EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIESTON

TOMEAY TEXNOAOTIAY IIAHPO®OPIKHE KAI YIIOAOTISTON
EPrALTHPIO Y YSTHMATON TEXNHTHY NOHMOSYNHY KAI MAGHILHE

Graph Neural Networks for Optimal and Efficient
Generation of Textual Counterfactuals

DIPLOMA THESIS
by

Dimitris Lymperopoulos

EnBAEnwyv: Tedpyiog Stdpou
Koadnyntic E.M.IL

Adrva, OxtodBploc 2024

P2
55

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Tougoc Teyvohroyioc IIAnpogopiniic xar YTrohoylotddv
Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

9
=
A€ I
X, T S
NI
v HE

¢
1 $=?
r

Graph Neural Networks for Optimal and Efficient
Generation of Textual Counterfactuals

DIPLOMA THESIS
by

Dimitris Lymperopoulos

EnBAenwyv: Tedpyiog Stduou
Kodnyntic E.M.IL

Evyxpldnxe and v teiuels) e€etaotny| emitpon) Ty 24" OxtwfBplou, 2024.

Fedpyioc Ltdpou
Kadnyntic E.M.IL

Adavdoioc Boulddnuog
Enixovpoc Kadnyntic E.M.IL

Stégpavoc KoAhog
Oudtipoc Kadnyntic E.M.IL

Adhva, OxtodBploc 2024

AHMHTPHE AYMIIEPOIIOYAOYX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Dimitris Lymperopoulos, 2024.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

Ou E&nynoeic ye Avuinapdderypo nopéyouy autiohoyio Ue T Lop@T] aAAXY @Y ToU TEETEL VoL YIVOUY TROXEWUEVOL
€var povtého var AdBet plar Stapopetid] amdgaon. ‘Otav To v Aoyw yovtého elvon évag Tadlvountnc uadpou
xoutioV xou 1 eloodog amotehelton amd BeSOUEVO XEWEVOU, TOAAO CLCTAUATA EENYAOEWY UE OVTLIOPAOELY O
TeooTardolY VoL AOXTACOUY YVOOELS CYETIXA UE TNV ECWTERIXT AELTOURYIN TOU LOVTEAOU TROTOTOLOVTAS EAXPEMS
TG apyée meptntwoels. 2oT600, o TEplocoTEPa amd auTd elvor uToAoyloTXE Samavned AOYw TOU TEPACTIOU
YWOEOU EVUARAXTIXGY ETUAOYOY ToU TEENEL var ovolnTHoel xovelc dtay peTafBdAAel éva xelpevo.

Ye auth) N Slatelfn, Tpotelvouyue TN Yprion TwWV TEACEAUTA EVBOXLOUVTWY UOVTEAWY Bothdg uddnong mou Asttoup-
yoLv elxd ot deBouéva Sounuéva pe Ypdgpous, ta Aeydueva Nevpwvixd Aixtua Fedgwy (NAT). Hopovoidloupe
éva cUOTNUA Ylat T1) dnovpyio onuoctohoyind ENEEERYACUEVMV XEWWEVLV, YVWO TOY WS VTLYUTIXES TapeUfdoele,
oL onoleg aAAGCouy TNV TEOBAEdT TOU YOVTEAOU, TUPEYOVTOC £TOL ULl LOpPY) EENYNOEWY UE AVTIRUPAEBELY Ol Yid!
T0 povtého. To olotnua yenowonotel évay eldixd tTOno ypaphuatos mov eivan Yvwotde we dephc Yedpos (4
drypdgpoc) woll pe évo NAT ntou avantuEope €10l HGOTE Vo TPOCOUOLWVEL TNy AUom yia to Optoydvio TIpdBAnua
Cpopuixhc Avddeone. Kotd) Sidpxeta Twv TeLpadtony Hos, avadetxvOOUUE TOV EVENXTO Yopax TR TOU GUGTN-
potog xan oulntdpe moAhamiole cuPBBacuols 660V aPopd TNV ENEENYNUATXOTNTA, TNV EAAYLOTOTOMGN TKV
odMhary@v xon Ty toydtnTa. Alohoyolue to cloTnud uoc oe dVo mpoPfAfupata EPL - Suadur tafivounon
cuvatcUAUATOS Xat TaEvouNon Yeudtwy - xat delyvoupe &TL oL TopayOUeEVES ahhayEg elvon avTideTnés, VonuaTixd
0pUEg xou eENAYLOTES, EVG 1) OAY) Blodixacio Topauével onuavTixd Ty 0Tepr) o oyéoT Ue dAAA TapoUoLla oOY Y EoVaL
CUC THUATOL.

AéZeig-xhetdid — Nevpovind Aixtua I'edgwy, Eényroeic ye Avtinopdderyua, Yuotiuata EEnyoewy ye
Avunapdderypa, Awepeic I'edgot, Opdoyivio HpdBinua Ieauuxric Avddeong

Abstract

Counterfactual explanations provide reasoning in the form of changes needed to be made in order for a model
to make a different decision. When the model in question is a black-box classifier and the input consists of
textual data, many counterfactual editors attempt to gain insights about the inner workings of the model
by slightly altering the original instances. However most of them are computationally expensive due to the
massive space of alternatives one has to search when altering a text.

In this thesis, we propose using the recently thriving deep learning models which specifically operate on graph
structured data, called Graph Neural Networks (GNN). We present an editor that generates semantically
edited inputs, known as counterfactual interventions, which change the model prediction, thus providing
a form of counterfactual explanations for the model. The editor utilizes a special graph type knows as a
bipartite graph (or bigraph) along with a GNN that we developed so that it simulates the solution to the
Rectangular Linear Assignment Problem (RLAP). During our experiments, we showcase the editor’s flexible
nature, and discuss multiple trade-offs regarding explainability, minimality and speed. We test our editor
on two NLP tasks - binary sentiment classification and topic classification - and show that the generated
edits are contrastive, fluent and minimal, while the whole process remains significantly faster than other
state-of-the-art counterfactual editors.

Keywords — Graph Neural Networks, Counterfactual Explanations, Counterfactual Editors, Bipartite
Graphs, Rectangular Linear Assignment Problem

Euyaplotieg

Auté 1o €pyo Bev B Aoy duvatd ywelc TV unootiplEn TOAAGY avipdrwy. Euyopiotd tohd tov emPBrénovta
pou, %x. Xtduou I'etdpyio, yioo Ty euxaupla TOL POU EBWOE VO EXTOVACK TNV BITAWUATIXY HOL gpyasid GTO
gpyootiplo Xuotnudtwy Teyvntic Nonuoolvne xaw Mddnone. Euyapioted enilone v Mapio Auprepoaiou xou
Tov [Nidpyo Puhavdplovd yia) otevy cuvepyaoio xou utooThelEn Toug xod’ 6N TN Bidpxeia eEepelivnong TwV
HOUVOURLWV OUTEOV AVTIXEWEVWY.

IToAO onpovTiny Yo epéva NToy oxOUol 1 CLVALGUNUTIXY CUVELGPOEE TNS OLXOYEVELNS Xl TWV PIAWY JOoU TTou
frav dimha wou oe xdde duoxorio. ISaltepa Yo leho va euyoplothiow Toug Yovelc wou, xadne xou Toug TAéov
ouvadéhgoug wou Idvvn, Bopwva, I'iideyo xou Nixo, ye toug onoloug Eenepdoaye xdde eunddio ta teheutola
aUTAd YedviaL.

Anuntene Avunepénourog, Oxtdfpetog 2024

11

Contents

Contents

List of Figures

1 Exztetopévn Ilepiindn ota EAANvixd

1.1

1.2

1.3

14

Oewenmind TrOPodpo
111 Awepeic Tpagor . . oo oo oo
1.1.2 Neupovixd Alxtva pdpov . . 00000
1.1.3 E&nydoeic ye AVTIMOEABELYUO « « « o v o
1.1.4 Opdoydvio HpdBhnua eapuixic Avddeoneo oo oL
Ipotewduevn MEGOBOC L
121 BUveloQop€g L
1.2.2 IIpoTEWVOUEVO LOOTNUO « « « o o v v v v v it e
IMewapotind Mépog o o o oo o
1.3.1 X0voha Aebopévoy xow METPIES . . . o v v o oo
1.3.2 Talivountée xon AvToywVICOUEVOL TUVTOANTES .« o o v v v v v v o e e e
1.3.3 Iepwypoph Mewpaudmedv . . o o
134 ATMOTENEOUOTA . . o v v v o
BUUTEQSOHATO « o o v v v v v e e e e e e e e e e e e
141 Bu0ATNom . . . oo
1.4.2 Tewixdtepoc Avtixtumog xan HOuwey . . o o o o 0 oo oo
1.4.3 Mehhoviiréc KateuOOVoelc . . . o o o o o e e

2 Introduction

3 Machine Learning

3.1 Learning Categories
3.2 Training a Neural Network
3.2.1 Basic Concepts
3.2.2 Generalization and Overfitting
3.3 Deep Learning
3.3.1 Multi-Layer Perceptron (MLP)
3.3.2 Convolutional Neural Networks (CNN)
3.4 Natural Language Processing
3.4.1 Embeddings.
3.5 Large Language Models
3.5.1 LLM Architecture
3.5.2 Pretraining and Fine-Tuning
3.5.3 Computational Complexity
4 Graphs
4.1 Graph Theory Basics
4.2 Bipartite Graphs00

13

16

19
20
20
21
23
23
25
25
26
28
28
29
30
31
35
35
36
36

37

Contents

5 Graph Neural Networks (GNN)

5.1 Unique Characteristics o
5.1.1 Motivation e e e e e e
5.1.2 Permutation Invariance
5.1.3 Weisfeiler-Lehman Test

0.2 Taxonomy
5.2.1 Task Type. o e
5.2.2 Architecture e e
5.2.3 Training Type o e

5.3 GNN Models e

5.3.1 Original Graph Neural Network

5.3.2 Variants e
5.3.3 General Frameworks

6 Counterfactual Explanations

6.1 Definitions L
6.2 Counterfactual Interventions
6.3 Related Work e
6.3.1 Textual Counterfactuals
6.3.2 Counterfactual explanations using GNNs

7 Rectangular Linear Assignment Problem
7.1 Problem Formulation L e
7.2 Deterministic Approaches
7.2.1 Hungarian Algorithm
7.2.2 Karp’s Algorithm L
7.3 GNN Approach e
7.3.1 Encoder/Decoder
7.3.2 The convolution module L oL
7.3.3 Loss Function

8 Proposal

8.1 Contributions e
8.2 Proposed Method L
8.2.1 Graph creation

8.2.2 Substitution pairs computation

8.2.3 Counterfactual Generation e

9 Experiments

9.1 Preliminaries
9.1.1 Dataset e e e e e
9.1.2 Evaluation Metrics e
9.1.3 Classifier Models e
9.1.4 Counterfactual Editors

9.2 Editor Experiments e e e e
9.2.1 Editor Variants e e e
9.2.2 Trade-Offs e

9.3 Results.
9.3.1 Overall Performance
9.3.2 Variant Comparisons e
9.3.3 Qualitative Results

10 Conclusion

10.1 Discussion o . e e e
10.2 Broader Impact and Ethics Lo
10.3 Future Work e e e e

Contents

11 Bibliography 97

15

Contents

16

List of Figures

1.1.1 "Eva mopdBetyyor SWEEOUE YEAPOU . . v v v e 21
1.1.2 H apyrtextovixs) Tou mpotewvduevou poviéhov NATL. Yto eninedo cuvéMEne x6uPwv, To yopox-

TNELO TS TV XOUPWY EVNUEROVOVTUL YLoL GUVORXE S > 2 emavokfiberc. o oL L. 24
1.2.1H pofy tng pefodou Wac. . . o o v o 26
1.3.1 Apywd xelpevo xan enelepyaopéva XEWEVA oand BLUPOPETIXOUE CUVTANTES. . . . o o o o o 34
3.2.1 Shallow Neural Network of One Neuron - Perceptron [38] 41
3.2.2 Examples of activation functions. L oL L 41
3.2.3 ReLU activation function and variants. L L 41
3.3.1 Multi-layer Perceptron with one hidden layer of 5 units. [116] 44
3.3.2 Typical CNN architecture - LeNet. [116] 45
3.4.1 Visualization of Embedding using PCA. [33] 46
3.4.2 Autoencoder Architecture. 47
3.5.1 Self-Attention Mechanism L L 49
4.1.1 Representation of undirected graph. Lo o o 51
4.1.2 Graph reprentation examples L o 52
4.2.1 An example bipartite graph L L 53
5.1.1 Permutation in the adjacency matrix. L L o 57
5.1.2 Two isomorphic graphs [97] L 57
5.3.1 Comparison of 2D and Graph Convolution [107] 62
7.2.1 Example graph oL e 73
7.3.1 The architecture of the proposed GNN model. In the node convolution layer, node attributes

are updated for a total of S > 2 iterations. Lo 76

8.2.1 The pipeline of our method. In the first stage, we construct a bipartite graph using words as
nodes, and in the second stage we utilize a GNN to get feasible substitutions that approximately
solve the RLAP. In the final stage, we use beam search to change appropriate words of the

original dataset, thus getting a new counterfactual dataset. [55] 80
9.1.1 An example of a review labeled as ’positive’ from the IMDB Reviews Dataset 84
9.1.2 An instance labeled as 'Rec’ from the 6-class version of 20 Newsgroups Dataset 85
9.3.1 Original input and edited inputs from different editors. The changes that each editor performed

are highlighted in red color. 93

17

List of Figures

18

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

19

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

Kadde ta poviéha enelepyasioc puowic yhdooos (EPL) yivovton 6ho xou mo avomdonacto uépoc Twy di-
adixaoldy AMdne amo@doswy, 1 avdyxn Yo eREENYNUATIXOTATO XoL EQUNVEUCUOTNTO €Yel xoTaoTel ulotng
onpactac. To wovtéha autd yeNoLLoTOLUVTUL EURENS OF BLAPOPES EQUOUOYES, OTWS 1) avdhuoy cuvaloiuaTog,
N T€vounon Geudtev, 1 aUTOUITN HETAPEAUCT) XL Ol TEdxTopec cuvolthiog. Ot ano@doels Toug €youv Guy VA
ONUAVTIXEC ETUNTAOOELS, ENNEEALOVTAC To TAVTA, and CUCTACELS TPolovTwy Péyel eyxploeic doavelwv xat By veo-
oelg uyelovouxnc nepldardne. Qot6c0, 1 GLoT PadEoL-xoUTION TOAAGDY e€eMypévmy poviéhwy ERT, 1blwe twv
npooeyYloewy mou Boocilovtan ot Badid wddinom, dnuoupyel TPOXAACELS Yo TNV XaTavéNan ToL TEOToL AMdng
OUYXEXQPWEVWY amoPdoewy. AuTth 1 adla@dvela UTopel Vo UTOVOUEVGEL TNV EUTLOTOGUVY) XL Vo TEPLOPIOEL TNV
gLplTEEN LIOYETNON AUTWY TOVY TEYVOAOYLWY OF Xplowoug xat evalodntoug Topelc.

AeBouévmv Tev LYNAGY BLaUBEVUETLY TV UTHPYOLY, elvor ETLTAXTLXY avdyXT 1) avdmTuEY Yedddwy Tou unopovVY
VoL tapéyouV Gogelg, aLOTOINOIIES YVIOOELS OYETIXE UE TN CUUTEPLPoPd Twv poviéawy E®I'. Mo noAAd un-
ooy buevY Tpoceyylon elvan 1 dnlovpyia e&nyfoewy pe avunapddetypo. O e€nyroelc pe avtinopddetypa etvon
unodetixd oevdpla mou detyvouv e eNdytote ahhayéc oty elcodo unopolv vo 0dNyHoouV GE BLUPORETIXG
anoteléopata Tou wovtéhou. Ilupovoidlovrac autd to evahhaxtind oevdpla, ol e€nyfoeic autés Bondolv toug
YENOTES VO XAUTAVOTOLY TOLL YOPAXTNELO TS €Y 0LV PEYOAUTERY ETppon] oTn Sodixacia AMdng amopdoewy Tou
povtélou. Autdg o tinog e€iynong eivon Witepa ToAUTIWOG eneldr| evduypapuiletan ue v avipdmivy hoyixn:
1 xatovonon cevoplwy "t Yo cupfel av" elvon évag pualxdg Teomog yia Toug avipdnoug va avtthauBdvovtan Tig
UTLODELS OYECELS Ol VAL AoBAVOUY TEXUNPIWHUEVES OTOQATELC.

Avutn n SwtePn etodyel wio véa tpocéyyion Y T dnuoupyio e€nyroewy pe avtinapdderypo yio wovieho EQL,
XOAUTTOVTOC Lol Xplolun ovdyxr yio epunvevoluotnta otov Touéa e Teyvntric Nonuootvne. Avtlolue éun-
vevon and o [50] xou mopovoidloupe éva Nevpwvixd Aixtuo Tpdgwy (NAT) wovéd va emhlel to mpdBinua
optoydvioe ypouuxic avédeone (Rectangular Linear Assignment Problem - RLAP). Xpnowonowhvac autd
TO HOVTENO avTl TV Tapadootaxy alyoplduwy avdldeone yedewy, énwe o Ouyypikds akydpiduos 1 epyacio pog
emTLY YAveL onuoavtixr Bedtinon Tou ypovou extéreonc. Hoapéyoupe enlong o ohoxknpwuévn alohdynomn tou
ocuoTpaTdg Yog ot Bdpopa tpoPBAfuate EQL, anodewxviovtag v evehi&lo xan TNV omoTteAeoUoTIXOTNTE TOU.
Aivovtag éugact otny dnpviovpylo eEAdYLOTWY xal EVYAOTTWY Tapepfdoewy, dlac@aiilovue 6Tl oL TapaYOUEVES
enednyfoeic ebvar TG00 xatavonTtée 6GO Xo TEAX TS YENOWES, EVE 1) 6NN Bladuxaocio Topopéver tayitepn and
dAhoug obYypPovoLUS GUVTAXTEG EENYNOEWY YE OVTLIAUPADELY AL .

1.1.1 Awepeig I'pagor

H Sopn evéc yedgou eotidlel otic oyéoelc YeToll OVIOTATWY, XAMoTMOVTUC TNV €Tol éva XUTdAANAo péco
avomapdotaone dedouévewy ot ToAG medlo. Xe auth) T BlateBr) Yo yenowwomnowiel éva eldxd eldog yedpou,
YVWoTé ¢ dieprS Ypdpos Y amhd diypdpog.

Y Yewpla ypdpov, évac Siwephc ypdypoe (1 diypdpoc) elvan évac ypdpoc tou onolou ol xépPot (1 xopuéc)
UTopoLY Vo ywpeLoTolV ot 00 Blaywplouéva xar aveldptnta cUvola S xou T étol dote xavévae xoufog uéoa
070 (B0 alvolo va uny eivar yertovinde. Tumind, évac ypdgoc G = (V, E) elvon dyephc av 10 OVoho xOuPuv
Tou V' umopel va ywptotel oe dUo urnoctvora U, W étol dote UUW =V, UNW =) xou 6mou xdde axun
eumw € E ouvdéel évav x6uPo u € U ye évav xéuBo w € W. Auth n Sour| xahotd toug duepeic yedpoug
Wladtepa YpNolous ot HoVTEAOTONoT] oyéoewy UETAED BUO BLUPOPETIXDY TUTWY OVIOTHTWY.

Ta 800 cOvora U xou W unopoiv va dewendodv we ypwuatliogds Tou Yedpou ye dUo yphuoto: oV YewUotioe
xavelg 6houg toug xouPoug oto U pe €va ypouo xan 6Aoug toug x6pfouc ato W pe éva Slapopetind, xdie
ooepr) cUVOEEL XOPPOUS BIAPOPETIXOD YPOUATOS, OTIWS amauTe{ToN 0TO TEOBANUA YpwUaTiopol Yedpoy [86]. Autd
galvetar 6to Lyfua 1.1.1, 6mou to chvoro xoufwv U elvol YpwpaTiouévo e XOXHVO YpWUd Xt TO GOVOAO
xouPev W ue umhe yeoua. Avtideta, évag T€Tol0¢ YpnUatiopndq elvor adivatog oTny Tep(ntwor evog un Siuepolq
YeUPHUATOG, OTwe éva Telywvo: apol €vac xOUPBog YewUATIoTEL UTAE Xat €vag dANOG xOXxIvog, 1) TelTn X0puEn
TOU TELY®VOL GUVBEETAL UE XOPUPES oL TV 00 YpwUdTwy, eunodilovtag tTnv avddesy| Tng oe xdnoto and T
800 ypwuaToL.

Tuyvd yedgouue G = (U, W, E) vy va. supPolicoupe évay Siypdpo tou omolov 1 Siopépton anoteheiton and to
oUvoha x6uPwv U xou W ye to E va cupfohriler to abvoho twv axpdyv. ‘Evoc tétoiog ypdpos avanopiotato
ouvidwe and Tov Tivaxa dllwwxdtntac, o onolog elvan évae ntivoxac (0, 1)ueyédoue |U| x |W|. e avtdv tov

20

1.1. Bewpnuxd TndBadpo

Figure 1.1.1: "Evo napdderypo Sipepoic ypdpou

mivaea, 1 T tou otouyeiov i elvon 1 av de;; € E i € U,j € W, | ue anhd Aoyt av ot xéuPol ¢ xau j
elvon yertovixol. Awpopetind, 1 i Tou ototyelou elvan 0. Xe mepintwon mou o ypdgoc elvon otaduiouévos, To
otouyelo ij LoolUtan pe To Bdpog Tng axurg mou cuVBEEL auTolg Toug U0 xOUBouC.

Mo amd Tic To YVWOoTEC EQUOUOYES TV SWERDY Yedpwy elval ot tpoAfuata avtiotolyiong, onwe 1 avddeon
Véoewv epyaoiac, N xotavoun mépwv xou N o1 dixthou. e autd To mhalola, ol xéuBol oto éva ohvolo
AVTITPOCWTEVOUY TEAXTOPEC 1| EPYAGIES, VK oL x6pfol oto dAlo cbvoho avtinpoownebouy Yéoelg epyaoiag,
Topoug N xépfoug dixtiou. Ou axpée elvan cuvAtng oTaduouéves, Ye TNV Tin Tou Bdpoug Vo avTioTolyel ot €val
KGOTOG, OTWE OL WEEC TOV YpEeldleTal €vag TEdxTopag Yiol Vo extehéael Wi dedouévr epyoaoio x.Am. Ou dyepelc
Yedpol oty mapoloa BlateEllT] YPNOHIOTOLOUYTOL Yiot TNV AVTIXATACTOON AEEEWY and €vol SeBOUEVO Xelpevo, OToU
oTNY neplnTwor auth Yo avapepdpacTe ota 800 clvoha xOUPwv we ovrolo képuPwy TNYNS xou 0Uvodo KouPwy
oTéYOU.

1.1.2 Nevpwvixd Aixtua I'edpwyv

AceBopévou 6Tl 1 Boun Tou Ypdpou avadleton QUOIXE TavTol YO WoG, EPELEEUNXAY VEUR®VLXA BixTud TTOUL
Aettovpyolv anculdelac oe dedouéva autol tou tumou. Ta ypagpruota elvar un euxheldelo dedopéva xol ETOUEVKC
ta. GNN propolv vo opadonoindoiy otny eupltepn xatnyopla tne Tewyetpinic Mddnone [7]. To Nevpwvixd
Afxtuo Tedgpov (GNN) eivan yvwotd yio v exppaotin| Toug 1oy 0 xou Teéopota xepdlouvy dnuotxdtnta Adyw
TV AUEAVOUEVRY SUVITOTATWY TOUG OE BLAPOPES EPUPUOYES OTKC TO CUCTAUNTA CUCTICEWY XUl TO HOPLIXO
dotulixS amotinwpe [118].

Ta GNN dnuovpyhdnxav ylott ol neptocdtepol ouyPotixol ahyoptduol Machine ©§ Deep Learning efvon edixd
XOTUOXEVAGUEVOL YLOL VO XUAUTITOUY GUYXEXPLUEVO TUTO SEBOUEVWY, OTWS EXOVES 1) Xeluevo, oyt duws Ypdpouc.
OL neplocdTERES AVATAPACTICELS BESOUEVRY UTOPOUY Vol YEVIXELDYOUY GE Yedpoug, oAl To avtideTo dev Loy letL.
Yt yevue| mepintwon, ta ypaprota elvon mo ntoAdThoxa, €xovtog évay un otadepd aptdud un tadivounuévey
xOuPwv péoa oe yelToviES PETABANTOU peyEédoug, ot EMOMEVES To UTdpyovTa LoVTEAA BEV UTOpOoLY Vo Td
¥elprotoly. Emmhéov, ol neplocdtepol xovol alyodprdpol unodétouy tny aveloptnolo otyptotinwy. Autd dev
Loy Vel 6ty exterolvTal Epyaoieg oe enlnedo xduBou 6mou éva yedgnua elvon 1) eloobog Tou VEUEKVLXOU BLxTOOoUL
xa o oTyptotume efvon or xépPol tou. Téhog, o whaowd Xuvehixtxa Nevpwvixd Alxtua Aettoupyolv oe
eXOVES 1) YeVixOTeEpa xavovixd Théypata. H éMkewrn evtomdtnroc pe v napadootoxny| évvola ota dedouéva
yYedpwy, to avdaipeto uéyedog xou 1 opetoBAnTéTNTA ToLg OF PeTadéoelg xahoToly BOoXOAN TNV exTEAEDT) TNG
XxovoVIXAC GUVEAETC.

To Nevpwvind Alxtua Tpdgpwy propotv va talivoundoiv ye didgpopouc tpdmous: o) avdloya e To eninedo tou
yedpou oto onoio Aettoupyolv ot emnédou x6uBov, axuic 1 Ypopou, B) avdAoYo PE TNV dPYLTEXTOVIXY TTOU
oxohouolv 6e CUVENXTIXG, ETAVONUUBAVOUEDTD, OUTOXWOLXOTIONTES KO YWPOYPOVIXE Xl Y) avdhoYa UE TOV
TeéTO exnafdeuong oe emPBAendueva, un emBAenoueva xou pepds emPBiendueva. Iapaxdtw VYo avodboouue Tig

21

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

000 exBOYEC TUVEAXTIXGDY B TOWY Tou Ya ypnowonomdoly 6To TELPaPATIXNG PEQOC.

To Graph Convolutional Network (GCN) napouctdlet tny déa Tne Ypone W TPOCEYYIONS TRMTNG
t¢€nc Tou ChebNet mpoxeyévou vo UETELAGTEL 1) UTEETREOCUEUOYY. L TNV TeaypaTxoTnTa, unodétel K =1 xou
Amaz = 2. LNy B xateduvon to yovtéro emfBdiAel tov neploploud 0 = 0y = —0;. Metd v emBoin autdv
TOV TEPLOPLOPMY, 1 Aettovpyio cuvélEng elvau:

z#g g9 =0, +D TAD ?)x (1.1.1)

Agol damotainxe euneipd 6t o bpoc I, + D~ 2AD™ 7 mpoxahel aprduntier aotdiela, Xpnomonomﬂnxe
EvaL TEY Vaopa enavakavomkonomang O bpoc D" 2AD" = = A owu%otrotorouf}nxs ané D2 AD"2 = A émou

A=1I,+ Axou Dy = > Aij. ‘Oha T mapoméve pmopoly vor tepLypapoly ue auti T ouunoyh e&lowon:

H=Xxqgs = f(AXO) (1.1.2)

omou To f elvon Wit cuVdpTnoT evepyoTolnong xau emitpénovTo ToAATAES elcodol xou €odol Aoyw Tng Yeriong
TUWYAXWV.

To GCN elvan por €ixy) TepINTWoT QACUATIXAC TEOCEYYLONG ool umopel va exAnglel xou wg ywewh. Stnv
nopoxdtw e&lowaor, unopolue va Bolvue mwe Yo yivel 1 cuYXEVTPWOY TANEOPOELOY EVTOS TNE YELTOVdG. Xe
authY TNV Tepintwon o Bloc o xéufoc Yewpeltan enlong we yeltovde tou gautod Tov, evéc Buotoc.

> Ayury) YueV (1.1.3)

u€N (u)Uv

Auté 10 poviého yenowonoleltar TOAN) cUYVE we P€pog To GUVIETWY JPYLTEXTOVIXGDY 0T hoYOoTEY ViDL AOYw
NG AMAGTNTOC Xol TNE XAANG TELRAUATLIXNS TOU AmbdOoTC.

To Graph Attention Network (GAT) [92] viodetel tnv B¢ e npocoyfc tou npoteiveton and to [91]
TEOXEWEVOU VoL ATOPACIOEL TTOLL LEAY) TNE YELTOVLAC EVOS xOUBOU £Y0UV T CNUAVTIXES TANEOPOoplec. XTdY0C TOU
elvan vo pdder To oyetind Bden HeTall YEITOVIXGDY XOUBWY X0l ETOPEVKS SLPEREL OO TEOTYOVUEVES TIPOGEYYIoELS
onwe 1o GCN eneldy) 1 évvola g yeltovidg dev elval TpoxodoploUEVT) 1) TUVOUOLOTUTY).

H ouvextur Aettovpyla oplletar wg:

hkE) = o Z By (k) p(k=1)) (1.1.4)

u€N (u)Uv

omou ta Bden mpocoyng yio xdde x6uBo v Unopolv Vo 0pleTOlY KG:

o®) = softmax(LeakyReLU (a” [W® h{k — 1)||Ww B pk=1)1)) (1.1.5)

H petafinty a avtinpocnnedel éva 60VOho TapauéTewy Ue duvatdTnta expdinong. H avanopdotaon tTwy xpupay
ETUTEDWV 0PYIXOTOLE(TAL UE T Yo TNEIoTIXG xdle xOuBou xaL 1 cuvdptnon softmax Siacpoilelr 6tL to Bdpen
e npocoync adpollovton ot €val.

O nopandve unyaviopde ovopdleton self-attention, adhd to GAT ypnowwonowel emnhéov multi-head attention
yior vo atodepomolioeL T uddnomn xon vo xdvel to povtého mo exgpactixd. Ou axpiBelc eCiodoelg Bploxovro
oto [92].

To GAT elvar anoterecpatind agol and to Lebyn xoufou-yeitovo Pnopodyv va LTOAOYLOTOUY TOUTOYEOVAL.
Emniéov, to yeyédn Tne YeLTovide Tou elvar adidpopa xa UTopel Vo egopuooTel eUXOA OE ETOYWYWXE Yordnotoxd

TEOoBAYUoTAL.

22

1.1. Bewpnuxd TndBadpo

1.1.3 E&nynocic ue AvTinapddetypa

O eZnyoeic pe avtinapdderyya (counterfactual explanations) otov topéa tne Ene&nynowdtnrag oty Teyvnth
NonuooUvn (explainable AI) otoyebouv va dwoouv pio e€iynon yio to "Tu Yo npénet va odAdZel Tpoxelpévou
To povtého va AdBel o Swopopetin) amdgpaon". Emouéveg, unopolv ouclaotixd va e€nyroouv mpofBiédelg
HEUOVOUEVGDY TIEQLTTWOEWY, OTOU oL A TiE TOU TPOPBAETOUEVOL ATOTEAECUATOC EVOL GUYXEXPUIEVES THIES YoEOX-
TNELOTIXOY aLTAC TNE Tepinttwone. Eivar avtidetinée xou emhextinéeg, mou onpaivel 6Tl Beloxouv Tig eNdyloteg
CAAAYEC OTOV YOPEO TWVY YopaxTnelo Tixwy. Toautdypova, elvon edxoha xoatovontés and Toug avlp®drnoug oL
oLVRBKC TPOGPEROUY TOAMITAES BlapopeTixég amavTioelS yiot TNy (Bia tepintwon mou Ty e€nyolv e&loou xaAd.

Avtidetixég IHapeyBdoeic

H epyaoio pac Baolletow oty dnuiovpyla Avudetxddv HopeyPdoswy oc uio wopph E&nyrdocwv pe Av-
Tinapdderypo yior dedouéva xetwévou. Ouolaotixd, o oTéY0C Yac elval Vo avTiXaTao THOOUPE AEEElC amd To
0Py X0 HEUEVO UE XATEAANAC UTOXATAC TATYL, €TOL (OOTE Vo AARGEEL 1) TEOBAEdT TOU TaEVouNTY.

O avtipatixée nopepPdoeic ebvon Wlodtepa 80ox0Aeg AOYW NG HETHBANTAC Xal TOALBIACTATNS PUOTC TOU XELE-
VOU. TNV TeayUaTixotnTa, 1 dnwoveyio PEATIOTLY YAwoowwy napeufdoewy elvon €vor akyoprduxd 8Goxolo
TpOBANua, Tou anoutel anotelecuatixy BerTiotonoinoy Tou Ydeou avalATnone Ty evahhaxtixdy hocewy [115,
94, 54, 113]. "Eva dA\\o eunddlo mou TeEmeL vo. ZENEpAoTel lval TO YEYOVOC OTL 1) TOPOY WYY AVTLTOPAUDELYUATODVY
yioo xefyevo amantel onpacioloyixd onuavtixég enegepyaoiec mou uetofidihouy v medfiedn tou poviéiov,
BlaTNEdVTUC ToEdANAa TNV eUyEpela XaL TN cuvoyT Ttou xewévou. ‘Etol, oi avunopadetinéc nopeufBdoeic o
npofBAiuata EQI mpénet var ixavonotoly didgpopa Baoixd xprthpla

1. AvtidetixdtnTor To aviidetnd xelyevo o' npénet va odnyel oe dapopetind| npdPredn tou poviéhov
and 1o apyxd . Auth 1 odhayt| oty nedPredn avadeixviel Ty evaicUncio Tou HOVTENOU Ot OpLoéval
péen TOU XEWEVOU, TEOCPEROVTIC TANEOPOPIEC OYETIXG UE TO Tl 0ONYEL TIC AMOPACELC TOU.

2. Ehayrototntar O enelepyaciec mou amawtodvon yioo Tn petatpony) touv z o ' Ya mpéner vou elvon
ehdyloTeC oOUPWVOL UE XATOLL UETEIXT.

3. EvyAowttion To enelepyaopévo xelyevo &' npénel vo elvon ypoppotind opdd xon onuaclohoyixd cuvex-
wxd. H Swthenon tne suyépetog ebvar amopaltntn yiol vor Slo@allo Tel 6Tl To TapayVEV xEWEVo Bev elvol
HOVO UTOAOYLG TN €YXUEO GANS XoL EQUNVEUCLIO XaL UE VOMUO Yol TOUS ovlpdivoug YeRoTeC.

4. ANnBogdveia: To xéuevo nou npoxdntel UeTd Ti¢ eneepyaoieg TEémel Vo TUPUUEVEL EVTOG EVOS EUNOYOU
ebpoug g apywng eloddou. T mapddelyya, o pia gpyooior avdhuone cLVLoOAUATOS, N CAAYY KLog
povo AEENG mou peTafdihel onuovTnd To cuvaloUnuo oAAd dlatneel to apyxd Thaiclo xon vomua, etvou
TEOTWOTEPY OO TNV TATEN ETUVUDLATITWOT ULoG TEOTACTC.

Yty napovioa SN, eotidlouue xuplwe oty avtdenikdtnta, TNV eAaxiotétnta xou Ty euyépea. H anaitnon
akndogdveiag avornoleiton enlong wg mapevépyela 800 TEUYUATWY: TS XPNONE AVTLXATACTACEWY OF eninedo
MENG xan TNg vovétnong tou aptdpod Twv enelepyaouévey AEewv wg ueTpw edoylototntag. To mpdto
eyyvudtar 6Tt Yo ahhdEouy Aé&elc xou byt Ppdoels, eved To deltepo eEaopalilel 6Tl ol ahhaypévee Aéelc Ha elvon
600 10 BuVATOV AlydTEpEC.

1.1.4 OpYoyvwvio ITpoRAnpa Foapuixic Avadeong

“Evo Baoixd xopudtt authc tne datpric, Bacileton oto Opdoyidvio HpdPinua Feapuinic Avédeone (RLAP)
xon TV AVor Tou. To ouyxexpuuévo npdlinua anotelel pla Yevixeuor Tou meofAfuatos yeauuxrg avadeong
(LAP)- 9éhoupe vo avadéoouue évay aptdud n epyoaotdv oe m > n apldud mpaxtépwy, EAUYLOTOTOLOVINS TO
ouvohwd avtiotouyo xootog [6]. Egappoyéc undpyouy, T.)., 6TOUG TOPELS TNG oVAYVOPLONG AVTIXEWEVLY XAl
TOU TPOYPAUUUATIONOU. DTNV TepInTwo| Loc, QopuoLoUUE TO TEOBANUL UE T Lop@Y) EVOC TAUELEICUATOS EAGYLGTOU
Bdipouc oe €vay TEOXATAGKEVACUEVO BLUERY| YEAPO.

Ac Vewpriooupe éva otodutouévo Biypdpo G = (V, E), 6mou 10 olvoro axuwy E anotedelton and dhec tic
oTadulopéves oxuéc Tou Ypapruatog, xo To obvolo xoufwv V anotekeltal and to cUvolo mnyrc S ueyédoug
|S| = n xou To cbvoho otdyou T peyédouc |T| = m, étor bdote SUT =V, SNT = 0. H ebpeon Bértiotwy
oLVOETEWY UETAED TV x6PPrv Tou G elvar éva paxpoypovia avalntoduevo tpdBinua daxpltic BeAtiotonoinong
e Vewplag ypdpwy, 6mou 1 Bértioty avtiotolylo yia xdde xouBo s € S npénet va npocdioplotel YeTAEl evdg

23

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

npoxaoptopévou vodrplou cuvohou x6uBwy t € T. Trodétovrac 6Tt W cupBolilet To chvolo Bopdv v
mou amotehelton and to Bdpn Ghwv TV axudy e € E, évo taipracua edyiotov Pdpovs M C E ovolntd éva
UTOGUVORO TOU EAdPPVTEPOL duvatol adpoiopatoc Bapdv axpody Y we, we > 0 € W ntou nepLéyel exelvee Tic
oxpéc e € E mou xahlintouy 6houg toug x6ufouc tou cuvdrou min(|S], |T|) touv G. Enopévwe, otny nepintwon
tou |S| < [T, 6hot oL xépPol tou S Yo avtioTolylotoly ot évay x6uBo tou T, edv undpyeL tio eEEEpYOUEVT ot
€s—t om0 x&0e s oe xde t # s. T1bd auTéc TIC AMAUTAOELS, SLUTUTOVOUPE To axbdhouto TedBAnua Behtiotonoinone
HE TEPLOPLOUONE:

minZwe, subject to s £t if Jes_yy (1.1.6)

H Béhuotn Aoon tou nopandve mpofiiuotoc unopel va Peedel pe vretepuiotixolc olydprdpoue, Omwe o
Ovyypixds Alydpiduog [43] pe mohumhoxdtnta O(n3) xu o AAydpiduos tov Karp [36] pe mohumhoxdtnro
O(mnlogm). M mo npbdopatn npocéyyion and tous Liu xa howmot [50] wotdoo, mpoteivel v yprion evée
NAT vy v enthuot] tou, 6tav |S| = |T|. To poviého Bacileton otic apyrtextovinéc GAT xou GCN (BA.
Evétnra 1.1.2) xou amotekeltar amd Tpelc UOVASES: TOV XWIXOTOWNTY, TN HOVEDda CUVENENG XYoL TOV AmOX-
oOoTomNTY, OTee @alvetal xal 6To oyfua 1.1.2.

Convolution
Module NO Output

v

Input —> Encoder —— Node | |

Conv.

Edge

Conv. Decoder

YES

Figure 1.1.2: H apyttextovixy) tou npotewvoyevou poviéhou NAT'. Yto eninedo cuvéhéng xoufov, ta
YUEOXTNPELOTIXS. TV XOUBWY EVIUEPOVOVTOL VLol GUVOAXA S > 2 emavahrielc.

To npdéPAnua avéteone uetatpéneton oe TEOBANU dSuadixic TaElvounong ot eninedo oxunc - 1) ETIXETO Wiag Ang
elvon 1 €dv 1) oy} avrjxel oto Taiplaoua ehdylotou Bdpoug, dlagpopetixd elvan {on ue —1. Etol, yenowwonoiodue
v Iooppornuévng Awotavpoduervns Evtporniag:

Z wxy” log(yi;) + (1 —w)x

i=1 j=1

(1.1.7)
(1 ¥ log(1 — yij))

OToU Y;; €lval 1) TEOBAETOUEVY) ETIXETA YIaL TNV oY) ¢ — j TTOU cUVBEEL ToV xOUBo-TNyY) ¢ xou Tov X6UPo-0TéY0 7,
Yy elvon N Teory ot eTXETOL TG neuie, Xou w elvor To Bdpog mou e€looppomel TV amdelo: Yo Vo anogevydel 1
xLELoEY Lo TWVY OEYNTIXOY ETIXETWY TNV exTtofdeuoy). Ol TapdUETEOL 1, M UTOBNAWMYOULY TO UEYEVOC TWV GUVOALY
xOuPwv mnynhc xou otodyou, étol wote |S| =n, |T|=m

ITpoxewévou vo emPBAhouye TOV TEPLOPLOUS AVTIOTOlYLONG €Val TPOC €Val OTO UOVTEND, XOTAOXEVALOVUE TEWTA

évay mivaxa mpoPienduevne avdileone Y € R™*™ tou onolov to péyedog elvar to (Blo ye to mpdBinuo:

ind(i 3(4,k) e E
ij,k _ Yind(j,k), AV (j?) E}) (]_]_8)
0, BLaPOPETINDL,

6mov ind(.,.) elvon gl cuvdptnom nou anewxovilel o axph o évay oxépono delxtn. 3Tn cuVEYEL, 1) ATOAELL
TEPLOPLoUOY ayedidleton we eEhc:

24

1.2. TIlpotewvoépevn Médodoc

L= ||lfsumr(Y)H2+Hlfsumr(YT)Hg, (1.1.9)
Ly = |1 —norm.(Y)|l2 + |1 — normr(YT)Hg, (1.1.10)
Lo =11+ Lo (1.1.11)

Ytic mapandve eZlomoelg, To 1 elvon éva didvuoua pe dha o otoyeio tou (oo pe 1, To sum,(.) adpoilel Tic
TIpéc oTov pofhenduevo Tivaxa avdileone xatd uixoc NS Yeophic xou To norm..(.) EMOTEEPEL Eva didvuoua
o7o onolo x&ie otolyelo elval 1 2-vdpua TOL AVTIOTOLYOL BAVOCHATOS YEUUUNC.

Téhog, 1 amdAeto SUUBIXAS TAELVOUNONG XOUL 1) ATOAELY TTEPLOPLOU®Y cuvBLElovTan Yia var TeoxVeL | ovvdptnon
anwAedy mou xododnyel T dladixacia exnaideuong wg eEnc:

L=Ls+alc (1.1.12)

omou a > 0 otaduilel Tov Podud auoTNESOTNTUC TWV TEPLOPLOUWDY AVTLOTOLYLONG €val TEOC €Vol Tou emBAAAoVTAL.

1.2 IlpoTewoduevn Médobdog

e autd To xe@dhono meotelvoupue TN uétdodo ue TNy onola Yo aVTUETWTICOUYE TO TEOBANUA TV AVTIPATIXGDY
egnyfoewv. Emxevtpnvouacte oe aviimpaypatixéc napeudoeic ot eninedo AEENe yia var eEAEYEOUUE T CUUTER-
1popd TwV TAgVOUNTGY XeWwévou dTay avtixadio tavtan dapopetinég Aé€eg. H npdtaot pag neplotpépetan yipw
amd TNV ToToUETNOY OAWY TWY UAOTOWUUEVGDY ToReUPdoeny xdtw and évo mhaiclo To onolo Topoucidlel Ta
axdhouda yopaxTNelo Tixd doov apopd Ti¢ TapeUPdoelc:

e Beltotonoinorn: Ou avuxoataotdoec Yo mpénel vo elvon BEATIOTES -1) xoTd Tpooeyylon BéATioteg-, Oe-
BOUEVNC HATOLAS EVVOLAG TNG ONUCLOAOYIXAC andC TAoNG.

o Eley&édtnra: oe xdde Selypo dedopévwv Ga mpénel va avixodiototar TouldyloTtoy éva oNuaclohoYLxs
oTolYElo ELTGBOVL.

o Anodotxdtnrar 1 Béhtiotn Alom Jo meémel vou emTUYYAVETOL YwelS TN YeNoT TEXVIXOY eEaVTANTIXAC
avalATNoNg KETAED EVORROXTIXWDY AVTIXATUCTAGEWV.

IpooeyyiCoupe autég Tig anouthoelc VewpmdvTag Tig avTlpatixés napeudoeic wg €va TedBANUa GUVBUAG TIXAC
BehtioTonoinong, emthioo uéow olyoplduwy avédeone yedgpov and tn Yewpla ypdpwy [111]. T vo Behtid-
covpe nepontép TN uéBodd pag, eZetdlovue T Yerion VEVpwXKOY dxTinY Yedpwy (NAT') [108] we tayitepo
TPOGEYYLOTIXO UTOXATAG TUTO AUTOY TwV ahyopiduwmy [114].

H pédodoc¢ mou mpotelvoupe umopel vo e@apuoctel 1600 o GEVARLA TOU 0PoPOVY CUYHEXPLIEVY LOVTENA 6CO XaL
oe oevdpla YEV0U oxonol, xaddhe 8ev undpyel auotnet e&dptnon and tny odloyr Tng e£680u Tou Taglvounth
xeWévou. Auth 1 BOTNTA ETUTEENEL TN XPNOT] TV ToEAYOUEVWY ENEEERYAUOLOY Yol BLAPORETIXEC epyaoieg exToC
and v ooy €680v, dwe 1 onuactohoy| opotdtnta [54] B 1) un otoyevuévn topay ey [106]- napdia autd,
oTtnv napovon SotplBr), eaTtidloupe ot epyasieg TaELVOUNOTC Yiol GUEST) GUYXELON UE TpomYOoUpeveS epyaoies. T
70 o%oTd AT, GLYXEIVOUPE THY TEOGEYYLoN Yag pe 8o SoTA cuvtdxteg [106, 80] yenoonotdvTos XaTdAANAES
HETEIXES Yot TNV ahharyr) €£680U, TNV ELYAWTTIO XAl TN GNUAGLOAOYLXY EYYUTNTO.

Apywd emonpalvoupe Tic x0pleg GUVELGPORES NG TopoDooS SUTEBAC XAl 0T CUVEYELN EENYOUUE AETTOUERMS
v mpotewvduevy pédodo.

1.2.1 3uvelcpopég

Yuvodilovtag, oL cuvelcpopég Yac elvar:

o EmBdihouye) Beltiotonoinon xow Ty eAEYEOTNTA T0V AeEXDY TAUpEUBICEWY UETATEETOVTAS TEC OTNY
ebpeon e BérTiotne avddeonc petoll towv xOuPwv evoc duypdpou.

25

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

o EmtayOvouye tn dradixasia avdieone extoudetovtog ta NAL g autés Tic VIETEPUVIOTIXES avTLoTOLY(oELS,
EMTUYYAVOVTUC TEMXE TEONYUEVT AMOBOTIXOTNTAL.

e Enextelvouye éva undpyov mhaiolo tpoxeévou va npoopépoupe éva NAT nou emhbet to RLAP - €€ 6owv
yvweilouvue, xopla mponyoluevn epyacio dev €xel aélonoioer NAL yia tnv enihuorn tou RLAP

o O eoupetixd anodoTixog avTETINGS CUVTAXTNS UadEOL xouTio) Uag Tapéyel otadepd emddoeig SoTA oe
oUYXELOT UE TIC UTdpyouoeS uetddoug Aeuxold xot Yodpou xouUTlol oe B0 BLUPOPETIXE GUVOAI BESOUEVKY
xon oe téooeplc dlaopeTixéc petpwéc. Elvar afloonuelwto 6Tl emTUYYAVEL QUTA TOL ATOTEAECUATO OF
Myotepo amd 2% xow 20% Tou Ypedvou mou amattolV oL B0 AVTAYWVLGTEC TOU, amodeviovTaC TOoOo
AVATERT ATOTEAECUATIXOTNTA OGO XAk OTOBOTIXOTNTAL.

H evehi&io tou mpotewopevou cuvtdxty amodewvieton o didpopo oevdpla, xodoe elvon oe Véom va
Behtiotonoinlel mpog Yior GUYXEXPUEVT HETEIXY 1) VoL dnuovpyioel eneepyaoies YEVIXOU GXoToU.

1.2.2 TIIpotewvopevo NOoTnUa

H po¥y tne pedddou pog, dnwe goaiveton oto LyhApe 1.2.1) anoterelton and tpio otddia. Eva oOvoho dedopévev
xewévou D yenolpelel wg elcodog 610 cloTNUd pog. XTo TeWTto oTddlo, ol Aéelg egdyovTon and to D, ue
Bdon to pépoc tou Adyou (POS) 610 onoto avixouy, xou Ypnottonotodvion »¢ 6UVOAO apyxey x6ufwv S. To
oUvoho-otoyoc T elvan elte éva avtiypagpo tou S, eite nopdyetan and pla e€wtepnr) Ae&lhoyxy) TNy, 6Twe To
WordNet [61], tou nepiéyer 6hec tic mboavéc vrodhigies avtixataotdoels Twv Alewy (x6uBwy) e tnyhc. Ta
obvohra S xou T oynpatilouv éva diypdgpo G, ue to Bden TwV axgodv Toug va avTixatontelouy Ty opoldtnTa
v MEewv. XTo deltepo oTddLO, TEpVaUE Tov diypdpo G we eloodo ot éva mpoexmadevpévo NAT to onolo
e€dyel pa mpooeyylotx Ao tou RLAP, pe) poppr| o Motog vrodhgiwy Leuyav hé€ewv. Kdde Lebyog
M€ewy, anotehelton and T AEEN-TNy" s; € S xou TNV UTOAOYIoPEVT avTxatdoTact) Tng ¢ € 1. 3to Tpito xou
TerevTafo 0TddLo, aflonololpe Ty avalitnon déounc [105] yia v xadopicovue tic Tehxéc ahhayéc. H avalhton
BEoUNC YENOWOTOLEL ot €UPIOTIKT) oUYAPTNOT) Yol VoL ETAEEEL TIC TO XATEAANAES AVTIXATACTAOELS OO UTEC
nou emoteéel to NAT. O emheypévee hé€elc and to S avuxadiotovtar oty cuvéyela pe to avtiototyo Lebyoc
toug and to T, nopdyovtac éva avttdetuxd cOvolo dedouévwy D*.

. . 2: Substitution pairs 3: Counterfactual
1: Graph Creation . .
computation Generation

,I GNN . l

eam

DatasetD — - T - ‘ » Dataset D*

2 Search

/7 Feasible £
s T _ substitutions

Figure 1.2.1: H po¥} tn¢ pedédou yac.

Anpoveyia T'edgou

Kotd v xataoxeur tou diypdpou G, ol Aéeic e€dyovian and to apywxd D pe Bdon to POS toug. T
vor eEMéYEouue 000 xohd yevixeleTtor To mAXOWO pog, YenoylonotoUpe eE6puln héewv TOCO GUYXEXELUEVOU
POS 660 xou yevixol. H mpdtn onuaiver 6t emhéyouue va ahhdEoupe duvntixd novo Tic AEEELC TOL avriXouy
o€ €val oUYXEXELEVO UEpog Tou Adyou(m.y. emileta, ouctaoTnd, phuata x.AT.), evdd 1 deltepn onuolvel ot
hoPdvouye unodny dheg Tic Aé€elg, avedptnTa omd To PEPOg Tou AOYOoU aTo omolo avrxouv. I ta Bden Twy
UV, yenotdomnotovue 80o dlapopeTixés mpooeyyloelg, N xodeulo e dlapopeTiny) dapdvelo. o v mpodTY),
vtodeTole Pro Thipwe Slapavy TpocéyYLor, UToAOYILOVToS TIC AMOCTACELS YENOWLOTOLOVTIS Wit Ae&uxn tepopy o
To Bdpoc pag oxuic mou cuvdéel Vo Aéelc xadop(leton amd TNV T TNE OpOLOTNTAC Toug, 6Twe opiletal 6To
WordNet.! ¥t deltepn mepintwon, yio vo dnpovpyicouue dLaviouato eVowUdTnons hEewy epapudloupe

Lhttps://www.nltk.org/howto/wordnet.html.

26

https://www.nltk.org/howto/wordnet.html

1.2. TIlpotewvoépevn Médodoc

dudpopar Meydha Thwooxd Movtéha, xo mo ouyxexpipéva 1o AnglE? [48, 87], GISTEmbed?® [88], GinaAI*
[63] xoo MUG® - o1n cuvéyewa, 9étoupe to Bdpoc tne oxphc (0o pe v opoldTnta cuvnuitovou Twv dVo
dlavuoudtwy evowpdtwone Aé€ewy. Aedouévou 6tL 1 younhotepn oyoldtnta oyetileton pe ehappltepes axpéc,
OnhadY) Ye o xatdAinhoug urodigioue yio To M, ol emheypéveg Aéelg mpog avtixatdotaoy Yo oynuatiouv
avuigatikd Lebyn AéEewv. Ilpoxewévou va diatnendel 1 cUvtoln oty mep(nTwon mov dev €YOUUE XAmOLOV
TEpLoplod Y To Pépog Tou AGYoL, eTBEANOUUE avTXOTAoTAOELS anoxAeloTXd ueTadlh AéEewv pe (Blo POS:
€tol, melpopaTi{OUAOTE UE Evay PNYavioud @uiTpoplopatog oxuy, o onotog Vétel éva mpoxadoplopévo peydho
Bdpog otig axuég, ~10 Qopég peyallTtepo amd to xavovixd Bden axpdyv mou €youv urohoylotel pe Bdon Ty
opoldtnTa dradpoumy tou WordNet 1 tnv ogoldTnTa GUVNUITOVOU TV BLVAUCUATLY EVOWUATOOE®Y. Me autdv
TOV TPOTO, ANOPEVYOLUE TIC TMEPITTAOOEL 6TOU éva UEpog Tou AOyou avTixadloTaton and uiar AEEN Tou avrixel
og ®UTOLO BLAPOPETING, X por onpavTixd Poplteen axur| dev unopel vo emAeYel Ylol Vo GUPUETAOYEL GTO
eNdytoTOo GUVONO axpddy Tanptdopoatoc M. Etny nepintwon nou e€eTdlouUE AVTIXATAOTAGELS EVOC GUYXEXPLUEVOU
H€EOLC TOU AOYOU, O UNYAVIOUOC auToq elval TEPLTTOS, apol OAEC oL AEEELS avixouV GTo (Blo

Yroloyiopodg LeuydV avIiXATICTACNC

Io toe xotddnha Lebyn avixatdotaone meénet vo. Aoooude to RLAP otov Siypdgo G. ‘Onwg eldope mpo-
nyovpévoe (Evotnra 1.1.4ot mopadootoxéc vieteppvio txéc pédodol to emttuyydvouy autd oe O(mnlogm).
Evéy autée ol pédodol mopéyouvv tn BEATiotn AUor, otepolvTan TaydTnTog xodoe to péyedog Tou cuvdrou
dedopéveY, xaL oLVETWS To Péyedog Tou Ypdpou, peyohovel. e uio mpoonddeia va mapdyoupe Cevyn ov-
Tixatac tdoewy o otaldepd ypodvo aveldptnta and to uéyedog Tou cUVOAOUL BEBOPEVLY, YPNMOUWLOTOVUE €val
povtého NAT, 1o omolo npoceyyilel tn Bértiotn Ao mou Bploxouv ol vietepuiotixol ahyoprduol, v emt-
TaryOvel onuovTixd T dwadixacia. ‘Ocov agopd to NAT, BeAticonoificope w¢ npoc 1o RLAP, to povtého nou
meplypdpeton otny evotnta 1.1.4, yenowonowdvtag Ty axdioudn dwadixacto:

Apywd, droupyelton éva cuvdetind ohvoro dedopévwv mou amotehelton omé M delypotaS. Kdde delypo

anoteAelton and €vav mivaxa x6ctouc C' oTov onolo Ta otouyela TAUPdYOVTAL OmO ULol OUOLOHORYY) XAUTAVOUT
oto (0,1) xou v avtiotoryn BérTiotn Mon avddeone 1 onolo AopPdveton and tov ovyyexd ahyderduo [42].
Oewpolye 1o RLAP w¢ éva mpofinua duaduhic tavounong xan yweiloupve o atolyeior Tou mivaxa avddeong
Baowhc adhdelag Y9 7 oe Yetinée etiétec xon apvntxée. Do T Luvdptnon ATdAelog, Ypnouonolodue Ty
E&lowon 1.1.12 ye a = 0, n omola elvar 10od0Ovaun ye ™ yenon povo tne looppornnuérng Awotavpodperng
Evtponiag. O Aoyoc yu’ autd, elvon To yeYovog 6TL 6T dint| pag éxdoorn tou RLAP, o nivaxoc xé6ctoug C' €xel
dlactdoelc n X m, 6mou 1 < m xou enopévee dev elvon duvarth 1 oxeBric avtiotolyion éva Tpog éva. Agpoupdvtog
TO TUAU TNS CLVAPETNONE AMWAELWY TOU AVTIOTOEl OE AUTOV TOV TEPLOPLOUO, ETLYELPOVUE Vo TOV auAlvouue
onuoavTd, Bertiotonowdvtog £tol o poviého NAL npog) Aon tou RLAP avti yia to LSAP. 'Onwg xou oto
[50], n exmaideuon Bopxel cuvohxd 20 enoyéc, 6mou o pudude udidnone opileton apyxd oe 0.003 xou YewdVETOL
xotd 5% petd and xdde 5 enoyée.

Xenowonowvtog to nponyoluevo NAT, n anodoTixdtnta elvor eyyunuévn. Emlbovtoag to tpdfinua ye tov
TEPLOPLOUS TOU EAGYLGTOU Y We, Ppioxovue Oha ta o avdpoa s — t Lebyn, emTLYYAVOVIAC TPOooTeyyIoTiKkd
BeEATLOTOTNTA TNC AVTIXATAC TACTS EVVOLDY €VTOC Tou G xan TeAixd Topdyovtag avtetind Lelyr avTixatdo-
taong. Tavtdypova, n eAey Lot TA Elvon HepIkdS eEaoPaouévr), agol o ypdpoc G elvon Tuxvoe (emouéves
dev undpyovy acvvdetol xéuPot s) xau |S| < |T'|, agol to T eivan eite avtiypopo tou S elte napdyeton pe Bdomn
10 S yenowonowdvtog avtevupa and to WordNet (oe xdde MEEn unopel vor avtictotyolv neplocdtepa and éva
OVTAOVUUA). ENUELDCTE 36, OTL YENOLOTOLOVUE TN MNEEN “Uepirdds”, xodde uTdpyel cupPBaopudc YeTall eAeyé-
1déTnTag xou eAdyiotérnras ®, to onolo mpoxinTeL omb T YeRon e avelATnone pe déoun xatd Tn didpxelo TS
dnwovpylag ovtipaTindy mapeuBdoswy. XNy meddn, undpyouv enione pepés eloupéoelc oty eréYEdTNTA,
gav pLa évvolo-tnyn dev undpyer oto WordNet.

2mixedbread-ai/mxbai-embed-large-v1

3avsolatorio/GIST-Embedding-v0

4https://jina.ai/embeddings/

5Labib11/MUG-B-1.6

6 Kdde deivua avanapiotd éva Siypdgo ue Pdon otic axuée.

TY 9t eivon évac mivaxac émou to oTouyeio yff etvan 1 av 1 o mou cuvdéel Toug xoufouc @ xou j belongs otnv eldyiotn
avTiotolyion, adhdg elvon -1.

8H ehaylotdtnTa e8¢ avapépetar oTov dpldpd Twv AMéEewv mou ahhdouv.

27

https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/avsolatorio/GIST-Embedding-v0
https://jina.ai/embeddings/
https://huggingface.co/Labib11/MUG-B-1.6

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Anpioveyio Avtidetixov IopepPdoswy

Q¢ anotéheopo e eniluone tou RLAP, emotpégetan éva talpiaopa M C E, to omolo unodeviel tic Béltioteg
aviataoTtdoec o n évvolee Tyhc. SupBorloupe o WM C W to ouvolixéd Bdpoc tou M mou mepléyel n
apyég €vvoleg. AeBopévng autrg g avtiotolyiong, N avalitnon ue déourn emAEYEL TOLEC EVVOLONOYIXEC
avtixataotdoelg ond to M Yo extehectolv mpaypatikd oto D. Aut n Swdixacio emhoyre elvon anoapoltntn
xodwg emduyolue ol ahhayég va elvon eAdyiotes 6oov agopd tov optdud Twv AEewy Tou TeoToToLOVTOL Ve
TeplnTwaon, BlTaEdocovTaC LWOVO Uixped TUARATA TNG ELoéBou, uia BtdTNnTa mou €xel unootnelydel 6Tl xdvel Tig
egnyfoec mo xotavontéc [1, 62]. e autd to mhaioto, Yéooue enione €vo avdTATO OPLO AVTLXATACTECEWY
oe xdle meplnTwon xewévou, telpapatilouevol 1660 pe évay otadepd 660 xou Ue Evay Suvopxd xodoplopévo
oprdud. En dedtepn nepintwon, yio xéde mopddelypa, To avdtato Gplo eivon ico pe to 20% Tou GuVONXOU
aptduol Ty AEewv mou TeplEyel. Mtopatdue TNV avalftnom 6tav 1 nedBAiedrn Tou povtéhou avatponel ¥ 6tov
emiteuy Vel TO AVAOTATO 6pLo, BATNEWVTAC ETOL TOV dPLUUS TV AVTIXATACTACEWY O YUUnAd eninedo.

1.3 Ileipopotind Meépog

Ipoxewwévou va a&lohOYROOUUE TNV TEOTEWVOUEVY HEV0B0 XU VO T CUYXEIVOUPE HE GARES TEYVIXES XL CUOTY-
HOTOL, TEAYOTOTOOAUE TOMATAG telpdpata ot dVo npofAfuata ERL. Ye auth tny evotnta Go nopouvciactoly
XATOIES TROXATUPXTINES TANEOPORIEC TYETIXG UE ToL GUVOAA BEGOUEVLV, TA UOVTENN TUEWVOUNTMY XoL TOUG Ov-
TAYWVIO TWOVE GUVTAXTES, XodC xou TG HETPXES Tou Yenotporolfinxay ot Swodixactio agloAdynong.

‘Eyovtag ¥éoet ta Baocixd otouyeia, Yo avahOoOULUE TOV TEOTO UE TOV OTO(0 TELCOUATIOTAXAUE UE To SLdpopa Uépm
TOU GUOTAHATOC pog, xodde xou Tig avtiotoduioels mou mpénet vor Angdolyv urnédn xou téhog VYo TopoucLdcouye
To anotehéopota e allohdynone. Extéc and ta nocotind anoteréopata, Yo TopoUcIAcOUHE TapadElY Mot TRV
ene€epyaoUEvey xeWévmy ou Bondolv otn cuvokixy xatavdnoy e PeYOB0L PO Xol TWY BUVATOTATWY TNG.

1.3.1 30Ovolo Acdopévwy xow Metpuxég
3Ovola AedopEvmy

A&ohoyolpe t0 cOoTNUd Yoc ot To cUYXplVoupe Ue dhhoug cuvtdxteg and TN BiBhoypapio, oe 800 chvola
dedouévev otny ayyiwr yaoooo: IMDB, to onolo mepiéyel xpltixée Touviedv xan yenoionoleltal yior duadixt)
tadvounon cuvatotiuatoc [58] xou pia éxdoon 6 xhdoewy twv 20 Newsgroups mou yenotdonoteiton yio Vepotind
Tagvounon [44]. Adyw Ty LPNAGY LTOAOYIOTIXOY ATUTACEWY TV oLUYXELVOUEVLY LeD6Bwy, Thpaue Selyua
1K mepintoeny and xdde obvoro dedouévwv. H extéleon touv MiCE oe uéhg 1K delypoarta anatodoe ndve
and 47 dpec (Bh. Hivoxa 1.1), xohotdvtoe To TEWREUATO 68 OAOXANEO TO GUVONO BEBOUEVGLY W1 TEUXTIXAL.
Emié€ope To dimhdolo péyedoc Selypatog amd autd Tou Yenotlotolinxe ot TUEOUOLES UEAETES TTIOU GUVEXQLVOY
i dieg pedddouc ota Bla shvora dedopévev [21].

To oOvolo dedopévwv IMDB Reviews elvar éva eup€wg ypnoulonolobuevo clvoho Sedopévwy Yo epyaoieg
eneepyaciog guorc Yadooag (ERT), dlwe yio v avdhuor cuvaioduatos. Anotekelton and 50000 xprtixée
TaViOY Tou hapBdvovton and TN Bdor dedopévewv tauviddv tou Awdixtiou (IMDB), pe lon xatavoun petald
VeTUDY %o opYNTIXDY ETIXETWY ouvanotiuatoc. To cOvolo dedopévev ywplletar oe 8bo (oo uéen: 25000
xpLTixéc mpoopllovton yior exmaldevor xou ot umdhoinee 25000 yio Boxiuy. Xto TELpdUaTd pog, TApoue €val
AVTLTEOOWTEVTIXG Belypa and To 6Ovoro Sokiudy, xadwe dev 6ToYedOUPE GTNY EXTUUBEUCT] EVOSC VEOU HOVTEROV,
oM oty enedhynon Twv unapydviwy. Enopévee, dedogévou OTL Tal LOVTERX TTIOU YENOULOTOLOUUE EYouV 1O
exmoudeutel oTo olvoho exnaldevong, eivon Aoyixd Vo amo@iYOUUE TN Y1 OY TEPLTTMOEWY TOU €Y0UV NdT BeL XaL
EVOEYOUEVKC ATOUVTLOVEDGTEL.

Kdde xpitint) 010 cbvoho dedouévmy cuvdéeton pe pior duadixt] eTixéTa cUVALCUAUOTOC: Positive Yol XELTIXES
pe Boduohoyio 7 A peyoritepn (amd 10) xon negative yio xprtinée ye Badporoyia 4 4 wixpdtepn. Kertinée ye
Barduoroyio 5 1 6 dev mepthopPBdvoviar 6to oOVOAO Sedopévwy yio var dlac@alloTel 1 copric didxplon petald
YeTx@v xou apvnuxndy cuvaiodnudtwy. To dedopéva xEWEVOU OTIC XELITES TOLUAAOUY GE UAXOC XoU ETLOT-
HOTNTA, OTOTUTVOVTOG €Vol ELED PACUA YAWOOXOY GTUA, and TNy averlonun €wg v enlonurn yeapr. Xtnv
gpyooia Yog, TELY To XENOLLOTOLCOUUE, To xaaploaE, dpoLEMVTAC EWBXOVE YOPUXTHEES XAl GUVEYOUEVO XEVA.

To obvoho dedopévwy 20 Newsgroups eivon éva dhho dnuo@uiéc cOVORO BEBOPEVWV AVAPORdS GTOV TOUEN TOU
NLP xo tne tadivéunone xewévou. lepiéyer mepimou 20000 éyypopo mou xatavépovion oe 20 Slopopetixnd

28

1.3. Iewapotxd Mépoc

Yéuarta, 6nwe o adAnTIonde, N TOMTIXY, 1) Te)Vvoloyia N} 1 emoTAun. To cUvoho Bedopévmy €xel oyediaoTel Yo
NV UTOGTHPLEY TELUUITWY OE ERYAGIEC TAELVOUNGTE XEWEVOU, WBitg 0To TANoLo TNE TAELVOUNOYG TOAAUTAGDY
UNdoEWV.

Yty napotioa Slatplfn, yenotdonolovue TNy €xdoan 6 xAAoE®Y TOU apyixol cuVehou dedouévwy, 1 omolo efval
por ouyxexpévn dlaudegwaon mou evomolel ta 20 Vépata o 6 eupltepeg, Vepatixég xatnyoplec. Autéc ol
€21 xatnyoplec opadonololv cuvapy Vépata, YELOVOVTIC TNV TOAUTAOXOTNTO TOU TEOBAAUTOS To&ivounong,
dlaTNEdVTag TopdAnha TNy Towahouoppla Tou mepleyopévou. ‘Onwg xou oty mepintwon tou IMDB, npwv
XENOWOTOLACOUNE T DEQOUEVA, Tol X oplOUUE OUPOEMVTAC HEVES YRUUUES, EWBWOVS YAUPAUXTHPES XAl GUVEY OUEVL
XEVAL.

Merpixég

Tt v o€tohoyiooupe Tic ETMBGOELS TWY dlapdpwy cuVTaxTOY, avtholue éunveuot) and to MIiCE [80] xou yetpdye
Tig e€hg WBLoTNTES:

e ITocootd ANhayrhc Etuixértag / Flip-Rate - eivon puo e€oupetixd dnpogudfic petpnd xou eniong auth
ToU TPOoTotolV VoL UEYLOTOTOLAOOUY Ol TEPLOCATEROL avTipaTixol cuvtdxteg. Ilpdxeital Yoo To T000GTH
TWV TEQITTWOEWY Yo Ti¢ onoleg wio TopéuBaot odnyel oe Slapopetin| mpdBiedr Tou povtéhou (adlayt
etxéroc). ‘Oco mo vPnhé eivan to flip-rate t660 Mo “anotelecuatinéc” elvon ol napeuPdoeic Tou Eytvay.

e Elayiotétnta / Minimality - tumxd petpdron e) yefion e andotaons Levenshtein. H anéotoon
Levenshtein, yvwot xat w¢ andotaon enelepyooiog, elvol gL UETEIXH TOU YENOWLOTOLELTAL Yiol TN LETENON
e Sopopdc peta€ld 0o ouyPoloceiptv. Aviinpoownelel Tov eAdyLOTO dpldud aAloy®V ot enlnedo evdg
YOEAUXTHEA TTOL OO TOVVTAL YOl VoL LETATEOMEL Wiat SLUBONOCELRE OE pLol GAAY), OTIOU OL ETULTEEMOUEVES OANAYES
elvon 1 eloaywyn, 1 dlorypopr| 1 N AVTIXATACTAOT EVOS YAUEAUX TN, ST TELRGUATE YOS, YENOULOTOLCOUE
v éxdoon autrc tng andotaong ot eninedo AEENG, 1 omolo VTl YLl YUPUXTHAPES, UETPAEL UEUOVOUEVES
oahhayEg Aééewv.

e Exyy0tnta / Closeness - aviinpoownelel 0 GNUACLONOYIXY ouotoTnTo UETOED TNG apyixhc xou Tne
enelepyaouévne etoddov, 1 omola yetpdton ue to BERTScore [117]. ‘Oco vnhdtepo eivar to BERTScore,
1600 TO XOVTA elvol oNUACIOAOYIXE oL 500 TPOTACELS.

e EuyAwttia / Fluency - H euyhwttio eivan éva pétpo tou ndoo napduola xatoveunuévn eivon 1 enclep-
yoouévr lcodog e GUYXELON UE TNV dE)LXY), OTIOU WXEOTEPES TWES UTOBNAWVOLY T EVYAWTTES TOPEU-
Bdoec. T v a&lohdynon tne euyhwttiog, yeNnoulonolye éva Tpo-extoudeuvuévo poviého TH-BASE
[77].

IMo va Tovicouye T onpovTiey emitdyuvon Tou tpocpépel 1 uéYod0C Hag, avapEpOUUE ETioNg TOUG XPOVoUS
exTédeong yio xdde cuvTdxTy.

1.3.2 Ta&wvountég xouw Aviaywvi{opevolr LuvTdxTeg
Tagwvountéc Keipnévou

It Vo HETEHOOUYE TNV OMOTEAEGUATIXOTNTA TWY TopayOUeEVWY Tapeudoewy, doxiudlouue toug Sudpopoug
ouvtdntee oe 800 talvountéc xewévou. Xenowwonowlpe to B povtéha mpdPredmne pe to MICE [80] oe
x&de oclvolo dedopévwv (IMDB Reviews xar 20 Newsgroups). Ko ta d0o autd poviéla Bacilovton oto
RoBERTararcr [51], o elvon edixd exmoudevpéva mpoc o avtiotorya olvoha dedouévmy. To npdto pov-
Tého, elvon évag Suadixde tadvountic tou omoiou 1 €€odoc elvan gite 0 elte 1, ye to 0 va dnAdver aprnTikég
xpltég xan to 1 v dnhdvel Jeticés. To Seltepo povtého, elvan edixd exmoudeupévo Yy tny éxdoon 6 xatn-
YopLdY ToL cuvOIou dedopévwy 20 Newsgroups xat 1 €€006¢ tou xupaiveton omd 0 €wg 5, ue xdde axépona TN
VoL AVTLTEOoOTEVEL Wial XaTryopla ond ouTéq.

Aviaywvilopevol Tuvidxteg

Tuyxpivoupe to clotnpd pog pe dvo SoTA cuvtdxtes, ouyxexpiuéva toug Polyjuice [106] xow MiCE [80]. O npd-
To¢ elvan €vog avTeTINdS CUVTAXTNE YEVIXOU OoX0ToU, eV 0 8elTepoC elval €vag cuVTAXTNE EWdd BehTio ToTouy-
HEVOS Yla TO TOO00TE aAdaynis etikétag xou v eAayiotdétnta. EmiéEope autolvc toug 800 cuvtdntes, Aoyw

29

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

TOU YEYOVOTOC OTL 1) WEV0BOC Hag UTOpEel v yenotwomoinlel T600 (C GUVTAXTNE YEVLXOU OXOTOU GGO %ol ELWBXOS
CUVTAXTNG YLl XETOLO GUYXEXPUEVO TROBANUA, OvTaS €ToL GUYXEIoWOC XL UE Toug d0o.

1.3.3 Ileprypopr Ielpapdtwy
IMagorhoyég Juvtdxtn

O ouvtdxtng yoc vhomolinxe yenowwomowdvTag ToAéS dapopetinés BiBhodrixec tng Python. T to medto
otédlo (xataoxeut| ypdpou) yenowwonotioaue tg Spacy, NLTK xou sentence-transformers, eve) yio to NAT,
v Pytorch Geometric [20]. Aedopévou 61 1 wédodoc pog elvon Wiaitepa TPOCUPUOCIUY], TELPUUATICTAXOME UE
dlapopeTixéc puduioelc xau npooeyyloelg. Ilpénel enlong va onuewdcovpe Tl GAOL TA TELYUATO EXTEAEGTNHOY
oto (Blo obotnua, to onolo amoteleiton and wia kdpta ypagikdy 16 GB, évavouvvtdxn Intel i7 xa 16 GB
pviuns RAM.

Mpoxewévou va diatnendel to POS oe xdle avtixatdotaoy, epapudlovye évav pnyoviowd towhc (piktpdpioua)
XOTA TOV UTOAOYLOUS ToV Boptdv TV axpdy Tou Yeopnuatoc. Autéc o unyaviouds anodidet éva Bdpog meplmou
10x yeyohUtepo and ta kavovikd Bden (6nwe opiloviar and v opotdtnta Sodpoud>v tou WordNet A tnv
OPOLOTNTO CUVHETOVOL TV AeEINMV BLavUOPETOY EVOLUATWONG), ot xdlde axur Tov cuvdéel MEelc pe dlapope-
wxd POS. Me autédv tov tpdmo, dedoyévou 6tL to clotnud pog mpoonoel va Bpet éva eddyioto taiplaoia
Bdpouvg, axpéc ue peydio Bder elvon oyxedov adlvato va EMAEYODY X0 ETOUEVEE Ol VTIXATOC TAGELS TIOU TEPLA-
opf3dvouv SLapopeTixa uépn Tou AOYOU £X0UV YouNAT THoVOTNTA EUPAVIONG. LTNY ENOUEVH EVOTNTO AVOPECOUUE
gupAUATAL Ue xou Ywplc aUTOV Tov unyaviowd EUATEApoUaTOC aXUDY.

Aigpeuvolpe eniong Ty enidpoomn e YerRomne TS OUOLOTNTIC CUVNUITOVOU TKV BLAVUCUATWY EVOWUITMOOEWY
avti e ouoldtntoc Swdpopric Tou WordNet petalld 800 Aé€ewv, xatd Tov unohoyloud Tou Bdpoug wag cuy-
xexpluévne oxuic otov diypdpo G. Amd tn plot TAeUpd, oL VIETEPUIIOTIXES LEpapyiEC TOREYOUY TEPIOTOTEREG
eEnynioues oyéoelc HETAE) TV EVVOLMY, BIXAONOYOVTISC TAEWE TLS ALTLOOELS DUBPOUES TWV OVTLXATIC THOEWY.
Ané v dhAn mAgupd, Tal TEOGPATOL AVUBUOPEVO LOVTENN EVOWUATOONG UTTOPOVY VO OTOTUTIGOUY XUAUTERN T
oyéon xou Ty ogoldtnTa dvo Aéewv, oe obyxplon pe to WordNet. Tt vo Swotnericouvye to cbotnud pog
OYETXA ENaPEV, YENOULLOTOLOUUE TO TECCERO XOPUPOLA UOVTENN YE TIC XAUADTEPES EMUBOCEL TOU GUUUETEL OV
otov durywviopd MTEB [68] xou twv onoiwv to péyedoc dev vnepfBaiver to 1.25 GB. To povtéla pe autéd 1o
péyedoc xatéhofov Tic mpwtec Véoelc oTov dlaywviopd o onoladrinote abEnor tou peyédous tou wovtéhou dev
odnynoe oe onuoavtxy Behtiwon g anddoorng.

Ye wa mpoonddeior var a€LlOAOYHCOUUE TNV IXAVOTNTA TOU GUVTAXTH Uag Vo Sloxplvel Tolo U€pog Tou Aoyou €xel
HEYAAOTEEY ETILEPOY| OE EVOL GUYXEXELUEVO GOVOAO BEBOUEVMY XOUTE TNV AVTIXUTAC TACT] GYETIXWY AEEEWY, EMBAA-
Aouye meploplopolc oyetixd ye to mola POS Yo mpénet va efvar umodhpa Yo avTiXaTdo TaoY) Xt GUYXPIVOUUE T
anoteréopata Ue wia €xdoor Tou mharclov pog ywele meplopiopoitc POS. To obvolo dedopévewyv IMDB yenot-
pomote{ton yior TNV TAEVOUNOY CUVALCUARATOS, o WS €X TOUTOL To emETal Xou T EMULEEAUOTA UTAY OpEVOUV
xuplwe Ty etéta (ouvaiodnua) yio xdde nepintwon [5]. Eyovtoc auvtd xatd vou, nepiopilouvye Tov cuvTdx
pog vor olkdlel povo awtd ta 8o POS. Ta Newsgroups etvon €va 6Ovolo dedouévwy mou avixel otny xatnyoplo
Tagvounone Yepdtwy. Aedouévou 6Tl €va Vépa cuVayeTaL amd TNV eE€TUON TWV OUCLAOTIXWY O €val Xeluevo,
dlvouue evtol) otov ouvTtdxtn vor AdBel unédn Tou udvo auTd.

T v Sratnenel o optdpde Twv enelepyaotdv oyeTxd younhoc, anouteiton €vae Tpdnog Teploplopol Tou aptd-
HOU TWV AVTIXOTAC TAGEWY oVE TEPIMTWOT BEBOUEVWV, amodeYOUEVOS Wlo oV TTMON TOU TOG0GTOU CANAY NG
euxétog. o to Aéyo autd, yenoylomololye dvo BlapopeTinég mpooeyyioels. Ltny mpodtn, emPBdilovue Evay
oTATXG APl UEYIOTWY ETITEETOUEVHV AVTIXATAC TACEWY Yia xde elcodo, aveEdotnta and o uAxog tne- YeTd
and MELPAUATIONO, 0 xoAUTEROG aplduds Beédnxe va etvan (oog pe 10. Xtn deltepn npocéyyion, unoloyilouue
duvopxd To BENTIOTO avdTATo 6pLo () XATOPAL) TOV AVTIXATAC TACEWY UE BAoT To cuvohxd aprdud Tev AéEewmv
Tou xewévou. Metd and didpopeg mpoondieies, ool youpe vo opicoupe to bpto autd 6to 20% ToL GUVONXOU
aprduod tv Aé€ewv, to onolo ouctacTxd onuoivel 0Tl ahhdlouue xatd péoo 6po pla AEEN oe xdde mévtdda
AEewv.

Acedopévou 6T 1 emhoyY) TwV EMAEEUWY avTixaTaoTdoewy elvon wa dladxasia yevixol oxonol, e€etdloupe
GUUTEPLPOPE TOL CUVTAXTY Yo 6Tay BeATioTonoLElToL Yiot OEVAPLAL EVUAAXY S ETIXETWY. AuTY 1) BelTioTomolnon
YIVETOL YE TNV aAAoYY] TNG EUpLoTXhS ouVEpTNoNG TNe avalATnone déouns oto TEAeLTA{o 0TAdL0 TOU CUCTAULATOS
poc (Bh. Eyfua 1.2.1). T tic enelepyooiec yevixold oxomol, 1 cuvdptnon auth elvon 1 UeTEX] Yl TNV

30

1.3. Iewapotxd Mépoc

evyAwttia tov oulntidnxe oty evotnra 1.3.1, n onola Bondd otnv mapoywyy vonuatixd opddy napeuBdoewy.
Tt v evahhoryf) etixérog, yenowonotolue Ty avtudetiki mbavdtnea / contrastive probability, n onola yetpdet
™Y oAAay 1) oty TeoPBAedn Tou HovTENOL Yo TV apyLxh eTixEéTa, Yia Vo xadoploouue Tig xohUTepeg eneepyaoleg
(BN. GNN w. contrastive otov Ilivaxa 1.1). Téhog, yenoylonotolye eniong 1o péco Gpo tne evyAwttiog xon g
avteTinrc THavOTNTOC WS EVELOTIXT CUVAETNO, 1 ontola 0dNYel oe euyepelc enelepyaoies e LPNAS TocooTd
avaotpoghc (BA. GNN w. fluency_ contrastive otov ivoxa 1.1).

Avtictadpiosig

Aedopévou 6Tt 0 cUVTEXTNG poe elvat évag eEUPETIXE TEPOCUPUOOYLOC CUVTAXTNG, UTHPYOUV TOAES ovTIo To-
oelg ov mEENEL var Angloly umodn xotd T Bidpxeta Tng dnwovpyiag avTimapadelydoTidy. Ol GNUOVTIXOTERES
€€ autdv elvan oL

o EAeyZipotnta evavtt EAayiototntac - O eheyyodueveg nopepfdoeic tepthogBavouy tnv adloy
kdOe évvolac mou umopel va ahhdEel mpoxeiuévou va nopotnendel Eva anotéleoua- yia T0 o%0m6 autd, Yo
UTOPOUCOUE EVOEYOUEVKDS VO aAAGEOUPE 600 TO duVTOY TEPLOCOTEPES AEEEIC TTPOXEWWEVOL VOL ETLTUYOUUE
évay a1oy0, T.Y. ohhoyt) eTéToag. 2oTd00, OTNV TERINTWON YIS, TEOXEWEVOU VO TopdYOUHE ENAYLOTES
napeufdoels, opllouue évav U€yloTo apldud avTixataotdoeny avd elcodo xan aflonololue Ty avalitnon
0éoung yiot Ty emAoYY) TV xatoAnAdTERWY Aoy @Y. Katd cuvénew, 1 npoemheyuévn anaitnorn eheyE-
woétnTog Yuotdleton ev €pet, xadde dev elvon eYyUNUEVO OTL OAEC Ol AEEELC TTOU UTOPOUY VOL LV TIXOLTOO To--
Yolv Yo avuxatactadoly medypatt. o’ Gha autd, To obotnud pog eCaxoloviel va tapdyet enclepyaoieg
yia x&0e eloodo, mpdyua Tov onuaiver 6Tt Yo ahAdEeL TO apynd xelyevo, av xou byt & ohoxhfpou. Autde
elvar 0 hdyoc vl Tov onolo opilouye TV eheYEoTNTA WS TNV TPoTmoToinon TouvAdyiotov pag AéEng tov
apxikov betyuatos. 3to mewpdpotd poc (Bh. Ilivaxa 1.1) anodeydxope avtd to cuuPiBacpd, xadde to
EVOLAPEQOY UAC EYXELTAUL TIEPLOCOTERO OTNY EAAYLOTOTATA o cUYxplor Ue TNy ehey&yodtnta. Ilap’ dha
auTd, ebvan BuvaTov va BlacpoalloTel TApwe 1 TEAEUTAlY UE TNV dEOT| TWV TEPLOPLOUWY ToU avapépinxoy
nopamdve (Snh. péytotog apdudc avTXUTao TACEWY Xou avalATNoT dEounc), ov ot Lot TéToLd TPOSEYYLo
Yo elye ¢ amoTéAeoya YelpdTERES EMBOCELC OGOV APORd TNV ENAYLOTOTNTOL.

e BeAtiototnTta evavtt TayLintac Extéleong - Y10 clotud pog, Yenoylomololye Tco Ui
vetepuvio | (BA. Deterministic w. fluency ond tov wivaxa 1.1) oo xon wa mpocéyyion NAT (BA.
GNN w. fluency and tov nivoxo 1.1) yio tnv enthuorn tou RLAP. Me tny vtetepuio Txr| npocéyyion e&-
aopahileton n BéATIoTOTNTA, XaddS Exel amodetydel dTL oL mopadootaxol ahydpripol avTio Tolyiong Yedpwy
Beloxouvv tn Pértiotn Moon [42, 36]. Qotdoo, 1 molumhoxdnta aUTGY Twv akyopiduwy, n onola &l-
vou O(mnlogn), odnyel oe Bpaditepous ypbvoug extéleons xadne avidvetar To uéyedog Tou ypdypou (To
omolo elvat avdhoyo pe tov apltud Twv AEEEWY TPOC AVTIXATAO TUOT) Xl ETOUEVKC e€apTdtal and To uéyedog
Tou cuVOLoL Bedopévev). AvtixahoTdvtac Toug vieTepUvioTixolc ahyopidpouc pe to extoudevpévo NAT
(BN evénra 1.1.4), To obotnud pac yivetar onuavtixd toy0Tepo e x60Tog Yol TThoT o1 BeEATloTdTNTAL
Avuto ogelleton 670 YEYOVOS 6T 1) ADom mou Siver To NAT elvon war mpoaéyyion tne Bértioe.

o EncZnynowpnotnta evavti Tayvtntag Extéleong - Yy epyacia yog, yenotponotodue to Word-
Net w¢ tov mpoemheyuévo Tpémo UTOAOYLOUOU TV Bapdy axunc PeToEl Twv Xxoufwy, 6mou xdde Bdpocg
oxunc Baolleton oTo Yovondtl mou cuvdéel wa AEEN-TNYN s Ue wo AéEn-otoyo t oto WordNet. Me tny
avtiotolyton xdde Aé&ng oe xdnoto cbvoro tou WordNet, amodideton pio vietepuviotiny) Yéor évvolag
oe xd0e MEEM, mapéyovTog Uio Thipes Blapovi avTioTolyior évvolag ot Wa xoAd enelepyaouévn Aedixn
dopn. H o&ionoinom twv Swavuoudtwy evowpdtwnong MEewv plyvel oxid otnv avtiotolylon AéZewy, xo-
V¢ UETABAVOUPE OE Uiol SLVUGUATIXNY OVOTORAG TAGT) EVOS U1 EPUNVEUGLLOU TOAUBLAGTATOU Y WEOU YECH
povtéhwy uavpou xoutiol. H ogoldtnta 6Tov Blavuouatind Ymeo eVOWUATOonG UETUPEALEToL O ONUIoL-
ONOYIXT| OUOLOTNTA TWV PUOLXMY EVVOLMY, Xol aUTOC elvol 0 AGYOS Yiol TOV OTOlo YENOLLOTOLOVUE AUTE Tl
povtéda evowudtwons. Emmhéov, ol napaAay€C TOU GUVTEXTY oG UE AUTA ToL LOVTERX EVOL ONUOVTIXG
ToyUTEPES amd Tic mapahhayéc mou yenotpormowlyv to WordNet, eldixd av cuvdlaotolv xow pe to NATD
avtl yio Toug vreteppvio txols aiyopliuoug yia to RLAP.

1.3.4 Amoteléopata

To anotehéopato TV TEWWUUdTLY pog napovaidlovton otov Iivaxa 1.1, cupneptlouBovogévey v cuUVOLeY
oedouévev IMDB xoun Newsgroups. O TpOTELVOUEVOL GUVTIXTEC UAC - O VIETEQULVIOTIXOC XAl O BACLOUEVOC

31

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

IMDB
Editor Fluency | Closeness 1 Flip Rate 1 Minimality | Runtime |
Deterministic w. fluency 0.14 0.969 0.892 0.08 4:09:41
GNN w. fluency 0.07 0.986 0.861 0.12 3:17:51
WordNet GNN w. fluency & dynamic thresh 0.057 0.986 0.851 0.146 4:18:34
GNN w. fluency & POS _filter 0.08 0.992 0.862 0.123 0:32:05
GNN w. fluency & edge filter 0.105 0.993 0.845 0.149 3:00:38
GNN w. fluency contrastive 0.112 0.999 0.914 0.014 2:12:06
GNN w. contrastive 0.048 0.996 0.927 0.01 2:00:15
GNN w. AnglE & contrastive 0.063 0.995 0.944 0.011 0:45:38
Embeddings GNN w. GIST & contrastive 0.037 0.995 0.882 0.016 0:58:14
GNN w. Jina & contrastive 0.047 0.995 0.928 0.017 1:00:56
GNN w. MUG & contrastive 0.036 0.996 0.889 0.013 0:52:19
Polyjuice 0.394 0.787 0.782 0.705 5:01:58
MiCE 0.201 0.949 1.000 0.173 48:37:56
Newsgroups
Editor Fluency | Closeness T Flip Rate ¥ Minimality | Runtime |
Deterministic w. fluency 0.182 0.951 0.870 0.135 4:20:52
GNN w. fluency 0.074 0.985 0.826 0.151 3:48:37
WordNet GNN w. fluency & dynamic thresh 0.043 0.984 0.823 0.148 4:47:14
GNN w. fluency & POS filter 0.044 0.989 0.841 0.143 1:19:57
GNN w. fluency & edge filter 0.12 0.989 0.834 0.151 3:05:08
GNN w. fluency contrastive 0.088 0.979 0.875 0.033 2:45:31
GNN w. contrastive 0.033 0.989 0.920 0.033 2:02:34
GNN w. AnglE & contrastive 0.005 0.995 0.904 0.027 1:09:13
Embeddings GNN w. GIST & contrastive 0.001 0.995 0.898 0.02 1:02:55
GNN w. jina & contrastive 0.013 0.993 0.882 0.025 0:57:31
GNN w. MUG & contrastive 0.005 0.996 0.900 0.016 0:53:04
Polyjuice 1.153 0.667 0.8 0.997 6:00:10
MiCE 0.152 0.922 0.992 0.261 47:23:35

Table 1.1: Ilepapatind anotehéopato tne dnuiovpyiog aviipatixey napeuBdoewy. Agoloyolue Sidpopeg
TUPUANAYES TOU CUVTAXTY UOC YPENOWOTOLDVTAS TIC HETEWXEC TTOU TeplypdpovTton oTny evéotnta 1.3.1 xou ta
ouyxpivoupe pe To MiCE xau to Polyjuice. T xdde petpwer| (othin) n xahbtepn Ty emonpoivetal ye
évtovo yewua. O ypdvol exTéleoTnc avapeépoviol o OAOXATEY T1) dladixaolo TapaywyNS TopeuBdoswy.

oe NATD - uneptepolv téo0 tou MICE o0 xou tou Polyjuice oe tpeic and tic téooepic petpxés, dnhodh
glayrototnTo (minimality), evyAoTtion (fluency) xou eyyOTnTa (closeness). ‘Ocov agopd to flip-rate,
t0 MiCE emituyydver ta udmiodtepa anotehéopata (99% - 100%, ota 800 chvoha Sedouévev), axoloudoluevo
ond TNV TEOGEYYLOH HoC: 0 XUNDTEPOS GUVTEXTNG oS EMLTUYYAvVEL Tyéc Myo mdve and 90% (cuyxexpuuéva
94,4% vy To IMDB xou 92% yia to Newsgroups). Qotdoo, autd elvor avopevdpevo, dedopévou 6T o MiCE
elvat 0 uévog cuvtdntne mou éxel TedoBact 6Tov TavounTH Xou elval o€ VEON Vo XUTAOXEVALEL OTRUTNYIXE TIS
ene€epyaoieg mou Tov ennpedlouy TEPLGGOTERO , aveEdpTnTal and TO XelPevo elabdou.

Ta anoteréopata delyvouv enione 6T ol enelepyaociec poc Telvouv vo elval o WXEES GTAY 1 XATUOKELY| TOU
yedepou Baoiletar oe povtéra evowudtwone avtl tou WordNet (nepinouv 1o 10% twv apyddv MEewv alhdlet
otav ypnowwornoteltar to WordNet, eved pe to povtéha evonudtnone oldlet uovo 1o 1% tov ev Noyw AéE-
ewv). IMiotebovye dtt autd opelleton 6TO YEYOVOCS OTL Ta IO GUYYPOVA LOVTENN EVOWUdTwoNS elvon ot Yéom va
aneixovilouy xoA0TERA TNV AmdC TAOT TWY EVVOLKY ot cUyxpeloT ue To WordNet, xat w¢ ex T00TOU 0L avTIXATUo Td-
oeig mou Booilovtar oe awtd eivon LPMAdTeENE ToLdTNTOC, 0dNYWVTAG ot mo avTideTnd Levyn. Autd onuaivel
oty tov (Blo aviixtuno oty €€000 Tou TUEVOUNTY oTAUTOUVTAL ALYOTERES AVTIXATAC TAOELS EVOWUATMDONG
oe obyxpiom e autég mou Pooilovton oto WordNet. Amd v dAAn mheupd, n ypron LOVTEAWY EVOWUATWONG
HELWVEL TN cuvolxn Blagdvela tng uetddou. Tlopd tig uixpée amoxioelc, 6Aeg ol moapolhayéc tou Thauciou pag
UTEPTEPOLY G Tadepd EVAVTL TWV TEONYOVUUEVKY TEXVIXOY Ot xdle puetpuxn yia To Polyjuice xau og tpelg petpnég
vy To MiCE. Emmiéov, axdun xat 1 mopohAay) YEVIXO) GXOTOU TOU CLCTAUATOS Mg, 1) onola Bev €xEl Tpdo-
Boaorn otov tadivounth, anodidel xohltepa anoteAéopata o GUYXEION HE TOV GUVTEXTN heuxou xoutiod MICE,

32

1.3. Iewapotxd Mépoc

oe pohic 2% tou ypbvou.

‘Ocov apopd tov Ypbvo extéheons, oL cLVTAXTEC Wag mopouctdlouy afloonuelwtn Bektlwon oty toyvTnTa
oe oUyxplon e to MiCE xou to Polyjuice. O vtetepuiviotndg cuvtdxtng pog, o onolog yenoylonoteiton wg
Bdion, amoutel nepinou 4 wpec Yo x8de cUvolo dedouévwy, eved oL cuvtdxtes mou yenowonololv To NAT' tou
oulnteitan oty evotnta 1.1.4 emituyydvouy tayitepn extéheon xatd péco 6po (2-4 dpes). O ypbdvog extéleons
BehTidveTon TEPUUTERW UE TN XPHON HOVTEAWY EVOOUATOONG, OToL 1) extéleot anautel Aydtepo and pio dpo (52
hentd - 1 dpa yoe to IMDB, 53 hentd - 1 dpa xou 9 Aemtd yio to Newsgroups). Auth n onpavtid Pedtioon tne
ToryOTNTog elvan €vor amd o xOpLol TAEOVEXTHUATO TN PEY6B0L pag oe cUYxELoT Ue Toug 800 avTaywVi{OUEVOUS
ouvTdxTeg, 6mov mapatnerioaue tepitou 97% xou 83% Behtiwon tne tayvTnTag ot obyxpelon pe To MiCE xou to
Polyjuice avtiotoiya.

Xty cuvéyela cuYXEIVOUUE ToL ATOTEAECUOTA ANtO TG BLAPORES TAUEOAAAYES TOU CLUVTAXTY WoC Xt OYOMALOVUE
TNV ATOTEAECUATIXOTNTS TOUGS:

1. ®iktpdpiopa axpoyv - E&etdlovtog ta anoteAéopato Ue xat Ywpelc T xeHon Tou QLATEaploUaTOS oxuy
napatneolue 6Tt elvon apxetd mopdpota. Autd poc odnyel 0To cuunépacua OTL EVag TETOLOC UNyavioudg
elvon TEELTTOC Xat 1) AELTOLEYWOTNTE Tou xoAUmteton and tn Abon GNN oto mpéPAnua avédeong Ttou
Ydpou Jog.

2. WordNet eévavti MovtéAwv Evoopatdoewy - Onwg gaiveton and tov Hivoxa 1.1 ol napaiayéc
pog ToU oELOTIOLO0Y To LOVTENN EVOWUATWONE ETTUYYEVOUV XOAUTEQO ATOTEAECUATA OE OAEC TIC UETEIXEG
oe oUyxplon pe exeivec mou Baotlovtan oto WordNet. ‘Ocov agopd 10 xpdvo ektédeons, to LovTERa
evowudtwone enione uneptepoty tou WordNet xadde to teleutalo amoutel xhioeig oe APT yio xdde
AN/ x6pPo tou V', oL omoleg emPpadivouy onpoavtixd tn dadixacia Snutovpyiog Tou yedpou.

3. IIepropiopdg POS €vavti 'evixov Avtixatac tdoewy - ‘Onne napatneodye and tov Iivaxo
1.1, xon o 800 mapohhay€, HE xou Ywelc meploploud yia Tor UEpN TOU AGYOU, EMLTUYYAVOUV TUPOUOLL
amoteéopata. Autd Loylel 1660 Yot To cUVOAO dedouévwy IMDB éco xau yia to chvolo Bedopéverv
Newsgroups, delyvovtoag 0Tl 1 TOEATNEOVUEVY OUOLOTNTA DEV OPEIAETUL OF XAMOLOV CUYXEXPLIEVO TEQL-
opiopd POS . H poévn onpaviid dpopd mopatneeiton oto ypbévo extéreons (32 - 60 Aentd yio Toug
CUVTAXTES UE TEPLOPLOUS, 2 - 4 (DPES YIo TOUG 1) TECLOPLOHEVOUC), XYTL TOL Elvor AVAUEVOUEVO, X GTov
eZetdlouye povo oplopéva Uéen Tou héyou xdie @opd, meptopilouue xou To mAYog Twv Aé€ewv mou Va
Yewendolyv uroPhples yio avtixatdotoor. Autd onuaiver 6t oL x6uBot xan ol oxpés Tou Ypdpou G Va
HELFOUY ONUOVTIXG, UELIVOVTOG ETOL TOV YPOVO TOU OMOLTELTAL YLOL TNV XAUTUOXEUT TOU YPA(POU XL TNV
e€aywyn Leuyody avixatactdoewy and to GNN.

4. Ztatixog Mévioto Aptdpoc AvTixatacTdoewy evavii Auvauixo - Ta arotedéoyora
Bely vouy aonuavTy BEATWON TWY UETEXOY XaTd TN Yerion duvauxod xatwehiou oe alyxelon Ye T yeHon
oToTX0U, EVO 0 Ypovog extéleorc avidveton (mepimou xotd 1 dpa avd cOvoho dedopévwy). Auth 1
emPBpdduvon elvon avoevOUEYT), XD TO BUVOULXO XUTWEAL ELGAYEL ULl ETLTAEOV YUY TOAVTAOXOTNTA
v xdde mepintwon xeyévou, avil tne mohunhoxdtntac O(1) tne otatxfc mepintwone. To otatind
XUTOOAL Elvor 1) TEOETUAEYUEVY] TROGEY VIO LOC, EXTOC OV AVAPERETAL DLOPOPETIXAL.

5. Avtidetixég evavti EOyAwtteg xouw Avtidetixég Eneepyacieg - Evd ol ouvtaxteg yevixol
OoX0TOV, OTIC OTOIEC YENOWOTOLE(TOL UOVO 1) EUYAWTTIO WS EVPLOTIXY CUVAETNOT), ETULTUYYAVOUY TO YOUT-
Motepo nocootd alhayic etxétac (flip-rate), mopoauévouv xahltepoL o€ GAEC TIC UETPXES OE CUYXPLOT UE
7o Polyjuice, évav dhho cuvtdxtn yevixob oxomol. Autod delyvel 6t to olotnud pog unopel eniong va
xenotporomdel w¢ évag YeVxde, Un GTOYELUEVOS CLUVTAXTNG Ue VPNAHC ToldTnTag Topeudoel; (doov agopd
g peTpxée mou oulNTRYNXAY), KWOTHCO 0 EXTETUPEVOS TELPUUATIOUOS OYETIXS YUE AUTOY TOV LoYUPLOW
aprivetan yioo yehhovuxy| epyaocto. Ou BeAtiotomoinuévee ¢ mpog TNy evahhayn etixetodv mopeuldoels,
EMTUYYAVOUV XUAUTERX AMOTENECUATO OE €UYAwTTia, €yylTnTa Kai €AaxiotédTnta ot cUYXELoN YE TOV
MiCE, évav abyyeovo ouvtdxtn Aeuxol xoutiol BelticTonomnuévo Yo evahhayy eTixetdyv. ‘Ocov agopd
o flip-rate, o MiCE emdewviel avitepn anddoon, Eencpvmvtag tn dixr poc xatd 7%, amodeyouevos ua
onpoavtixy emBedduvon 20x oty extéheon.

33

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

ITotoTixd AnoteAéopata

Ye auth} v evotnta Tapovcldlovtal toloTtxég cuyxploelg ye to Polyjuice xou to MiCE yia va xatadetydoly
oL duvaTéTNTEC TN UeYOB0L Yo GOV apopd TNV EAAYLOTOTNTA XAl TO TO0COGTO evohhayrg etxetdv. I to
oxomd autd, EMAEYOLUE Eva Tapddelypa Tou cuvohou dedopévwy IMDB 1o omoio éyer apyixd tavoundel we
«OeTiNd» uou mopdyouue to eneepyaopéva mopadelyuata and To cUCTNUE WO Xt TOUS 800 GUVTAXTES TOUL
avapépdnray mapamdve. Suyxexpwéva yio to Polyjuice, 8edoyévou 6L 0 6Té)0¢ Tou elvon var alkdEel Ty
npéPredn and Jetikrj o apynTiki), YENOWOTOLOVUE TOV xwdxd eréyyou [negation], o onoloc xadodnyel tov
cLVTAXTY Vo dnuoupyRioel plo emeéepyaocia Tou elval 1) dpvnor Tou apyxol xelévou. To apyixd xelyevo pali
ue to enegepyoaopévanapouotdlovior oto Lyhpe 1.3.1 (o x6xxivec MEele UTOBNAGOVOLY TIC OANXYES TTIOU EYLvay
and x&de cuvtdntn).

Original: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
lennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average romantic drama, 7/10.

MiCE: This movie will likely be too harsh for many conservative, conservative audiences.
Personally | enjoyed this film thanks mostly to the brilliant acting of William Powell,
both of whom have the dazzling beauty of Jennifer Jones. There are some truly
heartwarming scenes between the pair and the talent of these two actors enhances
what in less than average hands could've been trite lines. The beautiful performance
of Hong Kong from the onset of filming is another highlight of this movie. Allin all, a
better than average romantic drama, 4/10.

Polyjuice: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
lennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, of.

Ours: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-garth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
Jennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average shameful drama, 7/10.

Figure 1.3.1: Apywx6 xeiuevo xou enc€epyoaouéva xEevo and BlapopeTixols GUVTAXTES.

‘Onwe PAénovpe, o MiCE extelel tov yeyohltepo aptdud alhaydv otny apywxr elcodo, ue dVo and autég
Tic olayée va elvan onpactoloyixd Aavdaouévee ("conservative, conservative” xan "both of whom have").
Iopatnpobue enione 6t oL adhayée Tou dev elvon €€ oloxAfjpou oe eminedo AEENG, YEYOVOC TOU EMLBELVEVEL
TEQAUTEPW TNV om6d00T Tou boov agopd TNV edayiotétnta. O Polyjuice and tnv dAAn mAeupd, xdvel udvo
plot aAhoryr) oto TéAOC TOU XEWEVOL, 1) omolo OUwS eV €xel xopio onuactoloyxy onupacio. O cuvtdxtng pog
TopoLGLELel TNV xAAVTEEY) am6d00T amd TOuG TEELS, aAAdlovTac Hovo Wwa AEET, eved elval oNUAGLONOYIXE GKOTOC

34

1.4. Xuyurepdoporo

%ol TOAD XOVTA GTO dpyLX6 TOEABdELYUAL.

Edits ‘ Minimality | Prediction Flipped

Polyjuice 0.078 False
MiCE 0.256 True
Ours 0.011 True

Table 1.2: To petpixd amoteréopata Twv eneepyaoidy mou topovatdlovto otny exove 9.3.1. T xdde
WiétnTa (oThAN) N xakOTtepn Tun emornuaiveton pe bold.

To aprduntind anotehéopoto TwY TEPMTOoENY Tou Lyfuatoc 1.3.1 doov agopd v eAaxiotéTnta (minimal-
ity) xou v addayn etikérag (label-flipping) avagépovion otov Ilivoxa 1.2. Aedouévou dtu éyouue pévo pia
nepintwon xewwévou, yenowonoloUpe Tov dpo prediction flipped yio va SnAOCoVLPE av 1) enelepyaouévr elcodog
elvon oe Véom var ahhdEel Ty apyx medBiedm tou Tadvounty. Emuewdvoupe dti to Polyjuice dev elvon oe ¥éon
vo aAhder Ty meofBiedm, eved téoo to MICE 600 xan to 8ixd yag cbotnua to xatagépvouy. Eniong, o duxdg
HoC oUVTAXTNG éxel TNV xohUTepn (yopunidtepn) Ty ehaytotétntog, pe to Polyjuice va elvon dedtepo xou to
MiCE to yewpdtepo and to tpla.

1.4 Xvurnepdopata
1.4.1 Xul7non

Ye auth Ty epyaotia, Topoucidloupe Eva cOGTNUA Yior TN dnwovpyia BEATIOTWY %ol EAEYYOUEVKY OVTUPATIXWY
e€nynoewy oe eninedo AEewv YEow aVTIXATACTACENY Bacloyévewy ot Ypdpoug, To onolo aflohoyolue o dbo
TpofBAAuata Taglvounone. ‘Eva Baouxd uépog tng uedodou yoc etvon 1 enthuon tou Opdoywviou IpoBAruatog
Tpoppufic Avddeone (RLAP), to onolo anotehel enéxtaon Tou o eupénc yvnotol Ipofifuatoc Tooppixtc
Avédeone (LAP). Anodewvieton 6Tl ye xatdhhnies tpononotfioelc 1o RLAP unopel vor emhudel ye toug (Sloug
alyopituoug Tou yenotponotobvton Yo Ty enlAuon tou LAP. Autol ot odydpurduot, tepthauBdvouy tov Ouyypikd
akydpido mou emher to RLAP o O(n?) xow tov adydpiduo tov Karp mou to emhlel oe O(mnlogm). Stny
epyooia pag, enexteivouue éva undeyov NAT yia va guhogeviioel to RLAP, 1o onolo npoceyyilel tn Béhtiot
Aoom mou Beloxouv ol meonyoluevol vieteppuvioTixol ohydptduol, eved BEATIOVEL GNUAVTIXG TO GUVOAXO YEOVO
extéheone. EE dowv yvwpilouye, xapia tponyoluevn epyacio dev et avuyetwnioel to RLAP yenowonowdvog
NAT.

To clotnud pac amotehelton and Telo oTEdIL OTO TPWTO GTABLO XATAUOKELALOLUE €vay dlypdpo pe xouPouc
(MéZewc) mnyric o oToyY0U, 610 BeliTepo aTddlo AoPdvoupe xatdAAnia Lelyn AvTIXATUCTACEWY EMAVOVTOS TOV
RLAP octov ypdgo xa 610 tpito xon teleutalo oTddlo, yenolponololue avalAtnor déoune TEOoXeEWEévoy va
TUEAYOVUE EAGYLOTES, EVYAWTTES Xou avTieTixéC eneéepyaoiec. Xe xdle oTdblo, Yenollonotiooue BlapopeTixée
npooeyyloeig xan puduioelc, Aoyw TN WOLLTERA TUPAUUETEOTOLACIUNS PUOTE TOU CUCTAULATOC

Koatd tn Sidpxelol TNg xATACKEVAC TOU YPAPOU, TELQOUATIC TAXOUE YE EVOY UTNYAUVIOUO PLATOOOIOUOTOS OXUWY,
o%0TOC TOU OTOloL HTAY Vo THKEEL TLg oxéc Tou oUVBEOLY dlaopeTind pépr Tou Aéyou (POS), o onolog duwe
anodelydnxe nepittdc pe Bdomn ta anoteléopata. EmiéEope eniong va yenowonotooupe ueydho YAWWoLXd pov-
télo ue embeddings avtl tou WordNet yia tov utohoyioud tng opordtntog petafd dvo Aé€ewv. Tao suphuotd pog
duxonohoyoly TNy andact woc outh, xadwe ol enegepyaoies mou Boasilovtar oto embeddings uneptepooay oe
Ohec Tic peTpwég and Tic enelepyaoieg mou PaciCovton oto Wordnet. Aoxipdoaye Tic SuvatdTnTeg Yevixeuong
TOU GUOTAUATOC oG, TUEYOVTAS OVTIXUTAOTACELS UE ot Ywelc meploptopols POS, xau yenowwonoioope t6c0
éva BuvouIxd 600 %ol EVal OTATIXO XUTWPAL YLoL VO 0plOOUME TOV PEYIOTO apliUd OVTIXOTUC TAGEWY Ylot XAde
neplnTwon xewévou. ‘Hrav evbiagépov va Slomo tdoouue 6Tl To duvouid xatod@hl dev Beltivwoe tny moldtnTa
TV enelepYaouévmy xeévay xou avtideta avnoe uévo tov ypdvo extéreonc. Xenowonowooue enlong O
APOEETIXEC EVPLOTIXEC CLVAPTACELS oTNV avallTnor déoung yia vo Tapdyoupe eneéepyosie PehtioTonomuéveg
yio SropopeTinés epyaoies, avadeviovtog Ty evehi&ia tTng pedodou uoe.

Téhog, ouyxplvaye to cboTNUd Yoc e BVo SoTA cuvtdxnteg, cuyxexpyéva toug Polyjuice xouw MiCE. O npotog
glvon évac yevxnc yprone ouvidntng avTleTixmy eényRoewy Havpou xouTod , eve o deltepog elvar €vag
ouvtdxtne avtrdetndy e€nyroewy Aeuxol xouTlol Tou mapdyel ehdytotes enclepyaoieg BehtioTomoinuéves we

35

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Tpoc TV ohhayh) g €€680u Tou exdotote Tavounty. Xenolonoljoaue XoTIAANAES YeETEXES, Yia TN pétpnon
NG €VYATTIAG, NG €Aax10TOTNTAS, TS ONUACIOAOYIKIS €YYUTNTAS Xl TOU T0o00TOU aAlayng etikétag. To
anoteléopata delyvouy 6Tl Eemepvdue Toug 800 TUPATEVL GUVTAXTES OTIC MEPLOCOTERES UETPIXES, EVE ellooTe
ONUAVTIXE ToYUTEEOL, YEYOVOCS Tou amoTehel xou éva amd Tar x0plol TAEOVEXTHUTY TNE Ped6d0u Yac.

1.4.2 Tevixotepog Aviixtunog xouw HOuwxy

To cUotnud poc npoopileta va Bondfoet oty epunveio Twv yovtéhwy EGT. Kodade eivon pia pédodoc e€rynone
Tou dev e€optdton and To ovtéha (oTny npoemheypévn Aettovpyia tne, dev elvar PEATIGTOTOINUEVT] TPOC X Aol
CUYXEXPUEVY HETELXR), EXEL TN BuvorTdTnTa Vo emnpedoet Ty avdmtudn cvotnudtwy E@T e évo eupd gdoua
povtéhwy xou epyaotedv. Elbixdtepa, ol eneepyaoiec pac uropolv va Bondocouv toug mpoypoupaTioTés Tou
epydlovtar atov Topéa tng E@T" otny Bieuxdhuvor, TNy anocpoldTwon xat TV anoxdhudn Twv TenTey onuelwy
v wovtéhnv. H pédoddc yoc unopel enione va Bondioel oty enadnon twv dedouévev, 1 omola odnyel o
NYSOTEPO TEOXATENNUUEVA XOlL TILO Loy VEd cuoThuata. Katd cuvénela, ol ueTayevEéGTEROL YPNOTES TWV HOVTEAWY
E®I" yropolyv eniong va wgernlolv anoxtiviag nedofaoy o8 auTd T CUCTAUATA.

Evo n epyaotia pog emixevtpdvetal otny gpunvela poviéhwv EQL, Yo prnopoloe va yenowtonoiniel xotoypnotixd
xon o€ dAla mhaiota. Do topddelypa, xaxdBouviol yeroteg Go pnopotooy vo dnuiovpyoouv exdexd mopadely-
poTL, OTWE EAXPEDS TEOTOTOMNUEVT pNTopY| Wiooug, Yio var mapaxdudouy Toug aviyveuTtés To&iic YAOoouG.
Emmiéov, n yprion autdv twv eneepyactdy yio Ty enabinor dedouévnv Yo unopoloe axolota vo 0dNYTioeL oe
MY SOTEPO LoYLEA XoU TILO TEOXATENNUUEVDL oVTERQ, Xaddc ol eneepyaoniec Eyouv oyedlao Tel yia Vol anoxahdnTouy
Tig aduvapieg Tou wovtehou. I va amogiyouv TNy evicyuoT Twy VPO TAUEVLY TpoxaTahhewy, oL epeuvnTég Yo
npénel Vo eEETACOUY TPOCEXTIXG TOV TEOTO EMAOYNGE Ol EMCHUAVONS TV ENEEEPYUCUEVWY TEQLTITOCEWY OTAY
TIC YENOWOTOWNY Yo exmaldeucy). 261600, AUTEC Ol AMELAEC LoYDOUY VLo OTIOLOVONTOTE ENEEEPY AT TH XEWEVOU
ot PBhoypapioc Tou E®T xau Sev elvon mpooapuoouéveg otny epyocio Yog.

1.4.3 Meirovtixéc Kateuddvoelc

Kelvovtag aut n Swateifn Yo Héhaue va mpoTtelvoupe Yepinég xateudivoelg yio Thy tepantépw Bedtinon authg
e epyaoiag 1 vor eunveloouUE SLopopeTixég evdlopépouces tpooeyyioelg. g mpwto Priua, Yo unopobouy va
evoopatwiody Teplocdtepec eEmtepxéc helhoyixée mnyée (m.y. ConceptNet) yio tnv evioyuon twv mdavdv
unodmneiwy avTXaTAoTAGEWY, XS Xl Yl TOV oxp3E0TERO UTOAOYIOUS TN ouoldTnTac PETaED B0 Aé&ewy.
"Eva dA\o Briue o umopoloe va elvar o nepattépw melpapationds he to NAT tou yenowponoteita yia thny eniluon
tou RLAP, npoxewévou va Behtiwdel 1 €é€0d6¢ Tou oe abyxplon ye) BéATiotn Moon mou divel o ahydprduoc
Tou Karp.

Mo edxvotind| xatedduvon Go fray 1 diepebvnon tne yerone tne Yedddou pac w¢ ouvtdxtn Yevixol oxonol. Me
QUTOV TOV TEOTO, XAmolog Yol UTOPOUGE VAl AMOXTHOEL CNUAVTIXEC YVWOELC OYETIXA YE TNV ANOTEAECUATIXOTNTY
Tou og dhheg epyaoiec extdc and TV allayh) e €€680u evde TaEvounTh. LuWoTOOUE TN oUYXELOY| TWV
anoteleoudtev ye to Polyjuice xou to Tailor [81], yio tnv a&iohbdynon tne amddooric Tou évoavtt dhhwy SoTA
CLUVTOXTOV YEVIXOU GXOTOU.

Téhog, n avtiotdduion yeta€d eAayiotéTntag xan mooootol aAdayng etikétag dev eEeTdoTNXE OTNY TAPOLCA
dlatelBy), ahhd Bo pmopoloe vo anotehéoel T BAon i TEQUTERW EQEUVAL. DUYXEXPWEVA, 1) aVENCT TOU UEYLGTOU
optdpol aVTIXOTAOTIoEWY avd Tep{nTwon xetwévou Yo unopoloe va odnyhoel oe LYNhOTERO T0G0GTO ahhaYHS
eTxértog, xooe teplocdtepes Aé€elc Yo dhhalav. Qotéo0o, ol emmiéoy avtixataotdoelc Yo adovay To péyedoc
¢ enelepyaoiauc (UeTpolpevo e Tov apliud TV ahhayUévey AZewv), YewdvVovTae €Tol TV andédooT Tou
oLVTAXTN 600V aPopd TNV ehaytoToTNTA. Ol anodextég anwheleg oty ehoytotéTnTa woll ye ta emdupnTd x€pdn
6T0 T000GTO ahhaynig ETéTag, elvon avolyTéd Tpog mepantépw Slepebvnon).

36

Chapter 2

Introduction

As natural language processing (NLP) models become increasingly integral to decision-making processes, the
need for explainability and interpretability has become paramount. These models are widely used in various
applications, including sentiment analysis, topic classification, machine translation, and conversational agents.
Their decisions often have significant impacts, influencing everything from product recommendations to loan
approvals and healthcare diagnostics. However, the black-box nature of many sophisticated NLP models,
particularly deep learning-based approaches, poses challenges for understanding how specific decisions are
made. This opacity can undermine trust and limit the broader adoption of these technologies in critical and
sensitive domains.

Given the high stakes involved, there is a pressing need for methods that can provide clear, actionable insights
into the behavior of NLP models. One promising approach is the generation of counterfactual explanations.
Counterfactual explanations are hypothetical scenarios that show how minimal changes to the input can
lead to different model outcomes. By presenting these alternate scenarios, counterfactual explanations help
users understand what features are most influential in the model’s decision-making process. This type
of explanation is particularly valuable because it aligns with human reasoning: understanding "what-if"
scenarios is a natural way for people to grasp causal relationships and make informed decisions.

In this work, we propose a graph-based counterfactual editor designed to generate semantically edited inputs,
referred to as counterfactual interventions, which alter the model’s prediction. These interventions serve as
counterfactual explanations, offering a clear and intuitive understanding of the model’s decision-making
process. The primary objective of this research is to develop a method that can create these counterfactual
interventions in a way that is contrastive, fluent, and minimal. "Contrastive" means that the changes should
effectively alter the model’s prediction; "fluent" means that the edited inputs should remain coherent and
grammatically correct; and "minimal" means that the changes should be as small as possible to achieve the
desired effect.

We evaluate the effectiveness and efficiency of our framework and compare it against existing state-of-the-art
counterfactual editors using two NLP tasks, namely binary sentiment classification and topic classification.
Our experiments demonstrate that our framework generates edits that are not only contrastive, fluent, and
minimal but also produced significantly faster than those from other methods. This speed is crucial for
practical applications where timely insights are necessary.

This thesis introduces a novel approach to generating counterfactual explanations for NLP models, addressing
a critical need for interpretability in AL It draws inspiration from [50] and presents a GNN model capable
of solving the Rectangular Linear Assignment Problem (RLAP).Using this model instead of the traditional
graph assignment algorithms, such as the Hungarian algorithm our work achieve a strong improvement in
runtime. It also provides a comprehensive evaluation of the editor across different tasks, demonstrating
its versatility and effectiveness. By emphasizing minimal and fluent edits, it ensures that the generated
explanations are both understandable and practically useful, while the whole process remains faster than
others state of the art editors.

37

Chapter 2. Introduction

The outline of this thesis is as follows:

e We will firstly provide all the background needed in basic Machine Learning algorithms and concepts
as well as bipartite graphs in order to be able to explain and justify the idea of Graph Neural Networks.
After doing so, we will provide a thorough description of GNN variants relevant to this work.

e We will give a more detailed definition of Counterfactual Explanations and related work. In a sim-
ilar fashion, we will formally explain the problem of rectangular linear assignment and provide the
theoretical background for methods already used to tackle it, such as the Hungarian algorithm.

e Lastly, we will propose our GNN-based editor for counterfactual explanations and highlight the perfor-
mance of different variants used for its components. We will compare these results with two state of the
art counterfactual editors across two NLP tasks and showcase how our editor outperforms them while
also being significantly faster. We will also discuss different trade-offs in our editor and how multiple
components influence its performance.

38

Chapter 3

Machine Learning

The topic of machines with human-like capabilities such as thinking has been prevalent among engineers
for centuries. In more recent years, after the invention of computers, the field of Artificial Intelligence (AI)
has not only been established but also thriving. According to [27] Artificial Intelligence, or the development
of computer systems which tackle tasks normally requiring human intelligence, at first focused on solving
problems difficult for humans, but elementary for computers. However, it soon became apparent that the
opposite problem is also in need of attention, i.e. teaching machines to solve problems which for human
beings are intuitive due to their acquired experience.

Machine Learning (ML) is a branch of AI which employs empirical or historical data in order to make
predictions with statistical models. In a broader sense, as the name implies, it helps a machine learn through
statistics in order to build its experience level without needing to be explicitly programmed to do so [98].
These models perform a type of predictive analysis, processing data using different algorithms, extracting
patterns from raw data and finally generating outputs or predictions for a number of tasks.

Machine Learning tasks vary from relatively simple to more convoluted or subjective. For example, some
basic tasks involve classifying or grouping data in categories, while others include generating unique brand
new data, like images. The more intuitive the task the more challenging it tends to be for computers. The
difficulty of the task is also related to the type of input data, which can be images, text, speech, timeseries
or even graphs. According to the data representation, a task is grouped with other similar ones belonging
to the same field. The most popular ones are Computer Vision, Natural Language Processing, Speech
Recognition, Recommendation Systems and more recently Geometric Learning. The task itself is most of
the times strongly connected to the machine learning category, as explained in the next section.

Contents
3.1 Learning Categories 0 i i i it i e e e e e e e e e 40
3.2 Training a Neural Network 40
3.2.1 Basic Concepts 40
3.2.2 Generalization and Overfitting o000 43
3.3 Deep Learning o 0 i i i i it e 43
3.3.1 Multi-Layer Perceptron (MLP) 44
3.3.2 Convolutional Neural Networks (CNN) 44
3.4 Natural Language Processing ¢ . i i i ittt v v vttt 45
3.4.1 Embeddings oL e 45
3.5 Large Language Models. o i i i i ittt ittt e 48
3.5.1 LLM Architecture 48
3.5.2 Pretraining and Fine-Tuning L L oo, 50
3.5.3 Computational Complexity 50

39

Chapter 3. Machine Learning

3.1 Learning Categories

Machine Learning algorithms can be categorized according to the experience the model is provided with
during training. The three broad types of machine learning algorithms are supervised, unsupervised and
reinforcement learning, while semi- and self- supervision can be considered variants of the above.

Supervised Learning

In this type of learning the input data, comprised of multiple features, is associated with a label or target.
Let the feature vector be x and the target be y, the model will learn to predict y from z using an array
of examples. In most cases, this is achieved by learning the distribution function p(y|x). Some of the most
prominent supervised learning tasks are considered to be classification, regression and forecasting.

Unsupervised Learning

Unsupervised learning algorithms do not take labels attached to feature vectors of the dataset into account.
Instead, they attempt to implicitly or explicitly learn the probability distribution of the entire dataset p(x)
and in turn give insight about the underlying structure of data. Popular tasks of this category include
clustering and dimensionality reduction.

Semi-supervised Learning

Semi-supervised learning can be considered a special type of supervised learning where most samples of the
dataset used for training are not associated with targets. The small amount of labeled data can be attributed
to either difficulty of acquiring said information or desire for better accuracy [102]. Common semi-supervised
learning tasks include link prediction in graphs or fraud detection.

Self-supervised Learning

Self-supervised learning is a learning category lying between supervised and unsupervised. It makes use of
unlabeled data and leverages supervision signals stemming from the structure of the data itself, by using
pseudolabels. This form of learning mostly consists of solving pre-text tasks, i.e. tasks specifically crafted to
help a model learn the inner-workings of a dataset, and using the rich information obtained by the originally
unlabeled data to later solve other downstream tasks [52], like the ones mentioned in previous sections.

Reinforcement Learning

In reinforcement learning the dataset is not fixed, but rather it receives feedback from changes in its envi-
ronment. This type of learning will not be considered in this thesis.

3.2 Training a Neural Network

Neural Networks are a subset of machine learning, whose operation resembles that of the human neural
system. In this section the general idea of the learning process of such a system will be described as well as
the potential challenges.

3.2.1 Basic Concepts

Firstly, we will explain the basic operation of a shallow neural network to provide background information
needed to understand similar architectures on graph structured data. The following concepts mostly adhere
to supervised learning tasks. The majority of information below was sourced from [27].

In supervised learning, the model uses a fixed amount of N samples from the training dataset D =
{(z1,y1)s s (Tn,yn)} and their corresponding labels to compute a function f : X — Y which maps the
input X to the output Y and its trainable parameters are often called weights. In order to evaluate f, a

40

3.2. Training a Neural Network

X

S

X b output

X2
Figure 3.2.1: Shallow Neural Network of One Neuron - Perceptron [3§]

function is established to determine the error of training, called loss function L. The goal during training is
the calculation of the weights of f in a way that ensures the minimization of the loss function .

The output of each neuron in a neural network is not solely determined by the computation of the weighted
sum of the inputs x;. On the contrary, a different function is employed called activation function to define
how to transform the weighted sum to an output. An activation function plays a critical role in the network’s
performance and therefore should be chosen carefully. It can be linear or non-linear and the most commonly
used examples can be seen below.

Linear a(x) = ax + 3 Sigmoid a(z) = Tanh a(z) = =

" - .f-'. /,__
" /
;,/
.t ———

Figure 3.2.2: Examples of activation functions.

RelU a(x) = max(0, x) LeakyRelLU a(x) = ' ELU a(z) =

ar < rgl:"'

e

Figure 3.2.3: ReLU activation function and variants.

The linear activation function exhibits a number of limitations, one of the most important being the fact
that it makes backpropagation, which will be explained later, impossible since its derivative is a constant. It
leaves the weighted sum of the input practically unchanged. In most cases, non-linear activation functions

41

Chapter 3. Machine Learning

are used due to the fact that they ultimately allow the stacking of multiple layers (deep networks) and the
creation of more complex mappings. Sigmoid and tanh, although being popular non-linearities for certain
problems, face the problem of vanishing gradients [103], making training unstable.

The most widely adopted choice of activation function is ReLU and its variants. It overcomes the problems
of aforementioned functions and leads to more computationally efficient training. Some of its variants include
LeakyReLU and ELU which can be seen in Figure 3.2.3. ReLU also suffers from limitations, such as the
dying ReLU problem which causes the existence of non-active neurons [101]. This problem is combated by
its variants.

As mentioned previously, the loss function or cost function is used to determine how close the model’s
prediction is to the truth. It maps Y x Y to a non-negative real number, or L(y;, f(z;)) for the i, sample.
Neural models are trained repeatedly for a number of iterations, called epochs, until meeting an objective or
when the maximum amount of iterations has been reached. In general, the total loss of the model in each
epoch can be defined as a normalized average of the cost function for each piece of data on the training set.
In an optimal scenario, the parameters which minimize this function will be discovered.

The choice of cost function heavily depends on the task carried out. The most notable loss functions are
listed below but it is important to note that often custom loss functions are created to cater for more complex
tasks.

Mean Squared Error is one of the simplest cost functions and it is often used in regression tasks.

i (yi — fl@)?

n

MSE =

(3.2.1)

Mean Absolute Error or L1 loss is similar to MSE in the aspect that it ignores the direction of error [99].
This cost function is more robust to outliers.

i1 |yi — f(23))
n

MAE:Z

(3.2.2)

Cross Entropy Loss or Negative Log Likelihood is a loss function commonly used in classification tasks. It
focuses on penalizing predictions that are confident but incorrect and in the case of non-binary classification
in M classes can be defined as:

M
NLL == py, log(ps(a,).c) (3.2.3)

c=1

The next step after the establishment of the cost function is its minimization. In order to achieve optimization,
gradient-based methods are employed. The use of gradients is crucial for such problems since derivatives
can give us insight on how to scale small changes in the input so as to eventually reach the desirable output
[27]. More specifically, the objective function is minimized by iteratively computing the value of the loss
function for all training samples and in turn the gradients of the model’s parameters and finally updating
the parameters in the opposite direction of the gradient.

The most popular gradient method, which adopts the aforementioned process, is Gradient Descent. Its
definition can be found in Equation 3.2.4, where ¥ represents the model’s parameters and e corresponds to
the learning rate. The learning rate is a small positive constant which is chosen during training, often by
trying several values and keeping the best. Its choice can prove crucial to the model’s performance.

0 =0 — eVoL(6) (3.2.4)

There are many other gradient based optimizers often used in applications, most of which are extensions or
inspired by gradient descent. One of the most popular ones is Stochastic Gradient Descent (SGD) which
differs in the way that it computes gradients and updates parameters for each (z;, y;) pair in batches, instead

42

3.3. Deep Learning

of the whole dataset. This practice gives it a significant speed advantage. Other honorable mentions include
AdaGrad, RMSProp, AdaDelta and Adam.

Even though the computation of an analytical expression for gradients is simple, its numerical evaluation is
quite expensive. For this reason the algorithm of back-propagation was proposed [82]. In this approach
the chain rule needed to be applied for gradients is computed in a specific order of operations that is highly
efficient, making use of computational graphs and storing already computed values.

The process of computing outputs and adjusting weights through back-propagation is often repeated for
several epochs until the loss function converges or another threshold is met. The neural network’s performance
can then be evaluated using a variety of metrics and data which was not encountered during training.

3.2.2 Generalization and Overfitting

A machine learning algorithm must be able to succeed easily on previously unseen data, different from those
it was trained with. The ability of a model to perform well on new inputs drawn from the same distribution
as the one used to create it is called generalization. To achieve good generalization an algorithm must result
in both low train and test error, where train error is defined as the loss during training and test error is the
loss obtained from newly observed data, after the training process.

The lack of generalization of a model is often attributed to underfitting or overfitting. Underfitting is caused
by high train error, meaning the model has not sufficiently learnt the data distribution whereas overfitting is
the product of a large gap between train and test error, given the train error is low. The latter exposes the
fact that the model has learnt the data too well, including existing noise, thus having a negative impact on
its performance.

It is apparent that the training of a neural network is not just a simple optimization problem, but rather the
pursuit of a good trade-off between test and train error. The most prominent technique to handle overfitting is
regularization. The concept of regularization is based on Occam’s razor, the notion that the simplest solution
must be chosen or in this case the smallest in way of parameters. This idea is implemented by adding an
extra term AR(6) in the loss function which penalizes larger more complex models, while favoring low values
of loss. The hyperparameter A of the term is chosen during training in order to favor the model’s performance
and R is the regularization function which is often a norm of the weights. The two most prevalent regularizers
are L1 and Lo norm. In the equations below W represents the weight matrix of the model.

Ly Regularization or Lasso Regularization tends to favor sparse solutions, i.e. solutions containing many zero
values, by penalizing both uniformly low and high parameter values.

R, (W) =Y |Wi;l (3.2.5)

4,J
Lo Regularization or Ridge Regularization punishes high values heavily. It is often referred to as weight decay.
Rp,(W) = Z WiQ,j (3.2.6)

(2%}

Finally, another way of achieving generalization is by using dropout. With this technique, a number of layer
outputs are randomly ignored in order to ensure that the model does not rely on specific neurons. By doing
s0, noise is added to the training process which in turn makes the neural network more robust.

3.3 Deep Learning

With the knowledge of all the basic steps of training a shallow neural network, some principal models will
be explained in this section. All of them are examples of Deep Learning algorithms, i.e. neural networks
in which multiple layers of neurons are used in order to extract progressively higher level features from the
input data. Even though the complexity of said algorithms is increased, the general idea remains the same.

43

Chapter 3. Machine Learning

Output layer

Hidden layer

Input layer

Figure 3.3.1: Multi-layer Perceptron with one hidden layer of 5 units. [116]

3.3.1 Multi-Layer Perceptron (MLP)

The concept of the Multi-Layer Perceptron was introduced as a way of overcoming the limitations of linear
models. Specifically, linear models imply monotonicity, i.e. that any change in features always causes change
in the same direction for the model’s output - decrease or increase [116]. This generic assumption is not
true for the majority of problems to be solved. In order to tackle this obstacle, the stacking of multiple fully
connected layers was proposed.

The MLP, often referred to as a Feed Forward Neural Network (FFNN), is an artificial neural network in which
the connections between nodes do not form a cycle [96]. The information is only processed in one direction
from the nodes of the input layer, through the hidden nodes to the output layer nodes. As explained in
previous sections, each node computes the weighted sum of inputs and produces an ouput using an activation
function, which in this case needs to be non-linear. Otherwise, since the sum of two linear functions is also
linear the existence of layers would be unnecessary.

The simplest MLP contains only one hidden layer and is called a single-layer perceptron. An example can be
seen in Figure 3.3.1. The input layer comprises of the input vectors left unchanged, each of which are passed
to all the neurons in the hidden layer. The hidden layer processes the inputs it is given and extracts features
from them. If multiple layers exist, the closer the hidden layer is to the output the higher-level the features
it extracts. The output layer computes the output of the model by using the processed data passed from the
previous layer.

There is no limitation to the number of layers or number of units in each layer. This is a matter of experi-
mentation during the training process.

3.3.2 Convolutional Neural Networks (CNN)

Multi-layer Perceptrons are useful for dealing with tabular data, i.e. data in the form of rows and columns
which consist of a number of samples and their corresponding figures. However, if the input data consists of
high-dimensional data such as images, an appropriate MLP would have to be enormous in size with millions
of parameters. Considering this and the fact that visual data exhibits interactions between features due to
the locality of pixels, a new type of neural network was introduced, the Convolutional Neural Network (CNN)
[45].

CNNs are rooted in the idea of using a new type of layer which performs convolutions. A convolutional
layer contains a set of trainable filters. These filters are convolved or in practice cross-correlated with input
from the previous layer producing what is called a feature or activation map. They are generally small in
size, leading to lower numbers of parameters, since they make the assumptions of translation invariance and
locality, which are true for images. The process of cross-correlation consists of simply computing the dot
product between filters and the input across both dimensions and subsequently producing a 2-dimensional
activation map of that filter. The network is able to learn filters corresponding to different features in specific
positions of the input. The local focus of the CNN also aids in the problem of overfitting.

44

3.4. Natural Language Processing

convolutior oolin dense
convolution P 9

pooling

| s

I 6@14x14
52 feature map

28x28 mage 6@28x28 16@10x10
C1 feature map C3 feature map

3
2
[Ts]
w
\
=]
&

ERE

16@5x5
54 feature map

Figure 3.3.2: Typical CNN architecture - LeNet. [116]

In a typical CNN the convolutional layers are followed by pooling layers. The act of pooling serves the purpose
of both alleviating the local sensitivity of convolutional layers and spatially downsampling representations
[116]. Pooling filters are non trainable and perform the deterministic operation of aggregating elements
present in a fixed-size window of the feature maps they receive. The types of aggregation most commonly
used are the computation of maximum or average, resulting in the so-called max and mean pooling filters
respectively.

In Figure 3.3.2 we can see the architecture of the first and simplest CNN. Nowadays, the CNNs used in
applications are much deeper, meaning they consist of tens of alternating convolutional and pooling layers,
followed by fully connected -or dense- ones. The dense layers contribute in learning combinations of the
features extracted and serve as a classification head.

3.4 Natural Language Processing

Natural Language Processing (NLP) is a field at the intersection of computer science, artificial intelligence,
and linguistics, focused on enabling machines to understand, interpret, and generate human language. With
the increasing availability of digital text data and the growing demand for intelligent systems capable of
interacting with humans in natural language, NLP has become a critical area of research and application.
In this work, we will address two common NLP problems, namely binary sentiment classification and topic
classification. Below, we provide an overview of the fundamentals required, in order to better understand
those problems.

3.4.1 Embeddings

A term which we will refer to a lot in this dissertation is Embeddings. An embedding is a relatively low-
dimensional space used for the translation of higher-dimensional vectors. The goal of embeddings is to bring
semantically similar objects closer together in the embedding space, by effectively capturing the semantics of
the input. The dimensionality reduction offered by this method makes machine learning easier if the original
input comprises of sparse high-dimensional vectors [14].

As far as NLP is concerned, embeddings serve as word or sentence representations. They generally are
real-valued vectors representing the semantic meaning of words in such a way that maps words with similar
meaning closer together in the vector space [104]. The generation of embeddings is possible through an array
of methods such as dimensionality reduction on the word co-occurrence matrix, probabilistic models or even
neural networks. The most popular approaches include Word2vec [60], GloVe [74], BERT [75] and Principal
Component Analysis (PCA).

45

Chapter 3. Machine Learning

original data space

component space

—- 1
I e -
I - IR _"
© N T A
g g o ae o i
e e e
PC1

Gene 2 Gene 1

Figure 3.4.1: Visualization of Embedding using PCA. [33]

In the sections below we will explain some of the most notable embedding methods:

Principal Component Analysis

PCA is a standard mathematical technique used for dimensionality reduction. It focuses on finding dimensions
of the input data which are highly correlated and therefore can be represented as one. PCA is defined as
an orthogonal linear transformation which maps data to a new coordinate space. The dimensions of this
space are computed as the eigenvectors corresponding to the greatest eigenvalues of the covariance features
matrix. These vectors are chosen to be orthogonal, meaning the features are independent, and result in the
least amount of error for approximating the data.

PCA captures linear correlations and therefore if the dataset has underlying non-linearities this approach
will fail. Although simple in conception, if not performed appropriately it can lead to information loss [100].

Autoencoder

The Autoencoder is a dimensionality reduction method using neural networks. It succeeds in overcoming
PCA’s limitations since it basically is a non-linear generalization of it. Specifically, if it were to be linear it
would produce any orthogonal basis in a non-deterministic way.

46

3.4. Natural Language Processing

\D(/
AN
28565

Bottleneck

RKRLL

Encoder Decoder

Figure 3.4.2: Autoencoder Architecture.

The autoencoder is a bottleneck architecture whose framework is composed by an Encoder and a Decoder.
The first component transforms the high-dimensional input into a latent low-dimensional code, whereas the
second reconstructs the input data using this code [30]. Both components are neural networks which are
iteratively optimized using a custom loss function, called reconstruction loss, which computes the distance
between the input and reconstructed data by the decoder.

The encoder and decoder can be stacks of different types of layers, even convolutional if the input is an
image. There are various different models adopting the autoencoder architecture such as the undercomplete,
sparse, contrastive and variational autoencoder. These models primarily differ on the construction of the
loss function. For example, in the Variational Autoencoder there is a regularization term aiming to tackle
overfitting. This feature combined with the encoding of the input as a distribution - and not points - makes
this particular variant well-suited not only for the embedding of existing data but also for the generation of
new ones.

This architecture provides a trainable way of embedding data. Its most important feature is the idea of the
bottleneck, which only lets vital semantic information go through and eventually be reconstructed. Control
of the bottleneck layer by size reduction helps to alleviate overfitting. The choice of depth and dimensions is
also crucial.

Trained Embeddings as Part of a Larger Model

Another way of producing embeddings is implicitly while training a neural network for another task. A way
to achieve this is by adding a special type of layer, defined by the library used to train, with dimension d in
order to create a d-dimensional embedding. Alternatively, the embeddings could be extracted by any other
given layer deemed fit for capturing data semantics.

This approach provides specific embeddings which capture semantic similarity of the input data determined
by the training task. In many applications, like the one presented in this thesis, this is a desirable trait.
However, in most cases the training of the larger model is more computationally expensive than the training
of embeddings separately [14].

47

Chapter 3. Machine Learning

3.5 Large Language Models

Large Language Models (LLMs) are advanced machine learning models that are designed to understand and
generate human language. LLMs are typically built using deep learning techniques, and they are trained
on vast amounts of text data to develop the ability to generate coherent and contextually appropriate text.
These models have become foundational in natural language processing (NLP) tasks due to their ability to
capture the complexities of language, such as syntax, semantics, and even pragmatics. Recent works show
that LLMs are able to also solve riddles and puzzles [70], showcasing their reasoning capabilities [71].

3.5.1 LLM Architecture

At the core of LLMs are neural network architectures, particularly transformer-based models. The trans-
former model, introduced by Vaswani et al. in [91], revolutionized NLP by allowing models to process
sequences of text in parallel rather than sequentially, making them more efficient and scalable.

The LLMs used in this work, such as GPT [112] and BERT [15] are composed of multiple components
that allow them to process, generate, and understand natural language. This section delves deeper into the
mathematical formulations of the key parts of their architecture.

Tokenization and Embedding Layer

Tokenization: Text is split into tokens, which can be words, subwords, or characters. Let z =
(z1,22,...,2,) represent an input sequence of n tokens.

Embedding: Each token z; is transformed into a dense vector e; € R? using an embedding matrix £ € RV *9,
where V' is the vocabulary size and d is the embedding dimension. The embedding for the entire input sequence
can be represented as:

E(xz) = (e1,€2,...,€n)

where e; = E[x;].

Self-Attention Mechanism

The self-attention mechanism is central to transformer-based LLMs. For each token in the input sequence,
the attention mechanism computes a weighted sum of the other tokens, determining how much focus the
model should place on each token when processing the sequence.

For a given input = (21,2, ..., %,), the attention mechanism relies on three matrices: the query (Q), key
(K), and value (V') matrices. These matrices are computed as:

Q=XW? K=xw« v=xwV

where X € R"*4 is the input embedding matrix, and W&, € R¥*d WK c R¥>d WV c R¥* are learned
parameter matrices that project the input embeddings into the query, key, and value spaces, respectively.

The attention scores are computed by taking the dot product of the query with the keys, scaled by the square
root, of the dimensionality dj, followed by a softmax operation:

. QKT
Attention(Q, K, V) = softmax 1%
Vdy,

This equation computes a weighted sum of the value vectors, where the weights are determined by the
similarity between the query and key vectors. The softmax function ensures that the attention weights
sum to 1, giving a probabilistic interpretation to the weights. An visual representation of the self-attention
mechanism can be seen in Figure 3.5.1.

48

3.5. Large Language Models

dq
d —
<—q>
— Wi ——]| Q
n
Waights
Embedding
size
d & n
—> dk = dq —>
+«—>
number T o T
I — >
of tokens X I Wk " K n QK" |-
Weights
n
d Atenion — 1,
d e —
v
+—> n A
— | W ——|| Vv
Weights n
dv A J
—
Z
n

Figure 3.5.1: Self-Attention Mechanism

Multi-Head Attention

Instead of computing a single set of attention scores, LLMs use multi-head attention to capture different
types of relationships between tokens. In multi-head attention, multiple attention mechanisms (heads) are
run in parallel, and their outputs are concatenated:

MultiHead(Q, K, V) = Concat(head; , heads, ..., head),)W
where each head is computed as:
head; = Attention(QW2, KW/, viv))
and WO € RMrxd ig a learned output projection matrix. The use of multiple heads allows the model to
attend to different parts of the input in different ways, increasing its representational power.
Position Encoding

Transformers do not have an inherent notion of word order, so position encoding is added to capture the
sequential nature of the input. A positional encoding matrix P € R™*? is added to the input embeddings.
The positional encoding is typically defined using sinusoidal functions:

Pi,2j = sin (]_OOOOZ]/d) s Pi,2j+1 = COS (]_()0002]/‘1>

where 7 is the position and j is the dimension. This encoding allows the model to differentiate between
positions in the sequence while maintaining generalization to longer or shorter sequences.

49

Chapter 3. Machine Learning

Feed-Forward Layer

Each transformer block includes a feed-forward network (FFN) applied independently to each position. The
FFN consists of two linear transformations with a non-linearity in between:

FFN(z) = max(0, W1 + b1)Wa + b

where W, € R%¥*4r5 and Wy € R% X4 are learned weight matrices, b; € R%7 and by, € R? are bias terms,
and max(0,) represents the ReLU activation function. The FFN is applied separately to each token in the
sequence.

Final Output Layer

The final output of the transformer model is passed through a linear transformation and softmax layer to
generate probabilities for each class or token prediction. Let h; represent the hidden state of the i-th token
after the transformer layers. The probability distribution over the vocabulary is computed as:

P(x;|h;) = softmax(h;WT +b)

where W € RV *? is the learned weight matrix, and b € R is the bias term.

3.5.2 Pretraining and Fine-Tuning
LLMs are typically pretrained on large text corpora using one of two main objectives:

e Masked Language Modeling (MLM): This objective is used in models like BERT. A random subset
of tokens in the input is masked, and the model is trained to predict the masked tokens based on the
surrounding context. Formally, for a masked token x;, the loss is computed as:

EMLM = - 10g P(zi|xmask)

e Causal Language Modeling (CLM): This objective is used in models like GPT, where the model
is trained to predict the next word in the sequence given the previous context. The loss function for a
sequence of tokens x = (z1,xa,...,x,) is:

Lowm = — Y log P(x;lwy, @a, ..., @i 1)

i=1

After pretraining, the model can be fine-tuned on a specific task by minimizing a task-specific loss function,
such as classification or sequence labeling.

3.5.3 Computational Complexity

The computational complexity of the attention mechanism in transformers is O(n2d), where n is the sequence
length and d is the dimensionality of the embeddings. This quadratic complexity arises because the attention
mechanism computes interactions between all pairs of tokens in the input sequence.

50

Chapter 4

Graphs

4.1 Graph Theory Basics

A graph, denoted G, is a non-linear data structure comprising of a set of objects called nodes or vertices
which can be connected to one another, forming an ordered pair called an edge. In other words:

GV, E) ={(u,v) : u,v € V,(u,v) € E} (4.1.1)

where V is the set of vertices and E is the set of edges with |V| = N, |E| = M. In literature, the term "graph"
is often used as a synonym for a simple graph, i.e. a graph without any self-loops (edges connecting a vertex
to itself) and no more than one edge connecting any pair of vertices.

A visual representation of a graph can be seen in Figure 4.1.1a. However, graphs can also be described using
an adjacency matrix A, a square array of dimensions N x N whose non-zero elements indicate the existence
of a link between vertices. In some cases links between nodes can be assigned weights, which hold a relevant
meaning to what the graph represents. Thus, the weight value for the corresponding edge would be present
for each node pair in the adjacency matrix.

(a) Visual Representation (b) Adjacency Matrix

Figure 4.1.1: Representation of undirected graph.

A graph may additionally have node and/or edge attributes. In this case, each node (edge) is characterized
by a feature vector of dimension D, resulting in a node (edge) feature matrix X of dimension N x D (X€ of
dimension M x D).

Graphs are categorized according to the direction of connections present between nodes. More specifically,
an edge between nodes u, v is called undirected if both ordered pairs (u,v) and (v,u) belong in the set of
edges if v and v are connected whereas is called directed if only one of them is present. Therefore, a graph
is said to be undirected when all its edges are undirected and directed (or digraph) if at least one of them is
not. A property of an undirected graph is the symmetry of its adjacency matrix.

The neighborhood N(u) of an entity u in a graph is defined as the set of nodes adjacent to it. A path is a
sequence of vertices u1,ug, ..., U such that u; and w;4+1 are neighbors for all 1 <4 < n — 1. An undirected

o1

Chapter 4. Graphs

1;?'
b

(a) Molecule [26]

(b) Social Network [79]

-—:__"______—_:

e,

(c) PageRank on websites [69]

Figure 4.1.2: Graph reprentation examples

graph is connected if every pair of nodes are connected through a path. In the case of digraphs, there are two
distinct versions of connectedness, weak and strong. A directed graph is weakly connected if for every pair
of vertices u and v there exists a path either from u to v or from v to u. In contrast, a strongly connected
digraph should contain paths leading both ways.

A distinct feature of graphs that sets them apart from other types of data is the fact that they are generally
non-euclidean. Non planar graphs cannot be mapped on a two-dimensional, non-curved space because they
cannot be drawn on the plane so that links intersect only at their endpoints. This attribute which stems
from the dependency of objects in graphs creates limitations in many established data processing models and
results in the need for new ones.

4.2 Bipartite Graphs

In graph theory, a bipartite graph (or bigraph) is a graph whose nodes (or vertices) can be divided into two
disjoint and independent sets S and T such that no two nodes within the same set are adjacent. Formally, a
graph G = (V, E) is bipartite if its node set V' can be partitioned into two subsets U, W such that UUW =V,
UNW = 0 and where each edge e,_,,, € E connects a node u € U to a node w € W. This structure makes
bipartite graphs particularly useful in modeling relationships between two distinct types of entities.

The two sets U and W may be thought of as a coloring of the graph with two colors: if one colors all nodes
in U with one color, and all nodes in W with a different one, each edge has endpoints of differing colors, as
is required in the graph coloring problem [86]. This is shown in Fig. 4.2.1, where the node set U is colored
in red and the node set W is colored in blue. In contrast, such a coloring is impossible in the case of a

52

4.2. Bipartite Graphs

non-bipartite graph, such as a triangle: after one node is colored blue and another red, the third vertex of
the triangle is connected to vertices of both colors, preventing it from being assigned either color.

Figure 4.2.1: An example bipartite graph

We often write G = (U, W, E) to denote a bipartite graph whose partition has the parts U and W with
E denoting the edges of the graph. If a bipartite graph is not connected, it may have more than one
bipartition; in this case, the (U, W, E') notation is helpful in specifying one particular bipartition that may
be of importance in an application. If |[U| = |W]| that is, if the two subsets have equal cardinality, then G is
called a balanced bipartite graph. If all vertices on the same side of the bipartition have the same degree,
then G is called biregular.

A bipartite graph G = (U, W, E) is usually represented by its biadjacency matrix, which is a (0, 1)matrix of
size |U| x |W|. In that matrix, the value of the element ij is 1 if 3e;,; € E: ¢ € U,j € W, or in simple terms
if nodes i and j are adjacent. Otherwise, the element value is 0. In case the graph is weighted, element ij is
equal to the weight of the edge connecting those two nodes.

One of the most prominent applications of bipartite graphs and the one for which they are used in this
dissertation is in matching problems, such as job assignment, resource allocation, and network flow. In these
contexts, nodes in one set represent agents or tasks, while nodes in the other set represent jobs, resources, or
network nodes. The edges are usually weighted, with the weight value corresponding to a cost, such as the
hours needed for an agent to execute a given task, etc. Bipartite graphs in this work are employed to replace
words from a given text, where in this case we will refer to the two node sets as source node set and target
node set.

53

Chapter 4. Graphs

54

Chapter 5

Graph Neural Networks (GININ)

It has been established from the previous section that the graph structure naturally emerges all around us.
For this reason, neural networks operating directly on graph data were invented. Graphs are non-euclidean

data and thus GNNs can be grouped in the broader category of Geometric Learning [7].

Graph Neural Networks (GNN) are known for their expressive power and recently have been gaining popu-
larity due to their growing capabilities in various applications like recommendation systems and molecular
fingerprinting. GNN applications range from chemistry and physics to traffic networks. These models can
extract features from knowledge graphs and perform several graph mining tasks. They are widely used
in computer vision for visual reasoning and semantic segmentation, in NLP for relation extraction or text

classification and in combinatorial optimization to solve graph-related problems [118].

In the following sections we will review their unique features that make them so influential, explain how they

are used and offer a review of the most important GNN variants.

Contents

5.1 Unique Characteristics o i i ittt i it i i e e
5.1.1 Motivation e
5.1.2 Permutation Invariance Lo Lo
5.1.3 Weisfeiler-Lehman Test o

5.2 TaXONOImY . . v v v v v v v v b v b v et e
5.2.1 Task Type. o o
5.2.2 Architecture
5.2.3 Training Type e

5.3 GNN Models 0 0 i i e
5.3.1 Original Graph Neural Network
5.3.2 Variants e

5.3.3 General Frameworks

55

Chapter 5. Graph Neural Networks (GNN)

5.1 Unique Characteristics

5.1.1 Motivation

The first question to be answered is why GNNs were created, even though there is already a substantial
amount of neural network architectures. Most other data representations can be generalized to graphs but
the opposite in not true. Most conventional Machine or Deep Learning algorithms are specifically crafted to
cater to a certain type of data, such as images or text. Images can be perceived as fixed-size grid graphs
and text or even speech can be thought of as line graphs. But in the general case, graphs are more complex,
having a non-fixed number of unordered nodes within neighborhoods of variable size, and therefore existing
models cannot handle them.

Another reason why machine learning is more complex on graphs is that most common algorithms assume
instance independence. This is not true when performing node-level tasks where one graph is the input of the
neural network and the instances are its nodes. Vertices are obviously related to one another with directed
or undirected links.

The main motivation behind GNNs are Convolutional Neural Networks. Classic CNNs operate on images,
or more broadly regular grids. As explained previously, they take advantage of the spatial locality of pixels
which are nodes on the grid by sliding rectangular kernels with a small receptive field over the image to
produce feature maps. The lack of locality in the traditional sense in graph data, their arbitrary size and
invariance make regular convolution difficult to perform.

5.1.2 Permutation Invariance

Graphs are represented with adjacency matrices, a format that is permutation invariant. A Graph Neural
Network is a transformation on nodes, edges or global-context that should preserve the graph symmetries -
or permutation invariances - through the process of optimization.

More formally, for a graph with n number of nodes, their features can be represented by the feature matrix
X = [21,...,w,)T where z; are the feature vectors of each node. As explained the order of the nodes should
not be important. However, by using this representation an ordering is unavoidably enforced. In order to
overcome this problem the network should learn a function which is not affected by this ordering and therefore
preserves permutation invariance.

A permutation invariant function f can be defined as:
F(PX) = F(X) (5.11)

where X is any input matrix - in this case the feature matrix of a graph - and P is a permutation matrix.
Permutation matrices contain exactly one non-zero element in each row and column and intuitively they
scramble the rows of X resulting in different orderings.

A more thorough examination of the above function leads to the conclusion that operators like f are very
limited. Basically such functions belong to a two-dimensional vector space containing summing the diagonal
and summing the off diagonal of X. For example, a graph network consisting of only invariant layers would
not even be able to discriminate between two graphs with the same number of nodes and edges, because it
observes nodes as sets and not individually [59].

For all the above, in practice we want to combine invariant functions with equivariant functions which reflect
the permutation of the node features in the output. Equivariant operators can be defined as:

f(PX)=Pf(X) (5.1.2)
It is notable that a permutation in the node ordering could also be reflected on the adjacency matrix A of

the graph. In this case the permutation will be enforced as PAP” and result in f(X, A) for invariance and
Pf(X,A) for equivariance.

56

5.1. Unique Characteristics

Figure 5.1.1: Permutation in the adjacency matrix.

Left: Original Graph, Right: Graph obtained by permutation PAPT

In practice graph neural networks often work on neighborhoods and not isolated nodes. For this reason, if we
consider only the immediate 1-hop neighbors as the neighborhood N; of ¢, the neighborhood feature matrix
Xn, would be a set of the neighbors’ collective features. Each N; would be processed separately using a
local function g and finally the output would be a stack of the intermediate local results. To achieve f to be
permutation equivariant, g should be invariant.

5.1.3 Weisfeiler-Lehman Test

The Weisfeiler-Lehman (WL) Graph Isomorphism Test [95] is used for the discrimination of non-isomorphic
graphs. Specifically, it is able to distinguish between graphs that are not isomorphic, but cannot exactly
provide proof that two graphs are in fact isomorphic. This capability gives significant insight on the graph’s
structure and aids in graph comparison.

In terms of graph theory, two graphs G and H are called isomorphic when an isomorphism exists between
them. An isomorphism of graphs is a bijection between the vertex sets of G and H

F1V(G) = V(H) (5.1.3)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H [97].

Figure 5.1.2: Two isomorphic graphs [97]

The principal idea of the Weisfeiler-Lehman test is to replace the label of each vertex with a multiset label
consisting of the original and the sorted set of labels belonging to members of the neighborhood. This process

o7

Chapter 5. Graph Neural Networks (GNN)

of relabeling is repeated for a given number of times simultaneously for all the graphs. If the outcome is
graphs with different node labels, one can safely say that the input graphs were not isomorphic.

The problem that the WL test tackles is very challenging with a computational complexity in the class NP-
intermediate. However, the WL test provides its answer in polynomial time. This test is also relevant to
GNNs since it closely resembles the general idea of the GNN learning process of message passing. In fact,
it was proven that a Graph Neural Network can at best be as good as the WL test at solving the graph
isomorphism problem [109]. Thus, GNNs and the WL test are often compared based on their expressivity.

5.2 Taxonomy

Developments in the field of Geometric Learning in recent years have resulted in the creation of an abundance
of different GNN models. Each one specializes in a certain task or offers a specific optimization. In order to
explain the many GNN variants in the next section, we will explain on which bases they can be categorized:

5.2.1 Task Type

GNN variants tackle an array of graph analytics tasks each of which may focus on different attributes of the
graph structure.

e Node-Level tasks require models which predict some property for each node in a graph, like its
identity or role. With a broader perspective, node-level models build node representations. Analogous
tasks would be image segmentation in computer vision or parts-of-speech prediction in NLP. In the
supervised case, the most common tasks include node regression and node classification.

e Edge-Level tasks, in a similar fashion, call for models to predict the property or presence of edges.
Subsequently, these tasks include edge classification and link prediction. The topic of this dissertation
is also an edge-level task, where we try to predict whether an edge belongs to a desired set of edges or
not.

e Graph-Level tasks entail the prediction of a single property for the whole graph or more vaguely
attempt to extract graph representations. In order to do so, the model utilized is combined with
pooling or readout operations. Graph pooling is a form of down-sampling which creates coarser graphs,
whereas Readout instantly collapses node representations into a singular global graph representation.
These tasks include graph classification or regression.

5.2.2 Architecture

Another way of categorizing Graph NNs is by prioritizing the type of framework or architecture they are
using. This is the taxonomy [107] suggests and it is the following:

e Convolutional graph neural networks (ConvGNNs) inspired by classic CNNs are based on using
the convolution operation, as defined for graph data. A basic outline of the function of the majority of
these variants is: they define a node’s neighborhood, aggregate information between neighboring nodes
and finally generate each node’s representation. Just like CNNs in standard Deep Learning, multiple
graph convolutional layers are stacked in order to extract high-level node features the closer we get
to the ouput. ConvGNNs are some of the most important building blocks for more advanced models.
ConvGNNs can further be labelled as spatial or spectral. The distinction lies on whether the model
makes use of spatial graph convolutions - spatial - or treats graphs as signals in the frequency domain
- spectral.

e Recurrent graph neural networks (RecGNNSs) make use of the idea of using information from
previous units as influence for the current one, just like in classic Machine Learning. Specifically, they
assume a node constantly trades information within its neighboorhood until a stable equilibrium is
reached. This idea of message passing is one of the first in the field of GNNs and has been the basis
for most other models, especially spatial-based convolutional ones.

58

5.3. GNN Models

e Graph autoencoders (GAEs) are based on the same premise as the Autoencoder explained in
previous sections, i.e. are unsupervised learning frameworks which encode graphs/nodes into a low-
dimensional space and attempt to reconstruct them. GAEs are mostly used on tasks like: network
embedding - creating node representations through adjacency matrix reconstruction - and graph gen-
eration in a step by step manner.

e Spatial-temporal graph neural networks (STGNNSs) are architectures which work on spatial-
temporal graphs, i.e. graphs that change in structure overtime. To do so, they consider both spatial
dependency as well as temporal dependency, often combining main ideas from convolutional and recur-
rent graph nets. They have recently become more significant due to their involvement in applications
like traffic forecasting.

5.2.3 Training Type

Last but least, it is common to separate GNN variants according to what kind of signals they are trained
with. This is is not a strict grouping since some models can be applied to multiple of the categories below.

e Semi-supervised learning tasks on graphs primarily work on graphs which are partially labeled,
meaning only some nodes have a target class. The task in this case is node classification, which is
achieved in a more robust way. Link prediction can also be carried out in a semi-supervised manner,
in a similar fashion.

e Supervised learning tasks are based on the fact that the data is labeled. So they comprise of
classification and regression tasks in node, edge or graph level.

e Unsupervised learning tasks are characterized by a lack of labels for the graph attributes. Some
examples of tasks are node clustering and graph embedding. For the latter instance, the embedding
can be learned in a purely unsupervised way using an end-to-end encoder-decoder based framework or
by contrastive learning using negative samples. There also exist a lot of Graph Self-Supervised learning
applications, which are mostly encoder-decoder based [52], and can be loosely grouped in this category.

5.3 GNN Models

In this section we will describe some of the most important Graph Neural Network architectures. Starting
from the framework which introduced the concept of GNNs, we will expand to the many GNN variants and
finally to general GNN frameworks.

5.3.1 Original Graph Neural Network

The original Graph Neural Network was presented by Scarselli et al. [84]. It falls under the category of
RecGNNs and is an extension of prior recurrent models in order for them to work on graphs. It is based on
the use of information diffusion within the graph in a recurrent manner until eventually a stable equilibrium
is achieved.

Using notation from [118], the original model tries to learn a state embedding h, € R? for every node v which
includes not only its own information but also the neighborhood’s N,,. It is defined as:

hy = f(xva Leolv]s hn,, -TN,,J) (531)
where x, represents the features of node v, ., are the features of its corresponding edges while hy, and
xn, refer to the set of neighbors of v and represent their collective states and features respectively.

The function f is called local transition function and it is a parametric function common for all nodes
which performs the state update by utilizing the neighborhood’s information. In practice the neighborhood’s
information is summed in order to preserve invariance [107].

The state embedding can be used to produce an output related to the task. The output o, is defined as:

59

Chapter 5. Graph Neural Networks (GNN)

0y = g(hy,) (5.3.2)

where g is the local output function and it describes how the output will be produced. The term function is
used loosely and can even refer to an FFNN.

A compact representation of the above equations after stacking them for all nodes of the graph can be seen
in Equation 5.3.3. H, O, X, X are the matrices corresponding to states, outputs, features and neighborhood
features after the stacking, while G are the global versions of f, g which are also constructed by the
combination of the local functions for each node.

H=F(H,X)
0 = G(H, Xn) (5.3.3)

The state in each iteration of this recurrent model is computed using Banach’s theorem [39], since H is the
fixed point of the above equation. In order to find a unique solution, F' must be a contraction map. H is
randomly initialized and if the criterion for F' is met, then the convergence is exponentially fast regardless of
the initial value. After the fixed point is found, the last step node hidden states are forwarded to a readout
layer extracting a global representation. The state update is defined as:

H'™' = F(H', X) (5.3.4)
In the case of supervised learning, the loss function looks like this:

n

> (ti—0:)? (5.3.5)

i=1

As common in neural network applications, the cost function may include a penalty term to control other
properties of the model. The optimization is gradient-based and determines the weights of the parametric
functions f, g.

Overall, the learning algorithm iteratively updates the states using 5.3.3 until convergence to the fixed point.
Then, gradients are computed and the weights are updated accordingly.

The original GNN presented crucial ideas which are utilized by many of the approaches which will be explained
later and so is some of the terminology. However, it has some important limitations:

e The requirement of f being a contraction map limits the model’s abilities.

e GNN is computationally expensive due to the iterative updates towards the fixed point.

It is unsuitable for node-level tasks because of the fixed point requirement. The representation obtained
is smooth and therefore not informative for each node.

There is no representation of edge features.

5.3.2 Variants

In this section we will present some of the most important GNN variants presented in order to alleviate the
aforementioned challenges or cater to unique cases. We will group them according to their architecture, as
proposed in Section 5.2.2. STGNNs and RecGNNs will not be further elaborated on since they are out of
the scope of this thesis.

60

5.3. GNN Models

Spectral-based ConvGNNs

As mentioned before, spectral ConvGNNs treat the graph as a signal and therefore are strictly mathematical
approaches. They make use of the Laplacian matrix L of the graph, which captures its key properties, and
use the Fourier transform to project the graph to the orthonormal space defined by the eigenvectors obtianed
after factorizing the Laplacian. The formal definition of the Laplacian matrix can be seen below, where D is
the degree matrix and A the adjacency matrix of the graph.

L=D3AD" 3> (5.3.6)

All spectral convolutional approaches for GNNs use the graph convolution defined in 5.3.7, but they differ
in the choice of the filter gg. In this equation z is the input signal to be convolved, U is the matrix of
eigenvectors ordered by eigenvalues resulting from the factorization of the normalized Laplacian matrix of
the input graph and gy is the convolution filter, for which gy = diag(U7T g) is true.

zxa g9 =UgoUTx (5.3.7)

Spectral Convolutional Neural Network (Spectral CNN) [8] assumes that the filter is a diagonal
matrix with learnable parameters. However, this initial approach suffers from computational inefficiency,
dependence on the input graph’s structure and non-spatial locality.

Chebyshev Spectral CNN (ChebNet) [12] approximates gg by Chebyshev polynomials of the diagonal
matrix of eigenvalues A (L = UAUT). The convolution can be defined as:

K
T *Gg go — Z eka(i)l‘ (538)

where L = 2L [Amaz — In With A4, being the largest eigenvalue of L and I, the identity matrix of dimension
n. Ty (x) represents the Chebysev polynomial for the k-th order and in the above equation it can be proven
by induction that:

Tw(L) = UTi(A)UT (5.3.9)

Tk (x) can be computed as:

Ti(x) = 20Tp—1(x) — Tp—2(x) with To(z) =1 and Ti(z) ==z (5.3.10)

This model improves on the spatial locality problem of Spectral CNN. Specifically, the filters defined by
ChebNet are K-localized, since the operation is a K*"-order polynomial of the Laplacian, allowing this model
to obtain local features regardless of the graph size.

Graph Convolutional Network (GCN) presents the idea of using a first order approximation of ChebNet
in order to alleviate overfitting. In fact, it assumes K = 1 and \,,4,, = 2. In the same direction, the model
enforces the constraint § = 0y = —6;. After imposing these restraints on Equation 5.3.9 and taking into
consideration 5.3.10, the convolution operation is:

zxG go=0(I, + D"2AD %)z (5.3.11)
After empirically ﬁndmg that the term I,, + D"2 AD™ 2 causes numerlcal instability, a renormalization trick

was used. The term D=2 AD~% = A was replaced with D~z 3 AD~% = A where A = I,+Aand D;; = Z Am
All of the above can be described by this compact equation:

H =X g gy = f(AXO) (5.3.12)

where f is an activation function and multiple inputs and ouputs are allowed due to the matrix form.

61

Chapter 5. Graph Neural Networks (GNN)

Figure 5.3.1: Comparison of 2D and Graph Convolution [107]
Left: 2D Convolution in CNNs, Right: Graph Convolution

The GCN is a special case of a spectral approach since it can also be perceived as a spatial one. In the
equation below, we can see how the aggregation of information within the neighborhood would be performed.
In this case the node itself is also regarded as its 1-hop neighbor.

hy=fOT(> Ayury) YueV (5.3.13)

uw€N (u)Uv

This model is very frequently used as a part of more complex architectures in literature due to its simplicity
and good experimental performance.

Spatial-based ConvGNNs

Spatial approaches define the graph convolution operation taking into account the spatial locality of nodes,
i.e. the neighborhood, making them adjacent to conventional CNNs. However, they are also heavily inspired
by the RecGNN pioneering ideas. Specifically, spatial ConvGNNs convolve the central and neighboring nodes’
features, as seen in Figure 5.3.1, to obtain the updated representation which ultimately leads to information
propagation along the edges of the graph.

Diffusion Convolutional Neural Networks (DCNN) [3] conceive the convolution as a diffusion process
and define the diffusion convolution function as:

H® = fw® o pEx) (5.3.14)

where f is an activation function and P = D' A and is called the probability transition matriz. During the
information distribution each node exchanges information with one of its neighbors with a certain transition
probability provided by P. After an amount of iterations an equilibrium is reached and the diffusion is over.
The update rule of the original GNN is not used here, instead each hidden representation H*) is computed
independently and all of them are concatenated to obtain the final one.

GraphSAGE [29] learns a function that generates embeddings by sampling and aggregating features from
a node’s local neighborhood. This framework introduces the idea of sampling the node’s neighborhood in
order to obtain a fixed number of neighbors in each iteration. The convolution process can be summarized
in:

W = (W) (1, (D, Y € S 1) (5:3.15

where fi is an aggregation function, o is the sigmoid function and Sy (,) is a random sample of the neigh-
borhood of v. We assume that h, is initialized with the node’s original features. The choice of aggregation
function is important since it should be permutation invariant, such as a mean, sum or max function.

62

5.3. GNN Models

GraphSAGE is practically an extension of the GCN to inductive unsupervised learning. It is proposed that it
should be trained using an unsupervised graph-based loss, but can also be trained in a supervised manner if
needed. The model provides low-dimensional embeddings for downstream tasks which reflect local and global
characteristics of the graph. It focuses on attributed graphs - with features - but can also work without node
attributes by using handcrafted structural information. GraphSAGE does not train the embeddings, but the
aggregator function with which inference is performed.

This approach is more efficient for unseen data than older transductive approaches and it is also invariant to
orthogonal transformations. With adjustments it is an instance of the Weisfeiler-Lehman test.

Graph Attention Network (GAT) [92] adopts the idea of attention proposed by [91] in order to decide
which members of a node’s neighborhood have more important information. It aims to learn the relative
weights between adjacent nodes and therefore differs from previous approaches like GCN and GraphSAGE
because the concept of the neighborhood is not pre-defined or identical.

The convolutional operation is defined as:

P S CTX) (5.3.16)
uweN (u)Jv

where the attention weights for each node v can be defined as:

o®) = softmax(LeakyReLU (a¥ [W® h{k — 1)[|Ww B pk=1)1)) (5.3.17)
The variable a represents a set of learnable parameters. The hidden representation is initialized with the
features of each node and the softmax function ensures that attention weights sum to one.

The mechanism above is called self-attention, but GAT additionally uses multi-head attention in order to
stabilize learning and make the model more expressive. The exact equations can be found in [92].

GAT is efficient since the node-neighbor pairs can be computed simultaneously. Moreover, it is indifferent to
neighborhood sizes and can be applied to inductive learning problems easily.

Graph Isomorphism Network (GIN) [109] is the first spatial approach that addresses the inability of
previous spatial models to discriminate between different graph structures based on the embeddings produced.
In order to do that, GIN uses a simple technique, adding a learnable weight parameter for the central node
of the convolution. The operation is defined below where ¢*) is the weight.

h(vk) = MLP((1 +E(k))h1()k—1) + Z hgf—l)) (5.3.18)
u€eN (u)

GIN is proved to be as powerful as the WL graph isomorphism test, i.e. produces different node embeddings
when dealing with non-isomorphic graphs This makes this model maximally powerful and therefore the most
expressive among the variants. The most discriminative GNN should use an injective multiset function in
order to distinguish rooted subtree structures. For this reason, GIN uses the Multi-Layer Perceptron and the
sum function as the aggregator. For each layer, node embeddings are summed and the result is concatenated.
Thus, the expressiveness of the sum operator is combined with the memory of previous iterations by using
concatenation. All things considered, one should keep in mind that the theoretical power of the GIN does
not always translate in practice

GAEs
In this section we will present the most popular graph autoencoder architectures presented in the same paper
[40].

Graph AutoEncoder (GAE) improves on previous autoencoder-based techniques by leveraging the in-
formation provided by node features. It uses two GCN layers to capture node structural and node feature
information at the same time as seen in the equation for the encoder below.

63

Chapter 5. Graph Neural Networks (GNN)

Z =enc(X, A) = Geonv(ReLU (Geonv(A, X;01)); O3) (5.3.19)

where Z is the graph’s embedding matrix.

The decoder aims to utilize the embeddings in order to reconstruct the graph adjacency matrix. The model
is trained with a CrossEntropy loss between the real adjacency matrix A and the reconstructed adjacency
matrix A. Its equation is visible below, where z, refers to the embedding of node v.

Avy = dec(zy, 20) = 0(2] 2u) (5.3.20)

Variational Graph AutoEncoder (VGAE) is the variational version of the previous model which learns
the data distribution. It mainly attempts to alleviate overfitting, but additionally gives the opportunity for
the model to be used for generative tasks.

Aside from employing distributions, the main difference from GAE is the use of the Kullback-Leibler diver-
gence function which measures the distance between two distributions as a regularizer, in a similar fashion
to the conventional VAE.

Special GNN variants

All of the variants above are made for static homogeneous graphs with node features. But graphs in real life
are not always that simplified. For this reason, dedicated efforts have been made to create GNN variants for
complex graphs. These efforts can significantly contribute to the adoption of GNNs in a broader range of
applications [56].

Heterogeneous graphs are commonly used to represent the relations between papers or authors. For this
reason, many GNN approaches, such as the GAT-filter, have been modified to accommodate them. This
is possible with the use of meta-paths [31] which capture various relations between nodes with different
semantics. The original graph is split into a set of homogeneous graphs which are dealt with separately. In
a similar manner, if a graph is bipartite the graph convolution operation is split into two components, one
for each set of nodes.

Multi-dimensional graphs are graphs containing different types of edges.In this case, it is necessary to consider
both within and across-dimension interactions, i.e. relations between nodes which are of the same type as
well as are not. Towards this direction, [57] was presented. Moreover, the type of graph containing two types
of relations denoted as positive and negative is called signed and is a common representation used in social
network theory. For those types of graphs we cannot treat the positive and negative subgraphs independently
because they interact. Works like [13] leverage the balance theory to model these interactions.

Hypergraphs, also often representing author and paper networks, are graphs containing hyperedges, i.e. edges
connecting any number of nodes. These structures can be transformed into simple graphs by pairwise relation
extraction, as proposed by [19, 110].

Finally, graphs can also have temporal characteristics meaning they can evolve overtime. Dynamic graphs
are graphs with many real world applications and require learning multiple models for different snapshots in
time. An interesting recent dynamic or STGNN model is [73].

5.3.3 General Frameworks

The existence of such an abundance of GNN variants led to the creation of various general frameworks which
group them together. This way, we can study them more efficiently and draw significant conclusions. In

this section, we will coarsely describe some of the most important ones belonging to the category of spatial
ConvGNNs.

Mixture model network (MoNet) [65] is a framework combining several non-euclidean models, such as
CNNs for manifolds and GNNs. A new pseudo-coordinate system is created, with its origin being each point
on a manifold or each vertex on a graph. The neighboring points/nodes are defined accordingingly. GCN
can be formulated as an instance of this framework.

64

5.3. GNN Models

Message Passing Neural Network (MPNN) [24] is probably the most well-known family of GNNs. This
framework uses two phases: the message passing phase and the readout phase for graph-level tasks.

In the first phase, information is aggregated to each node’s neighbors by using a message function My which
is essentially the graph convolution. Then, an update function Uy is used to update the hidden state. This
is a K-step process defined by the equation below.

W) = U (R*D, N My(RFY, 25,)) (5.3.21)
ueN(v)

The readout phase is optional depending on whether node or graph-level inference is required. In the second
. (K) . . .
case, the representation h; ’ is passed to a readout function in order to create a graph representation.

he = R(WP|u € Q) (5.3.22)

where R is the readout function.

MPNN can describe a variety of different spatial convolutional GNNs which generally adopt this message
passing process. This is done by defining the functions My, U, and R in appropriate ways. One of the
networks belonging to this group is GCN and also several other models used on molecular structures which
have not been mentioned.

It is notable that GIN has been proven to be more powerful than all MPNN-based methods at least in theory.

Non-Local Neural Network (NLNN) [93] uses a non-local operation to compute the hidden state at a
position as a weighted sum of features at all possible positions in space, time or spacetime. Consequently,
the NLNN essentially groups all “self-attention” methods, including GAT.

Graph Network (GN) [4] is an even more general framework which groups models according to the type
of task they fulfill, i.e. node-level, edge-level and graph-level. It generalizes other frameworks, including the
aforementioned ones.

This framework is based on the use of a computational unit called GN block. This block defines three update
and three aggregation functions, each referring to a different level. By choosing these functions, a significant
array of models or other frameworks can be defined.

65

Chapter 5. Graph Neural Networks (GNN)

66

Chapter 6

Counterfactual Explanations

The field of AI interpretability has been gaining increasing attention due to the growing realization that in
order to confidently be able to count on the impressive outputs provided by intelligent systems, appropriate
explanations are needed [2]. Al applications are taking over almost every aspect of everyday life and it is
significant to assure that these models and the respective input datasets are not biased. Al Explainability is
crucial not only for detecting biases [89, 53], hallucinations 28], and robustness issues [41] in several tasks,
but also for increasing social acceptance, establishing safety measures for applications like self-driving cars
and finally for the enhancement of the machine learning systems themselves using the information learnt [64].

In this thesis, we will focus on a specific explainability technique called Counterfactual Explanations. In the
following sections we will define this type of Al explanations and describe the way they relate to our proposed

framework.

Contents

6.1 Definitions. i i i i e
6.2 Counterfactual Interventions ¢ i i i i it v v v v vt e
6.3 Related Work 0 0 i i i e

6.3.1 Textual Counterfactuals

6.3.2 Counterfactual explanations using GNNs

67

Chapter 6. Counterfactual Explanations

6.1 Definitions

A general definition for a counterfactual explanation - or simply a counterfactual - is that it describes the
causation of a situation by assuming “If X had not happened, Y would not have occurred”. Its name derives
from the need to imagine a counterfeit reality which contradicts our perception [64].

In terms of Al explainability, the counterfactual aims to provide an explanation for "What would need
to change in order for the model to make a different decision". Therefore, they essentially can explain
predictions of individual instances, where the causes of the predicted outcome are particular feature values
of this instance.

Counterfactuals are contrastive and selective, meaning they find minimal changes in the feature space. Thus,
they are human-friendly. However, there are usually multiple different counterfactual explanations for the
same instance which explain it equally well. This creates contradictions which can be overcome simply by
providing all possible truths and letting the end user decide on establishing a criterion to choose the best
one.

There are both model-agnostic and model-specific counterfactual explanation methods. Model-agnostic ap-
proaches have a chief advantage over solely using interpretable models, which is their flexibility. They can be
tested on several different machine learning models and evaluated on the explainability of an array of tasks.
The method which we will be focusing on is also model-agnostic.

A good counterfactual explanation should first and foremost be able to produce the predefined prediction.
It should provide a minimal explanation, i.e. the closest one in terms of features as determined by some
distance metric. Moreover, its features should have possible values. Finally, in some cases it is desirable
for a CE method to be efficient, meaning that an optimal solution should be reached using non-exhaustive
search techniques. In this work, these requirements are met by viewing counterfactuals as a combinatorial
optimization problem, solvable via graph assignment algorithms from graph theory [111]

6.2 Counterfactual Interventions

In this section, we will elaborate on the counterfactual explanation method which inspired this work. Essen-
tially, our goal is to replace words from the original text with appropriate substitutes, so that the classifier’s
prediction is changed. This method, known as counterfactual interventions, provides a form of Counterfactual
Explanations when we are dealing with textual data.

Counterfactual interventions aim to change the prediction of the model, by slightly altering the original
input. Formally, given an input and a model f such that f(z) = y, a counterfactual intervention seeks a
perturbed input 2’ such that f(z') =y with 3’ #y and the perturbation 6(z,z’) is minimal according
to some distance metric 6. The goal is to generate z’ that is close to x in terms of its features, yet sufficiently
different to change the model’s output. In our work, we focus on semantic changes, following the paradigm
of word-level perturbations.

Counterfactual interventions are particularly challenging due to the discrete and high-dimensional nature of
text. In fact, creating optimal linguistic interventions is an algorithmically challenging problem, requiring
efficient optimization of the search space of alternatives [115, 94, 54, 113]. Another obstacle that needs to be
overcome is the fact that generating counterfactuals for text requires semantically meaningful edits that alter
the model’s prediction while maintaining the text’s fluency and coherence. Thus, counterfactual interventions
in NLP must satisfy several key criteria:

1. Contrastiveness: The counterfactual text ' should result in a different model prediction than the
original text x. This change in prediction highlights the model’s sensitivity to certain parts of the text,
offering insights into what drives the model’s decisions.

2. Minimality: The edits required to transform z into z’ should be minimal according to some metric.

3. Fluency: The edited text ' must be grammatically correct and semantically coherent. Maintain-
ing fluency is essential to ensure that the counterfactual is not only computationally valid but also
interpretable and meaningful to human users.

68

6.3. Related Work

4. Plausibility: The counterfactual should remain within a plausible range of the original input. For
example, in a sentiment analysis task, changing a single word that significantly alters the sentiment
but retains the original context and meaning, is preferable to completely rewriting a sentence.

In this dissertation, we focus mainly on contrastiveness, minimality and fluency. Plausibility requirement is
also met as the side-effect of two things: the use of word-level perturbations and the adoption of number of
edited words as the minimality metric. The former guarantees that words and not phrases will be changed,
while the latter ensures that changed words will be as few as possible.

6.3 Related Work

6.3.1 Textual Counterfactuals

After examining the concepts of counterfactual interventions as a form of Counterfactual Explanations, we
are going to present other relevant work based on textual counterfactuals, use of Large Language Models
(LLMs) and the utilization of graph structures and algorithms.

Exposing vulnerabilities present in SoTA models has been an active area of research [90], endorsing the
probing of opaque models through adversarial/counterfactual inputs. Granularity of perturbations ranges
from character [18] to word level [23, 78] or even sentence level [34]. In our work, we focus on semantic
changes, following the paradigm of word-level perturbations.

Manual creation of adversarial examples has been explored [22, 37, 67] with the purpose of changing the
true label. Automatic text generation initially implemented via paraphrases [32], and most recently using
masked language modelling [46, 80, 47], targets predicted label changes in binary/multi-label classification or
textual entailment setups. Similarity-driven substitutions based on word embedding distance [35, 119] ensure
optimality in local level for classification tasks, while constraint perturbations guarantee controllability of
adversarials [66]. Those works partially preserve some desiderata of our approach; however, they are model-
specific and thus constrained.

General purpose counterfactual generators fine-tune LLMs to offer diverse perturbations, applicable in mul-
tiple granularities [106, 25, 81]. Prompting on LLMs opens novel trajectories for textual counterfactuals [10,
83], even though explainability of interventions is completely sacrificed, due to the unpredictability of LLM
decision-making. Overall, utilizing LLMs is computationally expensive, while produced substitutions may
not be optimal as far as word distance is concerned [21]. On the other hand, interventions through the use
of graph-related optimizations [115, 54] have recently emerged, showcasing that advanced performance and
explainability of interventions are on par with computational efficiency.

6.3.2 Counterfactual explanations using GNNNs

The utilization of GNNs in computing counterfactual explanations has been rather underexplored in literature,
since the creation of the graph itself may be a strenuous process. Nevertheless, some recent endeavors [17,
16] suggest leveraging GNNs for computing counterfactuals for visual classifiers: by representing images as
graphs, counterfactual explanations are equivalent to calculating the graph edit distance (GED) between two
graphs. In that case, the closest graph to a reference one serves as the counterfactual. Finally, the edits
suggested to transit from the reference graph to the counterfactual one serve as the explanations regarding
what it needs to be changed to perform the desired transition. Recent literature scrutinizes both supervised
GNNs for GED calculation [17], as well as unsupervised autoencoders [16] for more computationally efficient
computation.

69

Chapter 6. Counterfactual Explanations

70

Chapter 7

Rectangular Linear Assignment Problem

One core component of this work is lying on the Rectangular Linear Assignment Problem (RLAP) and its
solution. The rectangular assignment problem is a generalization of the linear assignment problem (LAP);
one wants to assign a n number of tasks to m > n number of agents, minimizing the total corresponding
costs [6]. Applications are, e.g., in the fields of object recognition and scheduling. In our case, we apply the
problem in the form of a weighted minimum matching on a pre-constructed bipartite graph (see Sec. 4.2).

Contents
7.1 Problem Formulationttt 72
7.2 Deterministic Approaches 0 i i i i i i ittt 72
7.2.1 Hungarian Algorithm L L 73
7.2.2 Karp’s Algorithm 74
7.3 GNN Approach 0 i i i i i i it i it et i e e e 75
7.3.1 Encoder/Decoder 75
7.3.2 The convolution module e 75
7.3.3 Loss Function 76

71

Chapter 7. Rectangular Linear Assignment Problem

7.1 Problem Formulation

The Rectangular Assignment Problem can be formally defined as follows:

Given two sets T (tasks) and A (agents), where |T| = n and |A| = m and a cost matrix C' of size n x m where
each element c¢;; represents the cost of assigning task i to agent j, the goal is to find an optimal assignment
that minimizes the total cost. An assignment can be represented by a binary matrix Y of the same size, where
yi; = 1 if task ¢ is assigned to agent j and y;; = 0 otherwise. The problem can be expressed mathematically
as:
n n
Minimize Z Z CijYij (7.1.1)

i=1 j=1
with the following constraints:

1. Each task is assigned to at most one agent:

n
Y wy <1, VieT (7.1.2)
1=1

2. Each agent is assigned to at most one task:

domip<l, VjeA (7.1.3)
=1

When n = m the problem is linear, while when n # m the problem is considered rectangular. However, it
has been proven that each rectangular assignment problem can be converted to a linear one, by adding extra
rows or columns with zero or infinite values [11].

As part of this dissertation, we attempt to solve the RLAP applied on a bipartite graph, which is known
as the minimum weighted bipartite graph matching. Let’s consider a weighted bipartite graph G = (V, E),
where the edge set E consists of all the weighted edges in the graph, and the node set V' consists of the source
set S of cardinality |S| = n and the target set T of cardinality |T| = m, such that SUT =V, SNT = .
Finding optimal connections between nodes of G has been a long sought discrete optimization problem of
graph theory, where the optimal match for each node s € S needs to be determined among a predefined
candidate set of nodes t € T. Assuming that W denotes the edge weight set consisting of the weights of all
edges e € F, a min weight matching M C E searches for a subset of the lightest possible sum of edge weights
> We,we > 0 € W containing those edges e € E that cover all nodes of the min(|S|,|T]) set of G. Therefore,
in the case of |S| < |7, all nodes in S will be assigned to a node in 7', should an outcoming edge es_,; exists
from each s to any t # s. Under these requirements, we formulate the following constraint optimization
problem:

min Zwe, subject to s # t if e,y (7.1.4)

Equation 7.1.4 is simply a different form of equation 7.1.1, thus our problem can be converted to RLAP and
subsequently to LAP. Therefore, the same algorithms can be applied in both cases. With that in mind, in the
following sections we will examine some of them, along with a recently emerged non-deterministic approach
which is based on Graph Neural Networks (GNNs).

7.2 Deterministic Approaches

A naive solution to this constraint optimization problem would be the exhaustive search of all possible (s,t)
combinations, by examining all possible m! permutations of 7" until the optimal solution of min) w, is
reached. This yields an exponential complexity of O(m™), supposing that G is complete, i.e. each pair of
s —t nodes is connected so that E =S x T, |E| = nm. To understand this complexity, assume the bipartite
graph of Figure 7.2.1 with S = {4, B,C} of cardinality |S| =3 and T = {1,2,3,4} of cardinality |T| = 4,
the following node combinations occur:

72

7.2. Deterministic Approaches

Source node A can take |T'| = 4 values: A-1, A-2, A-3, A-4. Node B can independently of A take |T| = 4
values: B-1, B-2, B-3, B-4. Finally, C independently of A and B can also take |T'| = 4 values: C-1, C-2, C-3,
C-4. Therefore, all combinations for the |S| = 3 source nodes are 4 x 4 x 4 = 4% = |T|I|

Figure 7.2.1: Example graph

7.2.1 Hungarian Algorithm

The Hungarian algorithm [43], also known as the Kuhn-Munkres algorithm, is a combinatorial optimization
method designed to solve the assignment problem efficiently in polynomial time. Originally developed by
Harold Kuhn in 1955 and later improved by James Munkres, this algorithm finds an optimal assignment that
minimizes the total cost or maximizes the total profit of assigning a set of source nodes S to a set of target
nodes T'.

The Hungarian algorithm consists of several steps to achieve an optimal assignment:
1. Subtract Row Minimums:

For each row in the cost matrix C', subtract the smallest element in that row from all elements in the
same row. This step transforms the cost matrix such that each row has at least one zero.

Cij(—Cij—l'Ilkin(Cik), Vi=1,2,...,n, Vj=12,....m
2. Subtract Column Minimums:

After processing rows, for each column in the cost matrix, subtract the smallest element in that column
from all elements in the same column. This step ensures that each column has at least one zero.

Cij + Cij —mgn(ckj), Vi=1,2,....,m, Vi=1,2,...,n

3. Cover All Zeros with Minimum Number of Lines:

73

Chapter 7. Rectangular Linear Assignment Problem

Using a minimum number of horizontal and vertical lines, cover all zeros in the resulting matrix. The
minimum number of lines required to cover all zeros gives an indication of the progress towards finding
an optimal assignment.

4. Test for Optimality:

If the minimum number of lines required to cover all zeros equals the smaller of n or m, an optimal
assignment exists among the zeros. If this condition is met, move to step 7. Otherwise, proceed to step
5.

5. Create Additional Zeros:

Identify the smallest element in the matrix that is not covered by any line. Let this minimum uncovered
value be §. Subtract § from all uncovered elements and add ¢ to all elements that are covered by two
lines. This operation introduces additional zeros into the matrix while maintaining existing zeros.

{c,;j — 9, if (i,7) is not covered by any line,
Cij <

cij + 0, 1if (4,7) is covered by two lines.

6. Repeat Steps 3-5:

Repeat the process of covering all zeros and creating additional zeros until the minimum number of
lines required to cover all zeros equals the smaller of n or m.

7. Make the Optimal Assignment:

Construct the optimal assignment by selecting zeros such that no two selected zeros are in the same
row or column. This set of zeros represents the optimal assignment. Each zero in this set corresponds
to an source-target node pair with minimized total cost.

The Hungarian algorithm has a time complexity of O(n?®), where n = min(n, m). This cubic time complexity
makes it efficient for moderate-sized problems and significantly faster than the naive brute-force approach
previously discussed. For very large problems however, especially those involving thousands of source and
target nodes, alternative or approximate methods may be necessary to achieve computational feasibility.

7.2.2 Karp’s Algorithm

Karp’s algorithm [36] is based on a combination of graph theory and optimization techniques. It leverages
the concept of shortest augmenting paths in a bipartite graph, where one set of vertices represents the source
nodes and the other set represents target nodes. The edges between vertices have weights corresponding to
the assignment costs from the cost matrix C.

The key idea behind Karp’s algorithm is to iteratively build an optimal assignment by augmenting paths —
specifically, paths that can reduce the overall cost when source nodes are reassigned to different target nodes.
This is done by transforming the assignment problem into a series of minimum-cost matching problems, each
of which can be solved more efficiently using data structures that support fast updates and queries.

Karp’s algorithm involves the following steps to solve the RLAP:
1. Initialization:

Initialize a feasible dual solution for the assignment problem. This involves assigning potential values
u; for each source node ¢ and v; for each target node j, such that for every assigned pair (i,7), the
reduced cost Eij = Cijj — U; — V5 > 0.

2. Construct Initial Matching:

Construct an initial matching by finding a feasible assignment that minimizes the total reduced cost.
The initial matching can be obtained using a greedy approach or a simpler algorithm like the Hungarian
algorithm to find a partial matching.

74

7.3. GNN Approach

3. Iteratively Improve the Matching:

Karp’s algorithm iteratively improves the current matching by finding augmenting paths and adjusting
the dual variables to reduce the total cost:

e Find Augmenting Paths: Use a shortest path algorithm, such as Dijkstra’s algorithm, to
find the shortest augmenting path in the residual graph. The residual graph is constructed by
considering the current matching and the reduced costs. Each edge in the graph corresponds to a
feasible assignment with zero reduced cost.

e Update Matching: If an augmenting path is found, augment the matching along this path. This
involves reversing the direction of the edges in the path, effectively swapping the assignments to
reduce the overall cost.

e Adjust Dual Variables: Update the dual variables u; and v; to maintain the feasibility of the
reduced cost matrix. This step ensures that the current assignment remains optimal with respect
to the new potential values.

4. Terminate When Optimal Matching is Found:

The algorithm terminates when no further augmenting paths can be found, indicating that an optimal
assignment has been reached.

Karp’s algorithm achieves a time complexity of O(mnlogm), where n is the number of source nodes and m
is the number of target nodes. This is primarily due to the use of efficient data structures and algorithms
for maintaining the augmenting paths and updating the dual variables. The algorithm leverages Fibonacci
heaps or similar priority queue structures to achieve logarithmic time updates, allowing it to handle large-scale
problems more efficiently compared to the Hungarian algorithm.

7.3 GNN Approach

Graph Neural Networks (GNNs) [85] have emerged as a powerful tool for learning representations of graph-
structured data, making them particularly well-suited for applications in which relationships between entities
can be naturally expressed as graphs. In the context of linear assignment problems [9], a recent approach
introduces a GNN to solve the linear sum assignment problem (LSAP), where n agents need to be assigned
to n jobs under one-to-one matching constraints, while the cumulative cost remains minimal [50]. To solve
the problem, the authors first construct a weighted bipartite graph G = (S, T, F), where S is the source node
set, T is the target node set and F is the edge set, and then solve the minimum matching problem. The
GNN they propose is based on GAT and GCN architectures (see Sec. 5.3.2) and consists of three modules:
the encoder, the convolution module and the decoder (Figure 7.3.1). The task is converted to an edge-level
binary classification task; an edge’s label is 1 if the edge belongs to the minimum matching edge set, otherwise
it is equal to -1.

7.3.1 Encoder/Decoder

Given the bipartite graph G, the encoder module applies a Multi-Layer Perceptron (MLP) to each edge to
transform the attributes of the constructed graph into latent representations, thus forming the embedding
features. Note that initially the attribute of each edge is simply its weight so that e;; = w;;, where e;;
denotes the attributes of the edge connecting nodes ¢ and j and w;; is the weight of this edge. Also, the
raw attributes of the nodes are initialized as zero-valued vectors. The transformed graph is then passed to
the convolutional module as input to update its state. The decoder coupled with the encoder reads out the
edge attributes from the output graph and predicts each edge label through an update function. Similarly,
the update function is designed as an MLP and mapped to each edge to form edge labels through a sigmoid
activation.

7.3.2 The convolution module

The convolution module is comprised of a node convolution layer and an edge convolution layer. For the
it node in the graph, the node convolution layer collects the information from adjacent edges and its

75

Chapter 7. Rectangular Linear Assignment Problem

Convolution
Module NO Output

v

Input ——> Encoder —— Node |

Conv.

Edge
Conv.

YES Decoder

Figure 7.3.1: The architecture of the proposed GNN model. In the node convolution layer, node attributes
are updated for a total of S > 2 iterations.

1% order neighboring nodes by adaptive aggregation weights and updates its attributes. For each edge,
the edge convolution layer aggregates the attribute vectors of the two nodes that the edge connects, and
updates the edge attribute vector. Although the reception field of the convolution module regards 1%t-order
neighborhoods, the messages on each node can reach all other nodes after two iterations of convolution, since
the graph is bipartite consisting of two node sets (see Section 7.2), and each node from one set connects
with all other nodes of the other set. As a result, the reception field of the convolution module can cover the
whole graph after the 2"? iteration.

The edge convolution layer first collects information about each edge based on its two adjacent nodes using
the aggregation function:
g =[v; 0c*,v; ©c* ey O’ (7.3.1)

where e;; denotes the attributes of the edge connecting node i and node j, v; and v; the attributes of i and
i*" nodes and ® indicates the element-wise multiplication of two vectors. The operator |-, -, -] concatenates its
input vectors channel-wise, while the vectors ¢* and c® are the node and edge channel attention vectors with
the same dimensions as node attributes and edge attributes respectively. We must also clarify that €;; is an
intermediate vector representing the concatenated features the edge ¢ — j and not the updated edge attribute
vector. After the aggregation function, an update function p® designed as an MLP takes the concatenated
features as input and outputs the updated feature, so that: e;; < p°(€;;).

The node convolution layer collects information from adjacent edges and 1%¢-order neighborhoods for each
node. Specifically, for the i*" node in the bipartite graph G' we apply the following function:

N.

_ 1 «—
Ui = o > pi(lei; © ¢ wig(v; ©), (7.3.2)

L

€ij € & and v € Vi

where p} denotes the function to transform its input to an embedding feature. &; denotes the attribute set
of all edges associated with node v; in G, and V; represents the attribute set of 1*-order adjacent nodes to
node v;. For node v;, w;; is the weight measuring the contribution of its adjacent node v; during feature
aggregation, and is computed as w;; = 7([v;,v;]). The collected embedding features are then concatenated
with the current attributes of node v; and are passed to another transformation function that outputs the
updated attributes for node v; using the formula v; + p4([v;, v;]). Functions p¥, p4 and 7 are all specified as
MLP modules, each of them with a different architecture and parameters.

7.3.3 Loss Function

In order to solve the linear assignment problem, we consider it as a binary classification task and divide the
elements in the ground-truth assignment matrix Y9¢ into positive labels and negative ones. Considering the

76

7.3. GNN Approach

case that for each node, there is at most one positive edge among its adjacent edges and the rest are negative
ones, to avoid the negative labels dominating the training, Balanced Cross Entropy is utilized as the loss
function:

n m

L= _ZZ (w x yzg;l()g(yij) + (1 —w)x
i=1j=1

(7.3.3)
(1—y?)log(1 — yij))

where y;; is the predicted label for edge i — j which connects source node ¢ and target node j, yff is the
corresponding ground-truth vector element indicating the edge as positive or negative, and w is the weight
which balances the loss to avoid the negative labels dominating the training. Parameters n,m denote the
cardinality of source and target nodes sets, so that |S| =n, |T| = m.

In order to impose the one-to-one matching constraint in the model, we first construct a predicted assignment
matrix Y € R"*™ whose size is the same as the problem:

ind(j,k)» if 3 '7k 6E7
Yik = {y agwy 130 R (7.3.4)

0, otherwise,

where ind(.,.) is a bijection mapping an edge to an integer index. Then the soft constraint loss is designed
as follows:

Ly = |1 — sum,(Y)||]2 + Hlfsum,,(YT)Hg, (7.3.5)
Ly = ||1 —norm,(Y)||l2 + ||1 — normT(YT)HQ7 (7.3.6)
Le=L1+ Ly (737)

In the above equations, 1 is a one-valued vector; sum,(.) sums the values in predicted assignment matrix
along the row-wise; norm,.(.) returns a vector in which each element is the 2-norm of corresponding row-
vector. In training, Eq. 7.3.5 drives the prediction to satisfy the constraints in Eq. 7.1.2 and 7.1.3. As a part
of supervision signals in training, Eq. 7.3.6 guides the proposed network to output sparse predictions.

Finally, the binary classification loss and the constraint loss are combined to obtain the loss function that
guides the training process as follows:

L= 1L,+ale (7.3.8)

where a > 0 weights the degree of the soft one-to-one matching constraints imposed.

This GNN-based approach offers significant speed-up to the solution of the LSAP, at the cost of optimality;
while the inference time of the model is approximately 7ms regardless of the graph size, the solution given
is not the optimal one but rather an approximation of it. In our work, we experiment with both Karp’s
algorithm and an extended version of the aforementioned GNN model, fine-tuned towards solving RLAP.

7

Chapter 7. Rectangular Linear Assignment Problem

78

Chapter 8

Proposal

In this section, we propose the method with which we will tackle the problem of Counterfactual Explanations.
We focus on word-level counterfactual interventions to test the behaviour of textual classifiers when different
words are perturbed. Our proposal revolves around placing all implemented interventions under a framework
which presents the following characteristics regarding interventions: [55]

e Optimality: Substitutions should be optimal -or approximately optimal-, respecting a given notion of
semantic distance.

e Controllability: at least one input semantic should be substituted in each data sample.

e Efficiency: an optimal solution should be reached using non-exhaustive search techniques among alter-
native substitutions.

We approach these requirements by viewing counterfactual interventions as a combinatorial optimization
problem, solvable via graph assignment algorithms from graph theory [111]. To further enhance our method,
we consider the use of Graph Neural Networks (GNNs) [108] as a faster approximate substitute of these
algorithms [114].

Our proposed method can be applied to both model-specific and general purpose scenarios, since there is no
strict reliance on changing the final label. This property allows for generated edits to be used for different
tasks apart from label-flipping, such as semantic similarity [54] or untargeted generation [106]; nevertheless,
in this dissertation, we focus on classification tasks for direct comparison with prior work. To this end, we
compare our approach with two SoTA editors [106, 80| using appropriate metrics for label-flipping, fluency
and semantic closeness.

We first highlight the main contributions of this thesis and then explain the proposed method in detail.

8.1 Contributions

To sum up our contributions are:

e We impose optimality and controllability of word interventions translating them in finding the optimal
assignment between graph nodes.

e We accelerate the assignment process by training GNNs on these deterministic matchings, ultimately
achieving advanced efficiency.

e We extend an existing framework in order to offer a GNN that solves the RLAP; to the best of our
knowledge, no prior work has leveraged GNN modules to solve RLAP

e Our highly efficient black-box counterfactual editor consistently delivers SoOTA performance compared
to existing white-box and black-box methods on two diverse datasets and across four distinct metrics.

79

Chapter 8. Proposal

Remarkably, it achieves these results in less than 2% and 20% of the time required by its two competitors,
demonstrating both superior efficacy and efficiency.

e The versatility of our proposed editor is demonstrated in different scenarios, since it is able to be
optimized towards a specific metric or perform general-purpose fluent edits.

Our work is thoroughly presented in our paper named "Optimal and efficient text counterfactuals using
Graph Neural Networks" [55].

8.2 Proposed Method

The workflow of our method, as shown in Figure 8.2.1) comprises of three stages. A textual dataset D
serves as the input to our workflow. In the first stage, words are extracted from D, based on their part of
speech (POS), and used as the source node set S. The target set T is either a copy of S, or else produced
from an external lexical source such as WordNet [61], containing all possible candidate substitutions of the
source words (nodes). The S and T sets form a bipartite graph G (described in Section 4.2), with their
in-between edge weights reflecting word similarity. In the second stage, we pass the constructed G as input
to a pre-trained GNN which outputs an approximate RLAP solution, in the form of a list of candidate word
pairs. Each word pair, consists of the source word s; € S and its computed substitution ¢; € T. In the
third and final stage, we harness beam search [105] to define the final changes. Beam search uses a heuristic
function to choose the most suitable substitutions from those returned by the GNN. The selected words from
S are then substituted with their respective pair from T', producing a counterfactual dataset D*.

. . 2: Substitution pairs 3: Counterfactual
1: Graph Creation . i
computation Generation

. =| GNN B i

eam

DatasetD — —— > Dataset D*

v Search

/" Feasible A
s T _ substitutions

Figure 8.2.1: The pipeline of our method. In the first stage, we construct a bipartite graph using words as
nodes, and in the second stage we utilize a GNN to get feasible substitutions that approximately solve the
RLAP. In the final stage, we use beam search to change appropriate words of the original dataset, thus
getting a new counterfactual dataset. [55]

8.2.1 Graph creation

When constructing the bipartite GG, words are extracted from the original D based on their POS. To test
how well our framework generalizes, we use both POS-specific and POS-agnostic word extraction. The
former means that we only select to potentially change words that belong to a specific POS (i.e. adjectives,
nouns, verbs, etc.), while the latter means that we regard all words, irrespective of their POS. For the edge
weights, we employ two different approaches, each varying in transparency. For the first one, we adopt a fully
transparent approach by calculating the distances using a lexical hierarchy: the weight of an edge connecting
two words is determined by their similarity value as defined in WordNet.! In the second case, we apply
different LLMs to generate word embeddings, namely AnglE? [48, 87], GISTEmbed? [88], GinaAI* [63] and
MUG?; then, we set the edge weight equal to the cosine similarity of the two word embedding vectors. Since
lower similarity is associated with lighter edges, i.e. more suitable candidates for M, the selected words to be

Ipath_similarity function between synsets corresponding to the words (https://www.nltk.org/howto/wordnet.html).
2mixedbread-ai/mxbai-embed-large-v1

3avsolatorio/GIST-Embedding-v0

4https://jina.ai/embeddings/

5Labib11/MUG-B-1.6

80

https://www.nltk.org/howto/wordnet.html
https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
https://huggingface.co/avsolatorio/GIST-Embedding-v0
https://jina.ai/embeddings/
https://huggingface.co/Labib11/MUG-B-1.6

8.2. Proposed Method

substituted will form contrastive word pairs. In order to preserve syntax in the POS-agnostic case, we force
substitutions between same-POS words exclusively: thus, we experiment with an edge filtering mechanism,
which sets a predefined large weight to edges, ~10 times bigger than the normal edge weights as instructed
from WordNet path similarity or cosine similarity of embeddings. This way, we avoid cases where a POS is
substituted with a word of different POS, since a significantly heavier edge cannot be selected to participate
in minimum matching edge set M. In the POS-specific case, this mechanism is redundant since all words are
of the same POS.

8.2.2 Substitution pairs computation

For appropriate substitution pairs we need to solve RLAP on the constructed graph G. As previously dis-
cussed (Section 7.2), traditional deterministic approaches achieve this in O(mnlogn). While these methods
provide the optimal solution, they lack speed as the dataset size, and therefore graph size grows larger. In
an attempt to produce substitution pairs in stable time regardless of the dataset size, we use a GNN model,
which approximates the optimal solution found by deterministic algorithms, while significantly speeding up
the process.Regarding the GNN, we fine-tuned the model described in Section 7.3, using the following
procedure:

Initially, a synthetic dataset that consists of M samples® is created. Each sample is composed of a cost matrix
C in which the elements are generated from a uniform distribution on (0,1) and the corresponding optimal
assignment solution which is obtained by the Hungarian algorithm [42]. We consider the RLAP as a binary
classification task and divide the elements in the ground-truth assignment matrix Y9 7 into positive labels
and negative ones. For the Loss Function, we use Equation 7.3.3 with a = 0, which is equivalent of using
only Balanced Cross Entropy. The reason for this, is the fact that in our version of RLAP, cost matrix C is of
dimensions n x m, where n < m and therefore an exact one-to-one matching is not possible. By removing the
part of the loss function which corresponds to this constraint, we attempt to greatly soften it, thus optimizing
the GNN model towards RLAP solution instead of LSAP. As in [50], training takes 20 epochs in total, where
the learning rate is set as 0.003 initially and declined by 5% after every 5 epochs.

Using the fine-tuned GNN, efficiency is guaranteed. By solving the problem with the constraint of minimum
> we, we find all most dissimilar s — t pairs, achieving approzimate optimality of concept substitution
within G and ultimately producing contrastive substitution pairs. At the same time, controllability is
partially ensured since the graph G is dense (therefore there are no disconnected s nodes) and |S| < |71,
since T is either a copy of S or produced based on S using antonyms from WordNet (more than one antonym
may correspond to each word). Note here, that we use the word “partially” as there is a trade-off between
controllability and minimality 8, which stems from using beam search during counterfactual generation. In
practice, there are also a few exceptions in controllability, if a source concept cannot be mapped on WordNet.

8.2.3 Counterfactual Generation

As a result of solving RLAP, a matching M C FE is returned, indicating the optimal substitutions to n
source concepts. We denote as WM C W the total weight of M that contains n source concepts. Given this
matching, beam search selects which conceptual substitutions from M will actually be performed on D. This
selection process is necessary since we desire changes to be minimal in terms of number of words altered per
instance, perturbing only small portions of input, a property which has been argued to make explanations
more intelligible [1, 62]. In this context, we also set an upper limit of substitutions on each text instance,
experimenting with both a fixed and a dynamically set number. In the second case, for each instance, the
upper limit is equal to the 20% of the total number of words it contains. We stop the search when the model’s
prediction is flipped or when the upper limit is reached, thus keeping the number of edits low.

SEach sample represents a weighted bipartite graph.
7Y 9t is a matrix where element yff is 1 if the edge connecting nodes ¢ and j belongs to the minimum matching, else it is -1.
8 Minimality here refers to the number of words changed.

81

Chapter 8. Proposal

82

Chapter 9

Experiments

In order to evaluate the proposed method and compare it to other techniques and frameworks, we carried
multiple experiments across two NLP tasks. In this section, some preliminary information will be presented
about the datasets, the classifier models and the antagonizing editors, as well as the metrics used in the

evaluation process.

With the basics put in place, we will analyze how we experimented with different parts of our framework,
and what trade-offs should be taken into account and finally present evaluation results. In addition to the
quantitative results, we will present instances of the edited texts that assist in the overall understanding of

our method and its capabilities.

Contents
9.1 Preliminaries 0 0 i i i e 84
9.1.1 Dataset e e e e e 84
9.1.2 Evaluation Metrics e e 85
9.1.3 Classifier Models e 87
9.1.4 Counterfactual Editors 87
9.2 Editor Experiments 0 0 i e e e e e e e e e e e e e e e e e e 88
9.2.1 Editor Variants e 88
9.2.2 Trade-Offs e e e 89
9.3 Results i i i e 90
9.3.1 Owverall Performance e 90
9.3.2 Variant CompariSons e e 91
9.3.3 Qualitative Results L L 92

83

Chapter 9. Experiments

9.1 Preliminaries

9.1.1 Dataset

We evaluate our framework and compare it with other editors from literature, on two English-language
datasets: IMDB, which contains movie reviews and is used for binary sentiment classification [58] and a 6-
class version of the 20 Newsgroups used for topic classification [44]. Due to the high computational demands
of the compared methods, we sampled 1K instances from each dataset. Running MiCE on just 1K samples
required over 47 hours (see Table 9.1), making full dataset experiments impractical. We chose twice the
sample size used in similar studies comparing the same methods on the same datasets [21].

IMDB Reviews

The IMDB Reviews Dataset is a widely used benchmark dataset for natural language processing (NLP) tasks,
particularly sentiment analysis. It consists of 50,000 movie reviews taken from the Internet Movie Database
(IMDB), with an equal split between positive and negative sentiment labels. The dataset is divided into two
equal parts; 25,000 reviews are designated for training, and the remaining 25,000 are reserved for testing. In
our experiments, we took a representative sample from the test set, since we are not aiming to train a new
model, but rather to explain existing ones. Therefore, since the models we use are already trained on the
training set, it makes sense to avoid using instances they have previously seen and possibly memorized.

Each review in the dataset is associated with a binary sentiment label; positive for reviews with a rating of 7
or above (out of 10) and negative for reviews with a rating of 4 or below. Reviews with a rating of 5 or 6 are
not included in the dataset to ensure a clear distinction between positive and negative sentiments. The text
data in the reviews vary in length and complexity, capturing a wide range of linguistic styles, from informal
to formal writing. In our work, before using them, we cleaned them up, by removing special characters and
trailing spaces. An example of a text instance from IMDB Reviews Dataset after the cleaning process can
be seen in Figure 9.1.1.

When | see a movie, | usually seek entertainment. But of course if | know what genre the
move is, then | will seek what it is meant to do. Far example, if it is a deep film, | expect the
film to rile thoughts up in my cranium and make me ponder what it is saying. But Who's That
Girl? is not a deep film. But it is entertaining, nonetheless. It's a campy sort of film that's a
joy to watch. There's barely a boring moment in the film and there are plenty of humorous
parts. I've watched it when | was younger. The cast is always entertaining as usual. | had a
small crush on Griffin Dunne even though he wasn't the typical male heartthrob at the time.
Haviland Morris also stars. And late Austrian actress Bibi Besch is here too! Overall, a
delight!

Figure 9.1.1: An example of a review labeled as ’positive’ from the IMDB Reviews Dataset

20 Newsgroups

The 20 Newsgroups dataset is another popular benchmark dataset in the field of NLP and text classification.
It contains approximately 20,000 documents spread across 20 different topics such as sports, politics, tech-
nology, or science. The dataset is designed to support experiments on text classification tasks, particularly
in the context of multi-class classification.

In this dissertation, we use the 6-class version of the original dataset, which is a specific configuration that
consolidates the 20 topics into 6 broader, thematic categories. These six categories group related topics
together, reducing the granularity of the classification task while still preserving the diversity of content.
These 6 categories are:

1. Comp (Computers and Technology): Contains documents related to computer hardware, software,
and discussions around technology.

84

9.1. Preliminaries

2. Rec (Recreation and Sports): Includes documents focused on recreational activities, such as sports
(e.g., baseball, hockey) and hobbies.

3. Sci (Science): Groups documents related to scientific topics, such as space, electronics, and medical
science.

4. Talk (Talk and Politics): Aggregates documents discussing politics, religion, and various societal
issues.

5. Misc (Miscellaneous): Contains documents that do not fit neatly into other categories, such as
discussions on automobiles and motorcycles.

6. Alt (Alternative): Includes documents that cover alternative topics not well-defined by the other
categories, such as alt.atheism and alt.misc.

This version provides a more simplified classification task compared to the original 20 categories, making it
useful for evaluating the performance of text classification algorithms in situations where there are fewer tar-
get classes. This version of the dataset helps researchers and practitioners test the generalization capabilities
of their models over more generalized topic categories, making it particularly relevant for applications where
distinguishing between broad subject areas is required. Its popularity also extends to the field of Counterfac-
tual Explanations, with many counterfactual editors being evaluated on this dataset, which is why we also
chose it along with IMDB Reviews Dataset. We also perform the same cleaning process, removing empty
lines, special characters and trailing spaces. An example of a document from the dataset after the cleaning
process is shown in Figure 9.1.2.

About a year and half ago when | first started riding, | took a MSF course. | have taken those
lessons to heart. Over the pastyear | have had only a few near collisions with traffic
morons on four wheels. Yesterday | got to add another to the list but with this one | felt the
most helpless. | am sitting at a light about 1 - 2 car lengths behind a car, a wise decsion.
Suddenly | hear screeching tires. | dart my eyes to my mirrors and realize it's the moroon
flying up right behind me, in my panic | pop my clutch and stall the bike. Luckily the guy
stops a foot behind my rear wheel.

Figure 9.1.2: An instance labeled as 'Rec’ from the 6-class version of 20 Newsgroups Dataset

9.1.2 Evaluation Metrics

To assess the performance of the different editors, we draw inspiration from MiCE [80] and measure properties
such as flip-rate, minimality, closeness and fluency. The metrics that correspond to each of these properties
are explained below. To highlight the significant speedup offered by our method, we also report ezecution
times for each editor.

Flip-Rate

Flip-Rate is an extremely popular metric and also the one most counterfactual editors try to maximize.
Formally, flip-rate is the percentage of instances for which an edit results in different model prediction (label-
flipping):

N .
i L(ys # yz'edzt)

. 2.
Fl te =
ipRate N

where N is the total number of input (text) instances, y; is the prediction of the model for the original input,
y¢%t is the model’s prediction for the edited input and I(-) is the indicator function that returns 1 if the
condition is true, and 0 otherwise. Since flip-rate shows how "effective" the produced edits are, it has become

one of the primary evaluation metrics used in Counterfactual Editors.

85

Chapter 9. Experiments

Minimality

In this dissertation, minimality is measured using the Levenshtein distance. Typically, Levenshtein distance
also known as edit distance, is a metric used to measure the difference between two strings. It represents the
minimum number of single-character edits required to transform one string into another, where the allowable
operations are insertion, deletion, or substitution of a single character. In our experiments, we employee the
word-level version of this distance, which instead of character, measures single word edits.

To compute the word-level Levenshtein distance between two strings s; and so, where each string has n
and m words respectively, a dynamic programming approach is typically employed. A matrix D of size
(n+1) x (m+1) is created, where each entry D[i][j] represents the Levenshtein distance between the first 4
words of s; and the first j words of so. The matrix is filled using the following recurrence relations:

D[i][0} =4, D[0]5] = j

Dli —1][j] + 1, (represents word deletion)
D[i][j] = min ¢ D[i][j — 1] + 1, (represents word insertion)
D[i — 1][j — 1] + 6(s1[é], s2[7]), (represents word substitution)

where 6(s1[i], s2[J]) is 0 if s1[i] = s2[j], otherwise it is 1. The value at D[n|[m] will be the Levenshtein distance
between the two strings.

To deal with the imbalance caused due to different word lengths of text instances, we adopt a normalized
version of the word-level Levenshtein distance, with a range of [0, 1] — the Levenshtein distance divided by
the number of words in the original input. Thus, minimality can be computed as:

Din][n]

n

Minimality =

Closeness

Closeness represents the semantic similarity between the original and edited input, measured by BERTScore
[117]. BERTScore is a metric for evaluating the similarity between two text sequences, commonly used for
tasks like text generation, machine translation, and summarization. Unlike traditional evaluation metrics
such as BLEU [72] or ROUGE [49], which rely on exact n-gram overlap, BERTScore leverages contextual
embeddings from pre-trained language models like BERT [15] to capture semantic similarity between text
sequences at a deeper level.

To compute BERTScore, the following steps are undertaken:

1. Token Embedding: Given a candidate text sequence C and a reference text sequence R, each token
in the sequences is embedded into a high-dimensional vector space using a pre-trained BERT model.
This results in two sets of token embeddings: {c1,ca,...,c,} for the candidate and {ry,ro,...,r,,} for
the reference, where n and m are the lengths of the candidate and reference sequences, respectively.

2. Similarity Calculation: Compute the cosine similarity between each pair of token embeddings from
the candidate and reference sequences:

51m(czvr3) ||Cz||HrJH

forallie {1,...,n} and j € {1,...,m}.

3. Precision, Recall, and F1 Score: Calculate the precision, recall, and F1 score using the similarity
scores. Precision is computed by averaging the maximum similarity for each token in the candidate
sequence with respect to all tokens in the reference sequence:

86

9.1. Preliminaries

n
Precision = — E max sim(c;, r;)
n 4 J
i=1

Recall is computed by averaging the maximum similarity for each token in the reference sequence with
respect to all tokens in the candidate sequence:

1 m
Recall = — im(c;, r;
eca -]2 max sim(c;,r;)

The BERTScore F1 is then computed as the harmonic mean of Precision and Recall:

Precision - Recall

BERT =2
RTScorepy Precision + Recall

BERTScore effectively captures semantic meaning and contextual information by using embeddings from large
pre-trained language models, making it a robust metric for evaluating produced edits against the original
inputs. The higher BERTScore is, the more semantically close the two sentences are.

Fluency

Fluency is a measure of how similarly distributed the edited input is compared to the original. To evaluate
fluency, we first take a pretrained T5-BASE model [77] and compute the loss value for both the edited and
original input. Afterwards, we report their loss _ratio - i.e., edited / original. Since we aim for a value of 1.0,
which indicates equivalent losses for the original and edited texts, the final measure of fluency is defined as
|1 — loss _ratio|, where smaller values indicate more fluent edits.

9.1.3 Classifier Models

In order to measure the effectiveness of produced edits, we test the different editors on two text classifiers.
We use the same predictor models with MiCE [80] in each dataset (IMDB Reviews and 20 Newsgroups).
Both of these models are based on RoBERTararcr [51], and fine-tuned towards their respective datasets.
The first model, is a binary classifier whose output is either 0 or 1, with 0 denoting negative reviews and 1
denoting positive ones. The second model, is fine-tuned on the 6-class version of the 20 Newsgroups dataset
and its output ranges from 0 to 5, with each integer value representing a category from those discussed in
Sec. 9.1.1.

9.1.4 Counterfactual Editors

We compare our framework with two SoTA editors, namely Polyjuice [106] and MiCE [80]. The former is
a general purpose counterfactual editor, while the latter is a task-specific editor optimized towards flip-rate
and minimality. We chose these two editors, due to the fact that our framework can be used as both a
general-purpose and a task-specific editor, thus being comparable to both of them.

Polyjuice

Polyjuice is a versatile data augmentation model designed to generate a wide range of counterfactuals and text
perturbations for various natural language processing (NLP) tasks. It enables the creation of semantically
diverse text variations that can be used to improve model robustness, perform adversarial testing, or study
model biases. Since it is not optimized towards a specific task nor has it access to the inner workings of the
predictor models, it is considered a general-purpose, black-box counterfactual editor.

Polyjuice is built on top of the GPT-2 architecture [76], a generative language model known for its ability to
produce coherent and contextually relevant text. The key innovation in Polyjuice lies in its ability to condi-
tionally generate counterfactuals based on specific control codes. These control codes guide the generation
process, allowing the model to produce text variations with desired attributes.

87

Chapter 9. Experiments

Key features of Polyjuice include:

e Conditional Generation: Polyjuice can generate text conditioned on various attributes such as
sentiment, tense, or specific words. This is achieved through the use of control codes, which are
provided as input to the model along with the original text. For instance, by specifying a control code
for sentiment, Polyjuice can generate a version of the text with a different emotional tone.

e Diverse Counterfactuals: The model is capable of producing a wide range of counterfactuals that
differ significantly from the original text while still being grammatically correct and contextually ap-
propriate. These variations can include changes in factual content, stylistic alterations, or shifts in
tone.

MiCE

Minimal Contrastive Editing (MiCE) is a method aimed at generating minimal edits to input text that lead
to a change in the prediction of a machine learning model. The primary objective of MiCE is to provide
counterfactual explanations by identifying the smallest possible modification to an input text that alters the
model’s output.

MiCE operates by making minimal modifications to a given input text, ensuring that the resulting edited text
is fluent, semantically coherent, and sufficient to change the model’s prediction. This contrasts with other
counterfactual generation methods that may produce extensive or unrealistic changes, thereby compromising
the usefulness of the explanation.

The method revolves around the following key principles:

e Minimality: The primary goal of MiCE is to achieve the smallest possible edit that can flip the model’s
decision. This minimality ensures that the generated counterfactuals are concise and focused on the
most critical aspects of the input.

e Contrastiveness: The edits made by MiCE are designed to produce a clear contrast in the model’s
predictions. By comparing the original and edited inputs, users can gain insights into which features
or words are pivotal in driving the model’s output.

e Fluency and Coherence: MiCE ensures that the edited text remains fluent and semantically coher-
ent, maintaining readability and interpretability for human users. This is crucial for the explanations
to be meaningful and actionable.

MiCE produces edits, using a two-stage approach. In Stage 1, it prepares a highly-contextualized EDITOR,
model to associate edits with given end-task labels (i.e., labels for the task of the predictor model) such that
the contrast label y. is not ignored in MICE’s second stage. Intuitively, this is done by masking the spans
of text that are “important” for the given target label (as measured by the predictor model’s gradients) and
training our EDITOR to reconstruct these spans of text given the masked text and target label as input.
In Stage 2 of MiCE, contrastive edits e(x) are generated using the EDITOR model from Stage 1 (here, z
is the original input). Specifically, it generates candidate edits e(x) by masking different percentages of x
and giving masked inputs with prepended contrast label y. to the EDITOR; binary search is employed to
find optimal masking percentages and beam search is used to keep track of candidate edits that result in the
highest probability of the contrast labels p(y.|e(z)) given by the predictor model.

This framework uses knowledge of the inner workings of the predictor model to generate edits specifically
optimized for label-flipping and therefore it is considered a task-specific, white-box counterfactual editor.

9.2 Editor Experiments

9.2.1 Editor Variants

Our editor was implemented using many different Python libraries. For the first stage (graph construction)
we used Spacy, NLTK and sentence-transformers, while for the GNN, Pytorch Geometric [20] was employed.
Since our method is a highly customizable one, we experimented with different setups and approaches. We

88

9.2. Editor Experiments

must also note that all experiments were run on the same system consisting of a 16 GB GPU, an Intel i7
CPU and 16 GB RAM.

In order to preserve the POS in each substitution, we apply a penalty mechanism (filtering) when computing
edge weights of the graph. This mechanism assigns a weight approximately 10x bigger than the normal
weights (as defined from WordNet path similarity or embedding cosine similarity), to each edge that connects
different-POS words. This way, since our framework is trying to find a minimum weight matching, edges with
large weights are almost impossible to be chosen and therefore substitutions involving different POS have a
low occurrence probability. We report findings with and without this edge-filtering mechanism in the next
section.

We also investigate the effect of using cosine similarity of embeddings in place of WordNet path similarity
between two words, when computing the weight of a specific edge in the bipartite graph G. On the one hand,
deterministic hierarchies provide more explainable relationships between concepts, fully justifying causal
pathways of substitutions. On the other hand, recently-emerged embedding models can better capture the
relationship and similarity of two words, compared to WordNet. To keep our framework relatively lightweight,
we deploy the top four best performing models that participated in an embedding benchmark competition
[68] and whose size does not exceed 1.25 GB. Models with that size occupied the top spots in the competition
and any increase in model size did not result in significant improvements in performance.

In an attempt to evaluate our editor’s ability to distinguish which POS is more influential to a specific dataset
when related words are substituted, we impose restrictions regarding which POS should be candidates for
substitutions, and compare the results with a POS-unrestricted version of our framework. The IMDB dataset
is used for sentiment classification, and therefore adjectives and adverbs are presumed to mainly dictate the
label (sentiment) for each instance [5]. With that in mind, we limit our editor to change only those two
POS. Newsgroups is a dataset which belongs to the topic classification category. Since a topic is deduced by
examining the nouns in a text, we instruct the editor to take into account only those.

To keep the number of edits relatively low, a way to limit the number of substitutions per data instance is
required, accepting a potential drop in flip-rate. For this reason, we use two different approaches. In the first
one, we enforce a static number of maximum substitutions allowed for each textual input, regardless of its
length; after experimentation, the best number was found to be 10. In the second approach, we dynamically
compute the optimal upper limit (or threshold) of substitutions based on the total number of words in the
text. After different attempts, we end up defining that limit as 20% of the total number of words, which
basically means that we change on average one in every five words.

Since the selection of eligible substitutions is a general-purpose process (only defined by the graph), we
examine the behaviour of our editor when optimized for label-flipping scenarios. This optimization is done
by altering the heuristic function of beam search in the last stage of our framework (see Figure 8.2.1). For
general-purpose edits, this function is the metric for fluency discussed in Subsection 9.1.2, which assists the
production of fluent edits. For label flipping, we use contrastive probability, which regards the change to the
model prediction for the original label, to determine the best edits (see GNN w. contrastive in Table 9.1).
Finally, we also use the average of fluency and contrastive probability as the heuristic function, which results
in fluent edits with high flip-rate (see GNN w. fluency_contrastive in Table 9.1).

9.2.2 Trade-Offs

Since our editor is a highly customizable one, there are many trade-offs which must be considered during
counterfactual generation. Below, we discuss those with the highest importance amongst them.

Controllability vs. Minimality

Controllable interventions involve changing any semantic that can be changed in order to observe an outcome;
to this end, we could potentially alter as many words as possible in order to reach a goal, e.g. label-flipping.
However, in our case, in order to produce minimal edits, we set a maximum number of substitutions per
textual input and leverage beam search to select the most appropriate changes. As a consequence, the
default controllability requirement is partially sacrificed, since it is not guaranteed that all words that can
be substituted will be indeed substituted. Nevertheless, our framework still produces edits for each input,

89

Chapter 9. Experiments

meaning that it will change the original text, although not entirely; this is why we impose as controllability
to modify at least one word of the original data sample. In our experiments (see Table 9.1) we have accepted
this trade-off since our interest lies more heavily with minimality compared to controllability. Despite that,
it is possible to fully ensure controllability by arsing the limitations mentioned above (i.e. max number of
substitutions and beam search), although such an approach would results in worse performance regarding
minimality.

Optimality vs. Execution Speed

In our framework, we use both a deterministic (see Deterministic w. fluency from Table 9.1) and a GNN
approach (see GNN w. fluency from Table 9.1) to solve RLAP. With the deterministic approach, optimality
is ensured, since traditional graph matching algorithms have been proved to find the optimal solution [42, 36].
However, the complexity of those algorithms, which is O(mnlogn), results to slower runtimes as graph size
increases (which is analogous to the number of words to be substituted and therefore depends on the dataset
size). By replacing the deterministic algorithms with the trained GNN (see Section 7.3), our framework
becomes significantly faster at the cost of optimality. This is due to the fact that the solution given by the
GNN is an approzimation of the optimal one.

Explainability vs. Execution Speed

In our work, we utilize WordNet as the default way of computing edge weights between nodes, where each
edge weight is based on the path that connects a source word s with target word ¢ in WordNet. By mapping
each concept to WordNet synsets, a deterministic concept position is assigned to each word, providing a fully
transparent concept mapping to a well-crafted lexical structure. The utilization of word embeddings casts a
shadow on word mapping, since we transit to a vector representation of an uninterpretable multi-dimensional
space via black-box models. Similarity in the embedding space translates to semantic similarity of physical
concepts, acting as our guarantee towards employing embedding models.

In combination with the deterministic solution to RLAP, WordNet mapping guarantees ezxplainability of
edits, since all paths s — ¢ are tractable, and the choice of edges is fully transparent due to the deterministic
selection process of graph matching algorithms [6]. By obtaining the resulting matching M we gain full access
to the set of edits to perform S — T transition. A sacrifice in explainability is imposed when using the GNN
instead of the deterministic graph assignment algorithms: the GNN introduces an uncertainty to the edge
selection, since we cannot be entirely sure why a specific edge was chosen. Although we have trained the
GNN to output the RLAP solution, the model itself still remains a black-box structure that hides the exact
criteria which decide whether an edge will be selected or not. Still, in some applications the speedup offered
by the GNN outweighs this drop in explainability, while the opposite may hold in cases where trustworthiness
is of utmost importance.

9.3 Results

9.3.1 Overall Performance

The results of our experiments are shown in Table 9.1, including both IMDB and Newsgroups datasets. Our
proposed editors—deterministic and GNN-powered—outperform both MiCE and Polyjuice across the three
of the four metrics namely minimality, fluency and closeness. Regarding flip-rate, MiCE achieves the
highest results (99% - 100%, across the two datasets), followed by our approach: our best editor reaches
values slightly above 90% (specifically 94.4% for IMDB and 92% for Newsgroups). However, this is expected,
since MiCE is the only editor that has white-box access to the classifier and it is able to strategically construct
edits that affect the classifier the most, regardless of the input text.

Results also show that our edits tend to be more minimal when graph construction is based on embeddings
models instead of WordNet (approximately 10% of the original tokens are changed when WordNet is employed,
while with embedding models only 1% of the said tokens change). We believe this is due to the fact that
SoTA embedding models are able to better depict concept distance compared to WordNet, and therefore
substitutions based on them are of higher quality, leading to more contrastive pairs. This means that for

90

9.3. Results

IMDB
Editor Fluency | Closeness T Flip Rate ¥ Minimality | Runtime |
Deterministic w. fluency 0.14 0.969 0.892 0.08 4:09:41
GNN w. fluency 0.07 0.986 0.861 0.12 3:17:51
WordNet GNN w. fluency & dynamic thresh 0.057 0.986 0.851 0.146 4:18:34
GNN w. fluency & POS_filter 0.08 0.992 0.862 0.123 0:32:05
GNN w. fluency & edge filter 0.105 0.993 0.845 0.149 3:00:38
GNN w. fluency contrastive 0.112 0.999 0.914 0.014 2:12:06
GNN w. contrastive 0.048 0.996 0.927 0.01 2:00:15
GNN w. AnglE & contrastive 0.063 0.995 0.944 0.011 0:45:38
Embeddings GNN w. GIST & contrastive 0.037 0.995 0.882 0.016 0:58:14
GNN w. Jina & contrastive 0.047 0.995 0.928 0.017 1:00:56
GNN w. MUG & contrastive 0.036 0.996 0.889 0.013 0:52:19
Polyjuice 0.394 0.787 0.782 0.705 5:01:58
MiCE 0.201 0.949 1.000 0.173 48:37:56
Newsgroups
Editor Fluency | Closeness 1 Flip Rate ¥ Minimality | Runtime |
Deterministic w. fluency 0.182 0.951 0.870 0.135 4:20:52
GNN w. fluency 0.074 0.985 0.826 0.151 3:48:37
WordNet GNN w. fluency & dynamic thresh 0.043 0.984 0.823 0.148 4:47:14
GNN w. fluency & POS filter 0.044 0.989 0.841 0.143 1:19:57
GNN w. fluency & edge filter 0.12 0.989 0.834 0.151 3:05:08
GNN w. fluency _contrastive 0.088 0.979 0.875 0.033 2:45:31
GNN w. contrastive 0.033 0.989 0.920 0.033 2:02:34
GNN w. AnglE & contrastive 0.005 0.995 0.904 0.027 1:09:13
Embeddings GNN w. GIST & contrastive 0.001 0.995 0.898 0.02 1:02:55
GNN w. jina & contrastive 0.013 0.993 0.882 0.025 0:57:31
GNN w. MUG & contrastive 0.005 0.996 0.900 0.016 0:53:04
Polyjuice 1.153 0.667 0.8 0.997 6:00:10
MiCE 0.152 0.922 0.992 0.261 47:23:35

Table 9.1: Experimental results of counterfactual generation. We evaluate different versions of our
framework using the metrics described on subsection 9.1.2, and we compare it with MiCE and Polyjuice.
For each metric (column) the best value is highlighted in bold. Reported runtimes refer to inference.

the same impact on the classifier’s output, less embedding substitutions are required compared to WordNet-
based ones. On the other hand, using embedding models reduces the overall transparency of the method.
Despite minor discrepancies, all our framework variants consistently outperform previous techniques across
every metric for Polyjuice and three metrics for MiCE. Moreover, even the general-purpose variation of our
framework, which lacks access to the classifier, yields better results compared to the white-box MiCE; in just
2% of the time.

As far as runtime is concerned, our editors show a remarkable improvement in speed compared to MiCE
and Polyjuice. Our deterministic editor, which is used as a baseline, requires approximately 4 hours for each
dataset, while editors that use the GNN discussed in Section 7.3 achieve faster execution on average (2-4
hours). Runtime is further improved with the use of embedding models, where execution requires less than
an hour (52 minutes - 1 hour for IMDB, 53 minutes - 1 hour and 9 minutes for Newsgroups). This significant
speed improvement is one of the main advantages of our framework compared to the two SoTA editors,
where we observed approximately 97% and 83% speed improvement compared with MiCE and Polyjuice
respectively.

9.3.2 Variant Comparisons

Here we will compare the results from the different variations of our editor, as well as comment on their
effectiveness.

91

Chapter 9. Experiments

Edge Filtering

By examining the results with and without the use of edge filtering we observe that they are quite similar.
This leads us to assume that such a mechanism is redundant and its functionality is covered by the GNN
solution to our graph assignment problem.

WordNet vs. Embeddings

As seen from Table 9.1 our variants that leverage the embedding models achieve better results in all metrics
compared to our WordNet-based variants. Regarding GPU inference, the embedding models also outperform
WordNet in terms of speed, since the latter requires API calls for each word/graph node of V', which greatly
slow down the graph creation process.

POS-restricted vs. Unrestricted Substitutions

As we observe from Table 9.1, both editors, with and without POS filtering, achieve very similar results.
This holds true for both IMDB and Newsgroups datasets, showing that the observed similarity is not due to
a specific POS restriction. The only significant difference is seen in runtime (32 - 60 minutes for restricted
editors, 2 - 4 hours for unrestricted ones), which is to be expected since when we only consider certain POS
at a time, we also limit the amount of words that will be considered as candidates for substitution. This
means that the graph nodes and edges of G will be significantly reduced, thus decreasing the time needed for
graph construction and GNN inference.

Static vs. Dynamic Threshold

Results show insignificant improvement in metrics when using dynamic threshold compared to when using
static threshold, while the runtime is increased (approximately by 1 hour per dataset). This slow-down is
expected since dynamic threshold introduces an extra linear complexity for each text instance, in place of
the O(1) complexity of the static case. Static is our default approach unless stated otherwise.

Contrastive vs fluent contrastive edits

While the general-purpose edits, in which only fluency is used as the heuristic function, achieve the lowest flip-
rate, they remain better in all metrics compared to Polyjuice, another general-purpose editor. This shows that
our framework can also be used as a general, untargeted editor with high-quality edits (regarding discussed
metrics); extensive experimentation on this claim is left for future work. The label-flipping optimized edits,
achieve better results in fluency, closeness and minimality compared to MiCE, a SoTA white-box editor
optimized for label-flipping. Therefore, in terms of flip-rate, MiCE demonstrates superior performance,
exceeding ours by 7%, accepting a significant 20x slowdown in execution.

9.3.3 Qualitative Results

Qualitative comparisons with Polyjuice and MiCE are presented in this Section to demonstrate the capabilities
of our framework regarding minimality and flip-rate. For that purpose, we choose an instance of the IMDB
dataset which is originally classified as ’positive’ and acquire the edited instances from our framework and
the two editors mentioned above. Specifically for Polyjuice, since its goal is to change the prediction from
positive to negative, we use the control code [negation|, which guides the editor to generate an edit that is
the negation of the original text. The original along with the edited inputs (red words denote changes made
by each editor) are shown in Figure 9.3.1.

As we can see, MiCE performs the highest number of interventions on the original input, with two of
those changes being semantically incorrect ("conservative, conservative” and "both of whom have"). We
also notice that its changes are not entirely word-level, which further deteriorates the editor’s performance
regarding minimality. Polyjuice on the other hand, makes only one change at the end of the text, which
however has no semantic meaning; such edits may betray the presence of a counterfactual editor or a neural
model in general, coming in contrast with the requirement of “imperceptible edits” that commonly involves
counterfactual interventions. Our editor presents the best performance out of the three, changing only one
word, while being semantically correct and very close to the original instance.

92

9.3. Results

Original: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks maostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
lennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average romantic drama, 7/10.

MIiCE: This movie will likely be too harsh for many conservative, conservative audiences.
Personally | enjoyed this film thanks mostly to the brilliant acting of William Powell,
both of whom have the dazzling beauty of Jennifer Jones. There are some truly
heartwarming scenes between the pair and the talent of these two actors enhances
what in less than average hands could've been trite lines. The beautiful performance
of Hong Kong from the onset of filming is another highlight of this movie. Allin all, a
better than average romantic drama, 4/10.

Polyjuice: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
lennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, of.

Ours: This movie will likely be too sentimental for many viewers, especially contemporary
audiences. Nevertheless | enjoyed this film thanks mostly to the down-to-earth
charm of William Holden, one of my favorite stars, and the dazzling beauty of
lennifer Jones. There are some truly heartwarming scenes between the pair and the
talent of these two actors rescues what in lesser hands could've been trite lines.
The cinematography of Hong Kong from the period of filming is another highlight of
this movie. Allin all, a better than average shameful drama, 7/10.

Figure 9.3.1: Original input and edited inputs from different editors. The changes that each editor
performed are highlighted in red color.

Edits ‘ Minimality | Prediction Flipped

Polyjuice 0.078 False
MiCE 0.256 True
Ours 0.011 True

Table 9.2: Metric results of the edits presented in Figure 9.3.1. For each property (column) the best value
is highlighted in bold.

Numeric results of Figure 9.3.1 instances regarding minimality and label-flipping are reported in Table 9.2.
Since we only have one textual instance, instead of flip-rate we use the term prediction flipped to denote
whether the edited input is able to change the original prediction of the classifier. Note that Polyjuice is
unable to flip the prediction, while both MiCE and our framework succeed. Also, our editor is the best as
far as minimality is concerned, with Polyjuice being second and MiCE being the worst out of the three.

93

Chapter 9. Experiments

94

Chapter 10

Conclusion

10.1 Discussion

In this work, we present a framework for generating optimal and controllable word-level counterfactuals via
graph-based substitutions, which we evaluate on two classification tasks. One key component of our method
is solving the Rectangular Linear Assignment Problem (RLAP), which is an extension of the more commonly
seen Linear Assignment Problem (LAP). It is shown that with appropriate modifications RLAP can be solved
with the same algorithms used to solve LAP. These algorithms, include the Hungarian Algorithm which solves
RLAP in O(n®) and Karp’s Algorithm which solves it in O(mnlogm). In our work, we extend an existing
GNN to accommodate RLAP which approximates the optimal solution found by the previous deterministic
algorithms, while significantly improving the overall execution time. To the best of our knowledge, no previous
work has tackled the RLAP using GNNs.

Our editor consists of three stages; in the first stage we construct a bipartite graph with source and target
nodes (words), in the second stage we obtain suitable substitution pairs by solving the RLAP on the graph
and in the third and final stage, we employ beam search in order to produce minimal, fluent and contrastive
edits. In each stage, we used different approaches and setups, due to the highly customizable nature of the
editor.

During the graph construction, we experimented with an edge filtering mechanism whose purpose was to
penalize edges connecting different parts-of-speech (POS), which however was shown to be redundant based
on the results. We also opted to use Large Embedding Models instead of WordNet to compute the simi-
larity between two words. Our findings justify this decision, since embedding-based edits outperformed the
Wordnet-based ones in all metrics. We tested the generalization capabilities of our editor by producing
POS-restricted and unrestricted substitutions, and used both a dynamic and a static threshold to define the
max number of substitutions for each text instance. It was interesting to find out that dynamic threshold
did not improve the quality of edits and instead only increased the execution time. We also used different
heuristic functions in beam search to produce edits optimized for different tasks, showcasing the flexibility of
our editor.

Finally, we compared our framework with two SoTA editors, namely Polyjuice and MiCE. The former is a
black-box general-purpose counterfactual editor, while the latter is a white-box counterfactual editor that
produces minimal edits optimized for label-flipping. We used appropriate metrics, to measure fluency, mini-
mality, closeness and flip-rate. Results show that we surpass them in most metrics, while being considerably
faster, which is one of the main advantages of our method.

10.2 Broader Impact and Ethics

Our framework is intended to aid the interpretation of NLP models. As a model-agnostic explanation method
by design (not optimized towards a certain metric in the default case), it has the potential to impact NLP
system development across a wide range of models and tasks. In particular, our edits can assist developers

95

Chapter 10. Conclusion

working on the NLP field in facilitating, debugging and exposing model vulnerabilities. The framework can
also assist in data augmentation which results in less biased and more robust systems. As a consequence,
downstream users of NLP models can also be benefited by gaining access to those systems.

While our work focuses on interpreting NLP models, it could be misused in other contexts. For instance,
malicious users might generate adversarial examples, such as slightly altered hate speech, to bypass toxic
language detectors. Additionally, using these editors for data augmentation could inadvertently lead to less
robust and more biased models, as the edits are designed to expose model weaknesses. To avoid reinforcing
existing biases, researchers should carefully consider how they select and label edited instances when using
them for training. However, such threats are applicable to any text editor in NLP literature and are not
tailored on our work.

10.3 Future Work

In closing this thesis we would like to suggest a few directions to further improve on this work or inspire
different interesting approaches. As a first step, more external lexical sources (e.g. ConceptNet) could
be integrated to enhance the possible substitution candidates, as well as computing more accurately the
similarity between two words. Another step could be the further experimentation with the GNN used to
solve RLAP, in order to improve its output compared with the optimal solution given by Karp’s algorithm.

An appealing direction would be the exploration of the general-purpose version of our editor. This way,
someone could gain important insights regarding its effectiveness in other tasks apart from label-flipping.
We recommend comparing results with Polyjuice and Tailor [81], to evaluate its performance against SoTA
general-purpose editors.

Finally, the trade-off between minimality and flip-rate has not been addressed in this dissertation, but could
provide the basis for further research. Specifically, increasing the max number of substitutions per text
instance could results in higher flip-rate since more words would change. However, the extra substitutions
would increase the size of the edit (measured by number of changed words), thus lowering the editor’s
performance regarding minimality. The acceptable losses in minimality along with the desired gains in flip-
rate, are open for further investigation.

96

Chapter 11

Bibliography

1]

2]

3]

4]

[5]
[6]
17l
18]

19]

[10]

[11]

[12]
[13]

[14]
[15]

Alvarez-Melis, D., Daumé III, H., Wortman Vaughan, J., and Wallach, H. “Weight of Evidence as
a Basis for Human-Oriented Explanations”. In: Workshop on Human-Centric Machine Learning at
the 83rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
Oct. 2019. URL:

Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S.,
Gil-Lopez, S., Molina, D., Benjamins, R., et al. “Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI”. In: Information fusion 58 (2020),
pp. 82-115.

Atwood, J. and Towsley, D. “Diffusion-convolutional neural networks”. In: Advances in neural infor-
mation processing systems 29 (2016).

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. “Relational inductive biases, deep learning,
and graph networks”. In: arXiv preprint arXiv:1806.01261 (2018).

Benamara, F., Cesarano, C., Picariello, A., Reforgiato Recupero, D., and Subrahmanian, V. “Sentiment
analysis: Adjectives and adverbs are better than adjectives alone”. In: ICWSM (Nov. 2005).
Bijsterbosch, J. and Volgenant, T. “Solving the Rectangular assignment problem and applications”.
In: Annals OR 181 (Dec. 2010), pp. 443-462. DOIL: 10.1007/s10479-010-0757-3.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. “Geometric deep learning;:
going beyond euclidean data”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18—42.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. “Spectral networks and locally connected networks
on graphs”. In: arXiv preprint arXiv:1312.6203 (2013).

Burkard, R. and Cela, E. “Linear assignment problems and extensions”. English. In: Handbook of
Combinatorial Optimization. 1st ed. Supplement Volume A. Netherlands: Kluwer Academic Publishers,
1999, pp. 75-149.

Chen, Z., Gao, Q., Bosselut, A., Sabharwal, A., and Richardson, K. “DISCO: Distilling Counterfac-
tuals with Large Language Models”. In: Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Ed. by A. Rogers, J. Boyd-Graber, and N.
Okazaki. Toronto, Canada: Association for Computational Linguistics, July 2023, pp. 5514-5528. DOTI:
10.18653/v1/2023.acl-long.302. URL:

Cheng, F.-H., Hsu, W.-H., and Chen, C.-A. “Fuzzy approach to solve the recognition problem of
handwritten chinese characters”. In: Pattern Recognition 22.2 (1989), pp. 133-141. 1SsN: 0031-3203.
DOI: https://doi.org/10.1016/0031-3203(89)90060-5. URL:

Defferrard, M., Bresson, X., and Vandergheynst, P. “Convolutional neural networks on graphs with
fast localized spectral filtering”. In: Advances in neural information processing systems 29 (2016).
Derr, T., Ma, Y., and Tang, J. “Signed graph convolutional networks”. In: 2018 IEEE International
Conference on Data Mining (ICDM). IEEE. 2018, pp. 929-934.

Developers, G. Foundational Courses - Embeddings. [Online; accessed 23-September-2022]. 2022.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. In: Proceedings of the 2019 Conference of the North Amer-

97

https://doi.org/10.1007/s10479-010-0757-3
https://doi.org/10.18653/v1/2023.acl-long.302
https://doi.org/https://doi.org/10.1016/0031-3203(89)90060-5

Chapter 11. Bibliography

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]
[25]
[26]

[27]
(28]

29]
[30]

31]

[32]

ican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Ed. by J. Burstein, C. Doran, and T. Solorio. Minneapolis, Minnesota:
Association for Computational Linguistics, June 2019, pp. 4171-4186. poI: 10.18653/v1/N19-1423.
URL:

Dimitriou, A., Chaidos, N., Lymperaiou, M., and Stamou, G. “Graph Edits for Counterfactual Expla-
nations: A Comparative Study”. In: Explainable Artificial Intelligence. Ed. by L. Longo, S. Lapuschkin,
and C. Seifert. Cham: Springer Nature Switzerland, 2024, pp. 100-112. 1SBN: 978-3-031-63797-1.
Dimitriou, A., Lymperaiou, M., Filandrianos, G., Thomas, K., and Stamou, G. Structure Your
Data: Towards Semantic Graph Counterfactuals. 2024. International Conference on Machine Learning
(ICML):

Ebrahimi, J., Rao, A., Lowd, D., and Dou, D. “HotFlip: White-Box Adversarial Examples for Text
Classification”. In: Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Ed. by I. Gurevych and Y. Miyao. Melbourne, Australia: Associa-
tion for Computational Linguistics, July 2018, pp. 31-36. DOI: 10.18653/v1/P18-2006. URL:

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. “Hypergraph neural networks”. In: Proceedings of
the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, pp. 3558-3565.

Fey, M. and Lenssen, J. E. “Fast Graph Representation Learning with PyTorch Geometric”. In: ICLR
Workshop on Representation Learning on Graphs and Manifolds. 2019.

Filandrianos, G., Dervakos, E., Menis Mastromichalakis, O., Zerva, C., and Stamou, G. “Counterfac-
tuals of Counterfactuals: a back-translation-inspired approach to analyse counterfactual editors”. In:
Findings of the Association for Computational Linguistics: ACL 2023. Ed. by A. Rogers, J. Boyd-
Graber, and N. Okazaki. Toronto, Canada: Association for Computational Linguistics, July 2023,
pp- 9507-9525. DOI: 10.18653/v1/2023.findings-acl.606. URL:

Gardner, M. et al. “Evaluating Models’ Local Decision Boundaries via Contrast Sets”. In: Findings of
the Association for Computational Linguistics: EMNLP 2020. Ed. by T. Cohn, Y. He, and Y. Liu.
Online: Association for Computational Linguistics, Nov. 2020, pp. 1307-1323. por1: 10.18653/v1/
2020.findings-emnlp.117. URL:

Garg, S. and Ramakrishnan, G. “BAE: BERT-based Adversarial Examples for Text Classification”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Ed. by B. Webber, T. Cohn, Y. He, and Y. Liu. Online: Association for Computational Linguistics,
Nov. 2020, pp. 6174-6181. DOI: 10.18653/v1/2020.emnlp-main.498. URL:

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. “Neural message passing for
quantum chemistry”. In: International conference on machine learning. PMLR. 2017, pp. 1263-1272.
Gilo, D. and Markovitch, S. “A General Search-Based Framework for Generating Textual Counterfac-
tual Explanations”. In: AAAI Conference on Artificial Intelligence. 2022. URL:

GitHub, c. GitHub - chemplexity/molecules: chemical graph theory library for JavaScript. en. [online].
2022. URL:

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.

Grigoriadou, N., Lymperaiou, M., Filandrianos, G., and Stamou, G. “AILS-NTUA at SemEval-2024
Task 6: Efficient model tuning for hallucination detection and analysis”. In: Proceedings of the 18th
International Workshop on Semantic Evaluation (SemFEval-2024). Ed. by A. K. Ojha, A. S. Dogrudz, H.
Tayyar Madabushi, G. Da San Martino, S. Rosenthal, and A. Rosa. Mexico City, Mexico: Association
for Computational Linguistics, June 2024, pp. 1549-1560. DOI: 10.18653/v1/2024.semeval-1.222.
URL:

Hamilton, W., Ying, Z., and Leskovec, J. “Inductive representation learning on large graphs”. In:
Advances in neural information processing systems 30 (2017).

Hinton, G. E. and Salakhutdinov, R. R. “Reducing the dimensionality of data with neural networks”.
In: science 313.5786 (2006), pp. 504-507.

Hussein, R., Yang, D., and Cudré-Mauroux, P. “Are meta-paths necessary? Revisiting heterogeneous
graph embeddings”. In: Proceedings of the 27th ACM international conference on information and
knowledge management. 2018, pp. 437-446.

Iyyer, M., Wieting, J., Gimpel, K., and Zettlemoyer, L. “ Adversarial Example Generation with Syntac-
tically Controlled Paraphrase Networks”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1

98

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2023.findings-acl.606
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2024.semeval-1.222

[33]

[34]

[35]
[36]
37]

[38]
[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]
48]
[49]
[50]

[51]

[52]
53]

[54]

(Long Papers). Ed. by M. Walker, H. Ji, and A. Stent. New Orleans, Louisiana: Association for Com-
putational Linguistics, June 2018, pp. 1875-1885. DOI: 10.18653/v1/N18-1170. URL:

James Im. Introduction to PCA (Principal Component Analysis) - Medium. [Online; accessed 23-
September-2022]. 2018.

Jia, R. and Liang, P. “Adversarial Examples for Evaluating Reading Comprehension Systems”. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Ed. by M.
Palmer, R. Hwa, and S. Riedel. Copenhagen, Denmark: Association for Computational Linguistics,
Sept. 2017, pp. 2021-2031. DOT: 10.18653/v1/D17-1215. URL:

Jin, D., Jin, Z., Zhou, J. T., and Szolovits, P. Is BERT Really Robust? A Strong Baseline for Natural
Language Attack on Text Classification and Entailment. 2020. arXiv: 1907.11932 [cs.CL]. URL:
Karp, R. An Algorithm to Solve the mxn Assignment Problem in Expected Time O (mn log n). Tech.
rep. UCB/ERL M78/67. EECS Department, University of California, Berkeley, Sept. 1978. URL:
Kaushik, D., Hovy, E., and Lipton, Z. C. Learning the Difference that Makes a Difference with
Counterfactually-Augmented Data. 2020. arXiv: 1909.12434 [cs.CL]. URL:

Keim, R. How to Train a Basic Perceptron Neural Network. en. [online]. 2019. URL:

Khamsi, M. A. and Kirk, W. A. An introduction to metric spaces and fixed point theory. John Wiley
& Sons, 2011.

Kipf, T. N. and Welling, M. “Variational graph auto-encoders”. In: arXiv preprint arXiv:1611.07308
(2016).

Koulakos, A., Lymperaiou, M., Filandrianos, G., and Stamou, G. Enhancing adversarial robustness
in Natural Language Inference using explanations. 2024. arXiv: 2409.07423 [cs.CL]. URL:

Kuhn, H. W. “The Hungarian method for the assignment problem”. In: Naval Research Logistics
Quarterly 2.1-2 (1955), pp. 83-97. DOL: https://doi.org/10.1002/nav.3800020109. eprint: URL:
Kuhn, H. W. “The Hungarian method for the assignment problem”. In: Nawval research logistics quar-
terly 2.1-2 (1955), pp. 83-97.

Lang, K. “NewsWeeder: learning to filter netnews”. In: Proceedings of the Twelfth International Con-
ference on International Conference on Machine Learning. ICML’95. Tahoe City, California, USA:
Morgan Kaufmann Publishers Inc., 1995, pp. 331-339. 1SBN: 1558603778.

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. “Object recognition with gradient-based learning”.
In: Shape, contour and grouping in computer vision. Springer, 1999, pp. 319-345.

Li, D., Zhang, Y., Peng, H., Chen, L., Brockett, C., Sun, M.-T., and Dolan, B. “Contextualized
Perturbation for Textual Adversarial Attack”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Ed. by K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R.
Cotterell, T. Chakraborty, and Y. Zhou. Online: Association for Computational Linguistics, June
2021, pp. 5053-5069. DOI: 10.18653/v1/2021.naacl-main.400. URL:

Li, L., Ma, R., Guo, Q., Xue, X., and Qiu, X. BERT-ATTACK: Adversarial Attack Against BERT
Using BERT. 2020. arXiv: 2004.09984 [cs.CL]. URL:

Li, X. and Li, J. “AnglE-optimized Text Embeddings”. In: arXiv preprint arXiv:2309.12871 (2023).
Lin, C.-Y. “ROUGE: A Package for Automatic Evaluation of Summaries”. In: Text Summarization
Branches Out. Barcelona, Spain: Association for Computational Linguistics, July 2004, pp. 74-81.
URL:

Liu, H., Wang, T., Lang, C., Feng, S., Jin, Y., and Li, Y. “GLAN: A graph-based linear assignment
network”. In: Pattern Recognition 155 (June 2024), p. 110694. DOI: 10.1016/j.patcog.2024.110694.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and
Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. arXiv: 1907.11692
[cs.CL]. URL:

Liu, Y., Jin, M., Pan, S., Zhou, C., Zheng, Y., Xia, F., and Yu, P. “Graph self-supervised learning: A
survey”. In: IEEE Transactions on Knowledge and Data Engineering (2022).

Lymperaiou, M., Filandrianos, G., Thomas, K., and Stamou, G. Counterfactual Edits for Generative
Evaluation. 2023. arXiv: 2303.01555 [cs.CV]. URL:

Lymperaiou, M., Manoliadis, G., Menis Mastromichalakis, O., Dervakos, E. G., and Stamou, G. “To-
wards Explainable Evaluation of Language Models on the Semantic Similarity of Visual Concepts”. In:
Proceedings of the 29th International Conference on Computational Linguistics. Ed. by N. Calzolari

99

https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/D17-1215
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/1909.12434
https://arxiv.org/abs/2409.07423
https://doi.org/https://doi.org/10.1002/nav.3800020109
https://doi.org/10.18653/v1/2021.naacl-main.400
https://arxiv.org/abs/2004.09984
https://doi.org/10.1016/j.patcog.2024.110694
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2303.01555

Chapter 11. Bibliography

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]
[67]
[68]
[69]
[70]

[71]

[72]

(73]

[74]

[75]

et al. Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022,
pp. 3639-3658. URL:

Lymperopoulos, D., Lymperaiou, M., Filandrianos, G., and Stamou, G. Optimal and efficient text
counterfactuals using Graph Neural Networks. 2024. arXiv: 2408.01969 [cs.CL]. URL:

Ma, G., Ahmed, N. K., Willke, T. L., and Yu, P. S. “Deep graph similarity learning: A survey”. In:
Data Mining and Knowledge Discovery 35.3 (2021), pp. 688-725.

Ma, Y., Wang, S., Aggarwal, C. C., Yin, D., and Tang, J. “Multi-dimensional graph convolutional
networks”. In: Proceedings of the 2019 siam international conference on data mining. SITAM. 2019,
pp- 657-665.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. “Learning Word Vectors for
Sentiment Analysis”. In: Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Ed. by D. Lin, Y. Matsumoto, and R. Mihalcea. Portland,
Oregon, USA: Association for Computational Linguistics, June 2011, pp. 142-150. URL:

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. “Invariant and equivariant graph networks”.
In: arXiv preprint arXiv:1812.09902 (2018).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. “Efficient estimation of word representations in
vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

Miller, G. A. “WordNet: a lexical database for English”. In: Commun. ACM 38.11 (Nov. 1995), pp. 39—
41. 18SN: 0001-0782. DOI: 10.1145/219717.219748. URL:

Miller, T. “Explanation in artificial intelligence: Insights from the social sciences”. In: Artificial Intel-
ligence 267 (2019), pp. 1-38. 1sSN: 0004-3702. DOI: https://doi.org/10.1016/j.artint.2018.07.
007. URL:

Mohr, I., Krimmel, M., Sturua, S., Akram, M. K., Koukounas, A., Giinther, M., Mastrapas, G.,
Ravishankar, V., Martinez, J. F., Wang, F., et al. “Multi-Task Contrastive Learning for 8192-Token
Bilingual Text Embeddings”. In: arXiv preprint arXiv:2402.17016 (2024).

Molnar, C. Interpretable machine learning. Lulu. com, 2020.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. “Geometric deep
learning on graphs and manifolds using mixture model cnns”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 5115-5124.

Morris, J. X., Lifland, E., Yoo, J. Y., Grigsby, J., Jin, D., and Qi, Y. TextAttack: A Framework for
Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP. 2020. arXiv: 2005.05909
[cs.CL]. URL:

Mozes, M., Kleinberg, B., and Griffin, L. D. “Identifying Human Strategies for Generating Word-Level
Adversarial Examples”. In: Conference on Empirical Methods in Natural Language Processing. 2022.
URL:

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N. MTEB: Massive Text Embedding Benchmark.
2023. arXiv: 2210.07316 [cs.CL]. URL:

Networkx. PageRank algorithm | NetworkX Guide. en. [online]. 2022. URL:

Panagiotopoulos, I., Filandrianos, G., Lymperaiou, M., and Stamou, G. AILS-NTUA at SemFval-
2024 Task 9: Cracking Brain Teasers: Transformer Models for Lateral Thinking Puzzles. 2024. arXiv:
2404.01084 [cs.CL]. URL:

Panagiotopoulos, 1., Filandrianos, G., Lymperaiou, M., and Stamou, G. RISCORE: Enhancing In-
Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation.
2024. arXiv: 2409.16383 [cs.CL]. URL:

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. “BLEU: a method for automatic evaluation of
machine translation”. In: Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics. ACL ’02. Philadelphia, Pennsylvania: Association for Computational Linguistics, 2002,
pp- 311-318. por: 10.3115/1073083.1073135. URL:

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T., Schardl, T., and
Leiserson, C. “Evolvegen: Evolving graph convolutional networks for dynamic graphs”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020, pp. 5363-5370.

Pennington, J., Socher, R., and Manning, C. D. “GloVe: Global Vectors for Word Representation”. In:
Empirical Methods in Natural Language Processing (EMNLP). 2014, pp. 1532-1543. URL:

Pires, T., Schlinger, E., and Garrette, D. “How multilingual is multilingual BERT?” In: arXiv preprint
arXiv:1906.01502 (2019).

100

https://arxiv.org/abs/2408.01969
https://doi.org/10.1145/219717.219748
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/https://doi.org/10.1016/j.artint.2018.07.007
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2404.01084
https://arxiv.org/abs/2409.16383
https://doi.org/10.3115/1073083.1073135

[76]

[77]

(78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

86]
87]
88)
89]
190]
j91)
192]
193]
j94]
195]

[96]

Radford, A., Wu, J., Child, R., Luan, D.; Amodei, D., and Sutskever, 1. “Language Models are Unsu-
pervised Multitask Learners”. In: (2019).

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
“Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”. In: Journal of
Machine Learning Research 21.140 (2020), pp. 1-67. URL:

Ren, S., Deng, Y., He, K., and Che, W. “Generating Natural Language Adversarial Examples through
Probability Weighted Word Saliency”. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Ed. by A. Korhonen, D. Traum, and L. Marquez. Florence, Italy:
Association for Computational Linguistics, July 2019, pp. 1085-1097. DoOI: 10.18653/v1/P19-1103.
URL:

Ribeiro Neto, J. Social Network — Big Data Success Case. en. [online]. 2022. URL:

Ross, A., Marasovi¢, A., and Peters, M. “Explaining NLP Models via Minimal Contrastive Editing
(MiCE)”. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Ed. by
C. Zong, F. Xia, W. Li, and R. Navigli. Online: Association for Computational Linguistics, Aug. 2021,
pp- 3840-3852. DOI: 10.18653/v1/2021.findings-acl.336. URL:

Ross, A., Wu, T., Peng, H., Peters, M., and Gardner, M. “Tailor: Generating and Perturbing Text with
Semantic Controls”. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by S. Muresan, P. Nakov, and A. Villavicencio. Dublin,
Ireland: Association for Computational Linguistics, May 2022, pp. 3194-3213. pDOI: 10.18653/v1/
2022.acl-long.228. URL:

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. “Learning representations by back-propagating
errors”. In: nature 323.6088 (1986), pp. 533-536.

Sachdeva, R., Tutek, M., and Gurevych, I. “CATfOOD: Counterfactual Augmented Training for Im-
proving Out-of-Domain Performance and Calibration”. In: Proceedings of the 18th Conference of the
European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
Y. Graham and M. Purver. St. Julian’s, Malta: Association for Computational Linguistics, Mar. 2024,
pp- 1876-1898. URL:

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. “The graph neural network
model”. In: IEEE transactions on neural networks 20.1 (2008), pp. 61-80.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. “The Graph Neural Network
Model”. In: IEEE Transactions on Neural Networks 20.1 (2009), pp. 61-80. DOI: 10.1109/TNN.2008.
2005605.

Scheinerman, E. Mathematics: A Discrete Introduction. Cengage Learning, 2012. 1SBN: 9780840049421.
URL:

Sean, L., Aamir, S., Darius, K., and Julius, L. Open Source Strikes Bread - New Fluffy Embeddings
Model. 2024. URL:

Solatorio, A. V. “GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding
Fine-tuning”. In: arXiv preprint arXiv:2402.16829 (2024). arXiv: 2402.16829 [cs.LG]. URL:
Stoikou, T., Lymperaiou, M., and Stamou, G. Knowledge-Based Counterfactual Queries for Visual
Question Answering. 2023. arXiv: 2303.02601 [cs.CL]. URL:

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. 2014. arXiv: 1312.6199 [cs.CV]. URL:

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, ¥.., and Polo-
sukhin, I. “Attention is all you need”. In: Advances in neural information processing systems 30 (2017).
Veli¢kovié¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. “Graph attention
networks”. In: arXiv preprint arXiv:1710.10903 (2017).

Wang, X., Girshick, R., Gupta, A., and He, K. “Non-local neural networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 7794-7803.

Wang, X., Xiong, Y., and He, K. “Detecting textual adversarial examples through randomized substi-
tution and vote”. In: Conference on Uncertainty in Artificial Intelligence. 2021. URL:

Weisteiler, B. and Leman, A. “The reduction of a graph to canonical form and the algebra which
appears therein”. In: NTI, Series 2.9 (1968), pp. 12-16.

Wikipedia contributors. Feedforward neural network — Wikipedia, The Free Encyclopedia. [Online;
accessed 22-September-2022]. 2022.

101

https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.18653/v1/2022.acl-long.228
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2303.02601
https://arxiv.org/abs/1312.6199

Chapter 11. Bibliography

[97]
(98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]
[117]

[118]

Wikipedia contributors. Graph isomorphism — Wikipedia, The Free Encyclopedia. [Online; accessed
26-September-2022|. 2022.

Wikipedia contributors. Machine learning — Wikipedia, The Free Encyclopedia. [Online; accessed
22-September-2022|. 2022.

Wikipedia contributors. Mean absolute error — Wikipedia, The Free Encyclopedia. [Online; accessed
22-September-2022]. 2022.

Wikipedia contributors. Principal component analysis — Wikipedia, The Free Encyclopedia. [Online;
accessed 23-September-2022|. 2022.

Wikipedia contributors. Rectifier (neural networks) — Wikipedia, The Free Encyclopedia. [Online;
accessed 22-September-2022]. 2022.

Wikipedia contributors. Semi-supervised learning — Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 22-September-2022]. 2022.

Wikipedia contributors. Vanishing gradient problem — Wikipedia, The Free Encyclopedia. [Online;
accessed 22-September-2022]|. 2022.

Wikipedia contributors. Word embedding — Wikipedia, The Free Encyclopedia. [Online; accessed 23-
September-2022]. 2022.

Wikipedia contributors. Beam search — Wikipedia, The Free Encyclopedia. [Online; accessed 1-
September-2024|. 2024. URL:

Wu, T., Ribeiro, M. T., Heer, J., and Weld, D. “Polyjuice: Generating Counterfactuals for Explaining,
Evaluating, and Improving Models”. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers). Ed. by C. Zong, F. Xia, W. Li, and R. Navigli. Online: Association for
Computational Linguistics, Aug. 2021, pp. 6707-6723. DOI: 10.18653/v1/2021.acl-1long.523. URL:
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. “A comprehensive survey on graph
neural networks”. In: IEEE transactions on neural networks and learning systems 32.1 (2020), pp. 4—
24.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. “A Comprehensive Survey on Graph
Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems 32 (2019), pp. 4—
24. URL:

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. “How powerful are graph neural networks?” In: arXiv
preprint arXiv:1810.00826 (2018).

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., and Talukdar, P. “HyperGCN: Hyper-
graph Convolutional Networks for Semi-Supervised Learning and Combinatorial Optimisation”. In:
arXiv (2019).

Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., and Yang, X. “A Short Survey of Recent Advances
in Graph Matching”. In: Proceedings of the 2016 ACM on International Conference on Multimedia
Retrieval. ICMR '16. New York, New York, USA: Association for Computing Machinery, 2016, pp. 167—
174. 1SBN: 9781450343596. DOI: 10.1145/2911996.2912035. URL:

Yenduri, G. et al. Generative Pre-trained Transformer: A Comprehensive Review on Enabling Tech-
nologies, Potential Applications, Emerging Challenges, and Future Directions. 2023. arXiv: 2305 .
10435 [cs.CL]. URL:

Yin, K. and Neubig, G. “Interpreting Language Models with Contrastive Explanations”. In: Conference
on Empirical Methods in Natural Language Processing. 2022. URL:

Yow, K. S. and Luo, S. Learning-Based Approaches for Graph Problems: A Survey. Apr. 2022.

Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., and Sun, M. “Word-level Textual Adversarial
Attacking as Combinatorial Optimization”. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Ed. by D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault. Online:
Association for Computational Linguistics, July 2020, pp. 6066-6080. DOI: 10.18653/v1/2020.acl-
main.540. URL:

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. “Dive into Deep Learning”. In: arXiv preprint
arXiv:2106.11342 (2021).

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., and Artzi, Y. “BERTScore: Evaluating Text
Generation with BERT”. In: ArXiv abs/1904.09675 (2019). URL:

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M. “Graph neural
networks: A review of methods and applications”. In: AT Open 1 (2020), pp. 57-81.

102

https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.1145/2911996.2912035
https://arxiv.org/abs/2305.10435
https://arxiv.org/abs/2305.10435
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540

[119] Zhu, H., Zhao, Q., and Wu, Y. “BeamAttack: Generating High-quality Textual Adversarial Exam-
ples through Beam Search and Mixed Semantic Spaces”. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. 2023. URL:

103

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό Υπόβαθρο
	Διμερεις Γραφοι
	Νευρωνικά Δίκτυα Γράφων
	Εξηγήσεις με Αντιπαράδειγμα
	Ορθογώνιο Πρόβλημα Γραμμικής Ανάθεσης

	Προτεινόμενη Μέθοδος
	Συνεισφορές
	Προτεινόμενο Σύστημα

	Πειραματικό Μέρος
	Σύνολα Δεδομένων και Μετρικές
	Ταξινομητές και Ανταγωνιζόμενοι Συντάκτες
	Περιγραφή Πειραμάτων
	Αποτελέσματα

	Συμπεράσματα
	Συζήτηση
	Γενικότερος Αντίκτυπος και Ηθική
	Μελλοντικές Κατευθύνσεις

	Introduction
	Machine Learning
	Learning Categories
	Training a Neural Network
	Basic Concepts
	Generalization and Overfitting

	Deep Learning
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Networks (CNN)

	Natural Language Processing
	Embeddings

	Large Language Models
	LLM Architecture
	Pretraining and Fine-Tuning
	Computational Complexity

	Graphs
	Graph Theory Basics
	Bipartite Graphs

	Graph Neural Networks (GNN)
	Unique Characteristics
	Motivation
	Permutation Invariance
	Weisfeiler-Lehman Test

	Taxonomy
	Task Type
	Architecture
	Training Type

	GNN Models
	Original Graph Neural Network
	Variants
	General Frameworks

	Counterfactual Explanations
	Definitions
	Counterfactual Interventions
	Related Work
	Textual Counterfactuals
	Counterfactual explanations using GNNs

	Rectangular Linear Assignment Problem
	Problem Formulation
	Deterministic Approaches
	Hungarian Algorithm
	Karp's Algorithm

	GNN Approach
	Encoder/Decoder
	The convolution module
	Loss Function

	Proposal
	Contributions
	Proposed Method
	Graph creation
	Substitution pairs computation
	Counterfactual Generation

	Experiments
	Preliminaries
	Dataset
	Evaluation Metrics
	Classifier Models
	Counterfactual Editors

	Editor Experiments
	Editor Variants
	Trade-Offs

	Results
	Overall Performance
	Variant Comparisons
	Qualitative Results

	Conclusion
	Discussion
	Broader Impact and Ethics
	Future Work

	Bibliography

