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AmayopeDeTal | avTlypoen, 0o KeVoT Kot SLOVOT TG TAPOVGAS EPYOCING, €6 OAOKANPOL N TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton n avartdnwon, amodnikevon kot Stovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVNTIKNG PVONG, LIS TNV TPoLTOOESN VO avapEpPETaL 1) TNy
Tpoélevong Kot va datnpeitarl To wapov ppvopa. Epotipoto tov agpopody T ¥prion g epyaciog
Y10 KEPOOOKOTIKO OKOTO TPEMEL VA, ameLOVVOVTAL TTPOG TOV GLYYPUPEQ.

Ol amdYELC KOl TO GUUTEPAGLLOTA TOV TEPLEXOVTOL GE OVTO TO EYYPAPO EKPPALOVV TOV GUYYPAUPLEN, Ko

dev mpémel va epunvevdel 0TL avtimpoownevovy Ti enionpeg Béceig tov EBvikod Metaofiov [Tolvte-
YVeiov.



IHeptinyn

g auTi T SIMA®UOTIKY EPYACia, LEAETANE TNV amOO00T) TV KOVOVOV YNEoeopiog LETPOVTOG TN
UETPIKT TOPOUOPPWAI] TOVS KAl EVOMUOTOVOVUE GE QLTOVG TPOLAEWEIS TPOKEYEVOL VO ETITOYOVLE
KOADTEPO AMOTEAEGULATOL.

‘Exovpe éva cOvoro n ynpopdpwv Kol £va GOVOLO m vroyn@imy ol onoiol Bewpodue OTL givar
TOmoBETNEVOL GE KATOL0V PETPIKO YDPO. LTOY0G Lag elvar va ekAéEovpe Evay vTOYNPLo oL Aoy1-
GTOTMOLEL TO KOIVWVIKO KOGTOS, SNAASY| TO ABPOIGLA TOV ATOGTAGEWDY TPOG OAOVG TOVG WNPOPOPOLG,
€xovtog OLmG TPOSPaon HLOVO OTIC KATATALEIS TPOTIUNGEDY TMV YNPOPOP®V Kl OYL GTIC TPOYLOTL-
KEG TIWEG TV amootdoemv. H mapapop@won evog kavova yneoeopiag LeTpd Tn (EPOTEPN dLVATY|
omdd00T TOL 6€ GYEom Ue TO PEATIOTO Kovwvikd kdotog. [lapovsialovpe amoteléspota and ™ Pi-
BAloypagia, To omoia TAPEYOVY EPAYLOTO Y10 TI LETPIKN TOPAUOPPDCT UPKETMV YVOOTOV KOVOVEOV
yneopopiag, Kabmg Kot Evay kavova yneopopiag pe PEATIOTN LETPIKT TAPAUOPPOOT).

211 CLVEYELN, LEAETALE TO VEO UaONOLOKA-EVIGYDUEVO TAGLGL0, OTIOV O1 OAYOPIOLLOL XPT|GLLOTOLOVV
TPOPAEYELG TPOEPYOUEVES OO UNYOVIKT UAOnon pe 6100 va PEATIOGOVY TNV 0mdd00T TovG. Av-
Toi ot aAyop1Opol a&lorloyodvtatl pe TIg TUPOUETPOVS TNG ovVvETELas (amdd0oT GTNV TEPITTMGT TOL 1
TpOPAeYT elvar coTN) Kot TG evpwotias (amdO0cN otV TEPITT®SN oV 1 TPOPAEYT givar avbai-
peta AovOaospévn). XpnotomoldvTog 10 LadnolaKd-evioyvUEVo TANIGLO, OITOJEIKVOOVLE QPEYLLOTOL
Y10 TNV GUVETELN KoL TNV €upwoTia kavévev ymeoeopiag. Eotidlovue 610 TpoPANUa g ekAoyng
EMTPOTAOV [E k-PEAN otV TpoypaTikh evbeia, OTov ekhéyovtol k > 3 vToyneLot Kot To KOGTOg KAOE
YNEOPOPOL Yo L1l EXLTPOTY opileTar MG 1 amOGTAGT] TOV OO TO TANGIECTEPO UEAOG TNG EMLTPOTNG,.
[Iponyobueveg epyacieg deiyvouv OTL 1| TAPOUOPPMOOT) Yo AT TO TPOPANUE Oev Elvar Pporyuévr Kot
ot O(k) epomporta yo okpieic 0mootdoelg eivat tkave kot avarykoio yior o Ypoppks (og mpog
T0 TAN00G TV YNeoeopwv) Tapandpemon. O adyopBuds pLag xpnoionolel TPoPAEYEIS OYETIKA LLE
™ BEATIoTN emTpomnt| Ko EmTuyYAvel oTabep GLVETEWD Kot Ypappikh vpootia pe O(k) epotipota
Yo akpiPeis 0mooTACELS.

A&Ee1g KAEO1d

Yroioyiotikry @cswpio Kowvovikhig Emthoyne, Exhoyn pe évav Niknrr, Exioyn Enttponng, Kavoveg
ymoooopiag, Metpikn [Hopapdppwon, Madnoiakd-gvicyvpévor Alyoplopot.






Abstract

In this thesis, we study the performance of voting rules by measuring their metric distortion and
incorporate predictions in order to achieve better results.

We have a set of n voters and a set of m candidates, which we consider located in a metric space.
Our goal is to elect a candidate that minimizes the social cost, i.e. the sum of distances to all voters,
when we only have access to the voters’ ordinal preferences and not to the actual distances. The
distortion of a voting rule measures its worst-case performance with respect to the optimal social cost.
We present results from the literature that provide metric distortion bounds for several well-known
voting rules, as well as a voting rule with optimal metric distortion.

Subsequently, we apply the new learning-augmented framework, where algorithms use machine-
learned predictions in order to improve their performance. These algorithms are evaluated in terms of
their consistency (performance in the case where the prediction is correct) and their robustness (perfor-
mance in the case where prediction is arbitrarily wrong). Using the learning-augmented framework,
we obtain bounds for the consistency and the robustness of voting rules. We focus on the problem of
a k-commiittee election on the real line, where & > 3 candidates are elected and each voter’s cost for a
committee is defined as her distance to the nearest committee member. Previous work shows that the
distortion for this setting is unbounded and that O (k) distance queries are both sufficient and neces-
sary for a linear (in the number of voters) distortion. Our algorithm uses predictions about the optimal
committee and achieves constant consistency and linear robustness with O(k) distance queries.

Key words

Computational Social Choice, Single-winner Election, Committee Election, Voting Rules, Metric Dis-
tortion, Learning-augmented Algorithms.






Evyoprotisg

Apywd o NBela va guyopiotiom tov Kabnynt) k. Anpitpn @otdxmn, yio Ty EUTVELGT OV OV
£00E Y10 VOL 0GYOAN 0D LLE TO GUYKEKPIKPIUEVO OVTIKEIUEVO HECH Amd TO LOOTLLOLTOL TOV, YO TV EUTL-
GTOGUVI TTOL oV £0€1&€ avaAapuPdvovtog Ty enifAey avTNG TG SITAOUATIKNG EPYOCiNG Kot Yo OAN
™ Pondeia ko v vrooTpiEn mov pov wapeixe. Ga NOera va gvyapiotiom eniong tov [Hovayuntn
[Moto1lvéxko yio ) cuvepyosio Lag, TOV XpOVO TOV LoV APIEPMGE Kot TV TOAVTIUY BonBetd Tov e
O TN SLpKELN TNG EKTOVNONG TNG EpYacioc. Evyapiotd emiong toug kabnyntéc k. Aproteion Ila-
youptln kot K. Evdyyeho Mapkdkn mov GUHUETELYOV oTnV TP emTpony|. TELOG, EVYUPIGTHO TOVG
YOVEIG OV, TNV AOEAPT] OV Kol TOVS GIAOLE LoV Yol TN GTNHPIEN TOVG TV TEPI000 TOV GTOLODV LoV
Kol GLVOALKA ot {m1 pHov.

Mdpxog INavvomovrog,

AbBMva, 30n OxtwPpiov 2024
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KE®AAAIO 1

Exteviig EAAnvikn Heptiinyn

H Bewpia g kowvoviknig emthoyng [25] HEAETA TOV TPOMO LE TOV OO0 Ol OTOUIKEG TPOTIUNGELG
TOV LEADV L0 OLASOC LITOPOhY VOL GUVOVOGTOVY GE L0 EVICIN GLAAOYIKY amOQaoT. Av Kot Ogv &i-
Va1 HovN EPOPLOYT TOL TAPOVGLALEL EVOLOPEPOV, Ba XPTGLULOTOGOVLE TNV 0POAOYi LI0G EKAOYTG
OOV Ol GLUUETEYOVTIES AVOPEPOVTUL OG WHPOPOPOL, 0L THAVEG EVOAAUKTIKEG AVCELS OVAPEPOVTOL MG
DTOWHPIOL KOL 1] GUVAPTION TOV EMALYEL £VAV VTOYNPLO HE PACT TIG TPOTIUNGELS TOV YNPOPOP®V
AVOPEPETOL MG KOVOVas wnpopopiag. YmoBétovpe 6T emBopio evOg yneoeopov va ekAeyel KATo10G
GLYKEKPILEVOS VITOYNPLOG TOGOTIKOTOLEITOL 0td oL Tl weéAetag. Tote, évag Aoyikdg otdY0g elvar
Vo eKAEYEL EKEIVOC 0 VTTOYNPLOG TTOV LEYICTOTOLEL TNV KoIvVIKH w@élgia — OnAadn To ABPOIGLA TV
TILOV OQEAELNG TAVD atd OAOVE TOVG YNeoedpove. H eniivon avtov tov mpoPAnpatog sivat TeTpiy-
HUEVN — 0PKEL VO DTTOAOYIGOVLE TV KOWVOVIKT] WQEAELN Y10, OAOVE TOVG VITOYNPLOVS Kot Vo e&arydryovpie
ovTOV TTOL TNV peYIeTomolEl. 261060, GUVHOWE dev EYovLE TPOGPUCT OTIG OKPIPElS TIES WPEAELOG,
KaBdG eivor SVOKOAO aKOUN KOl VL0l TOVS YNOOPOPOVG VO, TIG AELOAOYHCOVY Y10 YVOGLUKOVE AOYOLG,.
AVT’ aVT00, OTOLTOVLE OO TOVG YNPOPOPOVG LOVO TANPOPOPIEG OTI| LOPPT TNG KATATAENS TMV LTTO-
ynolov Bdoet cvykpicemv. O1Kavoves Yyneoeopiag Tov PTCILOTOIOVV LOVO TATPOPOPIEG ALTOV TOV
TOmoL dev eivan o BEon va gyyunBolv v edpeom oG PEATIGTNG ADOTG Yio TOV GTOYO TNG LEYLIGTO-
moinomg ¢ kowavikng oeélelac. 'Etot, 6mmg cupfaivel kot Le TOVG TPOGEYYIGTIKOVG AAYOPIOHOVG
[79] /| Tovg online aAyopBpovg dmov ot dwbécieg TAnpogopiec eival meplopiouéveg [22], otoyog
pag etvor va emrouyovpe Kol tpocéyylon g PEATIoTNG Aong. H mapaudppwon evoc kavova yneo-
ooplag, £vag 6pog o omoiog elonyOn amd Ttovg Procaccia kot Rosenchein [[72], etvar 1 péyiotn dvvotn
TN TTOL propei va AdPeL 0 AOYOg TNG LEYIOTNG KOWMVIKNG WQEAELOG TTPOG TNV KOWVMOVIKT OPEAELN TOV
EMLTLYYAVEL O VTOYNPLOC TOV EKAEYETOL OO TOV Kavova ymeoeopiag. H mapapoppwon €xet xpnoipo-
momBet yio TNV a&loAdynon TV EMSOCEDV dUPOP®Y KAVOVOY YNneopopiag Kot Exovv dnuovpyndet
VEOL KOVOVEG TPOKELUEVOD VO, EAdyLloTOoTom Bl 660 YiveTal TEPIGGOTEPO 1) TAPAUOPPOOT| GE SLAPOPOL
nePIPAAAOVTAL.

211 YEVIKT| TEPITTMOT], VILAPYOVV LGYVPE APVNTIKA ATOTEAEGLLOTO. OGOV OLPOPA TNV TAPAUOPPOOT)
TOV Kavovev yneoeopiog. I’ avtov tov Adyo, ot Anshelevich et al. [§], mtpdcoOecav v vndbeon
OTL 01 YNPOPHOHPOL Kol 01 LTOYNPLOL PPIcKOVTOL GE EVOV HETPIKO YDPO, TPOKEIUEVOL VO amodei&ovv
O OLGLUGTIKA PPAYLATA Y1o TNV TOPAUOPO®OT|. X& avTd TO TAAIGLO, 01 YNPOPOPOL TPOTILOVY TOVG
VIOYNEioVg oL BpicKovTal To KOVIH TOVG G GUYKPLoT We eKEIVOLg oL Ppiokovtal To pakpld,
KoL 1) arOoTOo LETAED EVOG WNPOPOPOL Kol EVOC Loy @iov pmopel va Bempndel mg Eva emayopevo
KOGTOC. AVTL VO LEYIGTOTOIOVUE TNV KOWVMVIKY OQEAELN, GTOYEVOVLE GTNV EKAOYT TOV LTOYNPIOV
IOV EAOYLOTOTOLEL TO KOWVMVIKO KOGTOG, TO 0010 ival TO AOPOIGILO TV ATOCTAGE®Y TOL LITOYNPIOV
omd GAOVG TOVGC YNEOPOPOVG. TNV TUPOVGH SIMAMUATIKN epyacia O emkevipwboldie e avti T
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LETPIKT TEPIMTMOOT).

Ot mepropiopol ¢ TANPoPopiag Tov TapoLGLaloviol 6To TPOPANUA TNG LETPIKNG TOPOUIPP®-
O1¢ TO KOOIGTOOV KATAAANAO Y10l TV EQAPLOYY| TOV VEOL uabnoiokd evioyvuévov wAaiciov. e avtd
TO TAOIG10, Ol AAYOPOLOL (GTNV TPOKEUEVT] TEPITTMOT] 01 KAVOVEG YNPOPOPLoc) EVIoYOOVTUL LE [LLOL
TpoOPAeyn, N omoia ypnoomoteital TpokeEVov va BeAtimbel | amddoon Tovg. H mpofieym avti, 1
omoia pmopei vo AaPetl S14popec LOPPES, UTOPEL VO TPOKVYEL atd VO LOVTELO UNYOVIKAG Labnong,
YPNOLOTOUDVTAG GYETIKA 10TOPIKA dedopéva. O akyopibuog a&loloyeitar Tavtdypova pe faon v
am6d001 ToL O6tav 1 TPOPAewYn givar axpiPnc (o deiktng avtdg ovoudletar ovvémeia), KOBMS Kot TV
a6d0GN TOV OTaV 1 TPOPAeyYN pmopei va givor avbaipeta avakpiPng (o deiktng avtdg ovoudleton
evpwotia). XTOY0G LaG G€ OVTN TN SMA®UATIKN gpyocia eival vo BEATUOGOVUE TO PPAYLLOTO YOl TN
LETPIKT TOPAUOPOMCT| YPNCLOTOIDOVTOG LafnolaKd eVIcYLHEVOVS aAYOp1Bove, Kupimg oty mepi-
TTOOT] OOV EYOVUE TOAALATAOVE VIKNTEG, OTTOV avTi Yio Evay HOVO DITOYNOLO EKAEYOVLLE L0, ETLTPOTY
k vroymoiov.

1.1 Kavoveg yneo@opiog Kot Tapapopemon

2V KMok Bempio KOW®VIKNG EMAOYNC, EVOg Kavovag yneogopiac Aapupdvel o¢ icodo and
KaOe YyNeo@opo o ypappikni didtaén tov vroyneiov Kot e&dyet évay viknti vroyneto. To povtélo
ovTd aVTIoTOLYXEL 6TOV TPOTO e TOV 0moio ol AvOpwmol cLVNO®G eKPPALOVY TIC TPOTIUNGELS TOVG
Yl TIG EVOALOKTIKEG ADOELS, KOTOTACCOVTAS TIG KOl Y®OPIG Vo TOVG 0modidovy KAmole aKpipn Ty
OQEAEWNG. AOY® TNG EAAEYNG OPIOUNTIKOV TILDV TOV VO, LETPOVV TNV TOLOTNTO, TOV EKAEYILEVOD VTO-
ynoeiov, pio AOYIKY TPocEyylon yio TNV a&loAdynon TV Kovovemv yneoeopiog eival n aliouotixn
TPOGEYYLoN. LE QOTHV TNV TPOGEYYIGT], SLOTVTOVOVTUL OPIGUEVES OELOUATIKEG 1O10TNTES 1| KPLTHPLL
OV TPEMEL VO, TKOVOTTOLOVV 01 KAVOVES ymeopopiag. Ztn cuvéyeln umopel koveic va emAéEet Evav
Kavdva Tov Exetl o emBountn 1010tTa Evavtt evog dAlov kavdva Tov dev v Exel. Kamoteg onpo-
VTIKEG TPOLEG EPYOCIEC G€ VTOV ToV Topéa glvar ovtég Tov Arrow [[14], May [65], Gibbard [46],
Satterthwaite [[75] kot Young [83] (BAéme emiong T0 dpBpo emokdmnong tov Zwicker [84]).

2TV TOpovGH SIMAGUOTIKY epyacio 0o aELOAOYGOVLLE TOVE KAVOVES YNPOPOPIaG aKkoAoVOMVTAG
™MV weedyioticy mpoosyyion mov ypnolonoteitol otn Bewpio mwaryviov [80] kot oTov adlyopOpiKo
oyxedoopd pnyoviopov [70]. O oeelpiopdc, mov Bepehmbnie and tov Bentham, vrootnpilet 6t 1
“gutuyio” TOL ATOKTA £vOL CLYKEKPLULEVO ATOUO OO Lol GLYKEKPLUEVT KATAGTAGT GTOV KOGLO WUTO-
pei va TocotikomomOel oamd po oovapTHon WPEAEIAS KOl GTOYEVEL GTI| LEYIGTOTOINGT] TNG GUVOAIKNG
«euTVYlaG» TOL TANOLGHOD LEYICTOTOIMVTAS TO AOPOIGLO TOV ATOIKAOY WPEAELDV, ONANON TV KOl-
voviky oeéieta. O1 Boutilier k.4. [24] emonuaivouv 011, av Kot dev givat OAa To TPOANLOTO KOV®-
VIKNG EMAOYNG KATAAANAQ Y100 TNV OQEMUGTIKT TPOGEYYIoT (Y10 TOPASELY O VITAPYOVY TEPUTTMCELS
OOV 1] JUTPOCMTIKY GVYKPIGT) TOV MPEAEIDV JEV EIvVOL SLVATY]), VIAPYOVY TOAAEG TPAYLLOTIKES Kol
TAGTACELG TOV TOPLALOVY 0TV ®PEMUIOTIKY droy). [a mapddetypio, 6To GUCTHUATO GUCTACEWDY KoL
6€ TOALOUC TAPOLOIOVE TOUEIG 0O TO GYESOGUO UNYOVIGLLOVY Kol TO NAEKTPOVIKO EUTOPLO, O1 VITOAO-
YioTIKOl TPAKTOPES SLVIHOMG AVTIGTOLXILOVV TIHEG MPELELNS OTIG SIAPOPES EVOAAOKTIKEG ADGELS avTi
va. S1tdlocovy T0 cUvoro Tev vroyneiov. [apoia avtd, yiveror n vTobeon OTL ot TIHEG OPELELNG
dev gival YV®OTEG Kal, OTMG Kol 6TV KAAGIKT Oempio KOWOVIKNG ETAOYNG, Ol KOVOVEG YN QOPOPIog
&yovv mpocPaom PovVo oTIS KaTaTdEelg TV vToyneiny. AvTég ol KOToTAEELS Elval CUUPATES UE TIC
TIEG WPEAELOG, TPAYLLOL TOV CTLLOEVEL OTL £VOG VITOYNPLOG LE VYNAOTEPT T OQEAELNG KATOTAGCE-
TOL VYNAOTEPO GE GVYKPLOT| e £VOV DVITOYNPLO LE YapnAoTepn T o@éretag. O Teploptopdg avtdg
SkaoAoyeital omd TOVG GLUTEPLPOPIKOVS OTKOVOLLOADYOVE TToL £xovv dgi&el 0Tt givat yvmaotakd dv-
GKOAO Va amodDCOVE aKPIPEIC TIEC MPELELNG O O1APOPES EVOALOKTIKEG ADGELC.

"Evog kavovag yneoeopiog Tov ¥pnoYLOTOoLEl TIG KATATAEELS TOV DITOYNQI®V amd TOVG YNneopod-
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poug dev gival mhvta o€ BEom va EVTOTIGEL EVOV VTOYNPLO TOV LEYIGTOMOLEL TNV KOW®OVIKT] OQEAELX.
Emopévamg, umopolpe va oKePTOOUE EVaV KAVOVA YNQOPOPIS G VOV TPOGEYYIOTIKO aAYOpIOpo Tov
npoonabel va emAélel Tov KaAHTEPO dLVATO LIOYN P10 [E BAom TTeplopIoUEVES TTANPOPOpPiES (TIg KO-
TATAEELG AVTL Y10 TIG TIHEG OEEAELNG). AVTN 1] OTTTIKY TNS YNEOPOPIag Le KATOTAEES TPOTAONKE ATTd
tovg Procaccia kot Rosenschein 61o [[72], 61ov giomyayoy Tov 0po Tapapop@®on yio vo avageepfovy
GTNV TOWOTNTO TNG TPOGEYYIONG TOL TAPEXEL EVOG Kavovag yneopopioc. H mapapdppmon evog kavova
YMeoeopiag givat o xepoOTEPOG SLVOTOC AOYOS TNG UEYIOTNG KOWVMVIKNG WPEAELNG TPOG TNV KOWVOVIKT|
oeérelo Tov vToyneiov mov ekAéyetal. H évvola g mapapudpemong mapéyet EVov mocoTikd Tpomo
GUYKPIOTG O10POP®V KOVOV®V YNQOPOPIog: YOUNAT TopaUOppmon ival Tpopavag Eva emBuuntod
XOPOKTNPLOTIKO. Mo TPOGPUTN EMOKOTNON TV CNUOVTIKOTEP®V OMOTELECUATOV GYETIKG [E TNV
napapopewon uropei va Bpedei oto [9].

‘Eoto V' 10 ohvolo tov yneoedpov, |V | = n, kat éote C 10 cdvoro tov vroyneiov, |C| = m.
INo avBaipetec TIHEG OEELELNG, N TAPOUOPPOCT EIVOL OTEPIOPIGTN AKOUT KOt Yo LIKPOHS aptBpong
YMeoedpwv Kot vroymeiov. Q¢ ek Tovtov, ot Procaccia kot Rosenchein [72] vnébecav Kavoviko-
TOMUEVEG TYEG OPEAELNG OTTOV TO AOPOLGLLO TV TIUDOV OPEAELNS Y10 KAOE YNneoeopo gival otadepo,
. 1. Axoun kot pe avtn v vmodeon, £6e1&av 0TL o1 dNUOPILEIC Kavoveg ymeopopiag Borda kot
Veto &yovv ameplopiotn topapdpemon [72]. Me v id1a vTd0ecn KOVOVIKOTOUNUEVOY OQELEIDV, OL
Kapayudvvng kot Procaccia [29] édei&av 611 0 omAdg kavovag Plurality, o onoiog ekAéyetl tov vmoyn-
P10 OV KOTATAGGETOL TPOTOS OO TOVG TEPLGGOTEPOVS YNPOPOPOLE, £xel Topapdpencn O(m?). Ot
Kapayiavvng et.al. [28] £de1&av 6T1 1| TAPAPOPPOOT] Y10 TOVG VIETEPUIVIGTIKOVG KAVOVEG YNPOPOPIag
éxel ko @paypo Q(m?), dpo o kovévag Plurality eivan Bédtiotog. Emtpémoviag thy ToxoudTnTo
GTOVG KOVOVEG YN@oPopiog HTopoOue vo PEATIOCOVIE TEPUITEP® TO PPAYLATO YOl TV TOPALOP-
OMOT), OTOL 1 KOW®OVIKT OQEAELD TOL VTOYNPIOL TOV EKAEYETAL GTOV OPIGUO TNG TUPALOPPOCNG
avtikafiotatal and v avouevouevy kowmvikn oeéieio. Ot Boutilier et.al. [24], vmobétovtag emi-
ONG KAVOVIKOTOUUEVEG TIEG OPELELNG, amEdEEaV Eva KAT® @paypa g taéng Q2(1/m) v 6Aovg
TOVG TOOVOTIKOVG KOVOVEG YNeopopiag Kot oyediacay Evav mhavoTikd Kavovo yneoeopiog e mo-
papdpemon O(y/m - log" m), mov oxeddv Taupralet pe 1o kat® epdaypa. ‘Exovv peletndet ko dAdeg
TOPUALOYEG TNG TOPAUOPPDONG, T.). N TOAVTAOKOTN T enkovmviog [63], [64] kot n mapapdpewon
o€ kataveunuéva tepifaiiovto [44].

1.2 Merpun mtopopdpemon

e autn T SwmAopatikh epyacia, Oa extkevipwboldue 6To TANICIO TNG UETPIKIS TAPOUOPPLOHG,
to omoio eoNyOn amd tovg Anshelevich et al. [§] kot voBétel 6TL O1 YNPOPOHPOL Kot 01 VITOYNPLOL
Bpiokovton og évav petpikd ympo. Eival pucstoloyikd vo vrobésovpe 61t ot yneoedpot TpoTiovV
VIOYNEiovg oL Ppickoviat Kovid Tovg. Emopévac, oe avtd 10 mAaicto, n embupio evog yneoedpov
VO EAAYLOTOTOGEL TNV 0mOGTAGCT TOL (1 omoio pmopel vo BempnBel mg KOGTOG) Amd TOV VIOYNELO
7ov Ba exheyel avtioToyel 6TV EMBLLLIC TOV VO LEYICTOTOGEL TNV TIUH OPEAELNG OTO MPEMLUGTIKO
mA0iclo. AVt 1 TPocEyylon eival TAPOUOLD LE TO YOPIKA LOVTEAN YNPOPOPIOG OO TNV TOALTIKN
emotun [40], [13], [64], [35], [[76]. Mropolue va Bewpricovpe O6TL 1 YvOUN €VOS YNPOPOPOL Yo
éva Bpo evolapépovtog umopel va avamapactadel pe o cuvtetaypévrn og évav Evkieideto yopo,
Y. TOV A povodldotato a&ova aplotepd—oeéid. 261060, 01 HETPIKOL ydpot Tov Ha Bemprcovpie
€00 €lval O YEVIKOT KOl GUVETMG IO 1GYLPOL.

1o Kepdrato B mapovsialovpe amoteréopata omd To [§] yio T HETPIKN TAPAUOPPOOT] YVAOCSTOV
KavOvmV Yneoeopiog. EEKIVALE LLE TOV TUTIKO 0PIGHO TV EVVOLMV TToL Ba ypnoiponomaoovpe. Eotm
V ko C dvo menepacpéva chvora. Aépe 6t to V givor 1o 6Uvoro TV wnpopdpwy kol to C gival 1o
60Voro TV vroynpimv. Oétovpe n = |V (to mbog tov yneoedpwv) kar m = |C| (to Tinbog v
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vroyneiov). Xe 6,T1 akoiovdel, cuvidwg cupfoAilovpe TOVG YNEOPOPOLS LE U, U KoL TOVG VITOYT|-
QLOVG UE ¢, T, y. YmoBétovpe 6TL 1060 10 V 000 kot o C givar tomobetnuéva péca oe Evay HETPIKO
xodpo (X, d), onote n amdotaon d(a, b) peta&d tov a kot b opiletor KoAd yo kébe a,b € V U C.

To kovewviko Kéarog evoc vroyneiov ¢ € C' g mpog ™ petpikh d givar To dfpolopa

SC(c,d) =Y d(v,c).

veV

I'paeovpe SC(c) 6tav 1 petpkn d givor cogig omd to cupepaldpeva.

M tpiada (V, C, d) énwg mapandve, ovopdleton rapaderyua. H andotacn d(v, ¢) avapeoa oe
Evav yneoeopo v Kot Evay VToYneLo ¢ eivat Eva PéTpo Tov OG0 0 v mpotipdel tov c. Aéue d6tiov € V
npotnder tov ¢ € C évaviitov ¢ € C av d(v,c) < d(v, ). Le ovth ™V Tepintwon ypdpovpue

C=yC.

Kdbe doopévo napaderypa (V, C, d) endyet kotatdEelg TpoTiuncemy Tov yneoeopov. I'a kébe yn-
eodpo v € V éyovpe o katdraln mpotyaioewy oy, : C — {1,...,m} nov wavonoiei to €€Ng: av
oy(c) < oy(c) 118 ¢ 3=y . Tote Mpe 6T N d givar ovpfati pe TV o KoL ypaeovpe d > oy,.

‘Eva mpopil mpotyuoewy o := (0y)yey €vaL pio n-G80 KOTATAEEDV TPOTIUNCEDY TOV YNPOPO-
pov. Aéue 6t 1 d glvar cupPati Le To TPOPIA TPOTIUNGEDY T, Kot Ypdpovue d > o, avd > o, Yo
kGBev € V.

To wpdPAnpa g peTpikng mapapdpemong meprypdpetor oc eENg: 'Evag akydpiBpog ALG Aapt-
Baver g gicodo kamolo TPoPik TPoTIHNcE®Y 0 TO omoio endyeton and £va mopdderypa (V, C,d). O
alyop1lOpog dev €xel TPOGPOOT OTNV VITOKEILEVT] GLVAPTNOT amoctdoewy d. O 6TtdY0G gival va amo-
dmoel WG ££060 £vav LTOYNPLO ¢* 0 0O10G EAVYIOTOTOLEL TO KOV@VIKO KOGTOG, OTANOT] VOL IKOVOTOlEL
mv

SC(c") = I(:l’élélSC(C).

Ba ypnoyLomoloVE eniong Tov 0po “kaviovags yneopopiag” Y10 KEOe adydpiBo Y1 avtd 10 TpoPAN
Kol Tov 6po “vikntig” Tov Kavova yneogopiog yio v ££060 Tov aAyopiBuov. H mapaudppwon tov
ALG e&ivor n xepdtepn duvarti TOALOTAUCIOCTIKY TPOGEYYIOT TOV UTOPEL VO, EMTVUYEL GE GYECT LE
T0 BéATIoTO, M OTOlO TVTTIKG OpileTon G e&Ng:

) . SC(ALG(0),d)
distortion(ALG) = sup sup ——— 2.
( ) ap d:d Ifa‘ SC(C*(d)’ )

"Eva tpdTo Paciko pMTNLO TOV TPOKLATEL EIVOL TOGO KOAN LUTOPEL VAL EIvaL 1) ATOS0GT 07010V -
rote adyopipov. To mpdTto Bedpnua Tov Tapovoidlovpe Tpoépyetal amd to [§] Kot divel vo KATm
QpayLa Y10 TV ENL006M OADV TOV VIETEPUIVICTIKOV KOVOVAOV YNPOPOoplag: KovEVAS TETO0G KAVOVOS
dgv umopet va, el TOPALOPP®ON UIKPOTEPN ATO 3.

211 cvvéyela divov e KAT® Kol Gve epayproto omd to [§] yio Ty TopaldppmoTn TOADY YVOCGTMOV
KOVOVOV YNeopopiag, EEKIVAOVTOS LE KATOI0VG KAAGGIKOUS KOVOVES Tov opifovtat amd “diavicuota
Babporoyiog 0éong”. "Evag kavovag ue fabuoloyies Oéong fz yia 1o C mpocdiopiletor omd Eva 016~
voopa Babporoyiog 0éong § = (s1,52,--.,8m), OMOL 8; € Q, §1 > So > -+ > Sy, KOL S > Sy
Orav kdmolog yneoedpoc v € V katatdooetl évay vroyneto ¢ € C' ot 0éon £, T0T€ 0 VIOYNPLOG ¢
happaver r, (c) = s movTovg omd tov v. Katdmv, n cuvolikn Babporoyio tov vroyneiov ¢ givar to
dBpoiopa

scorez(c) = Z rv(c).

veV
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O vimtég cOpemva pe o dtavoopa Padporoyiog Béong 5 eivar ekeivol ot vroyneilot ¢* € C' yia Tovg
omoiovg
scorez(c*) = max scorez(c).

ceC
Meketape Toug akoOrovdovg kKavoveg pe Padporoyies Bonc:
(i) Plurality (mrAeloyneia), 6mov § = (1,0,...,0).
(if) Veto (Béro), omov §'= (1,1,...,1,0).
(iii) Borda, 6mov §= (m —1,m —2,...,1,0).
),

(v) k-Approval (k-amodoyn), yw 1 < k < m, émov § = (1,1,...,1[k],0,...,0[m — kJ).

Lol

(iv) Harmonic rule (appovikdc kavovag), 6mov § = (1, %,

Apyika mapovoidlovpe amoteléopato amd To [§] Tov divouy epaypHaTa Y10 YVOOTOVG KOVOVES LLE
BaBpoioyieg Béong. I'a tov kavova k-Approval pe k£ > 1 kot ywa tov Veto, 1 mopapdpomon dev
glvar epayuévn. I'o tov Plurality kot tov Borda, n mapapdpemon givar 2m — 1, 6mov m givar to
TAN00¢ TV VITOYMPIVY, LE TO AVed EPAYLLO VO, GUUTITTEL LLE TO KAT® epayua. EmmAéov, dev vmapyet
Kavévag Kavovag pe fadporoyieg B€ong mov n Tapapdpeo Tov va eivat eparypévn amod pio otadepd
ave&apn tov m. [N kébe T ToV M, N TAPAUOPP®ST 0TOOVLONTOTE KOvove pe Pabporoyieg
B£omc yio m viroyneiovg ivor TovAdyiotov 1 + 2/ Inm — 1.

Eivar evoapépov 10 yeyovog 6Tt ovte 0 kavovog Plurality obte o kavovag Borda emituyydvovv
NV KAADTEPT TOPAUOPP®ST HEGA oTNV KAAOT TV Kovovav pe Babuoioyieg Béong. O Apuovikdg
kavovog tov Boutilier et al. [24] €yl acopmtoTikd KaAOTEPT TUPAUOPP®OGCT TOGO OO TOV KOVOVA

Plurality 60 kot and tov kavove Borda. Ouwc, n mapapdpemorn tov Appovikod Kovova givotl Kt
m

VTN OXEOOV YPOUUUIKT], UE EVOL KAT® Pparypa €2 \/% Ko éva dve epayua O (\/ﬁ)

210 [8] amodeikvoetar eniong OTl, TOPOAO TOV KATOLOL OO TOLG KAVOVEG TTOL YPNCILOTOLOVVTOL
EVPEMG EYOVV UEYAAT TOPAUOPPDGCT], VITAPYOVV CTLLOVTIKOT KAVOVEG YN(QOQOopiag TMV 0moiwmy 1 ma-
papopemon givar epaypévn’ and po pikpn otabepd 1 avgdvel apyd kabag avcavetl to TAnbog Tmv
vroynoeiov. Eva mapaderypa divel o yvootdc kavovag Copeland. To oxop Copeland evog vmoymeiov
¢ gival o TBog TV vroyneiov mov vikdegl o ¢. O kavovag Copeland [36] amodidel oty €000
6A0VG TOVG VoYM Piovg TTov €xovv péyioto okop Copeland. Tapovoidlovpe évo amoTEAEGHO TV
Anshelevich et al. [8] ot omoiot anédei&av 6t 0 kavovag Copeland éxel Topopudpemon 5, Pe T0 Avm
opayna vo taptalel pe 1o kAT epaypa. Avtd onpaivetl 6T, mapodro mov o kavovag Copeland dev
YVopilel TImoTa Yo TIG TIWES TNG HETPIKNG TEPO OO TIG KATUTAEELS TPOTIUNCEDV TOV ENAYOVTOL OO
oUTEG, Kol {om¢ dev pmopel vo Bpel Tov TPAYUATIKO PEATIGTO VITOYNPLO, EVIOVTOLS EMIAEYEL TAVTO
KGO0V VTOYNPLO TOL OTO10V 1) TOOTNTA AMEYEL LOVO £V GUVIEAESTN 5 Amd VTNV TOV PEATIGTOV
vroymneiov. YrevBouilovpe 0tL, 0md 10 YeVIKO KAT® QPAYLO 3, KOVEVOSG VIETEPLIVIOTIKOS KOVOVOG
ynoeopopiag dev pumopel vo Ta whel ToAY kaddtepa and tov Kavova Copeland mg tpog To KOWW®VIKO
KkOGTOG,.

"Evag GAA0g SNUOPIANG KavOVag YNeoeopiag, YVMOOTOC MG KOVOVAS TNG OTANG LeTaPifdoiung yin-
@ov (STV), peretifnke oto [77] kot apyotepa oto [6]. O kavovag aming petofifdoyms yneov
(STV), mov givar £vag amd Tovg EAYIGTOVS LN TETPYLUEVOVS KOVOVES YN POPOPIOS TTOV YPTCLLOTOL0V-
VIOl G€ TPAYLOATIKEG EKAOYEG, Elval VoG EmAVUANTTIKOG Kavdvag mov opileTat pe Tov akdAovBo TpdTo.
e KB yOPo, 0 VIOYNPLOC TOL KATUTAGGETOL TPMTOG GO TOVG AYOTEPOVS YNPOPOPOVG (QVTOG e
TO YOUNAOTEPO GKOP TAELOYMPLOG) OQAPELTAL OTO TO GHVOAO TOV LTOYNPIOV KoL 0lTd TIG KUTATAEEIS
TPOTINCEDV TOV YNPOPOPOV, TPAYLN TOV CNUAIVEL OTL TO. OKOP TAEIOYNQLOC TPETEL VO, VTTOAOYL-
6toVV gk véov. Metd amd m — 1 yOpovg amopuével Ldvo €vag VTOYNPLOG, O 0oi0g Eival 0 VIKNTYG.
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Ot Elkind kot Skowron [[77] anédeiéov éva avo epdypa O(Inm) kat éva kéto epdypa Q(v/Inm)
v TV Topapdpemon tov STV, kdtt mtov onuaivel 6t o STV dev givar e&icov kaddg pe Tov Kavova
Copeland.

To topamdve anotedéspata cuvoyiloviotl 6tov akdiovbo Iivaka.

Hivakag 1. Ave kol KATO @paypata yia Ty Tapapdpeocn

Kavovag ynoeoopopiog | Ave ¢opaypa | Kato epaypa
k-Approval, k > 1 00 00

Veto 00 00
Plurality 2m —1 2m—1
Borda 2m —1 2m —1
Harmonic Rule 0] (\/ITW) Q (ﬁ)
Scoring Rules 00 14+2vV/Inm—1
Copeland 5 5

STV O(Inm) Q(vInm)

Ot Anshelevich et al. [§] ékavav v swaocia 6t1 o kavovag Ranked Pairs [[78] emttuyydvel
Bértiot mapapdpewon 3, dpwg apydtepa amodeiybnke 6Tl avTd dev 1oyvEL, and toug Goel et al.
[51]]. 2t ovvéyeta, ot Munagala kot Wang [69] mopovciacay Evav vIETEPUIVIOTIKO aAYOPIOLO TOV
EMTLYYAVEL TApapdpPmon 2 + /5 ~ 4.236. TtV TpoyHaTkdTTo, 0nToS 0 ahydpOpog dev amontei
TPOGPOOT GTO TANPEG TPOPIA TPOTIUNCEDY TOV YNPOPOP®V. XPNGLOTOLEL L1 TEPLOPIGUEVT] £10000,
TO GTOOGUEVO YPAPT O TOL TOVPVOL(, TO 0010 TTEPLEYEL, Yo KAOe (ghyog vmoyneimv, To TARBog
TOV YNEOPOPOV TOV TPOTILOVV TOV EVAY 0O TOVG 000 EvavTl Tov dAlov. Me fdon avto, Ekavay v
gwocio 0Tt edv divovtol 01 TANPELS KATOGTAGELS TPOTIUIGEMY TOTE 1] KAADTEPT] SLVATY TOPAULOPPDCT
Ba mpémetl va givar 3. Ot 15101 cuyypageic Teptéypayav Lo tkovh cuvinkn mov Ba cuveraydtav
Bértiom mapapdpewon 3. [epimov v idwa emoyn, o Kempe [56] anédei&e aveldptnto 1o id10 gpdyua
2 4+ /5 YpP1CIHOTOIOVTAC YPALIKS TPOYPAUUATIOHS, £60GE SLAPOPES EVOAMAKTIKEG SIUTVIMGELS TG
wavig cuvOnkng tov [69] kot anédeiée 6t o kavovag Ranked Pairs éyet mapapodpewon O(y/m).

v Evomra B.3 nopoveidlovpe éva Oedpnua tov F'katiéhn, Halpern ko Shah [47], ot omoiot
gloNyayav Evov VIETEPUIVIGTIKO akyoplOpo, Tov Tov oAyopdpo Plurality Matching, mov oAokAnpdver
avt) TNV KotevBuvon épguvag Kot eyyvdtor T PEAToT mapapdpewon 3. To kdplo texvikd cvota-
TIKO VTN TNG epYOciag eival To Aupa “KoTdTaénG-Tapticpatog” To omoio eEaopalilet Tnv dmapén
KAMIGHOTIKAV TELELOV TOPLOCUATOV LEGO GE L0 OTKOYEVELN SIUEPDV YPUPNUATOV LE OTAOLGUEVES
KOPLPEG TTOL ENAYETOL ATt TO TPOPAN AL

Mertayevéotepeg epyacieg Tpocépepay akoOLa KaAHTePT KaTovonon tov Tpofinpatoc. OrKizilkaya
ka1 Kempe [58] métvoyav ™ BéATioT mopapdpewon pe tov adydpiBuo Plurality Veto, o omoiog eivar
TOAD ATAOVOTEPOC GE GYEoN e Tov adyoptuo Plurality Matching, kot 6t cuvéyeia ot idtol Guyypoa-
oeic [59] mpdtewvav o Pertioon tov Plurality Veto mov ovopdletar Simultaneous Veto kai emtivet
mmuota woraiiog mov epgoavifoviat ota [47] kat [58] dtetnpdvtag ™ PEATIOTN TAPAUOPE®OT).
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Metd amd TNV 0pIoTIKY aTAVTNGN GTO TPOPANLO TG TOPAUOPPMONS YL TV KOTIYOpio, TV VTE-
TEPUIVIGTIKAV 0AyopiOuwv, Eva avorytod TpdPAnua eival va exttevybolv exiong to PEATIOTA PPAYUOTA
TOPALOPPOONG Yo Toyaiomoinuévovs aryopiBuovg. Ot Anshelevich kot Postl [[11]] édwoav 10 kdtm
opayna 2 kKo anédel&ov 01t o adyopiBpoc Random Dictatorship €yet mapapdpemon pikpotepn and
3, OLOC TO EPAyUa ToVg Teivel ota 3 KaBdg avEavetatl To TANB0G TOV YNEOEOPMY. TN CUVEELD,
ot Fain et al. [41] kot o Kempe [57] mopovoiacav GALoLS aAyopiBovg e Topapiop@®on Tov TEVEL
610 3, avTh TN Popa KaBdS avEavetal To TANB0g TV vroyneimv. To kKaAHTEPO YVOOTO KAT® QP
2.1126 066nke Tpoéspata amd tovg Charikar kot Ramakrishnan [32], kot o1 Charikar et al. [B3]] métv-
XOV TO Ave epayua 2.753 to omoio Egpevyet Yo TpdTN Popd amd v Tiun 3. To epdTNpa av pmopet
vo pelwbel to gvamopeivay Yoo avAaplesa 6To KATo Kot Gve QpAayLo TOPOUEVEL AVOIKTO.

To apBpo [49] mpoomabel va cuvdvLaceEL EPAYIOTA YO TY HETPIKY TOUPOUOPPMOOT LE OPAYLLOTOL
Y10 TNV TOPAROPPOGCT) GTO WPEAUGTIKO TEPPAAAOV (OTTOV 01 TPOTUNGELS TOV YNPOPOP®V glvar av-
Baipeteg KOVOVIKOTOMUEVEG OMOTIUNOELS). XT0 [|1] pedeTdton pia Tapaiiayr] TOV TPOPANLATOG, OTOV
glvar S100€01LEC TEPIOTOTEPEG TANPOPOPIEC TEPA, OO TIG CLVNOEIS KATATAEELS TPOTIUCEWMY, KAl GTO
[57] umopel kaveic va Ppet pia peA&n TV cVUPIPACUOV aVALESH OTNG EMTEVELLN TOPAULOPPDCT KOl
TNV TOADTAOKOTITO ETKOVOVIAG TOV VIETEPUIVIGTIKOV OAYOPiOIOV KOWmVIKAG emthoyng. Xto [[10]
UEAETATOL 1] LETPIKT] TOPAUOPO®OT G Katavepnuéve meptPaiiovia kol oto [43] eEetaletan n mo-
popdpewon Tov pilainbwv (truthful) pnyovicpov. Exovv eniong peletndet Sidpopa drAia miaicia,
Omov 01 d1efETILEG TAN pOPOpPIES ETVaL IO TEPLOPIGUEVES OO AVTO TOV TANPAOV KATATAEE®V TPOTUU-
oewv (BA. [IL1], [52], [41], [57], [23], [[Z])-

1.3 MoaOnocuoka evioyopévor aiyoprOpon

IIpdécpatec kKatevBivoelg e Epguvag £oTidlovv G0 Kol TEPIGGOTEPO GE €val VEO TAAIGLO avEL-
Avong, 1o omoio ovoudleton adydpiBuor ue mpofréwers N pobnoiaia evicyvuévor odyopifuor. Avti
npocéyyion aflonotel v KaBodynon twv mTpoPALYEOV Le unyavikn Laonon, yio va emttoyel Per-
TIOUEVA PPAYUATO Yio TV OTAd00T TV aAyopiBimy kol vo EEMEPACEL TOVE TEPLOPICHOVE TNG Mo~
POSOGLOKNG OVAAVONG TNG YEWPOTEPTS TepinTmong. H popen tov mpoPfréyeny pumopei va moikidiet
avAAoYQ [LE TOV TUTO TMV Oed0UEVOV TTOV O100ETEL 0 OYESIOGTNG KOl TO TPOPAN L TOV TPEMEL VO ETL-
MBel. Mg v evoopdtoon tov TpoPréyemv, o oadlyopBpog propel vo PEATIOCEL TNV 0Tdd00N TOV
YPNOYLOTOLDVTAG TIG OG 0O1YO.

Eivar onpovtikd va onpueidcovpe 0Tt 1) TOWOTNTO ALTOV TOV TPOPAEYE®DV EIVOL AYVOOTN Kot O)L
a&omot. O adydpiBpog a&looyeital e dVO KpLTpLo: TV ardd0GN Tov Otav 1 TPORAey elvar axpl-
B¢ (tn Aeyopevn ovvéreia) KaBdS Kot TNV amddoor Tov tav 1 TpdPreyn pumopel va eivar avbaipeta
avaxpipng (tn Aeyouevn evpwatia). L1y akpoio epintmon 6mov akoiovbsiton mvia n TpdPreyn,
70 amoTéAesO Ba NTAV IKOVOTOMTIKO OTa 1 TPOPAEYM eivan axpiPng (1 cvvémela sivatl KoAn), GAAL
TO 0mOTéEAEGLO B TV Kakd OTOV 1) TPOPAeYN ivar avakpiPrg (n evpwoTia givatl Kokn). ZTnv GAAn
akpaio TepinTmon 6mov KATO10g ayvoel TV TpoOPAeyM, 1 GLVETELN ivot TOAD advvaun. ['evikd, kaOe
pofnookd evieyvpuévog olyopBpog mapéyet Evav cupufipacpd peta&d eupOoTiog Kot GLVETELNS, Kot
0 6T0Y0¢ elvar va evtomioTel To cuvopo Pareto petald avutdv TV S0 PETP@V.

Ta tedevtaio ypdvia, TO TAAIGIO TNG LOONGIOKNG EVIGYLONG £XEL XPNOILOTONDEL EKTEVMOG GTO GYE-
SlGHO Kot TNV avdAvon alyopiBu@v yio Vo GVTILETOTIGTOUV Ol TEPLOPIGHOT TOV VIEPPOAIKA ool
G1000E®MV EPayUATOV TOL divel 1 HEAETN TNG YEWPITEPTG TEPITTOONG. APKETEG TPOGPATEG EPYACIES
£€YOUV EQPUPUOGEL QVTO TO TANICI0 08 KAUGIKEG TTEPLOYES AAYOPIOUKDV TpoPAnpdToV, 0Tmg 1 d1adt-
KTVaKN oeAdomoinon [62], o ypovompoypappaticnoc [[74], ta Tpopfinpata ypaupatéwyv [37], [12],
T mpofAnuata BeAtiotomoinong pe kdAvym [[18], kot ta Tpofinpota cokidiov [54], kabdg kot did-
@opa TpoPAnuara g Bewpiag ypapnudtov [[15]. Ot TpdiLec cuvelsPOPES GE ALTOV TOV TOUEN TTEPL-
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ypdoovtatl oto apbpo emokdmnong [67], kot to [60] Tpoceépet o evUEP®UEVT] GLAAOYT GYETIKGOV
gpyaciov. H mpocéyyion e pabnolokng evicyvong £xet exiong epapuoctei 6€ TPOPANUATO KOVOVL-
KNG EMAOYNG, OTTOV YivovTol TPoPAEYELS OYETIKA LE L0 ORAD0 YNOOPOP®V KA TIG TPOTIUNGELS TOVG,
pe 6TdY0 TN PEATIOTONOINGT TOV KOWMOVIKOD KOGTOLG 1] T®V GUVAPTAGE®V eunNUeEPioc. Xe auTn TNV
KaTELOLVON EVIAGGETOL 1 £PELVA TAV® GE TPOPANLOTO KATAVOUNG TOPWV OTTOV Ol TPOTIUNCELS TOV
TPOUKTOPMV OTOKUAVTTOVTAL OTASIAKA G€ Eva d1adiktvakd mepBdriov (BA. [[19] kat [20]), kabd¢ kot
GEVAPLO. OTIOL Ol TPAKTOPES EIVOL GTPATNYIKOL KO Ol TPOTIUNGELS Tovg ivon hiwtikég (BA. [2], [82],
[48], [I16], [53], [[71], [61], [27] o [[L7]).

H pelétn tov mpofApuotog e HETPIKNG TOPUUOPPOONG GE AVTO TO TANIGLO €ival EOA0YT AOY®
NG TEPLOPIGUEVIC TTANpOoPOpiag oty omoia Paciletal. Extog amd 11 kaTatdEelc Tmv yneoeodpwy,
glvar Aoywkd vo, vtoBésovpe 6T pmopovpe va, Exovpe TpdsPact o€ 10ToPIKd dedopUEVA GYETIKA LE
TIG ATOPACELS TOV YNEOPOp®Y 0€ cuvaT Béuata, To onoio Ba LToPOHLGUV VO GLGYETIGTOVY UE TIG
TPOTIUNGELS TOVS Y10, TO GVYKEKPIUEVO BEUA. AVTEG Ol TPOGOETEC TANPOPOPIEC UTOPOVY VA SDGOVY
KaAOTEPN dlaicOnomn yia 10 TOAVO OTOTEAEG LA,

Y10 apBpo [21], o1 Berger et al. eyxowvidlovv v avédAvcTn tov TpofARRATOC TG LETPIKNG TOPO-
LOPPOOTG XPTOULOTOIOVTAG TO TAAIGI0 podnotakng evioyvong Kot yopoktnpilovv to obhvopo Pareto
NG EVPWOTING-CLVETEWNS YU 0VTO TO TTPOPANpa. EEetalovv aiyopiBuovg mov Aapfdvouy w¢ eicodo
éva Levyog (o, p), 0mov o givar éva Tpo@ik mpotipnoev kow p € C' givar i mpdflewn oxeTikd e
oV BélTioTo vIoyneo c*(d). O otoy0g givan va a&lodoyndei n amddoon evog akyopibuov pécm g
OVVETELOG KOl TNG evpwotiag Tov. H cuvéneia tov ALG opiletar og n Tapapdpemaon mov eyyvdTot o
ALG 6tav n mapeyopevn mpoPreyn eivar akpipng, dnhadn p = c¢*(d). ITo tomikd,

. SC(ALG(0o, c*(d)),d)
consistency(ALG) = sup su
Y( ) Up d:d lfa SC<C*(d)7 d)

H gvpwotio g ALG opiletatl mg 1 mopapdpewon mov eyyvdror ALG pe pia ovBaipetn mpdpieym,
ave&aptnto and 1o mOco akpiPg propel va eivor avt n tpoPieym. o Tomkd,

SC(ALG d
rObustness(ALG) = sup sup sup ( - (U,p), ) )
o peC dd>o  SC(c*(d),d)

Y10 Kepdhato @ peketape t Sovietd tov Berger, Feldman, Gkatzelis kot Tan, ot omoiot eloqjyayav
(o owkoyéveta adkyopifumv, pe tapapétpoug 0 < § < 1, yvoot g BoostedSV s, ko anédei&av opdy-
LLOLTOL Y10L T GUVETELD, KOl TNV EVPOOTIO TOVG GVVAPTNGEL TOL d. [IpdKetTal yio. pa podnolokd evieyv-
puévn tpomonoinom tov adyopibuov SimultaneousVeto mov npotabnke oto [59]. O SimultaneousVeto
apyikd anodidel o ke vroyNeo ¢ € C' o Pabporoyio ion pe Tov aplBUd TOV YNEOPOHP®V TOV
KaTETOEQY TOV ¢ GTNV KOPLEN (TO 6KOP TAELOYN QLG TOV) KOl GTN CLUVEXELL APTIVEL TOVE YNPOPOPOLS
OULVEXMG Kol TOVTOYPOVA Vo LEL®VOLV TN Babpoioyio Tov AyOTEPO TPOTIUMDUEVODL DTOYNPIOL TOVG
HeTaED avTmv mov eEakorovfodv va Eyovv Betikr| Pabuoroyic. TéLog, emAéyel g vikn €vav amod
TOVG VITOYNPLOVG TToL 1 Pabporoyia Tovg eTavel Tedevtaio oto 0. O adydpiBuoc BoostedSVy Pel-
Tiovel Tov SimultaneousVeto pe v “evioyvon” g apykng paduoroyiog tov vroyneiov p € C wov
mpoPAéneton va givon Bértiotog. To péyeBog avthg g evicyvong eival o TpoceKTIKd emAEYUEVT] o)~
£0vGo GUVAPTNOT TOL &, KL GTN GUVEXELX, EVIGYVETL EXIONG KATAAANAG 0 pLOUOG LE TOV 0010 OAOL
oL Yneopdopot peidvouy Tig fabuoroyies. Oco vymiotepn givar 1 T ToL J, KATL TOV OVTIGTOLKEL OE
VYNAOTEPT EUMIGTOGVVT] TOV GYEIOCTN OTNV TOLOTNTO TG TPOPAEYNC, TOCO PEYOADTEPO ElvaL TO [LE-

vebog avTNg NG evioyvonc. Amodeikvdetat 0Tt 0 adyopBpoc BoostedSVs emttuyydvet Lg—cuvénsw

1+
R R 2— 3 4 r r r r 4
Kol %—wpmcua. [T mpdoata, ot idiot cuyypaeig mapovsiacay oto [21]] o devtepn

owoyévela odyopiBuwv, mov ovopdletar LAy, kot améderi&av 6t yio kabe 6 [0, 1), o akydpiOpog LA
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I 3—46 . 344 ’ 7 r ) 7 r
emToyGvel {5 cuvénew ko 75 aflomotio. Enmksc;v,&aurog eivan o Bértiotog ovpPiPacpog. An-

Aadn), KaVEVOG VIETEPUIVIGTIKOG 0AYOPIBHOG oV eivan {5-ouVenng dev pmopet va Exet evpootio o-
otpd pikpodTeEPN amd i’%g, aKoun Kot 6tov Bempolpe T cvvinOn petpki oty gvubeia Kot dvo pévo
VITOYNPLOVG.

H ovvéreila Kat 1 eupooTtia amoTumdvouy dV0 aKPaAieg KATOGTAGEIS OGOV apopd TNV akpifela tng
TpoPreyng, Sniadn v mAnpn axpifela kot v IANpn avBaipecia, avtictoyo. Mo o ekAento-
opévn aviivon, 1 ool divel PPAyUATE Y10 TNV TOPOUOPPOGCT) MG GUVAPTICT TOV EMTESOV OKPi-
Belag g TpoPreyng, umopel va enttevydei av opicovpe 10 opdiua mpofleyns. H mapapetpog avt
glva 1 amOGTACN AVAUESH GTOV TPOPAETOUEVO KAl TOV BEATIGTO VIOYN(PLO, KOVOVIKOTOUNLUEVT] LLE TN
Béhtiotn péon andotaon SC(c*)/n. Anhodi,

n- d(p,c*)
(SC(c*)

Y10 [21] amodewvietar 6Tt yio kbe § € [0, 1) ko kdBe cpaipa TpdPreyns 7, N TAPAUOPP®OST TOV

. [3—6+20n 3+6
min , ,
146 1-9

LA givor to ToAd

EVOOUOTOVOVTOS £TGL KO 0T TNV TOPAUETPO GTNV AVIALGT] TOV TPOPANLOTOG.
ZnUEUDVOVUE OTL VTO TO EPAYLO OVOKTA TNV €YyON 0T GUVERELNG Yoo 17 = 0, KOl 0TI GLVEXELN
ov&aver ypappukd pe to n péxpl va Tacel 6To epdypa evpwotiag, dmov otabeponoteitat. o mapd-

derypa, av vrobéocovpe 6Tt 1 < 2 TOTE 1| WUPALOPP®ST €ival TO TOAD 3, Y10 OTOLOOTOTE T TOL
0.

1.4 Tlopapopemon TOV KavOVOV EKAOYIG ETLTPOTIG

2T1C TPONYOVUEVEG EVOTNTEG e€ETAGALLE TO TPOPAN O OIS EKAOYNG LOVASTKO VIKNTH Kol TNG LETPL-
KNG TapopopPong tg. 'Eva dAlo evitapépov mpdPAnua mov dev £yl peletndei to60 ToAD glvan 1)
LETPIKT TAPOUOPPMOT] TMV EKAOYDV L TOAAATAOVE VIKNTEG, OOV GTOYOG oG eivat va ekAEEQVLE Lo
emurponn) and k > 2 pékn (néoa and m > k + 1 vmoymerovg) pe Péon Tig KaTaTaEELS TPOTIUNCEMV
7oV divovtal omd 1 YNeoeopovs. Onwe Kol 6TV TEPITTM®OT TOL LOVOSIKOD VIKNTH, Ol YNeoeopot
Kol ot vroyMeiot avtiotoryilovtal pe BE0EIg 68 KATO0V LETPLKO YDPO KOl Ol TPOTIUNCELS TOV YN(QO-
QOp®V TPoodlopilovial omd TNV AmOGTACH TOVG Ao TIS 0€celg TV voyneiov. Oumg, oe avt TNV
TEPINTOOT LLAPYOLV S1APOPOL TPOTOL Y10 VO OPIGOVE TO KOGTOG LLOG EXLTPOTNG, YEYOVOG TOV 001 YEl
o€ SL0QOPETIKODS TOTOVG EKAOYMV EMITPOTNG OV IKAVOTOL0VV S1apopeTIKES 010TnTeS [39], [42].

O1Goel et. al. [50] kot Chen et. al. [34] Osdpnoov 6T T0 KOGTOG LG EMLTPOTNG Y10 EVOV YNPOPOPO
glval To 4Opoloa TOV AmOGTACEDY TOV amd OAM Ta LEAN TNG emitponnG. ATodeiydnke otnv [50] 611
€QOPLOLoVTOG EMAVEIANUUEVO k POPES EVOV KOOV EKAOYNG LE LOVOSIKO VIKNTH TOV £YEL TOPALOP-
QOO @, EMTVYYAVOVLE TAPUUOPPOOT) TO TOAD {01 LE (v Y10 TO KOGTOG TNG EKAOYNG LE TOAAUTAOVC
vikntés. Emopévag, n Bértiom napapdpewon 3 mov eEacporiletar oto [A7] yo v mepint®omn Tov
LOVASLKOD VIKNTY gival €T Kol 6 avtd T0 TepPditov. Qotdco, avt 1 EMA0Y KOGTOVG TEIVEL
Vo VVOEL TIC “Opo10YeVELS” TAEIOYNPiES.

Xe auTn TN OWTA®MUATIKY £pYacio LEAETALE TO TAOIGLO OOV TO KOGTOG KABE YNeoeoOpoL Yol Lo
emtpony| opileTon @G 1 amOSTAUCT TOL AMO TO TANCIESTEPO PEAOG. AVTO TO TAAIGLO £XEL MG KivTpO
toug Kavoveg Tov Chamberlin—Courant [31]] kot Monroe [68], ot omoiot 6Toxe0ovY 6TV EKAOYN LILOG
TOWKIAOLLOPPNG EMTPOMNG TOV AVTITPOCHOTEVEL KAADTEPO TO GHVOLO TOL TANBVGHOV TV YNEOoEo-
pov. Xpnowonomdnke eriong ond tovg Kapayiavvn et al. [28] yio tnv avdivon g wpelyotixic
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TOPALOPPOCTS TMV KOVOVMVY e ToAAamAovg ViknTéc. Xto Kepdhato B napovoialovpie amoteréopato
tov Ootdkn, Gourves kot [Tatotlvéiov [45] ot onoiot eotidlovv oV amiobotepn TEPITTOGCT TOV
YPOUUIKDV TPOTIUNTEWY, OTIOL 0L YNPOPOPOL Kol 01 VITOYNPLOL VoL TOTOOETNLLEVOL GTNV TPOYLLATIKY|
evbeio. Ta amoteréopota tov Koapayidavvn et. al. otnv gpyacia [3(0], 6mov peketdrotl Eva mo yevikod
TA0iG10 (TO KOGTOG EVOG YNPOQOpoL 0pileTol ¢ 1 0mdGTAGT| TOV AMd TO ¢-00TO TANGIEGTEPO HUEAOG
NG EMTPOMNC) delyvouy OTL Y10 ¢ = 1 1) TOPALOPP®CT Eival Un epoyUévn yuo Kabe k > 3 akoun Kot
o711 YPOUMIKN TTEPIMTOON.

[opd to amotédespo ovtd, otV epyacio [45] amodeikvhETOL OTL LTOPOVLLE VO XPTCULOTOTGOVLE
&vay TEPLOPIGUEVO aplBUd EPOTNUATOV TPOGIIOPIGUOL amdSTACNG (1) 1060 QLT TPOEPYETAL QT TOL
8], [5], [A]) Yo va emitdyovpe @paypévn i Kot otafepn mopapopPon o€ EKA0YEG EmTPonéG e k-
UEAN LE YPOUIKES TPOTIUNGELS, Yo k > 3. ZuyKEKPUEVO, ETLTUYYAVETAL OPOYLEVT TOPALOPPOCT
ne O(k) epotipata ko otabepn mapapdpeonon pe O(klogn) epotiuata. Mo Tapopolo Tpocey-
yion o€ avtd T0 TPOPAN LA (SNAadN, PAcIGUEVN GE TEPLOPIGUEVO OPLOUO EpMTNUATOV TPOGIIOPITHOD
OTOGTOONG) OE YEVIKOVG LETPIKOVG ¥DPovg eppaviletot oto [[73] kot oto [26].

1.5 ZXvvewopopdad

O o16Y0G 0TS TNG SUTAMUATIKNG EpYOciog ivol Vo LEAETNOEL TOVG KAVOVEG YNQOPOpiag yio
EKAOYEC LE EVOLV VIKNTT KOl EKAOYEG EMTPOTMV YPTCLLOTOLDVTOS TO LOONGLOKA EVIGYLUEVO TANIG10,
€YOVTOG G aPETNPio TNV ETTUYNUEVN €QOPLOYT aLTOL ToL TAatsiov oty [21]]. To anotedéopatd
pog mapovstdloviar oto Kepdhoto f.

H npd pog svpforn etvor pio culitnon yio tn GUVETELD KOl TNV EVPOOTIN KOTAAANAN Op1oLé-
VOV eVIGYVUEVOV EKOOYDV TV oAyopiBuwy Plurality kot Borda. Xtnv nepintwon tov Plurality, ywo
KGOe 0 € [0, 1) opilovpe évav akydpibpo BoostedPluralitys o omoiog ypnoupomotel pa pdPreym p
v Tov BEXTIOTO LITOYNHPLO Kot E0PTATAL OO TNV TOPAUETPO EUTIETOCOVNG 0. EmAéyet eite Tov vmo-
YNOL0 LLE TO LEYAADTEPO GKOP TAEOYNPIOG 1] TOV P AV TO GKOP TAELOYNPIOG TOVL ElvaL OPKETH LYNAO.
Amodewcvioovpe 01t 0 adyopOuog BoostedPlurality s £xet evpootia

, 2
robustness(BoostedPlurality;) < Tmé -1
KOl GUVETELLL
consistency(BoostedPluralitys) > 2m — 1 — 24.

Av § = 0 10T€ T0 KUT® PPAYUO Y10, TN GUVETELD TOIPLALEL PE TNV TOPAUOPP®CT TOL OTAOD OA-
yopibuov Plurality. Otav § — 1, T0o KGT® @PAyHO Yo TN GVLVERELWD TEIVEL 6TO 2m — 3, TOV OM-
paiver 60tL | TpoPAeyn dev eEacparilel oyedov kopio PeAtioon oy TapaudPE®oT Tov aAyopi-
pov Plurality. To amoteAéopata gival mapopold yio TV Lobnclokd-evioyvpévn ekdoyn Tov kavova
Borda, BoostedBordas. Aivoupie emiong @paypoTo yio TV Tapapiop@OoT) TOV EXLTVYYOVETOL OO TOVG
BoostedPlurality; kot BoostedBordas o€ mepintwoeig 6mov 1 tpofreyn p £xet éva de60UEVO GOAALQ
7. AVTA TO ATOTEAEGILATO, VTOJEIKVOOLV OTL 01 TPOPAEYELG Oev elvat YprioULeG OTav 1 Lovn dabéoiun
TAnpopopia glval To okop TAeloYnPiag 1 10 okop Borda tmv vroymeimv.

21 ovvéyew, £0TACOVUE G6TO TPOPANL TNG EKAOYNG emTpomnc. YoBETovpe 6Tl ot alyopBpol
nag éyovv tpdoPacn oe pa TpdPreyn P = {p1,...,pr} € C vy m Béhtiom enttpornry. O mpdTOg
alyopBpog mov e&etalovpie, ivor pa padnolakd evioyvuévn €kdoon tov Greedy alyopiBpov amd
10 [43)], pe mopdpetpo o0 6 € [0, 1). e kGbe emavainym exhéyel oy enttponn €ite TOV MO omOpo-
KPLOUEVO LEYPL CTLYUNG DTOYNPLO 1 TOV TOV TO OTOLOKPVOUEVO LEYPL OTLYUNG DITOYNPLO oV ExéEl
apotabei. Xpnowomnotei O (k) epoTOELS Yo TPAYUATIKES ATOOTAGELS, 0AAG Yo kKGbe § € [0,1) n



ovvéneld Tov eEakorovBei va givar Q2(n).

11 ouvéyeln, Tapovclalovpe Evav aAyOpldHo o omoiog, ypNoILoToIdVTaG o TPOPAeymn P kot
tov Greedy akyopiOpo, vworoyilel £vo KOAOG OVTUTPOGMTELTIKO GUVOAO VITOYNPI®V Kot EKAEYEL TN
Béltio k-gmiTponiy 6TO TEPLOPIGUEVO TOPASELYLO TOV EXAYETOL OO 0LTO TO GHVOLO. O aAyOp1B-
1oG pog emtvyyavet otofeprn cvvénela kot ypappkn evpootia pe O (k) epOTAGELS Y100 TPOYHATIKES
OTOGTAGEIC. XVYKEKPILEVA, ETITVYYAVEL GUVETELD TO TOAD 3 KO EVPWOTio TO TOAY 10 + 1.






CHAPTER 2

Introduction

The field of social choice theory [25] studies how the individual preferences of people from a group
can be combined into a single collective decision. Although this is not the only application, we will use
the terminology of an election where the participants are referred to as voters, the possible alternatives
are referred to as candidates and the function that chooses a candidate based on voters’ preferences
is referred to as a voting rule. We assume that the desire a voter has for a certain candidate to be
elected is quantified by a cardinal utility value. So, a reasonable objective is to elect the candidate
that maximizes the (utilitarian) social welfare; that is the sum of the utilities over all voters. Solving
this problem is trivial; we just have to compute the social welfare for all candidates and output the one
who achieves the maximum. However, usually we do not have access to the exact cardinal values since
it is difficult even for the voters to evaluate them due to cognitive reasons. Instead, we require from
the voters only ordinal information in the form of rankings of the candidates based on comparisons.
Voting rules that use only ordinal information are unable to guarantee finding an optimal solution for
the cardinal objective of maximizing the social welfare. Thus, similarly to approximation algorithms
[79] or online algorithms where the available information is limited [22], we aim to approximate the
optimal solution. The distortion of a voting rule, which was introduced by Procaccia and Rosenchein
[72], is the worst-case approximation ratio between the maximum social welfare and the social welfare
of the candidate elected by the voting rule. Distortion has been used to measure the performance of
various voting rules and new rules have been created in order to minimize distortion as much as
possible in different settings.

In the general case, there are strong impossibility results regarding the distortion of voting rules.
Therefore, Anshelevich et al. [8] added the assumption that voters and candidates are located in
a metric space in order to prove more meaningful distortion bounds. In this setting, voters prefer
candidates that are closer to them compared to those that are farther and the distance between a voter
and a candidate can be viewed as an induced cost. Instead of maximizing the social welfare, we want
to elect the candidate that minimizes the social cost, which is the sum of distances to all voters. In this
thesis we will focus on the metric case.

The information limitations that are present in the metric distortion problem make it suitable for
an application of the new learning-augmented framework. In this framework, algorithms (in this case
voting rules) are enhanced with a prediction, which is used in order to improve their performance.
This prediction, which can take different forms, can be obtained from a machine learning model, using
relevant historical data. The algorithm is simultaneously evaluated based on its performance when the
prediction is accurate (known as its consistency) as well as its performance when the prediction can be
arbitrarily inaccurate (known as its robustness). Our goal in this thesis is to improve metric distortion
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bounds using learning-augmented algorithms, mainly in the multi-winner case, where instead of a
single candidate we elect a committee of k£ members.

2.1 Voting rules and distortion

In classical social choice theory, a voting rule takes as an input from each voter their linear ordering
of the candidates and outputs a winning candidate. This model corresponds to the way humans usu-
ally express their preferences over alternatives by ranking them instead of assigning a precise utility
value to them. Due to the lack of numerical values measuring the quality of the elected candidate, one
reasonable approach to evaluating voting rules is the axiomatic approach. In this approach, one for-
mulates certain axiomatic properties or criteria that voting rules should satisfy. Then, one can choose
a rule that has a desirable property over another rule that does not. Some important early papers in
this area are those of Arrow [[14], May [635], Gibbard [4€], Satterthwaite [75] and Young [83]] (see also
the survey by Zwicker [84]).

In this thesis we will evaluate voting rules following the utilitarian approach which is used in game
theory [80] and algorithmic mechanism design [[70]. Utilitarianism, founded by Bentham, argues that
the "happiness’ a certain person obtains from a certain state of the world can be quantified with a utility
function and aims to maximize the overall "happiness’ of the population by maximizing the sum of
individual utilities, i.e. the social welfare. Boutilier et al. [24] point out that although not all social
choice problems are suitable to the utilitarian approach (for example there are cases where interper-
sonal comparison of utilities is not possible), there are many real-life settings that fit the utilitarian
view. For example, in recommender systems and many similar domains from mechanism design and
e-commerce, the computational agents typically assign real-valued utilities to alternatives rather than
have ordinal preferences over the set of candidates. Still, it is assumed that utilities are latent and
similarly to classical social choice, voting rules have access only to ordinal rankings of candidates.
These rankings are aligned with the cardinal utilities, meaning that a candidate with higher utility ranks
higher compared to one with lower utility. This limitation is justified from behavorial economists who
have shown that it is cognitively difficult to assign precise values to alternatives.

Any given voting rule that uses ranked ballots is not always able to identify a candidate that maxi-
mizes the social welfare. Therefore, we may think of a voting rule as an approximation algorithm that
tries to choose the best possible candidate based on limited information (ordinal preferences instead of
utilities). This perspective on voting with ranked ballots was proposed by Procaccia and Rosenschein
in [[72] who introduced the term distortion to refer to the quality of approximation provided by a voting
rule. The distortion of a voting rule is the worst-case ratio of the maximum social welfare over the
social welfare of the candidate that is elected. The notion of distortion provides a quantitative way to
compare various voting rules: low distortion is obviously a desirable feature. A recent survey on the
most important results on distortion can be found in [9].

Let V be the set of voters, |V| = n, and let C be the set of candidates, |C| = m. For arbitrary
utility values, distortion is unbounded even for small numbers of voters and candidates. Therefore,
Procaccia and Rosenchein [[72] assumed normalized utilities where the utility sum for each voter is
fixed, e.g. equal to 1. Even with this assumption, they showed that the popular voting rules Borda and
Veto have unbounded distortion [72]. Under the same normalized utilities assumption, Caragiannis
and Procaccia [29] showed that the simple Plurality rule, which elects the candidate ranked first by
the largest number of voters, has distortion O(m?). Caragiannis et al. [28] showed that distortion
for deterministic voting rules has a lower bound of Q(m?), hence Plurality is optimal. By allowing
randomization in voting rules we can further improve distortion bounds, where the social welfare of
the candidate elected in the definition of distortion is replaced by the expected social welfare. Boutilier
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et al. [24], also assuming normalized utilities, proved a lower bound of €(y/m) for all randomized
voting rules and designed a randomized voting rule with distortion O(y/m - log* m), nearly matching
the lower bound. Other variants of distortion have been studied, e.g. communication complexity [63],
[64] and distortion in distributed settings [44].

2.2 Metric distortion

In this thesis, we will focus on the metric distortion framework, introduced by Anshelevich et al. [§],
which assumes that voters and candidates are located in a metric space. It is natural to assume that
voters prefer candidates in their proximity. Therefore, in this setting, a voter’s desire to minimize
her distance (which can be viewed as a cost) from the elected candidate corresponds to her desire to
maximize utility in the utilitarian setting. This approach is similar to spatial models of voting from
political science [40], [13]], [66], [35], [76]. We can think that a voter’s opinion on an issue of interest
can be represented with a coordinate in a Euclidean space, e.g. the simple one-dimensional left-right
axis. However, the metric spaces considered here are more general and thus more powerful.

In Chapter 3 we present results from [8] about the metric distortion of common voting rules. We
start with the formal definition of the notions that will be used. Let V' and C be two finite sets. We
say that V' is the set of voters and C is the set of candidates. We set n = |V| (the number of voters)
and m = |C| (the number of candidates). In what follows, we usually denote voters by u, v and
candidates by ¢, z, y. We assume that both V" and C are located in a metric space (X, d), so that the
distance d(a, b) between a and b is defined forall a,b € V U C.

The social cost of a candidate ¢ € C with respect to the metric d is the sum

SC(e,d) =Y d(v,c).

veV

We write SC(c) when the metric d is clear from the context.

A triplet (V, C, d) as above is called an instance. The distance d(v, c) between a voter v and a
candidate c is a measure of how much v prefers c. We say that v € V prefers ¢ € C over ¢ € C if
d(v,c) < d(v, ), Then we write

C=yC.

Any given instance (V, C, d) induces preference rankings for each voter. For each voter v € V' we
have a preference ranking o, : C — {1,...,m} such that ,,(c) < 0,(c’) implies ¢ 3=, ¢’ and then
we say that d is aligned with o, and we write d > 0.

A preference profile o := (0y)ycv is an n-tuple of preference rankings for each voter. We say that
d is aligned with the preference profile o, and we write d > o, ifd > o, forallv € V.

The metric distortion problem may be described as follows: An algorithm ALG receives as input
a preference profile o which is induced by an instance (V, C, d). The algorithm does not have access
to the underlying distance function d. The goal is to output a candidate c¢* that minimizes the social

cost, 1.e.

SC(c¢*) = min SC(c).
ceC

An algorithm for this problem will also be referred to as a voting rule and its output as the winner of
the voting rule. The distortion of ALG is the worst-case multiplicative approximation it achieves to

the optimum, i.e.

) . SC(ALG(0),d)
distortion(ALG) = sup sup ———— ——=
( ) Up d:dlfa SC(C*(d)7 )
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A first main question to address is how well can any voting rule perform. We present a first theorem
from [8] that provides a lower bound on the performance of all deterministic voting rules: no such
rule can have distortion better than 3.

Then, we provide lower and bounds from [§] for the distortion of many well-known voting rules,
starting with some classical positional scoring rules. A positional scoring rule fz is determined by a
scoring vector § = (s1, S2,...,8m), where s; € Q, s1 > s9 > --- > s, and s1 > s,,,. Whenever a
voter v € V ranks a candidate ¢ € C' in position ¢, then the candidate ¢ receives r,(c) = s, points
from v. Then, the total score of the candidate c is the sum

scoreg(c) = Z Ty (C).

veV

The winners according to the scoring vector 5 are the candidates ¢* € C' for which

scorez(c*) = max scorez(c).
ceC

We discuss the following positional scoring rules:
(i) Plurality, where s’ = (1,0,...,0).
(if) Veto, where 5= (1,1,...,1,0).
(iii) Borda, where §= (m —1,m —2,...,1,0).
(iv) Harmonic rule, where s = (1, %, %, e %)
(v) k-Approval (1 < k < m), where §= (1,1,...,1[k],0,...,0[m — k]).

First we provide bounds from [§] for common positional scoring rules. For k-Approval with & > 1
and for Veto, the distortion is unbounded. For Plurality and Borda, the distortion is 2m — 1, where m
is the number of candidates, with the upper bound matching the lower bound. Moreover, there is no
positional scoring rule whose distortion is bounded by a constant independent of m. For each value
of m, the distortion of every positional scoring rule for m candidates is at least 1 + 2v/Inm — 1.

It is interesting to note that neither Plurality nor Borda achieve the best possible distortion in the
class of positional scoring rules. The Harmonic rule of Boutilier et al. [24] has better distortion than
either Plurality or Borda. However, the distortion of the Harmonic rule is still almost linear in m, with
a lower bound of © (%) and an upper bound of O (\/%) .

Subsequently, it is shown in [§] that, while some commonly used rules have high distortion, there
are important voting rules for which distortion is bounded by a small constant or grows slowly with
the number of candidates. An example is given by the known Copeland rule. The Copeland score of
a candidate c is the number of candidates that ¢ defeats. The Copeland rule [36] outputs the candidate
that has maximum Copeland score. Anshelevich et al. [§] proved that the Copeland rule has distortion
5, with the upper bound matching the lower bound. This means that, although the Copeland rule
knows nothing about the metric costs other than the ordinal preferences induced by them, and cannot
possibly find the true optimal alternative, it nevertheless always selects a candidate whose quality is
only a factor of 5 away from optimal. Recall that, by the general lower bound of 3, no deterministic
voting rule can do much better than Copeland for the social cost.

Another popular voting rule, known as single transferable vote (STV), was studied in [[77] and later
in [6]. Single Transferable Vote (STV), which is used in real-life elections, is an iterative rule which is
defined in the following way. In each round, the candidate that is ranked first by the fewest voters (the
one with the lowest Plurality score) is removed from the set of candidates and from the rankings of
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the voters, which means that the Plurality scores have to be computed again. After m — 1 rounds there
is only one candidate left, and this is the winner. Elkind and Skowron [[77] proved an upper bound of
O(Inm) and a lower bound of Q(v/Inm) for the distortion of STV , which means that STV is not as
good as the Copeland rule.

The results above are summarized in the following Table.

Table 1. Upper and lower bounds for the distortion

Rule Upper bound | Lower bound
k-Approval, k > 1 00 00

Veto 0 00
Plurality 2m —1 2m -1
Borda 2m —1 2m —1
Harmonic Rule @) (\/;me) Q (§2)
Scoring Rules 00 1+2yVInm —1
Copeland 5 5

STV O(lnm) Q(vVInm)

Anshelevich et al. [8] conjectured that the Ranked Pairs rule [[78] can achieve the optimal distortion
of 3 but this was later disproved by Goel et al. [51]. Subsequently, Munagala and Wang [69] presented
a deterministic algorithm that achieves a distortion of 2 + /5 ~ 4.236. In fact, this algorithm does
not require access to the full ordinal preferences of the voters; it makes use of a limited input, the
weighted tournament graph, which contains, for every pair of candidates, the number of voters that
prefer one over another. Based on this, they conjectured that if full ordinal preferences are provided
then the best possible distortion should be 3. The same authors described a sufficient condition that
would imply the optimal distortion 3. Around the same time, Kempe [56] obtained independently the
same bound of 2 + /5 using a linear programming duality framework, provided several alternative
formulations of the sufficient condition of [69] and proved that Ranked Pairs has distortion ©(y/m).

In Section B.3 we present a theorem of Gkatzelis, Halpern and Shah [47], who introduced a de-
terministic algorithm that concludes this line of research and guarantees the optimal distortion of 3.
The main technical ingredient in this work is the “ranking-matching lemma” which establishes the
existence of fractional perfect matchings within a family of vertex-weighted bipartite graphs induced
by an instance of the problem.

Subsequent works have provided an even better understanding of the problem. Kizilkaya and
Kempe [58] achieved the optimal distortion with the Plurality Veto algorithm, which is much simpler
when compared to Plurality Matching, and afterwards the same authors [59] proposed a refinement
of Plurality Veto called Simultaneous Veto that resolves the arbitrary tie-breaking issues in [47] and
[58] while maintaining optimal distortion.
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After the final answer to the distortion problem for the class of deterministic algorithms, an open
problem is to also achieve optimal distortion bounds for randomized algorithms. Anshelevich and
Postl [[11]] provided a lower bound of 2 and proved that the Random Dictatorship algorithm has distor-
tion lower than 3, but it tends to 3 as the number of voters grows. Subsequently, Fain et. al. [41] and
Kempe [57] provided other algorithms with distortion that tends to 3, yet as the number of candidates
grows.Recently, the best known lower bound of 2.1126 was shown by Charikar and Ramakrishnan
[B2] and an upper bound of 2.753 was achieved by Charikar et. al. [33], breaking away from 3 for the
first time. Closing the remaining gap is still an open question.

The article [49] tries to combine metric distortion bounds with distortion bounds for the utilitarian
setting (where the voters’ preferences are arbitrary normalized valuations). In []l]] a variant of the
problem is studied, where more information besides the usual preference rankings is available, and in
[57] one can find a study of the trade-offs between the achievable distortion and the communication
complexity of deterministic social choice algorithms. In [[10] metric distortion is studied in distributed
settings and in [A43] the distortion of truthful mechanisms is examined. Different settings where the
information available is more limited than the full preference rankings have also been studied [|L1],
[52], [41], [57], [23], [7].

2.3 Learning-augmented algorithms

Recent research has increasingly focused on a novel analytical framework known as algorithms with
predictions or learning-augmented algorithms. This approach leverages machine-learned predictions
to refine performance bounds and overcome the limitations of traditional worst-case analysis. The
form of the predictions may vary depending on the type of data available to the designer and the
problem to be solved. By incorporating predictions, the algorithm can improve its performance by
using them as a guide.

However, the accuracy of these predictions is uncertain and cannot be fully trusted. The algorithm
is evaluated based on two criteria: its performance when the prediction is correct (referred to as con-
sistency) and its performance when the prediction is highly inaccurate (referred to as robustness). In
an extreme scenario where the prediction is followed blindly, good predictions will lead to excellent
outcomes (high consistency), while inaccurate predictions will result in poor performance (low ro-
bustness). On the other hand, completely ignoring the prediction weakens the consistency. Typically,
each learning-augmented algorithm strikes a balance between robustness and consistency, with the
goal of identifying the optimal trade-off between the two.

In recent years, the learning-augmented framework has been extensively used in the design and
analysis of algorithms to address the limitations of overly pessimistic worst-case bounds. Several
recent works have applied this framework to classical algorithmic challenges, including online paging
[62], scheduling [[74], secretary problems [37], [[12], optimization problems with covering [[18], and
knapsack constraints [54], as well as various graph problems [[15]. Early contributions to this field
are discussed in the survey [67], and [60] offers an up-to-date compilation of relevant papers. The
learning-augmented approach has also been applied to social choice problems, where predictions are
made about a group of agents and their preferences, with the objective of optimizing social cost or
welfare functions. This includes research on resource allocation problems where agents’ preferences
are revealed incrementally in an online setting (see [[19] and [20]), as well as scenarios where agents
are strategic and their preferences are private (see [2], [82], [48], [16], [S5], [71], [61], [27] and [[L7]).

Considering the metric distortion problem under this framework is reasonable because of the in-
formation limitations it contains. In addition to voter rankings, it is logical to assume that we may
have access to historical data on voters’ decisions in related matters, which could be correlated with
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their preferences for the issue at hand. This additional information can provide insights into the likely
outcome.

In the article [21], Berger et al. initiate the analysis of the metric distortion problem using the
learning-augmented framework and characterize the robustness-consistency Pareto frontier for this
problem. They consider algorithms that receive as input a pair (o, p), where o is a preference profile
and p € C'is a prediction about the optimal candidate ¢*(d). The goal is to evaluate the performance of
an algorithm through its consistency and its robustness. The consistency of ALG is defined as the dis-
tortion that ALG guarantees when the provided prediction is accurate, i.e. p = ¢*(d). The robustness
of ALG is defined as the distortion that ALG guarantees with an arbitrary prediction, independently
of how accurate this prediction may be.

In Chapter § we study the work of Berger, Feldman, Gkatzelis and Tan, who introduced a family of
algorithms, which is parameterized by 0 < § < 1, known as BoostedSV;, and obtained consistency
and robustness bounds in terms of §. The family BoostedSV represents a learning-augmented adap-
tation of the SimultaneousVeto algorithm proposed in [59]. The SimultaneousVeto algorithm starts
by assigning each candidate ¢ € C a score equal to the number of voters ranking c first (its plurality
score). Voters then continuously and simultaneously reduce the score of their least preferred candidate
among those with remaining positive scores. The candidate whose score reaches zero last is selected
as the winner. The BoostedSV 5 algorithm enhances SimultaneousVeto by boosting the initial score of
the candidate p € C predicted to be optimal. The size of this boost is a carefully calibrated increasing
function of §, which also adjusts the rate at which voters reduce scores. As § increases—indicating
greater confidence in the prediction—the size of the boost grows. It is proved that the algorithm
?jrg -consistency and %-robusmess. More recently, the authors pre-
sented in [21] a second family of algorithms, called LAy, and proved that for any § € [0, 1), the
i’jrg i’fg -robustness. Moreover, they showed that this is the
optimal trade-off. Namely, no deterministic algorithm that is %-consistent can be strictly better than

T
i’fg -robust, even for the line metric and just two candidates.

BoostedSVg achieves

algorithm LA achieves -consistency and

Consistency and robustness represent two extreme cases of prediction accuracy: perfect accuracy
and total unpredictability. A more detailed analysis, which establishes bounds on the distortion based
on the prediction’s accuracy level, can be conducted by introducing the concept of prediction error.
This error is defined as the distance between the predicted and optimal candidates, normalized by the
optimal average distance, given by SC(c*)/n. Specifically, we define the prediction error as

_n d(p,c*)
SC(c*)

It is shown in [21] that for any ¢ € [0, 1) and prediction error 7, the distortion of LA is at most

.{3—5+%n3+5}
min ,

146 '1-96
thus incorporating this additional parameter into the analysis of the problem.
It is interesting to note that the above bound recovers the consistency guarantee when n = 0. Asn

increases, the bound grows linearly with the prediction error until it reaches the robustness threshold,
at which point it flattens.
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2.4 Distortion of committee election

In the previous sections we considered the problem of a single-winner election and its metric distortion.
Another interesting problem that has not been studied as much is the metric distortion of multi-winner
elections, where we aim to elect a committee of £ > 2 members (out of m > k + 1 candidates)
based on ordinal preferences provided by n voters. Similarly to the single-winner case, the voters
and candidates are associated with locations in a metric space and the voters’ cardinal preferences
correspond to their distances from the candidates’ locations. However, in this case there are multiple
ways to define the cost of a committee, leading to different types of committee elections that satisfy
different properties [39], [42].

Goel et al. [50] and Chen et al. [34] considered the cost of a committee for a voter to be the sum
of her distances to all committee members. It was proved in [50] that by repeatedly applying k times
a single-winner rule with distortion «, a distortion of at most « for the multi-winner cost is achieved.
Therefore, the optimal distortion of 3 [47] for the single-winner case is also possible in this setting.
However, this cost selection tends to favor “homogeneous” majorities.

Here we consider the setting where the cost of each voter for a committee is defined as her distance
to the nearest member. This setting is motivated by the rules of Chamberlin and Courant [31] and
Monroe [68], which aim at electing a diverse committee that best represents the entirety of the voters’
population. It was also used by Caragiannis et al. [28] for the analysis of the utilitarian distortion of
multi-winner rules. In Chapter [, we present results of Fotakis, Gourvés and Patsilinakos [45] who
focus on the simplest case of linear preferences, where the voters and candidates are embedded in the
real line. The results of Caragiannis et al. [30], where a more general setting is studied (the cost of a
voter is defined as her distance to the g-th nearest member of the committee) imply that for ¢ = 1 the
distortion is ©(n) for £ = 2 and unbounded for all £ > 3 even in the linear case.

Despite this result, it is shown in [45] that one can use a restricted amount of cardinal distance
queries (inspired by [B], [8], [4]) to achieve bounded or even constant distortion in k-committee elec-
tion with linear preferences, for £ > 3. Specifically, bounded distortion is achieved with O(k) queries
and constant distortion is achieved with O(k log n) queries. A similar approach to the related k-median
and k-center problems in general metric spaces, i.e. the availability of limited cardinal queries in ad-
dition to the ordinal rankings, appears in [[73] and in [26].

2.5 Contribution

The goal of this thesis is to study voting rules for single-winner and committee elections under the
learning-augmented framework, inspired by the successful application of the framework in [21]]. Our
results are presented in Chapter [§.

Our first contribution is a discussion of consistency and robustness bounds for suitably defined
boosted versions of the Plurality and Borda rules. In the case of the plurality rule, forany ¢ € [0, 1) we
define the algorithm BoostedPlurality that uses a prediction p for the optimal candidate and depends
on the confidence parameter §. It elects either the candidate with the highest plurality score or p if his
plurality score is high enough. We show that BoostedPlurality; has robustness

2
robustness(BoostedPlurality;) < 177715 -1

and consistency
consistency(BoostedPluralitys) > 2m — 1 — 20.



If § = 0 then the lower bound for the consistency matches the distortion of the simple plurality algo-
rithm. When § — 1 the lower bound for the consistency tends to 2m — 3, meaning that the prediction
does not give nearly any improvement in the distortion of the plurality algorithm. The results are sim-
ilar for the learning-augmented version of the Borda rule, BoostedBordas. We also provide bounds on
the distortion achieved by BoostedPlurality; and BoostedBordas on instances where the prediction p
has a given error 7. These results indicate that predictions are not useful when the only information
available is the plurality score or the Borda score of the candidates.

Subsequently, we focus on the committee election problem. We assume that our algorithms have
access to a prediction P = {p1,...,pr} C C for the optimal committee. The first algorithm that
we examine, is a learning-augmented version of the Greedy algorithm from [45], parameterized by
0 € [0,1). At each iteration it elects in the committee either the most distant candidate thus far or
the most distant predicted candidate thus far. It uses ©(k) distance queries, but for all § € [0, 1) its
consistency is still Q(n).

Afterwards, we introduce an algorithm which, using a prediction P and the Greedy algorithm,
computes a good representative set of candidates and elects the optimal k-committee in the restricted
instance induced by this set. Our algorithm achieves constant consistency and linear robustness with
O(k) distance queries. Specifically, it achieves a consistency of at most 3 and a robustness of at most
10n + 1.






CHAPTER 3

Metric distortion

In this chapter we discuss voting under metric preferences. Both voters and candidates are associated
with points in a metric space, and each voter prefers candidates that are closer to her to ones that
are further away. The goal is to select a candidate that minimizes the social cost, i.e. the sum of
distances to the voters. A measure of the quality of a voting rule is its distortion, defined as the
worst-case ratio between the performance of a candidate selected by the rule and that of an optimal
candidate, i.e. a candidate with minimal social cost. Thus, distortion measures how good a voting
rule is at approximating a candidate with minimum social cost, while using only ordinal preference
information. The underlying costs can be arbitrary, implicit, and unknown; our only assumption is
that they form a metric space. We describe a number of results of Anshelevich, Bhardwaj, Elkind and
Postl from [8]. The first one is a lower bound 3 on the distortion of any deterministic voting rule.
Then, an analysis of the distortion of positional scoring rules which shows that the distortion cannot
be bounded above by a constant, and for several popular rules in this family distortion is linear in the
number of candidates or even unbounded independently of the number of candidates. On the other
hand, rules that select from the so-called uncovered set achieve a small constant-factor approximation
to the optimal candidate; this class of rules includes the well-known Copeland rule for which it is
shown that distortion is bounded by a factor of 5. For Single Transferable Vote (STV) the main results
are an upper bound of O(Inm), where m is the number of candidates, as well as a lower bound of
Q(Vinm).

It was conjectured in [§] that the optimal deterministic algorithm has distortion 3. This conjecture
was confirmed in [47] by Gkatzelis, Halpern and Shah who provided a polynomial-time algorithm
that achieves distortion 3, matching the known lower bound. We present the proof which is based
on a novel lemma, the ranking-matching lemma, about matching voters to candidates. This lemma
induces a family of novel algorithms, and we will see that a special algorithm in this family achieves
distortion 3.

3.1 Definitions and preliminaries

Let V and C be two finite sets. We say that V' is the set of voters and C is the set of candidates. We
set n = |V (the number of voters) and m = |C| (the number of candidates). In what follows, we
usually denote voters by u, v and candidates by c, x, y.

Recall the definition of a metric. If X is a non-empty set then a metric on X is a function d :
X x X — RT with the following properties:
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(i) d(a,b) > 0forall a,b € X, and d(a,b) = 0 if and only if a = b.
(ii) d(b,a) = d(a,b) forall a,b € X.
(iii) d(a,c) < d(a,b) 4+ d(b,c) forall a,b,c € X.

Then, we say that (X, d) is a metric space.
We assume that both V' and C' are located in a metric space (X, d), so that the distance d(a, b)
between a and b is defined for all a,b € V U C.

Definition 3.1.1 (Social cost). The social cost of a candidate ¢ € C' with respect to the metric d is the
sum

SC(c,d) =Y d(v,¢).

veV

We write SC(c) when the metric d is clear from the context.

Definition 3.1.2 (Preference ranking). A triplet (V, C, d) as above is called an instance. The distance
d(v, c) between a voter v and a candidate ¢ is a measure of how much v prefers c. We say thatv € V'
prefers ¢ € C over ¢ € C'if d(v, ¢) < d(v, ), Then we write

C=yC.

Any given instance (V, C, d) induces preference rankings to the voters. For each voter v € V' we have
a preference ranking o, : C — {1,...,m} such that 0,,(¢) < 0,(c’) implies ¢ =, ¢’ and then we say
that d is aligned with o, and we write d > o,. Note that o, is not always determined uniquely, since
it may happen that d(v, ¢) = d(v, ¢’) for some ¢ # ¢ in C.

Definition 3.1.3 (Preference profile). A preference profile o := (o,)yey is an n-tuple of preference
rankings to the voters. We say that d is aligned with the preference profile o, and we write d > o, if
d > o, forallv e V.

We are now ready to describe the metric distortion problem: An algorithm ALG receives as input
a preference profile o which is induced by an instance (V, C, d). The algorithm does not have access
to the underlying distance function d. The goal is to output a candidate ¢*(d) that minimizes the social
cost, i.e.
SC(c*(d)) = min SC(c, d).

ceC

An algorithm for this problem will also be referred to as a voting rule and its output as the winner of
the voting rule. The distortion of ALG is the worst-case multiplicative approximation it achieves to
the optimum, i.e.

distortion(ALG) = sup sup SC(ALG(0), d)
o ddp>o SC(C*(d)7 d)
An important first question that we can pose is how well can any algorithm perform. The next
theorem from [§] shows that one cannot hope to approximate the optimal candidate within a factor
better than 3.

Theorem 3.1.4 (Anshelevich-Bhardwaj-Elkind-Postl). Any deterministic algorithm has worst-case
distortion at least 3 for the social cost.

Proof. We examine the case where there are only two candidates, x and w. Suppose that half of the
voters prefer = to w and half of the voters prefer w to z. This means that there exists a partition of V/
into two sets V1, V5 such that |V1| = |Va| = § and the preference ranking o is defined as follows:
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— Forv € V4, 0y(z) = 1 and o, (w) = 2.
— Forv € V3, () = 2 and o, (w) = 1.

Now, consider an algorithm ALG and without loss of generality assume that w is its output. We
define a metric d aligned to o as follows: All n/2 voters v who prefer = to w satisfy d(v,z) = 0
and d(v,w) = 2. On the other hand, all n/2 voters v who prefer w to z satisfy d(v,x) = 1 4 € and
d(v,w) = 1 — € for some small € > 0 (they are approximately halfway between x and w).

z 14e¢ 1—¢ w
@ rurnnnnnnunnnnsn o@runnnunnnunnnun 9
n n
2 voters (Vi) 2 voters (V)

Figure B.1: Example for Theorem [3.1.4.

We compute

SC(z,d) = > d(v,2) = (1+¢) =

2
veV

and
n n
SC(w, d) = l;/d(v,w) =25 +(1-95

This shows that
2n+(1—en  3—c¢

(I+¢)n T 1+e
which tends to 3 as e — 0. O

distortion(ALG) >

Remark: In the example of the proof of Theorem we allowed d(z,v) = 0 while x # v, that
is, d was not a metric but a pseudometric. This is not an essential transgression, since we could have
replaced 0 by any sufficiently small quantity without changing the essence of the example. In the
sequel, we will often make use of this convention.

It will be useful to fix a notation for the following sets of voters:
(i) zy = {v € V : x =, y} is the set of voters v which prefer = over y.
(il) zyz ={v € V 1 x =, y =, 2z} is the set of voters v which prefer x over y and y over z.
We shall make frequent use of the next two elementary lemmas that appear in [8].
Lemma 3.1.5. Let ¢, x,y, 2 € C. Then, the following hold:
(i) Forall v € cx we have that d(z,c) < 2d(v, ).
(if) Forall v € cy we have that 2d(v,z) > d(z,c) — d(x,y).

(iii) For allv € V we have that d(v,c) < d(v,x) + min d(z, 2).

CEp2
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Proof. (i) Let v € cz, Then, ¢ =, x, which means that d(v, ¢) < d(v,x). By the triangle inequality
we get
d(z,c) < d(z,v) +d(v,c) = d(v,z) + d(v,c) < 2d(v, ).

(i1) Let v € cy. By the triangle inequality we have that
d(z,c) < d(v,c)+d(v,z).
Since ¢ =, y, we also have d(v, ¢) < d(v,y), and hence
d(z,c) < d(v,y) +d(v,z) < d(v,z) + d(z,y) + d(v,z) = d(z,y) + 2d(v, x).
Therefore, 2d(v, z) > d(x,c) — d(x,y).
(i) Letv € V and ¢, x € C. If z € C satisfies ¢ =, z then
d(v,c) <d(v,z) < d(v,x) + d(z, z).

Since this is true for all z satisfying ¢ =, z, we get d(v, ¢) < d(v,x) + min d(z, 2). O

C=pZ

Lemma 3.1.6 (Anshelevich-Bhardwaj-Elkind-Postl). For every pair of candidates c, x we have

SC(c) < 2n L
SC(z) ~ |ex|

Proof. Let c € C. Note that if v € cz then d(v, ¢) < d(v, z), while if v € xc we have that d(v, ¢) <
d(v,z) + d(x, c) by the triangle inequality. It follows that

_ Z d(v,¢) = Z d(v,c) + Z d(v, c)

veV veECT vETC
<Zdvx +Z (v,2) +d(z,c))
vecexr vEXC
= d(v,x)+ Y d(z,c) = SC(z) + |xc| - d(z, c).
veV vexe
Therefore,
SC(c) |zc| - d(z, ) (n — |cxl) - d(z,c)

sCo) =T Tsew T SC(z)

On the other hand, Lemma (i) shows that d(x, ¢) < 2d(v, x) for all v € cz, and hence

(3.1)

SC(x) - |cx| - |cx|

This proves the lemma. O
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3.2 Distortion of scoring rules

Definition 3.2.1 (Positional scoring rule). A positional scoring rule fz for C' is determined by a
scoring vector § = (s1,5S2,...,8m), Where s; € Q, s1 > s9 > --+ > s, and 51 > s,,,. Whenever
a voter v € V ranks a candidate ¢ € C in position 4, i.e. 0,(c) = ¢, then the candidate ¢ receives
Ty(c) = s¢ points from v. Then, the total score of the candidate c is the sum

scorez(c) = Z ().

veV

The winners according to the scoring vector 5 are the candidates ¢* € C' for which

scorez(c*) = max scorez(c).
celC

Some well known voting rules are in fact positional scoring rules. Well-known examples are the
following:

(i) Plurality, where s = (1,0,...,0).
(ii) Veto, where §= (1,1,...,1,0).
(iii) Borda, where §= (m —1,m —2,...,1,0).

(iv) Harmonic rule, where § = (1, %, %, ceey %)

(v) k-Approval (1 < k < m), where §= (1,1,...,1[k],0,...,0[m — kJ).

Our aim in this section is to provide lower and upper bounds for the worst-case distortion of these
voting rules. All the results that are presented in this section are from the work of Anshelevich,
Bhardwaj, Elkind, Postl and Skowron [8].

Lower bounds for the distortion

As we will see, the distortion of such rules cannot be bounded by a constant. We will see that the
distortion grows with m, that is, given any C' > 0 we may find mg such that if we consider any
positional scoring rule with m > mg candidates then the worst-case distortion of the rule exceeds
C. Moreover, for several families of scoring rules the distortion grows linearly with the number of
candidates or is infinite.

The next proposition from [§8] shows that the distortion of Veto and k-Approval with & > 1 is
infinite for every value of m.

Proposition 3.2.2. Consider a positional scoring rule with a score vector § = (s1, ..., Sp,) such that
s1 = sa. Then, the distortion of the rule is infinite.

g € € G Cm
[0 . Sasamams. s SULCLECEEL L e LT e PP PP P e PP PP PP PP PP °

/

all voters (V)

Figure B.2: Example for Proposition B.2.2.
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Proof. LetC ={ci,...,cp}and V = {vy,...,v,}. Assume that ¢; is located at the point x = i and
all voters are located at x = 1 on the real axis R equipped with the usual Euclidean metric. Then, all
voters provide the same ranking c; > c3 > - -+ > ¢p,. Since s; = so both ¢; and ¢y achieve the same
score ns; = nsa, and hence they are among the election winners. On the other hand, the sum of the
distances from the voters to ¢; is 0, while the sum of distances from the voters to ¢y is n. Therefore,
the distortion of the rule is +oo. O

The next theorem covers the more interesting complementary case where s; > sa.

Theorem 3.2.3 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). Let § = (s1,...,8m) be a score
vector with s1 > so. There exists a profile o on m candidates such that

distortion(fz,0) > 1+ 2vInm — 1.

If §'is the scoring vector of the Plurality or Borda rule then there exists a profile o on m candidates
such that
distortion( fz,0) > 2m — 1.

Finally, if §is the scoring vector of the Harmonic rule then there exists a profile o on m candidates
such that

distortion(f, o) = (%) .

m — j candidates (V') j candidates (X)
. ................................ . ................................ .
-1 /() 1
J -y voters J - ng voters

Figure B.3: Example for Theorem B.2.3.

Proof. We first note that the output of a scoring rule 5'does not change if the scoring rule “normalized”
in the sense that §'is replaced by A\ - (s; — t,89 — t,..., 8y, — t) where ¢t and \ are constants with
A > 0. Since s1 > s9 > Sy, taking t = s,,, and A = 1

S1—Sm

, we may assume that s; = 1 and s,,, = 0.

We fix j with 0 < j < m and n1, ny such that the number of voters is n = j - n; + j - no. The
numbers j, n1, ne will be determined later. We consider voters and candidates placed on the real axis
R, equipped with the Euclidean metric, as follows. We partition the set C' of candidates into two sets
X ={z1,...,z;}and Y = {y1,...,ym—;}. Let the j candidates of the set X be placed at the point
1 and the m — j candidates of the set Y be placed at the point —1. The voters are placed as follows:
There are j - ny voters at 0 and j - ny voters at 1. This means that the social cost of any candidate
x; € X 1S

SC(l’i,d) = j Ny



3.2 Distortion of scoring rules - 31

while the social cost of any candidate y; € Y is

SC(yi,d) = j - n1 4 2j - na.

Therefore, it is optimal to choose any candidate from the set X and, in case an algorithm ALG chooses

a candidate from Y then its distortion will be

o
jom42jmy o one

distortion(ALG) > ‘
J-m ny

Thus, we will try to choose Z—f as large as possible.

(3.2)

We shall now describe a profile o with d > o. We assume the following: all voters situated at 0
prefer candidates from the set Y to candidates from the set X . All voters rank the candidates from Y

in the same way: y1 > y2 > -+ > Ym—;. Foreachi = 1,..., j there are n; voters at 0 who rank the

candidates as follows:
YL = Y2 > = Ym—yj 7 T 7 Tl > o0 > Tj = T > -0 > T
and n9 voters at 1 who rank the candidates as:

Ty =L XL Tl =YL - > Yme—e

So, the score of y; is larger than the score of every other y € Y according to this profile, and equal to

scorez(y1) = j-n1 + J - n2sSiy1
(recall that s; = 1) while the scores of the candidates from X are all equal to
scorez(z;) = ni(Sm—jt1 + -+ Sm) +n2(s1+ -+ 55).
We need to have
Jeoni+j-nasiptr > ni(Smejr1 + 0 Sm) Fna(st + -+ 55)

in order for the algorithm to output y;. Dividing with n; we get the condition

. no n9
J <1 + Sj+1> > (Sm—jg1+ - 5m) + —(s1+ -+ 55)
ni ni

or, equivalently
n

2 . .
E[(Sl + 4 55) =841 < J = (Smejrr + o+ sm),
or .

ng <J_(5m*j+1+”'+5m)

ny = (sit+s) — s

So, our goal is to choose j so that

= (mn e+ 3n)
T (s14Fsy) —J - sin

becomes as large as possible and then we can directly choose integers n1, ny such that Z—f =1Tj.

We shall first choose j for each positional scoring rule separately:
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3
3

Borda rule: According to our normalization assumption, § = (1, —2 m=3 0). Choosing

m—17 m—1
7 = 1 we have

1- 1
T, = m —s =m— L
-8 1-07

Then we can choose ny = m—1,n; = 1and applying (B.2) we get the lower bound distortion(Borda) >
2m — 1.

Plurality rule: We have § = (1,0, ...,0) so we choose j = m — 1 and see that
T, = m—1—(sy+ -+ 5sm) :m—l:m_l.
(s14 -+ 58m_1) — (m—1)sp, 1

Then, applying (B.2) we get the lower bound distortion(Plurality) > 2m — 1.
Harmonic rule: We choose 7 = m — 1 and check that

m—1—(sg+ -+ 5n) >m—1—ln(m—1)—1

T _1=
m-l (s14 -+ 58m_1)—(m—1)s, — Inm

Then, applying (B.2) we get the lower bound distortion(Harmonic) = ( 1 ) .

Inm
We now turn to the general case. We need to show that for every score vector § with 1 = s1 > s9
and s,, = 0 we may choose j (1 < j < m—1)suchthatT; > /Inm — 1. Weset A = 1/v/Inm — 1
and consider two cases:
sg > 1 — A. Then we choose j = 1 and we have
1— s, 1

T = = >1/A=+vInm — 1.

S1 — S92 1—82

s9 <1 — A Then, foreach j = 1,...,m — 1 we have that

Sm—j+1+ -+ Sm
J

<sg<1—A\ (3.3)

We shall show that there exists j € {1,...,m — 1} such that

sito s sip1 < A% (3.4)

Then, for this j, we will have

1— Sm—j+1t+Sm
_ J
CZ} T s1tetsy . >
—7 TS

1
%:X:\/lnm—l,

where the inequality follows from (B.3) and (B.4).

So, suppose that thereisno j € {1, ...,m—1} such that (B.4) holds and we will get a contradiction.
Foreachj=1,...,mweset f; = SH'JJ, so we suppose that forall j € {1,...,m — 1} we have
fj — 8j+1 > A? or, equivalently sj+1 < f; — A% Then,

st s = (1t k) b s <SS =X = (D - N

and hence f;11 < f; — f‘% forallj =1,...,m — 1. By induction, we get

fm§f1—)\2<;+---+1>
m



3.2 Distortion of scoring rules - 33

and using the inequality % 4+ 4 % > In'm — 1 we conclude that
fn <1 =X(Inm —1) =0,

which is a contradiction since f,,, > 0. O

Upper bounds for the distortion

In this subsection we provide upper bounds for the distortion of Plurality and Borda rule, which match
the lower bounds given by Theorem B.2.3, and an upper bound for the Harmonic rule, which is close
to the corresponding lower bound.

Theorem 3.2.4 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). The distortion of Plurality and Borda
rule on m candidates is bounded by 2m — 1.

Proof. Let d be a metric which is aligned with the preference profile o, and let = be an optimal
candidate with respect to d. We shall show that if w is a winning candidate then both for the Plurality
and for the Borda rule we have [wx| > . Then, the result follows from Lemma B.1.4.

The claim is obvious for the Plurality rule, because at least 7~ voters have w as their first preference.
To see this, note that if plu(c) is the number of voters who have c as their first preference then

n=Y plu(c) <|C|-plu(w) = m - plu(w).
zeC

For the Borda rule we argue as follows: If v € V we set 0, = o,(x) — o,(w). Since w is a Borda
winner, we have that Z 0y > 0. Note thatif v € xw then d,, < —1, whileifv € wax thend, < m—1.

veV
Assume that |wz| < . Then, |[zw| > n — =, and hence

n(m—1) n n(m —1)

> b < (“Dlaw] + (m — Djwa| < ———— a

veV

We have arrived at a contradiction, therefore |wz| > .

The upper bound for the Harmonic rule is sublinear in m.

Theorem 3.2.5 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). The distortion of the Harmonic rule
m

on m candidates is O (\/T7m .

Proof. Foreveryt > 0wedefine s, = 1/t. Wealsoset F; = 1+ % +-- ~+% for every positive integer
j. Let d be a metric which is aligned with the preference profile o, let = be an optimal candidate for
o, let w be a winner under the Harmonic rule, and set § = d(w, ).

We consider the set

M:{UGV:d(v,x)<g}

and denote the cardinality of M by m. Then,

Z’UEV d(uw) < ZvGV(d(va) + d(ﬂ?7w)) -1 + 715
E’UGV d(’U, l’) - ZvEV d(U7 .le) ZUGV d(’l}, JJ)
no né 6n
<1+ <l+————=1+

ZveV\M d(v,z) ~ (n—m)d/6 - n—m
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For the proof of the theorem it remains to show that n — m = n ( v lnm) . Consider the set

m

P:{yeC:d(y,x)<g}

and denote the cardinality of P by p. For each v € M, let s,, denote the score that = receives from v.
Then,

Let also
Cv = ng(x) =81+ -+ Sai(:c)'

If we fix a voter v € M then, for every y € P we have that

s § 9

d <d d 42 ==

(v,y) < d(v,2) +d(z,y) < g+ 3 =5

and 5 ss
d(v,w) > d(z,w) — d(v,z) > — i

which means that v prefers every candidate from P over w. Next, we observe that if z € C'\ P then

d(v,z) > d(z,z) —d(v,z) > g - g = g > d(v,x),

which means that v prefers x to every candidate from C'\ P. So, the preference order of v is of the

form

Vi@ e gy = T W
where {a;,,...,a;} is a subset of P\ {z}. It follows that the total score of w is at most ms; 1 +
(n — m), while the total score of x is at least Z Sy

veM

Note also that the total score that a voter v € M gives to the candidates in P is at least (,, (because
x € P) and hence, by the pigeonhole principle, there exists some candidate in P whose total score is

1 ) . . .
at least — Z (y. Since w is a winner under the Harmonic rule, we see that

veM
msjy1+ (n—m) > Z Sy (3.5)
veM
and 1
msjy1 + (n - m) > - Z Cv- (36)
J veM

1
Ifweseté = — Z o, (z) then by the harmonic-arithmetic mean inequality we get
m

veEM
m_ M < e )
doveM Sy Dpem 7o(@) m
and (B.5) gives
msjy1+ (n—m) > % = mse. (3.7)
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On the other hand, since o, (x) < j for every v € M and =2 is a decreasing function of ¢, we get
Fooz) 2 av(x)% for all v € M, which implies that

i
q

Z”L)GM CU — Z'UEM CU _ ZUGM FUv(f) > &
p— j .

mf ZUEM O-U(x) ZUEM O'U(l‘)

Then, (B.g) gives
mf Fj
2

Now, if ¢ < j/+/Inj then s¢ > v/Inj/j, and if ¢ > j/y/Inj then F; > Inj, and hence {Fj /5% >

msjy1+(n—m) > (3.8)

v/Inj /4. Taking into account (B.7) and (B.8) we see that - 7_7: 1 +(n—m)>m Tl‘] , or equivalently
J
VInj 1
nz=m <1 + P] - > .
J J+1
Since j < m, we conclude that m < n , and this finally gives
1+ Vinm _ 1
m m+1
Vinm 1 m
n—m>n—= o —n.Q ,
14+ Vinm 1 m
m m+1
which proves the theorem. O

3.3 Distortion of the Copeland rule

In this section we show that there are simple voting rules whose distortion with respect to the social
cost is bounded by an absolute constant. We start with a few definitions.

Definition 3.3.1 (uncovered set). Let (V, C, d) be an instance and let o be an induced preference pro-
file. If z,y € C then we always have |zy| + |yx| = n. We say that x universally defeats y if |zy| > 5
and that x weakly universally defeats y if |xy| > 5. A candidate c is called Condorcet winner (re-
spectively, weak Condorcet winner) if ¢ universally defeats (respectively, weakly universally defeats)
all other candidates.

We say that a candidate w € C belongs to the uncovered set of o if for every x € C we have that
w weakly universally defeats x or there is a candidate y such that w weakly universally defeats y and
y weakly universally defeats x. The uncovered set of o is denoted by UC(0o).

Definition 3.3.2 (Copeland rule). Let (V,C,d) be an instance and let o be the induced preference
profile. The Copeland score of a candidate c is the number of candidates that ¢ universally defeats.
The Copeland rule outputs all candidates that have maximal Copeland score.

One can check that the uncovered set of any preference profile is always non-empty and that the
output of the Copeland rule is always a subset of the uncovered set. Indeed, suppose that w is a

Copeland winner with Copeland score k, i.e. w universally defeats the candidates y1,...,yr. We
shall show that w € UC(o). If not, there must be a candidate = such that none of the candidates
w, Y1, - .., Y weakly universally defeats x. Then, we have

n

n n
|wx\ < §a|2/196” < §7v‘ykx‘ < 9
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and hence
n
|[zwl ) |my1| > o |yl > B}
which means that x universally defeats w, y1,...,yr. It follows that = has Copeland score at least

k + 1, which is higher than that of w, and we arrive at a contradiction.

Our aim in this section is to show that the distortion of Copeland rule is less than or equal to 5.

Theorem 3.3.3 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). Let o be a preference profile and let
x be an optimal candidate for o with respect to the metric d. Then, for every w € UC(o) we have that

SC(w) < 5SC(x).

For the proof of Theorem we need the next two lemmas.

Lemma334 Letuf(ul,..., )E]meithul>u2> <> Uy > 0 and let o, B € R™ such
thatZaZ > Zﬁlfor all k € [m). Then, Zazu, > Zﬁzuz
i=1 i=1

Proof. For each i € [m] we define v; = a; — ;. From Abel’s summation formula we know that

m m
SR DS 9 o) IR
i=1 i=1 i=1 \ j=1
forany t1,...,tm, s1,...,sm € R. Using this identity with s; = ~; and ¢; = u;, we get

m m m m m—1 k
Z QU — Z Biu; = Z%’Ui = Up, Z Yi — Z Z Y | (wig1 — w;) (3.9
i—1 i—1 i1 i—1

=1 7=1
_um271+ Z Z'}’j Uj —Ui+1).
=1 7=1

The assumption of the lemma implies that E?Zl v; > 0 forall k& € [m] and u; — u;11 > 0 for all
i € [m — 1]. Therefore, the sum in (B.9) is non-negative, and the lemma follows. O

The next lemma gives a lower bound for the cost of a given candidate = in terms of a second
candidate w, which is useful when x is an optimal candidate and w is a winning candidate.

Lemma 3.3.5. Let o be a preference profile and let x,w be a pair of candidates. If

> dwv,x) > ! min d(z, 2) (3.10)

for some y, then
SC(w) < (1 +v)SC(x).

Proof. From Lemma (iii) we know that if w, z € C then for all v € V we have that d(v, w) <
d(v,z) + min d(x, z). Using this inequality together with the fact that d(v,w) < d(v,x) for all

WEy2
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v € wz, we obtain the following upper bound for the cost of the candidate w:

SC(w) > vey A(v, w) B Y vews AW, w) +3° oo d(v,w)

SC(z)  Yyev d(v, @) 2 vey d(v; )
< ZUEV d(vv l‘) + Zveazw minw%‘vz d(l‘, Z) — 14+ Zszw minw%‘vz d(:E, Z)
B > ey d(v, ) > vey dv, @)
Then, taking into account (B.10) we obtain the assertion of the lemma. O

Proof of Theorem B=3-3. We fix a preference profile o, an optimal candidate x for ¢ and a candidate
w € UC(0).

If w weakly universally defeats 2 then |wz| > % and Lemma B.1.6 shows that

or, equivalently
SC(w) < 3SC(x).

Suppose that w does not weakly universally defeat x. Since w € UC(0), there exists a candidate
y such that w weakly universally defeats y and y weakly universally defeats x. Therefore, we have
lwy| > n/2 > |yw| and |yz| > n/2 > |xy|. We distinguish two cases:

(i) First, assume that d(z,y) > d(x,w). There are at least n/2 voters that prefer y over x.
Lemma shows that each of these voters contributes a term > $d(z,y) > 3d(z,w) to the social
cost SC(z) of z. Then,

S dw,a)> Y d,a) > 5 3 day) = Slyald(r,y) > "d(,y)

veV VEYT VEYT

n 1 1
> — > — > — i .
> 4d(x,w) > 4|:cw| d(z,w) > 1 vgquil;l?z d(z, z)

Applying Lemma with v = 4 we obtain an upper bound of 5 for the distortion.

(ii) Next, assume that d(z,y) < d(z,w). Note that in the previous case, in order to give a lower
bound for ) .y, d(v,x) we took into account only voters v € yx. This time, we consider the sets
wz, rwy and yrw. Observe that, by the choice of z, y and w, we have that

|lwz| + |zwy| = |ywz| + |wyz| + |wzy| + |zwy| (3.11)

1 1
> fwy| > yw] > |yl + leyw] > S lyzw| + eyl
and

|lwz| + |yzw| = |ywx| + |wyz| + |wzy| + |yzw]| (3.12)

n 1
> |yx| > 52 §(|yarw\ + [zyw| + [rwyl).



38 - Metric distortion

We apply Lemma [3.3.4 with
a1 = |wz| + Jzwy|, @ = |yzw|, a3 = —|zwy|
1 1 1
pr1 = 5]ya:w| + 5]:1:yw|, B2 = §|xwy\, p3 =0

up = d(z,w), uz=ug=d(x,y).

From (B.11)) we see that a; > 1. Also, from (B.12) we see that oy + o + a3 > 1 + (2 + f3, and
since g < 0 and B3 = 0, this implies that ai; + g > 51 + P2. The assumption also shows that
u1 > ue = ug. Therefore, we may apply Lemma to write

aqu + apuz + azus = (|lwz| + |zwyl) d(z, w) + (lyzw| — |zwy|) d(z, y) (3.13)

1 1
2 frur + Bauz + Bzus = 5 (jyzw| + Jayw]) d(z, w) + 5wyl d(z, y).
Now, we apply Lemma to write

Zd(v,x) > Z d(v,z) + Z d(v,z) + Z d(v,x)

veV veEwx veETwy vEYTW

1 d —d 1
> ghusldto,w) + ow] (028D 4 Dy o)

1
(o] + |zwy]) d(z, w) + 5 (lyzw| — |zwyl) d(z,y)
1
2 7 (lyzwl + |zwyl) d(z, w) + 7 lewy| d(z, y)

>

N SN G

min d(z, z),
W=y 2
veETW

where the first inequality comes from Lemma B.1.9, the second inequality follows from (B.13) and the
last inequality is a consequence of zw = yrw U zyw U xwy, combined with the facts that w >, w
forallv € V and w =, y for all v € zwy.

Having obtained this estimate for ) - d(v, z), we may apply Lemma with v = 4 to obtain
again an upper bound of 5 for the distortion. O

Theorem shows that the distortion of the Copeland rule is at most 5. The next result shows
that, in fact, this upper bound is tight.

Theorem 3.3.6 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). The distortion of the Copeland rule
with respect to the social cost is at most 5. Moreover, for every € > ( there exists a preference profile
o such that the Copeland rule on o with respect to the social cost has distortion at least 5 — e.

Proof. The upper bound is a consequence of Theorem after we recall that the output of the
Copeland rule is a subset of the uncovered set.

In order to prove that this upper bound is tight, we consider a preference profile o with three
candidates w, x, y, where § — 1 voters choose the rank y > z > w, § — 1 voters choose the rank
x > w > y, and the remaining two voters choose the rank w > y > x. This implies that w universally
defeats y, y universally defeats x, and x universally defeats w. Then, the Copeland score of all the

candidates is equal to 1, and in particular w is a Copeland winner.
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2 voters with ~ /  \ T 21
wy -

1 — e~
wek i Samne 1/
n
g — 1 voters 5= 1 voters
with x > w >y withy > z > w

coinciding with x

Figure B.4: The distortion of any rule that outputs w is arbitrarily close to 5 as € — 0 and n — co.

We consider the metric in Figure B.4. It is easy to check that the triangle inequality is satisfied.

Observe that
Yevdw) (5-1)-2-¢+(5-1)-3+20
2vey d(v;2) (2—1)-(1+e€) +22 '

Note that if we let n — oo and € — 0, we obtain instances for which the distortion of the Copeland

rule is arbitrarily close to 5. U

3.4 Distortion of single transferable vote

Single transferable vote (STV) is an iterative rule which is defined in the following way. In each
round, the candidate that is ranked first by the fewest voters (the one with the lowest Plurality score)
is removed from the set of candidates and from the rankings of the voters, which means that the
Plurality scores have to be computed again. After m — 1 rounds there is only one candidate left, and
this is the winner.

It was proved in [§] that the distortion of STV grows logarithmically with the number m of can-
didates. On the other hand, the authors also provide a non-constant lower bound, which means that
STV is not as good as the Copeland rule. First, we explain the upper bound.

Theorem 3.4.1 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). The distortion of single transferable
vote is O(Inm).

Proof. We fix a preference profile o, an optimal candidate = for o and a winning candidate w under
STV. We set d = d(z,w), we fix a constant y € (%, 1) and define

2v—1
p_2[1°gﬁ (m 37—2ﬂ +1

Note that p is an odd integer and p = O(In'm). We also set

Foreveryi =1,...,p+ 1 we consider the ball B; = B(x, (2 — 1)r). Note that

2 — 1 2+ 1

2p

(2p—1)r = d<d=d(z,w) < d=2p+1)r
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which means that w € By11 \ B,.

Figure B.3: The sequence of balls used in the proof of Theorem B.4.1].

We shall show that B; contains at most yn voters. This will allow us to obtain the claimed upper
bound for the distortion. We just have to note that

Y vey d(v, w) - Y vev(d(v,z) +d(z,w)) 14 nd

Zvev d(v,z) ~ ZUEV d(v, ) ZUEV d(v,x)
<lp— gy g B
T Y dv,x) T (1l —y)r 1—x

and then recall that y is a fixed constant and p = O(Inm).

It remains to prove that |[B; N C| < yn. Assume the contrary. We consider an elimination process
for which w is the last remaining candidate. We say that y € C' is supported by v € V (equivalently,
that v supports y) at some stage of the process if y is the closest candidate to v at the given stage. For
every 1 < ¢ < p denote by z;_1 the last candidate in B;_; that is removed and by s; the number of
candidates in B; \ B;_1 just before z;_; is being removed.

Leti <p—2.1fv e Byandy ¢ B;y; then

d(v,z;) < d(v,x) +d(z,z) <r+2i—1)r=2i+1r—r<dy,z) —dwv,z) <dv,y).

This shows that, just before z; is being removed, every v € By supports some candidate in 5;11. By
yn
Si+1+1
voters in B;. So, at the stage where y is removed, all the remaining candidates in B;;3 \ B;;o are
m
Si+1+1
none of these voters is in B;. To see this, observe that

the pigeonhole principle, we may find a candidate y € B, that is supported by more than

voters. Since every voter in By prefers y to every i € Bii3 \ Bito,

supported by more than

d(v,y) < d(v,z) +d(z,y) <20+ 1)r <dy,z) —d(v,z) < d(v,y)

for all v € Bj.
It follows that ngL < n(1 — ), or equivalently,
Siy1+1

~
Si+1 > ——Si+3 — L.
-7

1

We set £ = % Since % < v < 1, we see that £ > 1 and l—ig < 0. Note that s;,11 > 1 because
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w € Bpt1 \ By. We write

s1>Es—1>ss—6—1>..>¢"7 —¢5 1.1
e 18T LY 1 e 26
¢ —¢ ¢ <1+1—§> e -

v T 3y—2 2y —13y-2
= >m =
11— 2y —-1"7 3y—-22y-1

Since |C| = m, this is a contradiction, and the proof is complete. O

We pass now to the lower bound.

Theorem 3.4.2 (Anshelevich-Bhardwaj-Elkind-Postl-Skowron). The maximum distortion of single
transferable vote over all profiles with m candidates is Q(+/Inm).

Proof. Given a positive integer p, we construct a perfectly balanced tree of height p and connect all
its leaves to an additional node. We agree that all leaves belong to the first layer and, for any ¢ > 1,
layer ¢ consists of the parents of the nodes at level ¢ — 1. For any 2 < ¢ < p, each node at level ¢
has r; = 2 + 2°=2 — 2 children. We denote by ¢; the number of nodes at level i. The length of each
edge of the graph is equal to 1, and the distance of two nodes is the length of the shortest path between
them.

~ 36 r; children

Figure B.6: The metric space used in the proof of Theorem for p = 4. The number that appears
on every node is the number of voters in that node.

We place one candidate on each node, including the node connected to the leaves. Since r; =
20 42172 _2forall2<i < p, we getry; < 2t forall 1 < i < p, and the total number of leaves is

t < opPtl.op.. .9 — o e t2) < 9P+1)?,

Since the degree of each internal node is at least 2, we see that the number m of candidates is at most

2. 2(r+1)? and this shows that
p > /logym — 2.



42 - Metric distortion

Next, we place the voters on the graph. We place one voter on each leaf. Let S; be the total number
of voters in a subtree rooted in a level-i node. We have S; = 1 and for each 2 < ¢ < p we compute
S;—1 and place S;_1 voters on each node of layer 7. This means that S; = S;_1(r; + 1). There are
exactly t1 voters in the bottom layer and there are ¢;5;_1 voters at level ¢. Moreover, t; = t; 11741,
and hence ‘ '

ti1Si  Si o+l 2042721 ]

tiSi_1 N rit15i—1 N Tit1 C il 9i-l 9 2
This means that the number of voters at layer ¢ + 1 is half the number of voters at layer ¢, and since
layer 1 has t; voters, the number of voters in layer 4 is equal to 1 /2¢+1,

Let yo be the candidate that is placed on the node connected to the leaves. Then, STV removes g
first, because there is no voter that ranks him first and every other candidate is ranked first by at least
one voter. In the next step, STV can remove all the candidates that are placed on the leaves, one by
one: this is because, initially, each such candidate is ranked first by exactly one voter, and no such
candidate gains new votes when other leaf candidates are removed. Suppose that STV has removed
all candidates lying in layers 1,...,¢ — 1, and all other candidates have not been removed. Then, a
candidate in layer ¢ is ranked first among the remaining candidates by the .S; voters in the respective
subtree, and each candidate in layer j, j > ¢, is ranked first by the .S; 11 > 5; voters that are located
in the same node as that candidate. Therefore, STV can remove the candidates in layer ¢ one by one.
So, we conclude that the root of the tree can be selected as the winner. Since there is a voter in each
leaf, the total distance dg, of the voters to the root is at least pt.

On the other hand, the total distance dy, of the voters to the candidate in the node that connects all
leaves satisfies

t t P p+1 P
dbot:t1+2'2+"'+p'2p1:t12 1:4751(1— + )§4t1.

2 2p 2p+1

This implies that

dst S p S v/logom — 2
_4_ 4 )

and the theorem follows. O

Anagnostides, Fotakis and Patsilinakos [6] studied the distortion of STV with respect to the dimen-
sionality of the undelying metric space. A crucial notion in their work is the doubling dimension of a
metric space. The doubling constant of a metric space (X, d) is the least integer N > 1 such that for
any z € X and any r > 0 the ball B(z, 2r) can be covered by the union of at most N balls of radius
r, i.e. there exists a subset S C X with cardinality |S| < IV such that

B(z,2r) C U B(y,r).
yes

Then, the doubling dimension of X is defined as
dim(X) = k :=logy N.

A standard volumetric argument shows that the doubling dimension of the Euclidean space R? is of
the order of (its usual dimension) d. One can also check that if (X, d) is a finite metric space then
dim(X) < log, | X|. The main result in [] is the next theorem.

Theorem 3.4.3 (Anagnostides-Fotakis-Patsilinakos). The maximum distortion of single transferable
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vote over all profiles with m candidates located in a metric space with doubling dimension k is
O(kInlnm).

This establishes an upper bound for the distortion which is much better than the general lower
bound Q(\/ﬁ) when the doubling dimension of the underlying metric space is small. For example,
the distortion of STV under low-dimensional Euclidean spaces is O(InInm).

It is actually conjectured in [6] that the In Inm factor can be removed and one can have that if the
doubling dimension of (X, d) is equal to k then the distortion of STV is O(k). In [6] this conjecture
is verified in the case £ = 1 of one-dimensional metric spaces.

3.5 Plurality Matching

In this section we present a theorem of Gkatzelis, Halpern and Shah [47], who introduced a deter-
ministic algorithm that guarantees the optimal distortion of 3. In what follows, instead of an instance
(V,C, d) and the induced preference profile o, we consider an election £ = (V,C, o), i.e. we do not
have full access to the metric d but we know that d is aligned to 0. We write A(V') and A(C) for
the set of probability distributions over V' and C respectively, that is, vectors of non-negative weights
that add up to 1. For a given preference profile o we denote by top(v) the candidate ranked first in
oy, and we set plu(a) = [{v € V : top(v) = a}|; i.e. plu(a) is the plurality score of the candidate a.
For every D C C we also set plu(D) = . plu(a).

We shall obtain a refinement of our distortion bounds using the notion of «-decisiveness, intro-
duced by Anshelevich and Postl in [[11]. Given «v € [0, 1], a voter v is called a-decisive if

d(v,top(v)) < a - d(v,¢)

forall c € C, ¢ # top(v), i.e. the distance of v from her top choice is at most « times its distance from
any other candidate. We say that the metric space is a-decisive if all voters v € V are a-decisive.
When we study the distortion of a voting rule in the framework of a-decisive metric spaces, we are
interested in the worst case over only those metric spaces that are a-decisive and satisfy d > o.

We shall define a deterministic voting rule that has distortion at most 3. The key step is a lemma
about matching voters to candidates. Before stating the lemma we need to introduce some terminology.

Definition 3.5.1. Let £ = (V,C, o) be an election, and consider two normalized weight vectors
p € A(V) and ¢ € A(C). The (p, q)-domination graph of the candidate a is the vertex-weighted
bipartite graph Gg’q(a) = (V,C, E,,p,q), where (v,c) € E, if and only if a =, c¢. The vertex
v € V has weight p,, and the vertex ¢ € C' has weight g.. When £ is clear from the context, we set
Gpqla) == ngq(a).

Definition 3.5.2. We say that the (p, ¢)-domination graph G, ,(a) admits a fractional perfect match-
ing if there exists a weight function w : E, — RT such that the total weight of edges incident
on each vertex equals the weight of the vertex. This means that for each v € V we have that

Z w(v, ¢) = p, and for each ¢ € C' we have that Z w(v,¢) = qe.
{ceC:(v,c)EE.} {veV:(v,c)EE.}

Forall S C C wesetp(S) = > cgpvandforall D C C wesetq(D) = > pqe. IfE =
(V,C, o) is an election, for any a € C' and S C V we say that a candidate ¢ is weakly defeated by a
in S if there exists v € S such that a =, ¢ and we define the set

Dqo(S) := DE(S) = {c € C: cis weakly defeated by a in S}.
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Note that D, (S) is precisely the set of neighbors of S in the graph G, 4(a), for any p and ¢. Using a
generalization of Hall’s condition we can show that a fractional perfect matching in G, 4(a) exists if
and only if the set of neighbors of S has at least as much weight as S itself.

Lemma 3.5.3. Let £ = (V,C,0) be an election, and let p € A(V), ¢ € A(C) and a € C. Then,
G)p,q(a) admits a fractional perfect matching if and only if (Do (S)) > p(S) forall S C V. Moreover,
we can check whether Gy, 4(a) admits a fractional perfect matching in strongly polynomial time.

Proof. Consider an election £ = (V, C, o) and the weight vectors p € A(V') and ¢ € A(C). For a
given candidate a € C' we shall first show that G} ;(a) admits a fractional perfect matching if and
only if (D4 (S)) > p(S) forall S C V.

&
Gm(a)

Figure B.7: The flow network used in the proof of Lemma B.5.3. The edge from source node s to each
voter v has capacity p,, the edge from each candidate c to target ¢ has capacity g. and edges from
voters to candidates are as in Gi ;(@) with infinite capacity.

For the proof we use the max-flow min-cut theorem. We create a network N as in Figure B.7: We
convert all edges of G, ;(a) to directed edges from voters to candidates with infinite capacity, we add
a source node s with an outgoing edge of capacity p, to each voter v, and a target node ¢ with an
incoming edge of capacity ¢, from each candidate c.

This network admits a flow of value 1 if and only if G, ;(a) admits a fractional perfect matching.
To see this, note that if V has a flow of value 1, then s has an outgoing flow of 1 and ¢ has an incoming

flow of 1. Since Z Py = Z gc = 1, this implies that the node for each voter v must have a flow of

veV ceC
Py passing through her, and the node of each candidate ¢ must have a flow of g, passing through him.

Then, we can define a fractional perfect matching in G, 4(a) by using the flow on each edge (v, ¢) as
the weight of the edge. Conversely, if G ;(a) admits a fractional perfect matching w, we can define
a flow as follows: each edge (s, v) carries a flow of p,,, each edge (v, ¢) carries a flow of w(v, ¢), and
each edge (¢, t) carries a flow of ¢.. We easily check that this a flow of value 1.

Since p and ¢ are normalized weight vectors, the network N has a flow of value 1 if and only if
its maximum flow is 1. The max-flow min-cut theorem shows that, equivalently, the minimum cut
capacity of N is equal to 1. Since ({s}, VU(CU{t})) is a cut of capacity 1, we have that the minimum
cut capacity will be 1 if and only if every cut has capacity equal to 1.

We will show that this last condition is equivalent to the fact that ¢(D,(S)) > p(S) forall S C V.
Assume first that every cut has capacity at least 1. Let S C V and consider the cut ({s} U S U
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Dgy(S), (V\S)U(C\ Dy(S)) U{t}). Since D,(S) is the set of neighbors of .S, there are no edges
of infinite capacity in this cut. The only edges that are part of the cut are the ones that go from s
to nodes in V' \ S and the ones that go from D,(.S) to ¢. It follows that the capacity of this cut is
p(V\S)+q(Dy(5)). Since this sumis > 1 and p(S) = 1 —p(V'\ S), we see that ¢(D,(S)) > p(S).

Conversely, assume that ¢(D,(S)) > p(S) forall S C V. Let ({s} U A, BU{t}) be a cut of N.
If this cut contains an edge of infinite capacity, then it clearly has capacity at least 1. If not, then all
the neighbors of S = ANV are also in A, which shows that D,(S) C A. Then, this cut has capacity
atleast p(V'\ S) + q(Dqa(S)) =1 —p(S) + q(Dy(S)) > 1.

We have proved that G, ;(a) admits a fractional perfect matching if and only if the network that
we constructed has max-flow 1 and that this holds if and only if ¢(D,(S)) > p(S) forall S C V.
Moreover, since the maximum flow value can be computed in strongly polynomial time, we see that the
existence of a fractional perfect matching in G, ;(a) can be checked in strongly polynomial time. [

Lemma shows that if £ = (V, C, o) is an election, p € A(V), ¢ € A(C) and there exists a
candidate a € C such that Gqu(a) admits a fractional perfect matching then in any subset S of V' we
have that a weakly defeats a set of candidates with total weight at least equal to that of S, and hence a
is a very good choice. In fact, we will see that if we choose the weights p and g appropriately then this
also implies low distortion. To make this plan work, our first goal is to show that such a candidate a
always exists in any election £ and for any choice of weight vectors p and ¢. This is indeed established
by the next crucial lemma.

Lemma 3.5.4 (Ranking-matching lemma, Gkatzelis-Halpern-Shah). Let £ = (V, C, o) be an election,
and let p € A(V), g € A(C). Then, there exists a candidate a € C whose (p, q)-domination graph
Gg,q (a) admits a fractional perfect matching. Moreover, this candidate can be computed in strongly
polynomial time.

Proof. We argue by contradiction. Assume that € = (V, C, o) is an election with the smallest possible
number of voters, such that there exist p € A(V') and ¢ € A(C) for which the assertion of the lemma
is not true. Fix such p and ¢q. Then, Lemma shows that for any ¢ € C we can find S C V
such that ¢(D%(S)) < p(S). We shall say that S is a counterexample for a, and we shall call this
counterexample minimal if there is no strict subset of .S which is also a counterexample for a. For the
rest of the proof, for every a € C' we fix such a minimal counterexample X, C V.

We consider the set of candidates C* whose minimal counterexamples have the largest possible
weight under p, i.e. C* contains those ¢ for which p(X.) is maximal. Next, we define a partial order
R on C* as follows: if b,c € C* then b Rc¢ if and only if X, C X and b >, ¢ forevery v € X,. If
a € C* is a maximal element for this partial order then the counterexample X, for a has the highest
weight and no other candidate b with this property is better than a with respect to R.

We fix a candidate a who is maximal for R. We set X := X, and D := DS (X,). We also set
X =V \Xand D = C\ D. We shall show that if a does not weakly defeat a candidate b in X,
then the minimal counterexamples of a and b are incomparable.

Lemma 3.5.5. Forevery b € D we have that X \ X, # @ and X, \ X # @.

Proof. Letb € D, Then, by the definition of D, we have that b =, a for all v € X. Suppose that
X\ Xp =92,ie. X C X;. Then, p(Xp) > p(X). Since p(X) is maximal, we must have b € C*.
Moreover, since X C Xpandb >, aforallv € X, we see that b R a, which is a contradiction because
a is amaximal element of C* with respect to R. Next, suppose that X;\ X = &,1i.e. X; C X. Since X
is a minimal counterexample for a, X}, is not a counterexample for a, and hence q(D¢ (X})) > p(X,).
On the other hand, since b -, a for all v € X, we get ¢(D§ (X)) > q(D& (X)) > p(Xy), which is
a contradiction because X, is a counterexample for b. O
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Using Lemma we can prove Lemma 3.5.4. We shall use the following:
(1) D # 2.
(2) q(D) > 0, and hence D # @.
(3) p(X) > 0, and hence X # @.
4 X +# 2.

Since a € D we clearly have (1). Next, since X is a counterexample for a, we have that 0 < ¢(D) <
p(X) < 1, which shows that ¢(D) > 0 and p(X) > 0. For claim (4), assume that X = &. This means
that X =V, therefore X, \ X = & for all b, and then Lemma gives D = @, a contradiction by
claim (2).

We show now that every ¢ € D the set DS (X..) of candidates that are weakly defeated by c in X,
has sufficiently large weight:

g(DE(Xe)) = ¢(DE(X.) N D) + q(DE (X)) N D) (3.14)
> ¢(DE(X.NX)N D)+ qDE(X.NX)ND)
> q(D%(X.N X))+ q¢(DE(X.NX)N D)
> p(XeNX) +q(DE(X.NX)N D).

The second inequality above holds because D (X.NX) C DE(X.NX)N D: every candidate who is
weakly defeated by a in X.N X is weakly defeated by a in X and also weakly defeated by cin X.NX
because ¢ >, a forall v € X. The last inequality holds because X.N X ¢ X by Lemma B.5.3. Since
X is a minimal counterexample for a, we have that X. N X is not a counterexample for a, and hence
¢(DE (XN X)) > p(Xe N X).

We want to find a suitable candidate b € D for whom we will use (B.14) to show that ¢(D§ (X;)) >
p(X3), a contradiction because X is a counterexample for b.

We distinguish two cases. First, assume that p(X) = 0. We choose an arbitrary b € D. Since
p(X) =1, we get p(X, N X) = p(X}), and then (B.14) gives ¢(Df (X3)) > p(Xp).

Now, assume that p(X) > 0, and in particular X # &. We consider the restricted election
£ = (X,D, a‘yﬁ), where U‘yﬁ is the preference profile o restricted to the preferences of the
voters in X over the candidates in D. Note that £ is a valid election because X and D are non-empty.
Moreover, the number of voters in £ is smaller, because X =# @. Since & is assumed to be an election
with minimal number of voters for which Lemma fails, we have that Lemma applies to
& for any choice of weight vectors. We choose the re-normalized weight vectors p’ € A(X) and

q' € A(D) defined by
;) Pv ;e

b= X = D)

where v € X and ¢ € D. Since Lemma holds for £, we can find b € D such that p'(S) <
q'(D§(9)) forall S C X. Choosing S = X}, N X, we get

P(X,NX) < ¢ (Df(Xy N X)) = ¢(Df (X, N X)N D),
because D¢ (X, N X) = D¢ (X, N X) N D. By the definition of p’ and ¢/, this inequality gives
- %) 1D

~—
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where the last inequality holds because X is a counterexample for a and this implies that ¢(D) <
p(X), therefore (D) > p(X). Going back to (B.14) we get

a(D§ (X)) > p(X, N X) + p(Xpy N X) = p(Xy)

and this contradicts the fact that X} is a counterexample for b. This contradiction proves the existence
of the desired candidate a.

Finally, in order to compute the candidate a, we can iterate over all the m candidates in C, and
check if the (p, ¢)-domination graph of each one of them admits a fractional perfect matching. By
Lemma B.5.3, this can be done in strongly polynomial time. O

Lemma allows us to choose the weight vectors p and ¢ as we wish. In this way, we obtain
a family of deterministic voting rules. Given p and ¢, for any election £ = (V,C, o) the rule that
corresponds to p and g returns an arbitrary candidate a whose (p, ¢)-domination graph Gi o(@) admits
a fractional perfect matching. We shall study a specific choice of p and q.

Definition 3.5.6 (PluralityMatching Rule). Let £ = (V, C, o) be an election. The PluralityMatching
returns a candidate a (ties broken arbitrarily) whose (p*™, gP')-domination graph admits a fractional
perfect matching, where p'™ = % forall v € V and qEI” = luT(c) forall c € C.

v

Lemma shows that if this rule returns a candidate a then plu(D¢(S)) > | S| forevery S C V.
In other words, in any subset .S of voters, a weakly defeats a set of candidates with total plurality score
at least | S|. We can also view the domination graph in a different way. Instead of having weights 1/n
for each voter v and plu(c)/n for each candidate ¢, we can let the voters and candidates have integral
weights 1 and plu(c) respectively. Then, we can replace each node ¢ with weight plu(c) by plu(c)
many nodes, each representing a unique voter whose top choice is ¢, that have weight 1 each and are
connected to the same nodes of voters as ¢ was. In this way, we obtain a bipartite graph whose vertices
on both sides correspond to the voters.

Definition 3.5.7. Let £ = (V,C, o) be an election. For each candidate a € C we define the integral
domination graph of a to be the bipartite graph G¢(a) = (V,V, E,), where (v,v) € E, if and only
ifa =, top(v').

One can check that Hall’s condition for the existence of an integral perfect matching in the integral
domination graph is equivalent to the condition that we described above for the candidate returned by
PluralityMatching. Then, Lemma shows that there always exists a candidate a such that G¢ (a)
admits a perfect matching, and PluralityMatching returns one such candidate.

Corollary 3.5.8 (Gkatzelis-Halpern-Shah). Let £ = (V, C, o) be an election. For every candidate a €
C, G¢(a) admits a perfect matching if and only ifG;?meJlu (a) admits a fractional perfect matching.
So, there exists a candidate a € C whose integral domination graph G¢ (a) admits a perfect matching:

there exists a bijection M : V' — V such that a =, top(M (v)) forallv € V.

Now we can prove that PluralityMatching has distortion at most 2+« for a-decisive metric spaces.
Since all metric spaces are 1-decisive, this implies that the optimal deterministic rule has distortion 3,
which is optimal by the lower bound of 3 established in Theorem [B.1.4.

Theorem 3.5.9 (Gkatzelis-Halpern-Shah). For every m > 3 and 0 < a < 1, PluralityMatching has
distortion 2 + « for a-decisive metric spaces.
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Proof. First we prove the upper bound. Let (X, d) be an a-decisive metric space and let o be the
induced preference profile. Let a be the candidate returned by PluralityMatching and let b be any
other candidate. We shall show that SC(a) < (2 + «) SC(b).

Corollary shows that the integral domination graph G (a) := G¢ (a) admits a perfect matching
M :V — V such that a =, top(M (v)) for every v € V. Then,

<Z (v,b) + d(b, top(M ())))

veV

=SC(b) + ) _ d(b,top(M (v)))
veV

b) + Z d(b,top(v))

veV

=SC(h)+ Y d(btop(v))

veEV :top(v)#b

<SCb)+ > (d(b,v)+d(v,top(v)))
veV :top(v)#£b

<SC)+ Y (d(b,v) + ad(v,b))
v€eV:top(v)#b

<SC(b)+ > (d(b,v) + ad(v,b))
veV

= (2 + a) SC(b).

Since the a-decisive metric space, the election and the choice of b were arbitrary, this shows that
PluralityMatching has distortion at most 2 + .

Next we show that this bound cannot be improved. Consider an election with V' = {u, v} (two
voters) and C' = {z,y,w} (three candidates). Let the preference profile be the following: o, =
x =y > wand o, = w > y > x. Then, the integral domination graph of b has two edges,
(u,v) and (v, u), and both edges together form a perfect matching. Therefore, PluralityMatching may
return b. Now, consider an a-decisive metric, aligned to the preference profile given by the following
undirected graph, where the distance between any two points is the shortest distance in the graph.

o 1
¢ U/
Figure B.§: Example showing that Theorem is optimal.

Then, SC(b) = 2+ v and SC(c) = 1. It follows that the distortion of PluralityMatching is at least
2 + «. This establishes the lower bound when m = 3. If m > 3 then we may obtain the same lower



bound if we place all the other candidates sufficiently far away. O

In the case m = 2, PluralityMatching coincides with the majority rule, which chooses the top
choice of a majority of voters. It is known that this rule has distortion 2 + «, which is optimal among
all deterministic rules for every « € [0, 1]. Therefore, we get:

Corollary 3.5.10 (Gkatzelis-Halpern-Shah). For every m, the distortion of PluralityMatching is 3,
which is the optimal distortion over all deterministic voting rules.

This settles in the affirmative the conjecture that the optimal distortion of deterministic rules is 3
and can be achieved by a polynomial-time computable combinatorial rule.






CHAPTER 4

Learning-augmented algorithms

In this chapter we discuss an analysis framework, termed algorithms with predictions or learning-
augmented algorithms, that has been defined for achieving refined bounds for the metric distortion
problem using the guidance of predictions. A main question in the metric distortion problem is the
information gap that the designer faces. The rankings of the voters are available, but the designer may
also have historical data about the voters’ choices in other matters that correlate with their preferences
in the present matter, which may help in identifying their preferred outcome in the metric space. The
idea is to enhance the algorithm with a prediction that it can use in order to improve its performance.
The algorithm is then evaluated by its performance when the prediction is accurate (one measures
the conmsistency of the algorithm) as well as when the prediction can be arbitrarily inaccurate (one
measures the robustness of the algorithm).

Berger et al. introduced a family of algorithms, which is parameterized by 0 < § < 1, known as
BoostedSV§s, and obtained consistency and robustness bounds in terms of 4. The family BoostedSVs
represents a learning-augmented adaptation of the SimultaneousVeto algorithm proposed in [59]. The
SimultaneousVeto algorithm starts by assigning each candidate ¢ € C' a score equal to the number
of voters ranking c first (its plurality score). Voters then continuously and simultaneously reduce the
score of their least preferred candidate among those with remaining positive scores. The candidate
whose score reaches zero last is selected as the winner. The BoostedSV; algorithm enhances Simul-
taneousVeto by boosting the initial score of the candidate p € C predicted to be optimal. The size
of this boost is a carefully calibrated increasing function of ¢, which also adjusts the rate at which

voters reduce scores. As ¢ increases—indicating greater confidence in the prediction—the size of the
3-8 3+6+1362—63 _
16 (1+6)(1—0)2

robustness. More recently, the authors presented in [21] a second family of algorithms, called LAs,
and proved that for any 0 € [0, 1), the algorithm LA achieves %-consistency and i’fg -robustness.
Moreover, they showed that this is the optimal trade-off. Namely, no deterministic algorithm that is

‘;’;g -consistent can be strictly better than i’fg -robust, even for the line metric and just two candidates.

boost grows. It is proved that the algorithm BoostedSV s achieves -consistency and

4.1 Metric distortion with predictions

We shall consider algorithms that receive as input a pair (o, p), where o is a preference profile and
p € Cis a prediction about the optimal candidate ¢*(d). We want to evaluate the performance of
an algorithm through its consistency and its robustness. The consistency of ALG is defined as the
distortion that ALG guarantees when the provided prediction is accurate, i.e. p = ¢*(d). More
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formally,

. SC(ALG(0, c*(d)),d)
consistency(ALG) = sup su .
YALG) =sup S~ SC(e(d), d)

The robustness of ALG is defined as the distortion that ALG guarantees with an arbitrary prediction,
independently of how accurate this prediction may be. More formally,

SC(ALG d
robustness(ALG) = sup sup sup ( (9,p), )
o peC adeo  SC(c*(d),d)

In what follows, given a preference profile o, a voter v, a candidate ¢ and a subset of candidates
S C C, we write top(v) for the candidate ranked highest by v, plu(c) for the number of voters who
rank c as their top choice, bot(v) for the candidate ranked lowest by v, and botg(v) for the candidate
in S ranked lowest by v. Note that bot(v) = botc (v).

4.2 Tradeoff between robustness and consistency

The next theorem shows that even for instances with just two candidates, for any parameter 0 < § < 1,
no deterministic algorithm can simultaneously achieve i’%rg

344
than 15

-consistency and robustness strictly better

Theorem 4.2.1 (Berger-Feldman-Gkatzelis-Tan). Let 0 < & < 1 and let ALG be a deterministic

algorithm that is ifjrg -consistent. If B < 3+5 then ALG is not 3-robust.

Proof. Let ALG be a %—consis‘[ent algorithm. For any € > 0 we define

3+6—2—2¢

r(n,e) = !

Note that 7(n, €) < 3£ forall n,e > 0. Since lim,,_, 0+ 7(n,€) = 352 and B < 32, we may

choose n, € so that 5 < r(n,e) < 3+5 We may also assume that e < l To make this precise, if
€= ﬁ then

n’

L 3+6—=3 3456

3+(5

3
and since 8 < we may then choose n large enough so that 5 < 7’( %) < iE

a b
O R »o+ ------------ 1 -necrneracnecace »%
ﬁn - 1 voters [? n] + 1 voters

We fix n and € as above. Now, consider the instance (V, C,d) where C' = {a, b} and the distance
from a to b is equal to 2 — €. We consider a set C' of n voters that are located in the metric space so
that [ 2597 + 1] of them are placed on b and the remaining | 2597
1 from b and at distance 1 — € from a, i,e, they are slightly closer to a than to b.

— 1| of them are placed at distance
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We easily check that b is the optimal candidate and the distortion of a is equal to

SCla)  [M2n—1J(1 -9 +[Fn+1]2—¢)
SC(b) EXT
(M -1+ [+ 1)) (1 + 100417 - 1
o011
_n(l- €) + [152n + 1] - n(l—e +15%n+1

LHénflj - 1—'5571
_(B3-0)2+1—en 3—-6+2—2
(1+0)2 140
>3;5>]_
1+96

This computation shows that if o is the preference profile induced by (V, C, d) and the prediction is
p = b, then ALG outputs b for the input (o, b). Indeed, if it outputs a then the assumption that ALG
is 3=0_consistent leads to a contradiction.

149
a b
Q* ------------- JEREELEEREEEEEEEE %‘ ----------- 1—€---m---mmmmm--- e
l1+5 nJ — 1 voters 1%‘Sn] + 1 voters

Now, we consider the following variant (V’, C, d) of the previous instance. The (1;2571 + 17 voters
that were previously placed on b, are now placed at distance 1 — € from b and at distance 1 from «, i,e,
they are slightly closer to b than to a. The remaining LliQ‘sn — 1] voters are located on a.

Note that this instance induces the same profile o as before, therefore ALG has to output b for
the input (o, b). On the other hand, we can easily check that now a is the optimal candidate and the
distortion of b is equal to

SCh)  [Fn+111—e) + [ HPn—1](2—¢)

SC(a) 30 +1]-1
_n(l—e)+L1—JQF‘5n—1j> (1—6) 1+5 —2
_(B+d)5—2—en 3+6—2 -2
(1-6)2+2 1-6+2
=r(n,e) > S.
This means that the robustness of ALG is greater than 5. In other words, for any 8 < 3+5 we have
that ALG is not S-robust. O

4.3 Optimal tradeoff between consistency and robustness

Berger, Feldman, Gkatzelis and Tan introduced in [21] a family of algorithms, parametrized by 0 <
§ < 1, which, in view of Theorem }.2.1], achieve an optimal tradeoff between consistency and robust-
ness. In a first version of their article the presented a family of algorithms, called BoostedSV, which
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has consistency

w
>,

consistency(BoostedSV) < o

(«%9)

and robustness

1 2 83
robustness(BoostedSVs) < T'(9) := 3(41_ i—g)(?é_ 6)3

which is slightly weaker than % for “small” values of 6.

Subsequently, the authors presented a second family of algorithms, called LA, and proved that it
achieves the optimal bounds.

Theorem 4.3.1 (Berger, Feldman, Gkatzelis and Tan). For every 0 < § < 1, LAs achieves %g'
349

consistency and 15-robustness.

Consistency and robustness of LA

10

—— consistency
—— mobustness

0.0 0.2 0.4 0.6 0.8 1.0

o

Figure j.1]: Consistency and robustness of LA.

The key notion for the definition of the class LAy is the (p, ¢)-veto core. Recall from Chapter
that given an election £ = (V, C, o) and two normalized weight vectors p € A(V') and ¢ € A(C),
the (p, ¢)-domination graph of a candidate a € C' is the vertex-weighted bipartite graph Gl‘aq(a) =
(V,C, Eq4,p,q), where (v,¢) € E, if and only if a =, c¢. Then, the (p,q)-veto core is the set of
candidates a € C' for which G]‘f’q(a) admits a fractional perfect matching.

Given p € A(V) and ¢ € A(C), a (p, q)-algorithm is an algorithm with the property that if it
receives a preference profile ¢ as an input then it returns a non-empty subset of candidates which is
contained in the (p, g)-veto core of o.

Now, given 0 < § < 1, we consider a class of LAj-algorithms which satisfies the following:
For any predicted optimal candidate ¢ € C and any preference profile o, the class LA contains the
(p"™, )-algorithm where p*™ = (%, cee %) and ¢ € A(C) is defined by

1-6 plu(@)+ 2%

T 140 n

q(©)
and
~1-46 plu(e)
1494 n

q(c)
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forallc € C'\ {c}.

Boosted Simultaneous Veto

In this section we study in detail the original algorithm BoostedSV; from [21]. The algorithm pro-
vides the candidates with some initial scores: Each candidate other than the prediction starts with his
plurality score, while the initial score of the predicted candidate is boosted and equals his plurality
score plus the boost b = %. The sum of the initial scores is equal to

1+6

n+b= 5™
After this initialization step, starting from time ¢ = 0 and until time ¢ = 1, the voters decrement
continuously and simultaneously the score of their least-favorite candidate that still has positive score,
at a rate of "TH’ = %g. We say that a voter v down-votes some candidate c if v decrements the score
of c. We also say that a candidate is active if his score at that time point is positive. When the score
of some candidate becomes 0, all voters that down-voted this candidate up to that point switch to
down-voting their next least-favorite active candidate.

The first time point at which all candidates have reached score 0 is the end of the algorithm (¢ = 1).
If the predicted candidate is among the candidates that have reached score 0 only at the end, then it is
the output. Otherwise, the algorithm chooses arbitrarily one of the candidates whose score reached 0

only at the end. Therefore, we have the following.

Claim 4.3.2. For any 0 < § < 1, the candidate output by a given execution of BoostedSV is active
at any time point ¢ < 1.

We may also consider the following discrete implementation of BoostedSV;. There are up to m
rounds, divided by time points at which the score of some candidate reaches 0: at least one candidate
is eliminated at the end of each round. Round i starts at time ¢;_; and ends at time ¢;, where {5 = 0
and ¢, = 1 if the total number of rounds is equal to k.

Given t;_1, the time point ; is determined as follows: We write score(c) for the current score of the
candidate c at time ¢;_; and denote by n. the number of voters whose least favorite active candidate
at time ¢;_1 is ¢. These are the voters that currently down-vote c. Let € be a candidate for whom the

ratio
score(c)

16
Ne - 1J—r5

A =

is minimized. Then, ¢; = ¢;_1 + A is the new time point, and a new round begins after appropriately
updating the scores of all candidates. In the new round, all voters who were down-voting a candidate
whose score reached 0 switch to down-voting their next least favorite active candidate. Note that more
than one candidates may become inactive at the end of the same round. If this happens at least once,
then the number k& of rounds will be strictly less than m.
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Algorithm 1: BoostedSV

AW N -

10

1

12
13

14
15

Input: Preference profile o, predicted optimal candidate p € C

Output: a candidate c € C'

/* All candidates start with score equal to their plurality, excepted for p who gets
boosted. */

Ve e O\ {p}, score(c) < plu(c),

score(p) « plu(p) +b, where b= 202

1+ 1

tg < O

/* Voters decrement the score of their least-favorite candidate that still has positive

score, continuously and simultaneously, at rate ifg. Following is a discrete
implementation: */
while 3¢ € C s.t. score(c) > 0 do

A {C S (7| score(c):> 0} // Set of current active candidates
VeeC :ne + ‘{U eV | bOtA(U) = C}| // Number of current “down-voters” for

each candidate c
A nJh]cE/g “ETﬁgB // Time interval until some candidate’s score reaches 0

n-
1

ti < ti1+A // Time point when this happened
Vee C : SCOI‘C(C) — SCOI‘e(C) —A- Ne - <%) // Appropriate score update
1 +— 1+1

/* All candidates now have score 0. A contains only candidates whose score reached 0 at
t=1 */
if p € A then
t return p

else
t return an arbitrary ¢ € A

Definition 4.3.3. Consider an execution of BoostedSVs. We denote by f(v,¢) € [0, 1] the fraction
of time that the voter v spends down-voting the candidate c throughout the execution. Every voter
spends the time interval [0, 1] down-voting at a rate of %—*_'g and every candidate’s score eventually

reaches 0, therefore we have the following properties of f:

(i) Foreveryv € V,

> flve)=1. (4.1)

ceC

(i) For every candidate ¢ # p,

1-96
> flv,e) = - plu(c). (4.2)
1+
veV
(iii) For the predicted candidate ¢ = p,
1-0 26n
> fv,p) = 155 <Plu(p) t1z 5) : (4.3)

Lemma 4.3.4. Let 0 < § < 1 and let a be the candidate output by a given execution of BoostedSV.

veV

Then, for every v € V and any c € C that satisfies f(v,c) > 0, we have d(v,c) > d(v, a).
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Proof. From Claim we know that « is active throughout the algorithm, which means that a
belongs to the set A of active candidates in each step of the algorithm. Since f (v, ¢) > 0, we have ¢ =
bot4(v) in at least one step. Then, by the definition of bot4 we must have that d(v, c) > d(v,a). O

We can now establish the consistency bound.

Theorem 4.3.5 (Berger-Feldman-Gkatzelis-Tan). Let 0 < § < 1 and let a be the candidate output by
a given execution of BoostedSV that is provided with the correct prediction p = c¢*. Then, we have
that

SC(a) < —— - SC(c").

Proof. We give an upper bound for the social cost of the returned candidate a using Lemma and
the properties of f(v, ¢) from Definition %.3.3, as follows:

Zd(v,a) < Z Zf(v,c) ~d(v,a)

veV veEV ceC

< ZZf(U,C)'d(U,C)

veV ceC

< Z Z f(v,e)- (d(v, ") +d(c", c))

veV ceC

= SC(c —I-Zvac ,C)

ceCveV

=SC(c") + Y (vac) ¢’ c)
}

ceC\{c*

= SC(c*) + Z T -plu(e) - d(c*, c)
ceC\{c*}

= SC(c") 1_52 Z d(c*,c)

ceC {veV:top(v)=c}

< SC(c") 1 =0 Z Z (d(c*,v) 4+ d(v,c¢))

cGC {veV:top(v)=c}

< SC(c*) + 1_52 > 2d(ct,v)

ceC {veV: top(v)=c}

2(1-19) 3—9
< * - 7 * -
< SC(e") 4+ =57 SC(e") = T SC(e”),
where we have also used the fact that if ¢ = top(v) then ¢ =, c*. O

Next, we prove the robustness bound in the case where the returned candidate is the prediction.

Theorem 4.3.6 (Berger-Feldman-Gkatzelis-Tan). Let 0 < § < 1 and assume that p is the candidate
output by a given execution of BoostedSV; (the algorithm returns the prediction). Then, we have that

2 _ 53
Sc(p)<3+5+135 o

S

The main ingredient in the proof of Theorem is Lemma which gives an upper bound for
the distance between the optimal candidate ¢* and the prediction p in terms of the optimal social cost.
We shall introduce a graph (the veto map) that takes into account the way in which the down-voting
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of each voter is distributed across the up-votes of other voters and in Lemma we shall use the
structure of this graph in order to obtain lower bounds for the sum of the distances of pairs of voters
that form an edge from c*.

Definition 4.3.7 (the veto map). Let 0 < ¢ < 1 and consider an execution of BoostedSV. The veto
map associated with this execution is an edge-weighted directed graph G = (V, E') where each vertex
corresponds to a voter in V and an edge (v,v’) € E if and only if v has down-voted the top candidate
of v’ at some step of the execution, i.e. if f(v,top(v’)) > 0. The weight of an edge (v,v’) € E is
defined by

f(v,top(v")) - 1%5

plu(top(v’))

For each edge (v,v’) € F, the numerator of the right-hand side of (#.4) is equal to the amount by
which v decreased the score of top(v’) throughout the execution of BoostedSVy, i.e. the amount of
time f(v,top(v’)) that v spent down-voting top(v’) multiplied by the rate %‘g. The denominator of

w(v,v) = (4.4)

the right-hand side (#.4) is the plurality of this candidate, i.e. the number of voters that up-voted him.
So, for each v and c, the veto map “distributes” the amount by which v reduced the score of ¢ equally
among the weights of the edges from v to each voter v’ such that ¢ = top(v’).

In the next lemma we observe that for every edge (v,v’) € E we can give a lower bound for the
combined contribution of v and v’ to the social cost of the optimal candidate ¢*. The idea is that if v
down-votes the candidate closest to v’ then v must be far from that candidate and hence from v’ too,
and if one of v or v’ is close to ¢* then the other voter must be far from c*.

Lemma 4.3.8. Let 0 < 6 < 1 and let G = (V, E) be the veto map associated with a given execution
of BoostedSVs. If (v,v") € E then

d(c*,p)
5

d(v,c*) +d(', ¢*) >
Proof. For any v € V, by the triangle inequality we get
d(p7 U) > d(C*ap) - d(’U, C*)' (45)

By the definition of the veto map, if (v,v’) € F then v has down-voted the top candidate ¢ = top(v’)
of v'. We have

d(c*,c) > d(c,v) —d(v,c*) > d(p,v) — d(v,c") > d(c*,p) — 2d(v,c"), (4.6)

where the first inequality follows from the triangle inequality, the second holds because d(c,v) >
d(p,v) by Lemma [.3.4, and for the last inequality we use (#.9). If (v,v’) € F, then

d(c*,v") +d(v', c) > d(c*, c)

by the triangle inequality, and since ¢ = top(v’) =, ¢* we get d(c*,v’) > d(c,v") we get 2d(c*,v") >
d(c*, c). Then, using (§.6) we obtain

2d(c*,v") > d(c*,p) — 2d(v, "),
which is equivalent to the assertion of the lemma. O

Now, we can state and prove the following main lemma.
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Lemma 4.3.9. Let 0 < 0 < 1 and assume that p is the candidate output of a given execution of
BoostedS Vs, i.e. the algorithm returns the prediction. Then,
1-9¢ d(C*ap)

) .
SC(c*) > 5 5

Note that we would have been able to obtain Lemma §.3.9 directly from Lemma §.3.§ if the set £

t16

of veto map edges contained a matching of size at leas n. Instead of finding such a matching, we

partition the set V' of voters into the set Vj, that contains the voters whose distance from c* is less than
d(c*,p) d(c*,p)
2 2
show that the subgraph of the veto map induced by the vertices in Vj, contains in its edges a fractional
matching of total size “5°n — |Vou|. Since each voter from Vo contributes at least M to the
optimal social cost and, by Lemma k.3.8, each edge of the fractional matching (with vertices in Vi,)
also contributes at least M to the optimal social cost, we will show that the combined contribution
from V;, and V is at least 17_57% M, which leads to the lower bound for SC(c¢*) in Theorem .

and the set V,; that contains the voters whose distance from c* is at least . Then, we

Proof of Lemma B=39. Let Vi, denote the set of v € V who satisfy d(v, c¢*) < d(c ) and Vyy denote
the set of voters who satisfy d(v, ¢*) > @. Note that if |Voy| > T‘Sn then the lemma is true
because

. . 1-9 d(c*p)
> > . .
(c*) > UEEV d(v,c*) > 5" 5

So, for the rest of the proof we assume that |Vgy| < 1%571 and consider x > 0 so that |Voy| =

101 — 2n. Then, the contribution of the voters in V,y is

2
Z d(v,c*) > (1;5n—xn> d(c;,p), (4.7)

vEVou

and |Vin| = n — |Vou| = 12i‘5n + zn. Our aim is to show that

Z d(v,c*) > zn d(c;,p)7 (4.8)

which gives the lemma.

Let G = (V, E) be the veto map associated with the given execution of BoosetdSV;. In order to
complete the proof of (%.8), and hence the proof of Lemma {.3.9, we need a number of inequalities
about the veto map edge weights.

Claim 4.3.10. For allv' € Vi, we have that

Z w(v,v’) < 1.

v€EVin

Proof. Letv' € Vi,. Note that

f (v, top(v/ fvtop " 1496

/

_ —1.
Z w(v,v') Z plu(top ) Z plu(top(v/)) 1—6

vEVin vEVin

1-4¢
Here we use the fact that Z f(v,c) = T35 plu(c) for every candidate ¢ # p. Note that v' € Vi,

veV
and hence top(v') # p: the voter v’ strictly prefers ¢* over p, because d(c*,v") < d(c*,p)/2 <
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(d(c*,v") + d(v',p)) /2 by the definition of Vi, and the triangle inequality. O

Claim 4.3.11. For all v € V we have that

146
/
< —.
> w(v.) < 7
v eV
Proof. For every v € V we have

yo y K f(v,0)
Z w(v,v) = Z plu(top(v’ Z Z plu(top(v ))

v eViy v’ €Vip CEC {v'€Vip: top(v’)=c}

1+6 v, ) 15
D *zl Los

ceC {v'eV: top(v')=c} plu(t()p( plu Op( )

1 —l— 0 1 —|— 1)
o Z flv 1-¢’
CEC
where in the last step we used the fact that Z f(v,¢) =1foreveryv € V. O
ceC

The final claim gives a lower bound for the “amount” of up-votes from voters v’ € Vi, to candidates
who are down-voted by some other voters v € Vi,. We will show that even if all the voters in V, keep
down-voting the up-voted candidates of all the voters in Vj,, there are still some up-voted candidates
left, and these must have been down-voted by voters in Vj,.

Claim 4.3.12. Let Ei, := {(v,v") € E : v,v’ € Vin} be the set of edges in the veto map for which
both vertices belong to Vi,. Then,

, 2zn
> .
> we) > 2

('Uv'U’)eEiu
Proof. First observe that for every v’ € Vi, we have
1= 1)
Z f (v, top(v =i 5plu(top(v’)).
veV

This is because, by (4.2), for every ¢ # p we have

vac 5plu()

veV 1+0
and top(v') # p for all v € V}, because for every v’ € Vi, we have that
2d(v', ¢*) < d(z*,p) < d(',p) +d(v', c*)

which implies d(v’, p) > d(v’, ¢*), and this shows that p cannot be the top candidate of v'. It follows
that

/

f (v, top(v lu(
> D wwv) =3 > top S ;ﬂ = Val (49)

v eV, veV v eVip veV v €Vip
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From Claim we also have
1+6 1+6
Y. D w)=) ] Y we)< Yy =1 [Veul (4.10)
UIE‘/in vEVout vEVou Ulewn vEVout
We write

Z w(v,v') = Z Z w(v,v') = Z Zw(v,v’)f Z Z w(v,v)

(v’ )EE, v/ eVip vEVy, v' eV, veV v' €Vip v€Vout

and using (#.9) and (4.10) we obtain

, 146 (146 146 (1-6
(Z);E. w(v,v)Z!Vi!—m!Vout\— —ntan | - (—5mn—an

2xn
1-4’

as claimed. O

Using Lemma and Claims §.3.10 we give a lower bound for the contribution of vot-

ers in Vi, to the optimal score. If we could find a matching M C Eji, of size |[M| > xn, then
by Lemma we would immediately get (B.§) and hence the lemma. We can define a fractional
matching with the property that for every edge (v, v") € Ej, it includes a fraction of this edge equal to

In order to show that this is a valid fractional matching, we first show that for any vertex v € Vj, the
total fraction of the (incoming and outgoing) edges adjacent to it that are included in the matching is

at most 1. From Claim and Claim we see that

Z m(v',v) + Z m(v,0v") = 17_5 Z w(v',v) + Z w(v,v") (4.11)

v €Vin v'€Viy v'€Viy v'€Vin

1-6 1+06
< . _— = 1.
<1530 (14155) -

Also, from Claim we get

Z m(v,v) = Z w(v,v') - L-9 > L0 Zem _ xn. (4.12)

(v,v")EE;, (vv')EE 2 2 1-29

Using (#.11)) and rearranging the sum, we write

Z d(v,c*) > Z Z m(v',v) + Z m(v,v') | - d(v,c*)

veVi veV \v'eV; v'€Viy

= Y mu,v) - (dlv,¢*) +d(W, ).

(v')eE
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Then, Lemma and (.12) give us that

D dw, )= Y m(v,0)- d(c;,p) > xn - dlc’p).

v€EViq (vv")EE

This estimate, together with the lower bound (4.7) for the contribution of voters from Vo to the
optimal social cost, allow us to prove the lower bound for the optimal cost. We have that

vEVour vEVip
1-6 d(c* * 1-— *
> n—an) Ap) o dep) 5n.d(c,p)7
2 2 2 2 2
and the proof of Lemma is complete. ]

Now, we are able to prove the main theorem.

Proof of Theorem BZ38. We give an upper bound for the social cost of the returned candidate p using
Lemma [.3.4, the properties of f(v, ¢) from Definition and finally Lemma §.3.§, as follows:

=S dwp) <Y fw,e)-dwp) < 30N Flv,e) - d(v,e

veV veV ceC veV ceC
<IN fw,0)- (dv,¢) + d(c*, 0))
veV ceC

= SC(c") + Z Z f(v,¢) ,C)

ceCveV
S S ) e+ Y fwp) - dep)

cEC’\{p} veV veV

—SC Z lu(e 4+ 2 et )

- 15 cecp 1P

SC(c*) 1_52 > e c)—l—%d( ).

ceC {veV:top(v)=c}

Recalling (4.2) and (#.3) we get

20n
1-96

SC(p) < SC(e 1 =9 Z Z (d(c*,v) +d(v,c)) +

cEC {veV:top(v)=c}

1—(5 . 26n
< SC(c Z Z 2d(c*,v) + 1_(Sd(c ,D)

cEC’{vGV top(v)=c}

d(c*, p)

where we have also used the fact that if ¢ = top(v) then d(v, ¢) < d(v, ¢*). Therefore,

o 2(1=9 N 2om
SC(p) < SC(e )+(1+5)SC(C )+ 1_(Sd(c ,D)
3—96 20m
<27 ° * avie *
3-8 . 26n 2SC(c*)
< 7
e R G ey e

2
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3-4 86 )
N <1+5+(1—5)2) SC(<")
3404138 -5

Tro0—g SC)=TE)SC),

O
Next, we prove the same robustness bound even when BoostedSV s does not output the prediction.

Theorem 4.3.13 (Berger-Feldman-Gkatzelis-Tan). Let 0 < & < 1 and assume that the candidate
output by a given execution of BoostedSVs is a candidate a € C \ {p}, i.e. the algorithm does not
return the prediction. Then,

SC(a) < T(9) - SC(c™).

We note that the approach that we used for the proof of Theorem cannot be useful because the
prediction can be arbitrarily far away from the optimal candidate. What can be shown is that if a £ p
is returned, then @ would have been again returned in the instance which is identical with the given
one except that a is the prediction. In other words, one can reduce instances in which the prediction
is not the output to instances in which it is, while maintaining the distortion.

Proposition 4.3.14 (Berger-Feldman-Gkatzelis-Tan). Let 0 < § < 1 and assume that the candidate
output by a given execution of BoostedSV is a candidate a € C\{p}. Then, if we execute BoostedSV
on the same preference profile but having a as the prediction, we get a as an output.

Before presenting the proof of Proposition §.3.14, we first show how it implies Theorem §.3.13.

Proof of Theorem B=313. By Proposition §.3.14, a is returned by BoostedSVs when executed on the
same preference profile as in the given execution, with candidate a also being the prediction. That is,
the new execution returns the new prediction (candidate a). The claim follows by Theorem f.3.4. [

It remains to prove Proposition #.3.14. Consider two executions of BoostedSV;. The first one
(called “p execution”) has p as the prediction and a as the output, while the second one (called “a
execution”) has a as the prediction. We shall show that a is also the output in the a execution.

For any candidate ¢ € C, any ¢ € [0, 1] and any b € {a, p} we define the following:

e decy(c, t) is the amount of score decremented from c up to time ¢, in the continuous interpretation
of the b execution.

e scorey(c, t) is the score of ¢ at time ¢ in the continuous interpretation of the b execution. There-
fore, scorey(c,t) = s% — decy(c, t), where s? is the initial score of c in the b execution.

Claim 4.3.15. For any ¢ € C' and b € {a,p} the functions dec;(c, -) and scorey(c, -) are piece-wise
linear and in particular continuous in ¢.

Proof. For any b € {a,p} and any fixed ¢ € C, the function decy(c, -) is piece-wise linear (in t)
and can be computed using the round boundary time points ¢; from the discrete implementation of
BoostedSV (see Algorithm [I]). More precisely, decy (¢, 0) = 0, and if there are k-rounds in the While
loop then for each i = 1,...,k and for any ¢ € [t;,_1, ;] (recall that ¢y = 0 and ¢;, = 1) we have that

1+0

decy(c,t) = decy(c, t;_1) +n' - s

(t—ti—1),

where n? is the number of voters who down-voted c in round i (recall also that %g is the down-voting

rate per voter). O
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Our next claim is that both executions are equivalent up to the time point where the score of p
reaches 0 in the a execution.

Claim 4.3.16. For any ¢ € C and for any t such that score, (p, t) > 0 we have dec,(c, t) = dec,(c, t).

Proof. Consider the implementation of BoostedSV; as given by Algorithm [I. In the initialization
phase of the two executions, the only difference is in the initial scores of p and a, where in the p
execution p gets the boost and in the a execution a gets the boost. Since a is the output in the p
execution, it has positive score throughout the p execution, and hence it always belongs to the set of
active candidates A. Therefore, before the score of p reaches 0 in the a execution, every step of the
While loop in Algorithm [l is computed in the same way in both executions. O

The next lemma shows that when p does not get the boost, the rest of the candidates can only be
down-voted faster.

Lemma 4.3.17. Forallc € C\ {p} andt € [0, 1] we have that dec,(c,t) < decy(c, ).

Proof. Assume that there is a candidate ¢ # p such that for some ¢ € [0, 1] we have dec,(c,t) <
decy(c,t). We define

T :={t€[0,1] : there exists c € C'\ {p} such that dec,(c,t) < dec,(c,t)}.

Note that if ¢ € T then ¢ > 0, because the amount of score decremented from any candidate at time
t = 0 equals O at both executions of the algorithm.

Let tjor = inf(7"). We can check that ti,r ¢ T, because for any ¢t € T and any candidate ¢ for
which dec, (¢, t) < decy(c, t), by the continuity of the functions dec,(c, -) and dec,(c, -) we can find
€ > 0 small enough so that dec,(c,t — €) < decy(c,t — €), and hence t — € € S. Furthermore, we
can check that ¢+ < 1 because otherwise 7" would be empty, a contradiction. Finally, the continuity
of the functions dec,(c, -) and decy(c, -) also implies that at time ¢ = ¢;,r there must exist a candidate
¢ # p for which the following hold true:

(1) deca(c, tinf) = decp(c, tinf)'

(ii) There exists ¢g > 0 small enough so that for any 0 < € < ¢y we have dec,(c, tins + €) <
decy(c, tinf + €).

In other words, the amount of score decremented from c¢ until time ¢;,¢ is the same in both executions,
but also slightly beyond time ¢y, score(c) is decremented more in the p execution. It follows that at
time ¢j,r we have score, (c, tinr) > 0. This also implies that

scoreg (¢, ting) > plu(c) — decy(c, ting) = plu(c) — decy(c, ting) = scorey(c, ting) > 0,

where the first inequality holds by Claim since the initial score of each candidate is at least its
plurality score, the first equality follows from (i), and the second equality holds because ¢ # p and
the initial score of each candidate other than p equals its plurality score in the p execution.

We have explained that the score of ¢ at ¢j, is positive in both executions, but the decrement rate
is higher in the p execution. Then, we must have that at time ¢;,; the number of voters who are down-
voting c is larger in the p execution than in the a execution. In particular, there exists a voter v who at
time ¢;,r down-votes c in the p execution, but in the a execution she down-votes some other candidate
c # ¢, although c is also active in the a execution at that time. So, v ranks ¢’ lower than ¢ and we also
have the following:
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(iii) score,(c,tinf) > 0, because v down-votes ¢’ in the a execution at time ¢;,¢ (a candidate must
have positive score if he is being down-voted at any given time).

(iv) score,(c, tinr) = 0, because otherwise v would have down-voted ¢’ (or some other active can-
didate that v ranks lower than c) in the p execution at time tj,y.

Note that ¢ # a since a is the output in the p execution (and in particular score,(a, tins) > 0). We
also note that ¢’ # p, because for any ¢ (and in particular for ¢ = t;,r) we have

scorey(p,t) > scoreq(p, t). (4.13)

To see this, note first that it is trivial for any ¢ for which score,(p,t) = 0. For times ¢ in which
score,(p,t) > 0 we have

score,(p, t) = plu(p) + b — dec,(p,t) = plu(p) + b — dec,(p,t) = scoreq(p, t) + b > scoreq(p, t),

where the first equality holds by Claim §.3.15, the second one holds by Claim and the third
holds again by Claim §.3.13.

We have checked that ¢’ ¢ {a,p}, and this means that the initial score of ¢’ in both executions is

plu(¢’). By Claim we get
decy(c, ting) = plu(c’) — score, (¢, tinr) < plu(c’) — score, (¢, ting) = decy (¢, ting),
using (iii) and (iv). Then, by definition, we get that ¢;,r € T', which is a contradiction. ]

Lemma shows that if p does not get the boost then all other candidates can only be down-
voted faster. The next lemma provides an upper bound for the extent to which this can happen.

Lemma 4.3.18. For any ¢ € C'\ {p}, and for any t € [0, 1], we have dec,(c,t) < dec,(c,t) +b.
Proof. Lett € [0, 1]. Our first observation is that

decy(p, t) < decy(p,t) +b. (4.14)
This holds because
decy(p, t) = plu(p) + b — score,(p, t) < plu(p) + b — scoreq(p, t) = decy(p, t) + b,
where the two equalities follow from Claim and the inequality holds by (4.13). It follows that

Z decy(c,t) = Z decy(c,t) = Z decy(c,t) | + decy(p,t)

ceC ceC ceC\{p}

< Z decy(c,t) | +decy(p,t) + Db,
ceC\{p}

where the first equality holds since the total amount of score decremented from all candidates up to
time ¢ equals ¢ - n - %g for any prediction, and the inequality follows from (4.14). We rewrite the
above inequality in the form

Z decy(c,t) < Z decy(c,t) | +,

ceC\{p} ceC\{p}
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or equivalently,

> (deca(c, t) — decy(c, 1)) < b

ceC\{p}
Lemma shows that all the terms in the sum are non-negative, and hence each of them is also
bounded by b. This proves the lemma. O

Proof of Proposition B=314. 1t suffices to show that for any 0 < ¢ < 1 we have score,(a,t) > 0.
This implies that a belongs to the set A at the end of Algorithm [I], and therefore a is the output in the
a execution. We check that

score,(a,t) = plu(a) + b — decy(a,t) > plu(a) — decy(a,t) = score,(a,t) > 0,

where the first equality holds by Claim §.3.13, the first inequality holds by Lemma §.3.18, the second
equality holds again by Claim §.3.13, and the second inequality holds by our assumption that a is the
output in the p execution. O

4.4 Prediction error

Consistency and robustness bounds focus on the case where the prediction is perfect (consistency) and
on the case where it can be arbitrarily bad (robustness). A way to understand better the distortion that
BoostedSV; achieves as a function of the prediction quality, is to define a natural measure of error,
which is proportional to the distance d(p, ¢*) between the prediction p and the optimal candidate ¢*
normalized by the average optimal distance SC(c*)/n. The prediction error is the parameter

~ nd(p, c*)

SC(c*) -

Distortion of BoostedSV;

Distortion

0 5 10 15 20 25
Error n

Figure #.2: Distortion of BoostedSV;.

The next proposition shows that for each choice of ¢ € [0, 1), the BoostedSV 5 algorithm guarantees
distortion at most W when the error of the prediction is 7. This bound is equal to the consistency
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bound when the prediction is correct (which corresponds to n = 0) and then grows linearly as a
function of 7, with a slope that is increasing in ¢.

This is a reasonable behavior, consistent with our intuition that trusting the prediction more results
into a worse dependence on the error. It is useful to keep in mind that the distortion never exceeds the
robustness bound, so it transitions from the consistency bound to the robustness bound as a function
of the error.

Proposition 4.4.1 (Berger-Feldman-Gkatzelis-Tan). For any § € [0, 1), the distortion achieved by
BoostedSVs on instances where the prediction p has error n = n - d(p, c*)/SC(c*) is at most

i 3—0+25m 3+6+136% -3
1+6  (1+0)(1—0)?

Proof. Letd € [0, 1) and denote by a the candidate output of a given execution of BoostedS V5, when
provided with a prediction p with error ) = nd(p, ¢*)/SC(c*). From Theorem §.3.5 we know that the

worst-case distortion of BoostedSVj is at most M for any 4, so we just need to prove that

5195 (146)(1—90)?
s 3—0+20n
it is also at most -

Using Lemma and the properties of f (v, ¢) from Definition we can give an upper bound
for the social cost of a as follows:

D dw,a) <) f(v,¢)-d(v,a)
U gZZC:f(v,c)-d(v,@
<IN f,0) - (d(v,¢) + d(cF, )
= sZ:(c*c) +) ) fwe)-d(ct o).
Isolating ¢ = p and using again the properties of f (v, ¢) from Definition 3.3 we get:

Zdva ) =SC(c —G—vap *,p)+ZZf(U»C)'d(C*>C)

c#Fp v
. 1-90 26n
= SC(c )+—1+ -(plu(p)+1_5> d(c* 1+5Zplu .c)
c#p
. 1—-0 2in
—SC(C)—F?‘f‘d( le6Z:plu ,C).

Finally, since d(c*,p) = n - SC(c*)/n, rearranging the sum and taking into account the fact that if
¢ = top(v) then d(v, ¢) < d(v, c*), we see that

. 20m
> d(v,a) =SC(c") + - +5sc + 5 +5Zplu ,c)
:%S Z Z d(c*,c)
+ ¢ wv:top(v)=c
140+ 2m
< -7
<3 SC(c 1+5Z > d(c,v) +d(v,c)

¢ wv:top(v)=c



1+0+2n
S 335 ¢ 1+5Z >, 2

¢ wvitop(v)=c

146+ 28 21—8) . . (3—6+26n\ . . .
< 2ot 2om < (2=2r2m .
S gy SO+ T SAE) s\ T ) SC@)

This concludes the proof.



CHAPTER 5

Distortion of committee election on the
real line

In the previous chapters we considered the problem of single-winner election and its metric distor-
tion. In this chapter we study the metric distortion of multi-winner election, where we aim to elect a
committee of k > 2 (out of m > k4 1) candidates based on ordinal preferences provided by n voters.
Similarly to the single-winner case, the voters and candidates are associated with locations in a metric
space and the voters’ cardinal preferences correspond to their distance from the candidate locations.
Here we consider the setting where the cost of each voter for a committee is defined as her distance
to the nearest member. We focus on the simplest case of linear preferences, where the voters and
candidates are embedded on the real line. The results of [30] imply that in this setting, the distortion
is unbounded for all £ > 3 even in the linear case.

Despite this result, we present the work of Fotakis, Gourves and Patsilinakos from [45], where it
is shown that one can use a restricted amount of cardinal distance queries to achieve bounded or even
constant distortion in k-committee election with linear preferences, for £ > 3. Specifically, we will
see that at least 2(k) distance queries are needed in order to bound the distortion and we shall present
a greedy algorithm which achieves O(n) distortion with O(k) queries.

5.1 The model

We consider a set C' = {cy,...,cn} of m candidates and a set V' = {vy,...,v,} of n voters. All
candidates and voters are assumed to be located on the real line: each candidate ¢; is associated with
a location z(c;) € R and each voter v; is associated with a location 2(v;) € R. For simplicity we
denote by ¢; both the candidate ¢; and its location z(c;), and similarly we denote by v; both the voter
v; and its location z(v;). We index the candidates according to the order of their real coordinates,
i.e. we assume that z(c1) < -+ < x(¢p,) and write ¢; < -+ < ¢, Forany ¢ < ¢ in R we define
Cle, ] = C N e, ¢]; this is the set of all candidates in C that lie between ¢ and ¢'.
For each voter v we define the cost of v for being represented by a candidate ¢ as follows:

costy(c) = d(v,c) = |v — ¢| = |z(v) — x(c)|.
Then, for any set S C C' of candidates, we set

d(v,S) = rcréig{d(v, o)} = rcrélgl{]v —c|}.
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We assume that each voter is represented by the nearest candidate in any given set .S of elected candi-
dates. In other words, the cost of v being represented by a set .S of elected candidates is the quantity

costy(S) = d(v, S) = min{d(v, c)}.
ceS
The problem of the k-committee election is to choose a committee (that is, a set of candidates)
S C C of cardinality |S| = k < m — 1, that minimizes the (utilitarian) social cost

SC(S) =) _ costy(S)

veV

of the voters. One can also consider the egalitarian cost

EC(S) = max{cost,(5)}
veV
for a k-committee S of elected candidates. Whenever we use the egalitarian cost, this will be explicitly
mentioned. An instance of a k-committee election is a pair (C, V'), where C'is the set of candidates
and V is the set of voters, equipped with their locations on the real line (these are assumed fixed, but
unknown to the voting rule).

In our model, each voter v provides only a ranking >, on the set C' of candidates, which is aligned
with the function cost, : C — R™T. This means that for any pair of candidates ¢ and ¢’ we have that
¢ =,  (then we say that v prefers ¢ to ¢) if and only if d(v, ¢) < d(v, ¢’). We assume that for every
voter v and any pair of candidates ¢ # ¢’ we have that d(v, ¢) # d(v, ), and hence >, is a strict total
order.

A deterministic rule R for k-committee election receives as an input a linear ranking profile = =
(>1,...,>n) overaset C of m candidates, the committee size k£ and a non-negative integer ¢q. Then,
using = and information about the distance of at most ¢ candidate pairs on the real line, the rule R
computes a committee R(>,k,q) = S C C consisting of k candidates. We consider committee
election rules that assume availability of a strict ordering of the candidates on the real line, from left to
right, which we call the candidate axis. We may obtain such an ordering from a given linear profile =
using the algorithm of Elkind and Faliszewski [38]. We evaluate committee election rules with their
distortion, whose definition in Chapter [ extends naturally for this setting.

Below we use the following notation. We write top(v) for the top candidate of voter v with respect
to >,. The cluster Cluster(c) of a candidate c is the set of all voters v in V' that have c as their top
candidate. A candidate c is called active if Cluster(c) # @, equivalently if there exists a voter v
with c as her top choice. We assume that all inactive candidates in C' are removed before given as
an input to the algorithms. For convenience we sometimes consider candidate-restricted instances in
our analysis, where all candidates are active and all voters are assumed to be at the same location with
their top candidate.

We shall discuss three different types of distance queries:

e Regular queries. Given a voter v € V and a candidate ¢ € C, we ask for the distance d(v, ¢) =
lv — cl.

e Candidate queries. Given two candidates ¢, ¢’ € C, we ask for the distance d(c¢, ) = |¢ —/|.
e Voter queries. Given two voters v, v’ € V, we ask for the distance d(v,v’) = [v —V/|.

It is shown in [43] that in the linear case we can simulate candidate queries and voter queries with
six and two regular queries, respectively. In the following rules we assume access to candidate queries
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but as long as we care about the asymptotics of the number of queries used, these three query types
can be used interchangeably.

5.2 Lower bound for the number of queries required for bounded
distortion

A lower bound on the number of queries that are required to ensure bounded distortion is given by the
next theorem.

Theorem 5.2.1 (Fotakis-Gourvés-Patsilinakos). For any k > 3, the distortion of any deterministic
k-committee election rule that uses at most k — 3 distance queries and selects k out of at least 2(k —1)
candidates on the real line cannot be bounded by any function of n, m and k. This applies to both the
social and the egalitarian cost.

Proof. Let k > 3 and consider m = 2(k — 1) candidates ¢; < ¢co < -+ < cop—3 < Cop—2. We
fix D large enough so that D >> max{2D + 1,k} and € € (0, +) small enough. First, we define a
basic instance, where d(co;—1,c2;) = 1 forall i € [k — 1] and d(co;, c2i+1) = D? + (i — 1)e for all
i € [k — 2] (see Fig5.1)). There are n = m voters and each one of them has a different top candidate.
Both in the basic instance and in the variants that we shall define, each voter has the same location
with its top candidate.

Now, we construct 2(k — 1) variants of the basic instance as follows. For the j-th instance we
move c; by D and keep all the other candidates at their original locations: If j is odd, we increase
the distance d(cj, ¢j41) from 1 to D + 1 (moving c; by D on the left), while if j is even, we increase
the distance d(c;j_1,¢;) from 1 to D + 1 (moving ¢; by D on the right). All the other candidates
stay at the locations they had in the basic instance (see Fig.5.2). This means that, in the j-th variant,
if j is odd then all distances d(c;,¢j), 1 < ¢ < j — 1, decrease by D and all distances d(c;, ¢;),
j+1 <4 <2(k—1),increase by D. On the other hand, if j is even then all distances d(c;, ¢;),
1 <14 < j—1,increase by D and all distances d(c;, ¢;), j +1 < i < 2(k — 1), decrease by D. Note
that the distance of ¢; to all other candidates is affected, however the distances between any other pair
of candidates remain the same.

With this construction, there are k£ — 1 “isolated” pairs of candidates, and the same is true for all
the variants. In each variant, there exists exactly one pair of candidates who are far from each other,
and this means that if a voting rule has a bounded distortion then it must identify this pair and elect
both candidates of this pair. On the other hand, the candidates of the remaining pairs are very close to
each other, and this means that a voting rule needs only to elect one candidate from each such pair in
order to achieve bounded distortion. Apart from this, the 2(k — 1) variants are completely symmetric
and hence any distance query that can discover that the distance between a pair of candidates is the
same as in the basic instance can exclude at most two variants of the basic instance. This implies that
any deterministic rule requires at least £ — 2 distance queries, in the worst case, in order to identify
the pair of candidates that have distance D.

We pass now to the details. The optimal committee, for both the social cost and the egalitarian
cost, for the j-th variant of the basic instance is to select the candidates at distance D from each other,
namely c¢; and c¢j;q (if j is odd) or ¢;_1 and ¢; (if j is even) and any candidate from each of the
remaining pairs (c2;—1, co;) of candidates. With this choice, the social cost is k£ — 2 and the egalitarian
cost is 1. Any other committee will have social and egalitarian cost at least DD, which is arbitrarily
larger than k — 2 and 1 by our choice for D. This shows that a deterministic committee election rule
can have bounded distortion only if it can identify the pair of candidates with distance D and then add
both these candidates to the remaining k& — 2 candidates elected by the rule.
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We shall show that this can be done only if the algorithm asks for at least £ — 2 queries. First we
observe that the ranking of every voter in the basic instance is the same with the ranking of this voter
in each of the 2(k — 1) variants. Therefore, a voting rule cannot distinguish between the variants just
by looking at the rankings of the voters. In the j-th variant, the distances of ¢; to all other candidates
differ from the corresponding distances in the basic instance, but the distances between all other pairs
of candidates remain the same as in the basic instance. So, whenever we query the distance between a
pair of candidates and check that it remains the same as in the basic instance, we can exclude at most
two from the 2(k — 1) variants. Therefore, any deterministic committee election rule needs at least
k — 2 distance queries, in the worst case, before it identifies the pair (cg;—1, c2;) of candidates that are
at distance D in the input variant and must be elected both. U
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Figure B.1|: The basic instance used in the proof of Theorem for k = 6.

. D+1 D? L1 D2 4e 1 D242 1 D243e 1
&1 2 Cg—C————————— (5 — (g—————————— (7 — (g ——————— (g — Cqg
D+1 . D2-D 1 D2+ 1. D242¢ 1. D%+ 3¢ 1
&S] C3 C3— 4 C5 — Cg Cr—Cg——— Cg—C1o
o 1 Co D2_D cs D+1 cy D=*+te . 1 ce D242 P 1 cs D243 cg 1 10
2 2 2 2
e 1 Co D c3 D+1 Cs D?—D+e e 1 cs D?42¢ er 1 cs D?43¢ co 1 10
2 2 2 2
e 1 e D c3 1 cs D?_D+e cs D+1 co D242 er 1 cs D243 co 1 10
& 1 N D? N 1 cs D% e oo DAL D% _D+2¢ e L es D? 43¢ - o
1 D? 1 D24e 1 . D?’-D42 . D41 D243 1
) —C————— (3 — ) —— 5 — Cg Cy Ccg Cog — CqQ
1 D? L1 D2 4e 1 D242 D41l . D?*-D+43e . 1
Gg—C———— (3 — g ——— (5 — (g C7 Cg Cg — C10
1 D? 1 D2+ L1 D242 .1 . D?’-D+43¢ . D+1
Cp—Cg———————— (33— (g —— (5 — g———— —— C7r— (g Cg 10
2 2 2 2 -
ClLQDi,’-quACSLEG&@LES D7 43e o D1 10

Figure 5.2: The 2(k —1) = 10 variants obtained from the basic instance used in the proof of Theorem
for k = 6.

5.3 Bounded distortion with O(k) queries

In this section we show that we can achieve bounded distortion using O (k) distance queries, thus
asymptotically matching the lower bound of Theorem [.2.1. This is achieved by a query efficient
implementation of the 2-approximate greedy algorithm for k-center from Williamson and Shmoys
[81].

We show that the classical 2-approximate greedy algorithm for k-center can be implemented with
few distance queries. The greedy algorithm iteratively maintains a set S of candidates, starting with
any candidate, and adding the candidate ¢ with maximum distance d(c, S) to the current set S in each
iteration. When applied to linear instances, the greedy algorithm starts with the leftmost candidate c;
and the rightmost candidate c,,,. Then, for the next k — 2 iterations, it adds to .S the candidate ¢ € C
with maximum d(c, S).

In order to implement the greedy algorithm in our setting with distance queries (Algorithm &), we
need to compute the most distant candidate to a set S = {c1,...,¢,} C C, where the candidates
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are indexed as they appear on the candidate axis, from left to right, and ¢y, ¢, are the leftmost and
rightmost candidate in S respectively. For every 1 < ¢ < ¢ — 1 we define ¢; as the most distant
candidate in the interval C'[c¢;, ¢;+1] to its endpoints ¢;, ¢; 41 € S, i.e.

d(éi, {Ci, Ci+1}) = max d(C, {Ci, Ci+1}); (5.1)

CEC[Ci,Ci+1}

and let
0; :=d(&;,{ci,cip1})

the distance of ¢; to the endpoints of C|c;, ¢;+1]. This information is provided by the Distant-Candidate
algorithm (Algorithm B). We can show that the most distant candidate to S is the candidate ¢; with
the maximum distance 6;.

Proposition 5.3.1. Let S be the set of currently elected candidates in AlgorithmB, and let ¢q, . .., Co_1
be defined as in (5.1)). Then,

maxd(c,S) = max d(é&,{ci,c .

ceC (c,5) 1<i<i—1 (& {ei civa})
Proof. Note that, since c; is the leftmost candidate and ¢, is the rightmost candidate in C, every
candidate who belongs to C'\ S lies in one of the intervals Clcy, ¢2], . . ., Cles—1, ¢]. Suppose that the
farthest candidate c to S is in the interval C'[c;, ¢;+1]. Then, ¢ has to be the candidate ¢; € Clc;, ¢i+1]
with maximum distance to the endpoints ¢;, ¢;+1 and d(¢é;, S) = d(¢é;, {ci, cit1}). O

For any interval C|[c, /] with |C[e, ¢]| > 3, which is defined by two consecutive candidates in S,
Algorithm B computes the candidate ¢ € C|c, ¢/] with the maximum distance to the endpoints ¢, ¢’ as
well as the distance d(¢, {c,'}) = d(¢é, S). Moreover, each application of Algorithm [ uses at most
3 distance queries.

Lemma 5.3.2. Let ¢, € C with ¢ < . Then, Algorithm B correctly returns the candidate ¢ €
Cle, ] with maximum distance to the interval’s endpoints c,c, i.e.

e fe.d)) = max | d(e", {e.c')

as well as the distance d(¢,{c,c'}) = d(¢,S) to S.

Proof. The case |C[c, ]| = 3 is clear because there is only one ¢’ € Clc,c] \ {¢, '} and this
is necessarily the most distant candidate. Then, Algorithm [ returns ¢’ and computes the distance
d(c”,{c,'}) using 2 distance queries.

Assume that |C[c, ¢]| > 4. We first consider candidate-restricted instances, where for any candi-
date ¢’ € C|[e, ] all voters v € Cluster(c¢”) are collocated with ¢”’. Then, the ranking >, submitted by
avoter v € Cluster(c¢”) in Step 6 of Algorithm 3 is the same with the ranking .~ where all candidates
¢ € C appear in increasing order of their distance to ¢”.

Let m = (¢ + ¢’)/2 be the midpoint of the interval [c, /], which is the point in this interval with
maximum distance d(m, {c, ¢'}) to the endpoints ¢, ¢’. In Algorithm [, ¢, is the leftmost candidate
in Clc, ¢'] that is closer to the right endpoint ¢’ than to the left endpoint c¢. By the definition of ¢,,
we have that ¢, is the rightmost candidate in C|[c, ¢| that is closer to the left endpoint ¢ than to the
right endpoint ¢/. Note that d(c;, {c,'}) = d(¢,, ) and d(cg,{c,c'}) = d(cg,c). Tt follows that
ce < m < ¢, with at least one of the inequalities strict, and there are no other candidates between
¢ and ¢,. Therefore, ¢, and ¢, are the candidates in C/c, ¢/] that are closest to m. Then, comparing
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d(eg,c) = d(cg, S) and d(cp, ') = d(cy, S) we determine the candidate in C|c, ¢/] with maximum
distance to its endpoints.

Next, we remove the assumption that Algorithm J§ has access to .. Let ¢ be the candidate in
Cle, ¢'] with maximum distance to {¢, ¢’}. Then, ¢ is the closest candidate to the midpoint m. Without
loss of generality we assume that ¢ < m and show that ¢ € {cy, ¢, } and that Algorithm [ correctly
returns ¢. The case where ¢ > m is similar by symmetry.

Let & € Cluster(¢) be the voter whose preference list =5 is used in place of > in Algorithm . Let
¢q and ¢, be the next candidate on the left and respectively on the right of ¢ in C|e, ¢/] (note that we
might have ¢, = cor ¢, = ¢ but not both). Let v, and vj, be the voters in Cluster(c, ) and Cluster(c;),
respectively, whose preference lists -, and >, are used in place of -, and >,.

Since ¢ < m, we have that ¢ >, ¢/, because ¢, < ¢ < m and d(vg, ¢g) < d(vg, ¢). It follows that
vg < ¢ < m. Moreover, since ¢ is the closest candidate to m, ¢ < m < ¢, and d(vy, ) < d(vp, €),
we have that ¢’ >, ¢. Therefore, m < v}, because if v, < m then using the fact that m is closer to ¢
we would get d(é, vp) < d(cp, vp) and vy would be in Cluster(é).

Now, since ¢ >,, ¢ and ¢ >, ¢, which imply that ¢, # ¢, and ¢, is either ¢ or ¢;, we get that é
is either ¢y or ¢,. We distinguish two cases depending on the placement of © with respect to m.

If o < mandc >3 ¢ then ¢, = ¢ and ¢y = é. Moreover, d(¢,¢) > d(cp, ') because ¢ is the
farthest candidate to {c, ¢'}. Therefore, Algorithm 3 returns ¢ as the farthest candidate and the distance
d(e,c) =d(¢, S).

If m < vand ¢ =5 cthen ¢, = éand ¢; = ¢,. Moreover, d(¢,c¢’) > d(cq,c) because ¢ <
o < ¢ < m < . Therefore, Algorithm [ returns ¢ as the farthest candidate and the distance
d(¢,c) =d(¢,S). O

Case¢c <mand v <m:

~ /

c Cq C Cp c

O————O00—00—+——0—0 o
Vq v m Up

Casec<mandv>m:

o

c Ca ¢ o)
@

’ U

Figure 5.3: The two cases for the location of ¢ in the proof of Lemma [.3.2.
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Algorithm 2: Query-efficient implementation of Greedy

Input: Candidates C = {c1,...,cm}, k € {2,...,m — 1}, voter ranking profile
== (51, %)

Output: Set S C C of k candidates

S <« {c1,cm} {pick leftmost and rightmost candidates }

—

2 C' <« {Distant — Candidate(C|c1, ¢n))}

3 while |S| < k do

4 | Letcbest. (¢,6) € Candd > ¢ forall (¢,8) e C

5 S « Su{c}

6 | C « C\{(cd)}

7 if |S| < k then

8 Let ¢; be the rightmost candidate in .S on ¢’s left

9 Let c; 41 be the leftmost candidate in S on ¢’s right

10 C « C U {Distant — Candidate(C[c;, ¢])} U {Distant — Candidate(C|ec, ¢;41])}
1 return S

Algorithm 3: The Distant-Candidate algorithm

Input: Candidate interval Clc, ¢'], a voter v € Cluster(c¢”) for every ¢’ € Clc, ']
Output: Candidate ¢ € C|e, ¢/] with maximum d(¢, {c, c'})

if |Cl[c, ]| = 3 then

—

2 " «— Cle,d]\{c, '}

3 L return (¢, min{d(c", ¢),d(c",c)})

4 Let ¢” be the leftmost candidate in Clc, '] \ {c}

5 while ¢’ € Cle, ] do

6 Let .~ be the ranking >, of any v € Cluster(c”)

7 if ¢ =, c then

8 Let ¢, be ¢’ and ¢, be next candidate on ¢’s left

{c¢ and ¢, found, while-loop terminates }

9 break
10 else

1 t ¢’ + the next candidate on ¢”’s right {proceed to the next candidate on the right}

(5]

12 if d(c, ¢p) > d(c,, ) then
13| return (c,,min{d(c, c;),d(, cr)})

14 else
15 | return (c,, min{d(c,,c),d(c,,c')})

We shall also use the next theorem.

Theorem 5.3.3 (Fotakis-Gourvés-Patsilinakos). Let (C, V') be an instance of the k-committee elec-
tion. Let S C C (respectively, S* C C) be a B-approximate (respectively, an optimal) k-committee
with respect to the egalitarian cost for the candidate-restricted instance (respectively, the original
instance). Then,

EC(S) < (14 28)EC(S¥).

Proof. If top(v) € C' is the top candidate of v € V then, by the triangle inequality, we have that



d(v,S) < d(v,top(v)) + d(top(v), S) and taking maximum with respect to all v € V' we see that
EC(S) < EC(C) + EC(Cq, S), (5.2)

where
EC(C) = max{d(v,top(v)) : v € V} = max{d(v,C) : v € V'}

and
EC(Cq, S) = max{d(top(v),S) : v € V'}.

Note that EC(Cy, S) is the egalitarian cost of S for the candidate-restricted instance C¢; induced by
C, and
EC(Cy, S) < BEC(Cyr, S*) < BEC(Cyr, S). (5.3)

The first inequality holds true because .S is a S-approximate k-committee for C¢;. For the second
inequality we use the fact that the S-approximation ratio of S is established against an optimal solution
S* for Cy; that may include inactive candidates from C, and hence S* is also a feasible option. Since
S# is an optimal solution for Cy; with respect to the egalitarian cost, it follows that EC(Cq, S#) <
EC(Cq, S™).

Next, since d(top(v), S*) < d(top(v),v) + d(v, S*) for all v € V, taking the maximum over all v
we see that

EC(Cy, S*) < EC(C) + EC(S™).

Combining these observations with (5.2) and using (5.3) we get
EC(S) < (14 B)EC(C) 4+ BEC(S*) < (14 28) EC(S™).
O

Theorem 5.3.4 (Fotakis-Gourvés-Patsilinakos). For any k > 3, Algorithm B achieves a distortion of
at most bn for the social cost, and at most 5 for the egalitarian cost, for k-Committee Election on the
real line using at most 6k — 15 candidate distance queries.

Proof. In Algorithm [, the distant-candidate algorithm is called once in Step 2 and 2(k — 3) times in
Step 10, twice in each iteration of the while-loop, from the iteration where |S| = 3 to the iteration
where |S| = k — 1. So, the total number of distance queries is at most 6(k — 3) + 3. Lemma
and Proposition establish the correctness of Algorithm [, i.e. the fact that in each iteration the
candidate ¢ with maximum d(c, S) is added to S. The distortion bound for the egalitarian cost follows
from the fact that the algorithm of Williamson and Shmoys is 2-approximate for the egalitarian cost of
candidate-restricted instances (see [81, Theorem 2.3]). Then, Theorem implies an upper bound
of 5 on the distortion for the egalitarian cost of the original instance. The upper bound of 5n on
the distortion for the social cost holds because for any committee S C C we have that EC(S) <
SC(S) < nEC(S). Thus, if S* is the optimal committee with respect to the egalitarian cost and S**
is the optimal committee with respect to the social cost, for any committee S C C we have that

SC($) _ EC(S) _  EC(S) EC(S") _ EC(S") _,
SC(s*) ~ "EC(s*™) ~ "EC(S*)EC(5*) ~ "' EC(s7) ~

because EC(S™) < EC(S™). O



CHAPTER 0

Voting rules with predictions for
single-winner and committee elections

In this chapter, we modify some of the voting rules that we studied in previous chapters by augmenting
them with predictions and bound their consistency and robustness.

Our first contribution is a discussion of consistency and robustness bounds for suitably defined
boosted versions of the Plurality and Borda rules. In the case of the plurality rule, forany ¢ € [0, 1) we
define the algorithm BoostedPlurality that uses a prediction p for the optimal candidate and depends
on the confidence parameter ¢. It elects either the candidate with the highest plurality score or p if his
plurality score is high enough. The learning-augmented version of the Borda rule, BoostedBordas is
similar. We also provide bounds on the distortion achieved by BoostedPluralitys and BoostedBordas
on instances where the prediction p has a given error 7. Our results indicate that predictions are not
useful when the only information available is the plurality score or the Borda score of the candidates.

Subsequently, we focus on the committee election problem. We assume that our algorithms have
access to a prediction P = {p1,...,pr} C C for the optimal committee. The first algorithm that
we examine, is a learning-augmented version of the Greedy algorithm from [45], parameterized by
0 € [0,1). At each iteration it elects in the committee either the most distant candidate thus far or
the most distant predicted candidate thus far. It uses ©(k) distance queries, but for all § € [0, 1) its
consistency is still 2(n).

Afterwards, we introduce an algorithm which, using a prediction P and the Greedy algorithm,
computes a good representative set of candidates and elects the optimal k-committee in the restricted
instance induced by this set. Our algorithm achieves constant consistency and linear robustness with
O(k) distance queries.

6.1 Boosted versions of Plurality and Borda

In this section we discuss consistency and robustness of boosted versions of the Plurality and Borda
rules, parameterized by € [0, 1). We assume that we have access to the Plurality or Borda score of
every candidate, in addition to a prediction about the optimal candidate. With this information, it is
natural to elect the predicted candidate, if his score is sufficiently high when compared to the highest
score. The threshold of the score, above which the prediction is chosen, depends on the confidence
parameter 9.

Starting with the Plurality rule, recall that if o := (0, ),y is a preference profile which is induced
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by an instance (V, C, d) then, for any ¢ € C, the plurality score plu(c) of ¢ is the number of its first
positions in the rankings. Formally,

plu(c) = {v € V1 oy(c) = 1}

We assume that the candidates ¢ € C are labeled according to their plurality score: ¢; is the candidate
placed i-th with respect to the plurality score. Therefore, plu(ci) > plu(c2) > -+ > plu(ey,). Let
d € [0,1). We define BoostedPlurality; as follows. Given a prediction p € C about the optimal
candidate ¢* = ¢, we set a = p if plu(p) > (1 — §)plu(cy) and a = ¢; otherwise. The algorithm
outputs a. Therefore, when 9 is close to 1 the algorithm tends to elect the predicted candidate.

Algorithm 4: BoostedPlurality

Input: Preference profile o, predicted optimal candidate p € C'
Output: a candidate c € C

1 ¢ + argmax,.oplu(c)

2 Ve e O\ {p}, score(c) «+ plu(c),

3 score(p) — plu(p) + 5~plu(cl) // Boost score of predicted candidate in proportion to ¢
4 if score(p) > score(c;) then

5 L return p

6 else

7 L return c;

The next proposition provides an upper bound for the robustness of BoostedPlurality.

Proposition 6.1.1. For every ¢ € [0, 1) the algorithm BoostedPlurality; has robustness

2
robustness(BoostedPlurality;) < 17m6 -1

Proof. From Lemma we know that,

SC(a) < 2n

Recall that ¢* is the optimal candidate. Note that
lac®| > plu(a) > (1 — d)plu(ey).
It follows that

SC(a) < 2n B
SC(c*) = (1 —9d)plu(eq)

Since n = plu(cy) + - - - + plu(ep,) < m - plu(cy), we know that plu(cq) > n/m. It follows that

SC(a) < 2m

—1
SC(c*) = 1-9§

as claimed. O

On the other hand, we show that the consistency of BoostedPluralitys exceeds 2m — 1 — 24.

Proposition 6.1.2. For every ¢ € [0, 1) the algorithm BoostedPlurality; has consistency

consistency(BoostedPluralitys) > 2m — 1 — 20.
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Proof. Consider the example shown in Figure b.1].

candidates on each side

voters
m— 0 m—90

Figure b.1): Example for Proposition .1.2.

All candidates and voters are located on the real axis and the distance is the Euclidean distance.
Candidate c; is located at the point « = 0, candidate ¢, is located at the point z = 2, and the remaining

m — 2 candidates are very close to ¢,,,. Specifically, there are mT—z candidates to the left of ¢, and
mT_Q candidates to the right of c,,, at distances ¢, 2, . . ., mT_Qe respectively, where € > 0 is a small
constant. There are "= voters at x = 1 — ’”T_%, (1-— 5)% voters collocated with ¢, and "

voters collocated with each of the candidates that are close to c,,.
We easily check that ¢, is the optimal candidate with respect to the social cost, therefore when we
consider the consistency, the prediction p is ¢,,. However,

n

plu(p) = plu(en) = (1 - 6)—— = (1 — )plu(er)

m—0

and the algorithm BoostedPluralitys outputs candidate c;.
The social cost of ¢ is

SC(Cl) =

+ = (2—m2_2e+2+m2_2e+~-+2—e+2+e>
S (14201 -68)+ (m—2)-2) = ——(2m — 1 — 20)
m—30 mn C m—94 m

when ¢ — 9, and the social cost of ¢, is

-2
SC(em) = 5.1+mn_5.2<6_|_26+...+m 6)

m—0
when ¢ — 0. It follows that the consistency of the algorithm is greater than 2m — 1 — 24. O

Note that if § = 0 then the lower bound of Proposition matches the distortion of the simple
plurality algorithm. For § — 1 the lower bound for the consistency becomes 2m — 3, meaning that
the prediction does not give nearly any improvement in the distortion of the plurality algorithm.



80 - Voting rules with predictions for single-winner and committee elections

We pass now to the Borda rule. Recall that, in this case, the scoring vector is § = (m — 1,m —
2,...,1,0). Let o be a preference profile and p € C be a prediction about the optimal candidate c¢*.
The Borda score of a candidate c is

borda(c) = Y _(m — oy(c)).

veV

Let ¢; € C be a candidate with maximal score. For any § € [0, ﬁ) we set a = p if borda(p) >
(1 — §)borda(c;) and a = ¢; otherwise. The algorithm outputs a.

Algorithm 5: BoostedBorda;
Input: Preference profile o, predicted optimal candidate p € C
Output: a candidate c € C'
1 ¢ + argmax,.cborda(c)
2 Vee C\{p}, score(c) « borda(c),
3 score(p) < borda(p) + d - borda(cy) 7/ Boost score of predicted candidate in proportion
to §
4 if score(p) > score(c;) then
5 L return p

6 else
L return c;

2

1
’m—1

Proposition 6.1.3. For every § € [O ) the algorithm BoostedBordas has robustness

2m

< ———1.
~1-96(m—-1) !

robustness(BoostedBorday)

Proof. Consider the case a = p. We observe that

borda(p) — borda(c*) = Z(GU(C*) —oy(p))

veV
< (=1) - [c"p| + (m = 1) - [pc*| = —n + m|pc”|.

Since a = p, we have

borda(p) — borda(c*) > (1 — d)borda(c;) — borda(c")
= borda(c;) — borda(c*) — dborda(cy)
> —¢ - borda(cy).

Combining the above, as well as the simple observation that borda(c;) < (m — 1)n, we see that

Ipc| > n — d borda(cy) > (1 —-6(m— 1))n
m m
From Lemma we know that
SC(a) < 2n 1
SC(¢*) ~ lac*|
It follows that
SC(a) 2m
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We also know that if @ = ¢ then

So, we get the claimed bound. O
Moreover, we can also provide a lower bound for the consistency of BoostedBordas.

Proposition 6.1.4. For every § € [0,1) the algorithm BoostedBordas has consistency

1-9
consistency(BoostedBordas) > 2(m — 1)m +1.
Proof. Consider the example shown in Figure .2.
m — 2 candidates
0 1 2+¢
1 voter 1-9¢ m— 1

1+ 4d(m—2)

voters

Figure b.2: Example for Proposition b.1.4.

All candidates and voters are located on the real axis and the distance is the Euclidean distance.
Candidate c; is located at the point x = 0, candidate c,, is located at the point x = 2+ € (where e > 0
is a small constant), and the remaining m — 2 candidates are very close to ¢; and to his left. There is
#:néﬂ)(m — 1) voters collocated with c;y,.
We easily check that ¢, is the optimal candidate with respect to the social cost, therefore when we

one voter at z = 1 (she ranks c; first and ¢, last) and

consider the consistency, the prediction p is ¢,,. However,

borda(cy) = (m —1) + 1—1—(15(_7715—2)(m —1)(m—2)
B 1-9 . (m—1)2
=(m—1) [(m_2)1+5(m—2) R il s ey
and 1.5
borda(p) = borda(c,,) = T om—2) 5(;1 —3) (m —1)? = (1 — §) borda(cy)

and the algorithm BoostedPluralitys outputs candidate c;.
The social cost of ¢; satisfies

1—-90

(m—1)

when € — 0, and
SC(¢y) — 1
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when € — 0. It follows that the consistency of the algorithm is greater than 2- ﬁnf_% (m—1)+1. O

Note that if § = 0 then the lower bound of Proposition matches the distortion of the simple
Borda rule. For § < —1 the lower bound for the consistency becomes 1 + (mfn?# This is
close to m for large values of m, which is better than the lower bound for the diStOI‘tiOHQOf the simple
Bordarule. Still, we showed that BoostedPlurality s cannot achieve sublinear consistency while having
bounded robustness, meaning that predictions do not offer significant improvement.

Finally, we shall also provide bounds on the distortion achieved by BoostedPlurality ; and BoostedBordas
on instances where the prediction p has a given error 77. We consider first the boosted plurality algo-
rithm.

Proposition 6.1.5. For any § € [0,1), the distortion achieved by BoostedPluralitys on instances
where the prediction p has error n = n - d(p, c¢*)/SC(c*) is at most

min ¢ max < 1+ 1—ﬂ 1,2m — 1 ’2717171 .
m 1—-9

Distortion of BoostedPluralitys

— 0=0.25,m=3

18 ¢ —— &6=0.5,m=3
— 6=0.25,m=5
16 0=05 m=5

14 -

12 A /

10

Distortion

Q 5 10 15 20 25
Error n

Figure [.3: Distortion of BoostedPlurality as a function of error n

Proof. Proposition already shows that

SC(a) < 2m
SC(e") = 1-4

1.

Recall from (B.1) that

8C(0) _y, (nlec]) - dle, )

SC(c*) SC(c*)
for every candidate c. For any § € [0,1) we have set a = p if plu(p) > (1 — d)plu(cy) and a = 1
otherwise. In the proof of Proposition we have also seen that, in the case a = p,

|pc*| > plu(p) > (1 — §)n/m.
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Combining the above we get

:g((?) SR el U g)(%n;) d(p,c)
B 1—-9\ n-d(p,c*)
- <1_ m > SC(e")

:1+<1—1_6>n.
m

On the other hand, if a = ¢; we have seen that

So, we have proved that

which completes the proof. O

For the boosted Borda algorithm we work in the same way.

Proposition 6.1.6. For any § € [0, ﬁ) the distortion achieved by BoostedBordas on instances
where the prediction p has error n = n - d(p, c¢*)/SC(c*) is at most

i o {11 (1 17000 ) )

Distortion of BoostedBordas

30 A
— 6=0.25,m=3
— 6=04,m=3
354 —— 6=0.1m=5
6=0.125,m=5
20 A
| =
]
b=
S
w
a 15
10 4
5_
T T T T T T T T
0 5 10 15 20 25 30 35
Error n

Figure 6.4: Distortion of BoostedBorda; as a function of error 7

Proof. Proposition already shows that

SC(a) < 2m

SC(e) S 1=sm=1) "
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Again we have that
SC(c) <14 (n — |ec*|) - d(e, c*)
SC(c*) SC(c*)

for every candidate c. For any ¢ € {0, ﬁ) we have set @ = p if borda(p) > (1 — J)score(c;) and

a = cq otherwise. In the case a = p we have also seen that

(1 —=9(m— 1))n

m

lpc*| >

Combining the above we get

SClp) ¢, (n=(A=d(m—1))n/m)-d(p,c’)
SC(c*) — SC(c*)
1—06(m—1)\ n-d(p,c*)
=1 1-—
i < m > SC(e")
=1+ (1—1_5(m_1)>n.
m
On the other hand, if ¢« = ¢; we have seen that
SC(Cl)
<2m-—1
SC(er) ="

So, we have proved that

which completes the proof. O

6.2 Greedy algorithm for £-committee election with predictions

In the k-committee election problem, we assume that predictions are given in the form of a subset
P ={p1,...,pr} € C of size k, and that py, ..., pj are ordered according to their location on the
real line. We define Plc, '] = P N ¢, '] U {c,¢'}. This is the set of candidates in the predicted
committee who are located between ¢ and ¢/, including the candidates at the endpoints of the interval.

We modify the greedy algorithm that we studied in Chapter [ (Algorithm [J) enhanced by predic-
tions about the optimal committee. The algorithm is parameterized by 6 € [0, 1), which indicates
our confidence in the prediction. At each step of the algorithm, we add to the committee S either the
most distant candidate thus far or the most distant candidate in P thus far. The latter is chosen if his
distance from S is greater than 1 — ¢ times the distance of the former from S. The same applies for the
selection of the leftmost and rightmost candidates in the first steps. The algorithm maintains a set P
similar to C' , with the most distant candidates from S in P in each interval as well as their distances.
See Section 5.3 for the analysis of the simple greedy algorithm, and see also the comments regarding
Algorithm [ for implementation details needed for its correctness.

Regarding the number of queries used by Algorithm [, note that 3 queries are used at the start.
Distant-candidate algorithm is called at most 4(k — 3) + 2 times, and it uses at most 3 queries each
time. Therefore, in total, the max number of distance queries used is at most 12k — 27, which is © (k).
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Algorithm 6: Greedy algorithm with predictions, 6 € [0, 1)

—

e

10

11

12
13
14

25

26
27
28

29
30

31
32

33

34
35

36

Input: Candidates C = {c1,...,cn}, k € {2,...,m — 1}, voter ranking profile

= = (1,...,7n), prediction P = {p1,...,px} CC

Output: Set S C C of k candidates

if d(p1,cm) > (1 —0)d(c1, ¢) then

S+ {p1}

C? — {(Cl,d(cl,pl))} // c1 is the most distant candidate left of p; and can be

selected later

else

| G < D1

S {Cl}
Cp < C1

if d(c1,px) > (1 —6)d(c1, ¢y) then

S« SlJ{pk}
C? +— cu {(Cnl,d(pk,(yn))} // ¢m 1is the most distant candidate right of p, and can

be selected later

Cr

else

< Dk

S «— Su{en}

Cr

— Cm

C « {Distant — Candidate (C[c/, ¢,])}
P « {Distant — Candidate (P[cs, ¢,])}
while | S| < k do

Let cbes.t. (¢,t) € Candt >t forall (¢,t') € C
Letpbest. (p,r) € Pandr >+ forall (pf,1') € F
if > (1 —0)t then

S «— Su{p}

C < p

Let (¢",t") € C and i <" <y // ¢i,cir1 defined later, ¢’ is unique
C « C \{(", ")} // The interval [c;,ci41] will split, so we remove its most

distant candidate from C

P+ P\{(p,7)}

else
S+ Su{c}
Let (p",r") € P and ci <p' <ciy1 7/ ciycipr defined later, p’ is unique if it
exists
C <+ C\{(ct)}
75 — {(Z/I,T”)} // The interval [ci,ciy1] will split, so we remove its most

distant candidate from P

if |S| < k then

Let ¢; be the rightmost candidate in .S on ¢’s left // if ¢=c; then ¢; does not exist
and in the following step we ignore it

Let ¢;+1 be the leftmost candidate in .S on ¢’s right  // if ¢ = ¢, then c¢i11 does not
exist and in the following step we ignore it

C « C U {Distant — Candidate(C[c;, ¢])} U {Distant — Candidate(Cc, ¢;41])}

P « P U {Distant — Candidate(P[c;, ¢|)} U {Distant — Candidate(C|c, ¢;11])}

return S
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We shall give an upper bound for the robustness of the Greedy algorithm with respect to the egal-
itarian cost (EC) and to the social cost (SC).

Proposition 6.2.1. The algorithm achieves robustness

robustness(Greedy)p- < 1+ 1;:5 and robustness(Greedy)q- < (1 + &) n.
Proof. Let S* = {j1,...,jr} denote the optimal k-committee with respect to the egalitarian cost for
the candidate restricted instance C';, and let OPT denote the optimal egalitarian cost. This solution
partitions the candidates (and their corresponding voters) into clusters C', . . ., C, where each ¢ € C
is placed in Cj if his closest committee member is j;. By the triangle inequality, two points in the
same cluster are at most 2 OPT apart.

Now, consider the committee S C C selected by the algorithm. If some candidate in S is selected
from each cluster of the optimal solution S*, then S is 2-approximate.

Suppose that the algorithm selects two candidates in the same cluster. In some iteration step it
selects j € C; although it had selected j' € C; in an earlier iteration step. Then, d(j,j’) < 2 OPT.

If (j,t¢) wasin C then j would be the farthest candidate from S up to this point (and t; < d(3,7) <
2 0OPT). So, all voters are within a distance of 2 OPT from .5, and that remains true.

If (j,r¢) was in P then we should have r; > (1 — &)ty Also, ry < 20PT. The distance of the
farthest candidate from S is less than

Ty 2
t)< —t < _% OPT.
ST -551-%

So, all voters are within a distance of

13 OPT from S and S is %-approximate.

From Theorem we get the following bound for the robustness of S’ for the original instance
with respect to the egalitarian cost:

2 4
< X *) o * .
EC(S)_(1—|—2 1—6>EC(S) 1+1_6EC(S)
Also,
4 4
SC(S) < nEC(S) < (1 + T 5) nEC(S¥) < <1 + 1_5) n SC(S*).
This concludes the proof. O

Next, we provide a lower bound for the consistency of the Greedy algorithm.

Proposition 6.2.2. For every § € [0,1/3) the Greedy algorithm has consistency

-1
consistency(Greedy) > nT

and for§ € [1/3,1)
1—
consistency(Greedy) > (n — 1)%

Proof. Consider the example shown in Figure .3.
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< a > Illa'll|—><—||1au|—>
B e . e .
€1 € €3 C4
1 voter (n-13 voters  (n-1)3 voters  (n-1)/3 voters

Figure b.3: Example for Proposition .2.2.

For a fixed value of § we choose n > % + 1 and construct the instance above, where m = 4 and
k=3.
There are 4 possible committees. The following table summarizes their social cost.

Candidate omitted | Social cost
C1 1)
Co 5= min {5, 1—55

Since n > % + 1 we have that § < "Tfl 1%‘5. Then, the table shows that the optimal committee

is S* = {cg, c3, c4 } and for the consistency case we assume that P = S* = {cg, ¢3,¢4}.

In the first two iterations, the algorithm selects ¢; and ¢4. So far, S = {¢1, ¢4}. In the third iteration
we have d(cy, S) = min{d,1 — 6} (whichis § if § < 3 and 1 — § if § > 3) and d(c3, 5) = %5. So,
we have two cases for the farthest candidate:

o If§ € [0,3) then S = {c1,c3,c4} and SC = § 5L

o If) € [%, 1) then S = {c1, ¢, ¢4} and SC = 15

The optimal social cost is equal to d, for S* = {cg, c3, ¢4}, therefore:
n—1

e In the first case the algorithm has distortion *5=.

e In the second case the algorithm has distortion (n — 1)16—_55.

The result follows. O

In both cases, the consistency is {2(n), therefore the improvement given by the predictions is not
significant, especially for large values of n.

6.3 An algorithm achieving constant consistency with O (k) queries

Before presenting the algorithm, we define the notion of a (¢, 3)-good set.
Let 8 > 1and ¢ > k be an integer. A subset C’ C C of candidates is called (¢, 3)-good if |C’| = ¢
and
SC(C") < BSC(S*)

where S* is an optimal k-committee for the original instance. We say that C” is {-sparse, in the sense
that there are ¢ < m candidates in C” (ideally, ¢ < m) and that C’ is 8-good, in the sense that if
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we represent each voter by its top candidate in C’ then we impose a cost at most 3 times the optimal
social cost. In this terminology, the original set C' of candidates is (m, 1)-good and any k-committee
with distortion 3 is (k, 5)-good.

Algorithm 7: Good set computation with predictions
Input: C, k, =, P
Output: Set S C C of k candidates

1 8" + Greedy{C, k, =}

20"« S'UP /7 |C"| < 2k
3 Let C/; be the candidate-restricted instance induced by C’

4 Compute the distances between all active candidates in C’ using distance queries

5 S « DP{C/, distances, k} /7S] =k, S optimal for Cl
6 return S

This algorithm computes a good set C’ of at most 2k candidates by taking the union of the set S’
given by the Greedy Algorithm P and the predicted set P. The D P-algorithm in Step 5, proposed in
Hassin and Tamir in [53], runs in O(k?) time and computes the optimal k-committee for the candidate
restricted instance CY, when having access to all distances between candidates.

This algorithm uses at most 6k — 15 queries in Step 1 by calling Algorithm [} and at most 2k — 1
queries in Step 4 by asking the distance between each pair of consecutive candidates in C’. So, in
total, the algorithm uses ©(k) candidate distance queries.

To prove consistency and robustness bounds for Algorithm [ we need a theorem from [435]. Let
C’ be an (¢, 3)-good set of candidates and let

C’(/:r = {(Clv nl)v ceey (Cbnﬁ)}

be the candidate-restricted instance induced by C’. Then, ¢; < --- < ¢y are the locations of the
candidates from C’ on the real line, and n; = |Cluster(c;)| is the number of voters that have ¢; as their
top candidate in C’. We always have nq + - - - + ny = n and we may assume that all n; are strictly
positive, by removing the inactive candidates from C".

The next theorem of Fotakis, Gourvés and Patsilinakos [45] shows that an optimal k-committee for
the candidate-restricted instance CY, induced by an (¢, §)-good set C’ achieves a distortion of 1 + 23
for the original instance.

Theorem 6.3.1 (Fotakis-Gourvés-Patsilinakos). Let (C, V') be an instance of the k-committee elec-
tion. Let C" C C be an (¢, B)-good set, let C!. be the candidate-restricted instance induced by C' and
let S, respectively S*, be an optimal k-committee for C!, respectively for (C,V'). Then,

SC(S) < (14 28)SC(S*).
For the proof of Theorem we need the next proposition.

Proposition 6.3.2 (Fotakis-Gourvés-Patsilinakos). Let C' be the set of all candidates and let C be the
set of active candidates. For any instance in which every voter has the same location with its top
candidate and for every committee S that includes inactive candidates, i.e. S\ C # @, we can find
another committee S' C C such that SC(S’) < SC(S).

Proof. Let S be a committee in which there exists some candidate ¢ ¢ C. If there are no voters
represented by ¢, then we can remove ¢ from S to get a new committee with £ — 1 candidates, less
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inactive candidates, and SC(S \ {¢}) = SC(S). Adding any candidate from C'\ S to S\ {c}, we
obtain a k-committee with at most the same cost.

If c represents some voters, let Vi, be the set of voters on the left of ¢ that are represented by ¢ under
the k-committee S, and let Vi;gy be the set of voters on the right of c that are represented by c under
the k-committee S. By our hypothesis, every voter in Vieg U Viignt has the same location with some
candidate. If |Vien| > |Viignt| then we replace c in S with a candidate ¢’ which has the same location
as the rightmost voter of Vi.r. Otherwise, we replace ¢ in S with the candidate ¢’ that has the same
location as the leftmost voter of Viigne. In this way, we obtain a new k-committee S" = (S\ {c})U{c'}
with less inactive candidates than S and SC(S’) < SC(S). Applying the same argument repeatedly,
we obtain a k-committee S’ C C with SC(S’) < SC(S). O

Proof of Theorem E231. For every voter v we set top’(v) € C’ to be the top candidate of v in C’. By
the triangle inequality we have that

d(v,S) < d(v,top’(v)) + d(top’(v), S).

Taking the sum over all voters v € V we get

SC(S) < SC(C') +SC(CL,, S), (6.1)
where
SC(C') =) d(v,top'(v)) = > d(v,C")
veV veV
and

¢

SC(Cl, S) = d(top'(v), S) = nyd(c;, 5)

veV i=1
is the social cost of S for the candidate-restricted instance CY,.

From Proposition we know that we can replace candidates in S* \ C’ with candidates in S in
C!. without increasing the social cost, therefore

SC(C.,, S) < SC(CL., 5%).
By the triangle inequality we also have

d(top’(v), S*) < d(top’(v),v) + d(v, S*),

and so, we finally get
SC(CL,, S*) < SC(C") + SC(S™).

cro

Then, from (b.1)) we see that
SC(S) < 2SC(C") + SC(S*) < (1 +2B)SC(S™),

where the second inequality follows from the hypothesis that C” is an (¢, 3)-good set of candidates.
O]

Now, we can prove upper bounds for the consistency and the robustness of Algorithm 7.

Proposition 6.3.3. Algorithm [ achieves a consistency of at most 3.



Proof. For the consistency case, we assume that P is optimal for (C, V') and C" is a superset of P, so
SC(C") < SC(P) = SC(S*), where S* is an optimal k-committee. Therefore, C’ is a (|C’|, 1)-good
set.

From Theorem we have that

SC(S) < (14+2-1)SC(S*) = 3SC(S™).
This shows that the consistency of Algorithm [ is at most 3. O

Proposition 6.3.4. Algorithm [} achieves a robustness of at most 10n + 1.

Proof. From Theorem we have that the Greedy Algorithm has a distortion of at most 5n. Also,
('’ is a superset of S/, so SC(C’) < SC(S’) < 5n SC(S*), where S* is an optimal k-committee.
Therefore, C’ is a (|C’], 5n)-good set.

From Theorem we have that

SC(S) < (1 +2-5n)SC(S*) = (10n + 1)SC(S*).

This shows that the robustness of Algorithm [ is at most ©(n). O
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