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IlepiAnypn

H epappoyn tng texvntng vonpoouvng (Al) otnv 1atpikr) anetkovion £xel PeAtidoet onpa-
VIIKA ) S1ayveoTiky akpiBela katl arnotedeopatikomta. H nmapovoa Sumdepatikn epyacia
rpoteivel éva véo mMAaiolo yia TV AUTOPATOIIOUHEVT) AVIXVEUOT KAl THNHIATOoinorn oyKev
TOU €YKEPAAOU Of PAYVITIKEG TOPOYPADIEG PE T XPION POVIEA®V d1aXUong, TOU POVIEAOU
Segment Anything Model (SAM) kat tou poviedou Grounding DINO. To povtédo Siayuong
dnpoupyel avUIPAyPATIKEG EIKOVEG TOU UY10UG EYKEPAAOU, §1EUKOAUVOVTAG TOV EVIOTIOHO
avopadiov. To SAM kat 1o Grounding DINO xpnotploriotodv mpotporeg onpeiov Katl Ket-
BEvou yua v akpiBn Tpnpatonoinon 1@v oykev. To mpotewvopevo mAaiold pag uneptepet
otabepd Evavil OV PEPOVROUEVOV BACIKOV POVIEA®V, €MmbekvUovVIag UPneg emdooelg o
Sragpopeg perpikég afodoynong. Ilapeyxoviag rmoAAardég eikoveg €§06ou, 10 oUoTRA AUTO
BonBd toug aktvoddyoug va AapBdvouv 1o tekpnplopéveg aroddoetg. Agidet va onpeiodet
eivat o1 autn 1 pebodolroyia npoopidetal va FonOnoet, 0X1 va AviIKATACTIOEL, TOUG ETTAYYEA-
patieg uyelag, evioxuoviag TG 81ayVOOTIKEG TOUG 1IKAVOTHTEG Kal uTtootnpidovtag BeAtiopéva

arnotedéopata yia toug aobeveig.

Aégerg KAebua

Movtéda Sidxuong, avimpaypatikeg eikoveg, katatpnon, SAM, GroundingDINO, 6ykog
eyKkedPAAou, payvnuikn topoypagia
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Abstract

The application of artificial intelligence (Al) in medical imaging has significantly en-
hanced diagnostic accuracy and efficiency. This thesis proposes a novel framework for the
automated detection and segmentation of brain tumors in MRI scans using diffusion mod-
els, the Segment Anything Model (SAM), and the Grounding DINO model. The diffusion
model generates counterfactual images of the healthy brain, facilitating the identification
of anomalies. SAM and Grounding DINO use point and text prompts to accurately seg-
ment the tumors. Our proposed pipeline consistently outperforms the individual baseline
models, demonstrating high performance across various evaluation metrics. By providing
multiple output images, this system aids radiologists in making more informed decisions.
Crucially, this framework is intended to assist, not replace, medical professionals, en-

hancing their diagnostic capabilities and supporting improved patient outcomes.

Keywords

Diffusion Models, Counterfactual, Segmentation, SAM, GroundingDINO, Brain Tu-
mour, MRI
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Ke¢paAaro E

Extetapévn IlepidAnywn ota EAAnvika

1.1 Ewayoyr

H texvntr) vonpoouvn (TN) €xel @épel emavaotaoct) otnv UYEI0VOUIKY TepiBaiyn kat de-
parteia, Bedtidvoviag ) Sayveotiky akpiBela katl mv e§atopikevon v deparnetwv. Zv
1aTpIKy anewkovior, ta povieda TN [10, 33] eviomidouv KAl KATATHOUV aVEUAAIEG, OTI®OG
OYKOUG, TIPOOMEPOVIAS ONIAVIIKY] UMooThpisn ot Siayveon kat depareia. H payvnukn
topoypagia (MRI) eival faoikr) yia v AEIKOVIOn eYKEPAAKOV BAaBmv, aAAd n XE1poKivn-
) avaduon eivatl xpovoBopa. Linv nmapovod SIMAONATIKY epyaocia, mpoteivetal éva mAaiolo
tou ouvduddetl poviéda diayxuong yia ) dnpioupyia avilpatik®v eIKOVOV UY10UG eyKePAAoU
Kat 1o SAM kat GroundingDINO yia akpi8r) katatpnorn oykeov. To mAaioio ermbeikviet u-
YnAég ermbooelg oe S1dPpopeg PETPIKEG KAl PITOPEL va BonbB1joel TOUG AKTIVOAOYOUS OTr) ANyn

TEKPNPIOPEVOV aTToPAoE®V, XOPIg va Toug aviikadiotd.

1.2 IIB@avotira MovtéAda Araxuong AnoBopuBonoinong

1.2.1 ‘Epnveuon ano tn Osppoduvapikng

H epyaoia twv Sohl-Dickstein et al. [41] npwtonopnoe oto nedio TV POVIEADV S1axu-
ong, 9étoviag g Paceig ya v avartudn v pefodov mou akodoubnoav. Tinv gpyacia
TOUG, 01 ouyypadeig slonyayav ) faocikn 16€a g diaxuong pe évav mpoebntko pnxaviopo
OTToU 10 apX1KO 6edopévo SraBpmvetal otadiaxkd pe 9opuBo péowm plag drakpiing ailuoidbag
Markov kat, ot oUvéEXeld, NE0K EVOG VEUP@VIKOU H1KTUOU, TO OTToi0 eKnaitbevetal va anopa-
KpUvel tov 96pubBo (arobopuBortoinon) Kat va eravapePet TV apxkn eikova. H exkraideuon
Baoiotnke ot peyilotonoinon g AoyaplOuikng mbavodavelag, kat n pebododoyia evon-

patwoe ) péBodo Monte Carlo yia v akpibr) detypatoAnyia.

1.2.2 Enéktaon tov ISsmv

[Tapodo rou o1 Sohl-Dickstein et al. [41] €éBeoav ta Baoikd Sepédia yua ) dadikaoia
Siayuong, moAAég onuaviikeg Asrmrtopépeteg Aertav. Ot Ho et al. [16] avému§av nepattépw

TIG APXIKEG 18€€G KAl E101YAYAV £VVOLEG OTIRG TO IIPOYypappia PetaBoAng g diakupavong Kat
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1. Extetapévn [lepiAnyn ota EAAnvika

m Sadikaoia derypatoAnyiag DDPM. Opidouv emiong tov pnxaviopo npombnong og pia
dradikaoia Markov omou otadiakd npootiBetal 96puBog oto apyko deiypa. It ouvéxela,
eKTTA18eVETAl €va VEUP®VIKO OIKTUO yla va mpoBAgwet ) péon Kal ) 61aKUupavor), IIPoKeL-

HEVOU va amoKataoTroel T0 apX1Ko detypa katd 1) didpkela g Stadikaoiag enavadopds.

AvaAutikotepa, napatifetal mapakat® 1 padbnpatkr depedioon ya wmyv npoavapepbeioa

6ladikaoia mou edpawbnke amo v ev Aoy® epyacia tov Ho et al.

H npog-ta-eunpog drabikaoia Siayvong xapakinpidetal ano myv napakat® Mapkobiavr) dia-
dikaoia:

q(xtlxt_l) = N(Xt; V1-— bt * Xt—1, bt . I),Vt el,... T (1.1)

orou T eivat o apiBpog v Bnpdatev dayxuong, bl,..., by € [0, 1) ival 1o poypappa da-
KUpavong , I eivatl o tautotikdg mivakag mou €xet tig id1eg draotdoeig pe v ekova £10060u
Xo, Kat N(x; U, 0) avIIpOOGITEVEL TNV KAVOVIKE KATAVOU! PECOU OPOU 1 KAl OUVElaKUpav-

01g O IOV ITAPAYeEl 10 X.

Zinv mpog-ta-miow 6iabikaocia Sidyvong, Texwvape and éva deiypa xr ~ N(0,I) kat ma-

payoupe véa Setypata amno 10 p(xp) akoAoubaviag ta aviiotpogpa Pripata:

PXi—1lxe) = N (15 uxe, ), Z(x, 1)) (1.2)

Ia va npooeyyiocoupe 1a avtiotpoda Prjpata, XPnolponolovupe £&va VEUPOVIKO diktuo, 9,

10 o016 ekmaldevetal va poBAEnel To PECO, 1, KAl T ouvdlaoropd, X, yia Kabe Bripa:

Po(x—11x) = N(x—1; pa(xi, 1), Zo(xt, 1)) (1.3)

'‘Ocov agopa ota datapaypéva dedopéva, n Sakprtr) aduciba Markov mou meptypddet )

drabikaoia 1ayxuong mpog ta ePIpog UIopei va eKPpactel g eENg:

Xp = \/1——btxt_1 + \/Ee (1.4)
OTIoU :
Xo ~ p(Xo)
e~ N,

Agilet va onpuelwOel 0 MAPAKAT® PETACYXNPATIONOG O 0rtoiog pag divel n Suvatdtnta va AdBou-

e éva delypa x; kateuBeiav anod 1o apXiko deiypa xp:

x = Vaxo + V1 - Gie (1.5)
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1.2.2 Enéxktaon v [6env

orou :

H avtiotpogn Sabikaoia nepiypdgpetal ouppova pe v napakdte sgionon :

Xt-1 = Ha(xt, 1) + VZa(xt, )z (1.6)
omnou :
XT ~ N(O, I)

z~ N(,I)

Data ——— Destructing data by adding noise ——» Noise
85 w s -w_: -mv :'a

-m; -
Data 4«——— Generating samples by denoising -~ Noise

Figure 1.1. H mpog-ta-eumpog kat n mpog-ta-tiow diadikaocia Sidyvong.
[1]

H ouvdptnon aneAeiov vy XpOVIKn OTyHn t TToU XPNo1HoolEiTtal yid v eknaideuon tou

VEUPWVIKOU S1KTUOU gival n) €€n1g:
Lyig = Li-1 = KL(g(x¢-11x¢, X0)lIPa(x¢-11xt)) (1.7)

orou 1o KL() dnAovetl tnv Kullback — Leibler anokAion.

Metd aro pia ogpd pabnpatkov arlornotmos®yv, 1 v Adym ouvdaptnon KOoTtoug HItopet
va ypagtel og gng:
Lsimple = ]Et,xo,e [”e — es(xt, t)”%] (1.8)

Bdoet 6Awv v napanave, AapBdvoupe v napakdie egionon yia t Swadikaocia devy-

patoAnyiag amo v apy1Kn KAtavoun:

1 l1-a
L eo(xt, t)| + 012 (1.9)

_x_—
Va |t Vg
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1. Extetapévn [lepiAnyn ota EAAnvika

1.2.3 BeAtiotonoujoelg Kat AnoteAéopata AtXpng

[Tapd 1o yeyovog ot ta DDPMs katdgepav va rapayouv Seiypata uynAng nowdtntag,
duokoAeUTNKAV va METUXOUV AVIAY®OVIOTIKA ATOTEAEOPATA Ot HEIPIKY NG AoyaplOpikng
mbavopavelag. H epyaoia twv Dhariwal et al. [29] mpoteivel tpororoirjoelg ou BeAtt-
OTOTIO0UV AUTH] T HEIPIKI], S1aTtnNPeOVIag TaUToXpova UPniAng rototntag anotedéopata. Ot
MPOTEWVOHEVEG PeATiOoelg TieptAapBavouv v ekpdabnorn g pnIpag diakvpavong, T XPnon
€VOG TIpOYpAapatog 90puBou [ oUVAPTOnN CUVIITOVOU Kat TNV epapoyr) detypatoAnyiag

onpaociag yla mo anoteAeopatiky) eknaideuon.

1.2.4 Tayutepn AstypatoAnyia pe tn Xprion Mn-Mapxkobiavev Atadiraciov

Ta DDPMs prnopouv va rapdyouv UynArg rowotntag deiypata, adda n dwadikacia 61-
axuong anattel oAAEG enavaAnyelg yla va oAorAnpandel n derypatoAnyia. H epyaocia tov
Song et al. [42] ipdtetve pua yevikeuon g Siadikaoiag diaxuong oe pa pn-MapkoBiav)
dadikaoia, emrpénoviag taxutepn deypatoAnyia pe Atydtepa Prpata. Me ) Xprion tou
povtédou DDIM (Denoising Diffusion Implicit Models), n taxutnta g detypatoAnyiag auv-

&NOnke onpavukd Xopig Peydn anmAsia otny oot Id TV IIAPAYOHIEVOV SEIYHIAT®V.

Y10 mAaiolo autd, o pertacxnuatiopog ano pia MapkoBiavry) diadikaoia Sidyxuong oe pa
Mo yevikr un-MapkoBiavr] Siadikaoia e§aywyrng oupnepaoudt®v mTuyXAaveral Ue tny el-
OaY®YI] TOU apX1KOoU Selylatog @G ouvOnKn otnv eurpoodia Kat v aviiotpodn KATAVOr)
mbavonta:
T
do(x1...71%0) = qo(xrlX0) ]—[ o (Xi-11x¢. X0) (1.10)
t=2
H &&iowon yia ta Seiypata katd v aviiotpogn dadikaocia Ppioketal petd mv epappoyn)

TOU Kavova 1ou Bayes kat aAAev padnpatkev tinev. Autt) @aivetal mapaxkaie

Xt—1 = Var — 1.f0(t) + \’ l1-—ai-1 — 02 . €g)(Xt) + Ot€t (1.11)

'‘Otav o = 0, n 6adikaocia AMOKIA VIETEPHIVIOTIKO XAPAKTPA, APOU O OUVIEAEOTHS TG Jo-
puBou, b; pndevidetat. Ot Song et al. amodeikvuouv otn cuvéyela ot ermdéyoviag o = 0
(DDIMs), 10 pnKog tng TPOoX1ag SelypatoAnyiag PEIVETAl KAl EMITUYXAVETAL UPNAOTEPT] U-
TTOAOY10TIKI] ATTOTEAEOPATIKOTITA PE EAAX10TeG Yuoieg oty roldtnta TV apayopevey dety-

patev.

()  Po = —
N \ | N N

Figure 1.2. Mn-Mapko6iavo Movtéflo Eayaync Zuunspaouarev [42]
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1.3 Score Matching pe duvapikn Langevin
S =)

1.3 Score Matching pe duvapiky Langevin

Autr) ) 6eUtepn) UTOKATYOPiA TOV POVIEAGV S1AXUO0NG ETUKEVIPAOVETAL O P1d H1APOPETIKI)
dlatuniwon g Sadikaoiag Siayxuong. O nuprvag autov IOV povieAev Baocidetal ot cuvap-
won Babpodoyiag (Steinscore) piag katavoung rmbavotntag p(x), n ornoia urnoloyiletatl g
V., logp(x). Autr n moootta deixvel tv Kateubuvor mpog tnyv ornoia mpéret va Kiwvnboupe
and éva tuyaio delypa xp mpog €va delypa xy 0g pa meploxn He uywnir nukvotnta. O
alAyop1Bpog mou xprotpornoteital yia auvty ) dtadikacia ovopddetal alyopibpog derypato-

Anyiag Langevin.

Zupowva pe tov adyopiBpo derypatoAnyiag Langevin, AapBdvoupe v MAPAKAT® €mava-
Annuikn Sabikaoia:

€
Xt = X1 + valogp(xt—l) + Vez, (1.12)

orou z; ~ N(O, 1), € > O xat xo ~ p(xp) (priordistribution).

H ouvdapinon mou elayiotonoteitatl yua v exknaideuon tou veupmvikou SiKtuou eivat 1)
egng:
Lsm = Ex~p(x)”38(x) - Vxlogp(x)”% (1.13)

orou Sy eivat 1o SteinScore kat opidetal wg:
Ss(x) ~ V. logp(x) (1.14)

To xuUplo mpoBAnua pe v napandave dSadikaocia eivatl ot dev yvopidoupe v ouvdaptnon
Babpodoyiag. Av v yvepilape, 9a EEpape kat v apxikn katavour] rmbavotntag. Ilpog
AVTIPETOITION AUToU ToU IpoBAnpatog, ot Song et al. mpotevav v MAPAKATE UTTO OUVONKI)

ouvdptnorn Babpoloyiag:

A

. Xx—-x
Vilogps(Xlx) = —— (1.15)
o
'Etot, 11 ouvdptnon anwleiag ypadetat:
1 & Xx—x
Lasm = 7 ) 00 EpoBox-p ollsa(, 00) + — 3. (1.16)
t=1 t

'‘Ogov agopd 1) derypatoAnyia, ot Song et al. pdtevav pia tPOMONOPEVH Lopd1) TS
detypatoAnyiag Langevin, tov aAyopiOpo Annealed Langevin Dynamics. O aAyopi8pog

auTog PAIVETAl MTAPAKATR.
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1. Extetapévn IMepidnyn ota EAAnvika

e . - PO Dol
S S . R T TN TR TR T » oL ps e
A - 4 n T2 : z Do
o o e W ), ‘. N - e o= . = F
FEES -t} SRR LR
SIS s - - = 2 0t oA ,1
_::_‘,._ﬂ.‘_,._-.-.ki,-: = >
- tsx===raen ===z = :z
::::..__..__.__".-_:2-—-—._'-1.. & - = - ol
- e e e e—— -—_-’{ ‘l i ——
e e ~S— —— \ S LI o=
. i N ~ w w . - -
- o - T
s == == . = s o s 2Ty NN . S2XT
NN e . R NNISIIRXTT
- il -///J{ \h\\ B
---.'J'——".—’/-'-,/I'f h\q B T e e
e i i N | e i T T
S i B A {'\'\\"\\'\‘.,..
112227272222 % B R R
M I A A NN N %N R e ow v .
B L . I % % % m o ow om o ow ow

Figure 1.3. Onukomnoinon mg¢ tpoxiag pe mpo6Asyn tov okop. 'Eva okop eivar jua karevduv-
on ya ta enopsva ypovika nuata. Ta deiyuata arodopubomolovvial wg Ipog TNV Kateuduvon
oe kade 9éon. Ta xpwuara avtimpooETEVOUD TG TPOXIES OlaPYOPETIKOU detyudTtav. [5]

Algorithm 1 Annealed LLangevin dynamics.

Require: {o;}f . e, T.
1: Initalize xg
2: for: <— 1 to L do
3: «; < €-02/o0% > cv; is the step size.

4: fort «+ 1 to 7T do

5- Draw z; ~ N (0, 1)

6: Xy — Xz + %Se(it—lpgij + g 2y
7 end for

8: 5";0 — X

9: end for

return x

Figure 1.4. The Annealed Langevin Dynamics Algorithm [43]
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1.4 Zroxaoukég Alapopikég ESionoeig

1.4 XItoxaotirég Aragpopirig EStomosig

H tpitn unokatnyopia tov poviédov 61axuong anotedel pia yevikeuorn t@v 8Uo mponyo-
Upevev, kabog ebw n datuniworn g Stadikaciag Siayxuong ivat ocuvexng kat ox1 Stakpity.
Zuykekpipéva, n dadikaoia diaxuong nepiypdderal wg n Avon piag oroxaotikng diagpopt-
kr|g e€iowong (ZAE). Autr) n 16ed eruonponoirdnke aro toug Song et al. [44] oe pia oAU
ONHAVIIKY gpyaocia yla tov kKAado ovopau "Score-Based Generative Modeling Through

Stochastic Differential Equations”.

e auto 1o 1mAaiolo, 1 mpog ta eprpodg ZAE éxet v eEhg popdn)
dx = f(x, t)dt + g(t)dw (1.17)

Autr) 1) €€iowor eivat 1 k) eiowon [td ZAE, orou f(x, t) eival o ouviedeotr)g petator-
ong, g(t) o ouviedeotr|g Siaxuong, kat dw sivat nj 6tadikaocia Wiener (kivniory Brownian).

H kivnon Wiener opidetat og dw = € Vdt, 6rtou e eivat tuyxaiog 90puBog 1€ katavour) N(O, I).

O ouviedeot|§ petatormong €xel oxedlaotel €0l wote va pndevidel otadiaka ta 6edopéva
Xo, EV® 0 ouviedeotrg diayxuong eAéyxel tooog J0puBog mpootibetatl oe kabe Prjpa. T'a va
propéoouiie va rapaydyoupe dedopiéva amo v apy1iKy KATavor), IPEMEL VA AVILIOTPEYOU-
pe autfyv ) dadikaoia. Autd akpiBwog £6e1ie o Anderson oto GpOpo tou, rapouoidloviag
Vv avuotpappévn egiowon ZAE, n oroia Seiyxvel mog pPriopovpe va avaktjooupe dedopéva
ané kabapo S6pubo, apalpaiviag 1ov 0po §1axUoNg MOV APYIKA MTPOKAAECE TNV KATACGTPOPT)

v dedopévav. H ev Aoyw aveotpappévn ZAE @aivetal mapakdato:
dx = [f(x. t) — g°(t)Vlogp,(x)]dt + g(t)dw (1.18)
orou dw eivat pia Siadikaocia Wiener rou kKuddet aviiotpopa otov Xpovo.

O1 otoxaotikeg dlagopikeg eSlonoelg (ZAEG) ermdiokouv va evortowrjoouv ta DDPMs kat
1a SMLDs kAt® and pia Koivry 9e@pntiky] oprpéAd. AUTO EMMITUYXAVETAl PNETATPEITIOVTIAS TIG

e€lonoeig g Hladikaciag 651aXUONG AUTOV TOV POVIEA@V OTI§ CUVEXEIS AVTIOTOLXEG TOUG.

'Eto1, n avtiotoixn XAE yia ta DDPMs eivat:

dx = —%b(t)xdt + +/b(t)dw (1.19)

H avtiotoixn ZAE ywa ta SMLDs givat:

2
N o O] (1.20)
dt
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1. Extetapévn [lepiAnyn ota EAAnvika

Data Forward SDE Prior Reverse SDE Data

@7 dz = f(z,t)dt + g(t)dw 4}@— dz = [f(z,t) - F )V, logpt(z)] dt + g(t)dw

\/ \/

m() pe(z) > pr(z) pi(z) > ()

Figure 1.5. Emoxonnon g score-based povtejlonoinong Baoiousvng otg ZAE¢g [44]

1.5 INapaywyn Ymo ZuvOnkeg

H tpitn unokatyopia tov poviedev d1dxuong apopd 1 YeVIKEUOT) TG IAPAYOYLG dety-
pdtev und ouvlnkeg (conditionalgeneration), énAadr) ) dnuovpyia detypdrtev Paocel ou-
YKEKPIHEVAOV XAPAKINPIOTIKAV, OTIOG £1val 01 KEIHEVIKEG TIEPIYPAPEG 1] TO OTUA €vOg AAAou
delypatog. Ze pabnuatkoug 6poug, jia ouvOnkn y eivat pia emrmAéov £10060G 0to POViEAO
(0nwg pla etikéta KAAoNg 1 pia akoAouBia Kepévou) 1mou Xprotpornoteital yia va Kateu-
duverl i Sadikaocia dnuiovpyiag dertypdte®v pog pia erbupntn KAdon. Autn 1 oUvOnKn

EVORPATOVETAL OV TTBavOotnta 1§ aviiotpopng dadikaciag ®g EMITAEOV ITAPAPETPOTTOINOT).

H 6npoupyia detypdatev und cuvOnkeg ripolnobetetl ot 1o poviedo Sev mpoorabei va dety-
HatoAnrel anod pia yEVIKL) Katavoyr) p(x), aAAd and pia Kkatavopr ing popons p(x|y), omnou
10 Y AVIUTIPOORKITEVEL TNV ETUITAEOV oUuVOnKn. Ot mponyoupevol adyopidpotl rtou oculntOn-
Kav yua 1 detypatoAnyia and v katavopr p(x) mpenet topa va rpocapiootouy yia v
ratavopr] p(x|ly). Qotdéoo, pia ardr vAoroinon autou tou £iboug propei va odnynoet oe
TIEPUTTWOOELG OITOU TO POVIEAO ayvoel 1) untoBadpidet i ouvOrkn. Ta va §10pBwbeil autd, mpo-
teivetal i Xprion g TEXVIKNG g ka@odnynong (Guidance), 1 orola ermtpénet PeyaAutepo
éAeyxo oty Paputnta nou anodidetat oty ouvOnkr. Yndpyxouv U0 Kuptlot tunol kabodyn-
ong: n kabodnynorn pe wm xpnon tadwvount (ClassifierGuidance) xkat ) kaBodrjynon xwpig
taSwountn (Classifier — free Guidance).

H mpotn npoontdBeia yia Mpaktiki napayoyl) deiypdiov urno ouvOnkeg £ylve amod 1oug

Dhariwal et al. [7], ot ortoiot mpotewvav ) Xprorn evog ta§ivountr] yia va Kateubuvouv
dabikaoia derypatoAnyiag. Autr) n péBodog, ou ovopaotnke Classifier Guidance, xpnot-
portotel éva poviedo tagvopntr yla va kateuBuvel ) Siaxuorn ot owotr kateubuvor). Av
KAl 10XUpr), 1 ouyKekpipévn péBodog amattei tov oxedlaopd kat v exknaideuorn evog ermt-
mAéov tagvopunty], YEYOvOg Imou eivatl xpovoBopo kat Sartavnpd. 'Eva akopn nmpoBAnua pe )
1€B60do autr) eival 6t puropet va odnyroetl o Tuxaieg 11 avermbupunieg KAteubuvoelg Katd

detypatoAnyia.
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1.6 Tpnpatoroinon £1Kovag Katl aviXVeuor] AVIIKEPIEVOV

Avupeteni¢oviag avtda ta mpoBArjpata, ot Ho et al. [17] mpdtewvav ) pébodo tng kabo-
dnynong xopis taSvopntry (Classifier — freeGuidance). e autv Vv POCEYYoT), TO 110-
VIEAO EKMAISEVETAL TAUTOXPOVA TOCO Yid TNV MApayeyn Seiypdtov und ouvOnKeg 000 KAl
X®PIg ouvOnKeg, pe 10 onpa g ouvinkng va mapaleinetal uxaia katd ) Sidpkrela mg
exraidevong (dropout). Autr) n péBodog eivat Aydtepo amattniky) UOAOy1oTIKA Kat Sivet

010 PoVIEAOo T Suvatotnta va rapdyet delypata kat ano tg duo katavopég (p(xly) kat p(x)).

Figure 1.6. Aciyuata ano £va poviéfo diaxvong xwpic ovvdnkn pus kadodnynon taltvount)
yla mv mpolinodeon g Kammyopiag “okuiog kopykt”. H xpnon e kiiuarxag tawount 1,0
(aprotepa) bev mapayet newotika dsiyuara os avtr v kamyopla, evw N Kiipaxa taltvountn
10,0 mapdyet TOAU 7o OUVETELG ekOVES pe TNV kKatnyopia.[7]

1.6 Tpnpatonoinon £1KOvVAg KAl AVIXVEUOT AVTIIREIPHEVRV

H tpunpatomnoinon €kovag KAl 1 aviXveuor aviulkepévev eival Kevipika dépata otov
TOpEA g 6PACNS UTIOAOYIOT®OV KAl TG PNXAVIKAS PABnong, Be otoXo TV Katavonon Kat
EPUNVELA TOU TIEPIEXOPEVOU TRV OITIIKAOV Hedopévav. Autd ta kabrikovia BpioKouv epapiioyr)
oe 81apopoug Topelg OMWG 1 autdvoun 0d61ynor, 1N 1ATPIKL) ArEKOVIOor, 1 TAPAKoAouOnon

KAl 1] POUITOTIKI).

H tunpatornoinon eikévag rneptdapBavet v KATATN oL Plag £1KOvAg o€ TTOAAATIAG Turpata
1] EPLOXEG, OTTOU TO KABEva avaraplotd €va S1aPOpPETIKO AVIIKEIPEVO 1] EPOG EVOG AVIIKEL-
pévou. Autr n Sadikaocia fonba oty anopoveorn Kat avdaiuon tov S1adpop®v OToIXEI®V NG

€1Kovag, S1eukoAUvVoVTag TNV Mo akpBr] avayvoplon AVIKEPEVOV KAl TNV KATAVONOon NS

OKIVAG.

Avrtiotoxa, 1 aviXveuor aviKePEVEV £0TIALEL OTOV EVIOMIONO KAl TNV AVAYVOPL0T] AVIIKEL-
Hévev péoa ot pa ekova, avabEtoviag Toug Katnyopieg kat kabopidoviag ta opid 1oug
pe routld meptypdppatog. H amotedeopatiki) aviyveuor aVUKEPNEVOV AVIIHETIOITIEEL TTIPO-
KADOE1S On®G 01 H1aPopeg otV ePAVIOT TOV AVIIKENEVROV, 1] KATPAKaA, 1 anokpuyn Kat td

ouvBeta unoBabpa.

Me v €€€A€n g texvoloyiag, ot péBodol autég rmépacav and napadooiareg TEXVIKEG U-
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1. Extetapévn [epidAnyn ota EAAnvikd

TTOAOY10TIKIG OpaONG HE XAPAKINPLOTIKA IOU opidovial Xelpokivnta oe ouyxpova Hoviedd
HPNXavikng pdbnong pe tn Xpron veupavikev diktuev. Ta poviéda nou Pacidovratl oe CNN,
onwg ta Fully Convolutional Networks (FCNs) kat U — Net, épepav onpavikeg PeATOoetg o
akpiBela kat arodotikotnta. ITo mpoogata, n Xpron v Transformer — based apX1teKto-
VIK@V £XE€1 PETAOXNIATIOEl AKOUn TIEPLOCOTEPO TO TOITIO, P Ttapadeiypata onwg 10 Segment
Anything Model (SAM) kat to GroundingDINO.

To Segment Anything Model (SAM)[22] eivatl éva €UEAIKTO POVIEAO TUNATOITOINONG EIKOVROV
IOU UITOPEl va TUNHATOTIO0El Pid MOKIAla avikelévev pe Baon diagpopa €idn 1066wV,
onwg onpeia, Kouta 1 paokeg. H apyitektoviki tou Paciletatl oe €évav KOIKOMOUNTN-
AroK®H1IKOMOINTr) rMou e§dyel KAl avaouvOLtel XapaKP1oTKA MOAAAMA®V KATHAKGV artd

TG €1KOVEG, EMUTPEIOVIAG TNV AKP181] TUNHATOOIN 0T AKOI KAl 08 MEPITTAOKEG OKIVEG.

To GroundingDINO [25], arto tv dAAn, ouviuddel £1KOVEG KAl IEPLypaAdES KELPEVOU yla
NV AVIXVEUOT AVIKEIPEVQOV HIE TNV APXITEKTOVIKY) Transformer, erutpénoviag v avixveuon
AVUIKEEVOV BACEL KEIPNEVIK®OV TIEPYPAPOV 1] Katnyopliov. H mpoogyyion avtr) anodidet -
Eapetika anotedéopata oe oUvoda Sedopévav orwg 1o COCO [24] kat LVIS [13], kabiotoviag

10 GroundingDINO pia 10XUp1) €ITAOYT] Y1d aviXVEUOT] AVIIKEIPLEVRV XOPIG ITPONYOUHEVT) £K-

naidevorn).

Figure 1.7. Aviyvevon Ppovtwv oe évav wivaka pe 10 GroundingDino.  Source:
https:/ /www.mlwires.com/grounding-dino- 1-5-a-powerful-open-set-object-detection-
model/
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1.6 Tunpatornoinon ekovag Kat aviXveuor avIKeEIPEVEV

Figure 1.8. Evtomowudg avtikeévov oe éva ypageio pe 1o GroundingDino. Source:
https:/ /deepdataspace.com/blog/Grounding-DINO- 1.5-Pro
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1. Extetapévn [lepiAnyn ota EAAnvika

1.7 Katatpnon latpireav Ewxkovaev

H tmpnpatonoinon 1atpik®v e1kOvev arnotedel pa ano tig mo kpiopeg Siadikaoieg otnv
1aTP1KY) avaduon kat S1dyveor), EMTPENOVIAS TV aUTORATn aviXVeuor) KAl EVIOIIOHRO avepa-
Alwv Kat TaboAoy1KOV KATaotacenv os Sidpopa opyava tou avOporivou oopatog. Méow tng
TUNHATOOiNoNG, Ol 1ATPIKEG £IKOVEG UIOPOUV va avaduBouv pe akpiBeia, dieukoAduvoviag
Vv eaywyn mnpogopiev rmou apopouv ot Siayvaorn acbeveiwv, otov oxedlaopod Sepa-
MEUTIKQOV TApePBAcemv KAl otnv napakoAoubnon g ropeiag twv acbevov. H xpnon wng
TUnRatonoinong eivatl Kpion o€ Topelg OTiwG 1) oyKoAoyia, 1 kapdiodoyia kat ) veupoAoyia,

Ka010tOvIag v avandoracto ePYAAeio yla TV KAWIKL IPAKTIKL.

To ouvodo de6opévev Brain Tumor Segmentation (BraTS) eivat éva anod ta mo onpavit-
KA KAl EUPERG XPNOIHoIoloupeva ouvola 6edopiévev otov Topéa tng avaiuong 1atplkev
EIKOVRV. Arotedeital and MmoAUTPOIIKEG PNAyvnTIKeG topoypadieg (MRI) rmou Xpnotpiomnoto-
Uvial yla v THNPATonoinon oyKev eyKePAAou, CUYKEKPIPEVA YAOIOUAT®V, Ta oroia givat
amod ToUg IO KOWOoUG Kal €rmBetikoug turnoug oykev. Ot akoloubieg MRI mou mepldap-
Bavovtat, onwg ot T1, T1Gd, T2 kat FLAIR, ipood£pouv moAUTIEG TTANPOPOPIEG OXETIKA
Be mv avatopia kat ug rraboloyieg 10U eykepadou. AUTO EMMTPEIEL TV AVAITIUSH AKPBOV
aAyopiBpwv tpnpatomnoinong, ot ornoiot fornbouv otnv KaAutepn S1dyvoon Kal YepaneuTIKD

TMIPOCEYY101] TV A0OEVRV.

[Tépa amo to BraTlS, to Medical Segmentation Decathlon (MSD), rou dnpooteubnke to
2018, mpoogépet £va aropa o eUpU IPOTUTIO Yid TV avartudn alyopibuwev tpnuartortoin-
ong WatpkeV kovev. To MSD nepidapBavetl 6éka Stapopetikd ouvola dedopévav, kabéva
arno ta oroia AvIIPOO®ITEVEL H1aPOPETIKEG AVATOHIKEG HOPEG KAl TTaBoAoyieg, OT®wg OYKOl
otov eyKEPAAO, 10 OUKOTL, 1] Kapdid kat dAda épyava. Autd 1o rodudiactato ouvolo debo-
HEVGOV TIPOOPEPEL OTOUG EPEUVITEG TNV €UKAPIA va avartugouy aAyoplOpoug mou urnopouy
va rpooappodovial kat va givat a&iormotot oe S1aPopeg 1aTpIkeg epappoyeg, evBappuvoviag

€101 TNV Kawvotopia otov Topéd NG aTPIKNG ATIEIKOVIONG.

ZuprAnpopatkd, 1o MONAI, 1o oroio avarttuxOnke to 2020 and ) NVIDIA kat to King’s
College London, rapéxel pia OAOKANP®OUEVT] KAl avoitr] MAATGpOPHa yia TV avartudn Kat
a&loddynon adyopibuwv Pabidg pabnong oe 1atpikég eikoveg. Ilpoodpepoviag epyaleia kat
pogg epyaoiag yla kabe otadio tng Sradikaoiag, and ) @OpIeon v dedopévev PeEXpL TV
exraidevorn kat mv avarudn poviédav, 10 MONAIT éxet kabiepwBei wg £va Baoiko epyaleio
Yla €PEUVNTEG KAl KAIVIKOUG TTOU £pyAlovidl OTOV TOPEA TNG 1ATPIKIG ATEIKOVIONG. MEo®
tou MONAI Model Zoo, ot xprjoteg £Xouv npooBaor) o€ IIPOo-eKASeUPEVA P1OVIEAA TTOU O1eU-
KOAUVOUV v avdrtuén véov adyopibuev, evioyxuoviag £tol ) petdBaon ng épeuvag otny

KAWIKT) TIPAgn.

Me autov tov 1poro, 1o BraTs, 1o MSD kat to MONAI anoteAouv SepeAdiwdn epyaleia ya v

nPO0d0 NG TUNHIATOIOINOTG 1ATPIKOV EIKOVAV, TIPOCPEPOVTAG IPoTuTIa dedopévav Katl mAat-
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1.7 Katdtunon latpikov Ewkovev

(POPIIEG TTOU EMMIPETIOUV T Snjpoupyia kat a§loddynon Kavotopev Kat akpiBov pefodav.
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Figure 1.9. Emokonnon v 6éka Stapopetik®dv gpyaoctov tou Medical Segmentation De-

cathlon (MSD) [3]
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1. Extetapévn IMepidnyn ota EAAnvika

HOME FRAMEWORKS v DOCS v RESOURCES v MODEL 20O GITHUB

MONAI Label
MONAI Core

MONAI Deploy

MO INA

Medical Open Network
for Artificial Intelligence

< Core > < Label > < Deploy App SDK>

1,500,000+ downloads and counting

Figure 1.10. Emoronnon tov miaiwoiou MONAI kar t@v ovotaukov tou. Source:
https://monai.io

All Models

Brats mri axial slices generative diffusion Brats mri generative diffusion Brats mri segmentation

MONAI team MONAI team MONAI team

A generative model for creating 2D brain MRI axial slices from A generative model for creating 3D brain MRI from Gaussian A pre-trained model for volumetric (3D) segmentation of brain

Gaussian noise based on BraTS dataset noise based on BraTS dataset tumor subregions from multimodal MRIs based on BraTS 2018
data

/ Model Details Model Details Model Details

Breast density classification Endoscopic inbody classification Endoscopic tool segmentation
Center for Augmented Intelligence in Imaging, Mayo NVIDIA DLMED team NVIDIA DLMED team
Clinic Florida A pre-trained binary model for A pre-trained binary model for tool

A pre-trained model for classifying breast images inbody classification task segmentation

(mammograms)
( Model Detals Model Details <Mods\ Details

Figure 1.11. Emokonnon opopévov ano ta diadsoua uovtéia oto MONAI’s Model Zoo.
Source: https://monai.io
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1.8 H MeBoboAoyia pag

1.8 H MeOodoAoyia pag

Y& autd 1o Kepdadalo, mapouoctadoupe ) véa pag pebodoloyia yia v THNHATOOINOT
Kat tov evioropo PAaBov os payvhnukég topoypadieg (MRI) tou eykepadou. Baoiopévn
otig évvoleg Tou oudnOnkav ota mponyoupeva Kedpaldaia, n pebodoloyia autr) otoxeuvet
OUYKEKPIPEVA TIS MTPOKAIOEIS TTOU Oxeti{ovial pe tov akpiBr] eViOormopo Kdt v TUnpato-
roinorn eykepaAkov BAaBov. H mpootyylor] pag evoopuatmvel TPONyHEVES TEXVIKES Badiag
pdabnong, ocupnepAapBavopévav PoVIEA®V dlaxuong, NNXAVIOH®OV IIPOCOXNS KAl HOVIEAGV
Tunpatorioinong, ya ) dnpoupyia pag 1oxuprng Kat anodotikg Auong.

H peboboroyia pag gexva pe ) xpron evog poviedou Siaxuong yua tn dnuioupyia avit-
TMIPAYHATIKAV £1KOVAV UY10UG eyKedPdAou and MRI eykepAaAnv roU meptEXouv PAdaBeg. Autég
Ol AVIUTPAYHATIKEG EIKOVEG AVAIIAPIOTOUV MG da €1otade 0 ev AOYy® eykEPaAog xwplg ma-
Yoloyikeg avopalieg. Auto 1o Prjpa sivatl kpiopo kabag rmapeyxel éva onpeio avapopdg ya

1OV eviormopo tev BAaBov, avadelkvioviag Tig arnokAioelg ano myv Uyl Katdotaor).

‘Enetta, unodoyidoupe v dadopd g apxXiKng €1KOVAG HE TNV AVIUIPAYHATIKY yid vad
AdBoupe v ekdva Slapopdg. ZKOmMOg g €1KOVAG AuTng £ival va tovioet TG dtapopég

avapeoa otig SU0 €1KOVEG.

Meta ) Snuioupyia ng ekovag dtapopdg, £Ppappodoupe pid O£lpd A0 MIPOKATAPKIIKA
Brpata snefepyaociag yia mv npostotpacia twv dedopévav yia v tpnpatornoinon. To
otadlo autod mepthapBavet tov aAdentdAAnAo moAAandactacpo g e1kovag diapopdg pe v

ApX1KN €1KOVAG e 0TOX0 TNV evioxuon tg avtibeong g raboyévelag.

O rwprvag g pebododoyiag pag adloroeil 1o poviédo Segment Anything Model (SAM)
oe U0 EeEXWPIOTEG KAl AVESAPTNTEG POEG EPYAOIWV Y1d TV TUNHAtornoinon v PAabov. v
PAOTN Porj, 10 SAM AapBavel wg 10060 pia onpelaxs) mpoTpor), 1 onoia ouvnBwg eloayetat
amno évav ylarpo. X1a MeEpApatd pag, XProlonoloUpe T0 KEVIPO g pdokag aAnfsiag og
onpewaky) npotportry. To SAM énetta tpnpatornotel ) BAABn Baocel autig g MPOTPOIG,
apEXOVTag akpBr) eViormopo mg PAABng.

Tt 8evtepn pPOI), XPNOTUOMO0UNE OG 10080 1A KEHUEVIKI] TEPIyPAPT), Il Oroia emeiep-
ya&letat aro 1o poviedo GroundingDINO. To GroundingDINO &npioupyel €éva xKouti mept-
YPAPHATOS YUP® Ao TNV IEPLOXI] eVOlaPEPOVIOG, EKTEADVIAG ATIOTEAEOHIATIKA AVIXVEUOT)
aAvuKeEPEVEV. AUTO T0 KOUTI IIEPIYpAPHATOS XP1OIH0ITotEital ot ouvexela oG iocodog yia 1o

SAM, 10 omoio Tpnpatornotet ) BAdBn péoa otnv kaboplopévn mEPLOXn.

Ta v adodoynon g anddoong g pebodoroyiag pag, Xpnotonolovpe S1aPpopsg e-
Tp1KEG, oTiwg To Dice score, to Intersection over Union, to AUPRC, v akpiBela (accuracy),
v avaxkAnon (recall), 1o precision, 1o F1 score, v anoctaon Hausdorff kat 1o Méco
Zuppetpiko EpBadov Emgaveiag (ASSD). AUTEG 01 PETPIKEG MAPEXOUV 11d OAOKANPOUEVH

extipnon mg akpiBelag Kat g aglormotiag v arnoteAeopat®V THIATONoinong.
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1. Extetapévn [epidAnwn ota EAAnvika

ErumAéov, mpaypatornotovpe pia peAétn apaipeong yla va KAatavorjooupie 1) oUpRBoAr) KaOe
otorxeiou g pebodolroyiag pag. Me ) cuotnpatiky adaipeon PEPOVOPEVOV OTOXEI@V Kal
) PETIPNOT NG EMUITIOONG otV anodoor), arnokopi{ouiie MANPOPOpPieg OXETIKA HE T onpa-

ola kat v aAAnAenidpaocn 1oV 51aPpOp®V OTOXEI®V OV IIPOCEYYLOT] NaAgG.

Auto 10 Kepddalo mpoodEpel pla Asrtopepr] avaduon Kabe otroixeiou Tou mAaiciou pag,
G MEPAPATIKNG pUBHI0NG, KAO®SG KAl TV AMOTEAEOPAT®OV TG PNEAEING adaipeong, avadet-
Kvuovtag Ta duvatd onpeia kat 1g mbaveg meployEg PEATIOONG OtV IIPOCEYY10T 114G yid TV

TUnpatornoinon Kat tov evioruopo BAaBov oe MRI eykepddou.

Figure 1.12. H psdodofoyia puag
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1.9 Ilapaywyn g Avurpaypatkng Ewkovag

1.9 Iapaywyn tng Avunpaypatikng Ewkovag

Z10 ReAAalo auto, IMapouotaletal Pe ePloootePeg Aemtopepeteg 1 pebodoroyia pag ya
TV TUNHATOIT0INon KAl TOV EVIOTIONO AAAOI®OE®V O PayVvnTIKEG topoypadieg (MRI) eyke-
@AAou, pe £ugaon ot SnPoUPYia avIIpaypatik@v EIKOVEV TToU avadelkvuouv 1ig S1apopeg
petady uylwv kat abooyikev rieploxov. H Siadikaoia otoxevel ot PETATPOITT] TOV EIKOVEV
anoé v unhealthy oty healthy katdotaor, datnpoviag apdAAnda ta vndédouta XapaKtn-

PLOTIKA TV EIKOVAV.

IMa v exnaideuon tou poviédou, xpnowpornoteitat éva U — Net tiou pabaivel va ripoBAETet
11§ anapaitnteg addayég yla tm dnuoupyia Uyldv avirmpaypatikov e1KOVeV aro acbeveig
eykedpdloug. H dabikaoia autn) emruyxdvetal HEo® g XPHONS TOU poviedou diaxuong, 1o
ortoio dnuioupyel UYlElg EKOOXES TOV EIKOVROV KAl EVIOTTCEL TIG AAAOIMOEIS PEOW® TG OUYKPL-

O1G P TS UPXIKEG EIKOVEG.

Katd ) @daon ng detypatoAnyiag, xpnotpornoieitat to poviedo DDIM, 10 Omoio €rmIpenet
TaXUTEP KAl o akpiBn SeypatoAnyia PEowm aviotpePipuev petaoxnpatiopeov. H dtagopa
petady g apX1Kng Kal g avudatiknig ewwovag odnyel ot dnpioupyia evog heatmap, 1o

ortoio tovidetl 11§ TaBOAOYIKEG TIEPIOYKES YA TN ATOIOn o).

IMa v kabodnynon ng Sadikaoiag, xprnowonoieitat n péBodog implicit guidance, érou
10 povtédo ekraldevetal oe oUVONKeG e Katl X®pig rmabodoyia, dote va pnopeti va rapayet
anotedéopata nou Baocidoviat oe ouvlrKkeg (r.X. UYlElg eyKepadikég Hopég) pe Suvapikr)

pubuion tng onpaociag g kKabodrjynong Kata tr detypatoAnyia.

Télog, n mpooappoyn g katdotaong healthy yivetatr pécwm €vog PNXAVIOHOU IIPOCOXNG
(attention), o oroiog evioxUel Vv arnotedsopatikotnta g dtadikaociag, BeAtiwvoviag v a-

KpiBela otnv avayvoplorn 1oV aAAoiwoewmy.

1.10 Evrtomopodg IIaBoyéverag

'Exovtag Snpioupyroet v avitmpaypatiky e1Kova Xopig tig maboAoyikeg reploxEg, udo-
moloUpe HU0 H1aPOPETIKEG TIPOOEYYIOEIS TUNHATOITOINONG KAl EVIOITIONOU, TTou Bacilovial og
TIPOTPOITEG ONPEIOU KAl KEWPEVOU, KAO®SG KAl 1] XP1)01 OUVOUAOPEVOV PACKGOV Y1d KAAUTEPT)

KAAUYD TV aAAO100ERDV.

IIposneiepyaocia: [Ipw 1 Siabikacia pnpatonoinong, n Sapopd e1kodvag petadv g ap-
Xkng MRI xat g counterfactual e1xovag evioxUetal PEO® TTOAAATIAACIACTIKOV AETTOUPYIDV.
ZT0X06 €ival va Toviotel 1 meploxn g aAloimong Kat va peiwdouv ta opdApata arno aldeg

TIEPLOXEG TIOU 10®G €X0UV ermonpavOel Aavbaopéva.
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1. Extetapévn [epidAnwn ota EAAnvika

Brain Image

Figure 1.13. Original brain MRI

Mult Image

Figure 1.15. Result of multiplying differ-
ence image with the brain MRI image

Difference Image

Figure 1.14. Difference Image

Mult2 Image

Figure 1.16. Result of multiplying the
difference image with the brain MRI im-
age squared.
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Brain Image Difference Image

Figure 1.17. Original brain MRI Figure 1.18. Difference Image

Mult2 Image
Mult Image

4

Figure 1.20. Result of multiplying the
difference image with the brain MRI im-
age squared.

Figure 1.19. Result of multiplying differ-
ence image with the brain MRI image



Pipeline pe mpotponi onpeiou: Tty Pt [POCEYYLOT], XPNOIHOIOEITal T0 KEVIPO
g adAoiwong, mou opidetal and pia MPAypatiky pAokd, @g onpeio potporng yia o po-
vtedo SAM. To poviédo napayet 61apopeg urmoWPr|Ppleg PAOKEG, ATIO TIG OITOieg EIMAEyETaAl 1)

HIKPOTEPT V1A PeEYaAUTepn) akpiBela.

Original Image Original Image Mask

Figure 1.21. Original brain MRI Figure 1.22. Ground Truth Mask

Overlayed Image - Point Mask from Point

Figure 1.23. Original brain MRI over- Figure 1.24. Mask from Point-Prompted
layed wlth predicted maSk Segmentation Plpellne



Pipeline pe mpotpomni keipévou: Xir SeUtepr IPOOCEYYIOT, Xprotporoteital Keije-
VO IOU TMapg€xetal and £vav yuarpo 1) aktivoAdyo yla v mneptypadr g aldoiwong. To
GroundingDINO povieAo aviXveUel TNV TMEPLOXL] £vVOlAPEPOVTIOG Kal TTAPEXEL éva TAaiolo (
bounding box ), 1o omoio ¥pnowornoieital g £10060g yia 10 SAM yila Vv TRNPATOIOI 0N

g aAdoiwong.

Original Image Original Image Mask

Figure 1.25. Original brain MRI Figure 1.26. Ground Truth Mask

Overlayed Image - Text

Figure 1.28. Lesion detection and the

Figure 1.27. Original brain MRI over- corresponding box returned by Ground-
layed with predicted mask ing DINO




Zuvduaopog Maorov: T'a xkdbe MRI sikdva Snuioupyouvial 1€00eplg PAOKeG: 600
ano tg rnpoavadepBeioeg pooeyyioelg Kat HU0 ocUVOUAOTIKEG PAOKEG AITo T H1a0TauproT)

Kdl TV £&VRoT TOV apX1KOV. AUt 1 Ipoogyylon diacdadidel tnv KaAuyn oAev tov rmbavev

AO0AOYIKOV TIEPIOX WV, EAAXIOTOMOIWVIAS TOV Kiviuvo va tapaAndOouv aAAoidoeg.

Mask from Point Mask from Text
Figure 1.29. Mask generated by Point- Figure 1.30. Mask generated by Text-
Prompted Pipeline Prompted Pipeline

Combined Mask Intersection from Point and Text

Combined Mask Union from Point and Text

Figure 1.31. Intersection of generated

Fi 1.32. Uni ted k
asks igure nion of generated masks



1.11 Metpikég ASl0A0yN0NG

1.11 Metpirég A§l0Adynong

Ia v agloddynorn g anodoong Tou MAA1GI0U TUNIATOIOINOTG 1ag, XPNOoIoIiolouvial
81aPpopeg PETPIKEG TTOU TTAPEXOUV B1APOPETIKEG OITIIKEG YOVIEG yia v akpiBela kat v aglo-

IOTiA TOV ATTOTEAECHAT®V.

Tuvtedeotrg Dice: Metpd v ermkaAuwn petady tng rpoBAeropevng HAoKag Kat tng rpay-

paukng. M tpr) 1 unobnAcvetl téAela erukaAuyn, eve pa T 0 kapia ermkaiuyn.

Intersection over Union (IoU): Yroloyilet tnv avaldoyia tng Topng mpog v €veon Tev

MPOBAETIOPEVOV KAl TTPAYHATIKGOV HAOKQOV, Pe TiHEG aro 0 £ng 1.

EpBadov Katew anod tnv KapnuAn Precision-Recall (AUPRC) : AtioAoyel tv 10opportia

petady npeglotov Kat pegadl, Xpriown yia 1) 1ooppornpiéva ouvola debopiévav.

Precision : Metpd 10 IT000OOTO TV PAYHATIKGOV JETIKOV AVAPESA 08 0AEG TG IETIKEG TIPO-

BAtyeg.
Recall : YrioAoyidel 10 TT0000T0 TV MPAYHRATIKGOV JETIKOV MTOU EVIOTIOTNKAV ATTO T0 CUCTNHA.

Specificity : Metpd 10 TI0GO0TO TRV MPAYHATIKGOV APVITIKOV AVAPEcd 0g OAd Td apvrti-

Kd napadeiyparta.

F1 Score : Appovikog P1€00G ToU precision kat recall, 1copporioviag v akpiBeia kat tmv

guaiobnoia.

Hausdorff Distance : Metpd ) péyilotn andotacn Hetaiy tov opiev g rpoBAernouevng
KAl G MPAYHATIKLG HACKAG, ONHIAVIIKY Yid v e§ao(Aiion 0Tl 1] TRNHATOnoinorn KAaAurtet

10 oUVoAO g BAdBng.

Average Symmetric Surface Distance (ASSD) : Metpd 1 péon andotaor HETagy tov
ONMEI®V TRV 0plV NG TPOBAETIOEVNS KAl TTPAYHATIKLG HAOKAG, IIPOC(EPOVTAS H1d IT0 OU-

voAikn) afloAoynor g akpiBelag twv opiwv.

Autég o1 petpikeg eSaopalidouv pia odorAnpouévn agloddynorn g akpiBelag Kat tng KAwi-
KI)G onpaociag g MPOooeyylong Hag oty TUNHATONOoiNon aAAoIOoE®V.

1.12 TIIeipapatikg Awatadn

Zuvoldo Asdopévaev: Ta ta neypdparta nou d1e§nybnoav oe auvty ) dSudeopatkng epya-
ola, xpnoworno}0nke 10 ouvolo Sebopévav tou Decathlon Task 1, 1o oroio ermkevipovetat
o€ eYREPAAIKOUG O0ykoug. To ouvolo autd aroteldei pépog tou Medical Segmentation De-

cathlon, piag cudAoyrg arno ermonpacpéva 1atpikd Sedopéva oxedraopéva ya ty a§lodoyn-
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1. Extetapévn [epidAnwn ota EAAnvika

on aAyopibuev tpnpatoroinong. Ta dedopéva neptdapBavouv payvnukeg topoypagpieg amno
teooepig kawyopieg (T1, T1Gd, T2 FLAIR). I'a ta nelpdpatd pag, XPnolonot|oape my
kamyopia FLAIR, n oroia eivatl anotedeopatiky otnv avadeidn avopaiiov oneg ot OyKot.
To ouvodo Sebopévev armoteAeital anod 388 topoypadisg yia eknaidsuor), 96 yla emkup®orn

kat 251 yia 6oxkipég.

Metaocxnpatiopoi Asdopévav: [pwv tnyv eknaibeuvor), mpaypatornow)dnkav 51apopot on-
HAVIIKOl PETACKNIATIONOL 0TI E1KOVEG PAYVNTIKLG Topoypadiag yia v IIPosTojiacia toug.
Ot e1koveg pooavatodiotnkav pe 1o ipotunio RAS (Right-Anterior-Superior) kat enavadety-
patiomkav pe otabepr] avaduon voxel. Ltn ouvéxela, ta 6edopéva mepIKOIINKAV KEVIPIKA
KA1l Kavovikorofnkav oe éva eupog petadu 0 kat 1. Epappootnke tuxaia XwPiKr) IePIKo-

nn yua v avinon dedopévev, pokepévou va Bedtiwbel n yevikeuon tou poviédou.

Apyttertovirn U-Net: To poviédo mou xpnowporotiOnke Baociletal otV apXIteKTOVIKY)

U-Net , e181ka nipooappoopévn yia povieda diaxuong. To U-Net amotedeital aro évav Ke-
dikorowntr) kat évav anokmdikornowtn pe skip connections yia ) Siatfjpnon 1oV XOPKOV
rAnpogopiav. O kedkornon)g arotedeitat and téooepa otddia pe augavopeva mAdatn Ka-
valwwv (64, 128, 256, 512), eved 0 artoK®OIKOIIOTAS AVACUOTHVEL TI§ XWPIKEG dlraotaoelg.
Znpaviikeg PeAtiooelg £ylvav pe v npoobrKr Pnxaviopov IIpocoXrg, EIMTPENIOVIAS OTO
poviédo va eotiadel o Kpiloeg eploxEg yia akpiBn tpnpatonoinon. To poviedo eival evom-
patopévo oe éva riaioto didxuong kat xpnotporotei évav npoypappatotr) (scheduler) yua

va daxelpidetat i Sadikaocia diayuong.

Exnaidsuon: H Sadikaocia eknaibeuong repidapBave Pacikég mapap€rpoug, onwg:

e Dropout SuvOnkaov: Xpnotpornor|0nke rmocootd 0.15 yia v arotporty] UIepeKIa-

ideuong, onou tuxaia nmapaleinovial mAnpodopieg Katd ) diapkela g eknaibevong.

¢ EnavaAfyeig rat Batch Size : To poviédo ekniaibeunke yia 4000 snavaAnyeig pe
péyebog batch 32.

¢ Auwaotfpata Emkipwong: Kabe 100 snavaAnyeig rpaypartonoleital ermkupeon yia

TV apakoAoubnon g andédoong T0U POVIEAOU.

Ynepriapapetpotr: Ot embooeig 10U oUCTHUATOG ernpedlovial arno Baoikég ureprapa-

HETPOUG, OTIOG:

e Text Prompt (TP): To Keijievo rmou Xpnotponoteital otov ayeyo TRNPatonoinong pe

TIPOTPOITY] KEIPEVOU.

¢ Brjpata IToAAanAaociaopou otnv Ilpotporny Enpeiou (PMS): Apopd tov aptdpo tov

@opwv TI0U 11 Sapopd e1kovag moAAardaciadetatl pe tv apxikn eiwkova MRI.

e Brjpata IToAAanAaciacpou otnv IIpotponi) Kewpévou (TMS): ‘Onwg kat 1o PMS,

aAAd ya v IIPOTPOITY) KETPEVOU.
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1.13 TIlepapatikd Arotedéopata

[NpaypatornoirOnkav niepdpata pe §1apopoug ocuviuaooUg UNEPTIAPAPEIP®Y Yid Tr BeATt-

otortoinon tou matsiou. Mep1koug aro tToug ouviuaopoug Iou egetdotnkav rneptAapbavouy:

e TP ="lesion", PMS =2, TMS = 3
e TP = "tumour", PMS =1, TMS =2
e TP = "anomaly", PMS = 3, TMS = 3

e TP = "lesion", PMS =2, TMS = 2

1.13 IIsipapatira AnoteAéopata

Agou nieprypayape ) pebodoAoyia pag Aertopepwg OTo IIPONyoUReEvVo KePpAAato, ITapou-
o1adoupie TOPA Ta AMOTEAEOPATA TTOU MPOEKUYPAV XPIOTHOIIOIOVIAG TV £v Aoym pebodoroyia
oto Task 1 (Eykepadikog ‘'Oykog) tng rpoxrAnong Medical Segmentation Decathlon. Autd
10 KePdAato Sa mapExel Pia OAOKANP®IEVE) ETTIOKOT 0T NG artodoong g pebodoAoyia pag

oe S1agpopeg Sl1ap0pP®OEIS UTIEPTIAPAPETPRDV.

Ta arnoteAéopata 9a mapouciactouv oe HopPrn IMVAK®V, PE KABe Tmivaka va avilototyel
oe pa povadiky Srapopdpworn vnepriapaperpev. Ot otrdeg o kabe nivaka Sa avarapioto-
uv g Sadopetikég PeBO6SOUG TTOU ¥prnolponoinbnkav ya ) dnpioupyia 1oV JIaoK®V Ot
peboboroyia pag: Enpeio, Keipevo, Topn kat ‘Eveon. Ot ypappég Sa avuotoixouv otig
HETPIKEG a§loAOYNONg IOU XPNOI0II00UVIal yid Vv anotipnon tg andédoong g pebodo-
Aoyiag pag. Kdabe petpikr) mapéxet pa S1apopetiky) orttiky) oty akpiBeia kat v aglormotia

TV ATIOTEAEOPATOV TUNLATONONoNG.

Ext0g ano ta moootikd anotedéopata, da mapeXovial Kat OPIOHEVES EIKOVEG TTOU IIPOEKUYPAV
and ta nepapatd pag. Autég ot e1koveg da aneikovi¢ouv v anddoor) g THNIATOI00ng
g pebodoAoyiag pag unod draPpopetikeg pubpioelg uTEPTIAPAPETPGOV, TTIPOCPEPOVIAG Pia o-

A10TIKY] £1KOVA Y1d TNV AMTOTEAECPATIKOTTA THS IIPOCEYYIONG 1A,

ErumAéov, 9a napouciacoupe ta anotedéopata pag ouviopng peAétng apaipsong ya va
Olepeuvriooupe 1 oupBoAr] TV S1adPopwv oTolkeimv Tou MAdlciou pag. Xin peAétn autn,
nielpapati{opaocte pe Siapopeg apyrektovikeg U-Net, mapaleinoupie evieAaog ta Brijpata rpo-
enegepyaoiag kat epappodoupe akopn kat ov ayoyo SAM-GroundingDINO arneubeiag otig
apXkéG e1koveg MRI avil tov aviiBetov e1kovav. Auth] 1 pedétn €xel @§ otoxo va avadeitet
1 onpaocia KaBes otolxeiou Kat v emidPAo!) TOV S1APOPETIKOV APXITEKTOVIKOV ETNIAOY®V OTIG

HETPIKEG artodoong.

IMa toug oxkoroug g eAAnvikng mepiAnyng, mapouoctadoupe POVO €va PEPOG TRV ATTOTE-
Aeopatev (Alyeg H1apopPpOOElS TOV UTIEPTIAPAPETPROV). APKETA TEPIO0OTEPARDATIOTEAEOIATA
etvat dabéoa oto ayyAko Kelpevo mou akoAouBel tnv eAAnvikn nepidnyn. H emdey-

Pévn TTapoUciaot) ATTOOKOIIEL 0TV ITAPOXY| PG CUVOITIIKNG EITIOKOINONG TG arnodoong Tou
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1. Extetapévn [lepiAnyn ota EAAnvika

mAaloiou pag, Vo 10 MAPEG CUVOAO ATIOTEAECHATOV TTPOCPEPEL 1A AVAAUTIKOTEPT] KAl EKTE-

VEOTEPT £1KOVA TV MEPAPATOV HAG.

M£0w autnig tng AEmopepous rapouciaoTg TV AOTEAEOPAT®Y, OTOXEUOUHE va avadeioupe
) otabepotnta kat v eueAi§ia 1ou MAaioiou pag otV akpiBr) TUNHATOIoiN o] EYKEPAAKOV
OYKaV ot eikoveg MRI, eve) mapdAAnda avadsikvioupe ty €mpporn tov dtadopav urepna-

PAPETIPGOV KAl T®V APXITEKIOVIKAV EMAOYQOV OTIG HEIPIKEG ATIOB00T1G.
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1.13.1 Lesion-3-3

1.13.1 Lesion-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.821 0.804 0.823
AUPRC 0.761 | 0.848 0.848 0.785
IoU 0.606 | 0.731 0.709 0.632
Precision 0.747 | 0.853 0.942 0.706
Recall 0.762 | 0.836 0.741 0.857
F1 0.755 | 0.844 0.830 0.775
Specificity | 0.987 | 0.993 0.998 0.982
Hausdorff | 5.919 | 5.624 5.744 5.785
ASSD 0.450 | 0.398 0.432 0.418

Table 1.1. Evaluation Metrics for the "Lesion - 3 - 3” Configuration
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Reconstructed

Original Image Original Image Mask Latent Image Image Anomaly Map

Figure 1.33. Counterfactual generation

Mask from Point Mask from Text

Figure 1.34. Mask generated by Point- Figure 1.35. Mask generated by Text-
Prompted Pipeline Prompted Pipeline



1.13.2 Lesion -2 -2

1.13.2 Lesion-2-2

Point | Text | Intersection | Union
Dice 0.799 | 0.807 0.814 0.792
AUPRC 0.743 | 0.762 0.789 0.735
IoU 0.580 | 0.588 0.645 0.539
Precision 0.683 | 0.640 0.780 0.580
Recall 0.793 | 0.879 0.788 0.883
F1 0.734 | 0.741 0.784 0.700
Specificity | 0.981 | 0.974 0.989 0.967
Hausdorff | 6.670 | 6.149 5.710 7.077
ASSD 0.531 | 0.506 0.429 0.609

Table 1.2. Evaluation Metrics for the "Lesion - 2 - 2” Configuration
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Reconstructed

Original Image Original Image Mask Latent Image Anomaly Map

Figure 1.36. Counterfactual generation

Mask from Point Mask from Text
Figure 1.37. Mask generated by Point- Figure 1.38. Mask generated by Text-

Prompted Pipeline Prompted Pipeline



1.13.3

Tumour - 3 - 3

1.13.3 Tumour-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.798 0.794 0.810
AUPRC 0.761 | 0.724 0.842 0.703
IoU 0.606 | 0.546 0.697 0.498
Precision 0.747 | 0.621 0.943 0.544
Recall 0.762 | 0.819 0.728 0.853
F1 0.755 | 0.706 0.822 0.664
Specificity | 0.987 | 0.974 0.998 0.963
Hausdorff | 5.919 | 6.665 5.861 6.709
ASSD 0.450 | 0.618 0.462 0.610

Table 1.3. Evaluation Metrics for the "Tumour - 3 - 3” Configuration
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Reconstructed

Original Image Original Image Mask Image Anomaly Map

Latent Image

Figure 1.39. Counterfactual generation

Mask from Point Mask from Text
Figure 1.40. Mask generated by Point- Figure 1.41. Mask generated by Text-

Prompted Pipeline Prompted Pipeline



1.13.4 Tumour-1-1

1.13.4 Tumour-1-1

Point | Text | Intersection | Union
Dice 0.774 | 0.698 0.775 0.697
AUPRC 0.734 | 0.623 0.735 0.624
IoU 0.566 | 0.332 0.567 0.333
Precision 0.662 | 0.346 0.666 0.346
Recall 0.795 | 0.895 0.793 0.897
F1 0.723 | 0.500 0.724 0.499
Specificity | 0.979 | 0.912 0.979 0.912
Hausdorff | 7.177 | 10.920 7.039 11.058
ASSD 0.657 | 1.556 0.652 1.562

Table 1.4. Evaluation Metrics for the "Tumour - 1 - 1” Configuration
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Reconstructed
Original Image Original Image Mask Image Anomaly Map

Figure 1.42. Counterfactual generation

Latent Image

Mask from Point Mask from Text
Figure 1.43. Mask generated by Point- Figure 1.44. Mask generated by Text-

Prompted Pipeline Prompted Pipeline



1.13.5 Anomaly -3 -3

1.13.5 Anomaly-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.781 0.776 0.811
AUPRC 0.761 | 0.707 0.831 0.698
IoU 0.606 | 0.527 0.676 0.494
Precision 0.747 | 0.615 0.941 0.544
Recall 0.762 | 0.787 0.705 0.844
F1 0.755 | 0.691 0.806 0.662
Specificity | 0.987 | 0.974 0.998 0.963
Hausdorff | 5.919 | 6.948 6.199 6.654
ASSD 0.450 | 0.685 0.528 0.610

Table 1.5. Evaluation Metrics for the "Anomaly - 3 - 3” Configuration
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Reconstructed

Original Image Original Image Mask Image

Latent Image

Anomaly Map

Figure 1.45. Counterfactual generation

Mask from Point Mask from Text
Figure 1.46. Mask generated by Point- Figure 1.47. Mask generated by Text-

Prompted Pipeline Prompted Pipeline



1.13.6 Mwkpotepo U-Net

1.13.6 Mwkrpotepo U-Net

[Melpapatiopacte Pe Pla PIKPOTEPT APXITEKTOVIKN yia 10 U — Net tou poviéAou diayu-
0ng pag. ZuyKekpipéva, 0 KASIKOMOTg pag eneepyaldetal TG E1KOVES NEO® TPV, AV yid
1e00dpav, otadiov pe otabepd AdTog Kavadiav: 64, 64 kat 64 kavaiia. Kabe otadio twpa
nieplAapBavet €va, avtl yia duo, residual block. ITapakdie apEXouple Ta AnoteAéopata mg

Srapdppwong v unepriapapétpeyv “lesion — 3 — 37,

Point | Text | Intersection | Union
Dice 0.757 | 0.778 0.758 0.777
AUPRC 0.778 | 0.776 0.807 0.766
IoU 0.611 | 0.624 0.626 0.611
Precision 0.855 | 0.787 0.944 0.736
Recall 0.681 | 0.751 0.650 0.783
F1 0.759 | 0.769 0.770 0.759
Specificity | 0.993 | 0.988 0.998 0.982
Hausdorff | 6.838 | 7.489 7.205 6.971
ASSD 0.414 | 1.325 0.420 1.535

Table 1.6. Evaluation Metrics for the "Lesion - 3 - 3” Configuration of the smaller U-Net
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1.13.7 Ag¢gaipavrag to Movtédo Awaxuong

Y& autr) v evotntd, MapoucladoUle Td ATOTEAE0ATA TIOU MPOEKUYAV ATIO TV AEOT)

EPAPOYT] TOV AYOY®OV THNHATOOIN0NG e ONUEIaKEG KAl KEPMEVIKEG UTIOOEIEElS oTIg apyi-

Keég e1koveg MPI ano 1o ouvolo Sedopévav Medical Segmentation Decathlon Task 1 (Brain

Tumor) , xopig ) dnpioupyia avumpaypatkoyv EIKOVQV.

Point Text | Intersection | Union
Dice 0.337 0.164 0.303 0.218
AUPRC 0.195 0.056 0.125 0.124
IoU 0.114 0.022 0.083 0.052
Precision 0.145 0.049 0.178 0.072
Recall 0.353 0.285 0.364 0.324
F1 0.315 0.223 0.444 0.356
Specificity | 0.514 | 0.422 0.463 0.355
Hausdorff | 28.436 | 39.323 30.147 0.347
ASSD 4.147 7.348 4.736 6.548

Table 1.7. Evaluation Metrics for the "Lesion - 3 - 3" Configuration without the usage of the

Counterfactual
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1.14 Tleputtwoelg Arotuyiag

1.14 TIIepunttoelg Anotuyiag

ITapd ) ouvoAikr] aglormiotia Tou MAA10ioU Jag, UItapXouV MEPUTIROCELS OTTOU TO oUCTN A
ATIETUXE VA TUNHATOIIO0el 00otd 11§ BAdaBeg otig e1koveg MRI. AUTEG Ol TIEPUTIOOELS ATTO-
TUX1lag TIPOKUIITOUV KUPIRG AOY® NG Iapousciag oAl MIKP®V Kdl Sucdiakpitov BAaBov, ot

OTT01EG ATTOTEAOUV ONHAVIIKEG TIPOKALOELS Yid TV akp8r] aviXveuorn Kal TUNHATOnoinor).

O1 kUp1ot Adyor anotuyiag g dadikaciag Tpnpatonoinong neptAapBavouv:

e IToAU pikpég BAAGBeg: Ot oAU 1ikpéG PAGBeg ouxvda eival SUCKOAO va eVIOIOTOUV Kat
va tunpatonionBouv pe akpiBeta. To ikpo toug peyebog 0bnyel oe avertapkr) aviibeon
KA1 IPOegoxT] otig e1KOveg, kabiotdviag SUOK0AO yia to poviédo va tig diagoporoiroet

arno tov riepiBaidovia 10T0.

¢ XapnAr nodtta TV aApX1KOV £1KOVOV MRI: e 0plOpEVEG TIEPUTIOOELS, 01 APXIKESG
ewkoveg MRI pmnopel va eivatl Kakng mootntag, Pe xapnAn avaluon 1 vynla emineda
YopuBou. Autd propel va eprnodioet v 1KAVOTTA TOU POVIEAOU vad €VIOTOEL KAl va

TUNPATOITO|0e1 0®OTA TS PAAGBES.

IMNapakate napatiBeviatl mapadeiypiata EKOVOV OTIOU TO0 POVIEAO PaAg ATIETUXE va THNHATO-
nowoel owotd g BAdBeg. Kabe ouvolo sikovav reptlapBavet tnv apxiky MPI, v apyikr)
pdoka e1kovag, tv Aavbavouoa e1kova, TV AVAKATAOKEUAOHEVT £1KOVA KAl TOV XAPTH ave-
padev. Autd ta tapadeiypata KatadeikviouV Tig TPOKAN OIS TIOU AVIIHETIMITOE TO HOVIEAO

pag oty akpiBn aviyveuor oAU pikpov kat Sucbiakpiiev BAaBov.
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1.15 Epunvela Anotedeopdtev kat Avaduon

1.15 Eppnveia AnoteAseopdatov Kat AvaAuor)

Y& autn TV evotnTd, ApoUcla{oUle Pid OAOKANPOHEVE AVAAUOT TV MEIPAPATIKOV ATTO0-
TeEAEOPATOV MOV MIPOEKUYAV aTd T XPL 01 ToU IMAALCi0U TPNPIATOoinong pag oty epyacia
tou Eykepalikov ‘Oykou aro v nipdéxAnon Medical Segmentation Decathlon. H avaAuon
Baoidetal os Siadopeg S1aPOPPOOEIS UTIEPTIAPAPETPOV, OTIAG O1APOPETIKEG KEIEVIKEG TTIPO-
TpOIEg, tov apldpo v Prpdtev mpoenegepyaociag, Kat v epappoyr tou ouvdéuacpou
SAM-GroundingDINO.

Ta neypdpatd pag édei§av ot o1 Kepevikeg rpotporég ~lesion” kat tumour” rtav egicou a-
TOTEAEOPATIKEG otV KaBodrynon tng Siadikaciag Tpnpatonoinong. AUtEg Ot ITPOTPOTIES TTa-
peixav otaBepd uynAég erubooetg oe 0Aeg TG PeTpikeg adloddynong. H nporportty “anomaly”,
av Kt £1iong arnoteAeOpatiKy), EPpepe eAaPPp®G XAPNAOTEPA ATTOTEAEOIATA OE OUYKPLO0T) HE TIG
“lesion” xat ’tumor”. Auto UTIoSe1KVUEL OTL Ol TIPOTPOIIEG ITOU OXETIovTal Apeoa He T @UOoT)
ToU otoXou (6nAadn, PAabn 1 6ykog) eival o anoteAeopatikeég otr PeAtioon tng akpiBeiag

g TPNpatonoinong.

[Mapatnprjoape pa oadr] Taon OIou 1] avudnorn tou aptduou v Bnudtev nposnegepyaciag
Kat ot 6Uo pebodoug Tpnpatonoinong (He mPOoTPOor] ONHEIOU Katl KEWEVOU) 081ynoe oe
BeAtiopéva anotedéopata. Auty ) tdon dtatnphOnke €0 £€va CUYKEKPIIEVO Onpeio” ouyKe-
Kppéva, 1 molotnta g tunpatonoinong PeAtibnke 6co o ap1Bpog 1ewv Pnpdiev mposre-
Eepyaoiag audavotav péxpt ta tpia. Qotooo, otav o apdpog v Pnpdtev Eptace ta t€ooepd,
1] TIOWOTTA TOV ATOTEAEOPAT®OV APXL0E VA HEIMVETAL, AOY® NG UTIEPBOAIKIG ATIOAEIAg TIANPO-
(POP1OV aro 1 ouvexr rmoAAamAactaoctikn Sadikaoia, n oroia SUoKoAevel Vv akpiBela g
Tunuatonoinong v PAaBov. Avtibeta, n diapdppwon pe pndevika Prjpata mpoemnsiepya-
otag (0-0) £6woe ta XelpodTepa anotedéopata, unoypappidoviag i onpaocia mg KatdAAning
npoeregepyaoiag yia ) BeAtioon g anddoong TUnpatonoinong.

H peboboloyia pag £6e8e avbekukomta os S1aPpopeg dlapoppaoetg, Satnpmviag UPnin
arodoon avedaptnta arod v KEWEVIKE [POTPOIT TTOU XPNOIHOIo0nke, epooov oxetidetal
pe v katyopia "6Aabn” ) "oykog”. Ot p€Bodot Tunpatonoinong pe mpotpor) onpeiou Kat
KEWEVOU TAPNYAyav OUYKPiolla anotedéopata, UMoSelKvUovtag Ot Kdl o1 8U0 pIopouv
va xpnotporioinfouv arotedeopatkd oty npadn. Opoiwg, o1 pébodor iactavpwong Kat
£veorng, mou ouvbudlouv ta arotedéopata aro tg duo pebodoug, £6eav emniong mapopoa

o0t Td, ermBeBaidvoviag MEPALTEP® TNV AVOEKTIKOTTA NG IIPOCEYYIONG HAG.

Z10 mAaiolo g apalpeTIKNG PEAETNG, TIEIPAPATIOINKANE PE P PIKPOTePT Sapopdp®or) Tou
poviédou 8iaxuong, 1 oroia Epepe eAaPPOG XEPOTEPN ATtOS00N O OXEOT HE TO PEYAAUTEPO
povtédo, aAdd e§akodoubouoe va rapdyel KaAd arotedéopata ouvoAikd. Auto urtodetkvuet
ot eve 10 PéyeBog tou poviédou Sidyuong ennpeddet v anodoor), 1o mAaiolo mapapévet

ATIOTEAEOPATIKO AKOUI KAl PE PIKPOTEPA POVIEAQ.

Erurméov, a§odoyrjioape v anddoon tou ouvbuacpou SAM-GroundingDINO 6tav epap-
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poonke aneubeiag otg apyikég ewkoveg MRI, xopig ) dnpouvpyla avirmapadetypatikov
EIKOVQV. L& AUTO TO OEVAPLO, MAPATIPNOAME ONIAVIIKA XEIPOTEPA AroteAéopata, avadetl-
KvUovtag ToV KPio1o poAo Tou poviédou diaxuong kat g dadikaociag dnpoupyiag avura-

padetypatev otn Bedtioon g akpibelag g TUNHATONOINONG.

1.16 Zuykplon pe Ynapyouoeg Epyaoieg

Ye autd 1o KePAAalo, TapouUctAouUie [11a OUYKPITIKE] aVAAUOT TOV AMOTEAECPATOV TTOU
MPOEKUYPAV AIto T0 TAAIO10 pag o€ 0XEor Pe AAAeg PEAETEG TTOU €XOUV XPIO1IOTIO|0EL PO-
vtéda diaxuong yla v THNPatonoinon Kal EVIOIoRO eYKEPAAIKOV Oyk®v. [Tapolo mou 1)
OUYKP101 aUTr] OTOXEUEL va TOTTIOOET 0L TNV £pyacia 11ag oto rmAaiolo g vrapyouvoag BiBAto-

ypadiag, Untdpxouv apKeTEG ITPOKANOELG TIoU eprtodidouv piia apeor), £va rmpog £€va oUYKP1oT).

Mia aro g kupleg duokolAieg eival n éAdewyrn dnpooia 6iabéopiwv benchmarks ano alleg
peAéteg. I[ToAAEG amto autég dev avadPEPOUV OUYKEKPIIEVES AETTTOPEPELEG, OTIOG TO UTIOOUVOAO
10U ouvodou Sedopévav BralS rou xpnolpornoinoav 1 v akpiBr] apXtEKTIOVIKL TOV HO-
Viedev, oupneptdiapBavopévev tov 51adoporotroenv ot dtapoppaon tou U — Net. Autég ot
dlagpopeg ota dedopéva Kat Tov 0Xe61A0P0 TRV POVIEA®V PITOPOUV vd EMNPEACGOUV ONHAVTL-
KA Vv anodoor) g THNHRATonoinong, kabiotoviag SUOKOAT TNV APECT) CUYKPION OA®V TV

HETPIKOV agloAoynong.

Errméov, ta nmpewtokoAAa ekraibeuong, o1 UepnapdPIeTpot Kat td Brjpata rnposnedepyaociag
ouyva dev avagpépovral pe ouvenela otig SnPooleuoelg, IIPOCOETOVIAG £va ETIITAEOV ETTire-
60 moAumdokotntag ot ouykptlon. [a nmapddsiypa, diadopég otov apBpd v Pnpdiov
MPOEIECEPYATiag, TOV TUIO TRV KEIHEVIKAOV IIPOTPOMOV KAl TV EVOOUAT®ON HNXAVIOHOV
MPOCOYXHG oT1G apXltektovikeég U — Net eival Kpio1o1l ITapAayovieg IO eMnpedadouV ta arote-

Aéopata, aAdd dev avapépovial mavia MANPES OTa OXETIKA £pYa.

[MTapd autég 11 MPOKATOelg, pooTiaBoUpe va MApPEXOUPE Pia UYPNAoU €MmIESOU OUYKPLl-
o1 T®V CUVOAIKQOV TACE®V Arodoong, £0T1adoviag OTiS KOG AVAPEPOHEVEG HETPIKES OTIOG
o Seiking Dice, 1o IoU, n akpiBela kAt 1 avdakAnon, K.a.. AUTH 1] TOWOTIKY oUyKplon Sa
avadeiel Ta mAeovekTpata Tou mMAAloiou pag Kat ) oxXEor ToU JE 1 ) PeAtioor] tou Evavtt
UQPIOTAPEVOV TIPOCEYYIOE®V OTNV THIHATOI0IN0T EYKEPAAKOV OYK®V PNECK POVIEA®V Siaxu-

ong.

Zug akdédoubeg mapaypadou, rapouctaloupe v anodoorn tou mialciou pag napdAinda
€ Ta anoteAéopata Iou avapEPOovial Os TPEIS ONPAVIIKEG Tapepdepeig dnpooievoetg, Aap-
Bavovtag mpooekTKA UnOWn Toug npoavapepBEvieg rieplopiopovs. I[apddo mou pia apeon
ouykplon pe benchmarks dgv eivat duvatr), autr n avaluorn mApEXEl MTOAUTIHES TTANPOPO-
pleg yla tov €UpUTEPO AVIIKTIUTIO TOV HOVIEAGV §1aXU0NG OtV THNHATONOINo! eYKEPAAKOV

OYK®V.
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1.17 EmiAoyog

Wolleb et al.: H 11¢6060g twv Wolleb et al. [50] xpnowonoiet DDPMs ya 1 Snpoupyia
AVTIOETIK®V €1KOV@V, OITOU POVO Ol ITAB0AOYIKEG MEPLOXES TPOIIOIO0UVIAL, SNHII0UPYOVIAS
évav Xdptn avepaAldv yla tanpatornoinon. Xe oUuykplon pe 1 O1kr pag pebodoloyia, 1
TIPOCEYY101] TOUG XPIOHOTIOEL AlyOTEPOUG PUNXAVIOHOUS TIPOCoXNS Kat Baciletal otnv kabo-
Sdnyoupevn anoBopuBoroinon pe ta§ivopntr). Aviibeta, 1o §1k0 pag POVIEAO EVORIATOVEL
IPOXWPNUEVT [IPOETESEPYAOia, PNXAVIoHoUg IIPOcoXHS o€ ToAAA erineda Katl IO Ipony-
péva epyadeia tpnpatomnoinong oneg 1o SAM kat to GroundingDINO, emipénovidag pag va

Sratnpoupe vYnAr akpiBela tpnpatornoinong pe Atyotepa Prjpata Sidyuong.

Sanchez et al. : Ot Sanchez et al. [40] Yxpnowporolouv €va poviedo Siaxuong pe
€ppeon kaBodnynon Kat pnxaviopoug Ipocoxg yia ) dnpioupyia avilBetikov e1KOVQOV 11e
OKOTIO oV evioropo PBAaBov. Av kat kat ot §uo pébodol evoopatoavouv U — Net apyite-
KIOVIKEG 1€ TIPOOOXT), 1] S1KY Pag IPOCEYY1oT SeXwpilel Xpnopornomviag S1aotaupoupevn
IIPOCOY!| Kat Iponypéva poviéda tpnpatonoinong oneg 1o SAM kat to GroundingDINO peta
v npoernegepyaoia. Eve o1 Sanchez et al. xprnoipornotouv Suvaplikr] KavoviKoIoinorn Katd
) QAo €§ayeyng ya va datnprjoouy v moidtnia avacuykpotnong, n dikia pag pebo-
Soloyia xpnoworotel pia Sadikaoia roAdardaciacpoy (rposrnedepyaocia) yia va evioxuoet

Vv opatdina v BAabov, odnywviag oe 1o akpBr) anoteAéopata THNATOIo0nG.

Fontanella et al.: H pébobog tov Fontanella et al. [11] , ”Dif — fuse”, ouvduaiet
éva DDPM pe xdpteg ermonpavoewv (saliency maps) yia tov €VIOIIOHO AVROUAAQOV 0TS 1-
ATPIKEG €1KOVEG PEO® TG dnuioupyiag avilBetkOV e1KOVQV. Xe OUYKPon pe ) 1KY pag
npoogyyion, 1 “Dif — fuse” npoobitel punxaviopoug XAptn £monpavoemv yua t Bedtioon
TOU €VIOITIOPOU 1OV MTAO0AOYIK®V MEPLOXRV, eve 1] Sikid pag pebodoloyia xpnoponolel 1o
SAM xat 1o GroundingDINO yia tunpatonoinor), pe ¢1gaocn oty MPoeneepyaoia mg i-
Krovag dagopag. IMapd 1o yeyovog ot 1 "Dif — fuse” erutuyydavel a§iddoya arotedéopara,
n 6wkia pag peBodoroyia amodidel kaAutepa oe oplopéveg pubpioelg, Seixvoviag v aro-
TeEAEOPATIKOTNTA TNG TIPOCEYYIONS HaAg Ot Snpioupyia avilOeTKOV £IKOVOV KAl T XP1on

TIPONYHEVAV TEXVIKOV TUNLATOIOI0G.

1.17 Enmniloyog

T v rapovoa SmAeuatiky epyaocia, avartuxdnke kat a§lodoyndnke £va aflormoro mia-
1010 y1a TNV TUNPATOION 0N KAl TOV EVIOITOHNO OYK®V 0Tov eyKEPAAo néo® MRI ewkovov. H
TIPOCEYY101] PAG EVOMUATMVEL £va HOVIEAD dlaxuong yla 1) Snpioupyid Uylev avurpaypa-
TIKOV €1KOVOV, aKOAOUOOUEVO arto THNHIATOoiNon Xpnotponotwviag ta povieda SAM kat
GroundingDINO. Egstdoape 81dpopeg 51a110pPp®OELS UTIEPIIAPAPEIPOV KAl IPAYIATOITON-
foape pia PeA€tn apaipeong yla va KAatavorooue T onpaocia kabe otoixeiou ng dadika-

olag pag.

Ta Baowka suprjpata nieptAapBavouv:
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¢ AmnotsAeopatikotnta tov IIpotponav Kewpévou: Ta niepapata édei§av ot ot ripo-
Tporég onwg “lesion” kat “tumor” eival €§i00U ATIOTEAEOPATIKEG, TTAPEXOVTIAS UWPNAT
anédoorn oe 6Aeg 11§ petpikég. H mpotpory “anomaly” eixe eAadppwg xapnidtepn a-
nodoor, Eronpaivoviag ) onpacia g ermAoyng POoTPon®V rmou cuvdéovial dpeoa

He ) @uon tov BAaBov.

¢ Enidpaon tewv Bnpatov IIpoenefepyaociag: H avdnon v Bnpdtev npoenedepya-
olag PeAti®oes v moO10TNTA NG TUNPAtonoinong, pe BEAtiota amoteAéopata ota tpia
Bhpata. IMépa amd autd to onpeio, n anodoorn APXloe va PEIOVETAL AOY® ATIOAEIAG
rnpogopwwv. H arouocia mposnefepyaociag mapnyaye ta xeypotepa anotedéopard,

urnoypappidoviag tn onpaocia tg 00otrg IPoEreiepyaoiag.

e AvOektuirotnta tng MeBobodoyiag: H pebodoroyia pag anédeide v avlekukottd
10U 0¢ Srapopetikég drapopPpwoelg, dSiatnpwviag vyndr anddoon ave§aptnra arod v
TIPOTPOITL] KEEVOU, EPOOOV aUTH NTAV OXETK P T1G PAdBeg. Ot TIPOTPOTIEG ONnuEi®V
Kat Kepévou anedwoav ouykpiopa anotedéopata, oneg Kat ot pebodot Siaotaupwong

Kl £VEOONG TV AMOTEAEOPATOV.

e MeAétn A¢aipeong: EmBeBaiwoe 1ov Kpiowyo podo tou poviédou Sidxuong Kat g
dnuoupyiag avubetk®v 1KOVEOV yla v eriteudn uyndng akpiBeliag tpnpatonoin-
ons. H agaipeon tou poviédou dayxuong kat n arneubeiag epappoyr) tou SAM —
GroundingDINO otig apXikég MRI €1Koveg 0d1ynoe Og ONPAVIIKA XEPOTEPA ATTOTE-

Aéoparta.

ZuvoAikd, 1 epyacia aut] oupBadlel otov Topéa NG TUNHATONOINONG 1ATPIKOV EIKOVAY,
delyvoviag v amoteAeoPATIKOTTA TG EVOMHUATOONG YEVVITIK®V HOVIEA®V HE IIPONYHEVES
TeEXVIKEG TUNuatoroinong. Ilpoteivetal wg éva aglormorto epyadeio yia v urootrpisn tev
atpov ot §1ayveon Kat tov oxXedlaopd Sepaneiov.

MeAdovtikég kateubBuvoelg 9a propovoav va reptiapBavouv:

o BeAtwopéveg Texvireg Ilpoenefepyaociag: Epsuva yia evadlaktikeég pebodoug ripo-

enegepyaoiag mou 9a dlatnpouv replocdtepeg TANPOPOPIES.

o Extetapéivn PuOpion Ynepniapapérpov: INepattépw e§epeivnon UEPTIAPAPETP®V

yia BeAtiotonoinon g anodoong.

e Edappoyn oc Ipaypatiké Xpovo kat KAwvikég Aoripég: Aokipég g pebodolo-
yiag oe KAwikd mepiBdAdovia yia v agloAoynon g MPAKTIKIG TOU XPNotuotntag.

ZUNIEPACTHATIKA, TO TTAAI010 Pag AnoteAel ONPaAviikn poodo otV auTtoPat TUNHATOoNoT)
OYK®V eYKePAAOU 0g MRI £1KOVEG, TIPOOPEPOVIAG £VA EUEAIKTO KAl AMTOTEAECUATIKO EPYAAELID

yla v uroBonnor) g 1atpikng dayveong.
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Chapter g

Introduction

The application of artificial intelligence (AI) in medicine [10, 33] has revolutionized
healthcare by improving diagnostic accuracy, personalizing treatment plans, and enhanc-
ing patient outcomes. In the field of medical imaging, Al models have shown significant
potential in detecting and segmenting anomalies such as tumors and lesions, which are
critical for early diagnosis and treatment planning. Magnetic Resonance Imaging (MRI) is
a vital imaging modality for brain tumors due to its high resolution and contrast. How-
ever, the manual analysis of MRI scans is time-consuming and prone to human error.
Therefore, automated systems that can accurately locate and segment brain tumors are

of paramount importance.

One attempt at such automation is through generative models. Generative models have
gained much popularity in recent years due to their ability to generate high-quality im-
ages, synthesize music and human-like speech. Among the various generative models
that have been proposed over the years - GANs [12], VAEs [21], autoregression trans-
formers [47], flow models [9] - diffusion models have been consistently producing the best
results among various fields. They are a class of probabilistic models that gradually inject
noise into a given input and then learn to reverse that process with the help of a neu-
ral network. They then use said trained neural network to generate new data sampled
from the learned initial distribution. The theory behind the class of diffusion models is
mathematically oriented and it took many independent contributions to establish their

dominance in today’s world.

Building on the strengths of diffusion models, we propose a novel framework that leverages
diffusion models to produce counterfactual brain MRI images without lesions. These
counterfactual images serve as a reference to highlight the presence and extent of lesions
in the original scans. For the segmentation task, we employ the Segment Anything
Model (SAM) [22] and the Grounding DINO model [25]. SAM is renowned for its ability to
segment objects from any image with minimal input, making it highly adaptable to diverse
segmentation tasks. Grounding DINO complements SAM by using grounding techniques
that enhance the model’s capability to localize and identify objects based on point as well

as textual prompts.
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Chapter 2. Introduction

To evaluate the performance of our framework, we utilize several metrics, including the
Dice score, Area Under the Precision-Recall Curve (AUPRC), precision, recall, specificity,
F1 score, Hausdorfl distance [18], and Average Symmetric Surface Distance (ASSD) [48].
Our framework achieves high performance in all of these metrics outperforming not only
the baseline models but numerous similar frameworks in the context of medical segmen-
tation. These metrics provide a comprehensive assessment of the model’s accuracy, reli-
ability, and robustness in detecting and segmenting tumors. Additionally, our framework
generates multiple output images that highlight different aspects of the segmentation,

which can be invaluable for radiologists in making more informed decisions.

It is important to emphasize that this framework is not intended to replace radiologists or
doctors. Instead, it is designed to be used as an assistive tool, augmenting the expertise of
medical professionals by providing them with detailed, accurate, and easily interpretable
imaging results. By integrating advanced Al techniques with clinical practice, we aim to

enhance the diagnostic process and support better patient outcomes.

Diploma Thesis



Chapter B

Fundamental ideas behind Diffusion Models

3.1 Denoising Diffusion Probabilistic Models

3.1.1 Inspiration from Thermodynamics

The work of Sohl-Dicksteain et al. [41] pioneered the field of diffusion models, serving

as the seminal inspiration for subsequent research and publications in the area.

In this paper, the authors introduce the main idea behind the class of diffusion models
as we know it today. A forward process is defined where the input is gradually corrupted
with noise using a discrete Markov chain as well as a backward process where a a neural
network is trained to gradually restore the initial input by removing the noise. Moreover,
the authors choose the log-likelihood as the training objective and provide a more tractable
lower bound to that amount in the form of a sum of Kullback-Leibler divergence and
entropies. Finally, via the use of Monte Carlo sampling, it is shown that one can exactly

sample from the initial data probability distribution.

3.1.2 Extending the Ideas

Although Sohl-Dickstein et al. [41] set the general framework for the diffusion process,
they left out many important details regarding the implementation of said process. This
theoretical and practical gap was filled by another seminal paper in the field; the work of
Ho et al. [16]. In this paper, the authors introduced numerous new concepts expanding
on previous work in the field. Issues such as variance schedule, a formal definition of

the DDPM sampling procedure, and a more tractable definition of the cost were discussed.

In this context, the forward diffusion process is described by the following Markovian

process:

Q(thxt_l) = N(Xt; V1 - b - x¢_1, by - I),Vt e€l,... T (3.1)

where T is the number of diffusion steps, b1, ..., br € [0, 1) is the variance schedule , I is
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Chapter 3. Fundamental ideas behind Diffusion Models

the identity matrix that has the same dimensions as the input image xp, and N(x; u, o)

represents the normal distribution of mean y and covariance o that produces x.

In the reverse diffusion process, we start from a sample xr ~ N(0,I), and generate new

samples from p(xp) by following the reverse steps:

PXi—1lxe) = N (15 uxe, ), Z(xg, t)) (3.2)

In order to approximate the reverse steps, a neural network is trained that receives a

noise input and learns to predict the mean and covariance.
Pa(xi-11xt) = N(xi-1; Ha(xt, 1), Za(xt, 1)) (3.3)

Given that both of the forward and the reverse processes are modeled as Markov chains,

the joint probability distribution in each case can be written as follows:

T
q(x1, X2, ..., x1|X0) = l_[ q(x¢lxi-1) (3.4)
t=1

Po(X¢—11x¢) (3.5)
1

pa(x1, X, ..., xr) = p(xr)

T
t=

Equivalently, regarding the actual perturbed data, the discrete Markov chain that de-

scribes the forward diffusion process can be expressed as follows:

x; = \J1 - bxi_1 + \/be (3.6)

where:
Xo ~ p(xo0)
e~ N(,I

There is also a transformation that can be used in order to obtain a sample x; directly

from the initial sample xp.
x; = Vaxo + V1 — ace (3.7)
where:
a=1- bt
A
ar = Hs=o as
The reverse process is described by the following equation:
Xi-1 = pa(xt, 1) + V2Za(xt, )z (3.8)
where:
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XT ~ N(O,I)
z~ N(,I)

It is noted that ¢ are standard spherical Gaussian noise terms independent of the past
values of x and z are standard spherical Gaussian noise terms independent of the future
values of x. Both of these terms depend on time t, i.e. € = ¢, z = z, but we avoid the

subscripts in favor of simplicity.

Notice how during the reverse process, additional noise is added to the predicted sample
at every time step. This is to ensure that the generation process does not get stuck in

modes of the distribution.

Data —————— Destructing data by adding noise ———» Noise

.w, "
Data «———— Generating samples by denoising ——— Noise

Figure 3.1. The Forward and Backward Diffusion Process.
(1]

For our model to produce accurate and high-quality results, we want the reverse joint
probability distribution, ps(xo, x1,...,xr) = p(xr) Hthl DPs(x¢—1|x¢) to closely approximate
the joint forward probability distribution, q(xo, x1, ..., Xr) = q(xo) H’{ZI q(x¢|x¢—1). For this
reason, the minimization of the Kullback-Leibler (KL) divergence between these two dis-

tributions is used as the objective for training the neural network:

KL(q(xo, X1, ..., XT)||[ps(X0, X1, ..., X)) (3.9)

= —Eqxo.x1,..xr) [10gDs(X0. X1, ..., X1)] + const (3.10)

= Eqxo.x1,...xp) | —logp(xr) — Zthllog‘lM + const (3.11)
q(xelxe-1)

= Ly + const (3.12)

> E[-logps(xg)] + const (3.13)
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The term Ly, g represents the Variational Lower Bound of the log-likelihood of the data xg.
This is a commonly used objective in neural network training since it closely approximates
the log-likelihood of the data and is computationally tractable. The term const represents

a constant that does not depend on the network’s parameters, 8.

After some simplification, the authors arrive at the following form for the Ly p:

Eq(xox1....xr) [KL(q(xTIxO)IIp(xT))+EthlKL(q(xt-llxt,xO)Ilpa(xt-llxt))—loypa(Xolxl)] (3.14)

This quantity can be deconstructed in the following manner:

Lo = —logps(xo|x1) (3.15)
L = KL(q(xr|xo0)llp(xr)) (3.16)
Li—1 = KL(q(x¢-1|x¢. Xo)lpa(xi-11x¢)) (8.17)

With this formalization, the Ly;p can be written as:

Lyip = L + Z{_; Li-y + Lo (3.18)

The authors proposed to ignore the terms Ly and Lg; the former because it does not de-
pend on the network’s parameters and the latter because they managed to produce better

results in practice without it.

Thus, the loss function at time t becomes:

Lvig = Li—1 = KL(q(x¢-11x¢. X0 po(x¢-11x¢)) (3.19)

The distribution q(x;—1|x¢, xp) is called the forward process posterior distribution:

q(xi-11xe, X0) = N (X1 fie(x¢, X0), Bel) (3.20)
where:
N Va;_1b Vai(1 - ag1)
(X, X0) = ~———xp + = X (3.21)
1-a 1-a;
- 1—ayy
by = ————b (3.22)
1- a;
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It can also be proven that minimizing the KL divergence between two Gaussian distribu-
tions when the variance is fixed, is equivalent to minimizing the distance between their
means. In this case, the aforementioned training objective can be further simplified to

the following:

.
Li—1 = Eqxoxq...xr) ﬁ”ﬂt(xt;xo) — ta(x¢. O)ll5 | + const, (3.23)
i

where o? = by.

Finally, we can express xp as a function of x; from equation (5) and acquire a simplified

version of fi:

. . 1 b,
L Xo) = = - 3.24
e (xe, xo) = fie(xe) N (Xt \/1——5&6) ( )

Now, since we want us = fi; and x; is already available to the input model, the simplified

objective becomes:

Laimple = Brxy.e [lle = eaxc, DII3] (3.25)

Equivalently, using equation (7), the above objective can be written:

Lsimple = Et,xo,e [”6 — eg(Varxo + \% 1 - dye, t)”%] (3.26)

The model now tries to predict the added noise at each step in the forward diffusion
process. With the variance matrix fixed and the noise €5 of each time step available, we
can sample from the initial distribution using equation (6):

1 l1-a
X1 = — |xy — ——e€s(x¢, )| + 02 (3.27)

valt Vica

3.1.3 Optimization and State-of-the-Art Results

Although DDPMs [41], [16] managed to produce high-fidelity generated samples, they
did poorly on achieving competitive log-likelihoods, a popular metric in generative model-
ing whose optimization is believed to be correlated with the ability of the model to capture

all of the modes of the data distribution.

This was highlighted by Dhariwal et al. in their paper [29] where they proposed sev-
eral improvements to the DDPM to optimize the log-likelihood metric while maintaining

high-quality samples, conclusively showing that DDPMs are capable of producing state-
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of-the-art results even to datasets of high dimensions such as ImageNet.

In more detail, Dhariwal et al. proposed three modifications to the DDPM algorithm

which they then showed optimize the log-likelihood metric.

Firstly, they suggested learning the covariance matrix Xs(x;, t) instead of fixing it to a
constant value like Ho et al. had previously proposed [16]. Noticing that Xg(x, t) = otZI
produced similar results for 02 = b; and o2 = by, the authors expressed the covariance
matrix as follows:

To(x:. t) = exp(vlogb; + (1 — v)logh;) (3.28)

Based on this, they also modified the training objective since the one from equation (25)
did not depend on the covariance matrix. For the new hybrid learning objective, they

combined equations (25) and (18):
Lhybria = Lsimpte + ALvLB (3.29)

They noted that A = 0.001 worked best in practice to prevent the Ly;p term from over-

whelming Lgimpie-

The second modification that was proposed was using a cosine noise schedule, instead of
a linear one. With a cosine noise schedule, the information is destroyed more slowly in

the forward process making the transition from data to noise much smoother.

t t/T +
a = 1O () = cos( LTS T (3.30)
f(0) l1+s 2
The authors finally proposed importance sampling :
Ly
LVLB = Et~pt |:—:| (331)
bt

where:

pr < VE[LZ] and Y p; = 1

Importance sampling is a reformulation of the cost Ly g to make its gradient less noisy
allowing for direct optimization of that cost instead of the hybrid one. One practical con-
sideration regarding importance sampling is that the values of E[L?] are unknown and
subject to change during training. For this reason, the authors propose maintaining a
history of the previous 10 values for each loss term and updating this history dynamically

during training.
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3.1.4 Faster Sampling with Implicit Modeling

While DDPMs produce high-quality samples, surpassing other generative models
across numerous metrics, the diffusion process requires many iterations to produce said
samples. Compared to GANs, which only require a single pass through the network to
produce a sample, DDPMs can be more than a thousand times slower in the generating

process.

This problem was thouroughly addressed by Song et al. [42]. In this paper, they propose
generalizing the forward diffusion process, which is Markovian in nature in DDPMs, to a
non-Markovian process. With this generalization, they are able to show that faster sam-
pling can be achieved in the reverse process by purposefully omitting some steps in the
reverse chain. They call these generalized inference models Denoising Diffusion Implicit
Models (DDIMs).

The key observation was that the training objective in DDPMs (12) depends only on the
marginal distributions g,(xxp) and not on the joint distributiong,(x; .. r)lx9. Based on
that, the authors propose alternative non-Markovian inference models with different joint

distributions but the same marginals.

In this context, the transformation from a Markovian diffusion process to a more general
non-Markovian inference process is achieved by conditioning the forward and reverse

transition probability distributions to the initial sample:

T
Qo(1..11%0) = o(xrix0) | | do(i-11xi, x0) (3.32)
t=2

where qo(x|x0) = N(Vaixo. (1 — ay)I) for all t > 1 and:

Xi— Vaxo
q(x_lx,xo)ZN( ag xo + |1 — as —02-—,01) (3.33)
o(Xe-1x¢ Vay &, Y,

Based on this, the forward non-Markovian process can be obtained by applying Baye’s

rule:
o (X¢e—11X¢, X0)qo(Xt|X0)

Qo(X¢lXi-1. X0) = (3.34)
qa(xt—l |X0)

The introduction of the parameter o in equation (26) generalizes the reverse (and con-

sequently, the forward) process by allowing us to control its stochasticity. Moreover, for

the value o; = \/(1 —ai1)/(1 — ay) \/ 1 —a¢/a;-; the forward process becomes Markovian
and the model becomes the standard DDPM.
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In order to define the trainable generative (reverse) process, a prediction about the initial
sample, xp must be made since the transition probability distributions are conditioned,

and thus dependent, on it.

The authors make the following prediction for xy given x;:

Y ()
%(t) = 2 6 (%) (3.35)

Va:

The trainable process now becomes:

PP (1% = Goxim e, To(0)), £ > 1 (3.36)

For t=1: pg)(xo, x1) = N(5%(1), 0121).
Regarding the actual samples in the reverse process:

Xi—1 = Va; — l)go(t) + l1-—ai; — Otz . €ét)(xt) + o€t (3.37)

When o; = 0, the process becomes deterministic in nature since the coefficient of the
noise term, ¢; becomes zero. Song et al. then demonstrate that by choosing o; = 0
(DDIMs), the length of the sampling trajectory is decreased and higher computational

efficiency is achieved with minimal sacrifice to the quality of the generated samples.

@) @ L @) &

q(x3|xe, o) T q(T2|21, 20)

Figure 3.2. The Non-Markovian Inference Model [42]
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3.2 Score Matching with Langevin Dynamics (SMLDs)

This is the second sub-category of diffusion models which focuses on a different formu-
lation of the diffusion process. At the core of these models lies the (Stein) score function
of a probability density p(x) which is given by V,logp(x). This quantity provides the di-
rections according to which we move from a random sample xp towards a sample xy in a
region with high density. The algorithm that is used for this process is called Langevin

sampling algorithm.

The theoretical foundation for this category of diffusion models was established in another
seminal paper by Song et al. [43]. According to the Langevin sampling algorithm, we

obtain the following iterative process:
€
Xt = X¢-1 + EVxZOQP(Xt—l) + Vez, (3.38)

where z; ~ N(0,I), e > 0 and xy ~ p(xp) (prior distribution). In mathematics, this is known
as a Langevin Markov chain Monte Carlo (MCMC).

This process allows sampling from a probability distribution p(x) by using just its score
function. Although equation (36) might seem strange at first, it is actually similar to
equation (24) which we derived for the sampling process in DDPMs. Indeed, if we solve
equation (36) for the term x;_; we can directly compare it to equation (24) by the assump-

tion that the quantity es(x;, t) corresponds to the gradient of the data density.

A direct approach would be to train a neural network in order to approximate the score

function, i.e. ss(x) = Vylogp(x). The logical objective to minimize is the following:

Lsm = Ex~p(x)”38(x) - Vxlogp(x)”% (3.39)

There are two problems with this approach, however. First, we do not have the score
function in order to use it in the objective. But even if we did have the score function,
the manifold hypothesis, which states that real-world high-dimensional data lie on low-
dimensional manifolds embedded within the high-dimensional space, would raise some

difficulties that are explained by Song et al. [43].

Song et al. [43] tackle both of these problems in their paper. Regarding the manifold
hypothesis, they suggest perturbing the dataset with random Gaussian noise makes the
data distribution more amenable to score-based generative modeling. This noise will help

spread out the distribution making the manifold easier to work with.

This is achieved by first defining a geometric sequence of L noise levels [al-]{;o and then

using this sequence to perturb the data:
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Xt = X¢—1 + ,}otz - otz_let, €t ~ N(O,I) (3.40)

The reasoning is that instead of training the model ss(x) to predict the score function
directly, we instead train a network ss(X, o;) to estimate the scores of perturbed data
distributions. Song at al. [43] called these neural networks a Noise Conditional Score
Networks (NCSNs). The objective now becomes:

Lasm =

1

L
D AO)EpgBsep, stollsa(%. o) = Vclogpo ()1, (3.41)
t=1

where j(o;) is a weighting function, oy, 09, ..., or is the sequence of Gaussian noise scales,

Po, = p(Xp) and X are the final perturbed data.
These scores accept a close form for a Gaussian distribution. In particular:

V. logp(x) = —%p(x) = N(0,0?) (3.42)

For the perturbed data, we now acquire a conditional score function:
x—-x

= (3.43)

V. logps(X|x) = —

Thus, the aforementioned objective will now utilize this conditional score function to train

the neural network:

L A
1 A X=X 9
Lasm = Z § ﬂ(ot)Ep(x)on~pgt(fclx)||33(x, oy) + ) Ilzy (3.44)
=1 Ot
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Figure 3.3. Visualization of the trajectory by predicting score. A score is a direction for
next timesteps. Samples are denoised in the direction at each position. Colors represent
trajectories of different samples. [5]

As for sampling, Song et al. [43] proposed a modified version of the Langevin sampling

algorithm, Annealed Langevin Dynamics.
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The idea is to start Langevin sampling in a highly o perturbed data distribution with a
large time step q; for a predetermined amount of steps T. Once this is done we do this
again but for a slightly less o perturbed data distribution with a slightly smaller time step

a;. We repeat this process for L noise scales.

Algorithm 1 Annealed LLangevin dynamics.

Require: {o;}> e, T.

1: Initialize xq
2: fori < 1 to L. do
3: ; «— €-0l/0% > cv; is the step size.
4: for¢t +—— 1to 7T do
5: Draw z; ~ N (0, TI)
— —~ (&5 —~
6: Xy — X1 + ?Se(xg—lfdi) + S By
7: end for
8: X0 +— X7
9: end for

return xn

Figure 3.4. The Annealed Langevin Dynamics Algorithm [43]

This formulation of diffusion models produces high-quality results. However, in practice,
DDPMs dominate the scene due to their simplicity, more intuitive algorithm, and lack of

hyperparameters in the reverse process.

3.3 Stochastic Differential Equations (SDEs)

The third sub-category in the class of diffusion models constitutes a generalization
of the previous two since here, the formulation of the diffusion process is continuous
rather than discrete. In particular, the diffusion process is described as the solution to
a stochastic differential equation (SDE). Song et al. formalized these ideas in their paper
titled "Score-Based Generative Modeling Through Stochastic Differential Equations”
[44].

In this context, the forward SDE has the following form:

dx = f(x, t)dt + g(t)dw (3.45)

This SDE is the standard Ito6 SDE where f(x,.t) is the drift coefficient, g(t) is the diffusion
coefficient and dw is the Wiener process. For the standard Wiener process (Brownian

motion):

dw = e/dt, (3.46)

where
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e~ N,

The drift coefficient is designed such that it gradually nullifies the data xp, while the

diffusion coefficient controls how much Gaussian noise is added at each step.

Now, in order to generate data from the initial distribution, we should be able to reverse

this process. This is exactly what Anderson showed in his paper [2].

The reverse-time SDE is given by:

dx = [f(x, t) — g*(t)Vxlogp(x)]dt + g(t)dw (3.47)

where dw is a Wiener process that flows backwards in time.

Intuitively, the reverse-time differential equation shows that we can recover data from
pure noise by removing the diffusion term that is responsible for the destruction of the

data in the first place.

As mentioned earlier, stochastic differential equations constitute an attempt to unify
DDPMs and SMLDs under a common theoretical umbrella. For this, we can transform
the equations for the diffusion process of these models into their continuous counterparts

in order to bring them in a form that resembles the Itdo SDE.
In this context, the corresponding SDE for DDPMs is the following:

dx = —%b(t)xdt + b(t)dw (3.48)

This SDE yields a process with a fixed variance of one when the initial distribution has

unit variance. This is why it is known as a Variance Preserving (VP) SDE.

Similarly, the SDE for SMLDs is given by the following equation:

2
dx = w/de (3.49)
dt

Contrary to the previous one, this SDE produces a process with exploding variance as
t— co. Thus, it is called Variance Exploding (VE) SDE.

In the same manner, the general reverse-time SDE can also be discretized for both DDPMs
and SMLDs:

DDPMs: 1
dx = —Eb(t)(xt — th logpt(xt))dt + b(t)d‘_ﬂ (350)
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2 [dr 62
dx = [—d[aTt(t)]th logp:(x;)]dt + d[oTt(t)]dv'v (3.51)

Formal proofs for all the aforementioned results are thoroughly presented by Song et al.
[44]. As it is evident, DDPMs and SMLDs constitute discretizations of SDEs.

SMLDs:

Data Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw 4}@— de = [f(z,t) - ¢V, logpi(x)] dt + g(t)dd

m(z) n(z) > pr(e) () > po)
Figure 3.5. Overview of score-based generative modeling through SDEs [44]

The sampling procedure can be performed with any numerical method applied to the
aforementioned reverse-time SDE. Examples of sampling algorithms that are used in
practice are the Euler-Maruyama method as well as the Predictor-Corrector sampler that
is discussed by Song et al. [44]. Moreover, it is shown by Song et al. [44] that the
reverse Markov chain defined in DDPMs amounts to a numerical SDE solver. In the case

of SMLDs, the reverse-time SDE is solved by Annealed Langevin sampling.
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Chapter ﬂ

Further Advancements in Diffusion Models

4.1 Conditional Generation - Introduction

All the formulations of diffusion models that have been discussed thus far concern
unconditional sample generation. Conditional generation i.e. the generation of samples
based on textual description or the style of another sample, is a crucial component of

every generative model.

In mathematical terms, a condition, y, is an additional input to the model (class la-
bel, text sequence, etc...) which is used in order to guide the sampling process towards a
desirable class of samples. This condition is incorporated in the probability distribution
of the reverse process as an additional conditioning parameter. Equations (3) and (5) and

(14) are now written:

Po(Xi—11xt, Y) = N(x—1; pa(xe, t. Y), Zo(xq, t, y)) (4.1)

T
Pa(x1, X2, ..., xr|ly) = p(xr) l_l Pa(xe-11x¢. y) (4.2)
t=1

(4.3)

An unconditional generative model attempts to sample from a distribution p(x) while a
conditional generative model samples from a distribution p(x|]y) where y is an additional
input (class label, text sequence, etc...). As previously discussed, diffusion models use
the score function of these distributions instead in order to steer the sampling process
in a desirable direction. So, in conditional generation models the formula for the score
function - and the algorithm for the sampling process in general - must now be updated

and expressed in terms of p(x|y).

Based on the above vanilla formulation of conditioning we can now train a neural network

such that xs(x¢, t,y) = X¢, £s(X¢,t,y) = € or
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So(X¢, t,y) = Vylogp(x¢,y) depending on the specific interpretation and implementation.

A major downside of the aforementioned vanilla formulation is that a conditional dif-
fusion model trained in this way may learn to ignore or downplay any given conditioning
information. For this reason, another method called Guidance is proposed as a way to
gain more control over amount of weight the model gives to the conditioning information.

There are two types of Guidances: Classifier Guidance and Classifier-free Guidance.

4.2 Conditional Generation - Classifier Guidance

A first attempt at introducing practical conditional generation in the diffusion model
framework was made by Dhariwal et al. in their paper: "Diffusion Models Beat GANs on
Image Synthesis” [7]. In this paper, the authors propose a post-hoc method for condi-
tioning based on a pre-trained classifier. They call this method of conditioning Classifier

Guidance.

In more detail, Classifier guidance provides a way to steer diffusion sampling in the di-
rection that maximizes the probability of the final sample being classified as a particular
class. For this process, an auxiliary model is used, the classifier, that predicts p(y[xt),
where y represents an arbitrary input feature, which could be a class label, a textual
description of the input, or even a more structured object like a segmentation map or a

depth map.

Initially formulated in the context of score functions, we can apply Bayes’ rule in order to

obtain an expression for the conditional score function:

p(ylx)p(x;)

pxtly) = )

logp(x¢|y) = logp(ylx;) + logp(x;) — logp(y) =

Vi logp(xtly) = V logp(ylxt) + Vi logp(xt) (4.4)

It is evident that the conditional score function is a sum of the unconditional score func-
tion and a conditioning term. Note that the quantity V,logp(y|x;) does not itself constitute

a score function since the gradient is with respect to x and not y.

For intuition, the direction in which we are moving in the high-dimensional space from
noise to data is now given as a vector sum of the direction provided by the original un-

conditional function and the direction that arises from the condition.

Dhariwal et al. made a modification to equation (45) by adding a parameter, y, which

they called the guidance scale:

V. logp,(x|ly) = V logp(x;) + vV« logp(ylx;) (4.5)
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The guidance scale, as evident by its name, is responsible for scaling the conditioning

term which allows for control over its influence in the generative process.

Obviously, classifier guidance does not explicitly refer to SMLDs but it can also be applied
to DDPMs by introducing a conditioning parameter, y, in the predicted noise term. By
using the equivalance between the predicted noise of DDPMs and the score function of

SMLDs: )
Vi logps(xt) = ————=es(x), (4.6)

V1-a

a formula for the conditional predicted noise can be derived:

es(xi, t, Yy) = —0;V y, logp(x|y) 4.7)

In fact, the authors provide algorithms for conditional sampling for both DDPMs and
DDIMs showcasing the flexibility of their method.

Figure 4.1. Samples from an unconditional diffusion model with classifier guidance to
condition on the class "Pembroke Welsh corgi’. Using classifier scale 1.0 (left; FID: 33.0)
does not produce convincing samples in this class, whereas classifier scale 10.0 (right; FID:
12.0) produces much more class-consistent images. [7]

Although a powerful idea, Classifier guidance has two important limitations that make

it impractical.

Since diffusion models gradually denoise the input in numerous steps, any separate
classifier that will be used for guidance must also be able to cope with high noise levels.
This would require training a classifier specifically for the purpose of guidance which can
be very computationally expensive. The second limitation refers to the fact that most of
the information found in the input x is not relevant to predicting y and thus, the quantity

V., logp(yl|x) can yield arbitrary, and even adversarial, directions.

4.3 Conditional Generation - Classifier-free Guidance

The aforementioned shortcomings were tackled by Ho et al. in their paper "Classifier-
Free Diffusion Guidance” [17]. As the name suggests, classifier-free guidance is a
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method for guidance that does not require an auxiliary classifier model.

In this form of guidance, a Bayesian classifier is constructed by combining a conditional
and an unconditional diffusion model. Learning two separate diffusion models could
potentially be computationally expensive. For this, we learn both the conditional and
unconditional diffusion models together as a singular conditional model. The uncondi-
tional diffusion model of the singular model can be queried by performing conditioning
dropout, i.e. some percentage of the time, the conditioning information, y, is removed

(10% - 20% tends to work well in practice).

In this way, the singular model is capable of generating samples both from p(x¢ly) and
p(x¢) depending on whether the conditioning signal is provided or not. With this capability

in mind, equation (50) can be written in the opposite direction as follows:

Vi logp(ylxt) = V logp(x|ly) — Vi, logp(xt) (4.8)

The conditioning term has now be expressed as a function of the conditional and uncon-
ditional score functions, both of which our singular diffusion model provides. We now

substitute this formula in equation (51) for Classifier guidance:
Vi logpy(xily) = Vi logp(xe) + y[Vy logp(xily) — Vi logp(x))] =
Vi logpy(xily) = (1 = y)Vy logp(xt) + vV logp(xily) (4.9)

In mathematics, and specifically in the field of affine spaces, this is known as a barycen-
tric combination (or barycentric sum). For y = O, we recover the unconditional model, and
for y = 1, we recover the standard conditional model. For O < y < 1, there is a trade-off

between the conditioning and the non-conditioning term.

The interesting case is when the above barycentric combination becomes non-convex, i.e.
when y > 1. Then, the diffusion model prioritizes the conditional score function, while
also moving in the opposite direction of the unconditional score function. As a result,
samples that explicitly use the conditioning information are favored while the probability

of generating samples that do not is significantly reduced.

4.4 Latent Diffusion Models and Conditioning via Cross-Attention

Despite the acceleration that DDIMs provide in the inference process, the diffusion
models we have seen thus far operate in pixel space by manipulating tensors of the same
size; a process with intrinsic limits. This results in slow inference speed and high com-

putational cost.

All of the aforementioned problems were tackled by Rombach et al. in their seminal

Diploma Thesis



4.4 Latent Diffusion Models and Conditioning via Cross-Attention

Figure 4.2. Two sets of samples from OpenAl’s GLIDE model, for the prompt ’A stained
glass window of a panda eating bamboo.’, taken from their paper. Guidance scale 1 (no
guidance) on the left, guidance scale 3 on the right. [30]

paper titled "High-Resolution Image Synthesis with Latent Diffusion Models" [37].

The main idea behind this paper is to use a pre-trained autoencoder in order to en-

able the diffusion model to be trained on limited computational resources.

In particular, in the first step of the process, an encoder, &, is used so as to extract
a more compact representation of the original input, i.e. map it to a latent space of lower

dimension. We will denote the latent-space input with z.

Then, z is used as the input to the diffusion model. After the completion of the for-
ward process, the latent input will have been transformed into its noisy version, zy. The
zt representation is then passed through the neural network (typically a U-Net) which
has been trained to predict z_; given z; at any time step t. After the completion of the
reverse process, we get the output of the U-Net, zyp, which is then passed through the

pre-trained decoder, D which maps it from latent space back to the pixel space.

The training objective for the neural network of the diffusion model now becomes:

Lipw = B, |ll€ = ea(ze. t)l3] (4.10)

Apart from the latent space, this paper also introduced a new method for conditional
generation. The authors proposed to integrate additional information directly into the
intermediate layers of the U-Net model using a cross-attention mechanism, similar to the

Transformer architecture.
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For this, an additional domain-specific encoder, 15 was used that projects the various
modalities upon which we want to condition, y, into an intermediate representation:
¢ = 19(y). This representation is then mapped into the intermediate layers of the U-Net

according to the following equations:

Attention(Q, K, V) = softmax( QKT) -V
Vd
where:
9 =W, - i(z) (4.11)
K=w ¢ (4.12)
v=w{ ¢ (4.13)

In the equations above, @;(z;) represents a flattened intermediate representation of the
U-Net and the matrices Wg),WI({i),W‘(,i) are learnable parameters. Finally, the training

objective for the neural network becomes:

Lipw = B et lle = ea(zi. ¢, )] (4.14)

This paper gave the inspiration for the very popular "Stable Diffusion” image genera-
tor Al model which came onto the scene in August of 2022 and fascinated the whole

world, academic and not, with its high-quality images and capabilities.

Figure 4.3. An image created by Stable Diffusion with the prompt "A Water Butterfly".
Source: https://wwuw.reddit.com/r/StableDiffusion/
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Figure 4.4. An image created by Stable Diffusion with the prompt "5. A Landscape View
Of A River From A Forest Cave ". Source: https://wwuw.reddit.com/r/StableDiffusion/
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Chapter E

Image Segmentation and Object Detection

5.1 Introduction

Image segmentation and object detection are fundamental tasks in the fields of com-
puter vision and machine learning, aiming to interpret and understand the contents of
visual data. These tasks have widespread applications, ranging from autonomous driving

and medical imaging to surveillance and robotics.

Image segmentation involves partitioning an image into multiple segments or regions,
each representing a different object or part of an object. This process helps in isolat-
ing and analyzing various components within an image, facilitating more precise object

recognition and scene understanding.

Object detection, on the other hand, focuses on identifying and locating objects within an
image. This task not only involves classifying objects into predefined categories but also
drawing bounding boxes around each detected object. Effective object detection systems
must handle various challenges, such as variations in object appearance, scale, occlu-

sion, and complex backgrounds.

In the early stages, image segmentation and object detection were primarily explored
within the realm of traditional computer vision techniques, relying on handcrafted fea-
tures and simple classifiers [27, 20]. As the field evolved, the advent of deep learning
revolutionized these tasks, with Convolutional Neural Networks (CNNs) playing a pivotal
role. CNN-based models like Fully Convolutional Networks (FCNs) [26], U-Net [38] , and
Faster R-CNN [36] demonstrated significant improvements in accuracy and efficiency.
These advancements enabled more sophisticated applications and provided the founda-

tion for modern computer vision systems.

More recently, the introduction of Transformer-based architectures [47] has further trans-
formed the landscape. These models, which excel in capturing long-range dependencies
and contextual information, have become the backbone of state-of-the-art solutions. No-
table examples in the field include the Segment Anything Model (SAM) [22] and the

GroundingDino model [25], which leverage large-scale datasets and advanced algorithms
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to deliver unparalleled performance in image segmentation and object detection tasks re-

spectively.

5.2 Segment Anything Model (SAM)

The Segment Anything Model (SAM) [22] marks a significant leap in image segmenta-
tion technology. Designed to be a flexible, all-purpose, zero-shot model, SAM can segment
a wide variety of objects in diverse images, thanks to its use of extensive datasets and

cutting-edge deep learning techniques.

SAM'’s versatility comes from its ability to take different types of input prompts—points,
boxes, and masks—which guide the segmentation process. This flexibility means SAM
can adapt to various segmentation needs, whether it’s defining precise object boundaries

or segmenting broader regions within an image.

At the heart of SAM is an advanced encoder-decoder architecture. The encoder is tasked
with extracting detailed, multi-scale features from the input image through a series of
convolutional layers. These layers progressively downsample the image, capturing both
spatial hierarchies and contextual information. The decoder then takes these features
and generates high-resolution segmentation masks, using upsampling layers and skip
connections to merge fine-grained details from earlier layers with the higher-level seman-

tic information from the encoder.

One of the standout features of SAM is its ability to handle different segmentation prompts
effectively. For instance, when given point-based prompts, the model generates segmenta-
tion masks centered around those points, accurately capturing objects even in cluttered
scenes. With box-based prompts, SAM refines the segmentation within the specified
bounding box, ensuring precise object boundaries. Mask-based prompts allow SAM to
improve and refine existing segmentations, making it a powerful tool for iterative segmen-

tation tasks.

SAM was trained on a large-scale dataset, SA-1B, consisting of eleven million (11M)
images and one billion (1B) masks. This extensive training data enables the model to
generalize well across different types of objects and scenes. The training process also in-
corporates advanced data augmentation techniques and regularization methods to boost

the model’s robustness and performance.

5.3 GroundindDINO

The GroundingDINO model [25] is a significant advancement in the field of object de-

tection. GroundingDINO is designed to address open-set object detection by integrating
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Figure 5.1. Van Gogh’s painting titled "Farmhouse in Provence”. Source: https://segment-
anything.com/

Figure 5.2. Van Gogh’s painting titled "Farmhouse in Provence” segmented by SAM. Source:
https:/ /segment-anything.com/
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text and visual inputs, enabling it to detect and understand objects specified by text de-
scriptions or categories. This capability makes it highly versatile and effective in complex,

real-world scenarios.

Just like SAM, GroundingDINO also employs a Transformer-based architecture. The
model uses an encoder-decoder structure, where the encoder processes input images to
extract detailed, multi-scale features. These features are then integrated with text fea-
tures using a Feature Enhancer module, which combines visual and textual data into
a unified representation. This combined data is fed into the decoder, which refines the

object detection boxes to align with the textual input.

The model outputs 900 object bounding boxes along with similarity scores to the in-
put words. It then selects the boxes with the highest similarity scores above a certain
threshold, effectively identifying the objects described by the text. This approach allows
GroundingDINO to perform tasks such as referring expression comprehension, where the

model identifies objects based on descriptive text prompts (e.g., "the red car").

GroundingDINO is trained on numerous large and diverse datasets, which include anno-
tations for various objects and scenes. It showcased exceptional performance on many
popular benchmarks in object detection such as the COCO (Common Objects in Con-
text) dataset [24], the LVIS (Large Vocabulary Instance Segmentation) dataset [13], .This
extensive training helps the model generalize well across different categories and environ-
ments. The training process incorporates advanced data augmentation techniques and

regularization methods to enhance robustness and accuracy.

The model has demonstrated remarkable performance on several benchmarks. For in-
stance, it achieved a 52.5 Average Precision (AP) on the COCO zero-shot detection bench-
mark without any training data from COCO, and set a new record on the ODinW zero-shot
benchmark with a mean AP of 26.1. These results underscore GroundingDINO’s ability
to detect objects in a zero-shot manner, meaning it can recognize and locate objects it

has never seen before during training.
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Figure 5.3. Fruit Detection in a painting by GroundingDino. Source:
https:/ /www.mlwires.com/grounding-dino- 1-5-a-powerful-open-set-ohject-detection-
model/

Figure 5.4. Object Detection in an office by GroundingDino. Source:
https:/ /deepdataspace.com/blog/Grounding-DINO- 1.5-Pro
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5.4 Medical Image Segmentation

Medical image segmentation is a crucial process in medical imaging that involves
partitioning an image into different regions, typically to isolate and analyze anatomical
structures or regions of interest. This process is fundamental for various clinical applica-
tions, including diagnosis, treatment planning, and the monitoring of disease progression.
Accurate segmentation enables clinicians to quantify tissue volumes, detect abnormali-

ties, and guide surgical procedures with precision.

The importance of medical image segmentation lies in its ability to provide detailed and
quantitative information about anatomical structures. For instance, in oncology, seg-
mentation helps in identifying the exact location and size of tumors, which is essential
for planning radiation therapy and assessing treatment response. In cardiology, seg-
mentation of heart chambers and blood vessels aids in evaluating cardiac function and
diagnosing cardiovascular diseases. Moreover, segmentation is pivotal in neuroscience
for studying brain anatomy and identifying pathological changes associated with neuro-
logical disorders. [49, 46]

However, medical image segmentation poses several challenges. One significant challenge
is the variability in anatomical structures across different patients and the presence of
noise and artifacts in medical images. These factors can complicate the segmentation
process and lead to inaccuracies. Additionally, manual segmentation by radiologists is
time-consuming and subject to inter- and intra-observer variability. To overcome these
challenges, there has been a growing interest in developing automated segmentation

methods using machine learning and deep learning techniques.
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Figure 5.5. Examples of results of the proposed method of Park et al. [31]

Figure 5.6. Automnatic liver lesion segmentation with the method proposed by Christ et
al.[6]

5.5 Brain Tumour Segmentation

Brain tumor segmentation is a specific application of medical image segmentation that
focuses on identifying and delineating tumors in brain MRI scans. This task is particu-
larly challenging due to the complex and heterogeneous nature of brain tumors, which
can vary greatly in size, shape, and appearance. Accurate segmentation of brain tumors
is critical for diagnosing the type and grade of the tumor, planning surgical interventions,

and monitoring the effectiveness of treatments.

The segmentation of brain tumors involves distinguishing tumor tissue from normal brain
tissue and other structures. This is essential for radiologists and neurosurgeons to de-
velop precise treatment plans and evaluate patient prognosis. Automated brain tumor

segmentation methods, particularly those based on deep learning, have shown promising
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results in improving segmentation accuracy and reducing the time required for analysis.

Despite the advancements, brain tumor segmentation still faces several challenges. The
variability in tumor appearance across different patients, the presence of edema and
necrotic regions, and the low contrast between tumor boundaries and surrounding tis-
sues can hinder accurate segmentation. Furthermore, the scarcity of labeled training
data and the need for robust models that generalize well to diverse clinical settings re-

main significant obstacles [48].
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5.6 BraTS Dataset

The Brain Tumor Segmentation (BraTS) dataset is one of the most widely used and
influential datasets in the field of medical image analysis. It provides a comprehensive
set of multi-modal MRI scans for the segmentation of brain tumors, specifically gliomas,
which are among the most common and aggressive types of brain tumors. The dataset
includes four types of MRI sequences: T1, post-contrast T1-weighted (T1Gd), T2-weighted
(T2), and Fluid-Attenuated Inversion Recovery (FLAIR). These sequences offer diverse and
complementary information about brain anatomy and pathology, facilitating robust and

accurate tumor segmentation.

The significance of the BraTS dataset lies in its ability to provide a standardized bench-
mark for the development and evaluation of brain tumor segmentation algorithms. By
offering a large collection of annotated scans, BraTS enables researchers to train and
validate their models on a diverse set of images, thereby improving the generalizability
and robustness of their methods. The dataset includes annotations for different tumor
regions, such as the enhancing tumor, the tumor core, and the whole tumor, which are

essential for comprehensive tumor analysis and treatment planning.

The BraTS 2021 dataset continues to build on this legacy, offering an even larger and
more diverse set of data for training, validation, and testing. The BraTS 2021 dataset in-
cludes 1251 MRI scans in total, divided into 1251 for training, 219 for validation, and 530
for testing. This extensive dataset provides a robust foundation for developing advanced
segmentation algorithms and has been used in numerous studies and competitions to
benchmark the performance of new methods. The dataset’s comprehensive nature en-
sures that models trained on BraTS 2021 are well-equipped to handle the variability and
complexity of real-world clinical data, making it an invaluable resource for the medical

imaging community.
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Figure 5.7. Examples of results of the proposed method of Diaz-Pernaz et al. [8]
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Figure 5.8. Examples of results of the proposed method of Gupta et al. [14]
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5.7 Medical Segmentation Decathlon

The Medical Segmentation Decathlon (MSD) [3] was launched in 2018 with the pur-
pose of providing a comprehensive benchmark for the development and evaluation of
medical image segmentation algorithms. The primary goal of the MSD is to encourage the
creation of generalizable and robust segmentation methods that can perform well across
a variety of tasks and imaging modalities. By offering a diverse set of datasets, the MSD
challenges researchers to develop techniques that are not only accurate but also adapt-
able to different types of medical data.

The MSD dataset is composed of ten distinct medical imaging datasets, each represent-
ing a different anatomical structure or pathology. These include brain tumors, liver
tumors, hippocampus, prostate, lung tumors, cardiac structures, pancreas, hepatic ves-
sels, spleen, and colon cancer. Each dataset consists of multi-modal imaging data with
corresponding expert annotations, providing a rich and diverse resource for training and
evaluating segmentation models. The inclusion of multiple modalities and anatomical
regions ensures that models developed using the MSD can be tested for their robustness

and versatility across a wide range of medical imaging challenges.

Since its launch, the Medical Segmentation Decathlon has inspired numerous papers and
advanced segmentation techniques [15, 19, 45]. It has become a standard benchmark
for evaluating new methods, driving innovation in the field of medical image analysis.
Techniques such as nnU-Net, which automatically configures itself for any given dataset,
were significantly influenced by the challenges posed by the MSD. The decathlon format
has encouraged the development of algorithms that are not only high-performing on indi-
vidual tasks but also capable of generalizing across different types of medical data. This
has led to significant advancements in the robustness and applicability of medical image

segmentation methods.

Diploma Thesis m



Chapter 5. Image Segmentation and Object Detection

Brain

@

Hippocampus )

ﬁ mp-MRI
E 750 4D volumes

M
ok

E 96 3D volumes
Segmentation of a small target
(cancer) in a large image ‘

Liver
m c !
(liver) and small (fumor) target ]

E 201 3D volumes
' A
';’ Pancreas

Label unbalance with a large
Rlo

IE 420 3D volumes

Label unbalance with large
(background), medium
(pancreas) and small (tumor)
structures

Lung

\ J

Complex and heterogeneously-|
located targets

n MRI

394 3D volumes

Segmenhng two neighboring
small sfructures with high
precision

Heart

n MR
m 30 3D volumes

Small training dataset with large
variability

Prostate

¢ ) \|

r&] mp-MRI
E 48 4D volumes

Segmenting two adjoint regions
with large infer-subject
variations

'A Spleen 7
o] o
EI 613D volumes
\ 0 Large ranging foreground size |
\ (w Hepatic Vessels |
NI2E Mystery
E| 443 3D volumes ,_ fQSkS
Tubular small structures
next to heterogeneous tumor
@ Colon
\ Al o
190 3D volumes
0 Hetferogeneous appearance

Figure 5.9. Overview of the ten different tasks of the Medical Segmentation Decathlon

(MSD) (3]

Diploma Thesis



5.8 MONAI

5.8 MONAI

The MONAI (Medical Open Network for Al) framework is an open-source, PyTorch-
based library created by NVIDIA and King’s College London in April 2020, along with col-
laboration from academic, clinical, and industry partners [4]. It is designed specifically for
healthcare imaging, facilitating the design, development, and deployment of deep learn-
ing models in medical imaging applications. MONAI provides researchers and developers
with a comprehensive suite of tools and workflows, from data loading and transformation
to model training and evaluation. This framework addresses the unique challenges in
medical imaging, such as handling diverse data formats, integrating domain-specific pre-
processing techniques, and ensuring robust model performance across different imaging

modalities.

One of the key features of MONAI is its emphasis on reproducibility and standardization
in medical imaging research. The framework includes standardized pipelines for common
medical imaging tasks, such as segmentation, classification, and detection, which can
be easily customized and extended. Additionally, MONAI supports a variety of imaging
modalities, including MRI, CT, and ultrasound, making it a versatile tool for a wide range
of medical imaging applications. The integration with PyTorch ensures compatibility with
state-of-the-art deep learning models and allows for seamless incorporation into existing
research workflows. Furthermore, the MONAI Model Zoo provides pre-trained models and
scripts for various medical imaging tasks, accelerating the development and deployment

of new models.

The impact of MONALI is evident in its widespread adoption and the numerous studies
that have utilized the framework. Researchers have used MONAI to develop robust and
accurate models for tasks such as tumor segmentation, organ delineation, and disease
detection [23, 32, 34, 35]. The framework’s comprehensive documentation, active com-
munity support, and continuous development have made it a go-to resource for medical
imaging researchers worldwide. By providing a standardized and flexible platform, MONAI
has significantly advanced the field of medical imaging and facilitated the translation of

deep learning research into clinical practice.
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Figure 5.12. Reconstruction of facial defects on the MUG500+ dataset, using MONAI’s
pre-trained model [23]
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Our Framework

6.1 General Overview of the Framework

In this chapter, we introduce our novel framework for the segmentation and localiza-
tion of lesions in brain MRI images. Building on the concepts discussed in the previous
chapters, this framework specifically targets the challenges of accurately identifying and
segmenting brain lesions. Our approach integrates advanced deep learning techniques,
including diffusion models, attention mechanisms, and segmentation models, to create a

robust and efficient solution.

Our framework begins with the use of a diffusion model to generate healthy counterfactual
images from brain MRIs that contain lesions. These counterfactual images represent what
the brain would look like without any pathological abnormalities. This step is crucial as
it provides a baseline for identifying and localizing the lesions by highlighting deviations
from the healthy state.

Following the generation of these counterfactual images, we apply a series of prepro-
cessing steps to prepare the data for segmentation. This includes standardization, noise
reduction, and any necessary transformations to enhance the quality and consistency of

the images.

The core of our framework utilizes the Segment Anything Model (SAM) in two distinct
and independent pipelines for lesion segmentation. In the first pipeline, SAM receives a
point prompt, typically inserted by a doctor. For our experimental purposes, we use the
centroid of the ground truth mask as the point prompt. SAM then segments the lesion

based on this prompt, providing precise localization of the lesion.

In the second pipeline, we utilize a text prompt as input, which is processed by the
GroundingDINO model. GroundingDINO generates a bounding box around the area of
interest, effectively performing object detection. This bounding box is then used as input

for SAM, which segments the lesion within the specified region.

To evaluate the performance of our framework, we employ several metrics, including
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Dice score, Intersection over Union, AUPRC, precision, recall, specificity, F1 score, Haus-
dorff distance, and Average Symmetric Surface Distance (ASSD). These metrics provide a

comprehensive assessment of the accuracy and reliability of our segmentation results.

Additionally, we conduct an ablation study [28] to understand the contribution of each
component within our framework. By systematically removing individual components
and measuring the performance impact, we gain insights into the significance and inter-

play of the various elements in our approach.
This chapter provides a detailed exploration of each component of our framework, the

experimental setup, and the results of our ablation study, highlighting the strengths and

potential areas for improvement in our approach to brain MRI lesion segmentation.
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Figure 6.1. Our Framework
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6.2 Counterfactual Diffusion Generation

Our approach focuses on transforming an input image from the unhealthy domain
to the healthy domain during inference, while preserving all other characteristics of the
image. Specifically, we aim to identify and modify the key features indicative of lesions,

such as those in brain tumor datasets.

This precise adjustment, referred to as counterfactual generation in causal literature,
allows us to pinpoint the minimal changes needed to convert an unhealthy image to a
healthy one. Once our model 8(x, ¢, t) is trained on imaging data with ¢ € [healthy,unhealthy],
we can manipulate the input image between these domains at inference by generating

counterfactuals, inspired by methodologies outlined in [39, 40, 50].

6.2.1 Training

As mentioned in the first chapter, in order to achieve optimal solutions for V,logp;(x)
we train our model, 9, to approximate V,logp:(x¢|xo). This process involves using a con-
ditional denoising U-Net, €s5(xt, ¢, t) to control the synthesis process via input c¢. During
training, the goal is to learn a 8" that minimizes the expectation of the squared error be-

tween 9(x, ¢, t) and the noise term (Equation 2.25). This is represented by the equation:
8" = argmin By, ¢ llles(x¢, €, 1) = €ll3] (6.1)

, where x; = y/a:Xo + V1 — ase, with Xo ~ paqia being a sample from the (training) data
distribution, t ~ U(0, T) and € ~ N(O, I).

6.2.2 Inference

Once our model is trained, sample generation starts with xr ~ N(s, I') and iteratively
samples from the reverse process using the diffusion model. We employ the Denoising Dif-
fusion Implicit Models (DDIM) method, which allows for deterministic mapping from latent
variables to images. The DDIM formulation provides two main benefits: near-invertible
mapping between xr and xy and efficient sampling with fewer iterations, even with the
same diffusion discretization. This is achieved by selecting different under-sampling times
within the interval [0, T1.

This structured approach ensures that our model efficiently learns the transformation
needed for accurate counterfactual image generation, which is crucial for precise lesion

localization.

6.2.3 Estimating the Difference Image with Counterfactual Diffusion

To generate counterfactual images, we first encode the input image into a latent space
by iteratively applying a reverse process for L iterations using an unconditional model. We

then decode this latent representation while applying an intervention to the conditioning
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c to denote a "healthy" state. This decoding is done by applying the reverse process with

implicit guidance and attention conditioning.

The difference between the original and counterfactual images is averaged along the chan-
nel dimension to create a heatmap, which highlights the lesion (unhealthy features) for
segmentation. Dynamic normalization is applied throughout the inference process to

maintain consistency and accuracy.

6.2.4 Implicit Guidance

Generating counterfactuals using a classifier to guide the diffusion process, which
involves training an additional model on noisy images, has proven effective [39, 50]. In
our approach, we utilize implicit guidance for counterfactual generation. Here, a single
diffusion model is trained on both conditional and unconditional objectives by randomly
omitting the conditioning variable ¢ during training. The omitted conditioning is de-
noted as ¢ = @, leading to conditional €s(x¢, ¢, t) and unconditional es(x¢, @, t) predictions.
During sampling, these predictions are combined using a guidance scale w, resulting in

€s(Xs, €, t) = weg(xs, ¢, t) + (1 — w)es(x¢, @, t).

6.2.5 Conditioning

To generate counterfactuals effectively, conditioning during the decoding process is
essential. As a baseline, we use adaptive group normalization (AdaGroup), which has
been effective in Denoising Probabilistic Models (DPMs). However, for counterfactual gen-
eration, normalization alone is insufficient. We enhance conditioning by incorporating a

conditional attention mechanism inspired by text-to-image generation methods.

We preprocess the conditioning variable ¢ using an encoder 1, which projects ¢ into
an intermediate representation. This representation is further projected to match the
dimensionality of each attention layer within the model and concatenated to the attention

context at each layer.

Our approach employs a U-Net with an attention layer that implements softmax, (Qi\/df) Ve.
The values for Q, K, and V are derived from the previous convolutional layer, with 7,(c)
concatenated to K and V before the attention layer, forming K. = concat([K, 7,(¢)]) and
V¢ = concat([V, 1,(c)]) [30]. This conditional attention mechanism significantly improves

the effectiveness of counterfactual generation.
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Figure 6.2. Counterfactual generation process - Example 1
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Figure 6.3. Counterfactual generation process - Example 2
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Figure 6.4. Counterfactual generation process - Example 3
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6.3 Lesion Segmentation

6.3 Lesion Segmentation

Once the counterfactual image is generated, a difference image is produced by sub-
tracting the counterfactual from the original MRI. However, this difference image may not
always be of optimal quality due to several reasons. Firstly, the lesion area might not be
sufficiently highlighted, making it challenging to distinguish from the rest of the brain.
Secondly, other regions apart from the lesion may also be highlighted, leading to potential

misinterpretations.

These issues can arise due to various factors, such as the diffusion model’s inability to
accurately inpaint the lesion regions and generate a completely healthy counterfactual.
Additionally, poor quality MRI slices with unclear lesions can contribute to suboptimal
difference images. Addressing these shortcomings is crucial for accurate lesion segmen-

tation, which is the focus of the following sections.

6.3.1 Preprocessing

In the preprocessing stage, our goal is to enhance the quality of the difference im-
age generated by subtracting the counterfactual from the original MRI. This is achieved
through a series of multiplicative operations designed to accentuate the lesion area while

suppressing non-lesion regions that might have been inadvertently highlighted.

The first step involves multiplying the difference image by the original MRI image. This
step ensures that the bright areas corresponding to the lesion remain prominent if the
diffusion model has accurately inpainted the lesion region. Simultaneously, other areas

that might have been highlighted by accident in the difference image become darker.

To further enhance the contrast and clarity of the lesion area, we repeat this multiplica-
tion process multiple times. Specifically, the product of the first multiplication is again
multiplied by the original MRI image, and this process is repeated as needed. The number
of times this multiplication is performed is a hyperparameter of our framework, allowing
for fine-tuning based on the quality of the initial difference image and the characteristics
of the dataset.
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Brain Image Difference Image

Figure 6.5. Original brain MRI Figure 6.6. Difference Image

Mult2 Image
Mult Image J

Figure 6.8. Result of multiplying the dif
ference image with the brain MRI image
squared.

Figure 6.7. Result of multiplying differ-
ence image with the brain MRI image
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Brain Image

Figure 6.9. Original brain MRI

Mult Image
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Figure 6.11. Result of multiplying differ-
ence image with the brain MRI image

Difference Image

Figure 6.10. Difference Image

Mult2 Image

Figure 6.12. Result of multiplying the
difference image with the brain MRI im-
age squared.
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6.3.2 Point-Prompted Segmentation Pipeline

In the first segmentation pipeline, the processed image obtained after the multiplica-
tion steps is fed into the Segment Anything Model (SAM). The point used as a prompt for
SAM can be provided by a doctor or radiologist. For our testing purposes, we use the

centroid of the ground truth mask as the point prompt.

The centroid is found using the following method. First, the input image is binarized
to distinguish the white pixels (representing the lesion) from the background. The co-
ordinates of these white pixels are identified, and their centroid is calculated by taking
the mean of their positions. This centroid is then rounded to the nearest integer. If the
rounded centroid does not correspond to a white pixel, the nearest white pixel to the

centroid is selected.

Upon receiving the point prompt, SAM generates several candidate masks. These masks
are initially sorted by their area, with the smallest mask being selected as the primary
candidate. This approach is based on the observation that SAM tends to produce larger
masks with lower confidence. Consequently, the smallest mask is more likely to be accu-

rate.

To further refine the selection, we implement an additional check. If the area of the
second smallest mask is less than three times that of the smallest mask, we select the
second smallest mask instead. This heuristic addresses potential information loss during
the preprocessing stage and ensures that the chosen mask more comprehensively cap-
tures the lesion. This method has been shown to yield better results in our experiments,

effectively balancing precision and comprehensiveness in lesion segmentation.
In summary, the point-prompted segmentation pipeline leverages the precise location

information provided by the centroid of the ground truth mask, combined with a robust

mask selection process, to achieve accurate and reliable lesion segmentation.
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6.3.2 Point-Prompted Segmentation Pipeline

Figure 6.13. Point-Prompted Pipeline
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Figure 6.14. Original brain MRI Figure 6.15. Ground Truth Mask

Overlayed Image - Point Mask from Point

Figure 6.16. Original brain MRI over- Figure 6.17. Mask from Point-Prompted
layed with predicted maslk Segmentation Pipeline
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Figure 6.18. Original brain MRI Figure 6.19. Ground Truth Mask

Overlayed Image - Point Mask from Point

Figure 6.20. Original brain MRI over- Figure 6.21. Mask from Point-Prompted
layed with predicted mask Segmentation Pipeline
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6.3.3 Text-Prompted Segmentation Pipeline

In the second segmentation pipeline, a text prompt provided by a doctor or radiologist
is utilized. This text prompt is input into the GroundingDINO model, which performs ob-
ject detection and returns several bounding boxes corresponding to the prompt. Similar
to the previous pipeline, we select the bounding box with the smallest area, as Ground-

ingDINO tends to produce larger boxes with lower confidence.

Once the smallest bounding box is identified, it serves as the input prompt for the Seg-
ment Anything Model (SAM). SAM then performs segmentation based on this prompt,
either on the original difference image or one of the multiplied versions generated during
preprocessing. The choice of which image to use for segmentation is a hyperparameter of
our framework, allowing for flexibility based on the specific requirements of the task and

the quality of the difference image.

This pipeline leverages the strength of GroundingDINO in accurately detecting objects
based on textual descriptions and the precision of SAM in segmenting the identified re-
gions. By integrating these models, we achieve a robust and flexible approach to lesion
segmentation, adaptable to various input conditions and prompts. This method enhances
the accuracy and reliability of segmentation, providing valuable insights for clinical ap-

plications.
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6.3.3 Text-Prompted Segmentation Pipeline

Figure 6.22. Text-Prompted Pipeline
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Figure 6.23. Original brain MRI Figure 6.24. Ground Truth Mask
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Figure 6.26. Lesion detection and the
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6.3.3 Text-Prompted Segmentation Pipeline

Original Image

Figure 6.27. Original brain MRI

Overlayed Image - Text

Figure 6.29. Original brain MRI over-
layed with predicted mask
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6.3.4 Intersection and Union of Generated Masks

Our framework generates four distinct masks for each input MRI image: the mask
from the point-prompted pipeline, the mask from the text-prompted pipeline, and two
additional masks derived from the intersection and union of the initial two masks. The
rationale behind generating these combined masks is to leverage the strengths of both
segmentation approaches. In medical diagnostics, it is generally preferable to err on the
side of caution, meaning a false positive (an incorrect identification of a lesion) is less
detrimental than a false negative (a missed lesion). By considering both the intersection
and union of the masks, we ensure comprehensive coverage of the lesion, thus minimizing

the risk of missing any pathological regions.
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6.4 Evaluation Metrics

To evaluate the performance of our segmentation framework, we employ a variety of
metrics. Each metric offers a different perspective on the accuracy and reliability of the

segmentation results, and their combined use provides a comprehensive evaluation.

6.4.1 Dice Coefficient

The Dice coefficient, or Dice similarity index, measures the overlap between the pre-

dicted mask and the ground truth. It is calculated as:

_2x|ANB

Dice = (6.2)
|Al + | B

where A is the predicted mask and B is the ground truth mask. A Dice score of 1 indicates

perfect overlap, while a score of O indicates no overlap.

6.4.2 Intersection over Union (IoU)

IoU, also known as the Jaccard index, quantifies the ratio of the intersection to the

union of the predicted and ground truth masks. It is given by:

_lanB
" |JAUB|

(6.3)

IoU values range from O to 1, with higher values indicating better segmentation accuracy.

6.4.3 Area Under the Precision-Recall Curve (AUPRC)

AUPRC evaluates the trade-off between precision and recall across different thresholds.
It is particularly useful for imbalanced datasets. A higher AUPRC value indicates better

model performance in distinguishing between classes.

6.4.4 Precision

Precision measures the proportion of true positives among all positive predictions. It
is calculated as:
TP
Precision = ———— (6.4)
TP + FP

where TP is the number of true positives and FP is the number of false positives.

6.4.5 Recall

Recall, or sensitivity, measures the proportion of true positives among all actual pos-
itives. It is given by:
TP

Recall = ———— (6.5)
TP + FN

where FN is the number of false negatives.
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6.4.6 Specificity

6.4.6 Specificity

Specificity measures the proportion of true negatives among all actual negatives. It is

calculated as:
Specificity Ll (6.6)
ecificity = ———— .
P TN + FP

where TN is the number of true negatives.

6.4.7 F1 Score

The F1 score is the harmonic mean of precision and recall, providing a single metric

that balances both:

Precision X Recall
Fl=2xX (6.7)
Precision + Recall

It is particularly useful when precision and recall are both important.

6.4.8 Hausdorff Distance
The Hausdorff distance measures the maximum distance between the boundary points
of the predicted and ground truth masks. It is defined as:

Hausdorff (A, B) = max{supuecainfyepd(a, b), suppepinfacad(a, b)} (6.8)

where the function d(*,*) represents the Euclidean distance.

This metric is crucial in medical imaging as it highlights the worst-case discrepancy
between boundaries, ensuring that the segmentation captures the true extent of the le-

sion.

6.4.9 Average Symmetric Surface Distance (ASSD)

ASSD measures the average distance between the boundary points of the predicted
and ground truth masks. It is calculated by averaging the distances from each point
on one boundary to the nearest point on the other boundary, and vice versa. ASSD is
significant in medical contexts because it provides a more holistic measure of boundary

accuracy, reducing the impact of outliers compared to the Hausdorff distance.

These metrics collectively provide a robust framework for evaluating the effectiveness
of our lesion segmentation approach, ensuring that both accuracy and clinical relevance

are thoroughly assessed.

6.5 Experimental Setup

6.5.1 Dataset

For the experiments conducted in this thesis, we utilized the Decathlon Task 1 dataset,

specifically focusing on brain tumors. This dataset is part of the Medical Segmentation
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Decathlon, a comprehensive collection of annotated medical imaging datasets designed

to benchmark the performance of segmentation algorithms.

This data comprises magnetic resonance (MR) imaging from four sequences T1, post-
contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Re-
covery (FLAIR) for each patient. T. For our experiments, we specifically used the FLAIR

modality, which is particularly effective in highlighting abnormalities such as tumors.

The dataset consists of 388, 96 and 251 brain MRIs for training, validation, and test-

ing respectively.

6.5.2 Data Transformations

In preparing our dataset for training, we applied several crucial transformations to the
brain MRI images to ensure they are standardized and suitable for model input. Initially,
the images and their corresponding labels were loaded into memory to ensure the data
was correctly retrieved for subsequent processing. Following this, the channel dimension
of the images and labels was adjusted to be the first dimension, aligning with the expec-

tations of many deep learning frameworks.

To standardize the orientation of the images, we reoriented the data to the RAS (Right-
Anterior-Superior) standard. This was followed by resampling the images to a uniform

voxel spacing, ensuring consistent spatial resolution across all samples.

Next, the images and labels were center-cropped to a fixed region of interest, focusing
on the most relevant parts of the brain. To enhance the contrast and brightness con-
sistency of the images, we scaled the intensity values based on specified percentiles,

normalizing the images to a range between O and 1.

For data augmentation, we performed random spatial cropping, providing different image
crops during training to improve the model’s generalization capabilities. Finally, we en-

sured that the resultant data structures were compatible for further processing.

These preprocessing steps were essential in preparing the brain MRI images for train-
ing, enhancing the robustness and accuracy of our segmentation models by ensuring

that the input data was well-standardized and augmented.

6.5.3 U-Net Architecture

The model employed in our framework is based on a U-Net architecture, tailored
specifically for diffusion models. The U-Net model, a convolutional neural network (CNN)
known for its effectiveness in image segmentation, features an encoder-decoder structure

with skip connections to preserve spatial information.
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6.5.3 U-Net Architecture

The encoder of the U-Net model progressively reduces the spatial dimensions of the input
image while increasing its depth to extract high-level features. Our encoder processes
the images through four stages with increasing channel widths: 64, 128, 256, and 512
channels. Each stage comprises two residual blocks, enhancing the network’s ability to

learn complex patterns.

The decoder then reconstructs the spatial dimensions while reducing the depth, using
up-sampling and convolutional layers. Skip connections link corresponding encoder and
decoder layers, ensuring that spatial details are retained and incorporated into the final

segmentation output.

Attention mechanisms are integrated at specific levels within the network to enhance
feature focus. In our implementation, attention layers are added at the second, third,
and fourth levels of the network. This allows the model to concentrate on significant re-
gions of the image that are crucial for accurate segmentation. The attention mechanism
is further refined with cross-attention, which integrates additional contextual information

provided through conditioning.

Conditioning is implemented to incorporate external information, such as class labels,
into the segmentation process. This is achieved using an embedding layer with a dimen-
sion of 64, which projects the conditioning information into a space that can be effectively
combined with the image features. The conditioning information is integrated into the
model via cross-attention, ensuring that it influences the segmentation process at multi-

ple levels.

Our U-Net model is integrated within a diffusion framework, utilizing a scheduler to
manage the diffusion process. The model is configured to process 2D spatial dimensions,
with one input and one output channel. The diffusion process involves iterative steps
where noise is added and then progressively removed from the input image, guided by
the model parameters. The DiffusionInferer orchestrates this process during inference,

ensuring high-quality segmentation results from noisy inputs.

Training the model involves the Adam optimizer, which adjusts the learning rate dy-
namically to ensure efficient convergence. Both the U-Net model parameters and the em-
bedding layer parameters are optimized concurrently, with a learning rate set to 1 x 107°.

This allows for precise fine-tuning of the complex parameters within the network.
This detailed U-Net architecture, augmented with targeted attention mechanisms and

conditioning, forms the backbone of our segmentation framework. It provides a robust

and precise solution for accurately segmenting lesions in brain MRI images.
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Figure 6.35. Approximate sketch of our U-Net’s architecture. Source: Image by author.
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6.5.4 Training

6.5.4 Training

The training process for our model involves several key parameters and procedures to

ensure efficient and effective learning.

Condition Dropout: A dropout rate of 0.15 is used for conditioning to prevent over-

fitting by randomly omitting conditioning information during training.

Iterations and Batch Size: The model is trained for 4000 iterations with a batch size of

32, balancing computational efficiency and gradient estimation accuracy.

Validation Interval: Validation is performed every 100 iterations to monitor the model’s

performance on unseen data and adjust hyperparameters as needed.

Data Loading:

e The training dataset is loaded using a DatalLoader with batch size 32, shuffling,

and 4 worker threads to ensure efficient data retrieval.

e The validation dataset is similarly loaded but without shuffling to maintain data

order during evaluation.

Gradient Scaling: Gradient scaling is applied using GradScaler to manage mixed preci-

sion training, optimizing computational resources and training speed.

Performance Tracking: Iterative loss values for both training and validation are recorded
at each iteration to track the model’s learning progress and convergence. This structured
training approach, combining dropout for regularization, frequent validation, efficient
data loading, and gradient scaling, ensures that the model learns effectively while mini-

mizing overfitting and computational overhead.

6.5.5 Hyperparameters

Our system’s performance is influenced by several key hyperparameters. These in-
clude the text prompt used in the text-prompted segmentation pipeline, the number
of multiplication steps in the preprocessing phase, and parameters within the point-

prompted segmentation pipeline.

Text Prompt (TP): The specific text input used in the text-prompted segmentation pipeline,
provided by a doctor or radiologist, to guide the GroundingDINO model in identifying rel-

evant regions in the MRI images.

Number of Multiplication Steps in the Point-Prompted Pipeline (PMS): This refers
to the number of times the difference image is multiplied with the original MRI during

preprocessing. This hyperparameter affects the clarity and contrast of the lesion area,
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which is critical for accurate segmentation in the Point-Prompted Segmentation Pipeline.

Number of Multiplication Steps in the Text-Prompted Pipeline (TMS): This refers
to the number of times the difference image is multiplied with the original MRI during
preprocessing. This hyperparameter affects the clarity and contrast of the lesion area,

which is critical for accurate segmentation in the Text-Prompted Segmentation Pipeline.

We will conduct experiments with different combinations of these hyperparameters to
evaluate their impact on our performance metrics, such as Dice score, IoU, AUPRC, preci-
sion, recall, specificity, F1 score, Hausdorff distance, and ASSD. This will help us optimize

the framework for the best possible segmentation accuracy.

Some of the combinations we are going to experiment with are listed below:
e TP = "lesion", PMS = 2, TMS = 3
e TP = "tumour", PMS = 1, TMS =2
e TP = "anomaly", PMS = 3, TMS = 3

e TP = "lesion", PMS =2, TMS =2
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Experimental Results

Having described our framework in detail in the previous chapter, we now present the
results obtained using our system on Task 1 (Brain Tumor) of the Medical Segmentation
Decathlon challenge. This chapter will provide a comprehensive overview of the perfor-

mance of our framework across various hyperparameter configurations.

The results will be presented in the form of tables, with each table corresponding to a
unique hyperparameter configuration. The columns in each table will represent the dif-
ferent methods used to generate masks in our framework: Point, Text, Intersection, and
Union. The rows will denote the evaluation metrics used to assess the performance of our
framework. These metrics include Dice score, IoU, AUPRC, precision, recall, specificity,
F1 score, Hausdorff distance, and ASSD. Each metric provides a different perspective on

the accuracy and reliability of our segmentation results.

The rows in the tables will denote the evaluation metrics used to assess the perfor-
mance of our framework. These metrics include Dice score, IoU, AUPRC, precision, recall,
specificity, F1 score, Hausdorff distance, and ASSD. Each metric provides a different per-
spective on the accuracy and reliability of our segmentation results. Each one of our
framework’s hyper-parameter configurations will be presented in each own subsection in
the form of "TP - PMS - TMS".

In addition to the quantitative results, several images obtained from our experiments
will be provided. These images will illustrate the segmentation performance of our frame-
work under different hyperparameter settings, offering visual insight into the effectiveness

of our approach.

Furthermore, we will present the results of a short ablation study to investigate the
contribution of different components of our framework. In this study, we experiment with
various U-Net architectures, omit the preprocessing steps altogether, and even apply the
SAM-GroundingDINO pipeline directly to the original MRI images instead of the counter-
factuals. This ablation study aims to highlight the importance of each component and

the impact of different architectural choices on the performance metrics.
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Chapter 7. Experimental Results

Through this detailed presentation of results, we aim to demonstrate the robustness
and flexibility of our framework in accurately segmenting brain tumors in MRI images,
while highlighting the influence of different hyperparameters and architectural choices on

the performance metrics.
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7.1 Lesion-3-3

7.1 Lesion-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.821 0.804 0.823
AUPRC 0.761 | 0.848 0.848 0.785
IoU 0.606 | 0.731 0.709 0.632
Precision 0.747 | 0.853 0.942 0.706
Recall 0.762 | 0.836 0.741 0.857
F1 0.755 | 0.844 0.830 0.775
Specificity | 0.987 | 0.993 0.998 0.982
Hausdorff | 5.919 | 5.624 5.744 5.785
ASSD 0.450 | 0.398 0.432 0.418

Table 7.1. Evaluation Metrics for the "Lesion - 3 - 3" Configuration
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Figure 7.1. Counterfactual generation

Mask from Point Mask from Text

Figure 7.2. Mask generated by Point- Figure 7.3. Mask generated by Text-
Prompted Pipeline Prompted Pipeline



Original Image Original Image Mask Latent Image Anomaly Map

Figure 7.4. Counterfactual generation

Mask from Point Mask from Text
Figure 7.5. Mask generated by Point- Figure 7.6. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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7.2 Lesion-2-2

Point | Text | Intersection | Union
Dice 0.799 | 0.807 0.814 0.792
AUPRC 0.743 | 0.762 0.789 0.735
IoU 0.580 | 0.588 0.645 0.539
Precision 0.683 | 0.640 0.780 0.580
Recall 0.793 | 0.879 0.788 0.883
F1 0.734 | 0.741 0.784 0.700
Specificity | 0.981 | 0.974 0.989 0.967
Hausdorff | 6.670 | 6.149 5.710 7.077
ASSD 0.531 | 0.506 0.429 0.609

Table 7.2. Evaluation Metrics for the "Lesion - 2 - 2" Configuration
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Original Image Original Image Mask Latent Image Anomaly Map

Figure 7.7. Counterfactual generation

Mask from Point Mask from Text
Figure 7.8. Mask generated by Point- Figure 7.9. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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Original Image Original Image Mask Latent Image Anomaly Map

Figure 7.10. Counterfactual generation

Mask from Point Mask from Text
Figure 7.11. Mask generated by Point- Figure 7.12. Mask generated by Text-

Prompted Pipeline Prompted Pipeline



7.3

Lesion - 1 -1

7.3 Lesion-1-1

Point Text Intersection | Union
Dice 0.774 | 0.617 0.775 0.616
AUPRC 0.734 | 0.586 0.735 0.586
IoU 0.566 | 0.251 0.568 0.251
Precision 0.662 | 0.257 0.665 0.257
Recall 0.795 | 0.910 0.794 0.910
F1 0.723 | 0.401 0.724 0.401
Specificity | 0.979 | 0.864 0.980 0.864
Hausdorff | 7.177 | 14.482 7.043 14.616
ASSD 0.657 | 2.332 0.651 2.337

Table 7.3. Evaluation Metrics for the "Lesion - 1 - 1” Configuration
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Figure 7.13. Counterfactual generation

Mask from Point Mask from Text
Figure 7.14. Mask generated by Point- Figure 7.15. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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Figure 7.16. Counterfactual generation

Mask from Point Mask from Text
Figure 7.17. Mask generated by Point- Figure 7.18. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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7.4 Lesion-1-2

Point | Text | Intersection | Union
Dice 0.774 | 0.807 0.797 0.785
AUPRC 0.734 | 0.762 0.778 0.734
IoU 0.566 | 0.588 0.629 0.538
Precision 0.662 | 0.640 0.754 0.579
Recall 0.795 | 0.879 0.792 0.882
F1 0.723 | 0.740 0.772 0.699
Specificity | 0.979 | 0.974 0.987 0.967
Hausdorff | 7.177 | 6.149 6.127 7.192
ASSD 0.657 | 0.506 0.472 0.690

Table 7.4. Evaluation Metrics for the "Lesion - 1 - 2" Configuration
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Figure 7.19. Counterfactual generation
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Figure 7.20. Mask generated by Point- Figure 7.21. Mask generated by Text-
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Figure 7.22. Counterfactual generation
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Figure 7.23. Mask generated by Point- Figure 7.24. Mask generated by Text-
Prompted Pipeline Prompted Pipeline



7.5 Lesion -0 -0

7.5 Lesion-0-0

Point Text | Intersection | Union
Dice 0.676 0.305 0.691 0.290
AUPRC 0.583 0.565 0.596 0.564
IoU 0.328 0.139 0.351 0.136
Precision 0.358 0.139 0.386 0.136
Recall 0.797 0.989 0.797 0.990
F1 0.494 0.244 0.520 0.240
Specificity | 0.926 0.684 0.934 0.676
Hausdorff | 10.627 | 25.292 9.817 26.103
ASSD 1.475 4.872 1.327 5.021

Table 7.5. Evaluation Metrics for the "Lesion - O - 0" Configuration

Diploma Thesis



Reconstructed

Original Image Original Image Mask Image Anomaly Map

.

Figure 7.25. Counterfactual generation
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Figure 7.26. Mask generated by Point- Figure 7.27. Mask generated by Text-
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Figure 7.28. Counterfactual generation
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Figure 7.29. Mask generated by Point- Figure 7.30. Mask generated by Text-
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7.6 Tumour-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.798 0.794 0.810
AUPRC 0.761 | 0.724 0.842 0.703
IoU 0.606 | 0.546 0.697 0.498
Precision 0.747 | 0.621 0.943 0.544
Recall 0.762 | 0.819 0.728 0.853
F1 0.755 | 0.706 0.822 0.664
Specificity | 0.987 | 0.974 0.998 0.963
Hausdorff | 5.919 | 6.665 5.861 6.709
ASSD 0.450 | 0.618 0.462 0.610

Table 7.6. Evaluation Metrics for the "Tumour - 3 - 3” Configuration
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Latent Image

Figure 7.31. Counterfactual generation

Mask from Point Mask from Text
Figure 7.32. Mask generated by Point- Figure 7.33. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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Figure 7.34. Counterfactual generation

Mask from Point Mask from Text

Figure 7.35. Mask generated by Point- Figure 7.36. Mask generated by Text-
Prompted Pipeline Prompted Pipeline



7.7 Tumour - 2 - 2

7.7 Tumour -2 -2

Point | Text | Intersection | Union
Dice 0.799 | 0.807 0.813 0.794
AUPRC 0.743 | 0.794 0.851 0.735
IoU 0.580 | 0.647 0.721 0.541
Precision 0.683 | 0.727 0.923 0.586
Recall 0.793 | 0.853 0.768 0.878
F1 0.734 | 0.785 0.838 0.702
Specificity | 0.981 | 0.983 0.997 0.968
Hausdorff | 6.670 | 6.045 5.698 6.985
ASSD 0.531 | 0.485 0.414 0.603

Table 7.7. Evaluation Metrics for the "Tumour - 2 - 2" Configuration
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Figure 7.37. Counterfactual generation

Mask from Point Mask from Text
Figure 7.38. Mask generated by Point- Figure 7.89. Mask generated by Text-

Prompted Pipeline Prompted Pipeline
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Mask from Point Mask from Text

Figure 7.41. Mask generated by Point- Figure 7.42. Mask generated by Text-
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Chapter 7. Experimental Results

7.8 Tumour-1-1

Point Text Intersection | Union
Dice 0.774 | 0.698 0.775 0.697
AUPRC 0.734 | 0.623 0.735 0.624
IoU 0.566 | 0.332 0.567 0.333
Precision 0.662 | 0.346 0.666 0.346
Recall 0.795 | 0.895 0.793 0.897
F1 0.723 | 0.500 0.724 0.499
Specificity | 0.979 | 0.912 0.979 0.912
Hausdorff | 7.177 | 10.920 7.039 11.058
ASSD 0.657 | 1.556 0.652 1.562

Table 7.8. Evaluation Metrics for the "Tumour - 1 - 1” Configuration
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Figure 7.43. Counterfactual generation
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Figure 7.46. Counterfactual generation

Mask from Point Mask from Text
Figure 7.47. Mask generated by Point- Figure 7.48. Mask generated by Text-
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7.9 Tumour - 3 - 1

7.9 Tumour-3-1

Point Text Intersection | Union
Dice 0.806 | 0.698 0.806 0.698
AUPRC 0.761 | 0.623 0.781 0.620
IoU 0.606 | 0.333 0.633 0.327
Precision 0.747 | 0.346 0.790 0.340
Recall 0.762 | 0.895 0.761 0.896
F1 0.755 | 0.499 0.775 0.492
Specificity | 0.987 | 0.912 0.990 0.910
Hausdorff | 5919 | 10.920 5.828 11.011
ASSD 0.450 | 1.556 0.432 1.574

Table 7.9. Evaluation Metrics for the "Tumour - 3 - 1” Configuration
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Figure 7.52. Counterfactual generation

Anomaly Map

Mask from Point Mask from Text
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Chapter 7. Experimental Results

7.10 Tumour-4-4

Point Text | Intersection | Union
Dice 0.637 0.541 0.610 0.567
AUPRC 0.516 0.382 0.462 0.437
IoU 0.307 0.103 0.276 0.118
Precision 0.369 0.110 0.359 0.122
Recall 0.645 0.636 0.543 0.739
F1 0.470 0.187 0.432 0.211
Specificity | 0.943 0.733 0.950 0.727
Hausdorff | 11.200 | 19.293 11.258 19.241
ASSD 1.413 3.247 1.460 3.195

Table 7.10. Evaluation Metrics for the "Tumour - 4 - 4" Configuration
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Figure 7.55. Counterfactual generation
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Figure 7.56. Mask generated by Point- Figure 7.57. Mask generated by Text-
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Figure 7.58. Counterfactual generation
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Figure 7.59. Mask generated by Point- Figure 7.60. Mask generated by Text-
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7.11 Anomaly - 3 - 3

7.11 Anomaly-3-3

Point | Text | Intersection | Union
Dice 0.806 | 0.781 0.776 0.811
AUPRC 0.761 | 0.707 0.831 0.698
IoU 0.606 | 0.527 0.676 0.494
Precision 0.747 | 0.615 0.941 0.544
Recall 0.762 | 0.787 0.705 0.844
F1 0.755 | 0.691 0.806 0.662
Specificity | 0.987 | 0.974 0.998 0.963
Hausdorff | 5.919 | 6.948 6.199 6.654
ASSD 0.450 | 0.685 0.528 0.610

Table 7.11. Evaluation Metrics for the "Anomaly - 3 - 3" Configuration
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Figure 7.61. Counterfactual generation

Mask from Point Mask from Text
Figure 7.62. Mask generated by Point- Figure 7.63. Mask generated by Text-
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Figure 7.64. Counterfactual generation

Mask from Point Mask from Text

Figure 7.65. Mask generated by Point- Figure 7.66. Mask generated by Text-
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Chapter 7. Experimental Results

7.12 Anomaly -2 -2

Point | Text | Intersection | Union
Dice 0.799 | 0.800 0.816 0.783
AUPRC 0.743 | 0.754 0.849 0.713
IoU 0.580 | 0.586 0.717 0.502
Precision 0.683 | 0.656 0.929 0.540
Recall 0.793 | 0.845 0.758 0.880
F1 0.734 | 0.739 0.835 0.669
Specificity | 0.981 | 0.977 0.997 0.961
Hausdorff | 6.670 | 5.954 5.545 7.057
ASSD 0.531 | 0.534 0.416 0.649

Table 7.12. Evaluation Metrics for the "Anomaly - 2 - 2" Configuration
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Figure 7.67. Counterfactual generation
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Figure 7.68. Mask generated by Point- Figure 7.69. Mask generated by Text-
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Figure 7.70. Counterfactual generation

Mask from Point Mask from Text
Figure 7.71. Mask generated by Point- Figure 7.72. Mask generated by Text-
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7.13 Anomaly - 1 -1

7.13 Anomaly-1-1

Point Text Intersection | Union
Dice 0.774 | 0.685 0.780 0.680
AUPRC 0.734 | 0.624 0.756 0.620
IoU 0.566 | 0.329 0.599 0.321
Precision 0.662 | 0.342 0.709 0.332
Recall 0.795 | 0.901 0.793 0.902
F1 0.723 | 0.496 0.749 0.486
Specificity | 0.979 | 0.910 0.984 0.907
Hausdorff | 7.177 | 10.826 6.843 11.160
ASSD 0.657 | 1.553 0.582 1.628

Table 7.13. Evaluation Metrics for the "Anomaly - 1 - 1” Configuration
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Figure 7.73. Counterfactual generation
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Chapter 7. Experimental Results

7.14 Smaller U-Net

We experiment with a smaller architecture for our diffusion model’s U-Net. In partic-
ular, our encoder now processes the images through three, instead of four, stages with
constant channel widths: 64, 64 and 64 channels. Each stage now comprises of one,
instead of two, residual blocks. We provide the results of the hyperparameters configura-

tion of "lesion-3-3" below.

Point | Text | Intersection | Union
Dice 0.757 | 0.778 0.758 0.777
AUPRC 0.778 | 0.776 0.807 0.766
IoU 0.611 | 0.624 0.626 0.611
Precision 0.855 | 0.787 0.944 0.736
Recall 0.681 | 0.751 0.650 0.783
F1 0.759 | 0.769 0.770 0.759
Specificity | 0.993 | 0.988 0.998 0.982
Hausdorff | 6.838 | 7.489 7.205 6.971
ASSD 0.414 | 1.325 0.420 1.535

Table 7.14. Evaluation Metrics for the "Lesion - 3 - 3” Configuration of the smaller U-Net
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7.15 Removing the Diffusion Model

7.15 Removing the Diffusion Model

In this section, we present the results obtained by directly applying the point-prompted
and text-prompted segmentation pipelines to the original MRI images from the Medical
Segmentation Decathlon Task 1 (Brain Tumor) dataset, without generating counterfac-

tual images.

Point Text Intersection | Union
Dice 0.337 0.164 0.303 0.218
AUPRC 0.195 0.056 0.125 0.124
IoU 0.114 0.022 0.083 0.052
Precision 0.145 0.049 0.178 0.072
Recall 0.353 0.285 0.364 0.324
F1 0.315 0.223 0.444 0.356
Specificity | 0.514 0.422 0.463 0.355
Hausdorff | 28.436 | 39.323 30.147 0.347
ASSD 4.147 7.348 4.736 6.548

Table 7.15. Evaluation Metrics for the "Lesion - 3 - 3” Configuration without the usage of
the Counterfactual
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7.16 Failure Cases

Despite the overall robustness of our framework, there are instances where it failed to
correctly segment the lesions in the MRI images. These failure cases primarily arise due
to the presence of very small and non-obvious lesions, which pose significant challenges
for accurate detection and segmentation. In this section, we present several images where

our model struggled to perform effectively.

The main reasons for the failure of our segmentation pipeline include:

Very Small Lesions: Lesions that are too small are often difficult to detect and seg-
ment accurately. The small size leads to insufficient contrast and prominence in the
images, making it challenging for the model to differentiate them from the surrounding

tissue.

Poor Quality of Original MRI Images: In some cases, the original MRI images may
be of poor quality, with low resolution or high noise levels. This can hinder the model’s

ability to accurately identify and segment the lesions.

Below are examples of images where our model failed to correctly segment the lesions.
Each set of images includes the original MRI, the original image mask, the latent image,
the reconstructed image, and the anomaly map. These examples illustrate the challenges

faced by our model in accurately detecting very small and subtle lesions.
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Chapter 7. Experimental Results

7.17 Interpretation of Results and Analysis

In this section, we present a comprehensive analysis of the experimental results ob-
tained using our segmentation framework on the Brain Tumor task of the Medical Seg-
mentation Decathlon challenge. The analysis is based on various hyperparameter con-
figurations, including different text prompts, the number of preprocessing steps, and the

application of the SAM-GroundingDINO pipeline.

Our experiments demonstrated that both the "lesion” and "tumour” text prompts were
equally effective in guiding the segmentation process. These prompts consistently yielded
high performance across all evaluation metrics. The text prompt "anomaly”, while still
effective, produced slightly lower results compared to "lesion" and "tumor." This suggests
that text prompts closely related to the specific nature of the target (i.e., lesion or tumor)

are more effective in enhancing the segmentation accuracy.

We observed a clear trend where increasing the number of preprocessing steps in both the
point-prompted and text-prompted pipelines led to improved results. This trend held true
up to a certain point; specifically, the quality of the segmentation improved as the number
of preprocessing steps increased up to three. However, when the number of preprocessing
steps reached four, the quality of the results began to decline. This decline is attributed
to the excessive loss of information caused by the repeated multiplication process, which
ultimately hinders the model’s ability to accurately segment the lesions. Conversely, the
configuration with zero preprocessing steps (0-0) yielded the worst results, underscoring

the importance of appropriate preprocessing in enhancing segmentation performance.

Our framework demonstrated robustness across different configurations, maintaining
high performance regardless of the specific text prompt used, as long as it pertained to
the general category of "lesion" or "tumor." Both the point-prompted and text-prompted
segmentation pipelines produced comparable results, indicating that either method can
be effectively used in practice. Similarly, the intersection and union methods, which com-
bine the results from the point and text pipelines, also showed similar quality, further

validating the robustness of our approach.

As another part of our ablation study, we experimented with a smaller diffusion model
configuration, which resulted in slightly worse performance compared to the larger model
but still produced good results overall. This indicates that while the diffusion model size

does impact performance, the framework is still effective with smaller models.

Furthermore, we evaluated the performance of the SAM-GroundingDINO pipeline ap-
plied directly to the original MRI images, bypassing the counterfactual generation step.
In this scenario, we observed significantly worse results, highlighting the critical role of
the diffusion model and the counterfactual generation process in enhancing segmentation

accuracy.
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Chapter B

Comparative Analysis with Existing Approaches

in Brain Tumor Segmentation

8.1 Challenges in Direct Comparison with Existing Work

In this chapter, we provide a comparative analysis of the results obtained from our
framework with those reported in various other studies that have employed diffusion
models for brain tumor segmentation and localization. While this comparison is aimed at
placing our work in the context of the existing literature, it is important to note several

challenges that prevent a direct, one-to-one comparison.

One major limitation is the lack of publicly available benchmarks from other works.
Many studies in this area do not explicitly specify key details, such as the specific subset
of the BraTS dataset they used or the precise architecture of the models they employed,
including critical variations in U-Net configurations. These differences in datasets and
architectural designs can significantly affect segmentation performance, making it diffi-

cult to draw direct comparisons across all evaluation metrics.

Furthermore, the training protocols, hyperparameter settings, and preprocessing steps
are often not consistently reported in these papers, adding another layer of complexity to
the comparison. For instance, variations in the number of preprocessing steps, the type
of text prompts used, and the inclusion of attention mechanisms in U-Net architectures
are critical factors that can influence the results but are not always fully detailed in the

related work.

Despite these challenges, we aim to provide a high-level comparison of the overall per-
formance trends by focusing on the commonly reported metrics such as Dice score, IoU,
precision, recall, and specific segmentation performance metrics. This qualitative com-
parison will highlight the strengths of our framework and its alignment with or improve-
ment over existing approaches in the field of brain tumor segmentation using diffusion

models.
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Chapter 8. Comparative Analysis with Existing Approaches in Brain Tumor Segmentation

In the following sections, we present the performance of our framework alongside the
results reported in several key papers, with careful consideration of the aforementioned
constraints. While a direct benchmark comparison is not possible, this analysis provides
valuable insights into the broader impact of diffusion models on brain tumor segmentation

tasks.

8.2 Comparison with Related Work

In this section, we compare the results of our framework with three relevant studies
that employed diffusion models for brain tumor segmentation using counterfactual im-
ages. These papers share a similar conceptual foundation: utilizing a diffusion model to
generate counterfactual images and calculating their segmentation metrics based on the
difference between the original and generated images. However, several key differences in

the implementation and pipeline design should be noted.

The primary distinction lies in the specific details of the diffusion model used in each
work. The hyperparameters of the diffusion models, including the number of time steps,
noise schedules, and model architecture, vary across the studies. These differences in
model design and counterfactual generation contribute to variations in the results. Fur-
thermore, while all studies focus on leveraging the difference image for tumor segmen-
tation, we extend this approach by introducing a preprocessing step that enhances the

difference image before applying the segmentation models.

Our pipeline also distinguishes itself by incorporating advanced segmentation techniques,
specifically SAM (Segment Anything Model) and GroundingDINO, which provide a more
structured and flexible method for segmentation compared to traditional approaches.
These additions allow for improved lesion localization and segmentation by refining the
input difference images and utilizing both point- and text-prompted pipelines. As a re-
sult, our framework not only addresses some of the limitations observed in prior works
but also introduces a more comprehensive approach to segmenting brain tumors in MRI

images.

8.2.1 Comparison with Wolleb et al.’s Method for Medical Anomaly Detec-
tion Using DDPMs

The first paper, written by Wolleb et al. [50], presents a method for medical anomaly
detection using Denoising Diffusion Probabilistic Models (DDPMs) to generate counterfac-
tual images, where only the pathological regions are altered, and the rest of the image re-
mains unchanged. The difference between the original image and the generated "healthy"

image forms the anomaly map, which is used for segmentation.
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8.2.1 Comparison with Wolleb et al.’s Method for Medical Anomaly Detection Using DDPMs

Comparison with Our Approach:

e U-Net Architecture: Their U-Net employs 128 channels in the first layer and uses
one attention head at a resolution of 16. In contrast, our U-Net is more scalable, with
four stages featuring increasing channel widths (64, 128, 256, and 512 channels),
and includes residual blocks at each stage. Additionally, our model integrates at-
tention at three levels (second, third, and fourth) with cross-attention mechanisms,

which provide enhanced feature focus and improve lesion localization.

e Diffusion Steps: Their model utilizes 1,000 diffusion steps, while our setup is
optimized to use fewer steps, improving computational efficiency. Despite fewer
diffusion steps, our advanced preprocessing and segmentation models (SAM and
GroundingDINO) allow us to maintain high segmentation accuracy, whereas their

method directly relies on classifier-guided denoising.

e Classifier vs. Segmentation Models: While their method uses a classifier to guide
the diffusion process toward generating healthy images, our framework incorpo-
rates advanced segmentation models after the difference image is processed. Our
approach includes a preprocessing step that enhances the quality of the difference
image and uses sophisticated segmentation techniques, resulting in more accurate

and refined lesion segmentation.

e Dataset Size: Their dataset consists of 16,205 slices for training and 1,787 slices
for testing, while our dataset is based on 388 brain MRIs for training, 96 for val-
idation, and 251 for testing. While they focus on individual slices, our approach
benefits from working on full MRI scans, which provide better spatial context for

segmentation tasks.

e Training and Batch Size: They train their model for 50,000 iterations with a batch
size of 10, while our framework uses 4,000 iterations with a batch size of 32. Our
structured training approach, featuring dynamic learning rates, gradient scaling,
and conditioning dropout, allows us to achieve efficient convergence with fewer

iterations.

Results:

The results from the first paper demonstrate how the two key hyperparameters, the clas-
sifier gradient scale s and the noise level L, impact the performance of the diffusion model
on the BRATS2020 dataset. The Dice score and AUROC were used as evaluation metrics.
As seen in the figures, the Dice score reaches its peak value of around 0.7 when L=500
and s is close to 100. The AUROC score remains high across different values of s, with
a maximum of approximately 0.98 at both L=500 and L=250. However, when the noise
level L is set too high (e.g., L=750), the performance degrades significantly, with the Dice
score dropping below 0.4 and the AUROC falling below 0.95. Similarly, increasing the

gradient scale beyond a certain threshold introduces artifacts, particularly at the edges
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of the brain, leading to a decrease in the Dice score. The results emphasize that careful

tuning of both L and s is critical to achieve optimal segmentation performance.

8.2.2 Comparison with Sanchez et al.’s Method for Medical Anomaly Detec-
tion Using DDPMs

The second paper, written by Sanchez et al. [40], presents a method for generating
counterfactual images to localize lesions in brain MRIs using a diffusion model with im-
plicit guidance and attention conditioning. The core difference between their approach
and ours lies in the specific techniques used to generate the counterfactual and handle

the resulting difference image.

Comparison with Our Approach:

o Attention Mechanisms: While both approaches rely on U-Net architectures, the
second paper incorporates conditional attention mechanisms throughout the net-
work, which guide the model using conditioning information during the decoding
process. Our method, in contrast, uses attention at specific levels (second, third,
and fourth) but includes cross-attention to integrate additional external context,
such as class labels, ensuring more precise segmentation by focusing attention on

relevant areas in the brain MRI.

e Dynamic Normalization: One of the unique aspects of their approach is the use
of dynamic normalization during inference. This prevents pixel saturation in the
latent space, ensuring that the model retains reconstruction quality over iterative
denoising steps. Our framework does not rely on dynamic normalization. Instead,
we preprocess the difference image through multiple multiplication steps with the
original image to enhance lesion visibility and reduce noise, offering an alternative

pathway to maintaining quality in the reconstructed image.

e Diffusion Process: Their method applies implicit guidance in the diffusion process,
combining conditional and unconditional predictions to generate the counterfac-
tual. This is achieved by randomly dropping conditioning during training to pre-
vent overfitting. Our approach, however, focuses on a simpler but more controlled
conditioning technique in which external information is explicitly integrated. The
counterfactual generation in our model is further enhanced by advanced segmen-
tation tools such as SAM and GroundingDINO, which are used after preprocessing

to provide refined segmentation results.

e Dataset Size and Image Resolution: The second paper uses a larger training
dataset from the BraTS 2021 challenge, with 938 MRIs for training, compared to our
388. They downsample images to a 64x64 resolution for training, while evaluating
at 128 128 for better comparison. Our approach uses a consistent image resolution
across training and evaluation. This difference in dataset size and resolution could
explain some of the variations in segmentation quality, as larger datasets and higher

resolutions typically improve model performance.
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8.2.3 Comparison with Fontanella et al.’s Method for Medical Anomaly Detection Using DDPMs

Results:

The results from the second paper demonstrate strong performance in tumor detection
and localization, achieving an AUPRC of 82.8 £+ 0.4 and a Dice score of 76.2 £+ 0.3
when trained on the full dataset. The model incorporates implicit guidance, attention
conditioning, and dynamic normalization, which significantly contribute to these results.
Specifically, the inclusion of implicit guidance improves the Dice score to 52.0, while
adding attention conditioning boosts it further to 74.3. The final improvement comes
from dynamic normalization, bringing the Dice score to 76.2, which represents the op-
timal performance for their framework. These results indicate the effectiveness of com-
bining diffusion models with advanced guidance and normalization techniques for brain

tumor segmentation.

8.2.3 Comparison with Fontanella et al.’s Method for Medical Anomaly De-
tection Using DDPMs

The third paper, written by Fontanella et al. [11], introduces a method called "Dif-fuse"
that combines a DDPM trained on healthy samples with saliency maps, leveraging coun-
terfactual examples to detect and localize anomalies. Their approach involves generating
a noised version of a diseased image using inverse DDIM sampling, then smoothing the
saliency maps to generate masks that localize the pathological regions. The pathological
regions are edited using DDPM sampling, while the healthy parts of the image are pre-
served through DDIM sampling. A coherent final image is achieved by mixing the DDPM
and DDIM components at each sampling step, effectively preventing structural changes

in healthy area

Comparison with Our Approach: Compared to our approach, the third paper also uses
a DDPM for counterfactual generation, but it adds a saliency map mechanism for refining
the localization of pathological regions. Our method differs in that we employ SAM and
GroundingDINO for segmentation, focusing on preprocessing the difference image, while
"Dif-fuse" uses ACAT for generating saliency maps. Moreover, while we use four metrics
for evaluation (e.g., Dice, AUPRC), this paper highlights the importance of thresholding
saliency maps and noise levels in their anomaly detection process, refining performance
by optimizing these parameters.

In terms of dataset, both approaches use the BraTS2021 dataset, but the "Dif-fuse"
paper also tests on the IST-3 dataset, which we do not. Regarding architecture, "Dif-fuse"
uses a U-Net with 128 channels and attention heads at specific resolutions (8, 16, 32),
whereas our U-Net model uses a wider range of channels (64-512) with attention layers
integrated at different levels to enhance feature focus. Lastly, both methods address the
issue of excessive noise and artifacts introduced by over-processing, but we implement
it by carefully choosing the number of preprocessing steps, while "Dif-fuse" adjusts the

noise levels and thresholds for binarizing saliency maps.
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Their results indicate optimal performance with 500 noising steps and thresholding
at the 90th percentile, showcasing their best Dice score when artifacts are minimized and

pathological regions are sufficiently removed.

Results:

The results from the third paper, "Dif-fuse," indicate that their approach outperforms
other weakly-supervised methods, both those employing GANs and diffusion models.
Specifically, the anomaly maps generated by "Dif-fuse" achieve a Dice score of 0.7056, sur-
passing other models like f~Ano GAN (0.5407), classifier-guided diffusion models (0.6534),
and classifier-free diffusion models (0.6393). Additionally, their ablation study on the
saliency maps from ACAT reveals a Dice score of 0.5753, highlighting that integrating

their diffusion model with the saliency map process significantly enhances performance.

In comparison to our approach, while "Dif-fuse" achieves a commendable Dice score
of 0.7056, our framework, which integrates SAM, GroundingDINO, and multiple pre-
processing steps, achieves higher Dice scores in certain configurations. This reinforces
the effectiveness of our counterfactual generation pipeline when combined with advanced
segmentation techniques like SAM. Additionally, "Dif-fuse" focuses heavily on optimizing
saliency maps and noising steps, while we emphasize a robust preprocessing of difference
images and multiple segmentation pipelines to achieve more flexible lesion localization

across various test cases.
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Chapter E

Epilogue

In this thesis, we have developed and evaluated a robust framework for the segmenta-
tion and localization of brain tumors in MRI images. Our approach integrates a diffusion
model to generate healthy counterfactual images, followed by segmentation using the SAM
(Segment Anything Model) and GroundingDINO models. We explored various hyperpa-
rameter configurations and conducted an ablation study to understand the significance

of each component in our pipeline.

Our key findings include the following:

Effectiveness of Text Prompts: Our experiments demonstrated that text prompts
such as "lesion" and "tumor" are equally effective, consistently yielding high performance
across all evaluation metrics. The "anomaly" prompt, while still effective, resulted in
slightly lower performance. This highlights the importance of choosing text prompts that

are closely related to the specific nature of the target lesions.

Impact of Preprocessing Steps: Increasing the number of preprocessing steps gen-
erally improved the segmentation quality, with optimal results observed at three steps.
Beyond this point, performance began to decline due to excessive information loss caused
by repeated multiplications. The worst results were observed with no preprocessing, un-

derscoring the necessity of adequate preprocessing.

Robustness of the Framework: Our framework proved to be robust across different
configurations, maintaining high performance irrespective of the specific text prompt
used, provided it was relevant to the target lesions. Both point-prompted and text-
prompted pipelines performed comparably well, as did the intersection and union methods

combining their results.

Ablation Study: Our ablation study confirmed the critical role of the diffusion model
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Chapter 9. Epilogue

and counterfactual generation in achieving high segmentation accuracy. A smaller dif-
fusion model configuration resulted in slightly lower but still acceptable performance.
However, removing the diffusion model entirely and applying the SAM-GroundingDINO

pipeline directly to the original MRI images led to significantly worse results.

Overall, this thesis contributes to the field of medical image segmentation by demonstrat-
ing the efficacy of integrating generative models with advanced segmentation techniques.
The proposed framework enhances the accuracy of lesion localization and segmentation,

making it a valuable tool for assisting radiologists and medical professionals.

Future work could explore several avenues to further improve the framework:

e Enhanced Preprocessing Techniques: Investigating alternative preprocessing meth-

ods that preserve more information could yield better segmentation results.

o Extended Hyperparameter Tuning: A broader exploration of hyperparameters may

uncover configurations that further optimize performance.

e Real-time Application and Clinical Trials: Testing the framework in real-time
clinical settings would provide insights into its practical utility and potential areas

for improvement.

In conclusion, our framework represents a significant advancement in the automatic seg-
mentation of brain tumors in MRI images. By leveraging the strengths of diffusion models
and state-of-the-art segmentation techniques, we have developed a robust, flexible, and

effective tool that holds promise for aiding medical diagnosis and treatment planning.
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