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MepiAnyn

H pouowkr Sadpapatider 9epediodn podo otov avOpoIivo MOATIONO, AETOUPYHOVIAS ®G IId-
yKOopa yAoooa rmou §erepvd ta eprnodia kat €xet Babid anmxnon ota ouvaicdrpata Kat TG e-
prelpieg v avBpornov. Kabog n texvn vonuoouvn cuveyilel va e§edioostal, umapyel auvgavopevo
EVO1AQEPOV Yia TV £QAPUOYH] AUTIOV TV TEXVOAOYIOV Ot SnloUupylKoug topelg, ouprneptdapBavo-
HEVNg G ouyypadrg otix®v. AKOpPA Kal Pe auteg TG e6eAigelg, ta oUyXPova TTOAUTPOTTIKA POVIEA
1X0U 8ev €X0UV eKMA1SEUTEL EMAPKWG O EPYACIEG AVAKINONG PNOUOIKHG MMAnpodopiag, Kat e1d1ka oe
SnouUpYIKEG epyaocieg Onwg 1 mapaywyn otixev. ErmumAéov, povo oplopéva Meyada IMewoowka Mo-
viéda €xel arodeiyBel 611 eppavidouv Ty KavOTNTaA yid AETOUEPT| KAl OUVAIOONPATIKA QOPTIOHREVD
ypagr), YEYOVOG TTOU UMOYPAPilel TV avayKn yid o eSeAYHEVEG TIPOCEYYIOEIG O AUTOV TOV TOHEA.

Zv apouod SImAeopatiky epyaoia, Sie§ayoupie pia 0AoKANp@HEV a§loAdynon teoodpwv Stago-
PETIK@V MPOCEYYIOEDV Y1a TNV MAPAY®YI] OTIX®V, EVO@PATOVOVIAG OTad1aKd S1apOPETIKES TPOTUKOTL)-
1eg. Eekvape pe v napadooiaks) Mapaynyr) otiXov and Keipevo os KeIPEVo e T XP101) OUYXPOoVaV
MeydAev MNeooikdv Moviedav. Itr OUVEXeELd, H1EPEUVOULIE TV MTAPAYRYT KEIPEVOU EVIOXUNEVOU HE
X0 péow SUo mpooeyyicewv: evog poviédou Variational Autoencoder jie apX1TEKTOVIKI] TTOU PO1Aet
pe Transformer kat evog poviéAou mou eubuypappidel Tng avanapaoctdoel§ POUCIKIG KAl KEIHEVOU
petadu twv poviedwv Whisper kat OpenOrca. i ouvéxela, udoroloupe pia Siadikaoia duo otadiov
Be ) xpnor tou SALMONN yia v e§aymyr] HOUCIK®V EUKETOV Kal otr ouvexela tou Claude yia v
napaywyn otixov. TéAog, mpoteivoupe pia véa moAutporukn diatadn mou cuvdudlet 1o SALMONN
yla v mepypagn g oKnvhg Ing tawiag, to Stable Diffusion ywa v onuikomnoinon kat to LLaVA
yla TV TEAKY Iapaywyr) otiXov.

H a&oAoynon pag, nou Bacidetat 1000 ot petpikeg rnou Bacioviat oe LLM 6co kat oe avBporivn
a&lodoynorn, arokadurtet Siapopa Paocka suprjpata. Ilpotov, ta instruction-tuned LLM erubet-
KvUOUV 10XUpeg baseline emdooeig akopun Katl Xopig MepAtEP® EKMAIBEUOT) OTOV CUYKEKPIIEVO TOPEA.
AgUtepov, 1 IIPOCHNKN TG TPOITIKOTNTAG X0U HEOR NS £EAYMVIS HOUCIKGOV ETIKETOV EVIOXUEL Onpa-
VKA T 0UoXETIon PETady TV ITapayopevey otiXev Kat g pouotkrg. Tpitov, n véa pag rpoogyyion
IOV EVO®MHATOVEL OITIKEG AVATIAPAOTACELG ETITUYXAVEL TV KAAUTEPT] 100pPOITiA PETASU CUVOXT|S T®V
OTiX®V Kal TG OUOXETIONG TOUG HE Vv Houolkr). Eivat evdiagpépov 611, eve 1o few-shot prompting
BeAtivoe Ta oKOp OpOIdTNTAG, TAPOUCIACE PEl®PEVH] arodoor otTig a§l0Aoyroelg g oOTNTAg TV
otixewv. Ta suprpata autd urtodnA®vouv 0Tt 01 TIOAUTPOITIKEG MPOOEYYIOELS PITOPOUV va BeATidoouv
MV Napayeyn otixev diatmpoviag mapdAinla ) Snoupyik: EKPPAOT), @OTOCO0 UITAPXEL 11l AT
toopportia petady g kabodnyoupevng apaywyng Kat tmg dnpioupyikng eAeubepiag.

Autr) ) épeuva ouvelopEpet véeg 1eB0BoA0YiEg OE pyaoieg avAKTNoNg POUOIKIG TIANpopopiag Kat
avoiyetl 5popoug yia PeAAOVTIKE €§€pEUVIOT ITOAUTPOTIK®V IPOCEYYIOE®V 08 SNIIOUPYIKES EPAPHOYES
TEXVITIS VONLIOOUVIG.
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[ToAutporuka Movtéda, Metaoxnpatiotng, Kedikornowntrg, Antokadikonountg, Meyada Nweoot-
KA Movtéda, Enegepyaoia duokng Naoooag, Avakinon Mouowkrg [TAnpogopiag
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Abstract

Music plays a fundamental role in human culture, serving as a universal language
that transcends barriers and resonates deeply with people’s emotions and experiences.
As artificial intelligence continues to advance, there is growing interest in applying the-
se technologies to creative domains, including lyric generation. While Large Language
Models (LLMs) have shown promise in creative writing tasks, the potential of multimodal
approaches in lyric generation remains largely unexplored.

In this diploma thesis, we conduct a comprehensive evaluation of four distinct ap-
proaches to lyric generation, progressively incorporating different modalities. We begin
with traditional text-to-text lyric generation using state-of-the-art LLMs. We then explore
audio-enhanced text generation through two approaches: a Variational Autoencoder mo-
del with Transformer-like architecture, and a model with a projection layer to align music
and text representations between the Whisper and OpenOrca models. Following this,
we implement a two-stage process using SALMONN for music tag extraction followed by
Claude for lyric generation. Finally, we propose a novel multimodal pipeline combining
SALMONN for movie scene description, Stable Diffusion for visualization, and LLaVA for
final lyric generation.

Our evaluation, based on both LLM-based metrics and human assessment, reveals
several key findings. First, instruction-tuned LLMs demonstrate strong baseline perfor-
mance even without domain-specific training. Second, the addition of audio modality
through music tag extraction significantly enhances the correlation between generated
lyrics and music. Third, our novel approach incorporating visual representations ach-
ieves the best balance between lyrical coherence and musical correlation. Interestingly,
while few-shot prompting improved similarity metrics, it showed decreased performance
in creative quality assessments. These findings suggest that thoughtfully integrated mul-
timodal approaches can enhance lyric generation while maintaining creative expression,
though there exists a delicate balance between guided generation and creative freedom.

This research contributes new methodologies to music information retrieval tasks
and opens avenues for future exploration in multimodal approaches to creative Al appli-

cations.

Keywords

Multimodal Models, Transformer, Encoder, Decoder, Large Language Models, Natural

Language Processing, Music Information Retrieval
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Euyxaploticg

Kat apxag, 9a 116eda va suxapiotfjom tov ermBAénovia kabnyntr] pou AAé€avbpo IMota-
H1avo yia v oAU xprjotpn Borbsia kat kabodrjynor) tou, 1 omnoid 1nIav Kaboplotky yla
BeAtioon kat t S1apopPon AUTAS NG SIMAGPATIKNAG OTNV TEAIKI) TS Hopd1.

®a f10sAa emiong va suyapilotjoe tov unoyneo didaxkrtopa Xapidao INanaindavvou yua
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Extetapévn EAAnvikn IepiAnyn

0.1 Ewayoyn

0.1.1 Kivytpo

H pouoikr) kat 1o tpayoudt urirjpdav €66 Katl Kaipd 10XUpd PEod aUTOEK(GPAonS Kat pia
KUpla popdr] yuxaywyiag. Ta va sivatl éva tpayoudt mootiko, o1 otiXol MPETEL va EVAPHL0-
vidovial pe 1 POUOIKY, EMITUYXAVOVIAG Hid 100pPortia Petaiy Snioupyikottag, OUVoXTS
KAl (UOIKNG PONG—KPIINP1A IOV £ival SUCKOAO T000 va poviedorotnfouv 600 Kat va aglodo-
ynOouv. Autr| n moAumlokotnta £xel 0dnynoet og €va alobnio Kevo oty €peuva, 000V apopd
ot Snuoupyia otixewv pe pouoikn emiBAeyrn. INapd 1ig mPoodateg KAIVOTOMIEg Ota TOAU-
TPOITIKA POVIEAA KAl otd Peydda yAwoowkd poviéda (LLMs), 01 OUYKEKPIPEVEG TIPOKANOELS
g eUBUYPAPHIONG TS HOUCIKHG HE TOUG OTiXOUS ITApAEVOUV aveSepeUVITES.

Aut) n Sudepatiky] otoxevel va YEPUPWOEL AUTO T0 KeVO agloroloviag tg rpoddoug
G TEXVNTAGS VONpoouvng yia I BeAtioon ng dnuioupyiag otixwv. Avartioooviag povieda
IOV PITOPOUV VA KATAVOOUV KAl Vd TAPAyouV OTiX0Ug oUR(®VA HE TO POUCIKO TIEPIEXOHEVO,
EMOIWKOUNE va cUPBAAOUHE TO0O OTOV TOHPEA TNG TEXVITHG VONIOoUVNG 000 Kal OTOV TOPEd
TG HOUOIKIG. AUTA 1A POVIEAQ £X0UV MPAKTIKEG EPAPIOYES, TTAPEXOVTIAG OTOUG KAAATEXVES

epyaleia mou §1eukoAUvoUV T dnpoupyia otixov.

0.1.2 Zuvelwopopa

Autn n Sutdepatkn epyacia ouvelodpepet otov topea Avaktnong Mouoikng ITAnpogopiag
(MIR) o6cov agopd ) dnuioupyia otixewv. Asdopiévou Ot 10 oUuyKeKkpEvo Sépa tng Sumde-
patukng - n dnpoupyia otix®v pe Bdaon v Pouoiky ouvodesia - Gev £xel peAetnOel 10600
EKTEVOSG 000 AAAeg apopota generative tasks, ornwg n dnpioupyia NOUOIKNG Ao OTiX0Ug 1)
n énuioupyia otixev pe Paon ) pedwdia tou tpayoudiov, n SumAepatikn e§epeuvd APKETEG
APXITEKTOVIKEG Kal TV arodoor) toug otn Snpioupyia otixev.

[T1o ouyKekp1PéEVa, 01 KUPLEG OUVEIOPOPES TG IAPOoUoag SIMAOPATIKEG eivat:

e Eival n mpwtn eviedexr)g OUYKPITIKY peAetn nmoAdandov apyitektovikov LLM (Claude,
GPT-2, Mistral OpenOrca kat Vicuna) yia v napay®yr] otiX®v aro KeIPevo o Kei-

pevo.
e Yloroinon kat a§loddynon piag apyteKTOVIKEG IAPAYOYG OTiXOV 1€ PIOUOKY ertiBAe-
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yr), 1 omoia €xel xpnowonownOei oty BBAtoypadia, addd xwpig eotiaon otnv napa-
ywyn otixeov: to poviedo Whisper-OpenOrca, 10 ortoio xprnotpornotei éva projection
layer yia tnv euBuypdppion HOUCIKOV KAl KEIPEVIKOV AvATapaotdoe®v PeTtasy tou
TPO-EKMAISEUPEVOU TTAYOPEVOU Kd1koTow ) f)xou Whisper kat tou mayopévou LLM

OpenOrca.

o TpoOtn melpapatiky PeAETN MOU OUYKPIVEL H1aPOPETIKEG TTOAUTPOITIKEG TIPOOEYYIOEIS

yla v napayoyn otixov.

e Avarttudn vE®V TOAUTPOIIK®V S1atdiemv IMMoU eVOOPAT®VOUV TIPOoOeteg NOpPEG Ot

dadikaoia mapaywyng otixwv:

— SALMONN-Claude: pia 6iatagn mou xpnowporotei to SALMONN yua v s§ayw-
V1] HOUOIKQV ETIKETWV A0 11 POUOIKI £10080 KAl O OUVEXELA XPIOOTIOEL TO

Claude ywa ) dnpiovpyia tov TeEAMK®OV otiXoVv e BAon autég TIG ETIKETEG.

- SALMONN-Stable Diffusion-LLaVA: pia 81dtagn rou xprnotporotei to SALMONN
Yla va rmapdyetl pia neptypadr] oKnvrg tawviag ano I Pouoikr) €icodo, otn ou-
véxela xpnowpornotel Stable Diffusion yla va mapdyet pa ewkova pe Baon auvt)
Vv meptypadr) Kat mapayel Toug TeAKOUG OTiX0Ug XP1OTHOIIoIMVIag T0 HOVIEAO
LLaVA.

0.2 Mnyxaviky Maénon

Autr] 1 uroevotnta e§etadel MOAUTPOITKA HOVIEAd, peydAa YA@oolkd poviéda (LLMs),
Variational Autoencoders (VAEs) kat 1o poviédo Stable Diffusion, napoucidloviag ) on-
paoia toug og S1APopeg EPAPHOYES PNXAVIKIG 1AOnong.

Ta IoAutpomira PoOvIéAa Propouv va enegepydlovial kat va ouvbuddouv edopéva
anod Slapopetikeg tpormkotnteg (modalities), omwg keipevo, 1xog, €koveg kat Bivieo. Ta
ITOAUTPOITIKA POVIEAA 1X0U EVOOUAT®VOUV NXNTIKA dedopéva pe 6edopéva aAdwv modalities,
BeATidvoviag cuothpata avayvoplong optdiag kat Stadoyou. H apyiiektoviki toug ouvh0wg
nieptAapBavet Evav kedikomontr) fxou, éva LLM kat pia Sieradr) mou ouvdéet 1ig SU0 Nopdeg
6edopévav [18]. Tlapd tn Xxpnowpotntd toug, AVIIHEIRITIOUV IIPOKANOEIS OTIOG 1] ITO10TNTA
TOU XOU KAl Il CUYXPOVIOHEV] EVOOPAT®OOT 1 AAAeg NoppEg HedopEvav.

Ta MeyaAa I'Awootka Movtéda (LLMs) Baoiloviatl otv apyiiektoviky] tou transformer,
1 oroia mapouoclactnKe pota oto paper “Attention Is All You Need” [19], kat €xouv @épet
enavaotaocr) oty ere§epyaocia @uokng ydwooag (NLP). Ta LLMs kataokeuddovial p€o® mpo-
ekmnaibeuong o€ tepdotia oUVoAa KEPEVOV KAl PUITOPOUV va eKteAouv Kabnkovia pe Alya
kaBoAou napadeiypata (zero/few-shot learning) [20]. Ot tpeig KUPLEG APXITEKTOVIKEG lvat:
POVO K@S1KOTO TG, 1OVO ATTOK®OIKOITOTHG KAl 0UVOUaoog tov 600, pe kKabe poviédo va
etunnpetel H1aPpopeTKOUG TUIOUG EPAPPOY®V OTIRG 1] Ta§lvounon Kat i dnpioupyia Kelpévou
[20].

Ot Variational Autoencoders (VAEs) civai generative poviéda nmou pabaivouv Aav-

9dvouoeg petaBAnTég IOV AVILITPOORIIEVOUV oUVOeTeG Katavopeg Sedopévav. Baoidovrat otn
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ouvlUaOTIKL] XPL 0L VEUP®VIKGV SIKTUGV Katl mBavobfempnuiknig poviedonoinong yla va én-
H0UPYOOUV avarapaotaoelg Kat va rmapayouv dedopéva, onwg eikoveg kat Keipeva [21].
Avtipetenidouv TIPOoKANOELg, ON®G 1] MOOTNIA TS IAPAYOPeVNS YA®ooag AOY®m tng (uong
twv Slakpttov Aggewv ota keipeva [21].

Tédog, 10 Stable Diffusion civail éva poviédo Snpioupyiag €1KOVOV Ao KeijeEVo, TTOU
Baoiletal oe mbavotikd poviéda diaxuong anobopuboroinong (Denoising Diffusion Proba-
bilistic Models - DDPMs). Xe avtiBeon pe ta GANs, ta povieda diayxuong rpocBEtouv Kat
agpatlpouv 9o6pubo ota Hedopéva, poviedonoldviag 11§ oUvOeTeg Katavopeg elkovav. To Stable
Diffusion xpnowonotel v apyitektoviky Latent Diffusion Models (LDMs), rou Asttoupyet
0€ OUHITIEOPEVO XWPO, TIPOCPEPOVTIAG UPNANG TTO1OTNTAG dNloupyieg E1KOVOV e XapunAotepo

UTIOAOY10TIKO KOOTOg [22].

0.3 TIIoAutpomika Movtéda ‘Hyou rat 'Awooika Movtéda yua

IMapayoyn ZTixwv

Te auty] TV UMOEVOTNTd, avaAUoupe tad POVIEAd TTOU £ival OXETIKA Pe v SouAeld pag.
Zuykerpipéva, egetaloupie ) PBAoypadia oXeTKA HE Ta MMOAUTPOITKA HOVIEAA 1)XOU Kdal
OUYKEKPIPEVA TOUG KOOGIKOTIONTES I)X0U TTOU XPNO1H0II010UVIAdl OUXVA O€ TTIOAUTPOITIKA [10-
Vviéda 10U, Kal td POoVIEAd KAtavonong pouoikng. ESetdloupe eriong, moAutporukda poviéAa
0paonG, CUYKEKPIIEVA PEYAAd YA®OOIKA POVIEAA TA OIoia €{T€ XP1O110II00UVIAl PNTd OtV
epyaoia pag, eite amotedouv pEPog AAA®V XPNOOITOI0UHEVOV TTOAUTPOITIK®V YA®OOIK®OV [10-
viedwv. Tfdog, e§etdloupe 8i1apopeg pebodoug mou yprotpornolovviatl ot RiBAoypadia yia

Vv aloddynon generative tasks.

0.3.1 Kowdikonoutég fxou ota IIoAutporuirka MovtéAa ‘Hyou

O kwdwkonounig fxou Whisper g OpenAl, érniwg niapouvoiactnke oto apbpo “Robust
Speech Recognition via Large-Scale Weak Supervision” [23], eivatl éva ocuotnpa avayvopt-
ong opAiag pe peydAn kAipaka, eknadeupévo oe 680.000 wpeg MOAUYA®OOIKWV Sedopévav.
Xpno1orotel APXITEKTOVIKI] KOSIKOTION T -arokeoikonont] Baciopévr oe transformers
Yla va PETATPETIEL TOV 1)X0 Og UWPNALNG nowotntag petaypagés. To Whisper Sexmpilet yia tg
duvatotnég Tou OtV avayvoplon oe MoAAArAEg YAWOOEG KAl epyacieg, Kal ) duvatotnta
anodoTIKNG Aettoupyiag oe oUVONKEG X®PIg Ipooappioyt (zero-shot).

O Audio Spectrogram Transformer (AST) [24] elval 10 IIP®TO POVIEAO TTOU XPNOtL-
porotel pla mAnpeg attention-based apyitektoviky yia ta§ivopnon nxou, X®pig ) Xpnon
ouvedKukoV otpeopatev (CNN). Baoiletatl otov transformer yia tnv enedepyacia nxnukov
(PAOPATOYPAPHAT®OV KAl eTtUyXavel kaAutepa aroteAdéopata ano ta CNN poviéda, 16iewg oe
£PYQO0leg IOV AIAITOUV AvAAUOT XPOVIKGOV e§APTOE®V PeYAAng spBéldetag.

To MERT (Music undERstanding model with large-scale self-supervised Training) [9]
etvatl éva poviédo peyadng KAipakag auvtoenoriteuopevng pdbnong (self-supervised learn-
ing), oxedlaopévo yila v Katavonorn aKOUOTIKIG HOUOIKIG. Xprnotporotel poviéda-daokaloug
(teacher models), évav akouoTiKO KAl £€vav POUOIKO, Yid va eKITAISEVUETAL O XAPAKTNPLOTL-

KA mou agopouv tov 11X0 Kat t pouoiky. To MERT éxet arobeiyBei eSaipetikd arnodouxo
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oe S1dpopeg epyaocieg Katavonong POUOIKNG, OIS FIOUOIKY onjavor) (tagging), evtoropog

pubpoU Kat tagivopnon PoUCIKGOV 180V,

0.3.2 Movtéda Katavonong Mouoikng

T uroevotna autr) egetddovial Hoviéda Katavonong POUOIKIG Of MTOAUTPOITKA H0-
VIEAA 1XOU TIOU XPI1O1H0IT0OI0UVIAL Y1d EPYACiEG OTIMG 1] Or}lavor) P0UoIKng (music tagging),
n nepypadr) (captioning) kat n anavinon oe epatoelg (Q&A) oxeTka pe pouoika dedopéva.

To SALMONN (Speech Audio Language Music Open Neural Network) [25] eival éva
KA1voTOP0 MTOAUTPOIIKO POoVIEAOo 1ou enedepyddetat X0, A0yo Kat pouoikr). H apxitektovikr)
10U Xprnowpornotei dUo kwdikomointég nxou (Whisper kat BEATSs) nou ocuvéuddoviatl péowm
evog Q-Former, ermtpénoviag oto poviedo va katavoei Kat va avanaplotd §1adopetikoug
TUToug fxou. Awabétel Suvatotnteg yevikeuong oc tasks ta omoia 6ev €xel ekarubeutel, Kat
rapouotddet e§alpetikég ermbooelg o pyacieg Katavonong nxou.

To MusiLingo [10] yepupwvel 10 xdopa petail POUOIKNG Kal QUOIKNG YAoooag. Baot-
opévo otov kadikorownt) MERT kat oto LLM Vicuna, 10 1oviéAo e§ayel aKOUOTIKA XAPAKTI-
P1OTIKA ATI0 POUCIKA KOPPATIA KAl Ta PETATPENEL 08 Katavontd keipeva. Exnaideupévo oe
6edopéva meplypad®v POUOIKNG KAl EPATHOE@V-ATIAVINOE@Y, TTIAPEXEL aKPBelg TeptypadEg
KA1 AIAaVIroel§ O IOUOIKEG EPWTIOELS, TIPoopEpoVIag egalpetikég ermmbooeig oe MIR epyaoieg.

To MU-LLaMA [26], éva poviéAo KAtavonong PoUoIKAG Katl dnuioupyiag caption, Ba-
oi¢etat oto MERT kat 10 yAwoowkd poviedo LLaMA. Ztoxog tou eivat va erepdoetl toug
neploplopoug oty EAAewpn Sebopévav yia ) Snpioupyia pouoikng amno keipevo. To po-
VIEAO EMTITUYXAVEL UWPNAEG €MmB0O0ElS 08 KAONKOVIA OIS 1] TEPLYPAPI] KAl 1] ATIAVINGCTY] OF
HOUOIKEG EPWTNOELG, UTIEPEXOVTAG O TOAAA a§lodoyikd Kptfjpia.

To M2UGen [27] evoopatdvel TV KATAvonor Kat ) Snuioupyia HOUCIKAG X1 otorol-
WVIAG TTOAUTPOITIKA 5ed0oPEVA OTIMG EIKOVEG KAl Bivieo, EMITPOCOLT®S TG POUOIKNG. LUVOU-
el mpoekratdeupévoug KOSIKOONTEG Kat Xprotporotel to LLaMA 2 yia va ene§epyadetat
Kat va Snuioupyei pouoikr) pe Bdon sloaywyés anod Keipevo, eikéveg kat Bivieo. To M2UGen
Eexmpilel yia 11g embOoElg TOU O £pyATieg MOAUTPOITKEG KATAVONong Kal Snuioupyiag pou-
OKr|G, Tapouctadoviag e§alpetikd amoteAéopata otV KAAAEXVIKY dnpioupyia POUOIKNG

HE€0G TEXVNTIG VONLOOUVIG.

0.3.3 IToAutpomira MovtéAa ‘Opaong

Ta moAutporiikd poviéda 0paocng €ival ano ta o PeAETPEVA OTOV TOPEA TNG TEXVITNG
vonpoouvng, Kabng cuviudlouv Sedopéva 0paong Pe YAOOOIKA POVIEAd, ETUTPETIOVIAS EPApP-
HOYEGQ OTIwG 1) Tieptypadr) eKOvev (image captioning), n anavinon os epwINoelS Paolopéveg
oe e1koveg (visual question answering - VQA) kat 1) moAutportik: Aoyikr) kat diddoyot. Auta
Ta POVIEAA EVORPAT®OVOUV TTANPOpOopieg amo e1kOveg Kat Bivieo pe KelPevo yia va rmapexouv
ouvOeteg epunveieg kat va diaxeipidoviatl ebopéva oe moAutporuxka miaiowa [28].

H apyitektovikn toug nieptdapBdvel ouvnBng évav Kad1Komonty) ewkovag 1 PBivieo, éva
MPOEKTIAIOEUPEVO Peyalo YA®Oo1koO poviedo (LLM) kat pia Sienagr moAutpormkev dsdo-
HEVOV TIOU OUYXPOVILEL TA OIMTIKA XAPAKTINPIOTIKA HE T YA®OOIKEG TAnpodopieg. ITlpony-

Péveg TEXVIKEG OTIOG Ta cross-attention layers €xouv BeAtiwoet onpaviika v aAAnAemnidpaon
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petady ekovag kat yAwooag, ermrpernoviag Babutepn katavonon kat Aoyikr [18].

Ta povtéda auta Bpiokouv epappoyn oe rmokida media, ON®G 1) ATIAVINOL O EPWTIOELG
Baolopéveg oe e1KOVEG, 1] IEPIYyPAPT] EIKOVAV, KAl I KaB0O1jynon poumnot 1] £1IKOVIK®V Ipda-
KI0pwVv otV adAnldenibpacn pe tov mpaypatko koopo. Ilap’ 0Aa autd, e§akoloubouv va
UTIAPXOUV IPOKAT0E1G OTIOG 01 ‘TIapalobr)oelg MOAUTPOIK®V povieAev’ (multimodal halluci-
nations), 610U 10 P1OVIEAO TIPOCOETEL 1] TIApPEPPNVEUEL TTANPOPOPieg TTOU Hev UTTAPXOUV OtV
ewkova. H diaxeipion tov modutporukev Sedopévav os PeydAng avaduong e1KOveg Kat Bivieo
arotelel emiong pia S8UoKoAn npoxkAnon [18].

To LLaVA (Large Language and Vision Assistant) [29] eivat éva mponypévo moAutportt-
KO poviédo nou ouvdudalel 1ov kodikorontr) eikovag CLIP pe 1o yAwooiko poviedo Vicuna,
ETITPETIOVTIAG OTO HOVIEAO va Xe1piletal oUvOeTeg OMTIKO-YA®OOIKEG epyaoieg. MEow g te-
xvikrg Visual Instruction Tuning, 1o poviédo eknaibevetal oe Hedopéva mou ppovviat v
avBporvy ocupnepipopd ektédeong odnywwv (instruction following). To LLaVA ermtuyyavet
£Calpetikd arotedéopata oe KaBnKovia Orwg 1 Ardvinorn os epaToelg mou Baocilovtal o
£1KOVEG KAl 1] AOYKY] Baciopévn ot ekdveg, Serepvaviag poviéda onwg 1o BLIP-2 kat to
Qwen-VL-Chat.

H 1¢6060g visual instruction tuning nai¢et kaBopiotiko poAo otnv emtuyia tou LLaVA,
ETUITPETIOVTIAG TOU VA YVEVIKEUEL O€ B1APOPETIKOUG TOHEIG OpAONG Kal va eKtedei ouvbeteg ep-

Yaoieg AOY1KIG TTOU AAltoUV KATAvonor 1000 g £1KOvag 000 Kal g YA®ooag.

0.3.4 MeydAa 'Awooika Movtéda

Autr| ) evétnta avaduel peydda yAwoowkd poviéda (LLMs) onwg to GPT-2, to LLaMA, 10
Vicuna, to Mistral, to Mistral-OpenOrca kat 1o Claude 3, ta omoia aviuipoo®IIEVOUV TV
eCEAE TV YA®OOIK®V HOVIEA®V 1€ OTOXO0 TNV evioyuor g eridoong oe S1dpopeg epyaoieg
ene§epyaoiag puoknig yAwooag (NLP).

To GPT-2 [30] tng OpenAl fjtav éva aro ta mpeta onuaviika Bhapata oty eSEAEH twv
YAQOOIKGOV Poviedwv, pe 1.5 dioekatoppupla iapapétpoug. H apyitektovikn tou Bacidetat
oe éva POVo armoK®dIKomontr) Kat ivat avtoraAvdpopiko (autoregressive), rmpoBAéroviag
10 endpevo token oe pia akolouBia pe Baon ta mponyoupeva. To GPT-2 £6sige 11g Suva-
TOTNTEG TOV PEYAA®V POVIEARDV X0Pig TV avdaykn e181kng npooappoyrg (fine-tuning), av kat
€XEL TIEPLOPLOPOVG, OTIOG T duoKoAia pe peyddeg akodoubieg kat Yépata mpokataAnyng.

To LLaMA [31] tng Meta, éva avoixtou kadika poviédo, arnedei§e ot ta PiKkpotepa Po-
viéda propouv va arodidouv egicou kadda pe ta peyadutepa. To LLaMA xprouuoroinos
TEXVIKEG OTIOG Ta rotary positional embeddings kat ta otpopata evepyoroinong SwiGLU
ya Bedtioon g amodotikotntag. 'Exel xpnowponownBei wg fdon yia poviéda onwg to Vi-
cuna xat to Alpaca, aAAd avupetertidel PoKAnoelg Ornwg 1 tosikotnta Kat to hallucination
ota anoteAéopata [20].

To Vicuna [32], pe 13 dioekatoppupla napapérpoug, ivat éva finetuned poviédo mou
Baoiletal oto LLaMA kat €xet pooappootel yia 6tadoyoug. Iapd tig aviayoviotukeg ermt-
0800e1g ToU 0 H1aAOYIKEG EPAPHOYEG, TTAPOUOIALEL TIPOKAT0E1G otr S1aTr)pN o1 TG CUVOXHG O
ekteveig Sladoyoug.

To Mistral [15] eivatl éva amnd ta veotepa LLMs, 1o ortoio, pe 7 dioekatoppupla mna-
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PAPETPOUG, UTIEPEXEL O€ EPYAOIEG OTIMG 1] Snpoupyia K®SKa Kat 1 ermiAvon pabnpaukov
npoBAnpatev. Atabétel mponyuéveg TEXVIKEG oniwg 1o grouped-query attention, BeAtiwvo-
VIag v anodoukotntd tou, addd §akoAoubei va avipetItidel MPOKAL0L1g TNV KAtavonon

YAQOOMG YEVIKOU OKOITOU.

To povtédo Mistral-7B-OpenOrca [33] sivat pia mapaddayr) tou poviedou Mistral-7B
TOU £X€1 TIpooappootel Je eknaidevon (fine-tuning). Exnaidevinke oe éva MPOCEKTIKA &-
TTAEYHEVO UTTOOUVOAO Hebopévev amod 10 ouvolo OpenOrca, 10 oroio €xel evioyxubel pe Se-
dopéva aro 1o GPT-4 kat oxedidotnke ya va avarapdyet 1o ouvodo debopévav ou Xpn-
owpono)Onke oty épsuva Orca tng Microsoft. To Mistral-7B-OpenOrca urepéxetl €vavit
AAA®v PoviEA@V otV Katnyopia tou peyeboug tou, katadapBdavoviag v npotn J€on oto
Leaderboard tou Hugging Face yia poviéda pikpodtepa ano 30B napapétpoug katd v Ku-
KAogopia tou. To poviédo METuxe onpaviky avinon oty enidoon oe S1apopa benchmarks,
oniwg MMLU, ARC kat HellaSwag, pe e§aipetika anoteAéopata oe tasks Aoywkrg, pabnuartt-
KOV Katl mapayeyns kodika. H 6tadikaoia fine-tuning tou poviédou nieplddpBave 4 eroxeg

exraidevong oe 8 A6000 GPUs, erituyxdvoviag aglodoya anotedéopata pe Xapnio Kootog.

TéAdog, 1o Claude 3 [34] g Anthropic arotedel onuavukn e§€AEn ota YA®OOIKA po-
Viedd, pe Epgaon ot SnUIoUPYIKY ypadt kat v avaduorn. Ta poviéda g osipag Claude
3, kat kupieg ta Opus kat Sonnet, apouctdlouv auSNPEVES IKAVOTITEG O £PYACIES TTOU
agpopouv 1) SNIIOUPYIKT Ypadr], TV AETTOPEPT] AVAAUOT] KAl TNV APAY®YT) SOPNPEVOV KE1-
pévev. Zupgova pe tv Anthropic, to Claude 3 eivat kaAUtepo otnv SnPOUPYIKY ypadr| o
ouykpton pe 1o Claude 2.1. Zuykekpipéva, 1o Claude 3 kataypadet mocootod emtuyiag 63%
oe oxéon pe 10 Baoko poviedo Claude Instant oty dnuoupyiky) ypagn. Ot ouyypadeig
g epyaoiag “A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative
Writing” [35] avagpépouv o1t 1o Claude Instant 1.2 katéAaBe v tpitn 1 vynidodtepn 9éon
oe 0Aa ta Kpufpla aflodoynong toug, KAtaktoviag tr deutepr 9€orn oty ouvoxr Kat T
beutepn 9€on ouvoldikd, peta 1o GPT-4. Auto deiyvet ot 1o Claude 3, AapBdavoviag unoyn
Vv KaAuteprn enidoorn) 10U ot dnploupyikn ypadr), propel va dewpnbel oAy urooyxopevo
ya ) Snpoupyia SnPoupyikOV KAl CUVEKTIKGOV otiXev. Emmiéov, onwg avadépetatl amo
v Anthropic, to o nipdéopato poviédo, 1o Claude 3.5 Sonnet, deixvel akopn KaAutepn

enidoon oe 0Aeg TG a§lodoynuéveg epyaoieg oe oxéon pe to Claude 3 [36].

0.3.5 M:0odot aoddynong oe Epyaocieg ITapaywyng Adyou

O1 péBodot aglodoynong oe epyaocisg mapaywyng Adyou, oneg n dSnuioupyia otixev, ivat
o oUVOEeTeg Ao Ot otlg £pyacieg tadvounong. e epyaocieg tadivounong, n eniboon evog
povtédou petpiétal eUKOAA Ouykpivoviag v €§060 pe tg aAnbwvég sukéteg tou dataset.
Qotooo, autr) 1 mpoogyylon dev priopel mavia va epappootei o generative tasks, omou ot
£€0601 eival SnUIoUPYIKEG KAl Mo eAeUfepeg. Ty evOTTA AUTH, £CeTAlOVIal HEPIKEG Ao T1g
pebddoug rmou xprnotporiolovviat ot BBAoypagia kat eival katdAAndeg yia v agloAoynon

HOVIEA®V ITApAY®YNS OTiX®V.
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0.3.5 MeBobo1 adlodoynong oe Epyaoieg ITapaywyng Adyou

0.3.5.1 Avurelpevikég Metpirég

Zto paper MusicJam [1], xpnowporno}Onkav 1€00eplg PACIKEG AVIIKEIIEVIKEG HETPIKEG
yla mv adodoynon g nowtntag v napayopevev otixeov: BLEU, Distinct/Diversity,

Novelty, kat Coherence.

e BLEU [37]: Autn 1 HEIPIKY XPNOIHOTIOIEITAl KUPI®G OV autopatn HETAppact Kat
HETPA Vv erukdAuyn n-grams petaiy v aAndvev otiXev Kal TV Iapayopevey

otixov. H petpikr) BLEU Baociletat otnv ediowon :

N
BLEUy = BP - Z exp(wy,logpn),
n=1
ortou 1o BP eival pia motwvr) mou ermBdadAetal ota oUviopa amnotedéopata, Oote va Pnv
guvoouvial ot pikpeg npotaoels. To BLEU mapéxet pla €kova ylia 10 ooo Kovid
eivatl o1 mapayopevol otixot otoug aAndivoug otixoug, aAAd ouxvd mPodayet v akpibr)

avuotoyia Aégewv, napapedoviag ) Snuioupyikotta.

e Distinct/Diversity [38]: Autr) nj peTpiKy PETPA TV MOKIAIA TRV MTAPAYOUEVQOV OTIX®V,
unodoyidoviag v avaloyia 1ev povadikov n-grams o€ 0XE0T € TOV CUVOAIKO aplOpo
n-grams. H e€ioworn g petpikng eivat:

unique(Ngrams
Distincty = | ique(Ng )|

| Ngrams |

H petpikn autr) podyet tn Ae§idoyikn mokidia, adAd urdapxet o Kivouvog va odnyroet

o€ OTiXoUg TToU givatl urtepBoAka acUvEeTol KAt Jir) (QUOLKOL.

e Novelty [39]: H petpikr) auvtr] petpd tov A0yo 1oV ondviev n-grams oe ox£0rn e 10
OUVOAKO apBpo v n-grams. Zrdvieg Yempouvial ol ppacelg mou dev Ppilorkoviat
avapeoa otig 2000 o ouyveg. H e€iowon g petpikng eivat:

infrequent(Ngrams
NoveltyNzl Yrequent(Ng )I‘

| Ngrams |

To Novelty a§lodoyei v P@OTOTUTA TOV OTIX®V, CUYKPIVOVIAS TOUG HE TIG IO KOWVEG

ppaocelg, ipoodilopidoviag €101 TV Kavotopia ot yA®ooa mou Xprnotjonoieitat.

e Coherence [40]: H petpikr autr] PeIpd 1 OUVOXN T®V OTiXV, Urodoyifoviag tov
ap1Opo v Aégewv rou enavaiapBavovial oe €vav otiXo Kat raipvoviag tov HEco 6po

TV ermpépoug arotedeopdtwv. H e§iowon sivat:

1 M e
Coherence = — - Z 1(count(w;) > 1),
M .
k=1 i=1
orou M eivat o apiOpog tev tpayoudiav Kat . 0 aptfpog tev Agewmv rou napaxdnkav
yla 1o 1payoudt k. Av Kat i ouvoxn £ival Kpiowin yia v mowotna vog tpayoudlou,

auTy 1) IPOCEYY1OT) BEV HETPA EMAPK®S TI] ONIACI0AOYIKE] CUVOXT), KaO®G 1 emavainyn
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AéEewv prnopet va odnyrnoet oe uyndr Babpoloyia xepig ol otixot va givat paypatka

OUVEKTIKO1 1] QUOIKOL.

Evo o1 mapandve PeTpikeég MapEXouv Xprotueg mAnpopopieg, kabspia £xel T0UG mEPLO-
plopoug tg. To BLEU xat to Coherence tovidouv tn yAwooikn akpiBeia €1 fapog tng
dnpoupykotntag, eve ot petpikeg Distinet kat Novelty prnopet va nipowBrjcouv v pova-
dwkoua g Pdpog g caprjvelag. Mia o oAoxAnpeopévn aglodoynon da propouoes va
neplAapBavel avbpoIveg Kpiloelg, ol omoieg AapBavouv unoyrn tr Yepatiky OUVETEWd, TO

ouvalodnpatiko Babog Kat tr CUVOAIKY] HOUGIKOTNTA TRV MTAPAYOHEVOV OTIX®V.

0.3.5.2 BaBpoloyia Opoidtntag pe Cross Encoder

Ot Cross-encoders sivat poviéda Baoiopéva oe petacyxnpatioteg (transformers), oxeda-
opévol yia va ouAdapBavouv tn oxéorn petadu uo e106dwv. Edikotepa, ol cross-encoders
AapBavouv uo £10660uUg Kat T1§ KOOIKOTIO0UV padi oe Pia Koivr] avarnapaoctaocn. Auto da-
@épet and toug bi-encoders, 6rou ot §Yo eicobot repvouv avetaptnta oto poviédo BERT.
[Mapoddo mou n xpnon cross-encoder €ivatl o ATIATTTIKY] UTOAOY10TIKA, PIOPEl va Anotu-
noel pe peyadutep akpiBela v opowdtna petadu duo kewpévev [41].

Autr| n pébodog Babporoynong g opolotntag Bondda va amopeuyxBouv ot aduvajieg
peTpkav ornwg 1o BLEU, 10 omoio umoAoyidel povo v emukaduyn tov n-grams. To BLEU
ayvoel meputtooelg orou §Uo Keipeva €xouv 1o 1610 vonpua aAld Xpnoipornolouv GUVAOVULES
Aggeig 1 Bragopetikr) @paceodoyia. Ot cross-encoders PItopouv va avayvopioouv autg Tig
TIEPUTTOOELG KAl VA AOd®OOo0oUV Hid o akp1Br] EKTINOL) TG OPOOTNTAS TV KEPEVOV.

Auto kablotd 1 xprion cross-encoders katddAndn yua v agloddynon g dnpioup-
ylag otixewv, kabag propei va petprjost v opolotnta oe eninedo vorpatog Kat oxt Lovo
YA®OOKNG akpiBelag, kAT rmou eival {®TKAG onpaociag yla ta generative tasks orou n 6n-
H10UpPYIKOTA KAt 1] tapadAayr ot @paceodoyia propet va eivat e§loou onuavikeg pe ty

axkpiBela.

0.3.5.3 JudgeLM: KAiparoupevo LLM yua A§toAdynon

To JudgeLM eivat éva ekmaideuévo Peyado yA®OOoIKO poviedo oxedlaopiévo va a§lolo-
yvel tnv eniboon dAAwv LLMs og avolktou turiou epyaocieg [17]. O1 mapadoolakeég PETPIKEG
a§loAoynong ouxva arotuyxavouv va aglodoyrjoouv ta LLMs pe akpiBeia, A0y tng moAu-
rmokottag Kat g petaBAntotnag v e§66wv toug. To JudgeLM avupetwrtidel autd 1o
poBAnpa péow g eknaideuong open-source POVIEA®V, ONKG To0 Vicuna, Xp1oti10rol)viag
£va peydAng KAipaxkag ouvolo sdopévev rou neptdapBavet 105.000 tasks kat agiodoyrjosig
napayopeveg ano 1o GPT-4. To poviédo €xel oxeblaotel yia va Aettoupyel 0§ KAIAKOUEVOS
KAl arotedeopatkog aglodoyntrg, ermrtuyxavoviag uynAotepa emineda cupgoviag and ot
ol avBpoIvol aglodoyntég.

To JudgeLM 61a0€tel apX1IeKTOVIKY) IOV eival H1abeotin oe pey€bn rmou kKupaivovial and
7B ¢wg 33B mapapérpoug. Ta va perprdoet g epguieg npokatainyelg (biases), onwg n
nporatdAnyn 9éong (position bias), yvoong (knowledge bias) xkat popong (format bias),

Xpnoipornotel teXvikég onwg swap augmentation, reference support xat reference drop.
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0.4 To ouvolo dedopévav

H texvikn) swap augmentation ekraidsvetl 1o PovieAo va Kpivel 1o TEPIEXOREVO KAl OX1 T
9¢on wwv anaviioenv, addaloviag 1 oelpd TV anavinoev ota dedopéva eknaideuong.
To reference support fonba 1o poviedo va Pedtiwoet v akpiBela oe epyaoieg Baociopéveg
oe yeyovota, eve 10 reference drop to kabiotda wkavo va aglodoyel 1600 pe, 000 KAl XwpPig
avagopég, IPooPepoviag peyadutepn) eueAigia.

To JudgeLM uropei va aglodoyrioet Siadopa povieda oe oAAEG epyaoieg, Onwg aglo-
Aoynon piag 1] mOAAAMAGV AMAVIHOE®V, TTOAUTPOITIK®OV HOVIEA®V KAl §1aA0youg ToAAArAGv
YUpwv. Zuykpivel TG e§060UG TV HOVIEA@V He avapopég 1) pe ta arotedéopata dAAwv po-
viedwv, mapéxoviag Aertopepeig Pabpodoyieg kar emednyrjoelg.  Ze 1odAég adiodoyrioelg,
erutuyxavetl v ano 90% ocupgovia pe 1o GPT-4, Eenepvoviag akopn kat to GPT-3.5.
Erurméov, to JudgeLM propei va aglodoyrjoet 5.000 deiypata oe poAig tpia Aertd, xpn-
owponowwviag 8 A100 GPUs, kaBioteviag 10 Pla 01KOVOUIKA ATrtodoTiKI] Kal KATPAKOUHEVT

AuUon oe ouykplon pe apadoolakég peBodoug agloddynong amo aviporoug 1 to GPT-4.

0.3.5.4 A§oAoynon pe faon ta LLMs

ITpoopateg pedéteg deixvouv 6Tl 0t afloAoyroelg MOV IPAYHATOrooUvIal and peydia
vYAwooikd povieda (LLMs) priopet va €ival mo arnoteAeOpATiKES A0 TIG AVIIKEIPEVIKEG HE-
TPIKEG, E161KA OE EPYAOIEG MTOU AMAITOUV SNIOUPYIKOTNTA Kat TToikiAopopdia [42]. Alvovrag
OUYKEKPIIEVA KPITHPLA, OTI®G 1) SNHI0UPYIKOTTA, 1) OUVOXI), 1] QUOIKOTNTA KAl TO ITOCO £U-
KoAa propet va tpayoudnBei, ta 1oxupd LLMs priopouv va agloAoyrjoouv arnoteAeopatika
TOUG MaPAYOHEVOUS OTiX0UG.

'Eva npoBAnpa rmou ouyxva MPOoKUITIEL Pe autr) 1 péBodo eivatl ) mpokatdAnyn mou pIto-
pel va evoopatovouv ta LLMs étav kavouv autég tig Kpioelg. 'Exouv apatnpnBetl Siadpopeg
HOop®EG TIPOKATAANYIG, OTIRG 1] IIPOKATAAN YT J€0nG, OIOU T0 POVIEAO Telvel va IIPOTIIA OU-
YKeERPIPEVEG DE0eg, 1) TPOoKATAANWH UItEPBOAIKEG (PAuapiag, OIIOU £UVOOUVIAL LAKPOOKEAEG
ATaVINOoE1S aKOa Kat av eivatl xapnAotepng mootntag, Kat 1 IpoKAtaAnyr autoevioxuong,
OTIOU Ta POVIEAA TPOTIHOUV TI§ AIAVINOElS TIoU £Xouv dnuoupynoet ta idwa [43].

Zto paper “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena” [43], ava-
pépetat ot 1o GPT-4 epgavidel moocootd oupdprviag 80% e toug avhpodIvoug avaAuteg,
0000To IOV givat 100 j1e T oUPPGVIA PETadly Tov avBpodruvey aglodoyntov.

Qotooo, oto paper “Reference-Guided Verdict: LLMs-as-Judges in Automatic Evalua-
tion of Free-Form Text” [44], SiarmotdOnke o011 1] Xprion noAAanAqv kat roikidov LLMs wg
KPITEG PEIDVEL TIS TIPOKATAANWELS TOV POVIEA®V KAl BEATIOVEL ONPAVIIKA TNV euBuypdappion
pe g avBporveg kpioelg, €181kd oe SUokoAa tasks mou mepldapBavouv eAelBepo Keipie-
Vvo. XV OUYKeKplpévy 1éBodo xpnotpomnow)fnkav 6U0 poviéda avolXtou Kodika kat éva
KAeg10T0U Kd1ka: Mistral-Instruct-7B-v0.3, Llama-3.1-70B ka1 GPT-3.5-turbo.

0.4 To ocuvoldo Sedopévav

To ouvolo Sebopévav mou xprnotporojoape eivat 1o DALI, 1o oroio ieptdapBavet 1pa-
youbla pe OUyXPOVIOHEVO 1)X0, otixoug kat voteg [45]. To DALI anoteAeital ard 7756

Tpayoudia kat repiExel apxeia MP3 mou ocuvodeuovtal amno otixoug oe Siapopstika emnineda
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Aertopépelag, Onwg rapaypdagoug, ypappesg, Aggelg kat voteg. Kdabe tpayoudt ouvodeve-
Tat and peradedopéva, onwg eidog pouoikng, yAoood, kaAAttéyvr, titAo Tpayoudiou kat
aAprnoup.

Ta apxeia MP3 tou cuvodou Sebopévav dev eival draxmplopéva os @ovr) Kat cuvodeia.
IMa va amnoktfjooujie T HOUOIKN ouvodeia, Xprnowponowjoape tm BiBAoOnkn Spleeter [46],
1] OTIO1d TIPAYHATOIIOEL S1aX®P1o10 o€ U0 1PN : @@V Kat ouvodeia. Autog o Siax®plopog
fTav anapaitntog yia va anotpéPoulie ta povida va divouv e€odoug Baocet tng @ovrg.

Eruudéov, yia va augfjooupe v eridoor) tov eKMatbeudevaV POVIEADV 1aG, XPEIAOTKE
Va KAVOUE Jia Io evdedexr) mpoernedepyacia 1ou ouvolou debopévav. Zuykekpipéva, 1o

OUVOAO BebopEVaV TTEPIEXEL TA €81 XAPAKTINPIOTIKA :

Aavbaopévn opBoypadia pepkav ALgemv TV OTiXGOV.

Alaxoplopo ALgemv 0e PIKPOTEPA THHIATA AGY® TOU TPOIOU IIPOPOoPAg TOU Tpayoudioty

(r.x. tomo rrow avti yia tomorrow).

AouvrOiotn xprjon anootpodnv (r.X. evrything avti yia everything).

AavBaopévog XapaKinplopog HEPIKOV TPAYOoUdINV ®g ayyAlKd, eve ntav oe AAAnN YA®o-

oda.

Ta mv avipetomon autev oV IPpoBANPATeV, TPAyRATOnojoaile Vv §Hg IPoernedep-

yaoia:

o Agaipéoape ta tpayoudia rou sixav Aégelg mou emavadapBavoviav ndve ano Ipelg
(POPEG, V1A va anotpéPoupe v enavdAnyn A&gewv oty €5060 twv exknaideudpevev

HOVTEA®V.

o Agpaipéoape Tpayoudia mou eixav katnyoptlonownBel AavBaopéva g ayyAlka pe 1
BonBeia poviedou avixveuong yAwooag [47]. Metd, pe XelpoKivito EAsyX0, apaipgoayie

Kat gpayoudia mouv, eve HIav ota ayyAIKd, TEPLELXAV PEPIKEG PPAOCELS Ot AAAEG YAWOOES.

e Adaipgéoape ta TIpayoudla mou £ixav OTiXoug HE MAUAEG, KAl AVIIKATAOTIOAHE TOUG
€181KOUG XAPAKTIPEG, E1TE 1€ KEVO XAPAKTHPA EITE, OTNV MEPIMTTOON YPNPimv, ypadoviag

oAoypdadwg Tov aplduo.
® AVUKATAOTHOAE T OUVEVOOT AECEMV 11E ATOOTPOPOUG, HE TV AN P HoP(dr] TOUG.
e AopOwoape tr AavBaopévr opboypadia ALgewv, Yxprnoworowviag v BiBA1o0rK:

Spellchecker [48] yia tv avixveuorn tov Aégewmv pe opbBoypadikd Adbn, kat petd pe
Xelpokivntn 810pOwor) toug.

Metd and autr] v mnpoenedepyaocia, katadniape oe éva ouvolo 3111 tpayoudiwv, 1o

oroio xwpiotnke oe training set kat test set oe mocootd 80-20.
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0.5 Ta povtéda rou dokipaotkav yla kabe ouvduaopo aro modalities

0.5 Ta poviéda mou Sokipactnkav yia Kabe ocuvduaopod amo

modalities

0.5.1 Amno REIPEVO OE KEIPEVO

Apxikd, ot Sadikaocia apaywmyr) otixwv anod keipevo, Soxkiyppdoape ta LLMs mou xpn-
olporolouvial Kat pe aideg pebodoloyieg apyotepa, KAVOVIAG AUTA Ta TEPANATA VA XPNot-
pevouv wg peAéteg analowdpng (ablation studies) yia ta mpotevopeva pipelines napaxkdte.
Ta LLMs mou doxkipdotnkav givat ta Claude 3.5 Sonnet, GPT-2, Mistral OpenOrca kat Vi-
cuna. Autn n Sokin npaypatono)fnke apxikd Xopig nepattépe exnaidsuorn (out-of-the-
box), 6ndadr) xwpig rpocappoyr] oto ouvodo Sedopévav nou srurégape. Emnedn) to GPT-2
etvatl completion poviédo kat 6t instruction poviédo, mapéyoupe anMA®g Ty MPWT YPAPL)
TOU Tpayoudlov Xmpig Kapia evioAn.

Aoxipdaoape emiong katda moco 1o finetuning tov GPT-2 kat OpenOrca oto ouvolo Se-
dopéveov DALI Sa BeAdtiove v nmowdinta v napayopevev arnotedeopdtev. ‘Ocov agopd
1 pop®r) Tou ouvodou dedopévav yia v eknaidevorn, kabe detypa eknaidevong eivat €éva
Tpayoudt.

Xpnowonowjoape v 1exviky] LoRA (Low-Rank Adaptation) yua tnv mpocappoyn, 1

Ortoia EIMIPEIEL ATIOOOTIKY] TIPOCAPHOYT TOV NEYAA®V YA®OOIKMV OVIEAGDV.

0.5.2 Ano reipevo & X0 o€ KEIPEVO

H 6wadikaoia dnpioupyiag ketpévou aro keipevo & 1)x0 rieptdapBavet v Xpron g pou-
O1KNG oUvodeiag KAl T@V MPONYOUHEVOV OTiX®V &g eicodo. Ta o poviéda mou Soxkipdaotnrav

o€ autn Vv Kamyopia eivat 1o poviedo VAE AST-GPT2 kat 1o poviedo Whisper-OpenOreca.

0.5.2.1 Movtédo VAE AST-GPT2

Yroyevoviag oty avanapayoyr) g dovlesiag towv Chuer Chen et al. [1], akoAoubrjoape
Hia apépola POoEYYLoT HE AUty IoU Ieptypddetal oto paper toug. Kabwg o kodikag kat
1 péBodog mpoernegepyaociag mou ypnotporoinoav dev eival diabéoa, npoorabricape va
akoAouBrjooupe 600 10 HUVATOV TIEP1O0OTEPO TNV H0UAELA TOUG Pe BAot) TS AN POpopieg TTou
bivovtat oto paper.

To poviédo dnuioupyiag otixev mou mpoteivouv neptdapBavet évav Variational Autoen-
coder Baociopévo oto GPT-2. H apxitektoviki tou poviéAou potddel pe éva Transformer,
OITou 0 K@OIKOoTIONTNG £ival o Keadikornoutrg fxou AST kat o anok®wdikorontg ivatl 1o
GPT-2. To povtédo Asttoupyel wg €€ng: 10 mel-spectorgram tng pouoikng ocuvodeiag 5
Seutepolérmwv eloayetat otov kwdkorouy AST, ard tov oroio e§ayetal 1 Aavbavouoa
avarntapaotaon Hpysie. AU 11 avarnapdotaon petacxnpati¢etal oe duo davuopata mou

MEPLYPAPOUV TV KATAVOUT TNG HOUOIKNAG, Kat Urtodoyidovial cupudeva He Toug e61g TUIoug

u= W,uHmusic

Wo H music

0= eXP(T)
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It ouvéxeld, MPAYHATOIOEiTAl EMAVATIAPAIETPOIION 0T, Orou yivetat detypatoAnyia

ano TV KAvoviKi KAatavopr], ®ote 1o AavBavov diavuopa va eivat pn VIETEPHIVIOTIKO
z=u+00ee~N(QO,I

To AavBdavov diavuopa €10dyetal OToV TIOAUTPOTTIKO AMMOK®MOIKOMOUTI] PEC® EVOG Cross-
attention layer. O anokm&ikornontg AapBavet v mPonyouHevn YPARHn otiXev &g 10080,
n omoia yprnowporoteital wg context yia ) dSnpioupyia ng enopevng ypappng otixeov. H
APXIIEKTOVIKI] TOU poviédou @aivetatl oto Xxnpa 0.1

To paper xprnotpornoinoe to ouvolo dedopévov DALI, ano 1o oroio Siatripnoav povo
pouoikn) ouvodeia kat xpnotponoinoav ypappég Sidpkrelag 5 deutepodémav. Alatfprnoav
2590 tpayoudia, xwpidovidg ta oe 2072 kat 518 yia 1o training set xkat test set avtiotoka.

AxoloubBrjoape v 161a p€Bodo exkmaidsuong, xpnoponopviag Eva cuvduaopod Tou re-
construction loss kat tou KL divergence wg loss function, ornwg meptypdgetat anod v

MAPAKAT® ouvAaptnon:
Lo(x, Y. z, §j) = Lreconstr(Y. §) +.BKL(CI¢(Z | x) || p(2)),

OTIOU TO Lyeconstr UTOAOYiel ) S1adopd petadl tov mapayopevey otiX®v Yy Katl TV d-
AnBwov otixev §, 10 KL(qe(z | x) || p(z)) afodoyel ) Sapopd petafu tou p(z) xat mg
KATAVOPLG ITOU TIAPAYETAl A0 TOV K@OIKOIoty), Kat 1o B eivatl 1 urnepnapdperpog mou

eAéyxel ) ouvelopopa g anoxkAiong KL oto loss.

0.5.2.2 Whisper-OpenOrca

Egetdloviag ta arotedéopata tou ImporyoUuHevVoU HOVIEAOU, MAPATNPHoape OTL 1] Totl-
otntd toug Bev frav emapkng. Aoye® Tou meploptopévou context oto omoio Paocidotav 1
mpornyoupevr p1€0060g, 01 Tapayopevol otixol 8ev 1Tav apKETA OUCLAOTIKOT KAl GUVEKTIKOL.
Auto pag odnynoe oty egepevtvnon AAA®V POVIEAGV HE IO OUYXPOVEG APXITEKTOVIKEG KAl
erutA£ov npoekmaidsuon.

Y& auto 1o poviedo, xprotpornoloupe to poviedo Whisper wg tov audio encoder kat 1o
Mistral OpenOrca owg to LLM. Autd ta PoviéAa (optedvovidl PE Td MPOEKIASeUpéva ToUg
Bapn, KAl 1 aviiotoiy1on IOV NXNTIKOV Avariapaotdoe®Vv Pe TOUG OTiX0UG YIVETAl PHEO® EVOG
projection layer, to oroio eivatl 1o povadiko TR Tou PoVIEAOU IoU ekmatdevetat (n apyite-
KTOVIKI] TOU povtédou gaivetal oto Xxnpa 0.2). H cuvdptinon anoAeiag rmou xpnotponoteitat
givat to cross-entropy loss petady 1wv aAnBwvov otixev (§j) Katl tov mapayopevey otixov (y),

He tov TUIo va Sivetal mapaxkate :

N
L= yilog()
i=1

IMa va avupeteniocoupe 1o pdBAnpa tou reploplopévou context ToU MPONyouEVoU 110-
VTEAOU, TO OIT0i0 PEl®VE ONPAVIIKA T OUVOXI IOV MAPAYOHEVOV OTiX®V, £KMAldsUoape 1o
poviédo 6ivoviag 0AOKANPO TO IIPONYOUHEVO GUVOAO aAnBivav otiX®v g context oto prompt

tou LLM. Me mapopolo 1poro, katda 1o inference, to eknaidsupévo poviedo AapBavet tn
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0.5.3 Amo keipevo & 110 oe Keipevo oe Kelpevo

But those people
H Sampling N 7 keep or‘zlmoving
Musi » 1
l s )
il GPT-2 @

(@ ]
. Add & Norm R
Music Encoder :

T J Feed Forward
Positional Encoding —
@ Add & Norm -
1
M| IR N N S I Cross Attention x 12
I f § & 1 3
Linear Projection v ¥k 1¢

TTII L=,
==3 =5 a2 T

Self-Attention
t ¢+ ¢

I[-|I|'||l§‘

i

Music Inputs

f|..||||||-‘| I know I can’t be free

Zxnua 0.1: To poviéflo VAE AST-GPT2. IInyn: [1]

pouotkr] ocuvodeia kat tou {ntape oto prompt eite va §ekwrjoetl va dnpoupyel otixoug, eite
va ouvexioet autoug rou £xel {16n napaget. Aebopévou 61t auto to LLM eivat instruction po-
vtédo, oe avtiBeon pe 10 GPT-2 nou eivatl completion poviéAdo, padi pe toug rmponyoupevoug

otixoug Sivoupe kat pa odnyia oto prompt.

0.5.3 Ano reipevo & 1X0 O€ KEIPEVO O KEIPEVO

H &wadikaoia dnpioupylag and nyo oe keipevo pe ermrdéov Prpa nepdapbavel éva
erunpoobeto otadilo dnpioupyiag oe cUYKPLoN HE TV IIponyoupevn pebodo: evoidpeoa ma-
payovial €TKETEG POUOIKLG (music tags), o1 omoieg ot OUVEXEIQ XPNOHOIIO0UVIAL Yid 1)
dnpoupyia TV TEAK®V otixv tou Tpayoudiov. To poviédo mou Xpnotponoteital e auty )
61atadn eivat to SALMONN-Claude. Me aut6 kat to enodpevo povigdo, 9édape va e€etacou-
pe nog ennpedadetal 1 dnpoupyla otixewv otav nepvape aro diadopetika modalities mpv
katadroupe ot Sadikaoia dnpioupyiag otixwv.

Me autd 1o poviédo, aglonorjoape t) SnPoupyKOtta Kat tyv e§AIPETIKY) £rtiboor tou
Claude otnv dnpioupyikn ypadrn. XUYKeEKPlpévd, XPNOLIOMO|OAHE T0 IIPOEKITAISEUEVO
poviédo SALMONN yia tnv e§ay®yr] £UKEIOV Ao T POUCIKY. Xprnotponotjoape prompts
ou Bpébnkav oto mapdptnpa 10U OXETKOU paper [25], kabag eixav kadd anotedéoparta.

Znuoape and 1o poviedo va Swoel pa Asmiopepn meplypadr) g HOUOIKNG ouvodeiag,

MinAouatxny Epyaoia



KegpdAato 0. Extetapévn EAAnvikr) IlepiAnyn

‘ Music Lyrics ‘

|

Mistral OpenOrca

|

Projection Layer )

“You are an assistant that helps create the

lyrics of a song in a way that matches the
given music accompaniment. You are

I given the previous lyrics of the song and
you create the next lyrics. When the token

'<START>'is given as previous lyrics, you

Whisper Encoder write the beginning of the song.”

|

Music
accompaniment

Zxnpa 0.2: To povtéAo The Whisper-OpenOrca.

va e§dyel 10 ouvaiodnua g POUCIKAG KAl Td POUCIKA 0pydva IOU akouyovidal. AUTEG
01 €TKETEG XPNOHOTIOINONKAV 0tr) oUVEXeld yia va kabodnynoouv to poviédo Claude otn
dnpoupyia otixev Baciopévav otig TTApayopeveg POUOIKEG eTKETeG. H apXlTIEKTOVIKY] TOU
povtédou @aivetat oto Xxnpa 0.3.

Aoxpdaoape eriong av ) texvikny few-shot learning priopouoe va BeAtidoet akopa nepio-
OOTEPO TNV MOOTNTA TV MAPAYOPEV®V OTiXwVv, diapoppovoviag 6Uo Stapopetika prompts
yia 1o poviédo Claude: éva yia zero-shot kat éva yia few-shot.

Zuv nepiroon tou few-shot prompt, doaypie oto poviédo €61 napadeiypata, Vo anod
KAaBe éva amod ta Kuplotepa POUOIKA €181 TOuU untapxouv oto ouvodo Sedopévav DALI: mor,

POK KA1l EVAAAAKTIKT] JOUCIKT).

0.5.4 Ano reipevo & 11X0 O KEIPEVO OE £1KOVA OF KEIPEVO

H dwbikaoia dnuioupyiag arno keipevo & 10 0g £1KOVA KAl 0T OUVEXElA Of Kelpevo
neplAapBavel éva emrAgov Prjpa oe oUYKP1on HE v mponyoupevn Siapoppwor). Xe autod
10 otddio, dnuoupyeital pua ekova pe BAaor pia neptypadr) mou rnapdyetatl anod 10 POVIEAO
Katavonong HOUCIKIG. XTI OUVEXELD, Ol OTIXO01 ITApAyovIdl Ao TV £1KOVd.

Me autd 1o poviédo, 9¢Aape va Sokipiacoupe av n poobKr g TPOIKOTNTAG TG 0paong
(vision modality) 9a priopovoce va audrijoet ) dnpoupykotnta otr Sadikacia dnpioupyiag
otixov. H 61atagn autou tou poviédou aroteAeital and ta £€ng Prjpata: mpota, divoupe )
pouoikny ouvodeia oto SALMONN kat T0 IIPOTPETIOUHE VA TEPLYPAYEL Pld TTAYOHEVT] OKI-
v1] tawviag rou 9a priopouoce va ouvodeustatl anod ) dedopévn pouoikr). Agdopévou Ott 1o
povtédo €xel eknaldeutel va aviamokpivetatl EMApKOG 0€ SNII0UPYIKEG EPYACIEG, TO ATTOTEAE-
opa €ival 1KAvoTowTiKO. Xir OUVEXEWd, TO ArotéAeopia Tou poviedou divetal oto Claude,

1O OITO10 TIPOTPETIETAL VA TPOIIOTIOOEL TNV TIEPTYPAPT] £T01 WOTE VA PITOPEL va XP1 o100 -

m Aitflopatukn Epyaoia



0.6 Ilelpapata kat Antotedéopata

“You are a helpful assistant that writes song
lyrics based on provided tags like
instruments that are used, the sentiment of
the song, and an overall description of the
background music. Thelyrics shouldbe |l % Cl d
original, coherent, and singable. If an au e
existing song is referenced, the lyrics
should be a new creation inspired by the
music accompaniment of the song.”

Music Tags

D Q-Former queries
D Whisper features
U BEATs features Large Language Model LoRA %
D Auditory embeddings
D Textual embeddings

1
1
1
:
]
]
]
]
1
1
1
1
1
1
1
:
1
/% Frozen/Trainable DJ]]]I[I [D]]Il]] i
:
1
]
n
n
n
"
n
n
n
n
n
n
:
]
]

1 1

Window-level | ________%_________ )
Q-Former H N | 4[ I Please describe the music in
detail.
Whisper What is the emotion of the
Music _~"|__ Encoder - music? Explain the reason
accompaniment _| ‘\ BEATS in detail
: Encoder S ‘Which musical instruments
: do you hear?

Zxnpa 0.3: H &wataln nyxog kair Keiuevo o Keluevo o€ Keipuevo. H diaxexoupsvn yoauun
nepuceiet 1o povteAo SALMONN. Tlpooapuoousvo ano [2], [3] kat [4]

9el wg mpotporr| yua to Stable Diffusion. AxkoAouBwg, n andavinon tou Claude divetatl oto
Stable Diffusion, to omoio dnpoupyei pa ekdva, KAl avtn 1) €1KOva TeAKA €10AYETAL OTO
povtédo LLaVA, 1o oroio mpotpérnetatl va dnpioupyroet otixoug Baociopévoug otnyv eikova. H
APXIIEKTOVIKTY] TOU HOoVTéAoU @aivetatl oto Xxnua 0.4.

Eruurdéov, doxkypdoape v anddoon autng g datadng pe ) Xpron g exvikng few-
shot learning oto povtédo LLaVA, 6ivoviag ta napadeiypata tpayoudiev rnou dwoape kat
otV mponyoupevn diatagn.

EmnpooBeta, doxkipacape pa Stapoppwon og ablation study yia to SALMONN-Stable
Diffusion-LLaVA. Asbopévou ot to poviedo LLaVA Baociletat oto Vicuna-7b-vl, mapalei-
yape 1o vision modality, dnpioupyoviag €tot to poviédo SALMONN-Vicuna. Ze auth
S1atagn, to poviedo SALMONN mapgyet ty mepypadr) tng OKNvrg tng taviag, Kat ot ou-
véxela 1o poviédo Vicuna mpotpénetat va Snioupyoet Toug otiXoug pe BAon v meptypadr)
ou 800nke ard 1o SALMONN.

0.6 IIsipapata xat AnotesAéopata

Katd v e§ayoyn anotedeopdatev, aglodoyroapie ty eridoon tev poviédev oto test set.
AOY® TOU KOOTOUG OPIoEVOV UTIOROVAd®V tev §U0 tedeutaiov diataewv, n a§loddynon éyive
oe 100 tpayoubia. H adloddynon rniepthapBavet, 0mwg avaAvetal ASITIOPePETTEPA OV UITOE-

votnta 0.3.5, tov urtoAoyiopo g Pabpoloyiag opototntag pe ) Xpron vog cross-encoder,

AwinAouatxny Epyaoia m



KegpdAato 0. Extetapévn EAAnvikr) IlepiAnyn

“Create song lyrics that match the
atmosphere and overall sentiment
depicted in this image™

Music Lyrics

‘ Stable Diffusion prompt

“You are a helpful assistant that turns I
descriptions of movie scenes into _Y)
Stable Diffusion prompts, removing —| % Claude l

any references to music.”

‘ Movie scene description

D Q-Former queries
D Whisper features
D BEATs features | Large Language Model | LoRA "\‘
D Auditory embeddings

D Textual embeddings t t
1 e it - [

‘Window-level __________‘: __________ t
Q-Former % [ I I “Describe a paused movie

e 1

] scene that would be

z accompanied by this musie.
Whisper T Analyze shortly the setting,

Music Encoder characters, and plot. The

. -—) description should be
accompaniment
P BEATs | inspired by the mood and
Encoder

atmosphere of the music.”

Zxnpa 0.4: H &wataén 'Hyog kat kKeiuevo o€ Keiuevo oe eukova oe keiusvo. H diaxekoupsvn
yoauun wepucieiet o povtéAo SALMONN. IIpooapuoousvo aro [2], [3], [4] kat [5]

Kat pebodwv aglodoynong rou Baciloviat oe LLM, 6nwg eivat i aglodoynon pe o JudgelM,
KAl Ol IIPOTPOIEG O 10xUpd Kat rmokida LLMs. Tlapéxoupe meploodtepeg AEITTONEPELESG YA
KAOe pérpnorn Kal ta povieda rou xprowpornow)fnkav yia tg aglodoyroeg twv LLMs kat,
Ot OUVEXELA, TIAPOUOIACOULIE TA ATTOTEAEoPATA aUT®V TV adlodoyroewv. Emiong, ie§dyou-
e éva user study yia va AdBoupie ) YVOHIL TOV XPNOT®V OXETIKA J1€ T POVIEAA TTOU TIETUXAV

TV KaAUtepr) oUVoAlKr) enidoor) pe Tig rponyoupeveg nebodoug adlodoynong.

0.6.1 ZInpaocwodoyikrn Kewypevikyg Oporotnta

Avayvapidoviag v aduvapia tou BLEU okop, anogacicape va Xpnotonotjooupe pa
1£0060 rou urtoAoyiet v opoldtnTa petady v aAndvev KAl TV IApaAyoHEVOV OTIXOV, X©-
pig Tov auotnpod EAeyX0 TV ermKAAUPenv n-gram. [a v emiteudn autou, XPnotonojoape
éva povtédo cross-encoder. Av kat ot bi-encoders mapdyouv avarnapactaoelg IIPOTACE®V
otaBepav Hlaotacewv Kat eivatl UOAoy10TIKA arnodotikol, ouyvd £€Xouv xapniotepn anodoor
oe 0x£o1 HE Toug cross-encoders, Ol OO0l PITOPOUV va ASlOIO)ooUV Ta ertineda 1mpooo-

XS va va ekpetaddeutouv tg aldndermdpdoeig petadu npotdoenmv yia Kadutepr anddoon
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0.6.2 Xpnoworowviag 1o LLM oG Kpttr) yia v a§loAdynon otixeov

[49]. To CUYKEKPIIEVO PIOVIEAO TTOU XPNOIHOIIOONKE yid TOV UTIOAOY1o10 TeV Badpoloyiov
opoldtntag eivat to ms-marco-MiniLM-L-12-v2 [50].

H axkpiBrig péebodog umoloyiopou tng Pabpoldoyiag opoidtntag eivat o UMOAOYIONOG
TOU P€00U 0pOoU yla OAeg TG ermpépoug Babpiodoyieg kabe (eUyoug apayopevev-aAndveov
otixwv. H Babpoloyia opodtntag kupaivetat aro 0 ¢wg 1. Ta amotedéopata autng wmg

pebobou gaivoviat otov Iivaxka 0.1.

Movtédo IKOp opolotnTag
SALMONN-Stable Diffusion-LLaVA few-shot 0.89
Vicuna out-of-the-box 0.85
OpenOrca out-of-the-box 0.81
GPT-2 out-of-the-box 0.71
Claude out-of-the-box 0.69
OpenOrca finetuned 0.58
SALMONN-Claude zero-shot 0.51
GPT-2 finetuned 0.50
SALMONN-Stable Diffusion-LLaVA zero-shot 0.48
SALMONN-Vicuna 0.36
Whisper-OpenOrca 0.26
SALMONN-Claude few-shot 0.25
VAE-AST-GPT2 0.07

[Tivakag 0.1: Ta okop opowntag vrofoyiopuéva pe 10 UOVTEAOD cross-encoder

0.6.2 Xprnowponowwvtag to LLM g Kptty yia tnv a§loAddynon otixwv

Xpnowonowjoape eriong to poviedo JudgelLM, 1o oroio £xel avaAubei otnv
urto-urtoevotnta 0.3.5.3. Acdoape oto JudgeLM tnv mAnpogopia ot 1o task mou énperne
Va MPAYHATOojo0uUV Td POVIEAA fjTav 1 SNoupyia CUVEKTIKGV KAl SNII0UPYIK®OV OTIXOV.
Ady® tou MARBoUg TV POVIEA®V Katl TV Statdfemwv rmou doxipdotnkav, Sev frav ePpikd va
{nmooupe aro to JudgeLM va Babpodoyrjost 0Aa ta arnotedéopata TaUToXpova, AOY® ToU
MEPLOPLOPOU prKroug context tou poviedou (2048). Ta va 10 avUPEIRITIOOUPE Autd Kat
va evoeuat®ooupe pia pEBodo mou cuykpivel Ta povieda mpv ta Badbpodoyrost — KabOGg n
pepovepévn Babpoddynon propet va pnv eviortiet ravia Aerttég S1apopég petaiy ouyKekpt-
pévev euyav [43] — xpnoworowjoape to JudgeLM yia Babpoddynon {euywnv, KataAnyoviag
oe 78 ouykpioelg. To poviédo, AapBavovtag unoyn Kat toug aAnBivoug otixoug, arodidel pia
Babpoloyia aro 0 £éng 10 os kA poviedo kaBe {eUyoug, BAoel TG OOTNTAG TOV OTiXwv. Me
avut ) pébodo, unodoyiloupe apxikd ) péon Pabpoloyia yia kabe {euyog poviedov. X1
ouvéxela, riapouotadoupe pa katdradn, abpoidoviag dAeg tig Pabuiodoyieg rmou €éAaBe kaOe
povtédo oe kKABe {eUyog ouykpioewv. Ta arotedéopata authg g adloAoynong gaivoviat

otov ITivaka 0.2.

0.6.3 AgoAdynon andé LLMs pe prompt

Axoloubwviag pia pébodo mapopola pe auvtr g epyaciag “Reference-Guided Ver-

dict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text” [44], érniwg £&nyn6n-

AwinAouatxny Epyaoia m



KegpdAato 0. Extetapévn EAAnvikr) IlepiAnyn

Movtédo AOpoilopiva Trop
SALMONN-Claude zero-shot 96.87
SALMONN-Claude few-shot 96.35

Claude out-of-the-box 95.91

OpenOrca out-of-the-box 92.80
SALMONN-Stable Diffusion-LLaVA zero-shot 92.53
Vicuna out-of-the-box 90.02
SALMONN-Vicuna 89.05

OpenOrca finetuned 49.76

GPT-2 finetuned 38.59
Whisper-OpenOrca 24.16
SALMONN-Stable Diffusion-LLaVA few-shot 16.26
GPT-2 out-of-the-box 15.20
VAE-AST-GPT2 13.36

[Tivakag 0.2: Ta adpoioucva okop mou £dwoe 1o JudgelLM, os gdivovoa ocipa

Ke Kat oy vno-vrnoevotnta 0.3.5.4, ypnowonowjoape tpia LLMs (éva kAelotou kodika
Kat d¥o avoiytou kwdika): Claude 3.5 Sonnet, Mistral-Instruct-7B-v0.3 [51], kat Llama-
3.1-Instruct-70B [52]. Znujoape amo ta povieda va afloAoyrjoouv Toug Iapayopevoug
otixoug, 6ivoviag BabpoAoyia amo 0 émg 10 yia kabéva anod 1a mapakat® KPtnpla: ouvoxr),
SnoupYIKOTNTA, TO TIOO0 €UKOAQ UIOPel va TpayoudnBel, Kal @uOoKOTTa. Iir OUVEXELQ,
UTTOAOY10TNKE MPOYPARIATIOTIKA 0 NECOG OPOG AUTAOV TV Badpov, yia va e§axOei n ouvodikn
Babpoloyia kabe tpayoudloy, Kat aKOAOUO®G UTIOAOYIOTNKE 0 PECOG OPOG Y1d VA TIPOKUYOUV

01 OUVOA1KEG Babpoloyieg ou anodobnkav amod kabs LLM-kpitr] oe ka0 poviédo.

Ta LLMs opiotnkav oe xapndég Seppoxkpaoieg (0.2-0.4) yia auvtr] v agloddynorn, oote
va anodeuxOouv oAU arnpoBAertteg anavirostg. Ta 1eAdikd anotedéopata auvtrg g pebodou

a&lodoynong Ppioxkovrat otov IMivaka 0.3.

Movtéldo Claude | LLaMA | Mistral | Méon Ba®poAoyia
SALMONN-Stable Diffusion-LLaVA zero-shot 8.19 8.31 8.50 8.33
SALMONN-Claude zero-shot 8.43 8.15 8.20 8.26
Claude out-of-the-box 8.31 8.08 8.30 8.23
OpenOrca out-of-the-box 7.87 7.89 8.61 8.12
SALMONN-Claude few-shot 8.26 7.80 8.21 8.09
Vicuna out-of-the-box 7.68 7.63 8.54 7.95
SALMONN-Vicuna 7.54 7.34 8.29 7.72
OpenOrca finetuned 5.89 6.74 7.31 6.64
Whisper-OpenOrca 4.40 5.27 6.38 5.35
GPT-2 finetuned 3.66 5.56 6.65 5.29
SALMONN-Stable Diffusion-LLaVA few-shot 2.96 2.91 6.34 4.07
GPT-2 out-of-the-box 1.83 1.36 5.55 2.91
VAE-AST-GPT2 0.35 0.87 1.53 0.92

[MTivakag 0.3: Ot afofloyrosig ano ta LLMS, og gdivovuoa o€lpd Tov UETOV Saduofloyldv
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0.6.4 MelAén Xpnotov: Katdradn tov Mebodwv pag pe AvBportiveg A§loAoyroetg

0.6.4 MeAétn Xprotov: Katatafn tov Me0odwv pag pe AvOpomiveg Aflo-
Aoynoeig

ASYy® NG dnuioupyikig gUONG TG MAPAYRDYNG OTiX®V, Ye@POUE ONHIAVIIKO VA EVO®LA-
1w0el n avBporuvy kpion padl pe tg avtopateg peboédoug afloddynong. Av kat n pelén
XPNotov pag 61e€rx0n oe MKPOTEPT KATAKA 08 OUYKP1on pe dAdeg texvikeég a§loAdynong,
APEXEL TIOAUTIHEG TTIANPOPOPIEG OXETIKA HE TNV AVTIANIIT ITO0TNTA Kal dnpioupyikotnta
1OV IIAPAYOHEVAV OTIX®V AITO TV IIPOOITTIKI] T®V XP1OTOV.

H peAé Sopnbnke og £8ng: O1 ouppPETEXOVIeEG AKOUOAV IP®Ta 1 AEmtd amno ) pouot-
K1) ouvodeia yla kabe 1payoudt. Zin ouveéxeld, ToUG apouctactnkayv §Uo unoyndpia ouvoia
otiX®Vv Kat 1oug {ntrdnke va ermAégouv, mpota Og rpog TV oot Td TOV OTIX®V (CUVEKTIKOT-
1a, 6our)) KAt Uotepa ®G MPOG TNV CUCXETION TOUG Pe TNV pouoikn). H pedéwn neptdapBave ou-
voAikd 12 tpayoudia kat e§etdoape POVo Ta HOVIEAd TTOU £ixav ta KaAUTePA aroteAéopata e
TG dAAeg pebodoug, yla kabe ouvduaopo anod modalities, rou eivai: Claude out-of-the-box,
Whisper-OpenOrca, SALMONN-Claude zero-shot, xkat SALMONN-Stable Diffusion-LLaVA
zero-shot. Kdbe tpayoudt eixe €81 rubava {euyn unoyneiov otixev ylia oUyKp1Lor).

la va anotpéWoupe v KOM®OT IOV CUHHEIEXOVIOV Kdl va diatnprjcoupe 1o evdia-
@épov Toug, edpappooape tuxaia avabeon twv guywv adlodoynong. Kabe ouppetéxoviag
BabpoAoynoe 12 {euyn GUVOAIKA, TIPAYHA TIOU ONPAivel 0Tt 1] PEAET XPNoToV eixe 6 opadeg
EPWTHOE®V TTOU avatifevio tuyaia Kabe opd ToU KAMO10G AVOlye TV @opud. Autr n tuxaia
avdbeon e€aopdlile serurdéov ot KAOe cuppeExoviag agloloyouoe dU0 @opig KABe {eUyog
poviédev Kat éva {eUyog PovieAwv yla kKabe tpayoudt, Siatnpwviag pia toopporta petay
NG MARPOUG KAAUWNG Kal evog Sl1axelpiotiou @optou yia toug aSloAoynteg.

H 1é60o6og rou ypnoporor)fnke yia tyv katdradh tov PoviEA®V armo ) PeAEtn Xpnotov
etvat 1o poviédo Bradley-Terry [53], 1o omoio eivat éva poviédo mbavotie@v mou Xpnot-
poroteital yla v mpoBAsyrn ToU anoteAéopatog ouyKpioewv avda {euyn Kail €xel eupeia
spappoyn oe 81agopoug topeig, ouprnepldapBavopévng tng KAtatadng HOVIEA®V TEXVITG
vonpoouvng [54]. Zto poviédo Bradley-Terry, oe kaBe uroyrngilo avatibetal pa napape-
P0G 10XU0G T, yia Tov urtowndo i. To poviédo unobétet 6t 1) mbavotnta o vrownedlog i va

repdioel Tov unoYrnPlo j o€ ouyKplon ava {euyn eivat:

T

TCi+Tl‘Ij.

P(i beatsj) =

TMa v xatdradn v vnoyngiov, to poviédo Bradley-Terry xpnoworotei ) eKtipnon
peyong mbavogaveiag (MLE) yia va Bpet 1ig KaAutepeg Tip€G yla KAbe m;, TTOU PEY10TOnOot-
ouv v mmbavotnta va napatmpndouv ta edopéva 1oV ouykpiocewv. O UTTOAOYIONOS TRV TT;

artattet v eridvon g akéioubng ediowong yia kdbe uroyn o i:
W
log(m) = ), ——.
TR

orou Wy eivat o ap1iBuog tov @opav Imou o uroyn@log i viknoe tov unoyneio j. Metd v
EKTIPINON TOV TIPOV T;, 01 UTTIOW (101 PE TG UPNAOTEPES TIHES TT KATATACOOVIAL 0TV KOPUPT).

Ta arotedéopata, 1a oroia MPOoEKUWPAv aro Tt OUPHETOXH 28 Xpnotwv, @aivovial otov
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ITivaka 0.4 xat otov ITivaka 0.5.

Movtédo II0avotnteg Bradley-Terry ylia ouvoxr kat Sopun
SALMONN-Stable Diffusion-LLaVA zero-shot 0.316393
Claude out-of-the-box 0.304484
SALMONN-Claude zero-shot 0.282116
Whisper-OpenOrca 0.097007

[Tivakag 0.4: Ot mdavomteg Bradley-Terry yia tn ovvoxn kat tn 60U TV OTiX®V, 0 edivovoa
ogpa

MovtéAo IMOavotnteg Bradley-Terry yia ouoxX£Tion PE TNV HOUGLKY)
SALMONN-Claude zero-shot 0.355462
SALMONN-Stable Diffusion-LLaVA zero-shot 0.241730
Claude out-of-the-box 0.228919
Whisper-OpenOrca 0.173889

[Tivakag 0.5: Ot mdavotnieg Bradley-Terry yia v GUOXETION TOV OTIX®OV UE TN UOUOLKY], OF
@divovoa osipa

Extedéoapie emiong OTATIOTIKI] AVAAUOT TOV ATTOTEAEOPAT®OV TG NEAEING XPNOTROV, XP1Ol-
porowoviag 1o z-test kat vnodoyidovrag ta p-values yia kabe {guyog poviedwv. To Z-score
HETPA TIO00 ATIEXEL TO TIAPATHPOUHEVO TTIOCOO0TO VIKING ATO TO AVAPEVOHEVO MTOCOOTO UIO I
undevikr) unobeon. H pndevikn undBeon urobétet 611 Kat ta Vo povigda ivat e§icou rbavo
va kepdioouv (6nAadr), 50-50 katavopn v vikev). 'Otav 1o peyebog tov Z-scores £ivatl Ko-
vtd oto pundév (repimou 0 £rg +1), uoSNA®VOUV OTL Ta aroteAéopata Sev AEXOUV TIOAU ATto
1 PndeviKr) UTIOOEDT], EVE TA Z-SCOTES TTOU ATIEX0UV IEPIO0OTEPO ATIO T0 UNdEV (T1.X., peya-
AUtepa aro +1.96 yua eninedo sprmotoouvng 95% kat peyadutepa ano +1.645 yia emninedo
eprmotoouvng 90%) UTIOSNAGVOUV OTATIOTIKA ONIAVIIKY] ATTOKA10n ATTo T PNdeviky) undbeon
[55]. Avagopikd pe v T p-value, pla pikpn tpn p-value (ouvhifwg p < 0.05) unodn-
A@vel 0Tl 1] TAPATNPOUEVT] S1apopd OTI§ VIKEG £lval OTATIOTIKA ONPAVIIKL, TTOU onpaivet ot
eivat artibavo va £€xel mMpoKuYel tuxaia, Kat 9a priopovodape va anoppiyoups ) Undeviky
unoBeon (6nA. ta poviéda dev mpotpcoviat e§ioou). Mia peydAn tpn p-value (p > 0.05) u-
odnA®vel OTL 1] ITAPATPOUNEVH SlaPopd OTig Vikeg Hev elval OTATIOTIKA ONIIAVTIIKY), IIPAYHA
mou onpaivet ot Hev pPropoupe va anoppipoupe 1) pndevikn urnobeon (6ndadr, ta povieda
npotpwvtatl e§ioov) [56]. H otatioukn avaluorn teov arotedeopdtov (z-test kat p-values) yua

KAOe {euyog poviedwv @aivoviat otov ITivaka 0.6 kat otov [Tivaka 0.7

ZglGyog MovtéAnv Z-score (andAutn tipn) | p-value
Claude-out-of-the-box & Whisper-OpenOrca 3.21 0.00134
Claude-out-of-the-box & SALMONN-Claude 1.07 0.285

Claude-out-of-the-box & SALMONN-Stable Diffusion-LLaVA 0.27 0.789
Whisper-OpenOrca & SALMONN-Claude 4.81 1.50e-06
Whisper-OpenOrca & SALMONN-Stable Diffusion-LLaVA 3.47 0.00051

SALMONN-Claude & SALMONN-Stable Diffusion-LLaVA 0.80 0.423

[Mivaxkag 0.6: Ta z-test kat p-values yia kade {eUyog LOVIEA®D, yia 10 Kpuplo ¢ dourg/ ou-
voxng

Me autt] 1) OTATIoTKY avAAuot), IITIOPOULLE va TTOUHE OTL, 000V apopd TO KPLrjplo tng o-
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Zguyog MovtéAwv Z-score (anéAvutn tipy) | p-value
Claude-out-of-the-box & Whisper-OpenOrca 1.60 0.109
Claude-out-of-the-box & SALMONN-Claude 1.87 0.061

Claude-out-of-the-box & SALMONN-Stable Diffusion-LLaVA 0.53 0.593
Whisper-OpenOrca & SALMONN-Claude 2.67 0.0075
Whisper-OpenOrca & SALMONN-Stable Diffusion-LLaVA 0.53 0.593
SALMONN-Claude & SALMONN-Stable Diffusion-LLaVA 1.07 0.285

[Tivaxkag 0.7: Ta z-test kat p-values yia kade (Uyog UOVTEAGV, Yia TO KOLTHPIO TG OUCXETLONG
UOUOIKTG-OTLY OV

prg/ouvektikotntag, 1o Whisper-OpenOrca @atvetatl va €Xel Xe1pOTePES EITIOO0EIG O CUYKPL-
on pe ta dadda povieda, 18iwg oe ouykplon pe 1o SALMONN-Claude kat to SALMONN-
Stable Diffusion-LLaVA. Ao v aAAn, ta povieda SALMONN-Claude kat SALMONN-
Stable Diffusion-LLaVA €xouv rapopoieg emdooetg. I'a 1o Kpit)p1o tg OUoXETIONG LOUOIK|G-
otixev, 1o SALMONN-Claude @aivetat va uriepéxet onpaviika évavit tou Whisper-OpenOrca.
H ouyxkpion petadu tou Claude out-of-the-box kat tou SALMONN-Claude £xet OtatiouKy)
onpavukotnta pe 90% - avii yia 95% - eprmotoouvn, unodeikvuoviag 6t to SALMONN-
Claude unieptepet edappwng tou Claude out-of-the-box. Ta ddAa {euyn napoucialouv ma-

popoieg ermdooelg.

0.7 Zupnepaopata

0.7.1 Zulntnon

Aut n Simlepatikn epyacia e§epeuva ) Sabikaoia avtopatng dnpioupyiag otixwv Kat
TIOG MNPEAdeTal 1 TOLOTNTA TOV ITAPAYOHEVEV OTIX®OV HE TNV MPoobr K dtadpopetikodv modal-
ities. Amo 600 yvwpiloujie, 11 EVOOUATOON TG TPOINKOTNTAG TG 0paong (vision modality),
padi pe 1o kelpevo kat tov 1x0, dev £xel pedetnOel mponyoupévag.

Atgpeuvnioape téooepilg Stapopetikoug ouvduaopoug dedopévav. O mp®Tog ntav n pe-
TATPOTI) Aro Kelpevo oe Kelpevo, ormou doxkipacape pia peydda yAdooowka poviéda (LLMs)
yla ) dnpioupyia otixov. ApXiKa Ta Xprnotponooape Xepig npooappoyr) (out-of-the-box)
Kal ot oUvEXelda Ta rpooappooape oto ouvodo dedopévov DALL Alamotobnke ot ta LLMs
ou §€xovtat 0dnyieg (instruction-based LLMs) eixav kaAr| emidoorn akopa KAt Xopig ripo-
Oappoy1, AOY® NG EKTEVOUG IPOEKTIAIdEUOT|G TOUG O Kelpleva SNIoUpYIKNG YPAPTG, OTIMG
Tpayoudia katl mowjpata. Xt peAétn) Xpnotwv, to ermdeypévo LLM ya v adloAdynorn tou
ouvduaopou ‘ano keipevo oe Kelpevo’ nrav 1o Claude, 1o omoio mapouciace trv KaAutepn
ertiboon otig a§lodoynoelg twv LLM. Auto 1o povigdo eixe apketd Kadég ermbooelg kal ota
8uU0 kplpla g peAéng xpnotov, aida dev unepeiye 1daitepa o kavéva amno ta duvo.

O 8eUtepog oUVEUAOHOG TIOU €§EPEVUVIIOAIE 1)TAV 1] ITPOCONKI PHOUOIKI|G £ pnong (Kei-
HEVO Kat 1X0G o€ Keipevo). Aokippdoape §U0 POVIEAd : TO TPWOTO BACIOINKE OV AVATIAPAY®-
Y1) Plag IIPonyoulevng epyaociag mou xpnowpomnoinoe éva poviédo variational autoencoder
P& apXiteKtoviky tunou transformer, rouv evoopatovetl tov Audio Spectrogram Transformer
®g Kedkorontr) 1xou kat 1o GPT-2 wg anokedikoriointr). To poviédo autd, rmou npoona-

9roape va avanapayoupe 600 To duvatodv 1o motd, anodeixdnke 1o mo advuvapo and oAa
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Ta poviéda 1ou pedstoape. Auto 1o arodidoupe otnv EAdewypn KOdika kat otn un 61abe-
owpouta g Sadikaoiag rpoenegepyaciag tov debopévav rou xpnotpornoinoav, Kabwg Kat
otnv nadaotnta tou GPT-2 oe ouykpion pe ta adda LLMs. Asgdopévou o1l n molotnta teav
otixev e§aptdtal Kuping arod v eridoon tou LLM, 1) xprjon mo aduvapev poviédav odnyet
0€ XapnAotepn moldTnIa OTiX®V.

H dAAn Stapodpdpwon rou SoKIPACTNKE Yld TOV 0UVOUAOH0 KEWEVOU KAl X0V OE KETPEVO
fitav 1o poviedo Whisper-OpenOrca, 10 oroio Xprnotponotel 1ov kodikornown ) fxou Whis-
per, to LLM Mistral OpenOrca, kat éva eknaidevoipio projection layer rmou subuypappidet
TIG AVATIaPACTACELS POUOIKNG e ) dnuioupyia otiX®v. AUto 10 HOVIEAO £1Xe TTOAU KaAUtepn
€MTid00T), KATL TIOU OPEIAETAL OTO YEYOVOG OTL TOCO 0 KOSIKOTIOTHG 11X0U 000 Kat to LLM eivat
IT10 oUYXPOoVvda Kat 10XUpd POoVIEAd, eKPETaAAeuopeva v MAovold IpoeKnaideuor) 1oug. X1
peA€tn xpnotov, 1o poviedo Whisper-OpenOrca napouciace xapnAotepeg emdooeig Kat ota
6U0 kpl)pla o OUYKP10n PE Ta dAda poviéda rmou cupneplAneOnkav ot PeA€tn, YEYovog
ou avukatorpidetl 1g aglodoyroelg towv LLM.

O 1pitog ouvbuaopog poobeoe €va evdiapeco otadlo mMapay®wyng KEEVOU, CUYKPITIKA
e 10 mponyoupevo (Kelipevo & 1xXog o€ Keipevo). AUtog 0 ouviuaopog SokiaotnKe He 1o
poviédo SALMONN-Claude, 6rou e§dyapie €UKEEG POUOIKLG ard tov 1xo Kat g dooape
oto povtédo Claude yua va dnpioupyroet otixoug. Autr) 1) 1ipoodrkn £€6e1§e eAadppaig KaAute-
pn emidoon aro 10 oevdaplo Keipevo o€ KEIPEVO, KAl ONPAVIIKA KAAUTEPT] ATIO TOUG AAAoug
ouvbuaopoug, armodeikvyoviag 60Tl AUt 1] Por) epyaociag evioyxuetl ) dadikaocia dnpioupyiag
otix@v. Ao 1) PEALIN XPNOTOV, TTAPATNPOoUlE £riong Otl auto to pipeline métuxe v Ka-
Autepn Babpoloyia 6oov agopd I CUCYETION OTiX®V KAl JLIOUCIKIG, YEYOVOG ITOU eVIOYUEL
MEPATTEP® TOV 10XUPIOHO OTL 1] TIPOCON KN TOU PrAtog NG §ay®YHG HOUCIKGOV ETIKETROV EVI-
oxuel ) 6ladikaoia mapaywynsg otixmv.

O t€taptog ouvbuaopog npocbeoe v otk §1aotacn oInVv IIPONyoupevn dapoppron
(reipevo & 1)X0g 0g 1KOVA KAl 0TI OUVEXELA OF KEJ1EVO). AUTO G1EpeUVONKE 1€ TO HOVIEAO
SALMONN-Stable Diffusion-LLaVA, érou to poviého SALMONN 8njptoUpynoe pia reptypa-
1] OKNVAG Tawviag rmou Sa propouoe va ouvodeutel amo tr 6edoPEvn POUOIKT). Y11 GUVEXELd,
N meplypadr] petatpannke pe ) fonbeia tou Claude oe prompt yia to Stable Diffusion, to
ortoio mapnyaye pia ewkova. H ewkdva §60nke oto poviedo LLaVA yia va Snpioupynoet 1oug
tedikoug otixoug. H mpooBnkn tou vision modality aiv§noe v rmodta v otixov Kat n
anédoor) g Nrav epAPAAn He 10 IIPONYOUREVO POVIEAD, arode1kvuoviag OTL Td EIMUTAEOV
modalities priopouv va evioxuoouv 1 Snpioupykonta ot Stadikacia dnpioupyiag otixwv.
Eruréov, n pedén xpnotwv £é6e18e 6t 1o poviedo SALMONN-Stable Diffusion-LLaVA onuei-
®Ooe eAappwg KaAUtepn Pabpodoyia anod ta dAda poviéda 0oov adopd T CUVOoXE Kat T dour)
TV otixev, datnpoviag rmapdAAnda pia AoyKr oUOXETIOnN € T POUOLKL, EIMITUYXAVOVTIAS
Ha 1wopportia Petady autov tov 8Uo Kptnpicv.

TéAog, doxpaoape v texviky few-shot prompting yia 600 and ta napandve oevapia.
Av KAl 0 0p1oJEVEG TIEPUTIVOELS AUSHONKE TO OKOP OPOo10TNTAg, ITapatnprndnke peioon ot
SNIoUPYIKOTNTA TRV OTiX®V, KAB®OG ta poviéda kabodnyouviav mpog rmapopoloug otiXoug
e ta mapadeiypata.

Ta cuprEePAoPATa AUTd MPOLKUYAV Kuping ard tg aglodoyroelg twv LLM. Asdopévou

OTL, aKOPIn KAt ot aviporvol ouvheteg Ja emvoouoav S1aPpopeTIKOUg OTiXoug yia pa Se-
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dopévn pouoiky 1 9a cuvéyxiav dtapopetikda eva tpayoudt dedopévng g mEOTNG YPauung
ToU, Yewpoupe 6Tl 01 Babpodoyieg OPOIOTNTAG KAl Ol AVIIKEIEVIKEG HETPIKEG eivatl Atyotepo
ONUavikeég amo tg aglodoyroslg LLM kat tn pedétn Xpnotov, ot oroieg divouv pia Ka-
AUteprn ekOvVa g TIOOTNTAG TV OTtiX®v. Asdopévou OTL Xprotponowjoape pia pébodo mou
petpladet ) pepoAnyia twv LLM yia ug a§lodoyrioetg tov LLM, eprioteudpacte reploootepo
autd ta anotedéopata. ErmmAéov, n pedétn xpnotov £8e1e ouoyEtion Petady tov aglolo-
ynoewv LLM ka1 tov avBpormvev Kpioemv, Kal CUYKeKpipeEva ermBeBaildvoviag ott T0 PoVIEAD
Whisper-Mistral eivatl onpavukd Xeipotepo, eve ta dAAd Poviédd g PEAEING XPNOT®V £X0UV
rapopoleg ermdooelg. Autd urnodnAwvel ot ot aglodoyrjoelg LLM xprotpevouv g aglormoto
PE€0O ya Vv a§loAoynon g rmodtntag 1V otiXmyv.

Zuprnepaopatkd, n Sumdopatkr epyacia autr) oupBaldiet oty e§EAGN tov generative
tasks otov Topéa g avaktnong POUoIKIG IANpodopiag, PEPvoVIag véeg 16€eg Kat duvatotn-

1eg oto medio g auvtopatng dnpoupyiag otixwv.

0.7.2 IIepropiopoi kat MeAAovtirég KateuOuvoelg

H ¢peuvd pag neplopiotnke ano toug d1aBéoipoug urodoylotikoug rmopoug. Ma 1o peya-
AUtepo PEPOg TG epyaciag pag, Pactotnrape o Swpeav GPU ndépoug aro nmAATPpopeg OTImG
10 Google Colab kat 1o Kaggle, kaBag kat otov oépBep 10U epyaoctnpiou SLP-NTUA, o omnoiog
fitav egordiopévog pe 6Uo GPU twv 12GB (NVIDIA GeForce GTX 1080 Ti kat GeForce GTX
TITAN X). I'a mo anattnuika povieda Kat woxupotepa LLMs, xprnoiponoujoape erAEKTKA
on-demand 1topoug arno v AWS.

Autol o1 Tieploplopol emnpéacav IV Emid00n TOV EKMABEUPIEVEOV POVIEA®V pag pe 61-
APopOoUg TPOITOUG. XUYKEKPIPEVA, Ol PEB0SO01 ekmaibeuong NTav MePOPIOPEVES A0V TV
UTIOAOYI0TIKQV TTEPopopav. Kupilng xpnoipornowrjoape sAadputepa HOVIEAA KAl TO0 €UPOS
TV MEPAPATEOV HE HEYAAUTEPQ, TTI0 ATIATTIKA PHoVviéAa ntav reploplopévo. H xprjon oxu-
POTEPOV POVIEA®V 100G va elxe PEATIOOEL TIEPATTEP® TNV TIOLOTNTA TOV ATtoteAeopdtev. AAda
poVIEAa Katavonong JoUCIKNAG, 6reg 1o MU-LLaMA [26], 1o M2UGen [27] kat to MusiLingo
[10], dev pmopoucav va Xpnotpornonfouv oto IPito oUVOA0 cuvEUAoH®OV AGY® TG UYNALS
UTIOAOY10TIKHG TOUG arnaitnong.

'Evag aképrn neplopiopdg, rou dev apopd povo ) S1kn pag epyacia aAdd kat 1ov topéa
g Snpoupyiag otix®v yevikotepa, eivat ) meploplopévy S1abeotpotnta ouvolmv dedopévav.
Yridpxouv moAAd ouvoda Pouoikev §edol1€vev e eTIKETEG KAl petadedopéva (6riwg to Million
Song Dataset [57]), aAAd 6x1 pe ouyxpoviopévoug otixoug. To ouvodo dedopévav DALI
givat, amo 600 yvopidoupe, 1o povo Siabéoio oUuvoAo autou Tou peyéboug, pe tpayoudia
oe popdpn MP3 kat eubuypappiopévoug otixoug. AAAa Stabéopia subuypappiopéva ouvola
b6edopévav, onwg to Lakh MIDI dataset [58], xpnowponotovv apxeia MIDI avti yia MP3.
Emnméov, n mieoynoeia teov eyypapov oto ouvodo dedopévov DALI eival momn tpayoudia,
YEYOVOG TIOU KAVEL Ta eKMABeUPEvVA Povieda va mieplopiouv v £6060 toug oe Sépata rou
oxetidovtal pe Vv TOTT POUO1KI), OIS 1] YA, KATL IT0U MeP1opidet ) dnpioupykotnta Kat
TV NMOKIAlA TV IAPAYOPEVOV OTiX®V.

T v peddovike €peuva, rmotevoupe ot 9a frav Xprjopo va egepeuvnBel 1 evoopateon

TOV AAA®V POVIEA®V Katavonong HOUCIKAG TMou avadépnkav, Kabig Kal dAA®v 10XUpeV
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LLMs ot 6tadkaocia dnpioupyiag otixev. Emiong, n mpooappoyn ng unopovadag napa-
Yoyng otixov ot Stapopdpnorn Keipievo & 1X0g o Keiplevo oe e1kova oe Keipevo da rrav éva
evoladepov nedio pedéng, 1 akopa Kat n evooudroorn evog Vision Language Model pe ap-
XITEKTOVIKI] TTOU untootnpidel few-shot learning pe ewkdveg, onwg 1o poviedo Flamingo [59].
ErumA¢ov, pia aAAn npoéktaon g peAéng pag da nrav n dnpoupyia otixewv faciopévn oe
KAAATEY VN 1) LOUOIKO £160g, Kat 1 Siepevvnorn g dradoporoinong twv e§6dav, pe dedopévn
v 161a pouoikr) cuvodeia adAd drapopetikd kaAAttexvn 1 €1dog. TeAog, pia aAAn npogkta-
on authg ¢ SIMA®Patikeg epyaciag Sa prnopouoe va €ivat 1 eKnaideuon evog POVIEAOU yia
MV IApayoyl) pedodiag mou va taptddet pe 1oug mapayopevoug otixoug, mapdpowa je myv
epyaoia “Lyrics and Vocal Melody Generation conditioned on Accompaniment” [60], pe

Stagpopa ot autn 1 gpyaocia £ytve pe oupBoAikn pouoikn (MIDI) avti yua fyxo.
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Ke¢palairo ﬂ

Introduction

1.1 Motivation

Music and singing have been integral to human culture throughout history, serving
not just as entertainment but as powerful vehicles for emotional expression, cultural
preservation, and social connection. For millennia, the craft of songwriting has relied on
the delicate interplay between music and lyrics, where the words must not only convey
meaning but also harmonize with the musical accompaniment in terms of rhythm, emo-
tion, and style. For a song to be truly engaging, the lyrics must achieve multiple objectives
simultaneously: they must harmonize with the music’s mood and tempo, maintain narra-
tive coherence, follow linguistic patterns, and possess creative originality—a complex set
of criteria that are challenging both to model computationally and to evaluate objectively.

This complexity has resulted in a noticeable research gap in the field of automated
lyric generation, particularly in scenarios where music serves as the primary input. While
recent years have seen remarkable advances in artificial intelligence, with breakthroughs
in multimodal learning and large language models (LLMs) transforming various creative
domains, the specific challenges of aligning music with lyrics remain underexplored. This
gap is particularly striking given the successful applications of Al in related tasks such
as music generation, melody-to-lyric alignment, and pure text generation.

The challenge lies not only in the technical aspects of processing musical input but
also in capturing the subtle relationships between musical elements and lyrical content.
Musical features such as tempo, key, instrumentation, and emotional tone all influence
lyrical choices in ways that human songwriters intuitively understand but that prove
difficult to systematize. Additionally, while LLMs have demonstrated impressive capabili-
ties in creative writing tasks, their ability to generate contextually appropriate lyrics that
maintain both musical and narrative coherence represents a unique challenge.

This thesis aims to bridge these gaps by leveraging recent advancements in Al to
enhance the process of lyric generation. By developing and evaluating models that can
understand musical input and generate appropriate lyrics, we seek to contribute to both
the artificial intelligence and music information retrieval fields. These models have prac-
tical applications beyond academic interest, potentially providing songwriters and musi-
cians with innovative tools that can aid in the creative process, suggest lyrical directions,

and help overcome creative blocks. Furthermore, this research contributes to our un-
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derstanding of the relationship between music and language, potentially offering insights

into how humans process and create multimodal artistic content.

1.2 Contribution

This thesis contributes to the MIR field regarding lyric generation. Given that the
specific subject of the thesis - lyric generation given the music accompaniment - hasn’t
been as extensively studied as other similar generation tasks, such as music generation
from lyrics, and lyric generation given the melody of the song, this thesis explores sev-
eral architectures and their performance regarding the lyric generation task. Firstly, we
explore the lyric generation without any music supervision, by testing the performance
of the LLMs Claude, GPT-2, Mistral OpenOrca and Vicuna on the lyrics generation task,
by providing the first line of the song. Then, we explore the effect of music supervision
on the lyric generation process, by testing two architectures, the variational autoencoder
AST GPT-2 model, and the Whisper-OpenOrca model. Specifically, the exploration of the
variational autoencoder AST GPT-2 architecture constitutes a reproducibility study of the
paper MusicJam [1], given that the authors do not provide any code or the checkpoint
weights of the model presented in their work. The Whisper-OpenOrca model uses a tech-
nique that has recently been used in other music understanding models, but not with
a focus on lyric generation [61],[10]. Finally, with the last two pipelines, which, to our
knowledge, have not been already used in the literature, we introduce a novel approach
to lyric generation by adding additional modalities to the lyric generation process.

More specifically, the main contributions of this thesis are:

e First comprehensive comparative study of multiple LLM architectures (Claude, GPT-

2, Mistral OpenOrca, and Vicuna) for text-to-text lyric generation.

e Implementation and evaluation of a music-supervised lyric generation architecture,
which has been used for other tasks but without a focus in lyric generation: the
Whisper-OpenOrca model, which employs a projection layer to align music and
text representations between the pre-trained frozen audio encoder Whisper and the

frozen LLM OpenOrca.

e First experimental study comparing different multimodal approaches for lyric gen-

eration.

e Development of novel multimodal pipelines that incorporate additional modalities

into the lyric generation process:

— SALMONN-Claude: a pipeline that uses SALMONN to extract music tags from
the music input, and then uses Claude to generate the final lyrics based on
these tags.

— SALMONN-Stable Diffusion-LLaVA: a pipeline that uses SALMONN to generate
a movie scene description from the music input, then uses Stable Diffusion
to generate an image based on that description, and generates the final lyrics
using the LLaVA model.
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1.3 Thesis Structure

In Chapters 2 and 3, we present the theoretical background, and analyze the specific

models relevant to this thesis. In particular:

e In Chapter 2, we explore several domains of machine learning that are relevant to
our work, by analyzing multimodal models, large language models, the variational

autoencoder, and Stable Diffusion.

e In Chapter 3, we analyze models and methods more specifically related to the task
of multimodal lyric generation, such as audio encoders, audio language models,
music understanding models, specific large language models relevant to our work,

vision language models, and evaluation methods for generative tasks.
In Chapters 4 through 6, we present our work regarding this task. More specifically:

e In Chapter 4, we explain the methodology of our work, by analyzing the preprocess-

ing of the dataset that we used, and the models that we tested for our task.

e In Chapter 5, we present the experiments that we conducted, by specifying the
training details and hyperparameters. We explain further our evaluation methods

and present the results of the tested models.

e In Chapter 6, we talk about the observed results, and the possible future work

regarding this domain.
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2.1 Audio Multimodal Models: An Overview

Multimodal models represent a class of machine learning systems designed to pro-
cess and integrate data from multiple modalities, such as text, audio, images, and videos.
Recent advancements in artificial intelligence, particularly with the development of Large
Language Models (LLMs), have brought multimodal capabilities to new heights. Multi-
modal models possess the ability to process different types of input (e.g., images and text)
and generate contextually meaningful outputs based on them, unlocking unprecedented
potential for tasks such as visual storytelling, captioning, and complex reasoning across
multiple data types. Audio multimodal models specialize in integrating audio data, such
as speech or environmental sounds, with other modalities like text and images. These
models are crucial in applications like automatic speech recognition (ASR), voice assis-
tants, and multimedia understanding systems, where audio information complements

other data types to provide richer context and understanding.

2.1.1 Overview and Architecture

The architecture of audio multimodal models typically consists of three core compo-
nents: a pre-trained audio encoder, a language model (LLM), and a modality interface [18].
The audio encoder processes raw audio signals, transforming them into a more compact
representation that the LLM can reason over. The most widely used audio encoders in-
clude models such as CLAP (Contrastive Language-Audio Pretraining), which are trained
on large-scale audio-text pairs to create representations aligned with text and audio.

Once the audio data is encoded, it is passed to the modality interface, which connects
the encoded audio to the LLM. This interface serves as a bridge, ensuring that the audio
information can be understood and processed by the language model. In some models,
the interface may transform the audio features into token-based representations that can

be concatenated with textual data and processed in the same context as language tokens.

2.1.2 Applications

Audio multimodal models have been extensively used in several domains. They are

central to improving speech-to-text systems, where audio inputs are converted into text
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for tasks such as transcription and real-time translation. Additionally, these models
are increasingly employed in more complex environments, such as multimodal dialogue
systems, where they combine audio inputs with visual and textual data to understand

user intentions in a conversational setting.

2.1.3 Challenges

One of the significant challenges facing audio multimodal models is the variability in
audio quality and background noise, which can hinder performance. Additionally, the
alignment between audio and other modalities is not always straightforward, as temporal
synchronization and context relevance must be carefully handled to ensure accurate
and coherent outputs. Multimodal hallucination, where the model generates responses
inconsistent with the audio content, is another issue that still requires attention in current

research.

2.2 Large Language Models

Large Language Models (LLMs) have revolutionized natural language processing (NLP)
through their remarkable ability to handle a wide range of tasks, from language transla-
tion to complex reasoning. These models are built on the transformer architecture and are
pre-trained on large-scale text corpora, enabling them to perform zero-shot and few-shot
learning without requiring explicit fine-tuning. The versatility of LLMs is rooted in their
ability to capture rich contextual information, emergent properties, and the use of atten-
tion mechanisms, allowing them to process long sequences of text. The development of
LLMs follows decades of research in language modeling, transitioning from statistical ap-
proaches to deep neural networks. As models grew in size and complexity, they exhibited
emergent capabilities such as instruction following, in-context learning, and multi-step

reasoning.

2.2.1 Architectures of LLMs

The foundation of most modern LLMs is the transformer architecture, introduced in
the paper “Attention Is All You Need” [19]. This architecture is designed to address the
limitations of previous recurrent models by using self-attention mechanisms to capture
dependencies between distant tokens in a sequence. Transformers can be categorized
into three main architectural types: encoder-only, decoder-only, and encoder-decoder
models [20].

e Encoder-only models: These models, such as BERT, focus on understanding input
sequences by processing them in their entirety. They are suited for tasks like text

classification and sentence understanding.

e Decoder-only models: Decoder-only models, such as GPT and its successors, pre-
dict the next token in a sequence in an autoregressive manner. They are most

effective for text generation tasks.
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e Encoder-decoder models: This architecture is primarily used for sequence-to-
sequence tasks like translation and summarization, where the encoder processes

the input and the decoder generates the output.

2.2.2 Pre-training and Fine-tuning Paradigms

LLMs are pre-trained on massive text datasets, often using self-supervised learning
techniques such as masked language modeling (MLM) or autoregressive prediction. Pre-
training enables the model to learn a general understanding of language, which can be
fine-tuned on specific tasks using smaller, task-specific datasets. Fine-tuning enhances
model performance by tailoring its knowledge to particular domains.

LLMs like GPT and LLaMA are pre-trained using vast datasets containing web text,
books, and other publicly available sources. Techniques like Reinforcement Learning
from Human Feedback (RLHF) have also been used to align LLM outputs with human

preferences, improving their utility in real-world applications [20].

2.3 Variational Autoencoder

Variational Autoencoders (VAEs) are a class of deep generative models that combine
deep neural networks with probabilistic modeling to learn latent variable representations
of data. VAEs aim to model complex data distributions, such as images or text, by learning
the underlying latent variables that generate the observed data. VAEs were introduced as
a method to address the intractability of exact Bayesian inference by approximating the

posterior distribution using a simpler, tractable family of distributions.

2.3.1 Architecture and Mechanism

VAEs consist of two main components: the encoder (inference model) and the decoder
(generative model). The encoder approximates the posterior distribution q(z | x), mapping
input data x to latent variables z, while the decoder generates data x from these latent
variables using the generative distribution p(x | z). Instead of directly learning these
distributions, VAEs optimize the Evidence Lower Bound (ELBO) using variational infer-
ence, minimizing the Kullback-Leibler (KL) divergence between the true posterior and the
approximate distribution [21].

During training, VAEs use a reparameterization trick to enable backpropagation through
stochastic layers. This trick ensures that the gradients can flow through the latent
variable sampling process, allowing the model to learn parameters effectively through

gradient-based optimization.

2.3.2 Amortized Variational Inference

In traditional variational inference, the optimization process can be slow and com-
putationally expensive. VAEs address this with amortized variational inference, where

a single function is learned to infer the latent variables for all data points, rather than
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Figure 2.1: The architecture of VAE. Adapted from [6]

independently optimizing for each data point. This approach allows VAEs to scale to large

datasets efficiently, using neural networks to estimate the variational parameters.

2.3.3 Applications and Advances

VAEs have been widely applied in tasks such as image generation, clustering, and
unsupervised learning. Recent advancements have focused on improving the expres-
siveness of both the likelihood function and the posterior distribution. For example,
PixelVAE models pixel dependencies within an image for better image generation quality,
and Importance-Weighted Autoencoders (IWAE) increase the flexibility of the posterior

approximation, enabling VAEs to model more complex data distributions [21].

2.3.4 Challenges and Limitations

Despite their versatility, VAEs face several challenges. One significant issue is the sub-
optimality in inference, where the learned approximation to the posterior distribution is
not always optimal, leading to poor performance in some tasks. Another challenge is their
application to text data, where the discrete nature of words makes it difficult for VAEs to

generate high-quality textual outputs without significant adjustments to the model.

2.4 Stable Diffusion

Stable Diffusion is a powerful text-to-image generation model based on Denoising
Diffusion Probabilistic Models (DDPMs). Unlike generative adversarial networks (GANSs),
diffusion models iteratively add and then remove noise from data, which allows them
to model complex image distributions. Stable Diffusion uses a more efficient variant
called Latent Diffusion Models (LDMs). LDMs reduce the computational load by working
in a compressed latent space instead of the high-dimensional pixel space, significantly

improving the efficiency of both training and inference.

2.4.1 How Stable Diffusion Works

Stable Diffusion operates in two key phases:
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2.4.1 How Stable Diffusion Works

e Encoding: The model compresses input images into a lower-dimensional latent
representation using an autoencoder. This compressed space preserves crucial
semantic information while eliminating irrelevant details, reducing computational

demands.

e Denoising: Once the image is transformed into this latent space, the model adds
noise in a controlled manner. The process is then reversed, where the model grad-
ually removes the noise, reconstructing the original image in its latent space. The

image is then decoded back to the pixel space.

This approach, built on latent diffusion models, allows for high-quality image generation
with lower computational costs compared to pixel-based diffusion models. By employing a
UNet architecture combined with cross-attention mechanisms, Stable Diffusion is capable

of generating highly detailed images based on text prompts [22].
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Figure 2.2: The architecture of Stable Diffusion models. Source: [5]
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I n this chapter, we analyze the models that are relevant to our task. Specifically,
we review the literature regarding audio multimodal models and specifically audio
encoders commonly used in audio multimodal models, and music understanding models.
We also review, vision multimodal models, specific large language models which are either
explicitly used in our work, or constitute part of other used multimodal language models.

Finally, we review several methods used in the literature for evaluating generation tasks.

3.1 Audio Encoders used in Audio Multimodal Models

In this section we analyze some commonly used audio encoders in audio multimodal

models, which have also been studied and used in this thesis.

3.1.1 Whisper Audio Encoder: Large-Scale Speech Recognition

Introduced in the paper “Robust Speech Recognition via Large-Scale Weak Supervi-
sion” [23], Whisper is an advanced speech recognition system developed by OpenAl, lever-
aging large-scale weak supervision to achieve robust performance across a wide range of
environments. Trained on 680,000 hours of multilingual and multitask data sourced
from the web, Whisper models are capable of generalizing well to unseen datasets in a
zero-shot transfer setting without fine-tuning. Its encoder-decoder architecture, based
on the transformer model, is designed to handle complex audio inputs and convert them

into high-quality transcriptions.

3.1.1.1 Architecture and Design

Whisper adopts an encoder-decoder transformer framework, where raw audio is first
processed into 16,000 Hz log-magnitude Mel spectrograms, followed by encoding into
feature representations. The encoder uses convolutional layers and residual blocks with
self-attention mechanisms to capture the underlying structure in audio sequences. The

decoder then predicts the transcript tokens based on these encoded audio features.
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The model is pre-trained on a highly diverse set of transcripts from the web, enabling
Whisper to handle varying audio quality, speaker accents, and languages effectively. Ad-

ditionally, it supports multitask training for speech transcription, translation, and voice

activity detection [23].
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Figure 3.1: Overview of the architecture and training approach of Whisper. Source: [7]

3.1.1.2 Multilingual and Multitask Capabilities

Whisper distinguishes itself from other speech recognition models by its focus on
multilingualism and multitasking. Its dataset includes over 117,000 hours of non-English
audio, covering 96 languages. This broad language scope allows Whisper to excel in zero-
shot multilingual transcription tasks. In addition to transcription, Whisper can handle
spoken language identification and translation from various languages to English, making

it versatile for global applications [23].

3.1.1.3 Zero-Shot Performance and Robustness

A notable feature of Whisper is its ability to perform reliably in zero-shot settings,
transcribing audio from datasets it has never encountered during training. Evaluations
demonstrate that Whisper approaches human-level accuracy in terms of speech recog-
nition and shows remarkable robustness across varied audio domains, including noisy
environments and long-form transcription tasks. The model’s generalization capabili-
ties make it well-suited for real-world applications where fine-tuning may not always be
feasible [23].
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3.1.2 Audio Spectrogram Transformer (AST): A Pure Attention-Based Model
for Audio Classification

The Audio Spectrogram Transformer (AST) [24] is the first model to perform audio
classification using a purely attention-based architecture, without relying on convolu-
tional layers. AST leverages the transformer framework, which was initially developed
for natural language processing, to process spectrograms of audio inputs. This approach
captures long-range dependencies within the data, offering superior performance over

traditional convolutional neural networks (CNNs) and CNN-attention hybrid models.

3.1.2.1 Architecture

AST transforms audio data into 128-dimensional log-mel spectrograms, which are
then split into 16x16 patches. These patches are flattened and linearly projected into 1D
patch embeddings. The transformer model’s encoder processes these embeddings along
with learnable positional encodings to maintain spatial information. A [CLS] token is
appended at the beginning of the sequence to handle classification tasks. The output
of this [CLS] token is passed to a linear layer for final classification. AST employs a
12-layer, 12-head transformer encoder, which is similar to the Vision Transformer (ViI)

architecture.

» Linear OUI:pllt

Transformer Encoder

Pioy| | Pryf [Pray| [Pisaf [Pra] | Pis1] |Prer| [Pim] [P

+ + + + + + + + +
Eicus)| | Epy| | E| | Ei| [Era| | Eisi] | Bisi] | Erni] | Eis)

Linear Projection

ﬁiﬁiﬁiﬁi

e oLl
Patch Split with Overlap - - !

Figure 3.2: The architecture of AST. Source: [8]
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3.1.2.2 Transfer Learning from Vision Transformers

To overcome the challenges of limited labeled audio data, AST utilizes pre-trained
weights from Vision Transformers (ViT) trained on ImageNet. Knowledge transfer is
achieved by adapting the positional embeddings and input representations from the visual
domain to the audio domain. This cross-modality transfer learning significantly enhances

the model’s performance across diverse audio tasks.

3.1.2.3 Performance and Applications

AST has been evaluated on several benchmark datasets, including AudioSet, ESC-50,
and Speech Commands. It achieves state-of-the-art results across all these datasets, with
an mAP of 0.485 on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech
Commands V2. AST’s purely attention-based structure allows it to outperform CNN-based
and hybrid models, particularly in tasks involving long-range temporal dependencies,

without requiring task-specific architecture modifications.

3.1.2.4 Advantages and Limitations

AST’s main advantage lies in its simplicity and flexibility. Unlike CNN-based models,
which require tuning for different input lengths and tasks, AST can handle variable-length
inputs without architectural changes. Furthermore, its attention-based mechanism cap-
tures global context better than local convolutional filters. However, AST’s reliance on
pre-trained models like ViT highlights its need for large-scale datasets for optimal perfor-
mance. The model also exhibits higher computational costs compared to CNNs, especially

when processing longer sequences.

3.1.3 MERT: Acoustic Music Understanding with Large-Scale
Self-Supervised Training

MERT (Music undERstanding model with large-scale self-supervised Training) [9] is
a large-scale, self-supervised learning (SSL) model designed for acoustic music under-
standing. Developed to bridge the gap between speech and music processing, MERT is
fine-tuned on musical features, enabling it to outperform conventional models in a wide

range of Music Information Retrieval (MIR) tasks.

3.1.3.1 Architecture and Training

MERT’s core architecture leverages self-supervised learning similar to that of speech-
based models, such as HuBERT, by utilizing the masked language modeling (MLM) frame-
work. The model is trained with teacher models to generate pseudo labels for masked
audio segments, combining acoustic and musical representations to enhance learning. It

integrates two primary teacher models:

e Acoustic Teacher: A Residual Vector Quantization-Variational Autoencoder (RVQ-
VAE) is used to provide high-resolution acoustic features, aiding the model in un-

derstanding musical timbre and structure.
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e Musical Teacher: The Constant-Q Transform (CQT) focuses on tonal and harmonic

structures, which are essential for tasks like pitch detection and chord recognition.

MERT is scaled from 95 million to 330 million parameters, employing a 12-layer
transformer-based encoder. The use of convolutional layers alongside transformers allows
for efficient and robust feature extraction, making it capable of understanding complex

musical patterns.
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Figure 3.3: The architecture of MERT. Source: [9]

3.1.3.2 Applications and Performance

MERT achieves state-of-the-art results across 14 music understanding tasks, includ-
ing music tagging, beat tracking, pitch detection, source separation, and genre classi-
fication. It has demonstrated exceptional performance in capturing both local musical
features, such as beats and timbre, and more global features like key detection and
emotion recognition.

Its innovative multi-task pre-training paradigm, using both acoustic and musical
teacher models, allows MERT to generalize across different MIR tasks without needing
task-specific architectures. This general-purpose approach makes it suitable for a wide

range of applications in both industry and research.

3.1.3.3 Challenges and Future Directions

Despite its strong performance, MERT faces challenges in processing long musical
sequences due to the limitations of 5-second training segments, potentially affecting tasks
requiring longer contexts. Addressing this issue in future work could further improve its
capabilities in more complex music understanding tasks.

Additionally, the model’s pre-training paradigm, particularly with teacher models like

RVQ-VAE and CQT, could be refined to offer even more detailed acoustic and musical rep-

MinAouatxny Epyaoia



KepdAato 3. Multimodal Audio and Language Models for Lyric Generation

resentations. The model’s open-source availability is expected to foster further research

in music SSL, promoting innovation and broader application in MIR fields.

3.2 Music Understanding in Multimodal Audio Models

Many SOTA multimodal audio models have been trained with a focus on classification
tasks regarding speech and non-musical sounds. In this section, we analyze some mu-
sic understanding multimodal audio models, used in MIR tasks such as music tagging,

captioning, and question-answering for musical input.

3.2.1 SALMONN: Towards Generic Hearing Abilities for Large Language
Models

SALMONN (Speech Audio Language Music Open Neural Network) [25] is a novel multi-
modal large language model (LLM) developed to process and understand general auditory
inputs. Built by integrating pre-trained language models with speech and audio encoders,
SALMONN exhibits the capability to handle three distinct types of sounds: speech, au-
dio events, and music. It achieves competitive performance across a range of auditory
tasks, including automatic speech recognition (ASR), translation, audio captioning, emo-

tion recognition, and more.

3.2.1.1 Architecture

SALMONN uses a dual-audio encoder system, combining the Whisper speech encoder
and the BEATs audio encoder. The Whisper encoder, sourced from OpenAl, specializes
in speech recognition and translation, while BEATs focuses on non-speech audio events
through self-supervised learning. Both encoders are synchronized and processed through
a window-level Q-Former, which converts variable-length audio input into text-like token
sequences. This design enables SALMONN to handle multimodal input efficiently while
aligning auditory information with textual language models.

The Q-Former structure interacts with the outputs from both encoders, transforming
them into augmented audio tokens, which are then fed into the backbone LLM, Vicuna. To
adapt the audio tokens into the Vicuna model’s input space, SALMONN employs a LoRA
(Low-Rank Adaptation) module to align the audio and text tokens for coherent multimodal

reasoning [25].

3.2.1.2 Cross-Modal and Emergent Abilities

One of SALMONN'’s key innovations is its ability to perform cross-modal tasks, which
were unseen during training. This includes tasks like speech translation into untrained
languages, audio-based storytelling, and speech audio co-reasoning. These emergent abil-
ities highlight SALMONN'’s capacity for zero-shot generalization, meaning it can perform
well in tasks without prior exposure. SALMONN also supports speech-based question an-
swering, speaker verification, and music captioning, making it a versatile tool for auditory

information processing.
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Figure 3.4: The architecture of SALMONN. Source: [2]

To activate these emergent cross-modal abilities, SALMONN employs activation tun-
ing. This technique improves the model’s performance on untrained tasks by fine-tuning
specific components of the model, such as the LoRA and Q-Former modules, without

sacrificing performance on pre-trained tasks [25].

3.2.1.3 Applications and Performance

SALMONN excels in a variety of speech and audio tasks, outperforming many existing
models in areas such as ASR, translation, and audio captioning. Additionally, its emer-
gent abilities in tasks like storytelling and co-reasoning open up new possibilities for Al

applications in areas requiring deep audio understanding [25].

3.2.2 MusilLingo: Bridging Music and Text with Pretrained Language Models

MusiLingo is a music-language model developed to bridge the gap between music and
natural language by generating accurate captions and answering music-related queries.
The model integrates a MERT (Music Understanding Model) encoder, which extracts
acoustic and musical features, with a pre-trained Vicuna LLM. The core design uses a
simple linear projection layer that maps music representations into text embedding space,

followed by a temporal compression layer to handle music-text alignment efficiently.

3.2.2.1 Architecture and Training

The architecture comprises a MERT encoder for extracting meaningful audio repre-
sentations from music clips. These representations are passed through a linear adapter
layer before being projected into the Vicuna model’s text embedding space. The MusiLingo

model undergoes two key training phases: a pre-training phase, where it is trained on
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music caption datasets, and an instruction-tuning phase, where it is fine-tuned on a Q&A
dataset (MusicInstruct). The integration of these two phases allows MusiLingo to generate

rich and accurate music-related captions and answer open-ended music queries.
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Figure 3.5: The architecture of MusiLingo. Source: [10]

3.2.2.2 Music Captioning and Instruction Following

MusiLingo achieves competitive results on tasks like music captioning and answering
detailed music questions. The model is fine-tuned on Musiclnstruct, a dataset specifi-
cally created for open-ended music queries, which enhances its ability to follow instruc-
tions and generate human-like responses. MusiLingo outperforms other models like
MU-LLaMA in several evaluation metrics, particularly in music Q&A tasks, as evidenced

by its strong performance on both short and long-format question-answer datasets.

3.2.2.3 Performance and Applications

MusiLingo demonstrates state-of-the-art (SOTA) performance on several music infor-
mation retrieval tasks, including music tagging, captioning, and Q&A. It provides detailed
answers about musical genres, instruments, moods, and even specific user inquiries, of-
fering a robust system for both music-related research and practical applications, such
as recommendation systems or music cataloging. MusiLingo’s versatility in handling
both objective and subjective questions makes it an important tool for advancing music-

language model research.

3.2.3 MU-LLaMA: a Model for Music Question Answering and Music Caption
Generation

The MU-LLaMA model [26] represents an advanced solution in the realm of music
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understanding, particularly addressing tasks like music question answering and caption
generation. The model is built on top of Meta’s LLaMA language model and utilizes the
MERT (Music Embedding Representation Transformer) model as a music encoder. The
goal is to overcome the limitations posed by the scarcity of large-scale public datasets for
text-to-music generation (T2M-Gen) by enhancing the model’s capability to understand

music and generate meaningful text descriptions.

3.2.3.1 Architecture

The architecture of MU-LLaMA is divided into three key components: a pretrained
MERT encoder, a Music Understanding Adapter, and the LLaMA language model itself.
The MERT encoder processes raw audio inputs into feature embeddings, which are then
aggregated and passed through a dense neural network in the adapter. This enables the
model to capture complex musical features such as mood, instrumentation, and genre.
These features are fed into the top layers of the LLaMA model, allowing it to handle both

music question answering and text generation tasks effectively.
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Figure 3.6: The architecture of MU-LLaMA. Source: [11]

3.2.3.2 Performance

MU-LLaMAs performance, validated on datasets like MagnaTagATune and MusicCaps,
outperforms existing models such as LTU and LLaMA-Adapter across multiple metrics
(BLEU, METEOR, ROUGE-L). The paper further highlights the adaptability of MU-LLaMA
to various music understanding tasks, marking it as a significant advancement in gen-
erating high-quality text-music pairs and enhancing music comprehension for T2M-Gen

models.

3.2.4 M?UGen: Multi-modal Music Understanding and Generation with the
Power of LLMs

The M2UGen model [27] provides a novel framework for both music understanding and
multi-modal music generation using Large Language Models (LLMs). It addresses a gap in
existing research, which often focuses on either understanding or generation but rarely
both. The M2UGen framework integrates music, image, and video modalities through
various pre-trained encoders, including the MERT model for music, Vision Transformer

(ViT) for images, and ViViT for videos. These encoders extract feature embeddings that
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are aligned and processed by the LLaMA 2 model to perform downstream tasks such as

music question answering and text/image/video-to-music generation.

3.2.4.1 Architecture

At the core of M2UGen’s music understanding capabilities lies the LLaMA 2 model,
which fuses multi-modal context information from its encoders through specialized adapters.
These adapters transform the multi-modal features into a format that the LLaMA model
can process for both music understanding and generation tasks. For music genera-
tion, the system integrates either AudioLDM 2 or MusicGen models as decoders, allowing
M2UGen to translate input prompts into coherent music outputs. Through systematic
evaluations, M2UGen is shown to outperform state-of-the-art models in music question
answering, music editing, and multi-modal music generation, highlighting its significant

contribution to the field of Al-driven artistic music creation.
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Figure 3.7: The architecture of M>UGen. Source: [12]

3.3 Vision Multimodal Models: An Overview

Vision multimodal models are perhaps the most studied within the multimodal do-
main, primarily due to the integration of visual data with text, enabling tasks like image
captioning, visual question answering (VQA), and more recently, multimodal reasoning
and dialogue systems. These models integrate visual information with language models

to provide rich interpretations of images, videos, and even 3D environments [28].

3.3.1 Overview and Architecture

A vision multimodal model typically consists of an image or video encoder, a pre-
trained LLM, and a modality interface that aligns the visual features with textual infor-
mation. The image encoders, such as CLIP, process visual data into compact feature
vectors that are semantically aligned with textual representations [18].

The modality interface plays a pivotal role in bridging the visual and textual modalities.
It typically performs token-level or feature-level fusion, allowing the LLM to generate
responses grounded in both visual and textual contexts. Recent advancements, such as
Flamingo’s use of cross-attention layers, have improved how vision and language interact,

leading to more sophisticated understanding and reasoning [18].
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3.3.2 Applications

Vision multimodal models are widely used in numerous applications. In visual ques-
tion answering (VQA), these models can answer questions based on an image, demon-
strating the ability to reason across modalities. They also play a crucial role in generating
image captions, creating stories from visual content, and even offering real-time assis-
tance in understanding complex visual scenes in domains like medicine and robotics.

Another notable application is the embodied agents field, where vision multimodal
models guide robots or virtual agents in interacting with the physical world. These agents
use visual data to navigate and understand their surroundings, bridging the gap between

artificial intelligence and real-world environments [18].

3.3.3 Challenges

One of the prominent challenges in vision multimodal models is multimodal halluci-
nation, where the model incorrectly interprets or adds details not present in the visual
input. This can be particularly problematic in domains requiring high precision, such
as medical image interpretation. Another challenge lies in the fusion of modalities; while
vision models excel at understanding static images, integrating data that require long
context, an example of which are temporal data like videos, introduces complexity in
handling this information [18].

Additionally, scaling vision multimodal models to handle high-resolution images or de-
tailed scene information without compromising speed or computational efficiency remains
a critical research area. Ensuring these models can generalize well across diverse visual
domains, from everyday scenes to specialized fields like medical imaging, is essential for

their future development.

3.4 LLaVA: Large Language and Vision Assistant

LLaVA (Large Language and Vision Assistant) [29] is an advanced multimodal model
designed to integrate vision and language understanding. The model bridges the gap
between large language models (LLMs) and vision encoders, enabling the model to follow
human instructions and reason about images in real-world applications. LLaVA was
developed through visual instruction tuning, which extends instruction-following data to

multimodal spaces, allowing the model to process complex vision-language tasks.

3.4.1 Architecture and Data

LLaVA integrates the CLIP (Contrastive Language-Image Pretraining) visual encoder
with the Vicuna LLM. The architecture involves using the CLIP-ViT-L-14 model to generate
image embeddings, which are then linearly projected into the Vicuna language model’s
embedding space. This alignment between vision and text tokens allows the model to
perform diverse multimodal tasks, such as image captioning, detailed visual description,

and visual reasoning.
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To train LLaVA, multimodal instruction-following data is generated using GPT-4 and
ChatGPT. This data consists of questions, detailed descriptions, and complex reasoning
tasks about images, allowing LLaVA to follow detailed instructions and generate accurate
responses. The dataset includes approximately 158,000 samples of language-image pairs,

which enable the model to learn robust visual reasoning.

Language Response X, Q Q Q

Language Model fqg)

Projection W Z. H, qu
Vision Encoder X, Image Xq Language Instruction

Figure 3.8: The network architecture of LLaVA. Source: [13]

3.4.2 Performance and Applications

LLaVA achieves strong performance on tasks such as visual chat, image-based reason-
ing, and multimodal question-answering. Notably, LLaVA outperforms other multimodal
models, including BLIP-2 and Qwen-VL-Chat, particularly in visual instruction-following
tasks. The model also demonstrates competitive accuracy on the ScienceQA benchmark,
a dataset designed to evaluate multimodal reasoning in scientific contexts, achieving
state-of-the-art results when ensembled with GPT-4 [29].

3.4.3 Visual Instruction Tuning

The concept of visual instruction tuning is central to LLaVAs success. This technique
involves training the model on machine-generated multimodal data that mimics human
instruction-following behavior. By leveraging GPT-4 for data generation, LLaVA is able
to handle complex reasoning tasks that require both image and language comprehen-
sion. The visual instruction tuning pipeline ensures that the model can generalize across
different visual domains, making it suitable for tasks such as object detection, image

captioning, and complex image reasoning [29].

3.5 Large Language Models

3.5.1 GPT-2: The Evolution of OpenAlI’s LLMs

GPT-2 [30] represents the second iteration of the Generative Pre-trained Transformer
(GPT) family developed by OpenAl. GPT-2 was a significant step forward in NLP due to its
large model size (1.5 billion parameters), robust language generation abilities, and lack of

need for task-specific fine-tuning.
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3.5.1.1 Architecture and Training

GPT-2 is a decoder-only transformer model, employing a unidirectional approach to
text generation. It generates text by predicting the next token in a sequence, considering
all previous tokens in the context. GPT-2’s autoregressive nature allows it to excel at
generative tasks, such as text completion, summarization, and creative writing.

The model was pre-trained on the WebText dataset, which contains millions of web
pages. During training, the model learns to predict the next word based on the sur-
rounding context, allowing it to generate coherent and contextually relevant text over

long sequences.
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Figure 3.9: The GPT-2 architecture. Adapted from [14]
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3.5.1.2 Contributions and Limitations

GPT-2’s release demonstrated the power of large-scale language models in generating
human-like text across various domains. Its ability to perform tasks without explicit
supervision, such as answering questions or translating text, showcased the potential of
few-shot and zero-shot learning.

However, GPT-2 also has limitations. As a purely autoregressive model, it struggles
with long-range dependencies and may produce inconsistent outputs when generating
long text sequences. Additionally, its training on open web data can lead to the generation
of biased or harmful content, an issue that subsequent models have addressed with

reinforcement learning techniques.

3.5.2 LLaMA: A Foundation Model by Meta

LLaMA (Large Language Model Meta Al) [31] is a family of open-source LLMs developed
by Meta. LLaMAs primary contribution lies in offering competitive performance with
significantly smaller model sizes compared to proprietary models like GPT-3. Released
with parameters ranging from 7B to 65B, LLaMA demonstrated that smaller models, when

trained on carefully curated data, could outperform larger closed-source models.

3.5.2.1 Architecture and Training

LLaMA utilizes a transformer architecture similar to GPT models, with key optimiza-
tions to improve efficiency. For instance, it incorporates SwiGLU activations instead of
standard ReLU and rotary positional embeddings instead of absolute positional embed-
dings. These architectural tweaks enhance the model’s performance, particularly in terms
of handling long sequences of text.

LLaMA models are trained on a carefully curated collection of publicly available
datasets, with over a trillion tokens drawn from diverse sources such as Common Crawl.
These models leverage high-quality, diverse datasets to improve their language under-
standing and generalization capabilities. The emphasis on data quality and efficient
architecture allows LLaMA to achieve high performance while requiring relatively fewer

parameters compared to some other large language models of similar capability.

3.5.2.2 Applications and Impact

LLaMA has had a profound impact on the open-source community, serving as the
backbone for several derivative models, including Vicuna and Alpaca. Its open nature
has encouraged widespread experimentation, contributing to the development of more
efficient, task-specific LLMs. However, like other LLMs, it still faces challenges related to

bias, toxicity, and hallucination in its outputs [20].

3.5.3 Vicuna: A Finetuned LLaMA

Vicuna [32] is a 13B-parameter chat model, derived from the LLaMA-1 model and

fine-tuned using instruction-following datasets. Developed by the Vicuna team, it was
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Figure 3.10: The Llama architecture. Adapted from [14]

designed to enhance the conversational abilities of LLaMA models by training on real-

world dialogue data collected from platforms like ShareGPT.

3.5.3.1 Fine-tuning and Performance

Vicuna’s training process involved fine-tuning LLaMA on user-shared conversations,
enabling the model to generate more contextually relevant and human-like responses in
interactive settings. By employing GPT-4 as an evaluator, the Vicuna team reported that
the 13B-parameter model achieved 90% of the performance quality of proprietary models
like OpenAI’s ChatGPT.

Despite its relatively small size, Vicuna has demonstrated competitive performance in
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chat-based applications, including question-answering, summarization, and multi-turn
dialogue. Its lightweight nature makes it particularly appealing for deployment in real-

time, user-facing systems.

3.5.3.2 Challenges

Although Vicuna has made significant strides in conversational Al, it still grapples with
limitations inherent to LLaMA-based models, such as bias and difficulty in maintaining
coherence over long conversations. Additionally, while it provides a strong open-source
alternative, Vicuna’s performance still falls short of proprietary models in certain complex

reasoning tasks.

3.5.4 Mistral: A High-Performance LLaMA Variant

Mistral [15] is a recent addition to the LLM landscape, offering a 7B-parameter model
that outperforms both LLaMA-2 (13B) and LLaMA-1 (34B) across various benchmarks.
This model is built to maximize performance while minimizing computational costs, mak-

ing it a highly efficient option for a range of NLP tasks.

3.5.4.1 Architecture and Optimization

Mistral uses several architectural enhancements to achieve superior performance.
One notable feature is the implementation of grouped-query attention, which reduces
inference costs by enabling the model to handle longer sequences more efficiently. Mistral
also employs sliding window attention, allowing it to process arbitrary-length sequences
without compromising on accuracy or speed.

The model’s training regime is designed to optimize for tasks such as code generation,
reasoning, and mathematical problem-solving, outperforming larger models like LLaMA-1

34B on several evaluation metrics [15].
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Figure 3.11: The Mistral sliding window attention. Source: [15]

3.5.4.2 Advantages and Limitations

Mistral’s strength lies in its ability to achieve high performance with fewer parameters,

making it a cost-effective choice for researchers and developers seeking efficient LLMs. Its
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improvements in attention mechanisms also make it well-suited for tasks requiring long-
term dependency modeling.

However, as with other LLaMA-based models, Mistral faces ongoing challenges in han-
dling ambiguous or biased content. Additionally, while it excels in specific domains like
reasoning and code generation, its general-purpose language understanding capabilities

may lag behind those of larger models.

3.5.5 Mistral-7B-OpenOrca: Fine-tuning on the OpenOrca
Dataset

The Mistral-7B-OpenOrca model [33] is a fine-tuned variant of the Mistral-7B model.
It was trained on a carefully curated subset of GPT-4-augmented data from the OpenOrca
dataset, designed to replicate the dataset used in Microsoft’s Orca research. Mistral-
7B-OpenOrca outperforms other models in its size category, ranking number 1 on the
Hugging Face Leaderboard for models smaller than 30B parameters at release. The model
achieved significant performance boosts on several benchmarks, including MMLU, ARC,
and HellaSwag, with superior results in reasoning, mathematics, and code generation
tasks. The model’s fine-tuning process involved 4 epochs of training on 8 A6000 GPUs,
achieving remarkable results at a cost-effective level.

This model exemplifies how meticulous data filtering and fine-tuning strategies can
enhance the performance of smaller models, enabling them to rival much larger models
in various tasks. It is also optimized for deployment on consumer GPUs, providing high

accessibility for developers and researchers.

3.5.6 Claude: Exceptionally Good in Creative Writing
3.5.6.1 Claude 3 Overview

Claude 3, developed by Anthropic and introduced in March 2024, represents a sig-
nificant advancement in large language models (LLMs). The Claude 3 family consists
of three key variants: Claude 3 Opus, the most capable model; Claude 3 Sonnet, which
balances speed and skill; and Claude 3 Haiku, the fastest and least expensive version. All
three models incorporate multimodal capabilities, enabling them to interpret and analyze
visual inputs, such as images and charts, alongside text, thus expanding their potential

applications [34].

3.5.6.2 Capabilities of Claude in Creative Writing

The Claude 3 models, particularly Opus and Sonnet, demonstrate increased compe-
tence in tasks involving creative writing, detailed analysis, and structured outputs. As
reported by Anthropic, Claude 3 is better at creative writing tasks compared to Claude
2.1. Also, Claude 3 shows a 63% win rate against a baseline Claude Instant model in the
task of creative writing. Given that the authors of the paper “A Confederacy of Models: a

Comprehensive Evaluation of LLMs on Creative Writing” [35] report that Claude Instant
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1.2 ranked third or higher in all of their rubric items, specifically ranking second in cohe-
sion, and second overall, after GPT-4. This shows that Claude 3, given its reported much
better performance in creative writing, can be considered very promising for creating cre-
ative and coherent lyrics. In addition, as reported by Anthropic, the newest model Claude
3.5 Sonnet shows even better performance compared to Claude 3 to all of the evaluated
tasks [36].

3.6 Evaluation Methods for Generation Tasks

Evaluation methods are much more straightforward in classification tasks, where the
performance of a model can be measured easily by comparing the output with the gold
labels of the dataset. However, this method cannot always be used in generative tasks
like lyric generation. In this chapter, we go over some of the methods used in literature

that are also suitable for the evaluation of the models used for the lyric generation task.

3.6.1 Objective Metrics
In the MusicJam paper [1], the metrics that were used are:

e BLEU [37]: the BLEU metric is usually used in machine translation tasks, and
measures the overlap of n-grams between gold and generated text. It is represented
by the formula:

N
BLEUy = BP - Z exp(wylogpy),
n=1

where BP is the brevity penalty, which penalizes shorter outputs in the generated

reference_length

text according to the formula min(1, Translated Tength

), pn reflects gram precision by
quantifying the precision of n-grams by evaluating the ratio of shared n-grams
between the machine-generated translation and the reference text, compared with
the overall count of n-grams in the machine-generated translation, and wy, are the
corresponding weights for each n-gram. For example, in BLEUs; and BLEUs, the

weights are (0.5, 0.5) and (0.333, 0.333, 0.334) respectively.

This metric provides insight into how closely generated lyrics align with ground
truth data, however, it favors verbatim matches and may fail to capture creative

deviations that are still musically appropriate.
e Distinct/Diversity [38]: this score is calculated according to the formula:

| unique(Ngrams) |

Distincty = N |
grams

It evaluates diversity by analyzing the number of unique n-grams in the generated
lyrics. While it promotes lexical variety, high diversity can sometimes come at the

cost of coherence, especially if the lyrics become too disjointed or unnatural.

e Novelty [39]: this metric calculates the ratio of infrequent n-grams, to total number

of n-grams. The paper deems the n-grams that are not among the 2000 most
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frequent phrases as infrequent. The corresponding formula is:

infrequent(Ngrams
Noveltyy = -Yreduent(Ngrams) |

| Ngrams |

Novelty quantifies the originality of the lyrics by comparing them to commonly used
phrases. This metric is essential for evaluating creative output but can mislead if

rare or obscure phrasing sacrifices clarity or relevance to the theme of the music.

e Coherence [40]: coherence is calculated by counting the number of the repeated
words in the lyrics generated for one song, and then taking the average of the

results. It is expressed by the formula:

1

Coherence = — -
M

M e
1 (count(w;) > 1),
k=

1i=1

where M represents the number of the songs, n;, the number of the words generated

for the song k and w; the i-th word of the lyrics.

While it is very important for a song to be coherent, this way of measuring coherence
does not capture meaningfully the concept of coherence. For example, if the model
repeats the same words, the score will be high but the lyrics won’t necessarily be

coherent, meaningful or have a natural flow.

Overall, while these metrics provide valuable insights, they each have inherent limi-
tations. BLEU and Coherence emphasize linguistic accuracy over creativity, potentially
undervaluing imaginative lyrics. Distinct and Novelty, on the other hand, may prioritize
uniqueness at the expense of clarity. A more holistic evaluation could involve human
assessments that account for thematic consistency, emotional resonance, and overall

musicality.

3.6.2 Similarity Score with Cross Encoder

Cross-encoders are transformer-based models designed to capture the relationship
between input pairs. Cross encoders take two inputs and encode them together into
a shared representation, which is different from bi-encoders where the two inputs are
passed independently into BERT. This shows that, while more computationally expensive,
using a cross-encoder can capture more accurately the similarity between two texts [41].

This similarity scoring method helps avoid the weaknesses of scores likes BLEU, which
matches only n-grams overlaps and therefore misses when two texts have the same mean-

ing but use synonyms or differently phrased sentences.

3.6.3 JudgeLM: Scalable LLM for Evaluation

JudgeLM is a fine-tuned large language model designed to evaluate the performance
of other LLMs in open-ended tasks [17]. Traditional evaluation metrics often fall short in

assessing LLMs due to the complexity and variability of their outputs. JudgeLM addresses
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Figure 3.12: Bi-encoder vs Cross-encoder architecture. Source: [16]

this by fine-tuning open-source models (such as Vicuna) with a large-scale dataset of
105K seed tasks and GPT-4-generated judgments. It is trained to act as a scalable
and efficient evaluator, surpassing human-to-human agreement levels, with a focus on

grading, judging, and reasoning.

3.6.3.1 Architecture and Techniques

JudgeLM utilizes a scalable architecture, available in sizes ranging from 7B to 33B pa-
rameters. It is fine-tuned using innovative techniques like swap augmentation, reference
support, and reference drop to mitigate inherent biases (e.g., position bias, knowledge
bias, and format bias). The swap augmentation technique ensures that the model judges
content rather than position by training it on data where the positions of the answers are
swapped. Reference support allows JudgeLM to leverage reference answers to improve
accuracy in fact-based tasks, while reference drop helps the model handle both referenced

and non-referenced formats, increasing flexibility [17].
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Figure 3.13: An illustration of the JudgeLM’s fine-tuning and the used methods to mitigate
bias. Source: [17]

3.6.3.2 Using It to Evaluate Other Models

JudgelLM is capable of evaluating a range of models across different tasks, including
single-answer and multi-answer evaluation, multimodal model judgments, and multi-

turn dialogues. In practice, JudgeLM compares model outputs to reference answers or
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peer models, providing detailed scores and reasoning. It achieves over 90% agreement
with GPT-4 on several benchmarks, such as PandalLM, surpassing even GPT-3.5. Addi-
tionally, JudgeLM can efficiently evaluate 5,000 sample pairs in just three minutes using
8 A100 GPUs, making it both cost-effective and scalable compared to traditional human
or GPT-4-based evaluations [17].

3.6.4 LLM-based Evaluation

Recent studies show that evaluations made by LLMs can be better than objective
metrics, especially for tasks that require creativity and diversity [42]. Given specific cri-
teria to evaluate, strong LLMs can evaluate the generated lyrics on criteria like creativity,
coherence, naturality and singability.

A problem often raised with this method is the bias that the LLMs may incorporate
when making these judgements: they have been observed to exhibit position bias, which
is the propensity to favor certain positions over others, verbosity bias, which is when
an LLM favors longer, verbose responses even when they are of lower quality, and self-
enhancement bias, which is when LLMs favor the answers generated by themselves [43].

Strong LLMs, and specifically GPT-4 has been shown in the paper “Judging LLM-as-
a-Judge with MT-Bench and Chatbot Arena” [43] to have 80% of agreement with human
annotators, which is equal to the agreement between human annotators.

However, in the paper “Reference-Guided Verdict: LLMs-as-Judges in Automatic Eval-
uation of Free-Form Text” [44], it was shown that using multiple and diverse LLMs as
judges mitigates individual model biases and significantly improves alignment with hu-
man judgments, especially in challenging tasks regarding free-form text, where traditional
metrics and single-model evaluations fall short. The specific method that they followed
was to employ two open-source models and one closed-source model: Mistral-Instruct-
7B-v0.3, Llama-3.1-70B and GPT-3.5-turbo.
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Methodology

I n this section, we present the method that we followed, regarding the preprocessing
of the dataset that we used, the combination of modalities and models that we tested

for the lyric generation process.

4.1 Our Dataset

In this section, we talk about the dataset that we used for training our models and
for inferring our suggested pipelines. We analyze the preprocessing that we performed in

order to get the suitable form for our task, and to increase the performance of our models.

4.1.1 About the DALI dataset

The dataset that we used is the DALI dataset, a dataset of synchronized audio, lyrics
and vocal notes [45]. The dataset, that is comprised of 7756 songs, contains the MP3 files
of a variety of songs, annotated with lyrics, in different levels of granularity: paragraphs,
lines, words and notes. Each song is also annotated with metadata, such as genre,

language, artist, song title and album.

4.1.2 Dataset Preprocessing

4.1.2.1 Source Separation

The MPS3 files of the dataset are not source-separated, meaning they do not have
separate MP3 files that correspond to voice and accompaniment. Therefore, in order to
acquire the music accompaniment, we used a source-separation library called Spleeter
[46], which has the option of two-stem separation, namely for vocals and accompaniment.
This separation is crucial in order to ensure that the models don’t learn to give outputs

based on the vocals.

4.1.2.2 Acquiring the Useful Subset of the Dataset

When we trained our models without doing a more thorough preprocessing, the quality
of the lyrics was severely negatively affected. This was due to the fact that the dataset

has many entries where the lyrics contain the following characteristics:
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Incorrect spelling of words in the lyrics.

e Separation of one word into smaller parts: in many of the entries of the dataset,
because the singer pronounces the words by separating them in smaller chunks,
the annotation split the words accordingly (e.g. the word ‘tomorrow’ was written as

‘tomo rrow’).

e Unconventional contractions: in a plethora of entries in the dataset, there were
words that used apostrophes in an unusual way (e.g. ‘ev’rything’ instead of ‘every-
thing’).

e Some entries were wrongly tagged as English songs, when they were in another

language.
These peculiarities led us to conduct the following preprocessing:

e Using the granularity of lines’, we removed the entries of the dataset which had
lines with words that were consecutively repeated for more than three times. This

was done to avoid making the model repeat the same words during the inference.

e We removed the entries that were wrongly tagged as English in the dataset, firstly
by using a language detection model based on the XLM-RoBERTa model [47]. Then,
we also removed manually the entries that, even if they were mostly in English,

contained some phrases in foreign languages.

e There were entries that had hyphens and other special characters like numbers
and parentheses. We removed the entries that have hyphens, and we removed the
special characters from the entries, either by replacing them with spaces, or in the

case of numbers, by spelling them out (e.g. ‘2’ was replaced by ‘two’).

e Because there were many entries with contractions, we could not pick them out and
remove them, so we replaced them with their full form. This was done for both the
usual contractions and the unconventional ones, because we observed that the VAE
model generated many contractions, which were unusual and didn’t make sense,

before this preprocessing.

e Because of the high frequency of incorrect spellings and separated words, we fixed
these entries in the following way: we used a Python library called Spellchecker
[48] to detect the words that were deemed as ‘unknown’ by the library, and then we
manually fixed them.

This preprocessing resulted in 3111 songs, which were split in training and test set

in percentage of 80-20.

4.2 The Tested Models for each Combination of Modalities

In this chapter, we analyze each of the combinations of modalities that we tested for

the lyric generation process. Specifically, we dive into the models that correspond to each
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of these combinations of modalities, by analyzing their architectures and the prompts

that we used.

4.2.1 Text to Text

The text to text generation process is comprised of an LLM that takes into the input

the beginning of a song, and is asked to generate the rest of it.

4.2.1.1 Out-of-the-box: Claude 3.5 Sonnet, GPT-2, OpenOrca, Vicuna

Firstly, in the text to text generation, we tested the LLMs that are also later used with
the addition of other modalities, making these experiments also serve as ablation studies
for the proposed following pipelines. The LLMs that were tested are Claude 3.5 Sonnet,
GPT-2, Mistral OpenOrca and Vicuna. This testing is initially done out-of-the box, namely
without any finetuning on our selected dataset. Because GPT-2 is a completion, and not
an instruction model, we just provide the first line of the song without any instruction.

For the other three models, the prompt that was used can be seen below:

Prompt used to generate lyrics with Claude OpenOrca and Vicuna in Text-to-Text

You are a helpful assistant that creates song lyrics given the first
line of the song. The lyrics should be coherent and creative.
First line: {first_line}

Lyrics:

4.2.1.2 Finetuned LLMs: GPT-2, OpenOrca

We also tested whether finetuning GPT-2 and OpenOrca on the DALI dataset would
improve the quality of the output. Regarding the form of the dataset for this specific
training setup, each training sample is a song, and specifically, the input given to the

model during training is of the form:

### These are some song lyrics: {lyrics}

We employed the LoRA (Low-Rank Adaptation) technique for fine-tuning, which allows
for efficient adaptation of large language models.
4.2.2 Text & Audio to Text

The text & audio to text generation process consists of giving the music accompani-
ment and previous lyrics as input. The two models that were tested and belong in this
category are the VAE AST-GPT2 model, and the Whisper-OpenOrca model.

4.2.2.1 VAE AST-GPT2 model: a Reproducibility Study

Aiming to reproduce the work of Chuer Chen et al. [1], we follow a similar approach

to the one described in their paper. Given that the code, their preprocessing method, and
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therefore the subset of the dataset that they used, aren’t available, we tried to follow as
closely their work with the information that is given in the paper.

In the lyric generation model of their work, they introduce a variational autoencoder
based on GPT-2. The architecture of the model resembles a Transformer, where the
encoder is the audio encoder AST, and the decoder is GPT-2. The model works as follows:
the mel-spectrogram of a 5-second music accompaniment is fed into the AST encoder.
From the output of the encoder, the hidden representation H,g; is retained. The hidden
representation is then transformed into two vectors, which are meant to capture the

distribution of the music, which are computed according to the following formulas:

u = W,Hnusic

WaHmusic
o =exp(————)
2
Then, reparameterization is performed, which is a standard process found in VAE models,
which is a random sampling from the normal distribution, and which ensures that the

latent vector is non-deterministic. We retain this vector in this way:
z=u+00¢e~N(QO,I

After, this latent vector is fed into the multimodal decoder through a cross-attention layer.
The decoder takes the previous line of lyrics in its input, which is used as context for the
generation of the next lyric line. The architecture of the model can be seen in Figure 4.1.

The paper reports that they used the DALI dataset, from which they also retained
only the music accompaniment. They report that they used 5-second lines, and that they
labeled each lyric line with its previous one for the context that is fed into the decoder,
using the “<START>” special token for the first line of each song. They report that they
retained 2590 songs from the DALI dataset, and splitting them into 2072 and 518 for the
training and test set respectively.

We followed the same training method that they used: the encoder and multimodal
decoder are comprised of 12 layers each, with 12 attention heads. We also used a loss
that combines reconstruction loss and KL divergence as the training objective, described

by the equations below:

Lo(x, Y, 2, §) = Lreconstr(Y, §) +ﬁKL(Q¢(Z | x) || p(2))

where Lyeconstr calculates the dissimilarity between the generated lyrics y and the gold
lyric §j, KL(qy(z | x) || p(z)) assesses the difference between the p(z) and the distribution
produced by the encoder, and 3 is hyper-parameter controlling the loss contribution from

the KL divergence.

4.2.2.2 Whisper-OpenOrca model: Harnessing the Power of Advanced Models

By reviewing the results of the previous model, we noticed that their quality was

not sufficient. Because of the limitation of the context with the previous method, the
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Figure 4.1: The VAE AST-GPT2 model. Source: [1]

generated lyrics weren’t meaningful and coherent to a sufficient degree (the results are
further explored in the section 5.3). This led us to explore other models with newer

architectures and further pretraining.

In this model, we utilize the Whisper model as the audio encoder, and the Mistral
OpenOrca as the LLM. These models are loaded with their pretrained weights, and the
alignment between audio representations and lyrics is achieved by a projection layer
between these two models. This projection layer is the only trainable module of this
model. The employed loss function is the cross-entropy loss between the gold lyrics (fj)

and the generated lyrics (y), the formula of which can be seen below:

N
L= yilog()
i=1

In order to fix the problem of limited context, which reduces significantly the coherence
of the output lyrics, we trained the model by giving the whole previous gold lyrics context
into the prompt of the LLM. In a similar manner, during inference, the trained model
is prompted to either start creating or continue the given music lyrics, given the music
accompaniment. Because this LLM is an instruct model, in contrary to GPT-2 which is

a completion model, instead of only giving the previous lyrics in the prompt, we also give
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an instruction. The specific prompt that was used can be seen below:

Prompt used to provide the OpenOrca LLM with the lyric context in Whisper-

OpenOrca model

<|im_start|>system

You are an assistant that helps create the lyrics of a song in a way that
matches the given music accompaniment. You are given the previous lyrics of
the song and you create the next lyrics. When the token ’'<START>' is given as
previous lyrics, you write the beginning of the song.

<|im_end|>

<|im_start|>user

Previous lyrics: {previous_lyrics}

The architecture of the model can be viewed in Figure 4.2.

‘ Music Lyrics ‘
Mistral OpenOrca

Projection Layer O “Yf)u are an assi.stant that helps create the
lyrics of a song in a way that matches the
given music accompaniment. You are

I given the previous lyrics of the song and
you create the next lyrics. When the token
: '<START>'is given as previous lyrics, you
Whisper Encoder write the beginning of the song.”
Music
accompaniment

Figure 4.2: The Whisper-OpenOrca model.

4.2.3 Text & Audio to Text to Text

The audio to text to text generation process consists of an extra generation step com-
pared to the previous method: music tags are intermediately produced, which are then
used to create the final song lyrics. The model used in this setup is SALMONN-Claude.
With this and the next model, we wanted to examine how the lyric generation would be
affected when we pass from different modalities before we end up to the lyric generation

process.
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4.2.3.1 SALMONN-Claude: Guiding Lyric Generation with Autogenerated
Music Tags

With this model, we harnessed the creativity and extraordinary performance of Claude
regarding creative writing tasks. Specifically, we used the pretrained model SALMONN to
extract tags from the music. We specifically used prompts that were found in the appendix
of the corresponding paper [25], because they were showcased to have good results. We
asked the model to give a detailed description of the given music accompaniment, and to
extract the emotion of the music, and the musical instruments that it can hear. These

tags were then used to prompt Claude to generate lyrics based on these given music tags.

We performed prompt tuning in order to improve the outputs of the music under-

standing model, and we ended up using these:

Prompt that extracts detailed description of the song in SALMONN-Claude pipeline

Please describe the music in detail.

Prompt that extracts the emotion of the song in SALMONN-Claude pipeline

What is the emotion of the music? Explain the reason in detail.

Prompt that extracts the musical instruments in the song in SALMONN-Claude

pipeline

Which musical instruments do you hear?

We also tested if few-shot learning could improve even further the quality of the lyrics,
by formulating two different prompts for the Claude model: a zero-shot one, and a few-
shot one. The form of the prompts given to Claude can be seen below (we give a 2-shot

example for the few shot one, for simplicity):

Zero shot prompt given to the Claude model in SALMONN-Claude pipeline

You are a helpful assistant that writes song lyrics based on provided tags
like instruments that are used, the sentiment of the song, and an overall
description of the background music. The lyrics should be original, coherent,
and singable. If an existing song is referenced, the lyrics should be a new
creation inspired by the music accompaniment of the song.

Instruments: {instruments}

Sentiment: {sentiment}

Description: {description}
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Few shot prompt given to the Claude model in SALMONN-Claude pipeline

You are a helpful assistant that writes song lyrics based on provided tags

like instruments that are used, the sentiment of the song, and an overall
description of the background music. The lyrics should be original, coherent,
and singable. If an existing song is referenced, the lyrics should be a new
creation inspired by the music accompaniment of the song.
<examples>
<example>
Instruments: {instruments_examplel}
Sentiment: {sentiment_examplel}
Description: {description_examplel}
Lyrics: {lyrics_examplel}
</example>
<example>
Instruments: {instruments_example2}
Sentiment: {sentiment_example2}
Description: {description_example2}
Lyrics: {lyrics_example2}
</example>

</examples>

For the few-shot prompting, we gave to the model six examples, two from each of the
most predominant genres present in the DALI dataset: pop, rock and alternative.

The described pipeline can be seen in Figure 4.3.

4.2.4 Text & Audio to Text to Image to Text

The text & audio to text to image to text generation process consists of an extra step
compared to the previous setup, where there is an image generation based on a description
generated from the music understanding model. The lyrics are then produced from the

image.

4.2.4.1 SALMONN-Stable Diffusion-LLaVA: adding other modalities in the

lyrics generation process

With this model, we wanted to test if the creativity of the lyric generation process
would increase by adding the vision modality. The pipeline of this model consists of
the following modules: first, we feed the music accompaniment to SALMONN, and we
prompt it to describe a paused movie scene that could be accompanied by the given
music accompaniment. Given that this model has been trained to respond sufficiently to
creative tasks, the output of the model is satisfactory. The output of the model is then
fed to Claude, which is prompted to modify the given description as necessary, so it can

be used as a Stable Diffusion prompt. Afterwards, Claude’s response is fed into Stable
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Figure 4.3: The Text & Audio to Text to Text pipeline. The dashed line highlights the
SALMONN model. Adapted from [2], [3] and [4]

Diffusion, which generates an image, and this image is finally fed into the LLaVA model,
which is prompted to generate lyrics based on the given image.

We additionally test the performance of this pipeline by doing few-shot learning in the
LLaVA model. The prompts can be viewed below:

Prompt for the SALMONN model in SALMONN-Stable Diffusion-LLaVA pipeline

Describe a paused movie scene that would be accompanied by this music. Analyze

shortly the setting, characters, and plot. The description should be inspired

by the mood and atmosphere of the music.

Prompt for the Claude model in SALMONN-Stable Diffusion-LLaVA pipeline

You are a helpful assistant that turns descriptions of movie scenes into Stable
Diffusion prompts, removing any references to music.
Description: {description}

Stable Diffusion prompt:

Zero-shot prompt for the LLaVA model in SALMONN-Stable Diffusion-LLaVA

pipeline

Create song lyrics that match the atmosphere and overall sentiment depicted in

this image.
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Few-shot prompt for the LLaVA model in SALMONN-Stable Diffusion-LLaVA

pipeline

Create song lyrics that match the atmosphere and overall sentiment depicted in
this image. Some examples of lyrics are:

Example 1: {lyricsl}

{lyrics2}

{lyrics3}

Example
Example
Example {lyrics5}

2
3
Example 4: {lyrics4}
5
6 {lyrics6}

Example

The described pipeline can be seen in Figure 4.4.
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Figure 4.4: The Text & Audio to Image to Text pipeline. The dashed line highlights the
SALMONN model. Adapted from [2], [3], [4] and [5]

Furthermore, we tested a configuration as an ablation study for this pipeline. Given
that the LLaVA model is based on the Vicuna-7b-v1 model, we omitted the vision modality,
and we got the SALMONN-Vicuna pipeline. In this pipeline, the SALMONN model gives

the movie scene description, and then the Vicuna model is prompted to generate the lyrics
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given the description from the SALMONN model. The prompt used for the Vicuna model,

in order to get the lyrics from the movie scene description, is shown below:

Prompt for the Vicuna model in the SALMONN-Vicuna pipeline

USER: Create music lyrics based on the following description. Avoid

referencing the style of music in your lyrics:

{movie_scene_description}
ASSISTANT:
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Experiments and Results

B uilding upon the methodological framework presented in chapter 4, this chapter
details our experimental implementation and presents our findings. We first de-
scribe the specific configurations and training processes for each approach, followed by a

comprehensive analysis of our results.

5.1 Implementation Details

Following our methodological framework, we implemented and evaluated four distinct
approaches to lyric generation. For each approach, we detail the specific configurations

and resources required for reproducibility.

5.1.1 Text to Text Implementation

Our initial experimental approach focused on text-to-text architectures, where we
systematically evaluated four language models chosen to represent different architectural
paradigms and parameter scales. The selected models were Claude 3.5 Sonnet, GPT-
2, Mistral OpenOrca (7B parameters), and Vicuna 1.5 (7B parameters). This diverse
selection enabled us to examine how different model architectures and scales influence
the quality of lyric generation, while also providing insights into the trade-offs between
model complexity and generation capability.

For the initial inference phase, we established consistent generation parameters across
all models, setting the temperature to 0.6 and maximum token length to 512. These val-
ues were determined through preliminary experimentation, where we found that a tem-
perature of 0.6 provided an optimal balance between creativity and coherence in lyric
generation, while 512 tokens sufficiently accommodated the typical length of song con-
tinuations.

Following the initial evaluation, we proceeded with fine-tuning two of the models—GPT-
2 and Mistral OpenOrca—using the Low-Rank Adaptation (LoRA) technique. LoRA was
selected for its efficiency in adapting large language models while maintaining reasonable
computational requirements, a crucial consideration for our research scope. The fine-
tuning configurations were tailored to each model’s architecture:

For GPT-2, we implemented LoRA with a rank of 16 and alpha of 32, targeting the
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primary linear layers (c_attn, c_proj, c_fc, and Im_head). This configuration was cho-
sen based on empirical testing and represented an effective balance between adaptation
capacity and computational efficiency. Similarly, for Mistral OpenOrca, we employed a
higher rank of 32 and alpha of 64, targeting an expanded set of linear layers due to the
model’s more complex architecture. Both configurations utilized a dropout rate of 0.05 to
prevent overfitting while maintaining effective learning.

The training process for both models employed consistent hyperparameters: a batch
size of 8, learning rate of 2.5e-5, and the 8-bit AdamW optimizer with paged optimiza-
tion. These parameters were selected to ensure stable training while managing memory
constraints. The inclusion of two warm-up steps proved sufficient to stabilize the initial
training phase without significantly impacting the overall training duration.

This systematic approach to model selection and parameter tuning allowed us to com-
prehensively evaluate the effectiveness of different text-to-text architectures in the context

of lyric generation, while maintaining experimental rigor and computational feasibility.

5.1.2 Text & Audio to Text Implementation

Building upon our text-only approach, we explored multimodal architectures that
could leverage both textual and audio information for lyric generation. This investigation
centered on two distinct approaches: a VAE-based architecture combining AST and GPT-
2, and an integrated system utilizing Whisper and OpenOrca. These architectures were
selected to explore different paradigms of multimodal integration in the context of lyric
generation.

For the VAE AST-GPT2 implementation, we developed a training regime spanning 40
epochs with a batch size of 32. The choice of the Adam optimizer with a learning rate
of 5e-5 was informed by the model’s complexity and the need for stable convergence in
multimodal learning. A key aspect of our implementation was the management of the
KL weight (8), which we carefully scheduled throughout the training process. Initially
set to le-5 for the first half of training, S was linearly increased to 1 during the second
half. This progressive scheduling strategy was crucial for maintaining the delicate balance
between the variational bottleneck and reconstruction quality, while preventing posterior
collapse—a common challenge in VAE architectures.

Our implementation strategy for this architecture focused on efficient parameter up-
dating. Through careful analysis of the original architecture, we identified that the cross-
attention layer and reparameterization weight matrices were the critical components re-
quiring adaptation. Consequently, we maintained the pretrained weights of both the AST
and GPT-2 components, focusing our training exclusively on these interaction layers.
This targeted approach allowed us to preserve the robust feature extraction capabilities
of the pretrained models while optimizing their integration for lyric generation.

The Whisper-OpenOrca implementation required a different approach due to the dis-
tinct characteristics of the Whisper model. During training, we employed the Adam opti-
mizer with a higher learning rate of 1.5e-3, conducted over 20 epochs. This configuration

was determined through empirical testing to best accommodate the model’s architec-
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ture and our training objectives. A significant consideration in this implementation was
Whisper’s fixed 30-second input window. To address this constraint, we developed a
preprocessing pipeline that intelligently segmented and aligned the DALI dataset entries.
Our solution involved concatenating lyric lines to optimally fit the 30-second windows,
with appropriate padding for shorter segments. This resulted in training pairs consisting
of 30-second current lyric segments paired with their complete preceding lyrical context.

This structured approach to multimodal integration allowed us to effectively combine
audio and textual information while managing the inherent complexities of each archi-
tecture. The distinct implementations provided valuable insights into different strategies
for multimodal lyric generation, while maintaining computational feasibility and training

stability.

5.1.3 Text & Audio to Text to Text Implementation

Our investigation into more complex multimodal chains led us to explore a two-stage
processing pipeline combining SALMONN-7B [25] and Claude 3.5 Sonnet [36]. This ar-
chitecture was designed to leverage both audio and textual information in a sequential
manner, allowing for progressive refinement of the generated lyrics.

In implementing this pipeline, we carefully calibrated the temperature parameters
for each model: 1.0 for SALMONN and 0.7 for Claude. The selection of these values
emerged from extensive preliminary testing, where we found that a higher temperature
for SALMONN promoted more diverse initial representations of the audio-textual features,
while the moderately lower temperature for Claude helped maintain coherence in the final
lyric generation phase. This configuration created an effective balance between creative
exploration and semantic consistency, addressing one of the key challenges in multimodal

lyric generation.

5.1.4 Text & Audio to Text to Image to Text Implementation

Building upon our previous pipeline architecture, we developed an extended multi-
modal chain incorporating visual modality through the integration of Stable Diffusion 2
[62] and LLaVA-v1.5-7b [29]. This novel approach combined the strengths of SALMONN-
7B’s audio-textual processing with the visual-semantic capabilities of Stable Diffusion
and LLaVA, creating a comprehensive multimodal system for lyric generation.

The implementation maintained the previously established temperature parameters
for SALMONN (1.0) and Claude (0.7), while introducing a carefully selected temperature of
0.6 for the LLaVA model. This configuration was chosen after extensive experimentation,
finding that a lower temperature for LLaVA provided more consistent and contextually
relevant interpretations of the generated images, which proved crucial for maintaining
semantic coherence throughout the extended pipeline.

The integration of visual processing into the pipeline presented unique challenges in
maintaining semantic consistency across modalities. Our implementation focused on
creating a balanced flow of information, where each stage of the pipeline contributed

meaningfully to the final lyric generation process. The careful selection of model param-
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eters and processing sequence helped ensure that the visual modality enhanced rather
than disrupted the lyric generation process, providing additional semantic context while

maintaining musical and linguistic coherence.

5.2 Computational Requirements and Resource Analysis

An important aspect of our research is understanding the computational demands
and efficiency of different approaches to lyric generation. This analysis not only provides
practical insights for future implementations but also helps contextualize the scalability
and accessibility of various architectures. In this section, we present a detailed analysis of
the computational requirements across our implemented models, examining both training

and inference characteristics.

5.2.1 Parameter Efficiency Analysis

Table 5.1 presents the parameter distribution across our trained models, revealing
interesting patterns in architectural efficiency. The parameter utilization varies signifi-
cantly across architectures, with the VAE-AST-GPT2 showing the highest proportion of
trainable parameters (10.46%). This higher percentage reflects the more extensive adap-
tation required for effective multimodal integration in this architecture. In contrast, the
Whisper-OpenOrca implementation achieves its objectives with remarkably few trainable
parameters (0.12%), demonstrating the efficiency of its transfer learning approach.

The GPT-2 and OpenOrca implementations, utilizing LoRA fine-tuning, maintain simi-
lar proportions of trainable parameters (2.49% and 2.22% respectively) despite their vastly
different scales. This consistency validates LoRAs effectiveness in maintaining parameter
efficiency across model scales, while still allowing sufficient adaptation for our specific
task.

5.2.2 Training Resource Requirements

The training requirements, detailed in Table 5.2, reveal the varying computational
demands of different architectures. The contrast between training durations is particu-
larly noteworthy, ranging from 1.5 hours for GPT-2 to 90 hours for Whisper-OpenOrca.
These differences reflect not just the computational complexity of each model, but also
the challenges inherent in different approaches to multimodal integration.

The precision requirements also provide interesting insights. While some models op-
erated efficiently with float32 precision, others required more sophisticated approaches
like nf4 quantization with bfloat16 precision. These variations in precision requirements
highlight the balance between computational efficiency and model performance, particu-

larly in larger architectures like OpenOrca and Whisper-OpenOrca.

5.2.3 Inference Performance Analysis

The inference characteristics, presented in Table 5.3, demonstrate notable variations

in processing efficiency across models. The text-to-text models (Claude and GPT-2)
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achieved the fastest inference times at 16 minutes for 100 songs, while more complex
pipelines like SALMONN-Stable Diffusion-LLaVA required up to 150 minutes for the same
task. These differences in inference time reflect the computational overhead of processing
multiple modalities and the complexity of inter-model communication in pipeline archi-
tectures.

Notably, the GPU memory requirements remain relatively consistent across most mod-
els at 16GB, with some variations for simpler architectures. The more complex mul-
timodal pipelines, such as SALMONN-Stable Diffusion-LLaVA, also maintain the same
16GB memory requirement as simpler models, which is achieved through sequential
processing of each modality. Despite handling multiple modalities and larger model ar-
chitectures, these pipelines avoid increased memory requirements by efficiently loading
and unloading components as needed. However, this memory efficiency trades off against
processing time, as evidenced by the longer inference times for these models.

These resource requirements and performance characteristics provide valuable in-
sights for future research and practical implementations in the field of automated lyric
generation. They highlight the trade-offs between model complexity, computational effi-
ciency, and generation quality, offering important considerations for both research and

practical applications in this domain.

Model No. of total parameters | No. of trainable parameters | Trainable parameters (%)
GPT-2 finetuned 127,615,504 3,175,696 2.49%
OpenOreca finetuned 3,837,128,768 85,041,216 2.22%
VAE-AST-GPT2 236,252,930 24,701,440 10.46%
Whisper-OpenOrca 4,392,381,952 5,245,440 0.12%

Table 5.1: Trainable parameters for each trained model

Model GPU requirements LLM Precision Training time | Epochs
GPT-2 finetuned 16GB float32 1.5 hours 6
OpenOreca finetuned 24GB nf4 quantization - bfloat16 precision 7 hours 6
VAE-AST-GPT2 16GB float32 24 hours 40
Whisper-OpenOrca 24GB nf4 quantization - bfloat16 precision 90 hours 20

Table 5.2: GPU requirements, precision, training time and number of epochs for the trainable
models

Model GPU requirements | Inference time (for 100 songs)
Claude out-of-the-box - 16 minutes
GPT-2 out-of-the-box < 8GB 16 minutes
OpenOrca out-of-the-box 16GB 50 minutes
Vicuna out-of-the-box 16GB 50 minutes
SALMONN-Claude zero-shot 16GB 80 minutes
SALMONN-Claude few-shot 16GB 80 minutes
SALMONN-Stable Diffusion-LLaVA zero-shot 16GB 150 minutes
SALMONN-Stable Diffusion-LLaVA few-shot 16GB 150 minutes
SALMONN-Vicuna 16GB 95 minutes

Table 5.3: GPU requirements and inference time for the non-trained models
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5.3 Our Evaluation Methods

During the inference, we evaluated the performance of the models on the test set.
Because of the cost of some of the submodules of the last two pipelines, the evaluation
was done on 100 songs. The evaluation consists, as analyzed in more detail in section 3.6,
of the calculation of similarity score by employing a cross-encoder, and LLM methods like
JudgelLM and prompt-based with a combination of strong and diverse LLMs. We give more
details for each metric, and the models used for the LLM evaluations. We then present the
results of these evaluations. We also employ a user study, in order to get the opinion of

users regarding the models that scored best overall with the previous evaluation methods.

5.3.1 Semantic textual similarity

Recognizing the weakness of the BLEU score, we decided to use a method that calcu-
lates the similarity between the gold and the generated lyrics, but without the strict check
of the n-gram overlaps. For this task, we utilized a cross-encoder model. Bi-encoders pro-
duce fixed-dimensional sentence representations and are computationally efficient, how-
ever, they usually underperform cross-encoders, which can leverage their attention heads
to exploit inter-sentence interactions for better performance [49]. The specific model that
was used for the calculation of the similarity scores is ms-marco-MiniLM-L-12-v2 [50].

The exact method of calculating the similarity score is taking the average for all the
individually calculated scores for each generated-gold lyric pair. The similarity score can

range from O to 1. The results of this method can be seen in the Table 5.4.

Model Similarity Score
SALMONN-Stable Diffusion-LLaVA few-shot 0.89
Vicuna out-of-the-box 0.85
OpenOrca out-of-the-box 0.81
GPT-2 out-of-the-box 0.71
Claude out-of-the-box 0.69
OpenOrca finetuned 0.58
SALMONN-Claude zero-shot 0.51
GPT-2 finetuned 0.50
SALMONN-Stable Diffusion-LLaVA zero-shot 0.48
SALMONN-Vicuna 0.36
Whisper-OpenOrca 0.26
SALMONN-Claude few-shot 0.25
VAE-AST-GPT2 0.07

Table 5.4: The similarity scores calculated with the cross-encoder model

5.3.2 Using LLM-as-a-Judge to evaluate lyrics quality

We also use the JudgeLM model, which has been analyzed in subsection 3.6.3. We give
to the model that the task that the LLMs had to complete was to generate coherent and

creative lyrics. Due to the numerous models and configurations tested, it was not feasible
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to prompt JudgeLM to grade all outputs simultaneously, given its context length limitation
(2048). To address this and incorporate a method that compares models before grading
them—as single answer grading may not always discern subtle differences between specific
pairs [43]—we employed JudgeLM for pairwise grading, resulting in 78 comparisons. The
model, considering the gold lyrics as well, assigns a grade from O to 10 to each model
in the pair based on lyrics quality. Using this method, we initially calculate the average
rating for each pair. Then, we present a ranking order by aggregating all the scores that
each model got in each pairwise comparison. The results of this evaluation can be seen
in Table 5.5.

Model Aggregated Score
SALMONN-Claude zero-shot 96.87
SALMONN-Claude few-shot 96.35

Claude out-of-the-box 95.91

OpenOrca out-of-the-box 92.80
SALMONN-Stable Diffusion-LLaVA zero-shot 92.53
Vicuna out-of-the-box 90.02
SALMONN-Vicuna 89.05

OpenOrca finetuned 49.76

GPT-2 finetuned 38.59
Whisper-OpenOrca 24.16
SALMONN-Stable Diffusion-LLaVA few-shot 16.26
GPT-2 out-of-the-box 15.20
VAE-AST-GPT2 13.36

Table 5.5: The aggregated scores determined by JudgeLM, in descending order

5.3.3 Prompt-based LLM evaluation

Following a similar method to the one of the paper “Reference-Guided Verdict: LLMs-
as-Judges in Automatic Evaluation of Free-Form Text” [44] that was also explained in
subsection 3.6.4, we used three (one closed-source, two open-source) LLMs: Claude 3.5
Sonnet, Mistral-Instruct-7B-v0.3 [51], and Llama-3.1-Instruct-70B [52]. We prompted
them to evaluate the generated lyrics, by giving a grade of O to 10, for each of the following
criteria: coherence, creativity, singability, naturality. Afterwards, the given grades were
averaged programmatically to extract the score for each song, and then averaged again to
get the overall scores given by each LLM-as-a-judge to each model. The specific prompt

that was used for this task is the following:
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System prompt for prompt-based evaluation

You are a helpful assistant that judges the quality of generated lyrics. You

have to give a score from 0@ to 10 for each of the following criteria:
Coherence: How well the lyrics make sense and are logically connected.
Creativity: How original and imaginative the lyrics are.

Singability: How easy it is to sing the lyrics.

Naturality: How natural and fluent the lyrics sound.

The form of your answer should be of the form
"Coherence:...\nCreativity:...\nSingability:...\nNaturality:...".

If the given text does not resemble lyrics, provide low scores accordingly.

The LLMs were set to low temperatures (0.2-0.4) for this evaluation task to avoid
very unpredictable answers. The final results of this evaluation method can be seen in
Table 5.7.

Model Claude | LLaMA | Mistral | Average
SALMONN-Stable Diffusion-LLaVA zero-shot 8.19 8.31 8.50 8.33
SALMONN-Claude zero-shot 8.43 8.15 8.20 8.26
Claude out-of-the-box 8.31 8.08 8.30 8.23
OpenOrca out-of-the-box 7.87 7.89 8.61 8.12
SALMONN-Claude few-shot 8.26 7.80 8.21 8.09
Vicuna out-of-the-box 7.68 7.63 8.54 7.95
SALMONN-Vicuna 7.54 7.34 8.29 7.72
OpenOrca finetuned 5.89 6.74 7.31 6.64
Whisper-OpenOrca 4.40 5.27 6.38 5.35
GPT-2 finetuned 3.66 5.56 6.65 5.29
SALMONN-Stable Diffusion-LLaVA few-shot 2.96 2.91 6.34 4.07
GPT-2 out-of-the-box 1.83 1.36 5.55 2.91
VAE-AST-GPT2 0.35 0.87 1.53 0.92

Table 5.7: The LLM evaluations, ordered in descending order of average grades

5.4 User Study: Ranking our Methods with Human Annota-

tions

Given the inherently creative nature of lyric generation, we believe it is crucial to
incorporate human judgment alongside automated evaluation methods. While our user
study is conducted on a smaller scale compared to other evaluation techniques, it provides
valuable insights into the perceived quality and creativity of the generated lyrics from an
end-user perspective.

We structured our user study as follows: Participants were first asked to listen to 1
minute of musical accompaniment for each song. They were then presented with two
candidate sets of lyrics and asked to choose, first in terms of the quality of the lyrics

(coherence, structure) and then in terms of correlation between lyrics and the given music.
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The study encompassed 12 songs in total, and we examined only the models that scored
the highest with the other evaluation methods, for each set of modalities, which are
Claude out-of-the-box, Whisper-OpenOrca, SALMONN-Claude zero-shot and SALMONN-
Stable Diffusion-LLaVA zero-shot. To establish a credible ranking of our models, each
music featured all six possible pairs of candidate lyrics.

To prevent participant fatigue and maintain engagement, we implemented a random
assignment method for the evaluation pairs. Each participant was tasked with grading 12
pairs in total, meaning that the user study had 6 groups of questions, which was randomly
assigned each time the user study form is opened. This randomization ensured that every
participant evaluated two instances of each pair of models, and one pair of models for each
song, striking a balance between comprehensive coverage and a manageable workload for
the annotators.

The method that was used to calculate the ranking of the models from this user
study is the Bradley-Terry model [53], which is a probability model used to predict the
outcome of pairwise comparisons and has found widespread application in various fields,
including the ranking of AI models [54]. In the Bradley-Terry model, each candidate (or
item) is assigned a strength parameter m;, for candidate i. The model assumes that the

probability that candidate i beats candidate j in a pairwise comparison is:

L

P(i beatsj) = .
T + T

To rank the candidates, the Bradley-Terry model uses maximum likelihood estimation
(MLE) to find the best values for each m; that maximize the likelihood of observing the
pairwise comparison data. The likelihood is a function of the observed wins and losses
between all pairs of candidates. Given the pairwise outcomes, the model tries to find the
m; values that best explain the data. This typically requires solving the following equation

for each candidate i:

where Wj is the number of times candidate i beat candidate j. After the estimation of the
m; values, the candidates with the highest © values are ranked highest.

The results, which were obtained by the participation of 28 users, can be seen in
Table 5.8 and Table 5.9.

Model Bradley-Terry Probabilities for Coherence and Structure
SALMONN-Stable Diffusion-LLaVA zero-shot 0.316393
Claude out-of-the-box 0.304484
SALMONN-Claude zero-shot 0.282116
Whisper-OpenOrca 0.097007

Table 5.8: The Bradley-Terry probabilities for the coherence and structure of the lyrics,
ordered in descending order

We also performed statistical analysis on the results of the user study, by employing
the z-test and calculating the p-values for each pair of models. The Z-score measures

how far the observed win proportion is from the expected proportion under the null
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Model Bradley-Terry Probabilities for Music Correlation
SALMONN-Claude zero-shot 0.355462
SALMONN-Stable Diffusion-LLaVA zero-shot 0.241730
Claude out-of-the-box 0.228919
Whisper-OpenOrca 0.173889

Table 5.9: The Bradley-Terry probabilities for the correlation of the lyrics with the music,
ordered in descending order

hypothesis. The null hypothesis assumes that both models are equally likely to win (i.e.,
a 50-50 split of wins). When the magnitude of the Z-scores is close to zero (around O to
+1), they suggest the results are not far from the null hypothesis, and z-scores further
away from zero (e.g., greater than +1.96 for a 95% confidence level and greater than
+1.645 for a 90% confidence level) suggest a statistically significant deviation from the
null hypothesis [55]. Regading the p-value, a small p-value (typically p < 0.05) suggests
that the observed difference in wins is statistically significant, meaning it’s unlikely to
have occurred by chance, and we might reject the null hypothesis (i.e., the models are
not equally preferred). A large p-value (p > 0.05) suggests that the observed difference
in wins is not statistically significant, meaning we fail to reject the null hypothesis (i.e.,
the models are equally preferred) [56]. The statistical analysis of the results (z-test and

p-values) for each pair of models can be seen in Table 5.10 and Table 5.11.

Model Pair Z-score (magnitude of value) | p-value

Claude-out-of-the-box & Whisper-OpenOrca 3.21 0.00134
Claude-out-of-the-box & SALMONN-Claude 1.07 0.285
Claude-out-of-the-box & SALMONN-Stable Diffusion-LLaVA 0.27 0.789

Whisper-OpenOrca & SALMONN-Claude 4.81 1.50e-06

Whisper-OpenOrca & SALMONN-Stable Diffusion-LLaVA 3.47 0.00051
SALMONN-Claude & SALMONN-Stable Diffusion-LLaVA 0.80 0.423

Table 5.10: The z-test and p-values for each pair of models, for the criterion of structure/-
coherence

Model Pair Z-score (magnitude of value) | p-value
Claude-out-of-the-box & Whisper-OpenOrca 1.60 0.109
Claude-out-of-the-box & SALMONN-Claude 1.87 0.061
Claude-out-of-the-box & SALMONN-Stable Diffusion-LLaVA 0.53 0.593
Whisper-OpenOrca & SALMONN-Claude 2.67 0.0075
Whisper-OpenOrca & SALMONN-Stable Diffusion-LLaVA 0.53 0.593
SALMONN-Claude & SALMONN-Stable Diffusion-LLaVA 1.07 0.285

Table 5.11: The z-test and p-values for each pair of models, for the criterion of music-lyric
correlation

With this statistical analysis, we can say that, for the criterion of structure/coher-
ence, Whisper-OpenOrca appears to perform worse compared to the other models, partic-
ularly when compared to SALMONN-Claude and SALMONN-Stable Diffusion-LLaVA. On
the other hand, SALMONN-Claude and SALMONN-Stable Diffusion-LLaVA are performing
similarly. For the criterion of music-lyric correlation, SALMONN-Claude appears to signif-

icantly outperform Whisper-OpenOrca. The comparison between Claude out-of-the-box
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and SALMONN-Claude shows statistical significance with 90% - instead of 95% - confi-
dence, indicating that SALMONN-Claude slightly outperforms Claude out-of-the-box. The

other pairs show similar performance.
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Conclusion

6.1 Discussion

This thesis explores the task of automatic lyric generation process and how the quality
of the produced lyrics is affected with the addition of different modalities. To our knowl-
edge, the incorporation of the modality of vision, along with text and audio, has not been
explored.

We explored four sets of different usage of modalities. The first one was text to text,
in which we tested how four LLMs would handle the lyric generation task, first by using
them out-of-box, then by fine-tuning them in the DALI dataset. This showed that the
instruction LLMs did well even without fine-tuning, which is due to their rich pretraining
on creative writing texts like songs and poems. In the user study, the selected LLM
for the evaluation of the ‘text to text’ combination was Claude, which showed the best
performance in the LLM evaluations. This model performed fairly well in both criteria of
the user study, but didn’t particularly excel in either.

The second combination of modalities that we explored was by also adding music
supervision (text & audio to text). For this, we explored two models: one was in the
context of reproducing previous work that used a Variational Autoencoder model, with
transformer-like architecture, that incorporated the Audio Spectrogram Transformer as
audio encoder, and GPT-2 as the decoder. This model, which we tried to reproduce as
faithfully as the paper presented it, was the weakest one of all we studied. We attribute
this to the fact that code, the specifics of the preprocessing of the dataset, and the IDs of
the subset of the songs of the dataset that they used for the training were not available.
Additionally, GPT-2 is an older and weaker model compared to the other LLMs that we
used in our other models. Given that in the task of lyric generation, the quality of lyrics
is mainly affected by the performance of the LLM, and the other modalities are used to
enhance the lyric generation, the use of weaker LLMs leads to lower quality of lyrics.

The other configuration that we tested for the combination of text & audio to text
modalities, is the Whisper-OpenOrca model, which uses the Whisper audio encoder, the
Mistral OpenOrca LLM, and a trainable projection layer between these two modules, which
aligns the music representation with the lyric generation. This model did much better
than the other model under this combination of modalities. This can be attributed to

the fact that both the audio encoder and the LLM are more recent, and stronger, models,
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meaning they exploit their diverse knowledge from their extensive pretraining. In the user
study, the Whisper-OpenOrca model underperformed in both criteria in comparison to
the other models included in the study, which reflects the LLM evaluations.

The third combination of modalities that we studied added an intermediate production
of text compared to the previous one (text & audio to text). This combination was tested
with the SALMONN-Claude model, with which we extracted music tags relating to the
given audio. Then, these tags were given to the Claude model to generate lyrics. This
addition was shown to score slightly better compared to the text to text setup with Claude,
which serves as an ablation study of the audio modality in the pipeline. It also scored
significantly better than the other ‘text to text’ and ‘text & audio to text’ setups, showcasing
the ability of this proposed pipeline to enhance the lyric generation process. From the
user study, we also observe that this pipeline achieved the best score regarding lyrics and
music correlation, which further supports the claim that the addition of the step of music
tag extraction enhances the lyric generation process.

The fourth combination of modalities additionally incorporated the vision modality
to the third setup (text & audio to text to vision to text). This was explored with the
SALMONN-Stable Diffusion-LLaVA model. The SALMONN model generated a description
of a movie scene that could accompany the given audio, then this audio was turned, with
the help of Claude, to a Stable Diffusion prompt, which was used to visualize that scene.
The image was then given to the LLaVA model to generate the final lyrics. The addition of
the vision modality proved to increase the quality of the lyrics, and its performance was
on par with the previous model, proving that the addition of extra modalities to the lyric
generation process can enhance the creativity and therefore the lyric generation process.
This is further confirmed by the performance of the the SALMONN-Vicuna model, which
serves as an ablation study for the vision modality in the SALMONN-Stable Diffusion-
LLaVA model, and the Vicuna out-of-the-box model, which serves as an ablation study
for both the audio and image modalities. These two models score significantly less than
the proposed pipeline. Additionally, the user study showed that the SALMONN-Stable
Diffusion-LLaVA model scored slightly better than the other models in the coherence and
structure of the lyrics, while also maintaining a reasonable correlation with the music,
striking a balance between these two criteria.

For the two previous setups, in addition to zero shot prompting, we tried few shot
prompting. Specifically, in the SALMONN-Claude model, we incorporated some examples
of music tags and gold lyrics to the prompt of the Claude model, and in the SALMONN-
Stable Diffusion-LLaVA model, the few shot prompting was incorporated in the LLaVA
model, by giving examples of gold lyrics. One of the few shot setups showed an increase
in the similarity score, however both few shot setups showed a decrease in performance
with the LLM-based evaluations. This is due to the fact that, with the few-shot setup, the
models were guided to produce similar lyrics to the given examples, but the creativity of
the produced lyrics was decreased.

These conclusions were drawn mostly from the LLM evaluations. Given that, even
human composers would come up with different lyrics for a given music, or they would

continue a song differently given its first line, we think that the similarity scores and
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objective metrics are less important than the LLM evaluations and the user study, which
give a better view of the quality of the lyrics. Given that we used a method that mitigates
the bias of LLMs for the LLM evaluations, we trust these results more. Furthermore, the
user study demonstrated a correlation between LLM evaluations and human judgments,
and specifically confirming that the Whisper-Mistral model is significantly worse, while
the other models of the user study have similar performance. This suggests that LLM
evaluations serve as a reliable proxy for assessing the quality of the lyrics.

In conclusion, this thesis contributes to the advancements of generative tasks in the
music information retrieval. Given that automatic lyric generation is a field that has not
been studied this extensively, and specifically in the direction that we followed, compared
to other music information retrieval tasks, we brought new ideas to this field, which can
encourage other researchers to study and contribute to this domain.

In summary, our key findings are:

e Instruction-tuned LLMs demonstrate strong baseline performance in lyric genera-
tion even without domain-specific training, particularly evident in Claude’s perfor-

mance.

e The incorporation of music supervision through tags (SALMONN-Claude) signifi-
cantly improves the correlation between generated lyrics and music, compared to

pure text-to-text approaches.

e Our novel multimodal pipeline (SALMONN-Stable Diffusion-LLaVA) achieves the
best balance between lyrical coherence and musical correlation, suggesting that

thoughtfully integrated multiple modalities can enhance creative generation.

e Few-shot prompting shows a trade-off between similarity metrics and creative qual-
ity - while it improves similarity scores, it tends to decrease overall creative perfor-

mance.

e LLM-based evaluation methods show strong correlation with human judgments,

suggesting their validity as assessment tools for creative text generation tasks.

e The quality of the base LLM significantly impacts the final output quality, as demon-
strated by the performance difference between older models (GPT-2) and newer ar-

chitectures.

e The addition of intermediate steps (like tag extraction or scene visualization) in the
generation pipeline can enhance the final output quality while maintaining creative

freedom.

6.2 Limitations and Future Work

Our research was constrained by the computational resources at our disposal. For
the majority of our work, we relied on free GPU resources provided by platforms such as
Google Colab and Kaggle, as well as the SLP-NTUA lab’s server equipped with two 12GB
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GPUs (NVIDIA GeForce GTX 1080 Ti and GeForce GTX TITAN X). For more demanding
models and stronger LLMs, we selectively utilized on-demand AWS resources.

These limitations impacted the performance of our trained models in several ways.
Specifically, training methods were restricted due to computational constraints. We
predominantly used lighter models and the scope of experimentation with larger, more
resource-intensive models was limited. The use of stronger models would have maybe
further increased the quality of the results. Other music understanding models, like MU-
LLaMA [26], M2UGen [27] and MusiLingo [10] could not be experimented with in the third
configuration of modalities, for the generation of the music tags, because of their more
computationally demanding nature.

Another limitation that doesn’t only affect our work, but the lyric generation domain
in general, is the limited available datasets. There are many music datasets that are
annotated with tags and metadata (e.g. the Million Song Dataset [57]), but not with
aligned music lyrics. To our knowledge, the DALI dataset is currently the only available
dataset, of this size, with songs as MP3 files, with aligned lyrics. Other available aligned
datasets, like the Lakh MIDI dataset [58], have used MIDI files instead of MP3 files.
Additionally, the majority of the entries of the DALI dataset are pop songs, making the
trained models more likely to limit their output in themes presented in pop music, such
as love, which restricts the creativity and diversity in their outputs.

In future research, we believe it would be beneficial to explore the incorporation of
the other music understanding models that were mentioned, as well as other strong
LLMs in the lyric generation process. Moreover, the fine-tuning of the submodule of
the lyric generation process in the ‘text & audio to text to vision to text’ setup would be
an interesting study, or even incorporating a Vision Language model with architecture
that supports few shot learning with images, like the Flamingo model [59]. Additionally,
another extension of the task that we studied would be to generate lyrics conditioned
on artist or genre, and explore the differentiation of the outputs given the same music
accompaniment but different artist or genre. Finally, another extension to this thesis
would be to train a model to additionally generate melody that would suit the generated
lyrics, similarly to “Lyrics and Vocal Melody Generation conditioned on Accompaniment”
[60], with the difference that this work was done with symbolic music (MIDI) rather than

audio.
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Appendix

Examples of Generated Lyrics

In this appendix, we show the results of some of the models that we tested, specifically
for Whisper-OpenOrca, OpenOrca out-of-the-box, Vicuna-out-of-the-box, Claude out-of-
the-box, SALMONN-Claude, SALMONN-Vicuna and SALMONN-Stable Diffusion-LLaVA.
Specifically, we have provided the lyrics that were generated by these models, given two
different music accompaniments.

Lyrics given the music accompaniment of “Are We the Waiting” by Green Day:

Whisper-OpenOrca model:

never thought you would haunt me
with each passing day
never thought you would haunt me

with your words

never thought you to haunt me
nothing but tequila

my brother in arms

pine away for love like a drunken sailor

lost at sea over and over again

thirty years waisting away

for nothing but dreams of you

in my night dream

hefty salvage gave me twenty grand

had me drink it down nice and slow

do not turn that plow
hit the ventana and get out there
do not start a war nobody wants to fight

try to stay alive for another night

OpenOrca out-of-the-box model:
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Starry nights filled with dreams and desire,
Whispering secrets under the moonlit sky,
As we dance beneath the twinkling stars,

Feeling the magic in the air.

In the glow of a million candles,
We make promises that never fade away,
For this love will last forever,

Burning bright like the stars above.

As we gaze into each other’s eyes,

The world around us fades away,

Our hearts entwine in this celestial dance,

And the stars guide us through the darkest nights.

In the warmth of this embrace,
We find solace and serenity,
Together, we shine like the stars above,

And our love will never die.

Vicuna-out-of-the-box model:

Verse 1:

Starry nights, I see your face

[Nluminated by the light of the moon

Your eyes shine bright, like a star in the sky

I'm drawn to you, like a moth to a flame

Chorus:

Oh, starry nights

You're the one I need

In the darkness, you’re my guiding light
Starry nights, you’re my everything

Verse 2:

We lay down on the grass

Watching the stars as they dance in the sky
Our hearts beating as one

Feeling alive, like we could fly

Chorus:
Oh, starry nights
You're the one I need

In the darkness, you're my guiding light
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Starry nights, you’re my everything

Bridge:

We’re like two shooting stars

Flying through the night

Our love shining bright, like a supernova

We'll be together, forever and ever

Chorus:

Oh, starry nights

You’re the one I need

In the darkness, you’re my guiding light
Starry nights, you’re my everything

Claude out-of-the-box model:

Starry nights, a canvas in the sky
Twinkling dreams, painted way up high
Constellations tell their ancient tales

As we wander down moonlit trails

Chorus:

Oh, these starry nights

Fill our hearts with wonder
Celestial lights

Pull us closer, pull us under

Whispered wishes on shooting stars
Hopes and dreams traveling so far
Hand in hand, we count the glowing spheres

Time stands still, and magic appears
(Repeat Chorus)

Milky Way stretches out above
A cosmic dance of light and love
In this moment, we feel so small

Yet connected to it all

Bridge:

Universe, vast and wide

Holds secrets still untried

But here beneath the starry dome

We've found our way, we've found our home
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(Repeat Chorus)

Starry nights, they fade with dawn’s first light
But memories linger of this perfect night
Till dusk returns and day departs

We'll keep the stars inside our hearts
(Repeat Chorus)

Starry nights, a canvas in the sky

Endless wonder, never saying goodbye

SALMONN-Claude model:

Verse 1:

Strumming chords in the fading light
Memories echo through the night
The guitar weeps a lonesome tune

As I sit here, missing you

Chorus:

Silent strings, they tell our tale
Of love that couldn’t prevail

In this instrumental serenade

I hear the promises we made

Verse 2:

Each note falls like a teardrop
On this heart that just won'’t stop
Beating for what used to be

A melody of you and me
(Repeat Chorus)

Bridge:

The solo cries out in pain

A wordless story of love’s remains
In every bend and every slide

I feel the emotions I can’t hide

Verse 3:

As the final chord fades away

I'm left with what I cannot say

This song without words speaks true

Of how I'll always remember you
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(Repeat Chorus)

Outro:
The guitar gently whispers your name

In this bittersweet refrain

SALMONN-Vicuna model:

Verse 1:

In a dark and ominous forest

Lost and scared, a group of travelers
Struggling to find a way out

Danger lurks in the shadows

Chorus:

Haunting melancholic music
Perfectly captures the mood
Fear and desperation

Elevating the tension

Verse 2:

The music adds to the atmosphere
Making the audience feel alive

In the midst of the treacherous terrain

The travelers fight to survive

Chorus:

Haunting melancholic music
Perfectly captures the mood
Fear and desperation

Elevating the tension

Bridge:

The music perfectly captures

The mood of the forest and the characters
Enhancing the emotional impact

Of this paused movie scene

Chorus:

Haunting melancholic music
Perfectly captures the mood
Fear and desperation

Elevating the tension

Outro:
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The music adds to the atmosphere
Making the audience feel alive
In the midst of the treacherous terrain

The travelers fight to survive.

— O e D O<
SALMONN-Stable Diffusion-LLaVA model:

Verse 1: In the midst of a misty glade,
Where the trees stand tall and the ground is made,
A path that leads to the unknown,

Where the whispers of the wind are alone.

Chorus:

In the heart of the mist,

Where dreams and reality blend,
A journey through the fog,

Where the secrets of the forest are told.

Verse 2:

Tents of solitude pitch at night,

Where the stars are hidden by the morning light,
A place where the soul can find its place,

In the quiet whispers of the forest’s grace.

Chorus:

In the heart of the mist,

Where dreams and reality blend,
A journey through the fog,

Where the secrets of the forest are told.

Bridge:

The leaves rustle like a symphony,

In this place where time seems to freeze,
The air is thick with mystery,

A place where the heart finds its ease.

Chorus:

In the heart of the mist,

Where dreams and reality blend,

A journey through the fog,

Where the secrets of the forest are told.

Outro:

So if you feel the need to escape,
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To find a place where you can retrace,
Take the path through the woodland’s shade,
And let the forest be your guide.

Chorus:

In the heart of the mist,

Where dreams and reality blend,

A journey through the fog,

Where the secrets of the forest are told.

Lyrics given the music accompaniment of “Yellow Boomerang” by Middle of the Road:

Whisper-OpenOrca model:

Everyone here is one family

Lift your heart up and fly so high with the birds

So trust me and believe

Feel the nature so it is wake you up this very night
Trampling over me

Everyone here is on the make

You want to ask why are you running like a race
Leave it all behind

Take your time it is over now

So your night it is won now

Get up on your feet again

Hello love it is a friendly attack
That it is the point of telling off on the make
Come and dance along with my faithfulness

Hell it was one step away from touching you just a few

So you are the icing

So you are the cherry

So you are the walnut they leave out of every single little tree
Resist the serpent it bites the apple

You friendly serpent, i can see through you and think nothing of it

But just, just be careful I

So you are the icing

So you are the cherry

So you are the walnut they have taken out of every single little tree
Hey do not put another salesman on every single street

The truth in you are spreading

Move it will be seen as a sin on the day that you fall
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By only two, by only two tonight

If you have something i am waiting

It it is going to be like a copyright in rewind, snip, snip
I believe you made out of gold

So come and dance along with my faithfulness

Because, indeed, i could not believe

—_— o (C—— DD o<—

OpenOrca out-of-the-box model:

You're like my yellow boomerang, always coming back to me
With your warm, sunny smile, it’s like a summer day

You always land in my heart, never stray too far away

When I throw you into the sky, you never fail to return
You're the brightest shade of yellow, like sunshine in my life

You’re my boomerang, always finding your way back to me

You're like my yellow boomerang, always coming back to me
With your carefree spirit, you’re a breath of fresh air

In the darkest times, you’re the light that guides my way

In the chaos of life, you're the calm that I adore

You're the reason I keep going, my yellow boomerang, my love.

Vicuna-out-of-the-box model:

Verse 1:

You're like my yellow boomerang,
Flying back to me again and again,
With every turn, I feel your grip,

And I'm reminded of the love we’ve been given.

Chorus:

You’re my sunshine in the rain,

My shelter from the storm,

You're the one who makes me feel alive,

And I know that I can always count on you.

Verse 2:

You’re my rock, my guiding light,

My everything, my everything tonight,
With every beat, my heart skips a beat,

And I know that I'm exactly where I'm meant to be.
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Chorus:

You’re my sunshine in the rain,

My shelter from the storm,

You'’re the one who makes me feel alive,

And I know that I can always count on you.

Bridge:

Like a boomerang, you never leave,

You're always there to lift me up and bring me peace,
With every spin, I'm reminded of our love,

And I know that we’ll be together forever, like a boomerang.

Chorus:

You’re my sunshine in the rain,

My shelter from the storm,

You're the one who makes me feel alive,

And I know that I can always count on you.

Claude out-of-the-box model:

You're like my yellow boomerang
Always coming back to me
No matter how far I throw you away

You return so faithfully

Chorus:

Round and round, you spin through the air
A curved path that leads you home

My bright spot on the darkest day

With you, I'm never alone

Verse 2:

When life tries to knock me down
You lift me up, help me stand tall
A loyal friend I can count on

To answer every call
(Repeat Chorus)

Bridge:

Through sunny days and stormy nights
You're the constant in my world

My yellow boomerang, my guiding light

Our bond will stay unfurled
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(Repeat Chorus)

Outro:
You're like my yellow boomerang

Always finding your way back to me

SALMONN-Claude model:

Verse 1:

Cruising down this neon-lit street
Wah-wah guitar crying at my feet
Memories of you still burning bright

In the rearview mirror of the night

Chorus:

On this Heartbreak Highway
Where love’s dreams collide
Wah-wah whispers your name
As I take this wild ride

Can’t escape the rhythm

Of this classic rock and roll
On the Heartbreak Highway

Where I'm losing control

Verse 2:

Disco lights flash through my mind
Echoes of a love left behind

The radio plays our favorite tune

Reminding me of nights beneath the moon
(Repeat Chorus)

Bridge:

The strings of my heart
Strumming like this old guitar
We danced to the beat

Now I'm dancing alone, so far

Verse 3:

Years may pass, but this song remains
A timeless anthem of love’s sweet pain
Through speakers old and new it’ll play

Keeping our story alive today

(Repeat Chorus)
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Outro:

On this Heartbreak Highway
Where love never dies
Wah-wah guitar sings the blues
As I say my goodbyes

SALMONN-Vicuna model:

Verse 1:

As the music starts to play,

I'm transported to a cozy café,

In the heart of Paris, so romantic and so sweet.

The main characters, a Frenchman and an American,

Sitting across from each other, deep in conversation.

Chorus:

Laughing and smiling, sharing stories of their travels,
The mood is exciting, the melody so catchy,

It’s a grand adventure, a romantic escapade,

The music and scene, perfectly in sync, so enchanting.

Verse 2:

The upbeat tempo, a sense of anticipation,

The jazzy instrumentation, a touch of sophistication,
It all comes together to create a mood so nostalgic,

A romantic adventure, that takes me back in time.

Chorus:

Laughing and smiling, sharing stories of their travels,
The mood is exciting, the melody so catchy,

It’s a grand adventure, a romantic escapade,

The music and scene, perfectly in sync, so enchanting.

Bridge:

As the scene unfolds, I'm transported to a different place,
A world of romance, and a time of grace,

The music and scene, a perfect match,

A timeless romance, that never will go out of fashion.

Chorus:

Laughing and smiling, sharing stories of their travels,
The mood is exciting, the melody so catchy,

It’s a grand adventure, a romantic escapade,

The music and scene, perfectly in sync, so enchanting.
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Outro:

As the music fades, I'm left with a smile,

A romantic and nostalgic feeling, that I can’t deny,
The music and scene, a perfect match,

A timeless romance, that never will go out of fashion.

—_—O = D O<—

SALMONN-Stable Diffusion-LLaVA model:

Verse 1:

In the glow of city lights, we find our hearts take flight,
Sitting close at a table for two,

Lost in laughter and the joy that we knew.

Chorus:

Cheers to a night of love and cheer,

In this cozy café, we’re casting away our fears.
With every sip of wine, our love entwines,

In this moment, time seems to slow down.

Verse 2:

The clinking of glasses, a melody that’s free,

The soft lit ambiance, a warmth that’s meant to be,
The flicker of a candle, casting dancing shadows,

In this intimate setting, our love seems to grow.

Chorus:

Cheers to a night of love and cheer,

In this cozy café, we’re casting away our fears.
With every sip of wine, our love entwines,

In this moment, time seems to slow down.

Bridge:

In the laughter and the light, we find our dreams take flight,

In the gentle touch of your hand, I feel you near,
With every sip of coffee, we share our stories,

In this snapshot of time, our love is clear.

Chorus:

Cheers to a night of love and cheer,

In this cozy café, we’re casting away our fears.
With every sip of wine, our love entwines,

In this moment, time seems to slow down.

Outro:
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So here’s to us, in this warm embrace,
In this intimate setting, we find our place,

With every sip of our drink,

We're creating a memory that’s meant to last.
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