NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
Di1vISION OF SIGNALS, CONTROL AND ROBOTICS
SPEECH AND LANGUAGE PROCESSING GROUP

S

v

\

s

F 3
v "‘1’
1 .,};‘ D
7 NPOMHOEVS .

|

Integrated Gradients for Structured Pruning on

BERT

DIPLOMA THESIS

of

DIMITRIOS BEKRIS

Supervisor: Alexandros Potamianos
Associate Professor, ECE NTUA

Athens, September 2024

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Signals, Control and Robotics

Speech and Language Processing Group

Integrated Gradients for Structured Pruning on
BERT

DIPLOMA THESIS
of

DIMITRIOS BEKRIS

Supervisor: Alexandros Potamianos
Associate Professor, ECE NTUA

Approved by the examination committee on 13 September 2024.

(Signature) (Signature) (Signature)

Alexandros Potamianos Petros Maragos Athanasios Rontogiannis

Associate Professor, ECE NTUA Professor, ECE NTUA Associate Professor, ECE NTUA

Athens, September 2024

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Signals, Control and Robotics

Speech and Language Processing Group

(Signature)

Dimitrios Bekris

Electrical & Computer Engineer Graduate, NTUA

2024, Dimitrios Bekris — All rights reserved.

The copying, storage and distribution of this diploma thesis, exall or part of it, is
prohibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

To humanity

Tao yovtéha Transformer €youv @épel enavdotaon otov Topéa tne Enelepyaoctioc Puoinrc
I'\doooc (NLP), Witepa ot epyooiec dnwe 1 todvounon xewévou. Autd ta povtéla Booi-
Covtan o€ peydho Bodud otoug unyoviogols Teocoyhc, TOU EMITEENOLY GTO UOVTEAO Vo €C-
Tidlel oe Bdpopa oNuela TS ELOOBOU, BEATIOVOVTAS TNV XUTavonaT Tou mAaiciov. 201600,
undpyetl Pt cuveytlouevr oLLATNOT CYETIXA UE TO OV OL UNYOVIOHOL TPOCOY N UTopoly Vo
Yewpniolv ollomoTeg eENYHOES YA TIC AMOPAGEL, TOU UOVIEAOU, OTWE EMCNUAUVETOL OTN
Oodym " Attention is not Explanation". Aut n Simhwuatiny epyaoctio e€etdlet T dounuévn
ANAOEUCT) TWV XEPUADY TRoCOY S W PEYodo PBehtioTonolnone Twv yoviéhwy Transformer,
onwe 1o BERT, oe epyaociec tovounone tou GLUE benchmark, yewhvovtoc tnv moiu-
TAOXOTNTA TOU LOVTEAOU V) BLUTNEELTAL 1) AmOBOCT) XAl 1) EPUNVEUCLLOTNTOL.

To xivnteo v oauth TV €peuvar Tydler amd T Slodyn yior T duvatoTnTa EERYNONG
TOV unyaviouwy mpocoyns. Eiwodyeton évag vEog delxtng Pactouévog otn cuoy€tion mou
o&tomolel TN oYEom METAZ) TWV TYMOVY TEOCOY NS Xl TWV ATOSOCEWY, UE GTOYO TNV TAUTOTONOT
TOV TWO CNUAVTIXOV XEQUAGY Tpocoyhc. H mpotewvouevn pédodog Bacileton otn Ocwplia
tou Tuyepol Aehtiou (Lottery Ticket Hypothesis) xou Soxwdler tov ahydprduo Iterative
Structured Pruning, o onofog npotdinxe and tov Aylath. Auth 1 npocéyyion oToyYeVEL Va
o&LOAOYHOEL OV OL XEQPUNES TIPOGOY NS TOL XhadeLovTaL Ue Bdom autdy Tov SelxTn umopoly vo
OLTNENoCOLY TNV amddoon xou TNV e&nynuxy] aglo Tou HovTEAOU.

H pédodog epapudotnre oto BERT xou die&yinoay extetouéva nepduato o SLdpopeg
epyaoteg Tagvounong tou GLUE Benchmark. To anotedéopota delyvouv 6Tt 1 amddoon
elvan ouyxplown ye tn SouAeld Tou AyAaty), UE TNV TEOTELVOUEVY] TROGEYYLOT) VoL ETLTUY Y GVEL
AVTAYWVIOTIXE. ATOTEAEGUATO OGOV apoEd TNV oxE(BeLa XaL TNV ATOBOTIXOTNTA TOU HOVTEAOU.

Or ouveloopéc autrg Tne épeuvag evtonilovtal T6c0 6Tov Topéa Tou Structured Pruning
660 xou 6T GLVEYLLOUEVT GLULATNON YLl TO OV OL UMY AVIOUOL TEOGOY i UTOEOUY VoL AELTOURY T
ocouv w¢ eénynoeic. Me v avdmtudn xou aflohdynon authc Tne Yedodou, cupfBdilouue ot
BeATioTOMOINGT TWV HOVTEAWY XL TEOCPEQOUUE VEEC TPOOTTIXES YLOL TNV XATAVONON) ol o&-

loTolnon TV UNYAVIoU®OY Tpocoyfc ot pyaoieg NLP.

Bohd Mddnor, Enelepyacio Puoinrc I'hdooag, Teavogpep Acapvivy, Teavogopueec,
BEPT, Yuunieor, Aouwt| Hepwonn, Trnddeone Tuyepold Acehtiov, yetexnoidevon, Epun-
vevowotnta, Ohoxhnpwuevee Kiloewc Integrated Gradients

Transformer models have revolutionized the field of Natural Language Processing (NLP),
particularly in tasks like text classification. These models rely heavily on attention mech-
anisms to focus on different parts of the input, enhancing contextual understanding. How-
ever, there has been a growing debate on whether attention mechanisms can be considered
reliable explanations for model decisions, as highlighted in the "Attention is not Explana-
tion" debate. This thesis investigates structured pruning of attention heads as a method to
optimize Transformer models like BERT for classification tasks in the GLUE benchmark,
reducing model complexity while preserving performance and interpretability.

Motivated by the debate on the explanatory power of attention mechanisms, this re-
search introduces a novel correlation-based metric that leverages the relationship between
attention scores and attributions to identify the most important attention heads. The pro-
posed method builds on the Lottery Ticket Hypothesis and tests the Iterative Structured
Pruning algorithm, first introduced by Achlatis. This approach aims to assess whether
attention heads that are pruned using this correlation-based metric can still maintain the
model’s performance and explanatory value.

The method was applied to BERT, and extensive experiments were conducted on var-
ious GLUE benchmark classification tasks. The results demonstrate that the performance
is comparable to the work of Achlatis, with the proposed approach achieving competitive
results in terms of both accuracy and model efficiency.

The contributions of this research lie in the Structured Pruning field as well as in the
ongoing debate about whether attention can serve as an explanation. By developing and
evaluating this method, we contribute to model optimization and offer new insights into

how attention mechanisms can be understood and utilized in NLP tasks.

Deep Learning, Natural Language Processing, Transfer Learning, Transformers, BERT,
Compression, Structured Pruning, Lottery Ticket Hypothesis, fine-tuning, Interpretability
/ Explainability, Integrated Gradients

H mapoloa dimhwpoting epyoacio oamoTelel €va TEOCKTIXG TOVNUA GT1 BLAUOPPKOY TOU
omnotou cuveTéAeoay Tohhol. Ou el VoL EUYUPIOTACW TEWTIOTWS TOV EMPBAETOVTA XNy NTH
e epyaotiag, Tov xadnynt) AAé€avdpo Ilotopidvo yio TNV evaoyOANGY| TOU UE TNV EPELYNTIXT
uou mpoomdielo xou Tig xabpleg cupBourés. Eva yeydho cuyapiote ogethw otov I'ipyo
[Mopaoxeuomovio yio Ty moAdTun Borjdeld Tou xou Tic xadopioTixéc tou Wéeg. Eniong, da
feha va evyaplothow tov IHavayuntn Puivtion xa I'bpyo Petowd yio v mapaydenon
nopwv tou CVSP Lab (Computer Vision and Signal Processing). Télog, to peyolltepo
EUYAPLOTG e PIAOUE XL YOVELS oL Ywelg T oTeEY| Toug dev Yo unopoloo vo T @€pw ELg

Tépag.

Hepirngn
Abstract
Evyopioticg

Extetopévn Iepiindn octa EAAnvixd

0.1 Tlepihndm . . o o o oo
0.2 Ewooyoyn . . . e
0.3 Zyetwn Epyaocloo o
0.4 Opwoyog tou HpofAAuatog . . . o o o o oo o oo
0.4.1 Ogiopdg Aounuévne Khddevong o o o o oo oo
0.4.2 Apywtextovixd BERT oo
0.5 TIpotewopevn Mébodog
0.5.1 Ieprypapr) MeBddou . . . o oo oo
0.5.2 H Evvowr Iliow omd) Yvoyétiono
0.6 TewpduoTor oo
0.6.1 AOPQWOTN . v v v v
0.6.2 Aounuévn Khddevon ye Acixtn Enuootogo 0oL
0.6.3 Emovodnmtixg Aounuévn KAddevon oL oo
0.6.4 Nuomtipow Ewottdpios o o o oo oo

1 Introduction

1.1 Introductory Concepts
1.1.1 Artificial Intelligence, Machine Learning and Deep Learning
1.1.2 Interpretability in Machine Learning
1.1.3 Pruning in Machine Learning

1.2 Motivationo
1.2.1 Research Contribution,

1.3 Thesis Outline

I Background Knowledge

2 Machine Learning

2.1 Introductiono

11

23
23
23
25
26
26
27
27
27
29
33
33
34
36
37

39
39
39
39
40
40
42
42

45

47

2.1.1 Definition 47

2.2 Machine Learning Classifications 47
2.2.1 Supervised Learning o 48
2.2.2 Unsupervised Learning oL 49
2.2.3 Self-Supervised Learning 0oL 49
2.2.4 Transfer Learning o 49

2.3 Learning Process e 50
2.3.1 Loss Function L 50
2.3.2 Optimization 52
2.3.3 Gradient Descent 53
2.3.4 Underfitting and Overfitting 95
2.3.5 Regularization, Dropout, and Pruning 56

2.4 Machine Learning Models oo o8
2.4.1 Linear Regression L oo e 58
2.4.2 Classifiers 58

2.5 Deep Learning Models o o 62
2.5.1 The Perceptron 63
2.5.2 Fully Connected Neural Network 65
2.5.3 Recurrent Neural Networks 66
2.5.4 Attention Model 69
2.5.5 Transformers 71
2.5.6 Residual Connections and Normalization 74

Natural Language Processing 75

3.1 Imtroduction 75

3.2 Applications 76

3.3 Word Representation 76
3.3.1 Denotational Representation 7
3.3.2 Distributional Semantics L Lo 78

3.4 Language Models 80
3.4.1 Traditional Language Models 80
3.4.2 Neural Language Models 81

3.5 Embeddings from Language Models (ELMo) 81

3.6 Bidirectional Encoder Representations from Transformers (BERT) 82

3.7 GLUE Benchmark 84
3.7.1 CoLA . . . e 85
3.7.2 SST-2 . . o 86
3.7.3 MRPC 86
374 QQP ..o 86
3.7.5 STS-B . . . 86
3.7.6 MNLI . .. 0o 86
3.7.7 QNLL ..o 86

3.7.8 RTE . . o o e 87

3.79 WNLI . . . 000 e

4 Compression of Deep Learning Models

4.1 Introduction L

4.2 Compression: Problem Setting
4.2.1 Pruning
4.2.2 Quantization

4.3 Lottery Ticket Hypothesis (LTH)

4.4 Pruning Transformer-based models
4.4.1 Transformer-based Structured Pruning
4.4.2 Transformer-based Magnitude Pruning

4.5 Pruning Computer Vision Models

Interpretability

5.1 Introductiono

5.2 Classic Methods
5.2.1 Gradient Based oo o
5.2.2 External Explainers based on Model Behaviors
5.2.3 Contextual Decomposition L.

5.3 Applied Methods in LLMs
5.3.1 Discretized Integrated Gradients
5.3.2 Sequential Integrated Gradients L.
5.3.3 Layer Integrated Gradients for Linguistic Acceptability
5.3.4 Expected Gradients
5.3.5 Hierarchical Explanation
53.6 TransSHAP

11

Methodology & Results

Attribution Does Matter

6.1
6.2
6.3
6.4

6.5

6.6

Abstracto
Introduction e
Related Work e
Problem Definition
6.4.1 Structured Pruning Definition
6.4.2 BERT Architecture
Proposed Method
6.5.1 Method Description o
6.5.2 The Concept Behind Correlation
Experiments
6.6.1 Configuration Lo
6.6.2 Structured Pruning with Importance Score

6.6.3 Iterative Structured Pruning

89
89
90
90
92
92
93
93
97
98

101
101
102
102
103
104
106
106
107
108
109
109
110

113

7 Conclusions & Future Work 131
7.1 Discussion e 131
7.2 Future Work oo 132

Bibliography 141

Appendices 143
.1 Correlation Analysis 145
.2 Data Pre-Processingo 146
.3 Pruning Details 149

List of Abbreviations 151

Tt = W N

2.1
2.2

2.3

24
2.5
2.6

2.7

2.8
2.9

2.10
2.11

OepUOXIPTES YOl TN CUGYETIOT TOU TEOEXTIUOELUEVOL XAl TROCUPUOGUEVOU

povtéhou Yl 1o oOVoAo dedopévwy SST-2.o oo
Twég Ipoooync xow Anddoone otny Enovédndm 2.
Twéc pocoync xoaw Anddoone otny Enovédndm 3.
Twéc pocoync xoaw Anddoone oty Enovédndm 6
Aworypdppoto AlacTopds Tou BElVOUY TN YwelxY| OYEoT TwV XeParwy 1, 3
OTNV ETOVAANIMN 2« . . L L
AZoloynom poviéhwy 6To oeT emxlpwone Yo xdlde epyacion yia Oheg TIC
TapaAlay€C Tou TpwTou ahyopiduou 6.1. To dorypdupata eivon o yéoog 6pog
TELOV TUYAWY OTOPWV. . . v v v v v oo e e e
AZiohbynon povtéhwy oto oeT emxlpnwong Yt Tic napaihoyéc ISP (eite tov
Alyéprduo 6.2). To newpdpoarta dielhydnoay yio évay ondpo.

Gradient Descent Visualization.
Training and test errors behave differently. At the left end of the graph,
training error and generalization error are both high, indicating underfit-
ting. As we increase model capacity, training error decreases, but the gap
between training and generalization error increases. FEventually, the size of
this gap outweighs the decrease in training error, and we enter the overfit-
ting regime, where capacity is too large. Source: [1]
Example of binary classification using SVM, showing the maximum-margin
hyperplane and support vectors.
A biological neuron compared to a perceptron
Fully Connected Neural Network [2]
A rolled-up RNN where X; is the input vector containing sequences of
characters of a word while h; is the output vector. Source: colah.github.io .
An unrolled RNN where X; is the input vector containing sequences of
characters of a word while h; is the output vector. Source: colah.github.io .
The repeating module in an LSTM. Source: colah.github.io
Encoder-decoder architecture: (a) traditional (b) with attention model.
Source: [3] ...
Overview of vanilla Transformer architecture. Source: [4]
(left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists

of several attention layers running in parallel. Source: [4]

61

67

colah.github.io
colah.github.io
colah.github.io

3.1

3.2

3.3

3.4

4.1

4.2

4.3

44

4.5

4.6

4.7

The CBOW architecture predicts the current word based on the context,

while Skip-gram predicts surrounding words given the current word. Source:

5 S 79
A feed-forward neural network language model. Source: [6] 82
Pre-training and fine-tuning procedures for BERT. Source: [7] 84

Task descriptions and statistics. All tasks are single sentence or sentence
pair classification, except STS-B, which is a regression task. MNLI has
three classes; all other classification tasks have two. Test sets shown in

bold use labels that have never been made public in any form. Source: [8] . 85

Graphic [llustration of Lottery Ticket Hypothesis 93

Early-stopping iteration and accuracy of LeNet under one-shot and itera-
tive pruning. Average of five trials; error bars indicate the minimum and

maximum values. Source: [9] L 93

Typical self-attention classes used for training a neural network. Both axes
on every image represent BERT tokens of an input example, and colors
denote absolute attention weights (darker colors indicate greater weights).
The first three types are most likely associated with language model pre-
training, while the last two potentially encode semantic and syntactic in-

formation. Source: [10] 94

Importance (according to LRP) of self-attention heads. The model trained
on 6m OpenSubtitles EN-RU data. Source: [11] 95

The "good" and "bad" subnetworks in BERT fine-tuning: performance
on GLUE tasks. ’Pruned’ subnetworks are only pruned, and ’retrained’
subnetworks are restored to pre-trained weights and fine-tuned. Subfigure
titles indicate the task and percentage of surviving weights. STD values
and error bars indicate standard deviation of surviving weights and perfor-

mance, respectively, across 5 fine-tuning runs. Source: [12] 96

Overlaps in BERT’s “good” subnetworks between GLUE tasks: self-attention
heads. Source: [12] 97

Performance of subnetworks at the highest sparsity for which IMP finds
winning tickets on each task. To account for fluctuations, a subnetwork
is considered a winning ticket if its performance is within one standard
deviation of the unpruned BERT model. Entries with errors are the average
across five runs, and errors are the standard deviations. IMP = iterative
magnitude pruning; RP = randomly pruning; 6y = the pre-trained weights;
{, = random weights; 0] = randomly shuffled pre-trained weights. Source:
[13] . 98

4.8

4.9

5.1
5.2

5.3

5.4

9.5

Ilustration of the evolution of a 5 x 5 filter with steps of training. Initial
training of the network for Task I learns a dense filter as illustrated in (a).
After pruning by 60% and re-training, a sparse filter for Task I is obtained,
as depicted in (b), where white circles denote 0 valued weights. Weights
retained for Task [are kept fixed for the remainder of the method and
are not eligible for further pruning. The pruned weights are allowed to be
updated for Task II, leading to filter (c), which shares weights learned for
Task I. Another round of pruning by 33% and re-training leads to filter (d),
the filter used for evaluating Task II (Note that weights for Task I, in gray,
are not considered for pruning). Hereafter, weights for Task II, depicted in
orange, are kept fixed. This process is completed until desired or runs out
of pruned weights, as shown in the filter (e). The final filter (e) for Task III
shares weights learned for tasks I and II. At test time, appropriate masks
are applied depending on the selected Task to replicate filters learned for

the respective tasks. Source: [14] Lo oL

Overview of Piggyback method for learning piggyback masks for fixed back-
bone networks. During training, a set of real-valued weights m, are main-
tained, which are passed through a thresholding function to obtain binary-
valued masks m. These masks are applied to the weights W of the back-
bone network in an element-wise fashion, keeping individual weights active
or masked out. The gradients obtained through backpropagation of the
task-specific loss are used to update the real-valued mask weights. After
training, the real-valued mask weights are discarded, and only the thresh-

olded mask is retained, giving one network mask per task. Source: [14]

Linear Regression for finding ¢;.

Compositional models such as deep neural networks are comprised of many
simple components. Given analytic solutions for the Shapley values of the
components, fast approximations for the full model can be made using

DeepLIFT’s style of back-propagation.

ACD constructs a hierarchy of meaningful phrases and provides importance

scores for each identified phrase.

Comparison between IG, DIG, and SIG. DIG improves on IG by creating
discretized paths between the data and the baseline, but it can produce
sentences with different meanings compared to the original. SIG addresses
this by fixing every word to its true value except one, and moving the

remaining word along a straight path.

TransSHAP adaptation of SHAP to the BERT language model by introduc-
ing a classifier function that converts each input instance into a word-level
representation. The representation is perturbed to generate new instances,
which are then processed by the BERT tokenizer, and the final predictions
are returned to the Kernel SHAP.

. 100

104

106

5.6

6.1
6.2
6.3
6.4
6.5

6.6

6.7

TransSHAP visualization of prediction explanations for negative sentiment.
The features’ contribution values were obtained using the SHAP method.
The word ’hate’ strongly contributed to the negative sentiment classifica-

tion, while the word ’lol’ slightly opposed it. 112

Heatmaps for correlation of the pre-trained and fine-tuned model for the

SST-2 dataset. 122
Attention and Attribution Values on Iteration 2 123
Attention and Attribution Values on Iteration 3 123
Attention and Attribution Values on Iteration 6 124
Scatter Plots that shows the spatial relation of the heads 1, 3 on the iter-

ation 2 oL L 124

Models evaluation on the validation set for each task for all the variations
of the first Algorithm 6.1. The diagrams are the average value of three
random seeds. e 127
Models evaluation on the validation set for ISP variations (see Algorithm

6.2). The experiments have been conducted for one seed. 128

Heatmaps for correlation of the pre-trained and finetuned model for the

IMDB dataset 145
Heatmaps for correlation of the pre-trained and finetuned model for the
Rotten-Tomatoes dataset 145

Data Distribution for train set leveraging the bert-base-uncased tokenizer . 146
Data Distribution for validation set leveraging the bert-base-uncased tok-
EIIZET . . . v . o e e e e e e e 147

Data Distribution for validation set leveraging the bert-base-cased tokenizer 148

2.1

2.2

2.3

6.1

6.2
6.3

6.4

GLUE tasks [15], peyédn cuvohwy Bedouévmv, HETPIXEC XL UTEPTORAUETEOL
TEOCUPUOYNC IOV AVAPEQOVTAL OE QUTA TN UEAETN.
Numtipwo Ewoitripla oe OAn TNy €XTaom TV GUVOAWY GEBOUEVLV YLl TOUG
IGSPF, IGSPP xow one shot ISP
Metpuéc anddoone yia SlopopeTiné epyacieg LUTo Yedddoug XAhddevoNC Xal
aLOAOYNONG TOU TROCUPUOCUEVOL Hoviehou. O ueyolltepog apriude elvan
ME EVIOVI YROUPT. © v v v v v o o i e e
Metpixéc amddoong yia dlapopeTinée epyaoieg und uedddoue, epopuolovtag
v Trddeon tou Aayelou. O peyahibtepog aprduds elvar ye Eviovn ypeopt,

eve vnoypaupiCoupe T TES mou uneplaivouy TNy Teocéyyion Tou Michel. .

Encoder-decoder architecture: traditional and with attention model. No-
tation: = = (x1,...,27): input sequence, T": length of input sequence, h;:
hidden states of encoder, c: context vector, a;;: attention weights over in-
put, s;: decoder hidden state, y;: output token, f,g: non-linear functions,
a: alignment function, p: distribution function.
Summary of Alignment Functions. Notation: a(k;,q): alignment function
for query g and key k;, sim: similarity functions such as cosine, dg: length of
input, W, Wiy, Wo, Wi, Wa: trainable parameters, b: trainable bias term,
act: activation function.
Complexity and Parameter Counts of Transformer Modules. Notation: T

is the sequence length, D is the hidden dimension.

GLUE tasks [15], dataset sizes, metrics, and fine-tuning hyperparameters
reported in this study.
Winning Tickets across the datasets for IGSPF, IGSPP and one shot ISP .
Performance metrics for different tasks under methods, pruning and eval-
uating the fine tuned model. The greatest number is bold.
Performance metrics for different tasks under methods, applying the Lot-
tery Ticket Hypothesis. The greatest number is bold, while we underline

the values that outperforms Michel’s approach.

38

TO XeQdhato auTéd Topouctdleta plo extetapévn Teplindn Tng epyaciag auTHS OTA EAA-

nvixd. Me ouvontixd tpémo Yo Slatunmwdoly oL xevipixés 1Wéeg amd xdde evotnta.

0.1 IlepiAndm

H épeuvo auth| e€epeuvd xou BedtioTonolel Toug unyaviolols teocoy g ota wovtéha Trans-
former, ta onoio anoteholy xhewi otny Enelepyacio Puowmrc I'h\dooac (NLP) xou oe did-
popoug Topelg Tne unyavixic udinong. To enixevtpo tng épeuvag etvon 1 Sounuévn xAddeUOT
TWV XEPUADY TROGOYNG, Uil EEEAYUEVT TEY VXY TTIOU GToYEVEL OTN BEATIGTOTOMOT TWV UOV-
TENOY UECW TN EMAEXTINNS APUUPETTIC XEPURDY TEOCOY NG, BLUTNEMVTIC Xk EVIOYVOVTIS TNV
amOB00Y, TOU HOVTEAOU, EVE TOUTOYEOVO UEWDVEL TNV UTOAOYLOTIXY TOAUTAOXOTNTO XU TIC
amouthoelc opwy. H yerétn auty etodyet o véo tpocéyyion mou alonotel Ty teyvixy Neu-
ron Conductance [16] yio tn pétpnon tne onuaciog Twv veupdvey, e€eTdlovTag Tn GUoYETION
peTag) TV PaduoloYLdY TPOCOY NS Xol TWV AVTICTOLY WV ATOBOCENY Toug. AUTH 1 TEOGEY-
YIOT TOREYEL Ual AETTOUERT) XATAVONON TG AAANAETBpooNC METAE) TV UNYAVIOU®Y TROCO-
YNC %o TNG EYYEVOUS ONUACIIG TV ATOUIXWY XEQPAAWY Teocoyhc. 'Evac véog delxtng, eun-
VELOUEVOC Amd TEOTNYOVUUEVES EPYAGCIES, avamTOOCETOL Yo TOV XoOpIoUS TG ONUaciag TwV
AEPOADY TPOCOY NG, OIEUXONOVOVTAC TLO EVAUEPWUEVT X0 ATOTEAECUATIXY Xhddevon. Emi-
mhéov, 1 pédodoc auth yeretdtan péoa and to mpioua e Trndveong tou Aayelou, delyvovtag
611 0 delxtng pog avtaywvileta Tic tpooeyyioee twv Michel et al. [17] xou Achlatis [18],
amod{doVToG AmOTEAEGUATA TTOU Efval THEOUOLY UE EXEIVAL TOU TEOXUTITOLY OE UEYHAX GOVOAX
oedopévey Tou GLUE. Emniéov, Sieldyoupe melpduata yior T uédodo mou mpotdidnxe yo
TN @opd and tov Achlatis oto €pyo tou, pe titho "Iteratively Structured Pruning".
Ot yedodohoyieg xan oL EMRTOOEG AUTAS TNG EEEUVOS CUUPBAAAOLY Oyt UOVO UE Ulal VEU OT-
T O0TIC TEYVES PelTioTonolnong WovTEAwY, aAAd entiong oToyebouy GTNY TEoMUNeY NG
XATUVONONG TN BouNUEVNS XhdBeuone xou Tng EMdpachc TS OTNV AnddOcT, TOU UOVTENOU,

OBMNYOVTOC EVOEYOUEVHC OTNV AVATTUEN THO AVUEXTIXMV X0l ATOBOTIXWY UOVTEAWY.

0.2 Ewooaywyn

Or unyaviopol tpocoy e, Wiaitepa exelvol Tou yenoiponoolvto oto wovtéia Transformer
[4], éxouv xatootel Yeyehddeic otny NLP xau oe Sidpopouc dhhoug topeic tne punyavixhc
pdinong. Autol ov unyaviopol emteénovy ot povtéla vo {uyilouv xou va divouv mpo-
TEPAUOTNTO OE OLAPOPA TUARATA TN EL0OB0L xatd TN Snuiovpyio €600V, EMTEETOVTAS TLO

AETTOUEQEIC X0l TPOCUPUOCUEVEC OTNV TERICTAOT) AVATUQUC TACELS TwV TANEoGopLwy. Méoo

o€ AUTONC TOUG UNYOVIOHOUC, Ol XEQPUAEC TPOCOY S Elvar xployeg yior T dnutovpyio Totxihwy
YEUUUIXDY PUETACY NUATIOUOY TNE EL0OB0V, EMITEENOVTOS OTO HOVTENO Vo e TIALEL OE Blapope-
TIXEC TTUYEC 1 YUPOXTNELOTIXE TV dEBOUEVWY elobdou [7].

‘Evo an6 ta mo yvwotd yovtéia Transformer eivor to BERT, nou mpotddnxe and tov
Devlin et al. [7]. To BERT eivor éva mpoexnatdeupgévo Hoviého avamopdoTtoons YhOooos
ToL exTAUdEVETOL AMO AUEIALXTO XElUEVO, GUVBLALOVTOC TAUTOYEOVA TO APLOTEPS X TO OeELd
mhaiolo oe Gl to eninedo. (¢ amotéheoya, To mpoexnawdeuuévo yoviého BERT uropel va
Bertiotomoinel ye TNV TpocUxn UOVo plog EMTAEOY OTEMOTE ECOB0L Yia T1) SNuLoVEYIa LOV-
TEAWV TEAELTAlAC TEYVOROYIOC Yo €val eLPD PACUA EQYACLOY, OIS 1) ATEVTINOT) OF EQOTAULAUTA
XAl 1) YAWOOUXT) CUVETAY WY T, YWelg ONUAVTIXES AAAXYEC OTNV AEYLTEXTOVIXT TNG EpYaolog.

Ta povtéha mou Bactlovta oe Transformer mepléyouv exatouubpia TaEoUETEOUS, Ol OTOLES
emBeadivouy TNy eaywYT) CUUTERUCUATWY, ALEAVOUY TO ATOTUTOUA WVAUNG, TOV apliud Ty
unoloytotxodv tedlewv (FLOPs),) yerion evépyelag xon cuuBdhhouy oto nepBolloviixd
Inthuota. Autéd to mpoAnua tetvel vo xipaxwdet yeryopa. I'a nopddetypa, To BERT-base
[7] mepiéyer 110 exotoupdpla mopauétpous, eved poviéha étwe to GPT-4 [19], to Gemini
e Google [20] xou to Claude tne Anthropic [21] nepiéyouv exatovtddes Sioexotouubpla
TUPAUUETEOUG.

Mio and Tic amavtoelc o€ auTo To TEOBANU elvon 1 cupTieon Tou Yovtélou. Ot epeuvntég
€)0LY EQUPUOCEL TEYVIXEC XAdDEUOTC oTa ovTéha BERT-base, xhadebovtag Bden 1) dounuéva
otouyela, 6mwe oL xegahéc npocoyfc. Epeuvntéc émwe ov Voita et al. [11], Kovaleva et al.
[10] xon Michel et al. [17] npoteivouv étt tar povtéha mou Booilovton oe Transformer eivon
Bopld LTERTUPUUETEOTOLNUEVA, ETUTEENOVTAC TNV APUPECT, EVOC UEYEAOU aptIUo) XEPUADY
Ywplc onuoavTixy Yelworn Tne amddoorg.

Auth 1 épeuva oToyeVel va epfordivel oTic pedodohoyieg xal TIC ETTTWOELS TN BOUNUEVNS
HAADEUONC TWV HEPUADY TEOCOYNG, UE Uit VEX TROGEYYLOT) IO ETUXEVIPWVETOL GE L0l TOEUA-
Aoy twv Integrated Gradients [22] yio) pétenon e onuociog twv xeQoldv TEocoyHC.
To Integrated Gradients €youv avaderydel wg pio onuavty uédodog yia tn onuocio Twv
Yoo TNEIo Ty ota wovtéha Bohdc udinong, mopéyoviag TAneo@opled Yo TIC AMOQAcELS
Twv povtédwv [23]. Auth n épeuva ofomotel v teyvixr; Neuron Conductance [24], pa
uédodo yia T u€TeNom TNG ONUACUC TWV VEUROVWY GE OYECT UE TNV €000 TOU HOVTENOU, UE
Tig €€1C CLVELCPOEES:

e E&étoom Tou mivaxa cuoyétione petald tov Paduoloyldv Tpocoyis xol Twv avtio-
TOLY WV ATOOOGEWY TOUS, TROCPEROVTOC (L0 AETTOUERT| XATAVONGCT TNG OAANAETOpAOTNS
METOEY TV UNYOVIOUMY TEOCOY NG XAl TNG EYYEVOUS ONUAGIAS TV ATOUXMY XEPURDY

TPOGOYTC.

o Avdmtuén evic véou Belxtn Bactouévou otn cucyétion uetalld Twv anoddcenmy Neuron
Conductance o twv Baduoroyudy mpocoyng, SLEUXOAIVOVTAS THO EVNUEPWHEVY Xl

ATOTEAEGUATIXT] XAGBEVTT) TWV ALYOTEQO ONUOVTIXWY XEQPUAWY.

e Avtidvrog éunveuon and mponyolueves epyooiec 17, 25|, auth n épeuva eladyel pa
BehTiwpévn u€dodo yia Tov xooplopd NG ONUACIAS TV XEQPUAWY TEOGOY NS, EVIGYDOV-

TAC TNV AMOBOTIXOTNTOL X0 OMOTEAECUATIXOTNTO TWV PEYIAWY YAWCOIXWY UOVTEAWY.

Auth n xowvotéuoc tpocéyylon Pacileton ot Simhwpatixf epyooio tou Achlatis 18],
TPOGPEROVTAS Lot PRETHLO OTITIXT| 0TN GLLHTNOT YLl TG TEYVIXEC BEATIOTOTOMONE LOVTEAWY.
Yuvdudalovtog Tic TAneoople and TN cLUaYETION UETAE) TwV Baduoloyidy TROCOYAC Kol TV
AmOBOCEWY, QUTH| 1) EPELVA GTOYEVEL VO TEOWUHCEL TNV XATAVONOT TNS DOUNUEVNE XAABELOTC
X0 TN EMOPACTC TS GTNY ATOB0CT, TOU HOVTEAOU, avolyOVToC TOV BROUO Yo TNV avamTuin

TLO AVIEXTIXWY XU ATOBOTIXWY UOVTEAWY.

0.3 Xyetxr Epyacia

H »\ddevon ota povtéra Transformer, wiaitepa oTic apyitextovixég 6mwe 1o BERT, €yel
pehetniel exTevmS Yiol Vo BEATIOOEL TNV amoB00T TV HOVTEAWY YWEIC ONUAVTIXY omOAEL
oty anddoon. Mo Yepehnddne yerétn and touc Michel et al. (2019) [17] €deile dTL moAAEC
xeorég mpocoync ota Transformers eivan mepittée, aupiofnoviac tnv drnodn 6tL dAeg ol
xeparéc etvon eloou onuavtixée. H mpooéyyion toug yio dounuévn xhddeuorn ogpatpel drado-
YWHG TS MYOTERO ONUOVTIXES XEQUAES Bdoel evog BelxTn onuaciog Tou utoloy(leton o dho
TO GUVOAO EXTIUBEVOTC, ATMOXOADTTOVTAG OTL 1) ONUACiO TWV XEQPUAWY Tpocoy e xadopileta
vopic TNV exaldeuoT xan Topauével oTadepy.

Y ouvéyew, ou Voita et al. (2019) [11] mpdtetvay wa pédodo yia dounuévn xAddeuon
Tou yenowonolel pio euptoTixt| cuvdeTtnon Pactouévn oe wa xatavour) Hard Concrete yia
Vo BlaTnenoel emAexTixd uovo Tic mo xploweg xeparéc. Ta gupruatd Toug cuu@wvoly Ue
exeiva tov Michel et al. [17], evioybovtoc Ty 1d€a 6Tt €vo oNUAVTIXG TOGOGTO TKV XEQPINDY
Tpocoy g Unopel var xhadeutel ywpelg va yewwlel 1 anddoon Tou poviéiou.

H évvowa tng xAddevong €yet entong eletactel and tnyv mpoontixr tne Ymoédeong tou
Aoyeiou (Lottery Ticket Hypothesis - LTH), mou eiorjydn and touc Frankle xou Carbin
(2019) (9], n omola mpoteiver 6T Yéoo oe €va TUXVG VELPLVIXG BixTUO LTdEYEL Evol apaLd
UTOBIXTUO IXAVO VaL OVTAYWVIOTEL TNV amddooT Tou TAeous woviéiou. Evd ou Frankle xou
Carbin emxevtpdinxay e un SounuéVn xAAOELOT| OE UXPOTERA OIXTUN, ETOUEVES EQYICIES
6mwe autéc twv Liu et al. (2019) [26] xou Chen et al. (2020) [13]| doxipocav tnv LTH oe
HEYOAOTERA LOVTERX xat o Tepimhoxeg pUINIOELS, CUUTERLAUUBAVOUEVWY TEOEXTIOUBEUUEVELV
duxtvwyv BERT. Ou Liu et al. (2019) [26] emuxpivouv) yevixeuowdtnta tne LTH, urnootnpi-
Covtag OTL 1) DOUNUEVT XAJDEUCT] OE PEYAAN UOVTEA, LOLUTEPA UTO BLUQORETIXEC pLUUICELS
BeltioTomoinong, Uumopel Vo amopEpeL DLUPORETING ATOTEAEGUOTA OO AUTA TTOU THEATNEOVVTOL
o€ UixpoOTERES, Un dopnuévee puduicelc. Amd tny &AM mheupd, ot Chen et al. (2020) [13]
enéxtewvay v LTH oto BERT, delyvovtag 6Tl tor unodixtua mou eviomloTnxoy HEcw NG
x\ddevong pey€doug umopolV Vo anod®oouy eE{Cou PE TO TAYPES UOVTENO, LOLUTEQO OTOV
OEYLXOTIOLOVVTAL UE TEOEXTIOUOEVUEVAL BdoT.

E&epeuvmvtag nepattépm TNy ahhnhenidpaon uetal Tng xAABEUOTE Xl TNE EQUNVEUCLUOTT-
ToC TV HOVTEA®Y, ot Prasanna et al. (2020) [12] xar Yang et al. (2021) [27] Siepetvnooy
TNV ATOTEAECUATIXOTNTA TNG BOUNUEVNE XAAOELONC OTNV XATAVONOT| TNG CUUTERLPORAS TWV
povtéhwy. Ot Prasanna et al. [12] Swmniotwoav 61t 1 x\&devon Bdoel deixtodv onuaociag,
Wwitepa oto BERT, unogel va amoxahOer mota xeporég xar MLPs etvon mo xplowa yior tny
amOB00T TWV EPYACLOY, UE TIC XEPUREC OTO UECO OTEMOUO VO EVAL GUYVE TILO UETAPEROLUES

petald Twv gpyaowwy. Ou Yang et al. eméxtewvay autd yenowonownviog yedodoug Booio-

UEVEC TNV amodocT Yol Vo xododNnyioouY TIC AmOPACEL; XAABELOTS, utoypauullovtog T
OLVAUTOTNTA CUUTECTC TPOCUPUOCUEVNSC OTIC EPYUCIEC O LOVTEAA TOAAATAGDY EQYUAGLY.

Ov Hao et al. (2021) [28] ewohyoryav pa véa pédodo eppnvevoddtntac mou ovoudletal
Anédoon Autonpocoytc (Self-Attention Attribution - AttAttr) mou a&ionotel Tic anoddoelg
yioe TV xAddevon Twv Transformers. H npocéyylon Toug emxeviptveTol 6TIC GUVOECELS TWV
AEPAAWY TPOCOYNC, UETATEENOVTAS TIS AMOBOCES OE €vay BelxTn xhddeuong hopfdvovTog To
LEYLOTO amddooT avd oUVOeoT xan utohoyiloviag Tov péco 6po ot Gha to delypata. Auth
uédodoc polpdleTtar evvololoYixéC opotoTnteg ue Ta Integrated Gradients, oAAd oyedidotnxe
XA Y1t Vo G TOYEVEL XEPARES TpocoyNg. Xe avtideon pe Tig uedddoug mou Pooilovton otny
Trddeon tou Aayelou, 1 mpocéyyion Twv Hao xhadelel Sradoyind Tic xEQUAé TEOCOY NS UE
udoxee, avti va Tig aponeel uovipa, xon aELOAOYEL To XAUDEUEVA HOVTERA YwElC VoI ETOVOR-
yornotel T Bdpn. Auth i teyxvixy) unoypopuilel wa xplown Sopopd and v TEocéyyioY
Hou, O6ToU 1 CLUOYETION YETOEY TV BarduohoyidY TEOCOoYNC ot TwV anod6cewy utoloyile-
Tan ya vor xadodnynoel TNy xAddeucT), ue T anoddoelg vo unoloyilovtar oe oyéon Ue TiC
TEoBAEYEIC TOU LOVTEAOU XoL OYL UE TIC YEUOEC ETIXETES, OTWS OTo £€pYo Twv Hao.

O mpbogoateg mpobddoug and toug Ilhan et al. (2024) [29] xou Grover et al. (2023) [30]
Behtiwoay TepalTépm TIC TEYVIXEC XAAOEUONE, €lodyovTac avtioTorya pedddous anodoTixhc
Yehome Topmv xou xh&deuong Pactopévne otny epunvevotpdtnta. Otllhan et al. [29] npdretvay
Lot eLELE T LEV0B0 XAAOEUGTC TTOL BEATIOTOTOLEL T1) BLAOXACIA TPOCUPUOY NG EVIUERMVOVTAS
emAexTxd Ta Bden, TEoc@EpovTag ULl TEOXTIXY AUOT Yl TNV avaTTUEY UOVTEAWY UEYAANG
xhpaxoc. Ev 1o yetald, o Grover et al. [30] avtipetdniooy v npdxhnon 1wy YopuBddwy
xAoEWY 0TIV *AABELOT), EIGAYOVTOS UEVOB0UEC TOU EVOWUNTWMVOLY HUECH TNV TANPOQOpia
e xhiong otov delxtn ®Addevong, Oelyvovtag aveTERN amddocT ot TEPITTWOOELS Pordidg
XxAABEVOTNC.

Yuvolxd, autéc oL UEAETEC avadEXVOOLY TNV EEEMOCOUEVY] XUTAVONGT TNG XAJOEUOTG
ota povtéha Transformer, ye Tic Sopnuéveg xon un dounuéveg pedddoug Vo TEOGPECOUV
CUUTANEWUATIXES TANpoopiec. ATo Tov eVIOTIOUO TEQITTOV oTolyelwy uéoo oto BERT
€we TNV allomolnoy TS XAABEUCTS VLol TNV EQUNVEUCLUOTNTA XU TNV ATOBOTIXOTNTA, 1) EpE-
uva uoypopuilel TNV xplown woppomio ueTal NG TOAUTAOXOTNTIC TOU UOVTENOL XOU TNG

am6d00Ng, xoodNYOVTIC TNV AvanTLEN TLo AmodoTXOY HovTéAwy NLP.

0.4 Opiopodg tTou IlpoBAjuatog

0.4.1 Opiopog Aopunuevng Kaddevong

Aedopévou evoc ouvdrou dedopévery D = {(z4,yi)}1; xou evée emduuntod emmédou
AEUUOTNTAS K, 1) DOUNUEVT XAADELCT] EVOC VEUPMVIXOU OxTLOL UTopel var dtatunwiel we To

TapAXdTw TEOBANUY BeATioTOTOINONG HE TTEPLOPLOUOUG:

1 n
in L(ws; D) =min— Y £(ws; (x4, s
min L(w,; D) = min 3 ((wy; (a1, 57)

Ws £
=1

st. ws €R™) Jwsllo < &

‘Omnou £(-) ebvor 1 ouvAIng cuvdpTnom anwAelae, Wy eivor TO douNUEVO GUVORO TOPUUETEMY
TOU VEUPWVIXOU OTO0UL (T.Y. XEQUAEC TpooOoYhc), m eivor 0 GLVOAXOS oELIUOS TwY doun-
Lévev ouVOrwY xau 1 || - |lo avapépetan oto LO vépua.

H ehoyiotomoinon e LO vopuoag elvon mpoxhntxt, xodoe elvan un xupth, NP-60oxoAr,
xa amanTel oLVBLACTIXT avalHTNOT), xNCTWVTUC TNV Bounuévr xhddeuor éva NP-8Uoxolo
meoBAnua. H Sounuévn xAddeuor umopel va extedeotel mpLy, xatd TN Otdpxela | UETA TNV
TEOGUPUOYY TOU HOVTENOL. X7 auTH TNV epyacio, TEKTo TEOcUpUOLOUUE TO LOVTEAD XaL OTN|

oLVEYELa eQapudlovpe TN UEVOBO XAABELONC oG,

0.4.2 Apyitextovixy) BERT

To BERT anoteleiton and pa oepd emmédwy xwdwonotntedv Transformer [4]. Kdéde
em{nedo €yel wor Tautdonun Souh: €va umhox TOAATAGY XeQahy autonpocoyhc (MHAtL)
oxOAOUDOVUEVO amd €Vay TOAUCTPOUATIXG avTIATTING VELpwVIXG dixtuo (MLP), ue cuvdé-
OELC UTOAOITOU YUpw amd xdde €val.

To umhox MHAtt mepiéyet Nj aveldptnto TopaleTeomonuévee xe@ahéc. Mo xeqoly
mpocoyNc h oto eninedo | napoucTtponoleiton and prteeg Wﬁ,W;,WJ‘ € RInxd you Wi €
R¥>dr - bmou dj, cuvidoc opileton oe d/Nj. Aedouévev n d-BldcTotwy BLvUoUdTwY ElG6-
dov & = (1,22,...,7,) € RY 1o MHAtt unohoyileton w¢ To ddpotopa Twv e£6dwy xdde

aTouxng xEPaAS oL e@apuoleTon oty £lcodo

Np,
MHAtt(z, q) = Y Att(W, W, W), W) (z, q)
h=1

Toe var emitpéder Ty aAANAETOpOT BIUPORETINWY XEPUAWY TPOCOYAS UETAED Toug, ot Trans-
formers eqopudlouy €va U Yeopuxd TOAVETITEDO VEURKVIXO BIXTUO Ve amd TNV €000 TOU
MHAtt oe xdde eninedo tov Transformer [4]. Kdde xeparf npocoyfic unopel vo ectidoet oe

OLUPOPETIXES TTUYES TNG ELCOBOV, OTWE CUVTAXTIXG X0 ONUACIONOYIXO TEPLEYOUEVO.

0.5 Ilpoteiwvopevn Medodog

0.5.1 Ilepiypapy Medddou

pdtov, énwe npdtetvay o Michel et al. [17], ewodyouue pyetofintéc udoxog &y, pe Tuée
oto {0, 1}, émou &, = 1 onuaiver 6TL n avtiotouyn xeparf h Sev elvor xpuuuévn, eved &, =0
onuolver 6Tt 1 xe@ahy) h eivon xpuupévn. Autd odnyel oe yia Tponomoinon TG GORUOUVAIS YLo
to Multi-Head Attention (MHAtt):

Np,

MHAtt(z,q) = > & Aty wir e wp (2, 9)
h=1

Avuty| n tpormonoinoy yog emteénel vor xpOhouue TIC XAABEUEVES XEPUAES Ywpelc Vo TIC

QUPOUPECOUPE TROLY UOLTIXG.

Opiloupe évav véo deixtn, Bactoyévo oTn cuoyétion YeToEl Ty Baduohoyidy Teocoyic

TOV TOXEVOV XL TWV AVTIOTOLY MOV ATOOOCEWY:

I g =E,; (corr (Attr(Ar g), AL H))

omou x eivon 1 xatavour dedouévwy, Ar g 1 Poduoroyia tpocoyhc Tou emmédou L xan
e xeporic H, xou Attr(Ar) n anédoon authc e xepaiic npocoyfc. Téoo to A boo
xon to Attr(A) éyouv tic (diec dlaotdoelc pe num_tokens X num_tokens.

Io Ty amédoor, yenowonotolue to Neuron Conductance, mou xodopilel av 1 cOvdeon
Tpocoyfic (i, j) éxer onuavtixt entppon otny TedBAedn tou povtélou. Eunvevopévol and toug
Hao et al. [25], yenotpwonotolue) cuoyétion avti yio Tn cuvdeTnon max Yo TV cUAOYN
TOV TANROPORLKYV.

O otdy0c €80 elvon Vo avTETOTICOUUE *AdE XEPUAT) TPOCOY NS WS ULt UETOPANTY 5 Xou
% ambB00m WS ULl UETUBANTA Yi, UE TIC HETPNOELC xAUe PETABANTAC Yo TOV UTOAOYLOUO
NG CUOYETIONG VAL ELVOL Ol GUVDBECELS TWV OYECEWY TWV TOXEVOY GE XAUE TVaXOL.

Yty €peuvd yog, TeoTelvoude €vav VEo BelxTr, mou yenoionoleltal yior T Aounuévn
K\ddevon. H cuyfoly| pag oe autd to medio Bacileton oe 2 xevtpieolc alyopiduous. Autég

elvon oL xVpteg 1déec mou avapépdnxay oto épyo tou Achlatis [18].

Aounpuévn KAddevon e Aelxtn Xnuaoiag

1: Elcodog: II\pwe Teocupuoouévo TeoexTouldELUEVO BiXTUO

: Oplote Ty apyxh) Yaoxa XAABEVONG TWV XEQIADY Teocoy i o s = 14 > omou d eivon 1|
oldoTaoN

: repeat

Trohoyiote to I, yiol TIC YN XAUBEPEVES XEPUAES TPOCOY NS

Towvourote Tic xegoréc pe pdivouca cepd Bdoet Tou I,

Khadédte 1o 6% 10V apyieddv xepahdv pe to YounAdTtepo I oL EVAUEROOTE TO S

: until n apondTNTA TOU 5 PTAOEL GTO ST > s7: ‘Oplo Apandtnrag

: 'TE€0d0¢: Mdoxa xhddevong s

[\

ErnavaAnrukn Aounuévn KAddevon (ISP)

: Eloodog: IIhpwe mpocaploouévo TpoexTatdeLUEVo dixTuo
: Oplote Ty opyxh Ydoxa XAABEVOTNG TWV XEQAADY TEOGOY NG Ot § = 14
: repeat

Trohoyiote to Ij, yiol TG YN XAADEUEVES XEPUAES TROGOY |G

Tagwvopnote Tic xegaréc pe giivouca cepd Bdoel Tou I,

Khadédte 10 % twv evomopeivavtov xepahdy ye to yopuniétepo I, ond 1o mpoex-
TULOEVUEVO LOVTENO X0 EVNUEQWOOTE TO §

ITpocopudoTe €x VEOU TO TEOEXTIUOEUUEVO BiXTUO
8: until n cpadTNTA TOU 5 PTACEL GTO ST > s7: ‘Oplo Apandtnrag
9: "EE080g: Mdoxa xAddevong s

INo tov Ahydprduo 6.1, yenowonoloUue autd 6mwe tpotddnxe and tov Achlatis otn Sithw-

pater) Tou epyaoto. Ipwta, Beloxouye Tic pdoxeg xan aglohoyolue 0To GUVOAO AVATTUENS XA
0TI CUVEYELL EMEXTEVOUUE TNV TROGEYYLON X EQUEUOLOUUE TIG UIOXEC GTO TEOEXTAUOEUUEVO
HOVTENO %ot TO TPOoUpUOLOUYE, TROXEWEVOL va Bpolue to vixntipla etotthiplo (Trédeon tou
Aoyeiou). H tehevtaior auth pédodoc epappdotnxe enione and touc Prasanna et al. [12].
Tnv anoxaholpe Integrated Gradients Structured Pruning Fine-Tuned (IGSPF).

Ye autd TO onuelo, EUTVELCUEVOL amd TNV UAOTOINoT TwV TElpoudTwy Tou Michel, eap-
16LOLUE TIC HAOKES OTO TROEXTOUOEVUEVO UOVTEND GE e EmavdAN M %o TO TEOocUPUOLOUUE.
Avuté elvon mopdpolo pe Tov akyoprduo ISP 6.2, ahhd o auty| Ty tepintmon, o xde enavii-
ndmn xhadedovye évay cuyxexpiévo aprdud xegahwy omd to apyixd. To ovopdloupe Inte-
grated Gradients Structured Pruning Pre-trained (IGSPP).

‘Ocov agopd tov alyoprduo ISP 6.2, epapudlouvue Tov beintn pog otny wéa tTou Achlatis
yioo vo emexteivoupe tov odyoptdpo IMP nou mpétewve o Chen oto épyo tou [13] yua
Aounuévn Kiddevon. H xdplo Slapopd €8¢ and tov mpwdto olyodprduo elvon 6Tt o xdle
emavaAndn o Aoyog xhadéuatog elvar otodepde, ahhd 0 aptiudg Twv xe@okdy dev elvar. Autod
Baoileton otnv Tnddeon tou Aayeiov 611 ou Enoveinmuxol Alydprduor Yo pnopodooy va

Beouv To cuumoy| xan EUXON LoIMUATIXG UTOBIXTUA.

0.5.2 H 'Evvoiwx Ilicw and tn Yuoyetion

Ovctlaotixd, 0 oxomog elvor Vo SLTNECOVUE TG XEQUAES UE PEYAAUTERY VETXr Yovo-
Tovx) oy€an HETAEY TV BoduoAOYLOY TROCOY NS Xl TWV AnodocewY. Anhady, 1 YEVIXOTERT
CUUTEELPORE TNS XEPUANC TROCOY NG Elvon OTL OTaY Lol GUVOEST) TEOCOY NG QUEEVETAL, 1) CUU-

Bohi tng otV meoBhedm audveTton TALTOYEOVA.

To xivnTeo

YTV €pEuvd Jov, ETXEVTEOINU GTNY TEOXTIXT| EQUPUOYT TNG DOUNUEVNS XAAOEVOTC OTa
povtéha NLP, yenowonouwdvtog €vay véo Belxtrn mou cuoyeTilel Toug PNy oviopols Teocoyc
HE TIC amodooel; Tou meoxUuTTovy and TN uévodo Neuron Conductance—uto eEeAtyyévn ex-
ooy " twv Integrated Gradients. Auth n epyaoia elye we xivnteo Ty cuveylouevn culritnon
YL0L TO Qv OL UNYAVIoHOL TROCOYHS UTOROUY VoL YENOWEDNCGOUY ¢ allOTIOTES EENYHOELS VLol TN
CUUTEPLPOPE TWV HOVTEN®Y, OTwe TovioTtnxe ota dpdpa "Attention is Not Explanation" [31]
xou "Attention is Not Not Explanation" [32].

To xOpto ebpnua and Ty €peuvd you eivor 6Tt dlacpaiilovtag &TL T Bdpn TNg TeocoyhS
svduypoppiCovto ye alomoTteg YeVddouC amddooNg, UTOPOVUE Vol SLUTNENCOUUE CTUAVTIX
EQUNVEUTIXA YOROXTNELOTIXG EVOC LOVTENOU axOUd XAk PETA ol onuovTixn xAddeuoT. Autd
Oyt wovo opptafnrel Ty drodm 6Tt oL unyaviopol teocoy g Sev elvar afldmoToL we EENYHOELS,
OANG TPOGPEREL xou Eval TEax TiXO Thaloto Yo TN BektioTomolnon poviéhwy ou datneel uPnio
Bodud epunvevoydtntoag. H epyacio pou cuufdiier otn oulhtnon delyvovtag 6Tl 1 mpocoy,
OTOV EVOWUATOVETAL TEOGEXTIXG UE UeVOB0UC amddoaong, urnopel va elvon Eva TohOTO EpYaAElo
TOGO YL TNV XATAVONCT 600 %o Yl TN Petiwon Twv yovtédwyv NLP.

H 18€a €d6d elvon 6TL 0L TpoGOYES amd UOVES TOUG BEV ETAEXOVLY YL VO TUREYOUV YEYOWIES
Thnpogoplee, ondte cuvdudlouue oTadepéc anoddoelc Yot Vo SoUUE TL CUUPALVEL, (OOTE Vo

ouuPdihovue xou otig 800 xatevdivoelg: Aounuévn Khddevon xa Ilpocoyéc we EEhynon.

Spearman. I'voti;

O ot6y0¢ €0 elvar Vo BIATNENHCOVUE TIC XEPUAEG TEOCOYHC TWV OTOlWY oL 6V PETUBA-
Ntéc €youv mapoUOla GUUTERLPORE, BNAadY| Topduoln évtaot xat xatediuvon UeTald Twy
CUVOECEWY.

'V outd, emérela) Yuoyétion Boduldwyv Spearman avtl yio To Kendall’s Tau xou 1
ouoyétion Pearson Aoyw tng xotahAnAOTNTAS TNG Yio U YRUUUXES OYECELS XU TNG EVILGUT)-
olog tng oe Swpopéc PBaduldwy. H cuoyétion Pearson mpolnodétel ypouuixotnTa xan elvou
evaiodntn oe e€wyevelc TS, xAvovTde TNV AlyoTeRo XaTdhAnAT yia Paduoloyieg tpocoynic
X0l AmodOCELS, Ol onoleg Umopel var unv oaxoroudolv yeouuixd mpotuno. H Yuoyétion Bo-
Yuldwy Spearman, woTO00, XATAYEAPEL LOVOTOVXESG GYECELS XU TUPEYEL UL ONOXATPOUEVT)
a&LoAOYNON TNS CUVOAXNG CUUPLVINS XATATOENS, XANOTOVTIC TNV O AMOTEASCUTIXY YLl
NV afloAOYNON TOV YEVIXOVY Tdoewy. EmmAiéov, 1 Spearman elvon mo guaicdntn oe ornuov-
Tég anoxhioelg ot Paduoroyia, TEOCGPELOVTIS ULl TLO AETTOUERT| XATAVONOT) TWV OEDOUEVLY
oe oyéon e to Kendall’s Tau. Auté xadotd tn Spearman tnyv mo xatd@AANAn ETAOYT Yl
v avdiuon tng evtuypduuiong YeTald Baduohoyidy TEOCOYNC Xal ATOBOCEWY OE QUTY TN
UEAETT.

Avdivorn Yuoyétiong

Apywxd, agronotolue €va pxpd uTocivoho Twv cUVOAWY dedopuévwy IMDB, RTT xou SST-
2, neproptlovtog Tic €l06d0ug pog g T0 ToAU 200 Toxeve AoYw TEPLOPLoP®Y TopmY. Autd TO
UTOGUVOAO YENOLOTOLETOL VLol TH BIEEAY WY T) TEOXATARHTIXAC AVEAUGTC TWYV THIWY CUCYETIONG
1600 0T0 TEOEXTAUDEVUEVO HOVTERO (eExToudeupévo oty epyaoio MLM) éoo xat oo npocap-
HOGUEVO LOVTEND TPOCUPUOCUEVD OTIC avTioTolyeg epyaoieg. Xto Nyhua 6.1, tapoucidlouvue
Toug TiVAXEG CUCYETIONG TOGO Lol TO TEOEXTIUOEUPEVO OGO Kol YO TO TEOGUPUOCHUEVO LOV-
Tého, 6Tou oL xAicelg €youv LTOAOYIOTEL o oyéon ue TNV Tehxr) TeoBiedn v to SST-2.

(Acite to mopdptnua .1 yio teptocbtepa oOVON BEBOPEVKV)

o

0.03

24001

4-0.01

0.01

640.02

0.02

4-0.03 -0.02 -0.03 -0.05

0.02 -0.03 -0.00 0.02 0.04 0.01 0.00 0.05 -0.02 -0.00 0.01

0.00 0.01 -0.02 -0.00 -0.01 -0.01 0.01 -0.00

-0.01 -0.01 0.05 -0.01 -0.01 0.00 0.06 0.01 -0.02 -0.01 0.01 -0.03

0.06 -0.01 -0.01 0.04 0.01 -0.02 0.04 -0.02

0.01 -0.03 -0.03 -0.02 0.01 -0.01 0.01 0.00 -0.01 0.01 0.02

0.01 -0.03 -0.04 0.01 -0.00 -0.02 0.03 0.02

-0.00 -0.01 -0.02 -0.01 0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.04

-0.02 0.06 0.02 -0.01 0.02 0.02

-0.00 -0.00 0.01

-0.00 -0.01 0.01

0.02 0.03 -0.00

0.100

0.075

0.050

0.025

0.000

-0.025

o

>

o

3

40.06 0.11. 0.02 006 0.16 .0.06 0.10 0.09

0.06 0.03 0.04 -0.02 0.04 0.07 -0.01 0.03 0.10 0.00

{0.00 -0.02 -0.04 0.00 0.03 0.08 -0.01 -0.00 0.03 0.04

-0.02 -0.07 0.10 -0.04 -0.09 0.03 . 0.01 -0.04 -0.01

40,03 0.06 -0.00 -0.05 0,03 0.06 0.04 0.01 0.03 0.02

0.09 -0.02 0.06 0.05 0.03 -0.02 0.04 0.00 -0.02 0.05

<0.00 0.01 -0.00 0.06 0.10 0.09 0.03 0.11 -0.10 0.01

0.12 0,08 0.03 -0.10 0.04 0.06 -0.01 -0.11 -0.01 -0.10

40.01/0.15 0.16 0.05 0.04 0.03 0.00 0.16 -0.02 0.14

-0.03 0.05

0.00 0.04

-0.08 0.03

0.02 -0.04

0.00 0.02

0.01 0.00

0.03 -0.10

0.03 0.01

0.14 0.02

01

0.0

40.03 .n.nd 0.01 -0.01 -0.02 -0.01 0.01 0.03 0.05 0.01 -0.02

-0.01 -0.04 .
-0.050
0.06 -0.02 0.01 1

-0.075

-0.05 -0.02 -0.02 -0.02 -0.02 0.02 -0.02

40.06 . 0.04 -0.00 0.03 0.01 -0.05 -0.04:

0.00 0.03 -0.01 -0.01 0.00 0.00

5

-0.02 -0.06 0.00 0.0! -0.05 013 015 -0.13 0.15 -0.14
40.06 0.06 -0.01 -0.03/0.18 015/ 0.01

0.01 0.03 -0.02 0.09 0.08 0.05 0.04 0.01 -0.00 0.03

-0.00 -0.01 -0.01 -0.03

0 2 4 8 10 0 2 4 6 8

(a) Ipoextaibevpévo Movtélo (b) Hpooappoopévo Movtélo

Figure 1. Oepuokdptes ya tn ovoyétnion tov
HovTédov yia to oUvolo dedouévwv SST-2.

TPOEKTALOEVUEVOU KAl TPOTAPLOTUEVOU

‘Onwe napatneeiton 6To Ny fua 6.1, undpyet onuavTtixy Slopopd LETOED TV TWOY GUCYETIONG

OTO TPOEXTIUOEUUEVO X0l TO TPOCUPUOCHUEVO LOVTENOD, UTOBEXVUOVTAS OTL Ta BT TNE TPoCo-
YNC €YOLY EVOWUATMOOEL ATOTEAECUATIXG YVOOT WG YLol TNV EpYaolor xatd T Oldpxela
¢ mpooapuoyrc. Emmiéov, mapatneolue TNy mapoucio XEPUAOY TEOGOYNG UE UEVNTIXES
TIWESC cLOYETIONG, oL omoleg ebval Loyupol uorplot Yo XAGBEUTT). AV xaL Ol GUVOAIXES TES
ouoyETioNg Oev elvon e€atpeTXd UPNAES, UTEEYOUY 0XOUa TOADTWES TANEOPORIEC TOU UTOPOUY
va avtAndolv. Buyxexpyéva, 1o 3.47% TtV XEQahdY Tpocoy i Yol TO GUVOAO SeSOUEVWY
IMDB éyet tée ouoyériong petadd 0.2 xou 0.4, eved to 2.08% xou 10 4.86% twv xe@ohdv oTta
oUvola 6edopévwy RTT xou SST-2, avtiotorya, eunintouy oe autd To VP0G LNUAVTLIXG, TO

oUVolo Bedouévemy SST-2 anodidet o Loyued anoteAécuata oTNV ALOAGYNOT| TNG XAABELOTC.

ITAnpogopicg yia Tov Acixtn

AZlomoudvTog To YEYOVOS OTL UTHPYOLY TANEOPORIEC GTA HOVTEAN UETA TNV TEOGUQUOYT),
avamtOZope Tov deixtn poc (BAéne Evéotnta 6.4) xaw otic oxdhoudeg gryolpec, aneixoviloupe
T GUUTERLPORA TOL ahyoplduou pag ot Sudpopes enavokripelc. Autég ol amewxovioelg delyvouv
Ti¢ Baduoroyieg mpocoyfc mopdhinia e Tic avtioTolyec cucyetioelg xotd Ty eEEMEN Tou
olyoplduou, vnoypaupilovtag Ta xetthpta emhoync Tou xododnyoly Tn Sladixacio xhddevong.
Ynuavtixd etvon va onueindel 6TL ol tapovclalopevee Baduoroyleg agopolv To (AABEUPEVO
povtého, to omolo avtixatonTte(lel évay PeloVUEVO opldud XEPUAGY XodhS TEOYwEOVY oL

emavolPELS.

Heads
0 1 2 3 4 5 [7 3] 9 10 1
f 3 — f P—
: =7 ==
. — /, P ——
=N - - — o
o 3 — —
@ = - ¥ P
=0 —— / e —
] - - —_—
—_ ——
— ———
- - —_——
— b - :a'—-
- X e
Heads
0 1 2 3 4 5 [7 8 9 "
\ = 7
1
— \
—
e
- =
s —_— %
% 0 o —
- ———
’_r,.-—-"“' e —
—

Figure 2. Tiués Ilpoooyns kar Anédoons otny EravdAnygn 2

Ou amewovioeic eotidlouy oto Eninedo 1 (Seixtne 0), xodde €youye #01 Bpet xou eqopudoet
TIC UdOoXES o Tpoodpuooel to poviého. H amewdvion eivon poévo yuo éva delypo amd to
olvoho dedouévey MNLI, enouéveg elvan éva (edyog mpotdoewy. Kadog tpoywedue and tny
emavaindn 2 oty enavddndn 3, ta Lyuata [6.2, 6.3], napatnpeiton pa cophc ooy 6N

dopn TwV CLVOECEMY UETOEL TwV Baduoloyldy TEOCOYNC XAl TOV AVTIOTOLY®Y ATOBOCEWY,

0 1 2 3 4 5 6 7 8 9 1
¥ — E :
= : g
.39; T — L'“Eii;;
p PR — | E e
@ —
g0 ———)
- el —~
—_—] -
== | :
Heads
0 1 2 3 4 5 6 7 8 9 1
i val
s N
=0
8 =t
Figure 3. Twuég Ilpoooxns ka1 Anédoons otny EnavdAnpn 3
Heads
0 1 2 3 4 5 6 7 8 9 10 1
P 4 ;%;3;;;;
o (2 ; P
=0
L] .
- .
-
Heads
0 1 2 3 4 5 5 7 8 9 10 1
£
=0
m
1

Figure 4. Tiuég Ilpoooxns ka1 Anédoons otny EnavdAnpn 6

Waitepa oY xe@okn tpocoyNc 1. Ev te uetall, ol dAhec xepahéc Slortneoly yevixd atodepy
ooun.

H xOpror avnouylo pag €yxeiton 0T CUVOETELS METAED TWY TOXEVGDY, VT amAd 0TO péye-
Yo 1oy Poduoloyldv Teocoync xou Twv anoddcewy. Auth 1 npocéyyion dlc@akilel otL N
oLVOXT Souiny) oxepondTNTa PETAEY TwV 800 oTolyelwy dlatneeitat.

Téhog, péyper v 61 emavdindn, To Lyrua 6.4, mapatneolue OTL TO XAAOELPEVO UOV-

TENO €yEL pTdoel o€ onueio cUYHMOTNS, OTIOU OL BOUXES OUOLOTNTES UETALY TeV Poduohoylmy
TEOGOYNE X TWV ATOBOCEWY EVAL GYEGOV TUVOUOLOTUTIEG OTIG UTOAOINES XEPAUAEC. AuTth 1
oUYXMGOT) UTOONAMVEL TNV ATOTEAECUATIXOTNTO TOU 0AYOoRlIUOU GTNY ETLAOYT XL OLUTHENOT

AEPUADY TEOCOY S TOU GUUBIAAOUY OUGLIG TIXE GTNY EQUNVEUCOTNTA X0l ATOGBOCT) TOU UOV-

Z
TENOL.
0,025
0 .
0.008
b4 0.020
0,006 o
.
0015
0,004 o . °
o © .
2 o002 ° ° 2 .
g J %} i '.'. . § o010 e e % s o "
£ oo “!‘..%j-mi ‘?@.{,‘."‘.‘% ﬁ:. L £ o °
z (@: 9. e z L] L]
w% * e “le 0.005
— » 'y . _
0.002 4 ® - °
hd d
o004 o 0,000 { ¢ .
~0.006 0005
. °
00 0.1 02 03 0.4 05 06 00 02 04 06 08
Attention Scores Attention Scores
/ / / /
(a) Kepaln Ilpoooxns 1 (b) Keparj Ipoooxris 3

Figure 5. Awypdppata Awwonopds mov Oelyvovy tn YXwpikn) oxéon twv kepaAdy 1, 3
otny emavdAmpn 2

To Yyfua 6.5 mpoopépet Baditepe YVMOOES OYETE PE TOV OeixTn ouoyETIoNg XaTd
N Sudpxelor g enavdAndne 2. H xeparr) mpocoync 1 elvon €vag mpogavic umodrplog yia
XAAOEVOT), EVE 1 xeQaT) 3 pabveton va agilel va Stotnendel. Autd to cuunépaoua elvan EPQUVES

amo TNV TOUEATNEOVUEVT] XATAVOUT] TV CNUEIWY BECOUEVLY GTO BLEYRAUUUN OLICTIORAS.

0.6 Ileipdpata

0.6.1 Awpoppwon

I tar melpdpatd pog, yenotwonoooue ta xoixovta tavounong ond to Benchmark

GLUE ot ouyxpivoye to anoTeAéopata e TEomYOOUEVES EQYUGIES.

e MNLI: Multi-Genre Natural Language Inference Corpus [33]
o QQP: X0vohlo dedouévev epwTtiioeny and to Quora

o QNLI: Epiytnon-andvinon NLI Boctopévo oto Stanford Question Answering Dataset
[34]

MRPC: Microsoft Research Paraphrase Corpus [35]

e SST-2: Stanford Sentiment Treebank [36]

CoLA: Corpus of Linguistic Acceptability [37]

RTE: Avoyvaoeion Keyevixre Yuvenoywync

e WNLI: Ipdxhnon Lynudtov Puowmic Enaviindne Winograd [38]

'Eyouye die€dyel teipduota oTo npoexmoudeuuévo yovtého BERT, t6co "bert-base-uncased"
12-otpporta, 768-xpuuuéva, 12-xeporéc, 110M nopauétpoue, (Bihotvxn Transformers) yio
OLAPOPES BLUULOPPHOTELS.

[Tpwta, yenowonolioaue Eva LOOPEOTNUEVO UTOGOVOAO TOU CET EXTALOELUOTS Yol xdie
epyooia Yo voo utoloyicouye Tov Oeixtn. Xty apyy|, EXTEAOUUE Yol OTATIOTIXY avdAuoT oTa
oUVOAa BEBOPEVGY Yol VoL BROUUE TNV TEPLOYT TNS XATAUVOUNS TwV BEBOUEVWY OTIOU UTERYEL 1)
TEPLOCOTERT TANEOYOpEla, xou oTr cuVEyELd emhéyoupe Tuyalor 2000 Selypoto and auTd YL Vo
UTOAOYIOOUUE T amOBOCELS XaL Vo UToAoyioouue tov delxtn. Xpnowonowjoaue T pédodo
STD 7 Quantile yix to guktpdpiopo. (BA. Iopdptnua .2 yia teptoobtepec AETTOUEPELES)

H aZlohdynon mpaypotomolelton o€ 0AOXANEo To 0T emxlpwong Y xde epyacta. O
xhioelc €youv unoloylotel oe oyéan pe TV TeEA| TEOBAEdT, dNnAadH| ool To YovTERD ExEL
7oN AdBeL TNV TENXT amdQao).

Aelhyope Bi1dpopa TEWRIUATA YENOWOTOLOVTAS Tov Oeixtn xhddevong pog. Ipdtov,
TOEOUGIALOVKE GTIC axOAoUTe PLyolpeg TN CUUTERLPOEd xdle ahyoplduou xou oTr cuvéyela
TPOUGLALOVUE TOL ATOTEAECUOTA S TILO CUVOTTIXG, GLYXEIVOVTAC Tal Ue To €pyo Tou Achlatis
xat Tou Michel.

To mpoexmoudeLUEVO HOVTEND Elval TEOGUPUOCUEVD UE Ti¢ TopouéTeoug otov Ilivaxa 6.1,

{diec pe autée mou ypnowonoinoe o Achlatis oto épyo tou [18].

Yiovoro Acdouévev MNLI QQP QNLI MRPC SST-2 CoLA RTE WNLI
Tlapadeiypota Exnaideuong 392,704 363,872 104,768 3,680 67,360 8,576 2,490 635
Enavohidec/Eroyn 12,272 11,371 3,274 115 2,105 268 78 20
Enoyéc 3 3 3 3 3 3 3 3
Méyedoc Iaptidog 32 32 32 32 32 32 32 32
Pudpéc Médnone 2x107° 2x107° 2x107° 2x107° 2x107° 2x107° 2x107° 2x107°
Behtiotonomntic AdamW pe e =1 x 10-8

Metpu AZiohdynong Matched Acc. Axpifeir AxpiBeiar AxplBeiar Axpifeic Matthew’s AxpiBeior AxpiBela

Table 1. GLUE tasks [15], ueyédn ouvvédwv Gebopévov, uetpikés kar vreprapdpuetpor
TPOOAPILOYNS TOU avapéportal o€ autn T UeAETn.

Extéc and toug alyoplduoug mou mpdtelva npdopata, €xw eniong Siegdyel TelpduoTa o

HEEXOUS GANOUS Yla GUYXELO).

1. Mo Empacio: Trnoroyllovye tov deixtn onuaciaug uovo uio popd xou 6T cuvEyELol
e@appoloule BL1dpopoug AoYoug xhddeuong xon a€LoAOYOUUE 6TO GeT emixlpnwong. Autdg
o ahybprduoc yenowonotidnxe oto dpdpo tou Michel [17].

2. One Shot ISP: Awcdyoupe netpdpata yioo tov ISP yio pio emavéhndn. Enopévoc,
unoloyilovye Tov TPWTO BelxTn onuaclac xal oTN CLVEYELL EQUEUOLOVUE TOV AOYO
XAAOEVOTC GTO TPOEXTIUOEVUEVO OVTENO Xou 0T SLVEYELX TO Tpocapuolouue. Kdmolog

Yo umopoloe va el 6TL auTO elvan 1) EMExTaoT Tou ahyopituou "M Ynuacta'.

0.6.2 Aounuévn KAddevorn pe Acixtn Anpociog

Y1 mapaxdte Pryolpes 6.6, napouctdlouue Tol ATOTEAECUATS oS VLo OAOUS TOUG ohYO-

elduoue, Balovtog ta pall oTo (Blo didypouud.

COLA (BERT base uncased)

MNLI (BERT base uncased)

0.6 1
0.8
0.5+
0.7 1
0.4 >
e
S
S 064
g 03 <
H b
=
=
0.2 4 Z 0.5
8 —— One importance = —— One importance
—— Importance Score —— Importance Score
o] T 165PF —— IGSPF
| — iasee 041 — iGspp
—— one shot ISP —— one shot ISP
0.0 4 Initial value - Initial Value
T T T T T T T T T T T T 0.3 4 T T T T T T T T T T T T
o] 14 28 42 56 70 84 98 112 126 140 154 o] 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads Number of Pruned Heads
MRPC (BERT hase uncased) QNLI (BERT base uncased)
— ey
0.9 1
0.8 1
0.7 0.8 1
> >
8 3
= 0.6 1 =
5 5 07
2 I+
< <2
0579 —— one importance —=— One importance
—=— Importance Score 0.6 4 —— Importance Score
—— IGSPF —— IGSPF
047 — iGspp —— 1GSPP
—— one shot ISP —— one shot ISP
Initial Value 0.5 4 - Initial value
0.3+
T T u T u T T T T T T T T T T u T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154 0 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads Number of Pruned Heads
QQP (BERT base uncased) SST2 (BERT base uncased)
0.9 1 —
0.9 1
0.8 4
0.8
> 0.7 >
[&
o i
© ©
2 23 071
§ o6 &
—— One importance —— One importance
0.5 | — Importance Score 0.6 4 — Importance Score
—— IGSPF —— IGSPF
—— IGSPP —— IGSPP
0.4 | — one shot ISP —— one shot ISP
Initial Value 0.5 1 - Initial value
T T u T y T T T T T T T T T T u T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154 0 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads Number of Pruned Heads
WNLI (BERT base uncased) RTE (BERT base uncased)
0701 —— One importance
0.55 +
/\ —— Importance Score
—— IGSPF
0.50 1 0.65 1 —— IGSPP
—=— one shot ISP
oas4——— g L N AN Y N N N Initial Value
z & 0.60 -
i o
o 0.40 o
S 5
3 3
B £
0.35 7 i
—— One importance 0.55
—— Importance Score
0.30 4 —— IGSPF
—— IGSPP 0.50
0.25 —— one shot ISP
- Initial value
T T u T y T T T T T T T T T T T T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154 0 14 28 42 56 70 84 98 112 126 140 154

Number of Pruned Heads

Number of Pruned Heads

Figure 6. A&ioAdynon povtélwy oto oet emklpwons ya kdle epyacia yia 6Aes T map-
aAayés touv mpdtov akyoptOuov 6.1. Ta dwypdupata €lvar o péoog 6pos TPy Tuxaiwy
onépwy.

‘Onwe npotetvouy ta anoteréopota, ol IGSPFE xaw IGSPP éyouv xuptohextind xohitepn
an6door and 1o Paowd poviéro. 2oto6c0, ol 2 Bacixol ahyoprluol Tou YENoLOTOLVUE
amodidoUY dEXETA Xahd oE younhd enineda xAddELOT S, Qv xdmolog Yewpnoel T uelworn Tou
Yeovou Yo va Beet Tar umtodixTua, xodog 6ev yeetdlovTal TEOCUPUOYT.

Fevixd, oe yeydho obvola dedouévnv, unopel va nopatnendel 6Tl o delxtng pog Asttovpyel
OEXETE XahdL, xod G Blatneel Ty anddoor oe LYNAG enineda, axdUN xoL OE TOGOGTY XAABEVCTG
80%. Av xat ot 500 oAybpLipoL EYOUY OUCLIOTIXG TUPOUOLN GUUTERLPOR, TapaTnEolue OTL 0
IGSPP amod{det xohltepa yior uxpdtepa oOvoha dedopévwy, onwe to MRPC, RTE, WNLI,
CoLA.

Ynuavtixd eivan 1 oupneptpopd tou WNLI, énou eved 1 anddoor yewdvetor oe Oha To
oOvola Bedouévwy, xotd Tig enavaiipeig, to WNLI Behtiwdvetar onuavtxd. Mo midavy| ep-
unveto etvon 611 to BERT elvon unepmoapopetpononuévo yio éva 1660 Uixpd GOVOAO BEBOUEVWLY,
70 omolo €yel apVNTIXG anoTéAeoua. Melhvovtog Tov aptiuod TwmY XEQUAGY QUiVETOL OTL ToEOE-
VOUV UOVO Ol TpaypaTxd yehotues. Autd elvon dlodtepa eupoveég oToug Bactxole alyopit-
HoUC, OToU XOBoUV TIC XEPUAEC XATd TNV EXTEAEDT), TO OTOlo Oelyvel OTL oL TOAAEC HEQUAES
XATA TNV EXTENEOT) TEPLOGOTERO BLAOTIOUY TO UOVTEAOD Topd To Bondoldv vo AdBel ambdpao.
Enlone, Swmotovouye 61t o IGSPP 8ivel xahltepa anoteréopata, to onolo elvar Aoyixo,
oo TEOCUPUOLEL UOVO TIC YPNOWES XEQUAEC TTOU TROXUTTOUY amtd Tov OeixTn amd TNy apy™h.

Avutéc ot Blaupopéc oTIC amodOoELS UETAEY TWY CUVOALY GEBOUEVWLY BElYVOLY TN BlopopLxh
ToloTNTA TV 000 akyopliuwy IGSPF, IGSPP. Ye yeydia cOvola Bedouévmy BeV BLapépouy
TOAD, %ot xdmoLog Yo umopoloe vor UTOVESEL OTL 0 GYXOG TWV BEBOUEVKY, OToU Ta B3dpr GUV-
dudlovton oty TeEAxY) dladppwon, eudivetar. ‘Etol, to Bden mou Yewpodvton onuavtixd
oto téhog, eite Ta Pploxelc Yéow Tng mpooapuoyig elte péow TN xhddevone oto Ilpoex-
TUOEVUEVO X0l OTN CUVEYELN TNG TEOCUPUOY NS, Yo xatahnEouv va ebvar ot (Bleg opddeg. e
UEd un-rotoTixd ahvoha dedopévey, dmou Tta Bdern dev €youv cuyxiivel, o IGSPP amodidel
oYETd xohOTEpa xS amoxhelel cuveY WS Ta Bden and To apyxd YOVTEAD xon CEXWVE TN
otaduaotar ahAAloVTag TNV XATAVONoT TWV Bapy Tou Yo EXTUOELTOVY.

Qotéoo, mpocdéooye enione to one shot ISP (Beite Tov Ahyderdpo 6.2) oTo (Blo oyhua
yioe vou dooue T Bektiwon. Elvaw mpogavég ot unegfaivel toug dhhoug xon Satneel uPnAT

anddoon axdpo xou o Podid tocootd xAddevong, 6nwe 90%.

0.6.3 Eravainntixr Aounuévy KAddeuvon

Metd and autd, Sieldyope newpduata yio tov Ahyderduo ISP (Seite tov Akydprduo 6.2).
To tetpduata Tou €yvay apopolyv uovo ta oivora dedopévwy MNLI, QNLI, xodog arnoawtodv
UEYSAOUE UTOAOYLOTIXOUE TTOPOUS Xl YPOVO X0l DOXIUACTNXAY HOVO Yid €V OTLORO.

[apatnerioaue 6T 1 dradwacio ISP o auts 0 Slaudppwon dev utepBaivel Ty exdoy 1| one-
shot. Autd unodnAdvel 6TL o delxtng onuaciog Tou amoxTHdNXE TNV TEOTYN enavdindr lvan
eCOUPETIXA AMOTEAEOUATIXNOS, XD QUIVETAUL VO XUTAYEAPEL ONUAVTIXY TOCOTNTA XPlOWWY
TAneogoptwy. Eivow onuavtixd vo toviotel 6TL 1 exdoyr| one-shot tou ISP elvan ouclactind
o alyopriuoc "Mia Enuocia" egapuoocuévoc oto mhaiolo tne Tnédeong tou Aayelou.

Autéd 1o elpnua elvon WBlodtepa TOAUTIHO, XIS LTOBNAGYVEL OTL {owe Bev ypedleTtal Vo

EXTEAOVUE EXTETOMEVA, OMOUTNTIXG TELPAUATO YLol VO BEATIOTOTOLACOUUE TO UOVTENO, EVOE-

MNLI (BERT base uncased) QNLI (BERT base uncased)

0.9 - = s
0.8 Ay
Y

0.7 1 \ 0.8
>
9
e
E >
3 9
£ 06 o
3 § 0.7
£ 2
]
g o5

0.6
041 ——— Initial value -~ Initial Value
—— one shot ISP —— one shot ISP
ISP 0.5 ISP
0.3+ T T T T T T T T T T T T T T
$° 50 o0 S°_ghe ob $° 50 o0 S°_ghe ob
o o > o ATAYNE o o > o ATAYNE
RS i k2 BT A RS Ed k2 [
Percentage of Survived Weights Percentage of Survived Weights

Figure 7. A&oAdynon povtédwv oto oet emklpwons ya ts tepadlayés ISP (beite tov
ANydpifpo 0.2). Ta nepdpata oiekrixonoar ya évav ondpo.

YOUEVOS EEOLXOVOUMVTAS CNUAVTIXG YPOVO X0l UTOAOYLO TiXOUS TOROUC.

0.6.4 Nuxntveia Etocitrpia;

[N opropévoug AhyopLriuoug, uag eVOLAPEREL oy UTOPOUUE VoL BRoUUE Tal VIXNTHELOL ELCLTY Lo
aflonoidvtag Toug. ‘Etol, mpdta unopel va etvon yerowo va opicouue, Bdoet tou Chen et
al. [13], w elvou (1) éva avtiotoyo vnodixtuo, (i) vixntiplo eottiplo xon (iii) xodoixd
unodixTuo.

‘Onwe avagépel oTo dptpo Tou:

Acetvon AL (f (5 60;,7:)) évac ahybprdpoc exnaldevone (.. AdamW pe urepnapapéteouc)
yio o epyoota T (m.y. CoLA) mou exnoudelel éva dixtvo f(x;60;,7:) yia v epyaota T' yua
t Briwata, dnuovpydvtac to dixtuo f(z;0ite, Yitr). Ac ebvon Oy ta mpoexmoudevuéva Bden
BERT. Ac eivon ep(f(x;0)) n petpind allohéynone tou yovtélou f yia v epyooio T

AvtioTtoiyo uvrodixtuo. 'Evo vnodixtuo f(z;m © 0,7) eivon aviiotoryo yio évay
ahyoprduo Al av 1 exnaidevon tou f(z;m® 6,7) pe tov ahybdprduo A% anodider o uetpw
aflohdynong yio Ty epyaocia T’ mou dev elvan younhotepn and v exnaidevon tou f(z; 6y, y)

pe Tov ohybprdpo AL, Me dha hoyio:
t . t .
er (Ar(f(z:m ©6,7))) = er (A7(f(x;60,7)))

Nuernthpro sworthpro. ‘Eva unodixtuo f(x;m © 6, v) eivar éva vixntipto etotthplo yio
évay ohyoprdpo A% ov elvan avtiotolyo unodixtuo yio tov AL o 6 = 6.

KoadoAuxo vrnodixtuo. Evavnodixtuo f(z;mob, yr,) eivor xadolxd yio tic epyaoiec
{T N, av elvar avtioToryo yia xdde A% yioe xatdAAnhee, ewduxée puiuioelc epyaoiog ;.

Baowoyévog otov Chen, Aoyw tov dlaxupdvoewy, yio vo Yewpendel éva umodixtuo o¢
vmTrpto elotthplo, Yeetdletar 1 anddoon tou mAneouc poviéhou BERT va elvan evtog uiog
TUTUXTC OmOXALONE oo TNV am6d0oT) Tou LTodTOOoL (Yo TV toétnta). Enopéves, n ouviixn
TIOU YPNOWOTOLOUUE EVaL OTL 1) AmOB00T TOU TANPOUC HOVTEAOU TRETEL VL Evall UXpOTERY Ao

TO AVWTATO OPLO TNE ATOB00TE TOU UTOOIXTOOU.

3Uvolo Acdouévwy QNLI QQP MRPC WNLI RTE SST-2 CoLA

Apauétnta IGSPF 100% 30% 10%
Apauétnta IGSPP 10% 100% 30% 30% 10%
Apgauétnta one shot ISP 20% 60% 30% 100% 30% 20%
IT\¥%pec BERTBASE 91.5 £0.06 91.0 £ 0.07 842+12 394+08 66.1+12 93.0£03 57.5£09
F(z, migspr © 6o) 56.3 £ 0.0 65.2 + 2.2 573+ 1.4
f(z,migspp © bo) 843+11 563 +00 638=+33 925+04 586=x0.3
f(x,Mone shot 15P © b)) 91.2+02 91.0+0.05 84.2+03 563+00 66.0=£16 58.8 £ 0.9

Table 2. Nwikntrpa Ewoitripia o€ 6An tny éktaon twv ovvorwy dedouévwy ya tovs IGSPF,
IGSPP kai one shot ISP

Mrnoget va napoatnendet 6t n tpocéyyion one-shot ISP (Enaveinnuxd Apouwtins) Khddeuon)
umopel va evtonioel vixntipla etottripla og VPN entineda apoundTNTUC GE GUVOAA BEBOPEVLY
OTOU oL GANOL AAYOELIUOL ATTOTUY YEVOUY VoL TA EVIOTHOOUY EVIEAGG.

Metd amd autd, CUYHEIVOUUE To OTOTEAECUOTA MAC UE TA XUAUTEQO AMOTEAECUATO TOU
Achlatis, w¢ onuelo avagopds. Ta anoteréoyata dev €youv avanopoydel, enouévng 1 oLYxe-
to7) efvol Xt TEOGEYYLON Xl TOLOTIXH).

e autéd To onuelo, TEENEL Vo ToViGouUE OTL O UTOAOYLOUOS TNE ONUAciag GTO QY0 TOU
Achlatis ypnowwonolel t0 0eT emUPWONG, EVE EUEIC YENOWOTOOVUE EVa IGOPPOTNUEVO UT-
0GUVOAO TOU OET EXTAUOEVOTC.

It vo evduypauuiotolye e to tetpdpoata tou Achlatis, otov Iivaxa 6.3 tapoucidlouue
To amoteAéouaTa Yiot T0600TH XAEdevone T0% xou yior Ty amh €xdoon ywelic Ty epopuoyy
LTH, evé otov Iivoxa 6.4 undpyouv ta anoteréopato tng LTH yio nocootd xhddevong
80%.

Eeyaoio MNLI QNLI QQP SST-2 MRPC CoLA
Michel(a = 1.0) 0.717 0.734 0.791 0.875 0.639 0.286
Achlatis 0.732(0.4) 0.787 (0.7) 0.811 (0.6) 0.878 (0.4) 0.730 (0.6) 0.387 (0.5)
Ao poc 0.374 0.500 0.742 0.836 0.317 0.137

Table 3. Metpikés anddoons yia OwapopeTikéS epyaoies vnd ueboovovs kAddevons rar aéi-
oAdynong tov mpooappoouévou povtéhov. O peyaditepos apduds eivar pe évtovn ypagn.

Egyaoia MNLI QNLI MRPC SST-2 CoLA
Michel (o = 1.0) 0.817 0.820 0.773 0.903 0.329
Achlatis 0.824 (0.6) 0.880 (0.4) 0.783 (0.4) 0.918 (0.4) 0.435 (0.5)
(Auwxé pac) IGSPF 0.776 0.877 0.706 0.895 0.261
(Awxé pac) IGSPP 0.769 0.866 0.701 0.889 0.334

Table 4. Metpicés amédoons yia diapopetikés epyaoies vno pebodovs, epapuolovtag tny
Tré0eon tov Aayeiov. O peyaditepos apidudg elvai e évtovn ypagn, evd vroypaupilovue
TS TIHES ToU umepPaivovy tny mpoo€yyion tov Michel.

O Belxtng pog otov amhéd alyodprduo dev undpece vo utepBel TNV Tponyoluevn epyacio o
elvon onpavTixd Ayodtepo anodotxds. dotoéco, epapuolovtog Ty LTH, ta aroteréopota -
vou xohOtepa, Eemepvavtag TNy tpocéyyion tou Michel yia opiopéveg epyaotec. Xtov Ilivaxa
6.4, tpoc¥éoaue enlong Ty tpomonoinuévn exdoyn tou Alyoplluou 0.1, YeNoHOTOWVTIS TO

TPOEXTALOEUUEVO LOVTEAO.

1.1 Introductory Concepts

1.1.1 Artificial Intelligence, Machine Learning and Deep Learning

Artificial Intelligence (AI) refers to the simulation of human intelligence in machines
designed to think and act like humans. Al systems can perform tasks such as problem-
solving, decision-making, understanding natural language, and recognizing patterns. These
systems can be either rule-based, following predefined instructions, or learning-based,
where they improve their performance by learning from data [39].

Machine Learning (ML) is a subset of Al that involves training algorithms on data
to enable them to make predictions or decisions without being explicitly programmed. ML
techniques allow computers to learn from and adapt to new data. The main types of ML
are supervised learning, where the model learns from labeled data; unsupervised learning,
where the model identifies patterns in unlabeled data; and reinforcement learning, where
the model learns by receiving rewards or penalties based on its actions [40].

Deep Learning (DL) is a specialized branch of ML that uses neural networks with
many layers, hence "deep." These networks can automatically discover representations
needed for feature detection or classification from raw data. DL is particularly powerful
for tasks such as image and speech recognition and natural language processing. For
instance, Convolutional Neural Networks (CNNs) are widely used for image-related tasks,

while Transformer models like BERT are used for text-based applications [1].

1.1.2 Interpretability in Machine Learning

Interpretability in ML refers to the degree to which a human can understand the cause
of a decision made by a model. As ML models, especially those involving DL, become

more complex, interpretability becomes essential for several reasons:

1. Debugging and Improving Models: Understanding model decisions can help identify

errors and improve model performance.

2. Building Trust: Users are more likely to trust and accept ML models if they under-

stand how decisions are made.

3. Ensuring Fairness: Interpretability helps detect and mitigate biases in ML, models,

promoting ethical Al use.

4. Regulatory Compliance: In many sectors, regulations require transparency and ex-

plainability for automated decisions [41].

Interpretability techniques include feature importance measures, model visualization,
and methods like Integrated Gradients, which attribute the contribution of each input
feature to the model’s output [22].

1.1.3 Pruning in Machine Learning

Pruning is a model compression technique used to reduce the size and complexity of
ML models by eliminating less important components, such as neurons or layers. The

primary goals of pruning include:

1. Reducing Model Size: Pruning decreases the number of parameters, making models

smaller and more manageable.

2. Improving Efficiency: Smaller models require less computational power and memory,
enhancing execution speed and making them suitable for deployment on resource-

constrained devices.

3. Enhancing Generalization: Pruning can help prevent overfitting by removing unnec-

essary components, leading to better performance on unseen data [42].
Pruning can be categorized into:

1. Unstructured Pruning: Removes individual parameters, resulting in sparse matrices.

2. Structured Pruning: Removes entire structures like neurons or layers, leading to more

efficient models with minimal performance loss.

3. Enhancing Generalization: Pruning can help prevent overfitting by removing unnec-

essary components, leading to better performance on unseen data [42].

Combining pruning with interpretability ensures that the most crucial parts of the
model are retained, maintaining performance while achieving significant efficiency gains.
This approach is especially beneficial for deploying sophisticated models like BERT in

environments with limited resources.

1.2 Motivation

Transformers have revolutionized the field of Natural Language Processing (NLP),
achieving remarkable performance across a variety of tasks. Despite their success, training
these models is computationally intensive, and they often contain millions of parameters.
The base BERT model, for instance, has 110 million parameters, but more recent mod-

els like GPT-4 boast even more parameters (OpenAl, 2023). The development continues

with models like Google’s Gemini and Anthropic’s Claude, which further push the limits
of size and capability. This rapid growth has sparked concerns about computational com-
plexity, environmental impact, and fairness in comparing different architectures, as well as
reproducibility [43][44][45].

GPT-4, developed by OpenAl, follows in the footsteps of its predecessor GPT-3, with
even more parameters and capabilities. GPT-4 excels in understanding and generating
human-like text, producing more coherent and contextually accurate responses [19]. This
model sets new benchmarks in various NLP tasks such as text completion, translation,
summarization, and question answering, highlighting significant advancements in language
model technology.

Google’s Gemini represents another significant leap in language model development.
It incorporates the latest advancements in Al research, including architectural improve-
ments and advanced training techniques, to deliver state-of-the-art performance across
diverse NLP applications. Gemini is designed to be highly efficient, maintaining high ac-
curacy while addressing the computational and environmental concerns associated with
large language models [20].

Anthropic’s Claude is a state-of-the-art language model that emphasizes safety and
interpretability. Claude aims to provide robust and reliable NLP capabilities while ensuring
that its decisions are understandable and trustworthy. This focus on interpretability is
crucial for applications where transparency and accountability are essential [21].
Current Challenges and Solutions
Human language is incredibly complex, and current models might not be using their pa-
rameters as efficiently as possible. Research by Voita et al. (2019) [11] demonstrated that
most Transformer heads could be pruned without significant performance loss. Similarly,
Clark et al. (2019) [46]found that many heads within the same BERT layer show similar
self-attention patterns, which explains why Michel et al. (2019) [17]could reduce most lay-
ers to a single head without degrading performance. Prasanna et al. (2020) [12] extended
this line of inquiry in their paper "When BERT Plays the Lottery, All Tickets Are Win-

" where they showed that different subsets of the model parameters could be pruned

ning,
while still maintaining performance. This further emphasizes the overparameterization of
these models and suggests that there is significant redundancy within BERT’s structure,
reinforcing the potential for effective model compression through pruning.

For certain tasks, some BERT heads and layers are not only redundant but can also
be detrimental. Disabling specific heads has shown positive effects in machine translation
[17], abstractive summarization [47], and various GLUE tasks [8]. Tenney et al. (2019) [4§]
found that some layers could decrease performance in structured probing tasks, particularly
the final layers. Unstructured pruning research by Gordon et al. (2020) [49] found that
30-40% of the weights could be pruned without impacting downstream tasks.

While larger models generally perform better, this isn’t always the case. For instance,
BERT-base has outperformed BERT-large on tasks like subject-verb agreement [50] and
sentence subject detection [51]. The complexity of language and the extensive pre-training
data contribute to redundancy in BERT’s heads and layers. [46] suggest that attention

dropouts, which zero out some attention weights during training, might contribute to this

redundancy.

Given the evidence of overparameterization, it’s not surprising that models like BERT
can be efficiently compressed with minimal accuracy loss, which is highly desirable for
real-world applications. Various techniques, such as Knowledge Distillation [52], Pruning
[53] , and Neural Network Quantization [54], can achieve this compression. This study
focuses on Pruning, specifically Structured Pruning.

We explore Structured Pruning over Magnitude Pruning because adaptive sparse matrix
multiplication has shown promising results on GPUs but has not yet been widely applied in
silicon. Structured pruning remains the most effective method for accelerating models like
BERT in practice. Accelerating unstructured sparse matrix multiplication is an ongoing
research area, with recent progress achieving near-ideal speed-ups with minimal deviation
from unstructured sparsity [55].

Structured pruning also allows us to investigate the roles of different components within
the neural network. This understanding can improve fine-tuning techniques and enhance

the overall functionality and efficiency of the network.

1.2.1 Research Contribution

In this study we examine a structured pruning approach for BERT-based architectures
focusing on the attributions of the attention weights of the fine-tuned model. Furthermore,
we study this method through Lottery Ticket Hypothesis, where we see that concluding
in competitive results. As Achlatis mentioned in his Thesis, we also apply "Iterative

Structured Pruning".

1.3 Thesis Outline

Chapter 2: Machine Learning, provides background knowledge to set the stage for the
subsequent chapters. First, we provide an overview of technical information that is rele-
vant in order to understand the contents of this thesis. Next, we introduce the reader to
machine learning together with its most elementary methods. We subsequently delve into
the machine learning models primarily used in this thesis.

Chapter 3: Natural Language Processing, presents the natural language processing back-
ground needed to understand this thesis. After briefly presenting popular natural language
processing tasks, language modeling is presented, initially in the form of an-gram model
based on the Markov assumption and then as a recurrent neural network. Then, transfer
learning methods that are currently used to train natural language processing models are
explained.

Chapter 4: Compression of Deep Learning Models, is a short survey that introduces com-
pression techniques in deep learning models. Firstly, the problem description is introduced,
and the Lottery Ticket Hypothesis is explained. Then we focus on different pruning ap-
proaches for Transformer-based models, while we also present similar techniques on Com-
puter Vision. Finally, critical aspects of Explainable AI are presented as a promising

pruning methodology

Chapter 5: Interpretabiliy, discusses about various techniques that make these complex
models more understandable to humans. This includes methods for visualizing and explain-
ing model decisions, understanding feature importance, and evaluating the transparency
of different architectures. We also discuss the significance of interpretability in ensuring
fairness, building trust, and complying with regulatory requirements.

Chapter 6: Attribution Does Matter: A transfer learning approach for structured prun-
ing, presents a novel structured pruning technique for Deep Learning Language Models,
such as BERT. This approach considers both the attention weights and the correspond-
ing attributions, being calculated through Integrated Gradients technique, achieving good
performance. Also, we show that this method produces a better set of head masks for
the Lottery Ticket Hypothesis; if this set is used in the pre-trained model and this model
is fine-tuned, it will produce a model with significant performance and sparsity. Finally,
in this chapter, we examine an iterative structured pruning algorithm for performing the
Lottery Ticket Hypothesis.

Chapter 7: Conclusions & Future Work, contains our conclusion, summarizing our findings

and providing an outlook into the future work.

Part

Background Knowledge

2.1 Introduction

In this chapter, we introduce the theoretical background of Machine Learning (ML).
Chapters 2.1 and 2.2 present the definition and categories of Machine Learning, respec-
tively. Chapter 2.3 provides an introduction to traditional Machine Learning models, and
Chapter 2.4 explores Neural Networks and Deep Learning. A recommended book for an
introduction to Deep Learning is "Deep Learning" by Goodfellow, Bengio, and Courville
(2016) [1].

2.1.1 Definition

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) and was first defined
in 1959 by Arthur Samuel as "the field of study that gives computers the ability to learn
without being explicitly programmed." A formal definition was later provided in 1997 by
Tom Mitchell, who proposed that "a computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance on
tasks in T, as measured by P, improves with experience E" (Mitchell, 1997) [56]. Therefore,
Machine Learning focuses on the design and implementation of algorithms and systems that
automatically train and optimize. The training of a model is performed on a set of input
data, and using statistical analysis, the model is optimized to more efficiently recognize

patterns in observations or make better decisions

2.2 Machine Learning Classifications

Before classifying the types of learning in machine learning, a proper definition of “learn-
ing” should be provided. Indeed, Mitchell [56] provides generic, well-suited, definition for
learning: “A computer program is said to learn from experience (E) concerning some class
of tasks (T) and performance measure (P), if its performance at tasks in T, as measured
by P, improves with experience E.” So, more specifically in machine learning we train our
model with data in order to gain experience for a given task. Hopefully, after the training
process, we will notice performance improvement. In this section, we are going to classify

learning, and we can define 14 different learning types:

1. Learning Problems

(a) Supervised Learning
(b) Unsupervised Learning

(¢) Reinforcement Learning
2. Hybrid Learning Problems

(a) Semi-Supervised Learning
(b) Self-Supervised Learning

(c) Multi-Instance Learning
3. Statistical Inference

(a) Inductive Learning
(b) Deductive Inference

(c¢) Transductive Learning
4. Learning Techniques

a

(a) Multi-Task Learning
(b

Active Learning

)
)
(¢) Online Learning
(d) Transfer Learning
)

(e) Ensemble Learning

2.2.1 Supervised Learning

Supervised learning is a machine learning task that involves learning a function that
maps an input to an output based on example input-output pairs. In this context, the train-
ing data consists of input feature vectors along with their corresponding target (ground
truth) vectors, which are well-labeled, meaning that each input is tagged with the cor-
rect output. During training, the algorithm learns the mapping function from the input
variables X to the output variable Y (expressed as Y = f(X)), using both X and their
corresponding y provided in the training data. At inference, this learned function allows
the algorithm to predict the output for new, unseen inputs that come from the same distri-
bution as the training samples. Supervised learning problems can be categorized into two
main types: classification and regression. In classification, the target variable is a discrete
class label, such as identifying handwritten digits from 0 to 9 in an image. In regression,
the target is one or more continuous variables, such as predicting the value of a function
y = f(z) for given input features x. Essentially, supervised learning involves a supervisor
or teacher that provides the correct answers during training, enabling the model to learn

from this labeled data and make accurate predictions on new data. (Bishop, 2006) [57].

2.2.2 Unsupervised Learning

Unsupervised learning is a category of machine learning problems where the training
data consists of input vectors z without any corresponding target values. Unlike supervised
learning, where the goal is to learn a mapping from inputs to known outputs, unsupervised
learning aims to uncover the underlying structure or distribution in the data to learn more
about it. This type of learning is termed "unsupervised" because there are no correct
answers provided during training, and no teacher to guide the learning process.

A significant subclass of unsupervised learning tasks involves clustering, where the ob-
jective is to group observations so that members of the same group are similar to each
other and different from those in other groups. This process relies on defining and mea-
suring similarities between feature vectors and selecting an appropriate clustering method
to group the samples based on these similarities (Bishop, 2006) [57].

Another important class of unsupervised tasks is generative modeling. Generative
models attempt to imitate the process that generates the training data, with the aim of
producing new data that resembles the training data. This is considered unsupervised
learning because the data generation process is not directly observable — only the data
itself is.

Additionally, unsupervised learning can involve tasks like density estimation, where
the goal is to determine the distribution of data within the input space, or dimensionality
reduction, where high-dimensional data is projected into lower dimensions for visualiza-
tion or simplification. Association problems, another subset of unsupervised learning, seek
to discover rules that describe large portions of the data without the existence of labels,
further illustrating the diverse applications of unsupervised learning in modeling and un-

derstanding complex datasets.

2.2.3 Self-Supervised Learning

Self-Supervised learning is proposed for utilizing unlabeled data with the success of
supervised learning. Producing a dataset with suitable labels is expensive, while unlabeled
data is being generated all the time. The motivation of Self-Supervised Learning is to
make use of a large amount of unlabeled data. The main idea of Self-Supervised learning
is to generate the labels from unlabeled data, according to the structure or characteristics
of the data itself, and then train on this unsupervised data in a supervised manner. Self-
Supervised learning is wildly used in representation learning to make a model learn the
latent features of the data. This technique is often employed in both natural language

processing, and computer vision [58].

2.2.4 Transfer Learning

The ideal scenario in machine learning is to have abundant labeled training instances
that share the same distribution as the test data. However, obtaining sufficient labeled data
is often expensive, time-consuming, or even unrealistic in many scenarios. Semi-supervised

learning addresses this issue by utilizing a limited amount of labeled data along with a large

amount of unlabeled data to improve learning accuracy. Despite this, collecting unlabeled

data can also be challenging, resulting in traditional models being unsatisfactory.

Transfer learning emerges as a promising solution to these challenges by focusing on
transferring knowledge across domains. The concept of transfer learning is inspired by
educational psychology, particularly the generalization theory of transfer proposed by psy-
chologist C.H. Judd. According to this theory, learning to transfer is the result of the
generalization of experience. For instance, a person who has learned to play the violin can
learn the piano faster than someone with no musical training, because both instruments
share some common knowledge. Similarly, transfer learning leverages knowledge from a
source domain to enhance learning performance or reduce the number of labeled examples

needed in a target domain.

However, it’s important to note that the effectiveness of transferred knowledge is not
guaranteed. If there is little commonality between the source and target domains, the
transfer may not be beneficial and could even be detrimental. This underscores the need

for careful consideration when selecting source and target domains for transfer learning.

Key Concepts in Transfer Learning

Domain: A domain D consists of two components: a feature space X and a marginal
distribution P(X). Thus, D = {X, P(X)}. The feature space X is an instance set defined
as X ={x|x;e X,i=1,...,n}.

Task: A task T includes a label space Y and a decision function f, represented as
T = {Y, f}. The decision function f is an implicit function expected to be learned from

sample data.

Transfer Learning: Given some observations from mg € NT source domains and
tasks {(Dsg,,Ts;) | « = 1,...,mg} and observations from my € NT target domains and
tasks {(Dr;,Tr;) | j = 1,...,mr}, transfer learning utilizes the knowledge from the source
domain(s) to improve the performance of the decision functions fr; on the target domain(s).
When mg = 1, this is referred to as single-source transfer learning, and when mg > 1, it

is called multi-source transfer learning. In most scenarios, mp = 1.

Transfer learning leverages knowledge from one or more source domains to address
the limitations posed by insufficient labeled data in the target domain, making it a vital

approach in modern machine learning [59].

2.3 Learning Process

2.3.1 Loss Function

We will now review some fundamental loss functions widely utilized in machine learning.
Loss functions map an input or some variables to a real number, which signifies the cost

to be minimized.

Regression Loss Functions

Regression problems involve training a model to fit a curve f(z) to given points. The
dataset consists of pairs of points (z;,y;), where i = 1,..., N. The model must learn to
map an input point x; to its corresponding value y; using an appropriate function f(z).

For each point x;, the true value is y; and the predicted value from the model is f(z;).

e Squared Error Loss: Squared Error Loss is the squared difference between the

actual and predicted values:

L=(y— f(x))?

e Absolute Error Loss: Absolute Error Loss is the absolute value of the difference

between the actual and predicted values:
L=ly— f(z)|

Classification Loss Functions

In classification tasks, each input feature vector has an associated label. The model
takes the training sample as input and predicts its label. The primary loss function used
in these problems is Cross Entropy Loss. Entropy quantifies the uncertainty involved with
certain probability distributions; more uncertainty/variation in a probability distribution

leads to higher entropy. The entropy of a (discrete) distribution p is defined as:

Zp) log(p(x))

The negative sign ensures the quantity is positive, since p(z) < 1 = log(p(x)) < 0.
Cross Entropy between two distributions p and g measures their difference. In terms of
information theory, it can be viewed as the distance between the two distributions, based

on the amount of information (bits) needed to describe that distance. It is defined as:

H(p,q) = —Ep[log(q)]

For discrete distributions, this relation is equivalent to:
Zp)log(q())

In machine learning, we assume the true probability of each pattern ¢ is p;, and ¢;
is the model’s predicted value for this pattern. For instance, in a binary classification
problem where each pattern belongs to one of two classes (0 or 1), the model’s output can
be interpreted as the probability that the current pattern, with input vector x, belongs to

class 1. This probability is modeled by the logistic function:

where z is the actual output of the model, i.e., a function of the input vector x (z =
f(x)). Therefore, the probability that the label of = is 1 is:

1
1+ e /(@)
and thus, the probability that its label is 0 is:

:y:

qyzozl—Q

This implies that p € {y, 1—y} (where y is the actual label, y € {0,1}) and q € {y, 1—79}.

The cross entropy of these two distributions can now be used to estimate their difference:

—~ Zpi log(gi) = —y - log(§) — (1 —y) - log(1 — §)

The larger the difference between y and ¢, the higher the value of the cross entropy
loss function. For example, if y = 1 and g ~ 0, then the first term of equation (8) will be
large. Conversely, if § = 1, the first term is almost zero. This cross entropy loss function is
used in binary classification problems but can be generalized for multi-class classification

problems as follows:

sz log(gi) = Zyzlog)

Additionally, y does not need to take only discrete values. If not a classification task,
y can take any value between 0 and 1, similar to §. Hence, cross entropy loss is also used
to measure reconstruction error in cases such as autoencoders (see Section 2.5.4.2).

Another useful loss function that measures the difference between two distributions p

and ¢ is Kullback-Leibler divergence:

L(pllq) = Zp 10g< g)

If p and ¢ are similar, their ratio is close to 1, making the KL divergence near zero,
indicating small differences. Conversely, if they are quite dissimilar, the KL divergence will

be larger. Interestingly, we have:

KL(pllq) = H(p,q) — H(p)

Since p is the target distribution, H(p) remains the same regardless of ¢, allowing us
to omit this term and just calculate H(p, q) (cross entropy loss). This is why cross entropy

loss is more commonly used than KL divergence.

2.3.2 Optimization

Optimization involves selecting the most suitable model parameters to minimize the
loss function, which is scalar. Minimizing a loss function L(a) with respect to a parameter

vector a can be achieved using a gradient descent procedure. This iterative method updates

the parameter vector by taking small steps in the direction of the negative gradient of the

loss function.

We start with an arbitrary initial parameter vector a(*) and compute the gradient
vector VL(a(")). The next value a(?) is obtained by moving some distance from a(!) in the

direction of steepest descent. Generally, a1 is calculated from a*) using the equation:

b+ = g8 _ (g 1 (g0))

Here, n is a positive scale factor called the learning rate, which determines the step
size and, consequently, how "steep" the actual update is. We aim for this sequence of
parameter vectors to converge to a solution that minimizes L(a). Thus, the number of
updates (iterations) required is problem-dependent. A common stop criterion is that the

update quantity n*)VL(a) is smaller than a threshold 6, chosen by the user.

One of the most critical aspects of gradient descent procedures is selecting the learning
rate n(k). If n(k) is too small, convergence will be slow; if too large, the update can overshoot

and even diverge.

Another interesting aspect of gradient descent methods in machine learning is that
we choose the loss function L based on the training set, requiring the entire dataset for
each step to compute VL. Techniques that use the entire dataset at each iteration are
called batch methods. An online version of gradient descent, called stochastic gradient
descent, is useful for large datasets. This method updates the parameter vector based on
one data point at a time, for example, by examining each point sequentially. The most
common approach, however, is to use a batch of data points to compute VL, combining
the advantages of both methods: addressing large datasets while incorporating parallelism
through groups of samples at each step, speeding up the training process [60, 57].

Gradient descent optimization algorithms are numerous (Adaline, Adamax, Adam, RM-
Sprop, etc.), each introducing slight variations to the classical approach. One widely used
algorithm is Adam (Adaptive Moment Estimation), which updates the weights using esti-

mations of the first two moments of past gradients (mean and standard deviation).

2.3.3 Gradient Descent

Gradient descent is a method to minimize a loss function J(#) parameterized by a
model’s parameters § € R? by updating the parameters in the opposite direction of the
gradient of the objective function VyJ(#) with respect to the parameters. The learning
rate A determines the size of the steps the algorithm takes to reach a (local) minimum. In
other words, the model follows the slope of the surface created by the objective function

downhill until it reaches a valley, as depicted in Figure 2.1.

There are three variants of gradient descent, which differ in the amount of data used
to compute the gradient of the loss function. Depending on the amount of data, there is a

trade-off between the accuracy of the update and the time it takes to perform it.

ll s it il
'lllllll;"a,.\‘ow ol lli
0*0’ '

'llll ’ " 9.9 25
&?’Mff" i

Figure 2.1. Gradient Descent Visualization.

Batch Gradient Descent

Batch gradient descent computes the gradient of the cost function with respect to the

parameters @ for the entire training dataset:

0=0—\-VyJ(0) (2.14)

While the gradient descent algorithm is straightforward to implement, it is not guaran-
teed to converge to a global minimum. It is possible to get stuck at a local minimum if the
learning rate is not properly chosen. Moreover, when training on large datasets, computing
the loss over the entire dataset at each iteration may be computationally expensive and

inefficient.

Stochastic Gradient Descent (SGD)

Stochastic gradient descent is a variant of gradient descent. Unlike gradient descent, it
computes the gradient of the loss function over a subset of samples rather than the whole
dataset. Thus, SGD estimates the gradient using a sample, instead of computing the true
gradient using all samples. For each training example x; and its corresponding label y;, a

parameter update is performed as:

0=0—X\-VoJ(0;x:,v;) (2.15)

While batch gradient descent converges to the minimum of the basin that the param-
eters are placed in, SGD enables it to jump to new and potentially better local minima.
On the other hand, this complicates convergence to the exact minimum, as SGD may keep
overshooting. However, it has been shown that when the learning rate is slowly decreased,
SGD exhibits the same convergence behavior as batch gradient descent, almost certainly
converging to a local or the global minimum for non-convex and convex optimization re-

spectively [61].

Mini-batch Gradient Descent

Mini-batch gradient descent takes the best of both worlds and performs an update for

every mini-batch of n training examples:

0=0—X-VoJ(0; Zisivn, Yizitn)

where the mini-batch is denoted as #;.j4n, ¥i:itn. This approach reduces the variance
of the parameter updates, leading to more stable convergence. It also leverages highly
optimized matrix operations in deep learning libraries, making the computation of the

gradient with respect to a mini-batch very efficient.

Learning Rate

The size of the steps the optimization algorithm takes plays a critical role in training
the model and effectively controls the speed at which the model learns. If the step or
learning rate is too large, we may overshoot the minima and bounce back and forth on the
loss surface, or the model can become unstable and diverge. If it is too small, it may take
too long to reach a minimum, or worse, the algorithm might get stuck at a suboptimal
local minimum. Finding an optimal learning rate is challenging, and in practice, it often
comes down to experimenting with the model’s hyperparameters.

Specifying a learning rate for each epoch, i.e., scheduling, can mitigate these issues to
some extent. There are two types of methods for scheduling global learning rates: decay
and cyclical methods. The preferred method is learning rate annealing, which gradually
decreases the learning rate during the training process. A relatively large step-size is
preferred at the initial stages of training to achieve better generalization [62]. The cyclical
method [63] involves repeating a learning rate period that consists of an upper and lower
bound during epochs. The observation behind the cyclic method is that while increasing
the learning rate in the optimization process may have a negative effect, it can result in
better generalization of the trained model.

Learning rate warmup is a recent approach that uses a relatively small step size at
the beginning of training. The learning rate is then increased linearly or non-linearly to a
specific value in the first few epochs and then gradually shrinks to zero. The observations
behind warmup are that the model parameters are initialized using a random distribution,
and thus, the initial model is far from ideal; therefore, a large learning rate causes the
model to recede from a local minimum. Also, carefully training an initial model in the
first few epochs may enable the application of a larger learning rate in the middle stage of

training, resulting in better regularization.

2.3.4 Underfitting and Overfitting

The central challenge in machine learning is that the proposed algorithm should perform
well on new, previously unseen inputs, not just those on which our model is trained. The
ability to perform well on previously unobserved inputs is called generalization. Typically,

when training a machine learning model, we have access to a training set; we can compute

some error measure on the training set, called training error; and we reduce this training
error. So far, what we have described is simply an optimization problem.

What separates machine learning from optimization is that we want the generalization
error, also called the test error, to be minimized. The generalization error is defined as the
expected value of the error on new inputs. Here, the expectation is taken across different
possible inputs, drawn from the distribution of inputs we expect the system to encounter
in practice. We typically estimate the generalization error of a machine learning model by
measuring its performance on a test set of examples that were collected separately from
the training set.

The factors determining how well a machine learning algorithm will perform include its
ability to minimize the training error and reduce the gap between training and test errors.
These two factors correspond to the two central challenges in machine learning: underfitting
and overfitting. Underfitting occurs when the model cannot obtain a sufficiently low error
value on the training set. Overfitting occurs when the gap between the training error and
test error is too large. Therefore, in machine learning, we aim to find a good trade-off
between the training error and the gap between training and test errors, as illustrated in

Figure 2.2.

— - Training error

Underfitting zone | Overfitting zone . .
€ 8 —— Generalization error

Error

0 Optimal Capacity
Capacity

Figure 2.2. Training and test errors behave differently. At the left end of the graph,
training error and generalization error are both high, indicating underfitting. As we increase
model capacity, training error decreases, but the gap between training and generalization
error increases. Eventually, the size of this gap outweighs the decrease in training error,
and we enter the overfitting regime, where capacity is too large. Source: [1]

2.3.5 Regularization, Dropout, and Pruning

To overcome the problem of overfitting and improve generalization, we employ tech-
niques such as regularization, dropout, and pruning. Our modern ideas about improving
the generalization of machine learning models are refinements of thoughts dating back to
philosophers at least as early as Ptolemy. Many early scholars invoked a principle of par-
simony, now most widely known as Occam’s razor (c. 1287-1347). This principle states
that among competing hypotheses that explain known observations equally well, we should

choose the “simplest” one. This idea was formalized and made more precise in the twentieth

century by the founders of statistical learning theory.

Regularization is the most common way to mitigate overfitting and apply Occam’s
razor to machine learning problems. To address the potential loss of generalization, we
impose restrictions on the form of the solution by forcing the model to choose the simplest
solution in terms of parameters. This is done by adding a term to the loss equation that

penalizes the size of the model. Thus, the loss function takes the following form:

N
0 = arg min L(f) = arg min (;, ; L(f(xi;0),y:) + AR(O))

The regularization term considers the parameter values and scores their complexity.
We then look for values that have both a low loss and low complexity. Regularization
inherently intends to penalize complex models and favor simpler ones. X is a value that
must be set manually, based on the classification performance on a development set (called
a hyperparameter). The regularizers R measure the norms of the parameter matrices and
opt for solutions with low norms. The two most common regularization norms are L2 and

L1.

L2 Regularization

L2 regularization involves the standard Euclidean norm (L2-norm) of the parameters,
aiming to keep the sum of the squares of the parameter values low. Large model weights
Wi, j] will be penalized since they are considered "unlikely". L2 regularization is often
referred to as weight decay. High weights are severely penalized, but weights with small

values are only negligibly affected.

Rpp(W) = [[Wl5 =Y Wi, j]?
1,

L1 Regularization

The L1 regularizer punishes uniformly low and high values and intends to decrease all
non-zero parameter values towards zero. It encourages sparse solutions, meaning models

with many parameters set to zero. The L1 regularizer is also called a sparse prior or lasso.

Ry (W) = [[Wll =) _ Wi, 4]
i,J

Dropout

An effective technique for preventing neural networks from overfitting the training
samples is dropout training. Dropout is designed to prevent the network from relying on
specific weights. It randomly sets to zero (drops) half of the neurons in the network (or in a
specific layer) for each training example during stochastic gradient training. The dropout

technique is one of the key factors contributing to the robust results of neural networks.

Pruning

Pruning is another method to prevent overfitting. It involves removing connections
between neurons or entire neurons, channels, or filters from a trained network by zeroing
out values in its weights matrix or removing groups of weights entirely. We will discuss

pruning in more detail in Chapter 4.

2.4 Machine Learning Models

2.4.1 Linear Regression

Linear Regression is a Supervised Learning technique aimed at solving regression prob-
lems. The goal is to construct a model that takes a vector x € R™ as input and predicts a
scalar y € R as its output. The output of linear regression is a linear combination of the
input features.

Let g be the predicted value of y. We define the prediction as:

j=w'x

where w € R" is a vector of coefficients. These coefficients are parameters that govern
the behavior of the model. In this context, w; represents the weight assigned to feature
x; before summing up the contributions from all the features. We can consider w as a set
of weights that determine the influence of each feature on the prediction. To optimally fit
the model to the training data, we aim to minimize the Mean Squared Error (MSE) on

the training set:

m

1 .
MSEtrain = E z;(yl - yi)2
1=

To find the minimum MSEy;ain, we solve for where its gradient is zero:

VwMSEgain =0 = w=(X'X)"'X"y

Thus, for Linear Regression, we have a closed-form solution to determine the optimal
parameters. However, it is often more practical to compute w using gradient descent
because the closed-form solution can be computationally intensive in terms of time and
memory. Additionally, gradient descent allows for parallelization. Furthermore, gradient
descent is preferred when the data is not linearly separable because the matrix (X X)™!

may not be invertible in such cases.

2.4.2 Classifiers

As mentioned earlier, classifiers are utilized in supervised learning applications with the
aim of assigning a sample x to a category y. This means that for each sample x;, where
i=1,...,N, the goal is to identify the class yi, where k = 1,..., M, that maximizes the
probability p(yx|z;) according to decision theory:

7 = arg max p(yx|x;)
Uk

There are two types of classifiers that attempt to calculate this probability: discrimi-

native models and generative models.

e Discriminative models directly estimate the posterior class probabilities p(yg|z;)
and then apply decision theory (2.23) to assign each z; to the most likely class. The
most well-known discriminative models include Logistic Regression 2.4.2, Support
Vector Machines (SVMs)2.4.2, perceptrons (see Section 2.5.1), and traditional neural

networks (see Section 2.5.2).

e Generative models approach the calculation of posterior class probabilities differ-
ently. They first determine the class-conditional probability densities p(z;|yx) for
each class y; and then the prior probabilities p(yx). Using Bayes’ rule, the posterior

probability is calculated as follows:

(@ilyr)p(yr) _ p(xilye)p(yr)
p(zi) 22 P(ilyr)p(yk)

p
p(yklz:) =

Alternatively, generative models can calculate the joint probability p(x;, yx) and then
obtain the posterior probability by normalizing. Common generative models include
Naive Bayes classifiers, Bayesian Networks, and Hidden Markov Models (HMMs).

It is evident that generative models not only learn a decision boundary, as discriminative
models do, but also the underlying distribution of each class. The choice between the two
categories depends on the specific task and application, though discriminative models are
generally more popular. Logistic Regression and SVMs, in particular, are widely used.

Logistic Regression is a linear model which, in a binary classification problem, assumes
p(y1]x) can be expressed as a logistic sigmoid function applied to a linear combination of
the feature vector x:

T

p(y1lr) = o(w x)

This linear function w '

x serves as the decision boundary (discriminant function) of
the classifier, meaning that points on one side of this hyperplane belong to class y; and
those on the other side to class y. Naturally, p(y2|x) = 1 —p(y1|x). The parameters of the
model, the components of vector w, are computed using Maximum Likelihood Estimation
and the Cross Entropy Loss function (see Section 2.3.1).

Support Vector Machines (SVMs) are also linear models that seek to determine the
weight vector of the linear discriminant function g(z) = w'x. The objective of SVMs is to
find the weights that maximize the margin between the hyperplane defined by the linear
function and the training samples of the two classes, which is given by:

9()

[[wli

Generally, the larger the margin, the better the generalization capability of the classifier.
SVMs can also address the problem of non-linearly separable data by transforming the
samples into a space where they become linearly separable through a transformation ¢. In
this case, z = ¢(x) is the transformed vector, and the linear discriminant function becomes
g(z) =w'z [57, 60].

Logistic Regression

Logistic Regression (LR) is a simple yet effective classification algorithm that is widely
used for binary classification tasks. The primary goal is to predict the probability that a
given input vector x € R”™ belongs to a particular class, resulting in a probability value
between 0 and 1.

Consider a binary classification scenario with input vectors x; and corresponding labels
y; € {0,1}. Logistic Regression models the probability of the positive class using the logistic

sigmoid function applied to a linear combination of the input features:

1
o(z) = 1+4+e%

For a given input vector x, the model’s prediction is defined as:

1
hw(x) =o(w'x) = —————
W) = olws) = -
To fit the model to the training data, we minimize the following loss function, which

combines the regularization term with the logistic loss:

Al €3t 1+ (-t)

Here, C is a regularization parameter that controls the trade-off between fitting the
training data and keeping the model parameters small, and b is the bias term. Logistic
Regression is computationally efficient and provides a good baseline for many Natural
Language Processing (NLP) tasks. However, it is limited by its linear decision boundary,
making it unsuitable for problems where the classes are not linearly separable. A common
extension for multi-class classification involves using the One-vs-One (OvO) approach,

where binary classifiers are trained for each pair of classes.

Support Vector Machines (SVMs)

In many machine learning applications, the feature vectors of different classes are not
linearly separable in their original space. This means it can be challenging to find a
hyperplane in the input feature space that serves as a classification boundary for the data
belonging to each class in the training set. To overcome this, the original finite-dimensional
space can be mapped into a higher-dimensional space, making separation easier in that
space [64].

SVMs seek to find maximum-margin hyperplanes to create these classification bound-

aries between the vectors of each class, as depicted in Figure 2.3. Let the training set

consist of IV input vectors x1,...,xy with corresponding target values y1,...,yn where
y; € {—1,1}.

)) @ class A sample
Optimal . Py [l class B sample
Hyperplane \\
W.X+b=0 o @ © °
. Q
o
\\ \ @]
\\ .
\\\ . - []
"
. “a Support Vector
m " om g s BN
~ Y
(] (] \\ \s.
o NTH
m) < - >
O B N
H, Hyperplane

Figure 2.3. Ezample of binary classification using SVM, showing the mazimum-margin
hyperplane and support vectors.

We are given [training examples (x;,;), i = 1, ..., 1, where each example x; € R?, and
a class label with one of two values y; € {—1,1}. All hyperplanes in R? are parameterized
by a vector w and a constant b, expressed by the equation:
w-Xx+b=0

Given such a hyperplane (w,b) that separates the data, this defines the function:

f(x) =sign(w - x+b)

which correctly classifies the training data and other unseen data. The canonical hy-
perplane is defined as one that separates the data from the hyperplane by a "distance" of

at least 1. Therefore, we consider those that satisfy:

yi(xi-w+b)>1 Vi

To calculate the geometric distance from the hyperplane to a data point, we normalize

by the magnitude of w. This distance is simply:

yi(x; - w+b) 1
[[w]| —]|

d((W, b), Xi) =

Intuitively, we want the hyperplane that maximizes the geometric distance to the closest
data points. From the equation, we see this is accomplished by minimizing ||w|| subject to
the distance constraints. This is typically achieved using Lagrange multipliers. We define

the matrix (H);; = yy;(x; - x;), and introduce more compact notation. The problem

transforms into:

1
min W(a) = —a’1 + §aTHa
«

subject to:

0<a<(C1

where « is the vector of [non-negative Lagrange multipliers to be determined, and C is a
regularization term that penalizes misclassified instances. From the derivation, the optimal

hyperplane can be written as:

W = E QY X
i

The solution to the constrained equation system (2.34, 2.35, 2.36) is given by the
Lagrange multipliers [57].

When a dataset is not linearly separable, it does not mean there isn’t another way to
separate the data. To address this, we define a mapping z = ¢(x) that transforms the d-
dimensional input vector x into a higher d’-dimensional vector z. In the new optimization

problem, we replace all occurrences of x with ¢(x). The problem becomes:

1
min W(a) = —a’1 + 504TH04
«

with (H)i; = yiyj(¢(x;) - #(x;)). Equation (2.13) becomes:

W= Z aiyip(Xi)

Whenever ¢(x,) appears, it is always in a dot product with another ¢(xp). If we know
the kernel function K (x4,Xp) = ¢(Xa) - ¢(Xp), the matrix in our optimization problem

becomes (H);j = y;y; K (x;,x;). Our classifier then becomes:

f(x) = sign (Z oy K (x4, %) + b)

We can extend the binary SVMs to multi-class problems by training separate binary
classifiers for each pair of classes in the training data and selecting the one with the highest

confidence.

2.5 Deep Learning Models

As previously mentioned, every model or learning technique requires input feature
vectors. The process of feature extraction is dependent on the specific problem, making
it challenging to identify the most suitable representations that will facilitate solving the
learning problem, whether it is supervised or unsupervised. One approach is to utilize

machine learning not only to train the computer to map feature vectors to the desired

output but also to learn the representation itself. In this context, deep learning provides
a solution for extracting high-level features from raw data by introducing representations
that are defined in terms of simpler ones. This enables the computer to build complex
concepts from basic ones. Deep learning, a subset of machine learning, is inspired by the
structure and function of the human brain and the way humans think [1].

The core idea of deep learning is the use of multiple elemental non-linear computing
units, known as artificial neurons, arranged in networks. The interconnections of these
networks resemble the way neurons are interconnected in the human brain. These networks
are referred to as neural networks, and they are trained through successive presentations
of training patterns.

Interest in neural networks dates back to the development of learning machines called
perceptrons during the 1950s and 1960s, which mimicked the way brain neurons function.
Mathematical proofs demonstrated that perceptrons could converge to a solution after a
finite number of steps when trained with linearly separable data. The solution involved
finding the parameters (coefficients) of hyperplanes that could separate the data into classes
representing the training samples.

However, perceptrons struggled with non-linearly separable data, prompting the idea
of using multilayer perceptrons. These could potentially learn to separate data with more
complex relationships. The true breakthrough was that these networks could now learn
representations more suitable for recognizing the input data. Each layer of the network
refines the representations to more abstract levels, a process known as deep learning, which
is particularly effective with large datasets.

The effective training method that enables the learning of these representations is called
backpropagation. While it lacks the mathematical rigor in guaranteeing convergence to a
solution, as seen with single-layer perceptrons, it has yielded impressive results in pattern
recognition.

Although neural networks are highly autonomous in their training, they still require
human intervention for parameter tuning. Configurable parameters include the number
of layers, the number of neurons per layer, and other problem-specific coefficients. Deep
learning does not always provide the optimal solution; many applications are better suited
to traditional methods. However, deep learning has proven extremely valuable in appli-
cations that have been challenging for other methods. It has enabled solutions to many
problems across various domains, including speech recognition, natural language processing
and understanding, and genetics [2].

Next, we will delve into how perceptrons function and how they are combined to create

neural networks.

2.5.1 The Perceptron

Biological Neurons vs Perceptrons

The perceptron is a mathematical model designed to mimic the functionality of a

biological neuron.

Impulses carried u;
toward cell bodv @
A

bendiites V/ Branches of axon \’I_ ﬁ 1
\{\CJ” }}’1‘ Axon f’b uﬂﬁ."a.s fneute >" 4 a".
Nucleus) "\f\tﬁi:jﬁ:ﬁﬁ :-;g "
X :

T T
W, Sum I Activation
b

Outputs

Impulses carried

Call body away from cell bedy Function

Figure 2.4. A biological neuron compared to a perceptron

e In biological neurons, dendrites receive electrical signals from the axons of other
neurons. In perceptrons, these signals are represented as numerical values. These

values z;, 1 = 1,2,...,n, form the elements of an n-dimensional input vector x.

e At the synapses, where dendrites connect with axons, the strength of the electrical
signals is modulated. In perceptrons, this modulation is modeled by multiplying each

input value x; by a weight w;.

e A biological neuron fires an output signal if the combined strength of the input signals
exceeds a certain threshold. In perceptrons, this combined strength is represented as
the weighted sum of the input values. The weighted sum can be expressed in three

different forms:

n
W1T1 + Wako + ... + WpTy + Wpy1 = Z WiTi + Wpt1 = WTX + Wp+1
i=1
A step function is then applied to this sum to determine whether the output will be 1
(activated) or -1 (not activated). The output f of the neuron is defined by the following

equation:

1 if wix+ w11 >0
fx) = !

-1 if wa+wn+1 <0

Perceptron in Linear Classification Problems

It is evident that the weighted sum computed in the perceptron corresponds to a linear

boundary (hyperplane) in an n-dimensional space:

WX+ W1 =0

Here, w (also referred to as the weight vector) and x are n-dimensional column vectors,
and w ' x is their inner product. This implies that a single perceptron unit can be employed
to solve a classification problem by learning this linear boundary between linearly separable
pattern classes.

If we add a 1 to the end of every pattern vector, then x = [x1,z9,...,Tp, 1]T and

w = (w1, ws,..., Wy, wn+1]T. Therefore, the classification problem between two linearly

separable pattern classes ¢; and c¢o is to find a set of weights w such that, given an input

vector x, the following property holds:

T. >0 ifxecq

<0 ifx€ecy

In this formulation, x and w are referred to as augmented pattern and weight vectors,
respectively. The solution to this problem is provided by an iterative algorithm, which,
according to the perceptron convergence theorem, will converge to a solution (a set of
weights that define a hyperplane) after a finite number of steps, provided the pattern
classes are linearly separable.

The perceptron training algorithm is straightforward. Let o denote the learning rate,
which defines the steepness of weight vector updates in each iteration. The initial values
of the weight vector, denoted by w(!), are arbitrary. Assuming our dataset consists of N
patterns x;, j = 1,2,..., N, we perform the following for k = 2,3, .. .:

For each pattern vector x; at step k:
1. If x; € ¢; and WTX]‘ <0, let:

2. If xj € cp and WTX]‘ >0, let:

wlb) — wk) ax;

3. Otherwise, let:
wk+D — w®)

The concept behind this algorithm is that if a pattern is misclassified, we adjust the
weight vector to increase the likelihood of correct classification the next time the specific
pattern is presented. If the classification of a pattern is correct, no change is made to the
weight vector. The algorithm converges and terminates at step K when all patterns in our

dataset can be correctly classified using the current weight vector w(%) [2].

2.5.2 Fully Connected Neural Network

To learn complex non-linear functions, architectures that combine multiple artificial
neurons can be developed and implemented. These architectures are known as Multi-Layer
Perceptrons (MLPs). An MLP is a type of feedforward artificial neural network (FFNN)
that consists of at least three layers of nodes: an input layer, one or more hidden layers,
and an output layer. Except for the input nodes, each node is a neuron that employs a non-
linear activation function. The use of multiple layers and non-linear activation functions
distinguishes MLPs from linear perceptrons, enabling them to handle data that is not
linearly separable. The architecture of such a network is presented in Figure 2.5. A deep

neural network has more than one hidden layer.

Each neural network comprises the following layers:

e Input layer: This layer receives the input data and passes information from the
external environment to the network without any additional computation. The nodes

in this layer relay the information to the hidden layer.

e Hidden layer(s): One or more hidden layers preprocess the inputs received from
the previous layer. They extract essential features from the input data. As data

moves through higher hidden layers, more abstract features are constructed.

e Output layer: After preprocessing the data, this layer makes a decision based on

the processed information.

h

aff=1) —— :.r-::in;,nm,q- 1) = a(£)=h{z(0)
. J + i)

Layer 1

(Input)

Layer L

Hidden Layers (Output)

(The number of nodes in
the hidden lavers can be
different from laver to layer)

Figure 2.5. Fully Connected Neural Network [2]

2.5.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a type of artificial neural network where con-

nections between units form a directed cycle, enabling the network to maintain an internal

state that allows for dynamic behavior. Proposed in the 1980s, RNNs can utilize their
internal memory to process and handle arbitrary sequences of inputs, making them suit-
able for tasks such as unsegmented connected handwriting recognition, speech recognition,

natural language processing, and machine translation.

RNNSs are particularly effective with sequential data because each neuron can use its
internal memory to retain information about previous inputs. This means that RNNs have
a memory state that captures information about what has been processed so far. Figure
2.6 shows the architecture of a rolled-up recurrent neural network. An RNN can be thought
of as multiple copies of the same network, each passing a message to its successor. Figure

2.7 illustrates what happens when we unroll the loop.

L

®)
!
A
6

Figure 2.6. A rolled-up RNN where Xy is the input vector containing sequences of char-
acters of a word while hy is the output vector. Source: colah.github.io

Consider a natural language example: "I had washed my house" is different from "I
had my house washed". This difference allows the network to gain a deeper understanding
of language statements. This is important because, when reading a sentence, even humans
pick up the context of each word from the words before or after it. An RNN has loops

that allow information to be carried across neurons while reading the input.

In these diagrams, X; is some input, A is a part of the RNN, and h; is its output.
Essentially, you can feed in language words from the sentence or even characters from a
string as X;, and through the RNN, it will result in h;. The goal is to use h; as output
and compare it to test data (which is usually a small subset of the original data). Then we
obtain error rate information. After comparing the output to the test data, with the error
rate in hand, we use Back Propagation Through Time (BPTT) to backpropagate through
the network and adjust the weights based on the error rate, allowing the network to learn
and improve its performance.

Vanilla RNNs: The RNN first takes xy from the sequence of input and outputs hg
(hidden state). The hidden state hy along with the next input 1 serves as the input for
the next step. Accordingly, hy along with x5 is the input for the next step, and so on. This
means the RNN remembers the context of the input it has already seen while training.

Formally, at each time step ¢, the equations describing the function of the RNN are:

he = fo(Whnhi—1 + Wizt + bp)

colah.github.io

yr = fy(Wynhe + by)

where h; is the hidden state at time step ¢, x; is the input vector at time step ¢, y;
is the output vector at time step ¢, by is the bias for h, b, is the bias for y, and f., fj
are the activation functions for z and h respectively. There are three separate matrices
of weights: Wj, (input-to-hidden weights), Wj, (hidden-to-hidden weights), and Wy,
(hidden-to-output weights).

Long Short-Term Memory (LSTM): RNNs can handle context from the beginning of
the sequence, allowing for more accurate predictions of a word at the end of a sequence.
However, in practice, RNNs are limited to looking back only a few steps. This is why RNNs
need to be used with Long Short-Term Memory (LSTM) units, introduced by Hochreiter
and Schmidhuber [65]. Adding LSTM to the network introduces a memory unit that can
remember context from the very beginning of the input. For example, if a sentence contains
10 words and we want to predict the 11th word, all 10 words are processed by the RNN,
and their weights at each step are saved using LSTM, allowing for accurate prediction
of the 11th word. Vanilla RNNs also face the issue of vanishing and exploding gradients
through BPTT.

A memory cell is used in addition to the hidden layer to pass information that might
not be used immediately but is crucial for prediction. These memory units enable RNNs to
produce more accurate results by retaining the context across inputs. Figure 2.8 illustrates

the repeating module in an LSTM.

N
La) - A

> A

S Sl ol S

Figure 2.7. An unrolled RNN where Xy is the input vector containing sequences of char-
acters of a word while hy is the output vector. Source: colah.github.io

v

v

Given a sequence x1,T9,...,T, ..., Ty of vectors of an input sequence of length n, for
vector xy, with inputs h;_1 and ¢;—1, hy and ¢; are computed as follows:
fi =oc(Wpxy +Usrhi—1 + by)
it = o(Wizy + Uihy—1 + b;)
or = c(Woxs + Ught—1 + bo)
up = tanh(Wyxy + Uyhi—1 + by)
= [t Oc—1+it Ouy

ht = oy ® tanh(c;)

e Forget gate (f;): This gate determines which information should be discarded or

colah.github.io

& ® &
L—F f
o [l A]

| I
& & &)

Figure 2.8. The repeating module in an LSTM. Source: colah.github.io

retained. Information from the previous hidden state h;_1 and the current input x;
is passed through a sigmoid activation function. Values close to 0 indicate forgetting,

while values close to 1 indicate retaining the information.

e Input gate (i¢): The previous hidden state and current input are passed into a
sigmoid function to decide which values will be updated. The hidden state and
current input are also passed to a tanh function to squash values between -1 and 1
(ut¢). The tanh output is then multiplied by the sigmoid output (i; ® u;) to filter the

important information.

e Cell state (¢;): The cell state is updated by pointwise multiplication with the forget
vector, dropping values if they are near 0. The output from the input gate is then

added to update the cell state with relevant new values.

e Output gate (o¢): This gate determines the next hidden state, which contains
information from previous inputs and is used for predictions. The previous hidden
state and current input are passed into a sigmoid function, and the new cell state is
passed to a tanh function. The output is the hidden state, obtained by multiplying
the tanh output by the sigmoid output (o, ©tanh(c;)). The new cell state and hidden

state are carried over to the next time step.

2.5.4 Attention Model

Attention models were initially introduced by Bahdanau et al. [3] for machine trans-
lation and have since become a fundamental concept in neural network research. The
attention mechanism is widely adopted in various applications within Natural Language
Processing (NLP), speech recognition, and computer vision, owing to its effectiveness in
enhancing model performance.

The idea behind attention can be compared to human cognitive systems. For example,
our visual system tends to focus on specific parts of an image, filtering out irrelevant details
to aid perception [66]. Similarly, in many tasks involving language, speech, or vision,
certain parts of the input are more critical than others. For instance, in translation and
summarization tasks, only specific words in the input sequence may be crucial for predicting

the next word. Likewise, in image captioning, particular regions of an image may be more

colah.github.io

relevant for generating the next word in the caption. The attention mechanism allows
models to dynamically focus on important parts of the input, improving task performance.

The concept of attention can be traced back to the regression model proposed by
Nadaraya and Watson in 1964 [3]. Given training data consisting of features and their
corresponding target values, the goal is to predict the target value for a new query instance.
Instead of predicting the simple average of target values, Nadaraya and Watson proposed
a weighted average, where weights reflect the relevance of training instances to the query.
The attention function a(z,x;) assigns weights to instances, encoding their relevance to
the query. This approach ensures that the estimator is consistent and simple, as the
information is contained within the data, not the weights. Modern attention mechanisms
generalize this concept by learning the weighting function.

The first application of the attention model in deep learning was for sequence-to-
sequence tasks by Bahdanau et al. [3]. A sequence-to-sequence model typically comprises
an encoder-decoder architecture, as shown in Figure 2.9. The encoder processes an input
sequence of tokens {x1,xg,...,zp} into fixed-length vectors {hq, ha, ..., hy}. The decoder
then generates an output sequence {y1,y2, ...,y } from these vectors.

Traditional encoder-decoder frameworks face two significant challenges. First, encod-
ing all input information into a single fixed-length vector hAp can lead to information loss,
especially for long sequences [3]. Second, this framework does not model the alignment
between input and output sequences, which is critical for tasks like translation and summa-
rization. In sequence-to-sequence tasks, each output token should be influenced by specific
parts of the input sequence. However, the decoder lacks a mechanism to focus on relevant

input tokens dynamically.

f | "\
X X X \

|II. hl h])
sJ ‘I.J ‘I.l 'l)
s & % &]

L 2 1 | 5y [| %z | % J
(a) 1
—fi—f
t t t
X X, X
(b)

Figure 2.9. Encoder-decoder architecture: (a) traditional (b) with attention model.
Source: [3]

The attention mechanism addresses these issues by allowing the decoder to access the
entire encoded input sequence {hi, ho,...,hr}. It computes attention weights o over the

input sequence to prioritize relevant positions for generating the next output token. The

encoder-decoder architecture with attention is depicted in Figure 2.9. The attention block
learns attention weights «;j;, capturing the relevance between encoder hidden states h;
and decoder hidden states s;j_1. These weights help build a context vector ¢, which the
decoder uses to generate the next output token. This context vector is a weighted sum of
all encoder hidden states, improving alignment and output quality.

The attention model can be viewed as mapping a sequence of keys K to an attention
distribution « according to a query q, where keys are encoder hidden states h; and the query
is the decoder hidden state s;_;. The attention distribution c;; emphasizes keys relevant

to the query. The generalized attention model A works with key-value pairs (K, V) and
query q:

Alg, K, V) = Zp(a(ki, q)) - v;

Here, x is the query, training data points x; are keys, and their labels y; are values. The
alignment function a and distribution function p determine how keys and queries combine
to produce attention weights.

Table 2.1 compares the traditional encoder-decoder architecture with the attention

model. Table 2.2 summarizes various alignment functions used in attention mechanisms.

Function Traditional Encoder-Decoder | Encoder-Decoder with Attention
Encode hi = f(:L’Z, hi—l)]’Li = f(l’z, hi—l)
Context c=hr Cj = ZiTzl aijhi
Attention weights - aij = p(eij)
Alignment - eij = a(sj—1, h;)
Decode sj = f(sj—1,yj-1,¢) sj = f(sj—1,Yj-1,¢))
Generate yj = g(yj,l, S5, c) Yy; = g(yjflv Sj,Cj)

Table 2.1. Encoder-decoder architecture: traditional and with attention model.
Notation: x = (x1,...,x7): input sequence, T': length of input sequence, h;: hidden states
of encoder, c: context vector, a;j: attention weights over input, s;: decoder hidden state,
y;: output token, f,qg: non-linear functions, a: alignment function, p: distribution
function.

2.5.5 Transformers

Transformers, introduced by Vaswani et al. [4], have revolutionized deep learning, par-
ticularly in natural language processing (NLP), computer vision (CV), and speech process-
ing. Initially designed for sequence-to-sequence tasks in machine translation, Transformers
have since demonstrated state-of-the-art performance across various domains. The adop-
tion of Transformer-based pre-trained models (PTMs) has solidified their status as the
preferred architecture in NLP, and their applications have extended to CV, audio process-
ing, and other fields such as chemistry and life sciences.

The original Transformer model [4] is a sequence-to-sequence architecture comprising

an encoder and a decoder, each consisting of multiple identical layers. Each encoder layer

Function Equation

similarity a(ki,q) = sim(k;, q)
dot product a(ki,q) = q ks
T1..
scaled dot product a(ki,q) = qu%
general a(ki,q) = ¢" Wk;
biased general a(ki,q) = ki(Wq+b)
activated general a(ki,q) = act(¢" Wk; +b)
generalized kernel a(ki,q) = o(q)T o(k;)
concat a(ki,q) = wlimp(W{q, k;] + b)
additive a(ki, q) = wlimp(Wiq + Wak; + b)
deep a(ki,q) = wlimp(EL_1 + by)
E(l) = act(WiEj—1 + by)
E(l) = aCt(Wlki + Woq) + b1
location-based a(ki,q) = a(q)
feature-based a(k;,q) = wlimp(W1¢1(K) + Wapa(K) +b)

Table 2.2. Summary of Alignment Functions.
Notation: a(ki,q): alignment function for query q and key k;, sim: similarity functions
such as cosine, dy: length of input, W, wimp, Wo, Wi, Wa: trainable parameters, b:
trainable bias term, act: activation function.

includes a multi-head self-attention mechanism and a position-wise feed-forward network
(FFN), with residual connections [67] and Layer Normalization [68| applied around each
module to enable deeper networks. The decoder layers, in addition to self-attention and
FFN modules, incorporate cross-attention modules to focus on relevant parts of the input

sequence. This architectural design is illustrated in Figure 2.10.

Attention Mechanisms

The Transformer utilizes an attention mechanism based on the Query-Key-Value (QKV)
model. Given matrix representations of queries Q € RV*Px keys K € RM*Pk and values
V € RM*Do the scaled dot-product attention is defined as:

. QKT
Attention(Q, K, V') = softmax v
V Dy,

where N and M are the lengths of the queries and keys (or values), Dy and D, are
the dimensions of the keys (or queries) and values, and the softmax function is applied
row-wise. The scaling factor /D), mitigates the vanishing gradient problem associated
with the softmax function.

Transformers use multi-head attention, projecting the original queries, keys, and values
into multiple subspaces using different learned projections, enabling the model to focus on
different parts of the input sequence. The multi-head attention mechanism is described
by:

MultiHeadAttn(Q, K, V) = Concat(heady, . .., head) W©°

Chutput Probahilities

Lineas & Sofmax

Addl ke Nerm -—
Position-wise
FFN
Add & Nom =ty
- Add & Norm
3 {
Muilti-Head
Position-wise Algnlion xL
FFN
S —
Ll o Asa&Nom Add & Noms .ml
} t
Multi-Head [Masked
R ooy
ttt Lt
A
Positional Encodings —e-{1 (e Pusitianal Encodings
Taken Embedding Tisken Embeding
Inurs { Shifteid) Oupats

Figure 2.10. Ouverview of vanilla Transformer architecture. Source: [/]

where each head is computed as:

head; = Attention(QW<, KW/, vw})

This process is illustrated in Figure 2.11.

Scaled Dot-Product Attention Multi-Head Attention

(2.59)

Figure 2.11. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists

of several attention layers running in parallel. Source: [}/

The different types of attention mechanisms used in Transformers are as follows:

e Self-attention

~—Q=K=V=X
— X is the output of the previous layer.

o Masked Self-attention

— Queries at each position attend only to previous positions.

— Prevents information leakage.
e Cross-attention

— Queries are derived from the decoder layer.

— Keys and values come from the encoder.

Position-wise Feed-Forward Networks (FFN)

The position-wise FFN applies a fully connected feed-forward network to each position

separately and identically:

FFN(H') = ReLU(H'W} + b1)Ws + by

where H' is the input, and W, € RP=*Ps W, € RPr*Pm b € RPf, and by € RPm
are trainable parameters. Typically, Dy is set to be larger than D,,.

2.5.6 Residual Connections and Normalization

To facilitate the training of deep models, residual connections [67] are used around each

sublayer, followed by Layer Normalization [68]:

H' = LayerNorm(SelfAttention(X) + X)

H = LayerNorm(FFN(H') + H')

Positional Encoding

Transformers lack a mechanism to capture positional information since they do not
inherently incorporate recurrence or convolution. Positional encodings are added to the

input embeddings to provide information about the token positions:

pos)

PE (pos,2i) = in (W

PE(pos,Qi-l—l) = COS (W)
where pos is the token position and i is the dimension. These encodings are added to
the input embeddings to retain the positional context.
Table 2.3 presents the computational complexity and parameter counts of the core

Transformer components.

‘ Module ‘ Complexity ‘ Parameters ‘

Self-attention O(T? - D) 4D?
Position-wise FFN | O(T - D?) 8D?

Table 2.3. Complezity and Parameter Counts of Transformer Modules.
Notation: T 1is the sequence length, D is the hidden dimension.

3.1 Introduction

Natural languages have evolved in humans through use and repetition without conscious
planning or premeditation, examples being English, Greek, and Latin. These languages
differ from constructed and formal languages such as programming and logic modeling
languages.

Natural Language Processing (NLP) is a subfield of linguistics, computer science, and
artificial intelligence focused on the interactions between computers and human language.
This definition is evolving due to the application of NLP in programming languages, source
code modeling, and generation [69)].

Natural language is unique because it is a discrete, symbolic, and categorical system
specifically constructed to convey meaning. Unlike vision or other machine learning tasks
where input data follow underlying physical laws, natural language consists of words that
are symbols for extra-linguistic entities, where the word is a signifier mapping to a signified
(idea or thing).

The hierarchical levels of language that NLP examines include:

e Phonology: This level deals with the interpretation of speech sounds within and
across words. There are three types of rules used in phonological analysis: phonetic
rules for sounds within words, phonemic rules for pronunciation variations when
words are spoken together, and prosodic rules for stress and intonation fluctuations

across a sentence.

e Morphology: This level handles the componential nature of words composed of

morphemes, the smallest units of meaning.

e Lexical: At this level, both humans and NLP systems interpret the meaning of

individual words, assigning part-of-speech tags based on context.
e Syntactic: This level analyzes the grammatical structure of sentences.

e Semantic: Semantic processing determines possible meanings by focusing on inter-
actions among word-level meanings in a sentence, including the disambiguation of

words with multiple senses.

e Discourse: This level works with text units longer than a sentence, focusing on text

properties that convey meaning by connecting sentences.

e Pragmatic: This level explains how extra meaning is inferred from text without
being explicitly encoded, requiring world knowledge including understanding of in-

tentions, plans, and goals.

3.2 Applications

NLP provides theories and implementations for various applications. Any application

utilizing text can benefit from NLP. Common applications include:

e Information Retrieval and Web Search: The science of searching for documents,

information within documents, and metadata, as well as searching databases and the

World Wide Web.

e Information Extraction (IE): The recognition, tagging, and extraction of critical
information elements, such as persons, companies, locations, and organizations, from

large text collections.

e Text Summarization: Distilling essential information from a source to produce an

abridged version.

e Question Answering (QA): Extracting or generating answers from documents in

response to questions.

e Machine Translation (MT): Using computer software to translate text or speech

from one language to another.

e Speech Recognition and Synthesis: Extracting a textual representation from a

spoken utterance.
e Text Generation: Generating sentences from "keywords".

e Natural Language Understanding and Generation (NLU, NLG): Converting

a computer-based representation into a natural language representation.

e Natural Language Inference (NLI): Determining whether a "hypothesis" is true

(entailment), false (contradiction), or undetermined (neutral) given a "premise".

3.3 Word Representation

The performance of any machine learning model is significantly dependent on input
representation. In NLP, the input comprises natural language and its components, words.
In English alone, there are an estimated 13 million words, presenting a vast array of possible
inputs for a machine learning model. Ideally, word representation should encapsulate the
word’s meaning, encode properties such as similarity and difference between words, and

distinguish polysemous words, which have different meanings in different contexts.

There are two main ways that linguists conceptualize meaning: "Denotational Seman-
tics" and "Distributional Semantics." Denotational semantics represent an idea as a symbol
(e.g., a word or a one-hot vector), while distributional semantics represent the meaning of

a word based on its typical context.

3.3.1 Denotational Representation

In this category, words are mapped to symbols, either scalars or vectors.

Vocabulary IDs

Assume we have a vocabulary V for a given task, containing all the words in the
training, development, and test datasets. The simplest approach is to assign each word in
the vocabulary a unique ID. For example, for the vocabulary V' = {I, love, cats}, we can

define the following mapping:
wr =1, Wigve = 2, Weats = 3

This approach does not capture the word’s meaning, nor does it address the notions of sim-
ilarity and difference between words or the ambiguity problem. Additionally, this method
is computationally expensive as it requires |V| different IDs, potentially reaching up to 13

million. Finally, this approach offers no scope for further improvement.

One-Hot Encoding

One-hot encoding is similar to vocabulary IDs, where each word is represented by a
vector. The main difference is the dimensionality augmentation of the subspace to allow
further improvements through compression techniques. In one-hot encoding, each word is

[x1

represented as a RIVI*1 vector with all zeros and a single one at the index corresponding

to that word in a sorted list of the vocabulary. For example, word vectors in this encoding

would be:
1 0 0
wr= 0], Wove= [1|, Weats= [0
0 0 1

In this representation, each word is treated as an independent symbol. This method does
not inherently provide a notion of similarity or difference between words, nor does it solve
the ambiguity problem. For instance:

=0

T _ .7
WeatWdogs = Wsiamese Weat

The resulting matrix representing this method will have dimensions |V| x |V| and appear

as follows:
Wi 1 00
Wiove 0 10
0 01

Weats

Given that this matrix is sparse, various compression techniques such as Singular Value
Decomposition (SVD) and Non-negative Matrix Factorization (NMF) can be applied, but

the final representation remains a form of "Denotational Semantics."

3.3.2 Distributional Semantics

As the British linguist J.R. Firth famously stated, "You shall know a word by the
company it keeps," distributional semantics studies words based on their context. Word
vectors in distributional semantics can be categorized into sparse and dense representations.

Dense word vectors are commonly known as word embeddings.

Sparse Word Vectors

Term Frequency—Inverse Document Frequency (TF-IDF) Representation TF-
IDF is a statistical measure used to evaluate the importance of a word ¢ in a document
d. A document can be defined as a batch of words. The TF-IDF value combines two
terms: term frequency (tf) and inverse document frequency (idf). The tf term indicates
that frequently occurring words are more significant, while the idf term suggests that words
appearing too frequently are less important. Thus, the TF-IDF product balances these two

terms.

The term frequency is given by:
tf; g = count(t,d) or tf; 4 = log;y(count(t,d) + 1)

The inverse document frequency is defined as:

) N
ldft — loglo (dft>

where NN is the total number of documents, and df; is the number of documents in which
term ¢ appears.

The TF-IDF weighted value w; 4 and the corresponding word vector is the product of
these two terms:

Wt,d = tft,d X ldft

Pointwise Mutual Information (PMI) Representation PMI, proposed by Fano

[70], measures the association between two events x and y:

P(z,y)
(

P(z)

I(x,y) = log, m

The PMI between a target word w and a context word c is defined as:

PMI(w, ¢) = log, 13](31(;;)70()0)

Positive PMI (PPMI) is used to replace negative PMI values with zero:

PPMI(w, ¢) = max (logg]m, 0)

Given |W| words and |C| contexts, the PPMI matrix is:

PPMI,; = max <10g2 Pij ,0)
DixPxj

Dense Word Vectors

Sparse vector representations, while informative, are computationally expensive and
often less effective than dense representations. Dense vectors, or word embeddings, typi-
cally have dimensionalities ranging from 300 to 1200. They are more efficient and tend to

perform better in models.

Word2Vec Word2Vec, developed by Mikolov et al. [5], is a two-layer neural network that
learns vector representations of words by predicting word contexts. It has two architectures:

Continuous Bag of Words (CBOW) and Skip-Gram.

b, S A
A N i T
4 N
e
El
CROW Skipgram

Figure 3.1. The CBOW architecture predicts the current word based on the context,
while Skip-gram predicts surrounding words given the current word. Source: [5]

GloVe Embeddings GloVe, proposed by Pennington et al. [71], is an unsupervised
learning algorithm for obtaining vector representations by aggregating global word-word
co-occurrence statistics from a corpus. The training objective is to learn word vectors such

that their dot product equals the logarithm of the words’ probability of co-occurrence.

Contextual Embeddings Static embeddings like Word2Vec and GloVe cannot handle
polysemous words effectively. Contextual embeddings, such as ELMo [72] and BERT [7],
address this by learning dynamic representations where the vector for each word changes

depending on its context.

3.4 Language Models

The goal of a Language Model (LM) is to estimate the likelihood of a sequence of

" is more probable

words. For instance, it should recognize that the sentence "I love cats.'
than "Cats book ice-cream," based on both syntax and semantics. Formally, a language

model calculates the probability of a sequence of words as follows:
P(wy,wa, ..., wy)

This probability can be decomposed as:

n

P(wl,wg,...,wn) = HP(’U)Z ’ wi_l,wi_%...,wl) = P(’Ll)l)P(’U)Q ‘ wl)P(wn ‘ wl,...,wn_l)
=1

3.4.1 Traditional Language Models

Calculating the probability of a sentence using the above formula, known as an N-
Gram LM, can be computationally intensive. To make this process more efficient, certain

assumptions are made during training.

The simplest assumption is the unigram model, where word occurrences are considered

completely independent:
n

P(wy,ws, ..., w,) = HP(wi)
i=1
For training a unigram model with a corpus C containing |N| words, the probability of

each word w; is given by:
count(w;)
P (wz) = ——
[NV
where count(w;) is the number of occurrences of word wj; in the training corpus. However,

this model does not account for the dependency between words.

To develop a more accurate LM, we utilize Bayesian probability theory and the Markov
assumption, which states that a word depends only on a fixed number of preceding words.

This leads to Bigram and Trigram models.
A Bigram LM assumes each word depends only on the previous word:

n

Pwy,wa, ... ,w,) = Hp<wi | wi—1)
i=2

The training formula for a Bigram model is:

count(w;, w;—1)

Y wee count (w; 1, w)

P(wi ‘ wi_l) =

A Trigram LM extends this by considering the two preceding words:

n

P(wy,wy, ... wy) = [[P(wi | wi—1,w;)
i=3

The training formula for a Trigram model is:

count(w;, wi—1, w;—2)

Y wec count(w; 2, w; 1, w)

P(w; | wi—1,wi—2) =

The choice of n in n-gram models typically depends on the amount of available training
data. Trigram models, which use a two-word history, are common. However, higher-order

n-grams can be used if sufficient training data is available.

3.4.2 Neural Language Models

Non-linear neural network models enable conditioning on increasingly large context
sizes with only a linear increase in the number of parameters. A notable example is the
neural probabilistic language model popularized by [6]. This model uses vector represen-
tations of a word window of n previous words, looked up in a table C', known as word
embeddings. These word embeddings, C'(w) € R% are concatenated and fed into a hid-
den layer, whose output is provided to a softmax layer, as shown in Figure 3.2. The

mathematical formulation of this neural language model is as follows:

x = [C(wy); C(wa);...;C(wy)]
g = P(w; | wi.x) = LM (wy.;;) = softmax(hWs + bs)
h = g(xW1 + b1)
x = [C(wy); C(w2);...;C(wy)]
C(w) = Elw]

where w; € V, E € RIVIXdw 1y, ¢ Rvdwxdnia p, ¢ Rinia Wy € REniaXIVI py e RIVI v
is a finite vocabulary. The vocabulary size |V| ranges between 1,000 and 1,000,000 words,
with the common size being around 70,000 unique words. Feedforward neural networks

have since been replaced with recurrent neural networks [73] for language modeling.

3.5 Embeddings from Language Models (ELMo)

ELMo embeddings [?] are deep contextualized word representations that provide high-
quality language modeling by capturing complex characteristics of word use and adjusting
them in various linguistic contexts. These vectors are derived from a bi-directional LSTM
trained with a coupled language model (LM) objective on a large text corpus. ELMo
representations are functions of all internal layers of the bi-directional language model.
However, the weighting of the ELMo embeddings needs careful tuning for each specific

task, posing some limitations despite their effectiveness.

ik st = Plwy f | comdenti

anfero
[maw - - CI

sl | G pulalEsn BeTe

! tanh L

3] ’ 'ﬁ--—-tj

e, Maris -
sharcd pararrien
e —

i
. [N

.
T T "'
[ose] .
Takle .
[T
in i’

relex far Wy gei Irakms T s 1 el Tor W

Figure 3.2. A feed-forward neural network language model. Source: [6]

3.6 Bidirectional Encoder Representations from Transform-
ers (BERT)

BERT [7] proposed by J. Devlin et al. is a novel approach to incorporate bidirection-
ality in a single Transformer model. Direct approaches to incorporating bidirectionality
in Transformer models are challenging because they allow words to see themselves in the
context from multiple layers, making it impossible to use as a Language Model. Tradition-
ally, only unidirectional encoders—either left-right or right-left models—could be trained.
However, bidirectional models, which could see the complete sequence context, are inher-
ently more powerful than unidirectional models or concatenations of two unidirectional
models. To address this, the authors trained their model on two unsupervised prediction
tasks:

Masked Language Model: To overcome the challenges of applying bidirectionality
in Transformers, [7] proposed masking random tokens in the sequence. The Transformer
is trained to predict only the masked words while being able to view the whole sequence.
WordPiece Tokenization generates the sequence of tokens, where rare words are split into
sub-tokens. Then, 15% of the WordPiece Tokens are masked. The masking approach is as

follows:
e Replace the word with a [MASK] token 80% of the time.
e Replace the word with another random word 10% of the time.
e Keep the word as it is 10% of the time.

Predicting only 15% of the words instead of all words makes BERT slower to converge.
However, BERT showed immediate improvements in absolute accuracy while converging
slightly slower than traditional unidirectional models.

Next Sentence Prediction: This task involves predicting whether the first sequence

immediately precedes the next. This helps the Transformer perform better on tasks such as

question-answering and natural language inference, which involve understanding relation-
ships between input sequences. The dataset for training had a balanced 50/50 distribution
created by choosing actual pairs of neighboring sentences for positive examples and a ran-

dom second sentence for negative examples. The input sequence for this task is:
|[CLS| < SentenceA > [SEP| < SentenceB > [SEP]

where sentences A and B are two sentences after performing the masking operations. The
|CLS] token is used for obtaining a fixed vector representation for classification, and [SEP)|
separates the two input sequences. This method achieved an impressive accuracy of 97-98%
in the next sentence prediction task.

Pre-Training Procedure: The authors used the BooksCorpus and English Wikipedia
for pretraining data, with two variations: BERT-BASE (12 layers) and BERT-LARGE (24
layers). The maximum input sequence length is 512 tokens. A dropout value of 0.1 is
used for regularization. GELU (Gaussian Error Linear Units) is used instead of ReLU for
activation functions, providing improvements. Training was performed on TPUs: BERT-
BASE on 16 TPU chips for four days and BERT-LARGE on 64 TPU chips for four days.

Fine-Tuning Procedure: The pre-trained BERT can be fine-tuned on a relatively
small dataset, requiring less processing power, as shown in Figure 3.3. BERT improved
upon the previous state-of-the-art in tasks such as natural language inference, question
answering, semantic similarity, and linguistic acceptability. The tasks can be broadly
divided into:

e Single Sentence Classification Tasks: Performed by adding layers on the [CLS]| token
and passing the input sequence preceded by the [CLS| token.

e Sentence Pair Classification Tasks: The two sentences are passed to BERT after
being separated by the [SEP| token. Classification is performed by adding layers to
the [CLS]| token.

e Question Answering Tasks
e Single Sentence Tagging Tasks

Two multilingual BERT models (uncased and cased) for over 102 languages were also
released. Furthermore, OpenAl released GPT2 [74], which is essentially BERT trained as
a language model on a considerable amount of data.

Recent advancements have continued to build on BERT’s architecture. For instance,
RoBERTa [75] optimizes the pre-training process by training with more data and longer
sequences, and ELECTRA [76] introduces a novel pre-training task that trains the model to
distinguish between real and fake tokens generated by another model, making the training
more efficient. Moreover, ALBERT [77] reduces the number of parameters significantly by
sharing parameters across layers and decomposing the embedding matrix, which improves
training speed and lowers memory consumption without sacrificing performance.

Mathematical Notation: Attention is a core component of Transformers, consisting

of several layers, each containing multiple attention heads. Fach attention head gathers

StaBnd Span \'.

FE) CAEE- G

Masked Sontence A Masaed Sentence B 1 | Queston Parageaph
\ = _."I \ * '}
NG Uriabeled Senience A snd B Pais e N \ Qussson Anpat Pas ,./
Pre-training Fine-Tuning

Figure 3.3. Pre-training and fine-tuning procedures for BERT. Source: [7]

relevant information from the input vectors. A vector is updated by vector transformations,
attention weights, and a summation of vectors. Mathematically, attention computes each
output vector y; € R? from the corresponding pre-update vector §; € R? and a sequence

of input vectors X = {x1,...,2,} C R%

n
yi= | D aigoley) | Wo
j=1

q(Gi)k(z;) "
«; ;= softmax, =" 1R
i, z;€X (\/CTO
where «; ; is the attention weight assigned to the token z; for computing y;, and ¢(-),

k(-), and v(-) are the query, key, and value transformations, respectively.

Q(gz) = ngQ + bQ (WQ c Rdxdo’ bQ c Rdo)
k(zj) := z;Wgk + b <WK e R p, e Rdo)

v(x;) = z;Wy + by (Wv € R b, ¢ Rdo)

Attention gathers value vectors v(z;) based on attention weights and then applies
matrix multiplication W € R%*?. Boldface letters such as 2 denote row (not column)
vectors, following the notations in Vaswani et al.. In self-attention, the input vectors X
and the pre-update vector g; are previous layer’s output representations. In source-target
attention, X corresponds to the encoder representations, and vector g; (and updated vector

y;) corresponds to the vector of the i-th input token of the decoder.

3.7 GLUE Benchmark

For natural language understanding (NLU) technology to be maximally useful, it must
process language in a way that is not exclusive to a single task, genre, or dataset. The
General Language Understanding Evaluation (GLUE) benchmark [8] is a collection of tools

for evaluating model performance across a diverse set of NLU tasks. The GLUE benchmark

includes the following tasks and datasets:

1. Single-Sentence Task

e CoLA: Corpus of Linguistic Acceptability [37]

e SST-2: Stanford Sentiment Treebank [36]

2. Similarity and Paraphrase Tasks

e MRPC: Microsoft Research Paraphrase Corpus [35]

e QQP: Quora Question Pairs

e STS-B: Semantic Textual Similarity Benchmark 78|

3. Inference Tasks

MNLI: Multi-Genre Natural Language Inference [33]

o RTE: Recognizing Textual Entailment

WNLI: Winograd Natural Language Inference [38]

QNLI: Question-answering Natural Language Inference [34]

Corpus | Train Testi Task Mieerics Damain
Single-Senlence Tasks
Coll.A B.5% Ik ascceptability Watthenrs com TS
S5T:2 Ly L.Ek SOOTIITeEER . [o L L]
Similasily and Parsphrise Tasks
MEFC i.7E I.'k pamphrase Tl B | TS
5T=-B T 4K semence similenily Peamson'Speansan oo T,
P I Ak paraphra: aedFl sonzial 1A quetSons
Irderence Tasis
8 Jot | 103k Dl ML moilchel s Smmmolcheal ace. mee.
LI 05k Fak Qa™L T Wikipodia
KT 2.5k ik AL acc. nws, Wikipedia
WL HES! 46 cosfeenoa™L AL, Tiction boaks

Figure 3.4. Task descriptions and statistics. All tasks are single sentence or sentence
pair classification, except STS-B, which is a regression task. MNLI has three classes; all
other classification tasks have two. Test sets shown in bold use labels that have never been
made public in any form. Source: [8]

3.7.1 CoLA

The Corpus of Linguistic Acceptability [37] consists of English acceptability judgments

drawn from books and journal articles on linguistic theory. Each example is a sequence of

words annotated with whether it is a grammatical English sentence. Matthew’s correlation

coefficient is used as the evaluation metric, which evaluates performance on unbalanced

binary classification and ranges from -1 to 1, with 0 being the performance of uninformed

guessing.

3.7.2 SST-2

The Stanford Sentiment Treebank [36] consists of sentences from movie reviews with
human annotations of their sentiment. The task is to predict the sentiment of a given
sentence. GLUE uses the two-way (positive/negative) class split and only sentence-level
labels.

3.7.3 MRPC

The Microsoft Research Paraphrase Corpus [35] is a corpus of sentence pairs auto-
matically extracted from online news sources, with human annotations for whether the
sentences in the pair are semantically equivalent. Because the classes are imbalanced (68

percent positive), GLUE reports both accuracy and F1 score.

3.7.4 QQP

The Quora Question Pairs dataset is a collection of question pairs from the community
question-answering website Quora. The task is to determine whether a pair of questions
are semantically equivalent. The class distribution in QQP is unbalanced (63 percent

negative), so GLUE reports both accuracy and F1 score.

3.7.5 STS-B

The Semantic Textual Similarity Benchmark [78] is a collection of sentence pairs drawn
from news headlines, video and image captions, and natural language inference data. Each
pair is human-annotated with a similarity score from 1 to 5; the task predicts these scores.

GLUE evaluates using Pearson and Spearman correlation coefficients.

3.7.6 MNLI

The Multi-Genre Natural Language Inference Corpus [33] is a crowdsourced collection
of sentence pairs with textual entailment annotations. Given a premise sentence and a
hypothesis sentence, the task is to predict whether the premise entails the hypothesis (en-
tailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise
sentences are gathered from ten sources, including transcribed speech, fiction, and govern-

ment reports.

3.7.7 QNLI

The Stanford Question Answering Natural Language Inference Dataset [34] is a question-
answering dataset consisting of question-paragraph pairs, where one of the sentences in
the paragraph (drawn from Wikipedia) contains the answer to the corresponding question.
GLUE converts the task into sentence pair classification by forming a pair between each
question and each sentence in the corresponding context and filtering out pairs with low
lexical overlap between the question and the context sentence. The task is to determine

whether the context sentence contains the answer to the question.

3.7.8 RTE

The Recognizing Textual Entailment datasets come from a series of annual textual en-
tailment challenges. Examples are constructed based on news and Wikipedia text. GLUE

converts all datasets to a two-class split.

3.7.9 WNLI

The Winograd Natural Language Inference Schema Challenge [38] is a reading com-
prehension task in which a system must read a sentence with a pronoun and select the
referent of that pronoun from a list of choices. The examples are manually constructed to
foil simple statistical methods: each one is contingent on contextual information provided
by a single word or phrase in the sentence. GLUE constructs sentence pairs by replacing
the ambiguous pronoun with each possible referent to convert the problem into sentence
pair classification. The task is to predict if the original sentence entails the sentence with

the pronoun substituted.

4.1 Introduction

Transformers have revolutionized the field of Natural Language Processing (NLP),
achieving remarkable performance across a variety of tasks. Despite their success, training
these models is computationally intensive, and they often contain millions of parameters.
The base BERT model, for instance, has 110 million parameters, but more recent models
like GPT-4 boast even more parameters (OpenAl, 2023). The development continues with
models like Google’s Gemini and Anthropic’s Claude, which further push the limits of size
and capability (hundreds of billions parameters). This rapid growth has sparked concerns
about computational complexity, environmental impact, and fairness in comparing differ-
ent architectures, as well as reproducibility [43][44][45]. This exponential growth raises
several concerns, including the computational complexity of self-attention mechanisms,
environmental impacts [43, 79|, fair comparisons of different architectures [80], and issues
of reproducibility.

The intricacies of human language may indeed require an extensive number of pa-
rameters for comprehensive modeling, but current models do not optimally utilize their
parameters. For instance, Voita et al. [11] demonstrated that the majority of Transformer
heads can be pruned without significantly affecting performance. Similarly, Clark et al.
[46] found that most heads within the same layer exhibit similar self-attention patterns,
which likely explains why Michel et al. [17] were able to consolidate many layers down to
a single head.

Depending on the task, some heads and layers in BERT are not only superfluous [81],
but can also degrade downstream task performance. The beneficial effects of disabling
certain heads have been observed in machine translation [17], abstractive summarization
[82], and GLUE tasks [10]. Additionally, Tenney et al. [48] noted that in 5 out of 8
probing tasks, some layers led to decreased performance scores. From the perspective of
unstructured pruning, Gordon et al. [49] discovered that 30-40% of the weights could be
pruned without impacting downstream tasks.

Generally, larger BERT models perform better [83, 84|, but this is not universally
true: BERT-base outperformed BERT-large on tasks such as subject-verb agreement [50]
and sentence subject detection [85]. Clark et al. [46] suggested that one reason for the

redundancy might be the use of attention dropouts, which zero out some attention weights

during training.
Given the evidence of overparameterization, it is not surprising that BERT can be
effectively compressed with minimal accuracy loss, making it highly attractive for practical

applications.

4.2 Compression: Problem Setting

The aim of model compression is to reduce the size of a model without significantly com-
promising its accuracy. The compressed model should have fewer and smaller parameters,
thereby using less RAM at runtime and reducing latency. This is beneficial as it frees up
memory for other applications and decreases energy consumption during runtime. Larger
models typically require more memory accesses, leading to increased latency. Common

methods for compressing neural models include:
e Pruning
e QQuantization
o Knowledge distillation

e Neural Architecture Search (NAS)

4.2.1 Pruning

Pruning involves the removal of connections between neurons or entire neurons, chan-
nels, or filters from a trained network by zeroing out values in its weight matrix or elim-
inating groups of weights entirely. For instance, to prune a single connection, a weight
in the matrix is set to zero; to prune a neuron, all values in a column are set to zero.
The motivation for pruning is that networks often have redundant features. Pruning can
be categorized into unstructured pruning, which removes individual weights or neurons,
and structured pruning, which removes entire channels or filters. Both types differ in
implementation and results.

Unstructured Pruning By setting certain weights in a matrix to zero, unstructured
pruning increases the network’s sparsity. Depending on the degree of sparsity and the
storage method, pruned networks can occupy much less memory than dense ones.

How do we decide which weights to prune? One widely used method, magnitude-based
pruning, compares the magnitudes of weights to a threshold. Han et al.’s 2015 paper
[86] popularized this approach. Pruning is applied layer-by-layer; a "quality parameter"
multiplied by the standard deviation of weights in a layer sets the threshold, below which
weights are zeroed. After pruning, the model is retrained to adjust the remaining weights,
and this process is repeated.

Mathematical formalism of Structured Pruning Given a dataset D = {(x;, v;) }1-,

and a desired sparsity level k (number of non-zero weights), neural network weight pruning

can be expressed as the following constrained optimization problem:

1 n

min L(w; D) = min — > f(w; (z;,5:))st. w € R™, |wllo < &
v v

Here, £(-) is the standard loss function (e.g., cross-entropy loss), w is the set of parameters

of the neural network, m is the total number of structural sets, and || - ||o is the standard

Lo norm. Minimizing the Ly norm is non-convex, NP-hard, and requires combinatorial

search.

Structured Pruning Unlike unstructured pruning, structured pruning removes entire
blocks of weights within given matrices, avoiding problematic sparse connectivity patterns.
This allows the pruned model to run using the same hardware and software as the orig-
inal. Groups of weights can be ranked according to their L; norms for pruning. More

sophisticated, data-driven approaches have also been proposed for better results.

Huang et al. [87] were the first to integrate performance-size tradeoff control into
the pruning process. Their algorithm produces a set of "pruning agents," each corre-
sponding to a convolutional layer of the network, and an alternative pruned version of the
original model. Pruning agents maximize an objective parametrized by a "drop bound"
value, maintaining performance above a specified level. Pruning agents for each convolu-
tional layer evaluate the effects of pruning combinations of different filters. The alternative
model’s performance on an evaluation set is compared to that of the original, learning mod-
ifications that improve efficiency while adhering to accuracy constraints. Once trained, the
alternative model is retrained to adjust for changes, and the process repeats for the next

layer.

Mathematical formalism of Unstructured Pruning Given a dataset D = {(x;, y;) }1'
and a desired sparsity level £ (number of non-zero structural sets), neural network struc-

tural pruning can be written as the following constrained optimization problem:

: R
min L(ws; D) = min — Zf(ws; (@i, yi))s.t. ws € R™, [Jwslo < K
Ws ws M i—1
Here, /(-) is the standard loss function (e.g., cross-entropy loss), ws is the structural set of
parameters (e.g., a convolutional filter), m is the total number of structural sets, and || - ||o
is the standard Ly norm. Minimizing the Ly norm is non-convex, NP-hard, and requires

combinatorial search.

Accelerating unstructured sparse matrix multiplication is a field of active research with
recent progress. For instance, bank-balanced sparsity, closely related to unstructured spar-
sity, achieves near-ideal speed-ups with minimal deviation from unstructured sparsity [88].
Adaptive sparse matrix multiplication has shown promising results on GPUs, though not

yet on silicon.

4.2.2 Quantization

Quantization compresses models by reducing the size of weights. Generally, it maps
values from a large set to a smaller set, reducing the range of possible output values without
significant information loss. In neural networks, weights or activation outputs of a layer
tend to be normally distributed within a specific range. An ideal quantization schema
adapts to fit each layer’s distribution. For example, reducing 32-bit floating-point numbers
to 8-bit fixed points, which has 256 possible values, can cut the memory footprint by a

quarter.

4.3 Lottery Ticket Hypothesis (LTH)

The pruning pipeline involves several stages: initially, the entire network is trained,
followed by pruning the trained network using a specific pruning algorithm. A critical
question arises: Can the pruned network be trained from scratch to achieve comparable or
even superior performance? This is generally not possible unless the network is initialized
appropriately. Frankle and Carbin [9] proposed that effective initialization is the original
weights before the training-pruning process.

The proposed pipeline is as follows: train the initial model, apply a pruning algorithm
to identify the pruned network, and then retrain the network by initializing the remaining
connections to their original weights. This concept, known as the Lottery Ticket Hypoth-
esis, posits that a randomly initialized, dense neural network contains a subnetwork that,
when trained in isolation, can achieve the original network’s accuracy within a comparable
number of iterations [9)].

Frankle and Carbin not only introduced this pruning pipeline but also provided insights
into the functioning of deep neural networks. Overparameterization in these networks leads
to the creation of many subnetworks, some of which can perform competitively on their
own. These high-performing subnetworks are termed "Winning Tickets." These winning
tickets have been shown to generalize across vision datasets [89] and are present in both
LSTM and Transformer models for natural language processing (NLP) [90].

To identify winning tickets, Frankle et al. [9] employed the simplest unstructured
pruning method: training a network and pruning the smallest-magnitude weights. The
remaining connections form the architecture of the winning ticket. Each pruned connection
is then reset to its initial value from the original network before training. The process can

be described as follows:

1. Randomly initialize a neural network f(x;6y) where 6y ~ Dy.
2. Train the network for j iterations, resulting in parameters 0;.
3. Prune p% of the parameters in 6;, creating a mask m.

4. Reset the remaining parameters to their values in 6y, forming the winning ticket
f(z;m © bp).

Dense network Sparse subnetwork

Prune . . .
& Train ’ . .

Accuracy = 92% Accuracy ~ 92%

Figure 4.1. Graphic Illustration of Lottery Ticket Hypothesis

This one-shot pruning approach involves training the network once, pruning p% of the
weights, and resetting the surviving weights. However, Frankle et al. focused on iterative
pruning (IP), which repeatedly trains, prunes, and resets the network over several rounds.
Each round prunes £% of the remaining weights, allowing iterative pruning to find winning
tickets that match the original network’s accuracy at smaller sizes compared to one-shot
pruning.

Figure 4.2 shows the results of applying the lottery ticket hypothesis to a LeNet-300-
100 architecture [91] trained on MNIST. The pruned model’s performance across various

pruning rates surpasses that of the entire network.

—+— Random Reimit (Omeshot) —— Winning Ticket (Omehet) Randons Reinil (Werative) —+— Winning Ticket (erative)
K e 100
T
L
3 f i £ z i
= Ek it o & 0 = = 1
£, A !] iy o)
§ 11 A L om \ 2 um iy
5 i 41‘;' I 2 om {H . LA
] diar ;] 1
L § " y] /-) i
£ 10K -I'H’Klf / fom { ‘ o 1,1
o= mﬁ" 1t 4 s | ERTE HA
T 1
o 092 1 093
o0 515 2nd ok &6 19 L0 0S8 ok 10 515 265 1235 T0 36 09 10 05 OF 100 51 21 138 T0 36 19 10 0F b
Porcest of Wrights Rerssinicg Percent of Woights Remalsing Percemt of Weighis Remaiing

(a) Early-stopping iteration and accuracy for all pruning methods.

5K

[| =Tt
{1 2o |
4 /HT - -
gk It E sz 4
R
M 313 33 134 70 38 15 10 1\55- n3 ! I HTA A0 ALE f\l’l\l .'-‘I.l’- !‘I.I I!I.' o 10 475 750 €26 S01 376 0 IRT
Percern of Weights Remaning Perceat of Welghts Hensinisg Percent of Weights Remsinmg
(b) Accuracy at end of training. (c) Early-stopping iteration and accuracy for one-shot pruning.

Figure 4.2. FEarly-stopping iteration and accuracy of LeNet under one-shot and iterative
pruning. Average of five trials; error bars indicate the minimum and mazimum values.
Source: [9]

4.4 Pruning Transformer-based models

4.4.1 Transformer-based Structured Pruning

BERTology, the field of study focused on understanding the intricacies of large-scale
transformers like BERT, has led to various pruning techniques based on insights from
BERT’s internal workings [51|. Kovaleva et al. [10] identified a limited set of repetitive

attention patterns across different heads, highlighting the model’s overparameterization.
They demonstrated that disabling specific attention heads could enhance performance in
fine-tuned BERT models.

Their primary tool was self-attention maps, which are 2D float arrays representing self-
attention weights for each head in every layer for a given input sequence. They identified

several self-attention patterns in BERT, as shown in Figure 4.3:

e Vertical: Attention to special BERT tokens [CLS| and [SEP|, which serve as delim-
iters between individual chunks of BERT’s inputs.

e Diagonal: Attention to the previous/following tokens.
e Vertical and Diagonal: A mix of the previous two types.

e Block: Intra-sentence attention for tasks with two distinct sentences, such as RTE
or MRPC.

e Heterogeneous: Highly variable depending on the specific input and not charac-

terized by a distinct structure.
Vertical Diagonal Vertical + diagonal) Block Heterogeneous

~
5

| ‘ i
N,
"\
| ‘ b
i ¥ I
|
|

N,

| B Yo
[CLS] [SEP] [SEP] [GLS] [SEF] [SEP] [CL3] [SEP] [SEP][CLS] [SEF] [SEP] [CLS] [SEP] [SEF]

Figure 4.3. Typical self-attention classes used for training a neural network. Both axes

on every image represent BERT tokens of an input example, and colors denote absolute

attention weights (darker colors indicate greater weights). The first three types are most

likely associated with language model pre-training, while the last two potentially encode
semantic and syntactic information. Source: [10]

Their findings suggested that disabling some heads could improve performance across
tasks, while others might be detrimental. Importantly, disabling certain heads consistently
across tasks and datasets led to performance improvements.

Additionally, Voita et al. [11] analyzed the role of individual attention heads in the
Transformer model for neural machine translation. They used Layer-wise Relevance Propa-
gation (LRP) [92] to evaluate the contribution of different heads at each layer to the model’s
predictions. They found that a small number of heads in each layer were significantly more
important than others, as shown in Figure 4.4.

They categorized heads into three main types based on their attention patterns:

e Positional: Points to an adjacent token.

Heads relevance for top-1 logits
1 0.20

0.18
0163
=
0.14%
]
0122
0.10
'0.08

layers

2
3
4
5
6

1 2 3 4 5 6 7 8
heads

Figure 4.4. Importance (according to LRP) of self-attention heads. The model trained
on 6m OpenSubtitles EN-RU data. Source: [11]

e Syntactic: Points to tokens in a specific syntactic relation.

e Rare Words: Points to the least frequent tokens in a sentence.

Voita et al. also proposed a structured pruning methodology by gating heads [11].

They modified the Transformer architecture by introducing scalar gates g; for each head i:

MultiHead(Q, K, V) = Concat;(g; - head;) W

These gates are specific to heads and independent of the input. The goal was to
disable less critical heads entirely rather than simply downweighing them, ideally using L0

regularization:

h

Lo(g1:---591) = (1 = [lg = 0]])
i=1

Since the L0 norm is non-differentiable, they used a stochastic relaxation with Hard
Concrete distributions [93].

Michel et al. [17] conducted comprehensive ablation experiments to understand the
impact of individual attention heads on model performance. By modifying the multi-head
attention formula and using mask variables, they determined the sensitivity of the model
to the removal of each head. Their approach can be described with the following equations.

The modified multi-head attention is given by:

Np,
MHAtt(z, q) = Y EpAte (W), W', W), W', q)
h=1
where £, are mask variables with values in {0, 1}. The importance of a head h is

measured by the expected sensitivity of the model to the mask variable &:

OL()
/38

where X is the data distribution and L(x) is the loss on sample z. This can be expanded

I, =E;ox '

using the chain rule:

r_OL(x)

I = Egox |Atth(z) DAty (1)

Their findings revealed that a significant proportion of attention heads could be re-
moved with minimal impact on performance, suggesting that models can operate effec-
tively with far fewer heads than originally designed. This insight is crucial for optimizing

and compressing large models, as it points to potential areas of redundancy.

Prasanna et al. [12] expanded on these ideas by applying both magnitude and structural
pruning to fine-tuned BERT models. They used an iterative approach to prune the lowest
magnitude weights and evaluate the importance of self-attention heads and MLPs. Their
results showed patterns in the pruned heads for various tasks, such as QNLI, and identified
"good" and "bad" subnetworks within BERT. Notably, they found that the pruned subnet-
works, when retrained, could achieve performance close to the original model. This work
underscores the potential of pruning as a method to streamline models without sacrificing

accuracy.

0,46
0.0z
0.48
aer
nas
0.0z
048
ooz

2 3] w0 0

060 0D 04D
LET I

(a) M-pruning: each cell gives the percentage of surviving (b) S-pruning: each cell gives the average number of random
weights, and std across 5 random seeds. seeds in which a given head/MLP survived and std.

Figure 4.5. The "good" and "bad" subnetworks in BERT fine-tuning: performance on
GLUE tasks. ’Pruned’ subnetworks are only pruned, and ’retrained’ subnetworks are
restored to pre-trained weights and fine-tuned. Subfigure titles indicate the task and

percentage of surviving weights. STD wvalues and error bars indicate standard deviation of

surviving weights and performance, respectively, across 5 fine-tuning runs. Source: [12]

Prasanna et al. also explored the overlaps in BERT’s "good" subnetworks across GLUE

tasks, indicating shared heuristics or patterns encoded in combinations of BERT elements.

Task

50.40 3500 | 67.00
11.46 15.65

55.60 4 36.20 76.80
301 5 9.73 7.98

2320 19.00 19.00 1760 17.60 14,80 13.40 16.20 28.80
5188 4249 4249 39.35 3935 33.09 2996 36.22 64.40

WHLI

ColA MRNLI MRPC QNI QaP RTE 55T-2 5TS-B WHLI

Task

Figure 4.6. Overlaps in BERT’s “good” subnetworks between GLUE tasks: self-attention
heads. Source: [12]

4.4.2 Transformer-based Magnitude Pruning

Chen et al. [13] applied the unstructured Lottery Ticket Hypothesis on pretrained
BERT models. They investigated the accuracy of training subnetworks of neural networks.
For a network f(x;0,-), a subnetwork is defined as f(z;m ®#6,-) with a pruning mask m €
{0,1}9! (where ® represents the element-wise product), effectively setting some weights to
Z€ero.

Consider A (f(x;0;,v;)) as a training algorithm (e.g., AdamW with hyperparameters)
for a task T' (e.g., CoLA) that trains a network f(x;6;,~;) on task T for t steps, creating
network f(x;0;1¢,7i+¢). Let Oy be the BERT-pre-trained weights. Let € (f(x;0)) be the
evaluation metric of model f on task 7.

A subnetwork f(z;m ® 6,7) is considered matching for an algorithm A} if training
f(z;m ® 0,~) with algorithm A7 results in an evaluation metric on task 7" no lower than

training f(x;0p,~) with algorithm A7. In other words:
(AL (flzm ©0,7))) = e (A (f(x360,7)))

A subnetwork f(z;m ®6,7) is a winning ticket for an algorithm A7 if it is a matching
subnetwork for A7 and 6 = 6.

A subnetwork f(x;m ® 6,~r,) is universal for tasks {7;}X, if it is matching for each
AZ} for appropriate, task-specific configurations of 7, .

To identify subnetworks f(z;m ® 6,-), Chen et al. employed neural network pruning

[13, 14]. They determined the pruning mask m by training the unpruned network to
completion on a task T (i.e., using A!) and pruning individual weights with the lowest
magnitudes globally throughout the network. Since the goal is to identify a subnetwork
for the pre-trained initialization of the state of the network early in training, they set the
weights of this subnetwork to 6; for a specific rewinding step ¢ in training. For instance, to
set the weights of the subnetwork to their values from the pre-trained initialization, they
set 8 = 6y. Previous work has shown that iterative pruning is more effective. The Iterative

Magnitude Pruning (IMP) process is described below.

Iterative Magnitude Pruning (IMP) to sparsity s with rewinding step i

Train the pre-trained network f(x;6o,v0) to step i: f(z;60;,7v) = AL (f(z;60,%0))-
Set the initial pruning mask to m = 191
repeat
Train f(x;m ® 0;,7;) to step t: f(z;m © O, y) = AL (f(z;m © 0;,7:)).
Prune 10% of remaining weights of m © 6; and update m accordingly.
until the sparsity of m reaches s
return f(z;m ® 6;)

The results, depicted in Figure 4.7, indicate that despite BERT being a pre-trained
language model, the Lottery Ticket Hypothesis can be realized through Iterative Magnitude

Pruning.
Dataset | MNLL QQP STS.B WNLI QNLI MRPC RTE S5T2 ColA SQuAD | MLM
Sparsity | To% 0% 505% 90% 0% 50% £0% 60% S09% 40% 0%
Full BERTppsp | 824205 902+ 05 86403 549+12 891+ 1.0 852201 662+36 921 =01 545+ 04 881+ 06 | 63.5=0.]
flz,mpgp @ 8) | 826 £02 900+02 882+ 02 549+ 1.2 BE9+04 84904 660+ 24 919405 538 +09 87.7+£05 | 632203
flz,mpp @) | 675 763 210 535 EL9 69.6 560 831 96 I8 323
Tlzmue @8y | 6L0 770 9.2 533 60.5 63.4 545 8.2 00 18.6 144
Flzmpp @87 | 701 79.2 19.6 533 620 £9.6 527 826 40 242 423

Figure 4.7. Performance of subnetworks at the highest sparsity for which IMP finds
winning tickets on each task. To account for fluctuations, a subnetwork is considered a
winning ticket if its performance is within one standard deviation of the unpruned BERT
model. Entries with errors are the average across five runs, and errors are the standard
deviations. IMP = iterative magnitude pruning; RP = randomly pruning; 8y = the
pre-trained weights; 6 = random weights; 0 = randomly shuffled pre-trained weights.
Source: [15]

4.5 Pruning Computer Vision Models

In the literature, there is a notable exchange of ideas between Natural Language Pro-
cessing (NLP) and Computer Vision (CV). This section explores some concepts related to
pruning models in the CV domain.

Mallya et al. [14] introduced PackNet, an approach that iteratively prunes unimpor-
tant weights and fine-tunes the model for new tasks. The result of pruning and weight

modifications is a binary parameter usage mask, as illustrated in Figure 4.8.

Q0O QO 0000 00000

o O SeQ| @ OO0 @e0e0O
© © |0ee0e 0000 |0OO0S
)) @) o @0 O @0e el
© © e0e0e| 0000 00000

[a} brotial fber T Tasn | [l Fivssl Dller fie Tash | (£} brwtial Gker Tor Tk 1l [Pl [ler fie Task | fe} Wnial Fhes Moe Tk N1
BNa prusing + se-iradeing traizing A pnming + re-taalning frainng

Figure 4.8. Illustration of the evolution of a 5 x 5 filter with steps of training. Initial
training of the network for Task I learns a dense filter as illustrated in (a). After pruning
by 60% and re-training, a sparse filter for Task I is obtained, as depicted in (b), where
white circles denote 0 valued weights. Weights retained for Task I are kept fized for the
remainder of the method and are not eligible for further pruning. The pruned weights are
allowed to be updated for Task II, leading to filter (c), which shares weights learned for
Task 1. Another round of pruning by 33% and re-training leads to filter (d), the filter used
for evaluating Task II (Note that weights for Task I, in gray, are not considered for
pruning). Hereafter, weights for Task II, depicted in orange, are kept fived. This process
is completed until desired or runs out of pruned weights, as shown in the filter (e). The
final filter (e) for Task III shares weights learned for tasks I and II. At test time,
appropriate masks are applied depending on the selected Task to replicate filters learned
for the respective tasks. Source: [1}]

Another approach, "Piggyback", proposed by Mallya et al. [14], does not alter the
initial backbone network weights but instead learns a different mask for each task. This
method is agnostic to task order, and the addition of new tasks does not affect performance

on previous tasks. This is depicted in Figure 4.9.

Thresholding Function

[ooooo 00
/00000 o o
00000 o ©
|c0000 e o
|©0000 o o
i Derse: Fiter (W) of pre- Binary mask (m)
i trained backbone network For
| e "
(D Elementwise Masking
(o]e]
© O
O O
e © |
© O Eval Time |
Effective filter for Behavior '

Figure 4.9. Overview of Piggyback method for learning piggyback masks for fized
backbone networks. During training, a set of real-valued weights m,. are maintained,
which are passed through a thresholding function to obtain binary-valued masks m. These
masks are applied to the weights W of the backbone network in an element-wise fashion,
keeping individual weights active or masked out. The gradients obtained through
backpropagation of the task-specific loss are used to update the real-valued mask weights.
After training, the real-valued mask weights are discarded, and only the thresholded mask

000

000
000
000
e 100000
A e |00000

weights (m”)
for

o]e]e]

e.5. Binarizer

Train Time
Behavior

is retained, giving one network mask per task. Source: [1/]]

5.1 Introduction

The remarkable success of Transformer-based models can be largely attributed to their
powerful multi-head self-attention mechanism, which effectively learns token dependencies
and encodes contextual information from the input. However, the complexity of these
models has raised concerns regarding their interpretability and transparency. As these
models are increasingly deployed in critical applications, understanding their decision-
making process has become a crucial aspect of Al research.

Interpretability techniques aim to shed light on the inner workings of machine learning
models, enabling us to attribute model decisions to individual input features and under-
stand the influence of various components of the model. These techniques can be broadly
categorized into two types: intrinsic and post-hoc interpretability. Intrinsic interpretability
involves designing models that are inherently interpretable, such as decision trees or linear
models, where the relationship between input features and predictions is explicit. Post-hoc
interpretability, on the other hand, involves applying techniques to understand and explain
the predictions of complex models, such as neural networks, after they have been trained.

One fundamental approach to interpretability is attribution, which refers to techniques
that assign credit or importance to individual input features (such as words in a sentence
or pixels in an image) to explain how they influence the model’s prediction. Attribution
techniques seek to answer the question: "Which parts of the input contributed most to the
model’s output?" By quantifying the importance of input features, attribution methods
offer a window into the internal workings of complex models, helping to demystify their
predictions.

Attribution methods come in various forms, but all share the same goal: assigning
importance to input features in relation to the final prediction. In natural language pro-
cessing (NLP), for example, the input features are often words or tokens in a sentence, and
attribution techniques aim to highlight which words had the most impact on the model’s
decision.

Several interpretability methods have been developed to address this need, each with
its own strengths and limitations. Saliency-based methods, such as Grad-CAM [94] and
Integrated Gradients [22], highlight the importance of input features by computing gra-

dients or similar measures. Perturbation-based methods, such as LIME [95] and SHAP

[96], explain model predictions by observing the changes in output when input features are
perturbed. Contextual decomposition methods, such as Contextual Decomposition (CD)
[97] and Agglomerative Contextual Decomposition (ACD) [98], analyze the contributions

of different input features or groups of features to the model’s predictions.

One of the most widely used methods for interpretability is Integrated Gradients (IG).
IG addresses the limitations of classic gradient methods by satisfying two fundamental
axioms: (a) Implementation Invariance, and (b) Sensitivity. These properties make I1G a
reliable and useful method for feature attribution. In this thesis, I propose ideas centered
around IG, which are the subject of ongoing research. First, I introduce various techniques
that I studied before concluding with IG, highlighting their application, particularly in the

context of language models.

The following sections delve into classic methods for neural network interpretability
and their application to language models, exploring gradient-based approaches, external

explainers based on model behaviors, and contextual decomposition techniques.

5.2 Classic Methods

5.2.1 Gradient Based

A lot of papers have emerged about interpretability and explainability based on gradi-
ents of the output or intermediate neurons. Selvaraju et al. [94] introduced Grad-CAM,
which computes a coarse-grained feature-importance map by associating the feature maps
in the final convolutional layer with particular classes based on the gradients of each class
with respect to each feature map, and then using the weighted activations of the feature

maps as an indication of which inputs are most important.

The authors in [99] presented DeepLIFT, a method that compares the activation of each
neuron to its 'reference activation’ and assigns contribution scores Ca,; A+ according to the
difference. Cay;a+ can be thought of as the amount of difference-from-reference in ¢ that
is attributed to or 'blamed’ on the difference-from-reference of ;. It is a back-propagation
approach, contrasting forward propagation methods that propagate an importance signal

from an output neuron backward through the layers to the input in one pass.

The latter method overcomes the limitations of classic gradient methods like Integrated
Gradients [22] and Gradient x Input [100], as a neuron can signal meaningful information
even in the regime where its gradient is zero. All of these methods require a reference input
vector (e.g., Gradient x Input uses a reference of all zeros, while Integrated Gradients use

the same vector for text data as the starting point of the integral).

However, Integrated Gradients satisfy two fundamental axioms: (a) Implementation
Invariance, and (b) Sensitivity, making it a reliable and useful method for feature attribu-
tion. The process is defined across the " dimension for input = and baseline ' and creates
a path between them by interpolating intermediate points. Computing the integral of their

computed gradients gives the contribution to the output. Further down, it is shown the

approximation of the calculation:

" OF(x + E x (- 1
IntegratedGradients; (z) = (z; — o) x E (@ + ’(’}) (@~ 2)) X —
X; m

k=1

Based on the development of Integrated Gradients, the authors in [24] introduced a vari-
ation of the algorithm with respect to the layers of the model called Conductance. The

mathematical description is:

: LOF(2' +a(x —2')) Oy
1 — AN .
Condy (z) = (z; — ;) /0 By oz, da

1 ! /

Cond,(z) = zi:(xi —) /0 OF (x +;y(x ') ggiaa
Equation (1) defines the conductance of a neuron y for the attribution to an input variable
i, and Equation (2) the total conductance of the hidden neuron y by summing over the
input variables. We use the former to explain the function of the neuron in terms of its
effect on the base features of the input and the latter to discuss the importance of the
neuron. We can sum over the conductance of the neurons in a set of logically related
neurons to define the conductance of the set as a whole.

The evaluation of the method is assessed by the metrics: 1. Activation: The value of

the hidden unit is the feature importance score. 2. Internal Influence: The measure of

feature importance is:

1 / L
IntTn, (x) ;::/ OF (@' +ax (x—a)
0 oy
3. Gradient x Activation: y x %Z@—z/)).

5.2.2 External Explainers based on Model Behaviors

The most known framework for interpretability is SHAP [96]. As a fundamental prin-
ciple, it hypothesizes that there are an original f(z) and an explanation model g(x’) and
f(x) = g(2'), with 2’ being a simplified input. It relies on three properties: (a) Local
accuracy, (b) Missingness, and (c) Consistency.

The main goal is to find the features ¢; such that:
M

f@) =g(a") = ¢o +) dia
=1

To achieve that goal, the process is simple. For each feature, you obtain all the possible
z’ inputs excluding it and get the result. However, due to the complexity of the process,
calculating optimizations have been developed, with the most important being Kernel
SHAP (Linear LIME [95] + Shapley values) and DeepSHAP (DeepLIFT + Shapley values).

First, we create a background dataset used for each feature not to be omitted during

the process. Then we get the average of the model output for the specific feature. Finally,

it is converted into a linear regression problem with the coefficients being the bases ¢;.

SHAP: Shapley Kernel

® P, Y.
O P, Y,
o0 = |V,
o0 Y.

O Y,

Figure 5.1. Linear Regression for finding ¢;.

As for DeepSHAP, it combines SHAP values computed for smaller components of

the network into SHAP values for the whole network. It does so by recursively pass-

ing DeepLIFT’s multipliers, now defined in terms of SHAP values, backward through the
network.

fy) 1
/ﬁ\ /ﬁ\
1 Ty Ma, gy My s
75 Ya My s Myafs

Figure 5.2. Compositional models such as deep neural networks are comprised of many
simple components. Given analytic solutions for the Shapley values of the components,
fast approximations for the full model can be made using DeepLIFT’s style of
back-propagation.

5.2.3 Contextual Decomposition
Murdoch et al. [97] present an interpretation algorithm for analyzing individual predic-

tions made by LSTMs. By decomposing the output, the goal is to capture the contributions
of combinations of words or variables to the final prediction.

or = o(Wozy + Vohi—1 + by) (5.6)

ft= U(WfﬁL‘t +Vihi1 + bf) (5.7)

it = o(Wizy + Vihg—1 + b;)
g¢ = tanh(Wyzy + Vyhe—1 + by)
=01+ O
hy = oy ® tanh(c;)

Where W, W;, Wy, W, € RAxd2 Vi, Vi, Vg € RI2¥42 b, by, by € R% and ®
denotes element-wise multiplication. o, f; and i; are often referred to as output, forget
and input gates, respectively, due to the fact that their values are bounded between 0 and

1, and that they are used in element-wise multiplication.

The main idea (for LSTMs) starts by rewriting the equations of the model for h; and

¢; as sums of two factors:
he = Bt +n

ct = By + ¢

The decomposition is constructed so that 8; corresponds to contributions made solely by
the given phrase to hy, and ~; corresponds to contributions involving, at least in part,

elements outside of the phrase.

Then they substitute the final equation:

A
p; = Softmax((WhT);) = SXp(WJh)
> i1 exp(Wihy)

by replacing the above relations:

p = Softmax(W BT + WoT)

The authors test their algorithm on the task of sentiment analysis, using the SST
(Stanford Sentiment Treebank) and Yelp Polarity datasets. They showed that CD is able
to capture the composition of phrases of differing sentiment and extract instances of positive

and negative negation.

The above algorithm was evolved in 2019 by Singh et al. [98], describing a new algo-
rithm called Agglomerative Contextual Decomposition (ACD). Given a prediction from a
trained DNN, ACD produces a hierarchical clustering of the input features, along with the
contribution of each cluster to the final prediction. They use SST and ImageNet for their

experiments.

ACD is a procedure for hierarchical clustering, where the CD interaction is used as
the joining metric to determine which clusters to join at each step. The method has been

modified to be applicable to all DNNs. For text models, an example is shown in Figure 4.

For hierarchical clustering, other algorithms have also been developed, such as SCD and
SOC [101], which overcome the limitation of the previous two, as the 8 terms computed

by both algorithms depend on the context of the phrase.

DNN Prediction ACD Interpretation

not very good
1 Positive
]
DNN —— - Negative
very good

not very good not very good

Figure 5.3. ACD constructs a hierarchy of meaningful phrases and provides importance
scores for each identified phrase.

5.3 Applied Methods in LLMs

5.3.1 Discretized Integrated Gradients

In [23], the authors introduce a variant of Integrated Gradients (IG) [22] tailored for
explaining the behavior of language models. They develop two interpolation strategies for
the discrete word embedding space, generating points that lie close to actual words in the
embedding space, resulting in more faithful gradient computation.

The key idea is to interpolate points that are closer to actual word embeddings, ensuring
the gradients are meaningful. They propose a new interpolation algorithm and two search
algorithms for the interpolated points: (a) Greedy, (b) MaxCount.

The method is tested using the following datasets:

1. SST2 dataset: 6920/872/1821 example sentences in the train/dev/test set, with the

task being binary classification into positive/negative sentiment.

2. IMDB dataset: 25000/25000 example reviews in the train/test sets with binary labels

for positive and negative sentiment.
3. Rotten Tomatoes (RT) dataset: 5331 positive and 5331 negative review sentences.

They used the processed datasets made available by the HuggingFace Dataset library
and probed pre-trained BERT, DistilBERT, and RoBERTa text classification models in-
dividually fine-tuned for SST2, IMDB, and RT datasets.

The evaluation metrics used are:

1. Log-odds (LO) score: Average difference of the negative logarithmic probabilities on
the predicted class before and after masking the top k% words with zero padding.

2. Comprehensiveness (Comp) score [102]: Measures the influence of the top-attributed

words on the model’s prediction.

3. Sufficiency (Suff) score [102]: Measures the adequacy of the top k% attributions for

the model’s prediction.

5.3.2 Sequential Integrated Gradients

The classic method of Integrated Gradients, as developed in [22|, presents a significant
limitation, shared by all path-based methods. These methods produce a path for each
word of a sentence simultaneously, which can result in sentences with no clear meaning or
significantly different meanings compared to the original.

Enguehard et al. [103] describe a new variation of Integrated Gradients (IG) called
Sequential Integrated Gradients (SIG). The main idea is to compute the importance of
each word in a sentence by keeping the other words fixed, creating interpolations only
between the baseline and the word of interest. Additionally, they propose replacing the
baseline token "pad" with the trained token "mask". Figure 5.4 illustrates the three

variations of integrated gradients:

book . the
i -+ movie
IG <mask> =il
. » Wwas
Is ” * good
great
book the
movie
DIG <mask>
was
ks good
great
book O the
—=v Mmovie
SIG <mask>
O was
is O good
great

Figure 5.4. Comparison between IG, DIG, and SIG. DIG improves on IG by creating
discretized paths between the data and the baseline, but it can produce sentences with
different meanings compared to the original. SIG addresses this by fixing every word to its
true value except one, and moving the remaining word along a straight path.

Denoting F'(z) : R™*™ — R as the language model, z; as the i-th word of a sentence,
and z;; as the j-th feature of the i-th word, the only difference lies in the baseline defined

for each word as z; = (z1, ..., <mask>, ..., x;,).

The algorithm was tested using the SST2, IMDB, and RT datasets for sentiment classi-
fication. They used Log-Odds, Comprehensiveness, and Sufficiency as evaluation metrics.
The results indicate that SIG is the most efficient among the variations. Contrary to the
findings in 23], they found that IG using "mask" as a token outperforms DIG. The authors
argue against the intuition in [23] that the discrete nature of the embedding space is crucial
for explaining a language model.

However, SIG has some limitations, which are also proposed as future work. Firstly,
SIG presents poor time complexity as it depends on the number of words in the input
data. They noted that reducing the number of steps still yields better performance than
IG with more steps. Therefore, for computing attributions on long sentences or texts, they
recommend using SIG with a reduced number of steps instead of IG.

To alleviate the complexity, they implemented the possibility of computing gradients
in parallel, using an internal batch size similar to how Captum [104] implemented IG.
Secondly, they suggest validating the robustness of the method on more languages, tasks,

and models in future work.

5.3.3 Layer Integrated Gradients for Linguistic Acceptability

In [105], the authors use Conductance or Layer Integrated Gradients (LIG) and Con-
stituency Parse Trees (CPT) to explain the Linguistic Acceptability (LA) criteria learned
by BERT on the Corpus of Linguistic Acceptability (CoLA) benchmark dataset [37]. They
utilized the Captum library [106] for the LIG implementation and the Stanford CoreNLP
toolkit for constructing the CPT.

The CoLA dataset includes tasks such as:

1. Causative-Inchoative Alternation (CIA)
2. Reflexive Antecedent Agreement (RAA)
3. Subject-Verb Agreement (SVA)

4. Subject-Verb-Object (SVO)

5. Wh-Extraction (WHE)

LIG is computed as the IG between the model output and a particular layer’s input or
output. The primary focus of their experiments relied on the LIG computed between the
predicted class logit and the token embedding of the words. Further, they computed LIG
heatmaps of CPT patterns w.r.t. the Input (Token + Segment + Position) embedding
across the 12 Encoder layer embeddings of BERT.

The main idea is that computing the LIG for CPT patterns at different subtree levels
can give insight into the constituents which contribute largely towards making the sentence
LA or LUA. They conclude that the top subtree CPT patterns based on token embedding
LIG were also dominant across the input and encoder layers of BERT. They observed that
when the input strongly contributes towards a particular class (LA or LUA), the model

has higher confidence in making the correct prediction. Additionally, a large percentage of

the misclassified sentences had negative LIG, indicating that the features disagreed with

the model’s prediction.

Based on these findings, they propose that future research could focus on improving
the model’s performance by parameterizing the LIG in the loss function during the later
stages of the training process once the model has achieved reasonable performance. This

could serve as a correction mechanism for the model.

5.3.4 Expected Gradients

In [107], Erion proposes an optimized version of Integrated Gradients called Expected
Gradients. The new algorithm complements the main contribution of optimized attribution

priors.

The main idea is to address the slow computation of IG when multiple references are
involved. Choosing one specific reference is challenging because it implies that this specific
example will not be highlighted as important. Expected Gradients avoid multiple inte-
grals (as IG would require) by using sampling to yield accurate attributions with multiple

references that can be calculated quickly.

Mathematically, Expected Gradients is defined as:

1 o / o
ExpectedGradients;(z) := / ((z; — 2}) x / J@+ale—w))da)pD(x’)dx’
2/ 0 8%1
where z is the target input, 2’ is the baseline input, and D is the underlying data distri-
bution. Directly integrating over the training distribution is intractable; therefore, they

reformulate the integrals as an expectation:

of (' + a(x — 2'))
81:1-

ExpectedGradients; (z) := E, o p a~u(0,1) [(xZ — %)

They tested the above method using attribution priors in image data, gene expression

data, and health data where sparsity is desired.

5.3.5 Hierarchical Explanation

Chen et al. [108] propose a new divisive partitioning (DP) algorithm called HENCE,
designed to generate hierarchical explanations by detecting feature interactions. Existing
methods typically provide important features (words or phrases) selected from an input

text as an explanation but often ignore the interactions between them.

The HENCE algorithm is outlined as follows:

Hierarchical Explanation via Divisive Generation

Input: text x with length n, and predicted label g
Initialize the original partition Py < {x ()}
Initialize the contribution set Cy =)
Initialize the hierarchy H = [F]
fort=1ton—1do
Find z(y, s,.,) and j by solving Equation 1
Update the partition P/ <= P;1\{%(s, s,,,]}
P P U@ (5,,3) 7 500]
H.add(FP;)
Update the contribution set C' with Cf <= Cy—1 U {(z(s, 1, ¥ (2(s,5))}
Cr = CLUL (@ (5050 U (E(siin))
: end for
: Output: C,_1, H

— = =

Here, P = {$(0751]ax(51, -a$(5p_1,n]} represents a partition of the word sequence

2]+

with P text spans, where x(= (®g;41,---,%s,,,). The algorithm is based on two

SiySit1)
fundamental equations: one for the interaction score that guides the partitioning, and

another for measuring the contribution of each feature to the model prediction.

The method was tested on LSTM, CNN, and BERT models using the SST and IMDB

datasets. The evaluation metrics employed include:

1. AOPC: Measures local fidelity by deleting or masking top-scored words and com-
paring the probability change on the predicted label.

2. Log-0Odds: Evaluates the change in log-odds after feature removal.

3. Cohesion-Score: A new metric proposed by the authors to measure the synergy of
words within a text span by shuffling the words and observing the probability change
on the predicted label.

5.3.6 TransSHAP

Explanations of individual instances are often visualized using histograms. However,
this approach is insufficient for text-based classifiers where inputs are sequential and struc-
turally dependent. Kokalj et al. [109] introduce a variant of SHAP, called TransSHAP,
applied to BERT for text classification, along with an improved method of visualizing

explanations that better reflects the sequential nature of input.

The process of TransSHAP is depicted in Figure 5.5.

TransSHAP

Classifier function

For each instance: !ndexed
instances

SHAP

Word

v

Index

Tokenization

Classification

y
' probability

Tokenized instances

BERT

Figure 5.5. TransSHAP adaptation of SHAP to the BERT language model by
introducing a classifier function that converts each input instance into a word-level
representation. The representation is perturbed to generate new instances, which are then

processed by the BERT tokenizer, and the final predictions are returned to the Kernel
SHAP.

In this approach, the classifier function converts each input instance into a word-level
representation. This representation is then perturbed to generate new instances, which
are processed by the BERT tokenizer, and the final predictions are returned to the Kernel
SHAP.

The method was tested on tweet sentiment classification using the CroSloEngual BERT
model. The visualization strategy was enhanced by rotating the bar chart to a vertical
position and presenting the features (words) in the order they appear in the original sen-

tence.

1.00

0.75

0.50

0.25 -

0.00 =--- - e - - ———-
-0.25 .

-0.50

—0.75

Impact on model output

| hate when people put lol when we are having a serious talk

Figure 5.6. TransSHAP visualization of prediction explanations for negative sentiment.
The features’ contribution values were obtained using the SHAP method. The word ’hate’
strongly contributed to the negative sentiment classification, while the word ’lol’ slightly
opposed it.

As future work, the authors suggest accounting for specific properties of text data and
applying language models during the sampling step of the method. Additionally, they
propose enhancing the explanations by expanding the features from individual words to

larger textual units that are grammatically and semantically linked.

Part

Methodology & Results

113

6.1 Abstract

This research explores and optimizes attention mechanisms within Transformer mod-
els, a key component in Natural Language Processing (NLP) and various machine learning
domains. The focus is on structured pruning of attention heads, a sophisticated tech-
nique aimed at optimizing models by selectively eliminating attention heads to preserve
and enhance model performance while reducing computational complexity and resource
requirements. This study introduces a novel approach that leverages the Neuron Conduc-
tance technique [16] for neuron attributions, examining the correlation between attention
scores and their corresponding attributions. This approach provides a nuanced under-
standing of the interplay between attention mechanisms and the inherent importance of
individual attention heads. A new metric, inspired by previous works, is developed to deter-
mine the importance of attention heads, facilitating more informed and effective pruning.
Furthermore, this method is studied through the lens of the Lottery Ticket Hypothesis,
demonstrating that our our metric competes with the approaches of Michel et al. [17] and
Achlatis [18]| giving results, which in the large datasets of GLUE are similar. Addition-
ally, we conduct experiment for the method, Achlati’s firstly proposed in his work, called
"Tteratively Structured Pruning". The methodologies and implications of this research
contribute not only a fresh perspective to model optimization techniques but also aim to
advance the understanding of structured pruning and its impact on model performance,

potentially leading to the development of more robust and resource-efficient models.

6.2 Introduction

Attention mechanisms, particularly those employed by Transformer models [4], have
become foundational in NLP and various other domains within machine learning. These
mechanisms enable models to weigh and prioritize different segments of the input sequence
when generating an output, allowing for more nuanced and contextually aware represen-
tations of information. Within these mechanisms, attention heads are crucial for creating
diverse linear transformations of input, enabling the model to focus on different aspects or
features of the input data [7].

One of the most well-known Transformer-based models is BERT, proposed by Devlin

et al. [7]. BERT is a pre-trained language representation model trained from unlabeled
text by jointly conditioning on both left and right context in all layers. As a result, the
pre-trained BERT model can be fine-tuned with just one additional output layer to create
state-of-the-art models for a wide range of tasks, such as question answering and language

inference, without substantial task-specific architecture modifications.

Transformer-based models contain millions of parameters, which slow down inference,
increase the memory footprint, the number of computation operations (FLOPs), power
usage, and contribute to environmental issues. This problem tends to rapidly scale up;
for instance, BERT-base [7] contains 110 million parameters, while models like GPT-
4[19], Google’s Gemini|20], and Anthropic’s Claude|21] contain hundreds of billions of

parameters.

A response to this problem is model compression. Researchers have applied pruning
techniques on BERT-base models by pruning weights or structured components such as
attention heads. Researchers like Voita et al. [11], Kovaleva et al. [10], and Michel et
al. [17] suggest that Transformer-based models are heavily overparameterized, allowing for

the removal of a large number of heads without significant performance trade-offs.

This research aims to delve deeper into the methodologies and implications of attention
head structured pruning, with a novel approach centered around a variant of Integrated
Gradients [22| for obtaining attributions of the attention heads. Integrated Gradients have
been a prominent method for feature importance in deep learning models, providing in-
sights into model decisions [23]. This research leverages the Neuron Conductance technique
[24], a method for neuron attributions concerning the model’s output, with the following

contributions:

e Examining the correlation matrix between attention scores and their corresponding
attributions, offering a nuanced understanding of the interplay between attention

mechanisms and the inherent importance of individual attention heads.

e Developing a novel metric based on the correlation between Neuron Conductance
attributions and attention scores, facilitating more informed and effective pruning of

less important heads.

e Drawing inspiration from previous works [17, 25|, this research introduces an im-
proved method for determining the importance of attention heads, enhancing the

efficiency and efficacy of large language models.

This innovative approach builds on Achlatis’ thesis [18], contributing a fresh perspec-
tive to the discourse on model optimization techniques. By integrating insights from the
correlation between attention scores and attributions, this research aims to advance the
field’s understanding of structured pruning and its impact on model performance, paving

the way for the development of more robust and resource-efficient models.

6.3 Related Work

Pruning in transformer models, particularly in architectures like BERT, has been ex-
tensively studied to enhance model efficiency without significant loss in performance. A
foundational study by Michel et al. (2019) [17] demonstrated that many attention heads
in transformers are redundant, challenging the belief that all heads are equally important.
Their structured pruning approach iteratively removes the least important heads based on
an importance metric calculated across the training set, revealing that the significance of
attention heads is determined early in training and remains stable.

Building on this, Voita et al. (2019) [11] proposed a method for structured pruning
that uses a heuristic function based on a Hard Concrete distribution to selectively retain
only the most critical heads. Their findings align with Michel et al.’s [17], reinforcing the
idea that a significant portion of attention heads can be pruned without degrading model
performance.

The concept of pruning has also been explored from the perspective of the Lottery
Ticket Hypothesis (LTH), introduced by Frankle and Carbin (2019) [9], which suggests
that within a dense neural network lies a sparse subnetwork capable of matching the per-
formance of the full model. While Frankle and Carbin focused on unstructured pruning
in smaller networks, subsequent works like Liu et al. (2019) [26] and Chen et al. (2020)
[13] tested LTH in larger models and more complex settings, including pre-trained BERT
networks. Liu et al. (2019) [26] critiqued the generalizability of LTH, arguing that struc-
tured pruning in large models, especially under different optimization settings, may yield
different outcomes than those observed in smaller, unstructured settings. On the other
hand, Chen et al. (2020) [13]| extended LTH to BERT, showing that subnetworks identi-
fied via magnitude pruning can perform comparably to the full model, particularly when
initialized with pre-trained weights.

Further exploring the interplay between pruning and model interpretability, Prasanna
et al. (2020) [12] and Yang et al. (2021) [27] investigated the effectiveness of structured
pruning in understanding model behavior. Prasanna et al. [12]| found that pruning based
on importance metrics, particularly in BERT, could reveal insights into which heads and
MLPs are most critical for task performance, with middle-layer heads often being more
transferable across tasks. Yang et al. extended this by using attribution-based methods to
guide pruning decisions, emphasizing the potential for task-specific compression in multi-
task models.

Hao et al. (2021) |28]introduced a novel interpretability method called Self-Attention
Attribution (AttAttr) that leverages attribution scores for pruning transformers. Their
approach focuses on attention head connections, converting attribution scores into a prun-
ing metric by taking the maximum attribution per connection and averaging it across
all samples. This method shares conceptual similarities with Integrated Gradients but
is specifically designed to target attention heads. Unlike methods grounded in the Lot-
tery Ticket Hypothesis, Hao’s approach incrementally prunes attention heads by masking
them, rather than permanently removing them, and evaluates the pruned models without

re-initializing the weights. This technique highlights a critical difference from my approach,

where the correlation between attention scores and attribution scores is calculated to guide
pruning, with attributions computed concerning the model’s predictions rather than the
gold labels as in Hao’s work.

Recent advancements by Ilhan et al. (2024) [29] and Grover et al. (2023) [30] further
refined pruning techniques by introducing resource-efficient methods and interpretability-
based pruning, respectively. Ilhan et al. [29] proposed a heuristic-based pruning method
that optimizes the fine-tuning process by selectively updating weights, offering a practical
solution for large-scale model deployment. Meanwhile, Grover et al. [30] addressed the
challenge of noisy gradients in pruning, introducing methods that incorporate gradient
information directly into the pruning metric, demonstrating superior performance in deep
pruning scenarios.

Collectively, these studies illustrate the evolving understanding of pruning in trans-
former models, with structured and unstructured methods offering complementary in-
sights. From identifying redundant components within BERT to leveraging pruning for
interpretability and efficiency, the research highlights the critical balance between model

complexity and performance, guiding the development of more efficient NLP models.

6.4 Problem Definition

6.4.1 Structured Pruning Definition

Given a dataset D = {(z;, y;)}I; and a desired sparsity level x, neural network struc-

tured pruning can be formulated as the following constrained optimization problem:

1 n
in L(ws; D) =min— Y £L(ws; (x4, s
min Ly D) = min > b (21, 91)

Ws X
=1

st. ws € R™, Jwsllo < &

Here, ¢(-) represents the standard loss function, ws is the structured set of parameters
of the neural network (e.g., attention heads), m is the total number of structured sets, and
|| - |lo denotes the LO norm.

Minimizing the L0 norm is challenging because it is non-convex, NP-hard, and requires
combinatorial search, making structured pruning an NP-hard problem. Structured pruning
can be performed before, during, or after fine-tuning. In this work, we first fine-tune the

model and then apply our pruning methodology.

6.4.2 BERT Architecture

BERT consists of a stack of Transformer encoder layers |4]. Each layer has an identical
structure: a multi-head self-attention (MHAtt) block followed by a multi-layer perceptron
(MLP), with residual connections around each.

The MHAtt block contains /Nj, independently parameterized heads. An attention head
h in layer [is parameterized by matrices W,?, th, Wh € Rin>d and Wh € R where

dy, is typically set to d/Nj,. Given n d-dimensional input vectors = = (1, 22, ...,2,) € R?,
MHAtt is computed as the sum of the outputs of each individual head applied to the input

xT.

Np
MHAtt(z, q) = Y Att(WL, W W W (x, q)
h=1

To allow different attention heads to interact with each other, Transformers apply a non-
linear feed-forward network over the MHAtt output at each layer of the Transformer [4].
Each attention head may focus on different aspects of the input, such as syntax and

semantics.

6.5 Proposed Method

6.5.1 Method Description

Firstly, as Michel et al. [17] proposed, we introduce mask variables &, with values in
{0,1}, where &, = 1 denotes that the corresponding head h is not masked while &, = 0
denotes that head h is masked. This leads to a modification of the formula for Multi-Head
Attention (MHAtt):

Np,
MHAtt(x, q) = th . AttW]?’th,Wﬁ’Wél (z,q)
h=1

This modification helps us to mask the pruned heads without actually pruning the
heads.
We define a new metric, based on the correlation between the attention scores of the

tokens and the corresponding attributions:

It g =E, (corr (Attr(Ar m), AL H))

where z is the data distribution, Az, g the attention score of the L layer and H head,
and Attr(Ar, g) the attribution of this attention head. Both A and Attr(A) have the same
dimension of num_tokens X num_tokens.

For the attribution, we are using Neuron Conductance, which determines if the atten-
tion connection (7, j) has a significant influence on the model’s prediction. Inspired by Hao
et al. [25], we use correlation instead of the max function for aggregating the information.

The goal here is to treat each attention head as a variable x; and each attribution as
a variable y;, with the measurements of each variable for computing the correlation being
the connections of the token relations in each array.

In our research, we propose a new metric, that is used for Structured Pruning. Our

contribution to this field is based on 2 central algorithms. These are the main ideas

Achlati’s mentioned in his work [18].

Structured Pruning with Importance Score

Input: Fine-tuned pre-trained network
Set the initial pruning mask of attention heads to s = 1; > where d is the dimension
repeat

Calculate Iy, for the non-pruned attention heads

Sort heads in descending order based on I,

Prune k% of initial heads with the lowest I, and update s
until the sparsity of s reaches sp > s7: Sparsity Threshold
Output: Pruning mask s

Iterative Structured Pruning (ISP)

Input: Fine-tuned pre-trained network
Set the initial pruning mask of attention heads to s = 14
repeat

Calculate I, for the non-pruned attention heads

Sort heads in descending order based on I,

Prune % of remaining heads with the lowest I; from the pre-trained model and
update s

Fine-tune the pre-trained network
8: until the sparsity of s reaches sp > s7: Sparsity Threshold
9: Output: Pruning mask s

As for Algorithm 6.1, we use this as Achlati’s proposed in his thesis. Firstly, we find
the masks and evaluate in the dev set and then we extend the approach and apply the
masks in the pre-trained model and fine tune it, in order to find winning tickets(Lottery
Ticket Hypothesis). The last one method has been implemented also by Prasanna et al.
[12]. We call it Integrated Gradients Structured Pruning Fine-Tuned (IGSPF).

In this point, inspiring by Michel’s experiment implementation, we apply the masks
on the pre-trained model in each iteration and fine tune it. This is similar, to the ISP
Algorithm 6.2, but in this case in each iteration we prune a certain number of heads from
the initial. We call it Integrated Gradients Structured Pruning Pre-trained (IGSPP).

As for the ISP Algorithm 6.2, we apply our metric to Achlati’s idea to extend the IMP
algorithm Chen proposed in his work [13], for Structured Pruning. The main difference
here from the first algorithm, is that in each iteration, the prune ratio is constant, but
number of heads is not. This is based on the LTH that the Iterative Algorithms could find

more compact and easily learnable sub-networks.

6.5.2 The Concept Behind Correlation

Essentially, the purpose is to maintain heads with a larger positive monotonic rela-
tionship between attention scores and attributions. That is, the more general behavior

of the attention head is that when an attention connection increases, its contribution to

prediction increases at the same time.

The motivation

In my research, I focused on the practical application of structured pruning in NLP
models, using a novel metric that correlates attention mechanisms with attributions derived
from the Neuron Conductance method—a refined version of Integrated Gradients. This
work was motivated by the ongoing debate about whether attention mechanisms can serve
as reliable explanations for model behavior, as highlighted in the papers "Attention is Not
Explanation" [31] and "Attention is Not Not Explanation." [32].

The key finding from my research is that by ensuring attention weights align with robust
attribution methods, we can preserve important interpretive features of a model even after
substantial pruning. This not only challenges the notion that attention mechanisms are
unreliable as explanations but also offers a practical framework for model optimization
that maintains a high degree of interpretability. My work contributes to the debate by
demonstrating that attention, when thoughtfully integrated with attribution methods, can
be a valuable tool in both understanding and improving NLP models.

The idea here is that the attentions on their own are not enough to provide useful
information, so we combine stable attributions to see what happens, in order to contribute

in both directions: Structured Pruning and Attentions as an Explanation.

Spearman. Why?

The goal here is to keep the attention heads whose both variables have similar behavior,
i.e., similar strength and direction between the connections.

Therefore, 1 chose Spearman’s Rank Correlation over Kendall’s Tau and Pearson’s
correlation due to its suitability for non-linear relationships and its sensitivity to rank
differences. Pearson’s correlation assumes linearity and is sensitive to outliers, making
it less appropriate for attention and attribution scores, which may not follow a linear
pattern. Spearman’s Rank Correlation, however, captures monotonic relationships and
provides a comprehensive evaluation of overall ranking agreement, making it more effective
for assessing global trends. Additionally, Spearman’s is more sensitive to significant rank
discrepancies, offering a more nuanced understanding of the data compared to Kendall’s
Tau (used by Jain et al. [31]). This makes Spearman’s the most suitable choice for

analyzing the alignment between attention and attribution scores in this study.

Correlation Analysis

Firstly, we leverage a small subset of the IMDB, RTT, and SST-2 datasets, limiting our
inputs to at most 200 tokens due to resource constraints. This subset is used to conduct
a preliminary analysis of correlation values in both the pre-trained model (trained on the
MLM task) and the fine-tuned model tailored to the corresponding tasks. In Figure 6.1,
we present the correlation matrices for both the pre-trained and fine-tuned models, where
the gradients have been computed with respect to the final prediction for SST-2. (See

Appendix .1 for more datasets)

+-0.03 -0.02 -0.03 -0.05 -0.02 0.06 0.02 -0.01 0.02 0.02

°
o

0.03 002 0.03 0.00 0.02 0.04 001 0.00 0.05 -0.02 -0.00 0.01 0.06 0.03 0.04 -0.02 0.04 0.07 -0.01 0.03 0.10 0.00 0.00 0.04

+40.06 0.11. 0.02 0,06 0.16 .ﬂ.nﬁ 0.10 0.09 -0.03 0.05
0.100
02

24001 000 0.01 -0.02 -0.00 -0.01 -0.01 0.01 -0.00 -0.00 -0.00 0.01 0.075 2-0.00 -0.02 -0.04 0.00 0.03 0.08 -0.01 -0.00 0.03 0.04 -0.08 -0.03
-0.01 -0.01 0.05 -0.01 -0.01 0.00 0.06 0.01 -0.02 -0.01 0.01 -0.03 -0.02 -0.07 0.10 -0.04 -0.09 0.03. 0.01 -0.04 -0.01 0.02 -0.04
0.050 0.1
4-0.01 0.06 -0.01 -0.01 -0.04 0.01 -0.02 0.04 0.02 -0.00 -0.01 0.01 4-0.03 006 0.00 0.05 0.03 0.06 0.04 0.01 0.03 0.02 0.00 0.02
0.01 001 -0.03 0.03 -0.02 0.01 -0.01 -0.01 0.00 -0.01 0.01 0.02 0.025 0.09 -0.02 0.06 0.05 0.03 -0.02 0.04 0.00 -0.02 0.05 0.01 0.00
6-0.02 001 -0.03 -0.04 0.01 -0.00 -0.02 0.03 0.02 0.02 0.03 -0.00 640.00 -0.01 -0.00 0.06 -0.10 0.09 0.03 0.11 -0.10 0.01 0.03 -0.10 0.0
0.02 -0.00 0.01 0.02 -0.01 0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.04 0000 0.12 0,08 0.03 0.10 0.04 0.06 0.01 -0.11 -0.01 -0.10 0.03 0.01
840.03 .ﬂ.na 0.01 -0.01 -0.02 0.01 0.01 0.03 0.05 0.01 -0.02 -0.025 8 +0.01-0.15 0.16 0.05 0.04 0.03 0.00 0.16 -0.02 0.14 0.14 0.02 o1
-0.05 -0.02 -0.02 -0.02 -0.02 0.02 0.02

5

10 10.06 . 0.04 -0.00 0.03 0.01 -0.05 -0.04:

0.00 -0.03 0.01 -0.01 0.00 0.00

0.01 a.nn. -0.02 -0.06 0.00 0.05 ©0.05 013 015 -0.13 0.15 0.14
—0.050
0.06 -0.02 0.01 10 40.06 0.06 0.01 .03 0.18 0.15 0.01
-0.2

0.00 -0.01 -0.01 0.03 —0.075 0.01 0.03 -0.02 0.09 0,08 0.05 0.04 0.01 -0.00 0.03

0 2 4 6 8 10 0 2 4 6 8 10

(a) Pre-trained Model (b) Fine-tuned Model

Figure 6.1. Heatmaps for correlation of the pre-trained and fine-tuned model for the
SST-2 dataset.

As observed in Figure 6.1, there is a significant difference between the correlation
values in the pre-trained and fine-tuned models, indicating that the attention weights
have effectively incorporated task-specific knowledge during fine-tuning. Additionally, we
observe the presence of attention heads with negative correlation values, which are strong
candidates for pruning. Although the overall correlation values are not exceedingly high,
there is still valuable information to be gleaned. Specifically, 3.47% of the attention heads
for the IMDB dataset have correlation values between 0.2 and 0.4, while 2.08% and 4.86%
of the heads in the RTT and SST-2 datasets, respectively, fall within this range. Notably,

the SST-2 dataset yields more robust results in the pruning evaluation.

Metric Insights

Leveraging the fact that, there is valuable information in the models after fine tuning,
we developed our metric (see Section 6.4) an in the following figures, we illustrate the be-
havior of our algorithm across various iterations. These visualizations display the attention
scores alongside their corresponding attributions throughout the algorithm’s progression,
highlighting the selection criteria that guide the pruning process. It is important to note
that the presented scores pertain to the pruned model, which reflects a decreasing number
of heads as the iterations advance.

The visualizations focus on Layer 1 (index 0), since we have already find and apply the
masks and fine-tuned the model. The illustration is only for one sample from MNLI dataset,
thus it is a pair of sentences. As we transition from iteration 2 to iteration 3, Figures [6.2,
6.3], a distinct alteration is observed in the structure of the connections between attention
scores and their corresponding attributions, particularly in attention head 1. Meanwhile,
the other heads maintain a generally consistent structure.

Our primary concern lies in the connections between tokens, rather than merely the
magnitude of the attention scores and attributions. This approach ensures that the overall

structural integrity between the two components is preserved.

6.5.2 The Concept Behind Correlation

Layers

1"

Layers

Layers

Figure 6.3. Attention and Attribution Values on Iteration 3

Finally, by the 6th iteration, Figure 6.4, we observe that the pruned model has reached
a convergence point, where the structural similarities between attention scores and attri-
butions are nearly identical across the remaining heads. This convergence signifies the
algorithm’s efficacy in selecting and preserving attention heads that contribute meaning-

fully to the model’s interpretability and performance.

Figure 6.5 offers deeper insights into the correlation metric during iteration 2. Attention

123

0 1 2 3 4 5 6 7 8 9 10 1
. "
r" : ; : 4
| Q =
@ f .
=0 J
= .
- 4
Heads
0 1 2 3 4 5 3 7 8 9 10 "
e
=0
L]
-
Figure 6.4. Attention and Attribution Values on Iteration 6
0.025
L] L]
0.008
L] 0.020
0.006 L]
4 L]
0.004 0.015 . ° °
" (J ° ° "
5 00021 e & ® S 0010 S e % e 5
H ® £ A J e © L
£ o000d ;g .‘.._;.g_-%:.j‘@..‘% 3: ®ece H) °
* %‘i’é.'e Cilchd = 0.005 4 e o® b L e
~0.0021 o e e . e ° ® b °
o L)
—0.004 ° l»’ 0.000 | & -’-es(:"&:' ;. LA |
~0.006 —0.005 1 * b ‘
L] L]
0.0 01 0.2 0.3 0.4 0.5 0.6 0.0 0.2 0.4 0.6 0.8
Attention Scores Attention Scores
(a) Attention Head 1 (b) Attention Head 3

Figure 6.5. Scatter Plots that shows the spatial relation of the heads 1, 8 on the
iteration 2

head 1 is a clear candidate for pruning, while head 3 is evidently worth retaining. This

conclusion is apparent from the observed distribution of data points in the scatter plot.

6.6 Experiments

6.6.1 Configuration

For our experiments, we have used the classification tasks from GLUE Benchmark and

compare the results with previous work.

MNLI: Multi-Genre Natural Language Inference Corpus [33]

QQP: Quora Question Pairs dataset

o QNLI: Question-answering NLI based on the Stanford Question Answering Dataset
[34]
e MRPC: Microsoft Research Paraphrase Corpus [35]

SST-2: Stanford Sentiment Treebank [36]

CoLA: Corpus of Linguistic Acceptability [37]
e RTE: Recognizing Textual Entailment
e WNLI: Winograd Natural Language Inference Schema Challenge [38]

We have conducted experiments on the pre-trained BERT model, both "bert-base-
uncased" 12-layers, 768-hidden, 12-heads, 110M parameters, (Transformers library) for
various configurations.

Firstly, we have used a balanced subset of the the train set of each task to compute the
metric. At the beginning, we run a statistic analysis in the datasets to find the region of
the data distribution that the most information exist, and then we select randomly 2000
samples of these to compute the attributions and compute the metric. We used STD or
Quantile method for the filtering. (see Appendix .2 for more details)

The evaluation is applied on the whole validation set for each task. The gradients have
been calculated w.r.t. to the final prediction, i.e. after the model has already made the
final decision.

We have conducted various experiments using our pruning metric. Firstly, we present
in the following figures the behavior of each algorithm and then we present more compact
our result, comparing them with Achlati’s and Michel’s work.

The pre-trained model is fine-tuned with the parameters in Table 6.1, being the same
Achlatis used on his work [18].

Dataset MNLI QQP QNLI MRPC SST-2 CoLA RTE WNLI
Train Examples 392,704 363,872 104,768 3,680 67,360 8,576 2,490 635
Iterations/Epoch 12,272 11,371 3,274 115 2,105 268 78 20
Epochs 3 3 3 3 3 3 3 3
Batch Size 32 32 32 32 32 32 32 32
Learning Rate 2 x107° 2x107° 2x107° 2x107° 2x107® 2x107® 2x107° 2x107°
Optimizer AdamW with e =1 x 1078

Eval Metric Matched Acc. Accuracy Accuracy Accuracy Accuracy Matthew’s Accuracy Accuracy

Table 6.1. GLUE tasks [15], dataset sizes, metrics, and fine-tuning hyperparameters
reported in this study.

In addition to the algorithms i recently proposed, i have also conducted experiments

to some others just for comparison.

1. One Importance: We calculate the importance score only once and then we apply
various pruning ratios and evaluate on the dev set. This one was used in Michel’s

paper [17].

2. One Shot ISP: We conudct experiments on ISP for one iteration. Therefore, we
calculate the first importance score and then we apply pruning ratio in the pre-trained
model and then fine tune it. Someone, could tell, that this is the extension of the

"One Importance" algorithm.

6.6.2 Structured Pruning with Importance Score

So, in the following Figures 6.6, we present our results for all the algorithms, put them
together to the same plot.

As the results suggest, the IGSPF and IGSPP have literally better perforance than the
baseline. However, the 2 baseline algorithms we use give pretty good results at low levels
of pruning, if one considers the reduction of the time to find the subnetworks, as they do
not need fine tuning.

In general, on large datasets, one may notice that our metric works quite well, since it
keeps the perrformance quite high, even at pruning levels of 80%. While the two algorithms
have essentially similar behavior, we note that IGSPP works better for smaller datasets,
such as MRPC, WNLI, CoLA.

Noteworthy is the behavior of WNLI, where as the performance decreases on all
datasets, during the iterations, WNLI, improves a lot. A possible interpretation is that
BERT is overparameterized for such a small dataset which has a bad effect. By reducing
the number of heads it seems that only the really useful ones remain. This is especially
apparent in baseline algorithms, where they cut the heads during inference, which shows
that too many heads during inference more divide the model than help it to make a de-
cision. Also, we find that IGSPP, gives better results, which is reasonable, since it only
finetunes the useful heads by metric from the beginning.

These differences in performances across the datasets, show the qualitative difference
between the two algorithms IGSPF, IGSPP. In large datasets they do not differ much, and
one could assume that the volume of the data, where the weights are combined in the final
configuration, is responsible. Thus, the weights that have been deemed important in the
end, whether you find them via fine tune or via prune in Pretrained and then finetune,
will end up being the same groups. On small non-quality datasets, where weights have
not converged, IGSPP, does relatively better as it continuously excludes weights from the
original model and starts the process by changing the understanding of the weights that
will be trained.

However, we also plot the one shot ISP (see Algorithm 6.2) in the same figure to see the
improvement. It is obvious that it suprpasses the others and preserve high performance

utill deep pruning rate such as 90%.

6.6.3 Iterative Structured Pruning

After that, we have conducted experiments for the Algorithm ISP (see Algorithm ¢.2).
The experiments that have been done concern only the datasets MNLI, QNLI as they

require large computing resources and time and were tested only for one seed.

COLA (BERT base uncased)

0.6 1

0.5 1

0.4 4

0.3+

MCC

0.2 4

0.1+

0.0 1

One importance

—_
—— Importance Score
—— IGSPF

—— IGSPP

—— one shot ISP
Initial Value

T T u T T T T T
o] 14 28 42 56 70 84 98
Number of Pruned Heads

T T T T
112 126 140 154

MRPC (BERT hase uncased)

—t—

0.8 1

0.7

Accuaracy
o
=)
\

o
o
L

0.4 4

0.3 4

—— One importance
—— Importance Score
—— IGSPF

—— IGSPP

—— one shot ISP
Initial Value

T T u T u T T T
0 14 28 42 56 70 84 98
Number of Pruned Heads

T T T T
112 126 140 154

QQP (BERT base uncased)

0.9 1

0.8 +

Accuaracy
o
~

,

o
o
L

0.5 1

0.4 4

NN

—— One importance
—— Importance Score
—— IGSPF

—— IGSPP

—— one shot ISP
Initial Value

T T u T y T T T
0 14 28 42 56 70 84 98
Number of Pruned Heads

T T T T
112 126 140 154

WNLI (BERT base uncased)

0.55 +

e

n

=]
L

o

s

&
L

Accuaracy
o o °
W W E
(=] w o
N 1 |

e

N

o]
L

One importance
Importance Score
IGSPF

IGSPP

one shot ISP

- Initial value

ERER

Figure 6.6. Models evaluation on the validation set for each task for all the variations of

u T y T T T
0 14 28 42 56 70 84 98
Number of Pruned Heads

T T T T
112 126 140 154

MNLI (BERT base uncased)

0.8
0.7 1
>
e
S
o
06
-
@
=
=
5]
= 057 —— one importance
—— Importance Score
—— IGSPF
041 — iGspp
—— one shot ISP
- Initial value
0.3 +— T T T T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads
QNLI (BERT base uncased)
0.9 1
0.8 4
>
&
3
T 0.7
I+
<2
—— One importance
0.6 4 —— Importance Score
—— IGSPF
—— IGSPP
—— one shot ISP
0.5 4 - Initial value
T T T u T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads
SST2 (BERT base uncased)
0.9 1
0.8 4
>
&
i
3 07
<
—— One importance
0.6 4 — Importance Score
—— IGSPF
—— IGSPP
—— one shot ISP
0.5 1 - Initial value
T T T u T T T T T T T T
0 14 28 42 56 70 84 98 112 126 140 154
Number of Pruned Heads
RTE (BERT base uncased)
0.701 —e— One importance
—— Importance Score
—— IGSPF L
0.65 —— IGSPP
—=— one shot ISP
————— Initial Value
Z 0.60 4
o
=
3
£
0.55
0.50

T T T T T T
28 42 56 70 84 98
Number of Pruned Heads

T T T T
112 126 140 154

the first Algorithm ¢.1. The diagrams are the average value of three random seeds.

MNLI (BERT base uncased) QNLI (BERT base uncased)

0.9 = B i S5 T
0.8 gy
™~
0.7 1 \ 0.8
>
9
e
E =
9
§ 06+ g
3 g 0.7
£ 2
]
g o5
0.6
041 ——— Initial value -~ Initial Value
—— one shot ISP —— one shot ISP
ISP 0.5 1 ISP
0.3+ T T T T T T T
g‘t“ g‘P ,\n‘P qg\“ G\“‘g\“ o 0w\“ ,_3:\“ ,\n\ﬂ cf\=l 5"‘-“@"“ o
o © by o7 gAY AP oF ® 2 o2 AYAYNE
RS i k2 BT A RS L) O
Percentage of Survived Weights Percentage of Survived Weights

Figure 6.7. Models evaluation on the validation set for ISP variations (see Algorithm
). The experiments have been conducted for one seed.

We observed that the ISP procedure in this configuration did not outperform the one-
shot version. This suggests that the importance score obtained in the first iteration is highly
effective, as it appears to capture a significant amount of crucial information. It’s important
to highlight that the one-shot ISP is essentially the "Once Importance" algorithm applied
within the framework of the Lottery Ticket Hypothesis.

This finding is particularly valuable because it suggests that we might not need to
run extensive, resource-intensive experiments to optimize the model, potentially saving

significant time and computational resources.

6.6.4 Winning Tickets?

For some Algorithms, we are interested in if we could find the winning tickets by
leveraging them. So, firstly it might be useful to define, based on Chen et al. [13] what is
(i) a matching subnetwork, (ii) winning ticket and (iii) a universal subnetwork.

As he mentions in his paper:

Let A%(f(z;0;,7:)) be a training algorithm (e.g., AdamW with hyperparameters) for
a task T (e.g., CoLA) that trains a network f(z;6;,7;) on task T for ¢ steps, creating
network f(z;0;4+4,vitt). Let Oy be the BERT-pre-trained weights. Let ep(f(x;8)) be the
evaluation metric of model f on task 7.

Matching subnetwork. A subnetwork f(z;m ® 6,+) is matching for an algorithm
AL, if training f(z;m ® 0,~) with algorithm A%, results in an evaluation metric on task T

no lower than training f(z;60,7) with algorithm A%. In other words:

er (A7 (f(zsm ©0,7))) > er (AL(f(2;60,7)))

Winning ticket. A subnetwork f(z;m ®#6,~) is a winning ticket for an algorithm A%,
if it is a matching subnetwork for A% and 6 = 6.
Universal subnetwork. A subnetwork f(z;m ® 0,~7,) is universal for tasks {T;}¥,

if it is matching for each Afj;i for appropriate, task-specific configurations of ~r,.

Based on Chen, due to fluctuations in order to concider a subnetwork to be a winning
ticket, it needs the performance of full BERT model to be within a standard deviation of
the performance of the subnetwork(for the equality). Therefore, the condition, we use is

that the full model performance should be less than the upper bound of the subnetwork

performance.

Dataset QNLI QQP MRPC WNLI RTE SST-2 CoLA
Sparsity IGSPF 100% 30% 10%
Sparsity IGSPP 10% 100% 30% 30% 10%
Sparsity one shot ISP 20% 60% 30% 100% 30% 20%
Full BERTgBASE 91.5 £ 0.06 91.0 4+ 0.07 84.2+12 394+£08 66.1+12 93.0+03 57.5+09
f(z, migspr © o) 56.3 + 0.0 65.2 + 2.2 57.3 + 14
f(a, migspp © fo) 843+ 1.1 563+ 0.0 638433 925+ 04 536+ 0.3
f(x, Mone shot 1sP @ o) 912 £0.2 91.0+0.05 84.2+03 563+00 66.0+1.6 58.8 £ 0.9

Table 6.2. Winning Tickets across the datasets for IGSPF, IGSPP and one shot ISP

It could be observed that a one-shot ISP (Iterative Sparsity Pruning) can identify
winning tickets at high levels of sparsity in datasets where other algorithms fail to detect
them entirely.

After that, we compare our results with Achlatis’ best results, as a reference. The
results have not been reproduced, so the comparison is approximate and qualitative.

At this point, we need to underline that the importance computation in Achlati’s work,
use the validation set, while we use balanced subset of the trainset.

To be aligned with Achlati’s experiments, in Table 6.3, we present the results for
pruning rate 70% and for the simple version without apply LTH, while in Table 6.4 there
are results of LTH for pruning rate 80%.

Task MNLI QNLI QQP SST-2 MRPC CoLA
Michel(a = 1.0) 0.717 0.734 0.791 0.875 0.639 0.286
Achlatis 0.732(0.4) 0.787 (0.7) 0.811 (0.6) 0.878 (0.4) 0.730 (0.6) 0.387 (0.5)
Ours 0.374 0.500 0.742 0.836 0.317 0.137

Table 6.3. Performance metrics for different tasks under methods, pruning and
evaluating the fine tuned model. The greatest number is bold.

Task MNLI QNLI MRPC SST-2 CoLA
Michel (o = 1.0) 0.817 0.820 0.773 0.903 0.329
Achlatis 0.824 (0.6) 0.880 (0.4) 0.783 (0.4) 0.918 (0.4) 0.435 (0.5)
(Ours) IGSPF 0.776 0.877 0.706 0.895 0.261
(Ours) IGSPP 0.769 0.866 0.701 0.889 0.334

Table 6.4. Performance metrics for different tasks under methods, applying the Lottery
Ticket Hypothesis. The greatest number is bold, while we underline the values that
outperforms Michel’s approach.

Our metric in the simple algorithm could not surpass previous work and it is signifi-
cantly less efficient. However, applying LTH, the results are better, outperforming Michel’s
approach for some tasks. In Table 6.4, we have also added the modified version of the Al-

gorithm 6.1, using pre-trained model.

7.1 Discussion

This research has focused on the structured pruning of attention heads within Trans-
former models, particularly aiming to enhance model efficiency while maintaining inter-
pretability and performance. A key contribution of this work is the development of a novel
correlation-based metric between attention scores and Neuron Conductance attributions.
This metric allowed for more effective pruning by identifying and preserving attention
heads that exhibited strong positive relationships between these variables. This approach
is designed to reduce the computational complexity of Transformer models, while still

ensuring that the most critical components are retained.

To implement this, two structured pruning algorithms were introduced and evaluated.
These algorithms demonstrated their ability to achieve significant model compression, par-
ticularly in smaller datasets, while maintaining high performance. The novel metric used in
these pruning algorithms effectively identified attention heads that could be pruned with-
out negatively impacting the model’s overall effectiveness. The success of these methods
illustrates that even highly parameterized models like BERT can be optimized without

substantial loss of performance.

One of the most notable findings of this research is the performance of the one-shot
ISP (Iterative Structured Pruning) method, which consistently provided the best results.
The one-shot ISP method successfully identified "winning tickets" and maintained strong
performance even at high levels of sparsity. This suggests that the method is particularly
effective for structured pruning, positioning it as a preferred approach for model optimiza-

tion when efficiency is critical.

Another significant contribution of this research is its relevance to the ongoing debate on
whether "Attention is not Explanation." Our findings suggest that attention mechanisms,
when combined with robust attribution methods like Neuron Conductance, can indeed
provide meaningful explanations for model decisions. This highlights the value of attention
not only as a computational tool but also as a mechanism that, when interpreted correctly,
can offer insights into model behavior and decision-making processes. This contribution
enriches the field of interpretability in machine learning, demonstrating that attention,

when thoughtfully applied, remains a useful tool for model explanation.

7.2 Future Work

This research opens up several avenues for further exploration and improvement. The

following directions are proposed for future work:

e Attribution with Respect to the Golden Label: An interesting extension of
this work would involve calculating attributions with respect to the golden label
instead of the model’s prediction. This approach could provide deeper insights into
how attention heads contribute to correct model predictions and could refine the

pruning process further.

e Testing Masks on Similar Tasks: To assess the generalizability of the pruning
masks developed in this study, future research could apply these masks to models
fine-tuned on similar tasks. This would help determine whether the masks retain

their effectiveness across different but related tasks, expanding their utility.

e Transfer Learning from MLM Models: Another promising direction is to ex-
plore transfer learning using masks derived from a Masked Language Model (MLM).
Specifically, masks could be generated from the MLM model (targeting the index
of the masked token) and then applied to fine-tuned models. This approach aligns

!

with the concept of "universal tickets," suggesting that such masks could be widely

applicable across different tasks.

e Using Kendall Correlation: Finally, to build on the findings of this research,
Kendall’s Tau correlation could be explored as an alternative to Spearman’s Rank
correlation. This is particularly relevant in light of the arguments made in the “Atten-
tion is not Explanation” paper, where Kendall’s Tau was used to assess the reliability
of attention as an interpretive tool. This comparison could offer new perspectives on

the robustness of the pruning metric and potentially improve its effectiveness.

These future work directions aim to enhance the effectiveness, generalizability, and
interpretability of structured pruning techniques, contributing to the development of more

efficient and versatile models.

1]
2]
3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

Ian Goodfellow, Yoshua Bengio xot Aaron Courville. . MIT Press,
2016.

Rafael C Gongzalez. . Pearson education india, 2009.

Dzmitry Bahdanau, Kyunghyun Cho xot Yoshua Bengio.
. arXiw e-prints, oehldo arXiv:1409.0473,
2014. _eprint: 1409.0473.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser xou Illia Polosukhin. . CoRR,
abs/1706.03762, 2017. arXiv: 1706.03762.

Tomas Mikolov, Kai Chen, Greg Corrado xou Jeffrey Dean.
, 2013.

R. Ducharme P. Vincent Y. Bengio. . Journal
of Machine Learning Research, 2003.

Jacob Devlin, Ming Wei Chang, Kenton Lee xou Kristina Toutanova.
, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy xou Samuel
R Bowman.

. Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, ce\idec 353-355, 2018.

Jonathan Frankle xou Michael Carbin.
. 2018. Publisher: arXiv Version Number: 5.

Olga Kovaleva, Alexey Romanov, Anna Rogers xot Anna Rumshisky.
. CoRR, abs/1908.08593, 2019. arXiv: 1908.08593.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich xou Ivan Titov.
. Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, oehidec 5797-5808, Florence, Italy, 2019. Association for Computational

Linguistics.

Sai Prasanna, Anna Rogers xat Anna Rumshisky.
. Proceedings of the 2020 Conference on Empirical Methods

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

in Natural Language Processing (EMNLP), oehidec 3208-3229, Online, 2020. Associ-

ation for Computational Linguistics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang
Wang xor Michael Carbin.
. CoRR, abs/2007.12223, 2020. arXiv: 2007.12223.

Arun Mallya xou Svetlana Lazebnik.
. 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy xou Samuel
R. Bowman.
. arXw preprint arXiw:1804.07461, 2019.

Kedar Dhamdhere. 2018.

Paul Michel, Omer Levy xou Graham Neubig.
CoRR, abs/1905.10650, 2019. arXiv: 1905.10650.

Stefanos Achlatis. . PhD
Thesis, National Technical University of Athens, 2021.

OpenAl . 2023.

Romal Thoppilan, Daniel M De Freitas, Jamie Hall, Noam Shazeer, Abhishek Kul-
shreshtha, Heng Tze Cheng xou et al.
. arXw preprint arXiw:2201.082539, 2022.

Yuntao Bai, Andy Jones, Kahin Ndousse, Amanda Askell, Anna Chen, Nisanth
DasSarma xou et al.
. arXiw preprint arXiv:2204.05862, 2022.

Mukund Sundararajan, Ankur Taly xou Qiqi Yan.

Proceedings of the 34th International Conference on Machine Learn-
ingDoina Precup xou Yee Whye Teh, emueintéc, topoc 70 oto Proceedings of Machine
Learning Research, oelidec 3319-3328. PMLR, 2017.

Soumya Sanyal xou Xiang Ren.
. arXiv e-prints, oeNdo arXiv:2108.13654, 2021. eprint: 2108.13654.

Kedar Dhamdhere, Mukund Sundararajan xou Qiqi Yan.
CoRR, abs/1805.12233, 2018. arXiv: 1805.12233.

Yaru Hao, Li Dong, Furu Wei xot Ke Xu.
. arXiv e-prints, oehido arXiv:2004.11207,
2020. _eprint: 2004.11207.

Zhuang Liu, Mingjie Sun, Zhijie Zhou, Gao Huang ot Trevor Darrell.
. International Conference on Learning Representations
(ICLR), 2019.

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Kevin Yang, Tim Michaels, Yonatan Belinkov xot James Glass.

. Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP), cehidec 1828-1840, 2021.

Shiyue Hao, Zhongyu Wei, Yiming Liu xo Xiaoyu Su.

. Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP), oehidec
4354-4364, 2021.

Eren IlThan, Arda Senocak xou Trevor Darrell.
. arXw preprint arXiw:2401.00501, 2024.

Vibhor Grover, Akshay Rathi, Nachiket Kapre xou Shikhar Verma.

. Proceedings of the 2028 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), oehidec 1234-1245, 2023.

Sarthak Jain xoa Byron C. Wallace. . CoRR,
abs/1902.10186, 2019. arXiv: 1902.10186.

Sarah Wiegreffe xoau Yuval Pinter. . CoRR,
abs/1908.04626, 2019. arXiv: 1908.04626.

Adina Williams, Nikita Nangia xot Samuel Bowman.
. Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, oehidec 1112-1122, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev xo Percy Liang.

. Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, cehidec 2383—
2392, 2016.

William B. Dolan xou Chris Brockett.
. Proceedings of the Third International Workshop on Paraphras-
ing (IWP2005), 2005.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng xou Christopher Potts.

. Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, oehidec 1631-1642, 2013.

Alex Warstadt, Amanpreet Singh xou Samuel R. Bowman.
. arXiv e-prints, oeNdo arXiv:1805.12471, 2018. _eprint: 1805.12471.

Ernest Davis, Hector J. Levesque xou Leora Morgenstern.
. AAAI Spring Symposium: Logical Formalizations of Commonsense Rea-

soning, 2011.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

Stuart J Russell xat Peter Norvig. . Pearson,
2016.

Kevin P. Murphy. . MIT Press, Cam-
bridge, Mass. [u.a.], 2013.

Finale Doshi-Velez xow Been Kim.
. arXiv e-prints, ceAida arXiv:1702.08608, 2017. _eprint: 1702.08608.

Yann LeCun, John Denker xou Sara Solla. . Advances in
Neural Information Processing SystemsD. Touretzky, emyueintrc, toyog 2. Morgan-
Kaufmann, 1989.

Emma Strubell, Ananya Ganesh xou Andrew McCallum.
. Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, oelidec 3645-3650, 2019.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lucy M Munguia, Daniel
Rothchild xou Jeff Dean.
arXiv preprint arXiv:2104.10350, 2021.

Peter Henderson, Jieru Hu, David Romero, Gregory Larson, David Cafaro, W Clarke
xat Joelle Pineau.

. Journal of Machine Learning Research, 21(1):1-43,
2020.

Kevin Clark, Urvashi Khandelwal, Omer Levy xou Christopher D Manning.

. Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
oehidec 276-286, 2019.

Yang Liu xoau Mirella Lapata. . Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), celidec 3730-3740, 2019.

Tan Tenney, Dipanjan Das xou Ellie Pavlick.
. Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, oeNidec 4593-4601, Florence, Italy, 2019. Association for Compu-

tational Linguistics.

Mitchell A Gordon, Kevin Duh xo Nicholas Andrews.
arXiv preprint
arXiv:2002.08307, 2020.

Yoav Goldberg. . arXiv preprint
arXw:1901.05287, 2019.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Anna Rogers, Olga Kovaleva xoat Anna Rumshisky.
. Transactions of the Association for Computa-
tional Linguistics, 8:842-866, 2020. Place: Cambridge, MA Publisher: MIT Press.

Victor Sanh, Lysandre Debut, Julien Chaumond xo Thomas Wolf.
arXiv preprint
arXiw:1910.01108, 2019.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden xot Alexandru Peste.

. Journal of Machine Learning Research, 22(241):1-124, 2021.

Naresh R Zadeh xou Andreas Moshovos.
. Proceedings of the 47th Annual International Symposium on

Computer Architecture, celidec 776-789, 2020.

Trevor Gale, Erich Elsen xou Sara Hooker.
. arXw preprint arXiw:1902.09574, 2020.

Tom M Mitchell xor Tom M Mitchell. , Topoc 1. McGraw-hill New
York, 1997.

Christopher M Bishop xot Nasser M Nasrabadi.
, Toyog 4. Springer, 2006.

Yijun Yuan, Jiawei Hou, Andreas Niichter xou Soren Schwertfeger.
CoRR, abs/2003.05199,
2020. arXiv: 2003.05199.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong xot Qing He. . CoRR,
abs/1911.02685, 2019. arXiv: 1911.02685.

Richard O Duda. . Stork, Pattern Classification, A
Willey-Interscience, 2001.

Léon Bottou. . Pro-
ceedings of the 19th International Conference on Computational Statistics (COMP-
STAT’2010)Yves Lechevallier xoau Gilbert Saporta, empehntéc, oehide 177187, Paris,
France, 2010. Springer.

Yuanzhi Li, Colin Wei xou Tengyu Ma.
. CoRR, abs/1907.04595,
2019. arXiv: 1907.04595.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia xoat Kaiming He.

CoRR, abs/1706.02677, 2017. arXiv:
1706.02677.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

77]

M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt xou B. Scholkopf.
. IEEFE Intelligent Systems and their Applications, 13(4):18-28, 1998.

Sepp Hochreiter xou Jiirgen Schmidhuber. . Neural compu-
tation, 9(8):1735-1780, 1997. Publisher: MIT press.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan
Salakhutdinov, Richard S. Zemel xo Yoshua Bengio.

. CoRR, abs/1502.03044, 2015.
arXiv: 1502.03044.

Kaiming He, Xiangyu Zhang, Shaoqing Ren xou Jian Sun.
. CoRR, abs/1512.03385, 2015. arXiv: 1512.03385.

Jimmy Lei Ba, Jamie Ryan Kiros xoau Geoffrey E. Hinton. , 2016.
__eprint: 1607.06450.

Triet H. M. Le, Hao Chen xow Muhammad Ali Babar.
. ACM Computing Surveys, 53(3):1-38, 2020.

U. Fano. . Phys.
Rev., 124:1866-1878, 1961.

Jeffrey Pennington, Richard Socher xou Christopher Manning.
. Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), celidec 1532-1543, Doha, Qatar, 2014.

Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee xor Luke Zettlemoyer. , 2018.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky xot Sanjeev Khu-
danpur. . Proceedings of the 11th
Annual Conference of the International Speech Communication Association, INTER-
SPEECH 2010, oehidec 1045-1048. ISCA, 2010.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei xou Ilya Sutskever.
, 2019.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer xot V. Stoyanov.
. arXiv preprint arXiw:1907.11692, 2019.

Kevin Clark, Minh Thang Luong, Quoc V. Le xoau Christopher D. Manning.
. arXw
preprint arXiw:2003.10555, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma
xow Radu Soricut.
. arXw preprint arXiw:1909.11942, 2020.

78]

[79]

[30]

[81]

[82]

[33]

[34]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

[92]

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio xow Lucia Specia.

Proceedings of the 11th International Workshop on Semantic
Evaluation (SemFEval-2017), ceNidec 1-14, 2017.

Roy Schwartz, Jesse Dodge, Noah A. Smith xou Oren Etzioni. . 2019.

Matthias Aenmacher xot Christian Heumann.
. 2020.

Wei Tsung Kao, Tsung Han Wu, Po Han Chi, Chun Cheng Hsieh xoat Hung Yi Lee.

. 2021.

Joris Baan, Maartje ter Hoeve, Marlies van der Wees, Anne Schuth xou Maarten de
Rijke. , 2019.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters xoar Noah A.
Smith. . 2019.

Adam Roberts, Colin Raffel xou Noam Shazeer.
2020.

Yongjie Lin, Yi Chern Tan xou Robert Frank.
. 2019.

Song Han, Jeff Pool, John Tran xouu William J. Dally.
. 2015.

Qiangui Huang, Kevin Zhou, Suya You xo Ulrich Neumann.
. 2018.

Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang xou Lanshun Nie.
. Proceedings of the AAAI Conference
on Artificial Intelligence, 33:5676-5683, 2019.

Ari S. Morcos, Haonan Yu, Michela Paganini xoat Yuandong Tian.

2019.

Haonan Yu, Sergey Edunov, Yuandong Tian xou Ari S. Morcos.
. 2020.

Y. LeCun, L. Bottou, Y. Bengio xou P. Haffner.
. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yanzhuo Ding, Yang Liu, Huanbo Luan xot Maosong Sun.
. Proceedings of the 55th Annual Meeting of the

193]

94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

Association for Computational Linguistics (Volume 1: Long Papers), oehidec 1150~
1159, 2017. Place: Vancouver, Canada Publisher: Association for Computational

Linguistics.

Christos Louizos, Max Welling xot Diederik P. Kingma.
. 2018.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh xou Dhruv Batra.

. arXw e-prints, cehido arXiv:1610.02391,
2016. _eprint: 1610.02391.

Marco Tulio Ribeiro, Sameer Singh xow Carlos Guestrin.

. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
'16, oehidec 1135-1144, New York, NY, USA, 2016. Association for Computing Ma-

chinery. event-place: San Francisco, California, USA.

Scott Lundberg xow Su In Lee.
arXiv e-prints, ceNdo arXiv:1705.07874, 2017. _eprint: 1705.07874.

W. James Murdoch, Peter J. Liu xou Bin Yu.
. arXiv e-prints, cehida
arXiv:1801.05453, 2018. eprint: 1801.05453.

Chandan Singh, W. James Murdoch xou Bin Yu.
. arXiv e-prints, cehida arXiv:1806.05337, 2018. _ eprint:
1806.05337.

Avanti Shrikumar, Peyton Greenside xou Anshul Kundaje.

. Proceedings of the 34th Interna-
tional Conference on Machine LearningDoina Precup xou Yee Whye Teh, empeintéc,
topog 70 oto Proceedings of Machine Learning Research, cehideg 3145-3153. PMLR,
2017.

Pieter Jan Kindermans, Kristof Schiitt, Klaus Robert Miiller xow Sven Déhne.

arXiv e-prints, oceNdo arXiv:1611.07270, 2016. eprint: 1611.07270.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue xou Xiang Ren.

. arXiv e-prints, oehida arXiv:1911.06194, 2019. _eprint: 1911.06194.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong,
Richard Socher xou Byron C. Wallace.

arXiv e-prints, oehida arXiv:1911.03429, 2019. _ eprint:
1911.03429.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Joseph Enguehard.
. arXiv e-prints, oeAida arXiv:2305.15853, 2023. _ eprint:
2305.15853.

Narine Kokhlikyan.

Anmol Nayak xou Hari Prasad Timmapathini.
arXi
e-prints, oehida arXiv:2106.07349, 2021. eprint: 2106.07349.

Narine Kokhlikyan.
, 2020.

Gabriel Erion, Joseph D. Janizek, Pascal Sturmfels, Scott Lundberg xou Su In Lee.

arXw e-prints, cehida arXiv:1906.10670, 2019. _ eprint:
1906.10670.

Hanjie Chen, Guangtao Zheng xot Yangfeng Ji.
Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, oehideg 5578-5593,

Online, 2020. Association for Computational Linguistics.

Enja Kokalj, Blaz Skrlj, Nada Lavra¢, Senja Pollak xoat Marko Robnik—éikonja.

. Pro-
ceedings of the EACL Hackashop on News Media Content Analysis and Automated
Report Generation, oehidec 1621, Online, 2021. Association for Computational Lin-

guistics.

Appendices

143

.1 Correlation Analysis

00.00 0.02 -0.01 -0.00 -0.02 0.01 0.02 0.01 0.00 0.02 -0.00 0.02 0 0.02 -0.22 012
0.06
0.02 0.02 000 0.01 001 001 003 0.02 -0.01 -0.02 0.01 0.01 0.02 0.02 {).01. 0.07 0.04 0.2
2001 -0.01 -0.02 -0.00 -0.00 0.01 -0.00 -0.00 -0.01 0.00 -0.00 0.02 004 24001 -0.01 -0.05 0.03 0.03 -0.04 -0.11 -0.01 -0.01 -0.01
-0.01 0,02 0.02 0.01 0.00 0.01 0.02 0.01 001 001 -0.01 0.00 -0.05 0.02 -0.03 -0.01 -0.05 0.10 0.04 0,00 -0.00 -0.08 -0.02 0.05 o
40.00 0.02 0.01 0.00 -0.01 0.01 0.01 0.01 0.02 -0.01 0.01 -0.01 0.02 44000 0.08 011 -0.01 -0.01 -0.01 0.00 -0.10 0.03 0.00 -0.01 0.03 00
0.01 -0.02 0.03 0.02 0.00 0.01 -0.00 0.03 0.03 0.01 0.03 0.03 0.00. 0.03 -0.00 -0.01 -0.04 -0.08 -0.09 0.07 -0.00 -0.00 -0.01
60.02 0.03 002 -0.02 0.01 -0.00 0.02 -0.00 0.03 0.03 0.02 0.02 000 6000 0.01 0.04 -0.02 0.08 -0.01 -0.05 -0.04 0.01 -0.00 0.01 -0.06 -0.1
0.02 0.01 003 -0.03 004 0.01 -0.01 0.04 0.02 0.02 0.0l 0.01 0.03 0.01 -0.01 0.05 -0.09 0.00 0.02 -0.03 0.00 0.01 -0.03 0.09
-0.02
8{0.00 -0.02 -0.00 0.03 001 -0.00 0.02 0.02 0.00 0.01 -0.00 -0.02 84-0.00 0.00 0.03 0.03 001 0.01 -0.02 0.05 0.03 -0.04 0.02 0.07 oz
-0.03 -0.00 0.00 -0.01 -0.00 -0.01 -0.01 0.02 0.03 . _0.04 -0.04 0.00 0.03 -0.00 0.02 0.06 -0.04 0.03 -0.00 -0.04 0.02 -0.02 o3
10 0.01-0.03 0.02 -0.02 0.03 002 0.02 0.00 10 {).oo. 0.03 -0.02 0.00 0.02 -0.10 0.06 -0.06 -0.04 -0.05 -0.07
-0.01 0,01 0.01 0.01 0.00 -0.01 -0.02 -0.02 0.01 0.01 -0.00 -0.00 —0.06 -0.02 0.01 0.00 0.03 0.04 0,02 0.02 0.00 0.01 0.02 0.02 0.00 04
0 2 a 6 8 0 H 2 a 6 8 0

(a) Pre-trained Model (b) Fine-tuned Model

Figure 1. Heatmaps for correlation of the pre-trained and finetuned model for the IMDB
dataset

. 001 -0.02 4.03.0.01 007 0.02 -0.01 003 -0.03 0.05 015 010.02/0.17 -0.02 0.03 o.usi- .02 0.12 -0.08 -0.11 0.06 03
0.02 -0.00 0.03 0.01 002 0.01 0.01 0.04 0.03 -0.03 -0.00 -0.01 0.05. 0.00 -0.00 0.16 -0.00 0.11 005 0.09 0.09 002 -0.08
210.02 -0.01 0.04 0.02 0.00 -0.01 -0.00 0.01 0.00 -0.02 -0.01 0.03 210,06 -0.02 -0.07 0.10 0.09 0.17 013 006 -0.16 0.05 -0.05 0.02 0z
010
0.01 0.03 0,09 -0.03 0.00 0.09 0.00 -0.03 -0.03 -0.00 -0.03 002 -0.01 0.09 0.10 -0.16 0.07 -0.10 0.07 0.05 0.09 0.06 0.06
4 o.na.o.nz -0.04 0.01 0.02 0.05 0.02 0.01 -0.03 0.00 44004 013 -0.01-0.09 0.07 -0.05 0.09 0.02 0.02 0.06 0.08 0.01 o
0.00 0.04 -0.04 0.04 -0.01 -0.01 -0.00 -0.03 0.03 0.03 0.02 0.04 003 000 0.03 0.04 0.03 008 0.00 0.03 -0.09 -0.14 0.10 0.01 0.04 00
6002 001 0.05 -0.01 -0.02 -0.04 -0.04 0.06 001 0.05 0.03 640.11 0.04 0.02 006 -0.02 -0.01 0.08 -0.01 -0.02 -0.09 0.06 -0.13
0,03 -0.01 0.00 0.01 0,03 -0.03 0.03 0.02 0.01 -0.01 -0.03 000 0.04 0.04 0.06 0.10 0.05 -0.05-0.08 0.01 0.00 -0.13 -0.07 -0.03 -0.1
80,00 .4:.04 0.04 -0.01 0.02 -0.01 0.04 0.03 0.04 0.00 -0.02 §001 -0.05 0.16 009 0.1 003 0.0l 014 0.09 0.03 -0.09 -0.00
-0.04 0.01 001 o.na. 0.03 -0.02 0.05 —0.05 000 -0.05 0,07 0.11 0.09 013 0.04 0.04 -0.10 -0.05 0.01 0.05 02
10 002 -0.03 0,04 0.01 -0.04 10 40.01 0.05 0.09 0.07 0.18 0.02 002 0.07 0.05 -0.07 -0.13
-03
-0.02 -0.04 0.01 —0.10 002 0.03 -0.06 0.04 0.09 003 0.06 -0.02 0.06 -0.07 0.07 -0.02
0 2 4 6 8 10 0 2 4 6 8 10

(a) Pre-trained Model (b) Fine-tuned Model

Figure 2. Heatmaps for correlation of the pre-trained and finetuned model for the
Rotten-Tomatoes dataset

2 Data Pre-Processing

Number of Tokens in Cola Train Dataset

2000

1750

1500

1250

Frequency

500

Mean + 1 5td: 13.43

Max: 45

Filter Method: Quantile

20
Number of Tokens

(a) CoLA Dataset

Number of Tokens in Mrpc Train Dataset

300

Min: 16

250

frequency

100

Most Popllar: 49

-15td: 37.24
td: 63.24

40 60
Number of Tokens

Max: 100

ter Method: Standard Devigtion|

(¢) MRPC Dataset

Number of Tokens in Qqp Train Dataset

175000

150000

125000

100000

Frequency

75000

50000

25000

Filter Method: Quantile

Max: 327

Number of Tokens

150 200

(e) QQP Dataset

Number of Tokens in Wnli Train Dataset

z
2

100

frequency

Figure 3. Data Distribution for train set leveraging the bert-base-uncased tokenizer

Mean - 1 Std: 18.30

Mean + 1 Std: 49,84,

60
Number of Tokens

Max: 105

Filter Method: Quantile

100

(9) WNLI Dataset

Number of Tokens in Mnli Train Dataset

g
120000 <
s
H
100000
80000
g
£ 60000
40000
20000
Filter Method: Quantile
o
200 300 400
Number of Tokens
Number of Tokens in Qnli Train Dataset
ot i
of b
= P
40000 it} Z
@t
30000 i
z i
g i
g 4
g i
= 20000
10000
Filter Method: Quantile
0
0 100 200 300 400 500
Number of Tokens
Number of Tokens in Sst2 Train Dataset
14000 -
ds i
! 5 3
12000 i S i
af 5 2
&l S
8 7
10000 = N
s =
> 8000 =
g g
g 2
z £l
g i
£ 6000 B
4000
2000
Filter Method: Quantile
0
30 40 50 60
Number of Tokens
Number of Tokens in Rte Train Dataset
Most Popular: 37
9 8
9 2 &
A @ o
4001 E 2 &
H 3 =
N
H
300 ki
g
L]
g
£ 200
100
Filter Method: Quantile
o

150
Number of Tokens

(h) RTE Dataset

250

Number of Tokens in Cola validation Dataset

140
- 3 4
1209 E 5 %
H 5 2
@
100 +
c
3
H
z 80
g
H
S
g
= 60
£y
20
Filter Method: Quantile
o
30
Number of Tokens
Number of Tokens in Mrpc validation Dataset
Mdst Pogular: 41 H
0{ .
Q 2
H 2
25
20
g
g
s
E 15
10
Filter M2tfod:
o
20 50
Number of Tokens
Number of Tokens in Qqp validation Dataset
ost fopuiat: 19
10000 a s
o H
7
8000 s
i
=
g
H
2 6000
g
&
4000
2000
Filter Method: Quantile
o
150 175 200
Number of Tokens
Number of Tokens in Wnli validation Dataset
Nast Popular: 24 |
i 2 g
10 8 & P
A bt S
g @
g 7
| +
8 | p
EY ¢
7 |
g6]
S |
£ |
4 i
2
: Quantile
o
100

60
Number of Tokens

(9) WNLI Dataset

Number of Tokens in Mnli validation_matched Dataset

Mbst Pofiular: 14
1750 o 3
H 5 2
1500 =
2l
3
1250 5
3
=
7 i
£ 1000 :
£ ;
750
500
250
Filter Method: Quantile
o
o 50 100 200
Number of Tokens
Number of Tokens in Qnli validation Dataset
MostPopulariss |
i [5
1000 :;i s
B =
@
e
800 cf
B
z i
S 600 i
g i
x |
400
200
Filter Method: Quantile
0
100 150 200 250
Number of Tokens
Number of Tokens in Sst2 validation Dataset
70 Most Popular: 22
~ a a
601 £ a i
H 5 2
@
50 +
c
2
H
z 40
g
H
g
=30
20
Filter MetHod:
o
30
Number of Tokens
Number of Tokens in Rte validation Dataset
o 2
< S b
A <
E < E s
w04 5 & o 2
5 B
@ A
N +
< <
3 b}
EY = H
g
El
£
20
10
lethod: Quantile
o
250

150
Number of Tokens

(h) RTE Dataset

Figure 4. Data Distribution for validation set leveraging the bert-base-uncased tokenizer

Frequency

Number of Tokens in Cola validation Dataset

120 : R
8 & 3
a o .
B &

100 @ i pit
. : ¥
< : <
i | i

80 = =

60

0

20

15 20
Number of Tokens

(a) CoLA Dataset

Number of Tokens in Mrpc validation Dataset

Filter Method: Quantile

Max: 34

- Musﬂ; Popular: 54
S i 2
3 B 3
30 b Al b
3 t ¥
o g 4
i = +
25 < <
3 3
= F H
S
220 i
E
g
&
15
10
Filter MEtHod:
04—
20 50 60
Number of Tokens
Number of Tokens in Qqp validation Dataset
ost populal: 20 |
12000 N . @
g 5 5
H b S
10000 i
7
8000 &
7 |
g i
H :
g co0
4000 i
2000
Filter Method: Quantile
o
0 25 50 7 100 125 150 175 200
Number of Tokens
Number of Tokens in Wnli validation Dataset
1 Mus;{ Pofular22 |
g ! %
G 7 g
5! 3
8 i A
I +
5t 5
H H
56 i
H i
g H
H i
g ;
= i
n
2

60
Number of Tokens

(9) WNLI Dataset

100

Number of Tokens in Mnli validation_matched Dataset

st Paigular: 19 !
w0 if i .
of 2
a
1500 5 H
e
1250 gl
il
=i
> H
£ 1000 |
g ;
H |
z |
&
750
500
250
Filter Method: Quantile
o
100 150 200
Number of Tokens
Number of Tokens in Qnli validation Dataset
Most Popular:136
1000 o
kil
S
800
g 600
g
&
400
200
Filter Method: Quantile
0
100 150 200 250
Number of Tokens
Number of Tokens in Sst2 validation Dataset
Most Popular: 26
60 o 2 2
H b H
@
s0 4
T
H
)
o
£ 30
20
10
o
60
Number of Tokens
Number of Tokens in Rte validation Dataset
st foBular: 30
i <! b
oo 3 b
a{ £ wl S k]
=3 e H
@ 2
I +
5t 5
30 i H
z |
g |
g H
g |
g |
=20 :
10
Filter Method: Quantile
0 =
150 200 250

Number of Tokens

(h) RTE Dataset

Figure 5. Data Distribution for validation set leveraging the bert-base-cased tokenizer

.3 Pruning Details

For the baseline algorithms, we have used the headask attribution of Transformers
library, during metric calculation and the evaluation.

For the algorithm "Multiple Importance LTH", we have used head mask, during metric
calculation and before fine tuning, we actually pruned the attention heads. When someone
actually prunes the heads, the space dimensionality, a layer projects the sample, is reduced.
If all the heads of a layer are removed, then the output of the attention mechanism has
zero-dimension and thus zero results. However, due to the MLP’s bias, the output of the
layer is non-zero. (this concerns the Transformers Library implementation of BERT
architecture)

We tried to fine tune the model, and mask the heads during training, but the results

were a lot worse.

List of Abbreviations

ANN
LLM
LA
LUA
CPT
LIG
CIA
RAA
SVA
SVO
WHE
IG

SIG
IGSPF
IGSPP
ISP

Artificial Neural Network

Large Language Model

Linguistically Acceptable sentences

Linguistically Unacceptable sentences

Constituency Parse Trees

Layer Integrated Gradients

Causative-Inchoative Alternation

Reflexive Antecedent Agreement

Subject-Verb Agreement

Subject-Verb-Object

Wh-Extraction

Integrated Gradients

Sequential Integrated Gradients

Integrated Gradients Structured Pruning Fine-tuned
Integrated Gradients Structured Pruning Pre-trained

Iterative Structured Pruning

	1e9b93e7e945c49bf2b668727ea7807cde0c51f042a38ed6e045adc95519b10e.pdf
	1e9b93e7e945c49bf2b668727ea7807cde0c51f042a38ed6e045adc95519b10e.pdf
	1adbff26fc5ca6c4d17e5ba41635a6178759751ec5c3e453405235c062ed428b.pdf
	91095c5781c4c2148b722c9a6f09ed4af540d9a67ba098f7fbba64072fd42d8b.pdf
	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Περίληψη στα Ελληνικά
	Περίληψη
	Εισαγωγή
	Σχετική Εργασία
	Ορισμός του Προβλήματος
	Ορισμός Δομημένης Κλάδευσης
	Αρχιτεκτονική BERT

	Προτεινόμενη Μέθοδος
	Περιγραφή Μεθόδου
	Η Έννοια Πίσω από τη Συσχέτιση

	Πειράματα
	Διαμόρφωση
	Δομημένη Κλάδευση με Δείκτη Σημασίας
	Επαναληπτική Δομημένη Κλάδευση
	Νικητήρια Εισιτήρια;

	Introduction
	Introductory Concepts
	Artificial Intelligence, Machine Learning and Deep Learning
	Interpretability in Machine Learning
	Pruning in Machine Learning

	Motivation
	Research Contribution

	Thesis Outline

	I Background Knowledge
	Machine Learning
	Introduction
	Definition

	Machine Learning Classifications
	Supervised Learning
	Unsupervised Learning
	Self-Supervised Learning
	Transfer Learning

	Learning Process
	Loss Function
	Optimization
	Gradient Descent
	Underfitting and Overfitting
	Regularization, Dropout, and Pruning

	Machine Learning Models
	Linear Regression
	Classifiers

	Deep Learning Models
	The Perceptron
	Fully Connected Neural Network
	Recurrent Neural Networks
	Attention Model
	Transformers
	Residual Connections and Normalization

	Natural Language Processing
	Introduction
	Applications
	Word Representation
	Denotational Representation
	Distributional Semantics

	Language Models
	Traditional Language Models
	Neural Language Models

	Embeddings from Language Models (ELMo)
	Bidirectional Encoder Representations from Transformers (BERT)
	GLUE Benchmark
	CoLA
	SST-2
	MRPC
	QQP
	STS-B
	MNLI
	QNLI
	RTE
	WNLI

	Compression of Deep Learning Models
	Introduction
	Compression: Problem Setting
	Pruning
	Quantization

	Lottery Ticket Hypothesis (LTH)
	Pruning Transformer-based models
	Transformer-based Structured Pruning
	Transformer-based Magnitude Pruning

	Pruning Computer Vision Models

	Interpretability
	Introduction
	Classic Methods
	Gradient Based
	External Explainers based on Model Behaviors
	Contextual Decomposition

	Applied Methods in LLMs
	Discretized Integrated Gradients
	Sequential Integrated Gradients
	Layer Integrated Gradients for Linguistic Acceptability
	Expected Gradients
	Hierarchical Explanation
	TransSHAP

	II Methodology & Results
	Attribution Does Matter
	Abstract
	Introduction
	Related Work
	Problem Definition
	Structured Pruning Definition
	BERT Architecture

	Proposed Method
	Method Description
	The Concept Behind Correlation

	Experiments
	Configuration
	Structured Pruning with Importance Score
	Iterative Structured Pruning
	Winning Tickets?

	Conclusions & Future Work
	Discussion
	Future Work

	Bibliography
	Appendices
	Correlation Analysis
	Data Pre-Processing
	Pruning Details
	List of Abbreviations

	1e9b93e7e945c49bf2b668727ea7807cde0c51f042a38ed6e045adc95519b10e.pdf
	1e9b93e7e945c49bf2b668727ea7807cde0c51f042a38ed6e045adc95519b10e.pdf
	1e9b93e7e945c49bf2b668727ea7807cde0c51f042a38ed6e045adc95519b10e.pdf

