EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTISTON
TOMEAY TEXNOAOTIAY ITAHPO®OPIKHY KAI YIIOAOTISTON
EPrasTHPIO XYSTHMATON TEXNHTHE NOHMOSTNHE KAI MAOHTHS

Investigating the Capabilities of Language Models in
Puzzle Reasoning: A Survey and Experimental Analysis

DIPLOMA THESIS
by

Panagiotis Giadikiaroglou

EnBAenwyv: Tedpyiog Stduou
Koadnyntic E.M.IL

Adfva, OxtoBene 2024

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Tougoc Teyvohroyioc IIAnpogopiniic xar YTrohoylotddv
Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

Investigating the Capabilities of Language Models in
Puzzle Reasoning: A Survey and Experimental Analysis

DIPLOMA THESIS
by

Panagiotis Giadikiaroglou

EnBAenwyv: Tedpyiog Stduou
Kodnyntic E.M.IL

Evxpldnxe and v teiues) e€etaotn emitpony) Ty 24" OxtodfBplog, 2024.

Tedpyioc Ytdpou Adoavdotoc Boulddnuog A.-T. Eropulondtng
Koadnyntic E.M.IL En. Kodnyntic E.M.IL. Koadnyntic E.M.IL

Adiva, OxtaBene 2024

ITANATIOTHS I'TAAIKIAPOI'AOY
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Panagiotis Giadikiaroglou, 2024.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

H enihuon yelpwy anotelel onuelo avagpopdc yio Ty a&lOAOYNOT TV HOVTEAWY TEXVATASC YONUOGHVNG, Boxiud-
Covtog TNV IXAVOTNTA TOUG VoL OXEPTOVTOL, VoL CUUTEROLVOUY X0l VOl XOTOC TRGOVOUY GTRATNYIXES OE TONUTAOXOUS
Yeoug TeoPinudtey. O nopadocloxéc pédodol TeyvnTAC VONUOoUYNG Xt Unyovixng pddnone, 6nwe n ouy-
Bohxr) GUAOYLETIX %o N eVioy LT uddnom, éyouv onuewdoel adloonueinto Briuata oe dounuévoug touelq
onwe Ta emtpanélior makyvidia xou ot hoywxol yplpol. Qotdoo, xadde e€ehiydnpav to veupwvind dixtua xou,
o mpdogata, To YeYdha YAwooixd povtéla (MI'M), npoéxuday véeg SuVOTHTNTES Yol TNV OVTIHETOTLON EVOC
eLP0TEPOL PACUATOC TOTWY YElPWY, CUUTERLAUUPAVOUEVKDVY EXEIVWY TIOU amALTOUV AENTY CUAAOYIOTIXY XOWVAC
NoYWNE, apNENUEVY VoY VMELOT TEOTUTLY Xl TOAUTAOXOUS UTOAOYIoHOUS TOAGY Brudtwy. Toa MI'M, pe tig
yAwoouxéc duvatdtntee mou Poacilovtat oe TepdoTIous 6YX0US dESOUEVQY, SLOETOUY LOVABIXES BUVATOTNTES Lo
™0 YEQUEWGST BOUNUEVGDY AOYIXWY ERYACLMY X0 AYOTERPO TUTIXGY Yelpwy Ttou Bactlovta ae xowv yvoaon. Tlopd
TI TPOGJOLC AUTEG, TO anueptvd Tomlo tne enthuong yelpwy pe MI'M anoxahintel téc0 emitedypota 660 xou
TEQLOPLoROUE, Wlwe dTav Tar povTéra elpopTilovTal Ye TEOBANUITA TOU AMatTOVY EPUNVEUTIXT GUANOYIC TIXT] XAl
axpBelc uTtohoyiopole.

H napovoo dimhwpating epyooio Siepeuvd tov eehilocduevo péro twv MI'M otnyv enfivon tétoiwy oOvietwv
GUALOYLO TV TtROPBANUdT®Y, 0 TIdLoVTog EWBIXd OTIE avdTNTES Toug oty emthuot Yelpwy. Xwelouévn ot dho
%x0PLEC EVOTNTES, 1) DITAGUOTINY TUPEYEL AEYIXE ol OAOXANEWUEVY) ETLOXOTNOY TV TPoOcQATwY eEeMEewy oTiC
pedodoroylec MI'M, xaAbmtovtog Toiheg TeYVIXEC TPOTEOTAC, VEUPOGUUBOMXES TPOCEYYIOEIC Xl OTEUTNYIXES
tehetonoinong vy malh. XenoulomoidvTog (ot VEX TEOTEWVOPEVY Tadvounon, ta ol XoTnyoptonolobvTon o€
npoPBAruata Pootouéva o XOVOVES ot TEOBAAOHTA Ywple CUYXEXPLIEVOUS XaVOVES, v xdle xotnyopla &-
etdleTon Yo TLC Lovadxég YvewoTixég anauthoelg tng amd to MI'M. X1n Sebtepn evotnta nopoucidlovial Telpo-
patxée oflohoyfoelc mou mpaypatonoidnxay oe téooepa oOVOAa dedouévmy - 800 cOVola Bedouévmv Tou
Booilovta ota padnuatind (GSM8K, SVAMP) xa 800 cUvoha dedopévnv tou ectidlouv ot ypigoue (Game of
24 »on RiddleSense). Audpopes e VIXES CUNOYIOKOU, CUUTEPIANOPPBOVOUEVWY TWV TEOTEOTHY ELo630U-eE650U
(I0), twv petddwy Chain-of-Thought (CoT), Least-to-Most (LtM) xou Faithful-CoT, yenowonowolvton yio
Vv o€loAdyNon Ty emdécewy twv MI'M. Movtéha diapopetiniic xhipaxag, Wialtepa uixpdtepor MI'M 6mwg 7
owoyévela wovtéhwyv Llama-3.1 xou to Mistral, Soxidlovtor o€ TepTT®OoELS OO YENoLoTolobVTOL UNdEVIXS
TAHY0C TaPABELYUATWY XATE TNV TEOTEOTY, EVOC CUYXEXPUEVOS aptioC THpABELYUdTLY Xadde enlong 1 TeXVIXn
TNC QUTOCUVETELNG Yo Vo a€lohoy el 1 amotekeouatixdTNTd Toug oty entlucy cOVIETLY o TOAAATAGY Br-
HATOV CUANOYLOTIXWY pyaotdy. H Bimhwuoatiny epyaoio mapéyel xplowes TAnpopopie oyYETiXd UE TOUC TEQL-
oplopolg amddoone Twv onuepvedy MI'M oty enlhuoT yelgpwy, onueidvoviog Wialtepa 6Tl Tponyuéves uédodol
oulhoyilopol 6w to Faithful-CoT xou ou teyvixée petdppoong yelpwy amodidouv acuveyeic Bedtidoeic ota
uxpotepa wovtéa. Téhog, oxaypapel yehhovixée epeuvnunég xatevdivoelg, unootneilovtag) dnutovpyla
BIEVPUUEVWY GUVOAWY BEBOUEVKV, TNV AvATTUEY VELPOGLUBOAXOY HEVEBMY XL TNV EVOEYOUEVY TTpGOD0 TNV TE-
proy?) dnuovpyiog xar maporywyhc malh ané MI'M. H napotoo dimhwpatixy epyasio anooxonel otnyv eufdiuvon
NG XATAVONONG TWV GUANOYIO TGV XavoTATOVY Twv MI'M %ot oty avaBetln Hovomatiiy yio Thy evioyuor Twv
EMBOCEWY TOUC G GUVUETA YVWO TIXd xadxovToL.

A€Zeig-xhedid — Meydha yYAwoowxd povtéra, Lulhoylotxr, Exihuon Hal), Hpotpony), NevpoouuBoiixée
Médobdot

Abstract

Puzzle-solving has long served as a benchmark for evaluating artificial intelligence, testing a model’s ability to
reason, infer, and strategize across complex problem spaces. Traditional AT and machine learning methods,
such as symbolic reasoning and reinforcement learning, have made notable strides in structured domains
like board games and logic puzzles. However, as neural networks and, more recently, large language models
(LLMs) have evolved, new possibilities have emerged for tackling a broader range of puzzle types, including
those requiring nuanced commonsense reasoning, abstract pattern recognition, and complex multi-step calcu-
lations. LLMs, with their vast data-driven language capabilities, hold unique potential to bridge structured
logical tasks and less formal, knowledge-based puzzles. Despite these advances, the current landscape of
puzzle-solving with LLMs reveals both achievements and limitations, particularly when models are tasked
with problems that demand interpretative reasoning and precise calculation.

This thesis explores the evolving role of LLMs in solving such complex reasoning tasks, specifically focusing
on their puzzle-solving capabilities. Divided into two main sections, the thesis first provides a comprehensive
survey of recent advancements in LLM methodologies, covering diverse prompting techniques, neuro-symbolic
approaches, and fine-tuning strategies for puzzles. Using a newly proposed taxonomy, puzzles are categorized
into rule-based and rule-less types, with each category examined for its unique cognitive demands on LLMs.
The second section presents experimental evaluations conducted on four datasets—two math-based datasets
(GSMB8K, SVAMP) and two puzzle-focused datasets (Game of 24 and RiddleSense). Various reasoning
techniques, including Input-Output (IO) prompting, Chain-of-Thought (CoT), Least-to-Most (LtM), and
Faithful-CoT methods, are employed to assess LLM performance. Models of varying scales, particularly
smaller LLMs like Llama-3.1 family and Mistral, are tested across settings such as zero-shot, few-shot, and
self-consistency to evaluate their efficacy in solving complex and multi-step reasoning tasks. The thesis
provides critical insights into the performance limitations of current LLMs in puzzle-solving, particularly
noting that advanced reasoning methods like Faithful-CoT and puzzle translation techniques yield inconsistent
improvements with smaller models. Finally, it outlines future research directions, advocating for expanded
dataset creation, neuro-symbolic integration, and advancements in puzzle generation. This thesis aims to
deepen our understanding of LLLMs’ reasoning abilities and highlight pathways to enhance their performance
in complex cognitive tasks.

Keywords — Large Language Models, Reasoning, Puzzle Solving, Prompting, Neurosymbolic Methods

Euyaplotieg

O fdeha vo evyaplothow Vepud tov emfBAiénovta xodnynth wou, x. L'wpyo Xtduou, yio tnv euxaipla Tou
KOV €B0E ot TNV EUTLETOOUVY TOU MOV €0ElEE OTO VoL EXTOVHGW TN SITAWUATIX (o gpyaocia oto Epyaothpio
Yvomudtev Teyvntic Nonpoolvne xou Mddnong, xoddde xou yia Tnv moAlTn xadodrynor mou you nupelye,
XxoTd TN OLdpXEll AUTAC TNE DIMAWUXTIXAS, 0ANS xou mépay authg. Toauvtdypova, euyaplotd VYepud Tov x. Odvo
Bouhédnuo yio v enlong wialtepa ToAUTIUN xaodnyNoT Tou xaL TNV ePmoTocUYY Tou. Eipon euyvdpwmy toco
Yio TO axodNUins, 660 xal Yiot To NHxd TEdTUTTO ToL amoTéAECAY auUTOl oL dvipwrol yio epéva xaTd T SdpxeLa
e ouvepyaolog pag. Oa fdeha emmiéov va euyoptothon Ty Mapla Auvurtepaiou xou tov I'iwpyo Pravdplavd
Yo TN 6TEVY ouvepyaoio pog, v avextiuntn BoRdeia xou) cuveyn vtooTHEEY Toug, diywe TV onoiwy N
exmovnon avthc TN dimhwyatixic dev Yo 0dnyoloe o€ auUTO TO AMOTENEOUAL.

Téhog, VEhw va euyaploTHoW TNV OXOYEVELD Wou, 1 omolo otneilel xdle Briua pou, o ywel autolg dev Va
unopoloo va elyo xotapépel doo €xw METUYEL, OTwe enlong xou Toug @ihoug Uou, Ue Toug onoloug Tepdooue
AUETENTES WPEC MEAETNG, CUUTOEACTAONS, Sloox€daong xan TodLdvy, oTiyués mou do pelvouv avelitnheg ot
Wvifn pov.

Tavayidtne Toduadpoyiou, OxtoBerog 2024

11

Contents

Contents
List of Figures

1 Exztetopévn Ilepiindn ota EAANvixd

1.1 Oewenund TrOPodpo L
1.1.1 Meydha Mwoowd Movtéhar . . . o o v oo oo s e e
1.1.2 IIpoTpomd) o o

1.2 Enihvon ok pe yprion MI'M (Bighoypaguery Epeuvar) . . . o o oo oo oo oo
1.2.1 Komnyopromoinon towv ok . . Lo o 000
1.2.2 Mebodoroyleg Enlhvonc Mok o oo oo o000
1.2.3 XOvoha Aedopévey oe TTalh oo oo

1.3 IIetduomar - o v v v o
1.3.1 30VoAat AEBOPEVIV « . o v v
1.3.2 Thwoowd MoVTEAD o e
1.3.3 MeUoBohoYIEC . . . o . . e e e e
1.3.4 Pudulosic IIpoTpomAC « « . v o v v o oo
135 ATOTENEGUOTO . . . o v v vttt

1.4 BUPREPAOUOTO o v v v v e e e e e e
141 Bu0ATNom . . . oo
1.4.2 Meihoviwréc KatevOOvoel o o o o e

Introduction

Background

3.1 Machine Learning oL
3.1.1 Categories of Machine Learning L o
3.1.2 Data Modalities e

3.2 Deep Learning L
3.2.1 Core Components i e e
3.2.2 Tralning Lo
3.2.3 Evaluation

Large Language Models (LLMs)

4.1 Embeddings e e
4.2 Transformers e
4.2.1 Attention L e e e e
4.2.2 Self-Attention and Transformer Networks
4.2.3 Pretraining Architectures L
4.3 Prompting L
4.3.1 Prompt Categories e e
4.3.2 Prompting Techniques L L e
44 LLMs and Reasoning L e

13

15

17
18
18
20
21
21
23
25
28
29
29
30
31
31
36
36
37

39

Contents

4.4.1 Categories of Reasoning with LLMs
4.4.2 Emergent Abilities of LLMs e
4.4.3 Challenges in Logical Reasoning with LLMs
4.4.4 Comparison to Human Reasoning

5 Puzzle Solving and LLMs

5.1

5.2

5.3

5.4

Categorization of Puzzle Problems
5.1.1 Rule-based Puzzles e e
5.1.2 Rule-less Puzzles
Methods and Strategies L e
5.2.1 Prompting Methods L
5.2.2 Puzzle Translation e
5.2.3 Fine-Tuning oL L
5.2.4 Conventional Methods
Datasets, Benchmarks and Tasks o o
5.3.1 Rule-Based Puzzles. e
5.3.2 Rule-less Puzzles e
Literature Review Discussion e
5.4.1 Applied Methods and Dataset Gaps
5.4.2 Performance Analysis L L
5.4.3 Puzzle Generation e

6 Experiments

6.1 Preliminaries L e
6.1.1 Datasets e
6.1.2 Models e e
6.1.3 Methodologies e
6.1.4 Prompting Settings L
6.2 Experimental Results
6.2.1 GSMSK Results e
6.2.2 SVAMP Results e
6.2.3 RiddleSense Results
6.2.4 Game-of-24 Results

7 Conclusion
7.1 DISCUSSION . . . v v v v
7.2 Future Work

8 Appendices
8.1 Prompts used for the experiments L L oL
8.1.1 GSMSBK e
8.1.2 SVAMP e
8.1.3 Game of 24 e

9 Bibliography

14

List of Figures

1.1.1 Apyrtextovixd) Transformer (Metaoynuatiotd) [119]o oL
1.1.3 ITpotponA pe ohvodwtd BhAgata oxédne (CoT) [127] o o oo oo
1.2.1 Tagvoéunon twv Ialh pe to aviiotorya Xovoha AeBopéveyv.o oo oo

4.1.1 Glove Visualizations by Richard Socher [95] L ...
4.2.1 An example of the attention mechanism [119] oL L.
4.2.2 Scaled Dot-Product and Multi-Head Attention [119]
4.2.3 Transformer Architecture [119] o
4.3.1 Prompting Typology [7T1]
4.3.2 Zero-shot prompting [10]
4.3.4 Chain-of-thought [127]
4.3.5 Self-Consistency CoT [124] o o
4.3.6 Program-of-thoughts [16] e
4.3.7 Model Tuning vs Prompt Tuning [63]
4.3.8 Prompt Tuning [63]
4.4.1 Taxonomy of Reasoning with Language Model Prompting [98]
4.4.2 External Engines for Reasoning enhancement [98]
4.4.3 Vanilla baseline (a) vs CoT (b) vs Selection-Inference (c) [22]
4.4.4 Knowledge Enhanced Reasoning [98]

5.0.1 Riddle from RiddleSense [68]. GPT-4, LLaMA2-70B and Bard chose the right answer.
5.1.1 A taxonomy of Puzzle Categories with the corresponding Datasets.
5.2.1 Evolution of reasoning topologies used in prompting schemes [8].
5.2.2 Variants of tree and graph prompting topologies [8].
5.2.3 An illustration of thought revision process in XOT [25].
5.2.4 Examples from various tasks applying the Faithful-CoT method [78].
5.3.1 Experimental results comparing the success rate of different LLM-based Sudoku puzzle solvers

across three sets of benchmarks [74]. oo oL
5.3.2 A case study of a “valid” action and its corresponding reasoning generated by GPT-3.5-16k for

solving Minesweeper. Blue indicates logical reasoning; red and golden are illogical ones [66]. .
5.3.3 Contrasting Vertical Thinking tasks (PIQA (Bisk et al., 2020 [9]) and RiddleSense (Lin et al.,

2021 [67])) to BRAINTEASER, a lateral thinking task.
5.3.4 An example of a Lateral Thinking Puzzle in the LatEval benchmark [47].

6.1.1 A thought structure for the Game of 24 [25].
6.1.2 A sample output for a math question from the four above methods. The ground-truth answer
) N)

15

80

List of Figures

16

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

17

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

To Meydho T'hwoowxd Movtého (MI'M) éyouv mpowdfioer onuavtixd v enelepyaocia e Quoic YAMOoOC,
EMBEXVIOVTUC EVIUTIWOLAXES BUVATOTNTEC OE EVAL EUPU PAOUI EQYAOUDY, CUUTERLAIUBAVOUEVNC TNE Tapay Y NS
XEWEVOV, TNE HETAPPAOTC XU TNS andvinong epwtioewy [84]. Movtéha énwe 1o GPT-3 [11], to GPT-4 [89] xou
1 npdogotn oepd Llama [27, 117, 118] éyouv dievplver ta dpla tne tevnthc vonpoovvne (TN), emdexviovtag
HLOL LOVOBLXT) IXOVOTNTA XATAVONONG Kol TOROY WY HE XEWEVOL Tou Yoldlel ue avdpwmivo xetuevo. Iépa amd autég
TIC EMLPAVELOXES IXAVOTNTES, WLl XELOULT TTUYTH AUTEOY TV LOVTEAWY elvol ol BUVATOTNTES TOUC Y GUANOYLIOUS
- o yvwotixy ddoacio mou nepthopfBdvel TNy eaywy) CUUTERUOUAT®Y, TNV eNAUGY TEOBANUATWY Xou THY
eqappoyf Aoy v v e€oywyh Aoewy [70, 69, 5, 22]. H culhoyiotxy eivar Lotixfc onupooiaug oyt wévo
Yo TNV XoTovénoT Tou TAociou aAAG xaL Ylol TNV OVTLHETOTLOY CUVIETWY, APNENUEVWVY EQYACUOY TOU ATOLTOOY
XYTL TEQLOGHTERO OO TNV UTOUVNUOVEUST) DEBOUEVWLV.

H enfhvon yelpwy yenotueter wg woavixd onuelo avopopds yia TV agloAdyNnon TV IXIVOTATWY GUANOYLO TIXAS
TOV YAWoo®OY ovtéhwy. Ta malk, and 10 oyediaoud Toug, TEOXUAOUY YVWO TIXES IXAVOTNTES OTWS 1 AOYIXT
oxédm, N avoryvodelon TeotiTwy xat 1 otpatnyx oxédr. Anoutoldv and toug Aitec va enefepydlovtan TAnpo-
(opleg, Vo xAvouV CUVBEGELC Xai Vo EQaPUOloUY XavdveS BnploveYd Yo vo xotohniouy oe Aboelg. Autod
xohotd tar malh éva mhovotlo medlo yia T Soxur| tou Bddouc xou tne euehiElag TV CUANOYLO TIXOVY IXAVOTATLY
evoe wovtéhou TN. Ou yplgol unopolv va xatnyoptonoimdolv ce tOnoug Paciopévous oe xavdveg xan Ywelc
xavovee, xodévag and Toug onoioug mapouatdlel EEYwELo TEC TPOXAACELS: OL YplpoL BacloUévol 6e XaVOVES, OTWG
to Sudoku 7} to Game-of-24, Bacilovton oe otadepoic xavdves xou dounuéva teptBaAlovTa, eved oL ypipol ywelc
xavOveS, OTwe oL yplpol xau Tor Tl TEOYROUUATIGHOU, omotTOVY EVRUTERY) CUUTERACHATIXY oXEPN %ol EQURHOYY
yvéoewy [38].

Iapd v auavduevn tohumhoxdtntd toug, o MI'M e€axorovdolv va avtetwnilovy afloonuelwtes TpoxAn-
oelc oty enthuon yelpwv. O tpéyovoes tpooeyyioels cuyvd Buoxokebovton pe epyasies Tou amautoly GUANO-
Yioub TOMNGOY Priudtov, xewlousd e aBeBadtntac f eppnveio xpupdy TAnpogopldy [129, 4]. Evd pédodol 6w
7 mpotpon Alywyv napoderypdtwy [10] xou 1 culhoyiotxh chuobwtd Pruata oxédne (Chain-of-Thought — CoT)
[127, 53] éxouv Peltidoet Ty anddoor ot oplouéves Tepintdoels [105], napouévouy onuavtnd xevd, Wiaitepa ot
yelpoug mou anatody Badid Aoy cuunepacuatoloyio 1 T0 GUVBLAGHS TOANATAGY BNUdtwy cUANOYITIXTG.
Avtol ot meplopiopol avadelxvioLy TNV avdyxT Yld TLO TEONYUEVES TEXVIXEC TOU Umopolv Vo EVIGYVOOUY TIG
Buadixaoiec culhoylopol tewv MI'M.

H Siepedivnon twv cuAhoyLoTix®y ovothtwy tTowv MI'M péow tng enfAvong nalk nopéyel ToAITIUES YVOOELS
TIOU UTOpOUV VoL 0dNYACOLY GTNY AVATTUEY TLO TEONYUEVLY CUCTNUATKWY TEXVATHS Vonuoolvng, e&omhilovtde
Tot e TV weovoTnTa var yepillovton ovvideta cuihoyiotixd tpofiiuoata. H xatavénon tou tpdmou pe tov onolo
oautd to wovtéha yepllovton epyaoieg culoyiopol pnopel va Bondnoel oty avdnTudn VEWY GTEATNYIXWY X0l
vo xododnynoet T dnuovpyic HOVTEADY XoADTERA EEOTALOUEVWV Ylal TNV AVTWETOTLOT CUVIETLV TREOXANCEWY
Tou TpayUaTixol xoopou. H moupoloo Simhwpatind epyacio €xel we oTdYO Vo YEQUEOOEL TO YAoUo UETAED
TWVY ONUERPLY®Y duvaToTATOY Twv MI'M ot TV anathoeny TN TeonYREvNg cLALOYLOTIXAS, CUUPBAA ovTaS UEe
TOANJTIIES YVAOOELS oTNY avdnTuln Tio toyLpny Uedodwy culhoyiotiic TN.

H perétn pag €yel 500 xOpleg oLUVELGPORES:

1. Mot ohoxhnpwuévn emoxomnon Tou undpyovtog Toniou tne cuihoylotxic MI'M otnv enlivon mall,
avaBELVOOVTOC Ta BuVATd xou adlvata onpeia Twv dlapdpwy Tpoceyyioewy.

2. Hewpapotinég aflohoyfoeic e anddoong twv MI'M oe emheyuéva malk, cvunepilopfovopévey podrn-
HOTXOY cUVOALY Bedopévey, tou RiddleSense [67] xou tou Game-of-24 Puzzle, ypnoiponodvrog di-
AUPOPETIXES OTRPATNYIXEC GUANOYLOROU, OTwe 1 Tpoteon Alywv napadetyudtwy, to CoT, n autocuvéneia
%o oL VeupoouuBoAixéc Tpooeyyioels.

1.1.1 Meydra 'Nwoowxd Movtéla

Toa Meydha Mhwoowxd Movtéha (MI'M) eivon mponypéva cvotiuota T VATAS VOTUOCOVIE TOU YENOLLOTOLO0Y
Bardd uddnon yio var enelepydlovTal xol Vo TORdyouY QUOLXY YAWCOA, ETLTUYYAvOVTaG entinedo xotavonong
%o GAANAETBPAONG TOU OMNUATOBOTOUY ENMAVACTUCY, OTNV TEYYNTYH VonuooLvr. Autd ta povtéha, Tta omola
EXTIUOEVOVTOL OE EXTETUUEVR GUVOR BEBOUEVRY amd TNyEg Omwe PBiBAlo xou mepleyduevo Tou dLadixtiou, elval
oV Vo GUAAOBEVOUY TOAUTAOXY YAWOOWXE TEOTUTOL Xol BOMES, xohaTdVTaS To Wlodtepa EVEAXTA OE €val

18

1.1. Bewpnuxd TndBadpo

eupl pdoyua epyootdy ou oyetilovtal pe) YAdooo. Metd and i eupela @don mpo-exnaidevong, to MI'M
oLY VA TEOCUPUOLOVTAL AETTOUERMS YIol GUYXEXPWEVOUS TOUE(C, ETLTEETOVTAS TOUG Vol Tpocupldlouy TN YEVIXN
YAWOOUX TOUC XatovdnoT ot eEEBIXEVPEVES EQUpUOYES UE eNdytota tpdodeta dedopéva exmaldevone.

H e&éMEn autr amotedel éva onuavTtind Ghua o€ GYECT| UE TA TEOTYOUUEVA VEVPWVIXE LOVTENX, EMLTEETOVTOC OTA
MI'M va avohauBévouy xordfixovta mou unegBalvouy TNV At Topoywy T XeWWévou xou tepthauSdvouy e€ehlyuévn
oLANOYLOTXT, ETihuoT) TEOBANUATKY Xou dNUovpYIXés epopuoYés. Avtetwnilouy éva eupld @doua TEOXAAGEWY,
and v Tadlvounon xat TNV Tepthndn xelWévey Ewe TN YAWGOWXY UETAPEOOY XaL TN CUVOWA{ UE TNV TEXVNTA
vonuooiUvn. H npocapuoctindtnra twv MI'M ta xathotd mohdTipa og 6houg Toug xAddoug, Tapéyovtag AJoELS
TN mou Eenepvolv Tic nahadTepeg TeXvohoyleg ot TayltnTa, axp{Beta xon euehiéio.

O nuprivac twv MI'M Beloxetar oty apyrtextovins| Tou Transformer (petooynuatiot), n onola TapoLGIAGTNXE
ond toug Vaswani et al. (2017) [119]. Ou Transformers Pacilovton o unyoviopolc autonpocoync, oL onoiol
EMTEETOUY OTA HOVTERA VO XATAVOOVY TG Oy€otle HETAED Twv AMEewy ot wa axolouvdo xewévou, aveldptnta
amd TN oeled. AuTh N apYLTEXTOVIXY EVIOYUEL TNV XOVOTNTO TOU UOVTENOU VoL XAUTOVOEL Xt Vo TopdyEL Xelpevo
pe vonua. H exnaidevon twv MI'M Eexwvd yevind pe pdinom ywelc enlBiedm, 6mou to poviého mpofiénet
Vv endpevn MEN oe wio axohoudio, dnuiovpy®vTag Wi Beuehiddn xatavonon e yAnoooc. Autd cuvidug
axolovdelton and emPBAenoyevy telelonolnon oe cuyxexpléveg epyaoieg, BEATLOVOVTUC TEPAULTERL ToL TAUPAYO-
MEVOL ATOTEAEGUATO TOU LOVTEAOU.

Ye avtideon pe nponyoluevee apyttextovixéc, 6nwe to Avadpouixd Nevpwvixd Alxtuae (RNN) [108] xo to
dixtua paxpdc Beayurpddeoune uviune (LSTM) [43, 108], ou Transformers dev amoutolv Swdoyinn enclepyasio
BEBOPEVLY, xALOTOVTIC TOUSC XAUUXOVUEVOUS Xal 1BoVIXOUS YLol UEYdAa alvoha Bedopévey. Auty) uetatdmion
unipge to ¥Aedl v Ty emtuylo TwV cUyypovwy MI'M, ta onolo afiomololv tov VPNAS apLiud TapaPéTEWY
TOUG X0l Tl EXTETOPEVA BedoUEva eXTAlBEUONE Yiot Vol YEVIXEDOUV OMOTEAECUATING OE TOAUTAOXES YAWOOIXES
epyaoiec.

Output
Probabilities

Feed
Forward
- ™
_ .
Add & Torm Multi-Head
Feed Attention
Forward 7 7 Nx
Nx | Add & Norm :
r-‘{ Add & Norm | Nasked
Multi-Head Multi-Head
Attention Attention
At At 2
o W, . —
Positional & A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1.1.1: Apyitextovixf Transformer (Metaoynuatiots) [119]

19

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1.2 TIlpoztpony

H mpotpony| yenowelel w¢ eloodog ot éva TapaywYixd cUCTNUA TEXVNTASC YONUOoOVNG, TERLYPAQOVTAS TN CUY-
unexplévn epyaocio ¥y 0téyo mou meénel va exteAéael To povtéro. Ouctactixd xododnyel To poviého napéyovtag
oyeTwd TepleOUevo, BonlnvTag To choTNUA Vo xatavorioel To altnua tou yerot. H diabixacia tng npotponiic
EMITEETEL 6TOUG YproTtes va xodtodnyolv ta MI'M ye cuyxexpiuéves pop@éc 1 odnyleg, cuyvd ywelc v ovdyxn
v Aemtopepy) phdulon 1) Tpomonolnoy Twv TapauéTewy Tou povtéhou. H mpooéyyion auth) mpoopépel amnote-
Aeopatiotnta xou eveh&ia, xodde wia xohd oyediaouévr tpotponh unopel vo xadodnyRoet to woviého Tpog TiC
emdupntéc e£680UC YENOWOTOLMVTAC TPOUTEEY0UsA YVHOO).

H mpotpony| mopéyel Sidpopa mheovexthuata, Wlwg anotekeopotixdtnta xou evehi&io. Xe aviideon ye tig mopo-
dootaxég petddoug, ol omoleg unopel vo anartolv npdodeta Sedopéva exnaldevong N Aentopepy| pLYUON TwWV
TUPUUETEWY, 1) TEOTEOTY] OTOdIDEL JUECH ATOTEAECUATA UE ENAYLOTY UTOAOYLOTiXY] TpooTddeta. Auty 1 anote-
Aeopatixotnta Ty xahotd Wiaitepa TohdTn 6tav oL ypRotes ypetdloval YeYoen TEOCUpUOYY TV LOVTENDY
oe véeg epyooiec. Emmhéov, n npotpony| dev emnpedlel tig epyaciec: Ue T xatdAiniec ewwddoug, tao MI'M
HTTOPOVY VoL EXTEAEGOLY EVaL EURY PACHA EPYACLLV, OTIKC avapépUnxe Tapamdve, Ywels vo amontobvtal EEYweloTd
HOVTENDL YLOL CUYXEXPUIEVES EQYOOIEC.

Qot600, N TPoTEOTN €XEL TEPLOpopols. O amotelecpatixés npotponéc Bacilovtal 6Ny uTdpyouca YVHON TOoU
povtéhou, 1 onolo umopel vt etvor ehhimic ¥ mpoxatelinuuév. H obvtadn pog xad Sounuévne tpotpontc unopel
eniong vo anoteAéoel TpdXANOTN, XIOS UXEEC TapahAaYES 0T SLUTUTWOY) UTOEOUY VO ETNEEGCOUY CIUAVTIXG TNV
am6d00T ToU YoVTEROL. AuTO €xel 0dNYNoEL GTNV AVATTUEY TNG UNY VXS TTPOTEOTWY, EVOS TOUEN TIOU ETUXEV-
Tpwvetal o1 Bektiworn Twv tpotpon®y Yo Béltiota anotehéopata. Eva 1 mpotponn unopel va npocapudoel Eva
HovTENO oE BLdPOopES epYaoies, To AeTTOPER®S PUICUEVA LOVTEAD CLY VA ToEéy oLy To axElf3n) anoTeAéopaTa
Yiat TOAD GUYXEXPWEVES EQUPUOYECS.

H emtuyla e mpotponic e€optdton amd mopdyovies Onwe 1 CUPRVELN TNG TEOTEPOTAS, 1 EUDUYPAUULOY HE TNV
exnaldevom Tou wovtélou xat 1 ouuneplAndn oxetxdy napadetypdtov. Iupd touc neploplopole tne, N TpoTEonY
TUPAUEVEL EVOG EMEXTACWOE TEOTOC Yo TNV oflontolnon Twv duvatothtwy twv MI'M ce nowiieg eapuoyéc,
Wlwe oe Toyelc 6nwe 1 eneepyascia Quowhc YAOOooS ot 1 tohutpomixy wddnon. Awdgopol TOToL o TEYVIXES
TPOTEOTNG, OTWS 1 TEOTEOTN Ue undevixd mAndoc mopoderypdtwy, 1 npoteonh He Alya mopodelypoto xou 1
TpOTEOTY pe ahuodwtd PAuata oxédne (CoT), Bertiotonowoly tny anddoon twv MI'M xou npocapudélovar oe
OlapopeTixég epyaoies.

H npotpony| pe ahuotdwtd Prata oxédne (CoT) eivon pa teyvix tou evioppiver 1o Meydha I'hwoowd Movtéha
VoL Taedy oLy amavTHoELS avollovtog Tn Swdixacio culhoyiopol ot Turpata Briua Teog Briua, To omolo 081yody
oe po TeAn andvinon. H npocéyylon auth BeAtidver Tny anddoon tou poviéhou oe abdvietec epyaoieg dnwg
n enfhuon yelpoy N padnpotixdy tpolinudtwy, émou n Aoy e&MEn elvan omopaitntn. e avtideon pe
TNV TEOTEOTY| UNOEVIXGY TOPODELYUdTWY, dTou To UovTéNo Bev hapPdvel mopoadelypata, 1 Ty mpoteomy Alywv
napadelypdtev, 1 onola mapéyel uepixd mopadelyuota yio vo xordodnyfoel to povtéro, to Chain-of-Thought
dopel pntd N Badixacia oxédne Tou povtélou, evioybovioas T6oo T axpifela 660 %Al TNV EQPUNVEUCLUOTNTA,
xadotovtog xdie BrApa cuhhoyiopol Eexddapo.

Translate English to French: task description
sea otter => loutre de mer examples
Translate English to French: task description peppermint => menthe poivree
sea otter => loutre de mer example plush girafe => girafe peluche
cheese => prompt cheese == prompt
(a) Hpotporh pe éva Tapddelyua [10] (b) Ipotpornt pe AMyo nopadelypota [10]

20

1.2. Eriwon ok pe yphon MI'M (Bi3hoypogpus, Epeuva)

Standard Prompting
Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?
A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The answer is 27. x

Chain-of-Thought Prompting
Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11, The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They

bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. /

Figure 1.1.3: Tlpotponn pe ohvodwtd BAuata oxédne (CoT) [127]

1.2 Exiivon ITolN pe yerion MI'M (BiBAioypagixr '‘Egsuva)

Avuti) 1 evétnTa nopouctdlel Lol EXTETOUEYY SleupebYNOT TV SuVATOTHTKY eTAvoNC Yeipwy ota Meydha I'Awo-
owd Movtéha (MI'M), enexteivovitag) avaoxdnnor e BBAoypaplac Tou TopoLCIEGTHXE OTNY EpYacio LuC
Puzzle Solving using Large Language Models: A Survey (Giadikiaroglou et al., 2024) [38]. ©u nopdoyouue
Lot avorhuTixy) oLCHTNOT YLt Toug TOTOUS YeipwY, Tic uelddoug, Ta GUVOAN BEBOUEVKY TIOU YENCULOTOLOUVTOL YL
NV 0€LOAGYNOT TWV CUANOYIC XAV oot TV Twv MI'M autdv tov topfa.

1.2.1 Katnyopronoinon twv ol

Io v a€lordynor twv xavotitwy culhoyionol twv MI'M, eivon onuovtnd vo xotnyoptonotjcoupe ta oA,
Auoxptvoupe tor malh avdroyo pe Ty €€8pTNoY TOUC amd TUTLXOUS XAVOVES 1) TNV EVPUTERY YVWOT TOU XOo-
HOU TOU GUVODEVETOL AN YEVXES IXOVOTNTES EEAYWYT CUUTERACHAT®Y, OTwe anexoviletow oto Lyfua 1.2.1.
Avth) n xotnyoponolnom Oyt WOVO avadevOEL TN YVWO T Towlopoppla Tou mapouctdlouy T malk, ahhd
xou evduypoppiletar pe tic Eeywpetotée mpoxhfioelc culhoyiopol: to ol mou PBooilovtar oe xavdvee amoutody
hoywh) e€aywYr] CUUTEPACUETWY XaL OTEUTNYWX TEOBAEdT evtdg *AELOTWOV TEpBUANOVTWY Ue xadoplouéveg
TOPOUETEOUC, EVE Tol Tk Ywpelc XAVOVES amattolV YEVIXES IXOVOTNTEC GUANOYLOUOU, epUNVEd XOTACTAGEWY XaL
e€Nynomn yeyovotwy pe TNy e€aywyy cuUTEpaoudTtwy Tou Bactloviol ot TpaxTiXéC YVOOELS Yio TOV xadnueptvd
%x6GUO.

ITalA BaocwWlopeva o Kavoveg

To Bacloyeva oe xavévee molh TOPEYOLY 0TO HOVTEAO pNTéc cLUVUHXES VixNng, clvola VOULIWY XYACEWY N
xavéveg Uetdfaong xatdotacewy. YTrodlupolue mepantépw auTH TNV xatnyopia ue Bdon to av ol yetofdoelg
XUTACTACEWY E[VOL VIETEQUIVIOTIXES 1) EVOWUATWVOUY TUYUOTNTAL.

Nrteteppiviotind ITaiyvio: mopdyouy ndvta tny (Bla SLEdoy N XaTtdoTooT SEB0UEVNE TNE TEEY OV XUTAC-
Taomg Tou oLy viou xou e dpdomne mou Aaufdvetar cUpQwva Ye toug xavoves. o mopddelyya, oto Xxdnt, N
Tpaypatonoinoy wac xivnong mopdyel TAvVTo Yol LOVOSHUaVTY Véa SLdTaln Tng oxoépas. ‘Alha mopadelyuato
nepthapfBdvouy to Sudoku, tny mhofynomn oe AoBleivido B Ty enlivon tou xVBou tou Rubik. To yovtéio Yo
TpéneL va Lordolvel oTRATNYLXES TOU AELTOUPYOLY EVTOC TOU Y(DPoU duvaToTHTwY Tou oplleTtat and Toug VOULULOUS
unyaviopoLs Tou monyviou.

Y ToxaoTINd TAlY VI EVOWUATOVOUY TUYUOTNTA 1} Xpupy TAnpogopla, dniady 1 (Bla evépyela Tou maixtn
unopel vor 0dNyHoeL oE BLlopopeTIXES XUTAVOUES TWHAVOTHTWY Yia Ti¢ EmoUeveg xataotdoelc. Ilapadelyyora nep-
hopBévouv tov Napxaheuts| (Minesweeper) (xpugéc tonolesiec BouBmv) A mouyvidia pe yoptid, n.y. 10 ToxXEP,
6Tou oL avT{mahoL xEaTolY xEuPd Tar POAAA Toug. H yvdon autdv twv tayviey anoutel cUAAOYIOUS Tvw o
aP3éPoueg xoTACTACELS, OYEDLUOUS TOMAATALY XVACEWY EX TWV TEOTEPWY oL dloyelpion ploxou.

21

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

BoardgameQA [51], Sudoku [87, 74, 48],
Rubik’s Cube [87, 25], Maze [87], Cross-
word [134, 104, 28, 59|, 8-puzzle [25],

Deterministic games: provide
all the information needed to pro-
duce an outcome from a given

Rule-based puzzles:
provide explicit victory
conditions, legal move
sets or state transition
rules that the model

knowledge and infer-

starting state and set of actions

Stochastic games: incorporate
randomness or hidden information,
resulting in different outcomes

pets to achieve a specific goal

Game of 24 [25, 134], Chess [48, 30]

Minesweeper [66], BoardgameQA [51],
Card Games [44, 42], Social Deduction

Games [121, 131, 60]

)]
-g must follow to solve the
o 1 .
puzzle :
Riddios e oty iyt], S 7,
8_ requiIr)ing abstract connections anci Bl [T, Gl [ibad, 17072
.;: lateral thinking ZLEQA [142], MARB [116]
N
‘f‘ Rule-less puzzles:
rely more on flexible Programming puzzles: involve
thinking, real-world —— analyzing or modifying code snip- P3 [107], [106]

ential reasoning

Commonsense reasoning puz-
zles: require understanding real-
world situations and making infer-
ences based on implicit knowledge

LatEval [47], True Detective [23], De-
tectBench [40], MARB [116]

Figure 1.2.1: To&wvounon towv Halk ye ta avtiotolyo LOvora Aedouévmy.

ITalN Mn-Baocilopeva os Kavoveg

Ye avtideon pe to talh pe xavoveg, ta mpoPAnuata ywelc xavoveg Bactlovton TeplocdTERO OTNY EVEMXTY OXEPYN
X0l TN YVAOOT] TOU TEAYUATIX0) XOGUOU YLOL TNV EPUNVELN ACUPEOY XOTACTAGEWY Xl TNV EEAY WYY CUUTEQUCUATLY
yia un nopatnenuéveg Aentouépeteg. Avtl va doxpdlouy T cuo ot aval fTNoT 1) TOV OTEATNYIXO OYESLICUO,
auTd Tor TN HETEOUV TLS YVWOTIXES DEELOTNTES Yia TNV EPUNVEIT TOU TEPLEYOUEVOU, TOV CUVOVICUO EVVOLY X0l
TN culhoyloTer Ue Bdom Ty xowvr Aoyix. Xtnv xatnyoplo auth eunintouy o axdiouda.

O T'eigor yenowonotoly Aoyomalyvia yio vo amoxplouv Tic anavtioets. o mopdderyua, to epotnua «Tu
yiveton Mo uYpd 600 TO TOAD OTEYVMVEL» €xel TN AOon «ulo TeToétay PECw TG Uetagopixnc évvoloc. H
enfAuon aviyudtwy anoutel TNV Teaypotonolinoy agnenuévey cuvdéoewy petafd evvoldy Tou xplBovion oe
Aupxen) YAwooa.

Ta ITpoypoppatioTixd ITalN nopéyouv anooTdoUoTa XOBLXA Xl ATUTOLY avdALoY 1 TpoTonolnon tne
hoywhc tou mpoypdupatoc. O Schuster (2021) [107] opilet éva nalh mpoypoppatiopod we éva cUVTopo Tpd-
yeoppa Python f, xou o otéyog elvon va Bpedel wo eloodoc mou xdvel to f va emoteégel True. Tétoio malh
a&lohoyolv dellbtnteg dmwe N aviyveuon e extéheong, 1 diopdwon ogoludtwy 1 1 npdBiedn e€68wv pe Bdon
TN onuoctoroyia xwdonoinong. I mapdderyua, o mapaxdte Yelpog eEAEyyEL TNV xatavénoT Tng onuacioroyiag
TEOYPOUUATIONOD Yial TNV TEOBAEdN NG CUUTERLPOEES EVOE CUGTAUATOG:

def mystery(x):
return x // 2
print (mystery (10))

Tao ITalA xotvhg Aoyixnc anewxoviouv Tumixéc xataotdoelc tapakeinovtag Bacixéc Aentouépeteg. Ot hiteg
npénel va eényfoouy Ta Yeyovota cupnepaivovtog aintogavelc utodéoelg oyeTind Ye Ta xivntea, Tig autieg xau
Ta anoteréopota. Lo mopdderypoe, 1 epwtnon «Evog dvdpac mou Beioxdtay €€w otn Beoyn ywelc ounpéha A
xamého dev €Ppege olte wa tpiya oto xe@dhl Tou. Tatl» xpBel v TAnpogopia dti o dvdpog elvar xopopAde.

22

1.2. Eriwon ok pe yphon MI'M (Bi3hoypogpus, Epeuva)

1.2.2 Medodoroviegc Enihvong ITalA

H yperion twv MI'M v v enliuorn nalh nepthaufdvel éva eupl @dopa Ued68wY xal STEATNYIXDY TOU EVIGYUEL
v mohOThoxn culhoYLoTX xan Tic emddoelc Touc. Auoywpllovpe Tic undpyovoes pedddouc o TEYVIXEC
TPOTEOTHC, VELpooUUPBOAXES TpoceYYioels Yia T petdgpoon Tolk xou otn hentopept pOdwon (Fine-tuning) yia
ouyxexptuévoug topelc. Mo hentouepc EMoXOTNoT TKVY UEVOBWY TTOU YPNoHLOTOLOUVTOL Gt BLdpopeS XatnYopleg
nalA napouoidleton otov mivaxa 1.1.

Methods Rule-based Puzzles Rule-less Puzzles
Deterministic | Stochastic | Riddles | Programming | Commonsense
Prompting - - - - -
Few-shot v v v v v
Chain-of-Thought v v v v v
Self-refine v
Auto-CoT v
Complexity CoT v
Plan & Solve v
Detective Thinking v
Self-Consistency v v
Tree-of-Thoughts v
Tree-of-uncertain-Thoughts v
Inferential Exclusion Prompting v v
Graph-of-Thoughts v
Everything-of-thoughts v
Hints v v
Introduction/Summarization v v v v v
Puzzle Translation - - - - -
Logic v
Code
Fine-Tuning v v v v v

Table 1.1: Mébodol yia v xdde xatnyopla e Tallvounone pog ue Bdon ta cUvola Sedopévwy Tou
SUAAEYInxay.

Teyvixeéc IlpoTponhg

Ou otpatnywée mpotpomrc mou mopéyouv evdldueoa Briwato cLAAoYloUol elvon xplowne onuaciog yia Ty
evioyuon twv Suvatotitwyv eniluone nalh TwV YAWGowOdV Yoviélwy. To mapdderyuo few-shot in-context
learning npoogépel éva 1} neplocdTEpa TOPUDELY AT HECH OE TEOTEOTES, BEATIOVOVTAS CNUAVTIXG TIE ETULDOOELS
1600 Yo Yplpoug mou Bacilovtar oe xavoveg 660 xau Yo Yplpoug ywelc xavoveg, topouotdlovtag T Sodixaocta
ouhhoylopol ywele tpbdodetn exnaldevon [11, 26, 144]. Ipbogates epyaoieg EMAEVTPOVOVTOL GTO WS JIAUPOPE-
Tiée «dopée oxédmey unopodv va xododnyioouy tao MI'M oty tehx| Ao [8].

AlvocdwTtéc Aopég, ol onoleg tephopPdvouy to Chain-of-Thought (CoT) [125, 53] éyouv epopuooTel
oe 6o Ta eldn mal), anodelxvioVTAC THY UTEROY T TOUG O OYEom UE TIC AMAEC TPOTEOTES elo6douU-e€6bou. Self-
Refine [79] ypnowonoeiton v to nalh Game of 24 (Boociouévo o€ xavOVeS/ VIETEPVIOTING), EETEPVOVTUC
10 CoT pe 13% udnrdtepo nocootéd emtuyioc [134]. Ov Gu et al. (2023) [40] yenowonotoly didpopes pedd-
doug og éva GUVOAO BedoUEVLV TOTOU VTIETEXTLE Ywelc xavoves, ouunephaufavouévou Tou Automatic CoT,
T0 omolo mapdyel autdpata didpopec ahuoidec cuRhoYLoHOL Yo Bidpopec epwthoelc [140], to Complexity
CoT nou «€lonotel v moAumhoxdtnTa Twv {ntoduevey aAucidwy, érou ta mo mepimhoxo Bruate cuAhoYLo-
pol cuyvd odnyolv oe Bedtiwpévn amdédoon oe obvieteg epyaoleg cuUTERUOUOD, ETLAEYOVTAC AMOTEAEGHUATI
Tou xatadeviouy Boditepes xavéTnTES culhoyiouol [33], xou T pédodo Plan-and-Solve (PS), n onola
yenowonolel dVo mpotpomés yio xdde mEOBANUa - ula yior vor dnuiovpyNoeL T Sadlxacior GUAAOYLOUOU oL TNV

23

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

avtioTouyn amdvtnon xou wio AN Yo var e€dyel TRV TeA amdvinon and v apyix napoywy [120]. Topd
Tic mowihec mpooeyyioels, xoplo and autée Tic uedddoug dev Eenépaoe Eexddopa to CoT oe dhec Tic doutuao-
péva MI'M. To xahOtepa anoteréopota emtuyydvovtor and v uédodo Detective Thinking Prompt, o
ey v tou potdlet pe to CoT xou napouctdotnxe oty Bl yehétn, n onoia dev Eenepvd Ty axpifeia tou 61.6%
Tou xoh0tepou povtéhov, GPT-4. H pédodoc eviappivel to povtého va eEetdlel xon vor avahUEL TOAAATAES
evdeilelc o éva dedouévo oevdplo, dnuoupymvTae dtadoyind éva cupnépacpa. Autde o TOTOC TPoTEOTHC Unopel
va Bonifoel To poviého va yepiotel TohOTAOXA GEVARLL OTOU 1) CWOTH GUVUEST) DLAPORETIXWY TANPOPOELLY
elvan xplowung onuaociac v) dnuovpyio oxpBddv xou hoyixdy anoteleopdtwv. O Schuster (2021) [107] yenot-
ponolnoe anoxAeloTixd Ti¢ Aboelc oe TpoypaupaTio Tid talk Tou Tto povtélo elye HOTN Aboel we mapadelypara,
EemepvdvTag TIc evarhoxTixés Ttpooeyyioelc.

Aevdpixéc Aopég, ol onoleg xahimtouv wot tovahio uedédwy. Self-Consistency (SC) [123] éyet Soxwpoo-
tel oe vieteppvioTind malk Pooctiopéva oe xavoves, 6nwe to 8-puzzle, to Game of 24 xou to Pocket Cube, xodoe
xon oe ol xowvic Aoyinhc yowelc xavoveg, nopouctdlovtac plor wxet| Bektiwon otny npdtn xotnyopia évavtt
tou CoT [25, 134, 86] xou xavéva Eexddopo dpeloc otn debtepn xatnyopia [40]. To Tree-of-Thought(s)
(ToT) [134, 74] éyer eqoppooTtel anoxeloTind oe vietepuvoTnd ol Baciopéva ot xavovee péypl otyuis,
pe onuavTind Behtiwpéva ntococtd emtuylag oe oyéon ue to CoT, ue avifoec mou xuyaivovtar and 26% [86]
éwe 70% [134] avéroya pe Tov yplpo xan to Bddog tou dévtpou, mopd Tic audnuéves xhfoews oe MI'M [25].
To Tree-of-Uncertain-Thought (TouT) [86] nétuye axdun xahdtepa anotehéopota and 1o ToT otc idieg
npoxhfoele, ue 9% vnidtepo nocooté emtuyioc oto Game of 24 xou 3% ota oTawpdrela. Téhoc, 1 uédodoc
Inference-Exclusion-Prompting (IEP) [116] ypnowonotel évay cuvduaopéd epnpdothac xon otiothag culho-
Yo T Yl Vo Tpooeyyioel TNV avipdmve Aoy xou €dwoe Hepxd and To xaAbTepa anoteréouata oe yYelpoug
xou ok xowhc Aoy btav ouvdudotnxe pe to CoT, onuewdvovtag 82% oe malk xowvhc hoyixhc - and 81%
pe CoT ywelc napadelypora - xou 79% oe yplpoue, ot cUyxpion pe 82% pe CoT ywplc Topadelyparta.

Aopég Tpdypwv, o onolec ouvendyoviaw to axdérouda: Graph-of-Thought(s) (GoT) [7, 62] xau
Everything-of-Thought (XoT) [25] ¢youv yenowornomiel yio tnv enihuon vietepuvio Ty nalh Baocto-
pévwyv oe xavoves. Evd n uédodoc GoT éyel deléel yeipdtepa anoteréopata oe alyxpion ue tnv ToT, ye peicwon
Tou xupaiveton and 2% éwg 6% [25], N wédodoc XoT éyer avayvwplotel we 1 mo arotereopatinf pédodoc yia
autole toug yelpouc. To XoT evowpatdver tny avalhtnon dévipwy Monte Carlo (Monte Carlo Tree Search —
MCTS) pe MI'M vy Pedtiopévn napoywyh oxédewy, emtuyydvovtos Pertidoels ota anotehéopoto and 53%
éwe 69% oe olyxpon pe v ToT. Emniéov, n XoT moapouctdlel tic Aydtepec xhhoeic MI'M petold tov
uedédwy mou doxwudotnxay, cupnepthauBavopévwy twv CoT, SC, ToT xo GoT.

Metdgpaocn ITalA

Ou pédodol yetdppaoelg talk, anotehoby VELEOCUUBOAIXES TEY VIXES TOL yenoldonololvTal ond to MI'M
Yo TN UETAPEAoT YRl(pwY XEWEVOL amd TN YUOLXTH YADOCCW OE HOPPES TOL ETBEYOVTAL TLO UXOAA AUOELS amd
e€wtepnd epyarela. A&{lel va onpeiwdel 6t autég oL yédodol dev eréyyouv Ty ixavotnta twv MI'M vo Abvouv
yelpouc odAd 0€lohoYO0Y TNV OVOTNTE TOUC Vol XWOLXOTOLOVY YplPOUG GE XATIAANAES OVOTOPAUOTIOELS.

H opyw mpocéyyion nephaufBdvel) yefion MI'M yio) dnwovpyio Aoyixdv xavovey (Ing B 2ng
TdENg) and ™ Quoixf YAhooa tou malk xal 0T GuVEXEL TNV emthuoY| Tou pe TN yeron evdc eEwtepol
epyoakelou enlhuong hoyxdy xavévwy. Ou Ishay et al. (2023) [48] yenowonoovy to GPT-3 xou GPT-4 yio va
petatpédouy hoynd nalk, 6nwe yelpous oxaxiol, Jobs Puzzles xoan Sudoku (vieteppiviotind nalk Baciouéva oe
xavovee) oe poppy) Answer Set Programs (ASP) pe tn Snuiovpyio xatnyopnudtony xow xoavéveny. Atodexviouy
ot auth N pédodog métuye onuavtind anotehéopata, pe To GPT-4 va onuewdver axplBeia 92% oe éva alhvoro
dedopévmv hoydy yelpwv [85], oe olyxplon ue 7% oe mpotpony ue Aya mapodeiypota xa 21% oe mpotponh
ywelc mopodelypata ye to (Blo povtého. Xnueudvouy dti oe npotpony pe Aya mopodelypata, to MI'M purnopoiv
VoL BNLOVEYHOOUV TOAOTAOXA TIEOYEAUUATO TTOL Ol AvipmTol UTopolY e0X0AA Vo BEATIOGOLY Xot Vo Blopt®doouy
o€ TeplntwoTn ogahudtwy otov xWdixa. Emnhéov, napduola mhaioia 6nwe to Logic-LM [90], o LINC [88] xau
7 pédodoc twv Yang et al. (2023) [132] Selyvouv noihd unocybueva anoteAéopato o€ dlepyoaoiec mov anutoly
hoyuxr) GUANOYLOTIXY.

Evd veupooupfBolixéc mpooeyyioelg €youv epapuootel otn petdppoaoct nalk o AOYIXOUC XAVOVES, OTT| BldpXELaL
NS OLYYEAUPNC AUTAC TNS BIMAWUATIXAS pYaolaug Bev €youpe Beel HEAETES VLo TN METATEOTY YRlPwY and QuUOLXT
YAOooo ot x®dxa. Qoté00, TEYVIKES OTwe 1) potpon, Program of Thoughts (PoT) [16], Program-Aided

24

1.2. Eriwon ok pe yphon MI'M (Bi3hoypogpus, Epeuva)

Language (PAL) [35] xou Faithful-CoT [78] yenowwonotoly uovtéha yiol Tn UETATEOTT CUNNOYLOUOY OE TpoYpd-
pota Python yiot obvola 8edopévev hoyunc xon padnuatixhic culhoyiotixig. §2¢ ex tovtou, eviouppdvouue Ty
EPELVNTLXY) XOLVOTNTA Vo BlgpeuvTioel aUTEC TIg uedodoug xan yia TeoPAfuata enthuong molA.

Fine-Tuning

H hentopepric pidpion twv MI'M (Fine-Tuning) avadewmvieton »¢ tiot LoyLef oTeatnyx yiot Ty evioyuon tov
GUMAOYLOTIXGV TOUG LXAVOTHTOY, TOU XLUA(VOVTOL Altd T YEVIXT AOYLXY) GUAAOYLOTIXY €0 TIC EWBIXEG LXaVOTNTES
enthuone nalh.

IToZN Baowlopeva o Kavoveg Ltov topéa v vieteppioTixodv talh tou Booilovioa o xavéves, [87]
Tapatneolue UToPBEATIo Ta anoteAéopata xatd To fine-tuning tou GPT-2 oto Sudoku, tov x0Bo touv Rubik xou
Toug ABlevioug, evdeyouévwe Aoyw tne odvToung teplddou fine-tuning xou TV TEQLOPLOUEVKV TAUPAUOELYUATLY
exnofdevone. ‘Ooov agopd ta otavpdhea, didpopes werétes [104, 28] nopouoidlouv wixtd anotehéoyata, Ye
oplopéva fine-tuned MI'M va UTEETEROVUY EVOVTL TWV U1 VEUROVIXGY AOGEWY, VK Xdmota dAhat by, LTOYpEUU-
Covtag TV eyYev Tpdxhnom tewv xpuntoheEnv yioa too MI'M. Ot Kazemi et al. (2023) [51] anodetxviouy bt 1
Aentopepric pvOuon twv MI'M pe anodeileic xou CoT xdtw and mhalow Pocioyéva oe xavoves anodidet wepixd
and To XAAVTEQO ATMOTEAECUITA.

IMaZA Mr-Boowloépeva o Kavoveg H pyehétn twv Lin et al. (2021) [67] xatadeweviel 6Tt poviéha 6o
to BERT [24], RoBERTa [73] xav ALBERT [61] anobidouv xahdtepa dtav exnadedovton xow ota 300 cOVORa
dedouévwyv RiddleSense [67] xou CommonsenseQA [114], a€lomoudvTog omoTEAEGUATIXE TNV XOWVH YVOOT omd
T0 devtepo oUvoro. Emmiéov, ou Zhang et al. (2021) [139] avapépouv étt 0 cuvduooude e AeTTOUEPOUC
pudwone oto ALBERT-XXL pe) petagopd pdinong and to CommonsenseQA nétuye tnv udmidtepn axpifela,
onuewdvovtog Bedtiwon 4% oe oyéon pe v anh Aentopepn] p0dwor. TéAog, 1 AMOTENESUOTIXOTNTA TNG AET-
Topepole pUduLone enexteiveton ot taldh xowvhc Aoy [23] xou ot ol npoypopuatiopol [107], avadetxviov-
Tog TNV evpela EQUPUOYT TNE o€ Oheg Tig xatnyoplec molh.

1.2.3 X0vola Acdopévwy oc ITalA
Nretepuiviotixd ITalA Baocilopeva o Kavoveg

To Sudoku yenowelel v éva Bacixd npdBinua yio too MI'M Adyw tne Aoyuxric tohunhoxdtntdg tou. Ol Noever
et al. (2021) [87] éxavav fine-tuning oto GPT-2 [100] oe 1 exatoppdpto mouyvidio Sudoku, mepopatildpevol
ME Wwar avamopdotaon 6Aou tou ol e pioa ubvo cuuBolooelpd, YE Tol XEVE XEAG VO AVUTOQLOTMOVTOL UE «-»,
xat Slatiwoe Ty drodn dTL pa avamapdoTacT Tivoxa unopel vo evioyve Ty anotekeopatixdtnto pdinong tov
povtéhou. Lty Sovkeld Tou moapovoidotnxe and tov Long (2023) [74], xenowonolodvto ep@umlevuéves MoTeS
v v avomapdotoon el Beloxovtoac tn pédodo Tree-of-Thought (ToT) mio amoteheoportixf, ednd yio
wxpotepa nalh. Ou Ishay et al. (2023) [48] Siepeuvoiv vevpoouuBoiixéc npoceyyioec oe Sudoku, Jobs Puzzles
xon hoywol¢ yplpoug, amodeixviovtoag 6Tt ta MI'M pe xohéc mpotpomés umopolv va moapdyouv pe axpifela
answer set programming (ASP) xavévec.

I'o tov KYBo tou Rubik xa toug AafbpivBoug, éyel a€loloyniel n culhoyiotiny avtiAndne yoeou tou
GPT-2 ypnowonoudvtog néve ond 2.400 deiypota Kooy tou Rubik xou 10 yhddec hafvprvdouc [87]. Topd tnv
TEPLOPLOEVO Ype6Vo fine-tuning xau tov meploplopévo aptdud cuuPorwy (tokens), to GPT-2 éhvoe pe emtuyia
tov x0Bo tou Rubik oe 1 and tic 7 npoondleies, delyvovtac duvatdtntee enthuong, mopd o LPNAG Tocootd
Eyxvpwy av xar Aavidoaouévey ANoewv xar to péyedog tou yovtédou. Ou Ding et al. (2023) [25] epopudlouv
nohhamhéc pedodouc dnwe CoT, Self-Consistency xou Sidpopec "Aopée Lnédec" (ToT, GoT, XoT) oe évav
x0Bo tou Rubik 2x2x2 yenowwonowdvtag GPT-3.5 xou GPT-4. To XoT e self-consistency ovoadeucvieton we
7N o oxpiPric uédodoc, EENEPVHOVTAC oNUAVTIXG TIC dAheS pe Tocootéd emtuylaug 77.6%.

E&epeuvavtag tny euehiéio twv MI'M, éyel aglohoyniel n anoterecpatixdtnta tou XoT oto mpdBinue avtiindneg
yweov 8-Puzzle xou oto apiuntixd nalh Game of 24 [25]. Ta mpoPiiuata touv 8-Puzzle emddovton pe
afroomnueiwtn axpiPeta 93.2% oe 419 talk yenowonowdvtog to XoT e avadedpenor, napovoidlovtas uhnidtepn
anoteheopatxdnTa € oyxéon Ye TV mpoTeon Alywv mopaderyudtwy xau to CoT. Auth n vdnin oxpeifelo, oe
oLVOUUCUO UE Evar Uetwpévo aptdud xhoewy MI'M, vroypouuilel Tnv anoTeAeoUATIXOTNTA XOU TIE OUVATOTNTES
tou XoT oe cbvieta mhalowa enthuong nalh.

ln'x' [[37*7*7*’2]7 [17*73?*]7[*71’*73]7[4’*7*7*71]]

25

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Tyeuxd ye ta Btawpoieia / KpuntoheEa, undpyouv douleiés [104, 28] nou eqapubdlouy fine-tuning oto
povtéha TH [101] oe extetapéva cOVora SeBOUEVOY UEUOVWUEVODY YEIPWY XEUTTOAEEMY, ATOXUNITTOVIOS TO
mheovéxtnua tou TH, nou Pooiletan oe Transformers, évavtl twv mopadootaxcv Yedddwy xol avadeixviovTag
neptoyéc yia Bedtiwon, Wiodtepa e umouviypols, emnAiéov otolyelo xor xadopiopéva urxrn omavthoewy. H
olyxpion tou BART [64] ye to T5 unodemviel axpiBeto xdtw tou 30%, pe v mopaywyY| ELTAOUTIONEVT] UE
avéxtnorn (Retrieval Augmented Generation — RAG) va Eenepvolv ta MI'M mou €youv unootel fine-tuning [59].
Emniéov, ot Yao et al. (2023) [134] epopudlouv npotpont| 5 napadetyudtewy xou ToT oto GPT-4 oe otavpbhela
BehtudvovTag onuavtixd Ty anddoon emhboviog 4 and toug 20 yeigoug xal emTUY YAVoOVTIC T0G0GTS emTUYiog
60% ot eninedo Aé&rne.

Eyeuxd pe 1o Xxdt, undpyouy dVo fine-tuned povtéia, ta «ChessGPT» xou «ChessCLIP», yenowonoldvog
ot GUAMOYY 3.2 exatopuupiov Talh o oxdxt and 10 oOvoho dedopévwy Lichess?. Kdde nall oto chvolo
dedouévamyv TepthopPaver T Suoxohia, to Véua xou) Abor tou [30].

Téhoe, o Kazemi et al. (2023) [51] ewodyouv to BoardgameQA, ¢évo cOvoho dedouévmv mou mepthauPdvel
EPWTHOELS TOANUTADY ETLAOYDV UE avTLPaTXd YEYOVOTa ot xovdves. Ta povtéha Yo mpémetl vor avTipetwnicouy
QUTEC TIC TOAUTAOXOTNTES YLOL VO TOREYOUV OmavTAoELS o Uoppt] eheblepou xewwévou. H oaflohdynor| toug
amoxohunter 6t to BERT-large xon T5-XXL pe mepoutépw pvduion tou goviélou pe anodeilelc (fine-tuning
with proofs) avadewvietar we 1 To anoteheopatnd pédodoc, oe avtiteon pe TRy tpotpomh My wy Topadelydtwy
ue CoT oto PaLM. Enlong, n mapousio emmAov ¥ avTixpOUOUEVWY TANEOPORLOY UELOVEL TNV axplBeia.

Ytoyactixd I[TalA Boacilopneva o Kavoveg

To BoardgameQA [51] Siepeuvd eniong oevdpta pe ehhinelc TAnpogopie, To onofo epmintouv atny xatnyopla
TV otoyaoTixwy TolA. Anodewxvietol 6Tl 660 auEdvovtor ol eEAAelTovoeS TANPoQoples, HeldveTol 1) axpifeia Twv
povtéAwy mou €youv unooTtel fine-tuning. Qotéc0, auTh N AWENUEV duoxolia dev ennpedlel ue Tov (Blo TedTO
TV anodoor Twv Yedddny udinone nepoutépw pliulong UE TPOTEOTES XAl TEOTEOTES AlYwV TopodeLyHdTwY,
yeyovédg mou mdavdtoto ogelhetar oTa HEYOADTERA LOVTENN TIOU EQUOUOCTNHAY.

To nouyvid Tou NopxaAteuT?, YVOGTO Yoo TNV XxpuET TANpogopia mou dladétel, anoterel TUPEdELYUA GTO-
Yoo TV Talk, ATOLTOVTAC And TOUG TOUXTES VoL GUUTERAVOLY T VETELS TwV vapxoy and aptiuntixéc evdellelc.
Ou Li et al. (2023) [66] o&oréynoay MI'M oto Noapxohieuts|, cuyxpivoviac avamopac T8oele twv TAwadinwy tou
Ty VIBL00 e popen mtivoear oAAG xou cuvteTaypévwy. Tlagdho mou to GPT-3.5 eugpdvice apyint| xotavonon, o
pédodol bmwe 1 mpotponr) Aywv mopaderyudtov €dellav eldytotec Behtwoelc. Avtildeta, to GPT-4 Behtivoe
TOV EVIOTUOUO VAEXADY, OAAG BUGKOAEVTNXE VO OAOXANEAOGEL Eva OhOXANeO Tivoa Ty vidlol. Me Bdon ta meipd-
potar Tov diegiydnoay, N avanapdo ooy cuvtetayuévwy Borince oty xalbtepn xoatavonon twv MI'M évavt
e Hopprc mhvoa.

Ta mouyvidia xoeT®V, xuplwe T0 TdXER, ANOTENOLY TUPADELY A CTOYUCTIXOY Yelpwy OTOU 1 GTEATHYX
wavétnTa elvan Lwtinic onpaciog. Ou anhomomnpéves tapahhayéc Toxep anoutody ond TOUC TUXTES VoL CUUTERS-
VOULV TIC XHPTEC TV AVTLTIAWY %ot Vo UToAoyioouv Tig mdavdtnTeg ev u€ow xpuedy tpodéoewv. Ot Gupta et
al. (2023) [42] dmiotwoay 6T otov YOpo mpwv and to flop tou néxep, Ta ChatGPT xow GPT-4 xotavooiv
TEONYHEVES OTEATNYIXES 0ANG Bev pTdvouv oto BéhTioTo mouyvidt e Ocwplog Iavyviwy (GTO). To ChatGPT
xAlvel Tpog wlat cuvtneNnTny Tpocéyyion, eve to GPT-4 napouoidletl mo emdetins nonyvidl. Ov Huang et al.
(2024) [44] agiomooly éva povtého OPT-1.3B nou exnoudeltnxe pe yprion v Evioyutixdc Mddnone oe 6hec g
(QACELS TOU TOXER, ATOXUNITTOVTOS AVOTERA ATOTEAECUITH OE TOCOCTA VIXNG XL AMOBOTIXOTNTOC, AVAOELXVHOV-
Tag TeAxd Ty xavétnTa Twv MI'M oe obvieteg otpatnyés oe otoyaoTixd nepBdhiovta. ‘Evoc mpdxtopag
nou a&lonotel to GPT-4 [41] emtuyydvel enlone onuovtind anoteréopoto o€ Sldpopa Towy vidlor xapTdv Ye eI
TANEOPGENOT).

Ta mouy vidia xolvwvixhAg enay wy”ns, cuuncpthaufoavouévwy twv Werewolf xou Avalon, cuvdudlouv
Aoy CUANOYLOTIXY UE TONOTAOXES XOWVWVIXES OAANAETIBpAOELS, XarhoTWOVTAC Ta UEPOS TOU EVUPUTEPOU TOUED
TV oToYAoTIXWV Yelpwy. Tétola maryvidio Tpoxaholv TOUE TAUXTES VoL GUUTEREVOLY POAOUE Tou TEpLAAUBAvOUY
anpdéBhentn oavipmmivn ouvunepipopd. O Xu et al. (2023) [131] npotelvouv éva mhaiolo yia to Werewolf mou
yenowornolel MI'M, aflonoudvtas TaAlOTEPES AAANAETUBPACELS VLol CTEATIYIXES UTOPAOELS XOL UVAOEIXVOOVTAC
TNV IXAVOTNTO TWY YOVTEAWY o autd To mhaioto. Ouolwe, ta mhalowr v to Avalon [121, 60] deiyvouv e
oo MI'M umopotv va mhonyndoly oe oevdplor Tou amartody XOWVVIXS Yelplowd xo eE0ywYT] CUUTERUOUITWY,

2https://lichess.org/

26

https://lichess.org/

1.2. Eriwon ok pe yphon MI'M (Bi3hoypogpus, Epeuva)

unoypoppilovtog Ty xxavotnto twv MI'M otn Swyelpion tne noAdmhoxng cdAnienidpoone tne Aoyixhc xou tne
®OWOVIXAC ohAnAenidpaong mou elvon eyyevic o TéTola many vidLa.

I'eigpolr Mn-Baoilouevor oe Kavoveg

To RiddleSense [67] mpoc@épel o culhoyy and 5.7 yihddeg ouviyparta ypapuxic, oelplaxic oxédme, doxiud-
Covtag npo-extaudeupéva YAwooxd poviéha énwe to BERT, RoBERTa, ALBERT xou povtéha QA and xelyevo
oe xelyevo, ouunepthapfBovopévey twy UnifiedQA [52] xou T5. Ta yeyohUtepo poviého emdeixviouy yeEvixd
xahOtepeg emddoelg, pe o UnifiedQA mou ypnoipornotel to T5-3B vo nponyeitan, ahhd var SBuoxoheeton Ye Tig
HETOUPOPES XAl TLC OVTLPATIXES XAUTAUO TUOELS.

To BrainTeaser [50] eiodyer 1119 ypipouc dnmovpyfic, aviioupPoutixfic oxédne. Avunapodhher poviéha
nou éyouv utootel fine-tuning oe odnylec (instruction-based fine-tuning) (ChatGPT, TO xou FlanT5 [19]) pe
povTéNa oL €youv exnaudeutel oe cUvVoha BeBouévwy xownhc Aoyixhc (CUUTERIAUBOVOUEVLY TLV TUROANLY OV
RoBERTa xou CAR [122]). To ChatGPT unepéyel 1600 o€ yplpouc nou Pacilovton oe npotdoeic 6o xau e
yelpoug mou Bacilovta oe Méeic, unodeixviovTag T divaur Tou aTny dnuioveYY) oxédr. 261600, GuVOAXY,
ta MI'M e€axoroudoly va avtiuetonilovy mpoxhioe otny enidelln dnuovpyuc oxédme, e xowvd Addn otny
ATOUVNUOVEUOT) Xol T CUCYETLOT XOLVGDY £VVOLKOY. AUTd TO 0UVOAO BeBOUEVWY avadelXVUEL Tig ToxiAeg BlaoTd-
OELC TNC OUAAOYLOTIXAC IOV UTopOoVY Vo BoXUUAc0ouY oL Yelpol, and Ty yeouuer Aoyuxr €ng Ty avTioLPBatixy
CUUTEPUOUATONOY AL

To BiRAQA [139] diepeuvd v nohbyhwoon ntuyt Ty yelpwy, nepthopBdvovag ayyAxois xa xvelixols Ypei-
poug, evo ofohovel povéyhwooa (BERT, RoBERTa), xodde xou toddyiwoo (mnBERT, XLM-R [21]) yAwoouxd
povtéha. Aoxiudleton enlong 1 yerion cLVTOUWY LAy OYWV ot UTodelEewy Yelpwy. Ta evpripota aroxolinTtouy
€va onpovTixd ydopa EMBOCENMY HETAUED TWV YAWCOWOY HOVTIEAWY XU TNG xotavénone ot avlpdnivo eninedo,
HE T LOVOYAWOOA HOVTEAD VoL UTERTEROUY YEVIXE EVOVTL TV TOAOYAwoowy. Eival eviiagépov 6Tt To tpdodeto
TEPLEYOUEVO, OTILC OL ELoAYWYES Xou oL LTodelZelc Ye Bdom mAnpogopiec and v Wikipedia, mouiAiel w¢ mpog
TNV AMOTEAEOUATIXOTNTA, PE TéTola Ponifuata vor wpehody Toug oy YAolg oAAd Oyt Toug xivelixolg ypeipoug.

To CC-Riddle smxevtpdvetan oe 27 ylhddeg awviypato xivellxdv yopoxThewmy, Tou TeplAopf3dvouy Loppég
roMamhic emhoyhic [128]. H afiohdynon xoatadetxviet 6Tt 1ol LOVTENN AVTYETMOTLOAY BUGXOAES GTNY XaTtavoron
%Ol THPOUGIUGY TOROVONOELS, ATOXAUAVTITOVTOG TNV TOAUTAOXOTNTA TOU UTORel VoL UTdEYEL GTo aviyporto Ue Bdomn
TOUG YORUXTHPES.

To PUZZLEQA [142] npoocgépet 558 yplpouc Mé€ewv o popp todhaniic emhoyhic xou eheddepou xeyévou.
To peyohitepa povtéha, n.y. GPT-3/3.5, napovoidlouy peyahltepn axpifela, eldxd o€ TEoBAAUOTE TOAUTARS
emhoyhc. Qot600, pédodol dnwe To CoT oe cuvduaoud pe v nepidndn dev BehTidvouy onuavTixd Tic emdoCELS,
umodeVUOVTAS T cLVEXLLOUEVES TEOXAToELS oTNY eihuoT yelpwy ehedlepne andvinong.

Téhoc, to MARB [116] nepihopfBdver pia towakio omd yelpoue. Audgopeg pedodoroyies, cuuncpthauBovopévenv
twv CoT, IEP (Inferencial Exclusion Prompting) xat npotponh pndevixdv ¥ pepixdv mopadelypdtevy, doxiud-
Covtau o€ povtéra énwe to GPT-4 xou to PaLM2-540B [2]. O cuvduooude IEP xou CoT avodelydnxe we n mo
anoteheopatiny] pEdodog, avadevbovtog v adio TN EVoOUET®HoNE TOAATAGY Tpooeyyioewy yia Sidpopouc
TOmoug avtypdtwy. To cUvoho Sedopévwv nepthaufBaver enlone malk xowhc hoyxrc, topouctdlovtos TUpOUOLES
TAOELG UE TOUG Yplpoug.

IMeovyepappatictind ITalA Mrn-Bacilopeva o Kavoveg

To P3 (Python Programming Puzzles) [107] mpoo@épel Wi oelpd omd TpoxAACES TROYPUUUATIOHOD
Python, ané amiolq yelpiopolc cupBohlooelpmy uéypl obdvieteg epyaoies, 6nwe o ITvpyoc Tou Avél xou oh-
yoprduxd malk, mou amawtodv amd To povtélo va Peet pa elcodo mou xdvel to mpdypauue f va emoTeédel
«True». Ta povtéha mou epapuélovion oe autolc TouS YplPous TEPAOUBAVOUY XAaCOXO00C ETAVTES Lo TN
dnurovpyia Agnenuévey Zuvtoxtindv Aévdpwv (Abstract Syntax Trees) xou yhwoowxd povtéha, énwe 1o GPT-
3 xou to Codex [15], ypnowonoudvtac ntowiles teyvinéc npotpornfic. H yetpinh aflohdynone passQk, deiyver
NV IXAVOTNTA TV LOVTEA®Y Vo eTADOLY éva yplpo péoa ot éva ouyxexpiuévo aprdud npoonadeldv [15]. Ta
anoteéopata detyvouv cuoyétion uetald tne Suoxohiog Tou Yplpou TECO Yio ToL LOVTENL GGO XOL Yot TOUG
avip®roug, PE Tic TEpLYpapxéc LUTOSEEeLC Vol evioyUouy Ty anddoor Twv Hovtélwy. Efvou eviiogpépov bt ta

27

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

MOVTEAA TOU ATV LXAVE OTY) CUUTANEWOT xWOOLXA EAVCAY TEPLOGOTEROUS Yelpoug pe AyoTepec mpoomdieleg,
unoypauuilovtog TN onuacia Twv eEEBIXEVUEVLV IXAVOTATWY GTIC TEOYPUUHATIO TIXES TPOXANCELC.

Ov Savelka et al. (2023) [106] napoucidlouy éva ohvoho dedopévey tou arotelelton and 530 anoondopota xOdLxa
and Yortuota TEoYpouUaTIolol, TaeoualdlovTas Yelpoue ot woppl) TolhamAwy emhoydy. H didxpiorn yetald
EPWTACEMY UE Xl YWEIS OMOOTHOUATO WO TEOCPEPEL ULOL DLUPORETIXY] TROCECYYIOT| YL TS OTEUTNYIXES
enilvong npofBinudtey twv MI'M. To civolo dedouévwv xatnyopionolel Tig epwthoelc oe €€ TOTOUG, CUUTER-
opBovouévey TV gpwThoEwy cnwotol/Addouc xar mpdfBiedne eZédou. Ta povtéha GPT aioloyridnxay,
anoxohintovTag 6Tl 1 cuunepAndrn @B avgdvel onuavTxd v moAumhoxotnta Tou yeipou. Ta mocootd
axp{Beloc mowiAhouy, pe uPNAOTEPEC EMBOCELC OE EPWTNOEL, TEOCUVAUTOMOUEVES GTNY OAOXATEWOY), YEYOVOS
Tou UTOdNAGVEL dTL 1) anoteheopatixdtnta Twv MI'M unopel vo e€aptdton oe yeydho Badud omd T pop@r xou
TO MEPIEYOUEVO TWV ELHTACEWV.

Ev 1600 10 P3 600 xou to Programming Snippets Dataset avtigetwnilouv ypipouc npoypauyotiopol, to
XAVOUV UE onuovTixd dlaopetixols teénouc. H eotiaon tou P3 oty elpeon owotdv eloddnv npoypeduuatoc
Python épyeton oe avtideon pe) woppn tToAanhey emioyoy Tou Programming Snippets Dataset. {2oté00,
xat Toe 800 glvoha Bedopévey amoxaliTTovy Boaoixd cuumepdouoTa: oL Teplypapixés utodeileic Bondolv oty
eniAuon mpoPAnudtwy xaL 1 LopgY| TwV epwTioEwy ennpedlel onuovTnd Ty anddoon twv MI'M.

ITaZA Kowvyg Aoyixhc Mr-Baoilopeva o Kavdveg

To True Detective [23| napouoidler nalk tomou viewxtf oe 0Toplec YEYINOU UAXOUS, TEOXUAMYTOS Ta
MI'M é6nwe to GPT-3.5/4 vo Bydhouv cuunepdopota. Egapudlovton Sidgpopes uédodol, cuuneplthauavouéveny
v CoT o Golden-CoT, anoxahidntovtag Suoxollec otny e€oywyT) TEMXDV CUUTEQUCUATOY TAUEd TO YEYOVOS
6Tl 6heg oL amapaltnteg mAnpogopieg eivon Swotéoiuec. To Golden-CoT nopéyer oto poviého 1o oxemTind
nlow and ™ owoTh andvinor, ondTte To YOVTENO YpedleTon UOVO VO XOTUVONOEL AUTO TO OXETTXO XOL Vol
eZdyer v andvinon. Evod ol mpooeyyioeig Vanilla xou CoT éyouv oyedov tuyalec embddoeig, n Golden-CoT
emdevieL onpovTind xahitepn oxpiBeia, Wing pe To GPT-4. Qotéco, axdun xa pe to Golden-CoT, to GPT-
3.5 emtuyydver Tocootd enihuong povo 63%, evey 1o GPT-4 avtiotoyel oto anotehéopoata Twv avdpdmivey
Nooewv (ywplc npdofacn otn culhoyloTtixh tiow and Ty andvinom).

To DetectBench [40] mou mepiéyet 1200 epwrthioeie, allohoyel eniong Ty CUAMOYIOTIXY OE TEAYUXTIXEC CUV-
Vxec. EAéyyel pedodoug dmwe n yerion unodeilewy, ddgpopes naparlayéc tou CoT xou to Detective Thinking
oe povtéla énwe too GPT-4, GPT-3.5, GLM-4 xou Llama2. Ou unodei€elc gaiveton nwe amotehoby éva tloyupd
BorUnuo, ue o peyohdTepa HOVTENX VoL UTEPTEPOUY YEVIXE TV (xpdtepwy. H amoteAeopatindtnta Twv Si-
apopwy poceyyloewy mowihiel, ue To Detective Thinking va fondd amoteheoyotind ta teplocdtepa LovTEAA.

To LatEval [47] etodyel pio popn cuvophiog pe oryyAée xon xvelixés 1oToples, amautdvtog ond Toug TalxTeS
VoL xdvouv epwthoels vau /byt ety dwoouv wa andvtnorn. To GPT-3.5, to GPT-4 xou didgopa dhho povtéha
cuVoAlaC a€LOAOYOUVTOL W TEOEC TNV XAVOTNTA TOUC Vo VETOUV OYETIXEC EPWTNOELS XAl Vo dlatneody
ouvémela pe v oAfdeo. To yeyohltepo poviéha dev mapoucldlouy amopaltnTo TEONYHEVES EMBOTELS OTN
OLVAPELY TV EpWTHoEWY. 201600, 10 GPT-4 embewviel Tnv VPNAOTERT CUVETELL AMAVTACEWY, AV YO UTEEY 0LV
ax6pn onuavtxd tepldopla Bedtiwone. To cUvolo dedouévwy unoypoppilel ™ onpacio e dtadpaoTtinic Xou
CUVOWALIXTG CUAAOYLOTIXNAG OTNV XATAVONCT| TNG XOLVAG AOYIXAC.

1.3 Ilsipapota

Yy evétnta auth e€etdlouye TiC ETUBOOELS UiXPOTEPWY HOVTEAWY, dTwe Ttor Llama2-7B, Llama3-8B, Llama3.1-
8B, Llama3.1-70B xou Mistral-7B, (éAa to povtéhe eivon instruction fine-tuned, dniadf éyouv unootel Aem-
Topepn pUVUION TWY TopaUETEWY TOUS Yiol Vo avTihaufBdvovtar odnylec mouv toug divovton) téoo o epyaoies
pordnuotixod cuAhoYioHol 660 xou ot epyaoieg enthuong nalh. Ilponyolueveg épeuveg éyouv xatadeilel v
OMOTEAEGUATIXOTNTA TEONYUEVWY TEYVIXGY TPOTEOTAS, 6Twe Tal ohuotBwtd BhAuota oxédne (Chain-of-Thought),
oL vevpoouuBohxéc pédodol xou 1 Tpotponh and To NYOTEPO 010 TEplooGTEPo clvdeTo uToTEdPAnua (least-
to-most — LtM) oe peyoahltepa povtéda (m.y. poviéda Codex #; GPT-4). Qot6c0, 1 EQopUOYT QUTOY TV
TEY VXMV OF UIXPOTEPA LOVTENX TAPAUEVEL aveEEpElVNTY, WBlwe oE TopEelc oL amontoly AoYIX) CUANOYLOTIXT XoL
eniAvon mpofAnudtewy oe ToOAamAG Bridota UTd TEPLOPLOUEVOUS UTOAOYLIC TIXOUE TOPOUC.

28

1.3. Iewdporo

Ye oauth ™y evénta, ectidloupe oe Téaoepa GUVoha SEBOUEVKV: BU0 GUVONa SEBOUEVLV LOOMUATIXAC CUANO-
yiotwehc - GSMSEK xon SVAMP - xou 800 cOvola dedopévwv culhoyiotxhc nalk, RiddleSense xou Game-of-24.
Egapuélovue didgpopec teyvixée npotponric (I0 prompting, CoT, LtM xou Faithful-CoT / PoT) und Sudgpopec
putuloelc, cupnepthauBovouévne TN TEOTEOTAS UE UNdEVIXG apldud mapadelyUdtwy, Ye Alyo mopodelypato xou
pe autoouvénel. Autég ol Texvnée, Wlme ol veupoouuBoiixée, €xouv Bellel TOAG LTOCYOUEVE ATOTENETHATA
ME UEYUAUTERO HOVTEAD, OARE 1) AMOTERECUATIXOTN TS TOUC UE UXPOTERD, TLO OTOBOTXE G TOPOUS HOVTEAA DEV
€yer axoun xatavondel mifpwe. Emniéov, ou veupoouuBoixéc uédodol -6mou tar mpoBAAaTa UETATEEROVTAL O
WO Yol EEWTERIXES PMYAVEC CUANOYLOUOU- €xouv omtdvia doxiuaoTel yior Ty enfAuon nalk, TEOCPECOVTAS UidL
XOVOTOUO XUTEVTUVOY) TIOL BIELELVETAL GTNY ToEOVCA YEAETY.

1.3.1 30Ovolo Acdopévwy
GSMS8K (Grade School Math 8K)

To GSMSK [20] eivon éva chvoho dedopévmv mou éyet oyedaoTel yia Ty aZloAGYNoN TV XVOTATWDY Uo-
YNpoTini GUANOYICTIXAS HEYBAWY YAWGOIXGY wovtéhwy. IlepthauBdver 8.5 ythiddec padnuortind npoBiiuata,
Ywelouéva oe 7.5 yth. mpoPifuarta exnaidevong xar 1000 npoAfuota Soxtunc, Ue To TELGUATE oS Vo BlegdyovTon
670 abvoro doxync 1000 npofinudtwy. Kdie mpdBinua anoutel 2 €wmg 8 hoyixd Briwata xou nepthauSdvel Bacixég
aprduntinée mpdiels, xoho TOVTOS TO XATEAANAO Yiot TNV A€LOAGYNOT) TV IXAVOTHTWY ETIAUGTC TEOBANUETWY TeV
MI'M ot eninedo duoxoiiag mpoottd yia padntég yupvasiou.

SVAMP (Simple Variations on Arithmetic Math Word Problems)

To SVAMP [94] eivon éva olvolo BeBopévev mou amooxomel 6Tov EAEYYO TNG IXAVOTNTAG TWY UOVTEA®Y
oty enthuon podnuatixdy Aextixdv teoBAnudtwy otoiyeiddous emnédou (Math Word Problems — MWPs).
Arnotekeiton and 1000 aprfunnicd mpoPAnpata mou €youv oyedLAGTEL VLol VO TEOXAAEGOUY TIC IXAVOTNTEG CUA-
AOYLOHOU TWY LOVTEAWY UECW TPOPANUATLY Tou emhlovTon HE €we xau dVo aptduntnéc npdiewe (t.y. mpdodeon,
agaipeon, Tolanhaclopds, dalpeom), xotdhAnha yio pordnTéES UixpodV TEEEWY.

RiddleSense

To RiddleSense [67] eivon éva oOvolo SeBouévewv Tou anooxonel oty AZloAGYNOT TWY IXAVOTHTOV TV YAKO-
oMY LOVTEAWY VoL Abvouv yplpoug pn Boaotldpevoug oe xavoveg Tou amatToly evohhox T oxén, YAwoouxn
xatovdnomn xon xowvh Aoyt Anoteholuevo and 5.7 yh. yplpouc moAamhric eMAOYHC, XPNOOTOWCOUE EVal
unocGVoho 3 YLk, tuyala eTAEYUEVQDY Yelpwy yio T Telpduatd poc. Kdde yplpoc, nou napovoidletar oe guoxt
YAOOoo, anattel and ToL LOVTEAX Vo OELOTIOLACOUY TN YAWOOIXT YVOOY Xol TNV XATOVONGCT TOU TRoyatixol
XOOUOU Y10l VOL ATOXWBXOTOCOUY XEUUUEVE VoroTa Xou petapopixés evdelles (m.y. «Tu yiveton mo uypd 60
TEPLOCOTEPO CTEYVAVEL» UE TNV ATAVTNOT KULOL TETOETAY).

Game-of-24

To olvoho Bedoyévwy pe malh Game of 24 [134] éyer oyediootel yia vo alioroyel) padnpoties; Aoy,
TPOXAUNDVTOS Tl LOVTEN VoL YELPLO TOUY TEooEpL aptdpole (Tou xupaivovtar and to 1 éme to 13) yenotonotdvtog
Boowxée aprduntinée npdieic (tpdodeor), apaipeot), tolhanhactooud, Swlpeon) yio Vo TEooUY 6To anoTéheoua
24. Kdéde npophnua Pooiletor o xovdvee xou eival VIETEPUIVIOTIXG, AMOUTOVTOS AOYIX oxédn evide auoTnedv
padnuatixdv teptoploutdy. To cUvoho dedouévwv mepihaufdver 1362 mpofifuata, pe 1225 yio tnv exnaideuvon
xou 137 yio Soxwr). Ta tekevtalor yenotwomotidnxay v Ty olohéynomn twv nelpoudtwy yoc. To ocbvolo
BoxY, Tou TepthaufBdvel tpoBAruato Togvounuéva ue Bdon to yedévo enihuong amd Tov dvilpwno Lo VoL Ut
odel&el 0 Suoxolla, arontel and ta LovTEA VoL eQappolouy oTEUTNYLXY OXEPN Xal GUANOYIOUS TOAAGDY Brudtwy
yia v eEEpEUVIHOOUY BLdpopous cuVBLICUOUE TEGEEWY Xxou aplduoy. Auty To TEdBAnUa elvor o clvieTto and Ta
Boaowd padnuatixd npofhiuara, xadde doxudler Oyt povo Ty omhy oerdunTie, ahhd xoL TV XvOTNToL EVOQ
HOVTENOU Yior GUANOYIOWS doxiunig xou Adoug xou eEepelvnon GTEATYIXWY AICEWY.

1.3.2 T'Awocowd Moviéra

Yy moapoloa Simhwyotixy epyocia, Sivouue TpotepaudTNTA OGN YeNoN MUikpoTepns kAluakas MI'M, nou xu-
paivovtar and 7 dioexatouplpta éme 70 doexatoupdpla topopéteous. Evd ol tpbogates npdodol otny avdntuin

29

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

MI'M éyouv emixevtpniel YOpw omd LOVTEND UE EXATOVTADES BLOEXUTOUUUPL TOUROETEOUS, UTEpYEL auEavOuEvOo
EVOLAPEEOY YL T DLEPELYNOT) TOU TOGO XUAY UTOROVY VoL ATODWGCOUY tXedTERN HOVTENX 0 TOAOTAOXES epyaoieg
ouhhoylopol. Ta pxpdtepa wovtéha, onwe ta Llama2-7b xan Mistral-7b, eivon toyOtepa xat mo anodotixd and
uTOAOYLO TN dmodn, xorHoTOVTUC To O TEOXTXE Yia €vo eLPVTEPO PAcUa EQapuoY®y. Emniéov, n Soxur
TEONYUEVWY TEYVIXWDY TPoTEoTNS, 6Twe to Chain-of-Thought xaw to Faithful-CoT, ye autd ta pixpdtepa pov-
Téhot pnopel vo anoxoliel xatd néco tétoleg wéYodol pmopolv vo Bondhoouy ot YEQUEWOT TOU YAOUATOS
HETOED WXEOTEPWY %ol UEYUNDTERWY UOVTEA®Y, EEXAEIDDOVOVTUS EVOEYOUEVHS OVABUOUEVES LXAVOTNTES GUANO-
yiopoU yowelc TV avdyxn yia tepdotio aptdud mapopétewy. Baoldpaote ot mpo-exnaideuyévo yoviéia and to
Hugging Face, emAéyovtag ocuyxexpluévo nopalloyéc cuVToVIGHEVES Ye odnyieg, oyedloouéves va oxohoutolv
O AmoTEAEOUATIXG TIC 0BNyiec puoxic YADooUS.

1.3.3 MeYodoloyieg

XeNoWoToooue BLdpopes TEYVIXES TPOTPOTAE Xal UeYEBoUC GUANOYLOUOU YLot Vo alohOYNCOLUE TNV anddoa
TV pxpdtepny MI'M o epyaoiec podnuatixic cuhhoyiotixfc (GSM8K, SVAMP) xou enfhuone nalh (Game
of 24). Ou yédoBol Tou eqapudoope TepthauBdvouy Ty Tumxt TpoTpont elobdou-eE6dou (1I0), Ty Tpotpont pe
oahvoBwtd Brhuata oxédne (CoT), v npotpony| and 1o wxpdTepo oTo YeyahUTepo unonpdBinua (LtM) xou
petdppacn yelpwy, e v puédodo Faithful-CoT yia tor chvola Sedouévev podnuotiddv xou yio eEetdxeuuévn
mpocopuoyy) tou Faithful-CoT nou ypnowonomjdnxe yia tn yetdgppaot guowhc YAwooag ot xodo Python yia
to Game of 24.

TunuxA Ilpotpony Eicédou-EE660uL

H) npotpons) E/E nepthaufBdver tnv mopoyn 0To HOVTENO WIAG EQMTNONG X0t TNG AVTIOTOLYNG omdvTnong
oto mepleyouevo. To povtého otn cuvéyela npoonadel vor avomopdyet autd o wotifo Yo véeg eloédoug. Auth
n wédodog yenowelel we wo anAh Boowy| yeoauur culloyiouol. Toco yia o cOvoha BEBOUEVODY UadINUOTIXGY
660 xou ylo Tor ovola dedouévev yelpwy, n tpotponh) E/E napouoidlel to npbBinuo o guoixt) YAdooo xat
avopével and To YovTélo vo eEdyel pLo AV ywelc Vol TEpLY pdPEL AETTOUERES Tl EVOLAUETH BAUaTo GUANOYIOUOU.

ITpotponh pe AAvodwTtd Bripata Sxédng

H npotpont) CoT evioylet 1 culhoyiotxy| ixavétnta twv MI'M avodbovtoc to mpdfBinua ot evbidueoo Brpoto.
Avtl va Bydlel apéowe Ty TeEMXT andvInom, To HOVTENO TPOTEENETAL VoL SLATUTRCEL TN Slodixacia oxédne mou
eumAéxeton otny enihuon tou tpoPBAfuatoc. Auth 1 tpocéyyion elvan Wiaitepa yphoun Yo epyaciec Tou anattolv
GUANOYLOUS TOAAGY BNUGTWY, oo TOVTIC TNV ATOTEAECUATIXY TOCO Yia HordnuaTind TeofAfuata 600 xal YLo
yelpoug mou nepthaufdvouy tohdmhoxes npdels.

ITpotpon and to Avydtepo oto Ilepiocdtepo YOvieto Y noneoBAnUa

H npotponf) LtM [143], éxer oyedaotel yio vo yeplleton mohimhoxa npolhpata pe Ty anoclvieot, Toug oe
po oelpd WxedTeEp®Y, amholoTEpwY LToTEOPBANUdTwyY. Xe avtiveon ye to CoT, to LtM amiomoiel pntd to
apy 6 medPBinua o emuépoug Priwata ey emAloel xdde Yépog pe mpoodeutnd tedmo. H pédodoc auth €xel
anodetyvel Wiadtepa yprowrn oty ETAUOY LI NUATXOY TEOBANUATWY, OTOU To TOAUTAOXI EPWTHUNTO UTOPOUY
vo avohudolv oe Baoixée aplduntinég medielg 1 hoyixd utocTolyeld.

Faithful-CoT

To Faithful-CoT [78] eivon o pédodog 800 otadiwy mou etodyetan yior vor cuVSUALEL T1 GUANOYLOTIXY OE QUOIXA
yiodooo (PI') xou v extéleon oe oupPohxn YAdooo (XI'). e auvth v mpocéyylon, To poviélo mapdyel
TEWTO Yot dALciBol CUAROYLOUOU TOU BLATAEXEL TMEQLYPUPES QUOIXAC YAWOGCUC Xl GUUBOAIXOUEC UTOAOYIGHOUS
(6mwe xdBua Python). To 8eltepo otddio tepthapfdver tn yprion evic e€wtepixod emAuTH (T.y. evoc Sieppunvéa
Python) yio tnv extéheon tou LUBOAXOD ®OBIXA XA TOV UTOAOYLOUS TNG TEMXAS AmdVTNomS.

30

1.3. Iewdporo

1.3.4 Puduioceig Ilpotponrc
ITeotponh Mndevixwv | Mepixov IMapadeiyudtwy

INo 6hec i pedddoug mou e@apudoTNHOY VLol To. COVOAO BEBOUEVKV UUINUOTIXO) GUANOYLOUOU, EQUpUOCTIXE
pVduion 8 napodetypdtoy, Tou onpoivel ot ddUnxay 8 (tuyaia) napadelypato 6TO LOVIENO GTNV TROTEOTH TOU
yerotn. T autd Ta chvolo dedouévwy emavahdBope To TEWRAUATA UE XU Ywelc TN Ypron Wag TeoTeomic
CUOTARATOC (oL cPyIN| TROTPOTH 1oL Bivel oTa povTéN TIc 0dnyiec Tou nepLypdpouy Tov TEdTo Tou YENOUUE
VOL OOV THOOLY).

INo ta ohvola Bedouévnv yelpnv éyouue tig axdrovdeg puduioeig:

e RiddleSense: Téoo vy v tumixh npotponh E/E 660 xau v to CoT €youpe doxudoet mapadelyuato ye
0, 5, xan 8 mopadelyyoTaL.

o Game of 24: T v tuux tpotponh E/E xou to CoT €youpe Soxdoet napadeiyparta pe undevixn 0, 5,
xon 8 mopadelypata, eved yio Tr) HETAPEAOT Yelpwy €youue doxiudoel uévo T pvduiorn pe undevixd Ao
napaderypdtov. o tny tekeutaia uédodo, npoonadfioaue enlong vo urodei&ouue to friuata cUAAOYLGHOD
ToU TEETEL VoL oxoAovinUolv.

Avtoocuvéneia (Self-Consistency)

INo toe pordnpotind obvoha dedouévmv, 1 autooLVETeln €xel enfone doxwpaotel yia Oheg Tic pedddouc, pe
¥eron npotpomic cuothuatoc. O aptdudc TV mapayoUeEVeDY ahuaiBwy Yio TN uéYodo TN AUTOGUVETELNS Elval
n=>5, xou To Mo GUVETES/YNnpLouévo anotéheopa eivan 1 TeEAx andvtnor mou diveta.

I to RiddleSense doxwdoape v autoouvénela téoo yio Ty ot npotponh) E/E 6co xou yio tnv CoT xou o€
xqe mepintwon yenowonooaue T pOYUON TV PERIUDY TUpUdELYUATWY TTou elye Tar XaAUTERR anoTENECUTO
OTIC TEPLOCOTEPEC MEPINTWOELS. ['lar mopddelyyar, yior TNV TUTLXY) TEOTEOTY BOXWACOHUE TNV CUTOCUVETELN OTH|
pLdwon 8 mopadelyudTwy, eved yia to CoT doxudoaye Ty autocuvénela ot plduion 5 napaderyudtoy. Edd
yenowonolelton évag aprduoe ahuoldwy (coc ye n=>5. Iloupopoiwe, epoapudooue autoouvéneia yia to Game of
24, doxdlovtog entong évav aptdud nopoyduevwy aAucidwy (oo pe n=10.

1.3.5 Amoteléopata

Yty evétnra auth napouctdleton 1 anddoor) Slopdpwy UEVOdWY TEOTEOTHSC XAl HOVTEAWY OE TéooEPA GUVOAL
dedouévov: GSMSK, SVAMP, RiddleSense xaw Game of 24. Kdlde cOvolo dedouévwy ameixovilel povadixéc
TTUYEC TNS CUANOYLOTIXNG IXAVOTNTOC X0 TGV SUVITOTATOY ETIALGNE TPOBANUETOY GE YAWOGWE HOVTEAT, GUY-
xpivovtag Tic TuTnéc npooeyyioelg eloédou-e£6dou (10), Brudtwy ahucldnthc oxédne (CoT), uxpdtepwy npog
peyahdtepwy cvvietwy unonpoinudtwy (LtM), Faithful-CoT xou petdppaons yplpwy ot Swgpopetinée pudui-
oeig Tpotponic (pudUicelc UNBEVIXMY 1 UEPLXDY TOPAUBELYUATMY XOL MUTOGUVETELIC).

Arnoteréopata GSMSK

Ta amoteréoparta twv emddoewy yia To olvoho dedouévwy GSMSK napousidlovton mopoxdte:

Methods w/o System Prompt | w/ System Prompt | Self-Consistency (n=5)
IO Standard 0% 4.4% 4.2%
Chain-of-Thought 0% 22.3% 26.5%
Least-to-Most 0% 12.7% 11.1%
Faithful-CoT 0% 13.3% 20.9%

Table 1.2: Anoteréopata GSMSK

31

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Performance on GSM8K Dataset

w/o System Prompt
25+ w/ System Prompt
—e— Self-Consistency (n=5)
20
9
= 15T
[}
o
=1
|9}
£ 10}
5 L
O L
o X X AN
6& O&\ Q\O(o /<-’0
N o) R\
<0 L& <9 Q
o’ S & N
A \Q’ \/@’b &
“
(o
Methods
IMapatneroets:

e H anovcia npotponfic cuothpatoc odnyel ot axplBei 0% yio dhec tic epoppolopevee yedodouc. Me
Bdom Tic mopatnehoels pog, autd cuvERN Aoyw e «unepexnaidevoncy (overfitting) tou povtélou ota
8 doouéva mapadeiypato. To Llama2-7b-instruct emavaidufove ta mopodelypata tou d6Unxay avti va
ANMAVTACEL TNV TEAXT| EQOTNO.

o H npoodixrn npotponic cvothpatoc Behtinoe to anoteréoyata, ohrd to povtého e&oxoroudel vo um-
ohelnetan oTar oLuyXEXELWEV TpoBAuaTta, pe wéyiotn axpifeio oty pévodo CoT-SC.

e To CoT anodelydnxe n mo emtuynuévn pédodog, eved 1 AUTOGUVETELN BEATIWCE Tol ATOTEAECUATA YLl TO
CoT xau to Faithful-CoT.

o Ye avtideon pe v dnupooicuor nou ewohyaye to Faithful-CoT [78], énou yenowonomidnxoay povtéha
onwe toe GPT-3.5 xou GPT-4, to CoT nétuye xahltepa anoteréopota and T veLpoouUfoiiny| uédodo
OTA TELRAUATE Lo Ye To wovtédo Llama2-7b.

Anoteiéopata SVAMP

To anoteréopota Twy emdécewY Yo T0 cOVoho dedopévewy SVAMP napovsidlovton mopaxdte:

Methods w/o System Prompt | w/ System Prompt | Self-Consistency (n=5)
IO Standard 3% 36.7% 36.7%
Chain-of-Thought 0% 47.2% 54.0%
Least-to-Most 1% 43.2% 35.3%
Faithful-CoT 0% 38.8% 47.0%

Table 1.3: Anoteléopora SVAMP

32

1.3. Iewdporo

Performance on SVAMP Dataset

50
40}
S
= 30} w/o System Prompt
o w/ System Prompt
§ —e— Self-Consistency (n=5)
< 201
10+
O L
o X X AN
& & \\\& &
N o) N
<0 N <9 Q
A b X
K & & N
A \Q’ \/@’b &
C}\’b

Methods

IMapatneroeic: Ol topatneroelg yio To anoTeAéopato 6To cUVOAO dedopévwy SVAMP elvan oAl mapduoleg
ue exelveg oto GSM8K. H pévn Swapopd eivon 6TL 1 oxplBelar Twv meplocdtepwy uelddduwy oe autd 0 ahvoho
dedouévmv elvon xalUtepy and Tta anoteréopata Tou mopatnelinxay mponyoupévee. Auth elvon wio yevxr
Tdom oToug dadéoilouc Tivoxes xatdtalng mou undpyouv xou elvar mlavd va ogelletol 6TO YEYOVOS OTL TaL
TpofAruata mou topouatdlovton oto SVAMP eivon ehoppdg euxordtepa ot obyxplon ue 1o GSMSK.

Anoteiéopata RiddleSense

Ta amoteréopata twv emddoewy yia To olvoho dedouévwv RiddleSense nopoucidlovton napaxdte:

Methods/Models llama3-8b | llama3.1-8b | llama3.1-70b | mistral-7b
IO Standard - 0 shot 0.658 0.661 0.722 0.569
IO Standard - 5 shot 0.638 0.644 0.804 0.589
IO Standard - 8 shot 0.669 0.676 0.779 0.587
CoT - 0 shot 0.620 0.624 0.777 0.592
CoT - 5 shot 0.672 0.672 0.787 0.603
CoT - 8 shot 0.661 0.667 0.785 0.603
IO 8 shot - SC (n=5) 0.678 0.682 0.806 0.598
CoT 5 shot - SC (n=5) 0.684 0.675 0.8 0.614

Table 1.4: Anotehéopato RiddleSense

33

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Performance Comparison Across Models

0.80F—* llama3-8b w
llama3.1-8b
—e— llama3.1-70b
—e— mistral-7b
0.75¢ /
()
(]
G 0.70f
£ IS
E \./.—’
o
2 065}
0.60 " . —/
< < X X < < N N
5° 5° 5° 5° 5° 5° % %
o o ® N S ® & 8
& & @' & & & 9 ©
o&b 060 (\é © © © & &
© © > >N 2N
x> x> X
2) 2) 9 > /\‘o
N © © © S
Methods/Models
IMopatneroers:

o Apywd, mopoatneeitor 6Tl 0 ONUAVTIXOTEROC TAEAYOVTAS Yo TNV ENITELEN XUAVTECKY ANOTEAECUATWY OTO
RiddleSense eivou to péyedoc tou poviéhou (o apriudc Twy nopouétpny Tou), e to llamad.1-70b-instruct
vo uepéyel otadepd EvavTl TV dhAwY HovTéAwy, gtdvovtog péyel xou 0.806 o axplfBeia ue Tumxy mpo-
Teom!| 8 TUPAUdELYUATOY UE auTOCUVETEW. Amd TNV dAAN mhevpd, to mistral-7Tb-v0.3, av xo omodotixd,
duoxoheVeTaL Vo PTACEL TIC EMBOCEC TwV PovTéAwy llama oe dheg Tic mepintdoelc unoypopuilovtag
onpacia TS XA UOXAS TOU HOVTENOL Yiol ToL OUVEYUOTAL.

o H npotpont| Aiywv napaderyudtomv Bedtidvel ta anoteléopota T6o0 yio Ty Tumxy npotponi E/E 660 xou
vt v mpotpon CoT, ye Tov aptdud napaderyudtomy va unyv elvan copde xohltepoc yetald 5 xou 8.

o H avtoouvéneio (n=>5) BEATIOOVEL YEVIXE TO ATOTENESHOATA YLOL OAAL TOL LOVTEAAL.

Arnoteléopata Game-of-24

Ta anoteréopota TV enddoewy yia To olvoho dedouévewv Game-of-24 nopouctdlovton TopaxdTe:

34

1.3. Iewdporo

Methods/Models llama3-8b | llama3.1-8b | llama3.1-70b | mistral-7b
10 Standard - 0 shot 0.022 0.044 0.095 0.0
10 Standard - 5 shot 0.058 0.175 0.102 0.015
10 Standard - 8 shot 0.073 0.036 0.095 0.015
CoT - 0 shot 0.007 0.022 0.095 0.007
CoT - 5 shot 0.003 0.015 0.146 0.015
CoT - 8 shot 0.002 0.036 0.131 0.022
10 5 shot - SC (n=5) 0.022 0.153 0.139 0.007
10 5 shot - SC (n=10) 0.051 0.19 0.139 0.007
CoT 5 shot - SC (n=5) 0.015 0.029 0.161 0.022
CoT 5 shot - SC (n=10) 0.022 0.022 0.204 0.029
Faithful CoT - 0 shot 0.0 0.27 0.277 0.0
Faithful CoT w/ steps - 0 shot 0.015 0.511 0.511 0.0

Table 1.5: Anoteréoporta Game-of-24

Performance Comparison Across Models

| —e— llama3-8b
llama3.1-8b
—e— llama3.1-70b

o
u

0.4 | —e— mistral-7b
S
c 0.3f
©
£
£

0.2
&

0.1

0.0 I 1 1 1 1 1 1 1 1 1 1 1 1

3 O 3 5 5 3 N) N N < <
é(\o é\o (;Qo é(\o 6}\o éQo < //‘0 //\/Q ,/‘9 //,\/0 é(\o (;(\o
Q o) &) Q o) ® oS & C/\(\ & Q o

> > > A A A e B9 2 X o

& & & & & & < : < . & R
s s & o < o < N &
N N S X S xS S S \

O P UM N
© © O O 9 & & @ ®
S >
S
<<’b
Methods/Models
IMapatneroets:

o Kou ndht 1o péyedog tou povtéhou moiler xadoplotind pdho otnv amnddoon, pe To llama3.1-70b va
EMTUY YEVEL ToL XONDTEPA OTOTEAECUOTA YL TLE TEPLOCOTEPES TEPLTTMOELS Xot To mistral-7b vo Suoxohele-
T og UTO To TERBAAAOY UPNAC TOAUTAOXOTNTAS, UE TIC TEPLOCOTERES TEPITTWOELC VoL YNV EEMEPVOLY
™V eAdyLoTy axpBela.

e H ab&nom tou aptiuod tev mapodetyudtenv dev BeAticdvel otadepd Tol ATOTEAEGUOTA YLl TNV TUTLXTY TEO-
teont| xau to CoT.

o X oplopéveg nepintoels, 1o CoT dyt uévo dev Behtidvel Tig emBOoELS AR TapdryEL oXOUT Xol YELROTERA
anoteréopata and TNy tunixh tpotpont| E/E. Eniong, n autocuvéneia fofdnoe oplouévo LovTéNa vor €xouy
XUAVTEREG EMBOTELS, OANE auT6 Bev ouvEBaLve TavTaL.

35

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

e ‘Ocov agopd Ty ey vt wetdppaone Tol, mapotneeitar 6Tt To mistral-7b xou llama3-8b dev elvon oe ¥éo
vor dnuloupYhioouy exteréoo xddxa, odnydvtas étol ot anoteréoparto axpiBeloc 0%. And v dhkn
Thevpd, Ta wovtéia llamad.1 fray oe Féomn va SMuLovpYRooUY EXTEAEGULO XMBOLXOL XL TETUYOY ToL XUAVTEQROL
anoteléopata oxplBelac oe olyxplomn Ye xdde dilo melpopa. Eniong, n mpootixn tev Brudtwy Tou xohdixa
TOU TEEMEL VoL TORdYEL TO poVTENo, Behtinoe mepauutépw Ta anotehéoyata Yo autd to povtéda. Téhlog,
napéio mou to llama3.1 métuye Ta xahOtepa anotehéopata Ue TN vevpoouufohxy| uédodo, o auvEnuévoc
oprdpog mopoétewy Tou wovtéhou llama3.1-70b dev odhynoe oe nepantépw adEnomn e axplBelag.

1.4 X>vurnepdopata

1.4.1 3ul7nonm

H napoloa Simhwpotind epyacio diepelvnoe Ty ixavdtnta Tov UeYSAwY YAwooxdy wovtédov (MI'M) va ouy-
peTéyouv oe aOVUETN CUANOYLO T X ETUALGT) TEOBANUETKY oE Uiot Totxthia TeoBANUdTwY ol o Lodnuatixhic
oculoyiotixric. Me v xotnyoplonoinoyn twv nalk oe tonoug Poaciopévous oe xavoves xat ywpelc xovdveg, 1
epyooia autr mapeiye gt BOUNUEVT TEOGEYYIOT] YLOL TNV XUTAVONOT| TWV BLUPOPETIXMY YVWO TV ATOUTHOEWY
mou Yétouv Ta Sdopor malk ota MI'M. Méow plag ohoxAnpwuévng emoxdmnone Yedodwy xou cuVORwY Be-
Sopévwv, 1 dateBr) avadewxviel enione to onuepvd tornio twv emdboewy twv LLM oty enihuorn yelpwy, pall
HE TLC TPOXANOELS TOU avTHIETOTILOUY UTH Ta HOVTEAA.

Ta mewpduatd pac oyeddotnxay yio vo euBadiOVoue TNV TEUXTIXY EQPUEUOYT BlapOEWY CTEATNYIXOY XL
TEYVIXWY TEOTEOTHAC ot Téooepa olvola dedopévwyv: GSMSK, SVAMP, RiddleSense xon Game of 24. T
o podnuatind obvolo dedopévev (GSMSK xou SVAMP), o uédodol mou diepeuvidnray nepthdufBovoy v
U TPoTEoTY eloéBou-eE680u (E/E), thv axohoudia ahuolBwtdy Brudtwy oxédne (CoT), ty npotpont| ond
10 Mydtepo 010 meplocdtepo olvideto unompdBinua (LtM) xo to Faithful-CoT, nou aZiohoyhdnxay oe pu-
Yuloeic undevixnc UNBEVIXADY 1 UEPIXMY TAUPAOELYUdTwY Xt auToouVEnelag. Lo ta obvolo Bedouévev Yplpwy
(RiddleSense xar Game of 24), cuyxpivaye v tutx) E/E, to CoT xou pa npocéyyion ue Bdorn) uetdppaon
mou poudlet ye to Faithful-CoT, n onola petagedler) guo YAOooo ot eXTENEGULO XWOOXAL.

H Biphoypapixy) €peuva mou delriytn oto mhaicto tng mopodoug Bimhwuatixic Tapéyel TANEOPopieg oYeTXd Ye
TNV EQAUPUOYT] SLOPOPWY TEYVIXWDY TPOTEOTAG Xl TNV TEAELOTOINGY TOU UOVTENOL GE OhoLG Toug e€eTalOUEVOUC
tomoug nalh. Médodol enthvone yelpwy énwe to ToT xaw to GoT evioylouv v TohbmAoxy culhoYLoTXY OE
VIETEPUVIOTIXOUC Yelpouc. 2oTdo0, auTég oL TeyVixéc amantolv peydho aprdud xifoewy MI'M, yeyovég mou
unopel vo meplopioel TNy enextacotnTa Toug. H épeuva unoypapuilel enlong éti ol veupooupfohixés teyvixéc,
OTWG 1) PETAPEACT TNG PUOXAC YADOGCOG OE XWOxa, elvon oe peydho Badud avelepelvnteg oe nepBdihovta
enflvong malh. Emmkéov, n éNhew)n movahiog oe puedoédoug xon clhvoha Sedouévev Yo otoyaotind malk ye
xovoveg xot malh TEoYEoUUATIONOU Ywelc xavoves amoTeAel plo euxonpio Yol uEANOVTIXT €pEuVAL.

To melpopotind evpuato evioyvoav Oplouéves amd TS YVOOEWS TNG €PEUVOS, AMOXOADTTOVTOS ToPSAANAL
povadixéc mpoxhfioelc o bha tor clvola dedouévwy. Lta oOvoha podnuotindyv dedopévewv (GSMBK xou
SVAMP), n anovcia npotpondv cucthuatog odiynoe oe Ttwon twv emddoewy, emBeBouidvovias T onuascia
TwV Sounuévwy TeoTeon®y yio TN pardnpatixy culhoyiotixy. To Faithful-CoT 8ev anédwoe Behtiwoeg oto
Llama2-7b-instruct, xou nogdro nou o CoT pe Self-Consistency ¥itav 1 mo anotekeoyatinn npocéyyior), oxoun
xon Ta Baoxd TeofAfuata Tagousiacay TEOXANOELS, UTOBNADYOVTIC TEPLOPLOHOUS OTIC TREYOUOES BUVITOTNTES
cLANoYIoPOU TwY WxpdTepeY MI'M.

I to RiddleSense, to péyedog tou poviéhou avadelydnxe oe Paoixd mapdyovia amddoons, UE 10 UEYUADTERO
povtého, to Llama3.1-70b, va anodider xailtepa, eved to CoT and pévo tou dev eyyudrtan v emtuyio, un-
OBNAGVOVTAG TNV avdyxn Yo o e€ehiyuéveg npooeyyioelg mépa and TiC UTOBEEN TwV Bnudtewy Tou cLALOYLO-
poU. Ouolwe, oto clvoho dedopévery Game of 24, pévo ta povtéra Llama3d.1 frav oe ¥éorn va dnuiovpyricouv
exteréoo xdwo pe) wédodo Faithful-CoT, tovilovtac) cupPatdtnto petalld oplopévev peddduwy xou
NG AEYLTEXTOVIXAC TwV Hovtéhwy. Emmiéov, to CoT dev Beitiwoe otadepd o anoteréouata, yeyovog mou
UTOBNAGDVEL OTL QUTY 1) TEOCEYYIOT| UTOEEL VoL EYEL TEPLOPLOUEVT EQPUPUOYT) VLol TTalA TTOU AMOLTOUY 0XEY3Y) UTOAO-
yioTed BripoTa.

AvuTéc oL TELPAUATIXES TUPATNEHOELS XATOBEVIOLY OTL, eved Tat LLM pnopolv va avtigetwnicouy tmy toAOThoxn
ouMoYLoTXH e évay Badud, ol mpoxifoels e€oxohovdoly va uplotavto, Wlwe otV emthuon LodnuaTXDY

36

1.4. Xuyurepdoporo

%ot Baclouévev ot xovoveg TEOBANUATWY, OTOU To UixpOTEPA LOVTEAN LY VA Bev BlardéTouy TNV IxavédTnTaL Vol
exTtehoVV Ue cuVEREL Xl agloioTtiot GOVIETY) GUANOYLOTIXY.

1.4.2 MeArovtixéc Kateuvddvoelc

‘Ocov agopd Tic pehhovtixés epyaoies, Sidpopol Baoixol topelc mpoopépouy utooydueves xaTeVIUVOELS Yia TNV
npowdnon g épeuvag otny entivon malk ye) yprion MI'M:

e Beltiwoeig oty Medodolovyio: Evac npwtopyindc Touéas yio JEAAOVTIXY €pEUVO EYXELTAL TNV
aflonoinoy VEUPOGLUBOMXMY TEXVIXWY, WIS TS PETAPEAONE QUOIXASC YAWCOUS OE Xddxa. Auth 7
TPOGEYYLON, ot UeYdho Podud avelepelvntn oe nepBdihovta talk, Yo UmopovoE Vo YEQUEKGEL TO Ydoud
HETAEY aPNENUEVNS CUAAOYLOTIXAC XOU EXTEAECLUGY AICEMY, EWBXE Yld TOAOTAOXOUS YEi(pPOUE TOL ATUTOVY
axp\Belc Aettovpyleg. Emmiéov, undpyel duvatdtnta o&loAdynone TeonyRévey TOTOAOYLOY TEOTEOTHC,
OTwe Bouéc cuAAoYiopoL Baclouéveg oe Yedpoug 1 BEvipa, oL omoleg VYo HTopolcay Vo VoY 0CoUY TO
Badoc curhoyiouol pxpdtepwy MI'M, Slatne®dvtog TopdAANAc TNV UTOAOYLOTIXY ATOBOTIXOTNTA.

o Anuioveyia Juvolwy Acdouévev: H éocuva avédeille xevd ota drdéoiuo cOvola BeBoPEveV,
Wlwe v otoyaotxd malk xou mpoxAioels tpoypeaupatiowol. H avdntun véwv cuvohwy Bedouévmv yia
auTég TIC xatnyopleg Vo unopoloE Vo TOVHOOEL TNV EEEUVO OE QUTOUEC TOUg Topelg, mpoopépovtac éva
eLPUTERO PACUN EQYATLDVY YLOL T1) BOXIUY| XAl TNV EMEXTACY) TWV CUAAOYLOTIXWY LXavoTATY Twv MI'M.

o IMTapaywyn ITalA: H épeuva yio Ty awtouatn napaywyh nalh pe yerion MI'M elvou neplopiouévr, ye
npbdogatec dovkeés énwe to RISCORE [92] va éyouv ubdhic apyloel vo acyohodvtar ye autd 1o nedlo.
Acebopévou 6Tl 1 xatavdnor xar 1 enthuon yelpwy eivor egehiddouve onuaciog yio T dnwovpyio toug,
oL e€elielg oTig avotnteg culhoylotixric MI'M Yo prnopoldoav va ennpedoouy dueca TNy €peuva yio TN
dnwovpyio malh. Autdc o touéog divel Briue yior TRV avdmTugrn LOVTEAWY IXavedY Vo dNUtovpyoly VEoug
yelpoue mou doxwdlouy mowihes TTUYES TNS CUNNOYLOTIXNAG, TNG AOYIXTC XU TNG oupTEpacUatoloYiag,
npocVéTovTag €Tal pla Véo didotaon otny aflohdynor twv MI'M.

37

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

38

Chapter 2

Introduction

Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating
impressive capabilities in a wide range of tasks, including text generation, translation and question answering
[84]. Models like GPT-3 [11], GPT-4 [89] and the recent Llama series [27, 117, 118] have pushed the boundaries
of Al, showcasing an unique ability to understand and generate human-like text. Beyond these surface-level
capabilities, a critical aspect of these models is their potential for reasoning—a cognitive process that involves
making inferences, solving problems and applying logic to derive solutions [70, 69, 5, 22]. Reasoning is crucial
not only for understanding context but also for tackling complex, abstract tasks that require more than rote
memorization of data.

Puzzle solving serves as an ideal benchmark for evaluating the reasoning capabilities of language models.
Puzzles, by design, challenge cognitive abilities such as logical reasoning, pattern recognition and strategic
thinking. They require solvers to process information, make connections and apply rules creatively to arrive
at solutions. This makes puzzles a rich ground for testing the depth and flexibility of an AI model’s reasoning
skills. Puzzles can be broadly categorized into rule-based and rule-less types, each presenting distinct chal-
lenges: rule-based puzzles, like Sudoku or Game-of-24, rely on fixed rules and structured environments, while
rule-less puzzles, such as riddles and programming tasks, demand broader inferential thinking and knowledge
application [38].

Despite their growing sophistication, LLMs still face notable challenges in puzzle solving. Current approaches
often struggle with tasks that require multi-step reasoning, handling uncertainty, or interpreting implicit
information [129, 4]. While methods like few-shot prompting [10] and Chain-of-Thought (CoT) reasoning
[127, 53] have improved performance in some cases [105], significant gaps remain, particularly in puzzles that
require deep logical inference or the combination of multiple reasoning steps. These limitations highlight the
need for more advanced techniques that can enhance the reasoning processes of LLMs.

Investigating the reasoning capabilities of LLMs through puzzle solving provides valuable insights that can
drive the development of more advanced Al systems, equipping them with the ability to handle complex
reasoning tasks. Understanding how these models handle reasoning tasks can inform the development of new
strategies and guide the creation of models better equipped to tackle complex real-world challenges. This
thesis aims to bridge the gap between current LLM capabilities and the demands of advanced reasoning,
contributing valuable insights into the development of more robust Al reasoning methods.

Our study makes two primary contributions:

1. A comprehensive survey of the existing landscape of LLM reasoning in puzzle solving, highlighting the
strengths and weaknesses of various approaches.

2. Experimental evaluations of LLM performance on selected puzzles, including math datasets, Riddle-
Sense [67] and the Game-of-24 Puzzle, using different reasoning strategies such as few-shot prompting,
CoT, self-consistency and neuro-symbolic approaches.

The thesis is structured to provide a comprehensive examination of puzzle-solving using reasoning with Large

39

Chapter 2. Introduction

Language Models (LLMs).

In the Background (§3.2.3) Chapter, we describe the basic ideas of Machine Learning and Deep Learning,
while Large Language Models (§4) Chapter analyzes the attention mechanism, the transformers architec-
ture, the basic ideas behind LLMs, their reasoning abilities and the key methods for better prompting.

The Chapter Puzzle Solving and LLMs (8§5) is an extensive literature review delving into the current state
of research for puzzle solving using LLMs, including a categorization of puzzles and methodologies employed
for solving them in previous works. [38] Key sections include:

e CATEGORIZATION OF PUZZLES: Details the types of puzzles (rule-based and rule-less) and their
distinct reasoning challenges.

¢ METHODOLOGIES FOR PUZZLE SOLVING WITH LLMs: Discusses prompting techniques, neuro-
symbolic methods and fine-tuning strategies.

e COMPARISON WITH CONVENTIONAL METHODS: Analyzes traditional approaches to puzzle solv-
ing and contrasts them with LLM-based methods.

e EVALUATION BENCHMARKS AND DATASETS FOR PUZZLES: Reviews commonly used datasets
and metrics for assessing LLM performance.

The Experiments (§6) chapter describes the experimental setup, including the datasets used, the mod-
els and the reasoning techniques applied. Next we present the findings from the experiments, comparing
the effectiveness of different approaches in solving puzzles. This chapter includes detailed analyses, visual
representations and insights into the reasoning capabilities of the models.

Finally, the thesis concludes (§7) with the findings of this diploma thesis and highlights the potential for
improved reasoning strategies and development of richer datasets for future exploration.

40

Chapter 3

Background

Artificial Intelligence (AI) is a broad field dedicated to creating systems capable of performing tasks that
require human-like intelligence. These tasks range from recognizing patterns in visual data and interpreting
spoken language to making complex decisions and understanding textual information. AI’s overarching goal
is to equip machines with the ability to replicate and even enhance human cognitive functions.

Within AI, Machine Learning (ML) is a critical discipline that focuses on developing algorithms and models
that enable computers to learn from and make decisions based on data. Unlike traditional programming,
where explicit instructions are provided for every task, ML models identify patterns and insights from large
datasets, allowing them to improve their performance over time without direct human input. This capability
to autonomously adapt and refine their outputs distinguishes ML from more conventional computational
approaches.

As ML has advanced, it has given rise to Deep Learning (DL), a specialized subfield that leverages complex
neural network architectures composed of many layers. These deep neural networks, inspired by the human
brain’s neural structures, are particularly adept at handling vast and complex datasets. They excel in
tasks involving high-dimensional data—such as image and speech recognition, as well as natural language
processing—by uncovering intricate patterns and making sophisticated decisions based on those patterns.
The "depth" of these networks, or the number of processing layers, is key to their ability to manage and
interpret such complex data effectively.

Contents
3.1 Machine Learning ¢ o o v i i i i i i e i e e e e e e e e e e e e e 42
3.1.1 Categories of Machine Learning 42
3.1.2 Data Modalities 43
3.2 Deep Learning o 0 i i i i e e e e e e e e e e e e e e e e e e e 44
3.2.1 Core Components i e e e 44
3.2.2 Training oL 46
3.2.3 Evaluation 47

41

Chapter 3. Background

3.1 Machine Learning

Machine Learning (ML) is a fundamental pillar of artificial intelligence, enabling systems to learn from data,
identify patterns, and make decisions with minimal human intervention. In the following subsections, we
will explore the key categories of machine learning, each defined by how models learn from and interact with
data.

3.1.1 Categories of Machine Learning

Machine Learning algorithms can be categorized according to the experience the model is provided with
during training. The three broad types of machine learning algorithms are supervised, unsupervised and
reinforcement learning, while semi- and self- supervision can be considered variants of the above.

Supervised Learning

Supervised learning is the most widely used form of machine learning, where the model is trained on a
labeled dataset. Each example in the training set includes both input data in a feature vector x and the
corresponding correct output y, often referred to as a "label". The goal of supervised learning is to learn a
mapping from inputs to outputs that can be generalized to new, unseen data. This is achieved by minimizing
the difference between the predicted output and the actual label during training and learning the distribution
p(ylx). Common applications of supervised learning include image classification, where the task is to label
images into predefined categories, and regression tasks, such as predicting house prices based on features like
size and location.

Unsupervised Learning

In contrast to supervised learning, unsupervised learning deals with data that does not have labeled outputs.
Instead, they attempt to implicitly or explicitly learn the probability distribution of the entire dataset p(x)
and in turn give insight about the hidden structures or patterns within the data. Unsupervised learning
is often used for clustering, where the aim is to group similar data points together, or for dimensionality
reduction, which involves reducing the number of variables under consideration without losing important
information. Algorithms like k-means clustering and principal component analysis are classic examples of
unsupervised learning methods.

Semi-supervised Learning

Semi-supervised learning combines elements of both supervised and unsupervised learning. In this approach,
the model is trained on a dataset that contains a small amount of labeled data and a large amount of
unlabeled data. The labeled data helps guide the learning process, while the unlabeled data allows the
model to capture more general patterns. Semi-supervised learning is particularly useful in situations where
obtaining labeled data is expensive or time-consuming, such as in medical imaging, where only a few images
may be annotated by experts, but many unlabeled images are available. This approach can significantly
improve learning performance by leveraging the abundance of unlabeled data.

Self-supervised Learning

Self-supervised learning is a type of supervised learning where the system generates its own labels from the
input data. This is typically done by hidding a part of the data and asking the model to predict it, effectively
creating a supervised learning problem without the need for external labels. Self-supervised learning has
gained prominence in training large models, particularly in natural language processing (NLP) and computer
vision. For example, in natural language models, a common self-supervised task might involve predicting the
next word in a sentence, which helps the model understand context and language structure. Self-supervised
learning is foundational for many modern Large Language Models, such as GPT and BERT, which are
pre-trained on vast amounts of text data before being fine-tuned for specific tasks.

42

3.1. Machine Learning

Reinforcement Learning

Reinforcement learning (RL) is a dynamic learning approach where an agent interacts with an environment
and learns to make decisions by receiving feedback in the form of rewards or penalties. The agent’s goal is
to maximize cumulative rewards over time by taking actions that are expected to yield the most favorable
outcomes. Unlike supervised learning, where the correct output is provided for each input, reinforcement
learning relies on trial and error, exploring various strategies to discover the most effective ones. RL has
been successfully applied in various domains, such as robotics, where robots learn to navigate and manipulate
objects, and in game playing, where agents learn to play complex games like chess and Go at a superhuman
level. Although not the primary training method for LLMs, RL is sometimes used in fine-tuning stages
to optimize model behaviours, such as in reinforcement learning from human feedback (RLHF), as seen in
models like ChatGPT.

3.1.2 Data Modalities

In machine learning, data comes in various forms, or modalities, each with unique characteristics that influence
how models are trained and applied. Understanding these different data modalities is crucial because the
type of data directly impacts the choice of algorithms, the architecture of models, and the overall approach to
learning. The most common data modalities include structured data, text, images, audio, video and graphs,
each of which requires specific techniques and considerations.

Structured Data

Structured data is highly organized and easily interpretable by machines. It is typically stored in tabular
formats such as spreadsheets or databases, where each row represents a record and each column represents a
feature or attribute of the data. Structured data is often numerical or categorical, making it straightforward
to process using traditional machine learning algorithms like decision trees, logistic regression, or support
vector machines. Due to its organized nature, structured data allows for efficient processing and analysis.

Text Data

Text data, a form of unstructured data, presents unique challenges and opportunities in machine learning.
Unlike structured data, text is inherently sequential and varies greatly in length, syntax, and vocabulary.
Natural Language Processing (NLP) is the AI discipline focused on analyzing and synthesizing text data,
encompassing tasks such as sentiment analysis, machine translation, and text summarization. Text data
processing involves converting words into numerical representations, such as word embeddings or tokenized
sequences, which models can then analyze. Techniques like bag-of-words, word2vec and transformers are
commonly used to process and analyze text data. A significant advancement in processing text data has
been the development of LLMs performing a wide array of language tasks with remarkable accuracy.

Image Data

Image data, another unstructured modality, has gained prominence with the advent of deep learning. Images
are composed of pixels, each represented by numerical values corresponding to color intensities. Unlike
text, images carry spatial information that needs to be preserved during processing. Convolutional Neural
Networks (CNNs) are specifically designed to handle image data by capturing spatial hierarchies through
layers of convolutional filters. These filters help in recognizing patterns such as edges, textures and more
complex features, enabling tasks like object detection, image classification, and facial recognition.

Audio Data

Audio data, which includes speech and other sound signals, is inherently temporal and continuous, often
represented as waveforms or spectrograms. Processing audio data requires models to capture both temporal
patterns and frequency information. Speech recognition, music genre classification, and emotion detection are
typical tasks that utilize audio data. Recurrent Neural Networks (RNNs), Long short-term memory models
(LSTMs) and more recently transformers, are commonly used for processing audio data due to their ability
to handle sequences and maintain temporal context.

43

Chapter 3. Background

Video Data

Video data combines visual and temporal elements, making it one of the most complex data modalities to
process. A video can be thought of as a sequence of images (frames) accompanied by audio, where both
visual and auditory components need to be analyzed. Video data is used in tasks such as action recognition,
video summarization and activity detection. Processing video data typically involves combining techniques
from both image and audio processing. CNNs are used to process the spatial content of each frame, while
RNNSs or transformers handle the temporal sequence of frames.

Graph Data

Graph data represents entities as nodes and the relationships between them as edges, capturing the intricate
connections inherent in complex systems. Unlike other data modalities, graph data explicitly models relational
information, making it invaluable for tasks where understanding the interconnections between entities is
critical. Processing graph data typically involves specialized algorithms like Graph Neural Networks (GNNs),
which extend deep learning techniques to graph-structured data, enabling tasks such as node classification,
link prediction, and graph clustering.

3.2 Deep Learning

Deep Learning (DL) is a specialized subfield of machine learning that focuses on neural networks with
multiple layers, allowing models to automatically learn complex representations from large datasets. Inspired
by the structure and functioning of the human brain, deep learning models—often referred to as deep neural
networks—consist of interconnected layers of artificial neurons that learn hierarchical patterns in data. The
"depth" of a model refers to the number of layers it contains, which enables it to extract increasingly abstract
features from the input data, making deep learning especially effective for tasks involving images, audio, and
text.

A key characteristic of deep learning models is their ability to learn directly from raw data, reducing the need
for manual feature engineering. These models excel in high-dimensional tasks, such as image recognition,
speech processing, and natural language understanding, where traditional machine learning methods may
struggle. For instance, the success of LLMs in NLP is largely due to the depth and complexity of their
architectures, enabling them to understand and generate human-like text by capturing deep semantic and
syntactic relationships.

3.2.1 Core Components

Deep neural networks are built on several fundamental components that enable them to learn and model
complex relationships in data. These core elements are crucial for understanding how deep learning models
function and why they are effective in diverse applications.

Neuron

At the heart of any neural network is the neuron, a computational unit that mimics the behavior of biological
neurons. A neuron takes one or more inputs, processes them through a set of learned weights, and produces
an output. The simplest form of a neuron is the perceptron, introduced by Frank Rosenblatt in 1958 [103)].
A perceptron takes a weighted sum of its inputs, applies an activation function, and generates an output.
This basic structure forms the foundation of more complex neural networks, where neurons are organized
into layers and connected to each other through weighted links.

Mathematically, the output of a perceptron can be represented as:

y=o(w'(x+b))

Where:

e 1 is the input vector,

44

3.2. Deep Learning

w is the weight vector,
b is the bias term,
o is the activation function, and

y is the output of the perceptron.

Activation Function

The activation function introduces non-linearity into the network, enabling it to learn and model complex
patterns. Without non-linear activation functions, neural networks would only be able to model linear
relationships between inputs and outputs, limiting their effectiveness.

Common activation functions include:

Sigmoid: Maps input values to a range between 0 and 1, often used in binary classification tasks. The
sigmoid function is given by the following formula:

1
o) =Ty

ReLU (Rectified Linear Unit): ReLU outputs the input directly if positive, and zero otherwise,
providing fast and effective training for deep networks. The formula is the following:

ReLU(z) = max(0,x)

Tanh (Hyperbolic Tangent): Similar to the sigmoid function but maps inputs to a range between
-1 and 1, making it useful in cases where the model needs to handle negative values. The formula is
the following:

et —e "

tanh(m) = +7
et +e*

GLU (Gated Linear Unit): GLU is an activation function designed to improve the learning of gating
mechanisms in networks. It applies a gate to the input and element-wise multiplies the input and gate:
GLU(z) = z1 @ o(x2)

Here, z is the input, g is the gate, and ¢ is the sigmoid function. GLU helps improve convergence in
more complex networks by regulating information flow.

SiLU (Sigmoid Linear Unit): Also known as the Swish activation function, SiLU is defined as:
SiLU(z) = = - o(x)

It provides smoother gradients than ReLLU and has been shown to perform better in some deep networks,
including LLMs.

Basic Layers

Neural networks are structured with layers that transform input data into meaningful predictions. The most
common types of layers include:

Input Layer: Receives the raw data for processing (e.g., pixel values for images or tokenized text for
LLMs).

Hidden Layers: Where most of the learning happens. These layers learn higher-level features of the
data, with deeper networks extracting more abstract patterns.

Output Layer: Produces the final prediction of the network. In classification tasks, it often uses
a softmax function to output probabilities for each class. In LLMs, it generates the next word in a
sequence for text generation tasks.

45

Chapter 3. Background

3.2.2 Training

Training a neural network involves adjusting its internal parameters (weights and biases) to minimize the
difference between the predicted outputs and the actual labels of the training data. This process is iterative,
with the network gradually improving its performance over time.

Loss Functions

The loss function quantifies the difference between the network’s predictions and the actual target values.
The goal of training is to minimize this loss, effectively improving the model’s predictions. Different tasks
require different loss functions, and the choice depends on whether the task is regression, classification, or
more complex tasks such as sequence generation in LLMs.

e Mean Squared Error (MSE): Commonly used in regression tasks, MSE calculates the average squared
difference between the predicted and actual values. The formula for MSE is:

1« .
MSE = n Z(yi —4:)?

i=1
Where n is the number of samples, y; is the actual value and g; is the predicted value.

e Cross-Entropy Loss: Frequently used for classification tasks, measuring the difference between two
probability distributions—the true distribution and the predicted distribution. For binary classification,
cross-entropy is given by:

n

L=~ 3 Iyslog(in) + (1 — yi) log(1 —)]
i=1

For multi-class classification, the softmax function is typically applied in the output layer to produce a
probability distribution, and the corresponding cross-entropy loss is calculated accordingly. LLMs, like
GPT and BERT, often use cross-entropy loss for tasks like next-word prediction and text classification.

Backpropagation

Backpropagation is the algorithm used to compute the gradients of the loss function with respect to the
model’s parameters, which are then used to update the weights. This process is essential for learning in deep
neural networks and relies on the chain rule to compute these gradients layer by layer, starting from the
output layer and moving backward through the network.

The process consists of two main phases:

1. Forward Pass: During the forward pass, the input data is propagated through the network, and the
output is generated. The loss function is then calculated based on the network’s output.

2. Backward Pass: In the backward pass, the error from the loss function is propagated backward through
the network. The gradient of the loss with respect to each weight is computed using the chain rule.
These gradients indicate how much each weight contributed to the error.

Overfitting and Regularization

A well-trained neural network should be able to generalize to unseen data, meaning it can make accurate
predictions not only on the training data but also on new, unseen examples. However, achieving good
generalization requires balancing the complexity of the model and the amount of training data.

Overfitting occurs when a model performs well on the training data but fails to generalize to new data. This
happens when the model becomes too complex and starts memorizing the noise in the training set rather
than learning the underlying patterns. Overfitting can often be detected by a high accuracy on the training
set but poor performance on the validation or test set. In the context of LLMs, overfitting can manifest as
the model memorizing training sequences rather than learning general language patterns.

46

3.2. Deep Learning

In order to prevent the above problem, regularization is a a set of techniques used to improve the model’s
ability to generalize. These methods constrain the model during training, ensuring that it doesn’t become
too complex and overfit the training data. Some common regularization techniques include:

e L2 Regularization (Ridge Regression): This technique penalizes large weights in the model by
adding a term to the loss function that is proportional to the sum of the squared weights:

A n
2
Liotal = Loriginal + 9 § w;
i=1

where L is the original loss function and A is a regularization parameter that controls the value of the
penalty.

e Dropout: During training, dropout randomly sets to zero a fraction of the neurons in the network,
forcing the model to learn more robust features. This prevents the network from relying too much on
any particular neuron and helps reduce overfitting.

e Early Stopping: Early stopping involves halting the training process when the performance on the
validation set starts to deteriorate, even if the training loss continues to decrease.

Pre-training and Fine-tuning
Modern deep learning models, particularly LLMs, often go through two stages of training:

e Pre-training: During pre-training, the model is trained on a large, general dataset in a self-supervised
manner, learning general features of the data. In the case of LLMs, this involves training on massive
corpora of text to learn word embeddings and the general structure of language. For example, GPT
models are pre-trained to predict the next word in a sentence, learning linguistic patterns without the
need for manually labeled data.

e Fine-tuning: After pre-training, the model is fine-tuned on a smaller, task-specific dataset. Fine-
tuning adapts the model’s knowledge to a particular task, such as sentiment analysis, question answer-
ing, or puzzle solving. Fine-tuning allows the model to perform well on specific tasks while leveraging
the broad knowledge acquired during pre-training.

3.2.3 Evaluation

Evaluating a neural network is a significant part, ensuring that the model generalizes well to unseen data
and performs effectively in real data. This process typically involves dividing the data into separate sets and
using performance metrics to measure how well the model achieves its objectives.

Training, Validation, and Test Sets
When training a neural network, the dataset is typically split into three subsets:

e Training Set: During training, the model adjusts its internal parameters (weights and biases) to
minimize the error on the training data. The model "learns" from this data by iteratively adjusting its
parameters to reduce the loss function.

e Validation Set: The validation set is used during training to monitor the model’s performance on
data it has not yet seen. This helps in tuning hyperparameters, such as the learning rate and the
number of layers or neurons in the network. The model is not directly trained on the validation data,
so its performance on this set provides an indication of how well it generalizes to new data and avoids
overfitting.

o Test Set: After training is complete, the model is evaluated on the test set, which represents the final
unseen data. This set is used to assess the model’s true generalization capabilities, as it contains data
that was never used during training or validation.

47

Chapter 3. Background

Performance Metrics

The most widely used metrics to evaluate model’s predictions include accuracy, precision, recall, and F1
score, each providing a different perspective on model performance.

e Accuracy measures the proportion of correct predictions out of the total number of predictions. It is a
simple and intuitive metric but may not be suitable for imbalanced datasets where one class dominates
the others.

e Precision measures the proportion of true positive predictions out of all positive predictions made
by the model. It is particularly useful in scenarios where false positives are costly, such as in medical
diagnosis.

e Recall measures the proportion of actual positives that were correctly identified by the model. High
recall is crucial when the cost of missing a positive instance (false negative) is high, such as in disease
detection.

e The F1 score is the harmonic mean of precision and recall, providing a balanced measure when both
precision and recall are important. It is especially useful when the data is imbalanced.

These performance metrics are critical for evaluating the generalization capability of the model. In LLMs,
which often perform tasks like text classification or question answering, metrics like accuracy and F1 score
are commonly used to assess the quality of predictions. For example, in a text classification task, accuracy
might reflect how often the model classifies a document correctly, while the F1 score might be used to balance
precision and recall, particularly when one class is much more frequent than others. For most of the puzzle
benchmarks, the applied metric is the success rate of the model for solving the puzzle.

48

Chapter 4

Large Language Models (LLMs)

Large Language Models (LLMs) are a subset of deep learning models that have reshaped the landscape of
artificial intelligence, particularly in natural language processing (NLP), due to their ability to generate,
understand, and interact with human language at an unprecedented scale. These large, general-purpose
models are pre-trained on massive datasets containing a wide array of textual information from books,
articles, and internet sources, enabling them to learn intricate linguistic patterns and structures. Following
pre-training, LLMs are often fine-tuned for specific tasks or domains, allowing them to adapt their general
language understanding to specialized applications with minimal additional training data.

The rise of LLMs represents a significant leap from earlier neural models, introducing capabilities that extend
beyond simple text generation to encompass complex tasks such as reasoning, problem-solving, and creative
writing. LLMs can handle a wide range of language-related problems, including text classification, question
answering, document summarization, language translation, sentiment analysis, and natural conversation.
Their versatility makes them valuable across various industries, where they provide customized Al solutions
that offer advantages in speed, accuracy, flexibility, and ease of deployment compared to older Al technologies.

The foundation of LLMs lies in their ability to model language through deep learning architectures, with the
most influential being the transformer model introduced by Vaswani et al. (2017) [119]. Transformers utilize
self-attention mechanisms, allowing models to efficiently process and generate sequences of text by capturing
dependencies between words regardless of their position in the sequence. This architecture is pivotal in
enabling LLMs to recognize relationships and connections within text, enhancing their understanding and
generation capabilities. The training process of LLMs typically begins with unsupervised learning, where the
model learns to establish foundational relationships between words and concepts by predicting the next word
in a sequence based on prior context. This initial training phase is often followed by supervised fine-tuning,
which refines the model’s outputs for specific tasks using labeled data.

Unlike previous architectures such as Recurrent Neural Networks (RNNs) [108] and Long Short-Term Memory
(LSTM) networks [43, 108], transformers do not require sequential data processing, making them highly
scalable and suitable for training on large datasets. This shift to transformer-based architectures has been
a key enabler of the success of modern LLMs, as they are capable of learning nuanced relationships and
contextual information that drive their performance across a wide range of applications. The vast parameter
counts and large-scale datasets used in training allow these models to handle complex language tasks with
impressive generalization abilities.

Once trained, LL.Ms serve as the foundation for a wide spectrum of Al applications, demonstrating capabilities
that often surpass traditional NLP benchmarks. Compared to earlier Al chatbot technologies, LLMs provide
superior performance in generating coherent and contextually appropriate responses, demonstrating advanced
reasoning and problem-solving skills. This has positioned LLMs not only as powerful tools for language
understanding but also as emerging contenders in cognitive tasks traditionally reserved for human intelligence.
However, despite their remarkable performance in many domains, LLMs still face significant challenges when
it comes to tasks that require deep logical reasoning, multi-step problem-solving, and the interpretation of

49

Chapter 4. Large Language Models (LLMs)

implicit knowledge. Thus, the field of explainable AI (XAI) plays a key role in the safety and usefulness of

such systems |77, 141, 31, 56]

The exploration of reasoning capabilities in these models is particularly relevant as it touches on their poten-
tial to simulate human-like thought processes, a crucial aspect of artificial general intelligence (AGI). This
chapter aims to provide a comprehensive overview of LLMs, focusing on their development, architecture, and
capabilities in reasoning. We will delve into the categories of LLMs, explore the underlying principles of
transformers, and examine how these models handle complex reasoning tasks. The following sections outline

the key topics covered:

Contents
4.1 Embeddings ¢ .t i i e 51
4.2 Transformers o i i i i e e e e e e e e e e e e e 52
4.2.1 Attention 52
4.2.2 Self-Attention and Transformer Networks 53
4.2.3 Pretraining Architectures L 54
4.3 Prompting. o o i e 56
4.3.1 Prompt Categories L e 57
4.3.2 Prompting Techniques L L 58
4.4 LLMs and Reasoning 0 i i i it i ittt ittt e 60
4.4.1 Categories of Reasoning with LLMs 60
4.4.2 Emergent Abilities of LLMs L Lo 62
4.4.3 Challenges in Logical Reasoning with LLMs 63
4.4.4 Comparison to Human Reasoning 63

50

4.1. Embeddings

4.1 Embeddings

Embeddings are a foundational element in LLMs, representing a method of converting words or phrases into
dense, continuous vectors. These vectors capture the semantic meaning and relationships between words,
enabling models to process text in a way that reflects the nuances of natural language. Instead of representing
words as one-hot encoded vectors—which fail to capture similarities between words—embeddings encode
words into fixed-size vectors that reflect their meaning in the context of a given dataset.

Word Embeddings

Early models, such as Word2Vec [83] and GloVe [95], were among the first to introduce word embeddings.
These methods train embeddings based on co-occurrence statistics, learning to represent words in a continuous
vector space where semantically similar words are positioned close to each other. For example, the words
"brother" and "sister" would be close in the vector space, as would "uncle" and "aunt", as shown in Figure
4.1.1.

The main advantage of word embeddings lies in their ability to capture semantic relationships, such as
synonyms and analogies, in a way that traditional one-hot encoding cannot. However, these early embeddings
were static, meaning each word had a single fixed vector representation, regardless of its context in a sentence.

T T T T T T T T T T T
0.5 1 heiress. 1
0.4 I-' E
jecs ! - countess
0.3F - aunt | ! +duchess-|
,‘éisler‘) ro
0.2 o £ ;' ! rempress
I I) !
| . ! i
0.1} i [. rmadam 1y i
: I | Ih / / i
. InepHe o ro b
ok ; “nepl e ' P N
| | / ;A
I \ Irwcman 7 / r“'
el o I -
0.1 | uncle ' -que%%’-‘
! brother f 4 ! /{duke
-0.2r I / I d .
i ! P
| ! | {emperor
-03f , . | B
i / |
-0.41 i | B
1sir [
0.5} {man Tking]
. 1 | ! ! 1 ! L L
-05 -0.4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 4.1.1: Glove Visualizations by Richard Socher [95]

Contextual Embeddings

In modern LLMs, embeddings have evolved to become contextual. Models like ELMo [96], BERT [24] and
GPT [99] generate embeddings based on the context in which a word appears. This means that the word
"bank" would have different vector representations in the sentences "I went to the bank to withdraw money"
and "The river overflowed its bank."

Contextual embeddings allow models to better capture the meaning of words in different contexts, vastly
improving performance on complex NLP tasks such as question answering, text generation, and translation.
In LLMs, contextual embeddings are generated during the pre-training phase, where models are exposed to
large amounts of text and learn to predict words based on their surrounding context.

o1

Chapter 4. Large Language Models (LLMs)

Tokenization

Before embeddings can be generated, the raw text data must be tokenized, which is the process of splitting
text into smaller units called tokens. These tokens serve as the input to LLMs and can represent words,
subwords, or even individual characters, depending on the tokenization strategy. The tokenization process is
essential because it allows the model to handle language in a structured way, transforming text into numerical
representations that the model can process.

There are various tokenization strategies:

e Word-level Tokenization: In word-level tokenization, each word in the text is treated as a single
token. For example, the sentence "Solving puzzles requires logical thinking" would be tokenized as
["Solving", "puzzles", "requires", "logical", "thinking"]. While this approach is simple it requires a
large vocabulary to cover all possible words, and any words not present in the vocabulary are treated
as unknown, often represented as <UNK>.

e Subword Tokenization: Modern LLMs, employ subword tokenization methods like Byte Pair En-
coding (BPE) [34] and WordPiece [24]. In these approaches, words are broken down into smaller units,
such as prefixes, suffixes, or other meaningful subwords. This allows the model to efficiently handle rare
words and morphological variations by decomposing them into more common subwords. For example,
the word "puzzles" might be tokenized as ["puzz", "##les"], where "##les" is a subword that can be
combined with different roots (e.g., "tab", "sub") to form other words like "tables" or "subtitles."

e Character-level Tokenization: In character-level tokenization, each character in the input text is
treated as a token. For example, the word "puzzle" would be tokenized as ["p", "u", "z", "z", "1", "e"].
While this approach avoids the need for large vocabularies and can theoretically handle any word or
sentence, it significantly increases the length of the input sequence.

e SentencePiece: SentencePiece is another tokenization method used by models such as Google’s T5
[102]. It is designed to tokenize text without requiring explicit word boundaries, which makes it
language-agnostic and more robust for handling languages that lack clear word delimiters (such as
Chinese or Japanese).

In summary, tokenization and embeddings play a crucial role in the performance of LLMs. By breaking text
into manageable pieces, tokenization transforms raw input into sequences that can be mapped to embeddings,
providing the model with a dense representation of words and their meanings.

4.2 Transformers

Transformers are the foundational architecture behind modern LLMs, such as GPT, Llama, Mistral, BERT,
and T5. Introduced by Vaswani et al. (2017) [119], transformers leverage the attention mechanism to
model relationships between different parts of a sequence, enabling them to process text more efficiently than
previous architectures like RNNs or LSTMs. In this section, we explore the core components of transformers,
including the attention mechanism, self-attention, and the pretraining architectures that have made LLMs
so effective in a wide variety of tasks.

4.2.1 Attention

The attention mechanism was originally developed to improve the performance of neural networks on
sequence-based tasks by allowing the model to focus on the most relevant parts of the input. Attention
helps models capture dependencies between distant elements in a sequence, enabling them to weigh the
importance of different input tokens based on their relevance to a given task.

In its simplest form, attention can be understood as a weighted sum of input features, where the weights
represent how much attention the model should pay to each part of the sequence. Formally, the attention
function can be described as:

. QKT
Attention(Q, K, V) = softmax 1%
Vdy,

52

4.2. Transformers

Where:
e @ (Query), K (Key), and V (Value) are the input vectors,
e d; is the dimensionality of the key vectors,

e QKT calculates the dot product of the query and key vectors to determine the similarity between
tokens, and

e The softmax function converts these similarities into attention weights.

Attention mechanisms, such as global attention, allow the model to consider every word in the sequence when
predicting the next word, while local attention restricts the model to a limited window of tokens.

The main advantage of attention over previous methods like RNNs or LSTMs is that it allows the model
to capture long-range dependencies between tokens without the need for sequential processing. This makes
attention highly efficient, as it can process all tokens in parallel.

j2]
2
c c
c g S
© = (2]
©
= 2 E ° 2 £ o 3 5 S A A A A A A
= o c v o w0 0w 2 o3 k2] 382 o 038 T T T TT
w =5 = > > 0 = 2 O = = B @ @ @ G ©
- T, E3 3032z 2P.BLE Woaoaoaoco
=0 £ 5 pE o0 ET <D ac 8 ES Lo S>aETDT V V.V V V V V
2 0 0 EE o S5 C ® 0T 0O DO Cs DO D= ANAANA N A
T e E D é’om‘(:‘>cu§300r:.coocm*—3 W T T T T T T
= o5 5 C g @ o &g £ o ¥ o = 08 o 0T @ 8 8@ &
@ 92, -:E_cm = 5 N [ogEE o o oo oo
© @ © £ B > 9 5 W v v v v vy
c o m v
E £¢ g "5 &
< 0 (o)
3 e
& |

Figure 4.2.1: An example of the attention mechanism [119]

4.2.2 Self-Attention and Transformer Networks

Self-attention extends the attention mechanism by allowing each token in the input sequence to attend to
every other token, including itself. This approach enables models to capture relationships between all tokens
in a sequence, regardless of their positions. In contrast to traditional attention mechanisms, which require
external input (queries) to generate attention scores, self-attention uses the same input sequence for queries,
keys, and values.

The process of self-attention can be broken down into three steps:

1. Calculating Query, Key, and Value vectors: For each token in the input sequence, self-attention
generates three vectors: a query, a key, and a value.

2. Computing Attention Scores: The attention scores for each token are computed by taking the dot
product of its query with all keys, followed by a softmax operation to generate attention weights.

3. Aggregating Values: Each token’s final representation is computed as a weighted sum of the value
vectors, where the weights are determined by the attention scores.

In transformer networks, this self-attention mechanism is applied at each layer of the model, allowing the
network to build increasingly abstract representations of the input data. These representations capture not
only the meaning of individual words but also their relationships to other words in the sequence.

Transformer models consist of multiple encoder and decoder layers:

53

Chapter 4. Large Language Models (LLMs)

e Encoder Layers: Each encoder layer includes a multi-head self-attention mechanism followed by a
feed-forward neural network. The encoder is responsible for generating rich representations of the input.

e Decoder Layers: The decoder layers also include multi-head self-attention, but they additionally use
cross-attention to focus on relevant parts of the encoder’s output. This is crucial for tasks like machine
translation, where the model needs to attend to both the input and the output during generation.

Multi-Head Self-Attention

One of the key innovations of the transformer model is multi-head self-attention, which allows the model to
compute attention multiple times in parallel, each time with different sets of query, key, and value vectors.
This enables the model to capture different types of relationships in the data. The outputs from each head
are concatenated and passed through a feed-forward layer to produce the final output.

Self-attention and transformers have revolutionized natural language processing, enabling models to pro-
cess large-scale datasets efficiently and learn contextual representations that are crucial for tasks like text
generation, summarization, translation, and even reasoning.

led Dot-Product Attention Multi-Head Attention

| MatMul I
£
Mask (opt.) Scaled Dot-Product ‘u&h

Attention
L L 1!
[Linear]_][Lmear],][Linear]_}

\ K Q

Figure 4.2.2: Scaled Dot-Product and Multi-Head Attention [119]

4.2.3 Pretraining Architectures

As we discussed earlier, pretraining on lanugage model tasks is a form of self-supervised learning. Self-
supervised learning takes raw (unlabeled) data, removes information and trains a model to recover that
information. In the case of language modeling, the information removed is the next word, so the model
is trained to predict future words given the context. Pretraining enables models to learn general language
features before being fine-tuned for specific tasks. The most widely used pretraining architectures include au-
toregressive (pretrained decoders), autoencoding (pretrained encoders), and sequence-to-sequence (pretrained
encoder-decoders) models.

Pretrained Decoders (Autoregressive Models)

In autoregressive models like the GPT series [99, 100, 10, 89], the model is trained to predict the next word
in a sequence based solely on the previous words. This unidirectional approach allows the model to generate
coherent text by sampling one token at a time. Autoregressive models function as pretrained decoders in a
transformer architecture, where the decoder learns to predict subsequent tokens in a left-to-right manner.

Autoregressive models excel in text generation tasks, such as dialogue systems and story generation, because
of their ability to generate sequential text with coherent context.

Due to their unidirectional nature, they do not have access to the full context of the sequence (i.e. fu-
ture tokens) during training, which can limit their understanding of some tasks that require full context
comprehension.

54

4.2. Transformers

Qutput
Prebabilities

Linear

Feed
Forward
' _1 Add & Norm
.
Add & Norm Multi-Head
Feed Attention
Forward 7 7 Nx
Nx | Add & Norm :
f—b-l Add & Narm | Nasked
Multi-Head Multi-Head
Attention Attention
At At
S — W, - ——
Positional o A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 4.2.3: Transformer Architecture [119]

The GPT (Generative Pretrained Transformer) and Llama series some of the most prominent examples
of pretrained decoders, where the model is pretrained on large corpora using an autoregressive language
modeling objective—predicting the next word based on the previous ones. In this thesis, we will primarily
focus on this category of models for the experiments and evaluations discussed in later chapters, particularly
for tasks involving reasoning, lateral thinking and puzzle solving.

Pretrained Encoders (Autoencoding Models)

In autoencoding models like BERT [24], the model is trained to reconstruct missing or masked words in a
sentence by attending to the context from both directions. These models operate as pretrained encoders,
where the primary task is to encode the input text into rich, bidirectional representations by leveraging
self-attention across all tokens in the input.

Autoencoding models are ideal for tasks requiring a deep understanding of the input text, such as text
classification, sentiment analysis, and question answering. They are particularly strong in tasks where the
full context (i.e. both the left and right sides of a word) is necessary for understanding the input.

While they excel in understanding, these models are not designed for generating coherent text, as they focus
primarily on encoding rather than decoding.

BERT (Bidirectional Encoder Representations from Transformers) is a classic pretrained encoder model.
During pretraining, BERT uses a masked language modeling (MLM) objective, where random words in a
sentence are masked, and the model is trained to predict the masked words based on surrounding context.

55

Chapter 4. Large Language Models (LLMs)

Pretrained Encoder-Decoders (Sequence-to-Sequence Models)

Sequence-to-sequence models like T5 [102] and BART [65] leverage both encoder and decoder networks to
handle tasks that require mapping an input sequence to an output sequence. In these models, the encoder
processes the input sequence and generates an intermediate representation, which the decoder then uses to
generate the output sequence. These models operate as pretrained encoder-decoders, allowing for bidirectional
encoding of the input and unidirectional decoding of the output.

Pretrained encoder-decoder models are very flexible and excel in tasks like translation, summarization, and
text-to-text transformations. They are well-suited for tasks that require generating an output sequence from
an input sequence, such as converting a question to an answer, summarizing a long document, or translating
text between languages.

Due to their complexity (involving both encoding and decoding), they require more computational resources
compared to pretrained encoders or decoders alone.

T5 (Text-to-Text Transfer Transformer) is a versatile pretrained encoder-decoder model, where all NLP
tasks are framed as text-to-text problems. For instance, the task of translation would involve taking an
English sentence as input and generating a French sentence as output. BART (Bidirectional and Auto-
Regressive Transformers) is another example of a pretrained encoder-decoder that uses bidirectional encoding
and autoregressive decoding, making it effective for text generation and summarization.

4.3 Prompting

A prompt functions as the input for a generative Al system, outlining the specific task or objective that the
system is expected to execute. The prompt guides the model’s behavior by framing the context, ensuring
that the AT understands what is required of it. Prompting refers to the process by which users interact with
Large Language Models, providing them with specific instructions or input formats to elicit desired outputs.
This approach offers a significant advantage over traditional methods, such as fine-tuning or retraining, as it
allows users to customize model behavior without modifying the model’s underlying parameters. Instead of
the time-consuming process of retraining a model on task-specific data, a well-crafted prompt can guide the
model toward the correct outcome using its pre-existing knowledge.

One of the primary advantages of prompting is its efficiency. Since no additional training or fine-tuning is
required, prompting can yield immediate results with minimal computational resources. This makes it highly
effective for cases where users need to adapt models to new tasks quickly. Moreover, prompting is flexible
and task-agnostic; with the right input, LLMs can be directed to perform a wide variety of tasks, including
text generation, reasoning, question answering, and problem-solving, without requiring task-specific models.
This flexibility contrasts with traditional approaches where separate models might be needed for different
tasks, each requiring specialized training.

However, prompting also comes with certain limitations. While it is a powerful way to harness the capabil-
ities of LLMs, it relies heavily on the model’s pre-existing knowledge, which can be incomplete or biased.
Additionally, crafting an effective prompt can be challenging, as slight changes in wording or format can
dramatically impact the model’s performance. In some cases, the model may misinterpret vague or poorly-
structured prompts, leading to suboptimal outputs. This sensitivity requires expertise in prompt engineering,
the process of designing and refining prompts to achieve the best possible results. In contrast, fine-tuned
models are more directly optimized for specific tasks and can sometimes provide more accurate and reliable
results.

The success of prompting depends on several factors, such as how well the prompt aligns with the model’s
training, the clarity of the instructions, and whether relevant examples are provided. Despite its limitations,
prompting remains a highly efficient and scalable method for leveraging the capabilities of LLMs. This
section explores some basic prompt categories and techniques used to optimize LLM performance in general,
involving several tasks in NLP and multimodal learning [115, 58, 57, 93, 3]. This section explores various
prompt categories and techniques used to optimize LLM performance, while a more in-depth analysis of how
prompting is applied specifically for reasoning and puzzle-solving tasks will be presented in a later chapter.

56

4.3. Prompting

Left-to-Right LM
Masked LM

Prefix LM

Encoder-Decoder

GPT [105]; GPT-2 [106]; GPT-3 [10]
BERT [21]; RoBERTa [50]
UnilM1 [23]; UniLMz [5]

107]; MASS [130]: BART [70]

Pre-trained
LMs (Appendix)

Prompt

Template — LAMA [101]; TemplateNER [15]
Engineering o
Section 3 | — Prefix-Tuning [72]; PromptTuning [65]

Hand crafted J— LAMA [101]; GPT-3 [10]
Automated } Discrete AutoPrompt [126]; LM-BFF [33]
Prefix Tuning [72]

; - (Frompt Token }— LAMA [101]; WARP [41]
Prompting | | r oy ET-GLUE [121]: X-FACTR [51]
Method Answer Shape Span |— PET-GLUE [121]; X-FACTR [51]

Engineerin ; . -
5 € [Sentence }— GPT-3 [10; Prefix-Tuning [72]

Human Effort

Section 4

M‘—[M PET-GLUE [121]
[Automated)—E Discrete — LM-BFF [33]
{_ Continuous — WARP [11]
Prompt Ensemble — LPAQA [53]; PET-TC [118]; BARTScore [149)
Prompt Augmentation — GPT-3 [10]; KATE [75); LM-BFF [33]
L u::};\’;’g:(“"};'" s Prompt Composition — PTR [42]
Prompt Decompasition — TemplateNER [18]
Prompt Sharing — Example Figure 3

(Promptless Fine-tuning]7 BERT [21]; RoBERTa [80]

[Tuning free Prompting |— GPT-3 [10); BARTScore [149]

Fixed-LM Prompt Tuning — Prefix-Tuning [72]

[Prompt-based Training = :
Strategies Section & e s

Fixed-prompt LM Tuning — T5 [107]; PET-TC [121]
[Prompt+LM Tuning |— P-Tuning [78]; PTR [42]

Figure 4.3.1: Prompting Typology [71]

4.3.1 Prompt Categories

Liu et al. (2021) [71] categorize prompting methods as shown in the Figure 4.3.1. However, for now we will
follow a categorization based on their structure and intent, with different types of prompts serving different
purposes depending on the task. The following categories provide an overview of how prompting can be
applied to guide LLMs:

Zero-Shot Prompting

In zero-shot prompting, the model is asked to perform a task without any specific examples being provided.
This approach tests the model’s ability to generalize based on its pre-trained knowledge. Zero-shot prompting
is useful for tasks where users want to gauge the model’s general knowledge or its ability to handle new tasks
without prior examples. For instance, in puzzle-solving, the model might be asked to solve a riddle or logic
problem without any prior context or examples, like the following:

Solve the puzzle: What has many keys but can’t open locks?

Translate English to French: task description

cheese => prompt

Figure 4.3.2: Zero-shot prompting [10]

Few-Shot Prompting

Few-shot prompting [10] enhances the model’s ability to perform a task by providing it with a few examples
of how the task should be done. When only one example is provided then the prompting is called one-shot.
The model uses these examples as a guide for generating responses to new inputs. In puzzle-solving, this
might involve showing the model how to solve a few similar puzzles before asking it to solve a new one, like
the following examples:

Example 1:
Puzzle: What has keys but can’t open locks?
Answer: A piano.

o7

Chapter 4. Large Language Models (LLMs)

Example 2:
Puzzle: What can travel around the world while staying in the same corner?
Answer: A stamp.

Now solve the following:
Puzzle: What has many needles but doesn’t sew?
Answer:

Translate English to French: task description
sea otter => loutre de mer examples

Translate English to French: task description peppermint => menthe poivrée
sea otter => loutre de mer example plush girafe => girafe peluche

cheese => prompt cheese => prompt

(a) One-shot prompting [10] (b) Few-shot prompting [10]

4.3.2 Prompting Techniques

Several techniques have been developed to optimize prompting for specific tasks. These techniques guide
the model in performing more complex operations, including reasoning, problem-solving, and step-by-step
thinking. Below are some commonly used techniques:

Chain-of-Thought (CoT)

Chain-of-Thought (CoT) [53, 127] prompting is a technique that encourages the model to break down its
reasoning process into individual steps before arriving at a final answer. This approach is particularly effective
in puzzle-solving tasks, where reasoning is crucial. By guiding the model to outline each step, CoT improves
both the accuracy and clarity of the model’s response.

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

J

20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The

.Kanswer is9. o J

Model Output
A: The answer is 27. x) A: The cafeteria had 23 apples originally. They used

Figure 4.3.4: Chain-of-thought [127]

Self-Consistency CoT

Self-Consistency CoT (SC-CoT) [124] is a variation of Chain-of-Thought prompting that generates multiple
reasoning paths and selects the most consistent outcome. This technique leverages the model’s ability to
propose multiple solutions, compare them, and then choose the one that appears most reliable based on
patterns of consistency across reasoning chains. This method has been shown to improve the reliability
and accuracy of LLM outputs, particularly in tasks requiring complex reasoning, such as puzzle-solving and
multi-step logic tasks.

58

4.3.

Prompting

Chain-of-thought
prompting

Self-consistency

Q: if there are 3 cars in the parking
lot and 2 more cars arrive, how many
cars are in the parking lot?

A: There are 3 cars in the parking lot
already. 2 more arrive. Now there are
3+2 =5cars. The answer is 5.

Q: Janet's ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.
She sells the remainder for $2 per egg, so in
total she sells 7 * $2 = $14 per day.

The answer is $14.

Language
model

Marginalize out reasoning paths
to aggregate final answers

Sample a diverse set of
reasoning paths ’

She has 16 -3 - 4= 9 eggs I
left. So she makes $2*9 = | The answeris $18.
$18 per day. 1

|
This means she she sells the
remainder for $2 * (16 - 4 - 3). The answer is $26.
= $26 per day. 1
Language }
model She eats 3 for breakfast, so |
she has 16 - 3 = 13 left. Then |

the remaincler for $2 per egg. How
much does she make every day?

A

she bakes muffins, so she 1 The answer is $18.
has 13 - 4 = 9 eggs left. So
_she has 9 eggs * §2 = §18. |

Figure 4.3.5: Self-Consistency CoT [124]

Program-of-Thoughts (PoT)

Program-of-Thoughts (PoT) [16] prompting involves guiding the model to approach a problem in a systematic,
rule-based way, similar to writing a program or algorithm. This method is particularly effective in puzzle-
solving tasks that involve logical sequences or structured reasoning.

}Assuming the first two numbers are 0 and 1, what is the 50th number in Fibonacci sequence? 1

[The first number is 0, the second number is 1, therefore, the
third number is 0+1=1. The fourth number is 1+1=2. The fifth
\number is 1+2=3. The sixth number is 2+3=5. The seventh
Inumber is 3+5=8. The eighth number is 5+8=13.

I..... (Skip 1000 tokens)

The 50th number is 32,432,268,459.

| CoT |

&
\ X

32,432,268,459

| [length_of_fibonacci_sequence = 50
fibonacci_sequence = np.zeros(length_of_)
fibonacci_sequence[0] = 0

| [fibonacci_sequence[1] = 1

For i in range(3, length_of_fibonacci_sequence):
fibonacci_sequenceli] = fibonacci_sequenceli-1] +
fibonacci_sequenceli-2]

ans = fibonacci_sequence[-1] PoT

& python J

12,586,269,025 I

Question: Ketty saves 20000 dollars to the bank. After three years, the sum with compound interest rate is 1000 dollars more
than the sum with simple interest rate. What is the interest rate of the bank?

|Assuming the interest rate is x. The sum after two years with
isimple interest rate is 20000 + x * 20000 * 3 = 20000 +
jGOOOOx. The sum after two years with compoud interest rate
is 20000 * (1 +x) ~ 3 = 200000 + 60000 * x + 60000x"2 +
120000%x~3. The difference can be written as 60000x/2 +
120000x/3 = 1000. In order to solve x, we can use the
|quadratic formula. x = (-b +- sqrt(b”2 - 4ac)) / 2a, ..., x =
3(—20000 +- 6160) / 120000, x = -0.051333. CoT

1

-0.051333

X

interest_rate = Symbol(‘x’)
sum_in_two_years_with_simple_interest= 20000 +
interest_rate * 20000 * 3
sum_in_two_years_with_compound_interest = 20000 * (1 +

interest_rate)**3
| |# Since compound interest is 1000 more than simple interest.

ans = solve(sum_after_in_yeras_with_compound_interest -

| 'sum_after_two_years_in_compound_interest - 1000,
| interest_rate)

PoT |

python i@' ﬁ

SymPy M
x =0.24814

| 4

Figure 4.3.6: Program-of-thoughts [16]

Prompt Tuning

Prompt Tuning [63] is an advanced technique that allows models to adapt to specific tasks by learning "soft
prompts." Unlike traditional discrete prompts where users input natural language text (as in GPT-3), soft
prompts are learned through backpropagation and fine-tuned on a small task-specific dataset. This allows
the model to adapt more precisely to a task without updating the model’s internal parameters, maintaining
efficiency. The main benefit of prompt tuning is that it stores small task-specific prompts for each task,
enabling mixed-task inference using the same pre-trained model.

In the context of puzzle-solving, prompt tuning can be especially useful in adapting LLMs to domain-specific
reasoning challenges. For example, if the task involves solving complex logical or mathematical puzzles, the
model can learn specific patterns or clues from a limited number of labeled examples and apply them across

various puzzle types without needing full fine-tuning.

59

Chapter 4. Large Language Models (LLMs)

Pre-trained

Model Tuning Model Prompt Tuning
(11B params) 3
—) | Mixed-task

Task A Task A Model | Batch

Batch (11B params) | - AT a7
C| ol Pre-trained
B| bl [— Model
Al a2
22 (11B params)

(Y | (20K params each)
Task C Model |
(11B params)

Task C
Batch

al
b1 (\
Task B Task B Model
Batch (11B params) ;
— | Task Prompts
c2

Figure 4.3.7: Model Tuning vs Prompt Tuning [63]

Efficient Multitask Serving
Strong Task Performance A

A ‘
/ N

Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning”) (Ours) (e.g. GPT-3)
Y
Pre-trained Model Pre-trained Model
& Tunable & # Frozen #

Pre-trained Model
Frozen

[(TTTTT]

— —
Input Text Tunable Soft Input Text Engineered Input Text
Prompt Prompt

Figure 4.3.8: Prompt Tuning [63]

4.4 LLMs and Reasoning

Large Language Models have shown remarkable capabilities in understanding and generating text across a
wide range of tasks. However, reasoning, which requires applying logic, inference, and step-by-step thinking,
remains a significant challenge for these models. The field of reasoning with LLMs explores how these models
can be optimized to solve tasks that involve complex cognitive processes, such as puzzles, multi-step logic
problems, and abstract reasoning. In this section, we will explore the state of reasoning in LLMs, current
limitations, and various strategies to enhance their reasoning capabilities.

While prompting techniques, such as Chain-of-Thought, can enhance a model’s performance on reasoning
tasks, as discussed in the previous section, LLMs still struggle with multi-step reasoning and logical inference,
especially when presented with out-of-distribution (OOD) tasks. Recent research [130, 4| suggests that more
robust reasoning frameworks are needed to improve LLM performance on such tasks.

4.4.1 Categories of Reasoning with LLMs

Based on the work of Qiao et al. (2022) [98] reasoning methods are divided into two main categories: Strategy
Enhanced Reasoning and Knowledge Enhanced Reasoning. These methods represent different approaches to
prompting LLMs to improve their reasoning performance.

Strategy Enhanced Reasoning

Strategy enhanced reasoning focuses on the process by which LLMs can be guided to perform logical reasoning
more effectively. These methods use external engines or systematic frameworks to guide the reasoning process.
Besides prompt engineering, which been discussed earlier, some key strategies include:

60

4.4. LLMs and Reasoning

Taxonormy
of Methods
(§3

Taxonorny
of Tasks

(§5)

Reasoning with Language Model Pmmpting]

Contrastive (Paranjape et al., 2021), POTTER (Rajagopal et al., 2021), CoT (Wei et al.. 2022b)
e ZeroCoT (Kojima et al., 2022), Complexity (Fu et al., 2023b), Mulilingual (Shi et al., 2022),
smgle-Stage Aute-CoT (Zhang et al., 2023h), Table (Chen, 2022), AlgoPrompt (Zhou et al., 2022a),
Active-Prompt (Diao et al.. 2023), Automate-CoT (Shum et al., 2023)

Prompt Engineering
($3.1.1)
iCAP (Wang et al., ’()IZa) Sl (Creswell et al., 2022), Least-to-Most (Zhou et al., 2023),
e MAIEUTIC (Jung et al,, 2022), Faithful (Creswell and Shanahan, 2022), Decompose,
H{Muli Suge H hor e, i (Pt sive (Dua et al, 2022), LM

(Zhang et al., . LAMBADA (Kazemi 2), lter-Decomp (Reppent et al ’0’3)

= Self-Optimization HCaIihmmr (Ye and Durrett, 2022), Human-Al (Wiegreffe et al., 2022)

Strategy Enhanced
[Reasoning (§3.1)

Process Optimization| |_I'gneemble-Optimization
(§3.12)

Self-C (Wang et al., 2022¢), DIVERSE (Li et al., 2022), Complexity (Fu et al., 2023b),
Sclf-V (Weng ct al., 2022), MCR (Yoran et al., 2023)

e
Knowled;

¢ Enhanced|

terative-Optimization STaR (Zelikman et al., 2022), LMSI (Huang et al., 2022),
ive-Oplimizatio Reflexion (Shinn et al, 2023), Self-Refine (Madaan ¢t al., 2023), REFINER (Paul et al., 2023)

—{Physical Simulator Hm.mx Eye (Liu et al., 2023)
N

COCOGEN (Madaan et al., 2022), PAL (Gao et al., 2022), PoT (Chen et al., 2022h).
{— Code Interpreter Faithful-CoT (Lyu et al., 2023), Versa-Decomp (Ye et al., 2023), SynPrompt
(Shao et al., 2023), MathPrompter (Imani et al., 2023)

L{"lool Leaming Hlmlrommmtmkum 2023), ART (Paranjape et al., 2023), Chameleon (Lu et al., 2023a)

p
GenKnow (Liu et al., 2022¢), RAINIER (Liu et al., 2022b), MT-CoT (Li et al, 2022h), PINTO (Wang et al., 2023), TSGP
(Sun et al,, 2022), DecompDistill (Shridhar et al., 2022), Teaching (Magister et al,, 2022), Fine-tune-CoT (Ho et al., 2022),
Specializing (Fu et al., 2023a)

Implicit Knowledge
($3.2.1)

| Reasoning (§3.2)

(§3. RR (He et al., 2023)
L

F— CoT (Wei ct al., 2022b), Sclf-C (Wang ct al., 2022c), Least-lo-Most (Zhou <t al., 2023), ZeroCoT (Kojima ct al., 2022), Auto-CoT
[Arthmene (Zhang et al., 2023b), LMSI (Huang ct al., 2022), PAL (Gao et al., 2022), PoT (Chen ct al,, 2022b), Finc-tune-CoT (Ho ct al., 2022)

Commonsense CoT (Wei et al., 2022b), GenKnow (Liu et al., 2022¢), Self-C (Wang et al,, 2022¢), Calibrator (Ye and Durrett, 2022), ZeroCoT (Kojima et al., 2022),
ommonse Auto-CoT (Zhang et al., 2023b), COCOGEN (Madaan et al., 2022), LMSI (Huang et al.. 2022), PINTO (Wang ¢t al., 2023), RR (He et al., 2003)

{1 ogical
{Logi

Hleh[ul (Creswell and Shanahan, 2022), LMLP (Zhang et al., 2022), Self-V (Weng et al,, 2022), LAMBADA (Kazemi et al., 2022)

I Symbolic
N

H(Zo’l (Wei et al., 2022b), Self-C (Wang et al., 2022¢), Least-to-Most (Zhou et al., 2023), ZeroCoT (Kojima et al., 2022), PAL (Gao et al., 2022)

I:\pln.ll Knowledge LogicSolver (Yang et al., 2022b), Yote-k (SU et al., 2023), PROMPTPG (Lu et al., 2023b), IRCoT (Trivedi et al., 2022), J
2)

P
L Multimodal F—{MarT (Zhang et al., 2023a), Multimodal-CoT (Zhang et al,, 2023¢), KOSMOS-1 (Huang et al, 2023), Visual-ChatGPT (Wu et al, 2023)

Figure 4.4.1: Taxonomy of Reasoning with Language Model Prompting [98]

External Engines: External engines serve as auxiliary tools that aid in the reasoning process. They

can function as:

e Prompt Producers: An example is a physical simulator used to generate structured prompts based
on the context.

e Reasoning Ezecutors:
solving, as seen with code interpreters, which solve mathematical problems by executing code-like
reasoning steps.

Here, external engines help carry out the actual reasoning or problem-

e Tool Extenders: External tools or engines, such as calculators, spreadsheets, or database queries,
can extend the model’s abilities, improving reasoning and providing more accurate results.

Simulator

Cl Roger has 5 tennis balls. He buys =\ Q -
2 more cans of tennis balls. Each can .

has 3 tennis balls. How many tennis

\balls does he have now?

™ Tools

_;u

4

Figure 4.4.2: External Engines for Reasoning enhancement [98]

Process Optimization: This approach refers to optimizing the reasoning process within the LLM
itself. Techniques like Self-Consistency CoT, where multiple reasoning paths are explored and compared
to identify the most consistent one, fall into this category. These methods aim to improve the internal
logic and coherence of the model’s reasoning process, as demonstrated in puzzle-solving tasks. This
is further elaborated in Creswell et al. (2022) [22], where the Selection-Inference (SI) framework was
proposed to tackle multi-step logical reasoning problems as shown in Figure 4.4.3. By alternating
between selection and inference, this framework leverages LLMs as processing modules, leading to
interpretable reasoning steps that enhance the trustworthiness of the system.

61

Chapter 4. Large Language Models (LLMs)

crmy s e oy e = o — — — — —

(@)]'genmae sashesp N (b) I—;emnde 52 shasp] () r;mm isa sheep [
[@:whatis gertrude afraid of?] | 0z what is gertrude afraid of? | [[: whatis gerirude afraid of?]
[hwaes] chesp o it afwotves, shasp aro ool of mohes, and

gertrude is a sheep, therefare

ot genude is a sheep, therefore

the answier is wolves

wolves are afraid of mice
sheep are affaid of wolves eshot
emiy is a wolf

gertrude is a sh

eop

sheep are afraid of wolves, and
gertrude is a sheep, therefore

Q what s emily siraid of7

emilyis awol
gertrude is a sheep

| gerinde s
Q: what is emily afraid of?
(amee] Kahot
wiolves are affaid of mice, and emily wolves are affaid of mice, and emily

l:l Context l:l i is & woll, therefore s 2 wolf, therefore.

vialves are afraid of mice, and emily

is a walf, therefora inference
L

emil is afraid of mica

Figure 4.4.3: Vanilla baseline (a) vs CoT (b) vs Selection-Inference (c¢) [22]

Knowledge Enhanced Reasoning:

Knowledge enhanced reasoning involves augmenting the LLM’s reasoning capabilities by providing additional
knowledge, either implicitly or explicitly. This can be achieved through:

1. Implicit Knowledge: In this case, the prompts are generated from the model’s own internal knowl-
edge. These prompts do not rely on external sources but rather leverage what the model has learned
during pre-training. This method is often less reliable for domain-specific reasoning but is useful for
general reasoning tasks, such as commonsense reasoning.

2. Explicit Reasoning: Prompts are retrieved or generated from external corpora or databases to guide
the model’s reasoning process. This approach is more suitable for complex tasks requiring domain-
specific knowledge. Explicitly guiding the LLM with external information can significantly improve
reasoning accuracy, as seen in symbolic reasoning and mathematical problem-solving.

¥ Prompt

]
-
.

Roger started with 5 balls.
2 cans of 3 tennis balls
each is 6 tennis balls. 5 +
6 =11. The answer is 11.

Q: Roger has 5 tennis balls.
He buys 2 more cans of tennis LM —
balls. Each can has 3 tennis
balls. How many tennis balls
Corpus 'does he have now?

LM

../:

Figure 4.4.4: Knowledge Enhanced Reasoning [9§]

4.4.2 Emergent Abilities of LLMs

An interesting phenomenon in LLMs is the concept of emergent abilities, a term that refers to capabilities
that only appear when models reach a certain scale [126]. These abilities, such as advanced multi-step
reasoning or program synthesis, are not predictable from the performance of smaller models. Instead, they
emerge abruptly as the number of parameters increases, implying that LLMs may acquire complex reasoning
abilities as a direct result of scale rather than fine-tuning or prompt engineering alone.

This phenomenon directly impacts the use of LLMs in reasoning tasks, as seen in models like GPT-3 and
Gopher, where scaling up to billions of parameters resulted in improvements not only in text generation but
also in complex logical inferences and puzzle-solving abilities. These emergent abilities highlight that scaling
is a crucial factor in determining how well LLMs can perform on tasks that require deep logical reasoning.

In this thesis, we focus on models, which, although not as large as models that typically exhibit emergent
abilities, are still substantial in size and capable of impressive reasoning tasks. A key objective of this
work is to explore whether innovative prompting methods can enable these smaller yet powerful models to
exhibit reasoning abilities that are usually associated with much larger models. This approach opens up the
possibility of achieving similar emergent capabilities through efficient prompting, providing a more accessible
and resource-effective alternative to scaling model size alone.

62

4.4. LLMs and Reasoning

4.4.3 Challenges in Logical Reasoning with LLMs

Although LLMs have demonstrated the ability to perform well on tasks that require basic reasoning, multi-
step logical reasoning remains a key challenge. Studies such as the one of Bao et al. (2023) [5] highlight these
limitations. When LLMs encounter out-of-distribution (OOD) logical reasoning tasks—tasks that differ from
those seen during training—their performance drops significantly. This occurs because models often fail to
generalize beyond the patterns they have learned in their pre-training.

Furthermore, as discussed in Saparov et al. (2023) [105], LLMs struggle to handle more complex proofs in
deductive reasoning when tested on a wide set of deduction rules, especially when the models are expected
to generalize to proofs of greater complexity. This is particularly relevant in multi-step puzzle-solving tasks,
where multiple logical steps must be chained together.

Out-of-Distribution Reasoning Challenges include:

e Generalization to novel reasoning tasks: LLMs tend to perform well on tasks they have been trained
on, but when confronted with new logical structures or unfamiliar puzzle formats, their performance
decreases.

e Handling longer reasoning chains: The ability to consistently generate and track multiple reasoning
steps is one of the core difficulties for LLMs. This limits their performance on tasks that require depth
in reasoning, such as the more complex types of puzzles and logical deductions.

In order to confront the above limitations Bao et al. (2023) [5] have proposed data augmentation techniques
that perturb the training set, such as reshuffling options or replacing correct choices with alternative options,
can improve the model’s ability to generalize to new logical reasoning tasks. These techniques, when combined
with fine-tuning and prompting, can lead to better OOD performance.

4.4.4 Comparison to Human Reasoning

Human reasoning and LLM-based reasoning differ significantly in key aspects such as flexibility, multi-step
deduction, and the ability to manage uncertainty. Human reasoning is highly adaptable, allowing individuals
to solve novel problems, infer missing information, and apply logical thinking to unfamiliar scenarios. In
contrast, LLMs rely heavily on recognizing patterns from their training data. As presented, LLMs often
struggle when confronted with out-of-distribution tasks that deviate from their learned examples, while
humans can use intuition and past experience to address such challenges.

Another important distinction is in multi-step reasoning, where humans naturally excel at chaining together
logical steps to reach conclusions. In complex puzzle-solving tasks, humans intuitively track and adjust their
reasoning across multiple steps, something LLMs frequently struggle with. While LLMs can perform well on
individual steps, their ability to integrate and execute multi-step logical deductions remains limited.

Additionally, humans are skilled at reasoning under uncertainty, adjusting their thinking when faced with
ambiguity or incomplete information. LLMs, however, often exhibit confidence in their outputs, even when
those outputs are based on incomplete or faulty logic, leading to issues like hallucinations, which are plausible
yet inaccurate responses.

63

Chapter 4. Large Language Models (LLMs)

64

Chapter 5

Puzzle Solving and LLMs

This chapter presents an extensive exploration of puzzle-solving capabilities in Large Language Models
(LLMs), expanding on the condensed work presented in our survey paper Puzzle Solving using Large Lan-
guage Models: A Survey (Giadikiaroglou et al., 2024) [38]. We will provide an analytical and comprehensive
discussion of puzzle types, methods, datasets, and benchmarks used in evaluating LLM reasoning within this
domain.

Our work is rooted in the categorization of puzzles based on their structural differences and the cognitive
skills they demand. Specifically, we introduce a clear distinction between rule-based puzzles and rule-less
puzzles—a differentiation that reflects the varied knowledge demands required to tackle them effectively.
This categorization is crucial for understanding how LLMs engage with different types of challenges and the
reasoning methods that are most effective for each.

Furthermore, this chapter delves into the methodologies LLMs use to solve these puzzles, evaluating the
effectiveness of different approaches such as prompting techniques, puzzle translation and fine-tuning. We
also compare these methods with traditional problem-solving techniques, highlighting the strengths and
limitations of both approaches in terms of cognitive processing and task efficiency.

In addition to methods, we provide a detailed overview of the datasets, benchmarks, and tasks that are
commonly used to evaluate LLMs’ reasoning abilities in the context of puzzle-solving. Understanding these
benchmarks is essential for measuring performance and for identifying the gaps in current methodologies that
might hinder further advancement in this area.

While LLMs have shown remarkable progress in handling certain reasoning tasks, they still face considerable
challenges, like hallucinations [39, 46|, particularly when dealing with more complex or abstract puzzles.
These obstacles point to significant opportunities for future research. By focusing on these unsolved chal-
lenges, we aim to contribute to the development of more robust LLMs capable of tackling intricate reasoning

1 SHOOT BUT
NEVER KILL.
WHAT AM 1?
A. LIFE

B. CAMERA

C. RECORD

D. BOMB

E. TAKE LIFE

Figure 5.0.1: Riddle from RiddleSense [68]. GPT-4, LLaMA2-70B and Bard chose the right answer.

65

Chapter 5. Puzzle Solving and LLMs

tasks with higher accuracy and consistency.
In this chapter, we explore the following key areas:

1. Categorization of Puzzle Problems: We introduce the distinction between rule-based and rule-less
puzzles, illustrating how these categories require different problem-solving approaches.

2. Methods and Strategies: We analyze how LLMs tackle puzzles through various methods, such
as prompting topologies and fine-tuning, and assess the effectiveness of each strategy across different
puzzle types.

3. Datasets, Benchmarks, and Tasks: We present a comprehensive overview of the current bench-
marks used to evaluate LLM reasoning and puzzle-solving performance.

4. Comparison with Conventional Methods: Finally, we compare LLM-based problem-solving ap-
proaches with conventional techniques, highlighting the advantages and limitations of each.

Our categorization diverges from existing logical reasoning taxonomies by emphasizing on the underlying
cognitive processes and the skills required for puzzle solving, rather than the question format [76] or the nature
of reasoning (deductive, inductive, abductive) [76, 135, 133, 98, 45, 32|. For instance, the existence of rules in
puzzles such as Sudoku, Crosswords, or Minesweeper necessitates additional skills (e.g. strategy development)
to correctly understand the game’s rules or the ability to correctly format the output. In contrast, rule-
less puzzles, such as riddles (Figure 5.0.1), programming challenges, and commonsense reasoning problems,
leverage the model’s inherent knowledge for solution derivation.

In our work, we define puzzles as problems that test cognitive abilities including logical reasoning, spatial
cognition, and creative thinking by requiring the solver to discern patterns, apply deduction, and combine
insights from available information in order to arrive at the correct solution. Additionally, puzzles that cannot
be expressed through textual means—such as jigsaw puzzles [80] or those requiring multimodal understanding
[37]—are excluded from our analysis, as are mathematical puzzles, which have been extensively covered in
the recent work of Liu et al. (2023) [72].

The following sections will provide an in-depth analysis of each of these topics, giving a clearer understanding
of the current state of puzzle-solving with LLMs and the potential future developments in this exciting field
of research.

Contents
5.1 Categorization of Puzzle Problems 0000 ... 67
5.1.1 Rule-based Puzzles e 68
5.1.2 Rule-less Puzzles e 69
5.2 Methods and Strategies. L o Lo e e 70
5.2.1 Prompting Methods 71
5.2.2 Puzzle Translation L 75
5.2.3 Fine-Tuning L e 7
5.2.4 Conventional Methods 78
5.3 Datasets, Benchmarks and Tasks 79
5.3.1 Rule-Based Puzzles. e 80
5.3.2 Rule-less Puzzles e 83
5.4 Literature Review Discussion i it i i it v v 87
5.4.1 Applied Methods and Dataset Gaps, 87
5.4.2 Performance Analysis 88
5.4.3 Puzzle Generation e 88

66

5.1. Categorization of Puzzle Problems

5.1 Categorization of Puzzle Problems

Understanding and assessing the reasoning capabilities of LLMs requires a systematic approach to classifying
the types of puzzles they encounter. Puzzles, by their very nature, test a range of cognitive abilities, from
logical deduction and strategic foresight to more abstract inferential reasoning. Therefore, categorizing these
puzzles into distinct groups allows us to evaluate how LLMs engage with different cognitive challenges.

In this work, we distinguish puzzles based on their reliance on either formal rules or broader world knowledge
combined with general inferential skills. This categorization, as illustrated in Figure 5.1.1, is crucial in
highlighting the cognitive diversity inherent in puzzle-solving and the varied skill sets required to tackle them
effectively. For instance, rule-based puzzles operate within clearly defined systems, often relying on logical
deduction, strategic planning, and the strict application of formal rules. These puzzles demand the solver to
operate within a closed environment, where the parameters and constraints are explicit, and the goal is to
manipulate these rules to find the solution.

On the other hand, rule-less puzzles do not adhere to a strict set of rules but rather rely on a broader
understanding of the world, practical knowledge, and inferential reasoning. These puzzles often pose open-
ended problems that require LLMs to interpret a scenario, identify relevant clues, and synthesize information
from their training data to arrive at a solution. This demands the model to go beyond the mere application
of formal rules and instead engage in commonsense reasoning, using their learned knowledge to deduce, infer,
or hypothesize the correct solution.

BoardgameQA [51], Sudoku [87, 74, 48],
Rubik’s Cube [87, 25], Maze [87], Cross-
word [134, 104, 28, 59|, 8-puzzle [25],
Game of 24 [25, 134], Chess [48, 30]

Deterministic games: provide
all the information needed to pro-
duce an outcome from a given
starting state and set of actions
Rule-based puzzles:
provide explicit victory
conditions, legal move
sets or state transition

Minesweeper [66], BoardgameQA [51],
Card Games [44, 42], Social Deduction

Stochastic games: incorporate
randomness or hidden information,

knowledge and infer-

pets to achieve a specific goal

" rules that the model resulting in different outcomes Games [121, 131, 60]
-g must follow to solve the
o 1 .
puzzle .
Riddion e ordbor it 1), i 7
8_ requilr)ing abstract connections anci Sl IR, (IRl 1], 110
.;: lateral thinking ZLEQA [142], MARB [116]
N
E‘ Rule-less puzzles:
rely more on flexible Programming puzzles: involve
thinking, real-world —— analyzing or modifying code snip- P3 [107], [106]

ential reasoning

Commonsense reasoning puz-
zles: require understanding real-
world situations and making infer-
ences based on implicit knowledge

LatEval [47], True Detective [23], De-
tectBench [40], MARB [116]

Figure 5.1.1: A taxonomy of Puzzle Categories with the corresponding Datasets.

This division between rule-based and rule-less puzzles represents a significant shift in how we categorize
reasoning challenges. Traditional logical reasoning taxonomies, such as those focusing on question formats or
modes of reasoning (deductive, inductive, abductive), tend to emphasize the form of the puzzle or question
rather than the underlying cognitive processes involved in solving it. By contrast, our approach categorizes

67

Chapter 5. Puzzle Solving and LLMs

puzzles by the skills required to solve them, offering a more cognitive-centric perspective on the reasoning
challenges posed by different puzzles. This shift allows for a more nuanced analysis of how LLMs perform
across a spectrum of reasoning tasks and highlights the areas where they excel or struggle.

In the following sections, we will delve deeper into these two broad categories, examining how LLMs approach
each type of puzzle, the specific reasoning challenges they present, and the methods that have been developed
to optimize LLM performance in solving these diverse puzzle types. By doing so, we aim to provide a
comprehensive understanding of how LLMs engage with and solve puzzles, and what this reveals about their
broader reasoning capabilities.

5.1.1 Rule-based Puzzles

Rule-based puzzles present a structured environment where formal rules govern every aspect of the problem,
from legal actions to victory conditions. These puzzles require solvers to operate within clearly defined frame-
works, often necessitating strategic planning and logical deduction to reach a solution. The key characteristic
of rule-based puzzles is the presence of explicit state transition rules, where the outcome of a player’s action
is dictated by a fixed set of instructions. Given their structured nature, rule-based puzzles test an LLM’s
capacity for systematic reasoning and the ability to navigate within a constrained problem space.

This category can be further subdivided into two major types: deterministic puzzles, where each action leads
to a predictable and consistent outcome, and stochastic puzzles, which incorporate elements of randomness
or uncertainty. Understanding these subtypes is essential to evaluating how LLMs approach different types
of structured environments, as the reasoning skills required for each differ considerably.

Deterministic Games

Deterministic games follow a strict cause-and-effect relationship between an action and its resulting state. In
these games, given the current state and the player’s action, the next state is always the same, adhering to
the predefined rules without any randomness or ambiguity. Classic examples of deterministic puzzles include
Chess, Sudoku, maze navigation, and the Rubik’s Cube.

In Chess, for instance, moving a piece will always yield one specific, unambiguous board configuration de-
pending on the current position and the applied move. Similarly, in Sudoku, the placement of a number
in the grid follows fixed rules, leading to a unique solution if approached correctly. These puzzles require
models to engage in forward search—evaluating future states based on current actions—while learning strate-
gies that remain within the legal move set established by the rules. Success in deterministic games relies on
the model’s ability to fully understand the problem’s constraints and apply logical reasoning to explore all
possible outcomes and prune non-viable options from the search space.

Stochastic Games

In contrast, stochastic games introduce randomness or hidden information, meaning that the same player
action can lead to different probability distributions over potential next states. Unlike deterministic puzzles,
where each move results in a singular, predictable outcome, stochastic games require reasoning under uncer-
tainty. The model must plan for multiple possible future states and manage risks associated with unknown
variables.

Examples of stochastic puzzles include Minesweeper, where bomb locations are hidden, and Poker, where
opponents’ hands remain unknown. In Minesweeper, for instance, even though the rules governing cell
interactions are fixed, the hidden bomb locations add an element of uncertainty, forcing the solver to balance
logical deduction with probabilistic inference. Similarly, in Poker, a player’s decision-making hinges on
reasoning over incomplete information, as they must anticipate the possible hidden hands of opponents while
weighing the risks and rewards of various strategies.

Mastering stochastic games requires models not only to operate within the bounds of formal rules but also
to employ advanced probabilistic reasoning and risk management. LLMs attempting to solve these puzzles
need to account for uncertainty by evaluating multiple potential outcomes, assigning probabilities to different
scenarios, and selecting the action that maximizes the expected utility.

68

5.1. Categorization of Puzzle Problems

While both deterministic and stochastic games demand high levels of logical reasoning, the additional layer
of unpredictability in stochastic puzzles poses a significant challenge. Whereas deterministic environments
allow models to rely heavily on deduction and systematic forward search, stochastic settings require a blend
of deductive logic, probabilistic inference, and decision-making under uncertainty. LLMs that excel in these
environments must demonstrate a capacity for strategic foresight, risk analysis, and an ability to reason with
incomplete information.

5.1.2 Rule-less Puzzles

Unlike rule-based puzzles that follow explicit guidelines and constraints, rule-less puzzles rely heavily on real-
world knowledge, flexible thinking, and the ability to interpret vague or open-ended scenarios. These puzzles
challenge the model to infer unspoken details, draw on broader conceptual knowledge, and employ creative
reasoning to arrive at solutions. Rather than testing logical deduction within a structured environment,
rule-less puzzles measure cognitive skills such as contextual interpretation, conceptual combination, and
common-sense reasoning. The absence of formal rules or predefined moves requires LLMs to depend more
on inference and their inherent knowledge of language and the world.

These puzzles fall into several distinct categories, each testing specific reasoning skills. The following subsec-
tions discuss some key types of rule-less puzzles: riddles, programming puzzles, and commonsense reasoning
puzzles.

Riddles

Riddles are one of the most well-known forms of rule-less puzzles and are characterized by their use of clever
wordplay, metaphors, and literary devices to obscure their solutions. The challenge in solving riddles lies in
decoding the hidden meaning embedded within ambiguous or poetic language. Riddles often rely on figurative
language or lateral thinking, requiring the solver to make abstract connections between seemingly unrelated
concepts.

For example, the classic riddle, "What gets wetter the more it dries?", conceals the solution, "a towel” through
the metaphorical use of language. The trick is in understanding how the concepts of "getting wetter" and
"drying" relate, not in a literal sense, but through an interpretation of how a towel absorbs water. Solving
such puzzles tests an LLM’s capacity for fluid reasoning, conceptual blending, and linguistic abstraction—all
of which are critical for understanding and generating natural language that extends beyond basic syntactic
rules.

Riddles assess a model’s ability to move beyond conventional logic and embrace creativity and flexibility
in reasoning. The ability of LLMs to handle such tasks depends heavily on their pre-existing knowledge of
language, idioms, metaphors, and real-world phenomena, as well as their training on a wide range of textual
data. Prompt engineering can enhance the model’s ability to understand these more nuanced linguistic
relationships by encouraging exploratory thinking, allowing LLMs to decode riddles more effectively.

Programming Puzzles

Programming puzzles may initially appear to be rule-bound, but they are classified as rule-less puzzles due
to their reliance on understanding the abstract logic underlying code rather than adhering to formalized
gameplay rules. In typical rule-based puzzles, such as Chess or Sudoku, the solver follows a strict set of
predefined rules to manipulate game states toward a specific goal. In contrast, programming puzzles require
the solver to reason about abstract operations and the behavior of code, which is often open to interpretation
depending on the semantics of the programming language.

Unlike games with explicit victory conditions or state transitions, programming puzzles present code snippets
or problems that require flexible thinking to solve. The rules in programming puzzles are not explicitly
provided in the form of game mechanics but are instead embedded within the syntax and semantics of the
code itself. As such, solving these puzzles requires the model to trace through potential execution paths,
predict the behavior of the program, or identify logical errors based on its understanding of how programming
constructs operate.

69

Chapter 5. Puzzle Solving and LLMs

For instance, the following programming puzzle tests a solver’s understanding of Python’s integer division
operator:

def mystery(x):
return x // 2
print (mystery (10))

The model must predict the output based on its knowledge of Python’s // operator, which performs integer
division, yielding the result 5.

These puzzles can often be open-ended: multiple solutions may exist for a given problem, or the problem
may not have a single, defined outcome, as opposed to deterministic puzzles with strict win conditions.
The essence of programming puzzles is in debugging, modifying, and interpreting program behavior, which
requires the solver to think flexibly and creatively, much like with riddles or commonsense reasoning puzzles.

Commonsense Reasoning Puzzles

Commonsense reasoning puzzles present everyday situations where certain details are omitted, requiring the
solver to make plausible inferences based on general knowledge of the world. These puzzles challenge the
model’s ability to understand causal relationships, motivations, and unstated facts about familiar events,
testing its capacity to reason through ambiguity by applying practical knowledge.

For example, the puzzle "A man who was outside in the rain without an umbrella or hat didn’t get a single
hair on his head wet. Why?" requires the solver to deduce that the man is bald. The puzzle deliberately
withholds crucial information—namely, that the man has no hair—forcing the solver to infer this based on the
unspoken implications of the scenario. Commonsense reasoning puzzles assess the model’s ability to draw on
its real-world knowledge and interpret unstated contextual cues, rather than simply relying on formal logic.

These puzzles highlight a key area where LLMs sometimes struggle: making the leap from general knowledge
to specific inferences. While LLMs can generate text that sounds reasonable, accurately interpreting subtle
or hidden details about real-world situations requires nuanced understanding, contextual reasoning, and the
ability to "fill in the gaps." The challenge for LLMs is to determine which assumptions are valid based on
the context provided and the likely background knowledge a human would apply to the situation.

5.2 Methods and Strategies

Puzzle solving presents a unique challenge, requiring a blend of cognitive abilities such as logical reasoning,
inference-making, and abstract thinking. To tackle these challenges, a wide array of methods and strategies
have been developed, each aimed at enhancing the problem-solving capacity of LLMs, particularly in complex
and multi-step reasoning tasks.

In this section, we will explore the principal techniques employed in puzzle-solving tasks, focusing on their
effectiveness within the specific context of reasoning with LLMs. While the literature on prompt engineering,
model fine-tuning, and other techniques is vast and continues to expand rapidly [8, 13, 136, 18, 98, 71], we
concentrate on the approaches most relevant to puzzle-solving. Rather than merely cataloging all available
methods, we aim to provide an analytical review of how specific strategies can be harnessed to improve
LLM performance in this domain. Our approach will focus on the following key methodologies: Prompting
Techniques, Puzzle Translation strategies using neuro-symbolic methods, and Fine-Tuning for specialized
domains and specific puzzle types.

Each method offers distinct advantages depending on the puzzle category (rule-based or rule-less), as outlined
in earlier sections. For example, certain prompting techniques may enhance LLM reasoning in puzzles
requiring strategic foresight, while others are more suited for abstract or commonsense reasoning tasks.
Similarly, puzzle translation strategies aim to bridge the gap between human cognition and machine logic,
translating complex puzzle structures into representations that LLMs can process more effectively. Fine-
tuning, on the other hand, allows for domain-specific optimization, enabling LLMs to perform well in tasks
like programming challenges or logical deduction puzzles by refining their model parameters with specialized
datasets.

70

5.2. Methods and Strategies

We provide a detailed overview of these techniques in the sections below, discussing their application to
different puzzle categories. A comprehensive view of how these methods have been applied to specific puzzles
is summarized in Table 5.1, illustrating the diversity of approaches used across various puzzle types. Addi-
tionally, we discuss how conventional methods for puzzle-solving, predating the LLM era, approached similar
problems, and how these earlier strategies compare to current LLM-driven solutions.

Methods Rule-based Puzzles Rule-less Puzzles
Deterministic | Stochastic | Riddles | Programming | Commonsense
Prompting - - - - -
Few-shot v v v v v
Chain-of-Thought v v v v v
Self-refine v
Auto-CoT v
Complexity CoT v
Plan & Solve v
Detective Thinking v
Self-Consistency v v
Tree-of-Thoughts v
Tree-of-uncertain-Thoughts v
Inferential Exclusion Prompting v v
Graph-of-Thoughts v
Everything-of-thoughts v
Hints v v
Introduction/Summarization v v v v v
Puzzle Translation - - - - -
Logic v
Code
Fine-Tuning v v v v v

Table 5.1: Methods used by each category of our taxonomy based on the puzzle benchmarks we collected

Table 5.1 delineates the various methods leveraged for puzzle-solving based on the datasets we have collected,
illustrating the landscape of current LLM research in this domain. It particularly highlights the extensive
methods applied to rule-based deterministic and rule-less commonsense puzzles. The absence of neuro-
symbolic techniques and selection inference prompting indicates potential areas for expansion, especially
considering their prospective benefits for LLMs grounded in logical reasoning datasets. The table further
reflects the adaptability of certain methods like Chain-of-Thought, few-shot learning and fine-tuning, which
are utilized across multiple puzzle types, hinting at their effectiveness. Based on this information, we not
only catalogue the current state of method applications in puzzle-solving with LLMs but also highlight
opportunities for innovative research in areas yet to be explored.

5.2.1 Prompting Methods

Prompting methods are at the heart of enhancing the puzzle-solving capabilities of LLMs. Through prompt
design and manipulation, LLMs can be guided toward solving complex problems by structuring the input in
ways that provide intermediate reasoning steps or multiple approaches to solving a given task. As discussed
in Section §4.3, the fundamental principle behind prompting is to nudge the model’s reasoning process by
carefully selecting examples or structuring queries to facilitate better output. For puzzle solving, where
logical deduction, strategy, or flexible thinking is required, these prompting methods offer unique solutions
to both rule-based and rule-less puzzles.

The few-shot in-context learning paradigm, widely used in recent LLM applications, presents one or more
demonstrations in the prompt to show the model how to solve a task [11, 26, 144]. This method has

71

Chapter 5. Puzzle Solving and LLMs

proven particularly effective across different puzzle types, both rule-based and rule-less, as it highlights the
reasoning steps the model should emulate, significantly boosting performance without additional fine-tuning.
By providing structured demonstrations, the model can generalize from the examples within the prompt,
which is critical in solving diverse puzzle problems where the solution involves multiple reasoning steps or
different types of abstraction. Interestingly, as Panagiotopoulos et al. (2024) [92] highlighted with their
method (RISCORE), few-shot examples created with contextually reconstructed sentence-based puzzles in
conjunction with the original examples show some of the best results compared to random few-shot examples.

Recent research has expanded on this idea by introducing a variety of thought structures—complex prompting
frameworks that aim to improve puzzle-solving capabilities through strategic reasoning steps. These struc-
tures are designed to help LLMs break down complex puzzles into smaller, more manageable components.
This section follows the work of Besta et al. (2024) [8] delving into three prominent topology-based prompt-
ing strategies—chain, tree, and graph topologies—each presenting unique advantages for solving puzzles and
improving LLM performance in logical reasoning tasks.

Chain Topologies

The most notable approach in this category is Chain-of-Thought (CoT) prompting [127, 53]. CoT prompts
the model to generate intermediate reasoning steps, building a logical chain of thoughts that leads to the
final answer. CoT prompting follows two main approaches. The first involves a straightforward prompt
like "Let’s think step by step" to encourage stepwise reasoning before answering [53]. The second method
provides a series of manual demonstrations, each consisting of a question and a reasoning process that leads
to the answer [127]. The success of the second approach largely depends on carefully crafting these task-
specific demonstrations individually. This approach has been widely adopted across both rule-based and
rule-less puzzles, from simple logic puzzles to commonsense reasoning challenges. In solving puzzles, such as
Sudoku or detective-style inference problems, CoT offers a step-by-step guide to reasoning through possible
solutions. For instance, CoT has shown a considerable performance improvement over simple input-output
(I0) prompts when applied to various puzzle types, such as riddles and deterministic games like Sudoku.

Other methods expand on CoT. For example, Self-Refine [79] enhances CoT by allowing the model to
iteratively refine its reasoning steps, rethinking previous stages in light of new information. This technique
was used successfully in solving the Game of 24, a rule-based/deterministic puzzle, and showed a 13%
increase in success rate over standard CoT . Similarly, Automatic CoT [140| autonomously generates
diverse reasoning chains, particularly effective in rule-less puzzles such as detective-style problems [40].

Other variants of CoT, like Complexity CoT [33] , guide the model towards generating more intricate
reasoning steps by incorporating complex problem structures. This method has been shown to improve
performance in puzzles that require deep, multi-step reasoning by selecting more elaborate and detailed
outcomes. The Plan-and-Solve (PS) method [120] uses two prompts—one for generating an intermediate
reasoning process and the corresponding answer and another for extracting the final answer from the generated
reasoning steps.

Despite the varied approaches, none of these methods clearly outperformed CoT across all tested LLMs.

The Detective Thinking Prompt [40] builds on CoT-like approaches by asking the model to analyze
multiple clues and synthesize this information into a logical conclusion. This method is especially effective in
solving puzzles that require synthesizing disparate pieces of information, such as detective challenges. This
method has achieved the best results in this study, with a 61.6% accuracy rate using GPT-4, highlighting
that there is room for improvement.

Tree Topologies

Tree-based prompting strategies represent a more flexible and expansive method for guiding LLMs through
puzzle-solving tasks. Unlike the linear, step-by-step process in chain topologies, tree topologies enable models
to explore multiple reasoning paths in parallel, creating a structure where each possible solution can branch
off from various intermediate steps. This broader exploration allows models to traverse potential outcomes
and make decisions based on the most consistent or probable path, thus increasing the likelihood of arriving

72

5.2. Methods and Strategies

[Yao et al., May'23] [Besta et al., August'23]
https://github.com/princeton-nlp/tree-of-thought-llm https:/github.com/spcl/graph-of-thoughts
[Wei et al., [Wang et al.,) .
Jan'22] March'22] [Long, May'23] [Lei et al., August'23]

https://github.com/jieyilong/tree-of-thought-puz zle-solver
4 '
v v

Graph of Thoughts (GoT)

Tree of Thoughts (ToT)

Basic Input-
Output (10)

[}
]
.
Input Backiracking : Re hmng Input
Input Branching out fmm a chain] P
from .1 chain /]
¢ ' 0
L}
] Backtracking
Output ¥ / v ' s
! N\
]
]
\ AN
' \
Thoughts: ‘ []
Unscored * "’ ‘ :
Positive P ? : "
score ‘ H Aggregating Aggregating
e ' el thoughts
™ s Abandon a chai Output Output]
) Output e chan P (heym-d Thrscy i t Keynovelty (beyond ToT):
Dependencies Generating several M e e Output
between thoughts ey =i Selecting et ou s st et I“‘“”“Cd"““ ' transformations (aggregating
[Abandon ougey ey, Mg o chonvih | (RORI Y e \ o
ndon thought LLM thoughts independent chains the best score it further, and possibly (] loopin_g over a thought to
within a chain of thoughts backiracking b : refine it)

*, Backtrack

Figure 5.2.1: Evolution of reasoning topologies used in prompting schemes [8].

at the correct solution. Tree-based approaches have been especially impactful in rule-based puzzles, but their
utility in rule-less puzzles has shown varied results.

One of the key methods leveraging tree structures is Self-Consistency (SC), introduced by Wang et al.
(2022) [123]. Self-Consistency modifies the traditional Chain-of-Thought (CoT) prompting by generating
multiple reasoning paths for a single problem. Instead of producing one linear sequence of reasoning, SC
allows the model to generate several candidate chains and then selects the most consistent outcome across
these multiple reasoning paths. This technique has been tested extensively on rule-based/deterministic
puzzles such as the 8-puzzle, Game of 24, and Pocket Cube, as well as rule-less commonsense reasoning tasks.

In deterministic puzzles, SC has consistently shown a slight but meaningful performance gain over CoT.
For example, in the Game of 24, SC improved success rates by a small but statistically significant margin,
demonstrating the advantage of reasoning over multiple paths when dealing with complex state transitions
[134]. However, in rule-less puzzles such as commonsense reasoning challenges, SC has not demonstrated
the same level of improvement [40]. This discrepancy may arise from the inherent difference in how LLMs
handle uncertainty versus structured logic. While deterministic puzzles benefit from the precise nature of
SC, the fluid and often abstract nature of rule-less puzzles makes it harder to consistently apply this method
to improve outcomes.

The Tree-of-Thought(s) (ToT) approach, proposed by two different studies [134, 74], expands on the
idea of generating multiple reasoning paths by constructing a full decision tree of possible solutions. ToT
has been predominantly applied to rule-based/deterministic puzzles, where it has demonstrated significant
success. Each branch in the tree represents a possible decision or action the model could take, allowing it to
consider a broader range of outcomes than linear approaches like CoT. By systematically exploring multiple
branches, the model can navigate through the puzzle space more effectively.

ToT has shown remarkable performance increases over CoT. Depending on the puzzle type and the depth of
the tree, success rates have improved by as much as 26% [86] to 70% [134]. This parallel exploration, despite
the increased computational overhead due to the higher number of model invocations, yields significant
improvements in accuracy and robustness [25]. ToT’s depth control allows it to adjust how deeply the model
explores potential solutions, balancing performance with computational efficiency.

An extension of ToT, the Tree-of-Uncertain-Thought (TouT) method [86], incorporates uncertainty into
the reasoning process. While ToT assumes that the puzzle can be solved by exploring deterministic paths,
TouT allows the model to factor in ambiguity or incomplete information at each decision node. This is
particularly useful in puzzles that present incomplete or probabilistic information, such as those where the
outcome of an action is uncertain until executed, but the method is not still tested on puzzles of that category.

In comparative tests, TouT outperformed ToT on the same rule-based/deterministic puzzles, achieving a 9%

73

Chapter 5. Puzzle Solving and LLMs

higher success rate in the Game of 24 and a 3% improvement on mini-crosswords [86]. By incorporating un-
certainty into the tree structure, TouT provides a more nuanced approach to puzzles where risk management
and probabilistic reasoning are necessary. This capability makes it a more flexible option than ToT, espe-
cially in environments where not all variables are known at the outset or where multiple possible outcomes
need to be evaluated concurrently. Thus, it would be an interesting area of research to apply this method to
stochastic puzzles as well.

While the previous methods have primarily focused on deterministic puzzles, the Inference-Exclusion-
Prompting (IEP) method [116]|, demonstrates how tree-based structures can be adapted for rule-less puz-
zles. IEP employs a combination of forward and backward reasoning to approximate human logical reasoning,
where the model alternates between forward steps of reasoning and backward elimination of improbable op-
tions. This iterative process mimics human deductive logic, particularly in riddles or commonsense reasoning
tasks where multiple potential solutions must be considered and excluded until the correct one emerges.

When combined with CoT, IEP has achieved some of the best results in riddles and commonsense puzzles,
reaching an 82% success rate on puzzles (compared to 81% with zero-shot CoT) and 79% on riddles (compared
to 82% with zero-shot CoT) [116]. These results demonstrate that by leveraging tree-based reasoning and
exclusion strategies, IEP enhances the model’s ability to navigate ambiguous problem spaces and make
informed decisions based on both positive and negative evidence.

k-ary tree Tree of chains 1-Level trees Directed graphs Directed graphs Hypergraphs Thought Propagation

% &
l I Example designs:
Skeleton-of-Thought
Binary tree % ; . ;
Example designs:
Different fram eworks . Graph of Thoughts
enable using arbitrary Schemes that improved
trees, but the prevalent upon Chain-of-Thought, n
variant is a k-ary tree. ;::n" : ncnc:::‘sg't:nhcﬂyniﬂ Branch-Merge The only currently existing
) effectively harnessing tree 'rgpﬁyrﬁr:m;s;? ;;ﬂmlm
%mﬁ mgmms. topology variants ; . uses a limited variant of

@@

hypergraphs, in which

Tree of Thoughts .

[Creswell & Shanahan] Example designs: hyperdges span only
Dynamic Least-to-Most Graph of Thoughts triples of vertices
Algorithm of Thoughts Graph-of-Thought

Tree of Uncertain Thought ControlLLM

“Tree-of-Mixed- Thought Example designs: Cumulative Reasoni .
Tree of Clgnﬁcmiomg (CoT with Self-Consistency Example designs: Everything of Thoughts Example dﬁ"ﬂ _—
Thought Decomposition Reasoning Graph Verifier Tree Prompting ResPrompt Hypergraph-of-Thoug|

Figure 5.2.2: Variants of tree and graph prompting topologies [8].

Graph Topologies

Graph-based prompting methods extend the flexibility of tree-based approaches by allowing for more complex
interconnections between reasoning steps. While tree structures rely on strictly hierarchical relationships,
graph structures permit more general connectivity, enabling multiple paths and cycles that can explore a
broader range of reasoning possibilities. These methods are especially useful for tasks that require revisiting
earlier decisions, considering alternative pathways, and combining multiple lines of reasoning into a cohesive
solution.

The Graph-of-Thought(s) (GoT) method [7, 62], applies graph-based reasoning to the puzzle-solving
domain. In GoT, the reasoning process is represented as a graph, where nodes correspond to intermediate
reasoning states or steps, and edges represent possible transitions between these states. This structure allows
the model to explore multiple reasoning paths in parallel and return to previously explored nodes, forming a
network of potential solutions rather than a linear or tree-like sequence.

GoT has been tested primarily on rule-based/deterministic puzzles. However, the results on some puzzles
have shown that GoT underperforms compared to other prompting methods, such as Tree-of-Thought (ToT)
[25]. In particular, GoT demonstrated a performance decrease ranging from 2% to 6% compared to ToT

74

5.2. Methods and Strategies

in Game of 24, 8-Puzzle and Pocket Cube. This lower performance is attributed to the higher complexity
of managing multiple interconnected paths, which can lead to increased ambiguity in the decision-making
process. While GoT offers greater flexibility in exploring reasoning steps, this comes at the cost of increased
computational overhead and potentially less precise reasoning when dealing with well-structured puzzles that
benefit from more focused exploration.

Building upon the concepts of tree and graph-based reasoning, Everything-of-Thought (XoT) [25], repre-
sents the most advanced graph-based approach currently applied to puzzle solving with LLMs. XoT integrates
Monte Carlo Tree Search (MCTS) with LLM-based reasoning to enhance the exploration of possible solu-
tions. MCTS, a well-established technique in AT for decision-making in uncertain environments (such as Go
and Chess), allows the model to simulate multiple potential outcomes and select the most promising path
based on probabilistic estimates.

XoT’s combination of MCTS with LLMs has proven highly effective in rule-based/deterministic puzzles,
where structured, probabilistic exploration can significantly improve performance. For example, XoT achieved
improvements in success rates ranging from 53% to 69% compared to ToT, depending on the puzzle complexity
and depth of reasoning involved. This improvement is largely due to MCTS’s ability to effectively navigate
the solution space by balancing exploration (trying out different reasoning paths) and exploitation (focusing
on the most promising solutions).

Another key advantage of XoT is its efficiency in LLM invocations. Compared to other methods like CoT,
SC, and ToT, XoT requires fewer model invocations to reach a solution. This reduction in computational
load is particularly valuable in scenarios where multiple invocations of the model are expensive or time-
consuming. XoT’s integration of graph-based reasoning and probabilistic search makes it the most robust
and resource-efficient method currently available for rule-based puzzle solving.

MCTS LLM . MCTS
Identified
- o %ﬂad
Extracted - R
Simulations thoughts ;?;illtal:ig:lsL tﬁzﬂ;ﬁi @

Figure 5.2.3: An illustration of thought revision process in XOT [25].

Additional Prompting Techniques

Beyond the prompting methods falling under the previous topologies, other techniques that incorporate
supplementary information have been explored in the context of puzzle solving with LLMs. For instance, the
use of hints in riddles and commonsense puzzles has been shown to improve performance by providing the
model with additional context or clues. However, the effectiveness of hints can vary depending on the nature
of the puzzle and the language involved. For example, Zhang et al. (2021) [139] observed that while hints
generally improve performance on English riddles of their dataset (BiRAQA), they can lead to worse results
on Chinese riddles, where linguistic and cultural nuances play a significant role in puzzle comprehension.

In addition to hints, the use of introductions and summarizations has been explored to provide the model with
a broader context or to focus its attention on the key aspects of a puzzle. These techniques have generally
yielded positive results, but their effectiveness is highly dependent on the puzzle type and the clarity of the
additional information provided. In some cases, overly detailed introductions can distract the model from
the core reasoning task, while well-targeted summarizations can help the model focus on relevant clues and
improve accuracy.

5.2.2 Puzzle Translation

In puzzle solving, one of the core challenges for Large Language Models (LLMs) is translating puzzles,
expressed in natural language, into representations that can be more easily processed by symbolic solvers

75

Chapter 5. Puzzle Solving and LLMs

or other external tools. Unlike approaches that assess the LLM’s capacity to solve puzzles directly, puzzle
translation focuses on the model’s ability to encode the puzzle into an appropriate format—often logical rules
or executable code—that external engines or solvers can then use to find the solution. This process is central
to neuro-symbolic reasoning, which combines the flexibility of neural networks (like LLMs) with the precision
of symbolic reasoning methods.

Neuro-Symbolic Techniques for Logic Rule Translation

A key approach in neuro-symbolic reasoning involves converting natural language puzzles into formal logic
representations, which are then solved by symbolic reasoning systems.

Ishay et al. (2023) [48], demonstrate the power of this approach by using models like GPT-3 and GPT-4
to transform natural language descriptions of puzzles into logic rules written in formal languages, such as
Answer Set Programming (ASP). For instance, in logic puzzles like Sudoku or chess, LLMs are prompted
to generate predicates and rules that formally encode the puzzle’s constraints and victory conditions. Once
translated into this logical form, a symbolic solver can quickly compute the solution. The study showed
remarkable results: GPT-4 achieved 92% accuracy on a logic puzzle dataset [85], significantly outperforming
its few-shot (7%) and zero-shot (21%) baselines on the same dataset. They note that in few-shot settings,
LLMs can generate complex programs that humans can easily refine and correct in case of code errors.

Other frameworks, such as Logic-LM [90], LINC [88], and a methods proposed by Yang et al. (2023) [132],
have also demonstrated success in applying neuro-symbolic techniques to logical reasoning tasks. These
frameworks primarily focus on translating reasoning tasks into formal rule-based representations that can be
interpreted by symbolic engines, showcasing their potential in domains that require precise, logical inference.
However, it is important to note that these techniques, while promising, have yet to be fully explored in the
specific domain of puzzle solving. Most research to date has concentrated on broader logical reasoning tasks
rather than on the highly structured nature of puzzles.

Puzzle Translation into Code

While much of the current research focuses on translating puzzles into logic rules, there is a growing interest
in using LLMs to generate executable code for puzzle solutions. Code-based approaches, such as Program
of Thought (PoT) prompting [16], Program-Aided Language (PAL) [35] and Faithful CoT [78], have already
shown significant promise in solving logical and mathematical reasoning tasks by converting the reasoning
process into Python code. These methods are particularly effective when dealing with tasks that require
step-by-step computational reasoning, where the model generates code that mimics the logic of the puzzle
solution. For instance, in PoT, the model is prompted to create a program that simulates the logic required
to solve a problem, allowing for a more structured and explicit reasoning process.

Although PoT, PAL and Faithful CoT have primarily been applied to mathematical reasoning datasets, there
is considerable potential to adapt these methods to puzzle-solving tasks. By translating the puzzle’s reasoning
process into executable code, LLMs could leverage external programming environments to handle complex
puzzles that require iterative or computational steps, such as maze-solving or algorithmic puzzles. However,
this remains an area of active research, and so far, there have been no comprehensive studies focused on
translating puzzles directly into code.

Suitability for Rule-Based Puzzles

Given the structured nature of rule-based puzzles—where explicit rules and well-defined victory conditions
govern the puzzle space—neuro-symbolic approaches and code generation methods are naturally well-suited
for these problems. The ability to encode rule-based puzzles into logic rules or code allows models to bypass
the need for complex internal reasoning, offloading much of the problem-solving process onto symbolic solvers
or programming environments. As a result, rule-based puzzles have become the primary focus for puzzle
translation research, while rule-less puzzles, which lack formal structures or consistent rules, present unique
challenges that make translation more difficult. Currently, there have been no significant efforts to apply
neuro-symbolic techniques or code translation methods to rule-less puzzles, as these puzzles typically require
more general inferential skills and are less amenable to formalization.

76

5.2. Methods and Strategies

Nevertheless, the exploration of translation methods for rule-based puzzles offers valuable insights into how
LLMs can interface with symbolic reasoning systems and external engines, pointing to future possibilities for
integrating neural and symbolic approaches in complex reasoning tasks.

Que Reasoning Chain Answ
{)

4 1. How many cars are there in the beginning? (independent, support: [Mthere
If there are 3 cars in the are 3 cars in the parking lot"])
parking lot and 2 more n_cars begin = 3 . . §

. # 2. How many cars arrive? (independent, support: ["2 more cars arrive"]| 5

cars arrive, how many n_cars arrive = 2
cars are in the parking lot? 4 3. Final answer: How many cars are in the parking lot? (depends on 1, 2)

n_cars_total = n_cars_begin + n_cars_arrive

// 1. What is the density of an apple?

// The density of an apple is about O 3.

// 2. What is the density of water?

// Water ha ity of 1 g/em"3.

£ we an in Dataleg:

. // 1. The density of an apple is about 0.75 g/em"3.

Would anapple sink in .decl Has_density(Object:symbol, Density:float)
water? Has_density("apple", 0.75) . No

// 2. water has a density of 1 g/em”3.

Has_density("water", 1.

/7 New, we he final an Would an apple sink in water?

\ // The ans f an ay is more dense than water.
.decl Answer ()
N . Answer() :- Has_density("apple’, densityl) , Has_density{'water’, .
Translator density2), densityl > density2. Deterministic
(LM) .output Answer Solver
b 4 1. How is [Vincent] related to [Dorothy]? = I/

[Gabrielle] drove her [Dorothy]'s son [Vincent] showed up shortly

relation(Vincent, Dorothy) = son
iugt‘tge‘:r [[II))grot%hy]‘sto the 4 2. How is [Dorothy] related to [Gabrielle]? ©

spital. [Dorothy]'s son [o] drove her daugh hyl to grandson
[Vincent] showed up shortly Dorothy, Gabrielle) ghter
after. How is [Vincent] 4 3. Final answer: How is [Vincent] related to [Gabrielle]? (d
related to [Gabrielle]? relation (Vincent, Gabrielle) = relation(Vincent, Dorothy) @
relation(Dorothy, Gabrielle)
Goal in EDDL: 1. find(coke)
(‘-9‘“11 o to o both thin 2. pick(coke)
: ; I ne o bo gs
| spilled my coke on the fr=n 3. find(trash)
table, could you throw it ; first throw away the coke 4. put(coke)
away and bring something (at coke trash) 5. find(sponge)
to clean with? ; then bring the user a sponge as a cleaning tool 6. pick{sponge)
(at sponge usex) 7. find(user)
)
) 8. pul(sponge)

Figure 5.2.4: Examples from various tasks applying the Faithful-CoT method [78].

5.2.3 Fine-Tuning

Fine-tuning LLMs has emerged as a powerful strategy for enhancing their reasoning capabilities, especially
when tasked with solving complex puzzles. By refining models on domain-specific data, researchers aim to
improve the performance of LLMs across a variety of puzzle types, ranging from general logical reasoning
tasks to more specific, rule-based, and rule-less puzzles. Fine-tuning can adapt a model’s general knowledge
to solve domain-specific challenges, thus extending its capabilities beyond what it can achieve with mere
prompting.

Logical Reasoning

In the domain of logical reasoning, fine-tuning has demonstrated notable success by enhancing the LLM’s
ability to emulate the precise, step-by-step nature of symbolic reasoning. One prominent example is LoGiPT
[29], a language model fine-tuned specifically for logical reasoning tasks. LoGiPT incorporates a unique
instruction-tuning dataset comprising natural language (NL) logical questions paired with symbolic reasoning
steps. The model is fine-tuned to bypass common syntax errors encountered when parsing NL into symbolic
languages, allowing it to directly produce answers without relying on external tools. This approach has made
LoGiPT a formidable tool for tasks that require the integration of symbolic logic within the broader scope
of LLM reasoning.

Similarly, LogiT5 [75] leverages a multi-task learning approach to improve reasoning capabilities across a
range of logical domains. By fine-tuning on the LOGIGLUE benchmark, which consists of diverse logical
reasoning datasets, LogiT5 is able to generalize well across different tasks, particularly in scenarios with
limited training data. The model’s ability to transfer knowledge from one task to another enhances its

7

Chapter 5. Puzzle Solving and LLMs

performance across various logical reasoning challenges, demonstrating the power of multi-task fine-tuning
for expanding the scope of LLM reasoning abilities.

Rule-Based Puzzles

When applied to rule-based puzzles, fine-tuning has produced mixed results. Rule-based puzzles, such as
Sudoku, Rubik’s Cube, and mazes, require the model to understand and operate within fixed, formal rules.
In these puzzles, the model must systematically explore possible states, actions, and outcomes to arrive at a
correct solution.

A study by Noever et al. (2021) [87] highlights the challenges of fine-tuning models like GPT-2 on rule-
based deterministic puzzles. Despite fine-tuning on Sudoku and Rubik’s Cube puzzles, the models achieved
suboptimal results. The study suggests that the brief fine-tuning period and limited training examples
were insufficient to significantly improve the model’s performance in these highly structured domains. The
complexity of these puzzles often demands a deep understanding of game strategies, such as minimax search
or dynamic programming, which fine-tuning alone might not fully capture.

In contrast, fine-tuning has yielded more encouraging results in specific areas of rule-based puzzles. For in-
stance, studies on crosswords [104, 28], show that fine-tuned LLMs can, in some cases, outperform traditional
non-neural baselines, although cryptic crosswords still present significant challenges. Fine-tuning has also
proven effective when combined with CoT reasoning and proof generation [51]. This combination produced
some of the best results in board game puzzles, showcasing how targeted fine-tuning can enhance performance
in well-structured, rule-based environments.

Rule-Less Puzzles

Fine-tuning also plays a key role in improving LLM performance on rule-less puzzles, where models must rely
on flexible, real-world knowledge and inferential reasoning. Riddles, which often employ wordplay and clever
misdirection, benefit from fine-tuning on datasets that emphasize commonsense knowledge and conceptual
blending.

For example, the study by Lin et al. (2021) [67] illustrates how models like BERT [24], RoBERTa [73], and
ALBERT [61] perform better when fine-tuned on the RiddleSense dataset alongside CommonsenseQA [114],
leveraging commonsense knowledge to interpret riddles more effectively. In particular, Zhang et al. (2021)
[139] found that combining fine-tuning on ALBERT-XXL with transfer learning from CommonsenseQA
resulted in a 4% accuracy improvement over models that only underwent fine-tuning, illustrating the benefits
of transfer learning in riddles and commonsense puzzles.

Beyond riddles, fine-tuning has also shown success in other rule-less puzzle domains. In commonsense rea-
soning, fine-tuning allows models to develop a deeper understanding of everyday knowledge [23]. Similarly,
fine-tuning has been applied to programming puzzles with promising results. In the domain of programming
puzzles, models fine-tuned on datasets like Programming Puzzles [107] demonstrate improved accuracy in
solving code-based challenges by refining their understanding of programming semantics and logical opera-
tions.

Overall, fine-tuning LLMs has demonstrated substantial improvements in both rule-based and rule-less puzzle-
solving tasks. By tailoring the model’s capabilities to specific domains and reasoning types, fine-tuning bridges
the gap between general-purpose LLMs and the specialized demands of puzzles, enabling more precise and
effective problem-solving across diverse puzzle categories.

5.2.4 Conventional Methods

AT and Machine Learning methods have long been applied to puzzles and games, with algorithms like Deep
Blue [12] and AlphaZero [109] for Chess and Go, renowned for their exceptional results. This section contrasts
“traditional” methods used to solve various puzzles with those derived from large language models (LLMs).
Note that the aim of this paper isn’t to determine the superior method for each puzzle, but to highlight the
distinctive reasoning abilities of LLMs within diverse puzzle contexts. We particularly focus on rule-based
puzzles, extensively addressed using conventional methods due to their structured, well-defined environments
which require systematic strategies to achieve a solution. Conversely, rule-less puzzles such as riddles primarily

78

5.3. Datasets, Benchmarks and Tasks

test the logical, commonsense reasoning and creativity of models, without a clear path of steps to follow in
order to find the solution, so we do not analyze this category.

Chi et al. (2013) [17] utilized three techniques to solve Sudoku: backtracking, simulated annealing, and
alternating projections. The backtracking method, a brute-force depth-first search, consistently resolves
puzzles across all difficulty levels, albeit slowly. Constraint programming transforms Sudoku into a constraint
satisfaction problem, swiftly enforcing constraints to deduce solutions, often within milliseconds [110]. These
methods always find a solution for Sudoku puzzle, in contrast with LLMs that have not achieved results
better than 80% for 5x5 puzzles [74].

In their study on Rubik’s Cube, Chen (2022) [14] employed several traditional methods including Korf’s
algorithm [55], which combines Iterative-Deepening Depth-First Search (IDDFS) with the A* algorithm and
a heuristic search database. Both Thistlethwaite’s ! and Kociemba’s 2 algorithms utilize group theory and
similar search techniques to streamline the solving process, with Kociemba’s version enhancing efficiency
by simplifying the group structure. While all these algorithms effectively solve the Rubik’s Cube—a task
challenging for LLMs—Korf’s method is particularly noted for its efficiency. Additionally, the study explored
a machine learning strategy that integrates Monte-Carlo Tree Search (MCTS) with breadth-first search,
yielding more optimized solutions, albeit at a lower efficiency. There have also been various attemts to solve
Rubik’s Cube using Reinforcement Learning (RL) like DeepCubeA [81, 1] and others [113], which although
find a solution in relatively few steps are time-consuming, with duration varying from 38.7 to 75.6 seconds
[113].

Mazes are puzzles that can be solved by applying simple algorithms like depth-first search, A* or Trémaux’s
algorithm. However these problems are good for testing the spatial reasoning of LLMs. RL has also been
utilized to solve mazes with [6] leveraging LLM feedback during training.

MCTS has been used to solve Game of 24, 8-Puzzle and Pocket Cube, achieving surpassing many LLM
techniques, including CoT, CoT-SC, ToT and GoT [25]. Additionally, Rozner et al. (2021) [104] besides
fine-tuning T5 for solving cryptic crosswords, have also used non-neural baselines including a WordNet-based
heuristic model, a K-Nearest Neighbours bag of words model and a rule-based model, showing that the
fine-tuning of T5 had the best results among them.

Finally, Studholme (2001) [111] proposed a method for solving Minesweeper by considering it as a constraint
satisfaction problem (CSP). The core strategy involves transforming the game’s challenges into a set of logical
constraints that must be satisfied to avoid mines effectively.

In conclusion, most conventional methods used to solve rule-based puzzles employ deterministic approaches
that reliably produce solutions, in stark contrast to the unpredictable nature of LLMs. Another advantage of
these traditional methods is their explainability and interpretability, crucial attributes for thoroughly evalu-
ating algorithms and understanding their decision-making processes. However, these methods can sometimes
exhibit increased time complexity, indicating a potential trade-off between reliability and efficiency [113].

5.3 Datasets, Benchmarks and Tasks

The evaluation of LLMs in puzzle-solving requires the exploration of diverse datasets, benchmarks, and task
formats to effectively assess their reasoning abilities. Datasets play a pivotal role in determining how well
LLMs perform across different types of puzzles, providing structured environments for testing and comparing
various methods and strategies. This section delves into the datasets and benchmarks used within the
puzzle-solving domain, categorizing them according to our previously established taxonomy of rule-based
and rule-less puzzles. Each category highlights the distinct reasoning challenges posed by the puzzles and
the corresponding evaluation metrics employed to gauge LLM performance. By systematically analyzing
these datasets, we can better understand the versatility of LLMs and the impact of various puzzle-solving
techniques discussed in Section §5.2. This section serves as an essential foundation for understanding how
LLMs are tested and benchmarked, offering insights into their reasoning capabilities across different puzzle
formats.

Thttps://www.jaapsch.net /puzzles/thistle.htm
2https:/ /kociemba.org/

79

https://www.jaapsch.net/puzzles/thistle.htm
https://kociemba.org/

Chapter 5. Puzzle Solving and LLMs

5.3.1 Rule-Based Puzzles

Rule-based puzzles provide a structured, closed-world environment ideal for evaluating LLMs’ logical reason-
ing and ability to operate within a set of predefined rules. These puzzles are divided into two subcategories:
deterministic and stochastic puzzles. Deterministic puzzles, such as Sudoku, Rubik’s Cube, Crosswords, and
the 8-puzzle, adhere to fixed, unchanging rules where the same actions always lead to the same outcomes.
These puzzles challenge LLMs to leverage strategies that rely on forward search and deductive reasoning
within clearly defined parameters.

In contrast, stochastic puzzles like Minesweeper, card games, or social deduction games introduce an element
of uncertainty. Here, the same action may lead to different outcomes due to hidden factors or randomized ele-
ments, requiring the model to reason over probabilistic outcomes and make decisions in the face of incomplete
information. While much of the research has concentrated on deterministic puzzles—where success can be
measured through logical consistency and rule adherence—there remains a substantial gap in addressing the
challenges presented by stochastic puzzles. These environments demand reasoning capabilities that extend
beyond deduction to include risk assessment and decision-making under uncertainty, marking a promising
area for future research.

Deterministic Puzzles

Sudoku is one of the most prominent benchmarks for assessing LLMs’ logical reasoning capabilities due to
its structured complexity and reliance on deductive problem-solving. Noever et al. (2021) [87] conducted
one of the first explorations by fine-tuning GPT-2 [100] on a massive dataset of 1 million Sudoku games,
experimenting with different input representations. They used a compact, single-string format where empty
cells are marked with "-", and claimed that a matrix representation of the puzzle might improve the model’s
learning efficiency by better capturing the spatial structure. Further research by found success using nested
lists (e.g., [[3,*%,*,2], [1,*,3,*],[*,1,*,3],[4,*,*,1]]) for puzzle representation, applying the Tree-of-Thought (ToT)
method [74]. This approach significantly outperformed simple prompting techniques, particularly for smaller
puzzles, highlighting the potential of reasoning-driven methods in deterministic puzzles. In a similar vein,
Ishay et al. (2023) [48] used GPT-3 and GPT-4 to generate answer set programming (ASP) rules for Sudoku,
as well as other puzzles like Jobs puzzles and logic problems, demonstrating that well-prompted LLMs could
effectively encode logical rules and generate accurate ASP-based solutions. In fact, GPT-4 achieved a notable
92% accuracy in logic puzzle-solving, showing the effectiveness of neuro-symbolic approaches.

1
1 0.90.97 7 0.9
0.8
s
e
2 0.5 0.50.5
8 0504 0.4
=
Z D U.QD
0.1
. _ i]
3x3 puzzles 4x4 puzzles 5x5 puzzles
’DEIZSDEIOSDEIstEItOt ‘

Figure 5.3.1: Experimental results comparing the success rate of different LLM-based Sudoku puzzle solvers
across three sets of benchmarks [74].

Rubik’s Cube and Maze Solvers have also been used to evaluate LLM performance in spatial reasoning
tasks. Noever et al. (2021) [87] assessed GPT-2’s ability to solve spatial puzzles using a dataset of over
2,400 Rubik’s Cube samples and 10,000 maze-solving examples. Despite limitations in token constraints and
fine-tuning duration, GPT-2 demonstrated potential by successfully solving the Rubik’s Cube in 1 out of 7
attempts, though many outputs were valid yet incorrect solutions. These results suggest that while LLMs
have the capacity for spatial reasoning, more advanced approaches are necessary for achieving consistent
accuracy. In another study, Ding et al. (2023) [25] tested multiple methods, including CoT, SC, ToT, and

80

5.3. Datasets, Benchmarks and Tasks

GoT, on a 2x2x2 Rubik’s Cube using GPT-3.5 and GPT-4. Their results showed that the Everything-of-
Thought (XoT) method, significantly outperformed other approaches, achieving a 77.6% success rate. This
demonstrates how advanced thought structures and iterative reasoning can enhance LLM performance in
deterministic puzzles with spatial complexity.

LLM versatility was further tested on the 8-Puzzle and the Game of 24, both of which test numerical
and spatial reasoning in deterministic environments [25]. In the 8-Puzzle, where solvers must rearrange tiles
to achieve a goal configuration, the XoT method achieved an impressive 93.2% accuracy across 419 puzzles,
showcasing the power of structured reasoning and self-revision over traditional few-shot prompting or CoT
methods. Similarly, in the Game of 24—a numerical puzzle where players must manipulate four numbers with
mathematical operations to reach a target value of 24—XoT outperformed other methods, further solidifying
its effectiveness in deterministic puzzle-solving contexts.

Crosswords provide another challenging domain for LLMs, particularly in understanding and decoding
wordplay and cryptic clues. Research works fine-tuned T5 models [101] on extensive datasets of individual
cryptic crossword clues [104, 28]. Their findings highlighted T5’s advantage over traditional non-neural base-
lines, although challenges remained, especially with quick clues and those requiring precise answer lengths.
A study compared BART [64] and T5 models, revealing suboptimal performance with accuracy below 30%
for clue-answer tasks, though retrieval-augmented generation transformers showed promising improvements
[59]. Yao et al. (2023) [134] further applied 5-shot prompting and ToT to GPT-4 on crossword puzzles,
achieving a notable improvement, solving 4 out of 20 puzzles and obtaining a 60% word-level success rate.
These results underscore the difficulties LLMs face in tasks requiring linguistic creativity and inference, while
also showcasing the potential of advanced thought structures to boost performance.

In the domain of Chess puzzles, Feng et al. (2023) [30] fine-tuned two specialized models—*ChessGPT” and
“ChessCLIP”—using a vast dataset from Lichess comprising 3.2 million puzzles®. Each puzzle was annotated
with details like the puzzle’s rating, theme, and solution, allowing the models to learn patterns that correlate
with successful moves. Fine-tuning on this dataset significantly improved the models’ ability to solve chess
puzzles, demonstrating the effectiveness of task-specific data in enhancing LLM performance in deterministic,
rule-based games.

Finally, Kazemi et al. (2023) [51] introduced BoardgameQA, a dataset specifically designed for testing
models’ abilities to navigate rule-based environments with contradictory facts and complex rules. The dataset
includes multi-choice questions requiring free-text answers, offering a comprehensive test of LLMs’ ability to
reason within structured game contexts. In their evaluation, fine-tuning BERT-large and T5-XXL models
with proofs yielded the best performance, outperforming CoT-based few-shot prompting on PaLM. The
study also noted a decrease in accuracy when extra or conflicting information was introduced, highlighting
the challenge of handling noisy data in puzzle-solving contexts.

Stochastic Puzzles

Stochastic puzzles introduce a layer of complexity through randomness or hidden information, making them
distinct from deterministic puzzles. In these puzzles, the same player action can lead to varying outcomes
depending on unknown factors or probabilistic elements. This unpredictability presents significant challenges
for LLMs, requiring them to reason not only about the immediate game state but also to plan for multiple
potential future states.

The BoardgameQA benchmark [51] serves as a prime example of stochastic puzzle challenges. This dataset
besides the puzzles presented before, also incorporates puzzles where essential information is missing, com-
pelling the model to reason under uncertainty. The authors demonstrated that as the amount of missing
information increases, the accuracy of fine-tuned models significantly decreases. However, this decline does
not uniformly affect all methods; prompt-tuned and few-shot learning methods appear less impacted by the
increasing complexity, likely due to the larger, more sophisticated models applied during evaluation. This
discrepancy suggests that different reasoning strategies might be necessary depending on the model’s size
and the specific challenges posed by missing or uncertain data in stochastic puzzles.

One of the most iconic stochastic puzzles is Minesweeper, a game characterized by hidden information

Shttps://lichess.org/

81

https://lichess.org/

Chapter 5. Puzzle Solving and LLMs

where players must deduce the locations of hidden mines based on numerical clues. The unpredictability of
mine locations requires the model to combine spatial reasoning with probabilistic inference. Li et al. (2023)
[66] explored how various LLMs perform on Minesweeper by evaluating two different input formats: table
representations, where the grid is visually represented, and coordinate-based representations, which encode
the game’s clues as positions on a coordinate plane. GPT-3.5, despite demonstrating some initial understand-
ing of the game mechanics, showed limited improvement when applying few-shot prompting techniques. In
contrast, GPT-4 exhibited a stronger ability to identify mines but still struggled to complete entire boards,
revealing gaps in strategic thinking and long-term planning. Interestingly, the experiments suggested that the
coordinate representation format was more effective in helping the LLM comprehend Minesweeper’s spatial
reasoning challenges than the table format.

»» USER:
CURRENT BOARD —-

A

IIBII , Illll* Il2ll , II3II , "4”_' IISII

”1“'\"} 1" [¥

||2|I"‘. |*‘1|"2l*'4l'
||3|I"‘.|*".l"‘|"ll"1l

||4|I".|*‘.i" |" |“.I

"l?l\l".'*‘.i" |" |‘ i

»>>» ASSISTANT (gpt-3.5-turbo-16k):

REASONING:

Looking at the current board, we can see that the cell at (2.4)
has a number "4', indicating that there are four mines in its
neighboring cells. Out of these neighboring cells, three are
already opened, and one remains unopened at (1.4). Since there
are four mines in total, it is logical to deduce that the unopened
cell at (1,4) contains a mine. Therefore, our next move is to flag

the cell at (1.4) with a right-click.

ACTION:
R(1.4)

Figure 5.3.2: A case study of a “valid” action and its corresponding reasoning generated by GPT-3.5-16k for
solving Minesweeper. Blue indicates logical reasoning; red and golden are illogical ones [66].

Card games, especially Poker, present another key category of stochastic puzzles where hidden information
plays a central role. Poker requires players to infer the hidden cards of opponents, calculate probabilities,
and make strategic decisions under uncertainty. In simplified Poker variants, these elements are even more
pronounced, as players must assess not only their own hand but also the possible intentions of others based
on partial information. Gupta et al. (2023) [42] investigated ChatGPT’s and GPT-4’s abilities in the pre-
flop round of Poker, observing that while both models grasped basic Poker strategies, neither reached Game
Theory Optimal (GTO) play. GPT-4 was more aggressive in its gameplay, while ChatGPT tended to adopt
a more conservative approach, likely due to differences in their training data and reasoning patterns. In more
advanced experiments, Huang et al. (2024) [44] trained the OPT-1.3B model using Reinforcement Learning
(RL) to play Poker, achieving superior win rates and efficiency across all phases of the game. This study
highlights the potential of combining RL with LLMs to enhance decision-making in stochastic environments
where incomplete information requires probabilistic reasoning and strategic play. Moreover, a recent study
revealed that an agent leveraging GPT-4 achieved remarkable success in various imperfect information card
games, further demonstrating the adaptability of LLMs in strategic, uncertainty-driven scenarios [41].

In addition to card games, social deduction games such as Werewolf and Avalon also fall under the category
of stochastic puzzles. These games blend logical reasoning with complex social dynamics, requiring players
to deduce the hidden roles and intentions of others based on incomplete information and behavioral cues.
Werewolf, for example, challenges players to identify the "werewolves" within a group, while the "villagers"
attempt to survive. Xu et al. (2023) [131] proposed a framework where LLMs are applied to Werewolf without
any fine-tuning, utilizing historical in-game interactions to inform their strategic decisions. This framework

82

5.3. Datasets, Benchmarks and Tasks

demonstrated that LLMs could successfully navigate the game’s social complexities, although not perfectly,
indicating their potential for understanding social reasoning. Similarly, frameworks for Avalon, highlighted
how LLMs can handle scenarios that demand both logical deduction and social manipulation [121, 60]. These
studies underscore the models’ proficiency in managing the interplay between logical reasoning and social
interaction, which is essential for success in social deduction games.

Stochastic puzzles represent a rich testing ground for evaluating LLMs’ abilities to handle uncertainty and
make strategic decisions under imperfect conditions. While the models have shown promise in various ap-
plications, from Minesweeper to Poker and social deduction games, their performance often depends on the
specific methods employed, such as fine-tuning, prompting, or the integration of external engines. These
results suggest that LLMs are evolving in their ability to process and navigate the complexities inherent in
stochastic puzzles, although there remains significant room for improvement, particularly in terms of strategic
depth and probabilistic reasoning.

5.3.2 Rule-less Puzzles

This subsection delves into the diverse datasets associated with rule-less puzzles, a category encompassing
riddles, programming puzzles, and commonsense reasoning challenges. Rule-less puzzles differ from their
rule-based counterparts in that they typically lack formal game mechanics or predefined moves. Instead,
they emphasize real-world knowledge, inferential reasoning, and lateral thinking. In the context of puzzle-
solving with LLMs, these datasets primarily serve as benchmarks to evaluate the model’s ability to navigate
ambiguous scenarios, draw inferences, and connect disparate pieces of information to arrive at solutions.

Notably, the rule-less puzzle category is distinct from code generation tasks, which involve generating ex-
ecutable code based on specific problem statements. While programming puzzles are included, they are
discussed in the traditional sense of problem-solving through code logic, not the broader task of code gen-
eration. Similarly, we exclude datasets specifically designed for open-ended code generation, which, while
related, pose different challenges from the reasoning tasks that define rule-less puzzles.

A majority of the rule-less puzzle datasets are structured in a multiple-choice question-answering (QA)
format. This approach allows for standardized evaluation of LLM performance, as it offers clear metrics
for assessing correctness based on predefined answers. In these settings, the models must reason through
incomplete or ambiguous information, often relying on commonsense knowledge or abstract problem-solving
strategies. The multiple-choice format presents an efficient mechanism for evaluating LLMs’ inferential
reasoning by providing a controlled environment in which different reasoning paths can be tested.

However, not all rule-less puzzles follow this format. Some benchmarks employ more open-ended tasks,
which demand more intricate reasoning and creative problem-solving from the models. These benchmarks
introduce a greater degree of complexity by allowing for multiple valid answers or by challenging the models to
explain their reasoning, rather than simply providing a correct output. Such variations push the boundaries
of LLM capabilities, offering insight into how well these models perform under less structured, more flexible
problem-solving scenarios. Where applicable, these benchmarks are highlighted in order to provide a more
comprehensive view of how different datasets assess LLMs’ ability to handle rule-less puzzles.

Riddles

Riddles, a classic form of word puzzle, challenge LLMs to draw upon linguistic nuances, abstract thinking, and
lateral reasoning. Their ambiguous nature, reliance on metaphor, and clever wordplay test a model’s ability
to engage in creative and non-linear problem-solving. Datasets in this domain provide varied formats and
task designs, with a mix of multiple-choice questions, free-text responses, and language generation challenges.

RiddleSense [67] is one of the most prominent datasets for riddles, comprising 5.7K vertical thinking puzzles
that emphasize abstract reasoning. The dataset primarily tests models such as BERT, RoBERTa, ALBERT,
and text-to-text QA models like UnifiedQA [52] and T5. These LLMs are evaluated based on their ability
to infer answers through vertical reasoning, a process that demands logic-based pattern recognition. Larger
models such as UnifiedQA (based on T5-3B) demonstrate superior performance, but continue to struggle with
complex elements such as metaphors and counterfactual situations. RiddleSense’s evaluation underscores the

83

Chapter 5. Puzzle Solving and LLMs

fact that while larger models benefit from scale, they still exhibit notable weaknesses in lateral or creative
reasoning, areas where human cognition excels.

BrainTeaser [50| takes a step further by introducing 1119 lateral thinking puzzles, a domain that further tests
models’ capacity for divergent thinking. In contrast to vertical reasoning puzzles, lateral thinking challenges
involve scenarios that require non-obvious connections and out-of-the-box thinking. The dataset contrasts the
performance of instruction-based models like ChatGPT, T0, and FlanT5 [19] with that of commonsense-based
models such as RoBERTa variants and CAR [122]. ChatGPT, despite its general-purpose design, excels in
sentence-based and word-based puzzles, demonstrating its strengths in lateral thinking. However, the dataset
reveals that even state-of-the-art LLMs tend to fall into traps of memorization and shallow commonsense
reasoning, emphasizing the need for more advanced methods of inference and reasoning. Through fine-tuning
Mistral-7b [49], Panagiotopoulos et al. (2023) [91] have achieved to outperform the best neural baseline
(ChatGPT) by more than 20% and 30% for the sentence puzzles and the word puzzles respectively.

: Vertical Thinking N

VF PIQA ™
How do you:flood.a room?

q

cover with water
_(A) Fill it with objects. (B) Fill it with water.

‘RiddleSense h
I havefive fingers, but | am not alive. What am 1?

N R
five separate parts 99 item like a hand
_(A) Glove. (B) Computer. y
(Lateral Thinking h
S

entence Puzzle

Ei
=

A man shaves everyday, yet keeps his beard long.

7 I-> hisbeard gets clean everyday - _x"'f
! he is a barber and he shaves others —%

Word Puzzle
What type of cheese is made backwards?

7 Mozzarella X' ;
: Feta © ~=Edam

=4

Figure 5.3.3: Contrasting Vertical Thinking tasks (PIQA (Bisk et al., 2020 [9]) and RiddleSense (Lin et al.,
2021 [67])) to BRAINTEASER, a lateral thinking task.

BiRdQA [139] adds another layer of complexity by introducing multilingual riddles, offering puzzles in both
English and Chinese. This dataset evaluates the performance of both monolingual models (BERT, RoBERTa)
and multilingual ones (mBERT, XLM-R [21]). It also tests the efficacy of using brief riddle introductions
and hints. A key finding from BiRAQA is the significant performance gap between LLMs and human-
level understanding, particularly in multilingual contexts. Monolingual models consistently outperform their
multilingual counterparts, and the effectiveness of hints varies based on the language—such aids prove helpful
for English riddles but less so for Chinese riddles, hinting at potential linguistic or cultural biases that affect
model comprehension.

On the Chinese front, CC-Riddle [128] presents a vast dataset of 27K Chinese character riddles in multiple-
choice, generative, and retrieval-based formats. This dataset challenges LLMs with the intricate task of
understanding Chinese characters, which introduces a layer of semantic complexity. Evaluations reveal that
models like GPT-3 and GPT-4 struggle to effectively comprehend and process these riddles, often demon-
strating significant misunderstandings. This indicates that character-based riddles, particularly in languages
like Chinese, introduce additional challenges for LLMs, highlighting the need for more targeted pre-training
or fine-tuning to address language-specific nuances.

Complementing these, PUZZLEQA [142] offers 558 word puzzles, testing models in both multiple-choice

84

5.3. Datasets, Benchmarks and Tasks

and free-text response formats. While larger models like GPT-3/3.5 show higher accuracy in multiple-choice
settings, free-response puzzles prove more challenging, even for models fine-tuned for QA tasks. Interestingly,
prompting techniques like CoT combined with summarization do not significantly improve performance on
free-response puzzles, underscoring the complexity of free-form generation tasks in puzzle-solving scenarios.

Finally, MARB [116] encompasses a variety of riddle tasks, pushing the boundaries of model reasoning by
integrating several prompting strategies, including zero-shot, CoT, and IEP. Tested on models like GPT-4
and PaLM2-540B [2], the combination of IEP and CoT emerges as the most effective approach, yielding
the highest success rates across diverse riddle types. The dataset also covers commonsense puzzles, further
demonstrating that integrating multiple reasoning techniques provides substantial benefits when dealing with
ambiguous or open-ended problems.

In summary, the landscape of riddle datasets offers rich opportunities to probe the boundaries of LLM
reasoning. The diversity of datasets, from monolingual to multilingual riddles, and from structured to free-
response formats, highlights the areas where LLMs show promise—and the gaps where human cognition still
holds an edge, especially in the realms of creativity, abstraction, and metaphorical thinking.

Programming Puzzles

Programming puzzles present a unique category of problem-solving tasks, requiring models to engage with
code semantics, logic, and algorithmic reasoning. These challenges test an LLM’s ability to understand
programming languages, predict outcomes of code execution, and even generate syntactically and semantically
correct code. Unlike riddles, which often rely on abstract thinking or commonsense reasoning, programming
puzzles demand precise, step-by-step reasoning capabilities, often requiring the model to "run" or simulate
parts of the code mentally.

One of the leading datasets in this domain is P3 (Python Programming Puzzles) [107]. P3 offers a broad
spectrum of challenges, ranging from basic tasks like string manipulations and arithmetic operations to more
complex algorithmic puzzles like Tower of Hanoi. These puzzles are designed with the goal of finding an input
that makes the Python program f return "True". This setup presents a reverse engineering challenge where
the model must deduce the correct input by reasoning about the underlying logic of the provided function.
In the evaluation of these tasks, models such as GPT-3 and Codex [15] have been employed, using various
prompting techniques to guide their responses. The pass@k metric, a key measure of performance, indicates
the model’s ability to solve a puzzle within k attempts, offering insights into both efficiency and accuracy.

A noteworthy finding from the evaluations is the correlation between puzzle difficulty for models and human
solvers alike. The more complex the puzzle, the more attempts it took for both humans and LLMs to solve it.
In particular, descriptive prompts that clearly outline the problem’s parameters and constraints significantly
enhance the performance of models like Codex. This highlights the critical role that prompt design plays in
guiding LLMs through complex tasks, particularly those requiring algorithmic thinking. Additionally, models
proficient in code completion solved more puzzles with fewer tries, showcasing the importance of specialized
capabilities in handling programming challenges. These results illustrate that while LLMs are proficient in
tasks such as code generation and completion, their success heavily depends on how the problem is framed
within the prompt.

Further contributions to the study of programming puzzles come from Savelka et al. (2023) [106], who
introduce a dataset of 530 code snippets derived from programming courses. This dataset, unlike P3, presents
puzzles in a multiple-choice format. The dataset is unique in that it distinguishes between questions with and
without accompanying code snippets, providing a nuanced perspective on how LLMs handle different types
of programming problems. The puzzles are categorized into six distinct types, including true/false questions,
output prediction, and program correction. This structured categorization enables a deeper evaluation of the
specific types of reasoning that LLMs apply to different problem types.

When evaluated on the Programming Snippets Dataset, GPT models demonstrated varying accuracy
rates across the different question types. Code snippets added a layer of complexity to the puzzles, which led
to a decrease in overall accuracy compared to more straightforward questions. However, the models performed
notably better on completion-oriented tasks, such as output prediction, where the question format clearly
delineated the expected outcome. These findings suggest that the complexity of programming puzzles—and
the effectiveness of LLMs in solving them—can depend significantly on the format and structure of the

85

Chapter 5. Puzzle Solving and LLMs

question itself. A clearly defined question, particularly one where the model’s task is to predict an output or
complete a given code snippet, allows the model to leverage its pre-trained knowledge more effectively.

While both P3 and the Programming Snippets Dataset focus on programming puzzles, they do so in distinct
ways. P3 emphasizes the reverse-engineering process by tasking the model with finding the correct inputs
to make a function return a desired result, whereas the Programming Snippets Dataset uses a multiple-
choice format to test comprehension of code snippets and programming logic. Despite these differences,
both datasets yield valuable insights into LLM performance: descriptive and well-structured prompts aid in
problem-solving, and the question format heavily influences model success.

Commonsense Reasoning Puzzles

Commonsense reasoning puzzles present a unique challenge to LLMs, as they require models to go beyond
simple logical deduction and engage in inferential thinking that draws on real-world knowledge and context.
These puzzles often test a model’s ability to fill in gaps, interpret implicit information, and make plausible
conclusions based on everyday situations. In this subsection, we examine datasets specifically designed to
test LLMs’ commonsense reasoning abilities in puzzle contexts.

True Detective [23] introduces a set of detective puzzles embedded in long-form narratives. These puzzles
require LLMs to read through the story, analyze clues, and draw logical conclusions. True Detective is
notable for its complexity, as all the information required to solve the puzzle is provided within the story,
yet the challenge lies in connecting disparate clues and forming accurate inferences. LLMs such as GPT-
3.5 and GPT-4 are evaluated on these tasks, using methods like CoT prompting and a specialized variant
known as Golden-CoT. Golden-CoT provides the model with the reasoning process behind the correct answer,
guiding it towards understanding the logical steps involved before extracting the final answer. Despite this
guidance, models often struggle to reach the correct solution, with Vanilla and CoT approaches performing
close to random on these tasks. GPT-4, however, performs significantly better with Golden-CoT, matching
human solver performance, while GPT-3.5 achieves a solve rate of only 63%. This disparity underscores the
difficulty of these puzzles, even for advanced LLMs, and highlights the critical role that guided reasoning
plays in enhancing performance on detective-style problems.

DetectBench [40] evaluates informal reasoning in more real-life contexts, providing 1,200 questions that
challenge models to apply commonsense knowledge to solve real-world puzzles. It tests various prompting
methods, such as the use of hints, different CoT approaches, and a detective thinking technique across models
like GPT-3.5, GPT-4, GLM-4 and Llama2. Hints are shown to play a crucial role in aiding both model
and human performance, often significantly improving outcomes, particularly for larger models. Detective
thinking—a strategy that encourages the model to process information more methodically—proves highly
effective for guiding reasoning, especially in complex scenarios. These findings reveal that even with powerful
models, prompting techniques and additional cues, such as hints, are essential for navigating the intricacies
of commonsense reasoning puzzles.

LatEval [47] introduces a conversational puzzle-solving format, focusing on interactive reasoning where
players ask yes/no questions before arriving at a final solution. The dataset includes English and Chinese
stories, testing LLMs like GPT-3.5, GPT-4, and various chat-based models on their ability to ask relevant,
consistent questions that align with the puzzle’s constraints. Unlike typical multiple-choice or free-text
puzzles, LatEval requires active engagement, where the quality of questions and the consistency of answers are
critical factors in success. Larger models generally perform better in maintaining consistency and answering
truthfully, yet performance in generating relevant, probing questions remains mixed. GPT-4 demonstrates
the highest level of answer consistency, although there is still considerable room for improvement in interactive
commonsense reasoning.

86

5.4. Literature Review Discussion

as
=]
]
-

%’ :Player (Under Evaluation)

In the morning, Tom got up from the bed, washed up, and dressed.
Howe\er he took off his clothes and lay back then. Why did he do that?

: Question 1: Did Tom realize that he still had time to continue sleeping?
: Answer 1: Yes

: Question 2: Did Tom have something important to attend to?

: Answer 2: No

: Question 3: Did Tom realize that today was a weekend or a day of f?

: Answer 3: Yes

After Tom woke up, washed up, and dressed, he realized
|t was a weekend or a day off, prompting him to undress and resume sleeping.

-33?-9 a-@-:i;m o D T kO Wl RO | D

: Tom is a student who recently started his vacation. Out of
habn, he got up, but then laid back down once he realized his mistake.

Figure 5.3.4: An example of a Lateral Thinking Puzzle in the LatEval benchmark [47].

Another intriguing resource is PuzzTe [112], which offers a collection of puzzles centered on comparative
reasoning, including knights and knaves problems and zebra puzzles. Though not yet applied to LLMs,
the dataset represents a potential benchmark for testing models on structured reasoning tasks. Solutions
are generated using tools such as the Mace4 model finder and Prover9 theorem prover?, offering a more
symbolic approach to puzzle solving. This dataset holds promise for future evaluations of LLM performance
in handling formal logic and comparative puzzles, providing a potential bridge between symbolic reasoning
and language-based inference.

Together, these datasets illustrate the diverse challenges posed by commonsense reasoning puzzles. Detective-
style tasks, as seen in True Detective and DetectBench, push LLMs to make inferences based on real-world
knowledge and hidden information, often requiring advanced prompting methods like Golden-CoT to achieve
reasonable accuracy. Meanwhile, interactive puzzle-solving datasets like LatEval highlight the complexity of
maintaining consistency and relevance in conversational reasoning, a critical aspect of commonsense inference.
Larger models, such as GPT-4, generally outperform smaller counterparts, but there remains a significant
gap between the performance of LLMs and human reasoning, particularly in tasks that require nuanced,
real-world understanding. Additional methods like providing hints or step-by-step reasoning prompts can
help bridge this gap, but even with these aids, commonsense reasoning puzzles remain a formidable challenge
for LLMs.

It is important to note that this work focuses on puzzle-oriented benchmarks specifically. Broader com-
monsense reasoning datasets, such as CommonsenseQA, PIQA [9], or StrategyQA [36], which test general
commonsense knowledge outside the puzzle-solving context, are not included in this analysis.

5.4 Literature Review Discussion

5.4.1 Applied Methods and Dataset Gaps

Through the exploration of puzzle-solving datasets and benchmarks, various methodological trends have
emerged, particularly in the use of prompting techniques, fine-tuning and puzzle translation. Across our
puzzle taxonomy, methods like few-shot prompting, CoT, and the use of supplementary information such
as introductions or hints are common in both rule-based and rule-less puzzles. However, there are notable
differences in the diversity of approaches depending on the puzzle type. For instance, rule-based deterministic
puzzles, such as Sudoku and Rubik’s Cube, and rule-less commonsense puzzles exhibit a broad variety
of methods. In contrast, rule-based stochastic and rule-less programming puzzles show fewer studies and
methods applied, reflecting the research gap in these more complex domains.

4https://www.cs.unm.edu/ mccune/prover9/

87

https://www.cs.unm.edu/~mccune/prover9/

Chapter 5. Puzzle Solving and LLMs

Our analysis highlights a wealth of datasets available for rule-based deterministic puzzles (e.g., Sudoku,
8-puzzle, crosswords) and rule-less riddles, which are frequently used to assess LLMs’ cognitive reasoning.
This demonstrates the extensive research interest and resource availability in these domains. However, as
illustrated in the previous sections, there remains a significant scarcity of datasets for rule-based stochastic
puzzles, such as Minesweeper and Poker, as well as rule-less programming puzzles. These gaps provide
promising opportunities for further research, particularly in creating more diverse benchmarks that challenge
the problem-solving capabilities of LLMs. The limited availability of benchmarks for stochastic puzzles also
underscores the need for more datasets that incorporate elements of randomness and hidden information,
which are essential for advancing reasoning techniques under uncertainty.

Additionally, while neuro-symbolic approaches that translate natural language into formal representations
have proven valuable, they remain underutilized in puzzle-solving benchmarks. Most studies focus on logic
puzzles or specific code-based challenges but have yet to explore their full potential across other puzzle
types. For example, methods like PoT, PAL and Faithful-CoT, while primarily tested on mathematical or
logical reasoning, hold potential for broader applications in puzzle-solving tasks, particularly where structured
problem representation is essential. This area remains relatively unexplored, suggesting a new direction for
further investigation.

5.4.2 Performance Analysis

Different categories of puzzles exhibit varied performance results for LLMs based on the methods applied:

o Rule-based/Deterministic Puzzles: Methods like ToT, GoT and XoT (§5.2) have demonstrated their
efficacy in enhancing model reasoning by structuring thought processes in a hierarchical or graph-based
manner. This structural complexity significantly improves performance, especially in puzzles like the
Game of 24 or 8-puzzle, where the model benefits from multiple reasoning paths. However, datasets
like BoardgameQA and crossword puzzles continue to challenge LLMs, reflecting ongoing limitations
in strategic reasoning and complex deduction even within well-structured environments.

e Rule-based/Stochastic Puzzles: Fine-tuning has been applied successfully to certain rule-based stochas-
tic puzzles, allowing models to understand basic rules and predict outcomes under simpler scenarios.
However, in more intricate puzzles such as Minesweeper, LLMs often falter, struggling with probabilis-
tic reasoning, multi-step planning, and risk management in environments where hidden information or
randomness plays a critical role.

e Rule-less/Riddles €& Commonsense Puzzles: There remains a substantial performance gap between
LLMs and human solvers in tasks involving riddles or commonsense reasoning. While techniques like
CoT improve accuracy, they are still far from achieving human-level understanding and inferencing.
The complexity of linguistic subtleties, metaphors, and abstract reasoning continues to hinder model
performance, as shown in datasets like RiddleSense and BrainTeaser, where LLMs often fail to generalize
effectively.

e Rule-less/Programming Puzzles: Programming puzzles represent a particularly challenging category,
even for large LLMs such as Codex and GPT-4. Results from datasets like P3 (Python Programming
Puzzles) and Programming Snippets suggest that LLMs face similar difficulties to humans in complex
problem-solving tasks [107], while tasks involving code analysis and reasoning in multiple-choice formats
prove particularly tough [106].

Furthermore, the format of questions significantly affects puzzle-solving effectiveness. Multiple-choice setups
simplify tasks for LLMs by narrowing the solution search space, while free-text formats increase the difficulty
level.

5.4.3 Puzzle Generation

The generation of puzzles by LLMs is a relatively underexplored area. Current research has primarily
focused on puzzle-solving rather than puzzle creation. The few studies in puzzle generation report mixed
outcomes. For example, GPT-3.5’s attempts to generate riddles with corresponding solutions often produce
unsatisfactory results [142], highlighting the need for further refinement in this area. In contrast, recent
works such as ACES (Autotelic Creation of Programming Puzzles) demonstrate promising advancements in

88

5.4. Literature Review Discussion

generating diverse programming puzzles using semantic descriptors generated by LLMs [97]. Lastly, cross-
lingual puzzle generation has also been explored, with models generating cryptic crossword puzzles in multiple
languages [145, 137, 138]. However, these efforts are still in their early stages, and there is ample room for
improvement in both the quality and diversity of generated puzzles.

89

Chapter 5. Puzzle Solving and LLMs

90

Chapter 6

Experiments

The goal of this chapter is to empirically evaluate the reasoning and puzzle-solving abilities of Large Lan-
guage Models (LLMs) across a variety of datasets and methods. Specifically, we examine the performance
of smaller models, such as Llama2-7B, Llama3-8B, Llama3.1-8B, Llama3.1-70B, and Mistral-7B, (all of the
models are instruct-tuned) on both mathematical reasoning and puzzle-solving tasks. Previous research
has demonstrated the effectiveness of advanced prompting techniques like Chain-of-Thought (CoT), neu-
rosymbolic methods, and least-to-most (LtM) prompting on larger models (e.g. Codex models or GPT-4).
However, the application of these techniques to smaller models remains underexplored, especially in domains
that require multi-step logical reasoning and problem-solving under constrained computational resources.

In this chapter, we focus on four datasets: two mathematical reasoning datasets—GSMS8K and
SVAMP—and two puzzle reasoning datasets, RiddleSense and Game-of-24. We apply several prompting
techniques (IO prompting, CoT, LtM and Faithful-CoT / PoT) under various settings, including zero-shot,
few-shot, and self-consistency prompting. These techniques, particularly neurosymbolic ones, have shown
promising results with larger models, but their effectiveness with smaller, more resource-efficient models is
yet to be fully understood. Moreover, neurosymbolic methods—where problems are converted into code for
external reasoning engines—have rarely been tested for puzzle-solving as discussed in the previous chapter,
offering an innovative direction explored in this study.

The experiments are structured to assess the following:

e The performance of smaller LLMs in mathematical and puzzle-solving tasks, focusing on their ability
to handle complex reasoning in both structured (rule-based) and unstructured (rule-less) environments.

e The effectiveness of neurosymbolic puzzle translation, specifically applied to puzzles, and how it com-
pares to more common prompting methods.

e Whether advanced prompting methods like Faithful-CoT and PoT can enable emergent reasoning abil-
ities in smaller models, which have not been explicitly designed for such tasks.

Through these experiments, we aim to provide insights into the capabilities and limitations of smaller models
when faced with tasks typically dominated by much larger LLMs. Additionally, the results will offer a deeper
understanding of how innovative prompting strategies can enhance the problem-solving capabilities of LLMs
in puzzle contexts.

Contents
6.1 Preliminaries o 0 L e e e e e e e e e e e e e e e e 93
6.1.1 Datasets e e e 93
6.1.2 Models e 95
6.1.3 Methodologies 97
6.1.4 Prompting Settings 99
6.2 Experimental Results i i e e e e e e 100
6.2.1 GSMS8K Results o e 100

Chapter 6. Experiments

6.2.2 SVAMP Results . .

6.2.3 RiddleSense Results
6.2.4 Game-of-24 Results

92

6.1. Preliminaries

6.1 Preliminaries

6.1.1 Datasets

In this section, we present the datasets used in our experiments, which include two mathematical reasoning
datasets—GSM8K and SVAMP—and two puzzle-solving dataset, RiddleSense and the Game-of-24. Each
dataset offers unique challenges that test the ability of LLMs to perform mathematical reasoning, as well as
puzzle-solving tasks that demand logical inference and pattern recognition. All datasets, except Game-of-24,
fall under the rule-less category, as they do not involve specific rules that the model should follow to find the
correct answer. For the Game-o0f-24, on the other hand, the models should follow standard steps in order to
find the solution.

While the mathematical reasoning datasets have been used previously to evaluate the Faithful-CoT and PoT
methods, those evaluations involved larger models. In our experiments, we aim to test the effectiveness of
neurosymbolic methods, such as Faithful-CoT, on the Game-of-24 puzzle—an unexplored task in this context.

GSMB8K (Grade School Math 8K)

GSMSK [20] is a dataset specifically created to evaluate the mathematical reasoning abilities of large language
models. It includes 8.5K math problems, split into 7.5K training and 1K test problems. Our experiments
are conducted on the test set with the 1K problems. Each problem typically requires 2 to 8 logical steps to
arrive at the solution, with the majority focusing on basic arithmetic operations like addition, subtraction,
multiplication, and division. These problems are designed to be solvable by a middle school student, making
GSMS8K an appropriate challenge for evaluating the problem-solving capabilities of LLMs.

Key Features:

e Human-Curated Problems: GSMS8K stands out for its high-quality, human-written problems, which
are carefully crafted to ensure accuracy. This approach contrasts with other datasets that often rely on
automatic scraping, which can introduce noise or errors. Extensive quality control measures are used
to verify the correctness of the problems, leading to a dataset with a very low error rate (less than 2%).

e Diversity of Problems: One of the key design principles of GSM8K is to provide a wide range of
problems that are not just variations of a common template. Each problem is relatively unique, both
in structure and context, ensuring that the dataset covers a broad spectrum of mathematical scenarios.
This makes the test set an important benchmark for understanding how well models can generalize
across different problem formats.

e Moderate Difficulty: GSMS8K is carefully balanced to challenge even advanced language models while
still being within reach for large models with sufficient reasoning capabilities. The problems require
basic arithmetic and early algebra, but they do not typically demand higher-level concepts like advanced
calculus or formal variable manipulation. This balance of difficulty makes GSM8K particularly useful
for assessing how different models scale their abilities as they process increasingly complex problems.

e Natural Language Problem Solving: A distinctive aspect of GSM8K is that solutions are written in
natural language. This design choice reflects the importance of LLMs not only performing calculations
but also explaining their reasoning process in a way that mimics human thinking. Problem writers are
encouraged to provide detailed, step-by-step explanations in their own linguistic styles, which introduces
a variety of expressions and further challenges LLMs to adapt to different ways of presenting logical
reasoning.

SVAMP (Simple Variations on Arithmetic Math word Problems)

SVAMP [94] is a benchmark dataset designed to evaluate the robustness of models in solving elementary-level
math word problems (MWPs). The dataset contains 1,000 arithmetic problems, specifically focusing on one-
unknown problems that are meant to challenge models across different reasoning aspects. SVAMP problems
involve simple expressions that can be solved using no more than two operators (e.g., addition, subtraction,
multiplication, division), making them accessible for early grade-level students.

Key Features:

93

Chapter 6. Experiments

¢ Human-Curated Quality Control: The dataset was meticulously curated by human annotators
familiar with math word problems. After the initial set of 1,098 problems was created, only 1,000
were included in the final dataset after excluding problems that might be unfairly difficult due to
complexity beyond the targeted elementary level. To ensure consistency and accuracy, the dataset
underwent additional review by volunteers unfamiliar with the task, focusing on grammatical and
logical correctness.

e Moderate Difficulty with High Challenge: While the individual problems in SVAMP might seem
straightforward to humans, requiring only basic arithmetic, they present substantial challenges for
models. The dataset includes only problems solvable with two arithmetic operators at most, yet the
diversity in problem structure makes it more difficult for models than other similar datasets like ASDiv-
A [82] and MAWPS [54]. This balance between simplicity in arithmetic operations and complexity in
problem structure ensusres that models cannot rely on shortcuts or memorized patterns to solve the
problems.

RiddleSense

RiddleSense [67] is a dataset designed to evaluate the capabilities of language models in solving riddles,
which are a type of rule-less puzzle that require flexible thinking, language understanding, and commonsense
reasoning. The dataset challenges models to interpret and solve problems that involve clever wordplay,
metaphors, and indirect clues.

Key Features:

e Dataset Composition: Comprises 5.7K vertical thinking, multiple-choice riddles curated to challenge
language models on tasks that require inference and abstract reasoning. However, in our experiments we
use only 3k random riddles from the dataset. Each riddle is presented in natural language, demanding
models to leverage both linguistic skills and world knowledge to arrive at the correct answer.

e Problem Complexity: The riddles range from straightforward to complex, involving wordplay,
metaphorical phrasing, and lateral thinking. For instance, a typical riddle might be: "What gets
wetter the more it dries?" with the answer being "a towel". Models need to understand the dual
meaning and metaphorical context.

e Reasoning Abilities: RiddleSense primarily tests models’ abilities to think beyond explicit cues,
requiring them to infer hidden connections between clues. This makes it an ideal dataset for assessing
a model’s performance on tasks that go beyond pattern recognition, and it emphasizes the need for
broad, flexible thinking.

Game of 24

The Game of 24 dataset [134], used to evaluate mathematical reasoning, challenges models to manipulate
four numbers using basic arithmetic operations (addition, subtraction, multiplication, division) to produce
the result 24. This task requires the model to find a valid combination of operations that can be applied to
the input numbers in various possible orders to achieve the target number. For example, given the numbers
"4, 9,10, 13" a correct solution might be expressed as “(10 - 4) * (13 - 9) = 24.”

Game of 24 falls into the rule-based deterministic category, as the solution process is strictly governed by
mathematical rules. Each problem has a clearly defined goal (reaching 24) and requires logical reasoning and
arithmetic operations applied in a specific order to solve.

Key Features:

e Dataset Structure: The dataset consists of 1,362 entries in total, with 1,225 problems used for
training and 137 problems reserved for testing. These problems are ranked by human solving time,
which indirectly provides a measure of difficulty. The testing set of 137 entries, which covers a range
of difficulty levels, forms the basis for evaluating the model’s performance in this study. Each problem
in the dataset presents four numbers ranging from 1 to 13, which must be used exactly once in the
solution. The objective is to apply a combination of arithmetic operations on these numbers to achieve

94

6.1. Preliminaries

the final result of 24. While some problems may have multiple valid solutions, the model is expected
to find at least one correct answer that follows the rules of arithmetic.

e Challenges and Importance: The Game of 24 dataset provides a rigorous test of multi-step rea-
soning and arithmetic problem-solving for LLMs. Unlike simpler math problems, this task requires
strategic exploration of possible combinations of numbers and operations. Moreover, the inclusion of
varying difficulty levels, as measured by human solving time, ensures that models are tested not only
on straightforward calculations but also on more complex reasoning tasks that involve trial-and-error
thinking. The dataset’s structure, particularly its ranking by difficulty, allows for nuanced evaluations
of a model’s ability to handle both easy and hard problems.

Game of 24

Final State

Figure 6.1.1: A thought structure for the Game of 24 [25].

6.1.2 Models

In this study, we prioritize the use of smaller-scale LLMs, ranging from 7 billion to 70 billion parameters.
While recent advances in LLM development have been centered around massive models with hundreds of
billions of parameters, there is increasing interest in exploring how well smaller models can perform on complex
reasoning tasks. Smaller models, such as Llama2-7b and Mistral-7b, are faster and more computationally
efficient, making them more practical for a wider range of applications. Moreover, testing advanced prompting
techniques, such as Chain-of-Thought and Faithful-CoT, with these smaller models can reveal whether such
methods can help bridge the gap between smaller and larger models, potentially unlocking emergent reasoning
abilities without the need for massive parameter counts.

We rely on pre-trained models from Hugging Face, specifically choosing instruction-tuned variants designed
to follow natural language instructions more effectively.

Llama2-7b-instruct

e Llama2-7b-instruct is a version of Meta’s Llama2, fine-tuned for instruction-following tasks. The
base Llama2 model was trained on a vast corpus of text data to improve language generation and un-
derstanding, with the 7-billion-parameter version being one of the smaller but highly effective variants.
Fine-tuning it on instructional data allows it to better handle tasks like arithmetic problem-solving,
reasoning, and answering structured prompts. For this study, we applied Llama2-7b-instruct specifi-
cally to the GSM8K and SVAMP datasets, given its demonstrated ability to perform well on language
understanding and basic mathematical tasks.

95

Chapter 6. Experiments

¢ Why smaller models? While models with 7 billion parameters are significantly smaller than state-
of-the-art models like GPT-4, they retain a strong balance between computational efficiency and per-
formance, making them suitable for environments where resources are constrained. Smaller models like
Llama2-7b also allow for rapid experimentation with various prompting techniques without incurring
excessive computational costs, making them an ideal candidate for our study.

Llama3-8b-instruct

e Llama3-8b-instruct is the next evolution in the Llama series, with an increase in parameter count and
enhanced capabilities in reasoning and instruction-following tasks. As an 8-billion-parameter model,
it strikes a balance between size and efficiency, potentially improving over its predecessors in complex
reasoning tasks like the Game of 24. Llama3 was trained on a diverse dataset, including larger vol-
umes of technical and reasoning-heavy content, making it particularly suitable for multi-step reasoning
problems.

e Use case: In this study, Llama3-8b-instruct is employed for RiddleSense and the Game of 24 dataset,
where its enhanced reasoning abilities are tested. This is significant as it allows us to compare Llama3’s
performance against larger models like Llama3.1-70b, while applying techniques such as CoT and Self-
Consistency.

Llama3.1-8b-instruct

e Llama3.1-8b-instruct builds upon Llama3, featuring improvements in model architecture, data pre-
processing, and fine-tuning techniques. With the same parameter count as Llama3-8b, Llama3.1-8b
aims to further refine the model’s ability to follow complex instructions and handle nuanced reasoning
tasks. Instruction-tuning for this version has been particularly focused on mathematical reasoning and
code understanding, making it a strong candidate for solving arithmetic puzzles and logic problems.

e Use case: Similar to Llama3-8b-instruct, Llama3.1-8b-instruct is used for RiddleSense and Game of
24, enabling us to assess the improvements brought by the newer version. This model’s performance
will be directly compared with that of Llama3-8b and other instruction-tuned models, to evaluate how
incremental changes in architecture and training data impact performance in complex problem-solving
tasks.

Llama3.1-70b-instruct

e Llama3.1-70b-instruct represents a much larger model in the Llama family, featuring 70 billion
parameters. The dramatic increase in parameters allows this model to handle even more intricate
reasoning, problem-solving, and natural language understanding tasks. Instruction-tuning further im-
proves its performance on tasks that require multiple reasoning steps, such as arithmetic puzzles or
games requiring logical deductions.

e Use case: This model is also deployed on RiddleSense and on Game of 24 dataset to test whether
scaling up the number of parameters can significantly enhance performance. Given that smaller models
are often constrained by their ability to generalize across complex tasks, Llama3.1-70b-instruct will be
used as a benchmark to assess the impact of model size on puzzle-solving accuracy, especially when
paired with advanced prompting methods like CoT, Self-Consistency, and puzzle translation into Python
code.

Mistral-7b-instruct-v0.3

e Mistral-7b-instruct-v0.3 is a smaller model within the Mistral family, designed for efficient reasoning
and instruction-following tasks. Despite its relatively modest size of 7 billion parameters, Mistral-7b has
been shown to achieve competitive performance with larger models due to its optimized architecture
and high-quality pre-training data. The instruction-tuned variant has been fine-tuned for tasks like
logical reasoning, problem-solving, and arithmetic, making it an ideal candidate for evaluating puzzles
like the Game of 24.

96

6.1. Preliminaries

e Use case: Mistral-7b-instruct-v0.3 is used alongside Llama3.1-70b and Llama3-8b for the two
puzzle datasets. By including this smaller but efficient model, we aim to investigate whether advanced
prompting methods can compensate for the reduced parameter count, and how Mistral compares to
similarly sized models like Llama2-7b.

Model Architecture Comparison: Llama vs Mistral

While both Mistral and Llama models are designed for natural language understanding and reasoning tasks,
there are key architectural differences that could influence their performance on complex tasks like puzzle-
solving.

Llama models (Llama2, Llama3 and Llama3.1 series) follow a more traditional transformer architecture with
optimizations aimed at scaling up the number of parameters while maintaining training efficiency. Llama
models are known for their relatively high-quality pre-training, which enables strong performance even at
smaller parameter scales like 7b and 8b. Llama models prioritize language generation and reasoning, but
their performance scales significantly with size, meaning larger models such as Llama3.1-70b can handle more
complex, multi-step reasoning tasks compared to the smaller variants.

Mistral models, on the other hand, introduce a more efficient transformer architecture that focuses on im-
proved weight-sharing mechanisms and enhanced attention mechanisms to increase performance without
needing as many parameters. Despite its 7b parameter count, Mistral-7b has been designed with architectural
improvements that help it match or exceed the performance of larger models in certain tasks, particularly
when combined with optimized prompting techniques. The goal with Mistral’s architecture is to achieve
similar or better reasoning capabilities while maintaining a more lightweight and resource-efficient design.

By comparing these two approaches, our experiments aim to determine whether architectural innovations
like those in Mistral enable it to close the performance gap with larger Llama models when tackling complex
reasoning tasks like puzzle solving and math word problems.

Previous Use of Models

While the math datasets (GSM8K and SVAMP) and RiddleSense have been used extensively in evaluating
various models, the Game of 24 has primarily been evaluated with large models such as GPT-3.5, GPT-4.
By incorporating smaller models like Llama3.1-70b and Mistral-7b, our experiments explore how well these
models perform on reasoning tasks when advanced prompting methods are applied. This also opens up
the possibility of discovering whether smaller models can handle complex tasks as effectively as larger ones
through innovative approaches like puzzle translation.

6.1.3 Methodologies

This section outlines the different methodologies employed in our experiments across the selected datasets.
We utilized various prompting techniques and reasoning methods to evaluate the performance of small LLMs
in math reasoning tasks (GSM8K, SVAMP) and puzzle-solving (RiddleSense, Game of 24). The methods
we applied include Standard Input-Output (IO) prompting, Chain-of-Thought (CoT) prompting, Least-to-
Most (LtM) prompting, and puzzle translation, with Faithful-CoT for the math datasets and a specialized
adaptation of Faithful-CoT used for translating natural language into Python code for Game of 24.

Standard 10 Prompting

Standard IO prompting involves providing the model with a question and its corresponding answer in the
context. The model then attempts to replicate this pattern for new inputs. This method serves as a simple
baseline and is commonly used in a variety of reasoning tasks. For both math and puzzle datasets, 10
prompting presents the problem in natural language and expects the model to output a solution without
detailing intermediate reasoning steps.

In the context of Game of 24, the model is provided with the four numbers and directly produces an equation
that equals 24. For example, given the input "4, 9, 10, 13" the model might output something like:

97

Chapter 6. Experiments

(13—9) % (10 —4) = 24

Chain-of-Thought Prompting

CoT prompting enhances LLM reasoning by breaking down the problem into intermediate steps. Rather than
outputting the final answer immediately, the model is prompted to articulate the thought process involved in
solving the problem. This approach is especially useful for tasks that require multi-step reasoning, making
it effective for both math problems and puzzles that involve complex operations.

For instance, in GSM8K, CoT might involve showing the intermediate calculations needed to arrive at the
solution, while in Game of 24, it could display the step-by-step application of arithmetic operations to the
four input numbers.

Least-to-Most Prompting

LtM prompting [143], is designed to handle complex problems by decomposing them into a series of smaller,
simpler subproblems. Unlike CoT, LtM explicitly simplifies the initial problem into individual steps before
solving each part in a progressive manner. This method has been particularly useful in solving math problems,
where complex questions can be broken down into basic arithmetic operations or logical subcomponents.

For example, in a word problem from SVAMP, LtM would first isolate simple operations—Ilike subtraction or
multiplication—and solve them step by step, ultimately arriving at the final answer. This method, however,
is not applied to puzzle datasets in our experiments.

Faithful-CoT (for Math Datasets)

Faithful-CoT is a two-stage pipeline introduced to combine both natural language (NL) reasoning and sym-
bolic language (SL) execution. In this approach, the model first generates a reasoning chain interleaving
natural language descriptions and symbolic computations (such as Python code). The second stage involves
using an external solver (e.g. a Python interpreter) to execute the symbolic code and compute the final
answer.

In the GSM8K and SVAMP datasets, Faithful-CoT plays a crucial role in ensuring that the final answer is
derived accurately through a deterministic process. For example, a complex math word problem might be
translated into a series of Python operations that are then executed by an external solver to produce the
answer. This guarantees correctness and transparency in the solution process.

Faithful-CoT’s design makes it a powerful tool for tasks that require precise arithmetic or logical operations,
providing reliable solutions through the execution of generated code.

Query
Royce takes 40 minutes more than double Rob to shingle a house. If Rob takes 2 hours, how many minutes does Royce take?]
Standard Prompting Least-to-Most Prompting Faithful CoT Reasoning (ours)
(Zhou et al., 2023) @

The answer is 4 hours and 20 minues. ¢ ~(Model Owtput }

To answer the question, we need to know:

Q1. How many minutes does Rob take?

Rob takes 2 hours.

Chain of Thought (CoT) Prompting Q2. How many minutes does Royce take?
(Wei et al., 2022) Royce takes 40 minutes more than double

Rob.
Model Output Final Answer: How many minutes does
Royce take?
Royce takes 40 minutes more than Royce takes 2°2 + 40 = 84 minutes.

double Rab. That means Royce takes 2 * answer = minutes_royce
2440 =80 + 40 = 120 minutes. The answer is 84. y

The answer is 120. X X >>5 # Python Interpreter >>> 280 v

Figure 6.1.2: A sample output for a math question from the four above methods. The ground-truth answer
is 280. [78]

98

6.1. Preliminaries

Puzzle Translation (for Puzzle Datasets)

For RiddleSense, puzzle translation from natural language into code is a method that doesn’t make much
sense. For instance, for the riddle:

I have five fingers, but I am not alive. What am 1?
(A) piano (B) computer (C) glove (D) claw (E) hand
there is no clear way on how it can be described in Python code. For that reason, we do not apply puzzle
translation for RiddleSense.

For the Game of 24, we employed a method that draws inspiration from both Faithful-CoT and Program of
Thoughts, where the model translates the natural language input into Python code that is then executed to
solve the puzzle. This neurosymbolic approach leverages the LLM’s ability to interpret the task and translate
it into a form suitable for external computation.

6.1.4 Prompting Settings
Zero-shot and Few-shot Setup

For all methods applied for the math reasoning datasets, a 8-shot setting has been applied, meaning that 8
(random) examples have been given to the model in the user prompt. For these datasets we have repeated
the experiments with and without the use of a system prompt (an initial prompt that gives the models the
instructions describing the way we want it to answer).

For the puzzle datasets we have the following settings:

e RiddleSense: For both IO Standard and CoT prompting we have tested zero shot, 5-shot and 8-shot
examples.

e Game of 24: For IO Standard and CoT prompting we have tested zero-shot, 5-shot and 8-shot (random)
exmpales, while for puzzle translation we have only tested the zero shot setting. For the latest method,
we have also tried to indicate the reasoning steps that should be followed.

The prompts for each case are given at the Appendix 8.1.

Self-Consistency

For math datasets, Self-Consistency has also been tested for all methods, with the use of a system prompt.
The number of generated chains for the self-consistency method is n=>5, and the most consistent/voted
outcome is the final given answer.

For the RiddleSense we have tested Self-Consistency for both I0 Standard prompting and CoT and in each
case we have used the few-shot setting that had the best results in the most cases. For example for the 10
Standard prompting we have tested Self-Consistency on the 8-shot setting, while for the CoT prompting we
have tested Self-Consistency on the 5-shot setting. A number of branches/chains equal to n=5 is used here.
Simillarly, we have applied Self-Consistency for the Game of 24, testing also a number of braches equal to
n=10.

Prompting Parameters

e Temperature: For every method besides neurosymbolic techniques and Self-Consistency settings, we
have used a temperature equal to 0. In the case of Self-Consistency, for math datasets we have used a
temperature equal to 0.4 for every method, and for puzzle datasets we have used a temperature equal
to 0.7 for every method. Finally, in the case of Game of 24 with puzzle translation we have also used
a temperature value equal to 0.7.

e Maximum Tokens: For the maximum tokens parameter we have used in every case, a value equal to
500, except for the puzzle translation methods, where this value is equal to 1000.

Note: The above values are applied to all tested models in each case.

99

Chapter 6. Experiments

6.2 Experimental Results

This section presents the performance of various prompting methods and model configurations across four
datasets: GSM8K, SVAMP, RiddleSense, and Game of 24. Each dataset illustrates unique aspects of rea-
soning and problem-solving capabilities in language models, comparing standard input-output (I0), Chain-
of-Thought (CoT), Least-to-Most (LtM), Faithful-CoT, and Puzzle Translation approaches across different

prompting configurations (zero-shot, few-shot, and self-consistency settings).

6.2.1 GSMS8K Results

The performance results for the GSM8K dataset are shown below:

Methods w/o System Prompt | w/ System Prompt | Self-Consistency (n=>5)
IO Standard 0% 4.4% 4.2%
Chain-of-Thought 0% 22.3% 26.5%
Least-to-Most 0% 12.7% 11.1%
Faithful-CoT 0% 13.3% 20.9%

251

20

15}

Accuracy (%)

Table 6.1: GSM8K Results

Performance on GSM8K Dataset

w/o System Prompt
w/ System Prompt
—e— Self-Consistency (n=5)

Observations:

X

)
O
N
C\}'
Yo
<
\/

Methods

%
%
%,

e The lack of a system prompt leads to 0% accuracy for all applied methods. Based on our observations,
this has happened due to the "overfitting" of the model to the 8 given examples. Llama2-7b-instruct
was repeating the examples given instead of answering the final question.

e The addition of a system prompt has improved the results, but the model still underperforms in the
task, with a maximum accuracy in the CoT-SC setting.

e CoT was proved the most succesful method, while Self-Consistency improved the results for CoT and

Faithful-CoT.

e In contrast to the original paper of Faithful-CoT [78], where models like GPT-3.5 and GPT-4 were
utilized, CoT achieved better results than the neurosymbolic method with the Llama2-7b model.

100

6.2. Experimental Results

6.2.2 SVAMP Results

The performance results for the SVAMP dataset are shown below:

Methods w/o System Prompt | w/ System Prompt | Self-Consistency (n=5)
IO Standard 3% 36.7% 36.7%
Chain-of-Thought 0% 47.2% 54.0%
Least-to-Most 1% 43.2% 35.3%
Faithful-CoT 0% 38.8% 47.0%

Table 6.2: SVAMP Results

Performance on SVAMP Dataset

50
401
S
; 301 w/o System Prompt
S w/ System Prompt
5 —e— Self-Consistency (n=5)
<LtLj 20
10t
o L
O X X L
& & @06) &
@Q 9 o \)\'
<8 A& 5§ &
3 & & >
A & \/Q:o <
(}\’b
Methods

Observations: The observations for the results on the SVAMP dataset are very similar to the ones on
the GSM8K. The only difference is that the accuracy of most of the methods in this dataset is better than
the results seen previously. This is a general trend on the available leader boards and is likely because the
problems presented in SVAMP are slightly easier compared to GSMSK.

6.2.3 RiddleSense Results

The performance results for the RiddleSense dataset are shown below:

101

Chapter 6. Experiments

Methods/Models llama3-8b | llama3.1-8b | llama3.1-70b | mistral-7b
IO Standard - 0 shot 0.658 0.661 0.722 0.569
IO Standard - 5 shot 0.638 0.644 0.804 0.589
IO Standard - 8 shot 0.669 0.676 0.779 0.587
CoT - 0 shot 0.620 0.624 0.777 0.592
CoT - 5 shot 0.672 0.672 0.787 0.603
CoT - 8 shot 0.661 0.667 0.785 0.603
IO 8 shot - SC (n=5) 0.678 0.682 0.806 0.598
CoT 5 shot - SC (n=5) 0.684 0.675 0.8 0.614

Table 6.3: RiddleSense Results

Performance Comparison Across Models

080} —e— llama3-8b
' llama3.1-8b
—e— llama3.1-70b

—e— mistral-7b

0.75 /

Performance
o
~
o

o
o
o

X X X X X X N N
5° 5 50 50 5° 5 > %
o) ® N o ® N N
R & Q & & & 3 3
P S & C % C & &
> > * & &
& «& X8
2 2 2) 5o &‘0
© © © © ®
Methods/Models

Observations:

e Firstly, it is observed that the most important factor for achieving better results in RiddleSense is the
size of the model (its number of parameters), with llama3.1-70b-instruct to consistently outperform
the other models, reaching up to 0.806 in accuracy with IO Standard 8-shot prompting with Self-
Consistency. On the other hand, mistral-7b-v0.3, while efficient, struggles to match the performance of
llama models across all configurations underscoring the importance of model scale for riddles.

e Few-shot prompting improves the results for both IO Standard and CoT prompting, with the shot
count not being clearly better between 5 and 8.

e Self-consistency (n=5) generally enhanced the results for all models.

6.2.4 Game-of-24 Results

The performance results for the Game of 24 task are shown below:

102

6.2. Experimental Results

Methods/Models llama3-8b | llama3.1-8b | llama3.1-70b | mistral-7b
10 Standard - 0 shot 0.022 0.044 0.095 0.0
10 Standard - 5 shot 0.058 0.175 0.102 0.015
10 Standard - 8 shot 0.073 0.036 0.095 0.015
CoT - 0 shot 0.007 0.022 0.095 0.007
CoT - 5 shot 0.003 0.015 0.146 0.015
CoT - 8 shot 0.002 0.036 0.131 0.022
10 5 shot - SC (n=5) 0.022 0.153 0.139 0.007
10 5 shot - SC (n=10) 0.051 0.19 0.139 0.007
CoT 5 shot - SC (n=5) 0.015 0.029 0.161 0.022
CoT 5 shot - SC (n=10) 0.022 0.022 0.204 0.029
Faithful CoT - 0 shot 0.0 0.27 0.277 0.0
Faithful CoT w/ steps - 0 shot 0.015 0.511 0.511 0.0

Table 6.4: Game-of-24 Results

Performance Comparison Across Models

| —e— llama3-8b
llama3.1-8b
—e— llama3.1-70b

o
U

0.4 | —e— mistral-7b
4]
c 0.3
©
£
o
£0.2
[
0.1
0'0 1 1 1 1 1 1 1 1 1 1 1 1
S S S S 3 S < Q o S 3 S
PP M T A Y A S S
o 5 > N “ > S & (S & I N
& L L ¥ T s T $ %
& & & < < ¢ & X & < C &
N Q N 5N S xS 3 N 2
0 <o <0 o > 9 > & R\
S S S % 7 < 7 RN\ A
© © O O O ® & <& ®
S >
N
<<’Z>
Methods/Models
Observations:

e Again the model’s size plays a crucial role in the performance, with llama3.1-70b achieving the best
results for most of the cases and mistral-7b struggling in this high-complexity environment, with most
configurations failing to exceed minimal accuracy.

e Increasing the number of shots does not consistently imporve results for IO and CoT.

e In some cases, CoT not only doesn’t enhance the performance but it even generates worse results than
Standard IO prompting. Also, Self-Consistency has helped some models to perform better, but this
was not always the case.

e Regarding the puzzle translation technique, it is observed that mistral-7b and llama3-8b are not able
to generate executable code, thus leading to 0% results. On the other hand, llama3.1 models were

103

Chapter 6. Experiments

able to generate executable code and they achieved the best accuracy results compared to every other
experiment. Also the addition of the steps of code that the model should generate, further enhanced
the results for these models. Finally, even if llama3.1 achieved the best results with the neurosymbolic
method, the increased number of parameters of the llama3.1-70b model didn’t lead to a further increased

accuracy.

104

Chapter 7

Conclusion

7.1 Discussion

This thesis has explored the capacity of large language models (LLMs) to engage in complex reasoning and
problem-solving across a variety of puzzle and mathematical reasoning tasks. By categorizing puzzles into
rule-based and rule-less types, this work has provided a structured approach to understanding the diverse
cognitive demands that different puzzles place on LLMs. Through a comprehensive survey of methods,
datasets, and benchmarks, the thesis also highlights the current landscape of LLM performance in puzzle
solving, along with the challenges these models face.

Our experiments were designed to delve deeper into the practical application of various prompting strategies
and techniques across four datasets—GSM8K, SVAMP, RiddleSense, and Game of 24. For the mathematical
datasets (GSM8K and SVAMP), the methods explored included standard input-output (IO) prompting,
Chain-of-Thought (CoT), Least-to-Most (LtM) prompting, and Faithful-CoT, evaluated under zero-shot,
few-shot, and self-consistency settings. For the puzzle datasets (RiddleSense and Game of 24), we compared
10, CoT, and a translation-based approach akin to Faithful-CoT, which translates natural language into
executable code.

The survey conducted in this thesis provides insights into the application of various prompting techniques
and model fine-tuning across puzzle types. Techniques like few-shot prompting, Chain-of-Thought (CoT),
and fine-tuning were broadly used in both rule-based and rule-less categories, with puzzle-solving methods
like ToT and GoT enhancing complex reasoning in deterministic puzzles. However, these techniques require a
high number of LLM invocations, which can limit scalability. The survey also highlights that neuro-symbolic
techniques, like translating natural language into code, are largely unexplored in puzzle-solving contexts.
Furthermore, the lack of variety in methods and datasets for rule-based stochastic and rule-less programming
puzzles presents an opportunity for future research.

The experimental findings reinforced some of the survey’s insights, while revealing unique challenges across
datasets. In the math datasets (GSM8K and SVAMP), the absence of system prompts led to a performance
drop, confirming the importance of structured prompts for mathematical reasoning. Faithful-CoT did not
yield improvements on Llama2-7b-instruct, and although CoT with Self-Consistency was the most effective
approach, even basic problems posed challenges, suggesting limitations in current reasoning capabilities of
smaller LLMs.

For RiddleSense, model size emerged as the key factor in performance, with the largest model, Llama3.1-
70b, performing best, while CoT alone did not guarantee success, hinting at the need for more sophisticated
approaches beyond reasoning chains alone. Similarly, in the Game of 24 dataset, only Llama3.1 models
were able to generate executable code with the Faithful-CoT method, emphasizing the compatibility between
certain methods and model architecture. Additionally, CoT did not consistently enhance results, suggesting
that reasoning chains may have limited applicability for puzzles requiring precise computational steps.

These experimental observations illustrate that while LLMs can tackle complex reasoning to an extent,

105

Chapter 7. Conclusion

challenges persist, especially in mathematical and rule-based problem-solving where smaller models often
lack the robustness to execute reliable reasoning consistently.

7.2 Future Work

For future work, several key areas offer promising directions for advancing research in LLM-based puzzle
solving:

e Methodological Improvements: A primary area for future research lies in leveraging neuro-symbolic
techniques, particularly natural language to code translation. This approach, largely unexplored in
puzzle contexts, could bridge the gap between abstract reasoning and executable solutions, especially
for complex puzzles requiring precise operations. Additionally, there is potential in evaluating advanced
prompting topologies, such as graph- or tree-based reasoning structures, which could enhance the
reasoning depth of smaller LLMs while maintaining computational efficiency.

e Dataset Creation: The survey highlighted gaps in available datasets, especially for stochastic puzzles
and programming challenges. Developing new benchmarks for these underrepresented categories could
stimulate research in these areas, offering a wider array of tasks to test and expand the reasoning
capabilities of LLMs.

e Puzzle Generation: Research into automatic puzzle generation has been limited, with recent initia-
tives like RISCORE [92] just beginning to address this field. Since understanding and solving puzzles is
foundational to generating them, advancements in LLM reasoning abilities could directly impact puzzle
generation research. This area holds particular promise for developing models capable of creating novel
puzzles that test diverse aspects of reasoning, logic, and inference, thus adding a new dimension to the
evaluation of LLMs.

106

Chapter 8

Appendices

Contents
8.1 Prompts used for the experiments, 108
8.1.1 GSMS8K 108
8.1.2 SVAMP 113
8.1.3 Gameof 24 120

107

Chapter 8. Appendices

8.1 Prompts used for the experiments

8.1.1 GSMSK
Standard 10 Prompting
System Prompt

"You are a chatbot that always responds in the way of 'The answer is X’, where X is just a number, the
answer to the question.”

User Prompt

"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

: The answer is 6.
: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
: The answer is 5.

: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

- o o P

: The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

A: The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: The answer is 8.

Q: [QUESTION]

A"

Chain-of-Thought (CoT) Prompting
System Prompt

"You are an assistant proficient in solving math problems using a step-by-step reasoning method. Follow the
format shown in the examples provided and solve only the last question step-by-step. Give the final answer
in the way of "The answer is X’, where X is just a number.”

User Prompt

"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted.
So, they must have planted 21 - 15 = 6 trees.

108

8.1. Prompts used for the experiments

The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars.

The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates.
35 have been eaten. So in total they still have 74 - 35 = 39 chocolates.

The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The number of
lollipops he has given to Denny must have been 20 - 12 = 8 lollipops.

The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more from dad,
so in total he has 7 + 2 = 9 toys.

The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: There are 4 days from monday to thursday. 5 computers were added each day. That means in total 4
* 5 = 20 computers were added. There were 9 computers in the beginning, so now there are 9 + 20 = 29
computers.

The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls. On Wednesday
he lost 2 more so now he has 35 - 2 = 33 balls.

The answer is 33.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had $23 in
beginning, so now she has $23 - $15 = $8.

The answer is 8.

Q: [QUESTION] A:"

Least-to-Most Prompting
System Prompt

"You are an assistant proficient in solving math problems using a Least-to-Most (LTM) reasoning method.
For each question, you will break down the problem into smaller subquestions Q1, Q2, etc., and then provide
the final answer in the format: 'The answer is X', where X is just a number. Follow the format shown in the
examples provided and answer only the final question.”

User Prompt

109

Chapter 8. Appendices

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A: To answer the above question, we need to answer the following subquestions:
Q1. How many trees are there in the beginning? There are 15 trees.
Q2. How many trees will there be after the grove workers plant trees? There are 21 trees.

Final Answer: How many trees did the grove workers plant today? They planted 21 - 15 = 6 trees. The
answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many cars are there in the beginning? There are 3 cars.

Q2. How many cars arrive? 2 more cars arrive.

Final Answer: How many cars are in the parking lot? Now there are 3 + 2 = 5 cars. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: To answer the above question, we need to answer the following subquestions:

Q1. How many chocolates did Leah have in the beginning? Leah had 32 chocolates in the beginning.

Q2. How many chocolates did her sister have in the beginning? Her sister had 42 in the beginning.

Q3. How many chocolates did they eat? They ate 35 chocolates.

Final Answer: How many chocolates do they have left in total? They still have 32 + 42 - 35 = 39 chocolates
left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: To answer the above question, we need to answer the following subquestions:
Q1. How many lollipops did Jason have in the beginning? Jason had 20 lollipops in the beginning.
Q2. How many lollipops does Jason have now? Jason has 12 lollipops now.

Final Answer: How many lollipops did Jason give to Denny? He gave 20 - 12 = 8 lollipops to Denny. The
answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many toys does Shawn have in the beginning? Shawn has 5 toys in the beginning.

Q2. How many toys did Shawn get from his mom? Shawn got 2 toys from his mom.

Q3. How many toys did Shawn get from his dad? Shawn got 2 toys from his dad.

Final Answer: How many toys does Shawn have now? Shawn has 5 + 2 + 2 = 9 toys now. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: To answer the above question, we need to answer the following subquestions:
Q1. How many computers were there in the beginning? There were 9 computers in the beginning.
Q2. How many computers were added each day? 5 computers were added each day.

Q3. How many days were there from monday to thursday? There are 4 days from monday to thursday.

110

8.1. Prompts used for the experiments

Final Answer: How many computers are now in the server room? Now there are 9 + 4*5 = 29 computers.
The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many golf balls did Michael have in the beginning? Michael had 58 golf balls in the beginning.
Q2. How many golf balls did Michael lose on tuesday? Michael lost 23 golf balls on tuesday.

Q3. How many golf balls did Michael lose on wednesday? Michael lost 2 golf balls on wednesday.

Final Answer: How many golf balls did Michael have at the end of wednesday? He had 58 - 23 - 2 = 33 balls.
The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

A: To answer the above question, we need to answer the following subquestions:

Q1. How much money did Olivia have in the beginning? Olivia had $23 in the beginning.

Q2. How much did each bagel cost? Each bagel cost $3.

Q3. How many bagels did Olivia buy? Olivia bought 5 bagels.

Final Answer: How much money does Olivia have left? Now she has $23 - $5*3 = $8. The answer is 8.
Q: [QUESTION]

A: To answer the above question, we need to answer the following subquestions:"

Faithful-CoT
User Prompt

"4 Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?

To answer this question, write a Python program to answer the following subquestions:

1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"|)
trees_begin = 15

2. How many trees are there in the end? (independent, support: ["there will be 21 trees"|)

trees _end = 21

3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])

trees today = trees _end — trees_begin

4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

To answer this question, write a Python program to answer the following subquestions:

1. How many computers were there in the beginning? (independent, support: ["There were nine comput-
ers"])

computers begin =9

2. How many computers were installed each day? (independent, support: ["Five more computers were
installed each day"])

111

Chapter 8. Appendices

computers each day =5

3. How many days were there from monday to thursday? (independent, support: ["External knowledge:
days of the week are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, so there are 4 days
from Monday to Thursday"])

days monday to thursday = 4
4. How many new computers were installed? (depends on 2 and 3, support: [])
computers _new = 0
for 1 in range(days monday to_ thursday):
computers new += computers each day
5. How many computers are now in the server room? (depends on 1 and 4, support: [|)
computers _now = computers_begin + computers new
6. Final Answer: How many computers are now in the server room? (depends on 5, support: [])
answer = computers _now

Q: Danny has 3 bottles of soda. He drinks 90% of one bottle and gives 70% of the other two bottles to
his friends. How much soda does Danny have left, expressed as a percentage of a bottle?

To answer this question, write a Python program to answer the following subquestions:
1. How much of one bottle did Danny drink? (independent, support: ["He drinks 90% of one bottle"])
fraction_bottle drink = 0.9

2. How much of the other two bottles did Danny give to his friends? (independent, support: ["gives 70%
of the other two bottles to his friends"])

fraction_bottle give = 0.7

3. How much soda is left in the bottle Danny drank from? (depends on 1, support: [])
fraction _bottle drink left =1 — fraction_bottle drink

4. How much soda is left in the two bottles Danny gave his friends? (depends on 2, support: [|)
fraction_bottle _give left = (1 — fraction _bottle _give) x 2

5. How much soda does Danny have left in total? (depends on 3 and 4, support: |])

fraction _soda_left = fraction _bottle drink left + fraction bottle give left

6. How much soda does Danny have left in total, expressed as a percentage of a bottle? (depends on 5,
support: ["External knowledge: fraction multiplied by 100 is a percent"])

percent _soda_left = fraction _soda_left 100

7. Final Answer: How much soda does Danny have left, expressed as a percentage of a bottle? (depends
on 6, support: [])

answer = percent__soda_left

Q: In a fruit salad, there are raspberries, green grapes, and red grapes. There are seven more than 3 times
the number of red grapes as green grapes. There are 5 less raspberries than green grapes. If there are 102
pieces of fruit in the salad, how many red grapes are in the salad?

To answer this question, write a Python program to answer the following subquestions:
1. How many green grapes are there? (independent, support: [|)

green__grapes = Symbol(” green__grapes”)

112

8.1. Prompts used for the experiments

2. How many red grapes are there? (depends on 1, support: ["There are seven more than 3 times the
number of red grapes as green grapes"|)

red_grapes = 3 x green__grapes + 7

3. How many raspberries are there? (depends on 1, support: ["There are 5 less raspberries than green
grapes"|)

raspberries = green__grapes — 5

4. How many total pieces of fruit are there? (depends on 1, 2, and 3, support: "there are 102 pieces of
fruit in the salad")

total _fruit_eq = Eq(green_grapes + red_grapes + raspberries, 102)
5. How many green grapes are in the salad based on this equation? (depends on 1 and 4, support: [])
green__grapes_val = solve _it(total _fruit _eq,green_grapes)[green__grapes]

6. How many red grapes are in the salad given the number of green grapes? (depends on 1, 2 and 5,
support: "how many red grapes are in the salad?"])

red_grapes val = red__grapes.subs(green _grapes, green__grapes_val)
7. Final Answer: how many red grapes are in the salad? (depends on 6, support: [])
answer = red__grapes_val

Follow the format of the examples above to answer the following question. Don’t say anything else at the
beginning or at the end of your answer. Just give the code with the comments as in the examples.

Q: [QUESTION]

To answer this question, write a Python program to answer the following subquestions:"

8.1.2 SVAMP
Standard 1O Prompting
System Prompt

"You are a chatbot that always responds in the way of "The answer is X’, where X is just a number, the
answer to the question.”

User Prompt

"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

: The answer is 6.
: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
: The answer is 5.

: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

- O B> O

: The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

A: The answer is 9.

113

Chapter 8. Appendices

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: The answer is 8.

Q: [QUESTION]

A"

Chain-of-Thought (CoT) Prompting
System Prompt

"You are an assistant proficient in solving math problems using a step-by-step reasoning method. Follow the
format shown in the examples provided and solve only the last question step-by-step. Give the final answer
in the way of 'The answer is X’, where X is just a number.”

User Prompt

"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted.
So, they must have planted 21 - 15 = 6 trees. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
A: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

A: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates.
35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The number of
lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

A: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more from dad,
so in total he has 7 + 2 = 9 toys. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: There are 4 days from monday to thursday. 5 computers were added each day. That means in total 4
* 5 = 20 computers were added. There were 9 computers in the beginning, so now there are 9 + 20 = 29
computers. The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls. On Wednesday
he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.

114

8.1. Prompts used for the experiments

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

A: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had $23 in
beginning, so now she has $23 - $15 = $8. The answer is 8.

Q: [QUESTION]
A

Least-to-Most Prompting
System Prompt

"You are an assistant proficient in solving math problems using a Least-to-Most (LTM) reasoning method.
For each question, you will break down the problem into smaller subquestions @1, Q2, etc., and then provide
the final answer in the format: *The answer is X', where X is just a number. Follow the format shown in the
examples provided and answer only the final question.”

User Prompt

"Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?

A: To answer the above question, we need to answer the following subquestions:
Q1. How many trees are there in the beginning? There are 15 trees.
Q2. How many trees will there be after the grove workers plant trees? There are 21 trees.

Final Answer: How many trees did the grove workers plant today? They planted 21 - 15 = 6 trees. The
answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many cars are there in the beginning? There are 3 cars.

Q2. How many cars arrive? 2 more cars arrive.

Final Answer: How many cars are in the parking lot? Now there are 3 + 2 = 5 cars. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
A: To answer the above question, we need to answer the following subquestions:

Q1. How many chocolates did Leah have in the beginning? Leah had 32 chocolates in the beginning.

Q2. How many chocolates did her sister have in the beginning? Her sister had 42 in the beginning.

Q3. How many chocolates did they eat? They ate 35 chocolates.

Final Answer: How many chocolates do they have left in total? They still have 32 + 42 - 35 = 39 chocolates
left in total. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops
did Jason give to Denny?

A: To answer the above question, we need to answer the following subquestions:
Q1. How many lollipops did Jason have in the beginning? Jason had 20 lollipops in the beginning.
Q2. How many lollipops does Jason have now? Jason has 12 lollipops now.

Final Answer: How many lollipops did Jason give to Denny? He gave 20 - 12 = 8 lollipops to Denny. The
answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does
he have now?

115

Chapter 8. Appendices

A: To answer the above question, we need to answer the following subquestions:
Q1. How many toys does Shawn have in the beginning? Shawn has 5 toys in the beginning.
Q2. How many toys did Shawn get from his mom? Shawn got 2 toys from his mom.

Q3. How many toys did Shawn get from his dad? Shawn got 2 toys from his dad. Final Answer: How many
toys does Shawn have now? Shawn has 5 + 2 + 2 = 9 toys now. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed each day, from monday
to thursday. How many computers are now in the server room?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many computers were there in the beginning? There were 9 computers in the beginning.

Q2. How many computers were added each day? 5 computers were added each day.

Q3. How many days were there from monday to thursday? There are 4 days from monday to thursday.

Final Answer: How many computers are now in the server room? Now there are 9 + 4*5 = 29 computers.
The answer is 29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many
golf balls did he have at the end of wednesday?

A: To answer the above question, we need to answer the following subquestions:

Q1. How many golf balls did Michael have in the beginning? Michael had 58 golf balls in the beginning.
Q2. How many golf balls did Michael lose on tuesday? Michael lost 23 golf balls on tuesday.

Q3. How many golf balls did Michael lose on wednesday? Michael lost 2 golf balls on wednesday.

Final Answer: How many golf balls did Michael have at the end of wednesday? He had 58 - 23 - 2 = 33 balls.
The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

A: To answer the above question, we need to answer the following subquestions:

Q1. How much money did Olivia have in the beginning? Olivia had $23 in the beginning.

Q2. How much did each bagel cost? Each bagel cost $3.

Q3. How many bagels did Olivia buy? Olivia bought 5 bagels.

Final Answer: How much money does Olivia have left? Now she has $23 - $5*3 = $8. The answer is 8.
Q: [QUESTION]

A: To answer the above question, we need to answer the following subquestions:"

Faithful-CoT
User Prompt

"# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?

To answer this question, write a Python program to answer the following subquestions:

1. How many trees are there in the beginning? (independent, support: ["There are 15 trees"])
trees begin =15

2. How many trees are there in the end? (independent, support: ["there will be 21 trees"])
trees _end = 21

3. How many trees did the grove workers plant today? (depends on 1 and 2, support: [])

116

8.1. Prompts used for the experiments

trees _today = trees _end — trees _begin
4. Final Answer: How many trees did the grove workers plant today? (depends on 3, support: [])
answer = trees_today

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

To answer this question, write a Python program to answer the following subquestions:

1. How many computers were there in the beginning? (independent, support: ["There were nine comput-
ers"])

computers _begin =9

2. How many computers were installed each day? (independent, support: ["Five more computers were
installed each day"])

computers _each day =5

3. How many days were there from monday to thursday? (independent, support: ["External knowledge:
days of the week are Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, so there are 4 days
from Monday to Thursday"])

days monday to thursday = 4
4. How many new computers were installed? (depends on 2 and 3, support: [|)
computers new = 0
for i in range(days monday_ to_thursday):

computers new 4= computers each day
5. How many computers are now in the server room? (depends on 1 and 4, support: [])
computers _now = computers__begin + computers _new
6. Final Answer: How many computers are now in the server room? (depends on 5, support: [])
answer = computers_now

Q: Danny has 3 bottles of soda. He drinks 90% of one bottle and gives 70% of the other two bottles to
his friends. How much soda does Danny have left, expressed as a percentage of a bottle?

To answer this question, write a Python program to answer the following subquestions:
1. How much of one bottle did Danny drink? (independent, support: ["He drinks 90% of one bottle"])
fraction_bottle drink = 0.9

2. How much of the other two bottles did Danny give to his friends? (independent, support: ["gives 70%
of the other two bottles to his friends"])

fraction _bottle _give = 0.7

3. How much soda is left in the bottle Danny drank from? (depends on 1, support: |[])
fraction _bottle _drink _left =1 — fraction bottle drink

4. How much soda is left in the two bottles Danny gave his friends? (depends on 2, support: [|)
fraction_bottle _give left = (1 — fraction_bottle give) * 2

5. How much soda does Danny have left in total? (depends on 3 and 4, support: |[])

fraction _soda_left = fraction _bottle _drink left + fraction bottle give left

6. How much soda does Danny have left in total, expressed as a percentage of a bottle? (depends on 5,
support: ["External knowledge: fraction multiplied by 100 is a percent"])

117

Chapter 8. Appendices

percent _soda_left = fraction _soda_left 100

7. Final Answer: How much soda does Danny have left, expressed as a percentage of a bottle? (depends
on 6, support: [])

answer = percent__soda_left

Q: In a fruit salad, there are raspberries, green grapes, and red grapes. There are seven more than 3 times
the number of red grapes as green grapes. There are 5 less raspberries than green grapes. If there are 102
pieces of fruit in the salad, how many red grapes are in the salad?

To answer this question, write a Python program to answer the following subquestions:
1. How many green grapes are there? (independent, support: [])
green__grapes = Symbol(” green__grapes”)

2. How many red grapes are there? (depends on 1, support: ["There are seven more than 3 times the
number of red grapes as green grapes"|)

red_grapes = 3 x green__grapes + 7

3. How many raspberries are there? (depends on 1, support: ["There are 5 less raspberries than green
grapes"])

raspberries = green__grapes — 5

4. How many total pieces of fruit are there? (depends on 1, 2, and 3, support: "there are 102 pieces of
fruit in the salad")

total _fruit_eq = Eq(green_grapes + red_grapes + raspberries, 102)
5. How many green grapes are in the salad based on this equation? (depends on 1 and 4, support: [])
green__grapes_val = solve _it(total _fruit_eq, green_grapes)[green__grapes]

6. How many red grapes are in the salad given the number of green grapes? (depends on 1, 2 and 5,
support: "how many red grapes are in the salad?"])

red _grapes_val = red__grapes.subs(green__grapes, green__grapes_val)
7. Final Answer: how many red grapes are in the salad? (depends on 6, support: [])
answer = red__grapes_val

Q: Denise will be 25 years old in two years. Her sister, Diane, is 4 years younger. In how many years will
Diane be 25 years old?

To answer this question, write a Python program to answer the following subquestions:

1. How old will Denise be in two years? (independent, support: ["Denise will be 25 years old in two
years"])

age denise_in_2y = 25
2. How old is Denise now? (depends on 1, support: ["Denise will be 25 years old in two years"])
age denise_now = age__denise__in_ 2y — 2
3. How old is Diane now? (depends on 2, support: ["Diane, is 4 years younger"])
age _diane_now = age _denise_now — 4
4. In how many years will Diane be 25 years old? (depends on 3, support: [])
years _until _diane 25 = 25 — age_diane_now

5. Final Answer: In how many years will Diane be 25 years old? (depends on 4, support:

y ¥ ¥

answer = years_until diane 25

118

8.1. Prompts used for the experiments

Q: There were 90 people at the summer picnic. There were 50 soda cans, 50 plastic bottles of sparkling
water, and 50 glass bottles of juice. One-half of the guests drank soda, one-third of the guests drank sparkling
water, and four-fifths of the juices were consumed. How many recyclable cans and bottles were collected?

To answer this question, write a Python program to answer the following subquestions:

1. How many people were at the summer picnic? (independent, support: ["There were 90 people"])
people = 90

2. How many soda cans were there? (independent, support: ["There were 50 soda cans"|)
soda__cans = 50

3. How many plastic bottles of sparkling water were there? (independent, support: ["50 plastic bottles of
sparkling water"])

sparkling _water _bottles = 50

4. How many glass bottles of juice were there? (independent, support: ["50 glass bottles of juice"])
juice bottles = 50

5. How many guests drank soda? (depends on 1, support: ["One-half of the guests drank soda"])
soda__consumed = people x 1/2

6. How many guests drank sparkling water? (depends on 1, support: ["one-third of the guests drank
sparkling water"|)

sparkling _water _consumed = people * 1/3

7. How many juices were consumed? (depends on 4, support: ["four-fifths of the juices were consumed"])
juices _consumed = juice bottles x 4/5

8. How many recyclable cans and bottles were collected? (depends on 5, 6, and 7, support: [])
cans_and_bottles collected = soda _consumed + sparkling _water consumed + juices _consumed

9. Final Answer: How many recyclable cans and bottles were collected? (depends on 8, support: [])
answer = cans__and__bottles collected

Q: Mark has an egg farm. His farm supplies one store with 5 dozen eggs and another store with 30 eggs
each day. How many eggs does he supply these two stores in a week?

To answer this question, write a Python program to answer the following subquestions:

1. How many items are in one dozen? (independent, support: ["External knowledge: there are 12 items
in a dozen"]

n_in_dozen =12

2. How many eggs does Mark supply to one store each day? (depends on 1, support: ["supplies one store
with 5 dozen eggs"])

eggs_one_store_each day =5x*n_in_dozen

3. How many eggs does Mark supply to another store each day? (independent, support: ["another store
with 30 eggs each day"])

eggs_another _store_each day = 30

4. How many days are there in a week? (independent, support: ["External knowledge: there are seven
days in a week"])

days _in_week =17

5. How many eggs does Mark supply these two stores in a week? (depends on 2, 3, and 4, support: [])

119

Chapter 8. Appendices

eggs week = 0
for i in range(days in_ week):
eggs week 4= eggs one store each day + eggs another store each day
6. Final Answer: How many eggs does he supply these two stores in a week? (depends on 5, support: [])

answer = eggs_week

Q: Rebecca makes her own earrings out of buttons, magnets, and gemstones. For every earring, she uses
two magnets, half as many buttons as magnets, and three times as many gemstones as buttons. If Rebecca
wants to make 4 sets of earrings, how many gemstones will she need?

To answer this question, write a Python program to answer the following subquestions:

1. How many magnets does Rebecca need for one earring? (independent, support: ["For every earring,
she uses two magnets"])

magnets _per _earring = 2

2. How many earrings are in a set? (independent, support: ["External knowledge: there are two earrings
in a set, one per ear"|)

earrings_per set =2
3. How many magnets does Rebecca need for one set of earrings? (depends on 1 and 2, support: [])
magnets _per _set = magnets _per _earring * earrings_per _set

4. How many buttons does Rebecca need for one set of earrings? (depends on 3, support: ["half as many
buttons as magnets"])

buttons _per _set = magnets per set*1/2

5. How many gemstones does Rebecca need for one set of earrings? (depends on 4, support: ["three times
as many gemstones as buttons"|)

gemstones _per _set = buttons _per _set x 3

6. How many gemstones does Rebecca need for 4 sets of earrings? (depends on 5, support: ["Rebecca
wants to make 4 sets of earrings"])

gemstones 4 sets = gemstones per set x4

7. Final Answer: If Rebecca wants to make 4 sets of earrings, how many gemstones will she need? (depends
on 6, support: |[])

answer = gemstones 4 sets

Follow the format of the examples above to answer the following question. Don’t say anything else at the
beginning or at the end of your answer. Just give the code with the comments as in the examples.

Q: [QUESTION]

To answer this question, write a Python program to answer the following subquestions:"

8.1.3 Game of 24

Standard 10 Prompting

System Prompt

"Give the final answer in the way shown in the examples, like ’Answer: your answer’.”
User Prompt (corresponding number of examples based on the shot count)

"Use numbers and basic arithmetic operations (4 - * /) to obtain 24.

Input: 4468

120

8.1. Prompts used for the experiments

Answer: (4 +8) * (6-4) =24
Input: 2 9 10 12

Answer: 2 %12 * (10-9) = 24
Input: 4 9 10 13

Answer: (13-9) * (10-4) =24
Input: 1488

Answer: (8 /4 +1)*8 =24
Input: 5559

Answer: 5 +5 + 5+ 9 =24
Input: 1559

Answer: (1 +5) * (9-5) =24
Input: 510 12 13

Answer: (5 + 10 - 13) * 12 = 24
Input: 4 58 13

Answer: 4 *8 4 5-13 = 24
Input: state

Answer:"

Chain-of-Thought (CoT) Prompting
System Prompt

"Follow a step-by-step solution as shown in the examples and give your final answer as: ’Answer:

your _answer’."

User Prompt (corresponding number of examples based on the shot count)

"Use the input numbers and basic arithmetic operations (+ - * /) to obtain 24. Each step, you are only
allowed to choose two of the remaining numbers to obtain a new number.

Input: 4468

Steps:

4+ 8 =12 (left: 46 12)

6-4 =2 (left: 212)

2% 12 — 24 (left: 24)

Answer: (6-4) * (4 +8) =24
Input: 29 10 12

Steps: 12 * 2 = 24 (left: 9 10 24)
10-9 =1 (left: 1 24)

24 * 1 = 24 (left: 24)

Answer: (12 *2) * (10-9) = 24
Input: 4 9 10 13

Steps:

121

Chapter 8. Appendices

13-10 = 3 (left: 34 9)
9-3 =56 (left: 46)

4% 6 = 24 (left: 24)

Answer: 4 * (9 - (13- 10)) = 24
Input: 1488

Steps:

8 /4 =2 (left: 128)

1+ 2 =3 (left: 38)

3 *8 =24 (left: 24)

Answer: (1 +8/4)*8 =24
Input: 5559

Steps:

54 5 =10 (left: 59 10)

10 + 5 = 15 (left: 9 15)

15 + 9 = 24 (left: 24)

Answer: ((5+5) +5) +9 =24
Input: 1559

Steps:

1+5=6 (left: 569)
9-5=4 (left: 46)

4% 6 = 24 (left: 24)

Answer: (1 +5) * (9-5) =24
Input: 510 12 13

Steps:

5+ 10 = 15 (left: 12 13 15)
15 - 13 = 2 (left: 2 12)

2% 12 = 24 (left: 24)

Answer: (5 + 10- 13) * 12 = 24
Input: 458 13

Steps:

4% 8 = 32 (left: 5 13 32)

5 4 32 = 37 (left: 13 37)

37 - 13 = 24 (left: 24)

Answer: 4 *8 4 5-13 = 24
Input: state

Answer:"

122

8.1. Prompts used for the experiments

Puzzle Translation
System Prompt

You are an expert assistant specializing in solving problems by writing Python programs. Ensure your response
can be directly executed as a Python script. Any non-code explanations should be included as comments, and
the Python code should be enclosed within triple backticks (“‘python). Finally, store your complete solution
in a variable called ’answer’.

User Prompt (Indicating the steps of reasoning)

"Use the input numbers and basic arithmetic operations (+ - * /) to obtain 24. Your answer should be an
expression with numbers and operations. Do NOT print the answer, just store it.

Input: state

Generate the required code for the steps below:

1. What are the available numbers?

2. What is the target result?

3. What operations can be used between the numbers?

4. Explore all possible permutations of the numbers

5. Explore all possible combinations of the three operations

6. Different possible ways to group numbers and operations

7. Evaluate each expression to see if it equals the target result
8. Store the solution in the ’answer’ variable

Answer:"

123

Chapter 8. Appendices

124

Chapter 9

Bibliography

1]

2l
13l

4]
5]
[6]
7]
18]
19]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]

[19]
[20]

[21]

Agostinelli, F. et al. “Solving the Rubik’s cube with deep reinforcement learning and search”. In:
Nature Machine Intelligence 1 (2019), pp. 356-363. URL:

Anil, R. et al. “PaLLM 2 Technical Report”. In: ArXiv abs/2305.10403 (2023). URL:

Argyrou, G. et al. Automatic Generation of Fashion Images using Prompting in Generative Machine
Learning Models. 2024. arXiv: 2407 .14944 [cs.CV]. URL:

Bang, Y. et al. “A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hal-
lucination, and Interactivity”. In: ArXiv abs/2302.04023 (2023). URL:

Bao, Q. et al. “A Systematic Evaluation of Large Language Models on Out-of-Distribution Logical
Reasoning Tasks”. In: ArXiv abs/2310.09430 (2023). URL:

Barj, H. N. E. and Sautory, T. Reinforcement Learning from LLM Feedback to Counteract Goal Mis-
generalization. 2024. arXiv: 2401.07181 [cs.LG].

Besta, M. et al. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. 2023.
arXiv: 2308.09687 [cs.CL].

Besta, M. et al. Demystifying Chains, Trees, and Graphs of Thoughts. 2024. arXiv: 2401 . 14295
[cs.CL].

Bisk, Y. et al. “PIQA: Reasoning about Physical Commonsense in Natural Language”. In: ArXiv
abs/1911.11641 (2019). URL:

Brown, T. B. et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165 [cs.CL]. URL:
Brown, T. B. et al. “Language Models are Few-Shot Learners”. In: ArXiv abs/2005.14165 (2020). URL:
Campbell, M., Hoane, A., and Hsu, F.-h. “Deep Blue”. In: Artificial Intelligence 134.1 (2002), pp. 57—
83. 18sN: 0004-3702. DOIL: https://doi.org/10.1016/S0004-3702(01)00129-1. URL:

Chen, B. et al. “Unleashing the potential of prompt engineering in Large Language Models: a com-
prehensive review”. In: ArXiv abs/2310.14735 (2023). URL:

Chen, J. “Different Algorithms to Solve a Rubik’s Cube”. In: Journal of Physics: Conference Series
2386.1 (Dec. 2022), p. 012018. poI: 10.1088/1742-6596/2386/1/012018. URL:

Chen, M. et al. “Evaluating Large Language Models Trained on Code”. In: ArXiv abs/2107.03374
(2021). URL:

Chen, W. et al. “Program of Thoughts Prompting: Disentangling Computation from Reasoning for
Numerical Reasoning Tasks”. In: Trans. Mach. Learn. Res. 2023 (2022). URL:

Chi, E. C. and Lange, K. Techniques for Solving Sudoku Puzzles. 2013. arXiv: 1203.2295 [math.0C].
Chu, Z. et al. “A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future”. In: ArXiv
abs,/2309.15402 (2023). URL:

Chung, H. W. et al. “Scaling Instruction-Finetuned Language Models”. In: ArXiv abs/2210.11416
(2022). URL:

Cobbe, K. et al. “Training Verifiers to Solve Math Word Problems”. In: ArXiv abs/2110.14168 (2021).
URL:

Conneau, A. et al. “Unsupervised Cross-lingual Representation Learning at Scale”. In: Annual Meeting
of the Association for Computational Linguistics. 2019. URL:

125

https://arxiv.org/abs/2407.14944
https://arxiv.org/abs/2401.07181
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2401.14295
https://arxiv.org/abs/2401.14295
https://arxiv.org/abs/2005.14165
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1088/1742-6596/2386/1/012018
https://arxiv.org/abs/1203.2295

Chapter 9. Bibliography

22]
[23]
[24]
[25]
[26]
[27]
28]

[29]
[30]

31)
32)
33)
341
135)
136]
137]
38)
39]
40}
ja1)
j42)
j43]
ja4]
jas)
Ja6]
ja7]
ja8]

[49]
[50]

Creswell, A., Shanahan, M., and Higgins, 1. “Selection-Inference: Exploiting Large Language Models
for Interpretable Logical Reasoning”. In: ArXiv abs/2205.09712 (2022). URL:

Del, M. and Fishel, M. “True Detective: A Deep Abductive Reasoning Benchmark Undoable for GPT-3
and Challenging for GPT-4". In: STARSEM. 2022. URL:

Devlin, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. URL:

Ding, R. et al. “Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation”.
In: ArXiv abs/2311.04254 (2023). URL:

Dong, Q. et al. A Survey on In-context Learning. 2023. arXiv: 2301.00234 [cs.CL].

Dubey, A. et al. The Llama 3 Herd of Models. 2024. arXiv: 2407.21783 [cs.AI]. URL:

Efrat, A. et al. “Cryptonite: A Cryptic Crossword Benchmark for Extreme Ambiguity in Language”.
In: ArXiv abs/2103.01242 (2021). URL:

Feng, J. et al. “Language Models can be Logical Solvers”. In: ArXiv abs/2311.06158 (2023). URL:
Feng, X. et al. “ChessGPT: Bridging Policy Learning and Language Modeling”. In: ArXiv
abs,/2306.09200 (2023). URL:

Filandrianos, G. et al. Counterfactuals of Counterfactuals: a back-translation-inspired approach to
analyse counterfactual editors. 2023. arXiv: 2305.17055 [cs.CL]. URL:

Flach, P. A. and Kakas, A. C. “Abductive and inductive reasoning: background and issues”. In: 2000.
URL:

Fu, Y. et al. “Complexity-Based Prompting for Multi-Step Reasoning”. In: ArXiv abs/2210.00720
(2022). URL:

Gage, P. “A new algorithm for data compression”. In: The C Users Journal archive 12 (1994), pp. 23—
38. URL:

Gao, L. et al. “PAL: Program-aided Language Models”. In: ArXiv abs/2211.10435 (2022). URL:
Geva, M. et al. “Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reason-
ing Strategies”. In: Transactions of the Association for Computational Linguistics 9 (2021), pp. 346—
361. URL:

Ghosal, D. et al. “Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Chal-
lenges in Multimodal Reasoning”. In: ArXiv abs/2403.03864 (2024). URL:

Giadikiaroglou, P. et al. Puzzle Solving using Reasoning of Large Language Models: A Survey. 2024.
arXiv: 2402.11291 [cs.CL]. URL:

Grigoriadou, N. et al. AILS-NTUA at SemFEval-2024 Task 6: Efficient model tuning for hallucination
detection and analysis. 2024. arXiv: 2404.01210 [cs.CL]. URL:

Gu, Z. et al. “Go Beyond The Obvious: Probing the gap of INFORMAL reasoning ability between
Humanity and LLMs by Detective Reasoning Puzzle Benchmark”. In: 2023. URL:

Guo, J. et al. “Suspicion-Agent: Playing Imperfect Information Games with Theory of Mind Aware
GPT-4". In: ArXiv abs/2309.17277 (2023). URL:

Gupta, A. “Are ChatGPT and GPT-4 Good Poker Players? - A Pre-Flop Analysis”. In: ArXiv
abs/2308.12466 (2023). URL:

Hochreiter, S. and Schmidhuber, J. “Long Short-Term Memory”. In: Neural Computation 9 (1997),
pp- 1735-1780. URL:

Huang, C. et al. “PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold’em via
Large Language Model”. In: ArXiv abs/2401.06781 (2024). URL:

Huang, J. and Chang, K. C.-C. “Towards Reasoning in Large Language Models: A Survey”. In: ArXiv
abs/2212.10403 (2022). URL:

Huang, L. et al. A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Chal-
lenges, and Open Questions. 2023. arXiv: 2311.05232 [cs.CL]. URL:

Huang, S. et al. “LatEval: An Interactive LLMs Evaluation Benchmark with Incomplete Information
from Lateral Thinking Puzzles”. In: ArXiv abs/2308.10855 (2023). URL:

Ishay, A., Yang, Z., and Lee, J. “Leveraging Large Language Models to Generate Answer Set Pro-
grams”. In: ArXiv abs/2307.07699 (2023). URL:

Jiang, A. Q. et al. “Mistral 7B”. In: ArXiv abs/2310.06825 (2023). URL:

Jiang, Y., Ilievski, F., and Ma, K. “BRAINTEASER: Lateral Thinking Puzzles for Large Language
Models”. In: Conference on Empirical Methods in Natural Language Processing. 2023. URL:

126

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.17055
https://arxiv.org/abs/2402.11291
https://arxiv.org/abs/2404.01210
https://arxiv.org/abs/2311.05232

[51]
[52]
[53]

[54]

[55]
[56]
[57]

[58]

[59]
[60]
[61]
162]
[63]

[64]

[65]
[66]
(67]
[68]
[69]
[70]
[71]

72|
73]

[74]
[75]

Kazemi, M. et al. “BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory
Information”. In: ArXiv abs/2306.07934 (2023). URL:

Khashabi, D. et al. “UnifiedQA: Crossing Format Boundaries With a Single QA System”. In: Findings.
2020. URL:

Kojima, T. et al. Large Language Models are Zero-Shot Reasoners. 2023. arXiv: 2205.11916 [cs.CL].
URL:

Koncel-Kedziorski, R. et al. “MAWPS: A Math Word Problem Repository”. In: Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Ed. by K. Knight, A. Nenkova, and O. Rambow. San Diego, California:
Association for Computational Linguistics, June 2016, pp. 1152-1157. DOI: 10.18653/v1/N16-1136.
URL:

Korf, R. E. “Finding Optimal Solutions to Rubik’s Cube Using Pattern Databases”. In: AAAI/IAAL
1997. URL:

Koulakos, A. et al. Enhancing adversarial robustness in Natural Language Inference using explanations.
2024. arXiv: 2409.07423 [cs.CL]. URL:

Kritharoula, A., Lymperaiou, M., and Stamou, G. Language Models as Knowledge Bases for Visual
Word Sense Disambiguation. 2023. arXiv: 2310.01960 [cs.CL]. URL:

Kritharoula, A., Lymperaiou, M., and Stamou, G. “Large Language Models and Multimodal Retrieval
for Visual Word Sense Disambiguation”. In: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. Ed. by H. Bouamor, J. Pino, and K. Bali. Singapore: Association for
Computational Linguistics, Dec. 2023, pp. 13053-13077. DOI: 10.18653/v1/2023.emnlp-main.807.
URL:

Kulshreshtha, S. et al. “Down and Across: Introducing Crossword-Solving as a New NLP Benchmark”.
In: ArXiv abs/2205.10442 (2022). URL:

Lan, Y. et al. “LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon
Gameplay”. In: ArXiv abs/2310.14985 (2023). URL:

Lan, Z. et al. “ALBERT: A Lite BERT for Self-supervised Learning of Language Representations”. In:
ArXiv abs/1909.11942 (2019). URL:

Lei, B. et al. “Boosting Logical Reasoning in Large Language Models through a New Framework: The
Graph of Thought”. In: ArXiv abs/2308.08614 (2023). URL:

Lester, B., Al-Rfou, R., and Constant, N. “The Power of Scale for Parameter-Efficient Prompt Tuning”.
In: Conference on Empirical Methods in Natural Language Processing. 2021. URL:

Lewis, M. et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Gener-
ation, Translation, and Comprehension”. In: Annual Meeting of the Association for Computational
Linguistics. 2019. URL:

Lewis, M. et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Genera-
tion, Translation, and Comprehension. 2019. arXiv: 1910.13461 [cs.CL]. URL:

Li, Y., Wang, H., and Zhang, C. “Assessing Logical Puzzle Solving in Large Language Models: Insights
from a Minesweeper Case Study”. In: ArXiv abs/2311.07387 (2023). URL:

Lin, B. Y. et al. “RiddleSense: Reasoning about Riddle Questions Featuring Linguistic Creativity and
Commonsense Knowledge”. In: Findings. 2021. URL:

Lin, B. Y. et al. RiddleSense: Reasoning about Riddle Questions Featuring Linguistic Creativity and
Commonsense Knowledge. 2021. arXiv: 2101.00376 [cs.CL]. URL:

Liu, H. et al. “Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4”. In: ArXiv
abs/2304.03439 (2023). URL:

Liu, H. et al. “GLoRE: Evaluating Logical Reasoning of Large Language Models”. In: ArXiv
abs/2310.09107 (2023). URL:

Liu, P. et al. “Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural
Language Processing”. In: ACM Computing Surveys 55 (2021), pp. 1-35. URL:

Liu, W. et al. “Mathematical Language Models: A Survey”. In: ArXiv abs/2312.07622 (2023). URL:
Liu, Y. et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: ArXiv
abs/1907.11692 (2019). URL:

Long, J. “Large Language Model Guided Tree-of-Thought”. In: ArXiv abs/2305.08291 (2023). URL:
Luo, M. et al. “Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning
Capabilities of Language Models”. In: ArXiv abs/2310.00836 (2023). URL:

127

https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/N16-1136
https://arxiv.org/abs/2409.07423
https://arxiv.org/abs/2310.01960
https://doi.org/10.18653/v1/2023.emnlp-main.807
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2101.00376

Chapter 9. Bibliography

[76]
[77]

[78]
[79]

[80]
[81]

82]

[83]

[84]
[85]

86]
87]
88)
89]
190]
91)
j92]
193]
[94]

[95]

[96]
97]

98]
9]

[100]
[101]

[102]

[103]

Luo, M. et al. Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning
Capabilities of Language Models. 2024. arXiv: 2310.00836 [cs.CL]. URL:

Lymperaiou, M. et al. Towards explainable evaluation of language models on the semantic similarity
of visual concepts. 2022. arXiv: 2209.03723 [cs.CL]. URL:

Lyu, Q. et al. “Faithful Chain-of-Thought Reasoning”. In: ArXiv abs/2301.13379 (2023). URL:
Madaan, A. et al. “Self-Refine: Iterative Refinement with Self-Feedback”. In: ArXiv abs/2303.17651
(2023). URL:

Markaki, S. and Panagiotakis, C. “Jigsaw puzzle solving techniques and applications: a survey”. In:
The Visual Computer 39 (2022), pp. 4405-4421. URL:

McAleer, S. et al. Solving the Rubik’s Cube Without Human Knowledge. 2018. arXiv: 1805 . 07470
[cs.AT].

Miao, S.-Y., Liang, C.-C., and Su, K.-Y. “A Diverse Corpus for Evaluating and Developing English
Math Word Problem Solvers”. In: Annual Meeting of the Association for Computational Linguistics.
2020. URL:

Mikolov, T. et al. Efficient Estimation of Word Representations in Vector Space. 2013. arXiv: 1301.
3781 [cs.CL]. URL:

Minaee, S. et al. Large Language Models: A Survey. 2024. arXiv: 2402.06196 [cs.CL]. URL:

Mitra, A. and Baral, C. “Learning to Automatically Solve Logic Grid Puzzles”. In: Conference on
Empirical Methods in Natural Language Processing. 2015. URL:

Mo, S. and Xin, M. “Tree of Uncertain Thoughts Reasoning for Large Language Models”. In: ArXiv
abs/2309.07694 (2023). URL:

Noever, D. A. and Burdick, R. “Puzzle Solving without Search or Human Knowledge: An Unnatural
Language Approach”. In: ArXiv abs/2109.02797 (2021). URL:

Olausson, T. X. et al. “LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Lan-
guage Models with First-Order Logic Provers”. In: Conference on Empirical Methods in Natural Lan-
guage Processing. 2023. URL:

OpenAl et al. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

Pan, L. et al. “Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful
Logical Reasoning”. In: ArXiv abs/2305.12295 (2023). URL:

Panagiotopoulos, I. et al. “AILS-NTUA at SemEval-2024 Task 9: Cracking Brain Teasers: Transformer
Models for Lateral Thinking Puzzles”. In: ArXiv abs/2404.01084 (2024). URL:

Panagiotopoulos, 1. et al. RISCORE: Enhancing In-Contert Riddle Solving in Language Models
through Context-Reconstructed Example Augmentation. 2024. arXiv: 2409.16383 [cs.CL]. URL:
Papadimitriou, C. et al. Masked Generative Story Transformer with Character Guidance and Caption
Augmentation. 2024. arXiv: 2403.08502 [cs.CV]. URL:

Patel, A., Bhattamishra, S., and Goyal, N. “Are NLP Models really able to Solve Simple Math Word
Problems?” In: North American Chapter of the Association for Computational Linguistics. 2021. URL:
Pennington, J., Socher, R., and Manning, C. “GloVe: Global Vectors for Word Representation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Ed. by A. Moschitti, B. Pang, and W. Daelemans. Doha, Qatar: Association for Computational Lin-
guistics, Oct. 2014, pp. 1532-1543. DOI: 10.3115/v1/D14-1162. URL:

Peters, M. E. et al. Deep contextualized word representations. 2018. arXiv: 1802.05365 [cs.CL]. URL:
Pourcel, J. et al. “ACES: Generating Diverse Programming Puzzles with Autotelic Language Models
and Semantic Descriptors”. In: ArXiv abs/2310.10692 (2023). URL:

Qiao, S. et al. “Reasoning with Language Model Prompting: A Survey”. In: ArXiv abs/2212.09597
(2022). URL:

Radford, A. and Narasimhan, K. “Improving Language Understanding by Generative Pre-Training”.
In: 2018. URL:

Radford, A. et al. “Language Models are Unsupervised Multitask Learners”. In: 2019. URL:

Raffel, C. et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”.
In: J. Mach. Learn. Res. 21 (2019), 140:1-140:67. URL:

Raffel, C. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
2023. arXiv: 1910.10683 [cs.LG]. URL:

Rosenblatt, F. “The perceptron: a probabilistic model for information storage and organization in the
brain.” In: Psychological review 65 6 (1958), pp. 386—408. URL:

128

https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2209.03723
https://arxiv.org/abs/1805.07470
https://arxiv.org/abs/1805.07470
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2409.16383
https://arxiv.org/abs/2403.08502
https://doi.org/10.3115/v1/D14-1162
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1910.10683

[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
18]
[119]
[120]
[121]
[122]
[123]
[124]
[125]

[126]
[127]

[128]
[129]
[130]
[131]

[132]

Rozner, J., Potts, C., and Mahowald, K. “Decrypting Cryptic Crosswords: Semantically Complex
Wordplay Puzzles as a Target for NLP”. In: ArXiv abs/2104.08620 (2021). URL:

Saparov, A. et al. “Testing the General Deductive Reasoning Capacity of Large Language Models
Using OOD Examples”. In: ArXiv abs/2305.15269 (2023). URL:

Savelka, J. et al. Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about
Code. 2023. arXiv: 2303.08033 [cs.CL].

Schuster, T. et al. “Programming Puzzles”. In: ArXiv abs/2106.05784 (2021). URL:

Sherstinsky, A. “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory
(LSTM) network”. In: Physica D: Nonlinear Phenomena 404 (Mar. 2020), p. 132306. 1sSN: 0167-2789.
DOI: 10.1016/j.physd.2019.132306. URL:

Silver, D. et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Al-
gorithm. 2017. arXiv: 1712.01815 [cs.AI].

Simonis, H. “Sudoku as a Constraint Problem”. In: 2005. URL:

Studholme, C. “Minesweeper as a Constraint Satisfaction Problem”. In: 2001. URL:

Szomiu, R. and Groza, A. “A Puzzle-Based Dataset for Natural Language Inference”. In: ArXiv
abs/2112.05742 (2021). URL:

Takano, K. Self-Supervision is All You Need for Solving Rubik’s Cube. 2023. arXiv: 2106 . 03157
[cs.LG].

Talmor, A. et al. “CommonsenseQA: A Question Answering Challenge Targeting Commonsense
Knowledge”. In: ArXiv abs/1811.00937 (2019). URL:

Thomas, K. et al. "I Never Said That": A dataset, taxonomy and baselines on response clarity clas-
sification. 2024. arXiv: 2409.13879 [cs.CL]. URL:

Tong, Y. et al. “Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs’
Non-linear Thinking”. In: ArXiv abs/2310.12342 (2023). URL:

Touvron, H. et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023. arXiv: 2307 .09288
[cs.CL]. URL:

Touvron, H. et al. LLaMA: Open and Efficient Foundation Language Models. 2023. arXiv: 2302.13971
[cs.CL]. URL:

Vaswani, A. et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. URL:

Wang, L. et al. “Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by
Large Language Models”. In: Annual Meeting of the Association for Computational Linguistics. 2023.
URL:

Wang, S. et al. “Avalon’s Game of Thoughts: Battle Against Deception through Recursive Contem-
plation”. In: ArXiv abs/2310.01320 (2023). URL:

Wang, W. et al. “CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question
Answering”. In: Conference on Empirical Methods in Natural Language Processing. 2023. URL:
Wang, X. et al. “Self-Consistency Improves Chain of Thought Reasoning in Language Models”. In:
ArXiv abs/2203.11171 (2022). URL:

Wang, X. et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models. 2023.
arXiv: 2203.11171 [cs.CL]. URL:

Wei, J. et al. “Chain of Thought Prompting Elicits Reasoning in Large Language Models”. In: Advances
in Neural Information Processing Systems. Ed. by A. H. Oh et al. 2022. URL:

Wei, J. et al. “Emergent Abilities of Large Language Models”. In: ArXiv abs/2206.07682 (2022). URL:
Wei, J. et al. Chain-of-Thought Prompting FElicits Reasoning in Large Language Models. 2023. arXiv:
2201.11903 [cs.CL]. URL:

Xu, F., Zhang, Y., and Wan, X.-Y. “CC-Riddle: A Question Answering Dataset of Chinese Character
Riddles”. In: ArXiv abs/2206.13778 (2022). URL:

Xu, F. et al. Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation
and Beyond. 2023. arXiv: 2306.09841 [cs.CL].

Xu, F. et al. “Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evalu-
ation and Beyond”. In: 2023. URL:

Xu, Y. et al. “Exploring Large Language Models for Communication Games: An Empirical Study on
Werewolf”. In: ArXiv abs/2309.04658 (2023). URL:

Yang, S. et al. “Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs”. In: ArXiv
abs/2311.09802 (2023). URL:

129

https://arxiv.org/abs/2303.08033
https://doi.org/10.1016/j.physd.2019.132306
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/2106.03157
https://arxiv.org/abs/2106.03157
https://arxiv.org/abs/2409.13879
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2306.09841

Chapter 9. Bibliography

[133]
[134]

[135]
[136]

[137]

[138]
[139]
[140]
[141]
[142]
[143]
[144]

[145)

Yang, Z. et al. Logical Reasoning over Natural Language as Knowledge Representation: A Survey.
2024. arXiv: 2303.12023 [cs.CL]. URL:

Yao, S. et al. “Tree of Thoughts: Deliberate Problem Solving with Large Language Models”. In: ArXiv
abs/2305.10601 (2023). URL:

Yu, F. et al. Natural Language Reasoning, A Survey. 2023. arXiv: 2303.14725 [cs.CL]. URL:

Yu, Z. et al. “Towards Better Chain-of-Thought Prompting Strategies: A Survey”. In: ArXiv
abs/2310.04959 (2023). URL:

Zeinalipour, K. et al. “Arablcros: Al-Powered Arabic Crossword Puzzle Generation for Educational
Applications”. In: Proceedings of ArabicNLP 2023. Association for Computational Linguistics, 2023.
DOI: 10.18653/v1/2023.arabicnlp-1.23. URL:

Zeinalipour, K. et al. Italian Crossword Generator: Enhancing FEducation through Interactive Word
Puzzles. 2023. arXiv: 2311.15723 [cs.CL].

Zhang, Y. and Wan, X. “BiRdQA: A Bilingual Dataset for Question Answering on Tricky Riddles”.
In: ArXiv abs/2109.11087 (2021). URL:

Zhang, Z. et al. “Automatic Chain of Thought Prompting in Large Language Models”. In: ArXiv
abs,/2210.03493 (2022). URL:

Zhao, H. et al. Explainability for Large Language Models: A Survey. 2023. arXiv: 2309.01029 [cs.CL].
URL:

Zhao, J. and Anderson, C. J. Solving and Generating NPR Sunday Puzzles with Large Language
Models. 2023. arXiv: 2306.12255 [cs.CL].

Zhou, D. et al. “Least-to-Most Prompting Enables Complex Reasoning in Large Language Models”.
In: ArXiv abs/2205.10625 (2022). URL:

Zhou, Y. et al. “Large Language Models Are Human-Level Prompt Engineers”. In: ArXiv
abs/2211.01910 (2022). URL:

Zugarini, A. et al. Clue-Instruct: Text-Based Clue Generation for Educational Crossword Puzzles.
2024. arXiv: 2404.06186 [cs.CL].

130

https://arxiv.org/abs/2303.12023
https://arxiv.org/abs/2303.14725
https://doi.org/10.18653/v1/2023.arabicnlp-1.23
https://arxiv.org/abs/2311.15723
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2306.12255
https://arxiv.org/abs/2404.06186

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό Υπόβαθρο
	Μεγάλα Γλωσσικά Μοντέλα
	Προτροπή

	Επίλυση Παζλ με χρήση ΜΓΜ (Βιβλιογραφική Έρευνα)
	Κατηγοριοποίηση των Παζλ
	Μεθοδολογίες Επίλυσης Παζλ
	Σύνολα Δεδομένων σε Παζλ

	Πειράματα
	Σύνολα Δεδομένων
	Γλωσσικά Μοντέλα
	Μεθοδολογίες
	Ρυθμίσεις Προτροπής
	Αποτελέσματα

	Συμπεράσματα
	Συζήτηση
	Μελλοντικές Κατευθύνσεις

	Introduction
	Background
	Machine Learning
	Categories of Machine Learning
	Data Modalities

	Deep Learning
	Core Components
	Training
	Evaluation

	Large Language Models (LLMs)
	Embeddings
	Transformers
	Attention
	Self-Attention and Transformer Networks
	Pretraining Architectures

	Prompting
	Prompt Categories
	Prompting Techniques

	LLMs and Reasoning
	Categories of Reasoning with LLMs
	Emergent Abilities of LLMs
	Challenges in Logical Reasoning with LLMs
	Comparison to Human Reasoning

	Puzzle Solving and LLMs
	Categorization of Puzzle Problems
	Rule-based Puzzles
	Rule-less Puzzles

	Methods and Strategies
	Prompting Methods
	Puzzle Translation
	Fine-Tuning
	Conventional Methods

	Datasets, Benchmarks and Tasks
	Rule-Based Puzzles
	Rule-less Puzzles

	Literature Review Discussion
	Applied Methods and Dataset Gaps
	Performance Analysis
	Puzzle Generation

	Experiments
	Preliminaries
	Datasets
	Models
	Methodologies
	Prompting Settings

	Experimental Results
	GSM8K Results
	SVAMP Results
	RiddleSense Results
	Game-of-24 Results

	Conclusion
	Discussion
	Future Work

	Appendices
	Prompts used for the experiments
	GSM8K
	SVAMP
	Game of 24

	Bibliography

