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[epiindm Awortelfrc

To oyypova cuoThuata evépyelag utofdilovTon 6 GLVEYT PngloToinoT yio To Lo
o1}, AOQAAY| XU YL TTeo¢ TO TepU3dAAoY Acttoupyio. Q2oTb600, auth 1 e&EMEN exlétel
ToL NAEXTEIXG BIXTUOL OE Wil EVpElal Y XU PNPLox@dy ameth@Y, xaIoTOVTAG To EUGANMTOL OF
xuBepvoemiéoeic. Autég ol xaxdBoukeg Spac TNELOTNTES EMNEEALOUY XLPIWE T GUC THU0-
ToL TOEAXOAOUUNONG %ol EAEYYOL TV EEUTIVOV EVERYELXWY UTOO0oU®Y. 'Evag and toug
o YEUENMOELS AUTOUATIOUOUE TOV EVERYELOXMY CUCTNUATOVY Elvan 0 €AYy og popTiou-
CLYVOTNTOC (LFC), mou etvor urteuvog yia ™ Batrienom tou loluyiou evépyelag ot éva
NAEXTEIXO CUCTNUY, TEOCUPUOLOVTUS ATOUUXQUOUEVOL TNV TURUYWYT| TV EAEYYOUEVKY
yvevwntewwy. H xpoyédtnta tou LFC tov xadiotd mtpwtapyind 6toéy0 Yo Toug emitidéue-
voug. Eunveuouévn and auth tny amelit|, n tapodoo Swotey3t| ntapouctdlel Eva véo Thalolo
eMTEDWY TEOG Tactog oL avtyvebouy, evioniCouy, exTyoly xal UETELICOLY TOV avTixTU-
mo Twv xuepvoemiléceny evavtiov Tou LFC. Ta xdie eninedo, oyedidletan 1600 pla
TEOCEYYLOT PACIOUEVT] OE HOVTEAX 600 xal Uio TEOCEYYLoT BACLoUEVY) O BEBOUEVY, Ola-
HoppwvovTog €Tot €va UBEdd TAaiolo Tou augdvel TV xuBepvoaviextixdtnta Tou LEC.
To xpurrpta yioe Ty emhoy| TG xatdAANANG uevodoroyiog oe xdie eninedo xodopilovton
CUUPWVOL UE TIC TROOLUYRUPES TOU GUC THHUATOC.

To pépoc tou mpoTewouevou LPEIXOL Thawolouv Tou Pooileton e YovTéra yeNot-
vomotel xuplwg Evay ewdd TOUTO PUINUATIXGY CUOTNUATOY YVWOTOY KOG TURUTNENTES
xatdotaong. Ou oyetinée pedodohoyleg aviyveuone xoL EVIOTIOUOU YENOULOTOLO0Y Xol-
votoua (ebyn mapatnentdv ohicinong (SMOs) xou Topatnentwy Luenberger yio tnv
Tavtornoinot xuPepvoemécewy evavtiov tou LFC. To »x0plo TASOVEXTNUA qUTOY TV
uedodohoyiwy etvar 1 avoTnTd Toug var daxplvouv T xuPepvoemiiécelg and dAloug
TOTOUC EEWTEPIXDY BLOTORUY Y. DYETIXA UE TA XATOPALL aviyvevong emiécewy, Eyel
emAeyel €VOC TEOCUPUOGTIXOS GYEDLAGUOS YioL TNV EAXYLOTOTOMON TV (PeUdHOY GuV-
Yepuwv. Metd tov xodopiopd twv onudtwy LFC nou €youv ailowwiel, tpayuatonoleitot
1 TEOTEWOUEVY TEYVIXT| exTiunong enideons. Auth 1 puédodog npooeyyilel To yopoxTneL-
OTIXA TOV TAVTOTONUEVLY XUPBEPVOETIVEGEWY Y ENOHLOTOLOVTAS EVIY XUVOUQRYLO GUVOUO-
old SMO xou TaEATNENTOY oY VOGTOU EIGOBOU. LT GUVEYELX, Ol EXTUWUEVES ETLIECELS

TEOPODBOTOVVTAL GTOV TPOTEWVOUEVO OVIEXTIXO-CE-EMIETELC EAEY YO Yia TNV €LOUBETEPWON



iv

TWY EMUTTOOERY TOV XAXOBOVAWY 5000 TNELOTATWY 6T0 eCeTalouevo cUotnua. Ot mpoTel-
VOUEVES TTPOCEYYIoES EXTIUNOTNS X0 HETELOUOU TwV xuPepvoemitiéoewy nou Bacilovto
o€ mopatnENTES yenowonotoly T uébodo He yio Ty elayiotomoinom 1wy emTTOoswy
TWV EEWTEQIXMY BLUTAROY WY TNV ATOB0CY| TOUC.

O teyvixég tou mpotevduevou VBEWon mAaciou mou Bacilovton oe dedopéva €-
papuolovv mporyuévoug aiyopriuoug Badide udidnong yio Ty evioyuon tng xuPepvo-
avdextixdtnrac tou LFC. T tig avtictoryeg yedodoroyieg aviyveuong xou eviomopou,
exmoudedetan €vac autoxwdixonotntic (autoencoder) ot YEOVOCELREC TTIOU OVTLTPOGWTE-
Louv guolohoyeg xatactdoelg tou LFC. Metd tn diaduacio exnaldevong, To uovieho
umopel vou avamapdyet pe U axplBela T BEBOPEVAL EIGABOL TOU AVTIGTOLYOUY GE X0-
vovixy| Aettovpyla, eve amoTuyydvel va TeETOYEL Tov (Blo 0TdY0 %aTd TN SLdExeLor ULog
xuPepvoeniieonc. Autd To yopoxTNEIo TG Ao TA TOV AUTOXWOXOTOMNTY| XUTIAAY-
Ao Belxtn evtomiouol xuPepvoemidécewy. 2Tr cuvEyeld, éva Bodl VELPWVIXO BixTUO
(DNN) ypnotpomoleiton ylar TIC oavT{GTOLYEC TPOTEWOUEVES TPOOEYYIOELS extiunong xou
uetploouol xuPepvoemiéoewy tou PoaciCovtar oe dedopéva. To DNN exnoudedeton o€
dedouéva Tou avtixatonteilouv TN @uatohoyixn Aettoupyio Tou LFC yuo tnv extiunon
TWV VYLV ONUGTWY EAEYYOU HECW ETUAEYUEVOLY UETENOEWY Tedlou. To exmouudeuuevo
DNN eyxodictator 6tn cuvéyela 0To x€vtpo ehéyyou, pall Ue EQESRIXG XUVIALL ETLXOL-
VOV{oG TOU UETAPEEOUY TIG PETPHOELS AoINTALKY Xl To EXTHIGUEVA ohjpata pOiuong.
‘Otav evroniletan enideon oto cUoTNUA, 0 dEYWOC EAEYYOC ATOPEITTETAL TROGMEVE X0l
avtixodictoton and to mpotewvouevo DNN, emitpénovtag tny adidheintn Acttoupyio Tou
LFC oxoun xon und xufepvoemidéoeic.

[ty a&loAdYNoT TNE AmOBOONE TV GYESLUCUEVEY ETLTEDGY XUBERVOGUUVIS, TEAY-
UOTOTIOLE(TOL Lol OIS AETTOUERWY TEIQOUATLY.  ApyXd, 1) ATOTEAEOUATIXOTNTA XoL 1)
EMEXTACYWOTNTU TOV TEOTEWVOUEVRDY pedodohoylwy doxiudlovial o BLdpopa TELUUTI-
%4 oevdpla auavouevne toluthoxdtntoc. Ia tn wovtehonoinon tou LFC oe autd to
oevdpia €youy An@Oel UTOYN CPXETA TEAXTIXG YAUPUXTNELO TIXG, OTWS UT) YRUUUIXOTNTES,
Yeouuéc Swolvdeone uhniic tdone (HVDC), ypouuéc Slacivieons eréyyou @dong Hu-
clotop (TCPS), dratapoyéc Moyw avovewoiuwy tnywy evépyetag (RES) x.Am., yio v
TpocoUolwoT TN Acttoupyiog TOU UG TANNTOC O To TEaypaTIXéC cuvirixec. H amddo-
01 TOV TPOTEWOUEVKDY UEVOBOAOYIOY OE PEUAC TIX TEQIBAANOVTO BIEPELVATOL TEPUUTERW
UEOW TEYVIXWY AoYiouxol /ulixol-ce-Bedyo (SITL/HITL). ¥t ouvéyeta, n oviextixdtn-
TOL TWV TUEOVCLALOUEVWY TEOCEYYIOEMY EVaVTL SLappwy aBefatoTTwY TOU CUCTHUATOC,
OTWC 00 ToY{EC GTOUC UTOAOYIONOUS TOVY TUPUUETEWY TOU GUG TAUATOS, VopUBMOELS GUV-

Vhxee, ypovoxaducteproelc x.AT., aflohoyeiton aprduntixd. Télog, ta mpotevoueva -



Timedo xuPBepvoduuvag cuyxpivovTal ue JAAES, CUYYPOVES EPELVNTIXES UEDOOOUC YLoL Vol
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Abstract

Modern power systems undergo a continuous digitalization for a more reliable, secure, and
environmentally friendly operation. However, this advancement opens a door to a wide
range of digital threats, making electrical grids vulnerable to cyberattacks. These malicious
activities mainly affect the monitoring and control systems of smart power infrastructures.
One of the most fundamental automation of power systems is the Load Frequency Control
(LFC), which is responsible for maintaining the energy equilibrium in an electrical system by
remotely adjusting the setpoints of the regulated generators. The criticality of LFC makes it
a prime target for adversaries. Inspired by this threat, the present thesis introduces a novel set
of active protection layers that detect, locate, estimate and mitigate the impact of cyberattacks
against LFC. For each layer, both a model-based and a data-driven approach is designed,
formulating a hybrid framework that increases the cyber resilience of LFC. The criteria for
selecting the proper methodology at each layer are established according to the specifications
of the system.

The model-based layers of the proposed hybrid framework are based on a special type
of mathematical systems known as state observers. The related detection and localization
methodologies use novel pairs of sliding mode (SMOs) and Luenberger observers to identify
cyberattacks against LFC. The main benefit of these methodologies is their ability to distin-
guish cyberattacks from other types of external disturbances. Regarding the attack detection
thresholds, an adaptive design has been selected to minimize false positive alarms. After
determining which LFC signals have been corrupted, the introduced attack estimation tech-
nique takes place. This method approximates the characteristics of the identified cyberattacks
by utilizing an innovative combination of SMO and unknown input observers. The estimated
attacks are then fed to the proposed attack-resilient control to neutralize the effects of mali-
cious activities against the considered system. The developed observer-based estimation and
mitigation approaches employ an H. method to minimize the effects of external disturbances
on their performance.

The data-driven techniques of the introduced hybrid framework apply advanced deep
learning algorithms to strengthen the cyber resilience of LFC. For the corresponding detection

and localization methodologies, an autoencoder is trained on time-series that represent various
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normal LFC states. After the training process, the model can replicate a given input with high
accuracy under normal operation while it fails to achieve the same goal during a cyberattack.
This feature makes the autoencoder a proper indicator for cyberattacks. Next, a deep neural
network (DNN) is utilized for the proposed data-driven estimation and mitigation approaches.
The DNN is trained on data that reflect the normal operation of LFC to estimate the healthy
control signals through selected field measurements. The trained DNN is then deployed
in the control center, along with backup communications channels that transfer the sensor
readings and the approximated setpoints. When an attack is detected in the system, the
original control loop is temporarily discarded and replaced by the proposed DNN, allowing
the uninterrupted operation of LFC even under cyberattacks.

For the performance assessment of the designed cyber defense layers, a series of detailed
experiments is conducted. Firstly, the effectiveness and the scalability of the proposed
methodologies are tested on several use cases of growing complexity. In the LFC modeling
of these use cases, several practical features have been considered, such as nonlinearities,
high-voltage direct current (HVDC), thyristor controlled phase shifter-equipped (TCPS) tie-
lines, disturbances due to Renewable Energy Sources (RES), etc., to emulate the operation
of real-world power systems. The performance of the introduced methodologies in realistic
conditions is further investigated through software/hardware-in-the-loop techniques. Next,
the robustness of the presented approaches against various system uncertainties, such as
system parameter miscalculations, noisy settings, time delays, etc., is numerically evaluated.
Finally, the introduced cyber defense layers are compared with other, state-of-the-art works

of the research field to highlight the contribution and the innovations of the present thesis.

Keywords
Smart Grids, Cybersecurity, Cyber Resilience, Cyberattacks, Load Frequency Control,
Automatic Generation Control, False Data Injection Attacks, Sliding Mode Observers, Deep

Neural Networks, Autoencoders.



Euyopiotiec

Me v mopolou BlateBry OAOXANPOVETL 0 X0OXAOG TV OLOUXTOPIXMY UOU GTOUDMY.
(d6t600, 0 nixhog elvan €va oyua Tou (el GTO BLOLAGTATO YWEO, YEYOVOC TOU TOU &-
TUTEETEL VoL TEPLYPAPEL EMaPX™S Tar emavaopfavopeva yeyovota. Eutuyng, n (on ebvor
mo moAUTAOX0 oyfua. Etot, av gavtactolue éva x0xAo va EETURlyETOL Xou OE Wiar TET
OLAo TAOT), TOTE (61 GUVELBNTOTOLCOUUE TKS Ol LWES Uag HodlouY TEPLOGOTERO |UE OTE-
lpeg, oL omolec e uixpée, mavouoldTuneg emavolfielc Taddelovy oto dmelpo. Me tny
ehmtida, AOLTOV, W To TEVTE TEAEUTALO YPOVIX OTIOLVOWY OEV NTAV AAS EVOG UOVOTO-
Vo %x0%A0g, Vo avaBlATUTIWOW TNV 0EYIXT LOU TEOTUOT AEYOVTAS TWS 1) OAOXAARWOT
¢ Topoloug DTEBNC YE PEPVEL OE Eval VEO OTuEio TNG TPOCKTUXHG HOU OTELROELDOUG
yhfpancoc.

H povaywdtnta tou oxadnueixod x6ouou eha@eaivel 6Tay 0 0pOU0g TOU €EELVNTY
OLOTAUPOVETAL UE omoudatoug pévtopes. H oA pou tiyn ue euvénoe Hote TNy mépTa
O QUTO TOV x60Uo va TNV avoilel Sudmiata o emiPBAénovtag Kadnyntrc wou x. Nixog
Xatlnapyvplou. Q¢ eldylotn €voeln evyvouooivng, Yo Hieha vo Tov ELYUPIOTHOW
OLTTAGL, TIEWTAL YL TNV EUTLOTOGUVY) TOU TPOE TO TROGWTO O VoL aVIAdPBey TO GUYXEXPWEVO
€EEUVNTXO VEUOL XalL ETELTO 1o TO PKG TOU €LY VE OTOL OXOTAOW Tou cuvavtovoaue. H
OTOYEUPEVT xa)00YYNOT) TOU GE GLYBLAOUOS UE TNV eAeLVEpio TPOCKHTUXAG EXPEAUOTIG TOU
uou mopelye, 0dAYNoUY GTNY YEVVNOT ETCTNUOVIXOY WOEWY Yl TIg oTtoleg auovdvopo
UTERNPAVOC.

Y1 ouvéyela, Yo Hlela Vo exppdon TiIc VEQUES EUYOPIOTIEC UOU XoU OTAL UTOAOLTOL
UEAN g Teweholg emitponiig, TV Avaminedteta Kadnyrteta xa. Cristina Alcaraz xou
Tov Kodnynth x. T'edpylo Kopeé, yio tnv mohdtyun xododynor Toug xou T ONuavTL-
%€¢ oLUPOLAEC ToU Pou Taelyay xaTd TNV extévnon Tne mapovcag datelPrc. Emniong,
euy oo T Wiadtepa Tov Avaminenth Kodnynth x. Xapdhourno Kovotavtivou ot tov
Aéxtopa x. Xapdhouno WUANGXN yia TNV omob0) 1) GUUUETOY NS TOUSC TOGO GTNY TEVTOE-
A emitpony| €ETAONG TNG EVOLIUESTIC XploNg 600 X GTNY ENTUUEAY| EMTROTY eEETaoNg
e Sateinc, xardode emlong xou yior TIC YeHoLeS UTTOOELEELS xat ouPBoLAES Toug oL oTolEC
Behtlwooy onuavtixd TNy ToldtnTe TN Tapolcug dlatelPrc. Emnidov, exppdlew tny eu-

yYvwpooivn you otov Enixovpo Kodnynth x. ‘Apn-Evdyyeho Anuéa xou otov Enixoupo



Kadnynth x. Adavdoio Boukdédnuo yio tny amodoy | CUUUETOYNG TOUG OTNY ETTOHUENN
emtpoTH| e€€Taong TNG STEBNC. LUYXEXQEIEVE, TOV X. Anuéa TOV ELYUPIOTE ATO XoP-
OL8C YLt TNV EUTLOTOCUVT TOU VoL UE XAVEL UEAOC TNG epeuvnuxic opddag SmartRUE tou
gpyaotnplou Yuotnudteny Hiextomnrc Evépyetag (XHE) tov EMII, yio g NYETIXEG TOU
0e€LOTNTEC OV AMOTENOVY TNYY| EUNVEUOTC, XS XoL YLol TNV SELOTY) ETOYYEAUOTIXY
ouvepyactio Tou elyaue GAo AUTA ToL YPOVLL.

Eeywptoty| 9€on otny xapdld wou xatéyel o Egeuvntric Hassan Alhelou. O Hassan
OLOBPAUUATIOE GTIOUBNLO POAO GTNV EMGTNLOVIXT) LOU WEIUOVGT), TEAYUA Yo TOV 0Ttolo ToV
exTiu® Pohd. O Hassan, péow tng oludépxelag tou, avtihoufovotoy dusca T UEYIAn
exoOva Tou lye 0o vou Tou o emPiénovtog Kodnynthc xow tnv Yetétpene o ixpd
BrAnota yioe epéva. ‘Etot, dieuxdhuve o peydho Podud 1o emoTnuovid You €pyo oo
mhadolo Tne Topoloog SlaTeBhC.

Emumiéov, do Hlera va euyopiothow Yepud GAOUC OU TOUC GUVAOGEAPOUS Yo CU-
vepydteg otny gpeuvnTxy) oudda SmartRUE tou epyactnplov YXHE tou EMII yio tny
dpoyn cuvepyasion xon TIC EUYUPLOTES OVAUVACELS TOU HOLRUO TAXAUE OAS AUTE TOL YPOVLAL.
Yuyxexpuéva, expedlon Tic Potheg you euyoplotiec oty xo. EAévn Avkwvitou, otny
xo. Eprvn Taonopdnn xaw oty xo.  Ahedvdpo Addu yiow T omoudodor YeouUaTELXY
UTOG THELEYN O TaPELY oY XATA TNV EXTOVNOTNG TNG ToEoVcoS SlUTEENS.

O npoowmxdg You udydoc ot Yeodvia Tou dLbuxToEo0, TaEd To Yéyedog Tou, OeV
0EX0UCE YloL TNV OAoXApwoT auTthg NS dlateifric. Xeewlotay xi éva emmAéoy aTotyelo
70 omolo, xotd €val ToEddolo TEéTOo, ToAATAACIALEL UECK TNG agalpeonc: TO polpaouaL.
Ye b6ooug hotmby potpaoTixade Tt TéVTE Teheutaion (xon Oyt uévo) yedvia Ya Rdelo vo
otelhw W (EOTH ayXohlal X0 Lol GEUV UTOXAIOT).  XTOUG GUVOBOLTOPOUS, GE GGOUG
Yéooue Topéa Ayo amd Tov EqUTO UaS, PATIWS Xl TOV BEOUIE OTO TUEUXATL TOU BROUOL.
Ko otnv Kheondtpa, mou pe enéotpede 610 Baciielo Twv ypwudtwy, dyl uovo yla vo
wou Yupicel T0 0putd Qacuo ok Yo Vo Lou OElEL Xt VEEC AmOYPOOELS.

Kietvovtag, Yo fideha va suyopiotion and xapdidg tov Ilinn, tn Mogla, ™ Bif3y,
10 Xmbpo xou to 'idpyo, yio To 6Tl ou TEOGPEPAY AUTO TOU OVOUALOUUE OLXOYEVELL.
‘Olot toug pall yivave oxahi oto Uog Tou AVTEYAY WOTE Vo PTACK EYW THO XOVTE OTN
o) You avtompayudtwor. EATilw tny aydmn mou éhaPa amd autol Vo UTOpEcw VA
NV TEO0PEPw TOMATAGOWL TOG0 GTOUG (BLOUG OGO X0l GTOUC GTEVOUS oL avip®Toug,

%x0¢ XU GE GOOUG TO £YOUV TEOYUXTIXG OVAY X

Avopéac-Awpdieog Lupuoxéonc,
AdrAva, ToOhog 2024



“Fear (if unmanaged) is the path to the dark side.
Fear leads to Anger.

Anger leads to Hate.

Hate leads to Suffering.”
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Chapter 1

Introduction

1.1 Cybersecurity in Smart Grids

The growing demand for electrical energy at a global scale highlights the need for more
reliable, secure, and environmentally friendly power systems. For this purpose, both research
and industry communities in several parts of the world (e.g. U.S., E.U., China, Australia,
etc.) [3, 4], focus their efforts on “smartening” the grid, in order to effectively accommodate
the needs of all users, i.e., producers, consumers and prosumers. Smart Grids (SGs) are
electricity networks that use advanced information and communication technologies (ICT)
such as sensors, software applications, computer networks, and data analytics to provide
efficient and sustainable energy services. ICT facilitates the monitoring and control of the
power grid, which means that it can provide a better overview about the state of the grid and
regulate its operation in an optimal manner.

While ICT offers a wide range of benefits, it also exposes SGs to several critical security
challenges [5, 6]. The vulnerable spots that arise by the digital transformation of the power
grid, pave the way for different types of cyberattacks. For instance, SG uses a group
of heterogeneous communication technologies, such as ZigBee, wireless mesh networks,
cellular network communication and powerline communication [7]. Their highly meshed
structure along with the possible protocol incompatibilities can result in serious security
gaps. In addition, the operation of power systems is still heavily dependent on proprietary
and legacy technologies, such as conventional Supervisory Control and Data Acquisition
(SCADA) systems whose design did not originally account for security measures. As a
consequence, infrastructures that extensively utilize SCADA systems, such as SGs, are
exposed to numerous digital risks [8]. Moreover, securing modern power systems in terms of
cybersecurity is more challenging compared to the typical ICT-based infrastructures, due to

their strict operational requirements and their criticality level [9].
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Successful cyberattacks against Cyber-Physical Systems (CPS) have been already re-
corded, like the well-known case of the Ukrainian power system in December 2015. This
large-scale incident is extensively reported by the SANS institute, the Electricity Information
Sharing and Analysis Center (E-ISAC) and other power companies [10]. The coordinated
attack consisted of malware installation via spear phishing emails, unauthorized access and
SCADA system hijacking, which opened several circuit breakers remotely to interrupt the
electricity supply to consumers. It also involved Denial of Service (DoS) attacks on telephone
systems to prevent customers from emergency reporting to the operators. The power disrup-
tions caused by this attack approximately affected 225,000 customers. Another notorious
software, called Stuxnet, was uncovered in 2010 [11]. Stuxnet worm targeted the hosts of
specific Siemens industrial control systems that were running on Windows environment and
it mainly affected Iranian nuclear facilities [12]. For this reason, protecting SG systems from
malicious activities is currently an active research area [13], relevant for governments [5],
international organisations such as the European Union Agency for Cybersecurity (ENISA)
[6] and the National Institute of Standards and Technology (NIST) [14, 13], and the academic

community.

1.2 Cyber Resilience of Power Systems

Resilience is one of the most important attributes of the power grid as it ensures the uninter-
rupted delivery of the electrical energy. Currently, there is an extensive list of definitions for
the power system resilience, provided by international institutions and organizations [15-18].
According to [19], the majority of these definitions agree that power system resilience is
the capability of a system to endure, assimilate, and promptly recuperate from an external
catastrophic incident characterized by high impact but low probability.

As electrical systems evolve rapidly over time, new types of undesired events affect their
resilience, such as cyberattacks. Thus, it is critical to reconsider the typical concept of power
system resilience in order to include the impact these emerging incidents. To this end, the
definition of resilience provided by [19] is extended in [1] in order to include the cyber
part of SGs, establishing the attribute of cyber resilience. Based on [1], cyber resilience
is viewed as the ability of a system to preserve its operational state in the presence of
successful cyberattacks. More specifically, cyber resilience focuses on the minimization
of the cyberattack impact on power grids and the prompt recovery from these incidents.
Cyber resilience is a relatively new principle for modern power grids that has to be carefully
considered by system designers.
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To provide more insights on the term of cyber resilience, the typical power system resi-
lience curve presented in [19] is modified and adjusted in [1] for the case of cyberattacks.
This cyber resilience curve for SGs is depicted in Figure 1.1. In this graph, the evolution of
the system performance in the event of a cyberattack is illustrated. It is a highly useful tool
towards the deeper understanding of the different cyber resilience states along with their cor-
responding defensive measures, such as: robustness/resistance, resourcefulness/redundancy,
adaptive self-organization, etc. The level of each resilience state is calculated based on
selected resilience metrics, e.g. the number of customers affected or the number of residents

in a population impacted, which quantitatively express the system reliability or power quality.
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Figure 1.1 Resilience curve [1].

For a better comprehension of Figure 1.1 and the concept of cyber resilience, a detailed

analysis of the different resilience states is presented in what follows:

* Resilient state: at this state, a well-designed power system could neutralize the impact
of a launched cyberattack. Configuring a secure and intrusion tolerant grid in this
phase provides a high resilience level which makes the SG capable of preventing

unauthorized access and successful attacks.
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* Post-event degraded state: in case of a successful cyberattack, the performance of the
power system degrades; the percentage of this degradation depends on the impact of the
attack and the preventive measures that have been applied. Key resilience techniques
help reduce the impact of the attack and facilitate the progress to restoration state. For
example, redundancy provides operational flexibility to the power system by offering
additional resources. It should be noted that the duration of this state can be very short,

thus transforming the trapezoidal shape of the resilience curve to triangular.

* Restorative state: at this state, the compromised power system has managed to
mitigate the cyberattack and is gradually returning to its normal condition. Its recovery
is almost fully completed. For example, after an accomplished attack, the power grid
should modify its functionality, allocate alternative resources and optimally restore

affected components or applications.

* Post-restoration state: this is the state where the recovery process has been completed
and the power system is again operational. Nevertheless, its resilience level R;,, might
be lower than its initial value R,. Operational recovery refers to bringing the system
back into a functional state, while infrastructure recovery refers to the restoration of
the resilience level of the system to its initial value. For example, if all replicas of a
SCADA master are compromised, restoring at least one of them will make the system
operational again. However, all the replicas of the SCADA master have to be restored

in order to reach the initial resilience level of the system.

At this point, it is important to explain the meaning of the different variables depicted in
Figure 1.1:

e R,: initial resilience value,

* Rye: resilience value after a successfully completed cyberattack,
* Ryy: resilience value after attack mitigation,

* te: starting time of the cyberattack,

* tpe: end of the cyberattack,

* t;: starting time of the attack mitigation,

* tpr: end time of attack mitigation and

* tj;: starting time of infrastructure recovery.
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1.3 Cyber Resilience of Frequency Control

As mentioned in Section 1.1, ICT enables a more efficient monitoring and control of power
systems compared to conventional energy infrastructures. Among the several control mech-
anisms facilitated by ICT, load frequency control (LFC) is one of the most critical. The role
of the LFC is the preservation of the energy balance between generation and demand in
power grids to prevent any performance degradation of the system. A key indicator of energy
energy equilibrium is the deviation of frequency from its nominal value, as illustrated in Fig.
1.2. To achieve the energy balance, LFC receives frequency measurements from the power

plant, computes the control signal and sends the resulting setpoints to the generators.

B A ®
%2 2 e . 1

Figure 1.2 Frequency as indicator of energy equilibrium.

While there are multiple levels of frequency control, this study focuses on the two
most fundamental ones, namely primary control and secondary control. Primary control
is a functionality provided by the governors of generators at their local connection points
to stabilize the frequency within acceptable values. Secondary control, also known as
automatic generation control (AGC), is a remote communication mechanism responsible for
the restoration of frequency back to its nominal value. In AGC, the communication of the
physical system with its cyber layer is achieved through industrial network protocols, such as
Distributed Network Protocol version 3.0 (DNP3) [20], Inter-Control Center Communication
Protocol (ICCP) [21], etc. However, the vulnerabilities of these protocols [22], [23] expose
the LFC to numerous cybersecurity dangers and decrease its levels of cyber resilience.

There are various types of cyber threats that affect the cyber resilience of LFC. For
example, the secondary control of LFC is disabled when the system is under DoS attacks
[24] and the frequency is not restored to its nominal value. Furthermore, the LFC, as a
typical CPS, is also susceptible to a special kind of cyberattacks, different from those faced
by standard ICT systems: data integrity attacks. Data integrity attacks include false data
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injection attacks (FDIAs) [21], time-delay switching attacks (TDSAs) [25] and replay attacks
[26]. FDIAs stealthily modify the data exchanged across the communication links, TDSAs
strategically embed time delays into the LFC loop, and replay attacks send replicas of a
particular network packet stream over a certain time period. Data integrity attacks lead the
physical system to deregulation and cause financial losses to the system operator.

The significance of LFC necessitates the development of a defense-in-depth strategy
to ensure its cyber resilience [27]. Since the functionality of LFC is based on ICT, the
initial layer of this strategy can be provided through the standard information security prac-
tices. Such approaches include the installation and configuration of firewalls, authentication
mechanisms, deployment of virtual private networks (VPNs), encryption of critical data,
etc. The standard cybersecurity solutions have a proactive role and focus on preventing
adversaries from launching any type of cyberattacks. Apart from the ICT systems, LFC also
utilizes the control center of the power system, which allows the deployment of intelligent
algorithms towards the elimination of cyberattacks. This capability forms another, active
layer of cybersecurity for LFC that takes place after the successful execution of a cyberattack.
The active cybersecurity approaches are typically performed using mathematical models,
statistical techniques or data-driven algorithms. For a better comprehension, the synergy

between the preventive and active cyber defense layers of LFC is illustrated in Fig. 1.3.

. 1%t layer of cyber defense — 2" Jayer of r defense — .
Outside World ¥ i . ayer of cyber de .e >€ Smart Grid
ICT solutions Power system algorithms
L
- o
e Do
[N Y =P —_— iy TN
ﬁ ° i) el
PN : @
N§
ﬁ.\—
NN
D
Proactive Measures : Active Measures:
Firewalls, encryption, control Observers, neural networks,
access, etc. statistics, etc.

Figure 1.3 Cybersecurity layers for LFC.

The arsenal of active cybersecurity solutions for LFC is composed of the attack detection
(AD), the attack localization (ALC), the attack estimation (AE) and the attack-resilient
control (ARC) methods. More specifically, attack detection determines whether and when an
attack has been successfully launched against the power system, while attack localization

refers to the identification of the parts of the system (sensors, controllers, etc.) that are under



1.4 Literature Review 7

attack. Furthermore, attack estimation provides detailed information about the characteristics
of accomplished cyber intrusions, such as shape, magnitude, duration, etc., and is essential
for designing an attack-resilient control scheme for LFC. Finally, attack-resilient control is an
advanced stability mechanism that preserves the normal functionality of a power system even
in the presence of cyberattacks. Each of these methodologies can be applied sequentially,
starting from AD and proceeding to ALC, AE and ARC, in order to form a multi-layer
cybersecurity mechanism that can identify malicious activities and mitigate them.

If an active cyber resilience methodology for LFC is effectively applied to a specific
power system, it is not guaranteed that it will preserve its performance in more or less
complex grids. Therefore, it is necessary to examine (both theoretically and numerically)
the effectiveness of a proposed cybersecurity solution across all types of power grids, from
simplistic to more complicated ones. This necessity introduces the concept of scalability.
Scalability is defined as the applicability of a cyber resilience methodology to various types of
electrical systems, regardless of their size or complexity. Since power systems are constantly
evolving infrastructures with dynamic operating points, scalability is considered a significant
performance aspect. However, the works in the literature that study scalability are limited,
despite its criticality. For this reason, this feature is thoroughly investigated in the present

thesis.

1.4 Literature Review

1.4.1 Description & classification of related works

The importance of LFC has prompted researchers to propose various methodologies for
enhancing its cyber resilience against FDIAs. For these methods, three main categories are
identified: (i) model-based, (i1) observer-based, and (iii) data-driven approaches. In model-
based methods, algorithms that process system knowledge are usually developed to tackle the
effects of cyberattacks; observer-based techniques leverage the generated estimation errors
to provide FDIA approximation formulas and attack-resilient LFC architectures; finally,
data-driven approaches use deep learning architectures for capturing the dynamic behavior
of LFC under healthy and attack conditions in order to eliminate the FDIA impact. Based on
our literature review, we have identified that the related works can be classified into three
main categories, which are illustrated in the following figure: The aforementioned categories

are thoroughly explained in what follows:

* model-based methods: in this category, the proposed defense methods extract system

knowledge/information and properly process them in order to identify underlying
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patterns that can reveal useful insights about the attacking strategy. Some indicative
examples of this category are the use of load forecasting to approximate the correct
generator setpoints in case of cyberattack, the deployment of sophisticated Kalman fil-
ters that leverage the system modeling to estimate cyberattacks and the implementation

of statistical methods to predict the healthy behavior of the frequency control signals.

* observer-based methods: this group of research methodologies leverages a special
type of systems, called observers, to increase the cyber resilience of frequency control
in power systems. Observers can accurately estimate the state vector of the real-world
LFC systems they are designed for. From the model of the observer, a formula is
extracted to describe the behavior the estimation error, i.e. the difference between the
actual and the estimated state vector. This formula is utilized to tackle cyberattacks
against LFC and its structure depends on the objective of the introduced methodology,

e.g. detection, estimation or mitigation.

Cyber Resilience Methods
for LFC

Model-based Methods Observer-based Methods Data-driven Methods

_,"l \‘\_ 4 \ 5 -JJJ

Figure 1.4 Classification of related works.

* data-driven methods: instead of using an analytical model of the power system
frequency control, as other categories do, this type of methodologies utilizes the data
generated by the actual LFC system to actively eliminate digital risks. Data-driven
methodologies typically use historical databases, which keep track of past values of the
LFC signals, to train their models. After this learning process, the data-driven models
can determine the LFC status and acquire critical information about the compromised
signals. In specific methods, these historical databases also serve as input to the
developed data-driven models.
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1.4.2 Related works

Various intelligent control mechanisms have been developed as active cyberattack response
mechanisms for power systems and CPS in general. Particularly, the physical control model
in [28] is integrated with an additional commensurate response module to tackle setpoint
and actuator attacks, without considering attacks against sensors [29]. In [30], the feedback
control of a standard distributed energy resources (DER) unit is integrated with a sliding
mode observer to decrease the impact of cyberattacks. An attack-resilient control policy for
the energy management system is presented in [31], which focuses on preserving the stability
of the physical system during and after a cyberattack. The decentralized secure LFC scheme
that is established in [32] can eliminate the detrimental impact of complex cyberattacks. In
[33], compressed sensing techniques are applied to estimate the state of the plant during
attacks. An attack-resilient state estimator is proposed in [34] which is applied to the cruise
control of an electric, unmanned vehicle. Finally, a control method based on a recursive
filtering algorithm is implemented in [35] to tackle specific sensor attacks. This technique
estimates the states of the system by leveraging the redundant information of the controller.

Game theory is another scientific field that can provide defensive strategies for strength-
ening the cyber resilience of smart grids. To achieve this objective, game theory reveals the
optimal responses to cyberattacks based on the activities of the adversaries. More specific-
ally, a sequential game between an adversary and a SCADA administrator is formulated in
[36—38] to analyze their interactions in case of cyberattacks. Furthermore, [39] utilizes a
non-cooperative, differential game to discover the countermeasure vector against malicious
activities that stealthily compromise DER actuators. In [40], a zero-sum game is modeled to
represent the decision-making process between a sensor node and an adversary that launches
DoS attacks. A strictly competitive game is also designed in [41] which approximates the
interaction between the attacker and the defender in case of cyberattacks against power
systems state estimation. Finally, a game theory-based framework is developed in [42] that
analyzes the interaction between the controller and the adversary to mitigate the launched
FDIAs.

Reinforcement learning is another commonly used approach for the cyber resilience
enhancement of power grids. This technique is defined as the process that enables an agent
to adopt the optimal behavior by interacting with a dynamic environment via trial-and-error
[43]. To this end, a Q-learning technique is implemented in [44]. This strategy models the
importance of the communication channels in a power system to find the optimal link recovery
sequence under a limited budget. Furthermore, a Q-learning is applied in [45] to discover
an optimal link/node recovery sequence in feasible time. In [46], the optimal re-closing
time of power transmission lines after a successful cyber attack is investigated using a deep
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reinforcement learning method. A reinforcement learning method is also proposed in [47]
to maintain the cyber resilient state of an SG that uses cognitive radio network technology.
The transmitter and the receiver of this methodology follow a multi-armed bandit approach
to choose the most likely available and jamming-free communication channels in case of a
jamming attack.

Model-based approaches are extensively used for increasing the cyber resilience of power
systems and CPSs. For example, a representative linear model is developed in [48] to
provide a cyberattack detection baseline and replace the tampered system data. This model is
obtained by linearizing the Tennessee-Eastman process model [49] about the steady-state
operating conditions. Similarly, in [50], a SCADA system with software defined networking
(SDN) [51] assistance is presented, which replaces the compromised measurements with
estimated ones. For evaluation, an extension of the MiniCPS [52] is developed in order to
provide SDN functionalities for both supervisory and field networks. In the same context,
an algorithm is proposed in [53] that estimates which sensor data links have been affected
by cyberattacks. If any attack is identified, the power export deviation is accounted for the
ACE computation, otherwise an attack-mitigating state estimation program is initiated. The
performance of this algorithm is evaluated on a 37-bus power system model simulated in
PowerWorld [54]. Regarding the model-based methods developed for LFC, a representative
approach is presented in [21]. This defense mechanism uses the real-time load forecasts to
approximate LFC control signals, which replace the actual ones in case of cyberattacks. In
[55], a cyber-attack detection and mitigation platform (CDMP) is introduced, which utilizes
the forecasted data of area control error for identification and mitigation of cyberattacks. In
[56], the limitations of the Kalman filter are overcome by an input/state estimation-based
algorithm which is developed to detect and approximate measurement FDIAs in the LFC
system. Similarly, an attack-resilient frequency control scheme is introduced in [57] based
on attack detection through state estimation. For 100% renewable energy power systems, the
method designed in [58] can mitigate cyberattack impact by using a cascaded extended state
filter and a robust decision-making model.

The design of effective observer structures is a well-studied research field and as a result,
several observer-based techniques have been proposed for the cyber resilience enhancement
of power systems. Particularly, a robust detection algorithm for SGs is developed in [59]
using an adaptive observer that takes the stealthy characteristics of the bias load injection
attack into account. Similarly, an unknown input interval observer-based detection and
isolation scheme for FDIAs against the monitoring and control of SGs is introduced in
[60]. In [61], an observer-based predictive control mechanism for grid-interactive inverters

is presented with intrusion detection capabilities. Furthermore, a decentralized detection
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and mitigation algorithm based on a state and attack observer is introduced in [62] for
the interconnected power system subject to multi-area multichannel FDIAs. Regarding
microgrids (MGs), an unknown input observer is deployed in [63] to detect and estimate
cyberattacks against the secondary frequency control loop. Moreover, two typical types
of observer-based schemes are proposed in [64] to tackle the attack detection problem for
distributed DC MG systems. Regarding wind power systems, an observed-based dynamic
event-triggered controller is presented in [65] for multi-area wind farms under dual alterable
aperiodic DoS attacks. Furthermore, an adaptive observer-based resilient control method for
the cyber links of wind turbines is developed in [66] to defend against time-delay attacks.
Observer-based techniques have been also proposed for increasing the cyber resilience of
other types of CPSs. For example, an FDIA-resilient control mechanism is designed in [67]
for a networked control system using a Kalman filter as an observer. Additionally, an adaptive
sliding mode observer is developed in [68] to establish a resilient control for linear CPSs
under compromised measurements and control commands. Furthermore, an event-triggered,
observer-based control scheme is presented in [69] to detect DoS attacks in CPSs. Since
LFC is a critical part of the power systems automation, observer-based techniques have been
also adopted for the strengthening of its cyber resilience. For example, a robust adaptive
observer is presented in [70] for concurrent estimation of the LFC system states and FDIAs.
A Luenberger observer enhanced by the extended Kalman filter is proposed in [71] and a
combination of switching impulsive observer and switching state observer is introduced
in [72] for cyberattack estimation and mitigation in LFC. Furthermore, an unknown input
observer is designed in [73] that forms an attack-resilient control architecture for LFC.
Data-driven approaches are a potential solution when the LFC modeling is highly com-
plex and it is difficult to find an adequate system representation. More specifically, a long
short-term memory (LSTM) neural network is trained in [74], that can reconstruct the healthy
LFC control signals during FDIAs, based on data extracted under normal system conditions.
However, the effectiveness of this approach is not always guaranteed since the load disturb-
ances are omitted in the theoretical system modeling. A similar approach is followed in [75];
an LSTM neural network is designed to tackle the FDIA impact on the LFC but in this case,
both load disturbances and system nonlinearities are considered. In [76], a combination of a
deep autoencoder and an extreme learning machine is employed to estimate the data missing
by DoS attacks, preserving the operational state of LFC. This method is evaluated on the
single, two and three area LFC models provided in [77] using MATLAB/Simulink. Besides
LFC, data-driven methods also offer cyber resilience enhancement to other power systems

and CPS applications. For example, a data clearing method based on conditional deep belief
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networks is investigated in [78] as a real time cyberattack response response. This work is
also expanded in [79] to detect FDIAs.

1.4.3 Limitations of related works

Due to the significance of modern power grids and their applications, there is ongoing
academic work in the investigated research field. So far, several issues of this research field
have been effectively addressed by existing works; each category of these related works
contributes in its own, unique way to the research field. However, there are still multiple
open problems to be resolved, which are either caused by the inherent characteristics of the
problem or introduced by the categories of the proposed methodologies. The contributions of
the existing works in the research field along with the open problems are listed per category

in what follows as advantages and limitations, respectively:

* model-based methods: the advantages of model-based methods is that they can be
easily implemented, as long as an effective model has been developed, and their low
computational requirements. However, they heavily depend on the model that has
been designed, which significantly determines their overall performance; defining an
accurate system model is a complicated task due to simplifications and abstractions that
have to be made. Furthermore, for simplicity, the methodologies of this category do not
consider other types of uncertainties, besides cyberattacks. Finally, the methodologies
of this category do not consider practical features of LFC and they are not validated

under real-world conditions.

* observer-based methods: this category has the same advantages with model-based
defense strategies and additionally, it can effectively distinguish cyberattacks from other
types of uncertainties, such as load disturbances, RES generation, etc. Nevertheless,
the performance of these methodologies depend on the modeling of the LFC system
and could be potentially affected if the system is not properly defined or if it is modified.
Furthermore, the methodologies of this category do not utilize practical features of

LFC and they are not evaluated in a realistic environment.

* data-driven methods: the majority of the disadvantages of model-based and observer-
based methods are overcome by the deployment of data-driven methods. Since data-
driven algorithms utilize data to approximate both the normal and unhealthy behavior
of the actual LFC system, they are model-agnostic and their performance is not
affected by the accuracy of any developed system representation. Moreover, these

algorithms can reveal the underlying system dynamics and hence, they can distinguish
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cyberattacks from other types of uncertainties. However, their training procedure is
typically computationally intensive and thus, they could be an infeasible solution in
terms of resources. Moreover, the practicality of these methodologies is questioned
because several practical features of LFC are omitted and they are not evaluated in a

real-world testbed.

1.5 Proposed Hybrid Framework & Thesis Contribution
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Figure 1.5 Diagram of the hybrid framework proposed in this thesis.

The previous literature review highlighted the research challenges in enhancing the cyber
resilience of LFC, presented several existing solutions and determined the open problems
of the field. Inspired by these problems, a hybrid framework is proposed in this thesis to
effectively address the identified research gaps. As illustrated in Fig. 1.5, the introduced
framework combines the four active cyber defense layers presented in Section 1.3. This
diagram indicates that the internal layers of the framework are deployed in a cascading way,
where the output of a specific cyber defense technique is fed to input of the next one. The
synergy between the layers of the framework provides a holistic protection to LFC against
successful digital intrusions. For each of these techniques, two algorithms are developed:
one that utilizes a novel observer design and another that employs a deep learning model.
The configuration of the green switches in Fig. 1.5 determine if the observer-based or the

data-driven approach will be used at each cyber defense layer. The various combinations that



14 Introduction

can be created allow the system operator to leverage the benefits of both cyber resilience
categories. Furthermore, a customized version of the framework is assembled for each use
case, taking into account the specific requirements of the LFC system to which it is applied.
The functionality of each cyber resilience algorithm designed in this thesis is thoroughly
discussed in Chapters 4-6.

As explained earlier, the objective of the proposed framework is to address the open
problems of the investigated research field. Therefore, the novelties of this thesis can be
clearly determined by studying these issues. The key contributions are summarized in what

follows:

* The main contribution of the thesis is that it combines the advantages of two standard
cyber resilience categories, i.e. observer-based and data-driven, to overcome their
common limitations. More specifically, the introduced methodologies are model-
independent due to their area-wise design, can distinguish cyberattacks from other
types of external disturbances, have low computational requirements, are applicable
to LFC systems with various practical features (nonlinearities, RES, HVDC/TCPS-
equipped links, etc.) and are tested on Software/Hardware-in-the-Loop simulations

that mimic real-world conditions.

* In the literature, there are several types of observers that have been proposed for
strengthening the cyber resilience of LFC, such as unknown input observer, robust
adaptive observer, etc. In this thesis though, an observer design is utilized that has never
been applied to the investigated research field before, particularly the sliding-mode
observer. Since it is the first time that this model is deployed to protect LFC from
cyberattacks, the presented methodologies are considered innovative. This is a major

contribution regarding the observer-based part of the introduced framework.

* The proposed data-driven attack detection method utilizes an autoencoder architecture
based on DNNs. This variant is applied for the first time in LFC and its lightweight
implementation enables the autoencoder to continuously learn new normal LFC states
during its online operation, unlike similar works. Moreover, the introduced data-driven
attack recovery methodology estimates the healthy control signals of LFC during
cyberattacks in an innovative way. Therefore, the data-driven part of the proposed

framework offers a novel set of cyber resilience techniques for LFC.

* Based on the theoretical and experimental results, the proposed framework is scalable
to large power systems, unlike other methodologies that do not explore this aspect.
The introduced methodologies are developed as area-wise techniques in order to be
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unaffected by an increase (or decrease) in the number of power-areas (control-areas).
The experimental results also indicate that the proposed framework can be successfully
applied into a wide range of frequency control systems, varying from single area
systems to multi-area topologies.

* The sensitivity of the introduced framework against several types of uncertainties is
studied in depth, both theoretically and experimentally. Such uncertainties include
the inaccuracies in the computation of the LFC parameters, the noisy environment
of real-world power systems and the time delays in the data transferring caused by
the deficiencies of the communication mediums. The results verify the robustness of
the proposed approach against these unpredictable factors, which are difficult to be
incorporated into the model of LFC.






Chapter 2
Background

This chapter provides the necessary theoretical background of the research problem addressed
in this thesis and the tools that are employed to mitigate it. It begins with an in depth-analysis
of state observers, which serve as the cornerstone of the observer-based part of the proposed
framework. Following this, the chapter introduces the deep learning algorithms utilized
by the data-driven part of the framework, providing a concise yet comprehensive overview
of their role and functionality. Finally, the aspect of cybersecurity is investigated from the
viewpoint of modern power systems to offer critical insights into the problem that has to be
tackled.

2.1 Observers

The effective monitoring and control of power systems requires accurate information about
the state variables of the grid [80]. However, measuring all the system variables is practically
infeasible and highly expensive, especially for large power systems. Another way of achieving
effective power system automation is by using estimated measurements instead of the actual
ones. The state variables of a system can be estimated through another type of dynamical
system called observers [81]. Observers utilize mathematical models and measured data to
constantly provide accurate and reliable information about the internal states of the system,
even in the presence of disturbances, unmeasured variables, or other types of uncertainties.
They can be leveraged to enhance the performance of the system by enabling fault diagnosis
and sophisticated control strategies. Observers can be designed either for continuous-time
systems or discrete-time systems. Due to the similar design processes between them, this
study is focused on the first ones.

The typical structure of observers is illustrated in Fig. 2.1. This figure sheds insight on

their functionality, which can be summarized as follows: firstly, the observer receives the
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input u(r) € R™ and the output y(z) € R” of the given system as measured data. Then, these
measurements are fed to a mathematical model which is developed based on the knowledge
of the system dynamics. To ensure the existence of this information, it is common practice to
assume that the state-space representation matrices A € R"*”". B € R™"™ C € RP*" D € RP*™
of the given system are known. Finally, the filter resulting from the designed observer
produces an estimation of the internal state vector £(¢) € R” of the given system.

When an observer starts operating, it is reasonable to provide inaccurate estimations
due to the initial conditions. However, the performance of the observer is expected to be
improved over time. This behavior can be sufficiently captured by the estimation error term,
which is the difference between the actual state vector and the estimated one. Formally,
this error is defined as e(r) = x(r) — £(z). A designed observer exists if it is proven that its
estimation error is asymptotically stable. Therefore, the estimation error determines whether
an observer design process has been successful or not, typically following the next steps:

e(t) = x(1) —£(t) = é(t) = 5(r) —£(t) = ... = é(r) = Qelt),

where Q € R™"_If Q is a Hurwitz matrix, then e(¢) — 0 as t — oo.

x(t)

4

u(t) > y(t)

b 4

L J

Observer

v

X(t)

Figure 2.1 Typical observer structure.

Observers can be categorized according to their mathematical model. Each mathematical
model serves a different purpose, e.g. simplicity, robustness, accuracy. In the present thesis,
three major observer categories are employed for the design of the proposed cyber defense

layers. A brief introduction to these observers is presented in the following subsections.
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2.1.1 Luenberger observer

The simplest observer type is the Luenberger observer [82]. The mathematical model of this
observer combines the matrices of the tracked system along with a correction term between
the measured and the estimated output. It is typically used for linear, time invariant dynamic
systems which are modeled by the next state-space representation:

(1) = Ax(t) + Bu(r) @2.1)
y(t) = Cx(t) + Du(r).

The structure of the full-state Luenberger observer is described by the following dynamic

system:
£(t) = A%(t) + Bu(t) + L(y(t) — $(1))

(1) = Cx(t) + Du(t),

where L € R"™ is the gain matrix of the observer.

The resulting estimation error has the following form:

e(t)=x(t)—x(t) = eé(t) =x(t) —x(t) =
= é(t) = Ax(t) +Bu(t) — A%(t) — Bu(t) — Ly(t) — Ly(t) =
= 6(t) = Ax(t) — £(1)] —Ly(r) + LY(t) =
= ¢é(r) = A[x(r) — £(t)] —LCx(t) — LDu(t) + LCX(t) + LDu(t) =
= 6(t) = Ax(t) — £(1)] —LC [x(t) — £(1)] =
= ¢é(t) = (A—LC)e(t). (2.2)

Eq. (2.2) yields that the estimation error can be viewed as an autonomous dynamical system
described by the A — LC matrix. According to system theory, if A — LC is Hurwitz, then the
estimation error is asymptotically stable. In other words, if the gain matrix L is chosen so
that the eigenvalues of A — LC are strictly in the left-half of the complex plane, then the error
equation will decay to zero over time. Therefore, with a proper choice of L, the Luenberger

observer can effectively estimate the states of system (2.1).

2.1.2 Unknown input observer

The model of (2.1) can adequately describe the behavior of several linear dynamic systems.
However, the majority of practical systems face different kinds of disturbances or uncer-
tainties which are not reflected by the model of system (2.1). These uncertainties can be
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represented by an unknown disturbance term Ed(t), which is added to system (2.1) as:

x(t) = Ax(t) +Bu(t) + Ed(t)
y(t) = Cx(t),

(2.3)

where d(7) € R is the unknown input or disturbance vector and E € R"*" is the unknown
input distribution matrix.

While the standard structure of the Luenberger observer works effectively for linear
dynamic systems, it falls short for systems expressed by (2.3), which are subjected to
disturbances. Particularly, the resulting estimation error between a Luenberger observer and
system (2.3) is affected by the disturbance term Ed(¢) and hence, it cannot converge to zero.
To tackle this issue, multiple observer designs have been proposed in the literature, including
the unknown input observer (UIO) [83] covered in this subsection.

The UIO design process aims to decouple the resulting estimation error from the unknown
input signal. This can be achieved by properly selecting the observer matrices, as explained
later in this subsection. The structure for a full-order UIO is described by the following

dynamic system:
w(t) = Fw(t) + TBu(t) + Ky(t)

(1) = w(t) + Hy(1),
where w(r) is the intermediate variable and F,T,K, H are the desired observer matrices. For
further comprehension, the block diagram of the UIO is shown in Fig. 2.2. The decoupling
procedure of the disturbance term will be better illustrated by computing the estimation error

e(t), as follows:

e(t) =x(t) —x(t) = é(t) = x(t) — £(t) =
= ¢é(t) = Ax(t) +Bu(t) + Ed(t) —w(t) — ( ) =
= ¢(r) = Ax(t) + Bu(t) + Ed(t) — Fw(r) — TBu(t) — Ky(t) — HC(Ax(r) + Bu(r) + Ed(t) ) =
= ¢é(t) = (A—HCA—KC)e(t)+ [F — m HCA— K C)]w(t) +

+ [Ky — (A—HCA — K\C)]y(t) + [T — (I — HC)|Bu(t) + (HC — I)Ed(¢).
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If the F, T, K, H matrices are selected so that the following conditions:

F=A—-HCA-KC

K, =FH
T=HC-I
(HC—I)E =0

are satisfied, then the estimation error is simplified as
é(t) = Fe(t). (2.4)

The error dynamics that resulted from the UIO are independent of the disturbance terms
E and d(t), as indicated by Eq. (2.4). Therefore, the desired decoupling of the state estimator
from the unknown disturbance inputs has been achieved. Furthermore, if F is a stable matrix,
then e(¢) will approach zero asymptotically, according to the Lyapunov stability theory. This
yields that the UIO can effectively estimate the states of system (2.3), despite the presence of

disturbances and without any a priori knowledge about the unknown inputs.
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Figure 2.2 Structure of UIO [2].

2.1.3 Sliding mode observer

The types of the observers that have been discussed so far are typically designed for linear

systems and may not perform optimally for systems with high uncertainties. Furthermore,
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there are certain applications where the performance and robustness of the aforementioned
observers do not meet the necessary requirements [84]. These limitations have inspired
researchers to investigate other types of observers, such as sliding mode observers, which are
presented in this subsection. The main advantage of SMOs is that they can provide accurate
state estimations even in the presence of multiple uncertainties, such as nonlinearities,
modeling errors, noise, etc. The majority of real-world dynamical systems includes several
nonlinearities which are modeled as an extra term in (2.1).

The basic idea behind a sliding mode observer is to create a sliding surface where the
estimated states will converge to, regardless of the initial conditions or uncertainties in the
system [85]. The observer uses the system dynamics and the available measurements to
update the estimated states and drive them towards the desired surface by sliding along it. The
sliding surface is a mathematical construct defined in the state space. It is designed such that
its derivative satisfies certain conditions while the updating law determines how the estimated
states are updated. Additionally, the sliding surface provides formulas to reconstruct the
system uncertainties.

A detailed analysis about the SMO design process exceeds the scope of this thesis, which
serves only as an introductory point to this topic. For this reason, the reader may refer to
[86] for more information. For the sake of completeness, the SMO design for a simple,
linear dynamic system will be briefly presented. In sliding mode approaches, a coordinate
transformation is typically applied before the observer design process. This technique is used
for decoupling the uncertainties of the system and simplifying the corresponding model. For
N
C

and the submatrix N, € R"*(*~P) spans the null-space of C. Assuming the N,x(r) = x; (), it

. xl(t)
x(t) =z(t) = [y(t)] :

After applying the above transformation to (2.1), the newly transformed system is derived

the simple case of system (2.1), a proper change of coordinates is the z+— Tx where T =

1s obtained:

Cc

C

T =

]Zf] = Tx(t) =

as:

x(t) = Ax(t) + Bu(t) = Tx(t) = TAx(t) + TBu(t) =
A A [x(2) Bl
o) [0

= 3(t) = TAT 'z(t) + TBu(r) = =
Ay Axp

X1 (l‘) :Anxl(t) —|—A12y(t) —l—Blu(l‘)

y(t) =Ao1x1(t) + A2y (t) + Bou(t).
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The observer design based on the sliding mode approach that Utkin proposed [86] for the

transformed system (2.5) has the following form:

)él(t) :Allfl([) +A12)7(t) —|—Blu(t) +Lv

P(t) = A %1 (1) +ApP(t) + Bou(t) — v,

where (£], ) represent the state estimations, L € R(""P)*P is a gain matrix and v; =
Msgn($; —y;) where M € R,
The estimation errors are defined as e (f) = £; —x; and e, () = § —y. From systems (2.1)

and (2.5), the resulting estimation error dynamics are obtained as:

él (l) =A11€1(l) —I—Alzey(l) +Lv,

éy(t) =Ajse (l‘) —|—A22€y(l) — V.

It can be proven [86] that, with a proper choice of L, an ideal sliding motion take places
on the surface {(ey,ey) : e, = 0} after some finite time and the corresponding sliding mode
dynamics represent a stable system. Therefore, the estimated states generated by the SMO
can track the real states asymptotically. The form of the SMO and the type of the coordinate
transformation are adjusted according to the model of the system. In this way, the effects
of the system uncertainties on the estimator are eliminated and the system states can be

effectively approximated.

2.2 Deep Learning Models

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on the de-
velopment of algorithms that allow computers to take actions based on data [87]. Rather
than being explicitly programmed to perform a specific task, ML models are designed to
learn patterns and relationships from data and make decisions or predictions autonomously.
Typical paradigms of ML algorithms are the decision trees, random forests, support vector
machines, K-nearest neighbors, naive bayes and neural networks. The process of ML model

development typically involves the following steps:

1. Data Collection: Gathering relevant data from various sources. This includes ex-

amples, observations or measurements of the task to be solved.
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2. Data Preprocessing: Cleaning the collected data and preparing them for usage. This
involves tasks such as removing noise, handling missing values and normalizing or

scaling the data.

3. Feature Engineering: Selecting or extracting representative features from the pre-
processed data that can help the ML algorithm learn patterns and make accurate
predictions. Feature engineering is crucial for improving the performance of ML

models.

4. Model Selection: Choosing an appropriate ML model based on the nature of the
problem and the available data. Common types of ML algorithms include supervised

learning, unsupervised learning and reinforcement learning.

5. Model Training: Training the selected ML model on the prepared data to learn patterns
and relationships. During training, the model adjusts its parameters based on the input

data to minimize the produced errors and maximize its performance.

6. Evaluation: Assessing the performance of the trained model using evaluation metrics
and techniques such as cross-validation. This step helps determine how well the model

generalizes to new, unseen data.

Deep learning is a subset of ML that involves algorithms and models inspired by the
structure and function of the human brain [88], called artificial neural networks. What
distinguishes deep learning from traditional ML algorithms is its capability to automatically
learn representations of data in a hierarchical manner. The term “deep” refers to the mul-
tiple layers of neurons that are typically present in these types of neural networks. These
hierarchies enable deep learning models to extract intricate features from raw data. Deep
learning algorithms utilize large amounts of labeled data to train neural networks, adjusting
the connections between neurons through a process called backpropagation to minimize the
produced errors and improve accuracy of the model. In what follows, the deep learning

architectures that are utilized in this thesis are analyzed in detail.

2.2.1 Deep neural networks

Deep neural networks (DNNs) are computing systems of artificial intelligence that are able to
recognize underlying relationships in a set of data by emulating the operation of the human
brain [89]. They are composed of multiple nodes, also called as neurons, which are grouped

in multiple, parallel layers. These neurons are connected by links in a forward direction, as
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shown in Fig. 2.3. The output of each neuron is computed as:

n
¢ :f<b+ inwi>7
n=1

where x; represents an input of the neuron, w; is the weight of the corresponding input x;, b is
the bias of the neuron, f is the activation function and 7 is the number of the inputs of the
neuron. The goal is to compute the best weights and biases for all neurons based on the given
data and a selected error function. This is achieved through the backpropagation algorithm
[90], a method that calculates the gradient of the error function with respect to the weights of
the neural network. So far, DNNs have successfully solved various types of problems and
especially, regressions problems.
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Figure 2.3 Deep feedforward neural network architecture.
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2.2.2 Autoencoders

The autoencoder is a special type of neural networks whose purpose is to provide an accurate
replica of the given input to its output [91]. For example, the trained autoencoder of the
paradigm illustrated in Fig. 2.4 copies the input images at its output with high precision. To
achieve this, the autoencoder compresses the input data into a lower-dimensional code and
then uses it to reconstruct the given input. These actions are performed separately by the
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three dedicated components of the autoencoder, i.e. the encoder, the code and the decoder.

The aforementioned components are briefly described in what follows:

* Encoder: this module is composed of consecutive neural network layers of decreasing
size, where each layer creates a small mapping between the input data and compressed,
lower-dimensional spaces. In this way, the network is forced to learn the most repres-
entative features of the input data and store them at its output, namely the code of the
autoencoder.

* Code: it is a representative summary of the input, also called as latent-space repres-
entation. The code encapsulates the most representative features of the input into a
compressed version. The size of the code is a hyperparameter that determines the
amount of the information that will be lost by the compression process.

* Decoder: this component is the mirror image of the encoder and thus, it performs
the opposite operation. Within the decoder, the compressed information of the code
is passed to a neural network with the inverse architecture of the model used in the
encoder. In this way, the encoded message in the latent-space is decompressed and the
original input is reconstructed with high accuracy.

Autoencoder
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Figure 2.4 Functionality of an autoencoder.

Without loss of generality, the functionality of an autoencoder built with DNNs is

mathematically formulated in the remainder of this section. More specifically, assume that a
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multivariate dataset x = {x,x2,...,X,} is given, where n is the total number of input features.
Then, the processes of the encoder and the decoder are formally expressed as:

e:x— 2 fo(x,6,)
0: % —X%: falx,0y),

where € and 0 denote the encoding and decoding mappings, respectively, 2 is the minimum
latent-space of the input features, f, and f; represent the nonlinear functions of the encoder
and the decoder, respectively, while 6, = {W,,b,} and 6, = {W,,b,} reflect the weight and
bias matrices of the DNNs utilized for the encoder and decoder, respectively, Considering
that We;, be;,Wa, and by; (j = 1,2,.. ., k) refer to the weights and biases of the corresponding

jth neural network layer, the nonlinear functions of the autoencoder are obtained as:

Je= (Pk( .. ¢2(W€2¢1(W61x+b€1) +be2) +bek>
fa= O ( . 02 (Wa, 01 (Wax+bga,) +bay) ---+bdk),

fo= k(o 92 (West (Werx-be, ) bes) o+ e, )
fd = ¢k( .. ¢2 (Wd2¢1 (Wd1X+bd1) +bd2) Ce +bdk)7

where ¢;(-) is the activation function of the jth layer. To learn the identity function, the
autoencoder computes the 6, and 6 sets that minimize its reconstruction error e = x — %,
which is the difference between the input and output data. This is achieved by solving the
next optimization problem:

n
{6.,6;} = aregrélinllx—fllz = argminy _[|x; — fa(fe(xi, 6.), 64l |2.
e,Yd

6676(1 1:1

The accuracy of the autoencoder is evaluated through its reconstruction error. The model per-
formance can be improved by stacking multiple layers of neurons that enable the autoencoder

to learn higher-level features of the given data.

2.3 Cybersecurity Objectives

The main cybersecurity objectives when designing ICT-based systems are the confidentiality,
integrity and availability. These objectives are also known as the "CIA triad" and are

illustrated in Fig. 2.5. The CIA triad defines which system characteristics does a cybersecurity
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mechanism enhance or oppositely, which system features are exposed to cyber risks. This
triad is a foundational concept in cybersecurity which helps organizations and companies to
maintain a balance between the functionality and cyber resilience of a designed system. It
is also important to note that the CIA triad is interrelated and an impact on one aspect may
affect the others. Therefore, there are trade-offs between the satisfaction of a cybersecurity
objective over another, which is an aspect that cybersecurity designers need to carefully
consider.

For a better understanding on these cybersecurity objectives, each component of the CIA

triad is briefly explained in what follows:

* Availability: ensures that data and services are accessible when needed and focuses on
preventing disruptions or downtimes. Cybersecurity measures aim to offer protection
against DoS attacks and other incidents that could render data and services unavailable.
Redundancy, failover mechanisms, and disaster recovery plans are commonly used
to maintain availability. Without proper availability, critical services can become

inaccessible, leading to productivity losses or service disruptions.

* Integrity: refers to the accuracy and trustworthiness of the data. It ensures that inform-
ation remains unaffected by unauthorized parties and is only modified by authorized
and documented processes. Maintaining data integrity is essential to prevent data cor-
ruption, tampering and manipulation. Techniques like data hashing, checksums, and
digital signatures are employed to ensure the integrity of data. A breach of data integrity

can result in the dissemination of inaccurate information or system malfunctions.

* Confidentiality: focuses on protecting the exchanged information from unauthorized
access. It ensures that data is only accessible to those who have the appropriate
permissions or privileges. This triad aspect is crucial for protecting sensitive and private
information. In practice, measures like access controls, encryption, and authentication
are used to maintain confidentiality. Breaches in confidentiality can lead to data leaks,

privacy violations, and security incidents.

2.4 Location of Cyberattacks

In typical computer networks, such as corporate database systems, web servers, etc., the
primary cybersecurity concerns are related to maintaining the privacy of data and ensuring
uninterrupted access. For example, adversaries usually attempt to steal the information stored
in the networked database system of a bank or disrupt the normal operation of a web server

to demand a ransom. Therefore, the cybersecurity objectives that are threatened in this case
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are the confidentiality and availability. In case of power grids, their parts that are exposed
to cyber risks are the monitoring and control systems, since they utilize communication
infrastructures along with software/hardware applications. Cyberattackers aim for either
modifying or blocking the normal data transfer of the automation systems to degrade the
stability of the power system. Hence, the main cybersecurity objectives that are in jeopardy,

regarding power systems, are the integrity and availability.

CONFIDENTIALITY

INFORMATION
SECURITY 3

AVAILABILITY

Figure 2.5 Cybersecurity objectives

Analyzing the distinct components of a remote automation system facilitates the iden-
tification of the vulnerable points across a power grid in terms of cybersecurity [92]. For
this reason, the standard control loop of a power system is depicted in Figure 2.6. Building
upon this illustration, the next paragraphs provide a detailed breakdown of the power system

components susceptible to digital threats:

* Sensors: they are field devices that periodically measure critical variables of the
physical system. Typically, they deployed in a dedicated hardware and utilize a

lightweight software environment for configuration.

* Measurement Channels: they are communications channels that are responsible for
the transfer of the measurements from the field devices to the control center. Their
implementation depends on the application that are deigned for and the architecture of

the utilized communication protocol.

* Control Center: it is the cornerstone of an automation system. The control center

receives the field measurements and process the accordingly in order to generate. The
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applications that receive and the control center input are software applications that run

a deisgned algorithm.

* Control Command Channels: they are communications channels that are responsible
for the transfer of the control command from the control center to the power plant.

Their implementation is similar to the measurement channels.

* Actuators: they are devices that convert control signals or commands into physical
actions or movements within the power system. Actuators are typically implemented
as mechanical, hydraulic or electronic devices.

Actuators Power System ———< Sensors

Figure 2.6 Automation in power systems.

2.5 Types of Cyberattacks

In this section, the most critical types of cyberattacks against analyzed in detail and practically
modelled.

2.5.1 Denial-of-Service attacks

In a computer network, the primary objective of a Denial-of-Service (DoS) attack is to make
the delivered data or service unavailable to its legitimate users [14]. This is typically achieved
by exploiting the cyber vulnerabilities of a computer or network system in order to gain access
to a critical infrastructure. Then, the different parts of the computer network are flooded with

an excessive amount of data, traffic or requests to saturate all the available resources of the
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system [93]. In this way, the overall performance of the system is deteriorated, becoming
unable to provide the intended data or services. This results in a severe operational and
financial impact on both organizations and individuals.

Since LFC system uses a remote communication network to regulate the generation of a
power system, it is directly threatened by DoS cyberattacks. DoS attacks can be launched
against all the communication parts of the LFC, namely sensors, interconnection links and
control center applications [24]. When the sensors of the LFC or their communications
channels suffer from a DoS attack, the control center cannot receive the frequency and
the tie-line power flow measurements to calculate the generator setpoint. Similarly, if a
DoS attack has been successfully launched against the control center, the actuators or their
interconnection links, the calculated setpoints cannot be transferred to the their generators.
Therefore, the secondary control of LFC is practically deactivated and the power system
operates only with its primary frequency control [94]. As a result, the frequency of the
system cannot be stabilized to its nominal value, becoming completely dependent to the
external disturbances, such as load or Renewable Energy Sources (RES) variations.

During DoS attacks, the standard state-space representation of the LFC system becomes

as follows:
x(t) =Ax(t) +J¢(x,1) + Bu,(t) + Ed(t)

y(t) = Cx(1),

where u), is the input of the LFC that is regulated only by the primary frequency control

(2.6)

mechanism of the power system. The form of the u,, can be easily derived by the dynamics
of the LFC.

2.5.2 Time-delay attacks

To preserve the stability of the grid, the measurements required for the operation of the
LFC and the control commands issued by this mechanism have to be exchanged in a timely
manner. The occurrence of small time delays due to the limitations in the computer and
network resources deployed for the LFC, is a natural event and their impact can be easily
eliminated by the typical control schemes. However, when substantial amounts of time delays
are deliberately injected across the LFC loop by adversaries, the stability of the system is
significantly degraded [95]. If the setpoints of the generators are not computed or transferred
promptly, the system frequency fails to converge to its scheduled value and demonstrates
large fluctuations. Therefore, a new type of cyber threat arises for LFC (and cyber-physical

systems (CPSs) in general), namely time-delay attacks (TDAs) [96]. TDAs have severe
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consequences on the performance of LFC as they can stealthily affect its normal operation or
lead to power disruptions [97].

When the LFC system suffers from TDAs, its original state-space representation is
converted into the following form [25, 98, 99]:

x(t) = Ax(1) + A*x(t — t4(1))+J ¢ (x,1) + Bu(t) + Ed(r)

y(t) = Cx(1),

2.7)

where 7, is the time-delay function that is used by the adversary. 7; can have the form of a

constant, linear, random, etc. function.

2.5.3 False data injections attacks

Another digital threat against the integrity of the data exchanged across the LFC loop are the
false data injection attacks (FDIAs) [100]. If adversaries have gained unauthorized access
into a part of the communication system of LFC, they can manipulate the data encapsulated
within the transmitted network packets [101]. FDIAs can maliciously modify the content of
the network packets in numerous ways and they typically modeled by mathematical functions
of varying complexity. Depending on the intentions of the adversaries, the FDIAs can be
constructed either to stealthily damage to the attacked electrical grid or to cause a complete
power outage [102]. As a results, FDIAs can heavily degrade the stability of a power system
and lead to substantial financial losses.

Without loss of generality, FDIAs are modeled in this study as a term added to the
measurements and/or the control signals of LFC. Hence, when the LFC system faces FDIAs,

its standard state-space representation is transformed into [103]:

X(t) = Ax(t) +J 9 (x,t) + B(u(t) + ac(t)) + Ed(r)
y(t) = Cx(t) + Day(1),

(2.8)

where a,(t) is the corruption term that is injected by the adversary into the control signals and
an(t) is the same variable the measurements. This study investigates three types of FDIAs,

namely step attack, ramp attack and sine attack [104], which are modeled in what follows:
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i) Step FDIA: it adds a constant value to the actual measurements. When a step FDIA 1is

launched, the attack vector is modeled as:

0 t¢ 1,
1 te 7,

am(t) =

ii) Ramp FDIA: it alters the actual values of the measurements linearly with time. In case
of a ramp FDIA, the attack vector is:

0 t¢ 1,
I tE Ty

am(t) =

iii) Sine FDIA: it oscillates the actual values of the measurements. When a step FDIA is
launched, the attack vector has the following form:

0 t¢ Ty

anlt) = sin(t) te€ Ty.

In the above definitions, ¢ represents time and 7, is the attack interval, while the scale of the
attacks is determined by D matrix.






Chapter 3
Generation Control System

In this chapter, the principal aspects of the LFC system are analyzed in detail. Firstly, the
generator speed governing system is presented, which is the backbone of the power systems
frequency control. Then, the operation of LFC is explained through its resulting block
diagram and its hierarchical control levels. Finally, the state-space representation of LFC
is formulated using the differential-algebraic equations that describe the dynamic behavior
of this system. The specific modeling type forms the basis of the developed cyber defense

mechanisms, as it will be shown in the following chapters.

3.1 Fundamentals of Speed Governing

The core of the LFC functionality is the speed governing system and therefore, it is necessary
to introduce its fundamental concepts. This section is dedicated to the modeling of the basic
components that comprise the speed governing system in the frequency domain. These
components are analyzed based on the low-order system frequency response (SFR) model
that was introduced in [105] to approximate the average frequency behavior of a large power
system in response to sudden load changes. While the SFR model is a simplification of
other similar representations, it effectively captures the essential system dynamics and can be
conveniently handled. In the analysis that follows, it is considered that the different quantities
deviate about their steady-state values. The steady-state or nominal values are designated by
a “0” subscript, e.g. @y, and the deviations from the nominal values are annotated with a “A”,
e.g., Aw.
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3.1.1 Model of generator

Assume an isolated generator regulated by a turbine that supplies power to a single load. The
operation of this simple power grid produces two opposing torques which act on the rotation
of the considered electrical machine: the mechanical torque 7,,, caused by the turbine, and
the electrical torque 7, produced by the electromagnetic field of the generator. If 7,, and T,
are equal in magnitude, then the rotational speed of the generator @ is constant. According
to [106], the balance between T,, and 7, is affected when 7 is increased or decreased due
to an increase or decrease in the electrical load, respectively. When 7, > T,,,, then the entire
rotating system starts decelerating and vice versa.
When the generator is accelerating, the temporal evolution of its speed is described by:

W=0)+ 0t = ow—ny= 0ot = A0 = ot, 3.1
where « is the rotational acceleration. The generator phase angle 6 is defined as:
AS = /Aa) dt. (3.2)

The relationship between the net accelerating torque 7., which is the combination of

multiple torques acting on a system, and @ is derived by the classical mechanics as:

2
(A0) = 12 (A5), (3.3)

d
Toor = T00 =1 -3

dt
where I denotes the moment of inertia of the generator.
By definition, the net accelerating power P,; of a generator is:

Pt = 0T (3.4)
Furthermore, P,.; can be expressed by the electrical P, and mechanical P,, powers as:
Pt = Py — Py, (3.5)
and can be also represented as the sum of its nominal value and its deviation term:
Pret = Prety + APpet = (Pyy — Poy) + (AP, — AR,). (3.6)
Following a similar analysis for 7;,.;, we have:

Ther = Tneto + ATher = (Tmo - Teo) + (ATm - ATe)- (37)
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Combining Eq. (3.4), (3.5), (3.6) and (3.7), it is obtained:

Pnet = ((D() +Aw)(Tnelo +ATnel) =
= (Puy — Pey) + (AP, — AP,) = (00 + A®) [(Tny — Tpy) + (AT — AT,)] . (3.9)

In the steady-state, @ is constant and thus, P, = P, and T,,, = T,,. Furthermore, the second-
order terms in Eq. (3.8), which include products of the Aw, AT, and AT, deviations, are

negligible and therefore, they are omitted . Consequently, Eq. (3.8) is converted into:
AP, — AP, = iy (AT, — AT,). (3.9)

The combination of Eq. (3.3) and (3.9) provides the relationship between AP,,; and @ as
follows: J
APnet:APm_APe:wOIE(Aw% (3.10)

By applying the Laplace transformation to Eq. (3.10), the generator response to the net power
deviation in the frequency domain is derived:
Ao 1

AP, — AP, = MsA® = - 311
S AP,  2Hs (.11)

where M is the angular momentum of the generator.
The resulting formula (3.11) describes the transfer function of the generator and is
illustrated in Fig. 3.1.

+ Phet 1

P —_
m 2Hs

————— Hi)

PE‘

Figure 3.1 Generator transfer function.

3.1.2 Model of load

The role of an electrical machine is to supply power to the connected electrical load. The
total electrical load within a power system is collectively composed of a wide range of

electrical devices. These devices can be categorized based on their dependence to frequency.
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The resulting categories include resistive loads, such as lightning and heating, which are
independent of frequency, motor loads, e.g. pumps and fans, where the electrical power
is affected by changes in the motor speed and other types of loads that demonstrate more
complex frequency characteristics. When the power system is dominated by motor loads, the

equation that relates the changes in frequency due to the load variations is:
AP/ =D Ao,

where APir frequency-sensitive load change and D is the damping constant that describes the
percent change in load for a given percent change in frequency. Therefore, the variations in

the electrical power of a machine can be expressed as:
AP, = AP, + AP} = AP, + D Ao,

where AP is the non frequency-sensitive load change. Now, the transfer function of the
motion equation for a machine connected to a load can be acquired, which is demonstrated
in the Fig. 3.2 that follows:

+ Aw % 1 Aw
APy, 1 AP, _ I
- | 2ms 2Hs + D
AP, D AP,

Figure 3.2 Generator transfer function considering load changes.

3.1.3 Model of turbine

The prime mover of a generator is the engine that constantly provides mechanical energy to
the machine in order to convert it into electrical power. Turbines are a widely adopted type
of engines for this task because they can convert the energy of an element, e.g. water, steam,
diesel, etc. into mechanical energy. The mechanical energy output of a turbine is determined
by the position of its valve or gate, depending on the type of the turbine. Typically, the prime
mover that drives an electrical machine can be a steam turbine or a hydroturbine. To model
the prime mover of a generator, the steam supply and boiler control system characteristics
have to be reflected in case of a steam turbine, or the penstock characteristics for a hydro
turbine. Without loss of generality, the simplest prime-mover model will be considered for

this study, namely the nonreheat turbine.
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The transfer function of machine-load model that utilizes a nonreheat turbine as its prime

mover is shown in the Fig. 3.3 that follows:

Turbine Generator
1 AP, + 1 Aw
AX > L >
1+ sT, 2Hs+ D
AP,

Figure 3.3 Machine-load model driven by a nonreheat turbine.

3.1.4 Model of governor

Consider a generating unit with a fixed position of its turbine valve/gate that is connected
to a load. Due to the fixed mechanical power output of the turbine, the electrical energy
provided by the generator will be constant. In this case, any load change would affect the
energy equilibrium of the power system. This imbalance is reflected as a deviation of the
speed machine from its nominal or scheduled value, according to Fig. 3.3. Under such
circumstances, the system frequency will eventually be driven far beyond its acceptable
operational limits, degrading the stability of the system. This issue can be resolved by adding
a control mechanism that identifies machine speed changes and regulates the position of
the turbine valve/gate accordingly; in this way, the generated power is properly adjusted to
compensate for the demand-side changes and system frequency is restored to its nominal
value.

In the following paragraphs, the different speed governing techniques of the electrical

generators are presented, depending of the type of the power system.

3.1.4.1 Isochronous control mode

The simplest type of speed governing systems is the isochronous control. In isochronous
control mode, an integral controller is typically used to stabilize the speed of the generator.
The integrator is a basic control mechanism that a drives a system variable to a predefined
setpoint through the reset action. For the isochronous speed governing of a generator, the
reset action involves driving the speed error, which is the difference between the actual
and the desired or reference speed, to zero by continuously integrating it. The model of a

isochronous governor is illustrated in Fig. 3.4.
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- Aw K AX

Figure 3.4 Transfer function of isochronous governor.

Determining the relationship between the speed and power output of a generator that uses
isochronous governor provides a better insight on this control mode. To achieve this, the
value of the governor transfer function, depicted in Fig. 3.4, is calculated for the steady-state
(where t — o0 = s — 0) as:

AX K Ao s 50 Ao

AX K Ao s A0 — @, 12
v - = = A% 0= mw=awy (3.12)

Eq. (3.12) yields that the speed is independent of the governor output. Since the governor
output is proportional to the generator power output, it is concluded that frequency is
independent of the generated electrical power. The relationship between the speed and the

power output in isochronous control mode is plotted in Fig. 3.5.
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Figure 3.5 Isochronous governor characteristic.
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3.1.4.2 Droop control mode

The isochronous control mode is typically used when a single generator operates in the power
system. For multi-machine power systems, where two or more generating units work in
parallel, the load must be properly shared between the connected generators. If all generators
use isochronous governors, their synchronization is heavily affected by the load changes and
eventually fails. This happens because the generators compete with each other on forcing
their own speed setting to the system, based on their status before the synchronization process.

Poor parallel operation leads to degradation of the system performance and damage in the

equipment.
w
+ Aw
- AX
K
W, = E :FZ\ » - — >
\2/ / s
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w
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Figure 3.6 Transfer function of droop-equipped governor.

A practical solution towards the efficient load sharing among multiple generators is
the transformation of the relationship between their speed and power output. This can be
achieved by introducing a droop characteristic to the governors, as shown in Fig. 3.6. In



42 Generation Control System

this type of speed governing, the relationship between the speed and the power output of the
generator is inversely proportional. This is verified by computing the value of the governor

transfer function, demonstrated in Fig. 3.6, for the steady-state (where t — oo = s — 0) as:

AX 1 o AX -1 A®
= _ =0 2% "R 20 8% _ p (3.13)
—+1r 14T, Ao 14T, AX

With this configuration, the generator speed shifts to a certain value for a specific change in
the power output. The relationship between the speed and the power output in droop control

mode is plotted in Fig. 3.7.
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Figure 3.7 Droop governor characteristic.

The effectiveness of the droop control mode on the load sharing process is highlighted
in the following paradigm. Assume two parallel units that use droop governors, where Fig.
3.8 shows their characteristics. Initially, these generators operate at nominal speed @y and
their power outputs are Pj; and P»;. A load increase that happens after a time period, causes
the generating units to slow down, leading to a decrease in their speeds. However, their
speeds are driven to a new, common value @,. That is because the droop control provides
the same frequency change for different amounts of power output, as Fig. 3.8 indicates. The

load amount distributed in each unit is determined by the gradients R; and R; of their droop
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characteristics, as follows:

R —Aw:>AP =P P AG
]_API 1 =112 11—R1,
Aw Aw
Rh=—=AP, =P — P = —.
2 AP, 2 22 21 R,

By properly selecting the droop value of each machine, it is possible to perform an efficient

load division to the connected generators.
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Figure 3.8 Load distribution to parallel units using droop control.

3.1.4.3 Load reference setpoint

In the load sharing paradigm that was previously described, it is implied that the system
frequency converges to a non-nominal value after a load change. This droop control issue can
be addressed by adjusting the input of the load reference setpoint (LRS), shown in 3.6. LRS
allows the modification of the vertical intercept of the droop characteristic. This means that
the droop characteristic can be freely shifted across the vertical axis, as shown in Fig. 3.9.
For example, assume that the blue curve of Fig. 3.9 represents the droop characteristic of a
generating unit. When this unit provides 0.5 p.u. of its power output, it operates at nominal
speed. To make the unit operate at nominal speed for its full power output, the LRS has to be
increased until the blue curve aligns with the yellow one. Similarly, to make the unit operate
at nominal speed without any load, the LRS has to be decreased until the blue curve reaches
the green one.

By properly configuring the value of the LRS, it is possible to drive a generator to its
nominal frequency for any desired value of its power output. Consider the paradigm of the

previous section but with a configurable LRS for generating unit 1. After a load increase,
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unit 1 slow downs and its operating point is temporarily moved from (P, @) to (P12, ),
indicated by the yellow and fainted green dots in Fig. 3.10, respectively. Then, the LRS
is immediately increased, causing the droop characteristics of the generators to vertically
slide upwards, as shown in Fig. 3.10. In this way, the desired operating point (Pj3, @),
represented by the green dot in Fig. 3.10, is reached and the power system frequency is
stabilized to its nominal value. LRS is the primary control input of a generating unit that is
regulated by AGC.

Speed

Power
Output

0.5 1.0

Figure 3.9 Effects of the load reference setpoint to the droop characteristic.

3.1.5 Model of tie-line

It is common practice to separate power systems into multiple, distinct areas as a strategic
approach to enhance their efficiency and reliability, while meeting the diverse energy needs
of different regions. These power areas are interconnected through transmission lines, which
are referred to as tie-lines. The modeling of the power that flows across a tie-line between
areas i and j follows the DC load flow method presented in [107], described as:

Bie = —(6;—9)), (3.14)

where X;;, is the tie-line reactance, 6; is the tie-line phase angle from the side of area i and 6;

tie-line phase angle from the side of area j. For a small deviation from the initial values of
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(3.14), the tie-line power flow deviation is acquired as:

1 1 1
Pie + APy = T [(6;+A6;) — (6, +A6;)] = )T(Gi_ 6)) +)T(A9,- —A6;).  (3.15)

tie tie tie

Eq. (3.15) yields that:
1

tie
Without loss of generality, it is assumed that the tie-line phase angle is equal to the rotor

angle of the equivalent area generator. Therefore:

1 1

tie tie

Power
Output

Pll I:)12
Generator 1

Figure 3.10 Load distribution to parallel units using droop control.

From the definition of generator phase angle (3.2) and Eq. (3.16), it is obtained:

27'L'Tl'j

Tij
AR, = T(Aa)i - ij) = AP = (Af, - Afj)7

s

where T;; = Xj_, represents the stiffness coefficient of the tie-line.
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3.2 Load Frequency Control System

The normal operation of power systems requires the continuous preservation of the energy
equilibrium within acceptable limits. This balance is usually affected by the load variations
that constantly occur in the grid. Therefore, the generated power must be always adjusted
according to the levels of the energy demand. A key indicator of the energy imbalances is
the power system frequency: any deviation of frequency from its nominal value implies that
there is a mismatch between generation and demand. The load frequency control system is
a mechanism that utilizes frequency measurements to achieve the aforementioned balance.
The LFC receives frequency measurements as its input and senses any deviation from their
nominal value. Then, it properly regulates the output of the system generators to compensate

for the energy mismatches.

Droop
1
Bi AP, Ri
l AGC Governor Turbine l Generator
+ ACE; . -
LK ( ) 1 _1 LU 1
s I+sTy, AX; I+sT,, APg.U, DitsM; AL,
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27T e
Afj
—
Control Disturbances Primary Plant
Center Control

Figure 3.11 Block diagram of LFC for the ith control area.

The assembly of the different speed governing components that were presented in Section
3.1 forms the typical block diagram of the LFC system. This LFC diagram for the ith power
system area is illustrated in Fig. 3.11. In this representation, the frequency domain response
of each speed governing component (generating units, governor-turbine systems, controllers,
etc.) to power imbalances is modeled by a system block. These blocks are mathematically
formulated based on the physical characteristics and the behavior of each speed governing
component. The transmission system performance and the intermachine oscillations are

disregarded in LFC analysis while the overall dynamic performance of the area generators
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is represented by an equivalent unit model. This model is extensively used in the literature
and by industries, such as the European Network of Transmission System Operators for
Electricity (ENTSO-E) [108], and therefore, it is considered suitable for frequency control
studies.

Frequency
Event

N
-
e

Frequency (Hz)

<15s 15-30s 15-30 min
>
Inertial Governor Automatic time(s)
Response Response Generation
Control

Figure 3.12 Frequency response paradigm of a power system utilizing LFC to a load disturb-
ance event.

As mentioned in Section 1.3, the LFC is composed of multiple control levels, arranged in
a hierarchical manner. Each of these control levels performs a specific LFC operation and
plays a unique role in the frequency stabilization. This study focuses on the primary and the
secondary levels of the frequency control, due to their importance in the LFC functionality.
A detailed analysis of these frequency control levels follows:

* Primary control: it is the initial frequency control level and is responsible for sta-
bilizing the power system frequency within acceptable values. Its operation can be
described as: the local governors of the generators automatically sense a power im-
balance event as a deviation of frequency from its nominal value. Then, their outputs

are properly adjusted to regulate the position of the turbine valve/gate. In this way,
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governors force the produced power to follow the energy demand levels. While this
type of control stabilizes the system frequency, it is unable to restore it to its nominal
value and thus, a frequency error remains after its operation. In the block diagram
of LFC (Fig. 3.11), primary control corresponds to the blue arrows and its impact
on frequency is demonstrated in the “Governor Response” window of the Fig. 3.12

paradigm.

* Secondary/Supplementary control: it is a control center application, also known
as Automatic Generation Control (AGC), that takes place after the primary frequency
control. Its purpose is to compensate for the limitations of the primary control; namely,
to restore the frequency back to its nominal value and keep the tie-line flows at their
scheduled levels (in case of multi-area power systems). To achieve this, it forms the area
control error (ACE) by the received frequency and tie-line power flow measurements,
calculates the command signal and sends it as an input to the load reference setpoint
of the governors that participate in it. In the block diagram of LFC (Fig. 3.11), AGC
corresponds to the orange and green arrows and its impact on frequency is demonstrated

in the “Automatic Generation Control” window of the Fig. 3.12 paradigm.

Table 3.1 Main features of the frequency control levels.

Response Time  Duration Time Operation
Primary Control 15-30 seconds 15 minutes Automatic
Secondary Control 200 seconds 120 minutes Communication-based
Tertiary Control 15 minutes Indicated by TSO Upon request

For a better insight into the functionality of LFC, the main features of the different
frequency control levels are illustrated in Table 3.1. According to this table, the primary
control takes place 15-30 seconds after a power imbalance event and lasts for approximately
15 minutes. Its operation is automatic since the local governors are installed in the generating
units that drive; this yields that the governors are interconnected with the turbines and they
can immediately sense frequency deviations by measuring the generator speed. Regarding
the AGC, it is applied around 200 seconds after a power imbalance event and its duration
is about 15 minutes. AGC is a software application within the control center and therefore,
its implementation is communication-based. This indicates that it uses telemetry to receive
the necessary frequency and tie-line power flow measurements from the field devices and
remote communication channels to send the control signals to the load reference setpoints

of the participating generators. Finally, while the tertiary control is out of scope for the
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present study, its main features are included in Table 3.1, for the sake of completeness. This
type of frequency control aims to restore the reserve margin used for the AGC and occurs
approximately 15 minutes after a power imbalance event upon request to the transmission
system operator (TSO).

3.3 State-space Representation of LFC

For the development of the proposed cyber defense layers, the state-space representation of
LFC is required, as it will be explained in the following chapters. This type of modeling
expresses the dynamical behavior of the LFC system as a set of its input, output and state
variables related by first-order differential equations. These equations are obtained by the
transfer function of each LFC component in the frequency domain, demonstrated in Fig. 3.11.
In what follows, i corresponds to a power system area and for multi-area power systems,
each area i is represented by an equivalent generating unit.

Note: For feasibility purposes of the introduced cyber defense methodologies, several
practical features are considered in the LFC modeling of this study, such as nonlinearities,
HVDC tie-lines, disturbances due to RES generation, etc. While these practical features
are not included in the core components of the speed governing system, their dynamical
equations, which reveal their contribution to the LFC system, are analyzed in this section.

From the generator dynamics of area i, it is acquired:
. 1
Afi = E(AP&.—DiAf,-—AP,iel.—APdi)7 (3.17)
l

where the frequency deviation is denoted as Af;, the damping (load frequency relief) and
inertia constants are represented by D; and H;, respectively, and the deviations in the tie-line
power interchange and external disturbances are denoted as AF;., and AP, respectively.

From the governor-turbine dynamics of area i, it is obtained:

. 1
AP, = i(AXi—APgi), (3.18)
. Af;
AX; = — (AP, — AX; — =), (3.19)
i Tgi( C i Ri )

where AP, and AX; denote the deviations in the turbine power output and governor valve
position, respectively; 7;, and Ty, represent the turbine and governor time constants, respect-
ively; R; is the droop characteristic and AP,,, which also serves as the area control signal,
denotes the deviation in the load reference setpoint of the governor.
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In a power system composed of N areas, the total tie-line power deviation of the ith area
is determined by:
APtiei - APac,- + APdc,-y (320)

where AP,.; denotes the AC tie-line power deviation and AP, stands for the high-voltage
direct current (HVDC) tie-line power variation. When the AC tie-line does not have a
thyristor-controlled phase shifter (TCPS), AF,, can be calculated as:

2n
APuy === Y Tij(Afi—Af)). (3.21)
J=Lj#j
where T;; is the tie-line synchronizing coefficient between areas i and j, j =1,2,--- N, j #i.

When the AC tie-line is equipped with a TCPS, the value of AF,., can be obtained from the
following equation [109-111]:

K,
APaci—_ Z Tl] Afl Af] + Z Tz]l (Afl Afj)a (3.22)
+ 5T,
J=Lj#j J=Lj#j

where Tj;; and Kj,; are the time and gain constants of TCPS links between areas i and j,
respectively. When areas i and j are connected with a HVDC link, the value of AP, is
calculated based on the difference between the Af; and the rest of the Af; [110, 112, 113], as
shown below:

1 N

APy, = Kij(Afi—Af;), (3.23)

Ut sTae, 1752,

where Tj., and K;; represent the HVDC time and gain constants between areas i and j,
respectively. If areas i and j are not coupled with an HVDC link, then K;; = 0.
The external disturbances APy, considering the variations due to RES generation, are
modeled as:
APy, = APy, — APggs;, (3.24)

where AP, and APggs; express the load and RES disturbances, respectively.
The RES disturbances APggs, consist of the generation deviations due to photovoltaics

APpy, and generation variations caused by wind farms APy,. Formally, this is expressed by:
APRES,- = APW, + APpVi. (3.25)

The variations due to solar energy generation follow the next model:

APpy, = 0.6/ APyjar, (3.26)
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where APy, reflects the solar power deviation from its initial value. The wind turbine output

power adopts the following model:

1
APy, = 5 pwArAViy,Cr(Aw Bw), (3.27)

where pw 1s the air density, A7 denotes the rotor swept area, AVy, represents the wind speed
deviation from its nominal value for area i, Cp reflects the rotor blade parameter, Ay is the
optimal tip speed ratio and By is the pitch angle of the blade. The detailed models of the
RES developed in this work and their parameter values are available in [114].

The load reference setpoints AP, of the governors that are not part of the AGC have a
fixed value. The governors driven by the AGC adjust their setpoints according to the output
of this controller. The ACE is used as input to the AGC. For each control area i, ACE; is
defined as:

ACE; = BiAfi + AP, (3.28)

where the frequency bias is represented by ;. Therefore, the load reference setpoint of a
governor that contributes to AGC, driven by an integral controller, is modeled as:

AP, = —K], /ACEidt, (3.29)
where Kj. is the integral gain.

This study considers the standard nonlinearities of LFC, which are modeled based on
[115, 116]. More specifically:

* Generation Rate Constraints (GRC): the rate of change of the turbine output is limited

by a fixed value, denoted as Py,.. This yields that:

APy, < Pyye. (3.30)

* Governor Dead-Band (GDB): the generator governor does not respond to minor

fluctuations in the active power. Mathematically:

0, AP, < |P,
AXi(AP;,) = 4 < |Fyas| (3.31)
AXi(APdi) APdi > ’Pgdb|v

where Py, represents the threshold power change at which the governor starts to

respond.
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» Transportation Time Delay (TTD): the signals that are remotely exchanged with the

control center face delays due to communication and mechanical system responses, as:
AP, (1) = —K; / ACE (1 — 7,)dr, (3.32)

where 7, is the aggregated communication and mechanical delay.

The values of Py, Pogp and 7,4 used in the present study, are provided in the Appendix C.
The local state vector used in the state-space representation of the ith area, i.e. x; € R,

where O is the dynamic order in the ith area, is defined as:

T
Ax; = [Afl- AP, AX, [ACE; AP, APy| . (3.33)

From Eq. (3.17) — (3.33), the differential-algebraic expression of the total N-area power

system in its compact form is:

=.
—

~
N—

Il

Ax(t) +F¢(x,t) +Bu(t) + Ed(t) (3.34)

~

where x(¢) = [xl X v xN} € ROV is the global state vector (O-N = n), u(t) =

AP, AP, - APCm]T € R™ is the input vector, d(t) = [APdl APy, -+ APy ' e R"is
the disturbance vector (modeled as unknown input), y(¢) € R? is the output vector and
¢ (x,t) € RY models LFC nonlinearities. The matrices A € R"*", F € R"™*? B € R"™™,
E € R™" and C € RP*" are known.



Chapter 4

SMO-based Attack Detection &
Localization for LFC

This chapter is dedicated to the presentation of the proposed observer-based attack detection
and localization methods for the frequency control of power systems. It has been already
stated in Section 1.3 that AD approaches determine whether a cyberattack has been launched
against the LFC and when it occurred, while ALC methodologies aim to identify which
signals within the LFC loop have been affected by digital threats. In what follows, the
state-space representation of LFC during FDIAs is initially is established, forming the basis
for developing the introduced AD and ALC methodologies. Then, the observer design
procedure for the proposed AD and ALC is demonstrated, along with the observer stability
conditions. The formulation of an adaptive threshold selection follows, which minimizes the
false positive alarm rate of the presented AD and ALC strategies. Finally, the performance of
the proposed cybersecurity techniques is evaluated on a series of experimental testbeds to
demonstrate its effectiveness.

4.1 Modelling FDIAs against LFC

When system (3.34) is under FDIAs against measurements and control signals, its state-space

representation is transformed into the following form:

x(t) =Ax(t) + Fo(x,t) + Bu(t) + Ed(t)
y(t) = Cx(t) + Day,(t)

4.1)
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where a,,(t) € R? is the attack vector and D € RP*4. p > g+ r and it is assumed that C, D,
and E have full column rank. For the adversaries, we assume that they have access to the
communication channels of LFC and can modify the exchanged data. Moreover, they have
full knowledge of the A, B,C, D and E matrices.

4.2 Observer Design Preliminaries

The core concept behind observed-based approaches for the detection and localization of
cyberattacks against LFC is to design observers in a way that the resulting estimation errors
are asymptotically stable only under attack-free conditions. This ensures that the estimation
errors will always be zero unless a cyberattack occurs, making them reliable cyber threat
indicators. The main challenge of these methodologies is to distinguish cyberattacks from
other types of external disturbances. In the proposed approach, this decoupling is achieved
through system coordinate transformation, inspired by advanced observation techniques
[117]. Initially, the original system is virtually split into subsystem-I, which carries only
the system disturbances, and subsystem-11, which carries only the cyberattacks. Then, we
develop observer-I for subsystem-I which is susceptible only to system disturbances and
observer-II for subsystem-II which is sensitive only to cyberattacks.

Before proceeding to the presentation of the proposed methodology, a series of math-
ematical conditions have to be satisfied regarding the considered LFC system (4.1). These
conditions are required for the existence of the introduced observers and are included in the
assumptions that follow. After each assumption, a brief explanation is provided to shed more

insight into the observer design process.
Assumption 1. rank(E) = rank(CE).

Assumption 1 is the necessary condition for the existence of the state and output trans-

81
g s
L’z

where g1 € R" and iy € R". After applying the above transformation technique to (4.1), it is

formation (G, H), as:

2

h
— Gxand h = [h‘] = Hy.

acquired:

x=G"lg
—

y =Cx+ Day, mult. by B iy — HCx+ HDa,y, y=H"lh

X=Ax+Fo+But+Ed vy |Gx=G(Ax+Fo(x,1)+Bu+Ed)
——
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¢=GAG 'g+GF¢(G'g,t)+ GBu+ GEd
= . 4.2)
h=HCG 'h+HDay,.
The (G,H) transformation is selected so that the following properties are satisfied for the

matrices of system (4.2):

A A F B E C 0
gac ="t 2| gr=|"".6B=|"Y.GE=|"".HCG ' =|"! | and

A3 Ay F B> v v Cy
ap— |2 :

D,

G H

where G = | 71| R H — | € RPXP, Gy € R™" Hy € R™P, A, € R™", Ay €
2 2

R(nfr)x(nfr), F € Rrxk, B, € Rrxm’ E; € Rrxr, D, € R(pfr)xq’ C, € Rrxr, C, €
R(P=1)x(n=r) apnqd C is invertible. Therefore, system (4.2) can be written as:

| Al A 1 Fi B, E,
1 = 8 + o+ U+ d
82 Az Ay 82 P B> 0
- - - - £ 7 - 4.3)
hy Ci 0] &1 0
= + am
\ _hz_ I 0 C4_ 82| |D2

By splitting system (4.3) into its upper and lower part, the transformed system (4.2) can be
separated into the next subsystems:

g1 =A181+Ar+F19(G 'g,t)+Biu+E\d wa

hy =Cg1,

g =A3g1 + A1+ F¢0(G lg,t) +Bou “45)

hy = C482 + Drap.

For the observer design procedure of the present study, it is more convenient to transfer
the a,, vector from the output equation of system (4.5) to its state equation. To this end, a
new state g3 = [§ ha(7)d7 is defined so that:

83 = C4g2 + Dray,.
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With the new g3 state, subsystem (4.5) can be converted into the following augmented form
of n+ p — 2r order:

) Ay Of | &2 Aj F. B> 0
= + g1+ 0(G'g.1)+ u+ m
83 Cs Of |g3 0 0 0 D, =
h3 =83

80 =Aogo +Asg1 + F,9(G'g,t) + Bou+ Doay

= (4.6)
83 = Cogo,
where go = 82 c Rn+p—2r, hy €RP~T Ag = Ay O e R(”+P—2’)X(”+P—2’), A3 = A3 €
83 Cy O 0
R(n+p72r)><r’ FZ — I(;2 ,By = [B;)z c R(n+p72r)><m’ Dy = DQ c R("JFP*Z”)X‘I and Cy =
v v 2

[Q Ip—ri| e R(p—r)x(nt+p=2r)

In a similar manner, subsystem (4.4) is restructured as:

g1 =A1g1+Axg0+F19(G'g,t) +Biu+Ed

4.7)
hi = Cgi,
where A, = [Az Orx(p_,)].
Assumption 2. For every complex number s = 7+ wi, where z > 0, it is true that:
rank si-AEN rank(E) + n.
C
From Assumption 2, the following Lemmas are derived:
Lemma 1. If and only if Assumption 2 is satisfied, then the pair (A4, Cy) is detectable.
Proof. See [118], [119]. [
Lemma 2. If Assumption 2 is satisfied, then the pair (A, Co) is observable.
Proof. Refer to Appendix B. [

According to Lemma 2, there is a Ly € R(**P=2)%(P=") matrix that guarantees the
stability of Ag — LoCp.
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Assumption 3. The nonlinear term of system (4.1) is Lipschitz about x with £y as Lipschitz
constant, hence:

[o(x,1) —¢(£,0)[| < Zp Vx,£eR"

Assumption 4. The attack vector a,, and disturbance vector d are constrained by the known
constants p > 0 and & > 0 respectively, thus:

lan|l < p and [|d]| < &.

Assumptions 3 and 4 provide a set of inequalities that are necessary for proving the
existence of the proposed observers and the stability of their error dynamics, as it will be

shown in the following section.

4.3 Observer Design for Attack Detection

The development of SMOs directly for the compromised system (4.1) is not indicated because
the impact of the FDIAs on state estimation errors might be affected by the variable structure
term [120]. This issue can be addressed by the virtual separation of (4.1) into subsystems
(4.6) and (4.7), as mentioned previously in Section 4.2. The theoretical verification of this
statement is demonstrated in this section. More specifically, it is mathematically proven that
the estimation errors of the observers designed for subsystems (4.6) and (4.7) will converge
to zero under attack-free conditions if the necessary requirements are satisfied (Theorem
4.3.1) while the error dynamics (4.16) and (4.17) are only affected by the occurrence of
FDIAs. Therefore, these estimation errors are proper indicators (or residuals) of whether the
LFC system faces cyberattacks or not.
For subsystem (4.7), the following SMO is designed:

§1=A181+A280+F19(G7'8,t) + Biu+ (A —AS)C; (b —hy) +vy

n 4.8)
h =Ci4

where A € R is a stable matrix that has to be computed and § := col (Cl_lhl, 82). The

discontinuous output error injection term v; of SMO (4.8) is given by:

PC ' i=81) e 1 N
E oL AL S O Ry — 0
Vi = (£l +m) 1P (Cy =g1) itC =& # 4.9)

0 otherwise,

where P > 0 € R™" is a symmetric definite matrix and 177 > 0 is a scalar to be calculated.
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For subsystem (4.6), the next Luenberger observer with Ly € R("+P=2)%(P=7) gain is
developed:

80 =A080+A3C; 'hy + F2¢(G'8,1) + Bou+ Lo(h3 — h) 4.10)
h3 = Cogo.

After designing observers (4.8) and (4.10), the dynamics of the resulting estimation
errors can be obtained. The estimation errors of the developed SMO (4.8) and the proposed
Luenberger observer (4.10) are defined as e; = g1 — &1 and eg = go — o, respectively.
The differentiation of the estimation errors provides the error dynamics under attack-free

conditions as:

él :Aslel —|—A2€0 +F1¢(G_lg,l) —Fld)(G_lg,t) + Eid—v; “4.11)
éo = (Ao —LoCo)eo+ B9 (G 'g,1) — F0(G'g,1). (4.12)

The existence of the developed observers is proven by the theorem that follows. This

theorem paves also the way for determining the values of Ay, Py, Ly and 1.

Theorem 4.3.1. Let system (4.1) along with Assumptions 1-4. In the absence of cyberattacks,
if there are matrices A} <0, Ly, P| = PIT >0€Rand Py = POT > 0 and scalars o > 0 and
Qo > 0 that satisfy the following Inequality:

_ [a'A+PAT+ LA P4,

A Z
AT P (A0 — LoCo)" Py + Py(Ao — LoCo) + g PoPo + s p o

<0, (4.13)
where a = oy (| F1|| Ly |G 1)* + a0 (|2 ||-Z5 |G H|)?, the error dynamics (4.11) and (4.12)

are asymptotically stable.
Proof. Refer to Appendix B. 0

Theorem 4.3.1 establishes the necessary conditions for the existence of the designed
observers (4.8) and (4.10). Nevertheless, it does not provide a systematic way to calculate
the necessary matrices that satisfy Inequality (4.13). This is achieved by using the Schur
complement, which converts the problem of determining matrices that satisfy Inequality
(4.13) into the next Linear Matrix Inequality (LMI) feasibility problem.
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Remark 1. There are matrices A} <0, Ly, , Py = POT > 0and P, = PlT > 0 and scalars
o > 0and oy > 0 so that:

PIASI + (PlAi )T P P1A2 0
P —oql 0 0
. v o ~ | <0 (414
A2 P 0 AO Py+ PyAg — CO (P()L()) — PyLoCo+al i)
0 0 Py —opl

After determining the values of A, Ly, P; and Py, the next step is to configure the para-

meter 11 of (4.9) so that the error dynamics are driven to the following sliding surface:
& ={(e1,e0)|er =0} (4.15)

within a finite time frame and ensure a continuous sliding motion is sustained on .7 thereafter.

This objective can be accomplished by using the next theorem.

Theorem 4.3.2. Let system (4.1), Assumptions 1-4 and the observers (4.8) and (4.10). The
error dynamics (4.11) and (4.12) can be directed to the sliding surface (4.15) within finite
time frame, provided that Ny of (4.9) meets the following condition:

m = (|2 +|F LI e +na,

where € is the upper limit of ||e|| and Ny > 0 is a scalar, and the LMI feasibility problem
(4.14) can be solved.

Proof. Refer to Appendix B. [

When the LFC system faces FDIAs, the error dynamics (4.11) and (4.12) are converted

into the following form:

é1 =Aler +Areo+ F19(G'g,0) —F19(G'8,1) + Exd — v (4.16)
éo = (Ao — LoCo)eo + F29(G ™' g,1) — F29(G ™' 8,1) + Doap. (4.17)

Eq. (4.17) includes only the attack vector a,, while it does not contain the system
disturbances vector d or the discontinuous output error injection term v; of the SMO (4.8).
The additional Dya,, term of (4.17) definitely affects the asymptotic stability of e, yielding
that eq is only prone to FDIAs and immune to the system disturbances or the error injection
term. Theorem (4.3.1) and the form of eg during FDIAs clearly evidence that if the estimation
error eg has converged to zero, the system is in its normal state; otherwise, if the eg is non-

zero, the system is under cyberattacks. This property of estimation error ep make it a suitable
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indicator for identifying FDIAs against LFC, commonly referred to as residual. Before

selecting the proper form of the residual for the proposed AD strategy, it should be noticed

. 0

that a,, affects only the last p — r components of e, namely e,, = g3 — g3, since Dy = D_ .
2

Consequently, it is a rational choice to use ||ey, || = [|Coeo|| = ||eg,|| as the residual for

detecting FDIAs against LFC. The attack detection method that is proposed in the present
study can be summarized as:

Proposed Attack Detection Strategy: Assume that ||ep,|| is the detection residual, ¢,
represents an adaptive threshold, t; denotes the exact time of the attack detection and t, is
the time elapsed from the previous attack detection until ty. If ||ep,|| > 64, then a FDIA is

detected at time t;; otherwise, the system is considered to be in healthy state for the t,.

4.4 Observer Design for Attack Localization

The attack detector described in Section 4.3 can only determine whether and when the LFC
faces a cyberattack or not. However, it can not identify which LFC signal has been affected
by a cyberattack, especially in scenarios of multiple FDIAs. This can be achieved by the
proposed attack localization method that is presented in the remainder of this section. The

core idea of the introduced ALC scheme is the following: the attack vector can be expressed
1 2

1. a2,... ah]T. After determining whether the attack vector elements a!, = 0

as a, = |a
(1 =1,2,...,q9) or not, the identification of the compromised state variables can be performed
by multiplying a,, with the known attack distribution matrix D. In case of a successful FDIA,
an alarm informs the system operator about the location of the attack through a digital logic
system.

To this end, a dedicated pair of SMOs is designed for each a!,, forming a bank 2¢
observers. Each pair of SMOs constitutes a bank slot, where its SMO-I is designed to be
susceptible to system disturbances and robust against cyberattacks, while its SMO-II is
designed to be prone to cyberattacks and resilient against system disturbances. The special
feature of SMO-II is that its discontinuous output error injection term v} is designed to
be equivalent to @, which is the vector of all attack elements except a,. In this way, the
resulting error dynamics of SMO-II can neglect the impact of @}, under specific conditions.
As a result, SMO-II is sensitive only to its corresponding attack vector element a,. This
yields that the estimation error of SMO-II deviates from zero only when a}, is non-zero,

making it a suitable attack localization residual.
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4.4 Observer Design for Attack Localization

For subsystem (4.7), the following SMO-I is designed to isolate the tth attack a, :

b= A8+ Angh + FIo (G864 1) + Biu + (Ap —ACy (B —RY) + 0% (4.18)

S 0

1=Gig

where g' and /' represent the estimated state and output vectors obtained by the proposed
ALC method, respectively and &' := col(C| Y, [y 0]g3). Regarding the output error
injection term v} and considering P; > 0 € R™*" as a symmetric definite matrix, we have:

P(CI '=8Y) o1 A1
E — L ol fC7 hy— 0
Vﬁ _ (H 1||§+n1)||P1(C;1h1_g11)|‘ 1 1 1 g] ?é
otherwise.

0

The following SMO-II with a Ly gain is constructed for subsystem (4.6):

8L =Aogl +A3Cy h + B (G184, 1) + Bou + Lo(hs — hy) + Divh @i

hs = Co&y.
If Dy is written as Do = [D(l), ...,Dg], then Df, denotes the 1th column of Dy and D} refers to
the rest of them. For the discontinuous output error injection term v}, we have:
R,
(P+m)Fory ifen, #0
Vl — I Oeh% I
2 o
0 otherwise

where e}lg = hi — fzg, M3 is a positive scalar and Fy € R? *(P=7) is a matrix to be calculated

Fj represents the 1th row of Fy and Fj denotes the rest of them.
The state estimation errors that result from the aforementioned SMOs for each possible

ay, # 0 are defined as e} = g} — &} and ¢, = g, — §(,. From the differentiation of e; and ey,

their error dynamics after the occurrence of FDIAs can be obtained as:
(4.20)

&= Ajel +Arel +Fio(G lg,t) —Fi9(G '8 t) +Erd v}
éh = (Ag — LoCo)ey + P9 (G g,t) — F20(G™ '8, t) + Doan, — Dy =
= (Ao —LoCo)ey + Fo0(G 'g,t) — F9(G'¢',t) + Dhal, + Diy(al, —vh).  (4.21)

By noticing the structure of the error dynamics (4.20) and (4.21), it is possible to establish
the stability conditions that are required for achieving the desired observer behavior. These

conditions are presented in Theorem 4.4.1 that follows.
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Theorem 4.4.1. Given system (4.1) with Assumptions 1-4. If there are Ly, A} <0, Py = POT >
0, P = PIT > 0 and Fy, and scalars og > 0 and o; > 0 so that:

DIPy = KRGy (4.22)

IT; + a%Plpl P]Az

—r ] <0 (4.23)
A2 P1 HO + %P()P() + aanrp,zr

where Tl = A}’ Pi + PiA}, Tlo = (Ao — LoCo)” Py + Po(Ao — LoCo) and a = au. % | G| +
Oc().,%(bz2 |G|, then the state estimation error e}, will exponentially converge to zero when
al, = 0; when a}, # 0, e} satisfies ¢} = (Ao — LoCo)el, + B9 (G g,t) — Lo (G 18" 1) +
Dyay, + D, —v).

Proof. Refer to Appendix B. [

If Py has not a particular structure, matrices Fy, Fy can be determined to satisfy both
(4.22) and (4.23) by solving the next LMI optimization problem:

minimize Y s.t.

Py>0, P >0and

~Yhpp—2r  (DEPy— FyCo)T

., <0
DO Py— FyCy —’}/Iq

where X = P{Aj and Yy = PyLy.

Theorem 4.4.1 specifies the behavior of the designed observers and also establishes the
core concept of the proposed ALC strategy. Particularly, when the proposed AD scheme
identifies a FDIA at time step 7,4, the proposed Al mechanism is activated to locate the
affected signals. For each a!,, two dedicated observers, designed according to (4.18) and
(4.19), estimate the state and the output vectors. When a!, = 0, the generated state estimation
error 66 will tend to zero. Otherwise, if a, # 0, e(l) will exceed an adaptive threshold at time

step tis > t4. According to this approach, the

e, || = [ICoeg || is selected as a proper ALC
residual and the proposed attack localization scheme is defined as:

Proposed Attack Localization Scheme: If the selected residual |le} ||, (1 =1,2,...,q),
exceeds its corresponding adaptive threshold ¢, then a,, # 0, otherwise a;, = 0. When the
values of every al, have been determined, the affected signals are identified based on the

structure of Dy.
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4.5 Threshold Selection

According to the previous analysis, the selected residuals for the proposed AD and ALC
methods are non-zero in case of a cyberattack and zero, otherwise. In practice, these residuals
can be non-zero due to various reasons, e.g. initial estimation error, approximate linearization
error, system nonlinearities, etc. Therefore, if the boundaries of the selected residuals are
investigated under attack-free conditions, it is possible to design adaptive thresholds for each
power system area in order to minimize the amount of false positive alarms.

Without loss of generality, the adaptive threshold design proposed in this section is
described for the AD method and can be easily expanded to the ALC scheme. Let r(¢) be the
selected residual and ¢ denote the upper bound of r(¢) in normal conditions. From the error
dynamics (4.12), it is clear that ¢ is comprised of the initial estimation error threshold ¢;, and

the system nonlinearities threshold ¢,; as:
S = Gie t Gul-
Regarding g, it is obvious that:
Gie = || Coel Ao LoC0)=10) g (19 (4.24)
For ¢,;, we consider the residual equation, which is:
r(t) = Coeo(t). (4.25)
By applying Laplace transformation to (4.12) and (4.25), the following formula is obtained:
r(s) = Co(shysp—2r — Ao +LoCo) " (P29 (G 'g,5) — F9(G'4,5)). (4.26)
From Eq. (4.26), the upper bound of the residual can be obtained as:
Ir(0) < Isupo=oW (Co(j@lu+p-2r — Ao+ LoCo) ™| X Lo |G lleo ()], (4.27)

where W (Z) = |Apax(ZT >x<Z)|1/ 2. Combining (4.24) and (4.27), the adaptive threshold ¢ can
be computed as:

S =GietGu=
=c= ||C06(A0—L0C0)(f—f0)eo(to)||+

+ [suposoW (Co(j®lys p—2r — Ao +LoCo) | X Lo, |G [|leo(®)]].  (4.28)
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Using Eq. (4.28), the adaptive AD threshold can be computed over time and compared
with the AD residual to determine whether the system under investigation is under attack or
not. The same process is followed for the computation of the ALC adaptive thresholds.

To make the present work more comprehensible, the proposed FDIA detection and

localization method is briefly illustrated in Algorithm 1.

Algorithm 1 Algorithm of the proposed attack detection and localization methodology

Require: * rank(CE) = rank(E)
sI-A E . .
* rank c ol =n+ rank(E), Vs € C with nonnegative real part

* llam|l < pand|d|| <&

° H(P(X.,l‘) - (P()?l)“ < ’gjﬂj HX_XH*, Vx,/f eR"
Ensure: System matrices A,B,C,E,F and D are known
1: 1«0 > time initialization
2: whilez > 0 do > Proposed mechanism is enabled
Compute system output y(¢) = Cx(t);

4 Compute transformations h(r) = Hy(t) & g(t) = Gx(t);

5: Provide /() and system input u(¢) to the AD SMOs and ALC SMOs;
6: Compute AD residual ||es, || = [|h3 — &35
7.
8
9

Compute ALC residuals He}“ II, He%3 Iy Heﬁg IIs > bank of SMOs

Compute AD adaptive threshold ¢;;
: Compute ALC adaptive thresholds gii, g[%, s g{;’ ;
10:  if|le, || > s then

11: System is under attack;

12: if [lej, || > G5 or [lef || > 6% or ... [leff,[| > G} then

13: Signal of area i € {1,2,...,N} is under attack;

14: end if

15: else

16: System is in normal condition;

17: end if

18: t—t+1; > Next time step
19: end while > Proposed mechanism is disabled

4.6 Experimental Results

This section includes the results from the experiments that were conducted to evaluate the
performance of the introduced AD and ALC approaches. Particularly, the section starts with
a detailed description of the implemented testbeds and then, the performance assessment of
the presented methodologies follow. For further validation, the robustness of the proposed
methods against various system parameters is investigated and along with a comparative
analysis against other, related works from the literature to highlight its superior points. For the
simulations, the MATLAB/Simulink platform was utilized on a desktop computer, equipped
with a 64-bit Intel Core i7 CPU of 2.7 GHz.
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4.6.1 Use case analysis

For testing the proposed AD and ALC techniques, a series of case studies is implemented.
These case studies include various LFC systems of growing complexity, subjected to diverse
types of FDIAs and disturbances. In this way, the effectiveness and scalability (as defined
in Section 1.3, it is the effective application of a methodology to various power systems,
regardless of their size) of the introduced methodologies are demonstrated. The implemented

case studies are:

* Case Study 1: 2-area power system, interconnected via an AC tie-line, where 1%
p-u. step load disturbances occur in both areas at r = 4 sec. A 1%o p.u step FDIA is
considered against the control signal of area 1 at # = 10 sec and a time delay attack of

1 second is launched against the control signal of area 2 at t = 20 sec;

* Case Study 2: 3-area power system, interconnected via AC tie-lines where a 1%o p.u.
step load disturbance occurs in area 1 at t = 3 sec, a 10% p.u. step load disturbance
occurs in area 2 att = 11 sec and a 1% p.u. step load disturbance occurs in area 3 at
t = 20 sec. Regarding the cyberattacks, a 1%o p.u step FDIA is considered against the
frequency measurement of area 2 at t = 5 sec, followed by a DoS attack against the

frequency measurement of area 3 at = 13 sec;

* Case Study 3: 4-area power system, connected via AC (either equipped with TCPS or
not) and HVDC tie-lines, where a 1% p.u. step load disturbance occurs in area 1 at
t =10 sec, a 1% p.u. step load disturbance occurs in area 2 at t = 20 sec, a 5%o p.u.
step load disturbance occurs in area 3 at t = 20 sec and a 1% p.u. step load disturbance
occurs in area 4 at t = 35 sec. The FDIAs considered in this case study are a 1%o p.u.
step attack in area 2 at t = 33 sec and a 1%o p.u. step attack in area 3 at r = 17 sec
against the [ACE signals.

Power Area 1 Power Area 4

Power Area 1 Power Area 2

=\

AC

g e—1 =)
EN A
N s NS

& :
Power Area 1 Power Area 2 Power Area 3 Power Area 2 Power Area 3
(a) Case study 1 (b) Case study 2 (c) Case study 3

Figure 4.1 Use case topologies for evaluation of the proposed AD and ALC schemes.

In each case study, solar and wind power disturbances occur throughout the simulation,

along with measurement time delays that range from 1 to 2 seconds. The topology, i.e.
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number of power areas and types of the interconnections, of each case study is depicted
in Fig. 4.1. The power system parameters of each area are given in the Appendix C. The
topology complexity of each case study k € {1,2,3} is greater than its previous one(s) to
verify the scalability of the proposed AD and ALC methods. Finally, to guarantee the normal
operation of the implemented LFC systems, the frequency response of selected areas under
10% load disturbance for each case study is illustrated in Fig. 4.2.

Af (Hz)

-6 ---Casestudy 1 - Area 1 | |
Case study 2 - Area 3
e e Case study 3 - Area 2
—8 L | | | T I =
0 5 10 15 20 25 30

Time (s)

Figure 4.2 Frequency response of selected power areas for each AD & ALC case study.

4.6.2 Performance analysis

The developed attack detector is applied to the case studies described in 4.6.1 for the
evaluation of its performance. The results of this experiment are illustrated in Fig. 4.3.
According to this figure, the output of the attack detector (blue lines in Fig. 4.3) exceeds the
designed adaptive threshold (black lines in Fig. 4.3) almost immediately after the launch of a
cyberattack in every case study. This indicates that all of the simulated cyberattacks have
been successfully identified in a real-time manner. The results confirm the effectiveness of
the particular defense mechanism and its scalability over various power systems. Moreover,
the output of the attack detector does not deviate from zero before the occurrence of any
attack, which implies that the introduced defense scheme is not prone to false positive alarms.

The experiments also demonstrate that the proposed AD scheme can accurately distin-
guish cyberattacks from other types of disturbances, e.g. load and RES. More specifically,
Fig. 4.3 illustrates that the attack detector is triggered in the event of a cyberattack, while
being insensitive to the load disturbances that occur at ¢t = 4 sec or to the RES disturbances
that happen throughout the simulation. This is a critical feature for power system operators
in order to design real-world cyberattack detectors, that other efforts [121], [122] do not
consider. Fig. 4.3 also shows the benefits of the adaptive threshold over predefined ones. The
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detection thresholds of each case study are dynamically evolved over time and automatically
adjusted, based on the sensitivity of every system to cyberattacks. In this way, the selection
of the detection thresholds is not based on arbitrary assumptions, leading to the minimization
of the false positive attack alarms.
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Figure 4.3 Performance of the proposed AD scheme.
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Similarly to the attack detector, the developed attack locator is applied to the case studies
described in 4.6.1 for the assessment of its performance. Fig. 4.4 depicts the results of
this experiment, which highlight the effectiveness and the scalability of the proposed cyber
defense layer. More specifically, the sub-observer designed for [ACE; in case study 1 is
activated when the FDIA against the specific signal occurs at #{ = 10s, based on Fig. 4.4a.
On the other hand, when the cyberattack against [ACE, takes place at t; = 20s, the output of
the aforementioned sub-observer does not deviate, verifying that it is only sensitive to attacks
against [ACE|, as designed. Similar is the case for the sub-observer of [ACE,, depicted in
Fig. 4.4a. The same conclusions can be drawn for the rest of the case studies, based on Fig.
4.4b and 4 .4c.

An interesting remark is that the residuals of the sub-observers neither deviate in the
event of a load disturbance, e.g. at t = 4s in case 1, nor during RES disturbances that happen
throughout the simulation. Thus, similarly to the designed AD method, the introduced ALC
scheme is insensitive to load and RES disturbances and can successfully distinguish whether
an event is a cyberattack or not. It is also important to mention that the locator of area 1 for
case study 2 and the locators of area 1 and 4 for case study 3 do not fluctuate, according to
Fig. 4.4b and 4.4b, respectively. This is reasonable considering that these areas do not suffer
from cyberattacks and indicates that the designed ALC scheme is not prone to false positive
alarms. Finally, the selected localization thresholds are adaptive, following the design that
is described in Section 4.5; the benefits of this feature are already discussed in the present

section.

4.6.3 Sensitivity analysis on power system parameters

To effectively capture the behavior of LFC system, its modeling requires the accurate com-
putation of several power system parameters, such as turbine and governor time constants,
tie-line synchronizing coefficients, load frequency relief, regional inertia constants, etc.
However, this is a challenging task due to the necessary model linearizations, system approx-
imations or other simplifications that must be taken into account. Therefore, the resulting
matrix values of the designed observers might deviate from the actual values of the system
parameters. In this context, it is necessary to investigate the sensitivity of the proposed
AD & ALC techniques to these parameters in order to validate their robustness and their
applicability to realistic conditions.

To perform the particular sensitivity analysis, the proposed AD & ALC schemes are
consecutively applied to case study 1 (without loss of generality) for different system

parameter values in each iteration. For this purpose, the following scenarios are investigated:
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Figure 4.4 Performance of the proposed ALC scheme.

* a10%, 20%, and 30% increase in the turbine and governor time constants of areas 1

and 2 (7;,, T, , T, , T}, respectively),
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* a10%, 20%, and 30% decrease in the turbine and governor time constants of areas 1

and 2 (7;,, T, , Ty, , T;,, respectively),

* a10%, 30% and 50% increase in the tie-line synchronizing coefficient between areas 1

and 2 (T12),

* a 10%, 30% and 50% decrease in the tie-line synchronizing coefficient between areas
1 and 2 (le),
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Figure 4.5 Sensitivity analysis of the proposed AD & ALC schemes on Ty, and Ty, i = 1,2.

The results of this sensitivity analysis are illustrated in Fig. 4.5 and 4.6, where the outputs
of the attack detectors and locators for different system parameter values are depicted. It is
apparent that despite the changes in the power system parameters, the effectiveness of the
proposed method and schemes is preserved; the outputs of the designed AD & ALC schemes
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for the modified parameters demonstrate negligible deviations from the corresponding output
for the nominal parameters. Therefore, it can be safely concluded that the suggested AD &
ALC methods are robust against uncertainties in power system parameters.
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Figure 4.6 Sensitivity analysis of the proposed AD & ALC schemes on T7;.

4.6.4 Sensitivity analysis on noisy measurements

In real-world power systems, the noise of instruments and telemetry channels interferes
with the grid measurements and corrupts the actual information [123]. To further verify the
feasibility of the presented AD & ALC methods in realistic conditions, it is necessary to
investigate their robustness against noisy measurements. For this numerical assessment, the
introduced AD & ALC methods are applied to a noiseless and noisy setting of case study
1 (without loss of generality). Then, their outputs in each environment are obtained and
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compared, similar to [124]. If the performance of the proposed cyber defense layers is similar

in both settings, then they are assumed to be robust against noisy measurements.
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Figure 4.7 Sensitivity analysis of the proposed AD & ALC schemes against noisy measure-
ments.

For this analysis, each yf element (x = 1,2, ..., p) of the case study | measurement vector

Ym 18 modeled as:
Ym = Ya T eng

where y¥ represents the actual value of the k-th measured variable and e}, denotes its
measurement noise. It is assumed that each e); follows the normal distribution with a mean
value of u, and a standard deviation of 9. For the noiseless environment, it is considered
that u, = 0 and 8¢ = 0% and for the noisy environment, the values of y, =0 and 6, = 1%
are selected, V1 < k < p.
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Fig. 4.7 illustrates the outputs of the introduced AD & ALC schemes when they are
applied to case study 1 with noiseless and noisy measurements. The performance of the AD
& ALC scheme in the noiseless setting (blue lines in Fig. 4.7) is the ideal one, as expected.
Regarding the noisy environment, the outputs of the attack detector and the attack locator
(red lines in Fig. 4.7) slightly deviate from the ideal curves. However, these fluctuations
are very small and practically negligible (with approximately 0.1% order of magnitude).
Therefore, the robustness of the proposed AD & ALC methods against noisy measurements
is ensured.

4.6.5 Comparative study

In this subsection, a comparative study is performed in order to identify the innovations
of the proposed cyberattack detection and localization methods in comparison to other
relevant techniques from the literature. The first part of this analysis investigates whether
an attack detection method for LFC meets a necessary set of quality features or not. This
quality comparison is illustrated in Table 4.1, where "v'" denotes that the specific feature is
considered in the corresponding method and " x" means that it does not. The selected quality

features are the following:

1. Localization: the attribute of a method to locate the signals of the system that have
been affected by cyberattacks;

2. Decoupling: the property of a method to distinguish attacks from other types of
external disturbances;

3. Adaptive threshold: determines if a method uses adaptive detection thresholds or not;
4. Nonlinearities: indicates whether a method considers LFC nonlinearities or not;

5. Diverse tie-lines: determines whether a method includes diverse types of tie-lines

among power system areas or not;
6. RES: states if a method includes RES disturbances or not;

7. Parameter uncertainties: indicates if a method is sensitive to power system parameter

uncertainties;
8. Noisy measurements: determines if a method is robust against noisy measurements;

9. Scalability: the attribute of a method to be applicable to various systems irrespective

of their size.
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Table 4.1 Quality comparative analysis of the proposed AD scheme.

Methods
[125] [21] [26] [20],[126] Proposed

Features
Localization X X X v
Decoupling v X X v
Adaptive threshold X X X X v
Nonlinearities X X X X v
Diverse tie-lines X X X X v
RES X X X X v
Parameter uncertainties X X X X v
Noisy measurements v X X X v
Scalability v X X X v

There are several interesting conclusions drawn from Table 4.1. Firstly, while [125], [21]
and [26] are able to successfully identify cyberattacks, they cannot locate which signals have
been affected, like the presented filter does. Also, the proposed method is capable of handling
the LFC nonlinearities in both theory and practice, while the rest of the techniques disregard
them. Likewise, the introduced AD & ALC methods can successfully decouple cyberattacks
from disturbances due to RES and load variations, contrary to [21] and [26]. Regarding
the attack detection residuals, the presented approach uses adaptive thresholds, while the
compared techniques employ predefined ones. Furthermore, the robustness of the proposed
methodology against power system parameter uncertainties and noisy measurements is
verified, unlike the rest of the methods. For the experiments of the suggested method, several
realistic features of power grids are considered, such as diverse types of tie-lines (HVDC,
TCPS-equipped) and RES generation, in contrast with the other compared works. Moreover,
the stability of the proposed algorithm is mathematically established, unlike data-driven [125]
and statistical [21] methods. Finally, the presented approach has been applied to different
power systems of varying complexity to ensure that is scalable, while [21], [26], [20] and
[126] have not.

The second part of this analysis involves a quantity comparison where the proposed AD
& ALC mechanisms for LFC are compared to other sophisticated research methods based on
selected detection metrics. The difference from the first part of this analysis is that the metrics

of the quantity comparison can be measured, unlike the features of the quality comparative
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analysis. This quantity comparison is illustrated in Table 4.2 and the selected metrics are the

following:

1. Detection time: the elapsed time between the launch and the identification of the
attack;

2. Precision: the percentage of the total triggered alarms that are actual cyberattacks;

3. Recall: the percentage of the total cyberattacks that are actually identified.

Table 4.2 Quantity comparative analysis of the proposed AD scheme.

Methods
[73] [127] Proposed

Metrics

Detection time (sec) | 0.058 1.006 0.012
Precision 100%  86% 100%

Recall 100%  79% 100%

For the quantity comparison, the attack detection methods [73], [127] have been imple-
mented and applied to the case study 1 (without loss of generality) described in Section
4.6.1. For simplicity, only the step FDIA at t = 10 sec has been considered. Precision and
recall metrics are measured by running multiple simulations of case study 1. From Table
4.2, it is concluded that the proposed work can detect cyberattacks faster than the rest of the
compared techniques. Moreover, the introduced defense method and [73] can identify all the
simulated attacks without any false positive alarms, unlike [127]; this is a reasonable outcome
for model-based AD approaches compared to the data-driven ones. The above discussion
highlights the merit of the proposed technique over other related works and therefore, it
verifies its research contribution.






Chapter 5

SMO-based Attack Estimation &
Attack-resilient LFC

In this chapter, the basic principles of the proposed observer-based attack estimation &
attack-resilient control mechanism for the frequency control of power systems are presented.
As mentioned in Section 1.3, AE methods provide an approximation of cyberattacks against
LFC while ARC approaches can mitigate their impact against this system. In the remainder
of this section, the model of LFC during FDIAs is initially introduced, upon which the
proposed AE & ARC methodologies are established. Then, the design procedure of the
proposed observers is developed. The attack estimation formulas that are derived from the
introduced observers are demonstrated in the next section. To verify the effectiveness of the
designed AE scheme, a discussion about the experimental results follows Finally, the ARC
mechanism based on the suggested AE method is presented along with its stability analysis,
which proves its existence. Similar to the others cybersecurity techniques, the introduced
ARC mechanism is accompanied by the experiments that validate its performance.

5.1 LFC modeling under FDIAs

As already mentioned, the development of cyber defense methods that are based on observers
requires a compact algebraic-differential model that takes cyber threats into account. To this
end, the original state-space representation (3.34) of LFC is re-modeled considering FDIAs

against the measurements and control signals, as follows:

X(t) = Ax(1) + Fo (x,1) +B(u(t) + ac(t)) + Ed(r)
(1) = Cx(t) + Dap(1)

(5.1
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where a.(t) € R™ represents the vector of attacks against control signals, a,,(f) € R? is
the vector of attacks against measurements and D € R”*9. Without loss of generality, it is
assumed that the FDIAs against the control signals target every input channel, hence u(r) and
ac(t) share the same matrix B. Moreover, p —m > g while B and D have full column rank.
At this point, it should be noted that the measurement and control signal attacks are
represented by two distinct terms a(f) and a,,(t), respectively. This unified framework
is a more generalized modeling of LFC under FDIAs, compared to the corresponding
representation demonstrated in Section 4.1. While both of these models effectively capture
the impact of cyberattacks against measurements and control signals, the more specialized
representation of this section may lead to less misinterpretations regarding the location of the
attack. To include both of these representations in this study for the sake of completeness,

each of them is used for a different part of the proposed cyber defense strategy.

5.2 Observer Design Preliminaries

The introduced attack estimation and attack-resilient control methods are based on a pair
of specially designed observers. To guarantee the existence of these observers, a solid
mathematical foundation has to be established before their design process [117]. This
mathematical background is composed of a series of assumptions which are demonstrated in
what follows. The results from these assumptions are briefly analyzed to shed more insight

into the observer design process.
Assumption 5. rank(B) = rank(CB).

Assumption 5 is required to virtually split system (5.1) into subsystem-I and subsystem-I1
subsystem-1 is susceptible to the FDIAs against control signals but free from measurement
FDIAs and subsystem-I1 is prone to FDIAs against measurements but free from control signal
FDIAs. This partition facilitates the observer design process, as it separates the original
system into simpler, equivalent subsystems with less terms. Each of these subsystems is
dedicated to a particular type of cyberattacks, either measurement or control signal. Formally,
Assumption 5 is the necessary condition for the existence of the following state and output

transformations:
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respectively, where T € R"™" § € RP*P T} € R™" S € R™*P, {; € R" and @, € R™.

After applying the above transformation technique to (5.1), it is acquired:
X=Ax+Fo(x,t)+B(u+ac)+Ed byt
el
y= Cx+ Da,, mult. by S

Ti=TAx+T(F¢(x,t)+Bu+Ba.+Ed) w=T ¢
= —

Sy = SCx+ SDa,), y=s"lo

C=TAT '{+TF¢(T~'{,t)+TBu+TBa.+TEd
=

o =SCT~'¢ +SDa,,

and the new system matrices are:

(A, A B E c F
AT ' = |7V 2 rp= " rE=|"".scT = | T tF=]""
Az A4 0 2 0 Gy F
[0
and SD = _],
D,

where Ay € R™™ Ay € RU—mx(=m) B ¢ RMWM | ¢ R™T F € R™ Cp €
Rm*m Cy € RP—m)x(n=m) anq p, € R(P~m*4_C, and B, are invertible.
The newly transformed system can be separated into the next two virtual subsystems:

G =A16+A0+FO(TC0)+ B (utar) +Ed
o =C1 6

(5.2)

& =A38 + AL+ Ro (T 1)+ Exd
@ = C48r +Daay.

(5.3)

By considering measurement attacks a,, as auxiliary states, the augmented form of
subsystem (5.3) is obtained as:

G = A58 + A4+ B (T~ 1) + Exd + Edy 5
0 = C_’452
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where & = & cRMI™™ Ay = A4 0 € R(rg=—m)x(ntq=—m) A, _ A3 e R(n+g—m)xm
am 0 0 0
FZ _ FOZ c R(n—kq—m)xt’ Ez _ E(; c R(n—i—q—m)xr’ E = IQ c R(n+q_m)><q and 64 _
= = q

[(;4 Dz] e R(p—m)x(n+q—m)_

In a similar way, system (5.2) can be expressed as:

G =16 +A0+FO(T 60+ B (utar) +Ed
o =C ¢,

(5.5)

where A, = [Az Q} .

Assumption 6. The nonlinear term of system (5.1) is a Lipschitz continuous function about

x, with a Lipschitz constant of . Formally:
H(])(X,l) - (P()’C\vt)H S ag/ﬂ(pHX_xAH VX,)’C\ € R".

Assumption 7. The control signal FDIA vector a. and the disturbance vector d are bounded
by the known, positive constants p and &, respectively, as ||a.|| < p and ||d|| < &. Further-

more, the first derivative of measurement FDIA a,, exists and d,, € £5[0,0).

Assumptions 6 and 7 are the necessary conditions to prove that the error dynamics of the
proposed observers are asymptotically stable. Particularly, the boundedness of different terms,
e.g. nonlinearities cyberattacks, etc., provides the system designer with useful inequalities
which lead to the proof that the derivative of the selected Lyapunov function is negative, as

shown in the next section.

5.3 Observer Design Process

According to Section 2.1, the purpose of the observers is to produce an estimation of the state
of the system that they are designed for. Mathematically, the observer of a system exists if
the error between the actual state vector and the estimated state vector, namely the estimation
error, converges to zero. The goal of this work is to design observers for LFC in such a way
so that each estimation error is sensitive only to a single attack vector. Therefore, when the
estimation error converges to zero, a set of formulas is derived that can approximate the
related attack vectors. The rest of this section is dedicated to the development process of the

proposed observers.
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The SMO described by Eq. (5.6) is designed for subsystem (5.5) to estimate {; and @;

as {1 and @, respectively:

Gi=MG + A0+ FO(T1E,0)+B(utv) + (A —A)C; (0 — ) +
+ SR FTPC (01 — én) (5.6)
o =&,

where A € R™*™ is a Hurwiz matrix to be calculated, P; € R™*™ is the definite symmetric
Lyapunov matrix of Aj and f = col (CflS 1, [In_m 0} Q_’z) The estimated &, denoted
as Z_?z, will be determined by observer (5.8). Regarding ki, the following adaptation law

ky = Iy, |FL P (Cy o — él)Hz is satisfied, where [, represents a positive scalar. For the

discontinuous output error injection term v, we have:

BIP(C o —8)
(p+m) IBTP(C o =)l

if C7 oy — &1 #0 57

y =
0 otherwise,

where 1) is a positive scalar to be calculated.
For subsystem (5.4), the UIO described by Eq. (5.8) is constructed to estimate {, and @,
as 52 and @, respectively:

h= Foh—l-Mon(])(T_l é,t) + Lo, +M0A3C1_1(01 + %]ACQM()FzH()((I)z —an)

& = h+Now, (5.8)
@ =Cy&.

where /1 € R"™47 is the middle variable, Ny € RUa=m)>x(p=m) ¢ RV(P=m) ppy €
Rtg=—m)x(ntg—m) 1 c Rlrtg=—m)x(p—m) gnq Fy e Rnta—m)x(ntq=m) are matrices to be
computed. Regarding k», the ];%2 = I, ||Ho (e, — @)||* adaptation law is satisfied, where [,
denotes a positive scalar.

After designing the proposed observers (5.6) and (5.8), the estimation errors and their
dynamics can be obtained. Let e; = {; — él and &, = C:'z — 52 be the estimation errors
generated by the observers (5.6) and (5.8), respectively. The error dynamics are modeled as

first order differential equations between the estimation errors. By differentiating (5.8), it
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follows that:
& = h+Notn =
= Fo&o + (LoCy + NoCyAy — FoNoCy) & + MoFr¢ (T évt) +NoCaFr (T 1) +

o L - 1. - A
+ (Mo +NoCa)A381 +NoCaLod +NoCaEdm + 5 kaMoF2HoCy (@2 — ).
Then, the error dynamics after the occurrence of cyberattacks are:

é1=Ale; + A28+ F (9(T7'¢,0) —9(T~ 'L ,1)) +Bi(ac—v)+Erd - %inlFlTPlel
(5.9)
& = (As+ FoNoCs — LoCs — NoCsAs) &y — Folo + (Insqem — NoCa) P20 (T~ 1) —
—MoF¢(T 1)+ (In+g—m — NoCa)Exd + (Insg—m — NoCa)Ediy — %fczMOFzHOaéz.
(5.10)

To further simplify the error dynamics (5.10), we need to find matrices My, Ny, Fy, and
L such that:

Mo = Iy g—m—NoCy (5.11)
Fo = MoA4+ (FoNo — Lo)Cy (5.12)
MyE = 0. (5.13)

Then, (5.10) becomes:
. _ _ 1 _ 1
& = Foér +MoF> (¢(T'8,t) — ¢(T'C,1)) + MoEad — skaMoFyHoCar. (5.14)

The structure of the resulting error dynamics (5.9) and (5.14) indicates that the goal of
the observer design process has been achieved: e is susceptible only to control signal attacks
and e, is susceptible only to measurement attacks. However, (5.9) and (5.14) are still not
completely decoupled from external system disturbances. To tackle this, a prescribed He
disturbance attenuation level is integrated into the proposed observers. Formally, this newly
introduced feature guarantees that the estimation errors are bounded by system disturbances.
€1

Letr:He:H[
(%)

] be the controlled estimation error where H is a predefined weight

H 0
matrix in the form of [ Ol I-; ] , with H; € R"™™ and H, € Rnta=—m)x(ntq=m) The pext
2



5.4 Estimation of FDIAs 83

theorem establishes the necessary conditions for the existence of the proposed observers with
the prescribed H., performance ||r|| ¢, < \/IL||d]| ».

Theorem 5.3.1. Consider system (5.1), Assumptions 5-7 and a positive scalar L. If matrices
Lo, Fy, My, and Ny satisfy conditions (5.11)-(5.13) and there are matrices Py = PIT > 0,
P = P2T > 0 and Hy such that:

HyCy=BMEP, (5.15)
IT; —|—H1TH1 P]Az P E;

A= | AP IL+HIH, TLhME;| <O, (5.16)
ETP EImIp,  —ul,

where 1] = AiTPl +PA] and I, = P Fy + FOTP2 + 21y g—m, then the estimation error dy-

namics are asymptotically stable with the prescribed H.. tracking performance.
Proof. Refer to Appendix B. [

If matrices Ly, Fy, My, and Ny satisfy the conditions that Theorem 5.3.1 founds, then the
design of the proposed observers (5.6) and (5.8) is feasible. Finally, Theorem 5.3.2 provides

a way of selecting the value of 1 in order to drive e and &, to the sliding surface:
S = {(e] ,6_2)|61 = 0} (5.17)

in finite time while simultaneously preserving their sliding movement.

Theorem 5.3.2. Consider system (5.1), Assumptions 5-7 and observers (5.6) and (5.8). The
error dynamics (5.9) and (5.14) can be driven to the sliding surface (5.17) in finite time when
the following inequality:

n > BT A2lle+ Lo | AT e+ I ElIE) +mi,

where ||le|| < € and 11 > 0 is a scalar, holds true and the LMI feasibility problem (5.16) has

at least one solution.

Proof. Refer to Appendix B. [

5.4 Estimation of FDIAs

The measurement attack vector a,, can be easily estimated using the proposed UIO (5.8).

Observer (5.8) can produce an estimation 52 of the augmented state vector 52 with the
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prescribed performance. According to Section 5.2, 52 is a superset of a,,, and thus:

in~[0 1,| & (5.18)

The estimation of the control signal attack vector a. will be achieved through the error
dynamics (5.9) of e;. According to Theorem 5.3.2, when e and é; are driven to the sliding
surface . (5.17), it is true that ey = 0. Thus:

Ay + F1(9(T718,0) = (T71E,1)) + Bi(ac — veg) + Erd =0, (5.19)

where v, is the equivalent output error injection signal during the sliding motion [128],
which expresses the average behavior v. The v,, term can be accurately approximated by
[129], [130]:

BIPI(C; o1 =)
IBTP(Cy an — &)+

Veq = (p+n)

where 8 > 0 is a small scalar added to the denominator of (5.7) to tackle the chattering effect.

Since B1_1 exists, Eq. (5.19) becomes:
e —Veg = —B; (A2es + FL(9(T7'8,1) — (T8 1)) + Erd). (5.20)
From the L, norm of (5.20), we obtain:
lae = veqll 2, = 1B (Asa + Fi (9(T¢.0) = 0 (17" E.0)) + Evd )| 5 <
< (Omar(By 'A2) + Oar (B ' F)-Z 1T ]) 122]] 25 + Omax(By 'En)|1d || 24,

where Gy (+) is the maximum singular value of the considered matrix. Theorem 5.3.1
implies that ||e]| ¢, < Omax(H')\/H||d||.2, and thus, we have:

l|ac _VeqH,Zz <

< (VE(Gmar(By A2) + OBy )L I T ) e (H ) + G (B ') ) 1 7, =

ac —V
= sup Mzﬁﬁr\/ﬁﬁz?
ldlzyz0  lldllz

where ﬁl = Gmax<B;1El) and BZ = (Gmax(BIIAZ) + Gmax(BlilFl)gq)HTil||>0-max(H71)~
Therefore, if B; 4+ /> is close to zero, attacks against control signals can be approx-
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imated as: R
BIP(Cl o1~ (1)

IBTPi(Cy o= Eo)| +6

ac~(p+n) (5.21)

5.4.1 Experimental results

The experimental results from the performance assessment of the presented AE method are
shown in this subsection. Its structure is similar to the previous parts of the manuscript
that describe numerical results. More insight regarding the subsection structure and the

simulation platform can be found in the introduction of Section 4.6.

5.4.1.1 Use case analysis

As explained in Section 4.6.1, a series of case studies is required for evaluating the per-
formance of a proposed cyber defense layer. Regarding the designed AE scheme, the
implementation of the necessary case studies follows the specifications that were established
for the introduced AD and ALC methodologies, as presented in Section 4.6.1. These specific-
ations require the consideration of various topologies, different types of FDIAs and multiple
disturbances to evidence the effectiveness and the scalability of the proposed AE mechanism.

An in-depth analysis of these case studies follows:

TN LT ! Power »_____ ! Power \
I, \\ I, \\ ! <_l l
/ Power © / Power © \ Areal \ Aread )
1 N 7 4
\ Areal / \ Area2 ) / ~~a- /[;\~_—/
\\ /, \\ /, %
N . ,', \ ,', \
AC tie-line without TCPS — 8 / Power / Power
. . . [} 1
AC tie-line with TCPS ‘" Area?2 ) \ Area3 ;
HVDC tie-line —>——< No. U No LS
(a) Case study 1 (b) Case studies 2

Figure 5.1 Topologies of the use cases implemented for the proposed AE and ARC schemes.

* Case study 1: 2-area power system, connected via an AC tie-line. The simulated load
disturbance is modeled as 1% p.u. step function in area 1 at t = 5 sec. Regarding the
FDIAs, a 0.01 p.u. sine attack is launched against the control signal of area 2 at t = 25
sec and a 10% p.u. step attack is launched against the frequency measurement of area
1 at t = 35 sec;

* Case study 2: 4-area power system, interconnected via AC (either equipped with
TCPS or not) and HVDC tie-lines. In this case, a 5% p.u. step load disturbance occurs
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in area 1 at# =5 sec. The simulated FDIAs include a [-0.1, 0.1] p.u. random attack
against the control signal of area 2 at # = 25 sec and a 1% p.u. ramp attack against the

frequency measurement of area 3 at r = 35 sec.

The topology of each simulation scenario for the presented AE scheme is depicted in Fig.
5.1. The power system parameter values of each area can be found in the Appendix C. Solar
and wind generation disturbances occur throughout the simulations of every case study and
their implementation is based on the modeling of Section 3.3 Furthermore, measurement
time delays, that vary between 1 to 2 seconds, are simulated in all case studies.
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Figure 5.2 Frequency & tie-line power flow responses to the disturbances of each case study
implemented for the proposed AE scheme.

Fig. 5.2 portrays the frequency and tie-line power flow responses for case study 1 under
1% p.u. step load disturbance at # = 5 sec in area 1 and variations due to RES, and for case
study 2 under 5% p.u. step load disturbance at t = 5 sec in area 1 and RES variations. In
this way, the proper operation of the implemented LFC systems is ensured. Moreover, the
waveforms of the aggregated external disturbances, caused by both load and RES variations,

are plotted in Fig. 5.3, for a better insight on the simulated scenarios.
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5.4.1.2 Performance analysis

The designed AE mechanism is applied to case studies 1 and 2 defined in 5.4.1.1 for
performance assessment and the results are portrayed in Fig. 5.4 and 5.5. The blue lines of
Fig. 5.4 represent the actual FDIAs launched in each case study while the red lines depict the
corresponding attack estimations generated by the proposed AE scheme. The upper graph
of Fig. 5.4a demonstrates how the control signal attack estimator of case study 1 performs
and the lower graph of 5.4a illustrates the performance of the measurement attack estimator
of case study 1. Fig. 5.4b contains the same information but for case study 2. For a better
insight into the performance of the proposed AE technique, the resulting attack estimation
errors are plotted in Fig. 5.5. These errors are defined as the difference between the actual
and the approximated attack signals and annotated as e, = a. — d., when referred to control

signal attacks, and €/ = a,, — d,,, when referred to measurement attacks.
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Figure 5.3 Simulated disturbances for each case study of the proposed AE scheme.

Fig. 5.4 reveals that the actual and the estimated FDIAs are almost identical, which
validates the effectiveness of the presented method. This is further verified by e, and e/
in Fig. 5.5; the differences between the actual and the approximated attack signals are
always close to zero, despite some negligible spikes. Fig. 5.4 and 5.5 also indicate that
the suggested AE strategy is resilient against the scheduled load disturbances atr =5 sec,
the RES disturbances that occur throughout the simulation and the varying time delays.
Moreover, the upper graph of Fig. 5.4a shows that the a, estimator module of case study 1 is
unaffected by the a,, attack at r = 35 sec. The same applies to the rest of the simulations,
confirming that each estimator module is sensitive only to the attack that is designed for.
Finally, the presented AE methodology performs successfully to power systems of various

sizes, which proves its scalability.
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Figure 5.4 Performance of the proposed AE scheme.
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Figure 5.5 Resulting attack estimation errors of the proposed AE scheme.

5.4.1.3 Sensitivity analysis in noisy environments

As already explained in Section 4.6.4, it is highly important to test the effectiveness of a
cyber defense layer in the presence of noise. To this end, this subsection is dedicated to the
sensitivity analysis of the proposed AE scheme in noisy environments. The methodology and
the modeling of this experiment are similar to the ones followed in Section 4.6.4, adjusted
to the case study 2 environment of the proposed AE scheme. For more information on this
topic, the reader may refer to the aforementioned part of the present study. A similar analysis
for the proposed ARC is deemed redundant; if the introduced AE method is effective, the
same holds true for the ARC strategy as well, according to both theoretical and numerical
evidence.
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The results of this experiment are depicted in Fig. 5.6: the orange line refers to the
generated attack estimation when applied to the noiseless case study 2 while the green, dotted
line corresponds to the same signal for the noisy case study 2. The upper graph Fig. 5.6 shows
the launched control signal FDIA and the lower graph portrays the launched measurement
FDIA. In the presence of noise, the produced FDIA approximations demonstrate similar
behavior with the original waveforms of the corresponding FDIAs, despite some minor
fluctuations (approximately 0.1%). Since the impact of these deviations is minimal and the
overall performance of the defense mechanism is not downgraded, it is implied that the

introduced methodology is robust against noisy measurements.
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Figure 5.6 Performance of AE in the presence of noise.

5.5 Observer-based Attack-resilient Control Strategy

Eq. (5.18) and (5.21) provide the necessary formulas for the estimation of the measurement
and control signal attack vectors, respectively. The estimated signals d,, and d. can be
used to form an attack-resilient frequency control strategy by properly inserting them into
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the compromised control loop (5.1). The attack mitigation method proposed in this study
establishes an ARC mechanism like this and is described in what follows. A stability analysis
for the introduced ARC strategy is also presented to theoretically verify its effectiveness in
stabilizing the power system frequency in the presence of both external disturbances and
FDIAs.

For the case of control signals attacks, the integration of the d. term into the LFC loop
for the FDIA elimination is straightforward. This can be achieved by adding the d, as a
supplementary control input to the compromised system (5.1) in order to compensate for
the a.. The addition of this control input does not modify the input term u(¢) which in turn,
would affect the original frequency control and thus, the system stability is preserved. The
compromised system (5.1) integrated with the new control input 4., is converted into the

following form:

X(t) = Ax(t) + Fo(x,t) + B(u(t) +ac(t) — ac(t)) + Ed(t)
y(t) = Cx(t) + Day(t).

(5.22)

For simplicity, in the remainder of this section it is assumed that control signals attacks are
immediately mitigated in case of system (5.22) and the difference between the actual and the
estimated control signal attack vectors is negligible. Hence, system (5.22) is transformed
into:

x(t) =Ax(t) + Fo(x,t) 4+ Bu(t) + Ed(t)

y(t) = Cx(t) + Day(1).

(5.23)

By noticing system (5.23), it can be concluded that the compensation for the a,, impact
can be achieved by adding the d,, term to the system output y(¢). However, this integration
of a,, into the LFC system modifies the original frequency controller, as explained below.
More specifically, Eq. (3.29) and (3.33) indicate the the original control law is a static
output-feedback controller described by:

u = —Ky,

where K € R™*? is the matrix of the feedback gains (its optimal design exceeds the scope of
this study, as discussed in Section 3.3). Therefore, it is necessary to prove the effectiveness
of the new, attack-resilient control law against both external disturbances and cyberattacks.

For the redesign of the original controller, the actual measurement vector y will be

modified by subtracting the estimated attack vector &, from it, since y already includes the
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actual measurement attack vector a,,. Thus, y is converted into y., as:
Yer =y — Dl = Cx+Dam — Dapy = Yer = Cx+D(a;n —dm) = Yer = Cx—DeZ’,

where €' = a,, — a,, denotes the attack estimation error which is the difference between the
actual and estimated attack vectors. From the previous analysis, the form of the updated

attack-resilient control law can be obtained as:
Ugr = —Kyer.

The objective now is to provide a stability analysis for the updated control law which proves
that the LFC operates as expected and is resilient to cyberattacks. The remainder of this

section is dedicated to this proof.

Stability analysis

By replacing the actual measurement vector y with the corrected one y., into system (5.23),

it is obtained:

X=(A—BKC)x+BKDée" +F¢(x,t)+Ed
( ) a (x,1) 524
Yer = Cx —Del}'.

The following Lyapunov function is selected to prove the stability of the resulting system
(5.24):
Var = V() + WVe(ef) = x" Pox+v(€))) Peelf, (5.25)

where ¥ > 0 is scalar and P, > 0 and P, > 0 are definite symmetric matrices with proper
dimensions.

By differentiating V,, it is acquired:
Ve =x" [(A—BKC)" P, + P.(A — BKC)]x +2x" P,(F ¢ (x,t) + Ed + BKDel).

The LFC considered in this study is asymptotically stable under attack-free conditions,

according to Eq. (3.34). This implies the existence of a scalar 1, > 0, such that:

x"[(A=BKC) P+ P(A — BKC)|x +x" P (F (x,t) + Ed) < — n|x||*. (5.26)
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From the analysis of Section 5.4, it is concluded that the attack estimation error e, —
0 as t — oo. This yields that a scalar 1, > 0 exists, such that:

Ve(e) < — el €I (5.27)
From (5.27), (5.26) and the differentiation of (5.25), it follows that:
Var < =l|x]1* + 2| PBKD|||[x]|[| €| — yne eI (5.28)

By selecting:
y g 5
. (2||P.BKD]|)

NxNe
inequality (5.28) becomes:

. Nx Ne
Var < =1l + vymene Il e | — ynellel 1> < —EHXH2 - Yg!le?Hz-

which proves that e() — 0 and x(¢) — 0 as t — oo. Thus, the LFC system that is integrated
with the proposed attack-resilient control law is asymptotically stable. This means that the
normal operation of LFC is preserved with the introduced cyber defense strategy even in the
presence of measurement attacks. The new, attack-resilient LFC state-space representation is

expressed as:
x(t) =Ax(t) + FP(x,1) + Bug,(t) + Ed(t)
Yer(t) = Cx(t) 4+ D (am(t) — am(1)).
The basic concepts of the introduced AE and ARC methods are briefly summarized

in Algorithm 2 that follows. Algorithm 2 provides the operational flow of the suggested

methodology to make the present work more comprehensible.

5.5.1 Experimental results

In this subsection, the experimental results from the performance evaluation of the proposed
ARC mechanism are demonstrated. The structure of this subsection is similar to the previous
experimental sections. More information about this topic and the simulation platform can be

found in the introduction of Section 4.6.
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Algorithm 2 Summary of the proposed FDIA defense strategy
Require: * rank(B) = rank(CB),
* 19Gn1) =9 (D) < Zo|lx— | Va2 R,

¢ lacll < p, ||d|| < & and ay, is differentiable.
Ensure: A,F,B,E,C and D are known.
. Find proper T and S;
. Construct the designed SMO and UIO;
t <+ 0; > AE & ARC mechanisms are enabled
. whiler > 0 do
Apply the T and S to the original system;
Compute o(t) = Sy(t);
Provide (r) and u(t) to the attack estimator module;

Calculate &, (¢) and &5 (¢) through the SMO and UIO, respectively;

Compute d,, ~ [O Iq} Z;’z;
BlP(Clo=8) .
1B Py (T oy =) +6”
11: Correct y(t) as yer(t) = Cx(t) + D(am(t) — am(1));
12:  Provide the new LFC control input signal as u, (t) +ac(t) — dc(t);
13: tt+1; > Next time step
14: end while > AE & ARC mechanisms are disabled

A AR kg S

_
e

Compute d. ~ (p+1)

5.5.1.1 Use case analysis

According to Section 5.5, the proposed ARC strategy utilizes the output of the designed
AE scheme in order to mitigate the impact of the launched cyberattacks. As these cyber
defense layers are interdependent, it is reasonable to investigate their performance on the
same grounds. Therefore, the evaluation of the introduced ARC scheme is conducted using
the use cases developed for the AE scheme. These use cases have been already described in
Section 5.4.1.1 and the reader may refer to the specific part of this study for more information

on this topic.

5.5.1.2 Performance analysis

The performance of the proposed ARC method is evaluated on the case studies defined in
5.5.1.1. For this experiment, the frequency responses of the implemented LFC systems
are analyzed under the following two conditions: i) with the LFC utilizing the suggested
ARC mechanism, and ii) with the suggested ARC being disabled and the LFC using other,
existing control methods. For a better insight on the impact of cyberattacks against the
system frequency, a single attack between a. and a,, is simulated when the introduced
ARC is inactive. The results are illustrated in Fig. 5.7. Particularly, Fig. 5.7a portrays
the performance of the presented ARC in case study 1, where the black line illustrates the
behavior of Af; when the suggested ARC is enabled, the red line refers to Af; response
under a, without using the suggested ARC and the blue line displays the A f response under
am with the proposed ARC being disabled. The same information is provided in Fig. 5.7b
for case study 2.
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Based on the results of Fig. 5.7, the frequency responses of the LFC systems without
the proposed ARC method start to deviate significantly from their nominal values at t = 25
sec and at t = 35 sec, when the a, and the a,, are launched, respectively. On the contrary,
when the proposed ARC method is active, the frequency responses deviate only in the
event of the scheduled load disturbance at r = 5 sec and remain unaffected by the launched
cyberattacks. This implies that the introduced control scheme can effectively mitigate the
impact of FDIAs, allowing the LFC system to continue operating based on its primary
specifications. Moreover, these experiments validate the scalability of the proposed ARC

mechanism, as it is successfully applied to several case studies of varying complexity.
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Figure 5.7 Performance of the proposed ARC scheme.
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5.5.1.3 Sensitivity analysis on power system parameters

For feasibility reasons, it is necessary to investigate the robustness of a cyber defense
mechanism against power system parameter uncertainties, according to Section 4.6.3. In this
context, an analogous sensitivity analysis of the proposed ARC mechanism is performed in
this subsection. This experiment adopts the methodology described in Section 4.6.3 and the
reader may refer to the specific part of this study for more information. The implemented

scenarios are the following:
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Figure 5.8 Sensitivity analysis on power system parameter uncertainties of the proposed
ARC scheme.
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a 10%, 20%, and 30% increase in the turbine and governor time constants of areas 1

and 2 (7;,, T, , Ty, , T;,, respectively),

a 10%, 20%, and 30% decrease in the turbine and governor time constants of areas 1

and 2 (7;,, Ty, , Ty, , T}, respectively),

a 10%, 30% and 50% increase in the tie-line synchronizing coefficient between areas 1
and 2 (T1),

a 10%, 30% and 50% decrease in the tie-line synchronizing coefficient between areas
1 and 2 (T712),

The results of the present sensitivity analysis are illustrated in Fig. 5.8. More specifically,
Fig. 5.8a depicts the system frequency responses when uncertainties in Ty, and 7;; (i = 1,2)
occur and Fig. 5.8b portrays the tie-line power flow responses of the system in case of 71,
uncertainties. These responses demonstrate minimal deviations in case of system parameter
uncertainties compared to their standard behavior, when the nominal values of the system
parameters are used. Furthermore, the FDIAs against control signals and measurements are
still effectively mitigated even when the system parameters are miscalculated. Based on
these results, it can be concluded that the suggested attack-resilient strategy is robust against

possible inaccuracies in the power system parameters.

5.5.1.4 Software-in-the-loop simulation

So far, the assessment of the proposed ARC method has been performed within a software
environment. Despite the multiple practical features considered in the modeling of LFC,
software simulations cannot completely capture the real-time nature of power systems. To
evaluate the performance of the presented ARC strategy in more realistic conditions, a
Software-In-the-Loop (SIL) testbed has been implemented. SIL (or hardware-in-the-loop) is
a real-time simulation technique that enables a highly detailed and accurate design of power
systems. In SIL testing, the behavior of the physical system is emulated by a specialized
hardware that can interact with external components, such as software applications and
embedded systems. These external components encapsulate the algorithms proposed for
optimizing the performance of the designed power system.

The architecture of the developed SIL testbed is demonstrated in Fig. 5.9 and described in
what follows. The standard IEEE 39-bus system [131, 132], divided into three power areas,
is implemented in a Real Time Digital Simulator (RTDS) infrastructure [133] to simulate the
physical system. The frequency control of the IEEE 39-bus system is performed outside of
RTDS as a standalone Python application, which can utilize the proposed ARC upon request.
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The RTDS and the Python application communicate remotely through the DNP3 protocol.
The events in the SIL simulation include a step load disturbance of 1% p.u. at t = 50 sec in
area 1, a step FDIA of 1% p.u. against the control signal of area 3 at# = 100 sec and a sine
FDIA of 10% p.u. amplitude against the frequency measurement of area 1 at = 120 sec.

RTDS
Hardware

Python

FDIA " Implementation of
the Proposed ARC

- python’

- é -------------------
Setpoints
FDIA
ok o o
IEEE 39-bus system Control Center
Simulation

Figure 5.9 Implemented SIL testbed for the performance assessment of the proposed ARC
scheme.

Fig. 5.10 illustrates the frequency response of the power system implemented in RTDS
for the described simulation scenarios. More specifically, the red line corresponds to the
scenario where the system faces the control signal FDIA and the load disturbance without
using the proposed ARC strategy; the blue line characterizes the situation in which the
measurement FDIA and the load disturbance take place with the introduced ARC scheme
being disabled; finally, the black line represents the case where the load disturbance occurs
and both measurement and control signal FDIAs are launched, while the presented ARC
method is in operation. The results demonstrate that the frequency response of the system
without any cyber defense measure experiences significant variations after the launch of
FDIAs at 100 sec and 120 sec. On the contrary, the FDIAs against the system that utilizes the
proposed ARC scheme have no impact on its frequency response. Therefore, it is confirmed

that the introduced cyber defense method is still effective in real-world power systems. It is
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also worth mentioning that the minor fluctuations of the frequency response throughout the

SIL simulation are an expected phenomenon in realistic conditions.
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Figure 5.10 Performance assessment of the proposed ARC scheme in the SIL simulation.

5.5.1.5 Comparative study

To highlight the novelties of the proposed ARC mechanism, it is important to compare it with
other related works from the literature. For this reason, a comparative analysis is conducted
between the presented ARC method and several state-of-the-art methods, based on a set of
selected quality features. The results of this analysis are demonstrated in Table 5.1; "v""
notation declares that the specific attack mitigation method for LFC meets the corresponding
feature and "x" symbol implies that it does not. The considered set of quality features

includes:

1. Estimation: the property of a method to provide full information about the launched
cyberattacks;

2. Global mitigation: the attribute of a methodology to mitigate both measurement and
control signal attacks;

3. Decoupling: the robustness of a method against external system disturbances;

4. Nonlinearities: determines if a defense mechanism takes the nonlinearities of LFC

into account or not;
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5. Diverse tie-lines: the applicability of a method to power systems with different types
of tie-lines;

6. RES: declares whether the specified technique considers RES disturbances or not;

7. Parameter uncertainties: the sensitivity of an approach to power system parameter
uncertainties;

8. Time delays: the robustness of a defensive strategy against network time delays;

9. Scalability: the applicability of an attack mitigation scheme to power systems of
various sizes.

Table 5.1 Quality comparative analysis of the proposed ARC scheme.

Methods
[21] [72] [75] [71] [74] Proposed
Features
Estimation X v X v v v
Global mitigation X X X X X v
Decoupling X v X v v v
Nonlinearities X X v X X v
Diverse tie-lines X X X X X v
RES X X X X X v
Parameter uncertainties X X X X X v
Time delays X X X X v
Scalability X X X X v

Table 5.1 demonstrates the superiority of the proposed ARC methodology over various
related works. Particularly, the introduced method can effectively approximate the magnitude
of the launched FDIA signals and is resilient against external system disturbances, such
as load variation and RES generation; both of these features are not met in [21] and [75].
Moreover, the suggested methodology can effectively eliminate both measurement and
control signal attacks, while none of the benchmarked methods are capable of it. Regarding
the LFC nonlinearities, very few research works [75] take them into consideration, apart
from the proposed strategy. Finally, the feasibility of the existing methodologies to real-
world electrical systems is not properly assessed, contrary to the introduced method. For

example, none of the works under comparison is evaluated in power systems that use RES or
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diverse types of interconnecting lines (HVDC, TCPS-equiped). Likewise, the sensitivity of a
method against power systems parameters is not studied in any of the compared approaches.
Additionally, the time delays due to network limitations along with the scalability over power
systems of various sizes are only investigated in [74] and in the presented technique.






Chapter 6

Data-driven Attack Detection &
Mitigation for LFC

This chapter describes the data-driven part of the framework developed in this thesis for
identifying and mitigating cyberattacks against LFC. The analysis starts with the proposed
autoencoder-based attack detection mechanism which can identify a wide range of FDIAs
and distinguish them from other external disturbances. The autoencoder learns the healthy
status of the system and then, its inputs and outputs are used to formulate the introduced
cyberattack indicator for LFC. The evaluation of this method is performed through several
experiments on diverse types of use cases. Next, the proposed data-driven attack mitigation
technique follows, called DAR-LFC, which is based on a DNN architecture. The trained
neural network model estimates the healthy control signals of LFC in an innovative way. Then,
the system can temporarily use the approximated signal to regulate the system generators
during cyberattacks. To verify the effectiveness of this method, DAR-LFC is applied to a
series of use cases where various types of cyberattacks and external disturbance incidents are

considered.

6.1 Autoencoder-based Attack Detection Method

6.1.1 Motivation

The core idea in attack (or anomaly, in general) detection methodologies is to design a
baseline state within which the system is considered to be under normal operation. To
achieve this, a metric is needed that will quantify the status of the investigated system in
terms of cybersecurity. This metric is typically called residual and it can be acquired through

the development of a model, e.g. mathematical, statistical or data-driven. The designed
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model receives inputs from the actual system and computes the detection residual at each
time step. Then, if the residual exceeds a specified threshold, it is considered that the system
status is abnormal and a proper alarm is triggered; otherwise, the system is assumed to be
in a healthy state and continues its operation. The selection and the design of the attack
threshold, e.g. static or adaptive, is a key aspect towards the development of an effective

attack detection methodology.

6.1.2 Algorithm inputs

Before selecting the model that will generate the attack detection residual, it is necessary to
define its inputs. The applications that provide insights about the cyber resilience status of
CPSs typically operate within the control center. Therefore, the inputs of these cyber defense
mechanisms is a subset of the system variables and the generated control signals. For the
case of LFC, the control is performed using the local frequency measurement of each area
and the power flow readings of each tie-line. Several approaches, such as observer-based
methodologies, require both the measurements and control signals of LFC to operate. On
the other hand, data-driven attach detection mechanisms can achieve the same goal without
using the control commands of this system. Consistent with its related works, the introduced
algorithm is designed to operate using only the LFC measurements, specifically Af; and
APije,;, where i, j=1,2,...N and i # j.

Another critical aspect is to decide the number of the historical LFC measurements that
will be used in the input vector of the proposed detection algorithm. In general, attack
detection methods either operate with real-time measurements or store the last K values
of the input vector variables and feed them to their models. For example, observer-based
approaches do not utilize any past data and receive only real-time LFC readings as input. In
data-driven methods, using a historical time window provides their models with an additional
perspective on the training data and enhances the learning procedure. Thus, an input vector
that includes previous information of its variables is selected for the proposed algorithm. The
proper length of the time window can be determined by approximately calculating the K
time steps that can adequately capture the impact of the external events on the input vector
variables. Considering the analysis of this subsection, the input vector is modeled as:

X ={Af, AfF, o AR AR, AP, AP Y

iejj iejj>
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6.1.3 Utilized model
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Figure 6.1 Impact of a step load disturbance on the measurements of the control center.

After defining the inputs of the proposed method, the next objective is to select a proper
model that will produce the detection residual. In the field of Al, various data-driven
algorithms have been developed for addressing the problem of anomaly detection, such as
isolation forests, support vector machines (SVMs), autoencoders, etc. While simplistic data-
driven algorithms demonstrate acceptable performance for anomaly detection, autoencoders
are more appropriate for the LFC system and thus, they are selected as the model of this
method. According to Section 2.2.2, a trained autoencoder can reconstruct the received
input vector at its output with high accuracy. By training on normal data, this feature allows
autoencoders to identify anomalies or outliers in new data that deviate from the learned
patterns. The main reason of employing autoencoders in this part of the framework is the
significant challenges met in identifying cyberattacks in LFC, such as the complex impact of
cyberattacks on the system measurements and the distinction of digital threats from other
external incidents. Therefore, the advanced data-driven model of the autoencoder, that is
capable of recognizing the narrow underlying patterns of LFC data, is suitable for this case.
Furthermore, autoencoders are implemented using deep neural networks, as explained in
Section 2.2.2. The flexibility of DNNs enables the autoencoder to continuously learn new

healthy states during its online operation, as it will be explained in the next subsection.
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6.1.4 Proposed attack detection algorithm

In this subsection, the introduced data-driven attack detection mechanism for LFC is analyzed
in detail. Before proceeding to this analysis, it is important to investigate the impact of the
various external incidents on the power system for a better comprehension of the proposed
method. To this end, assume that the LFC algorithm is applied to a two-area power system
that faces load variations and cyberattacks. The operator of the control center can monitor
the system status through the measurements of frequency and tie-line power flows. More
specifically, if a step load increase occurs on the physical system, the control center operator
views it as the damping oscillations of frequency and tie-line power flow measurements in
Fig. 6.1. On the contrary, a step FDIA launched against the local frequency of area 1 is
reflected to the control center as the deviations of frequency and tie-line power flow readings
from their nominal values shown in Fig. 6.2. This paradigm highlights the different effects
of cyberattacks and load disturbances on the LFC system.
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Figure 6.2 Impact of a step load disturbance on the measurements of the control center.

The distinct impact of cyberattacks on the remote measurements of LFC can be leveraged
to detect potential malicious behavior in the system. This is achieved by modeling the normal
status of LFC using the steady-state of the system, load variations and RES disturbances
while considering cyberattacks as LFC anomalies. The employed autoencoder is then trained

on a dataset of frequency and tie-line power flow measurements that reflect the healthy status
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of LFC. After completing the training process, the autoencoder is deployed in the control
center, where the LFC measurements are forward to it. If the autoencoder receives streams
of frequency and tie-line power flow measurements that correspond to a load variation but
have not been learned, it will replicate them with high accuracy, as illustrated in Fig. 6.3. On
the other hand, if the autoencoder is given time-series of LFC measurements that describe
the effect of a cyberattack (an event that the autoencoder has not seen during the training
phase), the replication of its input will demonstrate significant error, similar to Fig. 6.4. This
feature makes the trained autoencoder an effective indicator of cyberattacks for LFC.

Plant ¢ Control Center
Remote Input Output
_____________ —_————n I A I
: E »| Autoencoder >
1 Afi, APtie: : i 1
: 3§ A 4
Power Afi,
1 ] LFC
System ] 3§ APtie:
A : g U
1 Remote H : 1
. — =
. ACEi R >
l Detection Residual
Real & Replicated Frequency - Area 1 Replication Error - Area 1 Frequency
== Detection Threshold
é’d %% 0.005 +  Replication Error
0.000 YM
b : 0.004
-0.005 ‘: #
- % g 0003
£ 1 i 2
« —0.010 ¢ —> e
= % ¥ ® 0,002
* §
-0.015 L ] hd
: \ F4 0.001
kY ; .+ Real Frequency A
. #  Replicated Frequency
0.020 '”'ef Replication Error 0.000

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time (s) Time (s)

Figure 6.3 Diagram of the proposed data-driven attack detection method under normal
conditions.

In the proposed attack detection method, the autoencoder is interchanged between three
operational states: the offline training phase, the online operation phase and the online training
phase. These states are utilized to provide the autoencoder with a basic knowledge about
the normal LFC status, extract cyber resilience insights from it and maintain its robustness
through continuous learning. A more detailed analysis of these phases is included in what

follows:

1. Offline training phase: in this phase, the autoencoder is trained on streams of fre-
quency and tie-line power flow measurements that correspond to load disturbances,

RES variations and the steady-state of the system. The training is performed offline,
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in an isolated computer environment outside the control center. These streams are
composed of K consecutive points over the time of the training simulations. The
maximum error obtained by the training samples is selected as the attack detection
threshold 7; of the proposed method while the average of these error is used as the

transition threshold # between the online operation and training phases.
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Figure 6.4 Diagram of the proposed data-driven attack detection method under cyberattacks.

2. Online operation phase: when the training process is completed, the autoencoder

transits to its online operation phase, according to in Fig. 6.5. In this phase, the
application of the utilized model is launched in the control center to generate the
attack detection residual. At each time step of this mode, the autoencoder receives
the last K LFC measurements as an input and produces a replica of them. If the
autoencoder accuracy exceeds the 7, threshold, it is assumed that the LFC system is
under attack; otherwise, LFC is considered to be in normal condition. The accuracy
of the autoencoder is measured by its replication error, which is annotated as e, and

expresses the difference between the input measurements and the generated output.

. Online training phase: if the autoencoder is in the online operation phase and its e,

ranges between #; and 74, it is assumed that the received normal status has not been
learned. Therefore, the autoencoder transits to its online operation phase, as depicted

in Fig. 6.5. In this state, a copy of the current autoencoder is created to be retrained
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using the last K received measurements of LFC. When the online training phase is
completed, the newly trained copy replaces the operating autoencoder and the system
returns to its online operation phase. By continuously learning new normal conditions,
the autoencoder stays updated and preserves its robustness against upcoming digital
threats.
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Training
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Online
Training
Completed

tt<er<td
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Training
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Figure 6.5 Autoencoder phases in the proposed data-driven attack detection method.

At this point, it is important to shed more insights on the decision process of the attack
detection and state transition thresholds. After the final epoch of the training process, the
replication errors produced by each sample of the training dataset have been minimized
and can be acquired. If a stream of LFC measurements that reflects normal system status
is fed to the autoencoder, the value of the generated e, will vary between those obtained
during the training process. Therefore, it is reasonable to set the maximum of these errors
as the boundary that distinguishes normal disturbance events from cyberattacks in LFC.
Furthermore, if the autoencoder generates an e, that is close but below ¢4, the corresponding
normal condition of LFC might have not been learned. The average error obtained by the
training process is considered an appropriate benchmark for unseen normal LFC conditions
and thus, it is selected as the state transition threshold of this methodology.
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6.1.5 Experimental results
6.1.5.1 Autoencoder training process

Before the deployment of the proposed cyberattack detection method for LFC, the utilized
autoencoder needs to be trained on the healthy system measurements first. This training
process involves the iterative adjustment of the model parameters based on the collected and
preprocessed LFC data. The objective is to minimize the difference between the autoencoder
output and the actual targets. For the training procedure of this work, the next, consecutive

steps have been followed:

1. Simulated events: initially, the disturbance events that describe the normal dynamics
of LFC have to be defined and simulated. Such disturbances are the load changes and
the variations due to RES. The selection of these disturbance incidents should capture
the LFC operation under diverse conditions to ensure that the model can perform well
on unseen data, i.e. it can generalize. For this reason, load changes are simulated as
step functions of various slopes and +35% magnitudes, while RES disturbances are
modeled according to Eq. (3.25)-(3.27) and occur throughout the simulation.

2. Dataset collection: after selecting the normal disturbance events, the LFC operation is
simulated. Its duration is 4000 seconds and a single set of the autoencoder input vector
is sampled every second. Therefore, the total samples of the dataset are 4000 X n,
where #n is the dimension of the input vector. The partitioning strategy of the dataset
follows a 70-20-10 split, implying that 70% of the data is used for training, 20% for

validation and 10% for testing.

3. Data preprocessing: the dataset acquired from the LFC simulation is generally
regarded as clean, without any noisy or missing values. Thus, the only necessary
data preprocessing technique is the data normalization for improving the performance
and training stability of the model. Since the dataset features do not contain extreme
outliers, the z-score method of 4 = 0 mean and ¢ = 1 standard deviation is applied to
normalize the input data.

4. Autoencoder architecture: after thorough experimentation with the architecture of
the autoencoder, optimal performance has been achieved using a DNN-based encoder
comprised of three layers, each with 128, 64, and 32 units, respectively. Therefore, the
dimension of the latent space is 32 while the structure of the decoder is the mirrored

image of the encoder.
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5. Hyperparameters: besides the model architecture, there are several other training
hyperparameters that have to be properly configured to optimize the performance
of the autoencoder. In this work, the accuracy of the utilized autoencoder has been
maximized using 2000 epochs, 0.0001 learning rate, 64 batch size, the mean squared

error (MSE) as the loss function and the Adam optimizer.

Table 6.1 Performance of various autoencoder implementations during training process.

mpenentaton | MOME R e i
DNN-based 0.0819 0.0011 8
CNN-based 0.0796 0.0098 47
RNN-based 0.0781 0.0092 76
LSTM-based 0.0763 0.0089 109

In the previously described procedure, Step 4 can be implemented using various neural
network architectures, such as DNNs, Long Short-Term Memory (LSTMs), etc. The se-
lection of the proper architecture depends on the application that the autoencoder is in-
tended for. Typically, there is a trade-off between the complexity of the utilized neural
network and the accuracy of the autoencoder. To find the proper architecture for the invest-
igated problem, four types of autoencoders have been implemented: (i) the DNN-based,
(i1) the Convolutional Neural Network-based, (iii) the Recurrent Neural Network-based
and (iv) the LSTM-based autoencoders. The results from the training process of each au-
toencoder variant are shown in Table 6.1, where their mean MSE, their maximum MSE
and their training time are included. Assuming that the MSE of each sample s is given by
MSE; = (Z,Ile (xx — X)) /K, where K is the total number of observations per sample, mean
MSE is defined as (3_3_, MSEy) /S, where S is the total number of samples, while maximum
MSE is computed by max(MSE, MSE,, ... , MSEs). The outcomes of this comparison
verify the aforementioned, theoretical trade-off: the LSTM-based autoencoder has the best
performance by demonstrating the minimum mean MSE. However, this variant provides
a slight improvement in the model accuracy (7.34%) compared to the DNN-based imple-
mentation, while it significantly increases the training time (92.66%). Since a 0.0819 mean
MSE is considered sufficient performance for the needs of the cyberattack detection in LFC,
the DNN-based autoencoder is chosen due to its simplicity. Furthermore, this lightweight
implementation does not introduce a large computational overhead into the learning phase of
the proposed method, enhancing its stability at this stage.
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6.1.5.2 Use cases description

For the evaluation of the proposed methodology, two use cases have been implemented, i.e.
Use Case A and Use Case B. The operation of LFC in these scenarios is simulated using both
a software environment and a Hardware-in-the-Loop testbed. Also, a wide range of external
incidents has been considered, such as load changes, various FDIAs, etc. The diversity of
the use cases ensures that the introduced method can scale effectively across different types
of power systems and remain applicable in various conditions. The proposed data-driven
approach has been implemented in Python, using the PyTorch library [134]. The detailed
analysis of these use cases is provided in the remainder of this subsection:

Figure 6.6 Diagram of the power system simulated in Use Case A.

» Use Case A: this baseline scenario for the evaluation of the proposed methodology
is implemented within a software environment. More specifically, the operation of
LFC is simulated in MATLAB/Simulink using the SFR model of the IEEE 14-bus
system [135]. This power grid is separated into two distinct areas and its diagram is
shown in Fig. 6.6. The Python module that applies the introduced attack detection
technique is deployed on a computer node outside the MATLAB/Simulink environment
and communicates with it over the TCP/IP protocol. The normal disturbance events
considered in this use case are a 0.01 p.u. load increase at the 50th second of the
simulation and generation variations due to RES that occur throughout the system
operation. The simulated cyberattacks include a ramp FDIA of 0.01 p.u. slope that

is injected into the tie-lie measurement between the 150th and 200th second of the
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simulation, along with a step FDIA of 0.02 p.u. which is launched against the frequency

measurement of area 1 at + = 300s and lasts for 50 seconds.

* Use Case B: to test the proposed method in more realistic conditions, a Hardware-in-
the-Loop (HITL) testbed has been implemented in Use Case B. In this platform, which
is illustrated in Fig. 6.7, the operation of a three-area, IEEE 118-bus system [136] is
simulated on the RTDS hardware while its secondary frequency control is performed
using a SEL Real-Time Automation Controller (RTAC) [137]. To act as the control
center of this HITL simulation, RTAC receives measurements from the simulated
power system and sends control commands back to it over the IEC 61850 protocol.
RTAC also forwards the LFC measurements to the Python module that applies the
proposed attack detection method via the TCP/IP protocol. The disturbance incidents
include a 0.008 p.u. load decrease at = 130s and generation variations from RES that
happen during the whole system operation. Regarding the simulated cyber threats, a
0.01 p.u. sine FDIA is launched against the frequency measurement of area 1 at = 30s
until # = 80s, followed by a [-0.02, 0.02] p.u. random attack against the frequency

measurement of area 3 between 220 — 260s.
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Figure 6.7 Diagram of the implemented HITL testbed in Use Case B.

6.1.5.3 Performance analysis

The proposed data-driven attack detection method for LFC is applied to Use Cases A and B

to test its effectiveness. The results from this performance assessment are illustrated in Fig.
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6.8. This Figure shows how the system frequency and the attack detection residual evolve
over the simulation time of each use case. More specifically, the upper graph of Fig. 6.8a
depicts the frequency response in the area 1 of Use Case A, while the lower graph shows the
attack detection residual of Use Case A. Both of these variables are visualized in a common
horizontal time axis. For Use Case B, the same information is depicted in Fig. 6.8b. The
blue areas of Fig. 6.8 correspond to the time windows in which the system faces the transient
effects of load disturbances while the red areas refer to the intervals in which cyberattacks
are launched against the system.

This performance assessment numerically verifies the effectiveness of the proposed data-
driven attack detection mechanism. Particularly, the detection residual in Use Case A exceeds
the selected predefined threshold during the ramp and step FDIAs (red areas in Fig. 6.8a)
launched between 150 —200s and 300 — 350s, respectively. On the contrary, the residual
remains below the selected threshold during normal operation and under the transient effects
of the load increase that starts at # = 50s (yellow area in Fig. 6.8a). This yields that the
proposed detection strategy can successfully identify various types of FDIAs. Furthermore,
this mechanism is capable of distinguishing if a frequency deviation is due to cyberattacks or
another external incidents. Regarding Use Case B, similar conclusions are extracted from
Fig. 6.8b. The effective performance of the presented methodology to various power systems

ensures that it is scalable to large electrical grids and applicable to realistic conditions.

6.1.5.4 Sensitivity analysis on time delays

In real-world environments, various phenomena which are not captured by standard simu-
lations can affect the system performance. Such phenomena involve latencies in the data
exchange of the system caused by deficiencies in the communication mediums. To further
investigate the applicability of the introduced methodology to realistic conditions, it is ne-
cessary to evaluate its sensitivity to these time delays. This sensitivity analysis is included
in the present subsection. The analysis is conducted by deliberately injecting time delays
ranging from 0.1 to 1 second into the communication channels that carry the measurements
and control signals of the LFC systems implemented in Use Cases A and B. Fig. 6.9 presents
the results of this analysis, where the detection residuals of each use case is illustrated under
different amounts of time delays. The results show that the residuals in systems facing time
delays exhibit similar behavior to those in latency-free systems, with minor shifts along the
time axis. These slight latencies in the residuals are expected and they can be considered
negligible for the scope of this application. Since time delays do not heavily impact the
performance of the proposed cyber defense technique, its robustness against such phenomena

is numerically verified.
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6.1 Autoencoder-based Attack Detection Method
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Figure 6.8 Performance of the proposed data-driven attack detection method.
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Figure 6.9 Sensitivity analysis of the proposed data-driven attack detection method against
times delays.

6.2 DNN-based Attack Recovery Mechanism

6.2.1 Motivation

According to [138], a natural attack response strategy for automation systems is the imple-
mentation of a backup control loop that is utilized under cyberattacks. This reserve control
consists of a specially designed model that receives measurements from the investigated

plant to produce an estimation of its healthy control signals. When a cyberattack is detected,
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the original control system is temporarily discarded and replaced by this cyber defense
mechanism which drives the protected plant with the generated control signal estimations.
The spare control loop is activated for a short-term period, until the attack is mitigated and the
normal functionality of the plant is fully restored. Inspired by this approach, a DNN-based
attack recovery methodology is proposed in this thesis [139] that is particularly formulated
for the case of LFC. A descriptive analysis of the presented cyber resilience technique is

included in the remainder of this section.

6.2.2 Utilized model

As explained in Section 6.2.1, the objective of the proposed attack recovery mechanism is to
produce an estimation of the control signals from the available measurements of the plant.
Particularly, the introduced attack mitigation technique focuses on predicting the healthy
ACE signals of one or more areas, as they form the basis of the LFC commands. This is a
typical regression problem which involves the approximation of the underlying relationship
between the LFC commands and one or more field measurements. To solve this task, a proper
data-driven model is required. In the scientific field of Al, several data-driven algorithms have
been developed to address regression problems. These models vary from simplistic ones, e.g.
SVMs, to more sophisticated, such as LSTM networks, which demonstrate trade-offs between
accuracy and complexity. To maintain an acceptable balance between these properties, a
DNN architecture is considered appropriate to estimate the normal ACE commands and thus,

it is selected as the model of this method.

6.2.3 Algorithm inputs

For large-scale, interconnected LFC systems, the ACE; of area i is computed as the weighted

sum of the frequency and area power export. In its general form, the ACE; is computed as:

ACE; =G (Afl, Z]]y:l,j#i APaC,'j7 leyzl,j#i APdCij) ©6.1)

where Af; is the frequency deviation in area i, AF,,; represents the power deviation of the
tie-lines between areas i and j if there are AC links between them, APdci_,- denotes the power
deviation of the tie-lines between areas i and j if HVDC links between them exist [110],
N is the total number of areas and G expresses the mathematical relationship between the
aforementioned measurements and the ACE;. When one or more frequency and tie-line

power deviation measurements are missing or tampered, the ACE; is miscalculated, leading
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to malfunction of LFC and grid instability. One possible way to resolve this issue is to use
alternative field measurements to estimate each ACE; signal.

At this point, the goal is to find proper field measurements that will be used for the
approximation of each ACE; signal. According to subsection 3.1.4.2, the generators of
an area that participate in the primary control of LFC use droop speed control for stable
load division. Thus, the relationship between the local frequency and the generation of
power plants in area i are inversely proportional to each other, depending on the type of the
controllers and the dynamic constraints in the turbine-governor system. This relationship is
mathematically expressed as Af; = H(APg,). Furthermore, the power export of an area is
directly related with the generation of its local power plants. Based on the previous analysis,
Eq. (6.1) can be written as:

ACE; =G (AH(APGi)v zjjyzl,j;éiAPaCijv zljyzl,jyéiAPdCij) : (6.2)

Eq. (6.2) indicates that it is reasonable to use the generation of a power plant as the input
of the designed DNN in order to estimate each ACE}, since there is an underlying relationship
between them. The key aspect now is the selection of the proper local generator. The
criterion for this decision is the similarity between the output of the selected generator and
the ACE; responses. Particularly, Fig. 6.10 shows the generation response of a power plant
that participates in both primary and secondary control of the LFC (AFPg,,.), the generation
response of power plant that participates only in primary control (AFg,,) and the ACE;
response to a 0.01 p.u. load increase. Based on this visualization, the field measurement
that is closer to the oscillating ACE; signal is the AP, . Therefore, the output power of a
generator that participates only in primary control, i.e. AFg ., is selected as the input of the
DNN for the estimation of each ACE;.
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Figure 6.10 Generation and ACE responses to 0.01 p.u. load disturbance
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6.2.4 Proposed attack recovery algorithm

In this subsection, the functionality of the proposed DNN-based attack mitigation strategy is
analyzed in detail. This cyber resilience method is called DAR-LFC and its architecture is
illustrated in Fig. 6.11. Before the activation of the DAR-LFC, a DNN is trained using the
selected local generation measurements as the input data and the time-series of the ACEs
in each area as the labeled data. After the training process, a spare telemetry system is
installed (green dashed line in Fig. 6.11) for transmitting the output measurements from the
selected local machine to the DNN. Then, the trained DNN is deployed in the control center
(“DNN” module in Fig. 6.11) to estimate each normal ACE;, i.e. ACE i» using the data that
receives from the backup channel. Under normal conditions, generation is adjusted using the
regular ACE;, according to the original LFC specifications. When a cyberattack against LFC
is identified (“Attack Detector” module in Fig. 6.11), the control center uses the ACE i to
regulate the generators that participate in the secondary control instead of the original ACE;.
Thus, the LFC operates with acceptable performance even in the presence of cyberattacks.

APy, APy,
Y :
Secondary Control Prim. .
AP, AFje; '
Control Center Control 1 d; .
ACE; \ '
L Attack Governor & = G ‘ '
Ll 42 —— — enerator —————
—— | Detector Turbine 1 | APy, <5 Afi
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Load X Governor & |
Ref. T Turbine 2 AP,
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Control 2
~~~~~~~~~~~~~~~~~~~ ™ . [0
Unaffected Attacked Backup remote
remote remote channel Control center ~ Power system
channel channel module module

Figure 6.11 Schematic diagram of DAR-LFC for the " LFC area.

The DAR-LFC mechanism can estimate every ACE; by using only one additional meas-
urement, i.e. AFg,, . This is one of the main advantages of the proposed methodology and it
can be better demonstrated in large-scale, interconnected power grids, as it will be shown in
the experiments. In these large systems, each ACE; is computed using several measurements

of frequency and tie-line power flows. If one or more of these measurements are tampered,
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DAR-LFC can adequately estimated every ACE; using a single input. Other similar works
tackle this issue by approximating all the missing or affected measurements of the secondary
control individually. For the approximation, these methods utilize algorithms like state
estimation that require multiple inputs from the system.

Another benefit of DAR-LFC is its robustness against false positive cyberattack alarms.
Sensitivity to these errors can lead to performance degradation and thus, it is a major issue
when designing cyber defense strategies. If the utilized attack detector triggers an alarm that
does not reflect to an actual cyber threat, the setpoints of the generators that participate in the
secondary control will be adjusted by the estimated ACE i» as explained previously. However,
the trained DNN can predict the healthy ACE; signals with high accuracy. Since the LFC
will be driven by an estimated ACE ; that is very close to the normal one, its operation will
not be significantly affected. After the identification of the false positive flag, the LFC will
use the original ACE; signal and its functionality will be restored.

A weak point of DAR-LFC is the dependency of its additional communication channel
to ICT. This makes it susceptible to cyber threats and opens another door for adversaries.
However, the conducted literature review indicates that it is inevitable to design a data-driven
attack mitigation mechanism for LFC without exposing the new parts of the system to cyber
risks. For example, similar data-driven approaches [140], [141] require a historical database
to feed their utilized models. In these works, it is implicitly assumed that these database
servers are invulnerable to cyberattacks, which does not happen in practice [12]. Moreover,
the collection, installation and maintenance of such large historical databases is far more
expensive than the establishment of an extra telemetry system. Therefore, there is always a
trade-off between the security that a data-driven model offers, the risks that introduces and
its implementation costs.

Regarding the attack detection module of DAR-LFC, one possible solution is the util-
ization of the trained DNN. In this approach, the ACE i generated by the deployed DNN is
compared with the actual ACE; and any significant deviation between them can be considered
as a cyberattack. However, this approach cannot distinguish if a specific deviation is caused
by a load change, cyberattack or other external disturbance. Moreover, it cannot identify
the type of the cyberattack. Therefore, this technique has been intentionally dismissed.
Instead, the autoencoder-based methodology described in Section 6.1 has been chosen for
the attack identification module of DAR-LFC due to the benefits that brings. The assembly
of these detection and mitigation mechanisms forms a solid data-driven framework that can

significantly strengthen the cyber resilience of LFC against malicious activities.
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6.2.5 Experimental results

In this Section, the results from the experimental tests of DAR-LFC are presented and
discussed. This cyber resilience method is evaluated in two different LFC systems of varying
complexity. The details of these power systems are described in the next subsection along
with the simulated events (cyberattacks, disturbances, etc.) and their characteristics (time,
magnitude, etc.). Then, the training process of the developed DNN is presented and the
performance of the applied DAR-LFC is demonstrated. All the designed LFC systems and
defence schemes are modeled in a MATLAB/Simulink [142] environment.

Table 6.2 Parameters of each power area

Parameter Symbol Value
Inertia constant 2H; 0.1667 p.u. s
Damping coefficient D; 0.0083 p.u./Hz
Turbine time constant Ty, 03s
Governor time constant Ty, 0.08 s
Governor regulating constant R; 2.4 Hz/p.u
Tie-line synchronize coefficient T 0.026 p.u./Hz
Frequency bias Bi 0.425 p.u./Hz

6.2.5.1 Training of DNN

For the generation of the training dataset, several disturbances were simulated in order to
make the neural network learn the underlying dynamics of the LFC. The diversity of these
events assists the estimation model to perform well on data that it has not been trained on,
i.e. to generalize. The testing and training datasets are composed of two vectors with 3600
datapoints, where each point of vector APg,, should be mapped to the corresponding point of
the vector ACE. Out of these 3600 datapoints, 70% were used for training and validation, and
30% were used for testing. The simulated training events are the following: the simulation
starts at t = 0 sec, then at t = 10 sec a 5% step load increase occurs, at t = 40 sec a 10% step
load decrease occurs, at t = 80 sec a 15% step load increase occurs, at t = 120 sec a 20%
step load increase occurs and finally, at # = 150 sec the simulation ends.

For each use case a different neural network is trained. Each deployed neural network
has a single input that corresponds to AP, and N outputs (N is the number of power system
areas) that correspond to every ACE;. For the optimization of the model performance, it
is important to find the optimal architecture, i.e. finding the optimal hyper-parameters of

each neural network, during the training phase. Hyper-parameters include the number of
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hidden layers, number of neurons per layer, and the learning rate. For this purpose, the
grid search technique [143] has been used as a systematic method of finding the optimal
architecture of each neural network. The searching space and the selected, optimal values of
the hyper-parameters are depicted in Table 6.3.

Table 6.3 Grid search values for hyper-parameter tuning

Hyper-parameter Search values Optimal value
Use case 1 Use case 2
Hidden layers (#) 1,2,5,10 2 3
Neurons / layer (#) 10, 20, 50, 100 20 10
Optimizer Adam, SGD Adam Adam
Learning rate 11‘;25 116636 116;‘; 0.0001 0.00001

The metric which is used to evaluate the performance of the proposed neural network is
the MSE. Fig. 6.12 depicts the training progress of the neural network for use case 1. The
improvement of this model is shown by the decrease in the MSE value for the testing data.
In this way, it is verified that the proposed models can make a good estimation of the ACE of

each area.
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Figure 6.12 Performance validation of the proposed estimation model.
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6.2.5.2 Evaluation of DAR-LFC

In this subsection, the experiments that verify the effectiveness of the proposed attack mitig-
ation mechanism are presented. To illustrate the scalability of the introduced method, two
different use cases of varying complexity are generated. Each of the following subsections is
based on these use cases, where the impact of the considered cyberattacks against the LFC is

shown, along with the restorative effects of the designed attack mitigation mechanism.

Use case 1: The power system of this use case is a single-area LFC whose parameters
are given in Table 6.2. These parameters are tuned based on [144, 145]. It includes two
generators with non-reheated turbines and the parameter 7;; = 0 since there is only one area.
For the case of the DoS attack, a 10% p.u. step load disturbance at ¢ éml = Ss is considered
while there is no load change during FDIAs. The blue lines of Fig. 6.13 show that the
frequency of this system remains within its preset value range when there is no attack and
load disturbance; they also demonstrate that the frequency fluctuates until it reaches its
nominal value in the event of a load disturbance but without attack.

For the DoS attack case, the attack is launched at Q} s = Os against the Af. During this
event, the ACE is missing and therefore, the LFC operates only with the primary control that
results in a steady-state error, as shown in 6.13. For the FDIA cases, the scaling attack is
launched at t} 4i, = 05 and the additive attack is launched at t} di, = 38, both against the Af.
The frequency is gradually increased under scaling attack and it constantly oscillates during
additive attack as depicted in Fig. 6.13, due to the faulty ACE.

For these simulations, DoS attack is detected at té et = 1s, scaling attack is detected at
t j oty = 6.78s and additive attack is detected at té oty = 5.93s. After the detection, the DAR-
LFC is activated and frequency evolves over time as illustrated in the green lines of Fig. 6.13.
It is shown that using the estimated ACE in the LFC control loop, the frequency initially
follows the changing trend caused by the cyberattack but, as soon as the attack is detected, it
is gradually restored to its nominal value. The features of rise time, settling time, overshoot,
etc. of the frequency response that results from the estimated ACE are different than the
original one. However, these deviations are acceptable since the frequency is restored within
a reasonable time. The green lines of Fig. 6.13 indicate that the proposed defence method is

able to tackle the effects caused by the considered cyberattacks, highlighting its effectiveness.

Use case 2: In this case, the presented attack recovery mechanism is evaluated in a two-area
LFC. In this way, the scalability of the proposed method is verified. The LFC parameters of
each area are given in Table 1 [145]. Each area includes two generators with non-reheated

turbines. The characteristics (type, time, magnitude) of the considered disturbances and
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attacks are the same with the corresponding ones of use case 1, except that in this case the
same attacks are launched against the AP, as well. All attacks affect area 1, i.e. Af; and
APtie-
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Figure 6.13 Performance evaluation - Use case 1
The effects of the considered cyberattacks are similar with the use case 1, besides the

scaling attack where the frequency responses and tie-line power deviation are not gradually

increasing (as in use case 1) but they are converging to a non-nominal value. This is
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reasonable because a part of the impact of the cyberattacks is compensated by the secondary
control of area 2, which is not affected by adversaries.
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Figure 6.14 Performance evaluation - Use case 2 - DoS attack

The effectiveness of the proposed defence mechanism is illustrated in Fig. 6.14-6.16.
The green lines of these figures demonstrate that the frequency response of each area and the
tie-line power deviation are restored with minimum deviations in an acceptable time. The
main advantage of DAR-LFC is highlighted in this Section; the neural network can estimate
the ACE of each area using only an additional measurement, that is the generation response

of a selected power plant that does not participate in secondary control of the LFC. Therefore,
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the proposed method requires less inputs than other standard approximation methods, e.g.

state estimation, in order to compute the affected measurements of the ACE;.
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Chapter 7
Conclusions & Future Work

In the present thesis, the cyber resilience of power systems frequency control and its en-
hancement has been thoroughly investigated. Inspired by the identified challenges, this
thesis aims to bridge the existing research gaps and introduce significant innovations to
the investigated research field. The design process and the experimental evaluation of the
proposed methodologies have led to the discovery of various conclusive insights and revealed

a series of directions for future research, which are presented in this final chapter.

7.1 Conclusions on Proposed Framework

In this Section, the conclusions about the introduced hybrid framework are thoroughly
discussed. The analysis starts by comparing the two main categories of the proposed
methodologies on various performance aspects. The results of this comparative study
are then used to develop a set of configuration instructions for system operators. These
instructions assist the assembly of a framework variant that is adjusted to the characteristics

of the protected system.

7.1.1 Comparison between observer-based & data-driven approaches

This subsection offers a comparative analysis between observer-based & data-driven ap-
proaches for enhancing the cyber resilience of LFC. The conclusions have been drawn from
the designing, implementation and testing of the various methodologies proposed in this
thesis. The categories of the introduced methodologies are compared on several aspects that
determine their overall performance. A detailed study of these aspects is presented in what

follows:
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* Methodology Effectiveness: as demonstrated by the experimental simulations, the
proposed observer-based techniques are highly effective. However, these approaches
are functional under specific conditions, due to their sensitivity in design matters such
as model accuracy and threshold selection. While data-driven algorithms show similar
results, their operation relies only on the historical system data. This information
encapsulates more realistic system characteristics, such as nonlinearities, noisy signals,
time delays, etc. Through their training process, these algorithms learn all potential
operating points of the system and become model-independent. Therefore, data-driven

techniques are universally effective, contrary to observer-based approaches.

* Operational Requirements: the observer-based category is a subset of model-based
approaches and as a result, the algorithms of these techniques are based on mathem-
atical models. If the LFC dynamics are effectively captured by the utilized models,
these methods can achieve high levels of performance. However, electrical grids are
complex systems that constantly evolve, which often leads to model inaccuracies. On
the other hand, data-driven methodologies are robust against model uncertainties as
they require only a descriptive dataset to operate. Nevertheless, the availability of the
necessary data is not always guaranteed, which makes the data collection process a
challenging task.

* Computational Requirements: once observer-based methodologies are mathemat-
ically established, their proposed algorithms are implemented either as software or
hardware applications. The outputs of these algorithms are computed by numerically
solving differential equations. The resulting formulas are typically low-order, ordin-
ary, linear differential equations and thus, their solutions can be easily calculated. In
data-driven approaches, the main computational bottleneck is caused by their training
procedures. This is due to the complexity of the research problem, the sophisticated
architecture of the utilized deep learning models and the need for online training
of these algorithms. From the previous analysis, it is concluded that the proposed
observer-based methods outperform the data-driven ones in terms of computational

requirements.

For better comprehension, the conclusions drawn from the previous study are summarized

in Table 7.1. This Table illustrates which cyber resilience category of LFC is the most

superior in each of the aforementioned performance aspects. In this way, the benefits and the

drawbacks of each LFC cyber resilience category can be easily extracted. The information

included in Table 7.1 is used to establish the configuration guideline presented in subsection
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7.1.2. This guideline assists system operators to select the most appropriate cyber resilience

category for LFC in each layer of the proposed hybrid framework.

Table 7.1 Comparative study between observer-based and data-driven approaches for the
cyber resilience enhancement of LFC.

Methodology Operational Computational

Performance Requirements Requirements
Observer-based | Conditionally High Model Low
Data-driven Universally High Data High

7.1.2 Guidelines for framework configuration

The comparative study presented in subsection 7.1.1 can be used to extract a series of
instructions regarding the configuration of the designed hybrid framework. These instructions
serve as a guideline for system operators to determine which of the developed cyber resilience
categories is the most appropriate at each layer of the framework. In this way, the introduced
framework can be adjusted to the special characteristics of the LFC system that is applied to.
For example, if immediate identification of cyberattacks is crucial in a power system and
historical grid data are available, a data-driven method is highly recommended for the attack
detection layer. Then, the observer-based approaches can be utilized for the attack estimation
and the mitigation layers to balance the computational requirements of the framework. The
extracted guidelines for the proper configuration of the proposed framework are summarized

in what follows:

* if historical LFC data are available and their quality is acceptable, then the data-driven

methods are appropriate for the investigated layer.

* if the quality of the available LFC system model is high, then observer-based methods
fit better to the considered layer.

* if the top priority in a cyber resilience layer is its performance accuracy, data-driven

methods are more suitable, assuming that historical LFC data are available.

* if the lightweight implementation of a cyber resilience layer is prioritized, the indicative
category is the observer-based methods, considering the quality of the available LFC

model.
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7.2 Future Research

Despite the significant efforts of the present thesis to strengthen the cyber resilience of LFC,
it is highly challenging to address every issue of this vast research field. As a result, there is
still room for further development. To this end, this final section concludes the thesis with a
series of recommendations for future research, based on the results of the present study and
the challenges that have emerged throughout the research process. The suggestions for future

research include:

* the design of a computational formula that will specify which cyber resilience category
fits better at each framework layer. While the guidelines presented in subsection 7.1.2
provide a solid foundation for framework configuration, they fail to capture the full
spectrum of conditions and challenges the LFC may encounter. By developing a
specialized metric that can quantify the available LFC resources and the determined
cybersecurity objectives, system operators would be better equipped to make informed
decisions when configuring the framework. This formula would serve as a critical tool,
offering a more nuanced and tailored approach towards enhancing the overall cyber

resilience of LFC.

* the development of attack-resilient control strategies based on reinforcement learn-
ing techniques. Reinforcement learning is a machine learning paradigm where the
models learn the desired behavior from their environments. In case of power system
automation, the frequency controller, which acts as the agent of the reinforcement
learning algorithm, aims to minimize the impact of cyberattacks within a dynamic
LFC environment. This strategy does not require any additional control input and
can mitigate attack patterns that has not encountered during the training phase. This

introduces the generalization ability to the attack-resilient control mechanisms.

* the deployment of a digital twin to identify cyberattacks in LFC and recover it from
such malicious activities. This technology is a digital representation of the power
grid and its automation, allowing the system operators to simulate realistic situations
of these infrastructures and obtain the results. Digital twin receives inputs from the
physical system and then, reproduces the attack-free operation of the power grid. If
the actual and the simulation results demonstrate specific patterns, then successfully
launched cyberattack attack can be identified. If a cyberattack has been detected, the
attack-free simulation results of the digital twin can replace the compromised signals

of LFC to restore its functionality.
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* the design of sophisticated cyberattacks using optimization algorithms or game-
theoretic approaches. In case of power systems, these algorithms can produce optimal
attack strategies against LFC, based on the specifications its operation, in order to
stealthily cause the maximum damage to the power infrastructure. While these meth-
odologies do not directly offer cybersecurity protection to the LFC system, they can be
leveraged to understand the attack patterns that the adversaries follow. By studying
these motifs, the system operators can develop counter-strategies that identify stealthy
cyberattacsks and neutralize their impact on the system under protection.
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xO¢ au&avouevn (ATNoT Yiol THO TOLTXES UTNEEGIEC NAEXTEWAC EVERYELaS. AUTO Ue T
oelpd Tou emTelvVEL TNV avdy X Yl o ACLOTUO T, ACQUAY| Xou TERUBUANOVTIXG PLAXE CU-
oThUTA NhexTerc evépyetag. T'a Tov oxond auto, ol teptocdtepot diedveic epeuvnTixol
xou Brounyavixol opyaviopol (m.y. H.ILA., E.E., Kiva, Auotpahia, xAt.) mou acyolo-
OVTOL UE TNV NAEXTEIXT EVEQYELDL, ETUXEVTPOVOUY TIC TEOOTIGVEIES TOUG GTO VO XAVOUV Td
dixtua nhextpic evépyelag mo “éZumva” [3, 4]. Me autév Tov TpoTo, Tar dixTuo NhE-
AT EVERYELNS UTOPOVY VO TOOCUQUOGTOUV TO UTOTEAECUATING OTIC AVAYXES OAWY
TWV YENOTOV TOUS, ONAUDT) XU TWV TOQOYWYMY Xl TWV XATAVIAOTOV EVEQYELNC.

To Bugur Abxtua Hhextpuwic Evépyelocg (SGs) etvor dixtua NAEXTEAG EVEQYELAS
ToU Yenotpomololy mponypéves teyvohoyiec mhnpogopxhc xou emxoveviody (ICT) 6nwe
UcUNTARES, EQUOUOYES AOYIOUIXOU, UTOAOYIC TG BiXTUOL Xl OVIAUGT) BEQOUEVKY YIoL TNV
TOEOY Y| AMOTEAECUOTIXGY Xt Brdotuwy vrneeotoy evépyetoc. Ot ICT Sieuxoibvouy tny
TOEUXOAOVUTON XU TOV EAEY YO TOU NAEXTEWOD BLXTUOU GE GUYXQLOT UE TIC CUMBATIXEG
umodouég evépyetag. Ilpoopépouy xohbtepn emontela TNg xutdoTaong TOoU BIXTOOL Xou
evduiCouv tn Asttoupyio Tou pe PértioTo TEoTO. Eved ol ICT mpoogépouv uia mAndopa
OO TAEOVEXTAUATO GTO OXTUO NAEXTEIXAC EVEPYELIC, TAUTOYEOVA TO EXVETOUY OE GO-
Boapolg xvduvoug xUBEEVOUCPIAELISG [5, 6]. O InepLoxde UETACY NUATIOUOS TOU BXTOOU
NAEXTEWAG Loy VoG dnUoupYel SLdpopa TpwTd onueio xUBEEVOUCPIAELNS 0TO GUCTNHA, TA
omolol UE T1) OELPd TOUC EMITRETOLY OE XoXOBOUAOUS YEHOTES Var e£0mOAUGOLY [ial EVpEia

Yxdpo xuPepvoemiiécewy evavtiov Touc.
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‘Evog onuoavtindg deixtng allomotiog xon ao@aietog TV dxTimY NAEXTEWAS EVvEp-
yewg etvan 1 aviextixotnta Toug. H aviextidtnTo elvor plor amd Tig TO ONUAVTIXEG
IBOTNTEC TOU BIXTOOU MAEXTEXNG EVERYELNS, xodwe eCac@olleL Tn GUVEYT TaEOYY| 1-
AEXTEIG oY VOG PO TOU XATUVOAWTEC.  LUUQPWVNL UE TO [19], N aviexTxoTNTA OoTAL
CLCTHUOTO NAEXTEXAC EVEPYELIC 0RILETOL WC 1) IXAVOTNTA EVOC GUCTHUNTOS VoL AVTEYEL,
VoL OTOPEOME. XAl VO OVAUXGUTTEL GUECH a6 Ulal EEWYEVES XATACTEOPIXO YEYOVOS TOU
yopoxtnelleton amd LPniy enintwon ok younin mdavotnta.  Kodode o niextownd
ovo Tt e€eMocovTon Ue Yopyous puiuole, véol TOmoL avemUUNTWY YEYOVOTWY ETN-
eedlouy TNV avIEXTIXOTNTE TOUg, OTWE Yo ToRddeyUa ot xuPepvoemiéoels. Enopévec,
elvan xplowo va enave€eTaoTel 1 cuVAUNG €vvola TG aVUIEXTIXOTNTAC TOU NAEXTEIXO-
U CUCTARATOC TEOXEWWEVOL Vo oUUTERLANQUEl xaL 1) ET{OPUOT) AUTOY TWV AVEQYOUEVLY
xvoLVwy. Ilpog autd 10 o%oTb, 0 0pLoUdS TG AVIEXTIXOTNTAC TTIOU TOPEYETAUL ATt TO
[19] enexteiveton oto [1] mpoxewwévou va nepthapufdver Tov xuPepvoyweo twv ‘EEunvev
AwxtOov.

Avdueoo oTtoug B1dpopou UNnyaviodols eEAEYYOU EVERYELIS TOU BLEUXOADVOVTOL oo
¢ ICT, o éheyyoc goptiov-cuyvotntac (LFC) eivor évag amd touc mo onuavtixolc.
O pdhoc tou LFC elvon 1) Slathipnon tne evepyelaxhc looppomiog METOEY Topaywy S xou
ChTnomg ota nAexTeLxd dixTua yiol TNV TeOANdT omotacd|toTe uTofBdiutong TN artddoong
Tou cuo ThpaToC. ‘Evo xAewdl deixtng tng evepyetant|c tooppoTiog elvon 1 amdxhion tng ou-
YVOTNTAC OO TNV OVORAC T TNG THLY, OTwg gatvetar 6to Ly Aua 1.2. T vo dratnpenet
10 160LUY10 WoyVog oto clo TN, To LFC Aoufdvel yetprioeic cuyvotntog and 1o dixtuo
evépyelag, utohoyilel To amopaitnTo oY|Uol EAEYYOU %ot TO GTEAVEL OTIC YEVVATRLES Ylal VA
evduicouy avordywe TNy TapaywYT| Toug. E@dcov opioucves and Tig xipteg Aettoupyieg
tou LFC vyivovtar ye yerion ICT, 10 cuyxexpiévo clotnua eAEYyou xplvetar eudhwTo
oe xuPepvoemiéoeic. H onoudoudtnta tou LFC xdver onpovtin tnv avdmntuln tpony-
UEVOY OTRATNYIXMY XUBEEVOULVAS TROXEWEVOU VoL Blac oo Tel xuBepvoaviexTixoTnTa
oL [27].

M oepd and amoteheopatind epyaheion xUBEEVOIULVOS EVAVTIOL GTOUS PnpLaxoic
xvoLuvoug mou ametholy to LFC eivan 1 aviyveuon xufepvoemidécewy, 1 eviomouds xu-
Bepvoemiéoewy, N extiunon xulepvoemiécewy xar ot aviextixol-oe-xufepvoendécelg
unyaviopot eréyyou. H aviyveuorn emdéoewy npocdlopilel edv éva oOoTnUa NAEXTEXNS
evepyelag Eyel deyvel xuPepvoeniieon, xadwg eniong xaw To noTE aUTY| TEAyUaTOTOR YT
xe. O evtomopde emidécewy mpoadiopilel mold tufuata tov cuotiuatog (cwocdntripee,
eheyxTéc xAT.) éyouv deytel xuBepvoenideon. H extiunon emdéoewv elvon éva epya-
Aelo mou egopudleTal UETA TNV TeayuaTonolnoT Wi xUBepvoeTiieonc oTo UG TN Xou

TOEEYEL AETTOUERY|C TANPOYORIEG OYETIXG UE TO EIDOC XL TNV XUPATOHOPYN TNG, OTWS
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elvon 1 évtoom, 1 ouyvotnta, N popyh x.At. H extiunon emidéocwv unopel eniong va
amoteréoel To Yepehio Ao yia T0 oyeEdLaoud evog aviexTixol-oe-xuepvoemiéoelc un-
yaviopol ehéyyou yio 1o LFC. O aviextindc-oe-nufepvoendéoelc €heyyog elvon évog
TEONYUEVOS UNYAVIOUOC TTOU ECOAEIPEL TIC ETUTTOOELS TV XUBEEVOETIECEWMY EVAVTIAH GTO
eZetalouevo cloTNnUa EAEYYOL, WOTE Vo Slatneniel 1) AELTouRYIXOTNTA TOU BLXTUOU NAE-
ATEC EVERYELUG axOUn x3Tw amd cuvinxeg xoxdPBouiwy dpactneotAtwy. Kdlde o
oo autég T pedodohoyleg umopel va egapuoctel axohoudiond, Ue TN GELRH TOL TUEOU-
OLAG TNHAY, TEOXEWEVOL VoL oY NUATICTEL £VaC TOAVETUTEDO UNyavVIoNs XUBEEVOUCHAAELS
TOU UTOPEL Vo avory VWpIoEL X0 Vou AV THIETWTIOEL xaxOBoULeS DPACTNELOTNTEG EVAVTIOY
TWV CUCTNUATWY NAEXTELXNG Loy YOG,

‘Eneita and extevr Bihoypaginy| pehétn twv pedodwy aviyveuong, eviomouoy, e-
xtlunong xou e&dheune xuBepvoemlécewy, yoptoypapRinxay o TAOVEXTAUATH %ot Ol
TEQPLOPLOUOL TV TEOTEWOUEVKY EQYUCLOY TROXEWEVOU VO OVOY VWELOTOLY Tl XEVE GTOV
OLYXEXEWEVO epeuVNTXO Touéa. H moapoloa Sidaxtopinn dlatelf cuufBdher otny xdiudn
QUTOV TV EPEUVITIXMDY XEVOY UE TOV GYEOLIOUO EVOS XAUVOTOUOU TAUGIOU TToU GUVBUALEL
uedddoug aviyveuong, eviomopol, extiunong xou eEdreuhne xuPepvoemiéoewy ot omoleg
Booilovton oe mopatnentéc ohiodnone (SMOs) xou povtéha unyovixic pdinone. Xto xe-
pdhanor Tou axoroudoly, yivetar SleCodinr Tapouciaot xaL AVAUCT] TWV TEOTEWOUEVKY
ueddowy xuBepvoduuvag Teoxeyévou vo emPBeBouwiel Vewmpntind 1 dmgrond] Yopdaon
TWY CUCTNUATOY NAEXTEAG evEpYEtag Uéoa antd autés. H dewpntnt| avdhuorn axolou-
Velton TEWAUUATIXT EQUPUOYT) TWV TEOTEWOUEVWY UEVOOWY OE PEAMO TIXE CUC TAUATA £TOL

oote va emiPBeBonmiel xon apriunTnd 1 amoTEAEoUATIXOTNT TOUC.

8.2 Kegdhowo 2

Y10 xepdhato 2 mapovotdlovTon ol Pouoixég apyéc xUBEPVOACPIAELNS TMV XUBEPVOPUOL-
%V ovotnudtey (CPSs). Apyixd, eivar onuovtixd vo avahudel cuvontixd to Teiywvo
e xuBepvoacpdietas (1 ahhwe tetddo CIA), t0 onoio amoTEAEl TO TO ONUAVTIXG UO-
VTEANO TIEQLYQUPNC EVOS UNYAVIOUOU TROOCTACLNG UTOAOYLOTIX®DY cuoTnudtwy. H toidda
CIA meplypdgpel GUVOTTIXG TOUG TEELS BactXoUg OTOYOUE TOU TEETEL VAL TANEOVVTAL Yol TNV
mpootacia evog cuoTAatog ICT: tny eyeudideta, Ty SlrdectudTNTA Xou TNV UXEEOLOTNTAL,
Avutol ol tpec otdyoL anoteroly Ta Vepéhior Tne xuPepvoacpdielac xou xadopilouvy Tic
Boaoixéc apyéc mou mEENEL Vo AopfBdvovTon Lo XATE TNV AVETTUEY oL TN CUVTARNON
cuotNudtey Tou yenowdorotoly ICT. H tpidda CIA anotehel eniong eva mAalolo avdhu-
ong xvdLVWY xar Mg amogdoewy otov Topéa tng xuBepvoaopdielag. Ilapéyet xo-

TEVDUVTARIES YPUUUES OTOUG ETAYYEMUATIEC TOU TOUEN WGTE VoL SLUTNEOVY Uil LGOREOTH oL
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AVHUECU OTOUG TEELS BacinoUg oTdyoug UE BAon TIg avdyreg XaL TIG ATELAEG TTOU OVTYIE-
TTlEL €vag 0pYaVIoUOS 1 Eval GG TAPA. JUVOTTIXG, TO TElYwVO TNG XUPBEEVOUCQIAELNS

amoteheiton amd T €€¥ig oToLy el

* Axepondtnor A@opd TN SLaThENoT TG AXEEULOTNTIS TWV TANPOPOQLAY, TPOGC TUTE-
Vovtag Te¢ amd un eZouctodotnuévee Tpomonotfoels. O oTtdyog elvat vor Topauévouy

ToL OEOOUEVOL TOU GUOTAUATOS BLIPXME OXERULOL X0 OVETIOLPOL.

* Awdeowotnto: Eotdler otn Swoo@dhion tne Sardeciudtntag xou Tng TeocBaot-
MOTNTOC TWY TANEOPORLOY Xal TwV Tépwv 6Tay auTée yeewdlovtal. Emouévwe, o
0TOY0G EVAL 1) AVTIUETMOTION ATEADY TOLU UTOREL VoL ETNEEGCOLY TNV TedcPoon 1

N YeNON TWV TOPWV.

* Eyeuddeio: Avagépetar oTr SlaTAENON TOU AmORENTOU YUPUXTARY TV TATROQO-
etov. O otdyog elvor oL TANEOQPORIEC TOU AVTAAAICCOVTAL Vo TUPUUEVOLY XPUPES

and un €€0UCLOBOTNUEVA ATOUN 1} GUG THUOTL.

2o xhaotxd BiXTUN UTOAOYLOTWY, OTKG Tal OixTud BAoEwY BEDOUEVWV ETUPELDY,
OlxTUL BLIXOUOTAOY LOTOU X.AT., oL xuPBepvoarnethéc oToyebouv xuplwg otny mopaio-
OY) TOU ATOPEHTOU TWV BEBOUEVKY XAl 0TI BLUXOTH TV ECOUCLOBOTNUEVKY TEOGPBACEWY
oToug umoloyloTixolg mopoue. o mopdderyua, ot xulepvoeicBohelc ouving Tpoomo-
Yolv va xhéPouv T TANpogopieg mou anolnxedovior 6To BixTuuXG GG TNH TNE Bdong
0E0OUEVWY EVOC TEame(IXoU 1BEVUUATOC 1) VoL Bloxoouy TNV xavovixr| Aettovpyio evog dLo-
XOUIOTH 16TOU YLol VoL Aot iIoouy ADTEOL  DUVETKS, Ol XUPBEEVOUTEIAEG O QUTHY TNV
Tep(mTWoT 6ToYEVoUY Vo TAAEOUY TNV EUTICTELTIXOTNTA XAl T1) OldecldTNT TWV GU-
oTNUdTWY, avagoptxd pe Ty TeLdda CIA.

Yy meplntwon 1wy o0y Yeovemy BixTOwY NAEXTELXAS EVERYELNG, Ta PEPT Tou Elvol
TowTd o xuBepvoemidécelc elvon T cUoTHUATH TapaxohovdnoNe xou eAéyyou. Autod
oLUPofVEL BLOTL TOL CUCTAUATO AUTY YENOWOTOLOVY TNAETUXOWVWVIOXES UTOOOUES g
X0 EQOPUOYES NOYLOUIXOU/UAXOU UTOROYIOTOVY Yiot TNV avtodhoryr) dedouévewv. Ot xu-
Bepvoeiofoielc oToyEYOLY ElTE VO TPOTIOTOLACOUY TO TEQLEYOUEVO TMV OEBOUEVGY TOU
avToaAAdoGoVTOL ELTE VoL EUTOBICOUY TNV XAVOVIXT] HETAPORE TANPOPOELLY GTO CUC THUNTA
auTtodaTiool Twv SGs. Me autd Tov 1pémo, ol xufepvoeniéoeic TATTouY TNV euc TdEL
TWV CUCTNUATWY NAEXTEAC EVERYELaG. Emouéveme, ot Bacixol otédyol xuBepvoacpdhieiog
ToL ametholvTaL OTNY TERITTWOT Twv SGS elvor 1 axepaOTNTA Xou 1) SLdECIUOTNTA, Vo
popixd pe tnv Tetdda CIA.

[t Tov eviomopd twv Tewtdy (600 0popd TNV xUBEPVOACPIAELR) oNUElwY evdg

oYY EOVOL BXTUOU NAEXTEIXC EVERYELAS, Efval Yeroo v avoAudoly To Sidpopa Uéen
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TWV OLCTNUETWY TNAEUETELNG Xou amopaxEUoEVOL eAEYyou. Tao emuépoug autd otoyela

patvovtal 610 oyfuc 2.6 xon TEPLYPAPOVTOL CUVOTTIXG TOEUXETE:

* AwoOntrpec: Tlpdxeiton vy cUOXEVEC TEBIOL TOU PETEOUY TEPLOOXE CTUAVTIXEG
ueTaBANnTéS Tou Quoxol cucthuatog. H Aettovpyla xou 1 pduiorn Toug mpaypoto-
Toleltan oUVATWE TaVE OE EZEWBXEVUEVO UAXO UTOAOYIOTOVY X UEGW EVOC AMTOU

TEPYBEANOVTOC AOYLoUXOV.

» Kavdhio Métpnong: Hpdxettan yiar xavdhior tnAepetplag mou ebvon umedduva ylo T
UETAPORY TV PETPHOEWY amd Toug oo UNTrAeES 6T0 xEvTpo eréyyou. H uhonoinon
TOUG ECUPTATOL OO TIG EPUPUOYES YLOL TIC OTOIEG OYEDBLAC TNXAY KoL TNV APYLTEXTO-

VIXY| TOU YENOWOTOLOVUEVOU TIEWTOXOANOU ETUXOVWVIAS.

* Kévtpo EXéyyou: Arnotehel tov Eyxégaho” evog oucthuatog autopatiogol. To
x€vtpo eAéyyou AaufBdvel yetprioelc and Toug aoUNTAPES xou Tig emedepydleTo
aVIAGY WS Yl Vo oynuotioet Tig eviohég eléyyou. Ot alydprduol mou E€youy oye-
0L TEL Y10l TOV EAEY YO TWV NAEXTEIXWY CUC TNUATWY EXTEAOUVTOL PEGE EQPUQUOY OV

AOYLOULXOU OL OTOLEC AELTOVEYOUY EVIOC TOU XEVTPO EAEY)OV.

» Kavdhoo Evtohev: Tpdxettan yior xovdto emixowvewviog mou etvar utedduva yio T
UETUPOES TV EVIOAMY EAEYYOU ATO TO XEVTPO EAEYYOU TROS TO GUC TNUI NAEXTEL-

x¢ evepyeoc. H uhomoinot| toug elvan mopouola ue o xovdha pétenong.

* Puduiotéc: Tlpdxettan yiot GUGKEVES TTOU UETUTEETOUY TIC EVIOAEC EAEY YOV GE OTjud-
Toe XoTANAa o T eOduion TV avtioTolywy PETUBANTOY TOu NAEXTEWOU Cu-
othuatog. Ol evepyeleg TwV pLIULO TGOV UAOTIOLOVTAUL CUVATWS UECE) UMY AVIXGDY,

UOPAUUALXMY 1) NAEXTOOVIXMY GUOKEVMY.

Trdpyouv ddgpopa eidn xuBepvoemiéocwy tou anetholy Eva cuotnua SG. Optouéva
omd ouTd amavTevTon xon ot xAaowd cvoTAuata ICT, evdd xdmotor dAhor epgavilovton
uovo ota CPSs. Ytnv mapoloa dotelfr avahbovian To To ornuavTixd eidn xuepvoe-
mdéocwy evavtiov twv CPSs. 'Eva and autd to €idn elvon 1 xuBepvoenideon dovnorng
nopoyfic utneeotdv (DoS). Tho ouyxexpuéve, pa xuPepvoenideon DoS xatd twv SGs
O TOYEVEL 0T BLOXOTY| TNG XUVOVIXAS AELTOLEYIAG 1} OTNV UTERPORTMOT) TV CUC TNUTGLY
ICT mou ypenowonotel 1o dixtuo evépyelag. Autd €yel we anotéheoya, To ouoTidato ICT
ToL efvar UTELYVLVA YLaL TNV VAOTIOIMOT) TwV ohyopliuwy amouaxpuouévou eAEYYOoU VoL Xa-
YloTtavton mpocwpewvd N uoviua un otadéotua. Xto mhaioo twv SGs, autd Yo puropoloe
VoL SLaTopdEeEL TNV UG TAYELN TOU CUCTAUNTOS, VO TROXUAETEL BUOXOAEC OTNV TOROXO-

Aolinom Tou, xadde xon Vo SNULOVEYHOEL UEYAAES OLXOVOUIXES (NUIEC GTOL VOLXOXUPL
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XL OTOUG OLUYELRLOTEG TOU NAEXTEXO) CUCTAUATOC. XE GPOUS TOU TELY®MVOU XUPBepvo-
ac@dhetag, ot xuBepvoemiéocic DoS aneiiolv xupiwe T SlodecudTNTA TWV BEBOUEVLY
Tou avtaAidooovtat o éva SG.

‘Evag dhhoc onuavtixde tOnoc xuBepvoemiiéocwy tou amaviwvtar ota CPSs, elvou
etvon ot xuBepvoemiéaelg €yyuong ypovixwy xatduotepfioewy (TDAs). Ta vo Swtneniet
1 evoTdUelo EVOC CUOTAUNTOS NAEXTEWXNAS EVEPYELNS, Elval amapalTnTO Ol UETPHOELS ol
Ol EVIOAEC EAEYYOU TOU avTahAdooovToL Vo UeTapépovTal eyxaipone. H mapouoio uixpdyv
YEOVIXOY XIUGTERHOEWY AOYW QUK Teptoplou®y Twv ICT mou yenotuonoobvTo -
o UOLOAOYIXES XAl OL ETUTTWOELS TOUG OTA GUC THUATO AUTOUATIONOU efvor aeAnTEES 1)
ovTYETOTEI oVToL EUXOAA OO TOUG UNyavioolg EAEYyou. 20TOC0, 6TV AUTEC OL YPOVL-
x€¢ xoduoteprioelg ebvon ueydheg 1) mapouctdlouy cuyxexpuéva otifo, 1 euctddeio evog
ovoTiotog SG unopel va ennpeactel onuavtixd. Autd umopel va odnyoeL oty TATEN
amopELUUICT) TOU U TAUATOS NAeXTEXNC EVEpYELag, xadde oTo va tedel To cloTrua
TARpwS exTOC Acttoupyiag. Xe dpoug Tou Tery®vou xuPepvoacpdhielag, ot TDAs amelho-
OV %0l TNY aXEEALOTNTA TV OEBOPEVGLY ToU avTahhdocovton o éva SG.

"Evag amd toug 1o onuoavtinois T0toug xUBepvoemlEcenmy Tou amavTtdtal Xuplng ot
CPSs xou oyt ot xhaowd cucthpata ICT, eivar o xuBepvoemiiéoeic €yyvong Peuddyv
dedopévwy (FDIAs). Edv xdnotoc xuBepvoeioforéag anoxtroet npbofoon oe évor uépog
TOU CUG TAUATOC AUTOPATIOUOU ToU SG, unopel vor dANOLOGEL TO TEPLEYOUEVO TOV TOXETGLY
OLXTOOL TOL PEEOUY Tal BEBOPEVA PETPHOEWY 1] EVTIOAWY eAéyyou. Ot FDIAs unopolyv pe
0L8POEOLE TEOTOUC VoL HETUPBAANOLY TO TEQIEYOUEVO TWV TOXETGLY OXTUOU, Ol OTo{oL TEPL-
YedpovTon amd pordnuaTnés oyéoelg uxprg 1 HEYIANS Tohurthoxdtntag. Avdhoya Ue Tig
mpoicoelc Ty emtiiéuevny, 1 dour Twv FDIAs unopel va elvar t€tota mou elte puotixd
vor Tpoxaholy BAdPec oe Bdpopa Pépr TOU CUCTAUNTOS EVERYELIC EITE Vol DNULOVEYO-
OV exTeETUUEVES Blaxomég pelpatoc. (d¢ anotéheoya, o FDIAs unopolv va dlatapdiouy
ONUOYTXE TNV EUGTAVELNL TWV GUYYROVOY CUCTNUATOY NAEXTELXNAS EVERYELIC XAl VoL 00T
Y1o0LY OE GOBUPES OLXOVOULIXES ATWAELEG. ME GPOUC TOU TELYWVOU XUBEOVOUCOIAELNCS,
ot FDIAs ametholy xupltyg TNV axepondTnTo TV OEBOUEVWY TOU AVTUAALCCOVTAL OE EVa

SG.

8.3 Kegdahao 3

Y10 xe@dhano 3 avollovToL AETTOUEPMS Ol Baoés apyEs Aettoupyiag TOU UG TAUATOC
LFC. Apywd, mapouctdletar 1 AelToupylol TOU GUGTAUUTOS EAEYYOU GTPOPMY TWV YEV-
VTRV THPAYWY TG NAEXTEIXNG EVERPYELNG, TO oTolo amoTeAel Tn Ao TOU CLUCTAUATOS

ENEYYOU CUYVOTNTOG TOV NAEXTEXOVY OLXTUMY. XTI CUVEYELN, TEPLYPAPETAL TO UG TN
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LFC p€ow 10U LOVTIENOL amOXEIONG CLYVOTNTUC TOU TEOXVTTEL UTd TOV GUVOUAOUO TWV
EMUEPOUC UEPWY TOU CUOTHUATOS eAEYYoLU oTpogwy. Télog, oyedidleton To Yoviéro
yweou-xatdotacng tou LFC yenowomowwvtoag tic dtapopixéc-alyeBpinéc eElonoelg mou
TEPLYEAPOUY T1 BUVOULXT) CUUTIEQLPORA oWTOL Tou cuoTAUaTos. O cuyxexpévog TUTog
uovteromolinong anoTeAel Tn BAoT TWV TEOTEWVOUEVGY UMY AVIOUWY XUBEPVOIUUVAS YL TO
LFC, 6nw¢ Yo gavel ota endueva xepdhona.

[oc Ty %ot Aettovpyla TV GUOTNUATOY NAEXTEIXC EVERPYELNG Elvar amapaitnTn 1)
ouvey g datrienon Tou lwoluyiou toybog evidg anodext®my oplwy. To wollyio wylog
emneedleton ouvAtLG amd T YeTaBoréc gopTiou Tou Slupx®e cuuPBaivouv 6To BixTUO.
Enopéveg, 1 maporyOUeEVn NAEXTEXTY EVEQYELX TEETEL VO TEOCUPUOLETUL CUVEY(S OTOL E-
mineda TN {Rnone. Eva onuavtinde deixtng tou iooluyiou evépyelag etvat 1 oLy vOTNT
TOU NAEXTEIXOU OIXTOOL: XAVE ATOXALCT| TNG CLYVOTNTUC ATO TNV OVOUACTIXT TNE TIY| L-
TOONAWYVEL OTL 1) LooppoTia PETAEY Toparywyhe xat CHTnong €yt datapayvel. To chotnua
70 omoio elvar LTEVVLVO YL TNV ATOXATAG TACT) TOU 60LUYIOL EVERYELNG EMELTA OO OLoTO-
earyég ebvan o unyavioudg LFC. To LFC AauBdvel o¢ elcodo puetproelc cuyvotntag woTe
VoL VLY VEUGEL TUYOV AMOXAICEL amd TNV OVOYUoTIXY TNS TN, XN ouvéyeta, puduilet
XUTIAANAGL TNV €£000 TWV YEVYNTEUOY TOU CUCTAUATOC OOTE 1) TOURUYOUEVY) NAEXTOIXY
evépyeta va elvon oo (Bt emimedo we T {nToluevn).

H don tng Aertovpyiag tou LFC elvor to clotrua pdduiong 61pogoy Tmv YEVVNTEL-
ov. To Paoixd pépn autol Tou cucThAUATOC Efval 1) YEVVHTEL ToEaY WY NS TNG NAEXTEXTNS
eVEQYELNC, 1) ToupUTiva TG YEVVATELG Yot 0 puUWoTAC TN TaydtnTag. ‘Otay petofdh-
Aetar To @opTio mou TEoQodoTEL 1 YEVVATEW, AAAACEL 1) MAEXTEOMXYVNTIXY POTY TOU
aoxeiton otov dfova g, Autd odnyel oty emtdyuvon 1 emBedduvor TNg YEVVATELIC,
onAadY) oty uetaBoAr| Tou puduol meptoteognc Tng. o va cuveyloel 1 yevvhTpla va
Aertovpyel ue otadepr) ToyOTnTa, Yo TEETEL 1) ToEay YY) TNG YEVVATELIC VoL axoAoudfoeL
TN UETAPBOAY Tou @opTiou. AuTo ETTUYYAVETAUL UE TNV CAAAYT) TNG UNYAVIXNC EVEQYELOG
TIOU TROGPEQEL 1) TOUPUTIVAL O YEVVATELL HECW TOU pUILCTY TWV GTROYOY TNG.

To cbotnua LFC anotehelton and moAlamhd enineda eA€yyou, to omolo lvon opyo-
Vouéva JETHEY Toug UE lepapytnd Tpomo. Kdde éva and autd to eninedo emitelel pia
otapopeTt) Acttoupyio yioo To LFC, 6nwe Vo gavel ot ouvéyeta. H napoloa date3y
EMUXEVTPWVETAU OTO TEWTEVOV Xl OTO OELTEPEVOV ETUTMEDD EAEYYOL, AOYW TNG OGTOUL-
darotnTag Toug Yo 1o LFC. Ou apyég Aertoupylag Twv ETMTEDDY QUTMY TEQLYRAPOVTOL

oLVOTTIXG KOG EENC:

* Ilpwtebov éheyyoc: Anotelel T0 TP®TO EMUTEDO EAEYYOL TNG CLUYVOTNTOC TWV NAE-
XTEIXOV OXTUOY xou efvar uedduvog yio TN cTodepomoiNcT TS EVIOS UTOBEXTCY

TV, YE auTo To eninedo eAEyyou, ot Tomixol PO TEC OTEOPMY TWV YEVVITEL-
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OV oV VEDOLY aUTOPATA Lo Slartopary 1 Tou t1ooluyiou 1oy 00g €W amoXACEWY TNg
CLYVOTNTAC AT TNV OVOUUCTIXY TNG THT. 2TN CLVEYEL, oL €000l TwV PLIC TGOV
TEOGUEUOLoVTAL ETOL WOTE Vo PETUBAANOLY xatdAAn o Tig Véoceic Twv BuABidwy
¢ Tovpunivwy. Me autd ToV TEOTO, oL PLIULCTEC GTEOPMY avaryXdLouy TNV To-
payouevT oyl va TpocapuooTel ota eninedo tne {tnone. Ilopdro mou autdc o
TUTOg EAEYYOL OTOEQOTOLEL T1 CLUYVOTNTA TOU CUCTHUOTOS, OEV UTOPEL var TNy
ETAUVOPEPEL OTNY OVOUACTIXY TNG TWN, Xt £TOL aprivel Evar GQAAIA OE AUTH UET T
Aertovpyia ToL.

* Acutepeov/Supminewuotinds éheyyog: Anotehel yio eQapuoyr Tou X€VTpo eAEY-
YOU EVEQYELNG TOU NAEXTEXOU BIXTUO0U, YVWGOTH Xol ¢ AUTOUATOS EAEY YOG OO0~
ywyrhc (AGC), n onolo AafBdver ythpo aéows PETE TOV TEWTEVOVTO EAEYYO TNG
oLYVOTNTAG. Lx0TOS aUTOL Tou cUCTAUATOC eivon v e€aheldel Tor oA UoTY TOU
ELOdYEL O TPWTEVOV EAEYYOG, ONAUDY| VO ETAVAPEREL TN GUYVOTNTA GTNY OVOUNO TUXN
NG T XU Vo SLTNEAOEL TIC POEC TWV YROUMGY OLUGUVOECTC GTOL TROYPUUUOTL-
opévo Toug eninedo (oTNY TEPITTWON NAEXTEIXWY CUCTUETOY TOMNADY TEQLOYOV).
[t v emiteuydel autd, o deutepelov EAeY YOG Aapfdivel apyixd UETENOES TN OL-
YVOTNTAS TOU OLXTUOU XUl TV POV EVERYELNG TWV YROUUMY OLUCUVOESTS UECW
TNhePeTPlog TEOXEWEVOL Vo aynuatioet To ogdhua eléyyou meptoyrc (ACE). 'E-
TelTa, unoAoyiCel To ofjua eEAéyyou e Bdon o ACE xou 10 GTEAVEL WG ATOUOXEU-
OUEVN EVTOAY] OTNY XUTAAANAT €l0000 TwV PUICTOY GTEOPLY TWV YEVVNTELOV

TIOU GUUUETEYOLY OTO CUYXEXPLIEVO ETUTEDO EAEYYOU.

[ tov oyEdlaoud Twv uetddny xufepvoduuvag tou tpotetvovtor yio To LEC, etvou
1 amaEadTNTN 1) LOVTEAOTIOMNGY) TOU GUC THUNTOS AUTOU UEGHL TV EELOMOOEMY TOU YMEOU-
xatdotoone Tou. Autdg o TUTog Yoviehomoinong exgedlel T SUVOULXT) GUUTERLPOEE TOU
LFC ¢ éva 6Ovoho petaBAnTmv 166060, E€680U Xt XaTdoTaomg Tou oyeTiCovta UeETadY
TOUG HETE BLaPORIX®Y EELCMOOEWY TEMOTNE TaNg. Ot e€lo®oelc auTég TeplypdpovTon amd
¢ padnuatixée oyéoec (3.17)-(3.33), ot onoleg TEOXUTTOUY ATd TIC CUVOPTHCELS UETO-
popdg Twv utocuoTNUdTwy Tou LFC 670 1edlo Tng ouyvotnTog, 0w AUTEG QUlvOVTOL
oto oo 3.11.

8.4 Kegdhawo 4

210 xe@dhono 4 yivetor 1 TeEouciaoT) TV TEOTEVOUEVGLY HEVOOWY aviy VEUOT|S XAl EVTOTL-
ouol xufepvoemitécenwy oto oo Tnua LFC tev nhextoindy dtiwy ot omolec Bacilovton

oe SMOs. To xowé onuelo avducoa otic uevddoug aviyveuone xon eviomouol xuPep-
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voeméoewy ou Bactlovion e mupaTneNTES eivon 6TL ToL GQAAUNTA EXTIUNOTG IOV TpO-
#©0TTOUY Vol ACUUTTOTINE EUCTODT| LOVO X3Tw amd xUVOVIXESG GUVIAXES, Xal OYL OTAY TO
oVoTnua avtipetorilel xuPepvoemiéoec. Autd eaocparilel 6Tt Ta o@dhpaTta extiunong
Yo elvon mdvtor undevind extog edv ouufel wio xuBepvoenideon, xohotovTtag Tor Ao
oTtoug delxteg nufepvoarethav. Ilapduota @rrocogio axohovieiton xon 0TO OYEBDIACUO
TWY oVTIGTOY WY TPOTEWVOUEVKY UEVOOWY, Ol 0ToleC ToEOoUGLELOVTAL GTY) GUVEYELL.

YNy apyh) auThC TNG EVOTNTAS YIVETOL Topouaiacy) Tou LOVTEAOU YOREOU-XATAGTACTG
Tou cucthpatog LFC, 6tav o unyaviouds autog undxerton o xufepvoemdéoels. To po-
vTého autéd ebvan amapaitnTo yior TNV ovdmTuln uedodwy xuBepvoduuvag mou Bacilovto
oe napatnentés. Ilpotol mapouctacToly ol Tpotevdueveg uédodol aviyveuong xa evto-
mopoL xuPepvoemiiécewy, TeEmel vor Vepehiwdoly ot amapaitnteg podnuotiné cuvinixeg
TOL ETUTEETOUY TO GYEDLACHUO TWV TUQUTNENTMVY TOU YENOWOTo0VTHL oTIS Uetddoug
outéc. Ou amapaitnteg autéc podnuotixéc ouviixes teptypdgovial oTic utodéoelc 1-4.
Y ouvéyew, tou cbotnua LFEC nou meprypdgeton amd v e&icwon (4.1) dLoywplleTon
eovxd ota unocuoThuata (4.6) o (4.7) uéow TOU TEOTEWOUEVOU UETACYNUUTIOUOD
CUVTETOYUEVWV.

Mia and Tic ueyahitepeg mpoxArioeic mou avTetwrilouy autéc ol pédodol eivon va
OYEBAOTOUV UE TETOLO TEOTO HOTE VoL UTORPOLY Vol dlaywpeicouy Tig xuPepvoemiéoeig amd
GAAEC €l0n eEWYEVMV BlaTopay V. LTIC EVOOOUS aviyVEUOTG Xal EVIOTIGUOU XUPEEVOE-
miéoewy Tou mpotelvovTal oTNV ToEoUGA BLUTEST|, AUTOS O BLUYWELOUOS ETLTUY YAVETOL
UECE) PETUOYNUATIONOV CUVIETAYUEVWY TOU HOVTENOL YWpou-xotdotaong tou LFC, to
omolo PooiCeton oc TEONYUEVES TEYVIXEC TapATHPNONG [117]. Méow Tou TUEATEVE) UE-
TACY NUATIOUOU, TO apyWwd oo TN BlaywpelleTar 6To exovixd utoclotnua-I, To onolo
(PEPEL UOVO TIG OLATAUPOUYES TOU CLUCTAUNTOS, Xal 6TO EoVix6 utoclotnue-II, to onolo
UTOXELTAL UOVO TIC xUPepvoeTilécelg. MTr ouvéyela, o tapatnentic-1 oyedidleton yio To
unoocUoTnue-I, o onolog emnpedleton LoVo amd Tic eEwYEVElC BlaTapayéc TOU CUG TAUATOC,
xan Tov opatnent-II yia to unoclotnuo-1I, o omolog ue tn oeld Tou elvon evaioinTog
uovo ot xuPepvoemiécelc.

[ty pédodo aviyvevorng xufepvoemiéocwy tou tpoteivetar oty Topolou datel3y,
oyedidleton 0 SMO (4.8) yio 1o (4.7) %o 0 xheotoc napotnenthc (4.10) yu to (4.6).
Meto ToV OYEBIOUS TWV TOEATAVG TURATNENTWOY, TEOXVOTTOUV Ol BUVOUIXES EELOMOELS
TV o@oludTey extiunone. Ilo cuyxexpwéva, n duvouxs e&iowon (4.16) neprypdgpet ™)
CUUTERLPORY TOL GQAAIATOS EXTiUNONG Tou oyedlaouévou SMO xon 1 duvouxt| e&lowaon
(4.17) N oLUTEPLYPOEE TOL GPIAULATOS EXTIUNONG TOU OYEBIICUEVOL XAELGTOY TOEATNENTY.

Yougova pe o Yewenuo (4.3.1) xa v e&iowon (4.17), 1o o@dhuo extiunong tou

XA TOV TopTNENTY| Eivol ACUUTTWTIXG Vo TOESG UTO Xavovixég cuvifixes. Avtideta,
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otav to obotnua LFC undxertan oe xuPepvoemiéoelg, 1 euotdielor Tou ennpedletan o-
mo auUTéC T avemiunTeg dpaotnedTnTee. Autd onuoivel Tw To o@dhua exTiunong
TOU XAELGTOU TOPUTNENTH CUYXAIVEL GTO UNOEY UTO XaVOVIXEC GUVITIXES eV YivETow Un-
undevixd 6tav To oo TNUA auTd dEyeTon xuBepvoemlécelc Emmiéoy, tapatnedvTog Thy
e&lowon (4.17) ouunepaivoule 6Tt auTY TEPLAUBAVEL pOVO To BLdvuoua xufepvoenideorng,
£V OEV TEPLEYEL XDOAOU TO BLAVUCHN EEWYEVMY BLATORAY DY TOU CUC TAUATOS | TO GYAIA-
uo €€600u Tou ewodyel o oyedaopévoc SMO. Etol, 10 o@dlpa extiunone xatdotoong
ToU el ToU TapaTnENTY| efvar evaicinTo uovo otic xuPepvoeTiiéoelc xo aviexTinG oTIC
eCoyevelc dlotapay€C ToU UG TAHUATOC.

Me [don dha tor mapamdve, €&V TO O@IAUA EXTIUNONG TOU XAELGTOU TURATNENTA
oLYXAVEL 0TO UNdEY, T0 GOOTNUA BEICKETUL O XAVOVIXY| XATACTUOY EVE AV Elvon -
undevixd, to cuoTnua elvor uTd xuBepvoenileon. Auth 1 WOLOTNTA TOV GPIAUATOS &-
©TUNONG TOU XAELCTOU TopaTnenTh TO xooTd XoTdAANho OelxTn Yl TNV aviyveuon
xuPepvoemiEoewy evdvtion oto cvotnuo LFC. H pédodog aviyvevong emdéocwmv mou
mpoteiveton oty mapovoa dater urmopel vor cuvodioTel w¢ €€ utodéTouue OTL TO
llens || emAéyeton w¢ Selxtng aviyveuong, T0 Gy AVTITPOCWTEVEL EVAL TPOCUOUOC TIXG X0
TP, TO tg elvon 1 yeovixy| oTiyur aviyveuone tng enfdeone xou f, ebvar o ypdvog mou
éxel mapélder omd Ty mponyoluevn aviyveuon entdeone uéyel to t4. Edv |len,|| > 6,
T61€ Yewpolue 6Tt T0 cuotnua LFC €yel deytel FDIA 11 ypovix) otiyur| 4, OlopopeTixd,
10 cLoTNua Beloxeton UTE xAVOVIXES GUVINXES VLol TO YEOVIXO DLUC TNUL fe.

H uédodoc aviyveuone xufepvoemidécewy mou mpotelveton oTny mopoloo dlatelB3n
umopet vor tpocdlopioel uovo dv xou tote To Vot LFC undxerton o xuepvoeniveon,.
(2671660, DEV UTOPEL VoL AVOLy VWEIGEL TOLO GY|UoL 1] TIOL)L GUGXELY| TTIOU YenoyloToleitoal 6TOo
oVotnuo LEC éyel deytel xufepvoenileon), ewdind oe oevdpla 6Tou 0 eV AoYw cLOTNUA
avtetwnilel tohhamhéc FDIAS tautodypova. O mapamdve mAnpogopieg unopolv yivouy
OlordEoIUES YENOLOTOWVTAS UeTdBoUE evTomoUol xuPepvoeTiéoewy. Xto Thalola Tng
ToE00oS DTELBNG OYEDACTNXE Lot xouvoToua pEYodog eviomiopol xufepvoemiicoswy,
1 omoiol xat TaPOLCIALETAL GTO UTOAOLTO UTHS TNE EVOTNTAG.

H oo 1déa tne npotevduevng peddodou eviomiopol xufepvoemidéoewy etvan 1 e€nc:
mpocdlopllovtac mota otolyelor Tou dlaviouatog emiieons ay, ivar undevixd f xou oo
OYL, 0 EVIOTUIOUOS TWV PETABANTOV XatdoTtaong mou éyouy ennpeactel and FDIAs uropet
va mporypatomomdel tohhamhaoidlovtog To didvuoua emIECEWY @, UE TOV avTloTolyo
v xatavouric emiéocwy D. e mepintworn eviomouol uag xuPepvoeniieong and
TNV TEOTEWVOUEVT U€V000, EVa XUTIAANAA GYEBLACUEVO GUCTNUN EWBOTOINCNC EVIUEPMVEL
TOV YEIPLOTY| TOU CUOTAUATOC Ylol T Told orjuato tou oAlowwdel and FDIAs péow evog

IneLoncol cuoTAuaTog Aoynhc.
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ILo avohutid, yioo TNV Tpotewouevn pedodo eviomiopol xuPepvoemileoewy GyEDL-
dotnxe éva ewdnd (ebyoc SMOs v xde ctotyeio Tou Blaviouatog emiéoewy, oyn-
wotiCovtag €tot plo tpdmela TapATNENTMY ATOTEAOUUEVY antd 2g BopEC JOVAdES. XE
xdie Ledyog SMOs twv Sopxay wovddwy authc tng tedneles, o SMO-I oyedidleton étol
wote v emneedletar and Tic e€wyevelc dlatapayéc Tou cuoThdatoc LEC xou Toutdypova
va ebvor aviextindg otic xuPepvoemiéoels. Avtiveta, o SMO-II oyedidotnxe étol kote
va enneedleTon uovo amd xufepvoemidécelc evdvtio oto cbotnua LEC eve tautdypova
vo. efvan avlextinde otic e€wyevels dwtapayéc. H ewdwer| widtnta tou SMO-II eivon 611
T0 GQdhua €LHOOU TOU AUTOG ELGAYEL OVIEAOTOLELTAL UE TEOTIO TIOU VoL EfVaL LoOBUVAOG
UE TO BLdvuoua OhwV TwV oTolyelwy enfdeong extodg and 1o otoyeio oto omolo avti-
otoyel o SMO-II, tou cuuBoiiletan pe ay,. Me awtd tov om0, oL duvauxés eELOOGELS
WV GQUAUdTLY extiunong mou mpoxUntouy and Tov xdde SMO-II uropolv va efohe-
{pouv v enidpaon tou G, und cuyxexpévec cuvidixec. Autéd €yel we anotéleoya,
o SMO-II elvor evadointog povo oto croyelo Tou daviouatog enideong yia To onolo
el oyedaotel. And Oha To TUPATAVE, CUUTEQUIVOUUE OTL TO O@QdAua eXTiUNONG TOU
SMO-II amoxhiver and 1o undév wévo otav to otolyeio Tou dviouatog enieong Yo To
omolo €yel oyediaoTel elvon pn UNdevixd, xooTOVTAS To €val xoTdhAnho SelxTn Yo Tov

EVTOTIOUO emiEoEWY.

8.5 Kegdhowo 5

Y10 xe@dhouo 5 mapovoidleton 1 mpotevOUevV uédodog extiunong xuepvoemiiéceny,
xdg xan 0 aviexTindg-oTic-xuPepvoeTiioelg Eheyyog Tou Eyel oyedlao el oTa Thaloto
NG ToEoloag BLTEBNC yior TN PUUWLOT TNG CLYVOTNTAS TWY CUCTNUATLY NAEXTEXNS €-
vépyetag. Ot pédodot autée BaoiCovton oe éva (euydpl E8XE GYEBLUCUEVKY TURAUTNENTCV
xatdotaong. ‘Oneg elvon yvwoté and T Yewplo CUCTNUETLY, 0 GXOTOE EVOS TUEATNENTY
xatdoTaong efvar var TapéyeL o exTUNoT Tou SLUVUOUOTOS XUTAC TAOTG EVOS GUC TAUATOG
vt To omolo €yel oyedactel. Madnuatid, n Onapln evég nopatnenTy| xatdoTaong elvou
eCaoPAUNCUEVT Yol €vor UG TNUA OTAV 1) SLopopd. UETAC) TOU TEAYUATXNO0) XAl TOU EXTI-
UOPEVOL BLaviouatog xotdotaons (Snhadr| To o@dhuo extiunong) ouyxAivel 6To undév.
Yta mhadolo TN Tapovoag SLaTEBHC, OYEDLAC TNXAY XATUAANAOL TUPATNENTES XATAC TAUOTG
vt To oo Truo LFC 1o onolo undxeiton o xuPepvoemiiéoelc. JUVETHS, OTAY TO GQIAUL
extlunomne mou TEOXOTTEL And TOUS UAOTIONUEVOUC TORUTNRNTES XATAo TS TE(VEL GTO
UNdEV, TEOXVTTEL €Vl GUVOAO UOIMUOTIXGY OYECEWY TOU UTOPOUV Vol TROCEYYICoUY Td

avtioTorya dlaviouota xuPepvoeniteong, omwe Yo gavel otn cuveyela. XTto UTOAOLTO
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QUTAG TNG EVOTNTUS TOPOUCLACETOL 0T Blaldaoior GYEBLIOUOY TWY TEOTEWVOUEVWY ToQ0-
TNENTOY XATACTACTC.

‘Onwe xon oTNy TERIMTOON TOV TEOTEWOUEVKDY PEVOOWY oViYVEUGTC Xl EVIOTIOHOU
xuPBepvoemiécewy, apyd oyedECETUL TO UOVTEAOU Y(MEOU-XIUTACTACTC TOU GUGC THUd-
to¢ LFC outéd umdxertoaw o FDIAs. Ilpwv 10 OyEBlH0U0 TV TUQATNENTMY XATAC TUCTC,
meémel mpwTa var Yepehindolv ot amopaitnteg padnuoatinég ouvihixeg mou e€ac@ahilouvy
v Onoeén toug [117]. O padnuatixéc autéc ouviixeg exppdlovto péoo amd Lo oeL-
ed uno¥éoewy, ol onolec mapouotdlovtar topuxdtw. o cuyxexpwéva, 1 vnddeon 5
EMTEENEL TOV ExXoVXd Bloywplopd tou cuothuatoc (5.1) oto vrnoclotnuo-I xa oto
vrooUotnua-1II. To vroctotnua-1 (5.5) ennpedleton omd tic FDIAS evavtiov twy onudtov
ehéyyou xou ebvon aviextind ot FDIAs evavtiov twv yetpiocwy, EVe 10 unocOoTNo-
II (5.4) ennpedletar amd ¢ FDIAs evavtiov tov petprioewy xon elvon oviextixd otig
FDIAs evovtiov v onudtwy ehéyyou. Autdc o dLoywelopos Sleuxohivel Tn dladixaocio
OYEBLIOUOU TWV TURATNENTOV, xo®S dlalpel To apyixd cLOTNUX O TO AThd, LGOD)VUUY
UTOGUC TAUATA UE ALYOTEPOUS 6poug. ATo TNV dAAT, ot utodéoeic 6 xan 7 elvon amapaltn-
TeC Yo vor amodetydel 6Tl T oAt EXTIUNOTE TWV TUQUTNENTWY TOU GYEDACTNHILY
ebvon aovumTwTnd cuotadn. Iho cuyxexpyéva, ot utodéoeic autéc TPocPEPOLY YENoYES
OVIOOTNTEG TPOXEWEVOU Va oy ToUV oL cuvapThoelg Lyapunov mou €youv emeyel.

Mo TV mpotevouevn pédodo extiunone xuPepvoemidéoewy, oyedidleton o SMO (5.6)
Yo t0 unocVotnua-I (5.5) xou o mapotnenthc ayveotou ewwddou (UIO) (5.8) yia to
vroolotnuo-1I (5.4). Meto Tov o)eBIoUd TwV TURUTEVE TAPUTNENTOY, TEOXVTITOUY 1|
Sapopixés edlowoeg (5.9) xar (5.14) mou TepryEdPOUY T CUUTERLPOEE. TOL GPIANUAUTOS
extiunong tou vioroinuévou SMO xan Tou oyedwouévou UIO, aviictowya. Ou teheuto-
lec autéc elowoelg Belyvel 6TL 0 GTOYOC TNG BLIdLXAGING TYEBLUOUOY TOU TOQAUTNENTWOVY
éyel emteuyVel: To opdipa extiunone tou SMO ennpedleton uévo and FDIAs evavtiov
TWV ONUATWY EAEYYOU eVe To opdiua extiunone tou UIO ennpedletar uévo and FDIAs
evavtiov Twv yetprioewy. loTdo0, To GQIAIUTA EXTUNONG OEV EYOUV XU OTOCU-
umheyyvel mhfpwg and Tic e€wyevele datapayéc tou LEC. T va ehayiotonowiel 7
en{Opaon TWV ECWYEVOY AUTOV BLATURAUY MY OTAU COIMIATU XUTACTAONS, YPNOYLoToLElToL
N Yoot He pédodoc. To dedpnuota 5.3.1 xa 5.3.2 xodopilouv Tic mpolnodécelg
TOL TEETEL VO TANEOUVTOL WOTE vor emTeLy Vel 1 emduunT euoTddelor TWY TUPATNENTEOV
ToL YD TNXaY. MEeTd TOV OYEDIOUS TOV TUQUTEAVE TURATNENTOY, TO BIEVUCHUL TGV

xuPepvoem¥éoewy evavtiov Twv PeTehocwy tpoceyyileton and tny eiowon;

ln [o Iq} 3
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€V TO BLdvuoua TV xUPepvoemiéoewy evavtiov Twv onudtwy eAéyyou mpooeyylleTon
and v e&lowon:

B{Pl (Cl‘lwl — 51)
IBTP(C o = &)+ 6

e~ (p+m)

Or mopamdve padnuatinés popuouies extiunong xuPepvoemiécewy tou tpoéxuday,
uTopoLY va yenotonondoly yia Tov GYEBLICUO EVOS avileXTIXOU-0TIC-xUBEpVoETECELS
UNYOVIOUOU EAEYYOU TNG CUYVOTNTAS TV NAEXTEIX®Y Oixtlwy. I cuyxexpwéva, yia
v e€dhew)n twv FDIAs evavtiov v onudteov ehéyyou Yo TeENEL To SLVUCHA TNG EXTI-
uouevne FDIA evavtiov v onudtonv eréyyou de va evowpatwie! oto Bodyo aviddpaorng
Tou LFC. Auté umopel vo emiteuydel edxola mpoolétoviag 10 de w¢ Ui EmmAéov €{c0d0
ehéyyou oo cuotnua LFC tou undxeiton o€ xaxdBoUAEC Dpao TNELOTNTES, TPOXEWEVOL VA
avTioTado tel 1 enidpaor Tou avtic totyou dlaviouatog xuepvoemiécewy. H npooirnm
aUTAC TNE VEACS EL06B0U EAEYYOU BEV ETNEEGLEL TO BIAVUOUN EIGOBOU TOU GUC THUATOS Xl
XOTOL CUVETELY, OEV OAAOLOVEL TNV 0pUY] AetTovpyia TOU apytxol EAEYYOL GUYVOTNTIC.
Enopévee, n euotddeta tou LFC Sortnpeiton oxduar xou YT TNV EVOOUATWON TOU de GTO
Beodyo avéodpaone. H dour) tou cuotnuatog LFC nou deyetan xufepvoemdécelg , petd

NV TEocV XN TNG VEUS ELGOB0U EAEYYOU de HETATEETETAUL GTO axdAouto JovTélo:

.
—~
~
N—r
Il

Ax(t) +F(x,t) 4+ B(u(t) +ac(t) — ac(r)) + Ed(t)
y(t) = Cx(t) + Day(1).

[ Aoyoug amhotntog, unodétoupe amd €6 xou 010 & Twe ol FDIAs evavtiov tov
onudTwy eréyyou elolelpovton dueca Ye TNV TeooUrxn TNe VEuc €lcOdou EAEYYOU de
xou 1) O1apoed UETAEY TOU TEAYHATIXO) YOt TGV EXTHIOUEVOU dlaviouatog entdeong ebvor
oUEANTEQ.

Hopopowo ye to mponyoluevo eidoc xufepvoemidéoewy, 1 e&dhewn twv FDIAs e-
vovtiov TV uetpioewy pnopel vo emiteuyVel Ye TNV EVOWUAT®ON TOU GYEBIACUEVOU
otavoouatog extiunong toug oto clotnua LEC. H mapandve dladwactia evewmudtenong
Tpaypatonolelton wg e€Xg: To Bidvuoua e€660u Tou cuothuatog LFC Ya tpomonoiniet
AUPOULEOVTUC UTO AUTO TO EXTUWUEVO OLdvuoud eTideong dpy, apol oe auTd TepL ouPdve-
Ton xou To Sudvuoua twv FDIAs evdvtia og petprioelc. 261000, auth 1 TpooUfxn oTo
Beodyo avddpaone Tou LEC ennpedlel Tov apyind unyavionsd eAEyyou cuyvotnTag, avtiie-
ToL Y€ TO TEONYOLUUEVO GO TN avTio Tdduong xufcpvoemidéocwy. Autd ogelheton 6TO
OTL 0 aEYIXOC UNYAVIoNOS pUUUIONE TNG oUYVOTNTUC AELTOURYEL UE EAEYXTY| avddpUoT
e€6dou xau dpo, 1 eloodog xou 1 é€odog tou LFC cuvdéovton ) oyéon u(t) = —Ky(t).

Egbécov 1o didvucua €£6dou tpomornoteital amd TNV TEOTEWOUEVT TeocUrxr, Va Teo-
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monoinUel xou To Sidvucpa €166d0L, emneedloviag €Tol TNV €€lCKOT TOU BLaVUoUATOS
xatdotaong. Emouévng, elvon amapaltnto va anoderyvel Yewpntind n anoteAeopotindn-
ToL TOU VEOU, avVUEXTIX0U-OTIC-XUPBEPVOETIIETELS UNyaVIoHOU EAEYYOU TOGO ATEVAVTL OTIG
eCoyevele dlatapayéc 600 xan amévavtt otic FDIAs mou otoyebouv Tic petproeic. H
av&AUGT| EUCTAVELIS TOU TROTEWVOUEVOU aUTOV EAEYYOU, TOU TEQLYPAPETOL GTNV EVOTNTA
5.5, amodevieL LadNUaTXd WG O UNYAVIOUOS auTOS TANeol TI TEOdLaYpapES TTou elval
omopodTNTES Yo TNV EVOEdELYUEVT Aettovpyia Tou. 'Etol, o mpotewouevog aviextindc-

otic-wufepvoemdécelg €heyyog yia To LFC meprypdgetar and to axdrouvdo povtélo:

x(t) =Ax(t) + Fo(x,t) + B(u(t) + ac(t) — ac(t)) + Ed(t)

y(t) = Cx(t) + D (am(r) — am(t))-

8.6  Kegdrowo 6

Y10 Kegdhowo 6 meplypdpeton T0 UEEOS TOU TROTEWVOUEVOL TAAGiou evioyuong Tng xu-
Bepvooviextidtntag Tou LFC 10 onolo Baciletan ot pedodoug unyaviric pdinong. H
avéhuoT EEXVE UE TOV avTioToLyo unyovioud aviyveuong emdéocwy evdvtia oto LFC. H
Baowr| wéa otig pedodoroyieg aviyveuone xuPepvoemiiéoswy elvon 1 oplodéTnomn tng xa-
VOVIXNC XaTdoTaoNG, EVIOE TNS omolag To oo TNUa Yewpelton 6Tt AetToupyYEel QUGIONOYIXG.
[ vor emiteuydel autdc o oxonde, yeeldleton wor UETEXT aviyveuone Tou Yo TOCoTIXO-
TOLEL TNV XATAG TUoT) TOU €CETALOUEVOU GUOTAUATOS OE 6POUS XUBEPVOUCPIAELag. AuTh
T METELIXT] AVIYVEUCTC UAOTIOLE(TAL PE TNV oVATTUEN EVOC XATIAANAOU UOVTEROL, YETOL-
vomotwvTog elte padnuatnés edlonoelg eite dedopéva. To poviého mou Yo oyedoo el
AofBdver €166B0UE amd TO TEAYUOTIXG cLo TN ot LTohoyilel Tn UeTEr aviyveuorng
Yo xdde ypovix| otiyun. Av n uetpudr aviyveuong urepPel Eva GUYXEXPUIEVO XATWOQAL,
10 cUotnua Yewpeiton wg €yel deytel xuBepvoerideon, dlapopeTnd 1 Aertovpyia TOU
OLC TAUATOS GUVEY(LETOL XOVOVIXAL.

[a 0 oyedlaopd autod Tou unyaviopol aviyveuone xuBepvoemécewy, Yo TEEneL
TEMOTA Vo 0ploTo0V oL elcodol TN uedodou. O epupuoyég Tou Tapéyouv TATNEoYopleg
yioe Ty xuPepvoaviextixdtnTa Twv CPSs cuvAiog Aettoupyolv evidg tou xévipou eAEy-
you. Emouévec, ol eloodol Toug elfvar €va UTOGUVOLO TWV UETABANTOY XUTAG TUOTS TOU
oLoTHUoTOC. 2Ty TeEpintwor Tou LEC, o éheyyoc mpoyUoTonolElTal YenoyloToIwVTog
TNV TOTUXY| UETENOT LY VOTNTOC XdE TEpLoy Mg XaL TIC UETENOEIS POt Woyog xdde Bia-
ouvdeTiXrg Yeauung. O unyaviouol aviyveuong emiéocwy mou Pacilovton o dedopéva
oLVAYWE AELTOUEYOUY YENOLIOTOLWVTAS ATOXAELC TIXA TIG METPHOELS TOU cuo THUuTog. E-

Aoy, 1 dadxacta extaideuone Twv puedddwy mou BaciCovion ot YovTéra Unyavixng
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uaInomg BEATIOVETOL ONUOVTIXG UE YPNOT] LOTOPLXWY DEBOUEVWV EVOVTL DEDOUEVLY TEAY-
HoTixoL ypdvou. Bdoel tng mopamdve avdAuong, 0 TEOTEWVOUEVOS ahyopriuog aviyveuorg
emléoemV elvol GYEBLUCUEVOS VoL AELTOVRYEL YENOLLOTOLWMVTIS TIG Lo TOPIXES UETENOELS TOU
LFC.

Metd tov 0plopd TwV ELI0OBWY TN TEOTEWOUEVNC UEVODOU, 0 ENOUEVOS OTOYOC Elval Vo
oyedoTel T XaTdAANA O HovTEAD o Yo Tapdryel TN ueTewr aviyvevorng. H avdivon mou
Tearypatoto|inxe ot Thadola auTHS TNS SLaTEB1C EBELEE TS OL AUTOXWBIXOTIONTES Elvol
TO HOVTEAO Unyovixhc Udinong mou Toupldlel TeplocdTERD GTaL YopuxTnEloTixd Tou LEC,
"Evag xatdAAnho exTatdeuévog auToXmOXOTOTAHS UTOEEL Vo avamopdry el oty €£066 TOoU
T0 BLdvuopa Tou AaUBdveL GTNY E10600L Tou U LMY axpeifel. ‘Etot, n exnaideuor tou
QUTOXWOIXOTIOWNTH| OE UYL BEBOUEVOL TOU ETUTEETEL Vo ovary VORILEL avwpaheS 1) amoxAioeig
TV VEOVY BEB0PEVWY Tou houfdvovTtar amd Ta TeodTuTa Tou €yel pddel.  Emmiéov, o
TPOTEWOUEVOS auTOXWOIXOTOINTHC LhoToteltan pe Bardhd veupwwixd dixtua (DNNs), n
cueh&la TwV omolwY Tou ETTEETEL Vo Pardolvel GUVEY NS VEEC LYIEIC XUTAGTACELS, aXOUd
xou xaTd T Sudpxela TG Asttoupyiog Tou.

Ipoxewévou va aviyvevoel xufepvoemi€oeic evdvtio oto LFC, o npotewvbuevog ou-
TOXWOLXOTIONTAG EXTULOEVETOL TTEMTOL OE £VOL GOVORO BEQOUEVMV UE UETPNOELS GUYVOTNTOG
X0l POT|C LOY VO TOV BLUCUVOETIXMY YRUUUMY TOU OVTAUVOXAODY TNV UYLA XATUC TUOT| TOU
CUCTIUOTOS, T.Y. XATUOTACES cuoTdielag, petoSores poptiou 1 datapayes AoYw o-
VOVEQOLUGY TINYOV EVERYELNG, ¥AT. Metd tnv exmaldeuon Tou, 0 auTOXOOXOTONTHS
eyxodicToton 610 *E€VTPo eAEYyou, 6mou ol petprioelc Tou LFC mpowlolvtou oe autov.
Av o autoxwooTonThg ABEL LETPNOELS CUYVOTNTOS X0t POTIG Lo V0S TWV BLUCUVOETIXGDY
YEUUUMY TOU avTIGTOLY00V O UYL XATAoTaoT ahhd Oev Tig Eyel pdiel xotd TNy exma-
{Beuom Tou, Yo umopécel va I avamapdyel e LPNAT oxplBeto. ATo Ty dhhn Thevpd,
av 0 auToXwOLXoTOINTAS AdPeL dedopéva yetproewy LEC tou avtiotoyolyv og xufepvoe-
mdeon (éva SLUBEY TOU 0 AUTOXWOXOTONTAC BEV €yl UddeL XoTd T Pdon sxnai@eucng),
1) AVOTOEAYWYT TNG €L06B0U ToU Vol TUPOUCLICEL ONUAVTIXG QAL AUTO TO YUPUXTH-
PLOTIXG TOU TPOTEWVOUEVOU QUTOXMOLXOTIONTY TOV XaHoTd Evoy amOTEAEOUATIXG DElX TN
xuPepvoemiéoewy o to LEC.

Yy mpotewopevn pédodo aviyveuong emUECEWY, 0 UAOTOINUEVOC AUTOXWOLXOTIOL -
THC EVAAAGooETOL UETAUE) TOLWOV AELTOURYIXMY XATAC TACEWY. AQYIXA, O CUTOXMOLXOTOLN-
¢ Peloxetan o1 @don exnaidevorng extog Aettoupyiog, 6mou padalver Tig uytelc xatdoTa-
OEIS TOU OUGTHUOTOS OE €Vl ATOUOVOUEVO UTOAOYIG TGO Tep3dAlov. Metd tn Sraduxo-
olog exnaldevorng, o avtoxwdxoroinTc UeToPBalvel 6T @don Asttoupyiag o€ TEUYUTIXG
Yeovo, 6mou eyxad{oTotal 0To *EVTPO EAEYYOUL Xou LEXVA VoL hetToupYel. Mg xdle ypovixd

OTIYUN, TO OQAAIOL avamapaywyHS EIGOB0L Tou autoxmooroinTh xaopilel av o LFC
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éyer ey el xuPepvoeniveon 1 Oyt. Av o autoxwdXoTONTAC AABEL 0T PdoTn hertoupyiog
OE TEUYUATIXO YEOVO Uid xavovixh) xatdotaor ou dev Exel pdiet, tote yetafolvel ot
pdom exTUOEUOTG OF TEUYUITIXG YEOVO. XE AUTH TNV XATACTACT], O AUTOXWOIXOTOL-
NTAC ETAUVOUEXTALOEVETAL UE TNV TEASUTHLO XAVOVIXT) XATACTAUOY] TOU OEYTNXE, WOTOU Vi
emoTEEPEL 0TN QdoT Aertoupylaug o TEaYHaTIXG YeOvo. AuTH 1) EVaAAAY T AELTOURYIXOY
AATUO TUCEWY XAVEL TOV AUTOXWOXOTOLTY| VO TURUHUEVEL GUVEY (G EVIUELWUEVOS ATEVAVTL
o€ EMEPYOUEVES PNPLOXES ATELNES.

H enépevn yédodog tou mpotewvouevou mhawciou mou BaciCetar oe akyopldpoug un-
Yo udinong €yel wg otoyo TNy eCdAeln TV xuPepvoemiéoswy evdvtia oto LFC.
Lougovo pe o [138], wa puotnr otpatnyd avietodnons xuBepvoemiécewy oto CPSs
etvan 1) TEooO1nn VO £PEdEIXOV Bpdyou EAEYYOU. AUTOC 0 EPEDEPIXOS EAEYYOC UMOTEAE-
fron amd éva e oy edLoUEVO LoVTEAD TTou AABAVEL UETEHOELS amd TO UTO Tpoo Tasid
CPS ¢ote va mopdyet Yol eXTiUnoT Twv UYLy onudtey eEAéyyou tou. ‘Otay aviyvedeTol
wa xuBepvoeniieor, To apyd oo TNUa EAEY oL TiieTon TEOCWELVE EXTOS ActToupYiog xou
TO TPOG TATEVUEVO GUG TP EAEYYETAUL OO TOL EXTYIMUEVOL GYUTAL TOU EQEDRIX0U Ppdyou.
O egedpwnds Pedyog eAéyyou evepyOoTOLETOL VLol UXEO YEOVIXG BIACTNUY, PEYELS OTOU
vo e€aherpiel 1 enideon xan va amoxatactodel Thfpwe 1 Aettoupyio tou CPS. Me [3don
QUTH TNV TPOGEYYLOT, oYEddoTNXE ot auTh TN Slate3r To DAR-LFC, wio uedodoroyia
emavapopds tou LFC and xufepvoemdéceig ué ypnon Loviehwy unyoavixhc uéinong.

‘Eva onuoavtind otoyelo otn oyediaon tou DAR-LFC civon 1) emAoyy| Tou poviéhou
Tou Vo TaEdyEL TaL EXTWMOUEVO UYL ofjuota eEAEyyou. H mpocéyyion twv evioh®y eréy-
you tou LFC péow wag 1 mepioc6tepwy UETEROEWY Tedlou amoTeAel Eva TUTIXd TEOBANUA
Tohvopounone. To mpolArjuota TaAVOEOUNCTS UTOEOVY VoL AVTIIETWTLO TOOY ATOd0TIXY.
amo OLdpopoug ahyopriuot unyovixic udinong. O apyITEXTOVIXES AUTOY TWY HOVTEAWY
XUPOVOVTOL amtd OYETXG amhée, T.y. UNYavéS dtavuoudtwy utoothone (SVMs), éwc
ToA) alvieteg, Ty, dixtua poxpde Beoyunpdieounc uvhune (LSTMs). Tty Srothien-
ON WG amodeXTAS LooppoTiag UETAED oxp(BELag xon TOANUTAOXOTNTAS TOU ETUAEYHEVOU
wovtélou, 1 apyrtextovixy Twv DNNs xplinxe we n mAcov xatdhhnhn yioo Tnv extiunon
TV UYLV EVTIOA®Y eAéyyou tou LFC xou €tot, emhéydnxe we poviéro tou DAR-LFC.

‘Eva dhho onuavtixd ctoyelo yio tn oyediaon tou DAR-LFC, etvor 1 emhoyt| twv
onudtwy mou Ya dsodolv we elcodor 6to DNN. Egbdcov ol yetprioelc tng ouyvoTtnTog
%L TNG LY YOG TWV YEUUUOY BLUGUVOESTG AAAOLOVOVTOL XUt T1) SLdpxELo Log xUPBEQVOE-
ntdeone oto LFC, ypeidleton va Bpedolv xatdAANAES eVAAAIXTIXES UETPNOELS TEdiOU Yia
v extiunon tou xée oruatog eréyyou ACE;. Ioapotnemvtoc ty eliowon (6.1) xou
TOV TOTO TOU EAEYXTY| OTPOPMY TWV YEVVNTELWY, OO TOVETHL 0Tl T0 exdotote ACE;

oyetileTal ue TNV TORAYWYT| TWY ToTXOY YevwnTewwy. Etot, 1 oyie mou topdyetal amd
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TIC TOTUXEG YEVVATELEG amOTEAEL XaTdAANAT] loodo Yyl To DNN wote vo extiufost ue
oxpiBeta 1o ACE;. To Pooixd onuelo thpa ebvon 1 emAoy TNg TapayOUEVNS Loy g amnd
TNV XATIAANAT ToTx YEVVA TR LOUQove e To Ly fua 6.10, n tomxi| toapaywyy| Tou
elvon o xovtd oo ACE; etvou 1 APGpr- Enopévwe, 1 €£060¢ 1oy bog Wag YEVVATELIC ToU
CUUMETEYEL HOVO GTOV TPWTOYEVA EAEY YO EMAEYETAL WS elcodog oto DNN.

To Sudrypoppo Tou unyaviopol duuvag DAR-LFC arewoviletan 6to Eyrua 6.11, oto
omolo qofveTon avohutixd xon 1 Aettovpyio Tou. Apyxd, to DNN exmoudedeton yenot-
LOTIOLWVTOG ¢ EICOD0 TIC ETMAEYUEVES PETENOELS TOTUXHC TUPAYWYNS Xt w¢ €000 TIg
ypovooelpéc Twv ACE; tng xdie teployfic. Metd tny exnaideuo), eyxadiototon éva ege-
0p6 oVUOTNUA TNAEUETELAG Yior T1) UETADOOT) TNE TOEAUYOUEVNG Loy UG OO TNV ETLAEYUEVT
Toruxt| yevvhtel oto DNN. Y11 cuvéyew, to exnoudeuuévo DNN eyxodictaton oto
#EVTPO EAEYYOU Yia VoL ToEdyEL EXTIUAOE TwY LYloug ACE; (z@l) YPTOULOTIOLOVTOG
Tor 0edouéva Tou AaBdver amd To EQEdEIXG xavaAL emowveviog. Etol, 6tav aviyvele-
Ton o xuPepvoeniteon xatd tou LFC, 10 xévtpo eAéyyou yenowonotel to A/C\‘Ei Yo VoL
eLIUIoEL TIC YEVVATELEG TTOU CUUUETEYOUY GTOV BEVTEPOYEVH EAEY YO avTl Ylor TO aPYLXO
ACE;. Me auto tov tpémo, to LFC unogel vo Aettovpyel olugpova ue Ti¢ TpoBAemoueveg

TEOBLAYPUPES TOU oxduaL ot 6Ty Eyel deyTel xuBepvoemiéon.

8.7 Kegdhowo 7

270 TEAELTHLO AUTO HEPANNLO TEUYUATOTIOLEITOL Lol OAOXATNPWUEVT] AVICKOTNGT) TNG OLo-
T3S, avahOVTOG TOL O ONUAVTIXG OTUEld TOU ERELUVNTIXOU TEOPBAT|UAUTOS oL EEETAO TN
XE XL TV UEVODWY oL yenoworotfinxay yio TNy avTwetomoy| tou. [lupdhinia, na-
EOUGLALOVTOL GUVOTITIXG TAL XUPLOTEQW GUUTERAGUATA TOU TEoéxuay amd TNy avdmTuén
TWYV TEOTEWVOUEVGDY UEVOBOY %ot o6 T ATOTEAECUAUTO TWV TELOUUOTIXGY TOUS EQPUQUO-
yov. Télog, yupToyeapoLyvTon Tor SLd(Popa avoLy Td EPELVNTIXG VEUUTA Yia EVOEYOUEVES
uehhovtxég epyaoieg, ta omola unopel elte va cuveylcouy TNV TEEYOUCES EPELVNTIXEG
OPAUCTNELOTNTES, £lTe Vo AIOTIONGOLY T YVOOT TOU ATOXTHUNXE OE VEEC EQUQUOYES )

X0l OE OLUPORETING ETUC TNHOVIXS TIEDLAL.
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Appendix B

Theorem Proofs

Proof of Lemma 2.

Proof. If and only if:

SI—A4 Q
SI—A()
rank =rank | —C4 sI| =n+p—2r (B.1)
Co 0 I

the pair (Ag, Cp) is observable for every s € C, based on the Popov—Belevitch—Hautus test
that follows.

If s = 0, it is obtained:

sI—As O
—Ay
rank | —C4 sl| =rank
Cc4

0 I -

+p-—r.

From Lemma 1, the (A4, C4) is detectable and therefore:

rank [SI_A4] =n—rVsecC.
—Cy

Therefore, the rank test (B.1) holds when s = 0.

Furthermore, since (A4, C4) is detectable, when s #£ 0, we have:

sl—As O
a
—Cy sl [ 1] =0= (a,a2) = (0,0).
o 1|Ll?
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This indicates that the columns of the above matrix are linearly independent and its rank is
n+p—2r.
This completes the proof. ]

Proof of Theorem 4.3.1.
Proof. Assume that Vy(e;) = el Piey and Vy(ep) = e} Poeo. The function V (e, e) = Vi (e1) +
Vo(ep) is selected as the Lyapunov candidate. For the derivative of Vi, it is obtained:
Vi = el (A P+ Pl Jer +2¢] PiAseo + 2¢] PLE1d + 2 PL(F 9 (G g,1) = Fig (G '4,1)) —
— 26{})1\/1 .

Based on [146], the inequality 2X7Y < LXTX + a¥TY is met for any positive scalar c.
Thus:

V1 < elT(AiTpl —|—P1As1)el +2€1TP1A260 —l-Ze{P]E]d +

+ai (oG g,0) —Fio(F'g,0) (Fo(G 'gt) —Fo(F'8,1)) +

1
- a—elTplplT e1 —2el Pvy. (B.2)
1

,\ s s 0
Since ¢ = [(C{ )T, (8)T)7, itis true that { — ¢ = | ~ | before the launch of FDIAs.
)

This yields that |G~ 'g — G 1g|| = |G 'es|| < ||G'ep]|. Hence:

IF19(G'g,t) = Fip(G'g.0)|| < |Fi[|-% |G |]]eo
1F20(G g,t) — B9 (G 1g,0)|| < ||1B L 1G | lleol-

,and

Furthermore, from the definition of vy it is derived that:
el Pvi = ([EIE +m) | Prer .
Then, inequality (B.2) can be simplified as:
Vi < el (AS Py + PLAY ey + 2T PiAseq + ai]e{PIPIel +an|FPZANG P leol >+

+2[|E1[|E]|Prer]] —2(||E1[|1E +n1) || Pret |

T - 1 .
<el (A3 Pl+P1A§)e1+2e{P1A2e0+a—le{P1P1e1+a1||F1||2$q$y|G H12leol>. (B.3)
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In a similar manner, for the derivative of Vj it can be proven that:

(B.4)

The combination of (B.3) and (B.4) indicates that:

T

Al

. . . el
V=Vi+W<

€0 €0

If there are matrices P; = PIT >0, P = POT , A < 0and Ly and positive scalars o and o

so that inequality (4.13) is true, then V < 0 for any e # 0, where e = “I'|. This proves the
€o
stability of the error dynamics (4.11) and (4.12) and completes the proof.

Proof of Theorem 4.3.2.
Proof. Consider function V| = elTPle 1 as the Lyapunov candidate. The time derivative of V|
1s:
Vi = el (AY Py + PAS ey +2¢T PlAseq + 2eT PLE d + 2T Py (F1 ¢ (G g,t) — FLd (G 8,1)) —

—2€1TP1V1.

Since A{ is a stable matrix, the term AﬁTPl + PiAj < 0 by definition. From Eq. (4.9), it is
obtained:

Vi <2[[Prer || ((1A2]| + | 1 [|Lo 1G] lleol| — m1)
< =21 ||Preq |

S _27]2 V Amin(Pl)\/Vl-

This indicates that the reachability condition [147] is met and a sliding motion is achieved
and preserved after a finite time frame.
This completes the proof.

Proof of Theorem 4.4.1.
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Proof. Let V| = ellTPl et and Vj = ebTPoef). The selected Lyapunov candidate function is
V! =V} +V;. The time derivative of V{ is:
Vll = ellT (A‘iTPl —I—PlA‘{)ell + ZellTPIA2€6 + ZellTPlEld +
+26 Py (Fo(G'g,t) —F9(G'g" 1)) —2¢! Py
- 1
< eﬁTHIell + 2ellTP1Aze(l) + a—eﬁTPlPlell + Ocl.,iﬁ(pzl G |leb |1
1
If a}, = 0, the error dynamics (4.21) are converted into the following:
éh = (Ao — LoCo)e + 29 (G 'g,1) — F29(G ™' 8" 1) + D}y (ay, — vh).
If (4.22) is satisfied, the derivative of V! becomes:
0
V¢ = eb Tlpeh +2eb Py(Fa9(G'g,1) — Fap(G~'8",1)) +2¢b PyDY(al, —vb)
T T — _ = —1 A =
< ef Toeh+2efy Py(Fo9(G'g,t) — Fop(G'8',1)) —2m3|| F ey, |
T T = — = —1A
< efy Hoef +2ef Py(F9(G'g,1) —B9(G'§1))
T 1 r _
< ¢y Toeg + %66 PoPoety+ 0L |G| e 1.

If there are matrices Lo, A} <0, Py = POT >0,P = PIT > 0 and Fp, and scalars oy > 0
and o > 0 so that inequality (4.23) holds true, then we have:

Vl :Vll‘l‘VOl <O

This indicates that if a}, = 0, then lim;_,.. ej, = 0, despite the successful launch of FDIAs
anm #0, j€{1,2,...,q}\ {t}. On the other hand, if a},, # 0, then lim;_,. e}, # 0 since Dy is
of full column rank and the term Dfj(a}, —v4) in (4.21) cannot eliminate the Da}, .

This completes the proof. 0
Proof of Theorem 5.3.1.
Proof. The considered Lyapunov function is:

V=Vi+WV+V3+Vy,

2 2
B _ e e ~ ~
where V1 = elTPlel, Vz = eZTPzez,V3 = ﬁ, V4 = ﬁ, €k — k1 —k1 and €k, = kz —kz. kl and

ky are two positive constants that can be computed using (B.7).
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For the time derivative of V|, we have:

Vi = ] (A P+ PiAY)e 4 2¢] PLAsey + 2¢] PLEyd +2¢] PLFy (0(T 1 E,0) — o(T 18 1)) +
—l—2e{P]Bl (ac — v) — /’%1 HFITP1€1 H2

From Assumption 6 and Z_,A’ = col(C flS 1, [[n,m 0] Z_,ez), it is inferred that:

lo(T~"E,0) = (T E,0)l| < LT I]122])-

Based on [146], the inequality 2X7Y < 1XTX + a¥TY holds true for any scalar a > 0,
thus:
Vi < el (A P+ PLAS ey +2e] PlAye, +2¢T PLE d + aile{ﬂ FF] Piey +2¢] PBy (ac —v) +
+ou (9(T'8,0)—¢(T7'E.0) (9T 8.0) = o(T ') ki | Prey |2
< el(A P+ PAS + ailplFlFlTPI)el +2e{ PLAy2y + 2e] PLE1d + on 25 ||T ||| +

+ 2€1TP131 (ac — V) - ]%1 ||F1TP181 ||2
Using (5.7), it can be proven that:

T T ||BlTPlel||2 T
ej PiBi(ac—v) =ej PiBiac— (p+ M) 77— < —N|Bj Pre1]| <O0.
| B} Prei ||

Therefore:
. T 1 -
Vi< 6{(14{ P +P1A°i)€1 + a—e{P1F1F1TP161 + 0613(])2HT71H2||52H2+26{P1A2é2—|—2€{P]E1d —
1
—ka[|F Prey ||

Selecting o) = it follows that:

1
LIt

. T — _ ~ _
Vi < elT(Asl P —f—P]A{)e] —|—2€1TP1A2E2 —|—2€1TP|E1d + (qu)zHT IHZ —kl)HFlTplel ||2 + H62||2.
(B.5)
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From (5.15), the time derivative of V; is determined as follows:
V2 = €_2T (PzF() + FOsz)Ez + 2e_gP2M()E_'2d — /225{P2MOF2H0€4€_2 +
+ ZégPZMOFé((P(TilCat) - (P(Tiléat))
_ _ 1 _ _ _ _ _ _ _
< e (PFy+Fl P)éy+ azeg PoMoFFY Mg P2y + a0 L5 | TP 22 )P Lt g—m + 285 PAMoErd —
— ]AQHFzTMnge_sz.

If op = e then:

1
LT~

V2 < ég(PzFo —|—F0TP2)é2 —I—QégpzMoE_'zd—l— ”éz”z + (D%(PZHTil H2 — /AQ) HFZTM(];Pzész.

(B.6)
By defining:
ki =ky = Z5|T 2, (B.7)
the derivatives of V3 and V4 with respect to time are:
. 2€k ék iq —/AC —lk FTP1€1 2
V3= 211 L = €r, ] ! =€, 1” ll H = —€x HFlTplel H2 and (B.8)
ky ky ky
L 2ep,éy ko — ko — I, || Ho(@n — 6%)||* - i}
Vy= 212 2 = ¢, = e | (l I _ —ew | MEPG |2 (B.9)
%) ky ky
From (B.5), (B.6), (B.8) and (B.9), the time derivative of V can be obtained as:
"Tm pA
1% =V1+V2—|—V3 +V4 < fl _Tl 152 il +2€{P1E1d+2égP2MoEzd.
(%) A2 P1 H2 (%)
I, PA
For the case where d = 0, if (5.15) is feasibly solvable, then _Tl 21 <0 and

thus, V < 0. This indicates that lim; ;. e(t) = 0 and therefore, the error dynamics are
asymptotically stable.
When d # 0, to make the proposed observers robust against disturbances d in L; sense,
we define:
Vo=V+rTr—pud'd.
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The satisfaction of (5.15), infers that:

T
€1 €1
W< |ex| Aley| <0
d d

Then, under zero initial conditions, we have:

| AR = wlldyde = [ (1A= pldP+V)di= [ Vi =

:/0 (Il = wlldl? +V)dr =V () +V/(0)
T
S/ Vodt <0
0
which implies that:
T r T r
| T <p [ @ dydr = |l 2 < viEldz.

This completes the proof.

Proof of Theorem 5.3.2.

Proof. For the Lyapunov candidate function V| = elTPlel, we have:

. T - A

Vi= e{(A“; Py —|—P1A°i)el +2e1TP1A2é2 +2e1TP1E1d+2e1TP1F1 ((])(Tilg,t) — (P(Tilc,l‘)) +
+2€{P131(ac—v) —IA<1HF1TP1€1H2

< el (A} P+ PiAY)ey +2¢] PlAyey + 26T PLE\d + 26T PLF ((T 7' C,0) —0(T '8 00) +

+2¢TPB(a.—v). (B.10)

Since A} is a Hurwiz matrix by definition, it can be easily concluded thatAiTPl +PA] <O0.
Therefore, combining (5.7), the Cauchy-Schwartz inequality and the existence of Bl_l, (B.10)

becomes:

Vi <2||Prer|([lAzlllle2]l + Lo W T ezl + [E1]1E) —2nlIBT Pren |
< 2||Bi Pren|| (1187 I (A2l + Zs WA llIT~ [l + [ E1[1E) — i)

This implies that the reachability condition [147] holds true, resulting in an ideal and
permanent sliding motion within a finite period.

This completes the proof. 0






Appendix C

Parameter Values

The power system parameter values of each area i that are used for the simulations, are
[148]: 2H; = 0.1667 p.u. s, D; = 0.0083 p.u./Hz, T}, = 0.3 s, T,, = 0.08 s, R; = 2.4 Hz/p.u.,
T;; = Tj; = 0.026 p.u./Hz, Bi = 0.425 p.u./Hz, K;j =1 p.u/Hz, Ty, = 0.2 s, K
Iy, = 0.1s.

The values of the LFC nonlinearities for each area i, used in the simulations, are: Pgpp =

s =1s,

1%o p.u., Pgre = 10% p.u./min, 7; =1 s.

For case study 1, the resulting SMO matrices are the following:

~10.045548 0.007735
' 10.007735  0.045548

[ 54370.083 —18112.592 —20166.878 ]|

—81.039 —25.238 —41.517
328.126 104.133 155.328
—330.883 —99.256 —195.751
Lo = 69968.844 19977.54 47839.577
11.115 3.58 5.397

493.482 147.434 293.969
53453.184  17831.136  19669.277
—69284.891 —19772.1 —47439.241
| —422.065 —134.207 —198.96

1 0.033 —585.812
No= |0 0.748 —2.035
0 —0.465 6947
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328.836 114.433 89.826
My= | 0.515 0.176  0.232
—-1915 -0.57 -0.741



