Vs

:\.'c‘
Vo
NPOMHOE

W,

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScuooL OoF ELEcTRICAL AND COMPUTER ENGINEERING

DivisioN oF COMPUTER SCIENCE

Model-assisted optimization of Linear Algebra routines on multi-GPU

computing systems

Ph.D. Thesis

Petros Anastasiadis

Athens, September 2024

G

T508 A
(o)
S5
5
DPOMMOEY S L,
‘;‘ﬂgalé*
nvpPoros

£T508.
g“.:‘\ rE
ql Q'

£
{
N

D1visioN oF COMPUTER SCIENCE

NaTIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND ComPUTER ENGINEERING

Model-assisted optimization of Linear Algebra routines on multi-GPU

Advisors:

computing systems

Ph.D. Thesis

Petros Anastasiadis

Georgios Goumas
Nectarios Koziris

Nikela Papadopoulou

Eyxpifnxe améd tnv entopedn eEeTaGTIKTY emLTpory TNV 09 emtepBpiov, 2024.

Associate Professor

National Technical University
of Athens

Dionisios N. Pnevmatikatos
Professor

National Technical University
of Athens

Christos Antonopoulos
Professor
University of Thessaly

..........

Nectarios Koziris

Professor

National Technical University
of Athens

Nikolaos Papaspyrou
Professor

National Technical University
of Athens

Athens, September 2024

.)u.’ﬁmﬂtgoﬂm%j

Nikela Papadopoulou
Assistant Professor

University of Glasgow

Sotirios Xydis

Assistant Professor

National Technical University
of Athens

Iétpog I'. Avootaciadng
Md&xrowp EM.IL

Copyright © 2024, EBviké MetcdPio Iohvteyveio.
Me empiOakn mavtog dikaumparog. All rights reserved.

Amnayopebetan 1 avTiypagr, amobrkevot) ko Stovopr] T mapovoag epyasiog, € oAoKkAN pov 1 THHHATOS
auThC, yio eprtopikd okomd. Emirpémeronn ovaTOTWoT), arodrkevoT) Ko SLavopr] yio GKoTo pn kepdooKOTMIKO,
£KTTSEVTIKNG 1) EpELYNTIKTG QUOTG, VIO TNV npobndBect va avopépetar 1) TNV TPoELEVOTG KAl Vet
Srxtnpeiton to mapov prjvopa. Epethijpata o apo povv 1) Xprjon NG epyaciag yio kepdookomikd oKomo

npémeL vor ateLBHVOVTaL TTPOG TOV GUYYPAPEQ.

Ol astdPeig Ko T GOPTEPAGHOTOL TTOL TEPLEXOVTOL OE auTh TO Eyypapo exPpalovy TOV GLYYPOUPER Ko

dev mpémeL va eppnvevBel 6TL aAVTLTPOCWIEDOLY TIG emtionpeg Oéaeig Tov EGvikod MetooBiov Ilodvtexveiov.

IMepiinym

O mpdkeic ypoppikng aiyePpog eppavilovtal ovyva oe epappoyés vymAng amddoong (HPC),
koboTOvTag TNV amddoot Toug kpion yio tnv enitevén PéATiotng kAdKkwong. Kabohg moAdég
ovyxpoveg ovotddeg HPC mepihapPavouv kopPoug pe morromrolg emelepyaoTég ypopLK®V
(GPUs), o1 mpaéeig BLAS cuyva expoptidvovtal oe GPUs, kabiotdvtag amapaitntn tn xpron
BeAtioTomoinpévev BipAodnidv yia tn Stecpdiion tng amddoong. Qotdoo, 1) Pedtiotonoinon
TV BLAS oe moAamniég GPUs elohyel TOAAEG TPOKATCELG TTAPOHOLEG e EKELVEG TOL KATAVELT)-
HéEVOL LTTOAOYLOHOD, OmwG TNV atoovBeot dedopévwv, TNV SdpopoAdynon vITompPoPANHAT®Y
Kot Ty emkovovia peta€d GPU pe Siaxpitég pvipeg. Avth 1 moAvmAokdtnta Kabotd TV
BeAtioTomoinon twv BLAS oAb mepimAokr, odnydvtog oe TToor otddoons 1] HEHOVOHEVES
Aboelg mov Aettovpyoiv povo oe peptkd cbotrpato. [vo avTieTomicovpe autd To {nTrpote,
TPOTELVOULE PLaL TPOGEYYLOT) aLTOpOTNG PeATioTomoinong pe tn forBeia povteAomoinong: elod-
youpe Sidpopoa povtéha amddoong yio tig BLAS ko ta evowpatdvovpe oto PARALIA, po
olokAnpopévn PtpAodrikn BLAS. To PARALIA ypnoipomotet povtéda enidoong yio tnv SuvoplL-
K1 avtopatn BeAtiotonoinon g ektédeong twv BLAS, tpocappdlovtag kpicieg Topapétpoug
artddoong yio kdbe GLYKEKPLUEVO TPOPANH Kol GG TN KATA TNV eKTEAEST). AULTH 1] AUTOPATY)
BeAtiotomoinon ocuvdvaletou pe évav SPoPoAoyNTH EPYACLAOV, 08T YOVTAG 08 ATOSOTLKT KOTAVO-
pnf dedopévev ko amddoon mopwv. To PARALIA mapéxel kopugaio amddooT) Kot eVePYELoKT
QUITOSOTLKOTNTO KL EVOWOHOTOVEL TNV LKOVOTI TR TTPOCOPHOYHS CE ETEPOYEVI] GUCTHHAT KOl
oevapla pécw amopioewv Paciopévev ot povtéda. Téhog, eotidlovpe otov muprivae GEMM,
emexteivovtag to PARALIA pe évav mpoocoppoopévo otatikd SpopoAOynTH OV EVOOHOTOVEL
véeg Pedtiotonooelg otov adyoptBpo xat tnv emkovovia g GEMM Baciopéveg oe povTéa
(PARALiIA-GEMMex), 0 omoiog mapéxel onpovTikd vPmAoteprn atddoot) artd TIG TTPOTYOOHEVEG
BipAtobrKes.

AéEerg Kherdrx

Cpoppikny dryefpa, Enetepyaotéc ypapikodv, Povtiveg BLAS, IToAoutAaciaopog mvakwy, Mo-
vtehomoinom, Avtopatn feAtiotonoinon, ZuoTrhpata toAveneEepyaotdv, BipAlodnkeg Aoyiopt-

KoL, ApopoArdynon emikowvwviag, BeAtiotomoinon emkdAnymg

Abstract

Dense linear algebra operations appear frequently in high-performance computing (HPC) ap-
plications, rendering their performance crucial to achieving optimal scalability. As many mod-
ern HPC clusters contain multi-GPU nodes, BLAS operations are frequently offloaded on GPUs,
necessitating optimized libraries to ensure good performance. However, optimizing BLAS for
multi-GPU introduces numerous challenges similar to distributed computing, like data decom-
position, task scheduling, and communication across GPUs with distinct memory spaces. This
complexity of multi-GPU makes BLAS optimization very complex, leading to sub-optimal per-
formance or system-specific solutions with reduced portability. To address these issues, we sug-
gest a model-based autotuning approach: we introduce several performance models for BLAS
and integrate them into PARALiA, an end-to-end BLAS library. PARALIA uses model-driven
insights to dynamically autotune BLAS execution, tailoring performance-critical parameters for
each specific problem and system during runtime. This autotuning is coupled with an optimized
task scheduler, leading to near-optimal data distribution and performance-aware resource uti-
lization. PARALIA provides state-of-the-art performance and energy efficiency and incorporates
the ability to adapt to heterogeneous systems and scenarios via model-based decisions. Finally,
we focus on the GEMM kernel, extending PARALIA with a custom static scheduler that integrates
model-driven algorithmic, communication, and autotuning optimizations (PARALiA-GEMMex),

which delivers significantly superior performance compared to the state-of-the-art.

Keywords

Linear algebra, Graphics processing units (GPUs), BLAS routines, Matrix-matrix multiplication,
Modeling, Autotuning, Multi-GPU systems, Software libraries, Communication routing, Overlap

optimization

Acknowledgments

First and foremost, I would like to thank my advisors, Georgios Goumas and Nikela Papadopoulou
for their continuous guidance, support, and encouragement throughout my PhD journey. Their
insights and mentorship have played a crucial role in shaping both my research and personal
growth during this process. Without them, I probably wouldn’t have a PhD at all, and even if I
did, it would have most likely been incomprehensible to the unsuspecting reader.

In addition, a special thanks goes to my colleagues and friends in Cslab, especially Vasiliki,
Ioanna, Panagiotis and Aristomenis, for their camaraderie, support, patience and considerable
resistance to my endless complaining. They made the bad days tolerable, the average days inter-
esting and the good days better.

Similarly, I want to thank my closest friends for their various contributions in my life, in-
cluding (but not limited to): George(Kopeli) for being there and for being himself. Nikos(Stag)
for always being overwhelmingly positive. George(Ab) for always being soothingly negative.
Antonis for helping me grow up. Dinos for helping me to not grow up too much. Fanis for
the endless constructive criticism. They all could have left me long ago to escape my endless
bickering, but they didn’t.

I also want to thank my cat, Clara, for the company. She probably would have left me if she
could, but she couldn’t, so she didn’t.

Finally, I owe my deepest thanks to my family for their love and encouragement. To my
parents, since their constant support and implausible belief in me have been a constant anchor
in a sea of uncertainty. To my sister Elli, since her strength of character and undefeatable deter-
mination have been something to look up to. To my little sister Eva, for being a good friend. To

my partner, [NULL pointer exception]. This journey would not have been possible without you.

Thank you all.

Contents

L

Introduction

1.1

Problem Statement{ . . .

[[.1.1 Contributions . .

Near-optimal single-GPU BLAS offload via model-based autotuning

R.1

Problem formulation . .

R.1.1 State-of-the-art limitations

p.1.2 Contributiong . .

R.2

Modeling GPUBLAS offload

p.2.1 BLAS routine parameteryot

R.2.2 GPU BLAS 3-way concurrency/overlag

R.2.3 BLAS 3-way concurrency modeling|

p.23.1 DataLocation Modeling

p.2.3.2 Bidirectional Slowdown Modeling

£.2.3.3 DataReuse Modeling|

R.2.4 Model application per BLASlevel

.3

Runtime framework integration]o

P.3.1 Deployment: Empirical initialization of model coefficients

p.3.2 Tile selection runtime: Tiling size autotuning

P.3.3 Library: Task orchestration]

R.4

Experimental evaluation

25
28
28
29

31
32
36
36
36
38
40
41
42
43
44
45
45
48
49
50

10 Contents
P.4.1 Experimental Setup] 50

R.4.2 Validation setd oo 51

P.4.3 Time prediction validation 51

P.4.4 Validation of tiling size selection 53

P.4.5 Performance evaluation 55

B Extending model-based autotuning for multi-GPU and heterogeneous systems 57
B.1 Problem formulation 57
B.1.1 Motivation. 58

B.1.2 From single- to multi-GPU clusters 59

B.1.3 Background : Offloading BLAS in Multi-GPU clusters 60
B.1.3.1 Level-3 BLAS decomposition and distribution 60

B.1.3.2 Communication overlap 62

B.1.3.3 Communication avoidancd 62

B.1.3.4 Communication routing 63

B.1.3.5 Loadbalancing 66

B.1.4 Contributions 66

B.2 PARALiA: BLAS autotuning in arbitrary multi-GPU systemd 67
B.2.1 The autotuner algorithm 68

B.2.2 Abstracting interconnect heterogeneity: The LinkMap representatior] 69

B.2.3 Performance estimation for workload selection 71

B.24 Databaseo 74

B.2.5 Preprocessof 76

B.2.6 Scheduled 76

B.3 Experimental evaluation 77
B.3.1 Experimental setup] 77

B.3.2 Evaluation Dataset i 78
B.3.2.1 Routine selection 78

B.3.2.2 Dataset characteristicy o 79

B.3.3 Comparison with state-of-the-artl 79
B.3.3.1 Performance 79

B.3.3.2 Energyefficiencyl 81

B.3.3.3 In-depthanalysi§ 82

B.3.4 Applicability to heterogeneous platformd. 84

U A communication-aware multi-GPU matrix multiplication library 87
.1 Problem formulation 87

Contents 11
#.1.1 Background: Optimizing GEMM for Multi-GPU systemd 88

1.1.2 Background: PARALIA limitations on covering thisgap 89

1.1.3 Contributions v o 91

U2 TImplementation o o 92
.21 Hierarchical decomposition] o i 92

#.2.2 Communication/computation overlap 94

#.2.3 Data caching / Communication avoidanced 95
“.23.1 Offloading problems exceeding memory capacity] 95

“.2.4 Communication routing 96
1241 Bandwidth-based routing| 96

#.2.4.2 Accounting for interconnectload 96

1.2.5 Optimizing RONLY tile transfers with batchingl 98
#.25.1 Batched-fetchrouting 99

1.2.6 Optimizing WR tile transfers with lazy fetching 101

#.2.7 Thestaticscheduld 102
“.2.7.1 Optimizing sub-problem scheduling ordef 103

U3 Evaluation] 103
#.3.1 Experimental Setup 103
B3.11 Testbed 103

13.1.2 Benchmark methodologyl 104

U3.1.3 Datasello 104

“.3.2 Evaluation of performance optimizations 105

#.3.3 Comparison with state-of-the-artl 106

U.3.4 Strong-scaling analysig o 107

1.3.5 Performance robustness under irregular problemd 110

5 Literature review 111
5.1 A brief history of BLAS optimizationy 111
5.1.1 Thebirthof BLAY. 111

5.1.2 Multi-core BLAS optimization 113

5.13 GPUBLAY. 115
5.1.4 Hybrid BLAS: The birth of dynamic workload selectiorf 116

5.1.5 Distributed and multi-GPUBLAS 118

5.1.6 GEMM decomposition and distribution algorithmg 121

5.2 Related performance modeling literaturd 122
5.2.1 BLAS kernel performance modeling 122

5.2.2 Distributed communication modeling 123

12 Contents

5.2.3 GPU communication modeling 126
b Conclusions 129
7 Extetopévn Hepiinyn 133
....................................... 133
.1.1 AtOmoon TPOBAALOTOT .« o o v o o e e e e 137
[.1.2 SUVEIGQODPED . o o o o o e e 137
.2 PARALIA: Avtopartonoinon BLAS oe moAamAéc GPU 138
[7.2.1 O alydpduoc Tov OVTOUATOL BEATIOTOTOWNTH .« « o v v o o e e e e o . 138
[7.2.2 Movtehomoinon twv diktowy Stacvdeonc: H avarapdotaon LinkMap 140
[7.2.3 Tepapotik AELOAOYNOT .« v v o o e e e e e 145
.2.3.1 ATOB0GH . . o v o 145
[7.2.3.2 Evepyelok omtdd00m . . . o o 146

.3 Eméxtoon PARALIA yio tnv BEATIGTOTOINGT TNC ETLKOLVOVING G TTUPNVEC TTOAAXTAOGLOGUOY
.. 147
7.3.1 YAOTOINGT . . . o oo 150
7.3.1.1 Iepopytk ommooOVOEST « . o o o o o 150
7.3.1.2 Emk&Avyn emkolvovioc/VUTOMOYIOHOY . . . o o o o o 152
7.3.1.3 IIpocwpivi atodrikevon dedopévewv / AToQuyn emkowvwviad 153
7.3.1.4 Apopohdynon Emwkowveviad o 154
[.3.1.5 Beltiotomoinon Metagopwv RONLY tile pe Opadomoinon . . 157

[7.3.1.6 Beltiotomoinomn petawopdv tiles WR pe kaBvotepnuévn @optwon 158

[.3.1.7 3Tt SPOUOAOYNGT] « « v v o v e e e e e e 160
[7.3.2 AFLOAOYNGT] .« o o o o o e e 162
[.3.2.1 Z0Oykpion pe tnv texyvoroyice oyund 163
[7.3.2.2 Avtoyn emidoonc oe pelktd TpoPAAUOTY 164

.4 SOUTEPAGUOTO - - o o o v o e e e e e e e e e 165

List of Figures

R.1

An example of offloading a computational problem to a GPU when the input/out

put data initially reside on the host memory. The default method is serial offload

(top), where the input data are fetched, then the desired computations are per-
formed in the GPU, and finally the output is sent back to the host. On the other

hand, a better method is 3-way overlap (bottom), where the initial problem dataset

into smaller chunks of tiling size T, which are then transferred to the GPU in 4

pipeline-like way. This allows performing computations for one chunk whild

toncurrently handling the output data transfer from the previous chunks and

the input data transfer for the subsequent chunks, considerably decreasing the

total time required for GPU execution|

R.2

cuBLASXtDgemm performance on two different testbeds, relative to the tiling|

size T used for internal 3-way overlap with 7' x T tiles, for four different probleny

kizes (no transpose). The vertical lines outline the tiling size that achieves the best

performance for each problem!
R2a TestbedI-K40
R2b TestbedII-VI00 o o v v e

p.3

The forms a 3-way concurrency pipeline takes depending on the ratio of the

h2d/d2h transfers and the execution time of a problem, for k = 4. The h2d

bound case (top) is dominated by input transfers, forcing computation and d2h

transfers to block waiting for input, while the compute-bound (mid) is dominated

by execution and the d2h-bound (bottom) by output d2h transfers]

13

33

34
34
34

14

List of Figures

R.4

The effect of bidirectional slowdown for the d2h-bound problem of Figure 2.3)

When performing h2d and d2h transfers simultaneously in the pipeline (dotted

lines), both t;, , and t’,, increase, but due to the partial overlap of some transfers

denoted as tf h2d.dzny?) predicting the exact time for this area is not straightfor+

ward. This results in a total time underestimation when using the #'° , model

for h2d/d2h-bound problems|

R.5

An example of the 3-way concurrency pipeline for a @ emm implementation which

iterates through the tiles of the M, N, K dimensions, for a problem with ¢, , <|

1
exrec

< 2-t;,,. Data reuse results in roughly two areas; one where the problem ig

h2d bound, and one where its execution bound, a scenario previous approaches

kannot account for]

R.6

The CoCoPeLia framework pipeline. During the offline deployment phase the

framework performs micro-benchmarks. Then, when a BLAS routine is invoked

with some problem parameters for the first time, the tile selection runtime uses

them in conjugation with the values obtained during deployment to predict the

best tiling size T for this problem. Finally the library is invoked to perform the

bperation for the given T}..; and produce the routine result. In case the routine

has been called with the same problem parameters before, all unnecessary steps

tre skipped and the previous tiling scheme and T}, isreused|

42

43

46

p.7

Error distribution of the CSO-Model and the BTS-Model for daxpy and cublasXt

{D,S}gemm

without data reuse on testbeds Tand II|

p.8

Error distribution of the CSO-Model and the DR-Model for our CoCoPeLia wrap-

per BLAS implementation of sgemm and dgemm on testbedsIand I}

R.9

Evaluation of Tile selection ability for Scemm (a) and Dgemm (b) on testbed I/

[The baseline performance (gray bars) is acquired using a static tiling size T =

P048, also used by BLASx. We compare this against the experimentally achieved

performance using the optimal tiling size for each problem, 7' = 7,,;, the perfor{
mance achieved using the tiling size predicted with the CSO-Model [159] and
k) the performance achieved using 7" = T}..; returned by CoCoPeLia select]

using Equations 2.1, 2.2, 2.4, 2.5 respectively|

.9a SEEMMI e e e e e

2.9b Dgemm]

R.10

dgemm and s gemm performance evaluation for various problem sizes on testbeds

[LIT. We use three scenarios with different transfer-to-computation ratios: 1) M =|
IN = K with A, B on the GPU and C requiring update from the CPU (blue), 2)
M = N = K with A, B, C on the CPU (red) and 3) N = M = % with A, B,Q
bn the CPU (green)| o o

52

53

54
54
54

55

List of Figures

15

B.1

The GEMM performance (top) and energy efficiency (bottom, using the power-

delay product) of the state-of-the-art multi-GPU BLAS libraries BLASX [157]
and XKBLAS [57] and PARALIA [9] (our work), in a multi-GPU cluster with §
INVIDIA-V100 GPUs, for three problem sizes and four different data placements|
BLASX and XKBLAS offer competitive performance for the first placement buf

fail to adjust to the other three more complex ones resulting in serious perfor-

mance degradation, while PARALIA adjusts well to all scenarios and offers in

treased performance. PARALIA also offers higher energy efficiency through de-

vice selection with a negligible trade-off in performance|

B.2

An example single-GPU cluster (left) versus a multi-GPU cluster with 4 GPUg

(right), showing the large difference in their hardware characteristics. The single-

(GPU cluster has two communication channels (henceforth links) for h2d and d2h

fommunication while the multi-GPU one has 20 connections with potentially]

different bandwidths and partial resource sharing|

B.3

An example of GEMM (M = N = 2K) 2D decomposition to sub-problems and data

tiles (tiling size T = M/2). The 8 participating devices are distributed in a 2D grid

of (DC,., DC..0;) = (4, 2) to encourage horizontal and vertical device-to-device

(d2d) data movement between same row/column devices, respectively. An opti{

mized library employing software-implemented caching of RONLY tiles to GPUY
kan avoid 50% and 75% of h2d transfers for the A and B matrices, respectively, by|

using peer-to-peer d2d transfers|

B.4

A clx-ai node of HLRS’ HPC cluster Vulcan [69] that features 8 NVIDIA Tesla

V100 GPUs and a mixed interconnect with various bandwidth levels and resource-|

kharing properties. The interconnect utilizes a mix of NVlink-1 (=~ 24 GB/s) and
NVlink-2 (=~ 48 GB/s) for inter-GPU connectivity, with the GPUs not being fully]
tonnected via NVlink. For CPU-GPU communication it uses PCiE (=~ 12 GB/s)|
aind CPUs share PCle bandwidth in sets of two (e.s. GPU 0-1, 2-3 etc). Finally]
kach node has 2 numa nodes connected with a =~ 8 GB/s link shared between all

PUs| . .

58

59

61

16

List of Figures

B.5

The communication pattern of BLASX, XKBLAS and PARALIA for a GEMM ex-

ecution (M = N = K = 16384, T = 2048) in the testbed of Figure 3.4, for two datd

placements: the full-offload case (all data at host memory initially) and a case

where the A, B and C matrices are initially populating the memories of GPUs 0/

[l and 2 respectively. The heatmaps visualize all communication (source GPU 5
ik axis, destination GPU = y axis); the heat is the theoretical bandwidth of each

onnection and the displayed labels in each box denote the total number of (equal

byte) transfers passing from this connection during execution. The id = 8 is as-|

kigned to the host memory. The bar plots aggregate the total transfers and theix

hverage bandwidth for each library|

B.6

An overview of the PARALIA framework and its main components|

B.7

An overview of the PARALIA autotuner and its prediction pipeline]

B.8

CLX-Al interconnect Linkmap!

B.9

Performance of dgemm with cuBLASXT, BLASX, XKBLAS, and two variants of

PARALIA (one always utilizing all GPUs and one selecting the workload distri

bution to maximize the inverse energy-delay product - £DP;), on the datasef

described in subsection 3.3.2. Each row corresponds to a different data shape

M, N, K and each boxplot group corresponds to a different data location, with

liemmyoe. = (Ajoc, Bioe. Cloe), where loc = h corresponds to data on host and lod

E dev;; to the corresponding device’s memory. The right subfigure ageregates

results for each problem shapel

B.10

Energy efficiency of dgemm (Gflops/W) for all problem configurations presented

in Figure 3.9. cuBLASXt, BLASX, XKBLAS and PARALIA comm_opt have PD P;s
rrelative to their performance (since they all utilize all 8 system GPUs), resulting in|
b much better PD P; for PARALIA due to its higher performance. On the other]
hand, PARALIA select(E DP;) also takes into account the energy-performance

relation when considering how many devices to use and therefore has a much

better P D P; with only imposing a minor performance difference]

B.11

DGEMM performance (Tflops) and energy efficiency (Gflops/W) for half of the

problem configurations presented in Figure 3.9. BLASX and XKBLAS schedulers
do not adjust well to different computation devices, while PARALIA still pro-|

vides improved performance and PD P;, which is boosted by better workload

......................................

65

68

69

78

80

31

85

List of Figures

17

.1

An example of our GEMM 2-level hierarchical decomposition for a square prob-

lem (M, N, K) based on the SUMMA blocking algorithm [151]. The first level
depends on the number of workers (here: 4 GPUs) split to a 2D grid (r, ¢) = (2, 2)
which decomposes (M, N) to (M,. N.) chunks, leaving K untouched. Then|
the second level is splitting (M, N, K) to 2D square (T, T) blocks, which createq

kquare GEMM sub-problems and enables communication/computation overlap)

.2

The process of executing the tasks of the first four sub-problems as seen in Fig-

ure 4.1 on two GPUs in parallel. Tasks of different types (fetch, compute, WB) are

placed on different streams and overlapped in a pipelined manner for each GPU]|

using different streams for intra-GPU parallelism)

“.3

An example of bandwidth-based routing misprediction that results in increased

GPU idle time. When the sub-problem with input dependencies (Ao, Boo, Coo)

iis scheduled in gpug, Agg and By are already available in gpu; and gpus from

previous tile fetches. Since BW-based routing is unaware of interconnect load|

it copies Agg from gpu; and Bgg from gpus since these transfers utilize higher
P2P GPU bandwidth. In the case of Ag, this results in gpug compute blocking]

longer than if Agg was fetched from the host instead, due to a high pre-existing|

load in gpuy — gpugl

“.4

An example state of LAM and ETA vectors for two tiles Agg and Byg. The tile ETA|

wectors show when these tiles should be available to GPUs 1 and 2, respectively|
(initial on host memory - ETA[h] = 0), while the LAM stores an estimation for

the interconnect load up to that scheduling state|

.5

An example of performing three fetches of the same data to three GPUs either ond

by one (left) or with a simultaneous broadcast-like batched fetch (right) that uses

b = 8 sub-transfers to overlap the process in a pipelined manner. Batching all

fetch operations together results in the same fetch cost for gpu;, but considerably]

decreases the fetch costs for gpu; and gpug|

1.6

An example of routing the first GEMM sub-problem on each GPU using a) re-

hctive routing (left) employed by the SoTA and b) ETA-based proactive routing
tombined with RONLY batched-fetch (right) used in this work. Reactive routing|

bptimizes the effective bandwidth by using faster links whenever possible, but re

kults in imbalanced interconnect usage, streams becoming idle, being blocked by|

transfer dependencies, and varied GPU compute start times. On the other hand|

bur approach balances interconnect usage, mitigates idle streams by internally]

pipelining transfers, and results in a simultaneous start for compute in all GPUs)|

93

94

97

98

99

100

18

List of Figures

.7

Scheduling dependencies and computing four sub-problems on Cpg, with a nor-

imal offload (top) or by using the WR-lazy fetch approach (bottom). WR-lazy]

fetching reduces GPU idle time, removing Cpy from the input dependencies of

the first sub-problem on the cost of a lichtweight extra computation before writ-|

ing back theresult|

“.8

The performance of each optimization described in Section. 4.2 for FP64 square

IGEMM (M=N=K) using all 8 GPUs on our NVIDIA HGX testbed (system peak

dashed line), for the regular dataset of Section 4.3.1. The two clusters correspond

to different configurations. Optimizations listed on the legend are applied incre{

mentally left-to-right (yellow = Baseline, blue = all optimizations enabled). Fach
bptimization mitigates a different bottleneck of multi-GPU GEMM, resulting in

increased performance in both cases regardless of the differences in communi-|

kation pattern, overlap, and load balance because of the initial placement|

1.9

The square GEMM (M=N=K) FP64 performance for the regular dataset of Sec-

tion 4.3.1 for 8 GPUs on our NVIDIA HGX testbed (system peak = dashed line)|

Our approach offers robust performance regardless of the data placement, avoidg

imbalance, and outperforms all previous approaches, being more effective in

ommunication-bound problem sizes (12 leftmost data points)|

.10

The square GEMM (M=N=K) FP32 performance for the regular dataset of Sec

tion 4.3.1 for 8 GPUs on our NVIDIA HGX testbed (system peak = dashed line)|

Using FP32 results in more compute-bound problems due to half the communi-|

ation volume, coupled with the same FP32 performance peak. Our approach

hdjusts to the new ratios better than previous libraries, reaching the peak faster]

and providing superior performance for all problems)

H.11

Strong scaling analysis of three square GEMM (M=N=K) FP64 problem sizes fo1

two data placements and variable number of GPUs on our NVIDIA HGX testbed
(v-axis in log scale, system {1,2,4,8} GPU peak = dashed lines). Our approach

provides the best performance for all configurations, and scales better than state-|

bf-the art libraries as the number of GPUs increases, especially for the smaller]

more communication-bound problems|

.12

Comparison of GEMM FP64 performance robustness against the state-of-the-art]

using the expanded irregular dataset, divided in three clusters, according to the

matrix shapes. Our approach outperforms all existing libraries, regardless off

problem irregularity and data placement, providing a uniformly superior solu-|
tion for multi-GPU GEMM)

5.1

A high-level overview of the related work of this thesis|.

101

105

107

108

109

List of Figures 19

F.1 M emokdmnon tov PARALIA kot TV KOPLOV KOUUKTLOV TOV) 138

.2 M emiokdmnon tov outopatov Bedtiotomointh Tov PARALIA kot tnc clveidad
TPOPAEYUNC TOV] e 139

7.3 Xb&ptnc oovdéoewv CLX-AILl 145

.4 Amnddoon tov dgemm yio tic cuBLASXT, BLASX, XKBLAS kot 8o mapoldoyéd
rov PARALIA (pic mov ypnoipomolel wavro o6Aec tic GPUs ko pia wov emiléyel

[NV KATOVOUN @OPTOL EPYOGLOC YIO VOl LEYLGTOTOLGEL TO OVTLGTPOMO TOL TTPOLOVTOd

kkabvotépnonc-evépyewoc D P;). K&Oe celpd ovtioTolyel oe dioupopetiicd oynuol

Bedopévwov M, N, K kou kéBe opdda boxplot e Stapopetikr torodétnon dedopévav)

e gemmyoe = (Ajoe, Bioe. Cloe), 00U T0 loc = h avtiotolyei oe dedopéva otny

uvAun tnc CPU xau loc = dev;y 6t pvipn tnc avtiotolync cvokevnc. To ekl

brooyfuo cuvolilel To omoteAéopata yio k&be oynuo TpoPAnuatoc! 146

7.5 Evepyeiokn amrddoon tov dgemm (Gflops/W) yio dAec Tic dapoppcyceic tpoPAnpatod
ftov tapovstdlovrol 6to XyAue 7.4. O cuBLASXt, BLASX, XKBLAS kot PAR

IALIiA comm_opt éyovv P D P; avticTolyo e Tnv enidocm Touc (kabde OAeC YpNOLLOTOLODY

kot Tic 8 GPU Tov 6uGTARATOC), He artoTéAeapa éva ToAD kalOtepo PD P; yio td

PARALIA Aoyw tnc vinAdtepnc emidoonc Tov. Amwd tnv AAAN tAevpd, to PAR

ALiA select(E D P;) Aaufével ertionc vmddn T oYéon evépyelac-amodoonc Kotd|

Tnv emiAoyn tov aplBurod cuckeLGV oL Oat Ypnoorotnfovv kal, eTopévad, EYel

o0 xaAOTepo P D P; emiBaAlovtac povo pio pikpn dopopd amddoonel 147

.6 'Evomapdderypa tne tepopyiknc amooveonc GEMM 2 emumédwv yio éva teTpdrywvd
tpoPAnue (M. N, K) Booicuévo atov alyoptduo amroxkAeiopod SUMMA [151]]

[To tpwTo emimedo eEaptdTor amd Tov apdud Twv enefepyootov (e5¢: 4 GPUs)

ataveunuévov e diodidotato mAéyua (r, ¢) = (2, 2) mov arocuvOéteLto (M, N)

be xoppdrtio (M,., N.), aprvovtoc to K ouetdBAnto. 2tn cuvéyela, To devtepd

Eminedo eivar n amocvOeon tov (M, N, K) oe Siodidotata TeTpdywve tiles)

Tov dNULOLPYOV TETPAYw VA LIToTpoAALaTat GEMM kot emitpémouy tnv emucdAvyn

ETKOWVOVIOG/VTTOAOYLOUGOV] . . o o o o o o e e s e 151

7.7 HSadkaoio eKTEAEGTC TOV TEGGAPOVY TTPMOTMV LITOTTPOPANUATOY TOL GYNHATOC 7.6

e 800 GPU. O epyaciec dtopopeTikdyv TOTWV (fetch, compute, WB) tomofetoOvTol

be duoupopetikd streams ko ek OTTOVTOL Ge éva pipeline yia kO GPU, ypnowomroldvtod

Blapopetikd streams| 153

20

List of Figures

7.8

opdderypa AMdbove TpoPAelnc otn Spopordynen Béoel edpovc {Hvne wov odnyel

be avEnuévo ypovo adpaveroc tne GPU. Otav To vmompOBANUQ Le TIC ELooryOpEVE]

EEaptioeic (Ao, Boo, Coop) mpoypoppatiletor otn gpug, To Agg ko Bog eiva

1SN Srobéoa oTIC gpuy KoL gpus otd ponyovuevee petopopéc tile. Aedopévoy

bt n Spopordynon Baoel edpove (OVNC oYVOEL TO QOPTIO TV IGLVIEGEWV)

bovtiypdost to Apgg otd v gpuy kol To Bpg otd TV gpus, KoBde outéc ol

Letaopéc ypnoomoloty vimAdtepo evpoc (hvne P2P GPU. Stnv mepintoon

ov Ago, VT €XYEL WOC OTTOTENEGLOL T) GPUQ VOL LTTAOKKPEL TNV EKTEAEGT VLA TTEPLGGOTEPQ

¥ pOVvo aTrd 0,TL oy To Agg elye petapepBei ortd To host, Adyw Tov vinAod vIT&PYOoVTOq

lpoptiov 6T 6OVdeoN gpu; — gpugl 155

7.9

"Eva mapadetypo katdotoonc towv dtovuoudtov LAM kot ETA yu dvo tile Agd

kot Bog. To dtovdoporta ETA tov tile Seiyvouv mote awtd ta tile Oo wpémel

o eivan Stodéoa otic GPU 1 ko 2, avtioTorya (opytké oTn puvAun Tov host

ETA[h] = 0), evé> To LAM autoOnkedel piol EKTINGT YL TO ©OPTLO TV SLtoLvdETEmY

LEYPL CtUTH TNV KATAGTAGT TTPOYPOUUOTIOUOD) - . o o o o o o e et 156

.10

Mopdderypa ektéleonc tpuwv fetch Aettovpyuodv Tou idtov Sedopévou mpoc Tpeld

GPU cite Eeywplotd (aplotepd) site pe pia tavtdyYpovn opadomompuévn fetch

Iettovpyio (SeEL) TOL YPNGOTOLEL P = 8 LITO-PETAPOPEC YLAL VO ETLKOADUE]

n dwdikacica pe cwlfvwon. H opadomoinon 6Awv twv fetch Aettovpyiddv pol

EYel wc omoTéAeopa To 1910 ko6oToc fetch yio tnv gpu;, dAAG HeLOVEL oNUOVTLKY

fro k6oToC fetch yix TIc gpu; KoL gpug| . . . o o o 157

7.11

Mopdderypo SpopoAdynenc Tov mpetov vrorpofAnuatoc GEMM oe k&0 GPU

[¥ PO LLOTTOLOVTOC o) TNV dPoLoAdYNon (apLoTePd) TOL Y PNGLUOTOLELTOL 0T TTPONYOLEVE]

promotioerc kan B) tnv Spopordynon Baoet ETA cuvdvacpévn pe opodomompévry

fetch Aettovpyiot RONLY (8e€1d) mov ypnouwomoteital e owth Tnv epyacio. H

TPt Spopoldynon BEATLGTOTOLEL TO ATOTEAEGUATIKO £0POC {OVNC Y PN LOTTOLOVTA]

ToyDTEPOULC GUVIEGLOVC OTTOTE elval SuVATOV, AAA& 0dNYel o€ un Looppornuévn

ixprion TV SLeauvdEGEWV, POEC TTOL LEVOLY ad povEic, LITAOKAPOVTOL aTd eEapTrioeld

LETOPOPAC KoL dLoupOPETLKOVC YPOVOUC KKIVINGNC TNC compute AelTovpyioc cg

kéBe GPU. AvtiBeta, N TpoGEYYLoT LOC EELGOPPOTIEL TN YPNGT TV SLocLVSEGEWV)

LELOVEL TIC AdPOVELC POEC LEGK TNC ECWTEPLKNC GOANVOGTIC TWV LETOUPOPNDV, KL

bdnyei o TavtdYpOovn EvapEn Tne compute Aertovpyioc ce Olec tic GPU| 159

List of Figures 21

7.12

E£apTHGELC TTPOYPOUUATIOLOD KOl DVTTOAOYLOHOC TEGGAP MV LITOTPOPANUATWY 6TJ

Coo, Le Kavovikn ekpopTtwon (Tévw) i YPNOLOTOLOVTOC THY TTpocséyyion WRA

lazy fetch (x&tw). H kaBvotepnuévn @dptwon WR pewwvel Tov ypovo adpdverod

tnc GPU, amropakpivovtac o Cog omtd TIC eEQPTAGELS ELGOSOV TOV TPWTOL LITOTTPOPANATOd

e KOGTOC L0 EAOPPLY ETTLTAEOV VITOAOYLGTIKY EPYXGLOL TTPLY TNV eYYPa@n Toy

btotedéopartoc] . .o L 160

7.13

H oan6doon GEMM (M=N=K) FP64 yix To kavovikd c0volo dedopévov yia §

GPUs 670 ovatnue dokiuckyv NVIDIA HGX poc (cuvolik amtddoon cuathipatod

E Swocekoppévn ypapun). H mpocéyylon Loc Tpooeépet Loyvpr orddoon aveEaptitond

Tnc tomofétnonc Twv dedouévav, amo@edyel TNV ovIGoppoTtic Ko Eemepvd OAed

[TLC TLPOTYOULEVEC TLPOGEYYIGELC, OTTOSELKVOOVTAC LEYANDTE PN ATTOTEAEGUATIKOTNTO]

be neyén mpoPAnudtov meplopopévo artd tnv emkoveovio (12 aplotepdTePO]

... 163

.14

>OyKpLon oavtoync ortdodoonc GEMM FP64 pe tnv teyvoloyia aryuric, ypnoorotdvtod

[To LekTO GHVOAO deSOUEVOV, YWOPLOUEVO GE TPELC OUADEC, COUPMVAL LE TIC HOPQEd

mwvéicwov. H mpooéyyion noc Eemepvi OAeC TIC vitdpyovoec BLBAodnKec, aveEaptriTwd

Tnc @bonc Tov TpofAnpaToc Kl TN TomoBétnonc Sedopuévmv, TapéyYovToc uiol

buowduopea ovetepn Abon yie multi-GPUGEMM/| 164

22

List of Figures

List of Tables

P.1 BLAS modeling notation
R.2 Transfer sub-models for the two testbeds|
P.3 Testbed characteristicS v v v v o i
P.4 (geo)mean percentile CoCoPeLia performance improvement over state of the arf
GPU BLAS libraries| o
B.1 LinkMap member and functions used for communication optimization|
B.2 Modeling notation used in thiswork|
B.3 CLX-AI system characteristics|
B.4 A summary of the performance of dgemm for the whole dataset for each im]
plementation, using the % [70]. Small problem (S), large problem (L
and total dataset (T) percentages are displayed separately for extra clarity re
barding the underlying performance. PARALIA comm opt, PARALIA select(PERF)
and PARALIA select(EDP;) vastly outperform previous approaches, with PAR{
IALiA select(PERF) offering the best performance and PARALIA select(E D P;) be-
ing more balanced between performance and energy efficiency as intended. PAR{
|ALiA select(P D P;)leads to relatively low performance coupled with the best PD P;| 83
B.5 A table summarizing the GEMM performance for the whole dataset for each im

plementation, using the mean{Gjlop) [70] for half of the small (HS), large (HL

mean(metric)

and total (HT) problems of Table 3.4 ran on a heterogeneous emulated system
PARALIA outperforms all multi-GPU scheduler-based approaches both in per-

formance and energy efficiency, further boosted by a better workload selection)

23

85

24

List of Tables

.1 The NVIDIA HGX testbed characteristics| 104
[F.1 Méln kou cuvaptioelc Tov LinkMap mou ypnoworootvrol yix th BeATioTomoinon
..................................... 141
7.2 Opoloyic LOVTENOTOINGTC TOV Y PNCLUOTTOLEITOL O€ QWUTH TNV epyooio] 143
7.3 Toovotiuo CLX-ALl 145
.4 Xopoktnpiotikd Tov cvotiuotoc NVIDIAHGX| 162

CHAPTER 1

Introduction

Dense linear algebra operations form the foundational building blocks of many computational
algorithms which appear in a plethora of high-performance computing (HPC) applications, in-
cluding Computational Fluid Dynamics (CFDs), climate modeling, molecular dynamics, image
processing, machine learning, and computer vision. Additionally, while these low-level blocks
appear in high-level application code that also performs other operations, typically they domi-
nate the execution time ofthe application. Consequently, increasing the performance of dense
linear algebra kernels directly impacts the overall effectiveness of HPC applications. This led
to the standardization of the Basic Linear Algebra Subprograms (BLAS) [39, 40, 44-49, 90, 101]
in the early days of HPC to ease the development of scientific code, allowing domain experts
to rely on standardized and performance-optimized building blocks to implement more complex
simulations at scale. The BLAS standard defines a set of “black box” routines that should follow a
specific input/output layout and be optimized by vendors and library providers transparently to
the user, without requiring additional performance tuning. But, while BLAS libraries using the
“black-box” approach ease application development for the domain expert, internally they re-
quires considerable performance engineering effort to achieve high performance. Additionally,
even if all BLAS routines are exhaustively optimized for a system, the emergence of new systems
poses the practical problem that performance engineers have to revisit all BLAS implementations

and tune them again.

25

26 Chapter 1. Introduction

The good - CPU BLAS portability through autotuning: A common solution for this problem
is to automate parts of the system-specific optimization process, commonly referred to as au-
totuning. Autotuning has been established from the early days of CPU BLAS optimization as a
standard procedure to increase performance and portability to new systems [[15,29,60,61,96,[107,
140,158,160, [163,[164]. While the exact process for BLAS differs per routine, architecture type,
and implementation, the concept of autotuning is to automatically adjust and optimize execu-
tion towards an optimization target (execution time, energy efficiency, or any other performance
metric(s)). Specifically for BLAS, it usually involves finding which external routine parameters
(problem dimensions, flags, etc) influence performance and adjusting internal parameters (block-
/tile size, loop unrolling factors, etc) during runtime based on the given external parameters. This
requires establishing a relation between the values of internal and external parameters, which
can be obtained with benchmarking or modeling. Benchmarking yields the most accurate results
but typically involves a prohibitive search space, while modeling is faster and does not require
exhaustive empirical testing, but is less accurate. Additionally, a practical midway solution is to

use a combination of the two by coupling generic models with fast micro-benchmarks.

Takeaway BLAS is important for HPC applications and must have high performance and porta-

bility. This is commonly achieved through autotuning, guided by modeling and micro-benchmarks.

The bad - GPU BLAS offload: The introduction of GPUs in high-performance computing (HPC)
clusters changed the landscape of BLAS optimization. The regular parallelism of BLAS routines
made them a good fit for GPUs, which led to the development of many GPU-BLAS libraries,
the most common being cuBLAS, a CUDA-like BLAS library for NVIDIA GPUs [[122]. cuBLAS
offers highly optimized primitive BLAS operations, but unlike the simpler CPU paradigm it re-
quires the input data to reside on the GPU memory. This means that the user must also manage
data transfer to and from the GPU before and after execution (henceforth referred to as offload),
introducing a new performance bottleneck [[7, 21, 63,103,115, 116,130, 134, 138]. Additionally,
executing problems on data that cannot fit into the GPU memory forces the user to split the
initial problem data into smaller chunks and offload them to the GPU in a pipelined manner.
This technique introduces extra computation and communication overheads, but also enables
the overlap of communication with computation to increase offload performance [21,63,65,[159].
These new characteristics of GPU BLAS offload introduce a range of optimization decisions, such
as determining whether a routine should be offloaded to a specific GPU, deciding the percent-
age of the workload that should be executed on the CPU versus the GPU if run in a hybrid
manner [5, 16, 41, 79, 80, 108, 110, 145, 148-[150], and selecting the appropriate chunk size for
splitting the problem [21, 63, 65, 106, 159]. Although previous work has addressed these top-

ics for specific system configurations, the rapid advancement of GPU technology over the past

27

decade has lead to systems with extremely higher computational capabilities and complex in-
terconnects, rendering these approaches outdated and non-portable. While this problem could
be solved with autotuning, it poses a significant challenge due to the gap between GPU kernel
performance modeling [13,35,78,81,89,109,111,113,114,127,[131,136,138,165], transfer model-
ing [6,21,25,34,52,63,[72,73,75,76,83,88,[113,[115,[117,134], overlap modeling [21,63,65,[106,159]
and actual GPU BLAS implementations that support overlap [4,54,55,57, 68,92, 124,125,157] .

Takeaway Autotuning can considerably benefit GPU BLAS, but is harder to implement due to
the added complexity of GPU offload and the gap between GPU implementations and modeling.

And the ugly - Multi-GPU BLAS offload: The success of GPUs in HPC workloads has lead
to a widespread adoption of multi-GPU nodes, typically consisting of 4-8 GPUs interconnected
with a custom topology. Due to the extreme computational capabilities of these clusters, they
are a good fit for the computationally-heavy level-3 BLAS operations. But, optimizing BLAS op-
erations for multi-GPU nodes differs significantly from single-GPU, since it also requires to effi-
ciently distribute and manage data and computational tasks across multiple workers (the GPUs)
with distinct memories. Additionally, the existence of the district GPU memories further com-
plicates execution, since a routine’s input data can reside on host memory, on GPU memory,
or a combination of both. Consequently, multi-GPU optimization introduces new algorithmic
concepts to BLAS similar to distributed computing, such as data decomposition, task scheduling,
and communication. All these add to the inherent complexity of BLAS and have motivated many
libraries to support multi-GPU execution, either by extending previous distributed approaches
with GPU support [4,5, 11,118,119, 54,55, 68,92, 94,161] or with specialized libraries specifically
designed for this case [9,57,124,125,[157]

Similarly to single-GPU, but even more so due to the added complexity of multi-GPU ex-
ecution, the prevalent bottlenecks of each BLAS problem vary based on its external parame-
ters (problem dimensions, flags, data placement) and the hardware characteristics (interconnect,
host/GPU memory capacity, GPU capabilities). Consequently, multi-GPU also requires opti-
mization decisions based on the specific problem and system that can enhance performance
and portability. Common such decisions are: communication routing to better utilize inter-
connect bandwidth, managing data-caching in GPUs, workload decisions to address imbalance,
task scheduling and ordering to minimize I/O dependency blocking, and resource-related de-
cisions to avoid unnecessary GPU usage. Moreover, due to the higher problem complexity of
multi-GPU, the performance impact of these decisions is considerably higher than single-GPU.
Unfortunately, the complexity of making all these decisions during execution is prohibitive. This
forces libraries either to focus on a subset of these, implementing heuristics and fine-tuning them

for each new system empirically, or employ generalized solutions, like task-graph optimization

28 Chapter 1. Introduction

or work-stealing [4, 54, 5658, 68,92, 157]. The first solution results in high performance for a
subset of the total problems and for certain systems, but with very low portability leading to
extreme performance meltdown in other configurations [g]. The second, on the other hand, is
more generic and portable to new configurations, but lacks the performance of a specialized so-
lution tuned for certain hardware and problem characteristics [8]. While this problem could also
be solved with autotuning, the current state-of-the-art offers no such solutions due to the lack

of modeling solutions for multi-GPU coupled with its very high complexity.

Takeaway Autotuning can solve the critical performance and portability issues of multi-GPU

BLAS, but has been prohibitively complex to implement with current methods.

1.1 Problem Statement

Summing up, BLAS is very important for HPC applications and should be easily portable and
performance-optimal in modern HPC clusters with GPUs. Unfortunately, while in theory BLAS
routines are well-suited for single- and multi-GPU systems, in practice the additional communica-
tion, scheduling, and imbalance overheads introduced in these systems limit BLAS performance
considerably and result in resource under-utilization. Moreover, the existing BLAS solutions
cannot adapt dynamically to the underlying hardware architecture and workload, relying heav-
ily on manual tuning and user input, resulting in low performance robustness and portability.
Finally, while modeling and autotuning can considerably enhance performance, robustness and
portability, the hardware complexity of modern GPU clusters coupled with the algorithmic com-

plexity of GPU BLAS execution deem performance analysis and autotuning very hard.

1.1.1 Contributions

The goal of this thesis is to break free of these limitations and achieve portability, near-optimal
performance, and efficient resource utilization for single- and multi-GPU BLAS. To this end, we
choose a model-based approach where problem and system characteristics are parameterized and
used to feed prediction models. Then, we apply these models in practice for BLAS autotuning
by engineering an end-to-end library that tailors a variety of performance-effecting parameters
to each individual BLAS call, taking into account its routine, problem and system-specific char-
acteristics during runtime and adapting execution accordingly for each scenario. Consequently,

the main contributions of our work are:

1. The introduction of new accurate performance models for communication-computation

overlap, used for BLAS single-GPU offload performance estimation.

1.2. Outline 29

2. A methodology for abstracting interconnect characteristics to model BLAS communication

in multi-GPU clusters and the extension of single-GPU performance models to multi-GPU.

3. An automated micro-benchmark and autotuning framework that enables the application

of modeling for BLAS autotuning in practice.

4. PARALIA, a high-performance and resource-aware end-to-end multi-GPU BLAS library

based on performance modeling and autotuning.

5. PARALIA-GEMMX, a state-of-the-art matrix-matrix multiplication implementation for multi-
GPU clusters that relies on model-driven decomposition, scheduling, and communication

optimization.

1.2 Outline

The remaining five chapters of this thesis are organized as following:

1. Chapter] focuses on the single-GPU execution scenario, exploring models and techniques
for estimating single-GPU BLAS performance and providing a basis for BLAS autotuning,
based on our published paper CoCoPeLia [[7].

2. Chapter [describes the extension of these models to multi-GPU and heterogeneous sce-
narios, and introduces a model-assisted BLAS library that employs runtime autotuning
to achieve high-performance and good resource utilization, based on our published paper
PARALIA [9].

3. Chapter [then applies the aforementioned modeling and autotuning techniques specif-
ically for the optimization of the matrix-matrix multiplication algorithm in multi-GPU
clusters, and offers a model-driven matrix-matrix multiplication kernel that considerably

outperforms the state-of-the-art approaches.

4. Chapter | provides a systematic view of all related work for this thesis, split in 1) BLAS op-
timization techniques (sec. 5.1) and 2) modeling approaches relevant to BLAS performance
estimation (sec. 5.7).

5. Finally, chapter [describes the open questions and future work after this thesis and closes

with our conclusions.

30

Chapter 1. Introduction

CHAPTER 2

Near-optimal single-GPU BLAS offload via

model-based autotuning

Due to the high complexity of modeling multi-GPU BLAS execution, the first part of this thesis
explores the simpler scenario of single-GPU BLAS. We use this scenario as a baseline before we
expand to the more complex multi-GPU modeling problem in Chapter B. Consequently, the tar-
gets of this chapter can be surmised in 1) obtaining accurate performance models for single-GPU
BLAS performance and 2) enabling the application of these models in practice for autotuning
important performance-effecting BLAS parameters at runtime. To this end, we introduce two
performance models for GPU BLAS execution that, in addition to computation, also take into
account data transfers and communication/computation overlap (Section P.4) and an automated
empirical methodology to instantiate these models on any system. Then, we combine these to an
end-to-end GPU BLAS framework to enable automatic tiling size selection (Section B.3) which

demonstrates considerable performance improvement over similar state-of-the-art libraries (Sec-

tion .4).

2.1 Problem formulation

The inherent parallelism of BLAS routines renders them particularly well-suited for GPU execu-

tion, hence the existence of numerous GPU-BLAS libraries. Among these, cuBLAS is the most

31

32 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

widely used BLAS library, providing highly optimized implementations of fundamental linear al-
gebra operations tailored for NVIDIA GPUs [122]. However, execution with cuBLAS differs from
the traditional CPU BLAS paradigm, since the input data must reside within the GPU memory
space. This requirement presents an additional layer of complexity for programmers or domain
scientists who use BLAS - they have to also account for transferring the data inputs/outputs to
the GPU prior/after execution (henceforth GPU offload). Depending on the complexity of their
scientific code, performing these additional data transfers can range from relatively straightfor-
ward, such as when solving a single algebraic equation, to extremely complex, like in the context
of iterative solvers involving multiple BLAS routines with I/O dependencies. This diverges from
the original design principles of BLAS, which aimed to provide a seamless and efficient compu-
tational framework regardless of problem and system characteristics.

As the popularity of GPUs increased rapidly, the problem of data transfers between the GPU
and host memory emerged as a common challenge for GPU offloading [[7, 21, 63,103, 115,116,
130,1134,138]. In response to this, NVIDIA introduced the concept of unified memory in CUDA
6.0, which allowed the user to seemingly directly access host memory from the GPU, alleviating
the need for explicit data transfers. However, despite the increase in programmability through
unified memory, critical performance issues still exist, since data transfers still happen under
the unified memory abstraction. More specifically, the communication between host and GPU
memory is constrained by limited bandwidth, resulting in unavoidable transfer overheads and
the unified memory abstraction also introduces additional performance bottlenecks [95,103,116].
This scenario poses a significant challenge for domain scientists who, by design, should not be
burdened with these details. Consequently, their code often does not achieve the expected levels
of the advertised GPU performance even for embarrassingly parallel problems.

A common approach to mitigate transfer overheads effectively involves the concurrent ex-
ecution of host-to-device (h2d) and device-to-host (d2h) data transfers alongside computational
tasks, a technique supported by OpeCL and CUDA and referred to as 3-way-concurrency or
communication-computation overlap. Figure R.1 shows an example of this method for an arbi-
trary problem; the problem is split to smaller sub-problems (henceforth sub-kernels) with their
own input/output dependencies. Then, these can run concurrently with other sub-problems,
overlapping their communication and computation in a pipeline way and resulting in reduced
GPU offload time.

2.1.1 State-of-the-art limitations

Tiling in GPU BLAS libraries: Since all BLAS routines operate on vectors and matrices, do-
main decomposition (e.g. splitting their workload to smaller chunks, creating sub-problems) is a

common concept already used for various other BLAS optimizations. Similarly, data tiling and

2.1. Problem formulation 33

Host -> GPU

texec GPU Compute

td2n GPU -> Host

\4

tserial_offload

A

Host -> GPU

texecT | |texecT [|texecT [[texecT | [texecT GPU Compute

taonT| [ta2nT| |td2nT| |td2nT| [td2nT GPU -> Host

—— — >
t3-way overlap

Figure 2.1: An example of offloading a computational problem to a GPU when the input/output
data initially reside on the host memory. The default method is serial offload (top), where the
input data are fetched, then the desired computations are performed in the GPU, and finally the
output is sent back to the host. On the other hand, a better method is 3-way overlap (bottom),
where the initial problem dataset into smaller chunks of tiling size 7', which are then transferred
to the GPU in a pipeline-like way. This allows performing computations for one chunk while
concurrently handling the output data transfer from the previous chunks and the input data
transfer for the subsequent chunks, considerably decreasing the total time required for GPU
execution.

3-way overlap for BLAS GPU offload have been the focus of many research approaches. Mul-
tiple BLAS libraries internally use tiling for better cache and memory utilization and to enable
task parallelism [[11,56,61,68,157,161]. To achieve performance gain with 3-way-concurrency,
GPU BLAS libraries internally split the initial problem size into tiles (more details are provided
in Sections .4 and P.3). In most cases, vectors (in level-1 and level-2 BLAS) are split to 1D chunks
of length T and BLAS matrices (in level-2 and level-3 BLAS) to equal squares 7' x T', where 7T’ is
the tiling size.

Regardless of the internal tiling optimizations of each library, selecting the appropriate tiling
size can considerably affect their resulting performance [21, 63, 65, 159]. GPU BLAS libraries
follow two different strategies for tiling size selection, trading between programming ease and
performance. The first is to expose the tiling size as an additional BLAS routine input parameter,
leaving tuning to the user [57, 124, 125]. This directly contradicts the BLAS standard routine
layout and limits the effective use of a BLAS routine to a handful of experts who can weigh the
trade-offs of tiling size selection correctly. The second and most prevalent technique is to define
and use a static tile size, usually defined per routine at compilation time, which provides a good
average performance in the tested machines [[11,57,58,61,68,157,161]. This is more user-friendly

but requires engineering effort and empirical tuning by an expert in each new system, and results

34 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

—— M,N=8K, K=8K M,N = 16K, K= 16K
—— M,N=12K, K=3K M,N = 24K, K=T7K
- 1.2
@
S 1.0
o
=
(O]
[}
c
©
£
£
()
o L H
2000 4000 6000 8000 10000
Tiling size T
(a) Testbed I - K40
w6 ‘ ;
Z
o5
I
=4
(]
2
S 3
€
E 2
@1 ‘ ‘
2000 4000 6000 8000 10000
Tiling size T

(b) Testbed II - V100

Figure 2.2: cuBLASXtDgemm performance on two different testbeds, relative to the tiling size
T used for internal 3-way overlap with T" x T tiles, for four different problem sizes (no transpose).
The vertical lines outline the tiling size that achieves the best performance for each problem.

in sub-optimal average performance since it disregards the specific communication/computation
characteristics of each different problem to tiling size selection [[159]. We argue that none of these
approaches are generic enough or performance-optimal. As an example, Figure P.d illustrates the
effect of T' on performance for cuBLASXtDgemm on two testbeds. As the tiling size decreases,
the performance increases due to better overlap, but after reaching one or two maxima, it rapidly
degrades. These maxima “break-points” vary greatly across the two testbeds and problem sizes.
Regarding the use of a static pre-defined tile, we annotate dgemm performance using the static
tiling size of ' = 4096, which offers the best average performance for cuBLASXt (details in
Section P.4), for the examples in Figure .2, it results in up to 9.4% slowdown on testbed I and up to
14.7% slowdown for testbed II. Furthermore, static tiling sizes offer no performance guarantee for
future machines with different transfer bandwidth/computation ratios and can result in increased

slowdowns in such cases.

Takeaway The impact of tiling size on BLAS performance makes a compelling case for dynamic

tiling size selection and autotuning, driven by accurate performance models.

2.1. Problem formulation 35

Performance prediction for tiling size selection: In order to achieve dynamic problem-specific
tiling size selection, we require a prediction model that estimates the total GPU BLAS offload time
as a function of tiling size, in order to evaluate different tiling sizes and find the best-performing
one. Such a model does not exist in the literature, since GPU BLAS libraries consider the op-
timization problem too complex to model [[157]. On the other hand, there is some research on
performance modeling for GPU communication/computation not specifically for BLAS that is
relevant to our case. A significant amount of prior work focuses on modeling the computation
time or performance of GPU kernels [[13, 35,78, 81, 89,109, 111,113,114, 127,131, 136, 138, 165].
However, these models neglect offload time when data transfers are required before, after or
during kernel execution. Gregg et al. [63] first highlighted this problem, arguing against the
trend of excluding transfer overheads from scientific reporting of GPU application performance,
and proposed a taxonomy for data transfers and their impact on offload performance. Numerous
later works model CPU-GPU transfers, using variances of the linear latency-bandwidth model
for PCle transfers [21,[115,134,138].

When modeling communication and computation separately (e.g. for serial offload), includ-
ing transfers improves prediction accuracy. However, if there is communication/computation
overlap, simplistic models fail to predict the actual performance. As an example for the case of
Figure @, the total serial offload time Zscriai of fioad is €qual to the sum of the input transfer,
compute, and output transfer times, and can therefore be inferred simply by combining GPU
compute and transfer models. On the other hand, modeling #3_y4y overiap is more complex
since it requires an approach to estimate the degree of overlap of communication and computa-
tion, and also splitting the problem to smaller chunks also introduces latencies/overheads. To
fill the gap of serial offload models, Gémez-Luna et al. [65] were the first to explore 3-way con-
currency modeling, but they considered the stream creation time as the only overlap overhead.
Later, Werkhoven et al. [159] enhanced their work by offering multiple performance models for
communication/computation overlap for various common offload scenarios focusing on commu-
nication overlap latency, and provided methods to obtain the optimal number of CUDA streams
for a given problem. Their models offered high accuracy for simple 1D problems, however, their
modeling approach did not capture all problem characteristics present in BLAS (details in Sec-
tion .2.9). Finally, Liu et al. [106] offered a mathematical framework for software pipelining
(another term for communication/computation overlap) on GPUs, using non-equal tiles and fo-
cused on partitioning, scheduling and granularity. However, they targeted problems defined by

linear functions and with equal input/output bytes, which does not apply to most BLAS routines.

36 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Takeaway Previous communication-computation overlap models are not sufficient for GPU
BLAS autotuning since 1) they are more generic, resulting in low accuracy for BLAS and 2)
they are analytical, thus requiring engineering effort in order to be applied in practice for tiling

size tuning.

2.1.2 Contributions

BLAS GPU libraries can benefit from dynamic Tiling size selection, but this requires both complex
prediction models for 3-way concurrency overlap applicable to BLAS and a way to integrate these
into an actual BLAS library. Consequently, in this chapter we explore single-GPU BLAS offload
optimization and target the research gap between BLAS libraries and model-based autotuning

that motivated our work CoCoPeLiA [[7]. Overall, we make the following contributions:

1. Two new 3-way-concurrency analytical models for BLAS GPU offload time, one targeting
level-1 and level-2 BLAS and one for more complex level-3 BLAS routines (Section .J).

2. An automated empirical methodology to instantiate these models on a system and three

example models for daxpy, dgemm, and sgemm (Section .3).

3. The incorporation of the above with a runtime tile scheduler into CoCoPeLia, an end-to-end
GPU BLAS framework utilizing automatic tiling size selection (Section R.3), which demon-

strates considerable performance improvement over similar state-of-the-art libraries (Sec-

tion P.4).

2.2 Modeling GPU BLAS offload

This section covers the core of our single-GPU offload research: the introduction of accurate
3-way concurrency prediction models applicable to BLAS problems. First, it discusses 3-way
concurrency and the required adjustments in order to accurately model BLAS, taking into ac-
count 1) data location, 2) bidirectional overlap, 3) non-linear kernel execution times and 4) data
reuse. It then builds upon a baseline model and presents our proposed adjustments in order to
account for each of these characteristics, and concludes to two final models, one proposed for
problems which employ little or no data reuse, like level-1 and level-2 BLAS, and one focused for

optimized level-3 BLAS routines which fully utilize data reuse.

2.2.1 BLAS routine parameters

The BLAS specification standard defines a list of BLAS routines and their parameters [39, 40,

45, 47,101]. BLAS usually have a considerable number of parameters to cover a wide range of

2.2. Modeling GPU BLAS offload 37

Table 2.1: BLAS modeling notation

D1[, D2[, D3] routine problem size dimensions

dtype routine datatype

k the number of subproblems after tiling

kin the number of subproblems with input
after tiling

T tiling size

opd number of input/output data struc-
tures

Per data structure: | ¢ : 0 — opd

get; flag to denote if data requires transfer-
ring from the host to the GPU

set; flag to denote if data requires transfer-
ring from the GPU to the host

S1;, S2; initial dimensions, extracted from the
routine problem size dimensions

configurations used within scientific code. The specification defines the formulas for calculating
the problem dimensions for all parameter combinations and the exact mathematical operation
performed. Some libraries also add extra parameters, usually related to featured optimizations
or matrix layouts. For this work, we are only interested in the parameters defined by the stan-
dard and for LAPACK layout (column-major) storage of matrices. Throughout this work we use
the GEMM routine as an example because it is the most widely used level-3 BLAS routine, and
the other level-3 routines consist mostly of internal GEMM operations. The BLAS specification
skeleton of GEMM is the following:

dtype Flags Sizes Scalar
~= ———
GEMM(TRANSA, TRANSB, M,N, K, ALPHA,

A, LDA, B, LDB,BETA, C LDC)
v \V_/ v _v_/\‘,_/ SN~
Data Ptr Ldim Data Ptr Ldim Scalar Data Ptr Ldim

First, the BLAS standard defines strictly that the routine name must include the routine
datatype. All other BLAS parameters can be split in 5 categories of interest; 1) flags/options, 2)
sizes/dimensions, 3) scalars, 4) data pointers and 5) leading dimensions/increments [[131]. From
these, we are interested in the routine datatype and size, which effect the communication and
computation volume of each problem, and the data pointers, which effect its communication

volume and pattern.

Table R.1| describes this notation which is used throughout this section, split in two categories;

routine-specific (e.g. for a single gemm problem) and data specific (e.g. A,B,C - the matrices of

38

Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Host -> GPU
texecT texecT texecT texecT GPU Compute
taonT taohT taohT taonT GPU -> Host
<« t3-way overlap >

Host -> GPU
texecT texecT texecT texecT GPU Compute
taonT taonT taonT ta2nT GPU -> Host

<« t3-way overlap —>
Host -> GPU
texecT texecT texecT texecT GPU Compute
taonT taonT taonT taonT GPU -> Host

<« t3-way overlap >

Figure 2.3: The forms a 3-way concurrency pipeline takes depending on the ratio of the h2d/d2h
transfers and the execution time of a problem, for £ = 4. The h2d-bound case (top) is dominated
by input transfers, forcing computation and d2h transfers to block waiting for input, while the
compute-bound (mid) is dominated by execution and the d2h-bound (bottom) by output d2h
transfers.

the gemm routine) values. Certain parameters (e.g. opd, dtype) are inferred directly from the
BLAS standard, others (e.g. D1, D2, D3) are problem-specific, while others are a combination of
both (e.g. get;, set;, S1;,.52;). We provide details on obtaining or instantiating these parameters
in Section .3. T is the optimization target parameter, namely the tiling size, and the formulas

for k, k;,, are defined later in this section.

2.2.2 GPU BLAS 3-way concurrency/overlap

3-way concurrency (or overlap) is a term referring to software pipelining, in order to overlap
CPU-GPU communication with GPU computation, for any problem that can be split in parts
without complex dependencies. Figure .3 shows an example pipeline using 3-way concurrency.
The problem is split into k smaller parts (henceforth sub-kernels) based on a tiling size 7', and
each sub-kernel’s completion requires 1) host-to-device (h2d) transfers for its input, 2) compu-
tation on the GPU and 3) device-to-host (d2h) transfers of its output. These 3 steps must be
executed serially for each sub-kernel, but can be overlapped with the similar steps of previous

and following sub-kernels, since they use different resources.

2.2. Modeling GPU BLAS offload 39

The most recent work on 3-way overlap modeling [[159] distinguishes between three potential
categories for any problem, outlined in the figure, and predicts total offload performance by
calculating its total (non-overlapped) h2d time, its execution time and its d2h time and comparing
them. Then, to account for the beginning and the end of the pipeline, which are non-overlapable,
it adds to this time the duration of the first and last transfer, which depend on the selected tiling
size T'. Consequently, for the example of Figure @, it assumes tp90 = tr‘,CQ a X ks tezec = tzxec x k
and tgop, = t:‘iFQ ,, % k, and calculates the final 3-way overlap time t;otq; = max(tpaq, tezec, tazn) +
tnon—over> Where t,on—over depends on which of the three sub-cases the problem belongs. Below
we list the shortcomings of this approach that deem it inapplicable for BLAS tiling size prediction

in practice.

Non-linear kernel execution times: By design, models that use the max of non-overlapped
times to predict total time make the assumption that if a problem is split in k£ subproblems,

and these are executed sequentially on the GPU, the total execution, h2d and d2h time will not

T

T ee X k and tgo, =~ th,, x k). This does not

change considerably (tpoq & tioy X kK, tegec & 1
hold for BLAS routines for three reasons. First, BLAS operations have internal dimensions and
dependencies, which, in the case of tiling, may require additional reduction operations or lead to
a change in the communication/computation ratio of the problem. Second, the performance of
level-2/3 BLAS kernels does not depend linearly on their working set [[16,131], since the problem
shape (e.g. square vs fat-by-thin matrix multiplications) influences performance. Third, if a
subproblem becomes too small, the GPU is underutilized and performance drops. Consequently,
the previous models are good for predicting performance for small k decompositions, where
sub-problems have similar properties with the original problem, but their accuracy degrades for

larger k which introduce latencies that are unaccounted for.

Arbitrarydata locations: While the input/compute/output volumes of BLAS routines as a func-
tion of their problem size is predefined, translating all input/output volume as transfers assumes
that all data is initially resident on the memory of the host CPU (henceforth full-offload). This
assumption does not hold if a kernel is executed iteratively, because some of the data may re-
main updated on the GPU between iterations, which is a very common scenario for BLAS [57].
Additionally, modern BLAS routines also allow mixed data configurations, where some of the
input data reside on the CPU and the rest are already available on the GPU. Since previous over-
lap models [65,106,[159] are analytical, the amount of communication volume (h2d/d2h transfer
bytes) is a model input that must be defined by hand. This deems their application very hard to
arbitrary BLAS input configurations, since the programmer must define all the potential data lo-
cation combinations and their corresponding communication volumes, creating different models
for each case. Instead, we want a model that also encompasses the location information to apply

it to any BLAS problem without loss of accuracy.

40 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Bidirectional overlap: 3-way concurrency goes beyond simple communication/computation
overlap, considering also bidirectional host-device overlap (h2d with d2h transfers). While mod-
ern GPUs have virtually separate copy engines for h2d and d2h, both engines utilize the same
communication medium and therefore simultaneous usage imposes a slowdown [[106,[159]. This
slowdown is asymmetric; usually the d2h transfers are more heavily affected, but the extent of
this effect depends on the underlying interconnect and is therefore system-specific [130]. While
this has been discussed in previous work, its hardware-specific effect on performance is hard to
predict [[159], so it has not been integrated in any overlap models. Consequently, overlap mod-
els have lower accuracy due to underestimating h2d and d2h transfer time, when these occur

simultaneously.

Data reuse: Data reuse refers to the case when in a tiled problem, part of the data required for a
subkernel’s execution is also needed by subsequent subkernels. In level-3 BLAS, it can be present
in all three dimensions of the problem. Unfortunately, while data-reuse is very important for
performance, it is very hard to model accurately. This is because the reuse pattern and percentage
are not effected only by the aforementioned problem and system parameters, but also by the
max GPU memory and even by each specific implementation of the routine in question. For
this reason state of the art BLAS 3 GPU libraries deploy efficient load balancing and execution

runtime tile management, and not static prediction mechanisms [57,157].

2.2.3 BLAS 3-way concurrency modeling

As shown in Figure P.3, in order to enable 3-way concurrency for a problem it is split to k equal
parts (sub-kernels). To calculate these parts, we split all problem dimensions, and use an equal
tiling size T" across them. This applies to level-1 BLAS, as well as level-2 and -3 BLAS square
tiling, with the latter being the typical approach in BLAS GPU libraries [124,157]. Thus, k is

given by:

D1, D2 D3
=7 iy
where D2 (D2 and D3) applies to level-2 (level-3) BLAS.

k

Then, modeling 3-way concurrency requires knowledge of the time required for each of the
overlapped parts (h2d, execution and d2h). To that end, we consider that the total time t;,4; is

a function of k and the individual times for h2d transfer ¢}, ,, kernel execution tZ, ., and d2h

transfer t1,, , for each sub-kernel generated for tiling size T. Since we want to also account

for latencies/overheads from splitting the problem to sub-problems, we do not calculate t{Q &
T
erec
T
t€$€€

and t1,, from the transfer and execution times of the original problem (e.g. t7,,; # thTQd,

=+ t”T“ and t§2 h td%). Instead, we consider the following sub-models that contribute to

2.2. Modeling GPU BLAS offload 41

the total offload time:

)
thon = fo(system, dtype, T, T])
= fg(routine, dtyp€7 T[7 T[a T]])

thog = fi(system, dtype, T[, T
T]
tz—‘xec

where t%; & th ;, are the system-wide transfer times for a single tile of size T’ (if it is a vector) or
T x T (if it is a matrix), and t7,_,

D1]= D2[= D3]] = T. These times are empirically collected in the CoCoPeLia framework
(more in Section P.3).

is the BLAS routine-specific execution time for a kernel where

We assume that in the 3-way-concurrency scenario, each subkernel execution on the GPU
is overlapped with 1) the subsequent subkernel input and 2) the previous subkernel output, in a
pipelined manner [65,[159]. Under the assumption that all data initially reside on the CPU and are

both input and output data, the 3-way-concurrency execution time for a BLAS routine is then:
t?gf;lline = max(tz;rem Opd : tz;Zdv Opd ’ t§2h) X (k - 1) + Opd ’ t’}l;Qd + tgxec + Opd ’ tZl;h (2'1)

Where the max part of the equation estimates the overlap-able part and the remaining equation
the start/end of the pipeline that cannot be overlapped. As an example for Figure P.3 (where
opd = 1), the max term corresponds to the part dominating the pipeline time in each case (1.,

(top), tL ... (mid), tgz ;, (bottom)) and the remaining part to a single sub-kernel’s tZQ & tI' . and

> Yexec exec

t1,, that are not overlapped due to dependencies.

2.2.3.1 Data Location Modeling

In practice, Equation .1 overestimates transfers to and from the GPU; by including the opd mul-
tiplier, we assume that all data is both input and output data and therefore must be transferred,
and that all data is initially on the CPU. To avoid this, we define the get;, set; flags, which deter-
mine which of the opd tiles require to be fetched to the GPU or returned to the host. These values
are extracted from the BLAS routine and the data pointers for each input/output vector/matrix
during runtime. Then, we define ¢}, and ¢, as the time required to transfer all tiles for which

get; = 1 and set; = 1, respectively, as follows:

opd opd

t% = deti : t%d and t:{ut = Z set; - th2h
=0 1=0

42 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Host -> GPU
texecT texecT texecT EtexecT GPU Compute
taon?T tgonT ta2nT ta2nT GPU -> Host
- tiotal >
loc
< total >

Figure 2.4: The effect of bidirectional slowdown for the d2h-bound problem of Figure .3. When
performing h2d and d2h transfers simultaneously in the pipeline (dotted lines), both ¢7,,, and
tL,, increase, but due to the partial overlap of some transfers (denoted as t{Th2 dd2h}?), predicting
the exact time for this area is not straightforward. This results in a total time underestimation
when using the 1% model for h2d/d2h-bound problems.

Following the notion of Equation .1, the location-aware execution time of a BLAS problem
using 3-way concurrency is:

th 4T) x (k—1)+tF +¢L + L (2.2)

loc __ T
ttotal - max(t in» “out exec out

exrec)

2.2.3.2 Bidirectional Slowdown Modeling

Figure .4 shows the d2h-bound example of Figure P.3 in a more realistic scenario where simulta-
neous h2d and d2h transfers impose a slowdown on both sides. To account for this phenomenon
in our models, we first need an estimation for the bidirectional transfer time t{m d,d2h} bid of a
h2d or d2h transfer, when the opposite link is also in use. To this end, we define the slowdown
factors slp24 bid, Slaen vid for each direction as scaling factors applied to transfer time, in the
case the opposite direction is also in use for the whole duration of the transfer. We estimate
the slowdown factors empirically in the CoCoPeLia framework (Section P.3). t?hQ d,d2h} bid then

become:
T _ T
t{h2d,d2h} bid = 8l{had,d2n} bid - t{h2d,d2n)

However, full bidirectional overlap only applies in practice if t1,, = t%,,. In a common case,
T .
i

two simultaneous opposite transfers have different duration, and the total overlap time ¢,

s
split in two parts; 1) the part during which actual overlap occurs and 2) the single-way transfer

of the remaining partially-complete transfer:

T T

T th2d7bid_td2h7bm T T
taoh bid T = slhgq s W thoq via = taok bid

h2d_bid

T

tover - (2'3)

tT € thh_bid_t{2d_bid otherwise

h2d_bid 5ld2hibid ’

2.2. Modeling GPU BLAS offload 43

Dy D3/T reductions
D3:3T \

D{=2T

Transfers(PCle)

GPU execution

[]

]

Figure 2.5: An example of the 3-way concurrency pipeline for a gemm implementation which
iterates through the tiles of the M, N, K dimensions, for a problem with ¢, <t < 2-tI, .
Data reuse results in roughly two areas; one where the problem is h2d bound, and one where its
execution bound, a scenario previous approaches cannot account for.

The fraction in the equation corresponds to the time required to transfer the remaining part of the
longer transfer. Equation R.d therefore evolves to account for bidirectional overlap as follows:

o =max(tl T) x (k—1)+tF +¢L +tT . (2.4)

exec) “over exrec

2.2.3.3 Data Reuse Modeling

All previous models are not accurate for optimized level-3 BLAS problems, as they do not ac-
count for data reuse. Reuse exists in both level-2 BLAS (vector reuse) and level-3 BLAS (matrix
reuse), but is mostly relevant to level-3 BLAS performance. Figure R.5 shows an example of a
level-3 BLAS routine with data reuse. Initially, the problem is transfer-bound. Then, h2d trans-
fers decrease due to data reuse, and the problem becomes execution-bound. The example refers
to a specific t],,, tL,.. ratio, and the amount of reuse and this ratio can significantly alter per-
formance. We construct a generic model, for the ideal reuse case, namely full reuse, where all
available tile reuse potential is utilized.

Given the tiling size T, we can compute how many tiles an initial matrix ¢ of dimensions S1;,
S52; is split into, as follows:

Sl 52

tiles; = T T,i:0—>0pd

In level-3 BLAS, we opt to account for the transfer of tiles only once, assuming that they

then become available for all subsequent subkernels that use them. In reality, this creates four

44 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

subkernel categories; 1) subkernels that require three input tiles 2) subkernels that require two
input tiles, 3) subkernels requiring a single tile and 4) subkernels which have all input available
by previous subkernel transfers. Previous models and Equation .1, 2.2, .4 do not distinguish
between these categories; the first two assume that the data volume is equally distributed among
kernels because of their top-down approach, and the later assumes all subkernels belong in the
first category. In reality the first category contains only the first subkernel, since afterwards
at least one of its tiles will be used by subsequent invocations, and the transfers for this sub-
kernel are already accounted for separately because they can’t be overlapped. Additionally, the
number of subkernels belonging in the second and the third category are very hard to split, since
they depend on the specific tile distribution algorithm. We therefore avoid splitting them and
categorize them together in order not to complicate the model. Consequently, we compute the
number of subkernels among the & total subkernels that require one or two tile transfers, as

follows:
opd

kin = Z(geti -tiles; — 1)
i=0
For a more optimized implementation, the larger percentage of k;, collapses to single tile
transfers. We follow this assumption for our final 3-way-concurrency offload time model with

reuse, which is given by the following model:

T T T T T
;(()ital = max(th2d7 tea:ec) “kin + legec (k - km) +tin + tow (2'5)

2.2.4 Model application per BLAS level

Due to the difference in input types and communication/computation ratios, different BLAS lev-
els have different model requirements. For the rest of this work, we apply the introduced 3-way
concurency models to different BLAS levels as follows:

Level-1 BLAS routines perform vector-vector operations and their working setis D1 = N. These
transfer-bound routines have no working set overlaps and are therefore modeled effectively by
Equation @

Level-2 BLAS routines perform matrix-vector operations and have two problem dimensions
D1, D2 where D1 is the output vector length and D2 is the remaining dimension of the multi-
plied matrix. While there is a minor working set overlap among sub-kernels for the vector, it is
relatively small (D1) compared to the matrix dimensions (D1 x D?2), and therefore Equation 2.4
is still sufficient for modeling them.

Level-3 BLAS routines perform matrix-matrix operations and have 3 problem dimensions D1, D2
and D3 where D1, D2 are the output matrix dimensions and D3 is the internal matrix multi-

plication dimension. Splitting D3 results in % reductions of size D1 - D2, which increase the

2.3. Runtime framework integration 45

problem computations, but benefit tiling and transfers. Although Equation P.4 can provide an
estimate for the offload time of many applications, optimized implementations that employ tiling
and data reuse lead to higher performance. Since our focus is tiling size selection for state of the

art performance, we devise Equation .5 to account for data reuse in level-3 BLAS.

2.3 Runtime framework integration

After presenting 3-way concurrency prediction models for BLAS routines on GPUs, we now
turn our attention on how to utilize them in practice. Transitioning from analytical modeling of
3-way concurrency to the integration of tile autotuning into a practical, end-to-end implemen-
tation involves numerous challenges. The first is that BLAS parameters only become available at
routine invocation, which directly forces a runtime-autotuning approach. This in turn requires
that the autotuning process should be fairly lightweight, to avoid autotuning overheads pour-
ing into BLAS end-to-end performance. Then, our 3-way concurrency models also require some
sub-models and/or empirical measurements that differ per system and routine. Finally, all the au-
totuning process must be integrated with state-of-the-art scheduling and execution mechanisms,
to avoid implementation-based latency from effecting total performance.

Taking all these into account, we present the CoCoPeLia framework, which handles all the
necessary steps including the automatic instantiation of the model for a specific machine and
the development of a proof-of-concept library that utilizes the model itself at runtime. Figure .4
shows the complete CoCoPeLia framework. At the heart of the framework lies the Tile selection
runtime which employs the prediction models described in detail in Section .4, The deployment
module feeds the runtime with the proper transfer and execution sub-models (predictors for t%Q &
t:‘iFQ , and tfm, slpad_bid> Slazn,ia — details in Section) while the library implements an opti-
mized subset of the BLAS prototype on top of basic GPU BLAS kernels (details in Section .3.3).
During application execution, when a BLAS routine with a specific set of parameters is invoked

for the first time, the CoCoPeLia model is consulted in order to pick the best tiling size.

2.3.1 Deployment: Empirical initialization of model coefficients

To instantiate the models of Section .2, we first model the transfer time of the target system, with
a semi-empirical approach. We perform a set of micro-benchmarks offline and use them to fit the
coefficients of basic linear models for transfer time. We use the well-accepted latency/bandwidth
model [[16,21,65,106,159], which estimates transfer time as a function of bytes. In our case, the

latency/bandwidth model for host-to-device transfers takes the form:

bytes
t£2d =t;+tp- (T[T]- sizeof (dtype))

46 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

M

icro- (Empirical Transfer Models

benchmarks
|) tho4(bytes) tgon(bytes)
‘ System slh2d_bid sla2h bid
WI1S€ \)
r st ¢

Routine > texec(TLTLTI)
WI1S€ L File

| Deployment Phase ' '

BLAS Routine | | Result
. " Same Param
Invocation .
: yes
Id ,
\ 4

s N

/ . \ Backend Wrapper

CoCopeLia_select cuBLAS Kernels
\ J
CoCopeLia_predict P A
Tile scheduler
No-reuse: Reuse: Square Tiling
Eq. 4 Eq.5 L CUDA Streams)

e N

N 7, A

Tile selection Runtime Initialization
(Buffers, Streams etc.)
\ A J/
Thest Library

Figure 2.6: The CoCoPeLia framework pipeline. During the offline deployment phase the frame-
work performs micro-benchmarks. Then, when a BLAS routine is invoked with some problem
parameters for the first time, the tile selection runtime uses them in conjugation with the values
obtained during deployment to predict the best tiling size T for this problem. Finally the library
is invoked to perform the operation for the given Tj.s; and produce the routine result. In case
the routine has been called with the same problem parameters before, all unnecessary steps are
skipped and the previous tiling scheme and T, is reused.

As discussed, we assume that bidirectional overlap imposes a constant slowdown (s/) to transfer,

and therefore the bidirectional transfer time can be estimated by:

thad bid = Slhad X thad

2.3. Runtime framework integration 47

Table 2.2: Transfer sub-models for the two testbeds.

System
|t | 1/t | RSE [1/t,bid. | RSEbid. | sl
Testbed I (Nvidia Tesla K40)
h2d || 2.4e75 | 3.15¢” | 1.1e7 % | 2.94¢7 | 2.7¢76 | 1.07
d2h || 2.2¢7% | 3.29¢” | 2.1e7% | 2.84¢? | 3.4e7° | 1.16
Testbed II (Nvidia Tesla V100)
h2d || 2.5¢79 [12.18¢% [1.7¢ % | 9.59¢° | 3.4e % | 1.27
d2h || 2.5e7% | 12.98¢” | 2.8¢76 | 9.21e” | 4.2¢76 | 1.41

Similarly, t£2 h» ta2n_vig are modeled with the same equations. Therefore, the system-wise transfer
parameters required for prediction are ¢;, ¢, and sl for h2d and d2h (six in total). To fit these
coeflicients, we conduct a set of micro-benchmarks, subset of those proposed by Pearson [[130].
For all transfer experiments, we use the cublas {Set/Get }MatrixAsync routines for
h2d, d2h transfers respectively, with pinned host memory, as required by these asynchronous
calls. We obtain ¢; empirically as the average latency of multiple single-byte transfers. For ?,
we run benchmarks for square transfers with dtype = double, for D1 = D2 = 256 w
maz_device_memory /2, and follow the same approach for sl, but couple the entire transfer
with a concurrent transfer towards the opposite direction. We use least square regressions on
the 64 samples to compute ¢, both in the case of uni-directional and in the case of bi-directional
transfers, excluding ¢; from the transfer time during the regression (assuming zero intercept), in
the manner of [[75], and then estimate sl. We ensure the statistical robustness of the empirical
values by collecting repetitive measurements, until the 95% confidence interval of the mean falls
within 5% of the reported mean value, for all micro-benchmarks. The micro-benchmarks for
transfer times are lightweight (requiring less than 10 minutes and less than 3 minutes on Testbed
Iand II, respectively), and only need to be run once on every new system CoCoPelLia is deployed.
They can either be performed automatically when a BLAS GPU library is installed in a system,
or by hand when a domain scientist plans to port his application which uses said library to a new

system.

Table .4 contains the obtained values for the two testbeds used in this work, described later
in Section P.4. The displayed 1/t; is equal to each system’s PCle bandwidth for each direction.
Testbed II has almost 3 x higher bandwidth than testbed I, but also has much larger bidirectional
slowdowns sl for both directions, indicating that overlapping h2d and d2h transfers is not going
to be as effective. The least square regression coeflicient p-values for ¢; and sly;4 are < 2.2e — 16,
and the RSEs are between 1 and 4.2¢=%, which is comparable to ¢;, which means the model is

not be very accurate in describing transfer latency. This might pose a problem in modeling very

48 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

small transfers, but since the T size maxima reside far above those areas, this is acceptable for
our approach.

Second, we estimate routine GPU execution time. We are only interested in the time of fine-
grained chunks of specific small tiling sizes, therefore we measure the execution time for a set
of tiling sizes T for each routine, store them and perform value lookups at runtime, for usage
in our models. The usage of empirical estimates is favored by the tiled execution and the non-
linear execution time assumption in CoCoPeLia, since micro-benchmarks for these chunks are
much more lightweight than an approach that would require the full problem’s execution time,
as in [[159]. For example, empirically estimating the execution time for a gemm problem of size
M = N = K = 32K using T' = 2048 would require teges_routine(M, N, K) for [159], while for
our case teges routine(1, T, T'), which requires 4096 times less computations, would be sufficient.
To measure the GPU BLAS execution time, we use cuBLAS, but given that kernel execution is
wrapped and all libraries follow the BLAS standard, this benchmarking method is applicable to
any BLAS GPU library with minimal adjustments.

We choose three representative routines; axpy for 1D splitting and gemm for single and dou-

218

ble precision for square tiling. For daxpy, we run 256 benchmarks for D1 = N = 218 g,

226 For dgemm and sgemm, we use 64 benchmarks with square dimensions D1 = D2 =
D3 = 256 222, 16384 for value lookup of tiled sub-kernels. Therefore, the sub-model ¢, .
can only predict time for these 380 and 64 tile sizes (via direct value lookup) for daxpy and
gemm respectively. We repeat the micro-benchmarks, until the 95% confidence interval of the
mean falls within 5% of the reported mean value. The required time for the benchmark execution
is less than 6 minutes for each routine on Testbed I, and less than 2 minutes on Testbed II.
CoCoPeLia automates the micro-benchmark execution on any new system without modi-
fications. Upper limits for the required benchmarks are extracted based on the available GPU
memory. Additionally, CoCoPeLia can be easily extended for any BLAS routine by modifying

the existing micro-benchmark template scripts with the new routine and its parameters.

2.3.2 Tile selection runtime: Tiling size autotuning

The CoCoPelLia runtime includes two functions for tile selection. The function CoCoPeLia
predict combines the empirical values obtained at deployment with the problem-specific pa-
rameters used in the BLAS routine invocation listed in Table .1, to provide the execution time
of a BLAS routine, as a function of the tiling size T', using Equation .4 and P.5 for cases with-
out and with data reuse. The problem dimensions D1[, D2[, D3]] are inferred from the BLAS
dimensions M, N, K, and S1;, S2; are then calculated based on the above. Finally, get;, set; are
obtained by querying the pointers of the respective ¢ — th data structure (e.g. matrix, vector)

using cudaPointerGetAttributes. The function CoCoPeLia_select is used to

2.3. Runtime framework integration 49

provide the best tiling size 7" for a specific problem, using the CoCoPeLia_predict routine
to find T}es, which minimizes the total offload time, by iterating through all sizes T’ obtained at
deployment for the target routine. The function can be extended to include different optimiza-
tion criteria (e.g. GPU utilization, memory etc.). We have measured model initialization to take
2-3 ms and prediction time to be negligible (less than 100 ps).

The extension of the CoCoPeLia Tile selection runtime with additional BLAS routines, be-
sides the micro-benchmarks explained in R.3.1}, requires the following modifications: i) the ex-
tension of a skeleton for a CoCoPeLia_{routine}_init function, that matches the rou-
tine’s parameters to the struct with the model parameters of table .1, and ii) the selection of a
CoCoPeLia_predict_{ModelName} function for Tile prediction of this routine. The ex-
tension of CoCoPeLia with new prediction models is possible by defining a new CoCoPeLia_
predict_{ModelName}. However, if any additional parameters are required, the struct of

table .1 must be also modified accordingly.

2.3.3 Library: Task orchestration

While selecting an appropriate tiling size T' should suffice for a 3-way concurrency optimized li-
brary to achieve near-optimal performance, existing libraries do not optimize level-1 and level-2
BLAS routines, while cuBLASXt and BLASX often result in less performance than what Equa-
tion .5 hints. To validate the accuracy of the proposed data-reuse model and fill this performance
gap, as a part of CoCoPeLia, we implement an optimized end-to-end library for a subset of the
BLAS prototype on top of state-of-the art primitive libraries.

We use cuBLAS as the GPU execution and data transfer backend, utilizing cublas {Dtype}
{Routine} and cublas{Set/Get} MatrixAsync routines respectively. For 3-way
concurrency, we use CUDA streams, utilizing one stream per operation (h2d transfer, d2h trans-
fer, kernel execution). The tile splitting, address matching and distribution (tile scheduler) are
implemented based on the square tiling approach (as implied in Eq R.5), also used by [124, [157].
After calculating these, the tile scheduler hands over all underlying transfers and execution to the
aforementioned cuBLAS calls. Additionally, we enable GPU buffer and CUDA stream reuse after
the first routine call, to avoid allocation/de-allocation overheads, as proposed by BLASX [157] to
emulate an iterative use-case scenario. Finally, CoCoPeLia routines support either passing the
tiling size 1" as an extra BLAS parameter, similar to cuBLASXt, for validation reasons, or using
CoCoPeLia_select internally to predict T35 during invocation. CoCoPeLia routines also
take advantage of model reuse in the second case; they initialize the corresponding model only
the first time a user makes a call to CoCoPeLia with a set of parameters (routine, problem size,
flags, etc) and use the preobtained T, in subsequent calls. The tile scheduler is generalized

per BLAS-level. To add a new BLAS routine that utilizes the tile scheduler requires the creation

50 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Table 2.3: Testbed characteristics

Testbed I Testbed II

CPU Intel Core i7-4820K | Intel Xeon Silver 4114
3.7GHz 2.2GHz

GPU NVIDIA Tesla K40 NVIDIA Tesla V100

FP Peak 4.3 TFlop/s | FP Peak 14 TFlop/s
DP Peak 1.4 TFlop/s | DP Peak 7 TFlop/s

PCle Gen2 x8 Gen3 x16

Compiler (host) g++4.7.2 g++7.5.0

Compiler flags -03, -lm, -std=gnu99 | -03, -Im, -std=gnu99
CUDA 9.2 9.2

Compiler flags (GPU) | -O3, -arch=sm_35 -03, -arch=sm_75

of a routine wrapper, since the specifics of each BLAS operation differ, but transfer/ execution
overlap is then achieved by the tile scheduler without modifications. The underlying backend
functions are wrapped and can also be modified, as long as an overlap mechanism similar to
CUDA streams is available.

2.4 Experimental evaluation

In this section, we evaluate the CoCoPeLia framework for three example kernels; daxpy, sgemm,
and dgemm. First, we present our experimental setup, and describe the micro-benchmark and
validation sets we used. Then, we validate the proposed 3-way concurrency time prediction
model error and the ability of CoCoPelLia to select near-optimal tile sizes. Finally, we present
the end-to-end performance achieved with CoCoPeLia using our own 3-way concurrency imple-

mentation coupled with automatic tile selection, and compare it with the state of the art.

2.4.1 Experimental setup

We perform experiments for the validation of our models and the evaluation of CoCoPeLia on
two different testbeds, the details of which are presented in Table R.3, along with the infor-
mation on code compilation. For time measurements we use clock_gettime, with device
synchronization (cudaDeviceSynchronize ()) also included; both timer and synchro-
nization overhead were less than 1% of the benchmarked times. We perform 100 executions for
each benchmark, after a warmup run, not accounted for, and we report the average time for all
models, unless otherwise noted. The allocation time needed for CPU/GPU buflers is not modeled
or included in the total time, and all matrices/vectors are initialized with random values before
execution. We use pinned host memory to enable Async CUDA calls and the cashes/buffers are

not flushed between runs.

2.4. Experimental evaluation 51

2.4.2 Validation sets

To validate different initial memory locations and problem sizes, we select four large problem
sizes (N = {8,64,128,256} - 22Y) for daxpy, for all 22 — 1 = 3 location combinations (15
problems). Similarly, for sgemm and dgemm we want to validate different locations, problem
sizes and shapes. We use four square problem sizes M = N = K = {4,8,12,16} - 2'°, for
all 22 — 1 = 7 location combinations (28 problems) to validate the location-problem size, and
3 problem sizes with M - N - K = {4,8,12,16} - 2193 for 3 fat-by-thin ratios M = N =
K- g,r € [3,4,5] and 3 thin-by-fat ratios M = N = K - & r € [3,4,5] for the scenario of
all data initially residing on the CPU (24 problems). We exclude the scenario where all data is
located on the GPU, since there is no overlap. All selected problem sizes can fit in the device
memory; we do not consider larger problem sizes since that would require a considerably more
sophisticated implementation of overlap with memory constraints, which is outside the scope of
this work. For each problem size, we measure the execution time ¢ of 1) the CoCoPeLia wrapper

and 2) cuBLASXt, for all tile sizes T' = 1024 M) 16384 for which T' < w.

2.4.3 Time prediction validation

We first focus on validating the prediction ability of our bidirectional transfer overlap-aware
model of Equation @ hereafter referred to as BTS-Model, and our data reuse-aware model of
Equation @, hereafter referred to as DR-Model, used in t,yer = CoOCoPeLia_predict of
Figure P.§. We examine their error over measured execution time and compare their predictive
power against the analytical CUDA stream overlap model with two copy engines, proposed in
[159], hereafter referred to as CSO-Model. We evaluate the percentage (relative) error e =
100 - (tpredicted — tmeasured)/tmeasured- We highlight that both models include empirical parts,
which impose second order errors. Nonetheless, the comparison between different models is fair,
as we rely on the same micro-benchmarks to collect the empirical values. In our observations
bellow we take into account the bias this approach imposes on negative errors.

We first validate the prediction accuracy of the BTS-Model, which is suitable for problems
without data reuse between subkernels, using the level-1 BLAS daxpy, which does not reuse
data, and cuBLASXt sgemm and dgemm, which do not sufficiently utilize data reuse to minimize
transfers [57, 157]. Figure R.7 shows the relative error distribution for daxpy, sgemm and
dgemm, for both testbeds, in the form of violinplots. First, we note that, on both testbeds, the
BTS-Model achieves very high prediction accuracy for daxpy with median errors between 1
to 2%, while the CSO-Model underpredicts execution time with median errors between -3% to -
7%. This is attributed to the CSO-Model not accurately modeling the actual bidirectional overlap,
and is more evident on Testbed-II, where the slowdown is larger on both directions. Second,

for both sgemm and dgemm, the prediction error is higher. The CSO-Model again significantly

52 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

testbed-I testbed-I1
100 - Dgemm
50 -
~50 - '
—100 -
3
\: 100 - Sgemm -
o
= 50 -
w
.0
T —50 1 -
2
© —100 .
o
100 Daxpy
50 -
0 - * —+— - Y —+—
_50 - -
—100 - -

B CSO-Model [11] [BTS-Model

Figure 2.7: Error distribution of the CSO-Model and the BTS-Model for daxpy and
cublasXt_{D, S}gemm without data reuse on testbeds I and II.

underestimates the execution time in almost all cases, with median errors between -20% to -34%.
On the other hand, the BTS-Model demonstrates smaller median errors between -10% to -15% and

a better error distribution with no bias towards underprediction.

We then validate the prediction accuracy of the DR-Model, using our aforementioned im-
plementations for sgemm and dgemm, in the CoCoPeLia library, which have near-optimal data
reuse on single-GPU scenarios, when the problem fits the GPU memory. Figure P.§ demonstrates
the relative error distribution on both testbeds. The CSO-Model underestimates execution times,
similarly to the cuBLASXt case in Figure .7, however with fewer underestimations with errors
ranging from -20% to -60% and a lower median error of -7% to -15%. Again, our DR-Model is
significantly more accurate, with median errors ranging from 2% to -5%, and a few high posi-
tive errors (overestimations). It is interesting to note that both models exhibit higher errors for
sgemm, where the memory footprint is half than the equivalent of dgemm, and smaller prob-
lems are more prone to second order errors from the empirical value acquisition. Additionally,

our DR-Model is more accurate for Testbed I, than Testbed II. This is due to spikes in performance

2.4. Experimental evaluation 53

testbed-1 testbed-I11
40 7 Dgemm |
20 o -
0 - +
2 T]
—40 - -
—60 - -
S\i 40 7 Sgemm]
5 20 .
G0- .
P PP <+
B —40 - -
T 60 - -
a

B CSO-Model [11] B DR-Model

Figure 2.8: Error distribution of the CSO-Model and the DR-Model for our CoCoPeLia wrapper
BLAS implementation of sgemm and dgemm on testbeds I and II.

on the NVIDIA Tesla V100 GPU of Testbed II for cublas_{D,S}gemm, which are not present in the
NVIDIA Tesla K40 of Testbed 1. We attribute these to the more complex GPU architecture of the

former.

2.4.4 Validation of tiling size selection

Subsequently, we validate the CoCoPelLia tiling size selection ability when used in practice. The
target of the CoCoPeLia framework is to predict the tiling size that leads to near-optimal per-
formance. We hence consider the following scenario: for all validation cases in Section p.4.9, we
explore the performance achieved by the prediction of each model, and how this compares with
a good baseline tiling size and the maximum achievable performance, using the optimal tiling
size Topy.

Figure P.9 shows the results of this comparison for dgemm and sgemm on Testbed II. The se-
lected baseline tiling size is 7' = 2048. First, the CSO-Model mispredicts the optimal tiling sizes
in both cases leading to performance degradation compared to the baseline. This happens mostly
because the CSO-Model does not take into account the non-linearity of execution time, which re-
sults in favoring small tiles with limited performance. Additionally, it is evident that the baseline
is enough to provide near-optimal performance for Figure .94, where even T, provides a me-
dian performance improvement of 1%, and a maximum of 10%. The CoCoPeLia models provide

performance close to the baseline, with the DR-Model surpassing its performance, but less than

54

Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

4 6= (XX L]}
14000 g ® 0e®8v 9§ 3
—] " 4 2 1.1 4 [}
<] ¥y =2 ® s
2. 12000 o ¥] + ++ + g
o + +09 v + + s 1.0 4
= ® ® +3 ++ + + b=
&) = L4 al + 5}
= 10000 ® + + + + & 09 -
8 1. ¥e 1 3
-] + + N
3 i [] + + = 08 - ¢ ¢
g 8000 LI +0 g
< o + 5 07 -
S 6000 - o L z
=% + ?
® Z 06
4000 . 3 ‘
T TT T TT &)
V T
+ CSO-Model [11]
Baseline-Model (1)
Dataloc-Model (2)
BTS-Model (4)
({M,N,K}-2'° {A,B,C}loc = {GPU :0,CPU : 1}) ® DR-Model (5)
(a) Sgemm
4 (X2 L% X
7000 3% o Sogoege .] L B 8
2z e 5 ®] £ 12 -l—
£, 6000 1 . o £
Y w + + ++ + + £ 114
% !. (] [] + | ® ++ A + aq? ‘
§5000_ g N + *LEtE ¥ 2 1.0 T
+ N
=1 + . + + =
g 4000 o O+ (] ® g 09 4
3 i gl | 2
A 3000 .] > 0.8
b E=]
= 07 $
~
vV T
+ CSO-Model [11]
Baseline-Model (1)
Dataloc-Model (2)
BTS-Model (4)
({M,N,K}-2'° {A,B,C}loc = {GPU : 0,CPU : 1}) ® DR-Model (5)

(b) Dgemm

Figure 2.9: Evaluation of Tile selection ability for Sgemm (a) and Dgemm (b) on testbed II. The
baseline performance (gray bars) is acquired using a static tiling size 7 = 2048, also used by
BLASx. We compare this against the experimentally achieved performance using the optimal
tiling size for each problem, 7' = T, the performance achieved using the tiling size predicted
with the CSO-Model [159] and c) the performance achieved using T' = T, returned by
CoCoPeLia_select using Equations .1, .7, .4, B.5 respectively.

1% (which is close to the T5,,; median). On the other hand, in the case of Figure , Topt is able
to provide improvements of a median of 13.5% and up to 20%. In this case, the incremental im-
provement of each CoCoPeLia model is more evident; the Baseline-Model (Equation P.1) provides
a median speedup of 7%, the Dataloc-Model (Equation .3) and BTS-Model (Equation R.4) both
provide median improvement of 10%, and the DR-Model (Equation .5) provides 12% improved
performance, which is very close to the 77,,; median. We note that bidirectional slowdown, con-

sidered by the BTS-Model, does not significantly affect the performance of gemm, which requires

2.4. Experimental evaluation 55

--&- CUBLASXt Sq. C:CPU mem --&-- CUBLASXt Sq. Data:CPU mem CUBLASXt Fat-by-thin-8 Data:CPU mem
--#-- BLASX Sqg. C:CPU mem --#-- BLASX Sq. Data:CPU mem BLASX Fat-by-thin-8 Data:CPU mem
—— CoCoPelia Sg. C:CPU mem —— CoCoPelLia Sqg. Data:CPU mem CoCoPelia Fat-by-thin-8 Data:CPU mem
- Dgemm@testbed-I - Dgemm@testbed-II
w 1.2 E— v
%) %)
o [oX 6
© 1.0 o
= =
2 08 ; - >
S a2 © 4
S 0.6 o
£ £
s 0.4 o 2
h= h
& o2 &
v 3.0 v 15
[%) (%)
o) a
o 25 o
= =
~ 2.0 Z 10
(0] 4]
g g
G 1.5 G
£ E 5
s 1.0 o
h= h=
L os &
4 6 8 10 12 14 16 4 6 8 10 12 14 16
Problem Size (N-210 x N-210) x N-210 Problem Size (N-2%0 x N-210) x N-21°

Figure 2.10: dgemm and sgemm performance evaluation for various problem sizes on testbeds
LII. We use three scenarios with different transfer-to-computation ratios: 1) M = N = K with
A, B on the GPU and C requiring update from the CPU (blue), 2) M = N = K with A, B, C on
the CPU (red) and3) N = M = % with A, B, C on the CPU (green).

fewer d2h than h2d transfers. Its impact is more evident in level-1 BLAS functions with similar

transfers to and from device memory.

2.4.5 Performance evaluation

To evaluate the end-to-end performance of the runtime scheme proposed in Figure .4, we extend
the validation set of Section R.4.9. For daxpy, we select 11 large problem sizes N = (1 Step=N2,
1024) - 229 for all three location combinations. For sgemm and dgemm, we select 25 square
problem sizes M = N = K = (4 Hep=05,

for all thin/fat ratios of the aforementioned validation set. Overall, we evaluate 33 problems for

16) - 219 for all seven location combinations and

daxpy and 325 for dgemm and sgemm.

We compare the performance of CoCoPeLia sgemm and dgemm against cuBLASXt and
BLASX. These are both multi-GPU libraries, but cuBLASXt is the state of practice and BLASX
offers the most performance for transfer-bound cases, deeming them the most relevant compar-
ison targets for single GPU 3-way concurrency. We compare the performance of CoCoPeLia

daxpy against a unified memory implementation with prefetching. Our BLASX results use the

56 Chapter 2. Near-optimal single-GPU BLAS offload via model-based autotuning

Table 2.4: (geo)mean percentile CoCoPeLia performance improvement over state of the art GPU
BLAS libraries.

’ System Testbed I H Testbed II
Offload Scenario | Full | Partial || Full | Partial
daxpy 21.5% | 9.4% 19.9% | 9.1%
dgemm 16.2% 5.8% 32.2% | 15.6%
sgemm 20.6% 5.7% 33.3% | 15.7%

library default - static - tiling size 7" = 2048. For cuBLASXt, which accepts the tiling size as an
input parameter, we test 10 different tiling sizes and choose the best for each problem. We note
that this nearly-exhaustive tiling size selection gives a performance advantage to cuBLASXt over
BLASX.

Figure visualizes the performance of the three libraries for dgemm and sgemm on our
two testbeds, for three scenarios of problem sizes and data locations. We first note that BLASX
outperforms cuBLASXt in fat-by-thin matrices, while cuBLASXt shows better performance in the
low transfer cases, where only the C matrix resides on the CPU. Second, CoCoPeLia outperforms
both BLASX and cuBLASXt in all three scenarios. For the low-transfer scenario (blue), its per-
formance is on par with cuBLASXt, but it considerably outperforms the other two libraries for
the full offload scenario (red) and the transfer-heavy fat-by-thin matrix multiplication (green).
Third, CoCoPeLia provides better relative performance on testbed II, which has a lower band-
width/FLOP ratio and therefore transfers are a bigger bottleneck.

In Table .4 we summarize the mean percentile performance improvement of CoCoPeLia
over the best among the two other libraries for each problem size, calculated using the geometric
mean of the fraction of their times, respectively. We separate full and partial offload cases for
reference with relevant literature, where full offload refers to all data residing on the CPU, and
partial offload to some of the data residing on the GPU. The results are similar to the outlined
cases in Figure P.10; CoCoPeLia outperforms the other libraries by 16-33% in the full offload case
and 5-15% in the partial offload case, indicating that it is able to improve cuBLAS performance

without architecture-specific tuning or bias towards specific data shapes.

CHAPTER 3

Extending model-based autotuning for multi-GPU

and heterogeneous systems

This chapter describes the extension of our single-GPU modeling and autotuning approach to
multi-GPU and heterogeneous systems. We first briefly overview the differences between single-
and multi-GPU systems, and provide a brief background on the difficulty of multi-GPU BLAS
optimization (Section B.1.d) and the resulting shortcomings of previous multi-GPU BLAS libraries
(Section B.1.3). Then, we describe the extension of CoCoPeLiA into PARALiA (Section B.2), an end-
to-end multi-GPU BLAS framework that combines modeling and autotuning to enable portable
communication optimization and device selection. Finally, we evaluate PARALIA’s performance

and energy efficiency and compare it with previous SoTA libraries (Section B.3).

3.1 Problem formulation

Multi-GPU libraries allow input data to reside on host memory, GPU memory, or a combination of
both and internally manage all data distribution and computation on multiple devices. Our work
focuses on level-3 BLAS routines similar to most existing multi-GPU BLAS libraries [[11,54,57,61,
68.,[124,125,157,161]. The optimization of level-1 and level-2 BLAS still left to the programmer due
to their usually smaller impact on total application performance. In this section, we first show the
low performance and energy efficiency of current multi-GPU BLAS libraries in modern systems,

which motivates us to explore multi-GPU BLAS optimization. Then, we present the performance

57

58 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

1.BLASX 2. XKBLAS B 3.PARALIA
GEMM (M=N=K=4096) GEMM (M=N=K=8192) GEMM (M=N=K=16384)

IR I (TR T I |
IR TR TR I

All-data- CPUOUtput -GPU \nput- GPU All-data GPU All-data” -CPU Output GPU \nput- -GPU Al-data” -GPY All-data” -CPY ‘Output- -GPU \nput- GPU All-data -GPU

Perf.
(Tflops)

Energy eff.
(Gflops/W)

Figure 3.1: The GEMM performance (top) and energy efficiency (bottom, using the power-delay
product) of the state-of-the-art multi-GPU BLAS libraries BLASX [[157] and XKBLAS [57] and
PARALIA [9] (our work), in a multi-GPU cluster with 8 NVIDIA-V100 GPUs, for three problem
sizes and four different data placements. BLASX and XKBLAS offer competitive performance
for the first placement but fail to adjust to the other three more complex ones resulting in seri-
ous performance degradation, while PARALIA adjusts well to all scenarios and offers increased
performance. PARALIA also offers higher energy efficiency through device selection with a neg-
ligible trade-off in performance.

bottlenecks of multi-GPU Level-3 BLAS and analyze the limitations of current approaches in
mitigating them We also discuss the absence of consideration for resource utilization in existing
multi-GPU BLAS libraries that derives from these limitations and the relevant efficiency and
heterogeneity challenges. Finally, we define the problem formulation for this chapter and list

our corresponding contributions.

3.1.1 Motivation

In theory, level-3 BLAS operations are particularly favorable for multi-GPU execution since they
are highly parallelizable and are usually characterized by high operational intensity. In practice,
multi-GPU execution introduces a variety of new bottlenecks that can severely impair perfor-
mance even for the most convenient problems. For example, Figure B.1| shows the performance
of state-of-the-art multi-GPU libraries for matrix-matrix multiplication (henceforth gemm), the
most common level-3 BLAS kernel, executed with various data placement configurations. BLASX
and XKBLAS, the state-of-the-art multi-GPU level 3 libraries, perform well for GEMM in the full-
offload cases, but their performance drops significantly in all other data placements, where some
part of the data is stored in GPU memory before execution. This is particularly noticeable for
smaller problem sizes where the execution is more communication-bound. Additionally, since
both BLASX and XKBLAS use all available hardware (i.e. all eight GPUs in our case) for all
problem sizes, they result in low energy efficiency in the cases where they cannot achieve high
performance. Finally, it is very important to note that, unlike single-GPU, where performance

optimization targets a 1.1x-1.3x performance gap between the SoTA and the system peak, in

3.1. Problem formulation 59

Single-GPU node Modern multi-GPU node

apu | PCle Switch }<}:{>
GPU memory JH_F:CIe

4 PCIeL"zr GPU memory GPU memory
SZ AN N

=

l1g
Main memory lg l10 l17 / l13] {114 Main
20 memory
l15
GPU memory GPU memory
l16

=

5 PCIel—‘IG 7| Pcle |lg
| PCle Switch }<}:{>

Figure 3.2: An example single-GPU cluster (left) versus a multi-GPU cluster with 4 GPUs (right),
showing the large difference in their hardware characteristics. The single-GPU cluster has two
communication channels (henceforth links) for h2d and d2h communication while the multi-
GPU one has 20 connections with potentially different bandwidths and partial resource sharing.

multi-GPU the margin is much larger, with previous libraries operating at 10-30% (3.3x-10x per-
formance gap) in problematic configurations. Ideally, a multi-GPU BLAS library should provide
robust performance regardless of data placement and avoid under-utilizing hardware to con-
serve energy whenever possible. An example of this behavior can be seen in Figure B.1| for our
work PARALIA [4], introduced later in this chapter. PARALIA offers performance robustness
regardless of data configuration and can adapt to each problem, using fewer devices if possible

to achieve similar performance coupled with higher energy efficiency.

Takeaway Multi-GPU BLAS libraries suffer from severe performance degradation in all but

the most common full-offload case, and lack mechanisms for energy efficient execution.

3.1.2 From single- to multi-GPU clusters

To understand the multi-GPU BLAS optimization problem, we must analyze the key architec-
tural features that influence the performance, and thus, library design, in multi-GPU setups: the
increasingly complex underlying interconnect and the distinct GPU memories. Figure .9 illus-
trates the difference between the architecture of a single-GPU cluster vs a simple 4-GPU cluster.

As discussed in Chapter [, a single-GPU interconnect can be characterized by the h2d (12) and

60 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

d2h (I1) channels, their throughput and their slowdowns for simultaneous usage sl{,24 421} _pid-
On the other hand, in the multi-GPU example, there are 20 different channels, some sharing the
PCle (11-18) and some featuring faster GPU-GPU connections (/9-120) with potentially complex
relations due to resource sharing, which makes both multi-GPU programming and modeling
much more complex. On top of this, unlike the single-GPU case which involves a static num-
ber of channels (h2d,d2h) and compute workers (1 GPU), the architecture of multi-GPU systems
varies per cluster; it can feature different numbers of GPU workers and different interconnection

patterns, changing the optimization problem considerably and increasing modeling difficulty.

Takeaway The architectural complexity of multi-GPU nodes deems BLAS optimization and

modeling considerably more complex than single-GPU.

3.1.3 Background : Offloading BLAS in Multi-GPU clusters

In addition to interconnect complexity, the GPUs in multi-GPU systems must also act as parallel
workers, which introduces distributed and parallel programming concepts in multi-GPU BLAS
execution. As a result, unlike single GPU setups where algorithmic optimizations mainly tar-
get the internals of the BLAS kernels, multi-GPU also requires communication and scheduling
optimization. For simplicity, we categorize the optimization space for multi-GPU BLAS into a)
data domain decomposition, i.e. splitting the initial problem into sub-problems/tasks (henceforth
sub-kernels) and their distribution, b) communication overlap, c) avoidance, and d) routing and e)

load-balancing between GPUs.

3.1.3.1 Level-3 BLAS decomposition and distribution

As Level-3 BLAS routines operate on matrices, their decomposition involves partitioning matri-
ces into smaller submatrices (7" x T' 2D tiles), which are then distributed among the available
GPUs that act as parallel workers, similarly to multi-core or multi-node execution [29]. This de-
composition must be carefully managed to ensure balanced workloads across GPUs, minimizing
the risk of some GPUs idling while others are overloaded. Additionally, the decomposition and
distribution schemes also determine the required amount of communication between workers.
While there is a large amount of research on BLAS decomposition in general that spans back
decades [11, 28,38, 51, 94,142, 151], the limited number of workers in multi-GPU systems leads
to different optimization priorities compared to distributed computing. Since expanding single-
GPU modeling and autotuning techniques to multi-GPU environments is already challenging, in
this chapter we use the well-established 2D block-cyclic decomposition and distribution method
employed by state-of-the-art multi-GPU BLAS libraries [57,157]. We go into more detail regard-

ing selecting a more suitable decomposition in chapter .

3.1. Problem formulation 61

GEMM 2D Decomposition (8 GPUs): Sub-kernels: Tiles Needed:
GPU 0:
GPU 1:
M
GPU 2:
GPU 3:
M=N=2K
T=M/4
DCrow =4
DCeol =2
GPU 7:
< >
< >
N
A (RONLY) : Shared horizontally by DC¢q] GPUs _—> 1/2 A tiles may be fetched from other GPU memory.
B (RONLY) : Shared vertically by DCyqy, GPUs _— 3/4 B tiles may be fetched from other GPU memory.
C (WR) : Not shared, reused internally _ > All C tiles must be fetched from initial C location.

Figure 3.3: An example of GEMM (M = N = 2K) 2D decomposition to sub-problems and data tiles
(tiling size T = M/2). The 8 participating devices are distributed in a 2D grid of (DC}.oy, DCrop)
= (4, 2) to encourage horizontal and vertical device-to-device (d2d) data movement between
same row/column devices, respectively. An optimized library employing software-implemented
caching of RONLY tiles to GPUs can avoid 50% and 75% of h2d transfers for the A and B matrices,
respectively, by using peer-to-peer d2d transfers.

Figure B.3 shows an example of the 2D block-cyclic distribution used for Level-3 BLAS matrix-
matrix multiplication (GEMM). The available devices are organized in a virtual 2D grid, which is
as square as possible - for example, a 2x2 grid for 4 devices, a 4x2 or 2x4 grid for 8 devices, a 3x3
grid for 9 devices etc. Then, all problem matrices are split into equal square 7" x T tiles, and the
C output matrix tiles are mapped on top of the device grid, defining which sub-problems will be
executed on each device. This results in a list of A, B and C tile dependencies that must be fetched
before execution on each GPU, which defines the communication pattern for the problem execu-
tion. The advantage of 2D block-cyclic GEMM decomposition over other options is that it results
in a favorable communication pattern for the read-only (henceforth RONLY) tiles of matrices
A and B. This is the basis of multi-GPU BLAS communication optimization, as communication
is the main bottleneck in multi-GPU BLAS performance on modern systems [7,57,157]. While
different libraries have used different approaches for improving communication performance,
the optimization targets can be roughly classified into communication overlap, avoidance, and

routing.

62 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

3.1.3.2 Communication overlap

Overlap refers to the concurrent execution of computation and communication, as well as the
concurrent execution of multiple communication tasks. While we provide a detailed examination
of both types of overlap for single-GPU in Chapter [}, overlap complexity increases significantly
in multi-GPU systems. Regarding communication overlap, in addition to the overlap of host-to-
device (h2d) and device-to-host (d2h) transfers for each GPU, we must also consider the over-
lapping of GPU-GPU communication (d2d). Additionally, computation overlap can happen be-
tween all GPUs in the system acting as workers. Consequently, the communication-computation
overlap pipeline width in multi-GPU setups depends on the number of GPUs within the node,
rendering both modeling and overlap optimization considerably more complex. For instance, as
illustrated in Figure 6.1, the relatively straightforward 3-way overlap pipeline of a single GPU
(h2d and d2h transfers, along with computation on one GPU) becomes much more complex in
a multi-GPU system, where overlap involves (gptnum + 1) — (gpUnum + 1) communication
channels and gpunum GPUs potentially engaged in computation. Nevertheless, while overlap
affects total multi-GPU performance to some degree, communication avoidance and routing are
more important since their absence can lead to severe bottlenecks. We, therefore, utilize overlap
similarly to previous work [[7,57,[157] but do not focus on its model-based optimization, which
is left for Chapter j.

3.1.3.3 Communication avoidance

In a multi-GPU environment, where each GPU has a distinct memory, the problem data must be
transferred between devices. While technologies such as Remote Memory Access (RMA) help
mitigate the impact of these transfers, a common approach to further reduce redundant com-
munication is data caching or buffering in GPU memory, which also enables data reuse across
subsequent subkernels, resulting in avoiding communication. In the case of multi-GPU level-3
BLAS, communication avoidance arises from reusing the RONLY input matrix tiles (the tiles of
the A and B matrices for the GEMM example of Figure B.3) that are created by the decomposition
process. While minimizing communication is vital for performance optimization, it is relatively
straightforward, and communication reduction techniques are well-established in previous re-
search for each decomposition. Consequently, in this chapter, we employ the pre-established
data caching strategies for communication reduction of the 2D block-cyclic distribution used by
SoTA libraries [[7,57,[157].

Takeaway Multi-GPU BLAS decomposition, communication overlap, and avoidance affect per-

formance but are fairly straightforward and sufficiently optimized in previous work.

3.1. Problem formulation 63

Modern multi-GPU node
Numa Node 0 | | Numa Node 1
PCle Switch PCle Switch PCle Switch PCle Switch
PCle PCle PCle PCle
GPU 1 NVLink1 GPU 0 NVLink2 GPU 4 NVLink1 GPU 5
7S < | i AN
Memory Memory
A N
GPU 2 GPU 3 NVLink2 ? GPU7 GPU 6
PCle PCle PCle PCle
PCle Switch PCle Switch PCle Switch PCle Switch '
Traverse numa node ~ 8 GB/s PCle (per switch) ~ 24 GB/s NVLink1 ~ 24 GB/s NVLink2 ~ 48 GB/s
BW shared by all 8 GPUs BW shared by 2 GPUs on switch Full isolated BW per link Full isolated BW per link
=Gl EIRe i ELENFERE [Bidirectional comm with slowdowns Full bidirectional comm Full bidirectional comm

Figure 3.4: A clx-ai node of HLRS’ HPC cluster Vulcan [p9] that features 8 NVIDIA Tesla V100
GPUs and a mixed interconnect with various bandwidth levels and resource-sharing properties.
The interconnect utilizes a mix of NVlink-1 (=~ 24 GB/s) and NVlink-2 (= 48 GB/s) for inter-GPU
connectivity, with the GPUs not being fully connected via NVlink. For CPU-GPU communication
it uses PCiE (= 12 GB/s), and CPUs share PCle bandwidth in sets of two (e.g. GPU 0-1, 2-3 etc).
Finally, each node has 2 numa nodes connected with a =~ 8 GB/s link shared between all GPUs.

3.1.3.4 Communication routing

Routing optimization refers to selecting the fastest route to move some data to a destination
memory (dest,em) whenever a routing decision is involved, e.g. the data are available in multiple
potential source memory locations (sr¢mem). In the context of 2D block-cyclic BLAS decompo-
sition, routing decisions appear for RONLY tiles only, since these are required in multiple GPU
memories during execution. Consequently, two components are necessary to enable routing op-
timizations: 1) a cache policy for GPU memory buffers that encodes which data tiles are available
where and ensures their Read/Write dependencies are respected, and 2) a mechanism to distin-
guish the interconnect bandwidth levels in order to select the ‘closest’ s7¢pem location when a
RONLY tile is available in multiple buffers. The first issue has been thoughtfully explored in pre-
vious work and can be resolved with a relatively straightforward software optimization, where
cache-like metadata are added to the CPU/GPU buffers, which coupled with a MESI-like protocol
enables sharing RONLY blocks between GPUs and respecting WR block dependencies [[157].

64 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

The second issue on the other hand is much more complex, since it requires an estimation
of all interconnect bandwidths and their relations/interactions when used simultaneously. In
simpler multi-GPU systems like the one in Figure B.3, this usually boils down to distinguishing
between the high-bandwidth peer-to-peer transfers between GPUs (d2d) and the lower band-
width CPU-GPU transfers (h2d/d2h). In these simple cases, latency-bandwidth models (similar
to those described in Chapter H) coupled with some additional logic for PCle switch sharing
are sufficient for representing the system interconnect hierarchy. Alternatively, another similar
option is to use a system-specific hierarchical representation/abstraction (like BLASx [[157] and
XKBLAS [57,58]), which assumes a certain system layout with predefined bandwidth levels.
Routing complexity of modern clusters and SoTA limitations: While both aforementioned
approaches work relatively well for simpler systems, they do not apply to more recent complex
systems that feature heterogeneous interconnects with complex sharing relations. An example
of such a system is depicted in Figure B.4, which shows the clx-ai testbed used later in our ex-
periments (more in Section B.3). In clx-ai, each link has different properties and behavior when
used simultaneously or bi-directionally, making modeling and routing very complex for arbitrary
problems. In this case, latency-bandwidth modeling or simple hardware abstractions can only
estimate the system bandwidths in a rest state, e.g. when the interconnect is not utilized, or for
predetermined communication patterns, where the load is known before execution. Finally, on top
of modeling complexity, the performance impact of routing also increases, since bad routing can
cause severe bottlenecks due to the extreme differences in bandwidth levels. For example, per-
forming one inter-numa-node transfer per GPU simultaneously has ~ 48 times lower bandwidth
than using 8 simultaneous NVLink2 transfers in clx-ai.

In the case of multi-GPU BLAS, each problem’s load and communication depend on the de-
composition, which in turn depends on the input routine parameters, namely the problem di-
mensions and the initial matrix locations, which only become available during invocation. The
prevalent technique to overcome this ambiguity is to assume some values for these parameters
offline using commonly used values and optimize the resulting communication pattern. The
usual assumption, which derives from the most common use case of BLAS, is to use square
problem dimensions and assume all data are initially on the CPU (full-offload). Consequently, as
shown in Figure B.1, SOTA libraries underperform for all other data placements, even though they
should theoretically have higher performance due to being less communication-bound (since the
data are closer to the GPUs). We demystify the cause for this counter-intuitive behavior in Fig-
ure B.9, which shows the communication pattern, number of transfers and average achieved
bandwidth for BLASX, XKBLAS and our proposed runtime, PARALiA. BLASX suffers from ex-
cessive h2d/d2h transfers to the CPU, which could be completely avoided in the scenario where
all data are initially on the GPUs [57]. Additionally, BLASX is bandwidth-agnostic, with transfers

passing through a variety of bandwidth levels, since its hierarchical abstraction is only capable of

3.1. Problem formulation 65

BLASX XKBLAS PARALIA Theoretical

«{8 88828888 8888888 8 8882828288 8 BW (Gb/s) Transfers

~ 4 B 49 i 17| 17 B 33 500 -

© . EF) 48 14 7 ﬂ19 14 ﬂlo 40

.1 W 2 |l 4 8 2 11 B 3 5 0

= 1 31 .48 12 1 5 [§27 22 BWmean (Gb/s)

All-data-CPU(h,h,h)
destig
4

™ 32 48| 10 1 37 16 8| 20 50
~d1 48 [T H B B 27 B 2 22| 4
~d6 B 48| |5 1 23 B |] 56 I I
o4 '8 .. 48 3 3 R 31 32(14 10 © 0-
BLASX XKBLAS PARALIA Theoretical
__ »Js 88888 38 8 I53(\)N (Gb/s) Transfers
:‘{ ~ H B 26 1 8 SEI2H 2 3007
e of14 167 W M3 11311 24 40
%bm- | Y 2 |sEs 7 K3 21 30 0
& B« 11 19 W B s 3 56 B BWomean (Gb/s)
s ° - {22 66| |20 1 16 8 20
=z ~{40 60| [10FE [EJs sP1s 16EQ 8 10 20 II
- - || 48 21 H2+2 W 36 B

o 11 44 16 8 16 8 0 0-
01 2 3 45 6 7 8 01 2 3 45 6 7 8 01 2 3 45 6 7 8
SICig SICig SICig

Figure 3.5: The communication pattern of BLASX, XKBLAS and PARALIA for a GEMM execution
(M =N =K = 16384, T = 2048) in the testbed of Figure B.4, for two data placements: the
full-offload case (all data at host memory initially) and a case where the A, B and C matrices
are initially populating the memories of GPUs 0, 1 and 2 respectively. The heatmaps visualize
all communication (source GPU = x axis, destination GPU = y axis); the heat is the theoretical
bandwidth of each connection and the displayed labels in each box denote the total number of
(equal byte) transfers passing from this connection during execution. The id = 8 is assigned to
the host memory. The bar plots aggregate the total transfers and their average bandwidth for
each library.

recognizing the difference between h2d/d2h and d2d, and is not sufficient for modern intercon-
nects. XKBLAS, on the other hand, provides a much more balanced communication map in the
full-offload scenario, with a clear preference for the higher bandwidths. This desirable behavior
does not extend to the scenario where data initially populate GPUs 0, 1 and 2. On the contrary,
the communication map becomes more dense around these locations and creates a communica-
tion bottleneck, with a lot of extremely low-bandwidth transfers. The cause of this meltdown
lies in the assumption that the communication pattern will be similar to the full-offload case,
where all data must first be fetched from the host (id = 8 in the heatmaps), which has the same
bandwidth for all h2d/d2h connections and therefore favors a balanced distribution. This does
not represent the second scenario well, since some GPUs are closer (higher d2d bandwidth) and
some are further (lower d2d bandwidth) from the data, which results in transfers passing through

a variety of connections, some of which are very slow.

66 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

Takeaway Communication routing is the prevalent bottleneck for multi-GPU BLAS because

current libraries do not account for the heterogeneity in the underlying interconnect.

3.1.3.5 Load balancing

As mentioned previously, in multi-GPU BLAS execution GPUs function as parallel workers,
each responsible for executing tasks (sub-kernels) generated by the decomposition of the larger
problem. To maximize parallelism and fully exploit the computational capabilities of all GPUs
involved, BLAS libraries must effectively load balance these tasks. This process is relatively
straightforward in balanced scenarios, such as full-offloading or in systems with uniform data
distribution and homogeneous interconnects, and is usually performed with task graph opti-
mizations [56,57] or work stealing [57,[157]. However, the challenge becomes significantly more
complex in heterogeneous scenarios, where differences in GPU capabilities, the interconnect
layout, or data configurations must be carefully managed to avoid imbalance. In such cases, a
library should dynamically adapt to the varying conditions, ensuring that the computational and
communication load is evenly distributed.

Heterogeneity and energy efficiency SoTA limitations: Although work stealing and task
graphs may partially address the load imbalance coming from small performance differences
between GPUs, they are also performance-agnostic; they match a list of tasks (sub-kernels) to
a certain list of resources (devices), without the option to use less resources depending on the
problem. This is an issue because communication-bound problems, which are limited by the in-
terconnect bandwidth rather than the number of devices, do not benefit from utilizing additional
GPUs if the interconnect throughput is the primary constraint, and can even result in less perfor-
mance when using more devices. Unfortunately, all current multi-GPU libraries lack a mechanism
to adjust the number of utilized devices dynamically, and always default to using all devices or
expect the user to specify otherwise. This monolithic design does not lead to efficient execution
since it cannot adapt resource allocation to BLAS problem characteristics and is incompatible

with future heterogeneous systems.

Takeaway Current multi-GPU BLAS load-balancing mechanisms fall short in heterogeneous

configurations and cannot adapt to problems that cannot utilize all devices well.

3.1.4 Contributions

The main shortcomings of current multi-GPU BLAS libraries in modern systems can be surmised
in three points. First, they often assume homogeneous characteristics for the intercon-

nect, which may not hold true across all systems, leading to sub-optimal performance when

3.2. PARALIA: BLAS autotuning in arbitrary multi-GPU systems 67

these assumptions are violated. Second, these libraries typically optimize communication rout-
ing based on specific problem data characteristics, commonly focusing on the full-offload
scenario, thereby limiting their flexibility and efficiency for other workloads. Finally, the ab-
sence of performance modeling in these libraries prevents them from dynamically adjusting
execution strategies to suit varying problems, resulting in potential inefficiencies and perfor-
mance losses. In this chapter, we propose a model-based approach to address these issues, that
adjusts the decomposition, communication, and task allocation to the characteristics of 1) each
different system through offline micro-benchmarks and 2) each different BLAS problem and data

placement during runtime. Overall, we make the following contributions:

1. We extend single-GPU transfer modeling for arbitrary multi-GPU clusters, with a system
abstraction that encodes system characteristics and adjusts communication routing during

runtime in order to better fit to different problem layouts (Section B.2.2).

2. We explore performance-aware workload distribution and device selection for multi-GPU
BLAS (Section B.2.1), using performance modeling with a variety of target metrics (Sec-
tion B.2.3) fueled by empirical micro-benchmarks (Section B.2.4).

3. We extend the CoCoPELiA runtime tile scheduler into PARALIA, an end-to-end multi-GPU
BLAS framework offering device selection, coupled with performance-aware runtime task
scheduling, which demonstrates an average 1.7X performance and 2.5X energy efficiency

improvement over state-of-the-art libraries. (Section j3.3).

3.2 PARALIiA: BLAS autotuning in arbitrary multi-GPU systems

In this section we present PARALIA, an extension of CoCoPeLiA for multi-GPU systems that ad-
dresses the shortcomings of previous multi-GPU libraries by coupling modeling with autotuning.
We begin with a high-level overview of the modified framework and its basic components, and
then describe each component and its role in the optimization pipeline in more detail. Figure B.4
shows the the high-level design of the PARALiA framework. PARALIA is activated when user
code invokes a BLAS routine with routine data residing within the memory of any of the avail-
able devices. The framework consists of three main components: a preprocessor (sec B.2.9) that
is responsible for preparing the framework environment for execution, a scheduler (sec 3.2.6)
that is responsible for managing input/output data and invoking backend BLAS kernels, and an
autotuner (sec B.2.1) that receives system and problem parameters from a database (sec B.2.4), a
hardware abstraction (LinkMap, sec) and the routine invocation, and decides which devices
to utilize for BLAS execution, the granularity (tiling size) of the basic computational blocks and

the data transfer routing. The PARALIA framework is a publicly available open-source project.

https://github.com/p-anastas/PARALiA-Framework

68 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

BLAS
invocation

data location

Environment Tile Device
setup decomposition || initialization || Dependencies

Sub-kernels

Sub-kernel

Data caching Synchronization

invocation

BLAS
result

Workload
selection

Optimized

Routine
benchmarks
System
benchmarks

Kernel lookup

routing
performance

LinkMap
modeling optimization
LinkMap representation

PARALIA

1 Y
Back-end
| Vendor BLAS || Open-source BLAS || Custom BLAS |

Figure 3.6: An overview of the PARALIA framework and its main components.

3.2.1 The autotuner algorithm

The autotuner, an extension of CoCoPeLiA’s tile selection runtime, is the backbone of PARALIA’s
optimization. Its purpose is to improve 1) communication throughput and 2) workload distribu-
tion for arbitrary system/problem configurations. Due to the more generic nature of this prob-
lem, using a heuristic-based approach is bound to favor a subset of configurations, based on
which the heuristics were designed, that being either specific system characteristics (e.g. num-
ber of CPUs/GPUs, inter-connectivity) or problem characteristics (e.g. data size, placement). For
this reason, the autotuner uses a model-based approach instead, which looks at each configura-

tion as a different problem, by combining its system and problem characteristics at runtime.

The autotuning algorithm that commences during each routine invocation is shown in detail
in Figure B.7. When a routine is invoked, the problem parameters are extracted from the routine.
The autotuner loads pre-obtained transfer coefficients from the PARALIA database and uses them
to construct an abstraction of the system characteristics called LinkMap. Then, the autotuner
loops over candidate workload distributions, estimates their total performance and selects the
best one. Each workload distribution consists of a) a list of dev,,,m, devices (active_dev;q,), which
is a subset of the total system devices, b) a list of sub-kernel ratios (active_devyqtio) suggested
for each device and c) a transfer routing map optimized for this specific distribution. Regarding
(a) and (b), since their combined search space is very large (active_dev,qti, are float values), we
instead decouple them by iterating on the possible device combinations active_dev;qs (which are
discrete) and selecting their active_dev,qtio With a model-based method. Specifically, for each
device combination we start with equal sub-kernel ratios, and iteratively adjust the ratios based
on a performance prediction for each device (more in sec), until a active_dev,q0 With
similar performance per device (within 5%) is reached. Regarding (c), the autotuner adjusts and
optimizes the LinkMap to each aforementioned scenario using its specific problem characteristics

(more in sec B.2.7) Finally, the best workload distribution is selected by using some metric-related

3.2. PARALiA: BLAS autotuning in arbitrary multi-GPU systems 69

Figure 3.7: An overview of the PARALIA autotuner and its prediction pipeline.

aggregator (e.g. maximum for time, sum for energy etc.) on the performance of each device
obtained during the estimation of (b). We note that the autotuner also selects a tiling size T for
tile decomposition (as depicted in Figure B.6), but this process is disconnected from (a), (b) and

(c) and performed based on CoCoPeLiA [[7] due to its small impact in multi-GPU performance.

3.2.2 Abstracting interconnect heterogeneity: The LinkMap representation

Since the hardware abstractions of previous libraries target homogeneous distributions in sys-
tems with similar device and interconnect capabilities, they are not suitable for any workload dis-
tribution. To mitigate this we assume the most generic system in an abstraction called LinkMap,

capable of representing any system with arbitrary devices and connections between them.

Hardware abstraction: To model any potential system, the LinkMap abstraction disconnects
from the notion of "CPU” and "Main memory” and treats all parts of a system similarly; any
candidate data location or available computational resource is categorized as a device and is
connected via links with all other devices, which are responsible for data transfers between
them. In the LinkMap representation each device is defined by a unique id (dev;q). While
not common in current systems, different devices can share memory, in which case the transfer
link time between them is always equal to zero. Additionally, this abstraction assumes a fully-
connected virtual topology; even if an actual hardware connection does not exist between a
device pair. Therefore, this creates a fully-connected graph, with where devices are the nodes
and the links are the edges: the devy,,, nodes are connected via a 2D grid (devpym, deVnyum)
of edges/links. The LinkMap representation is implemented in C++ as a class whose members
and functions are shown in Table @ It consists of five 2D matrices link 41 pw,bw—shared,route,sl}

that hold its values and three functions that are used during auto-tuning to update them.

70 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

Table 3.1: LinkMap member and functions used for communication optimization.

System-wise:

linkqt(dest;q, sTciq) The latency of each link.

linkyy, (dest;q, srcig) The isolated bandwidth of each link.

linkg (dest;q, srciq, s_destiq, s_src;q)) | The slowdown imposed by simultaneous usage on
each pair of links.

Problem-adjusted:

linkyy—shared(destiq, srciq) The sustainable bandwidth of each link for a de-
vice/data configuration.

linkyoute (destiq, srciq) The underlying route all transfers passing through
a link must follow.

Functions:

load_link_weights() Initializes linky,, /14t /s from the database.

estimate_problem_throughput() Estimates [ink{p,—shareq) for a device/data con-
figuration.

optimize_problem_routes() Re-routes communication for ’bad’ links for a for

a device/data configuration.

Runtime routing optimization: The LinkMap representation by itself does not contain any
insights, it just represents the most general case. Its usefulness is its adaptability to any system
and problem data placement, which happens during runtime. This process has three basic phases,
implemented as the LinkMap functions of Table B.1. First, once per program during the first
routine invocation, load_link_weights() loads the transfer coefficients linkq¢ 51y from the
database. This provides a basic System LinkMap containing empirically obtained estimations for
the system in general. Then during the autotuning of any routine, estimate_problem_throughput()
adjusts the LinkMap bandwidths (linkp,,—shaereq) according to the current device/data configura-
tion. Specifically, it assumes that all links that connect the dev,., devices (active_dev;qs) to the
datan,m data locations (data,.s) perform transfers for the entire routine execution, and apply

the slowdown of simultaneous usage (Eq. B.6) to the bandwidth of each such link:

linkyy—sharea(destiq, srciq) = linkpy, (dest;q, srciq) X

devpum datanum

Z Z linkg (dest;q, srciq, active_dev;qs(i), datajoes(f)))
i=0 =0

The final optimization phase is to apply a simplified shortest path algorithm to this graph,
similar to the Floyd—Warshall algorithm but with a maximum number of hops (intermediate lo-
cations). More specifically, we want to reroute transfers that would pass through links with low
bandwidth to series of links of higher bandwidth. For example using a maximum of 3 devices,
if linkpyw—sharea(0 — 1) = 1Gb/s, linkyy—sharea(0 — 2) = 3Gb/s and linkpy—shared(2 —

3.2. PARALiA: BLAS autotuning in arbitrary multi-GPU systems 71

1) = 4Gb/s, the shortest transfer route for 0 — 1 can be optimized to 0 — 2 — 1, since it is
faster to transfer data from device 0 to device 1 through device 2, instead of using their direct
link. To avoid very long routes the re-routing algorithm (optimize_problem_routes()) uses
a max_hops argument that limits the intermediate data locations, and we use max_hops = 1
in our evaluation. Performing these intermediate ‘hops’ during runtime has a very low over-
head since PARALIA already holds tile buffers in all devices. Re-routing significantly improves
performance since 1) bandwidth is increased for the otherwise slowest transfers, which are an
important bottleneck and 2) in level-3 BLAS, transferring a read-only data chunk with additional
‘hops’ (like device 2 in the example) also stores it to these devices for potential use. In practice,
this re-routing method unlocks even more potential for BLAS communication optimization, but
since some of the additional concepts required for this are not compatible with current library

design, we leave it for Chapter J.

Takeaway The LinkMap abstracts system characteristics offline, and combines them with BLAS

problem characteristics during runtime to enable communication routing optimizations.

3.2.3 Performance estimation for workload selection

As explained in Sec. B.2.1, the ratio adjustment and the total performance aggregation in the auto-
tuner use an estimation of the offload performance of each device (henceforth pred,etric(devig)).
Performance prediction in multi-GPU setups is considerably more complex than on a single GPU,
as scheduling on multiple devices involves runtime decisions regarding data caching and simul-
taneous resource utilization that are not static or known beforehand. For this reason, we use
a performance upper bound based on the full-overlap model [[159], instead of using more ad-
vanced overlap models [[7, 65,159]. We note that, for simplicity, all equations presented below
use time as the performance metric, but PARALIA supports more performance metrics that are
later explained in detail. Table B.4 summarizes the modeling notation used in this work.

First, we combine the full-overlap upper bound [159] with the PARALiA database to get a

routine-specific, full-overlap prediction for each device’s total performance:

pred_tpase(devig) = max(tegec(deviq, dims),

ISR isw
thoa(deviq, Z bytes(i)), taon(deviq, Z bytes(7))) (3.1)
i J

where h2d stands for host-to-device and d2h for device-to-host transfers, and Ez{f}’W} are

the subsets of the datay,,,, matrices/vectors that are problem inputs and outputs, respectively. To

adjust the model for multi-device offload, we need to replace h2d and d2h time with the transfer

72 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

Table 3.2: Modeling notation used in this work.

Empirical values (from database):

tezec(routine, dev;q, D1[, D2[, D3]]) | The execution time of routine in dev;q as a func-
tion of problem size.

Wegec(routine, devyq, D1[, D2[, D3]]) | The average power (in Watt) of routine in dev;q
during execution.

Problem parameters (from routine):

dims : D1[, D2[, D3]] Problem dimensions for BLAS level-1, 2 and 3, re-
spectively.

datanum The number of total matrices and vectors used by
this routine.

is{r,w}(datanum) A flag [0,1] denoting if a matrix/vector is in-
put/output, respectively.

datajee(datanym) The data placement of each participating ma-
trix/vector.

bytes(datanym) The size in bytes of all matrices and vectors used

by this routine.

Estimated (model-based) :

devVnum, The number of devices participating in multi-
device parallel execution.

active_devgs(devpym) A list containing the ids for each such device.

active_devrqtio(deVnum) The percentage of the total sub-kernels assigned
to each such device.

predmetric(devig) A metric prediction required for dev;; to com-
plete its assigned sub-kernels.

total_pred_metric The total estimated metric (e.g time, EDP) of

multi-device parallel execution.

times of all links connecting dataj,.s to each device. To do this, first, we calculate the transfer

time for each link (¢;;,,1) as a function of transferred bytes with:

bytes

tiink (destiq, srciq, bytes) = linkq(deviq, srciq) (3.2)

+ —

lznkbw—shared(dGStida STCid)
by combining each link’s latency and bandwidth using the well-accepted latency/bandwidth
model [[7, 16, 21, 65,106, 159]. Then, we assume the best-case scenario, where all input matri-

ces/vectors are distributed equally between the dev,,,, devices by combining eq. B.] with eq. 3.3

3.2. PARALIA: BLAS autotuning in arbitrary multi-GPU systems 73

to generalize for any initial data placement:

iSR

. bytes(i)
d tover(.-) = tezee(.-- ’ tiin d i 7d tajocs sy ;)
pred_toper(...) = mazx((...) XZ: link (deviq, datajoes (1) devnum)
il) bytes(j
Z Liink (datalocs (.])7 devida Cjiy(j))) (3-3)
=0 EVnum

Equation B.3 provides a more accurate prediction for the full-overlap performance of a rou-
tine, if multi-GPU execution does not involve additional transfers/data sharing between devices. This
assumption works for level-1 and level-2 BLAS, but in level-3 BLAS decomposition each tile is
reused by many sub-kernels and therefore transferred to multiple devices throughout a routine’s
lifetime. Since PARALIA uses a 2D block-cyclic decomposition (DCo, DCpop) for level-3 BLAS,
we consider this baseline scenario of 1) exchanging equal portions of RONLY bytes between all
decomposition rows and columns and 2) no output data sharing. We estimate the proportional

increase in transfer volume for each device as:

(DCrow — 1)+ (DCpyp — 1)
RONLY,um

extra_transfer_bytes = - RONLY _sum_bytes

Where RON LY, is the number of matrix/vectors with isg = 1 and isyy = 0, and the sum of
their corresponding bytes is RONLY _sum_bytes. This represents a lower bound of the added
bytes due to multi-GPU BLAS3 data sharing for each device. We assume these bytes are equally
distributed between devices, and use the average bandwidth of all links to estimate the additional

transfer time:

devnum,

Zil;;l%m linkpw—shared [devid] [Zd$]

testra(deviqg) = extra_transfer_bytes - (3.4)

in which the extra communication in bytes for each device is multiplied by the inverse of its

average receive bandwidth, which serves as an average estimate for the expected bandwidth of

these transfers. We finally construct the full-overlap model used for the estimated performance

of each GPU in a multi-GPU environment by adding the extra transfer time of Eq. B.4 to Eq. B.3:
iSR iSW

predy(deviq, ...) = max(tegec(...)s textra(devig) + Z tink (.-, Ztlmk()) (3.5)
2 J

7

All the aforementioned models return a time prediction for the execution on a single GPU.
We use the maximum predicted execution time, total_pred_t = max(pred;(dev;q)) to evaluate

different candidate workload distributions.

74 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

Takeaway The extended PARALIA models predict the total execution time of any level-3 BLAS
problemfor an arbitrary multi-device system as a function of the utilized devices, enabling problem-

specific device selection.

Performance metrics: In adidtion to time, PARALIA also supports utilization/energy-centric
metrics, based on the total power consumption of all GPUs in the multi-GPU setup, total_pred_W,

which we combine with total_pred_t to further enhance the workload selection process. In

FLOP
time

(EDP; = FLOPs?/W) and 3) an inverse power-delay product (PDP; = FLOPs/W) for
workload distribution (PARALIA select({ FLOPs, EDP;, PDP;}, respectively). As evaluation
metrics we use performance (FFLOPs,in GFLOPs or T'F LOPs) and energy efficiency (PDF;,

in GFLOPs/W). To support rapid experimentation with additional metrics, we have simplified

this work, we use 1) performance (FLOPs =), 2) an inverse energy-delay product

the addition and benchmarking of new metrics, requiring the modification of 3-4 lines of code

only.

3.2.4 Database

Similarly to CoCoPeLiA, The PARALIA database stores the empirical measurements required
to construct PARALIiA’s system abstraction LinkMap, and to estimate performance in the au-
totuner. These measurements include transfer latencies and bandwidths, which are collected
only once per system, and execution time/Watt measurements, collected for each routine. The
database is automatically built by PARALIA at installation time, with a set of automated micro-
benchmarks (we denote this process as the DB Builder), for all available devices and all connec-
tions between them.

Database Builder: The DB builder is an extension of the Deployment Phase component in Co-
CoPelLia [7], which performs single-device BLAS routine benchmarks for all system devices,
and extends the set of system benchmarks to model transfers according to the requirements of
the LinkMap representation. In PARALiA’s DB builder, we opt for ease of use, robustness
and short benchmarking time. For ease of use, PARALiA provides a fully automated process
for micro-benchmarking and for producing the empirical transfer models. Additionally, PAR-
ALiA is easily extensible to accommodate new backend BLAS library options, providing micro-
benchmark template scripts, which can be easily modified with new routine invocations and any
additional parameters. For robustness, for each benchmarked value, we repeat measurements
until the 95% confidence interval of the mean falls within 5% of the reported mean value (taking
at least 10 measurements to obtain these means). Finally, for short benchmarking times, we try
to strike a balance between the number of measurements required for robustness, and their over-

all execution time. The DB builder benchmarks the computation time of the different backend

3.2. PARALIA: BLAS autotuning in arbitrary multi-GPU systems 75

BLAS routines. The minimum problem dimensions and steps are static and predefined for all
benchmarks, while the maximum dimensions are calculated based on the available memory of
the target device. The results of the DB builder are stored as a database and made available to

the framework for all subsequent calls in the system.

Kernel lookup: The offload performance models used in the autotuner require an estimate
for the routine execution time and average Watts per device. Using the same technique as in
CoCoPelLia [[]], we only collect measurements for the time/power of fine-grained chunks of
specific, small tiling sizes, namely {t, W }cyec(routine, dev;q, T[, T[, T]]), for which we then
use value lookup in the database. The average GPU Watt consumption is obtained by sam-
pling Watt values at regular intervals with the CUDA nvml-driver during each routine
benchmark and averaging these. Micro-benchmarks are performed per routine and per device
(devnym X routinep,,, times) and use separate BLAS backends depending on the target dev;,.
Devices with 0 < dev;y < cuda_dev_num are reserved for available CUDA devices and de-
vices with dev_id >= cuda_dev_num are reserved for available CPUs (usually one). The value
lookup micro-benchmarks use cuBLAS for NVIDIA GPUs and OpenBLAS for CPUs, but are eas-
ily extensible with minimal adjustments to other dev;q ranges (e.g. for AMD devices) or for
different BLAS implementations (e.g. a custom GPU implementation instead of cuBLAS) that
follow the BLAS standard.

Transfer coefficients: To obtain linkya p.), we follow the most widely used semi-empirical
approach; we measure a set of transfer times and use them to fit the coefficients of basic lin-
ear models for transfer time. We obtain link;,; empirically as the average latency of multiple
single-byte transfers. For linky,,, we run benchmarks for square transfers with dtype = double,
for D1 = D2 = 256 ~Put=20,

sions on the obtained samples in the manner of [71]. Then, we estimate the slowdown linkg

\/ maz_device_memory/2, and use least square regres-

for simultaneous link usage (e.g. transfer overlap for any two links), assuming it imposes a
constant throughput slowdown and does not affect latency. This slowdown is calculated with

a single micro-benchmark for each link; first, for the link of interest, a large transfer (D1 =

D2 = \/ mazx_device_memory/2) is tested isolated (fj;,x1), and then, it is tested overlapped

(tlink1—link2,,.,) With multiple similar transfers on the other link, resulting in the slowdown:

Slink1—tink2 = (Llinkl—link2over)/ tlink1 (3.6)

Since the method of obtaining the sl is empirical, we assume a maximum slowdown $lj;nk1—1ink2
of 2.0 (i.e., the effective bandwidth is halved), to avoid empirical errors spilling into the models.
For all transfer experiments we use the PARALIA wrapped functions for transfers, which cur-
rently use the cudaMemcpy2DAsync routine in their back-end with pinned host memory, as

required by these asynchronous calls.

76 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

3.2.5 Preprocessor

The PARALIA preprocessor is responsible for the framework initialization and the transforma-
tion of problem data for BLAS execution in a multi-GPU system, which is broken down into the

three basic operations described next.

Environment setup: This operation is performed when a BLAS routine is invoked for the first
time or with a new set of parameters. It allocates buffers, initializes data structures, and performs

backend-specific actions, like creating CUDA streams and events, to be used by the scheduler.

Tile decomposition: The bulk of preprocessing in BLAS libraries involves decomposing the
problem data into smaller chunks, usually referred to as tiles. As most similar multi-GPU li-
braries [57, 124, 157, 161], in PARALIA we decompose vectors to 1D tiles and matrices to 2D
square tiles, using a tiling size 7" provided by the autotuner. After data decomposition into tiles,
PARALIA identifies all sub-kernels deriving from this decomposition, generating the relevant

data/task dependencies.

Device initialization: This operation initializes the devices that will participate in BLAS ex-
ecution (active_dev;qs) and distributes sub-kernels to them, proportionally to their assigned
problem ratios (active_devyqtio). PARALIA supports multiple sub-kernel distribution patterns
(Sequential, Round-Robin, 1D-cyclic and 2D-cyclic) and by default uses Round-robin for BLAS
1 & 2 and 2D-cyclic for BLAS3. Unlike scheduler-centric multi-GPU libraries [57,[157] that rely
on dynamic load-balancing, PARALIA follows a static approach since load-balancing is based on

effective performance estimation performed before scheduling.

3.2.6 Scheduler

The PARALIA scheduler manages data caching in distinct device memories, and data transfers
between memories, invokes all sub-kernels on their assigned devices, and synchronizes their

execution and results, as analyzed below.

Data caching: For this operation, PARALIA uses a Software_buffer C++ class, similar
to BLASX and XKBLAS, which represents a buffer in each device with a distinct memory, and
can store 1D and 2D tiles. Each Software_buffer holds a number of blocks depending
on the problem size and per-device memory limitations, and employs a simple block-sequential
write-back policy to swap tiles during sub-kernel execution, using a MESI-like protocol similar
to BLASX [[157]. This Software_buffer ineach device is initialized the first time a program
calls a PARALIA BLAS routine, and is updated/extended in subsequent calls to match their device
and size requirements.

Sub-kernel invocation: The scheduler spawns active_dev,,,m POSIX threads, that are

responsible for invoking sub-kernels in their corresponding devices.

3.3. Experimental evaluation 77

After a sub-kernel is invoked, it issues three sub-tasks: a) the requests for all its input tile
dependencies (e.g. fetching tiles if they are not available in its device memory), b) the sub-kernel
computations to be performed after dependencies are met and c) potential data write-backs to
the initial memory location for any tile it modified. The optimization of sub-kernel invocation
order is important for multi-GPU BLAS scheduling, since it affects both task parallelism and the
communication and data reuse pattern [57,157]. We leave the sub-kernel order problem for future
work because PARALIA focuses on model-assisted communication and workload distribution,
not dynamic scheduling techniques.

Synchronization: The sub-tasks of each sub-kernel (i.e. fetch data, compute, writeback) are ex-
ecuted asynchronously and overlapped with sub-tasks from other sub-kernels (software pipelin-
ing) and on other devices (multi-GPU) using CUDA events to enforce data dependencies and
CUDA streams to enable overlap. After all sub-kernels are invoked, the scheduler synchronizes

all sub-tasks and returns the result and control to the user upon completion.

3.3 Experimental evaluation

In this section, we evaluate the performance of PARALIA and compare it with state-of-the-art
libraries. First, we introduce the testbed and the evaluation dataset we use for our experiments
and illustrate its corresponding LinkMap representation. Then, we provide a full evaluation of
PARALiA’s DGEMM performance and compare it against cuBLASXt [[124], BLASX [[157] and
XKBLAS [57], using both performance (Tflops) and energy efficiency (Gflops/W) metrics. We
compare three versions of PARALIA, with each version using a different approach for workload
distribution, based on the estimated routine performance, inverse energy-delay (£ D F;) or in-
verse power-delay(P D F;). Finally, we showcase that PARALIA also adapts better than previous
approaches to a heterogeneous system, which we emulate using a different predefined per-device

load in our testbed.

3.3.1 Experimental setup

For the performance evaluation we use a single testbed: the “clx-ai” nodes of HLRS’ HPC cluster
Vulcan [69]. System details are presented in Table B.3, along with the interconnect band-
widths stored in the LinkMap for the 9 devices (8 GPUs + CPU). The interconnect utilizes
a mix of NVlink-1 (24 GB/s) and NVlink-2 (48 GB/s) for inter-GPU connectivity and PCiE (12
GB/s) for all CPU-GPU communication. In addition, we note that CPUs share PCle bandwidth
in sets of two (e.g. GPU 0-1, 2-3 etc). For time measurements we use wrapped timers based on
clock_gettime, with device synchronization (cudaDevice Synchronize()) also

included; both timer and synchronization overhead were less than 1% for all benchmarks. We

78

Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

Table 3.3: CLX-AI system characteristics.

Figure 3.8: CLX-AI interconnect Linkmap.

Vulcan CLX-AI | CPU GPU link gvr\'; ?glbc/as |)

Computation: 4 X Intel Xeon Gold 8 X NVIDIA Tesla V100 bw 50
6240 CPU FP peak 14 TFlop/s 2 mE I
18 cores @ 2.60GHz DP peak 7 TFlop/s © EE 40

Memory: 768GB DDR4 32 GB HBM2 B [| [] 30 -

760 GB/s g = - || 20

Interconnect: PCle Gen3 x16 NVlink 1.0/2.0 ~1H |

OS: Rocky Linux release 8.7 | CUDA Driver - - []] 10 -

Kernel: 4.18.0-425.3.1.el8.x86_64 | 510.108.03 e NN o

Compiler: g++11.2.0 CUDA 11.6 012345678

Opt. flags: -03 -03, -arch=sm_75 SrCig

perform 20 executions for large benchmarks and 100 for small ones, after 10 warm-up runs, and
we report the median time/performance of these runs. The allocation time needed for CPU/GPU
buffers is not modeled or included in the total time, and all matrices/vectors are initialized with
random values before execution. We use pinned host memory to enable asynchronous CUDA
calls and the caches/buffers are flushed between runs. The above configuration is consistent for

all our experiments and all state-of-the-art libraries we include in this work.

3.3.2 Evaluation Dataset
3.3.2.1 Routine selection

While the PARALIA framework is designed to support all BLAS levels, level-1 and level-2 are
rarely offloaded to GPUs/accelerators as standalone calls - they usually follow or precede level-3
BLAS invocations which can fully utilize the extreme computational capabilities of GPUs. We
therefore only implement a subset of BLAS routines (axpy, dot, gemv) as proof-of-work with
the PARALIA’s wrappers and do not include any level-1 or level-2 BLAS routines in our evalua-
tion. On the other hand, the usual evaluation trend for multi-GPU level-3 BLAS publications is
to report the performance of most or all level-3 BLAS routines they implement, for multiple sup-
ported datatypes. Due to the very high resource cost of benchmarking multi-GPU level-3 BLAS,
this usually leads to small datasets with specific characteristics, which as we mentioned in sec. .1,
is the main problem of previous approaches. Due to this, their evaluations explore only a frac-
tion of potential problems, resulting in potential underlying bottlenecks never brought to light.
We choose a different benchmarking approach for PARALIA; we select a large, diverse dataset
and focus solely on double-precision floating-point matrix-matrix multiplication (dgemm) for
performance evaluation. We make this choice for three reasons. First, GEMM is by far the most
common level-3 BLAS routine; all other level-3 BLAS kernels are either datatype-specialized
GEMM implementations or internally perform mostly GEMM computations (68-93% according
to BLASX [[157], which increases further with problem size), and therefore follow similar per-

formance trends. Second, as the most generic level-3 BLAS routine, GEMM, depending on its

3.3. Experimental evaluation 79

input/output size and shape, results in a plethora of different arithmetic intensities, which can
be used to expose bottlenecks for transfer-, memory- and compute-bound problems with a sin-
gle implementation. Third, because our total resources are limited, we prefer to cover a diverse

dataset to expose hidden bottlenecks, instead of presenting similar results for multiple routines.

3.3.2.2 Dataset characteristics

Since most state-of-the-art multi-GPU level-3 BLAS libraries use the same cuBLAS single-GPU
routines at the backend, they have similar performance peaks when communication is not a
bottleneck. We therefore try to include a good percentage of problems that potentially have per-
formance differences due to communication/scheduling. The main characteristics of GEMM that
change its communication/computation ratio are the problem size and problem shape, and addi-

tionally, for multi-GPU setups, the initial residing memory for each of the input/output matrices.
We consequently explore 21 square problem sizes (Mg, = Ngg = Ky = (2 Step=l, 22) - 210),
21 fat-by-thin problems (M4 = Nfqr = (8 Sep=d, 32) - 219 Kthin = @, r € [2,8,32]) and

21 thin-by-fat problems (K fq; = (12 step=4, 36) - 219 Mipin = Nipin = Ktat , T € [2,8,32]) for

T

10 location combinations (more in Figure B.9) for a total of 630 problems. We assume each ma-
trix initially exists in a single location and is not pre-distributed to multiple devices, to maintain
compatibility with the BLAS API standard and to be able to compare performance with existing
multi-GPU BLAS libraries, which also follow the standard. For each such problem, we measure
the execution time ¢ of 1) cuBLASXt, 2) BLASX, 3) XKBLAS and 4) four PARALIA variants (PAR-
ALiA comm_opt, PARALIA select(PERF), PARALIA select(E D F;), PARALIA select(PDZF;)). PAR-
ALiA comm_opt only optimizes communication without employing device selection, while the
other three versions also select the best device configuration for optimizing the relevant metric.
We exclude other libraries like SuperMatrix [61] and PARSEC [[161] that were designed taking
older GPU architectures into account, as they are outperformed by both BLASX and XKBLAS.

3.3.3 Comparison with state-of-the-art
3.3.3.1 Performance

Figure B.d shows the evaluation results for the entire dataset. As previous work also outlines,
cuBLASXt has very low performance due to its static round-robin decomposition as well as the
absence of a data caching and reuse logic. On the other hand, BLASX provides good perfor-
mance for the full-offload (h,h,h) scenario for initial data locations, which drops considerably in
all other location combinations. This pattern holds for all three data shapes, and is more evident
in fat-thin and thin-fat problems because they are more communication-bound than the square

shape, for which GEMM has the highest arithmetic intensity. XKBLAS follows a similar pattern,

80 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

BN 0.cuBLASXt [1.BLASX WM 2.XKBLAS [3.PARALIA comm_opt [4.PARALIA select(EDP;)

Square (M =N = K) Square / all locations
40 -
oll Jrl i 8 =
. [[]
Fat-thin (M =N > K) Thin-fat / all locations

Performance (Tflops)

Thin-fat (M = N < K) Fat-thin / all locations

L

Figure 3.9: Performance of dgemm with cuBLASXT, BLASX, XKBLAS, and two variants of PAR-
ALIA (one always utilizing all GPUs and one selecting the workload distribution to maximize the
inverse energy-delay product - EDP;), on the dataset described in subsection B.3.4. Each row
corresponds to a different data shape M, N, K and each boxplot group corresponds to a different
data location, with gemmio. = (Ajoes Bioc, Cloc), Where loc = h corresponds to data on host and
loc = dev;q to the corresponding device’s memory. The right subfigure aggregates results for
each problem shape.

A0 5) o 000 ,O\a'G? Ot 2) Gpu© 3.0

N N I e T

2.5 6.1
RSy
Al

o o nO o
1 Gpul0 '\“put‘GN@' ‘pu‘_gvu\“' ixed®

Fod - 6PV
AN-GRR T ppu ou

with only one distinguishable characteristic; it has the highest full-offload (h,h,h) performance of
all libraries, but the performance degradation in all other location combinations is much larger
than BLASX, resulting in inferior performance. We attribute this to the extra heuristics XKBLAS
uses for limiting writebacks and task scheduling and its very lightweight scheduler, which are
designed around the optimization of the full-offload scenario. While we are working on over-
coming both those issues, we also believe that this would not occur in modern systems that are
not as heavily bound by h2d PCle transfers. The simpler BLASX is better in this case, since writ-
ing back to the host and then re-fetching to the GPUs with h2d/d2h transfers (PCle bandwidth
= 12 GB/s), is better than performing d2d between distant devices which results in extremely
slow transfers through PCle, bridges and potentially NUMA connections (bandwidth < 6 GB/s),
which cannot be overlapped. Nevertheless, this is a very interesting observation - the dethroning
of BLASX by XKBLAS as the state-of-the-art for multi-GPU setups was based only on the full-
offload comparison. Looking behind the curtain, BLASX does provide more robust multi-GPU
performance in the general case - which further stresses the importance of a more diverse dataset
for a fair performance evaluation. Both PARALIA implementations offer a 1.8-2X mean perfor-

mance improvement over BLASX and XKBLAS and exhibit superior performance for all location

3.3. Experimental evaluation 81

I 0.cuBLASXt 3 1.BLASX I 2.XKBLAS =3 3.PARALIA comm_opt I 4.PARALIA select(EDP;)
Square (M = N = K) Square / all locations

g EEI T T F LT,

Fat-thin (M =N > K) Thin-fat / all locations

PEPFPEYEY F ML

Thin-fat (M =N <K) Fat-thin / all locations

rTrrEEFEER R

" \(\\’\\ ?\N)Q\’\\ ?UU_A\'\\ ?\N,\\'\O\ dk“°5\ 90000\ \3\3\011‘ 90&036\ pU\A‘lS\ PUOQ,‘I\
- _gate” -Cl “\pu \npy p -G da‘a Al _gate” -G Al _gate” -G Al _date” -G Al _data”

PDP; (Gflops/W)
= N
S) o

o

Figure 3.10: Energy efficiency of dgemm (Gflops/W) for all problem configurations presented
in Figure @ cuBLASXt, BLASX, XKBLAS and PARALIA comm_opt have PD P;s relative to
their performance (since they all utilize all 8 system GPUs), resulting in a much better PD P; for
PARALIA due to its higher performance. On the other hand, PARALIA select(E2D P;) also takes
into account the energy-performance relation when considering how many devices to use and
therefore has a much better PD P; with only imposing a minor performance difference.

and shape configurations, except full-overlap, where our choice to not use sub-kernel order se-
lection heuristics gives XKBLAS a 5-10% performance advantage. The performance gain versus
BLASX and XKBLAS varies for all other configurations, with the two PARALIA implementa-
tions displaying almost similar performance and ultimately approaching peak performance (e.g.
being compute-bound) by better utilizing the faster NVLink connections due to the optimized
LinkMap. In summary, Figure B.9 illustrates that PARALIA outperforms previous approaches
in terms of performance (details in sec. B.3.3.3) in a complete, diverge dataset, containing various

transfer- and compute- bound cases, due to its better communication optimization scheme.

3.3.3.2 Energy efficiency

Figure presents results on energy efficiency for our dataset using the inverse power-delay
product (PDP; in Gflops/W). Both PARALIA implementations have superior PDP; than the
state-of-the-art, which for PARALIA comm_opt versus cuBLASXt, BLASX, XKBLAS is due to their
performance difference, since they all utilize all 8 available GPUs. On the other hand, PARALIiA
select (E D P;) has the best PDP, for all configurations, providing an 8% higher average PD P,
than PARALIiA comm_opt with only 0.5% less mean performance. It is also evident that the mean

PDP; improvement via selection mostly affects smaller problems (boxplots lower parts defer

82 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

more) and depends on problem shape (Mean improvement: sq = 1%, fat-thin = 8%. thin-fat =
15%). Both these behaviors derive from the fact that device selection is only meaningful for
partially communication-bound problems, since for purely computation-bound ones selecting
all devices will always yield the highest FDP;. Summing up, PARALIA provides the highest
energy efficiency for all configurations, coupling better overall performance with efficient device

selection for communication-bound problems.

3.3.3.3 In-depth analysis

While PARALiA’s communication optimizations affect most of the dataset, making their per-
formance contribution easily distinguishable, device selection benefits only problems that still
remain communication-bound after the aforementioned optimization. Consequently, since in
Figures B.9 and such problems are overshadowed by the compute-bound portion of the total
dataset, we include Table 3.4 to better demonstrate the effect of selection by splitting the dataset
to two equal (310-320) parts, denoted small (S) and large (L), along with the total (T) dataset mean
values. We also include two other versions of PARALIA selection, select(PERF) and select(PDF;),
to showcase the effect of different optimization metrics, and make three basic observations.

First, the means show (apmovichow PARALIA comm_opt, PARALIA select(PERF) and PAR-
ALiA select(E D P;) vastly outperform all previous approaches in terms of performance in all (S,
L, T) problems, with PARALiA select(PERF) having a (geo)mean performance improvement in (S,
L, T) of (4.6, 5.6, 5.1x) over cublasXt, (1.6, 2.0x, 1.8x) over BLASX and (2.3%, 2.5X%, 2.4X)
over XKBLAS, and PARALIA select(EDP;) (4.3%, 5.5%, 4.8X) over cublasXt, (1.5%, 2.0%, 1.7X)
over BLASX and (2.2, 2.5x%, 2.3) over XKBLAS. For all the above cases, the communication opti-
mization yields similar results in (S, L, T), with slightly better speedup on large problems due to
previous libraries struggling with the interconnect optimization, while PARALIA already reaches
compute-bound performance earlier. PARALIA select(PDF;) on the other hand leads to vastly
inferior performance, since PDP; alone is a bad metric in multi-GPU due to often selecting 1
GPU to provide the most flops/W.

Second, all PARALiA implementations also outperform previous approaches in terms of en-
ergy efficiency, with PARALIA select(PERF) having a (geo)mean PD P; improvement in (S, L,
T) of (7.8%, 5.6X, 6.6X) over cublasXt, (2.7x, 2.0x, 2.3%x) over BLASX and (4.0, 2.5%, 3.2X)
over XKBLAS, PARALIA select(EDP;) (9.0x, 5.7x, 7.1x) over cublasXt, (3.1%, 2.0X, 2.5X) over
BLASX and (4.6 X, 2.6X, 3.4x) over XKBLAS and PARALIA select(PDFP;) (17.0x, 7.0x, 10.8X)
over cublasXt, (5.8%, 2.5%, 3.8x) over BLASX and (8.6 %, 3.2%, 5.2x) over XKBLAS. Unlike per-
formance which is mainly driven by the LinkMap optimization, the additional P D P; improve-
ment derives from device selection, which is evidently higher in the small (S) problems where

most selection occurs. As anticipated, PARALIA select(P D P;) offers the best energy efficiency

3.3. Experimental evaluation 83

Table 3.4: A summary of the performance of dgemm for the whole dataset for each imple-
% [70]. Small problem (S), large problem (L) and total dataset
(T) percentages are displayed separately for extra clarity regarding the underlying perfor-
mance. PARALIA comm_opt, PARALIA select(PERF) and PARALIA select(E D P;) vastly outper-
form previous approaches, with PARALIA select(PERF) offering the best performance and PAR-
ALiA select(E/D P;) being more balanced between performance and energy efficiency as intended.

PARALIA select(P D P;) leads to relatively low performance coupled with the best PDF;.

mentation, using the

Implementation Performance (Gflops) PDP; (Gflops/W)
Small (S) | Large (L) | Total (T) | Small (S) | Large (L) | Total (T)

cuBLASXt 1827 8516 7484 0.79 3.68 3.23
BLASX 4913 24755 21486 2.12 10.69 9.28
XKBLAS 3569 18572 15895 1.54 8.02 6.86
PARALiIA comm_opt 9396 45840 39996 4.06 19.79 17.27
PARALIA select(PERF) 10641 46066 40933 5.32 19.94 18.06
PARALIA select(EDP;) | 9453 45433 39804 6.30 20.16 18.64
PARALIA select(PDP;) | 3970 6700 6530 13.71 23.14 22.56

by far, since the selection target is also the evaluation metric, select(PERF) improves PARALIA
comm_opt PD P; as a byproduct of using fewer devices when they provide similar performance
and select(E'D P;) provides a solid P D P; in between the other two (leaning towards performance)

as intended.

Third, we consider PARALiA select(E D P;) to provide the best performance-P D P; trade-off,
focusing on performance but also accounting for energy efficiency in order to avoid very inef-
ficient choices (like for example using 8 devices to get a 5% speedup from using 2), resulting in
huge P D P; improvement in small problems (1.5X over PARALIA comm_opt) with a similar per-
formance. This energy efficiency improvement is virtually free to the user, deriving solely from
performance awareness, and is the main motivation behind our work. Additionally, the means
for select(PERF) and select(E D P;) show that selection can also lead to better performance even
disregarding energy whatsoever, depending on the communication-boundedness of the problem.
Summing up, PARALIA vastly outperforms previous approaches in terms of both performance
and energy efficiency, with PARALIA select(E D P;) offering near-optimal performance due to
communication optimization coupled with superior P D P; due to performance awareness deliv-

ered from the auto-tuning runtime.

84 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

3.3.4 Applicability to heterogeneous platforms

Device selection in homogeneous systems is meaningful for communication-bound problems but
can be even more beneficial in heterogeneous systems, where devices can have different compu-
tation capabilities. While heterogeneous multi-device systems are not common nowadays, com-
putational heterogeneity will probably be more commonplace in the future. Heterogeneous-like
execution scenarios can also appear in current homogeneous multi-device systems, by apply-
ing different power management policies or sharing devices between users/processes. For this
reason, we include a proof-of-concept application of our approach to an artificial heterogeneous
system, which we emulate by loading the GPUs of the Vulcan clx-ai cluster with different com-
putation workloads running in other processes. We configure these workloads empirically to
represent GPUs with lower performance, resulting in the following double FP peak adjustments:
GPUjg1,46y = 3.5 Tflops, GPUy; 33 = 5 Tflops and GPUy5 71 = 7 Tflops (original peak). We
also do not adjust the power consumption of each device, resulting in different energy efficiency
for each device category (e.g. GPU(5 71 are more energy efficient than G PUy, 3y etc). This leads
to a total system DP peak of 38 Tflops (vs 56 Tflops for the original system), and a PD P; peak of
17.5 (vs 26 in the original system). We also note that a homogeneous-distribution DP peak (with-
out load-balancing) is 3.5 - 8 = 28 Tflops for future reference. Additionally, we limit the dataset
to less than half the problems, by doubling the data size iteration steps and the minimum size
for a total of 250 problems, and exclude cublasXT due to extreme benchmark times and having
no load-balancing mechanism whatsoever. The results for this heterogeneous-emulated system
are shown in Table B.5 and Figure B.11].

Figure contains the aggregated performance (left) and energy efficiency-PD P; (right)
box-plots for the entirety of the aforementioned heterogeneous dataset of 250 problems (HS -
90, HL - 160), which now leans more towards computation-bound problems since the peak per-
formance has lowered considerably while the interconnect is the same. BLASX, XKBLAS and
PARALIA comm_opt follow similar performance and P D P; patterns with the homogeneous sys-
tem, albeit at lower peak as expected. Communication optimization is still an issue for BLASX
and XKBLAS resulting in superior performance for PARALIA comm_opt, but all 3 approaches are
limited by the aforementioned homogeneous-distribution peak around 28 Tflops. On the other
hand, PARALiA select(E' D P;) manages to provide a better workload distribution, which results
in better performance by approaching the peak of 38 Tflops for large problems, and has far supe-
rior PD P; both due to better performance and due to awareness of the different characteristics
of each emulated device. Summing up, PARALIA select(E D P;) vastly outperforms previous ap-
proaches both in terms of performance and energy efficiency in the heterogeneous system as

well, now further boosted by a better workload distribution in different devices.

3.3. Experimental evaluation 85

Figure 3.11: DGEMM performance Table 3.5: A table summarizing the GEMM perfor-
(Tflops) and energy efficiency (Gflops/W) mance for the whole dataset for each implementa-
for half of the problem configurations tion, using the < G/1) 54] for half of the small

mean(metric)

presented in Figure B.d ~BLASX and (HS), large (HL) and total (HT) problems of Table B.4
XKBLAS schedulers do not adjust well yap op 5 heterogeneous emulated system. PAR-
to different computation devices, while ALjA outperforms all multi-GPU scheduler-based
PARALIA still provides improved perfor- approaches both in performance and energy effi-

mance and PDPF;, which is boosted by ¢jency, further boosted by a better workload selec-
better workload distribution. tion.

Total Heterogeneous Dataset Implementation Performance PDP;

(Gflops) (Gflops/W)
(HS) | (HL) | (HT) |(HS)|(HL)| (HT)

BLASX 5036 |18621|17316(2.21 |82 |7.6
XKBLAS 5379 | 1678215520 (2.36 |7.4 |6.8
PARALIA comm_opt 12056 | 24892 | 24146 | 5.5 |10.9 | 10.6
PARALIA select(PERF) | 12160 | 2722128117 | 6.2 |14.7 [13.2
0 PARALIA select(EDP;)| 9453 | 26154 |25645(7.9 |15.3 |15.1

BLASX PARALIA comm_opt
mmmm XKBLAS mssmm PARALIA select(EDP;)

w
o
1

15 A

N
o
1
[y
o
1

=
o
1

Performance (Tflops)
w
1

PDP; (Gflops/W)

o

Table B.9 shows the achieved mean performance in a similar layout with subsection for
the small (HS), large (HL) and total (HT) dataset also displaying results for PARALiA select(PERF).
PARALIA select(PDPF,;) is omitted due to always selecting from GPU(5 7} as expected without
adding any additional insights. Since the performance is already visualized in Figure we use
Table B.3 for problem size-related insights and mean comparison, making the following obser-
vations. First, PARALIA versions still outperform previous approaches in all subsets, but with a
smaller performance difference added to the baseline PARALIA comm_opt from communication
optimization. Specifically, PARALIA select(PERF) has a (geo)mean performance improvement
in (S, L, T) of (2.2x%, 1.7%, 1.8%x) over BLASX and (2.0x, 1.9%, 1.9x) over XKBLAS, and PAR-
ALiA select(F DPF;) has (1.8x%, 1.6%, 1.6x) over BLASX and (2.0, 1.7x, 1.7x) over XKBLAS.
This is expected, since by reducing peak performance and removing smaller problems form the
total dataset, the impact of communication optimization is limited since many problems now
become compute-bound. Second, the impact of workload selection increases performance and
energy efficiency both for PARALIA select(PERF) and PARALIA select(E D P;) in respect to PAR-
ALiA comm_opt, since devices with lower computational power are used for a smaller part of
the problem or omitted by the auto-tuning runtime. This is more visible in the large (HL) prob-
lems which are compute-bound, since in small (HS) problems the communication optimization is
still more important. The difference between PARALIA select(PERF) and PARALIA select(E D P;)
becomes more evident when comparing them with PARALIA comm_opt; PARALIA select(PERF)
offers 1.12X mean performance and 1.3X mean P D P; improvement while PARALiA select(E D P;)

86 Chapter 3. Extending model-based autotuning for multi-GPU and heterogeneous systems

offers 1.06X performance and 1.5X PDP;. Summing up, both PARALIA select(PERF) and PAR-
ALiA select(E2D F;) benefit from workload selection, offering different insights and balance be-
tween performance and energy in the heterogeneous system, outlining the increased importance

of additional metrics for such future systems.

CHAPTER 4

A communication-aware multi-GPU matrix

multiplication library

This chapter describes the culmination of our thesis: the merging of the model-based autotun-
ing of previous chapters with a highly-optimized schedule to provide a state-of-the-art library
for the most widely used BLAS kernel, general matrix multiplication (GEMM). First, we analyze
the motivation for selecting this final part of our thesis, which involves the shortcomings of
previous approaches in providing peak performance for matrix multiplication and the consider-
able unrealized potential of the model-based knowledge PARALIA provides (Section [4.1)). Then,
we describe our end-to-end matrix multiplication library design inspired by distributed GEMM
but bolstered with knowledge-driven communication optimizations (Section .2). Finally, we
evaluate the scalability, performance, and robustness of our approach and compare it with state-
of-the-art libraries (Section §.3).

4.1 Problem formulation

In Chapter f, we introduced a generalized modeling approach for BLAS operations in general
within a single-GPU context, laying the basis for enhancing performance through dynamic run-
time autotuning. Building on this, in Chapter § we focused on level-3 BLAS operations, which
are more common in multi-GPU clusters due to their higher arithmetic complexity. Focusing on

level-3 BLAS instead of modeling a broader range of BLAS operations allowed us to address the

87

88 Chapter 4. A communication-aware multi-GPU matrix multiplication library

increased modeling complexity of multi-GPU environments without making excessive general-
izations. On the same note, in this final chapter, we want to delve even deeper by concentrating

on a single kernel: the general matrix multiplication (GEMM).

Why use GEMM?: In theory, focusing on a single kernel narrows the applicability of our ap-
proach from PARALiA’s level-3 BLAS target. In practice, level-3 BLAS kernels are either matrix-
multiplications with different data input types/layouts or perform mainly GEMM operations
internally [157]. This makes GEMM the most fundamental operation in high-performance com-
puting (HPC) and machine learning (ML) applications, and deems its optimization equally impor-
tant for the optimization of level-3 BLAS in general. Consequently, our objective is to conduct
an exhaustive optimization of GEMM, addressing the kernel-specific challenges and fine-tune

our optimization strategies beyond the more generalized approaches of previous chapters.

4.1.1 Background: Optimizing GEMM for Multi-GPU systems

In general, there are two paths to execute GEMM on a multi-GPU compute node, each with its

own advantages and disadvantages.

The theoretical approach: The first path is to utilize existing libraries for distributed GEMM
(or BLAS in general) that have been extended with GPU support [[11, 18, 54, 68, 94, 123, 161].
Distributed GEMM libraries are characterized by a very solid theoretical foundation, since dis-
tributed GEMM optimization is a problem with decades of previous work. Consequently, they
utilize complex decomposition and scheduling algorithms and advanced communication reduc-
tion techniques [1L, 23, 28, 38, 51, 94, 142, 151] (more details in Chapter E). The state-of-the-art
multi-GPU distributed libraries are SLATE [54], PARSEC [68] and cuBLASMp [123]. SLATE
implements the SUMMA [151] algorithm for GPUs, distributing problem data on their memo-
ries with a PBLAS user-friendly C++ data layout. PARSEC offers a similar approach, based on
task graph optimization [68,161], which can support larger problems than SLATE with better
scalability. cuBLASMp is the most recent NVIDIA implementation for multi-node multi-GPU
GEMM for pre-distributed PBLAS data layout, and offers state-of-the-art performance for data
pre-distributed to GPUs. The main problem of these approaches is that their algorithms and
optimizations are designed for scalability on hundreds (or thousands) of workers and and very
large problem sizes, not towards single-node performance. Consequently, they result in low per-

formance, especially for smaller more communication-bound problems.

The practical approach: The second multi-GPU GEMM path is the path of single-node opti-
mization, with specialized libraries designed specifically for performance [9,57,[124,125,[157]. In
contrast to large-scale distributed systems, where research on GEMM focuses on communication-

optimal algorithms and complex process decomposition grids, multi-GPU nodes feature a fairly

4.1. Problem formulation 89

small number of GPU devices. Consequently, these libraries focus more on the implementa-
tion, using lower-level scheduling, overlap, and communication optimization techniques avail-
able within one node as described in Chapter R.1. Due to the proximity of these optimizations to
the system architecture and the general complexity of multi-GPU optimization, these libraries
usually focus on the most performance-effecting subset of these optimizations for their develop-
ment systems and for certain problem configurations. This results in robust performance for these
systems and problems, but leaves room for improvements for the rest that might favor different
optimizations [9]. The most evident example of this is the state-of-the-art single-node multi-
GPU library XKBLAS [57]. As we showed in Chapter P.1, XKBLAS [57] reduces communication
volume and employs a lightweight DAG-based scheduling to balance GPU work, but employs a
simplistic heuristic-based mechanism for routing and applies naive communication-computation
overlap and communication balancing techniques. As a result, XKBLAS performs well for regu-
lar problems in regular systems, but suffers from severe performance degradation in nodes with
irregular interconnects and non-square problem shapes.

Understanding the gap: To bridge the gap between the theoretical and practical approaches,
one must understand what it entails within the context of one node. Distributed GEMM libraries
are communication and/or memory optimal, but they are not designed specifically for multi-
GPU and are therefore oblivious of the GPU hardware. Consequently, they are more robust to
changes in hardware or problem characteristics but lose some performance. On the other hand,
single-node multi-GPU GEMM libraries are closer to the GPU hardware, prioritizing lower-level
techniques, but do not incorporate the sophisticated theoretical foundations and advanced com-
munication reduction strategies of distributed GEMM solutions. Therefore, practical approaches
offer higher performance when fine-tuned for specific scenarios/hardware, but suffer severe per-

formance degradation when system or problem parameters change [9].

Takeaway Despite the advancements in distributed and single-node GEMM multi-GPU opti-
mization, a significant gap remains in addressing the intersection of these two domains. Conse-
quently, libraries either offer high performance for certain problems/systems, or robustness but

with a trade-off in performance.

4.1.2 Background: PARALIA limitations on covering this gap

The middle way: modeling and autotuning: The original motivation for CoCoPeLia and
PARALIA is that modeling offers a midway solution that balances the theoretical and practical
approaches. Our approach towards this midway was to abstract system and problem charac-
teristics by integrating analytical performance models, which are initialized empirically in each

system. Then, an autotuner is integrated into an existing library, enabling dynamic, adaptable

90 Chapter 4. A communication-aware multi-GPU matrix multiplication library

optimizations during runtime for some tunable parameters. This enables more generalized yet
efficient performance across diverse systems and problem configurations, overcoming some lim-

itations inherent in purely theoretical or practical strategies.

Current PARALIA limitations: While PARALIA represents a significant advancement in multi-
GPU BLAS optimization, it still is a midway between performance and robustness/portability.
For instance, in the case of GEMM, it struggles to fully exploit the potential of modern multi-
GPU nodes, losing 5-15% performance compared to XKBLAS in favorable scenarios such as full
offload. The first shortcoming of PARALIA lies in the communication optimization provided
by LinkMap. LinkMap operates re-actively, determining routing decisions at runtime without a
comprehensive view of the data flow. This approach, while adaptive, misses the opportunity for
proactive optimization based on a known decomposition. Additionally, the LinkMap relies solely
on bandwidth considerations for routing decisions, neglecting the current load on communica-
tion links when a decision is taken. Furthermore, the intermediate hops in rerouted transfers
that the LinkMap optimization algorithm suggests increase the total number of transfers. This
bandwidth-extra communication trade-off is usually better for performance, but it still deviates
from the performance peak of a communication- and bandwidth-optimal solution. Finally, the
most performance-effecting problems of PARALIA, derive from the scheduling, decomposition,
and caching techniques adapted from previous work and combined with autotuning. While these
methods have been enhanced by performance modeling, they remain limited by their design

complexity and lack of full integration between modeling and implementation.

The best of both worlds for GEMM?: Using runtime task schedulers has been the standard
for multi-GPU BLAS libraries, since they must support arbitrary BLAS problems with different
communication, computation and concurrency needs. However, when focusing specifically on
GEMM, the execution is influenced solely by the problem dimensions, data placement, and the de-
composition strategy. Given that the problem characteristics become available when the routine
is invoked and decomposition occurs before execution, all communication/computation require-
ments and dependencies can be determined before execution. Consequently, routing, overlap,
and scheduling decisions can be made proactively and based on the actual communication, not
a model-based estimation. Additionally, these decisions can be made considering the execution
process as a whole rather than making individual decisions reactively during runtime, open-
ing up the possibility for more complex optimizations. Unfortunately, the external autotuner
of PARALIA as described in Chapter [§ is insufficient for this purpose, because it operates inde-
pendently from the preprocessing and scheduling components. Instead, achieving the best of
both worlds requires an end-to-end approach that incorporates model-driven knowledge in the

decomposition, routing, and scheduling algorithms by design.

4.1. Problem formulation 91

Takeaway Modeling and autotuning can offer a midway solution between high performance

and robustness, but there is still considerable room for improvement when applied on GEMM.

4.1.3 Contributions

In this chapter, we focus on an optimized multi-GPU GEMM library that achieves both near-
optimal performance and robustness. Our approach is based on a static schedule that is cal-
culated ahead of execution, whenever a GEMM routine is called with a new set of parameters.
Each static schedule created for a given problem is reusable by subsequent routine calls, zeroing
out scheduling overheads for all but the first call. Knowledge of the input parameters gives us
a complete view of the routine’s communication pattern and scheduling characteristics, which
we exploit to simultaneously minimize communication volume, maximize interconnect utiliza-
tion, optimize overlap, and minimize imbalance and GPU idle time. We note that state-of-the-art
multi-GPU libraries for linear algebra [9,57,58,157] already implement some of the optimizations
introduced in this chapter, like caching (Section [.2.3), overlap (Section .2.9) and BW-based rout-
ing (Section [£.2.4). Our work refines these optimizations, employing a simpler caching scheme,
achieving full (rather than partial) overlap of all computation/communication streams, and re-
ducing routing overhead through static scheduling. Additionally, our work introduces novel op-
timizations including ETA-based routing (Section §.2.4.9), RONLY-fetch batching (Section [4.2.5),
lazy WR-tile fetching (Section [.2.6) and ETA-based sub-kernel ordering (Section }.2.7).

In summary, we make the following contributions:

1. Starting from a baseline implementation of multi-GPU GEMM, we introduce a set of com-
munication, algorithmic, and auto-tuning optimizations, inspired by both GPU and dis-
tributed scheduling, leading to a near-optimal multi-GPU GEMM that combines the best
of both worlds.

2. We provide an open-source multi-GPU GEMM libraryf] that simplifies efficient multi-GPU
computation. Our library is compliant with the BLAS standard, uses the LAPACK data
layout, and can handle any combination of CPU- and GPU-resident matrices. This flexibil-
ity allows both for easy drop-in replacement of existing GEMM routines, and integration

with libraries that already distribute data across multiple GPUs.

3. We evaluate our optimized GEMM on a multi-GPU NVIDIA HGX system with 8 NVIDIA
A100 GPUs interconnected with NVLink3 and NVSwitch2, for single and double precision,
using a variety of GEMM problem sizes, shapes and matrix memory placements. Our
results show that our implementation offers 1.37x and 1.29x higher performance over

state-of-the-art libraries on average, for single and double precision respectively.

'Available at https:/github.com/p-anastas/PARALiA-GEMMex

92 Chapter 4. A communication-aware multi-GPU matrix multiplication library

4.2 Implementation

In this section, we describe the design of a static schedule inspired by distributed and multi-GPU
approaches, that optimize GEMM for multi-GPU. From the available BLAS or PBLAS standard
input layouts for GEMM, we follow the BLAS standard [39], with the input matrices stored in
LAPACK layout, residing either on host or GPU memory [9, 57, 124, 157]. A GEMM routine
following the BLAS definition performs the operation:

Cot=a-AxB+b-Cyy (4.1)

Assuming that Cyy; is stored in-place in the Cj;, buffer, the operation requires three matrices,
A(M x K), B(K x N) and C(M x N), with A and B being read-only (henceforth denoted as
RONLY) and C being read and written (henceforth denoted as WR) internally.

4.2.1 Hierarchical decomposition

The decomposition of matrices A, B, and C' determines the subproblems to be executed on each
GPU and also determines the communication pattern. In decomposing the problem, we opt to
avoid inter-GPU sharing of the C' matrix, since it leads to additional inter-GPU synchronization
and extra communication for multi-GPU execution [9, 57,[157] . We select a 2D decomposition
similar to the SUMMA [1151] algorithm, as a simple and practical solution, upon which we apply
a number of optimizations.

Figure [t.1 depicts our proposed hierarchical decomposition based on the blocking version of
the SUMMA distributed algorithm [[151]. The first decomposition level is based on the number of
GPUs, which are the processing elements, viewed as a 2D grid of r x ¢ GPUs. We decompose C
matrix into 2D-blocks of M, x N, and assign each block individually to a single GPU. We then
decompose matrices A and B into blocks of rows of size M, x K and blocks of columns of size
K x N, respectively. The row-blocks of matrix A are assigned to ¢ GPUs and the column-blocks
of matrix B to r GPUs.

At a second level, the blocks of A, B, and C' on each GPU are further decomposed into 2D
blocks, or else tiles, of size T' x T', applying padding where required. This results in a 3D grid of
% X % X % square GEMM subproblems, each requiring different input and output tiles. To obtain
the GEMM routine output Cy,,;, we then need to compute the tile-based outer-product [151]:

K

T
Ci,j =b- Ciyj + Z a - Ai,k X Bk,j (4.2)
k=0

forizO%%andij%%.

4.2. Implementation 93

A
C=2aAB +bC Boo | Bo1 | Bo2 | Bo3
SUMMA Bio | B11 | B12 | B13
r=2,c=2 K
(2x2 =4 GPUs) Byo | B21 I Boo | Bos
B3g | B31 | B32 | B33 i T
\ 4

A

Mr

\ 4

K
-.
< >

N €<—>

Nc

Figure 4.1: An example of our GEMM 2-level hierarchical decomposition for a square problem
(M, N, K) based on the SUMMA blocking algorithm [[151]. The first level depends on the num-
ber of workers (here: 4 GPUs) split to a 2D grid (r,¢) = (2,2) which decomposes (M, N) to
(M,, N.) chunks, leaving K untouched. Then, the second level is splitting (M, N, K) to 2D
square (T, T') blocks, which creates square GEMM sub-problems and enables communication/-
computation overlap.

The value of T" 1) should avoid excessive padding, 2) must be small enough to create a suffi-
cient number of sub-problems for overlap and 3) must be large enough to avoid kernel, transfer,
and scheduling latencies [, 9,63,65.159]. To ensure a balance between the three, we minimize a
composite cost function, based on three heuristics. The first heuristic tries to avoid padding by

penalizing any remainder when dividing M, N, K to tiles:

1
Cpaddmg (T) = Z T

i€{M,N,K},i0

The second heuristic concerns the ability to overlap and penalizes the problem percentage that

cannot be overlapped, estimated as the inverse of the overlap pipeline length, equal to the number

94 Chapter 4. A communication-aware multi-GPU matrix multiplication library

Boo Bio By B3o| ... fetch
compute

8pug WB
B2 B By B3| .. fetch
compute

gpu; .. WB

Figure 4.2: The process of executing the tasks of the first four sub-problems as seen in Figure j.1
on two GPUs in parallel. Tasks of different types (fetch, compute, WB) are placed on different
streams and overlapped in a pipelined manner for each GPU, using different streams for intra-
GPU parallelism.

of sub-problems per GPU:
gpu_num

Covertap(T) = 37 v &
TXTXT

The last heuristic for latency uses a minimum pre-selected tile size T}, (default = 2048), large

enough to avoid high latency, and penalizes smaller tiles proportionally:

Trnin % 0.2

Clatency (T) = T

We apply these heuristics before second-level decomposition by selecting the tile size 7" that min-
imizes Ctotal(T) = Cpadding(T)+Covertap(T)+Clatency (T'), forall T = 128 — min(M,, N., K).

4.2.2 Communication/computation overlap

The end-to-end offloading of a GEMM subproblem that results from decomposition to a GPU
requires fetching the input dependencies, i.e. the required input tiles A7, By, and Cr, computing
the kernel and potentially writing back the result Cr to the location of the initial matrix. We
therefore consider each decomposed subproblem as a five-task process: tasks (1)-(3) of fetching
the input dependencies, fetchds!(Ar), fetchdsi(Br), fetch®(Cr), task (4) of computing the
kernel compute, and task (5) of writing back the output W B3.¢(Cr). The subproblems and
their corresponding tasks enable intra- and inter-GPU parallelism, as the different tasks can be

scheduled on different streams.

4.2. Implementation 95

Figure ft.4 depicts a simplified example of scheduling the first four sub-problems of the afore-
mentioned decomposition of Figure f.1 on gpug and gpu;, respectively. We asssume that ma-
trices A, B, and C initially reside on the same location (A;,c = Bjoe = Cioc). Placing the
different types of tasks (fetch, compute, and W B) on different streams enables overlap in
a pipelined manner. This reduces the total time for a subproblem from tiotar = tfercn(a) +
tieten(B) + Leten(c) + teompute +tw B(c) to approximately tiotar ~ maz((feten() +treten(m) +
ttetch(C))s teompute, tw B(C')) [159]. In our implementation, overlap works similarly, but addi-
tionally, we enqueue the data transfer tasks (fetch, WB) on (gpu_num + 1)? different CUDA
streams, enabling simultaneous bidirectional point-to-point communication between all devices
plus the host memory. Consequently, if Aj,., Bjoc and Cj,. are discrete locations/device memo-
ries, the fetch tasks are also overlapped, resulting in #0101 = Max(t esch(A)» t fetch(B)> tfeteh(C)s
teomputes tw B(C))- For computation/communication overlap, we schedule the compute tasks,
performed using cuBLAS [[122] kernels, on a configurable number of CUDA streams per GPU
(the default is 8). Finally, task dependencies between streams are defined and respected with

CUDA events [[126] similarly to previous approaches [9,57,157].

4.2.3 Data caching / Communication avoidance

To avoid excessive communication, most multi-GPU BLAS implementations [9, 57, [157] cache
the tiles that are fetched to a GPU memory for a specific subproblem, to be reused by subsequent
subproblems. Caching is necessary for problem sizes that do not fit in the GPU memory, and
important for performance as it reduces the communication volume, but its management adds
some overhead. To avoid this, we refrain from a complex caching mechanism, based on the fact
that, in recent systems, the GPU memory sizes are large enough to hold the necessary data and
GEMM becomes compute-bound long before memory capacity becomes an issue. Instead, we
use a buffer per GPU, denoted as SoftBuf[i], with i = 0 — gpu_num. This buffer is allocated
whenever a GEMM routine is called for the first time, tailored to the memory requirements of
the decomposition of Figure [t.1 for that specific problem. The buffer stores the necessary tiles
throughout the entire routine lifetime. If a subsequent GEMM routine has a larger memory

requirement, the buffer is automatically resized.

4.2.3.1 Offloading problems exceeding memory capacity

It is common for modern multi-GPU nodes to feature large host memories (in the order of TBs)
that far exceed the capacity of GPU memory (in the order of tens of GBs). For the specific case
of large problems, where A, B, and C all reside in host memory and the SoftBuf memory re-

quirements exceed the GPU memory capacity, we employ an additional level of decomposition

96 Chapter 4. A communication-aware multi-GPU matrix multiplication library

on the host side, before applying the hierarchical decomposition of Section }.2.1. This decom-
position is automatically triggered upon routine invocation, when the problem size would result
in any SoftBuf[i| larger than a preset percentage (default = 80%) of the available GPU mem-
ory on gpu;. We decompose the original problem dimensions My, Ny, K7, in a 3D manner
into square tiles of size 17, resulting in a 3D grid of GEMM subproblems of size M x N x K,
with M = N = K = Tp. We select the maximum 77, that satisfies the memory require-
ment for the SoftBuf buffer. We then schedule each subproblem sequentially onto the GPUs,
with each subproblem utilizing all the optimizations described in this work. We note that this
limits the communication-computation ratio and consequently, the total performance for the
(M, N1, K1) problem to that of the (77,77, T7,) problem.

4.2.4 Communication routing

The main communication volume in multi-GPU GEMM results from the read-only (RONLY) tiles
Ap, Br of matrices A and B, which must be fetched to multiple GPUs, where the relevant
subproblems are to be executed. During execution, the first fetch of each RONLY tile, e.g. A7,
to a gpu; requires a transfer from its original matrix location in_loc, e.g. fetchi™} (Ar), that
stores Ar to SoftBuf[gpu;]. On the other hand, subsequent tile fetches to any_ other device
gpu;j can either fetch a copy of the tile from in_loc or from gpu;, which requires a communication

routing decision.

4.2.4.1 Bandwidth-based routing

A common approach to perform communication routing is to use the bandwidth between the
different memory locations, based on the interconnect topology [9,58,[157]. The selection of the
optimal route is based on the available bandwidth. For the example given above, where A7 may
reside on both in_loc and gpu;, the decision boils down to comparing BW;"}" . and BWah

and selecting the route with the highest bandwidth. We estimate the bandwidth of the different

(gpu_num + 1)? routes/streams empirically with micro-benchmarks, as in [9].

4.2.4.2 Accounting for interconnect load

While bandwidth-based routing can be effective because it increases the average bandwidth uti-
lization, the goal of communication routing is to minimize the estimated time of arrival (ETA) of
a tile, i.e. the end-to-end time to fetch the input data to the target GPU, so that the compute task
starts as early as possible. Bandwidth-based routing fails to take into account the pre-existing
load over a link, which may delay the time of arrival of this tile. An example is depicted in Fig-

ure , where Agg needs to be fetched to gpug. Bandwidth-based routing selects to fetch the tile

4.2. Implementation 97

host mem gpu; mem gpu, mem
B{00-33} . Boo
PCle = 24 GB/s NVLink2 = 48 GB/s

host —3 gpu, (PCle)

gpu; —y» gpuy (NVLink2)

gpu, —p» gpu, (NVLink2)

gpu, compute

Figure 4.3: An example of bandwidth-based routing misprediction that results in increased GPU
idle time. When the sub-problem with input dependencies (Agg, Boo, Cop) is scheduled in gpuy,
Agp and By are already available in gpu; and gpug from previous tile fetches. Since BW-based
routing is unaware of interconnect load, it copies Agg from gpu; and Byg from gpus since these
transfers utilize higher P2P GPU bandwidth. In the case of Agg, this results in gpuy compute
blocking longer than if Agy was fetched from the host instead, due to a high pre-existing load in

gpul — gpuo.

from gpuy, since B Wgﬁﬁf > B W,ffgto, without accounting for the high load on that stream from

previous copies, resulting in the delayed arrival of Ay to gpug, and rendering gpug idle.

To avoid this effect, we optimize communication routing by considering the interconnect
load when selecting the route for a tile transfer. To achieve this, we define a 2D matrix for the
link availability (henceforth denoted as LAM), which stores the estimated time each src — dst
communication stream will be available (e.g. without remaining load). We additionally define
the ETA vector for each decomposed tile, which stores the estimated time that a valid copy of
this tile will arrive at each memory location. Initially, all LAM fields are set to zero. All ETA
vector fields are set to ¢nf, except for the initial data location of the tile, which is set to zero
(ET Alin_loc] = 0). During scheduling, whenever the scheduler needs to take a routing decision,
to fetch a tile of size bytes to dst, the scheduler combines the LAM and ETA vectors with the

tdst __ __size
¢ 7 BWt

estimated fetch cost searching for the source ¢ with the lowest ET A,,;,,, where:

gpufm'nn—l—l) . dst
ETApin = min (max(ETA[i], LAM [dest][i]) + t{*)

=0

98 Chapter 4. A communication-aware multi-GPU matrix multiplication library

Link availability matrix Tile ETA vectors
=l |al | |a | n Ao Boo
dest
Go | - 40 | 15 | .. | 10 GO | ? GO | ?
Gl | .. - Gl | 30 Gl | inf
G2 | .. - G2 | inf G2 | 15
G3 | .. - G3 | inf G3 | inf
H . H 0 H 0

Figure 4.4: An example state of LAM and ETA vectors for two tiles Agg and Byg. The tile ETA
vectors show when these tiles should be available to GPUs 1 and 2, respectively (initial on host
memory - ETA[h] = 0), while the LAM stores an estimation for the interconnect load up to that
scheduling state.

Then, the LAM and tile vector are updated for the new transfer to LAM [dest][i] = ET A[dest] =
ETA,,in. The aforementioned LAM update also happens for C tile fetches and writebacks to
take into account their interconnect load as well but without routing optimization. Figure .4
shows the LAM for the example in Figure .3 ahead of routing the transfers, with two example
ETA vector states for tiles Agp and Bgg. Following our ETA-based routing algorithm, Cpy will
be fetched from host memory (since it is only available there), Byg will be fetched from gpuo
since max(LAM[0][2], ETA_Bgo[2]) + tJ < max(LAM|[0][h], ETA_Bulh]) + ¢, and Agg
will be fetched from the host since max(LAM [0][h], ETA_Aoo[h]) + 9 < max(LAM][0][1],
ETA_Ag[1]) +). ETA-based routing provides the optimal decision based on past and current
knowledge (e.g. load and bandwidth) for the fetch of each RONLY tile.

4.2.5 Optimizing RONLY tile transfers with batching

The standard approach for communication routing in previous work [g, 57, 58, 157] is to dy-
namically optimize the route of a fetch task individually, when the task is scheduled. On the

other hand, our static schedule which is constructed ahead of execution allows us to batch

4.2. Implementation 99

src

epy;

-~

EPY Normal fetch Batched

|

gpuy <€ ><€ >
gou, gpuj gpug gpu;” gpuj Epu
src topu; tgpuj ~max(tg, gpu;> “gpu;

Figure 4.5: An example of performing three fetches of the same data to three GPUs either one
by one (left) or with a simultaneous broadcast-like batched fetch (right) that uses p = 8 sub-
transfers to overlap the process in a pipelined manner. Batching all fetch operations together
results in the same fetch cost for gpu;, but considerably decreases the fetch costs for gpu; and

gpug.

tile transfers to different GPUs, with a broadcast-like fetch operation to multiple GPUs, e.g.
fetch?P" 9P (T') - Figure .5 shows an example of how a batched fetch works; we split the

in_loc
transfer of the same tile to three locations into p (default = 8) smaller transfers and overlap them

internally in a pipelined manner. This decreases the total cost of fetchire ""7*9""“*(T) from

treteh = tIR 4 t%ﬁj{ + t%ﬁf to treten ~ max(t95:" t%ﬁg’ , t%ﬁf), considerably decreasing the
fetch cost for all but the first transfer destination (gpu;). This optimization has a greater impact as
the number of GPUs increases due to more data-sharing between GPUs. For example, for a 4-GPU

system the tiles of matrix A are shared between 2 GPUs and require fetchire' """ (Ar) opera-

tions, but on an 8-GPU system they are shared by 4 GPUs and require fetchay. ' 97" 79904 (A7)

operations. We apply this to all RONLY tiles of A and B.

4.2.5.1 Batched-fetch routing

In addition to the decreased fetch cost, batching RONLY-tile fetches is beneficial to communi-

cation routing, as it opens up additional route options for each transfer. In batched fetches, the

pipeline order is not important (e.g. fetchare " (T) = fetchape’ """ (T)), since the resulting

fetch costs are balanced for all destinations. We therefore apply the LAM ETA-based routing
of Section in the following way: when a batched-fetch operation fetchire ™" (T) is
scheduled for routing, we examine the individual steps of the composed operation, (e.g. fetchle?,
f etch%ﬁf (T), ...) and apply the LAM ETA-estimation algorithm iteratively, for all possible order
combinations, selecting the order gpus_best_order that results in the minimum ETA. Then, we
update all intermediate LAM links and all tile ETA destinations based on the ET A,,;,, of the

selected order and schedule the batched-fetch transfer (f etchifé’“sfbe“f‘”d”}).

100

Chapter 4. A communication-aware multi-GPU matrix multiplication library

Reactive routing (SoTA) Batched-fetch routing
T
Boo I host —» gpuy
\ : gpuy —>» gpy,
' % [Boo 1 gpuy —» gpu,
. 4 T
' 1 \ I gpug compute
N ; T
Boo ' ,I I host —» gpu;
*\ B02‘ l| I gpu; _) gpuj
— : 1
\’q : I gpu; compute
: 1
- | ! I host —» gpu,
\\l'. gpu, —» gpy

gpu, —» gpuy

4
4
4
4
/|
- e e o= -

gpu, compute

host —» gpuy
gpuz —p» gpu

gpu; compute

Figure 4.6: An example of routing the first GEMM sub-problem on each GPU using a) reactive
routing (left) employed by the SoTA and b) ETA-based proactive routing combined with RONLY
batched-fetch (right) used in this work. Reactive routing optimizes the effective bandwidth by
using faster links whenever possible, but results in imbalanced interconnect usage, streams be-
coming idle, being blocked by transfer dependencies, and varied GPU compute start times. On
the other hand, our approach balances interconnect usage, mitigates idle streams by internally
pipelining transfers, and results in a simultaneous start for compute in all GPUs.

To show the importance of this optimization in multi-GPU GEMM routing, Figure f.§ com-
pares the reactive routing employed by previous work against our ETA-based proactive routing
+ RONLY-tile batched-fetch for the first 4 scheduled sub-problems (one on each GPU), excluding
C tile fetches from the pipeline (more on this in Section §.2.6). Our approach significantly re-
duces GPU idle time (45% lower on average, 60% best case), overlaps all communication streams

internally, avoids blocking due to transfer dependencies, and provides a perfectly load-balanced
execution in all GPUs.

4.2. Implementation 101

Boo B1o Bg B3p

Normal C, offload

I o B = B

WR-lazy C, offload

Figure 4.7: Scheduling dependencies and computing four sub-problems on Cpg, with a normal
offload (top) or by using the WR-lazy fetch approach (bottom). WR-lazy fetching reduces GPU
idle time, removing Cyo from the input dependencies of the first sub-problem on the cost of a
lightweight extra computation before writing back the result.

4.2.6 Optimizing WR tile transfers with lazy fetching

Our routing and batching optimization discussed in the previous subsections targets the RONLY
tiles, which are fetched in multiple GPUs. On the other hand, the WR tiles of the C' matrix are
exclusive to each GPU (see Figure [£.1) and constitute unmitigable fetch volume, which in the
worst-case (nothing cached) scenario for square matrices can reach 1/3 of the total fetch volume.
As the batched-fetch optimization does not apply in this case, we opt to limit GPU idle time by
delaying the transfer of the C' tiles, to achieve better computation-communication overlap. To

achieve this, we decompose the original GEMM operation of Equation }.1 into:
C'=a-Ax B(GEMM), Coyy =b-Cyy + C' (AXPY)

The original GEMM operation is decomposed to 1) a GEMM operation without an input matrix
Cin (equivalent to a GEMM with b = 0) and 2) a lightweight addition operation that accumulates
the result of the first to the output matrix C,,,; right before writeback (equivalent to an AXPY
operation with alpha = b). In this way, we decouple the computation-heavy part of the GEMM
kernel (a - A x B) from the Cj, input dependency. Figure f.7 shows an example of how this
changes GEMM offloading for Cpg. The dependencies of this first subproblem (Agg, Boo, Coo)
change to (Ao, Boo), resulting in lower GPU idle time, as we lazily fetch(Cpo) at the end of
the GEMM computation and update it with an AXPY operation before writing it back. This
optimization is beneficial to problems where the C' matrix initially shares the location of either
A or B. In all other cases, it does not improve the performance, as the input tiles A7, By, Cr use
different streams when fetched, and their transfers are therefore overlapped. Moreover, to enable

this optimization, an additional buffer memory of sizeof(C')/gpu_num is required per GPU, as

102 Chapter 4. A communication-aware multi-GPU matrix multiplication library

Algorithm 1: The static schedule algorithm
Data: GEMM params (A, B,C, M, N, K, Ajoc, Bloe, Cioc)
1 if (new params) then

2 SPnum_sp] < decompose2D(T = T'_min, gpu_num, params)
3 if (Aloc == Cloc OR Bjye == Cloc) then

4 S P.adjust_SPs_ WRLAZY()

5 SoftBuf <—assertMemRequirements(S Ps)

6 LAM = {0}, sched_sp =0

7 Runtime task queue RT'Q =[]

8 while (sched_sp < num_sp) do

9 for (gpu; in gpu_num) do

10 currSP = select_SP(gpu;, SP, LAM)
11 tasklist = split_to_tasks(currSP)

12 for (task in tasklist) do

13 if (task is fetch) then

14 task.optimize_routing(LAM)
15 LAM .update_load(task)

16 RTQ.append(task)

17 sched_sp < sched_sp + 1

18 for (task in RT'Q) do task.fire() ;
19 sync_GPUs()

both C/. and C'r;;, need to be stored before computing and writing back C7,,:. We therefore

selectively apply this optimization only in cases where A;,. == Cjoc OR Bjoe == Cipe.

4.2.7 The static schedule

Finally, we provide an end-to-end GEMM implementation that combines the described optimiza-
tions to an algorithm as shown in Algorithm [l The first part of the algorithm (lines 1-17) runs
every time a GEMM routine is invoked with a new set of params (input, problem size, matrix
locations), calculating an optimized runtime task queue RT'() for that problem. First, the GEMM
operation is decomposed to sub-problems (in line 2), which are in turn assigned to devices and
adjusted for the WR-lazy algorithm if this is beneficial for the problem params (in line 3). Then,
an iterative part runs (in lines 8-17), selecting sub-problems in devices with a round-robin order
until all sub-problems have been scheduled. The sub-problem order per GPU is defined by a
cost function select_SP (in line 10) that returns the optimal sub-problem based on the current
schedule state. After a sub-problem is selected, it is split into tasks (in line 11) as described in
Section }t.2.4. The fetch tasks are optimized (in lines 14-15) as described in Sections [£.2.3}4.2.4,
and and each task is enqueued in RT'() (line 16). After this part completes, the RT'() for

this set of params is stored internally and reused for all subsequent problems using the same

4.3. Evaluation 103

params during a program’s lifetime. The second part of the algorithm (lines 18-19) simply iter-

ates over the RT'() and fires all tasks in their corresponding streams and GPUs.

4.2.7.1 Optimizing sub-problem scheduling order

It is well accepted that the order with which sub-problems are scheduled to GPUs is important
because it affects 1) communication routing and 2) idle GPU time [9,57,161]. A common tech-
nique to optimize the sub-problem order is to prioritize the sub-problems with the minimum
fetch operations [57]. We use a similar technique for select_S P, but instead of favoring the
minimum fetch operations, we use ETA estimation for these fetches, by leveraging the LAM, in
combination with the tile dependencies of each sub-problem, as described in t.2.4.4. This method
is load-aware and results in the minimum amount of idle time for compute tasks, since it priori-

tizes the ones whose fetch dependencies are expected to be satisfied earlier.

4.3 Evaluation

In this section, we evaluate our GEMM routine implementation performance and compare it with
the state-of-the-art. First, we use a common square GEMM dataset to compare the performance
of our implementation against existing libraries and analyze the performance contribution of
each optimization introduced in this work. We then expand the dataset with non-square matrices
and a variety of data placements to show the performance robustness of our approach. Finally,
we discuss our decision to exclude memory constraints from our implementation design and

describe how we extend our implementation to run such cases without sacrificing performance.

4.3.1 Experimental Setup
4.3.1.1 Testbed

For the performance evaluation, we use an NVIDIA HGX system, which is part of the acceleration
nodes of the Karolina HPC cluster [85], and is described in Table j.1. Each node consists of
8 NVIDIA A100 GPUs connected with an advanced inter-GPU grid based on NVLink3.0 and
NVSwitch2.0, that enables simultaneous bidirectional point-to-point communication between
all GPUs with an aggregate bandwidth of 4.8 TB/s (600 Gb/s bidirectional per GPU). The GPUs
are connected to the host memory via PCiE with an average bandwidth of 96 Gb/s (12 GB/s per
GPU) for all CPU-GPU communication. The GPU clock frequency of the A100 GPUs is tuned for
higher energy efficiency, resulting in 12% less peak performance (17.2 vs 19.5 TFlops per A100
GPU).

104 Chapter 4. A communication-aware multi-GPU matrix multiplication library

Table 4.1: The NVIDIA HGX testbed characteristics.

Karolina GPU | CPU GPU
Computation: 2 x AMD Zen 3, 8 X NVIDIA A100
7763 CPU FP peak 17.2* TFlop/s
128 cores @ 2.45 GHz | DP peak 17.2* TFlop/s
Memory: 1TB DDR4 40 GB HBM2
1.56 TB/s
Interconnect: PCle Gen4 x16 NVLink3 / NVSwitch2
Compiler: g++11.2.0 CUDA 12.2
Opt. flags: -03 -03, -arch=sm_80

4.3.1.2 Benchmark methodology

We use the following methodology for all experiments for our implementation and all compared
libraries. We perform 10 warm-up runs followed by 100 timed iterations for each GEMM prob-
lem size and report the median time/performance of these runs. For time measurements we
use clock_gettime with device synchronization (cudaDeviceSynchronize()) af-
ter each iteration (e.g. no inter-loop overlap of GEMM calls). Each matrix is initially stored in
a single memory location, to maintain compatibility with the BLAS API standard and to be in
line with previous multi-GPU BLAS libraries which also use this data layout. For host mem-
ory matrices we use interleaved memory across NUMA nodes, to achieve a balanced CPU-GPU
bandwidth between GPUs. We initialize all matrices with random values before execution, and
then pin them to memory, to enable asynchronous CUDA calls. GPU caches/buffers are allocated
once and reused by subsequent iterations. We flush these buffers after each iteration. Finally, all
benchmarked libraries use the same cuBLAS-11 single-GPU cuBLAS {Dtype } GEMM routines
at their backend.

4.3.1.3 Dataset

For performance evaluation, we use two datasets: a regular dataset with square problems, as
also reported in related work [57,68,157], and an irregular dataset which extends the regular one
with mixed initial locations for the matrices, and extra fat-thin and thin-fat problems that divert
from the usual GEMM communication/computation ratio [9]. For the regular dataset, we select
12 problem sizes (Myy = Nyg = Kqq = (5120 % 16384)) that are communication-
bound on our testbed, based on their operational intensity, and 7 large problem sizes (M, =
Ngg = Kgq = (20480 SAep=2078, 32768)) that are expected to be computation-bound. We
run the selected problem sizes with two configurations. In the first configuration, all matrices
initially reside on the CPU memory (h, h, h), therefore we expect the major bottleneck to be the

PCle bandwidth. In the second configuration, all matrices initially reside in the memory of gpug

4.3. Evaluation 105

[Baseline [+ CR-ETA + RONLY-batch
[+ Caching + overlap I + WR-lazy + order-ETA
—1 + CR-BW

% 125 -
o
IS
ElOO-
Q75
C
£ 50 -
€ 254
(0]
o

0_

I I
All-data-CPU(h,h,h) All-data-GPU(0,0,0)

Figure 4.8: The performance of each optimization described in Section. .3 for FP64 square GEMM
(M=N=K) using all 8 GPUs on our NVIDIA HGX testbed (system peak = dashed line), for the
regular dataset of Section §.3.1. The two clusters correspond to different configurations. Op-
timizations listed on the legend are applied incrementally left-to-right (yellow = Baseline, blue
= all optimizations enabled). Each optimization mitigates a different bottleneck of multi-GPU
GEMM, resulting in increased performance in both cases regardless of the differences in com-
munication pattern, overlap, and load balance because of the initial placement.

(0,0,0), therefore transfers can directly use the NVLink. The irregular dataset is described in

Section .

4.3.2 Evaluation of performance optimizations

We first evaluate the optimizations described in Section t.9 incrementally, to assess how each
contributes to total performance. Figure t.§ shows the performance of FP64 GEMM using 8 GPUS
for the regular dataset, using our implementation with our optimizations applied incrementally.
We note that the optimizations that are designed to work together (1) caching and overlap, 2)
ETA-based communication routing and RONLY-batch fetches, and 3) WR-lazy fetches with ETA-
based ordering) are also evaluated in pairs. As the baseline, we use a naive implementation of
SUMMA decomposition to GPUs (Section [£.2.1) without any optimizations, and the speedup of
each bar is calculated with respect to the bar at its left, assessing the impact of ‘stacking’” an op-
timization. First, minimizing communication volume with caching, together with overlapping

communication with computation offers a performance improvement of almost 2x. Adding

106 Chapter 4. A communication-aware multi-GPU matrix multiplication library

BW-based communication routing further improves performance by 1.33x for the (h,h,h) case
by favoring faster GPU-GPU transfers, but has no effect when data are already in gpug, since
all GPU-GPU connections have equal bandwidth. Swapping the routing to ETA-based routing,
paired with batching fetches of RONLY tiles improves performance for both data configurations
by 1.18x on average, by improving routing, increasing overlap and reducing GPU idle time. Fi-
nally, WR-lazy fetching, together with an improved ETA-based order selection for firing sub-

problems results in an additional 1.1x speedup due to reduced GPU idle time.

4.3.3 Comparison with state-of-the-art

Next, we compare our implementation against the state-of-the-art multi-GPU libraries that at-
tain the highest GEMM performance, by performing weak scaling experiments for the regular
dataset using the full node (8 GPUs) of Table [t.1. In particular, we evaluate XKBLAS [57] and
PARALIA [9] and exclude previous approaches that they outperform [68,157]. We also evaluate
cuBLASXt [[124], as the state-of-practice library, despite its inferior performance [9,57,[157]. We
evaluate GEMM FP64 (double) and FP32 (float) performance. We note that our implementation
also supports FP16 (half) precision, but there are no previous multi-GPU libraries that support

FP16 for comparison, so we omit this from our results.

Figure .9 shows the performance of this work against the state of the art for FP64 GEMM
using 8 GPUS for the regular dataset. For the case where all matrices initially reside on the host
memory, which is bound by the PCle bandwidth, our work offers high performance to smaller
problem sizes. On average, our work outperforms cuBLASXt, XKBLAS and PARALIA by 3.42Xx,
1.4x and 1.31x, respectively. For the case where the data initially reside on a GPU, and PCle
transfers are avoided, PARALIA results in high overheads for smaller problem sizes, and XK-
BLAS offers lesser and non-robust performance because of load imbalance. Our implementation
mitigates both types of overheads effectively, outperforming cuBLASXt, XKBLAS, and PARALiA
by 10.3x, 1.23x and 1.26x, respectively, on average.

On a similar note, Figure shows the performance for FP32f| GEMM. We note that the peak
performance is the same for FP32 and FP64, as only cuBLASDGEMM (FP64) internally utilizes
the FP64 tensor-cores of the A100 GPUs, unlike cuBLASSGEMM (FP32). Coupled with half the
communication volume for FP32 transfers, this results in less communication-bound problems
for the same dataset. While the performance of previous approaches increases somewhat faster
than FP64 with problem size, XKBLAS still faces imbalance and PARALIA faces high overhead is-
sues. Our approach, on the other hand, adapts well to the new communication/computation ratio

for all problem sizes, approaching peak performance faster and still outperforming cuBLASXt,

’not to be confused with TF32

4.3. Evaluation 107

B cuBLASXt [PARALIA ® All-data-CPU(h,h,h)
[XKBLAS Bl This work A All-data-GPU(0,0,0)

) '"""""""""""'"'""'::_"""'""";:__:-'Z::"""'A"__,__';—_—_—_-_‘r"

| oA AT T A - -
o 125 A__A-—A-'A A
\4—? —A/A, 0/./.
= 100 - At __e—
~ A ®
w /II ././
LC) 75] ,A, .’./
S / e~

I, ./.

E 504 4 o~ °
—) /
S e e
qL‘) 25 1° 0—"‘—"‘—‘/ e, il A-—-- A-=—~ A== AmTT 4
o -0-® ‘_::-A"A"""_A‘A __________ -

0 A-:-'A‘——A—-A"'AA

5000 10000 15000 20000 25000 30000
GEMM FP64 square (M = N = K)

Figure 4.9: The square GEMM (M=N=K) FP64 performance for the regular dataset of Section
for 8 GPUs on our NVIDIA HGX testbed (system peak = dashed line). Our approach offers ro-
bust performance regardless of the data placement, avoids imbalance, and outperforms all previ-
ous approaches, being more effective in communication-bound problem sizes (12 leftmost data
points).

XKBLAS and PARALIA by 2.7x, 1.37x and 1.28x for the all-data-CPU case and 10.8x, 1.42x and
1.31x for the all-data-GPU case, respectively.

4.3.4 Strong-scaling analysis

We then present a comprehensive strong-scaling analysis to evaluate the performance efficiency
of our approach as we increase the number of utilized GPUs for a given problem size. We compare
the performance of our approach against the cuBLASXt, XKBLAS, and PARALIA. We note that
GPUs in our NVIDIA HGX testbed partially share the PCle bandwidth in pairs (GPU 0 with GPU
1, GPU 2 with GPU 3, etc.), therefore the peak CPU-GPU bandwidth is the same when using 4
and 8 GPUs (GPU-GPU bandwidth is not affected). We employ the placement that maximizes
bandwidth for any number of GPUs, (1 GPU — [0],2 GPUs — [0,2], 4 GPUs — [0, 2,4, 6]),
however we highlight that problems that utilize the PCle (e.g. all data on the CPU) are less
communication-bound when using < 4 GPUs. Therefore, scaling from 4 — 8 GPUs becomes
more challenging than 1 — 2 and 2 — 4.

Figure shows the performance of GEMM FPé64 for three different square problems and

two different data configurations, one where all data initially reside on the host memory and

108 Chapter 4. A communication-aware multi-GPU matrix multiplication library

B cuBLASXt [PARALIA ® All-data-CPU(h,h,h)
[XKBLAS Bl This work A All-data-GPU(0,0,0)

ere I ;::[-__'_'_'_'_'_'_'_'_'A.'::::[—‘:—':x::::_—;_—_—_—_—[________ pommman-
S 125 1 _—A-—-A"‘——A--Ai_r /’\o/./.\o
= A e
— . o
l_ 100 7] ,/'A /,\/v’.‘.’. A
~ A
G) ll' /ﬂ’ .
(@) 75 =1 Y ./. /‘\'/ ‘
% l —°*°

®
€ 504 / '/
s " e
L ot
L - -
> 2> /‘/'/‘ —eArm Ammm === A-———A---—-A——--A=--~A-=-=A==="A
o /‘/‘,Q IR —A--A

Q_.A——A--A"'A'
0

5000 10000 15000 20000 25000 30000
GEMM FP32 square (M = N = K)

Figure 4.10: The square GEMM (M=N=K) FP32 performance for the regular dataset of Sec-
tion for 8 GPUs on our NVIDIA HGX testbed (system peak = dashed line). Using FP32
results in more compute-bound problems due to half the communication volume, coupled with
the same FP32 performance peak. Our approach adjusts to the new ratios better than previous
libraries, reaching the peak faster and providing superior performance for all problems.

one where all data initially reside on GPU memory, for 1, 2, 4, and 8 GPUs. XKBLAS encounters
memory errors on 1 and 2 GPUs for the larger problem size of M = N = K = 32K and fails to
complete the execution. First, in the scenario where all data initially reside on host memory, with
a matrix size of [8K, 16K, 32K, the speedup on (2,4, 8) GPUsis [(1.8, 2.5, 2.2), (1.9, 2.9, 2.1),
(1.9, 3.2, 3.1)]x for cuBLASXt, [(1.8, 3.0, 3.6),(2.2, 4.1, 5.7), (=, —, —)]x for XKBLAS,
[(1.6,1.8,2.5),(1.8,2.9,4.0), ([1.9, 3.8, 6.4)] x for PARALiA and [(1.7, 3.0, 3.6), (2.0, 3.5, 5.3),
(2.2, 4.2, 7.5)]x for our implementation. In general, 1) our implementation has similar single-
GPU performance with PARALIA but offers better scalability, and 2) similar scalability with XK-
BLAS, but with a [2.4, 2.1, 1.1] X better single-GPU performance baseline. In the more compute-
bound scenario where all data reside on GPU memory, for a matrix size of [8K, 16K, 32K], the
speedup on (2,4, 8) GPUs is [(0.6, 0.3, 0.15), (1.1, 0.8, 0.62), (1.9, 1.4, 1.3)]x for cuBLASXt,
[(1.8, 2.7, 3.8),(2.3, 4.5, 5.0), (—, —, —)]x for XKBLAS, [(1.9, 2.8, 3.1),(2.1, 4.0, 6.5),
([2.0, 3.9, 7.8)]x for PARALIA and [(1.9, 3.5, 5.8), (2.0, 4.0, 7.4), (2.0, 3.9, 7.8)]x for our
implementation. In this scenario, all libraries have similar single-GPU performance baselines
since there are no transfers, and use the same computation back-end (cuBLASDgemm). We
note that cuBLASXt faces a scalability break on multiple GPUs in this scenario, We attribute this

4.3. Evaluation 109

B cuBLASXt 1 PARALIA ® All-data-CPU(h,h,h)
1 XKBLAS Bl This work A All-data-GPU(0,0,0)

136 -
63 4 [M,N,K]=8K (small) P

34
17 A

Performance (Tflops)

Number of GPUs

Figure 4.11: Strong scaling analysis of three square GEMM (M=N=K) FP64 problem sizes for two
data placements and variable number of GPUs on our NVIDIA HGX testbed (y-axis in log scale,
system {1,2,4,8} GPU peak = dashed lines). Our approach provides the best performance for all
configurations, and scales better than state-of-the art libraries as the number of GPUs increases,
especially for the smaller more communication-bound problems.

to inefficient communication routing that passes through the PCle instead of using the much
faster NVLink [0, 157]. Regardless, our approach achieves higher speedups than XKBLAS and
on par with PARALIA for the medium and large, compute-bound problem sizes. For the small,

communication-bound problem, our approach shows the best scalability. This is because our

110 Chapter 4. A communication-aware multi-GPU matrix multiplication library

B cuBLASXt [XKBLAS [0 PARALIA [This work

)
o
i)
U—
Z 100 -
(O]
O
S
g 504
2
£ o

Square Fat-thin Thin-Fat
(M=N=K) (M=N>>K) (M=N<<K)

Figure 4.12: Comparison of GEMM FP64 performance robustness against the state-of-the-art, us-
ing the expanded irregular dataset, divided in three clusters, according to the matrix shapes. Our
approach outperforms all existing libraries, regardless of problem irregularity and data place-
ment, providing a uniformly superior solution for multi-GPU GEMM.

communication optimization, combined with lightweight scheduling, directly targets and effec-

tively enhances performance and scalability.

4.3.5 Performance robustness under irregular problems

Finally, to confirm the robustness of our approach across irregular GEMM problem characteris-
tics, we extend the regular dataset with three additional initial matrix location configurations:
(4,2,h),(h,h,0),(4,2,7), and two irregular problem shapes (fat-thin and thin-fat GEMM). For
fat-thin problems, we use (M, = Npor = (16384 M 40960), Kthin = %, r e
[4,8,16]) and for thin-fat (Mynim = Nopin = (5120 2224 11964), K fat = My x 7,7 €
[4,8,16]). This results in an irregular dataset of 305 data points.

Figure shows the GEMM FPé64 performance of cuBLASXt, XKBLAS, PARALIA and our
work on the irregular dataset, categorized based on the problem shape (square, fat-thin, and thin-
fat). cuBLASXt is the slowest implementation for all problem shapes, and its performance de-
grades further on the irregular dataset due to the diverse initial matrix placements. XKBLAS, on
the other hand, performs well on square and thin-fat problems for the various placements, but for
fat-thin matrices, the much larger C' matrix creates WR-communication slowdowns. PARALiA
offers better performance for all shapes, consistent with its targeted performance robustness, but
it performs worse than XKBLAS on square and thin-fat problems. Finally, our work achieves bet-
ter performance for all problems in the irregular dataset, on average outperforming cuBLASXt,
XKBLAS, and PARALIA by 11.8x, 1.45x, and 1.37x (8.7x, 1.35x, 1.4x for square problems, 17.6x,
1.6x, 1.28x for fat-thin problems and 7.31x, 1.38x, 1.42x for thin-fat problems), respectively.

CHAPTER D

Literature review

In this chapter, we provide a comprehensive overview of previous approaches and methodologies
relevant to this thesis. Figure 5.1 shows a high-level overview of the research concepts that we
explore in this thesis, split in two categories. First, we discuss BLAS optimization across different
computational architectures, including multi-core, GPU, hybrid, distributed, and multi-GPU sys-
tems. We go through the evolution of BLAS autotuning, highlighting key approaches to internal
parameter tuning, communication optimization and hybrid workload selection, and finish with
literature specific for GEMM decomposition relevant to our last work PARALIA-GEMMex [8].
Second, we examine performance modeling techniques (yellow) relevant to our work, exploring
BLAS kernel performance models and GPU & distributed communication modeling. Figure .1
also outlines the order in which we explored these concepts, based on their relevance to our sub-
sequent publications: CoCoPelLia [[7], PARALIA [9] and PARALiA-GEMMex (Uncut-GEMMs) [8].

5.1 A brief history of BLAS optimization

5.1.1 The birth of BLAS

The concept of Basic Linear Algebra Subprograms (BLAS) is first introduced 45 years ago when
Whaley and Dongarra [[101] establish the foundational level of level-1 BLAS routines. Their work
defines essential vector operations, such as vector addition, dot products, and scaling, specifi-

cally for numerical software written in Fortran, ensuring high portability and efficiency. Four

111

112 Chapter 5. Literature review

BLAS optimization literature

Multi-core BLAS —>»{ Hybrid BLAS > Distributed BLAS

v v

GEMM
GPU BLAS |—>» Multi-GPU BLAS decomposition &
distribution

GPU BLAS GPU com- Distributed
performance munication communication
modeling modeling modeling

Performance modeling literature

Figure 5.1: A high-level overview of the related work of this thesis.

years later, Dongarra et al. [46,47,49] expand upon this original framework by introducing addi-
tional routines, including support for complex numbers and defining level-2 BLAS operations for
matrix-vector interactions. On a parallel path, Lawson et al. [48] explore strategies for efficiently
implementing linear algebra algorithms on vector pipeline machines, focusing on optimizing
performance for dense matrix operation. Then, in response to the growing demands of high-
performance computing applications requiring large-scale linear algebra computations, Don-
garra et al. [44,45] further extend BLAS to include level-3 routines, with a focus on matrix-matrix
operations, particularly the general matrix multiplication (GEMM). Building on this, Kagstrom
et al. [90] provided performance models and benchmarks to demonstrate how using GEMM as
a foundational building block for level-3 BLAS can achieve high performance across various
architectures. Later, as new vector processors and parallel computing systems emerge in the
HPC landscape, BLAS routines are updated to optimize performance on these modern hardware
architectures [40]. Finally, these advancements are formalized by Dongarra [39] in the Basic
Linear Algebra Subprograms Technical (BLAST) Forum Standard II, which standardizes the im-

plementation of BLAS across different platforms to ensure consistent performance, robustness,

5.1. A brief history of BLAS optimization 113

and portability. From that point until now, the list of BLAS routines remains the same with only

minor modifications.

5.1.2 Multi-core BLAS optimization

Despite the establishment of a common standard for DLA optimization through BLAS, the emer-
gence of new computing systems and paradigms still requires considerable engineering afford
to revisit and fine-tune BLAS implementations. Consequently, after establishing the basic BLAS
standard and optimizing BLAS routines for multi-core systems, research focus turned towards

performance portability.

First steps - autotuning for performance portability: To achieve BLAS portability to new
systems, Whaley et al. [29] first introduce the ATLAS project, which implements the Automated
Empirical Optimization of Software (AEOS) paradigm to automate the tuning process for BLAS
routines. ATLAS explores many possible routine implementations, tuning itself to each new sys-
tem empirically by testing them and timing them, in order to improve cache utilization, increase
parallelism and load balance sub-problems. Yi et al. [[164] develop POET, a tool for parame-
terizing and automating empirical tuning of software optimizations. POET performs a guided
optimization space exploration for performance-critical code and adjusts internal BLAS parame-
ters automatically, enabling optimization without deep knowledge of the underlying code. Then,
Yi et. al [[163] further expand this approach by combining POET with ATLAS, revealing impor-
tant interactions between different transformations and coupling ATLAS micro-benchmarks with
POET modeling to provide a best-of-both-worlds autotuning solution. Siek et al. [140] propose a
different “build-to-order” approach, where the user specifies their target performance and hard-
ware constraints, and the system then automatically generates optimized kernels with automatic
code generation. Goto et al. [60,61] follow a different approach to BLAS optimization: they focus
on optimizing the GEMM kernel empirically for each architecture, and deducing the most inten-
sive computations of level-3 BLAS to GEMM operations through tiling. They use this technique
to provide GotoBLAS, a level-3 BLAS library, which requires only tuning GEMM in new system
to achieve high performance. exceptional performance across various cache-based architectures.
Belter et al. [[15] propose the view of multiple BLAS operations as a single, optimized kernel, re-
ducing the overhead of composing operations and autotuning. Building on these efforts, Whaley
et al. [160] finalize the ATLAS project, setting the standard for BLAS routine autotuning. Wang
et al. [158] introduce AUGEM, a framework that automatically generates optimized assembly
code for dense linear algebra kernels on x86 CPUs. AUGEM uses template-based optimization
techniques to ensure the portability of generated code. Finally, Lang [9€] presents a model-

based approach for autotuning scientific applications, emphasizing data-aware techniques that

114 Chapter 5. Literature review

optimize execution and energy efficiency by integrating analytical models for performance and
energy estimation.

Following the widespread adoption of auto-tuning as the standard approach for ensuring
BLAS portability, recent CPU BLAS libraries can be broadly categorized into open-source and
vendor-specific libraries. While both types employ auto-tuning for performance portability, we
emphasize on open-source solutions, as the details of vendor libraries are typically proprietary
and not accessible to users. Vendor libraries are only listed for reference.

Open-source CPU BLAS libraries: The first open-source library that implements a subset of
BLAS routines is the PLASMA project [b, 22]. PLASMA implements parallel tiled algorithms
for linear algebra operations with matrices, including Cholesky, LU, and QR factorizations for
multicore architectures. Internally, it represents operations as sequences of small, block-wise
tasks that are dynamically scheduled based on dependencies and resource availability, allowing
out-of-order execution and improved parallelism compared to traditional LAPACK algorithms.
More recently, Dongarra et al. [43] describe an updated version of the PLASMA library that
uses task-based programming with OpenMP. Regarding libraries that implement the entirety of
BLAS, Zhang et al. [128,162] introduce OpenBLAS, an open-source CPU BLAS library for high
performance. OpenBLAS uses fine-tuned assembly routines for various processor architectures
to achieve performance, and runtime autotuning to adapt to different systems. OpenBLAS is still
the most widespread CPU BLAS library used by the scientific computing community. Following
the development of OpenBLAS, Van Zee et al. [[154,155] introduce the BLIS framework, which
also targets BLAS routines but with a focus on automating portability. BLIS employs flexible,
modular tiled kernels that adapt to new architectures and applications, but requires empirical
auto-tuning. To overcome this limitation, Low et al. [107] explore the use of analytical modeling
as an alternative to empirical auto-tuning in BLIS. They demonstrate that modeling can achieve
performance levels comparable to empirical methods, significantly simplifying optimization and
ensuring automatic portability. Finally, Van Zee and Smith [[141, 152, [153] enhance BLIS by op-
timizing its internal multi-threaded tiled implementation for matrix multiplication, addressing
various data types and further refining the framework’s performance in more recent architec-
tures.

Vendor CPU BLAS libraries: The second category, vendor libraries, consist of highly-tuned
close-source code that targets the specific architectural characteristics (vector extensions, caches,
etc) of their corresponding target hardware. IBM’s Engineering and Scientific Subroutine Library
(ESSL) is the first vendor BLA targeting IBM Power systems [32]. Intel’s Math Kernel Library
(Intel MKL) [B3] is the library most widely used in scientific computing and machine learning
applications specifically tuned for Intel processors. AMD’s Core Math Library (ACML) [3Q] was
the first close-source optimized BLAS library for AMD processors. It was replaced by AMD’s
Optimizing CPU Libraries (AOCL) in 2019, which is mostly open-source and mainly targets the

5.1. A brief history of BLAS optimization 115

most recent EPYC and Ryzen series CPUs [B1]. Apple’s Accelerate Framework [82] defines BLAS
and LAPACK routines optimized for Apple’s ARM-based processors and is integrated in ma-
cOS. Finally, ARM’s Performance Libraries, provide BLAS implementations optimized for ARM
processors, targeting both embedded and HPC systems [[105].

Takeaway The emergence of BLAS, initiated over 45 years ago, has led to extensive literature on
BLAS optimization. In multicore systems, optimized BLAS libraries employ autotuning to boost

performance and portability across various systems and problem sets.

5.1.3 GPU BLAS

The emergence of GPUs marks a significant milestone in high-performance computing. Due to
the data-centric nature of BLAS, and the high operational intensity of level-3 BLAS, they were
very suitable for GPU acceleration.

The early age of GPU wizards: In the early days, GPUs were not programmable so accelerating
BLAS operations required indirectly utilizing the GPU’s native graphics capabilities to perform
computational tasks. This approach involved encoding scientific problems as graphics and tex-
ture operations to offload them to GPUs. Larsen et al. [97] present a method for performing large
matrix-matrix multiplications on low-cost graphics hardware by disguising matrix operations as
texture mapping and blending operations. Their approach serves as a proof-of-concept for using
GPUs for dense linear algebra (DLA) but faces precision limitations due to the hardware’s focus
on graphical processing. Rumpf et al. [135] adopt a similar strategy for quantized Finite Ele-
ment Method (FEM) computations. To address the growing complexity of developing GPU code,
Kriiger et al. [91]] introduce a framework that implements linear algebra operations on GPUs,
utilizing a CPU-GPU stream model for basic BLAS operations that exploits GPU parallelism and
optimizes communication between the CPU and GPU. Fatahalian et al. [50] focus on a fixed
pipeline for matrix operations, mapping matrices to texture elements and employing the GPU’s
rasterization features when available. Harris et al. [67] explore another fixed pipeline, featuring
a cloud dynamics simulation, where they use the GPU’s texture memory to store simulation data
and implement computational kernels using pixel and vertex shaders. Galoppo et al. [53] empha-
size performance optimization by introducing LU-GPU, a framework that leverages GPU-specific
memory coalescing and loop unrolling to solve level-3 BLAS problems.

BLAS on programmable general purpose GPUs (GPGPUs): As a response to the growing
demand for GPU programmability, NVIDIA introduced General Purpose GPUs (GPGPUs). This
considerably eased the implementation of BLAS operations by utilizing CUDA [[126] and later,
OpenCL [146]. The first example is NVIDIA cuBLAS library [[122], an optimized implementa-
tion of BLAS specifically tailored for NVIDIA GPUs. cuBLAS is a closed-source library that is

116 Chapter 5. Literature review

still maintained by NVIDIA, ensures high performance in GPUs and is used up to this date by
scientists. In parallel, Volkov et al. [156] revisit BLAS autotuning in GPUs, using empirical tests
to tune dense linear algebra operations - with a focus on GEMM - for the NVIDIA Tesla archi-
tecture. Their work combines empirical performance testing with algorithmic optimizations like

blocking and register tiling to refine BLAS routines for GPU acceleration.

The MAGMA project: As GPUs increased in popularity, the need for BLAS kernels optimized
for CPU, GPU and future hybrid systems sparked the MAGMA project initiative [41,42, 93,104,
118-121,[148,149]. MAGMA is a collection of years of research, focusing on redesigning and op-
timizing dense linear algebra algorithms to fully exploit the capabilities of both multi-core CPUs
and GPUs. We first focus on GPU-specific MAGMA work, with work on heterogeneous/hybrid
MAGMA presented afterward. Nath et al. [119] introduce the first MAGMA GPU optimizations,
implementing techniques like pointer redirecting and recursive blocking to address performance
variability in GPU kernels. This adjustment leads to significant speedups in GEMM and SYMV
routines. Later, Nath et al. [[121] extend these optimizations for the new NVIDIA Fermi GPU
architecture. Taking advantage of Fermi’s new capabilities, they introduce kernel fusion and
data reuse within the GPU’s shared memory, improving throughput considerably. In parallel, Li
et al. [[104] contribute to MAGMA by exploring GEMM auto-tuning for GPUs. Their work uses
an autotuning framework, integrated in MAGMA, which dynamically adjusts block sizes and
kernel configurations based on the specific GPU architecture. Their framework uses a perfor-
mance model to guide autotuning and manages to outperform manually-tuned versions. Kurzak
et al. [93] further refine this framework for Fermi GPUs, incorporating adaptive algorithms that
optimize memory access patterns and kernel launch configurations. Finally, Dongarra et al. [42]
further extend the MAGMA library by implementing GPU-specific optimizations such as task-

based decomposition and mixed-precision algorithms.

Takeaway With the emergence of GPUs in HPC, BLAS research shifted to adapting routines
for the increased parallelism and complex architecture of GPUs. This resulted in specialized
libraries and autotuning strategies that target memory efficiency and parallelism, with a focus

on computate-intensive level-3 BLAS routines.

5.1.4 Hybrid BLAS: The birth of dynamic workload selection

All GPUs utilized in high-performance computing (HPC) are discrete GPUs, functioning as co-
processors alongside the CPU(s). As a result, in addition to GPU BLAS optimization, significant
research has been dedicated to hybrid CPU-GPU BLAS, where the CPU and GPU are used si-
multaneously for BLAS computations. Hybrid CPU-GPU BLAS is the initial motivation of the

5.1. A brief history of BLAS optimization 117

MAGMA project, where Tomov et al. [5] propose redesigning LAPACK routines to optimize per-
formance for CPU, GPU, and hybrid CPU-GPU execution. To that end, they propose employing
task scheduling during runtime to manage the parallelism and heterogeneity between the CPU
and GPU. Then, Tomov et al. [148] refine this approach, restructuring algorithms to achieve bet-
ter load balancing and enabling the overlap of computation with communication. Subsequently,
Tomov et al. [149] improve MAGMA'’s dynamic scheduling with a more lightweight task imple-
mentation, significantly reducing data transfer and kernel launch overhead. Finally, Dongarra
et al. [41] revisit the task scheduling algorithms within MAGMA and implement static runtime

management for even more lightweight scheduling.

Parallel to the MAGMA project, several other research efforts have focused on hybrid CPU-
GPU BLAS. Luk et al. [[108] propose Qilin, a framework designed to exploit BLAS data-centric
parallelism on heterogeneous CPU/GPU systems. They split BLAS execution into smaller tasks
and employ a mix of adaptive mapping strategies via task graph optimization and model-based
static workload selection to schedule them to the CPU and GPU, ensuring good load balance.
Similarly, Humphrey et al. [80] present CULA, a framework that accelerates linear algebra rou-
tines for hybrid GPU-CPU systems by dynamically partitioning tasks between the CPU and
the GPU. Spagnoli et al. [[145] later extend this work to sparse linear algebra. Subsequently,
Humphrey et al. [79] refine CULA by integrating more recent GPU and CPU optimizations into
the framework. In a related approach, but with a different optimization target, Ma et al. [[110]
propose GreenGPU, which focuses on energy efficiency when balancing workloads between the
CPU and the GPU, rather than purely on performance. Tsai et al. [[150] then port the concept of
tuning block size from CPU BLAS autotuning to hybrid BLAS, specifically optimizing the block
size used for decomposing an initial QR factorization problem into sub-problems for execution
on CPU-GPU hybrid systems. Bernabé et al. [16] build upon this previous work to provide a
complete solution for autotuning BLAS on hybrid CPU/GPU platforms to maximize overall per-
formance. They propose a framework that utilizes performance models to dynamically adjust
parameters such as block size and CPU/GPU workload ratio, aiming to minimize execution time.
Notably, their approach is the first to incorporate data transfer overhead into the modeling of
total performance. Due to the increased complexity of modeling and their diverse autotuning
targets, they employ a combination of empirical testing and analytical models to fine-tune their

routines.

Takeaway A considerable amount of GPU BLAS research focuses on hybrid CPU-GPU ap-
proaches. These approaches use BLAS domain decomposition, task scheduling, and autotuning

to dynamically allocate and balance the varying workload between the CPU and the GPU.

118 Chapter 5. Literature review

5.1.5 Distributed and multi-GPU BLAS

Although this thesis focuses on multi-GPU BLAS, optimizing BLAS for multi-GPU systems bears
many similarities to distributed BLAS optimization. Both involve handling parallel workers with
discrete memories, therefore introducing the concepts of decomposition, distribution, communi-
cation, and scheduling. Unlike multi-GPU, which is a relatively new concept, distributed BLAS
literature dates back several years before the existence of GPUs. Thus, this sub-section starts
with the early research on distributed BLAS optimization that preceded multi-GPU BLAS opti-

mization and then moves on to recent developments and techniques for multi-GPU systems.

From multi-core to multi-node: The optimization of distributed BLAS branches from multi-
core BLAS when Choi et al. introduce PBLAS [27] and ScaLAPACK [26]. Parallel Basic Linear
Algebra Subprograms (PBLAS) [27] is a new routine standard that supports pre-distributed data
on distinct memories, designed to simplify the parallelization of vector and matrix operations in
distributed memory MIMD systems. ScaLAPACK [26] is a linear algebra library designed for dis-
tributed memory parallel computers, extending the functionality of BLAS to handle operations
across multiple processors and distributed data. With the rapid increase of core and node count
in HPC clusters during the next years, multi-core approaches face scalability issues due to the
different paradigm they were designed for. To alleviate this, Gunnels et al. [64] proposed the
FLAME framework, which uses formal derivation techniques to develop and implement linear
algebra algorithms. FLAME focuses on code modularity and maintainability coupled with high
performance for sequential architectures through its structured approach to code generation.
Later, Chan et al. [24] proposed SuperMatrix, an out-of-order scheduling technique specifically
designed for SMP and multi-core architectures, which divides matrix operations into smaller, in-
dependently executable tasks (similar to Section b.1.4). These tasks are then dynamically sched-
uled and executed based on data dependencies, allowing the efficient use of processing resources
and better overlap of computation with communication. Quintana-Orti et al. [[133] port the Su-
perMatrix runtime system to multicore platforms with multiple hardware accelerators by cou-
pling it with FLAME, leading to significantly higher performance due to dynamic scheduling and
better memory coherence. Lastly, Ayguadé et al. [12] presented GPU Superscalar (GPUSs), an
extension of the StarSs [[132] model for parallelizing applications on systems with multiple GPUs,
which addresses architecture heterogeneity and memory management while achieving notable

performance results.

Distributed task scheduling for scalability: After the initial approaches for distributed sys-
tems, dynamic runtime systems and task scheduling optimizations become the prevalent meth-
ods for addressing heterogeneity and portability in BLAS. Building upon the idea of SuperMatrix,
Augonnet et al. [[11] introduce the StarPU runtime. StraPU manages task scheduling and data

movement across multicore processors and GPUs, with fine-grained task creation and adaptive

5.1. A brief history of BLAS optimization 119

resource allocation, resulting in better end-to-end performance. Then, Augonnet et al. [[10] fur-
ther enhance StarPU with data-aware task scheduling targeting multi-accelerator environments,
specifically optimizing data locality and minimizing inter-accelerator communication. Marking
the first BLAS-specific approach using these schedulers, Agullo et al. [3] integrate StarPU in
MAGMA, which schedules linear algebra tasks across hybrid CPU-GPU systems, using the run-
time system to handle the complexities of memory management and task distribution efficiently.
Extending this, Haidar et al. [66] present a methodology for unified development of task runtimes
in mixed multi-GPU environments, and integrate their takeaways in MAGMA, increasing task

scheduling performance.

In parallel, Bosilca et al. [20] develop DAGuE, a distributed DAG engine for task orchestra-
tion, efficient data transfers, and load balance. DAGuE targets distributed systems with similar
workers, in contrast to StarPU which targets heterogeneity, employing more targeted optimiza-
tions. Consequently, this deems it more applicable to homogeneous multi-node and multi-GPU
systems that are used in modern HPC clusters. Building on this, Bosilca et al. [[18] present
DPLASMA, an extension of PLASMA for distributed systems that utilizes DAGuE to optimize
scheduling, communication and data locality. In another approach, Song et al. [144] propose
a framework for heterogeneous multi-core and multi-GPU systems using a multi-level block
cyclic data distribution method, enhancing parallelism and minimizing communication with hy-
brid tile algorithms and auto-tuning techniques. Later, Song and Dongarra [143] extend this
work by focusing on heterogeneous GPU-based clusters, adding multi-level data partitioning
and dynamic scheduling to address communication bottlenecks and scalability issues. In parallel,
Gautier et al. [5¢] introduce XKaapi, a runtime system designed for data-flow task programming
that manages task execution and data movement on heterogeneous architectures with a data-
centric model. Finally, building upon all these approaches, Bosilca et al. [19] present the PaRSEC
framework, which utilizes hierarchical scheduling and task partitioning to manage tasks across
heterogeneous and distributed computing resources efficiently. The framework enables dynamic
adaptation to varying computational loads and resource availability, enhancing scalability and
performance for complex workloads. Then, Wu et al. [161] extend PaRSEC by incorporating
hierarchical DAG scheduling to optimize task execution in hybrid distributed systems. Their
approach refines the framework’s ability to handle more complex dependencies and balances

computational workloads, further improving scalability and efficiency.

Takeaway Multi-GPU BLAS shares many principles with distributed BLAS as both involve man-
aging parallel workers with discrete memories. Initial research in both fields revolves around ad-
vanced runtime systems that optimize task scheduling and data locality for multi-node clusters,

potentially with accelerators.

120 Chapter 5. Literature review

The performance road: single-node multi-GPU BLAS libraries: After task schedulers and
runtimes became the standard for distributed, hybrid, or accelerated BLAS optimization, multi-
GPU BLAS research split into two categories, with both targeting level-3 BLAS only. The first cat-
egory focuses on single-node, multi-GPU approaches, aiming to maximize performance within a
single compute node. These approaches concentrate on optimizing memory management, data
distribution, and scheduling at the hardware level to exploit the full potential of the available
GPUs within a node. This begins with NVIDIA’s cuBLASXt library [[124], an extension of cuBLAS
that supports multi-GPU execution with data residing on the host or any of the GPUs, and its
LAPACK-compatible wrapper NVBLAS [[125]. However, cuBLASXt uses a simple round-robin
scheme to distribute 2D tile-based sub-kernels to devices, resulting in unnecessary communi-
cation. As an answer to this, Wang et al. [[157] propose BLASX, a high-performance Level-3
BLAS library for heterogeneous multi-GPU computing that uses dynamic scheduling to opti-
mize load balancing across GPUs. Additionally, BLASX uses a hierarchical hardware abstraction
of the discrete GPU memories as a cache hierarchy to improve locality and increase communi-
cation throughput. BLASX outperforms cuBLASXt but its performance degrades in more recent
clusters that differ from its hardware abstraction. To account for this, Gautier and Lima [57]
introduce XKBLAS, a multi-GPU level-3 BLAS library that utilizes lightweight task-based paral-
lelism, implemented using XKaapi [56]. XKBLAS uses topology-aware heuristics, further refined
by Gautier and Lima [58], which adapt to system interconnect and GPU characteristics to opti-
mize data transfer routing and maximize data locality. XKBLAS offers significant performance
improvement from cuBLASXt and BLASX, particularly for smaller matrix operations where data

movement is a critical bottleneck.

The scalability road: distributed multi-GPU BLAS libraries: The second category encom-
passes multi-node multi-GPU BLAS approaches. These solutions build on the aforementioned
distributed schedulers, specifically targeting multi-GPU nodes and addressing large-scale prob-
lems, with a focus on scalability and efficient communication rather than optimizing perfor-
mance for a low number of processes. While multi-node execution is beyond the scope of this
thesis, we give a brief overview of the most recent approaches since some of their scheduling
optimization is relevant for our last work PARALiIA-GEMMex [8]. Influenced by task-based run-
times, Kurzak et al. [92] introduce PULSAR, a distributed programming abstraction optimized
for large-scale multi-node environments that enables lightweight scheduling and communica-
tion optimization. Agullo et al. [4] extend the StarPU runtime system with an inter-node data
management layer to support high-level sequential task-based programming on large HPC clus-
ters, achieving performance comparable to existing MPI-based and task-based implementations.
Herault et al. [68] enhance the classical tile-based outer-product GEMM approach with control
dependencies for improved data reuse and optimized communication flow, and integrate it in the

PaRSEC runtime system to achieve near-peak performance. Gates et al. [54] introduce SLATE,

5.1. A brief history of BLAS optimization 121

a library designed to replace ScaLAPACK for modern distributed high-performance systems.
SLATE utilizes communication-avoiding algorithms, lookahead panels for overlapping commu-
nication and computation, and task-based scheduling, and is implemented as a C++ framework
that supports a wide range of BLAS and LAPACK routines. Lastly, Gates et al. [55] refine SLATE
to enhance its portability and efficiency in more recent HPC clusters, incorporating advanced

heuristics for task management and data locality.

Takeaway Modern Multi-GPU BLAS libraries can be divided into two categories: single-node
and multi-node approaches. Single-node approaches follow the BLAS standard, using various
software and hardware optimizations with a focus on performance. Multi-node approaches, based
on either the BLAS or PBLAS standard, prioritize scalability by utilizing advanced communication-

optimal algorithms.

5.1.6 GEMM decomposition and distribution algorithms

In this subsection, we review key developments in GEMM decomposition and distribution algo-
rithms, which motivated the communication optimization techniques employed in PARALiA-
GEMMex (Section). Cannon [23] introduces the first parallel GEMM approach for square
matrices by employing a cyclic data shift mechanism to distribute computation evenly and re-
duce inter-processor communication. Dekel et al. [37] further optimize this algorithm for cube-
connected processors, improving time complexity through efficiently utilizing processing ele-
ments. Fox et al. [51] extend this method to accommodate various matrix shapes and processor
grids, employing a block-cyclic decomposition and optimizing communication for hypercube
architecture. Berntsen [[17] also optimizes GEMM for hypercubes by using a nearest-neighbor
communication logic viewing the hypercube as a set of subcubes, reducing communication costs.
Other approaches focus on the hardware aspect of their systems. Johnsson [87] develops algo-
rithms that minimize communication time for GEMM on multiprocessor systems, offering com-
munication speedups by effectively using the network’s topology. Agarwal et al. [2] design a
high-performance GEMM algorithm for distributed-memory systems that reduces communica-
tion time by overlapping communication and computation. The PUMMA algorithm [28] adds
support for transposed matrices and explores data placement optimization, marking the next
step forward in GEMM algorithm development.

Building on top of PUMMA, Agarwal et al. [1] show that a 3D decomposition of GEMM is
advantageous when memory is not a constraint, leading to improved performance. The SUMMA
algorithm [151] also builds on PUMMA by optimizing communication, adding blocking, and
overlapping communication and computation, establishing it as the standard 2D GEMM algo-
rithm. Later, Irony and Tiskin [84] gather all available GEMM algorithms and establish the

122 Chapter 5. Literature review

theoretical communication lower bounds for distributed-memory GEMM to guide the devel-
opment of more efficient algorithms. The 2D (SUMMA) and 3D GEMM algorithms were the
standard for over 10 years and are still used today for regular problem shapes. Building on top
of them, Solomonik and Demmel [[142] introduce the 2.5D GEMM algorithm, which balances
decomposition between 2D and 3D based on available memory, achieving optimal communi-
cation for square matrices. Demmel et al. [38] present a communication-optimal parallel algo-
rithm for rectangular matrix multiplication, minimizing data movement by employing a recur-
sive hierarchical partitioning strategy. Schatz et al. [139] provide a comprehensive taxonomy of
distributed-memory parallel GEMM algorithms and discuss extending traditional 2D methods to
3D configurations. Finally, COSMA [94] identifies inefficiencies in the CARMA algorithm related
to increased communication and introduces a new approach based on the red-blue pebble game,

offering a communication-optimal solution for any matrix shape and processor configuration

(M,N, K,p).

5.2 Related performance modeling literature

This section transitions from BLAS methodologies and autotuning to performance modeling to-
wards enabling autotuning. We begin by reviewing the performance modeling literature relevant
to GPU BLAS Then, we follow the development of distributed communication modeling from
early models to advanced approaches addressing communication-computation overlap, hetero-
geneity, and parameter autotuning. Finally, we review GPU communication modeling, covering

generic transfer models, communication-computation overlap, and benchmarking methods.

5.2.1 BLAS kernel performance modeling

We only provide a brief overview of BLAS kernel performance modeling, since our PARALIA
[9] and PARALiA-GEMMex [8] approaches rely exclusively on micro-benchmarks coupled with
value-lookup tables for assessing GPU BLAS kernel performance.

Generic GPU performance modeling: We first explore the relevant literature on GPU perfor-
mance modeling not specifically for BLAS. Ryoo et al. [136] present a methodology that simplifies
GPU application optimization by pruning the optimization space with static code metrics to find
Pareto-optimal configurations. Schaa and Kaeli [138] examine the design space for multi-GPU
systems, highlighting the trade-offs and performance impacts of different design choices. Sun-
pyo et al. [78] introduce an analytical model based on a kernel’s parallel memory requests to
estimate GPU performance. Baghsorkhi et al. [13] develop a model that evaluates GPU per-
formance by analyzing kernel utilization of GPU features. Zhang et al. [[165] apply an empiri-

cal micro-benchmarking approach to gather data on instruction pipelines, shared memory, and

5.2. Related performance modeling literature 123

global memory access for performance estimation. Meng et al. [113] introduce GROPHECY, a
framework that estimates GPU performance based on CPU code skeletons. Iakymchuk and Bi-
entinesi [81] propose a performance modeling approach that emphasizes memory stalls to better
understand and predict application performance on modern hardware. Konstantinidis et al. [89]
propose a modified roofline model and a black-box micro-benchmarking method for predicting
application performance across different GPUs. Finally, O’Neal et al. [[127] introduce HAWLPE,
a predictive modeling framework for GPU performance that utilizes performance statistics from
current-generation GPUs to forecast the performance of next-generation GPUs, providing an

efficient alternative to costly cycle-accurate simulations.

GPU BLAS kernel performance modeling: In addition to general approaches, some literature
focuses specifically on BLAS modeling. Luszczek and Dongarra [[109] propose a method to reduce
tuning time for parallel dense linear algebra routines through partial execution and performance
modeling. Meswani et al. [[114] present a method for modeling and predicting the performance of
high-performance computing applications on hardware accelerators, focusing on improving per-
formance insights and optimization. Peise and Bientinesi [[131] explore performance modeling
techniques specifically for dense linear algebra operations, offering insights into accurate per-
formance predictions. Camara et al. [35] provide an empirical model for shared-memory linear
algebra routines, aiming to enhance the understanding of performance characteristics in such
computational environments. Martell et al. [[111] develop a tool for GPU kernel design assis-
tance that uses a semi-empirical linear model to predict critical performance factors, including

Global-to-Shared transfer time, Shared-to-Private transfer time, and Processing Units Time.

Takeaway GPU BLAS performance modeling approaches usually employ a mix of analytical
modeling and micro-benchmarks, to adapt the generic models to specific architectural charac-

teristics.

5.2.2 Distributed communication modeling

Before addressing the newer developments in GPU communication modeling, we review the
established models for distributed system communication prediction that preceded GPU mod-
eling. We begin with foundational models like LogP and its extensions, which provide a basis
for understanding communication delays, bandwidth, and processing overheads. We then assess
advancements in simulation tools and more recent communication models that improve perfor-

mance prediction for large-scale distributed systems.

124 Chapter 5. Literature review

The Log model family : The birth of the Log models starts with the introduction of the LogP
model by Culler et al. [34]. LogP defines four parameters —computation bandwidth, commu-
nication bandwidth, communication delay, and coupling efficiency— to better represent real-
world parallel systems and facilitate the development of efficient parallel algorithms. Alexan-
drov et al. [6] show LogP accuracy is limited when long messages are involved and extend the
LogP model accordingly to LogGP by incorporating long message modeling. Frank et al. [52]
develop the LoPC model, which builds on LogP by including contention costs in parallel algo-
rithms, offering a more accurate performance prediction for cases with irregular communication
patterns. Kielmann et al. [88] present a method for efficiently measuring LogP parameters on
message-passing platforms, optimizing the process to minimize measurement time and intru-
siveness. Moritz and Frank [[117] introduce LoGPG, a model that extends LogGP to account for
network contention in message-passing programs, providing increased accuracy for estimating
performance impacts due to network delays. Ino et al. [83] propose the LogGPS model, an ex-
tension of LogGP that includes synchronization costs for long messages, improving performance
prediction accuracy. Hoefler et al. [[73] present the LogfP model, tailored for small messages in
InfiniBand networks that previous models cannot account for. Then, Hoefler et al. [72] intro-
duce an approach for assessing LogGP parameters in modern interconnection networks with
low overhead. Hoefler et al. [75] continue with an in-depth analysis of the LogGP model, re-
visiting and exploring its effectiveness in modern interconnection networks and collective op-
erations. Chen et al. [25] present LogGPO, a communication model designed to predict MPI
program performance by accounting for communication-computation overlap. Finally, Hoefler
et al. [76] introduce LogGOPSim, a simulation framework for large-scale applications that uses

the LogGOPS (LogP, LogGP, or LogGPS) models to estimate distributed system performance.

Communication-computation overlap, heterogeneity and parameter autotuning: In ad-
dition to the models mentioned above, many approaches focused on other aspects of distributed
communication performance, like communication-computation overlap and heterogeneous com-
munication, or how to improve and automate model parameter autotuning. Goumas et al. [62]
explore techniques for minimizing the execution time of nested for-loops using a tiling transfor-
mation. This is performed by finding an efficient time hyperplane, overlapping communication
and computation, and assigning tiles to processors based on tile space boundaries. Bell et al. [[14]
improve performance in bandwidth-limited scenarios with one-sided communication and over-
lap, reducing communication overhead and enhancing bandwidth utilization. Danalis et al. [36]
suggest transformations to parallel codes through runtime environment adjustments, to enable
low-latency and efficient communication-computation overlap. Sancho et al. [137] perform a
quantitative analysis of the benefits of overlapping communication with computation in large-

scale scientific applications, utilizing empirical data to demonstrate improvements in execution

5.2. Related performance modeling literature 125

times and other performance metrics. Geoffray and Hoefler [59] propose dynamic adaptive rout-
ing strategies for high-performance networks, addressing issues such as head-of-line blocking
and bisection bandwidth to enhance network efficiency. Hoefler et al. [[74] explore collective op-
eration modeling for large scale systems, using benchmarking techniques and synchronization
analysis to increase prediction accuracy. Lastovetsky et al. [98] develop a detailed communica-
tion model for heterogeneous clusters with switch-enabled Ethernet networks. Later, Lastovet-
sky and Rychkov [99] revisit the heterogeneous communication challenge, proposing a set of
experiments designed to accurately and efficiently derive model parameters for clusters with
varying interconnection characteristics. Finally, Lastovetsky et al. [[100] combine their previous
work in a new P2P communication model for heterogeneous clusters accompanied by a software

tool for automated parameter estimation.

Using a different approach, Martinasso and Méhaut [[112] introduce a contention-aware model
for InfiniBand networks that uses a dynamic contention graph and a linear system of bandwidth
distribution to improve prediction accuracy. Hoefler and Snir [[77] present a topology mapping
strategy for large-scale parallel architectures that uses a graph similarity-based heuristic, con-
siderably increasing prediction accuracy. Hoefler et al. [71] then provide a detailed review of
systematic performance tuning through performance modeling for high-performance comput-
ing, detailing methodologies for accurate model development and micro-benchmarking. Using
an alternative approach, Jain et al. [86] propose using supervised learning based on communi-
cation features for application performance prediction, coupled with decision trees and simpler
models for contention and task mapping. Zhu et al. [166] develop a communication model for
hierarchical Ethernet networks, incorporating asymmetric network properties to enhance com-
munication prediction accuracy. Papadopoulou et al. [129] present a machine-learning approach
for predicting the communication time of parallel applications, using a few easily extracted pa-
rameters from the application and process mapping. They propose a simple benchmark that
feeds a multiple-variable regression model, which is used to predict the communication time of
applications for varying process counts. Finally, Zhu et al. [167] re-examine asymmetric com-
munication models for Ethernet networks, emphasizing the need for tuning below the TCP layer

to address performance issues caused by network asymmetries in modern systems.

Takeaway Distributed communication modeling is a well-established field, with numerous ap-
proaches addressing various system and application-specific nuances. These approaches focus on
precise communication time prediction, modeling communication-computation overlap, manag-

ing interconnect heterogeneity, and initializing model parameters in new systems.

126 Chapter 5. Literature review

5.2.3 GPU communication modeling

While GPU-specific transfer modeling is relatively simpler than distributed modeling due to the
limited number of parallel workers, communication affects total application performance con-

siderably.

Generic GPU transfer modeling: Gregg and Hazelwood [63] first highlight the lack of trans-
fer consideration in performance reporting, emphasizing the critical role of the data placement
and transfer overhead when comparing CPU and GPU performance. Boyer et al. [21] improve
GROPHECY [1113] by incorporating latency-bandwidth data transfer modeling in their GPU per-
formance predictions. Meswani et al. [[115] present a performance-modeling framework that
assesses an application’s performance compatibility with accelerators like GPUs and FPGAs,
considering data transfer throughput and latency. Finally, Riahi et al. [[134] compare analyt-
ical and machine learning models for predicting data transfer times, recommending a hybrid
approach that uses a latency-bandwidth model for large data and machine learning for smaller

data transfers.

Modeling communication-computation overlap: A common GPU offload optimization tech-
nique is decomposing a problem into smaller sub-problems, and overlapping the communication
and computation of different sub-problems in a pipeline manner. This is supported in modern
GPUs support via asynchronous communication primitives (CUDA streams, OpenCL queues etc),
and includes H2D and D2H transfer overlap with GPU computation (3-way overlap). Gémez-
Luna et al. [65] first introduce a modeling approach to optimize CUDA asynchronous data trans-
fers. They use a simple latency-bandwidth model for transfers and an empirical approach for
computation time to predict the total overlapped time based on the number of sub-problems and
streams. Based on this, they can adjust the number of streams and sub-problems for improved
communication-computation overlap. Werkhoven et al. [159] enhanced this work by offering
multiple performance models for communication/computation overlap for various common of-
fload scenarios (RMA, 2-way, 3-way), introduced stream transfer overlap latency, and provided
methods to obtain the optimal number of CUDA streams for a given problem. In a similar notion,
Liu et al. [106] offered a mathematical framework for software pipelining on GPUs using non-
equal tiles, which focused on partitioning, scheduling, and granularity. All these models offer
high accuracy, however, their modeling approach does not capture all problem characteristics

present in BLAS. Moreover, they were never used in practice for autotuning.

Benchmarking GPU transfers for performance insights: An alternative to modeling for es-
timating an application’s transfers, and their contribution to offload performance, is through
micro-benchmarks. With the introduction of unified memory in CUDA 6.0, micro-benchmarks

became the preferred method for performance estimation due to their accuracy over generic

5.2. Related performance modeling literature 127

modeling. Landaverde et al. [95] first investigate unified memory access in CUDA, emphasiz-
ing its role in improving data transfer performance and identifying key factors affecting runtime
and acceleration through benchmarking. Li et al. [103] assess unified memory tradeoffs, focusing
on memory management and performance implications for heterogeneous computing. Mishra
et al. [[116] explore unified memory for OpenMP GPU offloading, modifying benchmark codes
to evaluate its performance impact when used instead of normal transfers. They conclude that
while unified memory offers comparable performance to traditional GPU offloading, it incurs
significant overhead with large data reuse.

In addition to unified memory, some work evaluates GPU interconnects when using normal
transfers through microbenchmarks. Tallent et al. [[147] compare PCle and NVLink interconnects
for deep learning workloads, showing that NVLink generally provides better performance due
to its superior bandwidth and lower latency, with PCle remaining competitive for certain work-
loads. Li et al. [102] propose a multi-GPU benchmark suite to evaluate modern GPU intercon-
nects, analyzing performance and identifying nuances in bandwidth and latency across different
network topologies. Finally, Pearson et al. [130] introduce Comm|Scope, a comprehensive set of
microbenchmarks for understanding CUDA data transfer performance, addressing factors such
as data placement, interconnect hardware, and system-level optimizations, and offering insights

into improving transfer efficiency and application performance.

Takeaway GPU communication modeling typically focuses on estimating transfer bandwidth or
overlap performance and can be approached analytically, empirically through benchmarking, or
with semi-empirical methods. However, current approaches are either overly tailored to specific

tasks or too generic, lacking the precision required for accurate BLAS communication modeling.

128 Chapter 5. Literature review

CHAPTER 6

Conclusions

In this thesis we aimed to achieve portability, near-optimal performance, and efficient resource
utilization for single- and multi-GPU BLAS. GPU BLAS execution introduces a variety of internal
parameters that can be tuned to each individual BLAS call, and requires important decisions for
decomposition, communication and scheduling during runtime that effect application perfor-
mance. Due to the prohibitive complexity of the problem we propose a model-driven approach,
where we utilize modeling to estimate performance, communication and overlap characteristics
for each candidate system. Then, these models are used for parameter and software autotuning,
as well as for choosing which resources to utilize based on the problem and system characteristics
of each routine invocation during runtime. Our work consists of three parts: 1) we introduce
various performance models for GPU BLAS offload and 2) we provide a high-performance li-
brary for multi-GPU BLAS based on insights and autotuning deriving from those models and 3)
we implement a GEMM implementation that couples model-driven knowledge with distributed
programming techniques to optimize communication and achieve peak performance.

In the first part of our this thesis, we outline that 3-way concurrency is currently not well
utilized in BLAS GPU offload libraries, since the efficient split tile size depends on routine, prob-
lem, and system-specific parameters. Since part of these only become available during runtime,
we propose a) two models for the 3-way overlap offload time as a function of tile size, b) a micro-
benchmark approach for initializing the empirical model parameters offline, and c) a runtime tile
scheduler for efficient 3-way overlap and data reuse. We combine these into an end-to-end GPU

BLAS framework, CoCoPeLia [[7], and demonstrate its use for dgemm, sgemm and daxpy; our

129

130 Chapter 6. Conclusions

evaluation shows that it achieves lower errors than previous approaches and is usable in practice
for efficient tile prediction. Furthermore, our BLAS wrapper with runtime tile prediction offers
considerable performance improvement over previous offload approaches for all tested routines.

In the second part, we present PARALIA [9], an end-to-end framework for multi-GPU BLAS
execution. Similar to existing multi-GPU BLAS approaches, PARALIA employs problem splitting,
subproblem scheduling, and computation-communication overlap to maximize the performance
of BLAS routines on multi-GPU setup. Contrary to existing approaches, PARALIA puts emphasis
on optimizing the communication and resource utilization via model-driven auto-tuning. To that
end, we expand the modeling of CoCoPelLia [7] for multi-GPU performance prediction and in-
troduce a generic hardware abstraction called LinkMap, that accurately estimates interconnect
and communication characteristics for each BLAS problem. PARALIA utilizes these models to
optimize communication and to perform careful device selection, based on a pre-set optimization
target, which can be performance or some energy-related metric, avoiding resource waste. We
evaluate our approach on a multi-GPU testbed which exposes heterogeneous connections be-
tween the devices. Our experiments focus on the performance of GEMM with double-precision,
as a representative level-3 BLAS. Our evaluation shows that our approach outperforms the state-
of-the-art BLASX and XKBLAS multi-GPU BLAS frameworks with a (geo)mean improvement of
1.7x and 2.4x respectively, with significant performance gains for routine executions where the
data originally reside on the various GPUs. We additionally show how, with device selection
and by setting different optimization targets, our approach is able to achieve high performance
coupled with better energy efficiency, with a (geo)mean improvement of 2.5x versus BLASX and
3.4x versus XKBLAS. Finally, our approach adjusts well to a heterogeneous system with differ-
ent compute capabilities among the GPUs, offering improved performance and superior energy
efficiency over BLASX and XKBLAS.

In the last part, we provide an optimized GEMM implementation tailored for efficient execu-
tion on multi-GPU compute nodes [8]. Our approach focuses on the mitigation of the commu-
nication and scheduling overheads, and load imbalance of multi-GPU GEMM, using a variety of
optimization techniques. Our implementation is based on a static schedule, which is constructed
ahead of execution, whenever a routine is invoked, and can therefore utilize the specific problem
characteristics to minimize communication, increase throughput, maximize overlap, and load-
balance communication and computation. We employ a hierarchical problem decomposition and
offer a heuristic for tile size selection. We utilize multiple streams to effectively overlap compu-
tation and communication, and cache tiles to be reused, avoiding communication where possible.
We optimize communication routing by considering the availability of point-to-point links and
scheduling tile transfers accordingly to ensure that tiles arrive at their destination GPUs at the
earlier possible time. We additionally implement batched transfers for read-only tiles and op-

tionally enable lazy transfers for the tiles of the output matrix. We evaluate our approach on an

131

NVIDIA HGX system, which features 8 NVIDIA A100 GPUs, interconnected with NVLink3 and
NVSwitch2. Our experimental results show the effectiveness of our optimizations in the per-
formance of GEMM. Our implementation outperforms state-of-the-art libraries (including our
previous PARALIA implementation), by 1.29x and 1.37x on average, for FP32 and FP64 GEMM
respectively. Moreover, our implementation offers high performance for irregular matrix shapes
and varying initial data placements, significantly outperforming existing implementations.

We conclude that contrary to the popular belief that GEMM can easily reach the peak perfor-
mance of multi-GPU compute nodes, in practice, it is communication-bound for many problem
sizes, and requires a communication-aware implementation to overcome this limitation. In the
future, we aim to extend this work to multiple multi-GPU compute nodes, combining our intra-
node implementation with distributed techniques targeting scalability. We are working towards
supporting other input data layouts, like PBLAS, which is commonly used in multi-node, large-
scale systems.

We conclude that, despite the common conception that BLAS routines are well-suited for
single- and multi-GPU systems, high performance for any problem on any system is very hard
to achieve, and requires taking a plethora of parameters into account and fine-tuning execution
for that exact problem/system configuration. Our solution for this is to use runtime autotuning,
coupling modeling with micro-benchmarks to select values for internal routine parameters and
optimize communication routing, overlap, scheduling and resource selection.

In the future, we aim to extend PARALIA with more sophisticated scheduling techniques, and
we will work towards utilizing the acquired knowledge it already processes for further perfor-
mance improvements in communication. We also plan to extend this work to multiple multi-GPU
compute nodes, combining our intra-node implementation with distributed techniques target-
ing scalability. Finally, we are working towards supporting other input data layouts, like PBLAS,

which is commonly used in multi-node, large-scale systems.

132 Chapter 6. Conclusions

CHAPTER 7

Extetapevn IepiAnym

7.1 Ewayoyn

O mukvég mpa€elg ypoappkig dhyefpog amoteAotv to OepeAddn doptkd otoLyeio ToAA®VY vTo-
AOYLoTIK®OV aAyopiBpwy mov eppavilovion oe TANBdpo e@appoydv vymAng amddoong (HPC),
O6mwg N apBpunTiky avévon, n Yroroyiotikr) Avvapikr) Pevotdv (CFDs), n povtelomoinor tov
KAipatog, N poprokr) dvvayikn, 1 eneepyoacio etkdovag, n unyavikn padnon kot n vToAoyLoTIKY
opoon. EmurAéov, evd avtd o xoapnAot emutédouv dopkd otoryeia eppovilovon oTov KOdIKo
VYNAOD emLITESOL TV EPAPHOYDOV TTOL EKTEAOVV Kot AAAeG TpdEelg, ouviBwg KupLapyOLY o€
EVOL OTHOVTLKO PEPOG TOL GUVOALKOD XPOVOL €KTEAEOTC HIOG ETLOTNHOVIKNAG epappoyng. Katd
OUVETELQ,) OENGT) TNG ItdS00T G Karl TNG Add00T G TWV TUPN VAV TTUKVIG YPOHHLKNG GAyeBpag
ennpedleL AUEGH TNV CUVOALKT ATTOTEAECUATIKOTNTA TV e@appoywv HPC.

Avtd odrjynoe otnv Tumomoinon twv Basic Linear Algebra Subprograms (BLAS) [39, 40,
44-49, 90,101] ot mpdTa otddro g avéurTuéng tov HPC, yia va dtevkoAvvOel 1 avdmrtuén
ETMLOTNHOVIKOV KOOLKA, EMLTPETOVTAS 6TOVG £10LK00S va facilovTon o€ Tumomotnpéva ko PeATi-
oTomolNpéva doULKA GToLXEla Yl TNV LAOTOLNGT Lo cVVOETWV TPOGOHOLDCEWDY GE HEYAAN
kAipako. To tpodTumo BLAS kaBopilet éva ovvoro poutivev “black box” mov mpémel v akolov-
Bovv i cvykekpyévn diataln eicodov/eE6dov kot va BedtictomolodvTar amd wpopnBevTég
Ko TopOYoug PLPAoBnk®dv pe TpdITo Stoupav) TPOG TOV XProTh, XWPLS Vo aonteito Tpodchetn

BeAtiotomoinon amddoong.

133

134 Chapter 7. Extetopévn Iepidnyn

Qotoo0, eved oL BifAobrikeg BLAS mov xpnowomotodv tnv mpocéyyion tov “black box”
SLevKOADVOLV TNV OVATTTUEN EQPUPUOYDOV YL TOUG €LOLKOUG TOL TOHEXR, ECWTEPIKA OUTOLTELTOL
onpavtiky tpoondbela yio tnv vAomoinon kat feAtiotomoinon Twv poutivéyv BLAS. EmutAéov,
akopo ko oov OAeg ot pouvtiveg BLAS eivou e€ovtAntikd PeAtiotomompéveg yio éva obotnua,
1 epPavIon VE®V GUOTNHATOV ToPOoLLdlel éva TPaKTIKO TPOPANHo: oL pxavikol arrddoog

npémel va emaveEeTdoouv OAeg Tig LAomotnoelg BLAS kau va Tig feAtioTomotjoouy ek véou.

Merageporipornra CPU BLAS péow avrtoparng Pertioromoinong: Mo xowr Abor ce awtd to
TpOPANpa eivon 1) avroparomoinon pépoug tng dradukaciog feAtiotomoinong mov eivor eldikr yio
TO VOGN, YVWOTH 0§ avtdpaty Peltiotoroinon. H avtopatn Bedtiotomoinon éxel kabiepwbel
a6 ta TpahTa otddie tng vapéng twv CPU BLAS wg puo tumikny Stadikaocio yia tnv adénon
NG ardS00TG KaL TNG HETAPEPOIUOTNTAG O€ Vé ovathpara [[15,29, 60, 61,96,107, 140,158,160,
163,[164]. Eve n axpiprg Sradikacio yia tig BLAS Sagépel avé poutiva, TOTO apXLTEKTOVIKTG
KoL vAomoinon, 1 wWéa g avtépatng PeAtiotonoinong eival va Tpocappodlel aLTOHATO TV
ekTéNeoT) Tpog évay otOY0 PedtioTomoinong (xpodvog ektédeonc, evepyelokr) arddoon 1) GAAeg
petplicég amddoong). Zvykekpipéva yux Tig BLAS, ouvrfwg epilopPavel tnv ebpeon twv eéwre-
PIKAV TapapéTpwy povtivas (Slactdoelg TpoPAfpatoc, onpaieg k.A.) mov exnpedlovy TV amo-
doon KaL TNV TPOCOPHOYH TWV ECWTEPIKWDV Tapapétpwv (péyebog pmhok/keAidwv, Tapdyovteg
unrolling Bpoywv k.AT.) Kot TNV ekTéAeoT), pe Paor Tig dedopéveg eEwTepliég TAPopéTPOUG.
Avtd agtoutel) Snpovpyio PG oxéong HETOED TV TIHOV TWV ECOTEPLKOV KOL EEWTEPLKOV
TOUPUPETPWV, 1] oTtola popel va emitevyBel péow melpaudrwv erxidoons 1 povredomoinons. Ta
melpapato enidoong amodidouvv ta o akpLpny amoteAéopato aAAd cLVHBWS ExouV Evay atoryo-
PELTLKO XWPOo avalhTnong, evod 1 povrelomoinon eivon ToxvTepr) Ko dev amontel eEavTAntTik)
eprtelpikr) dokipr}, acAA& eivor Aydtepo axpiPric. EmumAéov, pio mpaktikn evdidueon Adon eivat

1 xpnon evog cuVELAGHOD TV d00 HEGK TNG GVUVOESTC YEVIKOV HOVTEAWV HE HIKPO-TIELPAPATA.

Takeaway Oi BLAS eivan onpovticég yia tig epappoyég tov HPC kou mtpémel va €xovv vymAn
63001 KoL HETOPEPTILOTNTO. AUTO emLTUYYXAveTaL cLVHOWS Pécw avuToOpaTnG feATioTOmOINONG,

koBodnyolpevng amd HoVTEAOTTOLNGT) KOL LK PO-TLELPOHOLTCL.

Extéleon BLAS oe GPU: H eicaywyn tov GPU oto HPC dAAa&e To Tomio tng PeAtiotomnoinong
twv BLAS. H ebkola mapaiiniomotioiun poper Twv poutivedv BLAS Tig ékave katdAAnAeg yia
Tig GPU, yeyovog mov 0dfjynoe otnv avamtuén moAidv GPU-BLAS BipAiobnkdv, n mo ko
amnd Tig omoieg eivon 1 cuBLAS, pia BtpAodrkn tomov CUDA yia tig NVIDIA GPU [[122]. H
cuBLAS npoopépel PeAtioTomonpéveg faotkég mpd&eig BLAS, addd e avtiBeon pe To authovote-
po map&derypa tng CPU, amontel T dedopéva eroddov va Ppickovron otn pvrjun tng GPU. Autd
ONHOLVEL OTL 0 XPHOTNG TPETEL ETTLOTG VoL SLOLXELPLOTEL T HETAPOPG deSOPEVODV TTPOG KoL ATTO

v GPU mpwv xat petd v extédeon (epekng avagpepopevn wg offload), etohyovtag évav véo

7.1. Ewcayoyn 135

meploplopd amtddoong [[7,21,63,103,115,116,130,134,[138]. Emiiéov, n extédeot) mpoPfAnudtov
oe dedopéva mov dev ywphve ot pviun g GPU avaykdlel tov xpnotrn vo Stoeomdoel To
apxké dedopéva Tov TPOPARHATOC GE pHIKPOTEPO TUHRATO KoL vo To petopépel otnv GPU pe
oWANVOELdY) TPOTO. AUTH) 1) TEXVIKT] ELGAYEL ETLITAEOV VITOAOYLOTLKA KOl ETLKOLVWOVLIAKX KOGTN),
OAAG eTLTpémeL emiong TNV emKAALYT ETKOLVOVIOG He VITOAOYLONO Yia va avEnbel n amddoon
tov offload [21, 63, 65, [159]. Avta ta véa yapaktnpiotiké tov GPU BLAS offload eiocéyovv
pio oelpd amd amopacelg Pedtiotomoinong, 0mws 1 amdéPocT) av pio povtiva Bo mpémel va
petoupepbel oe ovykexpévrn GPU, n amdgpaon tov mococTod Tov POPTOL epyaciag mov Bo
npémel va extelectel otnv CPU oe avtifeon pe tn GPU av ekteleiton pe vPpidikd tpodmo [5,
16, 41, 79, 80, 108, 110, 145, 148-150], kot 1 emAoyn Tov katdAAnlov peyéBouvg TUNHATOS Yio
Tov doywplopd tov mpoPAnparog [21, 63, 65, 106, 159]. IMapdro mov 1 mponyoduevn épevva
EXEL AVTIHETOTLOEL QLT T BEpOTOL YL GUYKEKPLUEVEG SLOPUOPPDOCELS CUGTNUATWV, 1] porydaic
npdodog tng texvoroyiag GPU tnv tehevtaio dexaetio £xel KATAOTHOEL AUTEG TIG TTPOCEYYIOELG
Eemepoopéveg xar un petaépoipes. Iopdro mov awtd to mpdPAnpa Bo propovoe var Avbet
pe avtopatn PeAtioTomoinot, amotedel pioe HeYGAn TpokAnon AOYw TOL XAGHATOG HETAED TNG
povtedomoinong tng arddoong twv muprvev GPU (13, 35,78, 81,89,109,111, 113,114,127, 131,
136,[138,165], Tng povtehomoinong tng petapopig dedopévwv [6,21,25,84,52,63,72,73,75,76,83,
88,1113,115,[117,134], tng povtehomoinong emkdAvyng [21,63,65,106,159] Kot TV TPOYHATIKOV
vromoirjoewv GPU BLAS mov vootnpilouvv emkdAvyn [4,54,55,57, 68,92, 124,125,157].

Takeaway H avtopatn BeAtiotomoinon propel va wgeAnoel onpavtikd o GPU BLAS, oAA&
elval o dvoKkoAo va epappocTtel Aoyw g Tpodcdetng moAvmiokotntag Tov offload ko Tov

X&opatog peta€d twv vAomotoewv GPU kat tng povrelomoinong.

Extédeon BLAS o¢ ovornuoata pe moddaniés GPU: H emtuyia tov GPU ce epyacieg HPC
odnynoe otnv evpeia vioBétnom kOpPwv pe moArég GPU, ot omoiol cuviBwg amote ovvton ad
4-8 GPU mov eivar Stoaovvdedepéveg pe kool Wdiaitepn tomoloyio. Adyw twv e€olpeTikdv
VITOAOYLOTIKOV SLVATOTHTWOV AVTWOV TWV GLGTOLYLOV, lval LOLaiTe Pt KATAAANAEG YL TLG LTTOAO-
yloTiké amontntikég tpakelg emmédov 3 twv BLAS. Qotooo, n PeAtiotonoinon twv mpdtewv
BLAS v cvotripato pe moArég GPU Siapépel GNUavTIKE otd QUTHY TV CUGTNHATOV pe pio
GPU, xabwg amtatel emiong tnv amoTeAeOHATIKY KATOVOUT Kol SLoXELPLOT) TV Jedopévawy Ko
TWV LITOAOYLOTIK®OV £pyaciv HeToED TOANDV epyatdv (twv GPU) pe Eexwprotég pvrjpeg. EmumAé-
ov, 1 \tap€n EexwploTdv pynuodv GPU mepumAékel mepattépw TV ekTéAeoT), KaBoOg ta dedopéva
€10000V g povtivag pmopel vo fpiokovton otr pviun tov host, otn pviun g GPU 1 oe
ovvdvaopo kot twv dvo. Katd cvvénela, n Pedtiotonoinon yix toArég GPU ewodyel véeg alyopt-
Bpucég évvoleg oto BLAS, mapopoteg pe tnv katavepunuévn ene€epyacio, 0mmg 1 amocvleon

SedopEVWV, 0 TPOYPOPHATIONOG EPYXTLOV KaL 1) eltikotvwvia. Ola avutd tpocbétovy oty eyyevi

136 Chapter 7. Extetopévn Iepidnyn

moAvmAokotnTa Tov BLAS kot éxouv wbnoer moArég PipAobrkeg va vtootnpiéovv Tnv ekTéAeoT
o€ moAAéc GPU, eite emexteivovTag mpPonyOOHEVES KATAVERTHEVEG TTPOGEYYIOELS e VOO TN PLEN
GPU [4,5,111,118,19,54,55,68,92,94,[161] eite pe eEerdikevpéveg PLpAtobrikeg oxedioopéveg eldiki
yla autnv v epintwor [9,57,[124,[125,[157].

IMapopoia pe tnv extédeon oe pice GPU, adA& axopo meploodTepo AdYw NG mpodcbetng
ahyopiOpkrg moAvmAokdtnTog g dpopordynong oe moArég GPU, ta kupiopyo mpoPArjpota
enidoong k&Be mpoPAnparog BLAS mowcidhovv avaroya pe Tig e€0TepLKég TOUPOPETPOVS TOV
(drxothoelg poPfAnparoc, Béon dedopévav) ko Tar YoPOKTNPLETIKE TOL LALKOD (Stchvdeo,
xopnTucotnto pvipng host/GPU, duvatotnteg GPU). Katd ocvvéneia, n) ektéAeon oe moArég GPU
amoutel eniong amopdoelg pe PAor TO GLYKEKPEVO TPOPANHA Kol TO GOGTNHA, TOV PITOPOVV
va Bertidcouvy v anddoaor kal T petapepopotnto. Tétoleg amopdaoelg eivat: 1 dpoporoynon
NG emkoLvviog yia kahbtepn a&lomoinom Tov edpoug {odvng Tov Stktvov dtacvdeong, 1 Sioyel-
pton NG pocwpvig aobrjkevong dedopévwv otig GPU, oL amopdoelg Stayelpnong epyooiog
YL TNV QVTIHETOTTLOT) TG AVIGOPPOTTLNG, O TPOYPOAPUHATIOHOG KOl 1) CELPX EKTEAECTIG TWV EPYACL-
OV YLoL TNV EAAYLOTOTOLNGT] TOL WTOKAELGHOD AOYw e€optroewy etaddov/e£680vL ko oL aod-
oelg mov oxetifovtal pe TNV opbr KATOVOpr TOPWOV Yl TNV QIToPUYT TEPLTTAG XPNONG TNG
GPU. EmuAéov, AOyw tng peyoldTepng moALTAOKOTNTOG TV TTPoPANpatwy ot moArég GPU,
1 eMSPACT) AVTOV TWV ATOPACE®Y GTNV Ardd00N elval CNHAVTIKA HeYQADTEPT) QIO O,TL O€
pioe povo GPU. Avetuxwg, 11 ToAvmAokOTnTa TNG ANYNG OA®V AUTOV TOV ATTOPACEWV KOTA
v ekTéAeon eivon ammayopeuTikt]. Avtd avaykdlel Tig PAtobnkeg eite va emkevtpdvovtal o€
EvaL LTTOGVLVOAO LTV, epappolovtag evpetikég peBodovg kot pOBuLoT Yo kK&Be véo cOoTNH
ELITELPLK A, €LTE VO XPTICLYLOTOLOVV YeVIKEG AVGELG, OTTWG 1) PeATioTOMOINGT Sty pappdT®Y epyot-
ooV 1) 1 kAot epyaociov [4,54,566-58,68,92,[157]. H mpwtn Adomn éxel vymAn amrddoon yix éva
VITOGUVOAO TWV GUVOAKOV TTPOPANUATOV KL YLOt OPLOHEVA GUOTHHOTO, QAAQ e TTOAD YOUNAN
HETOPEPGLPOTNTA, OONYDOVTOG O€ GNUAVTLKT] TTOCT NG arddoong oe dAha cevapia [9]. H
devTepn, amd TNV GAAN, elval O YeVIKT KoL Pop1TH o€ vEo oevapLla, aAAG voTepel oe amddooT
o€ oxéon e pio e€eldLkevpévn A0GT) fEATIOTOTOLNHEVT] YO CUYKEKPLUEVA X XPAKTIPLOTIKA VALKOD
ko TpoPAfpatog [8]. Mapodro mov owtd To TpdPAnpa Bo prropovoe eniong va Avbel pe cvTOpTY
BeATioTOMOLN O, 1) TPEXOVOXK KATAOCTAGCT) TNG TEXVOAOYING dev TTPOcPEPeL TETOlEG ADoELg AOY®
g éAAelymng povtédwv y cvotipoata pe todamtAéc GPU, oe cuvdvacpo pe tnv oAl vymAn

TOALTTAOKOTN T TOL TPOPAHATOC.

Takeaway H avtopatn BeAtiotomoinon pmopel va Aboel Ta kpiopa mpofAfpata amddoong
Ko petapepopotntag tov multi-GPU BLAS, adAdé n vAomoinon tng éxet amodetyBel e€oupetikd
meplmAokn pe Tig Tpéxovoeg pebBoddoug.

7.1. Ewcayoyn 137

7.1.1 Awotdnwon wpofAnparog

Svvoyilovtag, ot BLAS eivow oAb onpavtikég yux epappoyég HPC xar Ba mpémer va eivan
evKoA petapépoipeg kol PéAtioteg ota ovyxpova HPC cvothua- ta pe GPUs. Avotuyag,
eve Bewpnmikd ov poutiveg BLAS eivon katdAAnAeg yio cvotiuata pe GPU, oy mpdaén to
PO OeTaL KOG TN EMIKOLVOVIAG, TPOYPOUHATIGHOD KO CCVIGOP POTTLOG TTOL ELCAYOVTOL GE LUTA TOL
ovoThpata eplopilovv onpavtikd tnv amddoct tov BLAS kot 0dnyodv o voypnotiponoinon
Twv Topwv. EmutAéov, ol vidpyovoeg Aboelg BLAS dev pmopodv va mtpocappostodv duvaptkd
0TIV LITOKELHEVT) APYLTEKTOVLKT] DALKOD KoL 6TOV 9OpTO epyasiog, faoilopeves évtova ot xeLpo-
kivnn pOBpLon amd To XprioTn, He ATOTEAEGHA VAL EXOLY XOUNAT ATtOS0CT] KOl HETOUPE PO LUOTT| TOL.
TéAoG, eV 1) HOVTEAOTTONGT) KaL 1) ALTOHATN PeATIoTOMTOIN O PIToPoUV Va BEATLOO0VY GNUAVTIKE
NV adS00T), TNV AvOEKTLKOTNTO KO TT) HETOPEPOLUOTNTA, 1) UAIKH TTOAVTTAOKOTNTO TV GUYYPO-
vwv cuatolytov GPU oe cuvdvacpod pe tnv adyopifuikr tolvrdokdtnTa G extéheong tov GPU
BLAS xaBiotoitv mn Peltiotonoinon amddoong kol tnv awtdpatn feAtiotomnoinon eEoipetikd

SVGKOAN.

7.1.2 Xvvelo@opég

O otd)og avtng tng dratpiPrig eivon va Eemepdoel aLTOVG TOVG TEPLOPLOHOVG KoL Vor ETLTUYEL
petopepopdtnTa, PEATIOTN 0utddoot kot amotelecpatikr aglomoinon tépwv yio single- kot
multi-GPU BLAS. Tia acutév tov okomo, emtAéyoupe i Tpocéyylon mov Pacileton oe povtéda,
OOV T YAUPAKTNPLOTLKA TOV TTPOPAYHATOS KO TOV GUOTHHOTOG TTOLPAUETPOTTOLOVVTAL KL X PN OL-
pomotovvToL yia T StpdOpewaot povtéAwy TpoPAeyng. Xtn ovvéxela, epoppolovpe avTd To
povtéda yio tnv awtdpatn Bedtiotonoinon twv BLAS, avanticcovtag pio end-to-end PipAto-
B1kn ov mpocappolel Tig TapapéTPoug mov ennpedlovy TN amddoon ot k&be atopikn kAo
BLAS, Aopfdvovtog umoyn Ta XopakTnpLoTIKE TNG pouTivag, ToL TPoPANHATOG KoL TOL GLGTH-
HOTOG KATA TOV XpOVO eKTEAEOTC KO TTPOCOAPHOLOVTAS TNV EKTEAECT] ALVAAOYX [E TO EKAOTOTE

OEVAPLO. ZUVETAG, OL KUPLEG GUVELGPOPES TNG SOVAELAS pog eiva:

1. M peBodoroyia yioe Tnv povrelomoinon Tov Stktdov SlaechvdeoTg Kol TG EMLKOLVOVING
poutvev BLAS e cvotolyieg multi-GPU ko 1 Snpovpyio povtédwv yia tnv ektipnon

g amddoong Toug.

2. To PARALIA, pua BpAoBrikn vymAng amddoong kat evepyelokng enidoong yid multi-GPU

BLAS, Baciopévn otn povtelomoinon anddoong kot Ty avtopotn PeAtictonoinon.

3. To PARALIA-GEMMX, pia vhomoinon toAdamiaciacpot mivakey yio multi-GPU cuoth-
poto mov Paoileton otnv koBodrynorn atd povtéda yio Tnv kaAlTept SPOHOAOYT|OT) Ko

NV PEATIOTOMOINGT) TNG EMLKOLVOVIKG.

138 Chapter 7. Extetopévn [epidnym

Sub-kernels

Dependencies

Workload Optimized
selection routing

PARALIA

Figure 7.1: Mix emiokomnon tov PARALIA ko Tov KOPLOV KOHHOTLOV TOV.

7.2 PARALIiA: Avtoparornoinon BLAS oe moAlanAég GPU

Y& avth TV evotnTa topovotdlovpe o PARALIA, pa BLpAtodrkn BLAS yix cvethipoto moAlo-
mAdv GPU, mov avtpetomilel tig eAleifelg twv mponyodpevov Pipiodnkov cuvdvdlovtag
T1 HOVTEAOTOLNGT] e TNV UTOHATY PEATIOTOTOINGT. EEKLVAE [E PO YEVIKT] ETLOKOTNGT] TNG
BipALobrkng kot TV PacLkdV KOPHATIOV TNG Ko, 0TI GUVEXELX, TEPLYPaPOovpe kK&be KOPPATL
Kxaw Tov pdLo Tov otV PeATIoTOMOINOT pE TepLloodTepeg AemTopépetec. H Ewcdva 7.1 Seixver tov
oxedaopd tov PARALIA. To PARALIA evepyomoteitan 6tav 0 KOILKOG TOL XPHoTn KaAel o
poutivae BLAS pe ta dedopéva tng povtivag va Bpickovtor otn pvijpn omotacsdrjmote amd Tig
Srobéoipeg ovokevéc. To PARALIA amoteAeital amd tpiot KOpLa cuoTatiKd: évoy TpoemeEepyot-
ot 7oL eival LTELBLYOG YL TNV TPoETOAGio TOL TEPLBAAAOVTOG TOV CLGTHHATOG Lo TNV
EKTENEDT), EVAV TPOYPAPHATIOTH/Spoporoyntr) mov eivar vitevBLVOG yia T Stayeiplon TwV eloe-
pxOpevwV/ eEepxOpevav dedopévav ko TV kANon Twv muprvev BLAS, kol évav autopato
BeAtioTomonty (sec [7.2.1) mov AapPéver mapoapéTpoue cuoTHRATOS Kot TPOBARRATOC AITd pio
Béon Sedopévawv, pa ametkovion vikoo (LinkMap, sec [.2.9) ko tv kAjon g poutivag BLAS,
KoL aro@acilel moteg cvokevég Ba ypnoipomonBoiy yix TNy ektédeo, To péyebog Twv facikov
vroloylotik®v pithok (tiling size) ko tn Stadpopr petapopig dedopévwv. To mhaicro PARALIA

etva éva dnpooia Sabéoipo Epyo avorytol kDKo

7.2.1 O alyodpiOpog Tov avtdépatov PeAtiotononti

O awtoparog fedtioTomontrig amoteAei Tov muprjva tng PeAtiotomoinong tov PARALIA. Yxomog
Tov eivou 1) Bedtioon g 1) emucoveviag kot 2) Tng KaTavopng pOpToL epyaciag yla 0olodnTote
ouVOLG PO GLGTHRATOG/TPOPAHATOC. AdY® TNG TTLO YEVIKAG GUOTG auTOL TOL TTPOPAHATOG,
N Xpnon pg npocéyylong Paciopévng oe evpetikég pefddovg B vvodvoe éva vTochvoro

Sropopeoewy, pe faor Tig omoieg oxeddotnray oL evpetikég péBodot, eite dnAadn yopaktnpl-

https://github.com/p-anastas/PARALiA-Framework

7.2. PARALIA: Avtoparonoinon BLAS oe moA\amiég GPU 139

Figure 7.2: Miwx emioko6mnon tov avtopartov PeAtiotomowntr tov PARALIA kou tng aAvsidog
pdPAedng tov.

OTIKX OLYKEKPILEVOV cLoTHaTwV (.Y, aptBpog CPU/GPU, dioachvdeon) eite xapakTnpLoTike
npoPAnpartog (.. péyebog dedopévwv, Tomobétnon). T To Adyo avtd, o avtopatog PeAtioTo-
TIOUTHG XPNCLHOTTOLEL ML TTPOGEYYLOT] PAGLOHEVT) GE HOVTEND, TTOU AVTIHETWTICEL KXOe Sropo-
PPWOTN WG dtpopeTikd TPOPANHA, CLVILALOVTOG TA YAPAKTHPIOTIKE TOV CUOTHUATOS KAL TOU
TPOPAHUATOS KOTA TNV eKTENEDT).

O aAyopiBpog avtdpatng PeAtiotomnoinong mov ektedeital kotd T Sidpreta k&be kAjong
poutivag gaiveton avalvtiké oty Ewéva .9 Otav xadeiton pa poutive, o mapépetpor
tov mpoPAfparog eEdyovtan atd T povtiva. O avtOpATOg PEATIOTOTONTHAG POPTOVEL TTPO-
ook tnOévTa povtéda petapopdg oo t Pacr dedopévwv tov PARALIA ko toug xpriotpomotei
YLOL VO KOLTOLG KEVAG EL LLOL OLVOUITALPAG TALOT) TV X OPOKTIPLOTLKGOV TOU GUGTHHOTOG TTOL OVOp&leTal
LinkMap. 3t cvvéyela, 0 auTOpaTog BeEATIOTOTONTHG SOKLUATEL ETAVOUANTTIKE TIG UTOYT PLEG
KOTOVOHEG POPTOV EPYACING, EKTIUA TN GUVOALKT] TOLG TOS0GT) KoL ETLAEYEL TNV KaADTEPT).
K&Be xaravourj pdprov epyaciog amoteheiton otd o) pia AMOTX 00 GUOKEVES deUpym, (active_dev;gs),
VIOGVVOAO TWV GUVOALKGDV GUOKEVDV TOL CUGTHHATOG, B) pia AloTto mocootdVv (active_devyqtio)
TOUV GLVOALKOV TPOPATHATOG TTOV TTpoTEiVOVTAL Yia kK&De GLGKELT) KAl Y) Evay XApTh SLadpopng
peTopophg dedopévev BeAtioTomonpévo yuo auth Tn ovykekpuévn katavopr]. Ocov apopd to
(o) ko To (P), Sedopévov O6TL 0 GLVSVAGHEVOG XOPOG OVl TNONG TOVG eivart TOAD peydhog (To
active_devyqtio eivon Tipég float), Ta Sroywpifoupe emavoroppévovrog Touvg mbavovg ocvvdva-
opolG cLokeLWV active_dev;qs (TTov eivan SLakplTég) Kot eMAEYOVTOG TO active_devratio HE L0
pébodo Paociopévn oe povtéro. Tvykekppéva, yuo kdbe cuvdvaopd cuokevdy Eektvayie e oo
TOGOOTA KL T TTpocappolovpe otadiokd pe foon pia tpoPieym amddoong yia k&be cuckevr,
péxpt va emtevyBei éva active_devyqrio pe Tapopola atddoomn avé cvokevy (evtog 5%). Ocov
agopd to (Y), 0 avtdpatog Pedtiotomontig poocappodlel kot PeAtiotomnotei to LinkMap oe

KGO Tapotéve GEVAPLO X PTICLHOTOLOVTOG TO GUYKEKPLUEVOL Y OLPOKTT PLOTIKE TOL TPOPATHATOC

140 Chapter 7. Extetopévn Iepidnyn

(neprocdtepa ot evomta [.2.9). Tédog, 1) kabtepn karavour gdprov epyacioc emléyeTon
XPTOHOTOLOVTOG KATTOLOV GLVOOPOLOTY) OYETLKO e HETPLKES (T, HEYLOTO Yia X pOvo, dBpotopa
ylo evépyelx K.AT) o tnv amddoor kdbe cUoKEVHG TTOL UTOKTHONKE KATR TNV EKTIHNOT) TOV
(B). Znpewdvoupe 6TL 0 awTdpaTOC PelTioToToL TG emAéyel emtiong éva péyebog tile T yia tnv
amocvvean (61w gaivetan otnv Ewkova [1.1), addé avt i Siadikasio eivan amoouvdedepévn
an6 1o (a), (B) xan (y) xau wpaypatonoeiton Paoel tov CoCoPeLiA [[]] Adyw tng pikpng ng
enidpaong otnv atddoon morhamAdv GPU.

7.2.2 Movtelomoinon tov diktomv dracvvdeong: H avarapdotaocn LinkMap

Aedopévou 6Tt ta povtéra Siktdwv dtacvdeong twv mponyobpevey PpAlodnkodv otoyebouvv
0€ CLOTARTO e TAPOHOLEG SUVATOTNTEG GUOKEVAOV Kol dLtoLVIETEWY, dev elvorl KATAAANAES
ylot otolodnToTe KATovopr poptiov epyasiog. I'ia va 1o petpidcovpe autd, vrobétoupe To Lo
YEVIKO Vot o€ o avamapdotact mov ovopdletar LinkMap, wavr va avomopaotroel
onolodriote cVoTNpA pe avbaipeteg cLoKEVEG KoL cUVOEGELS PeTaD TOVG.

Avarapdoraon popeng vAikot: T va povielomolrjcoupe omowodnmote mbavd cOoTnua, 1
avamopdotacn LinkMap amocuvdéeton ad v évvora tng "CPU” kou tng "Koprog pvipng”
Kot v TLHETOTTL EL OAO TOL PéPT) EVOG CLGTHHATOG e TOV idLo TpdTTo: omotadrimote mibavr) Tomobe-
ola dedopévav 1) SLaBéo Lo LITOAOYLETIKOG TTOPOG KALTI YOPLOTIOLELTOL (WG GUGKEDT) KOl GLVOEETAL
pHéow ovvdéouwv pe OAeg TIG GAAEG GLOKEVEG, OL oToieg eivor LTEBOLVEG YIAL TIG HETAPOPEC
dedopévov petakd touvg. Ttnv avamtapaoctaot LinkMap k&Be cvokevr opiletar amd éva povadi-
KO avoyvwploTikd (dev;g). Av kou dev eivon kKoo Ge TPEXOVTA GUOTHHOTY, OV JLOUPOPETLKES
OUOKEVEG €XOLV KOLVY) HVIHT 0 XpOVog HeTapopds Sedopévwv peta€d Toug eivor TévTa i6og pe
undév. EmmAéov, autn n avamapdotoact vrobétel pio TARpwg ocuvdedepévn eucovikr) Tomoloyia,
aKOMT KL otV dev LITAPYEL TPAYRATIKT 6OVOeST LALKOD petakD evog (ebyovg ouokevmv. Qg ek
To0TOL, dnpLovpyel évag TANPWS oLVOEdePEVOG YPAPOGS, OOV oL GLOKEVEG elval oL kOpPot kot
oL 6OVSEGHOL elval OL OKHEG: OL deVpym KOpPPOL cLVEEovTal pécw evog diktvov 2D mAéypaTog
(devpym, devpym) oaxpov/ovvdéopwy. H avanapdotacn LinkMap vlomoteiton oe C++ g
KA&on NG omoiag Ta péAN kot ol cuvapThoelc paivovrar otov IMivaka .. Amoteleiton amd
névte 2D mivoeg link 1at b bw—shared,route,st} TTOL KPATOOV TIG THIEG TOV KOLL TPELG CUVAPTHOELG
IOV X PTOLHLOTTOLOVVTOL KATK TNV QUTOUATN BEATIOTOTOINGT Yo TNV EVIHEPWOT] TOUG.
BeAtioromoinon dpopodoynong kard tnv extédeon: H avanopaotacn LinkMap amd povr g
dev mepiéxel kapio TANpoPopio, AITAMG AVATAPLETA TNV TTLO YEVIKT] TTepintwon. H ypnowpotntd
NG €YKELTAL GTNV TPOCAPHOCTIKOTNTA TNG Ge 0moLodnmote cVoTNHa kaL Statokrn dedopévav
npoPAfpatog, mov cvpPaivet katd tnv exktéAeon. Avth 1) diadikacio éxel Tpelg factkég PACELS,
ot omoieg vAomolobVTAL WS cuvapThioelc Tov LinkMap otov ITivaxa 7.1, TIpdhrov, pia goph avi

TPOYPOO KT TNV TPOTH kAHon povtivag, to load_link_weights() popTdvel TOLG cuVTENE-

7.2. PARALiA: Avtépatomnoinon BLAS oe moAloAég GPU 141

Table 7.1: MéAn ko cuvaptrioelg Tov LinkMap mov xpnotpomototvtal yio) feAtioTomoinon
EMLKOLVO VLG,

Svothpata:
linkjqi(dest;q, srciq) H xabuotépnon k&be cuvdécpov.
linkpy, (dest;q, srcq) To asmopovepévo evpog {dvng kdbe cuvdéopov.

linkg (dest;q, srcig, s_destiq, s_srciq)) | HempPpdduvvon mov emPaileton otd toawtdypovn
xprion o€ k&Be Ledyog cLVIEGHWV.

[Ipocappoyr mpoPAnipatog:

linkpw—shared(destiq, sTciq) To Puwoipo edpog Ldvng k&be cuvdécpov yla pio
dopopYwaot cvokevng/Sedopévwv.
linkyoute (destiq, sTciq) H vumoxeipevny dwadpopry mov mpémer va

akoAlovBnoovv OAeg oL PeETaPOPEG TTOL TTEPVOLV
péow evOC GLVOEGHOV.

JuvopTroELs:

load_link_weights() Apywcomotel to linkyy /jqi/q omd T Pbon
dedopévov.

estimate_problem_throughput() Extipd to linkpy—shared} YL L0 SLOPOPO®OT)
ovokevnc/dedopévav.

optimize_problem_routes() Enavadpoporoyel tnv emkowvwvioe yia touvg
kako0g ouvdéopouvg yio i StopdpPwon
ovokevrc/dedopévav.

OTEG PETOPOPAG [ink(1at p, 51} @O TN Pom Sedopéveov. Avtd mapéyel éva Pacikod LinkMap
ZVoTHpPATOG TTOL TEPLEXEL EPTELPLKEG EKTIUNOELG YIX TO GUOTNHAX YEVIKA. XTI CUVEXELX, KOTA TN
Suhprela Tng avtdpatng Pedtiotonoinong, to estimate_problem_throughput() tpocoppodlet
ta e0pn {dvng Tov LinkMap (linkpy — shared) OORQOVX pe TNV TpEXOLOQ SLAPOPPLOT) GLCKELTG/
dedopévwv. Zuykekpuévea, vTobétel OTL OAOL 0L GVVIEGHOL TTOV GUVOEOLV TLG d€Vpym CUOKEVEG
(active_deviqs) pe TiG datanqym Tomobecieg dedopévwv (datayes) EKTEAOVV HETAPOPES YLot ONOKAT-
p1 TNV eKTEAEDT] TNG POLTIVAG, KoL ePappOlel pia eLBpaduvan yio TV TauTO) POV XPT1OT) GTO

evpog {wvng k&be téTolov cuVdEcpoU:

linkpy—sharea(destiq, srciq) = linkpyy, (dest;q, src;q) x

devnum datanym

Z Z linkg (dest;q, srciq, active_deviqs(i), datajoes(7)))
i=0 j=0

H tehkr) p&on Pedtiotomoinong eivon ny epappoyr) evog adomotnpévov alyopLbpov cvvroud-
Tepng Sradpouric o€ uTod TO YPAPNHAL, TapOpoLov pe Tov alyopibpo Floyd—Warshall oA A pe évav
péyioto aplOpod hops (evdidpeceg tomobeoieg). Io cuykekpyéva, BEAovpe va eavadpoporoyn-

OOUE peTaPOpEG oL Ba tepvoboay ad GLVOETHOUG e XOUNAO e0pOg LdVNG G TeIpés avvdéapiwy

142 Chapter 7. Extetopévn Iepidnyn

pe vPnAotepo evpog Lovng. I mapadetypa, YPNOLHOTOLOVTAG HEYLOTO aplOPd 3 CLGKELOV, AV
linkpw—shared(0 — 2) = 2Gb/s, linkyy—shared(0 — 1) = 3Gb/s xou linkyy—shared(l — 2) =
4Gb/s 1o linkyoute (0 — 2) O cdAdEer amd {0 — 2} oe {0 — 1 — 2}. Avti n BedtioTonoinon
av€dvel To dtobéoipo ebpog LOVNG SPOHOAOYDOVTAG HETAPOPES HEGK KOADTEPWV GLVOEGHWY, KoL
tonoBetei kot o dedopéva oTIG eVOLAUETES GLOKEVEG OV PplokovTol KXTd PiKog TNG SLatd popng
HETOLPOPAS, PEATLOVOVTAS OTHAVTIKG TH GLVOALKY entidoon Tng PLAtodnKnc.

Exrtiunon arodoong yia tnv exidoyn karavoung gopriov epyaciag: Ta va emlé€el o auto-
tuner tnv kotavopr] poptiov epyaciag wov Ba xproipomotjoel yio TNV ekTéleot) piag poutivag,
npéreL va ekTIproel TNV anddoot) kdbe cuokevng yud éva TpoPAnpa. H povreromoinon Eexiva
and pio Pacikn mpocéyylon mARpovg emkdAvyng (full-overlap) mov eivor cvvtnpnTikn ko
AVOTTOPLOTE P AVAOTEPT) €SO0 YLt TNV/TaL TpEXovoa cLokevn/dedopéva. Zvykekplléva,
TO HOVTEAO XpTOLpoTTOLel: 1) TIG TUHEG EKTEAEOTIG KOl KATAVAAWOTG LoXDOG oL avakTriOnkay
gprtelpiké otd tn Paomn dedopévwv, 2) Tov aptBpd dedopévev Tov GUHPETEXOLY GTH POLTIVAL KoL
v/t TpéYovoa cuokevr)/dedopéva kot TNV ekTéAeoT), kot 3) TpoPfAéVelg TOL HOVTELOL Yot TNV
Tin) TG pétpnong arddoaong (.. xpOvo eKTEAEOTG, KATAVAAWGT] LoXVOG) kK&Be GLGKEVTG, OTTWG
KoL TO GLVOALKO Xpovo ekTéAeong (aBpoilovtog n ocvvodikr amddoot). H kOpio peBodoroyio

TTOL XPNOIHOTOLEiTAL Yiar T povTehomoinon mapatifetan otov Mivake 7.3,

Ipora, ovvdvdlovpe 0 avotoato opio full-overlap [159] pe) Phon Sedopévwv tov PAR-
ALIA yuo va AMafoupe pia e1dixr) tpofAiedn mApoug emikdAvPng yio T ouvorilkn amddoo Tng

poutivag oe kdbe GLoKELT):

pred_tpgse(devig) = maz(tegec(deviq, dims),

ISR 1SW
thaa(devia, Y bytes(i)), tazn(devia, Yy _ bytes(j))) (7.1)
i J

Omov T0 h2d avoPEPETOL OE HETOUPOPEG OITO TOV LITOAOYLOTI] GTN GLOKELY Kot T0 d2h oe

w} , ,
elva Tor VITOGVVOAX TWV TIVAKWV/

HETOPOPEG OTTO TI GUGKELT] GTOV VITOAOYLOTH], KX ZZ{ZR}
dovuopaTwV datanym oL aoteAoV TIg Ll 0d0vG kat TIG e£0d0Vg ToL TpoPANHATOG, CvTioTOLYA.
It vae Tpoooproc oLpLE TO HOVTELO GE KATOVOUT POPTOL EPYNCLAG TTOAAATTADY GUOKEVMV, TTPETEL
VO AVTLIKATAG THOOVRE TO h2d KoL To d2h time pe TOug YPOVOUG HETOPOPAS OAWVY TV TLVIETEWY
1oL ovvdéouvv ta data,s pe kdbe cvokevr. Tia va to emithyovpe, TpwTa, vtoloyilovpe TO

XPOVO PHETAPOPAS Yia kbBe cOVeoT (tink) WG CLVAPTNOT TWV PETAPEPOPEVWV bytes pe:

bytes

tiink (destiq, srciq, bytes) = linkq(deviq, srcq) (7.2)

+ —
lznkbw—shared (deStida S?“Cid)

ovvdvalovtoag tnv kaBvotépnon kat o e0pog Lovng kdbe cVVEEOTG, X PTICLLOTTOLOVTOG TO KAXGLKO

povtélo kabuvotépnong/evpoug Ldvng [7,16,21,65,106,159]. Xtn cuvéyela, vIToBETovpE TO KOAADTEPO

7.2. PARALiA: Avtépatomnoinon BLAS oe moAloAég GPU

143

Table 7.2: Opoloyia povteAomoinong Tov

XPNOOTOLELTOL GE QLT TNV epyaoio.

Epmepikéc tipég (amo tn oo dedopévav):

tezec(routine, dev;q, D1[, D2[, D3]])

Wegec(routine, dev;q, D1[, D2[, D3]])

O xpovog ekTéAeong NG routine GTn GLOKELN
devyg ©G ovvaptnon peyéboug
npofApaTos.

H péomn wox0g (oe Watt) tng routine ot ocvokeu
dev;q xatd Tnv ekTéEDT).

TOVL TOVL

IMopapetpor mpoPAfpartog (amd tn povtiva):

dims : D1, D2[, D3]]

datanum

is{r,w}(datanum)

datajoc(datanym)

bytes(datanum,)

Eva flag

Awxotaoelg tpofAnparog yuo Tig BLAS emimédou-
1, 2 xou 3, avticToLyo.

O oaplbpdg TwWV GLVOALKOV
SLLVUGHATWOV TTOL YPTOLHOTOLODVTOL ATd QUTH
TN poutiva.

TIVAKOV KoL

[0,1] mov vmodelkviEL
mivokag/diavuopa
oavticTolyo.

H tomoBétnomn dedopévav yio k&Be cuppetéyovra
mivaka/Sievucepa.

To péyebog oe bytes OAwv twv TVaKOV KoL
SLVUGHATWOV TTOL Y PNGLHOTOLOVVTOL ATTO QLT TN

poutiva.

av évag

elva eloodog/¢Eodog,

Extipodpeva (Bdoer povtédov):

deVpum
active_devgs(devpym,)
active_devyqiio(devnum)

predmetric (devid)

total_pred_metric

O opBpdég ocuvoKELOV TOL CULUHETEXOLV OE
TOUPGAANAN eKTENECT) TOAAATTAGDY GUGKEVOV.
M Alota mov mepiéxel Ta ids yior k&Be TéTol
GUOKEDT).

To m0c00TO TOL GUVOALKOD TPOPANHATOS TTOL
divetan oe k&Be TéTOlL GLOKELY.

M mpoPAreyn tov metric mov ogarteiton
ylo va OAOKANP®OEL 1) ovokevr dev;y TOUG
EKYWPNHEVOLG TNG LITOTUPTIVEG.
H ovvohikny extpcdpevny tipn
(m.x. xpovog, EDP) yix mapdAAnin extédeon
TOAMOTTADY GUOKEVOV.

oL Mmetric

CEVAPLO, OTTOV OAOL OL TTIVAKEG/SLOVOG AT LGOS0V KATAVELOVTOL LEOTIHO HETAED TWV CUGKEVDOV

devpum ovvdualovtag v e€icwon B.1 pe v eicwon B.4 yia va yevikedoovpe yia omotadijmote

144 Chapter 7. Extetopévn Iepidnyn

apxtkr tomobétnon dedopévwv:

iSR

. bytes(i)
d tover(.-) = tezec(--- ’ tiin d ! 7d tajocs sy ;)
pred_toper(...) = max((...) z@: link (devig, datajoes (1) devnum)
il) bytes(j
Z Liink (datalocs (J)a devida Cly(]))) (7-3)
=0 EVnum

H eficwon B.3 mapéxer pia axpipéotepn mpdPreyn yiax v amdéSoon mAfpovg emtkdAvmg
HLog poutivag, epdoov i ektédean ae moAdanAés GPUs dev mepidaufaver mpoobeteg petopopés/koivij
xprion Sedouévawv uetalt cvokevdv. Avtn 1 vdBeon Aettovpyel yix Tig BLAS emumédou 1 kou 2,
aAA& oty amodounon BLAS emmédouv 3, kébe tile (tile) emavaypnoyonoteiton omd ToAAovg
LITOTTUPTIVEG KO ETTOUEVOG PETAPEPETUL O TTOAAEG CLOKEVEG KATA T SLAPKELXL TNG EKTEAETTC
g povutivag. Aedopévou 6Tt To PARALIA ypnowormotel pa 2D xvkAkry amodopnon (DChoy,
DC.) yioo Tig BLAS emunédov 3, Bewpodpe to Paocikd oeviplo 1) avioadiaynig icwv peptdinwv
amd ta RONLY bytes petafd 6Awv Twv Gelpdv Kol 6TNAGVY TNG 0ToSOUNoNG Kot 2) Koot KoL
xprion dedopévwv e€6dov. Extypotpe tnv avaroykn abénon otov 6yko HETAQopoV yio kK&be

ovokeLn g e€Ng:

(DCrow — 1)+ (DCryy — 1)
RON LY, um

extra_transfer_bytes = - RONLY _sum_bytes

Omnov RON LYy €ivor 0 aplBpog towv mvakwv/dtovuopdtov pe isg = 1 kau isyy = 0,

Kot To dbpotopa Twv avtictowywv bytes eivar RONLY _sum_bytes. Avtd aviurpocwiedel

EVal KATOTATO Oplo Twv mpodcbetwv bytes Adyw Kkowvrg xpriong dedopévwv yia kabe cvokevr.

YmoBétoupe 6TL vTd T bytes KaATovEHOVTOL LGOPEPAOG HETOED TWV GLGKEVOV, KOL Y PTOLLOTOLOVHE

TO p1€00 €UpOG (VNG OAWV TV GLVOEGEMVY YLX VO EKTULIGOUVIE TOV TPOGOETO XPOVO HETAPOPAGS:

devVnum

devnum 7 Ry (7.4)
Zidm:O lznkbwfshared[devzd] [de]

testra(deviq) = extra_transfer_bytes -

omov 1 Tpdchetn emikovwvia o bytes yia k&Be cvokevy ToAlamAacdleTol e TO AVTIGTPOPO
oL pHéoov e0povg LwvNg ANYnG, To omoio AelTovpyel WG HEST] EKTIHNGT] YLOL TO QLVOHEVOHEVO
e0pog {OVNG AVTOV TOV HETAPOPHOV. TeAlKd, KATaoKeELALOVE TO HOVTELO TTAPOLS ETLKAALYNG
OV X PTCLHOTOLELTOL Yot TNV ekTiuevy amodoon ke GPU oe mepifddiov moAdamAdv GPUs
npocBétovrag Tov mpdodeto xpdvo peTagophc e ekicwong B.4 oty eficwon B.3:

isR isw

predy(deviq, ...) = max(tegec(...)s textra(devig) + Z trink (.-)s Z tiink(...)) (7.5)
: J

7

7.2. PARALIA: Avtopartonoinon BLAS oe molarhég GPU 145

Table 7.3: To cvothpa CLX-AL Figure 7.3: X&ptng cvvdécewv CLX-AIL

Vulcan CLX-AI CPU GPU link gvv?glk;:/as |)
Ynoloyiotikr Ikavotnta: | 4 X Intel Xeon Gold 8 X NVIDIA Tesla V bw 50

6240 CPU FP peak 14 TFlop/s = | mE I

18 mupriveg @ 2.60GHz | DP peak 7 TFlop/s © EE 40
Mvipn: 768GB DDR4 32 GB HBM2 =01 @ [| 30

760 GB/s g = - || 20

Awxovvdeon: PCle Gen3 x16 NVlink 1.0/2.0 ~1TH H
A3: Rocky Linux release 8.7 | Odnyog CUDA - - []] 10 -
Muprjvoag: 4.18.0-425.3.1.e18.x86_64 | 510.108.03 o+ NN - 111 0
MetayAwttiotig: g++11.2.0 CUDA 11.6 012345678
Inpaieg Bedtiotonoinong: | -O3 -03, -arch=sm_75 SrCig

7.2.3 IHeypopatikn AEoldoynon

T v a€loddynomn tng amddoong, xpnotpomotodpe Tovg koppovg “clx-ai” tov HPC cluster
Vulcan tov HLRS [69]. Ta xapaktnpiotikd Tov cueTHpaTog tapovsiilovial atov Iivakaf.3,
poli pe to évpog Lwvng dioovvdeong amobnkevpévo otov LinkMap ywx 1ig 9 cvokevég (8
GPUs + CPU). EmAéyoupe éva peydho cOvoro SeSopévmV KL EIKEVTPWVOHOOTE ATTOKAELOTIKG
oTOV TOAAATAAGLAGHO TIvdkwv SuTAN G axpifetag (dgemm) yio tnv afloddynon g oamddoong.
E€epevvoipe 21 tetpaywvikd peyédn mpoPAnuatov (Mg = Ngg = Koq = (2 step=1, 22) - 210),

21 mpoPAfpata tomov fat-by-thin (Mfqs = Npqr = (8 Step=4, 32) - 219 Kthin = @,T €

2,8, 32]) xou 21 wpoPAnparta tomov thin-by-fat (K g = (12 step=d, 36) - 219 Mipin = Nipin =

Kfat
r

630 mtpoPAnparto. T kéBbe tétoro mpOPAnpa, petpdpe Tov Xpodvo ektéleong t twv 1) cuBLASXE,

2) BLASX, 3) XKBLAS a1 4) 800 ekddoeig tov PARALIA (comm_opt,select(E D P;)). To PARALIA

comm_opt PeATIOTOTOLEL HOVO TNV ETLKOLVOVIO XWPLG VX XPTOLLOTIOLEL ETTLAOYT] GUOKELT|G, EVE

r € [2,8,32]) yix 10 cuvdvacyiovg TomoPesidv (tepiocdtepa oo Sxfpa f.4) yio suvolikd

N GAAn ékdoor) emiAéyel emiong molég ovokevég va a€lomotriBouv avdhoya to TpOPANpa.

7.2.3.1 Amd6doon

To Zxfpa 7.4 Seiyver T amotedéoparta afloddynong yia 610 To ctvolo Sedopévwv. To cuBLASXt
EXELYOUNAN artdd00T) AOYW TNG GTATIKTG KaTaevopng TOov round-robin kaBog ko tng aovsiog
AOYIKTG TpoocwpPLVNG atobrjkevong Kot emavayproiponoinong dedopévwv. Avtibeta, 1 BLASX
mopéyxel ko] addoon yux to oevépro (hhh), 1 omoio dpwg petdveton onpavtikd oe GAovg
Tovg GAAOUG cuvdvaopovg Tomobeotdy. Avtd To potifo mapatnpeital yior OAo T oxNpHATA
dedopévov ko elvar o eppavég oe mpoPAfparta fat-thin ko thin-fat emedn ammontodv o wodd
ETLKOLVOVIAL QIO TO TETPAYWVO oYU, yia To omoio 1o GEMM éyel tn peyodOtepn aptOpuntikm
évtaon (computational intensity). To XKBLAS akolovBei mopoporo potifo, pe éva povo yopaxtn-
pLoTLKO IOV TO drokpivel: €xel Tnv vYMAOGTepN otddoor (h,h,h) ard 6Aeg Tig BfAiodnkeg, aAddn

petwon g arddoong oe 6Aovg ToLg AAAOVG GLVSLAGHOVG TOTTOBEGLOV eival TOAD peyoAlTepT

146 Chapter 7. Extetapévn ITepiAnyn

EEN 0.cUBLASXt [1.BLASX WM 2.XKBLAS [3.PARALIA comm_opt EEE 4.PARALIA select(EDP;)

Square (M =N = K) Square / all locations
40 4
N '& & ﬁ ﬁ é
. [[]
% Fat-thin (M =N > K) Thin-fat / all locations
&
E 404
g
5 20 4
€
2 =
£,]
Thin-fat (M = N < K) Fat-thin / all locations

40 4

[l 1.l il
20' pul I I I H
= - =

0 -

1T R [
N ZCEH
0) 2)

| X 6 5) n
Ul 0 oLl A _Gpu0 3 Uk 2 geud 6
MIBTT T gateTE gt G dat@T) date

0o)

ann 000 2,40 an® 0o
\ Ul \nO““G\)UK ou‘pu‘_ep\)\ N*ed\

xa-CPY

A-d \nput

Figure 7.4: Am6doon tov dgemm ywx tig cuBLASXT, BLASX, XKBLAS xou 800 moaparioyég
tov PARALIA (pio ov xpnoipomotel vt 6Aeg tig GPUs ko pio ov emAéyeL TNV KATOVOWT
(POPTOL EPYNCLAS YLOL VOL HEYLGTOTOLGEL TO AVTIGTPOPO TOL TPOLOVTOG KaBuoTéPronG-evEpPYELaG
EDP)). K&be oeipd avtiotoryel oe Sapopetikd oxnpa dedopévwv M, N, K kou k&be opddo
boxplot oe Siapopetikn) TomoéTnon dedopévwv, pe gemmioe = (Aioes Bioe, Cloc), 010U 10 loc
= h avtiotowyel oe dedopéva oty pvhpn g CPU kou loc = dev;q otn pvipn g avtictoyng
ovokevng. To de€i vtooynpa cuvoyilel Ta amotedéopata yia kdbe oxripo tpoPAfpatoc.

o6 tov BLASX, pe amotéleopo apkeTd KATOTEPT péoT amrddoot). AuTr| 1) GUPTEPLPOPR ETTLOT)-
paivetan oo boxplot Tov Se€l00 vIToGYAIATOC TOL EXHuaToC 7.4, 6TO 0ol N ATTdS0CT Vi TaX

npoPAjpata tomov gemmyye = (h, h, h) akoAovBoOV TNV TPOAVOPEVOHEVT) KATAVOUT.

7.2.3.2 Evepyswaxn anoddoon

To Sxfpa .9 mapovoiélel ta amote éopata TnG evepyelakic ard8ooT ¢ yla To GUVOAo Sedojié-
VOV HOG, XPTOLHOTOLOVTOG TO avTioTpopo mtpoidv oy bog-kabvatépnong (P D P; ot Gflops/W).
Kot ot 800 vAomoinoelg tov PARALIA éyouvv avotepo PDP; and tig dAieg PpAiodnkeg, kot
1oL oTnV mepintwon tov PARALIA comm_opt oe ocbykplon pe to cuBLASXt, BLASX, XKBLAS
ogpeiretan otn Srapopd amddoong, kabwg dAeg xpnotpomoovy kot Tig 8 diabéoipeg GPU. Amod
Vv GAAN TAevp&, To PARALIA select (E D P;) ¢xel to kadVtepo P D P; yio O\eg TIG SLopoppodoeLs,
TPOGPEPOVTAG KATA PHéco 6po 8% vynAdtepo PDP; atd 1o PARALIA comm_opt pe pog 0.5%
pikpoTepn péon enidoon. Emiong, eaiveton 611 1) péon Pertiowon tov PDP; pécw g emAoyng
OLOKELVOV emnpedlel KLPiwG T pkpdTEPa TTPOoPAruata (Ta kdTw pépn twv boxplots dapépouvv
nepLocOTEPO) Kat eEaptdton amd to oxnpe Tov TpoPAnpartog (Méon PeAtivon: teTtphywvo =

1%, fat-thin = 8%, thin-fat = 15%). Kou awtég oL cupmepipopés mpoépyovior atd 1o yeyovdg

7.3. Eméxtaon PARALIA yix v Beltiotonoinon tng emkowvoviag oe muprveg molamlaciacpon mvékov 147

I 0.cuBLASXt 3 1.BLASX I 2.XKBLAS =3 3.PARALIA comm_opt I 4.PARALIA select(EDP;)
Square (M = N = K) Square / all locations

g EEI T T F LT,

Fat-thin (M =N > K) Thin-fat / all locations

PEPFPEYEY F ML

Thin-fat (M =N <K) Fat-thin / all locations

TTTEREEEET N

©) 5) n
ra-C to- PO M xo- GPU@ > o G ta- Grut-©
AN-02 AN-02 AN-0 AN-02 A0

PDP; (Gflops/W)
= N
S) o

o

o

\(\\’\\ 0,0 7_A\"\ \,\ho\ \,\05\ 00
-0 et \np“‘ or \put® ?\“ utput PO et or!

Figure 7.5: Evepyewokny amddoon tov dgemm (Gflops/W) yia OAeg Tig Siopoppidoelg
npoPApatog mov mapovotilovrar oto Sxfpa 7.4, Ot cuBLASXt, BLASX, XKBLAS ko PAR-
ALiA comm_opt éxovv PDP; avtictolyo pe Tnv enidoor tovg (kabdg 6Aeg XproLpomolody kot
T1¢ 8 GPU tov cuothpatog), pe amotélespa éva ToAD kadvtepo P D P; yia to PARALIA Aoy
™™g vYnAoTepng emidootg Tov. Amd tnv GAAn mAevpd, to PARALIA select(E D P;) hopPaver
entiong voOYn T oxéon evépyelng-amddoong KAT& TNV emAoyr] ToL apPLlBHoy GLGKELHOVY TTOVL
B xpnoomonBodv ko, emopévwg, éxel ToAL kalbtepo PDP; emBailovtag povo pio pkpn
drapopd amoddoong.

OTL 1 emLAOYT) GLOKELNG £xeL VoMU HOVO Yo TpoPAfpaTa TTov meplopilovtal ev pépel atd v
emkovovia, kKobog yio TpofArpata tov SepeDOVTHL ATOKAELGTLIKA 0O TOVG LTTOAOYLOHOVG, 1)
emAoyn OAWV TV cLokeLOV Ba amopépel Tavta to vYmAdTepo E D P;. Yuvoyilovtag, to PAR-
ALIA mapéyel tnv vymAdtepr evepyelokt] amdd0oT Yo OAeG TIG SLHOPPHOTELS, TLVSLALOVTOG
KoAOTEPT GUVOALKT) emtidoon pHe arodoTIkT eMAOYH GLGKEVOV Yot TPOPAHATA TEPLOPLOHEVDL

oIt TNV ETMLKOLVOVIOL.

7.3 E=méxtaon PARALIA ywx tnv feATioTOoTOINGT) TNG ETLKOLVOVIOG

G& TUPTNVEG TOAAATAAGLAGHOD TIVAK®OV

2NV evoTtnTa E emkevTpwOnikape otig Aettovpyieg BLAS emumédov 3, oL omoteg eivo o ovvnOi-
opéveg o€ cuvotolyieg ToAA®V GPU Adyw tng peyaldtepng aptOpnTikng ToAVTAOKOTN TAS TOVG.
S avth Ty evotnta, epfadivoupe okOpT TEPLOGOTEPO ETLKEVTPOVOVTAG TNV TTPOCOXT MG O

gvav HOVO TTupr Ve ToV Yevikod ToAlamAaciacpd mvakwv (GEMM).

148 Chapter 7. Extetopévn Iepidnyn

Iari emiAéEape tov GEMM; : Ocwpntikd, 1) e0TioGT 0€ £vay HOVO Tuprive e plopilel Tnv epoppo-
OLHOTNTO TNG TTPOGEYYLONG HOG GE aXéaT) e TOV YeVIKOTEPO 6TOY0 Tov PARALIA yua Tig Agttov-
pyieg BLAS emunédov 3. Ilpaktikd, ol muprveg BLAS emutédov 3 eite eivanr moAlotlooiaopol
TVAKOV He SLapopeTikovg TOTOVS/Slatdéelg dedopévamv eite ekteAovV KLpiwg Aettovpyieg GEMM
eocwtepkd [[157]. Avtd kabioté Tov GEMM 11 Pacikdtepn Aettovpyia 0TI eQOpPROYES LYNANG
an6doong (HPC) xau pnyavikrg padnong (ML) ko kaBioté tn feltiotomnoinot tov e€icov onpa-
vtikr yix T yevikr] Pedtiotomnoinon tewv Aettovpytdv BLAS emumédou 3. Zuvendg, otdx0og Hag
elvor va tpaypatomotjoouvpe pio e€avtAntikr BeAdtiotonoinon tov GEMM, avtipetwrilovog
TIG TTPOKANGELS TTOV QPOPOVV TOV GUYKEKPLUEVO TTUPT|VOL KOL VAL PEATLOCOUVHE TG OTPATNYLKEG
BeAtioTomoinomg pog mépa outd TIG Mo yevikevpéveg tpooeyyioelg tov PARALIA.

Hepropiopoi tov PARALIA: Ilapd tnv tpoodo mov onpetdvel to PARALIA otnv feAtictomoinon
BLAS yia moAramtAég GPU, e€acolovBel va Ppicketon evdidueoa petad tng amddoong Ko tng
avOekTikoTnTOG/PeTapepoipotnTac. [mapddetypa, otnyv nepintwon tov GEMM, to PARALIA
duokoledetaon vo ekpeTaAAevTel TARPOG TIG dLVATOTNTEG TV GUYXPOVOV KOUPWV pe TOAAES
GPU, xavovtog 5-15% tng amddoong oe eLVOIK& Gevapla OTwg otay O T dedopévar eivor
otn pvipn g CPU. H npotn advvopia tov PARALIA evtomileton otn PeAtioTomoinon g
emkowvoviag mov tpoceépet to LinkMap. To LinkMap Aeitovpyei avtidpaotikd, Aappfdovovtag
ATOPATELS OPOHOAOYNONG KATA TO XPOVO EKTEAECTG, XWPLG OAOKANPWHEVT) ELKOVA TNG POTG
dedopévwv. Avtr) 1) tpocéyylon dev pitopeil va vitooTnpikel Tpwipn PeAtiotonoinon mépveovTag
vrtoyn 1 Sibomaon dedopévwv, mov eivan tavta otabepry. EmurAéov, to LinkMap Pacileton
QUTOKAELOTIKA OTLG TTAPAPETPOVS EVPOLS LOVNG YL TIG ATTOPAGELS SPOHOAOYNOTG, TOUPOHEAD-
VTG TO TPEYOV POPTIO GTOVG GLVIEGHOUVG EMLKOLVWOVIAG KoTd T AP pag atdégoons. Emurpo-
o0étwg, To evOLdpEca AALATO OTLG VOO POHOAOYT|HEVEG HETOUPOPEG TTOVL TTPOTELVEL O OAYOPLOpOG
BeAtiotomoinong tov LinkMap av€dvouv tov cuvorikd aplBpd petapopidv. Avtdg o cupPipoc-
HOG HeTOED Topamave emkovaviog kot vPmAdtepov évpovg {ovng eivor ocuviBwg KoAdTEPOC
yloe v atddoot, aAdd e€acorovBel va amokAivel amd v kopueaio dvvartr amddoot) pLag
AVong mov eivon Tawtoyxpova PéATIOTH otd qutoym emkowvwviog kol evpovg {ovng. Télog,
Ta TpoPAfpata wov ennpedlovy meplocdTepo TV atddoot tov PARALIA mpokimTouy oo
TIG TeYVIKEG SPOHOAOYNOTG, SIXOTIAOTG KL TTPOoWPLVAG artodrjkevong ov viobetrOnkav ad
TPONYOUHEVEG EPYOTieg kol GLVSLAGTNKAV pe TNV povtehomoiner. Ilapdio wov avtég ot pébodot
éxouv PeAtiwBel pe tn povredomoinom ad6doong, eEakorovBoiv va teplopilovral amd Ty ToAv-
TAOKOTNTA oY eSLAOTG TOUG KoL TNV EAAELYT TTAT)POVG EVOOHATOOTNG HETAED HovTEAOTTOINO NG KoL
vAomoinong.

H xaAvtepn npooéyyion yia tov GEMM; : H yprion Spopordynong kotd to xpovo ektéleong
amotelei To mpdtumo yia Tig ftpAtodrceg BLAS molAaAdv GPU, kaBdg mpémet v vtootnpilovv
avBaipeta wpoPArpata BLAS pe dioepopeTicég ovayKeg Ge EMLKOLVOVIA, DTTOAOYLGHOVG KoL TOLTO-

xpovn ektédeot). Qotdoo, 6Tav eotidlovpe cvykekpipéva otov GEMM, 1) extédeon) ennpedleton

7.3. Eméxtaon PARALIA yix v Beltiotonoinon tng emkowvwviag oe muprveg molamlaciacpon mvékov 149

QTOKAELGTLKA 0O TIG o TdoELS TOV TPoPANuaTos, TV TomobeTnon TV SedoUE VLV KaL TN OTPATN-
ywr Sidomaons. Aedopévou OTL auTd Ta Y opoK T PLOTIKG TOL TTpoPAfipatog eivor Stabéoipo 6Tav
Kodeiton 1) poutiva ko 1) SLAGTAOT) TPOYHATOTOLELTAL TTPLY TNV EKTENEDT], OAEG OL QUTOUTHOELG
KoL OL eEAPTHOELG OE ETTLKOLVOVIR/ VTTOAOYLOPOUG HItopoV vo kaBoploTovy MLy TV eKTéAEDT).
JUVETADG, Ol ATOPATELS JPopoAdynong kan emxdAvyns propovv v AngBoldv mpoAnzrikd mpiv
Vv ekTtéAea), Ko pe PAOT) TNV TPOYHOTLKT] ETTLKOLVOVIR, O)L piat ekTipnon povtélov. EmumAéov,
QUTEG OL TOPAGELG HITOPoV var AneBovv Aapfdvovtag voyn tn Swadikacio ektéleong oto
oOVOAO NG Ko OxL AcpPAvovTog HEHOVWIEVEG OUTOPAGELS AVTIOPACTIKE KOTQ TNV EKTENEDT),
avolyovtag tnv duvatdTTa Yio o 6OvOeTeg PeATIOTOMOLGELS. AVOTUXMG, 0 KOSIKOG RULTOHA-
g PeAtiotomoinong Tov PARALIA, 6nwg meptypagetal otnyv evotnta .9, eivon avemapkrig
yloo autdv tov okomd, eneldr) Aettovpyel aveEdpTnTa ord To TUHHATO TPOoETEEEPYNTIOG Ko
dpopordynong. Avribeta, 1 emtitevEn Tov PEATIOTOL ATTOTEAEGUATOG OUTALTEL L0t GUVOALKT] TTPO-
OEYYLOT), 1] OTTOLX VO EVOWHATMOVEL T YVOGT] HOVTEAOTOINGTG 6TOV oXeSLOOHO TwV adyopiBpwv

duomaong kat tng dpopordynong.

Takeaway H povtelomoinon kot n avtopatn PeAtiotonoinon Wropodv va Tpocpépouy Hia
eviidpeon Moo peto€0 LYMARG amddoong Kol avOeK TIKOTN TG, AAAG VITAPYEL UKOUT] CTIHOVTLKOG

XDpog yia fertivon dtav epappolovror otov GEMM.

Svveropopég: Ye autr) TNV evotnTa, 6ToYeVOLE o€ P PeAtiotomotnpévn BipAtobrkn GEMM
yix moAhamAég GPU mov emitvyydvel Bédtiotn enidoon ko avBektikotnra. H mpocéyyion
pog Pacileton oe évav otatikd dpopoloyntr) wov vioAoyiletot TpLv TNV exTéleoT), kKabe popd
7oL Koheiton par pouvtivee GEMM pe éva véo obvoro mapapétpwv. Kabe otatikd oyxédio mov
dnpovpyeiton yior Evoe cuYKEKPLHEVO TTPOPANIOL ElvoL ETOVOLY PTOLUOTOLGLHO YL TLG ETTOHEVEG
KAfoelg poutivag, pndevilovtag T ¢é€0da Spopordynong yio OAeg eKTOG ard TNV TPAOT KA o).
H yvdon tov mapapétpwv etaddou pog divet pia TANpr) etkdvo Tov HoTifov eTKOLVOVING KoL TV
XOPOKTNPLOTIKGDV SPOHOAOGYN GG TNG POLTIVAG, TNV 0Ol KELOTOLOVHE YLOL VO EACX LG TOTTOL|GOV-
HE TRLTOYPOVA TOV OYKO ETTLKOLVWVING, VO LEYLGTOTOLGOVE TNV aflomoinot Tov dikthov St v-
vdeong, vo PEATIGTOTOCOVE TNV EMKAALYTN KOL VO EACXLOTOTOL|GOVIE TNV KVIGOPPOTTLCL
Kot Tov xpovo adphvelng twv GPU. Enpeidvovpe 0tL oL obyyxpoveg PipAiobrkeg moAlamAodv
GPU [9, b7, 58, [157] 1dn vAomoodv opiopéveg amd TG PEATIOTOTOLCELS TTOL ELCAYOVTUL GE
auTHY TV evOTNTA, OGNV Statripnon Sedopévov (caching) (Evotnra [f.3.1.3), tyv emkdAvyn
(Evomnra [.3.1.9) xau 0 SpopoAdynon Pdoer etpovs {édvne (Evornra [.3.1.4). H epyaocio pag
BeAtidver avTég TIG PEATIOTOTOLOELS, X PTOLHOTOLOVTOG VX ATTAOVGTEPO oY THa caching, emituy

xévovtag mApn (ovti yio pepikr}) emkdALYm OAwV TV PODdV LITOAOYLOUMOV/ETLKOLVOVING KoL

HELOVOVTOG T KOGTN évapEng péow otatikng dpopordynong. Emumiéov, n) epyosio pog etodyet

150 Chapter 7. Extetopévn [epidnym

véec PehtioTomouoelc 6mwe TN Spopoddynon faoer ETA (Evotnta [7.3.1.4), to RONLY-fetch batch-
ing (Evotnta [f.3.1.9), to lazy WR-tile fetching (Evotta [.3.1.6) xou Ty emmidoyij oeipd vromuprj-
vewv pdoet ETA (Evotnra [f.3.1.7).

7.3.1 YAomoinon

Apxikd, meplypa@oupe To0 oxXeSLAOUO €VOG GTATLKOD YPOVOSLAYPAUHATOS EUTTVEVGUEVOL QTTO
npoceyyioelg katavepnpévov kot multi-GPU cvotnpdrov, mov PeAtiotomotodv 1o GEMM yio
multi-GPU. Ano tig Siabéopeg diataéelg eto6dov BLAS 1§ PBLAS yia to GEMM, akolovBoidpe
to mtpoTumo BLAS [B9], pe Toug mivakeg elc6dov va amobnkevovton oe didtagn LAPACK, eite
ot pvrun tov host eite otwv GPU [9,57,124,157]. M poutivaa GEMM pe Béon to mpdTLIO
BLAS extehel tnv mpaén:

Cout=a-AxB+0b-Cyy (7.6)

Yrobétovtog 6tL T0 Clhyy amobnkeveton otn 0éom tov buffer Cyy,, 1) mpdkn amontei Tpelg mivokeg,
A(M x K), B(K x N) xow C(M x N), pe tovg A ko B va givan povo avayvwong (oo e€nig
avaeepopevol wg RONLY) ko tov C' va eivon aviyvwong kat eyypoagrg (oTo eERg avapepOpevog
wg WR).

7.3.1.1 Iepapyikn aroocvOeon

H amoctvBeon twv mvakwv A, B kou C' kabopilel To vrompofArjpara mov Ba ektedectodv o€
k&Be GPU xau to potifo emkovwviag. ZTnv vAOTOLNGT] oG, ETLAEYOUHE VoL TOPUYOUHE TNV
kown xprion tov mivaka C' petafd twv GPU, kabhg avtd odnyel oe emumAéov cuyypovioHo
petad v GPU ko mpdobetn emkowvwvia yia tnv extédeon [9,57,157]. ‘Etol, emhéyovpe puo
diodidoTatn amocvvleot) mapopota pe Tov adyopldpo SUMMA [[151], g piar aTAr] Ko TTPOKTLKT
AVoT, Thvew oty omola e@oppolovpe pio oeLpd PeATioToTOLGEWV.

To Zxfpa .6 ameicoviler tnv mpotewopevn iepapyiki amoctiveon Baciopév 6Tov KaTavepn-
pévo alyopBpo SUMMA [151]. To mpwro eninedo amoovvBeong Pacileton otov apibpd twv
GPU, ta omoia ametkovifovtol wg diodidotato mAéypa r X ¢ GPUs. Avtiotoiya, arrocuviétoupe
tov tivaka C' o¢ tetpdywva tile (amd ed6 ko oo e€ng tiles) M, x N, dnpovpymvtog virompoPAn-
pota avéhoya, ko avaBétovpe kébe vompoPAnpa Eexwpiota oe pa GPU. Ztn ouvéxela, aro-
ovvBétouvpe toug mivakeg A kar B oe tile prixouvg ypoppov (M, x K) kot tile tAdtovg otniov
(K x N.), avtictorya. Ta tile ypoppov tov mivaka A avatiBevion oe ¢ GPUs kau ta tile
otA®v tov mivaka B oe r GPUs. e éva debtepo emimedo, ta koppdrtio twv A, B xar C
oe k&Be GPU amoovvtiBevtal mepaitépw oe Siodidotarta tiles peyéBouvg T x T', pe epappoyn
padding 6mov autanteiton. Avtd dnpovpyei éva TpLlodidotato TAEYpo % X % X % TETPAYWOVIKOV
vrtonpofAnuétov GEMM mov arontodv Sapopetiké tiles e166dov kot eE6Sov. ‘Etot, yuor va

vroAoyicovpe To ammotéecpa g povtivog GEMM Cy,y,, mpémel va vtodoyicovpe To tile-based

7.3. Eméxtaon PARALIA yix T Bedtiotonoinon tng emkowvmviag ot muprjveg toloamlaciacpod mvikov 151

A
C=2aAB +bC Boo | Bo1 | Bo2 | Bo3
SUMMA Bio | B11 | B12 | B13
r=2,c=2 K
(2x2 =4 GPUs) Byo | B21 I Boo | Bos
B3g | B31 | B32 | B33 i T
\ 4

A

Mr

\ 4

K
-.
< >

N €<—>

Nc

Figure 7.6: Eva mopaderypo tng tepapyikrg anmoovvleong GEMM 2 emumédwv yia éva TeTpiywvo
npopAnpa (M, N, K) Baciopévo otov adydpibpo asmoketopod SUMMA [151]. To mpmrto
eminedo efapratar amd tov aplbpd twv eneepyactodv (edcd: 4 GPUs) KOTAVEUNHEVWV OE
dwodidotaro mAéypa (r,c) = (2,2) mov amoovvbéter to (M, N) oe xoppdrtioe (M, N.),
aprivovtog to K opetaPAnrto. Xtn cvvéyxewr, 1o dedtepo emimedo eivon 1 amoovvleot) tov
(M,N, K) oe dicdidotata tetphywva tiles, mov dnpiovpyodv tetpdywva vrompoBAfpoto
GEMM ko emLTpETOLY TNV EMLKAALYT ETUKOLVOVING/VTTOAOYLOHOV.

outer-product [151]:

K
T
Cm‘ =b- Ci,j + Z a - Az‘,k X B;w- (7.7)
k=0
YlaiZO%%KOﬂj:O—)%.

H tun tov T' mpémer 1) va amogevyel To viepPorikod padding, 2) va eivar apketd pikpn wote
vo dnpovpyel emapkr) optOpd vITOTPOPANUATOVY Yo eikdALYT Kot 3) var elval apKeTd Peydn
(OOTE Vo aopetyovTal KaBLGTEPHGEIG GTNV eKTENEGT), TIG PETAPOPES Ko Tr Spopoldynon [7,
9,63, 65,159]. Twx va Siac@aicovpe TV 1oppoTTiar HETAED TWV TPLGOY, EAAYIGTOTOLOVHE HIK
oLVapTNoN KOGTOVG PacLopév ot Tpelg evpetikég pefddovg. H mpotn evpetikr) pébodog mpoo-

el va ao@oyel to padding, emiPoapivovtag k&be vdrouro xatd) dwaipeon twv M, N, K

152 Chapter 7. Extetopévn Iepidnyn

oe tiles: .
Chadding(T') = | Z | %
i€{M,N,K},i{0
H Sevtepn evpetik péBodog apopd tnv tkavotnTo emkdAvng kot emtPapivel To TOGOGTO TOU
npoPAfpatog mov dev pmopel var emkAAVEOEL, EKTIHOPEVO WG TO AVTIGTPOPO TOV PIKOVG TOU
pipeline emucdAvymcg, mov eivon ico pe tov apbpd twv vompoPAnpdtwv ave GPU:

gpu_num

Covertap(T) = 57w _ &
TXTXT

H tedevtaio evpetikt] péBodog xpnotpomolei éva eAdyioto mpoemdeypévo péyebog tile Thyyip (de-
fault = 2048), apketa peyaro yia v aropeyovton oL vPnAég kabvoteprioelg, ko emiPapivel T

HkpoTepa tiles avoroyikd:
Trnin % 0.2

T

Egpappolovpe avtég tig evupetikég peBddovg mpv atd tnv atosvvBect) tov dedtepou emmédou

Clatency (T) =

emAéyovtag o péyedog tile 1" ov eAayrotomolel 10 Ciorai(T) = Cpadding(T') + Covertap(T') +
Clatency(T'), i 0hat ta T' = 128 — min(M,, N, K).

7.3.1.2 EmwcdAvyn emxotvoviog/vtoloyiopuodv

Metd v amoctvleon,) dixdukacia extédeong evog vtompofAipatog GEMM amartel tn Arym
Twv e€optioenv eleddov, dniadl twv arapaitntov tile etcddov A, Br, ko Cr, TOV LITOAOY!L-
op6 tov kernel ko, evdexopévwg, v eyypagr tov amoteAécpatog Cr otn Béon Tov apyLkod
nivako. Emopévag, Bewpodpe k&Be vompofAnpa wg pio Stodtkocilo TEVTE EpYAOLOV: OL EPYaoieg
(1)-(3) apopotv T AMym tev e€apticenv eilcddov, fetch®t(Ar), fetchdst(Br), fetchds(Cr),
N epyaoia (4) apopd Tov viroroylopd Tov kernel compute, ka1 epyacia (5) apopd Tnv eyypagn
tov amotedéaparog W BSLE(Cr). Avta ta vrostpoBAfpata emiTpénovy v mapdAAnAn enelep-
yoaoia 1660 evtog 660 kot peta€d Twv GPU, kabog propotv va dpoporoynBovv oe dropopetit
streams.

To Exfpa .7 amewcoviler éva amhomomnpévo mapaderypa Spopoldynong Twv TEGoEpwY TpHh-
TV LITOTPOPANPATOVY TS TpoavaPepOpEVIC aoctvBesng Tov Zynpatoc .6 otig gpug Ko
gpuy, ovtiotoryo. YroBétoupe ot ot mivakeg A, B ko C Ppiokovton apyikd otnyv idix toobesio
(Ajoc = Bioe = Cloe). H tomoBétnon twv SiapopeTikdv tonwv epyoasiov (fetch, compute, ko
W B) oe Swapopetiké streams emitpéiel Tnv emtkdALYr| Toug e poper) pipeline. Avtd peidvel
TOV GUVOALKO XpOVO Yia éva LTOTPOPANpO omd trotal = Lretcn(A) + Lreten(B) t treten(c) +
teompute Ttw B(C) 08 TEPIOL totar = Max((tretch(A) T feten(B) T feten(C))s teomputes tw B(C'))
[159]. Ztnv vAomoinot pog 1 emkdAvYn Aettovpyel pe TapOpoLo TpoOmo, aAAd eLGAyovpE TG
epyacieg petagopdg Sedopévwv (fetch, WB) oe (gpu_num + 1)? Siagopetiké CUDA streams,

7.3. Eméxtaon PARALIA yix v Beltiotonoinon tng emkowvoviag oe muprveg molamlaciacpon mvékov 153

Boo Bio B0 B3| .. fetch
compute

8Puyg wB
Bo2 B By B3y | .. fetch
compute

gpu; wB

oo

Figure 7.7: H Sadikacia ekTEAEOTC TOV TEGGHPOV TPOTWY LITOTPOPANHGT®Y TOL oYipaToc .4
oe dvo GPU. Ou epyocieg dwxpopetikav tOnwv (fetch, compute, WB) tomobetobvton oe
drpopeTicd streams kot emkodvTovTal oe éva pipeline yux k&0e GPU, ypnoipomoidvtog
Sropopetikd streams.

EMLTPETOVTAG TOLTOYPOVT] AHPISPOUN eTLKOLVOVIA HETOED OAWV TOV GUGKEVOV KOL TNG HVIHNG
tov host. Zuvenag, av T Ajpe, Bioe ko Cloe elvan Eexwplotég tomobecieg/pvijpeg cuokev®Vv,
oL epyacieg fetch emiong emMKOAADTTOVTOL, e ATOTEAEGHA O GUVOALKOG XPOVOG Lyprqr VO elvo
TEPIOV tiotal A MAT(feren(A)s tfetch(B)s T feteh(C)» teomputes tw B(C))- Tt TNV emikéhvym emi-
KOLVWVIOG/VTOAOYLIGH®V, SPOHOAOYOVHE TIG EPYAGieG compute, TOL EKTEAODVTAL X PTGLHOTOLRD-
vtog kernels cuBLAS [[122], o€ évav Stopopemoipo apibpd CUDA streams avd GPU (default =
8). Télog, o e€aptroelg peta€d Twv streams opilovton ko tnpovvtal pe CUDA events [126],

TOPOHOLYL e TTPOTYOUpeveg Tpooeyyioelg [9,57, 157].

7.3.1.3 IIpocwpiviy aroBnkevon dedopévav / ATo@uyn extkolveoviog

T TNV amopuyn axpelaotng emkovwviag, oL teplocotepeg vAomotjoelg multi-GPU BLAS [,
57,1157 mpoocwpivé arobnketovy ta tile mov petapépovran otn pvipn g GPU yux éva cuykekpipé-
vo vTtOTPOPANpE, BGOTE Vo emavary proipoon oy amd endpeva vitorpofAfpata. H mpoocwpivr
anoBrikevon elvan amapaitnn yioe peyedn mpofAnpatwy mov dev xwpave ot pviun tng GPU
KL GNHOVTIKT Yo TNV ot6806T), KaBmG HeLdVEL TOV OYKO TG emtkovwviog, alAd 1) Sioxeipion
NG mpocBétel emmAéov vtoAoyLoTikO kO6oTOC. Tl vt atopyovpe avTd TO KOGTOG, dev LAOTIOL-
ODUpE éVaoy TTOADITAOKO HITXOVLIGHO TTPOC®PLVTG aobrjkevons. AvTi autol, YPrCLHOTOLOVHE EVOLY
buffer avé GPU, mov onpewdveton wg SoftBufli], pe ¢ = 0 — gpu_num. Avtdg o buffer
deopevetan kabe popd mov kakeiton yra tpd T Popd pio povtivee GEMM, Tposappocpévog oTig
T THGEIG PVAPNG TG amoctvOeanc Tov Tyfpatog 7.4 yia avtd o suykekpyiévo mpdPpAnpa. O
buffer amoBnketel Ta amapaitnta tile ka® 6An TN Srdprera {wng tng povtivag. Eav pio emdpevn

poutiva GEMM éyxel peyadOtepeg amoutroelg pvipng, o buffer avtopata avarxpoocappdletor.

154 Chapter 7. Extetopévn Iepidnyn

Exgoprwon npofinuarov mov vrepfaivovy tn ywpnrikornte pviung: O ocbdyypovol multi-
GPU «oppor drabétovv peydheg pvrpeg host (tng tééng twv TB), mov Eemepvoidv katd moAd 0
xopnTkotnTa g pviung g GPU (tng tééng twv dexddwv GBSs). T v edikr) mepintwon
peyaAwv mpoPAnpatwv, 6mov ot mwivakeg A, B, ko C' Bpiokovtor 6Aol otn pvrjun tov host
Kot oL oottoelg pvipng tov SoftBuf vrepfaivouv tn xwpntikdtnta g pvipng tg GPU,
XPNoponoLovpe éva emumAéov eninedo amoovvleong otnv mAevpd Tov host, Tpv epappdcovpe
™mv tepapyky amoctvleot) tov TpAparog f.3.1.1. Avtr n amoctvOeo) evepyomoteitar avtdpaTa
KoTé TNV kAo TG poutivag, otav to péyebog tov mpoPAnpartog Oa eixe wg amotéAeopa omolo-
dmote SoftBuf[i] va eivon peyaddtepo amd éva tpokabopiopévo tocooto (default = 80%) tng
dwBéoung pvipng GPU oto gpu;. AmoovvBétoupe Tig apyLkég SlaoTdoelg Tov TPOoPARHATOC
My, Np, K, pe tpiodid- otato tpomo oe tetphywva tile peyébouvg 17, dnpovpywvrog éva
TpLodidotato mAéypa vrorpofAnuatwv GEMM peyéBovg M X N x K,pye M = N = K =TT.
EmAéyouvpe to péyioto T, mov tkavormolel tnv astaitnon pvpng yio tov buffer Soft Buf. 3t
ovvéyela, dpoporoyovpe k&Be vompoPAnua dradoykd otig GPU, pe kdbe vrompoPAnpa va
aflomotel OAeG TIG PEATIOTOTOLGELG TTOV TTEPLYPAPOVTAL GE AUTO TO £PYO. ZNHELOVOLHE OTL XVLTO
meplopilel TNV avaloyla eTLKOLVOVING-UITOAOYLGHOD KaL, KATX CUVETELX, T GUVOALKY atOd00T)

ya to tpdPAnpa (Mp, Np, K1) oe avth tov tpofArqpatog (T, Tr,TL).

7.3.1.4 Apoporoynon Erwcowoviag

O Kk0pLog 6yKog emtkovwviag oto multi-GPU GEMM npoépyetar amd ta tile read-only (RONLY)
Ar, Br tov mwvbkov A kou B, to omoix mpémel va petapepBoidv oe moArég GPU, dmov O
ekTeAESTOOV O avtioTolya vrompofAnpata. Koatd tnv ektédeon, 1 mpodn petopopd kdbe

RONLY tile, éotw A7, oe puo gpu,; outontel petapopd ad tnv apxikn Béon tov mivaxka in_loc,

gpu;
in_loc

peTaopég tile oe omoladrmote &AL GLGKELY) gpuj HITOPODV EiTE VoL HETAUPEPOLY EVOL AVTEYPOPO

éotw fetch (A7), mov aobnkever to Ap oto SoftBuf[gpu;]. Ad Tnv GAAN, oL emdpeveg
tov tile ot to in_loc eite amd TNV gpu;, KATLTOL OITOULTEL PO TTOPOGT) SPOHOAOYTOTIG ETLKOLV -
viag.

Apopodéynon faoeer Evpovg Zovng: H mid kowr) mpocéyyion yio tr SpopoAdynom TnG emLkoLve-
viog elvon 1) xprion Tov edpovg LdvNg peTad Twv diopopeTikdy Tomobectodv pvpung, Pactopévn
otV tomoloyia Tov diktvov dracvvdeong [9, 58, 157]. H emAoyn ng PéAtiotng Stadpopnc
Baoileton oo drabéoo evpog Ldvng. Tia to moapomdve mapddetypa, o6mov 10 A popet
va Bpioketon 1600 oTo in_loc 660 KoL 6TO gpu,, 1 ATOPacT e€apTdTaL OO T CVYKPLOT) TOU
BWﬁlp_ .. xoutov B Wop! ko Tnv emhoyn tng Sadpoprg e To vPmAdTepo edpog Lodvng. Exti-
povpe To e0POg VNG TV Stapopetikdv (gpu_num +1)2 SLadpopdv/pomy epTelpIkd e HLKPO-

doxpég, 6mwg oto [9].

7.3. Eméxtaon PARALIA yix v Beltiotonoinon g emkovoviag oe muprveg molamlacioacpol mvékoy 155

host mem gpu; mem gpu, mem
PCle = 24 GB/s NVLink2 = 48 GB/s

host —3 gpu, (PCle)

gpu; —» gpug (NVLink2)

1
Bgo |- by i gpu, —» gpuy (NVLink2)
S = \\ *

. _j gpu, compute

Figure 7.8: Hopaderypa AaBoug mtpoPAeymg atn dpopordynon Pacel ebpoug {dvng mov odnyel
o€ avEnpévo xpovo adpdaveiag tng GPU. Otav 1o vompdfAnpa pe Tig elooyodpeves eEapTioeLg
(Aoo, Boo, Cop) mpoypoppoartileton otn gpug, to Agp oL Bog elvon §dn dabéopa otig gpug
KoL gpug ad Tponyovpeveg petaopég tile. Aedopévou 6tL 1 Spopordynon Paoet edbpovg {ovng
ayvoei To poprtio Twv Stacuvdécewy, avtiypdpel To Agg amd Tnv gpuy ko 1o Bog atd v gpus,
KoBdg avTég oL petaopég xpnotpomrotovy vnAdtepo evpog {dvng P2P GPU. Ztnv mepintwon
oL Agp, AVTO €XEL WG ATOTEALEGUA 1) gPUQY VL LTTAOKAPEL TNV EKTEAEDT] YL TTEPLOGOTEPO XPOVO
ard 0,1t av 1o Agg eiye petapepBei amd to host, Adyw Tov LYMAOD VIL&PYOVTOG PopTiov 61N
o0vdeon gpul — gpuo.

Svvvrmodoyiopdg rov poprov: Evdd 1 dpopordyneon Baoel ebpoug {dvng pmopel va eiva amotee-
opatikn, kKabdg avkavel n péon aklomoinon tov evpovg {Ovng, 0 oTOX0G TNG SPOROAOYNONG
eMIKOLVOVIOG elval vor eEAALOTOTIOGEL TOV EKTHOUEVO Xpovo aplEng (ETA) evog tile, dSniadn
TOV GUVOALKO XpOVO HETOPOPAG TwV dedopévav etaddov atnv mtpooptlopevn GPU, étol kote 1)
epyacia compute vo Eekiviioel To cuvtopotepo duvatdv. H dpopordynon Pacel edpoug {dvng
dev AopPéver vtdOYn To VIAPYOV POpPTio GE P TUVIETH, TO 0TTOL0 PITOpPEL Vo kaBuoTEPT|OEL TOV
XpOvo apLEng avtov tov tile. Eva mapdderypa aeikovileton oto ympo @, omov to Agg tpémel
vo petapepBet otn gpug. H dpopordynon Paoet edpoug {ovng emdéyel va petagépel To tile oo
™mv gpui, kabodg To BWgp? > BWIPUY ywpic va dapPéver voym to vymhéd goptio oe autr
T por} oTd TPONYOUHEVES AVTLYPOWPES, HE TOTEAEGH TV kKaBuoTepnpévr dpiEn tov Agg ot
gpuo KoL TNV adpavela Tng gpuo.

T voe ao@iyoupe v td TO PALVOpEVO, BEATIOTOTOLOVE T SPOROAOYNOT) TNG ETLKOLVOVING
AapPévovtag vtoym to Poptio Twv SLCLVIECEMY KATA TNV emAOYT] TNG SLdPOpNG Yot pLo
petopopa tile. Tia vae to emitdyovpe arvtd, opiloupe évay diodidotarto mivaka yio T Stabeoiud-

T TV oLVdécewV (epekng onpetdveton wg LAM), o omoiog arofnievel Tov eKTIHOpHEVO XpOVO

156 Chapter 7. Extetopévn Iepidnyn

Link availability matrix Tile ETA vectors

::t Go |Gl | G2 |63 | H Ao Boo
GO - 40 15 10 GO ? GO ?
G1 - Gl 30 Gl inf
G2 - G2 | inf G2 15
G3 - G3 inf G3 inf
H - H 0 H 0

Figure 7.9: Eva mapddetypa katdotaong tov dtavuopdtov LAM kow ETA yua dto tile Agg ko
Byo. Ta dtavbopata ETA twv tile deiyvouv mote awtd ta tile Oa tpémer va eivon Sabéopa otig
GPU 1 ko 2, avtiotowya (opytkd otn pvipn tov host - ETA[h] = 0), eve To LAM atoBnkevet o
EKTIHUNOT YO TO POPTIO TV SLAGLVOEGEWY PEXPL AUTH TNV KATAGTACT) TTPOYPAPHATIGHOD.

mov k&be src — dst pory emkowowviag Ba eivar Srabéoun (dniadn xwpig voAoro poptio).
EmuAéov, opilovpe to Sidvuopa ETA yio ke amocmacpévo tile, 1o omoio amobnkedet Tov ek Tipm-
HEVO XPOVO TIOL €var £YKLPO avTiypa@o autov tov tile Oa pthoel oe k&be Tomobesio pvrung.
Apyxikd, 0Aa ta medio Ttov LAM tifevton oto pndév. Ola ta medio Tov dwaviopartog ETA
tifevtal oto inf, extoOg autd TV apyky tomobecia dedopévwv tov tile, mov TiBeton oTo PUndév
(ET Alin_loc] = 0). Kat& tov tpoypoppatiopd, dtav o scheduler mpémel va mépet puo aotd@oon

dpopordynong yux va petapépet éva tile peyéBoug size bytes otov dst, o scheduler cuvdvalel

tot LAM kou ETA Sioviopator ple T0 eKTIHOMEVO KOGTOG peTapoplg 13t = B‘ﬁffst, ovoalnTOVTOG
™V tnyn @ pe to yopnAodtepo ET Apyip, 6mou: '
gpu_num-+1 d
ETApin = min (max(ET A[i], LAM [dest][i]) + %)
1=

Y11 ovvéyela, o LAM kai To Siévuopa evnpepdvovton yio tn véa petagopd oe LAM [dest][i] =
ET Aldest] = ET Apin. HrpoovagepBeioo evnpépwon tov LAM yiveton eniong yio Tig petogpo-
péc twv tile Tov mivaka C, AapPdvovroag voyn To Poptio TV dacuvdécewv, OAAE YwPLg
BeAticTomoinon dpopordynong.

To Sxnua [.9 Seiyver o LAM yia To mapédetypa oo Syripa .8 mpwv amd m Spopoddynon
TWV PETAPOP®V, pe dVo mapadeiypota katdotaong dtavuopdtov ETA yia ta tile Agg ko Boo.

AxorovBmvtog tov adyopiBpo dpopordynong Pacel ETA, to Cyg Oor petapepBel omtd tn pvripn

7.3. Eméxtaon PARALIA yix v Beltiotonoinon tng emkowvoviag oe muprveg molamlaciacpon mvékov 157

gpy;

1
EPY; Normal fetch Batched

1
B Zu Dy g
i g i]
érc tepu; tgpuj ~max(tee, tgpui’ tgpuj)

Figure 7.10: Iapadetypa extédeong tpuwv fetch Aettovpyidv tov idrov dedopévov mpog Tpelg
GPU eite Eexwprotd (apiotepd) eite pe puo tavtod) povr opadomowmnpévn fetch Aettovpyia (dekii)
TTOL XPNOLHOTOLEl p = 8§ LITO-PETAPOPES Y Vo emikodveL TN Stadikacio pe cwinvoon. H
opadomoinon 6Awv twv fetch Aertovpyrdv pall éxel wg amotéAeopa to do kdoTog fetch yuo
NV gpu;, CAA& PeELdVEL SHaVTIKG To k6oTog fetch yia Tig gpu; ko gpuy,.

tov host (kaBdg eival dwabéoyo povo exel), o Bog Oa petopepBel amd v gpus dedopévov
61t max(LAM[0][2], ETA_Boo[2]) + 9 < max(LAMI0][h], ETA_Bogo[h]) + 1), xou 0 Agg
o petopepbet amd o host kabodg max(LAM[0][h], ETA_Agolh]) + t9 < max(LAMI[0][1],
ETA_Ag[1]) + tY. H Spopordynon Bacel ETA mapéxel) PéATIoT) amdpaoT pe Béorn
YVQOOT TOL TTopeABOVTOG KaL TOL TaAPOVTOG (TT.X. POPTLO Kot eDPOG LdVNG) Yo TN HeTapopd K&Be
RONLY tile.

7.3.1.5 BeAtwotonoinon Metagopamv RONLY tile pe Opadomoinon

H cuvnBiopévn mpocéyyion yla 1 Spopoléynon emkoveoviag oe mpornyodpeveg epyaaiec [9,
57,58,[157] eivon 1 Svvogukry PeAticTomoinon g Stadpoprg k&Be fetch task Eexwplotd, kAT
TOV TTPOYPOPPATIONS TNG eKTEAECTIG TNG. AvTifeTa, TO GTATIKO XPOVOSLAY PO HOG, TO OTTOL0
KOTOLOKEVALETOL TTPLY CTTO TNV EKTEAEDT], HOG ETTLTPETIEL VO OLASOTTOLOVHE TIG peTopopég tile oe
dwapopetikég GPU pe puo tavtdyxpovn fetch Aettovpyia tomov broadcast tpog moAlamAég GPU,
my. fetchiy oo (T).

To Zxnpa deiyvel éva mapaderypa Aettovpyiog opadomoinpuévng fetch Aettovpying. Xwpi-
Covpe 1 petagopd tov idov mhaxkidiov oe Tpelg Tomobesie o p (Tpoemhoyr| = 8) HikpOTEPEG
HETOPOPEG KOUL TIG ETLKOXADIITOVHE ECWOTEPLKA HE COANVWOT). AUTO HELWOVEL TO GUVOALKO KOGTOG
00 FetCh T I () s g, = 19005+ 15000 89008 0 g, ~ (1250 407 49025
HeELOVOVTOG onpovTikd To kOotog fetch yio OAeg Tig GPU ektdg amd tov mpmTo mpooplopd (gpu;).
Avti 1) BeAtiotomoinon éxet peyodttepo avtikTumo kabohg avEdveton o aptBpog twv GPU, Adyw
NG EPLoGOTEPTG KOLVTG XpTioTg dedopévwv peto€d twv GPU. Ta mtapddeiypa, o éva cOotnpa

4-GPU, ta tile Tov tivaka A porp&lovtan petaft 2 GPU ko amantobdv fetchare' 7P (Ar) hertov-

158 Chapter 7. Extetopévn [epidnym

, , ,) , , , Ui, gPU;,gPULK ,gDU
pyieg, eved o éva shoTnpa 8-GPU potpdlovtan amd 4 ko amantodv fetchine 1 IPH 9P (ALY

Aertovpyieg. E@oppolovpe avthyv tnv npocéyyilon oe Ao toe RONLY tile twv A ko B.

Apoporoynoen Ouadoroinuévev Fetch Aeitovpyrdv: Extdg amd tn peiworn tov kdéotoug fetch, 1)
opadomoinon twv petapopmdv RONLY tile eivon emtw@eAig yio T Spopoddynon tng entkovwviag,
KOG avolyel emmAéov emAoyég Stadpopmv yix k&be petagopd. Xtig opadomoinpéveg fetch
Aertovpyiec, 1) oelp Sev eivan onpavtiky (my. fetchive P (T) ~ fetchire’ %" (T)), xabdqg
ta k6ot fetch eivan wooppomnpéva yioo GAovg TOug TPOOPLEPROVG. TUVETMS, ePapprOlovpe T
dpoporoynon Paoet LAMETA o6 v Evotnta WG eENG: OTOY Lo OPADOTTOLHEVT) AELTOV-

pyla fetchire 9" (T) mpoypoppartileton yio Spopordynon, e€etdlovpe ta Pripota TG opa-

Somoinpévng Aertovpyiag (. fetchir:”, fetchgzgf (1), ...) xou epappodlovpe Tov alyoplOpo
extipnong LAM ETA emavaAnmtikd, yia 6Aovg Toug Suvatoig LVSLOGHOUG GELPAS, ETLAEYOVTOG
N oewpd gpus_best_order mov éxelL to eddyioto ETA. Stn cuvéyela, evinpepodvoupe OA0LG Tovg
evdiapesovg ovvdéopovg LAM ko 6hovg toug mpoopiopotg ETA tile pe Baon to ET Apin TG
ETAEYPEVNC OELPAG KAl TTPOYpoppaTiloupe T petopopd tng opadomotnpévng fetch Aertovpyiog

(fetchiggusfbestforder})

T v Sei€ovpe tn onpocia awtng g PeAtiotonoinong yioe tov multi-GPU GEMM, to
SxXNHo ovykpivel Tnv SPOHOAOYNOT] TTOL XPTGLUOTOLEITAL GE TTPOTYOUHEVEG EPYOUTIES e
N Skn) pag tpodpactikr) Spoporoynon Paoel ETA + opadomoinpévn fetch Aertovpyiocc RONLY
ylot Toe TpOTA 4 Tpoypoappaticpéve vtonpoPAnipata (éva oe kdbe GPU), e€arpidvtag tig fetch
Aertovpyieg tile C' amd) cwMjveor (tepiocdtepa yia avtd otny Evomnta [7.3.1.6). H mpocéy-
YLOT] HOG HELOVEL OTHAVTLKA TOV Xpovo adpavelag Twv GPU (katd 45% katd péco 6po, 60% otnv
KOAUTEPT) TEPITTWOT)), EMKAADITTEL EGWTEPLKA OAES TIG POEG ETLKOLVWVING, AITOPEDYEL PITAOKOLPi-
opoto AOY® eEXPTIOEOY HETOPOPAG KoL TTOPEYEL HLOL TEAELX LGOPPOTINUEVT) EKTEAECT) O€ ONEG TLG
GPU.

7.3.1.6 Beltiotomoinon petagopov tiles WR pe kaBuvotepnuévn @optwon

H BeAtiotomoinon dpopordynong ko opadomoinong mov oulntridnke oTIg ITponyoOpeveg vToe-
votnteg emkevrpodvetal ot RONLY tiles, ta omoiot poptovovton oe moAhamAég GPU. Amd tnv
A Thevpd, T WR tiles Tov mivaka C' eivan amokAelotikd yix k&®e GPU (BA. Eicova [7.6) o
aIroTEAODV £Vay 0YKO POPTWGNG TTOL Sev prtopel va petwbel, 0 0oiog oTnv XeLpdTEPN TTEPITTWOT)
(xwpig cache) yux tetpdrywvoug ivakeg propel va g téoer To 1/3 Tov 6UVOALKOD HYKOL POPTWOTG.
Epodoov n Pertiotomoinomn opadomonpévng poptwong dev Loy el Ge QUTH TNV TEPLTTWOT), EMLAE-
YOUHE va eplopicoupe Tov xpovo adpavetag tng GPU pe tnv kabvotépnon tng petopopds twv
tiles C, yio va emmitdyovpe kad0Tepn emtkdAvym vtoAoylopov-emikoveviag. i va to emitiyovpe

auTd, amocLVBEToLpE TNV apyikh Aertovpyicc GEMM g E€icwonc [1.6 oe:

C'=a-Ax B(GEMM), Couy =b-Cyp + C' (AXPY)

7.3. Eméxtaon PARALIA yix v Beltiotonoinon g emkowvoviag oe muprveg molamlaciacpon mvékov 159

host —» gpu,

gpu, —» gpy

Reactive routing (SoTA) Batched-fetch routing
T
Boo I host —» gpuy
‘\ : ghuy _) gpuy
' ‘\‘ Boo I gpuy —» gpu,
! I T
' 1 \ I gpug compute
l. 7] \ ,.
B02 l| i I B Yy hOSt _) gpul
S ' lI 02 "
*\ [Bo2, ' : LN gpu; —» gpus
“W ': I I\,’ \ gpu; compute
._ K
|

gpu, —» gpuy

4
4
4
4
/|
- e | o=

gpu, compute

host —» gpus
gpuz —» gpw

gpu; compute

Figure 7.11: Iopadetypa dpopordynong tov mpatov vronpofAipuatoc GEMM oe k&be GPU
Xpnopomoldvtag o) tnv dpopoArdynon (aplotepd) mov YproLpomoleital amd TPOTYOUUEVES
viomoiroelg kxar B) v Spopordynon Paoer ETA cvvdvaopévn pe opadomoinpévny fetch
Aertovpyio RONLY (8e€ix) mov xpnopomoteital oe avtr) v epyacio. H mpodn dpoporoynon
BeAtiotomotel to amotelecpatikd e0Pog {OVNG YPNOLHOTOLOVTHG ToXVTEPOVS GUVOIEGHOVG
omote eivor duvatdv, aAld odnyel ce pn ooppomnuévy xpron Tewv Sacuvvdécewv, POEC
7OV péVOLV adpavels, PTAok&povTol amd eEopTHOELS HETOPOPAS KoL SLoupopeTLKONG X POVOUG
exkivnong tng compute Aettovpylog oe k&Be GPU. Avtibeta, n mpooéyyion pog eEicoppomet
TN XPHoTn TV o LVEEGEWV, PELOVEL TIG AdPaVEIS POEG HECK TNG ECWTEPLKNG CWATVOGTG TOV
HETOUPOP®V, kKot 01 Yel oe TawtOypovn Evapén tng compute Aettovpyiog oe OAeg Tig GPU.

H apywr Aettovpyio GEMM amoovvtiBeton oe 1) poe Aertovpyic GEMM yowpig tov mivoka
elo6d0v Cjy, (loodvvapn pe proe GEMM pe b = 0) ko 2) o ehAappld mpocBetikr Aettovpyio wov
GUYKEVTPOVEL TO OTTOTEAEGHA TNG TTPOTNG 6TO Tivarka €080V Cloyr akpLPAOG TPV TNV eYYpapn

(loodbvopun pe pa Aettovpyio AXPY pe alpha = b). Me awtdv tov TpdIo, arocuvdéovpe to

160 Chapter 7. Extetopévn Iepidnyn

Boo B1o Bsg B3g

Normal C, offload

I B =

WR-lazy C, offload

Figure 7.12: E€aptricelg TpoypoppaTIGHOD Kol VTOAOYLOHOG TEGGAPWY LITOTPOPANUATWY GTO
Choo, He Kavovikn ekpopTwaoT (Tévw) 1) xprooroldvag tnv tpocéyylorn WR-lazy fetch (kartw).
H xoBvotepnpévn 0optwon WR peidver tov ypovo adpaveiag tng GPU, amopakpovovtog to
Coo a6 Tig eEapTtrioelg eLodS0L TOL TPOTOL VITOTTPOPATLATOS e KOGTOG HLOL EAQPPLYL ETLTAEOV
LITOAOYLOTLKT] EPYOLGLOL TTPLV TNV EYYPAPY] TOV OTTOTEAEGUATOG,

tpurpo tov tuprivaee GEMM mov amatei toAlovg vtohoyiopoig (a - A X B) and tnv eEdptnon
eto6dov Cyy,. H Ewcdva delyvel éva mapadelypo Tov TG aLTO OAAALEL TNV EKPOPTWOT)
GEMM vy to Cop. Ore€aptrioeig avtod tov mpotov virorpofAnpatog (Aoo, Boo, Coo) aAA&Lovv
o€ (Apo, Boo), pe aumotédeopo Aydtepo xpovo adpavelag GPU, kabmg poptdyvoupe kaBuotepnpé-
va (Cpg) ot0 TéAog NG voloylotikng Stadikaciog GEMM kot To eVNpepOVOULE e pLa AeLTovp-
yioe AXPY mpwv v eyypagn tov. Avth 1 feAtiotonoinomn eivar o@éyn yio tpofAfpata dmov
o mivakag C' poipaleton apyukd tn Béon tov eite pe tov A eite pe tov B. Xe Oheg Tig GAAeg
TEPLITAOOELS, dev PerTidveL TV amrddoor, kabog o tiles elc6dov A, Br, Cr ypnopomotodv
SroupopeTikd streams OHTOV POPTMOVOVTAL, KL OL HETOUPOPES TOVS EMOPEVKG eTLKaAVTTTOVTOL. ETti-
AoV, yloe va emtparel vt 1 fedtioTtomoino, amoiteiton pdeBetn pvipn buffer peyéBoug
sizeof(C)/ gpu_num avé GPU, xabhdg 1660 t0 Cf 660 ka 10 Cr iy, TPéTel va aroBnkevtody
TPLV TOV LITOAOYLOPO KoL TNV eYYpaPt) ToL O oyt Eopévag, epappolovpe avtr t BeAtictomnoi-

non emAektikd povo oe meptdoelg 6mov Ay == Cloe | Bloe == Cloe.

7.3.1.7 Zrtotikn dpopoArdoynon

Télog, mapéxovpe pia oAokAnpwpévn vilomoinon GEMM mov cuvdudlel Tig mepLypapopeveg
BeATioToMOOELC OE évay ahyoplBpo 6mwe gaivetar otov AAyopidpo B To mpdro pépog Tov
adyopibpov (ypoppég 1-17) exteheiton kdbe popd mov xakeiton pia povtivaa GEMM pe éva véo
oVOvoAo opopéTpwv (params) (eloodog, péyebog mpoPAfiuarog, Béoelg mvakwv), vrtoloyilo-
vtag pio fedtiotomonpév) runtime task queue RT'Q) yux to tpofAnpa avtd. Apyikd, to GEMM
amtoovvtiBeton oe vompoPAfpaTa (0T YPOUUY 2), T OTola pe TN GELpa TOug avartiBevTo

OTLG GLOKEVEG Ko Tpocappolovtor yix tov adyopidpo WR-lazy edv avtd eivor o@éAyo yix

7.3. Eméxtaon PARALIA yix T Bedtiotonmoinon tng emkowvwviag ot muprveg toloamlaciacpod mvikov 161

Algorithm 2: O aAyopiBpog ototikng dpopordynong
Data: GEMM params (A, B,C, M, N, K, Ajoc, Bioe, Cioc)
1 if (véo params) then

2 SPnum_sp] < decompose2D(T = T'_min, gpu_num, params)
3 if (Aloc == Cloc HBloc == Cloc) then

4 S P.adjust_SPs_ WRLAZY()

5 SoftBuf <—assertMemRequirements(S Ps)

6 LAM = {0}, sched_sp =0

7 Runtime task queue RT'Q = []

8 while (sched_sp < num_sp) do

9 for (gpu; in gpu_num) do

10 currSP = select_SP(gpu;, SP, LAM)
11 tasklist = split_to_tasks(currSP)

12 for (task in tasklist) do

13 if (task eivau fetch) then

14 task.optimize_routing(LAM)
15 LAM .update_load(task)

16 RTQ.append(task)

17 sched_sp < sched_sp + 1

18 for (task in RT'Q)) do task.fire() ;
19 sync_GPUs()

TIG apopéTpoug Tov TpoPAfipatog (params) (otn ypoppuq 3). Ztn ovvéyela, exteleiton va
emovoropPavopevo pépog (oTig ypappég 8-17), emAéyovtag LITOTPOPAHATO GTIS GUOKEVES e
oelp& round-robin péypt va tpoypoappatioTody OAa ta vtompoPAnuata. H celpd twv vromrpo-
BAnpatov avé GPU xabopiletal amd pia cuvaptnon kdotovg select S P (otn ypopupr 10) mov
emioTpéPel To PéATioro vompoPAnua pe Paon TNV TPEXOLOA KATACTAGT) TOV TPOYPAUHATOG.
Aot emideyel éva vtompOPANp, amooTtdtal oe epyacieg (oTn ypopprn 11) 6nwg meprypagpetal
oty Evémta [.3.1.4 O epyacieg gpoprwonc Bedtiotomolodvrar (oTig ypoppéc 14-15) 6mag
neptypbpeton otig Evotnreg [7.3.1.3)7.3.1.4 wou [7.3.1.5 xou kéOe epyasia torobeteiton otn RT'Q

(ypoppn 16). Aol oloxAnpwbBei avtd to pépog, 1 RT'Q yi avtd to 6OVOAO TOpOpETPWY
oTOBNKEVETOUL ECWTEPLKA KOLL ETTOVOLY PT)OLILOTTOLELTAL Y0t OACL TOL ETTOPEVA TTPOPAHATO TTOV X PT|OL-
porolovy Tig idteg mapapéTpoug kotd tn didpretx g {wrg Tov mpoypappatos. To Sedtepo
pépog Tov aiyopiBpov (Ypoppég 18-19) amAd Swatpéxel tnv RT(Q) kou extedel OAeg TIG epyacieg

oTig avtioTolyeg poég kar GPU toug.

BeAtioromoinon tng oeipdg dpoproddynong vrorpofAnpdrwv: Eival yevikd amodekto 6TLn oelpd
pe v omoia poypoppatifovron to viompoPAnpata otig GPU eivar onpovtiky diotL emnpedlel

1) n dpopoddynon g emkovaviag kat 2) tov xpoévo adpaveiag tng GPU [9,57,161]. Mix kowvi

162 Chapter 7. Extetapévn ITepiAnyn

Table 7.4: Xapoktnpiotikd tov cvotripatog NVIDIA HGX.

Karolina GPU | CPU GPU
Yroloylotig: 2 x AMD Zen 3, 8 X NVIDIA A100
7763 CPU FP peak 17.2* TFlop/s
128 cores @ 2.45 GHz | DP peak 17.2* TFlop/s
Mvrjun: 1TB DDR4 40 GB HBM2
1.56 TB/s
Awaodvdeon: PCle Gen4 x16 NVLink3 / NVSwitch2
SUPTLECTAG: g++11.2.0 CUDA 12.2
npeieg Opt. -03 -03, -arch=sm_80

TeXVIKT yLa TN PeATIOTOTOINGT) TNG GELPAG TV VTOTPOPANUATWOV elva 1) X PiCT) TPOTEPOLOTITOG
TWV LITOTTPOPANUATWOV pe PACT) TNV EAXXLOTOTOINGT) TWV AELTOLPYLOV POpTwoNG [57]. Xpnoipo-
TTOLOVLE Ll TapOpoLa TeX VKN Yo to select_S P, aAA& avTi v TpoTIHoUpe TIG eAdXLOTEG AELTOV-
pyieg @OpTWONG, YpNopoToLlovpe TV extiunon ETA yia autég TIg popTdoELg, AELOTOLOVTAG TO
LAM, oe cuvdvacpd pe tig e€aptnoelg tile k&be vrompofAfpartog, 6TwWG TEPLypAPeTAL GTNV
F.3.1.4. Avtiy n pé@odog eivan evaicONT GTHV POPTOGT KAL £XEL WS ATOTENEGHA TOV EAXXIGTO
XPOVO OOPAVELOG YLot TIG EPYQTieS VTOAOYIOHOU, KOO TPOTEPALOTIOLEL TIG EPYOGLES TWV OTOLWV

oL eEapTHOELS POPTWOTG avapévovTal vor LkavortotnBovy vwpitepa.

7.3.2 A&woAoynon

T tnv a€LoAdynon tng amddoong, xproipomotodpe éva cvotnua NVIDIA HGX, to omoio asote-
el pépog Twv kopPwv Tov HPC Karolina [85], kou mepryphgetar otov Iivaka [.4. K&de koppog

anoteheitar and 8 NVIDIA A100 GPUs cuvdedepéveg pe éva mponypévo diktuvo dtxatvdeong

NVLink3.0 kot NVSwitch2.0, mov emtpénetl tavtdypovn appidpopn emkowvovia peto€d dAwv

twv GPUs pe cuvoiiko évpog {dvng 4.8 TB/s (600 Gb/s apgpidpopo avée GPU). Ot GPUs cuvdéovton
pe n pvipn tov host pécw PCIE pe péon yopntikdtnta 96 Gb/s (12 GB/s avé GPU) yia 6Aeg T1g

emkowvwvieg CPU-GPU. H ouyvotnta poroytot twv A100 GPUs éyel puBuiotel yio vymAdtepn

evepyelakn amodoaon, pe amotélespa 12% Ayotepn kopueaio amddoon (17.2 évavtt 19.5 TFlops

avé GPU A100).

T v a€loAdynon tng amddoong, XPrOLLOTOLOVHE Evar Kavoviko cOVOAO SedopEVV e
TeTphywva TPoPApaT, OTTWG avopépeTal Ko oe oxeTIkn epyooia [57, 68,157], ko éva uetkto
o0VOAO SedOpEVWOV TTOV ETTEKTELVEL TO KXVOVLKO [E HIKTEG apXLkEG TomoBeTieg Lo TOUG TLVAKEG
ko emiAéov tpoPAfparta fat-thin kou thin-fat ov astokAivovv autd v ovvrOn avadoyia emt-
kowwviag/vrtoroyiopod GEMM [9]. T to kavovikd ovvoro dedopévav, emdéyovpe 12 peyéon
npoPAnpatwv (Mg = Ngg = Kgq = (5120 Step=1024, 16384)) mov eivou mepropiopéva arrd

TNV EMKOLVOVIQ GTO GVGTNHO SOKLIHDV OGS, fe B&on TNV £vTaot AeLTovpylag Tovg, kal 7 peydlo

7.3. Eméxtaon PARALIA yix v Beltiotonoinon tng emkowvwviag oe muprveg molamlaciacpon mvékov 163

B cuBLASXt [PARALIA ® All-data-CPU(h,h,h)
[XKBLAS Bl This work A All-data-GPU(0,0,0)

) '"""""""""""'"'""'::_"""'""";:__:-'Z::"""'A"__,__';—_—_—_-_‘r"

| oA AT T A - -
o 125 A__A-—A-'A A
\4—? —A/A, 0/./.
= 100 - At __e—
~ A ®
w /II ././
LC) 75] ,A, .’./
S / e~

I, ./.

E 504 4 o~ °
—) /
S e e
qL‘) 25 1° 0—"‘—"‘—‘/ e, il A-—-- A-=—~ A== AmTT 4
o _a-9-°® _::-A"A"""_A‘A __________ -

0 A-:-'A‘——A—-A"'AA

5000 10000 15000 20000 25000 30000
GEMM FP64 square (M = N = K)

Figure 7.13: H an6doon GEMM (M=N=K) FP64 yio o kavovikd ovvoro dedopévwv yi 8 GPUs
oto cvotnua doxipodv NVIDIA HGX pag (cuvoAikr] amdd001 GUOTHHATOS = SLOKEKOHUEVT)
ypoppr). H mpocéyyion pag mpoopépet loyvpr amddoon aveEaptrtwg tng Tomobétnong tomv
dedopévwv, ammopelyel TV avicopportia ko Eemepvi OAEG TIG TTPONYOUHEVES TTPOGEYYLOELS,
ATTOdELKVOOVTAG HEYOADTEPT) ATTOTEAEGHATIKOTN T G peYEDN TTpofAnpdtev Teploplopévo oo
v emkovovia (12 apiotepdtepa onpeio).

peyéOn mpoPAnpdrov (Myy = Ngg = Kgq = (20480 Aep=2018, 32768)) mov avapévovtal va

elvo TepLOPLOpPEV QIO TOVG VITOAOYLGHOUG.

ExtehoOpe ta emiheypéva peyé0n poPAnpatwy pe 00 Stoapoppidoelg. tnv mpdn Stopdpew-
on, 6Aot oL mivakeg apykd Bpiockovron otn pvipn CPU (h, h, h), cvvenmg avopévoope OtL T0
KUpLo gumddio Ba eivar n ywpntikdtnta tov PCle. Xtn devtepn dioupdp@waor), 6AoL oL Tivokeg
apytkd Ppiokovror otn pviun tov gpug (0, 0, 0), CUVETOG OL HETAPOPES HITOPOVV VXX X PTG LULOTTOL-

o0V amevdeiog To NVLink. To peiktd ovvoro Sedopévewv mepryphoetan oty Evotnra [.3.2.9.

7.3.2.1 Z0ykpion HE TNV TEXVOAOYiX XLYUNG

Jvykpivovpe tnv vAomoinot] pog pe tig PrpAtodrikec multi-GPU teyvoloyiag arypng mwov emtuvy-
xévouv tnv vymAdtepn atd6doon GEMM, ekTeAOVTOG TTELPAPOTA VIO TO KOVOVIKO GUVOAO Sedopié-
VGOV XPNOIHOTOIOVTAC 0AOKAT PO Tov kopPo (8 GPUs) tov Iivaka [7.4. Eidwkotepa, afloloyoipe
ta XKBLAS [57] kot PARALIA [9] ko awoxAeiovpe mpornyoOpeveg TpoceyyioeLs mov vepPaivouy
[68,157]. A&oAloyoipe emiong to cuBLASXt [[124], wg) BpAtoBnkn ov mpoteiveton outo tnv
NVIDIA, ntapé v katdtepn amtddoot) Tov [9,57,157]. A&odoyovpe tnv arddoon) GEMM FP64

164 Chapter 7. Extetapévn ITepiAnyn

B cuBLASXt [XKBLAS [0 PARALIA [This work

W oo e ———————
&
E 100 -~ T -|— 88 T
[0}
0 @® @
S £
g 504 J_
: &,
g Sl
Square Fat-thin Thin-Fat

(M=N=K) (M=N>>K) (M=N<<K)

Figure 7.14: ZXbyxpion avtoyng amddoong GEMM FP64 pe v teyvoloyior ouypng,
XPNOHOTOLOVTAG TO UEIKTG GUVOLO SedOpEVWV, XWPLOHEVO OE TPELG OPADES, CUUPWOVA HE TLG
Hopég mvbkwv. H mpooéyyion pog Eemepva 0Aeg Tig vdpyovoeg PLpAtodnkeg, aveEopthTng
™G @Oong Tov TPOPARHATOG KoL TNG TOTOBETNONG SedOpEVWV, TOPEXOVTOS MLt OLOLOPOPPXL
ovoTepn Abon yioe multi-GPU GEMM.

(dutAng axpiferac). H Ewdva delyvel v amddoon tng mapovoag epyaciog oe cOYKPLOT|
pe tnv teyvoroyio ouxpng yio GEMM FP64 ypnoyonowdvtag 8 GPUs yia to kavoviké chvolo
dedopévwv. Etnv mepintworn 6mov 6AoL oL Tivakeg opykd Ppiockovtor otn pvrpun tov host, 1
omola mepropileton amd tn xwpntikodtnTa PCle,) epyaoio pog tpoceépel vmAir amddoon yix
pkpotepa peyédn mpoPAnuatwv. Kotk péoo 6po, n epyocia pog vrepPaiver ta cuBLASXt,
XKBLAS wotw PARALIA katé 3.42%, 1.4%x kou 1.31X, avtiotolyo. XTnv Tepintwon OmTov to
dedopéva Pplokovrar apytikd ot proe GPU kot amogedyovton ot petapopéc PCle, to PARALIA éyel
vymAd é€oda yio pikpotepa peyedn mpoPAnpatwy, kot to XKBLAS mpoogépel Ayotepn ko pn
a€Lomiotn ad6doon Aoyw avicopporiog poptiov. H vAomoinon pog avtipetwnilel amotelecpo-
TG kot Toug dvo TOovg e€0dwv, Eemepvavtag ta cuBLASXt, XKBLAS kot PARALIA katé 10.3x,

1.23x ko 1.26%, avTioTOLYa, KATX HEGO OPO.

7.3.2.2 Avtoyn enidoong o€ petktd tpofAnpoto

Télog, yia va emiPePalddooupe TNV avToxT) NG TPOCEYYLONG HOS 0 SLAPOPA YOLPOKTNPLOTLKA
npoPAnpatwv GEMM, emekteivoupe To kavoviké cUVOAO SeSOPEVMDV e TPELS ETLITAEOV OPYLKEG
Sioapopynoelg torobétnong mvakwv: (4,2, h), (h, h,0), (4,2, 7), ko 800 un-teTphryveg popPég
npofAnpérwv (fat-thin kon thin-fat). Ta to TpoPAnpara fat-thin, xpnowpomorodpe (Mg =

Nyar = (16384 2% 40060), Kppin = 222t r € [4,8,16]) kou yior thin-fat (Mypip =

r
Nonin = (5120 22722 11964), K oy = Mipin X 7,7 € [4,8,16]). Avto éxer g amotéheoyior

éval fletko o0volo dedopévwv pe 305 onpeia dedopévov.

7.4. Svpmepdopota 165

H Ewova detyvel Tnv anddoon GEMM FP64 twv cuBLASXt, XKBLAS, PARALIA kou
g SkNG pog SovAeldg 6To pelkTé 6OVOAO dedopévwv, Katnyoplomotnpévo e Paor tn popem
Tov TpoPAfpatog (TeTphywvo, fat-thin, kou thin-fat). To cuBLASXt eivoun i) o apyr} vAomoinon
YLl OAEG TIG HOPPES TTPOPANHATOV, KaL 1) ATtOSOGT] TOU HELOVETOL TTEPULTEPL GTO HELKTO GUVOAO
dedopévav Aoyw twv dtapopdv oTig apyLkég Tomobetrioelg mvdkwy. To XKBLAS amd tnv &AAn
otodidel kadd oe TeTphywva kai thin-fat mpofAnpota yo tig Sidpopeg tomobetrioelg, oAA& yia
nivokeg fat-thin to moA0 peyoadvtepo C matrix mpokadei kabvoteproelg otnv emkovwvio WR.
To PARALIA mpoc@épel kalOtepn otddoo yia OAES TIG HOPPEG, CORPOVA HE TV ETLOLOKOHEVT)
avtoyr otnv amddoor, arld amodider xelpotepa amtd to XKBLAS oe tetphywva ko thin-fat
npoPAnuorto. Téhog, 1 dikr) pog SovAeld emtvyydvel koAdTept atddoot) yia OAa Ta TpoPfAnpo-
T 6TO PHELKTO oVVOAO dedopévav, Eemepvodvtog katd péco 6po to cuBLASXt, XKBLAS xat PAR-
ALiA xatda 11.8x, 1.45% ko 1.37x (8.7x, 1.35%, 1.4x yio TeTpoywvo tpoPAnparta, 17.6x, 1.6x, 1.28x
yoe tpoPAnparta fat-thin kot 7.31x, 1.38x, 1.42x ywx mpoPAfpoarta thin-fat), avtictoyo.

7.4 SvpmepAOHATO

Sy napovoa dwatpilfry, otoxeboope otnv enitevEn opntotntag, PéATIoTNG amodoong ko
amodoTikig xprong mopwv yio v extédeon g BLAS oe GPU. H extédeon BLAS oe GPU
ELOALYEL HLOL TTOLKLA L OO ECWTEPIKES TTAPAUETPOVS TTOL PITOPOLV Vo pLBHLGTODV Y k&Be kAT oM
BLAS, koL amontel onpavTikéC amopdoeis yuo TN arocUvOEST), ETLKOLVOVIC KOL TTPOYPOUHOTIORO
Kotd T Sidpkela ekTéAeong ov emnpedlovv TNV addooT) g epappoyng. EEautiog tng amayo-
PEVTIKTG TTOAVTTAOKOTI TS TOV TPOPANHATOG, TPOTELVOULE Lot TPOGEYYLOT) faoLopéVT GE HOVTE-
Ao, OOV YPNGLULOTOLOVHE HOVTEAOTIOINGT] VIO TNV EKTIHNOT] TV XOPAKTNPLOTIKGOV atddoo,
ETKOLVOVLIAG Kol eTLKOADE®G Yiow kK&Be voynplo cbotnpa. XTn cuvéxelo, AUTA T HOVTEAQ
XPNOLHOTOLOVVTAL YL TNV CUTOHOTOTTOLNHEVT) PUBHLOT) TOXPAPETPWOV KoL AOYLOHLKOD, KaBOG Kot
yla Ty emAoyn Twv Topwv mov Ba xpropomonfoidv pe Baor o xapakTnpLo Tk TOL TTPoPApo-
TOG KO TOU GULOTHHATOS K&Be KAong poutivag katd tn didpkela exktédeons. H epyaosio pog
amtoteAeiton otd dvo pépn: 1) etodyouvpe didpopa povtéda otddoong yia v ekpdptwon GPU
BLAS ko tapéyovpe pia BtpAodnn vymAng amddoong yia BLAS oe toAAamiéc GPU Baciopévn
0€ YVOOELG KOL CUTOHATOTTOLNHEVT] pOBHLGT) TTOL TTPOEPYOVTOL OO LUTA TAL HOVTEAQL KalL 2) TTPOTEL-
voupe poe vAomoinon GEMM mov cuvdualel yvooelg PacLopéveg oe HOVTEAX e TEXVIKEG KX TOVE-
HNHEVODL TTPOYPOHHATIGHOD YL TNV BEATIOTOTOLNGT TNG EMLKOLVWVING KoL TNV eTLTEVEN KoADTE-
png atddoong.

Y10 mpwTo pépog, tapovotdllovpe To PARALIA [9], Mia BtpArobrikn yia tnv extédeon BLAS
oe molhostAég GPU. Tapopowx pe Tig vdpyovoeg mpooeyyicelg BLAS oe mollamAég GPU,
to PARALIA yprnowomotel dorywplopd mpoPARHaTog, TpoypopHaTIopd VITOTPOPANHATOV Kot

ETKOALYT) ETKOLVOVIOG-VITOAOYLIOHU®OV YLt TNV HEYLOTOTOINGT] TNG ATOS00TG TWV POVLTLVOV

166 Chapter 7. Extetopévn Iepidnyn

BLAS ot pubpicelg moAramiodv GPU. AvtifBeta pe tig vdpyovoeg mpooeyyioelc, to PARALIA
divel éppaon otnv PeATioTONOINOT) TNG EMLKOLVOVIONG KoL TNG XPHOTC TOPWVY PEGK CUTOUATOTOL-
Npévng poBpong Pactopévng oe povtéda. T'a avuTdV TOV GKOTO, ELGAYOUHE LA YEVIKELGT) DALKOD
mov ovopdleton LinkMap, n omoia extipd pe okpifeta o xopoaktnplotikéd diaecvdeong kot
emkovoviag yia ke mpoPAnpuo BLAS. To PARALIA ypnoipomotel avtd o povtéda yio vo
BeAtioToMOLGEL TNV eMKOLVwVia kol va emhéEel ovokevég extédeong (GPUs), pe Paorn évav
TPOETAEYHEVO GTOXO PeATIOTOTOINGNG, O OTTOLOGg propel var elvat 1) emTidocT) 1) KATOLX HETPLKT)
a6d00T1G, ITOPELYOVTOG TNV OTATdAN TOpwV. AEloloyolpe TV Tpocéyylor pog oe eva clus-
ter moAamA®v GPU mov diabétel etepoyeveic cuvdécelg peta&d twv cvokevmv. Ta melpopotd
HOG emkeVTpOVOVTOL 6TNV outddoot) Tov GEMM pe SuAn akpifeia, wg ekmpdowmog towv level-3
BLAS. H a€loAoynon pog Seiyvel 0TL N Tpocéyylon pag vreptepel Twv tpoumapyxwv PLAtobnkaov
BLASX ko XKBLAS pe pio péon yewpetpikr BeAtioon tng taéng tov 1.7x ko 2.4x avticTorya,
pe onpovtikn PeAtiowon enidoong yia ekteAéoelg poutivedv 6mou ta dedopéva apyicd Ppickovrat
oe dudpopeg GPU. EmuAéov, deiyvoupe oG, e TNV emAoyr cLoKeLOV Kol BéTovtag Sidpopoug
otoyovs PerTioTOMOINONG, 1) TPOGEYYLOT HOG eival tkowvh va emtitOy el LUNAT etidoon cuVSLAGLE-
V1] He KOAUTEPT) EVEPYELOKT] ATOJOTIKOTNTA, HE Lo PECT) YEOHETPLKT] PeATinon 2.5% oe aOYKpLom
pe) BLASX xou 3.4x oe obykplon pe trn) XKBLAS.

Y10 debtepo pépog, mapéyovpe pia PeAtiotomoinpévn vhomoinon GEMM mpocappocpévn
ylot astotedecpartikt ektédeot) oe kKOpPoug pe moAlomtAég GPU [8]. H mpocéyylon Hog emKeVTp®-
vetal ot Peltion g emtkowwviag, g dpopoldynong kat g eEloopponnong ¢OPTOL TOL
GEMM oce moAastAég GPU, ypnoomotovtag dudpopeg texvikég fedtiotomoinong. Huvhomoinom
Hog PacileTol oe Evo GTATIKO TPOYPOAPHX SPOHOAOYNONG, TO OO0 KATACKELALETAL TPV ATTO
TNV eKTEAEOT) OTTOTE KOAELTOL LA POUTIVEL, KO PTTOPEL £TGL VAL X PTG LULOTTOLGEL TOL XOPAK T PLOTLKA
TOL GUYKEKPLUEVOL TPOPANUATOS YL VOl EAOYLOTOTOLOEL TNV ETLKOLVWVIX, VOr QUENCEL TNV
atod00T), VO HEYLOTOTTOL|GEL TNV ETLKXALYT KL VX LGOPPOTTIGEL TNV ETLKOLVOVIX KOLL TOV VTTOAO-
yiopo. XpnoipuomoloOpe tepapytkd SLoxwpLopd TPOPANHATOS KOL TPOTPEPOUVHE Lo EVPETLKN
TeVIKT yla TNV emthoyn peyéBoug tile. Xpnopomotodpe oAtk streams yio vow etk dOovpe
QTTOTEAEGHATIKX TOV VITOAOYLOHO KO TV ETLKOLVOVia ko artoBnkedoupe tile yio eavaypnoipo-
1oiNnoT, AoPelyovTag TNV entkovevia 6mov eival Suvatov. Bedtiotomolotpe tnv dpoporoynon
emkovaviag eEetalovtag tn Stabecipotn o cuvdéopwy onpeiov-ce-onpeio kot Tpoypoppotido-
vTog TIg petopopég tile avaddywg yia va Staopaiicouvpe 6TL pTdvouy otig tpoopllopeveg GPU
T0 oLVTOpOTEPO duvartdv. EmumAéov, vAomolovpe opadiicég petopopég yioe RONLY tiles kot koBu-
oTEPNOT HETOPOPOV Yia Tat tile Twv mvakwv e€6dov (WR). AElodoyolpe tnv mpocéyylon pog
oe éva ovotnpo NVIDIA HGX, to omoio Sabéter 8 NVIDIA A100 GPUs, diacvvdedepéveg pe
NVLink3 kot NVSwitch2. Ta metpopatd pog detyvouvv tnv amoteAeopatikdOTnTo T0V fEATIGTOTOL-
Hoeodv pog otnv anoddoor tov GEMM. H vAomoinon poag vrepPaiver tig BfAtodneg owxpng
(ovpmephopPavopévng tng mponyovpevng vlomoinong PARALIA), katd 1.29x kot 1.37 X kat&

7.4. Svpmepdopota 167

péco 6po, yiuo GEMM FP32 ko FP64 avtictowya. EmutAéov,) vAomoinot] pag tpoc@épel vPnAn
otdd00T) YO UN-TETPAYWVLIKEG HOPPES TILVAKWV Ko PELKTEC TomoBetroelg dedopévwv, vepPai-
VOVTOG OTHOVTLIKG TIG LITAPXOVGES VAOTIOLGELS.

Svpmepaivoupe OtL, Tapd tnv ko ovtidAnym ot o1 poutiveg BLAS eivan katdAAnieg yia
GPUs, n vymAr addoomn yio omtotodriote mpdPAnpa o€ omotodrmote cOotnpa eivar ToAd Svoko-
Ao va emitevyDel ko aantel TNV KATOVONOT) TOAADV TAPAPETPWY KA TH) AemtTopept] pLBpLoT
™G ekTéleong ya k&Be cuvdiaopd mpofAnpatog/cvatipatog. H Adon pog yoe avtod eivo 1
XP1|OT] ALTORATOTOLHEVNC PUBLOTIG KOTé TO XPpOVO ekTéAEOTC, cLVOLALOVTAG HOVTEAOTIOLNOT)
HE HLKPO-OOKIHES VIO TNV EMAOYY TIHAOV YL TIG ECWTEPLKEG TAPAPETPOVS TWV POUTLVOV KO
Vv PeAtioTomnoinon Tng emKoVwviag, NG emtkaAvyng, tng dPopoAdynong kot tng emtAoyng
mOpwv. Xto péAAov, atoyxevovpe otnv eméktaon tov PARALIA pe mo e€ehypéveg TeXVIKEG
dpopordynong xat tnv a€Lomoinor tng yvoong mou 181 TPOGPEPOLY TA LOVTEA YL TTEPULTEPW
BeAdtidoelg otnv emikovwvio. Xyxedidlovpe emiong v eméKTAON G€ TOAMATAOVG KOUPoLG e
noArég GPU, cuvdvdlovtag tnv evdo-kopPikr] LAOTOINGT HOG e KATOVEUNIEVES TEXVLKES TTOV
oTOXEVOLY TNV KAPAKWoT). Télog, epyalopacte yix Tnv voosthplén GAAwv popeov dedopévwv

€L60d0v, 01twg to PBLAS, t0 omoio ypnotpomnoteital cuviBwg oe cuoTipaTa TOAAATAGV KOPPwWV.

Bibliography

[1]

(2]

(3]

AcarwaL, R. C, BaLLg, S. M., GusTavsoN, F. G., JosHi, M., AND PALKAR, P. A three-
dimensional approach to parallel matrix multiplication. IBM Journal of Research and
Development 39, 5 (1995), 575-582.

Acarwal, R. C., GustavsoN, F. G, AND ZUBAIR, M. A high-performance matrix-
multiplication algorithm on a distributed-memory parallel computer, using overlapped
communication. IBM Journal of Research and Development 38, 6 (1994), 673-681.

AcgulLro, E., AUGONNET, C., DONGARRA, J., LTAaIlEF, H., NamysT, R., THIBAULT, S., AND
Tomov, S. A hybridization methodology for high-performance linear algebra software for
gpus. In GPU Computing Gems Jade Edition, W. mei W. Hwu, Ed., Applications of GPU

Computing Series. Morgan Kaufmann, Boston, 2012, pp. 473-484.

Acuiro, E., AUMAGE, O., FAVERGE, M., FURMENTO, N., PRUvVOsT, F., SERGENT, M., AND
THIBAULT, S. P. Achieving high performance on supercomputers with a sequential task-
based programming model. IEEE Transactions on Parallel and Distributed Systems (2017),
1-1.

Acguiro, E., DEMMEL, J., DONGARRA,]., HADRI, B., KUurzAk, J., LANGOU,]., LTAIEF, H.,
Luszczex, P., AND Tomov, S. Numerical linear algebra on emerging architectures: The

plasma and magma projects. Journal of Physics: Conference Series 180, 1 (jul 2009), 012037.

ALEXANDROV, A., IoNEscu, M. F., SCHAUSER, K. E., AND ScHEIMAN, C. Loggp: incorpo-
rating long messages into the logp model—one step closer towards a realistic model for

parallel computation. In Proceedings of the Seventh Annual ACM Symposium on Parallel

Bibliography

(8]

[10]

[12]

[13]

Algorithms and Architectures (New York, NY, USA, 1995), SPAA *95, Association for Com-
puting Machinery, p. 95-105.

ANAsTasiaDis, P., Papabporourou, N., Goumas, G., aAND Koziris, N. Cocopelia:
Communication-computation overlap prediction for efficient linear algebra on gpus. In
2021 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS) (2021), pp. 36-47.

ANASTASIADIS, P., PApaADOPOULOU, N., Goumas, G., AND Koziris, N. Uncut-gemms :
Communication-aware matrix multiplication on multi-gpu nodes. In To be published at:
2024 IEEE International Conference on Cluster Computing (CLUSTER) (2024), pp. —

ANASTASIADIS, P., PApaDOPOULOU, N., GouMas, G., Koziris, N., Hoppg, D., AND ZHONG,
L. Paralia: A performance aware runtime for auto-tuning linear algebra on heterogeneous
systems. ACM Trans. Archit. Code Optim. 20, 4 (dec 2023).

AUGONNET, C., CLET-ORTEGA, J., THIBAULT, S., AND NAMYST, R. Data-aware task schedul-
ing on multi-accelerator based platforms. In 2010 IEEE 16th International Conference on
Parallel and Distributed Systems (2010), pp. 291-298.

AUGONNET, C., THIBAULT, S., AND NaAMYST, R. StarPU: a Runtime System for Scheduling
Tasks over Accelerator-Based Multicore Machines. Research Report RR-7240, INRIA, Mar.
2010.

AYGUADE, E., BaDpia, R. M, Igual, F. D., LABARTA,]J., MAYO, R., AND QUINTANA-ORTI,
E. S. An extension of the starss programming model for platforms with multiple gpus. In
Euro-Par 2009 Parallel Processing (Berlin, Heidelberg, 2009), H. Sips, D. Epema, and H.-X.
Lin, Eds., Springer Berlin Heidelberg, pp. 851-862.

BaGgHsorkHI, S. S., DELAHAYE, M., PATEL, S. J., GRorpr, W. D., AND Hwu, W.-m. W. An
adaptive performance modeling tool for gpu architectures. SIGPLAN Not. 45, 5 (Jan. 2010),
105-114.

BELL, C., BONACHEA, D., NISHTALA, R., AND YELICK, K. Optimizing bandwidth limited prob-

lems using one-sided communication and overlap. In Proceedings 20th IEEE International

Parallel and Distributed Processing Symposium (2006), pp. 10 pp.—.

BELTER, G., JEssup, E. R., KARLIN, I, AND SIEK, J. G. Automating the generation of com-
posed linear algebra kernels. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (New York, NY, USA, 2009), SC ’09, Asso-

ciation for Computing Machinery.

Bibliography 3

[16]

[20]

[21]

[25]

[26]

BErRNABE, G., CUENCA, J., GARciA, L.-P., AND GIMENEZ, D. Tuning basic linear algebra

routines for hybrid cpu+gpu platforms. Procedia Computer Science 29 (2014), 30 - 39.

2014 International Conference on Computational Science.

BERNTSEN, J. Communication efficient matrix multiplication on hypercubes. Parallel

Computing 12, 3 (1989), 335-342.

BosiLca, G., BOUTEILLER, A., DANALIS, A., FAVERGE, M., HAIDAR, A., HERAULT, T., KURZAK,
J., LANGOU, J., LEMARINER, P., LTAEIF, H., LUuszczgk, P., YARKHAN, A., AND DONGARRA,]J.
Flexible development of dense linear algebra algorithms on massively parallel architec-
tures with dplasma. In - (Anchorage, Alaska, USA, 2011-05 2011), IEEE, pp. 1432-1441.

BosiLca, G., BOUTEILLER, A., DANALIS, A., FAVERGE, M., HERAULT, T., AND DONGARRA,

J. J. Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science and

Engineering 15, 6 (2013), 36-45.

BosirLca, G., BOUTEILLER, A., DANALIS, A., HERAULT, T., LEMARINIER, P., AND DONGARRA,
J. DAGuUE: A generic distributed DAG engine for High Performance Computing. 37-51.

BoYER, M., MENG, J., AND KUMARAN, K. Improving gpu performance prediction with data
transfer modeling. In 2013 IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (2013), pp. 1097-1106.

ButTaARy, A., LaNGOU, J., KURZAK, J., AND DONGARRA, J. A class of parallel tiled linear

algebra algorithms for multicore architectures. Parallel Computing 35, 1 (2009), 38-53.

Cannon, L. E. A cellular computer to implement the kalman filter algorithm. PhD thesis,
-, USA, 1969. AAI7010025.

CHAN, E., QUINTANA-ORTIL, E. S., QUINTANA-ORTI, G., AND VAN DE GEIJN, R. Superma-
trix out-of-order scheduling of matrix operations for smp and multi-core architectures.
In Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (New York, NY, USA, 2007), SPAA *07, Association for Computing Machin-
ery, p. 116—125.

CHEN, W,, ZHAL]., ZHANG,]J., AND ZHENG, W. Loggpo: An accurate communication
model for performance prediction of mpi programs. Science in China Series F: Information
Sciences 52 (10 2009), 1785-1791.

CHot, J., DEMMEL, J., DHILLON, 1., DONGARRA, J., OsTROUCHOV, S., PETITET, A., STAN-
LEY, K., WALKER, D., AND WHALEY, R. C. Scalapack: A portable linear algebra library

for distributed memory computers — design issues and performance. In Applied Parallel

Bibliography

[27]

(28]

[29]

(32]

[33]

[35]

[36]

Computing Computations in Physics, Chemistry and Engineering Science (Berlin, Heidel-

berg, 1996), J. Dongarra, K. Madsen, and J. Wasniewski, Eds., Springer Berlin Heidelberg,
pp- 95-106.

CHol, J., DONGARRA, J., OSTROUCHOV, S., PETITET, A., WALKER, D., AND WHALEY, R. C.

A proposal for a set of parallel basic linear algebra subprograms. In Applied Parallel

Computing Computations in Physics, Chemistry and Engineering Science (Berlin, Heidel-

berg, 1996), J. Dongarra, K. Madsen, and J. Wasniewski, Eds., Springer Berlin Heidelberg,
pp. 107-114.

CHol, J., WALKER, D. W.,, AND DONGARRA4, J.]J. Pumma: Parallel universal matrix multipli-
cation algorithms on distributed memory concurrent computers. Concurrency: Practice
and Experience 6, 7 (1994), 543-570.

CLINT WHALEY, R, PETITET, A., AND DONGARRA, J. J. Automated empirical optimizations

of software and the atlas project. Parallel Computing 27, 1 (2001), 3—-35. New Trends in

High Performance Computing.

CorrorATION, A. Amd core math library (acml). http://developer.amd.
com/tools-and-sdks/archive/amd-core-math-library-acml/,
Accessed: 2024-08-11.

CORPORATION, A. Amd optimizing cpu libraries (aocl). https://developer.amd.
com/amd-aocl/. Accessed: 2024-08-11.

CorPORATION, . Ibm engineering and scientific subroutine library (essl). https://
www.ibm.com/docs/en/essl/6.3.0. Accessed: 2024-08-11.

CoRrprORATION, L. Intel math kernel library (intel mkl). https://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html. Ac-
cessed: 2024-08-11.

CULLER, D., Karp, R,, PATTERSON, D., SAHAY, A., SCHAUSER, K. E., SANTOS, E., SUBRAMO-
NIAN, R, AND von EickeN, T. Logp: towards a realistic model of parallel computation.
SIGPLAN Not. 28, 7 (jul 1993), 1-12.

CAMARA, J., CUENCA, J., GARciA, L., AND GIMENEZ, D. Empirical modelling of linear algebra

shared-memory routines. Procedia Computer Science 18 (12 2013), 110-119.

DanaLs, A, Kim, K.-Y,, PoLLock, L., AND SwaNny, M. Transformations to parallel codes

for communication-computation overlap. In SC ’05: Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing (2005), pp. 58—58.

http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/
http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/
https://developer.amd.com/amd-aocl/
https://developer.amd.com/amd-aocl/
https://www.ibm.com/docs/en/essl/6.3.0
https://www.ibm.com/docs/en/essl/6.3.0
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

Bibliography 5

[37]

[38]

[39]

[40]

[41]

[43]

DEkKEL, E., NassiMi, D., AND SAHNTI, S. Parallel matrix and graph algorithms. SIAM Journal
on Computing 10, 4 (1981), 657-675.

DEMMEL, J., EL1AHU, D., Fox, A., KamiL, S., LipsHITZ, B., SCHWARTZ, O., AND SPILLINGER, O.
Communication-optimal parallel recursive rectangular matrix multiplication. In 2013 IEEE

27th International Symposium on Parallel and Distributed Processing (2013), pp. 261-272.

DONGARRA,]. Basic linear algebra subprograms technical (blast) forum standard ii. JHPCA
16 (05 2002), 1-111.

DONGARRA, J. An updated set of basic linear algebra subprograms (blas). ACM Trans.
Math. Softw. 28, 2 (jun 2002), 135-151.

DONGARRA, J., GATES, M., HAIDAR, A., KURZAK, J., LUuszCZEK, P., ToMOV, S., AND YAMAZAKI,
L. Accelerating Numerical Dense Linear Algebra Calculations with GPUs. Springer Inter-
national Publishing, Cham, 2014, pp. 3-28.

DONGARRA, J., GATES, M., HAIDAR, A., KURzAK, J., Luszczek, P., Tomov, S., AND YA-
MAZAKI, I. Accelerating numerical dense linear algebra calculations with gpus. Numerical
Computations with GPUs (2014), 1-26.

DONGARRA, J., GATES, M., HAIDAR, A., KURZAK,]., Luszczek, P., Wu, P., YAMAzAKI, 1,
YARKHAN, A., ABALENKOVS, M., BAGHERPOUR, N., HAMMARLING, S., SISTEK, J., STEVENS,
D., ZounoN, M., AND RELTON, S. D. Plasma: Parallel linear algebra software for multicore
using openmp. ACM Trans. Math. Softw. 45, 2 (may 2019).

DONGARRA, J. J., Cruz, J. D., HAMMARLING, S., AND Du¥FF, 1. S. Algorithm 679: A set of
level 3 basic linear algebra subprograms: model implementation and test programs. ACM
Trans. Math. Softw. 16, 1 (mar 1990), 18—28.

DONGARRA, J. J., Du Croz, J., HAMMARLING, S., AND DUFF, L. S. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16, 1 (mar 1990), 1-17.

DONGARRA, J. J., Du Croz, J.,, HAMMARLING, S., AND HANsON, R. J. Algorithm 656: an ex-
tended set of basic linear algebra subprograms: model implementation and test programs.
ACM Trans. Math. Softw. 14, 1 (mar 1988), 18-32.

DONGARRA, J. J., Du Croz, J., HAMMARLING, S., AND HANsON, R. J. An extended set of
fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14, 1 (mar 1988), 1-17.

DONGARRA,]J.]., GusTavson, F. G., AND Karp, A. Implementing linear algebra algorithms

for dense matrices on a vector pipeline machine. SIAM Review 26, 1 (1984), 91-112.

Bibliography

[49]

[50]

(53]

[55]

[56]

[57]

(58]

DONGARRA, J. J., MOLER, C. B,, BuncH,]J. R., AND STEWART, G. W. Linpack users’ guide. In
> (1987).

Fatanarian, K., SUGERMAN, J., AND HanNrRAHAN, P. Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (New York, NY, USA,
2004), HWWS 04, Association for Computing Machinery, p. 133-137.

Fox, G., OTToO, S., AND HEY, A. Matrix algorithms on a hypercube i: Matrix multiplication.
Parallel Computing 4, 1 (1987), 17-31.

FraNk, M. I, AGARWAL, A., AND VERNON, M. K. Lopc: modeling contention in parallel
algorithms. In Proceedings of the Sixth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (New York, NY, USA, 1997), PPOPP ’97, Association for
Computing Machinery, p. 276-287.

Gavrorro, N., GovINDARAJU, N., HENSON, M., AND MANOCHA, D. Lu-gpu: Efficient algo-
rithms for solving dense linear systems on graphics hardware. In SC ’05: Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing (2005), pp. 3-3.

GaTEs, M., KurzaAk, J., CHARARA, A., YARKHAN, A., AND DONGARRA4, J. Slate: design

of a modern distributed and accelerated linear algebra library. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis (New York, NY, USA, 2019), SC ’19, Association for Computing Machinery.

GATES, M., YARKHAN, A., SUKKARI, D., AKBUDAK, K., CAYROLS, S., BIELICH, D., ABDELFAT-
TAH, A, FARHAN, M. A, AND DONGARRA, J. Portable and efficient dense linear alge-
bra in the beginning of the exascale era. In 2022 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC) (2022), pp. 36—46.

GAUTIER, T., LiMa4, J. V., MAILLARD, N., AND RAFFIN, B. Xkaapi: A runtime system for data-

flow task programming on heterogeneous architectures. In 2013 IEEE 27th International

Symposium on Parallel and Distributed Processing (2013), pp. 1299-1308.

GAUTIER, T., AND Lima, J. V. F. Xkblas: a high performance implementation of blas-3
kernels on multi-gpu server. In 2020 28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP) (2020), pp. 1-8.

GAUTIER, T., AND Lima, J. V. F. Evaluation of two topology-aware heuristics on level- 3
blas library for multi-gpu platforms. In 2021 SC Workshops Supplementary Proceedings
(SCWS) (2021), pp. 12-22.

Bibliography 7

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

GEOFFRAY, P., AND HOEFLER, T. Adaptive routing strategies for modern high performance
networks. In 2008 16th IEEE Symposium on High Performance Interconnects (2008),
pp- 165-172.

Goro, K., AND GEIJN, R. A. v. D. Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34, 3 (may 2008).

Goro, K., AND VAN DE GErn, R. High-performance implementation of the level-3 blas.
ACM Trans. Math. Softw. 35, 1 (jul 2008).

Goumas, G., SotirorouLos, A., AND Koziris, N. Minimizing completion time for
loop tiling with computation and communication overlapping. In Proceedings 15th

International Parallel and Distributed Processing Symposium. IPDPS 2001 (2001), pp. 10
pp.—.

GREGG, C., AND Hazerzwoop, K. Where is the data? why you cannot debate cpu vs. gpu

performance without the answer. In (IEEE ISPASS) IEEE International Symposium on

Performance Analysis of Systems and Software (2011), pp. 134-144.

GUNNELS, J. A., GusTavsoN, F. G., HENRY, G. M., AND VAN DE GEIJN, R. A. Flame: Formal
linear algebra methods environment. ACM Trans. Math. Softw. 27, 4 (dec 2001), 422-455.

GOMEzZ-LUNa4, J., GONZALEZ-LINARES, J. M., BENAVIDES, J. I, AND GuiL, N. Performance
models for asynchronous data transfers on consumer graphics processing units. Journal
of Parallel and Distributed Computing 72, 9 (2012), 1117-1126. Accelerators for High-

Performance Computing.

HAIDAR, A., Cao, C., YARKHAN, A., Luszczek, P., Tomov, S., KABIR, K., AND DONGARRA,
J. Unified Development for Mixed Multi-GPU and Multi-coprocessor Environments Using
a Lightweight Runtime Environment. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium (Washington, DC, USA, 2014), IPDPS ’14,
IEEE Computer Society, pp. 491-500.

HARR1s, M. J., BAXTER, W. V., SCHEUERMANN, T., AND LASTRA, A. Simulation of cloud
dynamics on graphics hardware. In ACM SIGGRAPH 2005 Courses (New York, NY, USA,
2005), SIGGRAPH 05, Association for Computing Machinery, p. 223-es.

Herault, T., ROBERT, Y., BosiLca, G., AND DONGARRA, J. Generic matrix multiplication
for multi-gpu accelerated distributed-memory platforms over parsec. In 2019 IEEE/ACM
10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA)
(2019), pp. 33-41.

Bibliography

[69]

[70]

[71]

(73]

[74]

[75]

[76]

[77]

[79]

(80]

HLRS. Vulcan, hpc cluster.

HokerLER, T., aAND BELLL, R. Scientific benchmarking of parallel computing systems:
Twelve ways to tell the masses when reporting performance results. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage and

Analysis (New York, NY, USA, 2015), SC ’15, Association for Computing Machinery.

HoEFLER, T., GRoPP, W., KRAMER, W., AND SNIR, M. Performance modeling for systematic

performance tuning. In SC ’11: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis (2011), pp. 1-12.

HoEFLER, T, LicHEL A., AND REHM, W. Low-overhead loggp parameter assessment for

modern interconnection networks. In 2007 IEEE International Parallel and Distributed

Processing Symposium (2007), pp. 1-8.

HoEFLER, T., MEHLAN, T., MIETKE, F., AND REHM, W. Logfp - a model for small messages

in infiniband. In Proceedings 20th IEEE International Parallel and Distributed Processing
Symposium (2006), pp. 6 pp.—

HOEFLER, T., SCHNEIDER, T., AND LUMSDAINE, A. Accurately measuring collective opera-

tions at massive scale. In 2008 IEEE International Symposium on Parallel and Distributed

Processing (2008), pp. 1-8.

HOEFLER, T., SCHNEIDER, T., AND LUMSDAINE, A. Loggp in theory and practice—an in-depth
analysis of modern interconnection networks and benchmarking methods for collective
operations. Simulation Modelling Practice and Theory 17, 9 (2009), 1511-1521.

HOEFLER, T., SCHNEIDER, T., AND LUMSDAINE, A. Loggopsim - simulating large-scale ap-

plications in the loggops model. vol. 10, pp. 597-604.

HoOEFLER, T., AND SNIR, M. Generic topology mapping strategies for large-scale parallel
architectures. In Proceedings of the International Conference on Supercomputing (New
York, NY, USA, 2011), ICS 11, Association for Computing Machinery, p. 75-84.

Hong, S., AND Kim, H. An analytical model for a gpu architecture with memory-level and
thread-level parallelism awareness. SIGARCH Comput. Archit. News 37, 3 (June 2009),
152-163.

HumpHREY, J. R, PrICE, D. K, SpagNoLL K. E., AND KELMELIS, E. J. Accelerating cula linear

algebra routines with hybrid gpu and multicore computing. In . (2012).

HumPHREY, J. R, PrICE, D. K., SpacgNoLl, K. E., PaoLINT, A. L., AND KELMELIS, E. J. Cula:

hybrid gpu accelerated linear algebra routines. In Defense + Commercial Sensing (2010).

Bibliography 9

[81]

[82]

[83]

[84]

[85]

IAKYMCHUK, R., AND BIENTINESI, P. Modeling performance through memory-stalls. ACM
SIGMETRICS Performance Evaluation Review 40 (10 2012).

Inc., A. Apple accelerate framework. https://developer.apple.com/
documentation/accelerate. Accessed: 2024-08-11.

Ino, F., Fujimoto, N., AND HaGIHARA, K. Loggps: a parallel computational model for
synchronization analysis. In Proceedings of the Eighth ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming (New York, NY, USA, 2001), PPoPP ’01,
Association for Computing Machinery, p. 133-142.

Irony, D., AND T1skIN, A. Communication lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed Computing 64 (09 2004), 1017-1026.

IT4l. it4i.cz/en/infrastructure/karolina.

[86] JaIN, N., BHATELE, A., RoBsoN, M. P., GamBLIN, T., AND KALE, L. V. Predicting application

performance using supervised learning on communication features. In SC ’13: Proceedings

of the International Conference on High Performance Computing, Networking, Storage

and Analysis (2013), pp. 1-12.

[87] JoHNssoN, S. Minimizing the communication time for matrix multiplication on multipro-

[88]

[89]

[90]

[91]

[92]

cessors. Parallel Computing 19, 11 (1993), 1235-1257.

KieLmann, T., Bai, H. E., AND VERsTOEP, K. Fast measurement of logp parameters for
message passing platforms. In Parallel and Distributed Processing (Berlin, Heidelberg,
2000), J. Rolim, Ed., Springer Berlin Heidelberg, pp. 1176-1183.

KonsTaNTINIDIS, E., AND COTRONIS, Y. A quantitative roofline model for gpu kernel per-
formance estimation using micro-benchmarks and hardware metric profiling. Journal of
Parallel and Distributed Computing 107 (2017), 37 — 56.

KAGSTROM, B., LING, P., AND vaN LoaN, C. Gemm-based level 3 blas: high-performance
model implementations and performance evaluation benchmark. ACM Trans. Math. Softw.
24, 3 (sep 1998), 268-302.

KRUGER,]J., AND WESTERMANN, R. Linear algebra operators for gpu implementation of
numerical algorithms. ACM Trans. Graph. 22, 3 (jul 2003), 908-916.

Kurzak, J., Luszczek, P., YAMAZAKI, I, ROBERT, Y., AND DONGARRA,]. Design and imple-
mentation of the pulsar programming system for large scale computing. Supercomputing
Frontiers and Innovations 4, 1 (Feb. 2017), 4-26.

https://developer.apple.com/documentation/accelerate
https://developer.apple.com/documentation/accelerate
it4i.cz/en/infrastructure/karolina

10

Bibliography

[93]

[94]

[95]

[96]

(98]

[99]

[100]

[101]

[102]

[103]

Kurzak, J., ToMov, S., AND DONGARRA, J. Autotuning GEMM kernels for the Fermi GPU.
IEEE Transactions on Parallel and Distributed Systems 23, 11 (November 2012), 2045-2057.

KwasNiEwski, G., KaBi¢, M., BeEsta, M., VANDEVONDELE, J., SoLcA, R, AND HoE-
FLER, T. Red-blue pebbling revisited: Near optimal parallel matrix-matrix multiplica-

tion. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (2019), pp. 1-22.

LANDAVERDE, R., ZHANG, T., CoskUN, A. K., AND HERBORDT, M. An investigation of unified
memory access performance in cuda. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC) (2014), pp. 1-6.

LaNG, J. Data-aware tuning of scientific applications with model-based autotuning.
Concurrency and Computation: Practice and Experience 29, 4 (2017), e3885. 3885
cpe.3885.

LARSEN, E. S., AND MCALLISTER, D. Fast matrix multiplies using graphics hardware. In
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (New York, NY, USA,
2001), SC ’01, Association for Computing Machinery, p. 55.

LASTOVETSKY, A., MKWAWA, I.-H., AND O’FLYNN, M. An accurate communication model of
aheterogeneous cluster based on a switch-enabled ethernet network. In 12th International
Conference on Parallel and Distributed Systems - ICPADS’06) (2006), vol. 2, pp. 6 pp.—.

LASTOVETSKY, A., AND RycHKOV, V. Accurate and efficient estimation of parameters of

heterogeneous communication performance models. The International Journal of High

Performance Computing Applications 23, 2 (2009), 123-139.

LASTOVETSKY, A., RycHKOV, V., AND O’FLYNN, M. Accurate heterogeneous communication

models and a software tool for their efficient estimation. The International Journal of High

Performance Computing Applications 24, 1 (2010), 34—-48.

LawsoN, C. L., Hanson, R. J.,, Kincamp, D. R, AND KrogH, F. T. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw. 5, 3 (sep 1979), 308-323.

L1, A, Song, S. L., CHEN, J., L1u, X., TALLENT, N., AND BARKER, K. Tartan: Evaluating
modern gpu interconnect via a multi-gpu benchmark suite. In 2018 IEEE International
Symposium on Workload Characterization (IISWC) (2018), pp. 191-202.

L1, W, JiN, G, Cur, X, AND SEE, S. An evaluation of unified memory technology on
nvidia gpus. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (2015), pp. 1092-1098.

Bibliography 11

[104] L1, Y., DONGARRA, J., AND ToMov, S. A note on auto-tuning GEMM for GPUs. In
Proceedings of the 2009 International Conference on Computational Science, ICCS’09 (Ba-
ton Roube, LA, May 25-27 2009), Springer.

[105] LimiTED, A. Arm performance libraries. https://developer.
arm.com/tools-and-software/server-and-hpc/compile/
arm-compiler-for-linux/performance-libraries. Accessed:
2024-08-11.

[106] Liu, B., Q1u, W,, J1ANG, L., AND GONG, Z. Software pipelining for graphic processing unit
acceleration. Int. J. High Perform. Comput. Appl. 30, 2 (may 2016), 169—-185.

[107] Low, T. M., IcuaL, F. D, SmrTH, T. M., AND QUINTANA-ORT], E. S. Analytical modeling is
enough for high-performance BLIS. ACM Transactions on Mathematical Software 43, 2
(Aug. 2016), 12:1-12:18.

[108] Luk, C.-K.,, Hong, S., anp Kim, H. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2009), pp. 45-55.

[109] Luszczexk, P., AND DONGARRA, J. Reducing the time to tune parallel dense linear algebra

routines with partial execution and performance modeling. In - (09 2011), pp. 730-739.

[110] Ma, K, L1, X, CHEN, W., ZHANG, C., AND WANG, X. Greengpu: A holistic approach

to energy efficiency in gpu-cpu heterogeneous architectures. In 2012 41st International

Conference on Parallel Processing (2012), pp. 48-57.

[111] MaRrTELL, M., AND SAaTO, H. Linear performance-breakdown model: A framework for

gpu kernel programs performance analysis. International Journal of Networking and

Computing 5 (01 2015), 86-104.

[112] MARTINASSO, M., AND MEHAUT, J.-F. A contention-aware performance model for hpc-

based networks: A case study of the infiniband network. In Euro-Par 2011 Parallel

Processing (Berlin, Heidelberg, 2011), E. Jeannot, R. Namyst, and J. Roman, Eds., Springer
Berlin Heidelberg, pp. 91-102.

[113] MENG, J., Morozov, V. A,, KuMARAN, K., ViIsHWANATH, V., AND UraM, T. D. Grophecy:

Gpu performance projection from cpu code skeletons. In SC ’11: Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and

Analysis (2011), pp. 1-11.

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/performance-libraries

12

Bibliography

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

MEswANI, M. R., CARRINGTON, L., UNAT, D., SNAVELY, A., BADEN, S., AND PooLE, S. Mod-
eling and predicting performance of high performance computing applications on hard-
ware accelerators. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops PhD Forum (2012), pp. 1828-1837.

MEswANI, M. R., CARRINGTON, L., UNAT, D., SNAVELY, A., BADEN, S., AND POOLE, S. Model-
ing and predicting performance of high performance computing applications on hardware
accelerators. The International Journal of High Performance Computing Applications 27,
2 (2013), 89-108.

MISHRA, A., L1, L., Kong, M., FINKEL, H., AND CHAPMAN, B. Benchmarking and evaluating
unified memory for openmp gpu offloading. In Proceedings of the Fourth Workshop on
the LLVM Compiler Infrastructure in HPC (New York, NY, USA, 2017), LLVM-HPC’17,

Association for Computing Machinery.

Moritz, C., AND FRANK, M. Logpg: Modeling network contention in message-passing
programs. IEEE Transactions on Parallel and Distributed Systems 12, 4 (2001), 404-415.

Nartg, R, Tomov, S., DoNG, T. T., AND DONGARRA, J. Optimizing symmetric dense matrix-

vector multiplication on gpus. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis (New York, NY, USA, 2011),

SC’11, Association for Computing Machinery.

NatH, R, ToMmovV, S., AND DONGARRA, J. Accelerating GPU kernels for dense linear algebra.
In Proceedings of the 2009 International Meeting on High Performance Computing for
Computational Science, VECPAR’10 (Berkeley, CA, June 22-25 2010), Springer.

NartH, R., Tomov, S., AND DONGARRA,]J. Accelerating gpu kernels for dense linear alge-
bra. In High Performance Computing for Computational Science - VECPAR 2010 (Berlin,
Heidelberg, 2011), J. M. L. M. Palma, M. Daydé, O. Marques, and J. C. Lopes, Eds., Springer
Berlin Heidelberg, pp. 83-92.

Nath, R, Tomov, S., AND DONGARRA, J. J. An improved magma gemm for fermi graphics
processing units. The International Journal of High Performance Computing Applications
24 (2010), 511 - 515.

NVIDIA. developer.nvidia.com/cublas.
NVIDIA. developer.nvidia.com/cublasmp-downloads.

NVIDIA. developer.nvidia.com/cublasxt.

developer.nvidia.com/cublas
developer.nvidia.com/cublasmp-downloads
developer.nvidia.com/cublasxt

Bibliography 13

[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

NVIDIA. docs.nvidia.com/cuda/nvblas.
NVIDIA, VINGELMANN, P., AND F1TzEK, F. H. Cuda, release: 10.2.89, 2020.

O’NEaL, K., Brisk, P., SHRIVER, E., AND KisHINEVsKY, M. Halwpe: Hardware-assisted
light weight performance estimation for gpus. In Proceedings of the 54th Annual Design
Automation Conference 2017 (New York, NY, USA, 2017), DAC ’17, Association for Com-
puting Machinery.

OPEN SOURCE. INITIAL CONTRIBUTORS : WANG, Q., ZHANG, X., ZHANG, Y., AND YI, Q. WWww .
openblas.net.

ParaporouLrou, N., Goumas, G., AND Koziris, N. A machine-learning approach for com-
munication prediction of large-scale applications. In 2015 IEEE International Conference
on Cluster Computing (2015), pp. 120-123.

PeARrsoN, C., DAKKAK, A., HAsHAsSH, S., L1, C., CHUNG, I.-H., XIONG, J., AND Hwu, W.-M.
Evaluating characteristics of cuda communication primitives on high-bandwidth intercon-

nects. In Proceedings of the 2019 ACM/SPEC International Conference on Performance

Engineering (New York, NY, USA, 2019), ICPE "19, Association for Computing Machinery,
p. 209-218.

PE1sk, E., AND BIeENTINESL, P. Performance modeling for dense linear algebra. CoRR
abs/1209.2364 (2012).

PraNas, J., BAD1A, R. M., AYGUADE, E., AND LABARTA, J. Hierarchical task-based program-
ming with starss. Int. J. High Perform. Comput. Appl. 23, 3 (aug 2009), 284-299.

QUINTANA-ORTI, G, IcuAaL, F. D., QuINTANA-ORT], E. S., AND VAN DE GEIJN, R. A. Solving
dense linear systems on platforms with multiple hardware accelerators. SIGPLAN Not. 44,
4 (feb 2009), 121-130.

RiaHi, A, Savapi, A., AND NaGHIBZADEH, M. Comparison of analytical and ml-based
models for predicting cpu-gpu data transfer time. Computing 102, 9 (sep 2020), 2099-
2116.

Rumpr, M., AND STRZODKA, R. Using graphics cards for quantized fem computations.

Ryoo, S., ROoDRIGUES, C. I, STONE, S. S., BAGHSORKHI, S. S., UENG, S.-Z., STRATTON, J. A.,
AND Hwu, W.-Mm. W. Program optimization space pruning for a multithreaded gpu. In
Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (New York, NY, USA, 2008), CGO ’08, Association for Computing Ma-
chinery, p. 195-204.

docs.nvidia.com/cuda/nvblas
www.openblas.net
www.openblas.net

14

Bibliography

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

SaNcHO,]J. C., BARKER, K. J., KERBYSON, D. J., aND Davis, K. Quantifying the poten-
tial benefit of overlapping communication and computation in large-scale scientific appli-
cations. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing
(2006), pp. 17-17.

Scuaa, D., aND KakLrl, D. Exploring the multiple-gpu design space. In 2009 IEEE
International Symposium on Parallel Distributed Processing (2009), pp. 1-12.

Scuatz, M. D., vaN DE GEIJN, R. A., AND PouLson, J. Parallel matrix multiplication: A
systematic journey. SIAM Journal on Scientific Computing 38, 6 (2016), C748-C781.

SIEK, J., KARLIN, L, AND JEssup, E. Build to order linear algebra kernels. In’’ (05 2008),

pp-1-8.

SmitH, T. M., vaN DE GEIJN, R. A., SMELYANSKIY, M., HAMMOND, J. R., AND VAN ZEE,
F. G. Anatomy of high-performance many-threaded matrix multiplication. In 28th IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2014) (2014).

SorLoMONIK, E., AND DEMMEL, J. Communication-optimal parallel 2.5d matrix multiplica-

tion and lu factorization algorithms. In Euro-Par Parallel Processing (01 2011), pp. 90-109.

Song, F., AND DONGARRA, J. A scalable framework for heterogeneous gpu-based clus-
ters. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (New York, NY, USA, 2012), SPAA 12, Association for Com-

puting Machinery, p. 91-100.

Song, F., Tomov, S., AND DONGARRA,]. Enabling and scaling matrix computations
on heterogeneous multi-core and multi-gpu systems. In Proceedings of the 26th ACM
International Conference on Supercomputing (New York, NY, USA, 2012), ICS 12, Asso-

ciation for Computing Machinery, p. 365-376.

Spagnoll, K. E., HuMPHREY, J. R., PrICE, D. K., AND KELMELIS, E. J. Accelerating sparse

linear algebra using graphics processing units. In Defense + Commercial Sensing (2011).

STONE, J. E., GOHARA, D., AND SHI, G. Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in Science and Engineering 12, 3 (2010),
66-73.

TaLLENT, N. R, GAWANDE, N. A, SIEGEL, C., VISHNU, A., AND Hoisig, A. Evaluating on-

node gpu interconnects for deep learning workloads. In High Performance Computing

Systems. Performance Modeling, Benchmarking, and Simulation (Cham, 2018), S. Jarvis,

S. Wright, and S. Hammond, Eds., Springer International Publishing, pp. 3-21.

Bibliography 15

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Tomov, S., DONGARRA, J., AND BABOULIN, M. Towards dense linear algebra for hybrid GPU

accelerated manycore systems. Parallel Computing 36, 5-6 (June 2010), 232-240.

Tomov, S., NATH, R, LTAIEF, H., AND DONGARRA, J. Dense linear algebra solvers for multi-
core with GPU accelerators. In Proc. of the IEEE IPDPS’10 (Atlanta, GA, April 19-23 2010),
IEEE Computer Society, pp. 1-8. DOIL: 10.1109/IPDPSW.2010.5470941.

Tsar, Y. M., WanG, W., AND CHEN, R. Tuning block size for qr factorization on cpu-gpu
hybrid systems. In 2012 IEEE 6th International Symposium on Embedded Multicore SoCs
(2012), pp. 205-211.

Van DE GEDN, R. A, AND WATTS, J. Summa: scalable universal matrix multiplication

algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255-274.

VAN Zkg, F. G. Implementing high-performance complex matrix multiplication via the 1m
method. SIAM Journal on Scientific Computing 42, 5 (September 2020), C221-C244.

VAN ZEE, F. G., AND SMITH, T. Implementing high-performance complex matrix multipli-
cation via the 3m and 4m methods. ACM Transactions on Mathematical Software 44, 1
(July 2017), 7:1-7:36.

VAN Zkg, F. G, SmitH, T., IguaL, F. D., SMELYANSK1Y, M., ZHANG, X., KISTLER, M., AUSTEL,
V., GUNNELS, J., Low, T. M., MARKER, B., KiLLoUGH, L., AND VAN DE GEIJN, R. A. The BLIS
framework: Experiments in portability. ACM Transactions on Mathematical Software 42,
2 (June 2016), 12:1-12:19.

VAN ZEE, F. G., AND VAN DE GEIJN, R. A. BLIS: A framework for rapidly instantiating BLAS
functionality. ACM Transactions on Mathematical Software 41, 3 (June 2015), 14:1-14:33.

Vorkov, V., AND DEMMEL, J. W. Benchmarking gpus to tune dense linear algebra. In SC
’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008), pp. 1-11.

Wang, L., Wu, W, X140, J., AND YANG, Y. BLASX: A high performance level-3 BLAS
library for heterogeneous multi-gpu computing. CoRR abs/1510.05041 (2015).

WANG, Q., ZHANG, X., ZHANG, Y., AND Y1, Q. Augem: automatically generate high per-

formance dense linear algebra kernels on x86 cpus. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis (New
York, NY, USA, 2013), SC ’13, Association for Computing Machinery.

WERKHOVEN, B. v., MAASSEN, J., SEINSTRA, F., AND BaL, H. Performance models for cpu-
gpu data transfers. In 2014 14th JEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (2014), pp. 11-20.

16

Bibliography

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

"WHALEY, R. C., AND Pabpua, D. ATLAS (Automatically Tuned Linear Algebra Software).
Springer US, Boston, MA, 2011, pp. 95-101.

Wu, W., BOUTEILLER, A., BosiLca, G., FAVERGE, M., AND DONGARRA, J. Hierarchical
dag scheduling for hybrid distributed systems. In 2015 IEEE International Parallel and

Distributed Processing Symposium (2015), pp. 156-165.

X1ANYI, Z., QIAN, W., AND YUNQUAN, Z. Model-driven level 3 blas performance optimiza-
tion on loongson 3a processor. In 2012 IEEE 18th International Conference on Parallel and
Distributed Systems (2012), pp. 684-691.

Y1, Q., AND QASEM, A. Exploring the optimization space of dense linear algebra kernels. In
Languages and Compilers for Parallel Computing (Berlin, Heidelberg, 2008), J. N. Amaral,
Ed., Springer Berlin Heidelberg, pp. 343-355.

Y1, Q., SEYMOUR, K., You, H., Vupuc, R., AND QUINLAN, D. Poet: Parameterized optimiza-

tions for empirical tuning. In’’ (01 2007), pp. 1-8.

ZHANG, Y., AND OWENS, J. D. A quantitative performance analysis model for gpu archi-
tectures. In 2011 IEEE 17th International Symposium on High Performance Computer
Architecture (2011), pp. 382-393.

ZHu, J., LASTOVETSKY, A., ALL S., AND RIESEN, R. Communication models for resource con-
strained hierarchical ethernet networks. In Euro-Par 2013: Parallel Processing Workshops
(Berlin, Heidelberg, 2014), D. an Mey, M. Alexander, P. Bientinesi, M. Cannataro, C. Clauss,
A. Costan, G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano, S. L. Scott,
and J. Weidendorfer, Eds., Springer Berlin Heidelberg, pp. 259-269.

ZHu, J., LASTOVETSKY, A., ALL S., RIESEN, R., AND Hasanov, K. Asymmetric communi-
cation models for resource-constrained hierarchical ethernet networks. Concurrency and
Computation Practice and Experience 27 (04 2015), 1575-1590.

	Introduction
	Problem Statement
	Contributions

	Outline

	Near-optimal single-GPU BLAS offload via model-based autotuning
	Problem formulation
	State-of-the-art limitations
	Contributions

	Modeling GPU BLAS offload
	BLAS routine parameters
	GPU BLAS 3-way concurrency/overlap
	BLAS 3-way concurrency modeling
	Data Location Modeling
	Bidirectional Slowdown Modeling
	Data Reuse Modeling

	Model application per BLAS level

	Runtime framework integration
	Deployment: Empirical initialization of model coefficients
	Tile selection runtime: Tiling size autotuning
	Library: Task orchestration

	Experimental evaluation
	Experimental setup
	Validation sets
	Time prediction validation
	Validation of tiling size selection
	Performance evaluation

	Extending model-based autotuning for multi-GPU and heterogeneous systems
	Problem formulation
	Motivation
	From single- to multi-GPU clusters
	Background : Offloading BLAS in Multi-GPU clusters
	Level-3 BLAS decomposition and distribution
	Communication overlap
	Communication avoidance
	Communication routing
	Load balancing

	Contributions

	PARALiA: BLAS autotuning in arbitrary multi-GPU systems
	The autotuner algorithm
	Abstracting interconnect heterogeneity: The LinkMap representation
	Performance estimation for workload selection
	Database
	Preprocessor
	Scheduler

	Experimental evaluation
	Experimental setup
	Evaluation Dataset
	Routine selection
	Dataset characteristics

	Comparison with state-of-the-art
	Performance
	Energy efficiency
	In-depth analysis

	Applicability to heterogeneous platforms

	A communication-aware multi-GPU matrix multiplication library
	Problem formulation
	Background: Optimizing GEMM for Multi-GPU systems
	Background: PARALiA limitations on covering this gap
	Contributions

	Implementation
	Hierarchical decomposition
	Communication/computation overlap
	Data caching / Communication avoidance
	Offloading problems exceeding memory capacity

	Communication routing
	Bandwidth-based routing
	Accounting for interconnect load

	Optimizing RONLY tile transfers with batching
	Batched-fetch routing

	Optimizing WR tile transfers with lazy fetching
	The static schedule
	Optimizing sub-problem scheduling order

	Evaluation
	Experimental Setup
	Testbed
	Benchmark methodology
	Dataset

	Evaluation of performance optimizations
	Comparison with state-of-the-art
	Strong-scaling analysis
	Performance robustness under irregular problems

	Literature review
	A brief history of BLAS optimization
	The birth of BLAS
	Multi-core BLAS optimization
	GPU BLAS
	Hybrid BLAS: The birth of dynamic workload selection
	Distributed and multi-GPU BLAS
	GEMM decomposition and distribution algorithms

	Related performance modeling literature
	BLAS kernel performance modeling
	Distributed communication modeling
	GPU communication modeling

	Conclusions
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Διατύπωση προβλήματος
	Συνεισφορές

	PARALiA: Αυτόματοποίηση BLAS σε πολλαπλές GPU
	Ο αλγόριθμος του αυτόματου βελτιστοποιητή
	Μοντελοποίηση των δικτύων διασύνδεσης: Η αναπαράσταση LinkMap
	Πειραματική Αξιολόγηση
	Απόδοση
	Ενεργειακή απόδοση

	Επέκταση PARALiA για την βελτιστοποίηση της επικοινωνίας σε πυρήνες πολλαπλασιασμού πινάκων
	Υλοποίηση
	Ιεραρχική αποσύνθεση
	Επικάλυψη επικοινωνίας/υπολογισμών
	Προσωρινή αποθήκευση δεδομένων / Αποφυγή επικοινωνίας
	Δρομολόγηση Επικοινωνίας
	Βελτιστοποίηση Μεταφορών RONLY tile με Ομαδοποίηση
	Βελτιστοποίηση μεταφορών tiles WR με καθυστερημένη φόρτωση
	Στατική δρομολόγηση

	Αξιολόγηση
	Σύγκριση με την τεχνολογία αιχμής
	Αντοχή επίδοσης σε μεικτά προβλήματα

	Συμπεράσματα

