5

%

=1

NPOMHOEY
nvpeopo

X

EoNiko METZOBIO [IOAYTEXNEIO
Y XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKON YTIOAOTTETON
TOMEAY TEXNOAOIIAY [TAHPO®OPIKHE KAI Y TOAOTIETON

A&iornoinon Extiunoewy Alaocnopdc o
Ytoyooctixd MAB IlgoBAuoata ue AAAolwuéveg
AvTapolBég

AIITAOMATIKH EPrAYIA

ToLv

EPAANT XINANAI

EnPrenwv: Anuitene Pwtdxng
Kodnyntic E.M.IL

Adrva, YentéuPelog 2024






Edvixé Metoofio Iloluteyvelo

Ly ol Hhextpohdywv Mnyavixay xou Mnyovixodv YTohoyiotody

IPOMHOEY
=t
nvpeopo

>

Touéag Teyvohroyiog [IAnpogpopixrc xar Troloyiotdy

A&ioroinon Extiunoewy Alaocnopdc o
Y toyaoctixd MAB IpoBAfjuoata ue AAAolwuéveg
Avtauoleg

AIIIAOMATIKH EPrASIA

TOou

EPAANT XINANAI

EnBArénwv: Anurtenc Pwtdxnc
Kodnyntic E.M.IL

Eyxpldnxe and tnv teiuerr eCetaotinn emtpont| v 24n MenteuPBplou 2024,

(Yroypagn) (Ymoypagn) (Ymoypagr))
Anufteng Potdnme Apioteldng Ioyouptlic Nuohaog Acovdpdoc
Kodnyntic E.M.IL Kodnyntic E.M.IL Enixovpoc Kodnyntrc E.M.II

Adrvo, YentéuPelog 2024






Edvixé Metoofio Iloluteyvelo
Ly ol Hhextpohdywv Mnyavixay xou Mnyovixodv YTohoyiotody
Touéag Teyvohroyiog [IAnpogpopixrc xar Troloyiotdy

Copyright (©)—All rights reserved "Epohvt Ywvovd, 2024.

Me tnv em@OAa&n TUvVTOS SXOUMUATOC.

Arnayopedeton 1 avTiypapr, amovhxeuon xou Slovouy| Tng moapoloos epyactiog, €€ oAoxApou
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IIepiAnyn

YTnv Taovca SUTAMUATIKA eQyactio uedetdue to TEOPAnua twv Multi Armed Bandits
(MAB), 0 oTtol0 QUPOEA TNV duecn uddncn ce TeELBdAlovta TteQropiouévng avadoacng. To
TEWTO UEQOS TNG SITTAWUATIKAG 0POQEd TN GTOXOGTIKA LOEMN TOL TTEORARUATOS. Aldpoot
aAydprduor £xouvv srpotadel kot ueAetndel yia avtd To TTEOPANUA, LEQEIKOL TTLO aTTAOLl Kol Un
TEOGAQRUOGTIKOL, €V AAAOL TTLO 1GYVEOL, AAAD TTLO TTeQlTEXVOL. MeleTdue TOUS GNULOVTIKO-
TEQOVG OITO QUTOVS KAl avaAlovue Tnv aitddocn Toug UEGH TG UETEIKNAG Tng uetdvolog’
(regret), asrodeikviovtag eyyvncels ue vynin srdavornta (high probability regret guaran-
tees). Axoua, pedetdue tov alyopuo UCBV mou ekTipdel QO aIto Tn WEGN TYWAR KoL TV
Slacropd kdde evépyelas. Autd odnyel Ge Beltiwuévn eyyvnon OTav oL EVEQYELES €lval TTLO
GTOTIKEG, TTOQAAANA £EAGMAACOVTAGS TRV eyyUncn Twv Gxeddv BEATIGTWV alyoeiduwy JTou
dratnovv wovo exkTuncelg uéong Twng. Tavtdypova, agtodeikviouue GVTO TO OITOTEAEGUAL
Ue W GNUOVTIKA AITAOVGTERN AvdAUGN OTTO AUTH GTRV aQXKR Snpoaclevon.

Y10 devteQo WEQOG ueAetdue To TTEOPANUA TV avTaywvicTikdv MAB (Adversarial MAB),
0oV Sev kAvouue KOWO GTATIOTIKA vItddeon. Agykd ueletdue to TEORAnUa touv On-
line Learning ywo vo. KOTOVONGOUUE GTNV TTOQREIDL TOV EVREMS YVwGTO aAydpuduo Exp3. Xtn
GUVEYELOL EGTLALOVUE GTO TTEOPANUA TV LTOYACGTIKOV MAB VITO AvVTOy®VIGTIKES AAAOLWGELS
(Adversarially Corrupted MABs). Xe ovtd To TEORANUO TO VITOKElUEVO TTEQIBAALOV €lvor
GTOYXAGTIKO, AAAD KATTOLOC AVTAYWVIGTRS WITOQREL VOL AAAOL®OGEL TIG OVTOUOLBES TTELV TTOLQOTN-
endovv. O TE®OTOS AAYOEWIUOGS TToU UeAeTdUe G AUTO TO TEOPANUA £EAGPAMCEL GXESOV-
BEATIGTN €yyunon UETAVOLAS GTO QULY®OS GTOXAGTIKO TEQBAAAOV n ogtola UeTafdAAETOL
OUOAd ue TNV aENCN TNG GWEEVTIKAG aAlolwong. Axdun, uedetdue tov aiyopiduo BAR-
BAR o ottolog emmituyydvel onuoavtikd kaAvtepn eyyvnon. Télog, Paciouévol Ge avtov
TAEOVGLATOVUE €vav OAYOEUILO O OTTOIOC XENGLULOTIOLEL ETUTTAEOV EKTWNGELS SLOGTTOQAS
TOV OVTAROPOV, GE Wa TTEOGTIATELN VOL ETILTUYYXOUVUE UETAVOLO N 0TTOL0L LETARAAAETOL OLAAd
aTtd avto o egacpaiicet o UCBV Ge gToxactikd mepdAlov. ITpdyuatt, agtodeikviouue
0Tl 0 aAYOEWILOG Log e£0G@Altel GxeBOvV duola eyyonon UETAVOLOS GE OWULYWS GTOXAGTIKO
TeQPRAANOV, AAAG €val TTAEASELYILOL OLKOYEVELWV GTLYWOTUTTWV SelXVveL OTL 0 aAyoQUUog GTnv

TOEWR LWoEEN Tov dev uitoel va emiTi)el Ta eTMPuUNTd ATTOTEAEGULATA.

A€geic KAeldua

[Tepropiouévn Avadpacn, Atadoyikn Anyn Astopdoemv Yo AReBardtnta, Metdvola,

Avtayoviotikn Mddnon, Avtayovietikin AAoiwon, Exktiunon Méong Twng, Extiunon AtacItods






Abstract

In this thesis we study the problem of Multi Armed Bandits (MAB), a central problem in
the interface of Statistics and Computer Science where a learner has to make sequential
decisions interacting with an environment. The first part concerns the Stochastic MAB
problem. Many algorithms have been employed for this environment achieving sublinear
regret, ranging from naive non-adaptive ones to adaptive ones based on uniform confidence
bounds on the sample average. We study some of the major ones, proving their regret
guarantees in a high probability fashion on the way. We also study UCBV, a MAB algorithm
which keeps track of the empirical variance of the arms, providing a gracefully improved
regret bound when variances are sufficiently small and attaining at most the regret bound
of more well known almost-optimal algorithms. We also provide a much simplified analysis
of its regret guarantee than the one on the original paper.

In the second part of the thesis we turn our attention to more complicated settings. First we
study the Adversarial Multi Armed Bandit problem and the very well known Exp3 algorithm.
We study the simpler problem of Online Learning on the way to understand the well-known
Exp3 algorithm and then present the analysis of its sublinear regret bound. After that, we
move to the problem of Adversarially Corrupted Multi Armed Bandits, where the environment
is inherently stochastic but an adversary can corrupt the rewards that the learner sees. The
first algorithm we study is due to the authors who also introduced this setting and it attains
the close to optimal regret bound for the purely stochastic case while gracefully degrading as
the corruption increases. We also study an algorithm called BARBAR for the adversarially
corrupted MAB problem that attains even better regret bounds, handling corruption up to
o(T). Finally, based on this we provide an algorithm that uses variance estimates, in an
effort to attain UCBV-like improved bounds whenever the stochastic nature of the arms
does not exhibit large variance. We show that our algorithm does recover the regret bound
of UCBYV in the fully stochastic case, but a key example family of instances shows that in

its current form it cannot attain the desired bounds.

Keywords

Bandit Feedback, Sequential Decision Making Under Uncertainty, Regret, Confidence Bound,

Adversarial Learning, Adversarial Corruptions, Mean Estimates, Variance Estimates






EvyagQieticg

O TpwTog Avipwmoc TTov Ja ndeda va guyoQLOTAGW €ival 0 eTMPALTTOVTAC AUTHG TNG
SumAmuatikig, o k. Anuntong Potdkng. O KvnTRELOG TEOXOS TTOV Ue Ince va acyond®
ue tnv Ozwentikn [TANEOEOEWKN NTAv 0 (6l0¢, €LGAYOVTAS UE GE QUTOV TOV KOGUO UE TO
a0TelPEVTO TTAYOG TOV KL TS YVWGELS TIC 0Toleg uetédide oTic Sadégels. Tov euyaploT®
yloL TRV GUVEXH VTTOGTAELEN TOU Kow kadodnynon n ogtola dev TeELoEIGTNKE UWOVO GTO
TAalola Tng StmAwuatikig egyactag. Elwor evyvouwv mou éAafa Ty euIiGTocuvn Tov, To
EVOLAPEQOV TOV KL TOV TTOAVTYWO XEOVO TTOU OPLEQWGE GE EUEVA KL TOV EVYAQLGT® Yo OAQL
ovTd Badutata. OEAm arouo vo evyaELeTRG® Thy EAladfeT, TT0U RTOV TTAVTO GTO TTAELQO
wov, e kdde yopd aAld kol 6e kdde duokoMa dvtag TTagovGa. Tnv evxaELGTO AUETENTA
TOU €KOVE TNV (POLTNON KAl TN CON WoU TOGO Tio ouoeeEn kol kKaAvtepn. Télog, éAm
VO EUYOELOTRGM TNV UNTEQO LoV, VOV AVDQ®ITO TTOU OVTWETMOIGE OUETENTES SVUGKOAIEG,
OAAG TTaQ OACL AUTA ETTEUEVE OC TO TEAOG KOL UE TNV ATEQUOVIL AydItn Ko SUvaun Jtov elye
TEocTadoVGE TTAVTA VAL LWOU TTOREXEL Wl KAAUTEEN Cwn. XwEIS auToUS TOuS avdEITouS

8¢ Ya nuovv ce awtd to cnuelo, Gag evxaELGTH Padid amd Ty KAESA Lov.
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Extetausvn EAAnvikn IlepiAnyn

0.1 Ewaywyn

Oeswpnate 0Tl PelokeaTe Ge €va KAVO KOl GAC AREGOVV TOAU Ta TuXeEd Tratyvidio Ko
wWuaitepa o "kovAoxEendes” n aliws Anctéc (bandits). To kagivo Ttov cuvnditete va
ETMOKEPTEGTE SLODETEL €val GUYKEKQELWEVO 0IUd TETOLWY Unyavaov. Xe Sedouévo xeoviko
Sidotnua oxedidiete vo UEYIGTOTIONGETE TA KEEON Gag wodaivovtag Jtolog AnGTAG elval
0 "kaAUTEQOS”. AuTd elvor To TTEOPANUA Tng puddnong ue TreQroglouévn avdadpacn (Multi
Armed Bandits Problem).

To meoPAinua MAB (Multi Armed Bandits) agtotedel €vao KeVIQKO TTEOPANUO GTn TOUR
TNG LTOTIGTIKAG Ko TG OewenTiking [TANQo@oEIKNG Kat eivar €va TTeofAnua Tov Nén aIrd
TAALOTEQO AITOGYOAOVGE €QEVVNTEG UE TIOAAEG TTEAKTIKES £@aUuoyes. Ilpotddnke ywa
TEOTN PoEd astd Tov Robbins to 1952, dtav ueletolGe GTATIGTIKA GUUITEQAGUOTO OLITO
TANYUGUONES Ue GTOXAGTIKO TTANDOGC detyudTmv Tou €50QTW- VTOL OTTO0 TIS TIOQOTNENGELS
[50]. TMapdAa avtd to TEOPAnua MAB €xel Tic piCeg TOou akdua ITlo TEW To 1933
otnv dovAeld tov Thompson n ottola €g€tace moTe Wa TTHAvOTRTO VITEREXEL Wag AAANG,
dedouévmv TTEQLOQLOUEVMV dELYULATMV.

"Eva ard to TTe@TO TTEAKTIKA CNTARATO JTOU £peuvianKay, 0Itov avadveTol To TTEORANLL
MAB etvar avtd Tov agtodoTIKoV GYedoUor KAMVIK®OV Sokiuwv. ITio cuykekQuuéva, o
KAk Sokun witoel va povieAogtondel o¢ pio Gelpd agtd StadoxkeS apleels acevay,
ot 07tolol VITOVETOUVUE OTL €XOVV (L0l KOWNR “OULOLOUOQ@I0L” 0 TTROS TO XOQEOKTNELGTIKA TG
acévelas.  Ymodétovue Ot vtdpxer €vas apuiudg depameldy 1 GuvELAGUAS TOUGS K
rkodewla JreoTi¥eTon yioo Sokun ko €€€tacn Tng asmddoong tng. Osweodviag OTL kdde
attopacn wag mavig depatreiog uitopel va yetpndel ce kdirowa KAMUaka, TOTE AVTO
To TTEOPANUa umopsel va cuykeuWel pue to agykd TTEOPAnUa MAB. Ol LOTEIKES EQAQUOYES
ETTEKTEIVOVTOL KAl GE TTLO KOINUEQIVES TTEQUITTWGELS, OTTWS AVTO TNG £VPEGNGS TNG GWGTNG
docgoloylag evdc papudrov (Guyvd TEopAnua yio acdevelg ue mpopAiuata dupeoedoic n
PUYLOTEIKA TTROPARUATAL).

Mo aItd TG TIO YVOOTEG KOL YOQOKTNELGTIKES EPAQUOYES TN GRUEQOV NUEEQ €lval AUTO
NG TOTTOYETNONG/ETAOYNGS StoniGe®V (TT.Y. G€ QITOTEAEGUATO UNYOVAS OVOCNTHGENG).
Ou unyaveég avagntnong @uogevoviv €va ueydAo aQuud agtd Staenuletés ue ovTaAAayuo
YOMUOTIKA Ao, TO UeyOA)TEQO TTOGOGTO TNG OTTOLOS TIPOERXETOL OTTO TO Aeyouevo “click
through rate”, SnAadn ue Alya Adyia, thv aAANAETTIOQOON TOV XENGT®OV UE TN SLOPHULON.

Emouévwg kdde punyavii avagitnong €xel a@eAog vo TTAQOUGLdLel GTov kdde xpnotn wa



Sraprion tov Ya peyietomolel tng mavotnteg avtds va aAAlnAetidpdaoel wact tng. Avto
TO TEOPRANUA elval €TTOUEVOS TTOA) OUOLO UE TO OQEXKO TTEOPANUa, OAAD TtaQ oA avtd
TO TEQEITTAOKO, KOS 0 KADE YENOTNG WITOEEl Vo €xel SLPOQETIKA EVELAPEQEOVTA Kol
YXOQOAKTNELGTIKA. Ol EQAQUOYES GTNV SLOLPRULGN KO GTLS WNYOVES OVOCATNONG £(0VV WINGEL

€va ueydAo TT060GTO TG £€pevvag GTo TTEOPANUa MAB ta tedevtaio xeovia.

0.2 Movtého

Oa povtelomomcovue To TEOPAnwa MAB wg ging.  Ymdoyouv k evépyeleg! Tig omoleg
ugtopel va, eTAEEEL 0 TEAKTOEOS (1 learner?). O TEAKTOQEOS EXEL £VO, GUYKEKQUEVO XQOVIKG
Sudotnua (Srakertd, urtoeel va dempnidel we £va Sidatnua yopwv) 6Ttou eTtAéyel kdde @oed
kdgtolo evépyela. E@'0cov eTmAEgel kAITOWL EVEQYELD, OUVTA OITOKAAVTITEL TRV OVTAUOPR
TNG G€ AUTOV TOV yUQEO KOL O TEAKTOQOS TNV OJokTd. O GToX0S TOu TEAKTOEA glivol
VO LEYLGTOITOINGEL T KEQSN TOU UETA TO TTEQAS TOV YUE®V. Oa avameQouaoTe GE KAITOLO
EVEQYELD e TO GUUPOAO a (OTTO TO arm) Kol GTV EVEQYEL TTOV ETUAEYINKE GTOV YUQO ¢ UE ay.
Kdde tétola evépyela pitopel va dempndel wg €vag deiktng 6to cuvolro [k :={1,2,...,k}.
Axdua, cuufolicovue ue r¢(a) TNV OVTOUOBR TNG €VEQYEWOS a GTOV YyUEo ¢ kot we T To

GUVOAO Twv dedouévwv yupwv. ‘Exouvue Aoutov 10 TTOQAKAT® TTEWTOKOAAO/TTEORANUAL:

ed6pAnua 0.2.1. Multi Armed Bandit Problem (MAB)

1. O mpdktopac Exel atnv Siddeon Tov k evégyeles oe kKAde yuUpo t kal cuvolikd T yUQoug.
2. Xe kade yvpo t emAéyel uia evégyela ay.

3. Xtov yupo t Aaufdver tnv avrtauolfn r(as) TRG EVEQYELAS a; TTOV ETTENEEE.

4. XT10)0¢ €ival n UeYIGTOTTOINGN TOV KEQSOUG.

‘Exouvue OUeEMGEL WO GNUOVTIKA AETITOUEQELN: TIOS TTEOKVITTOUV Ol avtouolPes;, Eivou
GTOXOOTIKA TuYoleg, SnAadn Selyuwata Wlog KOATAVOUNG, Av vol, OUTA N KOTAVOUN elval
GTOTIKIL GTOV YeOvo N uetafdAletor; Av Sev kdvouue kouio vitodeon mdeo TavTo Kol
QPRVOUUE TO £VEEXOUEVO KATIOLOC OVTAY®VIGTIG VOl TIG TTaQdyel; AVTES Kl Sidpopeg AAAeES
kotevdiveels amotelovv TTEQRAAAOVTA QUTOU TOU TTROPARUATOS TTOU €xouv ueAeTndel
evdedeywg. Euelc Ja emmikevipwdoiue agyikd 6Ta 800 GnUavTikOTEQA KL IO LEAETRUEVA

GeEVAQLOL.

HeopAnua 0.2.2. Xtoxactikd mweopfinua MAB
H avrauofi ri(a) akodovdel wa oratikn katavouri D,, ue avauevouevn Tiun p(a) Kal

Stacmopd o? (dyvwoeta otov stpdrtopa). Kauia dAAn virédeon Sev yivetal yia TI¢ KATAVOUES.

MMeopAnua 0.2.3. AvtayovieTiko TTeépAnuwa MAB
Agv vrtdpyel kauia vitodeon yia 11 aviauolfés ry(a). Oa umrogpovcav va Snuiovgyovvtal

QVTAYWVIGTIKA QITO KAITOLOV £XTQ0.

bandits, arms i actions Gtn BipAoypapio
tautdéc Tou padaiver
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0.3 Metavolwa

I uItopel 0 TEAKTOEAS VAL AELOAOYRGEL TNV eTTLTUYIO TOV; Agv glval SUVATO VO LEYLGTOTTOMNGEL
To KEEON TOv, oTodepd ue peydin mdavoTnta, oOKOU Kol GTRV (QOLVOUEVIKA OTTA0VGTEQN
GTOXAGTIKN €KSOYN TOV TIEOBANUATOG, OKOWO KOL VO NEEQE UE KATTOLOV TEOTTO TNV EVEQYELQ
7oV aTtodidel kKOAVUTEQ KATd avauevouevn Twn. IIpétel va oploovue €va AOYIKO UETQEO
emrtuxlag To ottolo Ja exTiwd Tnv agtodocn, dev @ailvetow AOyikd To vo cuykeulel ue
Tnv KaAUTepn aAlndovyio evepyewwv. H ciykpion pe €vav udvin gtov axoAovdel wa
GUYKEKRQLEVN eVEQYeELDL GE KADE YURO YVwEICovTaS TToto da eTTLPEQREL TO UEYLGTO KEQRSOS da

dovue O etvan ekTi. Opltovue AOWTTOV TV €vvola TG UETAVOLAS VITO QUTO TO TIEIGUA.

Opwouog 0.3.1. Metdvoia (Regret)

Opltovue wg uetdvola TNV JTOGOTNTO:
R(T):=> ri(a”) = > relar)
t=1 t=1
’ * T » / » ,
Omov a” := argmaX,c(, >_;—1 rt(a) (n "kadvtepn” evépyeia)
Ovoudgouye AUTA TNV TTOGOTNTA LETAVOLA, KATMS OvATTAQLGTA TTOGO UETAVIWMVEL O TTEAKTOQOS
un emiAéyovtag tnv "kaAUtepn” evépyelad. AvTn elvan n guvndicuévn €vvola UETAVOLUS

(regret) mwov cuvavtdtow ctnv PpMoypaeio. YTrdeyer wo dAAn UETEWKA, N oTroio. GUYVA

KkaAelton Pevdo-petdvola (pseudo-regret) Kol GUVAVTATAL GTO GTOYXAGTIKO TEORAnua MAB.

Opwouog 0.3.2. Wevdo-Metdvowa (Pseudo-Regret)

Opltovue w¢g PevSo-ueTdvola TNV JTOGOTNTA!

T T
R(T):= ) p* =Y Elri(ar)]
t=1 t=1

‘Orrov: p* := argmaxa € [k|E [ri(a)] (n kaAUtepn avauevouevn aviauolfn)

Mia aAAn oAV xpriciun SLATUITOGN TNG TTAPAITTAV® JTOGOTNTAC EVAL N ETTOUEVIL:
R(T) =) nr(a)Aa)
aclk]
‘OTrov:
nr(a) := Z {a;, = a} (Popég TTov eTAEYINKE N evégyela a UEXQEL Tov yvpo 1)
1€[T]

A(a) := p* — p(a) (To ydoua (gap) Tng evéQyelasg a)

0.4 Xtoxactikd TEOBANUO MAB

To TEWTO TTEOPANUA TTOV peAeTdue Elvol N GTOYOGTIKA TTeRITTTwoN Tou MAB. Kdde avtapolni
UG EVEQYELOS a TIQOEQXETOL ATTd Wl GTATIKA Katavoun D, ue avoauevouevn Twn u(a).
YuufoAicovue pue p* tnv vpnAdtepn TETOLO AvaUevOUevn TWAR KoL UE a* Tnv eVEQYELO TTOU

avTioToLXEl G VTR (looTTaAeg eTTAMIOVTOL AVIEQAITWS).
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0.5 E¢gpevvnon moota (ETC: Explore then Commit)

H 6T00GTIKOTNTA TV OVTOLOBOV LWOGS ETILITEETTEL VO LGYVQELGTOVUE UE KAITOLO ELITLGTOGUVIL
- émerta aTto vav eTTaEkn aEudLo yUewv - OTL kKATTola evEQyela elval “KaAUTeEN” N "yelpoTeEn”
aIto KAITolo AAAN. Mo Aoyki, aAAd a@eAg (0Ttws Ja dovue) GrEWPN TTOU EKUETAAAEVETAL
QUTO TO Yyeyovog, odnyel GTny SloTVTT®GN Tou TEAOTOU aAyopiduov TTov Ja ueletTnoouue
ylol TO0 GTOXAGTIKO TEOPAnua MAB. O alyopiduog Sakpiveton ge §0o GTddia, GTO TEMOTO
oTAd0 eTALYEL KATE evEQyela €val GUYKEKQEUEVO OQWIUO POEMOV KOl £ITELTA GTO SeVTEQO
GTAS0 ETTUEVEL GTNV @OUVOUEVIKA KAAUTEEN. TIo GUYKEKQWEVO, 0QICOVUE TOV TTOQOKAT®

aAydpwuo Tov amokaiovue E&epevvnon pwta (ETC).

Algorithm 1 Egepevvnon mpnta (ETC)
for t € [k- M] do > Kdde evépyeta da emidexdel M @opéc

a; =t mod k
Oplcovue g iy TNV M-detyudtov wéon TWh Tng KATavoung D, ard To TEOonyovuevo
Setyuata.
for t € [T\[kM] do > EmiAdoyn tng "KaAvtepns” evEQyelag aro 6w Kal TEQQ

ar = argmax,c fla

[a tnv avdAvon tng uetdvolag Tou aiyopiduov gival agtaQaltntn n eKTUnGn Tng AItOKALGNG
TOV EUITELRIKOV UEGOV KADE AVTOUOLPRS OTTO TNV OVOUEVOUEVI TYR TNG, WGTE VO ETTLYELQNULATO-
AOYRGOUUE YLOL TNV UETAVOLL WS TIEOS Tnv "kKaAvTeEn” oavtouoln. AvTto wiropel vo yivel
EQPIKTO UEGW® WIS QVIGOTRTAS GUYKEVTQWONG UETpou (concentration inequality). Icwg n

yvoatotepn eivon avti tov Hoeffding [38]:

Ozwponua 0.5.1. [38] Eotw {X;}!, wa akolovdia avesdptntwv Tuyaiov uetafAntdv n

ogroia kadeula avrikel 6To [a;, b;]. Ta kdde § > 0:

PEY x| LY x| 26) <oeap] 2 T
n 1 n 7 - — p Z \2

i€[n] i€n] i€[n] (bi — a;)

Igodvvaua yovue 10 TAPAKATO VYNAIGS TTHAVOTNTAS PEAyUa:

1 2k
< /—In=|>1-

Me tn fordela TNG GNUOAVTIKAG QUTAG AVIGOTNTOS AITTOSEIKVUOUUE TO TTOQAKAT® Jemonua

P <Va € k] : ‘:L ZXi(a) — pu(a)

yloL TRV UeTdvola Tou aAyopiduov.

Oewonua 0.5.2. Me mdavotnta tovddyigTov 1 — § o alyoprduos Egepevivnon Ipodta ue
M = (%)2/ 5y In(kT?) emidewcvier petdvola

R(T)=0 <T2/3 V/kln ’;’)

Axoua, Selyvouue OTL 0 (610G aAYOELILOG ETTLITUYYAVEL KATA T UEGN TTEQIITTWGN UETAVOLOL TNG

Tagng O (Tz/ 33/k ln(k:T)). IMop’éTL oL avoevouevn TWh GTRV UETAVOLOL ATTOTEAEL €val KAAS
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KOl EUKOAOKOTOVONTO GNUEID OVOPOQEAS, ULTTOQEL VOl LGXVEL OTL YEYOVOTA Ue VPNAR UETAVOLOL
AAAMAOEEOUBETEQWVOUV YEYOVOTO WKENG UETAVOLAS. [a auTo eTSLOKOUUE EYYUNGELS VYNAIG

TIavOTRTAC YO0 TOUS AAYORIDUOUS TTOU TTAROVGLACOUUE.

0.6 Active Arm Elimination (AAE)

O aAyopwuog ETC eivan €vag TtoA0) agtAdg alyoeidiog Tov eyyudTol VITOYQOUWILKA LETAVOLA,
aAAG etvan un BéATIoTOoG. O ETC givanl auTd TToU ATtORAAOVUE UN-TTROGAPUOGTIKOS alydeLduoc,
KOY®OG dev TEOGAEUALEL TTOTE TIC ETTLAOYES TOV, OTTOLO KoL VO €lval TO JTeEUBAAAOV Kol n
TpolatoQia. ITap'doAa autd, TEOUTTOIETOVTAS Evay €TTOEKN aAEUWIUO YOE®V O TTEAKTOQOS
uItoQel va evtoTicel OTL KATOLO N KATTOLEG EVEQYELEG €IVOL OPKETA YELROTEQPES ATTO AAAES
ue ueydin Bepailotnta, aEKeTA VWl atnv "egepeivnon”. AuTti n oatrienon givon n fdon

TOV €TTOUEVOV aAyoQiduov.

Algorithm 2 Active Arm Elimination (AAE)
S« [k]
for t € [T] do

CB(at) = [uta) — in BT T, ) + \in BT 2]

Av vTtdeyer cevydol evepyelwv a,a’ ue UCB(a’') < LCB(a) , t0te S + S\{d'}

EmiAege tnv evépyela a € S Ttov €xel emmideyVel T AMyOTEQES POEES (LGOTTAMES

emmiAvovTal avdaipeta)

O aAyopwuog AAE ovclacTtikd Asttouvpyel 0Ttws o ETC emiAéyovtag kdde evépyela tnv
wo LeTd Ty dAAn, aAAd wOMGS evtoTticel 0Tl kATTola evépyeta elvan pe peydin sidavotnta
OEKETA YELROTEEN TNS AAANG Tnv “agtevepyoTrolel” (Sev tnv eTmALyel TTOTE Lovd). AraneInTtikd
OUTA N TTEOGAQUOGTIKOTNTA TTEETTEL VL odnyel 6 KAAVTEQN £yyUncn UeTAVOLOLGS.

Kat'apyds astodewviovue 0tL to CB(a;t) eivor Oviwg €va SildoTnia eUITGTOGUVNG Yid
TNV avapevoyevn avtogoln ue ueydin mdavotnto. Oo déAaue vo xENGUOTIOMGOUUE TRV
avigotnta tov Hoeffding, aAAd avtd Sev elvan e@ikto, KOD®OS TOEA TTLaL 0 aELiudc detyudtmv
ylo kdde evégyelo €lvol GTOYOGTIKOS KoL €EAQTATOL KO OTto TS Jtoatnonoels. Ilap’oda
QUTA wItopovue vo xenoyototicouue Ty avicotnta Azuma-Hoeffding n omola 1Gyvet yia

YEVIKOTEQES akoAoLIiES TUYOLWV UETAPANTWOV.

Ocwonua 0.6.1. 'Ectw Y; uta akodovdia MDS (Martingale Difference Sequence) ue Y; €
[a;, b;] axebov ciyovpa, 10TE 1o)X VEL:

2¢2
P( ) “{w}

Me tnv fondela AUTAC TNG AVIGOTNTOC KOl €EETALOVTAC TTOTE TNAEXINKE yio TeAevTOla

t

> Yi(a)

=1

@OQEA KATTOl0L Un BEATIGTN €VEQYELQ, ATTOOEIKVUOLVUE OTL N UETAVOLL TOU aAyopiduov €xel

TNV TTOQOKAT® €yyvnon.
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Oewonua 0.6.2. O alyopiduos AAE emideikviel Tnv TOQOKATO UETAVOLQ UE TTLTAVOTRTO

TovAdyiotov 1 — 6:

kT 1
R(T) =0 l”a'e%.A(a)

pla)<p*
KOl KOTA TN UWECGN TTEQLITTTWON:

E[R(T)] =0 [ (7)Y Aza)

To @edyua TTOQATTAVKD aItoTeNel €va AeyOuevo Katd-oTiyuloTuIto-gedyua (instance inde-
pendent bound), kad®s £g0QTATAL AITO TO XAGUATA TV EVEQYELWV, AQO OTTO TO AeyOuevo
oriywétuaro. Tapatnpovue 6TL av o ddpolcua eivar Tng TdEng tov o(T%?) éyovue kaAUTEEN
eyyonon uetdvoiag amd tov ETC.

Mgtopovue va Sel€ovue TO TTaRAKATO Yeviko @edyua (instance-independent bound) stou

LG VEL YIOL OTTOLOSNITOTE GTIYULOTUITO TOV TIROPANULATOG.

BOewonua 0.6.3. O alyopiduoc AAE emibeikviel tnv wapakdtow yetdvola ue sidavoTnta

Tovddyiotov 1 — §:

R(T) :0( kT-m"?>

KOl KaTd TN UEGN TTEQLITTWAON.:
E[R(T)] = O ( KT - In (kT))

Etvaw eppavég Aotmtdv 61t o alyopuduog AAE €xel onuovTikd KoADTEQR eyyonon UeTAvoLaS

agto tov apemi ETC.

0.7 Kdtow @edyuato UeTAVOLOS
To Taparkdtn dedonua Seiyver 6Tl 0 adydpuluog AAE emibider oxedov BEATIGTN gyyvunon
UETAVOLOG GTN YEVIKN TTEQITTTWON.

Ocwonua 0.7.1. [4] Kavévag alyopiduog yia to 6Toyxactiko meofinua MAB Sev usopel

VO ETTLTUYEL UETAVOLO KOTA TN UEGN TTEQLTTTWON.:
E[R(T)] = o (\/k:T)

MdMGTO aKOUo Kot o KOTd-TieQiTttwon yetdvold o AAE e€fac@alicel oyxedov BEATIGTN

eyyonon uetdvouag [41]:

Oecwonua 0.7.2. Kavévag alyoprduog yia 1o 6Toxactiko meofinua MAB Sev usopel va

ETUTUYEL UETAVOLO KATA TN UECGT TTEQLTTTWON:
E[R(T)] =o(CnT)

ogtov n gradepd C e€apTdTal LOvo AITo TO GTYWOTUTIO TOV TTEOLARUATOC (Kal O)l QITo TOV

XEOVIKO opitovta T ).
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0.8 Upper Confidence Bound (UCB)

Awatutdvoupe dAAoV €vav alyoeduo yia To GToxacTiko TIeopAnua MAB o omolog, (Gwg
aTteocueva, eTOEKVVEL TIS (Bleg eyyvnoelg ue tov AAE yo tnv petdvola. O adydpurduog

etval apreTd aITAGC.

Algorithm 3 UCB
for t € [T] do

L EmfAege tnv evépyela a wov ueyigtottolel to UCB(ast) := fit(a) + /In =%

ITpw TTOROVGLAGOVUE TIS EYYUNGELS TOU aAyoeiduov, da mpocrtadncouue va avakaAmpouue
StancdIntikd ywati "Sovdevel”. ‘OTtwg elyoue Sel TTEONYOLUEVOS TO SLAGTMUO TTOQOKAT®
agtotelel €va 1 — § ddoTnUO ELITIGTOGUVRG YIOL TRV TIROYUOTIKA OVOUEVOUEVI OVTOULOPN
p(a):

[LCB(a;t), UCB(a;t)]

‘Omtov opigovue o UCB 6mwe magamtdve kow LCB(a;t) := fiy(a) — ,/In 2L . nt}a)
"Eva vynAd dve eedyua epttietocivng (UCB) umopel va etvon agtotéAeauo 500 TaQoyovimy:

el1e n evépyela £xel AEKETA VYPNAN AvTOUOPN GTn UWECN TIEQITTTWAON, €(TE N eVEQYELA SV €xEL
emideydel apKeTES QoEES. O TTEAKTOQAS €XEL KIVRTEO VO ETTLAEEEL TNV E€VEQYELQL KAl GTIC
Vo Teoavapepdeices TEQUITTOOELS. nuewwvovue 0Tt 0o UCB avikel ge wio yueyaAvtepn
OlKOYEveld alyoeiduwv (L TEOTOKROAA®YV AITOEAGE®MV) TTOV KOAOVTOVUV TV ELAOGOEIa TN
aitgroboéiag vITo afefaioTnTa.

Aetyvouue 0TL 0 aAydpuduog UCB eTITUYYAVEL TIS ETTOUEVES EYYUNGELS UETAVOLOS UE UEYAAN

mrdavéTnta.

Ocweonua 0.8.1. O UCB emitvyydvel UETAVOLO KATA-GTLYULOTVITO

kT 1
T) = .
R(T)=0 ln5 EA(a)
aclk]:
pla)<p*

ue mdavornta tovddyictov 1 — §

AKOUQ, ETITVYXAVEL AGYETWS GTIYULOTVITOV UETAVOLA

R(T) _o< kT-lnkéT>

ue mdavoTnta TovidyigTov 1 — 4.

0.9 UCB-V (UCB ug gktiynon 51a6ItoQdc)

Ou agTodaoels OAwV Twv TEOoNyouuevmVY aAyoiduny kadodnyovtay Wovo astd Tny eUTTELQLKN
EKTIUNON TNG OWVAUEVOUEVNGS OVTOUOLPAG (KO KOT EITEKTACN TOV SLAGTAUATOS EUTILGTOGUVNG
yoow aird avtiv). Ov Audibert k.. ¢Tto [3] SlaTLITOVOUV WOl GRUOVTIKA TTOQATAQENGN,

0 TTEAKTOEOCS Yo JTEETTEL VO €YEl UEYAAVTEQN EUITTIGTOGUVIL GTNV EUTTELQIKN UEGN TR Yol
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EVEQYELEG TTOU GUUITEQLPEQOVTOL GXETIKA GTATIKA (SnAadn oL TToQATNQOVUEVES OVTAULOBES
dev ATTOKAVOUV TTOA) UETAEY TOVG), ETTOUEVMGS Jal UITOQEEL VO ATTOKAEIGEL KATTOLES EVEQYELES
OQKETA TTO YEHyoQa, av €xouv wiken Stactoed. Me Alya AOylo, Wio GYETIKA YOWnAn
Slacroed da TreéTel va odnyel e WkEATEQO SLAGTNUO ELTILGTOGUVIGS YUR® OITTO TNV ERITELQLKNA

Twi. AuTti n Ttaatnenon agtodidetar gtov aiyopwuo UCB — V.

Algorithm 4 UCB-V
for t € [T] do

Emtilege tnv evépyela a mwou ueyiotomotel to UCBV (a;t) := fir(a) +
V/8Vi(@) - in AL o i AT 3

n¢(a) ne(a)

IMogatdvw n twi Vi(a) elval wo eLITEQIKN ERTIUNGN TNG SAGTTOQEAS. LUYKEKQWEVA GTNV
ATTOSELEN LOC YLl TNV €yyUncn UETAVOLOS TOU OAyoQIdou xENGUOITOLOVUE TNV TTAQOKAT®

extiunon:

Oq@woudg 0.9.1. Opitovue tnv exktiuncn S1AGITORAS WC:

1 [nt(a)/2]
W= a2 Ve

=1
‘Orrov
Ui(a) == (Xai-1(a) — Xo(a))?

kat X;(a) eival n avtayolBi Tnv i-GTn Qoed JToV ETLAEYETAL N EVEQYELQ a AITTO TOV alyoiduo.

Aglyvouue OTL N TTARATTAV® TTOGOTNTA OSNYEl GE WOl WN-UEQROANITTIKA EKTIUNGN TG S10.GTTOQRAC,
dnAadn:
E [Vi(a) = 07]

a

Méow avicotitwv yia M DS akolovdies astodeikviovue TV TTAQOKAT® AVIGOTNTO

GUYKEVTEWGONG UETQOU:

Anpua 0.9.1.

2kT logT 2kT logT 4
+In

- 1
|t (a) — p(a)| < 2\/nt(a)03 -log ) ! 5 3n4(a)

yia OAes TIC gVEQYeleg Kal xpovoug t ue sridavotnta tovddyictov 1 — §;, omwov [y(a) =

ntta) Z?;(la) Xi(a) kot X;(a) eivar n avtauolfi tTnv i-GTH QOEA JTOV ETTIAEYETAL N EVEQYELD a.

Tnv TToQaTtdve OVIGOTNTO YENGWOTIOLOVUE KAl Yo TNV eKTUnon tng SacToeds, WoTe
va delgovue TOANATTAAGLAGTIKA TTEOGEYYIGN OTAV N TTEOYUATIKA Sl06TToQd elvol aQKeTA
wkEn (To oTtolo odnyel Ge €va TEAYUATIKG dvew PEAYWd eumtioTocvvng). ‘Otav n dtacmropd
elval OEKETA WIKEN, TOTE Oev UITOQOUVUE VO €XOUUE TETOLOL TTEOGEYYLoN, AAAd KOD®S TO
Avw @EAyuo agtoTeAelton aTtd €vav TEOGYETO aveEdETNTO TNG EKTIUNGNS SLGTTOEAS 0QO,
€EQC@ANIOVUE €val Ve @EAYUO EUTTLGTOGUVNGS KOl GE QUTAV Tnv Tepimtoon. MdMaota,
otny devtepn TreQlTiTOoN Selyvovue OTL n ektiunon tng StocItoEds dev umoel va eival

OEKETA UEYAAN, ®GTE KAITOLOL eveéQyela va eTtAexdel Sucavdloyo TTOAMES POQEEG.
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YuvoplcovTag, OITOSEKVUOUUE UE OQEKETA ITL0 TIEOGEYYIGWN avdAucn amd Tnv oQylkni

dnuoalevon Ty TORAKAT® €yyvnon ywa tov aiyoewuo UCB-V:

Theorem 0.9.1. UCB-V emitvyydver yuetavoia

kT o2
O ln—(s . E {A(a)+1}
a€lk]:
pla)<p*

ue mdavornta tovddyigtov 1 — §

0.10 Avtayovietikd TofAnuoa MAB (Adversarial MAB prob-

lem)

Meletnoaye 10 GTOXAGTIKO TTEOPAnUa MAB ko eldaue Sid@opovs alydpudyoug yia tnv
OVTWWETMOITLON TOV. X& OUTO TO onuelo avakaAovue tnv vTodeon TNG GTOXAGTIKOTNTAS
Tov avtogowv. ‘Otav dev €xovue vitodécels, urmopovue kAAMGTA va dempncovue Ot
VTTAQEYEL KAITOLOG OVTOY®MVIGTRG TTOU SnUoveyel TG ovTouoBES we GKOTTO va wog PAdApeL.
To mEAPANLO avTO uedeTnidnke ylo TTEAOTN EOEA AITd Tovg Auer K.0. GTo [6].

Etvaw e0koAo va Sovue OTL €vag agtAdg aAyoeriuog yio To GTOYAGTIKO TTEORANULA, OTTOS
0 ETC umopel mdvta va odnyndel ce ypoauwkn uetdvora. Apkel va dempncovue €vav
OVTOY®WVIGTR JTOU GTO TIEMTO GTASI0 Tou alyopiduov Snutovgyel avtauoBés 0 yia kdde
evépyela ko tnv uéytotn (1) ylio W GUYKEKQWEVIN, V@ GTO OeVTEQO KAVEL OKQPBOS TO
avtioTEo@o. I'evikdTeQQ, KADE VIETEQUIVIGTIKOS aAyoQLduog Sev uitopel va eyyundel vrtoypou-
WIKA LETAVOLOL KATA TN UECN TIEQITITMOON VIO AVTOYWVIGTIKES GUVINKeS. ALTO wItoel va
ouupel aKOUa KAl OTAV O OVTOY®VIGTAGS eV "avTded” GTIS ETTAOYES TOU OAYoRIDLOV/TTEAKTOQO,
GE QUTH TNV TEQITTTOON KOAOVUE TOV OVTOY®VIGTH Un-teocapuoctiko (oblivious).  Av
0 OVTOYOVIGTAG OVTIOEA GTIS €TLAOYEG TOU TTEAKTOQO KOAEITOL JTROCAQUOGTIKOS (adap-
tive). Tavtoypova kot GTIC V0 Avw TEQLITTMOGELS O TEAKTOQEAS UItoel va elvon elte
VTIETEQUIVIGTIKOG, €(TE TUYOMOKQOTIKOG.

H upetdvola kdmolov mpdktopa/alyopiduov opltetal ue fAon tnv €k TOV VGTEEWV KAAVTEQN

EVEQYELQL:
T

a® := argmax Z ri(a)
aclk] =1

Towg ampocueva, da agtodetsovue OTL VITAQYEL AAYOQLIUOG TTOU ETTLTUYYAVEL EYYUNGN UETAVOLAS
GXedOV 0G0 TO PEATIGTO AGKETWS-GTIYULOTUTTOU Te®ENTIKG KAT® (PEAYLO YO TO GTOXAGTIKO

TEORAnUA! Xuykerkoéva da dovue OTL:

Oewonua 0.10.1. Yrrdagyer alyopiduog yia 1o avtaywviaTiko teofAnua MAB srov eyyvdTal

uetavolo:

E[R(T)] = O (v/kTlogk)

H uetdvola avti elvar oxeddv BEATIGTN, OTTwG delyvel To TTOQAKATO dewenua.
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Oewonua 0.10.2. [6] Ogrotocbrizrote alyoplduos yia 10 avtaywviaTiko JteopAnuc MAB
Exel avauevouevn UeTavola:

E[R(T)] > Q(VET)

Ou Auer k.0. TaovcioGav Tov aiyopwuo Exp3 yio 10 avtoyovieTikd TteofAnua MAB
TO 0oTolo OTwGS avapépaue ol drot ueAétnoav yo weotn @oed. O alydeibuog eivan
ETTNEEAGUEVOS ATTO TOV YVwoTo adydprduo Hedge (1 Multiplicative Weights Update) o ottolog
TLAQROVGLAGTNKE TTEMTN oA aItd Toug Freund and Schapire [32]. O aAydpuduog arkolovdel

TLOLQOKAT®.

Algorithm 5 Exp3
Hageduetoor v,n € (0,1/2)

I 6Aeg Tig evépyeleg a € k @ wi(a) =1
for t € [T] do
Emiloyri evépyelag a ue mudavétnta py(a) = (1 — 7)2“}% +/k

acik) we(@)
YztoSoyxn r(a)
#i(a) = Ha, = a} - 24

wey1(a) = wi(a) - exp{ni(a)}

Oewonua 0.10.3. [6] O alyoprduos Exp3 emituyydvel Tnv JTOAQAKAT® EYYUNGNR Yio TRV

AVaUEVOUEVI UETAVOLA, Y10 OTTOLOVONITOTE AVTAYWVIGTH.

E[R(T)] < 2.63VTknk

0.11 Xt0ox06TiKO TEOPANUA MAB 0316 AVTAY®VIGTIKES AAAOLOGELS

Méyxol T®ea €xovue UEAETRGEL TO GTOXAGTIKO TIEOPAnua MAB, aAld kot to avticTou o
oVTOY®VIGTIKO TTEORAnUA. ITap'dAa avtd ol §V0 AUTES TTEQLITTMOGELS WITOQREL VO ATTOTEAOVV
akaieg vIToYEGELS Yyl TO TTEELBAAAOV TOV EKAGTOTE TTEOPAUATOS, ATTO Tn Uit N VITEPROAKA
eATILS0POEA dedpnon OTL Ol AVTAUOBES TTEOKVITTOUV AITd OUoLa aveEdeTnTo Selyuoto tng
{6l0c KaTovoung ko aItd tny AAAn n vIEQROAKA TEGUWILGTIKN de®denon OTL JTEETTEL val
@LACTOUUE OTTO KATTOLOV OVTAYOVIGTH UE KAKES TIROVEGELS.

Ou Aukovpng K.o.. JTEOTEWVAV TO TTEOPANUA TV XToxacTik®wv MAB U0 aVTayOVIGTIKES
alAldoiwacels 6To [46] yia TTeQAAAOVTA OTTOV N EYYEVIG GTOYXAGTIKOTRTA StaBAAAETAL QTTO
AALOLWOGELS TTOV dev 0dnyov Ge eVIEAMS AVTAYOVIGTIKO TrepiBdAlov. H uedétn tétoiwv
TEQPRAAAOVTOV TTAQOKIVAINKE TEQALTEQ® ATTO TO GUVEXMS AVEAVOUEVO avouevo Tou click
fraud, 6e TTEOTAGELS UnYOV®OV avagitnong, SnAadn Tnv opyavougvn emtyeipnon kadodnynong
TEOTAGEWV, UEGM WPEVIDV SNANGEWV EVOLAPEQEOVTOS. AANES EPAQUOYES EVOLAPEQOVTOS
QTTOTEAOVV TO Spam Kol Ol KAKOBOUAES KQLTIKES GE EQPUQUOYES TTROTAGEWV.

Oplcovue TO TTARAKAT® TTEOTOKROAAO/TTEOBANUAL:

IMeopAnua 0.11.1. Etoxactikd MAB vTtd avTayoViGTIKES AAAOLOGELS
1. O mpdkrtopag Exel aTnv Siddeon Tov k evégyeles e kKAde yuo t kal Guvoldikd T yUgoug.

2. Xe kdde yUgo t eTIAEYEL Ui EVEQYELQ ay UE GTOXAGTIKA aAvTauolBn 7(az).
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3. XTov yUpo t 0 avTaywVvIiGTHS aAAOLOVEL TNV AvTaUolBi Katd ci(ay).
4. O mpdktopags gragatngel tnv aviouofn ri(a;) = 7i(ar) + ci(ar) 5. XToyo¢ eivar n

elayioroTroinon tng YevSo-UeTAVOLAG.

Axoua, o 1060 aAlolwong 1 to WOGo Kovid elval To TEOPANUO GTO Vo €ivol TTARQWS

OVTOYWVIGTIKO 0QICeETAL aTtO Ty cweevTiki alldoiwan C.

Opwouog 0.11.1. H cwpevtiki aldoiwcn C opigetal wg:

C:= ) max|e(a)l
a€(k]
te[T)
Ouv gTtoxaoTikol aAydpuiuor 0TTws o AAE ustopoUv vo odnyndolv Ge yQOUUWKA UETAVOLOL
GTO TOQAITAV® TEOPANUO OKOUA Kol Ue €val TTOAD WKQEO TT0GO GWEEVTIKAG aAlolwong
(Aoyouiutkd g TTEOS TOV XEOVIKO 0plcovTa). ATd Tnv dAAN, aAyoeLILol yio TO AVTOY®VIGTIKO
TEORANUA, O0TTwS 0 Exp3 Statnolv LITOYRAUUIKES EYYURGELS, OAAD dev exkueTaAlevovTon
TNV EYYEVA GTOYOGTIKOTNTA, OGTE VO EEAGPAMGOUV KAAITEQES EYYUNGELS OTAV N aAloiwaon

elvol GYETIKA WKEN.

0.12 Multi-Layer AAE Race

Ou AvkovEng K.o.. ToviCouv OTL av 0 TEAKTOEAS YvoELZe Ty allolwon C, 1 TOVAAXLGTOV
KATTOL0 Avw @EAyUa, TOTE da ULIToQOUGE QVEAVOVTOS TO SLAGTNUO euItioToguvng Tov AAE
ylo Ty kdde evépyela, va AELTOUQYEl OTTOC AVaUEVOTOV GE TTANEN GTOXAGTIKO TTEQLRAANOV,
dnAadn pe yeydAn midavoTnto va unv astokAElGTeL n BEATIGTN €VEQYELD. LUYKEKQLUEVA

ATTOdEIKVUOUV OTL:

Oewonua 0.12.1. O adyoprduos AAE ue Sidotnua eugtigtocuvng

rad(a;) = \/21n2k:T/5 L C

n¢(a) ne(a)

=3
s
+

éxel uetavora tng taéng O (Z#a* A(a)>, av C gival éva dvw @eayua yio TNV GOEEVTIKI

alloiwon.

XTn GUVEYELD AITOSEIKVYOUV TO ETTOUEVO GRUOVTIKO JedEnUa €V TTOQELOL YloL TNV TTOQOVGIAGN

TOU aAyoEiduov ylo To aQXKO TTEORANULAL.

Oewonua 0.12.2. Av to megifdllov gival €iTe GTOYAGTIKO €LTE AAAOIWUEVO UE GWEPEVTIKIL

alAdoiwan C, TOTE 0 TAEAKAT® AAyORIIUOS ETTITVYXAVEL ueTAVOLA TNG TAdENg O (ln % D A%a))

gTNV JTEMOTN JTTEPLTTTWON KAl UeTdvola tng tagng O (kC ln % u ﬁ) gtnv 6eUTEQN.
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Algorithm 6 Apyo-Tonyopo AAE

for t € [T] do
21n 2£T
rdp(a;t) < ntpi«j)
21n 2£T 21n 26T
rds(at) <\ T T @

Me mubdavitnta 1/C yenowotoinge to apyd AAE (S), alAodg yencwomoinge to
yeriyogo (F).

Av o S agtokAeioel wa evépyela an a, TOTE n Bl evépyela astokAeleToar kow gTov F.
Av o F 8ev dadétel o evEQYELEG TTROGS ETTLAOYN, ETTIAEEE WOl EVEQYELDL GTRV TUXN OTTO

OVTES TTOU SeV €YOVV QITOKAELGTEL ATTO TOV S. > Xwpic va avavewdel/alldsel kAol

JgrAngo@opia GTov S

Baciouévol Aouwtdv gTny meonyovuevn TTAQATAENGCN, EITTEKTEVOUY TV WEA dTav n allolncn
dev etvan yvwati. O aiyopiduog Multi-Layer Active Arm Elimination Race Ttov TT0,QOUGLALOUVV
guvteleltar attd Aoyapuukd TTOAAA ctiywmdtuma AAE, kadéva attd to ogtolo elvar Irio
“ayd” aTTO TO TIEONYOUVUEVO TOV. XUYKEKQWEVO, TO TTEAOTO £IT(TESO €lval TO ITLO YEIRYO0QO,
OAAG KO TO TTLO ETPQEETIES Ge AAdN, eved kAde eTtduevo emiTiedo emAéyeTon pe TdavoTnta
OV petwvetan ekdetikd (Radéva uitogel va yelplotel aldolwon avdloyn Ue T0 AvIiGTEOEO

g mavétntag avtng). O alyoeuuog @aiveTol TTAQAKATO.

Algorithm 7 O aAydpwuog Multi-layer Active Arm Elimination Race
for t € [T] do

4kT
rado(a;t) < 2 s
ng (a)
4kT 2kT
radi(a;t) < /2t + e for Le {1, [log T}

Me mudavétnta (1/2)+! emidege Tov alyderduo Tov eTmmédou [ i ue Tnv vITOAOLTTOUEVN
mdavotnta Tov adyopuduo touv emmuatédov [ = 0.

Av To emiziedo [ agtokAelcel wa evéQyela a, ATTOKAELGE TV (Blo evépyela Ge OAa Ta
emimedo I < .

Av kdItolo eTmAeyUEvo eTtiITedo Sev €L EVEQYELES TIROC ETAOYN, ETTIAEEE WL EVEQYELQL

aTtd TO KOVTIIVOTEQO AV £TTITTESO TO OTTOLO €XEL EVEQYELES TTROGS ETTLAOYN.

O moapattdve aiyopiiuog Sev meovTTodETEL TRV Yyvdon Tng aAlolwong 1 tn yvocon Tov av
TO TTEQUPAAAOV TTROKELTAL VO EIVOL EVTEANS GTOYXAGTIKO N aAAOLwUEVO. MAMGTa, eTTLTUYYAVEL
avTo TTOoV ¢nteltal, KadNg eEac@alitel Tnv PEATIGTN eyyUnon UETAVOLAS GE TTANQWS GTOYAGTIKO
TeQPRAALOV N oTTol0 AVEdvETAL OLOAd 0GO aEdveTol N AAAOlOGN, OTTMS SElYVEL TO TTAQAKATM

Yeddonua.

Oewonua 0.12.3. O alyopiduos Multi-Layer Active Arm Elimination Race emitvyydvel

uetavoia

Olln

kT 3 kCInEL 4+ log T

0 byt Al(a)

ue mdavornta TovddyieTov 1 — 4.
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0.13 O aAyoprduoc BARBAR

ITap'6Ao TTov 0 adydprluoc MLAEER eivatl StonginTikdg kot agtAdg, n eyyvncn UeTAVOLIS
TOV VITOGYETAL SLOFETEL TTOANAITAAGLOGTIKA €£GQTNON AITO TNV aAAOl®GN KoL WIToQEel val
odnyndel Ge yoauwkid uetdvolo ardua kow yio adloimwon C = Q(v/T). O Gupta K.o.
TLAROVGLACOUVV EVav AAYOELILO Yol TOV 0TT010 delyvouv Tt EE0GEAAIZEL Eva auadNnTd KOAVTEQO
@EAyUO GTn UETAVOLA, OUGLOGTIKA OVTOAAAGOVTAS TNV TTOAAOTIAAGLOGTIKI €£dQTnon Ue
adpoloTiki. O alyoeuog avtds emiong dev ypeldetal yvdon tng aAlolwong kot eival
OXETIKA aTTAOC.

To k¥ELO GuaTaTKG TOV aAyopiduov eivar OTL yenaowoTolel Aoyouiutkd TTOAAES £TTOXES, OL
0TTO(EG YENGUOTIOLOVV TTANQOMOQEIES UOVO ATTO TNV UEGHS TTEONYyoUUEVR €TTOXA (TO 0ITO(0
EEACPAMTEL KATA KATTOLO0 TEOTO WO PEAYUEVN ETTLREON TNG OAAOIOGNG). XUYKEKQUUEVA,
kdVe eroxn m Swatneel wia ektiwnon A, (a) yia To xdoua A(a) TnG EVEQYELOS a KOL TTALTEL
ue TTavoTNTO TETOLO, MOGTE KOTA OVOUEVOUEVN TN, N EVEQYELD a VO, ETTAEYEL OGES (POQES
da emideydtav (to moAV) amd Tov aiyopwuo UCB, av dviwg elye ydoua A,,(a). M
astaitnon eivor kaulo evépyela va unv emmideyel Ttdveo amd 22" @oeés, To omolo waldi ue
Tnv TMJOVOTIKA €TTIAOYN SIvel EUKALQIES GE POLVOUEVIKA KOKES evépyeleg. O alydprduog

axoAovdel.

Algorithm 8 BARBAR
A =10241n (% 1logT)

Ty =1
for a € [k] do
 Afa) =1

for m e {1,2,...} do
fin(a) = A- 4,2, (a)
ObGE Ny = Y e iy Tim (@) KA g (a) = "5
Oéoe T,y = Trn—1+ Ny, kW Epy = [Tn—1, Tin
for t € E,,N[T] do

emilege Tnv evépyela a ue mdavétnta g, (a)
(@) = 4 Sie, Hay = a}r(a)
Uy, = ATEMAX, e {tm(a) — %ﬁAm—l(a)}
fom = bm(ay,) = 15Am-1(a)
Am(a) = max {27, uy, — pm(a)}

Apykd ov Gupta k.a. Selyvouv To emduevo KUELO AUUO TO OTTOL0 TTEQPLEYEL TRV AVIGOTRTA
GUYKEVTEMGNGS LETEOV YO TNV OITOKALGN TNG EKTIUNGNG fiy, (@) OTTO TNV TIQOYUOTIKR OVOULEVOUEVIL

OVTOULOLPN:

Anpua 0.13.1. Ectw

£ = {Vm,i Cpm(a) — p(a)] < QJ\C[: 4 Amlé(a) Kat ny,(a) < 2nm(a)}

. Tote wgyver ot: P(E) > 1 -6



Avtn n avieoTnTa odnyel GTO €ITOUEVO ANUUO YO TIS EKTIWNGELS TOU YACUOTOS KADe

EVEQYELAC.
Anpua 0.13.2.
Ap(a) <2(A(a) +27™ 4 pm)
Kol
1
Ap(a) > EA(a) — =27 —3pp,

‘ L m 2C,
OTTOV Py = D 0Ly gy

IMopatneovue 6Tt n AAAOIWGN TTREONYOVUEV®V ETTOXWDV GUVEXLCEL VO ETTNEEALEL KOl ETTOUEVEG,
OAAG aUTH N €TTLEEON UelwVETA ERTETIKA Ue TNV TTAE0J0 Twv emoy®wv. Me tn Bondeia tov
TEONYOVUEVOU ANUUATOS OITOSEIKVYOUV TO £ITTOUEVO KUQELO dedEnual Kol £yyuncn LeTdvolog

Tov aAyopiduov.
BOewonua 0.13.1. O adydprduosc BARBAR emitvyydver uerdavolra

R(T) <O [ kC +log(T) - log (l; logT> E Az ]
a
aFa*

ue mdavornta TovddyieTov 1 — 4.

0.14 Exktwnoeeig AlacoQds e aAlotwuévo steipdAlov

O alAyoeuog BARBAR TTQOGOUOLOVEL TRV GUUITEQLPOEAD Twv alyopiduwv UCB, AAE ue
€VPWATO TEOTIO OTAV VTTAEYOVV AAAOLWGELS. Xe QUTO TO GNUElD UEAETAUE OV UTTOQOVUE VO
ETLTUXOVUE TTAQOUOLOL GUUTTEQLPOQEA Yl TOV aAyoprduo UCBYV yonGUOTIOL®VTAS EKTUWNGELS

SlaoToeds. AlaTuItevoure AOLTTOV TOV TTOQRAKAT®W OAydeLdyo.
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Algorithm 9 BARBAR-V
10klog® T
A =2121n =582

Ty =1
for a € [k] do
Ap(a) =1
Vo(a) =1 > H uéyiatn Stacmopd T.M. ato [0, 1] eivar 0.25.

for m € {1,2,...} do
m(a) = A (X’él:((?) + Amil(a)) > Mia evépyela a da emideydel TeQlImov TOGES POPES.

N = Zae[k} fim (a)
qm(a) = ﬁ]W\LfT(f)

T =Timn—1+ Np
En = [Tm-1,Tn]
for t € E,,N[T] do

t Emtidege tnv evépyela a ue mbavotnta ¢, (a)

tm(a) = euTtelQikn UEGn avtouoln a Tnv €Ioxn m
Vin(a) = eugrelpikn SlaGItod avtouolpng a tnv eIoxn m
ay, = argmax,cp {#m(a) — 168m-1(a) — pgAm—2(a)}

115 = fn (@) — corrn(a,)

Am(a) = max {27, py, — pm(a)}

"Eva onpavtiko texviko AMUia yio Thy avdAucn Tou aiyoiduov eivol To TToQAKATM ATTOTEAEGUA
YlOL TRV EUTTELQLKA EKTIUNGN TNG S1AGTTOQAC.

Anpuo 0.14.1. o kdde evépyela a kar yio kdde emmoyxn m ue mIavoTnTa TOUVAGYLIGTOV
1 —3klog®Te 2:

‘Otav 02 > 123 . A, (a) wynini SiacTmopd):

18C, 1, ,  96C,
_Form o Z 2 o < Tom
N, + % Vin(a) < 4oz + N
‘Otav 02 < 1282 . A (a) (raunin SiacTwopd):
245z 96C,,
< AL Tm
Vin(a) < 3 Ap—1(a) + N

AvTto pog odnyel GTo TARAKAT® ARUUO TTOU TTOGOTIKOTIOLEL TNV eKTUNGN TOU YAGUOTOS
KATTOLOG EVEQYELOG, e BAcn Tnv SlaGItoEd Kol Ty eToxn. AloTiigtovouue 0Tl Aaupdvouue
OUGLAGTIKA TO aVTIGTOLX0 Anpuo TTov StatuTtwoay ov Gupta k.a. 6to [36], ue oM WKEES

Slapopgc.
Angua 0.14.2. Ia kade emwoyn m kot evépyela a €yovue ue mdavornta TovAddyicTov 1 —4:
Ap(a) <2(A(a) +27™ + pm)

‘Omtws Kat:

Ap(a) > =A(a) =27 — 6pm,
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‘Omov opicovue:

m

1 G
pm ‘ZZWE

s=1
XENGYOITOLWVTAS TO TTRONYOUUEVO ARULOL KOL SLoLXWEICOVTOGS TTEQLITTMGELS YO TRV TTQOLYLOTIKI
Slaomopd kdde evépyelag, aTToSelkVUOUVUE TO TTOQOKAT® dedEnua ylo tTny eyyvnon tou

aAyopeiduov.

Oewonua 0.14.1 (Metdvola 6e GToyacTkO TEQBAALOV). O alyopiduosc BARBAR-V emitvyydvel

TNV EITOUEVI EYYUNGN UETAVOLOGS UE TTLIAVOTNTA TOVAAXLGTOV 1—0, GE GTOYATTIKO TTEQLBAAAOV:

klog? T o2
R(TY<O (1 . logT “ 1
o ( e
aFa*
I[Mop'dtL To TTORATAvVED dewenua elval evdaEEUVTIKO, SUGTUXMS N TTARAKATO OLKOYEVELQL
avtirapadelyndtmv Selyvel 0Tl o alyoerduog dev urtopel va eyyvndel ta gntovueva @edyuota

UETAVOLOS GE AALOLWUEVO TTEQURAAAOV.

Ocionua 0.14.2. Addoiwon tng tdéng ©(vVT) umopel va odnyricer tov alydpiduo BAR-
BARV ge uyerdvoia tng taéng Q(T).

ATtodeien.

"Ectw €va otiymdtuTo dUo evepyeldv ue tnv un-BEATIGTN €VEQYELL v ETTLOEIKVUEL YAGULO
A. ’Eoctw oxkoua M = log,T. Oewovue £vov OVIOAY®WVIGTH O 0T0{0¢ AAAOLDVEL TNV
emoyn M /2 — 2 ue t€tolo TeOTo, wate o aAyopuiuog dewpel OTL or SVo evépyeleg elvan
VIETEQUIVIGTIKEG. O aVTAYOVIGTAG €XEL TV (610 GUUTTEQLPOQRA YLOL OAES TIC ETTOUEVES ETTOYES
uéxot tnv emtoyn M —2 (GnuelwTtéov: 8 Log evELOPEQEL TTOLAL EVEQYELDL TILGTEVEL O AAYOELILOG
oL elvan PEATIGTN).

Ou emoyéc awtég m € {M/2—-2, M /2—1,..., M —2} €ouv unkog 2. O aAvVIAYOVIGTAS GTNV
ewoxn M — 2 aAAOLWVEL pe TETOLO TEOTIO WGTE 0 AAYOEWUoS va TeTevel 0Tl n BEATIGTN
eveéQyela etval n un BEATIGTN KoL WAMGTA OTL €xel ueydAn (otadepn) Stacmopd. H emduevn
emwoyn tote dau éxer urikog 4M -1,

H cuvolikn aAloiwon etvor:
oM/ + 0 <2M/2 4 oM/ 4 2M_2> =O(VT)
Eved 0 alyéerduog vItokUTITEL GE UeTAvOLaL:
QA -4 H =Q(A-T)

H omroila etvan yoauukn, av to ydoua A eivar gtaded.

0.15 Egwtidoyog

H @ucloloyikn emtéktacn tou aiyoeiduov BARBAR yia Tnv XeRon eKTWAGEWV SLGTTOQAS

(Le GKOTTO TNV PEATIOUEVI UETAVOLOL GE TILO ‘GTOTIKA VITOKEUEVA GTOXAGTIKA TLEQUBAAAOVTAL)
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aTToTUYYXAVEL GTO GKOTO Tng. Ilap'dAa avtd n arotuvylo Tov alyopiduov dev €ykertan
oTnV ektTipnon ng SacToeds avtn kod avtn, kaddg n exktiuncn Tng SlacItoEds elval
OTTEOGAOKNTA eVEWGTN TNV AAAOlwon (TTEEOUTEQM aItd Thv ekTiuncon uéong Twng). H
aduvauio Tov alyoeibuov €ykertar GTIC UETARBAAAOUEVOU UNKOUG ETTOXES TTOV XENGLULOTITOLEL.
YUYKERQWEVQ, GTOV AAYOEWHo avTd ugtopel KAAMGTO va unv €xovue Ty ekJeTIKN aEnon
TOU Unkovg Tov emmdeikviel 0 BARBAR, udMcto umoel va unv givor Kav avgovca
guvdetnon g emoxng. Iop'oAa autd o GxedlacUos aAyoRIdUL®Y TTOV AELOTTOLOVV EKTUWNGELS
SlaoTodg e aAAOLWUEVA TEQIRAAAOVTOL, TTAQAUEVEL Wial OvoLXTH KaTtevduven, n oTtola (Geg

YOELWLGTEl SLOLPOQETIKES TTQOGEYYIGELS, VIO TNV ETITEVEN PEATIOUEVOV EYYUNGE®V UETAVOLAG.
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Keiuevo ota AyyAikd
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Chapter 1

The Multi Armed Bandit problem

1.1 Introduction

You are a gambler and really like slot machines. The casino you frequent has & machines,
(or more coloquially known: one armed bandits). In a limited time frame, how can you

maximize your profits, by learning which bandit is the best’?

This is the well known problem of Multi Armed Bandits (MAB), which was originally pro-
posed by Robbins in [50] (1952), but has its roots (specifically the widely used Thompson
sampling algorithm) even earlier in the work of Thompson [56] (1933). The unique name
of this problem comes from the setting we introduced and was first named so by Bush and
Mosteller in [20].

The Multi Armed Bandits problem finds application in seemingly different areas of interest.
One of the first such applications which also brought attention to it, was that of how to
design efficient medical trials and choose the better course of treatment, as in [1]. More
specifically, one can model a medical trial as a series of sequential patient arrivals and a
variety of treatments (the arms) which can be chosen for each individual patient. The simi-
larity with the aforementioned problem can easily be inferred then, assuming the treatments
can be graded in a scale and the patients are "uniform” in the sense of their condition.
Medical applications also extend to more usual settings, such as finding the correct dosage
of a prescription (a somewhat lengthy process in various scenarios, such as thyroid issues

or some mental disorders).

Another very famous application, which emerged more recently, is that of advertisement
placement (for example in search engine results). Search engines host a variety of adver-
tisements for many different clients in exhange for compensation. The bulk of the revenue
is a function of the click through rate (in practical terms; how many times was an ad
clicked), as a vendor would like to maximize their visibility. As such, the search engine
is motivated to show each user an advertisement that maximizes the probability that the
user clicks on it, elliciting their interest. This problem is also very similar to the classic

MAB problem, albeit a bit more complicated, as each user has different interests and likes
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(a context is needed). Recommendation systems and ad placement applications have driven
a great deal of the current research towards Multi Armed Bandits. Some indicative applied
works in this direction can be found in [59, 44, 16] and for a more comprehensive survey

on recommendation applications the reader can consult [54].

A non exhaustive list of other applications, range from partial feedback games, where an
agent in a complicated repeated game is faced with the choice of various strategies only
observing her utility, with some examples in [37, 15, 35, 42], to portfolios [53, 57] and
dynamic pricing in auctions with clients arriving sequentially [47, 48], to packet routing [7,
393], social and communication networks [25, 23, 26, 19] and many others. The reader is

referred to [12] for a more thorough survey.

1.2 Structure

We model the quintessential problem of Multi-Armed Bandits on the next subsection and
on the next chapter we consider the classic stochastic variant [18]. We first study a naive
non-adaptive algorithm coined Explore then Commit, which attains sublinear regret, which
while not close to being optimal, is beneficial in gaining an intuition for the problem and
later algorithms. The next algorithm we consider is an adaptive algorithm which is widely
used. The algorithm, known as Active Arm Elimination, first described by [30], considers the
history of the rewards to adapt its choices, attaining aconsiderably better regret guarantee.
A quite similar algorithm (although not that clear at first) is the very well known UCB
algorithm by Auer et al. in [4]. Both of these algorithms attain almost-optimal instance-
dependent and instance-independent regret bounds (considering the information theoretic
lower bounds on regret). We finish the chapter by presenting UCBV proposed by [3], an
algorithm that differs from the above, as it also uses variance estimation in its decisions,
which guarantees an even better regret bound when these variances are small.

The third chapter chapter 3 considers the Adversarial MAB or (or non-stochastic) problem.
We present the celebrated algorithm Exp3 by Auer et al. in [6], which draws inspiration
from the full-feedback Online Learning problem and specifically the Multiplicative Weights
Algorithm first described by Littlestone and Warmuth [45].

In the fourth chapter we describe a model of environments which are between these two
extremes and specifically environments which can be described as stochastic in nature, but
experience corruptions/perturbations by an adversary, a problem first considered by Lykouris
et al. [46]. The first algorithm we study is by the same authors and attains the optimal
regret bounds in the stochastic case, which deteriorate gracefully as corruption increases.
We also study BARBAR, an algorithm proposed by Gupta et. al. [36], which achieves a
substantially better regret bound dependence on the corruption that the adversary injects.
Our last chapter attempts to extend the results, by considering an algorithm that also uses
variance estimates in its decisions, in order to obtain an improved regret bound when the

instance allows for small variances. Even though variance estimations prove not to be too
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sensitive to corruption and our algorithm attains the desired regret bound in the stochastic
case, a key family of problem instances shows that this direction might not be achievable

with our current algorithm.

1.3 The model

Let’s dive into more technical details. We will model our problem as follows. The agent
(or learner) has k arms (or actions)! to choose from and T rounds available. Each arm a 2
when picked at round ¢, supplies the agent with a reward r:(a) and only that. We call this
bandit feedback (as opposed to other scenarios, such as full feedback: revealing each and
every action’s reward at the round). The agent strives to maximize her reward in the span

of the T rounds.

Definition 1.3.1. Multi Armed Bandit Problem (MAB)

1. The learner has k available actions at each round t and is given T rounds in total.
2. At each round t the learner chooses an action a;.

3. The learner receives and observes the reward ri(a;) of arm ay.

4. The learner strives to maximize her reward.

There is an important detail we have glossed over though: how are the rewards chosen? Are
they random, meaning that they are observations of a distribution? If so, is that distribution
static throughout the course of time? What if we make no assumptions at all and allow

an “adversary” to make up the rewards as they please? We will study two important cases.

Definition 1.3.2. Stochastic MAB
The reward r(a) is sampled from a static distribution D,, with expectation ((a) and variance

o4 (obviously unknown to the learner). No other assumptions about the distribution are made.

Assumption 1.3.1. Adversarial MAB
There are no assumptions about the rewards at all. The rewards r(a) could be adversarially

(and even adaptively) constructed.

There is an obvious dilemma for the agent in both these cases. Should she strive to explore
and learn more about the arms, possibly incuring a lot of regret, or exploit and choose the
best action using the information she has collected, possibly not having learned the best’
arm yet? This exploration-exploitation tradeoff is a hallmark of the MAB problem and is

something that any algorithm hoping to tackle this problem has to juggle.

Alas, the methods employed for each environment differ quite a lot. In the case of the
stochastic bandits, while the rewards are random, they are stochastically random, which
means that after a sufficient amount of "pulls” (times that an arm is chosen), we will have a

pretty good idea of how good is a particular arm, with high probability. The zero assumptions

'Both pairs of words used interchangeably. However, we will prefer to use 'learner’ and ‘arm’.
2q is an index in [k] := {1,...,k}
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on the adversarial case though, leave no room for estimation and any confidence about the
rewards of an arm. However, even though in general the stochastic case is drastically
“easier” in most cases, in the worst case both scenarios exhibit more or less the same

difficulty (which we will quantify with asymptotic regret).

1.4 Regret

How can the learner measure her success? She obviously cannot maximize her profit in
general due to stochasticity, even if she somehow knew which arm achieves the highest
expected reward and she chose that one every time. A logical measure would be to compare
her choices to that of someone that is a ‘good player. How do we define a good player
though? The best player is the one that knows the sequence of the arms that provide the
maximum cumulative reward. However, achieving results close enough seems to be an
insourmountable task. A reasonable measure of success would be to compare herself to the
agent that clairvoyantly knows the best arm in advance (maximum revenue of a fixed arm

in hindsight). Let’s formalize this.

Definition 1.4.1. Regret
We define regret as the quantity:

T

R(T) := Zrt(a*) — Zrt(at)

t=1 t=1

Where a* := argmax>."_, r;(a) (the best’ arm).
a€lk]

We call this quantity regret, as it measures how much the agent "regrets” by not playing
the best” arm. This is the usual definition of regret one may encounter in most sources
in the literature. There exists another measure, which is sometimes called "Pseudo-Regret”

and applies to stochastic bandits.

Definition 1.4.2. Pseudo-Regret
We define Pseudo-Regret as the quantity:

T
=Tu" — Z p(ar)
t=1

Where p* := maxa € [k]E [r:(a)] and a; is the arm the agent chose at round t.

Another very useful way to see this definition is the below formulation:

R(T) = nr(a)A(a)

a€lk]
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Where:

nr(a) = Z {a; = a} (times that arm a is played up to time T')
€T
Aa) == p* — p(a) (the 'gap’ of arm a)

We note that in some literature the MAB model encases scenarios where each action is
associated with a cost and as such the learner strives to minimize her total accumulated
cost. The regret is still measured as the difference with respect to an oracle that plays the

best fixed arm, but since we measure losses, the signs in the cumulative sums are opposite.
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Chapter 2

Stochastic MAB

The first problem we are going to study is that of the Stochastic MAB. Each arm a is
associated with a (static) distribution D, and an expected reward u(a). We denote with
1* the highest such expected reward and with a* the arm that corresponds to it (break ties

arbitrarily).

2.1 Explore then Commit (ETC)

The stochasticity of the arms allows us to claim with some confidence - after a sufficient
amount of pulls - that an arm is "better” or "worse” than some other. How would we go
about in designing an algorithm that takes advantage of this? A logical (but naive as we
will see) first idea would be to play each and every arm a predefined number of times and
then exploit; choose the one that has the highest average reward and play it for the rest of
the rounds. Let’s formalize this algorithm, which is known as Explore then Commit in the

literature (or Explore First). We note that the origins of the algorithm are unclear.

Algorithm 1 Explore then Commit
for t € [k- M| do > Every arm will be played M times

ar =1 mod k
Define fi(a) the M-sample average of D, from these samples.

for ¢t € [T)\[kM] do > Play the best’ arm from now on

a; = argmax, ) fi(a)

This algorithm is simple enough, but in its current state is incomplete. We haven’t defined
how many samples we will need from each arm, ie the quantity M. Recall that we measure
our success compared to someone who knew beforehand which arm is best in expectation
and we defined the notion of regret’ to reflect that. We turn to revealing an “optimal”

choice for M (and proving it later).

Theorem 2.1.1. (High probability regret guarantee)
Explore Then Commit with M = ©(logT') samples of each arm achieves regret O <T2/ 38 kln ’g’)
with probability at least 1 — 6.
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Our first course of action will be to bound the deviation of the empirical average of the
rewards from their true expectation, in order to argue about how much stochasticity has
affected our decision. This will be a recurring theme in the entirety of the thesis (and
in general in the bandit literature). In order to do that we will have to use a so-called
concentration inequality and specifically Hoeffding’s Inequality. This deviation from the true
expectation will basically decide how much we could "lose” with respect to the best arm (or
how much we regret), when we chose the seemingly better arm after playing each one M

times. The theorem’s proof follows.

Proof. Fix an arm a and define X;(a) as its i-th stochastic reward. We assume that the
environment is indifferent to our actions and as such these RVs are pairwise independent.

We can easily infer that after M samples we have the following by Hoeffding:

'

As mentioned earlier, bounding the deviation from the expectation will aid us in analyzing

| M
— > Xi(a) — pla)
M

i=1

> 6) < 26Xp{—2M62}

our regret. However, we need such a concentration equality for each arm, so by union-

bound:
M

P (Ela €k ﬁ 3 Xila) - (@)

> e> < 2kexp{—2Mé*}

This concentration inequality is not very useful in its current form. We would like to
have a bound that can hold with an arbitrary probability (which ofcourse will dictate the

deviation). In other words, if we let ¢ = \/ﬁ ln % we have the following high-probability

< 1ln2k> >1-9

We are ready to analyze our algorithm’s regret. We assume that the above event holds

bound:

1 M
P (va e [k]: ‘M > Xi(a) - pla)
=1

and as such our regret guarantee will hold with the same probability. In the exploration
phase our algorithm tries each arm one by one k times and as such could suffer a regret
of (k—1)M. In the exploitation phase the algorithm settles on the seemingly best arm and
plays it for the remaining (7' — kM) rounds. How much worse can the seemingly best arm
be from the true one? Well, we can answer that through the concentration inequalities we
constructed.

Assume that the algorithm does not choose the best arm a* and instead chooses another
suboptimal arm a. By denoting fi, the average reward of arm a after M samples, we have
that:

Ba) > i
= p(a) + L ln%>’>**> L ln%
o oM g SHae=H = H oM S

1 2k

* < T &l

= u* —pla) <2 2Mln5
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Which means that the (pseudo)regret satisfies:

R(T)<(k—1)M+ (T — kM)A(a)
1 2k
<EMA4T- |24 —In—
<EkEM + < Wi In 5 >
with probability at least 1 — 4.
Now we can notice that the above expression is a sum of two functions of M with opposite
monotonicity. We can approximately minimize the regret by choosing M such that the
above summands are approximately equal.
If M = (%)2/ 53 In % then ETC achieves asymptotic regret O <T2/ 35/kln ’g) with probability
at least 1 — 4. O

Corollary 2.1.1. ETC with M = (%)2/ > 3/n (kT?) samples of each arm achieves expected
regret of O(T%/*¥/kn (kT))

Proof. This is easy enough to see if we let 6 = 1/72%. Denote by £ the event that all
concentration inequalities hold (this happens with probability at least 1 — 1/72). We have
then:

E[R(T)]=P(&)-R(T | &) +P (=€) - R(T'| =€)
< (1=1/T?)-O(T**/kn (kT?)) +1/T%-T

< O(T?P/kn (kT))
O

The expected regret is simpler in its formulation, but many applications exhibit small tol-
erance and require stricter guarantees which points to high probability regret guarantees.
This is because while an algorithm can exhibit a small expected regret, this could very well

be the result of small regret events balancing high regret ones.
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2.2 Active Arm Elimination (AAE)

Explore then Commit is a very simple MAB algorithm that guarantees sublinear regret,
but is inefficient. Explore then commit is a non-adaptive algorithm, it does not change its
behaviour no matter the instance or the history of observed rewards. Assuming a sufficient
amount of rounds the learner can possibly detect (depending on the instance) that some
arm(s) are sub-optimal with high confidence, early in the exploration. This observation is
the basis of the adaptive algorithm that is known as Active Arm Elimination, first introduced
by Even-Dar et al. in [30]. A thorough study of the use of elimination in this setting and
more generally in reinforcement learning can be found on [29]. We present the algorithm

below.

Algorithm 2 Active Arm Elimination
S« [k]
for t € [T] do
CB(a;t) = [ﬁt(a) — JIn A s fi(a) + o In ZE
If there exist arms a,a’ with UCB(a’) < LCB(a) , then S + S\{d'}
Play the arm a € S that’s been played the least (break ties arbitrarily)

AAE pulls each arm in a round-robin manner, just like ETC, but when it notices that some
arm is sub-optimal with high confidence it "deactivates” it and only considers the rest (in
the end sticking with the last remaining). Intuitively, this "adaptiveness” and preemptive
decision-making should result in improved regret.

In order to argue about AAE’s regret we will have to invoke the Azuma-Hoeffding inequality
(see Theorem A.0.4), which is an extention of Hoeffding’s concentration inequality for
martingales. This is necessary because AAE is adaptive and the observed rewards affect the

times the arm is sampled, which now forms a stochastic variable in itself.

Lemma 2.2.1. The sequence of the random variables Y;(a) = I{a; = a}(ri(a) — u(a)) form a

martingale difference sequence.

Proof. Define H;—1 :={Yi(a)...Yi_1(a)} for brevity. The random variable representing that
an arm is pulled at round ¢t and its stochastic reward at that round are independent of

eachother (in the classic MAB problem):

E[Yi(a) [ Hia] =P ({ay = a [ Hi} = 1) - Eri(a) = pla) | Hi-1,a0 = a] +0
:]P’(at =a | Ht—l) -0

It is of course easy to verify that the unconditional expectation of any RV of the sequence

is finite. These conditions are sufficient. O

Intuitively, although the samples taken from AAE aren’t independent from each other, they

only have a "minor” dependency, which allows us to formulate concentration inequalities
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similar to ones that hold for fully independent sequences of variables. We can proceed to

the regret analysis.
Theorem 2.2.1. AAE achieves instance-dependent regret
kT 1

aE[k}:A(a)
pla)<p*

with probability at least 1 — .

Proof. As proved earlier, the RV Y;(a) = l{a; = a}(r;(a) — p(a)) is a MDS. By Azuma-
Hoeffding (Theorem A.0.4) we have that:

2¢>
P( - ) : 26""{_221@7 - >}

Where [ar,b;] is the smallest interval that Y;(a) lies in almost surely. If we denote by n.(a)

t

Z Y:(a)

=1

the number of pulls of arm a until time ¢, then only this number of intervals are non-trivial

(length not zero), since all the other RVs are almost surely 0. Which means that

t
Z(bT — (JLT)2 < 4ny(a) (since Y; is in [-1, 1] almost surely)

=1

So the inequality becomes:

g

By union bound we have that:

t

> Yi(a)

=1

> e) < QCXP{_QniQ(a)}
) cur o555}

Note that the sum amounts to the realized accumulated reward minus the expected accu-

t

> Yi(a)

=1

P(ﬂerﬂaaewy

mulated reward: .
> Yi(a) = ni(a) - (ia) — p(a))
T=1

We abuse notation by overloading i(a) to mean the n.(a)-sample average of a, where t is

given by the context. By simple manipulations we have that:
1
P(3t e [T],3a € [k]:|p(a) — pla)| >€) < 2kT - exp{—znt(a)e2}
Or the following concentration inequality:

2kT
21ln o

P | VieT].Vac k] |a(a) — pla)l < /=7

>1-§ @.1)

Assuming this event is realized, then the first - but not the most obvious - observation is that

the optimal arm will never get "deactivated”. Intuitively, this is because .CBs are bounded
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above by the true expected reward and UCBs are lower bounded by the same quantity, or
in other words, the confidence interval will only "close in” on the true expectation as time
goes on and can’t “detach” from it. All of this means that if the optimal arm were to be
deactivated it could not have been optimal. We can make this argument formal and prove
it rigorously, but we choose to keep the proof succint.

With this important observation we proceed to the regret analysis by bounding the number
of pulls of a suboptimal arm. Each arm gets deactivated after np(a) pulls by the definition
of n(a). Fix arm a, since the arms get pulled in a round robin fashion; at the time of
a’s deactivation, the optimal arm has been pulled either np(a) times or np(a) £ 1 times.
Whichever is the case, arm a was not deactivated when both arms had been played only
nr(a) —1 times:

UCB(a) > LCB(a")

21n 2L 21n 2L
90 > 90
< nr(a) —1 — et nr(a) — 1 2.2)
21n 2T
i — fia) <24/ ——2—
By definition of the confidence bounds:!
21n 2T
> LCB(a) = fi(a) — ]| ——2— 2.
u(a) = LCB(a) = ii(a) r(a) =1 2.3)
21n 2T
*<UCB(a*) = ii* — 2.4
pw* <UCB(a*)=p*+ (@) -1 2.4)
Combining these three inequalities:
21n 2L
(a) = p" —p(a) < (@) — 1
Which means that: N
2kT 1
So we have that our regret satisfies:
kT 1
R(T) =) nr(a)- Ala) =0 In=— > NG
a€lk]:p(a)<p* a€lk]:
p(a)<p*
O

Corollary 2.2.1. AAE achieves an expected regret of

E[R(T)] = O | In(kT)-> Aia)
a€lk]:

mla)<p”
"We silently assume here that we play each arm at least two times. We can make this a requirement in the

algorithm by playing every arm twice in the beginning. By information theoretic bounds, the regret is O(T)
anyway when k = O(T) [4].
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This regret already seems like an improvement to the one that the naive ETC guarantees,
it is exponentially better if we assume that the gaps are ‘constant’. This regret is instance-
dependent though, to be fully correct and compare both algorithms we should strive for an

instance-agnostic regret formulation. We will prove the following.

Theorem 2.2.2. AAE incurs an instance-independent regret

R(T) —O( kT~lnk§F>

with probability at least 1 — .

Proof. Let’s go back to Equation (2.5) and examine it from a different perspective. If we

A(a):O( w1 ) 2.6)

rearrange:

d nr(a)

As usual, for the regret:

R(T) = nr(a)A(a)

a€lk]:p(a)<p

T 1
<> nr(a)-O ( m’i : ) by Equation (2.6)

a€lk):p(a)<p® 0 nr(a)

kT
<O|y/In=s- > Vnr(a)
a€lk]:
pla)<p”
kT . . .
<0 In 5 k ZnT(a) by Jensen’s inequality and concavity of /-
a€(k]
<0 lnk—T vkT since Zn (a)=T
< 5 2 r(a) =

O]

We proved that the intuition of eliminating arms that are behaving fairly sub-optimally
earlier leads to better guarantees for regret. Both regret bound formulations are basically

optimal, since information theoretic analysis shows that for instance-independent regret [4]

Theorem 2.2.3. No stochastic bandit algorithm can achieve expected regret
E[R(T)] = o(v/KT)

And for instance-dependent regret [41] (and also [18]):

Theorem 2.2.4. No stochastic bandit algorithm can achieve expected regret
E[R(T)] =o(CInT)

where the constant C' depends only on the instance (and not the time horizon T' ).
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2.3 Upper Confidence Bound Algorithm (UCB)

There is another adaptive algorithm that (surprisingly to some) leads to the same guarantees
as AAE. The UCB algorithm by Auer et al. in [4] is one of the most well known Stochastic
MAB algorithms and is fairly simple: at every round it chooses the arm that has the highest

upper confidence bound.

Algorithm 3 UCB
for t € [T] do

Play arm a that maximizes UCB(a;t) := fig(a) + 4 /In =5

Before presenting any regret gurantees and going in to analysis, it would be beneficial to
understand why this algorithm works. A high Upper Confidence Bound can be a result of two
things: either that particular arm has been pulled few times or it has a high expected reward.
In both cases the learner would have incentive to play that particular arm (either to explore,
or exploit respectively). UCB falls under a wider umbrella of sequential decision making
policies in uncertain environments, namely Optimism Under Uncertainty. We continue with

our claims.

Theorem 2.3.1. UCB achieves regret

kT 1
a€lk]:
ma)<p*

with probability at least 1 — § and an expected regret

E[R(T)] = O | n (k1) -

R(T) :o( kT-lnkéT>

with probability at least 1 — 6.

Proof. Even though two pairs of ’active’ arms (every arm is active in UCB) could have
wildly different number of pulls, we can use the same argument as in the analysis of AAE,
comparing a suboptimal arm to the optimal one. The relevant concentration inequality (2.1)
holds as is and in the following analysis we condition on the event that they hold. Fix arm

a and consider the last time it is played; it must be then:

UCB(a) > UCB(a") > p*
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The second inequality although simple, is crucial to the analysis. At the point a is pulled

for the last time it had been previously played nz(a) — 1 times, so we have that:?

2kT 1

=i > .
UCB(a) ,u(a)—i-\/ln 5 (@) =1 > 2.7
But we also have that p(a) > LCB(a), so then:
2kT 1
241 . > B 2.
(a) + \/n 5 nT(a)_l_UC (a) 2.8)
By the two numbered equations we have then:
2kT 1
* < .
W= la) < 2\/ln b npla)—1
Or more simply:
kT 1
— o 2.
nr(a) = O (ln 5 A(a)2> 2.9)

This is exactly the same as Equation (2.5), meaning that AAE and UCB will pull each
arm roughly the same amount of times (asymptotically). As one can verify, intuitively and

formally, this is a sufficient condition for the claimed regret bounds. O

2Again requiring that we play at least two times each arm at the beginning.
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2.4 Upper Confidence Bound with Variance estimates (UCB-V)

In all the previous algorithms the only information used to make any decision is the
empirical average reward (and the confidence interval around the true expected reward,
by extension). Audibert et al. in [3] make an important observation; arms that behave
fairly statically (meaning the observed rewards do not diverge a lot from each other) should
ensure a higher confidence in the sampled average. In other words, an arm that has a small
variance should have a smaller confidence interval and we should learn its gap quicker if
we track its sample variance. This is encapsulated in the author’s algorithm, called UCB-V

below (slightly different than the one actually proposed):

Algorithm 4 UCB-V
for t € [T] do

Play arm a that maximizes UCBV (a;t) := fis(a) + \/SVt(a) n 4L Ly 4L, 13

n¢(a) nt(a)

When the sample variance is high, this upper confidence bound is asymptotically the same as
for classic UCB (since = = o(y/z) when z < 1), specifically when this variance is asymptoti-
cally close to the average reward (for example this will happen on Bernoulli arms with high
probability). However, when the variance is asymptotically smaller than its expected reward
(for example an exponential variable), then the same holds for the empirical quantities with
high probability (we will prove that later). In that case, the confidence interval around the

expected reward shrinks considerably. [3] prove the following for their algorithm:

Theorem 2.4.1. UCB-V achieves expected regret

0.2
E[R(T)] = O | In(kT) - o4
PR

pla)<p*

where o, is the variance of a’s stochastic reward.

For a proof of this result the reader can follow [3]. The result shown here is slightly different
than they one proved, since the authors also consider a slightly more general environment
(the rewards are in an arbitrary finite interval). We will prove the following guarantee
for UCB — V, using a much simpler argument than the one presented on the mentioned
paper. This analysis is also in fashion with the analysis of previous bandits algorithms

we’ve showed.

Theorem 2.4.2. UCB-V achieves regret

kT o2
il a 1
Ol|ln 5 E { Ala) + }
aclkl]:
pla)<p*

with probability at least 1 — §
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Our first course of action is to bound the deviation of the sample average from the true
expected reward, as always. As we are interested in incorporating the variance of the
rewards a concentration inequality like Bernstein’s would be ideal. However, as in UCB
at each round the number of pulls for any arm is a random variable and each pull is not
fully independent from the previous ones. As such, once again we will need a martingale
argument steering us towards Freedman’s Inequality: Corollary A.0.1.

First, we define the sequence of RVs Y; = I{a; = a}(r¢(a) — u(a)). In the same way as
in earlier sections it is easy to show that this is a Martingale Difference Sequence. Then,
in order to use Freedman’s Inequality on this sequence we need to bound the “predictable

variation”. That is:
Vt = ZE | HT 1 where H’T—l = {Yl, e 7YT—1}
Lemma 2.4.1. We have that:
Vi <t- aﬁ

Proof. Notice that since the algorithm’s decision to pull an arm doesn’t affect its stochastic

reward (they are independent) we have that:

E[Y?|Hr1] =P(ar=a|Hr-1) -E[(r;(a) — p(a))? | Hr-1,ar = a]

<1 =02

a

<U2

— a

Since rewards between rounds are independent. O

We can apply Freedman’s lemma (see Corollary A.0.1) with the above bound then and get

the below lemma.

Lemma 2.4.2.
2kT 2kT 4
fi¢(a) — < 2to2 -1 l .
‘lut(a) H(CL)| = nt(a) Og - 5 +1in 5 3nt(a)
for all arms a and rounds t with probability at least 1 — 6 where [i;(a) = m St Ha =
a}r(a)

However this is not exactly what we want. In the case that the arm is pulled too few times
up to time ¢, ie when n:(a) << t this bound is bad. However wouldn't a stronger bound
hold when it was last pulled? Before entertaining this obervation we present the above

lemma in a way more suitable to our following analysis.

Lemma 2.4.3. Let Uy,...,U; be iid samples/copies of a distribution with expectation p and
variance o®. Let n; be a discrete random variable supported on [1,t] (that can possibly depend

on the realizations of X;). We have the following concentration inequality:

i — i < —f2t02 I 2L 2D L
Ht oI = ¢ 1) 1) 3nt

for all 1 <t <T with probability at least 1 — § where [i; := L E?;l U;.

n
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Note that in the above inequality n; can very well depend on the realizations of the U;. If
n was known ahead of time (fixed) Bernstein’s inequality would give the following bound:
o — | < EO'QU’LM —I-lnﬁ 4

“Vn 0 0 3n

Since it might be the case that n; << ¢t our bound could be way worse than the above. The
current lemma is not sufficient as we will see later.

Although, notice that the opposite could have happened as well, meaning that n; could have
been very close to t and as such their fraction would be at most a constant, basically gaining
the Bernstein bound. If we telepathically knew a constant upper bound for n; that is close
to it (a constant factor away) we would be done. Alas, since n; is a random variable in [¢]
this is not possible.

However, we could "break” [t] into smaller intervals such that each endpoint is at most
a constant factor away from the other. In that case, there would exist an interval that
contains n; and we could use the upper endpoint as an upper bound, as it would only be
at most a constant factor away from n,! If we also factor that n, could be in any of these

intervals we are done. So with that in mind, we prove the next seemingly more powerful

lemma.
Lemma 2.4.4.
_ 1 2kT logT 2kT logT 4
_ <2/ ——02.1 ! -
|lu’t(a) ,u(a)| = \/nt(a) 0y + 08 51 +ln 51 37’Lt(a)
for all arms a and rounds t with probability at least 1 — §; where ji;(a) = ntta) E?;(la) X;i(a)

and X;(a) is the i-th pull of arm a.

Proof. We partition the interval in logarithmically many subsets as we mentioned

(1] = {{1,2}, {3, ..., 63, {7,.. ., 14}, ... {lsy. . orid, )

It is easy to see that there at most log? such intervals. Also notice that r; < 2[; for any
interval with index i. There always exists an interval i such that [; < ny(a) < r; and in that

case, using the previous lemma we have that with probability at least 1 —§

1 2kT 2kT 4
[ — < —\/2r;- 02 - In— +In—-
|Mt(a) /,L(CL)‘ = nt(a)\/ -0 n 5 +1in 51 3nt(a)
1 74 2kT 2kT 4
9 v 52 .
\/ ne(a) ny(a) o -In o +in 0 3ng(a)

1 2kT 2kT 4
<.4/2 -2.02.1 l . i s < 2 <2
_\/ ne(@) 0% In— +ln 5 3ng(a) since r; < 2l; < 2ny(a)

Now use § = @51 and union bound the failure probability for any of the logt < logT

relevant realization sets of n.(a). O

44



We have bounded the sample average deviation from the true expected reward. However,
we don’t know anything a priori about the variance of the arms. That is why we construct a
sample variance and attempt to approach it. We need to bound the deviation of the sample
variance of an arm from its true one. In order to do that we will assume a 'weaker’ notion

of sample variance for reasons to be explained.

Definition 2.4.1. We define the sample variance as:
1 Lne(a)/2]
Vo) = a2 U@
Where
Ui(a) := (Xai-1(a) — X2i(a))?
and X;(a) is the i-th pull of arm a.

Lemma 2.4.5. Vi(a) is an unbiased estimator for the variance, meaning
E [Vi(a)] = o

Proof. It is easy to see that when the X; are iid RVs, so are U; and regarding their

expectation we have:

E[U;] =E [X3i_1 — 2X0i-1X0; + X3;]
=E[X3_1] — 2E [X2i_1X2] + E [X3]

= 12+ 02 — 2F [Xo;_1 Xo] + 2 + 02 since Var(X) = E [X?] - E[X]?
= 2(p% 4 02) — 2E [ X1 E [ Xy by independency
= 202

It follows that E[V;,(a)] = o2

a*

O]

At this point we need to get a hold of the deviation from the true variance, as we have done
throughout the text for sample averages. We would like to use Bernstein’s inequality, but
that cannot happen, since -again- we would like a concentration inequality that is uniform
in time and holds for a random number of plays n;(a), that depends on the rewards. For
that reason following the previous analysis we can use Lemma 2.4.4 and get the following

lemma.

Lemma 2.4.6. The following hold for all arms a and rounds t, with probability at least 1 — 6.
If ny(a) > 641n 2L0eL . 1

.
Ta

And also if ny(a) < 641ln % : aig"

Vi(a) <2271ln




Proof. First we note that:

< E[Ui(a)] since U;(a) € [0,1]

So we can use Lemma 2.4.4 with U;(a) instead of X;(a) and o2 as an upper bound on the

variance. Then with probabiity at least 1 — da:

2kT logT 1 4 2kT logT
Vi(a) — 02| < 2¢/02-In ' * n
|Vi(a) | \/ 0o [ne(a)/2] 3 |ne(a)/2] 02

First of all, we observe that [n/2| > n/3 when n > 2 and using this crude approximation

we get that:

2kT logT 1 n 12 lan:TlogT
01 ne(a)  3ni(a) 09

Vi(a) — 02| < 2\/302 -ln

We move on to splitting cases.

. 2T logT 1 2kT logT 1 2
Case 1/: ny(a) > 64ln 2581 . = 641n L2060 . s < o2

From the above bound:

2kT logT 1 12 " 2kT logT

Vi(a) — 02| <2,/302 -1 -1
} () Ua‘ - \/30“ n o1 nt(a)+3nt(a) 01

2 1202
§2\/3U§-%+§%

2v/3
= ( \8[+12/192> 02 <o?)2

Which proves the first part.

Case 2/: ny(a) < 641n% L =o2< 64 2kTlogT = 1

Again:

2KTlogT 1 12 9kTlogT
01 ne(a)  3ni(a) 09

2kTlogT 1 )2 16 2kT log T
<164/3-64(ln . + -In
\/ < 09 ne(a) 3ni(a) o1
22
< 7 n 2kT logT
ny(a) O

Vi(a) — 02| < 2\/3ag-tn

O

We move closer to proving the regret bound, we now present the final lemma needed before

moving to the analysis of the regret guarantee.
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Lemma 2.4.7.

4kT logT 1 len4/<;TlogT 13
) ni(a) 0 ni(a)

UCBV (a;t) := (a) + \/81/}(&) -In

is an 1 — ¢ upper confidence bound for the true expected reward p(a).

Proof. First of all both Lemma 2.4.4 and Lemma 2.4.2 hold with probability 1 — 4§ by a
simple union bound (choose §; = dy = §/2).

When ni(a) < 641n wg—ﬂ we have from Lemma 2.4.6 that:
Vi(a) > 1/207

So then:

4kT logT 1 ln 4kT logT 13
) ne(a) ) ny(a)

UCBV (a;t) = (a) + \/SVt(a) -ln

_ 4kT logT 1 4kT logT 4
> 2 2., . .
> fir(a) + \/aa In 5 (@) +1n 5 Sy (@)

The last quantity is a 1 — 3§ UCB for u(a) by Lemma 2.4.2.

Now when 7(a) < 641n 2T L “then for the same UCB:

4kTlogT 1 4kT logT 4
UCB(a;t) = ju(a) + \/203 = g~ . R gL . e
_ 4kTlogT 1 4kT logT 1 4kT logT 4
< 2|64 . ) _
< fit(a) + \/ (6 In 1) nt(a)> In 0 ne(a) +in 4] 3n(a)
4kTlogT 13

<[ .

< fi(a) +In 5 ()

< UCBV(a;t)
O

We are finally ready to calculate the regret of the algorithm.

Proof of the Regret guarantee: Theorem 2.4.2. We will get a handle on the regret as in
earlier chapters, by calculating the number of pulls for a suboptimal arm a. All the following
arguments hold with probability at least 1 — §. Define as 7, the last time that such an arm

is pulled. Then at that point it must be that:
UCBV (a;7q) > UCBV (a*;7,) (2.10)

But in the previous lemma we proved that UCBYV is a 1 — § upper confidence bound, so
then for any ¢ it holds that:

w* <UCBV(a;t) = it + rd(a;t) 2.11)
Where we define: |
4kT logT 1
d(a;t) = .
rd(a;t) :=1In 5 e(@)
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Notice also that:
fr < p+rd(a;t) 2.12)

And so combining the above numbered inequalities we have that:

< p+2rd(a;m,) < Aa) < 2rd(a; ) (2.13)

This prompts us to upper bound the confidence radius rd(a;t). We do this by considering

the "high/low variance” cases as in the above lemmas.

. 2kT logT 1 2kT logT' 1 2
Case 1/: ny(a) > 64In === o = 64In === @ =0

Recall that from Lemma 2.4.6 we have:

Vi(a) < 202

Which means that:

AkTlogT 1 4kTlogT 13
it) < 2. . .
rd(a;t) < \/8% In 5 ne(@) +1n 5 (@)
2
AkT log T 1 AkTlogT 13
— 2, ) .
\/8% In 5 e (@) <\/ln 5 ne(a) )
AkTlogT 1 AkTlogT 169
< 2, . 2 .
< \/8% In 5 ne(@) + \/oa ln 5 64y (a)

<5,/02In 4kT logT 1
) n¢(a)

Aa) <O <\/aglnk(5T g 1((1))

Which when rearranged results in the following bound for the number of pulls:

And from Equation (2.13):

nr(a) = O <02 ln? : A21(a)>

Now we move on in the "low variance” case below.

. 2kTlogT 1 2 2kT logT 1
Case 2/: ny(a) < 641n =8 - 5 = 0a < 641n 208 O}

2T 1
nTa(a) > 161]1571 . ;2
which from Lemma 2.4.6 implies that:
4kT logT 1
V, () < 2271n 2FLl0eT
5 nTa (a)
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Which in turn by the assumption, implies that:

and by the previous analysis:

Finally, recalling that:

we have the result:

kT o2
T) = U a
R(T) =0 | In= Z{A(a)+1}
aclk]:
pla)<p*
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Chapter 3

Adversarial MAB (and Online

Learning)

3.1 Introduction

What do you do when you can make no assumptions? In that scenario you might as well
assume that there is an adversary that has one goal in mind: to ruin your plans. This
very general setting is known as the adversarial (or non-stochastic) MAB problem, first
considered by Auer et al in [6].

Let’s for a minute assume that the learner is using a simple stochastic MAB algorithm, like
Algorithm 1. In ETC the learner plays each arm O (T2/3) times, then chooses the seemingly
best one and plays it for the remainder of the time. An adversary can very easily fool this
type of learner by making sure that all the arms but one look terrible (rewarding 0) in the
first stage and then switching this up. The learner will always suffer linear regret (with
respect to the best-in-hindsight arm).

Actually in general, in a very similar fashion one can show that any deterministic algorithm
! cannot guarantee sublinear regret in expectation. This can happen even with an adversary
that is not responsive to the learner’s actions, meaning they are oblivious. Such an adversary
can be deterministic or randomized (a special case of the second is IID rewards, ie stochastic
MAB).

An adversary that responds (adapts) to the learner’s actions (the algorithm’s choices) is called
adaptive. An adaptive adversary encapsulates many environments where a user’s actions
alter the said environment. For example in game theoretic applications, self-interested
parties adapt to others’ choices to maximize their utility.

We will consider regret with respect to the best-in-hindsight arm, meaning:

T
a® := argmax Z ri(a)
aclk] =1

Rather surprisingly we will prove the following theorem:

IGiven a history it will always make the same choice
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Theorem 3.1.1. There exists an algorithm for the adversarial MAB problem that guarantees

expected regret:
E[R(T)] = O (x/k:Tlogk)

This seemingly much harder problem (than the simple stochastic MAB problem) admits an
algorithm achieving a regret guarantee, almost matching the theoretical lower bound of the
instance-independent regret for stochastic MAB. However in most scenarios well-known
stochastic bandits algorithms will outperform this algorirm due to their strong instance-
dependent logarithmic regret. The regret achieved by this algorithm [6] is also near-optimal

for the adversarial problem as well, as shown in the same work.

Theorem 3.1.2. The expected regret of any policy for an adversarial MAB problem is

E[R(T)] 2 @ (VAT)

3.2 Full Feedback

Before unveiling the algorithm, we will need to cover some prerequesite ground. Let’s
assume a slightly simpler problem: every arm reveals its reward at the end of the round.
We will continue to assume nothing about the rewards (ie assume an adversary generating
them). In its more general form, this is called the Online Learning Problem [39, 49].

There is a well known algorithm for the full-feedback case which is known as Multiplicative
Weights Update or Hedge in the literature [22, 32], first described in its more well known
form by Littlestone and Warmuth [32]. Hedge is based on the also well known Weighted
Majority Vote [45] algorithm for the Binary Prediction problem, by Littlestone and Warmuth.
We also note that due to these roots, MWU and its analysis follow a cost framework, where
each arm instead incurs a loss on the learner, prompting them to instead minimize their

cumulative losses.

Algorithm 5 MWU/Hedge
Parameter ¢ € (0,1/2)

Forall a € k: wi(a) =1
for t € [T] do

wy(a)

pe(a) = Sacm we(@)
Play arm a; w.p. pi(a)

w1 (a) = wy(a) - (1 —e)t =@

As we noted, to have a chance of sub-linear regret, an algorithm’s choices would have to
be random, such an algorithm is called randomized. Multiplicative Weights Update is a
randomized algorithm, as at every round it chooses some arm probabilistically, sampling
from the distribution defined by p:(-). Intuitively, the algorithm associates a weight with
each arm and plays that arm with probability proportional to that weight; an arm with a
higher weight is more likely to be chosen. These weights are updated in a multiplicative

fashion at each round, for every arm, as there is full feedback at the end of the round.
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The multiplicative factor scales exponentially with the deviation from the optimal reward,
so highly suboptimal arms get punished’ quickly.

However as the multiplicative factor is never zero, the same holds for the pull probability
and so even arms that have not performed well get recourse. We begin our analysis by
arguing first about the multiplicative decrease in the total weight of all the arms at each

round.

Lemma 3.2.1. The total weight W, := Zaem we(a) at each round obeys the following prop-

erties:
Wryr > (1—e)" 3.1
where:
T
R* := Z r¢(a™) (ie the cumulative reward of the best in hindsight arm)
i=1
and: W
<1 — e E[1—r(ar) | @] (3.2)
Wi

Proof. The first property is easy enough, note that:

Wi > wrii(a®)
wi (@), (1 — e)t7re(e?)
- ri(a)

(-
(1— 6)17R*

We proceed to the second property.

Wipr we(a) _ N1-ri(a)
T > W (1—¢)

a€[k]

=Y mla)- (1=
a€lk]

< pifa) - (1—e-(1-ra)) since (1 —€)® <1 — ¢ for z € [0,1]
aclk]

=1—e-E[1—riar) | Wy

We are ready to prove the main result, MWU's regret guarantee.

Theorem 3.2.1. Multiplicative Weight’s Update with parameter ¢ =
pected regret:

E[R(T)] < O (\/T In k:)
Proof. By Lemma 3.2.1 we have that:
Wit

t

In

<In(l—e-E[l—riar) | We]) < —€-E[1—ri(ar) | @
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Summing across the rounds we have:

B W,
S e E[l-ria) @] < - In V;Zl
te[T) te[T]

<Ilnk—-In(l-ef by Lemma 3.2.1
=lnk—In(l—¢ - (T —R")

If we take expectations, we have that:

el —e-E Z ri(ar) | <lnk—In(l—e)- (T —E[R"])
te[T)

We use the below identity:
1
——In(l—¢€) <1+e foreel0,1/2]
€

And rearanging we have that:

T—E | rila) S%lnk+(1+6)~(T*E[R*D
te[T]

Or:

EIR]-E | rle)| < Sk +e (T —E[RY)

1
< —-Ink—+ €T
€

We identify that the left hand side is just the expected regret of the algorithm and we choose

Ink

One can note that we have a requirement for e already, namely that e € (0,1/2). But lnk
should be asymptotically smaller than T for meaningful regret guarantees (else no algorithm
can guarantee sublinear regret) and we can guarantee that ¢ < 1/2 by multiplying the above
fraction by a suitable constant, satisfying the requirement.

By simple calculations, the expected regret then is:
E[R(T)] < O (\/T In k)
O

Notice that the proof does not assume anything about how the rewards are generated. We
link the best-in-hindisight arm’s performance to the algorithm’s via the total weight’s change
at each round up until the last one, which is of course, dependent on the algorithm’s choices.
A crucial point here is that the algorithm will always get feedback by the best’ arm. A
final note is on the comparison with the loss’ framework that we mentioned. The quantity
1 —ri(a) and its cumulative sum through the rounds T — 3, i 7¢(a) can be immediately

seen as instantaneous and cumulative losses respectively.
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3.3 Bandit Feedback and Sublinear regret through EXP3

We return to the adversarial MAB problem and bandit feedback, having seen the full
feedback equivalent (online learning with bounded at-most-unit rewards). An ingenious
idea is to reduce bandit feedback to full feedback and employ the MWU algorithm that
we just saw. This is captured in the EXP3 algorithm (stands for "Exponential weight,

Exploration, Exploitation)” introduced by Aurer et al. in [6].

Algorithm 6 Exp3
Parameters v,n € (0,1/2)

Forall a € k: wi(a) =1
for t € [T] do
Play arm a w.p. pila) = (1 —7) =249 4 ~/k

> arepn wela’)
Receive r(a)
Set 7¢(a) = I{a; = a} - ;igzg

Set wiy1(a) = wi(a) - exp{{nri(a)}}

Let’s analyze what the algorithm does step by step. First of all, we notice that at every round
the probability that an arm is chosen is at least the constant v/k. So, with probability ~ the
algorithm will explore at a given round. With probability 1 — v we have exploitation; the
algorithm basically calls Hedge/MWU, tracking a weight for each arm, that never decreases.
Another difference is the rewards that this variant of the MWU 7sees”. As the algorithm
is in a bandit feedback environment, the only reward it knows at the end of the round
is the one from the chosen arm, implying a bias on the experienced rewards. This bias
is counteracted by dividing by the bias probability p;(a); the probability that a certain arm
is chosen. To guarantee that 7,(a) is on expectation r.(a), it is set as zero when a is not
chosen (and its reward not seen).

We begin the analysis by making the previous argument concrete.

Lemma 3.3.1. 7,(a) is an unbiased estimator for r.(a), ie

Proof.

O]

Define W; := Zaew we(a), we will attempt to upper bound the ratio of change from the

previous round as in MWU. We will prove the following lemma:

Lemma 3.3.2. When n = v/k holds that:

2
M‘/;:l <1+ {yzkny [7(ar) | @] + (e = 2) (z/—ki E o) | ]
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Proof.

Wipr Z wiq1(a)

Wy W,
aclk]
= Z CXP{U 7i(a)}
a€lk]
_ o) —a/k 1>_]/ £ expln - 7i(a)}

We would like to bound the exponential by a polynomial expression in 7 -7 (a). We have
that:

e <1+x+(e—2)2? forx <1

So choosing n = v/k we guarantee that n - 7(a) < r(a) <1 and that:

expln - ila)} < 1+ Li(a) + (e~ 2) (Ti(a))

We have then that:

P ek i
Wy a R +(a R 2
> { ( 3 (Lio(a)) + 2 ye ~2) (L) }
2
=1+ 171 > pi(a)in(a) + (e —2) (f/_’“) > pi(a)ii(a)
a€lk] aclk]
O
Lemma 3.3.3. The following hold:
E [fe(ar) | W] = re(ar)
and:
E [fi(a)? | @] < fila) = ) #i(a)
aclk]
Proof. Notice that:
E [f(ar) | @] Z pi(a Z Dt K{at }rtEa; = ri(ar)
a€lk] a€lk]
On the other hand:
E [Tt (at) | wt Z pi(a)ie(a Z pi(a)l{a; = a} EZ; t(a) = ri(ar) - Pe(ar) < 7elar)
a€lk] aclk]
Finally:
> fila) = Ha=a} (ai_ft( t)
a€lk] a€lk]
O
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We introduce the algorithm’s performance and relate it to the previous quantities (bound it

from below) through the following lemma:

Lemma 3.3.4. Exp3’s cumulative reward Gegp3 == Zte[ﬂ r¢(a;) obeys:

Gesz > Z ft(a*) - ’Y Z Z klnk

te[T] te[T] aclk] i

Proof. By Lemma 3.3.2 and Lemma 3.3.3 we have that:

o 2
W&Zl <1+ 171];7“15(%) + (12)_(77/]@ Z 7e(a)

Since lInx <x —1,z > 0:

Wiy _ Wi v/k (e —2)(v/k)? X
ll’l Wt S Wt -1 S :Tt(at) + ? Z rt(a)

And using the usual trick, summing over t:

W k e—2 k)? R
In WT/;H < 1717G6xp3 + (1)_(://) Z Z 7t(a)

To get "rid of” the total weights, we lower bound them, as for any arm «a it holds that:

In WWT/“ > n wT“ =7 Z Pe(a) — Ink
! te 7]

And so using this lower bound in the immediately previous inequality:
v/k (e — ’Y/ k)? A
ﬁGexp;; + — 1— Z Z Z T‘t(a) — lnk
te[T] aclk] te[T]
Rearranging and noting that the arm a was arbitrary:

Gea:p?;Z(l—’y)Zrt( 6—2 Z Zrt k:lnk:

te[T) tG[T] a€lk] v

We are ready to move to the big theorem, Exp3’s regret.

Theorem 3.3.1. Exp3 attains the below regret-like bound:

1
Gmax —-E [GexpS] < ’)/(6 - ]-)Gmax + ;k:lnk:

Also, choosing v = min {1 /2, i f_quT} we have that:

Gomas — E[Geaps] = O (VET k)

Where we define Ginaz = MaXae[t] D_sepr) Tt(@)-
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Note that the above difference is the expected regret that Exp3 attains if we assume a
deterministic oblivious adversary. Even though we prove this slightly weaker bound, the
expected regret satisfies the same bound, for any adversary [6]. We move on the proof of

the theorem.

Proof. From Lemma 3.3.4 we have that:

Gengz(l—'y)th(a (e —2)— Z Z klnk

te[T) tE[T] a€lk] i

Taking expectations with respect to the history Hr := {a1,...,ar} and noting that E [#:(a) | Hi—1] =

ri(a) we have that:

klnk
E [Geaps | Hil 2 (1= 7)Ginaz = (e = 2)3 D D rula) -
te[T] a€lk] v

Now noting that Ztem ri(a) < G and that the history is arbitrary, we have the below:

E [Gexp?)] (1 - )Gmax - 6 - 2 Z Gmaac - M
aG (k] v

We've proved the first part. Now choosing v = min {1 /2, (f_“i)"’T} it is a matter of calcu-

lations to prove the second part as well. O
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Chapter 4

Stochastic Bandits with Adversarial

Corruptions

4.1 Introduction

So far we’ve seen Stochastic and Adversarial Bandits and the stark contrast between these
environments, the methods and algorithms used to tackle these problems and the correspond-
ing results (regret guarantees). We have seen algorithms that provide strong logarithmic (in
the time horizon) instance-dependent guarantees in the first case and guarantees of order
O(V/T) in the second case (which also is an instance-independent bound for algorithms in
the Stochastic case). These two settings are extremely orthogonal, with one being overopti-
mistic in assuming that all rewards are sampled from the same distribution, while the other
is too pessimistic in order to protect from any adversary.

Stochastic Bandits with Adversarial Corruptions as a problem was first introduced by Lyk-
ouris et al. in [46] to capture environments where the underlying stochastic structure of
the rewards is corrupted by adversarial attacks. The goal in this problem is to construct al-
gorithms that take advantage of the (mostly) stochastic underlying structure and are robust
to these adversarial attacks, gracefully transitioning from the optimal instance-dependent
regret bounds to “worse” guarantees, as the corruption increases.

The study of this environment was motivated by the increasing phenomenon of click fraud
in search-engine advertisement allocation scenarios. It was observed that a large group
of users (likely bots) would engage in very similar actions targeting specific ad banners.
Another motivating real-life example cited in [46] is that of spam and malicious reviews in
recommendation systems.

A similar, but different line of work is that of designing Best of Both Worlds algorithms.
This direction necessitates the design of algorithms that behave well when the environment
is stochastic or adversarial in nature. The works of [60, 61, 17, 5] achieve almost-optimal
(meaning up to logarithmic factors) pseudo-regret guarantees for the stochastic case and
the optimal regret guarantee in the adversarial case. However, these algorithms are overly
pessimistic in an environment such as the one we are studying, where the stochastic nature

is corrupted by a fair amount.
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Another active area of research is that of extending and improving guarantees for stochastic
settings. For example, Audibert and Bubeck in [2] provide and algorithm that attains
the optimal non-distribution-based upper bound for stochastic bandits while retaining the

optimal distribution-based stochastic guarantee.

4.2 Adversarial corruptions

We begin by modeling the environment and some definitions.

Definition 4.2.1. Stochastic MAB with Adversarial Corruptions

1. The learner has k available actions at each round t and is given T rounds in total.
2. At each round t the learner chooses an action a; with stochastic reward 7(ay).

3. The adversary "corrupts” the reward by injecting corruption c;(ay).

4. The learner observes the reward ri(a;) = 7(at) + ce(ay).

3. The learner strives to minimize her pseudo-regret.
The amount of corruption C' is measured in the following sense.

Definition 4.2.2. Corruption C

a
te(T

C = Z} ma feu(a)

Stochastic algorithms like AAE or UCB do not fare well at this problem, as even with
moderate corruption (logarithmic in time horizon) they could “eliminate” the optimal arm

very quickly from their future choices, as shown below.
Observation 4.2.1. Logarithmic corruption can make AAE suffer linear regret in expectation.

Proof. Consider a MAB problem with two arms and expected rewards p; = 1 and pg = €
respectively. Now consider an adversary that injects corruption only in the first 128 log (2kT")

rounds in the following way:
ci(ar) = —7¢(a1) and ci(ag) = 1 — 7(ag)

The algorithm alternates the arms until some arm is confidently worse than the other,
meaning that if LCB(a) > LCB(d'), then arm d’ is 'deactivated’ and the algorithm plays
only arm a afterwards. AAE with § = 1/T? guarantees sublinear expected regret in a fully

stochastic environment, but after these 128log (2k7") rounds we have that:

UCB(ay) = \/ 2log ilgl;Tz) —1/4

and for arm as:

LCB(az) =1 — \/Mogilzigipz) = 3/4
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So arm a; will have been deactivated by this time (arm a2 will have UCB strictly greater
than a;’s LCB through the course of the algorithm). AAE will only play arm as from then

on, accruing regret:
R(T)> (1 —¢)(T —128log (2kT) =Q((1 — €)T)
which is linear for constant e € [0, 1). O

On the other hand an adversarial algorithm like Exp3 would work (have sublinear regret)
and attain its regret bound, but it would not take advantage of the underlying stochastic
nature of the problem in moderate or light corruption scenarios. For example if the above
corruption was very ’‘spread out’ across the rounds, AAE would fare very well. Evidently

these observations further motivate the construction of new algorithms.

4.3 Multi Layer Active Elimination Race

Lykouris et al. note that if the learner somehow knew the corruption C or at least a close

upper bound, then she could "play safe” and enlarge the confidence radius. Specifically:
Theorem 4.3.1. AAE with confidence radius

2In (2kT/5) | C

n¢(a) ni(a)

rad(a;t) =

has regret O (Z#a* W) , where C'is an upper bound for the corruption.

We will not prove this theorem rigorously, but we will provide some intuition as to why
it holds. By Azuma Hoeffding the expected reward lies in the confidence interval centered
on the stochastic part of the average reward with radius the first addend of rad(a;t) with
probability at least 1 — d. Since the realized average reward might be corrupted by at most
C, the expected reward lies in the confidence interval of radius rad(a;t) centered on the
realized average reward (and vice versa, which is what we care about). All of this means
that this modified version of AAE will work correctly and will never deactivate the optimal

arm (since the algorithm’s CB is an actual 1 - § CB). The proof is finished by showing that
o

every suboptimal arm a will be eliminated after O (A(a)Q

1—29.

However, even if there is no corruption at all AAE with the above enlarged radius would

> pulls with probability at least

attain the same regret bound. Another idea which is a precursor to the main algorithm of
[46] is to maintain two instances of AAE. One would be meant for the purely stochastic
case and be quick and decisive in its decisions, while the other would be slower and correct
even in a corrupted scenario. Lykouris et al achieve that by maintaining a ‘fast’ instance
of AAE which has the typical confidence radius and a ‘slow’ instance which is chosen with

a small probability and has an enlarged radius. An algorithm sketch follows.
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Algorithm 7 Fast-Slow AAE

for t € [T] do
21n 2k
rdp(a;t) < nfiuj)
21n 2T 21n 2ET
rds(a;t) <\ T T e

With probability 1/C use the slow’” AAE (S), else use the ‘fast’ (F).
If S eliminates an arm a, eliminate the same arm in F.

If F has no arms to play, pull a random one from the ones still active in S. > With-

out updating anything in S

Theorem 4.3.2. Algorithm 7 attains regret O (ln %T “ ﬁ) in the purely stochastic case

and O (sz In %T D ﬁ) in the C-corrupted case, with probability at least 1 — §.

Again, we will provide intuition in to why the algorithm works, instead of proving the
above theorem rigorously. Since the slow instance is chosen with probability 1/C it will

experience constant corruption in expectation, but to have high probability guarantees we

2kT
2In =5

need to correct for the deviation and as such the radius is enlarged by —= @ (by a martingale
t

concentration inequality the experienced corruption would be at most 21n %). In a purely
stochastic scenario it is easy to show that the regret is at most O (ln % a ﬁ) To bound
the regret in the C-corrupted case we need to bound how many times a suboptimal arm
can be played in the fast’ instance. In expectation it is played at most kC' times more than
in the ‘slow’ instance and to have a high probability guarantee another logarithmic factor
is needed, leading to the O (sz In &L S ﬁ) regret bound.

We move to the main algorithm in [46], which combines all the above ideas in the case of
agnostic corruption level C. Since C' is unknown one could perform an ‘upwards’ binary
search for its value. In their algorithm, Lykouris et al maintain logT instances of AAE
with enlarged confidence intervals bar the first one, as in the fast-slow’ algorithm. Each
instance is chosen with a probability that gets exponentially smaller (as such combating
corruption up to the reciprocal of the probability). To be clearer we define a sketch of the

algorithm below.

Algorithm 8 Multi-layer Active Arm Elimination Race

for t € [T] do
4kT
radp(a;t) < 2L%T
ng (a)
kT 2kT
rad(a;t) < s L 25 for it e {1,..., [logT|}

ni(a) ni(a)
With probability (1/2)“! choose the (-th layer algorithm and with the remaining
probability choose ¢ = 0.

If layerl ¢ eliminates an arm a, eliminate the same arm in all layers ¢ < /.

If a chosen layer has no arms, play an active arm from the closest higher layer that

.~ has active arms.
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Theorem 4.3.3. Multi-layer Active Arm Elimination Race attains regret

kT 3 kCInEL +1log T

0 by A(a)

Olln

with probability at least 1 — 6.

We will provide a sketch of the proof. As there will exist a layer with 2¢ > C (since

2logT — T > C, we might be off only by a factor of 2), that layer and all the ones above it

will behave stochastically and accrue regret at most In "‘TT > A%a) with probability at least

1 —9. All the layers are at most log7 and so that takes care of the second addend in the
regret bound. The first addend is a result of bounding the number of pulls of suboptimal
arms in the ‘fast’ and inaccurate layers below ¢. This is done in a similar fashion as

previously in the ‘slow-fast’ algorithm.
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4.4 BARBAR algorithm

While the algorithm Lykouris et al present is beautiful and intuitive, the regret it accrues
has a multiplicative dependence on the corruption, which results in linear worst-case regret
for corruption C = Q(+/T). Gupta et al in their work [36] provide an algorithm that
trades the multiplicative dependence on kC' for an additive one, tolerating significantly
more corruption: that is up to o(7"). The algorithm is agnostic to the corruption level and
is fairly simple as well.

Their algorithm works in epochs, which are logarithmically many (in the time horizon).
Each epoch m uses an estimation A,,(a) of each arm’s gap using the previous epoch’s
results and pulls each arm according to this estimation (in expectation as many times as
UCB would if that gap were the true one A,,(a)~2). No arm is pulled more than 22" times
and each decision is probabilistic giving seemingly bad’ arms some recourse (hence the
name Bandit Algorithm with Robustness: Bad Arms get Recourse). Finally, arguably the
most important ingredient of the algorithm is that each epoch uses information only from
the preceding epoch, which means that corruption has a bounded effect. The algorithm

follows.

Algorithm 9 BARBAR
A =10241n (% 1logT)

Ty =1
for a € [k] do
- Agla) =1

for m € {1,2,...} do
fn(@) = A- A2, (a)
Set Nip = 3 4y im (@) and gm(a) = "5
Set T,, = Tyn—1 + Ny, and E,, = [Tr—1, T
for t € E,,N[T] do

play arm a w.p. g¢n(a)
pim(a) = #@) > iep,, Hae = a}re(a)
@, = argmax, g (i (@) — 5 An-1(a)}
= (@) = 2581 ()

Anla) = max {27, ity — (@)}

Gupta et al go on to prove the following regret guarantee for their algorithm.

Theorem 4.4.1. BARBAR attains regret

R(T) <O [ kC +1log(T) - log (l; logT> Z Aza)

aFta*

with probability at least 1 — §

It is evident that this is a much improved regret guarantee than the one in [46].
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We will follow a slightly different trajectory towards proving the algorithm’s regret bound
compared to the original work. The first course of action is to investigate the deviation
of the empirical reward pu,,(a) from the actual expected reward p(a). We will prove the

following lemma.

Lemma 4.4.1. For a fixed arm a and epoch m we have that:

P (\umw) la)] > A5 2]?:) < B/2

T (a)
where Cy, :=max, ) ,cp |ci(a)l.

In other words the deviation from the true expectation is a sum that depends on the
previous epoch’s empirical gap and basically the "average” corruption at this epoch. When
the corruption is low and the previous epoch is accurate, then the empirical gap of the

epoch will be very close to the true one (may be off by a constant factor only).

Proof. The proof begins by noting that:

1 .
(@) = == 3 Har = a}(fula) + (@)
teBm
Then Gupta et al break the sum, analyzing the stochastic reward and the corruption sepa-

rately, defining:

= Z I{a; = a}7(a) and By, Z {a; = a}ei(a)
t€Em t€Em,
At this point we condition on the previous epoch’s quantities, making n.,,(a), Ny, Trn—1
deterministic.

By a simple Chernoff-Hoeffding bound Theorem A.0.2 the reader can verify that:

4
—u<a>] > 25 ) g

i (@)

Apm(a)

i (a)

In order to bound the experienced corruption we consider the sequence Y; = (I{a; = a} — gm(a))
Assuming that we have a deterministic adversary, then proving that this sequence is an
MDS is easy enough. To apply the Freedman-type inequality Theorem A.0.2 we bound the

predictable variation:

Vi= Y B[V | Hi]

teEm
< Z lee(a)|Var (I{a; = a})
tEE"L
(Qm - qm Z |Ct
teEm
a) Y lei(a)
t€Em
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Applying the Freedman-type equality Theorem A.0.6 we have that with probability at least
1—p5/4

4

1 gm(a) 1 4 gm(a) Inz

< - <

- Bp(a) < GXE;nct(a) + () <V +1ln B) < Qﬁm(a) tezE;n lee(a)| + (@)
Noting that ¢,(a) = nm(a)/Nm, D g, lct(a)] < Cp and given iy, (a) >= A > ln% which

4

In 3 In 2
B B .
means that (@) < i) We have that:
B, (a) 2C, n%
P n <4 >1—[3/4
nm(a) | = Np nm(a) | — /

And in a similar argument —B,,(a)/nm,(a) satisfies the same bound expect with probability

B/4.

So then:
In %

Tim (@)

By a simple union bound and removing the conditioning on the arbitrary values (as they

1

Nim (@)

Bm(a)‘ < 2‘1:((‘;)) > Jer(a)| +

n

teEm
hold for any arbitrary value, they also hold for the RV representing that value) we have
the claimed. O

We would like a similar deviation bound to hold for all the arms and all epochs, using
union bound. But first we need to calculate some bounds for the number of epochs to do

that.

Lemma 4.4.2. The length N,, of each epoch m satisfies:
)\22(777,—1) < Nm < k>\22(m_1)
and the number M of epochs is at most log, T

Proof. The lower bound is an easy consequence of the existence of a "best” arm in an epoch
and the algorithm assigning A,, = 27™ in that case. On the other hand, since A,, is at
least 2™ for any arm, we have the upper bound. The bound on the number of epoch’s is

a consequence of the lower bound on the length of each epoch. U

By a union bound on the logT epochs and k arms then, and a simple Hoeffding bound on

the actual number of plays n,,(a) we have the following important lemma.

Lemma 4.4.3. Define

2C,  Ap— _
£ = {Vm,i Cpm(a) — p(a)| < + (@) and npy(a) < 2nm(a)}
Np, 16
. It holds that P (£) > 1—§
Proof. Choose 8 = ﬁ, we have then that 7, (a) = ﬁ =4-16%1n % : ﬁ and by a
m—1 m—1

union bound on the arms, epochs and the two inequalities we have the claimed bound. O
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Gupta et. al go on to prove that the empirical gaps A,, are not too far off the true gaps and

get closer as the epochs move on, if not for the corruption. They prove the following:

Lemma 4.4.4.

and

- m 2C
Wh’ere Pm = Ze:l 8mfeeNe

We can think of the value p, as a kind of ‘discounted corruption rate’ as the authors
name it. We notice that the empirical gap is contaminated not only by the current epoch’s
corruption but previous one’s as well. However, corruption from earlier epochs is less
relevant as time goes on, as the quantity suggests.

We provide a sketch of the proof of the algorithm’s regret bound. The authors note that:

RT)= Y Y Alanma) <2 > Y Aa)ip(a)
me[M] a€lk] me[M] a€lk]
Then they consider three cases for the true gap and the corruption rate.
First, consider the case that the true gap is very small. In that case the algorithm cannot
hope to have a good estimation of the gap, but surely it could not have pulled considerably
more than it "deserved” too, since we have a lower bound on the empirical gap and as such
an upper bound on the expected number of plays. Assuming that A(a) < 4-27™, then from

the algorithm’s upper bound 7,,(a) < X221 < A,}(a) and

4
A(a)

nim(a)A(a) <

Note that this holds whatever the corruption rate!

Now consider a case where the gap is considerable and there is a small corruption rate.
Specifically when A(a) > 4-27™ and pp,—1 < A3(§ ) By Lemma 4.4.4 we have that A,,_1(a) >
324A(a) which implies that 7y, (a)A(a) < 322

The last case to consider is when the gap is considerable but there is also considerable

corruption. Specifically when p,,—1 > Ag(; N A(a) < 32pm—1. In this case we charge the

regret to the corruption 7, (a)A(a) < 8\p,—122™. By carefully summing over the epochs

and arms the claimed regret bound is proven.
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Chapter 5

Variance Estimates in Corrupted
Bandits

3.1 Intro

Adversarially corrupted bandits were first studied by Lykouris et al. in [46] with their
seminal paper. They provided an algorithm agnostic to the corruption level C and robust to
corruption up to o(/T). The algorithm’s central idea is to enhance its confidence bounds by
the uncertainty that the corruption brings forth. This is easy enough when the corruption
level is known; in the general case one can run multiple instances of UCB with enhanced
confidence bounds implementing something similar to a binary search on the corruption,

as Lykouris et al. showed.

The work of Gupta et al. in [36] improved upon this by devising an algorithm that is
robust to corruption level C' < o(T'). This algorithm works in epochs, where each one makes
decisions based on the previous one’s estimations. Given the estimated gap of an arm by a
previous epoch, one can mimick the behaviour of UCB and similar algorithms, by playing
an arm according to that gap. A crucial point is that the epochs keep increasing in length
(roughly doubling each time) and as such the adversary has to continue injecting exponen-

tially more corruption (and in a continuous manner) to strongly impact the learner.

Based on this work, we construct an algorithm that mimics UCB-V behaviour and assuming
a fully stochastic scenario, essentially regains the regret bound that UCB-V satisfies (seen

below):

Lemma 5.1.1. [3] The expected regret attained by UCB-V is:

2
E[R(T)|=O [ InT- Ja_ 1
2 ]

This lays promising ground for future work in extending these results to a corrupted case,
and attaining similar bounds to [36]. However, as we will see, this algorithm suffers from a

key property that makes it differ from BARBAR; corruption can alter an epoch’s length in a
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significant matter. The BARBAR algorithm works in epochs, with exponentially increasing
length. Each epoch utilizes the previous epoch’s estimates of the arms’ gaps, to influence
its decisions. This ensures that no matter how corruption is shared throughout the rounds
it has a "contained’/bounded effect. At epoch m, an arm is played with probability such,
that in expectation, it is pulled roughly © ( A?i?(a)) times, as many as the upper bound of
pulls UCB makes for an arm a with gap A,,_1(a). We will modify BARBAR to behave like

UCB-V (in the same sense). Our algorithm follows.

Algorithm 10 BARBAR-V

A= f(k,T,...) > TBD
Th=1
for a € [k] do

Ag(a) =1
- Vola) = i > Max variance of a RV w. support [0, 1] is 0.25.
for m e {1,2,...} do

nm(a) = A (X’é;ll((?) + Am_ll(a)) > An arm a will be played roughly this many times.

Nin = 3 ek Pm(a)

nim (a)

gm(a) = N,
T = Tm-1+ Npy,
En = [Tm-1,Tn]
for t € E,,N[T] do
play arm a w.p. gmn(a)
tm(a) = empirical mean reward of a at epoch m
Vin(a) = empirical variance of a’s reward at epoch m
ay, = argmax,cp, {#m(a) — corrm(a)} > We use a pessimistic estimation for the best arm,
for reasons to be explained later, corr,,(a) TBD
115 = tmlaly) — corrm(afy)

Ap(a) = max {27, uy, — pm(a)}

Before getting into the analysis it would be wise to justify intuitively our choices. Sim-
plifying the setting, we consider a purely stochastic scenario at first. By the law of large
numbers we can convince ourselves that A,, will be approaching A and V,, will be ap-

proaching o2

. Let’s first see how many times are sub-optimal meta-arms played. If such
an arm’s variance is sufficiently small such that the second term dominates, then this arm
will be played roughly O(%) times which is small (less than the the original BARBAR or
UCB). However, as we will see this will be enough to "learn” the arm, as it will behave
fairly statically due to the low variance. On the other hand, if the variance is big, then one
cannot avoid playing roughly O("KZ), which is at most what UCB/BARBAR would do (but
considerably less when the variance is asymptotically smaller than the gap of the arm). One
maybe undesired property of this algorithm is that it tends to prefer “riskier” good arms

(with higher variance) than more “stable” ones.
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5.2 Preliminary Analysis

We begin by getting a handle on the length N, of each epoch m and the number of epochs
M, by the below lemma.
First of all by an easy application of Chernoff-Hoeffding (see Theorem A.0.2) we have that:

Lemma 5.2.1. For all arms a and all epochs m the event
o = {Inm(a) — nm(a)] < nm(a)/2}
holds with probability at least 1 — 2k log Te=/?

Proof. Apply the cited inequality and note that 7n,,(a) > A and that the number of epochs
is at most log7 as in [36]. O

We can decompose arm a’s reward r(a) as r¢(a) = 7(a) + ¢¢(a), where 7, is the stochastic
reward and ¢, the injected corruption.

The next result follows directly from the Freedman-type inequality we proved in chapter 2:

Lemma 5.2.2. We have that for any arm and epoch

1 _ 2z07 8 @
@) 2 1 I OS2 G 55w

or equivalently:

1

nm(a)

> Har = a}iis(a) — pla)

tEEm

x | o2 8x
<2v2- \/: Vi1(a) Ap-1(a) + ngmfl(a)

with probability at least 1 — 2klog® Te™*, assuming that & holds.

Proof. First of all, we condition on the epoch, which means that n,,(a), N,,(a), n,(a) are
deterministic quantities. Verify that from the concentration inequality of Lemma 2.4.4, the

following hold for fixed a and epoch m with probability at least 1 — 2logTe™":
1 1 e ro2 4 «x

m Z {a; = a}ri(a) — pla)| = (@) Z Xi(a;m) — p(a)] <2 L2

t€EEm i=1 nm(a> 3 nm(a)

We define X;(a;m) as the i-th pull of arm a at epoch m. Event & from Corollary A.0.1 was

defined such that |n,,(a) — nm(a)| < npm(a)/2 and for the first addend on the RHS use the

AVi—1(a
faCt th/at nm(a) Z Agnill((a))’ Ami\1(a)'

while for the second use that n,,(a) >

We lift the conditioning on the epoch’s quantities, as the above hold for any realization of

those values. O

If we can manage to prove that V,,_1(a) is a good approximation to the true variance (in
particular that it is at least a constant fraction of it), then choosing A\ appropriately our esti-
mation of the reward of arm a, that is r,,(a), will be very close to the true expected reward.

In that case, we will have that the deviation of the empirical reward from the true one, will
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be within a constant factor of the previous epoch’s empirical gap. As this empirical gap will
tend to the true one (assuming little corruption), our algorithm’s regret follows classical
optimal regret bounds in the stochastic case. Simply, in a more practical sense, we can fol-

low similar arguments as [36] to bound the algorithm’s regret and reach very similar results.

Unfortunately, this will not happen in general. Let’s investigate how close we can get to

the actual variance. First of all, we need to define V,,(a) explicitly.

9.3 Bounding the empirical variance

Consider the classical estimation of the variance of an RV:

2
1

n—1

n n

1
ZUi’ where U; :== | X; — — ZXj
: n <
i=1 j=1
For a second, let’s assume that the rewards are stochastic. This estimation is not desirable
for the following reason: U; are not independent and they neither form a martingale se-
quence (or can be manipulated into one). We would want at least one of those properties

to be able to achieve strong concentration guarantees of V;,(a) around its expectation, o2

We define the following estimator:

[nm(a)/2]
Pp— 1 . .o — . pa— . 2
Vin(a) == @73 z; Ui, where U; := (Xo;_1 — Xo;)

Note: we simplify notation, by considering X; as the i-th pull of arm a at epoch m.

We had proven in Chapter 2 the following properties:
E[U;] = 0% and Var(U;) < o?

Lemma 5.3.1. Concerning the "stochastic variance”, ie

) L @)

a) = ———— Fai_1(a) — i (a))?

the following concentration inequality holds, for all arms and epochs with probability at least

1 —2klog? Te ", assuming &.

Viaa) = o

8x
<92 2. 7T
=2/0% 5@ (@

Proof. From Chapter 2 and specifically in Lemma 2.4.6 we have that, for a fixed arm a,

with probability at least 1 — 2logTe™":

1 4x
<21/3 2.0
< (o nm(a) + nm(a)
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Now use that n,,(a) > 1/2n,,(a) from event & and union bound over the number of epochs

and arms. O

Lemma 5.3.2. Assuming &y holds, for all arms a, epochs m we have with probability at least
1—klogTe ™:

~ 48C), 24x ~ 96C, 48x
Vm - - < Vm S 2Vm —
(a) Nm ’ﬁ/m(a) — (a) (a) + Nm + nm (a)

Where Cy, is defined as in [36], ie Cy, := ), B, MaX, lec(a)|

Proof. For the upper bound we have that (abusing notation):

nm(a)/2
Vﬂ;@J Vin(a) = 2 (X1 — X_;)?
nm(a)/2
= (rai—1(a) — rai(a) + c2i—1(a) — cai(a))?
=1
nm(a)/2

<2 Z {(rai-1(a) — r2i(a))? + (c2i—1(a) — cai(a))?}

<9 ”m2<“> V(@) +2 3 Har = a} - (2lex(a))?
L - teEm

<2 || 0) 483 T = a) - fefa) as Je,()] < 1
L - teEm

<2 _"WQ(‘L)_ Vin(a) + 32C,, - an\LfS) + 162

\‘nm;a)J . Vm(a) _ 3 (X2i71 o X2i)2
nm(a)/2 a)/2
> (r2i-1(a) — r2i(a))” — 2 Z r2i—1(a) — r2i(a)| - [ezi—1(a) — c2i(a)|
i=1
> nm2(a) Vinla) — 2 Z |cai—1(a) — coi(a)| since r(a) € [0,1]
> | ") G @) -4 Y o = a) - faa)
- . t€Em
nm(a) | - i (@)
> | - Vin(a) — 16C,, - N, — 8z

In both cases use [n/2] > n/3 for n > 2 (since for n < 2 we don’t have a variance estimation

anyways). For the last step the reader can look into the next lemma. O
Lemma 35.3.3. With probability at least 1 — klogTe™" for all arms and epochs:

. 1(@) Z {a; = a}|ci(a)| < 4C, /Ny, + 22 /7 (a)
A teBm

assuming that np,(a) > 1/2n,,(a)
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Proof. As in BARBAR'’s proof, use Beygelzimer’s Freedman-like concentration inequality
on the MDS:

Xi = ({ar = a} = gm(a))lct(a)]

It is of course easy to see that this is an MDS:
E[X¢ [ Hea] =E[Har = a} — gm(a) | He-a] - Eflei(a)] | Hea] =

Define X =Y. Xpand V=35 E[X}?|Hi1]

Then assuming a deterministic adversary:

V< Y lela)Var (I{ag = a}) < gn(a) Y le(a)l
tEEm t€Em
By Theorem A.0.6 we have that:
X:ZH{at:a}]ct ) — gm(a Z|ct ) <V+zx

tebm teEEm

Using that V < g(a) D iep,, lct(a)| = ﬁ]"\}s) Cpn, We have that:

Tim (@)
N

Cn+x

> Hae = a}fer(a)] <

te€Em

Dividing by n,,(a) and using the assumption that n,,(a) > 1/2n,,(a) we have the result. [

We can now reason about how close is the empirical variance V;,(a) to the actual variance

and prove the following lemma.

Lemma 5.3.4. For all arms a and epochs and with probability at least 1 — 3k log2 Te ™ we
have that:
When o2 > @ cAp—1(a):

48C, 1 . 96C,
__-—-m Z < < —_
N, ' 4%= Vin(a) < 4oy + N,
And when o2 < 128 . A, (a):
2951 96C,
V() < 22T A,
@< 2 A + 5

Proof. From the above lemmas by a simple union bound we have that for all arms and

epochs, with probability at least 1 — 3k log? Te ™

6z 32z 48C

Vin(a) > 05 — 2/ 02 - -
QEXs \ 7“n(a)  im(@) N
6z 56z 96C!

Vio(a) < 202 + 4, |02 m
(@) <200+ 4\ Joiz T T 5@ T N

Now note that fim(a) = A (Xgﬂ% + 5 11@) > ;2 (a) 50 that: A (a)™" < 1/A- Api(a)
m71 m— m—

We note the following cases.

And simultaneously:
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Case 1/ High variance: o2 > 122 . A, _(a)

We have that:

32x 48C,
Vila) > 02 — 2 2% __ _=m
(a) 2 07— 2V6 %ah (@) m(@)  Nm
1 48C,,
> 02— 2V/6, /g(%% Ap_1(a) - % Ap_i1(a) — 48Cm
1 o2 48C
> g2 2 252160 — ™
2 0q = 2V/6y /ol 5508 — 1635 N,
L1, 483G,
= 4% N,
And similarly: c
32
a(a) < 40?2 + =
Vin(a) < 4o + N

Case 2/ Small variance: 0% < 122 . A, _4(a)

In this case we don't have a good lower bound for V;,(a), but we don’t need one.

For the upper bound, which we will need to bound the number of plays of arm a:

~ 56 96C,,
Vin(a) < 20% +4v/6 o2 - SAn_1(@) + 5 - Ao (@) +

295z 96C),
< A Dm
> b\ m l(a) + Nm
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9.4 Guaranteeing a good estimation of the rewards

Lemma 5.4.1. With high probability, for appropriate \, we have that for all arms a and all

epochs m:
4Cm 1 1 C1m71

1
< —A, Smo L S A -
[tm (@) = pra| < g Am-1(a) + N, | 1ogom 2(a) + 2N, 1

(Define A;(a) = 1,C; = 0 for i < 0 for conciseness of statements).

2 .
Wk LoeT and choosing A = 2'2z all the relevant events

Proof. Using = such that z = In
(Lemma 5.2.2, Lemma 5.3.2 etc) hold with probability at least 1 — ¢ simultaneously, for all
arms and epochs (via union bound). All the following approximations in the analysis are

justified as well, as one could verify.

We begin by following the analysis of [36] and breaking the deviation by the triangle

inequality as:

S Ia; = a)lecla)

@) = | < ) =l + 7
teEm,

The corruption is bounded in a similar fashion through Lemma 5.3.3. So the rest of the

analysis focuses on bounding the stochastic sample mean deviation.

Note that the case of m = 1 is simple, since Vy(a) = 1/4 and Ag(a) =1 and we have that:

_ AVo(a) A 5A

"n(1) = 5200) T Bola) ~ 4A3a)

Which means that the result follows from a simple application of a concentration inequality
such as Hoeffding’s.

Next, we focus on any epoch beyond the first.

Case 1/ Small variance: o2 < 128%A,,_(a)

From Lemma 5.2.2 we have that:

- (128%2A,,—
<2V2. v ( A 2(a)) + 8 — < by the assumption
i (@ 3 m(a)
T T 8x
<32,/ =A,— .
\/)\ 20) ot @)

< 32§\/Am_2(a) N 0.68§Am_1(a)

1
< § (820n-2(a) + 3281 (a) + 0.688,,-1(a))  since ay < (a” +37)
1
< A A i > 912
< 9% o(a) + 198 1(a) since A > 2'°x

Case 2/ High variance: o2 > 128%A,,_5(a)

. C7n—1 L 2
a) Small corruption = < 705
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In this case from Lemma 5.3.4 we have that:

Vin(a) > Z

o

oo =

So then:

T o2 8x
i (a) =l < 2v2, )/ Z T A CTA,.
i) = ol < 23 [/ % B@) + FE B0
2
52\/5\/;_ loa 'Am_l(a)+§xAm 1(a) using Lemma 5.3.4
A\ L2 3\

1
< 1—6Am_1(a) since \ > 2122

Cm—1 1 2
N, 1 = 192%a

From Lemma 5.2.2 we have that:

02 8 T
[ (@) = pal < 2V2 [ 225 + 5

<2V2 *U2Am 1(a) + )\Am 1(a)

Cm 1 8
< . -
2\/>\/>\/192 N, 1(a) + 3)\Am71(a)

1 Ch—1 8T 1 5 2
<2V2 /= | = JANS — A < -
< \f\[(%Nm o+ 1(61))+3A 1(a) ay < 5@ +y?)

1C )
< T6Am 1(a )+T6N: 1 since \ > 2%z

5.9 Bounding estimated gaps

If we choose corry,(a) = g Am—2(a) + & Am—1(a), we can reach an almost identical result
as Lemma 5 in [36], using the above lemma and following the same analysis.

We would like to bound A,,(a) from above to ensure a good estimation for r,,(a), but also
bound it from below so as to bound the number of plays n,,(a) as well. In the following

results, we will assume all the previous events hold.

Remark 5.5.1.

Am(a) = pi, — tm(a)

* * *
= P — 1 + W= e T fta — pm(a)
—— —— —_———
we would like it to be < 0 =A(a) bounded by prev. lemmas

It is clear that to bound A,,(a) we need to bound how far away is the estimated best reward

at epoch m from the real optimal reward. That is what we do in the following lemma.
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Lemma 5.5.1. Choosing corry,(a) = 15z Am—2(a) + 15 Am—1(a) it holds that:

4Cw 1Cm1 1 1 i} _ACn  1Cm
Ny,  2Npn_1 64 8

H="N"T3nN,

Where with a* we denote the optimal arm (remember that p, doesn’t necessarily refer to the

optimal arm).

Proof. The upper bound is trivial since:

*

P — 1= pm(a”) = corrm(a”) — p

Lemm<a o Pax, + %Am,g(a*) + %Am,l(a*) — corrp(ar,) — ¥+ 4]\67: + ;]C\;:i
EECEAS T
For the lower bound, we have by definition:
fm = Max{ i (a) — corrm(a)} > pm(a”) — corrp(a)
So then:
fim — W = pm(a®) = corrp(a”) — p*
Lemmg 541 i %Am,g(a*) N 1—16Am,1(a*) B <i€: N ;J(\jf:_i) _ corrm(a) —
~ R AN i) Ao
O

Having bounds for A,,(a) independent of previous estimations is crucial to analyzing the

algorithm’s regret. First, we will provide an upper bound.

Lemma 5.5.2.
Am(a) < 2(A(a) + 27 + pyo)

Where we define:

m

1 G
pm ::ZWE

s=1
Proof. Since 227! = 1 the statement holds for m < 1 trivially. Assuming it holds for

epochs m’ < m — 1 we will prove it also holds for any epoch m > 2. We have that:

P, = (@) = (g, — 1) + (1" = p(a)) + (p(a) — pm(a))

ACh  1Cmy 4Ch 1Cmoy 1 1
< - - — _
= ( N, © 2Nm1> +ala) + (Nm ton, o Tetm @ 128A””(“>)
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Cm—l 86Ym
+

* 1 1
fm — Bm(a) < Aa) + @Amﬂ(a) + EAmﬂ(a) + NN,
2 2 Cin— 8C,
< = —m+2 —m-+1 m—1 m
< Afa) + 155 (Ale) +2 + pm-2) + 16(A(0) +2 + pm_1) + N T
_ 1/1 8Cm—1 1 8Cm
< 2(A 27"V 4+ = | =pm— o +
< 2(A(a) + )+8<8p 2+Nm1>+8p tt N

1

<2(A(a) +27™) + pm + pm

Where in the second line we used the inductive hypothesis. The proof is finished by noting
that:

Am(a) = max {27, i5, = im(a)}

Lemma 5.5.3. We also have that

Proof. First we note that:
Ap(a) > py, — pm(a)
We can bound g, by Lemma 5.5.1:

4C, 1Cn 1 1
64

Ap—2(a®)

We also bound pu,,(a) below by the main concentration inequality we constructed, ie
Lemma 5.4.1:

4Cp, 1 Cp—1 1
> — — —

1
Tag Sm-2(0)

Which means that we have:

L)+ ;Aml(a)) - (614Am2<a*> ; éSAmm)

8Cm  Cmo1 (3 3 o 1 1/3 3 o1
> Ala) — == Zm=l (2, 4 2o mm) L T A — 2 Zp, g+ 22 (M=) L ZA
> @ -5 - 2=t (R B4 2a@) - ¢ (Bona+ 22070 4 A

1 . 8C, 3 1/8Ch_1 3
> A) -2 (S 2, ) - o 2 o
z 540 (Nm+8p 1> 8<Nm_1+8p 2)
> -Aa) =27 = 3pm gpm—l
> —Aa) =27 = 3pm — 3pm
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5.6 Regret

Theorem 5.6.1. BARBAR-V with choices corrp,(a) = 2z Apm_o(a)+1:Am-1(a), A = 221n %

attains the below regret bound with probability at least 1 — ¢, for the classic Stochastic MAB

problem:

RT) <0 (lnk10§2T, S logT{AU(‘z) +1})

aF#a*
Proof. Let’s first focus on the first epoch.

Ri(a) < gﬁl(a)A(a) _ S%A

Next, we focus on epochs beyond the first.
Case 1/ High Variance: 02 > 128 -2712A,, 5(a)

From Lemma 5.3.4 we have that V,,_1(a) < 402 (since we assume a fully stochastic

scenario) so that:

Case 2/ Small variance o2 < 128-272A,, 5(a)

In that case, from Lemma 5.3.4 we have that V,,_1(a) < O (A,,—2(a))

Which means that:

B B Vin—1(a) 1
im(a) = A <A2n_1<a> " Am_1<a>>

<o(» ﬁzgi y 1] @)

Now we just need to show that A,,_s(a) and A,,_1(a) are close enough to each other, when

corruption is small, such that ﬁmjgzg is close to a constant. We note the following two

cases.

a) A(a) >8-27™

From Lemma 5.5.3 we have that A,,_1(a) > $A(a) and from Lemma 5.5.2 we have
Ay —2(a) < 4A(a), which means that ﬁzjgag =0(1).

In both the above cases:

0.2
Rpn(a) = nm(a) - Ala) <O <A>\2(Z) + A?a)) - A(a)

b) Afa) <8-27™

In this case by the strict lower bound in the estimation of A(a), in particular by

78



Ap(a) >~™ and from Lemma 5.5.2 A, _2(a) < 2(A(a) +27" 24 p,-1/8) < 9-27™ we

bound the number of plays in both cases:

nm(a) <

| W

] .
nm(a) < O (Aog - 2°" +2™)) <O (22(2) + A/(\a)>

Summing over all epochs and arms we get the result when no corruption is present. O

In contrast to the above positive result, we present the below negative result, suggesting

that the algorithm in its current state cannot attain the regret bounds we wished.
Theorem 5.6.2. A corruption of ©(\/T) can make the learner suffer Q(T) regret.

Proof. Consider a two arm instance, where both arms have a high variance (constant) and
the suboptimal arm has gap A. Denote by M = log,(T"). Now consider an adversary that
corrupts epoch M /2 — 2 such that the learner thinks both arms are almost deterministic,
in that case the next epoch will have length ©(2"/2-1) (notice we do not care which arm
is the ‘best’ at this epoch). The adversary continues to corrupt in the same manner all the
forthcoming epochs up until epoch M — 2. The adversary then corrupts in the following
way: they make the learner think that the optimal arm is the suboptimal one, while also
making the learner think it has a high (constant) variance. The next epoch is epoch M — 1
and will have length ©(4M—1).

The adversary had to use corruption:
oMy + 0 (QM/2 oML Ly QM*Q) = O(VT)

But the learner suffers regret:
QA -4 H = Q(A-T)

Assuming that the instance is such that A is a constant, then the regret is linear. O

9.7 Future work

The most important question is that of the possibility of achieving a regret bound that
deteriorates from the almost-optimal regret that UCB-V achieves, as one goes from a fully
stochastic scenario to a corrupted one. Our work which recovers key lemmas with minor
expected differences, and the fact that the algorithm does achieve the expected regret bound
in the fully stochastic case, is a positive step in that direction. However, the key difference
between our algorithm and the one in [36] is that epochs can very well not scale exponentially
as the time goes on, when the adversary can corrupt the variances heavily. This imposes a
challenge on analyzing the effect that corruption on previous epochs has on the next ones
and also suggests that the algorithm cannot hope to recover these bounds, as our previous

negative result showcases.
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Appendix A

Concentration Inequalities

Theorem A.0.1. Suppose X; € |a;, b;| are pairwise independent, then Hoeffding’s inequality

[38] states:
n262
>0 <2expq—2
) { 2 icin)(bi = ai)Q}

Theorem A.0.2. [27] Suppose {X;}!' ;| is a sequence of independent [0,1] RVs and let X =
>, X;. For any ¢ > 0:

1
w2

i€[n]

1
P(HZXiE

i€[n]

P (X ~B(X) 2 B X)) < 200 -SE (]}

}P’<|X—IE[X]]§ ,/3E[X]m§> >1-56

Theorem A.0.3 (Bernstein’s Inequality [9]). A well known result is the celebrated Bernstein’s
concentration inequality. For X; i.i.d with |X;| < M, E[X;] = u and Var(X;) = o2, the

1 n
Pll—) X,—
Definition A.0.1. A martingale difference sequence (MDS) is a sequence of RVs Y; such
that |Y; — Y;_1| is bounded and E[Y; | Y1,...Y;_1] = 0.

Equivalently:

following holds:

2z M
< 202x/n+7x )21—261
3n

Theorem A.0.4 (Azuma-Hoeffding inequality [8]). Suppose Y; is an MDS and Y; € [a;,b;] it

almost surely, Azuma-Hoeffding inequality then states that:

2¢2
P el S2exXpd ————
([3r=) <200 i)

Theorem A.0.5 (Freedman'’s inequality (implicit in [27]), original form in [31]). Let X; be

t

DY

=1

an arbitrary RV sequence and f = f(Xy,...,X,). Define:
D; :E{f|X1,,XZ] —E[f|X1,...,XZ',1], with Dy =0

and
b= I’I’LlEI.X{SLLp{’l)Z — Di—l‘ ’ Xl, A 7Xi—1}}
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and also

n
V.= Z}s{upl Var (Dz ’ Xl, PN ,Xifl)
=1 "

Then:

2
P(f—E[fll >t) < QCXP{‘W}

Corollary A.0.1. Let Z; be an MDS with |Z; — Z;_1| < b almost surely, then we have that:

2 2 4blog%
> — — <
]P><'_ 7\/bV10g5+ 3 <94

n
> Zi
=1

where V=" | E [ZZQ | Hi—l]

Theorem A.0.6 (Beygelzimer et al. 2011 in [10])). Suppose that {X;}_, is an MDS and let
X = e Xi- Assuming that |X;| < b, then if we define V := Y5, E [X? | Hi—1], for any
6> 0:

P <|X| < % +bln (2/6))
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