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[Teptindn

H nopodoua Simhwpatin epyoaoia €yel g aToOy0 T UEAETN TNG U1 ETOTTEVOUEVNC TEOCUQ-
poyhc mediou (unsupervised domain adaptation) yix v Autéuatn Avayvopion Ouiiog
(Automatic Speech Recognition). Xto mhaiclo tng un enonteuduevng mpocopuoynic tedlou,
epyalouaoTe Ue 800 BlaxpLTéS xaTavVoUES BEBOUEVKY, TO TEBlo-NY T xou ToV Tedio-oToy0. Eve
xat o 0Vo medla SrordéTouy Bedouéva elcddou, oL avtioTolyeg eTéTeC ebval TpocfBdoiues uévo
070 edlo-TNyYY. XTOY0¢ lvol 1 AvATTUEY EVOC LOVTEAOU TIOU VoL UTOREL VoL EQUPUOC TEL amoTe-
AEoUATIXd OTO TEBLO-GTOYO, YENOWOTOLOVTUSC To OEBOUEVA X0t TwV 0V0 Bladéotuwy TEdiwY.
Yy mapodoo Swteldr) oulntdue Tig Bacxég apyéc T pnyavixng uddnong xou Tig TEoXAT-
o€lg oL OYETLOVTOL UE TNV AVAY VORLOT| OULALAS, XUADTITOVTAS TOCO TIC TUPABOCLUXES OGO Kol
TI¢ oUYYPOVES TROCEYYIoES. 11N cuVEyEL, e¢etdloupe TN BiBAoypaplo oyeTixd e Tig uedo-
00UG TEOCUPUOYTHC TEBLOU, XATNYOPLOTOUMVTAS AUTES TIG TEOCEYYIOES OE TEELG xVPLEG OUAOES,
CUUTEQLAAUBAVOUEVWV TOV TEYVIXWY NUI-ETOTTEVOUEVNS Uddnone (semi-supervised learning)
xou auto-eniBredne (self-supervision).

Yty mopoloa gpyacia, Oiepeuvolue T duvatotntee tou Meta PL - uiog teyvixrg
TPOGOEYHOYTE TEBLOL TOU EYEL EQUPUOCTEL GTNY AVALY VWELOT EXOVIS - 0TV Autdpotn Avory-
voplon Povrc. Eminiéoy, eiodyouye uio petdodoroyia 600 otadiny mou cuvBUAlel GTRUTNYIXES
QUTO-ETBAEPNC PE TEYVINES NUL-ETOTTELOPEVNC UdUMONE, 1 oTtola EyEL oY EBLAC TEL Yia VoL EVITY -
O€L TN YEVIXELOT) TV HoVTEAWY AuTtouatng Avayvoplong Pwvic oe YAwooeg pe Aya Stodéoya
OEDOUEVD, OTIWC 1) EAANVIXT), XM X OE BEBOUEVYL UE ETIXETES Younhig TototnTag. Tao melpd-
potar pog Setyvouv 6T o Meta PL unopel va eopuoctel emituyde ot epopuoyéc Autouatng
Avaryvopione PwvhAc, TeocPECOVTISC ATOTEAEGUATO AVTAYWVIC TS UE TEOTYOUUEVES pedddoug,
xadwg odnyel oe oyetnt| Pertioon g petpuic WER xatd 4%. EmnAiéov, detyvouue ot
1 UE€V0BOC o UTEPEYEL ONUAVTIXG GAAWY ETUAEYUEVWY TEOCEYYICEWY, TEOCHPEROVTAS LA TILO
amoteAecpaTiX AMoT 0T TEOBANUL TPocapuoY S Tedlou otny Autduatn Avayvoplon Pwvig,
xadwe npoogépel Bedtiwon e petewric WER tng td&ng tou 7%. Télog, e€etdloupe Toug
TEQPLOPLOHOUE OYETIXE UE TNV EVYWHUATOON TNS AUTOETBAETOUEVT) UAUNONE UE TNV NUAUTOETL-
Bhembuevn exnaidevon oto mhaicto Tou Meta PL xau xotahvyouue 6To cuunépacuo 6Tl ol
QUTOETUBAETOUEVES TEYVIXES TIRETEL VoL EQUPUOLOVTOL EEYWELOTA AN TNV NULAUTOETUBAETOUEVY)

udrdnom.

AéCeic Khedla

Mn-enontevoyevn Ipoocapuoyy| Hediouv, Autduatn Avayvopeion Pwvic, Auté-eniBredn,
Hyi-eniBiedn, Yeudoohuavon
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Abstract

The purpose of this diploma thesis is to study unsupervised domain adaptation for
Automatic Speech Recognition. In the context of unsupervised domain adaptation, we
work with two distinct data distributions, the source domain and the target domain. While
both domains have available input data, corresponding labels are only accessible in the
source domain. The goal is to develop a model that can be effectively applied to the target
domain, leveraging both the available labeled and unlabeled data. In this dissertation,
we discuss the fundamentals of machine learning and the challenges associated with
speech recognition, covering both traditional and modern approaches. We then review
the literature on domain adaptation methods, categorizing these approaches into three
major groups, including semi-supervised learning and self-supervision techniques.

In the present work, we explore the capabilities of the Meta PL domain adaptation
framework - previously applied to image recognition task- for Automatic Speech Recog-
nition. Additionally, we introduce Multi-Stage Domain Adaptation, a two-stage domain
adaptation method that combines self-supervised strategies with semi-supervised tech-
niques. Multi-Stage Domain Adaptation is designed to enhance the robustness and gen-
eralization of Automatic Speech Recognition models in the context of low-resource lan-
guages, such as Greek, and weakly supervised data where labeled data is scarce or noisy.
Our extensive experiments show that Meta PL can be effectively applied to Automatic
Speech Recognition tasks, resulting in an average WER improvement of 4%. Additionally,
we demonstrate that Multi-Stage Domain Adaptation outperforms our baselines WER by
7% on average, providing a more robust solution for domain adaptation in Automatic
Speech Recognition, especially in underrepresented linguistic settings. Finally, we ex-
amine the limitations of integrating self-supervised tasks with semi-supervised training
within the Meta PL framework and conclude that self-supervised tasks should be applied
separately from semi-supervised training.

Keywords

Unsupervised Domain Adaptation, Automatic Speech Recognition, Self-supervision,
Semi-supervision, Pseudo-labeling
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Euyaplotiec

Apyxd, Yo fdera vaevyaplothiow Tov emPBAEtovta xodnynTy pou, x. AAé€avdpo Hotauidvo,
yioo TNV TOAUTWUN cuvepYaoio xan xododrynon xod” OAn TN Oldpxeld TNC BIMAWUATIXNS UOoU
epyaoloc.

Enlong, euyapoted depud tov umodrglo OuddxTtopa xar cuvepydtn dou, Lidpyo
[Mopaoxevémovio, yia TNV deiotr cuvepyacio, Tic ouuBoukéc xou v xadodrynoh tou. H
ouuPoin Tou utipe xadoplo TIXT YLl TNV OAOXATIPMOT AUTAC TNG EQYACTOC, EVE ATOTENECE Yo
HEVA TEOTUTIO EQEUVITY| X0l UMy VX0,

Iapdhhnha, Go Hdeho vo euyaplotion Toug glhoug pou xou T Afvta. Me v ohoxdfipwon,
QUTAC NG EpYaotac XAelVeL Evag xUXAOC OTIOLBWY TEVTE ETWY, XAUTd TN didpxEla Tou oTolou 1|
@A, 1 cuvTEOPIXOTNTA Xat 1) xadINUERIV OTARLEY TOUG EXaVaY TIC ATEAEIOTES WPEC UEAETNG
X0l QY'Y OUG TLO UTOPERTES. OEQUES EUYAPLOTIES X0 GTOV OLXOYEVELIXO Wog piAo Baociin yio tnv
€umveuaT) xou T oTHELEY TOU.

Téhog, Yo Hdeha vo expedow TNy EVYVWROGUYY oL 6Toug Yoveic You, [idpyo xo Bwtnela.
Ot ouyPouiéc Toug, 1 adldxomnn oTHEIEN Xou ToL EQOBLA TTOL oL TAREly oY ELVaL 0 AOYOC TTOU aUTH
1 epyaoio PEpeL TNV LTOYEAUPT| LOU.

Auth n Simhopotind epyacio aglepveTon 0T wviun Tou Tamrol pou Kwvotavtivou xo tng

yrayde pouv Kovotavtivog.

Adva, OxtoPBelog 2024

Anurterog Aoplovog
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Chapter m

EAAnvi meplindn

0.1 Ewoyoy

H Avtépatn Avaryvopion Owhiog (Automatic Speech Recognition) amoteel évay omd Toug
Baoxolg Touelc 6Tou ot povtéha unyavixig xa Badidc udinong €youv epapuoctel emiTuy K,
EMTEENOVTOC ULl OELRA XAINUEQIVMV EUTOPIXWY EQUPUOYOY 0TS oL puwvnTixol Bondol xou to
CUGC TAATOL IOy YNTOQWVNONG. (20TOC0, 1) AmOBOCT| AUTHOY TWV GUC TNUATKDY UTOREL VoL ETL-
oeveel andTopo 6Tay To SEB0UEVA GTO TEDIO EQPAUPUOY NG DLAPELOUY CTUAVTIXG oTtd ToL BEDOUE VL
exnaldevong. g ex TodTou, elvon avaryxaio va yenowonoinoly TeyIXES TEOCUPUOY TS TEdioU
(domain adaptation), wote vo Swtnendel 1 anddoon TV CUGTAUATOY AUTOV.

Or pédodor Mn-enonteuduevne Ipopuoyrc Hedlou (Unsupervised Domain Adaptation)
€y 0uV BLTEPO EVBLIPEROY, XadKC BeV e€apTHVTOL amtd TNV axElfr] Xou YeovoBoea avary VOELo
0edouEVLY avd cuyxexpwévo medio. Avtideta, eoTidlouv 6T ¥eHoN UEYIAWY TOCOTATODY UN
emonuacuévemy dedouévmy (unlabeled data) yio va fondnocouv to yovtéha va tpocopuoctoly
o€ VEES, AYVWOTES TERLOYES. O T XOLWVEC TPOGEY YIOELS YIol TNV UN-ETOTTEUOUE VT TROCURUOYT
elvon 1 autoemonTelo xau 1) NUETOTTEVOUEYY Pdinon. Tlpdogateg épeuveg [5, 8] éxouv dellel 6Tt
aUTEC OL TEYVIXES 08N YOV GE ONUAVTIXES BEATIOOELS OTNY amddocT OE pia OELpd TEOBANUAT®Y,
CUUTERLAOUBAVOUEVTC TNG Avary VORLO NG OUthiog xat euxxovag. "Eva faoind epdtnuo mou TpoxinTeL
elvon av auTéC oL P€YodoL UToEOLY Vo GUVBUACTOUY ATOTEAECUATIXG Y10 VO EVIOYUGOLY TEQULTER
TNV TEOCUPUOYT| X0l VoL ETULTOYOLY oXOUT) XUADTERN ATOTEAECUATL.

O ndptog gpeuvnTindg 6TdY0C auTod Tou €pyou elvar 1) avdmTuln wac pedoddou un enon-
TEVOUEVNC TROCUPUOYTC TOMEN YIdl TEOBAAUOTA ovary veLong outhlog 6To TAACL0 YAWCOWY
UE TEPLOPLOUEVOUC TTOPOUC Xo BEBOUEVWY Ue xoxg Toldtntag emonudvone (weakly labeled
data). Autr n pédodog cuVBLALEL TEYVIXES AUTOETOTTELNG TTOL €Y 0LV BT EQPUPUOC TEL ETULTUY MG
OTNY AVAY VORIOT, PWVAC, UE NUETOTTEVUEVES UeTOBO0UC Tou €YouV yernotportoiniel xuplng ot
VLY VPLOT) EXOVAS, TROCUEUOLOVTAS TIC OTNV AVAY VORLONS POVIC.

O xOpieg ouvelogopée pag etvan: (1) delyvoupe 6TL Wi Teyvixn nui-eniBAedng mou uéypl
oTLYURC EXEL EQUPUOCTEL GE TPOBYUAUTOL oVOLY VEPLOMG ELXOVOS, UTOREL ETULTUYOC VO EQUPUOC TEL
OE TEOPBAAUOTA VoY VORLOME PwVS, (2) Tpoteivouye wia véa uédodog un enoTTEVOUEVNE TPOCUp-
poynhe, n omoio cuVdLALeL TNV Tpo-avageplelon Tey VX NuI-eniBAedng Ye oTpaTNYXES aUTOETS-
Aedng, xau (3) e€etdlouue TOUC TEPLOPIOUOUE AUTHE TNG TEY VXS NUETBAdNE 6Tory cuVBUALEToL
e pevddoug avtoeniBiedne. H epeuvd pog emixevipmveton o YAWOGoES Pe Aya BeBOUEVA, OTKC

Toe EAAnvixd, xon oe 8edouéva pe emonudvong xaxhc tototntoc. H mpooéyyion poag tetuyalvel
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VoL BEATIOOEL ATOTEAECUATIXG TNV TROCUPUOYT) OO X0 OF UTE To YAWCOXE TEPY3EANOVTAL

0.2 Autduatn Avayvoplon Pwvic

To mpdBinua avayvoplone govic [9, 10] éyxetton oty avdntuén evoc UG TAUNTOS TOU
UETATEETEL TO G PwVAC OE XelUEVO, To omolo anoTeAelton amd VO GTAdLL XTO TEWTO G TASLO
yiveton 1 eneepyacia Tou PuyNTXo) oruatog Gote va mopoydel o axoloudio yapoxtnelo-
TGOV 6T oL Yuvteheotéc Mel-Frequency Cepstral (Mel-Frequency Cepstral Coefficients)
[10]. Xtn ouvéyelo évag YAWOOIXOC ATOXWOXOTOLTNG EPUNVEVEL AUTE TAL Y 0PN TNELO TLXE X0l TaL
ATOXWOIXOTOLEL OE Wi axohoLdio Yoo THewY 1 AEEEWY, TAURAYOVTAS TO XEUEVO TOL TEOXUTTEL.

H Avutépatn Avayvopeion Ouiiog avtipetomileto wg meoBinuo oxolovdia-ce-oxoloudia,
%S mEpLhoBdvel TNV avTio Tolytom plag axoloudiog ENEEERYACUEVOY YORUXTNELO TIXWY ELTO-
dou oe wio avtiotoryn adnhouyta Aé€ewv. Tapoxdte, eepeuvoiye cuuBatinés uetddoug Tou

€)(OLY OYEBLACTEL YL VO OAOXANEMGOUY QUTHY TNV EPYAGIAL

0.2.1 XupPotixéc uédodot

Ytg oupPatinég Yedddoug, 1) avay VORLOT QWS AVTIHETWTICETOL oY OTATIOTIXG TEOBANUL
[10], 6mou o otdyog etvon va Beedel 1 mo o axohovdior AMéEewv/pwvnudtwy W dedouévng
wa axohoudlag yopaxtnelotixwy X. Me tnv Bordelo Tou xavdva tou Bayes, avalntolue tny

axohoudio W n omola yeyiotonotel tny mdovétnra:
W = arg max P(WIX) =arg max P(X|W)P(W) (1)

‘Omou o 6pog P(X) ayvoeitan xardde etvon ave&dptnrog tou W. H mbavotnta P(X|W) tapdyeton

o EVOL AXOUCTIXG HOVTENO, EVG 0 6p0¢ P(W) amd éva yYAwoowd povtélo.

Kpeugpd Movtéha Mopxdf

To Kpugpd Movtéha Mapxd (Hidden Markov Models) [11, 10] ypnotuonolotvton xatd
%(OPWV YLl VAL LOVTEAOTOLCOUY 0XOAOUDIEC YEYOVOTWY TOU PETUBIAAOVTIOL GTO YEOVO, Xl
OTNV VLY VORLOT YWVAC YENOWOTO0VTOL ooy axousTXd HovTéia. Amotehodvial omd i
OELRE XATACTACEWY Sj , TOU AVTLTPOCKTEDOUY TIg OLUPORETIXES AEEELC 1) prviuaTa, Tou xdie
xatdo TooT unopel va ‘emoteédel’ xdmolo TapaTthenoT 0f, 1 OTold LOVTEAOTOIEL TO avary VOELo-
wévo @ovnua B AéEn. ‘Eyouv 8lo Boaoiéc mapopéteous, tig miavdtnteg yetdBoong petold
XATAOTACEWY §; Xt Ti¢ THavoTNTES Ylo TiC mapatnenoelc op. Booilovton otny Mapxofiovi)
IS, xou yio TNy exntoddeuon Toug yenotlponoloy tov ahyoprduo Baum-Welch v Forward-
Backward. Metd tny exnaideuon, yenotponoeiton o ahydprduog Viterbi yia va xodopio tel molot

oxohoudiar AEEewV 1) POVNUATOVY EYEL ovary VORLO TEL.

HMM-GMM

Ynuavter mapdueteog Twv Keugpdv Movtéhnmy Mapxdf etvon 1 wovtelonoinon tomv mdayv-
OTHTWY TWV TUPATNENCEWY 0, XoOS AUTES 0pIlouV TNV avay VORLOT XGVE PWVAUATOC UE OE-

dopévn @wvr otny elcodo. Xougpnva ue To woviehd HMM-GMM,, to Kpugpd Movtého Mopxof -
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Movtého Mi&ng I'vaovotaveyy (Hidden Markov Model - Gaussian Mixture Model) [11], auty
n miovdtnTo povieromotelton oo WEn Brapopetinwv I'naouoiavedy xatavoumy. O tapdueteot
aUTAS TN HIENG xaTavou®y exmoudebovton ye TNy Borfdela ahyplduwy 6mwng tov Expectation
Maximization [11]. Xdpn otnv yeron e wene I'xaovotovedy xatavoudy, xou twv Keupov
Movtéhwv MopxdB, diapopgpmveton o cuvoiixd poviého HMM-GMM.

N-grams

H mo anh mpocéyyion yio TNy dnuiovpyla YAwooixo) poviéhou elvar vo utohoyicouue
1600 cuy Vv eupavileton évag dpog W ota drardéoiua Sedouéva, oe éva topdupo N — 1 dhhwv
bpwv. AxpBde autd ulorotel o N-gram [10], xodog uroroyilet tny mdavotnta P(W) ue Bdon
NV eUpdor Tou 6pou W ot oyéon ue toug N — 1 tponyoluevoug 6pouc.

0.2.2 X0yypoveg uédodol
DNN-HMM

To DNN-HMM, to Bordid Nevpwvixd Aixtuo - Keugpd Movtéha Mopxéf3 (Deep Neural
Networks - Hidden Markov Models) [12] yenotuonototv Badiéc apyltexTovixés vEupmvIxmy
OTOWY Yol var povtehomotioouy Ty mdoavotnta op Twv Keupdy Movtéhwy Mapxdf, xadoe 1
TpocEyylon e uiEne I'vaovatavedy xatavoumy dev avtanoxplvetor otny @ion tng avlpdmvng
opiiag. Iapdro v xolbTepn anddoon toug and T HMM-GMM povtéha, avtxoictobvto
Théov and povtéha dxpne-oe-dxprn (end-to-end) ta omolo Bploxouv aneudeiog tnv clvdeon
petol outhlog xou xelpevou, yweic Ty avdyxn tpo-eviuypduunone (pre-alignment) petold

AEUEVOL XL NYNTIUDY YOLUXTNPLOTIXOV.

ZNTAROTO TWV TEYVIXOY SXEN-CE-AXET)

To x0pro TEOBANUA TwV TEYVIXWY dxen-ce-dxen eivon 1 euduyeduunon HETOED TV UXOAOU-
oy elcddou xar €€680U, xS TOAMES PORES TV NYNTXO ONud UTopel var elvol opxeTd
HeYaAUTERO TOL avTio Tolyou xeyévou. T tny avtiwetonion autol Tou Yéuatog, youv tpotadel
1 cuvdpTtnon exnaldevon Buvdestovio txhc Xpovixrc Tolwounone (Connectionist Temporal
Classification) [2] xou 1 apyttextovixr Metatponéo Enavolopfoavouevou Nevpwvixol Auxtiou
(Recurrent Neural Network Transducer) [13].

Yuvdeotoviatiny Xpovixr) Togivounon

H Xuvdeaoviotiny Xpovixy Talivéunon (Connectionist Temporal Classification) [2]
elvan plot GLVEETNOT XOGTOUG 1) OTIO(N ETULTEETEL OE OLAPOPES UPYLTEXTOVIXES Bordidg wdinong vo
Aocouv e emituylo To TEOBANU TN avoryvaeiong gwvhc. Advel To {htnua tng evduyeduulong
(alignment) etoc600u-e€600U ElGdyOVTAC €Vl VEO OO ETLONUAVONG, TNV XEVH ETLOYUAVOT).

H xevy| emonpavorn yenotwomoleiton yior vor tetUyel onotadnote evduypduuion a Yetol
eloodo x xau €00 Y. Ilopadeiyuotog yden, av YewphoouUue W XeVT ETGHUAVOY ToV 6p0 '/,
toTE €youpe Tic evduypaupione (a,—,b,—,—,¢),(=,a,—,b,c, =) Yo Tnv axohoudia (a, b, c).

Exomog elvan vortny evduypeduuion a tou peylotomolel Ty mdavotnTa P(y|x). Apyixd npénel

var oploouye v mdoavotnta xde evduypduuone a, Palx) = 1%, P(as, tix), 6mou a; elvo n
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Toparyopevn euxéta yio to Brua t. Opiloupe tnv mdavétnta P(ylx) wc P(ylx) = Y..ep P(alx),
6mou B elvor 10 6Ovolo GAev Twv Buvatdy eviuypauuioswy uetald Tng e£680U Y xaL TNG ELGOB0L
x. H 8éa niow amd v avalhmnon dhev twv duvatdy suduypauuicewy lval 6T, emeldr| dev
yvwplloupe ol axpBdc TeENEL Vo eupavicovue Tic avtioTolyeg eTiéteg, adpoilouue 6la Ta
uéen o6mou Yo umopoloay Vo eugavioToly. Acdopévng wia oxolovdioc-otdyoc ¥*, 1 cuvdptnon
x60toug ou mpoxintel elvar Lere = —logP(y'lx). O Baowde nepioplopds tne ouvdptnong
x60T0Ug LuvdeatovioTixig Xeovixrig Ta&ivounong elvon 6TL unodéter aveloptnota UeTAg) TwV
VO VWPLOUEVOY AEEEWY, GUVETME DEV UTOPEL VO IO TUTIOOEL XUAS YAWOOIXES OANAEE AP THOELS,
eve LuToUETEL OTL To UhAxog Tng €€6dou elvon to mohd (oo ye tnv €£odo, dnAadY amoutel vo
woyvet [yl < |x]. T vor avtipetowmotody autol ol TepLoptopol, avamtiyUnxe 1 apyLiTEXTOVIXY

Metatponéa EnavahauBavouevou Nevpwvixoh Auxtiou.

Metatponéac Enavelaufovéuevou Nevpwvixolh Awxtiou

O Metatponéag Enavoroufoavéuevou Nevpwvixod Awtiou (Recurrent Neural Network
Transducer) [13] avtetwniler Toug TEoNYOUUEVOUS TEQLOPIOUOUE TEOGPEROVTAS EVOV TILO
amoB0TIXO TEOTO HOVIENOTIOMONG TV eUPTACEWY PETAED EIGOBOL Xt E£600U. XENOHIOTOLEL
600 dixtuo: To dixtuo xewévou (transcription network) nou enelepydleton Tig axoLoTINES
£l0680u¢ %o To BixTuo TEOPBAeNg (prediction network) mou enegepydleton Tig €€600UE, WoTE
vo tpofAéder mbavotnteg Yo xde cuuBohoaceipd. Elodyel to eldixd oluPoro @ mou yenot-
UOTOLELTOL OTWE M) XEVT| ETUCTUAVOT) YLOL T} GTOLYLOT ELGOBOL X xou EE6B0U V).

INo tov utohoyiopod tng miavotntag P(ylx) yenowonolobvton To YAWGOXA XAl dX0UGC TIXd
YUEAXTNELO TIXO TOU TEOXOTTOLY amd To 000 unodixtua. To yovtého mopdyel OAEC TIC TL-
Yovée evduypapuioes petald elcddou xa €68ou, xou yenowonotel évay alyodprduo forward-
backward yux vo utoloyioel Ty mbavotnta yrog dedopévne e€ddou. Ot petafBintéc forward
xou backward unohoyilovto emavolnmtixd, evéd 1 cuvohxr THavVOTNTO TEOXVUTTEL ANG TNV
mavotnto 610 teEhx6 PBripa. Katd tnv exmaidevorn, otdyog eivon 1 yeyiotonoinon tng mi-
Yoavotnrag tne embuuntic €€66ou P(y'|x) xou 1 andiewa (loss) oplleton amd Tt cuvdptnon
log-loss, LknnT = —InP(y*|X).

Xdien ota 800 LTOdIXTUY, AUTY 1 TEOGEY YL Unopel Vo xahbeL xohDTEPA TIg CUCYETIOELS
HETAED €L0OB0U-EEHB0UL X EEOB0U-EEHBOV, TEPOGPEQOVTIC ULa TILO LOYUET| OVTIEAOTOINOT TOU

TEOBAAUATOS VoY VORLONE POVIS.

Wav2Vec2.0

Mot 8k mpocéyyion yio Tn BeATiwon Tne avary vepione gwvnig eivon 1 e€arywy T TLO LoYLEWY
YUEAXTNELO TIXWY OO TO NYNTIXO Oua, 1) oTolol BEATIOVEL TNV TOLOTATO TNE OVOLY VPLOTG Kol
euduypduulong otig petddoug mou avapépinxay teonyouuéveng. H xahbtepn elorywyr| yopon-
TNELC TV EMLTEENEL GTA HOVTEAX Vol GUAREBOLY TEPLOCOTERES TTANROYOPIES amd TO GNUd TNG
opthlag, ye anotélepon Ty xahbtepn avayvopton. To Wav2Vec 2.0 [3] elvon pla apyttextovixy
QTOETUPAETOUEVNC HAINoTE TOU avamTUYONXE VIOl TNV AUTOUTY AVaY VORLGT) OMLALAG, OYEDL-
QOUEVT] VoL AVOXAAOTITEL Yo VoL EEAYEL AUTOUATOL YoROXTNELO TiXA LPNAOL eEBO omd dedouéva
outhloc. H Poowr| 1déa nlow and to Wav2Vec 2.0 eivar vor avamopdyel Ty Teocgyyior Tou

Mooxagiopévou Mwoowxod Moviéhou (Masked Language Modeling) [14] ané v Eneg-
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epyaoia Puowic I'hdoooc (Natural Language Processing), yio dedouéva opthiag. To pov-
Tého exmoudedeTon Vo TEOPBAETEL oLl PEUBO-POVAUAT AVTIGTOLYOUV OTOL TUHUATO TOU €YOUV

"wohugpiel”, emtpénoviag €Tl TNV AUTOETBAETOUEYY EXUGUINCT VONUATWY amd Tov Y)o.

0.3 Mn-emontevdpevn IHpocopuoyn Iledlou

0.3.1 Optopog mpofirfuatog

To mpdPinua tne Mn Eronteuduevng lpocopuoyhc Topéa (Unsupervised Domain Adap-
tation) unopel va oplotel we e€ng: AeBouéveg 800 BUPOPETIXES XATAVOUES, TNV XUTAVOUY| TNY NS
S(x, y) xou v xotavour otoéyou T(x, ), 6mou x € X elvor SLovOCUATA YORUXTNEIC TIXDY TOU
aVAXOLY OE Evay TEaY AT Y0eo X xau Y € Y elvan eTixéteg amd éva meEnepaouévo cbvoro Y,
0 oToY0¢ elval 1) eEXTABEVOT EVOC HOVTEAOU TIOU VoL AV TLO TOLPEL Ta BLOtVOGLOITOL Y ORAUX TNELO TIXY
TG XOTOVOUNC OTOYOU XT OTIC avTioTolyeg eTixeTeC Toug Yr. Kotd tnv exmaidevor, €youue
Tp6oPaon Yovo oe Belyuato Ue ETIXETES amd TNV xotavoun TNYNS S(X, i), EVE oL ETIXETEC TN
xatavoprnc otoyou T(x, v) anovoidlouv. H mpdBinua etvon n oavdmtugn evog povtéhou nou unopel
VoL YEQUEOGEL TO YAoUo UETAED TKV BU0 XATAVOUWDY YENOULOTOLOVTAS To BEBOUEVA UE ETIXETES
NS TNY MG Yiot Vo TeoBAEEL ETIXETES YLol Tl GEBOUEVAL TNE XATAVOUHS OTOYOU, TORE TNV amouata

ETIXETOV YIoL TNV TEAEUTALOL

0.3.2 Teyvnéc Aaoxdrou-Modnt

H exnaideuon pe tn uédodo daoxdrou-uadnty (Teacher-Student) 1 n yerion Peudostixetdv
(pseudo-labeling) eivou 1 o xowy| tpocéyyion yio tny Mn Enonteuépevn Hpooopuoyy Topéa
xon piot amd TG TEOTES YOPYES NUI-ETOTTEVOPEYNS Udinong. Xtn uédodo autr, To HOT €x-
TUOEUUEVO LOVTERD BAOXIAOC 0TO Tedlo TNE TNY MG, Topdyel PeudoeTIXéTeg Yia To edio oToY 0o,
TIC OTOEC TO YOVTEAO-UadNTAC YENOWOTOLEL Yia ENOTTEVOUEVY) exTaddevaT. Acdouévou OTL To
HoVTELO-0doxalog Exel exTaudeLTEl HOVO GTO TEBlO-TNY N, TEoxUTTEL To {HTNUa O YodnThC Vo
exnoudeveTan o Aaviaouéveg etixéteg. o va avtipetwmotel autd to (htnue, £youy mpotadel
TEYVIXEC PUATPAplOUATOS, OL OTOlEC amopinTOUY BEBOUEVI IOV TUYOV VoL 00Ny icoLY GE Aavioo-
péveg etéteg. Xto [15,16] éxel npotadel éva Movtého Extiunone Euniotooivng (Confidence
Estimation Module), to onoio yenowonoteiton yior to pLhtpdpiopa avalldmo Ty SeGOUEVHDV.
Yo [17] yenowonoteiton yior auVETNon x66 TouC TOMATAGY epyootey (multi-task objective
loss) n onola yenowonoiel opdiua eumiotocivne. Téhog, oto [18] éyouue tnv Exnaideuon
OopuPoduevou Madnty (Noisy Student Training), 6nou to povtého-pointhc exnadedeton oe
dedopéva e npoairinn YopiBou, péoo and teyvixéc dnwe n SpecAugment [19], nou otoyelet
OTNY EXPAINOT TLO LOYLEMY AVITOEACTAGEWY. Mot GhAN OTEATNYXY YLoL TNV AVTWETMOTION
ANovIOCUEVWY ETIXETOV TEPLAUBAVEL TNV EVIUERWOT] TWV TUEUUETEWY TOU BUCIAOL YL T1)
Behtimon tne notdtnTac Twv Peudoetixetmdy. Xto [4], o ddoxahoc evnuepdveton xdie A Brudto
¢ 0 Exdetindc Kivntoe Mécog ‘Opoc (Exponential Moving Average ) tov TopopéTomy Tou
podnTy. Xto [5], 0 8doxorog altonotel Ty anddoon Tou uadnth oto nedio-tny 1 we avddeao,
BEATIOTOTOLOVTAS TG TOROUETEOUS TOL UE BAoT auUTY| TNV avddpaoT Yo VoL Toedryel XahDTERES
PeuBoETIXETES, YEYOVOS TIOU PE T1) OELRd Tou BeATUVEL TNV anddoon Tou padntr xou oo 5Uo

medto.
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0.3.3 Teyvuéc avtoen{Bredng

Mot dhn xuplopyn pédodog etvan 1 autoemBAenouevn udidnon (self-supervision). Autr
TPOGEYYLON EQUPUOC TNXE dpyWd o€ epyaocieg Enelepyaciac Puownc 'Adooog xou €yet amodety-
Vel amOTEAEOUOTIXY X0 ATTAY| TEY VIXT) TROEXTIALOEVTTC TTOU BIEUXOAUVEL TNV TROCURUOYT) GE VEOUC
Topeic. H Baow 16éa elvon 1 o€lomoinom g auToemBAETOUEVNS CUVEETNONS CPINIATOS TOU
YENOWOTOLELTOL XOTA TNV ) X!} TEOEXTOLBEUOT) ToLU povTéhou. Autd umopel va emitevy el
elte péow e Luveyoig Hpoexnaldevone (Continual Pre-Training) eite uéow dnurovpyiog pa
CLVAETNONG CPIAUUTOS TOAATAWY epyaouwy (multi-task loss) yio v exmaldevon Tou pov-
tehou. H Yuveyric Ipoexmaideuon éxel peretniel idaitepa 6To TAalolo Tng TpocapuoY g tedlou
yioe Ty Autopatn Avayvopton Owhiog Fo topdderypo, oto [20] Toviletan n onuaocio tg o-
LoTolNoNe UN ETMONUACUEVKDY SESOUEVLY EVTOC Tou Tedlou-tny ™, eved ato [21] Belyvetan 6tL o
ouvduaouog Luvey g Hpoexmaldeuong ye otpatnynés PeuBoETIXETMY UTopEl Vol UEWWGEL OTUaV-
TIXd TO TOGOGTO G@dhuatog oTo nedio atdyo. Xta [6] xou [8], n awtocmBrenduevn udidnon
YENOWOTOLELToL YLoL T1) dnutoupyio Wag cuvdETNoNS CPIAUNTOC TOMAATAGDY epyactwy (multi-
task loss) yia v exmaldevon tou povtélou, Ue Eupoon ot SlTAENoT TNE TEOCUPUOYHS XATY.
N Aemtouepy| mpocopuoy (fine-tuning) xou tnv anoguy” g Teomxnc xatdppeuonc (mode
collapse).

0.3.4 Teyvixéc exnaideucng aVTAYWVIGTIXWY TEDIWY

O x0ploc oty 0¢ g Exnaideuone Aviaywviotixey Iediwyv (Domain Adversarial Train-
ing) elvon vo exmoudedioet éva povtélo mou podaiver Borhid yopax Tnelo Tixd eovd vor AOGouv To
TeOBANua oto medlo-tnyY| (oTnV mepinTwon uag To TeoBinua Yo oy 1 avory vaetong pwvic),
eve) dev ennpedletat and Tig Slapopéc UeTald Twv tediwy. Xto [7] mpotelvovtat 8Vo uédodot yia
TNV QVTWUETOTLON TNS TEOCUPUOY NS ATtO YAWGGES LPNADY TOpWY GE YAMGGOES YUUNADY TORWY,

ol ontoleg YolpdlovTon Vo X0LVO oXOUGTIXO Y WO, To oTolo efvon Tor XIVTL X0 Tar MavoxreLTixd.

0.4 Ilpotewvouevn Medodoroylo

H npocéyyion pag anewxovileton oo My rua 1 xon anoteheiton and 600 6Tddla TpocUpUoYG:
€vol 0TA0L0 aUTOEMPBAETOUEVNC Wdinone, axohoutdoluevo and éva oTadlo NULI-ETBAETOUEVNS
udinong, To omolo avagépoupe ouvolxd we Iolu-Stadiaxy| pocoupuoyy| Hedlou (Multi-Stage
Domain Adaptation- MSDA).
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Stage 1 : M2DS52 Stage 2 : MetaPL

‘ XLSR — 53 H Lanps: = Lero(es, ys) + aLs(2s) + BLg(x) Student

{ YLerc(@s,ys) + 0La(w:) ]

Figure 1. Ilpocopuoyy| topéo tohhamhoy otadiwy (MSDA). ¥to X1ddto 1, yenolonololue Ty
auTo-eniBAePn Yiot VoL TROCUQUOGOUUE TO TEOEXTAUOEUPEVO LOVTEND oG UE TESlo-TNY N (Xs, Ys)
xat Tedlo-0ToY0 (xX¢). XT0o LTddio 2, epopuolovue plo Bertiwuévn €xdoon tng Meta PL vy
TEpaLTERL PBeATitIon TNG CUVOAMXTE TEOCUPUOYNG. € AUTO TO GTAOLO, O BAOXUNOG TUEEYEL
()EUBO-ETIXETES I} VLol TNV EXTIAUOEVUGT) TOL LOVTEAOL-PoINTA.

Ytddo 1:
Ye autd To 0Tddlo, axoloutolue TN YéYodo mou mpotdinxe oto [8] yio vo avamtiioupe
€VOL LOVTEAO BUOXAAOU TIOU EXTIUOEVETOL Xl GTOUS BVO0 TOUE(C Ue aUTOETBAENOUEVO TEOTO,

YENOWOTOUDVTIC TNV CUVARTNOT XOGTOUC:

Lpapse = Lere(xs, ]/s) + aLs(xs) + ,BLs(xs) ()

Ed6, To Lere etvan 1 ouvdptnomn xdéotoug Luvdeotoviotinric Xpovixric Tavounong, mou eqop-
uoleton oto medlo-tNY 1 (Xs, Ys). O dpou Ls(xs) xou Ls(xt) elvon ot anmdheieg autoemBAETOUEVNS
uddnong and to [8], mou egapudlovton ota Bedopéva ophiag TS TNYHS X TOU GTOYOL
avtioToya, 6nwe Teptypdpetal oto [3]. Autéc ol andheteg eviappivouy To povtélo vo pdiet
ovIEXTIXES, AVEEAPTNTES UG TO TEDIO AVATAUPAUC TACELS, ETUTUYYEVOVTOS EMLTUY WS VAL oEYIXO

eninedo npocopuoyic. Ol nopdueteol a xau f etvan cuvteAecTéC-Bden.

Ytddo 2:

Ye autd to 0Tddlo, axohoudolue to mhaiclo Tou mpotddnxe oto [5], yenowonowwvtoc To
ddoxaho and To Ltddto 1 yio va dnulovpyooupe Peudo-eTixéTeg yio Tov Topéa 6ToY0. AuTéc
oL PeuBO-ETIXETES YPNOHLOTOLOVVTAL GTT) GUVEYELXL YId TNV EXTUUBEVST) TOL HOVTEAOU pordnTh e
Yenon tne ouvdpetnong anwhietas Lere. Emniéov, o 8doxohog evnuepdVeTal GUUQWVOL UE TNV

ox6A0UY T CUVAETNOT CYAAUATOC:
Lt = Leedback(Xs, Ys) + yYLcrc(Xs, Ys) + OLa(xt) 3)

H L feedpack avemoplotd tny anwhes Lere tou podnts| otov Topea mnyfc, 1) onolo TopeyEL piot
avadpaoT 0ToV BAoXAA0 Xou ToV xardodnyel vo tapdyet xahitepeg peudo-etixétes. To Lere elvon
1 amAeta XuvdeatovioTixrc Xeovixrig Tadvounong Tou Saoxdhov oTov Touéd TNYHS, VK TO
L eivou n oamddewa drapoponoinong (diversity loss) mou neptypdgpetar oto [3]. O napduetpol y
xan O elvon ouvteheoTéc-Bdpen.

Y10 Ltddo 1, epoapudlovpe to SpecAugment [19] oto nymuixd dedouéva xan twv 500
TOUEWY YLa VOLEXTIALOEVCOUYE EVary TiLo avieEXTixG 8doxaho. 201660, oTo L1ddio 2, To SpecAug-
ment ypnouonoteital uovo oTig loddoug Tou padnTh, xoloe o tpdcdetoc YopuBog oTny elcodo

Tou daoxdhov 0dnYel oTN dnULouEYio PEUBO-ETIXETHOV YOUNAOTERPTC TOLOTNTOC.
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Xenowonowolue v exnaldcuon M2DS2 oto mpdto 0Tdd0 EMEWN, 0w TEPLYPAPETIU
oto [8], n autoemPBAenouevn exnoldeuon TOAATAGOY TESiY BIEUXOADVEL TNV TEOCUEUOYY
Topéd EVG OmOTEETEL TNV Xotdpeeuct Asttovpylag (mode collapse).  Auth n mpocéyyion
dteuxolvel T dnuloupyia Peudo-eTixeT®y LPNAdTERNE ToldTNTOE oTo BedTepo oTddo. Emi-
TAEOV, 1 EVOWUATWOT) Tou Ly 670 medlo Tdy0 elvor 0uGLHONG YIa TNV ATOPUYY| TROTUXNEC XATAR-
PELONC XATA TO 20 GTABL0, eV TO Lere Btacpolilel 6Tt To povtého Tou duoxdhou dlatneel Tny

TPOGAPUOYT) TOU GTOV TOUEX TINY T TOPA TLC AAAXYES TTOU TEOXUTTOLY A6 TO L feedpack-

0.5 Ilewpdpara

0.5.1 TIlpo-exmoudeupévo yovtéro

It to Booind pog poviého, yenotponooope to XLSR-53 [22], éva povtého opthiog mou
€yl exnoudeutel ex TV TEoTépwy Ue Bdon tnv apyitextovix) Wav2Vec 2.0 [3]. To XLSR-
53 Zeywpller Moyw Tng extevols exmaldeucrc ToU ot €val TOWAGUORPO GOVOAO BEBOUEVLY,
nou nepthapBdvel 56.000 wpec opthlac oe 53 YAMOOES, ATl TOU TOU EMTEETEL VoL EYEL LOYUEN

AATAVOTON) DLAPOLOV YAOTTIUDV O AXOUCTIXWY Y oUROXTNRLOTIXDV.

0.5.2 AcSoyéva

To clvoho dedopévev nou emhéEape etvon To Greek Podcast Corpus (GPC) [23], to onolo
repLhoPavel 3124 dpec fyou amd eAnvixd podcasts. To civolo dedopévwy elvar opyavmuévo
oe 16 Sapopetixéc xatnyoples, cuuneptlopfBavouévey twv TrueCrime, News, Art xat dAAwv.
ot va BieuxoAuvo Uy SLapoRE TIXES XA UOXES TIELQOUATMY, TO GUVOAO BEBOUEVKY EYEL Y WELOTEL OE
uxpotepa unocbvoro: GPC-50, GPC-20 xou GPC-10, mou mepiéyouv 50, 20 xar 10 dpeg fyou
avd xatnyopla, avtiotoyo. O eTixéteg Yo quTd Tar LTooUVOAa dntouEYNINXaY auTOHATA
xenotponowdvrag tny thatgpdepo WhisperX [24], n onola mopéyet etinéteg younhhic moldtnrog
(weakly-supervised labels). Yt nelpduatd pog, eTXEVTEWIRXAUE GTLC TORUXETE XUTNYORIES
tou GPC-20 w¢ draxpttéc meptoyéc:

1. TrueCrime: Podcasts mou e€epeuvolv oAndhivéc toTopieg EYXANUATOY X0 AOTUVOUIXES

€peuvec.

2. Education: Podcasts mou xahOntouv Yéuata dnwe ntotoplo, 1 xotvwviohoyla xat GAAeS

exToudEUTIXEC VepaToloyiee.

3. Business: Podcasts cmuxevipouévo ot dlolxnon entyeipfioemy, TIC VEOPUELS ETAULREIES

O TLC EMEVOUCELL.

4. Comedy: Podcasts agiepmuéva otny stand-up xoumdio xo Tt xwUXéS TopaoTIoELS.

Xenowonowhvtog to whisper-large-v2  [23], ou cuyypageic anoxtolv tocootd WER 8%,
5%, 15% xat 28% yio toug Toyelc TrueCrime, Education, Business xou Comedy avtictoiya,
UTOBEXVVOVTAS TS Blapopéc UETAE) TV Toyéwy. Xtov Ilivaxa 1 e€etdlouue tnv opodTnTa
HETOEY oUTOV TV Toyéwy, yenowomowviac to péteo ATDS [17]. Autd to uétpo, mou
avomTOYOnxe opyxd Yior oLy xploelc EToLD YAWSO®Y, xAlvel hoyixd mpog to 1 oty nepintwon

HOVOYAWOOIXGDY BEBOUEVRY, OTWE AVOUEVOTIY.
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| Opowétnra || TrueCrime | Education | Business | Comedy |

TrueCrime - 0.93937 0.91852 | 0.89848

Education 0.93937 - 0.96935 | 0.94209
Business 0.91852 0.96935 - 0.96998
Comedy 0.89848 0.94209 0.96998 -

Table 1. To pétpo ATDS petalld tTwv nedinv.

0.5.3 Xuyxpwouevee Médodol

AZiohoyolpe Ty anoteieopatixotnta tne HoAu-Etadionrc Ipocapuoyrc Iedlov yenol-
ponowwvtog T peteixy| Tou Ilococ 1ol Adoug AéZewv (Word Error Ratio - WER). H npocéy-
yio1| o ouyxpiveton Ue Tig e€rg Téaoeple uedodouc:

1. Finetuned: Emitnpoluevrn BeAtiotonoinon tou XLSR-53 otov Toyéa nnyhc, olugpwva ue
v 2pea =4 =0.

2. M2DS2: Exnoideuon pe M2DS2 ypnowomoudviag xou Toug 800 Touels (mnyrg xou
6TOY0UL), cOUPLVA PE TNV 2 ue @ = 5 = 0.01.

3. Finetuned - Meta PL: Eqopuoy?| tou mhawciov Meta PL oto Bedtiotonoimnuévo poviého
GTOV TOUEN GTOY0, CUUPWVA UE TNV 3 pE Y = O = 0, dSnAadY), YENOLOTOLOVTIS UOVO TNV
AVUTEOPOBOTNCT TOU YadnTH.

4. M2DS2 - Meta PL: Egopuoyt Tou mhawciou Meta PL ota exnandevpéva povtéha M2DS2,
oclupwvo e TNy 3uey =6 = 0.

IMotny exnatdevon MSDA, opiCouvye @ = f = 0.01 oty 2xouy = 6 = 0.001otny 3. Emmiéoy,
TELEOUATI OUAOTE UE DIAPOPES TYES TWV Y %ol O, TPOXEWEVOU VoL EEETATOUUE TIC ETOPAGELS TOUC
OTNY AmOB00T) TOU HOVTEAOU. MUYXEXPWEVA, Oleddyouue 600 TElpduaTa, xdUe €va amd To omolo
eoTLdlel o€ évay and Toug CUVTEAEOTES. e xdle melpopa, €vag cuVTEAEo TS elvan otatepde

0700.001 eV 0 dhhog petafdiieton petagd 1 xou 0.00001.

0.5.4 Arnoteléopata

Ytov Hivoxa 2 cuyxpivouue T MSDA e Tic tpoavagepleioes pedddoug ot dhdexa oevdpLo
TEOCUPUOYNS.

Apyixd, eotidloupe otny anddoaor tou poviéhou Finetuned-Meta PL. Iopotnpolue ot 1
eqopuoy”) tou Meta PL pewdver to WER tou povtéhou Finetuned xotd 2%-5% oe dhec Tic
doxyéc xan, emmiéov, unepPoivel Ty uédodo M2DS2 oe xdie oevdplo. Autd Selyver 6tL To
mhaioto Meta PL unopel vo e@apoctel anoTEAEOUATING GTNY AVoy VOELOT| uVAC. X TN CUVEYEL,
a&toAoYoUUE TNy anodooT) Tou poviéhov M2DS2-Meta PL. Eve to Meta PL €yel w¢ anotéheoya
N peiworn Tou WER xou tny Behtioon tng anddoonc oe olyxplon e o apyixd poviého M2DS2,
amodiBeL YElpdTERO CLYXELTXE Pe TNV BedTivon mou nopelye to povtéro Finetuned-Meta PL.
Anodidoupe TNy elheny| entidoon oty mdove XATAEEEUCT) AELTOUEY (0 TOU BaoHAIAOU XoTE TNV

exnotdevon Meta PL.
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ITedio . Finetuned M2DS2

p— | Stéyoc Finetuned Meta PL M2DS2 Meta PL MSDA
Education 48.8 43.47 45.32 42.35 37.98

TrueCrime | Business 62.7 57.16 58.26 56.27 50.3
Comedy 61.9 57.56 68.77 57.1 49.21

TrueCrime 37.28 33.3 43.23 42.07 39.89

Education | Business 50.93 48.25 56.01 55.17 47.03
Comedy 52.54 50.7 71.14 58.06 56.16

TrueCrime 41.07 38.5 52.2 43.02 41.01

Business | Education 42.38 38.9 55.32 48.27 42.4
Comedy 51.93 53.5 66.98 64.3 50.02

TrueCrime 43.32 40.01 50.27 42.67 39.08

Comedy | Education 42.78 40.8 46.5 39.71 38.77
Business 51.41 49.17 59.52 50.12 47.3
| Méso WER [ 4892 | 4594 | 5613 | 4993 | 4493 |

Table 2. Anoteréopota andédoong ota Levyn mediwv GPC-20, yenowonowvTag T U€tenon
WER. Ilupatnpolue 6t oxdun xow 6tay 10 povtého ddoxarog (M2DS2) anodidet xoxd otov
Topéa 6ToY0, TO HOVTEND ToL Exel exmoudeuTel ue MSDA peitvel anoteheopotind to WER xatd
4% éwc 14%

Télog, e€etdloupe To povtého MSDA. Tapatnpolue 6Tt to povtého MSDA unegfatvel ta
TEONYOVUUEVA UOVTEAN OE TOMEG TEQITTWOELS, ETLTUYYAvovTog Uelwon WER éwg 10%-12% oe
optopéveg and avtés. To povtéro Finetuned-Meta PL Eenepvd uovo tny MSDA otig nepimto-
oelg Onou 1) exnatdevon M2DS2 anotuyydver vo emiTOyEL OTOLBATOTE TEOCUPUOYT) XaL 0dNYEL
oe yewbdtepo WER and to povtéro Finetuned. Axdpo xon og auTEC TIC TEPLTTMOELS, TO HOVTERO
MSDA xotagépver va pewwoet to WER tou povtéhou M2DS2 xotd 5%-14%, unodeuviov-
TAUC TNV XAVOTNTE TOU VoL TOEAYEL ONUAYTIXG TLO LoYUEOUE )N TES 0XOUOL XU OE TEPLTTWOELS
OTOU TO HOVTENO-0dOXUAOG amoTUY Y Vel Amodidouye Tnv aduvopulo Ttou M2DS2 vo emithyel
TEOCUPUOYT) GTNY XAXT) TOLOTATA TWV OEGOUEVLY LIS, XIS XAl OTNV TEPLOPIOUEVT pLUULOT

TOV TUREUUETEWY a oL f.

60

- y

—— 0
55 A

finetuned
=== m2ds2

WER

35

30

T T T T T T T
le-06 le-05 le-04 le-03 le-02 le-01 le+00
Parameter value (log scale)

Figure 2. X0yxpion WER petoll diagpopetixtdv puiuioewy twv ¥ (Umhe) xou & (xOxxivo),
TV Pooxdv yovtéhwy finetuned (xitpwvo) xaw M2DS2 (mpdowvo), mou atohoyolvtal oTny
npoocopuoyY topéa tnyhc-atoyou TrueCrime - Education
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Y10 Byfua 2 e€etdlouUE TIC EMBRACELS TGV UETABANTEOV TYLWY Y XAl & GTNY ATOd0CT| TOL LOV-
Té\ou 670 oeVApPLO TpocupUoY g Touéa and TrueCrime oe Education. To oyrua anewovilel
TOC 0L BLOPORETIXOL GUVBLAGUO! AUTOY TV UTEPTURPUUETEMY EMNEEALOLY TNV IXAVOTNTA TOU
povtélou vo yevixelel omd tov topéa TrueCrime (nnyr) otov topéa Education (otéyoc).
Hopotnpodue 61ty 7,6 > 1073, n MSDA amotuyydvel va Eemepdoet Ty anddoon Twv ppe-
¥6dwv Finetuned xow M2DS2. Trodétouue 6Tt yio y > 1073, 1o povtého ddoxahog apyilet
VoL UTEETIEOCUPUOLETOL GTOV Touéd TNY TG, 0BNYWVTAS OF XaxH| TopaywY Y PeudoeTixetwy. And
v 8AAn mhevpd, dTav & > 1073, 1) emppor Tou Ly yiveton apxetd onuavtied (doTe Vo uT-
OVOUEVCEL OTIOWIONTOTE TPOGUPUOYT EMTEDYUNXE %aTd TN Sidpxeia Tou Ntadiou 1. EmnAiéov,
6tav 7,6 < 107%, n MSDA obnyel oe xaxh npocuppoy o€ olyxpion e Ty Tepintmon 6Tou
y,6 € [107%,1073]. ILotebouye 6Tt autd ogeiieton otny mavh xatdppeuon Aertoupyieg, Tou
ogelheTon 0TNY AvVATEOPODBHTNOT TOU PadNTH. e AUTEC TIC TEPLTTWOELS, 1) enidpacn Tou Lere
%0 ToU Ly xotd TNV eEXTAiBEVOT) UELOVETOL, ATOTUY Y AVOVTOC VoL DLUTNENOEL TNV TEOGUQUOYT| TOU

emtelyUnxe 0T LTddto 1, 00My®VTAS TO UOVTENO-OAOHANOG OE XUTAPELGOT) AEtTouRY oG,

0.6 Ilponyoluevec npooeyyloeig

Kotd v Sdexeiar tng avdntuing tne uedodous Pag TELRUUATIOTXUUE XoL UE GANES
mpooeyyloelg xou cuvbuaouols tng uedodou Meta PL xau teyvixdv ovtoeniBhedng. e
QUTES TIC TROCEYYIOEIC yenotomolooue daoxdioug mou €youv exnawdeutel pe Finetuned
xar M2DS2,evey 1 a&lohdynon €yive otnyv mpocopuoyy| medlou mnyric-otoyou TrueCrime -
Education. H pédodoc SpecAugment epopudéotnxe povo ota 6edouéva ela6dou Tou uadnTth

yio Vo amoteamel 1) OnpLoupyio ETIXETOY YounANg TOLOTNTASC At TO LOVTEAD TOU BAGKIAOU.

Avtoenontela xon oto 800 Tedla
H mpocéyyion auth nepthauBdvel tnv exnaldeuon tou YodnTy| Ue TN eHom NS CUVARTNONS
Yuvbealoviotxfic Xpovixhic Toagivounone eved 1o JOVIERO TOU BUOXIAOU EXTIUDEVETOL UE TO
GQANIA-0VABRAGT) TOU HordnTr, xadde xou e To o@dhua autoen(BAedng amd to [3] xan oto 800
medlaL

H 6éa nlow amd auty| TNy npocéyylon Aoy 6Tl 1) GUVEYHC TEOCAPUOYY) TOU BAGKIAOL PEGK
™Ne aToET{BAedNC, o€ GUVBLUCUS UE TNV avddEAaT ToL YordnTy), o 0dNYNoEL OTNY ToEaY WY

A(AANOTEPWY (PEVBO-ETIXETMV, XOU dPA GTNY TEPAUTERH TEOCUPUOYY| TOU HotdNTH.

Efdog ITedia mpwv Meta PL | petd Meta PL
daoxdAou ™Y oTOYOC Yy | otéyoc | mnyh | 6TOYOC
Finetuned | TrueCrime | Education | 37.83 | 48.8 | 43.01 97
M2DS2 | TrueCrime | Education | 369 | 4532 | 41.6 | 95.83

Table 3. Anotehécuota TEOGUPUOYNS YENOWOTOUOVTOS AUTOETOTTEL Xou GTor HU0 Tedio xaTd
1) SLdEXELL TNG EXTALBEVOTC TOL BAGKIAOU.

To aroteréopata npocapuoyhc magouctdlovto otov ivoxa 3. Ioapatnpolue Tt To Yov-
TENO TOU YotINTY AMOTLY YAVEL VoL Tpocaploo Tel evieAae, xotwe To WER otoug toueic otdyou

elvow xovtd oo 100. ITiotedoupe 6Tl qUTO TO ATOTEAECUN OPEINETOL GTNV AUTOETOTTEVOUEVT|
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an@AeL, 1 omola TIAVOC TEOXAAECE GTOV BAOXARO Var dNULoVEYNoEL Peudo-eTIXETEC HOoXNC
molotnToc. Autég ol Peudo-eTIXETES, OE GUVBLIOUS UE TNV avVTIoTOLYT| AVITEOPODOTNCT And
ToV pordnTy), @advetar vo SnuLoupyoly €vay gadio xOxAo extaldeuong, eunodilovtog To yoviého

TOU PodNTH VoL GUYXALVEL XOUL VOL TEOCUPUOC TEL.

Avtoenonteio Tou porinTA
Y qUTH TNV TREOGEYYLOT), TO UOVTERO TOU UadNTH EXTAUOEVETAL YENOULOTOLWVTAS TAUTOY POV
TNV cuvdptnoT YuvdeotovioTixrc Xpovixnc Taglvounong xadde xon 1o opdiyo auToeTiBAednS .
To povTéRo TOU BUGHANOU EXTIAUBEDTNAE YENOULOTOLOVTOS HOVO TNV ATWAELL AVATEOPOSOTNONG
Tou podnTH.

H Baouxn 16éa tlow amd auth Ty Tpocéyylon ATy OTL 1) TAUTOY POV TROCUPUOY Y| TOL uadnTh
670 TEdl0-0TOY0g, TOU XUVOONYEITOL ATO NUI-ETOTTEVOUEVT| XU AUTOETOTTEVOUEVT] EXTIALOEVTT),
Yo 0dnyoloe o cuvolxt| emtTuyNUEVN Teocapuoyn. To anoteréoyota Tapovoldlovtor oTov

TTivocor 4.

TOrog ITedta mewv Meta PL | yetd Meta PL
0aOAAAOU ™mYN 0TOY0C mYn | otoyoc | Tyt | target
Finetuned | TrueCrime | Education | 37.83 48.8 35.2 58
M2DS2 | TrueCrime | Education | 36.9 4532 | 334 55.1

Table 4. Anoteléopota TEOCUPUOYNS YENOULOTOLOVTOSC AUTOETOTTEN GTN oTOYOUETNUEVN
TEPLOY T XATY TNV exTTfdEVOT) TOU PordNTH

[Mopatneolye 6TL TO HOVTENO TOU PordNTH BUOXOAEVUETAL VO TROCUPUOGC TEL ATOTEAECUOTIXG,
amodidovTag YEWOTERA 0TO TEBLO-GTOYOC and OTL To PovTéro Tou daoxdhou. IlioTtebouue
OTL QUTO TO ATOTEAECUA OPEIAETOL OTNY AUTOETOTMTEUOUEVT EXTA(OECUT), 1 omolor mdavmdg
TEOXGAEGE TO HOVTENO TOU UAINTH VoL TOREYEL «TUPATAAVNTIXT» AVATEOPOOOTNOT GTO LOVTEAO
Tou daoudAov. AuTo, UE TN OELRd TOU, UTOREL VoL EYEL 0ONYHOEL GTNY TopaywY T PEUBO-ETIXETWY
YOUNATC TolOTNTOG, EUTOOILOVTAS TNV NUL-ETOTTEVOUEVY] EXTALBEVCT) VO ETLTUYEL TEQUTEQL

TEOGUPUOYT.

0.7 Yuunepdoporta xou Mehhovtinég Hpoextdoeic

Auth 1 epyaocio emxevtp®veTal 0TV €Qopuoyn uedodwy exnaideuons dooxdhou-uadnTy
TIOL €)0LV YENOWOTOINVEL TEOTYOUUEVKC GTNY AVAY VOPLOT| EXXOVAS Xt EEETACEL TS AUTES Ot
uédodoL unopoly vo evenuatwloly emituy®e Ye otpatnyixéc autoenontelog. E&etdlouue
v eappoyy) tou mhaolou Meta PL otic epyaoiec ASR xau Swomotdyvouue 6ti To Meta
PL, w¢ pédodog, etvon amir) xau ebxolo vhomothotun yio Ty UDA, emtuyydvovtog ornuoyv-
Txd anoteAéouata Teocopuoyhc. Enlong, epeuvdue Ty EVOWUATWOT| TWV AUTOETOTTEVOUEVLY
oty wY 6To mAdioto Tou Meta PL, ntpoxeipévou vo avantiZoupe yio otpotnyxs| tou Yo npooc-
(pépeL axoua xahiTepa anoteréopata Teooupuoyc. Me Bdon ta melpduata, XATUAYOUUE OTL
yia vo evowpatwie! ye emtuylo to mhaicio Meta PL ye autoenonteuduevoug atdyous, elvar

ATOEALTNTO 1) AVATEOPOBOTNOT) TOU Yot Ty Vo uny enneedletan amo dAAeg anwielec. Ilpotetvouue
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ua véa pédodo mpooopuoyne, Ty Holuv-Etodioxnn Hpooapuoyy Ilediov (MSDA), n onola cuv-
dudalel emTLY KOS TEYVES auToenontTelag xou Nueronteiog. H uédododc pag emtuyydvel onuov-
TIG XAAOTEROL AMOTEAEGUATA TROCUPUOY NG OE Oyéo e Tig uedodoug Meta PL xow M2DS2. Ytig
Tepintooelc 61ou n MSDA 8ev emituy ydvel Tpocapoyy| o€ 6OYXELoT UE TO ETLAEYHEVO HOVTENO,
ovory vwpllouUe TNV x| oYXy TEOCUPUOYT) TOU BaoXdAoL xatd TN Sdexeta Tng M2DS2 w¢
Topdyovia cuUBorfc. Qotdoo, eluacte aolddool 0Tt Ue TPOoTEXTIXT PUUULOT) UTERTIORUUETEWY
xau Behtiwon e moldTnTag TV 6edouéveny, n MSDA éyel tn Suvatdtnta vo Eenepdatl Toug
TEPLOPLopOUS ToL EMBAAAEL 1) amoTuyla TpocapuoYic Tou M2DS2.

Melovtixd, Yo pnopducoue va eEETACOVUE TNV EQOpUOYT) TN HEVOB0U pag OE GANEC
OYETXEC UE TNV oAl EpYasieg, OTWS 1) AVAYVOPLOT) OUIANTOY Xl CUVACUNUAT®Y, Ol OTOlES
SLapépouy amd Ty Autouatn Avayvoplon Oukiog xodog etvon mpofifuata xatrnyoplonoinong.
[TopdAAnha, Yo pmopolooue Vo eEETAGOVUE TNV EQPURUOCTLOTNTA TG LEY0B0U pag oE SLdpopoue
Topelg TNg unyavixic pdinong, omwe tnv Enelepyactac Puowrc I'h\dooag xou tnv Enelepyastac

Euwovoc.
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Chapter

Introduction

1.1 Motivation

Automatic Speech Recognition (ASR) has been one of the key areas where machine
learning and deep learning models have been successfully applied, enabling a range of ev-
eryday commercial applications such as voice assistants and dictation systems. However,
the performance of these systems can rapidly deteriorate when the data in the deploy-
ment domain differs significantly from the training data. These domain differences can
arise due to various factors, including environmental noise, recording conditions, or shifts
in the speaker’s vocabulary and accent. As a result, domain adaptation techniques are
crucial for maintaining system performance when operating on out-of-domain data.

Unsupervised Domain Adaptation (UDA) methods are particularly interesting be-
cause they do not depend on the expensive and time-consuming annotation of domain-
specific data; instead, they focus on using the large amounts of unlabeled data to help
models adapt to new, unseen domains. In the context of ASR, UDA techniques have been
employed to improve robustness across various recording conditions, such as environ-
mental noise and reverberation. Additionally, UDA has been applied to cross-lingual and
multilingual adaptation tasks, boosting performance in low-resource languages [3] and
different dialects [4].

The most common approaches for UDA are self-supervision and semi-supervised
leaning. Recent research has demonstrated that these techniques lead to substantial
performance gains across a range of tasks, including speech and image recognition. A
key question that arises is whether these methods can be effectively combined to further

enhance adaptation and achieve even better results.

1.2 Research Objective & Contribution

The primary research objective of this work is to develop an unsupervised domain
adaptation (UDA) framework for speech recognition tasks in the context of low-resource
language and weakly supervised data. This framework combines self-supervised learn-
ing techniques that have already been applied successfully in ASR tasks, with semi-
supervised methods that have primarily been used in image recognition, adapting them

for speech-based applications.
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Our main contributions are:

1. We show that a semi-supervised framework, previously used in image recognition
tasks, is an effective adaptation method for Automatic Speech Recognition.

2. We introduce Multi-Stage Domain Adaptation (MSDA), a novel two-step domain
adaptation method that integrates self-supervised learning with semi-supervised
strategies.

3. We explore the limitations regarding the integration of self-supervised tasks and
semi-supervised training in the context of said semi-supervised framework.

We explore the potential of the Meta PL framework for ASR adaptation tasks. Meta PL
is a semi-supervised approach that consists of a teacher-student model structure, where
the teacher provides pseudo-labels for the student to train on using unlabeled data.
What makes this approach particularly interesting is that the student model generates a
feedback loss for the teacher, guiding it to improve the quality of its pseudo-labels. Since
Meta PL has primarily been applied to classification tasks like image recognition, it is
especially intriguing to investigate whether it can be effectively adapted for sequence-to-
sequence tasks, such as ASR.

Additionally, we propose a novel two-stage domain adaptation approach, called
Multi-Stage Domain Adaptation (MSDA). Our approach combines the semi-supervised
approach introduced in Meta PL, with self-supervised strategies used in recent studies.
Our results show that MSDA significantly enhances model performance in the target do-
main, outperforming baseline models, particularly in scenarios involving low-resource
languages and weakly supervised data.

Finally, we examine the limitations associated with integrating self-supervised tasks
into the Meta PL framework. Our findings indicate that the feedback-based training
process of Meta PL is highly sensitive to the introduction of additional tasks. Therefore,
any attempts at integration must carefully consider these sensitivities to ensure effective
training and optimal performance.

This work is particularly focused on low-resource languages, such as Greek, where
the availability of labeled data is limited. By leveraging weakly labeled datasets, our
framework aims to improve ASR performance in these languages, highlighting the po-
tential for effective adaptation strategies in resource-constrained environments. This ap-
proach not only addresses the challenges associated with low-resource languages but also
contributes to the broader goal of enhancing speech recognition systems across diverse

linguistic contexts.
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1.3 Outline

This thesis is structured as follows:

e In Chapter 2, we present the foundational concepts of machine learning, covering
key principles and basic terminology. We then focus on deep learning architectures
and models that are particularly relevant to this work.

e In Chapter 3, we explore the challenges associated with Automatic Speech Recog-
nition and review the solutions and methodologies that have been proposed over
the years.

e In Chapter 4 we provide an extensive literature overview of unsupervised domain
adaptation techniques used in speech recognition. We explore the basic concepts of
the most common approaches, including pseudo-labeling / semi-supervised learn-
ing, and domain adversarial training.

e In Chapter 5, we present our proposed framework, detailing the techniques em-
ployed and the methodology developed. This chapter includes an analysis of our
approach, a description of the experimental setup and data utilized, an overview of
our experimental results, and a discussion of the challenges encountered, particu-

larly in combining self-supervised and semi-supervised learning methods.

¢ In Chapter 6 we provide our conclusions and an outlook into the future.
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Chapter

Machine & Deep Learning

In this chapter, we’ll explore the key concepts of machine learning, highlighting the
fundamental principles that drive this field.

2.1 Definition

Machine learning (ML) [25, 26, 11]is a branch of artificial intelligence (AI) focused on
developing and studying statistical algorithms that enable systems to learn from data,
generalize to new, unseen data, and perform tasks without being explicitly programmed.
These algorithms are particularly valuable in domains where manually designing algo-
rithms is complex and challenging, such as in computer vision and speech recognition.
By leveraging data-driven approaches, ML systems can automatically improve their per-
formance and adapt to a wide range of applications.

The core objective of a machine learning model is to be able to generalize based on its
experience, i.e, to be able to perform accurately on new, unseen examples and data after
its training.

A common example in machine learning involves using pairs of data where x rep-
resents the input and f(x) denotes the corresponding output produced by the function
f . he objective is to identify a hypothesis function & that approximates f, as closely as
possible, based on a finite set of these input-output pairs (x, f(x)). This task is challenging
because the true form of the function fis unknown and must be inferred from the data.
A good approach should be able to generalize successfully, that is it should be able to
predict correctly on unseen examples and data.

2.2 Types of Learning

Machine learning approaches are divided into three main categories, depending
on the type of used data and the feedback used during training: supervised learning,

unsupervised learning and reinforcement learning.

Supervised Learning
In supervised learning [25, 11, 27, 26], the goal is to learn a function from pairs of input
and output examples. The system is provided with labeled training data, which consists

Diploma Thesis



of input-output pairs where the correct output for each input is known and provided by
a teacher. The objective is to derive a general rule or function that maps inputs to their
corresponding outputs. A supervised learning algorithm processes this labeled data
to create an inferred function that can predict outputs for new, unseen inputs. Ideally,
this learned function will accurately determine the outputs for these new instances,
demonstrating the model’s ability to generalize from the training data.

Unsupervised Learning

Unsupervised learning [28, 29, 11] focuses on discovering patterns or structures in
data without the guidance of output labels. Also referred to as self-organization, this
approach enables the modeling of probability distributions over the inputs. By analyzing
the inherent structure of the data, unsupervised learning methods can uncover hidden
relationships and groupings, providing insights that are not immediately apparent from
labeled examples.

Reinforcement Learning

Reinforcement Learning (RL) [30, 31] is a branch of machine learning focused on
how systems should make decisions to maximize cumulative rewards over time.
Unlike supervised learning, RL does not require labeled input/output pairs or explicit
corrections for sub-optimal actions. Instead, RL involves learning from interactions
with an environment, where the system receives feedback in the form of rewards or
penalties. The problem is often framed as a Markov Decision Process![32] (MDP), and
many RL algorithms use dynamic programming techniques. However, RL algorithms
differ from classical dynamic programming methods in that they do not rely on an exact
mathematical model of the MDP. Instead, they are designed to handle situations where
precise models are impractical, allowing them to learn effective strategies through trial
and error.

Finally, there is a fourth approach in ML, semi-supervised learning, that lies be-
tween supervised and unsupervised learning.

Semi-supervised Learning

Semi-supervised learning [33, 34] is a machine learning approach that integrates a
small amount of labeled data with a larger set of unlabeled data during training. This
method merges elements of both supervised learning, which relies solely on labeled
data, and unsupervised learning, which uses only unlabeled data. By combining these
two types of data, semi-supervised learning can enhance model performance, leveraging
the abundance of unlabeled data to complement the limited labeled data. The process
of labeling data can be expensive and time-consuming, often requiring specialized
knowledge or physical experiments, making it impractical to obtain large, fully labeled
datasets. In contrast, unlabeled data is typically easier and cheaper to collect, making
semi-supervised learning a highly valuable approach in practice.
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2.3 Fundamentals

Here, we will cover fundamental concepts, ideas, and algorithms that are crucial
in machine learning, including the perceptron [35] algorithm, activation functions, and
feed-forward networks [11].

2.3.1 Perceptron Algorithm

The perceptron [35] is an algorithm used for supervised learning to create binary clas-
sifiers. Itis a type of linear classifier that makes predictions based on a linear combination
of input features and associated weights. Essentially, the perceptron is a function that
maps an input x to an output value f(x), which is a single binary result:

1 ifw-x+b>0
flx) = (2.1)

0 otherwise

Where w represents a vector of weights, w - x is the dot product and b is the bias. Since
f(x) returns two values, it is used in binary classification problems. The main limitation
of the perceptron algorithm is that it can only generalize successfully to linearly separable
problems. This restriction limits its applicability, but it serves as a foundational basis for
developing more complex and advanced algorithms and models.

1 —>(b) Bias
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X3 —’IA‘. WE'I’ A | ; /
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Xn — > W)

Synaptic

Weights

Figure 2.1. A perceptron unit with an activation function

2.3.2 Activation Function

To overcome the limitations of linear separability in models, it is essential to introduce
non-linearities, which allow for the approximation of arbitrarily complex functions. This
can be achieved through the use of activation functions [27, 11]. These functions are
applied to the output of a linear unit or node and perform a non-linear transformation,
enabling more sophisticated decision-making.
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Given the perceptron model in equation 2.1, and an activation function g, we can

define an non-linear clasiffier as:
f'=g(w-x+b) (2.2)
Some commonly used activation functions are:

Sigmoid:
A sigmoid function [36], named for its characteristic S-shaped curve, is defined by the

following formula:

1 er

l1+e™* e +1 2.3)

a(x)

A sigmoid function is a bounded, differentiable real function defined for all real input
values, with a non-negative derivative at each point. Itis generally monotonic, with a bell-
shaped first derivative. The sigmoid function is constrained by horizontal asymptotes as
x — +oo. Itis convex for values less than 0 and concave for values greater than 0, which

can lead to multiple optima in the sigmoid function and its affine compositions.

However, the sigmoid function has two major disadvantages. Firstly, when o(x) is
close to 1 or 0, its gradient approaches 0, which can lead to very small weight updates
and slow learning. Secondly, the output of the sigmoid function is not centered at 0.
This means that positive inputs will always produce positive outputs, which can result
in consistently positive or negative gradients, leading to undesirable oscillations and
potentially hindered learning in the model.

Hyperbolic tangent:
Hyperbolic tangent is defined by the formula:

X _ pX

e
tanh(x) = =

(2.4)

From equations 2.3 and 2.4 we get that tanh(x) = 20(2x) — 1, thus it is a bounded,
differentiable, real function that is defined for all real input values and has a non-negative
derivative at each point. It's only advantage over sigmoid is that tanh is not zero-centered.

Rectified Linear Unit (ReLU):
ReLU [37], also know as ramp function, is defined as the positive part of its argument:

relu(x) = x* = max(0, x) (2.5)

A key advantage of ReLU is its sparse activation. In a randomly initialized network,
approximately 50% of the hidden units are activated, meaning they have a non-zero out-
put. Other significant benefits of ReLU include improved gradient propagation, efficient
computation, and scale invariance. However, ReLU also has potential drawbacks, such
as a lack of differentiability at zero, non-zero-centered outputs, and being unbounded. A
notable issue is the "dying ReLU" problem, where neurons can become inactive for almost
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all inputs, resulting in no gradients flowing through them and leaving the neurons in a
perpetually inactive state.

Figure 2.2. The aforementioned activation functions

2.3.3 Feed-Forward Networks

Multilayer perceptrons (MLPs) [38, 26], also known as feed-forward networks, are
composed of several layers of perceptron units arranged in a stack. Each perceptron
functions as a computational unit that processes the input from the preceding layer and
applies a function to produce a scalar output. Within a single layer, units are typically
not interconnected.

A feed-forward network comprises at least three layers: an input layer, one or more
hidden layers, and an output layer. The input layer receives the raw data, the hidden
layers process this data through successive transformations, and the output layer delivers
the final result. Information flows from the input to the output through a process known
as forward propagation. The model’s depth is determined by the number of hidden
layers, while its width is defined by the number of units within each hidden layer.

Unlike a linear perceptron, an MLP is capable of handling non-linearly separable data
due to its multiple layers and non-linear activation functions. The distinction between a
simple neural network and a deep neural network is illustrated in Fiq. 2.3

Hidden 1 Hidden 1 Hidden 2 Hidden 3

Figure 2.3. One the left, a simple neural network. On the right a deep neural network
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24 Model Training

Training is a crucial process for developing a model that can perform effectively on
its designated task. This process involves a loss function [25, 26], which measures how
well the model is currently performing, and a training algorithm that leverages this
performance metric to adjust the model’s parameters for improvement.

2.4.1 Loss Function

Neural networks are trained using optimization methods that aim to find the best set
of model parameters to minimize prediction error. For a model f with parameters w, the
prediction error is estimated using a loss function J(w). This loss function quantifies the
"distance" between the model’s predicted output and the desired target output.

L(f (xi; w), y;) (2.6)

The total prediction loss over the dataset is calculated using the Eq. 2.6.

Mz

J(w) = (f (xi;w), yi) 2.7)

i=0

Eq. 2.7 is also known as objective loss, cost function of empirical risk.

There are various loss functions used in model training, each suited to different types
of tasks the model is designed to solve. Below, we outline some of the most commonly
used loss functions.

There are various loss functions used in model training, each suited to different types
of tasks the model is designed to solve. Below, we outline some of the most commonly
used loss functions.

Binary Cross Entropy Loss:

Used for binary classification tasks [39] where the model predicts a probability between
0 and 1. It measures the difference between the predicted probabilities and the actual
binary labels, penalizing incorrect predictions more severely. This loss function is ideal
for scenarios where the outputs represent probabilities of a binary outcome.

Jw) = = ) yilog(f(xi;w)) + (1 = yi)log(1 = f(xi;w)) (2.8)

2|~
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Mean Squared Loss (MSE):

Commonly used for regression models that make predictions over continuous real num-
bers [40]. MSE measures the average of the squared differences between the predicted
and actual values, penalizing larger errors more heavily.

N
Jw) = < Y (i~ flaw)? (29)
i=0

The goal of training is to find the optimal values of w that minimize the chosen loss
function.

w' = arg ngn J(w) (2.10)

This is achieved through the training algorithm, which we’ll discuss below.

2.4.2 Gradient Descent

Gradient descent [41, 42, 26] is an optimization algorithm used to minimize the cost
or loss function in machine learning and statistical models. It’s an iterative process that
helps find the optimal parameters (weights) of a model that minimize the error between
predicted and actual values. The fundamental idea behind gradient descent is to adjust
the parameters of the model incrementally in the direction that reduces the loss function
and reaching a local minimum.

This is achieved by calculating the gradient of the loss function V]J(w) , which is the
vector of partial derivatives of the cost function with respect to each parameter.

9J(w) (W)

ow, " w,

Vi(w) =1

] (2.11)

The gradient indicates the direction and rate of the steepest increase in the cost func-
tion. By moving in the opposite direction of the gradient, we aim to find the minimum
point of the cost function.

Gradient descent starts with an initial set of parameters wy, often chosen randomly,
and iteratively updates them to find the minimum. The parameters are updated using
the formula:

Wil = Wy — aV](wy) (2.12)

where a represents the learning rate.

The process described in Eq. 2.12 is repeated until convergence or for a defined
number of steps Given some certain assumptions, such as | is convex and V] is Lipschitz,
convergence to a local minimum is guaranteed. The Lipschitz continuity of the gradient
ensures that the function has a controlled rate of change, which is essential for the stable
convergence of gradient descent.
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However, in the context of deep neural networks, the situation becomes more com-
plex. Deep neural networks introduce significant non-linearity through their activation
functions and their layered structure. This non-linearity causes the loss surface to become
highly non-convex, with many local minima, saddle points, and flat regions. As a result,
the smooth and predictable landscape assumed in convex optimization no longer applies.

Learning Rate: The gradient defines the direction of the weights update, while learning
rate dictates the magnitude of each update step. Learning rate is a crucial hyperparameter
in gradient-based optimization algorithms, since it determines the extent to which new
information, modifies the existing model parameters. Essentially, it dictates the speed at
which a model learns.

Choosing an appropriate learning rate is essential because it directly impacts the trade-
off between convergence and the risk of overshooting the minimum. A small learning
rate ensures that the model slowly progresses towards the minimum, but the convergence
process may become excessively slow. On the other hand, a large learning rate can
accelerate the convergence process. However it can cause the updates to overshoot the
minimum.

In practice, it is common to start with a relatively large learning rate and gradually
decrease it as training progresses. This approach allows the model to make quick initial
progress and then fine-tune the weights as it gets closer to the minimum. Techniques
such as learning rate schedules and adaptive learning rate algorithms (like AdaGrad,
RMSprop, and Adam) automate this process by adjusting the learning rate dynamically
based on the optimization history.

Backpropagation: Backpropagation is a fundamental algorithm used for training neural
networks by minimizing the loss function. It involves a forward pass, where the input
is propagated through the network to compute the output, and a backward pass, where
the error is propagated back through the network to update the weights. The key idea is
to compute the gradient of the loss function with respect to each weight using the chain
rule of calculus.
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2.5 Deep Architectures

Speech recognition is fundamentally a sequence-to-sequence problem because it in-
volves mapping a variable-length input sequence (the spoken audio) to a variable-length
output sequence (the transcribed text). The challenge lies in aligning the input speech
sequence with the corresponding output text sequence, as the length and structure of
the sequences can vary significantly. This alignment requires the model to understand
temporal dependencies and handle varying input lengths effectively.

In this section, we’ll discuss and analyze some deep neural architectures that can
effectively address sequence-to-sequence problems like speech recognition, focusing on
Recurrent Neural Networks (RNNs) and Transformers.

2.5.1 Recurrent Neural Networks (RNNs):

Recurrent Neural Networks (RNNs) [43] are a type of neural network designed to
process sequences of data. Unlike feedforward neural networks, which assume that each
input instance is independent, RNNss consider the temporal dependencies in the data by
maintaining an internal state, or hidden layer #, that evolves over time. This internal
state allows RNNSs to incorporate information from previous time steps into their current

computations.
() Yo (v (¥n)
f f f f

’:ht:(>ho—>h1 > hp
1 | 1 1
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Figure 2.4. A RNN unit, as it loops and unfolds over time.

The core idea of an RNN is to capture the temporal dynamics of a data sequence by
updating its hidden state at each time step as new data is processed. Specifically, at each
time step ¢, an RNN takes the input x; and combines it with the hidden state from the
previous time step h;_; to produce the new hidden state ;. This process can be described
mathematically as:

he = (Wyhi—y + Wexy +b) (2.13)

where ¢ is a non-linear activation function, W, and W, are weight matrices, and b is a
bias term. The output at each time step can be computed using:

yi = Y(Wyh; + by) (2.14)

where ¢ is an non-linear activation function, W, is a weight matrix and b, is a bias term.
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This architecture allows RNNs to learn from and make predictions based on the
sequence of data, making them well-suited for tasks like speech recognition, language
modeling, and time series prediction. However, RNNs can struggle with long-term
dependencies due to issues such as vanishing or exploding gradients, which can make it
difficult for the network to learn and remember information over extended sequences.

2.5.2 Vanishing and Exploding Gradient:

The vanishing gradient problem [44, 45] occurs when gradients, during backprop-
agation, become extremely small as they propagate through each time step, leading to
minimal updates to the network’s weights. This issue hinders the network’s ability to
learn long-term dependencies, as the influence of earlier time steps diminishes expo-
nentially. Conversely, the exploding gradient problem arises when gradients become
excessively large, causing the network’s weights to update too aggressively. This can
lead to unstable training, where the network’s parameters oscillate wildly or diverge.
Both problems stem from the nature of RNNs, where gradients are computed through a
series of matrix multiplications, amplifying or diminishing their values. The vanishing
gradient problem particularly affects RNNs with many layers or long sequences, making
it difficult for them to capture long-term dependencies .

Variants like Long Short-Term Memory (LSTM) networks and Gated Recurrent Units
(GRUs) address these challenges by introducing mechanisms to better capture long-range
dependencies and stabilize training.

2.5.3 Long Short-term Memory (LSTM) networks:

Long Short-Term Memory (LSTM) [46] networks are a specialized type of RNN de-
signed to address the vanishing gradient problem and enhance the learning of long-term
dependencies in sequential data. Unlike traditional RNNs, LSTMs incorporate a more
complex architecture that includes memory cells, input gates, output gates, and forget
gates. These components work together to regulate the flow of information through the
network, allowing it to maintain and access information over long sequences.
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Figure 2.5. LSTM’s unit internal architecture
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The key innovation in LSTMs is the memory cell C;, which stores information across
many time steps and is updated by various gates. The forget gate F; controls what
information is discarded from the memory cell, the input gate I; determines what new
information is added, and the output gate O; regulates what information is used to
compute the output. This gating mechanism enables LSTMs to effectively manage long-
term dependencies and avoid the issues associated with vanishing or exploding gradients.

The mathematical relations between these gates are described below:

F; = G(thHt_l + foxt) (2.15)
Iy = o(WipHi-1 + Wixxy) (2.16)
Or = o(WopHi-1 + Woxxy) (2.17)
Cr = tanh(Wy,Hy—y + Weexy) (2.18)
Ci=FoCi+LoC (2.19)

H; = Oy o tanh(Cy) (2.20)

2.5.4 Gated Recurrent Units (GRUs):

Gated Recurrent Units (GRUs) [47] are a simpler architecture that combines the mem-
ory cell and gating mechanisms into a single structure.
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Figure 2.6. GRU's internal architecture

They utilize two primary gates: the update gate and the reset gate. The update
gate controls how much of the past information is carried forward and how much of
the new information is incorporated, while the reset gate determines how much of the
past information is discarded. This design allows GRUs to maintain and adjust the flow
of information more effectively across sequences, facilitating the learning of long-term
dependencies without the complexity of LSTMs.
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2.6 Attention and Transformers

The hidden layer of RNNs faces limitations primarily due to the challenge of main-
taining long-term dependencies. RNNs try to compress the entire input sequence into
a single fixed-size hidden state, limiting the model’s ability to represent complex and
lengthy sequences. These issue is solved using the Attention Mechanism [1].

2.6.1 Attention Mechanism

Attention mechanisms address this issue by allowing the model to directly access and
focus on different parts of the input sequence. This dynamic focus enables the network to
capture long-range dependencies more effectively, as it no longer relies on a single context
vector to represent the entire sequence.

Each element of the input sequence has different importance, which help the attention
module to focus on it. This importance is measured by their alignment with a query
vector g. Given an input sequence x;, x, ..., Xy of length N, the attention module uses an
alignment function to calculate the relevance of each x; with the query 4.

s; = align(q, x;) (2.21)

These alignment scores s; are then normalized using the softmax function to produce
attention weights ay, ...an, where Z?] a; = 1.
a; = softmax(s;) = =—= (2.22)

The final representation £ of the input sequence is the weighted average of each input
element.

N
= Z x; (2.23)
i

This final representation captures much more information about the input sequence than
the hidden state /s of RNNs. Below we present some popular alignment score functions.
General attention:

align(q, x;) = sTW,x; (2.24)
Dot-product attention:
align(q, x;) = sTx; (2.25)
Scaled dot-product attention:
align(q, x;) = ﬁ (2.26)
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2.6.2 Transformers

Transformers [1] are a groundbreaking neural network architecture that leverages
the attention mechanism to process sequences of data more efficiently than traditional
RNNSs. Unlike RNNs, which process inputs sequentially, Transformers allow for parallel
processing by using self-attention to weigh the importance of different elements within
a sequence. This self-attention mechanism enables the model to capture relationships
between words regardless of their distance in the sequence, providing a more flexible
way to understand context and dependencies.

Transformers are the model of choice for many machine learning tasks, from Natural
Language Processing and Image segmentation to Speech Recognition. Their versatility
and effectiveness have made them the foundation for the latest Large Language Models,
such as OpenAl’s ChatGPT and Meta’s LLaMA.
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Figure 2.7. The Transformer internal architecture. Source [1]

Their architecture is based on the encoder-decoder model. The encoder consists of a
set of encoding layers that processes the input iteratively from layer to layer, while the
decoder consists of a set of decoding layers that applies the same processing to the output
of the encoder. Encoder’s and decoder’s internal architecture is identical, but they use
different parameter values since they are used for different purposes.
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The encoder consists of a self-attention layer, which enables the generation of robust
representations by capturing long-term dependencies in the input sequence. Following
the self-attention layer, a feed-forward layer provides additional processing and trans-
formation of these representations. The decoder mirrors this architecture but includes
an additional encoder-decoder attention module. This intermediate module allows the
decoder to identify and focus on specific elements of the encoded input, facilitating the
generation of output sequences that are contextually relevant and accurate.

The self-attention module is essential for capturing contextual information from the
input data. This is achieved via a two-step process. At the first step, the module creates
three vectors based on the input, the Query (Q), Key (K) and Value (V) vectors. These
vectors are created by applying specific matrices Wg, Wk, Wy on the input sequence ,
whose desired values are acquired through training. At the second step, we calculate the
self-attention using these three vectors, following the equation below:

. QKT
Attention(Q, K, V) = softmax(—d)V (2.27)
k

where d is a scaling factor, based on the dimension of vector K.
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Figure 2.8. Left: Attention Head, Right: Multi-head Attention. Source [1]

Each set of Wg, Wk, Wy is called an attention-head. To obtain more contextual infor-
mation and capture different aspects of the input sequence, multiple attention heads are
employed, a technique known as multi-head attention. This approach allows the model to
focus on various parts of the input simultaneously, enhancing its ability to understand
complex patterns and relationships within the data.

E Diploma Thesis



2.7 Generalization and overfitting

Training is considered successful when the produced model can make accurate predic-
tions on previously unseen inputs, demonstrating its ability to generalize. Generalization
is crucial for a model’s effectiveness, as it indicates that the model has not only memorized
the training data but has also learned underlying patterns that apply to new, unseen data.
This capability is essential for the model to be useful in real-world applications where it
encounters diverse and novel inputs beyond those it was explicitly trained on.

However, there are occasions when the model minimizes the loss function during
training but fails to generalize to unseen data. This phenomenon is known as over-
fitting [48]. Overfitting occurs when the model becomes too closely aligned with the
training data, effectively memorizing it rather than learning general patterns. As a result,
the model performs well on the training set but poorly on new, unseen data.

Conversely, there is the issue of underfitting, where the model fails to learn ade-
quately from the data. This typically happens when the model’s capacity is too limited
to capture the underlying patterns in the data. In such cases, a more complex model with
additional parameters or more sophisticated architectures might be required to improve
performance. Balancing between overfitting and underfitting is crucial for developing
models that generalize well and perform effectively on unseen data.

. - & ... . ... . [ ] ...
[ . ® s @
[ ] * - .. . - L ] . Ll
Underfitting Overfitting Balanced

Figure 2.9. From left to right: cases of underfitting, overfiting and successful generalization.

2.7.1 Regularization

To combat overfitting, various regularization techniques [49] have been developed,
including dropout, weight decay, and early stopping. These methods aim to balance the
bias-variance trade-off by managing the model’s complexity. The goalis to achieve alower
generalization error by preventing the model from fitting the training data too closely,
which often results in a higher training error. One approach to this balance is by regulating
the model’s capacity; however, simply choosing a fixed number of parameters does not
guarantee an optimal fit. Instead, considering complex function families and employing
regularization techniques to control model complexity is typically more effective.
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Regularization helps ensure that the model generalizes well to new data while avoid-
ing the pitfalls of both overfitting and underfitting. Below we discuss some commonly
used techniques.

Parameter norm penalties

Parameter norm penalties are used to limit the model’s complexity by penalising the
norm of its parameters. This is achieved by adding a regularization term ()(w) to the loss
function J(w) scaled by a parameter A € [0, 1]. The overall loss is:

N
f(w) = % Z L(F(xi; W), 1) + AQ(w) (2.28)

The two most commonly used penalties are L; [50] and L, [51] regularization.
L1 regularization: Here the (Q(w) is as follows

N
Qw) = lIwlly = Yl (2.29)

This adds the term Asign(w) to the update rule of eq. 2.12, which results to sparse model.
This means that after training, due to the effects of this term, some weights may be close to
zero, thus not contributing to the final result. Thus, L; acts a feature selection mechanism.
L2 regularization: Here the ()(w) is as follows

Qw) = _lwl? (230

This adds the term Aw to the update rule of eq. 2.12 This means that during training a term
proportional to their magnitude is subtracted from all weights. This causes the weights
to decay over time, so the technique is named weight decay.

Dropout:

Dropout [52] is a simple yet effective, frequently used regularization method for neural
networks. During training each unit has a probability p > 0 to be dropped out, i.e to be
ignored during forward and backward pass. This can be observed in the Fig. 2.10. At
test time, all units are employed, but they are scaled by a factor 1/p to account for the
missing activations during training. Dropout forces network to not rely on any node and
prevents units from forming co-dependencies amongst each other. A usual value for p is
0.5.
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(a) Standard Neural Net (b) After applying dropout.

Figure 2.10. The effect of dropout during training

Dropout can be viewed as creating a set of different sub-networks during training. By
randomly deactivating a subset of neurons in each training iteration, dropout effectively
generates various configurations of the network. Given a model with N parameters,
dropout can potentially create 2N different sub-models, each sharing some parameters
but with different neurons active or inactive. This process helps prevent overfitting
by ensuring that the network does not rely too heavily on any single set of neurons,

promoting a more robust and generalized learning.

Data augmentation

A simple way to reduce the risk of overfitting is to use more training data. However,
when collecting additional data is not feasible, synthetic data can be generated from the
existing dataset through a process known as data augmentation [53]. This technique in-
volves creating new data points by applying various transformations or modifications to
the original data. In the domain of images, common data augmentation methods include
flipping, rotating, re-scaling, and cropping. For natural language data, augmentation is
less common but can be achieved through techniques like synonym replacement. Ad-
ditionally, adding small random noise to the data can help improve model robustness
by encouraging the model to learn more general patterns rather than memorizing spe-
cific details. Data augmentation thus serves as a valuable strategy to enhance model
performance and generalization without requiring extensive additional data collection.

Early stopping

Early stopping [54] is a crucial regularization technique used to prevent overfitting
during the training of machine learning models. It involves monitoring the model’s
performance on a validation set while training. The key idea is to track a specific per-
formance metric, such as validation loss or accuracy, and halt the training process when
this metric starts to deteriorate, even if the predefined number of training epochs has not
been reached.
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Figure 2.11. Validation and training error during trainind. Early stopping is applied when the
validation loss starts to increase

Monitoring the model’s performance is essential because, after a certain point, con-
tinued training can lead to overfitting, where the model becomes too specialized to the
training data and loses its ability to generalize to unseen data. Early stopping helps miti-
gate this by ensuring that training is halted at an optimal point where the model performs
well on both the training and validation sets, thereby maintaining its robustness and gen-
eralization capability. Additionally, early stopping helps save computational resources
by avoiding unnecessary training epochs, making it a practical and efficient technique for
improving model performance and efficiency.

2.8 Representation learning & Mode collapse

Representation learning [55] is a aspect of machine learning that focuses on learning
useful and meaningful features or representations from raw data. The primary goal is
to transform input data into a format that makes it easier for the model to perform tasks
such as classification, regression, or generation. Effective representations capture the
underlying structure and relationships within the data, enabling models to generalize
better and improve performance on a variety of tasks.

Mode collapse is a significant challenge in representation learning when models fail
to capture the full diversity of the data. It occurs when a model learns to produce or
represent only a limited subset of the data’s possible variations, resulting in a narrow
representation of the underlying data distribution. This issue compromises the model’s
ability to generalize and accurately reflect the complexity of the data, as it focuses on only
a few modes.

Contrastive losses [56] are a powerful tool in representation learning to mitigate mode
collapse and enhance the quality of learned features. These losses encourage models
to learn representations that differentiate between similar and dissimilar data points by
focusing on maintaining proximity for similar pairs and distance for dissimilar pairs. By
using contrastive losses during training, models are guided to develop more informative
and varied representations of the input data. This approach helps prevent mode collapse
by promoting a richer understanding of the data.
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Chapter

Automatic Speech Recognition

In this chapter, we’ll delve into the problem of Automatic Speech Recognition (ASR),
exploring how it is formulated and the key challenges it faces.

3.1 Speech Recognition Fundamentals

The problem of Automatic Speech Recognition (ASR) is to develop a system is to
convert a speech signal to text accurately and efficiently [10, 9], regardless the recording
conditions, the accent and vocabulary of the speaker.

The foundation of modern speech recognition systems is illustrated in Fig. 3.1. This
system operates in two distinct steps. First, it receives a speech signal s[n] from the
speaker and processes it using an audio processor to extract a sequence of feature vectors
X = [X;, Xa, ..., X7]. Inthe second step, alanguage decoder interprets these feature vectors
and decodes them into a sequence of characters or words, producing the resulting text.
The feature vectors X; are usually the Mel-Frequency Cepstral Coefficients (MFCCs) [10, 9]

Speech Text

Audio Language

Processor Decoder
g[n] w

Automatic Speech Recognition System
Figure 3.1. A typical ASR system

of the speech signal s[n] . MFCCS are a widely used feature representation in speech
recognition that capture the power spectrum of a speech signal in a way that mimics the
human ear’s perception of sound.

They are extracted through several key steps. First, a pre-emphasis filter amplifies
high-frequency components of the speech signal. The signal is then divided into short
overlapping frames of 25-40ms, and windowed to reduce edge effects. Each frame un-
dergoes a Fast Fourier Transform (FFT) to obtain the power spectrum. The spectrum is
filtered through a Mel-filter bank, emphasizing frequencies according to the Mel scale,
which mimics human hearing. The logarithm of the filter bank energies is taken, and then
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Figure 3.2. Example of extracted MFCCs

a Discrete Cosine Transform (DCT) is applied to produce the MFCCs. These coefficients
capture essential speech characteristics for recognition.

Automatic Speech Recognition (ASR) is viewed as a sequence-to-sequence problem,
as it involves mapping a sequence of processed input features to a corresponding word
sequence. Below, we explore conventional methods designed to accomplish this task.

3.2 Conventional Approaches

3.2.1 Bayesian Formulation

The simplest and most common approach to the Automatic Speech Recognition (ASR)
problem is to treat it as a statistical decision problem [11, 10]. In this framework, the goal
is to find the most likely sequence of words given the observed acoustic signal. This is
achieved by modeling the relationship between the speech signal and the corresponding
text using probabilistic models.

The process involves estimating the posterior probability of a word or phoneme
sequence W given the audio features X. The goal is to find the sequence W has maximizes
the a posteriori probability P(W|X):

W= arg mvsx P(W|X) (3.1)

Using Bayes’ rule, this can be formulated as:

R P(X]W)P(W)

W = arg max PX) =arg max P(X|W)P(W) (3.2)

since P(X) does not dependent on W.

The term P(X|W) is generated by the acoustic model, which estimates the likelihood
of the audio features X given a sequence of words W. The term P(W) is provided
by the language model, which estimates the probability of a word or phoneme sequence
occurring in the given language. The most common approach for constructing the acoustic
model is the Hidden Markov Model. For the language model, N-grams are typically used.

3.2.2 Hidden Markov Model

Hidden Markov Models (HMMs) [11] are statistical models that represent systems
which transition between a series of hidden states S = [sy, S, ...,Sn] over time, where
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each state can emit observable outputs O = [0y, 09, ...,07], which in the case of speech
recognition are word segments or phonemes.

Their key assumptions are based on the Markov property, which posits that the future
state and the past state are independent given the current state:

St—1 AL sty1] st (3.3)

and the observation independence assumption, meaning the current output is condition-
ally independent of other previous observations given the current state.

or 1L 04_1] 8¢ (3.4)

HMMs require the aforementioned sets of states S and observations O, as well as transition
probabilities a;; and emission probabilities bj. The transition probabilities a;; are modeled
as:

aij = P(q+1 = sjlqr = si) (3.5)

where they represent the probability of transitioning from state s; to state s;. The emission
probabilities bj are modeled as:

bj(ot) = P(otlg: = s1) (3.6)

where they represent the probability of observing o; given the state s;.

(a) (b)

Figure 3.3. (1) HMM with 3 states and the transition probabilities between states. (b) If a HMM
is "unrolled” on time, a lattice of all possible states at each step is created

The goal of the an HMM is to model successfully the transitions between states s;
and the output emissions o;, given a dataset X = [xy,...,xpm], i.e. to find the best path
in the lattice shown in Fig. 3.3. This requires to calculate the probabilities P(s;|X) and
P(si-1,5ilX), since they represent the posterior probability and the posterior transition
probability given the data X. That can be effectively achieved using the Baum-Welch [57]
or Forward-Backward [58] algorithm.

Diploma Thesis E



3.2.3 Forward-Backward Algorithm

First we have to define the terms a(s;), b(s;):
a(Si) = P('xll ey Xiy Si) (37)

b(si) = P(xis1, -, Xmls:) (3.8)

The term a(s;) (forward variable) represents the distribution over all observed data x and
state s until the time step i. The term b(s;) (backward variable) represents the distribution
over all future data until M, given the current state s;.

The following two terms can be computed recursively using these equations:

alsi) = P(xilsi) ) asi-)Plsilsi-1) (3.9)
b(si) = ), blsisn) Pislsis1) Plsials) (3.10)

Given these recursive equations, P(s;|X), P(s;-1,si|X) are calculated as:

psix) = 2t @.11)
P51, X) = a(si-1)P(xils;)P(silsi-1)b(s) (3.12)

P(X)
where P(X) = )., a(si)b(s;).

(1) 0] 0] (i+1)

Figure 3.4. Left: Forward pass, Right: Backward pass, used for calculating the terms a(s;) and
b(si)

3.2.4 Viterbi Algorithm

The next step after creating an HMM model is to use an algorithm to determine the
most likely sequence of states for a given input sequence. This can be accomplished
using the Viterbi algorithm [59], which consists of the following four steps:
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Step 1: Initialization
Initialize the probability 6(i) of each starting state s; as:

0(i) = mibi(or) (3.13)
where 7; is the initial probability of state s;. and the back-pointer ¢;:

;=0 (3.14)

Step 2: Recursion
For each time step t = 2,3, ..., T and state s; calculate

0(j) = max(dp-1ijbj(0r) (3.15)

and update back-pointer as:
Yi(j) = arg max[6;-14i] (3.16)

Step 3: Termination
At the final time step T find the state with the highest probability:

P* = max;o7(i) (3.17)

and update back-pointer as:
Yi(j) = arg max[6;-14i] (3.18)

Step 4: Path Backtracking
To retrieve the most probable sequence of states, trace back from the best final state using
the back-pointer 1; :

S; = Pir1(5i41) (3.19)

and update back-pointer as:
i(j) = arg max[0;-1a;] (3.20)
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This algorithm computes the most likely sequence of states by exploring all possible
paths in the lattice in Fig. 3.3, and keeping track of only the most probable ones at each
step, discarding less likely options as it moves forward. At the end, it traces back the best
sequence, ensuring the overall highest probability

Oy OROYO
OO ONO.
OROSORO

(i-2) (1) 0] (i+*1)

Figure 3.5. Possible paths discovered by the Viterbi algorithm

3.2.5 HMM-GMM Models & N-grams

HMM-GMM:
We already discussed how HMM’s are trained and decoded. What remains is to define
how the transition probabilities 4;; are computed and how the b;(0;) are modeled. Finally
we’ll discuss about the most common approach of modeling a language model P(W), the
N-grams.

The transition probabilities a;; are usually calculated from the given training data,
while b; are represented as Gaussian Mixture Models (GMM) [11, 10]:

K
bi(or) = Y TN (orlmie, i) (3.21)
k=1

where 71, represents the initial state probability.

The combination of HMM transition modeling and GMM emmision modeling
produces the HMM-GMM model, which is a powerful framework particularly in speech
recognition and other time-series data analysis. In the context of speech recognition,
HMMs is used to model the transition from each phoneme or word to another. HMM-
GMM'’s parameters are trained using algorithm like Expectation Maximization [REF]
and Forward-Backward Algorithm.
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N-grams:

The most simple approach of calculating P(W), i.e. the probability of a word or phoneme
W being emitted, is to calculate how frequently it appears in a "'window” of previous
N — 1 terms in our available corpora. N-grams [10] model this exact approach, where the
probability of the term W is calculated given the previous N — 1 terms:

P(W) = P(W,, ..., W) = H P(Wu[Wi_1, . Wens1) (3.22)
M

For example, for N = 3, the probability of a term W; is:

C(Wi—g, Wiy, Wj)
C(Wi—g, Wi_y)

P(WilWi_1, Wi_g) = (3.23)

where C(X) is the number of sequence of terms X found in the given corpora.

3.3 Modern Approaches

3.3.1 DNN-HMM Models

While GMMs are effective for modeling emission probabilities, they are limited by
their assumption that emissions follow a Gaussian mixture distribution, which does not
adequately capture the true nature of speech.

To overcome these limitations, the DNN-HMM (Deep Neural Network-Hidden
Markov Model) [12] framework was introduced, where the DNN replaces the GMM
in modeling emission probabilities for the HMM. Thanks to their complex, multi-layered
architecture, DNNs excel at capturing intricate patterns in high-dimensional data, making
them a much more effective alternative to GMM:s for acoustic modeling.

Training this hybrid model occurs in two stages: first, the HMM is trained us-
ing traditional techniques like Maximum Likelihood Estimation (MLE) or Expectation-
Maximization (EM) on pre-aligned data, so it learns the alignment between the states-
phonemes and acoustic features. Second, the DNN is trained with labeled data, where
the labels correspond to the HMM states. The DNN takes acoustic feature vectors as
input and outputs the posterior probabilities of the HMM states. During decoding, the
DNN-HMM model utilizes the Viterbi algorithm to find the most probable sequence of
HMM states, similar to HMM-GMM decoding.

DNN-HMM models were a major improvement over GMM-HMMs, since DNNs can
capture more complex, non-linear relationships in the data than GMMs, leading to better
discrimination between different phonemes or acoustic units, and they are more robust
to noise and variations in speaker accent.

However, they have been increasingly replaced by end-to-end models like RNNs
and Transformers in speech recognition. These models remove the need for HMMs and
directly map input features to transcriptions, simplifying the architecture and further
improving accuracy.
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3.3.2 Challenges of end-to-end approaches

The major challenge that end-to-end approaches faces is the uncertainty in alignment
between input and output sequences. Speech and text sequences typically differ in length,
and the alignment between them is often unknown. In traditional models like HMM-
GMM, explicit alignment is required, whereas in end-to-end ASR, the model directly
produces text from speech without relying on predefined phonetic alignments.

The input speech may vary in speaking rate, resulting in different temporal lengths
for the same words or phonemes. An end-to-end model must learn these variations and
adapt to generate the correct output dynamically. Additionally, during transcription,
some parts of the input, such as pauses or silence, may not correspond to any output
symbol. Thus, a mechanism to handle non-emitting states is essential in end-to-end
models.

To address these challenges, the Connectionist Temporal Classification (CTC) [2] loss
function and the Recurrent Neural Network Transducer (RNN-T) were developed [13].

3.3.3 Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [2] is a loss function that enables
RNNSs [43] and Transformers [1] to be trained for sequence transcription tasks with-
out requiring pre-aligned input and target sequences. To address the lack of alignment,
CTC introduces a special blank token, which represents a null output.

The blank token is used to produce many possible alignments a between the input x
and the output y. For example, if the blank token is denoted as’—’, we have the alignments
(a,—,b,—,—,¢),(—,a,—,b,c,—) for the sequence (a,b,c). Also, in cases where the same label
appears on successive time-steps in an alignment 4, the repeats are removed: therefore
(a,b,b,b,c,c)and (a,—,b, c, —) correspond to the same sequence, (a, b, ¢).

CTCloss can be applied to both RNN and Transformer architectures, as it only requires
an output classification layer with units corresponding to each transcription label, along
with an extra unit for the blank token. For a given input feature sequence x of length
T, the output vectors y; generated during inference are normalized using the softmax
function. Each value represents the probability of emitting the label (or blank) with index
k at time t.

(3.24)

where y]t‘ is the k-ith element of y;. Given P(k, t|x), we can calculate the probability of each
token a; in the alignment a.
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The goal is to find the alignment 2 which maximizes the probability P(y|x). To achieve
this, we must first define the probability of each alignment a:

T
P(alx) = H Play, tx) (3.25)
t=1
where 4; is the emitting token at step . Given 3.25, we can define P(y|x) as:

P(ylx) = ) Plalx) (3.26)
aeB
where B represents a set that contains all possible alignments between output y and input
x. The intuition behind the “integration” of all possible alignments in 3.26 is that, because
we don’t know where the labels within a particular transcription will occur, we sum over
all the places where they could occur. Given a target sequence y*, the network can be
trained using the CTC objective loss:

Lere = —logP(y'[x) (3.27)

Given the above approach, we conclude that the CTC modeling makes the following
assumptions:

Conditional Independence Between Outputs: CTC assumes that the output predictions
at each time step are conditionally independent of one another, given the input. This
means that the model doesn’t explicitly capture dependencies between different output
elements, which can be limiting for tasks that require strong contextual understanding.

Monotonic Progression: It assumes that the target sequence appears in a mono-
tonically ordered manner within the input, meaning that the order of the output
sequence is preserved in the input sequence.

These assumption lead to the following limitations:

Monotonic Alignment Requirement: CTC assumes that the target sequence has a
monotonic alignment with the input, i.e, it requires |y| < [x|.

Alignment Ambiguity: CTC doesn’t explicitly learn the alighment between the input
and target sequences. While it marginalizes over all possible alignments, this can
sometimes lead to suboptimal training or incorrect sequence predictions, especially in
noisy data.

Despite these limitations, CTC remains the most commonly used objective function in
speech recognition tasks due to its effectiveness and simplicity. However, RNN-T (Re-
current Neural Network Transducer) was introduced to address some of the limitations
of CTC, offering more flexibility in handling variable-length sequences and improving

alignment during transcription.
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3.3.4 Recurrent Neural Network Transducer (RNN-T)

As we previously discussed, when the output sequence y is longer than the input
sequence x, CTC struggles to effectively capture the inter-dependencies between the
output elements. The Recurrent Neural Network Transducer (RNN-T) [13] addresses this
limitation by extending CTC, defining a probability distribution over output sequences of
varying lengths and jointly modeling both input-output and output-output relationships.

Assume an input sequence x = [xy, .., x7] of length T, and an output sequence y =
[y1, ..., yul of length U. As in CTC modeling, RNN-T introduces a new output token , @,
which denotes the null output. This is used similarly as the blank token of CTC, as an
‘'nothing” output which enables the alignment between input and output. For example,
the sequence (1,b, @, @, c, @) is equivalent to (a,b, c). We call sequences like (2,0, @, @, ¢, @)
alignments a, since the location of the null symbols determines an alignment between
the input and output sequence. Given the input x, the RNN-T defines a conditional
distribution P(a|x), which is then collapsed onto the following distribution:

P(yl) = Y Plalx) (3.28)

aeB

where B represents a set that contains all possible alignments between output y and input
X.

P(k|t,u)

.T

softmax

T

|—> Joint 4—‘
ft gl.,l

Encoder F Predictor G
Xt Yu

Figure 3.6. The RNN-T architecture
Two distinct networks are used to determine P(a|x). The first network, referred to as

the transcription network or encoder F, scan the input sequence x and extracts feature vectors
fi that capture the acoustic representations.
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The second network, referred to as the prediction network or predictor G, scans the output
sequence y and extracts linguistic features g;. Given an acoustic vector f;,0 <t < T and
and linguistic vector g,,0 < u < U, the output distribution over all k labels (including the

null output) is:

_ Nk tu)
P(klt, u) = T, 60 (3.29)
where h(k, t, u) represents the density function that is defined as:
h(k, t,u) = G(ff + gk) (3.30)

where superscript k denotes the k-th element of the vectors, and ¢ is an activation function.
The density function & is generated by a straightforward feed-forward network known
as the joint network, and the final distribution is obtained by applying a softmax function
to the output of the joint network. The complete architecture of the RNN-T is illustrated
in Fig. 3.6.

The probability P(k|t, u) is used to determine the transition probabilities in the lattice
shown in Fiq. 3.7. The set of possible paths from the bottom left to the terminal node in
the top right corresponds to the complete set of alignments between x and y, therefore all
possible input-output alignments are assigned a probability, the sum of which is the total
probability P(ylx).

U labels

T audio frames

Figure 3.7. The training lattice and the best alignment path. WIth red the forward path and
forward probability, with green the backward path and the backward probability. Source [2]

P(ylx) can be efficiently calculated through a forward-backward algorithm that we’ll
describe below. First we define the forward variable a(t, u) and backward variable b(t, u).
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Forward variable a(t, u) is defined as the probability of emitting the labels y[;.,) while using
the linguistic features fj;.. It can be calculated recursively forall0 <u < U,0 <t < T as:

a(t,u) =a(t—1,u)o(t — 1,u) + alt,u — 1)y(t,u — 1) (3.31)

where
y(t, u) = P(yu+lt, u) (3.32)
o(t, u) = P(2|t, u) (3.33)

are the probabilities of emitting the label y,4; or the null label @ at step (¢, u) of the lattice.
The initial condition for 3.31is @(1,0) = 1. The total output sequence probability is equal
to the forward variable at the terminal node:

P(ylx) = a(T, U)a(T, U) (3.34)

Backward variable b(t, u) is defined as the probability of emitting the labels y,,1.;) while
using the linguistic features fj;;;.7]. Then

b(t,u) = b(t + 1, u)a(t, u) + b(t, u + 1)y(t, u) (3.35)

with initial condition b(T, U) = @(T, U).

From the definition of forward and backward variables, it follows that their product
a(t,u)b(t,u) at any point (t, u) is equal to the probability of emitting the complete output
sequence, if the label emitted at the step (t, u) is the label y,,.

Given a target output sequence y*, the goal of training is to maximize the probability
P(y*|x), i.e. to find the best possible path in the lattice of Fiq. 3.7. The loss used during
training is the log-loss:

LrnnT = =InP(y"|x) (3.36)

Analysing the diffusion of probability through the output lattice shows that Pr(y*[x) is
equal to the sum of a(t, u)p(t, u) over any top-left to bottom-right diagonal through the
nodes, thus we can write that:

P(y'[x) = Z alt, bt u),¥n:1<n<T+U (3.37)

(t,u):t+u=n

This shows that the gradients produced by LrynT aim to maximize the forward-backward
variables of the best path while minimizing them on all other paths. Thanks to the two
sub-nets, this approach can better cover the input-output and output-output correlations,
offering a more robust modeling of the speech recognition problem.
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3.3.5 Wav2vec2.0

Another approach to improving speech recognition is by extracting more robust fea-
tures from raw audio, which enhances the alignment quality in the previously mentioned
methods. Better feature extraction allows models to capture more relevant information
from the speech signal, resulting in improved performance across various transcription
techniques.

Wav2Vec 2.0 [3] is a self-supervised learning framework developed for automatic
speech recognition (ASR), designed to automatically discover and extract rich, high-level
features from raw speech data. This automated process enhances the model’s capacity
to capture complex audio patterns, resulting in better training efficiency and improved
performance across diverse ASR tasks. Additionally, Wav2Vec 2.0 supports effective self-
supervised training on acoustic data, allowing the model to learn from vast amounts of
unlabeled speech.

The core idea behind the Wav2Vec 2.0 framework is to replicate the Masked Language
Modeling (MLM) [14] approach, originally introduced in Natural Language Processing
(NLP), for speech data. In MLM, portions of an input sentence are ‘'masked,” and the
model is trained to accurately predict the masked words. Similarly, Wav2Vec 2.0 masks
segments of the processed input audio and trains the model to predict which pseudo-
phonemes correspond to the masked parts. This enables the model to learn meaningful

speech representations in a self-supervised manner.

Contrastive loss

L
e w/m b \e m

Transformer
Masked
Latent speech Z

representations CNN

Quantized
representations Q

raw waveform

Figure 3.8. The Wav2Vec2.0 architecture. Source [3]
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As illustrated in 3.8, the model consists of 3 components:
Feature encoder: A multi-layer convolutional [27] network which takes as input raw
audio X and output speech representations z = [z, ..., z7] for T time-steps.

Transformer: A transformer model [1] which receives the extracted z speech rep-
resentations and builds contextual representations ¢ = [cy,...,cr] which capture

information from the entire sequence

Quantization module: This module handles the discretization of speech represen-
tations z into a finite set of units, functioning as a form of pseudo-phonemes. This
process is carried out using product quantization. The representations z; are divided
into groups, or codebooks, denoted as G, with each codebook containing V entries. For
each group, an entry ¢; is chosen, and these entries ¢, ...,ec are concatenated to form a
resulting vector. A linear transformation is then applied to this vector, yielding the final
discrete representation 4. Gumbel softmax [60] is used to achieve differentiable selection
of the discrete codebooks.

During pre-training, the goal is to learn latent speech representation from the raw
audio in a self-supervised manner. This is achieved by solving a contastrive task L, ,
which requires to identify the true discrete representation q from a group of distractors.
This is augmented by a diversity loss L; to encourage the model to use the codebook
entries equally often:

L=Ly+aly (3.38)

where a is a tuned hyper-parameter.

Contrastive loss: It is applied between the context feature ¢; and the discrete rep-
resentations g;. As we mentioned, the goal for the model is to identify the true quantized
latent speech representation gq; from a set of candidate represantations 4, which includes
g+ and K distractors. The loss is defined as:

exp(sim(ct, gt))

b = 08 exp(sim(cr, )

(3.39)

where sim(a, b) represents the cosine similarity between the vectors a, b.
Diversity loss: Contrastive loss requires that every codevectors offer positive and

negative examples, in order to avoid mode collapse, i.e. to learn only specific
representations. L; is designed to increase the use of every codebook representation:

Ly = G_lV Z Z Peologpen (3.40)

G V
g=1v=1

where p, , represent the discrete representation v of the the codebook g.
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Wav2vec2.0’s ability to learn high-level representations from raw audio makes it
particularly powerful, enabling it to adapt to different accents, background noises, and
varying speech patterns. Its innovative approach marks a significant advancement in the
field of speech processing, bridging the gap between traditional methods and modern
deep learning techniques.
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Chapter E

Unsupervised Domain Adaptation

In this chapter, we will define the problem of Unsupervised Domain Adaptation
(UDA) [61, 8] and provide an overview of various adaptation approaches. In particu-
lar, we will examine semi-supervised methods, self-supervised techniques, and domain

adversarial strategies.

4.1 Problem definition

The problem of UDA can be formally defined as follows:

Consider two different distributions: the source domain distribution S(x, y) and the target
domain distribution T(x, y). Here x € X represents feature vectors that belong to a real-
valued space X, while y € Y are labels from a finite set Y. The goal is to train a model
that maps target domain feature vectors xt to their corresponding labels y7 , for samples
(x1, yr) drawn from the target distribution T.

However, during training, we only have access to labeled samples from the source
distribution S(x, y),and no label information for the target distribution. In other words,
only the feature vectors T(x) are available. The challenge is to develop a model that can
effectively bridge the gap between the two domains by leveraging the labeled source data
S(x, y) to predict labels for the target data, despite the absence of target labels.

4.2 Teacher-student training

Teacher-student training or pseudo-labeling is the most common approach [62, 63] for
UDA and one of the earliest semi-supervised learning, since it effectively transforms the
unsupervised learning problem into a supervised one. In this method, a model already
trained on the source domain, the teacher model gs , generates pseudo-labels {7 = gs(xT)
for the target domain, which are then used by a student model for supervised training.
his process is usually repeated, with the student model serving as the teacher model for
the next iteration, until no further improvement is observed. More recently, soft target
Teacher-Student learning has been explored for ASR [64, ?, 64], where the KL divergence
between the teacher and student output label distributions is used as the loss function.
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4.2.1 Utterance filtering

Since the teacher model is solely trained on the source domain, it may produce inaccu-
rate labels, which can lead to error propagation. To address this issue, filtering techniques
are commonly used to discard any utterances that could result in poor quality outputs

In [15, 16], a Confidence Estimation Module (CEM) is used to filter out unreliable
,utterances based on the confidence scores of the transcribed labels. In [15], a multi-task
training objective with confidence loss is implemented to reduce the binary cross-entropy
between the estimated confidence and the binary target sequence. Furthermore, in [18]
the concept of Noisy Student Training (NST) is introduced, where the student model is
trained on heavily augmented input data to develop more robust representations. The
augmentation in this work is performed using techniques like SpecAugment [19].

4.2.2 Teacher update
Kaizen

Another approach to address error propagation involves updating teacher’s param-
eters to improve the quality of the pseudo-labels. In Kaizen [4], the teacher is updated
every A number of steps as the Exponential Moving Average (EMA) of the student’s
parameters:

Ot = (1 — )01t + aOs; (41)

where Or4, Os; are the teacher’s and student’s parameters at step t, respectively, and
a is a discount coefficient. The factor @ controls how much the teacher’s parameters
will change. During their experiments, they found that large o cause the teacher model
to closely resemble the student model, promoting the generation of easily predictable
targets, which can lead to mode collapse. On the other hand, low «a values results to a
more "static" teacher model, which may lead to worse performance.

Teacher . _>®‘ _____ Student
network & | 1 — o 0 network 6;

4

Data Aug-
mentation

Figure 4.1. The KAIZEN framework. Source [4]
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Meta Pseudo Labels

In Meta Pseudo Labels [5], it is observed that the student’s loss on the source domain,
denoted as Ls(0s), depends on the parameters of the teacher model 07, since the students
model is trained of the pseudo-labels §ir = g(x7;01). Based on this observation, it is
proposed that optimizing the teacher’s parameters based on the student’s performance
on the source domain can result in the generation of better pseudo-labels. This, in turn,
improves the student’s performance on both the source and target domains. The feedback
loss used by the teacher model is:

Ls(8s — nVesL1(0Os; O71)) (4.2)

where L; is the task’s supervised loss applied on source domain, using the updated
student model, Lt is the loss used during pseudo-labeling and 7 is the learning rate.

In essence, the procedure can be described as follows:

1. The teacher produces pseudo-labels i1 on target domain data xr
2. The student is trained in a supervised manner using the pairs (r, x7)

3. The teacher is updated using a feedback loss from the updated student

Pseudo-labeled data
(@, Tu)

Teacher Student

1 Student’s performance l
on [abeled data

Figure 4.2. Meta Pseudo Labels. The student is trained based on the pseudo labels generated by
the teacher (top arrow). The teacher is trained based on the performance of the student on labeled
data (bottom arrow). Source [5]

This framework performs well on its own, but it has been shown that integrating
auxiliary tasks, such as the teacher’s supervised loss on the source domain, leads to
improved performance.

4.3 Self-supervised training

Another predominant method is self-supervision. This approach was initially de-
ployed in Natural Language Processing (NLP) tasks [6, 8] and has proven to be an
effective and straigh-forward pre-training technique that facilitates domain adaptation.
The core idea involves leveraging self-supervised loss during pre-training to adapt large
pre-trained models to new domains. This can be accomplished either through Continual
Pre-Training (CPT) [65, 66] or by constructing a multitask objective [6, 8] for the model’s

training.
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4.3.1 Continual Pre-training

Continual Pre-Training (CPT) involves extending the training of a pre-trained lan-
guage model on additional data to better suit new tasks, domains, or languages, while
preserving the knowledge acquired during its initial pre-training. The core concept is to
leverage the knowledge gained in the pre-training phase and apply it to specific tasks, by
applying the pre-training loss on the additional data.

Continual Pre-Training (CPT) has been investigated for adapting ASR models. Robust
wav2vec2 [67] examines the effectiveness of CPT for domain adaptation, highlighting the
value of leveraging unlabeled in-domain data. In CASTLE [21], CPT is paired with
an online pseudo-labeling strategy to adapt wav2vec2 to new domains. Cross-dataset
evaluations using popular English speech corpora show that CPT helps lower error rates
in the target domain. Additionally, in [68] and [69], CPT is applied for cross-lingual
adaptation of wav2vec2 for Korean and Ainu, respectively.

4.3.2 Multi-task training

In multi-task training, self-supervision is employed to build a multi-task objective for
the model’s training.

UDALM

In UDALM [6] BERT [70], a large pre-trained NLP model, is pre-trained on target
domain data using the masked language modeling (MLM) [14] task. During the final,
fine-tuning stage, the model uses both a task-specific loss on the source domain data and
masked language modeling loss on the target domain data. The overall loss used during
fine-tuning is:

L = ALtask + (1 = A)Lyprm 4.3)

where A is a weighting factor which balances the influence of the source and target domain
data. The whole process can be observed in Fiq. 4.3.

General Pretraining Domain Pretraining j Fine tuning
o | (N
MLM | NSP
m ] nep -
BERT - BERT :
S 16 [o &)~ e, | — oam
[CLS) Welcoma [MASK] Wikipedia (CLE) This movis le JiASK} wetching Y
CLS) This movie is [MASK) watching
English Wikipedia 2500M w. o |
BookCorpus 800M w. ~160K w.
(2) (b) (©)

Figure 4.3. (a) BERT pre-trained model (b) Pre-training BERT on target domain data using the
MLM task. (c) Finetuning the model using the supervised task objective on source domain data,
while keeping the MLM objective on target domain data. Source [6]
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During this process, the model learns the task using a task objective based on la-
beled source domain samples, while simultaneously adapting to the target domain data
through the masked language modeling (MLM) objective. This approach leads to effective
adaptation results while successfully mastering the task at hand.

Mixed Multi-Domain Self-Supervision (M2DS2)

Similar with UDALM, in [8] self-supervision is employed during the fine-tuning phase
of the training to help the XLSR-53 [22] pre-trained model learn the task at hand while
being adapted to the target domain. The multi-task loss used is:

L = Lere(xs, ys) + aLs(xs) + BLs(xT) (4.4)

where Lcrc is the CTC objective loss used for ASR task, L; is the contrastive loss described
in Eq. 3.39 and a, g are discount coefficients that scale the contribution of each term. The
training process can be observed at Fig. 4.4.

General Pretraining \ > Finetuning >

Ls Zere Ls
U T T N T T
| y— | | y— |

XLSR XLSR T
. ) AdLAL

MLS, CommonVoice and BABEL
56.0000 of speech data from 53 languages

‘ Source Domain ’ ‘ Target Domain

Figure 4.4. In the left the general pre-training stage of XLSR-53 pre-trained model using the
self-supervised loss Ls. In the right, the domain-adaptive finetuning stage, where both domains
are used in the self-supervised task.

Unlike [6], this approach uses data from both the source and target domains for the
self-supervised task. This is crucial for preventing mode collapse, where the model relies
on only a small subset of available code vectors to generate outputs. Incorporating self-
supervision from both domains helps avoid this issue by encouraging the source and
target code vector spaces to develop a similar structure, ensuring a more diverse and
robust output.

Diploma Thesis



4.4 Domain Adversarial Training

The main objective of Domain Adversarial Training (DAT) [71] is to train a model
that learns deep features capable of addressing the task in the source domain, while
remaining unaffected by the shift between domains. In[7] two DAT methods are proposed
to address of adaptation from high-resource to low-resource languages, which share a

common acoustic space.

4.4.1 Adversarial training using gradient reversal layer (GRL)

In GRL-based adversarial training, we try to learn a feature representation invariant
to the domain difference, but good enough in discriminating the senone labels. The ar-
chitecture used in this task involves a feature extractor, a senone classifier and a domain
classifier, and it is shown at Fig. 4.5. The aim of training is to optimize the feature ex-

oLy aL,
a8 30
—T 2 e,
Feature extractor Gy(x; Bf) Senone Classifier Gy(f; 6y) y
Ac‘:gﬁ'.r:‘tic — f Senone
Features > S ——— | | abels
q oL " GRL - Domain Classifier
_ d ....... Gd("‘ ed)
26¢
N R d
— 4 Domain
Labels
Loss Lg
dly
20y

Figure 4.5. Adversarial training using GRL. 05 , 0, and 64 represent the parameters of the
feature extractor, senone classifier, and domain classifier, respectively. Source [7]

tractor such that it minimizes the senone classification loss while maximizing the domain
classification loss. This encourages the network to extract features that retain senone
information while being invariant to domain differences. This is achieved by using a GRL
between the feature extractor and the domain classifier, which "transports” the negative
of the resulting gradient of the domain classifier to the feature extractor.

4.4.2 Domain Separation Networks (DSN)

Domain separation networks (DSN) function similarly to GRL-based adversarial train-
ing. Their goal is to extract features from both domains that reduce domain variance while
preserving domain-specific classification. A block diagram of the DSN architecture used
in [HINDI] is shown in Fig . Private encoders E!, E; are used to extract domain specific
features, while the shared encoder E. is used to extract common features from both do-
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Figure 4.6. Block diagram of DSN with the private and shared components. Source [7]

mains. The shared decoder D is used to reconstruct the input using both private and
shared features. The senone classifier G maps the shared features to the senone labels y,
while the domain classifier Z is used to map the common features to their domains. The
overall loss used is:

L = Leigss + BLsim + )/Ldiff + OLrecon (4.5)

where L, represents the senone classification loss, Ly, is the similarity loss of the
domain classifier Z, Ljiss is the difference between the shared and common extracted
features, Ly, is the input reconstruction loss, and g, y, 6 are hyper-parameters.
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Chapter

Multi-Stage Domain Adaptation

In this chapter, we present our proposed training methodology for UDA, along with
the experimental setup and the results of our experiments.

Inspired by the successful domain adaptation results in image recognition tasks us-
ing the Meta PL framework [5], we investigate whether it can be effectively applied to
sequence-to-sequence tasks, such as Automatic Speech Recognition (ASR). Additionally,
we introduce Multi-Stage Domain Adaptation (MSDA), a two-stage domain adapta-
tion approach that integrates self-supervised techniques from M2DS2 [8] with semi-
supervised methods from Meta PL, all within the Wav2Vec2.0 [3] framework. Our
findings demonstrate that MSDA can substantially enhance model performance in the
target domain, particularly for low-resource languages and weakly supervised data.

5.1 Methodology

Our approach is illustrated in Fig. 5.1. It consists of two stages of adaptation: a
self-supervised stage followed by a semi-supervised stage, which we collectively refer to
as Multi-Stage Domain Adaptation (MSDA).

Stage 1:
In this stage, we follow the method proposed in [15] to develop a teacher model trained
on both domains in a self-supervised manner, using the following objective:

Lpapse = Lere(xs, ys) + aLs(xs) + ,BLs(xs) (5.1)

Here Lcrc is the CTC objective loss we discussed in 3.3.3, applied on the source
domain batch (xs, ys), ensuring accurate alignment between the input speech and the
target transcription. The terms Lg(x;), Ls(x;) are the self-supervision losses from Eq. 3.38,
applied to the source and target speech data respectively, as described in [3]. These
losses encourage the model to learn robust, domain-invariant representations from both
domains, successfully achieving an initial level of adaptation. The parameters a, § are
discount coefficients.
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Stage 1 : M2DS2 Stage 2 : MetaPL

~

‘ XLSR — 53 H Lanpse = Lore(2s,ys) + aLg(2,) + BLo(24) Teacher

Figure 5.1. The Multi-Stage Domain Adaptation (MSDA). At Stage 1, we use self-supervision to
adapt our pre-trained model to both source (xs, ys) and target (xrt domain, using the loss objective
described in Eq. 4.4. At Stage 2, we apply an enhanced version of Meta PL to further improve the
overall adaptation. In this stage, the teacher provides pseudo-labelsy; for student training, and
itself is trained using the objective described in Eq 5.3.

Stage 2:

In this stage we follow the framework proposed in [12], using the teacher from Stage 1 to
generate pseudo-labels y; for the target domain data x;. The student model utilizes these
pseudo-labels to train on using the CTC objective:

Ls = Lere(xt, vy) (5.2)

Additionally, the teacher is updated according the following objective:

Lr = Lfeedback(xs/ Ys) + yLcre(Xs, ys) + OLa(xt) (5.3)

where L feeipack represents student’s CTC loss on the source domain, which provides
feedback to the teacher, guiding it to generate better pseudo-labels. Lcrc is the teacher’s
CTC loss on source domain, while L; is the diversity loss described in [3]. The parameters
y, 6 are discount coefficient.

At Stage 1, we apply SpecAugment [10] to both domain audio inputs to train a more
robust teacher. However, in Stage 2, SpecAugment is used only on student’s inputs. We
avoid applying it to the teacher’s inputs in this stage, as the added noise and augmentation
lead to the generation of low-quality pseudo-labels.

We employ M2DS2 training as the first stage of adaptation, as multi-domain self-
supervision not only enables effective domain adaptation but also mitigates the risk of
mode collapse. This method is crucial for producing high-quality pseudo-labels, which
are vital for the success of the second stage.

Furthermore, applying diversity loss L, to the target domain during Stage 2 is essential
to prevent mode collapse in the teacher model. Simultaneously, the CTC loss Lcrc applied
to the source domain ensures that the teacher model retains its adaptability to the source
domain despite the adjustments made the feedback 10ss L feeapack-
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5.2 Experimental Setup

5.2.1 Pre-trained model

For our base model we utilized XLSR-53 [22], a state-of-the-art pre-trained speech
model developed on the Wav2Vec 2.0 [3] architecture. It is trained on a diverse corpus
and extensive corpus, comprising 56,000 hours of speech data across 53 languages. This
cross-lingual training enables XLSR-53 to learn cross-lingual speech representations, by
creating a single quantized speech representation space which is shared across languages.

L Contrastive loss

Multilingual quantized latent speech representations
" AN T "
Shared Transformer i
oncoder Transformer ’

Shared quantizer

Shared CNN
encoder

o
B
Speech signal m
In any language -
(e.g. English)

Figure 5.2. XLSR-53: Shared quantized speech representation space created by a shared quanti-
zation module. The model created bridges between languages

We employed the openly available version of XLSR-53! , which offers a pre-trained
implementation ready for fine-tuning and adaptation tasks.

5.2.2 Dataset

Our dataset of choice is the Greek Podcast Corpus (GPC) [23], which consists of 3,124
hours of Greek-language podcast audio across 16 diverse categories, including True Crime,
News, Art, and others. To enable experiments of various scales, the dataset is divided
into smaller subsets: GPC-50, GPC-20, and GPC-10, which contain 50, 20, and 10 hours
of audio per category, respectively. The transcriptions for these subsets were generated
automatically using the WhisperX pipeline [24], resulting in weakly labeled audio.

For our experiments, we focused on the GPC-20 subset, treating specific categories as

distinct domains:

1. TrueCrime: Podcasts that explore true crime stories and police investigations.

2. Education: Podcasts covering topics such as history , sociology and other educa-
tional subjects.

3. Business: Podcasts focused on business administration, start-ups, and investments.

4. Comedy: Podcasts dedicated to stand-up comedy and comedic performances.

Each domain has different content, distinct linguistic characteristics and uses specific
vocabulary. For example, True Crime podcasts often include formal and investigative

1https ://huggingface.co/facebook/wav2vec2-large-xlsr-53
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terminology. In contrast, Education podcasts use more academic language, making use of
vocabulary related to history, science, and humanities. Business podcasts’lexicon contains
specialized economic terms, and entrepreneurial phrases, while Comedy podcasts, have
primarily informal tone, and rely on humor and slang.

To indicate the linguistic and speech differences the selected domains, in [24] the
authors used whisper-large-v2 to obtain 8%, 5%, 15%, 28% WER for TrueCrime, Education,
Business, and Comedy domains respectively. Furthermore, we assessed the similarity
between these domains using the ATDS [17] (Acoustic and Textual Domain Similarity)
measure, which accounts for both acoustic and linguistic differences between datasets. In
Table 5.1 we present the similarity scores between the selected domains. We observe that
the metric skews towards 1 in all cases, which is logical since ADTS metric was developed
for cross-language comparison and in our case is applied on monolingual data.

] Similarity H TrueCrime \ Education \ Business \ Comedy ‘

- 0.93937 0.91852 | 0.89848
Education 0.93937 - 0.96935 | 0.94209
Business 0.91852 0.96935 - 0.96998
Comedy 0.89848 0.94209 0.96998 -

TrueCrime

Table 5.1. ATDS measure between selected domains.

5.2.3 Baselines & Experiments

We evaluate the effectiveness of Multi-Stage Domain Adaptation (MSDA) for UDA
using the Word Error Rate (WER) metric. The Word Error Rate (WER) [11, 10] is a common
evaluation metric used to measure the performance of speech recognition systems. It
calculates the proportion of words that were incorrectly predicted by comparing the
transcription output to the ground truth, accounting for substitutions, insertions, and
deletions. SiDl

WER = ~—— (5.4)
where S is number of word substitutions, D is the number of word deletions, I is the
number of word insertions and N is the total number of words in the ground truth
transcription.

Our approach is compared with the following four baselines:

1. Finetuned: Supervised fine-tuning of XLSR-53 on the source domain, following the
Eq. 44 witha=4=0.

2. M2DS2: Training with M2DS2 using both source and target domains, following the
Eq. 44 witha = =0.01.

3. Finetuned - Meta PL: Application of the Meta PL framework to the fine-tuned
model on the target domain, following Eq. 5.3 with y = 6 = 0, i.e., using only
student’s feedback.

m Diploma Thesis



4. M2DS2 - Meta PL: application of the Meta PL framework to the M2DS2-trained
models, following Eq. 5.3 withy =6 = 0.

For MSDA training we set « = = 0.01 in Eq. 44 andy = 6 = 0.0001 in Eq. 5.3.
Furthermore, we experiment with different settings of y and 6 values, to examine their
effects on the model’s performance. Specifically, we conduct two experiments, each
focusing on one of the coefficients. In each experiment, one coefficient is fixed at 0.001
while the other is varied between 1 and 0.00001.

5.3 Results

In Table 5.2 we compare MSDA with the aforementioned baselines across twelve
adaptation scenarios, i.e., cross domain evaluation between the four selected categories
of GPC-20. Each column represent the result of the corresponding training on the target
domain, which can be identified in the second column of each row.

Domains . Finetuned M2DS2

source | target Finetuned Meta PL M2DS2 Meta PL MSDA
Education 48.8 43.47 45.32 42.35 37.98
TrueCrime | Business 62.7 57.16 58.26 56.27 50.3
Comedy 61.9 57.56 68.77 57.1 49.21
TrueCrime 37.28 33.3 43.23 42.07 39.89

Education | Business 50.93 48.25 56.01 55.17 47.03
Comedy 52.54 50.7 71.14 58.06 56.16
TrueCrime 41.07 38.5 52.2 43.02 41.01

Business | Education 42.38 38.9 55.32 48.27 42.4
Comedy 51.93 53.5 66.98 64.3 50.02
TrueCrime 43.32 40.01 50.27 42.67 39.08

Comedy | Education 42.78 40.8 46.5 39.71 38.77
Business 51.41 49.17 59.52 50.12 47.3
] Average WER H 48.92 \ 45.94 \ 56.13 \ 49.93 \ 44.93 \

Table 5.2. Performance results on GPC-20 domain pairs, using the WER metric. We observe that
even when the teacher model (M2DS2) performs poorly on the target domain, the MSDA-trained
model effectively reduces WER by 4% to 14%.

First, we focus on the performance of the Finetuned-Meta PL model. We observe that
employing the Meta PL adaptation method reduces the Finetuned model’s initial WER by
2%-5% across all test cases and, moreover, outperforms the M2DS2 adaptation in every
scenario. This demonstrates that the Meta PL framework is effectively applicable on ASR
tasks and performs better than M2DS2 adaptation.

Next, we evaluate the performance of the M2DS2-Meta PL model. While the Meta
PL adaptation method results in a WER reduction and improves performance compared
to the initial M2DS2 model, it performs worse than the Finetuned-Meta PL model. We
attribute this performance gap to potential mode collapse of the teacher model during
Meta PL training.
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Lastly we examine the MSDA model. We observe that the MSDA model outperforms
the previous models in most cases, achieving WER reduction up to 10%-12% in some
instances. The Finetuned-Meta PL model only surpasses MSDA in scenarios where
M2DS2 training fails to achieve any adaptation and results in a worse WER than the
Finetuned model. Even in these cases, the MSDA model manages to reduce M2DS2
model’s WER by 5%-14%, indicating its ability to result to significantly more robust
student even in cases where the teacher is really bad. We attribute M2DS2’s inability
to achieve adaptation in certain cases to the weakly supervised nature of our training
dataset, as well as the minimal hyper-parameter tuning during development.

In Fig. 5.3 we examine the effects of varying y and 6 values on the model’s performance
in the TrueCrime - Education source-target domain adaptation setting. The figure illustrates
how different combinations of these hyperparameters influence the model’s ability to
generalize from the TrueCrime domain (source) to the Education domain (target).

60

.y

- 5
finetuned

——- m2ds2

55 1

WER

35 1

30

T T T T T T T
le-06 le-05 le-04 le-03 le-02 le-01 le+00
Parameter value (log scale)

Figure 5.3. WER comparison between different setting of v (blue) and 6 (red), finetuned (yellow)
and M2DS2 (green) baselines , evaluated in the TrueCrime - Education source-target domain
adaptation setting.

We observe that for y,6 > 1072 MSDA fails to surpass the performance of the Fine-
tuned and M2DS2 baselines. We hypothesize that for y > 1073 the teacher model begins
to overfit on the source domain, leading to poor pseudo-label generation. On the other
hand, when 6 > 1073, the influence of L; becomes substantial enough to undermine any
adaptation achieved during Stage 1 . Furthermore, when y,6 < 10™* , MSDA leads to
poorer adaptation compared to the case where 7,6 € [107%, 1073]. We believe this is due
to potential mode collapse, driven by student’s feedback. In these scenarios, the impact
of Lcrc and Ly during training are diminished, failing to preserve the adaptation achieved
in Stage 1 and preventing the mitigation of mode collapse.
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5.4 Earlier Approaches

During the development of the MSDA framework, we undertook several experiments
to investigate different strategies for combining self-supervised objectives with the Meta
PL framework. This section will detail our experimental approaches and analyze the
limitations we encountered.

In these approaches we used both Finetuned and M2DS2-trained teachers, and were
conducted and evaluated in the TrueCrime - Education source-target domain setting.
SpecAugment was applied only to the student’s input data to prevent the teacher model

from generating poor-quality labels.

Self-supervision on both domains
In this approach, the student model is trained using the objective loss in Eq. 5.2, while

the teacher model uses:

LT = Lfeedback(xs/ ys) + Ls(xs) + Ls(xt) (55)

where L feedpack is the student’s CTC loss on source domain, and Ls is the self-supervised
objective from Eq. 3.38.

The main idea behind this approach was that the teacher’s continuous adaptation
to the target domain, guided by the self-supervised loss, would produce better pseudo-
labels. This, in turn, would help the student model adapt more successfully.

The adaptation results are presented in Table 5.3. The Before Meta PL column sdisplays
the teacher’s Word Error Rate (WER) for both the source and target domains, while the
After Meta PL column presents the student’s WER for the same domains.

Teacher Domains Before Meta PL | After Meta PL

type source target source | target | source | target
Finetuned | TrueCrime | Education | 37.83 48.8 43.01 97

M2DS2 | TrueCrime | Education | 36.9 45.32 41.6 95.83

Table 5.3. Adaptation results using self-supervision on both domains during teacher’s training

We observe that the student model fails to adapt at all, as the WER on the target
domains is close to 100. We believe this outcome is due to the self-supervised loss
Ls, which likely caused the teacher to generate pseudo-labels of poor quality. These
pseudo-labels, combined with the resulting feedback from the student, seem to create a

vicious training cycle, preventing the student model from converging and adapting
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Student self-supervision
In this approach, the student model is trained using the following multi-task objective
loss:

Ls = Lere(xt, v;) + Ls(xy) (5.6)

where Lcrc is the CTC objective loss, y; is the teacher-generated pseudo-label and L is
the self-supervised loss from Eq. 3.38. The teacher model was trained using only the
student’s feedback loss L feeipack-

The idea behind this approach was that the student’s simultaneous adaptation to the
target domain, driven by semi-supervised and self-supervised training, would result in
successful overall adaptation. The results are presented in Table 5.4.

Teacher Domains Before Meta PL | After Meta PL
type source target source | target | source | target
Finetuned | TrueCrime | Education | 37.83 48.8 35.2 58
M2DS2 | TrueCrime | Education | 36.9 45.32 33.4 55.1

Table 5.4. Adaptation results using self-supervision on target domain during student’s training

We observe that the student model struggles to adapt effectively in this scenario,
performing worse in the target domain than the teacher model. We believe this outcome
is due to the self-supervised loss Ls, which likely caused the student model to provide a
‘misleading’ feedback back to the teacher model. This, in turn, may have resulted in the
generation of poor-quality pseudo-labels, preventing the semi-supervised training from
achieving further adaptation
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Chapter E

Conclusions & Future Work

6.1 Conclusions

Unsupervised Domain Adaptation for Automatic Speech Recognition (ASR) is a signif-
icant challenge with important real-world implications. Even with the use of pre-trained
models, this issue persists, as the wide variety of speech data continues to complicate
effective adaptation to the selected target domain.

In the literature, Unsupervised Domain Adaptation approaches can be classified
into three main categories: pseudo-labeling (or teacher-student training), self-supervised
methods, and domain adversarial techniques. This work focuses on applying teacher-
student training methods, previously used in image recognition, to Automatic Speech
Recognition tasks and explores how these methods can be successfully integrated with
self-supervised strategies.

In this work, we explore the application of the Meta PL framework [5] within ASR
tasks. We find that Meta PL, by itself, is a straightforward and easily implementable
method for UDA that achieves significant adaptation results, resulting to reduction of
WER metric by 3-5% in all adaptation scenarios. Furthermore, we investigated the inte-
gration of self-supervision objectives within the Meta PL framework, aiming to develop
a strategy that yields even greater adaptation results in ASR task.

Based on the experiments detailed in Section 5.4, we conclude that for the Meta PL
framework to be successfully integrated with self-supervised objectives, it is essential that
the student’s feedback not be influenced by any additional losses. The student should
only be trained on the target domain using the pseudo-labels. Furthermore, we find
that the teacher’s ability to produce high-quality pseudo-labels is crucial. Therefore, any
additional tasks should focus on improving the quality of these pseudo-labels without
causing significant changes to the teacher’s current state.

Based on these observations, we propose a new adaptation method called Multi-Stage
Domain Adaptation (MSDA), which successfully combines techniques from both self-
supervision and semi-supervision. Our method achieves significantly better adaptation
results compared to the Meta PL and M2DS2 methods, as highlighted in Table 5.2, owing
toits two-stage approach. We demonstrate that an already adapted teacher, trained within
the Meta PL framework while preserving its initial adaptation, results in the creation of
significantly more effective student models, achieving up to a 10-12% reduction in WER
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in certain scenarios.

In the cases outlined in Table 5.2 where MSDA fails to achieve any adaptation com-
pared to the fine-tuned model, we identify the poor initial adaptation of the teacher
model during the M2DS2 stage as a contributing factor. We believe this limitation arises
from the weakly supervised nature of our data and minimal tuning of M2DS2’s hyper-
parameters, specifically the a and f parameters. However, we are optimistic that with
careful hyper-parameter tuning and improved data quality, MSDA has the potential to
overcome the limitations imposed by M2DS2’s failure to adapt, ultimately delivering

superior adaptation performance across all examined scenarios.

6.2 Future Work

Several extensions and variations could be considered for future work, which can be
categorized into three main areas. The first category focuses on applying our work to other
speech-related tasks. The second area of exploration involves investigating alternative
domain adaptation settings . Finally, the third category involves applying our work to
various fields within machine learning and deep learning.

The proposed method holds promise for application in various speech-related tasks
that experience domain shifts, such as speaker and emotion recognition. These tasks
are particularly intriguing because they represent classification problems, in contrast to
the sequence-to-sequence nature of Automatic Speech Recognition. By assessing the
effectiveness of our method in these domains, we can uncover valuable insights into its
strengths and limitations.

This work tackles the challenge of Unsupervised Domain Adaptation within the spe-
cific context of single source and single target domains. However, real-world applications
frequently demand the implementation of multi-target models that are trained on data
spanning from multiple source domains. Consequently, we propose to investigate a
multi-domain adaptation framework, where information from various source domains
is utilized to effectively adapt to several target domains. This approach will enable us to
comprehensively evaluate the method’s performance and adaptability across a range of
diverse domains, each characterized by distinct data distributions.

Furthermore, we are eager to explore the applications of our method across various
research domains within machine learning, including Natural Language Processing and
Image Processing. Adapting our approach to incorporate field-specific loss objectives
will not only enhance its versatility but also offer significant insights into its effectiveness
across different tasks. For instance, in Natural Language Processing, our method could
improve performance in tasks such as sentiment analysis or text classification by lever-
aging contextual embeddings. In Image Processing, the application of our method could
facilitate advancements in image classification and object detection, particularly when
dealing with images from diverse sources that exhibit different characteristics.
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