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ITepiindm

H napotoo Simhwpotiny Stotpfn diepeuvd yeddodoug yio T BeATinon Twv ixavoTHTnv GUANOYLOUO) TwVY PEYSAWY
YAwoowov ovtéhov (MI'M) yéow tne oflonoinone un Celplaxdy GUAROYLOTIXGDY TOREWDY, TOU OIOLTOUY TNV
appLaPritnon e nopadoctaxhc, cuvenaywywrc hoywhc. H avdluon ectidlel oe 8Vo SapopeTinés tpoceyyioelg
yia Ty evioyvon tng anddoong twv MI'M: n npdtn uéow exnaideuong xou 1 dUTERT LECK TEONYUEVGY TEYVIXWY
TEOTEOTAC, Ywelc TNV avdyxn tpdcldetng exnaldevong.

H npdytn npocéyyion [59] oyetileton pe tov diorywviopd SemEval-2024 Task 9: «BRAINTEASER: A Novel Task
Defying Common Sense» [35], xou eotidlel oty emnhéov exnaideuon ovTEAmY BaolouéVmy OE UETACY NUOTIOTES,
yenoonoudvtag o obvolo dedopéveov BRAINTEASER [37]. Auth n npocéyylon agopd tnv exnaidevorn tomv
HOVTEA®Y GTNY ENIAUGT) TEOXANCEWY TOU ATAUTOVY U1 GELRLAX T GUAAOYLOTIXY), OTwS Ylpol AEEEWY %o TPOTAGEWY,
omou 1 Aon dev PBacileton oty xowvr Aoyuxr cuvenaywyr. Méow otoyeuuévng exnaideuong o pxpdTERd
povtéa xwdixomolntedy xar MI'M, embiodxeton 1) unépPoor twv Tuxdy emdoocewy. Eva Bacnd otolyeio avtig
NS TPOGEYYLONG ElVOL 1) HETATEOTY) TWY TEOBANUATWY TOAAATADY ETAOYMY ot duadd TeoBifuata Tagivounong,
npoPBAfuata Lwotol-Addoug, emtpénovtac ota Lovtéha vo Blepeuvicouy Tohhamhd wovordtio. culloyiopol. H
avdluon ecTldlEL GTNY ETEEOT| TOU HEYEYOUE TOU HOVTEAOU XL TWV UTEPTUPpoUETR®Y, Ve egetdlovtal ol Adyol
amotuylog Twv povtélwy. 3toyoq eivon 1 Bedtinon e axpifelag xou TV IXAVOTATWY TOUC GE U1 TUTIIXEC
SUANOYLOTIXEC TopElec PECW OTOYEVUEVNE eEXTIOUBEVOTG.

H 8ebtepn npocéyyion [60] anogpelyel v exnaideucy xou emxevipdveton ot Bedtiwon tne anddoone péow
Mo xovotépou texvxc mpotporhc, mou Tty ovopdloupe RISCORE (RIddle Solving with COntext
REcontruciton). Autf n uédodog, eunvevouévn omd to olvoro dedoyévwv BRAINTEASER, Bektidver v
anédoor ue yeNon Alywv TopadelyudTtnv w¢ TEOTEOTES, TUpEYovToc avadounuéva mapadelyuata yelpony mou
oaMNALoLVY TO TEQLEYOUEVO, UE OXOTO Vo EVIOYVOOUV TS LXAVOTNTEG TOU WOVTEAOU oTnyv emlAuct cUVUeTwv
neofBinudtwy. To RISCORE &wtneel tnv ooy Aoyur) Tou npoBARHatoc ahhd GTOUC ovadLUUOpPOUEVOUS
yelpouc mpoo@épel To B0 Aoyixd TEOBANUL avadlITUTWUEVO OE VEO TAXIOlO - mepleyOpevo. Xe olyxplom
ue dhheg pedddoug mpotponric, to RISCORE omodeiydnxe anoteheopatind otn Behtioon Twv pn CElpLoxoy
CUALOYLO TV TORELLY, OAAG X0 TWV THO TAUPUBOGLAXWY TEOBANUETLY hoYAS, Ywelc Ty avdyxn tpdcietng
exnafdeuonc. Auth 1 TPOGEYYLON avadeXVIEL TIC BUVATOTNTES TWY CTEATNYIXOY TpoTeonAc oTn Peitiwon tng
anédoone Twv MI'M oe cOvieteg epyaoieg mou aupioPBntody 0 cupPBatixr xowvy Aoy,

Yuvolxd, ot 80o mpooeyyioec mopoucidlouy dlapopetinée uedodoloyiee — 1) TEMTN ETUXEVIPOVETOL GTNV
exmaldevon xou TN Beitiotonolinon Twv YOVTEAWY, £V 1) BEUTERN OTIC XOUVOTOUES TEYVIXES TEOTPOTHAC — Xo
oUUBGANOUY onuAVTIXE TNV XaTtavonon tou tedmou ue tov omolo to MI'M unopolv va Beltiwvdoldv otny
QVTHIETOTLON TROXANCEWY TOU OMAUTOUY UT| CELPLOXES CUANOYLOTIXES Topeles, au@loBnTdvTog TIC Topadoolaxés
AOYIXEC CUVETIOYWYEC.

AéEeic-xhedid — Meydha TDhwoowd Movtéha (MI'M), oroyevuévn exnoideuorn (fine-tuning),
Mpoocapupoyh Xauniic TdEne (LoRA), KBavuopévn Ipocopuoyh Xopniic Téine (QLoRA), avamopactdoeis
MZewv (word embeddings), uddnon Aywv mopaderypdtov (few-shot learning), uddnon ywelc napodelypora
(zero-shot learning), ovaxatooxeuvh mhouclov - TEQLEYOUEVOU, ONUAGIONOYIXY AVOXOTAGKEUT, ONUACIOAOYIXY
opoloTnTa, Uovtéha petooynuatiotey (transformer models), pédodoc RISCORE, uddnon evtdc mhauociou
(in-context learning), uoavétniec cUANOYIOUOU.






Abstract

This thesis investigates methods to improve the reasoning capabilities of large language models (LLMs) by
leveraging lateral thinking, focusing on two distinct proposals that address different approaches to enhancing
model performance: the first through fine-tuning and training, and the second through advanced prompting
techniques without additional training.

The first proposal [59] is tied to the SemEval-2024 Task 9 competition: "BRAINTEASER: A Novel
Task Defying Common Sense," [35] where the focus is on fine-tuning transformer-based models using the
BRAINTEASER dataset [37]. This approach involves training models to solve lateral thinking challenges,
such as sentence and word puzzles. By employing lightweight tuning on smaller encoder models and LLMs,
the aim was to surpass baseline performance. A key element of this proposal was transforming multiple-choice
problems into binary classification tasks, allowing the models to explore diverse reasoning paths. The analysis
highlighted the influence of model size and hyperparameters, along with an investigation into the reasoning
cues that lead to model failures. The goal was to enhance model accuracy and reasoning skills, while providing
insights into how LLMs handle lateral thinking problems through targeted fine-tuning.

In contrast, the second proposal [60] takes a different approach by avoiding model training altogether and
instead focusing on enhancing performance through a novel prompting technique called RISCORE. This
method, inspired by the structure of the BRAINTEASER dataset, augments few-shot learning by providing
contextually reconstructed examples of riddles, designed to improve the model’s in-context problem-solving
abilities. RISCORE operates by preserving the original reasoning process while altering the context to offer
a clearer reasoning trajectory for the model to follow. By comparing RISCORE to other popular prompting
methods, the results showed its effectiveness in improving both lateral and vertical thinking tasks without
the need for additional training. This approach highlights the potential of strategic prompting in enhancing
LLM performance, particularly in complex reasoning tasks that challenge common sense.

These two proposals showcase distinct methodologies—one focused on model training and fine-tuning, and
the other on innovative prompting techniques—both contributing valuable insights into how LLMs can be
improved for lateral thinking challenges.

Keywords — Lateral thinking, vertical thinking, Large Language Models (LLMs), fine-tuning, Low-Rank
Adaptation (LoRA), Quantized Low-Rank Adaptation (QLoRA), word embeddings, few-shot learning,
zero-shot learning, context reconstruction, semantic reconstruction, semantic similarity, transformer models,
RISCORE method, in-context learning, reasoning capabilities.






Euyaplotieg

H nopotoo Simhwpatiny| epyacio dev Yo elye oloxinpwiel ywelc v moldTiun unootielen xat xadodnynon
TOAGY oavllpdTwy, oToug onoloug Va Aleha Vo ExPEdcw TNV ELAXELYY HOU EVYVEOUOCOVT).

Apywxd, Vo Hdeho vo euyapiotiow Vepud tov emPrénovtd pou, xadnyntr x.  Ltdpou Iedpylo, yia v
guxonplol TOL UOU TEOGEPERE VAL EXTOVHOW TNV BIMAWUATIXY Lou gpyacia 6to Epyaothipo Luotnudtowy Teyvntic
Nonuooivng xow Mddnong. H xadodnynor tou dev neploplotnxe oto oxodnuoixd mAaioia, ahhd cuvEBahe
XOTOANUTIXG GTNV TROCWTLXY XL ETAYYEALTIXNY Lou Topela, avolyovtag véoug opilovteg mépa and To mhaiolo Tne
oy oMC.

Euyopiotd eniong toug vnodrploue diddxtopee, Iidpyo Puhavdpiavd xar Moagla Avurepaiou, yio ) ouveyh
ouvepyooio xou TNV ouéplotn vroother Toug. Me Ty unoyovh xou Ty xadodriynor toug, ue BorRdncav
vou evToy e oe o DNULOLEYIXY %ol TOROY WYX opdda, dmou améxtnoo TOAUTIWES eunclpleg o yvooelg. H
TEYVOYVWOL TOUG, OE CUVBUAOUS HE TNV BLopaTiXdTNTE Toug, amodelydnxay xooplo TIXES Yiol TNV ETUTUYT
ONOXAAPWON TN DIMAWPATIXAC Hou epyaciag.

Ot gihot pou, xat mAéov cuvdderpol, uhegay TohbTol cuvodotnépot oe autéd to Takidl. Moall avtipetwniooue
xdde mpo¥ANoN XL SUCKOAN TWV TEAEUTHHWY YPOVKV, ol HECH OmO TN CUVERYUC(U UAC XOTUPEQUUE VO
Eenepdooupe eunodla mou @avtalay avurépBinto. H unoothell toug xou 1 xouvi| yoc mopelo Ye éxavay vo
awo¥dvopar 6Tl dev fUouv ToTé pbévog ot auTH TN Bladpouy), AANE Pépog Wag BUVATAC Opddas Tou YolpaldTay TG
Bieg allec xou grhodoliec.

H othpin e owoyévelde pou frav avoppiBora deuehddng. Ou yovelc pou xou o adeppdc Wou, Ue TNV
amEPLOPLO TN QYdTY), TNV UTOUOVH xol TV oxhovntn mlotn ot Suvatotntée pou, nrav wa otadepr mnyn
evidppuvong xon divaune oe xdde Briuo autrc tne Topelog.

Iodvvne Ioavoayiwténovioc, OxtoBelog 2024
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Anédoon tou povtéhou Yo to RiddleSense ypnowonoudvtag Baowéc texvinéc o avogopd. To
XUADTEPO ATOTEAEOUATO CUVORXE elvol emonuoopévo e €vtovrn yeoy?h. o hemtopepy
omotehéopato unopeite va Bpelte otov mivoxeat 116, . . . . oL
Anédoon tou poviéhou Y to RiddleSense pe ypron e pedodou npotponric RISCORE.
H emdoyr pe Bdon v opoldtnta yenowonodnxe yiow TNV emAoyH OAOY TWV OELYUATOWY.
To anoteléopata mou Eemepvolv TN WéVodo Aywv TopadelYHdT®wY UE  ONUACLONOYIXE
TEOUOLL TOPAdElY AT, YENOWOTOLOVTAS ToV (Blo aprdud Mewy, vl LTOYPAUULOUEVA.
Avoutixdtepa anotehéopota pnopeite va Beelte otov nivaxot 1.17. . . . o000 L
Anédoon povtéhou yia to BrainTeaser (Mépoc 1). H mapoucio tou (Q) otn otihn uédodoc
UTOBEXYVEL OTL TAL ATMOTEAEGUATA AVTIOTOLYOUY GTNY XBAVTIOUEVY) EXDOCT| TOU UOVTEROU.

Anédoon povtéhou yia to BrainTeaser (Mépoc 2). H mapousio tou (Q) ot otihn uédodoc
UTOBELXVUEL OTL TAL ANMOTEAEGUATO AVTLOTOLYOUY GTNY XBAVTIOUEVT EXBOGCT, TOU HOVTENOU. .
Anéddoon povtérou yio to BrainTeaser (Mépoc 3). H mapousia tou (Q) otn otihn wédodoc
UTOBELXVOEL OTL TOL ATOTEAECUOTO AVTLGTOLYOUV OTNV XBavTIoUEVY) EXBOaT TOU HOVTENOL.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

1.1.1 TAwoowd Moviéra

To yhwoowd povtéda (I'M) anoteholv unohoyioTixd epyaheiot Tou ypnowomoodvio Yyl Ty TedBhedn 1
™ Onwovpyia avipdnivou xewévou, péow tne Uoviehomomone e mavotntog oxoloudidy Aéewv. Ta
Topodoctoxnd povtéha, 6mwe to n-gram, Booctloviow oe évay otodepd apLiud mpomnyoluevey AEEEwv Yio TNV
TpoBAedn g enduevne, yenowwotoldvTos pla tavotixy) tpocéyylon. otéc0o, autd To LovTéAa Tapouctdlouy
duoxohieg 6tav avtpetwnilovy omdviec 1 adéoatec oxohoudiee Aéewv. T TNV AVTIHETOTON QUTOY TWV
TEPLOPLOUMY, avVamTOY UKoY YAWOOIXA HOVTENA, ZEXVOVTOS UE To VEUPWVIXA dixtua mpéoiiag tpopoddtnong
(feedforward neural networks). Autd ta dixtua yenowonowly evowyatnoec hZewv (word embeddings)
Yoo THY avomapdotaon Twv AEewy eloddou, emiTpénovtag XohUTERN YeVixeuor ot Sedouéva Tou Bev €youv
napatnendel. Xtn oOyypeovn enoyn, To VELEWVIXE YAwooxd Lovtéla éyouv e€elylel tepoutépw Ye TNy Elooywy™
e apyttextovixic Twv Metaoynuatiotdv (Transformers), v onola éyet avaderyVel we 1 xopugaia tpocéyyion
AOY® NG avoTNTC NS VoL poviehonolel TOMNOTAOXES YAWOOIXEC EEUPTHOELS XU OYETELS OE UEYAAES axoroudieg
XELWEVOL.

To Meydha Thwoowd Movtéha (MI'M) eivon eZehypéva poviéda mou Pooilovion otny apyltextovixy tou
Metaoynpatioth (Transformer), n onolo ypnowonotel pnyavioud npocoyhic yio vo poviehorotel eopthoelc
yopele TV avdyxn enovoknmixey dtadxaoldy. O Metaoynuatiotic anotekeitan and dVo xlpla péen: TOV
xwdixomonTy, mou eneepydletal Tig axohoVViEC ELIGOB0L X0l TOV ATOXWAXOTOMNTY, TOU TaEdyEL TL¢ axohoudieg
e€66ou. O apyixdc oyedlaoudc tou MeTaoyNUATIOTH NTOY WE UOVTEAO XWOXOTONTH-UTOXWIXOTONTY TOU
npooptl6Tay Yo TpoAuaTa OTwe 1) unyavixt) uetdppaot. Movtéla 6nwe to BART xou to T5 adlonolody auth
TNV aEYLTEXTOVIXY Yiot TETOOU EIBOUC EQUOUOYES.

Qotéoo, ta obyypova MI'M, énwec to GPT, yenoiwomowoly yio anAoucTELHEVY TEOGEYYIOY, UOVO UE TOV
OMOXWIHOTONTY, TOU ETMUXEVIPOVETOL GTNY auTonahivipoun tedBAedn tou enduevou Buatog, YEYOVOS Tou Ta
xalo T xordhhnha Yo epyooieg, Omwe N mopaywy xewwévou. And tnv dhhn mhevpd, wovtéda énwe to BERT
eQoppOlouY Lol RYLTEXTOVIXY) TIOU TEQLAOUBAVEL HOVO TOV XWBXOTONTH.

Avutéc o opyrtextovixée Tapahhayée — HOVO XWOIXOTONTAS, XWOXOTONTAC-UMOXWOXOTONTAS XAt LOVO
amoxwdomoNTAE — avTXaTonTEi{ouy BLapopeTinés TEOoEYYIoES Tou elval XUTIAANAES Yid GUYXEXPUIEVES
epyaoiec oty Enelepyacio Puowic I'hdoooc (EPT), pe xdde apyrtextoviny vo UTEpEYEL OE SLOPOPETIXS OEVEpLAL

xenhome.

1.1.2 Teyvixég MdOnong

Ou teyvinéc unyovixfic pédmone (ML) unopolv va ta€wvoundolv yevixd pe Bdon tov 1010 Twv Jedopévev
TIOU YpnoylonotolvTan Xatd TNV exmaldevon xou To eninedo emonteluc mou mopEyetar. AuTtéc oL xotnyopiec
nepauBdvouy Tty emPBhenduevr, TN un emBAEmOUEYY) xou TNV evioyuTixh uddnom, xodog xou uPBedixég
TpooeYY(loel, OnMWS 1 NUETBAETOUEVN XaL 1 AUTOETBAETOUEYY Udinom, ol onoleg cuvdudlouv cTolyela OG0
and Tig emPBAenOUEVES 600 ot and TIC Un emBAeToUeveS uetddoug.

Yty emPBhenoyevn pddnom, To povtéla exmawdedovian Ue Eemlonuacuévo Oedouéva, 6mou ol elcodol
avtiotolyilovial oTic oo TéC e€600UC, AMMUTWVTAS CNUAVTIXE CUVOAX BESOUEVLY UE ETIXETESC Ylol TPOPBARHTY
O6TLC N T vouno.

Avti¥eta, n un euPrendyevn pdidnorn Aertovpyel pe un enonuocuéva SeSOUEV Xal €YEL GTOYO TNV avaxdALdn
TEOTUTWY %ol DOV, CUY VA YPNOWOTOLELTOL OE EQUOUOYES OTWC 1) OUADOTIOMNGT| XAtk 1) VI VEUTT) OVWUIUALDY.

H nuemBiensdyevn pddnon cuvdudlet éva uixpd cbvoho Bedouévwy e eTXéTeg Y €val UeYohlTepo olvolo un
EMONUAOUEVWY DESOUEVRV, ETUTEENOVTAC XAADTERT] YEVIXEUOT] OE TEQINTWOELS OTOU TA ETUONUACUEVA DEBOUEVL
elvou meploplopéva.

H oautoemPBhendyevn udidnon ollonolel pn emonuoocuéva dedopéva péow meoxadoploUEVeY EpYIoLOY TTOU
dnwovpyolv emontein, podalvovtog €tol yphowes avoamapaotdoelc.  Auth N mpooéyylon eivon Waitepa
dladedouévn oe topeic 6nwe 1 enelepyasio puohc Yawcoag (EST) xaw 1 6paor LTOROYIOTOV.

Téhog, N eVioY LT UEUINOoT EMIXEVTROVETOL 0TV EXTALDEVCT) TEAXTOPWY Yo TNY OAANAETBpoT UE TO TEEIBAAAOY
TOUG, YE OTOYO T1 UEYLOTOTONGT TN HaxpoTeddeoung avTopoL3ng.
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1.1.3 Pre-Training and Fine-Tuning

H évvoia tou Pre-training xou n évvoia tou fine-tuning etvon 800 xpioiuec teyvixéc otn pnyoviny) uddnon nou
EMLTEETOUY GTO UOVTEAQ VO ATOXTHOOLY TEMTA EVEE(D YVMON amd PEYEAA GUVOAD DEDOUEVLV XAl GTY| CUVEYELD
vo. e€elBIeVTOUY aE ouYXeXpUéva eldn tpofAnudtwy. Katd to pre-training, ta yovtéha extidevian oe tepdoTtia,
abdbunto ohvoha dedouévemy, ouyvd ywelc cagelc etixétec (labels) epyaoidv. Xty Enelepyooia Puowhc
I'éooac (E@T), o epyooiec pre-training, Bondolv to poviéha va uddouv yevixd mpdtuna, 6mme 1 oOviadn
xou 1 onuoctohoyia, ta omolo uropoly vo Yetagpeptoly oe Uiot TowAla UETAYEVESTERKY TROBANUAT®WY. AUty 1
TEY VXY TTHEEYEL OTO HOVTEND Loy LEA VepéAta Xat TN BUVATOTNTA YEVIXEUOTC OE BLAPOPES EPUOUOYES, XAHO TWVTAS
TO WOLTEPA AMOTEREOUATIXG 06U Xo STAY Tor DEDOPEVA OV aPopolY CUYXEXEWIEVY (0T TPoBANUdTLY eivan
TEQLOPLOUEVAL.

To fine-tuning axohoudel tn Swdixacioa tou pre-training xaw mpocopuélel TO TEO-EXTAUOEVUEVO HOVTEAO OE
€Vl GUYXEXPWEVO TEOBANUL, YENOLLOTOLOVTAS €VOL UXEOTERO, ETLONUACUEVO GUVORO dedouévwy. Méow auvthc
e dladxaoiag, To Yoviédo BeATdVEL TNV TEoUNdEYoUcH YEVIXTH YVOOT Tou xou e€eldxebetal oTtny eniluon
Tou ouyxexpévou meofifuatoc. To fine-tuning emitpénel oto poviého va aviyveloel cuyxexpéva potBa
X0 OYECELC OTO DEDOUEVA TOU TEOPBANUITOL, EVE EXUETUAAEVETAL TNV EVRElN YVAOOY TOU AMEXTNOE XOTA T
didpxelor Tou pre-training. Auth 1 pédodog elvon Wiaitepa WPENUN OTAY UTHPYEL TEQLOPLOUEVY SLoIECLUOTHTA
EMONUACUEVLDY DEBOUEVLY, xotOC TO povTERO Eextvd amd Wwa loyuel| Bdon Yvaone Tou YeldVeEL Tov x{vduvo
UTEPTPOGUPUOYNC, EVIOYVOVTOC TNV AnOB0CT) TOU GE VEO XOl Gy VLo T BedouEval.

Ye MEpINTMOoELS OOV Ta DEBOUEVA YLoL Uidt CUYXEXPUEVY epyoaoia elvon meptoplopéva, to fine-tuning yia ™
oUYXEXPWEVT epyaoia 1) TO pre-training TpoCUEUOCUEVO GTOV TOPEN TOU TEOBAAUATOS UTOEEL VoL amoTEAETEL EVal
anoteleoyatiné eviidueco Bua. Me tnv npo-exnoideuon (pre-training) tou povtéhou oe évo GUVOAO JeBOPEVLV
nou oyetiletan oTEVE Pe TNV Epyucia-0ToOY0, TO LoVTENOD €xel TN BuvatdtnTa vo uddel potifa xou oyéoelc eldinéc
yia Tov Topéa ey TNV eqoppoyn tou fine-tuning. Auth 1 npocéyylon Sleuxollvel TNV Tay0TERT TEOGUPUOYN
TOU UOVTEAOU o EMLTUYYAVEL XOAUTERO amoTEAEOPATA xaTd T Bladixacio Tou fine-tuning, agod To povtého
€xer MON extedel oe dedopéva mou oyetilovton pe to mEOPANUa mou xoheiton va Aboet. o mapdderypo, otov
Topga e enelepyaoioc guowic yAdoooe (EPT), to pre-training evéc poviéhov oe yevixd dedouéva, Omwe
n Boanaidela, punopel vo axorovdndel and éva deltepo otddlo pre-training oe Sedopéva evog cuyxexpLUEVOL
Topéa, OTKC Youxd 1) totpixd xelyevo. Auth 1 otpatnyxd BeATdVEL onuovTixd TNy anddoor) Tou poviélou oe
e€edinevyuéveg epyaoieg, xotidg To poviEho €yel o1 exmaudeutel oe dedopéva mou elvor cUVOQT PE TNV TEAXT
epyaotia.

Avutéc 0 ouvduaoude Yevixol pre-training, pre-training yia cuyxexpiuévo topéa xou fine-tuning npoopépet éva
Loy VPG TAUICLO VLol TNV EXTTUEBEVUCT) HOVTEAWY TIOU YEVIXEVOUV XA OE Ohat Tat €181 TpOBANUdTLY, eV TapdhAnia
anodidouv anoteieopatind oe e€eldixevuéva tpoPAruata. Me v adlonolnon tne Yvohone mou anoxthvnxe xotd
To pre-training, o fine-tuning ylvetow mo amoteleopatind xon omontel AYOTEQO DEDOUEVA YL GUYXEXQLIEVOL
TeofBAAuaTa, XxaHhoTOVTIE aUTH TNV TEocEYYLor dUo otadlwy Wialtepa amoTeEAeoUATIXY] O €va vl QPAoUL
EQPAPUOYDV UNYVIXAC pddnong.

1.1.4 Low-Rank Adaptation and Quantized Low-Rank Adaptation

H anodotixf| exnaidevor napopétpwy (Parameter Efficient Fine-Tuning, PEFT) eivon o mponypévn teyvixt,
TIOU OTOYEVEL OTNY TPOCUPUOYT] UEYIAWY TRO-EXTAUOEVUEVLY HOVTEAWY O CUYXEXPUEVES EPYATIES, UELIVOVTIS
TNY XATAVIAWOT Topwy. e avitideon pe tnv mopadooiaxt) exmaideucy), 1 onola anontel TNV evNUépwor OAwY
TWV ToPUUETPWY Tou Wovtéhou, 1 PEFT eotidlel oty mpocopuoyr evog pxpol UTOGUVOROL TUpUUETRMY,
dlatnpddvtoe Tic meplocdTEpEC amd TG TpoLndpyouces mopauétoous otadepéc.  AuTO UELOVEL oNuAvTIXE TIC
AnAUTACELC OE UTOAOYLOTIXY Loyl xan uviuy), xahotevtag T dadixacio extaldevone o amodotixy, Wlaitepa
yior povtéha peyding xhipoxoc. ‘Etot, n PEFT emtpénet tnyv eniteudn udpnifc anddoone ywelic tv avdyxn yia
EXTETOUEVOUS UTOAOYLO TIXOUE TOPOUC, XoHO TOVTOC TN o WBLlTEPR EAXUOTIXT ETMAOYY] VLol TOAAES EQPAUPUOYES.

Low-Rank Adaptation (LoRA) H LoRA (Low-Rank Adaptation) elvou pa xopugala uédodoc amodotinfic
exnaidevone nopapétpwyv (PEFT) nou npocopudlel peydho LOVTEND UE TNV ELCAYWOYTH TLVAXWY YopunAAc TdEng
Y TNV anoixeVsT] YVOONS OYETXAC PE TO TEOPBANUY, Ve Blatneel Ti¢ TeplocdTepes and TIC TUPUUETEOUE TOU
apy o0 povVTELOU oeTdBANTES. AUTO emiTEéNel oNUAVTXY Welwon TNe XeNoNG UVAUNG XAl TWY UTOAOYLOTIXOVY
TopwY, XadloTwvTag duvath TNy exntaideuct ot unyoviuata pe meploptodévoug tépous. H LoRA mpooapudlet
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u6vo pxpolc mivaxes mou oyetiovtan ye to TPéPBANUa, oL omolol TPOGPEPOLY TIC AP TNTES TPOCUPUOYES GTO
povtého yweic va amouteiton evuépwaon tou cuvoiou Ty TapuuéTewy. Ilapd to yeyovée éTi evnuepdivovTal
ToAD Myotepee mapdueteol, 1 LoRA emtuyydvel embdoelc nou elvan ouyxplowes pe exelveg g exnaidevong
OAWV TWV THPUUETEWY, XAHTTMOVTAUS TNV WBovVIXY ETAOYT VLo TEQLBAANOVTA UE TEQLOPLOUEVOUC TOPOUG.

H apdpwth @on g teyvixric LoRA tnv xorhotd ovixn yiot Ty avTipeTdmon TOAATAGY TeoBANudtwy, xadde
eMTEETEL TNV EEYWELOTY amotxeuon TVaXwWY Yo xdide cuyxexpluévo TedBAnua, ywelc vo ennpedletar to Boacixd
povtéro. Auth 1 mpocéyyiom dieuxohlvel T Sadoyxh LddnoT, EMTEETOVTAS TNV TPOCUPUOYT| OE BLPORETIXG
TEOPBAHATO UE TNHY EVAREPWOY HOVO TWV OYETXOY Tvdxwy. Etol, 1 LoRA npoogépet piar e€oupetind euéhnt
xoi amodoTiN ADOT Yiol TNV TEOCUPUOYY| UEYIAWY HOVTEAWY o€ TOANOUC TOUElS, eV MapdAAnia ehaytotonotlel
TN e 0N UTOAOYLOTIXWY TORMV.

Quantized Low-Rank Adaptation (QLoRA) H QLoRA (Quantized Low-Rank Adaptation) enexteivel
v omodotixétnta tng LoRA, evowuoatdvovtag teyvixés xPovtiopod yiol Vo EWOCEL axOun TEQIOCOTERO TIC
AU TACELS UVAUNG Xol UTOAOYIo TN Loy boc xatd Tn Aentopepy| npocapuoyy) wovtéhwy. H QLoRA egopudlel
xBavtion 4-bit ota Bden tou yovtéhou, cuumélovtag to o yaunidTepne axplBelag pop@n, £V TAUTOYEOVA
e€axohoviel va evnuepdvel Tivaxes youniic TaEne yia TpocuproYn ot cuyxexptdéva tpoPAfuata. O cuvduaouoe
™S YOUNAAC TéENS mpocappoyhc xat TNe xBavtiong tewv Bapdy enttpénel T Aentouepy| pUOULOT UEYHAWY LOVTEAGY
pe Sloexatopudpla TOEAUUETEOUS, OXOUN Xal O UAMXS YE TEPLOpIoUEVT uviAun, étwe GPU 12 GB, Swtmpdvtog
napdAAnAc UPNAY) ambddoo).

O Baowég Pehtiotonoioeic tng teyvinAic QLoRA, 6nwg n xBdévtion 4-bit NF4, n »Bdvtion xatd umhox
xon 1 OAY xBévTion, Tpoopépouy onuavTiXy) e€0LXOVOUNCT UVAUNG, Blatnedvtas TopdAAnha LAY axpeifBela.
ITopbého mou 1 exnafdevon npaypatonoleiton Ye younhdtepn axpifeia, To TeEAxd wovtého emTuYYAvel ETBOOELS
oyedbv wodliec pe exeivec towv mopadootaxdy pedddwy exnaidevone. Eva xplowo mheovéxtnua e QLoRA
elvon OTL UELOVEL TN YeHoN UVAUNEG HOVO XoTd TN didpxeia TN exnaidevong, ywelc mpéodeto xdcT0C 1 pelwon
emd60ewy xatd Ty oy wyl cupnepaoudtwy (inference). Autd v xadio té WBavinr Moo yiol TNV XAPEXOGT TNS
AETTOUEPOVC TPOGUPUOYNS UEYIAWY HOVTEAWY GE GUC THUOTA UE TIEPLOPIOUEVOUC THEOVS, TPOCPELOVTIS ATOSOTIXN
exnaldevon ywelc cuyPBacuolc otny anddoo,.

1.1.5 ’‘Evvoia tng Ilpotponrc

H ITpoteony (Prompting) anotehel po onpovtixnd ooy ot unyovixs; péinot), LETaXLVOVTOS 10 ERiXEVTPO
and Ty mopadoctaxy, udinon ue eniBredmn oe wa pédodo mou ofionolel yeydha TEO-EXTUSEVUEVE YAWOOIXA
povtéha. Avti ta povtéha vo extoudebovTal Ue emtonpaouéva dedouévo Yo vor TpofAémouy Tig e£680ug and TiC
£lo6d0ug, 1) udinom Ue TpoTEOTES UETATEETEL TIE EL00B0UE ot 0dnyies (npotponéc) mou xadodnyoly To YAwoowxd
povtélo va mapdyel Ti¢ emuuntég e€68oug. O mpotponéc autés oyedidlovtal Ue xatdhhnha xevd 1) evoellelg,
“ote 1o poviého va "ouumhnedoel" ti¢ TAnpogoplec mou Aelnouy, pe Bdomn TNV eXTEVH TEO-eXTAUBELGY| TOU XoL
TNV XATAVONON NG YADCSHS.

Avuti| 1 tpocéyylon EMTEETEL 6TA YAWOOIXA HoVTERX Vo TpocdpudlovTal Yeryopd o€ VEo TpoBARaTa, cUYVE UE
eNdyotor dedopévar, xou eivon Wiodtepa amotelecuatxnd yio uddnon pe Alya # xaddhou nopadeiypota (few-shot
xau zero-shot learning). To povtéha aflonolodv T yevxh toug yvoon and v exnaideucy| toug o poalixd
oUVORL BEDOUEVLV XEWEVOL, TAPEYOVTAC EVEAXTES Xou amodoTés AUoelg ot mAfiog eqopuoydy yweic T
VYA EXTETUUEVNG EXTOUBEUCTS amd TNV oEYT).

1.1.6 Teyvixég Ilpotponrg

H emhoyn xou e€epedvnon xatdhAnhewy TeoTeonMY, 0oL Ta LoVTEAX UTopolv Vo uddouv véeg epyaaieg povo Yéow
EVIOAOY QUOIXAC YAWOGGUC, €xel Tpotadel xou Ypnotwonomiel eupéws oe ToAES eqapuoyéc. Optopéveg and Tic
o YVOOoTéC uetddoug mepthopfBdvouy Ty expdinor yowelc mopadelypata, Ty exudinon ye éva topddelyyo, Ty
expdidnon ue Alya napadelyporta, xododg xou Ty Tpoteony| e ahuaida cUANOYLOTIXNEC UEYPL TO TEAMXS ATOTERECUOL.

Mndevixd napadeiypata (Zero-shot Prompting)

Ty ey pe undevind mapodelypato (zero-shot prompting), to povtého AouBdver aneudeioc pior odnyio
el va Tou mapéyovtar mapadelypotoe. To poviélo yenolwomolel TNy mEo-eXTUBELUEVT] YVHOY TOU YLo Vo
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1.1. Bewpnuxd TndBadpo

oloxAnpdoel TNy epyacia Pactopévo poévo oty odnyia.

"Eva ntapdderypo (One-shot Prompting) % Aiyo nopadeiypoata (Few-shot learning)

H teyvi ye ypfon evéc napodelypatoc (one-shot learning) xon n texvixf Aiywv mopaderypdtov (few-shot
learning) enextelvouv auTH TNV TROCEYYLON ToEEYOVTUC €V 1\ TEPLOCGTERA TOPADELY AT 0TO WOVTENO. LNy
expdinoy evée mopodelyHaTog, TO HOVTENO AouPdvel éva udvo mopddelypa TS epyaoioc.  Xtnyv expdinon
Myowv mopaderypdtwv, 610 Yoviélo mopéyovton molhamAd mopadelypata (ouvidoe k mapodelypota) Leuydv
€106d0U-e£630U (epdTNom/TEpleyOUeEVO xou amdvinoT), axohovdolueve and pa véo eloodo (dhutn epdtnom)
yioL TNy onola To HoVTERO xohelton var tapdyet TV xotdAnAn €€080 (andvinon).

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure 1.1.1: (a) Mrndevixd napadeiypota, (b) Eva napdderyua, (c) Alyo napadelyporta [§]

Ta mopoadelypoTa Yot TG TOPUTEVG TEYVIXEC UTOPOUY VoL ETUAEYOUV UE BLAPopo XpLThpLoL:
o Tuyala emAoyn: Ta napadelyyota unopolv va emAeyolv Tuyala and To Bedouéva exnaideuoTg.

o Ynuactoloyixy opototn T Mropoldy va entheyoly Tapoadelydota Tou Vol GNUICLONOYIXE ToROUOLL
ME TN VEX €pOTNON 1 TO TEOBANUAL, XoOdNYDVTAC TLO ATOTEAECUATIXG TO UOVTENO.

o ITowcthopoppio: H emhoyr evioc nowihou gpdoyotog nopodelypdtwy propel va Bondfoel to yovtéro
VoL YEVIXEVOEL XohOTEPX OE BLUPORETINES ELGAHBOUG.

IMTopadeiypata pe Uropdn Tne cLANoyLoTXh s Topeiag (Chain-of-Thought Prompting)

H npotpony| pe napdderyua mou mepiéyel xou Ty oukhoyiotny| topela (Chain-of-Thought Prompting) elvon o
uédodoc xotd tnv onola To Yovtéro xadodnyelta yéow wac ahhnhouylog eviiduecwy Prudtwy cuUALoyIouoU.
Avuty| 1 mpocéyyion €yel anodetydel 6Tl BEATIOVEL GNUAVTIXG TNV IXAVOTATO TV UEYEIAWY YAWOOXOY HOVTENWY
(MI'M) va exteholv obvideto Buata culhoylopol, eviuppivovTac To HOVTENO Vol avolDeEL Tal TpoBAAUAT OE
uxpdtepa, dayetplota PhAuota [87].
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Standard Prompting Chain-of-Thought Prompting
- Model Input \ ~~{ Model Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11, The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

j Uo they have?
_/

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 +6 = 9. The

answer is 9. 4/
/

Model Output

A:The answer is 27. x

Figure 1.1.2: TTapoadelypato e Onapln tne culloyiotic topelac [87]

1.1.7 Teoappixdg Teomog oxeédng xow AvIiicupPatixdg - ArNULoveYixog
Teomog oxEPNg

Ly Enegepyacio Puoixhc I'hwooac (NLP), n ouhhoyiotixd eivar Lotxic onuactag yio to cuotiyarto
(OOTE VA TPOYWEHOOLY TERX AN TNV XATAVONOY) EMLPAVELNXOL ETTESOL Xxou Vo emituyouy Baditepn xatavdnon.
Evé ta Meydha M'hwooixd Movtéha (MI'M) eivon ntohd ixavd oe taidog npoAnudtmy, ot ixavétntée
TOUG Yl CUAAOYLOUO ElVOL TEQLOPLOUEVES, TEOXAAWMVTUC CLULNTACELS OYETXE HE TO, OV TEOYUOTLXG SUVOVTAL Vol
Yenowonoioouv culhoyioud, yia vor odnyndolv oty andvinon R anhode aropvnuovebouv potifo [18, 4, 39,
98, 72, 81, 21, 97]. T vo evioyudody oL aVOTNTEC CUNNOYLOKOD QUTAY TWV LOVTEAWY, ElVoL onuavTixd vo
diepeuvnioly dVo tinol oxédne: o T'poppixnodc xa 0 AvTioLpPatixdc - Anuioveyixdg xodévoe and
Toug onoloug e€unnpeTel €vay povadixd pdho oty enilucT TEoBANUdTwY.

TF'eoppixn oxédr otn cuAhoyioTixn

H Teoppixny oxedm axohovldel wa Aoyiny, yeouuxr npocéyylon otnyv enthuon npoBAnudtwy, Booilouevn
oe xarhepWPEVOUC XAVOVESC Xou OF ETAYWYWoUS cUAoylouole. Elvow anoteleopatixn 6tav ol oyéoeig Yetalld
TV VToYéoEwy, Twv dedopévwy elvar cogelc, emtpénoviac oto Yovtéha va encéepydloviol GUOTNHATIXG TA

rpofhfuarea B ieos B
Do mopddetypa, mdpte Tov Yplgo:

«O Popaiog kar n Iovdiéta keitovtar vekpol oto ndtwua €vés dwpatiov. To dwpdtio eivar tekeing
oteyrd, aAdd vrndpyer onaouévo yvali oe kovtivn anéotaon. Ildg nédavay;y

«O Popalog xau 1 Touhiéta xeltovtan vexpol 6to mdtwpa evég dwyatiov. To dwudtio elvon tekeiwg oteyvo,
oAAG uTdipy el oacuEvo Yuahi oe xovTivi amootaot. Ilog nédoavav;y H ypouuxn oxédn Yo avélue cuotnuotind
Ny xatdotoot, vnotétoviac 6t o Popalog xon 1 Touhiéta eivon dvipwnotr xan ectidlovtoc ot mbavée autieg
Yavdtou e Bdor ta Yvwotd yeyovota. QQotéo0, auth| 1) TeocEyyior odnyeito oe abié€odo, 6Tav To TEOBANUA
amoutel oxédn mépa amd Tic cupPatixés UTOVECELS.

AvtiouuBatixy - Anupiovpyixy ox€dn oTr CUANOYLOTIXN

H AvTiovpBoatinn oxédmn, and v dhhn mhevpd, eviuppdvel Tn SNULOLEYIXOTNTA XOL ATOUAXPUVETHL ON6 TG
TuTéc Tapadoyéc. tov (Blo yelgo, évac dnutovpyinde Tpémoc oxédng amoxohintel 6Tt o Pwpaiog ot  Ioukiéta
elvon oty mparyportixd o Pdpto xou médovary eneldr) éomaoe 1 Yudha Toug (€€ ou xaL TO OTUoUEVO YUIAL). Auth
n avtiovuPotinr Aoon opgloBntel v unddeon 61l o Pwpaiog xou 1 Tovhiéta eivon dvidpwnot, enttpénovtoc pio véa
e€nynomn. Autéd to eldoc oxédmne hoindy eudoxipel dtav ol tapadootaxéc hoYés TpooeyYioelC anoTuYYdvouy,
evidopplvovTag Toug A0Teg TPOPBANUATGLY VO EMAVATEOCOL0RIO0LY TNV XUTIoTAOT Xt Vo Bpouy BUOXOAES oL
dnulovpyixéc cuvdéoels PeTadh TwV dedopévmy Tou TEoBAAUUTOC.
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1.2. Tlpotewoépevn Médodoc 1 - SemEval-2024 Task 9

Aropopég xat eQaproves tne Fpoppixnc xow tne AviicLpPBatixg - AnUiovpyixic oxédng

O vypauuwde xan o avtioupPoatixde teomoc oxédng elvar moAdTol, odAd Toupldlouv oe BlapopeTixd eldn
npoPAnudtewy.  H ypopuixd oxédmn elvor Bavixr} yio epyaciec mou oamoutodyv auotner Aoy xan eEoywyn
CUUTEPAOUITWY, EVE 1) ONUOLEYLXT) OXEPT UTEREYEL OE XUTAO TACELS TOU OmAlTOUY EVEAELA Xol SNULOLEYIXOTNTA,
WBiwe dtav o apyrée napadoyéc unopel va naparhavicouy. Ntnv Enelepyacia Puoinic Ihdooac (EPT), o
oLVBUOOUOE XL TV B0 HOp(HY GUANOYLOUOU eVIGYVEL TIC IXOVOTNTEG TWV HOVTEAWY Vol ovTeTwRilovy éva
gupl QAouo TEOBANUATWY, OBNYWVTAG OTNY EUXOASTEEY ETAUGTY TOUG.

1.2 Ilpotewdpevn Médobdog 1 - SemEval-2024 Task 9

IMopoucidlovye v mpoTach pog vy to SemEval-2024 Task 9: «BRAINTEASER: A Novel Task
Defying Common Sense» [36], n omola éyel yivel dext| i to ouvédplo SemEval 2024 [59]. Eotdlouue
ot Behtlwon Twy emdOoEWY TV YoVTEAwY Tou Pocilovial OE UETAOYNUOTIOTES OE EPYUOIEC W1 OElplaxhc
ovlhoyloThc Topelog, oto Yro-IlpdBinua A (nalh oc dopf mpotdoewv) o oto Yro-IlpdBinua B (nalk
MZewv), péow TN exmaldeuomg Xt NG AvIAUONG TWY BUVITOTHTWY GUALOYLOUOD TWY LOVTENGV.

Algpeuvolpe Ny enldpaon tou pey€dous Twv HOVTEAWY, TV TeXVxGOVY fine-tuning, xadoc xou T emdpdoelg
BLaPOPWY UTEPTUPAUUETOWY, TEOXEWEVOU Vol ETUTOYOVUE ovTAYwVioTixd anotehéopata. Emmiéov, mopéyouue
TANEOYORIEC Yiol TO TS Tal YovTEéR BlaryelpllovTal TEOXAAOELS GUANOYLOUOU Tou avTimapatidevion oTny XoLvy
hoyunn.

1.2.1 3uvelwcpopég

1. Exnoideuon 1600 oe puxpd poviého 660 xa ot Meydha I'hwoowwd Movtéha (MI'M), Eenepvivtog Tig
Baowég embooES avapopds.

2. Metotpon twv npofANudtoy Tolhanhédy emhoy®y ot mpoPAfuatoa duadxic talvdéunone (tedBinua
Ywotol - Addoug).

3. A&ohdynom tne andboong Twv Yovtéhwy e Bdon TNV Tpolndpeyouca YVHGN Toug 1 TNV eunelpia Toug o
TapouoLoL TpoBARUTL.

4. Avéluorn Twv TEQITTOOEOY anoTuylag Yot THY XATAVONoY TWV TREOXANCEWY TOU TOEOUGLELoUY oL un
oelplaxés CUANOYLOTIXEC Topelec.

O %xddixdc pac elvon dradéoioc oto GitHub £86.

1.2.2 Mé&Jodot

H npocéyyion pog emxevtpoveton ot diadixacio fine-tuning yhwooudy poviéhwy oe 6o Poaoixéc xatnyoplieg:
HOVTENX XWILXOTOLNTA U REYEAA YAwSoixd Lovtéla (MI'M). Apywd, epopudlovye fine-tuning
o TopoAhayéc povTEA®Y xwdixorownTy, énwe 1o BERT [14], RoBERTa-large [52] xow DeBERTaV3-base
[29], yenowponowdvtas olvola dedouévey Tou Tepthaufdvouy Tpoxhhoels culhoyilopol, Tépay tou BrainTeaser.
IewopotilldPaoTte TOCO0 PE TNV ToEUBOOLAXT] LOPPY TOAAATADY ETLAOYEY OGO XL UE TNV TEOCUPUOY T OE TEdBANUL
duadinic Tadvounone (Ewotol - Addouc).

Y1 ovvéyewa, epopudloupe fine-tuning ota MI'M, 6nwe ta Llama 2 [79], Phi-2 [26], xou Mistral-7b [34],
ouyxplvovtoc Tic emdooelc Toug oe dldpopa YeyEldn poviéhwy, xadng €yel amoderydel 6Tl To uéyedog Tou
povtéhou emnpedlel Tic xavdtntee culhoyiopol [79, 86).

MovTéla xwdixonointy

Tt povtéha xwdxonomnty, allohoyolue téoo Tic exdoboelc vanilla (apywée exdboeic) 6o0 xar TiC
TEO-EXTIUOEVUEVES OE GUVOAA BEBOUEVLVY x0WVAC AoyixhAc Tply amd 1 dadixactio fine-tuning oto BrainTeaser.
O mpo-exnoudevpévec exdéoeic mepthopPdvouy 1o BERT-SE!, RoBERTa-WNGRD? xa DeBERTaV3-TS?,

1 JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b
2DeepPavlov/roberta-large-winogrande
3sileod /deberta-v3-large-tasksource-nli
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Ta onola €xouv TPoNYoLUEVLE Tpo-exntandeutel ot clvoha dedopévev 6mwe to CommonsenseQA [77],
WinoGrande [68], ai2 _arc [10], Physical Interaction (PIQA) [6], Choice of Plausible Alternatives
(COPA) [22], xoddc xou To cvvoho dedopévwy SemEval-2020 Task 4 [84], mpoxewévou va evioyudoldv ot
IXOVOTNTES XOWVAC AOYIXAC TWV UOVTEAWV.

Avtr) 1 pedodoroyio pdc emtpénel vor cUYXEIVOLUE TIC ETUBOTELS TV UOVTEAWY TOGO OE UXUTERYUOTN UOP@N
600 %ot 6TaY €YOLV EUTAOUTIOTEL UE ETUTAEOV YVWOELS, BIEQEUVAOVTAS £€TOL TOC 1) TPO-EXTADEUCT, OE BEBOUEVL
xownic hoyic ennpedlel T cUAROYLETIXY Toug ambdoon oe clvietes epyaoiec 6nwe to BrainTeaser.

INo 1o medBinua ye dour) TOAOTAGY ETLAOYGY, aVTHETOTIooUE Xdle p®TNoY we TEdBANUA 6ToL TO YOVTEAD
énpene vo emhé€el pla owo T andvinor and téooceplc dladéoluec emhoyég. Auty 1 mpocéyyion evidppuve T
dnuwovpyxy) oxédmn Tou povtélou, xodne énpene vor ovaAOoEL OAeC T EMAOYES TauTOYpOVAL Yo Vo eTUAEEEL
™ owoT andvtnon. Amd v dAAn mhevpd, N pvduion Suadixrc tadvounone (Lwotol-Addoug) uetétpene
x&de epdtnom oe wa oepd and duadixéc amogdoels (owoth ¥ Aavdoouévn amdvinor). Qotboo, auth 7
uédodoc anédwoe uTodeéotepa anoteAéopata, XM To LovTéha BuoxohebovTay vo agloAoYHooLY TiG EMAOYES
HEUOVOUEVA, OBNYWVTAS UAC Vo ETLO TEEPOUPE GTNY apY X)) TROGEYYIOT) TOAATADY ETLAOY V.

Me~vydra T'hwooixd Movtéro (MI'M)

Me v teyvix| fine-tuning, exnoadebooye MI'M teleutalac teyvoloyloug, émwe ta Llama 2, Phi-2 xo
Mistral-7b, oe npofAfuato toAAAnAOY emhoywy. To yovtéha autd meoteénoviay v Tapéyouy oyt ubvo tnv
amdvtnom, oAAd xou pror € ynon xatd T ddpxeia g dtadixacioc ene€ynone. Auth 1 npocéyyion Pektiwoe Tic
EMBOOEL TWV UOVTEAWY, ATOXUAVTTOVTOS TOREAANAC AOLVOIES GTT CUANOYLOTIXT| TOUG.

Hewpapatiotixaype enione e dagopetinés unepnapopétpous LoRA, énwe ou twée r xou a (16, 32, 64, 128),
npoxelévou va Bpolue Tov BéATioTo cuvduaoud yia TS cuyxexpluéves epyaoiec. Ileplocdtepec Aentouépeleg
OYETIXAL UE TLC UTEPTUPAUUETOOUE Xl TIC LOLLTEROTNTES TWV TEYVIXWY TEOTEOTNE Tou Yenoydonotidnxay, unopeite
va Bpeite otic evétnree 1.3.4, 1.3.4, 1.3.3.

1.3 Ileipopoatind Mépog - SemEval-2024 Task 9

Ac¢ eZetdooupe Tov mopaxdTw yeigo:
«Iloiog Evpiler kdOe pépa aAld eEaxolovlel va éxer povo; "

H oandvinon, «Evag xoupéagy, avadeixviel évay avTLoLVBaTind Tedno oxeEPng, o onolog npoxahel Tig
apyéc mopadoyéc. MTny mepintwor auth, unodétoupe 6Tl o xoupéag Eupllel Toug dAhoug, ahAd Biatneel To
dixd tou polol. Autdc o TOTOC Un Yeouixhc xou dNwovpYxic cUANOYLOTXNG lval XEVTELXOS GTOV dlary VIoUd
SemEval-2024 Task 9, ye titho "BRAINTEASER: A Novel Task Defying Common Sense» [36],
mou adloloyel TNV wovdnto Twv Meydhwv I'woowxdvy Movitéhwv (MI'M) 1660 otn yYeoUpixr
oxédr (hoyu culhoyiotxf) 600 xau oTn dnrLoveY XY oxédr (Snuovpyixd eniluon tpoPAnudTey).

Ta melpduatd pag emxevipovovial oty evioyuon twv emdécewy twv MI'M péow teyvixdv Aentouepoiq
pOdulone (fine-tuning) xon pddnone petagopds (transfer learning). O Siaywvioude nepthauBdver d0o Baoixd
unonpoBAfuorta:

1. Tro-neoPANua A (nalN oe poppy npotdoewv): IlpofMuata mou amoutodv Aoyixh xou
onulovpy| oxédn oe eninedo npoTdoEWY.

2. Tro-npoBAnua B (malN AéEewv): Ipofhpata ot eninedo héZewv mou amoutolyv Ty epunveia
TOMNATAGY EVVOLOY X0k EVUAAOXTIXGY OTTIXV.

To nelpduatd pog oToxedouvy Vo AnavTACOVY oTol EENE EPEVVNTIXG EQWTHUOTAL:

e EE1: Mnopel 1 teyvixn fine-tuning ye tn yerion cuvornv dedouévev nou oyetilovtal Ye Tr GUAAOYLETIXY
VoL BEATIOOEL TIg oV TNTES dNWOLEYXNS OXEPNS TV LOVTEAWY, CUYXELTIXA UE TNV ATAT] XPHOY) TROTEOTY;

o EE2: Il unopgel 1 uddnon yetagopdc vo evioyoel Ti¢ emdooelc twv MI'M oe mpofAvjuota Snuioveyxrng
Xl YROUUIXC CUAAOYLOTIXAG;
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Auto To xe@dhouo eletdlel g to péyedog tou yovtéhou, 1 mpo-exmaideuot xou ol teyvixée fine-tuning
ennpedlouv Tic embdoelg twv MI'M, napéyovtoc onuovtixés mAnpooples yior T BeAtinon Twv xavoThTevy
TOUC 01 ONoVEY W oxEPn xaL TNy enfAuon PN TapaBocIIX®Y TEOBANUATWY.

1.3.1 X0Ovolo Acdopévwy xow Metpuxég
YOvola Acdopévmy

To mpdPinua mou ewdyetaw ond to BrainTeaser SemEval-2024 [38, 36] amoteleiton and ypipouc mou
yeewdlovton avtioupfBoati oxédn xo napovoidlovion v epwthoelc tohhamh e emhoyhc (QAs), pe téooeplc
emoyéc: Wl owoTh andvinorn xou teelc havdaopéves (anonpocavatolopols), cuunepthapBavouévou Tou
«Kovéva and ta mopandver. To mpdfinua yweiletar oe dVo empépoue vro-npofAfuata: Y o-ntpdBAnua
A (rollN mpotdoewyv) xu YTro-nteoPAnua B (talh AéE€ewv).

Emnmiéov, 10 cbvolo Bedouévmv mepiéyel mapohhay€s Tou dnuiovpYriinxay TEOTOTOWOBVTAS TOUG apylxolg
yelpoug, SlatnewvTag dune T (dla povondtia cuiloylopol. Ol tpononoloelg tepthouSdvouy:

1. dnpooctoloyiny avaxataoxevy): Enoavadtinworn tng epodtnone ywelc vo tpomomololvial ot
omavTACELS 1 OL AmoTPOCAVATOAG TiXéC AaviaoUéves anavthoels (. napdpeoon Tne epdTnong).

2. Avoaxataoxeun tepleordésvou: Aoy Tou Tepleyopévou - Thatoiou Tou Yplpou dlatnedvTag Ty
apy ) cUAOYLoTIXY Topela yior TNV €0pECT TNG AMAVTINOTG.

Kdde delypa dedouévev mepthopfBdver tTnv apylxr, TN ONUACIOAOYIXH 0L TNV OVUXATUCXEVICUEVY O TAALoLO
exdoy” tou Blou yplpov. Eva mapdderyuo autdy Tomv TRTAeTdY Tapovotdleton otov mivaxe 1.1.

Question Choice
Original
A peanut.
What kind of nut has no shell? A doughnut.
A walnut.

None of above.

Semantic Reconstruction

A doughnut.
Which nut doesn’t have a shell? A walnut.
A peanut.

None of above.

Context Reconstruction

A fire bell.
Which type of bell doesn’t make a sound? A cow bell.
A bluebell.

None of above.

Table 1.1: Anewxdvion tng douric Tou cuvdrou dedouévmy xdie empépous epyaoioc, dmou napouatdleton 1
apy ) 0 Awaon woll ye tig Vo avaxataoxevéc . Ot owotée anavtioels TopouoldlovTal UE EVTOVT Y RPN

Yro-npoBAnua A: ITalA npotdoswy Xe auth tnv unoepyasia, to {edyn npotdoewy elvan oyedlacuéva
€tol Mote va elvor e0x0Aa Yo Tov dvilpwno va Ta AUoEL, ahhd dhoxola yio to cusThata. To obvolo exnaidevong
nepiéyel 169 ohvola epwTAoEWY TOAATANC EMAOYNG, UE ONUACLOAOYIXES X0 CUUPPOCTIXES UVUXAUTUOEVES, UE
anotéleoya Vo tpoxinTouy cuvohixd 507 epwthoels (3 x 169). Ilupadelypora autdv TV Yelpnv TEoTdoENY
TopEyovTon oTov mivoxo 1.2 (aplotepd).

Yro-npoBAnuo B: ITalA AéEewv Auth 1 unoepyaoio nepthopfdvel yplpoug AEewv 6mov 1) amdvnom
Baoileton otn obvieon g AéEng xa Oyt oty npoemheypévn onuacia te. To obvolo dedopéverv nepthopfBdve
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132 clvorat QA TOMOTAGY ETAOYODY, UE ONUAUCLONOYIXES X0 OVAXOTUOXEVES TAatolou, cUVoAxol aplduold
396 QA (3 x 132). Avutol ot ypigor mepthopfdvouy Aoyonaiyvia, opdpmvo xou dipopoueves Aé€els, Vétovtag
TPOXAACELS TOGO Yol Tot cUGTATA 600 xou Yl Toug avidpdroug (BA. mopadelypota otov Hivoxa 1.2, Selid).

Sentence Puzzle Word Puzzle

Question Choice Question Choice
He is a barber. Cabbages.
A man shaves everyday, yet keeps his beard long. He wants to maintain his appearance. ‘What has toes but no feet or legs? Tomatoes.
He wants his girlfriend to buy him a razor. Onions.

None of above. None of above.

You go to the doctor because you're sick, One and a half hours. Sea-plus.
every half hour. How long do the drugs An hour. Very-Good.
keep you going? None of above. None of above.
Once. The letter T.
How many times can you deduct 10 from 1007 Infinite time. What’s the beginning of an argument? The letter A.
Twice. The letter U.

|
|
\
\
\
|
\
and he gives you three medicines to take Two hours. ‘ What did the little lobster get on its math test? Very-bad.
\
\
\
\
|
|

None of above. None of above.

Table 1.2: TTopobdelypata epwthoewy mou anexoviCouv xot ta 500 EmEPOUS UTO-TEOBANUATA, OOV Ol GLOTES
anavthoel topouctdlovial Le eévtovn yeapr. To napadelypota ota aplotepd agopolv To uTo-mpdfANUa
A: Halk mpotdoewy, evedd exelva ota de€id avtiototyolv oto vro-mpdfAnua B: Halk Aééewv.

JtatioTixd otolyelo SESOUEVLY

To cUvolo dedopévev yweiletou o chvoha exntaldeuone, avdnTuEng (Tou yenouorololvTto xatd Ty e£doxnon)
xot xpu@d ovvola doxiudyv. To otatiotixd otolyela Twv dedopévwy cuvodilovtar otov nivaxa 1.3. O nivaxag
XAUTATUENG TOPEUELVE XPUUUEVOS XOrTd TN SLdpxela TG paong agloAdyNnong.

Sub-task ‘ Train ‘ Dev ‘ Test
A - Sentence Puzzle 507 120 120
B - Word Puzzle 396 96 96

Table 1.3: Ytatiotd otouyela dedouévey.

Merpixég
Kou tat 800 uno-mpofifuarta aglohoyolvto Ye 0 yerion e axeiBeiag Yéow dU0 BLapopeTIX®Y TEOCEYYIoEWY:

1. AxpiBeia pe Bdom tnv nepintwon: Auth n petpxry oforoyel xdle €p®dTNOY UEUOVOUEVQ,
CUUTERLAUBAVOUEVLV TWV JEYIXDY EPWTACEWY X0l TWV CTUACLOAOYIXMY Xol TACUGLUXDY UVOUXATUTHEUDY
toug. H axpifeia pe Bdon v nepintwon napéyel Aentouepelc TAnpo@opieg ylo TNV IXAVOTNTA TOU HOVTENOU
VoL ALTLOAOYEL BLOUQPOPETLIXG GEVAPLAL XL VO ETUAVEL ATOUXES TIPOXANCELS UE OWO TH AOYIXY.

2. AxpiBeia pe Bdom tnv opddo: Aut 1 uetpixr| 0lohoyel oudBES TELDY CUVIPLY EpOTACEWY (oEYIXES
EPWTACELS, ONUACIONOYIXES OVOXOTUOXEUES X0 OVOXOUTUOXEVES TepLeyouévov). "Eva povtého xepdilel
Baduoroylo 1, uévo av Aioel cwotd dAeg Tic epwthoelc evide tng opddag. Auth 1 Uetpin)| mopéyel
HLOL TTLO GUYVOALXY| ELXOVAL TNE OmOB00MNE TOLU LOVTEAO, avaBeEXVOOVTAS TN o TadepdTNTal TNE CUANOYIO TIXTG
Tou ot BlaPopETIXG TAaioLaL.

Yuvdudlovtag v axplBela pe Bdon v mepintwon xou v oxpeifeio ye Bdomn v opddo, autég ol YeTpxég
TEOGPEPEOLY Lol ONOXANPEWUEVT] aLoAOYNOY TNE XoVOTNTAC EVOSG LOVTEAOU Vot YeLplleTol TPOXATOELS U1 CELOLOXEY
GUANOYLOTIXY TIOPELWY Xal dntoupYenc oxédne xou ota 5U0 LTO-TEOBARUATA TOU BlaYWVIGHOU.

1.3.2 Movtéla wg Avapopd

INo ta 800 umo-mpofiuata tou BRAINTEASER, yenowonouooue tpla Baoxd poviéha o¢ ovopopd:
Human, ChatGPT, xo« RoBERTa-L. Autd ta povtéha aiohoyiinxay ce pop@| TOMATAGY ETAOYOV
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ywelc va éxouv utofindel oe dadaoio exnaidevorne (fine-tuning). To Booixd poviého avdpdTou hertoupyel
S TO dve OpLo aVaPOEdS, AVTITPOCWTEVOVTAS TNV LWBavixy anddoan oty extéleor g epyacioc. Avtideta,
o ChatGPT xot RoBERTa-L yenotponodnxoy we autolotononuéves Yeaupés Bdong yio tn U€tenon tTwv
emdooEWY Ywpelc Tponyoluevn npocopuoyy 1 fine-tuning.

Ytov oyohooud Twv anotehecydtoy, ol Baduoloylec avapopds Yo emonualvovTol Ue YXEL XPOUA, (OOTE Vol
dleuxoAbVeTAL 1) oUYXELOT| UE Ta LOVTEAX Tou €youv unooTel fine-tuning. Autéd Vo xatadeinviel Eexddapa Tov
avtixtuno tne teyvrc fine-tuning oty anédoon twv MI'M, avadeixviovtag Ti¢ BEATIOOELS TOU EMPEREL OTNV
avotnTa enfAvong twv npoxifioewy tou BRAINTEASER.

1.3.3 Aentouépeieg Ilpotponrg

Eb®, mopéyoupe plol OAOXATPOUEVT ETLOXOTNGTY TNS TEOTEOTNE TOU yenolponoiinxe ue cuvémelo xo’ OAn
N ddpxela e teyvixhc fine-tuning twv MI'M, 7 onolo tehixd 0d¥ynoe otn Bértiotn anbédoon xou ota SO
uno-tpofAfuate.  To MI'M BSiepeuvrinxay amoxhelcTxd ue T pop@r moAlamhic emhoyng, xadwg outh 1
pLYWOT TEOCEPERE TO AMAEALTNTO TANICLO AVAPOELXS UE TO TEPLEYOUEVO Kol TIC TANEOPORIES Yol T GUAAOYIO TIXT
HECL TWV TOPEYOUEVODY ETAOYOY. ALUTNEMOVTIC TN GUVERELL GTY) SOUY TWV TEOTEOTWY XATd TN JLdpXE TNS
texvhc fine-tuning, unopéooue Vo eVioUGOUUE ATOTEAEGHATIXG TNV XAVOTNTA TWV HOVTEAWY Vo yelpilovton
TNV TOAUTAOXOTNTA XAl TV 800 UTO-TEOBANUATWY , 08NYWVTaG ot BehTiwuévn anddoon.

System Prompt:

Below is an instruction that describes a multiple choice task. Answer the following multiple choice question by giving
the most appropriate response. Answer should be one among options provided after the question. Select the most
suitable answer while making the necessary assumptions. Give only answer and a short explanation of two or three
sentences. Nothing else.

User Prompt:

Question: {question}
1) {a}
2) {b}
3) {c?
4) {d}

Answer:
The correct answer is: {label}) {answer}

Axoloudel 1 ene€riynon xdle nopoauéteou oL YeNOoWOTOLELTOL GTNY TEOTEOTY TOU YEHOTN:

e question: Auty 1 UeTAANTH AVTINTPOCWTEVEL TNV TEAYUUTIX €p@Tnon mou Tédnxe oTo UovTEo.
Xernotuetel we 1 xdpla elcodoc yio TNV onold To OVTEAO TEENEL VO OXEPTEL X0 VOl TIOPAYEL Lol XATAAATAN
andvINo.

o {a}, {b}, {c}, {d}: Avutéc o petofintéc avtiotoyoly otic téooepic TdavEC EMAOYES AMAVINONG
nou mapovatdlovton Yo xde epdTnoT o LopeY ToOAATAGY emhoywy. Kdde emhoy cuvdéeton pe éva
oprdunTind avayvoptotind (1, 2, 3 1 4) xou avTitpocwrelel Wio ZeXwELoTH EMAOYY| Tou unopel vor eThEgel
T0 JOVTELO.

e {label}: Authnuetafint dnidvel Tov aptdpd (1, 2, 31 4) nou avtiotouyel ot 6wt emhoyy andvinong
HETAED TWV TECOEPWY TOPEYOUEVLY eAOYOVY. Aclyvel To delxtn g owothc emhoynic.

e {answer}: Auth n petofBAnti nepiéyer 1o xelyevo e ocwothc emhoyhc andvinone. Avtuotouyel oto
nepleyopevo e emheypévne ocwothc emhoyic (eite {a}, {b}, {c}, ¥ {d}) énwc npocdiopiletar and v
ETXETAL

Eb6, n mpotpony| napouctdlel wa epwtnor poll ue téooeplc mdavég EMAOYEC AnMdVTINONG %ol TO HOVTERO Elval
PUOULOUEVO (OTE VO TUPAYEL T OWATH ANAVTINGY), EMAEYOVTOS TNV XUTIAANAN ETXETA XU TO AVTIOTOLYO XEUEVO
andvInone.
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1.3.4 Ilepvypopr Ielpapdtwy

Yo melpduotd pog, yenowonoloaue Ty mhat@opua Google Colab xou to Kaggle, aflomoidvtag Sidpopa maxéta
Python avouytod xddwxa, énwe to Transformers, TRL (Transformer Reinforcement Learning) [91], PEFT
(Parameter-Efficient Fine-Tuning) [57], BitsAndBytes, Accelerate [25], xou Sentence-Transformers.

Kwdixorowntég

To povtélo BERT-SE * Kotd t Sidpxeio trg teyvixfc fine-tuning, yenowonowidnxe puduéc pdinone
375, ue péyedoc maptidac 16 derypdtwy, to onola emelepydotnxay ot x&de emavdhndr, xotd T didpxe 3
enoy®v. Auth 1 dwdocio eiye we oTdY0 TNV TEOCUPUOYT] TOU TEO-EXTAUBEUPEVOU LOVTEAOU (OOTE Vo ToupLdlel
XUNOTEPX 0TO EXE0TOTE LTO-TPOPANUA pac. O Bedtiotonomtic poc (optimizer) tay o AdamW xou o puduiothc
wédnone (learning scheduler) firav ypopmxde. H S piduion yenowonomidnxe xou yior tnv tey v fine-tuning
Tou xwdomownty BERT.

To povtého RoOBERTa-WNGRD 5 unofifdnxe oe fine-tuning 6to olvolo exnaideuone x&de cuvérou
dedopévev, yenowonowwviag pudud pddnonc e °, péyedoc muptidoc 16 xou Tpéyoviac Yo 3 emoyée.
O optimizer firav enione AdamW xa o pudwotic uddnone (learning scheduler) Hrav ypoppxds. To
RoBERTa-large puluiotnxe Aentoueptdc 6T0 GUVOAO EXTA(BEUGTC TOU CUYXEXPULEVOU GUVOAOU BEBOUEVLY xdDE
UTO-TPOBAAUATOC, YENOULOTOLOVTAS TUVOUOLOTUTIES SLOUOPPOOELS.

To poviého DeBERTaV3-TS 6, énwc xou 1o DeBERTaV3-base, unoBAfdnxe oe fine-tuning nopdpola
ue to obotnuo RoOBERTa-WNGRD, e povn dwgpopd to péyedoc tng moptidag, to onolo oplotnxe oe 4.

MI'M

To povtélo Phi-2 7 unoB\iinxe ot fine-tuning ypnouionolhviag T pop@t| TN TEOTEOTTS TOU TEELYPUPETL
oy evotnta Aentopépeies Ilpotponns 1.3.3. H Swbixacioa tng teyvinic fine-tuning nepleAdufBave tov
xodoplopd pudpol uddnonc 2e7° xou peyédouc moptidac 2, we to poviého va exmandedeton Yoo 250
Briwota. Ipaypatonoifooue TELGUATI YE DLOPORETIXES BIUOPPOOELS TwV T xou lora_alpha, mepiloufBdvovtog
cuvduaouolg 6mwe T = 64, 128 xou lora_alpha = 64, 128. To nococtd tou dropout puduictnxe ctadepd
ot0 0,1 o 6ha ta mepdpato. Xpnowwonojooe évay Bedtiotonomty| (optimizer) AdamW xou évoav pudwotic
ototepnc uddnone. Iopd ta tolhd unooydueva benchmarks mou cuvédevay v xuxhogopla Tou, 1 anddoon
TOU JOVTEAOU XaTd TNV €0y WYT) CUUTEQUCUATWY OTO XpUPS GUVOLO BEBOUEVLY Xol TeV BUO LTO-TEOBANUATLY
AToY UTODEEGTERY), ONUELDVOVTOS YAUUNAGTERT ETO0OY 0 GUYXPLON UE TOUC XWOLXOTOMNTES TOU ovapERUMoy
mopomdve. Auth 1 aouugwvia eyelper v mbdavétnta, 1 omolo unocTnelleton and didpopes avapopis, dTL N
dradixacior exmaldevong Tou poviéhou ye ) yeron pedodny onwg N xBavtion xoa n LoRA pnopel va unv sivou
oaxOuN TANPOC BEATIO TOTOINUEY).

Kow ot 800 magarhayéc tou Llama 2 8, pe 7 Sioexatoppdpla xou 13 dloexartoppiplo Topauéteous,
umoBAdnxay otny (Bl Swodixacia fine-tuning nou TepLYEdPNXE TEONYOUPEVKS, YENOWOTOLOVTAC TNV TEYVIXN
QLoRA. H dwidixacio fine-tuning axoholidnoe tn wopy| tng npoteontc nou meplypdgetal otny evotnta 1.3.3
(Aerropéperes Tlpotponns), yenowonowdviac pudpd wdinone 2e=° xou péyedoc moptidac 1, e x&de poviého
vor exmandeveton yior 250 Bruata. Tlapd tov mewpapationd ye didpopous cuVBLaoUOVS TMY Yot Ta 7 xou a (32,
64, 128), evéd to dropout pudulotnxe otadepd oto 0.1, tor amoteléoyarto fitav amoyontevtxd. ¢ yovtélo
mopoywyhg xewévou, to Llama 2 nophyaye enednynfoeic yia xdde npotpony molhamhrig emhoyhc. §loTtéc0,
oaxoun xan 6tay meoéBiene Aovdaouévo gl ETAOYT WS OWoTY, Ol TopAYOUEVES EENYNOELC cuyVvd Bev elyov
Aoy ouvoyy. Ilohiéc e€nyroeic mou mapryUnoay xatd TN @don e€oywYNE CUUTEQPUOUATKY NTAY AOYETES UE
To TAaloLo Tou exdoToTe Yelpou - TEolARUATOC, LTOBEXVDOVTUC TNV amoTuyio Vo cUAAGBoUY T cUANOYLOTIXT
TOPE(l TWV TMEPLOCOTEPWY EPWTACEWY TOAMATAAC EMAOYAC. LUVOTTIXG, xou ol dlo maparlayéc tou Llama 2,
ToEd TN MEYSAT xh{Honca Toug, amodelydnxay aviXavES VAL XAUTOVONGOUY X0 VO OLTLOAOYCOUY OMOTENEGHUATIXG
TIC TOPEYOUEVES EPWTNAOELS TOMATAAS ETLAOYHC.

4 JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-14e5
5DeepPavlov/roberta-large-winogrande

6sileod /deberta-v3-large-tasksource-nli

"microsoft /phi-2

8meta-llama/Llama-2
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To pwovtého Mistral-7b 9 unepelye onuovtnd évavtt dhwv Twv dhwy. Tlpwv and 1 dudixactia fine-tuning,
egopudoope v texvix QLORA. Xenowonowwvrtog pudud uddnone 2e™° xaw péyedoc moaptidac 2, xdde
povtého umoPAfinxe oe Aemtopepn) pvduion v 250 BrpaTta Yenoylomowdviag To cUvolo exnaideuong xdie
cuvéhou dedopévwy Twv uno-npolAnudteny. To apyixd aroteréoyota Arav ehmdopopa. Katd tn Sidpxela
TOU TEPAUATIONO) HE TS TOPOUETEOUC T XL G, OltneddvTae mopdiinia éva dropout 0,1, ovadldnxov
oplopéval TEOTUTO.  BUYXEXPWEVD, mopatneiooue eEnyhoelc xou PBoduoloyiec udmidtepne mowdtnTac Gtov
xenotponoovoope vdmibtepes TWéS xatdtaing (1), Tou xuuaivovtoy and (16, 32, 64, 128). Auté to anotéheoua
NTay avaevouevo, xadog ol LPNAoTERES TS XaTdTadng avTioTolyoVy ot allayég Bapdy uPniotepng oxplfelog,
HE OTOTEAECUO XUAVTEENS TOLOTNTAC AvavEWST BapddV Xl GUVOAIXY ambdoor Tou Yovtélou. Elvar eviiopépov
ot 6tav o Adyoc a/r frav younide (0.5 - 1), o e&nyfoeic Swatnpovoay LPNAY mowdtnto aveEdptnTa ond
Tic TEOPAEPELS, UTOBNAWVOVTOS Wot CUVEXTIXH TOPEidl GUANOYIOUOU oxdun xat av 1) TEOPBAETOUEVY emAOYN
fitav havioaouévn. Qotéoo, o xadopoudc tou Aoyou a/r oe 2 i 4 evdeyouévwe EVIoYUCE Tol ATOTENECUATA,
umodnidvovTag Loyupdteen emppor) omd Ta atpdpata QLoRA oto Boaocixd povtéro. ot6c0, auTh 1 TpocupUoYN
odfynoe ot uelwon tng mowdotnTog Twv eénynoewy. H Beitinon Yo urnopoloe vo anodoldel ot younhn eyyevn
dlao Tt TN T ToL wovtéhou. Tlapd Tic TOAES TopopéTEous, 1) TEOYUOTIXY) BLUC TATIXOTNTO TWYV VATUPAC TACEWY
mou padaivel To povtého elvan youny. Kotd cuvénewa, yetd ) dielorywyn apretdv Telpaudtony, To HOVTENO UE
Tic xohOTepeg emBboEC OGOV aPopd aToug Yelpous Aéewv, evduypauuileton pe auth Ty évvola. Metd )
diegorywyh ToALdELUWY BoXIpDY, ETTOYOUE TIC XUADTEREC EMBOCEIC PE TO TPOTO HOVIEAO YENOLLOTOLOVTOC
r=128 xou alpha=128, xa to tpito xahltepo ypnowonouwdwviac r=64 xau alpha=32. Autd ta povtéla
oupfoiiCovtar wg Mistral-7b_lora_r_lora_a, avtimpoowrebovtoc tig Swopoppwoelc Mistral-7b_ 128 128 xou
Mistral-7b_ 64 32, avtioTtouyo.

To poviého Mistral-8x7b 10 dev eZepeuviinxe oe Bddoc, wotdoo ta apyxd omoteréopota RTay
EATLOO(OPA, TUPA TIG TEQLOPIOUEVES  DLOHOPPOTELS. Ilepoutépw melpapatioudc Ue Sudpopes puduloelc
UTEPTORAUETEWY UTOREL VoL 00Ny NioEL o€ BEATIOUEVY ambd0aT). LT1 Hovadixn pog Tpootdideia ue autd To cUGTNUA,
xenowonotfoope pudud udinone 2e~° xau péyedog maptidac 2, pe fine-tuning Twv povtélwy yio 250 Prora
YENOWOTOUOVTOG, TO oUVORO exmaidevong xdde cuvodiou BeBouévwy Twy uTo-teofAnudtwy. Toéco to r boo xou
10 a oploTnxay oe 128, cuvodeuduevo oo dropout 0,1. Auth 1 Slodppwon enthéydnxe ye Bdon Tic TeéS T xou
@ TOU UOVTENOU UE TIC XANDTERES EMBOOELS oL OTIG BUO unogpyaoieg, Mistral-7h. Ilapd tn peyarbtepn xhipoxd
Tou, To Mistral-8x7b nétuye ) debtepn xohbtepn oxplBelar xatd TN BLdEXEId TWV XPUPOY CUVOADY BOXLULY
600V APOEd OTO TEWTO UTO-TEOBANU, aprivovTag Tiow Tou Tn wxedtepr napailayy| Tou, to Mistral-7b. Autd
TO UOVTEAO AVAQERETOL GTOV VOO AMOTEAECUATWY X0t TwV 800 UTo-TEoBANUdTwY we Mistral-8x7b 128 128.
Iepoutépw melpayationdc pe ddpopec dopoppaoelc unopel vo anogépel Behtidoels, Wing 6tav aflomoteiton N
YOUNAY €YYEVAC BLOC TATLXOTNTA XAl O TAEOVACUOS TTOU EVUTIIOYEL OTO HOVTENO.

Y reprnapdueteor QLoRA

Xpnowonowfoaue v e vix QLORA [13] yio va Pedtiotonomicoupe to povtéha xPavtilovtdc to oe axpiBeia
4 bit (uéow BitsAndBytes) xou eqapuélovtac LoRA [31] péow e Pihodrixne PEFT. Auth n Siadixascio
Quantized LoRA (QLoRA) peldvel tn yphomn UVARNS Xl TIC UTONOYLIOTIXES ATOUTHOELS, XahoThvTaS TOV
WBoVIXd YL TV YEHON HEYIAWY LOVTEAWY OE UAIXO UE TEQLOPLOUEVOUC THEOUC.

O Baowxée unepnapduetpol nepthopBavouy:
e Rank (r): EXéyyet t Sloototixdnta g mpocéyylong youniol Boduoo.

o '‘Adga (a): Evoc mopdyovtog xhdxwone tou efloopporel tor eldxd yiow Ty epyooio Bdpn évavtt twv
TPO-EXTIUDEVPEVWY BapdV.

Xounhdtepeg TWEC T odAYNOAY HERXEC (POPEC OF XUAUTEQO amoTEAEOUATH AdYW EVOC OmOTEAECUUTOC
xavovixorolnong, to omolo Bondd oty anopuyn g unepBolixic TpocupUoYNS, Wiwe Y pxedTEpa GOVORA
dedouévev. Evdapplvovtag to poviého va eotdlel oe ouotddr potifa, ol mpooeyyloec yoaunidteenc tding
npowVolouy TNV XUAUTERY YEVIXEUGOT, G AOPUTO BEDOUEVOL.

9mistralai/Mistral-7B-v0.1
Omistralai/Mixtral-8x7B-v0.1
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1.3.5 AmnoteAéocpata
IMeltpapratind ATOTEAECUATA XA AVAALOT)

Ou petputée pag v to uno-npdfBinua oxetxd ye nalk mpotdoewy napovotdlovtan otov Ilivaxa 1.4 xau yia to
uno-TpoBinue pe malh Aéewv otov Ilivaxa 1.5 poall e T emBOCELS avapopds TV LOVTEAWY TOU oVOPEPUUE
nopandve. Elvor evBlagépov 6t n anddoom tou npofAfuotos duadixfic Tagivéunone (teéfinua Lwnotol-Addouc)
elvan onuoavTnd younhotepn amd exelvn Tou TEOBAAUATOC TOAAATAWY eTAOY®Y. Apyixd, auth 1 cupTeplpopd
QOUVOTAY AVTLQATIXT, XUIDS QOUVOTAY EUXONOTERO VoL TIPOGDLOPLOTEL oV Wial EpWTNOT elval 6WOoTH 1 Oyt and To
vo eTAeYel 1 owo T amdvtnon and téocepls SlapopeTinég emhoyég. 2otdo0, 1 unddeon autr dev elvon oxplBrc.
Yxegreite tov yeigo e tic Mé&ewc: ‘What is the capital in France?’. Me v mpdtn patid, 1 emioyq ‘F’ gaiveton
havdoopévn, adhd 6tav egetdlovton ot emhoyée ‘F, ‘B, ‘A’ xou ‘Kopio and tic mapandve’, 1 ‘F’ avadetvieto
S M WOV owoTh andvinom, xadde yiveton @avepd OTL 1) gpWTNOT avapépETal 0TO XeQuAaio Ypdupa xaL Oyt
otny npwtebouca moAn. Enopévwe, ol towiieg emhoyég napéyouv xplowwo thalolo ota povtéha, eEnymdvtoc T
AVAOTERY AOBOCT| TV HOVTEAWY ot TEOPBANuATa Wop®nc ToAamAG emAoyhc. Autr 1 éAkewdn mhouolou elvar o
A6YoC YloL TOV onolo anéyouue and TNy mepaTépw diepelivnon auTthc TN uedodoloyiog oe dha ToL WOVTENA TNG
MEAETNG WOG.

System ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. 4+ Con. Overall
Multi-class classification problem
Human 907 907 .944 907 .889 .920
ChatGPT .608 .593 .679 507 397 627
RoBERTa-L 435 1402 .464 .330 .201 434
Mistral-7b 128 128 .850 .825 775 .825 .700 .817
Mistral-7b_64 128 .850 .825 775 .825 .700 817
Mistral-7b_16_ 64 .800 .800 .850 750 725 817
Mixtral-8x7b 128 128 .850 .825 725 .800 .700 .800
Llama 2-7b_64 128 725 .650 .700 575 475 .692
Llama 2-13b_64 64 .665 .614 .645 .550 .400 .641
Llama 2-7b_64 64 .625 .600 .675 .550 .400 .633
Llama 2-7b_64 32 .250 .250 .425 .075 .000 .308
Phi-2 64 128 .625 575 .550 .525 425 .583
Phi-2 128 128 .625 575 .550 .500 375 .583
Phi-2 64 64 .525 .425 .550 375 .300 .500
RoBERTa-WNGRD .800 775 775 750 .675 784
DeBERTaV3-TS .800 775 725 750 .625 767
DeBERTaV3-base 725 750 .675 725 .625 717
BERT-SE 750 725 .650 .700 .550 708
RoBERTa-large .700 .700 725 .675 .550 708
BERT .675 .650 .650 .600 475 .658
Binary classification problem
DeBERTaV3-TS 725 .650 .550 .650 .650 .642
RoBERTa-WNGRD 575 .600 .500 .550 .550 .558
BERT-SE .625 .550 375 .525 .525 517

Table 1.4: An6doon tou yovtélou yio to T'mo-mpdpAnua A: Halk mpotdoewy. llepioodtepa anoteAéopata
otov mivaxa 1.7.

Yro-nmpéBANua A: ITalM ITpotdoewy O nivaxoc 1.4 aneixoviler Tic ehdytotes Soxxupdvoels petald
OAWY TOV YETEXGOY Tou BacilovTal ot TeplnT®oels. AUTH 1) GUVETELN EREXTEIVETOL X0l OTLC OYETXEG UETEIXEC TTOU
Baocilovtal ot ouddeg yior GAa Tl HOVTENA, VOBEXVOOVTOC ot CUGTNUATIXY CUUTERLPORA Teog TNV xatebiuvon
e aviyveuong Blapopwy LovomaTidy cUAAoYLopoL. Auth 1 tapathenot Loy Vel TG0 Yia TOUC TAELVOUNTES TOU
BaoiCovtar otov xwdxononty| 660 xou yia Ta MI'M nou yenoipomoinxav. O yelpol npotdoewmy tpocpépouy
EYYEVWC Lo AemTOPEpE(C TANPOQOpleS, EITEETROVTAS OTo LOVTEAA VoL avty vehouy xou vor evTonilouv to (Ba potiBa
ocuAhoylopol o edxoha, aveEdptnta and tic ahhayés oto Thaloto, ot avtideon ye Toug Yplpoug AéEewy, ol omoiol
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cuvidwe dladétouy o ocvvtoues dNAdoelc Thauaiou, tapouctdlovtog HEYNITERY TEOXANOY Yiol ToL LOVTEND Vol
dloxplvouv cuveny potifo uAoYIoHOoD.

Apywxd, xodiotaton TEoQAvEC OTL 1 TEO-EXTAUBEUCY) TWV XWOLXOTONTWY ot Bidpopo. GUVORX OEBOUEVLV
GUANOYIO TIXTC XOWVIE AOYIXAC 0BNYEl OE OUCLAG TIXES BEATIOOELS TWV ETUBOCEWY, XAINDS ETUTEENEL GTO GUCTNUL
vou avTihauBdveTan yopaxtnelo ixd yvwelopata mou dev oyetilovtal pe Tov Touéd, To omola amodeixviovial
TAEOVEXTXE Yiat TNV EMoxoloudT epyocia. Emniéov, didpopol mpo-exTaldeUIEVOL XWOLXOTONTES XOLVAC AOYLXAC
mou €youv puduiotel oe dedouéva BrainTeaser uneptepolv Twv Llama 2 xou Phi-2.

M AAn o€loonueiwtn nopathenon and tov mivaxa 1.4 elvar 611 wdvo to Mistral-7b ond ta MI'M elvan oe
V€om va Eemepdioel Tol LOVTEAD TOV XWOLXOTOLNTOY, EVE® T6co To Llama 2 660 xau to Phi-2 onuelwoay otadepd
younhotepee Boduoroyieg.

Ye avtideon ye to Llama 2 xo to Mistral-7b, to Phi-2 8ev éyel unofindel oe pdinomn vy va axohoudel
ovotnpatixd odnyiee [26], YeYovic nov, ot cUVBUUCUS PE TOV TEPLOPLOUEVD aptdpd TapadeLyUdTmy oto clvolo
dedopévey Tro-ntedPinuo A: Halk Ipotdoewy, cuuBdiher otn yoaunidtepn anddocr ToU, W ATOTEAECUA TNS
aduvapiog Tov Phi va culAdBel v nolumhoxdtnta twv dedouévwy BrainTeaser.

System ‘Original Semantic Context Ori.+Sem. Ori.4+Sem.+Con. Overall

Multi-class classification problem

Human 917 917 917 917 .900 917
ChatGPT .561 .524 518 439 .292 .535
RoBERTa-L .195 195 232 146 .061 207
Mistral-7b 16 64 875 .906 .781 .813 719 .854
Mistral-7b_ 128 128 .844 .844 .813 719 .625 .833
Mistral-7b_8 16 781 .938 781 719 .562 .833
Mixtral-8x7b 128 128 .625 719 .625 531 375 .656
Llama 2-13b_64 64 .354 344 438 125 .031 .379
Llama 2-7b_64 64 375 344 375 125 .031 .365
Llama 2-7b_64 128 .281 188 438 .031 .031 .302
Phi-2 64 64 .688 .625 .688 .562 438 .667
Phi-2 64 128 .656 .656 .625 .594 .406 .646
Phi-2 16 64 .625 .500 .688 438 312 .604
DeBERTaV3-base .750 .750 .562 .656 438 .687
DeBERTaV3-TS .812 781 .406 719 .281 .666
RoBERTa-WNGRD 750 .656 .500 .625 312 .635
BERT .562 .594 469 .562 312 .542
BERT-SE .562 .500 .406 .500 .281 .489
RoBERTa-large .281 344 344 .156 .094 .323
Binary classification problem
DeBERTaV3-TS .250 .313 313 .219 219 .292
RoBERTa-WNGRD 375 313 125 281 281 271
BERT-SE .000 .000 .000 .000 .000 .000

Table 1.5: Anédoon tou govtéhou yia to Tro-mpdfAnua B: Halk Aékewy. Tlepiocbtepa anoteréopato ooV
nlvoear 1.7.

Yro-ntpéANua B: ITalh Aé€ewy Etov Ilivoxa 1.5, napatneotue pla évtovn avtideon otic emddoelg
TWV YOVTEAWY OTNV XOTAVONCT X0 TOV EVIOTIGUO UOVOTATUIY GUAROYLOUOU, 6TaV TO TEPLEYOUEVO ohAALEL.
Trdpyouv oéloonuelntes anoxhioelc oty axpiBelo uetadd Tou aEyixol XAl TOL oNUAcIoAoYIXO) TAwclou o
cUYXELON UE TNV AVOXATAOXEUT TOU Thonotou, Wloftepa eppaveic oTNV TERINTWOT TV HOVIEAWY XWOIXOTONTWY
ULXEOTEROL PEYEYOUC.

‘Ocov  agopd otouc xwdwonontée, clvar mpogavée 6ti, ewdwd to vanilla RoBERTa-large otepeiton
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loyveric Aoy xan duoxoheleton var yelplotel cuotnpotixd v acdgela.  Avtideta, to RoBERTa-large
npo-exnoudevyévo oto WinoGrande mopouoidlel avtaywviotixée emdooec.  Auth n alloonueiwtn Beitiwon
(ndvey omd 40%) mou ogeiheton oty mpo-exmaideuor oto WinoGrande unodnhdvel 6Tl TO GUYXEXPYEVO
cUVOLo Bedopévwy e€omhilel AmTOTEREOUATIXG TO HOVTEND UE TNV LXAVOTNTO VO XOTAVOEL TLC TOAUTAOXOTNTES TN
cuAoyio Txrc oL oyeTilovTon HE Tat AexTixd TalA, oo THVTAS To ATOTEAECUATE TOL OVTOY WO TIXS CUYXELTIXG
pe to DeBERTaV3 oe autéd to uno-npdfBinua, mapd tnyv udmidtepn enidoorn tou vanilla DeBERTaV3 évavt
tou RoBERTa-large ota Boowd ouyxprtixd xpithpio culhoylotnic [29]. Extéc and autd, n mpo-exnaidevon
oe dhha oOvoha BEBOUEVLV GUANOYIOTIXAC XOWAC AoYxng Oev BEATIOVEL oNUAVTIXE TN CUVOAXY Am6d0GT
TOV XWOXOTONTWY.  Xuunepaoyatixd, extdéc and to WinoGrande, to umdloina cOvVOAo Bedopévwy e
emnhéov mpo-exnaidevon Bev xaTéYouv oTolyeld CUALOYLOTIXAC Tou Vo Topoeyyilouv toug yplpoug Aé€ewv
tou BrainTeaser.

‘Ocov agopd too MI'M, to Mistral-7b Eenépace onuovtind dha tor udIoLTa, EETEPVOVTAS oXOUN XoL TO 8 QOopéC
HEYUADTEPO LOVTEND TtoU exTtoudeVTNXE Ye Tig (Bleg unepnopauétpoue (Miztral-827b). To Llama 2 topovsiace o
YeWbTEPa anoteéopata aveldptnto and to uéyedoc (7/13 Sioexatopplpla) xou Tic unepmopauétoous LoRA (r
xou a). Avtideta, to Phi-2 enédeile oyetnd xahltepes emdboele, Bing av Angdel unddn o wxpdtepoc aprdude
TOPOETEWY TOL (2,7 dioexatoppdpla) ot olyxplon e ta dhha MI'M. Qotdoo, xou to 0o poviéla tapovsiooay
YEROTEREG ETUBOTELS GE GUYXPLON UE TOUG TEPLOGHTEPOUS XwdxoToNTéS Petd and fine-tuning. Ot napatneroeic
autég emPBefoucdvouy évtova 6Tl oL yplpol AEewy BladéTouy Uia XaTovour| Tou omoXALVEL oo TNV AVOAUTLXT] XOLVT|
AoYxr) GUANOYLOTIXY TTOL oL TeELTOL Yot TOUS YRl(poug TPoTdoEWY, EMLPEPOVTOC VA HOVABIXG GUVORO YVWOTIXMY
AMOUTAOEWV.

To Mistral-7b eugavilel wio tdon dmou e&nyfoeic vdPnAdtepng ToldTNTOC TUEdYOVTHL PE VPNAOTERES TIHES TOU
lora rank r. Qot600, T0 YovTéLO pe TIC xaAbTEREC EMBOTELS opousiaoe Wi Sladdppwon e r=16 xa a=64.
H pédodoc QLoRA [31] e&nyel ywuti o xopugaio poviéro poc éyet Badud 16 avti vy 128, oe avtideon pe tic
xotvég mpocdoxiec. Avidvrtog amd Ty evpéws dadedouévn mapousio Soutdv younhol Baduol, dnwe Tovileto
and mponyolueves yerétes [45, 46, 23|, aZlomoloue TNy eyyevi dopf younhol Boduod 6to mpdBANud pog, dTwe
Tovileton 670 [31]. Elvon xahd texunpiwuévo 6Tt modd npoPAfuote, Wdiwe e EVTOVH UTERTORUUETPOTOUEVA
povtéha, napouctdlouy WbTNTES YounAic TdEng petd Ty exmaidevon [58].

Yuvolxd, to cuothuatd poc emdeixviouv alloonueinto LPNAY cuvol axpeifel, 1 omolo elvon AvydTtepo
and 10% younhétepn and v avipedrivn anédoor xou eptocbdtepo and 30% ueyohttepn omé v ChatGPT.
Auto unodnh@vel TV endpxeia TV YEVOBWY Hag oTNV XaTtavonon xou Ty aviyvevon uotBuv hoyomalyviewv,
avtpetwnilovtoc ue cuvEneL TNV aodpeLo aveEdpTnTo oo T CUUPEALOUEVL XaL TLC OTUAUCLOAOYIXES TUROAAAYES
ota brain teasers. Kotd v eZétaon twv obviogwy e&nyfoewy mou nopéyovar we xdde npdBiedn (Hivaxog 1.6),
TUPAUTNEOUUE EUTEPLO TUTWUEVES UTIOAOYHOELS axdun xou yio havlaouévee amavtioels.  To Addn cuvidewg
axohoudolv ouyxexpéva potiBa he€ihoyiov o Aec Tic apyixéc, ONUACLONOYLXES Xt CUUPEULOUEVES EQWTHOELS
nolanmific emhoyfic (Aentouépeieg oto 1.3.5).

AZLoNoYNom xou TANEOPORIES OYETIXA LE TNV TOLOTNTAL TOU GUVOAOL SEBOUEVWY

Kotd v e€étaon tov eopuiuévoy mpoBAédedyv pog xou ota 600 uno-tpofirfuate, Yetd Tty dnuocicuon
TWV ETUXETOV (0WOTMOV amavTACEWY) and TOV SLopYovmTH TOU SLoyWVIOUOU YLol TO XpuPd GUVOAO BEBOPEVLY,
XUTOANEUE OE BLAPOPA CUUTEQIOUOTA. 1€ OAEC TIC TELTAETES, TOU TEQLAUBAVOLUY QEYIXEC, ONUUCLONOYIXES XAl
EPWTHOELS AVUXATAOKEVNC TAALGIOU, Tapatneolue éva onuavtxd Badud acdpeag oe didgpopa potiBa. Auth
acdpeLo OBNYEL GUYVE OE OCUVETY EMAOYT] CWOTWY OTAUVTHCEWY, AXOUN X0t OTOV ATAVTWOVTAL ond aviphToug.
Auto unoypaupiler v avdyxn Yo CoPECTERT BIATUTGN TOV EPWTHOEWY Xl HOVOCHUOVTY EXPEOCT] YL TNV
evioyvon g axplBelag twv TpoPfrédewy tou yovtéhou. ‘Eva dAlo afloonueiwto potiBo nou evionicoye opopd
OTOV TOOTIXG EAEYYO TNG ONUACIONOYIXAC AVUBOUNONC OE OPLOUEVES EQWTNCELC. XE AUTEC TS TEPLTTWOELS,
oplopéveg AEEelc Bev avTixaTao TaUnay Pe oxpld) CUVMOVUUA, UYE ATOTEAECUO TNV aAAayY TOu TEoBAAUATOC
nou mopovciale 1 epdtnor. Evd autd pmopel va pnv eivon eyyevdc mpolAnuatixd, oL cwoTEC ANAVTACELS
TOU GUVOAOU BEBOUEVWY TIOREUELVAY JUETABANTEG OE GUYXELOM UE TNV dpyx) éxdoon tne epwtnong. Autr n
acuppvia UTOBNAWVEL OTL N GAAAYT) OTOV OPLOUS TN EPATNONG TEQUOE AMUPUTHENTY UTO TOUC DLOPYUVWTES
e epyaotiag, odnyodviac ot xdmoleg Aovdaouéves TeoPrEJelc and T HOVTERO POG, EVE OTNV TEOYUTIXOTN T
T0 0wo1é Thaiolo TNG TaEEYOUEVNC SNAWONE TOMAATAWY ETAOY®V elye xotaypagel and To cloTNud pog. Ou
BV0 ToPUTAVE TUPATNENOELS AVADEXXVOOUY TNV EYYEVY] Buoxohior 0T dnuiovpyla CoPOY xaL axelBGY Yelpwy,
xodMC xaL TNV TEOXANoN Tou avTeTORi{ouy Tol LOVTEAD OTNY XATAVONOY TOUG. XLTA TOEUTdve oevdpla, To
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Example of correct prediction with explanation

Question Choices

The other end is not tied to anything.

If a dog is tied to a piece of rope that is The rope stretches proportionally, providing the extra
6m long how can it reach a bone that is 7Tm length needed for the horse to reach the hay seven
away”? meters away.

The dog dug a 1m tunnel underground to reach the
bone that was 7m away while still tied to the 6m long
rope.

None of above.

Explanation: A dog cannot reach a bone that is 7m away if it is tied to a piece of rope that is
6m long. This is because the distance between the dog and the bone is greater than the length of
the rope. Therefore, the dog will not be able to reach the bone unless the rope is untied.

Example of misprediction with explanation

Question Choices

You need to drop the egg gently.

How can you drop a raw egg onto a concrete  You need to drop the egg hard.

floor and not crack it? No problem, because concrete floors are very
hard to crack.

None of above.

Predicted Answer: None of above.

Explanation: There is no way to drop a raw egg onto a concrete floor and not crack it. Concrete
is a very hard material and will easily break any object that falls on it. The only way to avoid
this would be to use some sort of protective covering for the egg before dropping it.

Table 1.6: 'Eva napdderyyo e€nyfocwy mou nopdyovtal and to Mistral-7b, evdd avtiyetoniletoa to npdBAnua
o€ YopyY ToAamAGY emhoywy. Ou e€nyroelc, ave&dptnta and TNy eyxLEOTNTA TOUC, lval AETTOUERELS Xou
emdeviouvy LYMAS eninedo xotavonone xou cuAhoylouoL. O cwoTég amavTtioel EmonUalvovTol Ue EVTovn

yoopt, eved ot havdaouévee tpoBiédelc Topaméunouy oty TEoBAETOUEVY ad TO HOVTENO AMEVTINON).

HOVTENO paC Ue TIC xahOTepeg emdboelg elte evtonilel v Omopén avtigaone oTic epwTHOEC Xou ETUAEYEL Vol
emhé€er «Kavéva and ta mopandvey, dnwe dievxpwiletar oty olVToun xan ETEENYNUATXT aTloAGYNoY ToV, ElTe
TopéyeL o havdaopévn andvtnon pe Bdorn v amdvinon tou cuvéhou dedouévev, ahhd avtixatontpilel cwotd
T0 mAafolo Tou meoPAfuatog, To onolo umopel va €xel uetaBAndel Adyw oxololag yeriong cUVLVOUGY.

Avdivon Ttov unepnapapetpwy LoRA

O nivoxag 1.7 ameixovilel nepantépw avdhuon Twv vnepmopouétewy LoRA yia to yovtéha Mistral xon Mixtral,
To omofar Tapovsiocay Tol XUAUTEPA ANOTEAEOHATA LETOEY OAWY TV GAAWY LOVTEAWY Xou oTic dlo gpyaoiec.
Abyw LTONOYLOTIXDY TEPLOPLOPGY, exTandeloope To povtého Mixtral, To onolo elvar oxtdd @opéc yeyaliTepo,
MOVO Yl TIC UTEPTIORAUETEOUS UE TI XOAUTERES emdOoELC Tou Mistral.
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System ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. + Con. Overall
Task A
Mistral-7b_ 64 128 .850 .825 775 .825 .700 817
Mistral-7b_16 64 .800 .800 .850 750 725 817
Mixtral-8x7b 128 128 .850 .825 725 .800 .700 .800
Mistral-7b 128 64 .850 .800 725 775 .625 792
Mistral-7b_ 64 32 .850 775 725 750 .675 783
Mistral-7b_8 16 .800 .800 .700 .750 .625 767
Mistral-7b 128 32 .825 775 725 .750 .600 775
Task B
Mistral-7b 128 128 .844 .844 .813 719 .625 .833
Mistral-7b_8 16 781 .938 781 719 .562 .833
Mistral-7b_16_ 16 .812 .812 .875 .688 .625 .833
Mistral-7b_8 8 .875 .812 .812 750 .688 .833
Mistral-7b_16_ 32 .875 812 781 .750 .594 .823
Mistral-7b_ 64 32 .844 .875 719 750 .562 .812
Mistral-7b 128 64 .844 .812 781 .688 .531 812
Mistral-7b_64 64 719 .812 .625 .625 .406 719
Mixtral-8x7b 128 128 .625 719 .625 531 375 .656

Table 1.7: H anédoon twv dlagpdpwy unepnapauétewy LoRA yia ti¢ Mistral xou Mixtral xou ota 0o
uno-poBAuaT.

1.4 Ilpozewduevn Médodog 2 - Médoobog IIgotponric RISCORE

Yxegreite toug axdhouvdoug dvo yeipouc: R1: "A man shaves every day, yet keeps his beard long” xon R2:
"What has o beard but never needs to shave?". Eve autol ol yplpol elvon napduolol ot doun xou avopépovto
oto (B avtixelyeva, dagépouy oty culhoyiotxi. O R1 (amdvtnon: "A barber") yenowonoel to "polol"
xuplodextxd, eved o R2 (amdvtnon: "A tree”) to ypnowwonolel yetapopxd, avapepduevoc oto "beard" twv
BEvTpwY O6mwe 1 Pehavidid. Xty ayyAu) n AéEn beard €yel BimAd vonua, opyixd onuaiver polotl Yl Toug
avitp®noug aAAd avagépeton ouvidwe xar ot éva eldog Bevou B Aewyrivac mou xpéueton amd T HAABLE TWV
dévTpwV ot potdlel pe yevelddo.

‘Otav yenowpornolelte autodc toug yelpoug wg mhaiclo yia v enfhuor evéoe véou yelpou - m.y., "I plant
seeds every day, yet don’t have a single plot" - n epunvelo tou "plant seeds” Yo ymopolce va odnyroel oe
BLopopeTINES amaVTAOELS avdAoYa e To oxentixd (uetagopnd: "A teacher” f wuplohextxd: "A hydroponicist”
- 0 Vdpomévoc). Auté Belyvel TS 1 cuNhoYIoTIXY, ElTE XUPLOAEXTIXY ElTE PETOPORPIXY, UTopEl VoL EMNPECOEL TNHY

eniAuon yelowy xau vo 0dnyrioel oe SopopeTinég xateudivoelc oxédng.

Qot600, N yeRon W avaxatacxevaopévne ue Baon ta oupgealdueve exdoyfic e R1 - onwe n R3: "Tom
attends class every day but doesn’t do any homework"” - Go mogelye copéotepn cUANOYLOTIXY OE OyEon Ue
v R2, Moyw g ouvénelds tne we v xuptohextixy onuacia e R1. Autéd xatodeviel ) onuocio tne
eudUYEAUULONG TWY BLABXICLOY GUANOYLOUOU GTO TANGLO TIOL TaEEYETAL Yo TNV enthuom véwy yeipwy. ‘Otay
oL yelgol xan 1 cLAAOYLOTIXY TouC elvar euduypauulogévol Ue To TAXOLO NS €pATNOMNS, TO YOVTENO Umopel
vo avtanoxpldel e yeyohltepn oxplBeia, eved dToy YenoHLoToLo0VToL UETAPORIXEC 1) TLO UPNENUEVES EVVOLES, )
Suadixacia propel var yivel o mepiniox.

Boaowlopevol og auth v 1€, npoteivoupe ) pédodo RISCORE, 1 onola evioy el Ti¢ wavdtnteg enthuong twv
MI'M avagopixd ye Touc Yplpoug, YeNnoWonoudvtac Ty TeEXVIXT Alyev Topadelyudtwy ue napadelypoto Tou
€youv avoxataoxevastel ue fdorn to mhaloto. ‘Onwe palvetar oto Lyfua 1.4.1, xdde nopddelyuo CULTANEWOVETAL
ME HLaL oVOXOTOloXEVACUEVT EXBOY Y| Tou Stortneet T dadtxacior cUANoYLoUol ahhd adAdlel To Tepleydpevo. Autd
Bondd to yovtéro vo axohoulfoel yia To cuVeEXTXT Topeia GUANOYLOUOU Yiol Vo AUCEL AMOTENECUATIXG VEOUC
yelpouc.

H mpooéyyion pac Bacileton otig undpyouoes Texvinéc Alywv napaderyudtwy, odid to RISCORE enixevtpdveton
otny emadENoN TV dELYRATLVY TG TEX VXS AlYwV TORAUdELYUSTWY UE TORAUDELYUOTA AVOXATACXEVUCUEVA UE Bdom
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Standard FS Prompting RISCORE

/— Model Input \ / Model Input ™

Example 1.
A man shaves every day, yet keeps his beard long
Options: 1. A Singer 2. A Barber 3. A razor 4. None of the

Example 1.
A man shaves every day, yet keeps his beard long
Options: 1. A Singer 2. A Barber 3. A razor 4. None of the

above
above Answer: 3
Answer: 3 ’
Example 2:
Example 2: Xamp

Tom attends class every day but doesn’t do any homework.

?
WhatihasElceamd | bitneyerneeasiiglsnayes Options: 1. Student 2. Teacher 3. Notebook 4. None of the

Options: 1. Grass 2. Tree 3. Mountain 4. None of the above

above
Answar: 2 Answer: 2.
Riddle: Riddle:

| catch fish every day, yet never eat a single one.
Options: 1. A pelican, 2. A seal, 3. A Fisherman 4. None of
the above

| catch fish every day, yet never eat a single one.
Options: 1. A pelican, 2. A seal, 3. A Fisherman 4. None of
the above

- N\ /

¢ Model Output Model Output

Answer: 1 X Answer: 3

Figure 1.4.1: "Evo napddetypo tTng TpoTteonhic Alywv Tapadelyudtwy mou aviinopaBdiieton e tny (Bio uédodo
OAAG XENOULOTIOLOVTOS EVOL TOPAIBELY O UE AVOXATAOXEVACUEVO Tepleyduevo. To xeluevo ye mpdoivo ypmuo
AVTLTPOCWTEVEL TNV OVOUXATUOKEVT] TOU TEPLEYOUEVOL TOU TapadelyUotog 1, Tou mopdyeton amd TNy
mpotevouevn pédodo. To mapddetypo ue x0xxvo ypdhpa apoupédnxe amhde yia va diatnendel o (Blog aptiuog
TOPABELYUATWY.

10 TAaloLO, To OOl GUY VA AmOBEXVOOVTAL O WPEALUA aTtd Ta UTHEYOVTO TOEAdELYHATA GTO GUVORO BEBOPEVWLY.
Avty| 1 mpdTaoT Beloxeton enl tou nopdvtoc LTS €Tt oE Vel CNUAVTIXG GUVEDELO TOL 0popd TO avTixeluevo
perétne [60].

Aiepeuviioaue 800 xVpLol EPELVNTIXG EPWTHUOTAL

e EE1: Behtudvel 1 0N OVOXATOUGKEVACUEVRDY TORUBELYUGTWY TNV LXAVOTNTA EVOC HOVTEAOU Vo AUVEL
yelpoug dnurovpyic oxédne oe olyxplon Ye Ty Tumixy| TeoTEOTY;

o EE2: Mnopel 1 autépats Topoy®Yr) dvoxXaTUOXEVACUEVWY UVLYUATWY Vo BEATIOCEL TIC ETBOCELS TOTO
oe gpyaoieg avtiouuBatinic 600 xa o epyaoieg Yeouume oxéPng;

1.4.1 3Xvuveiwcpopég

Yuvodilovtag, oL GUVELGPOPES Wog Elvau:

o Enodnldecboupe nelpapotind 6t 1 mopoyr evog auviypatog yall ye v avoxataoxevaoUévn ye Bdorn to
nhaiolo exdoy) Tou unopel va evioyloel TNV anddoon 1660 o€ TEOBAUATO YRoUUIXAC OGO Xal SNULOLEYXTNC
oxédrne.

o llpoteivouue to RISCORE, o véa pétdodo mpotponric mou €xel oyxedlacTel yiot vor eViGyVEL TIG IXAVOTNTES
enihuong aviypdtov twv MI'M. Zuuminpwpatixd, nopouvctdlovue €vav ohyopltduo yia T Onutovpyia
OVOXATOOXEVAOUEVOY UE BAoT TO TANIGLO oUVIYUSTWwY O Lop@Y) TOMNNATAAC ETAOYTC.

o Yuyxplvoupe to RISCORE pe éva gupl @doua BNHOQLADY TEYVIXWY TEOTEOTAS, OVUDEWVOOVTIS TNV
OMOTEAEGUATIXOTNTA TOU OE GUYXELOT UE OLdPOpES EVOANUXTIXES TPOTPOTES, EVE) TELPUUAUTICOUICTE YE
HOVTENA BLOPOPETIXY UEYEVDV.
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1.5 Ilsipopotind Mépog - MeéBodog llpoteonrc RISCORE

To mepduoto amooxonody otnv a&lohdoynon g omotedecpotixotntog tou RISCORE oty evioyvon
TOV IXAVOTATOY CUAAOYLOUO) TWV YAWOOX®Y UOVTEADY OF EPYACIEC YEUUWXAC Xl OMuLovpYxhc oxédmg.
Suyrexpléva, dlepeuVAoaUE XoTd TGOV 1) YENON AVOXAUTIUCHEVAOUEVKY UE BAOY TO TEPLEYOUEVO AVLYUATOY
¢ delypaTo 0TV TEXVIXY TEOTEOTAC AMY®Y TUpaBeElyUdTwY TUpdAANAN UE TA TEWTOTUTA TOUg, BEATIOVEL TIC
EMBOOELC TWV LOVTEAWV.

o voe Biepeuvriooupe autd, doxwwdoope Bidpopa Yhwoowd povtéla, cuyxpivoviag to RISCORE pe v
Tpadoactaxy TEoTEonh AMywy oTYH®Y, xou emxevipwiixoue o yotiBa culhoyiopol xou Oyt oe onuactohoylo
empaveloxoL emnédou. H eyxatdo tact| pag Siapopononoe tov apldud Ty UTOBELYUAT®Y X0l TNV TOAUTAOXSTN T
e epyaoiog yio va Blac@akloouye Loy UpEc ouyxploels.

1.5.1 X0vola Acdopévwy xouw Metpixég

Ta mewpduatd yog yenowonolnoay d0o clvola dedouévwv: BrainTeaser xou RiddleSense, xou to 800
oYEBLOUEVA YIaL VO BOXIUACOUY TNV BNULOLEYIXY ot TNV Yeoux oxédmn xot Tig IXAvOTNTEG CUAAOYLOUOU TWV
YAWOOUOV LOVTEAWV.

e To BrainTeaser anoteleiton and yplpoug pe mapaAlayU€vo UTOGUVOAX OTOL OL EpWTHOELC TPOTOTOLOVY T
dlatnpddvtoag Tic Swdpopéc oulhoyiopol touc. O tpomomowioelc mepthaBdvouy oNUAGLONOY XA
avaBounom (avadlaTineoT Ue JATHPNOT TWV ATMOUVTACENY Xal SLAPOPKY AMOCTACUTINGY GTOLYEIWY
OVETOPOV)  XaL VOB OUTNOY] TEPLEXOUEVOL (0Ahoyh Tou meEpEyouévou OAAG Biathenon ng
ocuhhoylotixfc). Kdde epdtnom éxel téooepic emhoyée, pe v tehevtaio va efvon wdvto «Kovéva and
Ta mopamdvey. Emxevtpodfixope ota telpdpotd yoc oto uno-npdPinua Sentence Puzzle (SP), to
onolo TEOXAAEL TIg IXAVOTNTEC GUAAOYIGHOU TOU UOVTEANOU UECK YAWOOIXEV TOROAAAYWV.

e To RiddleSense napoucidlel epntroelc TOnoL yeipou mou doxwdlouy Ty xoivr) Aoyixn xou Tny epunveia
e petagopiic YAdooog. Axoloudel yoppn mohhamhic emhoyng ue Wl owoTh andvinon xo TEcoepLq
havdoaopévee anavthoels, oA oe avtideor ye to BrainTeaser, Sev nepihaufdvel tny emhoyy «Kavéva and
TOL TOROTAVOY», BNULOVEYMOVTOS Lot EAAPEAOC BLAPORETIXY TedXANon culloyiouol. Ol yelpol Tou cuvdiou
dedopévey amatToly cuY VA agnenuévn oxédn xar xatovénon uetapopxrc YAdoous, evduypaumlouevol
ue to BrainTeaser, ohAd ye mo GUVTOPES AMAVTACELS.

JtatioTiXd oTolyeElot CUVOAOU BEBOUEVLY

To cOvoho dedouévwv BrainTeaser ywplletow oe civoha exnaideuone, avdmtuing (tou yenowonotodval xotd
v eZdoxnom) xou xpud cOvoha doxudyv. Av xou to RiddleSense axoloudel mopduola Sour|, dev elyope
TE6oPaoT 6TO ®ELPS GUYOLO BoX®Y Tou. £2¢ ex TOUTOU, YO Ta TELRAUATS Hag, Xenoulonotioaue To aOVOho
avantuéng tou RiddleSense yio v o€lohdynomn tou povtédou. Autod pag enétpede va eEoxohoviricoupe va
TEAYHATOTOLOVUE EVPWOTEG cLYXPLoELS UETAED TV LOVTEAWY Xat 6Ta 800 GUVold BedoUEVKY Tapd Tr Slopopd
oY BlrdeoOTNTA TV BEBOUEVMV.

Mezpuxeég

BrainTeaser I'w to BrainTeaser, napaxoloudolue tn cuvohiny| axp{Belor xadde xan tnv axpifeta yior xdde
TOTO TOEUBE(YUATOS - aEyiXT|, ONUUCIONOYIX XOL OVOXATUGKEVY TEQIEYOUEVOU - dedouévou 6Tl To olvoho
dedopévev eivar toopponnuévo. Ilopoxorouvdolpe emlone v axpiBeia BAoel opddag, PETEOVTIC TNV
am6300T TOU LOVTEAOU OTOY OAEC OL EPWTHCELS O Lol OUADN (UPYIXES XOL OVOUXOUTOGHEUNCHEVES) OOV TEVTOL
owotd. Autd mapéyel pla euplTERY dmodr TN GUAAOYLOTIXNG IXAVOTNTOG TOU UOVTEAOU OE BLUPORETIXES LOPPES
epWTACEWY, oxohoulddvtae Tig xateLduvtrples yooupés oElOAOYNONG amd TOUC BNULOUEYOUS TOU GUVOAOU
Bedopévev.

RiddleSense TI'iw to RiddleSense, pmopolue vo aflohoyrfoouvpe povo 0 cuvohxr] axpeifeir Aoyw tng
amhoUoTEPNS BOUNE TWV BEBOUEVWY TOV, Ywpelc Tig TOAUTAES Tapaldayég avaxataoxeuiic Tou BrainTeaser.
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IMpoeneZepyacio xouw PLAtpdpiopa Zuvolouv AcdoUEvwy

Iot var amo@iyoupe Ty euxdAudn Sedouévev, UATedoaue TpocexTxd tapouoies cpwthioelc oto RiddleSense
mou tadpralay pe exeivee oto BrainTeaser. Xpnowonowdvtac Sentence Transformers [66] xou to poviéro
gte-large-en-v1.5 [99], dnwovpyricaue avomopactdoeic MEewy xou uTtoloyioaue Ty opodtnta cuvnuitovou
HETOED TOV EPWTACEWY ot omd Ta 500 cUvola dedouévwy. Oplotnxe xotwdehl opotdtntag 0,9, Swogaiilovtog
6Tl UOVO oL TOAD TUPOUOLES EPWTNTELS aPatpoLVTAL Yl VoL Slotnendoly povodind chvola dedouévey.

Aoy meploploptdv AoV, To cbvolo doxiudy RiddleSense ywpiotnxe oe 800 wiod yio eneepyaocia. Metd to
(PINTEAELOUAL, UOVO HOVOBIXES, U ETUXAAUTITOUEVES EPWTAOELS SLATNERUNXAY Yiol TNV AELOAGYNOT), BLTNEOVTS TNV
OXEQULOTNTOL TWV AMOTEAECUATWY Xalk E0TPAUALOVTOC TAUTOY POV TNV UTOTEAECUATIXT| YEHOY) TWY UTOAOYLGTIXWY
mopwv. To otatioTind otolyela Tou cuvorou dedopévwy Beloxovton oTov mivaxo 1.8.

Dataset ‘ Train ‘ Dev ‘ Test
BrainTeaser - SP | 507(16023) | 120(4003) | 120(a023)
RiddleSense (initial) 1021

RiddleSense (filtered) 3510 720 —
RiddleSense (sampled 50%) 360

Table 1.8: Ytatiotd otoiyela cuvdrou dedouévnvy

1.5.2 Meédodoc

Avutr) 1 evotnTa meEplYpdpEl AEMTOUEPMS TNV TEOCEYYLON dag i TN Onuioupyio udPnAhc modTnToC,
OVOUXOTAOKEVAOHEVWY PE Bdom TO TepleOUevo (ELYNDV EPWTHCEWMV-ATAVTACE®Y, To OTOl YENOULOTOLOUYTOL
TOEGAANACL UE TO OpYE TOUS Ylo TNV evioyuon Twv emdOcEwY ot TEOPAAUNTH avTIoLUBATXAC OXEPNG.
Eunvevopévol ond v nuautopatotonuévn dadixacia tou napouctdotnxe and to BrainTeaser [38], tnv
emextelvouUe Ye TNV TAMen autouatonolnon tne diadwaciag yenowwomowdviag Meydha INwoowd Movtéla
(MT'M).

1.5.3 Brpa 1: Anuovpyia Lebyoug ep®@INONG-ANAVINONG

To mpwto Prpa nephopPdver ) dnplovpyia evéc (edyous EpWTACEMV-UTAVTACENDY OVOXATUCHEVACUEVOL UE
Bdon to mhalolo avd eTAEYUEVY) TER(MTWOT, AYVOWOVTAUS TEOCWELVE TIg utdloineg hovlaouéveg emAOYES Yid
v dnuiovpyla evée mpoPAfuatog oe pop@r mohhanAnc emhoync. Lo var to emtdyouue autd, mapéyouue 6To
MI'M tov yelgo, T cwoTh amdvtnon xo g tpoteony) cucthpatoc. H mpotpony| divel eviolr) oto povitého
vor avahboel To (edyYog EpMTNONG-OmAVTNONG, VO XATAVONOEL TN GUNNOYIOTIXH TOU CUVOEEL TO aiviypo UE TNV
ATAYTNOY TOU Xol Vo dNLoupYNoeL €va Tapdpoto afviyuo mou diatneel Ty (Bloe culhoyloTixr dladixacia ot €va
véo mhaioto, pall ye wa véa amdvinon. Auth n mpocéyylon Slatneel TNV xow Aoy TN apytxic EpWwTNoNg,
eV TEooupUOlEL ToV Ypi(po xou TNV amdvInon oE Wa VEX XATACTIOT).

Egoguolouye auth 1 dladxasia t600 otic putuloeic MnBevix®y Tapadetyudtwy 600 xau ot puiploelg
Alywv mapadelyrdtwy:

o Y pUluion MNOEVIX®Y TALABELYUATWY, TO UOVIENO Tapdyel To ovaxotaoxevaouéve Lebyn
Epomone-Andvinone (QA) ywelc va éyer mponyoluevo mopadelypoto i edixr exnaideuon yio to
oLYXEXPUWEVO PR [T6).

o Yt pldwon AyYwy TARABELYUATGY, EVIGYVOUUE TNV XATOVONCT TOU HOVIEAOU TOQEYOVTOG
napadelypoto.  Autd to mopadelypato meplopfdvouy tor apyxd Ledyn gpdtnonc-andvinong, xadog
xou yewpoxivntal emueAnUéveS, LPNIAC TOLOTNTAC, AVOXAUTUOXEVACUEVES EXBOYEC UE BAoN TO TEQLEYOUEVO
on6 T0 ocOvoho Ocdopévev BrainTeaser. T va omogeuydel n emxdiudm, To Selypata Alywv
TOPAOELYUETWY ETAEYOVTAL TPOCEXTIXA amd To dedouéva exnafdevone xar elvon Baxpitd and ta Levyn
oL avoxataoxeudlovTal.

Ov ouyxexpléves TPOTPOTES TIOL YENOWoTOLAUNXaY Yiot TN dnuiovpyio auTdY TtV {eLyapldY TEpLYpdpovTIL
Aemtouep®s oto 1.5.3.
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PhTpdpiopa xo EAEYYOS TOLOTNTAS AQPol ONULOVPYHOOUUE T UVOXAUTUOXEVUOUEVA, UE Bdorn To
ouupealopeva, Levyn epdtnongc-omdvinong, epopudlovpe wor Swadixascio gihtpaplopatog yior va dlacpaiicovye
ot xde neplntworn evduypapplleton ye Toug yYeipoug Tou cuvohou dedouévmy. Autd tepthaufdvel TNV eQopUoYT
CUYXEXPWEVWY XAVOVWY YLt TN Bopn %ot T Aoyur) Tou ouvlygatog ot tne andvinorc tou. Autol ol xoavdveg
elvon mpooapudool, e€acpaiilovtag evehi&io ot Bidpopa GUVOAA BedOPEVwY xou TERLBIANOVTAL

ALAoPIALOT TOLOTNTAS YLX TAPAYOUEVO XEIEVO Aol dnplovpy oy Tol avaxATUoXEVAGUEVD and
T0 mhaiolo Lebyn epwTHoEWV-AMAVTHCEWY, Wio dladxacio eEAéyyou moldtntog dlaopaiilel ot Ta Lebyn mAnpovy
CUYXEXPWEVA XELTTpLOL.

I to oUvolo dedopévwy BrainTeaser, to @uAtpdplopo elvan EUENMXTO XaL OEXETA Yohopd, BedoUévou OTL oL
EPWTACELS xa oL amavthoelg unopel vo towxihhouv ot prfxog. O x0plog meplopiopde elvon 6Tl oL EpwTHoELS TEETEL
VoL €YUV U1XOC TOUAAYLOTOV 7 AEEELS, EVE) OL AMUVTACELS UTOPOUY VoL £Y0UY ontotodnrote urixog. ¢ anotéleoua,
névo 1o 2% neplnou Ty Topayduevev (euydy guitpdpeto, dtatnedvtas LAY cuVolx ToldTnTo.

Avtideta, to obvoro dedopévev RiddleSense éyel avotnpdtepoug xavdvee AOYw g pxpdTtepng HOpPhC
amavticewy. Edd, ol epwthoelg mpénel va €yxouy unixog Touhdyiotov 6 AEEEC xou Ol AmAVTHCELS OEV TRETEL
var urepPBaivouy Tic 7 MéEeic. Tepinov to 10% twv napayduevewy Leuydv grktpdpovial, eneldt dev TAnpoly autd
T oo TNEOTEPA TEdTUTIAL  AUTE T GpLar AéEewv BLacarilouy OTL oL EpWTACELS €YOUY UEXETY| TOANUTAOXOTN T
xou Bddog, €Ved oL ANAVINACELS TUPOHUEVOLY CUVOTTIXES XL CUVEXTIXEC, DLUTNe®vTag Tn dour) Tou ypeipou o
EUTAEXOVTOG AMOTEAEGUATIXG TO UOVTERO.

Movtéla mouv yenoiwonotnOnxay llepopatiotixope pe 600 LOVTENX Lol VO EXTIUNCOLUE TG TO
péyedoc Tou poviéhou emnEedlel TNV TOLOTNTA TWV OVUXUTUOXEUDY TAUGCIOL XoL Tn cuvolr amddoot).
Xenowonofoaye to Llama3-8B [1], éva puxpdtepo poviého, xou to Llama3-70B [1], évo peyahltepo poviého
e Blac oxoyévelag. Autd to povTéda emAEYINXAY VLo TIC LOYUEES ETUBOTELS TOUG OE dldpopa TpoBhuaTa.
Yuyxpivovtog to uixpdtepo Llama3-8B pe to yeyahltepo Llama3-70B, emdudiope v diepeuvicouye s to
péyedog tou povtélou ennEedlel TNV OMOTEAEGUATIXOTNTA TWYV UVOXAUTUOXEVDY TEPLEYOPEVOU Xou TNV eTidpac
TOUC OTNY amod0oT XaL oTa 8V0 clvoha dedouévwy. Auty 1 obyxplon topéyel Baditepn xatavénon tou pdlou
Tou yeyédoug Tou povtéhou o dnulovpyio Topadelypdtwy VPNAHC TOLOTNHTAG.

ITpotponég

Ipdtov, Yo nopoucldooupe TN BUdEPKOY) TWY TEOTEOTIOY NBEVIX®Y TULAUDELYUATWY TOU Yenoluonoleltol
Yo TN OnpLoupYio TWV avaXATAOXEVUOHEVLY antd To TAaloto Leuyaptdv Epdtnonc-Andvinone.

System Prompt:
You are an expert in context reconstruction. Your task is to receive a question along with its correct answer and
adapt them to a new scenario while maintaining the misleading commonsense premise.

Please follow these steps:

- First, you will receive an unsolved riddle along with five answer options. Analyze the given setting and
identify the connection between the question and its correct answer.

- Modify the original question and correct answer to fit a different situational context, ensuring that the
underlying logic and relationship between them are preserved.

- Ensure that both the new question and the new correct answer are distinct from the originals.

User Prompt:

Question: "~ {QUESTION} "

Correct answer: ~~~{ANSWER} "~

42



1.5. Iewpapotind Mépog - Mébodoc Hpotponric RISCORE

Y1 ouvéyela, Pe WxpéS TPOTOTOOELS, Vol TOPOUCLAGOUPE TN SLdePwoT TeoTEoTS AlY WV TApAdELY LA TWY
mou axohoultel Ty (Bl hoyuer) ahhd evonuativel Tapadelypota yior vor xododnyel Tig anavTioEC ToU OVTEROU.

System Prompt:
You are an expert in context reconstruction. Your task is to receive a question along with its correct answer and
adapt them to a new scenario while maintaining the misleading commonsense premise.

Please follow these steps:

First, review an example provided with its context reconstruction, which illustrates the type of transformation you
will need to perform.

Next, you will receive an unsolved riddle along with five answer options. Analyze the given setting and
identify the connection between the question and its correct answer.

Modify the original question and correct answer to fit a different situational context, ensuring that the underlying
logic and relationship between them are preserved.

Ensure that both the new question and the new correct answer are distinct from the originals.

User Prompt:
{EXAMPLES}

Adapt the following riddle - answer pair while taking into consideration the examples above regarding context
reconstruction:

Question: ~~ {QUESTION} ""

Correct answer: ~~~{ANSWER} "~

Yy moapomdve pOdwon, evvoeitan 61t or Twég tou EXAMPLES avanapiotolv {edyn amavinuévmy
napadelyudtwy Epdtnong-Andvinong: to apyind xou 1o avtloTolyo avaxataoxeLaouévo Ye Bfdor to tepleyduevo,
To omola TpogpyovTaL XL Ta BU0 and To cUvVoAo dedouévwy BrainTeaser.

1.5.4 Brpa 2: Anuovpyia Twv Aaviaopévwy emAoY Y

H dnuwovpyio twv havloouévwy emAoYOY Yid TIC EpWTACEL TOMATANC emAoyg elvon wiar xployn ahhd 80oxoA
oladucaota.  Ov Addog emhoyée meémetl va ebvan odndogaveic odld capng eopalyévec oe olyxplon PE T
owo T amdvinon. Oa meénel enloNe Vo TUPUUEVOUV XOVTE OTO VONUO TNG OWOTAS ANEVINONG, ATOPELYOVTIS
Vv unepPBolxt| andxhion mou Yo UnopoloE Vo UEIDCEL TNV TpoxANnon Tou awlypatog. Autd ebvon WSlaitepa
oNUAVTIXS OE TEQITTWOOELC OToV 1) 6wo T andvtnoy eivon «Kavéva and to mapamdvey, dnwe gaivetol oto ahvoho
dedouévev BrainTeaser. To urxog twv anavtrioewy dlagépet enlong onuavtind Hetagd TV cUVOAWY dedopévwy:
To BrainTeaser €yel ocuvfitoc peyahltepeg anavtAoelc (nepiocdtepe and téooeplc i mévie AZewC), EVE To
RiddleSense diordétel wixpdtepeg, ouyvd povohextixéc anavthoelc. o vo avtigetwnicoupe autég Tic dapopec,
mpoteivouue 800 uedddoug yia T dnwoupyio distractors, npocopUooUEVES OE UEYIAES XAl UXPEC ATAVTHOELS.

Anuiovpyia AavOiaoUeEvey eTLAOY®OY ReYdAou whAxouvs T tic peydhec oe uixoc havdaouéveg
ETUAOYECS, YPNOWLOTOLOUUE PeYdha YAwoowd povtéra (MI'M) yia va dnurovpyfiooupe tpelc havdacuéves emthoyéc
Tou dlatneolv TN oLVAgEld UE To TAdiolo xon mpoxahoLv TN Sladixacio cuAloyiopol. Egapudéloupe 5o
npooeyyloewc:

1. ITpwm mpoocéyyion: Ilpotpénouvye 1o poviéro pe to apywd Lebdyoc Epdtnon-Amdvinon, {ntdvrag
TOU VoL XATOVONOEL TN SUANOYLOTXY Tiow and Tov ypigo xou Vo SNUloupYHoeL o EGPOAUEVY amdvTnoN
Baolouévn oe 80oxoleq 1) mapamAavnTés TTUYES TS évvolag. Me autdv Tov TpdTo mapdyeTan pio and Tig
havioopévee eTAOYES, TTOL GTOYEVEL Vo UTepdEPeL Tov Yprotn Héow NG TAPOUOLIS ANOYIXHC.
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2. Acltepn npooeyyion: llupéyouue 610 UOVTIENO TNV UVAXAUTUOXEVACUEVT UE BAOT TO TEPIEYOUEVO
epdTNON X0 T AovOaopéveg amavTAcES and TNy ap)ixr gpndtnom, elupdvtac to «Kavéva oo
o mapandvwy.  To povtého tpomomolel autée Tic havdoopévee emhoyéc ue PBdon to véo mhadolo,
dlacpaiilovtog 6Tl Tapauévouy BlaPopeTiXéc and TN owo T andvinor. Iapdho mou auth 1 npocéyyion
unopel xdmolec Qopéc va mopdyel havdacuévee emhoyéc younhétepne moldtnrag, e€axoloutolv va
eEunneeToly Tov oXOT6 NS TapamAavnTixic xan Towikng andvinong, cupfdihoviac oty evioyuon g
culhoyloTxrg Sodxastog.

Ta newpdpatd poc delyvouv 6L, 6TaV YENOLLOTOLOVVTOL TOGO TA TEWTAHTUTIOL HGO Ol TOL UVUXUTUOXEVACUEVL UE
Bdon To mhalolo TopadelyUaTA, ) CUVOAXT| AOBOCT, TOU LOVTEAOL dev ennpedletar onuavTxd and haviacuéves
eMAOYEC YOoUNAOTERNG TOLOTNTAS.  Anuoupy®dvTag 800 cuVOelc Ye TO TAXUCLO ECPUAUEVES AMAVTHCELS XoU
OVOHELYVOOVTAC TEC PE TN OWOoTH amdvtno, e€ac@arilovye 6Tt oL EMAOYES TOANATAGY EMAOYMV TUPUUEVOUV
OUVEXTIXEC XL TPOXANTIXES Yiot To Wovtého. Téhog, ouvdudlouue TN owoTH amdvinon pe dVo and Tig TEELS
Topay OUEVES haviloaopéves amavtioelg xou tpoadétouye Ny emhoyr «Kavéva and to nopamdvey we teleutalo
emhoyn. Edv n emdoyy «Kavéva and ta nopamdvewy elvan 1 oot andvtnor, T6Te YpNoULonoloUUE ol TIC TEELS
Taparydueveg Aavdaouévee emioyéc. Autr 1 dladuxacta odnyel ot dnuloupyio evoc TApws TEOETOWACUEVOL
GUVOAOU BEBOUEVLV, XATIAANAOL Yial TEQOUTERL YENOT XOUL TELOHUATAL.

ITeotponég llpdtov, mapoucidloupe TRV TEOTEOTY TOU GUOTAUATOC-YENOTY TOU YENOWOTOLETOL Yot Vol
avord€oel 6TO HOVTEND TNV XATAVONGCY) TOL Yei(pou, Tov evIoToud TNg cUAOYLo TN Bladixaciag mou cuvdéel
TNV EEATNCT UE TNV ANEVTNOY XOol, GTY) CUVEYELX, VO 0ONYNOEL GE Tapay YT pldg Aaviaopévng emhoyhc ue Bdom
TG TLo BVOXOAES 1) TOPATAAVNTIXEG TTTUYES TNG €VVOLAC.

System Prompt:
Your task is to act as a concept grasper. You will be given a riddle and its correct answer.

Your goal is to understand the connection between the riddle and the correct answer, focusing on the tricky
parts. Based on these tricky aspects, propose a plausible wrong answer that someone might give.

The wrong answer should be short, concise, and limited to one sentence.
- Riddle:

- Correct Answer:

Response format:

- Wrong Answer:

User Prompt:

- Riddle: {QUESTION}

- Correct Answer: {ANSWER}

Topo o SOGOLUE TNV TEOTEOTY CUCTAUATOC-YENOTN Tou Yenotdonoleitor Yo tn debtepn pédodo.

System Prompt:
You will be given a sentence without context and then provided with a specific context.

Your task is to rewrite the sentence so that it aligns with the given context, while keeping it as close as
possible to the original meaning.

The purpose is to adapt the sentence to the context, not to answer any questions related to the context.

- Sentence (out of context):
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- Context:
Response format:
- Sentence:

User Prompt:

- Sentence (out of context): {0ORI_CHOICE}

- Context:{QUESTION}

Edw, n T tou ORI CHOICE oavagépeton oTic Aavdoaouéveg emAoyég and tov apywd yeipo, eEalpouuévng
e emoyrc «Kavéva and to napandvwy». Anuiovpyolue mpoTponés yio To Wovtého e xdie pla and autég Tig
eopoAéve emAoYES EexwpELoTAL.

Anpioveyion Aaviacpueévey eTAOYOV pixeol whAxouvg Lo chvolo Jedouévwv Ue HOVOAEXTIXES
anavthoels, 6nwe o RiddleSense, ypnowonololue pia diapopeTtix Tpocéyyiomn yio T dnutovpy o ePoApéveny
EMAOYOY TOU CUUTANEWYOLY TIC MO AemTopepelc, dounuéves spwtioeic. Xpnouwlonololue 800 BLapopeTnég
TPOoEYYIOEC TPOGUPUOGUEVES OE AUTH TN HoPPY COVIOUWY ATAVTACEWY.

ITewtn npoceyyion Auth n uédodoc tepoayilel Ty avoxataoxevaouévn ue Bdon to mhoiclo epwtnon oe
HIXEOTERES UTO-QRACELS Yenoulomoldvtog onuela oTléng 1§ ouvdetixég Aégewg. Ia epwtrioelc Tou dev €youy dueon
gpTNON, ntpoc¥étovye What am I7 - yia xowvr] woper eptdtnong oto obvolo dedopévmv- yia va e€acpaiicovue
TNV eVHUYEAUULOT| UE TNV OVOEVOUEVY) HOPQT) OTEVTNOTC.

Agol To aiviypa ywplotel oe uto-ppdoelg, {ntdue and to Lovtélo vo dnutovpynoet wa havdaouévn andvinon
yia xde LTo-PEdon oL CUVBEETAL UE TNV EpWTNOY. 261600, oplouéves uTo-@pdoelc unopel va e€axolovioly va
potdouy unepBohxd Ye TN owoth andvinon. ' va petpidooupe oautd to TEdBANU, elodyouuE éva EVOLEUETO
Briuo yenotponowdvas Tadlvounot undevixdy napodetyudtovy e to poviého facebook /bart-large-mnli [43]
an6 to Hugging Face. Autd to povtéro xatnyopionolel tn owoth andvinon o pio and Tig oxted opolBola
anoxheldueveg xatnyopleg "tpdpiuo”, “dropo”, “avuikeiuevo”, “Cdo”, “pion”, “xpévog”, “ténog”, “évvoia”. X
ouvéyela tpoteénovue 1o MI'M vo dnploupyoeL ECQUAUEVES OTAVTHOELS YENOWOTOWOVTOC TIC BU0 TANCLECTERES
xatnyopies (e€updvtoag Ty xatnyopio Tne owotic andvinong), dauopoiilovtac 6T or Aavlaouéves emhoyéc
Yo elvon ouvagelc ye to mhoioto. Eqopudletar @uitpdpiopo yiar var eZao@ailoToly SLoxpeltée Xo XATEAANAES
havdaouéves anaviioele.

Acltepn mpoogyyion Otav n npodtn mpocéyylon de dnuoveyel uvdniic mowdtnroc Aavdaouéveg
amavtioele, yenotponotolue to WordNet [11] yio va entowérioovye to oOvoho tov dtadéotumy Aaviocsuévey
emhoywyv. o xdde moapoyouevn 1 apyin Addog emhoyy, avoxtodue cuvadvupa xou utvuua ond to WordNet,
enextelivovtac TN defopevh TV mIUVOY ECQPUAUEVLY ETLAOY®VY Yid Vo BLATNENCOUUE TNV TEdXANCY Xou THV
mouhlor 6T EMAOYEC TOAATATC EMAOYTC.

Emiloy? Tehuxdv AoavOiaocueveyv emAoy®dy Agod OJnuiovpyHooupe TIC €0QUANUEVEC ETLAOYEC,
emAhéyouue Tuyalor TECOEPLC XU TIC CUVOUGLOUME WE TN OWOTH ANAVINOTY), ovVoXATELOVTOC T OELed Yio Vol
0NOXANEOGCOUUE TO GUVOAO TOMOTAOY emhoy®y. Lo vo Swtnpricoupe uPniAc moldTNTIC TEPLETUOUOUC,
anouToUUE TOUAdytoTov 800 amd Toug Téooeple MeploTacUols va €youv mapaydel ye Ty mpdtn Tpooéyyion
(neplomoopol mov dnuiovpyolvtan and to uovtéro). Autéd eaopariler uPnidtepo eninedo moAumhoxdTnTag Xou
ouvdgelac, xaddec ol ecpoipéves emhoyéc ou dnuiovpyolvtal ané to WordNet telvouv va elvon Aiydtepo
nolotxég. Edv autd 1o xpithplo dev mhnpeiton, mapahelnovge T cUYXEXPWEVY TEP(TTWON YLoL THY TRy YN
EVOC TORUDELYHATOC UE AVAXATACKEUT TIEQLEYOUEVOU. AUTY 1) 0TRATHYXY) CUUBAAAEL OTY) BlaTrENoT TNS CUVORLXAC
TOLOTNTAC TOU GUVOAOU DEBOUEVEV.
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ITpotponég T v mpdtn TPOGEYYLON, 6TOU TUEAYOUUE TEQIOTUCUOUS UE BAoT TIC UTOQRACELS, Topé)OUUE
oto povtého BVo xatnyoples (eCoupoupévne tne xatnyoplag e cwothc amdvinong) v xdde umogedon
oLUVOEDEUEVN Ue TNV gptnon. H Suodppwon tng mpotponiic cuoTtAuaToc-Yerotn Slvel EVIOAY) oTo poviého
vou Sntovpyfoet gt Aavioopévn andvtnor mou taupldlel eviog tng xadoplouévng xatnyoplag.

System Prompt:
Task: Provide a concise, relevant answer to the given question within the specified category.

Constraints:

- The answer should not exceed three words.
- Follow the exact format provided below.
Response Format:

Answer: ...

User Prompt:

Question: ~ T {QUESTION} "

Category: {CATEGORY}

1.5.5 Brpa 3: Anpovpyia Tou cwviypatog

Agol dnuovpyroope TG EMVUUNTES OVOXATOUOXEUES TEPLEYOUEVOU ot Yl To 800 cUvoha dedopévwy,
avtetoniooge  €va TeOBAnu oplopéva  apyxd emAeypévo  mopadelypato  dev  elyov  avtioTtolya
avoxartooxevacuéva Levyn Aoyw e Stodixaciog QUATpaplopaTog Tou ToloTXoL EAEYYOL.

IMot vor T0 oV TIHETOTICOVUE AUTO, YENOWOTOLOUUE TEOTA To 0Py LXd Topadelyotal Ue TN HEYUADTERY) ONUACIONOYIXT
opoloTNTA WS TapadelypoTa LEUNoNE, TEOGVETOVTOS TO UTOUATO TRy OUEVY avoxataoxevaouéva Levyn we Bdon
T0o mepleydpevo. Edv autd to mapadelypota dev emopxolv yio vo xahOdouy Tic anoutodueves puduloec (m.y.
800, téooepa 1) oxte mapadelypata v to RISCORE), ypnowonololye pia mo Sounuévn npocéyyion ovtl va
npocétoupe mapadelyporta Tuy ol

AnUovpYOUUE ovamopao TAoELS AEEEMY Yol TOL UTOAOLTOL TPWTOTUTIA X0l AVOXUTUOXEVUCUE VAL TOpadELY ortar ToL BEV
€youv axdun ocuvunepthneiel ota napadelypote. XenoWonoldyTas TV opoloTnTa cuvnuitovou, evtonilovye ta
Lo dpola mapadelypota and auTh TN Se€auevy), 1 omolo unopel Vo TERLAUUBAVEL AVUXAUTUOXEVNCUEVO TUEUdElY T
Tou 8ev anoTeA0VoOY UEPOG TOU OEYLXOU GUVOAOU eXTALBEUCTC. TN CUVEYELN, ETAEYOUUE TO TLO TAEOUOLOL
Topadelypato xou avtiototyilovue to xodéva e to avtioTtolyd tou, dlcparilovtag 6Tl cupnepthaudvoupe eite
NV oEy T ELTE TNV AVOXATAOXEVUOUEVY EXDOOT), avdhoya e Tig avdyxes. Auth 1 diadixaocio emovahayuBdveto
H€yeL var EMTOYOVUE TOV ONAUTOVUEVO Optdd TOROBELYUAT®Y VLot TO TEOBANUAL.

1.5.6 Ilepiypapy) Ilelpapdtwy
RISCORE

To RISCORE egopuéletar ye tny tpoctiixr] avaxoTaoXEVACUEVWY EQOTROEWY UE BAOT TO TEPLEYOUEVO OE XGDE
TaEdBELY oL ToL Yenotponoteltal oty TEXVIXA Alywv topadetypdtwy. O aptdudc Twv napadelyUdtony avapéoeTal
GTO GUVOAXS dELTUG TWV TUEABELYUATWY OTNY TEOTEOTY, GUVOLALOVTAS TGO TOUC 0Py XOVC YplPoug 600 Xt TG
AVOXUTACKEVAOHEVES EXBOYEC Toug. Ta mapddelyya, oe po phduon RISCORE pe 4 mopadelypota, undpyouv
2 npwtdTuTa TapadElyaToL Mot 2 avaxaTaoXEVAoUEVES e Bdom To TAaloto exdoyée, eElooppodvTac TNV elcodo
HETAED VEWMV X0l VOXUTUOXEVUGUEVV OLVLYUATOV.

Ipaypatonovfdnxay nelpduata ye puduioec 2, 4 xou 8 Boidv, dnhadn 1, 2 1 4 mpwTéTUTA TOEADElY AT
CUVBLACTIXAY UE TS OVTIOTOLYES ovVOXATAOXEVEC Toug.  Xenowwomoijoope tor wovtéda Llama3-8B xou
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Llama3-70B vy va dnpovpyricoude by epwTACEWY-OTOVTACEWY XAl EGPUAUEVHY ETAOYMY - TERLOTOCUOUC,
YENOWOTOLVTAUS TOGO TEYVIXY| UNOEVIXWY OG0 ol AYwV ToQadeElYUATODY.

Téhog, doxpivoupe petald RISCORE,, (xpnoylomoudvtog Yelpomolnta SnutoupyNUéves ovaxaTooXeVES dTa
elvan Srodéoipec) xou RISCORE (ypnothonoudvtas TAemS auTopatonoinpéves avaxatooxevéc). H Soud tne
npotponhc axoroudel Ty (Bio woppn ye TRV tumxy pédodo Alywyv mapadetyUdTtwy, pe povn ollayt to
TOPADELY LT TOU ToPEY OVTOU.

MovTéha ntouv yernoiponotoLvion otny wedodo RISCORE

Avutr) 1 evéTnTo mEpLYpdgEL TaL LOVTERX TIOU YENouloTollnxay oTa TEWRdUUTd pag.  Xenouwlomouunxay dvo
BlopopeTnd HOVTERA: TO éva Yl To TMEOPBANUS onpoctoloyixfc opoldtnrac (). @uitpdploua Bedouévwy 1
TPOTEOTH) XL TO GANO YLt TN dNoLEYist GUVTOUGY TEPIOTIUOUADY - ECPUNIEVOV ETUNOYOV GTO TACLO TN
TEOTEWVOUEVNC Ped6d0u Yac.

Movtého avanapdotacne Aeswv o tic avanopaotdoeic Aé€ewy, YENOULOTOLOOUE TO HOVTERO
gte-large-en-v1.5'1 [99], o onolo vlomowelton péow e PBPBModAxnc Sentence Transformers'? [66].
Autéd 10 povTENO ETAEYUMXE Yol TNV LOOPEOTHA YETOEY amOBOTIXOTNTAC Xat EMOOCEWY, UE XUAEC ETUDOOELC
oe npoPhipata tou MTEB leaderboard!® xou xuploc ot onuaciohoyixd opoldtnta xewévou (STS). To
elyenoto PEYedoc Tou xaL oL LoYUEES EMBOCELS TOU TO XUTECTNONY XATIAANAT ETMAOYT Yidl TOV YELOLOUO TWV
VYRV OVOTEdo TooNG AEEEWY GTO TELPAUATE. oC.

MovTélo TaZtvouNnone UNdevix®my tapadetyudtowy Lo tny tadvouncn undevindv napadelyudteny,
yenotwonotiooye o poviého bart-large-mnli'® [43] ané to Hugging Face. Auté to poviého yenowonomidnxe
v TNV ToEVOUNOY TWV CKWOTOV amovTHoenwy ot Wa and oxto auoBala artoxAelduevec xotnyoples: tpdgiua,
mpéowno, avtikeipevo, {do, plon, xpovos, tonos, évvoia. To emAé€aue Yiol TIC LoYLRES IXAVOTNTES TOU OTNY
TaEvounor undevixdv nupofoloptdy, Wioktepa i olvToues elo68ouc (). HepOvVwUEVES MEelc B @pdoELs)
Ywelc TNV avdyxn yia tepautépw exnaideuoT edwd yia To TEdBANUd pog. H ixavédtntd Tou va yevixelel xahd o
OLdpopeg epyaoiec TO XATEGTNOE WBAVIXO Yo TNV alLOToTH TUELVOUNOT TWV ANAVTHOEWY GTA TELRAUATE Uag.

Movtéla mouv yenoiponotiinxay yia Ilpotpony

Ye outh TNV evoTnTa, avohDOUPE TA POVTEAX TOU YENOLLOTOUNXAY Ylol TNV TEOTEOTH %ol TOV ovTixTumd
TOuC OoTa TEAMXE amoteAéopaTa Yot xdde cUvoho dedopéveyv. EmAélope mopohAay€c oqUTOV TWV UOVTEAWY
ToU €youv exTAdEVTEl var axoloudoly odnyleg, emedr] evduypouploTnxay xoADTEPA UE TG AMOUTACELS TNG
gpyootag. Ta cuvtoviouéva ye odnyleg povtéla amodidouv yevixd xohd e mpolAfuata OTOL 1) xaTUVONoT
xa 1) THENOT CUYXEXPIEVWY oBNYLOY elvor Lwtixig onuaciag, Xoadio TOVTIG T TLo XUTIAANAL Yld TOV YEIPLOUO
NS TOAUTTAOXOTITAC TV EPYOCLIYV UAS XOL TNV Ty wY? opUodV anoTeAEoUdTWY.

Or tipéc tne Yepuoxpasiac xou tng mowvAc enavdindme emhéydnxay uéow dlepeuvnTiX®Y TElpopdtwy. T Adyoug
cuvénelag, epapudoope Yepproxpacio 0,5 xouu mowvh enavdAndng eite 1,0 elte 1,15 o dha Ta meLpduoTaL.
Avutéc ol pudpioeic e€aopdhony toopponnuéves e€680ug, dlatnewvTas Tapdiinia Ty TowtAio oTo napayduevo
xelpevo.

Llama 3 [1] Zta newpduotd pog, emthélope dbo mopahhayéc tou poviéhou: Tic exddoeic 8B xaw 70B. To
povtélo Llama3-8B'® ypnowwonodnxe yio elaywyr cuunepaopdtmy yoplc xBavtion, yeyovég nou tou enétpede
vo TopE el anotehéoyarta pe TAen oaxplBeta. Auty 1) tpocéyyion Nty Wovixh 6tay oL unoloyloTxol tdpot Rray
emapxelc xou 1 axpiBela Aoy xplown. Amd tnv & mhevpd, to poviého Llama3-70B ¢ Aéyw nepioplopcv
VAoV, uroPridnxe oe xBdvtion. Autr n dwdixacio pelwoe to péyedoc TOL YUOVTENOL Xol TIC UTONOYLOTIXES
avaYxES TOU, XHOTOVTAC TO TEOGCLTO TAEd TOUS TEELOPLOUOUE Tou UAXOU pag. Av xau 1 xBdvtion unopel va

11 Alibaba-NLP /gte-large-en-v1.5
12SentenceTransformers

BBMTEB leaderboard
Mfacebook/bart-large-mnli

B meta-llama/Meta-Llama-3-8B-Instruct
6 meta-llama/Meta-Llama-3-70B-Instruct
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odnyNoel oe xdmota amdAelo oxpifetag, HToy anopaltnTo Brua Yiol Vo XeNOULOTOLCOUUE dUTO TO UOVTEAO, XATL
TIOU BLaPOpeTiXd dev Vo Tay epuxTo.

Mistral [32] ¥t rnewpdpotd  poc,  ypnowonofoope  Tto  Mistral-7B-Instruct-v0.2'7  xor 7o
Mixtral-8x7B-Instruct-v0.1'® otic un »Bavtiopévec poppéc touc. To Mistral 7B-Instruct v0.2 emAéydnxe
Yl T LOYUEEC aveTNTEC Tou var axohoulel evtolég, Blatnpdvtog TAren axpifela. Opolwg, 7o
Mixtral-8x7B-Instruct-v0.1, to omolo evowpatdvel oxtd poviéha 7B, yenowomnouinxe ywplc xBovtioud
yior voo eno@erndolue and TN cuVBLNOUEVY amodOocT TwV UOVTEAWY omd to onola amoteieltan. O otdy0C
MOG ATOY VO DIEQEUVHACOUUE TNV OTOTEAECUATIXOTNTO ULXPOTEPWY UOVTEAWY Yl TS €pYooieg auvlypatog xou
TEOTWUNCUUE OUTES TG TUPOARAYES, (OTE Vo OLACPUACOUUE OTL AVTATOXEIVOVIOY XOAS OTI CUYXEXQUIEVES
anATACELS, 00NYWVTAS ot BeEATUEVO AMOTEAECUATAL.

Qwen2 [95] Tw v 7epoutépwy  Slepedvnor  uxpdTepwy  mapolhoydv,  emhélope TV éxdoom
Qwen2-7B-Instruct'®.  H owoyéveir poviéhov Qwen2, ocuprnepthopfavopévrc authc tne mopohayhc
7B-Instruct, efvon yveot yio Tic toyupés emdooels g o npofAruata cuAloyiopol. To yovtéha Qwen2 etvou
Wiaitepa amoteAeouoTind oty enihucy cOVIETOVY TEOBANUATWY XaL 0T AOYLXY] GUAROYICTIXY), YEYOVOS TIOU Ta
oo T XATIAANAAL YioL TOUC OTOYOUS UOC.

1.5.7 AmnoteAéopata

Ye autr] TV eVOTNTA, TUPOUGLACOUUE XAl AVOADOUUE TO OMOTEAEGHUOTA TWV TELROUETLY UG,

BrainTeaser

Ytov mivaxo 1.9 napovotdlovton To anoTEAESHATA TWV EMBOCEDY TWY BlAPOPKY TEXVIXMY TEOTEOTAS TOU
epapudlovitor oto obvoro dedouévwy BrainTeaser. A&ilel va onuewwdel 6tL 1 uédodog CoT _FS unokelneton
oe anodoan oe cUYXELON UE TIC TEXVIXEC AlYywv Topodelypdtomy, oxoun xou Otov mapéyoviol mopoudelypota
mou epthaBdvouy yetpoxivita mapaydueves enednyfoeic. H tdon avth woyder aveldpnta and to uyéyedog
Tou ypnowonooluevou povtélou.  Avtideta, umdpyel onpavtxf Bedtiwon 6tav N mpocéyyion Twv Aywv
TOROBELY ATV EVOWHATMVEL TA TORAYOUEVA ouviypaTa Tou €Y0oUV avaxataoxevaotel ue Bdorn to mhalolo pali
ME T apyixd awvlyporta.  Auté umoBnAGVEL OTL Tor awvlypota mou €youv avoxotaoxevaotel pe Bdon To
mAaioto xotodnyolV anoTEAECUATIXG TO HOVTENO OTNV avlyVEUaT) TNG XatdAANAng Bladpounic cuhhoylouol. Eivau
0ELOOTUEIWTO OTL TO GPEAOC UTO TN YEHON AUTHOV TWV AVAXATACHEVUCUEVWY TUPAUSELYUATWY efval o €viovo ot
UXPOTEPX HOVTENA OE CUYXELOT| UE PEYOROTEpA HOoVTERD TNE (Blog apyttextovixhc. Ta mapdderypa, 1 Beitiwon
o7o povtého Llama3-8B elvon onuovtud: eved 1 texvinn Twv 4 Setyudtwy Ue YeHor) ONUACIONOYIXAC OUOLOTNTAS
emtuyydvel Baduoroyio 0,717, n evioyuon authg TN TEOGEYYIONG UE TECOEQRA OVUXOUTOUOXEVACHEVD UE BdoT TO
nepleyouevo napadelypota (cuvolixnd oxted tapadelypata) auidvel Ty anddoor ot 0,758 - wa Behtivon nepinou
5,7%. T to peyahdtepo poviélo, 1 adénon auth eivar and 0,792 oe 0,808, odnydvtac oe Peltinorn nepinou
2,02%. To (dio potifo eivan o epgpavéc oto Mistral-7B, dtav yio 4 topadelypata nopatneodue adénon 9,2% eved
yioo To Mixtral-8x7B éyoupe avinon 2,5%. Ilapduowo tdom napatneeiton xau oto Qwen2-7B, 6nov 1 phduion
4-shot ye onuactoloyxd mapoéuolo mopadelyporto éyet nepinou 3,4% younidtepn onddoon and to emowEnuéva
nopadelypato 8-shot, to omola mephopfdvouy ta (Bior mopadelyporta pall e TIC avaxotaoxevés Tepleyouévou
TOUG, UE ATOTEANECUO VoL EYOUUE GUVOAIXE 8 TtapadelypaTaL.

Ye ot to onuelo, alilel va onuewwdel 6Tt 1 BeAtionon Twy emddoewy Sev TpoépyeTol UOVO omd TOV oUENUEVO
aptdud mopadelypdtemy, ohhd xou amd TNV ToldTNTA TV detyddtoy tou meootidevto. Autod elvar eygavéc and
TO YEYOVOS OTL Tal XAADTERO AMOTEAECUATO GTO GUVORO BEBOUEVGLY EMITUYYAVOVTOL 6TaY cuuTEpLAaUPBdvouue
napadelypota ye yelpog avaxotaoxeurc pe Bdorn to mepieyouevd touc. Emmiéov, cuyxplvovtag Tig emdooels
xou SlaTNE@VTaE oTadepd ToV dpldud TeV TUPAdELYUATWY, TORATNEOVUE OTL Ol TEPLTTWOELS TOU YENOULOTOO0Y Ta
OUVEYULATOL OVOXATAOXEUTS €XOUY XOAUTERES ETOOOELS, WX 6Tay 0 aptdudc Twv AMdewy eivar yeyahdTepog omd
dVo. Mtnv teheutaia Tep(nTWOT, 1 TEOCM XN BLaPOPETIXOY TapAdELYUdTwY aiveton vo Bonidel nepitocdtepo
TO WOVTEAO OTN OWOTH xotavonon tne epyooiog, xadde 1 ocuvuneplhndn evéc udvo mapadelyyotog Pe TNy
ovaxataoxevy) pe Bdon to mhaiold tou xahoTd TNy TeoTeony) UTERBOAXE CUYHEXPWIEVT.

T mistralai/Mistral-7B-Instruct-v0.2
Bmistralai/Mixtral-8x7B-Instruct-v0.1
19Qwen/Qwen2-7B-Instruct
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Llama3-70B
Mistral-8x7B
Llama3-8B
Mistral-7B
Qwen2-7B

Method N.
CoT_7S | 0 | 0.725 0550 0.633 0.
Randomly Selected Shots

Llama3-70B
Mistral-8x7B
Llama3-8B
Mistral-7B
Qwen2-7B

Method | N.

'
o
[=}
<
=~
o
[oe}

Llama3-70B zeroshot for QA & Llama3-8B distractors
2 0.792  0.667 0.625 0.492 0.625

2 | 0758 0617 0.633 0475 0.608 RISCORE | 4 | 0.792 0.642 0.675 0.467 0.625
CoT_FS 4 0.683  0.583  0.608 0.508  0.650 8 | 0.808 0.683 0.700 0.475 0.642
8 | 0.708 0.642 0.658 0508 0.667
Llama3-70B fewshot for QA & Llama3-8B distractors
2 | 0775  0.617 0.633 0517  0.642 : —
FS 4 | 0.808 0.683 0.642 0483  0.608 2 1 0750 0675 0683 0475 0.625
8 | 0.775 0.617 0.675 0.483  0.642 RISCORE | 4 | 0.792 0.650 0.658 0.558 0.658
2 | 0783 0.625 0.667 0458 0.608 8 |0.808 0.675 0742 0517 0.658
RISCORE, 4 0.758 0.617 0.675 0.517  0.625 Llama3-70B fewshot for QA & Llama3-70B distractors
8 | 0.800 0.650 0.667  0.400  0.592 5 | 0783 0667 0683 0500 0.617
Semantically Similar Shots RISCORE 4 0.792 0.642 0.667 0.508 0.617
2 | 0825 0692 0700 0517  0.600 8 | 0767 0.683 0700 0500 0617
FS 4 | 0792 0683 0717 0458 0.633
8 | 078 0667 0767 0533 0.650 Table 1.10: EniSoon tou povtélou yia to Brain
RISCORE., | 4 | 0.833 0.708 0.742 0.567 0.642 s .
s | 0808 0.708 0758 0550 0.667 RISCORE. I'ia tnv emhoyy) OAwV TV SelYPdTwY
yenowonolfdnxe emhoyr ye Bdon tny
Table 1.9: Anédoor tou yovtélou yia To Brain onuactohoye opotdtnta. Ta aroteréoporta mou
Teaser pe yEHON TEYVIXWV WS oAVAPORE ol Zemepvouy ) uedodo F'S pe onpacioroynd
npotpontyy RISCORE,,. To xolltepo cuvohixd TaPGUOLeL ToPAOELYATAL, Y ENOWOTOLWYTOS TOV (BLo
amotehéopato EMoTUoiVOVTaL UE EVTOVT aprdp6 deLypdTey, elvol UTOY PAUUULOUEVAL.
veopn. Ilo avahutind anotehéopota unopelte Avohutix6tepo amoteréopara propeite vo Spelte
va Bpeite otoug nivoxeg 1.13 xan 1.14. otoug mivaxeg 1.14 xou 1.15.

Xenoiponotdvtag TNV avtopatorolnurévy wédodo RISCORE Xtov nivaxo 1.10 mopovoidleton
n anédoon tou RISCORE pe 1t yerion e avtopatonomuévne uedoddou yia 0 dnplovpylo Tapadelyddtwy Ye
avoxataoxevh) mhaolou. ‘Onwg avayevotay, 1 yerion e autopatomoinuévne pedddou odnyel oe wxpdteen
Behtlwon oty anddoom Tou HOVTENOU GE GUYXELOT PE TO YELOXIVITO ETUEAUEVA TUPUBElYHOTA TTOU TTaPE Y OVTOL
o610 oUvolo Oedouévwyv BrainTeaser. $otdoo, n oandédoon 6Awv twv woviéAwv BeAtiddnxe otadepd ue
Y TEOCUMXY] GUVLYUATOV OVOXATOUOXEVAOUEVKDY antd TO TAX(OL0, oxoun xou 6Tay Yenowonoidnxe 1 TAHews
auToUTOTOMNUEVY SLadxaaio yia T dnutoveyio Toug. o mopddelyua, yio to wovtého Llama3-8B, n enidoon pe
™ yeYion 4 deryudtewv and to alvolo dedopévev elvon 0,717 xaun ye ) ypron twv By topaderyudtoy poli ye Tic
OVAXATOOXEVES TOUG TOU TOpdy ovTal amd Thy outopotonoimnuévn pédodo (8 Mdeic ouvolixd), n enidoon audvetar
oe 0,742, H (Bio tdom etvon eppavic oe Oha ToL oYETIXG UiXpOTERA HOVTENA, OTOL 1) enalENom TwV 4 napadetyUdTwy
Tou emAéyovTan Ye BAor TN ONUACLOAOYLXY OUOLOTNTA UE T QUTOUATOTOMNUEVE ey T OVOXATUOHEVWY e Bdom
TO TEPlEYOUEVO TOUG, omodidel aloonueinwTe BEATIOOES GTNV andd00. DUYXEXEWEV, OTNV TEPITTWON TOU
Qwen2-7B, 1 teyvin| TV 4 TapadelyUdTwY TOU CUUTANEOVETAL UE AVTIC TOLY 0L VOXATACEXVAOUEVOL TORODELY Tl
odnyel oe Bektiwon e anédoone xatd 2,5%. Xto Mistral-7B, 7 Behtiwon elvo oxdun mo évtovn, ye v
anddoon va avgdveton xotd 10% amd To poviého avoapopdc 6To xohiTepo oevdplo. Eivor onuavtind dtu o Hivaxac
1.10 Beiyvel 61 oTic neplocdTepes TEPINTMOELS (UTOYPOUMOMEVES), elvan axdur xahOTEPO Val Yprotponote(tar 1)
autopatonoinuévn uédodog yia T Snuiovpyla TEOcUeTHY TAPUdELYUdTWY OE GUYXELOT UE TNV TEOCUAXY TOU
{Blov apiyol mapadelyudtwy and to clvolo dedouévwy. I mapddelyya, 1 anddoorn tou Llama3-70B pe 8
delyyota and to cbvoro dedopévwy etvon 0,783, eved N yeRom wovo 4 TapadelYIdTwY and TO GUVORO BEBOUEVMLY

xa 1) auTOpTY Ontovpyic TV undlownwy 4 ue T Yenomn e uedodou avaxaTacreLc TEplEYOUEvoL, odNYEl oE
anédoor 0,808.

RiddleSense

Ye autd To olvolo dedopévwy, To RISCORE umopel va e@apuooctel ubvo o autoduota mopory SGUeVa Topadelyotd,
ENELDY| M LOPPT] TOU GUVOAOL BEBOUEVLY BE BLAIETEL AVUXATACKEVES TIEPLEYOUEVOU YLOL TIC EPWTHOELS TOL.
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g K] g k] g Llama3-70B fewshot for QA & Llama3-70B distractors
Method | N. | 4 z = 2 c 2 ] 0.792 0672 0692 0.600 0.697
CoT_ZS | 0 | 0.775 0.675 0.619 0.589  0.608 RISCORE | 4 | 0.783  0.689 0.722 0.600 0.717
= 8 | 0789 0.700 0.708 0.597 0.731
Randomly Selected Shots
Llama3-70B fewshot for QA & Llama3-8B distractors
2 | 0789 0.692 0.625 0.594  0.667
CoT_FS | 4 | 0783 0.68 0.672 0.603 0.656 2| 078 0.719 0.681  0.603 0.681
8 | 0.775 0.689 0.706 0.617 0.719
2 0.769  0.706 0.672 0.586  0.689 -
FS 4 0.772 0719 0.639 0.586  0.683 Llama3-8B zeroshot for QA & Llama3-8B distractors
8 | 0.800 0.711 0.672 0.586  0.700 2 | 0792 0.681 0.689 0.589  0.694
Semantically Similar Shots RISCORE | 4 | 0.778 0.714 0.700 0.600  0.683
8 | 0.806 0.689 0.686 0.614 0.689
2 | 0792 0.714 0.706 0.608  0.722
FS 4 | 0.817 0.692 0.711 0.633 0.714 , ,
8 | 0800 0675 0681 0611 0.731 Table 1.12: An680om Tou LOVTENOL YL TO

RiddleSense ue yenon tne pedédou npotponic
RISCORE. H emhoy1| ye Bdorn v ogoldtnta
YENOWOTOAUNXE Yiot TNV EMAOYTH OAWY TWV
deryudtwy. To anoteréopata mou Eenepvoiv T
uédodo Aywv TopadelYUATWY UE CNUATLONOYIXE
TOEOUOLYL TUPAUDEIYUOTA, YPTOYLOTOLOVTAS TOV (BLo
oprdud Mewy, elvar UTOYPAUULOUEVAL.
Avautixdtepa anoteréoparto unopeite va Peelte
otov mivaxa 1.17.

Table 1.11: Ané8oom tou LovtéNou yia To
RiddleSense ypnowonoidvtog Bacinég Teyvixég
w¢ avapopd. To xolbtepo anotehéoyota
GUVOAXE Elval ETLOMUACUEVO AE EVTOVT]
veopn. Ilo hentouepy| anoteréopato unopeite
va Bpeite otov mivaxa 1.16.

Ytov mivaxa 1.11 mopouocidlovton tar amoTeAEoHaTo TV BACIUGOY TEYVIXWY HE TN XPNOoN BlopopnY LOVTEAWY
070 oUVoAo dedouevev RiddleSense. I dhAn wior @opd, to amoteréopata emPBeBatcyvouy OTL 1 Tey VX Alywv
BOAGY, YENOWOTOUOVTOS ONUACIOAOYIXE TapduoLo Tapadelypata, topéyel otadepd Ty xahbTepn anddoon oe
O TOL LOVTEAAL TTOU BOXUUACTXAY.

Yrov Iivaxa 1.12, topousidlouye ta omoteréopota tou RiddleSense yenoworoidvtog tnv npotetvépevn uédodo
YI0L TNV OVOXOTUOXEVT] TIEPLEYOUEVOU GE ELGOBOU.

Mo cagric téon tpoxdnTel dTav cuYxEivouue (Lol AmAY ETAOYT 8 Selyudtov pe BAoT) T ONUACIONOYIXT| OUOLOTN T
pe Tt eOdwon 8 detypdtwyv tne Yedoédou pag, O6mou To 4 TEPLOCOTEPO GNUACLOAOYIXE OpoLaL ToRAdElY T
eumhoutilovton pe tar mapayoueve and epdc (edyrn avaxotaoxeLaouévwy detyudtoy ye Bdorn to mepleyduevo.
EwWwodtepa, ta anoteréopota deltyvouv étt n pédodoc poc Eemepvd otadepd tnv Tumxy] mpocéyylon Ttwv 8
TapABELYUATWY, emdexviovTaS onuavtxy] BeAtiworn tne anddoong tou Yoviélou oe Bldgopes TepnTwoels. Eva
ToEABELYUo aUTAS TNE Tdong mopatneeiton pe to wovtého Llama3-8B, 6mou 1 uédoddg pog onuewdvel Badpohoyio
0,708, mepinov 2% unidtepn and ™ pvduon Myowv detyudtov mou Boocileton 6T oNUACIONOYIXH OpOLOTNTA,
n omnola emtuyydvel Baduoroyioa 0,681. To Bo potlfo eivon eugavéc xatd T olyxpon Twv 800 Yedodwv
pe 4 napadetypota. Emtuyydvouue moapduota 1 oploxd xokltepn axpiBelo yenotlomotdvToe cUVOAXd poiig 4
napadelyporta - 500 TEMTOTUTA XaL BUO TAUPAYOUEVES OVOXATAOXKEVES e Bdor to mhaioto. Autd unoypopuilel Ty
ATOTEAECUATIXOTNTA TG EVOOUATWONG CEUYOV UE AVAUXUTAOXEVT] TEQLOEYOUEVOL GTNY evioyuor Tne axelfBetag
Tou povtéhou. Aev gmTuyYdvoude onuavTix adénon Twv eTBOCEWY- WOTO0O, ETTUYYEVOUUE TopoUoL 1
oplaxd xohUtepa amotehéopata, eved Baotlouacte ot AyoTepn Vepehwuévn Yvoon. Autéd amodexviel v
amoTeAESHATIXOTNTA TNG HeddBou poag, xadde dlatneel cuyxplowes embddoelc e Ayotepa, ohAd oTpatnyixd
emeyuéval, TopadelyyaTa.

IMTotdétnTat TWV AVAXATACKEVACUEVLY  ouviyprdtwy Lo va  dnuovpyroouue  ouviyporta

avoxatooxevaouéva Ye Bdon To mepleyouevo, Yenowonowooue Wovtéa Llama3 upe 8 Sioexoatoupdplo
xar 70 Soexatopudpla tapauétpouc t600 ot puduiceic Mywv mopaderypdtwv (FS) doo xou oe pudpioeic
undevixav (ZS). Awmotdoape dtt To poviého Llama3-8B duoxoleudtay va napdyet uhnifc mtowdtntac Levyn
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1.5. Iewpapotind Mépog - Mébodoc Hpotponric RISCORE

EPWTHOEMV-UTAVTACEWY Ylo. TOo oUvolo Oedouévwy BrainTeaser xai, w¢ ex toltou, dev ypnowonoufinxe
oto RISCORE. Avut 7n OduoxoMa moveg mpoxdmtel omd v anofitnon Tou ouvOlou  BeBOoUEveV
BrainTeaser yia Onulovpyixyy oxédm, n omolo elvor Wiodtepor dVoxohn yia to pxpdtepo povtého. Ta
Cebyn Epwthioewv-Anavtrioewy elvar ouotddr, xat edv 1 Tol6TNTd Toug elval avemopxnc -0mwe topatneiinxe
pe to Llama3-8B oto olvoho dedopévwv BrainTeaser- ou udpnifc moidtnrag Aavdaopéves amavtiioels dev
unopoly amd Udvee Toug Vo avTiotodplioouy outh TNy avendpxela. 201600, Yo ToL ouviyYUoTa YEOUUXNS
oxéPNe, TO UXPOTERO UOVTENO TaPAYEL AmOTEAEOUATIXG ouviyuaTo oxoun xou otn evduon ZS, ta omolo, dtav
yenowonowotvtar otn plduon Alywv detypdtwv (FS), urmopolv vo odnyficouv oe auénuéves emdboel; oe
cUYXELOT| UE TEAYHATIXE ToipadelyLortal ToU avTAOUVTOL altd T0 GUVOAO BEBOUEVWY.

AvoluTixd anoTEAECUATA

Ye auth TNV eVOTNTA, TUPOUCLAlOUUE TO AETTOUERY| OMOTENEGUATA XOL Yiol Tol BU0 GUVOAX SEBOUEVWV OE OhEC
TIC TEROMATIXES Pag TEXVIXES. AbYw NG extetopévne QUONG TWV TELRUUITLY, To anoTtehéoyata yio xdde
oUVOAO BEBOUEVLV OQYAVWVOVTUL OF UTOTUVAXES. Zexlvdue e 1o oOvolo dedouévwy BrainTeaser, émou ol
HETPWES elvan Tl AemTopepelc AOY® NS Boprc Tou cUVOROL BEBOUEVKY, Xl axohoLTOUY To ATOTEAEGUATO YLt
T0 oUvoho dedouévwy RiddleSense. H doun elvan opyoaveuévn avd uédodo avd Hoviého, Ye To AmoTEAECUOTA Vol
nopoustdlovtar oe @divovoa oelpd pe Bdon t Baduoroyio yio xdde pédodo xau byt pe Bdomn tov aptiud twv
TopodELYRdTLY. Auto Slopépet and TNV TEocEYYLoN Tou TEeplypdpeTar oto 1.5.7.

Model Method ‘ Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. + Con. ‘ Average
Chain-of-Thought Zero-shot
Meta-Llama-3-70B-Instruct  CoT_ZS (Q) | 0 SP 0.5 115 | 0725 0.775 0.675 0.675 0.550 | 0725
Mixtral-8x7B-Instruct-v0.1 CoT_ZS | 0 SP 0.5 1.0 | 0575 0.550 0.525 0.475 0.275 | 0550
Meta-Llama-3-8B-Instruct CoT 7S | 0 SP 0.5 1.0 | 0625 0.650 0.625 0.500 0.325 | 0633
Mistral-7B-Instruct-v0.2 CoT_7S8 | 0 SP 0.5 1.0 | 0375 0.475 0.500 0.300 0.250 | 0.450
Qwen2-7B-Instruct CoT_ZS | 0 SP 0.5 115 | 0475 0.450 0.450 0.350 0.200 | 0458
Few-shot with CoT Explanations
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 2 SP 0.5 115 | 0850 0.750 0.675 0.700 0.500 | 0.758
Meta-Llama-3-70B-Instruct  CoT _FS (Q) | 8 SP 0.5 1.0 | 0675 0.750 0.700 0.600 0.425 | 0.708
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 4 SP 0.5 115 | 0700 0.650 0.700 0.575 0.450 | 0683
Mixtral-8x7B-v0.1 CoT_FS | 8 SP 0.5 1.0 | 0.650 0.675 0.600 0.575 0.375 | 0.642
Mixtral-8x7B-v0.1 CoT_FS | 2 SP 0.5 1.0 | 0625 0.625 0.600 0.525 0.350 | 0617
Mixtral-8x7B-v0.1 CoT_FS | 4 Sp 0.5 1.0 | 0575 0.600 0.575 0.475 0.350 | 0583
Meta-Llama-3-8B-Instruct CoT_FS | 8 SP 0.5 1.0 | 0675 0.700 0.600 0.525 0.325 | 0.658
Meta-Llama-3-8B-Instruct CoT_FS | 2 SP 0.5 1.0 | 0725 0.625 0.550 0.550 0.350 | 0633
Meta-Llama-3-8B-Instruct CoT_FS | 4 SP 0.5 1.0 | 0.650 0.625 0.550 0.500 0.300 | 0.608
Mistral-7B-Instruct-v0.2 CoT_FS | 8 SP 0.5 1.0 | 0525 0.550 0.450 0.375 0.300 | 0.508
Mistral-7B-Instruct-v0.2 CoT_FS | 4 SP 0.5 1.0 | 0525 0.550 0.450 0.375 0.300 | 0508
Mistral-7B-Instruct-v0.2 CoT_FS | 2 Sp 0.5 1.0 | 0525 0.425 0.475 0.300 0.225 | 0475
Qwen2-7B-Instruct CoT_FS | 8 SP 0.5 1.0 | 0.600 0.725 0.675 0.550 0.425 | 0.667
Qwen2-7B-Instruct CoT_FS | 4 SP 0.5 1.0 | 0.650 0.675 0.625 0.550 0.450 | 0.650
Qwen2-7B-Instruct CoT_FS | 2 SP 0.5 1.0 | 0675 0.550 0.600 0.450 0.375 | 0.608
Few-shot with Random Selection
Meta-Llama-3-70B-Instruct  FS Rand (Q) | 4 SP 0.5 115 | 0825 0.850 0.750 0.800 0.700 | 0808
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 8 SP 0.5 115 | 0775 0.800 0.750 0.675 0.550 | 0775
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 2 SP 0.5 115 | 0750 0.800 0.775 0.725 0.600 | 0775
Mixtral-8x7B-Instruct-v0.1 FS Rand | 4 SP 0.5 1.0 | 0675 0.775 0.600 0.600 0.400 | 0683
Mixtral-8x7B-Instruct-v0.1 FS Rand | 2 SP 0.5 1.0 | 0650 0.625 0.575 0.475 0.300 | 0617
Mixtral-8x7B-Instruct-v0.1 FS Rand | 8 SP 0.5 1.0 | 0675 0.650 0.525 0.525 0.350 | 0617
Meta-Llama-3-8B-Instruct FS Rand | 8 SP 0.5 1.0 | 0.750 0.625 0.650 0.575 0.400 | 0675
Meta-Llama-3-8B-Instruct FS Rand | 4 SP 0.5 1.0 | 0625 0.650 0.650 0.500 0.375 | 0642
Meta-Llama-3-8B-Instruct FS Rand | 2 SP 0.5 1.0 | 0.600 0.700 0.600 0.550 0.375 | 0633
Mistral-7B-Instruct-v0.2 FS Rand | 2 SP 0.5 1.0 | 0525 0.550 0.475 0.425 0.275 | 0517
Mistral-7B-Instruct-v0.2 FS Rand | 8 SP 0.5 1.0 | 0450 0.575 0.425 0.400 0.300 | 0483
Mistral-7B-Instruct-v0.2 FS Rand | 4 SP 0.5 1.0 | 0550 0.425 0.475 0.325 0.225 | 0483
Qwen2-7B-Instruct FS Rand | 2 SP 0.5 115 | 0675 0.650 0.600 0.550 0.425 | 0.642
Qwen2-7B-Instruct FS Rand | 8 SP 0.5 115 | 0700 0.600 0.625 0.525 0.425 | 0642
Qwen2-7B-Instruct FS Rand | 4 SP 0.5 115 | 0675 0.575 0.575 0.525 0.400 | 0.608

Table 1.13: Anédoon poviéhou yio to BrainTeaser (Mépoc 1). H napousio tou (Q) otn otiin pédodoc
UTOBEWXVUEL OTL TAL AMOTEAEGUATA AVTIOTOLYOUY GTNY XPBAvTIoUEVY) €XDOCT| TOU UOVTEROU.
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Model Method ‘ Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. 4 Sem. Ori. + Sem. + Con. ‘ Average
Few-shot with Semantic Similarity
Meta-Llama-3-70B-Instruct FS Sim (Q) |2 SP 05 115 | 0850 0.875 0.750 0.800 0.675 | 0825
Meta-Llama-3-70B-Instruct FS Sim (Q) ‘ 4 SP 0.5 115 ‘ 0.825 0.775 0.775 0.700 0.575 ‘ 0.792
Meta-Llama-3-70B-Instruct FS Sim (Q) |8 SP 0.5 115 | 0775 0.825 0.750 0.700 0.600 | 0783
Mixtral-8x7B-Instruct-v0.1 FS Sim |2 SP 05 10 | 0.700 0.700 0.675 0.575 0.450 | 0.692
Mixtral-8x7B-Instruct-v0.1 FS Sim | 4 SP 0.5 Lo | 0750 0.650 0.650 0.575 0.425 | 0.683
Mixtral-8x7B-Instruct-v0.1 FS Sim |8 SP 0.5 10 | 0750 0.625 0.625 0.525 0.375 | 0.667
Meta-Llama-3-8B-Instruct FS Sim | 8 SP 05 10 | 0750 0.775 0.775 0.700 0.600 | 0.767
Meta-Llama-3-8B-Instruct FS Sim ‘ 4 SP 0.5 1.0 ‘ 0.675 0.825 0.650 0.675 0.475 ‘ 0.717
Meta-Llama-3-8B-Instruct FS Sim |2 SP 05 10 | 0.800 0.675 0.625 0.625 0.525 | 0.700
Mistral-7B-Instruct-v0.2 FS Sim | 8 SP 05 10 | 0550 0.600 0.450 0.500 0.325 | 0533
Mistral-7B-Instruct-v0.2 FS Sim ‘ 2 SP 0.5 1.0 ‘ 0.55 0.475 0.525 0.375 0.275 ‘ 0.517
Mistral-7B-Instruct-v0.2 FS Sim |4 SP 0.5 10 | 0475 0.450 0.450 0.350 0.225 | 0458
Qwen2-7B-Instruct FS Sim | 8 SP 05 115 | 0675 0.625 0.650 0.575 0.500 | 0.650
Qwen2-7B-Instruct FS Sim ‘ 4 SP 0.5 115 ‘ 0.650 0.600 0.650 0.550 0.450 ‘ 0.633
Qwen2-7B-Instruct FS Sim |2 SP 0.5 115 | 0.600 0.550 0.650 0.500 0.400 | 0.600
RISCORE,, Rand
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) ‘ 8 Sp 0.5 1.15 ‘ 0.775 0.825 0.800 0.700 0.600 ‘ 0.800
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) | 2 SP 0.5 115 | 0850 0.775 0.725 0.725 0.650 | 0783
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) | 4 SP 05 115 | 0775 0.800 0.700 0.725 0.600 | 0.758
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE,, Rand | 8 SP 0.5 10 | 0.700 0.625 0.625 0.600 0.450 | 0.650
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE,, Rand | 2 SP 0.5 10 | 0725 0.600 0.550 0.600 0.400 | 0625
Mixtral-8x7B-Instruct-v0.l ~ RISCORE,, Rand | 4 SP 05 10 | 0675 0.650 0.525 0.550 0.325 | 0617
Meta-Llama-3-8B-Instruct RISCORE,, Rand | 4 SP 0.5 10 | 0650 0.700 0.675 0.625 0.500 | 0.675
Meta-Llama-3-8B-Instruct RISCORE, Rand | 2 SP 05 1.0 | 0.700 0.725 0.575 0.525 0.375 | 0.667
Meta-Llama-3-8B-Instruct RISCORE,, Rand | 8 SP 05 10 | 0.700 0.750 0.550 0.575 0.425 | 0.667
Mistral-7B-Instruct-v0.2 RISCORE,, Rand | 4 SP 0.5 10 | 057 0.475 0.500 0.425 0.300 | 0517
Mistral-7B-Instruct-v0.2 RISCORE, Rand | 2 SP 05 10 | 0550 0.425 0.400 0.325 0.200 | 0458
Mistral-7B-Instruct-v0.2 RISCORE,, Rand | 8 SP 05 10 | 0350 0.450 0.400 0.275 0.200 | 0.400
Qwen2-7B-Instruct RISCORE,, Rand | 4 SP 0.5 115 | 0625 0.650 0.600 0.550 0.400 | 0625
Qwen2-7B-Instruct RISCORE, Rand | 2 SP 05 115 | 0.650 0.575 0.600 0.500 0.400 | 0.608
Qwen2-7B-Instruct RISCORE,, Rand | 8 SP 05 115 | 0625 0.550 0.600 0.450 0.325 | 0.592
RISCORE,, Sim
Meta-Llama-3-70B-Instruct ~ RISCOREy, Sim (Q) | 4 SP 05 115 | 0850 0.850 0.800 0.800 0.650 | 0833
Meta-Llama-3-70B-Instruct ~ RISCORE,, Sim (Q) | 8 SP 05 115 | 0.800 0.775 0.850 0.700 0.625 | 0.808
Meta-Llama-3-70B-Instruct ~ RISCORE,, Sim (Q) | 2 SP 0.5 115 | 0850 0.775 0.725 0.725 0.600 | 0.783
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 8 SP 05 10 | 0775 0.625 0.725 0.575 0.500 | 0.708
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 4 SP 05 10 | 0675 0.750 0.700 0.600 0.425 | 0.708
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 2 SP 0.5 10 | 072 0.675 0.625 0.675 0475 | 0.675
Meta-Llama-3-8B-Instruct RISCORE,, Sim | 2 SP 05 10 | 0750 0.875 0.675 0.675 0.575 | 0.767
Meta-Llama-3-8B-Instruct RISCORE,, Sim ‘ 8 Sp 0.5 1.0 ‘ 0.775 0.800 0.700 0.775 0.650 ‘ 0.758
Meta-Llama-3-8B-Instruct RISCORE,, Sim | 4 SP 0.5 1.0 | 0825 0.700 0.700 0.675 0.525 | 0742
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 4 SP 05 10 | 0575 0.550 0.575 0.400 0.325 | 0567
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 8 SP 0.5 10 | 057 0.575 0.500 0.450 0.325 | 0.550
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 2 SP 0.5 10 | 0500 0.475 0.475 0.350 0.200 | 0483
Qwen2-7B-Instruct RISCORE,, Sim | 8 SP 05 115 | 0.700 0.650 0.650 0.575 0.425 | 0.667
Qwen2-7B-Instruct RISCORE,, Sim | 2 SP 0.5 115 | 0.700 0.625 0.675 0.550 0.375 | 0.667
Qwen2-7B-Instruct RISCORE,, Sim | 4 SP 0.5 115 | 0.750 0.625 0.550 0.575 0.425 | 0.642

Table 1.14: Arnédoomn poviéhou yio to BrainTeaser (Mépoc 2). H napousia tou (Q) otn otiin pédodog
UTOBELXVOEL OTL TA ATOTEAECUOTO AVTLGTOLYOUV OTNV XPavTlouévn éxBoan Tou HovTéAou.
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1.5. Iewpapotind Mépog - Mébodoc Hpotponric RISCORE

Model Method Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. + Con. ‘ Average

RISCORE Results

Llama3-70B zeroshot for QA & Llama3-8B for distractors

Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 8 SP 0.5 115 | 0850 0.825 0.750 0.775 0.600 | 0.808
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 0.5 115 | 0.800 0.775 0.800 0.750 0.650 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 0.5 115 | 0825 0.750 0.800 0.675 0.600 | 0792
Mixtral-8x7B-Tnstruct-v0.1 RISCORE Sim | 8 SP 0.5 L0 | 0700 0.750 0.600 0.650 0.475 | 0683
Mixtral-8x7B-Tnstruct-v0.1 RISCORE Sim | 2 SP 0.5 L0 | 0750 0.750 0.500 0.650 0.375 | 0.667
Mixtral-8x7B-Instruct-v0.1 RISCORE Sim | 4 SP 0.5 1.0 | 0725 0.625 0.575 0.575 0.375 | 0.642
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 0.5 10 | 0700 0.725 0.675 0.650 0.525 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 0.5 10 | 0650 0.675 0.700 0.550 0.425 | 0675
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 0.5 L0 | 0700 0.600 0.575 0.525 0.350 | 0625
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 10 | 0550 0.450 0.475 0.375 0.300 | 0492
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 0.5 10 | 0525 0.400 0.475 0.300 0.200 | 0467
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 L0 | 0425 0.525 0.475 0.400 0.325 | 0475
Qwen?2-7B-Instruct RISCORE Sim | 8 SP 0.5 115 | 0.600 0.700 0.625 0.550 0.425 | 0642
Qwen?2-7B-Tnstruct RISCORE Sim | 2 SP 0.5 115 | 0650 0.650 0.575 0.550 0.400 | 0625
Qwen?2-7B-Tnstruct RISCORE Sim | 4 SP 05 115 0.600 0.650 0.625 0.550 0.450 | 0625
Llama3-70B fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 8 SP 0.5 115 | 0800 0.800 0.825 0.750 0.650 | 0808
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 0.5 L5 | 0775 0.800 0.800 0.700 0.600 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 0.5 115 | 0800 0.725 0.725 0.725 0.600 | 0.750
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 SP 0.5 L0 | 0725 0.725 0.575 0.675 0.475 | 0675
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 SP 0.5 L0 | 0700 0.675 0.65 0.625 0.450 | 0675
Mixtral-8x7B-Tnstruct-v0.1 ~ RISCORE Sim | 4 SP 0.5 10 | 0700 0.675 0.575 0.625 0.400 | 0.650
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 0.5 L0 | 0775 0.750 0.700 0.700 0.600 | 0742
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 0.5 10 ] 0725 0.700 0.625 0.600 0.400 | 0683
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 0.5 L0 | 0725 0.625 0.625 0.550 0.450 | 0658
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 0.5 L0 | 0625 0.575 0.475 0.475 0.350 | 0558
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 10 | 0500 0.550 0.500 0.425 0.350 | 0517
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 10 | 0550 0.425 0.450 0.375 0.225 | 0475
Qwen?2-7B-Tnstruct RISCORE Sim | 4 SP 05 115 | 0625 0.700 0.650 0.575 0.450 | 0658
Qwen?2-7B-Instruct RISCORE Sim | 8 SP 0.5 115 | 0.650 0.675 0.650 0.575 0.475 | 0658
Qwen?2-7B-Tnstruct RISCORE Sim | 2 SP 05 115 | 0625 0.650 0.600 0.525 0.400 | 0625
Llama3-70B fewshot for QA & Llama3-70B for distractors
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 05 115 | 0875 0.775 0.725 0.750 0.600 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 05 115 | 0775 0.825 0.750 0.775 0.675 | 0783
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 8 SP 05 115 | 0775 0.750 0.775 0.725 0.600 | 0767
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 SP 05 1.0 | 0700 0.725 0.625 0.600 0.450 | 00683
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 SP 05 1.0 | 0700 0.700 0.600 0.625 0.500 | 0667
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Simm | 4 SP 05 L0 | 0725 0.650 0.550 0.600 0.425 | 0642
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 05 1.0 | 0800 0.675 0.625 0.625 0475 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 05 1.0 | 0675 0.700 0.675 0.600 0475 | 00683
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 05 L0 | 0725 0.650 0.625 0.550 0475 | 0667
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 05 L0 | 0575 0.500 0.450 0.375 0.300 | 0508
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 L0 | 0625 0.400 0.475 0.350 0.275 | 0.500
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 10 | 0.600 0.475 0.425 0.400 0.300 | 0.500
Qwen?2-7B-Instruct RISCORE Sim | 2 SP 0.5 115 | 0.650 0.600 0.600 0.500 0.400 | 0617
Qwen2-7B-Instruct RISCORE Sim | 4 SP 0.5 115 | 0.650 0.625 0.575 0.600 0.475 | 0617
Qwen2-7B-Instruct RISCORE Sim | 8 SP 0.5 L15 | 0.625 0.625 0.600 0.575 0.450 | 0617

Table 1.15: Anédoon poviélou yio to BrainTeaser (Mépoc 3). H napousio tou (Q) otn otiin pédodoc
UTOBEIXVUEL OTL TAL AMOTEAEGUATO AVTIOTOLYOUY GTNY XBAVTIOUEVY EXDBOCT] TOU LOVTENOL.
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Model Method ‘ Num.Ex Quant Temp Rep_Pen ‘ Average
Chain-of-Thought Zero-shot
Meta-Llama-3-70B-Instruct ~ CoT _ZS (Q) ‘ 0 4bit 0.5 1.15 ‘ 0.775
Mixtral-8x7B-v0.1 CoT_78 | 0 False 0.5 1.0 | 0675
Meta-Llama-3-8B-Instruct CoT_7ZS ‘ 0 False 0.5 1.0 ‘ 0.619
Mistral-7B-Tnstruct-v0.2 CoT_ZS | 0 False 0.5 10 | 0589
Qwen2-7B-Instruct CoT_17S ‘ 0 False 0.5 1.15 ‘ 0.608
Few-shot with CoT Explanations
Meta-Llama-3-70B-Instruct  CoT_FS (Q) ‘ 2 4bit 0.5 1.15 ‘ 0.789
Meta-Llama-3-70B-Instruct ~ CoT_FS (Q) | 4 4bit 0.5 115 | 0783
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 8 4bit 0.5 L15 | 0783
Mixtral-8x7B-v0.1 CoT_FS | 8 False 0.5 1.0 | 0.697
Mixtral-8x7B-v0.1 CoT_FS | 2 False 0.5 1.0 | 0.692
Mixtral-8x7B-v0.1 CoT_FS | 4 False 0.5 10 | 0.686
Meta-Llama-3-8B-Instruct CoT_FS | 4 False 0.5 1.0 | 0672
Meta-Llama-3-8B-Instruct CoT_FS ‘ 8 False 0.5 1.0 ‘ 0.658
Meta-Llama-3-8B-Instruct CoT_FS | 2 False 0.5 10 | 0625
Mistral-7B-Instruct-v0.2 CoT_FS ‘ 4 False 0.5 1.0 ‘ 0.603
Mistral-7B-Instruct-v0.2 CoT_FS | 8 False 0.5 1.0 | 0597
Mistral-7B-Instruct-v0.2 CoT_FS ‘ 2 False 0.5 1.0 ‘ 0.594
Qwen2-7B-Instruct CoT_FS | 2 False 0.5 1.15 | 0.667
Qwen2-7B-Instruct CoT_FS ‘ 4 False 0.5 1.15 ‘ 0.656
Qwen2-7B-Instruct CoT_FS | 8 False 0.5 115 | 0625
Few-shot with Random Selection
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 4 4bit 0.5 115 | 0.800
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 8 4bit 0.5 1.15 | 0.772
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 2 4bit 0.5 115 | 0.769
Mixtral-8x7B-v0.1 FS Rand | 4 False 0.5 1.0 | 0719
Mixtral-8x7B-v0.1 FS Rand ‘ 8 False 0.5 1.0 ‘ 0.711
Mixtral-8x7B-v0.1 FS Rand | 2 False 0.5 1.0 | 0.706
Meta-Llama-3-8B-Instruct FS Rand ‘ 2 False 0.5 1.0 ‘ 0.672
Meta-Llama-3-8B-Instruct FS Rand | 8 False 0.5 1.0 | 0.672
Meta-Llama-3-8B-Instruct FS Rand ‘ 4 False 0.5 1.0 ‘ 0.639
Mistral-7B-Instruct-v0.2 FS Rand | 2 False 0.5 1.0 | 0.586
Mistral-7B-Instruct-v0.2 FS Rand ‘ 4 False 0.5 1.0 ‘ 0.586
Mistral-7B-Tnstruct-v0.2 FSRand | 8 False 0.5 10 | 0586
Qwen2-7B-Instruct FS Rand | 8 False 0.5 L15 | 0.700
Qwen2-7B-Instruct FS Rand ‘ 2 False 0.5 1.15 ‘ 0.689
Qwen2-7B-Instruct FS Rand ‘ 4 False 0.5 1.15 ‘ 0.683
Few-shot with Semantic Similarity
Meta-Llama-3-70B-Instruct ~ FS Sim (Q) | 4 4bit 0.5 L15 | 0817
Meta-Llama-3-70B-Instruct ~ FS Sim (Q) ‘ 8 4bit 0.5 1.15 ‘ 0.800
Meta-Llama-3-70B-Instruct ~ FS Sim (Q) | 2 4bit 0.5 115 | 0.792
Mixtral-8x7B-v0.1 FS Sim | 2 False 0.5 1.0 | 0714
Mixtral-8x7B-v0.1 FS Sim | 4 False 0.5 1.0 | 0.692
Mixtral-8x7B-v0.1 FS Sim | 8 False 0.5 1.0 | 0675
Meta-Llama-3-8B-Instruct FS Sim | 4 False 0.5 1.0 | o7t
Meta-Llama-3-8B-Instruct FS Sim ‘ 2 False 0.5 1.0 ‘ 0.706
Meta-Llama-3-8B-Instruct FS Sim ‘ 8 False 0.5 1.0 ‘ 0.681
Mistral-7B-Instruct-v0.2 FS Sim | 4 False 0.5 1.0 | 0633
Mistral-7B-Instruct-v0.2 FS Sim ‘ 8 False 0.5 1.0 ‘ 0.611
Mistral-7B-Instruct-v0.2 FS Sim | 2 False 0.5 1.0 | 0.608
Qwen2-7B-Instruct FS Sim ‘ 8 False 0.5 1.15 ‘ 0.731
Qwen2-7B-Instruct FS Sim ‘ 2 False 0.5 1.15 ‘ 0.722
Qwen2-7B-Instruct FS Sim | 4 False 0.5 L5 | 0714

Table 1.16: An6doomn poviéhou vy to RiddleSense (Mépoc 1). H othin Quant vrnodetxviet av 1o govtého
elvon xPBavtiopévo 1 oy
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1.5. Iewpapotind Mépog - Mébodoc Hpotponric RISCORE

Model

Method ‘ Num.Ex Quant

Temp Rep_Pen ‘ Average

RISCORE Results

Llama3-70B Fewshot for QA & Llama3-70B for distractors

Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 2 True 0.5 115 | 0792
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 8 True 0.5 115 | 0789
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 4 True 0.5 115 | 0.783
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 False 0.5 1o | 0.700
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.689
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.672
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0722
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 8 False 0.5 1.0 | o0.708
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 2 False 0.5 1.0 | 0.692
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 False 0.5 1.0 | 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 False 0.5 1o | 0597
Qwen2-7B-Instruct RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.731
Qwen2-7B-Instruct RISCORE Sim | 4 False 0.5 1.0 | o717
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 L0 | 0.697
Llama3-70B Fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 4 True 0.5 115 | 0789
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 2 True 0.5 115 | 0.786
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 8 True 0.5 1.15 ‘ 0.775
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.719
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.689
Mixtral-8x7B-Instruct-v0.1  RISCORE Sim | 4 False 0.5 1.0 | 0.686
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 8 False 0.5 1.0 | 0.706
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0686
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.681
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.617
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 False 0.5 10 | 0.606
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.603
Qwen2-7B-Instruct RISCORE Sim | 8 False 0.5 1.0 | 0719
Qwen2-7B-Instruct RISCORE Sim | 4 False 0.5 L0 | 0.697
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 1.0 | 0.681
Llama3-8B Fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 8 True 0.5 115 | 0.806
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 2 True 0.5 1.15 ‘ 0.792
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 4 True 0.5 1.15 ‘ 0.778
Mixtral-8x7B-Instruct-v0.1  RISCORE Sim | 4 False 0.5 1.0 | o714
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 False 0.5 1.0 | 0.689
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 False 0.5 1.0 | 0.681
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.689
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.686
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.614
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 False 0.5 1.0 | 0589
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 1.0 | 0694
Qwen2-7B-Instruct RISCORE Sim | 8 False 0.5 1.0 | 0689
Qwen2-7B-Instruct RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.683

elvon xBavtiopévo N dy.

Table 1.17: Anédoon yoviéhou yio to RiddleSense (Mépoc 2). H othiln Quant unodeixviel av 1o povtého
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1.6 Xvunecpdopoata xow MeAAoviixég enextdoELg

Y UUTERACUAT

Ye auth) ™) HeEAETY), alLOAOYHOUUE CUCTNUATIXG TOCO TPO-EXTIUBEVHEVOUS GGO XAl EXTIOUDEVUEVOUC UE TNV TEY VXN
fine-tune xwdxomomtéc, xodde xan peydho yhwoowd wovtédo (LLM), oe wa mowhion npofAnudte:y mou
rep apBdvouy civietoug culhoyiopols. To evpruatd pag xatadexviouv 6T 1) a€lonoinom Tng teo-exnaideuong
OE CUYXEXPWEVO EVVOLOAOYLXO TEPlEYOUEVO, o€ cuVBLOoUS Ue TNy Teyvixr fine-tune oe oyetxd clvola
dedouévev, odnyel o onuavtég Bedtidoelc oe oyéon e Ti¢ Baoxég uedddoug. To yovtéla Tou eVowUITWooy
mpbovdetal oUvoha BEBOUEVDY GUANOYICTIXNE %aTd TNy Tpo-exnaldeuon mapouciocay BeATiwpévee embdoels,
unoypoppilovtac ) onuacior TS XATUVONONG YEVIXMY GUANOYLO TIXGDV LXAVOTHTWY TIOL UTOROVY VoL EQUPUOG TOUV
OE GUYXEXPUEVA TIROBAAHOTA.

Ye 6ha ta mpoPhuata, To Ydopa eTBOCEWY HETAUED TWV LOVTEAWY XATABEXVUEL TNV ETBEUCT] TNE UEYLTEXTOVIXTC,
TOU PEYEVOUC XoU TWV OTEATNYIXWY exnaideuong. Ta npo-exmoudevpéva Lovtéra xwdxononty, Wiwe exclva mou
extéVnxay o olvoha dedouévmwy xovig AoYxrg, Topousiacay oNUAVTIXES BEATIOCELS OTO YEIPLOUO TERITAOXWY
povomatidv culhoyiouol. Avtideta, to fine-tuned MI'M cuyvd unole{novton oe oyéon Pe Ta TEO-EXTAUIELYE VDL
povtéla, tovilovtag Ty avdyxn yio Ty xenon tng Texvixic fine-tune axdun xan oe yeydho yovtéha yla va
TPOCUPUOCTOVY UTOTEAECUATIXG OTIC TROXANCELS CUYXEXPUEVGDY TROBANUATOY.

Mo Boowxy| Slamlotwon and Ta Telpduatd pog elvar 6Tl 1 6éunon ot TEOBANUN TOAAATAOY ETMAOYWY UTEpTEQEL
otadepd Twv TpoPANudtey duadinic Tadvéunone (tedPinpa wotov-Addouc). Autd vnodexviet 6T 1 Topoyn
TouiAwy emAOY®Y TEooPEpeL xploWes TANPOPOpRlEC OYETHE YE TO TEPLEYOUEVO ToU xordodTYolV Tal HOVTENN TTPOG
mo oxpiB) culhoyiops. H opywh unddeon ot to mEoBinua Lwotol-Addoug elvon anholotepo anodelyinxe
avoxplBric, xadde cuyvd de dlardétouv to Batog Tou mepleyou£vou ToL amante(TaL VLol T 6WOTH AP ano@dcEwy.

Emniéov, nopovoidoape tnv teyviny RISCORE, wa véo yédodo mou evioyler tnv tumxn pddnon Alywv
TOEABELY ATV Ue Belyparto avaxataoxevaouéva ue Bdorn to nepieydpevo. H RISCORE anodetydnxe buitepa
anoteheopatiny otn Bertinwon Twv emdocewy twv MI'M Bondavtag ta povtéra v eviomioouy ta xatdhinio
povorndtia cuALoyiopol. Ewdxdtepa, 1 uédodoc RISCORE Eenépuoe otattepd Tic TeYVIXES TOU YENOHLOTOLO0VTOL
w¢ avagopd mou PBactlovion oTr oNUAcloloyYix ouoldnTa, Wlng ot pxedtepa Loviélo 6mou 1 YeEVixeuon
TNe oLAhoyoTixAc ebvar mo duoxohn. H evpwotion tng pedddou amodelydnxe 1600 e ypron yewpoxivita
ETUPEANUEVLV OGO O QUTOUATA TR0y OUEVLV (EVYHV AVOXAUTUOXEVUCUEVLY UE Bdor To Thaiolo.

Ev xatax)el®dt, n yehétn poag unoypauuilel ) onuocio Tou cuvBLACUOU TNE TEo-eXTABEUCTC GE BlopOEETIXG
cUvoha Sedopévwy culhoyloTxne pe 0 Yeron e teyvixic fine-tuning oe ocuyxexpwéva mpofiiuoTa ylo
™ Bertlwon tng anddoone Tou poviéhou oe olvieteg epyaociec cuiloylotixc. H eoaywyr tou RISCORE
mpoovétel éva oxourn eninedo Bektiwong, mpoo@épovtoc wiar xhaxoluevy Aoon v T avofdduon Twv
SLUAOYICTIXOY xavoThAtwy Twv MI'M, Bing os teyvinés Aywv derypdtov. Ilpoywpdvtag, 1 mepoutépw
BLEPEUVNOT TNG OVUXATUCXEVHC TOU TEQLEYOUEVOL ol TNG aviyveuong wotiBwy culloyiopol da elvan to xAewdl
yioe T TeotdnoT Twy avothtwy Twv MI'M ot epyasieg mou anaitody Swpopomomnuévr, tolueninedn entluon
TpoANudTLY.

MeAhovTixéc enexTdOELS

Me Bdon tnv mapoloa yekétn, Yo mpénel va diepeuvnolv didgpopot Baocuxol epeuvnTixol Topelc Yot TV TEpouTéPw
evioyvon tev duvatothtwy Twv MI'M ot oivieteg epyasiec culhoyiouo. Hlpdhtov, N xeHorn Tne TEX VXS
fine-tune oe StagpopeTind cOVOAA deBoUEVWLY, 1BlWS Yo WxpdTeRa HovTéAa, Yo propoloe va Bektidoel
) yevixevon. ‘Evo Baouxd epdtnua etvan: IIdg pmopel n texvikn fine-tune o€ ovykexpipévo topéa va evioyioe
™) ouvAdoyotikn) o€ pikpotepa I'M;. Aecltepov, 1 oepd Twv nopadetypndtwy RISCORE nopoucidlet
pLoe SARN gpeuvnTiny| euxouplo: Emnpedler n aAAndovyia twv mapaydpevwy kal twy apxikoy napaderyudtoy
v axpifea tng cuAdoyotikiis;. Emmiéov, n Biepedvnon e EmAOYAS ONUACLOAOY XS TAEOUOLWY
napadelydTtwy Yo unopoloe va amoxahiel o ol xaxés emhoyég ennpedlouy Ty anddoor).

Mo A\ moAAE  umooyouevr xatedduvorn elvor N avdmTudn eveC VTETEPUIVIOTIXOU TAauciou
Y TNV xatnyoplomonon Twv TEYVXOV culhoylopol oe owiyuota.  Mmopel avtd va Pedtidoer Tny
emAoyn) mapaderyudtwy yia ekpdinon pe Alyes Anpeag;. Téhog, n avdpwnivn oiloAoYnor TV
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Chapter 2

Introduction

As natural language processing (NLP) models become increasingly integral to decision-making processes, the
need for explainability and interpretability has become paramount. These models are widely used in various
applications, including sentiment analysis, topic classification, machine translation, and conversational agents.
Their decisions often have significant impacts, influencing everything from product recommendations to loan
approvals and healthcare diagnostics. However, the black-box nature of many sophisticated NLP models,
particularly deep learning-based approaches, poses challenges for understanding how specific decisions are
made. This opacity can undermine trust and limit the broader adoption of these technologies in critical and
sensitive domains.

Given the high stakes involved, there is a pressing need for methods that can provide clear, actionable insights
into the behavior of NLP models. One promising approach is the generation of counterfactual explanations.
Counterfactual explanations are hypothetical scenarios that show how minimal changes to the input can
lead to different model outcomes. By presenting these alternate scenarios, counterfactual explanations help
users understand what features are most influential in the model’s decision-making process. This type
of explanation is particularly valuable because it aligns with human reasoning: understanding "what-if"
scenarios is a natural way for people to grasp causal relationships and make informed decisions.

In this work, we propose a graph-based counterfactual editor designed to generate semantically edited inputs,
referred to as counterfactual interventions, which alter the model’s prediction. These interventions serve as
counterfactual explanations, offering a clear and intuitive understanding of the model’s decision-making
process. The primary objective of this research is to develop a method that can create these counterfactual
interventions in a way that is contrastive, fluent, and minimal. "Contrastive" means that the changes should
effectively alter the model’s prediction; "fluent" means that the edited inputs should remain coherent and
grammatically correct; and "minimal" means that the changes should be as small as possible to achieve the
desired effect.

We evaluate the effectiveness and efficiency of our framework and compare it against existing state-of-the-art
counterfactual editors using two NLP tasks, namely binary sentiment classification and topic classification.
Our experiments demonstrate that our framework generates edits that are not only contrastive, fluent, and
minimal but also produced significantly faster than those from other methods. This speed is crucial for
practical applications where timely insights are necessary.

This thesis introduces a novel approach to generating counterfactual explanations for NLP models, addressing
a critical need for interpretability in AL It draws inspiration from [49] and presents a GNN model capable
of solving the Rectangular Linear Assignment Problem (RLAP).Using this model instead of the traditional
graph assignment algorithms, such as the Hungarian algorithm our work achieve a strong improvement in
runtime. It also provides a comprehensive evaluation of the editor across different tasks, demonstrating
its versatility and effectiveness. By emphasizing minimal and fluent edits, it ensures that the generated
explanations are both understandable and practically useful, while the whole process remains faster than
others state of the art editors.
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The outline of this thesis is as follows:

e We will firstly provide all the background needed in basic Machine Learning algorithms and concepts
as well as bipartite graphs in order to be able to explain and justify the idea of Graph Neural Networks.
After doing so, we will provide a thorough description of GNN variants relevant to this work.

e We will give a more detailed definition of Counterfactual Explanations and related work. In a
similar fashion, we will formally explain the problem of rectangular linear assignment and provide
the theoretical background for methods already used to tackle it, such as the Hungarian algorithm.

e Lastly, we will propose our GNN-based editor for counterfactual explanations and highlight the
performance of different variants used for its components. We will compare these results with two
state of the art counterfactual editors across two NLP tasks and showcase how our editor outperforms
them while also being significantly faster. We will also discuss different trade-offs in our editor and how
multiple components influence its performance.
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Background

Before delving into the experimental portion of this thesis, it is important to establish a comprehensive
understanding of the core concepts and techniques that underpin the research. This background section
introduces key topics in Artificial Intelligence (AI), with a particular focus on large language models (LLMs)
and Transformer-based architectures. These models are at the heart of the experiments, and the knowledge
presented here will provide the necessary foundation for understanding how they can be used to tackle
complex reasoning tasks, such as those requiring lateral thinking in a multiple-choice format.

Transformer-based models and LLMs Transformer-based models, especially LLMs, have become the
backbone of modern Natural Language Processing (NLP) due to their ability to model intricate patterns in
language, allowing them to perform a wide range of tasks such as text generation, question answering, and
reasoning over complex inputs. In this thesis, we focus on exploring whether these models can demonstrate
lateral thinking—a form of creative problem-solving that involves non-linear reasoning and the ability to
approach problems in unconventional ways. Understanding the mechanics behind these models and how they
can be adapted to such tasks is critical to the later analysis.

Training of Large Language Models One of the primary techniques used in this research involves the
training of these large models on specific tasks. Training refers to the process of adjusting the internal
parameters of the model to improve its ability to perform task-specific operations. While large models like
LLMs come pre-trained on vast datasets, additional task-specific training is often required to fine-tune their
performance on more specialized tasks, such as solving complex multiple-choice questions. This section
will cover the various training methodologies, including conventional approaches as well as more advanced
techniques, before we introduce the specific approach used in this thesis.

Quantization Techniques: LoRA and QLoRA A significant challenge when working with large models
is the computational resources required for training and tuning them. To address this, we will also introduce
quantization techniques, particularly methods such as LoRA (Low-Rank Adaptation) and QLoRA (Quantized
Low-Rank Adaptation) [31, 13]. These techniques allow for efficient training and fine-tuning of large models
using limited hardware by reducing the computational footprint and memory usage. LoRA and QLoRA
enable models to be adapted to specific tasks without the need for prohibitively expensive hardware, making
the fine-tuning of LLMs more accessible. This section will explain these techniques in detail, highlighting
how they make it feasible to experiment with large models on constrained resources.

Prompting Techniques In addition to traditional training, prompting techniques play a crucial role in this
work. Prompting involves carefully crafting the input text to guide the model’s output, allowing it to perform
specific tasks without extensive retraining. This is an efficient method for controlling model behaviour and
has been widely adopted in the use of large language models for various applications. In this thesis, we will
explore baseline prompting techniques and analyze how they can influence the model’s reasoning capabilities,
especially in tasks requiring lateral thinking.
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Conclusion Through this chapter, we aim to provide a detailed overview of LLMs, Transformer
architectures, prompting techniques, training and quantization methods, ensuring that readers have the
necessary background to fully comprehend the experimental work and the analysis that follows.
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3.1 Large Language Models (LLMs)
3.1.1 Background

Language Models (LMs) are computational models that have the capability to understand and generate
human language. More specifically, a language model is a probability distribution over word sequences,
having the ability to predict the likelihood of these sequences or generate new text based on a given input.

The fundamental methodology for probabilistic language modeling since 1980’s has been n-grams models.
These models are grounded on the Markov chain rule, assuming that the probability of the coming word in a
word sequence depends only on a fixed size window of previous words. Hence a bigram model considers one
previous word, a trigram two, and in general a n-gram n-1 previous words.

For example a bigram language model models the probability of the sequence wy,ws, ... w, as:

P(wy,wa,...w,) = Plwy,w;) - P(ws|wsy) - -+« Plwp|w,—1) (3.1.1)

where the conditional probability P(wy|wk—1) can be estimated the proportion of occurrences of the word
wg_1 followed by the word wy, in the corpora. The estimation of these probabilities constitutes the training
of an n-gram model on text corpora in one or more languages. However, given that a language can be used
to express an infinite variety of valid sentences, an n-gram model struggles to assign non-zero probabilities to
word sequences that may never be encountered in the training corpora. To address this problem, a variety
of smoothing techniques has been proposed over the years.

Subsequently, the advancements in the development of neural networks suggest the neural language models,
which was first introduced with simple feedforward neural language models by [5]. A feedforward neural
language model is a simple feedforward network that takes a sequence of previous words as input and gives
a probability distribution over possible next words as output. Therefore, similarly to a n-gram LM, the
feedforward neural LM is trained to predict the probability of a word considering the n-1 previous words.

A major difference between n-grams and feedforward neural language models is found in the way the two
models represent the sequence of input words. An n-gram model assigns the word identity i to each word
w; included in the prior word sequence which should be represented. On the contrary, a feedforward neural
language model mainly uses an embedding vector for each word. Thus, the latter generalizes better to unseen
word sequences of the test set.

While feedforward language models introduced many of the foundational concepts of neural language
modeling, modern neural language models have advanced significantly by utilizing more powerful
architectures. In this thesis, we will focus on analyzing the state-of-the-art (SotA) architecture: Transformer
networks, which have revolutionized the field with their superior ability to model complex dependencies in
language.

3.1.2 Transformer

Large Language Models (LLMs) are advanced language models with vast parameter sizes and remarkable
learning capabilities that are typically pretrained on large unstructured text corpora. All modern LLMs
are now built on Transformer architecture [83], which eschews recurrence and instead relying entirely
on an attention mechanism to draw global dependencies between input and output. The encoder and
decoder are the two major components of the Transformer architecture. These components are employed
in sequence-to-sequence operations like machine translation, where the encoder processes the input sequence
and the decoder generates the output sequence.

The Transformer architecture is summarised below:

1. Input Representation: The input sequence is first embedded into continuous vector representations.
Positional embeddings are added to these embeddings to provide information about the position of each
token in the sequence.

2. Encoder: The encoder consists of a stack of identical layers. Each layer has two sub-layers:
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o Multi-Head Self-Attention: This sub-layer computes a weighted sum of embeddings, allowing each
word to focus on different parts of the input sequence. Multiple attention heads run in parallel,
capturing different relationships between words.

o Position-wise Feed-Forward Neural Network: After the attention mechanism, each token’s
representation is passed through a position-wise feed-forward neural network. This introduces
non-linearity and further refines the token representations.

Residual connections|28], followed by layer-normalization|[3] are employed around each of the sub-layer.
3. Decoder: The decoder also consists of a stack of identical layers, each containing three sub-layers:

o Masked Multi-Head Self-Attention: This sub-layer acts similar to the corresponding encoder’s
sub-layer, but with a mask applied to prevent attending to future positions during training.

o Multi-Head Encoder-Decoder Attention: This sub-layer focuses on the encoded input sequence,
allowing the decoder to consider the relevant parts of the input during sequence generation.

e Position-wise Feed-Forward Neural Network: Similar to the encoder, this sub-layer follows the
attention mechanisms.

As with the encoder, residual connections are used around each sub-layer, followed by
layer-normalization.

4. Output Generation: The output of the final decoder layer is transformed into probability
distributions over the output vocabulary using a linear transformation followed by a softmax activation.
Throughout the training process, the model is fed with a word sequence as input to predict the
subsequent word.

Transformer variations

Several architectural variations of the Transformer have been proposed since it was first introduced by [83].
The masking pattern used on the inputs, which acts as contextual information for the model to generate a
prediction, is a key distinction between these systems.

Encoder-Decoder. As previously indicated and originally proposed, the Transformer consisted of two
stacks (Fig. 3.1.1): the encoder and the decoder. The encoder processes the input sequence and generates
context-rich representations, which are used by the decoder to generate the output sequence step by step.
Notable pretrained language models using an encoder-decoder architecture include BART[44] and T5 [65].

Decoder-Only. While the encoder-decoder design serves as the foundational variation of the Transformer
model, contemporary LLMs predominately employ a decoder-only architecture. These models have the
capability to train as a conventional language model, wherein they learn to predict the next token in a
given sequence. Decoder-only models lack the ability to process or represent the input sequence and output
sequence separately. All tokens are treated equally during processing, and conditioning is only dependent
on prior tokens due to the casual masking pattern, implying that the representation of any conditioning
text is intrinsically weaker. However, this produces a simpler architecture that is well-suited to a standard
autoregressive next-step-prediction pretraining objective. Notably, this architecture is the foundation of the
GPT series of models [64, 9] as well as numerous other recent LLMs.

Encoder-Only. As an aside, there is an additional prevalent architectural variant that employs only a
Transformer encoder layer stack. This model architecture serves as the foundation for the ubiquitous BERT
[15] and its derivatives.

Transformers have revolutionized NLP by eliminating the need for convolutions or recurrence mechanisms
while achieving state-of-the-art performance on various tasks. Their ability to model long-range dependencies
and efficiently process sequential data using the attention mechanism has set a new standard for language
models.

64



3.1. Large Language Models (LLMs)

Output
Probabilities

-
Add & Norm
Feed
Forward
4 | ™\ I Add & Norm |<_:
—*(Ehaki) Mult-Head
Feed Attention
Forward T 7 Nx
Add & Norm
Nx | —(Add & Norm ) :
Masked
Multi-Head Multi-Head
Attention Attention
A J ) At 4
> J U — )
Positional D ¢ Pasitional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 3.1.1: The Transformer - model architecture. The original Transformer follows this overall
architecture using stacked self-attention and point-wise, fully connected layers for both the encoder and
decoder, shown in the left and right halves of figure respectively[83]

3.1.3 Deeper Exploration of LLM Components

The LLMs used in this work are composed of multiple components that allow them to process, generate, and
understand natural language. The following sections will delve deeper into the mathematical formulations of
these key components. We will analyze each of these, including tokenization, embedding layers, self-attention
mechanisms, multi-head attention, position encoding, feed-forward layers, and the final output layer.

Tokenization and Embedding Layer

Tokenization: Text is split into tokens, which can be words, subwords, or characters. Let z =

(z1,22,...,2,) represent an input sequence of n tokens.

Embedding: Each token z; is transformed into a dense vector e; € R? using an embedding matrix £ € RV ¥4,

where V is the vocabulary size and d is the embedding dimension. The embedding for the entire input sequence
can be represented as:

E(z) = (e1,€2,...,€n)

where ¢; = Elx;].
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Self-Attention Mechanism

The self-attention mechanism is central to transformer-based LLMs. For each token in the input sequence,
the attention mechanism computes a weighted sum of the other tokens, determining how much focus the
model should place on each token when processing the sequence.

For a given input x = (21,22, ...,2,), the attention mechanism relies on three matrices: the query (Q), key
(K), and value (V') matrices. These matrices are computed as:

Q=XW? K=xwk, v=xw"

where X € R"* is the input embedding matrix, and W®, € R¥*da WK c R¥*d IV c R¥* are learned
parameter matrices that project the input embeddings into the query, key, and value spaces, respectively.

The attention scores are computed by taking the dot product of the query with the keys, scaled by the square
root of the dimensionality dj, followed by a softmax operation:

. QKT
Attention(Q, K, V') = softmax v
Vg

This equation computes a weighted sum of the value vectors, where the weights are determined by the
similarity between the query and key vectors. The softmax function ensures that the attention weights
sum to 1, giving a probabilistic interpretation to the weights. An visual representation of the self-attention
mechanism can be seen in Figure 3.1.2.
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Figure 3.1.2: Self-Attention Mechanism
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Multi-Head Attention

Instead of computing a single set of attention scores, LLMs use multi-head attention to capture different
types of relationships between tokens. In multi-head attention, multiple attention mechanisms (heads) are
run in parallel, and their outputs are concatenated:

MultiHead(Q, K, V) = Concat(head;, heads, ..., head;, )W
where each head is computed as:
head; = Attention(QW 2, KW, viw))

and WO € RMexd ig a learned output projection matrix. The use of multiple heads allows the model to
attend to different parts of the input in different ways, increasing its representational power.

Position Encoding

Transformers do not have an inherent notion of word order, so position encoding is added to capture the
sequential nature of the input. A positional encoding matrix P € R™*? is added to the input embeddings.
The positional encoding is typically defined using sinusoidal functions:

Pi,2j = Sin (100002_}/(1) 3 Pi,2j+1 = COS (100002]/(1)

where 7 is the position and j is the dimension. This encoding allows the model to differentiate between
positions in the sequence while maintaining generalization to longer or shorter sequences.

Feed-Forward Layer

Each transformer block includes a feed-forward network (FFN) applied independently to each position. The
FFN consists of two linear transformations with a non-linearity in between:

FFN(.’E) = HlaX(O7 Wy + bl)Wg + by

where W, € R¥*drs and Wy € R4 7%4 gre learned weight matrices, b; € R4 and by € R are bias terms,
and max(0, ) represents the ReLU activation function. The FFN is applied separately to each token in the
sequence.

Final Output Layer

The final output of the transformer model is passed through a linear transformation and softmax layer to
generate probabilities for each class or token prediction. Let h; represent the hidden state of the i-th token
after the transformer layers. The probability distribution over the vocabulary is computed as:

P(x|h;) = softmax(h;WT +b)

where W € RV*4 is the learned weight matrix, and b € RV is the bias term.

3.2 Training Techniques

Machine Learning (ML) techniques can be broadly categorized based on the type of data used during training
and the level of supervision provided. These categories include supervised, unsupervised, and reinforcement
learning, with hybrid approaches such as semi-supervised and self-supervised learning blending aspects of
both supervised and unsupervised methods. To provide a comprehensive context for the techniques used
in this thesis, it is essential to first explore these learning paradigms before diving deeper into the specific
approach of supervised fine-tuning, which will be analyzed in detail in the following sections.
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3.2.1 Overview

Supervised Learning Supervised learning is one of the most common ML techniques, where models are
trained on labeled data. Each input feature vector x is paired with a known target y, and the model learns to
map inputs to outputs by estimating the conditional probability distribution p(y|z). Supervised learning is
used for tasks such as classification, regression, and forecasting, where the relationships between inputs and
outputs are explicitly defined. While highly effective in many domains, supervised learning requires large
amounts of labeled data, which can be resource-intensive to obtain, particularly for complex tasks.

Unsupervised Learning In unsupervised learning, models are trained on data without labeled outputs.
The goal is to learn the underlying structure of the data by modeling the distribution p(z). This approach is
commonly used for tasks like clustering, dimensionality reduction, and anomaly detection, where the model
uncovers patterns and relationships within the data without explicit supervision. While unsupervised learning
can provide valuable insights, it lacks the direct feedback present in supervised learning, making it harder to
evaluate and interpret the results.

Semi-supervised Learning Semi-supervised learning bridges the gap between supervised and
unsupervised learning by utilizing a small set of labeled data alongside a larger set of unlabeled data. This
is particularly useful in cases where labeled data is scarce or expensive to collect, but unlabeled data is
abundant. By leveraging the unlabeled data to help the model generalize better, semi-supervised learning
aims to improve performance over a purely supervised approach. Applications of semi-supervised learning
include tasks like link prediction in graphs and fraud detection, where having even a limited amount of labeled
data can significantly enhance model performance [92].

Self-supervised Learning Self-supervised learning is an increasingly popular approach that lies between
supervised and unsupervised learning. In this paradigm, the model is trained on unlabeled data by solving
pretext tasks designed to learn useful representations. For example, models can be tasked with predicting
missing parts of a sequence or reconstructing corrupted data. The learned representations can then be
transferred to downstream tasks with minimal fine-tuning. Self-supervised learning has proven particularly
effective in fields such as natural language processing and computer vision, where massive amounts of
unlabeled data are available [53]. This technique forms the foundation of many large language models,
which are pretrained using self-supervised methods before being fine-tuned for specific tasks.

Reinforcement Learning Reinforcement learning involves training an agent to interact with an
environment and make decisions that maximize a reward signal. Unlike the static datasets used in supervised
and unsupervised learning, the agent in reinforcement learning continuously learns from the outcomes
of its actions. This method has been successfully applied in areas such as robotics, game playing, and
decision-making systems. However, reinforcement learning is beyond the scope of this thesis and will not be
explored further.

3.2.2 Pre-Training and Fine-Tuning

In machine learning, the training process typically follows a two-phase approach: pre-training and fine-tuning.
These stages enable models to first develop a broad understanding of data and subsequently specialize in
solving specific tasks. This approach has been particularly successful in natural language processing (NLP)
and other domains where data variability and task specificity are critical for achieving high performance.

Pre-Training

Pre-training is the initial phase, where a model is exposed to large, unstructured datasets, often without
explicit task labels. During this stage, the model learns general patterns, features, and representations from
the data, which form a solid foundation for subsequent fine-tuning. For language models, pre-training often
involves tasks such as predicting masked words in a sentence (masked language modeling) or predicting
the next word in a sequence (autoregressive modeling). This phase equips the model with broad domain
knowledge that can be transferred to more specific tasks during fine-tuning.
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The key benefit of pre-training lies in its ability to help the model build generalizable representations that
can be leveraged for various downstream tasks. Pre-trained models have demonstrated superior performance
across a wide range of applications due to their capacity to capture essential patterns, such as semantic
relationships and syntactic structures. This enables them to adapt quickly and efficiently to specific tasks,
even when task-specific data is limited.

Pre-Training Benefits in this Context
In the context of this investigation, pre-training offers several key advantages:

e Generalization: Pre-training on both large general datasets and task-specific datasets enhances the
model’s ability to generalize to unseen examples, which is particularly important given the limited size
of the fine-tuning dataset.

e Efficiency: By leveraging pre-trained knowledge, the model requires less task-specific data to perform
effectively. Instead of learning from scratch, it uses the information acquired during pre-training to
adapt efficiently during fine-tuning.

e Faster Adaptation: Pre-training on related tasks reduces the need for extensive training iterations
during fine-tuning. The model can quickly converge to optimal performance, as it is already aligned
with the task requirements.

Fine-Tuning

Fine-tuning builds on pre-training by adapting the pre-trained model to a specific task. In this phase, the
model is trained on a smaller, task-specific dataset, typically with labeled examples, enabling it to specialize
in solving the given problem. Fine-tuning is highly effective because it allows models to transfer the general
knowledge acquired during pre-training to the specific nuances of a new task. By adjusting the model’s
parameters to fit task-specific data, fine-tuning enables the model to better capture patterns and relationships
unique to the task.

Fine-tuning is particularly valuable in cases where large amounts of task-specific data are difficult to
obtain. By leveraging the broad understanding gained during pre-training, fine-tuning enhances the model’s
performance on small datasets, reducing the risk of overfitting and improving generalization.

Fine-Tuning with Limited Data

A common challenge in machine learning, especially for specialized tasks, is the scarcity of labeled data.
Fine-tuning on small datasets can be problematic when training a model from scratch, as the model is likely
to overfit, failing to generalize beyond the training set. However, fine-tuning a pre-trained model helps
mitigate this issue by providing a strong initialization based on prior knowledge.

Fine-tuning pre-trained models on small datasets offers several benefits:

e Data Efficiency: Since the model has already learned general patterns during pre-training, fine-tuning
on limited data mainly involves adapting these patterns to the task-specific nuances. This reduces the
need for extensive labeled data and helps prevent overfitting.

e Improved Generalization: The pre-trained model’s existing knowledge allows it to generalize better
even with smaller datasets, as it is less dependent on the fine-tuning data alone. This leads to better
performance on unseen examples compared to models trained from scratch.

Thus, in scenarios with limited data, fine-tuning pre-trained models proves advantageous by providing robust
generalization and minimizing overfitting risks.

Fine-Tuning with Task-Specific Pre-Training

Beyond general pre-training, models can benefit significantly from domain-adaptive pre-training, where
pre-training data is carefully selected to closely align with the target task. By pre-training the model on
datasets similar to the downstream task, the model becomes more adept at capturing domain-specific patterns
and representations.
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For instance, in NLP tasks, a model pre-trained on a general corpus (e.g., Wikipedia or Common Crawl)
may perform reasonably well across a variety of tasks. However, fine-tuning this model on a specialized task
(e.g., commonsense reasoning or disambiguation) can be further enhanced by an intermediate pre-training
step using a dataset closely related to the final task before fine-tuning.

This approach offers several advantages:

e Transfer of Domain-Specific Knowledge: By pre-training on data that shares domain-specific
characteristics with the target task, the model captures nuances and representations closely aligned
with the downstream task. This leads to faster convergence and typically results in better performance
during fine-tuning.

e Enhanced Performance: Models that have been pre-trained on similar tasks generally outperform
models that only undergo general pre-training, as they require less adaptation and can leverage the
domain-specific knowledge already acquired.

e Efficient Adaptation: Domain-adaptive pre-training reduces the amount of adaptation required
during fine-tuning. Since the model has already encountered related problems, the fine-tuning phase
becomes more efficient, improving both generalization and performance.

3.3 Parameter Efficient Fine-Tuning (PEFT)

3.3.1 Introduction to PEFT (Parameter Efficient Fine-Tuning)

PEFT (Parameter Efficient Fine-Tuning) is an advanced technique designed to adapt large pre-trained
models to specific tasks in a resource-efficient way. Traditional fine-tuning approaches, which involve updating
all the parameters of a model, can be resource-heavy and costly, especially for very large models. PEFT
addresses this issue by minimizing the number of trainable parameters, allowing model adaptation to be
done with fewer resources.

PEFT strikes a balance between leveraging the knowledge stored in the pre-trained model and efficiently
adapting it to new tasks with only minor adjustments. Among the various techniques available for PEFT,
two of the most widely used are Low-Rank Adaptation (LoRA) and QLoRA, both of which are designed to
reduce computational load and memory requirements while maintaining high performance.

3.3.2 Low-Rank Parameters in PEFT

One of the most effective ways to implement PEFT is through the use of Low-Rank Parameters. Instead of
modifying the entire model’s parameters, this approach introduces smaller, low-dimensional parameter sets
that are modularly added to the network. These low-rank parameter sets represent the task-specific updates,
while the original model’s parameters remain frozen, ensuring that the adaptation process is lightweight and
efficient.

Let’s explore LoRA (Low-Rank Adaptation), a widely used technique that exemplifies the principles of
low-rank parameter fine-tuning.

3.3.3 LoRA: Low-Rank Adaptation

LoRA [31] is a key PEFT technique designed for efficient fine-tuning of models for domain-specific tasks. By
only updating low-rank matrices and keeping the majority of the model’s parameters frozen, LoRA offers a
highly memory- and computation-efficient way to adapt large models. This modular fine-tuning approach
is particularly valuable in settings with limited computational resources, where full-parameter fine-tuning
would be prohibitive.

How LoRA Works:

LoRA fine-tunes a model by modifying only small, low-rank matrices that capture task-specific knowledge,
rather than adjusting the entire model. Here’s how it functions:
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1. Low-Rank Decomposition: LoRA replaces full weight updates with the introduction of two smaller
matrices, denoted as A and B. These matrices have much lower dimensions than the original weight
matrix. During fine-tuning, only these smaller matrices are trained, which approximate the necessary
task-specific changes.

2. Frozen Weights: The majority of the model’s original parameters are kept unchanged (frozen) during
fine-tuning. This reduces memory usage and computational cost, as only the newly introduced low-rank
matrices require updates.

3. Matrix Reconstruction: After training, the low-rank matrices are combined to approximate the
full weight update, which is then added to the original frozen parameters. The final model maintains
the same structure and size as the original pre-trained model but includes the learned task-specific
adaptations.

Benefits of LoRA in PEFT
LoRA offers several advantages when applied within the framework of PEFT:

e Memory Efficiency: By only adjusting small, low-rank matrices, LoRA significantly reduces memory
requirements. This makes it possible to fine-tune large models on hardware with limited memory
capacity.

e Computational Efficiency: Since a minimal number of parameters are updated, the computational
cost is reduced. LoRA allows for efficient fine-tuning even for very large models, without requiring
expensive hardware.

e Parameter Efficiency: LoRA enables task-specific fine-tuning without altering the entire model.
This modular approach is ideal for scenarios where multiple tasks must be learned sequentially or
simultaneously, as only the small LoRA matrices need to be stored for each new task.

e Comparable Performance: Despite the reduction in trainable parameters, LoRA maintains
comparable performance to full-parameter fine-tuning in many tasks. This makes it a highly effective
solution for adapting large language models to specialized domains.

Key Hyperparameters in LoRA Fine-Tuning

While LoRA simplifies the fine-tuning process, several key hyperparameters influence its performance and
effectiveness:

1. Rank (r) The rank controls the dimensionality of the low-rank matrices introduced during fine-tuning.
The choice of rank directly impacts both the memory efficiency and the precision of the fine-tuning process.

e Lower Ranks (e.g., r=8 or r=16) are typically sufficient for many tasks and provide significant memory
savings while delivering strong performance.

e Higher Ranks (e.g., r=32 or r=64) may capture finer task-specific details for more complex tasks,
but the performance gains diminish as ranks increase, especially across all layers.

For most tasks, a rank of 8 or 16 offers a good balance between efficiency and performance.

2. Alpha (Scaling Factor) Alpha is a scaling factor applied to the weight updates from the low-rank
matrices before they are added back to the original weights.

e A standard setting is to use @ = 2 X rank ensuring that weight updates are well-integrated with the
frozen model parameters.

e Adjusting alpha allows fine-tuning precision to be controlled, with lower alpha values increasing the
effect of fine-tuning and higher alpha values reducing it.

To fit the formula within the text, you can write it as:
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3. Dropout Dropout is applied during training to prevent overfitting by randomly setting a fraction of
the trainable parameters to zero in each batch.

e A 0.1 (10%) dropout rate is typical for smaller models.

e For larger models, a 0.05 (5%) dropout rate is recommended to avoid overfitting when dealing with
billions of parameters.

4. Layer Selection LoRA’s full potential is unlocked when applied across all layers of a model.
Studies show that fine-tuning all layers using LoRA achieves the same or better performance compared to
full-parameter fine-tuning. Applying LoRA to only a subset of layers may lead to suboptimal performance.

Considerations for LoRA Fine-Tuning

While LoRA provides a highly efficient method for fine-tuning, the following considerations should be kept
in mind:

e Task Complexity: Simpler tasks may not require a high-rank setting, while more complex tasks might
benefit from experimenting with higher ranks and different alpha values.

e Layer Coverage: For best results, apply LoRA across all layers. Limiting the scope of fine-tuning to
select layers may compromise performance.

e Resource Constraints: LoRA is particularly beneficial in resource-constrained environments,
reducing memory and computational demands without sacrificing the quality of the fine-tuning.

3.3.4 Understanding LoRA through an example

LoRA (Low-Rank Adaptation) is a fine-tuning technique designed to simplify the adaptation of large
pre-trained models by freezing most of the model’s parameters and learning task-specific updates through
smaller, trainable low-rank matrices. Let’s walk through a detailed example using visuals and references to
LoRA’s key hyperparameters—rank (r) and alpha.

Matrix Decomposition with LoRA

LoRA
Matrix Multiplication Weight Changes

Figure 3.3.1: Matrix Multiplication for LoRA Weight Changes

LoRA operates by approximating weight updates using smaller, low-rank matrices rather than directly
updating the full weight matrix of a model. Suppose we have a large pre-trained model where the weight
matrix is W € R%*?. In traditional fine-tuning, this matrix would be updated directly, but with LoRA, the
update is approximated as:

AW =Ax B
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Here:
e AcR¥™ and B € R™*4, where r < d (the rank is much smaller than the original matrix size d).

e Rank (r) controls the size of the low-rank matrices. A smaller rank reduces the number of trainable
parameters, but too low a rank may affect the precision of the model’s task adaptation.

In 3.3.1, you see an illustration of this concept, where:

e A column vector and a row vector are multiplied to form a larger matrix. This demonstrates how small
vectors (representing the low-rank matrices) generate a matrix that approximates the original weight
update.

The matrix AW, formed from the multiplication of A x B, represents the learned updates during fine-tuning.
Only these smaller matrices are trained, making the process much more memory and computationally efficient.

Applying LoRA Weight Changes

LoRA . Fine-tuned
Weight Changes ModeliNSIghts Model Weights

Figure 3.3.2: Adding the LoRA Weight Changes
Once the low-rank matrices A and B have been trained and multiplied to generate AW, these updates are
then applied to the original frozen weight matrix W. This process is depicted in 3.3.2, where:
1. The LoRA weight changes (derived from the multiplication of A x B) are computed.
2. These changes are added to the frozen model weights.
3. The result is the fine-tuned model weights.

Thus, the overall update to the weight matrix W is given by:

W' =W +ax AW

Here, « is the scaling factor, another important LoRA hyperparameter that determines how strongly the
learned weight changes AW are applied to the original model.

Alpha and Its Role:

e Alpha is a multiplier that scales the weight changes before they are added back to the original model
weights. A common approach is to set & = 2 x r, meaning the weight changes are doubled when applied.

e Smaller values of alpha reduce the impact of the updates (useful if you want more conservative
fine-tuning), while larger values increase the effect of the updates, making the model adapt more
aggressively to the new task.

In LoRA, adjusting the value of alpha can fine-tune the balance between keeping the original model behavior
and allowing for adaptation to new tasks.
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Figure 3.3.3: LoRA Integration in Transformer Architecture

LoRA Integration into the Model Architecture

In 3.3.3, we see how LoRA adapters are injected into a Transformer-based architecture. Let’s break it down:

1.

LoRA Implementation LoRA (Low-Rank Adaptation) is implemented as an adapter that enhances
and extends the existing neural network layers. It introduces a set of additional trainable parameters
(weights) while keeping the original model parameters frozen. These newly introduced parameters have
a significantly lower rank (dimension) compared to the original model’s parameters, allowing LoRA to
simplify and accelerate the adaptation of pre-trained models for domain-specific tasks.

. Freezing the Original Parameters: The pre-trained parameters of the original model (represented

as the weight matrix W) are frozen during fine-tuning. These weights are not updated, reducing the
computational load.

. Introducing Low-Rank Matrices: The low-rank matrices A € R?*" and B € R"*¢ are added to the

model, where r is the rank. These matrices are trained, while the original weight matrix W remains
unchanged. The smaller the rank r, the more memory-efficient the process becomes, but it also affects
the model’s ability to capture complex patterns.

Combining Results: The frozen weights W and the updates AW generated by A x B are combined
to produce the final output of the model.

. Backpropagation with Adjusted Weights: During backpropagation, only the weights in the

low-rank matrices A and B are updated. The original model weights remain frozen, while o x AW
scales the learned updates, influencing how the model adapts to the new task.
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Example with Efficiency Gains (Memory and Speed)

To illustrate the efficiency gains, consider a scenario where we have a 512x512 weight matrix in the
feed-forward layer of the model, resulting in 262,144 parameters. Using LoRA with a rank of r = 2, we
reduce the number of trainable parameters as follows:

e Matrix A has dimensions 512 x 2, resulting in 1,024 parameters.
e Matrix B has dimensions 2 x 512, also resulting in 1,024 parameters.

This gives a total of 2,048 parameters to train, compared to the original 262,144 parameters. This
massive reduction in trainable parameters speeds up the training process and reduces memory usage, as
fewer calculations are required during backpropagation.

3.3.5 Introduction to QLoRA (Quantized Low-Rank Adaptation)

Quantized Low-Rank Adaptation (QLoRA) [13] builds on the efficiency of LoRA by incorporating
quantization techniques to further reduce memory usage and computational costs during fine-tuning.
The key idea behind QLoRA is to quantize the original model’s weights to a lower precision—such as
4-bit integers—while applying low-rank adaptations to adjust the model for task-specific requirements. By
combining low-rank decomposition with quantized weights, QLoRA allows for fine-tuning of large
models on memory-limited hardware without compromising performance.

Three major optimizations in QLoRA make it one of the most powerful parameter-efficient fine-tuning
(PEFT) methods: 4-bit NF4 quantization, double quantization, and block-wise quantization. Let’s
explore each of these in more detail.

1. 4-bit NF4 Quantization

One of the primary innovations in QLoRA is the use of 4-bit NormalFloat4 (NF4) quantization, which
significantly reduces the memory footprint of the original model by storing weights in a low-precision format.
Instead of using high-precision data types like 32-bit floating-point (FP32), QLoRA compresses the weights
into a 4-bit format. This process consists of three main steps:

Normalization & Quantization The first step is to normalize the weights. During normalization,
the weights are adjusted to have zero mean and a unit variance, ensuring that the values are distributed
symmetrically around zero. Once normalized, the weights are mapped to one of 16 discrete values that a
4-bit data type can store, ranging from -1 to 1.

For example, consider a pre-trained FP32 weight with a value of 0.2121. In the 4-bit quantized
representation, the closest available value might be 0.1997 (the 10th position in the range from -1 to 1).
Instead of storing the original weight value, the algorithm stores the index (10) of the closest quantized
position.

The quantization formula is as follows:

totalNumberOfPositions
absmax (inputXTensor)

intdTensor = < ) x FP32WeightsTensor

Where:
e totalNumberOfPositions = 16 (for a 4-bit quantization),
e absmax represents the maximum absolute value in the input tensor block.

By applying this transformation, the memory required to store weights drops drastically. However, to mitigate
potential issues with outliers (which could skew the distribution), QLoRA applies quantization block-wise.
This means that weights are quantized independently within smaller blocks (usually groups of 64 weights),
preventing any outlier value from significantly affecting the distribution.
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Dequantization Once training is complete, QLoRA reverses the quantization process to recover the
full-precision values for deployment. This is done using dequantization, where the stored quantized values
are converted back to approximate floating-point representations. The dequantization formula mirrors the
quantization process:

int4Tensor

totalNumberOfPositions
absmax (inputXTensor)

dequantized Tensor =

This means the original FP32 weights are reconstructed from the 4-bit representations, allowing for
high-quality performance in the fine-tuned model while retaining the memory savings from quantization.

2. Double Quantization

Double quantization is an additional memory-saving technique introduced in QLoRA. After the weights
are quantized to 4-bit precision, the quantization constants themselves are also quantized, leading to even
greater memory efficiency. These quantization constants are the values used to scale the weights during the
quantization process.

Here’s how it works:

e During the first quantization step, weights are grouped into small blocks (usually groups of 64), and
each block is assigned a quantization constant.

e Normally, each of these quantization constants is stored as a 32-bit floating-point value (FP32), which
can add considerable overhead, especially in large models.

To reduce this overhead, double quantization quantizes the quantization constants themselves. For
instance, 256 quantization constants could be grouped together and quantized to 8-bit precision. This
approach reduces the memory required for storing quantization constants from 0.5 bits per parameter to
approximately 0.127 bits per parameter.

For example, in a model with 1 million parameters, the original quantization constants would require around
500,000 bits of storage. With double quantization, this is reduced to approximately 125,000 bits, further
shrinking the memory footprint while retaining the quantization benefits.

Advantages of QLoRA

1. Massive Memory Savings: By using 4-bit NF4 quantization, QLoRA reduces the memory footprint
by 4x compared to standard 16-bit or 32-bit representations. When combined with double quantization,
the memory savings are even greater.

2. Preserving Model Performance: Despite reducing the precision of the model weights, QLoRA
achieves near-parity with traditional fine-tuning in terms of model performance. This is because the
quantization process maintains the core structure of the model, while the low-rank matrices learned
during fine-tuning provide the task-specific adjustments.

3. Fine-Tuning Large Models on Limited Hardware: QLoRA makes it possible to fine-tune very
large models (e.g., models with billions of parameters) on resource-constrained hardware. For instance,
a model that would normally require 40GB of memory can be fine-tuned on a 12GB GPU with
QLoRA.

4. No Additional Inference Costs: The final model, after fine-tuning, performs inference using the
standard weight representation. The 4-bit quantization only affects memory usage during training,
meaning the final deployment has no additional overhead.

3.4 Prompting

Prompt-based learning represents a paradigm shift in machine learning, departing from conventional
supervised learning approaches. Unlike traditional methods that rely on training models to predict outputs
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based on inputs, prompt-based learning harnesses the power of language models to directly model the
probability of text. At its core, this approach involves transforming an original input into a textual prompt
by using a template wherein certain slots remain unfilled. These slots serve as placeholders for the language
model to generate the missing information, resulting in a final string that informs the desired output [51].

One of the defining features of prompt-based learning is its ability to leverage pre-trained language models
that have been exposed to massive amounts of raw text data. This pre-training equips the models with
a robust understanding of language and enables them to infer missing information in prompts effectively.
Moreover, by crafting suitable prompting functions, these models can adapt to new tasks with remarkable
flexibility, often requiring only a few examples (few-shot learning) or even none at all (zero-shot learning).

This framework offers several advantages over traditional approaches. Firstly, it capitalizes on the vast
amount of unlabeled text data available, enabling models to capture intricate linguistic patterns and nuances.
Secondly, it empowers models to swiftly adapt to novel scenarios, making it well-suited for tasks where
labeled data is scarce or costly to obtain. Overall, prompt-based learning emerges as a potent methodology,
revolutionizing the landscape of machine learning with its versatility, efficiency, and scalability.

Compared to conventional fine-tuning, which expensively updates the massive LM parameters for each
downstream task, prompting concatenates the inputs with an additional piece of text that guides the LM to
generate the desired outputs [12].

In general, prompting has rapidly evolved as a standard technique to elicit the "hidden" capabilities of LLMs,
successfully serving a vast variety of tasks in NLP and beyond [42, 41, 2, 61, 78§].

3.4.1 Prompting Methodology

The primary challenge with traditional supervised learning is the need for extensive annotated data to
train a model that estimates P(y|x;#), where y is the label and x is the input. However, for many tasks, such
annotated data can be scarce or costly to obtain. Prompt-based learning techniques in natural language
processing (NLP) aim to address this challenge by shifting the focus towards training a language model
(LM) that estimates the probability of the text P(z;6) itself. By doing so, it enables the prediction of
y without requiring large labeled datasets. Prompt-based approaches typically involve three core steps to
predict the highest scoring answer, as outlined below [51].

1. Prompt Addition

In the first step, a prompting function is used to convert the input text into a prompt. This is done by
designing a template that incorporates two key slots:

e Input slot [X]: This slot holds the input text.

e Answer slot [Z]: This slot is designed to hold an intermediate answer that will later be mapped to
the final output y.

Once the template is created, the input slot [X] is filled with the input text. The goal is to structure the
task in such a way that the language model can generate a relevant intermediate output by processing the
prompt.

2. Answer Search

In this step, the language model searches for the answer that generates the highest probability. To achieve
this:

e A set of possible answers is defined, typically a list of potential intermediate answers z.

e A function is then used to iteratively fill the answer slot [Z] in the prompt with each of the potential
answers z.

After each prompt is completed, the language model measures the probability of the filled prompt (i.e., the
probability of the text generated by the LM) and identifies the highest-scoring answer.
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3. Answer Mapping

In some tasks, it may be necessary to map the intermediate answer z to the final output y. For example,
in sentiment analysis, words like "excellent," "good," or "beautiful" might need to be mapped to a final
output such as "++" (very positive sentiment). This ensures that the model produces the desired output for
the task. However, in tasks such as text generation, this mapping step might be unnecessary, as the output
directly corresponds to the generated text.

3.4.2 Prompt Categories

The prompting function can take two forms, either being the same for each input—thus called static—or
generating a different template for each input—thus called dynamic. The categorization can be seen in
3.4.1. In addition to this distinction, prompts are classified into different types [51]:
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Figure 3.4.1: Prompting Typology [51]

e Discrete Prompts (a.k.a. hard prompts): These are specific, hand-crafted text-based prompts
written in human-interpretable natural language. For example, a discrete prompt for a sentiment
analysis task might be: “The sentiment of the sentence [X] is [Z]," where the model fills in [Z] with
appropriate sentiment labels like "positive" or "negative."

e Continuous Prompts (a.k.a. soft prompts): These prompts operate directly in the embedding
space of the model, rather than in human-readable text. Continuous prompts involve learnable
embedding vectors that can be optimized through gradient descent.

While soft prompts are popular due to their compatibility with gradient descent, they come with several
drawbacks:
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e Lack of interpretability: Embedding vectors are difficult for humans to comprehend, making soft
prompts less interpretable.

e Incompatibility with other LLMs: Soft prompts are often incompatible with other large language
models and can’t be easily transferred, as embedding spaces may differ across models [90].

e Costly to use: Soft prompts are typically unavailable for models accessed only through inference
APIs, and their use requires access to the model’s internal embedding space, making them generally
more expensive or impractical to use in deployed environments.

3.4.3 Prompting Techniques

Instruction tuning, where models can learn new tasks based solely on natural language instructions, has been
widely proposed and used in various applications [17]. Some of the most prominent methods include zero-shot
learning, one-shot learning, few-shot learning, and chain-of-thought prompting.

In zero-shot prompting, the model is given an instruction directly without any examples. The model uses
its pre-trained knowledge to complete the task based purely on the instruction.

One-shot learning and few-shot learning extend this idea by providing one or several examples to the
model. In one-shot learning, the model is presented with a single example of the task. In few-shot learning,
the model is given multiple examples (typically k examples) of input-output pairs (context and completion),
followed by a final input (context) for which the model must generate the appropriate output (completion).

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =» prompt

Figure 3.4.2: (a) Zero-shot prompting, (b) One-shot prompting, (¢) Few-shot prompting [8]

Few-shot examples can be selected using various criteria:

e Random selection: Examples can be chosen randomly from the training data.
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e Semantic similarity: Examples that are semantically similar to the new task or context can be
selected to guide the model more effectively.

e Diversity: Choosing a diverse range of examples can help the model generalize better to different
inputs.

Chain-of-thought prompting is a method in which the model is guided through a series of intermediate
reasoning steps. This approach has been shown to significantly improve the ability of large language models
(LLMs) to perform complex reasoning tasks, as it encourages the model to break down problems into smaller
steps [87].

Standard Prompting Chain-of-Thought Prompting
~ Model Input \ | Model Input \
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with § balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

_/ Co they have?

Model Output
A:The answer is 27. x )

_J

Model Output

A The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 +6 =9. The
answeris 9. o

J

Figure 3.4.3: Chain-of-thought [87]

Few-shot Example Selection Based on Semantic Similarity

When selecting few-shot examples, one of the most effective approaches is to choose examples based on
semantic similarity between the context of the new task and the existing examples. This selection is
typically done using embeddings and cosine similarity to measure the closeness between different pieces
of text.

Embeddings are dense vector representations of words, sentences, or even entire documents. Unlike
traditional sparse representations (such as one-hot encoding), embeddings capture the semantic relationships
between different linguistic units by mapping them into a continuous vector space. In this space, words or
phrases that are semantically similar are positioned closer to each other.

Pre-trained models, like BERT or GPT, generate embeddings that capture a rich set of features for each
word or sentence, derived from vast amounts of training data. These embeddings can be used to compare
different text inputs and identify the most relevant examples based on their semantic similarity.

To select few-shot examples based on semantic similarity, the process typically involves the following steps:

1. Embedding Extraction: First, embeddings are generated for the new task’s context (input) and for
the potential examples from the dataset.

2. Cosine Similarity Calculation: The cosine similarity between the embeddings of the new task
context and the example contexts is computed. Cosine similarity measures the cosine of the angle
between two vectors in a multi-dimensional space. It ranges from -1 (completely dissimilar) to 1
(completely similar). The formula for cosine similarity between two vectors A and B is:

Cosine Similarity(4, B) = |1:14||||BB||
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3. Example Selection: The examples with the highest cosine similarity scores are selected as the few-shot
examples for prompting.

By selecting examples that are semantically close to the new task, the model is more likely to generate accurate
completions or predictions. This method ensures that the selected examples are contextually relevant, thereby
improving the performance of few-shot prompting without the need for manual curation.

This approach is particularly useful in tasks where examples with similar structures or semantics can help
guide the model towards better performance. Furthermore, embedding-based similarity searches are scalable
and efficient, making them well-suited for large datasets and complex tasks.

3.5 Analysis of Vertical and Lateral Thinking

In Natural Language Processing (NLP), reasoning is essential for enabling systems to go beyond
surface-level language comprehension and achieve a deeper, more sophisticated understanding. While Large
Language Models (LLMs) excel in many linguistic tasks, their ability to reason remains limited in key
areas, leading to ongoing debates about whether they can truly reason or simply memorize patterns [18, 4, 39,
98, 72, 81, 21, 97]. To address these limitations, it is important to explore different types of thinking—vertical
and lateral—that can challenge and expand a model’s reasoning capabilities.

3.5.1 Vertical Thinking in Reasoning

Vertical thinking refers to a linear, systematic approach to problem-solving. It relies on established rules,
logic, and known relationships to reach conclusions. In this mode of thinking, individuals or models work
through problems step by step, applying deductive reasoning to derive the correct answer based on the
premises provided. Vertical thinking is highly effective in scenarios where the relationships between premises
are clear and logical, and where the problem can be solved by following a defined path.

For example, vertical thinking is often used in commonsense reasoning tasks, where models are asked to apply
known facts and relationships to reach conclusions. If the premises are consistent and non-contradictory,
Large Language Models (LLMs) can effectively use their pre-trained knowledge to solve the task by
recognizing and applying the correct patterns. However, vertical thinking encounters challenges when the
premises appear to conflict, or when creative problem-solving is required. This mode of reasoning is rigid,
and it struggles to accommodate situations that demand flexibility or outside-the-box thinking.

Consider the following puzzle:
"How could a cowboy ride into town on Friday, stay two days, and ride out on Wednesday?"

The premises involved include:

e pl: The cowboy rides into town on Friday.

e p2: The cowboy stays in town for two days.

e p3: The cowboy rides out on Wednesday.

e p4: Wednesday is the third day of the week.

e p5: Sunday is two days after Friday.

Vertical thinking would approach this problem by attempting to reconcile these premises logically. However,
the statements appear contradictory, particularly when p4 is introduced, as it conflicts with the timeline
suggested by pl and p2. This leaves the model (or person) stuck, as the conventional logical process leads to
a dead end.

3.5.2 Lateral Thinking in Reasoning

Lateral thinking offers an alternative approach to problem-solving, emphasizing creativity, flexibility, and
the ability to defy conventional reasoning. Unlike vertical thinking, which is linear and structured, lateral
thinking encourages breaking away from established patterns, challenging default assumptions, and exploring
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alternative explanations. It involves looking at the problem from new angles and reinterpreting premises that
might initially seem fixed.

In the cowboy puzzle, lateral thinking leads to the creative solution:
"The cowboy’s horse is named Wednesday."

This solution works because it breaks free from the default assumption that Wednesday refers to the day
of the week. Instead, lateral thinking reframes Wednesday as the name of the cowboy’s horse, resolving the
apparent contradiction without needing to alter the logical structure of the puzzle itself. Lateral thinking
is crucial when a problem seems unsolvable through conventional methods, as it enables the exploration of
novel solutions that defy typical expectations.

The essence of lateral thinking lies in identifying and challenging the implicit premises that govern our
default interpretations. In the cowboy puzzle, p4 ("Wednesday is the third day of the week") is an implicit
premise generated through commonsense associations, and it creates a mental "box" that excludes the
possibility of Wednesday being anything other than a day. Lateral thinking helps break out of this box
by discarding the commonsense association and considering an alternative meaning.

3.5.3 Differences and Applications of Vertical and Lateral Thinking

While both vertical and lateral thinking are essential components of reasoning, they serve different purposes
and excel in different contexts:

e Vertical thinking is well-suited for tasks that involve logical deduction, strict rules, and clear
relationships between premises. It works best in environments where the problem can be systematically
deconstructed and solved step by step, without requiring re-interpretation of the premises.

e Lateral thinking, on the other hand, is necessary when conventional approaches fail, or when the
solution lies outside the bounds of common logic. Lateral thinking promotes creativity and innovation
by encouraging the exploration of alternative solutions, particularly in situations where the premises
seem contradictory or where common associations create obstacles.

In NLP and LLM reasoning tasks, mastering both vertical and lateral thinking is crucial for solving a wide
range of problems. While vertical thinking allows models to handle structured tasks effectively, lateral
thinking tests their capacity to think creatively, break away from default assumptions, and generate novel
solutions. Both modes of reasoning are valuable, and together they offer a more comprehensive approach to
problem-solving.

In the realm of NLP, reasoning is not just about following rules and patterns; it also requires creativity and
flexibility. Vertical thinking supports structured problem-solving

3.6 Related Work
3.6.1 Reasoning in NLP

The advancements in pre-trained language models (LLMs) have led to significant improvements
in handling reasoning tasks across various natural language processing (NLP) domains, such as
commonsense reasoning [67], mathematical reasoning [54], logical reasoning [96], and causal reasoning [20].
Each of these tasks targets different reasoning capabilities: commonsense reasoning involves understanding
everyday situations, mathematical reasoning solves numeric problems, and logical reasoning involves
systematic deduction based on established rules. Causal reasoning, meanwhile, focuses on identifying
cause-and-effect relationships. Several sub-tasks related to reasoning, such as temporal reasoning [82], have
also been explored in recent studies [89, 62].

Frameworks like BigBench [75] provide large-scale reasoning evaluations with over 204 tasks to challenge
the reasoning capabilities of LLMs. Similarly, specific reasoning datasets such as CommonsenseQA [77],
WinoGrande [68], and RiddleSense [47] focus on addressing specific reasoning challenges. Many of these
datasets are incorporated into platforms like Tasksource [73]. For more complex and creative reasoning,
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datasets like BrainTeaser [38] probe lateral thinking and puzzle-solving abilities, which are crucial for
exploring out-of-the-box thinking processes.

3.6.2 Reasoning with Language Models

Language models have been applied to a variety of reasoning challenges, such as commonsense reasoning
[71], arithmetic reasoning [55], abductive reasoning [101], inductive reasoning [27], deductive
reasoning [69], and analogical reasoning [76]. Reasoning approaches that involve structured, logical
thinking—referred to as vertical thinking—have been studied extensively across many datasets [48, 7],
revealing the systematic approaches LLMs use to solve these tasks.

However, creative reasoning remains underexplored in NLP, often omitted from reasoning benchmarks
[74, 70], despite the emergent capabilities that larger models display [88]. Creative reasoning tasks such
as puzzle solving rely on lateral thinking, which involves breaking away from conventional patterns of
thought. This ability is demonstrated in datasets such as BrainTeaser [38], which challenge models to solve
problems using unconventional methods.

In our work, we focus on probing both vertical and lateral puzzle-solving reasoning abilities in LLMs.
We take pre-trained Transformer-based models that have already been fine-tuned on commonsense
reasoning datasets similar to our exploration dataset and further fine-tune them to achieve better reasoning
performance. By leveraging pre-trained models in similar reasoning domains, we aim to enhance their
adaptability and improve their performance on more specialized tasks.

3.6.3 LLMs and Prompting for Reasoning Tasks

Discovering reasoning patterns in LLMs is often done using various prompting techniques [63]|. Zero-shot
prompting involves providing simple instructions like "Let’s think step-by-step" to improve reasoning
performance without specific examples [40]. More structured approaches, like Chain-of-Thought (CoT)
prompting, guide models through intermediate reasoning steps, encouraging deeper thought processes in
complex tasks [87].

In few-shot prompting, where a small set of examples is provided, challenges arise in selecting and placing
exemplars effectively. Research shows that choosing and ordering exemplars can influence model performance
[16], and selecting based on semantic similarity has been the default method [50]. Recently, improvements
have been made by ordering exemplars based on complexity or reasoning diversity [19, 100].

Our work proposes a prompting technique that builds upon these baseline methods, but rather than
focusing solely on semantic similarity for selecting exemplars, we design prompts that capture hidden
reasoning patterns. While we use similarity-based retrieval for exemplar placement, the goal is to
emphasize the reasoning structures within the task, rather than focusing purely on the content’s surface
meaning. This approach allows us to outperform standard prompting techniques, demonstrating that focusing
on reasoning patterns can provide more advanced LLM reasoning capabilities without requiring extensive
prompt engineering.
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Chapter 4

Proposal 1 - SemEval-2024 Task 9

In this chapter, we outline our proposal for the SemEval-2024 Task 9 competition: "BRAINTEASER:
A Novel Task Defying Common Sense" [36]. This proposal, which was accepted as a paper for
the SemEval 2024 conference [59], details our planned submission, which will focus on both Sub-task A
- Sentence Puzzle and Sub-task B - Word Puzzle. The aim of our approach is to improve the performance
of transformer-based language models on lateral thinking challenges. By fine-tuning and evaluating
various pre-trained models, we seek to gain insights into their reasoning capabilities and provide a deeper
understanding of their strengths and weaknesses in this context.

This proposal will involve a comparative analysis of the two categories, focusing on fine-tuning techniques,
model size, and the impact of hyperparameters on performance. In particular, we will examine the effect of
model size on the BRAINTEASER task, as existing literature has highlighted its significant influence on the
reasoning capabilities of models [79, 86]. Additionally, we will explore how various tuning hyperparameters
contribute to performance. Through this work, we aim to achieve competitive results on the leaderboard and
provide valuable insights for future research into transformer models’ effectiveness in reasoning tasks that
challenge common sense.

4.1 Contributions

To sum up our contributions are:

1. We perform lightweight tuning on smaller encoder models and LLMs, significantly outperforming the
reported baselines.

2. We transform the multiple-choice problem to a binary classification one, aiming to explore diverging
reasoning paths for models.

»n

3. We ground final performance on the models’ "prior knowledge" in related problems.

4. We delve into models’ frequent failures to obtain a deeper understanding of reasoning cues that make
models struggle the most.

Our code is available on GitHub !.

4.2 Methods

We focus on tuning language models belonging into two categories. First, we fine-tune variations of encoder
models, namely BERT [14], RoBERTa-large [52] and DeBERTaV3-base [29], to assess the impact of transfer
learning using various datasets requiring similar reasoning abilities, apart from BrainTeaser. We study
the problem using the provided multi-choice setup, but we also transform it into a binary classification

LAILS-NTUA-at-SemEval-2024-Task-9-Brainteaser
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task. Secondly, the encoders’ results are compared with those obtained from fine-tuned LLMs using the
BrainTeaser dataset. To achieve this, we fine-tune Llama 2 [79], Phi-2 [26] and Mistral-7b [34], which have
already demonstrated enhanced reasoning abilities. In this regard, we examine the effect of the model size on
our task, which has already been reported in the literature to significantly influence the reasoning abilities of
the models [79, 86], along with other tuning hyperparameters. Model details are presented in 5.1.4 and 5.1.5.

4.2.1 Encoder models

Pre-training First, we evaluate the effects of the pre-training on our task. Thus, we select two variations of
each encoder: The vanilla one (using the default pre-trained basis and fine-tuned on BrainTeaser data only)
and one that has undergone additional pre-training using supplementary commonsense reasoning datasets
before fine-tuned on BrainTeaser. This enables us to evaluate the differences in performance that the
additional pre-training might offer.

The objective is to enhance model performance by allowing it to learn from a diverse range of data sources
before fine-tuning on the sub-task-specific dataset.

In the second case, we use the following pre-trained models:

e BERT-SE: a BERT-base-uncased version pre-trained on the multiple-choice dataset used in
SemEval-2020 Task 4b [84]

e RoBERTa-WNGRD: a RoBERTa-large version pre-trained on the WinoGrande dataset

e DeBERTaV3-TS: a DeBERTaV3-base model, pre-trained on diverse commonsense reasoning datasets,
and fine-tuned with multi-task learning on over 600 tasks from the Tasksource collection.

Datasets employed across both of our sub-tasks include CommonsenseQA [77], WinoGrande [68], ai2 _arc
[10], Physical Interaction: Question Answering (piga) [6], Choice of Plausible Alternatives (COPA) [22],
and the SemEval-2020 Task 4 dataset [84]. These datasets would offer valuable insights into commonsense
reasoning, logical reasoning, and contextual cues, enabling the development of a robust understanding of
commonsense principles within our sub-tasks’ final system.

Multi-class Classification task This strategy involves treating the problem as multi-class classification:
all four provided options are combined with the given question, and consequently these concatenated inputs
are fed into the model, which is fine-tuned to select one of the four options as part of a multi-class classification
problem.

This multiple-choice format allows the model to consider all options simultaneously, fostering lateral thinking
and encouraging the exploration of different reasoning paths. By taking a comprehensive view of the
available choices, the model can analyze the relationships between them, leading to more informed and
accurate decision-making. The ability to engage with the complexity of the problem enhances the model’s
understanding, ultimately improving its prediction accuracy by enabling it to select the most plausible answer.
This holistic approach, which embraces the full context of the problem, significantly strengthens the model’s
reasoning capabilities.

Binary Classification task In this approach, both sub-tasks were transformed into binary classification
problems. Each original multiple-choice question, which had four options, was converted by pairing each
candidate answer—excluding "None of the above"—with the question. A label of 0 was assigned if the
option was incorrect and 1 if it was correct. If all three pairings returned 0, "None of the above" was inferred
as the correct answer.

This transformation resulted in each multiple-choice question being split into three binary classification
problems. Each option was combined with the original question, and labels were assigned accordingly. The
"None of the above" option was not directly included, as its correctness was implied when the other three
pairings were incorrect. This modification aimed to streamline identifying correct answers when none of the
given options were valid.
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Initially, we hypothesized that framing the task as binary classification would enhance the model’s ability to
evaluate each option independently. By reducing the task to a series of binary decisions, we expected the
model to avoid confusion caused by distractor choices and focus on assessing the correctness of each answer.

However, after fine-tuning several pre-trained models for this approach, the results were disappointing. The
model often struggled to assess the options correctly, leading to multiple errors. It occasionally predicted more
than one answer as correct or labeled all choices as incorrect, defaulting to "None of the above" incorrectly.

These outcomes indicated that the binary classification approach did not capture the nuances of the original
problem. The model’s difficulty in reasoning independently through each option suggested that breaking the
task down in this way was ineffective. Therefore, we decided to revert to the original multiple-choice format.

4.2.2 LLMs

We demonstrate an in-depth examination of fine-tuning SoTa LLMs (Llama 2, Phi-2, Mistral-7b and
Mixtral-8x7b) in the context of multi-class classification. Note that during inference, the models prompted
to provide an explanation along with the label. This experimental step, which we have observed to improve
the performance of the model, also provides a qualitative identification of flaws in the models’ reasoning
process. In our experiments, we explore various combinations of LoRA [31] a and r hyperparameters, using
values of 16, 32, 64, and 128. For the analysis ahead, LLMs are denoted as model r a, reflecting these
hyperparameters. Additional technical information, including prompting details and specifics about QLoRA
hyperparameters, is available in 5.2, 5.3, 5.1.6.
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Chapter 5

Experiments - SemEval-2024 Task 9

Consider the following puzzle:
"Who shaves every day but still has a beard?"

The solution—"A barber"—requires lateral thinking, as it defies the immediate assumption that someone
who shaves daily would not have a beard. Instead, the puzzle’s solution hinges on the unexpected twist that
the barber shaves other people but keeps his own beard. This illustrates how lateral thinking can be used
to solve problems by challenging default assumptions and thinking creatively.

In Natural Language Processing (NLP), Large Language Models (LLMs) excel at many linguistic
tasks but often struggle with reasoning challenges that demand creative or unconventional thinking. The
SemEval-2024 Task 9 competition, titled "BRAINTEASER: A Novel Task Defying Common
Sense" [36], is designed to evaluate the ability of LLMs to tackle both vertical thinking (logical,
step-by-step reasoning) and lateral thinking (out-of-the-box problem-solving) challenges.

Our experiments focus on enhancing the performance of LLMs in these reasoning tasks through fine-tuning
pre-trained transformer models and leveraging transfer learning. The competition includes two sub-tasks:

1. Sub-task A (Sentence Puzzle): Involves solving sentence-level puzzles requiring both logical and
creative reasoning.

2. Sub-task B (Word Puzzle): Focuses on word-based puzzles that require alternative interpretations
of meaning.

The experiments addressed two core research questions:

e RQ1: Does fine-tuning pre-trained transformer models on reasoning-specific tasks improve their ability
to solve lateral thinking puzzles compared to standard prompting techniques?

e RQ@2: Can transfer learning from similar reasoning tasks, combined with fine-tuning, be used as an
effective strategy to boost performance across both lateral and vertical reasoning tasks?

This chapter explores these research questions, investigating how factors such as model size, pre-training,
and fine-tuning strategies impact the performance of LLMs on reasoning tasks. The insights gained provide
valuable understanding of how model adaptation can enhance the reasoning abilities of LLMs, particularly
in tasks that require lateral thinking.
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5.1 Preliminaries

5.1.1 Dataset

The BrainTeaser task at SemEval-2024 [38, 36| features lateral thinking puzzles presented as multiple-choice
questions (QAs). Each question offers four options, with one being the correct answer and the others serving
as distractors. Additionally, the final option is always "None of above". It consists of two sub-tasks,
Task A: Sentence Puzzle and Task B: Word Puzzle. In addition to the original puzzles, the dataset
includes adversarial subsets created by manually modifying the original brain teasers while preserving their
reasoning paths. The original data were perturbed in two ways: First, there is semantic reconstruction of
each original question without altering the answers or the distractors. Second, the original data underwent
context reconstruction, wherein the original reasoning path remains intact, but the brain teaser describes a
new situational context. Overall, the dataset used for training and evaluation consists of triplets of data:
original, semantic, and context reconstruction. Table 5.1 provides an example of the triplets of data that
constitute the dataset.

Question Choice
Original
A peanut.
What kind of nut has no shell? A doughnut.
A walnut.

None of above.

Semantic Reconstruction

A doughnut.
‘Which nut doesn’t have a shell? A walnut.
A peanut.

None of above.

Context Reconstruction

A fire bell.
Which type of bell doesn’t make a sound? A cow bell.
A bluebell.

None of above.

Table 5.1: Illustration of the structure of each sub-task’s dataset, showcasing the original statement along
with its two adversarials. The correct answers are highlighted in bold

Task A: Sentence Puzzle In this sub-task, the sentence pairs are crafted in a manner that makes it
relatively easy for humans to discern the correct statement, yet challenging for systems, even those equipped
with commonsense understanding. Table 5.2 contains examples of the Sentence Puzzle dataset (on the left).
The training data consists of 169 distinct multiple-choice QA sets, each accompanied by its semantic and
context reconstructions, resulting in a total of 507 multiple-choice questions (3 x 169).

Task B: Word Puzzle involves word-type brain teasers, where the answer defies the default meaning
of the word and focuses on the letter composition of the question. The training dataset comprises 132
multiple-choice QAs, each accompanied by its semantic and context reconstructions, resulting in a total of
396 multiple-choice QAs (3x132). These brain teaser categories include puns, homophones, ambiguous words,
and various other linguistic puzzles, as showcased in the examples provided in Table 5.2 on the right-hand
side. The Word Puzzle sub-task pose challenges not only for systems but also for humans in discerning the
correct answer.

Data statistics The BrainTeaser dataset comprises 3 data splits, namely train, development (used during
the practice phase), and the hidden test set, which was used for evaluation. Statisics are provided in Table 5.3.
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Twice. The letter U.

Sentence Puzzle ‘ Word Puzzle
Question Choice ‘ Question Choice
He is a barber. ‘ Cabbages.
A man shaves everyday, yet keeps his beard long. He wants to maintain his appearance. ‘ What has toes but no feet or legs? Tomatoes.
He wants his girlfriend to buy him a razor. ‘ Onions.
None of above. ‘ None of above.
You go to the doctor because you're sick, One and a half hours. ‘ Sea-plus.
and he gives you three medicines to take Two hours. ‘ ‘What did the little lobster get on its math test?  Very-bad.
every half hour. How long do the drugs An hour. ‘ Very-Good.
keep you going? None of above. ‘ None of above.
Once. | The letter T.
How many times can you deduct 10 from 1007 Infinite time. ‘ ‘What’s the beginning of an argument? The letter A.
\
|

None of above. None of above.

Table 5.2: Example questions illustrating both sub-tasks, with correct answers highlighted in bold.
Examples on the left pertain to sub-task A: Sentence Puzzle, while those on the right correspond to sub-task
B: Word Puzzle.

Throughout the evaluation phase, the leaderboard was kept concealed.

Sub-task ‘ Train ‘ Dev ‘ Test
A - Sentence Puzzle 507 120 120
B - Word Puzzle 396 96 96

Table 5.3: Data statistics.

5.1.2 Evaluation metrics

Both sub-tasks are assessed via accuracy metrics to gauge the performance of participating systems in two
ways. First, instance-based accuracy evaluates each question individually, considering original questions
and their semantic and context adversarials. This metric provides a detailed understanding of a model’s
proficiency in reasoning through various scenarios. In contrast, group-based accuracy takes a broader
perspective, assessing questions and associated adversarials as cohesive groups. Each group consists of three
questions, and a model scores 1 only if it correctly solves all questions in a group. This approach evaluates
the system’s holistic performance in navigating through lateral thinking challenges. The combined use of
instance-based and group-based accuracy metrics provides comprehensive insights into the capabilities of
participating systems in tackling the complexities of both sub-tasks.

5.1.3 Baselines

For both sub-tasks of the BRAINTEASER task, we utilized three baseline models: Human, ChatGPT, and
RoBERTa-L. These models were not fine-tuned and were used exclusively in the multiple-choice format.
The Human baseline provides an upper-bound reference, representing the ideal performance on the task,
while ChatGPT and RoBERTa-L serve as automated baselines to assess performance without task-specific
adaptation. In our results discussion, these baseline scores will be highlighted in gray to facilitate direct
comparison with the performance of our fine-tuned models, illustrating the impact of our fine-tuning efforts.

5.1.4 Encoders

In this subsection, we present the encoder models utilized in our experiments. We first describe the vanilla
versions of the models, followed by a discussion of pre-trained variations fine-tuned on similar reasoning
datasets to explore the impact of additional prior knowledge on our task.
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Vanilla variations

BERT [14]: Bidirectional Encoder Representations for Transformers, is a pretrained deep bidirectional
transformer model producing context representations. Using a fine-tuning setting, BERT has advanced
state-of-the-art performances on a wide range of NLP tasks.

RoBERTa-large [52]: Robustly Optimized BERT pre-training Approach (RoBERTa) is an adaptation of
BERT architecture trained with larger batches on 160 GB data from various domains. RoBERTa-large was
trained by dynamically modifying language masking while the next sentence prediction loss used in BERT
was dropped. Other improvising techniques like larger input text sequences, byte pair encoding are used in
training which seemingly improved the model performance in downstream tasks.

DeBERTaV3 |[29]: Decoding-enhanced BERT with disentangled attention is an extension of the original
DeBERTa model. It builds upon the BERT (Bidirectional Encoder Representations from Transformers)
architecture, aiming to enhance its decoding capabilities and overall performance across various natural
language processing (NLP) tasks. DeBERTaV3 further improves the efficiency of DeBERTa [30] using
ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, V3
significantly improves the model performance on downstream tasks. It incorporates a disentangled attention
mechanism to allow the model to focus on different aspects of input independently, improving its ability to
capture diverse linguistic patterns. The model also features enhancements in the decoding process, enabling
more accurate text generation and sequence classification.

Pre-trained variations

We now provide details about the pre-trained variations of the encoder models, which were tuned on reasoning
datasets similar to our task.

BERT pgse-uncaseda We utilize a version pre-trained on a similar multiple-choice dataset employed in
SemEval-2020 Task 4b. This dataset comprises natural language statements that contradict commonsense,
accompanied by three reasons explaining why they lack coherence. Systems participating in this task were
tasked with selecting the correct justification. Upon thorough examination and comparison of the dataset
from that task with ours, we conclud that employing this pre-trained version of BERTbase — uncased,
rather than the original model, would enhance the integration of commonsense logic and reasoning in our
configuration. Henceafter, we denote this model as BERTyqse—uncased-SemEval-2020.

RoBERTa;4r4e Instead of employing the original version of the model, we opt for a pre-trained version
trained on the WinoGrande dataset. As previously mentioned, the WinoGrande dataset serves as a
benchmark for several commonsense tasks, making a pre-trained version of the vanilla RoOBERTa model
more adept at our sub-tasks. This model exhibits enhanced reasoning comprehension. For our experiments,
we employ the RoBERTaj 4. pre-trained model on the WinoGrande dataset, which we denote as
RoBERTa,4.g.- Wngrd.

DeBERTaV3,,se We choose to utilize a pre-trained version of DeBERTaV 3,4, which is available in the
Hugging Face [93] library of models. More specifically, we are leveraging the DeBERTaV3-base model, which
has been fine-tuned with multi-task learning on over 600 tasks from the tasksource collection [73]. This
DeBERTa model has undergone pre-training across various commonsense Reasoning datasets mentioned
earlier. Consequently, we anticipate notable enhancements in commonsense reasoning, logical reasoning, and
the incorporation of knowledge from diverse data sources that align with distributions similar to our sub-task
specific dataset. The aforementioned model will be referred to as DeBERTaV3,.-TS.

5.1.5 LLMs

In this subsection, we introduce the large language models (LLMs) utilized in our experiments. These models
are known for their robust performance in complex natural language processing tasks, such as reasoning, text
generation, and code comprehension. Each of these models varies in terms of parameters, architecture, and
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training techniques, providing us with diverse approaches to tackle the BRAINTEASER task. Below, we
describe the LLMs we employed, focusing on their key features and suitability for the specific challenges
presented by our sub-tasks.

Mistral-7b  [33] Developed by EleutherAl, is a language model tailored for large-scale natural language
processing tasks. With its 7 billion parameters, it excels in handling complex language understanding and
generation tasks. Designed to perform exceptionally well across various NLP applications such as text
generation, comprehension, and summarization, Mistral-7b surpasses the best open 13b model, Llama 2
[79], and the best released 34b model, Llama 1 [80], in reasoning, mathematics, and code generation tasks.
Leveraging grouped-query attention (GQA) and sliding window attention (SWA), Mistral-7b ensures efficient
inference and can handle sequences of arbitrary length with reduced inference cost. Its performance across a
wide range of benchmarks makes it a promising solution for our sub-tasks, given its extensive task capabilities
and superior performance in baseline benchmarks compared to similar or larger language models. While we
considered experimenting with its larger variant, Mixtral-8x7b [34], limitations on available resources forced
us to deal in depth only with the small variant, Mistral-7b.

Llama 2 [79] A language model that represents a significant advancement in natural language processing.
It is a collection of pre-trained and fine-tuned large language models (LLMs) ranging in scale from 7 billion
to 70 billion parameters. With its large parameter count and advanced architecture, Llama 2 is designed to
tackle complex language understanding and generation tasks effectively. It outperforms many other models,
including its predecessor, Llama 1, in various benchmarks, demonstrating superior capabilities in reasoning,
mathematics, and code generation. Leveraging its extensive parameterization and innovative techniques,
Llama 2 offers state-of-the-art performance across a wide range of NLP applications, making it a notable
contender in the field. For our experiments we were able to experiment with various configurations wit the 7
billion and the 13 billion models. Our involvement with the 70 billion parameter model has been restricted
due to limitations associated with the extensive parameter count, particularly during the fine-tuning process.

Phi-2 [26] An advanced language model designed to address complex natural language processing tasks
efficiently. It is part of the small language models (SLMs) released by Microsoft Research team. With its
innovative architecture and extensive parameter count, Phi-2 surpasses its predecessor, Phi-1, in various
benchmarks, showcasing superior performance in reasoning, comprehension, and text generation. Leveraging
cutting-edge techniques and a comprehensive understanding of language patterns, Phi-2 demonstrates
remarkable capabilities across a diverse range of NLP applications, solidifying its position as a prominent
model in the field. Given its 2.7 billion-parameter architecture, which exhibits exceptional reasoning and
language understanding abilities in comparison to various Llama 2 iterations and Mistral-7b, we are confident
that this model will deliver noticeable performance for both of our sub-tasks.

5.1.6 Prompting Details

Here, we provide a comprehensive overview of the prompt utilized consistently throughout the fine-tuning
process of the LLMs, which ultimately led to optimal performance across both sub-tasks. The LLMs were
explored exclusively in the multiple-choice format, as this setup offered the necessary context for reasoning
through the provided options. By maintaining consistency in the prompt structure during fine-tuning, we
were able to effectively enhance the models’ ability to handle the complexities of both the Sentence Puzzle
and Word Puzzle sub-tasks, leading to improved performance.

System Prompt:

Below is an instruction that describes a multiple choice task. Answer the following multiple choice question by giving
the most appropriate response. Answer should be one among options provided after the question. Select the most
suitable answer while making the necessary assumptions. Give only answer and a short explanation of two or three
sentences. Nothing else.

User Prompt:

Question: {question}

1) {a}
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2) {bv}
3) {c}
4) {ar

Answer:
The correct answer is: {label}) {answer}

Here is the explanation of each parameter used in the user prompt:

e question: This variable represents the actual question posed to the model. It serves as the main input
for which the model must reason and generate an appropriate answer.

{a}, {b}, {c}, {d}: These variables correspond to the four possible answer choices presented for each
question in the multiple-choice format. Each choice is associated with a numerical identifier (1, 2, 3, or
4) and represents a distinct option the model can select.

{label}: This variable denotes the number (1, 2, 3, or 4) corresponding to the correct answer option
among the four provided choices. It indicates the correct option’s index.

{answer}: This variable contains the text of the correct answer choice. It corresponds to the content
of the selected correct option (either {a}, {b}, {c}, or {d}) as identified by the label.

In this setup, the prompt presents a question along with four possible answer choices, and the model is
fine-tuned to generate the correct answer by selecting the appropriate label and corresponding answer text.

5.2 Experimental Setup

In our experiments, we employed the Google Colab platform and Kaggle, leveraging various open-source
Python packages such as Transformers, TRL (Transformer Reinforcement Learning) [91], PEFT
(Parameter-Efficient Fine-Tuning) [57], BitsAndBytes, Accelerate [25], and Sentence-Transformers.

5.2.1 Encoders

BERT-SE ! During fine-tuning, a learning rate of 3e > was used, with a batch size of 16 samples processed
in each iteration, over the course of 3 epochs. This process aimed to adapt the pre-trained model to better
suit our sub-task. Our optimizer was AdamW and our learning scheduler was linear. Same setup was used
for the fine-tuning of the BERT encoder.

RoBERTa-WNGRD 2 underwent fine-tuning on the train split of each dataset, utilizing a learning rate
of 3e7°, a batch size of 16, and running for 3 epochs. The opptimizer was also AdamW and the learning
scheduler was linear. RoBERTa-large was fine-tuned on the train split of each sub-task’s specific dataset
using identical configurations.

DeBERTaV3-TS 32, like DeBERTaV3-base, underwent a fine-tuning process similar to the
RoBERTa-WNGRD system, differing only in the batch size, which was set to 4.

5.2.2 LLMs

Phi-2 * underwent fine-tuning using the prompt format outlined in Section Prompting Details. The
fine-tuning process involved setting a learning rate of 2e~® and a batch size of 2, with the model trained
for 250 steps. We conducted experiments with different configurations of r and lora_alpha, encompassing
combinations such as r = 64, 128 and lora_alpha = 64, 128. The dropout rate was consistently set to 0.1

1 JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4b-append-e3-b32-14e5
2DeepPavlov/roberta-large-winogrande

3sileod/deberta-v3-large-tasksource-nli

4microsoft /phi-2
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5.3. QLoRA hyperparameters

across all experiments. We used an AdamW optimizer and a constant learning scheduler. Despite promising
benchmarks accompanying its release, the model’s performance during inference on the test split of both
sub-tasks’ datasets was subpar, scoring lower compared to the encoders mentioned above. This discrepancy
raises the possibility, supported by various reports, that the model’s training process using methods like
quantization and LoRA may not be fully optimized yet, particularly given its recent introduction.

Both variations of Llama 2 °, with 7 billion and 13 billion parameters, underwent the same fine-tuning

pipeline described earlier, utilizing the QLoRA technique. The fine-tuning process followed the prompt
format outlined in Section 5.1.6 (Prompting Details), employing a learning rate of 2¢~° and a batch size of
1, with each model trained for 250 steps. Despite experimenting with various combinations of values for r
and a (32, 64, 128), while the dropout rate was consistently set to 0.1, the results were disappointing. As a
text generation model, Llama 2 provided explanations for each multiple-choice prompt. However, even when
incorrectly predicting a choice as correct, the generated explanations often lacked logical coherence. Many
explanations produced during the inference phase were irrelevant to the context of the brain teaser, indicating
a failure to capture the reasoning path of most multiple-choice questions. In summary, both variations of
Llama 2, despite their large scale, proved incapable of effectively understanding and reasoning through the
multiple-choice questions provided.

Mistral-7b 6 model outperformed all others significantly. Prior to fine-tuning, we applied the QLoRA
technique. Using a learning rate of 2¢~° and a batch size of 2, each model underwent fine-tuning for 250 steps
using the train split of the sub-tasks’ dataset. The initial results were promising. During experimentation
with the r and a parameters, while maintaining a dropout of 0.1, certain patterns emerged. Specifically,
we observed higher quality explanations and scores when using higher rank values, ranging from (16, 32,
64, 128). This outcome was expected, as higher rank values correspond to higher precision weight changes,
resulting in superior weight tuning and overall model performance. Interestingly, when the ratio of a/r
was low (0.5 - 1), explanations maintained high quality irrespective of predictions, implying a coherent
reasoning path even if the predicted choice was incorrect. However, setting the a/r ratio to 2 or 4 potentially
enhanced results, signifying a stronger influence from QLoRA layers on the base model. However, this
adjustment led to a decline in the quality of explanations. The improvement could be attributed to the model’s
low intrinsic dimensionality. Despite having many parameters, the effective dimensionality of the model’s
learned representations is low. Consequently, after conducting several experiments, the best-performing
model regarding word puzzles aligns with this concept. After conducting numerous tests, we achieved our
best performances with the first model using r=128 and alpha=128, and the third best using r=64 and
alpha=32. These models are denoted as Mistral-7b_lora r lora_a, representing Mistral-7b_ 128 128 and
Mistral-7b 64 32 configurations, respectively.

Mistral-8x7b 7 Our exploration of Mistral-8x7bwas constrained, yet initial results were promising, despite
the limited configurations. Further experimentation with various hyperparameter settings may yield improved
performance. In our single attempt with this system, we employed a learning rate of 2e~® and a batch size
of 2, fine-tuning the models for 250 steps using the train split of the sub-task’s dataset. Both r and a were
set to 128, accompanied by a dropout rate of 0.1. This configuration was selected based on the r and a
values of the best-performing model across both sub-tasks, Mistral-7b. Despite its larger scale, Mistral-8x7b
achieved the second-best accuracy during inference on the test split regarding the first subtask, trailing
behind its smaller variation, Mistral-7b. This model is referenced in the results table of both sub-tasks
as Mistral-8x7b 128 128. Further experimentation with various configurations may yield improvements,
particularly when leveraging the low intrinsic dimensionality and redundancy inherent in the model.

5.3 QLoRA hyperparameters

Initially, we employed the QLoRA technique [13] for optimization. The QLoRA technique entails the following
steps. First we quantized the models using 4-bit precision to reduce memory usage and computational

5meta-llama/Llama-2
Smistralai/Mistral-7B-v0.1
"mistralai/Mixtral-8x7B-v0.1
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requirements. The quantization process was facilitated by the BitsAndBytes library. Following quantization,
we implemented the LoRA technique [31] using the PEFT library. LoRA, applied to the quantized model,
resulted in the creation of Quantized LoRA (QLoRA). This pipeline effectively addresses the challenges
posed by memory-intensive models on hardware with limited capabilities, ensuring optimized performance
and resource utilization. Regarding the hyperparameters of the QLoRA, the rank (r) determines the
dimensionality of the low-rank approximation used in the adapter layers, while alpha (a) is the scaling
factor that determines the magnitude of the newly learned weights compared to the original model’s weights.
The choice of alpha influences how much emphasis is given to the task-specific information compared to the
pre-trained knowledge encoded in the original model.

In our experiments, we observed that lower values of r occasionally yielded slightly superior results.
This phenomenon can be attributed to the regularization effect introduced by lower-rank approximations.
Essentially, lower-rank approximations act as a form of regularization, discouraging the model from
memorizing the training data and instead promoting the learning of more generalizable patterns. This
regularization effect becomes particularly significant when dealing with small datasets, as the risk
of overfitting is heightened in such scenarios. By limiting the model’s capacity through lower-rank
approximations, we encourage it to focus on learning essential features and avoid capturing noise or
idiosyncrasies present in the training data. Therefore, in our case where the dataset size is small, the
regularization provided by lower-rank approximations becomes crucial. It helps prevent overfitting and
encourages the model to generalize better to unseen data, ultimately leading to improved performance in
certain cases.

5.4 Results

5.4.1 Experimental results and Analysis

Our metrics for the Sentence Puzzle sub-task are presented in Table 5.4 and for the Word Puzzle sub-task in
Table 5.5 along with their baselines. Interestingly, the performance of the binary classification problem
is significantly lower than that of the multi-class classification task. Initially, this behavior seemed
counterintuitive since it appeared easier to determine whether a question is correct or not than to select
the correct answer from four different options. However, this assumption is not accurate. Consider the word
riddle: ‘What is the capital in France?" At first glance, the option ‘F’ seems incorrect, but when considering
the options ‘F,” ‘E’, ‘A’ and ‘None of the above’, ‘F’ emerges as the only correct answer, as it becomes
apparent that the question refers to the capital letter rather than the capital city. Therefore, the diverse
options provide crucial context to the models, explaining the superior performance of multi-class models.
This lack of context is why we refrain from further exploring this methodology across all models in our study.

Task A: Sentence Puzzle

Table 5.4 illustrates minimal fluctuations among all instance-based metrics. This consistency extends to the
associated group-based metrics for all models, highlighting a systematic behavior towards detecting various
reasoning paths. This observation holds for both the encoder-based classifiers and LLMs utilized in this
sub-task. Sentence puzzles inherently offer more detailed information, enabling models to detect and identify
the same reasoning patterns more readily, regardless of changes in context, in contrast to word puzzles, which
typically feature shorter contextual statements, presenting a greater challenge for models to discern consistent
reasoning patterns.

Initially, it becomes apparent that pre-training encoders across various commonsense reasoning datasets
results in substantial performance enhancements, as it enables the system to grasp domain-agnostic features
which prove advantageous for the subsequent task. Additionally, several commonsense pre-trained encoders
fine-tuned on BrainTeaser data outperform Llama 2 and Phi-2.

Another noteworthy observation from Table 5.4 is that only Mistral-7b from LLMs is able to surpass the
encoder-type networks, while both Llama 2 and Phi-2 consistently scored lower.

Unlike Llama 2 and Mistral-7b, Phi-2 has not undergone instruction fine-tuning [26], which, coupled with the
limited number of examples in the BrainTeaser Sentence Puzzle dataset, contributes to its lower performance,
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System Original Semantic Context Ori. 4+ Sem. Ori. + Sem. + Con. Overall
Multi-class classification problem
Human 907 907 .944 907 .889 .920
ChatGPT .608 .593 .679 507 .397 627
RoBERTa-L 435 .402 .464 2330 201 434
Mistral-7b 128 128 .850 .825 .T75 .825 .700 .817
Mistral-7b_ 64 128 .850 .825 775 .825 .700 817
Mistral-7b_16 64 .800 .800 .850 .750 725 817
Mixtral-8x7b 128 128 .850 .825 725 .800 .700 .800
Llama 2-7b_64 128 725 .650 .700 575 475 .692
Llama 2-13b_64 64 .665 .614 .645 .550 .400 .641
Llama 2-7b_64 64 .625 .600 .675 .550 .400 .633
Llama 2-7b_ 64 32 .250 .250 425 .075 .000 308
Phi-2 64 128 .625 575 .550 .b25 425 .b83
Phi-2 128 128 .625 575 .550 .500 375 .b83
Phi-2 64 64 525 425 .550 375 .300 .500
RoBERTa-WNGRD .800 775 775 .750 .675 784
DeBERTaV3-TS .800 775 725 .750 .625 767
DeBERTaV3-base 725 750 .675 725 .625 717
BERT-SE 750 725 .650 .700 .550 .708
RoBERTa-large .700 .700 725 .675 .550 708
BERT 675 .650 .650 .600 A75 .658
Binary classification problem
DeBERTaV3-TS 725 .650 .550 .650 .650 .642
RoBERTa-WNGRD 575 .600 .500 .550 .550 .558
BERT-SE .625 .550 375 .525 525 517

Table 5.4: Model Performance for sub-task A: Sentence Puzzle. More results in Table 5.7.

as a result of Phi’s incapability to capture the complexities of the BrainTeaser data.

In this regard, Mistral-7b, which has already demonstrated superior performance compared to every Llama
2 variation when tested in commonsense reasoning benchmarks [33], is also capable of solving this task more
accurately.

Task B: Word Puzzle

In Table 5.5, we observe a stark contrast in the models’ performance in understanding and detecting reasoning
paths when the context changes. There are notable discrepancies in accuracy between original and semantic
contexts when compared to context reconstruction, particularly evident in the case of smaller encoder models.

Regarding encoders, it is evident that, especially vanilla RoBERTa-large lacks robust commonsense reasoning
and struggles to systematically handle ambiguity; in contrast, RoBERTa-large pre-trained on WinoGrande
presents competitive performance. This notable enhancement (over 40%) due to WinoGrande pre-training
suggests that this particular dataset effectively equips the model with the ability to understand word
puzzle-related reasoning complexities, making its scores competitive with DeBERTaV3 in this sub-task,
despite the higher DeBERTaV3-base performance over RoBERTa-large in baseline reasoning benchmarks
[29]. Other than that, pre-training on other commonsense reasoning datasets does not significantly improve
the overall performance for encoders. Conclusively, apart from WinoGrande the rest of the extra pre-training
datasets do not hold reasoning cues close to BrainTeaser’s word puzzles.

Regarding LLMs, Mistral-7b notably outperformed all others by a significant margin, even surpassing the
8 times larger model tuned using the same hyperparameters (Mixtral-8z7b). Llama 2 exhibited the worst
results regardless of size (7/13 billion) and LoRA hyperparameters (r and a). Conversely, Phi-2 demonstrated
relatively better performance, particularly considering its smaller parameter count (2.7 billion) compared to
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System ‘ Original Semantic Context Ori.+Sem. Ori.4+Sem.+Con. Overall
Multi-class classification problem
Human 917 917 917 917 .900 917
ChatGPT .561 .524 518 439 .292 535
RoBERTa-L 195 195 232 146 .061 207
Mistral-7Tb 16 64 875 .906 781 .813 719 .854
Mistral-7b_ 128 128 .844 .844 .813 719 .625 .833
Mistral-7b_8 16 781 .938 781 719 .562 .833
Mixtral-8x7b 128 128 .625 .719 .625 531 .375 .656
Llama 2-13b_64 64 .354 .344 .438 125 .031 .379
Llama 2-7b_64 64 375 .344 375 125 .031 .365
Llama 2-7b_64 128 .281 188 438 .031 .031 .302
Phi-2 64 64 .688 .625 .688 .562 438 .667
Phi-2 64 128 .656 .656 .625 .594 .406 .646
Phi-2 16_64 .625 .500 .688 .438 312 .604
DeBERTaV3-base .750 .750 .562 .656 438 .687
DeBERTaV3-TS .812 781 .406 719 .281 .666
RoBERTa-WNGRD .750 .656 .500 .625 312 .635
BERT .562 .594 .469 .562 312 .542
BERT-SE .562 .500 .406 .500 .281 .489
RoBERTa-large .281 344 344 .156 .094 .323
Binary classification problem
DeBERTaV3-TS .250 313 313 .219 219 292
RoBERTa-WNGRD 375 .313 125 281 281 271
BERT-SE .000 .000 .000 .000 .000 .000

Table 5.5: Model performance for sub-task B: Word Puzzle. More results in Table 5.7.

the other LLMs. However, both models performed worse compared to most fine-tuned encoders. This
observations strongly confirms that word puzzles possess a distribution that diverges from the analytical
commonsense reasoning required for sentence puzzles, entailing a unique set of cognitive demands.

Mistral-7b exhibits a trend where higher quality explanations were generated with higher values of lora
rank r. However, the top-performing model showcased a configuration with r=16 and a=64. The QLoRA
method [31] explains why our top model has a rank of 16 instead of 128, contrary to common expectations
(more details regarding QLoRA hyperparameters in App. 5.3). Drawing from the widespread presence of
low-rank structures, as highlighted by prior studies [45, 46, 23], we leverage the intrinsic low-rank structure
in our problem, as emphasized in [31]. It is well-established that many tasks, particularly involving heavily
over-parametrized models, exhibit low-rank properties post-training [58].

Overall, our systems demonstrate remarkably high overall accuracy, being less than 10% lower than
human performance and more than 30% greater than ChatGPT. This suggests our methods’ proficiency in
understanding and detecting wordplay patterns, consistently addressing ambiguity irrespective of contextual
and semantic variations in brain teasers. Upon reviewing the short explanations provided with each prediction
(Table 5.6), we note thorough justifications even for incorrect answers. Errors typically adhere to specific
wordplay patterns across original, semantic, and context multiple-choice questions (details in 5.4.2).

5.4.2 Assessment and Insights on Dataset Quality

Upon reviewing our incorrect predictions across both sub-tasks, subsequent to the task organizer releasing
the labels for the test split of the datasets, we reached several conclusions. Across all triplets, encompassing
original, semantic, and context reconstruction statements, we observe a considerable degree of ambiguity in
various patterns. This ambiguity often leads to inconsistent selection of correct answers, even when answered
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Example of correct prediction with explanation

Question Choices

The other end is not tied to anything.

If a dog is tied to a piece of rope that is The rope stretches proportionally, providing the extra
6m long how can it reach a bone that is 7Tm length needed for the horse to reach the hay seven
away”? meters away.

The dog dug a 1m tunnel underground to reach the
bone that was 7m away while still tied to the 6m long
rope.

None of above.

Explanation: A dog cannot reach a bone that is 7m away if it is tied to a piece of rope that is
6m long. This is because the distance between the dog and the bone is greater than the length of
the rope. Therefore, the dog will not be able to reach the bone unless the rope is untied.

Example of misprediction with explanation

Question Choices

You need to drop the egg gently.

How can you drop a raw egg onto a concrete  You need to drop the egg hard.

floor and not crack it? No problem, because concrete floors are very
hard to crack.

None of above.

Predicted Answer: None of above.

Explanation: There is no way to drop a raw egg onto a concrete floor and not crack it. Concrete
is a very hard material and will easily break any object that falls on it. The only way to avoid
this would be to use some sort of protective covering for the egg before dropping it.

Table 5.6: An example of explanations generated by Mistral-7b, while addressing the multi-class
classification problem. The explanations, regardless of their validity, are detailed and showcase a high level
of comprehension and reasoning. Correct answers are indicated in bold, while mispredictions reference the

predicted answer by the model.

by humans. This underscores the need for clearer formulation of questions and unambiguous expression to
enhance the accuracy of model predictions. Another notable pattern we identified pertains to the quality
control of semantic reconstruction in certain questions. In these instances, some words were not replaced with
accurate synonyms, resulting in a shift in the definition of the brain teaser presented by the question. While
this may not inherently be problematic, the dataset’s correct answers remained unchanged compared to the
original version of the question. This discrepancy suggests that the alteration in question definition went
unnoticed by the task organizers, leading to some erroneous predictions by our model, when in reality the
correct context of the provided multiple-choice statement was captured by our system. The two observations
above highlight the inherent difficulty in generating clear and precise brain teasers, as well as the challenge
that models face in understanding them. In the above scenarios, our top-performing model either detects
the presence of a contradiction in the questions and opts to select "None of above," as elucidated in its brief
and explanatory justification, or it provides an incorrect answer based on the dataset’s answer but correctly
reflects the problem context, which may have been altered due to inadvertent synonym usage.
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5.4.3 Analysis of LoRA Hyperparameters

Table 5.7 depicts further analysis of LoRA hyperparameters for Mistral and Mixtral models, which have
exhibited the best results among all other models and across the two tasks. Due to computational restrictions,
we trained the Mixtral model, which is eight times larger, only for the best performing hyperparameters of
Mistral, as a proxy for the performance difference.

System ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. + Con. Overall
Task A
Mistral-7b_ 64 128 .850 .825 T75 .825 .700 817
Mistral-7b_16_ 64 .800 .800 .850 750 725 817
Mixtral-8x7b 128 128 .850 .825 725 .800 .700 .800
Mistral-7b_ 128 64 .850 .800 725 775 .625 792
Mistral-7b_ 64 32 .850 775 725 750 .675 783
Mistral-7b_8 16 .800 .800 .700 750 .625 767
Mistral-7b_ 128 32 .825 775 725 750 .600 775
Task B
Mistral-7b 128 128 .844 .844 .813 719 .625 .833
Mistral-7b_8 16 781 .938 781 719 .562 .833
Mistral-7b_16_ 16 812 812 875 .688 .625 .833
Mistral-7b_8 8 .875 .812 .812 750 .688 .833
Mistral-7b_16_ 32 .875 812 781 750 .594 .823
Mistral-7b_ 64 32 .844 .875 719 750 .562 812
Mistral-7b_ 128 64 .844 812 781 .688 531 812
Mistral-7b_ 64 64 719 .812 .625 .625 .406 719
Mixtral-8x7b 128 128 .625 719 .625 531 .375 .656

Table 5.7: The performance of various LoRA hyperparameters for Mistral and Mixtral in both sub-tasks.
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Chapter 6

Proposal 2 - RISCORE

Consider the following two riddles: R1: “A man shaves every day, yet keeps his beard long” and R2: “What
has a beard but never needs to shave?”. While these riddles are semantically similar, follow the same structure,
and refer to the same objects, their reasoning processes differ. In R1, where the answer is “A barber,” the word
“beard” is used literally. In R2, where the answer is “A tree,” “beard” is used metaphorically, referring to the
“beard” of certain trees, such as the “oak”. Thus, when using these riddles as context for a new riddle—such
as “I plant seeds every day, yet don’t have a single plot”—the answer will depend on the interpretation of
the phrase “plant seeds.” A metaphorical interpretation might lead to “A teacher,” while a literal one might
suggest “A hydroponicist.” This illustrates how riddle context can significantly shape the reasoning process
required for solving it.

In this example, however, instead of using R2, a contextually reconstructed version of R1—RS3: “Tom attends
class every day but doesn’t do any homework™ would provide a clearer reasoning process to the model.
Although R2 is semantically closer to R1, its metaphorical use of “beard” contrasts with the literal meaning
in the original, potentially obscuring the reasoning pathway that the model should follow for solving a new
riddle.

Building on the previous example, we introduce RISCORE (RIddle Solving with COntext REcontruciton),
a novel fully automated prompting method that generates and utilizes contextually reconstructed
sentence-based puzzles in conjunction with the original examples to create few-shot exemplars, designed to
enhance the in-context riddle-solving abilities of LLMs. The RISCORE method supplements each exemplar
in F'S learning with a contextually reconstructed version of itself. This preserves the original reasoning process
while only altering its context. This approach enables the model to delineate a clear and coherent reasoning
trajectory, which it can follow to effectively solve new riddles.

As illustrated in Figure 6.0.1, our approach builds on top of existing few-shot (F'S) methods [16, 85, 76], with
RISCORE not involved in the FS selection process. The goal of our method is to augment FS samples
with automatically generated context-reconstructed examples (detailed in Section 6.2). The addition of
context reconstructed examples has, in most cases, proven to be more beneficial for the models’ performance,
surpassing even the utility of real examples extracted from the dataset (see Section 7.3.4).

This proposal has also been published as a draft and is currently under review for acceptance at a major
computational linguistics (CL) conference [60].

6.1 Contributions

To sum up our contributions are:

e We experimentally verify that providing a riddle along with its context reconstruction can enhance
performance on both lateral and vertical thinking problems.

e We propose RISCORE, a novel prompting method designed to enhance the in-context riddle-solving
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Standard FS Prompting RISCORE

/— Model Input \ / Model Input ™

Example 1.
A man shaves every day, yet keeps his beard long
Options: 1. A Singer 2. A Barber 3. A razor 4. None of the

Example 1.
A man shaves every day, yet keeps his beard long
Options: 1. A Singer 2. A Barber 3. A razor 4. None of the

above
above Answer: 3
Answer: 3 ’
Example 2:
Example 2: Xamp

Tom attends class every day but doesn’t do any homework.

?
WhatihasElceamd | bitneyerneeasiiglsnayes Options: 1. Student 2. Teacher 3. Notebook 4. None of the

Options: 1. Grass 2. Tree 3. Mountain 4. None of the above

above
Answar: 2 Answer: 2.
Riddle: Riddle:

| catch fish every day, yet never eat a single one.
Options: 1. A pelican, 2. A seal, 3. A Fisherman 4. None of
the above

| catch fish every day, yet never eat a single one.
Options: 1. A pelican, 2. A seal, 3. A Fisherman 4. None of
the above

- N\ /

¢ Model Output Model Output
‘ Answer: 3

Answer: 1 X

Figure 6.0.1: An example of few-shot (FS) prompting alongside the same method using a
context-reconstructed example. The text in green represents the context reconstruction of Example 1,
produced by the proposed method. The example in red was removed simply to maintain the same number
of shots.

capabilities of LLMs. As a supplement to this, we introduce an algorithm for generating contextually
reconstructed multiple-choice riddles.

e We compare RISCORE against a wide array of popular prompting techniques, highlighting its
effectiveness across several prompting alternatives and models of varying sizes.

6.2 Method for generating context reconstructions

In this section, we describe our approach for generating high-quality reconstructed Question-Answer pairs,
which can be used as input to a model, alongside their counterparts, to enhance performance on lateral
thinking problems. This process draws inspiration from the semi-automated pipeline introduced in the
BrainTeaser paper [38], but we extend it by fully leveraging the capabilities of LLMs to automate the
procedure.

6.2.1 Step 1: Generation of Question-Answer pair

The first step involves generating one contextually reconstructed Question-Answer pair per selected instance,
temporarily ignoring distractors. To achieve this, we provide the LLM with the riddle, the correct answer, and
a system prompt that outlines the task. The prompt instructs the model to analyse the given Question-Answer
pair, understand the riddle, identify the reasoning process that links the question to the answer, and then
generate a similar riddle that follows the same reasoning process, along with a corresponding correct answer.
This approach maintains the underlying commonsense premise of the original question while altering both
the question and the answer to fit a new situational context. Since the model is provided with both the
riddle and the correct answer, understanding the riddle becomes easier than solving it independently [76]. To
further refine this approach, we apply the method in both Zero-shot (ZS) and Few-shot (FS) settings, using
preexisting pairs of original and contextually reconstructed questions from BrainTeaser.

In a zero-shot setting, the model generates the new pairs without prior examples or training specific to the
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task. In the few-shot setting, we use the same instructions as in the zero-shot approach, but we enhance
the model’s understanding by providing in-context examples. Specifically, we include a pair consisting of an
original Question-Answer and its corresponding contextually reconstructed version. This helps the model
better grasp the task at hand. It is important to note that these few-shot examples are of high quality, given
their manual construction and careful curation. In the few-shot approach, the provided examples are static.
It is important to highlight that, in BrainTeaser, when selecting examples for few-shot exemplars from the
training dataset, we ensure that the examples chosen are not selected for reconstruction. This avoids any
overlap between the few-shot exemplars and the examples for which we are requesting a context change,
ensuring that the given pair examples are distinct from the requested ones. The prompts used in this process
are presented in 6.2.1.

After generating the Question-Answer pair, a filtering procedure was conducted to ensure the quality of the
instance and its alignment with the riddles in the dataset. This process involved applying rules concerning
both the structure of the riddle and the answer. These rules are dataset-specific and can be adjusted to suit
different datasets, ensuring adaptability across various contexts.

A future direction could involve using Graph Neural Networks (GNNs) to generate efficient text
counterfactuals [56]. After generating Question-Answer pairs, a GNN would model the semantic relationships
between elements of the riddle (nodes/edges) and identify minimal changes that still preserve the reasoning
process. This ensures optimal counterfactual generation, applied in both Zero-shot and Few-shot settings.
The GNN would enhance efficiency by altering only necessary components while keeping the logic intact,
followed by a filtering step to ensure alignment with dataset-specific rules.

Quality Assurance for Generated Text

As mentioned above, after the generation of the contextual reconstructed Question-Answer pairs, we perform a
small but necessary quality control to ensure that the generated pairs adhere to several high-level criteria. One
potential area for further exploration is the detection and analysis of hallucinations in the generated content.
Hallucinations occur when models generate information that is not logically aligned with the input or context,
which could affect the quality and coherence of the Question-Answer pairs. Given the growing awareness of
this issue, it may be valuable to integrate hallucination detection mechanisms into the quality control process.
Several similar works have been investigating techniques to identify and mitigate hallucinations in language
models [24], and their findings could inform the development of more robust detection strategies.

For the BrainTeaser dataset, the filtering process is more flexible, as the questions and answers can vary in
length. The only constraint is that the questions must have a minimum length of 7 words, while the answers
can be as long as necessary. As a result, the number of generated pairs filtered out is relatively low, around
2%, ensuring that the majority of reconstructions meet the quality criteria.

In contrast, the RiddleSense dataset requires stricter limitations due to its typically shorter answers. For this
dataset, questions must be at least 6 words in length, while answers must not exceed 7 words, reflecting
the dataset’s concise nature. As a result of these stricter rules, approximately 10% of the generated
reconstructions for the RiddleSense dataset are filtered out for not meeting the required standards.

It is important to note that the minimum question length requirement is implemented to ensure that the
generated questions maintain a sufficient level of complexity and depth. Questions with fewer than 6 or 7
words are unlikely to provide the necessary detail to establish a well-structured and coherent riddle. This
limitation helps preserve the quality and integrity of the riddles by ensuring that they are adequately framed
to challenge and engage the model effectively.

Models utilized

In this approach, we experiment with two models to assess the impact of model size on the quality of contextual
reconstructions and the overall performance across both datasets. We use a relatively small model, Llama3-8B
[1], and a larger model from the same family, Llama3-70B [1]. These models were selected due to their strong
performance across a diverse range of tasks, outperforming other models of comparable size. By incorporating
both a smaller model, Llama3-8B, and a larger model, Llama3-70B, we aim to systematically investigate the
effect of model size on the quality of contextual reconstructions and its overall impact on performance. This
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exploration allows us to gain deeper insights into how model capacity influences the effectiveness of the
generated examples across different datasets.

Prompts

First, we will present the zero-shot prompt configuration used for generating the contextually reconstructed
Question-Answer pairs.

System Prompt:
You are an expert in context reconstruction. Your task is to receive a question along with its correct answer and
adapt them to a new scenario while maintaining the misleading commonsense premise.

Please follow these steps:

- First, you will receive an unsolved riddle along with five answer options. Analyze the given setting and
identify the connection between the question and its correct answer.

- Modify the original question and correct answer to fit a different situational context, ensuring that the
underlying logic and relationship between them are preserved.

- Ensure that both the new question and the new correct answer are distinct from the originals.

User Prompt:

Question: ~~~{QUESTION} "~

Correct answer: ~~~{ANSWER} "~

Next, with minor modifications, we introduce the few-shot prompt configuration that follows the same logic
but incorporates in-context examples to guide the model’s responses.

System Prompt:
You are an expert in context reconstruction. Your task is to receive a question along with its correct answer and
adapt them to a new scenario while maintaining the misleading commonsense premise.

Please follow these steps:

First, review an example provided with its context reconstruction, which illustrates the type of transformation you
will need to perform.

Next, you will receive an unsolved riddle along with five answer options. Analyze the given setting and
identify the connection between the question and its correct answer.

Modify the original question and correct answer to fit a different situational context, ensuring that the underlying
logic and relationship between them are preserved.

Ensure that both the new question and the new correct answer are distinct from the originals.

User Prompt:
{EXAMPLES}

Adapt the following riddle - answer pair while taking into consideration the examples above regarding context
reconstruction:

Question: ~~~{QUESTION} "

Correct answer: ~~~{ANSWER} "~
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In the above setting, it is understood that the values of the EXAMPLES represent pairs of answered
Question-Answer examples: the original and its contextually reconstructed counterpart, both sourced from
the BrainTeaser dataset.

6.2.2 Step 2: Generation of the distractors

This process involves generating incorrect answers to complement the multiple-choice options. While this
task may initially appear straightforward, it presents several significant challenges. First, the distractors
must not only match the number of original options but also be guaranteed to be incorrect when compared
to the correct answer. Additionally, they should not deviate excessively from the correct answer, as significant
divergence could undermine the validity and challenge of the riddle. It is also essential to account for cases
where the correct answer is “None of the above”, as observed in the BrainTeaser dataset. The length of the
answers also plays a crucial role in this process. For instance, BrainTeaser includes mostly answers with
more than four or five words, while RiddleSense provides typically single-word answers. These variations
in length introduce additional challenges in crafting effective distractors. To address this, we propose two
distinct methods for generating distractors: one for long and another for short distractors, respectively.

Generation of Long Distractors

In this process, we leverage the capabilities of large language models (LLMs) to understand and rephrase
context in order to generate distractors. We use two different pipelines to produce at least three distractors,
ensuring coverage of various potential situations.

The first approach involves prompting the model with a system-user prompt that instructs it to analyse the
given Question-Answer pair. The model is tasked with understanding the riddle, identifying the reasoning
process that links the question to the answer, and then suggesting a distractor based on the more challenging
or deceptive aspects of the concept. This approach yields one of the three required distractors.

In the second approach, the process is more intricate and can result in distractors of questionable quality.
We prompt the model with a system-user prompt, providing it with the reconstructed question without
its answer, along with the original question’s incorrect distractors, after removing the option “None of the
above”. The model is then tasked with modifying the concept of the given distractors by incorporating
elements from the setting described in the question. Importantly, the correct answer is not provided to
ensure that the generated distractors are distinctly different from the correct answer and effectively capture
a varied interpretation of the question’s context. Certainly, there are instances where the model generates
sub-optimal contexts for the distractors provided. Despite these cases, the distractors remain incorrect and
serve their purpose, though they may not always be sufficiently challenging.

Our experiments indicate that when the model is given both the original and the contextual reconstructed
examples, the minor issue of lower-quality distractors does not significantly impact overall performance. Now,
we have also created two new distractors that are somewhat contextually relevant to the setting, adding an
additional layer of coherence to the generated options. This ensures that the distractors are not only incorrect
but also related to the underlying premise of the riddle, enhancing the overall quality of the multiple-choice
options. To create the final dataset, we randomly select two of the three generated distractors and shuffle
them with the correct answer in random order. Finally, we append the option “None of the above” as the
last choice. In cases where “None of the above” is the correct answer, we use all three generated distractors.
With this approach, our dataset is prepared and ready for use.

Prompts used First, we will provide the system-user prompt used to task the model with understanding
the riddle, identifying the reasoning process linking the question to the answer, and then suggesting a
distractor based on the more challenging or deceptive aspects of the concept.

System Prompt:
Your task is to act as a concept grasper. You will be given a riddle and its correct answer.

Your goal is to understand the connection between the riddle and the correct answer, focusing on the tricky
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parts. Based on these tricky aspects, propose a plausible wrong answer that someone might give.
The wrong answer should be short, concise, and limited to one sentence.

- Riddle:

- Correct Answer:

Response format:

- Wrong Answer:

User Prompt:

- Riddle: {QUESTION}

- Correct Answer: {ANSWER}

Now we will provide the system-user prompt used for the second method.

System Prompt:
You will be given a sentence without context and then provided with a specific context.

Your task is to rewrite the sentence so that it aligns with the given context, while keeping it as close as
possible to the original meaning.

The purpose is to adapt the sentence to the context, not to answer any questions related to the context.
- Sentence (out of context):

- Context:

Response format:

- Sentence:

User Prompt:

- Sentence (out of context): {ORI_CHOICE}

- Context:{QUESTION}

Here, the value of ORI _CHOICE refers to the distractors from the original instance, excluding the "None
of the above" option. We create prompts for the model with each of these distractors individually.

Generation of Short Distractors

In this setting, the approach is fundamentally different. The answers and distractors in the original dataset are
primarily one-word responses, while the questions feature detailed settings with punctuation, conjunctions,
and more complex structures. To handle this, we also generate distractors using two distinct pipelines tailored
to this format.

First pipeline The first pipeline involves a more granular approach by splitting the contextual
reconstructed question into subphrases based on punctuation or conjunctions. If this yields fewer than
three distinct subphrases, we further split the sentence at the position of the word “and” to create additional
segments. We also detect the presence of interrogative words, and if the question is purely descriptive without
any direct question, we append the phrase “What am I?” at the end. This is not chosen arbitrarily but follows
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the standard structure of many riddles in this dataset, where "What am 17" is the common question leading
to single-word answers.

Now that we have broken the riddle into sub-phrases and appended the appropriate question, we can prompt
the model to generate a wrong answer for each sub-phrase concatenated with the question. This method
ensures that the distractors align with different parts of the riddle’s setting. However, since some sub-phrases
may contain key ideas central to the riddle, the model may still generate answers too similar to the correct
one. To address this issue, we incorporate an additional intermediate step utilizing zero-shot classification.
Specifically, we use the facebook/bart-large-mnli model * [43] provided by Hugging Face. This model classifies
the correct answer into one of eight general categories: ’food’, ’person’, ‘object’, ’animal’, ’'nature’, ’time’,
‘place’, ’concept’. These categories are chosen to be mutually exclusive to avoid overlap.

In our approach, we first predict the category of the correct answer using this model. We then leverage this
classification to guide the generation of distractors. For each sub-phrase concatenated with the question, we
provide the LLM with the two most similar categories (excluding the correct answer’s category). The model
is prompted with a system-user instruction to produce a correct answer of the given setting in the given
category. This method ensures that the generated distractors are not only incorrect but also contextually
aligned with the riddle, thus maintaining the challenge for the model. After applying filtering to ensure the
distractors are distinct and relevant, we have produced several distractors. The LLMs utilized in this pipeline
include the previously mentioned Llama3-8B [1] and its larger counterpart, Llama3-70B [1].

Second pipeline In cases where the distractors produced by the above pipeline are insufficient, we use
WordNet [11] to augment our distractor set. For each generated distractor, or if necessary, for the distractors
from the original question, we retrieve synonyms and hyponyms from WordNet. These additional terms are
then included as potential distractors.

Selection of Final Distractors After compiling these distractors, we randomly select four of them and
add the correct answer in a random order to complete the set. This approach ensures that we have a diverse
and comprehensive set of distractors for each question.

To ensure the quality of our distractors, we impose a limitation that at least two of the required four
distractors must be generated using the first approach. This is due to the fact that the distractors generated
through WordNet augmentation tend to be of inferior quality compared to those produced directly by the
model. If this requirement is not met, we skip the particular train set instance for producing a contextual
reconstruction. This approach helps maintain the overall quality and relevance of the distractors in our
dataset.

Prompts used We will present the system-user prompt configuration used in the first pipeline. In this
approach, for each sub-phrase concatenated with the question, we provide the model with two categories,
excluding the correct answer’s category. For each category, a separate system-user prompt is issued to instruct
the model to generate a correct answer that fits the given setting within the specified category.

System Prompt:
Task: Provide a concise, relevant answer to the given question within the specified category.

Constraints:

- The answer should not exceed three words.
- Follow the exact format provided below.
Response Format:

Answer: ...

User Prompt:

Question: "~ {QUESTION} ""

Lfacebook/bart-large-mnli
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Category: {CATEGORY}

6.2.3 Step 3: Creation of the Riddle

We have successfully created the desired contextual reconstructions for both datasets. However, an issue
remains: some of the originally selected examples do not have corresponding reconstructed examples due to
the quality control filtering process.

To address this issue, we first use the original most semantically similar examples as in-context learning
exemplars, appending their corresponding automatically generated contextual pairs. If these exemplars are
not sufficient for the required settings of two, four, or eight (i.e., RISCORE), we employ a more structured
approach rather than adding examples randomly.

We begin by generating embeddings for the set of original examples and their contextual reconstructions that
have not already been included in the current exemplars. Using cosine similarity, we then identify the most
similar examples from this set. Importantly, these similar examples might not be part of the original training
set but could be among the reconstructed examples.

We select the most similar examples and pair each with its corresponding pair, ensuring that we add either
the original or the reconstructed example as needed. This process is repeated until the number of exemplars
meets the required quantity.
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Experiments - RISCORE

The experiments were designed to evaluate the effectiveness of RISCORE in enhancing the reasoning
capabilities of language models across both lateral and vertical thinking tasks. Specifically, we aimed to
assess whether incorporating contextually reconstructed riddles as few-shot exemplars alongside their original
counterparts would improve model performance.

The experiments addressed two core research questions:

e RQ1: Does the use of contextually reconstructed instances enhance a model’s ability to solve lateral
thinking puzzles when compared to standard prompting techniques?

e RQ@2: Can the automated generation of these reconstructed riddles be utilized as an effective prompting
strategy, boosting performance across both lateral and vertical reasoning tasks?

To explore these questions, we tested a range of language models, comparing RISCORE to traditional few-shot
prompting strategies and examining its impact on reasoning performance. The experiments involved using
reconstructed riddles as exemplars to emphasize reasoning patterns rather than the surface-level semantics
of the data.

Our experimental setup included varying the number of few-shot exemplars, as well as testing across different
reasoning task complexities, to ensure robust comparisons between RISCORE and other methods.
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7.1 Preliminaries

7.1.1 Dataset
In this work we are using two different datasets of multiple QA format.

The first one is the BrainTeaser dataset, which consists of two sub-tasks regarding both lateral thinking
challenges. In addition to the original puzzles, the dataset includes adversarial subsets created by manually
modifying the original BrainTeaser while preserving their reasoning paths. The original data were perturbed
in two ways: First, there is a semantic reconstruction of each original question, ensuring that the answers
and distractors remain unchanged. Second, the original data undergoes context reconstruction, where the
reasoning path is preserved, but the brain teaser is rephrased to describe a new situational context. Each
question offers four possible choices, with the last option always being “None of the above”. It is important
to note that our experiments are focused exclusively on the sentence puzzle (SP) setting.

The second dataset used in our experiments is RiddleSense. This dataset features riddle-style questions that
require sophisticated commonsense reasoning and a strong grasp of figurative language to answer accurately.
It is structured as a multiple-choice question answering task, with riddles that test the model’s capacity to
navigate and interpret nuanced commonsense scenarios. The reasoning challenges posed by RiddleSense are
closely aligned with those found in BrainTeaser. RiddleSense offers one correct answer and four distractors
for each riddle. This contrasts with BrainTeaser, which includes a “None of the above” option as the final
choice, thereby introducing a more challenging setting.

Data statistics

Format of Datasets The BrainTeaser dataset is divided into three splits: train, development, and a hidden
test set used for evaluation. Although RiddleSense follows a similar format, we did not have direct access to
its hidden test set. As a result, we utilized the development data split of RiddleSense for our experiments.

Prepossessing and filtering Due to data leakage across the two datasets, we were required to exclude
semantically similar examples from the test split utilized. This leakage is understandable, as the sources for
English riddles are limited, and the number of unique riddles is finite. After identifying semantically similar
riddles, we retained only one instance within the datasets, prioritizing BrainTeaser due to the higher quality
of its questions and distractors, which were manually crafted.

Our goal in this process is to ensure that no question from the RiddleSense test set is present in the combined
train, dev, and test datasets of BrainTeaser. To achieve this, we are using the Sentence Transformers library
1166] with the gte-large-en-v1.5 2 [99] model to generate text embeddings and perform semantic similarity
comparisons. We convert each question from the entire BrainTeaser puzzle into embeddings that represent
the semantic meaning of each question. We then calculate the cosine similarity between these embeddings
and those in the RiddleSense test set to identify duplicates or highly similar questions. A lower threshold
is applied to define similarity, meaning that any question with a cosine similarity above this threshold is
considered a near-duplicate and excluded from the test set.

After conducting several experiments, we determined that a cosine similarity threshold of 0.9 was optimal.
This threshold is a delicate balance, as our questions are riddle-style and often rely on abstract or metaphorical
language, making it challenging to clearly assess whether two questions are similar enough to warrant
exclusion. Since riddles are not always straightforward in their wording, the threshold needed to be fine-tuned
to avoid excluding questions that are conceptually distinct but might have overlapping language, ensuring a
fair evaluation without overly aggressive filtering. This means that any question from the RiddleSense test
set that had a similarity score of 0.9 or higher to a question in the BrainTeaser datasets was removed to
avoid redundancy. As previously mentioned, because we prioritise BrainTeaser questions due to their superior
quality from manual annotation, we decided to remove any similar questions from the RiddleSense test set.
This approach helps preserve the integrity of the evaluation process and ensures that the test set contains
only unique and distinct questions, minimising potential data leakage and improving the robustness of our

LSentenceTransformers
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results. Additionally, by removing these instances, we can perform more experiments on the remaining unique
questions, optimising our use of hardware resources and potentially yielding more comprehensive insights.

Additionally, hardware limitations made processing the full RiddleSense unfeasible. To manage this, we
split its test set into two halves. To ensure the fairness and accuracy of this division, we evaluated various
techniques on both halves. Following the completion of these procedures, we present the dataset statistics in
the table below. Statistics regarding the datasets are provided in Table 7.1.

Dataset ‘ Train ‘ Dev ‘ Test
BrainTeaser - SP | 507(16923) | 120(4023) | 120(40s3)
RiddleSense (initial) 1021

RiddleSense (filtered) 3510 720 —
RiddleSense (sampled 50%) 360

Table 7.1: Data statistics

7.1.2 Evaluation metrics

Given that our task is formatted as a multiple-choice question-answering problem, the evaluation metric
employed will be accuracy. This metric will provide a measure of the proportion of correctly answered
questions out of the total number of questions presented. Although accuracy is a straightforward metric, it
is effective in providing useful insights and serves as a reliable measure for evaluation in this context.

BrainTeaser For the BrainTeaser task, we not only track the overall accuracy but also monitor the accuracy
for each specific type of instance, including original, semantic, and context reconstructions. This detailed
tracking is feasible because the data in each set are balanced, with each original instance having corresponding
semantic and context variations. This approach allows us to evaluate the model’s proficiency in handling
the same reasoning path under different conditions. The total accuracy is then calculated as the mean of
these three individual metrics. We also track group-based accuracy, where a "group" refers to either two
questions (original and semantically reconstructed) or three questions (original, semantically reconstructed
and contextually reconstructed). This metric assesses the model’s performance when all instances within a
group are answered correctly. Group-based accuracy provides a broader perspective on the model’s ability
to handle these lateral thinking challenges across different types of question reconstructions. This format
of evaluation metrics was both provided and requested by the creators of the dataset in an open Kaggle
competition, and we are adopting it for our analysis.

RiddleSense Unfortunately, the simple data row format in RiddleSense restricts our ability to track more
detailed metrics comprehensively, limiting us to evaluating only the overall accuracy for this dataset.

7.1.3 Baselines

In our study, we used various prompting techniques as baselines, including zero-shot (ZS), few-shot (FS),
and Chain of Thought (CoT) methods.

Chain-of-thought (CoT _ZS) Prompting Technique

This is the most straightforward prompting technique. In this approach, each instance from the test set of
each dataset is presented to the model using a specific system-user prompt format. This technique operates
in a zero-shot setting, meaning the model is not given any prior examples or training specific to the task
at hand. Instead, it relies solely on the system prompt and user prompt to generate responses based on its
pre-existing knowledge. The chaoin of thought character is a result of the usage of the phrase Let’s think step
by step in the end of each system prompt. The Chain of Thought (CoT) character is achieved by including
the phrase “Let’s think step by step” at the end of each system prompt. This approach aligns with the
findings of [40], which demonstrate that large language models can perform effectively as zero-shot reasoners
by incorporating this specific phrase before presenting an unanswered test instance. The following are the
system-user prompts that were used:

111



Chapter 7. Experiments - RISCORE

System Prompt:

You will encounter a riddle that requires analytical thinking and reasoning to solve.

A riddle is a question or statement intentionally phrased so as to require ingenuity in ascertaining its answer or
meaning, typically presented as a game.

Different ideas can be used in these riddles:

. Riddles often employ misdirection, leading you away from the actual solution.

. They include elements with double meanings, requiring a keen eye for words with dual interpretations.
Metaphorical wordplay adds another layer, urging you to decipher figurative language.

. Look out for exaggeration, as riddles may present overly dramatic details to divert your attention.
Common phrases and sayings may hide within the puzzle, demanding familiarity.

. Associations and irony play a crucial role, introducing unexpected connections.

Numerical puzzles can also be part of the mystery, requiring you to decode their significance.

. Elemental imagery, drawn from nature, might hold key descriptors.

. Rhyming and sound clues can add a poetic dimension. 10. Word Puzzles: Pay attention to anagrams, acrostics,
and other wordplay elements.

11. Also, it is important to note you should decode the upcoming riddle using everyday logic and creativity.

© 00N U A W N

Approach the riddle with everyday logic and creativity, avoiding supernatural explanations.
You will be given an unsolved riddle and five options to choose the answer amongst them. Let’s think step by step.

User Prompt:

Riddle: ~"°
{RIDDLE}

Options:

[option 1]: ~~~{OPTION_1} "
[option 2]: ~~~{OPTION_2} "
[option 3]: ~~~{OPTION_3} "
[option 4]: ~~~{0OPTION_4} "
[option 5]: *~~{0OPTION_5} "

Where the input parameters are self-explanatory. It is worth mentioning that for BrainTeaser, where the
multiple-choice options are four, the prompt is adjusted accordingly.

Few-Shot (FS) Prompting Techniques

In this approach, we provide a specific number of exemplars from each dataset’s training set before asking
the model to solve a multiple-choice question from the test set. These exemplars, which include their correct
answers, serve as in-context learning examples. By presenting these examples, we aim to guide the model and
improve its performance on the subsequent unanswered tasks. This method leverages the provided context
to enhance the model’s ability to understand and solve new instances more effectively. The system prompt
that is used here is the one of the zero-shot prompting with some minor changes. The number of examples
that are used are 2, 4 and 8 as mentioned in section 6.

Now, a key decision is how to select the exemplars that will be provided to the model before it attempts to
answer the test set questions. The simplest and most straightforward approach is to randomly choose these
answered exemplars from the training dataset. This method, referred to as FS Rand in our experiments,
offers a baseline for comparison, as it doesn’t apply any specific strategy for selecting the most relevant
examples and relies purely on random sampling.

Another approach implemented in our experiments for selecting exemplars is based on semantic similarity.
Specifically, we utilize the Sentence Transformers library ® [66] in conjunction with the gte-large-en-v1.5
model * [99]. This setup allows us to generate text embeddings and perform semantic similarity comparisons

3SentenceTransformers
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using cosine similarity between these embeddings. For each experiment, we first generate text embeddings for
all instances in the training datasets. Then, for each question in the test set, we generate its embedding and
calculate its cosine similarity with all training set embeddings. Based on the number of in-context learning
examples needed, we select the most similar training instances to use as exemplars. This method ensures that
the selected examples are semantically relevant, aiming to improve the model’s performance by presenting it
with contextually aligned training examples. This approach is referred to as FS Sim in our experiments, as
it focuses on semantic similarity to guide exemplar selection for improved task performance.

The system and user prompts used for both of the above settings are outlined as follows:

System Prompt:

You will encounter a riddle that requires analytical thinking and reasoning to solve.

A riddle is a question or statement intentionally phrased so as to require ingenuity in ascertaining its answer or
meaning, typically presented as a game.

Different ideas can be used in these riddles:

. Riddles often employ misdirection, leading you away from the actual solution.

. They include elements with double meanings, requiring a keen eye for words with dual interpretations.
Metaphorical wordplay adds another layer, urging you to decipher figurative language.

. Look out for exaggeration, as riddles may present overly dramatic details to divert your attention.
Common phrases and sayings may hide within the puzzle, demanding familiarity.

. Associations and irony play a crucial role, introducing unexpected connections.

Numerical puzzles can also be part of the mystery, requiring you to decode their significance.

. Elemental imagery, drawn from nature, might hold key descriptors.

9. Rhyming and sound clues can add a poetic dimension.

10. Word Puzzles: Pay attention to anagrams, acrostics, and other wordplay elements.

11. Also, it is important to note you should decode the upcoming riddle using everyday logic and creativity.

0 1D U W N

Approach the riddle with everyday logic and creativity, avoiding supernatural explanations.

First, you’ll encounter X examples with their answer provided similar to the riddle you will need to solve.
Then you will be given an unsolved riddle and X options to choose the answer amongst them.

User Prompt:

{EXAMPLES}

Answer the following riddle while taking into consideration the examples above. Choose the best and the most logical
option from the available choices:

Riddle: ~"°
{RIDDLE}

Options:

[option 1]: ~~~{0OPTION_1} "
[option 2]: ~~~{OPTION_2} "
[option 3]: ~~~{OPTION_3} "
[option 4]: ~~~{0OPTION_4} "
[option 5]: ~~~{0OPTION_5} "

Where the EXAMPLES refer to the few-shot examples selected for each test set instance, and the other
input parameters are self-explanatory. It is worth mentioning that for BrainTeaser, where the multiple-choice
options are four, the prompt is adjusted accordingly.
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Few-shot with CoT Explanations (CoT _FS) Prompting Technique

Another promising technique for enhancing model performance across various tasks is Chain of Thought
(CoT) prompting. This approach involves not only providing answered examples but also including an
explanation consisting of intermediate reasoning steps. By laying out the thought process step-by-step,
CoT prompting significantly improves the capability of large language models to tackle complex reasoning
tasks. In our task, the Chain of Thought (CoT) prompting technique is anticipated to outperform the
previously mentioned methods. This expectation is supported by the performance improvements observed
in the CommonsenseQA dataset [77], a domain similar to our setting that involves both lateral and vertical
thinking. The dataset demonstrated significant improvements when using a manually composed set of two,
four, or eight few-shot exemplars with CoT prompting, highlighting its effectiveness in eliciting successful
reasoning. In our case, these explanations were generated manually to ensure they align with human
perceptions of the reasoning process required by the riddle. The explanation format we used follows the
structure outlined by [87] for few-shot exemplars in full chain-of-thought prompts for CommonsenseQA. Due
to the similarity in the multiple-choice question-answer format of our datasets, it served as a good foundation
for developing our own approach of creating explanations. Below, we provide the system and user prompts
used in the aforementioned technique:

System Prompt:

You will encounter a riddle that requires analytical thinking and reasoning to solve.

A riddle is a question or statement intentionally phrased so as to require ingenuity in ascertaining its answer or
meaning, typically presented as a game.

Different ideas can be used in these riddles:

. Riddles often employ misdirection, leading you away from the actual solution.

. They include elements with double meanings, requiring a keen eye for words with dual interpretations.
Metaphorical wordplay adds another layer, urging you to decipher figurative language.

. Look out for exaggeration, as riddles may present overly dramatic details to divert your attention.
Common phrases and sayings may hide within the puzzle, demanding familiarity.

. Associations and irony play a crucial role, introducing unexpected connections.

Numerical puzzles can also be part of the mystery, requiring you to decode their significance.

. Elemental imagery, drawn from nature, might hold key descriptors.

9. Rhyming and sound clues can add a poetic dimension.

10. Word Puzzles: Pay attention to anagrams, acrostics, and other wordplay elements.

11. Also, it is important to note you should decode the upcoming riddle using everyday logic and creativity.

N B O N

Approach the riddle with everyday logic and creativity, avoiding supernatural explanations.

First, you’ll encounter X examples demonstrating analytical reasoning similar to the riddle you will need to solve.

Then you will be given an unsolved riddle and five options to choose the answer amongst them. Let’s think
step by step and solve the riddle based on the examples provided above.

User Prompt:
{EXAMPLES_COT}

Answer the following riddle while taking into consideration the examples above. Choose the best and the most logical
option from the available choices:

Riddle: "7~

{RIDDLE}

Options:

[option 1]: ~~~{OPTION_1} "
[option 2]: ~~~{OPTION_2} "
[option 3]: ~~~{OPTION_3} "
[option 4]: ~~~{OPTION_4} "
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[option 5]: *~~{0OPTION_5} "

Where the EXAMPLES COT refer to the few-shot examples with manually generated explanations
selected for each test set instance, and the other input parameters are self-explanatory. It is important to
note that for BrainTeaser, where there are four multiple-choice options, the prompt is modified accordingly.

7.1.4 Methods explored

Before settling on the implementation of our proposed technique, we explored various alternative methods
in an effort to improve reasoning performance. One of these methods was Auto-CoT [100], where we
automatically generated explanations for the entire training dataset, allowing the model to use these
explanations as Chain-of-Thought (CoT) reasoning. This approach sought to enhance the model’s ability
to reason through lateral thinking problems by breaking down the thought process step-by-step. However,
in cases where the explanation or final answer was incorrect, we implemented a pipeline that automatically
provided a tip, helping to refine both the explanation and the answer. These corrected explanations were
then used as few-shot CoT examples, enabling the model to learn from its mistakes and improve its reasoning
capability. While this method showed some promise, it often required significant post-processing and manual
intervention to handle the edge cases where the generated explanations were incomplete or unclear.

Another method that we explored, and that holds potential for further investigation, involved dividing
riddles and selecting few-shot examples based on their reasoning process. The idea here was to
enhance the model’s ability to generalize across lateral thinking problems by categorizing riddles according
to their underlying reasoning patterns. We attempted to extract these reasoning processes through LLM
prompting, intending to group similar riddles and use them to guide the model’s reasoning. However,
the techniques applied were not deterministic, which led to inconsistent results. We hypothesize that
constructing a more formal taxonomy for categorizing different riddle reasoning types—such as inductive
reasoning, deductive reasoning, and analogical reasoning—could enable the selection of few-shot examples in
a more structured and reliable manner. This approach might allow the model to better generalize and apply
reasoning across different lateral thinking tasks. However, without a well-defined categorization scheme, this
method proved challenging to implement effectively.

Given these limitations, we ultimately returned to our proposed method, which combines reconstructed
Question-Answer pairs with their original counterparts and fully leverages the capabilities of LLMs. This
method, described in detail in the following sections, was more reliable and scalable compared to the
alternatives we explored.

7.1.5 RISCORE

RISCORE is applied as follows. For each example used in the few-shot (FS) setting, the corresponding
contextually reconstructed riddle is appended to the input. For a fair comparison, the number of shots refers
to the total number of examples included in the prompt, regardless of whether they are new riddles or context
reconstructed examples. Thus, for example RISCORE with 4 shots has the same 2 examples used in 2-shots
FS Sim technique augmented with the context reconstruction of them, meaning that keeps only half of the
examples drawn from the original dataset and the remainder consisting of reconstructed examples. The
experiments were conducted with 2, 4, and 8-shot settings, meaning that 1, 2, and 4 exemplars, respectively,
were drawn from the dataset, with the rest being their context reconstructions.

We primarily utilized the Llama3-8B and Llama3-70B model to generate both Question-Answer pairs and
distractors. The Question-Answer pairs were produced in both zero-shot and few-shot settings.

Lastly, in our experiments, we differentiate between RISCORE,,, which utilizes manually created
reconstructions (when available), and RISCORE, which employs the fully automated method for generating
reconstructions. The prompt structure for the system-user interaction in this method is the same as in the
F'S method outlined in 7.1.3. The sole distinction is in the examples provided.
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7.1.6 Models Utilized in RISCORE pipeline

This section analyzes the models used throughout the experiments. Two distinct models were employed,
each serving a specific purpose within the overall methodology. The first model was used wherever semantic
similarity was required between examples, whether for prompting (FS Sim etc...) or filtering data (see
Section 7.1.1). The second model played a crucial role in our proposed method, particularly in generating
short distractors (see Section 6.2.2).

Choice of Embedding Model

For the embedding representation, we solely experimented with the gte-large-en-v1.5 model ° [99], which was
utilized through the Sentence Transformers library ¢ [66]. This model was selected due to its manageable size,
which allows for easy deployment on a local machine. Additionally, it performs well on the corresponding
MTEB leaderboard 7, showing strong results not only in semantic textual similarity (STS) but also across
various other leaderboard rankings. This balance of efficiency and high performance made it an ideal choice
for our embedding needs.

Choice of Zero-shot classification Model

In our approach, we utilize the bart-large-mnli model ® [43], provided by Hugging Face, to classify the correct
answer into one of eight distinct categories: ’food’, ’person’, ’object’, ’animal’, ’'nature’, ’time’, ’place’,
‘concept’. These categories were deliberately chosen to be mutually exclusive, avoiding overlap and ensuring
clear, distinct classifications.

We opted for this specific model due to its powerful zero-shot classification capabilities, which make it ideal for
categorizing short inputs, such as single words or brief phrases, without the need for task-specific fine-tuning.
The bart-large-mnli model, being instruction-tuned, is particularly adept at handling these minimal inputs
while still providing accurate and contextually relevant classifications. Its ability to generalize across various
tasks made it well-suited for our requirement to classify concise answers reliably into predefined categories
with minimal context.

7.1.7 Models for Prompting

In this section, we analyze the models used for prompting with respect to the final results for each dataset.
The models employed in the proposed method, such as the sentence transformer for semantic similarity of
embeddings and zero-shot classification for mapping answers to eight respective categories, will be further
examined in a different section (7.1.6).

We specifically chose instruction-tuned variations of the models because they aligned more closely with our
task requirements. Instruction-tuned models typically provide enhanced performance in scenarios where
comprehending and following specific instructions is critical. This alignment ensures that the models are
better equipped to manage the intricacies of the tasks, leading to more effective and relevant outputs.

The temperature and repetition penalty values were determined through a series of exploratory experiments.
To ensure consistency across our work, we systematically applied the same parameters whenever possible.
For our experiments, we used a temperature of 0.5 and repetition penalties of either 1.0 or 1.15.

Llama 3 [1] In our experiments, we chose two variations of the model: the 8B and 70B versions. The
Llama3-8B° model was used for inference without quantization, which allowed it to deliver results with full
precision. This approach was ideal when computational resources were sufficient and precision was critical.
On the other hand, the Llama3-70B '° model, due to hardware limitations, underwent quantization. This
process reduced the model’s size and computational needs, making it accessible despite the constraints of our

5 Alibaba-NLP /gte-large-en-v1.5

6SentenceTransformers

"MTEB leaderboard

8facebook /bart-large-mnli

9meta-llama,/Meta-Tlama-3-8B-Instruct
9meta-llama/Meta-Llama-3-70B-Instruct
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7.2. Experimental Setup

hardware. While quantization might lead to some loss of precision, it was necessary to deploy a model with
more parameters, which otherwise would not have been feasible.

Mistral [32] In our experiments, we used the Mistral-7B-Instruct-v0.2'*  and  the
Mixtral-8x7B-Instruct-v0.1'2 in their unquantized forms. The Mistral 7B-Instruct v0.2 was selected for its
strong instruction-following abilities, maintaining full precision. Similarly, the Mixtral-8x7B-Instruct-v0.1,
which integrates eight 7B models, was used unquantized to benefit from its combined performance.
Our goal was to explore the effectiveness of smaller models for our riddle tasks, and we preferred these
instruction-tuned variations to ensure they were well-suited to our specific requirements, leading to more
effective results.

Qwen2 [95] To further explore smaller model variations, we selected the Qwen2-7B-Instruct'® version. The
Qwen2 family of models, including this 7B-Instruct variant, is known for its strong performance in reasoning
tasks. The Qwen2 models are designed with advanced instruction-following capabilities and are particularly
effective at complex problem-solving and logical reasoning, making them well-suited for our objectives.

7.2 Experimental Setup

In this section, we outline the platforms, tools, and infrastructure used to implement and optimize both the
RISCORE pipeline and the baseline techniques for comparison. Our approach required scalable and efficient
environments for model development, as well as tools to handle large models under hardware constraints across
all techniques. Below, we detail the platforms used for experimentation, the libraries employed to optimize
memory usage and performance, and the infrastructure leveraged to scale model deployment beyond local
hardware limits, ensuring a thorough comparison between RISCORE and the baseline techniques.

Cloud Platforms for Experimentation In our experiments, we primarily utilized Google Colab
and Kaggle as the core platforms for running our code and conducting experiments. Both platforms
offered accessible, cloud-based environments with GPU acceleration, enabling efficient testing and model
development. Google Colab’s free GPU access and Kaggle’s seamless integration with datasets and
competition environments provided the flexibility needed for rapid prototyping and scaling up without relying
on local hardware resources.

Libraries for Model Optimization To handle large models that exceeded our hardware’s memory limits,
we used a combination of open-source libraries to optimize performance and reduce resource consumption.
The Transformers library [94] allowed us to load and manage large models, while BitsAndBytes played a
critical role in quantizing these models to 4-bit precision, significantly reducing memory usage with minimal
performance loss. Additionally, the Accelerate [25] library facilitated the efficient distribution of computation
across multiple devices, ensuring smooth execution even for large-scale models under hardware constraints.

Serverless Model Deployment Beyond these local optimizations, we integrated the Amazon Bedrock
API to access foundational models without being bound by local hardware limitations. Bedrock provided
a scalable, serverless environment that enabled us to deploy and experiment with large models on demand.
This flexibility allowed us to overcome hardware restrictions entirely, ensuring that our model development
and testing processes remained efficient and scalable throughout the RISCORE pipeline.

7.3 Results

In this section, we present and analyze the results of our experiments. For a more detailed breakdown of the
results, including variations across different hyperparameters and configuration settings, please refer to 7.3.4.

Hmistralai/Mistral-7B-Instruct-v0.2
2mistralai/Mixtral-8x7B-Instruct-v0.1
13Qwen/Qwen2-7B-Instruct
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be found in Tables 7.6 and 7.7.

Table 7.2: Model’s performance for Brain

7.3.1 BrainTeaser

Table 7.2 presents the performance outcomes of various prompting techniques applied to the BrainTeaser
dataset. Notably, the CoT FS method underperforms compared to few-shot techniques, even when supplied
with examples that include manually crafted explanations. This trend holds regardless of the model size
utilized. Conversely, there is a significant improvement when the few-shot approach incorporates the provided
“context reconstructed” riddles alongside the original riddles. This suggests that context reconstructed riddles
effectively guide the model in tracing the appropriate reasoning path. Remarkably, the benefit of using these
reconstructed contexts is more pronounced in smaller models compared to larger ones of the same architecture.
For instance, the improvement in the Llama3-8B model is substantial: while the 4-shot technique using
semantic similarity achieves a score of 0.717, augmenting this approach with four context reconstructed
examples (totaling eight shots) enhances performance to 0.758—an improvement of approximately 5.7%. For
the larger model, this increase is from 0.792 to 0.808, leading to an improvement of approximately 2.02%.
The same pattern is more evident to the Mistral-7B, when for 4-shot we notice an increase of 9.2% while for
Mixtral-8x7B we have an increase of 2.5%. A similar trend can be observed in Qwen2-7B, where the 4-shot
setting with semantically similar examples performs approximately 3.4% lower than the augmented 8-shot
exemplars, which include the same examples along with their context reconstructions, resulting in a total of
8 examples.

At this point, it is worth noting that the performance improvement does not originate solely from the
increased number of shots but also from the quality of the shots added. This is evident from the fact that the
best results on the dataset are achieved when we include examples with their context reconstruction riddles.
Furthermore, by comparing performance while keeping the number of shots constant, we observe that cases
using the reconstructed riddles perform better, especially when the number of shots is more than two. In the
latter case, the addition of different examples seems more helpful to the model in properly understanding the
task, since including only a single example with its contextual reconstruct makes the prompt overly specific.
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Using the automated method Table 7.3 presents the performance of RISCORE using the automated
method for generating context reconstructed examples. As expected, the using the automated method yields
a smaller improvement in model performance compared to the manually curated examples provided in the
BrainTeaser dataset. However, the performance of all models was consistently improved by the addition
of context reconstructed riddles, even when using the fully automated algorithm for their generation. For
example, for the Llama3-8B model, the performance using 4 shots from the dataset is 0.717, and by using
the same shots along with their reconstructions generated by the automated method (8 shots in total),
the performance increases to 0.742. The same trend is evident across all relatively smaller models, where
augmenting the 4-shot examples selected based on semantic similarity with their automated context pairs
yields notable performance improvements. Specifically, in the case of Qwen2-7B, the 4-shot setting augmented
with corresponding context exemplars results in a 2.5% performance improvement. In Mistral-7B, the
improvement is even more pronounced, with performance increasing by 10% from a baseline of 0.458 in
the best-case scenario. Importantly, Table 7.3 shows that in most cases (underlined), it is even better
to use the automated method to generate additional examples compared to adding the same number of
examples from the dataset. For instance, the performance of Llama3-70B with 8 shots from the dataset is
0.783, whereas using only 4 examples from the dataset and automatically creating the remaining 4 using the
context reconstruction method results in a performance of 0.808.
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Table 7.5: Model’s performance for RiddleSense
using RISCORE prompting. Similarity-based
selection was employed for choosing all the
exemplars. Results that surpass the F'S method
with semantically similar examples, using the
same number of shots, are underlined. More
detailed results can be found in Table 7.10.

Table 7.4: Model’s Performance for RiddleSense
using baseline techniques. The best results
overall are in bold. More detailed results can be
found in Table 7.9.

7.3.2 RiddleSense

In this dataset, RISCORE can only be applied to automatically generated examples because the dataset’s
format lacks context reconstructions for its questions.

Table 7.4 presents the results of the baseline techniques using various models in the RiddleSense dataset.
Once again, the results confirm that the few-shot technique, utilizing semantically similar exemplars for
in-context learning, consistently delivers the best performance across all tested models.

In Table 7.5, we present the RiddleSense results using the proposed method for context reconstruction of
each input.

A clear trend emerges when comparing a simple 8-shot exemplar selection based on semantic similarity
with the 8-shot setting of our method, where the top 4 semantically similar examples are augmented with
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our generated contextual pairs. Notably, the results show that our method consistently outperforms the
standard 8-shot exemplar approach, demonstrating a significant improvement in model performance across
various instances. An example of this trend is observed with the Llama3-8B model, where our method scores
0.708, approximately 2% higher than the few-shot setting based on semantic similarity, which achieves a
score of 0.681. The same pattern is evident when comparing the two 4-shot settings. We achieve similar
or marginally better accuracy using a total of just 4 examples—two original and two generated contextual
reconstructions. This underlines the effectiveness of integrating contextually reconstructed pairs in enhancing
model accuracy. We do not achieve a significant performance boost; however, we attain similar or marginally
better results while relying on less grounded knowledge. This demonstrates the efficiency of our method, as
it maintains comparable performance with fewer, yet strategically selected, exemplars.

7.3.3 Quality of context reconstructed riddles

To generate context reconstructed riddles, we used Llama3 models with 8 billion and 70 billion parameters
in both few-shot (FS) and zero-shot (ZS) settings. We found that the Llama3-8B model struggled to
produce high-quality Question-Answer pairs for the BrainTeaser dataset and was therefore not used in
RISCORE. This difficulty likely arises from the BrainTeaser dataset’s demand for lateral thinking, which is
particularly challenging for the smaller model. The Question-Answer pairs are essential, and if their quality is
insufficient—as observed with Llama3-8B on the BrainTeaser dataset—high-quality distractors alone cannot
compensate for this deficiency. However, for vertical thinking riddles, the smaller model effectively generates
riddles even in the ZS setting, which, when used in the few-shot (FS) setting, can lead to increased performance
compared to real examples drawn from the dataset.

7.3.4 Detailed Results

In this section, we present the detailed results for both datasets across all our experimental techniques. Due
to the extensive nature of the experiments, the results for each dataset are organized into subtables. We begin
with the BrainTeaser dataset, where the metrics are more detailed due to the dataset’s structure, followed
by the results for the RiddleSense dataset. The structure is organized by method per model, with results
presented in descending order based on score for each method, rather than by the number of examples. This
differs from the approach outlined in 7.3.
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Model Method ‘ Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. 4+ Sem. Ori. + Sem. + Con. ‘ Average
Chain-of-Thought Zero-shot
Meta-Llama-3-70B-Instruct  CoT_ZS (Q) | 0 SP 0.5 L15 | 0725 0.775 0.675 0.675 0.550 | 0725
Mixtral-8x7B-Instruct-v0.l ~ CoT_ZS | 0 SP 05 1.0 | 0575 0.550 0.525 0.475 0.275 | 0550
Meta-Llama-3-8B-Instruct CoT_78 | 0 SP 0.5 10 | 0625 0.650 0.625 0.500 0.325 | 0633
Mistral-7B-Instruct-v0.2 CoT_7ZS | 0 SP 0.5 L0 | 0375 0.475 0.500 0.300 0.250 | 0450
Qwen2-7B-Instruct CoT_7S ‘ 0 SP 0.5 1.15 ‘ 0.475 0.450 0.450 0.350 0.200 ‘ 0.458
Few-shot with CoT Explanations
Meta-Llama-3-70B-Instruct  CoT _FS (Q) | 2 SP 0.5 L15 | 0850 0.750 0.675 0.700 0.500 | 0758
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 8 SP 0.5 1.0 | 0675 0.750 0.700 0.600 0.425 | 0.708
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 4 SP 0.5 115 | 0700 0.650 0.700 0.575 0.450 | 0683
Mixtral-8x7B-v0.1 CoT_FS | 8 SP 0.5 L0 | 0650 0.675 0.600 0.575 0.375 | 0.642
Mixtral-8x7B-v0.1 T _FS | 2 SP 0.5 10 | 0625 0.625 0.600 0.525 0.350 | 0617
Mixtral-8x7B-v0.1 CoT_FS | 4 SP 0.5 L0 | 0575 0.600 0.575 0.475 0.350 | 0583
Meta-Llama-3-8B-Instruct CoT_FS | 8 SP 0.5 L0 | 0675 0.700 0.600 0.525 0.325 | 0658
Meta-Llama-3-8B-Instruct JoT_FS ‘ 2 SP 0.5 1.0 ‘ 0.725 0.625 0.550 0.550 0.350 ‘ 0.633
Meta-Llama-3-8B-Instruct CoT_FS | 4 SP 0.5 10 | 0650 0.625 0.550 0.500 0.300 | 0.608
Mistral-7B-Instruct-v0.2 CoT_FS | 8 SP 0.5 L0 | 0525 0.550 0.450 0.375 0.300 | 0508
Mistral-7B-Instruct-v0.2 T _FS | 4 SP 05 10 | 0525 0.550 0.450 0.375 0.300 | 0508
Mistral-7B-Instruct-v0.2 CoT_FS | 2 SP 0.5 10 | 0525 0.425 0.475 0.300 0.225 | 0475
Qwen2-7B-Instruct CoT_FS | 8 SP 0.5 L0 | 0600 0.725 0.675 0.550 0.425 | 0.667
Qwen2-7B-Instruct CoT_FS | 4 SP 05 10 | 0650 0.675 0.625 0.550 0.450 | 0.650
Qwen2-7B-Instruct CoT_FS | 2 SP 0.5 1.0 | 0675 0.550 0.600 0.450 0.375 | 0.608
Few-shot with Random Selection
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) ‘ 4 SP 0.5 1.15 ‘ 0.825 0.850 0.750 0.800 0.700 ‘ 0.808
Meta-Llama-3-70B-Instruct  FS Rand (Q) | 8 SP 0.5 115 | 0775 0.800 0.750 0.675 0.550 | 0775
Meta-Llama-3-70B-Instruct ~ FS Rand (Q) | 2 SP 0.5 L15 | 0.750 0.800 0.775 0.725 0.600 | 0775
Mixtral-8x7B-Instruct-v0.l ~ FSRand | 4 SP 0.5 1.0 | 0675 0.775 0.600 0.600 0.400 | 0683
Mixtral-8x7B-Instruct-v0.1 ~ FSRand | 2 SP 0.5 10 | 0650 0.625 0.575 0.475 0.300 | 0617
Mixtral-8x7B-Instruct-v0.1 FS Rand | 8 SP 0.5 L0 | 0675 0.650 0.525 0.525 0.350 | 0617
Meta-Llama-3-8B-Instruct FS Rand ‘ 8 SP 0.5 1.0 ‘ 0.750 0.625 0.650 0.575 0.400 ‘ 0.675
Meta-Llama-3-8B-Instruct FS Rand ‘ 4 SP 0.5 1.0 ‘ 0.625 0.650 0.650 0.500 0.375 ‘ 0.642
Meta-Llama-3-8B-Instruct FS Rand | 2 SP 0.5 L0 | 0.600 0.700 0.600 0.550 0.375 | 0633
Mistral-7B-Instruct-v0.2 FSRand | 2 SP 0.5 1.0 | 0525 0.550 0.475 0.425 0.275 | 0517
Mistral-7B-Instruct-v0.2 FSRand | 8 SP 0.5 10 | 0450 0.575 0.425 0.400 0.300 | 0483
Mistral-7B-Instruct-v0.2 FS Rand | 4 SP 0.5 L0 | 0550 0.425 0.475 0.325 0.225 | 0483
Qwen2-7B-Instruct FS Rand ‘ 2 Sp 0.5 1.15 ‘ 0.675 0.650 0.600 0.550 0.425 ‘ 0.642
Qwen2-7B-Instruct FSRand | 8 SP 05 115 | 0.700 0.600 0.625 0.525 0.425 | 0642
Qwen2-7B-Instruct FS Rand | 4 SP 0.5 L15 | 0675 0.575 0.575 0.525 0.400 | 0.608

Table 7.6: Model performance for BrainTeaser (Part 1). The presence of (Q) in the method column
indicates that the results correspond to the quantized version of the model.
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Model Method ‘ Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. 4 Sem. Ori. + Sem. + Con. ‘ Average
Few-shot with Semantic Similarity
Meta-Llama-3-70B-Instruct FS Sim (Q) |2 SP 05 115 | 0850 0.875 0.750 0.800 0.675 | 0825
Meta-Llama-3-70B-Instruct FS Sim (Q) ‘ 4 SP 0.5 115 ‘ 0.825 0.775 0.775 0.700 0.575 ‘ 0.792
Meta-Llama-3-70B-Instruct FS Sim (Q) |8 SP 0.5 115 | 0775 0.825 0.750 0.700 0.600 | 0783
Mixtral-8x7B-Instruct-v0.1 FS Sim |2 SP 05 10 | 0.700 0.700 0.675 0.575 0.450 | 0.692
Mixtral-8x7B-Instruct-v0.1 FS Sim | 4 SP 0.5 Lo | 0750 0.650 0.650 0.575 0.425 | 0.683
Mixtral-8x7B-Instruct-v0.1 FS Sim |8 SP 0.5 10 | 0750 0.625 0.625 0.525 0.375 | 0.667
Meta-Llama-3-8B-Instruct FS Sim | 8 SP 05 10 | 0750 0.775 0.775 0.700 0.600 | 0.767
Meta-Llama-3-8B-Instruct FS Sim ‘ 4 SP 0.5 1.0 ‘ 0.675 0.825 0.650 0.675 0.475 ‘ 0.717
Meta-Llama-3-8B-Instruct FS Sim |2 SP 05 10 | 0.800 0.675 0.625 0.625 0.525 | 0.700
Mistral-7B-Instruct-v0.2 FS Sim | 8 SP 05 10 | 0550 0.600 0.450 0.500 0.325 | 0533
Mistral-7B-Instruct-v0.2 FS Sim ‘ 2 SP 0.5 1.0 ‘ 0.55 0.475 0.525 0.375 0.275 ‘ 0.517
Mistral-7B-Instruct-v0.2 FS Sim |4 SP 0.5 10 | 0475 0.450 0.450 0.350 0.225 | 0458
Qwen2-7B-Instruct FS Sim | 8 SP 05 115 | 0675 0.625 0.650 0.575 0.500 | 0.650
Qwen2-7B-Instruct FS Sim ‘ 4 SP 0.5 115 ‘ 0.650 0.600 0.650 0.550 0.450 ‘ 0.633
Qwen2-7B-Instruct FS Sim |2 SP 0.5 115 | 0.600 0.550 0.650 0.500 0.400 | 0.600
RISCORE,, Rand
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) ‘ 8 Sp 0.5 1.15 ‘ 0.775 0.825 0.800 0.700 0.600 ‘ 0.800
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) | 2 SP 0.5 115 | 0850 0.775 0.725 0.725 0.650 | 0783
Meta-Llama-3-70B-Instruct  RISCORE,, Rand (Q) | 4 SP 05 115 | 0775 0.800 0.700 0.725 0.600 | 0.758
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE,, Rand | 8 SP 0.5 10 | 0.700 0.625 0.625 0.600 0.450 | 0.650
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE,, Rand | 2 SP 0.5 10 | 0725 0.600 0.550 0.600 0.400 | 0625
Mixtral-8x7B-Instruct-v0.l ~ RISCORE,, Rand | 4 SP 05 10 | 0675 0.650 0.525 0.550 0.325 | 0617
Meta-Llama-3-8B-Instruct RISCORE,, Rand | 4 SP 0.5 10 | 0650 0.700 0.675 0.625 0.500 | 0.675
Meta-Llama-3-8B-Instruct RISCORE, Rand | 2 SP 05 1.0 | 0.700 0.725 0.575 0.525 0.375 | 0.667
Meta-Llama-3-8B-Instruct RISCORE,, Rand | 8 SP 05 10 | 0.700 0.750 0.550 0.575 0.425 | 0.667
Mistral-7B-Instruct-v0.2 RISCORE,, Rand | 4 SP 0.5 10 | 057 0.475 0.500 0.425 0.300 | 0517
Mistral-7B-Instruct-v0.2 RISCORE, Rand | 2 SP 05 10 | 0550 0.425 0.400 0.325 0.200 | 0458
Mistral-7B-Instruct-v0.2 RISCORE,, Rand | 8 SP 05 10 | 0350 0.450 0.400 0.275 0.200 | 0.400
Qwen2-7B-Instruct RISCORE,, Rand | 4 SP 0.5 115 | 0625 0.650 0.600 0.550 0.400 | 0625
Qwen2-7B-Instruct RISCORE, Rand | 2 SP 05 115 | 0.650 0.575 0.600 0.500 0.400 | 0.608
Qwen2-7B-Instruct RISCORE,, Rand | 8 SP 05 115 | 0625 0.550 0.600 0.450 0.325 | 0.592
RISCORE,, Sim
Meta-Llama-3-70B-Instruct ~ RISCOREy, Sim (Q) | 4 SP 05 115 | 0850 0.850 0.800 0.800 0.650 | 0833
Meta-Llama-3-70B-Instruct ~ RISCORE,, Sim (Q) | 8 SP 05 115 | 0.800 0.775 0.850 0.700 0.625 | 0.808
Meta-Llama-3-70B-Instruct ~ RISCORE,, Sim (Q) | 2 SP 0.5 115 | 0850 0.775 0.725 0.725 0.600 | 0.783
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 8 SP 05 10 | 0775 0.625 0.725 0.575 0.500 | 0.708
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 4 SP 05 10 | 0675 0.750 0.700 0.600 0.425 | 0.708
Mixtral-8x7B-Instruct-v0.1 RISCORE,, Sim | 2 SP 0.5 10 | 072 0.675 0.625 0.675 0475 | 0.675
Meta-Llama-3-8B-Instruct RISCORE,, Sim | 2 SP 05 10 | 0750 0.875 0.675 0.675 0.575 | 0.767
Meta-Llama-3-8B-Instruct RISCORE,, Sim ‘ 8 Sp 0.5 1.0 ‘ 0.775 0.800 0.700 0.775 0.650 ‘ 0.758
Meta-Llama-3-8B-Instruct RISCORE,, Sim | 4 SP 0.5 1.0 | 0825 0.700 0.700 0.675 0.525 | 0742
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 4 SP 05 10 | 0575 0.550 0.575 0.400 0.325 | 0567
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 8 SP 0.5 10 | 057 0.575 0.500 0.450 0.325 | 0.550
Mistral-7B-Instruct-v0.2 RISCORE,, Sim | 2 SP 0.5 10 | 0500 0.475 0.475 0.350 0.200 | 0483
Qwen2-7B-Instruct RISCORE,, Sim | 8 SP 05 115 | 0.700 0.650 0.650 0.575 0.425 | 0.667
Qwen2-7B-Instruct RISCORE,, Sim | 2 SP 0.5 115 | 0.700 0.625 0.675 0.550 0.375 | 0.667
Qwen2-7B-Instruct RISCORE,, Sim | 4 SP 0.5 115 | 0.750 0.625 0.550 0.575 0.425 | 0.642

Table 7.7: Model performance for BrainTeaser (Part 2). The presence of (Q) in the method column
indicates that the results correspond to the quantized version of the model.
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7.3. Results

Model Method Num.Ex Task Temp Rep_Pen ‘ Original Semantic Context Ori. + Sem. Ori. + Sem. + Con. ‘ Average

RISCORE Results

Llama3-70B zeroshot for QA & Llama3-8B for distractors

Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 8 SP 0.5 115 | 0850 0.825 0.750 0.775 0.600 | 0.808
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 0.5 115 | 0.800 0.775 0.800 0.750 0.650 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 0.5 115 | 0825 0.750 0.800 0.675 0.600 | 0792
Mixtral-8x7B-Tnstruct-v0.1 RISCORE Sim | 8 SP 0.5 L0 | 0700 0.750 0.600 0.650 0.475 | 0683
Mixtral-8x7B-Tnstruct-v0.1 RISCORE Sim | 2 SP 0.5 L0 | 0750 0.750 0.500 0.650 0.375 | 0.667
Mixtral-8x7B-Instruct-v0.1 RISCORE Sim | 4 SP 0.5 1.0 | 0725 0.625 0.575 0.575 0.375 | 0.642
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 0.5 10 | 0700 0.725 0.675 0.650 0.525 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 0.5 10 | 0650 0.675 0.700 0.550 0.425 | 0675
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 0.5 L0 | 0700 0.600 0.575 0.525 0.350 | 0625
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 10 | 0550 0.450 0.475 0.375 0.300 | 0492
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 0.5 10 | 0525 0.400 0.475 0.300 0.200 | 0467
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 L0 | 0425 0.525 0.475 0.400 0.325 | 0475
Qwen?2-7B-Instruct RISCORE Sim | 8 SP 0.5 115 | 0.600 0.700 0.625 0.550 0.425 | 0642
Qwen?2-7B-Tnstruct RISCORE Sim | 2 SP 0.5 115 | 0650 0.650 0.575 0.550 0.400 | 0625
Qwen?2-7B-Tnstruct RISCORE Sim | 4 SP 05 115 0.600 0.650 0.625 0.550 0.450 | 0625
Llama3-70B fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) ‘ 8 SP 0.5 1.15 0.800 0.800 0.825 0.750 0.650 ‘ 0.808
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 0.5 L5 | 0775 0.800 0.800 0.700 0.600 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 0.5 115 | 0800 0.725 0.725 0.725 0.600 | 0.750
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 SP 0.5 L0 | 0725 0.725 0.575 0.675 0.475 | 0675
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 SP 0.5 L0 | 0700 0.675 0.65 0.625 0.450 | 0675
Mixtral-8x7B-Tnstruct-v0.1 ~ RISCORE Sim | 4 SP 0.5 10 | 0700 0.675 0.575 0.625 0.400 | 0.650
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 0.5 L0 | 0775 0.750 0.700 0.700 0.600 | 0742
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 0.5 10 ] 0725 0.700 0.625 0.600 0.400 | 0683
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 0.5 L0 | 0725 0.625 0.625 0.550 0.450 | 0658
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 0.5 L0 | 0625 0.575 0.475 0.475 0.350 | 0558
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 10 | 0500 0.550 0.500 0.425 0.350 | 0517
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 10 | 0550 0.425 0.450 0.375 0.225 | 0475
Qwen?2-7B-Tnstruct RISCORE Sim | 4 SP 05 115 | 0625 0.700 0.650 0.575 0.450 | 0658
Qwen?2-7B-Instruct RISCORE Sim | 8 SP 0.5 115 | 0.650 0.675 0.650 0.575 0.475 | 0658
Qwen?2-7B-Tnstruct RISCORE Sim | 2 SP 05 115 | 0625 0.650 0.600 0.525 0.400 | 0625
Llama3-70B fewshot for QA & Llama3-70B for distractors
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 4 SP 05 115 | 0875 0.775 0.725 0.750 0.600 | 0792
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 2 SP 05 115 | 0775 0.825 0.750 0.775 0.675 | 0783
Meta-Llama-3-70B-Instruct  RISCORE Sim (Q) | 8 SP 05 115 | 0775 0.750 0.775 0.725 0.600 | 0767
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 SP 05 1.0 | 0700 0.725 0.625 0.600 0.450 | 00683
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 SP 05 1.0 | 0700 0.700 0.600 0.625 0.500 | 0667
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Simm | 4 SP 05 L0 | 0725 0.650 0.550 0.600 0.425 | 0642
Meta-Llama-3-8B-Instruct RISCORE Sim | 8 SP 05 1.0 | 0800 0.675 0.625 0.625 0475 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim | 2 SP 05 1.0 | 0675 0.700 0.675 0.600 0475 | 00683
Meta-Llama-3-8B-Instruct RISCORE Sim | 4 SP 05 L0 | 0725 0.650 0.625 0.550 0475 | 0667
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 SP 05 L0 | 0575 0.500 0.450 0.375 0.300 | 0508
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 SP 0.5 L0 | 0625 0.400 0.475 0.350 0.275 | 0.500
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 SP 0.5 10 | 0.600 0.475 0.425 0.400 0.300 | 0.500
Qwen?2-7B-Instruct RISCORE Sim | 2 SP 0.5 115 | 0.650 0.600 0.600 0.500 0.400 | 0617
Qwen2-7B-Instruct RISCORE Sim | 4 SP 0.5 115 | 0.650 0.625 0.575 0.600 0.475 | 0617
Qwen2-7B-Instruct RISCORE Sim | 8 SP 0.5 L15 | 0.625 0.625 0.600 0.575 0.450 | 0617

Table 7.8: Model performance for BrainTeaser (Part 3). The presence of (Q) in the method column
indicates that the results correspond to the quantized version of the model.
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Model Method ‘ Num.Ex Quant Temp Rep_Pen ‘ Average
Chain-of-Thought Zero-shot
Meta-Llama-3-70B-Instruct ~ CoT _Z7S (Q) | 0 4bit 0.5 115 | 0.775
Mixtral-8x7B-v0.1 CoT_7S | 0 False 0.5 1.0 | 0675
Meta-Llama-3-8B-Instruct CoT_7S | 0 False 0.5 1.0 | 0619
Mistral-7B-Instruct-v0.2 CoT_7S | 0 False 0.5 1.0 | 0589
Qwen2-7B-Instruct CoT_17S | 0 False 0.5 115 | 0.608
Meta-Llama-3-8B-Instruct CoT_7S | 0 4bit 0.5 115 | 0633
Few-shot with CoT Explanations
Meta-Llama-3-70B-Instruct ~ CoT _FS (Q) | 2 4bit 0.5 115 | 0.789
Meta-Llama-3-70B-Instruct ~ CoT _FS (Q) | 4 4bit 0.5 115 | 0.783
Meta-Llama-3-70B-Instruct  CoT_FS (Q) | 8 4bit 0.5 115 | 0783
Mixtral-8x7B-v0.1 CoT_FS | 8 False 0.5 10 | 0697
Mixtral-8x7B-v0.1 CoT_FS ‘ 2 False 0.5 1.0 ‘ 0.692
Mixtral-8x7B-v0.1 CoT_FS ‘ 4 False 0.5 1.0 ‘ 0.686
Meta-Llama-3-8B-Instruct CoT_FS | 4 False 0.5 L0 | 0672
Meta-Llama-3-8B-Instruct CoT_FS | 8 False 0.5 L0 | 0658
Meta-Llama-3-8B-Instruct CoT_FS | 2 False 0.5 L0 | 0625
Mistral-7B-Instruct-v0.2 CoT_FS | 4 False 0.5 10 | 0603
Mistral-7B-Instruct-v0.2 CoT_FS | 8 False 0.5 1.0 | 0597
Mistral-7B-Instruct-v0.2 CoT_FS | 2 False 0.5 1.0 | 0594
Qwen2-7B-Instruct CoT_FS | 2 False 0.5 115 | 0.667
Qwen2-7B-Instruct CoT_FS | 4 False 0.5 115 | 0.656
Qwen2-7B-Instruct CoT_FS | 8 False 0.5 115 | 0.625
Few-shot with Random Selection
Meta-Llama-3-70B-Instruct ~ F'S Rand (Q) | 4 4bit 0.5 115 | 0.800
Meta-Llama-3-70B-Instruct ~ F'S Rand (Q) | 8 4bit 0.5 115 | 0.772
Meta-Llama-3-70B-Instruct ~ F'S Rand (Q) | 2 4bit 0.5 1.15 | 0.769
Mixtral-8x7B-v0.1 FSRand | 4 False 0.5 L0 | 0719
Mixtral-8x7B-v0.1 FS Rand ‘ 8 False 0.5 1.0 ‘ 0.711
Mixtral-8x7B-v0.1 FS Rand ‘ 2 False 0.5 1.0 ‘ 0.706
Meta-Llama-3-8B-Instruct FS Rand | 2 False 0.5 1.0 | 0672
Meta-Llama-3-8B-Instruct FSRand | 8 False 0.5 L0 | 0672
Meta-Llama-3-8B-Instruct FS Rand | 4 False 0.5 L0 | 0639
Mistral-7B-Instruct-v0.2 FS Rand | 2 False 0.5 L0 | 0586
Mistral-7B-Instruct-v0.2 FS Rand | 4 False 0.5 10 | 0586
Mistral-7B-Instruct-v0.2 FS Rand | 8 False 0.5 1.0 | 0.586
Qwen2-7B-Instruct FS Rand | 8 False 0.5 115 | 0.700
Qwen2-7B-Instruct FS Rand | 2 False 0.5 115 | 0.689
Qwen2-7B-Instruct FS Rand | 4 False 0.5 115 | 0.683
Few-shot with Semantic Similarity
Meta-Llama-3-70B-Instruct ~ FS Sim (Q) | 4 4bit 0.5 115 | 0817
Meta-Llama-3-70B-Instruct ~ FS Sim ( ‘ 8 4bit 0.5 115 ‘ 0.800
Meta-Llama-3-70B-Instruct ~ FS Sim (Q) | 2 4bit 0.5 1.15 | 0.792
Mixtral-8x7B-v0.1 FS Sim | 2 False 0.5 L0 | 0714
Mixtral-8x7B-v0.1 FS Sim ‘ 4 False 0.5 1.0 ‘ 0.692
Mixtral-8x7B-v0.1 FS Sim ‘ 8 False 0.5 1.0 ‘ 0.675
Meta-Llama-3-8B-Instruct FS Sim ‘ 4 False 0.5 1.0 ‘ 0.711
Meta-Llama-3-8B-Instruct FS Sim ‘ 2 False 0.5 1.0 ‘ 0.706
Meta-Llama-3-8B-Instruct FS Sim | 8 False 0.5 L0 | 0681
Mistral-7B-Instruct-v0.2 FS Sim | 4 False 0.5 L0 | 0633
Mistral-7B-Instruct-v0.2 FS Sim | 8 False 0.5 Lo | 0611
Mistral-7B-Instruct-v0.2 FS Sim | 2 False 0.5 1.0 | 0.608
Qwen2-7B-Instruct FS Sim ‘ 8 False 0.5 1.15 ‘ 0.731
Qwen2-7B-Instruct FS Sim | 2 False 0.5 115 | 0.722
Qwen2-7B-Instruct FS Sim | 4 False 0.5 115 | 0714

Table 7.9: Model Performance for RiddleSense (Part 1). The column Quant indicates whether the model is
quantized or not.
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7.3. Results

Model

Method ‘ Num.Ex

Quant

Temp Rep_Pen ‘ Average

RISCORE Results

Llama3-70B Fewshot for QA & Llama3-70B for distractors

Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 2 True 0.5 115 | 0792
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 8 True 0.5 115 | 0789
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 4 True 0.5 115 | 0.783
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 False 0.5 1o | 0.700
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.689
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.672
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0722
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 8 False 0.5 1.0 | o0.708
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 2 False 0.5 1.0 | 0.692
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 False 0.5 1.0 | 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim | 8 False 0.5 1o | 0597
Qwen2-7B-Instruct RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.731
Qwen2-7B-Instruct RISCORE Sim | 4 False 0.5 1.0 | o717
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 L0 | 0.697
Llama3-70B Fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 4 True 0.5 115 | 0789
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 2 True 0.5 115 | 0.786
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 8 True 0.5 1.15 ‘ 0.775
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.719
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.689
Mixtral-8x7B-Instruct-v0.1  RISCORE Sim | 4 False 0.5 1.0 | 0.686
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 8 False 0.5 1.0 | 0.706
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0686
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.681
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.617
Mistral-7B-Instruct-v0.2 RISCORE Sim | 4 False 0.5 10 | 0.606
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.603
Qwen2-7B-Instruct RISCORE Sim | 8 False 0.5 1.0 | 0719
Qwen2-7B-Instruct RISCORE Sim | 4 False 0.5 L0 | 0.697
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 1.0 | 0.681
Llama3-8B Fewshot for QA & Llama3-8B for distractors
Meta-Llama-3-70B-Instruct ~ RISCORE Sim | 8 True 0.5 115 | 0.806
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 2 True 0.5 1.15 ‘ 0.792
Meta-Llama-3-70B-Instruct  RISCORE Sim ‘ 4 True 0.5 1.15 ‘ 0.778
Mixtral-8x7B-Instruct-v0.1  RISCORE Sim | 4 False 0.5 1.0 | o714
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 8 False 0.5 1.0 | 0.689
Mixtral-8x7B-Instruct-v0.1 ~ RISCORE Sim | 2 False 0.5 1.0 | 0.681
Meta-Llama-3-8B-Instruct ~ RISCORE Sim | 4 False 0.5 1.0 | 0.700
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 2 False 0.5 1.0 ‘ 0.689
Meta-Llama-3-8B-Instruct RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.686
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 8 False 0.5 1.0 ‘ 0.614
Mistral-7B-Instruct-v0.2 RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.600
Mistral-7B-Instruct-v0.2 RISCORE Sim | 2 False 0.5 1.0 | 0589
Qwen2-7B-Instruct RISCORE Sim | 2 False 0.5 1.0 | 0694
Qwen2-7B-Instruct RISCORE Sim | 8 False 0.5 1.0 | 0689
Qwen2-7B-Instruct RISCORE Sim ‘ 4 False 0.5 1.0 ‘ 0.683

is quantized or not.

Table 7.10: Model Performance for RiddleSense (Part 2). The column Quant indicates whether the model
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Conclusion

In this study, we systematically evaluated both pre-trained and fine-tuned encoders, as well as
instruction-tuned large language models (LLMs), across a variety of classification tasks involving complex
reasoning. Our findings demonstrate that leveraging domain-specific pre-training, combined with fine-tuning
on relevant datasets, leads to significant improvements over baseline methods. Models that incorporated
additional commonsense reasoning datasets during pre-training exhibited enhanced performance, highlighting
the importance of capturing general reasoning capabilities that can be applied to specific tasks.

Across all tasks, the performance gap between models illustrates the influence of architecture, size, and
training strategies. Pre-trained encoder models, especially those exposed to commonsense reasoning datasets,
showed substantial improvements in handling intricate reasoning paths. In contrast, instruction-tuned
LLMs, when not fine-tuned on domain-specific data, often underperformed relative to pre-trained models,
emphasizing the need for fine-tuning even in large models to adapt effectively to task-specific challenges.

A key insight from our experiments is that multi-class classification tasks consistently outperformed binary
classification tasks. This indicates that providing diverse options offers critical contextual information that
guides models toward more accurate reasoning. The initial assumption that binary tasks are simpler proved
to be inaccurate, as they often lack the depth of context needed for correct decision-making.

Additionally, we introduced the RISCORE technique, a novel method that augments standard few-shot
learning with contextually reconstructed examples. RISCORE proved particularly effective in improving
LLM performance by helping models trace appropriate reasoning paths. Notably, RISCORE consistently
outperformed baseline techniques based on semantic similarity, especially in smaller models where reasoning
generalization is more challenging. The method’s robustness was demonstrated through both manually
curated and automatically generated contextual pairs, with the latter still producing notable performance
improvements.

In conclusion, our study highlights the importance of combining pre-training on diverse reasoning datasets
with task-specific fine-tuning to improve model performance on complex reasoning tasks. The introduction
of RISCORE adds another layer of refinement, offering a scalable solution for enhancing the reasoning
capabilities of LLMs, particularly in few-shot settings. Moving forward, further exploration of context
reconstruction and reasoning pattern detection will be key to advancing LLMs’ abilities in tasks that require
nuanced, multi-step problem-solving.

Future Work

Building upon the findings of this study, several promising research directions remain to be explored in order
to further enhance the capabilities of large language models (LLMs) in complex reasoning tasks. To guide
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these efforts, we propose several key research questions and areas of investigation that could yield significant
improvements in model performance.

Fine-Tuning Across Datasets and Models

One important area for future work is fine-tuning across various related datasets and models,
especially in small language models. A key research question here is:

How can fine-tuning on diverse, domain-relevant datasets improve the generalization of smaller
LLMs to complex reasoning tasks?

By systematically exploring fine-tuning strategies across similar datasets, we can gain insights into optimizing
performance for smaller models, potentially unlocking their reasoning potential without the need for extensive
computational resources.

Order of RISCORE Contextual Reconstructions

A second research question focuses on the order of RISCORE contextually reconstructed examples
and their original counterparts. The central question here is:

Does the sequence in which contextual reconstructions are presented affect the model’s ability to
follow reasoning paths more accurately?

Investigating the impact of different presentation orders could provide practical insights into prompt
engineering, helping to maximize the model’s reasoning accuracy.

Semantic Similarity Selection

Additionally, the consequences of poor semantic similarity selection should be addressed. Specifically,
we ask:

How does incorrect selection of semantically similar examples, when paired with context
reconstructions, affect overall model performance?

Understanding this dynamic could lead to the development of more sophisticated strategies for selecting
high-quality, semantically aligned examples.

Taxonomy for Reasoning Techniques

Another area ripe for exploration is the creation of a deterministic framework or taxonomy for detecting
and categorizing reasoning techniques in riddles. This leads to the research question:

Can a taxonomy of reasoning processes improve the selection of riddle examples based on shared
reasoning patterns, thereby enhancing few-shot learning?

By developing such a framework, we can better tailor exemplar selection, allowing models to more consistently
apply appropriate reasoning techniques across diverse tasks.

Human Evaluation of Context Exemplars

Human evaluation of our automated context exemplars is also crucial for understanding their efficacy.
A guiding research question here is:

How do human evaluators perceive the quality of automated context exemplars, and how can these
insights inform the development of more deterministic, high-quality examples?

Conducting human surveys or structured assessments will provide valuable feedback on the quality of our
context reconstructions and help identify areas for improvement. This could ultimately lead to methods that
rely less on LLM-generated content while maintaining the high quality of reconstructed examples.

In summary, these research questions and future investigations will provide a deeper understanding of
how fine-tuning strategies, prompt structure, reasoning taxonomies, and human evaluations can collectively
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enhance the effectiveness of LLMs in complex reasoning tasks. Through these efforts, we aim to not only
advance model performance but also contribute to the broader field of artificial intelligence by improving
reasoning capabilities across a range of cognitive challenges.
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