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Me gmeOroén Tovtdg SIKOIMUOTOC.

AmayopeleTal 1 avTiypon, arodnKevon Kot dlovopr| e Tapodoos epyaciag, €& OAOKANPOL N TUALOTOG
aVTAG, Yo EUTOPIKO okomd. Emtpémeton | avotomwon, amwobnkevon kot Stovopr yio okond LN Kepdooko-
KO, EKTALOEVTIKNG 1] EPEVVNTIKNG PVONG, VIO TNV TPOUTOOEGN VAL avOPEPETAL 1) TTNYN TPOEAELGNG KAl VOl
dwatnpeitor To mopov pivopa. Epotipate mov agopovv T xpron g £pYOciag yio. KEPOOGKOTIKO GKOTO
TPEMEL VO OELOVVOVTAL TPOG TOV GLYYPAPEC.

O1 amOYELG KOl TOL GUUTEPACLLOTA TOV TEPLEYOVTOL GE ALTO TO £YYPAPO EKPPALOVV TOV SLYYPAPEN Kot OgV
TPENEL VoL EpUNVELDETL OTL avTITpocwTevoLVY TI emionueg Bécelg Tov EOvikob Metoofiov [Tolvteyveiov.



Iepiinyn

To mpoPAnua g Pulovtivig coppwviog amotelel éva ond ta mo Bepeiiddn nedia Epevvag 6Tov TOopEa
TOV KOTOVEUNUEVODV odlyopiBumy Tov gival avektikol 6NV Topovcio ceaipdtov. [apott 1o evdapépov
NG EMOTNHOVIKNG KOWOTNTOG €€l evTabdet diaitepa Ta TEAgLTAIN YpdVIX Yio TNV EMTAVOT TOV TPOPANUATOG
AOY® TG avamTuéng tng Te)voroyiag Tov blockchain kot TV KPLTTOVOHIGUAT®Y, ) CLVIPITTIKY TAELOYN P
TOV TPOTEWVOUEV®V AVGEDV LTOBETEL £val dEGOUEVO GHVOLO TOKTMV GTO 0010 TOL GOAALATO LELOYNPOVV.

Y1y mopovoa epyacia, mapovoidlovpe TV TpoTn, €& dowv yvmpilovue, Avorn tov Pulaviivod Broadcast
(6mov o1 malikTeg KAAOHVTAL VO GOUG®VIGOLY GTNV TN £1GOO0V £VOG KUBOPIGHEVOL OTOGTOAEN) 1) OTTOioL
€lVOlL OVEKTIKT] GE OTTO10VONTOTE APOUO CPUAUATOV GTO LOVTELO OVOVLU®V TUKTMV, GTO 07010 vofétovpe
OTL 01 TTaiKTEG deV S1aBETOVY Kapia TAnpo@opia Yio To 0KPPEG GVVOAD TOV TOIKTMY 0VTE Y10, TO TAN 060G TOLG,.
H Ao pog Baciletor oty KeEVIPIKN 100 TOV OVTIGTOL(OV TPOTOKOALOL GTO LOVIEAD TOV YVOGTOD GUVOAOL
TOKTOV, OOV € KB YOPO 01 malkTeg amodEyovTot o TN w¢ £6000 Tov amocToAéa dTav Aaovv T0ceg
VIOYPAPES TPOG VTOGTHPIEN TNE O00EG KOt 0 0plOUOG TOL YOPOV.

SVYKEKPIUEVO, TPOTOTOLOVUE KATAAANAC TO TPOTOKOALO OVTO, DGTE GE KAOE YOPO 01 TOUKTES VAL OTOdEYOVTOL
TNV EVEPYT GULUUETOYN OTOOVINTOTE TOUVOD TTaiKTn dTav AGPOVV TOGES VTOYPAPEG TPOG VTOGTNPIEN TOL
00eg Kot 0 aplBpog Tov yupov, oAAG amd aikteg Tov £ovV NN amodeyBel GTOVG TPONYOVUEVOLG YOPOLG,.
"Etot, kotaokevalovpe £vo vEO TPMOTOKOALO GTO LOVTELO OVOVULMV TOKTMV TOV ENLTVYYAVEL TV CULPOVIN
TOV TOKTOV G€ VO VTOGVVOAD TOVG, TO OT010 TEPLEYEL OAOVE TOVG TioVG TalikTeg (dNAadN ekeivovg ov
dev amokAivouv amd t0 TpwTOKOoALD). EmimAéoy, enekteivove 10 TPOTOKOALO GVTO MOTE Ol TOUKTEC VO
GUUE®VOLV G€ pia TN 16000V Y10, KaBEVOY amd TOVE TOUKTEG AVTOD TOL GLUEOVNUEVOL cLVOAOL. ‘Etot, 1
Adomn pog yio 1o Buloavtivo Broadceast mpokOnTeL ¢ GUEST] EPUPLOYT TOL EMEKTETAUEVOD TPOTOKOALOV.

Télog, Bacilopevol kot TAAL GE OVTIGTOL(O OTOTEAEGLLOTO GTO LOVTEAO YVOOTMY TOUKTOV, OTOOEKVOOVE
OTL OTTOLOONTOTE TPWOTOKOAAO TTOL AVVeL To PulavTivo Broadcast 6to povtélo avavVOUOV TUKTOV e TNV 1010
OVEKTIKOTNTO G€ GOAALOTO YPEALETAL GTNV XEPOTEPT] TEPITTWGST TOCOVS YOPOLG EMKOWVWOVING HETAED TV
TAIKTOV 000 Kot 1o TAN00¢ Tovc. 'Etot, deiyvovpe 6Tt 1 Abon mov tapovstdlovpie, 1 omoio amuttel TOoGovg
YOPOLG 060 Kot TO TANO0G TOV TUKTOV, eival BEATIOTN ®G TPOG TNV TOALTAOKOTNTA YOP®V XEPOTEPNG
TEPIMTOONG.

A&Eg1g Khe1010: Katavepnuévot olyopiuot, fulavtivi) GLUE®VI, OVOVULOL TAIKTES, OTOI0GONTOTE APLOLOG
COUANATOV






Abstract

The byzantine agreement problem is one of the most fundamental research areas in the field of
fault-tolerant distributed algorithms. While the problem has attracted the interest of the scientific
community the last years due to the development of blockchain technologies and cryptocurrencies,
the bulk of the literature studies the cases of static participation and honest majority.

In this work, we present the first, to our knowledge, byzantine Broadcast protocol (where the parties
shall agree on the input value of designated sender), which tolerates any number of corruptions in
the unknown participants model, where the parties have no clue about the set of actual participants
nor for their number. Our solution is based on the main idea of the corresponding protocol in the
known participants model, where in every round the parties accept an input value of the sender
only if they receive as many signatures in support of it as the round number.

In particular, we modify appropriately this protocol, so then in every round the parties accept the
active participation of some other party only it they receive as many signatures in support of it
from as many parties as the round number, but only from parties that they have already accepted
in the previous rounds. Hence, we we construct a new protocol in the unknown participants model
which achieves agreement among the parties on a subset of them, which contains all honest parties
(the ones which do not deviate from the protocol). In addition, we extend our protocol, so then the
parties agree on an input value for each one of the parties of this commonly agreed party set. In
this way, our solution of byzantine Broadcast is an immediate application of this extended protocol.

Finally, relying once again on corresponding results in the known participants model, we prove
that any protocol that solves byzantine Broadcast in the unknown participants model with the
same resilience requires as many communication rounds in the worst case as the number of active
parties. Thus, we show that our protocol, which requires the same number of rounds as the
number of parties, is optimal in terms of its worst-case round complexity.

Keywords: distributed algorithms, byzantine agreement, unknown participants, any number of
corruptions






Evyoprotieg

OLoKANp®VOVTAG TNV SITA®UATIKY LoV epyacia, Oa neha va evyaploTHGm TPATH 0d OAC TNV OIKOYEVELL
pov mov fTav 6imha pov kdbe oTiypn og ovTiv pov TNV mpoonddeio. Ao NOeAd aKOUA VO EVYOPIGTHOM
waitepa Tov kKOpio [ayovptln yuo v kaBodnynon tov o€ GA0 TO YPOVIKO SAGTNLA TOV EPEVVOVCALE TO
GUYKEKPIUEVO TPOPATLLOL.

EmimAiéov, Ba n8ela va evyaprotiom tov Dr. Wonseok Choi e Tov 0moio aplepmoajle aUETPNTEC DPES OTNV
TPOoTADELD VO ovTIANEOOVUE apyYIKA oV TO TPOPANU TOV EPEVVOVGOVE MTAV ETIADGIUO 1) OYL KoL OTNV
GUVEYELD, Y10, VO PEPOVUE TNV AVGT Hag oty TEMKT TG Lopen. EPpioke mhvto tnv 6peln kot tnv evépyela
Y10 VoL ovTOALGEOVLE TIG 10EEG KO TIG BVIOVYIES LLOG Y10 TO GLYKEKPLUEVO TPOPAN LA Kol 1) GUUPBOAT TOVL TV
KaBOPIOTIKY GTO VO PTACOVY TOL ATOTEAEGUATO LAG OTO EMBLUNTO eminedo.

Téhog, B Ol va gvyaploTNOM PE OAN OV TNV KOPOLE TOV KUPLO ZNKO, TPMOTICTMS Y10 TNV EVKOIPI0 TOL
LoV £0000E VO aoYOANO®D e Eva EPEVVNTIKO project VYNADY ATUITHGEDV OO TPOTTLUYLOKO KIOANG EMITEDO,
XOPIG KOVEVD EXEYYLO TAPE LOVO LE TNV OPEEN LOV Y10 GKANPT] SOVAELS Kot TV (01 KOl TOGO EUPOVT] TOALEG
POpPEG) PLA0d0EIL Yo Evol epeLVNTIKO amoTéAecia VYNAOD emtédov. [Ipocmmikd, Bewpd 4Tl TO KAAOTEPO
LETPO TNG TPOGPOPAG LLOG TPOG TOVG AAAOVG EIval 0 YPOVOG TTOV TOVG APLEPMVOLLLE KOl LLE OVTO TO OKEMTIKO,
Bepd aveKTIUNTO TOV ¥POVO TOL APEP®GE 0 KVPLOg ZNKAG OTIG TOKTIKEG GLINTNGELG HOg Yo TV e&epeD-
VMo VO TPOPANLOTOG TOV EK TPMTNG OYEMG OV APNVE TOAAG TEPMPLA 151000 0G Yo TNV ETIAVOT| TOV.
EtMkpvd, 0eATOTd av KOO0 GTIYR| OTAC® o€ o ovtiotoyyn 0éon va avtipetonilo pe Tov idto 1podmo
TOVG ATEIPOVG POITNTES LE OVELPa, PLAodoEieg Kot Opeln Yia SovAeld. Onwc Kat ov cuveyLoTEL TO TALIOL POV
otV épegvva, o Bopduot yio Tavta tn Pondeld tov oe dAa to eminedo kar Ba acOdvopan 6T vo peyaio
HEPOG TNG oKAON LAk G Loy eEEMENC opeIleTOL OE EKELVOV.

Nikog Zxovpidg
OxtoPplog 2024
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Kepaiaro 1

Extetapévn EAlnvikn Hepiinyn

1.1 Ewayoy

To wpdPAnua g polavrvic ovupwviag (BA) [1, 2] glval éva amd To onpovTikOTEPO TEdio EPEVVAG GTOV
TOUED TOV KOTAVEUNUEVOV 0AYOPiOU®V Kot TO EVOLOPEPOV TNG EMGTNHOVIKNAG KOWVOTNTAG Y10 T1 ADGT TOL
TPOPANLATOG TNV TEPITTMOT] TOV Ol TOUKTES LITOPOVV VO GUUUETEXOVV dvvauixa €yl evtadel Waitepa ol
TeAevTaio ypovia xépn otnv avantuén g teyvoroyiag tov blockchain.

[op 6Aa avTd, OAEG 0L ADGELG TTOV £YOVV TAPOVOIACTEL LEYPL GNUEPO VTOOETOVY Tipe TAEOYNQi0 TOV Tl
KTOV gite 61 o1 maikteg yvmpilovv To akpiéc GUVOAD TV TOKTMVY KOB' OAN TNV EKTELEGT] TOV TPOTOKOAAOV.
Y11V mopovoa £pyocio, TaPoVGLALOVE £V TPOTOKOALD OVEKTIKO EVAVTIO GE OTOLOVONTOTE APOIO GOOA-
HATOV 6TO HOVTELD TV OVAVULOV TOKTOV.

1.2 Ozopntko Yropfabdpo

1.2.1 Kpvzrroypapiko YrnopaOpo
ApyiKd, ELGAYOVLE TNV EVVOLL TOV OUEANTEDY GUVAPTIGEDV.

Opwopog 1 (Apehntéa Zovaptnon). Mia ovvéptnon f @ N — R, Oo amoxaleitar aueAntéa, av yio kabe
¢ > 0, omdpyer ng € N, téro10 wote f(n) < 1/n€, yo kdbe n > ng (oopPolridovue ue f = negl(-)).

Ytnv ouvéyela, 0o SOGOVUE TOV OPIGUO TOV GYHUATOS (WHPIOKMY) DTOYPaPOY Kol B0 TEPLYPAWOVE TIG
EMBLUNTEC 1O1OTNTES TOV.

Opropog 2 (Zyfua Pnelokdv Yroypaedv). Eva axnua Ynelakwy umoypapwy sival uia tpiado alyopiOuwv
(KeyGen, Sign, Verify). O alyopiBuoc KeyGen raipver wg gicodo ) ovufolooceipa 1% kau diver oty éEodo
10 {ebyog (sk, pk), To omoio amoteleirar amd o PUOTIKO KAELSI sk ka1 o Snuoacto KA&Si pk. O alydpiBuog
Sign maipver w¢ gicodo 0 LUOTIKS KAEIST sk xar éva pivoua m € {0,1}PY5) wou diver oty ééodo v
vroypapi o, dnladi o = Signg (m). O alyopifuog Verify maipver wg elgodo éva nuodoto KAEISI pk, éva
wivopom € {0, 1} kau pia vmoypagn o koa diver gty élodo éva bit b € {0, 1}, dniad b = Verify, (m, o).
Tia v piddo (KeyGen, Sign, Verify) mpéner va 1oyder om Verify, (m, Signg (m)) = 1, yia kéfe wivoua
m € {0, 1}PY(%) au k60 ééodo (sk, pk) tov KeyGen(1%).



2 Kegpddowo 1. Extetouévy EAAnvikn Hepidnyn

Yta endpevo kepdhata, Ba vrobétovpe cuyvd 0t éva chvoro moktdv P = { Py, ..., P,} powpdletor pia
vrodoun onuoaiov kleldiod (PKI), OTmg meptypapeTol TUpOKAT®.

Opwopog 3 (Yrmodopun Anpoociov Kiewdot (PKI)). Oa Aéue 6m éva obvolo mauktyv P = {Py,..., P}
popaleton uia umodouri dnuoaiov KAeSIoU (PKI) av yia kdbe (edyog mauktdyv Py, P € P, o P; éyet éva
uooTiké kAedl sk; mov Eyer mapaylei and tov KeyGen kai o Pj éxer to avtiotoryo dnudoio kieidi pk;, tétoio
wote Verifyy, (m, Signg,, (m)) = 1, yia ke ppvopa m € {0, 1}poly(x),

INa kaBe PKI, Béhovpe omoloconmote PPT avtimadog va umv punopei vo zlacroypopei vmoypagés, dnAadn
VoL UMV UTTOPEL VoL Tapyel EYKVPEG LITOYPUPES YWPIG VoL S1BETEL TO aVTIOTOTYO HVOTIKO KAEWL.

Opwopdg 4 (Advvapio [Thacstoypaenong). Eve PKI wov poipaletor uetald twv oty evog oovolov P =
{Py ..., P,} ikavoroiel mv ididtnra aduvauias mhactoypdenong evéveo e omotovénrote PPT avtizalo
av i mbavotnra o avtinalog va fper pia ovufolooeipd o, wroio ote Verify (b,0) = 1, y1o omorovodnmote
maikty P; € P ko1 omoiadimote yuj b € {0, 1}, ywpic va yvawpiler 1o sk;, eivar oaueintéa wg mpog my
TOPGUETPO AOPOLELOS K.

Oa Bswpovpe OTL av Verifypki (b,0) = 1, yu xémow Ty b € {0, 1}, 1018 10 0 )€1 MPhypatt mopoyHel
and tov P; pe ovvipirnixr mbovomta, Sniadh 1 — negl(x). T evkolria, Bo copBolriCovpe pe Sign, (b) mv
tp16da (4, b, Signg,. (b)).

1.2.2 Movtého

‘Eotw P = {P,..., P} éva ovvolo n waiktdv, nhadf PPT Mnyavadv Turing. ‘Eva kataveunuévo mpwto-
koAlo T givon pio n-mAedda PPT adyopibuwv (71, . . ., T, ) 7OV TPEYOVV Ol TAKTEG TOL P Y10 VO, ETIKOV®-
vouv peta&d tovg, 6mov kdbe maikng P; extehet Tov alyopBpo ;. Ot maikteg emKovovodv Heta&d Toug
LEC® OOVA®V onueiov-mpog-onueio. Oempovue Evo oDy povo HIKTVO, GTO OTOI0 1] EXKOVOVIN TV TUKTOV
yivetat o€ YOpOUG.

Avtitarog. O aviimaldog givar pio Mnyovn Turing mov propei va tapet vTd Tov EAeyYO TOL KATO10VG oL~
KTEC TOL P Kot va Toug EMPAALEL VO ATOKAIVOUY 0Td TNV GUUTEPLPOPA TOL VITOSEIKVVEL TO TPMOTOKOAAO.
On aikteg mov Ppickovtal VIO ToV EAEYYO TOL OVTITAAOL B amoKaAOVVTAL Kakofovior TaikTEG (1] AAADG
opaiuoTa), Vi 01 VTOLOITOL TaikTeG Ba amoKaAovvToL Tiuzor. B acyoAnBolue Kupiwg pe dVo eion opatud-
TV, MAOdN ATOKAONG OO TO TPMTOKOAAO : TO. crash apdAuoza, To OToio OTADG GTAUOTOVV VI GTEAVOLV
unvopaTo and KOmolo onpeio g eKTéAEONG Kot Emetta, Kot T, folavtive, opaiuoto., To omoio pmopodv vao
amokAivov TeAeimg amd Tig 0dNYieg Tov TpmToKOALOVL. Evag t-aviiraloc Bempovpe 6TL umopel va TpokarEcel
uéypt t folavtivé ceAApaTa Kol aVAAOYA LE TIG OTOLTNOELS TOL EKAGTOTE TPOPANUATOC VTOOETOVE OTL Elvat
eite PPT eite amepiopiorog, Snhadn OTL €L AMEPLOPLOTI) VTOAOYIGTIKY 1GYD.

Metpwég MohvmhokdoTnTag. O0 aoy0AN0OVUE e TPELG HETPIKEG TOAVTAOKOTNTAG TOV YapaKTnpilovy Ta
KOTOVEUNUEVO TPMOTOKOALD TTOV EIVOL AVEKTIKA GE GOAALATO : TNV TOAVTAOKOTHTO. YOP@Y OV EIVAL O HEYL-
070G apPOUOG YOP®V Y10 TOV 0010 TTPEMEL VO, TPEYEL KATOL0G TIHIOG TAIKTNG OTIV YEPOTEPT TEPINTWOOT|, TNV
ToAvTAOKOTHTO, EMIKOIVWVIOS TIOV OPILETOL MG O GLVOMKOC aplBLOG VLAtV / bit Tov oTéAVouV 01 Tijot
maiiteg kaf' OAN TN SEPKELN TNG EKTEAEGTG TOV TPOTOKOAALOV GTNV YEPOTEPT| TEPITTMGT) KO 1) vTOAOYIOTIKH
rolvmAokoTnTo TOL 0pILETOL MG O HEYIOTOG XPOVOG VITOAOYIGLOV TTOL TTPEMEL VO £XE1 6T 0180€0M TOV KATO10¢
tipog maiktng oty ¥EpoTepN TEPInTOO.



1.3. Bvolavrvy Zvupwvio ue Kaxofovin Iicioynpio, 3

1.2.3 Bvlavtivi} Zopgovia

H Bolovrivyy Zoupwvia ([1, 2]) etvar 10 TpdPANLO 6TO 0TOI0 01 TOUKTEG TPEMEL VO CULPMVIGOVY GTNV TIUN
oL poteivel Evag kaboplopuévog Taikng (arootoléag) akoua Kot ov Tpokhyouy fulavtivad cedipata. Atd
€0 Kat 6To €ENG, B avapepopaoTE 6TO TPOPANLUL aWTO ¢ folavtivo Broadcast, 1o omoio Tumikd opiletan
g eENG :

Opropdg 5 (Nteteppuviotikd Bulavtivo Broadcast). Eotw P éva odvolo n waiktav. Evo mpwtokoAlo T mwov
exTeEAEITON OO TOVG TTOdKTES TOV P, 0mov évag kabopiouévos amootoléas s € P maipvel wg gicodo uio opyikh
iy bs € {0, 1}, eivar vietepuvioTiko Pulavtivo Broadcast mpwTokoMo avektikd evdvtia o€ omoiovonmote
(omepiopioro) t-aviimoldo, av IKOVOTOI00VTaL 01 TOPAKATW TOVONKES :

— Eyxvpotnra: Av o amocroléog s gival Tiniog, T0te 0lot o1 Tiniol Taikteg divovy oty éCodo v Tiun by.
— Zvupavia: Olot o1 tiwor waikteg divovy atny éCodo v idia i b € {0, 1}.

— Tepuaricuos: Yrapyer évog mporabopiouevos opiBuos yopwv R 110106 wote T0 TPWTOKOALO EyyvnUEVaL
olorAnpwverou (dnl. 6lot o1 Tiutol woikteg oIvovy atny éCodo kdmoia i) to Told o R yopoug.

Oa avaeepopaote oto folaviive Broadcast og to TpOPANUE TOL ATOLTEL VO IKOVOTOIOUVTOL Ol 1O10TNTES
TOV TOPUTAVEO OPIGLOV LE GUVTPUTTIKN THAVOTNTO KOl GTO OVTIGTOLYO, 6TO mhavotikd folavtivo Broadcast
otav 1 mBovotnto emttvyiog TpETEL va ivan avoTnpd peyavtepn and 1/2.

Opwopdg 6 (Bulavtivo Broadcast). Eotw P éva advoro n mourtdv. Evo mpwtokollo T mov exteleiton omo
T0V¢ TadkTES ToV P, 1o évag kaboplouévog aroatoréag s € P maipvel wg gicodo pia apyuch Ty bs € {0, 1},
etvau Bulavtivo Broadcast mpwtokoMo avektikd evévtia oe omorovdrimote PPT t-avtiralo, av ot 1016tyteg
700 Opiopot 5 ikavomorodviar ue ovvipirtiky mbavotyra, vrobétovrag v vmopln evos PKI (Opiouog 3).

Opwopodg 7 (ITbavotikd Bulavtvo Broadcast). Eotw P éva ovvolo n wouktwv kai 6 n mbavotyta Labovg
avotnpd. wikpotepn omd 1/2. Eva mpwtokolio T mov ekteleitor amd tovg maikteg tov P, omov évag kabo-
plouévog amoatoléag s € P maipvelr wg glcodo pio apyuci tyuaj bs € {0, 1}, eivar m9avotiké Bulavtivo
Broadcast mpwtokoMo avextikd evavtio oe omoiovérimote PPT t-avtinalo, av o1 1016tntes tov Opiouod 5
ikovorolovvror ue mbovotnra 1 — 9§, vrobétovrag v vmopdn evog PKI (Opiouog 3).

AvekTikétnTta. Otav £va TpmTOKOALO EMTLYYAVEL OKOUO Ko e TV Ttapovoio t < (1 — €)n opoipdtov,
v pio avBaipeta pikpn otobepd € > 0, Tote Bo Aépe OTL TO TPOTOKOALO €lval AVEKTIKO EVAVTIQ GE Ka-
KOfovAn mheroyngio. XV EOIKN TEPITTMOOT TOV TO TPMOTOKOALO EMTUYYAVEL OO KO LLE TV TOPOLGia. ¢
oQaALGTOV Yl omowdnmote t < n (e.g. axopa kot av t = n — O(1)), tote o Aépe 61t To TP TOHKOALO Elvar
OVEKTIKO EVAVTIO. OE 0T010VONTOTE 0pLOUO TRAAUGTDY.

1.3 Bvlovtivi] Zvpeovia pe Kaxopovin licioyneio

1.3.1 Karto Opro IoAvmriokétnTog

Holvmhokétyta TMdpwv. Ou Fischer xor Lynch [3] amédei&ov 6t kdBe vieteppuviotikd Polavtvo
Broadcast mpwtdkorio mwov eivar avektikd evavtia og t Pulavtivé opdipota ypetaletal TovAdyotov t + 1
yYopovg, ave&dptnra amd TV Tiun tov n. To kdt® 6po Tov t + 1 yopev anodeiydnie O6TL 1oyHEL Kot TNV
MEPIMTMOOT TOL TO TPWOTOKOALO vIoBEtel TV Vrapén PKI [4, 5] kot oty mepintmon mov o avtimaiog propet
va TpokaAécel povo crash copdipata [6, 7).
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Ozopnpa 1. dev vrapyer vietepuiviotino folavtivo Broadcast mpwtorxollo (Opiouds 5) avextiko evaviio oe
t crash opdiuata wov tepuatiler oe Liyotepovs amo t + 1 yopovg, omov t < n — 2.

Apyotepa, 610 [8] TOPOVGIAGTNKE TO TPAOTO KAT® OPlO GTNV TOAVTAOKOTNTA YOpoV ToV Pulovivedv
Broadcast mpwtokdAAwv mov 160l akOLa Kot Y10 THAVOTIKA TPMTOKOAAN LLE TOOVATNTA ETLTLYI0G ALGTN P
peyavtepn and 1/2 (Opiopdg 7). ZuyKeKPUYLEVO, XPNOLLOTOLOVTOS EVOL TANPOPOPLo-empnTikd emtyeipno
amédelgav o0t dev vapyel mbovotikd Pulavtivo Broadcast mp@wtdokoAro, avekTiko gvivtia ot < n — 2
ceaipata, Tov va Teppatilel Tavta og Ayotepovg and 2n/(n — t) — 2 ybpovc.

Ozsopnpa 2. dev vrapyer mbavotiko Polovavo Broadcast mpwtoxoilo (Opiouds 7) wov tepuatilel oe Aryo-
zepovg omo 2n/(n — t) — 2 yopoug, émov t < n — 2.

Hépwopa 8. Aecv vadpyer mbovotixo fvlovtivo Broadcast mpwtorxolio (Opiouog 7) mov tepuarilel oe Aryo-
Tepovg amd n — 1 ydpovg, omov t = n — 2.

Hépwopa 9. Aev vrdpyer mbavotixo folovrivo Broadcast mpwtoxoiio (Opiouog 7) mwov tepuarifel og Aryo-
wepovg amd (L) ybpovg, émov t = (1 — €)n.

Holvmhokétnta Emkowoviag. Ot Dolev kot Reischuk [9] mapovsiacav éva kdtwm 6pto otov aptfud tomv
UNVOUAT®V oL TPEMEL VA GTEIAOVV 01 Tiuot TaikTeg og kdBe vieTeppiviotikd Pulavtivo Broadcast tpmto-
KOAAO IOV 1KavOTOlEL TiG 1310TNTEG TOL Opiopov 5. Zuykekpiuéva, amédei&ov 6Tl Kabe VIETEPUIVIOTIKO Po-
Cavtivé Broadcast mpotokordo Tpémet va éxel ToAmAokoTTo unvopdtay Q(n + t2), Seiyvovtag 6Tl méva
VILAPYEL KATOLoL EKTENEST] TOV TPMTOKOALOL LE ¢/2 cealpaTa 6T 0Toie Ot TIOL TOIKTEG TPEMEL VO, OTEL-
Aovv cLAAOYIKG TOLAGYIGTOV t/2 umvipata o€ kabéva ard to cpdipata. ‘Etot, katénéav 610 TopaKiTte
Bedpnpa :

Ozopnpa 3. Eotw 7 éva vietepuviotiko folaviivo Broadcast mpwtokollo (coupwva ue tov Opiouo 5)
avektiko evavtia oe t < n — 2 opaluato, T0TE VIOPYEL EKTEAECH TOD T GTHV OTOL0. Ol TIUIOl TOIKTES TPEMEL
oVVOLIKG va ateidovy TovAdyiotov max{(n — 1)/2,t2/4} unviuoae.

THETIKE TPOGPOTO, TO KAT® Ppéypa Q(12) otny moAvmAokdTTA PUvVpdTOV TV Bulaviivdv Broadcast mpo-
TOKOAM®V amodeiyOnie OTL 1IGYVEL KOl GTNV TEPITTOON TOV TOAVOTIKGOV TPOTOKOA®V LE TOAVOTNTO ML~
Toyiag avotnpd peyarvtepn and 3/4. Onwg deiyfnke oto [10], og kdbe mbavotikd Pulovtivd Broadcast
npwtdKorAo (Opiopds 7) pe mbavotnto Adbovg 6 < 1/4 — ¢, yio kGmow € > 0, N exTidUeEVN T TOV
UNVOLATOV TIPETEL VO GTEIAOVY GUVOALKG Ot Tipiol TodkTeg etvan (et)?.

Ozopnpa 4. Eorw w éva mbovotiko folovtivo Broadcast mpwtoxolio (aoupwva ue tov Opiouo 7) avextixo
evavtio. oe t < n — 2 opdluata ko pe mboavotnta emrvyiog 3/4 + €, 10t o€ KdOe extédeon Tov T oL TiuoL
TOdKTES TPETEL GUVOAKA Vo 6Tel)ovy Tovldyiotov (et)? unviuata katd extiucuevy tyuj.

Yroloyrwotikn lohvwhokotnta. Onmg anodeiydnie oto [2] kabe fulavtivo Broadcast mpwtdokorro ave-
KTk o€ kakoOfovAin mhetoyneio arattetl tnv vVropén PKI. ‘Ecto, Aowndv, £ € N 1 mapdpetpog acpareiog
tov PKI mov anarteiton yio v exidvon tov fulavtivod Broadcast, Tote 0 ypdvog mov divetan otnyv d1dbeon
TOV TOKTOV (0TOTE KL TOV OVTITOAOV) TPETEL VA, EIVOIL TOAVOVOLUKOG OC TPOG K, SLOPOPETIKA O AVTITAAOG
O €xel v duvatdTa va "ordoel” v acedieio tov PKI. o avtod, cuyvd Bo Bempovpe 6T n mopdpetpog
K &lvol TOAV®VLIKT O TPOG TO TANB0G TOV TAIKTOV 1 Kol B0 amaitovEe To TPOTOKOAAN Vo ypetdlovtat
TOAVOVOUIKO XPOVO G TTPOG N.
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1.3.2 To IIpwtéxorro Dolev-Strong

To dudonpo tpmtoKoAro Dolev-Strong [4] Aovet o pdPAinua tov Pulavtivov Broadeast evéviio oe omotlov-
onmote PPT t-avtinodo 6tav t < n. To mpotoKoAL0 Aettovpyel G €ENG : 0 AMOGTOALNG S GTEAVEL TNV VITO-
YPaQh TOV Yo TV Tiun bs otov yopo 0 kot og KGbe endpevo i-06td YOpo, 0oL @ € [1,t], ot Tipot Taikteg
arodéyovrartnv Ty b € {0, 1} av kot povo av Adfouv i Stapopetikég vioypaess yio v b, copmepiappo-
VOUEVNC KOl TNG VITOYPOPTG TOV OTOGTOAEN S. OTOV KATO10G TOIKTNG m0ode)yTEL KATOLo TR b, TNV VITOYPAPEL
KoL GTEAVEL OAEG TIG VTOYPAPES TOL £XEL AAPEL Y10 VTNV G OAOVG TOVG TATKTEG, MOTE GTOV YOPO ¢+ 1, KGOe
Tipog aiktng va divel oty €060 1 av kot pdévo av to 1 givan 1 povadiky T mov €xel amodeyTel oG TOTE,
dtopopeTikd va divel oty €600 0.

Mo v tomikn Teprypaen tov tpwtokdiiov Dolev-Strong (Zyfiua 1.3.1) Ba ypeactel vo opicovue o 7-
éyropo. ToxéTa VIOYpapdv yio kamoto T b € {0, 1} og ta chvora g popeng {Sign, (b) bvev, Yo kdmoto
VCPue|V|>rxus €V, xoutokold pnvopate og to pnvopata mg popens { B}, 6mov B eivat éva
EYKVPO ToKéETO VIOYPAPGOV Yo Kamowo Tun b € {0, 1} 1 g popeng { By, B}, 0mov By, By givan éykvpa
TOKETO, VIOYPOEOV Yo T1G TYéG 0, 1, avticTouya.

Mp®TOKOALO T4s
IMpog 0: Kabe maiktmg p € P apycomorel Ag = Cpo = Cp1 = 0. O anoctoréog s oTéAveL o€ OAOVG
Tovg maikteg To wivopo M2 = {{Sign,(bs)}}.

Bpoyyog: T r € [1, 1], k4B maikmg p € P extekei to axdiovba Prpata :
1. Apywomotei A = A;_l.
2. Otav AdPet éva kald pivope M, yiakédbe B € M, kGvetto axkdiovba : av 1o B etvar éva r-&ykopo
TOKETO VITOYPAPOV Y10 KATO, T b & A;_l, 618 OétEL A < AL U {b} kon Cpp < Cpp U B.
3. Ztéhvel og 6Lovg Tovg maikteg To pivopa My = {C),, U {Signp(b)}}beA;\A;-l.
IMdpog t 4 1: KdéBe maixtng p € P extedel o axdAovba fripata :
1. Apywomoei ALt = AL,
2. Ortav AaPet éva kadd pivopa M, yue kdOe B € M, kavel o axdrovba : av B givan éva (¢ + 1)-
£YKVPO TOKETO VITOYPUPDV Y10, Kémwolo Tiun b & Af,, to1e BéTEL A;H — AZH U {b}.
3. Tepportiler kou diver oty €€odo 1, av Af,“ = {1}, aAhudg diver otnv £€0do 0.

Zynua 1.3.1: [Ipotoéxorro Dolev-Strong

Ozopnpa 5. 7o mpwioxkorio Dolev-Strong mys (Zynue 1.3.1) eivor évo. folovtivo Broadcast mpwtoxollo
(cbupwvo ue tov Opioud 6) to omoio eivou aopalés evavtia oe ororovonmote PPT t-avtimolo, omov t < n.
Emmiéov, 1o mpawtékoiio amoutei t + 1 yopovg xar éyer O(n?) moivmioxdtnra unvoudrov ue O(n?)|o| bits,
omov |o| eivai o pixog kale vmoypogpns tov PKI.

H opBom 1o T00 Tpmtokdiiov PoacileTor 610 YeYOVOg TG oV KATO10G TaikTNG AGPelL Eva r-EyKupo TOKETO
vroypaedv Y kmow N b € {0, 1} otov yopo r < ¢, 1ote pmopei va dnpovpynoet éva (r + 1)-éykvpo
TOKETO VIOYPAPAOV Y10, TNV b TpoohBEéTovtag Trv d1kn Tov VIToYpaEn. MdAioTa, T0 TPOTOKOALO dtaTnpEl TNV
opBOTTA TOL OTOV TPEYEL Y10 OTTOLOVONTTOTE APLOLd YOP®V LEYOAVTEPO TOL E, TT.X. Yot . — 1 yOPOLG AKOLLOL
KoL oV OEV EIvaL YVOGTH 1 TN TOVL t.
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1.3.3 IIpotéxoriro pe Yroypoppiko ApiOpé I'pov

O1Chan, Pass kot Shi [11] kataokedacay éva mibavotucd Bulavtvo Broadcast tpotokoldlo avekTiko evavTia
oet = (1 — €)n oedipata Tov amortel VIOYPaUUIKO apBupd Yipev g mpog to n. T mv akpifeta, to
TpwtoKoALo TeppatiCel oe O(log(1/d)/€) yopoug kot amotvyydvet pe mbavotta o mord § + negl(k), v
omotodnmote & > 0. Evkola d10moT®VEL KAVEIG OTL VTN 1] TOADTAOKOTNTO YOP®V EIVAL VTOYPOUUUIKT G
npogn otav € = w(1/n) ko 6t améyel and 1o kdTw 6pro Tov IMopicpatog 9 katd Evav mapdyovta log(1/6).

To mpwtdxorro Baciletar otnv ekhoyn piag Tuyaiog emrpomnic pe log(1/0) naikteg dote pe mbavotnra
0(0) va mepiéyet tovddyiotov éva tipo pérog. H 1déa givan 6tt povo ta pén g emrpomic (kabdg kat o
amootoléas s) Ba £xouv 10 TPovOLLo Vo VTToYPAPoLY Tés omd to {0, 1} ko 6Tt VIoYPaPés amd GAOVG TOVG
vrolouTovg Taikteg Tov P Ba dev Aapfdvovtot amd kavévay Tipo moiktn tov P.

To npwtdkorro anoterel pia Topaiiayn tov Dolev-Strong, otnv onoia kaOe yOpog Tov Dolev-Strong avti-
ototyiletar o€ €va 0Tdd10 TOL VEOL TPMTOKOALOL TOV OTOTEAEITAL OO VO O1000YIKOVG YOPOLG. XTOV TPMTO
Y0po KkdOe oTadiovn, KAOE TIHIOC TOUKTNG ATADC TPOMOEL OAEC TIC LTOYPAPES TTOL AAUPAVEL GTOVG VITOAOITOVG
TO{KTEG, EVAD GTOV GTOV OEVTEPO YVPO, Ol TiHIOL TOiKTEG TNG EMTPOTNG (Kot LOVo ovtol) mpomBovv OAeg Tig
OAEG TIG VTTOYPOPES TTOL EYOVV AAPEL Yia TIC TIUEG TOV EXOVV AAPEL, TPOocHETOVTAC KoL TV S1KN TOVG VTTOYPOPT|
OTIG TIHEG OUTEG.

INa va givar 10 TpmTOKOALO aveKTIKO evavtia o€ omolovonmote PPT t-avtinolo npénet va vmobécovpe tnv
Oapén e Aettovpyiag Fmine otd v omoia Ba kabopiletal av kdmolog ToikTng £YEL TO TPOVOLLO VAL VTTO-
ypayel v Tipn b (dniadn glvar oty b-emtponn) 1 oL

Agurrovpyid Fine
E&opuén: Av kdamowog maiktng p € P kaAécel ™V Fmine-mine(b) yio TpdTN GOPA Yo KOO TIUN
b € {0, 1}, 10t€ N Fmine 0TpiPet £va képpa to omoio kabopilet av o p givan otnv b-gmirpony. Emmiéov, n
Frmine QOVTOEL GTOV P AVOAOYMG Kol AroONKEVEL TV OTAVINGT) TOV TOL JiVEL, MGTE AV 0 p EAVOKOAEGEL
NV Fmine-Mine(b), N Fmine VO TOV dDGEL TNV {0100 a@vTnom.

EmBepaioon: Av kamoog maiktng p € P KoAEoeL ™V Fmine.verify(b, ¢) yia kémoro Cedyogs (b, q) €
{0,1} x Py va eAéyEet av 0 ¢ givar oTnV b-gmitpomn, TOTE 1| Frine OMOVTAEL KATOPATIKA OVV O G £XEL
NN KOAESEL EMTUYDG TV Fmine-mine(b), S0QOPETIKA OTaVTAEL OPVNTIKGL.

Zynuo 1.3.2: H Asrtovpyio Frine

Mo v TmIKy TTEPLYPAPT] TOL TPMTOKOAALOL TTOV PaiveTol oto Zynpa 1.3.3, Bo tpémel va opicovpie ek vEOL
T0L T-EPKVpa TOKETA VTLOYPAPOV Yo kamota T b € {0, 1} @g ta shvora g popens {Sign, (b) bvev, Y
Koo V. C P ug |[V| > r, s € V xau 11¢ KARGELG Frine-verify (b, v) va givon emttuyeis yio tovAdyotov r — 1
naikteg Tov V\{s}.

EvkoAa dlomiotdvel Kaveic 0Tt T0 TpOTOKOAAO ToL Zynpatog 1.3.3 wovomotel Tig 10TNTEG TG EYKDPOTHTAS
Ko Tov zepuationod Tov Pufavtivov Broadcast (Opiopdg 6) pe mbavotnto 1. EmmAéov, Topatnpovpue 0Tt av
dev ocupPel kavéva YEYOVOS VOGS OO TOVG TOPAKATM TOTOVG YEYOVOT®V, TOTE TO TPWOTOKOAAO eEacpalilet
KO TV W10TNT0 TG COUPOVIOG

— Tomog A : kdmowog tipo maiktn p € P amodéyeton kamowo Ty b og kdmowo otadwo r € [1, R|, aAhd



1.3. Bvolavrvy Zvupwvio ue Kaxofovin Iicioynpio, 7

[potéxoiro Ty,
Eoto R = [% -In %} Kot 0Tt 1| Fmine VAOTOIEITOL PE P = i In %.

Xraowo 0: Kd&be naiktng p € P apywonotel flg = Cp0 = Cp1 = 0. O anoctoréag s oTélveL 6€ OLOVG
tovg maikteg To pvopa M? = {{Sign,(bs)}}.

Bpéyyog: Kdbe otado r € [1, R] anoteheiton and 2 ybpouc.
1. Ztov mpmto yOpo, kdbe maiktng p € P extelel ta akdAovba fpata

— Apyuwonotet A = Ar~L.

— Orav AdPet éva kalo pavopo M, yio kdbe B € M, kdvel to. okoiovba : av to B givor éva
r-£YKVPO TOKETO VIOYPAP®V Y10, Kamolo Tufy b & fl]’;*l, to1e OéteL A) «+ AL U {b} xau
Cp7b — vab U B.

— Ztéhver og 6Aovg Tovg maikteg o pivopa My = {Cpp}, Ar\AT-1-

P P
2. Zzov de0tepo Yupo, kKibe maikme p € P ekterei Ta axdrovba frparta :

— Apywonotel fl; = Aj.

— Otav Aafet éva kodo pivopo M, yio kGBe B € M, kavet ta akorovba : av 1o B givon éva
r-§YKVPO TOKETO VITOYPAPADV Y10 KATOW TIUN b & fl;;l Kot 1 KANoN ™G Fmine-mine(d) givan
emTuyNg, ToTE BETEL fl; — AT U {b} ka1 Cpyp < Cpp U B.

— Av A,; # A7 101€ 6TéhvEL 6€ OAOVG TOVG TTAIKTEG Mg ={CppU {Signp(b)}}bEA;\A;q.

2140w R + 1: Kd&be maiktng p € P extedel 1o axdrovba fripoata :
1. Apyomotei AFH! = flﬁ.
2. Otav AaPetl éva koto pavopa M, yia kdbe B € M, kdvel ta akoiovba : av 1o B gival éva

(R + 1)-€ykupo TaKéto vroypoapdv yio kémowo T b & AL, 161 Oéten ARFL — AR U (b}

3. Tepporilet kot divel oty €060 1, av Aﬁ*l = {1}, aAhudg diver otnv é€0do 0.

Yympa 1.3.3: Bulovtivo Broadcast [Ipmtokoiro pe Ymoypoppukod ApiOpd [Mpav

KAmol0¢ GALOG Tipog maiktng ¢ € P dev anodéyetar ToTé v b.

— Tomog B : kdmotog tipno waikm p € P amodéyetar kamoto T b 610 0tddo R + 1, aAAd Kdmotog GAAOG
tipog maiktng g € P dev amodéyetarl moté v b.

Amodewvietar 6t éva yeyovog Tomov A 1 B ovpfaiver pe mbovomta to mold §/2 + negl(k), ondte govpe
TO TOPOKATO Bedpnua

OedpNpa 6. [takabee, o € (0,1), ued > 2e=", 10 mpawtéKorio sy (Zynipo. 1.3.3) éva mbovotiké folavtivo
Broadcast mpwtoxorlo (cdupwvo. ue tov Opioud 7), avektiko evaviia e omotovonmote PPT t-avtizalo, otov
t < (1 — €)n, o omoio tepuotiler oe 2[% -In %] + 1 ydpovg ko emitvyyaver e mbovorra 1 — § — negl(k).
Emmiéov, éyer molvmioxétnra unvoudrov O(n?) ue O(n?In(1/6)/€)|o| bits xard extyucduevn tyuj, émov |o|
eivai to unkog kabe vroypapns tov PKI.
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1.4 Avovopo Broadcast yio Omorovonmote ApiOué Koxkopoviwv Ioktov

1.4.1 To Movtého Avovopov llaktov

310 ©oviélo avavouwy woiktwv, Dempovue va (LeYA0) cOVoLo THAVAOV TAIKTMV, TO 0010 OTOKAAOVLE
odurav U kol vrodétovpe 0Tl va [KPO TOGOGTO TOV TAIKTOV TOL U B0 GUUUETAGYEL EVEPYH GTNV EKTE-
Aeomn tov TpwToKOALOL. EmmAéov, Bempoiue Ot o1 Tpaypotikd evepyoi maikteg (cvuPoiiovue ue P C U),
ONAad” oVTOL TOL GLUUPETEYOVY GTNV EKTEAEGT], OEV £youV Kapia TAnpogopia o £vog yio Tov GAAOV, 00TE
Yvopilovy KT dvm OPLo TOL TPOYUATIKOD aplBLoD TMV EVEPYDV TUIKTMV.

E@doov Ba aoyoinbovpe e v mepintmon Tov KoKOBovilmv mAsoynelov, Oa tpénetl va vmobécovpe v
Vmapén €vOg GYNIOTOC LITOYPAP®Y. ZVYKEKPYEVA, Bo Bepricove Eva GYNILOL DITOYPAPDV LE TOPALETPO
acpakreiog k € N kot 0o vobécovpe 0Tt 10 svumay TePLE el w(poly(k)) maiktes, v To P mepiéxet poly(k)
naikteg. Ot maikteg Tov P Ba dnpiovpyodv povot Tovg 1o (enydpt 11mTIKoV-0NHociov KAEWB100 Tovs Kot Ha
oTEAVOLV TO dNUOGLO KAEWDT TOoVG o€ pio apyh mioromoinons (CA), | onoia B0, TOVE EMOTPEPEL EVA TIGTOTOL-
NTKO EYKLPOTNTOS TOV KAEWDIO0D ToVvG. MOAIG AGPOVV TO TIGTOTONTIKO, Ol TTalikTES Bol pLITopovV v Tapdyouv

EYKVUPEC VITOYPOPEC.

H emowvovia tov toaktdv tov U Ba yivetoar pécm evog d1kTvov d1dyvong, 6To omoio 1 Tapddoon TV
pnvopdtov arnd tipnovg maikteg etvan eyyonuévn. ‘Etot, Bsmpodpe 61t o1 maikteg Pmopovv vo KOAOLY TV
Aerrovpyia Fyiffuse, N OTOT0L O emiterel TOV avAAOYO pOAO TNG EVTIOMG * oTEIAE G OAOVG TOVG TAUKTES  TOL
KAOGUKOU HOVTEAOD.

Télog, 0 avtimalog Oo puropei vo givat 1oxvPAE TPOcapPHOCTIKAG, 0ALG Kot va evepyomnotel poly (k) Taikteg mov
dev TPoTiBEVTO VO GUUUETAGYOVY KOt VO TOVG EMPAAAEL VO 0KOAOVOOVV TIg eVTOAES Tov. MAMGTO, UTopEl
extdg amd to vo Kohel v Asttovpyio Fyiffuse VO OTEAVEL ETAEKTIKG UNVOLLATO GTOVG TOIKTEG.

1.4.2 Broadcast oto Movtého Avavopov Ilawktov

EvkoAa pmopet va avtiAngBei kaveig 0Tt 10 kde TPOTOKOALO GTO HOVTEAO OVAOVULMV TOUIKTOV TPEMEL VO,
olokAnpdvetal To oAb o€ poly (k) yOpous, SIPOPETIKAE O AVTITOAOG UTOPEL VO TAAGTOYPAPTGEL VTOYPOL-
0éc. Epocov, Aomdv, ommg yvopilovpe amd to khaowkd poviého kdbe Broadcast mpoTdKOAAO OVEKTIKO GE
0mOLOVONTOTE aPOUO GPAAUATOV SLOPKEL OT XEPOTEPT TEPITTMOOT TOGOVS YOPOLS OGO Kot aplBUdc TV
TOKTOV, Ba Tpénel va vToBEécovpe 0TL VITdpPyEL Kdmolog YOpog R, otov omoiov 0 avTimalog GTOUATAEL VO
gvepyomotel vEOUG TOUKTEC.

"Etot, éxovpe Tov TopakdTm opiopd yio to avavouo Broadcast:

Opropéc 10 (Avdvouo Broadcast). Eotw U éva odvoldo maiktav. Eva tpwtéxollo T eivar TPWTOKoAO avw-
vuuou Broadcast, omov évag kalBopiouévog armootoléas s € U maipver wg eicodo uia opyixn tiun bs € {0, 1},
av yia omorovonrote PPT ovtinodo ko omoiodnmote ovvolo P C U, o1 Topoakxdtw 1010THTES IKOVOTOI00VTAL
e ovovipirtiy mbovotnto.:

— Eyrvpornyra: Av o amootoléog s givor Tiuiog, T0te 0401 01 Tiuiol TaIKTeS divovy atnv éEodo v tiun bg.
— Zoupawvia: Olor o1 tiuor woikteg divovy otny é¢odo v iowo i b € {0, 1}.

— Tepuatiouds: Dot o1 ol maikteg tepuatiCovy kou divovv otny éGodo pio tyuj o€ poly(k) yopouvg.
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H dvokolio Tov TpoPANHATOG £YKELTOL GTO YEYOVOG OTL OL TAIKTEG OEV LITOPOVV VO Elval Glyovpot (o€ avtibeon
e o Dolev-Strong) 611 6tav amodéyovran pia TN ToL 0TocToAEN, TOTE OAOL 01 VITOAOITOL TAUKTES EiTE EYOVV
N0M dexBel avtv TV TN €lTE B0 CUUUETEYOVY GTO EMOLUEVO YOPO Y10 VO, LITOPOVY TEIGTOVV Y1dl TNV 0odoyn
NG TPV TEPLOTICOVV.

H Adon pag Pacileton oty avantuén evoc TpOTOKOAAOD TO 0010 EMITPETEL GTOVE TOUKTEC VO GUUPMVOVY
o€ £va VTOGVVOAD TOVG, TO 01010 Ba TEPIEYEL TAVTO OAOVE TOVG TIHIOVG TOTKTEC.

1.4.3 Xvpoovia Evepyov Hoktov

[Mapovoidlovue éva TPOTOKOALO coupwvias evepyav wouktwy (APA), 61ov o1 Taiktec CLHEOVOVY G€ €val
obvoro evepymv Taukt@v S C P, 1€1010 dote kabe Tipog maiktng va meptiappavetor oto S. O TumIKOG
oplopog Tov APA elvar o e€ng:

Opwopig 11 Cvpeovia Evepyov Maktav (APA)). Eorw U éva odvolo mauxtwv. Eva mpwtokorlo T givor
MPWTOKOMO CUUQWVIAG EVEPYWV TTAIKTWY, av yia omotovdimote PPT avtiralo kai omoiodnmote ocbvolo P C
U, o1 TopardTm 1010TNTES IKAVOTO100VTAL [UE COVIPITTTIKY TOOVOTHTA.:

— Opblortnra: Av évag tinog Toiktng p owaoel atyy é¢odo 1o S, tote S C P.

— Eyrvpornyra: Av évag tipiog moiktng p owoel atny ééodo 1o S, ote p € S.

— 2ovpgpwvia: Oloi o1 tiwor woiktes divovy atny é£odo o0 idto odvolo.

— Teppaticudg: Olor o1 tiwor woikteg wepuatiovy ko divovy otny éCodo éva avvolo ae poly(k) yipoug.

o v Tomkn weptypopr) Tov APA mpotokdihov (Zyaua 1.4.1) Oa ypewaotel va opicovpe ta (p, r)-Epkvpa
TOKETO, VIOYPOPDV Y10 KGmoov Ttaiktn u € U og ta ovvora g popeng {Sign, (idy) bvey, Yo kémowo
VCPuueViku|VN S;_l\ > r — 1, KoL Ta Kodd pmyopaTo og Ta pmvopato. mg opeig {Bi}_,,
Yo Kamow [ > 1, 6mov B; glvar €yKupo maxéta bIOYpoe®V Yo KAmow maiktn u; € U, 1étola dote B; =
{Sign,, (idy,) }vev;, Yo kémowo V; C U pe u; € Vi, yua kébe i € [1,1].

Ozdpnpa 7. To mpwT0K0AL0 Tapa (ZxHua 1.4.1) eivar Eva TpwTOKOLLO CVUPWVIOS EVEPYOV TUIKTWY (TUU-
pawva ue tov Opioud 11) to omoio givor aopalés evavtia oe omotovonmote PPT. Emimléov, éotw S 10 KO1VO
a0voA0 £E000V TV TAIKTAVY, TOTE TO TPWTOKOAL0 Tepuatier ae |S| C |P| yopous..

H opbotta 1ov tpwtokdérrov Baciletar oto yeyovos mwg av o maiktng p Adfet éva (p, r)-£ykvupo mokéto
VIOYPOPOV Ylo. KGowov Ttaiktn uw € U otov yopo 7, tdte pmopei vo dnpovpynoet éva (g, r + 1)-£ykvpo
TOKETO VTOYPAPAV Y10 TOV U, Yo KéOe ¢, TpocBéTovtag v dikn Tov voypaer. EmmAéov, anodeikvieTon
EMAYOYIKE OTL KAOe ToiKTNg ¢ TOL dev Exel amodeyDel Tov u uéypt Tov Yopo 7, Ba TPoYWPNOEL GTOV YOHPO
r + 1, ondte Kou B amodeyBel Tov u mpv TeppOTIOEL.

EbYkolo, pmopovpie vo mopatnpicovpe 6Tl TO TOPUTavV® TPOTOKOAAO AVVEL To avdvupo Broadcast og e&ng:
0 OmOGTOAENG CUUUETEYEL evEPYA 010 APA avv by = 1 kot o1 maikteg divovv otnv €080 1 av kat Lovo av o
s mephappavetal oty £€€0d0 Tov APA.

1.4.4 Avovopo Interactive Consistency

[Mapovoidlovue éva avavouo interactive consistency mpoTOKoALo, dmov kdBe maiktng p € P maipvel og
gicodo pia Tin by, € {0, 1} ko divet oy €£0d0 éva cvvolo Cevyapidv maikTn Ting.
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Hp®ToKOALO T3p,
Apypwomoinon: Kabe maikmg p € U mov embBopei va ovoppetdoyet, dnuovpyel to (skp, pkp) —

KeyGen(1") kot salt, & {0,1}"."Enerta, otéhverid, = pk,|[salt, oto CA ot Lappdavet o cert,.
T'dpog 0: Kabe moiktng p € PP apycomotel S = {p} ko kahet Faisruse ({{Sign,, (idp)}}).

Bpoyyog: o r = 1,2, .. ., 60 maiktng p € P extedel 1o akdOAovba PrypLata
1. Apywomouei S, = Syt
2. Ortav Maet éva kalé pqvopa M, yio kdBe B € M, kévet ta akdrovba: av to B givar éva (p, r)-
£YKUPO TOKETO VIOYPAPMV Yo KAotov Tkt u & Sy —1 tote:
— avu & S}, apywonotei Cp,, = ()
— Oéter S) = SpU{upxa Oy, + Cp U B.
3. Av |S)| < 7, tote teppatilel ko diver oty £€0do t0 Sy, ohMdg kahel ™V Fyiffuse ({C) , U
{Signp(idu)}}uesr\sg-l) Ko Tpoympdet otov yopo r + 1.
P

Syqua 1.4.1: Ipwtdkorro Zvpeaviag Evepydv IHoktov

Opropég 12 (Avovopo Interactive Consistency). Eotw U éva abvolo wouktdv. Eva mpwtokollo T eivor AVw-
vuo interactive consistency mpwtokoMo, émov ke maiktns p € P maipver g eicodo uio Ty b, € {0, 1},
av yia ozorovonmote PPT avtimoio kot omoiodnmote cvvoro P C U, o1 mopoxdtw 1010THTES IKOVOTOI00VTOL
e ovvipirniky mbovornTa:

— Oplotyra: Av évag tiog maiktng p ddoer otny é6odo 1o, 1ote A C P x {0, 1}.

— Eykvporyra: Av évag tiuiog maixtng p dwoer oty éEodo 1o A, tote (p, by) € A.

— Zovugovia: Olot o1 tiwor woiktes divovy atny ££odo o0 idLo odvolo.

— Tepuatiouds: Oloi o1 tiwor woikteg tepuatiCovy kou divovy atny éCodo éva avvolo ae poly(k) yopoug.

INa v TVmIKN TEPTYPOLPT| TOL AVAOVLHOV interactive consistency mpmtokoAlov (XZynpa 1.4.2) Oa ypeaotel
va opicovpe ta (p, r)-éykvpa maxéta VIOYPa®V Yo Kamotov Cevydpt (u, ) € U x {0, 1} wg ta chvora g
nopong {Sign,, (idy|[b) }vev, Yo kdmowo V-C Pueu € V ko [V N Sg_l\ > r— 1, Kot T KoAd PIVOLOTOL O
TO, UMVOLLOTO TG LOPONG {Bi}ﬁzl, Y Kamoto [ > 1, 6mov B; givon éykupa waxéro, vmoypap®V Yo, SlaKplTd
Cevyapua (uq, b;), Této100 dote B; = {Sign, (idy,) }vev;, Yo kdmowo V; C U pe u; € Vi, yiakébe i € [1,1].

Ozopnpa 8. 7o mpwtoxollo ic (Zynuo 1.4.2) eivou évo. ovavouo interactive consistency mpwtokoiio (cOu-
pawva ue tov Oprouo 12) to omoio eivar aopalés evaviia oe omorovonmote PPT. EminAéov, éotw A 10 KO1vO
a0v00 ££600V TV TOUKTDY, TOTE TO TPWTOKOALO TEpaTilel oe |A| C |P| yopoug..

H opBdtta 100 Tpm@ToKOAAOD ATOSEIKVOETOL [IE TAPOUOL0 TPOTO HE eKElVT Tov APA TpwTokOAloL. Md-
MoTa, oo TO TAPUTAVED TPMTOKOALO TPOKVTTEL dpeca £vo ovadvupo Broadcast mpwtdkoAro ¢ e&NG: 0 s
CUUUETEYEL OTO OVAVLLO interactive consistency e 6000 by, eV OAOL 01 VTOLOUTOL TAUIKTEG GUUUETEXOVY
ue €ioodo 0 ko Telkd, ot maikteg divovv otnv é€0do 1 avv to Cevydpt (s, 1) mepthapfavetor 6to GHvoro
€£660v ToL avdVLOV interactive consistency.



1.5. Xvurepaouozo. 11

potéxkoriro Tic
Apywomoinon: Kabe maikmg p € U mov embopei va cvppetdoyet, dnuovpyel to (skp, pkp) —

KeyGen(1") kot salt, & {0, 1}"."Enerta, otéhverid, = pk,|[salt, oto CA ot Lappdaver o certy,.

I'opog 0: Kabe moiktng p € P° opywomotei S) = {p} and AY = {(p,by)} xar Kodei
Faituse ({{Signy,(idp|[bp) }}).

Bpoyyoc: e r = 1,2, ..., k4Be maikimg p € P extedel ta axdAovba Pripota:
1. Apywomoei S = S;_l Kot A = Ag_l.
2. Ortav Maet éva kald pqvopa M, yio kdBe B € M, kévet ta akdrovba: av to B givar éva (p, r)-
£YKVPO TOKETO VILOYPAPDV YioL kamoto Cevydapt (u, b) & A;_l, TOTE:
— av (u,b) ¢ 5, apywonoei G, = 0
— Oéter S < SpU{ut, Ap <~ ApU{(u,0)} ken O}, <= C} U B.
3. Av [Sp| < 7, tote Teppatilet kan diver oy £60d0 Out(Ay), ohhag kodel v Fyiffuse({C)) ,, U
{Sign,,(idy| |b)}}(u7b)€A;\A;71) Kot Tpoywphet otov yopo r + 1.

Yynpa 1.4.2: Avovopo Interactive Consistency [Tpwtoxoirio

1.4.5 Kato @paypo moAvrlokoTnNToS YOPOV

Boaolopevol 610 kdtm epdrypa tov [8] amodeucvoovpe 6Tt dev vadpyel ThavoTikd avdvopo Broadcast mpo-
TOKOALO, OLVEKTIKO EVAVTLO GE OTOIOVONTOTE 0PI COUAUATOV, TOL VO TEPUATICEL TAVTO GE AYOTEPOLS ATTd
P ybpouc.

Ozopnpa 9. dev vrdpyer mbavotixo avavouo Broadcast tpwtorxollo (Opiouog 10) mov tepuarifer oe Aryo-
zepovg ard |P| yopoug.

Apeom GUVETELD TOVL TOPATAVD BE@PLLATOG Elval OTL TO 1010 EPAYLA 1OYVEL KO Y10, TA TPMTOKOALO GUL-
PoViog EVEPY®V TOUKTMV Kol interactive consistency. ZUvenmg, OAo To. TPOTOKOAAD TOV TOPOVGLAGTNKOAY
TOPATAVED GTO LOVIEAO OVAOVLU®V TOKTOV gival BEATIOTO 0G TPOG TNV TOAVTAOKOTNTA YOPWV YEPOTEPNG
TEPIMTOONG.

1.5 Xvumepaopora

To mpofinpa g Pulovivic CLHE®VING £XEL ATAGYOANGEL IO10UTEPO TNV EMIGTNLOVIKT KOWOTNTO, ®GTOGO,
péypL oTiyung OAeg ot VILAPYOVTA OTOTEAEGLOTO APOPOVY TO KAAGGIKO (0TaTiKd) Hovtédo g PulavTiviig
SLUP®VIOE 1 VTOBETOVY TNV TAELOYN PO TOV TIUL®OV TOIKTOV. TNV TOPOVGO EPYUGIN, OVATTOCCOVIE TPM-
TOKOALD TTOL AVVoLV T0 TPOPAN L Tov Pulavtivod Broadcast 6to avdvupo povtéro, KoTaokevdlovtos Tp-
TOKOAAQ, OV ETLTLYYAVOVV TNV CUHPOVIO TOV TAIKTOV 0 £vV0, GOVOAO EVEPYMV TUIKTMOV Kol £VO, GOVOAO
{evyopldv evePYDV TOIKTOV-TILAOV, TOV TEPIAAUPAVEL Ta avTioTol o otoryeia Yo kabe Tipo maiktn. Md-
MGTO, OTOOEIKVOOVLE OTL TO, TPOTOKOAAN LOG EMTVYYAVOLYV BEATIOTH TOAVTAOKOTNTA YOPWOV YEPOTEPNS
mepintwong, n onoio tavti{etan pe To TANO0C TOV EVEPYDV TUIKTAOV G€ KAOE EKTEAEDT.






Chapter 2

Introduction

The problem of byzantine agreement (BA) [1, 2] is one of the most fundamental primitives in fault-
tolerant distributed computing. It requires a set of parties to reach agreement on a value in the
presence of an adversary, i.e., a malicious attacker that takes control over some of the parties and
who is trying to prevent them from reaching their goal. BA comes in two flavors, consensus and
Broadcast.

In consensus, every party has an input value and the goal is to reach agreement on the output,
such that if all honest (i.e., uncorrupted) parties have the same input value, then they agree upon
their common input at the end of the protocol (validity). In Broadcast, on the other hand, only a
single designated party, called the sender, has an input value and the goal is that all honest parties
agree on the same value (agreement), such that this values equals the sender’s input if the sender
is honest throughout the execution of the protocol (validity).

The bulk of the literature on BA assumes a known set of n parties which communicate via a
complete network of point-to-point channels. In this setting, BA can be achieved if and only if
at most t < n/3 of the parties are malicious, unless a trusted PKI setup for digital signatures is
assumed [2, 12]. On the other hand, assuming a secure PKI for existentially unforgeable signatures,
one can achieve Broadcast with arbitrarily many (¢ < n) corrupted parties, the so-called any number
of corruptions [4].

In the last ten years, the advent of blockchains has opened up several new horizons and highlighted
the significance of a novel realization of distributed systems. In particular, a common assumption
in what is frequently called the permissionless model, is that there is no known exact upper bound
on the number of participants in the protocol, and that parties might join and leave during the
execution of the protocol. This property is often referred to as dynamic participation (e.g., [13, 14,
15]), and has become mainstream in the blockchain literature (cf. [16]).

The common assumption in such blockchain systems is that the majority of some resource is in
honest hands, drawing the attention of research primarily on BA protocols that assume an honest
majority of parties. Hence, the question of whether BA (in particular Broadcast) is possible in
the unknown participants (UP) model, where the set of parties is not known in advance, without
assuming an honest majority of parties has not yet been addressed. This question naturally raises
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the challenge of how can the parties decide that they have sufficiently many messages, so then they
can have a consistent output. This may lead one to believe that achieving Broadcast under these
assumptions has very few chances.

Surprisingly, in this work, after describing an appropriate definition for Broadcast in the UP model,
we answer this question in the affirmative and provide protocols with tight worst-case round com-
plexity. Our protocols make minimal cryptographic assumptions and assume a universe of exponen-
tially’ many potential parties, out of which only a subset of parties with polynomial® size actually
participate. We then prove that while our protocols do not require any sources of randomness
available to the parties, the worst-case round complexity of our protocols, coincide a lower bound
that holds even for randomized protocols in the UP model.

Since our approach is mostly inspired by existing solutions for BA in the classic (known participants
model) that tolerate any number of corruptions, before presenting our new results, we choose to
do an overview of inherent limitations and relevant BA solutions under the dishonest majority
assumption (¢t < (1 — €)n) in the classic setting.

2.1 Related Work

There are plentiful papers studying byzantine agreement in the anonymous setting, i.e., where the
nodes do not know each other. Okun and Barak [17] were the first to consider the Byzantine
problem in this setting, assuming a set of n static anonymous parties out of which at most ¢ get
corrupted. Augustine et al. [18] design scalable randomized byzantine protocols in the same setting.
Khanchandani and Wattenhofer [19] give BA protocols where the participants have unique but not
necessarily consecutive identifiers, where n and ¢ are also unknown but static. Besides, all these
papers assume the honest majority and static participants. On the contrary, Momose and Ren
[20] solve BA with dynamic participation assuming that the participation level does not fluctuate
widely.

A comparison of these results is shown in Figure 2.1.1.

Protocol Resilience Round Complexity | Participation | Randomized | PKI
[17] t<n/3 @((Z:Qf) static
[18] t<(1/4—¢€)n O(polylog(n)) static Vv
[19] t<n/3 O(t) static
[20] t<n/2 0(1) dynamic vV V

Figure 2.1.1: Comparison between BA protocols with unknown/anonymous participants

Most studies on BA under dishonest majority assume static participants [8, 21, 22, 23, 11, 24].

Dolev Strong [4] first provided a protocol that solves BA for any number of corruptions. Garay

et al. [8] presented a randomized expected O((t —n/2)?) round protocol and their result was later

improved by Fitzi and Nielsen [25] to expected ©(t — n/2). Chan, Pass and Shi [11] reduced the
n—t

round complexity even further to O(log(5)™=%), where § is the error probability of their protocol.

Lin our security parameter
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Subsequent works by Wan et al. [23, 22] eradicate the log(3) term by constructions which retain
security under the decisional linear assumption in suitable bilinear groups.

A comparison between the main protocols that tolerate dishonest majorities in the classic model is
shown in Figure 2.1.2.

Protocol | Resilience Round Complexity Randomized
[4] t<n min{t + 1,n — 1}
8] t<n/2+k O(k?) (expected) Vv
[25] t<n O(t —n/2) (expected) V
1] |t<(-on| Oloed)=D) v

Figure 2.1.2: Comparison between classic BA protocols resilient to dishonest majorities

Regarding the round complexity of BA, Fischer and Lynch [3] showed that any deterministic BA
protocol that tolerates ¢ corruptions requires at least t 4+ 1 rounds. Garay et al. [8] showed that no
randomized Broadcast protocol tolerating ¢ malicious parties can always terminate in 2n/(n—t) —2
or fewer rounds, indicating a €(1/e) lower bound for any protocol that tolerates ¢ < (1 — €)n
corruptions. Chan, Pass and Shi [26] finally showed that whenver ¢/n = O(1) and § = 1/poly(n),
then no (even randomized) protocol that completes in worst-case o(log(1/9)/loglog(1/0)) rounds
can achieve BA with 1 — § probability.

About message complexity limitations, Fischer, Lynch and Merritt [9] proved that in every deter-
ministic BA protocol the honest parties collectively need to send Q(n 4 t?) messages. This bound
was extended by Chan et al. [10], in order to prove that if a protocol solves BA with 3/4 + ¢
probability against a strongly adaptive adversary, then in expectation, honest parties collectively
need to send at least (et)? messages.

2.2 Our contribution

In this work, we provide a byzantine Broadcast protocol that tolerates any number of corruptions
in the unknown participants model (UP-Broadcast). In our way towards solving Broadcast in this
setting, we first construct two other protocols with the same resilience, the active parties agreement
protocol (APA) and an interactive consistency protocol in the unknown participants model (UP-
Interactive Consistency). For each one of these protocols we provide formal security proofs and we
analyse their worst-case round complexity. Then, we prove that their worst-case round complexity
is optimal, by showing that any protocol providing the same guarantees could not always require
fewer rounds that our protocols.
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Chapter 3

Background

3.1 Cryptographic primitives

First, we introduce the notion of negligibility, which is the cornerstone for capturing the security
definitions of most cryptographic schemes.

Definition 13 (Negligibility). A function f:N — Ry is called negligible, if for every ¢ > 0, there
exists some ng € N, such that f(n) < 1/n¢, for every n > ny.

Let k € N be the security parameter of a cryptographic scheme, then typically we want the prob-
ability of the adversary to violate the security of the scheme, let it be ¢(k), to be negligible in
and then, we write g(n) = negl(x). In particular, throughout this work we will be interested in the
security of digital signature schemes.

Definition 14 (Signature Scheme). A (digital) signature scheme is a triple of algorithms (KeyGen,
Sign, Verify). The KeyGen algorithm takes as input the 1% string and outputs a pair (sk, pk) consisting
of a secret key sk and a public key pk. The Sign algorithm takes as input a secret key sk and a message
m € {0,1}PY(%) and outputs a signature o, i.e., o = Signg (m). The Verify algorithm takes as input
a public key pk, a message m € {0, 1}p°'>'(“) and a signature o and outputs a bit b € {0,1}, i.e.,
b = Verify, (m, o). For the triple (KeyGen, Sign, Verify) it must hold that Verify,, (m, Signg (m)) = 1,
for every message m € {0,1}* and every output (sk, pk) of KeyGen(1%).

Note that for some party to verify a pair (m, o) it must hold a public key pk that corresponds to a
secret key sk, such that o = Signg (m). So, consider a set of n = poly(k) parties P = {P,..., P,},
where each party P; € P executes the triple of algorithms (KeyGen, Sign, Verify) of some signature
scheme, as described in Definition 14, then we will say that P shares a public key infrastructure
(PKI), if every party P; € P is able to verify every pair (m, o) generated by another party P; € P.
More, precisely :

Definition 15 (Public Key Infrastructure (PKI)). We will say that a set of parties P =
{Pi,...,P,} shares a public key infrastructure (PKI) if for every pair of parties P;,P; € P, P
holds a secret key sk; output by KeyGen and P; holds the corresponding public key pk;, such that
Verifyy,.(m, Signg,(m)) = 1, for every message m € {0, 1}Poly(x),
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On the other side, we want that whenever some party P; manages to verify a pair (m, o) using the
public key pk; of some party P;, then this shall imply that the signature o was generated by F;,
since no other party could be able to generate o efficiently without the knowledge of sk;. To make
our statement more clear, we will be interested in PKIs such that no PPT adversary can generate
a signature o such that Verify, (b,0) = 1, for any 1-bit message b € {0, 1}, without knowledge of
the corresponding sk; (we restrict our attention to the case of 1-bit messages, since this minimal
assumption suffices for the security of the protocols we will present in Chapters 4 and 5). We will
say that such PK s satisfy the unforgeability property.

Definition 16 (Unforgeability). A PKI shared among the parties of a set P = {Py ..., P,} satisfies
the unforgeability property against any PPT adversary if the probability that the adversary finds a
string o, such that Verifypki (b,0) =1, for any party P; € P and any value b € {0, 1}, without the
knowledge of sk;, is negligible in the security parameter k.

For the rest of this work, we will consider that any PKI must always satisfy the unforgeability
property as stated above. In this case, we will consider that if Verifypki(b,a) = 1, for some value
b € {0,1}, then o was generated by P, with overwhelming probability, i.e., 1 — negl(k). For
convenience, we will use Sign,(b) to denote the triple (i, b, Sign,. (b)) that the party p = P; € P will
send to other parties, so then they can verify that p has indeed signed for b.

3.2 Model and Assumptions

Let P = {Py,...,P,} be a set of n parties, i.e., PPT Interactive Turing Machines. A distributed
protocol m is an n-tuple of PPT algorithms (71,...,m,) used by the parties in P to interact with
each other, where every party P; executes the algorithm ;. In many cases, we consider that the
protocol 7 is executed after the parties have established a message authentication mechanism, i.e.,
each party generates a pair of secret-public keys and publishes its public key, so then P shares a
PKI. When we assume message authentication, the parties (and the algorithms of the protocol as
well) must be PPT with respect to the security parameter x of the PKI, otherwise they must be
PPT in n.

Communication. The parties communicate with each other through point-to-point chan-
nels. We assume a synchronous network, where the parties in P share a common clock
and any protocol executed among the parties in P proceeds in rounds, i.e., at the beginning
of a round every party receives all the messages sent to it by the parties in P in the previous
round, does some local computation and sends messages to the parties in P at the end of the round.

Note that in most of the proofs of efficiency lower bounds in distributed algorithms, we usually
consider a variation of the above assumption, where each party sends the messages at the beginning
of the round and the messages are received by the parties at the end of the round. Throughout
this work, we will also use the former approach for the description of distributed protocols and the
latter for the proofs of the efficiency limitations.
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3.2.1 Adversary

We consider the adversary to be an Interactive Turing Machine that may take control of some
parties in P. We will refer to the parties controlled by the adversary as corrupted parties and to
the rest of the parties as honest. We assume that honest parties follow the instructions indicated
by the protocol to the letter, while corrupted parties may deviate from the protocol up to an extent
specified by the adversarial model. We will be interested in two main types of failures, i.e., ways
that corrupted parties deviate from the protocol : crash failures and byzantine corruptions.

Crash Failures. Crash failures follow the protocol up to a specific round r decided by the
adversary and never send a message after round r. In particular, we will say that a party crashes
in round 7 if it only sends a subset of the messages indicated by the protocol in round r and never
sends a message ever after.

Later in this work, it will be made clear that some efficiency bounds on distributed protocols are
imposed by their requirement to succeed even if some parties crash throughout the execution.

Byzantine Corruptions. Byzantine corruptions may completely deviate from the protocol.
The adversary can read all the messages destined for them, as well as their internal state and
make them behave in an arbitrary malicious manner (e.g. pretend that they don’t receive some
messages or send conflicting messages).

A protocol which succeeds even in the presence of an adversary which makes parties act as crash
failures or byzantine corruptions will be called fault-tolerant. In the specific case that a protocol
tolerates the presence of byzantine corruptions, it will be a byzantine protocol.

Static and Adaptive Adversary. A t-adversary will be an adversary that takes control of at
most ¢ parties which may behave as byzantine corruptions. If a t-adversary can choose the set of
(up to t) corrupted parties only at the beginning of the execution and has no right to corrupt any
additional parties later on, then we will refer to it (as well as its corruptions) as static. On the other
hand, an adaptive t-adversary may also corrupt parties throughout the execution of the protocol
depending of its progress, but without exceeding the number of ¢ corruptions in total.

Strongly-Adaptive Adversary. A t-adversary will be called strongly adaptive, if it is not only
adaptive, but can also perform after-the-fact-removal, i.e., corrupt some party after observing the
messages that it intends to send and remove any of these messages.

Note that throughout this work, by honest parties we will be referring only to the parties that
remain honest throughout the execution of the protocol, while corrupted parties will be considered
the ones which get corrupted at any time during the execution.

PPT and Unbounded Adversary. Whenever the parties in P share a PKI, we will consider the
adversary to have polynomial time in s in every round, in order to process the messages received
by corrupted parties and generate the messages it plans to send on behalf of them. However, if
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some protocol does not require the existence of a PKI, then this protocol should succeed even if
the adversary has unbounded computational power.

3.2.2 Complexity Measures

In distributed computing, as in any theoretical computer science field, we are interested in the
efficiency of our algorithms (or protocols in the case of distributed computing). Particularly,
for fault-tolerant distributed protocols we usually restrict out attention to three main complexity
measures, which are defined below.

Round Complexity. The round complexity of a protocol is defined as the maximum number of
rounds that some honest party needs to run before terminating, in the worst case execution of the
protocol. Note that the round complexity indicates the minimum send-receive phases required in
order to satisfy the desired properties of the protocol.

Communication Complexity. The communication complexity consists of two metrics : the
message complexity and the bit complexity. The message complexity of a protocol is defined as
the total number of messages that honest parties collectively need to send throughout the worst
case execution of the protocol and accordingly, bit complexity is defined as the total number of
bits that honest parties collectively need to send throughout the worst case execution of the protocol.

Note that in the presence of a PKI, bit complezity is bounded from below by the number of signatures
that honest parties collectively need to send in the wort case, and that anyway, bit complexity is
as least as great as the message complexity. Since when assuming message authentication, bit
complexity is heavily relied on the length of the signatures of the PKI, we will be mostly interested
in the message complexity of authenticated protocols, which reflects the amount of information
needed to be exchanged between honest parties, that is imposed primarily by the requirements of
the protocols and not by any other cryptographic limitations.

Computational Complexity. The computational complexity of a protocol is defined as the
maximum over the total computational time that some honest party needs in the worst case
execution of the protocol.

Note that the time given to the parties in every round must be the time given to the adversary as
well. So, in authenticated protocols, the computational complerity must be polynomial in k, since
otherwise, the adversary has a non-negligible probability of violating the unforgeability property of
the PKI. In general, a fault-tolerant protocol will be considered efficient if its round complexity, bit
complexity and computational complexity are both polynomial in n (or in  in case of authenticated
protocols).

3.3 Byzantine Agreement

The Byzantine Agreement problem was first introduced in [1, 2] (aka Byzantine Generals) as the
problem where parties have to agree on a value proposed by a designated sender even in the presence
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of byzantine corruptions. In case that the sender behaves honestly, then the value agreed by the
honest parties must be the value proposed by the sender, otherwise honest parties just have to
agree on a common (possibly default) value. Throughout this work, we will refer to protocols that
solve this version of Byzantine Agreement as byzantine Broadcast protocols. We will consider that
the input value of the designated sender s € P is a bit by € {0,1} and that every honest party in
P has to output a binary value b € {0,1} by the end of the protocol.

Definition 17 (Deterministic Byzantine Broadcast). Let P be a set of n parties. A protocol
w executed by the parties of P, where a designated sender s € P holds an initial input value
bs € {0,1}, is a deterministic byzantine Broadcast protocol tolerating any (unbounded) t-adversary,
if the following properties are satisfied :

— Validity: If s is honest, then all honest parties output by.
— Agreement: All honest parties output the same value b € {0,1}.

— Termination: There exists an a-priori-known round R such that the protocol is guaranteed to
complete (i.e., all honest parties output a value) within R rounds.

As shown in [2], there exists no protocol that meets the above definition when ¢ > n/3. So, for
the rest of this work we will restrict our attention to the case of byzantine Broadcast protocols
which achieve computational security even in the presence of t > n/3 corruptions. Thus, when not
referring explicitly to deterministic byzantine Broadcast protocols, we will be mostly interested in
protocols that meet the following definition in the authenticated setting :

Definition 18 (Byzantine Broadcast). Let P be a set of n parties. A protocol m executed by
the parties of P, where a designated sender s € P holds an initial input value bs € {0,1}, is a
byzantine Broadcast protocol tolerating any (strongly adaptive) PPT t-adversary, if the properties of
Definition 17 are satisfied with overwhelming probability, assuming the existence of a PKI (according
to Definition 15).

In most byzantine Broadcast protocols that meet the above definition, the property of termination
is satisfied with probability 1, while validity and agreement are satisfied simultaneously with prob-
ability 1 — negl(x). If we allow the error probability of the protocol to be non-negligible in x, then
the protocol will be called randomized.

Definition 19 (Randomized Byzantine Broadcast). Let P be a set of n parties and § be an error
probability strictly less than 1/2. A protocol m executed by the parties of P, where a designated
sender s € P holds an initial input value bs € {0,1}, is a randomized byzantine Broadcast protocol
tolerating any (strongly adaptive) PPT t-adversary, if the properties of Definition 17 are satisfied
with probability at least 1 — §, assuming the existence of a PKI (according to Definition 15).

Note that we allow § to be a function of the security parameter x and that a randomized byzantine
Broadcast protocol meets the Definition 18 of byzantine Broadcast protocols when § is negligible in
k. The restriction § < 1/2 on the error probability is set to make clear that randomized protocols
are of type Monte Carlo, i.e., always terminate in polynomial (in  or n) number of rounds and
that the rest of the desired properties are satisfied with probability strictly more than 1/2. The
choice of 1/2 over any other constant number is made for convenience in the description of some
impossibility results (some of which will be presented in this work).
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Relevant Problems. Apart from the version of Byzantine Agreement described in [1, 2], there
is another interesting problem of distributed agreement called consensus. In the consensus problem
we assume that every party in P has an input message b, € {0,1} and that all parties have to
output the same value b € {0,1} by the end of the protocol. If all honest parties have the same
input value b, then b must be the common value of the honest parties.

Definition 20 (Consensus). Let P be a set of n parties. A protocol w executed by the parties of P,
where every party P; € P holds an initial input value b; € {0,1}, is a consensus protocol tolerating
any (unbounded) t-adversary, if the following properties are satisfied :

— Validity: If all honest have the same input value b € {0, 1}, then all honest parties output b.
— Agreement: All honest parties output the same value b € {0, 1}.

— Termination: There exists an a-priori-known round R such that the protocol is guaranteed to
complete (i.e., all honest parties output a value) within R rounds.

Note that there does not exist any consensus protocol that tolerates any t-adversary when t > n/2,
even if we relax the above definition to allow randomized protocols as we did for Broadcast (see
Definition 19). Intuitively, the reason for that is that in the scenario where there are n/2 honest
parties with input 0 and n/2 corrupted parties which behave honestly as they had input 1, then
the honest parties cannot figure out which one of the values is the common input of all honest
parties. In other words, the validity property of consensus is such that can only be achieved when
the majority of the votes on some value can be trusted to support the value of at least one honest

party.

Thus, there is no way to agree on the common input of the honest parties (while preserving
agreement anyway) when ¢t > n/2. So, the question is what is the best form of agreement on
honest parties inputs that can be achieved even if ¢ > n/2. The answer is that honest parties can
just agree on the input of every party in P, without being able to distinguish between the inputs
of honest and corrupted parties. In particular, all honest parties can output the same n-tuple of
values (b',...,b") indicating that each value b is considered to be the input of every party P; € P.
This problem is called interactive consistency and is properly defined below :

Definition 21 (Interactive Consistency). Let P be a set of n parties. A protocol ® executed by
the parties of P, where every party P; € P holds an initial input value b; € {0,1}, is an interactive
consistency protocol tolerating any (unbounded) t-adversary, if the following properties are satisfied:

— Validity: If some party P; € P is honest, then the i-th value of the output tuple of all honest
parties is b;.

— Agreement: All honest parties output the same binary n-tuple.

— Termination: There exists an a-priori-known round R such that the protocol is guaranteed to
complete (i.e., all honest parties output a value) within R rounds.

Note that interactive consistency is achievable whenever Broadcast is achievable, since assuming the
existence of a Broadcast protocol, then we can easily construct an interactive consistency protocol
by running Broadcast with designated sender F; and input b;, for every P; € P, and then, collecting
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all outputs into an n-tuple of values. Hence, non-deterministic interactive consistency can be solved
even when t > n/3 in the authenticated setting.

Resilience. Up to this point, it must have been made clear to the reader that the number of
corrupted parties that a distributed protocol can tolerate varies depending on the desired properties
and the setting of the protocol. Whenever, a protocol succeeds only in the presence of ¢ < n/2
corruptions, then we will say that it requires an honest majority, while if it is resilient tot < (1—¢€)n
corruptions, for any arbitrarily small constant € > 0, then we will say that it can tolerate a dishonest
majority. In the special case that the protocol succeeds even in the presence of ¢ corruptions for
any t < n (e.g. even if t = n — O(1)), then we will say that the protocol can tolerate any number
of corruptions. Since t = n — 1 is trivial, we will be mostly interested in the case t < n — 2.

3.4 Mathematical Background

For the detailed analysis of some randomized protocols and lower bounds in Chapter 4, we will need
to borrow some fundamental tools from the Probability Theory. We will denote with Pr[A] € [0, 1],
the probability of the event A and with AU B and AN B the disjunction and conjunction of A and
B, i.e., the event that either A or B occurs and the event that both A and B occur, respectively.
The probabilities of the events AU B and AN B are related according to the disjunction rule, which
indicates that Pr[A U B] = Pr[A] + Pr[B] — Pr[AN B].

The probability that the event A occurs given that the event B occurs will be called the conditional
probability of A given B and will be denoted with Pr[A|B] = Pr[A N B]/Pr[B]. So, let {B;}_; be
a sequence of mutually exclusive and collectively exhaustive events, i.e., Pr[B; N B;] = 0, for every
i,j € [1,n] with ¢ # j and Y ;" , Pr[B;] = 1, then by the law of total probability, we have that
Pr[A] =3 Pr[AN B;] = > | Pr[A|B;|Pr[B;].

Let X be a random variable, then we will denote with E[X] the ezpected value of X. The famous
Markov’s inequality indicates that the probability that X has a larger value than E[X], let’s say
[ > E[X], is inversely proportional to [.

Fact 22 (Markov’s Inequality). Let X > 0 be a random variable with expected value E[X], then
for every | > E[X], it holds that Pr[X > 1] <E[X]/I.

We will say that X follows the binomial distribution with parameters n and p, if X = > " | X;,
where X; € {0,1} are independent random variables with Pr[X; = 1] = p, for every i € [1,n].
The Chernoff Bound indicates that the probability of such a random variable to be larger than
(14 7)E[X] is exponentially small in 7, for every 7 > 0.

Fact 23 (Chernoff Bound). Let X; € {0,1} be n independent random variables, then for their sum
X =31, X; and every T > 0, it holds that Pr[X > (14 7)E[X]] < exp(—7 min{r, 1}E[X]/3).

Since for the case that X follows the binomial distribution with parameters n and p we have that
E[X] = np, we conclude that :

Corollary 24. Let X be a random variable that follows the binomial distribution with parameters
n and p, then for every T > 0, it holds that Pr[X > (1 + 7)np| < exp(—7 min{, 1}np/3).
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Chapter 4

Byzantine Agreement for Dishonest
Majority

4.1 Complexity Lower Bounds

4.1.1 Round Complexity

Fischer and Lynch [3] showed that every deterministic byzantine Broadcast protocol that tolerates
up to t corruptions requires at least ¢t + 1 rounds of communication, regardless of n. The t+ 1 lower
bound was later proved to hold even in the presence of a message authentication mechanism [4, 5]
and ever further to protocols that can only tolerate up to t crash faults [6, 7]. Although many of
these proofs are of great interest, most of them are pretty complex and use techniques which are
out of the scope of this work.

Instead, we will present a simple bivalency proof for the ¢ + 1 lower bound which was proposed
by Aguilera and Toueg in [27] for the problem of consensus. The bivalency argument was first
introduced in the famous FLP impossibility result [28] to prove that there exists no deterministic
protocol that solves consensus in the asynchronous model even in the presence of only one crash
fault. Similar approaches to the one of [27] were presented independently by Moses and Rajsbaum
[29] and by Bar-Joseph and Ben-Or [30], applying the bivalency argument in the synchronous model.

Before giving the formal proof for the t + 1 lower bound, we will first have to introduce some of
the terminology used by Aguilera and Toueg, which is borrowed from FLP. So, let P be a set of n
parties, then a configuration of the the system is defined as the internal state of all of the parties
in P. For instance, in the initial configuration for the consensus problem, every party holds an
initial input and has an empty memory, while for Broadcast, only the designated sender holds an
initial input and every party has an empty memory. In the asynchronous model, the system moves
from one configuration to the next when a single party receives a message form its buffer and thus,
changes its internal state. However, in the synchronous model we assume that within a round, all
parties receive all the messages (they are supposed to receive) simultaneously at the end of the
round. Therefore, in the synchronous model, we can refer to the configuration of round r, which
consists of the internal state of all parties at the end of round r.
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We are now ready to introduce the notion of bivalency. We will call a configuration C' 0-valent if 0
is the only value that the honest parties may agree on when resuming the execution of a protocol
from the configuration C. Accordingly, a configuration C' will be called 1-valent, if 1 is the only
reachable decision from C. If a configuration C is either 0-valent or 1-valent, i.e., the common
output of the honest parties is already determined, then we will call C' univalent, otherwise it will
be called bivalent. Thus, a k-round execution «j will be called 0-valent, 1-valent, univalent or
bivalent if the configuration of round k is 0-valent, 1-valent, univalent or bivalent, respectively. In
addition, any execution « that is identical to ax up to round k will be called an extension of «ay.

We can now use the above terminology to prove the t 4+ 1 lower bound. While the original proof
concerns the problem of consensus, we will show that with an argument almost identical to the
one for consensus, we can show the same lower bound for the problem of Broadcast. We choose
to unfold the proof as presented in [31], where the only difference from the original version is the
expression of the intermediate lemmas. Note that the proof works even when the adversary takes
control of at most one party in every round and when the corrupted parties behave like crash faults,
which is of course a mush more benign model of failure than the byzantine corruptions.

The idea roughly proceeds as follows : assume that there exists a deterministic consensus protocol
7 that tolerates up to ¢ crash failures, out of which at most one corruption occurs in every round,
and that always terminates in at most ¢ rounds. Then we show that i) there exists a bivalent
initial (O-round) configuration in the consensus setting (same for Broadcast), ii) for every round
k € [0, — 1], there exists a bivalent k-round execution of 7 in which at most k parties have crashed
and iii) there exists a t-round execution of 7 in which at most ¢ parties have crashed and two honest
parties decide differently, which completes the proof.

Theorem 10. There does not exist any deterministic consensus protocol (according to Definition
20) that terminates in fewer than t+1 rounds, whent < n—2, even when the adversary is restricted
to make at most one party crash in every round.

Proof. Assume for the contrary that there exists a deterministic consensus protocol 7 that tolerates
up to t crash failures that occur in different rounds, and which always terminates in at most ¢ rounds.
Without loss of generality, we assume that the protocol « is loguacious, i.e., in every round, every
party is supposed to send a message to every party. We will show that there exists a t-round
execution with at most ¢ crash failures, in which two honest parties decide differently, violating the
agreement property of Definition 20.

Lemma 25. There exists a bivalent initial configuration in the setting of consensus.

Proof. First, we observe that the initial configuration Cy in which every party has input value 0
is 0-valent, because of the validity property of consensus. Accordingly, the initial configuration C
in which every party has input value 1 is 1-valent. So, assume that every initial configuration is
univalent, then there must exist two configurations C{), C{ which differ in the input value of a single
party p € P and are 0-valent and 1-valent, respectively. Then, we can think of the executions ag, a1
which have as initial configurations the C{, C], respectively, and in which the party p is crashed in
round 1 before sending any messages to the other parties of P and no other corruption occurs ever
after. Hence, the honest parties have exactly the same view in executions «g, a1, and thus, they
decide the same value, which contradicts our assumption. O
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Lemma 26. For every k € [0,t — 1], there exists a bivalent k-round execution with at most k crash
failures.

Proof. We will prove the desired statement by induction on the round number k. As we have shown
in Lemma 25, the statement holds for £k = 0. Now, assume that for some round k € [0,¢ — 2] there
exists a bivalent k-round execution oy, with at most k crash failures, we will show that there exists
a bivalent 1-round extension of ay, (i.e., (k+ 1)-round execution) with at most k + 1 crash failures.

Assume for contradiction that every 1-round extension of «y with at most k + 1 crash failures is
univalent. Then, the (k+ 1)-round execution obtained by extending «y, for one round such that no
failure occurs in round k + 1, let it be aj_, is univalent and w.l.o.g., assume that it is 1-valent.
Since «ay, is bivalent and every 1-round extension of ay is univalent, then there must be another
1-round extension of ay, let it be ozg 41, that is O-valent. Note that oy , and 042 4 differ only in
round k + 1 and thus, there must be a single party p € P that crashes in round k£ + 1. Hence, in
round k + 1 the party p may have failed to send a message to the parties of some subset of P, let

it be @ = {q1,92,...,qm}, for some m € [0,n]. Thus, for every i € [1,m], we can define 042,4_1 to be
i—1

k41> OXC
crashes. Due to our assumption, for every i € [0,m], aj, 41 is univalent, and therefore, we are led

to a contradiction in both of the two following cases :

a (k 4+ 1)-round execution that is identical to « except that p sends a message to ¢; before it

— if o, is O-valent for all i € [0, m], then so is a1, which differs from aj  ; only to the fact that
p crashes at the end of round k + 1 after sending all of its messages. So, we can think of the
extension a* of ay, , in which the party p crashes at the beginning of round k + 2 < ¢ before
sending any messages to the other parties of P and no other failure occurs ever after. Since,
ayq is l-valent, every honest party must decide 1 in o, while in the extension o™ of aj,
where no party crashes after round k + 1, every honest party must decide 0. However, every
honest party has the same view of the protocol in o* and o', which is a contradiction.

— if there exists some i € [1,m], such that 0‘2111 is O-valent and 0‘2 41 is 1-valent, then the only

difference of az 41 from 0‘;;11 is that p manages to send a message to ¢g; before it crashes. So,
think of the extensions a’~! and a' of a;;_ll and a}; 41, respectively, in which the party ¢; crashes
at the beginning of round k + 2 < ¢ before sending any messages to the other parties of P and
no other party crashes ever after. Then, every honest party has the same view of the protocol
in o/~! and o, while every honest party has to output 0 in o’~! and 1 in of, a contradiction.

O]

Lemma 27. There exists a t-round execution with at most t crash failures in which two honest
parties decide differently.

Proof. As we have shown in Lemma 26, there exits a bivalent (¢ — 1)-round execution ay;_; with at
most ¢t — 1 crash failures. Since our protocol always terminates in at most ¢ rounds, then in every
l-round extension of o;_1 all honest parties must be up to deciding the same value. So, let o’
be the 1-round extension of a;_1 such that no party fails in round ¢ and w.l.o.g. assume that all
honest parties decide 0 in o. Since ay_; is bivalent, there must be a another 1-round extension of
a¢_1 such that all honest parties decide 1, let it be a'. Note that a® and o' differ only in round
t and thus, there must be a party p that crashes in round ¢ of a' and, additionally, fails to send
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a message to some honest party u € P. Hence, we can think of the execution o™ that is identical
to a!, except that p manages to send a message to u before it crashes. Therefore, by the end of
round ¢, u cannot distinguish between a* and !, while every other honest party v € P\{u} cannot
distinguish between a* and o (such honest party v exists since t < n — 2). So, in o u decides 1,
while v decides 0, which violates the agreement property of consensus. ]

O]

Note that the validity property of consensus was mentioned only in Lemma 25 in order to prove
the existence of a bivalent initial configuration. Hence, by modifying sightly the above proof, we
can show that ¢ 4+ 1 rounds are necessary even in the case of Broadcast. So, we can claim that :

Theorem 11. There does not exist any deterministic Broadcast protocol (according to Definition
17) that terminates in fewer than t+1 rounds, when t < n—2, even when the adversary is restricted
to make at most one party crash in every round.

Proof. We will show that there exists a bivalent initial configuration in the Broadcast setting. The
rest of the proof in identical to one we presented for Theorem 10.

Lemma 28. There exists a bivalent initial configuration in the setting of Broadcast.

Proof. Let s € P be the designated sender and let Cjy,Cy be the initial configuration where s
holds an input value 0, 1, respectively. So, assume that both configurations Cy, Cy are univalent,
then we can think of the executions a9, V), which start from Cp, Cy, respectively and where s
never crashes. By the validity property of Broadcast, all honest parties decide 0,1 in a®, @,
respectively and thus, a(®) is O-valent and (') is 1-valent. However, we can also think of the
executions o, o' which are identical to (@, o, respectively, except that s crashes in round 1
before sending any messages to the parties of P. Hence, the honest parties have exactly the same

view in executions a’, a', and thus, they decide the same value, which is a contradiction. ]

O]

Garay et al. [8] first provided a lower bound on the round complexity of the byzantine Broadcast
protocols which holds even for randomized protocols with success probability strictly greater than
1/2 (Definition 19). In particular, they used an information flow argument to show that there exists
no randomized byzantine Broadcast protocol, tolerating up to ¢ < n — 2 corruptions, that always
terminates in at most 2n/(n — t) — 2 rounds. Note that for ¢ = n — 2, this indicates that every
randomized byzantine Broadcast protocol requires at least n — 1 rounds in the wort case.

We will now give a high-level description of their approach for the t = n — 2 case and then present
a formal proof for the general case of ¢ < n— 2. The idea simply works as follows : consider a set of
n parties P = {Py,..., P,}, where only two parties are honest and that there exists a randomized
byzantine Broadcast protocol 7 that always terminates in at most n— 2 rounds. Then, we can think
of the following configuration: assume that the parties of P are connected with bilateral channels
as shown in Figure 4.1.1, i.e., every party P; communicates only with the parties P;_1, Pjy1.
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Py P Ps o —— By

Figure 4.1.1: Configuration where byzantine Broadcast requires at least n — 1 rounds

In this configuration, any honest party P; cannot distinguish between the two following scenarios
: 1) every party in P\{P;_1, P;} is corrupted and ii) every party in P\{F;, P;+1} is corrupted. So,
since the protocol 7 satisfies the agreement property, every party F; has to output the same value
with both P;_; and P;y; and thus, all parties in P have to output the same value. In addition, if
the designated sender is Py, then P; must output bs because of the validity property and therefore,
all parties in P have to output bs. In this case, however, every party P; has no information about
the input value bs before round 7 — 1. Hence, if P, terminates by round n — 2, then its output will
be equal to by with probability 1/2, which is a contradiction since the error probability ¢ of 7 must
be strictly less than 1/2.

Using standard partition techniques we can generalize the above argument in order to prove the
following lower bound :

Theorem 12. There does not exist any randomized byzantine Broadcast protocol (according to
Definition 19) that terminates in fewer than 2n/(n —t) — 1 rounds, when t < n — 2.

Proof. Let P be a set of n parties with ¢ < n—2 corruptions and assume for the contrary that there
exists a randomized byzantine Broadcast protocol (according to Definition 19) 7 = (71, 7o, ..., m,)
that always terminates in at most 2n/(n — t) — 2 rounds when executed by the parties of P. Then,
we can consider the following configuration: assume that the parties are divided into k = 2n/(n—t)
sets G1,Ga, ..., G with |G| = (n —t)/2, for every ¢ € [1,k]. Now, for every i € [1,k], we can
consider a protocol 7;, that is the same as m; except that :

— if ¢ = 1, then the parties in GGy ignore all the messages sent to them except for those from G1UG2
and only send messages to the parties of G1 U Gs.

— if i € [2,k — 1], then the parties in G; ignore all the messages sent to them except for those from
Gi—1 UG; UG,41 and only send messages to the parties of G;—1 U G; U Giqq.

— if ¢ = k, then the parties in Gj ignore all the messages sent to them except for those from
Gr_1 UG and only send messages to the parties of Gi_1 U Gg.

In addition, for every i € [1,k — 1] and b € {0, 1}, we can define the scenario SZ-(b) as follows :

— the designated sender is in (G; and has an input value by = b.
— every party in P\{G; U Gjit1} is corrupted.

— the honest parties in G, G;+1 execute the protocols 7;, w11, respectively, while the corrupted
parties of every G with j & {i,7 4 1} execute the protocol 7;.

Thus, in scenario S%b) the honest parties of G; U G2 have to output b because of the validity of

w. However, in the configuration we described above, the behavior of the parties of G1 U G U G
towards the parties of Gy is identical regardless of whether they execute m or @. Therefore, in
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scenario Sgb) the honest parties of G2 cannot distinguish between the scenarios S%b) and Séb) and

hence, they have to output b in scenario Séb) as well. Thus, because of the agreement property of

m, in scenario Séb) the honest parties of Gz also have to output b.

Applying this logic repeatedly, we have that for every ¢ € [2, k — 1], the honest parties in G; cannot

distinguish between the scenarios S’Z@l and Si(b) and thus, they have to output b in both S ®)

i and
)

Si(b). Nonetheless, in every scenario Si(b , the parties of GG; have no information about b before round

i — 1. So, in scenario S,(Ql the view of the honest parties of Gy, is independent of b by round k — 2
and thus, if the input value b is chosen uniformly from {0, 1}, then the parties of G output b with

probability 1/2, which violates the restriction of Definition 19 on 7’s error probability 4. O

Corollary 29. There does not exist any randomized byzantine Broadcast protocol (according to
Definition 19) that terminates in fewer than Q(n) rounds, when t = n — O(1). In particular, there
does not exist any randomized byzantine Broadcast protocol that terminates in fewer than n — 1
rounds, when t =n — 2.

Corollary 30. There does not exist any randomized byzantine Broadcast protocol (according to
Definition 19) that terminates in fewer than Q(1) rounds, when t = (1 — €)n.

Early-Stopping. The lower bounds on the round complexity that we showed above all indicate
the number of rounds that honest parties need to reach agreement in the worst case, which is in
most cases one where the adversary actually corrupts ¢ parties. So, one could ask if there are any
lower bounds on the round complexity, assuming that the actual number of corruptions, let it be
f, is less than t, i.e., the adversary does not exhaust the boundary on the number of parties it
is allowed to corrupt. Dolev and Reischuk [32] answered this question in the affirmative, showing
that any deterministic Broadcast protocol that tolerates up to t crash failures, requires at least
min{n — 1,t + 1, f + 2} rounds in every execution where the adversary actually corrupts at most
f parties. Up to this day, this bound has not been proven to be tight for protocols that tolerate a
dishonest majority, while there are plenty of early-stopping protocols in the literature that terminate
in min{n — 1,¢ + 1, f + 2} rounds assuming an honest majority.

4.1.2 Communication Complexity

Dolev and Reischuk [9] first provided a lower bound on the number of messages that honest parties
need to send in every deterministic byzantine Broadcast protocol that satisfies the properties of
Definition 17. In particular, they showed that every deterministic byzantine Broadcast protocol
must have a message complexity of Q(n +t2). Despite the nature of byzantine Broadcast protocols
being such that it is hard to estimate the exact number of messages that some particular party
has to send, they managed to show that there is an execution with ¢/2 corruptions such that the
honest parties must collectively send at least ¢/2 messages to each one of the corruptions. Hence,
they came up with the following theorem :

Theorem 13. Let m be a deterministic byzantine Broadcast protocol (according to Definition 17)
that tolerates up to t < n — 2 corruptions, then there is an execution of m where the honest parties
collectively need to send at least max{(n — 1)/2,t%/4} messages.



4.1. Complexity Lower Bounds 31

Proof. First, we observe that one of the values b € {0,1} must have the property that there exists a
set Q@ C P\{s} with at least (n—1)/2 parties that do not output b if they receive no messages (they
may even not terminate at all). Without loss of generality, assume that 0 has the above property,
then in the execution where every party in P is honest and the designated sender s holds an input
value 0, the honest parties have to send at least (n — 1)/2 messages, due to the validity property
of Broadcast.

Thus, it suffices to prove the t?/4 lower bound. So, let 7 be a deterministic byzantine Broadcast
protocol 7 that tolerates up to ¢ < n — 2 corruptions. Let V' C @ be a subset of Q with ¢/2 parties
and let U be the set of remaining parties including the sender, i.e., U = P\V (such a set V exists
since t < n — 1), then we can consider the execution « of 7w that proceeds as follows :

— every party in U is honest and the sender has an input value 0.
— all parties in V are corrupted and not send any messages to each other.

— every party in V' behaves like an honest party towards the parties in U except that it ignores
(i.e., acts as if it does not receive) the first ¢/2 messages it receives from parties in U.

Note that in execution « only ¢/2 parties are corrupted and the sender is honest. So, due to the
validity property of Broadcast, every honest party in U outputs 0. We will show that in execution
«, the honest parties collectively send at least t/2 messages to each one of the parties in V and
thus, send at least ¢2/4 messages in total, which completes the proof.

So, assume for contradiction that there exists a party p € V, such that the parties in U collectively
send less than ¢/2 messages to p in execution «. Then, let A(p) C U be the set of honest parties
that send a message to p in a (potentially including the sender s), then |A(p)| < ¢t/2 and thus, we
can think of the following execution o/, which is identical to «, except that :

— p is honest and all parties in V\{p} ignore any messages they receive from p.

— every party in A(p) is corrupted and behaves like an honest party, except that it does not send
any messages to p.

Hence, in execution o’ at most ¢ parties are corrupted and the parties in V' U A(p) behave towards
the parties of U exactly as they do in o. Moreover, p behaves towards the parties of U exactly as it
does in «, as it simulates the behavior of an honest party who does not receive any of the (at most)
t/2 messages it is supposed to get. Therefore, every honest party ¢ € U\ A(p) cannot distinguish
between the executions o and o/, and thus, outputs 0 in o as well. However, p does not receive
any messages in o’ and thus, does not output 0, a contradiction. ]

Quite recently, the Q(¢?) lower bound on the message complexity of byzantine Broadcast protocols
was proven to hold even for randomized protocols with success probability strictly greater than
3/4. As shown by Abraham et al. [10], in any randomized byzantine Broadcast protocol (Definition
19) with error probability § < 1/4 — ¢, for some € > 0, the honest parties collectively need to send
at least (et)? messages in expectation.

They manage to extend the proof of Dolev and Reischuk (Theorem 13) we presented above by
relying heavily on the ability of the adversary to be strongly adaptive. In particular, for the Q(¢?)
lower bound to hold, the adversary must be able to perform after-the-fact-removal, i.e., corrupt
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any honest party p in round r, after observing the messages that p intends to send in round r, and
remove any of these messages. In addition, note that that the success probability of any randomized
protocol must be calculated over the randomness of both the honest parties and the adversary. The
same holds for the expectation of the number of messages needed to be sent by the honest parties.

Theorem 14. Let w be a randomized byzantine Broadcast protocol (according to Definition 19) that
tolerates up to t < n — 2 corruptions and succeeds with probability 3/4 + €, then in any execution of
7 the honest parties collectively need to send at least (et)? messages in expectation.

Proof. Assume for contradiction that there exists a randomized byzantine Broadcast protocol 7 that
tolerates up to t corruptions and succeeds with probability 3/4 + € using less than (et)? messages
in expectation. We will show that there exists an execution with at most ¢ corruptions, such that
7 fails to satisfy all properties of Broadcast with probability greater than 1/4 — e.

Without loss of generality, we assume that there exists a set Q@ C P\{s} with at least (n —1)/2
parties that output 0 with probability at most 1/2 if they receive no messages (i.e., with probability
more than 1/2 they either output 1 or not terminate at all). Let V C @ be a subset of @ with /2
parties and let U be the set of remaining parties, i.e., U = P\V, then we can consider the execution
« of 7 that proceeds as follows :

— every party in U is honest and the sender has an input value 0.
— all parties in V are corrupted and not send any messages to each other.

— every party in V' behaves like an honest party towards the parties in U except that it ignores
the first ¢/2 messages it receives from parties in U.

Let Z be a random variable denoting the number of messages that the honest nodes in U send to
parties in V during an execution of 7, then we have assumed that E[Z] < (et)?. Let X be the
event that the parties in U send at most %tQ messages to the parties in V, ie., X1 = (Z < %tz).
Using the Markov inequality, we have that Pr[Z > £E[Z]] < 2¢ and thus, Pr[X;] = Pr[Z < £¢?] >
Pr[Z < S-E[Z]] > 1 — 2e.

Let X5 be the event that a party p picked uniformly at random from V' receives at most ¢/2 among
the first %tQ messages that the parties in U send to the parties in V. Note that for these first
£t = 2¢|V|t* messages, there exist at most 2¢|V| parties in V' that receive more than ¢/2 of them
and thus, Pr[X2] > 1 — 2¢. Hence, in execution « the probability that both the parties in U send
at most §t2 messages to the parties in V' and that a random party p € V receives at most ¢/2 of
them is :

PI‘[Xl N XQ] = PI‘[Xl] + PI‘[XQ] — PI‘[Xl U XQ] > (1 — 26) + (1 — 26) —1=1-—14e

Now consider another execution o’ of 7 that is identical to o except that :

— a party p picked uniformly at random from V' is honest and all parties in V\{p} ignore any
messages they receive from p.

— the first ¢/2 messages that the parties in U send to p are not received by p, i.e., whenever the
adversary observes one of the first ¢/2 attempts of some party ¢ € U to send a message to p,
then it immediately corrupts ¢ (if it is not corrupted already) and only removes this particular



4.1. Complexity Lower Bounds 33

message that is destined for p (¢ behaves honestly towards the parties in U throughout the
execution and starts behaving honestly to p as well, once the first ¢/2 first messages from U to
p are dropped).

Note that in o the messages that honest parties in U receive from p are drawn from the same
distribution as in « (which is indicated by ), since in both executions p ignores the first ¢/2
messages destined for it by the parties in U, either intentionally or because they were removed by the
adversary. Accordingly, the honest parties in U cannot either distinguish between the distribution
of the messages they get from V\{p} in the executions a and «/, since in both executions the
parties in V\{p} ignore any messages they get from p. Similarly, in o’ honest parties in U receive
messages from corrupted parties in U drawn from the same distribution as in « and thus, in the
end, they cannot distinguish the behavior of the adversary between the executions o and o’.

In « the designated sender holds an input value 0 and remains honest throughout the execution.
So, the event that all honest parties output 0 in a occurs with probability at least 3/4 + €, since
7 must satisfy the validity property of Broadcast with probability at least as much as its overall
success probability. However, as we have shown above, the honest parties in U cannot distinguish
the adversarial strategies between a and o’ and thus, for the event that all honest parties in U
output 0 in o/, let it be Y7, it also holds that Pr[Y;] > 3/4 + e.

In addition, under the condition that the event X; N X5 occurs in «, p receives no messages at all
in o’ and recall that V was defined as the set of parties that output 0 with probability at most 1/2
if they receive no messages. Hence, let Y3 be the event that p does not output 0 in o, then we can
argue that Pr[Ya] > Pr[Ya| X1 N Xo] - Pr[X; N Xo] > 1(1 — 4e).

Now, it suffices to observe that when the event Y; NY5 occurs, then either agreement or termination
is violated in o/, i.e., either all honest parties in U output 1 or at least one of them does not
terminate, while in any case p outputs 0. Therefore, we can argue that for the error probability §
of the protocol 7 in ¢/, it holds that :

3 1 1
0 > Pr[Y1 NYs] = Pr[Y;] + Pr[Ys] — Pr[Y; U Y] > <4+6> —|—§(1—46) —1= 1€

which contradicts our initial hypothesis that the protocol 7 succeeds with probability 3/4 + € in
any execution with at most ¢ corruptions. O

Note that for the success probability of the protocol to be overwhelming we can set € = 1/4 —r(k),
for some negligible function ().

Corollary 31. Let w be a byzantine Broadcast protocol (according to Definition 18) that tolerates
up to t < n — 2 corruptions, then in any execution of w the honest parties collectively need to send
at least (1/4 — negl(k))t? messages in expectation.

Surprisingly, it turns out that that any byzantine Broadcast protocol tolerating up to t < n — 2
corruptions, must have an expected (roughly) t?/4 message complexity, which equals the lower
bound on the number of messages the honest parities have to send in any deterministic byzantine
Broadcast protocol.
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4.1.3 Computational Complexity

For the deterministic versions of Broadcast and consensus, the first solutions that came out re-
quired the transmission of an exponential amount of information in the number of parties (]2, 33]).
However, as shown in [2], every byzantine Broadcast protocol that tolerates up to t > n/3 parties es-
sentially needs a message authentication mechanism. So, let x € N be the security parameter of any
signature scheme used to solve byzantine Broadcast, then the time given to the parties, and thus,
to the adversary as well, must be polynomial in k; otherwise, the adversary has a non-negligible
probability of ”breaking” the security of the signature scheme by forging a signature.

For this reason, all byzantine Broadcast protocols tolerating a dishonest majority require a com-
putational complexity that is polynomial in the security parameter of a PKI. Throughout the rest
of this work, we will consider the security parameter to be polynomial in the number of parties, so
then it suffices that the protocol requires polynomial computational complexity in the number of
parties.

Moreover, note that the computational complexity of all protocols that will be presented later is
bounded from below by the bit complexity of a single round, since honest parties should be able
to read the whole messages they receive in every round (that is because of the possibility that in
some execution there are actually no corruptions and due to the assumption that whenever some
honest party sends a message, then the party the message is destined for receives it by the next
round). Therefore, a common practice for proving implicitly that the computational complexity of
a protocol is polynomially bounded is to show that its bit complexity is polynomial and that the
honest parties only have to perform simple operations with the messages they receive.

4.2 The Dolev-Strong Protocol

The famous Dolev-Strong protocol [4] solves Byzantine Broadcast against any adaptive PPT ¢-
adversary when ¢t < n. While the original protocol requires signing values recursively, we present
a different but yet equivalent form of the protocol, similar to the one of [34]. In particular, let
bs € {0,1} be the input value of the designated sender s € P, then the protocol works as follows :

— In round r = 0, every party p € P, initializes the set of its accepted values A, to be empty. The
designated sender s signs its input bs; and multicasts it, i.e., sends it to every party.

— In every round r = 1,...,t, if some party p € P receives a batch of signatures on some value
b€ {0,1} from r distinct parties including s and b ¢ A,, then p adds b to A,. Then, it signs b
and multicasts all the signatures it has observed on b (including its own).

— In round ¢ + 1, if some party p € P receives a batch of signatures on some value b € {0,1} from
t + 1 distinct parties including s and b € A,, then p adds b to A,. Every party p € P outputs 1
if A, = {1}, else it outputs 0.

Note that the protocol is based on a quorum certificate, i.e., r signatures (votes) on some value b
are sufficient to convince any party to accept b in round r. Moreover, this certificate is transferable
in the sense that whenever some party p receives such a certificate for some value b for the first
time in round r, then p can easily make use of it to produce a new certificate for round r + 1, by
adding its own signature. Hence, once p accepts b in round r < ¢, it can easily convince the rest
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of the honest parties to accept b by round r + 1 (relay property). Now if p accepts some value b in
round ¢+ 1, then it must have received t+ 1 signatures on b and, since there are at most ¢ corrupted
parties in P, at least one of these signatures must have been generated by some honest party at
some round prior to t + 1. Thus, every honest party must have received a certificate for b by round
t + 1, which retains the protocol’s consistency. These intuitive arguments will be formally proved
in section 4.2.2.

4.2.1 Formal Description of Dolev-Strong protocol

We will now give a formal description of the Dolev-Strong protocol. We first introduce the notion
of walid batches of signatures and well-formed messages.

Valid batches of signatures. We will call B a r-valid batch of signatures on some value b €
{0,1}, if it consists of signatures on b from at least r distinct parties including s. Formally, let
B = {Sign,(b)}vev, for some V' C P, then B is a r-valid batch of signatures on b if |V| > r and
seV.

Well-formed messages. In the DS protocol, the honest parties have to multicast batches of
signatures in support of their newly accepted values. Hence, in order to prevent the adversary from
sending arbitrarily many batches of signatures on the same value, every party shall multicast at
most one batch of signatures for each newly accepted value. So, let M, be the message that some
party p € P multicasts at the end of round r, then M will be called well-formed if M, = {B},
where B is a batch of signatures on some value b € {0,1}, i.e., B = {Sign, () },ev, for some V C P
or My = {By, B1}, where By, are batches of signatures in support of the values 0, 1, respectively,
such that By = {Sign,(b)}vey;, for some V;, C P. In the following form of the DS protocol honest
parties will only process well-formed messages and discard the rest.

We give a formal description of the Dolev-Strong protocol in Figure 4.2.1.

For every party p € P, we denote with Aj the set of values that p has accepted by round r. Note
that every party p € P stores for every newly accepted value b € A;\A;fl all the signatures it has
observed in support of b in Cpp. Also, in every round r € [1,t], every party p € P forms a new
batch of signatures in support of each b € A;;\A;fl, by adding to C),; its own signature on b, and
multicasts these new batches of signatures at the end of round r.

4.2.2 Security Proofs

In this section, we will formally prove that the Dolev-Strong protocol satisfies the properties of the
byzantine Broadcast (Definition 18) when ¢ < n.

Lemma 32 (Validity). If the sender s is honest, then every honest party outputs bs.
Proof. 1f s is honest, then it multicasts M = {{Sign,(bs)}} at the end of round 0 and thus, every

honest party p € P receives it in round 1. Since {Sign,(bs)} is a 1-valid batch of signatures for by,
p accepts b, in round 1. Now assume for the contrary that some honest party p accepts some value
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Protocol 7y
Round 0: Every party p € P initializes Ag = Cpo = Cp1 = 0. The designated sender s
multicasts MY = {{Sign,(bs)}}.

Loop: For r € [1,], every party p € P does the following :
L. Initializes A} = Ag_l.
2. Upon receiving some well-formed message M, for all B € M, do the following : if B
is a r-valid batch of signatures for some value b ¢ A;fl, then set A} < A7 U {b} and
Cp7b — vab U B.
3. Multicasts M = {Cp U {Signp(b)}}beA;\A;A.
Round t + 1: Every party p € P does the following :
1. Initializes ALH = AL
2. Upon receiving some well-formed message M, for all B € M, do the following : if B is a
(t + 1)-valid batch of signatures for some value b & AL, then set ALt «— ALFLU {b}.
3. Terminates and outputs 1, if ALt? = {1}, else outputs 0.

Figure 4.2.1: Dolev-Strong Protocol

b with b # bs at some round r € [1,¢ + 1], then p must have received a r-valid batch of signatures
for b in round r, let it be B, such that Sign,(b) € B. Hence, with overwhelming probability s has
signed b at some round prior to r, which is a contradiction, since s is honest. Therefore, every
honest party p observes A} = {bs} in every round r € [1,¢ + 1], and thus terminates with output
bs in round ¢ + 1. ]

Lemma 33 (Relay). If some honest party p € P accepts some value b € {0,1} in round r € [1,t],
then every honest party q accepts b by round r + 1.

Proof. 1f p accepts b at round r € [1,¢], then p receives a r-valid batch of signatures on b in round
r, let it be B = {Sign, (b)}vev, for some V' C P, and observes b ¢ Ay~!, s € V and [V]| > r. We
observe that with overwhelming probability p &€ V, since p € V would imply that p’s signature
on b was forged at some round prior to r. Since p is honest, it multicasts M, at the end of
round r, which is well-formed by construction and contains some batch of signatures on b, let it be
B’ = {Sign, (b) }yev, with V U {p} C V' C P. Therefore, even if ¢ has not accepted b by round r,
then ¢ receives B’ in round r + 1, which is (r + 1)-valid, since s € V' and |V'| > |V U{p}| > r + 1,
and observes b ¢ Ap. Thus, g accepts b in round r + 1. O

Lemma 34 (Agreement). All honest parties output the same value.

Proof. We will show that ALHt = AL*! for any two honest parties p,q € P. So, let b € AL be
some value that p accepts by round ¢ + 1, then we have to consider the two following cases : i) if
p accepts b in round r € [1,¢t], then using Lemma 33, we have that every honest party ¢ accepts
b by round r + 1, and ii) if p accepts b at round ¢ + 1, then p receives a (¢ + 1)-valid batch of
signatures on b in round ¢+ 1, let it be B = {Sign, (b) },ev, for some V' C P with |[V| > ¢+ 1. Since
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there are at most t corrupted parties in P, there must be at least one honest party in V. So, with
overwhelming probability, this honest party has accepted b at some round prior to ¢t + 1, and thus,
using Lemma 33, we have that every honest party ¢ accepts b by round ¢ + 1. Therefore, in any
case, we have that b € ALH!, which completes the proof. O

Complexity Measures. Obviously, the protocols requires ¢ + 1 rounds. In the worst case, each
party has send to every party two batches of O(n) signatures. In that case, the honest parties have
to send in total O(n?) messages that consist of O(n?)|o| bits, where |o| is the signature length of
the PKI.

Theorem 15. The Dolev-Strong protocol myqs (Figure 4.2.1) is a byzantine Broadcast protocol
(according to Definition 18) that is secure against any adaptive PPT t-adversary, when t < n.
Moreover, the protocol requires t+1 rounds and has a communication complezity of O(n?) messages
with O(n3)|o| bits, where |o| it the signature length of the PKIL

Remark 35. Note that the protocol is secure as long as all honest parties run for R rounds, where R
can be any number greater than t. So, even if the honest parties have no information about the upper
bound on the number of the byzantine corruptions t, then they can still run Dolev-Strong for n — 1
rounds retaining the protocol’s consistency. Hence, the protocol is optimal in terms of its worst-case
round complexity as a protocol that tolerates any number of corruptions, i.e., t =n — O(1), in at
most n — 1 rounds (Corollary 29).

Remark 36. The message complexity of the Dolev-Strong protocol is O(n?), which differs from the
Q(t?) lower bound of Theorem 14 only by a constant factor when t = Q(n). Therefore, the Dolev-
Strong protocol can be considered as optimal with respect to the order of its message complexity.

4.3 Sublinear-Round Byzantine Broadcast Protocol

In the presence of an honest majority, a line of works in the literature ([35, 36, 37]) has shown that
there are various ways to solve Byzantine Broadcast with an expected constant round complexity.
In the case of corrupt majority, Garay et al. [8] showed that there exists a protocol that tolerates
up to t = n/2 + k corruptions and terminates in O(k?) rounds in expectation, which was later
improved by Fitzi and and Nielsen [25] to O(k) rounds. However, the lower bound of Garay
et al. [8] that we presented in subsection 4.1.1 implies that there exists no (even randomized)
byzantine Broadcast protocol, tolerating any number of corruptions, that terminates in O(1) rounds
in expectation. So, the main question (which remains up to this day) is whether we can construct
a randomized byzantine Broadcast protocol with sublinear round complexity that tolerates any
number of corruptions.

Chan et al. [11] made a significant step towards this direction by constructing a randomized byzan-
tine Broadcast protocol tolerating ¢t = (1 —€)n corruptions that terminates in O(log(1/d)/€) rounds
and errs with probability at most § + negl(x), for any § > 0. Note that given the (1/¢) lower
bound on the round complexity (Corollary 30), their result is optimal up to a log(1/d) factor,
which, nonetheless, must be superlogarithmic in « if we want the protocol to have an overwhelming
success probability, i.e., § = negl(x). Moreover, notice that the protocol retains its sublinear round
complexity as long as € is a constant number or a large enough subconstant function of n (e.g.
e = 0O(1/4/n)), but becomes linear when € = O(1/n), i.e.,, t =n — O(1).
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We will now present their idea in two simple steps : first, we will describe a byzantine Broadcast
protocol with the desired properties that is resilient to t = (1 — €)n static corruptions and then, we
will show how to make our protocol achieve adaptive security using an ideal functionality called
Fi mine-

4.3.1 Sublinear-Round Protocol for Static Corruptions

The idea follows the committee election paradigm that is a quite common practice for reducing the
round complexity of byzantine Broadcast protocols, but, nonetheless, cannot be directly applied
in the corrupt majority setting. In fact, assume that we have a O(n)-round byzantine Broadcast
protocol 7 in the honest majority setting, then we easily turn it into a O(polylog(n))-round protocol
as follows : we can randomly select a subset of the parties with polylogarithmic size in n, called the
committee, and run m among the parties of the committee. Using a simple probability argument, we
can show that the committee also has an honest majority and thus, all honest committee members
will agree on the same output of w. Hence, we can use an extra round for the committee members
to vote on their output (by multicasting it) and thus, all honest parties of the initial party set can
now decide on a common value by taking the majority of the votes.

On the contrary, in the corrupt majority setting, agreement on a common value cannot be relied
solely on the votes from the committee members (non-committee honest parties cannot distinguish
between honest and corrupt votes). Instead, to construct a sublinear-round byzantine Broadcast
protocol resilient to corrupt majority, one has to combine the committee approach with the Dolev-
Strong idea that we presented in section 4.2. In particular, we can randomly select a committee
of size log(1/0) (after the adversary chooses the corrupted parties), so then with probability O(4)
there exists at least one honest committee member (this will be formally proved in subsection
4.3.4). The idea is that only the committee members (along with the designated sender) will be
responsible for signing values and that all signatures from non-committee members will be ignored.
Thus, in order to retain the transferability property of the valid batches of signatures that we had
in Dolev-Strong we have to split each round of Dolev-Strong into two mini-rounds : in the first
one, whenever some party observes a certificate for some value it will just forward it to all parties,
while in the second, the committee members will first have to add their signature in the certificate
and then multicast it. Therefore, let by € {0, 1} be the input value of the designated sender s € P,
then the protocol works as follows :

— Inround r = 0, every party p € P, initializes the set of its accepted values A, to be empty. The
designated sender s signs its input b and multicasts it.

— In every round r =1,...,log(1/6) :

1. in the first min-round, if some party p € P receives a batch of signatures on some value
b e {0,1} from r distinct valid signers including s and b ¢ A,, then p adds b to A,. Then,
it multicasts all the signatures it has observed on b.

2. in the second min-round, if some committee member p € P receives a batch of signatures
on some value b € {0,1} from r distinct valid signers including s and b ¢ A,, then p adds
b to Ap. Then, it signs b and multicasts all the signatures it has observed on b (including
its own).
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— In round log(1/0)+1, if some party p € P receives a batch of signatures on some value b € {0, 1}
from log(1/6) + 1 distinct valid signers including s and b ¢ Ay, then p adds b to A,. Every party
p € P outputs 1 if A, = {1}, else it outputs 0.

Note that the only wvalid signers are the members of the committee and the designated sender s.
Hence, the above protocol is based on a quorum certificate very similar to Dolev-Strong, since r
signatures on some value b from valid signers are sufficient to convince any party to accept b in
round 7. Moreover, although transferability is not always guaranteed, we can argue that whenever
some party p receives a certificate for some value b for the first time in the first mini-round of round
r, then, as long as there exists an honest committee member ¢, then ¢ will be able to produce a
new certificate for round r + 1 in the second mini-round of round r, by adding its own signature.
Thus, once p accepts b in the first mini-round of round r < ¢, then it suffices that there exists
an honest party in the committee, so then every honest party accepts b by the first mini-round
of round r 4+ 1. Now if p accepts some value b in round log(1/0) + 1, then it must have received
log(1/§) signatures on b from committee members (along with the signature of the sender) and
thus, for b to not be accepted by all honest parties by round log(1/d) + 1, it must be the case that
all committee members are corrupted. Note that in any case, the protocol is heavily relied on the
estimation that the committee will always have an honest member, which will be formally proved
to hold with 1 — § probability in subsection 4.3.4.

4.3.2 Adaptive Security in the F,,.-Hybrid World

Although the protocol we just described has indeed a sublinear round complexity and 1 — § success
probability, we can easily observe that it blatantly fails against an adaptive adversary. In fact, once
the committee members are chosen, the adversary can just corrupt all members in the committee
and thus, block the transferability of the protocol. In order to overcome this issue, the committee
will no longer have to be determined a priori; on the contrary, it will be elected on the fly using an
ideal functionality called Fine (inspired by the blockchain mining).

The main idea of the functionality is that whenever some honest party p accepts some value b, then
p will have to ask the functionality to see whether it has the privilege to sign (mine) b, i.e., if p is
in the b-committee. In addition, when some honest party p receives a batch of signatures for some
value b, it accepts b only if all these signatures are generated by parties verified by the functionality
to belong in the b-committee.

Note that, in comparison with the previous approach, there is not a common committee elected
for both values, but instead each value b € {0,1} has its own committee. As a result, when some
party p is elected in the b-committee, then the adversary gains no advantage in voting for 1 — b by
corrupting p than by corrupting any other party in 7. This bit-specific committee approach was
inspired by [10] and [38].

Note that the probability p is considered to be a public parameter and must be such that the size
of each b-committee is O(log(1/6§)). In [11], they show how to realize the Fmine functionality in the
real world using adaptively secure cryptographic tools, which are out of scope of this work, and
hence, are omitted.
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Functionality Fine
Mine: If some party p € P calls Fine.-mine(b) for the first time for some b € {0, 1}, then Fine
flips a random coin (parameterized with an appropriate probability p) which determines if p is
in the b-committee. Moreover, Fmine responds to p accordingly and stores the returned value,
so whenever p calls Fine-mine(b) again, Fmine gives the same answer.

Verification: If some party p € P calls Fine.verify(b, q) for some pair (b,q) € {0,1} x P to
check whether ¢ is in the b-committee, then Fpyine responds positively only if ¢ has already
called Frine-mine(b) successfully, otherwise it responds negatively.

Figure 4.3.1: The Fnine Functionality

4.3.3 Formal Protocol in the F,.-Hybrid World

We will now give a formal description of the sublinear-round byzantine Broadcast protocol, toler-
ating t = (1 — €)n corruptions, that terminates in O(log(1/d)/e) rounds and has 1 — § — negl(k)
success probability. We first introduce the notion of valid batches of signatures in the Fpjne-Hybrid
World. Well-formed messages are already defined in subsection 4.2.1.

Valid batches of signatures. We will call B a r-valid batch of signatures on some value b €
{0, 1}, if it consists of signatures on b from at least r distinct parties in the b-committee including
s. Formally, let B = {Sign,(b)}vev, for some V' C P, then B is a r-valid batch of signatures on b
if [V|>r, s €V and Fpine.verify(b, v) is successful for at least r — 1 parties {v;}/=} C V\{s}.

We give a formal description of the sublinear-round protocol in Figure 4.3.2.

Note that the protocol proceeds in stages, where each stage consists of two rounds (except from
stages 0 and R + 1 which consist of a single round). For every party p € P, we denote with AL, A;
the set of values that p has accepted by the first and second round of stage r, respectively. The only
point where the protocol deviates from Dolev-Strong is that if some b-committee member accepts
b in the first round of stage r, then it accepts it again in the second round of stage r, so then it
constructs a valid (r + 1)-valid batch of signatures on b which will make all honest parties in P
accept b by round r + 1. Moreover, note that non-committee members take no action in the second
round of any stage. The reason for setting these specific values to the parameters R and p will be

made clear by the proof of the above protocol’s correctness.

4.3.4 Proof of Correctness

We will now formally prove that the protocol of Figure 4.3.2 satisfies the properties of Definition
19 when t = (1 — €)n, with up to a negl(x) difference in the success probability. Note that the
protocol g, requires 2R+ 1 = 2(% -In %1 + 1 rounds and thus, it suffices to prove that g, satisfies
validity and agreement with probability 1 — § — negl(k), for any choice of 6 > 2e~“"". Note that we
restrict our attention in the case that § > 2", since for § < 2~ < 2¢~"/6_ we have that g
has an 2(n) round complexity.
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Protocol 7y,
Let R = [% -In %1 and that Fyine is instantiated with p = % In

ST\

Stage 0: Every party p € P initializes Ag = Cpo = Cp1 = 0. The designated sender s
multicasts MY = {{Sign,(bs)}}.

Loop: Every stage r € [1, R] consists of 2 rounds.
1. In the first round, every party p € P does the following :
— Initializes A} = /1;_1.
— Upon receiving some well-formed message M, for all B € M, do the following : if B
is a r-valid batch of signatures for some value b ¢ A;_l, then set A} < A7 U {b} and
Cp7b — prb U B.
— Multicasts M, = {C 7b}beA;\A;;*1‘
2. In the second round, every party p € P does the following :
— Initializes A; = A}
— Upon receiving some well-formed message M, for all B € M, do the following : if B is
a r-valid batch of signatures for some value b ¢ fl]’;fl and Fine-mine(b) is successful,
then set A; — 121; U{b} and Cp} < Cpp U B.
— If /1;; # A}, then it multicasts Mg ={CppU {Signp(b)}}beA;\A;*'
Stage R + 1: Every party p € P does the following :
1. Initializes A = Af.
2. Upon receiving some well-formed message M, for all B € M, do the following : if B is a
(R + 1)-valid batch of signatures for some value b ¢ A%, then set AIF « A+ (b},

3. Terminates and outputs 1, if Aﬁ“ = {1}, else outputs 0.

Figure 4.3.2: Sublinear-Round Byzantine Broadcast Protocol

Lemma 37 (Validity). If the sender s is honest, then every honest party outputs bs.

Proof. If s is honest, then it multicasts M? = {{Sign,(bs)}} at the end of stage 0 and thus, every
honest party p € P receives it in the first round of stage 1. Since {Sign(bs)} is a 1-valid batch of
signatures for bg, p accepts b in stage 1. Now assume for the contrary that some honest party p
accepts some value b with b # bs at some round w € {1,2} of some stage r € [1, R + 1], then p
must have received a r-valid batch of signatures for b in round w of stage r, let it be B, such that
Sign,(b) € B. Hence, with overwhelming probability s has signed b at some round prior to round
w of stage r, which is a contradiction, since s is honest. Therefore, every honest party p observes
A}, = {bs} in every stage r € [1, R + 1], and thus terminates with output b; in stage R + 1. O

Hence, validity is satisfied with overwhelming probability. We will know prove that mg, achieves
agreement with probability 1 — § — negl(x). Note that for agreement to be violated at least one
event of the following types must occur at lest once throughout the execution :

— Type A : some value b is accepted by some honest party p € P at some stage r € [1, R], but is



42 Chapter 4. Byzantine Agreement for Dishonest Majority

not accepted by some party ¢ € P by the end of the protocol.

— Type B : some value b is accepted by some honest party p € P in stage R + 1, but is not
accepted by some party ¢ € P by the end of the protocol.

Claim 38 (Agreement). If no events of Type A or B occur throughout an execution of the protocol
Tsh, then ey satisfies the agreement property of byzantine Broadcast.

We will show that that any event of Type A or B occurs with probability at most 6/2 + negl(k).
First, we will prove that all honest b-committee members are able to transfer a certificate for b.
The proof is almost identical to one of Lemma 33, but is presented for completeness.

Lemma 39 (Relay). If some honest party p € P in the b-committee accepts b in the second round
of some stage r € [1, R], then every honest party accepts b in the first round of stage r + 1.

Proof. 1If p accepts b in the second round of stage r € [1,t], then p receives a r-valid batch of
signatures on b in round r, let it be B = {Sign,(b) }yev, for some V C P, and observes b ¢ /1;_1,
s €V, [V| > r and the calls Fpine.verify(b, v) being successful for at least r — 1 parties {v;}/—; C V.
We observe that with overwhelming probability p &€ V, since p € V would imply that p’s signature
on b was forged at some round prior to r. Since p is honest and Fpine.mine(d) is successful, it
multicasts ]\Z[; at the end of stage r, which is well-formed by construction and contains some batch
of signatures on b, let it be B’ = {Sign, (b)}yev, with V U {p} C V' C P. Therefore, even if ¢ has
not accepted b by stage r, then ¢ receives B’ in the first round of stage r + 1, which is (r + 1)-valid,
since s € V', |V/| > |V U{p}| > r+ 1 and the call Fine.verify(b,v) is successful at least r parties
{v:}1=1U{p} C V'\{s}, and observes b ¢ flz . Thus, ¢ accepts b in the first round of stage r+1. [

Lemma 40. For any value b € {0,1}, an event of Type A for b occurs with probability at most
0/2 + negl(k).

Proof. We begin with observing that if some honest party p € P accepts b in the second round
of some stage r € [1, R], then p must be in the b-committee and thus, using Lemma 39, every
honest party accepts b by stage » + 1 with all but negligible probability. So, the only case where
an event of Type A may occur with non-negligible probability is that p accepts b in the first round
of stage r. In that case, in the second round of stage r every honest party receives a r-valid batch
of signatures on b by p. So, assume that there exists at least one honest party in the b-committee,
then using Lemma 39, every honest party accepts b by stage r+ 1. Thus, an event of Type A occurs
only when none of the honest parties is elected in the b-committee, i.e., all Frine-mine(b) calls from
honest parties turn out to be unsuccessful. Since, Fine uses a random coin with probability p to
determine whether each one of the en honest parties is in the b-committee, we have that the above
event occurs with probability (1 — p)* < e™“"? < §/2. Therefore, the overall probability of an
event of Type A to occur is at most §/2 + negl(x). O

Lemma 41. For any value b € {0,1}, an event of Type B for b occurs with probability at most
5/2 + negl(k).

Proof. If some honest party p € P accepts b in stage R + 1, then p receives a (R + 1)-valid batch
of signatures on b in stage R + 1, let it be B = {Sign,(b) }vev, for some V' C P with |V| > R+ 1.
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Hence, there must be at least R parties {v;};_; C V\{s} that have called Fine.mine(b) successfully.
Now if at least one of these parties is honest, let it be g, then ¢ must have accepted b by some stage
prior to R+ 1 (and in particular, in the second round of that stage) and thus, using Lemma 39,
every honest party accepts b by stage R + 1 with all but negligible probability. So, the only case
when an event of Type B occurs is that there are at least R corrupted parties in the b-committee.
However, let X be a random variable denoting the number of corrupted parties in the b committee,
then X follows a binomial distribution with parameters (1 — €)n and p, and thus, has an expected
value E[X] = (1 — €)np. Therefore, the probability Pr[X > R] can be bonded from above in both
of the following cases :

— ife>1/4,let 7 = 2 > 1, then we have that (1+ 7)(1 — e)np = (14 2¢)nt In 2
Hence, using the Chernoff Bound of Corollary 24, we have that Pr[X > R] < Pr[X
e)np| < exp(—'r(l_gﬂ) =4/2.

— if e < 1/4,let 7 =1, then we have that (14 7)(1 — €)np = 2(1 — e)né ln§ < <
using the Chernoff Bound of Corollary 24, we have that Pr[X > R] < Pr[X > (1+7)(1—¢)np] <
(—E55") = exp(—159) - 6/2 < 6/2, simee 15 > 1.

€ 3e

m

exp

So, in any case we have that Pr[X > R] < 6/2 and thus, the overall probability that an event of
Type B occurs is at most /2 + negl(k). O

Theorem 16. For any €, € (0,1), with § > 2e™", the protocol wg, (Figure 4.3.2) is a randomized
byzantine Broadcast protocol (according to Definition 19), tolerating any adaptive PPT t-adversary,
whent < (1—€)n, that terminates in 2[2-In 3141 rounds and succeeds with probability 1—5—negl(k).

Proof. The protocol obviously terminates in 2R+ 1 = 2[% -In %] + 1 rounds. Using Lemma 37, we
have that g, satisfies the validity property of Broadcast with overwhelming probability. Finally,
we observe that mg, satisfies the agreement property as well, as long as no events of Type A or B
occur throughout its execution. Using Lemmas 40 and 41, we have that Pr[F4] < §/2 + negl(k)
and Pr[Ep| < §/2 + negl(k), where E4, Ep denote the events that at least one event of Type A, B
occurs, respectively. Hence, using Claim 38, we have that agreement is violated with probability
at most Pr[E4 U Eg| < Pr[E4] + Pr[Ep] < ¢ + negl(x). Hence, the overall success probability of
Tsp 18 1 — 0 — negl(x), which completes the proof. O

Communication Complexity. Exactly as in Dolev-Strong, each party has send to every party at
most two messages throughout the execution of the protocol and thus, mg, has a message complexity
of O(n?) (which is optimal up to constant factor, as shown in Theorem 14). However, in 7g, each
message contains O(E[C]) signatures in expectation, where C' is a random variable denoting the
number of parties in any b-committee. Since E[C] = np = In(2/J) /¢, we have that each one of the
O(n?) messages has O(In(1/9)/¢) signatures in expectation and thus, the overall bit complexity of
Tsp is O(n?1n(1/6)/€)|o|, where |o| is the signature length of the PKI.

Remark 42. Note that the restriction § > 2e~" allows § to be strictly less than 1/2, as long as
27" < 1/2, which is equivalent to € > In(4)/n. Hence, for any meaningful application, we could
say that me, achieves the desired properties for any reasonable choice of 8, even as a function of n.
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Chapter 5

Unknown Participants Broadcast for
Any Number of Corruptions

5.1 The Unknown Participants Setting

In the unknown participants setting, we assume that the parties willing to participate in some
execution of a protocol have no a priori knowledge about the rest of the participants, neither have
an estimation of their number. For convenience, we can consider a (large) set of parties that may
participate in some execution, called the universe U, and assume that only some relatively small
proportion of them will actually take part in the execution. We will consider that the active parties,
i.e., the parties that actively participate, form a set denoted by P and that the parties of P have
no clue about each other at the beginning of the execution.

Since we are mostly interested in the case of corrupted majorities, we will have to assume the
existence of a signature scheme. However, in this setting P is not known in advance, and thus,
the security parameter of the signature scheme that would suffice to guarantee the security of the
protocol cannot be determined by |P| as in the classic setting. In fact, we will have to consider
a fixed security parameter x € N and refer to the cardinalities of &/ and P with respect to x. In
particular, we will consider that the universe contains a number of potential participants that is
superpolynomial in x and that in every execution of a protocol, only a polynomial number of parties
actually participate. Notice that the superpolynomial gap between the number of potential and
active parties is essential in order to differentiate the unknown participants setting from the classic
one. In addition, the necessity of the restriction on the number of active parties to be polynomial
in k is relied on the need to preserve the unforgeability property of the signature scheme. Indeed,
if we allowed a superpolynomial number of parties to participate in the execution, then we would
have to give superpolynomial time to every party so then it could just read the messages it could
receive from the rest of the parties. Hence, the signature scheme would be insecure.

Authentication. In the unknown participants setting, the use of a standard PKI (as defined
in section 3.1) would require that the parties have locally stored the public keys of all possible
participants in ¢/ and therefore, need memory superpolynomial in . Since we want to overcome
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this efficiency drawback and make our model even stronger, we assume that the authentication keys
of the parties in U are not predetermined and that all parties willing to participate must generate
their secret-public key pair at the beginning of the execution. Then, in order for their signatures to
be considered as valid by the rest of the parties, all participants should ask a certification authority
for a certificate for the validity of their public keys. Once they get their certificate, then they will
be allowed to produce valid signatures.

Communication. We will assume that parties in i/ can communicate with each other via a dif-
fusion network, where any message which is sent by some honest party in some round, is delivered
to all parties by the beginning of the following round. This can be achieved by means of network
assumptions which are standard in the blockchain literature: parties use “gossiping” over an in-
complete but connected synchronous network to send their messages, where a protocol round last
as much as the upper bound to the time/network-rounds it takes for a message to be delivered
(which is the length of the longest path in the underlying communication graph).

For convenience, we will consider that all parties in I/ have access to a diffusion functionality
Fdiffuse; Which in practice can be considered as an implementation of "multicast” in the unknown
participants setting. We assume that every party has the right to call Fyifuse(m) only once in every
round for any message m € {0, 1}P°Y(®) and that m will be delivered to all parties in I by the end
of the round.

Adversary. In the unknown participants setting the adversary can choose a subset of the parties
of the universe to activate and force them to participate in the execution under its orders. Since we
want the total number of active parties to be polynomial in k, we will assume that in the beginning
of the execution there is a polynomially large set of parties willing to participate honestly and
that the adversary not only can corrupt any of these parties throughout the execution (except for
two, otherwise the agreement property is meaningless) but can also activate another polynomially
large set of parties in U (apart from the originally honest ones) and make these parties participate
maliciously. Notice that any party of the universe will be considered as honest, only if it joins the
execution from the beginning and also consistently follows the protocol until its termination.

Since the protocols that we will present later are resilient even to corruptions that may behave in
a totally arbitrary way, we can consider that the adversary cannot only use the diffusion function-
ality that is available to the honest parties in every round, but it can also take advantage of the
diffusion network to selectively send messages to specific parties. Hence, our adversarial model in
the unknown participants setting is as strong as in the classic model (as defined in section 3.2).

5.2 Byzantine Agreement in the Unknown Participants Setting

Once we have described the unknown participants setting in detail, we can now define some new
versions of byzantine agreement problems, which naturally generalise the classic definitions in
the case of unknown participants. Although many interesting solutions for unknown participants
byzantine agreement have been published in the last few years [19, 20], none of these works manages
to describe accurately the requirements of an efficient byzantine agreement protocol in the unknown
participants setting, and thus, we consider our following definitions to be a valuable contribution
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to the literature.

Since we are mostly interested in the case of dishonest majorities, we will focus on the problem
of Broadcast. Recall that we assume the existence of a PKI (as described in Section 5.1) with a
security parameter x and that there exits a set that contains all possible participants, denoted by
U, with size superpolynomial in k. We will denote by Py C U the set of honest parties willing
to participate from the beginning of the execution and by P, C U, for every r > 0, the set of all
parties which have been activated at some point by the end of round r. For convenience, in the
rest of this work we will very often simply use P to denote the set of parties that get activated at
some time before the completion of the protocol and we will refer to it as the set of active parties.

Notice that the every secure protocol in the unknown participants setting must terminate in
poly(k) many rounds, since, otherwise, the adversary has enough time to forge signatures with
non-negligible probability. On the other hand, as we know from the boundaries of the classical
setting, the protocol will necessarily have to run for a number of rounds that is proportional to the
number of active parties, at least in the worst case execution of the protocol. Hence, an unavoidable
restriction to the capabilities of the adversary would be to have to stop activating new parties after
an unknown but yet polynomial in x number of rounds, i.e., there exists some R = poly(k), such
that P, = Pg, for every r > R.

Therefore, we end up with the following definition of the unknown participants Broadcast, which is
the analogous of the byzantine Broadcast (Definition 18) in the unknown participants setting :

Definition 43 (Unknown Participants Broadcast). Let U be a set of parties. A protocol 7 is a
unknown participants Broadcast protocol (in short, UP-Broadcast) with respect to U, where a desig-
nated sender s € U holds an initial input value bs € {0,1}, if for every (strongly) adaptive PPT
adversary and every evolving set of active parties P C U, the following properties are satisfied with
overwhelming probability:

— Validity: If the sender s is honest, then all honest parties output b.
— Agreement: All honest parties output the same value b € {0, 1}.
— Termination: All honest parties terminate and output a value in poly(k) rounds.

Notice that the any immediate application of the classic approach of Dolev-Strong does not meet
the above definition. In general, any protocol that runs for a predetermined number of rounds
would fail to satisfy all the above properties, e.g. assume that there exists some protocol that
runs for a fixed (polynomial in k) number of rounds, let it be R, then even a static adversary can
activate R + 2 parties from the beginning of the execution, so then the protocol would require at
least R + 1 rounds to guarantee all properties of Broadcast.

Hence, a protocol satisfying the properties of the above definition would have to run for a number
of rounds that is proportional to the number of active parties, while all existing approaches (which
are based on Dolev-Strong) require the knowledge of the actual number of participants in order to
determine the number of rounds required to maintain security.

Difficulty of UP-Broadcast. A UP-Broadcast protocol should definitely have a termination
condition that could be met within a poly(x) number of rounds from the beginning of the execution
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and that should simultaneously ensure the parties’ agreement on the input of the sender at he time
the condition is met. Notice that in the classic approach of Dolev-Strong, whenever some honest
party p accepts some possible input value b of the sender in some round r, then p has the power to
convince the rest of the honest parties to accept b by round r+1 (or, in case of the the final round,
is just certain that all other honest parties have already accepted b). However, in case of a more
complicated termination condition, it is not so straightforward to guarantee that all honest parties
that may have not accepted b by round r will keep participating in the execution by round r + 1 to
receive any certificate for b by p. In other words, correctness of any UP-Broadcast protocol would
require that all parties which have not accepted b by round r have neither satisfied the termination
condition indicated by the protocol by round r and consequently, participated in round r + 1 as
well.

Our approach. The Dolev-Strong approach in the classic model relies on the idea that a cer-
tificate for a value in round r requires the support of at least r parties and thus, the parties can
safely terminate simultaneously in round n — 1, since any certificate in round n would be point-
less. Hence, we considered that the corresponding certificates in the unknown participants setting
should have the same property, so then the parties could terminate once they realise that they could
not receive any valuable certificates in the following rounds. In the unknown participants model,
however, the set of active parties may be arbitrarily large and to make things worse, the parties
cannot easily distinguish between honest parties communicating with all other honest parties via
the diffusion functionality and corrupted ones which selectively communicate only with a subset of
the honest parties. Taking this observation into consideration, we concluded that in order to solve
UP-Broadcast we would have to come up with a protocol that allows the parties to dynamically
agree on a set of active parties S C P, such that the certificates for the possible input values of the
sender would have to contain enough signatures from this specific set S. Hence, once the parties
observe this set S to contain no more parties than the round number they could safely terminate.
Nonetheless, note that transferability of certificates among parties would require that all honest
parties are included in S and that the perceived S sets of honest parties should be updated in
parallel.

5.3 Active Parties Agreement Protocol

Once we have explained the motivation, we are now ready to present an active parties agreement
(APA) protocol, i.e., a protocol that allows the honest parties to agree on a set of active parties
S C P, such that every honest party is included in S. The protocol tolerates any number of
corruptions in the unknown participants model.

We begin by formally describing the properties of an APA protocol. For simplicity, we will consider
that the parties shall agree on a set of active parties, while in fact they can only agree on a set of
identifiers that correspond to active parties. Hence, we provide the following definition of APA:

Definition 44 (Active Parties Agreement (APA)). Let U be a set of parties. A protocol 7 is an
active parties agreement protocol with respect to U if for every adaptive PPT adversary and every
evolving set of active parties P C U , the following properties are satisfied with overwhelming
probability:
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— Correctness: If some honest party p outputs a set S, then S C P.

— Validity: If some honest party p outputs a set S, thenp € S.

— Agreement: All honest parties output the same set.

— Termination: All honest parties terminate and output a set in poly(k) rounds.

Notice that in the above definition the validity property seems to be weaker than the one of the
byzantine agreement in the classic model, since it only requires honest parties to be included in
their own output sets and not to every honest party’s output set. However, once agreement is
guaranteed, even this minimal requirement immediately implies that all honest parties are included
in the outputs of all honest parties. Hence, this validity expression suffices to satisfy our desired
properties and thus, is adopted for convenience in the proofs.

5.3.1 Adapting the idea of Dolev-Strong

In order to achieve agreement on a set of active parties, we adapt the idea of Dolev and Strong
(Section 4.2). In particular, instead of transferring votes for the input of a designated sender, the
parties shall transfer votes for the participation of other parties along with some proof that these
parties have actively participated at some point during the execution of the protocol. Note that
the only way some party p € P should get convinced about the active participation of some other
party u € U is by observing u’s signature (along with a certificate from the certification authority).
We will usually refer to the acceptance of a party for convenience, while in fact, we mean the
acceptance of its identifier.

So, in the first round of our protocol (r = 0), every party p € P signs id, and diffuses it to the
network. From that point and on and in every round r > 1, p accepts some other party u € U as
active, only if it has not accepted u by round r — 1 and observes signatures on id,, from at least r
distinct parties including u, out of which everyone, except from u, was accepted by p as active by
round r — 1. Note that for p to accept some new party in round 7, it must have accepted at least
r — 1 parties (apart from itself) by round r — 1. So, if p observes the number of its so far accepted
parties to not be greater than r, there is no way it could accept some new party in the rounds to
follow and thus, it can safely terminate. However, if that is not the case, then it shall convince
the rest of the honest parties about the participation of every party it newly accepted in round r.
Hence, it collects all the signatures it observed in round r in support of the participation of u, it
adds its own signature on id,, and diffuses this new batch of signatures.

Here, one can ask why is p certain that none of the other honest parties has terminated at some
round prior to r+1 without accepting u, violating the agreement property of the APA. Intuitively, we
can argue that, since every honest party can easily convince all honest parties about its participation
by round 1 and make them proceed to round 2, it can also convince them in every round r about
the participation of every party it has accepted by round r — 1 including itself, and thus, make
them proceed to round r 4+ 1. We will prove the robustness of this argument in Section 5.3.3.

5.3.2 Formal Description of APA protocol

We will now give a formal description of our APA protocol, which tolerates any PPT adversary.
We first introduce the notion of valid batches of signatures and well-formed messages. In order to
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maintain the security of our PKI, we consider that every party p € P does not sign its public key
itself, but the string produced by concatenating pk, with a randomly selected salt, denoted by salt),.
We will consider id, = pk,|[salt, to be the identifier of p, which is guaranteed to uniquely identify
p by the certification authority. Let cert, be the certificate returned to p by the authority, we will
use Sign,,(m) to denote the quadruple (idy, m, Signg, (m), cert,) for any message m € {0, 1}poly(x),

Valid batches of signatures. Let S; C U be the set of parties that some active party p € P
has accepted by round r > 0 and let B be a batch of signatures on id,, for some u € U. Then, we
will call B a (p,r)-valid batch of signatures for w if it consists of signatures on id, from at least r
distinct parties including u, such that at least » — 1 of them are included in S;_l. More formally,
let B = {Sign,(idy)}vev, for some V C P, then B is a (p,r)-valid batch of signatures if u € V' and
vnsS;t>r—1.

Well-formed messages. As we mentioned earlier, in every round r > 0, we would like all honest
parties (which have decided to proceed to the next round) to diffuse batches of signatures in support
of the participation of every party they have newly accepted. So, since we want to protect the honest
parties from reading messages generated by corrupted parties, every party p € P shall include at
most one batch of signatures for each newly accepted party in the message it diffuses at the end
of every round r. In particular, we will call such a message M} well-formed if M, = {Bi}._,, for
some | > 1, where B; are batches of signatures in support of distinct parties u; € U, such that
B; = {Sign,(idy,) }vev;, for some V; C U with u; € Vi, for all i € [1,1]. In the following protocol,
honest parties will only process well-formed messages and discard the rest.

We give a formal description of our protocol in Figure 5.3.1.

Protocol 7,5,
Initialization: Every party p € U willing to participate, generates (sky, pk,) < KeyGen(1*)

and salt, & {0,1}". Then, it sends id, = pk,||salt, to the certification authority and receives
cert,.

Round 0: Every party p € P° initializes S) = {p} and calls Fairuse({{Sign,(idy)}}).

Loop: For r =1,2,..., every party p € P does the following;:
1. Initializes Sy = ;1.
2. Upon receiving some well-formed message M, for all B € M, do the following: if B is a
(p,r)-valid batch of signatures for some party u ¢ S;_l, then:
— if u € Sy, initialize C} , =0
— set Sy« Sy U{u} and C , <~ C , U B.
3. If[Sp| <, then terminate with output .S}, else call }'diffuse({C’;,uU{Signp(idu)}}uesg\sgq)
and proceed to round r + 1.

Figure 5.3.1: Active Parties Agreement Protocol

Note that in every round 7 > 1, every party p € P stores for every u € S) \ S;_l all the signatures
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it has observed in support of u in round r in Cp,. In case p decides to proceed to round r + 1,
it forms a new batch of signatures in support of each u € S} \ S[,_l, by adding to C} ,, its own
signature on id,, and multicasts these new batches at the end of round r.

5.3.3 Correctness of APA protocol

In this section, we will formally prove that the protocol of Figure 5.3.1 satisfies the conditions of
Definition 44 with overwhelming probability.

We will say that some party p € U accepts some party u € U in round 7, if r = min{k e N: u € S}]j}.

Lemma 45 (Correctness). If some honest party p € P accepts some party u € U before terminating,
then u € P.

Proof. 1f u is accepted by some honest party p € P, at some round r > 1, then p received a (p,r)-
valid batch of signatures in support of u, let it be B, so by the definition of valid batches we have
that Sign, (id,) € B. Thus, with overwhelming probability u € P. O

Notice that the above lemma immediately implies the termination property as well, since honest
parties only accept active parties throughout the execution. Hence, in every round r every honest
party p € P observes S C P and thus, observes |S]| < r by round |P].

Lemma 46 (Validity). Every honest party p € P includes p in its output.

Proof. Notice that every honest party p € P sets Sz(?) = {p} at the beginning of the execution and
thus, let 7 be the round in which p terminates, then it outputs S, with 5’19 c S, O

So, now it suffices to show that the protocol satisfies the agreement property of APA. Notice that
for the agreement property to be violated, there must exist two honest parties p,q € P and some
party u € U, such that wu is included in the output of p but not in the one of ¢. Hence, to complete
our proof, it suffices to show that whenever p accepts some party u, then ¢ also accepts u before
terminating. Will will prove an even stronger statement (similar to one of Dolev-Strong’s security
proof) using an induction on the number of rounds.

Lemma 47 (Agreement). If some honest party p € P accepts some party w € U in round r, then
every honest party q € P accepts u by round r + 1 before terminating.

Proof. First, we will show that the lemma holds for » = 0. In round 0, the only party that
every honest party p accepts is itself and thus, it diffuses {{Sign,(id,)}} at the end of round 0.
Hence, every honest party ¢ # p receives p’s message by round 1 and accepts p, since p & Sg and
{Sign,(idp)} is a (g, 1)-valid batch of signatures for p.

Now assume that the lemma holds for every round r’ < r, where r > 1. Since p accepts u in round r,
p receives a (p, r)-valid batch of signatures for u in round r, let it be B = {Sign,,(idy,) },ev, for some
V C P, and observes u & S‘g*l and \VﬁS;fl\ > r—1. So, there exists a set of parties W C VﬂS;fl
with [W| > r —1, such that p has accepted every party of W by round r — 1. We observe that with
overwhelming probability p € V' and thus p ¢ W, since p € V' would imply that p’s signature on id,
was forged at some round prior to r. Moreover, let ¢ be some honest party with ¢ # p, then using
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the induction hypothesis for all parties in W, we have that ¢ accepts all parties of W by round r,
except with probability |W| - negl(x) which is negligible, since W C P. Now, if ¢ has accepted u by
round r, then this completes the proof. If ¢ has not accepted u by round r, we can use the same
argument we used for p in order to show that ¢ € W. So, let v’ < r be the last round in which
q accepts some party of W, then, since ¢ observes W U {p,q} C Sgl in round 7/, it also observes
|Sg”| > |Sg/| >r+1> 7" in every round r” € [r’,r] and thus, participates in round r+ 1. Since p is
honest in round 7, it diffuses a message at the end of round r, which is well-formed by construction
and contains some batch of signatures for u, let it be B’ = {Sign,(idy)}veyr, with V U {u} C V.
Therefore, g receives B’ in round 7 + 1 and observes u € V' \ Sy and [V/' NSy > [W U {p}| > r.
Thus, ¢ accepts u in round 7 + 1. O

Once we have proved that our protocol achieves agreement and termination in at most |P| rounds,
one could ask if there is some connection between the round numbers that the honest parties
terminate, e.g., whether there is a chance that some honest parties terminate much earlier than
others. Using a simple observation, we can prove that all honest parties terminate simultaneously
and actually, the termination takes exactly |S| rounds, where S is the common output of the parties.

Lemma 48 (Simultaneous Termination). Let S be the common output of the honest parties, then
all honest parties terminate simultaneously in round |S|.

Proof. Let S, be the output of some honest party p, which terminates in round r > 1. Then p
observes S, = S5 and |S5| < r in round r. Now assume that |S)| < 7, then [S7~! < |S7] <r—1
and thus, p would have terminated by round r — 1, a contradiction. So, for round r it holds that
r = |S,| = [S|. Using Lemma 47, we have that all honest parties output the same set S C P and
thus, terminate simultaneously in round r = |S]|. O

Hence, we can state the following theorem:

Theorem 17. Protocol mapa (Figure 5.3.1) is an active parties agreement protocol (according to
Definition 44) that is secure against any adaptive PPT adversary. Moreover, let S be the common
output of the honest parties, then all honest parties terminate simultaneously in round |S| < |P].

5.3.4 APA Implies UP-Broadcast

Notice that the APA protocol present above suffices to solve unknown participants Broadcast.
In particular, one can easily come up with a UP-Broadcast protocol by running APA to achieve
agreement on a set of active parties and then, by running Dolev-Strong on the agreed party set.
However, this solution doubles the number of rounds required for termination.

Another way to achieve unknown participants Broadcast using APA is the following: every party
willing to participate in UP-Broadcast, except potentially for the sender, starts running an APA
instance, and the sender participates in the APA only if its input value is equal to 1. Hence, once
the APA execution is completed, then the parties shall output 1, only if the sender’s identifier is
included in the agreed set of active parties and otherwise, output 0. This simple reduction is shown
in Figure 5.3.2.
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Protocol 7y (7apa)
Initialization: Every party p € U\{s} willing to participate, generates (skp,pk,) <

KeyGen(1") and salt, & {0,1}%. Then, it sends id, = pk,|[salt, to the certification authority
and receives cert, and ids (we assume that id, is predetermined).

Active Parties Agreement: Every party p € P\{s} starts running a m,p, instance and the
sender s participates in m,p, iff by = 1, otherwise remains silent throughout its execution.

Output: Upon receiving the output S from m,p,, every party p € P outputs 1 if s € S,
otherwise outputs 0.

Figure 5.3.2: UP-Broadcast Protocol

Note that in UP-Broadcast the identifier of the sender s must be determined before the execution
of the protocol, so then the parties have a common reference on the party whose message they have
to agree on. One can also easily observe that all properties of UP-Broadcast are guaranteed by the
construction of the above protocol and the corresponding properties of APA.

Theorem 18. Protocol m,(Tapa) (Figure 5.5.2) is a unknown participants Broadcast protocol (ac-
cording to Definition 43) that is secure against any adaptive PPT adversary. Moreover, the protocol
guarantees simultaneous termination in at most |P| rounds.

Proof. If s is honest and has input value by = 1, then it participates in m,p, and by the validity and
agreement properties of APA, every honest party includes s in its output set. Hence, every honest
party outputs 1. If s is honest and has input value b5 = 0, then it behaves as inactive, and thus, by
the correctness property of APA, s in not included in the output of any honest party. Therefore,
every honest party outputs 0. Finally, agreement and termination of UP-Broadcast are immediately
implied by the agreement on the output of the APA execution and its guaranteed termination in at
most |P| rounds (agreement and termination properties of APA), which completes the proof. [

Nonetheless, the reduction above heavily relies on the fact that the input value of the designated
sender can only take two possible values, which is anyway the assumption that we have made so far
throughput this work. Having said that, one may wonder whether there is a way to modify APA
so then it can be extended to UP-Broadcast even in the case where the sender has a multi-valued
input, i.e., a string of more than one bits.

In the next section, we evolve our APA protocol into an unknown participants interactive consistency
protocol, i.e., a protocol that solves the analogous of interactive consistency (as defined in 21) in
the unknown participants setting. As we will explain later, this immediately implies that even the
multi-valued version of UP-Broadcast can be solved in the same number of rounds as APA.
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5.4 Unknown Participants Interactive Consistency Protocol

In this section, we will present an unknown participants interactive consistency (UP) protocol
that tolerates any number of corruptions. We begin by providing a definition for the interactive
consistency protocol in the unknown participants model. Even though our motivation for UP-
Interactive Consistency is the need to support a multi-valued-input of the sender in PB, we will
once again study the binary version of the protocol, where every party p € P willing to participate
holds an initial input value b, € {0,1} (the extension to multi-valued UP-Interactive Consistency
is obvious and hence, omitted).

Definition 49 (Unknown Participants Interactive Consistency). A protocol 7 is an unknown par-
ticipants interactive consistency (in short, UP-Interactive Consistency) protocol with respect to U if
for every adaptive PPT adversary and every evolving set of active parties P C U, where every
party p € P holds an initial input value b, € {0,1}, the following properties are satisfied except for
negligible probability:

— Correctness: If some honest party p outputs a set A, then A C P x {0,1}.

— Validity: If some honest party p outputs a set A, then (p,b,) € A.

— Agreement: All honest parties outputs the same set of party-value pairs.

— Termination: All honest parties terminate and output a set in poly(k) rounds.

Notice that the above definition constitutes a natural extension of our definition for APA (Definition
44) for the case that all parties have input values. In this case, the honest parties not only have to
agree on set of active parties including the honest ones, but also have to agree on the same value
for each one of the accepted parties.

5.4.1 Building on the APA protocol

Once we have a protocol that achieves agreement on a set of active parties (which includes all
honest parties) we can use it as the basis of an interactive consistency protocol.

Now, in round 0, every party p € P, instead of signing id,, signs idy||b, and diffuses it to the
network. So, all honest parties shall diffuse batches of signatures in support of party-value pairs of
the form Sign, (id,||b), where u,v € U, b € {0,1}. The acceptance condition for an party-value pair
(u,b), which is also the acceptance condition for the participation of w, is almost identical to the
one for the acceptance of an party that we had in our APA protocol, i.e., any honest party p € P
accepts some pair (u, b) (as well as the participation of u) in round > 1, only if it has not accepted
(u,b) by round r — 1 and observes signatures on id,||b from at least r distinct parties including u,
out of which everyone except for u, was accepted by p by round r — 1. Once some party observes
the number of its so far accepted parties to be less or equal than the round number, it can safely
terminate, exactly as in our APA protocol.

The difference now is that the output of every honest party p € P will be a set of party-value pairs,
which will indicate the values that p decides for each one of its accepted parties. In particular,
for every party u that p has accepted, p will decide 1, if it has only accepted 1 with respect to u
and 0, otherwise. In this way, the agreement on the honest parties’ output is implied from a relay
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property very similar to the one we proved in Lemma 47 for our APA protocol, which will now
concern the acceptance of party-value pairs.

5.4.2 Formal Description of UP-Interactive Consistency Protocol

We will now give a formal description of our interactive consistency protocol which tolerates any
PPT adversary in the unknown participants setting. First, we have to extend the definitions of
valid batches of signatures and well-formed messages that we gave in Section 5.3.2.

Valid batches of signatures. We now extend the definition of walid batches of signatures to
the case that the signatures of the batch are in support of a party-value pair. So, let B be a batch
of signatures on some party-value pair (u,b) € P x {0,1}, then we will call B a (p,r)-valid batch
of signatures, if it consists of signatures on id,||b from at least r distinct parties including u, such
that at least 7 — 1 of them are included in S;71, i.e., let B = {Sign, (idy||b)}vev, for some V C P,
then B is a (p,r)-valid batch of signatures if u € V and [V N Sy~ \{u}| >r — 1.

Well-formed messages. In our interactive consistency protocol, the honest parties will have to
diffuse batches of signatures in support of the participation of their newly accepted party-value
pairs, exactly as they did in our APA protocol, and in order to maintain APA’s efficiency, every
party shall diffuse at most one batch of signatures for each newly accepted pair. So, let j, be the
message that some party p € P diffuses at the end of round r, then j will be called well-formed if
= {B; }ézl, for some [ > 1, where B; are batches of signatures in support of distinct pairs (u;, b;),
such that for all ¢ € [1,1], B; = {Sign,(idy,||bi) }vev;, for some V; C U with u; € V;.

Output. Let A} be the set of party-value pairs that some party p € P has accepted by round r
and for every u € S}, let A7, = {b € {0,1} : (u,b) € AL} be the set of values that p has accepted
by round r with respect to u. Them, if p decides to terminate in round r, it outputs:

Out(A4p) = {(u, D}yegp U, 0) e g

where S*; ={ueS): A, ={1}}.
We give a formal description of our protocol in Figure 5.4.1.

Note that p stores in every round r all the signatures it has observed in support of every party-value
pair (u,b) € A;;\A;fl in the €}, sets. The way it constructs the message that it diffuses at the
end of round 7 in a similar way to the one of our APA protocol.

5.4.3 Proof of Correctness

In this section, we will formally prove that the protocol of Figure 5.4.1 satisfies the conditions of
Definition 49.

Accordingly to the acceptance of identifiers, we will say that some party p € P accepts some pair
(u,b) in round 7, if r = min{k € N : (u,b) € Ak}
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Protocol 7.
Initialization: Every party p € P generates (skp,pk,) < KeyGen(1%) and salt, & {0,1}%.
Then, it sends id, = pkasaltp to the certification authority and receives cert,,.

Round 0: Every party p € P initializes S) = {p} and A) = {(p,b,)} and calls
fdiffuse({{Signp(idp|‘bp)}})'

Loop: For r =1,2,..., every party p € P does the following;:
1. Initializes Sy = S;_l and Aj = A;_l.
2. Upon receiving some well-formed message M, for all B € M, do the following: if B is a
(p,r)-valid batch of signatures for some pair (u,b) ¢ A;_l, then :
— if (u,0) ¢ A}, initialize C} , |, = 0
— set Sp < SpU{u}, A  AJU{(u,b0)} and C} ,, « C7 U B.
3. If [Sp| < 7, then terminate with output Out(A}), else call fdiffuse({cg’u,b U
{Signp(idu\|b)}}(u’b)€A£\A;_1) and proceed to round r + 1.

Figure 5.4.1: Unknown Participants Interactive Consistency Protocol

Lemma 50 (Correctness). If some honest party p € P accepts some pair (u,-), where u € U before
terminating, then u € P.

Proof. If (u,b) is accepted by some honest party p € P for some b € {0,1}, at some round r > 1,
then p received a (p, r)-valid batch of signatures in support of (u, b), let it be B, so by the definition
of valid batches we have that Sign,,(id,||b) € B. Thus, with overwhelming probability v € P. [

Lemma 51 (Validity). If some party p € P is honest, then (p,by) is included in the output of p.

Proof. If p is honest, then it accepts (p, by) from round 0. Now assume for the contrary that p accepts
some other pair of the form (p, b) for some b # b, in some round r > 1, then p must have received a
(g, 7)-valid batch of signatures for (p,b) in round r, let it be B, such that Sign,,(id,||b) € B. Hence,
with overwhelming probability p has signed idy||b at some round prior to r, which is a contradiction,
since p is honest. Hence, by construction of the output set (Out(-) function), (p,b,) is included in
the output of p. O

Notice that the termination condition of the UP-Interactive Consistency protocol as well the han-
dling of the sets of accepted parties is exactly the same as in our APA protocol. In addition, the
number of pairs accepted with respect to some particular identifier does not have any impact on
the decision of the parties about the termination of the protocol other than the acceptance of the
identifier itself. Hence, all the properties regarding the acceptance of parties and the satisfaction
of the termination condition that we proved for our APA protocol (Lemmas 47 and 48) must hold
in our UP-Interactive Consistency protocol as well.

Therefore, the only property left to complete the proof is the agreement on the output of the honest
parties. Our proof relies on the fact that let A, and A, be the sets that some honest parties p and
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q output once they terminate, then the only way the agreement property may be violated is that
there exists some pair (u,b), such that (u,b) € A,\A, (otherwise, the Out(-) function will map the
sets A, and Ay to the same output set). Thus, we will once again prove a relay property, which
will now concern the acceptance of party-value pairs.

Lemma 52 (Agreement). If some honest party p € P accepts some pair (u,b) in round r, then
every honest party q accepts (u,b) by round r + 1 before terminating.

Proof. First, we will prove that the lemma holds for » = 0. In round 0, p only accepts the (p,b,)
pair and diffuses {{Sign,,(idy||by)}} at the end of round 0. In round 1, every honest party ¢ # p
receives p’s message and accepts (p, bp), since p & 5’8 and {Sign,,(id,|[by)} is a (g, 1)-valid batch of
signatures for (p,by).

Now if p accepts (u,b) in round r» > 1 for some u € U, then p receives a (p,r)-valid batch of
signatures for (u,b) in round r, let it be B = {Sign,(idy||b) }sev, for some V' C P, and observes
(u,b) ¢ A;",_l and [V N SI71 > r — 1. So, there exists a set of parties W C V N 5’;_1 with
|[W| > r — 1, such that p has accepted every party of W by round r — 1. We observe that with
overwhelming probability p € V and thus p € W, since p € V would imply that p’s signature on
ul|b was forged at some round prior to r. Moreover, let ¢ be some honest party with ¢ # p, then
using Lemma 47 for all parties in W, we have that ¢ accepts all parties of W by round r. Now,
if ¢ has accepted (u,b) by round r, then this completes the proof. If ¢ has not accepted (u,b) by
round 7, we can use the same argument we used for p in order to show that ¢ € W. So, let ' <r
be the last round in which ¢ accepts some party of W, then, since ¢ observes W U {p,q} C Sg/
in round 7/, it also observes |S,’1"”\ > |Sg/| > r+1 > " in every round " € [r/,r] and thus,
participates in round r + 1. Since p is honest in round 7, it diffuses a message at the end of round
r which is well-formed by construction and contains some batch of signatures for (u,b), let it be
B’ = {Sign,(idy||m) }vev, with V U {p} C V'. Therefore, ¢ receives B’ in round r + 1 and observes
(u,b) ¢ Ay and |[V' NSy > [W U {p}| > r. Thus, q accepts (u,b) in round r + 1. O

Hence, we can summarise the above statements in the following theorem:

Theorem 19. Protocol mc (Figure 5.4.1) is an unknown participants interactive consistency pro-
tocol (according to Definition 49) that is secure against any adaptive PPT adversary. Moreover,
let A be the common output of the honest parties, then all honest parties terminate simultaneously
in round |A| < |P].

5.4.4 Relation with Unknown Participants Broadcast

One can easily observe that the UP-Interactive Consistency protocol presented above solves the
problem of unknown participants Broadcast as well. In particular, in case that a particular sender
s is determined and has an input value bg, then UP-Broadcast can be achieved by running an
UP-Interactive Consistency instance, where s inputs bs, while the (rest of) honest parties input a
default value. Once the UP-Interactive Consistency execution is completed, then the honest parties
can decide 1 if (s,1) is included in their output and 0, otherwise. In this way, the properties of
validity, agreement and termination of UP-Interactive Consistency guarantee the corresponding
ones of UP-Broadcast.
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Protocol m,(mic)
Initialization: Every party p € P is given id;.

UP-Interactive Consistency: Every party p € P\{s} starts running a 7. instance with
input b, = 0 and the sender s participates in 7 with input bs.

Output: Upon receiving the output A from i, every party p € P outputs 1 if (s,1) € A,
otherwise outputs 0.

Figure 5.4.2: Unknown Participants Broadcast Protocol (extendable to multi-valued version)

Theorem 20. Protocol m, (Figure 5.4.2) is an unknown participants Broadcast protocol (according
to Definition 43) that is secure against any adaptive PPT adversary. Moreover, the protocol
guarantees simultaneous termination in at most |P| rounds.

Proof. If the sender is honest, then using the validity and agreement properties of UP-Interactive
Consistency, we have that all honest parties observe (s,bs) in their outputs. Hence, all honest
parties output bs. Agreement and termination of UP-Broadcast are implied by the agreement and
termination properties of UP-Interactive Consistency and the construction of the protocol. O

However, notice that the above reduction does not imply that every UP-Broadcast protocol neces-
sarily has to rely on an underlying UP-Interactive Consistency protocol. In fact, although Broadcast
and interactive consistency are almost totally equivalent in the classic model, the obvious reduction
from the latter to the former, where a Broadcast instance is run for every possible sender, clearly
cannot be applied in the unknown participants model where the set of actual participants is not
known in advance. Thus, there may exist a UP-Broadcast protocol that could not be transformed
into a UP-Interactive Consistency protocol (at least with a similarly simple adaptation as in the
classic model) and hence, one could consider the UP-Interactive Consistency problem to be po-
tentially strictly harder than UP-Broadcast. Although, we have no evidence either towards this
direction or its opposite, we are inclined to believe that these two problems (along with APA) are
may in fact be equally hard. The reason for this, is that, as will prove in the following section,
all three problems that we have investigated in the unknown participants model have the same
worst-case round complexity, which happens to coincide the round complexity of the protocols we
presented above, i.e., the number of active parties in the execution.

5.5 Tightness of Wort-Case Round Complexity

In this section, we will prove that all three problems we have studied in the unknown participants
model, i.e., UP-Broadcast, APA, UP-Interactive Consistency, require at least |P| rounds in the worst
case execution of any protocols that succeed in solving them even with a non-negligible probability.
In fact, we show that for any randomized protocol that solves any of the three problems, there
exists an execution, where the protocol errs with probability at least 1/2. Here we refer to the
randomized versions of the protocols defined in Sections 5.3, 5.2, 5.4, as the protocols that achieve
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the same properties with the original definitions with probability strictly greater than 1/2 and not
necessarily overwhelming.

Our argument adopts the approach of Garay et al. [8] that we presented in subsection 4.1.1, who
managed to show that every randomized Broadcast protocol requires at least n — 1 rounds in the
classic model. Particularly, we prove that in the unknown participants setting, the parties may
actually need to run for at least |P| rounds in order to achieve Broadcast, which means that they
have to run at least one more round that what they could in case they knew the actual number of
participants.

In fact, while in the classic model the honest parties can make sure they have consistent views with
each other about the behaviour of the sender in n — 1 rounds, in the unknown participants model,
when the sender is not active there may exist some honest party which is aware of the participation
of n parties (including itself) by round n — 1, but is not certain whether these parties have received
an input of the sender or not. More precisely, the party may not be able to distinguish between the
scenario where the sender is not active and the one where the sender message has been received
by all other parties except for itself. Hence, this party has to run for at least one more round to
resolve the situation.

bs
» D1 b2 p3 o — Dk

Figure 5.5.1: Configuration where PB requires at least |P| rounds

Theorem 21. There does not exist any randomized unknown participants Broadcast protocol that
terminates in fewer than |P| rounds.

Proof. Assume for the contrary that there exists a randomized unknown participants Broadcast
protocol 7 that terminates in at most |P| — 1 rounds. Let P = {p;}*_, C U be a set of k = poly(k)
parties, where p; is the designated sender with input bs = b. Thus, we can consider k scenarios S;,
i € [1,k] of m, where for i € [1,k — 1] we consider that P; = P and Py, = P\{p1}.

Moreover, in each scenario S;, i € [1,k — 1] we consider that the adversary A; corrupts all parties
in P; except for p; and p;y1, while in S, Ay corrupts all parties in Py except for pr_1 and pr. We
also consider that whenever some A; corrupts some party pj;, it forces it to follow the instructions
of 7j, except that:

e if j =1, then p; ignores all the messages sent to it except for those from po, and only sends
messages to pa.

o if j € [2,k — 1], then p; ignores all the messages sent to it except for those from p;_; and
pj+1, and only sends messages to p;—1 and pjy1.

o if j =k, then pg ignores all the messages sent to it except for those from pg_1, and only sends
messages to pg_1.

Thus, for every ¢ € [2,k — 1], p; cannot distinguish whether it is on S;_; or S;. Aditionally, in
scenario S1, p; and po are both honest and hence, they both have to output b at the end of the
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protocol. But since po cannot distinguish whether it is in .Sy or Sa, we observe that ps has to output
b in scenario S9 as well. Moreover, prior to round 1, the view of ps is completely independent of b
and thus, prior to round 2, the view of p3 is completely independent of b.

In general, in every scenario S;, ¢ € [1,k — 1], parties p; and p; 41 have to output b, while the view
of p;11 is independent of b prior to round ¢. In addition, py cannot distinguish whether is is in Sk
or Si_1 by round k — 2, while in Sy we have that |Px| = k — 1. So, pi terminates by round k — 2 in
S by assumption and therefore, terminates by round k& — 2 in Si as well. However, in Sy it does
not have any knowledge of b and thus, outputs b with probability 1/2, a contradiction. O

Corollary 53. There does not exist any randomized active parties agreement protocol that termi-
nates in fewer than |P| rounds.

Proof. Assume for the contrary that there exists a randomized active parties agreement protocol
Tapa that terminates in fewer than |P| rounds then we can construct an unknown participants
Broadcast protocol my, as in Figure 5.3.2. Then, 7, is a randomized unknown participants Broadcast
protocol which terminates in fewer than |P| rounds and succeeds with probability at least as great
as the success probability of m,5,. However, this contradicts Theorem 21. ]

Corollary 54. There does not exist any randomized unknown participants interactive consistency
protocol that terminates in fewer than |P| rounds.

Proof. Assume for the contrary that there exists a randomized unknown participants interactive
consistency protocol 7. that terminates in fewer than |P| rounds then we can construct an unknown
participants Broadcast protocol my, as in Figure 5.4.2. Then, 7, is a randomized unknown partic-
ipants Broadcast protocol which terminates in fewer than |P| rounds, which contradicts Theorem
21. O]
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Conclusion

The problem of byzantine agreement is one of the most fundamental primitives in fault-tolerant
distributed computing. The development of blockchain technologies has attracted the attention
of the scientific community towards constructing efficient solutions for this problem for the case
of dynamic participation. However, most existing works either assume a static participation or a
majority of honest parties.

In this work, we provide the first byzantine Broadcast protocol that tolerates any number of cor-
ruptions in the unknown participants model (UP-Broadcast). Along with concrete definitions of
our model, we also introduce a new type of problem, called active parties agreement, which is the
basis for our solution for Broadcast. Additionally, we solve the analogous of interactive consistency
in the unknown participants model (UP-Interactive Consistency) and show how UP-Broadcast can
by reduced to UP-Interactive Consistency. We also prove that the number of rounds required in
all our protocols equals the number of active parties in every execution.

Finally, both three problems that we study in the unknown participants model require at least
as many rounds as the number of active parties in any execution. Hence, it turns out, that our
protocols are optimal in terms of their worst-case round complexity.

6.1 Future Work

Our results can motivate further research on fault-tolerant protocols in the unknown participants
model.

First of all, it would be very interesting to investigate whether one can apply techniques similar to
the ones of [11, 20], in order to construct a sublinear-round UP-Broadcast protocol. In addition,
one could also attempt to modify the tools of [39] in an effort to achieve early-stopping in the
UP model. These tools heavily rely on a commonly agreed party set, but the idea of creating
transferable certificates among honest parties using accusation messages may be adaptable to the
UP model.

Towards a different direction, one could try to analyse the bit complexity of UP-Broadcast, or
even the message complexity in the sense of number of calls to the diffusion functionality. Notice
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that our protocols have a greater bit complexity than the one indicated by classic communication
lower bounds [9] and hence, it is not clear whether the agreement on a set of active parties (which
is the main cause of this bit complexity gap) is necessary to achieve UP-Broadcast. In terms of
round complexity, one could also try to disprove the sublinear-round protocol feasibility or even
the early-stopping feasibility.

Moreover, it would be interesting to find out whether protocols with improved complexity measures
can be constructed in our model for the case of weaker adversarial behaviours, like crash faults or
send-omission faults, as presented in [40]. The difficulties of achieving UP-Broadcast in our model
could be overcame assuming that accusation messages are trustworthy.

Finally, an interesting direction for further research would be to study Broadcast under an increased
number of corruptions in different adversarial and knowledge models, which have been widely
investigated in multiple variations [41, 42, 43, 44, 45].
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