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IHepiinyn

2TV mopovca SUTAMUATIKY HLEAETALLE TIG neBddovg avaivong tov blockchain, piag kpumtoypa-
QIKNG KOTOGKEVTG 1) OTTO10. GTOYEVEL GTI SMUOLPYIN EVOG ATOKEVIPOUEVOD KOTAAOGYOV GUVOA-
Aaymv. To blockchain, mg oyetikd TpocaTn TEXVOLOYiO £XEL YVOPIGEL TOAD HEYGAN ovimTLEN
Ta tehgvtaia xpovia 1060 og BewpnTikod 0G0 Kot 6 TEXVIKO eMinedo. "o avtd T0 Adym Bempovue
g a&ilel va eufabivovpe GTOVE TPOTOVG LE TOVG OTOI0VE OVAADETAL.

Apyilovpe mapabdétovtag To LaOMUOTIKA EpYAAELD TTOV LOG EMTPETOVY VO, KOTOGKEVAGOVLE
to blockchain kot va avaidoovpie Tig 1016t T€G ToL. Etetta e€epevvoipie Tpelg mpoomdbeieg ava-
Avong tov, Kabe pia amd Tig omoieg ypnotponotel dapopetikég peBddovg Yia va amodeitet mt-
Bountéc 116t Teg. Ymoypappilovpe Tig StapopEc Toug aALG Kol TOV TPOTO LE TOV OTOT0 £XOVV
AAMMAETIOPACEL KOl EXNPEACEL 1) LOL TNV GAAT.

Téhog, Onpovpyovue €va SO pag, omAomompévo poviédo tov blockchain, To Aeydpevo Mo-
VIO TV ZEpoyidmv, TO 0TTOi0 YPNCULOTOLOVLE Y10 VO OVOTOPAEOVLLE TIV OVAADCT) TOL LEAE-
THOOUE OTOJEIKVDOVTOG TIG WOLOTNTEG TOV. TNV TopEeia ToVILOvUE TIG S10POPEG TOL TPOKVLITTOLY
otV avdivon e&uttiog g anAomoinong aAAL Kot TIc HEBOSOVE TOV YPTGILOTOLOVVTAL Y10, VO
KOAOYOLV 0UTO TO KEVO.

AéEgaic K WO

kpumtoypoeia, blockchain, bitcoin, avdAivorn blockchain, anokevipopévo, amddelén epya-
olog






Abstract

In this diploma thesis we study the methods of analyzing the blockchain, a cryptographic con-
struction with the goal of creating a decentralized ledger of transactions. Blockchain, as a rela-
tively recent technology has had a great amount of development in the last year both in a theo-
retical and a technical level. For this reason we believe it is worthwhile to delve into the ways it
is analyzed.

We begin by stating the mathematical tool that enable us to construct the blockchain and
analyze its properties. Then we explore three attempts to analyze it, each using different methods
to prove our desired properties. We underline their differences as well as the way in which they
have interacted and influenced each other.

Finally, we create our own, simplified blockchain model, called the Stamp Model, which
we use to reproduce the analysis we have studied, proving its properties. In the course of this
we highlight the differences that occur in the analysis due to the simplification as well as the
methods used to bridge this gap.

Key words

blockchain, blockchain analysis, cryptography, consensus, bitcoin, decentralized, proof of work






Evyoprotieg

Avtn 1 6eMda TapEpEIVE CKOTIUMG KEVT PEYPL TN OTLYUN dTov To TéAOG NTav TAEov BéPato.
H dtexndévnon avtig g SmA@paTikng fTav, Kot gival 660 Ypae® avtd To Keipevo e&otpetind
YuxoeBopa, TPaypa IOV UTOPEL KOVEIG VO KATUAAPEL KOl 0T TN XPOVIKN TNG OLAPKELN, EVTOCE
OLMG EMTELOVG OTO TEAOG TG,

Apyikd BEL® guyopiotiom Tovg Kabnyntéc Aploteion Iayovptln kal Baciin Znka yuo tnv
guKapia Tov pov Edmaayv vo epyactd pali toug o avtn T dumhwpatiky. Ereita va vrepevyopt-
oo v Pourandokht Behrouz yia tnv cuveyn g vmootipi&n, Kvntonoinon Kot evolapépov
yopig Ta onoia de B NTOV TOTE SLVATO Va PTACH £d®. Ba O TELOG VAL EVYOPIGTHC® OAOVG
eKelvoug, TapOVTEG KO OOVTEG, TOL GTABNKAY KOVTA Hov ko’ OAn v meplodo ¢ Qoltnong
LoV GT1 GYOAN. Ba NTOV TPAYLATIKA SVGKOAO VO TOVG BAA® GE GEPA Kol Vo TEPLYPAY® TNV
ATEPIOPLOTN TPOCPOPE, TOVG KOl T1 GUUPBOAT TOVG G€ aVTO TOV Eipon GUEPQ.

Me Vv oY0AN TG® LoV KOLTAM TPOG TO LEAAOV Kol EILLOL ETOLLOG Y10, TO ETWOLEVO. PrLLOLTOL

Mdvtarog Mdaprog,
AbBnva, 221 OxtoBpiov 2024
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Extetapévn EAlnvucn Hepiinyn

0.1 Blockchain

0.1.1 Ewoayoym

H dimhopotikn ooty agopd t peAétn tov Blockchain, evog mediov g Kpvmtoypagiog
7ov dvOnoe pe 1 dnuocievon tov Bitcoin paper amd tov Satoshi Nakamoto [1]. Ao t61€ TO
blockchain £yet avantuybel 1000 ce BepnTiKd 660 KoL 6€ Pappocuévo enimedo. To TpmTo
aPOPE TOV TPOTO [LE TOV OTTOI0 QLT 1) TEYVOAOYia pumopel va Avcel To TpoPAnua e Bulavtivig
Yuvaiveong (Byzantine Consensus). Avtd pag KoAel va SnUovpyncovpe Eva TpoOmo €161 MOTE N
aveEAPTNTEG OVTOTNTES, 1| KAOE Liiat LLe TN 1K1 TNG Aoy, VO KATAPEPOLVY VL PTACOVV GE GUVOL-
veon (Vo amo@acicovy Oheg o€ pio amod TIg AmOWELS TOVG) OTAY aVALESH TOVS BploKovTol KAToleg
”Bolavtivég” ovtdtnTeg ol omoieg mpoomabohv vo amotpéyouv T cuvaiveon avtr. To dedtepo
(mpaxtiKd) medio, To omoio givarl kKot avTd TOL dNUIOVPYNONKE TPMOTO, APOPH GTIV KATAGKELN
€VOG KOTAVEUNUEVOL KOTAAOYOV GUVOAAOYMV O OTTOT0G UITOPEL VAL XPTCLUEVGEL GOV EVUALOUKTIKY
o€ éva Kevtpkd ypnuatikd cvotpo (tpdmrela). OvclacTikd amoTelel TNV TPAKTIKY EQOPUOYN
¢ Bulavtiviig Zuvaiveonc 6mov ot ovtoTnTeg £ivol 01 GUUUETEXOVTES GTO GVGTNLLO KL 1) GLVOL-
veon oty onoia tpoomtafodv vo KoTtaAn&ovv gival Ta ypMUoTIKE Tocd Tov dlabétel o kabévog
KOl 1] GEPA TOV GLVOAAAYDV TTOL £XOVV TPOYLLOTOTON OEL.

To blockchain, 6tmg pavaipdvel kot To dvopd tov ivan pia aivcida amd blocks. Kéabe block
meptExet Evay aploud and cvvarlayéc petad peAdv Tov cvotiratos. o va cuvoefovy peta&y
tovg T0. blocks mepiéyovv 10 KaBéva pio TEPIANYN TOV TPONYOVUEVODL 1) OTTOTO, TANPY] YOLPOKTY-
PLOTIKA OV TV KABIGTOVV VIOAOYIGTIKA dVGKOAN va. Bpebei. H dadikacio pe tnv omoia £vag
YPNOTNG KoTapEPVEL Vo dnpovpynoet £va block ovopdletar £6pvén (mining) Kot OVGLACTIKA
amortel T SoKin evOg TEPAGTION TOGOV TLYaiwV apBudv uéypt va Bpedel kdmolog o onoiog HBa
o0onynoel o€ €va amodektod block.

0.1.2 Epyoaieia

INo va Kotapépovpie va PeAETGOLLE TN AgrTovpyia Kot Ti¢ 1310TnTEG ToL blockchain ypnot-
LLOTIOLOVE OPKETA Ladnuatikd epyaieio:
MBavotkoi [lorvevopikov-Xpovov AryoprOpon:

Definition 0.1.1 (/li6avotixor [lolvwvouikov-Xpovov AlyopiBuor [2]). "Evag adyopiOuog A Aé-
yetTol TOAvOTIKOG ToAV®VLLLKOD ¥povov (PPT) av:

1. Yrdpyet molvdvopo pol(-) 1€t010 dote, yio kabe eicodo x € {0, 1}*, o vmoloyiopndg A(z)
TeheldVEL péoa o€ o oD pol(||z||) Pripara.
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2. 'Exer mpdoPaocn og pio mnyn ToxodTnTag 1 0Toio Tapdyst Tuyaia bits ta omoio eival ave-
Edpnra 1 pe mbavomto p kou 0 pe mbavoétnto 1 — p.

"Eva mBovotikdg adyopOpog pe p = % Aéyeton opodpopeoc. Epeic Ba ypnoonomcovpe
Kupimg Un-opotdpopeovs odyopibpovg yio kémow p € (0, 1). X1ox0og pog eivar va Egovpe éva
UETPO Y10 TV VTOAOYIGTIKT SUVOUN TOV TOIKT®V 0AAG KUPI®mG TOL AVTITAAOL.

Apelntéeg Xovaptioeis: [o va elpocte olyovpotl Tmg Kt eivor aniBovo va cupPel dedo-
HEVOL TTOALMVLKOV Y pOVOL ypelaldpaote Tig &gl GUVAPTNOELC:

Definition 0.1.2 (Aueintéec Zvvaptioeig). Mio cvvaptnon €(-) Aéyetor apeintéa av yuo kabe

TOAVMVLLO P(-), VIAPYEL KOO0 K( TETOLO DOTE:
1

(k) < —

p(k)

Y OO TOK > K.
Definition 0.1.3 (Strongly Negligible Functions). A function €(-) is said to be strongly negligible
if there exist constants ¢y > 0, ¢; such that:
(k) < et
for all k.

Yuvaptiosig Katakeppotiopov: Onwc avaeépape vopitepa, yio t onpovpyia evog block
amoteiton va Ppebel pia mepidnymn to mponyovpevov block, pe tpdémo mov eivar dVGKOAO va
avtiotpael. ['ia avtd ypnoiponoodvtal ot "Xuvaptioelg Kotakeppotiopon”, yia tig omoieg Oa
Baciotovpe oto [2].

Definition 0.1.4. (Xovdptnon Kataxepuotiopotv) Mio cuvaptnon KataKepUATIOCHOD givat val
Ledyos mBavOTIKGOV TOAV®VLLLKOV-XpOVoL olyopibuwy (Gen, H ) mov tkavorotovy ta akorovda:

o To Gen givon €vag mBavoTIKOG 0AyOpB0g 0 0Toi0g TaipVEL GOV €IGOO0 TNV TAPAUETPO
acoieiog 17 kot emotpépet KAWL s. YmoBétovpe tmwg to 1% mepthapfdverol 610 s.

o Ymdpyel ToAvovupIKo [ 11010 ®ote 0 H va givat évog (VIETEPUIVIOTIKOS) TOAVMVUULKOV-
xPOvov aAydpiBuog mov Taipvel oav gicodo khewdi s kat kamowa akorovbia x € {0, 1},
Ko emotpépet akohovbia H(x) € {0,119,

Av yu kd0e K kar s, 0 H® opileton povo yia e16680vg pikovg I'(k) > 1(k), t0te Aépe TG 10
(Gen, H) givor pio GLYKEKPYLEVOV-UIKOVG GUVAPTNGON KATOKEPUATIGUOD LE UNKOG TOPOUETPOV
r.

Chernoff Bound:

Theorem 0.1.5 (Multiplicative Chernoff Bound [3]). Eotw X1, ..., Xy, aveloptntes Boolean to-
xoies petafintés, téroieg dote yia dla ta i, Pr(X; = 1] = p. Emznléov, éotw X 10 dfpoiouo
avtv TV petafintov, ko p = E[X] = np n avaueviuevn tyaj tov abpoiouazog.

Tote, yra kdbe 6 € (0,1]:

PriX < (1-8)p] < e 2w
PriX > (1+8)u] < e 0%

16



Union Bound:

Theorem 0.1.6 (Union Bound). o éva nemepaouévo advolo yeyovotwv A1, Asg, ..., An:

n

U

=1

n

<> Pr{Aj]

Pr

0.2 Avdivon

Xrpépovpe to PAENA Lag Emelta og KAmola amd T kKuplo Tapadeiypata avaivong tov blockchain.

I'a va 10 KGvovpe avTd TPENEL VA S1IUTVTOGOVE TPMTO TOVG GTOYOVG TNG OTOLNG TETOLOG AVAAL-
on¢ ot omoiot givat dVo. ApyiKa TPEMEL VoL eEACPUAGOVLLE OTL 01 GUVOALOYEG TTOL OTHOGLIEVOVTOL
Ao EVTILOVE TAIKTEG KOTAATYOUV VO OTOTEAODY UEPOG TMV OAVGIODY TOV EVIILMV TOIKTMV, VO,
glvat alyovpo onradn nwg to cvotnuo eivar {ovtovd Kot véeg cuvaAlayEég E1GAyovVToL GE QVTO.
"Enerta 0éhovpe va BePfarmbolpe twg kdbe cuvailoyn mov yivetal 0o amotehel yio mévto Lépog
TOV KOTAAOYOL UaG, EAV DINPYE N TOAvOTNTA KATTOoo cLUVOALYT va "egapaviotel” Eapvikd omd
TO KATAAOYO TPOPAVAOS TO YPNHATIKO 0vTd cvoTnUo O umopet va Asttovpynoet. H dmapén tov
Avtitddlov dnpovpyel SUGKOAIEG GTN GUUAANPMOT AVT®V TV andrthoswv. E&attiag avthg g
Svvaung Tov AvTimdAov avaykalOLOoTE Vo EIGAYOLLLE Lo KOvoUplo TAPAUETPO OCPUAELNS, TO
T', n onoia Bo apopd To Paboc oto omolo mpénetl va Ppioketar £va block oty alvoida npoket-
UEVOL VO UTTOPEL VOL TANPEL TIC OTTOLTAOELS LLOG. ALOTUIMVOLLLE £TGL TOVG GTOYOVS LOG G EENG:

1. Zovtavia: Omoladmote cUVOAAAYT] ONUOGIELTEL 0O EVTIIO TAIKTY TOL GLGTHHATOS Oo
@tdoet o€ faboc tovddytotov 1" otV aAvcida KATolon £YKLPOoL TOUKT.

2. Empow): Onowadnmote cuvarloyel £xel gtacel o fdbog tovidyiotov T’ oto blockchain

0o amoterel yio TavVTO HEPOG TOV OAVGIO®Y KAOE EVIILOV TOiKTY.

0.2.1 H npot avédivon

H pdtn avdivon v omoia e&epguvoiyie eivar to paper [4] towv Garay, Kiagias kot Leonardoc.
INo apyn ot suyypaeeic opilovv T KeVIPIKN Tapadoyn TOL paper, n onoia epeoviletal Kot
0€ KGO0 LOPYPY| GE OLEG TIC OVOAVGELS.

Definition 0.2.1. (Ilapadoyn Evrung Ieioynpiog) t amd toug n maikteg elvan dStepBappévor pe:
t<(1-=9)(n—1),
omov 3f +3e <0 < 1.
‘Emtetrta yivetat pio kotnyoplomoion tov Suvatmv yopmv:
e X, =1 av orto yopo 7 eopOybnke éva block and Evtyo maik.
e Y, =1 av oto yOpo ¢ eopuybnke axpifmg éva block amd Eviipo maik.

e Z; = m av 610 YOpo i eEopvydnkav m blocks and dievbappévoue maiktes.
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H avéivon ooty Boaciletal onv Evvola g “Tomikng Extéleons” (Typical Execution)

Definition 0.2.2. (Tomxi Extéleon) Mio extéheon givan (A, €)-tomkn ywa e € (0, 1) kot axépato
A >2/f, av, yio kGBe cOvoro S amd TovAAyIoTOV A dradoytkobg YOpoug, 1oydet:

(@) (1—-¢E[X(9)] < X(5) < (14 ¢E[X(S)] k(1 —e)E[Y(S)] <Y (S).
(b) Z(S) <E[Z(S)] + €E[X(5)].
(c) Kapio eicaymyn, avitypagn 1 TpoPreyn.

Omov X (5),Y(S), Z(S) eivar ta oOvora Tov aviiotoiymv tuxaiov petafintdv oty nepiodo
S.

H Tvmikn Extéleon ovpPaivel pe suvipurtikn mibovotnta:
1 e*Q(GQAf‘l’K*lOg(L))
Mo vo amodeiouv T1g 1010TNTEC TG Zwvtdviag Kot g Empoviig opilovv Tig axdAovbec,
eEUPETIKA YPNOUES EVOLAUETES IO1OTNTEC:

Avantoén Alveidag: Mo kaOe Evtipo maiktn P pe alocida C, 1oy0el Tog HeTd amd Kabe
§ 010100 LKOVG YOpOoLG LIoBeTEl pia ahvoida Tov £yl TOVANIOTOV T - s blocks meplosoTEPQ
and C [e TopopLETPOVS:

T=1—-¢€f

s> A

Mowdtta Arveidag: [Na kabe Evripo maiktn P e aivoida C, woydel mog Yo kabe | ov-
veyoueva blocks g C 0 Adyog twv évtinmv blocks gival TOVAGYIGTOV 1 PE TAPAUETPOVG:

> 2\f

) t € 0 t 1)
“—1‘(”z)'n_fl_e“‘(”z)'n_t‘z'

Kowé Ip60epa: ['a kébe Cevyog évipwv moktadv P and P pe odvcideg Cq kot Ca 6T0VG
yOpovug r1 > 1o, woxver g C1 [T :] < Ca pe mapdpetpo:

T >2\f

18



0.2.2 Ewoayoyn otig kadvoetepriocseig

dtavoupe Enetta oTNV KOPLO TNYN OVTHG TG STAMUATIKNG TO paper [3] tov Pass, Seeman
kot Shelat.

H avéivon mapapetponoleitor amd 600 oTabepEc TOV AVTITPOGHOTEVOVY TIG OVVALELS TOV
EVTILOV KO OVTITOA®V TOIKTOV:

a — H mbavotmta mmg TovAdyiotov évag Eviinog maiktng e€opvoet évo block og éva yopo.
B — O avouevouevog apfudg avimdiwv block mov e&opvoovtar kabe yHpo.

Extog and avtd yperdletor va vdpyet Eva HETPo Yo TV €E0PVKTIKY SUVOUN TOV EVTILWOV
ToKTOV Aappdvovtag vaoyn v Kabvotépnon:
B «
14 Aa

~

Ot ovyypaeeic opifovv dvo [epipdriovta Tavm oto omoia Oa modei&ovv Tic emBuunTég 1016-
NTEG:

e To mpito: I'g T0 omoio dev £xel TEPLOPIGUOVE EKTOG GO TNV EYKLPOTNTO.

e To devtepo: F’; OOV 0 GLGYETIGLOG OVVAUEDY TOL AVTITAAOL KoL TOV EVIIUOV TOIKTMV
glvau:

a(l=2(A+1)a) > A3
To omoio givar To avrtictoryo g [apadoyng Evriung ITieioyneiag oto [4].

[No k60 10160 TOL BEXLOLY AV aTOdEIEOVY, O GLYYPAEEIS OMoVPYOHV Eva KOTyOpniLa
TO 07010 1oYVEL LOVO €4V 1GYVEL KL 1] 1O1OTNTA Y10 TNV 0AVGIOa KoL ETELTO TPOSTOOOVY VO ATTo-
del&ovv TmG aVTA TO KOTIYOPNUOATE IGYDOVV LUE GUVTPITTIKY TOOVOTN T

Avartoén Alveidag Apyucd opileton évag TpoOTog va. LeTpnBel  avEnom Tov HRKOLG TG
aALGIdOG AVAUESH GE YOPOUG.

min-chain-increase, ;(view) = min {|C}7+t(view)| —|Cr (View)|}
lh]

Me on16 Snprovpyodpe to katnydpnue growth! (view, A, T'),
growth!(view, A, T') = 1 iff:

o (Xvverég Mnkog) v kGbe edyog yopwv r > |view| — A, < |view|,r’ < r + A, yua
Kké0e (eVYOC TAKTAV 7, j TETOLO MGTE GTO View 0 ¢ ivol EVIYOG 6TO YOPOo 7 Kot 0 § gival
évTIpog 670 YOpo 1’, Exovpe TOG:

IC5 (view)| > |C] (view)]

e (Avamtoén Aleidag) yio kdbe yopo t < |view| — 7, Eyovpe:

min-chain-increase, ¢ (view) > T'
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Me avtd to katnyopnua opiletat n 110TTA AvATTuEnG AAVGISNG Yo £VaL YEVIKEDUEVO TPOTO-
KkoAro blockchain.

Definition 0.2.3. "Eva blockchain tpmtokorro (11, C) £xet puBud Avamtoéng Alvoidac g(-, -, -, +)
og [-mepipdrrovta av yua kabe I'-amodexto (n(-), p, A(+), A, Z), vadpyet kmoto otabepd ¢ kot
QUEANTEES GUVAPTNOELS €1, €2 TETOLEG DoTe Yo kGOe k € N, T' > clog(k), kout > m,
TO 0KOAOLOO 1GYVEL:

Pr |view + EXEC(HV’C)(A, Z, k) : growth (view, A(k),T) = 1] >1—e€(k) —e(T)

Emundéov, av e; = 0 Aépe nog to (I1, C) éxet errorless Avamtoén Alvcidag g og I nepidAiovta.

Theorem 0.2.4. Ia ke 6 > 0, kabe p(-), (IR, 1. ) éxer poud Avémroine Alvoidog:

g5 (kym, p, A) = (1= 8)y
oe L'y mepifotiovo.
[owdtnTe Alvoidag

Definition 0.2.5. quality” (view, ;1) = 1 avv y10. k60g yOpo r ko kébe TaikTn i 0 omoiog eivon
évtiog oto view', yio k4O axorovBia and 7' dtadoykd blocks oto C(view)!, To KAMAGHO TmV
blocks m mov givar évtipa og mpog view”, eivol TOLAGYIGTOV L.

Definition 0.2.6. "Evo blockchain npotoxorro (11, C) éxet Towwtta Alvesidog (-, -, -, -) og I'-
nepipdihovta, av ywo Oha to I'-amodextd (n(-), p, A, A, Z), vadpyet kdnow otabepd ¢ Kot
QUEANTEES GUVAPTACELG €1, €2 TETOEG BoTe Yo kGbe k € N, T > clog(k) to axdrovbo oyvet:

Pr |view + EXEC(HV’C)(A, Z, k) : quality” (view, u(k, n(k), p, A(k))) = 1} >1—e€(k) —e(T)

Emndéov, av e; = 0 Aépe mog o (11, C) éxet errorless [owdtnta Alveidag u ot I' mepidAiovra.

Theorem 0.2.7. o xdbe § > 0, kdbe p(-), (H?Vak, H?Vak) éxer Howdtnro. AAvoidag:

(s, 8) =1 (1+6)2

oe L'y mepifarlovra.

Yuvéyera H Zovéyeto £xet évav evdlogpépov tpomo va avtetonilel v Kabvotépnon, xpn-
GHOTOLOVTAG TNG Agyoueveg "Eukaipieg Z0yKAIoNG”, OTIYUEG KUTA TIG OTTOIEC O EVTILOL TOUKTEG
£YOLV TNV guKalpia Vo GLYYPOVIcOVV TG 0AVGidEC TOVC. Mia TéToln gvKaPio TPOKVTTEL GE KAOE
yOpo mov €xet e€opuydei évo povadikd Eviuo block kot éxet A yOpovg o1y TP Kot PETA.

Definition 0.2.8. 'Eotw consistent (view) = 1 avv yia 6Aovg Tovg yupovg 11 < 72 Kot GAOVG
TOVG TOIKTEG 7, j TETOOVG MOTE O ¢ £ivol EVTIHOg 6T0 view' ! Kot 0 § givor £VTiog 610 view' 2,
éyovpe g CfH[-T] < CF?
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Definition 0.2.9. "Eva blockchain rpaotokorro (11, C) wavomotei Zuvéyeia og I' mepifdiiovta,
av yuo 6ha to [-anodextd (n(-), p, A, Z), vrapyel kGmowa 6Tafepd ¢ Kot opeANTEEG GUVAPTHCELG
€1, €2 T€t01EC MOTE Yo K4Be k € N, T' > clog(k), To akdlovbw woydeL:

Pr |view « EXEC(":0) (A, Z, k) : consistent! (view) = 1} >1—e(k) —e(T)

Emuhedv, av €1 = 0, Mpe nog (11, C) éyet errorless Tuvéyeia oe I'-nepipddlovra.

Theorem 0.2.10. [ia xdfe X > 1, kébe p(-), (Hﬁ,ak, H?Vak) IKOVOTEOIEL ZVVEYELQ TE I’J/D\ mepIfal-
Aovra.

Zovtavia ko Empoviy TELog ot cuyypagég GTpEPOVY TNV TPOGOYN TOLG GTOVS APYIKOVG
otdyove, T Zovtdvia kot v Empovn:
Zovrovw 'Eoto live(view,t) = 1 avv yo kdBe t diadoykovg yopoug 7, ..., + ¢ 6To view
VILAPYEL KATOLG YOpog 1 € [r, 7 + t] kou moikTng 7 TT010g hoTe: oTOView:

1. o1 givon évTinog 6o yopo 1,

2. 01 é\aPe Eva pqvopo m o¢ i6odo oto yopo 1’ kat

3. Y10 k@Og maitkn j 0 omoiog eivan EvTrog 6Tov YOpo r + ¢ 670 View, m € E;H (view).
Definition 0.2.11 (Zovidvia). Aéue mog évag dnpootog katdroyog (II, L) eivon Lovravog pe

xpdvo avapovig w og I' mepipdrrovta av yio Oha ta [-anodextd (n(-), p, A(+), A, Z), vrapyet
apeANTEN GUVAPTNON € 6TV TAPAUETPO acpareiog k € N, Té€T0o10 oTE:

Pr |view < EXECIVE) (A, Z k) : live (vieww (k, (), p, A(K))) = 1} >1—e(k)

Empovn 'Ecto persista(view) = 1 avv yio kaBe yopo r < |view| — A, k@Oe maikg i mov
givar évtnog oto view” kat ke Béomn pos < ]£>V(view) |, if if L] (view) mepiéyetl To pfivopo m
670 pos, 101 Y1 kGBe yOpo 1’ této10 dhote r + A < 77/ kou kGOg EvTipo maikTn j Exovpe MG TO
m glvol eniong 6To pos oTo E;l (view).

Definition 0.2.12 (Emipovij). Aépe nwg évag dnpuodotog katdroyog (11, £) eivon enipovog og I’
nepBariovta av yio Oha ta I'-amodextd (n(-), p, A(+), A, Z), vrdpyet pio apelntéo cuvaptnon
€ ot TopdueTpo aceareiog k € (N) tétolo dore:

Pr |view < EXECTA) (A, Z k) persist () (view) = 1} >1—e(k)

0.2.3 Emotpopn otny TpAOTN 0.VAAVGT

"Exovtag de1 g 1o [3] stonyaye v évvola g Tepropiopévng Kabuvotépnong, og dovpe
TG 10 [5] v ovumepiElafe oto 61kd TOL TPOTO AVAAVGONG.
Apyikd Tpocapuolovy TNV KEVIPIKT TOVG TOPUOOYN.
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Definition 0.2.13. (Ilapodoyn Evuunc I[etoynpiog- Ilepiopiouévn KaBvorépnon) t amd tToug n
moikteg etvan dte@Bappévor pe:

t<(1-=90)(n—1),
. 2A [
0n01)€+2Af+T S 5-

"Emtetta, véeg Toyaieg LETAPANTEG TTPEMEL VO OPLOTOVV Y10, VO TEPLYPAWYOLV EMTAEOV €10M YO-
pOV:

e X/ =1 av oto yopo i eophybnke éva £vtipo block kou dev €xet e&opuybei GAro évio
block péypt kot A yHpovg mpv 10 i. Avtd T0 ovopdlovpe A-AmOUOVOUEVO HOVASIKG ETTL-
TUYTLLEVO YVPO.

e Y/ =1 av o1o yOpo i e&opOybnke kapiPdg £va vtipo block kat dev £xet eopoybet GAro
évtipo block péosa og A yopove. Avtd t0 ovoud{ovpat amropovouévo TETVYNUEVO YOPO.

Me v eloaymyn g Kabvotépnong, voralopoote TAL0V Kot Yio To ov Ta Eviipa blocks mov
g€opvooovtal sivar pova tovg o pio mepiodo yopav ion pe v Kabvotépnon.

Definition 0.2.14. (Tomkn Extéleon - lepiopiouévny Kabvotépnon)
(@ (1 —-eE[X'(S)] < X'(S) < (1+e)E[X(S)] xou (1 —€e)E[Y'(S)] < Y'(S).
(b) Z(S) < E[Z(S)] + €E[X'(S)].
(c) Kapia etoaymyn, avirypagn 1 TpdPreyn.
AvartoEn Alveidag 1oydel pe TapapéTpougs:

T=(1—ef1- ) "

s>\

MowTnTe AMGISNS IGYVEL LLE TOPAUETPOVC:

> 2X\f +2Af
1 1 ot e <1+A>
P27 000 -2 n_t 1—¢ )

Kowé Ipé0epa 1oyvet Le TapaUeTpo:

T > 2Af +2A

H 1816tnteg Aomdv mopopéVouy OVGLAGTIKG Ol 101EC, TPOGOPUOCHEVES Y10 VO AapPavouy
vrdyn v Kabvotépnon.
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0.2.4 Mo emuTAhéov OmTTIKN

INo va kKheicovpe v e€gpedvnon SLPOPETIKMY TPOGEYYIGE®V TG avdAvong Tov blockchain,
PAémovpe cuvomTikd To paper [6] Tov Ren.

Ye avtifeon pe ta paper wov gidayle, 0 Ren dev emiyeipei v anddeién tov tpiev VOldpecmv
WtV aAld Tpoctabel katevbeiov va amodeilel Ta:

1. Zovtavia: Kabe cuvariiayn KoToalnyel otnv aAucido OA®V TOV EVILLOV TOIKTOV.

2. Acaiero: 'Evtipol maikteg 6ev BAlovv S109popeTIkEG GUVOAAAYEC GTO 1010 VYOG TNG OAv-
oidag. [Tpopavmg avtd givar pio dtopopetikn Ekepaocn g WotnTag g Empovig.

Onwg kot 10 [6] ovuforilovpe TIc SUVAUELS TOV EVTIL®V KOl AVTUTOA®V TOIKTOV ©¢ o Kot 3
avtictouyo.

Definition 0.2.15. 'Eoto ¢ = e *?.’Eoto § pio Ostik otadepd. H cuvaiveon Nakamoto pe
T-emPePainon eykvdtor Acedaiein kot Zoviavia eKTog e mhavotnrog e~ T) gy

ga>(1+6)8
H 3w tovg katnyopromoinomn tav yopwv eivor og e&€ng:

Mn-ovpaydg: 'Eva éviipo block yopig dAlo Evtyo block eopuyuévo otovg Tponyodyle-
voug A yvpovg.

Movaykog: ‘Eva évtipo block ympic dAro Evtyo block e£opuypévo oTovg TPOTYOOLEVOLS
1 exduevovg A ydpoug.

Me avtd ta gpyoleio o Ren amodeikviet Tig 1010TNTEC:

Theorem 0.2.16 (Zwvtavia). Eotw ga > (149) 5. Zrov ypévo t, extog ue mbovitnra e~ Q0%gat)

kabe évriuog maixtyg Paler Tovidyiorov g gat — T — 1 évaua blocks otnv alvaida tov.

Theorem 0.2.17 (Aogpdleia). Eotw go > (1 + 0)5. Oswpoiue kabe ypovo t kou kabe block B
70 omolo Bewpeitol TomobeTnuévo amd Kamoilo éviiuo mwaikty oto ypovo t. Extog ue mbavotnro
e~ g%at) y1a. k60 ypovo t' > t, kavévag évuiuog maiktng de fdler block B' # B oto 610 dyog
ueto B.

0.3 To Movtého TV Zepayidmv

"Exovtog 0éoet T1g fdoeig otig omoieg otnpiletan to blockchain kot éyovtag det kdmoteg and
TIG KOPLEG OVOAVGELS TOV TPOYWPALE 0TI dNUIoVPYio EVOC SIKOV HOG, ATAOTOMUEVOD, LOVTELOV
TPOKEEVOD VO LTOPEGODVLLE VAL TIC EPAPUOGOVLE oTNVY TTPAET. O 6TdY0¢ Lag gival STAOG, omd T
pio vo KOTooKELAGOLLE £val LOVTEAO TO omtoio Oa pmopel va Aettovpynoet g Pdon yio v ava-
Avon tov blockchain Tpoc@épovtag £vo amlomoUEVO GOGTN LN TEVE® GTO OTOI0 VO, LTOPOHV VO
SOKIUAGTOVV VEES TEXVIKEG KOt 10EEG YWPIG TO PApog OANG TS TPOHTAPYOVGUS LOONUATIKNAG AVE-
Avong. amd v GAAN va Tapdovpe Eva epyaleio ddaoKaAiog Kot kaTovonong Tov blockchain
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UEGQ ATTO TNV TPOKTIKY EPOPUOYN TNE AVAALGONG G £VOL ATAOTONUEVO LOVTEAOD KOl TO GTUOLOKO
YTIOO TAVM GE QLTI LEYPL TV OVOKATOCKEDT] TG TAPOVS AVAAVOTG.

Odnyoduaote €161 610 Moviédo Tov Zepayidmv. ['o vo KatapEPouiLe va, dNULOVPYNGOVLLE
pio aenpnuévn popen tov blockchain eivar amapaitnto va amiorocovpe T Sadikacio TG
€E0puéng. H Mom evoc bIToAoyIoTIKA OTTonTnTIKOV TPOBANLOTOC avTiKaBboTaTAL Ao T "Zepay-
yida” (Stamp). ‘Eva block givar £yxvpo kon pmopei va torobetndei oty alvcida poévo edv dia-
0étet pia Zepayyida yuo Tov yOpo otov onoio ekdoOnke. H Anpovpyia Xepayyidwv yivetar omd
10 "Maoavteio” (Oracle), to omoio givan empopTicuévo pe to va divel pio oepayyida kébe yopo
G€ KATO0 £VTILO 1) OVTITOAO TOAKTN.

0.3.1 MHoporrayég

H amhém o T00 pHovtéAov pog emtpénel va Oemprcovpie S1d.popes maporlayég TOVS OVOAOYOL
Le v katevbuvon Tpog v omoia BEAovLE Vo epfabivovye:

o Ilolhamdiéc Zopayideg: AMNalovtag ) Aertovpyia Tov Mavteiov puropodue va enttpé-
WYOULLLE TNV dNUIOVPYiN TEPLOTOTEP®Y 0md piag Xpayidag e Kabe yopo.

o IMapakpartnon Block: Mropovue vo dmcovpe v duvoatdtnta otov Aviimolo va v
amoxoAeintel katevbeiav To blocks ta omoia £xel cEpayicel OAAA va TO KPATAEL HEXPIC
0tov Bewpel g givar fEXTIOTO.

o KaBvotépnon: Ouoikd Umopovpe va, EIGAYOVLE Kol TV KEVIPIKN €vvola tov [3], vt
¢ KabBvotépnong n omoia dpactikd av&dvetl v 1oyd Tov AvTitdAov Kot ennpedlel Tnv
avédAvon Tov HOVTEAOVL.

Me Bdomn avtd 10 0mAd LOVTELOD, TPOYWMPALE GTIV AVAdOUNGCT TNG AVAADOTG LE TPOTLTO oG
70 [3].
0.3.2 Avantoén Alvoidog

Theorem 0.3.1. [ia if: 6 > 0, (11%,,,,.C}

St amp> gxet (errorless) ppOuo Avarrvéne Alvoidag
gf;(’ﬁ n, p, A) = (1 - (5)0(
Apyilovpe kaidmTovTag Ta 600 péEPN ToL growth KaTNYOPHLUATOG TOL TOV OpicTnKE 61O [3].

Lemma 0.3.2. (2vveréc Mnxog) Av oto view, o i gival éviiuog oto yopo T kai 0 j eivor EVTyog
oto yopo r + t, tote \C;”Lt(view)\ > |CI (view)|, yia kGOe t > 1.

Aot 1 1810TNTa 08V eMMpedleTal omd TV aplud TV cEPayidmV ce KaOe yOpo, ennpedleTat
opwc amo v Kabvotépnon kaboc Ba mpémet va mepyuévov e teptocdtepovg (D) ydpoug yo va
elpoote PEParol g o1 aAvcida Tov evog TaikTn £XEL YIVEL YVOGTH Kol GTOV GAAO.

Ovopdlovpe I" v pokpvTEPN 0AVGIdN VOGS VIOV TOUKTN 6TO YOPO 7.

Lemma 0.3.3. [ia xaf¢ r,t > 0 kot yio kafe § > 0,

Pr [I"(EXEC) < I"(EXEC) + (1 + 6)at] < e~ %0%a)
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‘Ed® amoxkAivovpe onuavtikd amd v apyikn amodeén tov [3]. H Kabvotépnon avaykd-
Cer Toug ouyypageig va opicovv éva Y Bprouco [elpapa™, pio ekTéAeon TOL TPOTOKOALOL GTNV
omoia To LOVo o Kavel 0 Avtimadog amd Eva onpeio kot petd ival vo kabvotepel ta unvopLoTo
TOV EVTILOV TOIKTOV Y10 TO LEYIGTOV dLVaTO Xpovo (D). Méca amd avtn TNV amddelén 1 mopape-
TPOGY = ﬁ OMUovpyeitaL Yio va TEPLYPAVEL TNV 1GYD TOV EVILLOV TOIKTOV TPOGUPLOCUEVT|
pe Baon v Kabvotépnon. Ot cuyypageig amodetkviouy Tmg 0l dAVGIOES TOV EVIIUMV TOKTOV
OTNV TPAYLOTIKY EKTEAECT] €IVOL TOVAGYIOTOV TOGO UEYAAEG OGO OVTEG TOV EVIHMV TOIKTOV
oV LB extédeot). ‘Exovtag TeToyel avtn T 6OVIEST UTOPOVV VO LETAPEPOVY T OPLOL
oL AmESEEQV oTNV VPPN ekTéAeon otV TTPoyUaTikh. Ot omodei&elg pag €0 GuyKiivouy
Eava.

Lemma 0.3.4. [ia kéfe r,t > 0 kot kale 0 > 0,

Pr [min-chain-increase, ;(EXEC) < (1 — d)at] < e~ SUs%at)

0.3.3 Ilowtnto Alvcidag

Apyikd amodetkvoovpe d0o dve opta yia Tov aptpd and block mov sepayiloviol oe Kamolo
nepiodo yopwv.

Lemma 0.3.5. (4vew Opio Blocks.) Eotw Q. (view) va givou o péyiorog opiBués omé blocks oppo-
youeve, o kKamoio wapalopo t yopwv aro view. Io kabe t > 0 kot kalbe 9,

Pr[QuEXEC) > (1 + 6)(a + B)t] < e~ (5]

Lemma 0.3.6. (4vw Opio Avarndlwv Blocks.) Eotw A(view) va etvar o uéyiotog apifudg omd
avirala blocks oppayiouéva oe kamoro mopabopo t yopwv ato view. o kabe t > 0 ka1 6 > 0,

Pr[A(EXEC) > (1+ 6)Bt] < e~ A
Zuvovalovtog ta 600 Ave Oplo OTodEIKVOOLLLE TNV EMBLUNTNH 10T TA.

Theorem 0.3.7. Ia dha a6 > 0, kébe p(-), (115, Coramp) €xét (errorless) Iostnro Alvoi-
dacp=1—(1+0)L.

T6c0 1 1010TNTO AVTO OGO Kot 1) ATOJEEN TNG O JAPEPOLY SNUOVTIKA amd avTh Tov [3]. O
AOYOG Yo aVTO givar TG OAES 01 dlapopEg ot omoieg opeirovtat oty Kabvoetépnon Ppickoviat
TAEOV To® Omd TO (.

0.3.4 Xvvégewo

H amddeién g Xvvéyetog emiong otapEPeL apkeTd amd avth ToL [3]

Eite o Avtimalog éxet ) dvvatdotta mapoakpdtnong blocks gite o6y, sivan ypriowo vo E&-
poupe Tmg avtinaia blocks ta omoia dg TomobeToHVTUL KOVTA GTNV KOPLEN TNG KALGISOC XAvVOVY
™V 16%0 TOVG Kol LaALov dg Ba Ppebovv oTIC HAVGIdES EVIIU®V TOIKTOV.
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Lemma 0.3.8. Av o > (1 + §)f yia kdmoio 0 < § < 1 161¢, p1o ke o1abepi 0 < w < 1
vmapyeL oueAntéa aovdptnon €(-) térolo dote:

Pr [view <— EXEC : withholding-time(view) > wt] < €(5t)

Omov withholding-time(view) eivou o ueyaditepog aprOuog yopwv t téroiog wate, oo view o Avti-
malog appoyiler évo block b ato yopo 1 Kot vIdpyEl KATO10G EVTIOS TOIKTHG © TETOLOG WOTE TO b
VO, EUPOVITTHKE VIO TEPWOTH POPC, GTHYV AADTLO0. TOD T 010 YOpo T + t.

Amoxion: Apylkd GNUEWOVOLUE TL ONUAIVEL Y10t VO TAIKTEG VO OTOKAIVOLV GE €va GUYKE-
Kpévo yopo. Avo advcideg C kot Co amokAivouv 6to yOpo r 610 view av 1o tehevtaio block
IOV €YOVV KOO GOPUYIGTNKE TPV TO YVOPO T.

Evkapieg Zoykhong: Next we need to see how these divergences are resolved.

Definition 0.3.9. (Evxaipio Zoyriiong) Mio Evkaipio Zoykiong coppaivel kdBe popd mov ot
EVTILOL TTOIKTEG £XOVV EVKALPLO VO, ATOKTHGOVY OAOL TNV 1010, aALGIda.

>t O pog mepintmon pio tétoln gukatpio cvuPaivel ke popd mov cepayileton Evo
évtipo block. v mepintwon tng meplopiopévng KaBuoTéEPTONG TAIPVEL TN LOPOT|:

1. A yopor cromig.
2. "Eva povo véo block eEopvooeTal.
3. A ybpor cromic.

Lemma 0.3.10. Eotw wwg vrdpyer 0 < X < 1 téroio dote a > (1 + §) . Extog pe mbavotyra
e 2B 510 view < EXEC, dev vrapyovv yopor v > 1’ ko waiktes i, j tétoior ot o i va elva
évripog ato yopo 1 ka1 o j vo eivor Evruog ato yopo r' ko C (view) kou C;l(view) OTOKAIVOOY
oto yopo s =1 — t.

Cp

Theorem 0.3.11. Ia ke X > 0, kébe p(-), (114 D amp)

stamp ikavorolel (errorless) ovvéyela.
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Chapter 1

Introduction

1.1 Outline

Lets begin by providing a short plan for the chapters that will follow:

In this chapter we will focus on the very basic concepts of the blockchain. It will contain a
summary of its history, structure and of course the goals and ideas that led to its creation in the
first place.

In the second chapter we will go through some of the basic mathematical tools that are nec-
essary to create and analyse the blockchain. We will also explain notation that will be useful to
for the rest of the thesis.

Next we will dedicate one chapter to defining blockchain protocols in a more formal way.
Moreover we will present an example proof that will play a significant part in proving the prop-
erties of our own model later on.

The third chapter consists of summaries of some main attempts at analysing the blockchain.
We begin with the classic work of Garay, Kiagias and Leonardos: ”The Bitcoin Backbone Proto-
col: Analysis and Applications” [4]. This will be the introduction to some of the main properties
that the rest of the summarized papers and this thesis is based on. We will also explain some of
the changes this paper has undergone through the years and how they reflect the history of the
blockchain. Next we will discuss the main inspiration of this thesis, the paper by Pass, Seeman
and Shelat: ”Analysis of the Blockchain Protocol in Asynchronous Networks™ [3]. We will go
through its main concepts and the way it proves what it sets out to paying closer attention to the
framework it creates as it is the one we are going to use in our proof in the last chapter. Lastly
we briefly mention the work of Ling Ren: ”Analysis of Nakamoto Consensus” [6], which will
also give us some insight into blockchain analysis and will complement the work of [3]. For
each of these papers we will compare and explain the different ways in which they approach the
analysis.

Next we will proceed to define a simplified blockchain protocol and then go through proving
its properties using the methods of [3]. We will discuss how our choices and omissions regarding
this protocol influence the course of the proof and the steps that separate it from the original work
of Pass, Seeman and Shelat.

As a final chapter we will briefly discuss what this small journey through blockchain analysis
has helped us learn and will mention some avenues for further exploration.
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1.2 The Blockchain

1.2.1 History

There are two parts to the origin of the blockchain as a concept, a theoretical and a practical one.
Let us start with the theoretical one, reaching consensus in a distributed setting with no trusted
parties, also known as Byzantine Agreement ([7]-[9]). We assume that there is a set of players
that have the capability of exchanging messages with each other. Each player ¢ holds some initial
value v; and our goal is to ensure that the players can all end up with the same value. The problem
arises when we consider that there might be a subset of players that have the adversarial goal of
making sure the rest of the players don’t reach a consensus on a single value.

The practical origin of the blockchain is the attempt to create a decentralized ledger for fi-
nancial transaction. This is what led to the creation of the first blockchain which became known
as Bitcoin [1] and created a new field in cryptography and the realm of cryptocurrencies, both
of which have gone through rapid evolution in the years previous to the writing of this thesis.
Financial systems up to that point required some trusted third party (a bank) in order to ensure
their proper operation.

This practical challenge is what sparked the publishing of [1] by Satoshi Nakamoto and the
creation of Bitcoin. In it the author describes the basic premise of the blockchain, its structure
and the reason it achieves its goal. From there, using the idea of decentralised financial systems
as the main motive and appeal, the field grew rapidly and has been producing many examples
both of theoretical [3], [4] and applied work [10]-[13] the latter of which is characterised by the
great number of blockchain protocols that have been created ([1], [14]-[16]).

1.2.2 Structure

Blocks: The basic unit of the blockchain is, of course, the block. A block at its core is a collection
of records, such are transactions. These are collected by the player that created the block simply
through listening to the transactions that are broadcast to the network.

Linking the Chain: In order for a set of blocks to become a chain there needs to be something
linking them. In the case of the blockchain, each block contains a summary (a hash as we will see
later) of the previous block, this summary can be viewed as a pointer to the block that precedes it.
In order for this linking to be unique we don’t want different blocks to be able to have the same
hashes. That way we can’t have blocks that can be linked to more than one ancestor. Moreover
we want to avoid being able to control what the hash of a block will be so that we can avoid
blocks being inserted into the chain between two already existing blocks.
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B By By
B, / B

(a) Blocks By and B; have the same hash so it is (b) If a player is able to control the hash of B they
possible for a block B to point to both of them. could insert it between By and B;.

Figure 1.1: Unwanted hash behaviors.

Achieving this unique linking is done by making the process of finding the correct link for
the previous block computationally hard. This is the process of “mining” which has the users
wanting to publish a new block search through a huge amount of random numbers (and therefore
use a huge amount of computational power) in order to find one that is valid for the blocks at
hand. Mining can in this way also limit the rate at which blocks are produced bringing the growth
of the chain to a manageable amount. We will go through the mechanism of hashing in the next
chapter in order to understand how it functions in more detail.

Forks: Nothing stops multiple people from successfully mining blocks on the same round, these
blocks moreover may have the same ancestor.

B

By fe—— B /
'\ -

Figure 1.2: Two players aware of the chain By, B; both succeed in extending B;.

This leads to the creation of so called ’forks” in the chain, different paths one might go down
from the genesis block to the most recent block of the chain. The chain has become more of a
tree so how does a user decide which path in this tree is the one to be followed? These paths
might well contain different or even contradictory transactions so this decision is crucial to the
function of the blockchain. We could imagine a scenario where network errors or malicious
actors could convince or trick players into each believing a different path of the chain to be the
longest, breaking the core promise of the distributed ledger. This type of an attack can in fact be
dangerously effective and requires dealing with [17], [18].
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By

(a) The chain as it exists.

(b) The longest chain player 1 holds.

(¢) The longest chain player 2 holds.

Figure 1.3: Players holding different longest chains.

Nakamoto tells us that each honest player should consider the longest available chain to be
the valid one. As we will see in later chapters, this is easier said than done and requires a few
compromises in order to make sure that every honest player refers to the same path when viewing
the chain. In fact it requires an constraining the protocol with a separate security parameter

dedicated to making sure that the players only consider
As a last not regarding the complexity of forks as a

chains that won’t be overtaken.
concept it has to be said that completely

eliminating them like some protocols attempt to do [16], [19] might not be a clear cut optimal
solution [20]. There are protocols [21], [22] that forgo the chain structure for a seemingly more
chaotic graph structure in order to achieve much greater speeds.
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Chapter 2

Mathematical Background

2.1 Probabilistic Polynomial-Time Algorithms

For the sake of completeness, we need to include a few things about the complexity of the algo-
rithms considered in cryptographic settings.

Definition 2.1.1 (Probabilistic Polynomial Time Algorithms [2]). An algorithm A is said to be
probabilistic polynomial time (PPT) if:

1. There exists a polynomial pol(-) such that, for every input x € {0, 1}*, the computation
of A(x) terminates within at most pol(||z||) steps.

2. It has access to a source of randomness that yields random bits that are each independently
equal to 1 with probability p and 0 with probability 1 — p.

An probabilistic algorithm with p = % is called uniform. Most of the time we will consider
non-uniform algorithms for some p € (0, 1).

This type of algorithms helps us quantify things like the strength of the Adversary in our
protocols. At the core of a blockchain protocol is the probabilistic nature of block generation,
this is the reason we use probabilistic algorithms. We will also consider our blockchain protocol
execution to happen over a polynomial number of rounds and for this reason our algorithms need
to be polynomial time.

2.2 Negligible Functions

By their construction, blockchain protocols work in a probabilistic fashion, as each user only has
a chance of creating a valid block each round. This naturally introduces an amount of uncertainty
to the process. How do we ensure then that chance doesn’t happen to favor adversarial players
for a period of time? To relieve our protocols of such fears we rely on negligible functions.

Definition 2.2.1 (Negligible Functions). A function €(-) is said to be negligible if for every
polynomial p(-), there exists some x such that:

1
W) < o

for all k > ky.
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Definition 2.2.2 (Strongly Negligible Functions). A function €(-) is said to be strongly negligible
if there exist constants ¢y > 0, ¢; such that:

6(/-4:) < e—COH+C1
for all k.

These definitions are the ones used in [3] and therefore the ones most useful to our analysis,
specifically the second one. As we have already mentioned we will mainly consider algorithms
that run in polynomial time, with that we can understand that a strongly negligible function
completely overshadows the power of such algorithms, making it ideal to guarantee security.

2.3 Hash Functions

In the introduction we spoke about including a summary of the previous block in each block,
the mechanism that links what we call the blockchain. This mechanism should be able to get a
large string (the size of a block), and return a much smaller string (one that can be included in a
another block). This is something a hash function can achieve.

We will use [2] for our small exploration of hash functions.

Definition 2.3.1. (Hash Function - syntax) A hash function is a pair of probabilistic polynomial-
time algorithms (Gen, H) fulfilling the following:

e (Gen is a probabilistic algorithm which takes as input a security parameter 1” and outputs
a key s. We assume that 17 is included in s (though we will let this be implicit).

e There exists a polynomial [ such that H is a (deterministic) polynomial-time algorithm that
takes as input a key s and any string = € {0, 1}*, and outputs a string H*(x) € {0, 1}!(),

If for every k and s, H® is defined only over inputs of length I'(k) > I(k), then we say that
(Gen, H) is a fixed-length hash function with length parameter !’.

We have also mentioned how a block should only be able to be put in a single spot, there
shouldn’t be a way for a block to be ’slid” between two blocks that already exist and there also
shouldn’t be a way for a block to be a continuation of more than one other blocks. For this we
will briefly mention collision resistant hash functions.
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Algorithm 1: Hash-coll4 11(k) [2]

1 s+ Gen(1")
2 (z,2) + A(s)
3ifo#42;

4 & H*(z) = H*(2') then
5 return 1
6
7
8
9

// The output of the experiment is 1 iff z # 2/ and H*(x) = H*(2').
// Adversary A has found a collision!

else

return 0

10 /I No collision

11 end

Definition 2.3.2. (Collision resistant Hash Function) A hash function IT = (Gen, H) is collision
resistant if for all probabilistic polynomial-time adversaries A there exists a negligible function
neg such that:

Pr [Hash-coll4 11(k) = 1] < neg(k)

2.4 Chernoff Bound

The probabilistic analysis of blockchain protocols requires the creation of some bounds that will
limit the probability of some, usually unwanted, event from occurring. For this we will heavily
utilise the multiplicative Chernoff Bound:

Theorem 2.4.1 (Multiplicative Chernoff Bound [3]). Let X1, ..., X,, be independent Boolean
random variables, such that for all i, Pr[X; = 1] = p. Furthermore, let X be the sum of these

variables, and 11 = E[X| = np be the expectation of the sum.
Then, for any 6 € (0,1]:

PriX <(1—-90)u]< e~ U0
Pr(X > (1+0)u] < e 20w

We note here the right hand side of both of those inequalities does not need to specify the
exact exponent only an €2, a lower bounding limit. This in turn creates an upper bound for the
exponent and therefore the probability. By combining the bounds with the negligible functions
mentioned above we can reach the following conclusion: The event X will deviate from its
expected value p only with negligible probability, the higher the deviation ¢, the less likely it
will happen and since the probability is negligible we can safely assume it will not occur.

2.5 Union Bound

Let us consider an event A; that can happen in a period ¢ of given a length (measured in time
or blocks) in the blockchain. In our analysis, as in all blockchain analysis, we will often need
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to bound the probability of such an event occurring in any period 7. We are therefore forced to
bound the union of all A; events occurring and for this purpose we will use a staple of probability
theory, the Union Bound.

Theorem 2.5.1 (Union Bound). For a finite set of events Ay, As, ..., Ayp:

n

U

=1

Pr
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Chapter 3

Construction

In the previous chapter we presented some basic mathematical tools that are necessary for the
function and analysis of a blockchain protocol. In this chapter we will build upon these to explain
the following:

e A basic framework that will allow us to talk more formally about blockchain protocols.
We will also use this to bridge the gap between the different sources that will be presented
in the next chapter.

e A kind of proof that is used extensively our main source and will therefore also be utilized
by the analysis of our own model.

3.1 Framework

While we will present multiple papers, [3] is our main source. For this reason we will try to
translate all other notation and variables into one most resembling its version to keep a sense of
continuity.

Security Parameters: The first and most fundamental security parameter that is introduced
is k. This is the security parameter upon which our hash function depends and refers to length
in bits.

This parameter is so fundamental in fact that there will be many cases where it will be omit-
ted for convenience since it included in most functions and algorithms. In the next chapter we
will also introduce the second security parameter 7'. In short, this parameter operates on a higher
level than x in order to ensure the smooth function of the blockchain as a protocol instead of its
basic cryptographic consistency. More on that when the need for a second parameter becomes
unavoidable.

Protocol: Each player uses two basic algorithms (11, C).
Firstly II is the algorithm that keeps the state the player is in. It uses the security parameter s
and starts off with an input of 1% and an empty state.

Then comes C(k, state), which translates the state of the player into the actual chain they
can consult. It takes « and the state that is kept by II and outputs the records that are contained
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within the chain in an ordered sequence. Obviously in most cases it is transactions and the or-
dered sequence that is produced by C is the ledger of all transactions that have happened in our
system.

Environment: The environment that directs the protocol is denoted Z(1%) and is a non-uniform
probabilistic polynomial-time algorithm. It is what activates the n players that take part in the
protocol and denotes some of them as adversarial. The honest parties execute the protocol 11
while the adversarial parties are controlled by the Adversary A. The environment also serves as
a blanket for the network the protocol uses, and delivers all messages the players send each other.

Validity: There needs to be a way to symbolize the fact that not all chains are in fact acceptable.
We can’t accept chains that contain, in a financial example, transactions that spend more money
than a player has. The validity of the chain according to the rules that the protocol has set for its
function is checked by the predicate V'(-). For this reason a protocol II that uses a predicate V'
for its validity will be symbolized with IV .

Adversary: Many things can go wrong during the execution of a blockchain protocol, so it
should be noted that the Adversary doesn’t just represent malicious actions. In order to achieve
maximum security though when analysing a protocol we can assign everything that can go wrong
to an adversarial party. From network delays, to players not operating their nodes correctly to
multiple real malicious parties that are trying to cause harm to the protocol for some personal
gain or other reason, all of these possibilities get wrapped under the blanket of the Adversary.
Moreover, when there is delay or some other adversarial interfering with players’ messages we
assume that the Adversary is the one that delivers these messages to the players’ receiving queue.
The Adversary is a non-uniform probabilistic polynomial-time algorithm and by communi-
cating with the Environment can corrupt players turning them adversarial up to a certain limit.
If we assume that our protocol can have up to n players, the Adversary can have a maximum of
pn,p < % players under their control. All corrupted / adversarial parties are controlled by the
Adversary and can therefore cooperate, share information and use their power collectively.

Views: As we discussed in the introduction even though our final goal is for all honest play-
ers to have the same image of the blockchain that might not be the case at all points in time. For
this reason we need to establish a way to talk about what the chain looks like to each player at
any point in time. First we define the view of the blockchain that a specific party P has:

\4
ViewjgpH ©) (A, Z, k)

Next we will get the ensemble of these variables.
We also care about the longest chain a party has in its possession in a specific round, this will be
written as:

Cp(view)
Next we have the joint view of the blockchain over all players:

EXEC(") (4, Z, )
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Again we will generally skip the many parameters and only use EXEC.

Chain Notation Now that we know how to specify for what player and round a chain appears
at we can also show a way to talk about the blocks in that chain. For this we can use what is
referred to as ’python notation” because of its resemblance to the way Python indexes its lists,
this has been used in various works such as [23] and [24]. To address a specific block in the
chain C we will use the format C|-]. The first block of the chain is C[0] or Gen, the genesis block,
while C[i],i > 0 will refer to the i*" block counting from the genesis block.

On the other hand, C[—i],i > 0 will refer to the i*" block counting from the tip of the chain (i.e.
C[—1] is the last block of the chain).

Finally, C[i : j] will denote the sequence of blocks from 7 (inclusive) to j (exclusive). Skipping
one of the two numbers will mean our sequence extends to the respective end of the chain.

3.2 Example Proof

Now that we have set up all of these tools let’s see how they are used in our main source: [3] to
prove properties about blockchain protocols.

We define a measure A; over any period of ¢ consecutive rounds in the blockchain with an ex-
pected value of:

E[A:] = u(t)

This method of proof works exactly the same for both versions of the Chernoff bound, for the
sake of the example we will use the following:

PriA; < (1-=96)ut)] < e—8%u(t))

for any § > 0.

We have then a bound for the probability that his measure differs significantly from its expected
value p(t) in that period of ¢ rounds. Next we will bound the probability that this happens in
ANY period of ¢ rounds during the execution of the protocol.

U rr(4l]

=1

Pr < 5" Pr[A}] < poly(r) - e~ )

i=1

The number of rounds in the execution are bounded by poly(k), where & is a security parameter.
Furthermore the entire exponent will be substituted by another security parameter, 1" as such:
e~UT)_ Lastly, [3] considers its results for 7' > clog(k) for a large enough c. Putting all these
together we can ignore the polynomial factor poly(r) as [3] does for all its proofs. We arrive at
last at the following bound:

—Q(T)

This is a negligible function meaning we can safely ignore the probability of our measure differ-
ing significantly from its mean value during the execution of the blockchain.
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Chapter 4

Analysis

Before we move to the examples of blockchain analysis we should discuss what we actually hope
to achieve through it. As mentioned in the introduction blockchain protocols were first conceived
as a means of creating a decentralized ledger for transactions. What would that require in order
to work properly?

First of all we would like a guarantee that any transaction broadcast by a user will eventu-
ally be carried out. Therefore any such transaction must find its way into a block and finally
into the blockchain itself. No financial system would be considered competent if there was any
significant chance that a transaction will simply never be completed.

Furthermore, any transaction that is completed should also stay completed. It shouldn’t be
possible for a transaction that has been considered successful to be reverted or cancelled. If that
were to happen all trust in such a system would evaporate.

As we have explained in the introduction though, the blockchain is a volatile construction and
is really more of a tree, especially when considering the latest blocks added. With forks been
a common occurrence how do we ensure that the above guarantees hold with overwhelming
probability? To make this possible we have to make a compromise; it is not possible to expect
that a block just appended to the longest chain will always be a part of it since another fork
may overtake it temporarily or even permanently. For this reason, as promised in the previous
chapter, we will create a depth parameter referred to as 7" in order to follow the notation of our
main source, [3]. With this our above desired properties become:

Liveness: Any transaction that is broadcast by an honest player will reach a depth of at
least T in an honest player’s blockchain.

Persistence: Any transaction that has reached a depth of at least 71" in the blockchain will
always be part of every honest player’s blockchain.

We want these properties to hold with overwhelming probability. Any block (and therefore also
any transaction) that is buried at least 1" deep in the chain can be referred to as ”committed” as
it has become a permanent part of the ledger. There now exist two security parameters we care
about: « and T with the former being the fundamental parameter that determine the cryptographic
protocols the blockchain uses and the latter the way the players decide on the longest chains and
blocks get permanently embedded in the chain.
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4.1 The Backbone

The first stop of our exploration is [4], the paper by Garay, Kiagias and Leonardos. This paper
has gone through many iterations, each adding and improving the previous one, we can briefly
go through some important changes:

1. [25] is the original version.

2. [26] was created to integrate the concept of Typical Executions that was introduced by [5]
while also addind bounded delay to the model after the release of [3].

3. [4] is the current latest version on which we will base the sections dedicated to this paper.

To begin with, the authors present the core assumption of the paper. An assumption such as
this exists in all papers we will examine for a very simple reason: No matter how sophisticated
a blockchain protocol network is, there will always be an amount of power that the adversar-
ial parties should not possess because it will throw the whole system out of balance. this first
assumption is now only based on the raw number of adversarial and honest parties, after the
introduction of delay it will have to be adapted to deal with it.

Definition 4.1.1. (Honest Majority Assumption) t out of n parties are corrupted with
t<(1—-0)(n—t),
where 3f + 3e < § < 1.

Here we can present a categorization of rounds that is crucial to this analysis but is also
present in the rest of the papers we will go through and is overall a useful way to distinguish
between rounds.

e X, = 1if onround ¢ there was a block mined by an honest party.
e Y; = 1 if on round ¢ there was exactly one block mined by an honest party.
e Z; = m if on round ¢ there were m blocks mined by adversarial parties.

Moving on, this analysis is centered around the concept of a ”Typical execution”, this will use the
core assumption about the power relation of the honest and adversarial parties to prove the build-
ing blocks with which the rest of the paper will be based on. This concept was first introduced
in [5] and was then brought into the Backbone with the release of [26].

Definition 4.1.2. (Typical Execution) An execution is (A, €)-typical for e € (0,1) and integer
A > 2/f, if, for any set S of at least A consecutive rounds, it holds:

@) (1—OE[X(S)] < X(8) < (1+ )E[X(S)] and (1 — OE[Y(S)] < Y(S).
(b) Z(S) < E[Z(S)] + eE[X(S)].

(c) No insertions, copies or predictions.
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Where X (5),Y(S), Z(S) are sums of the corresponding random variables over the period of
rounds S.

We can intuitively explain what the notion of the typical execution entails:

Its last part suggests that our assumptions about hash functions should hold. Furthermore,
both the adversarial and honest parties should mine blocks at a rate that corresponds to their
power. We especially care about the number of unique successful rounds been as expected as
these are the rounds that are the most crucial for the proper function of the blockchain.

Having defined what an execution of the protocol should look like, the authors prove that
this is true with the overwhelmingly high probability of:

1 e—Q(EZAf-&-H—log(L))

As we have explained there are two main properties we would like for a blockchain protocol
to have in order to be effective: Liveness and Persistence. These are not always easy to prove
directly, the authors of these paper first begin by proving three other, extremely useful proper-
ties that can then be used to form our original requirements as well as other properties that we
might desire. For typical executions and therefore with overwhelming probability, the following
properties are then proven:

Chain Growth: For any honest party P that has chain C in view, it holds that after any s
consecutive rounds it adopts a chain that is at least 7 - s blocks longer than C with param-
eters:

T=1—-¢€f

s> A

For a blockchain to function it should be alive, it should be able to grow and increase in
size continually. To make sure of this we have to find a bound for the number of blocks
that will be produced in any period of rounds.

Chain Quality: For any honest party P with chain C in view, it holds that for any [ con-
secutive blocks of C the ratio of honest blocks is at least ;1 with parameters:

I >2\f
5\t ¢ 5 ot 4
—1-(1+2). - 1—(1+2). _ 2
a ( +2> n—t 1—e ( +2> n—t 2

By the very definition of the adversary it is understood that we would desire them to have
as little power and influence over the chain as possible. Therefore in any series of blocks
added to the chain the fraction of blocks that were contributed by the adversary should be
bounded by a, preferably low and surely known measure.
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Common Prefix: For any pair of honest players P; and P, with chains C; and Cs at rounds
r1 > 19 in view it holds that C;[—T" :] < Co with parameter:

T > 2\f

This is perhaps the most crucial property of a blockchain and the one most dependant on
adversarial power and action as we will see in [3]. Each party taking part in the execution
of the protocol needs to have a common view of the chain. This can be intuited quite
easily as these protocols are supposed to be public ledgers that record various events such
as transactions and should therefore have only one interpretation. We therefore desire that
blocks that are at least 1" deep in the chain will never be discarded through a fork and are
therefore “carved” into this public ledger forever for all parties to see.

4.2 Introduction to Delays

Next we will visit the paper that provides the main basis for this thesis, [3] by Pass, Seeman and
Shelat.

The analysis is parameterized using two constants representing the powers of the honest and
adversarial parties:

o — The probability that at least one honest party mines a block in a round.
B — The expected number of adversarial blocks that are mined each round.

The difference in the two measures is that the adversarial parties can cooperate with each other
and can therefore use their entire power at once, while the honest players can work separately
and might contribute to the blockchain in different directions, creating forks.

In addition to that, there needs to be a measure for the mining power of the honest parties
that has been adjusted for delay:

.«
14 Aa

Y

This in fact arises naturally during the Chain Growth proof and is then used in the rest of the
paper.

To begin with authors define two different environments in which they will prove their de-
sired properties.

e The first one is I'g which has no restrictions apart from validity.
This means that any property proven in these environment is independent even of the
adversary. As we will see the Chain Quality and Chain Growth properties are proven in
this environment and are therefore true regardless of adversarial power.

e Inthe second environment, I'; the adversary is actually taken into account with their power
being subject to:

a(l—=2(A+1)a) > A3
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This is the equivalent of the Honest Majority Assumption in a bounded delay setting de-
fined in [4]. A major difference here is that this assumption is not considered for the entire
proof but rather only a part of it. In particular the only part of the analysis that is dependant
on the adversary’s power in this way is the Consistency property.

We move now to examine the properties the authors prove for their model. These are in
essence the same as the ones introduced by [4] but do contain some changes.

For each of the properties the authors want to prove, they define a predicate that is true if and
only if that property holds for the chain. Then they try to prove that these predicates hold with
overwhelming probability.

4.2.1 Chain Growth

This first predicate is also the most complicated one in its definition and therefore the best ex-
ample for the whole process. To begin with, the authors define way to measure the increase of
the chain between rounds.

min-chain-increase, ;(view) = min {]C;+t(view)| —|Cr (View)\}
l’]

Next we arrive at the actual predicate that checks the property of Chain Growth. The authors
explain that we want this property to have to characteristics:
e Players have similar chain length so that no player is left behind.

e The chains increase continually by at least some known amount.

The predicate growth’(view, A, T') combines these desired characteristics,
growth’ (view, A, T') = 1 iff:

e (consistent length) for all rounds r > |view| — A" < |view|, 7’ < r+ A, for every two
players i, j such that in view ¢ is honest at round r and j is honest at round 7/, we have

that:

\C; (view)| > |C; (view)|

e (chain growth) for every round ¢ < |view| — r, we have:

min-chain-increase, ;(view) > T

The two parts of the predicate correspond to the two requirements we expressed for our model,
with the first one in particular allowing players a period A (equal to the delay of the system) to
synchronize their chain lengths.

With this predicate the framework defines the Chain Growth property for a generalized blockchain
protocol.
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Definition 4.2.1. A blockchain protocol (11, C) has chain growthrate g(-, -, -, -) in I-environments

if for all I"-admissible (n(-), p, A(+), A, Z), there exists some constant c¢ and negligible functions

€1, €2 such that for every k € N, T' > clog(k), and t > m, the following holds:

Pr |view EXEC(HV’C)(A, Z, k) : growth! (view, A(k),T) = 1] >1—e€(k) —e(T)

Additionally, if e; = 0 we say that (I, C) has errorless chain growth g in I" environments.

Theorem 4.2.2. For any § > 0, any p(-), (HI;\, e T ak) has chain growth rate

9}?(“7”7% A) = (1 - 5)’7

in I’y environments.

4.2.2 Chain Quality

Definition 4.2.3. quality” (view, 1) = 1 iff for every round r and every player 4 that is honest
in view", for any consecutive sequence of 7" blocks in C'(view);, the fraction of blocks m that
are honest w.r.t. view", is at least p.

Definition 4.2.4. A blockchain protocol (II, C) has chain quality p(-,-,-,-) in I, if for all T'-
admissible (n(-), p, A, A, Z), there exists some constant ¢ and negligible functions €;, €2 such
that for every k € N, T' > clog(k) the following holds:

Pr |view + EXEC(HV’C)(A, Z, k) : quality” (view, u(k, n(k), p, A(k))) = 1} >1—ei(k) —e(T)

Additionally, if ; = 0 we say that (I, C) has errorless chain quality x in I" environments.

Theorem 4.2.5. Forall § > 0, any p(-), (I, , 11X, ,.) has chain quality

(s, 8) =1 (14+6)2

in I’y environments.

4.2.3 Consistency

The Consistency property also has an interesting way of dealing with delay. The authors take it
into account by defining ”Convergence Opportunities”, moments in time that the honest player
have a chance to sync with each other and all obtain the same longest chain. We will see how
these work in our own proof but we can briefly mention that a Convergence Opportunity is a
uniquely successful honest round preceded and followed by at least A rounds of silence.

Definition 4.2.6. Let consistent” (view) = 1 iff for all rounds 71 < ro and all players 7, j such
that i is honest at view"" and j is honest at view", we have that C;' [-T] < C7?
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Definition 4.2.7. A blockchain protocol (II,C) satisfies consistency in I' environments, if for
all I'-admissible (n(-), p, A, Z), there exist some constant ¢ and negligible functions €1, €5 such
that for every k € N, T > clog(k), the following holds:

Pr |view + EXEC("€) (A, Z,K) : consistent” (view) = 1} >1—e€(k) —e(T)

Additionally, if ; = 0, we say that (II,C) has errorless consistency in I'-environments.

Theorem 4.2.8. For any A > 1, any p(-), (H?Vak, H?Vak) satisfies consistency in FZ;\ environ-
ments.

As an aside, the authors also prove an upper bound for the Chain Growth Property. They
argue this can be a useful measure to further understand the blockchain but don’t use it for the
rest of their analysis and for this reason we will omit it for now.

4.2.4 Liveness and Persistence

To end the analysis, [3] turns to proving how a blockchain that has the properties they just defined
and proved for the Nakamoto protocol can be used to create a public ledger. That is they prove
the properties of Liveness and Persistence just like [4] did before them. They define them in a
way that follows their own notation:

Liveness Let live(view, t) = 1 iff for any ¢ concecutive rounds r, ..., 7 + t in view there exists
some round 7’ € [r,r + t] and player i such that in view:

1. 4 is honest at round 77,
2. i received a message m as input r’ and
3. for every player j that is honest at  + ¢ in view, m € £;+t(view).

Definition 4.2.9 (Liveness). We say that a public ledger (11, £) if live with wait-time w in I'
environments if for all I'-admissible (n(-), p, A(+), A, Z), there exists a negligible function € in
the security parameter x € N, such that:

Pr |view < EXECTE) (A, Z, k) : live (vieww (k,n(k), p, A(K))) = 1} >1—¢€(k)

Persistence Let persista(view) = 1 iff for every round r < |view| — A, every player i that is
honest at view" and every position pos < \£>v (view)|, if if L] (view) contains the message m at
pos, then for every round 7’ such that » + A < 7’ and every honest player j we have that m is
also at pos in ﬁ’]"-' (view).

Definition 4.2.10 (Persistence). We say that a public ledger (II, £) is persistent in I environ-
ments if for all I"-admissible (n(-), p, A(-), A, Z), there exists a negligible function e in the se-
curity parameter x € (N) such that:

Pr |view « EXECTA) (A, Z k) persista () (view) = 1} >1—€(k)
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4.3 The Backbone with delay

Now that we have seen how [3] introduced the concept of bounded delay let’s see how [5] brought
it into their own way of analysis.

Like [3], the addition of delay necessitates the re-balancing of adversarial to honest power
ratio given this new parameter. For this purpose the authors alter their Honest Majority Assump-
tion:

Definition 4.3.1. (Honest Majority Assumption - Bounded Delay) t out of n parties are corrupted
with

t<(1—-0)(n—t),
2A )
where € +-2Af + =5 < 3.

Now that delay has been introduced to the system, there need to be some extra types of
rounds taken into account. For this, new random variables similar to the ones mentioned above
are defined:

o X Z’ = 1 ifonround 7 there was an honest block mined and there were no other honest blocks
mined up to A rounds before 7. We call this a A-isolated uniquely successful round.

e Y/ = 1ifonround i there was exactly one honest block mined and there is no other honest
block mined within A rounds. We call that a isolated successful round.

So, when delay is introduced we start caring not only for the honest blocks mined and whether
or not there was only one mined in each given round but for whether or not they were alone in a
period of rounds equal to the delay. That is because, any honest blocks mined within A rounds
of each other still have the potential to create a fork in the chain as the miner of the second block
mined might not be aware of the first one due to the delay.

Definition 4.3.2. (Tipical Execution - Bounded Delay)
(@) (1—e)E[X'(S)] < X(S) < (1 + e)E[X(S)] and (1 — )E[Y’(S)] < Y'(S).
(b) Z(S) < E[Z(S)] + E[X"(S)].

(c) No insertions, copies or predictions.

This is in essence the same as the previous definition with a few subtle differences. In this
version we value isolated [uniquely] successful rounds instead of simple [uniquely] successful
rounds. As we explained before this is because the introduction of delay hinders the cooperation
of honest players.

We also can begin to see a pattern emerging, both [4] and [3] have turned their attention to
blocks that have a safe buffer of silence around them the former using isolated rounds and the
latter using convergence opportunities.

Having altered the main assumption to accommodate delay, the properties mentioned above
are proven again although with delay dependent parameters:
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Chain Growth holds with parameters:

T=(1-ef1- )"

s> A

Chain Quality holds with parameter:

1> 2)\f +2Af
1 1 ot e <1+A)
P a0 —p2 n-t 1-¢ X\

Common Prefix holds with parameter:

T > 2\f + 2A

The properties remain the same in essence but have been adjusted for the delay that was
introduced.

4.4 Further Exploration

To conclude our journey through different approaches of analysis blockchains we will briefly
talk about Ling Ren’s [6].

In contrast to the two papers we went through before, the author, Ling Ren does not really
bother with proving the three properties but instead goes straight for the ones that are directly
essential to the function of the blockchain as a transaction ledger.

They are concerned with:

1. Liveness: Every transaction is eventually committed by all honest players. This definition
is the same as the one we have already gone over.

2. Safety: Honest players don’t commit different blocks at the same height. Here is a differ-
ent expression of the property of Persistence. Persistence essentially tells us that all honest
players should have the same blocks at the same positions (except maybe for the last T’
blocks). Therefore them having different blocks at the same position (height) would be
it’s negation.

Like the previous paper [6] denotes the mining rates of the honest and adversarial players as
« and 3 respectively.

Definition 4.4.1. Let g = e~ ““. Let § be any positive constant. Nakamoto consensus with the
T'-confirmation commit rule guarantees safety and liveness except for e~ 8?g*T) probability if

g’a> (1+0)8
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Ling Ren’s approach of taking delay into account is most similar to that of [3]. They also
care about the moments in time when the honest players can sync their chains. For this reason
they define different categories of blocks.

Non-tailgater: An honest block with no other honest block mined in the previous A
rounds.

Loner: An honest block with no other honest blocks mined in the previous or next A
rounds.

This paper continues the pattern of establishing ways to talk about different kinds of blocks and
specifically isolated ones. We can recall the Convergence Opportunities mentioned in [3] and
notice that the Loner blocks defined here are exactly the same. This paper builds its construction
on this and the additional category of Non-tailgater blocks. In fact, as the author points out, the
bound for Convergence Opportunities in this paper is better than the one in [3].

With these tools Ren proves the properties:

Theorem 4.4.2 (Liveness). Suppose go > (14-8)3. At time t, except with probability e~ 6%gat)
every honest player commits at least g gat — T — 1 honest blocks.

Theorem 4.4.3 (Safety). Suppose ga > (1 + 9). Consider any time t and any block B that is
considered committed by some honest player at time t. Except with probability e~ U8%g*at), for
all time t' > t, no honest player commits a block B' # B at the height of B.
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Chapter 5

The Stamp Model

5.1 Definition

We have now seen examples of blockchain analysis, each dealing with a fully realized protocol.
Let us explore what this analysis contains in greater detail by creating our own, much simplified
blockchain protocol. This ”Stamp Model” is what will be analyzed in the rest of this thesis.

Blocks: Much like in the original case, a block is just a collection of records that is broad-
cast by a player to the whole network. The goal is of course for this block to be included in the
chain in a permanent way. Each block contains the following:

e A Stamp (for validation)
e The transactions published through it
e The Stamp of the previous block (for ordering)

Honest players will publish blocks as a continuation of their longest chain, by including the Stamp
of its latest block. One the other hand, the Adversary can publish their blocks as continuations
of any already published block by including the corresponding Stamp, creating forks.

Stamps: For a player to publish a block they normally need to solve a computational puzzle
through the process called mining. To abstract this we will define Stamps. A Stamp is a token
that a player can obtain which allows them to publish a single block in the round that they re-
ceived the Stamp. That block will then be taken into account by the rest of the players because
it has a Stamp that was given out the round it was published in. The Stamps have the following
properties:

e Only the Oracle is able to create Stamps
e Each Stamp is unique

Because they are unique, there can be no insertions in the chain.

Oracle: The Stamp Oracle is the mechanism that gives out the Stamps each round and serves
as the abstraction for the hashing puzzle in a normal mining process. The mining process, as
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we discussed before, is the random process through which players compete with each other in
order to discover the hash that will allow them to create a new block. By creating the Oracle
we simplify and abstract this process, hiding the complex mathematical mechanisms (hashing)
and the competition of computing power (mining) without losing their core purpose of allowing
a random player to publish a block. We will call this the Fg4m, functionality and will assume
that each player can petition it once per round in order to obtain a Stamp for the round. For
now we will assume that the Oracle only hands out at most one Stamp in each round, this leaves
exactly three possible scenarios for each round:

1. The Adversary receives the Stamp.
2. Exactly one honest player receives the Stamp.
3. Nobody receives the Stamp.

This approach removes the possibility of multiple honest players creating a block on the same
turn or the Adversary creating a block on the same turn with some honest players. We are then
left with three very distinct scenarios that can take place. If we turn back to the analysis in [4]
that would mean that the X and Y random variables are now the exact same for any round.

Let us explain the experiment that simulates this process: In each round, the Oracle flips
a coin for each player that takes part in our protocol. These flips come up heads (the event H
happens) with probability p. Then, after all the flips the Oracle goes through the results and
decides who to hand out the Stamp to in the following way:

1. If any adversarial player has gotten the event H, the Adversary gets the Stamp.
2. Else if exactly one honest player has gotten the event H they receive the Stamp.
3. Else nobody receives the Stamp.

In our simulation we can clearly see that the probability p is the equivalent of the success prob-
ability of a hashing query in the mining process. Our blockchain protocol will therefore be
denoted:

4 '4
(HStamp’ CStamp)

Our three scenarios mean that anytime more than two honest players get an H as their result,
these results cancel each other out. Moreover, anytime the Adversary gets an H they overpower
any honest player that also gets one.

Stamping Power: Next we want to see the power that this way of handing out Stamps gives
the participants. For this we will follow the initial steps of [3] and define the following proba-
bilistic quantities, assuming that there are n total players and at most pn players controlled by
the Adversary.

The probability that an honest player gets the Stamp:

o = Pr[HonestStamp| = (1 — p)np(1 — p)"~!
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The probability that an adversarial player gets the Stamp:

mn

B = Pr[Adversarial Stamp] = 1 — Pr[No adversarial player gets an H| =1 — (1 — p)”

For p small enough compared to %, [ can be approximated by the easier to use:

B = pnp

5.2 Variations

Since we have simplified our model down to a bare minimum there are a lot of changes and
alterations we can make to it. We will briefly go through them here and then see what some of
them actually change in the course of the proofs.

Multiple Stamps: One of the things that stand out in the above definition as a significant simpli-
fication is the fact that at most one Stamp is ever given out at each round. One of the alternative
scenarios that will be featured in the following sections is the one where there is no limitation to
the number of Stamp each round can wield.

To achieve that with our imagined experiment we only have to omit the final selection pro-
cess. This way any player who succeeded in their coin flip will be awarded a Stamp for that
round. We still assume these Stamps can only be used for the round they were awarded. In this
version the quantities defined above change as such:

o = Pr[HonestStamp] =1 — (1 — p)(lfp)”

B' = E[Adversarial Stamps in a round] = pnp

Similar to what we did with 3 in the original iteration of the model, for a p small enough compared
to %, o’ can be approximated by the easier to use:

o ~(1—p)np
Two main differences can be noted here:

1. While 8 denotes the probability of the Adversary gaining the unique Stamp at a particular
round, 3’ is the expected number of Stamps that the adversarial players will gain in total
in a single round. The reason for this change in perspective is that because the Adversary
controls all its players it can cooperate and effectively utilize all of its gained Stamps in a
single round.

2. In contrast to the Adversary, honest players gaining multiple stamps in a single round
doesn’t contribute to their power since they cannot cooperate the same way as the players
controlled by the Adversary. For this reason both o and o/ denote the probability of an
honest player gaining a stamp although in the first case that stamp will be unique while in
the second it might be one among many honest and / or adversarial stamps.
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Despite these differences, o and 3’ will still play the same roles as their previous counterparts.

Stamp Withholding: As we have explained above any player, including ones controlled by
the Adversary has an obligation to publish a stamped block any round they receive the Stamp.
The alternative is of course to give the ability to the adversarial players (the honest ones have no
use for this) to keep the Stamps they get to themselves until they decide to publish the blocks.
This means that the Adversary could prepare an entire chain in secret and publish it all at once.
Obviously we would have to restrict the Adversary in only connecting the blocks they have
stamped and kept private to block in the chain that existed when they got that Stamp.

Delay: One of the main features of [3] is the concept of Adversary induced Delay. The Ad-
versary in that setting has the power to delay any message sent by any users from being received
by any other user by up to A rounds. It is interesting to note that this measure encompasses
system induced delays too, that is delays caused by the network the model would be built on.
Attributing all delay to the Adversary simplifies the model and creates a stronger Adversary and
therefore stronger security results. As we will discuss in the following sections this delay sig-
nificantly effects the analysis, requiring in multiple cases large portions of proofs dedicated to
taking it into account while also introducing a new measure ~ that more accurately represents
the power of the honest players.

5.3 Chain Growth

Theorem 5.3.1. Forany§ > 0, (Hgmmp, Cg‘mmp) has (errorless) chain growth rate gg(ﬁ, n,p,A) =
(1-9)

We begin covering the two parts of the growth predicate (defined by [3]), beginning with the
first; we should make sure our protocol doesn’t allow players to drift apart in chain length. In
our case this is trivially easy due to the simplifications made in the definition.

Lemma 5.3.2. (Consistent Length) If in view, i is honest at round r and j is honest at round
r +t, then ]C;+t(view)] > |CI (view)|, for any t > 1.

Proof. As we have explained in our model definition, the messages sent by players are delivered
within one round, sidestepping the need to take delay into account.

Therefore, since ¢ is honest at r they will broadcast (or have already broadcast in the past) their
chain of length |C] (view)|. Since this chain will be delivered at the very next round r + 1 from
that round on any player j that is honest at round » + ¢ will have a chain of length \C]”t (view)|
that is at least equal to |C] (view)].

This first property is not affected by the amount of stamps that are given out during a single
round. It is though affected by the introduction of delay. In that case, the honest player j at round
r 4 t is only guaranteed to have a chain as long as that of ¢ at round r for t > A. This is because
only then can we be sure that all messages from round r have reached j and j has the chain ¢ had
at round 7.
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To continue with the second property (bounded minimum chain increase) it is first useful to
show a bound for the increase of the longest chain. We will denote the longest chain of an honest
player at round r as I"

Lemma 5.3.3. Forany r,t > 0 and for any 6 > 0,
Pr [I"*(EXEC) < I"(EXEC) + (1 + 8)at] < e~ (")

Proof. Fix some r and ¢. Each time an honest player stamps a block they increase the length of
the honest chain by one. Therefore, in ¢ rounds, the longest chain [” will be increased by at least
as many honest blocks were mined in the period [r,  + t].

Since the probability of an honest block being stamped in any given round is « we get, for the
number of honest blocks stamped in a period of ¢ rounds (X3):

FE [Xt] = at

By using 3.2 we can arrive at the desired result. O

Here we have already diverged from the original proof of [3]. The reason for this is again
delay, in a much more major way this time. When a player in a system with delay gains a Stamp,
they cannot be sure that the block they publish will actually contribute to the increase of the
chain’s length. This is because there might be blocks already added to the same spot they intend
to add theirs that simply have not reached them due to the delay. Through this issue the parame-
ter v is created to more accurately represent the honest player power in a bounded delay setting.

Hybrid Experiment: Since the Adversary can choose to delay different messages for differ-
ent amounts in an arbitrary way the authors of [3] have to employ a very interesting method to
navigate delay. They define a "Hybrid Experiment”, and execution of the protocol that diverges
from the ”Real” by having its Adversary replaced by a much simpler, predictable one. A new
Adversary that just delays all messages as much as possible (A rounds) and makes sure no honest
player can mine while a message is being delayed. This achieves a predictable behavior that can
be bounded more easily and for this hybrid experiment the authors prove the above bound but
for v = 7% instead of cv.

Even with that they still need a way to transfer the bound over to the Real execution. For this
they successfully prove that any honest player’s chain in the Real experiment is at least as large
as the chain of the same player in the Hybrid experiment at the same point in time. They achieve
it by using the fact that the two executions differ only in their Adversary and that everything
else happens in the exact same way. After this they transfer the bound they have proven for the
Hybrid experiment to the Real execution through simply applying the relationship shown for the
two.

Our proofs now converge again, having proven the bound for the increase of the longest chain
in a period of rounds, into showing a bound for the minimum chain increase.

Lemma 5.3.4. Forany r,t > 0and any § > 0,

Pr [min-chain-increase, ;(EXEC) < (1 — d)at] < e~ SUs%at)
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Proof. We begin by observing that the minimum chain increase between two rounds is going
to be the difference between the shortest chain of the later rounds and the longest chain of the
earlier round:

min-chain-increase = min {|C;+t(view)\ —|C7 (view)} = min |C’;+t(view)| — max |C] + (view)|
2% J 1

Because of the Consistent Length property we proved earlier we have:

min ]C;+t(view)| > max |C';7+t—1 + (view)|
J J

Therefore:

min-chain-increase > max ]C;+t—1(view)| — max |CT + (view)| = 1" (view) — 1" (view)
J )

By 5.3.3:
Pr [I""~Y(EXEC) < I"(EXEC) + (1 + &)t — 1)] < ¢~ O%alt=1)

Which means:
Pr [mm{|o;+t(EXEC)y - |c;(EXEC)} < (148t —1)] < e UPalt=1)
Z?]

O

Now that we have both the consistent length and the minimum chain increase parts of the
growth predicate we can prove it for our model by using a Union Bound over rounds r (3.2).

The divergence in proofs demonstrates the difference in complexity that is created by adding
delay to the model showing that it stems from the choices that the Adversary gains (in the selec-
tion of messages to delay and rounds to delay them by) rather than the simple fact that messages
are being delayed.

5.4 Chain Quality

To begin with, this proof will require finding bounds on the rate the blocks are created and added
to the blockchain both from the honest players and the Adversary. These bounds help us connect
the number of blocks created to the number of rounds that have passed, enabling us to move from
the domain of blocks to that of rounds and vice versa.

We start by showing a bound for the total number of blocks stamped in a window of time.

Lemma 5.4.1. (Upperbound on Blocks.) Let Qi (view) be the maximum number of blocks stamped
in any window of t rounds in view. For any t > 0 and any 6,

Pr[QuEXEC) > (1 + 6)(a + B)i] < e~ A0 (@+8)]
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Proof. Each round at most one of the two can be true: either an honest player gets the stamp
or the adversary gets the stamp. The first event happens with probability « and the second with
probability 3, therefore the probability that a block is stamped in any given round is o + f3.

We can therefore expect, for the total number of blocks stamped in a period of ¢ rounds (X):

B[S = (a+B)t

We can use 3.2 in order to arrive to our desired bound. O

We will then prove a bound for the number of adversarial blocks stamped in a window of
time.

Lemma 5.4.2. (Upperbound on Adversarial Blocks.) Let Ay(view) be the maximum number of
adversarial blocks stamped in any window of t rounds in view. For anyt > 0 and § > 0,

Pr[Ay(EXEC) > (1+ 6)Bt] < e A

Proof. Similarly to 5.4.1, each round the Adversary can stamp at most one block with probability
B.

Much like before this gives us, for the number of adversarial blocks stamped in a period of ¢
rounds (Y}):

E[Yi] = pt

Again, we use 3.2 to reach our desired bound. O

By combining the bounds on the total number of blocks created in a window and the number
of adversarial blocks, we can ensure that the fraction of adversarial blocks in any sequence is
limited. This directly leads to the Chain Quality property, where the proportion of adversarial
blocks remains below a defined threshold.

Theorem 5.4.3. For all § > 0, any p(-), (I1%,,,,,, Coiamp) has (errorless) chain quality p =
1- (14065

Proof. Let us consider some round r and a player ¢ that is honest at view". For the sake of
simplicity we will define C' = CJ(view), in this we care about the blocks b, ..., bc| that are
contained in C. We will examine some sequence of 7" consecutive blocks C[j : j + T + 1] =
bj,...,bjyr. A block b; will be considered adversarial if b; was stamped by and adversarial
party. What we have to show is that the fraction of adversarial blocks in any such sequence is
upper-bounded by (1 + ¢ )g

B; [ mam - Bjar

Figure 5.1: Sequence of 7" consecutive blocks C[j : j + T + 1] = bj, ..., bjq7.
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Now, we can safely assume that blocks b;_1 and b; 711 are not adversarial. If they are
not we can simply increase the ratio of adversarial blocks by including them and making our
sequence larger since we care about its maximum possible.

To reach the goal of proving the chain quality ratio we need to take a small detour, up to now
we have considered a sequence of blocks, we will first translate this into a period of rounds.

For a sequence of blocks such as the above let:

e 7' be the round when block b;_1 was stamped and sent out
e 1’ 4 ¢ be the round when block b;, 7 was stamped and sent out.

We know that all blocks in the sequence C[j : j + T + 1] were stamped in the period of rounds
between v’ and 7’ + ¢.

B; [e—— aan «— Bjr

v '+t

Figure 5.2: The sequence C[j : j + T + 1] was stamped in the period of rounds between r’ and
r’ +t.

Now that we have a period of rounds to examine we will first define some events that should
not happen and indeed don’t happen except with negligible probability.

e We are currently considering a sequence of 1" blocks, to proceed we need to translate this
length to the number of rounds it was mined in. To achieve this we can use the first of the
previous lemmas. Lemma 4.5.1 ensures that, for ¢ = m:

Forevery 0 < § < 1 we have that ) = < T except with probability e~ QUET),
(146)(a+8)
Therefore, since our sequence is 1" blocks long, we have that:

T

> 050t B

except with probability e~ Q)

We define badl as the event that this does not hold.

e Since for every ¢’ the chain growth is bounded by (1 + ¢’")« we have that,

po L
~(1-0a

except with probability neg(T).
We define bad2 as the event that this does not hold.
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e By Lemma 5.4.2 we have that for every 6”, the number of blocks stamped by the Adversary
during this period is upper bounded by

(14 6")8t < T T

We define bad3 as the event that this does not hold.
Since we assumed that badl does not happen:

L4 8
(6

Bt = pnpt > pan > ;(mpL
(140)(a+pB) (14 d)np

Since np > a + B:
T ol
PP+ 0 P a+omp  (1+9)

This means that bad3 only happens with probability neg(7T').

To complete the proof we utilize the steps explained in 3.2 and apply a union bound while
eliminating the polynomial factors to conclude that this upper bound holds with probability
neg(T). O

Comparing our proofs for the simplified stamp model with the proofs in [3], this one is the
closest to its corresponding proof

Introducing delay into the analysis only forces us to replace the instances of « in it with the
delay adjusted v which emerged from the Chain Growth proof. With that, the rest of the proof
can proceed as normal since it only considers lengths of already mined, or in our case stamped,
blocks.

Additionally, enabling multiple stamps to be given out each round would only change the
numeric value of « (or v if we also add delay) and 8. This wouldn’t alter the proof in any
meaningful way, so this variation too appears quite simple.

We can therefore draw the conclusion that the Chain Quality property is mostly impacted by
the raw power of the honest and the adversarial party. Even in cases of adversarial interference
such as the creation of delay, it is only honest power that is hindered while the core of the proof
remains the same. This is in contrast to the Chain Growth property proof, which as we already
discussed is heavily influenced by the actions of the adversarial parties. As we will see in the
next section, the Consistency property and its proof is also deeply affected by the abilities of the
adversary, leaving Chain Quality as the one outlier in the analysis.

5.5 Consistency

After having a short break with Chain Quality we once again arrive at a property that varies
significantly from its original [3] version.

The Consistency property, simply put, states that no two honest players should hold chains
that differ by more than the last 7" blocks at any two points in time. This includes the same honest
player seen in two different rounds.
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From the very beginning of this proof attempt we notice a major difference:

Our model can’t have two honest players in the same round holding two different chains. This
happens simply because we have assumed that all messages are instantly delivered to everyone.
So, as long as the honest players have a consistent way to pick between two chains of equal length,
for example always considering the first one they obtained, they will always hold the same chain
in each round. Ifthis is the case, the only way for the Adversary to break the Consistency property
is to make a single honest player (and therefore every honest player) hold chains that differ in
more than the last 7" blocks in two different points in time.

Block Withholding: To begin with, the authors of [3] prove that the Adversary doesn’t
benefit from withholding blocks for long. This means that if the adversarial parties collaborate
to mine a large chain that they plan to release all at once to fork the chain Moreover, it means that
if enough time has passed since an adversarial block was mined, whether or not it was published,
the chances of it making it to the chain decrease. Therefore, the more time that passes without a
fork overtaking the current longest chain, the less chance it has in doing so.

In our model, the Adversary, or any player for that matter, lacks the ability to keep the blocks
they stamp a secret until it is convenient for them. Still, even if it is not exactly “withholding”
of blocks, we should show that a block that was stamped and published by the Adversary a
sufficiently long time ago won’t end up as part of an honest player’s chain.

Lemma 5.5.1. If a > (1 + §)5 for some 0 < § < 1 then, for every constant 0 < w < 1 there
exists a negligible function €(-) such that:

Pr [view <— EXEC : withholding-time(view) > wt] < €(5t)

Where withholding-time(view) is the longest number of rounds t such that, in viewthe Adversary
stamps a block b at round r and there exists some honest player i such that b first appeared as
15 chain at round r + 1.

Proof. Let us assume that this does not hold. For this reason we will consider the block b; that
was stamped by the Adversary at round . This block is then accepted by an honest party ¢ at
round s, such that: s — r > wt. We also care about block b;_, that is the most recent (smallest
k) non-adversarial block that is a prefix of block ;. The block ;_; was mined at some round
r’ < r therefore at least wt rounds have passed between r’ and s.

Since block b; first makes to an honest player’s chain at round s, every block that extends it
and was stamped in the rounds between r and s has to have been stamped by the Adversary. It
suffices to show that the Adversary couldn’t have possibly mined a sufficient amount of blocks
in that period.

As we did in the proof for the Chain Quality property, we will first define some events that
we would like to not happen with overwhelming probability.

e Atround r’ some honest player has a chain of length [ — k and at s some honest player has
a chain of length /. We already have a bound for the growth of a chain that is (1 — ¢’)at
except with probability neg(at) for any §’. With this we can say:

k> (1-08)awt

60



The event that this doesn’t hold will be bad1 and the probability of it happening is neg(/5t),
since we have assumed that o > (1 + 6)[.

We now know the number of rounds (or at least a bound for it) that have elapsed and can
move on to finding a bound for the number of blocks that could have been stamped in that
period.

e From the bound of adversarial blocks we know that for every ¢”, except with probability

e~ 5% the number of adversarial blocks that could have been stamped in that period is at
most:

(1+6")Buwt
The event that this doesn’t hold will be bad2.
As we have already said, all blocks from b;_j, to b; are adversarial and therefore:
k< (1+6")Bwt

If the events we have defined don’t happen we can combine our two inequalities for & to
obtain:

(1 - awt < (1+6")pwt

We conclude that:

Since this is true for all ¢’, §” we can configure them to be small enough that:
a<(1+0)p

which of course contradicts our initial assumption. O

The Block Withholding lemma guarantees that if an adversarial block has not been included
in the chain within a certain time frame, its chances of ever making it into an honest chain di-
minish

Divergence: First we note what it means for two players to diverge at a specific round. Two
chains C] and Cs diverge at round 7 in view if the last block that they have in common was
stamped before round 7.

Convergence Opportunities: Next we need to see how these divergences are resolved.

Definition 5.5.2. (Convergence Opportunities) A Convergence Opportunity occurs any time the
honest players of the protocol have a chance to all obtain the same chain.
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This is intuitively a really important moment that we would like to happen frequently. Any-
time such an opportunity succeeds we can be sure that all honest players have the same chain,
which is the very goal of our system. Conversely, in order for the Adversary to hinder the oper-
ation of the system and ruin its Consistency they would like for these opportunities to fail.

We can observe that anytime an honest block is stamped, it is sent out to every honest player
instantaneously and without fail. Because of this, a convergence opportunity occurs anytime an
honest block is stamped. If the Adversary has managed to split the players between two chains
of equal lengths and an honest player manages to stamp a block for one of the two the Adversary
then needs to also stamp a block on the other chain to keep the players split between them.

For the bounded delay case, this gets quite more complicated. Firstly the block that is mined
to create the convergence opportunity should be unique. Next, the existence of delay means that
we need to wait in order to be sure that blocks mined have reached all honest players.

A convergence opportunity in this scenario therefore involves:

1. A rounds of silence.
This is required to ensure that every honest player can obtain a chain of the same length.
These chains might still be different among players.

2. A single new block is mined.
Since every honest player has a chain of the same length, this means that the player that
mined this block has the longest chain in the entire protocol.

3. A rounds of silence.
This ensures that the single longest chain that was just mined successfully reaches every

honest player in the network. Now each and every one of them has the same chain.

Lemma 5.5.3. Assume there is an 0 < \ < 1 such that a > (1 + §)[3. Except with probability
e~ 2B oyer view — EXEC, there do not exist rounds r > v’ and players i, j such that i is honest
at round r and j is honest at round v’ and C (view) and C;fl (view) diverge at round s = r — t.

Proof. Here we see an example of standard induction over ' — r. For this we need to prove our
lemma for:

1. ' —r = 0, the base case and
2. ' —r = k + 1 where the lemma is true for ' — r = k, the induction step.

Of course if the two chains don’t diverge at round ' > r they don’t diverge at round r' = r
either. For this reason the induction step is reduced to proving the lemma for ' = r + 1. Adding
the base case to this we need only prove the lemma for:

r<r <r+4+1

We are going to do this through convergence opportunities. How many of those will there be
between rounds s = r — ¢ and r? Since in our simple model a convergence opportunity happens
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whenever an honest block is stamped we get (see the Chain Growth section) that there exists
0 < ¢’ < 1 such that:

Pr<(1-48)at] < e~ U %at)

So there are at least (1 — §")at convergence opportunities. The adversarial parties will then have
to ruin all of these and therefore will have to mine at least:

Ty = (1 -0t

blocks in that period that need to be part of an honest player’s chain at round s or later.
Note: Here is the point at which the authors of [3] make use of their block withholding lemma.
They do this because the blocks that take part in creating the divergence at round s might have
been mined before that round and kept secret, meaning the adversarial parties might already have
access to a chain longer than the one available to the rest of the players at that round. In our case
though this is impossible, since blocks are published instantly. Therefore if the adversary had
created some longer already at that point it would already be the longest chain of every player.
For this reason we only care about the blocks that are stamped by the adversary between rounds
sand 7’
We already have an upper bound for the adversarial blocks mined in the period between s and
r’. This is:

1+ )(t+1)8
blocks except with probability e ~(#%) Because of the assumption we made at the beginning we
know that o > (1 + §)3 and therefore the Adversary could have mined at most

1+w

1+ t+ 1)< ——(t+1

(1+)(t+ DB < T (t+Da

blocks. We can now pick our parameters w and &’ to be such that this measure is less than Tj:.
With this the chains could diverge at s only with probability e ~2(%%). O

As we can recall, [3] considers a different power relation between the honest and adversarial
parties, one that includes delay in it. With that the authors move to find a bound for the number

of convergence opportunities that occur in each period of rounds.
Theorem 5.5.4. For any A > 0, any p(-), (Hp cP ) satisfies (errorless) consistency.

stamp’ ¥ stamp

Proof. We take a view view in EXEC and players 7, j such that, in view ¢ is honest at round r
and j is honest at round 9 > r1. Let:

C1 = C;* (view)

Cy = C}*(view)

For every constant 0 < § < 1, by Lemma 5.4.3 the probability that C'; and C diverge at round
s=r1 — ﬁ is at most:

-QT7) _ o~ UT)
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By Lemma 5.3.1, except with probability e ~*(7) | the number of blocks stamped between rounds
s and r is smaller than:

T

(1+5)-a'm

=T

By using a union bound we get that the chains Cy and Cs don’t diverge except maybe in the last
T blocks. O

64



Chapter 6

Conclusion

6.1 Takeaways

What have we learned through this exploration?

The blockchain is a recent technology that has gone through rapid evolution and has gained
a lot of popularity focused mostly on its practical uses. To begin with we went through the math-
ematical and cryptographical foundation upon which the blockchain was created identifying the
main tools it requires. For our main chapters we explore some fundamental works of blockchain
analysis. These were the papers that managed to create a framework for formally analysing the
blockchain an proving its desired properties. Lastly we went through the process of defining a
blockchain protocol and proving some of its properties. Using something as simple as the Stamp
Model we managed to provide a showcase of how proofs on the blockchain work and how they
can be built upon to increase the model’s fidelity. We believe that this can serve two goals:

1. Serves as an educational tool for those unfamiliar with blockchain technology and its math-
ematical foundations. This is achieved by focusing on a small and simple model and in-
creasing complexity by pointing out how and why each part of the analysis change in order
to make it more complex and powerful.

2. Second, it offers a simplified framework to test and develop more complex concepts pro-
gressively We believe it can be useful to occasionally take a step back from full scale
models and try to understand how one can get there step by step.

6.2 Further Work

While our analysis focused on Proof of Work-based blockchains, there are multiple directions
for expanding this work, including exploring alternative consensus mechanisms and optimizing
blockchain architecture.

Proof of Stake: Everything we have talked about so far only considers blockchains that use
Proof of Work as their basis. This though is not the only option available.

We could perform the same type of exploration as we did in this thesis for the analysis of
Proof of Stake protocols introduced by the Ouroboros protocol [27]-[29]. Just like Proof of
Work selects users to publish blocks based on their ability to solve cryptographic puzzles (their
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work), Proof of Stake selects them based on the amount of currency (their stake) they have in the
blockchain. By doing this they require less computational power and therefore a smaller energy
cost while adopting the intuition that those with the largest stake in the protocol are likely to be
honest players. One specificaly interesting approach is the one by Algorand [16], [19] which
fully eliminates forks by developing a Proof of Stake voting system that elects a unique block at
each round.

After deconstructing the way a Proof of Stake system is analyzed by trying to recreate it with
a simple model similar to the one in this work it would be interesting to see how one moves to
that from a Proof of Work system. What changes exactly have to be made in each part of the
analyses of the two in order to bridge their gap?

It should also be simple enough to create the equivalent Stamp Model for the Proof of Stake
scenario and use that to slowly build up the analysis of a full model.

Multiple Chains: We talked about deconstructing the way people have proved properties about
blockchain protocols but there are in fact ways to deconstruct the blockchain idea itself. This is
explored in papers such as [30] and [31], the basic premise of both being the same: how can we
improve the performance of blockchain protocols through the parallelization of their processes?
Performance here refers to the throughput and the latency of the protocol - in contrast to what
we have seen up to now - real world time is taken into account. This provides new avenues for
exploration and simplification, as our Stamp model has to be adapted to thinking about the round
duration, network capacity and delays.

On the sightly simpler side, [30] decides to do this by trying to increase the number of chains
the players are working on. One of the interesting aspects of this paper is the way the work of
the players is split between these parallel chains and how this set of chains is then compiled into
a single unique ledger for all to follow.

Taking this idea further, [31] deconstructs the way the mining and committing process itself
works. As we have already discussed blockchain protocols need to have the transactions orga-
nized and published to the network, have these transactions be ordered and finally decide which
ones will make it into the final chain / ledger. For this reason the chain is split into three parts
that each perform one of these functions:

e Transaction blocks that simply contain published transactions and wait to be included in
the ledger.

e A proposal chain to keep proposal blocks (blocks that point to transaction blocks) in a
rough order, split into levels each of which will have one ”leader” (a voted upon block).

e Multiple chains, in the style of [30] that are used for voting which proposal block is the
leader of each level.

Both of these approaches achieve much better throughput for bitcoin-like blockchain proto-
cols.

To begin with, we could apply the ideas of [30] and [3] to our own simple Stamp model. With
this we could explore exactly how these two papers try to improve the blockchain protocol with
a bare-bones system as the basis. The idea of deconstructing the blockchain models fits naturally
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with deconstructing the analysis of such models so we believe it would be a worthwhile effort
for the sake of better understanding and explaining the blockchain and the ways it can improve.

67






Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/
bitcoin.pdf, 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf.

J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman & Hall/CRC
Cryptography and Network Security Series). CRC Press, 2020, ISBN: 9781351133012.
[Online]. Available: https://books.google.gr/books?id=Rso0EAAAQBAJ.

R. Pass, L. Seeman, and A. Shelat, Analysis of the blockchain protocol in asynchronous
networks, Cryptology ePrint Archive, Paper 2016/454, https://eprint.iacr.org/
2016/454, 2016. [Online]. Available: https://eprint.iacr.org/2016/454.

J. Garay, A. Kiayias, and N. Leonardos, The bitcoin backbone protocol: Analysis and
applications, Cryptology ePrint Archive, Paper 2014/765, https://eprint . iacr.
org/2014/765 [current version], 2014. [Online]. Available: https://eprint.iacr.
org/2014/765.

J. A. Garay, A. Kiayias, and N. Leonardos, The bitcoin backbone protocol with chains
of variable difficulty, Cryptology ePrint Archive, Paper 2016/1048, https://eprint.
iacr.org/2016/1048, 2016. [Online]. Available: https://eprint . iacr.org/
2016/1048.

L. Ren, Analysis of nakamoto consensus, Cryptology ePrint Archive, Paper 2019/943,
https://eprint . iacr.org/2019/943, 2019. [Online]. Available: https://
eprint.iacr.org/2019/943.

M. Okun, “Agreement among unacquainted byzantine generals,” in Proceedings of the
19th International Conference on Distributed Computing, ser. DISC’05, Cracow, Poland:
Springer-Verlag, 2005, pp. 499-500, ISBN: 3540291636. DOI: 10.1007/11561927_40.
[Online]. Available: https://doi.org/10.1007/115661927_40.

M. Okun and A. Barak, “Efficient algorithms for anonymous byzantine agreement,” Theor.
Comp. Sys., vol. 42, no. 2, pp. 222-238, Jan. 2008, ISSN: 1432-4350. DOI: 10. 1007/
s00224-007-9006-9. [Online]. Available: https://doi.org/10.1007/s00224-
007-9006-9.

A. K. Miller and J. J. Laviola, “Byzantine consensus from moderately-hard puzzles : A
model for bitcoin,” 2014. [Online]. Available: https : //api . semanticscholar .
org/CorpusID:14522813.

69


https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://books.google.gr/books?id=RsoOEAAAQBAJ
https://eprint.iacr.org/2016/454
https://eprint.iacr.org/2016/454
https://eprint.iacr.org/2016/454
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2019/943
https://eprint.iacr.org/2019/943
https://eprint.iacr.org/2019/943
https://doi.org/10.1007/11561927_40
https://doi.org/10.1007/11561927_40
https://doi.org/10.1007/s00224-007-9006-9
https://doi.org/10.1007/s00224-007-9006-9
https://doi.org/10.1007/s00224-007-9006-9
https://doi.org/10.1007/s00224-007-9006-9
https://api.semanticscholar.org/CorpusID:14522813
https://api.semanticscholar.org/CorpusID:14522813

[10] R. Pass and abhi shelat, Micropayments for decentralized currencies, Cryptology ePrint
Archive, Paper 2016/332, 2016. [Online]. Available: https://eprint . iacr.org/
2016/332.

[11] A.Kiayias, N. Leonardos, and D. Zindros, Mining in logarithmic space, Cryptology ePrint
Archive, Paper 2021/623, 2021. [Online]. Available: https://eprint . iacr.org/
2021/623.

[12] E.N.Tas, D. Tse, L. Yang, and D. Zindros, Light clients for lazy blockchains, Cryptology
ePrint Archive, Paper 2022/384, 2022. [Online]. Available: https://eprint.iacr.
org/2022/384.

[13] A. Kiayias and G. Panagiotakos, Speed-security tradeoffs in blockchain protocols, Cryp-
tology ePrint Archive, Paper 2015/1019, 2015. [Online]. Available: https://eprint.
iacr.org/2015/1019.

[14] C.HOSKINSON, Why we are building cardano,https://whitepaper.io/document/
581/cardano-whitepaper, 2017. [Online]. Available: https://whitepaper.io/
document/581/cardano-whitepaper.

[15] V. Buterin, Ethereum: A next-generation smart contract and decentralized application
platform, https : //ethereum. org/content /whitepaper /whitepaper - pdf /
Ethereum_Whitepaper_-_Buterin_2014.pdf, 2014. [Online]. Available: https:
//ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-
_Buterin_2014.pdf.

[16] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, Algorand: Scaling byzantine
agreements for cryptocurrencies, Cryptology ePrint Archive, Paper 2017/454, https :
//eprint.iacr.org/2017 /454, 2017. [Online]. Available: https://eprint.
iacr.org/2017/454.

[17] C. Natoli and V. Gramoli, The balance attack against proof-of-work blockchains: The r3
testbed as an example,2016. arXiv: 1612.09426 [cs.DC]. [Online]. Available: https:
//arxiv.org/abs/1612.09426.

[18] C. Natoli and V. Gramoli, “The balance attack or why forkable blockchains are ill-suited
for consortium,” in 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2017, pp. 579-590. DOI: 10.1109/DSN.2017 .44,

[19] J. Chen and S. Micali, Algorand, 2017. arXiv: 1607 .01341 [cs.CR]. [Online]. Avail-
able: https://arxiv.org/abs/1607.01341.

[20] Y. Sompolinsky and A. Zohar, Accelerating bitcoin’s transaction processing. fast money
grows on trees, not chains, Cryptology ePrint Archive, Paper 2013/881,https://eprint.
iacr.org/2013/881, 2013. [Online]. Available: https://eprint . iacr.org/
2013/881.

[21] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, SPECTRE: A fast and scalable cryptocur-
rency protocol, Cryptology ePrint Archive, Paper 2016/1159, 2016. [Online]. Available:
https://eprint.iacr.org/2016/1159.

70


https://eprint.iacr.org/2016/332
https://eprint.iacr.org/2016/332
https://eprint.iacr.org/2021/623
https://eprint.iacr.org/2021/623
https://eprint.iacr.org/2022/384
https://eprint.iacr.org/2022/384
https://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2015/1019
https://whitepaper.io/document/581/cardano-whitepaper
https://whitepaper.io/document/581/cardano-whitepaper
https://whitepaper.io/document/581/cardano-whitepaper
https://whitepaper.io/document/581/cardano-whitepaper
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://arxiv.org/abs/1612.09426
https://arxiv.org/abs/1612.09426
https://arxiv.org/abs/1612.09426
https://doi.org/10.1109/DSN.2017.44
https://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341
https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2013/881
https://eprint.iacr.org/2016/1159

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Y. Sompolinsky, S. Wyborski, and A. Zohar, PHANTOM and GHOSTDAG: A scalable
generalization of nakamoto consensus, Cryptology ePrint Archive, Paper 2018/104,2018.
[Online]. Available: https://eprint.iacr.org/2018/104.

R. Pass and E. Shi, FruitChains: A fair blockchain, Cryptology ePrint Archive, Paper
2016/916, https : / / eprint . iacr . org/ 2016 /916, 2016. [Online]. Available:
https://eprint.iacr.org/2016/916.

A. Kiayias, A. Miller, and D. Zindros, Non-interactive proofs of proof-of-work, Cryptology
ePrint Archive, Paper 2017/963, https : //eprint . iacr . org /2017 /963, 2017.
[Online]. Available: https://eprint.iacr.org/2017/963.

J. Garay, A. Kiayias, and N. Leonardos, The bitcoin backbone protocol: Analysis and
applications, Cryptology ePrint Archive, Paper 2014/765, https://eprint . iacr.
org/archive /2014 /765 /20140930 : 123325 [original version], 2014. [Online].
Available: https://eprint.iacr.org/archive/2014/765/20140930:123325.

J. Garay, A. Kiayias, and N. Leonardos, The bitcoin backbone protocol: Analysis and
applications, Cryptology ePrint Archive, Paper 2014/765, https://eprint . iacr.
org/archive/2014/765/20170214:030133 [intermediate version], 2014. [Online].
Available: https://eprint.iacr.org/archive/2014/765/20170214:030133.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, Ouroboros. A provably secure proof-
of-stake blockchain protocol, Cryptology ePrint Archive, Paper 2016/889, https : //
eprint.iacr.org/2016/889, 2016. [Online]. Available: https://eprint.iacr.
org/2016/889.

B. David, P. Gazi, A. Kiayias, and A. Russell, Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake protocol, Cryptology ePrint Archive, Paper 2017/573,
2017. [Online]. Available: https://eprint.iacr.org/2017/573.

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas, Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availability, Cryptology ePrint Archive,
Paper 2018/378, 2018. [Online]. Available: https://eprint.iacr.org/2018/378.

M. Fitzi, P. Gazi, A. Kiayias, and A. Russell, Parallel chains: Improving throughput and
latency of blockchain protocols via parallel composition, Cryptology ePrint Archive, Pa-
per 2018/1119, https://eprint.iacr.org/2018/1119, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1119.

V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, Deconstructing the blockchain
to approach physical limits, Cryptology ePrint Archive, Paper 2018/992, https : / /
eprint.iacr.org/2018/992, 2018. [Online]. Available: https://eprint.iacr.
org/2018/992.

R. Canetti, Universally composable security: A new paradigm for cryptographic proto-
cols, Cryptology ePrint Archive, Paper 2000/067, https://eprint.iacr.org/2000/
067, 2000. [Online]. Available: https://eprint.iacr.org/2000/067.

71


https://eprint.iacr.org/2018/104
https://eprint.iacr.org/2016/916
https://eprint.iacr.org/2016/916
https://eprint.iacr.org/2017/963
https://eprint.iacr.org/2017/963
https://eprint.iacr.org/archive/2014/765/20140930:123325
https://eprint.iacr.org/archive/2014/765/20140930:123325
https://eprint.iacr.org/archive/2014/765/20140930:123325
https://eprint.iacr.org/archive/2014/765/20170214:030133
https://eprint.iacr.org/archive/2014/765/20170214:030133
https://eprint.iacr.org/archive/2014/765/20170214:030133
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2017/573
https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2018/992
https://eprint.iacr.org/2018/992
https://eprint.iacr.org/2018/992
https://eprint.iacr.org/2018/992
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067

[33]

[34]

[35]

72

A. Kiayias and G. Panagiotakos, On trees, chains and fast transactions in the blockchain,
Cryptology ePrint Archive, Paper 2016/545,2016. [Online]. Available: https://eprint.
iacr.org/2016/545.

J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” in 2005 International Conference
on Dependable Systems and Networks (DSN’05), 2005, pp. 402—411. DOI: 10.1109/
DSN.2005.48.

R. Pass and E. Shi, Hybrid consensus: Efficient consensus in the permissionless model,
Cryptology ePrint Archive, Paper 2016/917,2016. [Online]. Available: https://eprint.
iacr.org/2016/917.


https://eprint.iacr.org/2016/545
https://eprint.iacr.org/2016/545
https://doi.org/10.1109/DSN.2005.48
https://doi.org/10.1109/DSN.2005.48
https://eprint.iacr.org/2016/917
https://eprint.iacr.org/2016/917

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος σχημάτων
	Εκτεταμένη Ελληνική Περίληψη
	Blockchain
	Εισαγωγή
	Εργαλεία

	Ανάλυση
	Η πρώτη ανάλυση
	Εισαγωγή στις καθυστερήσεις
	Επιστροφή στην πρώτη ανάλυση
	Μια επιπλέον οπτική

	Το Μοντέλο των Σφραγίδων
	Παραλλαγές
	Ανάπτυξη Αλυσίδας
	Ποιότητα Αλυσίδας
	Συνέχεια


	Κείμενο στα αγγλικά
	Introduction
	Outline
	The Blockchain
	History
	Structure


	Mathematical Background
	Probabilistic Polynomial-Time Algorithms
	Negligible Functions
	Hash Functions
	Chernoff Bound
	Union Bound

	Construction
	Framework
	Example Proof

	Analysis
	The Backbone
	Introduction to Delays
	Chain Growth
	Chain Quality
	Consistency
	Liveness and Persistence

	The Backbone with delay
	Further Exploration

	The Stamp Model
	Definition
	Variations
	Chain Growth
	Chain Quality
	Consistency

	Conclusion
	Takeaways
	Further Work



