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ITepixndm

To npéPAnua Vertex Cut aopd tnv e0pecT) TOU EXGYLOTOU GUVONOU X0RLYWY, 1) APaipEDT)
TOV OTOlWV ATOCUVOEEL EVA YRAPNUL OE TOANATAEG CUVEXTIXEC cUVIoTWOoES. Elvou éva
Depelicddeg TEOPANUO GTNY EMOTAUN LUTONOYIOTGY xang €xel ToNUdpllues eQapuoyEe,
OTWC O OYEOLAOUOS AVIEXTIXDV OE GPANUUTA BIXTUWY, Ol TUEAANTAOL UTONOYIOHOL Ko
o xataveunuéva cuothuata. Koabdg to yéyebog xon 1 ToNUTAOXOTNTA TV BEDOUEVOY
audvovtar exPeTIXG, 1 AVTIUETOTLION TOU TROBNNUATOC XOTHS XOPUPWY GE EVA TURIANTINO
uToNOYIOTIXO TERLBAANOV xaBioTorTon amopodTnTy Yl TNV EMTELEN UNUUXOVUEVOY XA
AmOBOTIXWY NDCEWV.

Ye auth ) dimhopatxy epyaocio e€etdlovue to mEoPANua Vertex Cut oto mialolo twv
TUEAANNAOY UTONOYIOUWY, Xa ouyxexpléva oto woviého PRAM. Eexwvdye nopouoid-
Covtag SLdpopes TpoamautoUeveS €vvoles, 6Tng To poviého PRAM, tnv avéiuon molu-
TAOXOTNTOC TEEAAAOV oNyop{fuwy oo povtého work/depth xou Beuehidddn amotené-
opato 6to woviéno PRAM xou to mpdPAnua vertex connectivity. Xtn cuvéyela, napou-
otdoVPE TOUS UNAOXOUS ANy OplBUOUS Yot TNV ETAUGT TOU TEOBAAUATOC GTO GELPLIXO
wovtého RAM, xau axolouBolue tnv mopela gpyooiwyv twv Nanongkai, Thatchaphol
xou Yingchareonthawornchai [1], ou onolol fitav o1 mp@ToL TOU éoTACAY TO TETPAYWVLXOS
(PEAYUOL YLOL TNV TOAUTAOXOTNTA TOL TEOBANUATOC.

I var petagpépoupe autée Tic WEEC 0TO TURIANNAO HOVTEND, avTetwrilovye To eund-
Ol0 TNC TUESANNANG TEOCTENACLUOTNTAUS, TO OTOl0 ETUAVOUUE YENOUWOTOLOVTAS TEXVIXES
and Vv gpyacio tov Sidford, Jambulapati xou Liu [2]. Zuyxexpwéva, xotaoxeudloupe
hopsets yio vo uewdooLye T SLIUETEO TOU YEAPAUATOS, XADLoTWVTAC TO TPOCTENICLLO
ue wxpo depth. Télog, cuvdudlouue auTtég TG WBéeg xou Tapouctdlouyue 500 aryopibuoug
ue work/depth tradeoff yia autéd T0 TEAPANUA xou e€eTdloupe TbavEC xateLBOVOELS YLo
HEANOVTLXY) €pELVOL

Aggeig xhewdid: IpdPinua Ko Kopugpnv, Movtého PRAM, ITopdAnhot ANy opl0-
wot, Ocwpla I'pagpnudtwy, IapdAnkn Hpoonehaowudtnta, Yuvdeootnta I'oagpnudtoy,
Tuyoomoinuévol Axyopluol, Yxedioaon ANyopiBuwy, ANyopibuor Ioagpnudtwy, Aixtua
AvOexTtind oe Npdhuota






Abstract

The Vertex Cut Problem involves identifying the minimum set of vertices whose re-
moval disconnects a given graph into multiple connected components. Its significance
stems from its wide-ranging applications, including fault-tolerant network design, par-
allel computation, and distributed systems. As the size and complexity of datasets
continue to grow exponentially, addressing the Vertex Cut Problem in a parallel com-
puting environment becomes imperative for achieving scalable and efficient solutions.

In this thesis, we examine the Vertex Cut Problem in the context of parallel compu-
tation, specifically within the PRAM model. We begin by introducing various pre-
liminaries, including the PRAM model itself, work/depth complexity analysis, and
fundamental results in PRAM and vertex connectivity. We then present the folklore
algorithms for solving this problem in the sequential setting, before building upon the
work of Nanongkai, Thatchaphol and Yingchareonthawornchai [1], whose paper was
the first to break the quadratic barrier for this problem.

To transfer these ideas into the parallel regime, we face the challenge of parallel reach-
ability, which we address using techniques from Sidford, Jambulapati xou Liu’s work
[2]. Specifically, we construct hopsets to reduce the graph’s diameter, enabling efficient
traversal in low depth. Finally, we combine these ideas to present two algorithms that
offer a work-depth tradeoff for this problem. The thesis concludes by exploring poten-
tial research directions, further improving our understanding of parallel algorithms for
vertex cuts.

Keywords: Vertex Cut Problem, PRAM Model, Parallel Computing, Work-Depth
Tradeoff, Parallel Algorithms, Graph Theory, Parallel Reachability, Hopsets, Graph
Connectivity, Randomized Algorithms, Algorithmic Design, Graph Algorithms, Fault-
tolerant Networks
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Kegpdiawo 1

Extetopevn EXAnvixr
ITepidndm

Ye autd T0 XEPANO TUPOUGCIALOUUE TEQIANTTIXG To TEPLEYOUEVO AUTY) TN BLTAOUATIXAC
epyaoiog ota eNAnvxd. Ewodyouue dxeg tic Paoixée évvoleg mou eugaviCovion oo ary-
YAXO xelyevo. 201600, dev divoupue olte anodeilelc olte TeYVIXéC AenTopépetes. Autéc
OlVOVTOL EXTEV(IC GTU ETMOUEVA XEPINALAL.

1.1 To Movtélo PRAM

e auth) TV evOTNTA TEOLCLELOVTOL XATOLES YEVIXES LWOEEC TTOL DLETOUY TNV TEPLOXN TMV
IapdMNAmhwv AlyopeiBuwy. To yoviéo PRAM (Parallel Random Access Machine) efvou
€Vl O TOL TLO EXTEVS UENETNUEVL, XL TO ETMUXQPUTECTEQO, UOVIENO OTOV TOUEN TNG -
EIMMANG ene€epyaciac. Amotelel o avtioToly o ToU TaEABOGLAXO) LOVTENOL GELELXNS
enelepyaoiog, autd e unyxovic Tuxaiac tpdofaonc (RAM), oyxediaouévo vo Tpocououn-
VEL T1) CUUTIERLPORE TONNATAWY EMEEERYUCTMY TOU UTOEOVY Vol €Y0LV TAUTOYEOVY TRo-
ofaon oe €vav xowb xHeo uviung. 2to poviého PRAM, ol eneepyactéc Aettoupyolv
CUYYEOVIOUEVAL, ONAUDY| EXTENOUV NELTOURYIEC TAUTOXEOVAL, XOU 1) ETULXOWVOV{O HETAEY TOUG
EMTUYYAVETOL PEOW NS XOWNG uviung. Auto xabiotd to PRAM éva bavixd yoviéno
YO TNV AVEAUGT|) CTEATNYIXDV TURUAANNOTIOMNGNG YLl OLAPOPES UTONOYIOTIXES ERYAT(ES.

To povténo PRAM ywelleton o€ 1€00EQ UTOUOVTEND, AVANOYO UE TO TS AVTILETOTILO-
VTAL Ol GUYXEOVCELS XATd TNV TeocPocT oTn uvAun:

e Exclusive read exclusive write (EREW): Y& auté to poviého, pévo évac
enelepyaotic emtpénetar vo Slofdlel amd 1 vo yedper oe o BEon uvAung xdbe
popd, xaoTOVTAS To To o TEploploTXd Yoviéno PRAM. To yoviého EREW

23



24 Kegdhowo 1. Extetapévn EXAnvixr| Tlepihndm

elvan B0oxoXo vo ulomoindel, aANd elacpanilel 6Tl BeV UTdPYOUY CUYXEOVUCELS
Tpocfoong 6T UVAUN.

e Concurrent read exclusive write (CREW): Ilox\ol enelepyootéc emtpéne-
Tan va dtafdlouy Tautoyeova and TNy (Bla BEon UvAUNG, oANG Lovo évag emelepya-
oThg unopel va ypdpel oe auTAY avd Tdoo oTiypY. AuTto To HOVTENO ETULTEETEL TNV
TEANNTAT], avaryvwoT), 1 omtola elvon o VAT and Ty EREW, ad\\d e€axorou-
Ol va meplopilel Tic Aettoupyleg eyypapnc.

e Exclusive read concurrent write (ERCW): Av xat autd 10 povtého emitpé-
TEL 0 TONNOUG EMEEERYATTES VoL YeApouy oty (Biar BEomn uviung, omdvior e€eTd-
Cetan, xobmg dev mpoobétel onuavtiny uToNoYoTIX o0 ¥ ATOBOTIXOTNTA OTIC
TEPLOCOTERES EPUPUOYES, xaDMOC BEV ETUTEENEL TNV TAUTOXEOVT] AVAY VOO

e Concurrent read concurrent write (CRCW): Auté eivar to o yevixd po-
VTENO, OToU moXNamhol eneéepyactéc unopolv va SlafBdlouy xou vo yedpouy Tou-
o pova 6TV Bl BEomn uvAung. AlapopeTixég mapariaryéc tou poviénou CRCW
xaBopilouv Tov TEOTo KEWIOUOD TV GUYXPOVCEWY EYYEUPAS ()., TO ATOTENECUN
wog oOyxpovang eyypaprc unopel vo xofopiletar and tnv eXdyot 1 TN uéyiotn
T Tou ypdpeton 1 uropel vor xabopileton tuyaio). Mo CRCW PRAM avapépe-
Tou pepés popéc we Concurrent Random Access Machine (umyav) tawtdypovng
Tuyalog npooné)\occnq) AOY® TNS AVOTNTAC TNS VoL YELRICETAL TAUTOYPOVES AELTOUE-
vleg 1600 xATA TNV AVdYVOOT) GGO Xl XATA TNV EYYEAPT.

To yovtéro nou Ba yenowonoticouue o’ auth TV epyasia etivoaw to CREW.

1.1.1 Avddvor ITohunhoxdtntoac Work/Depth

YNV EMOTAUN TV UTONOYIG TRV, 1] AVIAUGT] TV TUEIANTAOY o\yopifuny Tepuhaufdvet
TOV TPOGOLOPLOUO TNG UTONOYIO TIXNG TONUTAOXOTNTAC TV oNyoplBuwy, agloroydvtog
TOUG TOPOUE TOV ATALTOUVTOL YOl TNV EXTENECT) TOUG, CUUTERLAAUPovVOUEVOLU TOU YpOVOU,
™S UWVAUNG A dA\wv Topwv.  Eve 1 avdduor elvar mapdpoia Ue auTy TWV OELLIXWY
ayopiBuwy, 1 ddixactio eivar mo ToAOTNOXY eTEdr) anauTtel TNV €EETACT TOANATAGY
KNAOWY EXTENEOTC.

‘Evoc Baowdg 016x0¢ 6TV avdAucT TUedANNA0Y oXyoplbuwy elvon vor extiunbel mog
N xeHoN TV Tépwv Tou alyopiBuou, OTwe 1 TodTNTA XL O YWEOS, EmNEedlETon And
OlapopeTnég TWES Tou opldpol Tev enelepyaotwy. Eotw 6Tl exteolue unoroyiopoig
o€ wa unyov Ue p ene€epyactéc xou €0tw 1), o xpdvog mou amouteiton amd TNy Evopdn
€WS TO TENOC TOL UTONOYIoHOL. H avdAuoT tou (pdvou eXTENECTC TETOLWY UTONOYIOUMY
nep\aufdvel tic axoroubec Paoixéc Evvoleg:

e Work: To work evoc olyoptlBuou mou extedeitan and p enelepyactéc elvon 0 ou-
VONXOC 0ptBu6g TV BepeNinddy Tpdéewy Tou exTENOUVTOL and ToUg ETEEERY Ao TES,
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%ot avTIoTOLY (ol HE TN (EOVIXY) TOAUTAOXOTNTO GTNV AVAAUGT) GELPLOXWY ANy 0pi0-
nov. Xoplg vo Anedel unddmn n emPdeuvon g emxooVIAS AOY® GUYYEOVIOUOY,
UTO LOOBUVOUEL UE TOV YEOVO TOU TOLTEITOL YL VOl EXTENECTEL O UTONOYIOUOG OE
évay povo eneepyoaoth, 17.

e Depth or Span: To depth 7| span avagépeton 6TnY To YoxpeLd oxoroubio Aettoue-
VIOV TOU TEETEL VoL EXTENEG TOVV GELELOXE NOY0 e€apTAoEMY (OUYVEL avapEpETOL WS
xplowo povondt). H ehayiotonoinon tou Bdbouc eivon xplown xotd to oyedioaoud
TEAANIAWY aXyoplBuwy, xabwe to Bdbogc xabopilel Tov eNdyioTo Ypdvo Tou amou-
telton yior TNV extéreon. Evarhoxtixd, to Bdbog elvar o xpdvoc To, mou amantelton
and Pior WX UNyovY| U dmelpo aptbud enelepy oo TV,

e Cost: To cuvolixd x6cGT0¢ €VvOC LUTONOYIOUOY diveTtan amd to pl),, To onolo avTi-
TPOCWTEVEL TO GUVOAIXO XPOVIXO BLACTNUO TTIOU APLERWVOLY OXNOL OL ETEEERY O TES,
GUUTERAOLOVOUEVOL TOU XEOVOU UTONOYIGHOU XAl TOU (EOVOU UDPAVELIC.

Theorem 1.1.1. (Work Law): To ovvohxd xdotoc elvar mdvta tovddyotov (oo pe to
Work: pT, > Ti. Avté mpoxbnrer ano to peyovos OtL oL p emebeQyaotés (umoQoly va
exteléoovy To MoV p Aeitovgyies Tavtdypora.

Theorem 1.1.2. (Span Law): Evac memepaouévos aouiuds p emelegyaotdy dev pmogel
va vregPel Evay dmewpo aouiud emebepyaoty, doa T, > Tu.

Bdoel tov mapandvew, unopolue Vo oplooule TG eENC HETPXES ambB0oTC:

Definition 1.1.1 (Speedup S;,). To speedup eivar 0 Xéyoc tou ypdvou mou amouteiton yLo
TN oglplaxy] EXTENEST) TOU aNYOR(BUOL TPOC TOV XEOVO oL AMOLTELTOL YIaL TNV TUEAANTAN
extéheon: Sp = %

Av S, = Q(p) v p enelepyaoctés, Bewpoiue bTL 0 akybpbuog €xel ypauuixt emtdyuvon,
7 onolo elvan BéENTIoTN, dLoTL, Pdoel tou work law, S, < p. H neplntwon onouv S, = p
elvol YVOO T 0¢ TENELX YEOUUXT] ETULTEYLVOT).

Definition 1.1.2 (Efficiency E,). To efficiency opileton wg 1o speedup avd enelepya-
S,

oTh, Onhadh E), = ?”.

Definition 1.1.3 (Parallelism). To parallelism eivor 0 X6yog %, TIOU AVTLTPOCKHTEVEL
TN UEYLIO T BUVITY ETLTEYUVOT UE OToloVONTOTE apllud enelepy oo TV.

. / , . T .
Bdoel tou span law, to speedup neplopileton and to parallelism: av p > ﬁ, ToTE:

T < T <
T, = Te U
Definition 1.1.4 (Slackness). To slackness opileton ¢ p%o.
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Av n odpdvelr elvon pixpdTepn amd €va, 1 TENELD YEOUULXY ETLTAYUVOY glvon adUvoTY,
cLPYPWVA UE To span law.

Y10 mhadoo tou poviéhou PRAM, évag anodotixdg mapdiniog alydelbuog ctoyelet
otV ehayioTonoinoyn téco e epyaciag 600 xou Tou Bdloug yio TNy enitevén BENTIOTNG
anddooNe OTaV EXTENELTOL OE TETEPUCUEVO oplBUd EMEEERYOT TEV.

1.2 Tuyxawomownuevor ANyoepLfuol

O tuyador akydplBuol elvar a\yoptbuol mou xdvouy Tuyaleg ETLNOYES XATA TNV EXTENECT)
TOUC YLt VoL ETULTOXOLY XONY) amdBOCT, XoTd UEGO 6p0 Y| Pe UeYdAn mbavotnta. Amote-
NoUv éva loyupeod epyaneio ot oyedlaor aryoplBuwy, 0dnywvTag cuyvd oe atholoTERES,
T UTEPES 1) AMOBOTIXOTEREC NDGELC OE GUYXPLOT| UE TOUS OVTIOTOLYOUS VIETEPUIVIO TLX00C
alyopiBuouc. Mepixéc @opéc autol o alyopfuol urnopoly va «amotuyaononbBolvy, oe
YXNAOWO0E VIETEPUIVLO TIX00G a\yopiBuoug av xon cuvAbng oL ayopLduoL Tou TEoxiTTOLY
elvan ouyvd mo mepinhoxol. e oploueva HOVTENA UTONOYLIOUOU, UTopel XAVELS axoun xau
vo amodelgel 6Tl oL Tuyatomoinuévol anyoetfuol elvar o amodotixol and Tov xAAUTERO
BUVATO VTIETEPUIVIOTIXO oY OpLbuo.

1.2.1 MovTélo Y noloyiopo

ITpchtar mpémel var oplooupe To wovTéNo umoloylouol mou Ba xenowonowicoupe. To yo-
VTENO UOC EMEXTEIVEL £VOL VIETEQUIVIO TIXO HOVTENO UTONOYLIOUOU OTwg Wi unyov Turing
ue pio emimpoobetn eloodo mou amoteleiton amo ot axoloubio amdiuta Tuyaiov bit (Bi-
xonec pigelc vowopdtwy). Autéd onuaiver 6t i xdbe eloodo, 1 €€odoc eivar pior Tuyaia
ueTaANTA Twv bit g ei1oddou, xou euelc umopolue va wNooupe Yoo TNy mlavoTtnTo
yeyovotwy énwe Pri«o oxybpiBuoc emotpépel cwoté anotéheouon|

Prl«o a\ybpibupoc amotuyydvers].

Xopiloupe yevixd Toug Tuyatomouévous aryopibuouc oe dUo xatrnyopiec: ANyopibuol
Monte Calro xou Las Vegas.

Ou axyopbpolr Monte Carlo teppotilouv ndvta o€ TENEQUOUEVO XEOVO, OANG UTOREL Vo
doouv Ndbog amdvinorn. Autol ou anyoptbuot Slaxplvovtal Tepattépw O eXElVOUS UE
HOVOTINEURO otk oimAeLpo o@dpa.  Ou alydplBuol LOVOTAEUEOU GYPINUATOS XAVOUV
opAApaTa WOvo Tpog uia xatedbuvon. Do mopddetyyo, €4v 1 TEoryHaTIXY| andvTNnoT) €l
vou «vowy, tote Pri«vouy] > € > 0, eved av 1 mporypatin) andvinom elvar «oyLy, TOTE
Pri«oyw] = 1. Me d\\ot Noyia, 1 omdvTnorn «vawy elvon eyyunuéve axplBhc, eve 1
andvtnon «oyw elvon afféBorn. Mropolue va auhoouue TNy eumio Toolvn has oE Wi and-
VINOT| «OY» EXTENDVTAS TOV aNYOplBUO TONNES POREC O GTY) CUVEYELN AMAVTOUE «VOU»
av Bo0uE OTOWBNATOTE AmAVTNOY «Vouy YETE antd t emovorrielc alNlwg amovtdue «oyu».
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H mbovétnra opdlpatoc oe auth) Ty tepintwon etvon to toX0 (1 —¢€)! | onére av BENoupe
VO TNV XAVOUUE UixpdTeeT amd onoladrirote embuunth tur 6 > 0, apxel vo ndpouye Tov
aplBub Tov doxipdy t vo etvar O (log %) (6mou n otabepd § e€aptdton and To €)

Ytoug alyopiBuouc Las Vegas, 1 €€080¢ elvon mdvta owo T, 0ANE 0 XpOVOS EXTENEOTC
unopel va elvon dnelpoc. 26T000, 0 AVOPEVOUEVOS XEOVOS EXTENECTC amanTe(Ton Vo elva
nenepaocuévos. Mropolue mdvta va petotpédouye évay aryodplBuo Las Vegas oe alyoplh-
uo Monte Calro, exteNwvtag Tov yia €vo oTabepd YpovIXd BLIC TNUA XoU ETLO TREPOVTAS
wor avbaipetn amdvtnomn av amotiyel vo tepuatiosl. Autd to TéYVAoUA NELTOURYEL ETELDY]
umopolue va pedéouue TNy mbavdtnTo vo Teé€el o alyoplbuog tépa and 1o éva otabepd
bpto (xenowormoldviac Ty avicdtnta t1ou Markov xou to yeyovoe bt n avapevopevn T
TOU (POVOU EXTENEDT|C EIVOL TEMEQAUOUEVT).

1.3 Xvuvdeoiwpotnta Kopuopwv

To mpoANU TNS GUVBECLUOTNTOSC XOPLUPWY, TOU CUY VA AVIPERETOL Xl G TEOPANU aro-
x0mhg x0pLPGY (vertex cut) elvan éva xhaoxd npdPAnue 61N Bewpla ypopnudtov Tou éxet
peNetndel extevde Tic TeNeutales dexoetiec. Xe éva ypdynua G = (V, E), 10 npdfinua
ATOXOTAG XOPUPKY TEPLAAUPAVEL TNV EVEECT] TOU EXAXLOTOU GUVONOU XOPUPKY TOU OTO(-
0V 1) APAPECT] ATOCUVOEEL TO YRAPNUO OE TEPLOCOTEPES ATO LA CUVEXTIXEC CUVIO TWOES.
Autd 1o chvolo xopup®y ovoudleton oUVOXo amoxomhg 1| dlayweiothc. To mpofinua
elvan Bepeliddouc onpactiac v TNy alomiotio TV BTV, xabng N cuVBECOTNTA TV
XOPLPWY EVOC Ypdpou oyeTileton dueca Ue TNV avBexTixdNTd Tou oE amotuyleg.

1.3.1 Emnwoxénnon

H ouvbeowotnta xopupy anoteXel éva Oepeiddeg Oéua otn Bewplo ypagpnudtwyv. H
CUVOEGILOTNTA XOPUYPWY K EVOS Yedpou G oplletar wg 0 eENdLOTOC dElBUOS XORLPEY
nou npénel va aponpefolv wote va amocuvdebel éva Leuydiol amd TIC EVATOUEVACES XOPU-
péc. 2NV TERINTWOT TV XATELOLVOUEVLY YRAPNUATWY, oUTO oNuaivel OTL BV UTHEYEL
xatevbuvopevn dladpour| petal 6V0 xOUPwY U XA U GTO LUTONOLTO UTOY RAPNUAL.

Ané 10 1969, onpavtixr épeuva €xel emixevipwbel 6Ny avdntuln anodotixwmy ayoplBuwny
[3]-[15] yiot Tov mpoodlopioud e k-ouvdeotubdtnTog (Snhadn, yio vae xaoplotel €d kg >
k) # vy tov axplph utohoyopd e k. T tor un xatevbuvdueve ypagphuata, ot Aho,
Hopcroft xou Ullman diatinwoay to 1974 tnv ewxaocio 6tL undpyet alyoplbuog ypedvou
O(m) Yyt Tov LUTONOYIOUS TN K YL EVay Ypdpo UE N XOpUPES xou M axuéc. otdoo,
Tapd TNV etxacia auth, dev uTdEyEl alybpluog TaylTepoc and Tov O(n?), axdun xo Yo
v nepintwon mou k = 4.
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1.3.2 To Oeswenua tou Menger

To Bewpnua tou Menger mapéyet wa Beperddn oyxéon peTald TnS CUVOECLUOTNTOS KO-
ELPAY xou Tou aplBuol aveldoTnTeV BLaBEOPWY UETHED BUO XOPUPWY. LUYXEXPWEVA,
AVUPEREL OTL O ENAYLOTOG OPLOUOC XOPUPEY TOU TEETEL Vo apatpeBolV ylol VoL AmoGUVOE-
Bolv BUo xopupéc u xan v elvan (oog ue Tov YéyioTo aplBud and aveldpTnTeg Bladpoués
XOPLUPWY UETAED TOUG.

Theorem 1.3.1. (Osdonua tov Menger): Eotw G = (V, E) évac yodpoc xat u,v € V.
O eldyiotoc aouuds xopvpwy mov mpénel va apaigetdoly ya va amoovvdedoly or x0QUPes
w xar v elvar (006 pie Toy (LEPLOTO aguiud amd avedTntes SLadpouds xoQupwy peta&h Tovs.

Auté to Beddpnua etvan Bepeliddec xou anoterel T Bdon v ToAN0UE a\ybplBuous xomnic
XOPUPV.

1.3.3 AMXyopOpog Ford-Fulkerson

O aryopbuog Ford-Fulkerson, opyxd avamtuypévog yio Ty eniluon tou mpofAfuatog
NG UEYLOTNG PO OF BIXTUA, EYEL ONUAVTIXES EQUPUOYES XU OTIC XOTES X0opLPKY. Méow
ToU BEwENUATOC TNG UEYIOTNG POTC XA EAGYLOTNG XOTNS, TO TEOPBANUOL TNG XOTH S XOPUPWY
unopel v yetwbel oe mpoPAnua porg.

Theorem 1.3.2. (Oedonua Méporns Porc - Eddpotne Konnc): Xe éva dixtvo gotg, 1
HEYIOTT) T TNG QONS elvat [om pe TNY ywenTeoTNTA TNG AdYoTNS K0TS IOV Staywile
Ty anyn ané Ty xarafodoa.

O alyopfuoc Ford-Fulkerson pnopel vo npocopuootel yiot To TedPANUa XOTHE X0pUPKDY
YENOWOTOLOVTAS VOV UETACYNUATIONO TOU YRUPHUATOS GTOV oTtolo xdhe xopu@y| vau xo-
plleton o B0 x0pLPES CUVOEDEUEVES UE Uit oxUn. AUTOC O UETACKNUATIONOC EMULTEETEL
VoL VY OUUE TO TIROPBATUO XOTAC XORUPEY OE TEOBANUN XOTAG UXUWY CTO TPOTOTONUEVO
dixTuo xou va eqapuocoupe tov anyoeilbuo Ford-FUlkerson.

1.3.4 Tuyawomowmuévog AXyopiBuog Ttou Karger

To 1993, o David Karger eiojyorye évay tuyolo akyoplfuo yio to tpdBAnua Tng eNdyoTng
%0TNg, 0 omolog Umopel Vo TEOCUEUOGTEL xou Yl TIC XOTES xopuPwY. O alyodplbuog Tou
Karger em\éyel emavelAnuuévor Tuxoleg axpéc oL TIC CUPELXVEIVEL UEYEL VO TOROUEVOUY
000 povo xopupéc. Ol evanopeivaces axpés PETUED TwV 800 XORLUPEY AVTLTEOCHTEVOUV
ULt XOTA.

O o\ybpiuoc éxel xpévo extéreonc O(n?) xon Tapéyel piot \Oom YLol TNV ENIYLG TN XOTH
ue mbavotnTa emtuylog mou umopel vor awénbel Teéyovtoc Tov anyoplfuo TONNES popéq.
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1.3.5 KonY Kopupwv pe Tonixéeg MeB66oug Y nolo-
YLOQRoU

Yy npbdogatn epyaoio twov Nanongkai, Saranurak xou Yingchareonthawornchai [1],
TapouctdlovTon VEoL TUXOTONUEVOL anybeluol yia To TedPANUa TN Uixpric CUVBECLUO-
NToC x0pLRGY. OL o\ydptduol autol Eemepvolv To ToALd Pedyua toxumhoxdTnTac O(n?),
Tou {oyue Yo Tdvw amd 49 xeodvia, yia TNV Tep(tTmon Tou 1 cuvdeoyoTnTa k elvon puxen

(k=0(1)).

O alybpebuog mou mpoteivouy elvan €vag Tuyatonomuévos anyoptduog timou Monte Carlo
ue xpévo extéheonc O(mk?), o omoloc Y wixpée Twée tou k = O(y/n) unopel vo
anogooioet e VPN mbavota (w.h.p) €dv kg > k. Av kg < k, t6TtE 0 a\ybplbuoc
EMOTEEPEL VAL GUVONO XOTHS XORUYPWY PEYEDOLC UixpdTEEOL amd To k.

Mo Baowery cugfoXr| Tne epyaciag authc elvar 1 avdnTudn evog Tomxol anyopibuou yio
TOV UTOXNOYLOUO TNG CUVOECLUOTNTOS X0pUPKY. Xe avtibeon pe Ti¢ TpoTnyoUUEVES TPO-
oeyyloeg mou Paciloviay 6TOV UTONOYIOUS TNG CUVBECUOTNTOC amd Wiot HOVO TNy, oL
OTOlES ElY OV XUTWTEPO OPLO YEOVOU EXTENEOTC TETEAY WVIXAS TAENC, O TOTUXOS oY OELBUOC
aUTOHC AmoeLYEL TNV avdyxn Vo dlaPac el oNOXANEOo To Ypd@pnua. Avtideta, emxevTE®-
veto oTNy €0peaT eVOS dlaywpelo T Yeyéboug to moAU K, ¥ otnv mioTonolnon 6Tl dev
UTIIEYEL TETOLOG BlowElo THS "xovTd” oe évay dedouévo xoufo exxivnong.

To xipto anotéreoua g epyaciog lvon 1o e€Ac:

Theorem 1.3.3. Asgdouévov evds xarevvvduevov podpov G = (V,E) xar k = O(y/n),
edv o G dev elvar k-ovvextindc téte pe vyndn mdavdrnra (w.h.p) o Adydoiduoc 6 Poloxer évay
Sdiaywoiotn S pe péyetos uxpdrego and k. Edv o G elvar k-ovvextixds, tote o Alydoituos
6 emotoépel mdvta L. O alydoiduoc amarel yodvo O(mk?).

1.4 ITopdAAnin Ilpoonelaoinotnio

1.4.1 Emnwoxénnon

To mpéfAnua e mpooneXaooTNTOC HELOVOUEVNS Tnyhc (single-source reachability)
oe éva xatevbuviuevo yedgpnuo G = (V) E) pe n xopugéc o m axués, apopd Tov
UTIOXNOYLOUO TOU GUVOAOU TwV x0pupwy 1" C V nou elvon mpocfdoyueg amd o 0edopévn
xopuphy s € V. To npbPinuo autéd uropel va Nubel oe ypouuxd xpévo O(n + m) pe
olyopiBuouc 6mwe 1 avalhnon xotd mhdtoc (BES) ¥ xotd Pdboc (DFS). IHoapd v
guxoAa TOU TEOPAAUATOS GTU GELPLIXE LOVTENX UTONOYLOUO, 1) BeNTioToNoinoY) Tou o€
TOUEGANTIACL LOVTEND TIOUEAUUEVEL OUTOUTNTLXY.

H epyaoia tov Sidford et al. 2] eiodryer véee texvinée Pertiotonoinone e moedAAANG
O XATOUVEUNUEVNC TTEOOTIENACWOTNTOS UECK TWV AEYOUEVWY hopsets xou shortcuts, yewt-
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VOVTAC ONUOVTIXG T1) DIGUETEO TOU YRAPHUATOS, ETUTEENOVTAS ToUTEROUS UTONOYIOUOUG.
H peiworn tne Swopétpou evog ypagpriuatog eivar xplown yiol TNV THEdANNAY TEOOTENAGCL-
HoTNTAL, XaBMOC 1) SLIPETEOC AVTITPOCKOTEVEL TO PEYIOTO UHXOS LOVOTUTIOU GTO YRAPNUAL.

1.4.2 Anupoveyio Hopsets yia Meiwor tng Aloetpon

H ooy uébodog peiwong tng dioauétpou Baoileton otn dnuovpyia hopsets péow ylog
Tuyatonomnuévng xataoxevric. ‘Eva hopset H elvon éva chvolo axucyv mou, otay mtpo-
otebolv oo YpdYNUa, HEWWVOLY TN BIGUETEO Tou BlatnewvTas T teocBactudétntec. H
oaduxacio xataoxevic hopsets mepuhaufdver Tnv Tuyalo ETAOYH X0PUPHY XaL TNV TEOCHT-
XN XUV LETAEY AUTOY, PE AToTENEOUA TN Uelwon Tne Swpétpou o O(y/n) pe tpoohrixm
O(n) wxudsv.

Theorem 1.4.1. Agdouévov evds ovvdedeuévov yoagnuaros G = (V, E) pe n xogupés xat
m axués, pmogovue va mpoodéoovue O(n) axués dote 1 diduetooc Tov ¥éov yoagphuatos

G’ va glvar O(\/n).

1.4.3 IToedIAnin Ilpoonelaoipwotnta wecw Hopsets

H epyooia and [2] npoteiver évay tapdAAN o o\yoplfuo yia 1o TpdBAnue e npooneNa-
owétntag oc poviého PRAM, pe anotéhecpya TOV UTONOYIOUO TEOCTENACWUOTNTOC UE
O(m) epyaoia xon BdBoc O(n'/?). O alybdebuoc autde Pasileton oty mpochinn O(n)
shortcuts, to ool UELDOVOLY TN BLIPETEO TOU YRAPHUATOSC XOU EMLTRETOVY TOV TURIANTAO
UTIONOYLOUO TROOTENACLUOTNTOG.

Theorem 1.4.2 (Ilpoonehacédétnta oe PRAM). Yndoye évag napdlinros atydoiduos o
omolog, 6edousvov omolovénmoTe xaTeVIVVOUEYOV YOAPOV lE N KOQUPES XAl M, AXLES, exTeAE!
egyaoia O(m) pe pddoc n*/>+°WV) war vrodoyiler éva otvolo and O(n) shortcuts, térow
dote 1 mooIhKRY avTdy TwWY axudy oto yodgnua va usdver Ty Sidustoo oe /¥ e
vyl mdavoTnra.

1.4.4 Ewoaywyn

TN vou xatavoriooupe xaxUtepa T pébodo, opilouue €vvolee OTwC oL mEdyoror xou oL

amdyovor Lo xopLEPNG ot éva xateubuvouevo yedpnua G. To xdbe xopupt v, To GUVOX
Anc Des 1 2 ’ /

R (v) xaw Re™(v) opilovion og oL x0pupéc mou Umopoly Vo @TIGOUY GTNY U X0l OL

%x0pUYES oL umopel var gTdoel 1 v, avtioTtowxa. Ta obvola autd elvon yeriowa yior T

xatooxeur] Twv hopsets xou v egopuoyr Twv shortcuts.
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1.4.5 AXyopBpoc IToapdAAnine Meiwong tng Aloye-
TEOoL

H uéBodog mapdhAning uelwong g dlopétpou Eexvd emAéyovtag TuXaES xopUES S amd
TO YPAPNUA xa TEOCHETOVTOG aXUES WOTE VoL GUVOEOVTAL OL OTOYOVOL XL Ol TEOYOVOL
TOV XOPUPGY QUTWV. 2T CUVEYELD, 1) OLadLXaoTo ETAVANUUBAVETOL O UXPOTERES OUADES
X0PUPKY oL 0pILoVToL ATO TNV TPOCTENACLLOTNTA O TG ETUNEYUEVES XOPUYES, UELDVOVTOC
O TOOLOXE TN DLAUETEO TOU Y EAUPHUATOS.

O a\ybpibuoc Nettoupyel ng e€hc:

1. EmXéyoupe tuyaio éva umoohvoro xopupwy S xau yio xdbe xopupy) v € S, npo-
o0€Touye axpéC TOU CUVBEOUV TNV U UE TOUS ANOYOVOUS XOL TOUG TEOYOVOUS TNG.

2. OplCoupe Tic x0pUYPEC oL elvol OYETIXES UE TNV U, BNAadY) auTéC TTOU UmopOLY Vo
(QTACOUV TNV v 1| OTIC ONolEC unopel var YTdoEL 1 v, xan tpochétoupe shortcuts.

3. XwpiCouue Tic x0pLPES TOU YRUPAUATOS G UTOGUVONY UE PBdon TN OyEoT Toug Ue
T ©x0pLPEC Tou S o e@apudlouue Tov (Blo arydeuo avadpouixd o Ta UTOGOVONX
oA

1.4.6 Beltwwoeig péow Ilepropiopevov Avalntiosonyv

Tot var mapodAnhontonBel amotereopatind 1 uébodoc, avti yia TA\Apec avalnthoes (..,
BFS # DFS) oe 6\o 1o ypdynua, xenothonoodvto mepiogtopsves oe pdlloc avalnrioeis
(depth-restricted searches). Autéc ou avalntrioeic neplopilovton oe andotaon D.

H xevtpu 10éa elvon 6TL mpoodlopilouue ohVONL x0puPKOY ToL améyouv To ToAU D and
xdbe xopur v xou mpochétoupe shortcuts yia va yewdcoupe Ty andoTaon YeTaEl aUTOY
v xopupwy. H dwdixacio auth enovooufdveton apxetéc Qopes, ue To D vo YetdveTon
CLVEYWS, £WG OTOV Ol AMOCTACELS YETAEY TOV XOPUPWY VoL UEWWHODY onuovTixd.

1.4.7 Avdivon IlohunhoxotnTag

H nmolumhoxétnta Tou alyoplBuou mopouével oxeddv yoouulxy|, dnAadn O(m) epyaoia,
eV To BéBoc Tou uooyiowol uewvetar oe O(n!/2toM) . O anybpbuoc tpocbétel O(n)
shortcuts, ta omola pewdVOUY T BLIUETEO TOU YEUPAUATOS XOU ETUTEETOUV ToUTEPOUG
TUEEANTAOUC UTONOYIOHOUE TEOCTENACULOTNTOG.
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1.5 IToedAANAN 2 UVOECLLOTNTA XOPUPLV

1.5.1 Emnwoxoénnon

e autd 10 xEQPAINNO, ToEOVGLALOVUE BUO aNyoplBUouS yiar TO TEOPANUA TNG TUESANTATC
Topng xopueny cuvdudlovtac Wéeg and BLo mpooeyyioelc Tou avaalBnNXaY GTo TEON-
yoUUEVOL XEPINL: TOV aNyOplBuo Touic xopupmy twv Nanongkai et al. [1] xou tov
TOEEAANNO oNybpfuo npootelaodtntac twv Sidford et al. [2]. O évac olybpBuoc
e€etdler ) yevu| nepintwon tou k = O(y/n eve o deltepog agopd Ty nep(TTOoT TOU
T0 k elvou otofepd, dnradn O(1).

To anoteNéopata pog cuvodilovton ota axdrovbo BewpritorTas

Theorem 1.5.1 (Iopdh\nin Touh Kopugpdv). Yadoye évac napdiinios tvyaioc (Monte
Carlo) alydoiuos mov, Sedouévov evds xarevivvduevov yoapiuaros G = (V. E), k =
O(v/n), xa o € [\/n,n], pe ueydln mdawérnra (w.h.p), Poloxer évav Siaywoiotnh S pe
puéyetos puxpotego ano k av G Sev elvar k-ovvdedeuévos. Av G eivar k-ovvdedeusvos, tote
o alydouduos mdvra emotoéper L. O atyopitos éyer molvmloxdtnra gyov O(mk? + %2)
xar pddoc max{n/>+°M) ka},

Theorem 1.5.2 (ITapd\Anin Tour Kopugdv e otabepd k). Yrdoyer évac napdiinloc
tvyaloc (Monte Carlo) alydoiduos mov, dedousvov evés xavevvvduevov yoagpiuaros G =
(V,E), k= 0(1), xat a € [\/n,n|, pe peydtn mdavdérnra (w.h.p), Poloxe évay Suaywoiotn
S pe péyedos uxpdrego ané k av G Sev eivar k-ovvdedeuévos. Av G elvar k-ovvdedepévoc,
T0te 0 alyopuiuog mdvra emotoéper L. O atyopibuoc €yer molvmAoxdtnra éoyov ON(%)

xar fddoc O(«).

1.5.2 O AXyopiBpog

Trobétovue 6TL 0 ypdypog G Bev elvon k-cUVEXTIXOS, ONAABY UTAEYEL £Vag Loy wELoUOS
ToUL Ypdpou ot Tpla olvola (L, S, R) pe |S| < k. O alybpbuoc e€etdlel dho neptntdoeLs,
avahoya pe to péyebog Twv meploywv L xon R.

o Iocogpponnuevn Ilepintwon: Otav ol neployéc L xou R €youv napduolo uéye-
0og, SelyUaTONNTTOOUE APXETES OXUES WO TE pe VynA) midardTnra Vo CUUTEQLAIY-
Bévovton xopugég amd T Vo meployés. Extelolye uia tpononoimuévn éxdoor tou
aryopifuou Ford-Fulkerson yio var aviyvelooupe tn wxer| Tour| xopugpoyv S.

e Mn Iocogponnueévn Ilepintwon: Otav 10 L elvon apxetd pxpodtepo, xenol-
pomoLolUe AL delyuotonlio yia va Bpolue xopugy| o TN uixeY| TepLoYY| Xou ENELTOL
EXTENOUUE TOTUXY| EEEPEUVNOT] YLOL TOV EVIOTUOUO TNG UXpNS TOUNC.
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1.5.3 Teononowmueévog AXyopiBuog Ford-Fulkerson

XENOWOTOWVUE TNV TOEIANTAY TEOGEYYLON TOu oANYORBUOL TPOCTENACUOTNTAUS TWV
Sidford et al. v vo pewcoupe o Bébog tng exteéleong tou Ford-Fulkerson. Auté pog
emtpénel vo utohoyilouue To povondtt enavinone ue épyo O(m) xou Bddog nl/2+el),

1.5.4 Teononowmueévog Tonixdg ANyopiBunog Tourc Ko-
PLPWYV
It tepintwon 6mou to L elvar apxetd uixpdtepo, xdvouue xdnoleg npocapuoyés. Xen-

OLOTOLOVUE T Uelwon 0T cUVOESILOTNTA XUV Xxou exteNolpe DES ¥ tov mopdAAnio
oa\yoplbuo TpoomeraooTNTAC avahoya ue to péyebog tne meploxnc L.

1.5.5 Avdivon

H avdhuorn tou alyopifuou pac xwplletar ot 800 TEQITTOOELS:

e Icopponnuévy Mepintoon: O a\ydpifuoc exteleiton ue épyo O(mk?) xou

Béboc n1/2+0(1) )

e Mn Icopponnuévn Ilepintwon: Ia ty tpdtn unonepintoon (dtav vol* (L)
elvon Uixp6tepo and Ty TopdueTeo o), xenowtonowolue DFS. Ytn deltepn nepinto-
o1, QopUOLoLUE TNV TAPAANNAT] TEOCTENACLUOTN T, ETULTUYYAVOVTOS oo O (%)
xaou BéPoc nt/2tod),

Yuvolwxd, to épyo xat 1o Bdfoc tou ayopiBuou xabopilovtar and Tic napauéTeous k xau
o, e€ac@anilovTag évay AmOTENEOUATIXG ONYORLOUO YLol TNV TUEAANTAY TOUY| XOPUPMY.

1.6 ITopoddoyf Acsvypatoindioc Kopupwv

Ye authv Ty evotnTa, eEeTdOVUE ULl TUEUANYY) TOU TOEEAANAOU aXyoplBuou xenoyto-
TOLWVTAC SELyUaTONThloL X0pUPEDY.

1.6.1 AvdAuvon

H avéiuon tou alyopiBuou pog xwplleton AL o€ BUO TEPITTOOELS:
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e Icopponnuevn Ilepintoon: O alydplbuoc yenowonotel tov akydpibuo ma-
ESMNIANC TpooTENacIubTNTAC 1ol var Bet BtowptoTéc pe épyo W = O(mk?) o
Béfoc D = nlt/2to(),

e Mn Icopponnuévn Ilepintwon: ‘Otav ol 500 cUVIGTHOOES elval Un LOOEEOTT-
HéVES, BlowellOVUE TIC MEPLTTWOELS AVANOYO UE TOV OYXO TG cuvioTwoas L xou
t0 tradeoff parameter av. Xtny mpddytn mepintwon, yenowonotolue derypatornla
XOPLUPWY, EVG OTT BEVUTERY TERIMTWOY YENOWOTOLOUUE TOV TPOTOTOLNUEVO ONYO-
eluo TOTUXNC XOTAC XOPLUYPWY TIOU YETOWOTOLEL GV UTOEOUTIVOL TOV oY OetThuo
TUEIANTANC TEOOTEENACILOTNTOC.

O cuvoAixdg uTONOYLIOUOS ToL €pyou xou Tou BdBoug Yo T fruata Tou akyoplBuou uog
elvou:

W=0 (mk2 + nak® + %)

D = max{n'/?*°W ak}

6mov k = O(y/n) xou a € [1,n].

1.7 'Ozav 7o k eivaw octabepd

Otav k£ = O(1), n avdXuon épyou xou PdBouc yio T 800 mapadhoryée Sevyuoatorndlag
€xel og e&hc:

1.7.1 LocalVC ue Acvypatorndio Axpwv
T Ty mepintoon devypatornbiog oxpdy, 1o épvo evor Wegge = O (%2) xau To Bdbog

evot Degge = @ OTov emNéyouUe o 670 ddotnua [/, n]. Auth 1 emhoyn pewdvel to
€pyo xwelc va augdver To Bdboc.

1.7.2 LocalVC ue Acsvypatoindio Kopugpwv

ot Bevypoatodndioa xopuey, 1o €pyo etvon Wyerter = 0) (%) xalL To Pdboc eivou
Dyertes = a 6tav emnéyoupe a € [/n,n|. Ko €dd, auth n emhoyh pewdverl 1o épyo
ywele va av&dvel To Baboc.
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Yuunepaivouue 6Tt 1 u€Bodog derypatorndiog xopupdy Bivel XaNOTEPA ATOTENECUOTA OE
aUTH TNV TEplmTWOT).
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Chapter 2

Introduction

The aim of this chapter is to motivate the next by providing an overview of the areas
that have inspired the topic of this thesis. Specifically, for the most part, our work
focuses on Graph Theory, the Vertex Cut problem and Parallel Computing within the
PRAM Model. We provide a short introoduction for each topic and refer to relevant
previous work.

2.1 Motivation

Graph theory is a fundamental area of discrete mathematics that deals with the study
of graphs, which are mathematical structures used to model pairwise relations between
objects. A graph is composed of vertices (or nodes) connected by edges (or arcs), which
may represent various types of relationships or interactions in real-world scenarios, such
as social networks, computer networks, or molecular structures. In computational
contexts, graph theory plays a crucial role in optimizing problems like shortest path
determination, network flow, and various partitioning techniques.

One of the fundamental concerns in graph theory is the analysis of connectivity—how
vertices are linked together and how their relationships impact the overall structure.
Vertex cuts, also known as node separators, are critical in understanding the vulnera-
bility and robustness of networks. A vertex cut is a subset of vertices whose removal
causes the graph to become disconnected, dividing it into two or more independent
subgraphs. Identifying small vertex cuts is particularly significant in optimizing net-
work design, improving fault tolerance, and analyzing communication networks, where
it is crucial to minimize the impact of node failures.

In computational graph theory, efficiently solving problems related to vertex cuts is
challenging, particularly when dealing with large graphs. The Parallel Random Access
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Machine (PRAM) model, which enables multiple processors to work simultaneously,
provides a framework for tackling such problems in parallel. The PRAM model allows
for the development of parallel algorithms that can significantly reduce computational
time by distributing tasks across processors. This thesis focuses on the Small Vertex
Cut problem within the PRAM model, aiming to explore algorithms that identify
minimal sets of vertices whose removal disconnects specific parts of a graph. The
research examines how parallel computing can be leveraged to solve this problem more
efficiently compared to traditional sequential methods.

2.2 Problem Statement

This thesis focuses on the small vertex cut problem within the PRAM model. The
primary goal is to develop efficient parallel algorithms that can compute small vertex
cuts in large graphs, with a particular emphasis on minimizing the work and depth
of these algorithms. The small vertex cut problem is formally defined as finding a
minimal set of vertices whose removal results in the disconnection of the graph into
multiple components.

2.3 Contributions

In this thesis, we begin by presenting the necessary preliminaries that form the founda-
tion of our work. This includes a detailed examination of the PRAM model, which is
crucial for understanding parallel algorithms and their efficiency in terms of work and
depth. We also discuss randomized algorithms, which play a key role in our approach.
Additionally, we cover existing algorithms for the vertex cut problem, providing the
context for the specific challenge addressed in this work. The reachability problem is
another important area we examine, focusing on parallel algorithms designed to solve
it and how these approaches relate to the vertex cut problem.

The primary contribution of this thesis is the development of a novel parallel algorithm
for computing small vertex cuts in the PRAM model. This algorithm is designed
with an emphasis on optimizing both work and depth, which are critical measures of
efficiency in parallel computing. We also present a variant of this algorithm for when
the size of the separator is constant.

2.4 Organization of the Thesis

The remainder of this thesis is organized as follows:
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e Chapter 3 explores the PRAM model, discussing its relevance and importance
in parallel algorithm design.

e Chapter 4 reviews randomized algorithms, explaining their role and how they
are applied in our approach.

e Chapter 5 focuses on vertex connectivity, covering existing algorithms and
their relationship to the vertex cut problem, with special focus given to the local
vertex cut algorithm by Nanongkai et al. [1].

e Chapter 6 addresses parallel reachability, reviewing algorithms in this domain
and their connection to our work on vertex cuts, with special focus given to the
parallel reachability algorithm of Sidford et al. [2].

e Chapter 7 presents the core contribution of this thesis, the novel parallel al-
gorithm for computing small vertex cuts in the PRAM model. This chapter
includes the algorithm’s design, its theoretical analysis, and a comprehensive
evaluation of its work and depth complexity. It also includes the variant for
constant separator size.

e Chapter 8 includes a conclusion of the thesis and presents directions for future
work in this area.
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Chapter 3

The PRAM Model

3.1 Introduction

The Parallel Random Access Machine (PRAM) model is one of the most extensively
studied frameworks for parallel computing. It serves as the parallel-computing coun-
terpart to the traditional random-access machine (RAM), designed to simulate the
behavior of multiple processors that can access a shared memory space simultaneously.
In the PRAM model, the processors operate synchronously, meaning they perform
operations in lockstep, and communication between them is achieved through shared
memory. This makes PRAM an ideal model for analyzing parallelization strategies
for various computational tasks, especially for graph-based algorithms where efficient
parallelism can significantly reduce time complexity.

The PRAM model is categorized into four sub-models based on how memory access
conflicts are handled:

e Exclusive read exclusive write (EREW): In this model, only one processor
is allowed to read from or write to a memory location at a time, making it the
most restrictive PRAM model. The EREW model is challenging to implement
but ensures no memory access conflicts.

e Concurrent read exclusive write (CREW): Multiple processors are allowed
to read from the same memory location concurrently, but only one processor can
write to it at any given time. This model allows parallel reading, which is more
flexible than EREW but still restricts write operations.

e Exclusive read concurrent write (ERCW): Although this model allows
multiple processors to write to the same memory location, it is rarely consid-
ered as it does not add significant computational power or efficiency in most
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42 CHAPTER 3. THE PRAM MODEL

applications, since it doesn’t allow concurrent read.

e Concurrent read concurrent write (CRCW): This is the most general
model, where multiple processors can read from and write to the same memory
location simultaneously. Different variations of the CRCW model define how
write conflicts are handled (e.g., the result of a write conflict could be determined
by the minimum or maximum value being written, or it could allow random
overwrites). A CRCW PRAM is sometimes referred to as a Concurrent Random
Access Machine due to its ability to handle simultaneous operations in both
reading and writing.

The model used in this thesis, and in general the most popular PRAM moded is
CREW.

3.2 Work/Depth Model of Complexity

In computer science, analyzing parallel algorithms involves determining the compu-
tational complexity of algorithms that run in parallel, including the time, memory,
or other resources required for execution. While similar to the analysis of sequential
algorithms, the process is more complex because it requires consideration of multiple
threads working together. A key objective in parallel algorithm analysis is to assess how
the algorithm’s resource utilization (such as speed and space) is affected by varying
the number of processors.

Consider computations that are executed on a machine with p processors. Let T,
represent the time taken from the start to the end of the computation. The analysis
of the running time of such computations involves the following key concepts:

e Work: The work of a computation, executed by p processors, is the total number
of elementary operations performed by the processors. Disregarding communi-
cation overhead from processor synchronization, this is equivalent to the time
needed for the computation to run on a single processor, denoted by T7.

e Depth or Span: The depth (or span) refers to the longest sequence of op-
erations that must be executed sequentially due to dependencies (often called
the critical path). Minimizing the depth is crucial when designing parallel al-
gorithms, as the depth determines the minimum time required for execution.
Alternatively, depth is the time Ty, taken by an idealized machine with an infi-
nite number of processors.

e Cost: The total cost of a computation is given by pT),, representing the total
amount of time spent by all processors, including both computation and idle
time.
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Several important results can be derived from these definitions:

Theorem 3.2.1. (Work Law): The total cost is always at least the work: pT, > T.
This stems from the fact that p processors can perform at most p operations in parallel.

Theorem 3.2.2. (Span Law): A finite number p of processors cannot outperform an
infinite number, so T, > Ty.

Based on these definitions and laws, the following performance measures can be defined:

Definition 3.2.1 (Speedup S)). Speedup is the ratio of the time taken for sequential

execution to the time taken in parallel execution: S, = %

If S, = Q(p) for p processors, this is considered linear speedup, which is optimal
because, based on the work law, S, < p. In some cases, super-linear speedup can occur
due to factors like memory hierarchy effects. The case S, = p is known as perfect
linear speedup, and algorithms with this property are considered scalable.

Definition 3.2.2 (Efficiency E,). Efficiency is defined as the speedup per processor,

given by E, = %.

Definition 3.2.3 (Parallelism). Parallelism is the ratio ’1%,’ representing the maximum
possible speedup on any number of processors.

Based on the span law, the speedup is limited by parallelism: if p > 7%, then:

L T _
T, " Te U

Definition 3.2.4 (Slackness). The slackness is defined as p%o.

If slackness is less than one, perfect linear speedup is impossible, according to the span
law.

In the context of PRAM, an efficient parallel algorithm aims to minimize both work and
depth to achieve optimal performance when running on a finite number of processors.

3.3 Examples

3.3.1 Minimum Value in a Tree
Consider finding the minimum value in a tree structure. The PRAM model provides

an efficient framework for parallelizing this task, allowing multiple processors to ex-
plore the tree concurrently and reducing the overall computational time compared to
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a sequential approach. Below, we describe how a parallel algorithm can be applied to
find the minimum value in a tree, using the PRAM model and its work/depth analysis
to evaluate its efficiency.

Consider a tree where each node contains a value, and the goal is to find the minimum
value across all the nodes. The following algorithm can be applied:

Algorithm 1: Parallel Minimum Value in a Tree

Input: A binary tree T' with root r
Output: The minimum value in the tree
Function findMin(vode current):
if current is a leaf then
‘ return current.data;
end
leftMin < findMin (current.left);
right Min < findMin (current.right);
return min(current.data, le ft Min, right Min);

© 0w N o otk W=

In this algorithm, the function checks whether the current node is a leaf. If it is, the
algorithm simply returns the value of that leaf. Otherwise, the algorithm computes
the minimum value by recursively calling findMin on both the left and right subtrees.
These two recursive calls can be executed in parallel, making this algorithm highly
suitable for the PRAM model.
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Now consider the following two types of trees:

@

NN/

Q
C
O

Degenerate Tree Perfect Binary Tree

Figure 3.1: PRAM example

Case 1: Degenerate Tree

A degenerate tree is essentially a sequence of nodes where each node has only one child,
making it similar to a linked list. In terms of computational work, this structure leads
to the recurrence:

W(n)=W(n—1)+0(1), W) =0().

Each step adds constant work, so expanding the recurrence shows that the total work
across all n nodes is linear, W(n) = O(n).

In terms of depth, we assume all calls are in parallel and look for the longest dependency
chain. This gives us the recurence:

D(n)=D(m—1)+1, D(1)=0.

This solves to: D(n) = n, which means that the depth grows linearly with the number
of nodes, making the degenerate tree highly inefficient for parallel processing, as there
is no opportunity to divide the work.
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Case 2: Perfect Binary Tree

In contrast, a perfect binary tree is highly balanced. Each internal node has exactly
two children, and all leaves are at the same level. The recurrence relation for the work
is:

W(n) = 2W (g) +O(1), W(1)=0().

At each level, the work is split evenly across the two subtrees, and the constant overhead
at each level leads to a total work of W (n) = O(n), which, like the degenerate tree, is
linear.

The major advantage of a perfect binary tree comes in terms of depth. To calculate
the depth of the computation, we take the max o the recursive calls. The recurrence
relation for depth is:

D(n) = max (D (n/2),D (n/2))+1, D(1)=1,

which solves to D(n) = O(logn). This logarithmic depth is what makes the perfect
binary tree much more efficient for parallel processing, as it minimizes the critical path
and allows for greater concurrency.

Comparison

The degenerate tree and the perfect binary tree illustrate two extremes in tree structure.
Both trees perform the same amount of total work, with W(n) = O(n). However, the
depth differs significantly: the degenerate tree has a depth of D(n) = n, meaning that
its work cannot be parallelized efficiently, while the perfect binary tree has a depth of
D(n) = O(logn), which allows the work to be divided across multiple processors with
minimal sequential steps. Therefore, while both structures compute the same amount
of total work, the perfect binary tree is far more efficient in scenarios that benefit from
parallelism.

3.3.2 Parallel Breadth-First Search (BFS)

Problem: Given a graph G = (V, E) and a source vertex s, perform a breadth-first
traversal to determine the shortest path distances from s to all other vertices.

The PRAM BFS algorithm works by maintaining the frontier of vertices at each level
and updating their neighbors in parallel.
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Algorithm 2: Parallel BFS

1 Input: A graph G = (V, E), a source vertex s
2 Output: Levels of each vertex from the source vertex s
3 Function ParallelBFS(Graph G, Vertex s):

4 Initialize an array level with all values set to —1, and set level[s] = 0;
5 Initialize a queue Q containing only the source vertex s;
6 while @) is not empty do

7 foreach vertex v € @ in parallel do

8 foreach neighbor u of v do

9 if level[u] = —1 then

10 level[u] < level[v] + 1;

11 Q< QU {u};

12 end

13 end
14 end
15 Replace Q with the next-level queue;
16 end

3.3.2.1 Complexity Analysis
In this section, we analyze the PRAM BFS algorithm using key performance metrics
such as work, depth, cost, speedup, efficiency, parallelism, and slackness.

Work: The work of the PRAM BFS algorithm is the total number of elementary
operations performed by all processors. In this case, the work is equivalent to the time
required to execute the algorithm sequentially. The work complexity for BF'S is:

T =O(V]+El)

where |V| is the number of vertices, and |E| is the number of edges.

Depth or Span: The depth of the PRAM BFS algorithm is the length of the longest
chain of dependent operations. In this case, the depth corresponds to the diameter of
the graph, which we denote by D. The depth complexity is:

Ty = O(D)

where D is the diameter of the graph.

Cost: The cost of the PRAM BFS algorithm is the total work performed by all
processors, taking into account both computation and idle time. If the algorithm runs
on p processors and takes T}, time, the cost is:
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Cost = pT),

To achieve cost efficiency, we want the total cost to be close to the sequential work 77,
which implies:

pTp <O(|V]+ |E])

For the PRAM BFS algorithm, assuming that the parallel time is dominated by the
depth T}, = O(D), the speedup is:

CoVI+IE) . (IV]+IE]
% =""0) O( D )

This represents the speedup achieved with p processors. To achieve linear speedup,
S, = Op), we require p < (|V| + | E[)/D.

Efficiency is defined as the speedup per processor:

For the PRAM BFS algorithm, this becomes:

5= U7 o (mirimy

P pD

This shows that efficiency decreases as the number of processors p increases beyond
the parallelism limit (|V'| + |E|)/D.

Parallelism is the ratio of the total work to the depth:

T _O(VI+IE) _ <\vw T rE\).

Parallelism =
arallelism T o(D) o)

This represents the maximum possible speedup with any number of processors.

Based on the span law, the speedup is limited by parallelism. If the number of proces-
sors p exceeds the parallelism limit (|V|+ |E]|)/D, then:

VI+E|
Spg()(D <p

Slackness is defined as:

T, O(V[+|E]) (
Slackness = = =0
J p-O(D)

VI+|E|
pD '
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For efficient parallelism, slackness should be greater than or equal to 1. If slackness is
less than 1, i.e., if p > (|V| 4+ |E|)/D, perfect linear speedup is impossible. Therefore,
slackness serves as a guideline for choosing an appropriate number of processors for
the algorithm.

Conclusion: For graphs with small diameters D, the algorithm scales well. However,
as the diameter increases, the depth O(D) becomes the limiting factor, reducing the
benefits of parallelism and lowering efficiency.
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Chapter 4

Randomized Algorithms

4.1 Introduction

Randomized algorithms are algorithms that make random choices during their execu-
tion to achieve good performance on average or with high probability. They are a
powerful tool in algorithm design, often leading to simpler, faster, or more efficient so-
lutions compared to their deterministic counterparts. Sometimes these algorithms can
be “derandomized,” although the resulting deterministic algorithms are often rather ob-
scure. In certain restricted models of computation, one can even prove that randomized
algorithms are more efficient than the best possible deterministic algorithm.

4.2 Model of Computation

We first need to formalize the model of computation we will use. Our machine extends a
standard model (e.g., a Turing Machine or random-access machine), with an additional
input consisting of a stream of perfectly random bits (fair coin flips). This means that
for a fixed input, the output is a random variable of the input bit stream, and we
can talk about the probability of events such as Pr[algorithm returns correct result] or
Pr[algorithm fails].

In the above model, we can view a computation of a randomized algorithm as a path
in a binary tree. At each step of the algorithm, we branch right or left with probability
% based on the random bit we receive. For decision problems, we can label each
leaf of this tree with a “yes” or a “no” output. Obviously, we derive no benefit from
randomization if all outputs agree.

We generally divide randomized algorithms into two classes: Monte Carlo algorithms
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and Las Vegas algorithms.

4.3 Monte Carlo Algorithms

Monte Carlo algorithms always halt in finite time but may output the wrong answer,
i.e., Prferror| is larger than 0. These algorithms are further divided into those with
one-sided and two-sided error.

One-sided error algorithms only make errors in one direction. For example, if the true
answer is “yes,” then Pr[yes| > ¢ > 0, while if the true answer is “no,” then Pr[no] = 1.
In other words, a "yes” answer is guaranteed to be accurate, while a "no” answer is
uncertain. We can increase our confidence in a "no” answer by running the algorithm
many times (using independent random bits each time); we then output "yes” if we see
any “yes” answer after ¢ repetitions and output "no” otherwise. The probability of error
in this scheme is at most (1 — €)?, so if we want to make this smaller than any desired
§ > 0, it suffices to take the number of trials ¢ to be O (log }) (where the constant in
the O depends on €).

4.3.1 Two-Sided Error Algorithms

Two-sided error algorithms make errors in both directions; thus, e.g., if the true answer
is “yes,” then Prlyes] > 1 +¢, and if the true answer is “no,” then Pr[no] > % +¢. In this
case, we can increase our confidence by running the algorithm many times and then
taking the majority vote. The following standard calculation shows that the number
of trials ¢ required to ensure an error of at most 4 is again O (log %)

4.3.2 Proof

The probability that the majority vote algorithm yields an error is equal to the prob-
ability that we obtain at most ¢/2 correct outputs in ¢ trials, which is bounded above
by
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where C' is a constant depending on €, makes this at most 4.

4.4 Las Vegas Algorithms

In a Las Vegas algorithm, the output is always correct, but the running time may be
unbounded. However, the ezrpected running time is required to be bounded. Equiva-
lently, we require the running time to be bounded but allow the algorithm to output
either a correct answer or a special symbol L so that the probability of outputting L
is at most 1/2.

Note that we can always turn a Las Vegas algorithm into a Monte Carlo algorithm by
running it for a fixed amount of time and outputting an arbitrary answer if it fails to
halt. This works because we can bound the probability that the algorithm will run past
a fixed limit (using Markov’s inequality and the fact that the expectation is bounded).
The reverse is apparently not true because of the strict “correct output” requirement of
Las Vegas algorithms. Thus, there is no general scheme for converting a Monte Carlo
algorithm into a Las Vegas one.

4.5 Complexity Classes

Randomized algorithms introduce new complexity classes that extend classical deter-
ministic complexity theory by allowing bounded randomness. These classes help char-
acterize the power of randomized algorithms compared to deterministic ones. The

53



54 CHAPTER 4. RANDOMIZED ALGORITHMS

most important complexity classes associated with randomized algorithms are RP
(Randomized Polynomial time), ZPP (Zero-error Probabilistic Polynomial time), and
BPP (Bounded-error Probabilistic Polynomial time).

4.5.1 RP (Randomized Polynomial time with One-Sided
Error)

The class RP contains decision problems where a randomized algorithm runs in polyno-
mial time and never makes a false positive error. If the answer is “no,” the algorithm is
guaranteed to return “no,” but if the answer is “yes,” the algorithm will return “yes” with
probability at least % Formally, a language L belongs to RP if there is a probabilistic
polynomial-time algorithm A such that:

o If v € L, then Pr[A(z) = 1]

v
ot

o If v ¢ L, then Pr[A(z) = 0]

I
=

It is easy to amplify the success probability of an RP algorithm by running it multiple
times and using majority voting, similarly to BPP algorithms.

The relationship P € RP € BPP C NP is clear, though RP is weaker than BPP
because it only allows one-sided error.

4.5.2 BPP (Bounded-error Probabilistic Polynomial time)

The class of decision problems solvable by a polynomial-time Monte Carlo algorithm
with two-sided error is known as BPP (Bounded-error Probabilistic Polynomial
time). Specifically, for a problem in BPP, there exists an algorithm that, for all inputs,
returns the correct answer with a probability of at least 2/3, and the probability of an
incorrect answer is at most 1/3.

Formally, a language L belongs to BPP if there exists a probabilistic polynomial-time
algorithm A such that for all x:

o If x € L, then Pr[A(z) = 1]

IV
Wiy Wi

o If x ¢ L, then Pr[A(z) =0] >

This class is often viewed as a practical class of problems because most real-world
applications tolerate a small error, especially when the error probability can be made
arbitrarily small.
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4.5.3 ZPP (Zero-error Probabilistic Polynomial time)

The class of decision problems solvable by a polynomial-time Las Vegas algorithm is
known as ZPP (Zero-error Probabilistic Polynomial time). A problem is in
ZPP if it can be solved without any errors, but the algorithm may take a variable
amount of time to complete, with the expected time being polynomial.

Formally, a language L belongs to ZPP if there is a probabilistic polynomial-time
algorithm A such that for all z:

e The expected runtime of A(x) is polynomial.

e A(x) returns the correct answer (no errors are allowed).

It is known that ZPP = RP NcoRP, meaning ZPP consists of problems for which both
the problem and its complement are in RP.

4.5.4 Containments and Relationships

The class BPP sits between the deterministic class P (problems solvable in polynomial
time without randomness) and the class NP (nondeterministic polynomial time), but
its exact relationship with these classes is still not fully resolved. It is known that:

e P C RP C BPP: Any problem that can be solved deterministically in poly-
nomial time can trivially be solved using randomness by simply not utilizing
the random bits. Thus, P C RP C BPP is clear. Randomized algorithms in
RP can only make errors on "yes” instances, but the use of randomness in BPP
algorithms introduces two-sided error, allowing errors on both "yes” and "no”
instances. Hence, RP C BPP.

e RP C NP: Since RP algorithms accept "yes” instances with probability at least
1/2, they can be thought of as nondeterministic algorithms. In the case of RP, if
a problem has a "yes” solution, the randomized algorithm has a chance of finding
it, thus mimicking the guessing process of nondeterminism. Therefore, RP C NP
is obvious.

However, the relationship between BPP and NP is more complex:

e BPP C NP? It is not known whether BPP is contained within NP, because BPP
allows two-sided error, and it’s unclear whether there is a nondeterministic algo-
rithm that can efficiently handle both types of errors. While RP algorithms can
simulate a nondeterministic "guess,” BPP algorithms involve more uncertainty
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BPP NP

zpP

Figure 4.1: Relations of complexity classes in case BPP and NP are discrete

due to their allowance of errors in both directions. This two-sided error com-
plicates the simulation of BPP within NP. Hence, the inclusion of BPP C NP
remains an open question in complexity theory.

e NP C BPP? It is very unlikely that NP C BPP. If NP C BPP, it would im-
ply that every problem in NP, such as the satisfiability problem (SAT), could
be solved probabilistically in polynomial time with bounded error. This would
further imply that all NP problems have polynomial-size circuits, a result that
would cause the polynomial hierarchy to collapse to its second level, contradict-
ing widely-held beliefs in complexity theory. Thus, most researchers believe that
NP ¢ BPP.

The general consensus in complexity theory is that BPP is likely distinct from NP, and
resolving this question would have profound implications on our understanding of the
relationships between probabilistic and nondeterministic computations.
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4.5.5 Derandomization and the Question of P = BPP

A central question in complexity theory is whether randomness truly gives more power
to polynomial-time algorithms. Specifically, it is an open question whether P = BPP,
meaning that every problem solvable by a randomized polynomial-time algorithm with
bounded error can also be solved deterministically in polynomial time. If P = BPP, it
would imply that randomness does not provide additional power beyond what deter-
ministic algorithms can achieve.

There has been significant progress in the study of derandomization, where researchers
attempt to simulate randomized algorithms using deterministic methods. Techniques
like pseudorandom generators and hardness vs. randomness results suggest that it
might be possible to derandomize BPP algorithms under certain assumptions. For
example, if there exist strong enough pseudorandom number generators, then P = BPP.
However, proving this equivalence in general remains an open problem.

In the context of parallel computation, particularly the PRAM model, randomness can
often lead to more efficient algorithms. Many problems that are difficult to parallelize
deterministically can be solved efficiently using randomized techniques. For example,
load balancing, random sampling, and graph problems such as finding small vertex
cuts can all benefit from randomized approaches.
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Chapter 5

Vertex Connectivity

5.1 Introduction

The vertex connectivity problem, often referred to as vertex cut, is a classical problem
in graph theory that has been studied extensively over the past several decades. In a
graph G = (V, E), the vertex cut problem involves finding the minimum set of vertices
whose removal disconnects the graph. This set of vertices is called a vertexr cut or
separator. The problem is fundamental in network reliability, as the vertex connectivity
of a graph is directly related to its robustness to failures. In this chapter, we provide a
historical analysis of the vertex cut problem, focusing on key developments, algorithms,
and advancements.

5.2 Overview

Vertex connectivity is a fundamental topic in graph theory. The vertex connectivity
kg of a graph G is defined as the minimum number of vertices that need to be removed
to disconnect some pair of remaining nodes. In the case of directed graphs, this means
that there is no directed path between a node u and a node v in the remaining subgraph.

Since 1969, significant research has focused on developing efficient algorithms [3]-[15]
to decide k-connectivity (i.e., determining if kg > k) or to compute the exact value
of kg. Table 1 provides further details on these results. For undirected graphs, Aho,
Hopcroft, and Ullman conjectured in 1974 that there exists an O(m)-time algorithm to
compute kg for a graph with n nodes and m edges. However, despite this conjecture,
no algorithm faster than O(n?) exists, even for the case where k = 4.

For undirected graphs, the earliest known O(n?) algorithm for the case m = O(n) and
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k = O(1) dates back over five decades to the work of Kleitman [3|, who introduced
an algorithm for deciding k-connectivity with a runtime of O(kn - VCg(n, m)), where
VCk(n,m) represents the time required to decide whether the smallest s-t vertex-
cut has size at least x for fixed s and ¢. While not stated explicitly, it was known
that VCi(n,m) = O(mk) using the Ford-Fulkerson algorithm [16], leading to a time
complexity of O(k?nm), which simplifies to O(n?) when m = O(n) and k = O(1),
based on the 1992 results of Nagamochi and Ibaraki [11|. Subsequent work by Tarjan
[17] and Hopcroft and Tarjan [18] provided O(m)-time algorithms for the cases where
k =2 and k = 3, respectively.

Over the years, various works have improved upon Kleitman’s bound for larger values
of k and m, but none have managed to surpass the O(n?) barrier. Kanevsky and
Ramachandran [19] were the first to achieve an O(n?) time bound for k = 4, while
Nagamochi and Ibaraki [11] achieved the same for any constant k. For general k
and m, the fastest known running times are O(nw + nk*) from Linial, Lovasz, and
Wigderson [9], and O(kn?) by Henzinger, Rao, and Gabow [14], where O suppresses
polylogarithmic factors and w is the exponent for matrix multiplication, currently
known to satisfy w < 2.371552 [20].

For directed graphs, an O(m)-time algorithm exists only for k£ < 2, as shown by Geor-
giadis [21]. For larger k and general m, the best running times are O(n® 4+ nk“) from
Cheriyan and Reif [12], and O(mn) from Henzinger et al. [14]. All of these state-of-
the-art algorithms for general k£ and m, both for undirected and directed graphs [9],
[12], [14], are randomized and have a high probability of being correct. The fastest
deterministic algorithm is due to Gabow [15], though it runs more slowly. Approxima-
tion algorithms have also been developed, including a deterministic 2-approximation
algorithm by Henzinger [13] with time complexity O(min{\/n, k}n?), and a more recent
randomized O(logn)-approximation algorithm by Censor-Hillel, Ghaffari, and Kuhn
[10] with time complexity O(m). These approximation algorithms apply only to undi-
rected graphs.

The main challenge faced by previous exact algorithms, aside from a few O(m)-time
algorithms for k < 3, is their reliance on solving the following problem: for two nodes
s and t, let k(s,t) represent the minimum number of vertices (excluding s and t) that
must be removed to ensure there is no path from s to ¢t. Many previous algorithms
require solving for x(s,t) > k for all ¢ given a fixed node s. This is known as the
single-source k-connectivity problem, for which no algorithm achieving better than
O(n?) time exists, even when k& = O(1) and m = O(n).
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] Reference Directed Undirected \ Note
Folklore O(n? -VC(n,m))
3] O(kn - VCg(n,m))
4], [22] O(kn - VC(n,m))
4] (cf. [5]-[7]) O((k? +n) - VCg(n,m))
8] O(n-VC(n,m)) Monte Carlo
[9] ([12] for O((n¥ + nk“)logn) Monte Carlo
directed) O((n“ + nk®)k) Las Vegas
11], [12] - O(K*n'5 + k?n?)
13 - O(min{\/n, k}n?) 2-approx.
[14] O(mnlogn) O(kn?logn) Monte Carlo
O(min{n, k? }km +mn) O(min{n, k? }k?n +
kn?)
[15] O(min{n3/* k**}Ykm + | O(min{n3/* k1-5}k*n +
mn) kn?)
[10] - Oo(m) Monte Carlo,
O(logn)-approx.

11 O(min{km?/3n, km*/3}) O(m + k7/3n4/3) Monte Carlo, for k < v/n

O(tdircctcd) O(tundircctcd) Monte Carlov

(1 + €)-approx.

Table 5.1: List of running time T'(k,n,m) of previous algorithms on a graph
G with n nodes and m edges for deciding if the vertex connectivity kg > k.
VC(n,m) is the time needed for finding the minimum size s-t vertex cut for
fixed s,t. VCg(n,m) is the time needed for either certifying that the minimum
size s-t vertex cut is of size at least k, or return such cut. This table is taken

from [1].
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5.3 Important Milestones

5.3.1 Menger’s Theorem

Menger’s theorem provides a fundamental relationship between vertex connectivity
and the number of independent paths between two vertices. Specifically, it states that
the minimum number of vertices that must be removed to disconnect two vertices u
and v is equal to the maximum number of vertex-disjoint paths between u and wv.

Theorem 5.3.1. (Menger’s Theorem): Let G = (V, E) be a graph and u,v € V.. The
minimum number of vertices that must be removed to separate u from v is equal to the
mazximum number of vertex-disjoint paths between u and v.

This result is foundational, as it forms the basis of many vertex cut algorithms and
provides a duality between vertex cuts and independent paths in a graph.

5.3.2 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm, originally developed for solving the maximum flow prob-
lem in networks, has important implications for vertex cuts. By applying the max-flow
min-cut theorem, one can reduce the vertex cut problem to a flow problem. The algo-
rithm finds the maximum flow in a flow network and, by the max-flow min-cut theorem,
identifies the minimum cut.

Theorem 5.3.2. Maz-Flow Min-Cut Theorem: In a flow network, the maximum value
of the flow is equal to the capacity of the minimum cut separating the source and sink.

While the Ford-Fulkerson algorithm primarily addresses edge cuts, it can be adapted
for vertex cuts by transforming the graph so that each vertex is split into two vertices
connected by an edge. This transformation allows vertex cuts to be treated as edge
cuts in a modified network. We will describe this in more detail in the next section.

So, first we transform the graph by replacing each vertex v with two vertices vy, and
Vout, connected by an edge with unit capacity. Then we apply the Ford-Fulkerson
algorithm to find the maximum flow between two specified vertices and by the max-
flow min-cut theorem, the vertices involved in the minimum cut correspond to the
vertex cut in the original graph.
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Algorithm 3: Ford-Fulkerson Algorithm

1 Input: A network G = (V, E) with flow capacity ¢, a source node s, and a
sink node ¢

2 Output: Maximum flow f from s to ¢

3 Function FordFulkerson(Graph G, Source s, Sink t):

4 Initialize f(u,v) < 0 for all edges (u,v) € E;

5 while there is a path p from s to t in the residual graph Gy do

6 Find ¢¢(p) = min{cy(u,v) | (u,v) € p};

7

8

9

foreach edge (u,v) € p do
fu,0) = fu,v) + ¢5(p)
f(v7u) — f(v’u) - Cf(p)

10 end
11 end
12 return the flow f;

The complexity of the Ford-Fulkerson algorithm depends on the flow augmentation
method used. In its basic form, it runs in O(m - f), where m is the number of edges
and f is the maximum flow. More efficient implementations, such as those using the
Edmonds-Karp algorithm, run in O(n? - m).

We can use the above algorithm to detect if the vertex cut of a graph is at least k in
the following way:

Algorithm 4: Ford—Fulkerson for Checking Min Cut at Least k

1 Input: A network G = (V, F) with flow capacity ¢, a source node s, a sink
node t, and an integer k
Output: Returns true if the min cut is at least k, false otherwise
Function FordFulkersonCheck (Graph G, Source s, Sink t, Integer k):

2

3

4 Initialize f(u,v) < 0 for all edges (u,v) € E;

5 for i+ 1 to k do

6 Run BFS to find an augmenting path p from s to ¢ in the residual

graph G;
7 if no such path exists then
8 ‘ return false // Min cut is less than k
end

10 Find cf(p) = min{cs(u,v) | (u,v) € p};

11 foreach edge (u,v) € p do

12 F(u,)  f(u,0) + 4(p)

13 Flo.w) « flo.u) = s (p)

14 end
15 end
16 return true ; // Min cut is at least k
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5.3.3 Reduction to Directed Edge Connectivity

In this section we’ll discuss how to reduce a vertex connectivity problem into a cor-
responding directed edge connectivity problem. This uses a standard transformation
used in [22], [14] to construct a so-called split graph.

Definition 5.3.1 (Vertex Cut). Let G = (V, E) be an undirected graph, where V' is
the set of vertices and F is the set of edges, and let s,¢ € V be two distinct vertices.
A set of vertices S C V' \ {s,t} is called a vertex cut if its removal disconnects s from
tin G, i.e., after removing S, there is no path between s and ¢ in the resulting graph.

Definition 5.3.2 (Edge Cut). Let G’ = (V/, E’) be a directed graph, where V' is the
set of vertices and E’ is the set of edges, and let s’,# € V/ be two distinct vertices. A
set of edges Fc C E' is called an edge cut if its removal disconnects s’ from ¢’ in G’,
i.e., after removing all edges in E¢, there is no path from s’ to ¢’ in the residual graph.

To reduce the vertex cut connectivity problem to a directed edge connectivity problem,
we transform the original graph by splitting each vertex, except s and v. Given an
undirected graph G = (V, E') with two specified vertices s and ¢, we construct a directed
graph G’ = (V' E’) as follows:

For each vertex v € V, we create two vertices in V': vy, and voy. This effectively
splits each original vertex into an inbound node and an outbound node. For each
undirected edge {u,v} € E, we add two directed edges to E’: one from gyt to viy, and
another from vy, to ui,. This replacement of each undirected edge with two directed
edges allows traversal in both directions through the split nodes. Additionally, for each
v €V, we add a directed edge from vj, to voy in E’. This edge represents the ability
to pass through the original vertex v.

We set the source vertex s’ in G’ as si, and the sink vertex ¢ as tou:.

5.3.3.1 Proof of Correctness

Let S C V'\ {s,t} be a vertex cut in G separating s and t. We construct an edge cut
Eg in G’ by including the edge (vin, vout) in Eg for each v € S.

Lemma 5.3.3. Eg separates s’ from t' in G'.

Proof: Assume for contradiction that there exists a path P’ from s’ to ¢ in G’ that
does not use any edge in Fg. This path corresponds to a path P from s to ¢t in G
that does not pass through any vertex in S. Each traversal from v, to wi, in G’
corresponds to traversing edge {v,w} in G. The internal edge (vin, Vout) is omitted for
v € S, effectively removing v from the traversal. Since S is a vertex cut in GG, no such
path P can exist, leading to a contradiction. Therefore, Eg separates s’ from ¢ in G'.
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Let Ec be an edge cut in G’ separating s’ and t'. Define S = {v € V \ {s,t} |
(Uina vout) S EC’}

Lemma 5.3.4. S is a vertex cut in G separating s and t.

Proof: Assume for contradiction that there exists a path P from s to ¢ in G that does
not pass through any vertex in S. This path corresponds to a path P’ from s’ to ¢’ in
G’ that does not use any edge in E¢, because for each edge {u,v} in P, we traverse
from wgyt to vy or from vey to uy, in G'. Since v ¢ S, the internal edge (viy, Vout) 18
available for all v in the path.

This contradicts the assumption that Eo separates s’ from ' in G’. Therefore, S is a
vertex cut in G separating s and t.

The size of the vertex cut S is equal to the size of the edge cut F¢ since there is a
one-to-one correspondence between vertices in S and edges (vin, Uout) in Ec.

We have established a bijection between vertex cuts in G and edge cuts in G’, preserving
the size of the cuts. Therefore, finding a minimum vertex cut between s and ¢ in G
reduces to finding a minimum edge cut between s’ and ¢’ in G'.

5.3.4 Karger’s Randomized Contraction Algorithm

In 1993, David Karger introduced a randomized algorithm for the minimum cut prob-
lem, which can also be adapted to vertex cuts. Karger’s algorithm repeatedly contracts
random edges until only two vertices remain. The remaining edges between the two
vertices represent a cut. By running the algorithm multiple times, the probability of
finding the minimum cut increases.

Algorithm 5: Karger’s Randomized Contraction Algorithm
Input: A connected, undirected graph G = (V, E)
Output: A pair of vertices that form a minimum cut of G
Function KargerMinCut (Graph G = (V, E)):
while |V| > 2 do
Randomly select an edge (u,v) € F;
Contract (G, u,v);
end
return The two remaining vertices;
Function Contract (Graph G, Vertex u, Vertex v):
Merge vertex v into vertex u;
Remove self-loops created during contraction;

© 0w N o TN W N
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5.3.4.1 Analysis

Karger’s Randomized Contraction Algorithm works by repeatedly contracting ran-
domly chosen edges until only two vertices remain. The probability that this process
yields a minimum cut can be computed as follows.

At each step of the algorithm, an edge is selected randomly. For the algorithm to
succeed, no edge from the minimum cut must be contracted. Let C' be the size of the
minimum cut, and let |V| = n be the number of vertices. The probability of choosing
an edge that does not belong to the minimum cut in the first step is:

|E| - C 2
Lt SO T

|E| — n
This reasoning continues for subsequent contractions. The overall probability of suc-
cess (i.e., not contracting any edge from the minimum cut) over all iterations of the
algorithm is:

n—3 1 9
Psuccess = | | <1 - ) =
Pl n—i n(n—1)

Thus, the probability of finding the minimum cut in a single execution of Karger’s
algorithm is O (#)

5.3.4.2 Boosting the Probability of Success

Since the probability of success is low, we can apply a technique known as boosting,
where the algorithm is run multiple times to increase the probability of finding the
minimum cut. If we run the algorithm r times, the probability of failure in each run
is 1 — Pysyecess- Therefore, the probability that all r runs fail is:

9 r
Pfailure = <1 - TL(TL—l))

In order to boost the probability of success, we simply run the algorithm r(g) times.
The probability that at least one run succeeds is at least
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Setting » = cInn we have error probability < 1/n¢ which means the algorithm suc-
ceedes with high probability (w.h.p). Therefore we have an O(n*logn) time random-
ized algorithm with error probability 1/poly(n). Specifically, for a success probability
of at least 1 — ¢, we require r = O(n%log 1).

5.3.4.3 Complexity

The time complexity of Karger’s algorithm in a single run is dominated by the cost of
performing n — 2 edge contractions. Each contraction involves merging two vertices
and removing self-loops, which can be done in O(n) time. Therefore, the complexity
of a single run of Karger’s algorithm is:

5.3.4.4 Karger-Stein Improvement

A faster version of this algorithm was introduced by Karger and Stein in [23]. The key
improvement comes from observing the telescoping product behavior during contrac-
tions. At the beginning of the process, the probability of contracting an edge in the
minimum cut is low. However, as the algorithm progresses, the likelihood of cutting
through the minimum cut increases.

From earlier analysis, we know the following: for a given minimum cut §(S), the

probability that this cut survives until the graph is reduced to £ vertices is at least (%)2.
Therefore, setting £ = %, the probability of success is at least 1/2. In expectation,
two trials should suffice.

The improved version of the algorithm is as follows: Given a multigraph G, if G has
at least 6 vertices, repeat the following steps twice:
1. Run Karger’s original algorithm until the graph is reduced to HV| / \/ﬂ vertices.

2. Recur on the resulting graph.

Finally, return the minimum of the cuts found in the two recursive calls.

The choice of 6 as the cutoff number of vertices is somewhat arbitrary; changing it
would only affect the running time by a constant factor. The running time can be
determined via the following recurrence which is straightforward to solve using the
standard Master theorem:
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T(n) =2 <n2 T <5§>> = O(n?logn)

Since we preserve the minimum cut with probability > 1/2, we can express the recur-
rence for the probability of success, denoted by P(n), as:

P(n)>1- <1—;P (\%H))Z

1
logn

This recurrence solves to P(n) = 2 < ) Hence, similar to the argument used for

Karger’s original algorithm, running the algorithm O(log?n) times ensures that the

01e . - 1
probability of success is at least 1 Doy ()

Thus, in O(n? log? n) total time, the algorithm can find the minimum cut with high
probability.

5.4 Local Vertex Cut

5.4.1 Overview

This chapter outlines the key results and techniques from the work of Nanongkai,
Saranurak, and Yingchareonthawornchai in [1]. Their work presents new randomized
algorithms for small vertex connectivity. In the simplest case where m = O(n) and,
hence k = O(1), this algorithm breaks the 49-year-old standing O(n?) quadratic time
barriers as discussed in the introduction. The algorithm is combinatorial, meaning
that they do not rely on fast matrix multiplication.

Specifically this paper presents a randomized Monte Carlo algorithm that runs in
O(mk?),time and for small k = O(y/n), which can decide w.h.p if kg > k. If kg < k
then the algorithm returns a vertex cut of size less than k.

A core contribution is the development of a local algorithm for computing vertex con-
nectivity. Unlike previous approaches that relied on computing single-source connec-
tivity, which had a quadratic-time lower bound, this local algorithm avoids reading
the entire graph. Instead, it focuses on finding a separator of size at most k or cer-
tifying that no such separator exists "near” a given seed node. The idea is based on
constructing a subgraph around the seed node and exploring only relevant parts of the
graph.

The local vertex connectivity algorithm runs in O(Vk2) time for a given subgraph of
volume v and connectivity k. It adapts and speeds up the Goldberg-Rao [24] max-flow
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70 CHAPTER 5. VERTEX CONNECTIVITY

algorithm, making it faster when run on a specific structure known as the "augmented
graph.”

These algorithms improve upon the classical approaches to vertex connectivity and
provide efficient solutions to both the exact and approximate problems.

5.4.2 Preliminaries

Definition 5.4.1. A vertex partition (L, S, R) is called a separation triple (or triplet)
if L, R # () and there is no edge between L and R, i.e., N(L) = S = N(R). We define
the size of (L, S, R) to be [5].

FExamples of two different separation triplets in the same graph:

Figure 5.3: Separation triplet
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Figure 5.4: Different separation triplet in the same graph

It’s important to note that, if a graph G is not k-connected, it means that is has a
separation triplet (L, S, R) with |S| < k.

Definition 5.4.2 (Edge Set). We define E(S,T') as the set of edges {(u,v) : u € S,v €
T}.

Definition 5.4.3 (Separation Triple). A vertex partition (L, S, R) is called a separa-
tion triple if L, R # () and N(L) = N(R) = S.

Definition 5.4.4 (s-t Connectivity). Let s(s,?) be the minimum number of vertices
that must be removed to disconnect s from ¢, where s € L and t € R, and (L, S, R) is
the partition of the vertices.

Definition 5.4.5 (With High Probability). We say that an event occurs with high
probability (w.h.p) if it holds with probability at least 1—1/n¢, where c is an arbitrarily
large constant.

Definition 5.4.6 (Volume). We define the volume of a vertex set X to be vol(X) =
2sex deg(@)

Definition 5.4.7 (Edge Sets and L, R-volumes). For a separation triple (L, S, R), we
denote

e E*(L,S) = E(L,L)UE(S,L)UE(L,S)
e E*(R,S) = E(R,R)UE(S,R) UE(R,S)
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o voli,(L) =3, c1 deg%“t(v) + |E(S, L)|
e vol,(R) = ZveR deg%“t(v) + |E(S, R)|

We observe that m = volf(L) + |E(S, S)| 4+ volf(R)

5.4.3 The Algorithm

The vertex connectivity of a graph G, denoted as kg, is defined as the minimum
number of vertices that need to be removed to disconnect the graph. The paper from
[1] presents a randomized Monte Carlo algorithm that runs in O(mk?) time and for
small k = O(y/n), can decide with high probability (w.h.p) if k¢ > k. If kg > k then
the algorithm returns a vertex cut of size less than k.

The algorithm is divided into two main phases. Given that the graph G is not k-
connected, it means that there must be a separation triplet (L, S, R) with |S| < k.

e The first phase samples random edge pairs and checks if there is a small vertex
cut using Ford-Fulkerson. This detects the vertex cut w.h.p in the case where L
and R are roughly the same size.

e The second phase uses local exploration to detect cuts efficiently when the vol-
ume of one side of the partition is small.

If the two phases don’t detect a vertex cut, we can conclude w.h.p. that G is k-
connected.
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Algorithm 6: Vetrex Cut(Sample, LocalVC, FordFulkersonCheck,
BFS)

Input: G,k
Output: A vertex cut S with |S| < k if it exists, else L
1 n<+ |V|
2 m <« |E|
3 for i < 1 to klogn do
4 Sample a random pair of edges e = (z,2), f = (y,v')
s | for (s,8) — {(z1), (#',9)), (z',9), (2,9/)} do
6 if FordFulkersonCheck(G, s,t, k) then
7 Ters + BFS(Gf,S)
8 return N2 (Tpps)
9 end
10 end
11 end

12 for i < 1 to log(m/k) do
13 for j «+ 1 to mlog(n)/2' do

14 Sample a random edge e = (x,y)
15 for v € {z,y} do

16 L' < LocalVC(G, v, 2%, k)

17 if L' # 1 then

18 | return Ng“(L')

19 end

20 end

21 end

22 end

23 return L

The Ford-Fulkerson subroutine used in this algorithm is modified to just check if
k(s,t) < k as described in Algorithm 4.

The main theorem that we’ll prove in this section is stated as:

Theorem 5.4.1. Given a directed graph G = (V,E) and k = O(\/n), if G is not
k-connected then w.h.p Algorithm 6 finds a separator S with size less than k. If G is
k-connected then Algorithm 6 always returns L. The algorithm takes O(mk?) time.

To simplify the analysis we assume without loss of generality that vol(L) < vol(R).
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Algorithm 7: LocalVC(Sample, DFS)
Input: G,z, v,k
Output: A set L' containing x with |N(L')| < k and vol(L') < v if it
exists, else L

1 for j < 0 to log(n) do

2 for i< 1to k do

3 Tprs < DFS(G, x) exploring exactly kv edges
4 if |TDFS| < kv then

5 ‘ return N (Tprs)

6 end

7 Sample a random edge e = (v/,y) from Tppg

8 Reverse the path P,

9 end
10 end

11 return L

5.4.4 Analysis of Balanced Partition: vol* (L) > m/k

In this case, we analyze the scenario where the smaller partition L is sufficiently large,
such that its volume is approximately equal to the volume of the larger partition R.
In this case: vol.(L) > m/k.

Lemma 5.4.2. If G has a separation triple (L, S, R) with |S| < k and volf,(L) > m/k,
then w.h.p Algorithm 6 outputs a separator of size less than k.

Proof. The algorithm proceeds by randomly sampling pairs of edges (z, ') and (y,y’)
from the edge set E, and then testing the connectivity between pairs of vertices formed
from these edges, i.e., (z,y), (',y'), (', y), (z,4"). The goal is to sample one vertex in
L and one in R so we can detect a small cut 9, if that exists.

For each sampled vertex pair (s,t), the algorithm runs the Ford-Fulkerson max-flow
algorithm to check if the minimum vertex cut between s and ¢ is less than k. If the
minimum cut is found to be smaller than k, this indicates the existence of a small
separator in the graph. The algorithm then performs a Breadth-First Search (BFS)
on the residual graph to identify the set of vertices Tgrg reachable from s, and returns
the out-neighborhood N&"(Tgrg) as the separator.

If no such separator is found after klogn iterations, the algorithm concludes that the
graph is k-connected and returns L. The choice of klogn is to ensure that we detect
the small cut w.h.p if it exists, while maintaining total work of O(mk?) for this step.

Now we prove that if vol(L) > m/k then by sampling O(k) pairs of edges e}, es we get
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w.h.p one edge in E*(L,S) and one in E*(R, S).

Pr(el € E*(L,S),e2 € E*(R,S)) = Pr(e; € E*(L,S))Pr(es € E*(R,S))
|E*(L, S)| |E*(R,S)|

m m

.1
_ wolg (L) volf,(R) (5.1)
T om m

Since volf (L) + vol(R) = Q(m), either vol% (L) or volf,(R) = Q(m)

volly(L) > m/k, (5.1) = Pr(el € E*(L,S),e2 € E*(R,S)) > 1/k

The probability that we don’t get an edge in each side if we repeat the process T' times
is (1 — %)T < e T/k. By taking T = klogn we get that the probability of failure is less
than 1/n.

|

5.4.5 Analysis of Imbalanced Partition: Small vol;(L) <
m/k

In this case, the partition is highly imbalanced, where the volume of L is significantly
smaller than the volume of R. In this case: volj(L) < m/k. For this case we'll use
LocalVC(G, z,v, k) (Algorithm 7).

First we make the reduction from vertex connectivity to edge connectivity using the
split graph as we described in Section 5.3.3.

Definition 5.4.8 (Local Vertex Connectivity). Given a directed graph G, a node =z,
and integers v, k, then if there exists a set L' containing x with |[N(L')| < k and
vol(L') < v then Algorithm 7 returns it w.h.p Otherwise it returns L.

Definition 5.4.9 (Local Edge Connectivity). Given a directed graph G, a node =z,
and integers v, k, return a set L' containing x with [0y, (L)| < k and vol(L') < v if it
exists, otherwise return L.
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Figure 5.5: Reduction to Directed Edge Connectivity Degree

After the reduction, the size of the neighborhoud of L, N(L) is equal to oy (L')| and
vol*(L) = O(vol(L").

Since vol% (L) < m/k there exists an integer i € [0,1log(m/k)] s.t. vol¥ (L) € [2071,27).
First we prove the following claim.

The goal in this step is, again, to sample enough edges so that w.h.p. we get an edge
inside this small component L. Then for each sampled vertex we attempt to identify a
small vertex cut locally, "near” this seed vertex x. To do this more efficiently we bound
the size of the small component L between two powers of 2.

Lemma 5.4.3. If vol(L) € [2°=1,2] then w.h.p by sampling O(m/2%) edges we get an
edge in E*(L,S).

Proof. o
vol (L) S 21
m T m

Pr(e € E*(L,S)) =

The probability that we don’t get an edge in E* (L, S) if we repeat the process T times
is (1— %)T < e 27T/m, By taking T = mlogn /2"~ we get that the probability of
failure is less than 1/n. So we get an edge in E*(L,S) w.h.p.

|
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In the algorithm we check for all possible values of vol(L) between 1 and m/k (which
is the upper bound for this case).

5.4.6 Warm-up Case: L with §ou(L) =1 and 6;,(L) =0

Before diving into the more general case, let us first consider a simplified scenario where
the set L contains a single outgoing edge and no incoming edges, i.e., dout(L) = 1 and
din(L) = 0. This basic example will help illustrate how the algorithm operates when
the out-degree of L is < k.

The algorithm begins by performing a depth-first search (DFS) starting from the seed
node xz. DFS in this case needs to explore v + 1 edges to guarantee that it leaves the
small component L and since 8, (L) = 0 there is no way for DFS to return to L.

Then we take the vertex where the DFS exploration ends y, and reverse the path P,
from z to y. This operation removes the single outgoing edge from L, thus reducing
dout (L) to zero.

/_

()

/J
PN

-

Figure 5.6: Local Vertex Cut Warmup Case

At this point, with no outgoing edges left, the DFS will get stuck inside L during the
next iteration, as it will no longer be able to explore nodes outside the set. Conse-
quently, the algorithm identifies a valid cut Ng“t(TDFS) and terminates.

This warm-up case provides a simple demonstration of the key concepts underlying
the algorithm: exploration using DFS, path reversal, and reduction of dou;(L). These
same principles apply in the more general case where dout (L) > 1 and 0y, (L) # 0.
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5.4.7 General Case

The LocalVC algorithm takes three parameters: a seed node z, a volume threshold v,
and a cut size k. Its goal is to find a small set L’ containing x such that dout (L) < k
and vol(L') < v, or return L if no such set exists.

The volume threshold takes it’s value from 2¢ as discussed before, and is used to
efficiently sample the graph so that w.h.p. we get a node inside the small component
L. Tt also plays a role on how many edges we’ll explore with DFS. In this case where
din(L) # 0, there is the chance that DFS ends up inside L again. To mitigate this, we
explore enough nodes, kv to ensure that the sampled vertex of Tprg is outside L.

The algorithm consists of two nested loops. The outer loop runs from 1 to log(n) and
serves as a boosting mechanism to ensure that the algorithm succeeds w.h.p. The inner
loop, which runs for k iterations, is responsible for identifying whether the size of the
cut is less than k by eliminating outgoing edges one at a time.

During each iteration of the inner loop, a depth-first search (DFS) is performed from
the seed node x. The DFS explores up to kv nodes to have a high probability that the
search extends beyond the boundary of L.

At the end of each DFS, the algorithm samples a random edge (3, y) from the explored
tree and reverses the path P, between x and y. Each path reversal eliminates an
outgoing edge from L', progressively reducing doui(L'). The inner loop repeats this
process for k iterations, each time attempting to reduce the out-degree by one.

y Y

N

Figure 5.7: Local Vertex Cut General Case
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If fewer than kv nodes are explored, i.e. DFS gets "stuck”, it implies that we found a set
L that contains z with volume smaller than v and [N (Tprs)| < k, thus identifying

a small vertex cut N2 (Tpps).

Lemma 5.4.4. If G has a separation triple (L, S, R) with |S| < k and vol§,(L) < m/k,
then w.h.p Algorithm 6 outputs a separator of size less than k.

Lemma 5.4.5. If Algorithm 7 returns a set L', then o (L") < k.

Proof. As we mentioned, during the execution of the algorithm, a depth-first search
(DFS) is performed from the seed node z to explore up to kv nodes. If fewer than kv
nodes are explored, it implies that the volume of the current set L’ is less than v, and
the algorithm terminates, returning L'.

Throughout the iterations, the algorithm randomly samples edges from the DFS tree
and reverses the paths between z and the sampled node y. If y is not contained in L/,
reversing the path reduces the out-degree oy (L) by one. If the algorithm returns a set
L’, this implies that the out-degree dout(L') became zero, and since fewer than k path
reversals occurred, the initial out-degree must have been smaller than k. Therefore, if
the algorithm returns L', we can conclude that oy (L) < k. [ ]

Lemma 5.4.6. If the algorithm returns L, then w.h.p, there is no set L' containing x
such that |0u(L")| < k and vol(L') < v.

Proof. Suppose that there exists a set L' containing z, such that |0y, (L')| < k and
vol(L’) < v. The algorithm performs a depth-first search from z, followed by the
sampling of a random edge from the explored DFS tree. For each sampled edge, the
algorithm attempts to reduce the out-degree dou(L') by reversing the path Py,.

The probability that the node y is not contained within L, i.e. dout(L') is decreased by
one, is at least 1 — 2 =1 — % After k — 1 iterations, the probability that dou (L) =0

s (1) 2

Since we have a constant probability of success, we can boost this by running the
outer loop O(1) times to guarantee w.h.p that if a valid set L’ exists, it will be found.
We do this in Algorithm 7 in line 1. If the algorithm terminates without returning
a set, it concludes that w.h.p no such set L’ exists that satisfies |dount(L')] < k and

vol(L') < v. [ |

5.4.8 Running Time Analysis

The running time of the algorithm is determined by two main steps: checking the
maximum flow between two nodes and the local vertex connectivity procedure.

79



80 CHAPTER 5. VERTEX CONNECTIVITY

The Ford-Fulkerson algorithm can check whether the maximum flow between two nodes
is less than k in O(mk) time, where m is the number of edges. Additionally, computing
the out-neighborhood of a set and running a breadth-first search (BFS) takes linear
time, i.e., O(m). Hence, the first part of the algorithm, which involves running Ford-
Fulkerson and BFS, takes a total time of O(mk?).

For the second part of the algorithm, the LocalVC procedure takes O(vk?logn) time,
where v represents the volume threshold. We run LocalVC for all i € [1,logm/k]
sampling O(m/2") edges each time. Parameter v takes value 2 for each i. The total
time for this part of the algorithm can be written as:

0 <10g (%) : ml(;g(")) - O(vk?log(n)) = O(mk?)

Thus, combining the running time of both steps, the total time complexity of the
algorithm is O(mk?). This concludes the proof of Theorem 5.4.1.

5.5 Local Vertex Cut with vertex Sampling

In this section we present a variant of the algorithm from [1] but sampling vertices
instead of edges. Later in Chapter 7 where we attempt to parallelize this algorithm
we’ll see this gives us improved work in some cases.

The setup is the same. The algorithm is divided into two main phases. Given that the
graph G is not k-connected, it means that there must be a separation triplet (L, S, R)
with |[S| < k.

e The first phase samples random vertex pairs and checks if there is a small vertex
cut using Ford-Fulkerson. This detects the vertex cut w.h.p in the case where L
and R are roughly the same size.

e The second phase uses local exploration to detect cuts efficiently when the vol-
ume of one side of the partition is small. This time we sample vertices instead
of edges to get a vertex inside the small partition.

If the two phases don’t detect a vertex cut, we can conclude w.h.p. that G is k-
connected. For any subgraph H C G, we define ny = |V(H)|. The main theorem that
we’ll prove in this section is stated as:

Theorem 5.5.1. Given a directed graph G = (V,E) and k = O(y/n), if G is not
k-connected then w.h.p Algorithm 8 finds a separator S with size less than k. If G is
k-connected then Algorithm 8 always returns 1. The algorithm takes O(n*k?) time.
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Algorithm 8: Vetrex Cut with Vertex Sampling(Sample, LocalVC,
FordFulkersonCheck, BFS)
Input: G,k
Output: A vertex cut S with |S| < k if it exists, else L
n <+ |V
m < |E|
for i < 1 to klogn do
Sample a random pair of vertices x,y
if FordFulkersonCheck(G, s,t, k) then
TBFS < BFS(Gf, S)
return N2“(Tgrs)
end

© W g o A W N R

end

for i + 1 to log(n/k) do

for j «+ 1 to nlog(n)/2! do
Sample a random vertex x
L' < LocalVC(G, , 2%, k)
if L' # 1 then

| return NZ“(L')

end

I =
=230, BT JURE CRE N -

end

juy
X

end
return L

-
© @

5.5.1 Analysis of Balanced Partition: ny > n/k

In this case, we analyze the scenario where the smaller partition L is sufficiently large,
such that it has approximately the same amount of vertices as the larger partition R.
In this case: ny > n/k.

Lemma 5.5.2. If G has a separation triple (L, S, R) with |S| < k and ny, > n/k, then
w.h.p Algorithm 8 outputs a separator of size less than k.

Proof. The algorithm proceeds by randomly sampling pairs of vertices (z,y) from the
vertex set V, and then testing the connectivity between these vertices. The goal is to
sample one vertex in L and one in R so we can detect a small cut .S, if that exists.

For each sampled vertex pair (x,y), the algorithm runs the Ford-Fulkerson max-flow
algorithm to check if the minimum vertex cut between x and y is less than k. If the
minimum cut is found to be smaller than k, this indicates the existence of a small
separator in the graph. The algorithm then performs a Breadth-First Search (BFS)
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on the residual graph to identify the set of vertices Tgpg reachable from x, and returns
the out-neighborhood N&"(Tgrs) as the separator.

If no such separator is found after klogn iterations, the algorithm concludes that the
graph is k-connected and returns L. The choice of klogn is to ensure that we detect
the small cut w.h.p if it exists, while maintaining total work of O(mk?) for this step.

Now we prove that if ny, > n/k then by sampling O(k) pairs of vertices x,y we get
w.h.p one vertex in L and one in R.

npnRr

Pr(xe L,ye R)=Pr(z € L)Pr(y€e R) = - (5.2)

Since nr, + ng = Q(n), either nz or ng = Q(n)

ny >n/k,(5.2) = Pr(ze€ L,ye R)>1/k

The probability that we don’t get a vertex in each side if we repeat the process T times
is (1 — %)T < e T/k By taking T = klogn we get that the probability of failure is less
than 1/n.

|

5.5.2 Analysis of Imbalanced Partition: n; < n/k

In this case, the partition is highly imbalanced, where the number of vertices of L is
significantly smaller than those of R. In this case: n; < n/k. For this case we’ll use
the variant of LocalVC (Algorithm 9) with vertex sampling.

As in the previous case, we use the reduction to directed edge connectivity and we
bound the number of nodes in L between powers of two. Since nz, < n/k there exists
an integer i € [0,log(n/k)] s.t. ny € [2071,2!]. First we prove the following claim.

Lemma 5.5.3. If ny € [2071,2] then w.h.p by sampling O(n/2) vertices we get a
vertex in L.

Proof.

The probability that we don’t get a vertex in L if we repeat the process T' times is
i—1 i— .
(1-— QT)T < e 27'T/n, By taking T = nlogn/2'~! we get that the probability of
failure is less than 1/n. So we get a vertex in L w.h.p.
|
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In the algorithm we check for all possible values of ny between 1 and n/k (which is
the upper bound for this case).

Algorithm 9: LocalVCVertex(Sample, DFS)
Input: G,z, v,k
Output: A set L' containing x with |N(L')| < k and np < v if it
exists, else L

1 for j < 0 to log(n) do

2 for 2+ 1to k do

3 Tprs < DFS(G, x) exploring exactly kv vertices
4 if |TDFS| < kv then

5 ‘ return N2 (Tprs)

6 end

7 Sample a random vertex y from Tppg

8 Reverse the path P,

9 end
10 end

11 return L

The setup is quite similar as the edge sampling case, Algorithm 9 takes three parame-
ters: a seed node x, a size threshold v, and a cut size k. Its goal is to find a small set
L’ containing = such that o (L") < k and ny, < v, or return L if no such set exists.

The size threshold takes it’s value from 2° as discussed before, and is used to efficiently
sample the graph so that w.h.p. we get a node inside the small component L. It also
plays a role on how many vertices we’ll explore with DFS. In the general case where
din(L) # 0, there is the chance that DFS ends up inside L again. To mitigate this, we
explore enough nodes, kv to ensure that the sampled vertex of Tprg is outside L.

The algorithm consists of two nested loops. The outer loop runs from 1 to log(n) and
serves as a boosting mechanism to ensure that the algorithm succeeds w.h.p. The inner
loop, which runs for k iterations, is responsible for identifying whether the size of the
cut is less than k by eliminating outgoing edges one at a time.

During each iteration of the inner loop, a depth-first search (DFS) is performed from
the seed node z. DFS explores up to kv nodes to have a high probability that when
we sample a vertex in the next step, this is beyond the boundary of L.

At the end of each DFS run, the algorithm samples a random vertex y from the explored
tree and reverses the path P., between x and y. Each path reversal eliminates an
outgoing edge from L', progressively reducing doui(L'). The inner loop repeats this
process for k iterations, each time attempting to reduce the out-degree by one.

If fewer than kv nodes are explored, i.e. DFS gets "stuck”, it implies that we found a set
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L that contains z with volume smaller than v and |[N2*(Tprs)| < k, thus identifying

a small vertex cut NZ“/(Tprsg).

The proof for the following two lemmas is identical to the case where we sample edges
SO0 we omit them,

Lemma 5.5.4. If G has a separation triple (L, S, R) with |S| < k and n, < n/k, then
w.h.p Algorithm 8 outputs a separator of size less than k.

Lemma 5.5.5. If Algorithm 9 returns a set L', then 0y,:(L') < k.

Lemma 5.5.6. If the algorithm returns L, then w.h.p, there is no set L' containing x
such that |0pu(L")| < k and np < v.

Proof. Suppose that there exists a set L’ containing x, such that |douw(L')| < k and
ny < v. The algorithm performs a depth-first search from x, followed by the sampling
of a random vertex y from the explored DFS tree. For each sampled vertex, the
algorithm attempts to reduce the out-degree dou(L’) by reversing the path Py,.

The probability that the node y is not contained within L, i.e. dout(L') is decreased by
one, is at least 1 — £ =1— % After k — 1 iterations, the probability that dou (L) =0

1 kv
is (1-4)" > 4.

Since we have a constant probability of success, we can boost this by running the outer
loop O(1) times to guarantee w.h.p that if a valid set L' exists, it will be found. We
do this in Algorithm 9 in line 1. If the algorithm terminates without returning a set, it
concludes that w.h.p no such set L’ exists that satisfies |dout(L')| < k and npy <v. B

5.5.3 Running Time Analysis

For the second part of the algorithm, LocalVC takes O(v?k3) time, where v is the
size threshold. This happens because when exploring vk vertices we can have up to
O(v?k?) edges. We do this k times and also we boost the probability of success by
running the whole thing logn times, thus the O(v2k%) complexity. In total:

n
v

O(*k?) = O(nwk?)

We run this for all v = 2! for i € [1,logn/k] so the total time for this part of the
algorithm can be written as:

logn/k
> Om2'k?*) = O(n’k?)

i=1
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Thus, combining the running time of both steps, the total time complexity of the
algorithm is O(mk? + n2k?) = O(n?k?) since m = O(n?). This concludes the proof of
Theorem 5.5.1.
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Chapter 6

Parallel Reachability

6.1 Introduction

Given a directed graph (or digraph) G = (V, E) with n vertices and m edges, and a
specific vertex s € V, the single-source reachability problem involves determining the
set of vertices T' C V that can be reached from s. This means identifying all vertices
t € V for which there exists a path from s to ¢t in G. This problem is one of the
most fundamental in graph optimization. It can be efficiently solved in linear time,
O(n + m), using classic graph traversal algorithms like breadth-first search (BFS) or
depth-first search (DFS). Often introduced in basic algorithms courses, the reachability
problem plays a crucial role in both theoretical and practical applications, serving as a
foundational step in solving more advanced problems such as finding strongly connected
components, shortest paths, maximum flow, and spanning arborescences.

Single-source reachability is a fundamental challenge in parallel computation models,
and achieving efficient algorithms for it has been notoriously difficult. Despite the
simplicity of solving reachability in optimal sequential time, finding optimal algorithms
under parallelism remains a significant obstacle. Until the recent breakthrough by
Fineman [25], all known parallel reachability algorithms involved trade-offs between
depth and work, with any algorithm achieving linear work requiring the trivial O(n)
depth.

In this chapter, we analyze the work of Sidford et al. [2] who propose novel tech-
niques to improve the parallel and distributed computation of reachability by lever-
aging hopsets and shortcuts. These techniques significantly reduce graph diameter,
allowing for faster computations while maintaining near-optimal work complexity.

The work from [2] builds upon a breakthrough of Fineman [25] and utilizes a power-
ful decompositional technique for improving reachability, known as hopsets or short-
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cuts. Shortcuts are additional edges introduced into the graph without altering the
set of reachable vertex pairs. In a graph with diameter D, representing the maxi-
mum shortest-path distance between any two reachable vertices, reachability can be
computed with O(m) work and O(D) depth. Thus, a natural direction for enhancing
reachability algorithms is to identify a small set of shortcuts that reduce the graph’s
diameter, ideally computed in nearly linear time.

The use of shortcuts holds great promise for optimizing reachability algorithms. A
simple probabilistic argument shows that for any n-node directed graph, there exists
a set of O(t? log? n) shortcuts, which when added, can reduce the graph’s diameter
to at most O(n/t). For instance, by adding approximately O(nlog?n) shortcuts, it is
possible to shrink the diameter to O(y/n). Finding such shortcuts in nearly linear time
and O(y/n) depth would directly result in reachability algorithms with linear work and
O(y/n) depth. However, constructing such shortcuts in almost linear time with this
level of diameter reduction remained an open problem until recently.

Fineman’s work [25] made significant progress by providing the first nearly linear time
algorithm that computes a nearly linear number of shortcuts, achieving polynomial
reductions in graph diameter from the trivial O(n) bound. Specifically, Fineman’s
algorithm computes a set of shortcuts that reduces the diameter to O(n?/3) in nearly
linear time and then leverages this to design a parallel reachability algorithm with
O(m) work and O(n?/3) depth, which succeeds with high probability.

Despite this breakthrough, the question of whether parallel algorithms with almost
linear work can achieve the depth bound predicted by hopsets, namely O(nl/ 2), re-
mained unanswered. Furthermore, it was unclear whether these improvements could
be extended to other resource-constrained computational problems. The paper from
[2] addressed both questions with an algorithm that achieves O(m) work and n!/?+°()
depth, computing a set of O(n) shortcuts that reduces the diameter to n!/2t°() The
results are achieved by refining and simplifying aspects of Fineman’s algorithm.

6.2 Folklore Hopset Construction for Diameter
Reduction

In this chapter, we present a folklore way of reducing the diameter of a given graph GG
by constructing hopsets using probabilistic arguments. The diameter of G, denoted as
diam(G) or D, is the maximum distance between any pair of vertices in G. A hopset H
is a set of edges that, when added to the graph, preserve the reachability relationships
while reducing the diameter.

We show that via a probabilistic construction, it is possible to reduce D to O(y/n) by
adding O(n) edges, where n is the number of vertices in G, and O hides polylogarithmic
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factors.

Theorem 6.2.1. Given a connected graph G = (V, E) with n vertices and m edges,
we can add O(n) shortcut edges to G to obtain a new graph G' = (V, E') that preserves
the reachability relations in G and has diam(G’) = O(y/n).

The algorithm to construct the hopset is as follows:

Algorithm 10: Hopset Construction for Reducing Graph Diameter

1 Input: Graph G = (V, E) with n vertices and m edges
2 Output: Graph G’ = (V, E U H) with additional shortcut edges to reduce the

diameter

3 Function HopsetConstruction(Graph G):
4 S+ 0

5 H<+ 0

6 for i < 1 to [y/n] do

7 Randomly select a vertex v; € V
8 S« SuU {Uz}

9 end

10 for each pair (u,v) € S x S do

11 if u can reach v in G then

12 ‘ H «+ HU{(u,v)}

13 end
14 end
15 return G' = (V,EUH)

We now provide a formal proof that the above algorithm reduces the diameter of G' to
O(n'/?) with high probability.

6.2.1 Preliminaries

Definition 6.2.1 (Shortest Path). Let G = (V,E) be an undirected graph. For
any pair of vertices s,t € V, let m(s,t) denote a shortest path from s to t, and let
L = |r(s,t)| be the length of this path, defined as the number of edges in 7 (s, t).

Definition 6.2.2 (O(f(n)) Notation). For a function f(n), the notation O(f(n)) rep-
resents the class of functions O(f(n)loghn), where k > 0 is a constant and polyloga-
rithmic factors are hidden.

Definition 6.2.3 (With High Probability). An event A occurs with high probability
(whp) if there exists a constant ¢ > 0 such that Pr[A] > 1 — L where n is the problem
size. This indicates that the probability of the event’s failure decays polynomially with
increasing n.
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Definition 6.2.4 (Chernoff Bound). Let X = ' | X; be the sum of independent
Bernoulli random variables, where X; € {0,1} and Pr[X; = 1] = p. Let p = E[X]
be the expected value of X. Then, for any § > 0, the Chernoff bound gives an
exponentially decreasing bound on the probability that X deviates from its expected
value:

2u
Pr[X > (1 +6)u] < exp 545

Similarly, the lower tail is bounded by:

Pr(X < (1 - 6)u] < exp <—‘522“) |

6.2.2 Key Lemma

Lemma 6.2.2. For any pair of vertices s,t € V with shortest path length L = |7 (s,t)| >
enl/? logn for some constant ¢ > 0, with high probability, there exist vertices u,v € S
such that:

o u lies on w(s,t) within distance O(n*/?) from s.

o v lies on (s, t) within distance O(n'/2) from t.
Proof. We partition the path 7(s,t) into three segments:

e Prefix: The first £ = ¢/n'/2logn vertices starting from s, for some constant
d > 0.

e Middle: The segment between the prefix and suffix.

e Suffix: The last £ = ¢n'/?logn vertices ending at t.

Since L > ¢n'/?logn, the middle segment exists. Each vertex in S is selected uniformly
at random from V. The probability that a vertex v € V is included in S is:

5] nt/2 —-1/2
= —= — =N .
p n n

The expected number of sampled vertices in the prefix is:

/,1/2

uw=4~Ip=cn logn~n_1/2

= ' logn.
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Using the Chernoff bound, the probability that S contains no vertex from the prefix
is:

—c'logn _ nfc’.

Pr[No vertex from prefix in S] <e™* =e
The same analysis applies to the suffix. Thus, with high probability, S contains at
least one vertex u in the prefix and at least one vertex v in the suffix. Since u can
reach v via the subpath of m(s,t), a shortcut edge (u,v) is added to G’. Therefore,
the distance from s to ¢ in G’ is O(n'/?), and the diameter of G’ is reduced to O(n'/?)
with high probability. |

6.2.3 Optimality for Exact Hopsets

After discussing the folklore algorithm for constructing hopsets, it is somewhat sur-
prising that recent work by Bodwin and Hoppenworth [26] has confirmed its near-
optimality for exact hopsets. They demonstrate that for any graph G, any exact
hopset with O(n) edges must have a diameter of at least ﬁ(nl/ 2), improving upon the
previous lower bound of Q(n'/?) by Kogan and Parter [27].

They prove this by constructing graphs on which any exact hopset of O(n) edges has
diameter Q(n'/2). This result confirms that folklore sampling reaches a fundamental
v/n-size barrier for exact hopsets.

Their work extends to provide lower bounds for exact hopsets and shortcut sets of
size O(p), demonstrating that folklore sampling is near-optimal across a wide range of
parameters p € [1,n?].

6.3 Parallel Reachability via Hopsets

In this chapter we will focus on the key contribution from [2] which addresses the single-
source reachability problem in the PRAM model. This result can be summarized as
follows:

Theorem 6.3.1 (Reachability in the PRAM Model). For any parameter k, there
exists a parallel algorithm that, given an n-node m-edge digraph, solves the single-
source reachability problem with work O(mk + nk?) and depth poly(k) - n'/2+0(1/logk)
with high probability.

First we’ll present the sequential algorithm for diameter reduction which forms the
basis for the improved parallel reachability algorithm.

91



92 CHAPTER 6. PARALLEL REACHABILITY

Theorem 6.3.2 (Sequential Diameter Reduction). For any parameter k, there is
an algorithm that given any n-node and m-edge digraph in O(mk) time computes
O(nk) shortcuts such that adding these edges to the graph reduces to the diameter to
n/2+00/108k) wyith high probability.

Setting k = O(logn) immediately gives the following corollaries for the sequential and
parallel case.

Corollary 6.3.1. There is a parallel algorithm that given any n-node and m-edge
digraph performs O( ) work in depth n'/>°() and computes a set of O( ) shortcuts
such that adding these edges to the graph reduces the diameter to n*/?t°W) w. h.p.

Corollary 6.3.2. There is an algorithm that given any n-node and m-edge digraph in
O(m) time computes O(n) shortcuts such that adding these edges to the graph reduces
to the diameter to n'/2°) with high probability.

6.3.1 Preliminaries

We denote vertex set of a graph G by V(G), and the edge set by E(G). We simply
write these as V and E when the graph G is clear from context. For a V' C V, we let
G[V’] denote the induced subgraph on V', i.e. the graph with vertices V' and edges of
G that have both endpoints in V.

6.3.1.1 Digraph relations

Let G be a directed graph or digraph for short. We say that u =< v if there is a directed
path from u to v in G. In this case we say that u can reach v, or that v is reachable
from u. We say that u A v if there is no directed path from u to v in G. In this case
we say that u cannot reach v, or that v is not reachable from u. When u < v and
v = u we say that v and v are in the same strongly connected component. We define
the descendants of v to be R2™(v) £ {u e V(G) : v =< u} and the ancestors of v to be
RA™(v) L {ueV(G): u=<v}. We say that u and v are related if u < v or v < u. We

define the related vertices of v as Rg(v) < RP2%(v) U RA"(v). Throughout, the letter
R we use in the notation should be read as ‘related” or “reachable”. We say that w is
unrelated to vertex v if u € V(G)\Rg(v).

We extend this notation to subsets V' C V in the natural way. We define the ancestors,
descendants, and related vertices to V' as

Dc% / d‘f U RDC§ ’ Anc / d<f U RAnc ’
veV! veV!
RGl(V/) def RAIIC(V ) U RDC@(V/)
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We say that a vertex v is related to a subset V' if v € Rg(V'). When the graph G is
clear from context, we will often drop the G subscript and simply write (for example)
RP(v), RA¢(v), and R(v) instead of R2%(v), RA"(v), Ra(v).

We further extend this notation to induced subgraphs of G. Let G’ be a subgraph of
G, possibly with a different set of vertices and edges than G. We say that v <g v
if there is a directed path from u to v in the subgraph G’; we say that v is reachable
from u through G’ in this case. Define

R2S(0) = {u e V(G") :v =g u}, RA(v)={uecV(G):u=g v}
Rer(v) = RES (v) U RG(v)

We similarly extend this definition to subsets of vertices V! C V(G'):

RDGS(vl) d:F‘f U RDeb( )’ RAIIC(V/) d:F'f U RAHC( )
veV! veV’!
R(;/(V/) def RAHC(V ) U RDeS(V/)

As our algorithm performs recursion on subgraphs of G, this notation enables us to
reference specific subproblems as our algorithm progresses.

A shortcut refers to adding an edge (u,v) to a graph G where u < v in G. Adding the
edge does not affect the reachability structure of G. A shortcutter v is a node we add
shortcut edges to and from. A hopset refers to a collection of shortcuts.

6.3.1.2 Paths

Our analysis will consider paths in the graph as well as the relations between the
vertices on the path and other vertices in the graph. Let G be a digraph. We denote
a path P = (vg,v1,...,v), where all the v; are vertices of G and (v;,v;+1) € E(G).
Here, the length of the path is £, where we have that vg = v1 < ... X vy. We say that
the head of the path is head(P) £ vy and the tail is tail(P) & vy. We now make the
following definitions.

6.3.1.3 Path-related vertices

We adopt a similar convention as [25|. For a path P = (vg,v1,...,vs) we say that
v is path-related if v € Rg(P). Further, for any path P in digraph G, we define

s(P,G@) ¥ |Rg(P)| as the number of path-related vertices. All path-related vertices
are one of the following three types:

93



94 CHAPTER 6. PARALLEL REACHABILITY

Unrelated

Ancestors

Fix a simple path Pin G

Figure 6.1: Path-related Vertices

e Descendants: We say that a vertex v is a descendant of the path P if v €
R2(P)\RA™(P). Note that this holds if and only if vo < v and v £ vy.

e Ancestors: We say that a vertex v is an ancestor of the path P if v €
RARC(P)\R2%(P). Note that this holds if and only if vy Z v and v < vy.

e Bridges: We say that a vertex v is a bridge of the path P if v € RZ®(P) N
RénC(P). Note that this holds if and only if vg < v and v =< vy.

A vertex which is not a descendant, ancestor, or bridge for a path P is called unrelated
to P. Later we explain how to extend all these definitions to the distance-limited case.

6.3.1.4 Subproblems

During our algorithms’ recursions, we will make reference to the induced recursive
calls made. Consider a graph G and a path P in G. During a call to an algorithm on
the graph G, we define a subproblem to be an induced subgraph G[V’] along with a
subpath P’ of P which lies inside G[V'] on which we perform a recursive execution.

6.3.1.5 Miscellaneous

We let B(n,p) be the binomial random variables over n events of probability p. We
have the following standard fact about binomial random variables:
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Lemma 6.3.3 (Chernoff Bound). Let X ~ B(n,p) be a binomial random variable.
Then

2
Pr{X > (14 0)np| < exp (—2(1 5np> .

6.3.2 Fineman’s Shortcutting Scheme

First, we provide a blueprint for the sequential nearly linear time algorithm for com-
puting diameter reducing hopsets. For the remainder of this section, let G = (V, E) be
a digraph for which we wish to efficiently compute diameter-reducing shortcuts. For
simplicity we consider the case where G is a directed acyclic graph (DAG); the analysis
of the general case is essentially identical and for the purposes of reachability (ignoring
parallel computation issues) we can contract every strongly connected component to
a single vertex.

The shortcutting algorithm is inspired by the general framework used by Fineman
[25] for efficiently computing diameter-reducing shortcuts. In Fineman’s approach, at
each iteration, a “shortcutter” vertex v is selected uniformly at random from the vertex
set V. The algorithm then categorizes the vertices into three groups: v’s ancestors
RA™(v), v's descendants R2%(v), and the vertices that are unrelated to v, denoted
by Ug(v) = V \ {R2%(v) U RA"(v)}. Once these groups are established, shortcut
edges are added from v to all vertices in R2%(v) and from all vertices in RA™(v) to
v. After adding these shortcuts, the algorithm generates three induced subgraphs:
Gp = G[R2*(v)], G4 = G[RA™(v)], and Gy = G[Ug(v)], and recursively applies the
same procedure to each of these subgraphs.

G4 = G[RA™(v) i

Gy = G[Ug(v)]

Figure 6.2: Fineman’s shortcutting scheme

To analyze this procedure, we consider any path P in G. The work in [25] examines how
the shortcuts introduced by the algorithm impact the distance between the endpoints

95



96 CHAPTER 6. PARALLEL REACHABILITY

pe=e

Path P

Figure 6.3: Interaction of shortcutter with path P

of P. When a ”shortcutter” vertex v is chosen, its interaction with P can fall into one
of the following four categories:

1. v is unrelated to any node in P.

2. v is an ancestor of some nodes in P, forming a subpath P, and is unrelated to
the rest of the path Ps.

3. v is a descendant of some nodes in P, forming a subpath P», while being unre-
lated to the remaining subpath P;.

4. v is both an ancestor of the tail and a descendant of the head of P.

When applying the recursive steps of the algorithm, one of three outcomes is possible
after shortcutting through a vertex v: either the path P remains intact in a subproblem
(case 1), the path splits into exactly two subpaths in two different subproblems (cases
2 or 3), or the connectivity between the endpoints of P is resolved via v, meaning the
endpoints of P can be connected in just two edges through v (case 4). Thus, the path
P is either divided into at most two subpaths or the distance between its endpoints is
reduced to 2.

Let P; represent the subpath of P at some point during the execution of the algorithm,
and let V; denote the vertex set of the subproblem that contains P;. The key insight
of Fineman is to define the following function (which we defined in Section 6.3.1) and
to use it to reason about the effect of this random process:

s(P;, Gi) = [{u € V(Gy)|u is related to some node in P;}|.

Observe that s(P;, G;) is an overestimate of the length of P;, and that s(P,G) < n.
Define
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L(P) £ Y s(P.Gy)

i

to be the sum over all s(P;,G;) at this state of our algorithm. The random variable
L(P) represents the path length, and by analyzing the four cases mentioned earlier,
we can predict how L(P) changes in expectation. For any subpath P;, we look at the
induced subproblems after shortcutting through a randomly selected node v. If v falls
under case 1, nothing changes for P;. In case 4, the connectivity between the endpoints
of P; is resolved, so we set s(P;, G;) = 0 as no further subproblem remains.

However, in cases 2 and 3, the path P; is split into two subpaths, say F;, and P,,.
Fineman argues that a randomly selected node ensures that the number of nodes
related to either P;, or P, decreases by a constant factor c¢ in expectation. Thus, if
f(z) is the expected shortcut length of a path P; where s(P;,G;) = x, we can use
induction to show that:

f(z) < max f(a)+ f(b)

a+b=cx

Fineman derives a constant ¢ = 2, leading to a bound of f(n) < O(n!/12(/3)) " A more
refined version of this argument enables him to achieve the tighter bound of O(n?/3).

6.3.3 Sequential Reachability

The algorithm from [2] closely resembles Fineman’s but introduces a key difference: in-
stead of selecting just one "shortcutter” node before recursing, they choose an increasing
number of random vertices in each step.

By selecting multiple shortcut vertices, they enhance the efficiency of the process. After
shortcutting, they group the remaining vertices into subsets, similar to Fineman’s
partitioning into ancestors, descendants, and unrelated vertices. However, in their
partitioning scheme, two vertices will belong to the same subset only if they share the
same relationship with each of the k selected shortcutters.

We give some definitions and intuition for the quantities defined in the algorithm.
e Inputs k,r: k is a parameter governing the speed that we recurse at. Intu-
itively, the algorithm picks shortcutters so that graphs at one level deeper in the

recursion are "smaller” by a factor of k. r < log,, n is the depth of recursion that
the algorithm is currently at, where we start at r = 0.

e Set S: S is the set of vertices from which we search and build shortcuts from.
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e Set F: I is the final set of shortcuts we construct.

e Probability p,: At recursion depth r, for each vertex v € V(G), we put v in S
with probability p, which is roughly O(k"/n).

e Labels vP%, vA7¢ X: We want to distinguish vertices by their relations to vertices
in S. Therefore, when we search from a vertex v we add a label vP* to add
vertices in R2®(v)\RA™(v), a label vA™ to all vertices in RA™(v)\R2%(v), and
a label X to all vertices in R2®(v) N RA™(v). The label X should be understood
as “eliminating” the vertex (since it is in the same strongly connected component
as v and we have shortcut through v already).
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Algorithm 11: SEQ(G, k,r): Sequential Diameter Reduction Algo-
rithm

Input: Graph G, parameter k, recursion depth r < log, n (starting with
r=0)
Output: A set of shortcut edges to add to G
1 n represents the number of vertices at the top level of recursion
2 begin

3 Pr < min {1, 720kr+nl logn };
4 S <+ 0;
5 foreach v € V do
6 ‘ Add v to S with probability p;;
7 end
8 F « 0;
9 foreach v € S do
10 foreach w € R2%(v) do
11 ‘ Add edge (v,w) to F}
12 end
13 foreach w € R2*(v) do
14 ‘ Add edge (w,v) to F;
15 end
16 foreach w € R2%(v) \ RA™(v) do
17 ‘ Add label vP* to vertex w;
18 end
19 foreach w € RA™(v) \ R2*(v) do
20 ‘ Add label v22¢ to vertex w;
21 end
22 foreach w € R2%(v) N RA™(v) do
23 ‘ Add label X to vertex w;
24 end
25 end
26 W <+ {v € V | v has no label of X};
27 Partition W into subsets Vi, V3, ..., V; such that vertices x and y belong
to the same subset if and only if they share exactly the same labels;
28 for 1 <3< /do
29 F + FUSEQ(G[Vi], k,7 + 1);
30 end
31 return F;
32 end

For example, two vertices u; and us would not be placed in the same subset if u; is an
ancestor of a shortcutter v and us is a descendant of that same shortcutter v. By select-
ing k shortcut nodes from scenarios 2, 3, or 4 and partitioning as described, we ensure
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that the number of path-related nodes decreases by a factor of kiﬂ

each recursion.

in expectation after

Figure 6.4: Multiple Shortcutters

Figure 6.5: Partitioning Scheme According to Labels

The goal is to select as many shortcutter vertices as possible while maintaining the
nearly-linear work bound. The more shortcutters that are selected, the greater the
likelihood of achieving the desired %H reduction in path-related nodes. However,
selecting the same number of shortcutters at every level of recursion is not feasible
because the number of path-related nodes decreases rapidly. If k shortcutters are
chosen per level of recursion, eventually only a single path-relevant shortcutter can be

picked in each round.
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Instead, it is shown that after each level of recursion, the structure of the subproblems
allows for the selection of k times more shortcutters while still adhering to the nearly-
linear work requirement.

Thus, in the first iteration we add O(k) shortcutters w.h.p. and perform O(mk) work.
We then partition the nodes into clusters such that any two nodes x and y which are
in the same V; have exactly the same labels assigned to them by the shortcutters, none
of which are X. We then recursively apply the algorithm within each cluster with a
sampling probability that is a factor of k larger.

6.3.4 Work and Shortcut Bound

In this section, we provide bounds on the work and the number of shortcut edges
introduced by Algorithm 11. At any recursion level of the algorithm, the total work
comes from two main tasks. The first task involves computing the necessary labels
vPe pAr¢ and X for each node v from which we generate shortcuts. The second task
is grouping the nodes based on these labels to form the subproblems for the next
recursion level. We will bound both of these tasks by leveraging a useful observation
about the number of ancestors and descendants each node has within its subproblem
at any level.

Lemma 6.3.4. Consider an execution of SEQ(G, k,0) on n-node m-edge G. With
probability 1 — n=19 in each recursive execution of SEQ(G', k,r) of Algorithm 11 the
following holds

R2S(v) <nk™ and RM“(v) <nk™  forallve G’

Proof. We prove the statement by induction on r. The claim is trivially true for the
base case where there is a single recursive call at » = 0. Now, assuming that the claim
holds for all recursive calls at » = j, we will show that it also holds for calls at r = j+1
with probability at least 1 —n~''. Applying the union bound across all 6(1) values of
r encountered in the algorithm will then imply the final result.

Assume that the claim holds for all recursive executions at r = j. Let v € V' be any
vertex, and let G’ be the induced subgraph on which the algorithm is called recursively
at 7 = j + 1 and contains v. We will first prove the claim for Rg‘?s(v), as the argument

for RAM(v) follows symmetrically.

Note that the recursive call SEQ(G', k, j+1) is called during the execution of SEQ(H, k, j)
for some subgraph H C G. Let @ be the set of vertices in G’ that are descendants of
vin H. If |Q] = RY®(v)) is less than nk~", the claim holds, as recursive calls only
reduce the size of the subgraphs. Hence, we now assume that |Q| > nk™".

Let Q1,Q2, ... be the strongly connected components (SCCs) of @, and consider any
topological ordering of these SCCs. In this ordering, ); precedes (; whenever there is
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a path from @); to @);. Now, consider any two vertices z,y € @ where y precedes z in
this order. We analyze the random choices made during the execution of SEQ(H, k, j)
that determine the formation of G’.

If y is chosen as a shortcutter for H, then z cannot be in G’, because v is in G’ and
x and v would have received different labels from y. Specifically, v is an ancestor of
y, whereas x is either a descendant of or unrelated to y. Additionally, if a shortcut
is added from 3, any vertex z in the same SCC as y would also be excluded from G’
since z would receive an X label.

Therefore, if we select any of the first nk~7 nodes in the topological ordering of @ (i.e.,
those closest to v in H) as shortcutters, we can ensure that at the G’ level, v will have
at most nk™7 descendants. Since each vertex is chosen with probability %, th

probability of failing to do this is at most:

e

(1 B 20k 10gn)nkj < o~ 20logn _ =20
— <

By applying the union bound over all vertices in G’ and over all induced subgraphs
encountered at level r = j, we can conclude that the bound holds for all recursive calls
at r = j with probability at least 1 — n~!'. Thus, the result follows. |

We now bound the number of labels any vertex v receives in any recursive execution
which contains it. This will provide us with an elegant way to bound the total work
of our procedure.

Lemma 6.3.5. Consider an execution of SEQ(G, k,0) on n-node m-edge G with k > 2.
With probability 1 — 2n~19, every recursive execution SEQ(G[V;],k,r) assigns at most
80k logn labels to every node w € V; where X labels assigned by different shortcutters
are counted as distinct labels.

Proof. A node v receives a label from a shortcutter v only if w is related to v. By
Lemma 6.3.4, we know that at most 2nk™" nodes can be related to v in any execution
of SEQ, with probability at least 1 — n~!0. Since nodes at the r** recursion level are
selected as shortcutters with probability p, = w, the probability that more
than 80k logn labels are assigned to v, assuming at most 2nk™" nodes are related to
it, is at most:
1

Pr [B <2nk*7", 20]4:7’+nlogn) > 80k logn] < exp (—?klog n) <n 12
by applying Lemma 6.3.3. Therefore, the probability that v receives more than
80k logn labels is at most 1 — n~'2. Applying a union bound over all nodes and
all recursive executions of SEQ gives the desired result. ]

102



CHAPTER 6. PARALLEL REACHABILITY 103

Finally, we conclude this subsection by bounding the total work of SEQ, as well as the
number of shortcut edges it adds.

Lemma 6.3.6. Consider an exvecution of SEQ(G, k,0) on n-node m-edge G with k > 2.
With probability 1 —2n~'0 SEQ(G, k,0) runs in O(mk) time and adds O(nk) shortcuts.

Proof. By our given probability of failure, we may assume Lemma 6.3.4 and Lemma 6.3.5
hold deterministically.

We begin by considering a single recursive execution SEQ(G[V], k, ) generated by SEQ.
We will bound the number of shortcuts added by this call and amount of work it
performs before it recurses. We will then aggregate these bounds over all recursive
executions and obtain our final result. For convenience, let G[V;] have 1 nodes and m
edges.

First, we bound the number of shortcut edges added by SEQ(G[Vi], k, 7). According to
Lemma 6.3.5, each recursive call assigns O(k) labels to every vertex w € V;. Since each
label corresponds to a shortcut edge being added, SEQ(G[V;], k, r) adds O(k) edges for
each vertex w, resulting in a total of 5(ﬁk) edges.

We now bound the work performed by SEQ(G[Vi],k,r). Within a call to SEQ, we
perform work in two places: within the loop in line 9 and when generating the partition
in line 27. We bound the contributions of these sources in order. First, observe that
the loop in line 9 can be implemented by computing breadth-first searches forwards
and backwards from every w in the shortcutter set S. The amount of work needed

to apply the labels and and the shortcuts themselves is clearly O(nk) by the above
argument, so we need only to bound the cost of running these traversals.

Observe that by Lemma 6.3.5 SEQ(G[Vi], k,r) assigns O(k) labels to every w € V;.
Now the number of labels w receives is within a factor of two the number of times
it is visited in searches. Thus w is visited O(k) times in our traversals. Each time
we encounter w in a traversal we perform a constant amount of work for each edge
incident upon it. Thus if ¢;(w) is the undirected degree of w in G[V;], the total work
performed by SEQ(G[Vi], k,r) is

O > kdi(w) | = Olink).

weV;

We finally bound the cost of generating the partition. We implement this in two parts.
First, we check each vertex to see whether it has an X label and discard any vertex
which does. Next, we define an order over all possible combinations of labelings a node
could receive. We then sort the remaining nodes by this order: we can then trivially
read off the partition. To implement this order of labelings, pick an arbitrary ordering
on the individual labels we distribute to nodes. To compare two labeling schemes a
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and b we internally sort a and b by our arbitrary ordering, and then determine the
order amongst a and b lexicographically.

To implement this procedure, we first note that by Lemma 6.3.5 every node receives
at most O(k) labels. Determining which of the 7 nodes have an X label clearly takes
O(nk) time. It is straightforward to verify that comparing two labelings each with at
most O(k) labels with this scheme requires O(k) time: thus this partitioning can be

found in O(nk) time using a mergesort. Combining this with the previous bound we
see that SEQ(G[Vi], k,r) requires O(mk) time before recursing.

We now obtain our final work and shortcut bounds by aggregating. If we consider the
set of recursive calls SEQ(H, k,r) for any fixed value of r, we see that the calls are
applied to a disjoint collection of subgraphs of G. Thus, the total number of nodes in
all of these subproblems is n, and the total number of edges is at most m. Thus cost of
performing all of these calls without recursing is 9] (mk), and these calls collectively add
O(nk) shortcuts. As there are at most O(1) different values of r our claim follows. W

6.3.5 Parallel Reachability

The method is parallelized similarly to Fineman’s approach. The core concept behind
Fineman’s parallelization involves the use of depth-restricted searches, referred to as
Dsearch_regtricted searches. Instead of performing full graph traversals to compute the
ancestor, descendant, and unrelated sets for a vertex v, Fineman computes only the
Dsearch_gncestors and D¥***P-descendants—nodes reachable within a distance of D%erch
from v. Although these searches can be executed at low depth, relying solely on them
as a substitute for full ancestor and descendant sets no longer guarantees the expected
reduction in L(P).

Fineman resolves this issue through a novel approach. Consider a directed graph G.
Assume that a set of edges F' can be efficiently identified and added to G, such that
if two nodes s and ¢ are at distance D, their distance in the modified graph G U F' is
reduced to at most D /5 with high probability. For any pair of nodes u and v separated
by a distance greater than D, the distance between them in G U F' is halved with high
probability. This process breaks the shortest path between u and v into segments
of length D, with each segment’s size decreasing by a constant factor with constant
probability. Repeating this process on G U F' and iterating it O(logn) times ensures
that every reachable pair of nodes u and v are within distance D. This reduction incurs
only logarithmic costs in terms of total work and parallel depth. Building off of these
ideas with some modifications for the new algorithm we can leverage the result for the
parallel version Theorem 6.3.1.

The final parallel algorithm we are going to use:
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Algorithm 12: ParallelSC(G, k, 7, yinge). Takes a digraph G, param-
eter k, recursion depth r < log, n (starts at » = 0), and inner fringe
node recursion depth 7inee < logn. Returns a set of shortcut edges to

add to G. n denotes the number of vertices at the top level of recursion,
not the number of vertices in G.

Input: G, k7 T Tfringe

Output: A set of shortcut edges to add to G
1 10k’“+llogn>

n

1 P, < min (

2 S«

3 Korgl 109%2 log5 n (1 + @)_%_1 and ko, < 100K2 log5 n (1 + m)

4 Choose Kk € [K2r41, k2r] uniformly at random. // Picking a random search
distance

5 D+ 100-+/2
6 for v € V do
7 ‘ With probability p,, do S + S U {v}
8 end

9 F«(

10 for v € S do

—2r

log, n 1
M nz log?n

11 for w € Rpes(v, (k+1)D) do

12 ‘ add edge (v,w) to F

13 end

14 for w € Raye(v, (k+1)D) do

15 ‘ add edge (w,v) to F

16 end

17 for w € Rpes(v, kD) \ Ranc(v, kD) do

18 ‘ add label vA" to vertex w

19 end

20 for w € Rape(v, kD) \ Rpes(v, kD) do

21 ‘ add label vP* to vertex w

22 end

23 for w € Rpes(v, kD) N Rppe(v, kD) do

24 ‘ add label X to vertex w

25 end

26 | Vi™ < R(v,(k+1)D)\ R(v, (k — 1)D)

27 F < F UPARALLELSC(G|[Va ™), k, 7,78 1 1). // Recursion on
fringe nodes

28 end

29 W < {v € V| v has no label of X}

30 Partition W into subsets Vi, Vs, ..., Vp such that z,y € V; iff x and y have
exactly the same labels. // Vertices in the V; have no label of X.

31 for1<i</do

32 ‘ F «+ F U ParallelSC(G[Vi], k,r 4+ 1,0)

33 end

34 return F 105
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Algorithm 13: PARALLELDIAM(G, k). Takes a digraph G = (V| E),
parameter k. Modifies digraph G. Parallelizable diameter reduction
algorithm.
Input: G,k
Output: Modified digraph G with reduced diameter
1 for i < 1 to 10logn do
2 for j < 1 to 10logn do
3 | Sj « PARALLELSC(G, k,0,0)
4 end

s | E(G)+ E@)U(U;8)

6 end

We provide a detailed explanation of what each part of Algorithm 12 and Algorithm 13
does skipping some of the technical details. For the complete analysis, we refer the
reader to [2].

Algorithm 12 is similar to Algorithm 11. All parts of Algorithm 11 can be implemented
in low parallel depth except for the breadth first searches from the vertices in S. To
resolve this, a natural idea is to limit the distance of the breadth first searches to D,
where D denotes the diameter bound. Running these incomplete searches introduces
issues in the analysis though. To get around this, we follow an approach similar
to [25] and perform some additional computation on the fringe of our breadth first
searches. Specifically, we choose a random integer « in the range [ko,4+1, kor] (think of
these as parameters which are poly(logn, k)), and search from a vertex v to distance
approximately xD. Then, we call the vertices in the set R(v, (k +1)D)\R(v, (k —1)D)
the fringe vertices. We chose x randomly to ensure that the expected number of fringe
vertices is sufficiently small. We then recurse on the fringe vertices.

In the algorithm, we first initialize the set of vertices from which we will perform
our search, denoted as S, starting with an empty set. We then choose a probability
pr, which determines whether each vertex v belongs to S. Following that, we select
our search scale D, a value chosen to be a constant factor larger than the bounds
previously discussed in relation to the graph’s diameter. At this stage, we define the
parameters kK € [Kor4+1, kor], which will set our search radius to xD. The parameters
Ko > K1 > K2 > --- ensure that as the recursion progresses, the search radius decreases
with each level, with the guarantee that x; > %/i() for all ¢ when r < log, n.

After setting the search radius, we move on to choosing the specific vertices for the
breadth-first search, which are added to S. Once the set S' is established, we initialize
the set of shortcut edges, starting with an empty set. From here, we proceed by adding
shortcut edges for each vertex v € S, connecting them to the relevant vertices based
on the current search parameters.

Next, we label other vertices based on their relationships with v, applying ancestor, de-
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scendant, and “eliminated” labels. Once the labels are assigned, we initiate a recursion
for the fringe vertices identified during the search. At this point, the recursion depth
for the fringe nodes, rfinge, is incremented by one while the main recursion depth, r,
remains the same.

With the labels applied, we move on to processing the vertices. All vertices that have
been marked with the “eliminated” label, denoted by X, are excluded from further
consideration. The remaining vertices are partitioned into groups based on matching
labels, ensuring that vertices with the same set of labels are placed together. Finally,
we perform a recursive step on each of the groups created, increasing the main recursion
depth r by one, while resetting the fringe recursion depth 7fi,ge back to zero.

By modifying this algorithm slightly, we can also retrieve the paths discovered during
the depth-limited breadth-first searches from vertices in S. In the graph, we have BFS
trees that are of diameter y/n at most. This means the total depth of the path retrieval
is O(y/n). We can concat the paths from the BFS trees to get the paths in parallel
in O(y/n) work and O(y/n) depth, while still performing the main task of diameter
reduction. We will use this in the next section.

For Algorithm 13, we are essentially running Algorithm 12 for multiple iterations.
Specifically, we can ensure that the expected distance from the head to the tail of any
path of original length at most D is reduced to %. Running this process O(logn)
times guarantees that any path of length D is reduced to % with high probability. By
repeating this procedure O(logn) times, we can see that the distance from the head
to the tail of any path will be reduced to at most D with high probability. This is
done by dividing the path into several subpaths of length at most D and applying the
reduction iteratively, so that each subpath’s length is reduced by a constant factor,
ultimately reducing the length of the original path.
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Chapter 7

Parallel Vertex Cut

7.1 Introduction

In this chapter, we present an algorithm for parallel vertex cut by combining ideas from
the two approaches we presented in the previous chapters: the vertex cut algorithm of
Nanongkai et al. [1] and the parallel reachability algorithm of Sidford et al [2]. Just
to reiterate the results from the previous sections:

Theorem 7.1.1 (Reachability in the PRAM Model). There exists a parallel algorithm
that, given an n-node m-edge digraph, solves the single-source reachability problem with
work O(m) and depth n*/>°() with high probability in n.

Theorem 7.1.2 (Vertex Connectivity). There exists a randomized (Monte Carlo)
alorithm that given a directed graph G = (V,E) and k = O(y/n), if G is not k-
connected then w.h.p finds a separator S with size less than k. If G is k-connected then
the algorithm always returns 1. The algorithm takes O(mk:g) time.

Theorem 7.1.3 (Vertex Connectivity with Vertex Sampling). There exists a random-
ized (Monte Carlo) alorithm that given a directed graph G = (V, E) and k = O(y/n),
if G is not k-connected then w.h.p finds a separator S with size less than k. If G is
k-connected then the algorithm always returns L. The algorithm takes O(n2k‘2) time.

Our results can be summarized in the two following theoremes:

Theorem 7.1.4 (Parallel Vertex Cut). There exists a parallel randomized (Monte
Carlo) alorithm that given a directed graph G = (V. E), k = O(y/n) and o € [y/n,n],
if G is not k-connected then w.h.p finds a separator S with size less than k. If G 22'3

k-connected then the algorithm always returns L. The algorithm takes O(mk2 + )
work and max{n/>*°M) kol depth.
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Theorem 7.1.5 (Parallel Vertex Cut with constant k). There exists a parallel ran-
domized (Monte Carlo) alorithm that given a directed graph G = (V, E), k = O(1) and
a € [\/n,n], if G is not k-connected then w.h.p finds a separator S with size less than k.
If G is k-connected then the algorithm always returns L. The algorithm takes O(%)
work and O(«) depth.

7.2 The Algorithm

Suppose that graph G is not k-connected. This means there exists a separation triplet
(L, S, R) with |S| < k. The algorithm diferentiates two cases according to the relative
sizes of L and R. In each case we employ a subroutine to identify a small vertex cut if
such exists. If no cut is found we conclude that w.h.p. there is none.

e The first phase of the algorithm deals with the case where L and R are roughly
the same size. In this case we sample enough edges to ensure a high probability
of landing one vertex in L and one in R. Then we run a modified version of Ford-
Fulkerson with each vertex pair as source and sink to detect the small vertex cut

S.

e The second phase deals with the case where L is small. Again we sample enough
edges such that w.h.p. we get a vertex inside the small partition. Then we try
to identify a small cut "near” this vertex through local exploration.

7.2.1 Modified Ford Fulkerson

First we present the modified version of Ford-Fulkerson. The original Ford-Fulkerson
algorithm uses BFS to find augmenting paths and as we showed in Section 3.3.2. BFS
when executed in parallel admits depth equal to the diameter of the graph D, which
in the worst case could be n.

To lower the depth of this part of the algorithm we employ the parallel reachability
algorithm from Sidford et al. We run this algorithm, placing the source vertex s in
the set of shortcutters. From this algorithm, we get a set of shortcut edges and a set
of paths from our source vertex s to all the reachable vertices R,. Thus, getting the
augmenting path is possible in O(m) work and n'/2t°(1) depth. The total complexity
for the modified Ford-Fulkerson is O(mk) work and n'/?t°() depth.
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Algorithm 14: Parallel Ford—Fulkerson for Checking Min Cut at Least

k

1 Input: A network G = (V, E) with flow capacity ¢, a source node s, a sink
node t, and an integer k

2 Output: Returns true if the min cut is at least k, false otherwise
3 Function FordFulkersonReachCheck (Graph G, Source s, Sink t, Integer k):
4 Initialize f(u,v) < 0 for all edges (u,v) € E;
5 for i + 1 to k do
6 R, Ps < ParallelDiam(G,logn, s) // find augmenting path
from s to t in residual graph Gy
7 if Py does not exist then
8 ‘ return false // Min cut is less than k
end
10 Find cf(p) = min{cf(u,v) | (u,v) € p};
11 foreach edge (u,v) € p do
12 F(u,v) < Flu,v) +cs(p)
13 f(v,u) — f(v,u) - Cf(p)
14 end
15 end
16 return true // Min cut is at least k

7.2.2 Modified Local Vertex Cut

For the unbalanced case where vol*(L) < m/k, we have to make some adjustments.
Again we will make use of the reduction to directed edge connectivity and try to bound
the size of vol*(L) between two powers of two to efficiently sample edges so that w.h.p.
we get a vertex x in L.

After that, the method used by Nanongkai et al. uses a DFS traversal to explore edges
“near” this sampled vertex x. The problem with DFS is that, like BFS, admits depth
equal to the diameter of the graph D which could be equal to n.

Thus, we introduce a tradeoff parameter a such that if the size of vol*(L) is smaller
than a then we opt to use the same technique as in the sequential case, running DFS
to explore nodes near our source vertex x, sample an edge (v, y) from this DFS tree
and reverse the path P, attempting to decrease the d4,:(L") by one each time.

If on the other hand the size of the partition is larger than « then we replace the
DFS run with the parallel reachability algorithm we presented in the previous chapter.
Again, we sample one of the reachable vertices and reverse the path. If the number of
explored nodes is less than the size of L we guessed then we return N (R;) as the
cut. In this case we keep the depth at n'/2T°(1) but we spend linear work per sample,
thus increasing the total work of the algorithm.
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Algorithm 15: LocalVCReach(Sample, DFS, ParallelDiam)
Input: G,z, v,k
Output: A set L' containing x with |N(L')| < k and vol(L') < v if it
exists, else L

1 for j < 0 to log(n) do

2 for i< 1to k do

3 R,, P, < ParallelDiam(G,logn,x)

4 if |R,| < kv then

5 ‘ return N2 (R,)

6 end

7 Sample a random edge e = (', y) from R,
8 Reverse the path P,

9 end
10 end

11 return L

The work for LocalVCReach is O(mk) meaning we spend linear time per sample instead
of O(vk?) for LocalVC. The depth on the other hand is n'/?T°() for LocalVCReach
in contrast with LocalVC where it’s kv which could be linear for big values of v. Now
we present the whole algorithm:

112



CHAPTER 7. PARALLEL VERTEX CUT 113

Algorithm 16: Parallel Vetrex Cut(Sample, LocalVC, FordFulkerson-
ReachCheck, BFS)

Input: G,k

Output: A vertex cut S with |S| < k if it exists, else L
1 n<+ |V|
2 m <« |E|

3 for i < 1 to klogn do

4 Sample a random pair of edges e = (z,2), f = (y,v')
s | for (s,8) — {(z1), (#',9)), (z',9), (2,9/)} do
6 if FordFulkersonReachCheck(G, s,t, k) then
7 Ters + BFS(Gf,S)
8 return N2 (Tpps)
9 end
10 end
11 end
12 for i < 1 to log(m/k) do
13 if 2/ < o then
14 for j «+ 1 to mlogn/2' do
15 Sample a random edge e = (z,y)
16 for v € {z,y} do
17 L' + LocalVC(G, v, 2%, k)
18 if L' # 1 then
19 | return N2 (L)
20 end
21 end
22 end
23 end
24 else
25 for j «+ 1 to mlogn/2' do
26 Sample a random edge e = (z,y)
27 for v € {z,y} do
28 L' + LocalVCReach(G, v, 2%, k)
29 if L' # | then
30 | return NZ“(L')
31 end
32 end
33 end
34 end
35 end

36 return L
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7.2.3 Analysis

We analyze the two cases of the algorithm separately:

7.2.3.1 Balanced Case

Since ParallelDiam runs in O(m) work and n'/2+°(1) depth, our parallel Ford-Fulkerson
implementation checking if the min-cut between two vertices is less than k runs in
O(mk) work and n'/?+°(1) depth.

Thus the first part of our algorithm runs in Wi = O(mk?) work and D; = n!/?t°()
depth.

7.2.3.2 Unbalanced Case

When the two components are unbalanced, again we have two separate cases for when
the size of L is smaller or larger than our tradeoff paramaeter o. For the first case we
use the same LocalVC algorithm we used for the sequential algorithm, while for the
latter case we use LocalVCReach as we discussed in the previous chapter.

Starting with LocalVC. For the work:

log o log «
_ i.2™M _ 2 _A 2
Way = Z}Q k Elogn— z;mk: logn = O(mk*)
and for the depth:
Dy = max {2%} = ak

0<i<log

Respectively for Local VCReach we have:

logm/k logm/k 1
m
Wa= ) O(m)glogn=0(m* »
loga i=log o
For the sum computation:
logm/k 1
S=>. 5
i=log o
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Recognize that:

b1 001 oo
252"

i= b+1

Compute the infinite geometric series:

Calculating S:

k

2
<210ga> <210gm/k+1>
2 2
(6%

o.M o m
k

Calculating m?2S:
Since k = O(y/n):

For the depth:

Dyy = nl/20)
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7.2.3.3 Total

As we discussed in Chapter 3, the combined work and depth for the two steps is

B - N 2
W =W, + Wat + Waz = O(mk?) + O(mk?) + O <m>

a
B 2
=0 <mk2+ m)

«

D = max{D1, Doy, Doy} = max{nl/Q—i-o(l)’ ok, n1/2+0(1)}

= max{n'/?*°W) ok}

where k = O(y/n) and « € [1,n].

7.3 Vertex Sampling Variation

In the section we explore a variation of the above parallel algorithm when using vertex
sampling in local vertex cut as described in Section 5.5. We reiterate the main theorem
from that section:

Theorem 7.3.1. Given a directed graph G = (V,E) and k = O(\/n), if G is not
k-connected then w.h.p Algorithm 8 finds a separator S with size less than k. If G is
k-connected then Algorithm 8 always returns 1. The algorithm takes O(n’k?) time.

The depth of this algorithm is the number of vertices DFS has to visit, thus kv whre v
is passed as 2° for every i € [1,logn/k]. Thus the above algorithm admits depth equal
to O(n).

Introducing the tradeoff parameter in this case we follow the same arguments to cal-
culate work and depth for each part.

7.3.1 Analysis

We analyze the two cases of the algorithm separately:
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7.3.1.1 Balanced Case

Since ParallelDiam runs in O(m) work and n'/27°(1) depth, our parallel Ford-Fulkerson
implementation checking if the min-cut between two vertices is less than k runs in
O(mk) work and n'/?+°(1) depth.

Thus the first part of our algorithm runs in Wi = O(mk?) work and D; = n!/?t°()
depth.

7.3.1.2 Unbalanced Case

When the two components are unbalanced, again we have two separate cases for when
the volume of L is smaller or larger than our tradeoff paramaeter «. For the first case
we use LocalVC with vertex sampling, while for the latter case we use LocalVCReach
as we discussed in the previous chapter.

7.3.1.3 LocalVC

LocalVC with vertex sampling takes O(VQkS) time, where v is the size threshold. We
run this for n/v samples, so:
O(*k?) = O(nwk?)

n
v

At last we run this for all v = 2% for i € [1,loga] so the total time for this part of the
algorithm can be written as:

log o
War = > O(n2'k?*) = O(nak®)
=1

For the depth:

Dgl = max {QZk} = ak
0<i<log o

7.3.1.4 LocalVCReach

For the work:
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logn/k logn/k

- ~ 1~ 2k
Wao = Z O(m)% logn = O(mn) Z 5= O(mn) (a - n)
log o i=log
~ rmn
=07 —km)
Since k = O(y/n):
~ rmn
W =0 ()

For the depth:

Day = n/2+0)

7.3.1.5 Total

As we discussed in Chapter 3, the combined work and depth for the two steps is

W = Wy + Way + Was = O(mk?) + O(nak3) + O (%)

=0 (mk‘2 + nak® + %)

D = max{Dl, D21, D22} = IIIaX{’nl/Q—i_O(l)7 a]g, n1/2+0(1)}

= max{n'/?°W) ok}

where k = O(y/n) and « € [1,n].
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7.4 When k is constant

When k& = O(1), if we revisit the work depth analysis we did earlier for the two different
variations of sampling, we get:

7.4.1 LocalVC with Edge Sampling

Wedge = O (mk2 + m—2>

«

k=0(1) Wedge = O (7%2)

Dedge = max{nl/}&-o(l), ak} Dedge = max{n1/2+°(1), CY}

We can afford to only consider values for « that are in the range [\/n,n], since it only
decreases work without increasing depth, thus making the work, depth:

m2

Wedge = O~ <> ) Dedge =

(0%

7.4.2 LocalVC with Vertex Sampling

Woertes = O~ (ka + nak® + %) k=O(1 Woyertex = é (%)
=0(1)
Dvertem = maX{n1/2+o(1)v ak} Dvertem = maX{nl/QJro(l), Oé}

For this case, again we can afford to only consider values for o € [nl/ 2, n], since it

only decreases work without increasing depth, thus making the work, depth:

~ /mn
Woertex = O (7) v Dyertes = @

We see that in this case the vertex sampling method yields a better result, concluding
the proof of Theorem 7.1.5.
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Chapter 8

Future Work

Building on the contributions of this thesis, there are several potential directions for
further research:

1. Exploring Efficient LocalVC Algorithms: One open question is whether
there exists an O(vk)-time LocalVC algorithm.

2. Breaking Existing Time Bounds: Another challenge is to break the current
O(n?) time bound when k = Q(n). This remains difficult, even if we assume the
existence of an O(vk)-time LocalVC algorithm.

3. Vertex-Weighted Graphs: Extending the algorithm to handle vertex-weighted
graphs efficiently poses another open problem, particularly when m = O(n).
The current LocalVC algorithm does not directly generalize to the weighted
case, leaving room for further research.

4. Single-Source Max-Flow Problem: Identifying an o(n?)-time algorithm for
the single-source max-flow problem when m = O(n) could provide insights into
improving related graph algorithms.

5. Dynamic and Distributed Settings: Investigating the vertex connectivity
problem in dynamic settings (e.g., with edge insertions and deletions) and dis-
tributed environments (such as the CONGEST model).

6. Reducing Depth: Removing the n°() term in the depth of parallel reachability
algorithm and breaking the \/n depth bound with new methods are promising
directions for achieving more efficient parallel algorithms.

For the parallel reachability problem, we conjecture the following:
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Conjecture 1. There exists a parallel algorithm which takes as inputs x, 4 and can
explore  vertices reachable from x in O(u) work and O(,/z) depth.

These directions represent exciting opportunities to refine and expand on the work
presented here, potentially leading to more powerful and adaptable algorithms.
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