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ITepiAndn

O cuveyde auioavoueveg aviyxeg UVAUNG TwV OYYPOVWY EQPUPUOYOY AGXOVY
OMOEVOL X0 PEYAAUTERT THETT) OTO UTOCUC TN SLOYEPLONG UVAUNG TOV AELTOURYIXOY
cucTNudTeY. Tautdypova, T0 X0GTOC UETAPEACTS EXOVIXGY OLEVHUVOEWY ATOTEAEL
ONUAVTIXO TPy OVTA XOUC TERNOTNE TWV TEOCPBACEWY GTT UVAKY). LUVETMS, Ol XoTo-
OXEVACTES OUYYPOVWY ETEEEQYAUT TV EVIAGGOUV GTIC APYLTEXTOVIXEC ONO XAl TLO GUV-
YeT0, eCEWBIXELPEVO LAXO Yiot TNV EMLTAYLVOT Tng Swdixactiog Tne petdpeaons. Mel-
Cov xoupdtt g LAg utootheng anotelolv to Translation Lookaside Buffers
(TLBs), vhixéc caches Tou anodnxedouy Tic o TEOGCPATES HETAUPEIOELS DIEVIUVOEWY.
Yroyebovtag ot Behtiwon tng anddochc Toug, To AELToupYxd cUGTNUA CUVERYALE-
T UE TO LAXO YLl TNV LAomoinon yeydhwy oehidwyv (huge pages). Ou peydheg
oehBEC Elvol EXOVIXE XU (PUOLXA CUVEYOUEVES TEQLOYES UVAUNG, UEYOAUTEQES Omod
4KiB, mou umopolyv Vo UETAPEACTOLY YEeNOWOTOLOVTIS Ula povo eyypapt; oto TLB.
Qo1600, Tot LYY POV AELTOURYIXA CUC TAUATO QYAiVETOL VO UNV ETLTUYYEVOLY TA 0VO-
HEVOUEVA 0QEAT) amddoomg Toug. Autd ogelletal eV uépel OTNV LIOVETNOT) EUXAULOLXDY
X0l ATANCTWY TOMTIXOV XATOVOUNG HEYIAWY GEAB®Y Tou Bev AauBdvouv unddn Ta
umoxelueva x60TN, 0dNy®vTac oe Addog amogdoel. And tnv dhAn Theupd, opyLTeEX-
Tovxég 6mwe oL ARMVS-A xou RISC-V ewodyouv véa yeyédn ueydhwy oehidwy, ouy-
xexpuyéva 64KiB xou 32MiB, nepinAéxovtog Tepattépn TG TOAMTIXES XATAVOUNG TOUG.

Yto embueva xe@dhata tapouoidaloupe Ty teyvoroyio eBPF xou otn cuvéyew
delyvouue mwg umopel va yenowonowdel yioo TNV LAOTOMNGT TEOCUPUOCUEVWY TOAL-
TV Suayelplone uvhune. Luyxexpwéva, eunvevopévol ond to CBMM [21], ulomot-
olue Yéow tou eBPF wa mohtixn Soyelpione yeydhwy cehidwv Bociouévn oe éva
cost-benefit poviého. Méow eBPF mpoypouudtov xododnyodue tov muprva Tou
Linux wote va emAééel to mo w@ého péyedog peydhng oeAidag yo pio meploy
uvAunc.  Ta o@éln TV Sla@opeTixdy Ueyedmy peydhwy ceAdwy Ta xadopilel o
YENOTNG, VK VEWPOUUE Tat XOOTY EYXATACTACHC TOUG WS GTOERES, UTONOYLOUEVES
eunElpWd amd TV mopaxoroinorn Tou cuoTAuatdc uag. Télog, afloloyolue To
GUCTNUG LoC TELROATIXG exTEAMVTAC Telo opTia epyaciog. o To xadéva dnuioue-
youue éva Tpogih Twv teploywy puviung toug offline ypnowonowwvtag epyaheio dmwg
0 DAMON [27] ot to SPE t¢ ARM apyttextovixfic vy TLB miss sampling [2].
To anoteAéopota avadeixviouy 6Tl To eVoldueco uéyedog ueyding oeaidog 64KiB
umopel vo emupépel (Bla enidoon pe autd twv 2MiB, pewwvovtag Tautdypova To frag-
mentation xou to memory bloat tou cuoTuaToC.

Aggeic KAhewdid: Tluphvac tou Linux, Awyelpion uviunc, Ewovidd uviun,
Xopog yerotn, Xopog tuprva, Huge pages, eBPF






Abstract

With the ever growing memory needs of modern applications, the memory man-
agement subsystem of Operating Systems (OSes) faces increasing pressure. The
focus has shifted to the address translation (AT) overhead, a major contributor
to memory access latency, and inherent to the decade-old, yet essential, virtual
memory abstraction. Thus, CPU vendors provide increasingly complex hardware
caches, Translation Lookaside Buffers (TLBs), aiming to speed up this operation.
In order to enhance TLB’s efficiency, OS and HW cooperatively implement and
support huge pages. Huge pages are virtually and physically contiguous memory
areas, larger than 4KiB, that can be translated using a single TLB entry. Mod-
ern, widely adopted OSes seem to not quite achieve the expected performance
benefits of huge pages, partially due to cost-unaware, opportunistic, greedy allo-
cation policies that lead them to pitfalls. On the other hand, architectures such
as ARMv8-A and RISC-V introduce new huge page sizes of 64KiB and 32MiB,
further complicating huge page allocation policies.

In the following Chapters, we will introduce an existing, revolutionary tech-
nology, named eBPF, and demonstrate how it can be used to implement custom
policies in the Linux memory subsystem. Inspired by CBMM [21], we develop an
eBPF-based system that guides the kernel’s decision on which huge page size, if
any, to allocate. Our approach determines the most beneficial huge page size based
on user-defined benefits and empirically calculated, fixed system costs associated
with promoting memory regions to different huge page sizes. Finally, we evaluate
our system by running three workloads, profiling their memory regions with DA-
MON [27] and TLB miss sampling using ARM’s SPE [2]. The results highlight
the benefits of utilizing the intermediate 64KiB huge page size, when suitable.

Key Words: Linux Kernel, Memory Management, Virtual Memory, Address
Translation, Userspace, Kernelspace, Huge Pages, eBPF






Euyaplotieg

Oo fdeha var exppdow T VepUéc Hou euyaploTiec oTov emPBAEnOVTA XadnynTh
uou, x. I'ewpyio I'volya, yio TNy eumioToclvn mou pou E€Belle EMTEENOVTAC UOU Vo
acyoAnie pe €va Wwiaitepa evilapépoy Yéua xan yior TNV ToAdTn xadodrynor tou
%)’ O\ TN Bidpxela TOGO TWV GTOLOWY UOU OGO XAl TNG EXTOVNONS TNS TOEOUCOC
epyooiag.

Eniong, da fieha va euyoptothon Ceywelotd tov Xtpdto Wouaddxn yia tnv
apéplotn Pordela xou oTHELEN TOU YOV TPOCEPERE OE OTOLUONTOTE BUCXOALXL oV TIUE-
tomoa. H cuvepyaoio tou unple xatohutiny yior Tnv emtuyla TG SITAWUATIXAS HOU
epyooiag.

X1 ouvéyela euyaploTe Wiaitepa Toug xadnyntéc x. Nextdpio Kolien xan x.
Atovioio [Iveugotixdto yio Tig YVOOELS X0l To EPOBLL TTOL LOU TROGEPERAY PETOL OO
Tol o AUaTd TOUE, Tor oTolo GUVEBUAXY SEOATIXG TN BIULORPOOY) TNG AXAONUIXNC
nou mopelag.

Téhog, dev Va pnopolioa va mapoelho Toug Piloug HoL XaL TNV OLXOYEVELS LoV,
TwV omolwv 1 cuvaoUnuatix oThEEn xou evidppuvor Htay xooploTixr oe xde
OTAdLO QUTAS TNG TEOoTAUELOC.
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Extevric EAAnvixn Tlepiindn

O ouveyde auioavoueveg avdyxeg UVAUNG TV OYYPOVWY EQUPUOYOY AGXOVY
OhOEVOL X0 PEYAAUTERT THETT) OTO UTOCUG TN SLOYEPLONG UVAUNG TOV AELTOLVRYIXOY
cucTNudTeY. Tautdypova, T0 X6GTOC UETAPEACTS EXOVIXGY OLEVHUVOEWY ATOTEAEL
CNUAVTIXO TPy OVTA XOUC TERNOTNG TWV TEOCBACEWY GTT UVAUTY). LUVETMS, Ol XoTo-
OXEVACTES OUYYEOVWY ETEEEQYAT TV EVIAGGOUV OTIC APYLTEXTOVIXEC ONO XAl TLO GUV-
YeT0, eCEWBIXELPEVO LAXO Yior TNV EMLTAYLVOT TnG Swdixactiog Tne petdpeaons. Mel-
Cov xouudtt g LAg utootheng anotelolv to Translation Lookaside Buffers
(TLBs), vhixéc caches mou amodnxebouy Tic o TEOGoPATES HETAUPEIOELS DIEVIUVOEWY.
Ytoyevovtoag ot Bedtiwon Tng anddoorc Toug, To AELToLVEYIXG GUGTNLO GUVERYALETaL
HE TO UG yior TV Lhoroinon peydhwy cehidwy (huge pages). Ot peydheg oehideg
lvol EXOVIXE X0l PUOLXA GUVEYOUEVES TIEQLOYES UVAUNG, ueYaAUTepe and 4KiB, mou
UTOPOVY VoL UETAPEACTOUY YENOWOTOLOVTIS pla uovo eyypagy oto TLB. 'Etol, auéd-
Vouv 10 €0p0¢ EXOVIX®VY OLEVHOVOEWY BLEVIUVOEWY TOU UTOPOUV VO UETAPEAUCTOVY
an6 To TLB, 1o onolo auidver duvnuixd v mdoavétnta euctoyiog oe autd.

QQot600, o GUYYEOVA AELTOURYIXA CUCTAUNTA QPAUEVETOL VO UMV ETITUYYEVOUY To
AVOEVOUEVA OPENT) ATOBOOTC TWV PEYIAWY oeAdwY. MdhioTa, dadedousves epop-
HOYEC TEOTEIVOUV TNV ANEVERYOTOLNGT) TOUC Xad®S 1) XPNOT TOUC XATAAYEL VoL Elvor
neptoo6tepo el topd xepdopdea [23]. Autd ogeileton ev pépel oty LYETNON
EUXALQLOXMY XL ATANOTOV TOATIXOV XUTovoung TOUS Tou dev Aopfdvouy umodn ta
unoxelpeva x6oTn, odnywvtag oc Addog anogdoelc. Ao TNV dAAT TAELEE, dEYLTEX-
Tovég 6mwg ol ARMVS-A xaw RISC-V eiodyouy véa yeyédn ueydhwy ceridnv, cuy-
xexpyéva 64KiB xau 32MiB, nepimiéxovtoc mepoutépw TNV UAOTOINOT Amod0oTIXGY,
YEVIXEUUEVOY TOATIXGY Oloyelplong HEYAAWY GEMDBWY amd ToL ASLTOVEYIXE GUC THUATOL.

Yto emoueva xe@dhona Topouctdlovue TNy undpyouoa teyvoroyia eBPE xo ot
cuvéyela delyvouue Tog unopel va yenoudoromndel yio TNV LAOTOMNGT TEOCUPUOCUEVELY
TOMTIXGOV Dtayelplone pvAune.  Zuyxexpiéva, eunveucuévor ané to CBMM [21],
vhonololue péow tou eBPE uio mohitiny) Suoyelplong peydhwy celldwy Poctopévn
oe éva cost-benefit povtého. Méow eBPF npoypouudtwy xododnyolue Tov muphva
tou Linux dote va emAélel to mo w@éhuo péyedoc ueyding oeAldog yio pio mepl-
oy wvniung. To o@éhn tev BlopopeTixmy Yeyedmy YeydAwy oeAidny ta xadopllel o
YENOTNG, VK VEWPOUUE Ta XOOTYN EYXATACTACTC TOUG WS GTUERES, UTONOYLOUEVES
EUTELPIXA OO TNV TAEAXOAOLUNOY TOU CUCTHUATOS oG,

Télog, allohoYolUUE TO CUCTNUE WAC TEWUUATIXG EXTEAWVTAC Tl QopTio €p-
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yootag. T to xadéva dnuiovpyolue éva TEo@iA TV TEQLOYOY UVAUNG Toug of-
fline ypnowonowvtog epyoreia 6mwg to DAMON [27] xou to SPE ¢ ARM op-
yrtextovixfic v TLB miss sampling [2]. Tuyxexpipévo yenoylonotolue Tic Thnpo-
(popleg TOU GUAAEYOVTAL WOTE VoL XATATAEOUPE TG TEQLOYES UVAUNG OF OPIOUEVES AT
yopleg [20], ot onoiec dnhwvouy mo péyedoc oelidag eivon To O xeEBOPHEO.

To anoTteAéopato oavadevOoUY OTL To eVOLdUECO YEyedog ueydhng oealdag 64KiB
umopel vo emipépet (Blo enidoon pe autd Twv 2MiB oe opiouévee mepimtoeg. H
VLY VPLOT) TWV TERLTTOOEWY QUTWY X0l 1) Yerion oeAldwy 64KiB elvan xaipa, xordodg
TOTE UEWWVETAL ToWTOYeoVa To fragmentation xau To memory bloat tou cuoTtfuatog,
eve 1 enidoor Tou elvon TapodUoLaL.
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Chapter 1

Introduction

In modern computing, particularly in data centers, the memory management
subsystem of operating systems (OS) is under increasing pressure. With workloads
growing ever more data-intensive, especially with the rise of machine learning
and artificial intelligence (AI) applications, while the chasm between processor
and memory speed continuously expands, memory access has become a significant
performance bottleneck [34].

The core virtual memory abstraction, conceived decades ago and fundamen-
tally unchanged, is put through the test of time, since application needs are rapidly
evolving. The main problem lies within the inherent virtual-to-physical address
translation (AT) step to virtual memory, which contributes substantially to mem-
ory access latency [7].

As virtual memory proved far too essential to abandon, the industry responded
with increasingly complex hardware aimed specifically to alleviate its overheads.
Such hardware include various types of multilevel Translation Look-aside Buffers
(TLBs), hardware Page Table Walkers (PTWs), specific Memory Management
Unit’s (MMU) caches, nested TLBs and more.

The performance of TLBs turned out crucial for modern applications, because
they effectively reduce the AT step into a cache hit. Targeting to improve their hit
ratio by extending their reach OS and HW cooperatively implement and support
huge pages. Huge pages are virtually and physically contiguous memory areas,
larger than 4KiB, that can be translated using a single TLB entry.

1.1 Research Problem

Despite the promising performance benefits of huge pages, they seem to un-
derperform in modern OSes [10] leading to many applications to advise disabling
them [23]. This can be partially attributed to the cost-obliviousness of many MM
huge-page policies.

For example, Linux Transparent Huge Pages (THP) [33] try to greedily allocate
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a huge page every time a memory area is first touched, not considering that this
area might be underutilized or that it does not benefit from being backed by huge
pages.

However, setting up a huge page is not cost-free. The kernel first needs to find
an available, properly aligned physical memory region. This process is inexpensive
if there is an abundance of physical memory, but on a fragmented machine this
could trigger costly operations, like compaction. The huge page must then be
prepared. In the case of file-backed memory this means fetching the data from the
disk, and in the case of anonymous mappings it means zeroing the contents of the
huge page.

Therefore, if the costs of setting up a huge page outweigh its benefits not
only the current process takes longer, but the whole system is susceptible to more
slowdowns due to fragmentation [21]. Consequently, the kernel should take great
care deciding whether or not to use huge pages to back application memory.

Several systems have been proposed with more dynamic huge page management
policies. Ingens [18] and Hawkeye [25] monitor the system to identify whether or
not to promote a memory region to a huge page. They also present new strategies
aimed to minimize latency of huge page management. CBMM [21] introduces
a more general cost-benefit approach regarding memory policies, including huge

pages.

1.2 Motivation

The most common sizes when referring to a huge page used to be 2MiB (the
one Linux supported transparently for anonymous memory mappings) and 1GiB.
This was due to the fact that popular architectures (e.g x86) provided support for
them.

ARMv8-A and RISC-V extend the supported huge page sizes, using a simi-
lar mechanism which utilizes unused bits of the page table entries to designate
contiguous groups of pages [2, 15, 32, 26].

This futher complicates the OS huge-page policies, by adding 64KiB and 32MiB
huge pages to the mix. In order to support these new huge page sizes, Linux
switched to a mutli-sized THP mechanism [29, 30]. However, mTHP doesn’t allow
for fine-grained control over which applications or which parts of the address space
of an application should be backed by which size.

Previous work has showed that applications exhibit different needs regarding
huge page management. Thus, we argue that the OS memory manager needs to
be more flexible in order to navigate the trade-offs of using different huge page
sizes for different applications.
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1.3 Our proposal

In this thesis, we leverage eBPF to implement custom memory management
policies that dynamically adjust the kernel’s decision-making process for huge page
promotion.

eBPF (extended Berkeley Packet Filter) is a powerful and flexible technology
that allows user-defined programs to be executed safely in kernel space. Originally
developed for network packet filtering, eBPF has evolved into a general-purpose
framework that enables developers to attach programs to various points in the
kernel, known as hooks, to perform custom actions when specific events occur.

We implement hooks for eBPF programs in key points in the page fault path,
where the kernel decides what page size will be allocated for the faulting memory
region. Then, we develop and attach an eBPF program responsible for guiding
the kernel to choose the most beneficial page size. To achieve that, we provide our
eBPF program with profiling information about the application’s memory regions.
Specifically, we estimate the benefit of different page sizes on different memory
areas through monitoring the memory access frequency and the TLB misses on
those areas.

We show that this approach not only improves memory management efficiency
but also allows for more flexible and application-specific policies.

17



Chapter 2

Virtual Memory

This chapter focuses on virtual memory, a core part of the memory manage-
ment subsystem of modern operating systems. We provide background on virtual
memory as a physical memory abstraction and the reasons it dominated the way
operating systems handle memory. We continue delving deeper into virtual mem-
ory by discussing paging as its most usual implementation. Then, we examine the
Address Translation (AT) step inherent in virtual memory and the overhead it
introduces. Finally, we explore current mitigations techniques aimed to alleviate
the AT overhead like hardware caches, Translation Lookaside Buffers and the use

of Huge Pages. ) )
Figure 2.1: Virtual Memory Implementation
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The majority of modern, widely adopted operating systems use the virtual
memory technique to efficiently manage memory. Virtual memory provides an
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abstraction of physical memory. It introduces an interface to programs, the virtual
address space, through which they need to interact in order to access physical
memory.

With virtual memory, programs perceive the system’s memory as a large, con-
tiguous, private block of memory. It alleviates programmers from the burden of
manually managing data transfers between main memory and secondary storage,
allowing easier execution of applications whose memory needs expand beyond those
of physical main memory.

The virtual memory abstraction aided the operating system’s support for pro-
cess multitasking, protection enforcement (process isolation) and data sharing
(shared memory). The downside of virtual memory is the requirement of a mech-
anism to map virtual addresses to physical ones. This virtual-to-physical address
translation step is a significant overhead introduced to each memory access. To
alleviate this overhead the system’s software and hardware cooperate, employing
caching-like techniques, hardware assisted translations and the use of larger pages.

2.1 Core Overview

In this section we present a high level overview of the virtual memory abstrac-
tion. We present core concepts that most modern operating systems adopt to
implement it.

2.1.1 Physical Address Space

We connect the term physical address space to the set of addresses that ref-
erence the main memory of the system. When referring to a physical address we
mean the location of the data inside main memory (e.g. RAM).

2.1.2 Virtual Address Space

The virtual address space consists of the range of addresses that programs use
in their instructions to access memory (e.g. load/store operations). The virtual
address space is private to each process and typically much larger than the system’s
actual main memory. For example, the x86-64 architecture provides 48-bit long
virtual addresses, thus allowing the programmer to address 256 TB of memory.
These virtual addresses may not indicate where the data is actually stored, but
they address the data of a specific process.

2.1.3 Address Translation

Programs use virtual addresses when referring to memory, that must be sub-
sequently translated to physical addresses to access real data in main memory.
When a process tries to access data using a virtual address, through load and
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store instructions the operating system collaborates with underlying hardware to
translate this virtual address to a physical address. Then, the CPU uses the pro-
vided physical address to fetch the corresponding data. Also, if the requested data
are not present in main memory, so such a translation can not exist, the operating
system is responsible to find the data in the secondary storage, bring it to main
memory and create the corresponding virtual-to-physical address mapping for that
process.

2.1.4 Paging

Paging is a core part of the implementation of virtual memory. Keeping track
of every individual byte of a process’ address space would be highly inefficient, thus
the operating system manages a process’ address space in fix-sized data chunks,
which are called pages. Process access memory through chunks of virtual addresses
(virtual page), which are subsequently mapped to an equally sized physical page
frame. The size of a page is architecture dependent and in most architectures
the base page size is 4 KB. Modern architectures also support larger pages, for
example x86 2MiB and 1GiB, and arm64 and RISC-V additional 64KB and 32MB,
the usage of which is explained in a later section.

2.1.5 Page Tables

The operating system controls every process’s virtual-to-physical page mapping
by managing a lookup table per-process, known as the page table. Each page table
entry holds the physical page frame translation of the corresponding virtual page.

Multi-level (hierarchical) Page Tables

Implementing the page table as a single one-dimensional array, even when the
virtual address space is managed in pages of 4KiB, results in a gigantic array per
process. This is neither feasible, especially in a Symmetric Multiprocessing (SMP)
context where multiple processes are executing requiring their Page Tables to be
in memory, nor necessary since processes use sparsely their virtual address space,
requiring only parts of their page table.

Therefore, page tables are implemented as a multi-leveled, hierarchical, tree-
like structure. The root of the tree is called the page table base. It is the only
memory location needed to access the whole data structure and it is required to
reside in main memory. Intermediate nodes’ values contain the memory address
of nodes further down the tree, while leaf nodes, frequently called as Page Table
Entries (PTEs) contain the needed translation. This approach allows page tables
to be allocated on demand, when a process needs to map a region of its virtual
address space to physical memory (memory allocation), and not all at once.
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Each page table entry (PTE) not only holds the physical page number but also
includes metadata such as permission bits (read, write, execute), a valid/invalid
flag to indicate whether the entry is in use, and a dirty bit to track modified pages.

Accessing the Page Table

Depending on the size of the base page, virtual and physical addresses are split
in two parts; the page offset and the virtual/physical page number.

The first part is the page offset which determines the position of referenced the
data inside the corresponding page. The page offset is most commonly defined as
the minimum amount of Least Significant Bits required to address an entire base
page. For example, with 4KiB base pages, the 12 LSBs are used to define the page
offset, assuming byte addressable memory.

The remaining bits of the virtual or physical address constitute the number of
the virtual/physical page. The virtual page number of virtual addresses is used
as index for accessing the page table, in order to retrieve the physical page frame
it corresponds to. To achieve this in the context of multi-level, hierarchical page
tables, the virtual page number is further broken down in more parts depending
on the structure of the hierarchy. Specifically, it is divided in the same number
of parts as the number of page table levels. Each part is assigned the minimum
sufficient number of bits to index the corresponding level of the page table.

When a memory instruction requires an address translation, the Page Table
hierarchy is traversed to acquire it, a procedure called page table walk. Page table
walk latency is the main source of overhead in Virtual Memory. Each access to a
level of the Page Table hierarchy equals to an independent memory access. Thus, a
single load /store operation requires an additional N (in systems with Page Tables
of N levels) memory accesses.

Also, this overhead exhibits quadratic growth in virtualized execution. In the
most virtual machine implementations each memory access on the guest requires
the execution of page table walk on the host’s Page Table hierarchy.

This overhead greatly degrades execution time.

Page Table Hierarchy Structure

The structure of the Page Table hierarchy is dictated by one major decision in
the system’s architecture; whether the Page Table Walk is managed by specialized
underlying hardware (the MMU) or software (the Operating System).

Most modern systems sacrifice the flexibility of the Operating System to de-
cide the organization of the Page Table hierarchy by offloading the Page Table
Walk operation to the MMU. This way, Page Table Walks are done transparently
to the system’s software without the need of executing extra instructions. This
approach, enables other independent instructions to continue, while the instruc-
tion triggering the Page Table Walk just stalls. Avoiding extra instructions also
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ensures performance stability on the system, while there is no interference with
the current state of the data and instruction caches.

The Linux operating system supports up to 5 levels of page tables. These
levels are named from the highest to the lowest as: PGD (Page Global Directory),
P4D (Page 4th Directory), PUD (Page Upper Directory), PMD (Page Middle
Directory) and Page Table (PT).

Architecture specific code leverages this interface in order to describe the Page
Table hierarchy the Memory Management Unit supports. In the following Figure
we provide Intel’s 5-level Page Table organization, an extension of the original
4-level Page Table enabled by setting the CR4 register.

Figure 2.2: Intel’s 5-level Page Table Hierarchy
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2.2 Address Translation Hardware

As we mentioned in the previous section, the Memory Management Unit
(MMU) of modern CPUs is the backbone of Virtual Memory. It employs special-
ized hardware components such as caches (Translation Lookaside Buffers, Page
Table Walk Caches) and finite state machines (Page Table Walkers) to ensure that
the address translation overhead is minimal. The operating system is responsible
to maintain and update the information on the Page Table hierarchy, which is
sub-sequentially consumed by the MMU. Also, it is responsible for managing effi-
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ciently the main memory of the system, fetching to it data required for processes
to execute.

Following we describe the three major hardware components of the MMU:

e Translation Lookaside Buffer (TLB)
e Page Table Walker

e Page Table Walk Caches
Figure 2.3: Intel’s Skylake MMU design
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2.2.1 Translation Lookaside Buffers

The most important hardware component of the MMU is the Translation
Lookaside Buffer (TLB), a cache which stores recent virtual-to-physical address
mappings. In many cases an under-performing TLB (low hit-ratio) is the culprit
for major application slowdowns.

Usage

When a load/store instruction references a virtual address, the TLB is first
checked for the corresponding translation. If the TLB has the translation stored
the corresponding physical address is provided to the CPU. This way, it attempts
to minimize the address translation overhead by avoiding expensive page table
walks for frequently accessed memory addresses.

When a requested address translation is not found in the TLB, a TLB miss
occurs. The instruction that triggered the TLB miss stalls, while the MMU exe-
cutes a page walk to provide the requested translation. If the page is not present
in memory, a page fault is triggered, prompting the OS to load the required page
from disk.
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The amount of memory that is accessible only by the TLB is called the TLB
reach. The TLB reach is a critical factor in the performance of an application. If
the application’s working set doesn’t fit in the TLB, thrashing of the TLB may
occur causing multiple page table walks, costing a lot of CPU cycles and harming
performance. For example, if a computer system uses only base pages of 4KB and
a CPU core has 16 entries, then the TLB reach is 64 KB. It is observed that the
TLB reach can be expanded by increasing the size of the pages used to manage
virtual memory.

Design

The TLB follows the usual cache design choices, regarding placement, replace-
ment policies and structure.

For example, most TLBs are indexed using the lower bits of the virtual page
number. The tag is comprised by the unused bits of the virtual page number plus
the process’s 1D, or more specifically an Address Space Identifier (ASID). This
helps recognizing which translation corresponds to which tasks, avoiding unneces-
sary TLB shoot-downs on context switches.

A TLB can be direct-mapped, n-way set associative or fully associative. Fur-
thermore, the most common replacement policy when the TLB entries are full is
the Least Recently Used (LRU) algorithm.

Finally, most TLBs are organized, similar to data caches, in hierarchic faster-
to-slower entries. An address translation lookup is first tried on a small L1 TLB
cache. If it misses, the next, normally larger levels of the TLB hierarchy are tried
(usually one extra level). If the translation is not found in any level of the TLB
hierarchy-i.e the lookup misses in the last level of the TLB hierarchy, a Page Table
Walk is bound to be executed.

2.2.2 Page Table Walkers

The Page Table Walker (PTW) implements in hardware the traversal of the
Page Table tree and retrieves the physical translation of a virtual page. This avoids
the need of expensive context switches and software handling. Also, implementing
Page Table Walks in hardware, allows the pipelining of TLB misses and enables
concurrent TLB misses.

The PTW consists of two main components:

e A state machine designed based on the architecture’s specific page table
structure.

e Registers able to keep track of outstanding TLB misses.

Since page tables are unique to each process, the CPU keeps track of the
executing process’ page tables through a special register called page table page
register (i.e CR3 in x86). This register contains the physical address of the root of
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the page table of the executing process. It is the Operating System’s job to update
this register when a process is scheduled into a CPU core (context switch). This
register is subsequently used from the PTW’s state machine.

2.2.3 Page Table Walk Caches

Along with Page Table Walkers the MMU employs another set of specialized
caches storing information about the Page Table hierarchy, named Page Table
Walk Caches.

Specifically, they cache intermediary non-leaf levels of the Page Table hierarchy.

This aims to accelerate page table walks, by substituting a high-latency access
to the cache/memory hierarchy of the system with a lower latency cache access for
acquiring Page Table values.

2.3 Huge Pages

Huge pages, as the name suggests are larger than the base page size (usually
4KiB) pages. They are large contiguous blocks of physical memory and are used
to map suitable virtual address regions. For example a virtual memory region of
4MB could be mapped with 1024 pages of 4KiB, which may not be contiguous in
physical memory, or with 2 pages of 2MB.

Huge pages do not replace base pages in the entirety of the system. Instead the
different page sizes are used in combination, with the operating system deciding
which page size to use to back a particular memory region. They aim to reduce the
address translation overhead by improving the performance of the TLB component
of the MMU.

In order to make huge pages available to a system, the operating system and
the underlying hardware must once again cooperate. Together they are responsible
for making the Page Table hierarchy aware of the different page sizes, allocating
contiguous memory for a huge page (operating system’s side) and providing a huge
page aware TLB (hardware architecture’s side).

2.3.1 Benefits of Huge Pages

Huge pages are the state-of-practice technique to reduce the overheads of ad-
dress translation. By using huge pages the TLB reach can be significantly increased
and also the page walk latency can be reduced, as it will be later explained. Their
performance benefits stem primarily from two things:

e Effectively increasing the TLB reach.

e Reducing the length of the Page Table Walk.
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TLB reach

Huge pages can significantly increase the TLB’s reach. On system’s that use
only base pages a TLB entry is able to cache the translation of a single base
page. Since huge pages are guaranteed to be contiguous in physical memory, the
translation of a single TLB entry applies to every address contained in the huge
page region, which is typically a multiple of the base page size.

Let’s take for example 2MiB huge pages and a TLB with N entries. Using base
pages of 4KiB the TLB is able to translate 4N KiB of address ranges without any
conflict or capacity misses. If all entries of the same TLB hold 2MiB huge page
translations, the same TLB is able to translate 2N MiB of address ranges. The
TLB’s reach is multiplied by a factor of 512.

This way the working set size of applications is more probable to fit inside the
TLB, increasing the potential TLB hit ratio, and subsequently its performance in
case it is memory intensive.

Page Walk Length

Certain huge page sizes are able to decrease the Page Walk length, resulting
in reduced latency of TLB misses. This happens because some huge page sizes are
able to be translated to a huge physical page using intermediate nodes of the Page
Table hierarchy.

We present an example. Each entry of the final level of the Page Table hierarchy
(Page Table level), translates contains the translation for a base page. Let’s assume
that the Page Table level contains 512 Page Table entries (PTEs). Each entry of
Page Table level above the Page Table, the Page Middle Directory, contains a
pointer to the start address of the corresponding Page Table. In this scenario,
a huge page with size of 512 times larger than the base page size is able to be
translated from a single PMD entry. Subsequently the memory accesses required
to traverse the Page Table hierarchy for this address translation are, in this case,
reduced by one.

The performance benefits of this becomes even more evident in virtualized
execution where nested Page Table hierarchy is used.

2.3.2 Drawbacks of Huge Pages

Few solutions come without trade-offs and huge pages are not the exception.
Although huge pages can provide a useful tool to alleviate the downsides of address
translation they must be handled with caution, since there are pitfalls the operating
system could walk into.

By hastily backing up virtual memory regions with huge pages, we might lead
our system to heavy memory fragmentation, or we could starve other processes of
memory. They can be the source of heavy internal fragmentation and the waste of
precious memory resources. For example, we could be misled by the large size of a
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virtual memory region with identical properties and decide to back it with 2MiB
huge pages. This bounds us to allocate a 2MiB huge page even when only as little
as 1KiB of memory is actually needed.

Setting up huge pages may also introduce heavy latency to applications using
them, if their setup costs outweigh their expected benefit. The setup costs consist
of the creation of a large enough contiguous block of memory by running de-
fragmentation (a usual operation in long running systems, where fragmentation
persists) and the preparation of it. For anonymous memory this means zeroing
the entirety of the physical huge page, while for file backed memory it means
fetching the data from the disk. If not necessary, this operation does not only
degrade performance, but is also a waste of bandwidth and energy.

2.3.3 Architectural Huge Page support

As already mentioned, in most modern computing systems the software and the
underlying hardware need to cooperate to provide certain functionalities. Imple-
menting the logic behind huge page memory allocations would provide no benefits
for the system, if the underlying hardware was not huge page aware. In the next
paragraphs we describe how two of the most widespread architectures, x86 and
ARMG64, implement huge pages, the differences between them and the various
huge page sizes they support.

x86

The x86 architecture, apart from 4KiB base pages, provides architectural sup-
port only for huge page sizes that correspond to intermediate levels of the Page
Table hierarchy. It achieves that by introducing a bit, which can be either set or
cleared, that signifies whether or not the particular Page Table level corresponds
to a huge page.

Specifically, x86 enables huge pages in the Page Middle Directory (PMD) and
Page Upper Directory (PUD) levels. Since it defines that a PMD entry contains
512 Page Table Entries (PTEs) and a PUD entry contains 512 PMD entries, the
supported huge page sizes are 2MiB and 1GiB accordingly.

ARM64

The ARMG64 architecture also provides support for huge pages of 2MiB and
1GiB with the same logic as the x86 architecture.

Furthermore, ARM64 enables intermediate huge page sizes, between 4KiB -
2MiB and 2MiB - 1GiB, by adding another bit, that can be either set or cleared,
in Page Table entries and Page Middle Directory entries. This bit, named the
contiguous bit, represents that the PTE or PMD entry is one of a set of entries
that translate to physical 4KiB or 2MiB pages that are contiguous in main memory.
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Using as base size 4KiB pages the set contains 16 entries, enabling intermediate
huge page sizes of 64KiB and 32 MiB accordingly.

Huge Page Aware TLB

The major benefit of huge pages is the increase of the TLB reach, subsequently
leading to fewer TLB misses. That poses a new challenge for TLB architecture,
since now it must be aware of the size of the translation it holds, otherwise it risks
memory corruption. Following we introduce two ways modern TLBs recognize
huge page sizes:

1. The Memory Management Unit provides a separate TLB for each of the
huge page sizes. The TLBs are then accessed in parallel and the one with
the matching translation, if any, provides it to the CPU.

2. The second approach is using a single TLB, but probing it for the address
translation in more than one steps. First, each TLB entry holds information
about how many of the bits of the virtual address they store are used as an
index, thus signifying the page offset and the size of the huge page. Then,
the TLB is accessed in as many steps as huge page sizes, using different
subsets of the virtual page number as index until there is a match, or they
exhaust all possible huge page sizes.

2.4 Linux Huge Page support

In this section we explore how Linux provides huge pages to processes. Linux
Huge Page support is built on top of multiple page size support that is provided
by most modern architectures. The two primary ways Linux manages huge pages
are through Transparent Huge Pages (THP) [33, 24] and HugeTLB Pages [14].
The first option attempts to allocate huge pages transparently to the user. The
second one requires their manually reservation and the proper reconfiguration of
the application to use them.

2.4.1 Transparent Huge Pages

THP was introduced in Linux to automate the allocation and management of
huge pages, without user intervention. It enables applications to take advantage of
huge page with no modifications needed. THP has two main modes of operation:

e Synchronous huge page allocation at page fault time

e Asynchronous huge page promotion through the khugepaged background
thread.
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Synchronous

In the synchronous mode, huge pages are allocated at page fault time. When
a process accesses a memory region that is not yet backed by physical memory,
the kernel attempts to allocate a huge page instead of a 4KiB base page (if the
memory region is suitable).

If the attempt fails (and the kernel is configured with the DEFRAG option
enabled), Linux will invoke de-fragmentation algorithms, in an attempt to create
enough space for the huge page. The de-fragmentation process involves memory
compaction (moving around pages in main memory to create a sufficient contiguous
free region) and memory reclamation (swapping out memory to disk to increase
total free memory), which can be a very costly operation.

Asynchronous

To complement the synchronous allocation, Linux also uses an asynchronous
method for huge page promotion through the khugepaged daemon.

Khugepaged runs in the background, periodically scanning the memory of run-
ning processes to find areas that can be collapsed into PMD-sized huge pages. To
do that, it maintains a list of virtual memory areas that are suitable for promotion.

Linux allows users to set limits on the frequency of khugepaged scans. In a
limitless scenario, khugepaged is woken up every time a page fault encounters a
memory region that is suitable to be backed by PMD-sized huge pages. The virtual
memory region is added to the tail of the list and the khugepaged kernel thread is
woken up.

mTHP support in THP

Linux introduces the ability to allocate memory in blocks that are bigger than
a base page but smaller than traditional PMD-size (as described above), in incre-
ments of a power-of-2 number of pages. mTHP can back anonymous memory (for
example 16K, 32K, 64K, etc). These THPs continue to be PTE-mapped, but in
many cases can still provide similar benefits to those previously described, while
latency spikes are much less prominent because the size of each page isn’t as huge
as the PMD-sized variant and there is less memory to clear in each page fault. As
widespread architectures do not support most of these sizes, the benefits of mTHP
do not (generally) stem from address translation. In that case, the benefits of
mTHP lie in reducing further page faults on the number of individual 4KiB pages
covered by the corresponding intermediate size.

Since the asynchronous THP system supports only the promotion to PMD-
sized huge pages, transparent support for intermediate huge page sizes (mTHP) is
currently only implemented synchronously at page fault time.

To understand how Linux achieves that we need to delve a little deeper in the
page fault code path, regarding page allocation. For the sake of simplicity let’s
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consider that every huge page size supported by Linux is available through the
system’s configuration.

We present the steps of huge page allocations. The Linux kernel only proceeds
to the next step if for some reason the previous one fails.

1. Try to back the faulting memory region with PUD-sized pages (not sup-
ported for anonymous mappings, only through hugetlb [14])

2. Try to back the faulting memory region with PMD-sized pages.

3. Iterate through every intermediate page size starting from the largest and
try to back the faulting memory region with it (mTHP support).

4. Allocate a base page for the faulting memory region.

It is evident that Linux follows a greedy policy in deciding the most suitable
page size to back a virtual memory region. In the most general case, Linux is
going to allocate a PMD-sized page for a virtual memory region that meets the
address alignment and size criteria for it. If for some reason this allocation fails,
Linux employs memory de-fragmentation algorithms to make enough space. Even
if enough space is not available at that moment, khugepaged will eventually scan
and that region to PMD-sized pages.

2.4.2 HugeTLB Pages

HugeTLB pages [14] are another method supported by Linux to manage large
memory pages. Unlike THP, HugeTLB pages reserves a pool of persistent huge
pages at kernel startup. The administrator can allocate those on the kernel boot
command line by specifying the “hugepages=N" parameter, where ‘N’ = the num-
ber of huge pages requested.

Once a number of huge pages have been pre-allocated to the kernel huge page
pool, a user with appropriate privilege can use either the mmap system call or
shared memory system calls to use the huge pages.

This method is often used in performance-critical applications where developers
need precise control over memory allocation.

It is important to mention that the HugeTLB interface is the only way for
a user to allocate PUD-sized (commonly 1GiB) huge pages for a memory region.
While the transparent mode supports both PMD-sized and intermediate sizes for
huge pages, limitations presented by the buddy allocator prevented their support
for the time being.
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2.5 State-of-the-art Linux Based Systems

Despite the promising performance benefits of huge pages, they seem to under-
perform in modern OSes [10] leading to many applications to advise disabling
them [23]. This can be partially attributed to the cost-obliviousness of many MM
huge-page policies. Linux Transparent Huge Pages (THP) [33, 24] greedy first-
touch huge page allocation policies do not take into account if the huge page is
utilized or if the expected benefits justify the setup costs. Over the past years, the
following systems have been presented providing a more comprehensive approach
to transparent huge page management.

2.5.1 Ingens

Ingens [18] identifies flaws in the huge page management strategies of popular
Operating Systems and presents new policies to manage the related trade-offs. It
addresses a number of huge page problems, with the most prominent being:

e Increased page fault latency cause by synchronous promotions
e Increased memory bloat and fragmentation
e Unfair provision of huge pages across processes

To tackle the above drawbacks it employs a number of strategies. First, it
battles high page fault latency by disabling synchronous promotions. To implement
huge page allocation, Ingens introduces a background kernel thread responsible of
promoting base pages to huge pages.

Second, to alleviate memory bloat and fragmentation, Ingens implements dy-
namic, utilization driven huge page allocation policies. Specifically, it tracks
through a bit-vector how many base pages of a huge page are in use. Only when
this number surpasses an administrator-defined threshold will the memory region
be backed with a huge page. Ingens also argues that this approach might be too
conservative for a system with abundant physical memory contiguity. Thus it mon-
itors the fragmentation of the system using the Free Memory Fragmentation Index
(FMFI), quantifying whether the system is fragmented or not. When the system
is un-fragmented Ingens copies Linux’s aggressive huge page allocation policy. On
the other hand, when the system is fragmented, it enables the utilization percent-
age threshold. This utilization based logic is also applied to huge page demotion
decisions, where high-utilization huge pages are deferred from being demoted.

Finally, Ingens tries to achieve fairness in huge page promotions across pro-
cesses. It describes memory contiguity as a valuable resource in a system, thus it
distributes it equally among processes.
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2.5.2 Hawkeye

Hawkey [25] aims to solve the same huge page management shortcomings pre-
sented by the Ingens paper, yet it follows a different approach. First, Hawkey
acknowledges the high page fault latency introduced by synchronous huge page
allocation, but it also argues that the synchronous approach avoids subsequent
page faults in the memory region, increasing the response time of real-time appli-
cations. It recognizes that the majority of the page fault time is spent on zeroing
out the allocated pages, thus, in order to minimize this latency and retain syn-
chronous huge page support, it employs asynchronous page pre-zeroing through a
background kernel thread. Subsequently, an already zeroed page may be used at
fault time allocations.

Second, Hawkeye reasons that the utilization based approach is not sufficient
to distinguish memory areas that would benefit the most from being backed by
huge pages. Instead, it prioritizes huge page sized regions on metrics like recency,
frequency and access-coverage (i.e., how many baseline pages are accessed inside
a huge page), captured through finer-grained access tracking.

To provide fair provision of huge pages to processes, Hawkeye ranks applica-
tions based on their estimated MMU overheads, instead of their use of contiguous
memory. It recognizes applications that exhibit high TLB pressure by measuring
hardware performance counters (or by monitoring memory access patterns sacri-
ficing accuracy for portability) and prefers them for huge page allocation.

Finally, Hawkeye tackles memory bloat under fragmentation, by scanning exist-
ing huge pages to identify zero-filled baseline pages within them. If the number of
zero-filled baseline pages inside a huge page is beyond a threshold, the huge page is
broken into its baseline pages and the zero-filled baseline pages are de-duplicated
to a canonical zero-page through standard COW page management techniques.
Contrarily to huge page allocation fairness, Hawkeye scans huge pages to demote
starting from the applications with the lowest measured MMU overheads.

2.5.3 CBMM

CBMM (Cost-Benefit Memory Manager) [21] introduces a cost-benefit analysis
model to kernel memory management (MM) policies in order to improve behavioral
consistency in the memory subsystem.

It implements a new component in the Linux kernel, the estimator, along with
cost-benefit models for three kernel MM policies: huge page management, asyn-
chronous page pre-zeroing, and eager paging. Subsequently, the MM subsystem
invokes the estimator at decisions points in the kernel code, places where decisions
need to be made.

Specifically in huge page management, before promoting a series of base pages
to a huge PMD-sized page, the estimator calculates the cost of the promotion, by
monitoring the system’s state and using empirically calculated fixed costs, and the
benefit of it, leveraging user-provided offline-aggregated profiling data.
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CBMM defines benefit of backing a memory region with huge pages as the
cycles averted from TLB misses, and it quantifies it with the following algorithm:
For each workload it:

1.

2.

D.

Divide the address space into 100 different regions.

Choose a memory region.

. Run the workload with only that region backed with huge pages.

. Measure the performance speedup using as baseline an execution without

huge pages.

Repeat steps 2 through 4 for every one of the 100 regions.

CBMM avoids using generalized heuristics that may not apply in different sys-
tems states and in various workload behaviours. Instead, its cost-benefit approach
avoids costly operations that do not provide the required benefit, as long as the
profiling information is not highly inaccurate.
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Chapter 3

eBPF

The extended Berkeley Filter, or commonly known as eBPF [28, 8, 4, 12], is
a revolutionary kernel technology that allows developers to load custom-written
code into the kernel dynamically, changing the way it behaves. This way eBPF
programs benefit from kernel’s access to resources and system data, while the
underlying infrastructure ensures security and efficiency. Thus, eBPF has found
great success by allowing the user to enhance the kernel with new functionalities
without the need to reboot the system, since no kernel modules are loaded and no
change to the kernel source code is needed.

The kernel eBPF infrastructure ensures the safety of eBPF programs before
being loaded to the kernel through an in-kernel verifier. The verifier ensures that
an eBPF program will neither crash the machine nor lock it up in a hard loop,
and it won’t allow data to be compromised. If the program is not safe to run, the
eBPF verifier will not allow it to be loaded into the kernel.

The execution of eBPF programs in the kernel follows an event-driven model.
Upon loading an eBPF program into the kernel, the program is attached to an
event. An example of such an event could be the entry to a system call like
execve. From now on, whenever an execve system call is called, the attached
eBPF program will be executed.

3.1 From BPF to eBPF

What is now known as "eBPF” originated from the BSD Packet Filter, which
was originally described in a 1993 publication by Steven McCanne and Van Ja-
cobson of Lawrence Berkeley National Laboratory [22]. The subject of this paper
is a pseudomachine that is capable of executing programs called filters, which de-
cide whether to accept or reject a packet on the network. The BPF instruction
set, a general-purpose set of 32-bit instructions that closely resembles assembly
language, was used to write these programs.

This early version, now referred to as ”classic BPF” (cBPF), was integrated
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into the Linux kernel by version 2.1.75 and quickly became a key tool in network
packet capture utilities like tcpdump, offering an efficient way to capture pack-
ets to be traced out. Over time, the capabilities of BPF expanded far beyond
packet filtering. The introduction of seccomp-bpf [9] in kernel version 3.5 marked
a pivotal moment, enabling BPF programs to manage system call permissions and
broadening its application to security contexts.

It was until kernel version 3.18, when ”classic BPF” (¢cBPF) transitioned to its
"extended BPF” (eBPF) state. This kernel version included a complete overhaul
of the BPF instruction set to better suit 64-bit architectures, added new data
structures called maps enabling efficient data sharing between kernel and user
space, a new bpf() system call for interacting with eBPF programs from user
space and an "eBPF verifier” kernel component that ensured safe execution of
eBPF programs.

3.2 eBPF use cases

By allowing users to inject custom written programs in various points in the
kernel, eBPF enabled the creation of advanced tools in performance monitoring,
system observability, security and networking, while allowing the kernel to be fully
programmable.

3.2.1 Tracing and Profiling

The eBPF technology revolutionized they way tracing was done in Linux sys-
tems. It leveraged a Linux feature named kprobes [16], that allows for traps to
be set on almost any instruction in the kernel code, and similar tools like uprobes
and tracepoints, in order to enable eBPF programs to attach virtually anywhere in
the kernel and userspace application’s code. With eBPF users can implement low
overhead, fine grained profiling of the runtime behavior of both userspace and ker-
nel space processes, giving unique and precious insights to troubleshoot system’s
performance issues.

3.2.2 Networking

In networking, developers can install load balancing policies, application pro-
filing scripts, network monitoring procedures, and faster, more customized packet
processing features using eBPF. eBPF is utilized by open-source solutions such as
Cilium to offer safe and scalable networking for Kubernetes clusters, tasks, and
additional containerized microservices. Furthermore, eBPF can expedite routing
procedures and facilitate a faster overall network response by utilizing kernel-level
package forwarding logic.
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3.2.3 Security

Before eBPF, system security relied on specialized solutions focusing on various
aspects of it. For instance, separate systems would be required for network-level
filtering, process context tracing, and system call filtering. On the other hand, by
expanding the fundamental skills of viewing and understanding all system calls and
offering packet- and socket-level views of all networking processes, eBPF makes
it easier to combine control and visibility over each component. This makes it
possible to create security systems with enhanced control and greater awareness.

3.2.4 Scheduling policies

More recently eBPF made its way into the Linux scheduler [31]. A new schedul-
ing class, named extensible scheduler class (or sched-ext), provides a framework
that allows the implementation of a wide range of scheduling policies in BPF code.
An application is then able to choose between default Linux scheduling policies and
an eBPF scheduler that is loaded and running. This enables the development of
tailor-made application specific schedulers, while also easing the experimentation
of new scheduling policies with a plug-and-play model.

3.3 How does eBPF work?

3.3.1 The eBPF Virtual Machine

The Linux kernel supports the execution of eBPF programs by providing a
sandboxed environment similar to a virtual machine. More specifically, eBPF pro-
grams are assembled from a set of BPF specific bytecode instructions acting on
virtual, software implemented BPF registers. In order for these instructions to ex-
ecute they need to be converted to the system’s architecture specific instructions.
Older systems achieved that using an in-kernel interpreter, mapping BPF instruc-
tions directly into machine code. The interpretation took place every time an
eBPF program needed to run. The vast majority of modern systems have replaced
this interpreter with a Just-In-Time compiler. This way, eBPF programs are com-
piled into native machine instructions just once, when the program is loaded into
the kernel. This, along with compiler optimizations, provides a significant boost
to eBPF programs’ performance and also some hardening against Spectre related
vulnerabilities within the interpreter.

3.3.2 The eBPF Instruction Set Architecture

The eBPF subsystem provides the developer a general purpose RISC-based
instruction set. The eBPF instruction set has been originally designed in such
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way that developers could write C-like programs that would compile into BPF
bytecode instructions through a compiler back-end suite like LLVM.

Instruction Encoding

eBPF bytecode instructions are of a fixed size of 64 bits acting on virtual eBPF
registers. They are compromised of an 8-bit opcode, two 4-bit fields representing
the source and destination registers, a 16-bit offset for jump instructions and a
32-bit immediate value. Most instructions do not use all of the fields. The unused
fields must be cleared to zero. Particular care has been given to the design of
the eBPF instruction set to be easily mapped to common CPU architectures so
that the step of interpreting or compiling from bytecode to machine code would
be reasonably straightforward.

Instruction Classes

The eBPF instruction set architecture categorizes its instructions in 8 differ-
ent classes based on the 3 least significant bits (LSBs) of the opcode field. These
classes can be further grouped in three larger categories of Arithmetic and Logical
Operations (supporting addition, subtraction, bit-wise operations, etc.), Load and
Store instructions (moving data between registers and memory, supporting both
direct and indirect addressing modes), Jump instructions (conditional and uncon-
ditional jumps for flow control) including Call instructions to support function
calls, including helper function invocations provided by the kernel.

eBPF registers

The eBPF virtual machine uses 11 software implemented registers, numbered
from 0 to 10. Registers 0 through 9 are used for general computation purposes,
while register 10 is reserved as a stack frame pointer, which can only be read from
and not written to. Register 0 usage is to store the return value from function calls
and the exit value of eBPF programs. Registers 1 through 5 typically hold the
arguments for function calls, while register 1, also conventionally holds the context
of the eBPF program. Subsequently, these registers, characterized as “scratch”,
do not guarantee that their value will remain untouched between function calls. If
the callee would like to save their value they should either push them to the eBPF
stack or save them to callee saved registers. These conventions imply an upper
bound of 5 input arguments per function call. Registers 6 to 9 are callee saved
registers that will be preserved across function calls.

eBPF context

What we referred to as “context” acts as the input argument for an eBPF
program. Depending on program type the context is different, for example, in
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a type XDP networking eBPF program register 1 might point to a kernel data
structure specific for representing the received network packet. It usually provides
the eBPF program a set of useful information regarding the event it is attached
to.

3.3.3 Attaching to an Event

As already mentioned eBPF programs follow an event-driven execution model,
so in order to execute they must be attached to some kind of event. Programs can
have lots of different purposes, they can for example record information, modify
information, make decisions and cause side effects. Where a program is allowed to
attach and what is allowed to do depends on its program type.

A feature called kernel probes [16] (kprobes) had existed in the Linux kernel
since 2005, enabling developers to trap almost any kernel code address, except
some parts of the kernel code that are not allowed to be trapped. That means
that a kprobe can be inserted on virtually any instruction in the kernel. (kernel
docs for kprobes)

BPF_PROG_TYPE_KPROBE is a type of eBPF program that can be attached
to kprobes. It is evident that kprobes and eBPF programs work very well together,
since they allow a developer to attach an eBPF program virtually anywhere in the
kernel.

3.3.4 Verifier

The importance of the eBPF technology has been established, allowing devel-
opers to inject custom written programs into the kernel, enabling the kernel to be
extended at runtime. The verifier [5] component of the eBPF subsystem’s stack
is responsible for ensuring the safety of eBPF programs, by enforcing restrictions
and security checks to their execution. Execution of unverified code running in
kernel mode imposes serious security threats like corrupting memory and leaking
sensitive information to malicious third parties, as well as causing the kernel to
crash or to be trapped in deadlock. Inline security checks at runtime introduce non
acceptable overheads, thus verification of eBPF programs through static analysis
at load time is crucial in order to meet performance quota. This is a trade-off
between ease of use and performance, since developers are called to tailor their
eBPF programs to pass the strict verifier checks so that they can run at native
speed.

Important Verification Checks

Let’s take an in depth look at what criteria must be met for a program to be
considered safe from the verifier’s perspective.
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Program Termination First of all, eBPF programs must always terminate,
so the verifier rejects any program that could contain infinite loops or recursions.
Traditionally this was achieved by rejecting any loop instruction all together, but in
newer kernel versions bounded loops have been introduced for developer’s comfort.
The verifier, at least at this time of writing, is able to process up to 1 million
instructions of eBPF programs, thus hard coding that all programs must eventually
terminate. Any program with more instructions than the upper limit is going to
be rejected.

Memory Access Furthermore, in order to battle the leak of sensitive infor-
mation, the verifier prohibits programs to read arbitrary memory. The verifier
provides programs a controlled way of accessing memory through a collection of
verified functions called helper functions. Different program types have access to a
different set of helper functions, for example, tracing programs are allowed to use
functions that can read memory areas. The verifier is responsible for ensuring the
correct usage of these helper functions, and that programs have the appropriate
license to use them (only GPL compatible programs can use eBPF helper func-
tions licensed under GPL). Tracing programs require root privileges in order to be
loaded in the kernel and thus are not a security risk. Another restriction on the
memory side is that programs are not permitted to read uninitialized memory.

Pointer de-referencing A big part of the verifier is dedicated to ensure safe
pointer dereferencing. De-referencing a pointer that points to an invalid location
could either leak sensitive information, or crash the program entirely, in the case of
a null pointer. To avoid that, the verifier employs a technique called range analysis
verification, where it tracks the bounds of the values of each register, in order to
reject any out of bound access to memory through pointer arithmetic. To pass
this verification step, programmers ought to check whether a pointer is NULL or
out-of-bounds before de-referencing it.

Context Information As already mentioned, context information is passed
in every eBPF program as an input argument. Context information is usually a
pointer to some data structure relevant to the program and the attachment type.
For example, in BPF_PROG_TYPE_KPROBE type programs, the context is a
pointer to a data structure resembling a state copy of the CPU registers at the
time of the probed instruction. Not all eBPF programs are allowed to access every
field of this data structure, therefore the verifier ensures that each eBPF program
accesses only context information that is allowed to.

Concurrency Also, to avoid system deadlocks, programs require the system-
atic approach to locking to ensure correctness under concurrency. Each lock held
by a program must be released, and a program is not allowed to hold more than
one lock at a time.
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This concludes some of the most important conditions, among others, that
must be met in order for an eBPF program to pass the verifier. Now we are going
to focus on how the verifier guarantees that none of these constraints are breached
in the entirety of a program.

Verification Process

The basic premise is that the verifier checks every possible permutation of a
program mathematically. This is achieved by walking the code from the beginning
and constructing step by step a graph based on branch instructions. Starting from
the first instruction and descending all possible paths, the verifier simulates the
execution of each instruction and keeps track of the state changes of every register.
The state of each register is represented by a structure named bpf_reg_state, which
includes fields describing what type of value is held in that register along with
its minimum and maximum value. Each time a branch instruction is encountered
the verifier will push a copy of the current state of the registers onto a stack and
will continue exploring one of the possible execution paths. When the end of
the program is reached, another execution path is popped from the stack to be
evaluated. This is done until the end of the program is reached and the stack is
empty (the program passes the verifier), or an invalid operation is performed (the
program does not pass the verifier).

Checking each possible execution path of a program can get computationally
expensive, subsequently the verifier is optimized with state pruning, a technique
aiming to avoid reevaluating paths that are essentially equivalent. This is imple-
mented by storing the state of specific registers every fixed number n of instruc-
tions. The state of which registers to store is determined through an algorithm
called “Register Liveness Tracking”. This algorithm detects which registers are
necessary for the verification of subsequent executions of the program. If the ver-
ifier later arrives at the same instruction with a state that matches the previously
cached state, the verification process stops for the current path as it is known to
be valid.

3.3.5 eBPF Helper Functions

Taking into account the restrictions imposed by the verifier, an eBPF program
on its own is quite limited. By default, eBPF programs can perform basic op-
erations like reading from and writing to a local stack, performing mathematical
operations on registers, making conditional jumps, and calling internal functions.
On the other hand, they are neither allowed to directly call to any kernel function
(unless it has been registered as a kfunc), nor access kernel information. These
capabilities are crucial for most practical applications of eBPF programs.

In order to enable eBPF programs to interact with system resources in a safe
manner, the Linux eBPF subsystem provides a list of predefined ”helper func-
tions”. These helper functions act as an interface between the eBPF program and
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Table 3.1: eBPF Register Value Types

NOT_INIT Register value is not initialized
SCALAR_VALUE Register is not a valid pointer
PTR_-TO_.CTX Register points to input context
CONST_PTR_-TO_MAP | Register points to a program defined map
PTR_-TO_STACK Register is the frame pointer

PTR_-TO_MAP_VALUE | Registers points to a map element value

PTR.TO_MAP_KEY Registers points to a map element key
PTR_TO_MEM Registers points to a valid memory region
PTR_TO_FUNC Registers points to a bpf program function

the kernel. They serve a wide range of purposes, from printing debugging mes-
sages to accessing kernel memory -e.g. interacting with eBPF maps, manipulating
network packets.

Each type of eBPF program operates in a different context, which means that
not all helper functions are available to every eBPF program. Instead, each pro-
gram type has access to a specific subset of helpers that makes sense to it. For
example, network-related eBPF programs might have access to functions that ma-
nipulate packet data, but a helper retrieving the process’s ID is not available, since
no process is related to a packet capture.

Helper functions act as an interface between the eBPF program and the kernel.
This design ensures that eBPF programs remain portable and do not break across
kernel versions.

Internally, eBPF programs call these helper functions directly, without requir-
ing any foreign-function interface or intermediary, which means that invoking a
helper introduces no additional performance overhead. This direct calling mecha-
nism ensures that eBPF programs remain highly efficient.

3.3.6 eBPF Maps

A map [12] is a data structure that is accessible from both userspace and from
an eBPF program. One of the most substantial things that sets extended BPF
apart from its traditional predecessor are maps. Maps can be used to exchange data
between different eBPF programs or to facilitate communication between eBPF
code operating in the kernel and a user space application. Interaction with eBPF
maps from user-space is facilitated through a dedicated BPF system call interface.
Maps can be accessed with eBPF programs using provided helper functions. They
provide a persistent storage layer that is commonly used for:

e User space writing configuration information to be retrieved by an eBPF
program.
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e Storing state across execution of different (or the same) eBPF programs.

e Writing results or metrics of eBPF programs, in order to expose them to
userspace applications.

The eBPF subsystem defines various types of maps, each one suited for different
purposes, but in general they are all key-value stores. Some map types are defined
as arrays, which always have a 4-byte index as the key type; other maps are hash
tables that can use some arbitrary data type as the key. Other map types are
optimized for particular types of operations, such as first-in-first-out queues, first-
in-last-out stacks, least-recently-used data storage, longest-prefix matching, and
Bloom filters (a probabilistic data structure designed to provide very fast results
on whether an element exists).

Some eBPF map types hold information about specific types of objects, like
sockmaps and devmaps that hold information about sockets and network devices
and are used by network-related eBPF programs to redirect traffic. A program
array map stores a set of indexed eBPF programs, and is used to implement tail
calls, where one program can call another. There’s even a map-of-maps type to
support storing information about maps.

In order to address concurrency issues, where a map is simultaneously accessed
by different CPU cores, eBPF supports spinlocks for some types of maps.

42



Chapter 4

Implementation

In the previous chapter, we presented the eBPF technology. We described how
it works internally and how modern systems take advantage of it in a plethora of
use cases.

In this chapter, we present how we leveraged this new technology to achieve
our main objective; enhance the decision-making process of the Linux memory
management subsystem regarding huge page allocation. Our system enables users
to provide profiling information to an eBPF program, able to guide the kernel’s
selection of the most suitable huge page size for a memory region at fault time.

While the eBPF program we developed can be configured to choose between
an arbitrary selection of huge page sizes, we only target 64KiB and 2MiB huge
pages. This decision was made because Linux mTHP does not support 32MiB
huge pages, while the underlying hardware used for the evaluation benefits from
64KiB huge pages.

In the next sections we are going to provide a high-level overview of our im-
plementation, and then delve deeper into more technical details.

4.1 High-Level Overview

This section describes how our eBPF system makes the memory management
subsystem modular. Specifically, we explain the code path of our system at page
fault time and how an attached eBPF program can influence it with hints from
user space. We also briefly explain the core components that comprise our system.

4.1.1 Hooks on Page Fault Path

In order to execute, every eBPF program needs to be attached to a specified
attachment point. The capabilities of eBPF programs are greatly influenced from
the place of the attachment point and the context it provides to eBPF programs.
Subsequently, at first, we implement a hook point for our eBPF program in the
Linux page fault path using the kprobes technology. We place our hook point right

43



Kernel Space User Space

N ot [ ] - ost bereficl buge poge size

yoT ST e m e mm e f— -Lt-' - —d—d- - 784 \ Loay Frog, Profile of PID 756
autingaceress: ST . \‘I{rreg\on,star( region_end 64KiB e ) higher b

Page Fault Code Oxfffff5c00000

'
N 605312320 |1

Oxfffff7000000 | Oxfffff7200000 | 668574320 | 765832320

handle_mm_fault()

Oxffff4800000 | Oxfffff4800000 | 765832320 | 535031320

eBPF hook point

Trytocreate 2-MiB \
fuge page:

e —i
Try to create 64KiB
huge page

J'I

* Memory compaction
| ’ * Zeroing / Reading / Copying memory

Figure 4.1: ebpf-mm: High-Level overview of our eBPF-enhanced huge page
management

before the decision of the Linux kernel to promote a faulting memory region to a
huge page or not. When the kernel code path reaches the hook point the eBPF
program will get triggered and start executing. Its actions will determine whether
or not this decision will be made.

4.1.2 Context

As already mentioned the context information passed to an eBPF program
acts like an input for it. It is crucial to pass important information to the eBPF
program if we expect to make any informed decision with it. In our case, we
need to distinguish a page fault from others, in order to provide tailored to this
fault profiling information. To achieve that, we provide to the eBPF program
the address of the memory operation that caused the page fault handler and the
available huge page sizes of the faulting memory region to promote to.

4.1.3 Search for a profile

Our system stores per-process profiling information associated with the benefit
of different huge page sizes inside an eBPF map. The eBPF map uses as key a
process’s ID and as value a data structure containing profiling information for
memory regions of the corresponding process. The eBPF program proceeds to
retrieve the profile associated with the faulting process. In the case it does not
find an entry with the specific process ID, or the entry contains a NULL profile,
then normal Linux behaviour resumes. After finding a profile for the faulting
process the eBPF program continues by searching the profile for the first memory
range that the faulting address belongs to. If it finds a profiled memory range, it
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retrieves the benefit for the different huge page sizes, if not it falls back to normal
Linux behaviour.

User-space program We developed a complimentary user-space program that
is responsible for loading and unloading profiles from the eBPF map. It takes two
arguments as input parameters. A file with a specific structure, containing profile
information for a range of memory regions. A process ID that indicates to which
process the profile corresponds to.

Profile Structure The profiles are structured in a specific way. Each line of
the profile describes the benefit of all huge page sizes about a specific memory
region defined with a start and end address. Specifically, it contains a number of
comma separated values. The first two values signify the start and end address of
the region accordingly. The remaining values represent the benefit of using each
huge page order in ascending order (e.g. the first value is the benefit for order 2

huge page).

4.1.4 Compute the costs of huge page promotion

As previously mentioned the promotion of memory regions to huge pages has
both performance benefits and associated costs. The cost of promoting a memory
region to a huge page is non-trivial. Our eBPF program considers two main
contributing factors to the overall cost; the time needed to find a large enough
contiguous block of physical memory and the time needed to prepare it.

Physical Memory Contiguity and Compaction In systems with ample
free memory, finding a contiguous block of physical memory is a relatively inex-
pensive operation, hence in this case we consider this cost negligible. However, in
systems where memory is fragmented, the kernel may need to perform compaction
to free up enough contiguous memory. Memory compaction involves relocating
active pages to create contiguous space, which can be time-consuming and in-
troduces additional system overhead. In our model, we enable eBPF programs
to monitor the current fragmentation state of the system in real-time, through a
newly introduced helper function.

Page Preparation Before allowing users to perform operations on allocated
memory the operating system needs to make sure to prepare the underlying phys-
ical pages, introducing additional costs. For anonymous memory regions, this
preparation includes zeroing the memory before use. For file-backed memory, the
actual data may need to be loaded from disk, introducing additional I/O latency.
Our eBPF implementation targets only anonymous memory allocations, thus we
only take into account the zeroing cost.
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Fixed Cost Estimation In our system, the costs associated with memory
compaction and page preparation are estimated empirically as previous works [21].
We observe the system during different states of fragmentation and use this data
to calculate a fixed cost for compaction and page preparation. These costs are then
used in real-time by the eBPF program to determine whether huge page promotion
is worthwhile.

4.1.5 Hint the kernel on beneficial page sizes

The next step of our eBPF program is to compare the preparation costs with
the expected profiled benefit for different huge page sizes. We use the available
page orders provided as context to our eBPF program to determine two things;
which of these are beneficial and which one is the most beneficial. Then we hint
the kernel to try to back the faulting memory region with the most beneficial
huge page order. If this fails, the kernel is able to promote to a different huge
page order that is smaller than the one tried. Thus, we also hint the kernel which
orders smaller than the optimal choice are still beneficial to promote to.

4.2 Technical Implementation Details

4.2.1 Hooks & Context

In order to implement the hooks on the page fault path we leveraged the
kprobes technology.

kprobes Kprobes are an instrumentation tool, allowing a programmer to es-
tablish a breakpoint on virtually any instruction in the kernel. When a CPU hits
a breakpoint instruction (commonly optimized as a jump instruction) the regis-
ters are saved and the codepath deviates executing a specified pre-handler (before
the probed instruction) and post-handler (after the probed instruction) function.
Kprobes also allow the handler functions to access the CPU registers before the
call instruction, through a data structure named pt_regs. The bpftool tool au-
tomates the process of registering a kprobe and attaching the eBPF program as
a pre-handler. The libbpf library automates the process of getting the input ar-
guments of a probed kernel function through the pt_regs data structure with the
macro BPF_KPROBE.

To implement the hook in the page fault path we define a new function in
the kernel code. The input arguments of this kernel function will act as context
information for the attached eBPF programs. Thus, we provide this function
a pointer to a data structure as the first argument, which contains the faulting
address of the page fault along with the available huge page orders available for
the memory region it belongs to. The body of this function prints some debugging

46



information to the kernel’s debug log, which can be omitted, and then simply
returns. We then strategically call this function in two points in the page fault
path, which is where our eBPF program will be attached through a kprobe. We
need to make sure that the compiler does not inline this function, because kprobes
do not work with in-lined functions.

There are two points from where our eBPF program can be triggered. We
make this decision in order to interfere as little as possible with the default Linux
behaviour. The first point of triggering the eBPF program is right before the Linux
kernel tries to back the memory region with 2 MiB, PMD-based huge pages. The
second point is right on the mTHP decision point, where the Linux kernel iterates
all the available mTHP page sizes from bigger to smaller trying to back the region
with said size each time.

4.2.2 Interacting with the kernel

In the previous section we frequently described utilities our eBPF program is
implementing, which in order to complete them it would need to interact with the
kernel.

We can distinguish these interactions in two categories. The first category
explains how both our eBPF program and the user-space program interact with
the defined eBPF map, in order to retrieve and store profile data. The second
category has to do with how the eBPF program interacts with kernel memory in
order to access its context, get information about the state of the system and alter
the available huge page orders for a faulting memory region.

In the previous chapter we stated that, for security reasons, the eBPF verifier
severely limits such capabilities from eBPF programs. In order to get around these
limitations, while ensuring eBPF’s security we used both existing eBPF helper
functions and developed new ones.

eBPF map

The eBPF map holding the per-process profiling information is undoubtedly a
core component of our system. Let’s take a closer on how we define this map and
how eBPF implements it.

struct {
__uint (type, BPF_MAP_TYPE_ARRAY);
__type(key, u32);
__type(value, struct profile_t);
__uint (max_entries, 10240);
__uint (pinning, LIBBPF_PIN_BY_NAME);
} my_map SEC(".maps");

The above code defines the attributes of the eBPF map we are using. We
observe in the body of the defined structure several key things:
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Our map is of type BPF_MAP_TYPE_ARRAY. This type of map is a generic
map type similar to simple arrays in C. It is indexed with a numeric key
starting at 0 and incrementing, while eBPF imposes no restrictions on the

structure of the value. A possible optimization of this would be to use a map
type of BPF_MAP_TYPE_HASH, ensuring faster accesses to the profile data.

We are forced to use a key size of 4 bytes, essentially a 32-bit unsigned
integer. Since process IDs are also 32-bit unsigned integers, this doesn’t add
any complexity.

We define the type of the value as a profile_t structure. This is a structure
we defined in order to represent profiling data. This approach imposes a
restriction that the profile structure is of fixed size. This means that every
process is only able to profile a predefined number of ranges. We can over-
come this limitation by implementing a different type of eBPF map of type
BPF_MAP_TYPE_ARRAY_OF_MAPS, where each value can be a different
map of varying size. For sake of simplicity we did not choose that approach.

We need to define the maximum number of entries our eBPF map will use.
We set this number at 10240, considering that there is no point of profiling
over that number of processes at the same time.

The last configuration option is to pin our eBPF map by name. This option
creates a file in a bpf pseudo-filesystem with the file descriptor representing
our eBPF map structure. This serves two purposes. First, the user space
program responsible for loading the profiles is able to easily find the eBPF
map. Second, the eBPF map is not going to be de-allocated after the eBPF
program is terminated for some reason, since a reference to it will still exist.

The use of the SEC() macro in last line after the definition of the map
structure declares an ELF section in the compiled ELF object. Specifically,
it instructs the compiler to put additional metadata for our defined map in
the .maps ELF section. This is later used by the libbpf library to generate
the BTF information related to the structure of the map, which will be used
in the deployment of the eBPF program, described in a later section.
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The profile_t structure As already described the profile_t structure repre-
sents the profile data for a process.

struct cb_struct {
unsigned long long benefit;
unsigned long long cost;

};

struct prof_range {

unsigned long long start;

unsigned long long end;

struct cb_struct cb[MAX_HP_ORDERS];
3

struct profile_t {
int enabled;
struct prof_range ranges [NUM_RANGES];

};

We observe that the profile structure contains two fields. The first one is an
integer named enabled used to unload a profile from the kernel easily and efficiently.
Our eBPF program will ignore any profile with the enabled field set to 0. The
next field is a fixed size array containing a structure representing a profiled memory
range. The structure for the profiled memory range contains the start and end
address of it, as well as an array containing the expected benefit for the usage of
each huge page order.

Access the map Since, an ¢eBPF map is stored in kernel memory, the eBPF
verifier does not allow eBPF programs to access it with arbitrary pointers. The
kernel provides access and manipulation of eBPF maps through specific commands
of the bpf() system call. Here, we present the already libbpf helper functions our
eBPF and user-space programs used in order to access the eBPF map that act as
a wrapper to the underlying system call commands.

e bpf_map_lookup_elem()

This helper function performs a lookup in a map for an entry associated
to key. The map argument must be a pointer to a map definition and key
must be a pointer to the key you wish to lookup. The return value will
be a pointer to the map value or NULL. The value is a direct reference
to the kernel memory where this map value is stored, not a copy. Therefor
any modifications made to the value are automatically persisted without the
need to call any additional helpers.
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e bpf_map_update_elem()

This helper function is used to write values to maps. Arguments of this
helper are map which is a pointer to a map definition, key which is a pointer
to the key you wish to write to, value which is a pointer to the value you
wish to write to the map, and flags which are described below. The flags
argument can be one of the following values:

— BPF_NOEXIST - If set the update will only happen if the key doesn’t
exist yet, to prevent overwriting existing data.

— BPF_EXIST - If set the update will only happen if the key exists, to
ensure an update and no new key creation.

— BPF_ANY - It doesn’t matter, an update will be attempted in both
cases.

The libbpf library provides an equivalent function for user-space programs,
but instead of providing a reference to a map definition, a user needs only to
provide a file descriptor to it. Our user-space programs leverages this libbpf
API function to load the profile to the eBPF map.

e LIBBPF_API bpf_obj_get()

This is a wrapper for the bpf() system call called with the BPF_OBJ_GET
command, provided by the libbpf library. Specifically it takes as an argument
the path to a pinned bpf object and return a file descriptor to it. Our user-
space program uses this helper functoin to get a file descriptor for our eBPF
map.

Hint the Kernel about beneficial Huge Page Orders

As for now we have explained in technical detail how our eBPF program ac-
cesses profile data, provided by user-space, containing the expected benefit of a
huge page order. This benefit is then compared to a system-specific cost in order
to decide which of the available huge page orders for the faulting memory region
are beneficial. The final step of our eBPF program is to return to the kernel the
beneficial huge page orders. Since we need to interact with the kernel in a specific
way we developed two new helper functions:

e A helper function that informs the eBPF program about the system’s state
regarding free memory pages. This helper function enables the eBPF pro-
gram to determine the cost for setting up a huge page for a memory region.

e A helper function designed to pass the beneficial huge page orders to the
kernel.
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bpf_free_huge_page_status(int order) This helper function is used to de-
termine if the system has any available physical page of order equal or greater
than the one provided as an argument. If there is a free page of the requested
order we assume that the huge page allocation of the corresponding size will not
induce any additional costs for finding a large enough contiguous block of memory
(compaction or reclamation). In that case we consider that the sole cost of setting
up the huge page is the time it takes to zero its memory contents.

BPF_CALL_1(bpf_free_huge_page_status, int test_order) A
int zone_idx;
struct zone *zone;
struct page *page;
struct free_area *area;
bool is_free = false;
int order;
unsigned long flags;

pg_data_t *pgdat = NODE_DATA (numa_node_id ());
for (zone_idx = ZONE_NORMAL; =zone_idx <
MAX_NR_ZONES; zone_idx++) {
zone = &pgdat->node_zones[zone_idx];

for (order = test_order; order <
MAX_ORDER; ++order) A
area = &(zone->free_areal[order])
is_free = area->nr_free > 0;

if (is_free) {
return 1;

return O;

bpf_update_orders(struct mm_action *action, unsigned long orders)
This helper function takes two arguments as input. The first one is a pointer to
the data structure that represents the context information we provide the eBPF
program. The second one is an unsigned long integer representing the huge page
orders we want to store to the context data structure. Before the kernel invokes
our function used as a hook point, it stores inside this data structure the available
huge page orders. After the eBPF program is done executing and the execution
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flow returns back to the kernel code, the kernel updates the available huge page or-
ders for this fault with the ones stored in our data structure. If our eBPF program
provided different huge page orders, the kernel will be informed. In any other case
the kernel will preserve its default available huge page orders.

BPF_CALL_2(bpf_update_orders, struct mm_action *, action
, unsigned long, bpf_orders) {
action->hugepage_orders = bpf_orders;
return O;

4.2.3 Calculating Fixed Costs & Benefit
Costs

In order to calculate the costs for a specific kernel operation, we leverage the
interface of Linux Kernel Tracepoints. In the following paragraphs we present the
results from observing our system during a preliminary execution of our workloads
used for evaluating it. Specifically, we placed tracepoints in crucial points in the
kernel code, measuring the number of cycles it took for the following operations.

Zeroing a 2MiB huge page Here we calculate the cost of zeroing a 2MiB
huge page. We added the following tracepoint:

#ifdef CONFIG_PFTRACE
cycles = get_cycles();
#endif

clear_huge_page (page, vmf->address, HPAGE_PMD_NR);

__folio_mark_uptodate(folio);
#ifdef CONFIG_PFTRACE
if (tracepoint_enabled(zerohugepmdpage)) {
do_trace_zerohugepmdpage (get_cycles () -
cycles);

#endif

We observe that the time it takes for the Linux kernel to zero a 2MiB huge
page in our experimental machine is approximately 1000 cycles.
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Histogram for pftrace/zerohugepmdpage
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Figure 4.2: 2MiB page zeroing cost

Zeroing a 64KiB huge page Here we calculate the cost of zeroing a 64KiB
huge page. We added the following tracepoint:

#ifdef CONFIG_PFTRACE
cycles = get_cycles();
#endif /* CONFIG_PFTRACE */
clear_huge_page (&folio->page, vmf->address, 1 <<
order) ;

#ifdef CONFIG_PFTRACE
if (tracepoint_enabled(zeromthppage)) {
do_trace_zeromthppage (get_cycles() - cycles);
}
#endif /* CONFIG_PFTRACE =*/

We observe that the time it takes for the Linux kernel to zero a 64KiB huge
page in our experimental machine is approximately 50 cycles.
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Figure 4.3: 64KiB page zeroing cost

Compaction & Page Reclamation To measure the cycles our system needs
to perform the memory compaction and reclamation operations we installed the
following tracepoints. Due to the rarity of these operations in our system, we were
unable to gather sufficient data for a robust cost estimation. However, as previous
works that have measured some parts of the costly page walk involving compaction
have stated [21], we deem them incredibly expensive. Thus we assign them a very
large fixed cost, that would outweigh the expected benefit almost every time.

#ifdef CONFIG_PFTRACE
cycles = get_cycles();
#endif /* CONFIG_PFTRACE =*/

psi_memstall_enter (&pflags) ;
delayacct_compact_start ();
noreclaim_flag = memalloc_noreclaim_save () ;

xcompact_result = try_to_compact_pages (gfp_mask,
order, alloc_flags, ac, prio, &page);

memalloc_noreclaim_restore(noreclaim_flag);

psi_memstall_leave (&pflags);
delayacct_compact_end () ;
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#ifdef CONFIG_PFTRACE
if (tracepoint_enabled (runcompaction)) {

do_trace_runcompaction(get_cycles() - cycles);

}
#tendif

#ifdef CONFIG_PFTRACE
cycles = get_cycles();

#endif
psi_memstall_enter (&pflags);
x*did_some_progress = __perform_reclaim(gfp_mask,
order, ac);
if (unlikely (!(*did_some_progress)))
goto out;
retry:
page = get_page_from_freelist(gfp_mask, order,
alloc_flags, ac);
if (!page && !drained) {
unreserve_highatomic_pageblock(ac, false
)
drain_all_pages (NULL) ;
drained = true;
goto retry;
3
out:

psi_memstall_leave (&pflags);
#ifdef CONFIG_PFTRACE
if (tracepoint_enabled(runreclaim)) {
do_trace_runreclaim(get_cycles() - cycles);
}
#endif
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4.2.4 eBPF deployment

In the previous chapter we described the execution model of eBPF programs.
Specifically, we mentioned that the kernel accepts eBPF programs written in
eBPF’s bytecode instructions, runs the verifier to ensure safety, JIT compiles the
program into machine code that runs natively on the target CPU, attaches them
to an event that when triggered, will trigger execution of the eBPF program.

=
= _eBPF = eBPF

== Program == Program

clang -target bpf ] i Program i

Development

Syscall

§ GCJ [ﬁeBPF Verifier } _,gfegpp Sockets
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= 9 (@resPr T compiler | ( TCP/IP )
Runtime

Figure 4.4: eBPF program’s life cycle

Here we describe the process and tools we used for setting up our eBPF system.

The first step is using the bpftool utility in order to generate a header file named
vmlinux.h for our eBPF program, that contains all the data structure information
about the running kernel it might need.

Next, we need to compile our eBPF program, written in C, into eBPF bytecode.
This is done using the clang compiler from the LLVM project target the eBPF
instruction set with the -target bpf flag, which produces a compiled eBPF object
file.

We leverage the bpftool utility again, in order to generate a BPF skeleton
header file from the previously compiled eBPF object. The skeleton contains
higher level abstractions of the libbpf library that the user space code can use to
manage the life-cycle of the eBPF program.

Finally, we develop the user space program, built with libbpf, responsible for
loading the eBPF program into the kernel, setting up and attaching it to the
specified event using the following functions:
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e check_estimator_bpf__open_and_load()

This function uses libbpf to perform tasks such as setting up eBPF maps,
loading the bytecode into the kernel, and verifying the program with the
kernel’s BPF verifier.

e check_estimator_bpf__attach()

This function sets up a kprobe (in this case in the call instruction of our
mm_estimate_changes function in the kernel) and registers it as a perf event.
It continues by attaching the eBPF program in said event, allowing it to
execute whenever it is triggered. The output of the eBPF program can be
observed through tools like trace_pipe.

Makefile:
TARGET = check-estimator
ARCH = $(shell uname -m | sed 's/x86_64/x86/' | sed 's/

aarch64/arm64/"')

BPF_0BJ = ${TARGET:=.bpf.o}
USER_C = ${TARGET:=.c}
USER_SKEL = ${TARGET:=.skel.h}

all: $(TARGET) $(BPF_0BJ)
.PHONY: all

# Build user-space code

$ (TARGET) : $(USER_C) $(USER_SKEL)
gcc -Wall -o $(TARGET) $(USER_C) -L/root/libbpf/
src -1l:1ibbpf.a -lelf -1z

# Build BPF code

%.bpf.o: %.bpf.c vmlinux.h
clang \
-target bpf \
-D __TARGET_ARCH_$ (ARCH) \
-Wall \
-02 -g -o $@ -c $<
llvm-strip -g $6

# Build skeleton
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$ (USER_SKEL) : $(BPF_0BJ)
bpftool gen skeleton $< > $@

vmlinux.h:
bpftool btf dump file /sys/kernel/btf/vmlinux
format ¢ > vmlinux.h

clean:
- rm $(BPF_0BJ)
- rm $(TARGET)
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Chapter 5

Experimental Evaluation

5.1 Experimental Setup

We implement our system for Linux v6.9 and evaluate it on Ubuntu 22.04. We
run our experiments in a virtualized environment using KVM [17] hypervisor and
QEMU [6] emulator. This environment executes on an Ampere Altra [1] server
host, with 2 nodes of 80 ARMv8-2A+ Neoverse N1 [3] cores, each with 256GiB
of memory. The MMU includes separate data and instruction fully-associative
L1 TLBs of 48 entries each, and a unified 5-way set-associative L2 TLB with of
1280 entries of any size. L1 misses cost on average 3 cycles and L2 misses over 15
cycles. We use a single NUMA node and pin each thread on a single core. For the
omnetpp workload we replace GNU libc¢’s malloc with gperftools temalloc [11].

5.2 Benefit Profiling Methodology

The benefits of huge page promotion primarily stem from the reduced overhead
of address translation caused by improved TLB performance. Huge page increase
the TLB reach by reducing the number of TLB entries required to map large
regions of memory, which in turn reduces the frequency of costly page table walks.
However, the benefit of huge pages depends heavily on the access patterns of the
application and the size of its working set.

We define the benefit of using a huge page order for backing up a memory
region as the number of cycles averted due to TLB misses in case the region was
backed by base pages. The calculation of the exact number of averted TLB cycles
seem to be cumbersome, since ARMv8 doesn’t support page table walk cycles
PMUs. Further, the cost of a single TLB miss relies on the latency to perform a
page table walk, which can fluctuate due to the state of internal MMU caches, or
where in the memory hierarchy the page tables reside.

Previous work [20] characterizes memory regions of applications as beneficial
or not for huge pages, characterizing their memory access pattern through a metric
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called page reuse distance -i.e. the number of memory accesses to different pages
that occur between consecutive accesses to the same page (whether it’s 4KiB,
64KiB, or 2MiB).

Specifically three categories are recognized:

e TLB-friendly

The memory accesses in this memory region are characterized by high spatial
and/or temporal locality (e.g. sequential accesses). Even though the page
reuse distance may be average, the high frequency of memory accesses among
a page keeps the ratio of TLB misses per memory accesses low. Base pages
of 4KiB prove to be sufficient for such regions with huge pages providing
little additional benefit.

e High-Reuse TLB-Sensitive Accesses

The memory accesses in this memory region exhibit generally low spatial and
temporal locality. In the scenario where 4KiB base pages are used memory
accesses trigger a high amount of TLB misses, since the page reuse distance
is too high to keep the entries in the TLB hierarchy. On the other hand, the
pattern of these memory accesses exhibit good locality and low page reuse
distance on the huge page granularity. These are the memory regions we are
trying to identify, since they prove to be the most beneficial for promoting
to huge pages.

Memory access patterns that fall in the edge of this and the previous cat-
egories could benefit most from an intermediate huge page size like 64KiB,
supported by the arm processor through the contig-bit.

e Low-Reuse TLB-Sensitive Accesses

The memory accesses in this memory region exhibit such low locality that
even promoting to a huge page wouldn’t provide any significant benefit. This
could indicate sparse and low in frequency memory accesses. If the memory
accesses in this memory region are frequent a bigger than 2MiB huge page
could be more sufficient.

Instead of calculating the specific true cycles averted, we use technologies like
DAMON and arm hardware performance monitors to measure the access frequency
of specific memory regions, and how many TLB misses they induce. We use the
above information as proxy to determine in which category each memory region
belongs to.

DAMON First, we monitor the memory access patterns of the application us-
ing the DAMON [27] (Data Access Monitor) framework. We configure DAMON
to provide feedback on the frequency of memory accesses at a granularity that
matches the huge page size. By observing the access frequency of memory regions,
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we can estimate the benefit of backing those regions with huge pages. Regions
of 2MiB with high access frequency prove potential candidates for huge pages, as
they reduce the number of TLB misses and page table walks.

Hardware Performance Monitors As previously stated, we also take into
account the TLB misses memory accesses to a 2MiB region induce, other than
their frequency. We estimate the TLB misses through hardware assisted TLB
miss sampling with ARMv8-A’s Statistical Profiling Extension (SPE) [2].

5.3 Experiments

We evaluate our system with two SPEC CPU 2006 benchmarks [13] (astar and
omnetpp) and a micro-benchmark specifically developed characterizing the needs
of a workload that benefits the most from our eBPF system implementation.

We run these benchmarks in three different configurations:

e Linux using only 4KiB base pages (THP turned off)
e Linux with 2MiB huge pages (THP turned on)
e eBPF-mm Linux enhanced with eBPF

We compare the performance of default Linux behaviour with THP turned
on and our eBPF enhanced system. The evaluation focuses on key metrics such
as speedup, TLB misses using as baseline Linux with THP turned off, and the
number of allocated 2MiB huge pages compared to Linux THP.

5.3.1 micro-benchmark

First we present a micro-benchmark we developed to evaluate our eBPF’s
system approach. The benchmark begins by allocating N memory regions of 2MiB
in size (e.g. 20000 in our case). Then, we determine which percentage of these
regions will be benefit most from being backed with 2MiB pages (High-Reuse TLB-
Sensitive Accesses). The remaining regions are going to be sufficiently backed by
64KiB huge pages. The main part of the workload involves randomly selecting 48
regions of 2MiB, same as the number of entries of the fully associative L1 DTLB.
For regions that belong to the 2MiB beneficial set we iteratively perform memory
operations on the start of each 4KiB page of the region. For regions that belong to
the 64KiB beneficial set memory operations are restricted in the pages of the first
64KiB of each region, ensuring that address translation overheads can be mitigated
by the 64KiB huge page size.
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Memory Access Pattern The following heat-map generated from the moni-
tored access frequencies of 2MiB memory regions generated by DAMON indicates
exactly the expected output. From the heat-map we observe that the orange sec-
tion represents the memory access frequencies to pages included in the 2MiB huge
page beneficial set. Each of the other lines, followed by a black section, repre-
sent the 64KiB huge page beneficial regions where the rest of the 2MiB region is

underutilized.
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Figure 5.1: micro-benchmark memory access frequency heatmap produced
by DAMON

Profile for micro-benchmark We provide the obvious profiling for the mem-
ory regions of the micro-benchmark. As previously stated, the recorded benefit is
not calculated exactly, we only make sure that it surpasses the cost of zeroing the
huge page, since we want to ensure promotion. We only take in mind the zeroing
cost, since we run on a freshly booted Virtual Machine, with no other workload

running.
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Results As expected our eBPF-mm system is able to achieve the same perfor-
mance benefits as Linux’s default THP approach against the use of only 4KiB base
pages. The performance increase in both scenarios stems from the fact that by
using huge page, the entirety of the working set of the micro-benchmark is able
to fit into the L1 DTLB. Other than, compulsory misses, both systems should not
exhibit any more TLB misses regarding memory accesses to data, in contrast with
using only base pages. However, our eBPF system is able to achieve the same
performance increase by using 87,5% less 2MiB huge pages than Linux’s THP.
This way, the micro-benchmark suffers minimally from internal fragmentation and
subsequently avoids producing memory bloat in the system.

Speedup, TLB misses and allocated huge pages
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Figure 5.2: micro-benchmark results

5.3.2 astar

The astar benchmark implements the A* path finding algorithm on a 2D ar-
ray representing a map. This algorithm is commonly found in computer games,
artificial intelligence and path finding applications. The input of this benchmark
is a map in binary format, while its output is the number of existing ways from
point A to point B and the total way length needed to validate correctness.

Memory Access Pattern The heat-map generated for the astar benchmark
distinguishes two memory intensive phases in the workload. In the first phase we
observe that memory accesses happen frequently along the entirety of the allocated
virtual address space. Some memory regions (those being closer to the orange
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color) exhibit higher frequencies of memory accesses than others (those being closer
to the purple color). In the second phase of the workload, the workload accesses
fewer memory regions but with a higher intensity. This information alone hints
that backing the entirety of the virtual address space of the astar benchmark might
be the best option.
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Figure 5.3: astar memory access frequency heatmap produced by DAMON

Profile for astar After studying the information provided by ARM’s SPE we
observe that only a fraction of the memory regions of the benchmark induce a high
number of TLB misses. Following this observation, we decide to back only these
memory regions with 2MiB huge pages, while in the default case a huge page of
64KiB should be allocated. This way, we aim to alleviate the translation overhead
for memory region that seem to depend on 2MiB huge pages, while avoiding TLB
misses in regions where a slightly larger page size than the base page could provide
greater locality.
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Results The results of comparing the execution of the astar benchmark on our
eBPF-mm systems against the default Linux’s THP aligns with the previously cat-
egorization of memory regions, regarding the expected benefit from huge pages,
in real world applications. Our eBPF-mm systems results in similar performance
benefits with Linux’s THP, achieving similar speedup and TLB misses reduction,
while also promoting only a third of Linux’s THP 2MiB huge pages. This is clear
evidence that in some memory regions where 4KiB pages under-perform, inter-
mediate huge page sizes like 64KiB suffice, while 2MiB huge pages over-provision
memory resources.

Speedup, TLB misses and allocated huge pages
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Figure 5.4: astar results

5.3.3 omnetpp

The omnetpp benchmark is a simulation of a large Ethernet network, based on
the OMNeT++ discrete event simulation system, using an ethernet model which
is publicly available. For the reference workload, the simulated network models
a large Ethernet campus backbone, with several smaller LANs of various sizes
hanging off each backbone switch. It contains about 8000 computers and 900
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switches and hubs, including Gigabit Ethernet, 100Mb full duplex, 100Mb half
duplex, 10Mb UTP, and 10Mb bus.

Memory Access Pattern Similar to astar, from the following heat-map gen-
erated from DAMON information we identify two, equal in duration, phases in
the omnetpp workload regarding memory accesses. In the first phase, the upper
half of the virtual address space exhibits a steady average access frequency along
the time axis. For the bottom half of the virtual address space the frequency of
memory accesses exhibit greater variability. It seems like memory regions are idle,
described by pretty low access frequencies, until a certain moment in the workload
where they kick start intense memory accesses. Also, the non-uniform orange col-
oring indicates that the intensity of these memory accesses are not steady in time,
but indicate a burst pattern. In the second phase of the workload we observe very
low memory accesses across the entirety of the virtual address space.

25
1.6x108
1.4x108 20
1.2x108
%' 15
< 1x108
o
0 7
0 8x10
z 10
< 6x107
4x107 .
2x107
0 0

5x1010 1x10!! 1.5x101! 2x101! 2.5x10%1
Time (ns)

Figure 5.5: omnetpp memory access frequency heatmap produced by
DAMON

Profile for omnetpp Again, combining the hints from the sampling of TLB
misses with DAMON’s memory access frequencies we form the following profile
for the omnetpp workload. We decide to back with 2MiB huge pages the memory
regions of the lower half of omnetpp’s virtual address space that show the highest
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amount of TLB misses. The rest of the memory pages showing average access
frequencies and TLB misses we back them with 64KiB pages, while leaving some
memory regions not profiled, essentially hinting the kernel to use base pages.
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Results In the omnetpp benchmark our eBPF system, although reducing TLB
misses in half, could not compare against Linux’s THP reducing them to 3,62% of
the ones with 4KiB base pages. Apart from this fact, we observe that our system
achieves similar speedup to Linux’s THP while again using 42,5% less 2MiB huge
pages. We attribute that to the higher induced setup latency of 2MiB huge pages
while not yielding enough benefit to outperform our system. Another possibil-
ity is that further reduction of TLB misses might not yield any more significant
performance benefits.

Along with the performance graphs we provide the histograms describing the
latencv of zeroing 2MiB huee naces in both eBPF-mm and Linux THP svstems.

Speedup, TLB misses and allocated huge pages
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Figure 5.6: omnetpp results
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Figure 5.7: Costs of 2MiB preparation comparison

5.3.4 eBPF induced overhead

Enhancing the memory management of the Linux kernel with eBPF, certainly
does not come cost-free. Each time a page fault occurs, the attached eBPF program
is triggered and starts execution, looking up profiling data and calculating the
optimal estimated huge page size. This adds extra overhead to a critical kernel
operation. As seen in Figure 77, the measured overhead of the execution of our
eBPF program averages at 230 cycles, which is an acceptable limit.
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Figure 5.8: eBPF overhead
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Huge pages come as a promising solution to the Address Translation overhead
induced by virtual memory based memory management widespread in modern
systems. Subsequently, transparent support of huge page is crucial, as it is the
only approach that provides the benefits of huge pages to applications without the
need to modify their source code. Huge pages do not come without trade-offs,
thus operating systems need to navigate carefully the associate costs and benefits.
Generalized strategies that are based on heuristics are found in the majority of
modern operating systems supporting huge pages and tend to run into pitfalls.

In this work, we enhanced the Linux kernel so it can support eBPF programs
that can influence decisions regarding the allocation of huge pages. Also, they are
able to guide the kernel to allocate the most beneficial huge page size for a memory
region, in an environment were multiple huge page sizes are available.

We use the capabilities of our system in order to implement an eBPF-enhanced
memory management system based on a cost-benefit model regarding the decision
between using 64KiB or 2MiB huge pages. In the workloads used for the evaluation
of our system, we observe that performance similar to Linux THP can be achieved
using way less 2MiB huge pages, when leveraging 64Kib huge pages in suitable
memory regions. That way we are able to tackle memory bloat, while also making
the programs easier to harness huge pages under fragmentation where memory
contiguity might be rare. To recognize the most beneficial huge page size for each
memory region, we profile the memory need of our workloads offline. Specifically,
we use DAMON and ARM hardware performance counters to monitor TLB misses
and the access frequency to 2MiB memory regions. Further, we observe that
the overhead of eBPF programs is substantially small and does not harm overall
performance.

Finally, our system makes the experimentation with synchronous huge page
allocation policies easy, enabling their implementation through eBPF programs.
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It also allows application developers and users to employ tailor-made, non-invasive
strategies regarding huge pages, where generic policies might under-perform.

6.2 Future Work

There are several potential directions to expand upon the work presented in
this thesis.

Future research could implement other huge page policies based on different
criteria. For example, huge pages could be allocated based on algorithms that
define and enforce fairness in huge page distribution among applications. Further-
more, our system could be enhanced to give eBPF programs the ability to decide
in which memory tier to allocate a huge page in a multi-tiered memory system [19].
Another area of interest is the operating system’s selection of memory regions that
fall victim under reclamation algorithms under memory pressure.

In conclusion, eBPF programs could be supported to implement a wide range
of policies in the memory subsystem, which depend heavily on the application’s
memory needs and can have a big impact on its performance.

70



Bibliography

Ampere®) Altra®) Rev A1 64-Bit Multi-Core Processor Datasheet, Rev
1.40.https://amperecomputing.com/customer-connect/products/
altra-family-device-documentation. Ampere Computing. 2023.

Arm Architecture Reference Manual for A-profile architecture, Rev. J.a.
https://developer.arm. com/documentation/ddi0487/latest/.
ARM Corporation. 2023.

Arm(®) Neoverse™ N1 Core, Rev r4pl. https://developer.arm.com/
documentation/100616/0401/. ARM Corporation. 2023.

ebpf.io authors. eBPF Documentation. https://ebpf.io/what-is-
ebpf/.

ebpf.io authors. eBPF Documentation. https://ebpf.io/what-is-
ebpf/.

Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. In:
Proceedings of the 2005 USENIX Annual Technical Conference. 2005.
URL: https://doi.orgl0.5555/1247360.1247401.

Abhishek Bhattacharjee. “Preserving Virtual Memory by Mitigating
the Address Translation Wall”. In: IEEE Micro (2017). URL: https:
//doi.org/10.1109/MM.2017.3711640.

The kernel development community. BPF Documentation. https://
www.kernel .org/doc/html/latest/bpf/index.html.

The kernel development community. Seccomp BPF (SECure COMPut-
ing with filters) kernel documentation. https://www . kernel . org/
doc/html/v4.19/userspace-api/seccomp_filter.html.

Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,
Alexandra Fedorova, and Vivien Quéma. “Large Pages May Be Harm-
ful on NUMA Systems”. In: Proceedings of the 2014 USENIX An-
nual Technical Conference. 2014. URL: https://doi.org/10.5555/
2643634 .2643659.

71



[14]
[15]

[16]

[17]

18]

[19]

[20]

gperftools. https://github.com/gperftools/gperftools.

Brendan Gregg. BPF' Performance Tools. Addison-Wesley Professional,
2019.

John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In: SIGARCH
Comput. Archit. News (2006). URL: https://doi.org/10.1145/
1186736.1186737.

HugeTLB Pages. https://docs.kernel.org/arch/arm64/hugetlbpage.
html.

HugeTLBpage on ARMG64. https://www .kernel . org/doc/html/
latest/arm64/hugetlbpage.html.

Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. Ker-
nel Probes (Kprobes) kernel documentation. https://docs.kernel.
org/trace/kprobes.html.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
“KVM: the Linux Virtual Machine Monitor”. In: In Proceedings of the
2007 Ottawa Linux Symposium (OLS’07). 2007. URL: \url{https://
www.kernel.org/doc/ols/2007/01s2007v1-pages-225-230.pdf}.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. “Coordinated and Efficient Huge Page Manage-
ment with Ingens”. In: Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation. 2016. URL: https:
//doi.org/10.5555/3026877.3026931.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. “MEMTIS: Efficient Memory Tiering with Dynamic Page Clas-
sification and Page Size Determination”. In: Proceedings of the ACM
SIGOPS 29th Symposium on Operating Systems Principles. 2023. URL:
https://doi.org/10.1145/3600006.3613167.

Aninda Manocha, Zi Yan, Tureci Esin, Juan Luis Aragén, Nellans
David, and Margaret Martonosi. “Architectural Support for Optimiz-
ing Huge Page Selection Within the OS”. In: Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture.
2023. URL: https://webs .um. es/ jlaragon/ papers /manocha _
MICRO23.pdf.

Mark Mansi, Bijan Tabatabai, and Michael M. Swift. “CBMM: Fi-
nancial Advice for Kernel Memory Managers”. In: Proceedings of the
2022 USENIX Annual Technical Conference. 2022. URL: https://wuw.
usenix.org/conference/atc22/presentation/mansi.

72



22]

[25]

[26]

[27]

Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New
Architecture for User-level Packet Capture”. In: USENIX Winter 1993
Conference (USENIX Winter 1993 Conference). San Diego, CA: USENIX
Association, Jan. 1993. URL: https://www.usenix.org/conference/
usenix - winter - 1993 - conference / bsd - packet - filter - new -
architecture-user-level-packet.

MongoDB Docs: Disable Transparent Huge Pages (THP). https://
www . mongodb . com/docs /manual / tutorial / transparent - huge -
pages/.

Juan Navarro, Sitaram Iyer, and Alan Cox. “Practical, Transparent
Operating System Support for Superpages”. In: Proceedings of the 5th
ACM SIGOPS Symposium on Operating Systems Design and Imple-
mentation. 2002. URL: https://doi.org/10.1145/844128.844138.

Ashish Panwar, Sorav Bansal, and K. Gopinath. “HawkEye: Efficient
Fine-grained OS Support for Huge Pages”. In: Proceedings of the 24th
ACM/IEEE International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 2019. URL: https://
doi.org/10.1145/3297858.3304064.

Nikolaos-Charalampos Papadopoulos Papadopoulos, Stratos Psomadakis,
Vasileios Karakostas, Nectarios Koziris, and Dionisios N. Pnevmatikatos.
“Design, Implementation and Evaluation of the SVNAPOT Exten-
sion on a RISC-V Processor”. In: CoRR abs/2406.17802 (2024). pOI:
10 . 48550 / ARXIV . 2406 . 17802. arXiv: 2406 . 17802. URL: https:
//doi.org/10.48550/arXiv.2406.17802.

SeongJae Park, Yunjae Lee, and Heon Y Yeom. “Profiling dynamic
data access patterns with controlled overhead and quality”. In: Pro-
ceedings of the 20th International Middleware Conference Industrial
Track. 2019, pp. 1-7.

Liz Rice. Learning eBPF. O’Reilly Media, Inc., 2023.

Ryan Roberts. Multi-size THP for anonymous memory. https://lwn.
net/Articles/954094/.

Ryan Roberts. Transparent contiguous PTFEs for User mappings”. https:
//lore.kernel.org/linux-arm-kernel/87fs0xxdbg.fsf@nvdebian.
thelocal/T/.

Sched.xtSchedulersandTools. https://github.com/sched-ext/scx.

The RISC-V Instruction Set Manual Volume II: Privileged Architec-
ture. https://wiki.riscv.org/display/HOME/RISC-V+Technical+
Specifications. RISC-V Foundation. 2021.

73



Transparent Hugepage Support. https : / /www . kernel . org/doc/

Documentation/vm/transhuge.txt.

(34 Wm A Wulf and Sally A McKee. “Hitting the memory wall: Implica-
tions of the obvious”. In: ACM SIGARCH computer architecture news

23.1 (1995).

[33]

74



