Ta onpavika pag
avukeipeva. T'a mapddeypa, oxetka pe 1o detypa VQA oto Zxnpa 6, oty mpwoin
EPII®Oon 9a PaoKaploTouV Katl Ol TEPIOXEG TV AVIIKEIEVAV TOV AYOoPloOV KAl Ot
Sevtepn mepimeon n paocka mg Agng "padiia” 9a dnpioupyouoe £va onuaciodoyika
Sragopetiko deiypa epwnong-eikovag (Q-I).

¢ Avuiratdotaon tou UpDn pe xKaAdvtepa poviéda: Oa prmopovoaps va melpapa-
TIoTOUPE P ta povieda Sipepoug mpoooxts [18], ta omoia ermtuyxavouv uywnAotepn
andédoorn ota neploodtepa kabrrovia xa [18, 19, 2] 11 mapdépola poviéda Baociopéva
oe petaoxnuartioteg [20, 21] epdoov Eernepdooupe 1o {pua g Siappong dedopévav
doxurg owv npoeknaidevor| toug. Ta povieda Sippepoug MPOooxHS €XOUV MAPOUst-

Aaoel onNuavtikeg PeATIOOELS 08 CUYKPLON HE T0 apXko poviedo UpDn onwg @aivetat
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0.10 MeAAOVIIKEG TIPOEKTACELS

oto [21, 18, 20] kaBng 0 Pnxaviopog npocoxng toug NXM erutpenel mo AEMTONEPT)
aAAnAenibpaon AeKTIKGOV otolXeimv-aviikelpévou. Me tnv nipolnobeon ot Siabetoupe
EMAPKEIG UTIOAOY10TIKOUG TTIOPOUG, 1] oK1 1@V pebodoAoyiov pag oe dAda ayveotika
OITIIKO-YA®WOOIKA PoviEAa Sa fjtav pia eSalpetike] Hop@r emKUpKOong g architecture

agnostic pebodoloyiag pag yia yevikeuon oe VQA.

¢ Anpioupyia VE®V EVICXUREVAV (EUYOV EPAOTINONG-ANAVTIONG HECW CGNHACLOAO-
YKNG avadiatunwong: Epnveuopévol and tg pebodoug enavatadivopnong otnv
ermotnpoviky PiBAoypadia [11, 12] kat amd ta AroOyonieutika arotedéopatd pag
otn 1EBodo VQG, éva {elyog ep®TNong-andavinong 9a Prnopouce va MEPIEXEL EMITAEOV
ONPAcloAOYIKEG TTANPOYOPieg av avakaokeuaotel kKatdAAnAa. ITo ouykekpipéva, 1
msloynoia v Euywv epotnong-anavinong oto VQA neptdapbdavovial oe CUYKEKPL-
pévo tumno gpwtnong (r.x. “What type”) xat priopouv va artodopnbouv xpnotporot-
MVIAG TOV EUKETOIOWNTY) 9€ong spacy [22] kat va avadiatuni®Bbouv pe 1poro wote va 6n-
Hloupyoupe onpactodoyikd rapdpota addd Stapopetika JEUY £pWINONG-ATTAVINONS.
Autn n 6adikacia Sa propouoe va emiteuxOel t0co pe ) xprion LLMs onwg to GPT-3
000 Kal P éva ouotnpa Baciopévo oe Kavoveg TApOPol0 e T Srpioupyia apKeEIOv
ouvodwv dedopéveov VQA [19], énwg mapoucialetal oto Lxnpa 6.1. Me v evioxuor
10U ouvoAou Sedopévav pag e mapopola delypiata mou mapouotddouv ONIACI0AOYIKES
S1apopEg Katl H1aPopeTIKEG ATAVINOELS OTIRG Qaiveratl otnv eikova 8, Sa priopovocape
va evioXUOOUPE T AOYIKI KAl I ONPIACloAOY1KI] Katavonon T®v poviedov VQA pag
KA1 VA ArotpéPoule v e§APTNor] Toug ard YA®OOIKEG TIPOKATAANWELS 1} A0 AVOHOL-

OHOPPEG KATAVOHEG ATIAVINOEDV.

__________________________

Closest
Is thIS glrl.veatmg.a cake A:Yes Sl

NOUN in the
Glove
embedding
space

C F\?\;‘hahs._t_ﬁiéglrﬂpdom’? .A eatlng

___________________________

___________________

Zxnua 8: AuTopatomomuevn Tapay@yn VE®V ONUAacloAoyikd KOVTWwaU (EUyapiov EoOTNoNg
anavinong UECE oULTAVTIKNG amodOUNoNG.
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Chapter E

Introduction

1.1 Motivation

Visual Question Answering (VQA), i.e., answering natural language questions about
the content of an image, is one of the most important visual-linguistic tasks and an
important method towards the path to General Al. The potential applications of VQA are
vast in numerous fields, such as healthcare diagnostics, autonomous vehicle navigation,

robotics, educational tools, smart home devices, and interactive digital assistants.

These models need to accurately recognize objects, scenes, and activities in images
and understand the context and nuances of natural language queries. This dual un-
derstanding enables them to provide precise and relevant answers to various questions

about an image.

Developing robust VQA models involves challenges like understanding the interplay
between visual elements and textual descriptions, dealing with ambiguity in both visual
and textual inputs, and handling a wide variety of question types. As research in VQA
and related fields progresses, these models are expected to become more sophisticated
and capable. Although the state-of-the-art[23, 18, 21] can achieve good results on the
VQA benchmarks such as VQA v2[24], they tend to rely on spurious correlations and
consequently overperform in the I.D domain, but underperform in different testing condi-

tions.

The above are amplified by the language biases in various VQA datasets and the lack
of proper performance metrics. Because language is easier to process and is often more
important for QA tasks, most state-of-the-art VQA models tend to over-rely on those
language biases and exploit shortcuts to achieve better performance, resulting in poor
visual grounding. For example, in the question “What color is the banana?", most models
will answer “yellow" without attending to proper image regions because it is the most
common answer relative to that specific question in the training set. Consequently, the
model would theoretically achieve high accuracy, despite the poor visual understanding
of the model.

With this motivation, we decided to delve into the out-of-distribution datasets and
generalization methods utilized in VQA and propose our methodologies for improving

performance in out-of-distribution conditions.

AinAouatxny Epyaoia m



What color are the bananas? %ﬂ/

Figure 1.1: Common false answer of a VQA model hyper-dependent on language.

1.2 Contributions

This thesis constitutes a significant advancement in Visual Question Answering (VQA),
with a particular emphasis on improving model generalization. An extensive review
of existing approaches was conducted to understand the current landscape of VQA
methodologies better, concentrating on their generalization aspects. We successfully
re-implemented several pivotal methods reported in the literature, applying them to out-
of-distribution datasets such as VQACPv2 [25] and GQA OOD [2]. This process laid
the foundation for our experimental analysis, allowing for a detailed assessment of the
strengths and weaknesses of prevalent generalization techniques in VQA. Furthermore,
our research also involved exploring question generation for data augmentation in VQA,
utilizing image content and answer features.

The core contribution of this thesis is developing a novel image object masking method-
ology that diverges from traditional approaches. Our custom masking methods are based
on identifying important objects by leveraging annotations in our dataset and using mask-
ing to construct positive and negative Image-Question-Answer triplets. It leverages a triple
contrastive loss function responsible for pulling the multimodal representations of the real
samples closer to the positive samples and away from the negative ones. Additionally, we
leveraged an augmentation loss using only the positive samples. Lastly, we experimented
with a random masking approach that showcased significant performance improvements
paired with our initial methodology. Our proposed models combining the mentioned
methodologies lead to significant performance improvements under out-of-distribution
conditions in the GQA OOD.

1.3 Thesis outline

The thesis is structured into several sections, with Chapter 1 providing fundamental
knowledge about machine learning. This chapter serves as a basis for comprehending
more advanced concepts relevant to the thesis, including various aspects of neural net-
works, such as recurrent neural networks.

Chapter 3 is dedicated to visual question answering, starting with an introduction



to the field, the baseline system typically used in the literature, and our thesis. It also
includes a comprehensive literature review that covers most generalization methods and
the datasets commonly used in this domain.

Chapter 4 focuses on re-implementing specific methodologies presented in the liter-
ature, and we conduct initial experiments related to visual question generation as an
augmentation task, highlighting key findings and insights.

Chapter 5 presents our proposed methodology, which includes a custom visual object
masking methodology, augmentation strategies, and contrastive learning. We outline the
extensive experiments we conducted and discuss the results obtained, aiming to clearly
understand how our approach contributes to the field and the implications of our findings.

In Chapter 6, we summarize our work and our main findings, and we provide ideas

for future work.






Chapter E

Machine Learning

Machine learning (ML), a crucial subfield of Artificial Intelligence (Al), focuses on
developing algorithms capable of autonomously learning from data to accomplish spe-
cific tasks. Unlike traditional rule-based systems or classical algorithms explicitly pro-
grammed for specific problem-solving, machine learning models are designed model sta-
tistical correlations in the training data, in order to make predictions or decisions in new,
unseen situations.

The potency of machine learning lies in its applicability to complex problems where
crafting explicit, rule-based solutions is either highly challenging or virtually impossible.
Tasks such as sentiment analysis and autonomous driving serve as prime examples.
While humans can navigate these tasks relatively easily, developing high-performance
algorithms based solely on predefined rules proves more feasible.

Machine learning methods are applied to increasing domains and are prevalent in
tasks such as computer vision, computational biology, speech and music recognition, rec-
ommendation systems, and robotics. The availability of big data and the computational
power afforded by graphical processing units (GPUs) have paved the way for large-scale
machine learning models, often called deep learning. Models designed with the appropri-
ate architectures and trained on ample data have the potential to outperform traditional
rule-based systems and simpler machine learning algorithms in terms of generalizing to
new, unseen data.

In summary, machine learning offers a powerful alternative to traditional algorithms,
especially regarding complex tasks that cannot be solved computationally or analytically.
It leverages data to train models capable of generalization, thereby serving as an essen-
tial tool in various scientific and technological applications. Advances in computational
hardware and data availability have catalyzed the evolution of large-scale deep-learning

models, further enhancing the ability of machine learning to tackle intricate problems.

2.1 Supervision Types

Regarding the topic of learning, there exist different types, but our focus will be pri-

marily on Supervised, Unsupervised, Self-Supervised learning, and Contrastive Learning.

2.1.1 Supervised Learning

In supervised learning, the dataset comprises labeled examples (x1, Y1), ..., (Xn, Yn),

where x; represents the feature vector and y; is the corresponding label or supervisory
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signal. The objective is to learn a mapping function g : X — Y, where X and Y denote the
input and output spaces, respectively. It is assumed that an unknown function y = g(x)
maps input features x; to output labels y;. Machine learning models aim to approximate
g with g, leveraging the information available in the training data [26] .

Supervised learning primarily focuses on two types of tasks: classification and re-
gression. Classification involves categorizing input data into predefined classes. For
example, in image classification, a model might be trained to distinguish between pic-
tures of dogs and cats. Regression, conversely, seeks to model the relationship between
dependent and independent variables, producing a continuous output.

Figure 2.1 illustrates the difference between classification and regression within the
context of supervised learning.

On the left side, we see a classification task, where the data points are divided into two
classes, represented by X’s and ’O’s. The decision boundary, shown as a line, separates
the two classes. The goal of a classification model is to categorize new observations
correctly into one of these classes based on their features.

On the right side, the regression task is depicted, showing a scatter plot of data points.
The goal of regression is to fit a function (curve) that best represents the relationship
between the independent variables (on the horizontal axis) and the dependent variable (on
the vertical axis). The fitted curve is the model’s prediction for the dependent variable’s
value, given new input data. This curve can be used to predict numeric values for new,
unseen inputs, which is exemplified by the dotted line extending from a new input point

to the fitted curve, indicating the predicted output.
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Figure 2.1: Classification vs Regression. Adjusted from https://r-craft.org/the-roc-
curve-explained/
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2.1.2 Unsupervised Learning

Unsupervised learning algorithms can primarily be categorized into three essential
tasks: Clustering, Association, and Dimensionality Reduction, each serving a unique

function in the realm of data analysis and interpretation.

1. Clustering Algorithms, such as k-means, meticulously partition data into distinct
clusters based on the similarity of features as seen in 2.2, enabling insightful com-

prehension of inherent data patterns and structures [27].

2. Association Rule Learning is crucial for uncovering interesting relationships be-
tween variables. It is fundamental for deciphering underlying structures and re-
lations in datasets, notably in the field of word embeddings, where it elucidates

associations between words within a corpus.

3. Dimensionality Reduction Techniques, like Principal Component Analysis (PCA),
are paramount for transforming high-dimensional datasets into more tractable,
lower-dimensional forms, preserving the essential relationships and characteristics

inherent to the original data.
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Figure 2.2: K means clustering on unsupervised data.

There are also other types of unsupervised methods as we seen in GloVe (Global Vec-
tors for Word Representation)[28]. The learning algorithm leverages world co-occurency
probabilities, which can be seen as an association based method to discern relationships
between words in a corpus and could be seen as performing dimensionality reduction in

the Bag-of-Words embedding space.
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Figure 2.3: Dimensionality reduction of 3d data to 2d and 1d. Adjusted from https:
//teamraft.com/2019/01/04/dimensionality- reduction.html

2.1.3 Adversarial Learning

Often associated with Generative Adversarial Networks (GANs) [29], adversarial learn-
ing involves training two models simultaneously: a generator and a discriminator. The
generator creates data instances that are intended to be indistinguishable from real data,

while the discriminator tries to distinguish between real and generated data.

Adversarial methods can also be utilized as regularizers for a dsicriminator model
in cases where the adversary is the output of a biased model [30] or an adversarily

perturbated input [6, 31] as seen in 2.4.

input image classified as

adversarial noise

misclassified as

Figure 2.4: Missclassification in case of adversarial perturbated inputs.
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2.1.4 Self-Supervised Learning

Self-supervised learning (SSL) is a paradigm where the model is trained to predict part
of the input data from other parts of the same data. This approach effectively leverages the
data’s inherent structure to automatically generate supervisory signals. Consequently,
SSL can be seen as an intermediate form between supervised and unsupervised learning,

Different strategies are employed within SSL, include:

o Autoencoders: Autoencoders are neural networks designed to replicate their input
at the output layer. During this process, leverages an encoding and a decoding
model. The network compresses the data in a lower-dimensional latent space using
the encoder and decompresses the data using the decoder to re-obtain a recon-
struction of the original input. In Figure 2.5 we can observe the basic architecture.
Autoencoders are used primarily for feature extraction and dimensionality reduc-
tion but, in some instances, can also be utilized in [32] for generative models that
can create new data points or reconstruct partial or noisy inputs as seen in Figure
2.6.

o Self-supervised Pretraining: Models are pretrained using automatically generated
labels. For instance, in multimodal NLP-Vision transformers like LXMERT, pretrain-
ing involves matching pairs of image-text data collected from the web [21]. Another
potential self-supervised learning method is similar to autoencoding where certain

parts of the input signals are masked and we try to predict them [33].
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Figure 2.5: Visualization of an encoder, decoder architecture and the hidden embedding
space

2.1.5 Multitask Learning

Multitask learning involves leveraging different strategies of learning at the same time

( basically different loss functions). Multitask learning is either used for trying to solve



latent space

Figure 2.6: Reconstruction of a digit using Conditional Variational autoencoders.
Adjusted from hhttps://towardsdatascience.com/understanding-conditional-variational-
autoencoders-cd62b4f57bf8

different aspects of a similar problem at the same time as in [34] where we try to predict
the objects of the image the classes and their bounding boxes, or using extra supervisory

signals of similar task that introduces a bias that helps to produce better results.

2.1.6 Contrastive Learning

This approach differentiates between similar and dissimilar data points through a
specialized loss function [17]. We usually construct the dissimilar pairs (or triplets)
[17, 14] by leveraging specific data patterns or by constructing pseudo-labels [14]. In the
large multimodal pre trained transformer Clip [17], they train the model considering the
N image-text pairs of the batch of the model as positive pairs and then N - (N — 1) pairs as

negative pairs. We can visualize the positive and negative pairs in Figure 2.7

2.2 Understanding Generalization in Machine Learning

Generalization in machine learning refers to a model’s ability to effectively perform on
new, unseen inputs that are similar in distribution to the training data. It is a fundamen-
tal aspect in developing models that are not just tailored to their training dataset but are
also capable of accurately predicting on data they have not previously encountered.

In practice, the available data for a machine learning model is typically split into two
parts: a training set for building the model and a test set for evaluating its performance.
It is crucial to differentiate between training error and generalization error. The training
error is the error computed on the training dataset and is minimized through optimization
techniques. The generalization error, in contrast, represents the expected error if the
model were applied to an infinite number of unseen inputs. In practical terms, this is

approximated by the error on the test set.
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Figure 2.7: CLIP contrastive pretraining using batch matching of image pairs. The T;, I
pairs where i # j are considered negative pairs. Adjusted from https://www.pinecone.io/
learn/series/image-search/clip/

The ideal scenario is for a model to have both low training and generalization errors.
The errors in machine learning predictions consist of bias and variance components, and
minimizing the sum of these errors is key to effective model performance. However, there

is a trade-off between minimizing bias and variance.

The Bias-Variance Trade-Off

The following analysis is adjusted from https://brc-deep-analytics.medium.com/bias-
variance-tradeoff-855e5116a5e2. Consider a training dataset D = {(x,,yn),n = 1,...,N},
generated by a function f, such that y = f(x) + e, where ¢ is normally distributed noise
with zero mean: € ~ N(0, o). The learning process aims to find an approximating model

f(x) that best replicates f(x). The expected squared prediction error at a point x is given
by:
Err[x] = E[(f(x) ~ f(x))°] 2.1)

This error can be decomposed into three components:

Err[x] = (B[f(x)] - f(x))* + E[(f () — E[f(:)D*] + o2 2.2)
Err[x] = Bias? + Variance + Irreducible Error (2.3)

The above components can be analyzed as follows:

1. The bias is the difference between the average model prediction and the correct
value. A model with overly high bias pays very little attention to the training data

and oversimplifies the model. It always leads to high error on training and test data.

2. The variance term corresponds the variance of the approximating function f*over all
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the training data D. It represents the model sensitivity to the choice of the training

data D.

3. The irreducible error is produced by the noise in the data and cannot be reduced

regardless of the learning algorithm.

The goal for creating generalizable machine learning algorithms is to find the bias-

variance trade-off that performs optimally on unseen data.
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Figure 2.8: Bias-variance trade-off in respect to model complexity and total error. Adjusted
from https://brc-deep-analytics.medium.com/bias-variance-tradeoff-855e5116a5e2.

Overfitting vs Underfitting

The difference between the errors during training and generalization is called the
generalization gap. To minimize these errors, ML algorithms must avoid underfitting and
overfitting as shown in Figure 2.9. The occurrence of these phenomena depends on the
model’s complexity (Figure 2.8) and the amount of training data available.

Underfitting happens when the model cannot reduce the training error. In such
cases, the model fails to capture the relationship between the inputs and target outputs,
resulting in low variance - high bias errors.

On the other hand, overfitting occurs when the model can reduce the training error,
but the generalization gap is significant. This happens because the model is complex
enough to adapt to the noise in the training data, leading to high variance-low bias
errors. To combat overfitting, a common strategy is to hold back a subset of the training
examples as the validation set. This set can evaluate different models to determine the

appropriate model complexity.
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Underfitting X Balanced Overfitting

Figure 2.9: Underfitting vs Robust Fitting vs Overfitting. Adjusted from https://docs.aws.
amazon.com/machine- learning/latest/dg/model- fit-underfitting-vs-overfitting.html

2.3 Neural Networks

Neural networks are the foundational computational framework for many machine
learning algorithms, prominently within deep learning. The distinguishing attribute of
neural networks, as contrasted with conventional machine learning methodologies, is
their capability to theoretically approximate any continuous function with an arbitrary
degree of accuracy when at least one hidden layer is included, a proposition posited by
the Universal Approximation Theorem. These networks exhibit exceptional versatility
regarding the type of supervision they can receive; they can be architected to resolve any
task that can be rendered as a differentiable problem, necessitating the implementation
of backpropagation for optimizing the model parameters. We can observe the convergence
to our function approximation through gradient descent in Figure 2.10.

Given an adequate volume of data and meticulous architectural design, neural net-
works thus hold the theoretical potential to solve an extensive range of problems. This
characteristic enables them to address tasks across a diverse array of domains, pro-
viding solutions that can adapt and generalize effectively to different data distributions
and structures, thereby presenting unparalleled flexibility and adaptability in problem-

solving.

2.3.1 Architecture and Activation Functions.

A typical neural network is composed of several layers, each fulfilling unique functions:

e Input Layer: Serves as the gateway for raw data, typically represented as a one-
dimensional array. Each element in this array corresponds to a specific feature in
the dataset.

e Hidden Layers: These crucial intermediate layers perform most computational pro-
cessing and feature transformation. Their architecture and activation functions are

meticulously designed to meet the specific needs of the task.

e Output Layer: Delivers the network’s final output. Depending on the task, different

activation functions are employed, such as softmax for classification tasks. The
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starting point

Figure 2.10: Convergence of a loss function to a local optimum in a 3d hidden space.
Adjusted from https://medium.com/@tejovk311/optimization-challenges-in-deep-learning-
a4b085d529b6.

ability to select an appropriate output layer makes neural networks highly versatile

for various applications.

The hidden layers comprise linear layers and nonlinear activation functions. Linear layers
are vital computational units that correlate hidden dimensions and facilitate the creation
of complex functions. Without nonlinearity, models would be limited to mere linear
input representations. Incorporating nonlinear functions, such as sigmoid, allows for
more intricate representations. Furthermore, certain nonlinear functions possess unique
properties. For instance, ReLU introduces feature selection and sparsity into the network,
while tanh and sigmoid are crucial for gating mechanisms in Recurrent Neural Networks,
as discussed in the following section. A hidden layer can be formulated mathematically

as follows and can be visualized in Figure 2.11:
h=f(W-x+b) (2.4)
e h represents the output of the hidden layer.
e f is the activation function (like ReLU, Sigmoid, or Tanh).
e W is the weight matrix associated with the layer.

e X is the input vector to the hidden layer.

e b is the bias vector.
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Figure 2.11: An overview of a single neural network cell. Adjusted from https://
mriquestions.com/what-1is-a-neural-network.html

2.3.2 Learning through backpropagation

During forward propagation, the input data passes through the network until a pre-
diction is made. This prediction is then compared to the target to determine the loss
value. The next step, backward propagation, optimizes the network weights to minimize
this loss using gradient descent techniques. Backpropagation is a dynamic program-
ming algorithm that efficiently calculates the gradient of the cost function concerning
each weight in feedforward neural networks. This algorithm uses the chain rule, starting
from the end of the network, to avoid redundant computations by leveraging intermediate
computed terms. Instead of computing partial derivatives independently, backpropaga-
tion begins at the output layer and works backward to find the gradient concerning the
weighted input of each layer. These terms are calculated recursively and are used to
find the partial derivatives. For an input-output pair (x;, g(x;)) with a cost function of
C (y;, g (x;)) where y; is the ground-truth label, we want to compute the partial derivatives
ac/ aw}k concerning the weights. A detailed algorithm explanation can be found in [29].
We can visualize the propagation of derivatives through the network during training in
Figure 2.12.

Optimization Strategies

Stochastic Gradient Descent, or SGD for short, is an optimization algorithm that
minimizes the cost function in neural networks. This algorithm updates the network
weights in small batches of training data rather than all at once, making it more efficient
for large datasets. Each batch is chosen randomly, which makes it stochastic.

Adam, on the other hand, is a more advanced optimization algorithm that combines
the benefits of additional extensions of stochastic gradient descent, like Adagrad and
RMSProp [35], to provide a more efficient and effective way to update the weights of a
neural network.

Adam optimizer uses adaptive learning rates, which means it adjusts the learning rate

for each weight based on the gradients’ history. This helps to address the issue of sparse
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Figure 2.12: The partial derivatives are calculated recursively through the network.

gradients, which can be problematic for other optimization algorithms.
In summary, while SGD and Adam are optimization algorithms used for minimizing
the cost function in neural networks, Adam is more advanced and adept at addressing

sparse gradients, making it a more efficient and effective option for convergence.

Evaluation and High Parameter Tuning.

High parameter tuning, often referred to as hyperparameter tuning, involves adjusting
various neural network parameters that are not directly learned from the data. These
include learning rate, number of layers, number of neurons in each layer, and choice
of activation functions. The objective is to find the optimal set of hyperparameters that
yield the best performance on the validation set. Techniques such as grid search, random
search, and Bayesian optimization are commonly employed.

By meticulously tuning these parameters and rigorously evaluating the model across
these three data segments, we can significantly enhance its effectiveness and ensure its

robustness in practical applications.

2.4 Regularization Methods

Previously, we discussed underfitting and overfitting. Neural networks, intense neural
networks, rarely underfit because they often have a lot of parameters. However, overfit-
ting is common. Techniques that help ML models avoid overfitting and generalize better
are called regularization techniques. This section will describe the most widely used

regularization techniques in (deep) neural networks.

e L1 Regularization. L1 regularization aims to penalize large values for the weights



w of the network by adding the term ||w|| to the loss function:

L' =L+ Alwl| (2.5)

o L2 Regularization or Weight Decay. L2 regularization works similarly to L1 regu-

larization but adds the term ||w]||? to the loss function:

L' =L+ Alw|? (2.6)

e Dropout. Dropout [36] chooses a random subset of neurons during each training
iteration and removes it. Because this random dropout of neurons is only performed
during training, this method can be seen as an efficient averaging (ensemble) of
different neural networks, greatly improving generalization by forcing the neurons

to learn representations independently of other neurons.

(a) Standard Neural Net (b) After applying dropout

Figure 2.13: A neural network with two hidden layers before (a) and after (b) applying
dropout. Adjusted from https://medium.com/analytics-vidhya/a-simple-introduction-to-
dropout-regularization-with-code-5279489ddale.

o Early Stopping. In early stopping, we keep one small part of the training set (de-
velopment or validation set), which is not fed to the model but is rather periodically
used to estimate the generalization ability of the model as it is being trained. When
we observe that the performance on the validation set starts getting worse, we stop

training, as this may be an indicator of overfitting.

e Data Augmentation Data augmentation artificially increases the training set by
creating modified copies of a dataset using existing data. It includes multiple differ-
ent methodologies based on our desired goal. Augmentation can be used to balance
imbalanced datasets [10], to protect models against specific attacks [5], and to aid
generalization using self-supervised training [15]. We often resort to small perturba-
tion changes to the dataset like noise injection (Figure 2.4), using generative models

like seen in (4.2) or even generating pseudo-labels for our new points (Figure 3.9 ).
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Figure 2.14: An example of early stopping. Training stops when the validation set error
starts increasing, which indicates overfitting.

2.5 Loss Functions

Loss functions play a crucial role in the training of neural networks, acting as guides
by quantifying the difference between the predicted outputs and the actual values. Among
the most prevalent loss functions are Mean Square Error (MSE), Cross-Entropy Loss, and
Binary Cross-Entropy Loss.

Mean Square Error (MSE) is often utilized in regression tasks. It is mathematically

expressed as:

1+« .
Loss = — Z(Yi —$)? 2.7)
n
i=1

where Y; represents the actual value, Y; is the predicted value, and n is the number of
observations. MSE penalizes larger errors more, hence ensuring sensitivity to outliers
and stability in gradient descent.

Cross-Entropy Loss measures the performance of a classification model outputting
probability values. It is defined as:

Loss = — Yilog(Yy) + (1 — Y;) log(1 — ¥7) (2.8)

n
i=1

where Y; is the true label, and Y; is the predicted probability.
Binary Cross-Entropy Loss is a variant of Cross-Entropy Loss used for binary clas-

sification tasks. It is given by:
Loss = —[Y log(Y) + (1 — Y)log(1 — ¥)] (2.9)

where Y is the binary true label, and Y is the predicted probability.

Beyond these supervised loss functions, unsupervised, self-supervised, or semi-supervised
losses can be employed. As mentioned in Section 1.5 L1 regularizationis an unsuper-
vised loss that introduces sparsity to the network.

In multitask learning, multiple losses can be combined for solving related tasks. De-

pending on the assigned weights, the model optimizes its performance by learning to



balance the trade-offs between different tasks. This approach is beneficial when tasks
share underlying similarities or when learning one task can provide useful insights for
another:

Loss = al.oss; + BLossy (2.10)

where a and f3 are weights assigned to the respective task losses, Loss; and Losss.
In the context of my thesis complementary non-supervised loss functions we utilized

for better regularization.

2.6 Recurrent Neural Networks

In this thesis, we utilize Recurrent Neural Networks (RNNs) for diverse applications.
This includes the use of encoding RNNs to transform sequences into single outputs, as
well as employing decoding RNNs that take specific inputs to create sequences. Therefore,

delving into RNNs is crucial for better understanding the models and experiments used.

2.6.1 Introduction to Recurrent Neural Architectures

Traditional neural architectures, primarily feedforward designs, offer limited capa-
bilities in handling variable-length sequences. In contrast, Recurrent Neural Networks
(RNNs) shine in this realm, adeptly handling non-fixed input lengths by maintaining an
internal memory-like representation, the hidden state. This state evolves with each input

in the sequence, ensuring a dynamic response irrespective of sequence length.

RECURRENT NEURAL NETWORKS
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Figure 2.15: Depiction of an RNN and its unfolded representation. Adjusted from: [37]

Wherein, o, and oy, represent activation functions, with the trainable parameters
denoted by Wy, Un, Wy, by, and by. One imperative feature is the consistent usage of
these parameters across all time steps, facilitating handling sequences of any length with
constant model size. The internal state, h;_;, effectively acts as a conduit for historical
information, encapsulating past sequence insights.

For my thesis, we will elaborate on LSTMs, a special type of RNN addressing the
and their respective. They were introduced to overcome the limitations of conventional

RNNs, especially the problem of vanishing and exploding gradients that arise through



their sequential structure. This problem significantly deteriorates the ability of RNNs to
learn and retain long-term dependencies in data sequences. However, LSTMs include
long-term and short-term memory mechanisms, enabling them to maintain information

over extended periods and process it more effectively.
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Figure 2.16: Schematic of an LSTM cell. Adjusted from: https://ai.stackexchange.com/
questions/14326/structure-discrepancy-of-an-1lstm.

The LSTM cell operates through Equations 2.11 to 2.16, wherein gate layers dictate

information flow using activation functions. Given:
e Input vector at time t: x;
e Hidden state from the previous time step: h;_;
e Cell state from the previous time step: C;_;

The LSTM updates are defined as:

it = o(Wyixy + Wyihe—q + b;) (2.11)
Ji = o(Wyrx¢ + Wiphe_1 + by) (2.12)
C; = tanh(Wyex; + Wichi—1 + be) (2.13)
Ci=fi-Ci1 + it - Cy (2.14)

0y = 0(Wyoxt + Wiohy—1 + by) (2.15)
hy = o - tanh(Cy) (2.16)

Where:

e 0(-) is the sigmoid activation function.


https://ai.stackexchange.com/questions/14326/structure-discrepancy-of-an-lstm
https://ai.stackexchange.com/questions/14326/structure-discrepancy-of-an-lstm

e W,, represents weight matrices, with x being the input type (x or h) and y being the

gate type (i, f, c, or o).
e b, is the bias for gate y.

Lastly, acknowledging tasks where both past and future data offer value, Bidirectional
RNNs (Bi-RNNs) emerged, as outlined by Schuster and Paliwal in 1997. They encap-
sulate comprehensive sequence knowledge by concurrently processing data in forward
and backward directions. This dual-direction processing gives the network historical
and upcoming context insights, enhancing its predictive accuracy, especially in sequence
prediction tasks like language modeling and speech recognition.

This bidirectional mechanism extends to more advanced recurrent neural network
architectures like Long Short-Term Memory (LSTMs) and Gated Recurrent Units (GRUs),
resulting in Bi-LSTMs and Bi-GRUs. These variants combine the benefits of LSTMs and
GRUs—such as handling long-term dependencies and avoiding vanishing gradient prob-

lems—with the bidirectional context awareness of Bi-RNNs.
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Figure 2.17: Schematic of a bidirectional LSTM.

2.6.2 RNNs in Decoding and Generation

Encoding and Decoding in RNNs Recurrent Neural Networks (RNNs) are exception-
ally versatile in handling sequence data, playing a dual role in encoding and decoding
processes. In encoding, RNNs convert a sequence of inputs into a singular, compact
representation, capturing the essence of the sequence in its internal state. This ability
is crucial in tasks where understanding the context of an entire sequence is necessary
before making a prediction or decision.

In contrast, during decoding, RNNs perform the inverse operation. Starting from an
initial state or input, they generate a sequence of outputs over time. This capability is
integral to generative modeling tasks, which aim to produce coherent and contextually
relevant data sequences. For example, in natural language processing, RNNs can generate
sentences or translate text by decoding a condensed representation into a sequence of
words.

The effectiveness of RNNs in these roles stems from their internal memory, which

captures information about previous elements in a sequence, allowing the network to



make informed predictions about future elements.

Teacher Forcing

Teacher forcing is a training strategy used to speed up the convergence and improve
the performance of RNNs, especially in sequence generation tasks. As shown in Figure
2.18, during training, the actual output from the previous time step is provided as input
to the next step rather than the predicted output from the model. This approach guides
the model with the correct sequence during the early training phases, helping it learn the
dependencies between sequence elements more effectively.

However, while teacher forcing can lead to faster convergence, it may also cause a
discrepancy between training and inference phases, known as exposure bias. During in-
ference, the model only has access to its predictions, not the ground truth. This difference
can lead to compounding errors in generated sequences. Strategies such as scheduled
sampling can mitigate this, gradually transitioning from teacher forcing to a more au-

tonomous generation as training progresses.

"Two" "birds" "flying" "Two" "birds" "running"
<Start> "Two" "birds" <Start> "Two" "people”

Without Teacher Forcing

Ground Truth

Figure 2.18: Teacher forcing usage on sentence generation. Adjusted from https:
//towardsdatascience.com/what-1is-teacher-forcing-3da6217fedlc

Beam Search in Sequence Generation

Beam search is a heuristic search algorithm widely used in sequence generation tasks
with RNNs. Unlike greedy search, which selects the most probable next element at each
step, beam search keeps track of a fixed number of the most promising sequences at each
time step. This number, known as the beam width, balances the breadth and depth of
the search.

In the greedy approach for generating a sequence X = (x;, X, ..., Xy), at each step ¢,

the selected token is:

X = arg max,, P(xxi, ..., x¢-1)

Where x; is the sequence’s token at position t. This process is repeated for each token

in the sequence until completion.
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In contrast, given a sequence X = (x1, X2, ..., Xy), the beam search algorithm selects

the top k candidates at each step based on the conditional probability:
P(x¢|x1, ..., x¢—1) = arg max, P(x|x1, ..., Xi-1)

Where:

e x; is the token at position t in the sequence.

e Jc is the beam width.

The algorithm continues this process at each step, keeping only the top k sequences
based on the cumulative probability until the end of the sequence is reached.

In the examples shown, we can see that in Figure 2.19, we can see that the greedy
algorithm generates the 1st sequence even though it has less total probability compared
to the 2nd.

Beam search helps generate more accurate and coherent sequences than greedy

search, as it explores a broader range of possibilities before making a decision. It also

produces a more diverse generation of samples.
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Figure 2.19: The top 3 generated sequences using k=3 beam search in a LLM.

2.7 Convolutional Neural Networks

Although the primary focus of this thesis is not Convolutional Neural Networks (CNNs),
it is important to briefly discuss their relevance as feature extractors, especially in com-
puter vision and object detection. CNNs have become the state-of-the-art solution for
various image processing tasks due to their topological inductive bias, resulting in an
innate capability to understand and automatically extract spatial hierarchies of features
from images. This thesis will specifically focus on the Faster RCNN model for feature

extraction.



2.7.1 General CNN Overview

A CNN comprises layers designed to automatically and adaptively learn spatial hier-

archies from images, as seen in Figure 2.21. Key components include:

e Convolutional Layer: Utilizes filters to scan the input data (like images) to learn

features, such as edges, textures, and other patterns.

e Pooling Layer: Helps reduce the spatial dimensions, retain only significant informa-

tion, and reduce computational overhead and overfitting.

e Fully-Connected Layer: This is where neurons from the previous layers connect to

decide on the image’s content based on the learned features.

The strength of CNNs lies in their ability to learn filters that detect patterns, making
manual feature extraction obsolete. In Figure 2.20, we can see that the features of
the shallow layers detect lower-level features while the deepest layers detect more fine-
grained ones. The feature extraction capabilities of the CNNs have been widely used
in numerous applications, from image and video recognition to some aspects of natural

language processing. They are of paramount importance for our thesis.

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier

Figure 2.20: : The features extracted from the first, second, and third CNN layers are used
in image classification. https://medium.com/analytics-vidhya/the-world-through-the-eyes-
of-cnn-5a52c034dbeb

2.7.2 CNNs for Object Detection

CNNs have shown remarkable performance in tasks like image classification and
recognition. In object detection, CNNs are crucial in identifying and categorizing ob-
jects within an image. Starting from basic architectures, the field has evolved toward

more sophisticated and practical models. This progression includes notable models like
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Figure 2.21: Schematic of a 4-layer CNN model followed by a fully connected layer for digit
classification. Adapted from: Source: https://saturncloud.io/blog/a- comprehensive-guide-
to-convolutional-neural-networks-the-eli5-way/

R-CNN [34], Fast R-CNN[38], and ultimately, the Faster R-CNN [39], each improving upon
the last in terms of speed and accuracy. Faster-RCNN
The Faster R-CNN model aligns remarkably well with the key objectives outlined in

our thesis. It effectively addresses the following essential conditions:

1. Object Segmentation: Faster R-CNN adeptly segments the image into distinct

objects, ensuring focused analysis on elements of interest.

2. Feature Extraction for Each Object: It employs advanced feature extraction tech-

niques for each identified object, harnessing the power of CNNs.

3. Object Localization: The model accurately predicts the spatial location of each

object within the image, represented by precise bounding boxes.

4. Object Classification: Beyond localization, Faster R-CNN efficiently classifies the

segmented objects into their respective categories.

5. Prediction of Relationships and Attributes: Modifications to the Faster R-CNN
framework enable it to predict the objects and their attributes and interrelation-

ships, as discussed in [31].

Faster-RCNN overview

The Faster R-CNN architecture [39] shown in Figure 2.22 is as follows :

1. Backbone Network: Utilizes a Convolutional Neural Network, often a pre-trained

model such as VGGNet, to process the input image.
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Figure 2.22: Faster RCNN architecture. Adapted from https://medium.com/

@2003priyanshusingh/evolution-of-object-detection-rcnn-fast-rcnn-and- faster-rcnn-
90cc872e6dae.

2. Region Proposal Network (RPN): This network component generates region pro-

posals based on the feature maps obtained from the backbone network.

3. Region of Interest (Rol) Pooling: This step aligns the features extracted by the

backbone network with the region proposals, akin to the process in Fast R-CNN.

4. Classification and Regression: The final stages involve classifying objects within
the proposed regions and fine-tuning the bounding boxes, like the processes in Fast
R-CNN.

2.8 Attention Mechanisms

The utilization of attention mechanisms has been transformative in deep learning,
especially since its inception in Neural Machine Translation (NMT). This paradigm allows
a sequence-based model to adaptively highlight the most critical input data segments,
resulting in better prediction models and a higher explainability, as seen in Figure 2.23.
Attention mechanisms are beneficial when combining different inputs split into explain-
able parts, as seen in [20]. The widespread adoption of attention across various methods,
such as recurrent networks for language processing tasks in [40], has led to the innova-
tion of the Transformer architecture [41], which is predicated entirely on the principles of
self-attention and cross-attention.

Attention is essentially a method of dynamically weighting the significance of input
components of a sequence, for example, regions in an image or words in a textual se-

quence. The attention process can be a Nx1 (one-to-many), NxM (cross-attention), or


https://medium.com/@2003priyanshusingh/evolution-of-object-detection-rcnn-fast-rcnn-and-faster-rcnn-90cc872e6dae
https://medium.com/@2003priyanshusingh/evolution-of-object-detection-rcnn-fast-rcnn-and-faster-rcnn-90cc872e6dae
https://medium.com/@2003priyanshusingh/evolution-of-object-detection-rcnn-fast-rcnn-and-faster-rcnn-90cc872e6dae

Task: Hotel location

you gel what you pay for . not the cleanest rooms but bed was elean and so was bathroom . bring your own towels though
as very thin . service was EXESNER , Ict us book in at 8:30am ! for and [BEigE , this ca n’t be FEEEE . but it is

[EEE] for o reason . if you come expecting the hilton , then book the hilton | for uk travellers | think of a blackpool béb.

Task: Hotel cleanliness

you gel what you pay for . not the but bed was and s0 was _ . bring your own lowels
though as very thin . service was excellent , let us book in at £:30am ! for location and price , this ca n't be beaten |, but it
is cheap for a reason . il you come expecting the hilton , then book the hilton ! for uk fravellers | think of a blackpool b&h.

Task: Hovel service

you get what vou pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very ihili . service was & let s book in at 8:30am ! for location and price |, this ca n't be beaten |, but it is cheap

for a reason . if you come expecting the hilion , then book the hilton ! for uk travellers |, think of a blackpool béh,

Figure 2.23: Highlighted words concerning the task. The bolder the red color, the closer

the attention values are to 1.

NXN (self-attention). The weights are derived from the computation of alignment scores

between the input components and a query vector. We can formalize the mechanism of

attention and its computation and visualize it as follows:

s; = align(q, x;) (2.37)
Si
a; = softmax(s;) = c - (2.38)
Zj e
k=) am (2.39)
i

The score s; for each vector x; is a scalar computed with an alignment score function.

The alignment method varies in the literature and can be implemented in multiple

ways:
Name Alignment Score Function
General [50] s Wyx;
Additive [8] v} tanh(Wg[s; x;])
Dot-Product [50] s x;
Scaled dot-product [69] %
Content-based [28] cos(s, x;)

Table 2.1: Types of alignment score functions that take as input the representations x; € R"

and the query q € R?.

2.9 Glove Embeddings

The processing of word tokens and sentences is an integral part of my thesis; a vital

aspect of this work involves glove embeddings as my initial feature vectors of each word.

These embeddings are a powerful tool in natural language processing that allows us

to represent words as numerical vectors, capturing their meaning and relationships with

other words in a given text corpus. By training on global word-word co-occurrence counts,



the GloVe algorithm generates these embeddings, which can be utilized in various NLP

tasks. As such, understanding how these embeddings are extracted is crucial.

In Figure 2.24, the glove embeddings are projected to a 3d space through a dimen-
sionality reduction method and clustered into different colors. The red cluster refers to

geographical terms as seen by words like borders, Maldives, and Swaziland.

swaziland
maldives
bhutan
nepal
bangladesh
borders
spouse
locations
spouse
households
carries

lone

span
autumn

source
suggestion
calling

Figure 2.24: Glove embeddings clustered in a 3d space. Adjusted fromhttps://blog.echen.
me/2022/02/11/a-visual-tool- for-exploring-word-embeddings/.

Word co-occurences.

GloVe is essentially a log-bilinear model that uses weighted least squares for its objec-
tives. It’s based on the idea that the ratios of how often words appear together (word-word

co-occurrence probabilities) are essential for representing them in a joint space.

In a large corpus, ‘ice’ is seen more with ‘solid’ than ‘gas,” and ‘steam’ is more with
‘gas’ than ‘solid.” ‘ice’ and ‘steam’ often appear with ‘water’ and rarely with ‘fashion.’
When looking at the ratio of these probabilities, the background noise from words like
‘water’ and ‘fashion’ is eliminated. This helps to identify characteristics unique to ‘ice’
or ‘steam.” The GloVe model aims to create word vectors where their dot product is the
logarithm of the probability that the words will co-occur. Since the logarithm of a ratio is
the difference of logarithms, the model effectively links the logarithm of probability ratios
with differences in word vector space. This way, it encodes meanings into the vector

differences.


https://blog.echen.me/2022/02/11/a-visual-tool-for-exploring-word-embeddings/
https://blog.echen.me/2022/02/11/a-visual-tool-for-exploring-word-embeddings/

Probability and Ratio | k = solid k = gas k = water k = fashion
P(klice) 1.9x 107" 66x107° 3.0x107% 1.7x107°
P(k|steam) 22x107% 78x107% 22x107% 18x107°
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Figure 2.25: Word co-occurrence probability and ratio of words solid, gas, water, fashion
with ice, steam.

Loss function

The Glove objective function is mathematically formulated as follows:

J = ) wy(f(Xy) - log(Xy))” 2.17)
i
Where wy; is a weighting function that assigns more weight to rare word co-occurrences,
Xjj is the entry in the co-occurrence matrix corresponding to the co-occurrence of words
i and j, and f is a function that maps the dot product of two-word embeddings to a log

space:

log(X;)
log Xi

SWIW)) = (2.18)

The weighting function wj is designed to down-weight the importance of frequent word
co-occurrences, which tend to be less informative about the meaning of the words.

The GloVe algorithm minimizes the loss function J using stochastic gradient descent
(SGD) with a fixed learning rate. The gradient of the loss concerning the word embeddings

is given by:
— T
Vwd = 2W; Z wy(F(WTW)) — log(Xy)) 2.19)
7

The gradient is computed for each pair of words (i,j) in the co-occurrence matrix, and

the word embeddings are updated accordingly.






Chapter E

Visual Question Answering.

3.1 Introduction

Visual Question Answering (VQA) is a field in artificial intelligence (AlI) where the
goal is to develop systems capable of answering questions about the content of images.
It’s a complex task that merges computer vision and natural language processing (NLP),
requiring machines not only to recognize elements within an image but also to understand

and respond to questions posed in natural language.

Answer: No Answer: Yes

complementary scenes

Tuple: <girl, walking, bike>
Question: Is the girl walking the bike?

Figure 3.1: An example of visual question answering using the same question for different
images. The model leverages the relative position of the bike compared to the girl to infer
two different answers. Adjusted from https://paperswithcode.com/task/visual-question-
answering.

In other words, VQA systems aim to enable machines to interpret and articulate the
visual and linguistic world, somewhat akin to human perception and reasoning. The
challenge VQA presents is an essential step towards achieving Artificial General Intelli-
gence (AGI), which is the hypothetical ability of an Al system to understand, learn, and
apply knowledge in an autonomous, flexible manner across a breadth of tasks similar to
human cognitive capabilities.

To achieve VQA, Al systems must not only "see" or "read” but also "understand" and

MinAouatxny Epyaoia m
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"reason". This requires the Al to draw inferences that are not explicitly stated and often
rely on common-sense knowledge or contextual subtleties that are second nature to hu-
mans but exceedingly complex for machines to mimic. For example, in Figure 3.1 we can
see different answers being given for the same question and similar but different images.
In order for the model to infer the same answer in both cases, it must not only accurately
classify the objects but also, by their relative positions and the girlds hand placement,
infer that their relationship is actually “walking", which is metaphorically being used for
sliding the bike on the road.

Traditional VQA approaches were initially focused on generalized solutions , extracting
generalized embeddings from images and questions from CNN and RNN models as seen in

3.2. Recent advancements have seen the integration of object detection frameworks, such
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“How many horses are in this  image?”

Figure 3.2: A schematic of a simple VQA model using VGGNnet for the image, LSTM for the
question, and simple fusion using point multiplication.

as Faster R-CNN, which pinpoint and classify objects within an image, providing a rich,
detailed understanding of the visual content. Concurrently, incorporating GloVe (Global
Vectors for Word Representation) embeddings enriches the system’s grasp of semantic
language nuances, enabling a more sophisticated interpretation of the questions posed.
The initial implementation of such methods is the bottom-up, top-down attention model
[23] and has been used in several other Transformer [41] based models like [18, 20, 42].

For our thesis, we will examine the bottom-up and top-down attention model and
use it as a baseline for our implementations. Notably, the UpDn model and subsequent
models were initially developed as a versatile framework for various visual-linguistic tasks,
including image captioning, visual dialogue, and image-text retrieval.

This inherent versatility renders the UpDn model an ideal candidate for evaluation
within Visual Question Answering. Its capacity to process and interpret visual-linguistic
information makes it a potent tool for this investigation, particularly in terms of its gen-
eralization capabilities to data it has not previously encountered.

The selection of the UpDn architecture over other comparable but more efficient
transformer-based frameworks, such as those documented in [21, 20, 42], is justified

by several factors:



e The Bottom Up Attention model was developed as a task-neutral visuolinguistic

architecture, offering a level of generality comparable to its transformer-based peers.

e The generalization datasets we use are GQA-OOD [2] and VQA-CPv2 [25] . Ar-
chitectures like Vilbert [20], VisualBert [42], and LXMERT [21] have undergone
pre-training on the COCO captioning dataset [43] and the GQA dataset[19]. The
VQA dataset and its variants, including VQA-CPv2, contain images mostly from the
COCO dataset. Similarly, GQA-OOD is part of the GQA dataset. Consequently, as
indicated in [2], there exists a dataleak of test data in the pre-training phase for
these models, which could potentially skew the results regarding their generaliza-

tion capabilities.

e The computational demands of these models exceeded the capabilities of the avail-

able hardware resources.

3.2 Bottom-Up and Top-Down Attention Model

Our baseline, the Bottom-Up and Top-Down Attention (UpDn) model [23], integrates
two distinct yet complementary mechanisms to effectively process visual and language
data. This model is adept at tasks involving image and language understanding, such as
image captioning and visible question answering (VQA). The three critical components of

the UpDn model are:

3.2.1 Language Encoder

The language encoder utilizes GloVe embeddings and Recurrent Neural Networks
(RNNs) to construct question embeddings. The GloVe (Global Vectors for Word Repre-
sentation) [28] embeddings provide a pre-trained word representation, capturing global
word-word co-occurrence statistics from a corpus. The RNNs then process these embed-
dings sequentially, creating a question embedding for fusion with the image representa-
tions as the output of the last LSTM layer for the Nth word passed through a non-linear

layer. We can observe the architecture of the language encoder in Figure 3.3.

3.2.2 Bottom-Up Mechanism

The bottom-up mechanism segments the image through Faster R-CNN to identify
important objects as seen in Figure 3.4. Each identified object is associated with a 1024-

dimension feature vector, its object class and its bounding box.

3.2.3 Top-Down Mechanism

The top-down mechanism applies attention guided by the linguistic context (i.e., the
question embedding) to the image regions identified by the bottom-up mechanism. This
process involves weighing the importance of different areas concerning the question con-

tent and the answer classification. It selectively focuses on parts of the image that are
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Figure 3.3: Language encoder of the Bottom Up- Top Down attention architecture.
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Figure 3.4: Feature extraction using the Faster-RCNN framework. Adpated from https:
//www.slideshare.net/JinwonLee9/prl2- faster-rcnnl70528

more relevant to the question, thereby integrating language-driven attention with visual
features. Attention is bottom-up, top-down attention is formulated mathematically as

follows:

3.2.4 Integration and Output

As seen in Figure 3.5, the model combines the outputs of the bottom-up and top-
down mechanisms to generate a final prediction using the element-wise product of the
final image and question representations and passing it through a non-linear layer. This

integration allows the model to correlate important image regions concerning the language
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Figure 3.5: Bottom Up- Top Down attention architecture. Adapted from: [23]

content and create adaptable visolinguistic embeddings depending on the task to solve.

3.2.5 Summary

The Bottom-Up and Top-Down Attention model [23] effectively merges visual percep-
tion with language understanding, enabling detailed analysis of images guided by lin-
guistic context. It represents a significant advancement in Al, particularly in tasks that

require a joint understanding of visual and textual information.

3.3 Generalization in Visual Question Answering

Building on the robust foundation established by the bottom-up and top-down (UpDn)
attention model, this thesis positions the UpDn framework as a baseline to examine
various generalization methods in Visual Question Answering (VQA). It is imperative to
assess the adaptability and scalability of VQA systems in diverse scenarios, a pursuit that
this work undertakes with vigor.

As we transition from a theoretical exploration to an empirical investigation, the sub-
sequent chapters will detail these out-of-distribution generalization methods and the
datasets they were implemented on. The findings promise to contribute valuable in-
sights to the field of VQA, paving the way for more intelligent, flexible, and capable Al

systems in the future.

3.3.1 Out of distribution datasets for Visual Question Answering
3.3.2 VQA-CPv2 dataset

This dataset originates from a different split of the VQA v2 dataset[24]. The original
VQA v1 dataset [44] was deemed to be extremely reliant on language. As a result, in [24]
they created a second balanced version of the VQA dataset by collecting complementary
images such that every question is associated with not just a single image but a pair of
similar images resulting in two different answers. The dataset’s metric is the accuracy in
the 3 primary answer categories “Yes/No, "Number", “Other", and “Other" refers to all the
questions that are not number based or comprise 48% of the dataset.

However, several studies showed that models trained on VQA v2 were still heavily
driven by superficial correlations in the training data and lacked sufficient visual ground-

ing. In [25], they found the cause of the above behavior to reside in the fundamentally



problematic nature of IID train-test splits in the presence of solid priors. Hence, they pro-
posed a new setting for VQA, where train and test sets have different prior distributions

of answers for every question type, as shown in Figure 1.
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Figure 3.6: Distribution of answers per question type varies significantly between VQA-CP
v2 train (left) and test (right) splits

Even though the VQA-CP v2 has been the cornerstone for various benchmarks, it has
received extensive criticism in [1, 4, 2]. The main points of criticism can be summarized

as follows:

e The VQA dataset comprises five different question categories that can be summed
up in 3 (Yes/No, Number, Other) in evaluation. In [4], they assume that the test
distribution shift is not only different but the inverse of the train distribution. By
predicting the labels of the inverse train distribution with a weighted random selec-
tor, they achieve SOTA results in "Number" and "Yes/No" questions without even
having a model; at the same time, they perform horribly in "Other" (0.02 accuracy).
Hence, they propose that the only viable metric for evaluating the dataset is accu-
racy in "Other." A similar result is concluded in [1]. Consequently, in contrast to

older methods, most of the newest models in VQA-CP focus on that proposed metric.

e Knowing the distribution shift beforehand leads to model architectures designed
to exploit it and achieve superficial performance, defeating the purpose of OOD

generalization where the distribution of the test data should be unknown.

o VQA-CPv2 lacks an ID validation split. Retraining in VQA v2 is not a valid method
for measuring ID performance. However, this can be easily fixed by holding a part

of the training data as an ID validation spit.

e [t lacks a proper performance metric besides accuracy that can better capture visual

grounding and generalization improvements.



3.3.3 GQA-OOD dataset

The GQA dataset[19] was developed as a continuation to CLEVR[45] to evaluate visual
grounding and reasoning and compositional question answering in real-world scenarios.
It was constructed from scene graphs and images from the Visual Genome dataset for
visual explanations. It contains extra annotation information for images (scene graphs)
and semantic programs for the questions. Its question answering is primarily grounded
in the image contents is based on composite questions relevant to certain attributes and

relations between objects as seen in Figure 3.7. In [2], a new dataset split is proposed,

(): is the small table (): Is there a box inside
both oval and wooden? | the plastic bag?

GOA

Figure 3.7: GQA dataset examples

which addresses the issues residing in VQA-CPv2 and tests the performance of VQA
models in both ID and OOD conditions. GQA-OOD contains both ID and OOD test/val
splits.

The distribution shift of the dataset is implemented as follows:

o Head of the Distribution: This portion comprises the most common or frequent
answers within a specific context or local group. These are the answers that occur
more frequently than a defined threshold. The head represents the ID scenario

where the answers are within the expected distribution of the dataset.

e Tail of the Distribution: In contrast, the tail consists of the rarest answers in the
same local group. These answers occur less frequently, falling below the threshold
defined by the average sample count for the group. Specifically, tail classes are
defined as classes i with |a;] < kX a, where |a;| is the number of samples belonging to
class i, a is the average sample count for the group, and « is a factor set empirically
(e.g., x = 1.2). The tail represents the OOD scenario, capturing the answers that

are not commonly expected or are outliers in the dataset.
Additionally, new performance metrics are introduced:

e Acc-tail: The accuracy on OOD samples, which are the samples of the tail of the

answer class distribution.
e Acc-head: The accuracy of the distribution head.

e Acc-all: The ID accuracy.



e A= fw: A shows the discrepancy of performance between the ID and OOD
head

settings.

The dataset’s effectiveness was tested on several general SOTA VQA models [21, 20, 23],
which seemed to suffer a 10% drop in accuracy-tail. Additionally, most successful debi-
asing models in VQA-CPv2, such as [14, 13, 30], seemed to underperform under those

settings.

3.3.4 Generalization Methods in the literature.

The methods for generalization in VQA tested in the datasets above can be split into the
following categories : Language debiasing ensemble-based methods, Data augmentation

methods, Enhancing visual information methods, and Answer Reranking.

Ensemble based methods

The ensemble-based methods’ LMH[14], AdvReg[30], Rubi [13] main goal is to utilize
a language-only model that theoretically incorporates the entire language bias of the
dataset and tries to force the fusion model to predict different answer distributions while
simultaneously achieving the primary task (indicating the correct answers). At test time,
they keep only the multimodal part of the model to perform the inference. We can see the

architecture of such models in 3.8. The most notable of those methods is LMH, which is
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Figure 3.8: An Overview of the ensemble-based models Adapted from [14].

based on the following mathematical formulation: Let x.;, be a view of the example that

captures all information about that example except the bias. Assume that x.;, and x;, are



conditionally independent given the label, c. Then to compute p(c|x) we have:

plelx) = plelx®, x7)
o p(clx~")p(x"le, x7")
= plclx~")p(x"|c)
_ plelx™")p(clx”)p(x")
p(c)
_ plelx)p(elx”)
p(c)

The p(c, x) is the output of the ensemble of the language and the multimodal model

that will be used as the primary loss function. The p(c|x~?) is the unbiased multimodal

pex®)
p(c)

the left term and minimizing the prediction of the language model, they theoretically

model they use for inference. The is the language only biased model. By maximizing
produce an unbiased multimodal model that is not constrained by spurious language-
based correlations.

Even though those methods have achieved extraordinary overall accuracy in VQA-
CPv2, they have received severe criticism[2, 1, 4, 3]. Through multiple experiments, it
has been observed that they heavily rely on improving performance in VQA-CPv2 through
"Yes/No" or "Number" questions by knowing the distribution shift beforehand and predict-

ing the inverse answer distribution while simultaneously underperforming in ID settings.

Data augmentation methods

Data augmentation methods rely on two different methodologies.

1. Expand the dataset by automatically generating new samples in the image or ques-
tion space with the same or different ground-truth answers. Then, use those new
samples to train the model or perform a second regularization task(by an added loss

function).
2. Use adversarial perturbations to create more robust multimodal representations

3. Generate new visually generated questions explicitly or implicitly in joint training.

Distinct sample generation

The most notable data augmentation method, CSS[9], relies on creating counterfactual
samples. First, they find the most important objects of the image(VSS) or sentence(QSS).
They mask all the unimportant objects or words and pass the new positive sample through
the model, obtaining the K-best answers. The complement of the K-best answers is the
"ground truth" of the negative samples(Dynamic Answer Assigning). A negative sample is
an image-sentence pair with masks on the critical objects. Finally, they train our model
with the counterfactual/negative sample. We can see the negative examples for Q-CSS or
V-CSS in Figure 3.9



Lastly, in [9], for counterfactual samples, the supervised loss is computed by defining
anew VQ pair (I"; Q) from counterfactual input I and question Q. Ground truth answers
are assigned using dynamic answer assigning (DA ASS), which involves: feeding (I*; Q) to
the VQA model, obtaining a predicted answer distribution P;"qa(a), selecting top-N answers
a’, and defining a” = {a; | a; € a, a; ¢ a*}. In cases where a C a’, a” is set to empty.

The most notable aspect of their research lies in their method of identifying critical
question tokens or visual objects. For question tokens, they determine their relevance
by calculating the cosine similarity with the answer using GloVe embeddings. For visual
objects, they employ Grad-CAM [46] to focus on the object that yields the highest gradi-
ent concerning the ground truth answer. CSS[9] seems to improve uniformly across all

metrics and baseline models in VQA-CPv2.

What color is the What color [MASK] What color is the
kite? [MASK] kite? [MASK]?

Q QY Q-

Figure 3.9: The original image, sample with a negative question, and sample with a negative
image.

Another method utilizing counterfactual samples is gradient supervision[15]. It has
not yet been utilized in our datasets, but it has been used in many different datasets,
performing very well; it assumes we have a method of obtaining counterfactual samples
for our dataset and is formulated as follows. Let the gradient of the network f with respect
to its input at a point x; be denoted as g; = V,f(x;). The Gradient Supervision (GS) loss
is a regularization loss Lgs that aims to align g; with a "ground truth" gradient vector §;,

and is defined by the equation:

90
llgilllg

This equation represents a cosine distance between g; and g;. For a pair of counterfac-

Lgs(gi. gi) = 1 (38.1)

tual examples (x;, y;) and (x;, y;), the "ground truth" gradient at x; is given as g; = xj — Xx;.
This vector indicates the transformation in the input space that should change the net-
work’s output from y; to y;. Minimizing this equation encourages the network’s gradient
at the training points to align with this vector.

SSLI8] creates new sample pairs by random matching of images and sentences in the

dataset as seen in Figure 3.11. Since the probability of fitting random image/sentence
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Figure 3.10: The original image, sample with a negative question, and sample with a

negative image.

pairs is close to O, a loss function is introduced, forcing the model to predict an empty
answer distribution for "irrelevant” samples. Their method minimizes negative sample

sensitivity to the primary ground truth answer.

4 Answer cat X
Prediction N

r[ VQA

What animal What animal
is in the is in the
window? window?

Relevant question-image pair Irrelevant question-image pair

Figure 3.11: Schematic of the SSL frameworlk.

MUTANTI[10] is a recent model with exceptional results that relies on four methods.
The first and most important is a data augmentation method that creates "mutations"
of original Image-Question pairs. They use Object Removal (for number question types),
Color Change (for color question types), Negation Adversarial Substitution, and Word
masking as seen in Figure 3.12 and automatically change the answers to fit the corre-
sponding mutation. It achieves significant performance increase across all metrics but is
question-type specific.

SwapMix[7] is an augmentation-based model used on the GQA dataset[19]. At first,
they find the most important objects of the image straight from the original program and
scene graph annotations and match them with the fast-renn extracted objects by choosing
the most similar objects based on the IoU overlap. They create new augmented samples
by exchanging "non-important" objects with similar objects (same class or attribute) from
the corpus, as shown in Figure 3.13. They observe that VQA models heavily rely on

irrelevant image subcontext and change their answers by perturbating unrelated regions



frisbee
Greeh 9'Pink

Mutation Q A Qmutant Amutant
Is this bread? yes Is this not bread no
Negation What is the color of the woman’s shirt? ~ black ~ What is not the color of the woman’s shirt? ~ white
Are there deciduous trees? no Are there no deciduous trees? yes
Is there a boy? no Is the no boy? yes
Who is riding the boat? man Who is riding the desk “can’t say”
Adversarial How big is the plane? large  How big is the book? “size”
How many pillows are on the bed? four How many pillows are on the table? “number”
What type of drink is being displayed? wine What type of [MASK] is being displayed?  “beverage”
Masking How many bins? two How many [MASK] ? “number”
What is the green stuff on the sandwich? lettuce What is the green stuff on the [MASK]? “food”

Figure 3.12: Mutant question type specific augmentation methods.

of the image. They utilize the above augmentations to mitigate the sensitivity of VQA
models in similar object swappings. Swapmix does not seem to improve results in our
datasets and performs better in cases where actual perturbations of relevant objects are

implemented.

3.3.5 Adversarial perturbations

VILLA [6] uses adversarial perturbations to create more robust visiolinguistic represen-
tations. It is trained with a more computationally efficient version of PGD called FreeLB
[47]. However, it does not seem to improve the accuracy on any metric in VQA-CPv2 with
LXMERT [21] as its baseline.

Mango [5] is an improvement on VILLA. As in VILLA, it is based on adding learnable
noise to the embeddings, as seen in Figure 3.14. However, it uses a method developed in
[48], where the adversarial noise is learned as a neural module applied to Gaussian noise
instead of being known by PGD or its variants.

An overview of the method indicates that while there have been reported enhance-
ments in overall accuracy across our datasets, they have not provided specific accuracy
details for the ’Other’ category in VQA-CPv2 and the Acc-tail in GQA-OOD. Additionally,
the absence of accessible code for both models means we cannot replicate the studies and

present corresponding results.
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Figure 3.14: Schematic of Mango utilizing adversarial perturbations in images and text for
VOA.

Enhancing visual information methods

In SCR [49], the base UpDn [23] VQA system first detects a set of objects and predicts
an answer. They then analyze the correct answer’s sensitivity to the detected objects via
visual explanation (either from captions or human attention maps) and extract the most
influential object, further strengthened via an influence enhancement loss. They also
analyze the competitive incorrect answers’ sensitivities to the most influential object and
criticize the sensitivity until the VQA system answers the question correctly.

In the "X-GGM" research paper [31], the authors propose a two-step process for en-

hancing model performance using image data. Initially, the model identifies all distinct
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Figure 3.15: In the UpDn VQA system, objects are identified and analyzed for their in-
fluence on the correct answer (‘Fork’). The most influential object is strengthened using
the ’influence strengthen loss’ method. Finally, potential incorrect answers (‘Knife’) are
assessed based on their response to the most influential object until the VQA system ac-
curately answers the question. The numerical values on each bounding box indicate the
sensitivity of the answer to the associated object

objects in an image, each tagged with a unique attribute, such as "green bowl." This results
in a one-to-one mapping between each object and its attribute. The next step involves
creating a correlation matrix. This matrix is built by comparing the objects’ BERT em-
beddings [?] and attributes to establish their similarities, forming an NxN "ground truth"
matrix. The model then employs one of two fusion methods in each iteration, building
upon the foundation set by the LXMERT model. The first method involves predicting this
"ground truth" matrix using multimodal features and object embeddings. The second
method aims to predict the object embeddings based on the ground truth matrix and
multimodal features. Additionally, the model introduces Gaussian Noise to the predicted
relational matrix or the embeddings, enhancing its robustness.

This approach has demonstrated notable improvements in key metrics across both
datasets used in the study. However, a challenge arises in accurately evaluating the
model, primarily because the researchers have yet to release their code. Furthermore,
the published results of their baseline model, LXMERT, show inconsistencies compared
to other field studies.

Answer Reranking

The first notable model is called RankVQA[11]. After passing the image-text pair
through a VQA model, they selected the K-candidate answers. Additionally, the image
caption is produced by combining question information offline. Finally, an Answer Re-

ranking Module computes the re-rank score by measuring the answer-image matching



degree and the answer-caption matching degree and back-propagates the score to guide
the VQA module.

A similar model[12] uses answer re-ranking [11] and combines it with a method called
Visual Entailment [50]. In SAR[12], they use a pre-trained VQA model to select the best
K-answers, and they build a new dataset MxK of tuples (Im, ques, candidate answer)
with ground truth as the probability given by the first VQA model to the candidate an-
swer. Then, by combining the question and answer into a single caption, they use Visual
Entailment to produce a new re-ranked answer distribution. This model, along with

Mutant[10], is by far the most successful in the literature but computationally expensive.
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Figure 3.16: Answer reranking showcasing the candidate selected answers and the visual
entailment of image and question-answer captions to predict the correct answer.

Essentially, both methods combine the Question and answers into captions and trans-
form the VQA task in a 1-class alignment task as shown in Figure 3.16. Each data point is
essentially transformed into K data points for each possible answer of candidate answers.
In SAR specifically, they reduce the computational complexity by using a pre-trained
VQA model to choose only the most probable answers. However, their complexity is still
proportional to K times M (O(K * M)), where M represents the complexity of the baseline

model and K is the chosen “best" answer.



Chapter ﬂ

Literature Reimplementations and Visual Ques-

tion Generation.

This chapter includes our first experiments regarding reimplementing various re-
search papers to improve generalization in the VQACPv2 dataset [25]. Since intensive
criticism has been towards exploiting biases in the CPv2 dataset, these methods will be
reimplemented to the GQA-OOD dataset [2] to evaluate their performance in a different
out-of-distribution setting and will be discussed thoroughly.

Additionally, we present our initial experiments using visual question generation as

an augmentation method for VQA tasks and discuss our findings.

4.1 Paper Reproductions for the GQA-OOD and VQA-CPv2 datasets

4.1.1 Reimplementation Choices

This section will enumerate the research papers selected for reimplementation and
explain these choices. We will also highlight those studies that were not chosen for
reimplementation, along with the reasoning behind their exclusion based on the analysis

above:

e MANGO [5], X-GGM [31], RankVQA [11] did not provide source code, and the results

of their baselines are inconsistent with the rest of the literature.

e The SAR model [12], initially deployed on the VQA-CPv2 dataset, proved to be ex-
cessively computationally demanding to complete its training. Consequently, we
determined that the marginal performance improvement did not justify further ex-

ploration or investment into this method.

e While SwapMix|[7] did not enhance the standard accuracy in the VQA dataset on
which it was trained, it showed improvement only in context reliance and attribute

metrics. Therefore, we decided to omit it from our study.

e The SCR paper [49] requires human textual or visual explanations that were not
available in the GQA-OOD dataset.

e The MUTANT [10] augmentation technique is noteworthy; however, its applicability
is limited due to its focus on the unique question types found in VQA-CPv2, such

as color-based questions, which are infrequent in the GQA-OOD dataset.

MinAouatxny Epyaoia m



e Visual Question generation methods were utilized in our own visual question gen-

eration implementation.

e The ensemble and various unique sample generation methods were not specific to

any dataset and either had accessible source code or were simpler to implement.

Therefore, we re-implemented some of these methods.

We reimplemented the LMH and Rubi methods for ensemble-based methods in our

experiments. We also tested the SSL and CSS as augmentation-based methods in both

datasets.

generation methods in the VQA-CPv2 dataset.

4.1.2 Results

Finally, in terms of visual enhancement, we created our visual question-

Model ‘ Baseline Reported VQA-CPv2 results Reimplemented VQA-CPv2 results
Overall Yes/No Num Other | Overall Yes/No Num  Other
Baselines
UpDn[23] ‘ UpDn 40.14 42.27 11.93 46.05 | 39.50 43.46 12.17 44.92
Ensemble based methods
Rubi[13] UpDn 44.23 67.05 17.48 39.61 | 44.11 64.85 11.83 42.11
LMH][14] UpDn 52.01 72.58 31.12 46.97 | 51.93 72.58 31.12 45.03
Data augmentation methods
CSS[9] UpDn 41.16 43.96 12.78 47.48 | 39.36 42.12 12.32 45.34
LMH+CSS[9] UpDn 58.95 84.37 49.42 48.21 | 57.92 86.12 51.09 45.01
SSL*[8] UpDn 58.11 86.53 29.87 50.03 | 57.16 85.67 30.12 49.31
Model ‘ Baseline GQA-OOD test results
Acc tail Acc head Acc all Delta
Baselines
UpDn [23] ‘ UpDn | 42.545., 49.668.15 46.96.15 16.928.4,
Ensemble based methods
Rubi [13] UpDn 30.78.9.3 39.52,9 4 36.2.3 1 22.1044.7
LMH [14] UpDn 27.621.05 38.41:19 34.3li57 28.09.39
Data augmentation methods
CSS [9] UpDn 41.75.16 49.11.,9 46.31.13 14.95.53
LMH+CSS [9] UpDn 29.19.:3 37.67129 34.45i53 22.49.37
SSL*[8] UpDn l l l l

We reimplemented the papers in fixed seeds accodring to their repositories for a fair

comparison, and in GQA-OOD, they were tested on multiple seeds.

4.1.3 Notable Differences in VQACPv2

Most of the results were similar to those reported in the VQACPv2 dataset.




In SSL, the regularization loss becomes active after pretraining the model only with the
original VQA Loss. However, the training was highly unstable, significantly deteriorating
the results after the first epoch. The chosen weight parameter a = 3 determined for
optimal model performance in the paper resulted in deteriorating results. Consequently,
to obtain the desired result, we had to use a=2.

The CSS framework did not perform up to par with the reported results and showed

no improvement compared to the baseline.

4.1.4 Results in GGA OOD

The ensemble-based models significantly underperformed in the GQA-OOD datasets,
showcasing that language-biased ensemble models primarily took advantage of the in-
verse answer distribution in the test set to obtain their results. The CSS framework for
counterfactual samples did not improve the results in either of the two datasets. The SSL
framework is highly unstable for high values of a (the weight of our loss function). Testing
for different values of a, we concluded that only for small values (lower than 1) the model

does not severely underperform compared to the baseline.

4.1.5 Discussion

After carefully reading the literature reimplementing certain methods, we concluded
the following:

e Addressing the language biases needs careful consideration because they could
highly deteriorate results if based on knowing the answer distribution shift in the
test set, and hence show superficial improvements in results instead of enhancing
results in out-of-distribution conditions [2, 4]. Ensemble-based models based on a
biased language model, in particular, consistently deteriorate results in the GQA-
OOD condition and are only fit for situations where language biases are too prevalent
in the data.

e Models trained with adversarial or object-swapping perturbations primarily enhance

their generalization abilities under conditions similar to their training.

e Augmentation-based methods could potentially improve results. So far in the lit-
erature, only [10].has shown significant performance increases. However, its aug-
mentation strategies are question/answer type-specific and unsuitable for general
VQA tasks.

e Methods for answer reranking/visual entailment can enhance the accuracy of an-
swer classification, especially when dealing with a large pool of possible answers
(denoted as K). However, the complexity of these methods scales with the number
of answer candidates. Consequently, while they are potentially more effective, they
suffer from significant computational inefficiency due to their dependency on the

number of answer candidates.



Our results aligned with the criticism towards the VQA-CPv2 dataset in [1, 4, 2];
hence, in the following Chapter, we will focus strictly on the GQA-OOD dataset for

our proposed method.

4.2 Paraphrasing using Visual Question Generation

4.2.1 Brief Overview

The critical aspect of Visual Question Answering (VQA) is developing robust models
that accurately interpret and respond to various questions about different images.
Augmentation methods, such as Visual Question Generation (VQG), play a vital role

in this endeavor.

VQG involves automatically generating relevant and diverse questions about a given
image. This process focuses on creating contextually appropriate and meaningful
questions, enhancing the capabilities of VQA models. VQG combines methods to
improve visual information and data augmentation. It generates questions from
images and additional metadata, serving as a dual task and a data augmentation
method in VQA. VQG aims to create a more diverse and comprehensive dataset by

generating a broad spectrum of questions for each image.

This section will discuss our experimental process, results, and conclusions on
VQG’s effectiveness in generalizing better in out-of-distribution settings, especially

when dealing with limited training data and fixed model architecture.

4.2.2 Related Work

In [51], a purely supervised method is employed using CNN/RNN encoders, de-
coders, and attention mechanisms, trained with crossEntropyLoss using ground

truth questions.

[52] utilizes a Variational Autoencoder (VAE) to generate questions from images, an-
swers, and answer categories, trained with supervised methods (crossEntropyLoss
and Scheduled Sampling [53]) and unsupervised loss functions (Reconstruction loss

and Information Maximizing loss).
In contrast, some models use VQG as a supplementary method to VQA:

[64] introduces a dual architecture using MUTAN for simultaneous task-solving.
Both streams share the same encoder/decoder pairs, using VQG as a regularization

task for robust representation creation.

[55] employs a cyclic consistency framework, where the VQG model generates ques-
tions Q’ based on the VQA model’s predictions A, and vice versa. Models are jointly

trained through various loss functions, including cyclic loss.

VQG models have been tested on the original VQA dataset but not extensively in
OOD conditions [25, 2].



4.2.3 Baseline and Dataset.

We used the VQA-CPv2 [25] dataset for our experiments. This dataset is focused on

having specific question type categories as shown in Figure 3.6. Q

We used the Bottom-Up-Top-Down attention model as our baseline for VQA [23]
and a Visual Question Generator model with the following architecture for the aug-
mented sample extraction. The UpDn model used had slightly different and more
optimized hyperparameters than the one we reimplemented in the previous section

and hence produced overall slightly better results than the ones reported in [14, 9].

Our architecture is shown in Figure 4.1 is based on the cycle consistency paper

architecture [55] and includes the following components:

Answer Encoder

Figure 4.1: Our baseline generator architecture.

— Language Encoder: Converts the answers into series Glove embeddings and
passes them through an LSTM to create an answer embedding in the joint

embedding space.

- Image Encoder: Extract Faster-RCNN features from the image pass through
a non-linear layer and take the average feature as the image embedding in the

joint embedding space.

— Fusion Layer: A non-linear fusion layer combines the information of the image

and the answer to a joint embedding.

— Generator LSTM Network: A generator LSTM that uses the joint embedding

to predict the augmented question.

4.2.4 Experimental Design

During our experimental process, we implemented the following steps:



— Teacher Forcing vs No-Teacher Forcing vs and Curriculum Learning: We

experimented with all three methods to see which fit our data best.

— Choosing specific question types for augmentation: An ablation of the dif-

ference performance results per question type in the dataset.

- Beam Search: We used beam search for a more diverse sample generation.

Training method

In the initial experiments, we used teacher forcing, no teacher forcing, and cur-
riculum learning and compared their results. Without teacher forcing, the model
always fails to generate syntactically, logically, and semantically correct questions
the majority of the time. With the curriculum learning strategy, a lot of the results

are syntactically correct, but we still observed low-quality results.

Some grammatically incorrect generated examples with curriculum learning and

no teacher forcing can be examined below:

No Teacher Forcing:

1. Does the man wear a polo shirt? -> Is there a polo?

2. Is the man wearing sandals? -> Is there a wearing sandal?

3. Who is holding an umbrella -> What is the umbrella holding an umbrella?
Curriculum Learning:

1. What animals are they riding in the picture -> what animals are riding the

picture?

2. Is the train moving -> Are there trains moving?

Consequently, the rest of the experiments were implemented only with teacher forc-

ing, as did all the three referenced papers below. H We generated 1 example per

data point and trained our VQA model with an augmented dataset.

The results for VQA training using teacher forcing are shown in Table 1. The ques-
tion augmentation seems to degrade the performance of the baseline highly, espe-

cially in the "Other" question type.
Some teacher forcing results can be examined in Figure 4.2. The results vary and
primarily belong to 3 different categories:

1. Paraphrased questions.

2. Questions that provide new information.

3. Syntactically and grammatically correct but semantically incorrect questions,



Ground-Truth question: is
this a day or a night scene
Generated question: is it day_
time or night time

Answer: Day

Ground-Truth question: what
is the man catching
Generated question: what is
the boy throwing

Answer : Baseball

Ground-Truth question: What
is the shape around the dog
Generated question: what is
on the dogs neck

Answer: Heart

Figure 4.2: In this figure, we can see that the first example is a paraphrased version of
the original. In the second example for the answer ‘ball,’ the generated question refers to
the boy instead of the man, and in the last question, the model falsely refers to the dog’s
necklace instead of the drawing in the sand.

Analysis on the question types

After the above experiments, I examined what degraded the performance by com-
paring baseline and augmented model results in every question type. There was a
diversity in ‘Yes/No’ questions since it is hard for the model to understand negation

and generate counterfactual images( in case of a No answer).

Also, there was a consistent 15% average drop in color-type questions. Each answer
has multiple colors; consequently, it is unlikely that the same answer distribution
refers to more than one object in the image. As a result, at best, our model generates
the question ‘What color is the correct obj?’, which is our ground truth, and at worst,

it refers to a wrong object.

We generated augmented samples for only ‘Other’ type questions without augment-
ing color-type questions. Those questions contain approximately 37% of the total
dataset. The results are shown in Figure 4.3. The performance seems to improve
compared to the previous approach and is comparable to the baseline. However, we

are generating only 37% extra samples.

Beam search generation

Our initial question generation model produced semantically correct results but it
does not manage to produce diverse samples. We used beam search to extract the
top k questions for each data point to create more diverse samples. Beam search

improves the sample generation using a less greedy approach and forces the VQG
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Figure 4.3: Percentages of various answer types.

model to create multiple discrete questions. Additionally, as shown in Figure 4.1,
we tried adding random noise to the initial fusion embeddings. However, it did

perform as expected and did not result in a diverse sample generation.

Using a 10-stream beam search, we chose the top 3 questions for each data point
and trained the model with the new augmented data. Even though Beam-search
generated more diverse samples, as showcased in Figure 4.4, it produced lower
results than the 1-sample generation, indicating that even though we managed to
create more varied samples, they either resulted in overfitting the dataset or created

semantically incorrect questions.

what is the table made of?
Answer: glass

Top-3 questions : (-2.37,what is the table made of),(-3.54, what
is the glass made of),(-3.64,what is the bottle made of)

Figure 4.4: Top 3 results for the image.



4.2.5 Results

Here we present the results based on our augmented samples compared to our

baseline model.

Model All Yes/No | Num | Other
UpDn(Baseline) 41.53 43.45 13.64 | 48.18

Updn + base_VQG (all questions) | 38.7 42.34 9.4 43.21
UpDn + base_VQG 41.21 | 42.73 | 14.08 | 48.01

UpDn + 3-beam 40.64 | 42.60 13.32 | 47.12

4.2.6 Discussion

Question paraphrasing using visual question generation for specific answer-question
pairs does not improve or even severely deteriorate results in OOD conditions, pro-
vided that we are constrained by our trainset for diverse sample generation. To
achieve better OOD results, a strategy that creates new question-answer pairs like
in [10] should be implemented since creating questions with the same expected

answer is severely constraining the generation process.






Chapter E

Regularization with visual object masking

5.1 Proposal

Building on the insights from the previous chapter, it becomes evident that a deeper
understanding of visual context is crucial for enhancing the performance of models under
Out-of-Distribution (OOD) conditions. This aligns well with findings from the GQA-OOD
study, where the authors developed a VIS-Oracle model using a compact LXMERT. This
model, leveraging the complete human-annotated scene graph information (encompassing
ground truth objects, attributes, and relations), attained a remarkable 90% accuracy in
OOD scenarios [2]. A model endowed with perfect visual perception can effectively employ
semantic reasoning without depending on spurious correlations. With this motivation, we
propose a new method that focuses on teaching the model to attend to the most important
objects and ignore irrelevant ones while simultaneously filtering the noisy information of
the objects with extracted textual information from the image.

Hence, to achieve better performance in both ID and OOD settings we should mostly
focus on improving the image processing instead focus on the language part of the model.
To generalize perfectly, a model should ideally capture the real-world causal mechanisms
behind the data. It is important for the VQA model to learn to attend to the proper
image regions related to the question to reason properly, instead of relying on spurious
correlations in the training data.

With this motivation, we propose a new method that teaches the model to attend to

the most image important objects and ignore irrelevant ones.
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5.2 Methodology

5.2.1 Dataset

For our dataset, we use GQA-OOD, which is formulated as a VQA single-label classi-
fication task. Additional annotations are provided that include decomposed questions as

semantic programs that refer to objects included in the scene graph annotations.

5.2.2 Baseline

Our baseline model is the Bottom-Up Top-Down (UpDn) Attention Model. As explained
in the previous section, the UpDn model leverages bottom-up and top-down mechanisms
to effectively integrate visual and textual features. The bottom-up mechanism focuses on
extracting salient image features, while the top-down attention guides this process based
on the textual query.

The network’s final output shown in Figure 3.5, which represents the probability
distribution over potential answers, is assigned to a binary cross-entropy loss function.

The loss function is formulated as follows:

c
Lpce = — Z yilog(py) + (1 — yy) log(1 — py) (5.1)

i=1

where C is the number of answer classes, y; is the ground truth label for class i, and
p; is the predicted probability for class i by the model. This loss function calculates the
cross-entropy between the predicted probabilities and the ground truth labels, effectively

penalizing the predictions that diverge from the actual labels.

5.2.3 Positive and Negative sample construction.

Inspired by the work in [9, 15], we construct similar and counterfactual samples for
each image based on important image regions.

If we have stronger annotations in some form of visual explanation, we can di-
rectly locate the important regions. For example, in [15], they utilize human attention
maps relative to the question. The GQA dataset provides the ground-truth reasoning
steps(programs) for each question and the selected objects after each step. We use those
reasoning steps to filter out all the relevant and irrelevant objects for the question. Then,
we can use a bounding box overlap mechanism to match the Faster-RCNN objects with
the ground-truth ones.

After selecting the most important regions, we want to find all relevant objects. Sev-
eral methods in the GQA dataset use the IoU(Intersection over Union) overlap similarly
as additional information for their respective methodologies[16, 7]. However, the IoU ra-
tio might not necessarily be the proper overlap mechanism for our method. In contrast
to [16], we do not want to perform a 1-1 matching between ground truth and extracted
objects. Instead, we mainly wish to filter out the most relevant information from our

negative samples. Faster-RCNN bounding box regression could be better, and there is



severe overlap between different object regions. Moreover, more oversized objects contain
smaller important objects, and negative samples will retain the smaller objects’ informa-
tion even if we mask them. We can use the overlap ratio as an additional metric to loU

since it can better filter out nearby objects:

ObjectArea N ExtractedObjectArea
ObjectArea

Overlap =

After extracting the “relevant objects," we can mask the non-important ones to create
our positive sample and, conversely, mask the important ones to create our negative
sample. An example of the above process with IoUgpesn = 0.1, Overliyesn = 0.2 can be

seen in Figure 5.1.

Figure 5.1: Is the hair brown and thin?: yes

How long is the child’s hair?: short

question specific
annotation
preprocessing

Overlap
Mechanism

5.2.4 Regularization Tasks and Loss Functions

Using various loss functions, we explore four critical aspects of visual question answer-
ing (VQA). These aspects include evaluating the counterfactuality of negative examples,
the potential of using positive samples for augmentation, the validity of the assumptions
underlying the triplet loss, and the regularization of the potential of random masking

mechanisms. Let’s delve into each aspect:

Counterfactual Losses

We use our extracted negative samples as the counterfactual samples for the coun-
terfactual losses.
The first counterfactual loss we experimented with is designed to match negative

images with questions [8], focusing on counterfactual examples where the question-image



pairs are irrelevant. The Self-Supervised Learning loss (SSL) is formulated as:

N
1 ,
LssL = - i; log(1 — P(AilQ:, I}))

where P represents the prediction function, 4; is the answer, Q; is the question, and I/ is
the counterfactual image.

In the context of Lyqy, minimizing —log(1 — P(A|Q. Ip)) is mathematically equivalent
to minimizing P(A|Q, Iy) which is claimed to be more stable during training in [8]. This
formulation inherently implies that, for counterfactual samples, the model should assign

a probability of zero to all potential answers:

N
1
Loa = & Z] P(A{|Q:. Tio)

The Counterfactual Gradients Supervision method [15] involves using counterfac-
tual examples as negative samples. The loss function for CF-GS, which aims to align
network gradients with a ground truth gradient vector, is defined as:

Las(gi, g0 = 1 - 220 (5.2)
llgellllg:ll
where g; = V,f(x) is the gradient of the network concerning its input at a point x;, and
Ji = Xj — x; is the "ground truth" gradient vector.

Lastly, in [9], they use a supervised loss for the counterfactual samples. The
counterfactual labels are the inverse of the topK predictions of the model by passing the
positive sample. In the context of GQA, where multi-label classification is not applicable,
the loss of the dynamic answer-assigning mechanism mentioned in the previous sections
simplifies. For a VQA pair, we assign a = 1 if the correct answer is not predicted correctly.
Conversely, if the answer is predicted correctly, we assign a = 0. This represents an
inverted labeling approach, where a = O indicates correct predictions and a = 1 indicates

incorrect predictions, referring to the dynamic answer assigning method mentioned above.

Regular Supervised Loss for Positive Samples

This loss is used for positive samples, turning the supervised method into an aug-
mentation technique. The overall loss is a weighted sum of the VQA classification losses

Lyqa and the BCE loss for positive samples Lyos.

Triplet Loss

Theoretically, positive samples are more informative for correctly answering questions
and highlighting relevant image regions, unlike negative samples where crucial regions
are obscured. In the embedding space, the goal is to position positive samples closer
to the original samples while distancing them from negative samples, as seen in Figure

5.2. This concept is mathematically captured using a self-supervised triplet loss. This



approach enhances the final visuolinguistic representation by pulling the original samples

closer to positive ones and pushing them away from negative ones.

The triplet loss, which leverages cosine similarity in the multimodal joint embedding

space, is formulated as follows:

s(a.p)
Le=EBpna [— log (—es(a,p) s )]

where p and n represent positive and negative samples respectively, a is the anchor, and
s denotes the cosine similarity function. The triplet loss above is similar to the common
triple loss used in [17] but is more robust since it normalizes the embedding space [56].

Figure 5.2 shows the triplet loss application.

Figure 5.2: Is the hair brown and thin?: yes

Is the hair brown Glove s T
and thin? N I

fffffffffffff > Triplet loss

Training objective and Inference

For all our methods, the loss function is formulated as the sum of the BCE loss with

our weighted regularization loss by a parameter jreg:

L= qua + ﬂreg X Lreg

The test set has no programs, ground truth objects, or annotations. On inference, we
can directly feed our original image sample (without any masking) to our VQA model and

get the expected answer.



5.3 Experiments

For our baseline, we used the default hyperparameters found in Bottom-Up-Top Down
Attention in the literature [14].

To construct our positive and negative samples, we filtered the important image objects
relative to the question as shown in Figure 5.1. We kept the objects with IoUpe; = 0.1

and Overlap > 0.2 with the extracted annotated ground truth relevant objects.

5.3.1 Counterfactual Learning

In this section, we used the counterfactual samples constructed from the negative
image with the important objects masked and the question.

Gradient Supervision We used the gradient supervision method proposed in [15].
We experimented with the weight hyperparameter for values A = 1,0.5,0.1. However,
we witnessed lower performance for higher values of /1 and similar performance to the

baseline for lower values.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42,545,165 49.668.15 46.96.;5 16.928.35
BCE+Gradient Sup(A = 1) UpDn 41.76 50.60 47.24 21.15
BCE+Gradient Sup(il = 0.5) UpDn 40.84 49.5 46.21 17.49
BCE+Gradient Sup(A = 0.1) UpDn 42.03 49.41 46.59 18.28

Self-Supervised Loss The self-supervised loss is used after pre-training the UpDn model
and was shown to deteriorate the results after the first epoch in the validation set for
multiple values of a.

Supervised Counterfactual Loss For our supervised counterfactual loss we followed
the methodology in [9]. We passed our positive samples through the model and obtained
the positive answers at « top-N(argsort, ¢4 (Puga(ai))). Then we selected the topK answers
for K= 1, and a™ := {a]a; € a,a; # a*} a* is gt answer set. For 1-label classification,
that is essentially O if the positive pas correctly answers the question and 1 if it fails.
The supervised loss for counterfactual samples did not improve the overall results of the

baseline model.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545,,6 49.668.12 46.96.;5 16.928.35
BCE+Counterfactual Loss(A = 1) UpDn 41.70 49.52 46.55 15.78

Based on the assumption of incompatibility between the image and question, neither of
the above methods improved the results. The above potentially indicates that our negative
samples should not be counted as counterfactual. A possible reason for that is that
there is some over-leak of information from the masked objects in the image because of

the CNN feature extraction.



5.3.2 Triplet Loss
Lambda value.

The table shows a clear trend related to tuning the hyperparameter A., which controls
the contribution of the triplet loss L. in the overall loss function. The baseline model,
UpDn, without any triplet loss, shows certain performance levels across different metrics.
Even though for higher values of 7 we witness a performance drop, there is a noticeable
performance improvement as for smaller values of f..

Starting with A. = 10, we observe a major decline in performance compared to the
baseline. This suggests that a high value of A, may overly penalize the model with
contrastive loss, leading to poorer results. As A. is decreased to 0.5 and further to
0.2, there is a gradual improvement in all metrics (Acc tail, Acc head, Acc all, Delta).
This indicates that reducing the influence of the triplet loss relative to the base VQA
classification loss (Lyg) helps in achieving better performance.

The most notable improvement is observed at A. = 0.1, where the performance across
all metrics is the best. This value of A, seems to strike an optimal balance, effectively incor-
porating the triplet loss’s regularization benefits without overwhelming the VQA model’s
primary task.

Furthermore, the reduced variance in results across different seeds with the intro-
duction of the triplet loss, especially at lower values of A., implies enhanced stability and
reliability of the model. It suggests that the model performs better on average and is more
consistent across different runs, a desirable trait in machine learning models.

We experimented with different /A values and reported the following results:

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545.,6 49.668.15 46.96.;5 16.928.3 5
Triplet(A = 0.1) UpDn | 44.097.,; 50.851.,7; 48.283.,s 15.327.;;

5.3.3 Augmentation method

Weeusede only our positive samples for training, reducing the “supervised" method to

an augmentation technique.

We used jlpos = 1 for our experiment as in [9].

We observe improvement across all metrics and significantly less variance across
seeds. In contrast to the triple method, our secondary augmentation loss decreases
relatively linearly compared to our VQA loss. Moreover, it is clear that strictly using only

augmented samples is not sufficient for training our VQA model.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545,15 49.668:12 46.96.;5 16.928.3 5
Augmented Only UpDn 36.50 48.346 43.85 15.944
BCE + Augmented UpDn 44.003.p¢ 51.01.p7; 48.346.,¢ 15.934.;5




5.3.4 Random Masking

Contrastive Learning using Random Masking.

To test the effectiveness of our framework, instead of using Customally selected masks
for important objects, we will use random masks for comparison.

Important objects consist of 18% of the total objects. Hence, our random masks are
derived from a Bernoulli distribution with P(F) = 0.82, where F is the masking of an
object.

A modest performance improvement was observed with the addition of the triplet loss,
which functions as a regularization term to our primary supervised loss; given the nature
of our experiment, where randomly masked images retain a substantial 82% of the objects,
it’s reasonable to assume that these images (our negative samples) hold considerably more
informational content than the positive samples, which only include 18% of the objects.
In a typical setting, this imbalance might lead to a degradation in performance, as the
loss function could struggle to effectively discern between positive and negative samples
due to the overwhelming presence of information in the negative samples.

However, our results do not align with this theoretical expectation, as they indicate
a slight enhancement in model performance. This suggests that the interaction between
our triplet loss (as a regularization term) and the primary supervised loss might be more
complex than initially assumed. It appears that the triplet loss is contributing positively,
yet there’s an indication that its full potential is not being harnessed. Introducing a
level of randomness in the masking process could potentially optimize the effectiveness
of this regularization approach. A randomized approach could promote a more balanced
learning process by preventing the model from becoming too reliant on specific features
of the unmasked image portions. Consequently, further exploration of various degrees
and methodologies of randomization in masking could be pivotal in fine-tuning the triplet

loss’s role in enhancing the overall learning strategy.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545.16 49.668.15 46.96.; 5 16.928.3 5
BCE+Triplet with Heur Masking UpDn 44.097.07 50.851.97 48.283.06 15.327.1,
BCE+Triplet with Random Masks UpDn 43.52.08 51.029.05 48.402.05 15.683.:¢

Augmentation with random maskings

To test the effectiveness of our masking method and augmentation loss, we will use
the same random masking mechanism with P(F) = 0.82. Interestingly, we witnessed a
significant performance improvement. The results are not discouraging since the overall
bce loss of our Customally selected augmented samples during training is relatively close
to the original bce loss. In contrast, the bce loss of the random samples is significantly
higher. Therefore, we can assume that the Custom masking mechanism is qualitatively

correct, but we should add additional randomness to the masking method.




GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545.16 49.668.15 46.96.;5 16.928.3 5
BCE+ Custom Masking UpDn 44.003.06 51.01.97 48.346.9 15.934.15
BCE+ Random Masking UpDn 44.803.,;7; 52.352.55 49.482.;,, 16.898.33

Experiments with different percentages.

The random masking method seems intuitively similar to the classic Dropout[57] tech-

nique. We observe improvements across different P(F) values, none of which surpasses
performance for P(F) = 0.82.

GQA OOD
Loss Baseline Rand.Mask% Acc tail Acc head Acc all Delta
BCE UpDn - 42,545,166 49.668.12 46.96.15 16.928.3 5
BCE+Custom UpDn - 44.003.06 51.01.97 48.346.0¢ 15.934.15
BCE+ Random UpDn 0.18 43.038.09 51.615.72 48.353:10 19.946.94
BCE+ Random UpDn 0.5 43.932:10 51.529.09 48.641.099 17.3141 3
BCE+ Random UpDn 0.82 44.803.p7 52.352.p5 49.482.,, 16.898.53

Adding randomness to the masking method.

To include randomness in our Custom masking method, we randomly choose between

a random mask with P(F) = 0.82 and our original mask for each augmented sample. The

following results suggest that combining those two methods properly could be beneficial

for better regularization.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545.16 49.668.15 46.96.; 5 16.928.3 5
BCE+Augmented+Random UpDn 44.803.07 b52.352.0g8 49.482.p4 16.898.33
BCE+Augmented+Mixed UpDn 44.52.07 52.698.35 49.589.p5 18.408.54

Reducing augmented loss.

In our following experiment, we reduce the A,,s hyperparameter to 0.5 to evaluate the

augmented loss’s importance in our framework.

GQA OOD
Loss Baseline Acc tail Acc head Acc all Delta
BCE UpDn 42.545,1 6 49.668.12 46.96.:5 16.928.35
BCE+Augmented+Random UpDn 44.803.p7; b52.352.p5 49.482.,, 16.898.33
BCE+Augmented+Random+0.5 UpDn 44,496,353 51.284.95 48.704.05 15.369.4¢




5.3.5 Final results.

The last table includes our best-performing models relative to the baseline. The first
model consists of an augmented bce loss for randomly masked images, essentially a
more fine-grained dropout. The second model contains the augmented bce loss with
random maskings and our triplet loss. The last model contains the augmented bce loss
for our positive image objects and our triplet loss. Most of the models behave similarly,
indicating that perhaps the masking process is the most important factor for improvement
in initiating specific regularization. The proposed models improve attention in our test

set, as shown in Figure 5.3.

GQA OOD
Loss Model Acc tail Acc head Acc all Delta
BCE UpDn | 42.545.1¢ 49.668.,2 46.96.15 16.928.355
BCE+Augm Rand UpDn | 44.803.07 52.352.p5 49.482.04 16.898.33
BCE+ Augm Rand +Triplet with Heur. | UpDn 45.2,; ;5 52.284.05 49.704.05 15.369.4¢
BCE+ Augm + Triplet with Heur. UpDn | 44.73.047 52.26.065 49.41.042 14.4.- o5
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Figure 5.3: Comparison of the last model’s attention maps for the image objects.






Chapter E

Discussion and Future Work

6.1 Discussion

In our thesis, we delve into the field of visual question-answering (VQA) models, focus-
ing on the impacts of various methodologies and their effectiveness in out-of-distribution
scenarios. We reimplemented multiple methods in the literature, conducted initial exper-
iments for question paraphrasing, and developed our own methodology for generalization
methods in VQA based on visual object masking. Through a comprehensive literature
review, multiple experiments, and critical analysis, we have drawn significant insights
and findings that contribute to the field of generalization in Visual Question Answering.

Literature Review and Reimplementations

Our research highlights the importance of carefully addressing language biases in vi-
sual question-answering (VQA) models. This issue is especially pronounced in ensemble
models based on biased language, which show reduced effectiveness in GQA-OOD scenar-
ios and are limited in broader applications. We should note that constructing methods
dependent on known answer distribution shifts in the test set tends to produce superfi-
cial improvements that could severely deteriorate results in different out-of-distribution
(OOD) conditions.

Our review acknowledges the potential of augmentation-based methods in VQA. How-
ever, as currently documented in the literature, significant performance gains are re-
stricted to specific augmentation strategies [10] and are not universally applicable to all
VQA tasks.

Regarding answer reranking and visual entailment [50, 11], binding the informa-
tion of question-answer pairs, enhances answer classification accuracy. However, those
methods add significant computational costs that could potentially be avoided by a more
efficient approach for combining the two linguistic representations.

Visual Question Generation

Our experiments in visual question generation showcase that trying to perturbate the
question without changing the answers resulted in suboptimal performance. Hence, for
methodologies that focus on question generation to be effective, methodologies should be
implemented that construct semantically similar question-answer pairs with different
answers in order to fully utilize the linguistic information in our data.

Masking methodology

Our extensive experimentation in visual question answering has led to several pivotal

findings. The experiments indicate that the negative samples used in our study should
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not be considered entirely counterfactual since they failed to improve results and even
deteriorated them when utilizing them in counterfactual losses. A potential reason for
that could be they potentially retain significant image information extracted through CNN
models. Therefore, the model could theoretically infer the answer even when masking
essential objects. This observation suggests a potential limitation in our approach to
constructing negative samples, which might be causing an overleak of information.

The heuristic and random masking processes have proved effective in improveming
performance in both ID and OOD settings. The augmented BCE loss, especially when
combined with random masking, functions similarly to a refined dropout method and
significantly boosts the model’s generalization capabilities. This finding underscores the
value of random masking in model training. Conversely, the heuristic masking approach
appears to aid the model in focusing more on relevant image regions, thereby improving
its attention capabilities.

Furthermore, our triplet loss methodology improves the overall results and can be
combined effectively with the augmentation approach. Although as a sole regulariza-
tion method, it does not perform as optimally as the augmentation-based methods, it
showcases the big improvement in the Delta value, which is crucial for achieving similar
performance in out-of-distribution (OOD) and in-distribution (ID) settings. However, our
experiments with counterfactual losses suggest that we might not fully utilize the triplet

loss because of potentially sub-optimal negative examples.

6.2 Future work

In the future, extensions to our work can include:

e Negative Sample Construction Improvements: Training with the counterfactual
methods for our negative did not improve overall results, indicating that the triplet
loss was not fully utilized. Our experiments could involve more fine-grained negative
images or questions for our triplet pairs. We could also experiment with masking im-
portant question tokens besides masking the image content or/and masking objects
that have the same class as our important objects. For example, regarding the VQA
sample in Figure 5.2, in the first case both the boys object regions would be masked
and in the second case masking the word “hair" would create a semantically differ-
ent Q-1 sample. Constructing “harder" negative samples could lead to more optimal
results concering both the triplet loss methodology and the counterfactual learning

based methods.

e Replacing UpDn with other task-agnostic attention-based viso-linguistic mod-
els: We could experiment with the bilinear attention models [18], which achieve
higher perforce across most vqa tasks [18, 19, 2] or similar transformers-based
models [20, 21] provided that we overcome the issue of test data leak in their pre-
training. Bilinear attention models have showcased significant improvements com-
pared to the original UpDn model as seen in [21, 18, 20] since their NXM attention

mechanism allows for a more nuanced token-object interaction. Provided that we



have enough computational resources, testing our methodologies to other agnostic
visio-linguistic models would be great form of validating our architecture agnostic

proposal for generalization.

o Creating new augmented question-answer pairs through semantic recomposi-
tion: Inspired by the reranking methods in the literature review [11, 12] and our
dissapointing results in the VQG method, a question-answer pair could contain
additional semantic information if perturbated properly. More specifically, most
question-answer pairs in VQA are included in a specific question type (f.e. what type
of) and can be deconstructed using spacy position tagger [22] and reformulated in a
way that we can create semantically similar but different Q-A pairs. Additionally, we
could also replace certain words with similar words in the glove embedding space
that are of the type, as seen in Figure 6.1, to further enhance the perturbation pro-
cess. This methodology could be achieved both by using LLMs like GPT-3 and with
a rule based system similar to the construction of several VQA datasets such as
[19] as showcased in Figure 6.1. By augmenting our dataset with similar samples
that showcase semantic differences and different answers, we could enhance the
reasoning and semantic understanding of our VQA models and prevent them from

relying on spurious language-biased correlations or skewed answer distributions.

__________________________

C 'What'ls.thls glrl,'-eatlng? A: cake

___________________________

Closest
NOUN in the
Glove
embedding
space

Is thls glrteatmg'a cake: A:Yes

C Whatisithis girédoing? A: eating]

: Who'|s eatmga cake"'A girl i/

..................

__________________

Figure 6.1: Example for rule-based perturbations based on syntactical and grammatical
recomposition.
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