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Abstract

Neutrinos, fundamental particles that interact only weakly with matter, are crucial to our understanding of
both particle physics and a variety of astrophysical phenomena. Despite their importance, detecting neutrinos
is a significant challenge due to their elusive nature. Large-scale water Cherenkov detectors, such as those
of the KM3NeT experiment which are located deep in the Mediterranean Sea, are designed to capture the
Cherenkov light produced when high-energy neutrinos interact with atomic nuclei in water. These interactions
allow physicists to probe the properties of neutrinos and study extremely energetic astrophysical objects and
processes. One of the key challenges in these experiments is accurately reconstructing the energy, direction
and other characteristics of each neutrino event from the data collected by the detector optical sensors.
Traditionally, event reconstruction has relied on classical algorithms, such as maximum likelihood estimation,
however the rise of modern Deep Learning methods as powerful means of extracting information from data
has demonstrated the potential to improve upon these techniques. In particular, Graph Neural Networks
(GNNs) have emerged as a promising approach due to their ability to naturally incorporate the non-grid-like
structure and sparsity of neutrino event data. This thesis investigates the application of DynEdge, a particular
GNN architecture, to energy reconstruction in the KM3NeT/ARCA detector, using the GraphNeT Deep
Learning framework, developed by the IceCube neutrino experiment. In this context, the KM3NeT Deep
Learning data format was integrated into GraphNeT, allowing for the first use of this tool in KM3NeT and
facilitating its future use within the collaboration. Various configurations of models and training setups are
evaluated on two versions of our neutrino event dataset, snapshot and triggered data, in order to determine
the optimal approach to energy reconstruction. The results allow for a direct comparison between DynEdge
and ParticleNet —the GNN model previously used by KM3NeT- validating the performance of both models.
This work also presents significant improvement in the energy reconstruction of low-energy neutrino events,
achieved by the implementation of event weighting to balance the energy distribution of the input dataset.
This strategy also contributes to the elimination of biases in the training process, leading to a more generalized
model. Finally, the thesis explores the challenges of reconstructing high-energy (PeV scale) neutrino events,
providing insights into the predictive limitations of the model, which stem from the physical constraints that
apply at this energy scale.

Keywords — Neutrinos, KM3NeT, Energy reconstruction, Graph Neural Networks, Sample weighting






ITepiindm

Ta vetplva, Geuehicddn cwpatidio tou oAAnhemdpoly udvo actevde e tny UAY, elvon Wiaitepne onuacioc yio
TNY XATAVONOT TOGO TNG COUATIOWXNE PUOIXAC 600 XAl TOAAGDY ACTEOPUOIXWY Qavouévwy. TTapdha autd, 1
aviyveuon Twv veTplvwy anotekel onuavTixy tpdxhnon Adye tne acdevng ahAniemdpwoog @uong Toug. Meyding
oo oviyveutég Cherenkov, onwe autol Tou melpdpatoc KM3NeT mou Pploxovtar oe yeydro Bddog ot
Meooyelo ©dhacoa, €xouv oyediactel khate vo culhopfBdvouv tnv axtivoBohior Cherenkov nou mapdyeton dtav
vetpivar UYMAAC eVEpYELS oUYXEOVOVTAL UE OTOUIXOUC TUPNVEC GTO vepd. AuTéc ol oAANAemidpdoels emiTEé-
TIOUV OTOUC QUOXOUE VoL BLEREUVODY TIC BLOTNTEC TWV VETE(VWY %o Vo UEAETOOV Ao TEOQUOLXE avTixelueva
xat diepyaoies e€oupetind LPNAGY evepyedv. Mia and Tic Baoixéc mEoxAnoel; o auUTd Tol TELpdUoT Efval T
aXEBAC AVOXATACKEVT| TNE EVERYELIS, TNG XATELIUVONG, ARG ol GAAWY YUQUXTNPIO TIXAY TOU XAVE YEYOVO-
T0¢ VeTplvou, omd To BeBopEva TOU GUAAEYOVTOL amtd Toug onTxoUs aodnThpeg Tou aviyveuth. Ilapadootond,
1 AVOXATUOXELT] YEYOVOTWY PBaoiletan o xhaoxolg akyopiduoug, 6mwg 1 extiunon uéyliotng mdavopdvelog,
WOTO00 1 AVEBEE TwV olYYEoVKY Uetddwy Boathde Mdinone we toyueody péowy eaywyic TANEOQopLiY
amd dedopéva €xel xatadeilel T duvatotnTa Bedtinong autdy Twv TeXVNGY. Ebixdtepa, ta Nevpwvixd Alx-
oo Tpdgov (NAT') éyouv avadewydel we por ToAG UTOoYOUEVY TPOGEYYION AdYW TNS XAVOTNTAS TOUS Vot
EVOOUATWVOLY UE QUOIXO TEOTO TN WUN TASYUATLXY) SOUTH Xl TNV 0EatOTNTA TKV OEDOUEVWY YEYOVOTWY VETRIVWY.
H napoloa epyasia Blepeuvd Ty eqopuoyy yiog ouyxexpipévne opyttextovixic NAT, tou povtéhov DynEdge,
oty avaxataoxeun evépyelag otov aviyveuth KM3NeT /ARCA, yenowonouwsvtog to epyareio Batide Médnone
GraphNeT, mou avarntiydnxe and to meipopa vetplvwy IceCube. Ye auth tn Bdon, n poper dedouévwy Tou
netpdpotoc KM3NeT evowpoatddnxe oto GraphNeT, emitpénovtag tnv npdtn yenor autol Tou epyaieiov 6To
nefpapor KM3NeT xan Sieuxohivovtog tn ueAhovi| tou yeYion oto nhaiclo Tou nelpduotog. ALdgopes Slopop-
QOOELG LOVTEAWY Xou puiploewy extaldevone aflohoyolvtol ot 800 exB0YEC TOU GUVOAOU BESOUEVWY YEYOVOTWY
VETEIVWY, Tt BeBOUEVOL OTLYILOTUTIOU Xol Tol OESOUEVA GXAVDOMGOUOY, TEOXEWEVOU Vo TpocdloploTel 1 BéhTioT
TEOGEYYIOT YLOL TNV OVOXATAOXEVY TN evépyetag. To anoteléopato emTEENOUY TNV GUECT) CUYXELOT UETAED
tou DynEdge xou tou ParticleNet —tou povtéhov NAT nou eiye nponyoupéveme yenowonomdel and to nelpoya
KM3NeT- emBeBarchvovtag tny amddoom xon Twv 800 oviéhwy. Lty epyacia auth Topouctdleton axdur onpov-
T BEATIWOT OTNY AVOXATUOXEUT] TNG EVEQYELNS YEYOVOTWY VETRIVGDY YOoUNAHAC eEVERYELXS, 1) OTtOla ETITUY Y AVETOL
ME TNV EQopUoYY) TNG TEXVIXNS TNS OTAVULONG YEYOVOTWY Yo TNV EELC0PEOTNOT TNG EVERYELXNS XATAVOUNE TOU
cuvéhou Bedouévev eloddou. H otpatnyiny) auth cupfdiiel eniong oTov meplopiopd e wepohndloac xatd
Buadixacia exmaidevone, odnNydvTac o€ €va o yevixeuuévo povtéro. Téhog, n epyacio Slepeuvd T TPOXANCELS
NG AVOXOTACKEVAS YEYOVOTWY VETpivev udmhic evépyetog (xhipoxa PeV), napéyovtac minpogopies yia Toug me-
ploptopols atig TeoPBAédelc Tou HoVTEAOU, oL OTtoloL TPOEEPYOVTOL AT TOUS EVUTIERYOVTES QPUGLXOUS TEPLOPLOUOUS
og aUTAY TNV evepyelanr) xAluwona.

AgZeic Khewdid — Netplva, KM3NeT, Avoaxataoxeur| evépyeloc, Nevpwvind Alxtua I'odgpov, Stdduion
Berypdtwyv
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Euyaplotieg

Oa fideha apyLxd VoL EXPEACE TNV EVYVWROCUYY KoL 6ToV emBAénovta xadnynt wou, Adavdoio Povtoyidvvr,
o0 onolog Oyt povo cuppovnoe va emBAéPel auTAY TN SimAwuaTix epyaota, ohld enlone Tpocépepe Tic TOMITIUES
YVOOoELS XL TN cuveyn evldppuveT Tou, ol onoleg anodelyUnxay anapaltnTeg Yiol TNV EMLTUYY OAOXANPWON TNC.

H rnapotoa epyocio mpoyuatonominxe oto Ivoutovto IMupnvirc xan Ywpatdiaxrc Puoxric tou EKE®E
«Anuédxprtocy. Eluon Baditata evyvouwy npog tig ouvemBiénovaée pov, Ap. Evayyehla Apaxonotlou xau
Ap. Awartepivn Tloapaplouddnm, xadne xou npoc tov Ap. Xproto Mdpxou, yia tnyv suxoiplor va Siegorydyw authv
Vv epyaocio oto mAaiowo g opdduc Aotpocwpatidioxic Puouic. H adidheintn, xodnuepvr) xardodRynomn xou
unoo THELET amd Tic GUVETBAETOVGES Lo AToy VoV TIXATAO TOTES Xou auTh 1 epyacio Sev Ja Aoy Suvath ywelc
exelvec. Oa fdeha enlong va expedow tic Yepuéc wou euyaplotieg oe Oha Tor U€AT TNE opddag, Yo T dnutovpyia
evoc e€aupeTinol XoL EUYAPLOTOU GUVERYATIXOU TEPBAAROVTOC.

Idwaitepeg euyapotiec ogellovian otov Ap. T'idpyo Tavvaxdmovro, tou Ivotitottou ITAnpogopxrc o
Trhenxowvwvidov tou EKECPE «Anubxeitocy, yiol TV Tpoc@opd TV ovexXTiuntemy YVOoEWY ot GUUBOUAGDY
ToU TRO¢ TNV epapuoyT) Twv NAT 610 nedBAnue TN avaxaTaoXeunc EVERYELG.

Téhog, Yo fleha vor euyaploTHCW TOUSC GIAOUC Xol TNV OXOYEVELS OV, TOUC OTOLOUC OYUmE TEPLOGOTERO OO
0,TL UTOP® V. EXPEACE.

II&voc I'vétong
OxtedBprog 2024
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Puvowxn Twv Netplvov

Neztpiva oto Kadiepwuévo IlpbdTuno

To vetpivo elvon oToyelddrn cwpatidia, gepuiévia pe omy 1/2 Tou avAxouv GTNV OLXOYEVELX TMV AETTOVIWY.
Trdpyouv tpla ldn 1 yeloes vetpivov. Kdde yedon ocuvbéeton pe 1o avtiotolyo gopTiogévo Aentévio (nhex-
TpéVI0, Wwovio 1 taw). Etot, ou tpeic yeloeie vetpivy eivan to vetpivo nhextpoviou ve, To vetpivo woviou v,
xat To vetpivo tav v,. Ta avtlotowya avticwuatidia Toug cuuBoiilovion ue Ve, ¥y, V7 avtiotoyo. ‘Onwg oha
T AETTOVLAL, TO VETELVOL BEV ahANAETIOEOVY Ue TNV toyupt) BUvoun xot, dedopévou 6Tl elvon NAeXTEIXd oLBETEPQ,
dev aAAnAemdpoly oUTe NAexTpouayvNTXd. Luvenwg, oto Katepwuévo Ilpdtuno tne Loyotdiaxhc Puoinrc,
o veTpival oupPeTéYouY wévo oty acdevi ohnenidpaon, 1 onolo dtodidetor and to umolévie WE xou Z.

IInyéc Netpivoy

Ta vetpiva elvar tor mo dgpdovo yvewotd cwyatidia un-undevixfic wéloc oto Xounav. YTrdpyouv didgpopa eidn
TNYOV VETpivwy, bune oty tapolon epyacia wog evdlapépouy vetpiva uPmIic evépyelag oty neploy ) TeV /PeV?,
TNV onolo Ol CNUAVTIXOTEPEC CUVELGPORES TPOECYOVTOL OO TA ATUOCPOLELXE Yol TOL Ao TEOPUOLXA VETElvaL.

o Azpoopoupixd vetpiva: To atuoogaipixd vetplva napdyovton xatd tic ahANAemdpdoelc TNS XOoUIXHC
axtivoPolioc Ye atouixols TUEHVES OTN YAV ATUOCPOLEX, WS TEOLOVTA TWV XATUYLOUOY owUATLOiwY Tou
autég mpoxarolv. H por) atpoogapixidy vetpivwy eivon 1 xuplapyn por) vetpivev atnv evepyetomy| xhloxa
v GeV xou TeV [12, 13].

o Actpoguowxd vetpiva: Ta actpopuoxd vetpiva etvon LPNAAc evépyelac vetpiva mou TopdyovTol we
UTIOTIPOLGY TNG EMITEYUVOTS TwY adpoviwy otic tnyéc xoouxrc axtvoBoliag [15]. H por v actpoguotxy
veTplvev elval UTOBEETTERN TNE PONE TWV ATUOCPAULEXDY VETPIVRY xdTw and ta 100 TeV, wotdoo ta ao-
TEOPUOLXE. VETEIVOL XUPLIEYOVUY EVOVTL TWV ATHOCPUEIXWY GTNY EVERYELaXT xhipaxa Twv PeV. Ye avtideon
HE TNV X0oWXY) oxXTVOBOAL X0t To PuTOVLAL, To VETEIVEL TaEIBEVOLY OYEBOV aveUTOdLoTa GT0 SdoTnpe. AuTh
N WdTNTA To Xorho T8 WavinolE xoouXo0S oy YEAOQOEOUCS, emiTpénovTag TN dnuloupyio Tne aotpovouiag
vetpivwy, 1 onola anotelel Tuiua T aotporvopia ToAAamAdy ayyehiogdpwr [19-21].

Aviyvevon Netpivoyv
ANAnAenidpaoT veTplivewy pe Tnv UAN

O xlptog unyovioude ue tov omolo to vetpival UPNAfAG evépyelae ahAnhemdpoly e v UAn eivon 1 Bodid
AVENOOTIXY] OXEDOON UETAE) QUTHOV X TV Youxheoviwy (dnhadf mpwmtoviny B vetpoviny 6Toue atopxolc
TUERVES): TO VETPIVO AAANAETUOPA UE €Val HEUOVOUEVO X0LEX TOU VoUXAEoViou, amoVETOVTAS TOL JPXETH EVEpYELXL
(OOTE VoL TPOXOAEGEL TNV XOTUGTEOPH TOU VOUXAEOVIOU XoL TNV TopoywYH eVOC adpovinolh? xatorylopol [22].
Trdpyouv dVo TOTOL INMAETUSPACEWY VETPIVLV-VOUXAEOVIKY: odMNAeTudpdoels popTiopévou peduatoc (charged
current — CC) yéow tov unoloviwy WT xau oudétepou pedpatoc (neutral current — NC) uéow tou unoloviou
Z. Autéc oi ahhnhemidpdotlc avamaplo TavTan Tapaxdte, 6mou we N avopépetal 6TO VOUXAEOVIo Xt w¢ X o

ABEOVIXOC XATAUYLOUOS, EVOD | = e, u, Tt

11eV =1,602 x 10~19J
2 s 7 e ’ ’
Adpbvia ovoudlovton tor cwpatidior Tou artotehodvTal and xovapx.

21



Extetopévn Ieplindn ota EXAnvixd

wt
CC:yy+ N —I1I" +X,
co v+ NSt x, (1)
NC: Y+ N LY+ X

Aviyvevor vetpivev péow axtivoBoliog Cherenkov

H aviyvevorn vetpivov ota nopatnentipla vetpivev Baciletar oto gawvdpevo tng aktivopodias Cherenkov. H
axtivoPohrior Cherenkov mopdyeton and poptiopéva cwpatidior Tou xivolvtol evidg Sinhextpxol Yécou TayvTER
and TV TayLTATA Paome Tou Pwtde ot autd to péco [26]. H axtivoBoric exméuncton oe éva xwvixd YéTwno
XOUATOC GF YopaxTneloTxy| Ywvia and v tpoytd Tov cwpatdiou (ywvie Cherenkov):

cos(f.) = — (2)

omou n ebvon o delxtng didhaong Tou pEcou xau B = £, v 1) TayLTNTA TOL POPTIoPEVOL cwpaTidiou. To gouvéuevo
anewoviletan oto Xy. 1. T oyetotind (8 =~ 1) goptiouéva cwpatidor oe vepd, O, ~ 42°. ‘Onwe mpoxinTel
and v e&lowon 1, dtav ta vetpivo ahAnAemdpoly pe TNy VAT, TapdyovTaL QOpTIoNEVa BEUTEPOYEVT] CwHATISLOL.
Av outd A} Ta TpoldVT BLICTIUCHC TOUC XVOUVTAL UE UTEPQWTEVES ToyUTNTe oTo Yoo, Vo exmeupdel oncti-
voPolior Cherenkov, 1 onofa pmopel var aviyveudel pe ovotolyiec pwtonoAdamtaoiaotdy (PMTs). Ilpoxeévou
vo vy veboouy gutovia Cherenkov, ta mapatnenthpia VETpivev Tpénel var AEtToupyoly o cuVIXES OXOTOUC,
VO TPOC TUTEVOVTOL Ol Tl OTHOCQaLELXd HLovLa, Tor omola emlong moapdyouv axtivoPBorio Cherenkov, odid xou
Vo apxetd peydha. ‘Etol, cuvidog xataoxeudlovton vnodordoota (.. KM3NeT [28]), evtdc twv ndywv tng
Avropxtixfc (m.x. IceCube [31]) A oe undyeiec delapevée vepol (.. Super-Kamiokande [32]).

Tyfua 1: AxtvoPolia Cherenkov (ue umhe ypdua) mou exméuneton oe ywvin Cherenkov 6 and tny tpoyld evég
(popTiouévou cwpatidiov, To onolo xiveltan optlovtia pe toydTnto v = Be evidg yéoou Ue delxtn diddhaong n.
Aré [27].

ToroAovieg yeyovoTtwy veTplivey

O Bragopetinée oANAemdpdoelc VETEIVOV-VOUXAEOVIWY 0BNYOUV ot BlapopeTind TEolOVTa COUOTIOWY X,
emopévwg, ot BLopOopETIXEC TOMOAOYIES YeyordTwy oToug avlyveutés vetplvwv. Trdpyouv dVo Boocixd eidn
TOTOAOYLOV TIOU UTOPOUV VO ATOTEAEGOLY UEPOC EVOC YEYOVOTOC VETEIVOU: Ol Tpay1és xou ol kataryiouol. Mo
TEOY(LA AVOLPERETOL OF EVOL UEUOVOUEVO PORTICHEVO COUATIBLO TTOU TORAYEL TOV YAUPUXTNELO TLX XWVO axTVOPOoA oG
Cherenkov. To pévo cwuatidio mou napdyel Tonoloyio Tpoylde oTou aviyveuTtég Vetplvwy elvar to uiovio. O
xotouytopde cwpotidionv propel va eivan elte adpovinde (amoteheiton xupine and adpdvia) elte nhextpopoy vITXdS
(amotedeiton and NAexTEGVIO xat PWTGVLA). To popTiouéva cwpatiBla ToL TUEdYOVTUL GE XUTOUYLOUOVE EXTEUTOUY
enione axtvoBolia Cherenkov (EZ. 2) dtav xvodvtar pe UTEPQPWTEVES ToyUTNTES, WOTOCO TO SUANOYWXS HoTifo
EXTIOUTAC TWV COUATOWY OE Evay xotarylopd elvan va opoupxd Pétwno xipatog [15].
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Charged Current Neutral Current

I NG NPT (NN

nucleon hadronic jet | nucleon hadronic jet | nucleon hadronic jet nucleon hadronic jet

U V). V,

uu 'r X

high energy \

htgh energy

electron
hadronic hadronic hadmnlc T hadrom‘& "'\,\Ux
jet jet jet %V jeto &Y ‘

Syfua 2: Emoxdnnon Ty TOToAOYUOY YEYOVOTWY O TopdyovTol OTIC dAANAETOpdoELC VETRiVRY —
vouxdeoviwy CC & NC. T tic adknhemdpdoeic NC, 1 torohoyio yeyovotwy eivon 1 (Bror xon yio TLg TEELS
yevoelc vetplivwv. And [34].

‘Ohec oL alMnheudpdoeic vetpivav-vouxheoviwy (EE. 1) nepléyouv pa cuioThoo adpovinol xototylopol, 6mwe
@alvetal 6TO Ly. 2. AuTy| 1) CUVIOTOON TPOERYETAL UG TO VOUXAEGVIO WG ATOTEAECUO TNG EVERYELIC TTOU EVOTOTI-
Yeton oe auTéd xatd TNV aAAnienidpaon. I tig ahAniemdpdoeic NC auth etvon 1 uévr dardéoiun uroypapy| Tou
yeyovotoc. Ltic CC alknhemdpdoeic (avtt)vetpivwv nhextpoviou, to e€epyduevo eT Ya mopdyel emniéov €vay
nhextpopayvnuxd xatarytoud. Ou CC alknhemidpdoeic (avti)vetpivwy tow divouv mo molUmhoxeg tomoloyieg,
oL onofec Bev pac agopoly oty mapolou gpyacia. Btc CC alinhemdpdoeic (avtt)vetpivwv ploviou, to €&-
gpyopevo ut anotelel pla Tpoytd. 110 UTONOLTO TOU XEWéVoU, Yo eTXEVTPWUOUUE OE YEYOVOTA TPOYLAS and

drhemdpdoec v, CC.

To Ileipopo KM3NeT

To Cubic Kilometer Neutrino Telescope (KM3NeT [28]) elvon o Siedvic epeuvntind; cuvepyaoio Ttou ovor-
TOooEL avtyveuTég vetplvwy véog yewde ota Badn e Meooyeiou. To melpopo KM3NeT amoteheitan and 5o
unoYardoaioug aviyveutég Cherenkov, ol onolol yenouwomowly v Bla apyh aviyveuong, ahhd elapede Si-
apopeTny| aviyveutixd didtaly). O 300 aviyveutéc ovopdlovion KM3NeT /ARCA (Astrophysical Research with
Cosmics in the Abyss) xan KM3NeT/ORCA (Oscillations Research with Cosmics in the Abyss):

e KM3NeT/ARCA: O aviyveutic ARCA elva novtispévog nepinou 100 km votioavatohxd tne Lixehiog
oe Bddoc 3.500 m. O emotnuovixde oTéyoc Tou aviyveuty ARCA elvou va mapatnerioer vetpiva oo tpo-
puoxfic Tpoéheuorc. o Tov oxond autd, anoterelton and apalés GUOTOLYIEC PWTOUVLYVEUTWY, TOU OY 1
potiCouv évav aviyveuth éyxouv 1 GTon, evalodnto ota vetpiva oty evepyeloxy| neployhy TeV /PeV, 7
omola xvplopyeiton and o aoTEOPUOLXA VETEivVOL.

¢ KM3NeT/ORCA: O aviyveutiic ORCA Bploxeton nepimou 40 km avowtd tne Tovkév otn Toddio oe
Bddoc 2.450 m. O emotnuovindc otdyoc tou aviyveuth ORCA oyetileton ye to Qouvéuevo twv tahayv-
THoewY VeTplvwy. ot Tov oxond autd, EMXEVTPMVETOL GTA ATUOCPAULELXS VETEIVO GTNY EVERYELAXT] TEQLOYN
GeV, yenoiponoidvtog ol TuxveTepES cUGTOLY(EC PrTONVLYVELTHOY amd Tov aviyveutr) ARCA, ol ontoleg
oynuotiCouv évav aviyveut 6yxou nepinou 7 MTons.

Aviyveutixy Awdtadn

Q¢ aviyveutée Cherenkov, ol aviyveutée tou mepdpoatoc KM3NeT ypnowonoiodv custolyies QpwToovlyveuTtdv
yioe T oVAANgM g axtvoPBoriag Cherenkov omd ta mpoidvto ahknienidpaong twv vetpivewy. Ou aviyveutég
aroteholvTon and xddetec ocuotolylec mou ovoudlovior Aviyveutixéc Movddec (Detection Units — DUS). O
tehxog aviyveutic ARCA do nepiéyel 230 DUs, og 800 turpoata twv 115, eved o tehxndg aviyveutric ORCA da
nepiéyel 115 DUs o€ évo tufpa. Kéde DU anotedeiton omd 18 Ungproxd Ontind Xtowyela (Digital Optical Modules
— DOMs), yudhwvee ogaipee dtagétpou 17 wvtomv. Kdle DOM nepiéyet 31 gutonolhanhactactéc (PMTs) tono-

23



Extetopévn Ieplindn ota EXAnvixd

Yyhuor 3: Kodhiteyvir) amewxdvion evog aviyveutr tou netpdupatog KM3NeT otov Yahdooio muduéva.
Auaxplvovtar o DUs, xadéva and ta onolo nepthouBdver 18 DOMs. Hopoydenon tou nelpduatoc KM3NeT.

VeTNuévoug Tpog BlAPORETIXEC XaTeVHOVOELS, EMITEETOVTAS TNV AVl VEUOT] PwToviwy and cyeddv onoladrinote
yovia [28, 38]. Ta DU eivon otepewpéva oto Budd xou cuyxpatovvian oe dptha Yéon and onuadodpeec. M
XUARLTEY VXY ATEOVLOY) EVOC aviyveuTt Tou melpdpatoc KM3NeT gaivetan oto Yy, 3. H opldvtia andotoon
petold twv DUs givar 90 m (20 m) yio tov oviyveuti ARCA (ORCA), eved 1 xataxdpugn amdotoon tewv DOMs
oe x&de DU eivar 36 m (9 m). O nohd peyahdtepog aviyveutixde 6yxoc tou aviyveuthh ARCA elvou amapoitntog
Yio TV TOEATAENOT IXAVOTIOLNTIX0U 0ptduol o TROoPUOLXGY VETRVWY, dedopévou 6TL Ta teheutalo Bploxovto oto
VPNATC EVERYELOG XolL YOUUNAAS POHC TUAUO TOL EVERPYELOXOD (pdopatos Twv vetpivwyv. H exdoyr tou aviyveuty
Tou pog evotaépet oty Tapovoa epyaoia eivon o aviyveutric ARCA pe 21 DUs, o omoloc epe&ic avapépeton o
ARCAZ21, dnhadn 1 tehevtala exdoyn) tou aviyveuti ARCA yio v omolo  Mn Sedopévwy elye oloxhnpedel
%ot TN SLdpXEla TS EXTOVNONG NS epyaoiag.

YUANOYY AcBopEVLY Xl IRAVIAALOUOS

Tt xdde «ytomnpor (epehc: hit) pwroviou oe xdmoo PMT, xataypdgovtan xou amoctélhoviar otny &npd o
xpovoc dpiEne tou gwtoviou, to Time-over-Threshold (ToT) xou éva avoryveptotind Yy o ev Aéyw PMT.
O ypdvoc dpiEne putoviouv opileton we N otyuh xotd v onola o mAdTo¢ Tou ohpatoc oto PMT unep-
Baiver to mpoxotopiopévo dpto twv 0,3 putoniexteoviwy. Avtictouya, to ToT elvon To ypovind ddotnuo yio
To omolo TO MAGTOC ToPUUEVEL AV omd To Tpoavapepley xatw@hl. Ilpwv v anodfxeuor Twv dedopévwy,
ananteitan pelworn Tou 6Yxou Toug ot TEUYUATIXG YEOVo HECW EVEE GUTTAULNTOS GXavBUAouol. O oxavdaAouog
(triggering) avogpépetar ot Swadacia evtomiouol xou emhoyhc VIOPAPUY YEYOVOTKV EVBLUPEPOVTOG amd TN
po1 BEBOUEVKV TOU oLy VELTH Pe T Yeron xatdhhniwy xpltnelewy. To clotnua oxavboAlopod Tou nelpduato
KM3NeT yenowomnotel tpla eninedo oxovdaiiopon:

o LO trigger: avagépeton 610 xatdPAL dote vo xatoypapel évag toluéc PMT we hit. Q¢ ex todtou, LO
hits dewpolvton 6ha ta xatayeypappéva hits.

o L1 trigger: avagépeton o po tomxy} oduntwon 80o 1 neptocdtepwy LO hits and dwgopetind PMT oo
8lo DOM evtéc evde atodepot ypovixod nopadtpou AT = 10 ns.

o L2 trigger: avoagépeton oe mo cUvdeta xpithpla, ue Bdon xou Toug mpooavatoilonolg twv PMT.

AvopopeTinol ohyoprduol oxavBoAoUo) UTopoUY Vo EQUEHOGTOUV YLOL TOV EVIOTOUSG YEYOVOTWY TEOXLEC N
xazouytopoV. T tov aviyveuti ARCA, éva yeyovoe oxovdaiileton edv touldyiotov 5 L1 hits oe Siapope-
Tixd DOMs avory vepto To0y (¢ alTlwdig GUVDIESEUEVD antd ToV ahyOptdo GXavOUALOUOU TEOYLAS 1) XOToUYIoHOo0
[28]. 'Oho tar L1 hits mou anoptilouv éva yeyovde avagpépovar e hits okardadiopol. ‘Otoav dune éva yeyovoc
oxavdohileton, anodnxebovton dha ta LO hits oe éva ypovind nopddupo yOew and ta hits oxavdaiiouol. Autd
ovoualovton hits otiypotimou xou elvar To TAfpec 0Ovoho Twv hits oTov aviyveuth xatd to Ypovixd ddoTnua
Tou OLVEPN TO YEYOVOC.
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IInyéc YTrofddpou

Extéc and onjparto nou npoxahovvton omd vetpiva, undpyouv Sidpopes mnyéc unofddpou mou Utopolv Vo Tpoxoké-
couv hits pwtoviov ota PMT tou aviyveut:

o TnoBadpo VoplLBou: avagépeton o diepyaoicg mou cuvelo@épouy ontxd YopuBo ota PMT, o
onoloc anoppinteton ond toue ahyopiduoue oxavduliopol. Ipoépyeton (o) and poadevepyéc doondoelc
oto Yohaoowd vepd, ue xupdtepn to ‘K, to onolo amotelel tnv xlpla TyH ontxol Yoplfou ctoug
aviyveuTée, xau (B) and ) Blogutadyeta, dnAadh TV EXTOUT 0paTol PeToE and {mVTavols opYoviouols,
Wialtepa oLy v oto Yakdoota B,

o PuoLxd LTOBadpo: avagépeTon OE PUOLXES DlEPYUGIEC TTOL TPy OUY CHUATA TOU TANEOUY TIC cLVIXES
oxovdahopol xa €tol npoadlopilovtar we yeyovota. Lto nelpopo KM3NeT guoixd vnéPadpo eivar (o)
Ta ATHOCPAUEXE WbV, Tol oTolal AmOTEROUY TNV TAELOVOTNTA TWV OXAVOUMOUEVLY YEYOVOTLY, ot (B)
uovo yia tov aviyveuty ARCA, ta atyoogonpxd vetpiva, xodog efvon urn Slaxplolo and 1o aoTpoPuUOLXd.

Avoaxataoxeuy I'eyovotwy
Kée hit evég amodnxeuuévou yeyovéotog nepihapfdver tnv axdrouvdn mhnpogopia:
o Yéorrz, -y, -2
o xatebYuvornz, -y, -2
® Ypovog dpiEng t
e Time-over-Threshold ToT'

H 9¢on avagépetan ot Véon tou PMT, eved o1 cuviothoeg xatebuvone oynuatilouv €va yovadialo Sidvuoya
oty xatediuvon tov PMT. To npdBinue ntouv xohobuacte va eEeTdoouye elvol auTé TG arakataoKevis yeyovo-
706. Avoaxataoxeur] yeyovotog elvon 1 dtadixoaoia eXTUNONG TWV TOPUUETEMY EVOLUPEROVTOS YLo TO EV AOYW
yeyovog (6mwe n evépyela i 1 xatedduvon Tou eloepySUEVOL cwuaTidiov), dedopévou Tou cuvélou Twv hits
nou anaptilouv To YeYovoc. Eeywplotol ahyoprduol avoxataoxeunc e@approlovion Yo YEYOVOTA TPOYLEC XoL
XOTOUYLoP®Y, hauPdvovtoag unédn Tig SlagopeTixéc Tonoloyiec Touc. Emxevtpwvépacte otny nepintwon twv
TEOYLOV, xotdC aUTéC UEAETAUE oTNY Tapoloa epyaoia.

O o16y0¢ TOU xAAGIUOD ahyopliuou avaxataoxeuns Teoytds Tou melpduatoc KM3NeT elvon va npocopudoel tnv
unédeon wog Teoytds uoviou oto wotiBo twv hits tou yeyovétog. O alydprdpog emhéyel Tng TaPAUETEOUE TN
TEoYIdG UE 0TOYO TN YeyioTtonomon tne mavotntag to potio twv hits va avtiotowyel oty npocapuocuévn
tpoytd [28]. Kadde tédoo 1 déomn doo xou 1 Siehuvon tou woviou elvor Tapduetpol mou TEETEL VA TPOCUp-
HooToVY, To TEOBANU elvan Un YEUUUXO xou avTETW eTon o dladoyixd Bruata, To omola ovaPELOVTIL W
aAvoiba avakataoxevris [42]. Lto npdto BhAua, extehodvial TOMATAES TEOXATUEXTIXES TPOTUpHOYES, Xadeuio
ue daopeTixy) utoTtdéuevn xatedduvon e Teoytds, ue PrAua e 1°. Trnodétovtag pa xatebduvon tpoyidg
X0l Y VOWVTAG TIC ETUSRAOELS TNG OXEBAOTC PWTOVIKY, TO TPOBANUA UETATEETETAL OE YPUUWXS, OTOTE Unopel v
e@apuoctel tpocapuoyn Boacioyévn otoug ypdvoug dplEnc Twy gwtoviny Cherenkov, mtpoxeiévou va extiuniel
N Yéom xou 0 }edvog Tou Woviou ot éva cuYXEXELEVO onueio TNe Teoyldc tou. H duadixaocto emavohauBdveton
yior 6hec T xateudivoelg xon ol 12 xodltepa mpocoppocpuéves xoatevdivoelg amodnxebovtal yia xerion oTto
EMOUEVO GTEO0. LTo emoUevo P e akucidog, 1 Teoytd Tou uloviou avaxatooxeudleton pe tn pédodo ex-
Tiunone u€yiotng TIoVOPAVELNS, YENOWOTOLOVTIUS Tig Xoh0TERES xoTeLHVVOELS Omd TO TPOXATUEXTIXG GTABI0
w¢ onueto exxivione. H xoatebduvon xou n 9éon tou ploviou topa mpocapuolovion tawtdypova. H cuvdptnon
ndovogpdvelas xataoxevdleton and cuvapthcels Tuxvétntae tdavétntae (EIIII), ov omolec nepypdgpouv v
mdavétnta topatrienone evoc PMT hit oe oyetid ypdvo At oe oyéon ue tov avapevépevo xpdvo dpiEng evie
hit amé éva un oxedaouévo putévio Cherenkov:

oP
L= _ H ot (pia 0i, ¢i, At)a (3)

hit PMT's
omou p; elvow 1 ehdyloTy andotacy tou woviou and to PMT 7, ou ywvieg 0; xau ¢; meplypdpouy Tov npocava-
Tohopé tou PMT oe oyéon ye v tpoyid, xou to At elvan 1) Slapopd PETAED TOU AVOPEVOUEVOU X0 TOU UETENUE-
vou ypdvou dpiEng Tov gutog. Ou NI evowuativouy Tig emdpdoels TN oxédaong xou TN SloToEdE TOU YKTOE,
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®od S xan TANEopopie OTWS To T0G00Té onToL LToBddpou, TNV *PovTixny amddOCT XL TN YwViaxY anodoyn
twv PMT. Méhig Bpedel n Béhtiotn npocapuoyy, 1 teoxLd Tou woviou €xel npoadloplotel xou 1 TeoxITToucH
T mhavogdvetag anodnxedetal. XN cuVEYELD, YIVETOL TPOCUPROYT TNG EVERYELOC TOU ULoVIoU, YENOLLOTOLOV-
o v mdavétnTa hit/non-hit yio dhot too PMT evtde evdc xuhivdpixol Gyxou ylpe and TNy ovaxaTouoXEVHo-
uévn teoywd. H mdavétnta extiudton xon €66 uéow XIIIL. H mbavogdveio tou nopatnpobuevou pot{Bou hits
unopel oTn cuvéyeln Vo TpocdloploTel wg cuvdpTnon Tne evépyelas Tou Wwoviou. H yeyliotonolnon autig g
Tavopdveldg amodidel TNV AVAXUTAOXEVUCHEVY] TWTH TNE evépyetag Tou utoviou. Ta mohd xold anoteAéoporta
e xhaoic ahuolBag avoxataoxeuric tou netpduatoc KM3NeT Aettoupyolv we e€oupetind onueio avapopdc
yia Tig mpoondideiec Bedtiwone pe ™ yeron texvixdy Mnyovixhc Mddnonc.

Badid Mddnon & Nevpwvixd Aixtuo [N'odpwy
Badid Madnon

H Bahd Médnon (BM) eivor 1o vrnocivoro twv teyvxadyv Mnyavixic Mdédnone (MM) mou yenouonotolv
Bohd Nevpwvixd Aixtua (NA) yio tov eviomopd potiioy xa v e€aywy avanapaotdoewy and dedopéva. H
dddoomn e yerone twv uedddwyv BM otn dexaetior tou 2010 enétpede ota NA va cuyPdrouy oe avoxahlels
o€ dLdpopous eTOTNHOVIXO0VE XAABoUC WeTald Twv omolwv xou 1 Puoid, otnv onola epyoreia BM mailouv
xadoplotnd pbho oe éva eupl @doua egopuoydv [49, 50]. Xto mhaloto autic g epyooiag, eotidloupe o
npofAfuata emPAenduevng pdinons, 6mtouv oto chvolo dedopévwy exnaideuong ol elcodol T £youv avtioTolyloTel
pe emduuntéc Tipég-otéyous y. ‘Etol, To dixtuo xaheiton va cupnepdvel pa cuvdptnon F étol wote F(z) = y.
To mpdéBinuoe mou yag evdiagépet elvar npoBinua TaAwdpdunong, étou to Yovtého €xel atdyo va TeoBAédel wa
ouvey ) LETABANTA-0TEY0 and To Bedouéva ELGEBOU.

Apyitextovixry Nevpwvixodv Auxtioyv

Ta Bahd Nevpwvixd Alxtuo anotehobvton and éva eninedo 0680, €va 1) TEpLooHTERN XEUPE ETimEdA Xou
éva eninedo eZ6dou. Kdde eninedo anoteheitan unoloyiouxols xéuPouc, mou ovopdlovtar veypadres (Bh. Ty.
4). To eninedo ewoédov déyeton tar dedouéva eloddou, vy ota xpupd enineda mpaypotonoeiton 1 egoywyy
avanopactdoewy. Kdde veupdvog cuvdéetal ue ToUg VEURMVES TOU TRoNYOUPEVOL eminédou ye éva Bdpos w. I

évay vevpwva ¢ ato eninedo [, n é€odog al( ) dlveton and ) oyéon:

agl) =f ngé)a;l_l) —H)gl) . (4)

j=1
To ay_l) AVTLTEOCWTEVEL TNV €080 TOU j-00T00 VeEupwva Tou eminédov | — 1, wg) elvon tor oyeTind Bdpn
%ol bgl) o Topduetpog mou ovopdletoan uepodnpia (bias) Tou vevpdva. H ocuvdptnon f(-) xeheliton ourdptnon

€V€PYOTOINONG XAl ELGAYEL UT] YRUUUXOTNTA OTO UOVTEAO, EMITEENOVTAE Tou va Yordoivel o cOvideta potiBa. To
TeAx6 eninedo Tou duxtvou eivon to eninedo e£bdou, 1 é€odog Tou onolou amotehel TV andxplon Tou dixtlou.
To NA nou nepiypdgnxe €3¢ ovoudletar multi-layer perceptron (MLP).

X1

To f (Z wiT; + n)

inputs output '
output
hidden

L3 layers

QO QO

Tyfua 4: Aplotepd: Nevpdvae pe yepohndio b xou ouvdptnom evepyonoinoneg f(+) mov 8éyetan eioédoug x; pe
Bden w; xou mopdryer T €086 Tou bmwe oty EE. 4. Aegid: Tymuoatind anexdvion Badéwe NA. Ané [51].
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Exnaidcvon Nevpwvixdy AwxtOny

ITpoxewévou to dixtuo va mapéyel Aoyixée Tée e€680uU OTIC ELOOBOUC TOU, TEEMEL TEMOTA VO EXTOUdEUTEL.
Kotd ) dedixacto exnaldevong, o pudulbpeves mapduetpol Tou dixtiou, dnhadf to Bdpn xou oL pepodnies’
Behtiotomoolvtat. Avtideta, mopdueteol tou €youy xadopiotel Tty and T dladixacio exnaidevong ovoudlova
uvnepnapdpetpor. H exnaidevon evoc NA elvon plo emavadnmtiny| diadxasia tou anooxonel otny ehaytotonoinon
pac ovvdptnons andAeas L, ) onola tocotxonotel T Sopopd YETAUE) TwV TEOBAEPEDY %ol TWY TYLWOV-CTOYWV.
Kéde Bruo exnaldevong anotehelton and 1o eumpdodho népaopa xou v omiofodiddoon.

EunpécBio népaopa & unoroyiopog anwAieiag: Katd tn didexen Tou eunpdodiov nepdopatog, ta
dedopéva elobdou nepvoly amd dha ta enlneda Tou dixtiou (clupwva pe Ty EE. 4), anéd ty eloodo npoc v
€€000, yiot TNV opaywyT TpolAédewy. Mohc Angdolv ol npofAiédelc, utohoyileton 1 cuvdptnon anwielog L.

Omnio90diddoomn: Aol unohoyiotel 1 amdAeld, TeEnel vo puiuioTolv Ta Bden wote auth va petwdel. Katd
dadixacio Tne omoodidboaorng [52], uroloyileton N xAion e cuvdptnone andielog oe oyéon e To xdde Bdpog,
BLaidovTaC £TOL TNV OMOAELX TEOS TA THow UECW Tou Bixtdou. AuTy 1 xAlon Selyvel nwg npénel va tponomondoiy
To Bdpn OOTE N ANWAELL VoL UELWVEL.

BeAktiotoroinomn: Ta Bden tou Suxtbou evnuepddvovton pe tnv enavadnmix pédodo tne xaldédov kiiong. H
Wea elvon va evnuepdvovtar ta Bden mpog Ty xotediduvor uéytotne pelwong tng ouvdptnong andieiog. Metd
amd opxetd Buota exnaideuong, 1 anwielo Yo TEENEL Vo GUYXALVEL GE €vol TOTIXG EAAYLOTO GTOV TORUUETELXO
¥0eo Twv Bopov. Av w elvor To Sldvuoua ALY Twv Bapdy Tou dixtlou, T6Te oty xddodo xhione Ta Pden
npocapuélovtal COUPWVA UE TN OYEON:

oL
W W= (5)

H mapdpetpoc ) elvar o pvduds ndinong, wa unepnopduetpog mou eréyyet 1o uéyedoc xdie evnuépwons twv
Bapdv. Mupd 1 onuaivel 6Tt To dixtuo axolovdel mo moTtd To povomdtt Tng éYLoTng xad6dou, aAAd odnyel oe
apYn wdinom, evéd ueydho 1 odnyel oe taydtepn uddnon, ouws propel vo ntpoxarécel aotdvela tng dadaciog
exmalBeVoNC XoU UTEPTHONOY TOU ToTiXoL elayioToU.

Yny npdln, yenouorolodvial anoTehecuatixdtepol akydpiduor Beatiotonoinons [54]. O mo anhde eivor 1 Xo-
xaotikn Kdtobos Khiong (XKK). Yt KK, xdde Bua exnaidevone neplopfdvel uévo €vov neEpLOoploUEVo
aprdud deryudtov, mou ovoudleton maptida (batch). To péyedos maptidag elvon pa vrepnapduetpos. H andieia
oty E&. 5 elvon emopévme 1 andielor yioo pla wévo moptida, YEYOVOS TOU PELDVEL ONUAVTIXG TIC ATOLTHCELS
puviung xar urtohoylouol. Kéde Briua exnaidevong mpoyyotonoelton e véa maptida. Mia miene diéhevon and
OMOXANEO TO GUVOAO BeBopévev oe ToAomAS Bruota exnaideuone ovopdletan emoxr]. H tumnh exnaidevon
anotekeitan and apxetéc enoyés. ‘Evag eupéwe ypnopomoloduevog, mo nponyuévog ahyodprdpog Bedtiotonolnong
ebvar 0 ohybprduoc Adam [55]. O Adam Pertidver tn KK puduilovrog Suvouxd to pudud uddnong yior xdide
TPAPETEO, ETUTEENOVTAS TOL va eTBEadUVEL X v eTLtary OVEL TpocapUoc Td Tr Bladixacia udinone yia Sopope-
TIXEC TIOEOUETPOUC XOL BP0l OBNYWVTIG OE UMOTEAECUATIXOTERY, CUYXALOY.

I'evixevon: Ta va ebvon emtuynuévo éva povtého Mnyoavixic Mddnone, meénel va €yel v ixavétnTo v
yevikeUer, dnhadt] vo anodidet xahd xou oe véa dedopéva. AVo oNUAVTIXG QUUVOUEVO TTOU TRETEL VAL ATOPEVYOVTaL
elvon m vrompooapuoyry (underfitting) xou n vrepnpooappoyry (overfitting). To npdto cupPaivel dtav to pov-
Tého dev umopel vo cUAAEBeL tar umoxelueva potifa ota dedopéva, cuyvd eneldr dev elvan dpxetd civdeto ¥ o
¥eovoc exnaidevoric tou elvar mohl uixpdc. To Bedtepo cuyPalvel 6tav to wovtéro apyilel vo amopvnuovelel
Aentopépeleg TV dedopévey exmaideuons, oxoun xot Tou YopiBou 1 TV axpolwy TERITTMoEWY. Autd Exel we
anotéheopa eEapeTnt| anddoor 6To civoho exmaldeuang, ahhd gTwy Y Yevixeuon oe véo dedouéva. Ilpoxepévou
VoL BLaoaklo TEL 1) XavOTNTOL TOL WOVTENOU VoL Yevixelel, To dladéolo ohvoho Sedouévmy cuyvd yweiletoa ot
ovvolo exmaidevong, emkUpwons xou dokiuns. To cbvoho exnaldeuong yenotdonolelton yia Ty exnaideuor) Tou
povtéhou. H anddoom tou poviéhou ehéyyeton 6T0 oUVOAO ETXDPKWONC OE TAXTA YpOoVixd Slos Thuata, cLUVAYLS
070 téhog xdde emoync. ‘Otav 1o poviého eugavicel onpovTixd xaAlTep anddoor oto clvolo exnaidevong
ané 6,1 6T0 6UVORO EMXVPWONG, TOTE aUTO Uropel va anotele! €vdellr uneprtpocopuoyic. Hapdho nou to dix-
TUO DeV eXTAUBEVETAL TOTE 0TO GUVORO ETMXVPWONG, 1) ETAVELNNUUEVT] XPTOT TOU WS UETEO amddoong Umopel va
onuovpyoeL pepohnla mpog povtéla Tou Tuyalvel vo tagouctdlouy Bektiwpévn anddoor ot autd. ' to Aoéyo

3Amé €dd o oto eEhc, Ta Bden xau oL wepohndies Tou dixtiou Vo avapépovtar and xowol anhd we Bdon.
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auTd, To 6UVORO doxiudy Tpoop(leta Yoo TV aloAGYNoT TOU TEAXOD LOVTEAOU, TapEYOVTAS UL AUEPOANTTN
a€Loh6Y oY) TOL.

Nevpwvixd Aixtua I'edpwy

To medpata (aotpo)owuatidioxtc guotc, 6nwe to KM3NeT, nopdyouv dedopéva e dour| mou poudlel e
Yedpo. Xtoug aviyveutég autols, xdde YEYOVOS anoTEAElTAL and UEUOVOUEVES UETPHOELS TTOL UTOPOVUY VOL Vo
napaotadoly we onueia oto xheo xal oto yedvo. Autd ta onuelo elvor apoud Blaoxopmiopéva xou dev €youv
xovovixy) Sour) TAEYUATOS, EVE 1) xatovouy) xou o aptduog toug mowiAouv avd yeyovog. o mopddelyua, oto
KM3NeT o apududg xou 1 9€on twv hits yetadilovtoan oe xdlde yeyovdg, eved ol axpiBelc Yéoeic Twv DOM
oaAhGLouv Brapxndds Aoyw tev Yahdooiwy peupdtwy. Emmiéoy, ta onuela etvan un ta€vopnuéva, xadde avinpocw-
medoLY ahknhemidpdoelc cwuaTdlwy Ywelc cuYXeXpUEVN SLdTaln. AuTd o YopoxTNELETXE Xadio ToUY Toug YEd-
(QOoUC évay QUOLXS TEOTO AVATAUEAC TACTE TWY YEYOVOTWY EVOG avly VeLTH owuatdiwy: kdle yeyovds tapdyer évay
ypdgo, pe kéuPous mov avarapiotoly adnAembpdoes oopatidioy (hits) kai axués mov meprypdpovy Ti§ TXé-
o€is petat Tovs. Tuvende, dev anotehel ExtAnin 1o yeyovée 6t ta Nevpwrikd Afktva Ipdgwy (NAT) éxouv
TEOCPATA CUYXEVTPOOEL CNUAVTIXG EVOLPEROY OT Lopoatidlaxy Puour, dnwe @aiveton amd T AVICXOTHCEL
e yerone toue ota [56-58].

Aopr) Yedpou

Kdde yeyovée oto nelpopor KM3NeT unopel vo avamopactadel we évoe xoteuduvéuevoe yedgpos G = (V, E).
Kdde »xépPoc Ttou ypdgou v; avunpoowreder évor PMT hit, ye tic mhnpogopiec tou hit (¥éonzx, -y, -z,
xateOQUVON-T, -y, -2, Ypévoc t xoau ToT) vo avapépovton we yrwpiopata touv kdpupov/hit. Enopéves, dv yenot-
pomoundoly dha, xdde xoufoc Vo €xel 8 yvwployata. ‘Eva nopddetypa Tou yedgou evéc YeYovoTog unopel vo
deL xavelc oto Xy. 5. E€autiag tou yeydhou xou petaBintol yeyédoug twv yeyovdtwy, n xerorn thipws cuvd-
eQEUEVWV YEdpwY Bev elvan TpoxTixY, 1Blwg eNEdr 0 aptipog TV aXPdY O dUTOUE UEAVETOL UE TO TETEAYWVO
Tou apLiuol Ty x6uPwyv. I'a tov Adyo autd, xdlde xouPoc cuvdéetar pe Toug k mAnoléctepous yeltovég Tou
(k-nearest neighbors — k-NN), 6nov k eivan pa unepropdpetpoc. H petpind n onolo Yo ypnowwonomdel otny
TAPOUCA ERYOCIOL YLl TOV TPOGDLOPLOUS TV TANCIECTEPWY YELTOVLY, eivar 1 4D Euxheldeia petpiny otov yopeo
%Ol TOV YpOVo:

d? = Ax? + Ay? + Az + AL, (6)

omou ¢ elvon 1 Ty dTNTA TOou PwTdC. O UTOAOYIOUOS TV TANCIECTERWY YELTOVKVY Elval UTONOYLOTIXA axp3dg,
dL6TL amautel Tov unohoyloud N andotaong wetall xdde Ledyouc xouBwy, xootodvtoc autd To Priwa 0(n2),
6mou 1 o aprdude Twv x6uPwv/hits oto yeyovde.
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Eyue 5: Apiotepd: Kotavour twyv hits evée yeyovédtog oto nelpopo KM3NeT (9éon z ouvaptioet tou
xeovou t). Aelid: Avanopdotaot tou Blou yeyovotog ue xprion yedeou. Kdde hit eivon évoc x6ufoc, pe axpée
npoc Toug 8 TANoLéotepous YElTOVES Tou, oL ontolol unoloyilovtor and tnv EE. 6. Ané [59].
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FUVENEYN axpdV

To Yepehwdeg cvotatxd twv NAI tou yenoiwonolobvtar otny nopoloa epyasia elvar to unhox Xuvéhiéng
Axudyv ) EdgeConv, to omolo etofydn oto [60]. H 1déa nicw and 1o EdgeConv elvon 1 eméxtoon e évvolag e
oLVENENS amd Toe Luvehtind Nevpwvind Aixtua (ENA) ota NAT'. Yta ENA, évae nuprvae (kernel) ohodaivel
TV GTNY EXOVAL, XL TO ECHOTEPLXS YIVOUEVO TV ONUEIDY TOU UE TA ELXOVOOTOLYEL TNE EXOVIC XUTHYPAPETAL
oe xdde onuelo. XLto EdgeConv, n évvola tou nuprivar avtixodictaton and Toug TANCLEGTEPOUS YE(TOVES, YE TOV
aptdud tov yertdvey k xdie xéuBou va tooduvauel pe to yéyetog tou nupriva. H cuvéhln elvon tote pla mpdén
nou evepyel ot e€epydueves axpés xdite xoufou.

Metd tov mpocdloploud TV TANCLECTEPWY YELTOVKVY, SNAADH TV oXUMY TOU Ypophuatog, opllovtal To Yv-
wplopata tov axpdv. H on e;; oamd tov xoufo v; otov xoufBo v; oplletan va €yel yvwployato axunc
(z;,x; —z;) € R*F, pe z;,2; € RY va ebvan T yvoplopota tov x6uPov v, v; avtiotoya, eve F ebvor o
aptdude TV Yvwplopdtwy ot xdie xéuBo. H cuvéMEn axucdv cuvictaton oty axdioudn teddn:

z, = Z he(z;,xz; —x;). (7)

JEN ()

Ye auth v éxgpoon, hg eivor éva MLP 3 emnédwy pe mopapétpouc 8 xa N (i) elvon to ocOvoho twv k TArn-
OO TERLY YEITOVLY Tou x6uPou v;. To véo dudvuoua yYvwpioudtoy x6uBou x;, € RF éye BLapopeTIXd apLtdud
yvwpeopdtwy ond 6,1 mewv (F' # F). Ev oliyoi, to EdgeConv 8éyetan we eloodo évav ypdpo ue n wdy-
Boug, xadévay e F yvwplopoto, xou e€dyel évay ypdpo ue tov Bto aprdud xopPov, 6mou o xadévag éxer
yvwplopato.

Apyitextovinr dixtdhou

H apyttextovinyy NAT' nou yenowonoieiton oty mapoloa gpyasia ovoudleton DynEdge, npotdidnxe and to
IceCube oto [61] xou epgoviletoan oto Ly. 6. To DynEdge anoteheiton and 4 dioadoyxd umhox EdgeConv.
Yy €€000 Ttou xdlde umhox mopdyeton évog yYedpog e 256 yvowplopato avd xouBo. Ou axuéc tou Ypdpou
EVNUEQWVOVTOL WOTE VAl TPOGOLOPLOTONY oL VEoL K TANCIECTEPOL YEITOVES, DNULOURYWVTIC ETOL EVay VEO YEdQo.
H ypnon dwboyixwv uriox EdgeConv emitpénel oto dixtuo va pdidel uhniodtepou emméSou yopaxtneloTind Twy
dedouévev. O ypdgpol e€600u OAWV TWV UTAOX, OTWC Xl O apYixdC Yedpog, cuvbudlovtal oe évay mivoaxa
[n, 4-256 + FJ, 6mou n eivar 0 oprdude tov xépPov xar F o apidude twv yvoptopdtwy x6uBou tou apyixod
yedpou. O mivaxac autdc tpogodoteitor ot éva MLP 3 emnédwy, To onolo pewdvel tn ddotacy tou ot [n, 256].
‘Erneita, exteholvta npdéelg ogadonoinong mdve otoug xdpfoug ue éwg 4 SlopopeTinols TedTous: mean, min,
maz & sum, e v é€0d0 xde Tpding va eivon évog Tivoxag peyédouc [1, 256]. Ou tivaxeg autol cuvevdvovTo
xou €Tot, €8y yenotwonotndoly xou ot 4 emhoyée, o nivaxac tou Yo tpoxdder Yo éyer didotoaon [1, 4 - 256] =
[1, 1.024]. Autdc o ivoxog cuvdéeton ot cuvéyela ue ta global statistics, éva olvolo 5 Ty Tou urtohoyilovton
and Tov apyixd Ypdpo xar Tov yopaxtneilovy cuvolxd. Autéc elvor o apldude twv xouPov/hits xar or Adyou
ouoguhiag Yo Tig Véoeig-x, -y, -z xou 1o Yedvo t. O Aéyog opopihiog yio €va dedopévo yvhdptoua xéuBou elval To
TOGOGTO TGV OXUMY TOU YRAPOU TIOU GUVBEOLY XOUBOUC TOV EYOUY TNV (BLol TYWH Yia TO yopoaxtneloTxd avtd. To
tehxd didvuopa [1, 1.029] nepvdel oe éva tehixd MLP 3 emimédwv yio tny naporywyr tne e£630u tou dixtiov.

Epyaheio Aoyioutxo0

H napotoa epyasia xatéotn duvatt] ydplc otn Yenon epyaheley Aoyiouxol edxd oyedlaouévewy yia TpoBAiuoTo
BM oo nelpopa KM3NeT xan dhho netpdyuata veTpivev:

e GraphNeT: To GraphNeT [64] eivou éva avorytol xmdixa thaiolo BM pe Bdon to PyTorch [62] xou to
PyTorchLightning [66], nou avartdydnxe and to nelpopa IceCube pe otdyo va Topéyel 6TOUC PUOIXOUS
veTplvwy gulixd tpog Tov Yerotrn epyoleion BM yio v exTéAeoT epYaoUdY AVOUXATAOXEUNS YEYOVOTWY OF
onotodfnote melpopa vetplivev. ‘Ohec ol exnaudetoeic NAT yio tnv nopoloo epyaoia npaypatonotiin oy
pe Tt xenon touv GraphNeT.

e Epyaieicc BM tou newpdpatoc KM3NeT: To mhaloio BM tou nepduoatoc KM3NeT anoteheito
o 8Vo PiBhotxec Python, mou ovopdlovtor OrcaSong [67] xou OrcaNet [68].
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Input Graph
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EdgeConv ﬁ

[n, 256]

Yynua 6: Apyitextovinr| tou dixtbou DynEdge. O ypdpoc eio6d0u Yewpelton €86 dti €xel n xduBouc xou 6
yvoplopata avd xépPo. Ané [61].

— To OrcaSong ypnowonoteiton yio 0 petatpony KM3NeT opyelwv oe pop@r anoteheoyatixy| yio
epapuoyéc BM. Xuyxexpwéva, petatpénel ta dedouéva and ) popen apyciov ROOT otn popen
apyetou HDF5, agoupdvtac mopddinha mAnpogopiec un oyetixéc pe v exmaidevon twv NA. To
npoxuntovta apyela HDEFS éyouv mold wxpdtepo uéyedog xou 1 ecwteplxr] SoUr) TOUC ETUTEENEL TLO
ATOTEASOUATNES AeLTOURYIEC avdyvwong xotd TNy exmaldeucy). I To Aoyo autd, auth elvon 1 popen
apyelwv Tou yenotwomotinxe xal oty napoloa epyasia.

— To OrcaNet eivan po BiBhod7xn BM edixr yioo to KM3NeT, Baoiopévn oto TensorFlow [63], mou
yenowornotelton yio v exmaldevon NA. Av xou 8ev Yo yenowonoindel dueca otny nagodoa epyooia,
To anoteréopata ou Aopfdvovion pe to OrcaNet do cuyxprdolv pe exeivo mou mpoximTOLY Amd
exnawdevoelc ye to GraphNeT.

Enwoxénnon Egoappoywy BM & NAT otnv Avaxatacxeur I'eyovotwy oe
Tnieoxoma Netpivov

O xhaoixol ahydprduor avoxataoxeuic yeyovotwy, t6co oto rnelpopa KM3NeT [42], o0 xou oto melpopo
IceCube [69, 70], yenowwonowly eite mpoouppoyh ehoyloTwV TETEAYMVLV Yot YphyYopT, ohld Ayotepo axpi3n
YEWUETELXT TpOCUpUOY T, Elte TpooeYyioelc péylotne miovopdvelos pe mo eEeAyuévr woviehonolnom tne amdxp-
oG TOU ALY VELTH Yoo TNV TeAn avaxataoxeun. To teheutaia ypdvia, 1 mpdodoc ot BM odrynoe otny
vodétnon uedddwv BM ota npoARuato avaxataoreuis TwY TEPIOGOTERMY TELRUUATWY Louotidioxis Puoixig.
Apywd, yenowonotjdnxay uédodol Bactopéveg otny exdva, xuplng ENA, nopéyovtag cuyxplowa 1 Behtiwuéva
anotehéopata o€ oyéon Ue Toug xhaotxole ahyoplduouc téoo oto meipapa IceCube [72] 660 xou oTOV ALy VELTH,
KM3NeT/ORCA [73], npocgépovtog mapdAinha TayUTEPOUS YpdVoUS UTOAOYIGUOU.

Ta pelovextiuata g epopuoyhc Twv LNA oe dedouéva Loyoatidaxrc Puouic, WwWine n andiela thnpogopiag
TIOU GUVOEETOL UE TN UETATPOTY| TV JEQOUEVY OE ELXOVES, OBAYNOAY TNV XOLVOTNTO VoL ETUOEEL EVOANIXTIXES
npooeyyloew, 6nwe ta NAT. Me Bdon v epyaocia twv Wang et al. [60], n onolo elofyoye v €vvola tng
OUVENENG axpodV oe VEQN onuelwy, ot Qu xou Gouskos [74] mpdtewvay pior apyttextovix NAT ye v ovopasia
ParticleNet, ye e@apuoyn oe ouvyxpoloelc cwpatdinv otov emttayuvt) LHC. ‘Ocov agopd ota thheoxdmia
vetpivwy, to IceCube ewofyaye to poviého DynEdge xou to egdpuoce ota mpoflAruata tofvounone o
OVOXATACKEVHC YEYOVOTWY TEOCOUOIWUEVKY VETRIVOV YAUNATE EVERYELNS, ETITUY Y AVOVTOS BEATIOUEV amoTENED-
pota o€ oyéom Ue Toug xhaotxolc ahyoplituoug [61]. Mio tpoxatopx Tieh LEAETT YLoL THY EVERYELOXY) AVOXAUTAGKEUN
yeyovotwy udmiic evépyelag éyel enione oculnndel oto [75].

To KM3NeT éyel enione otpagel ot yerion NAT yio avaxorraoxevy| xou to€ivounon yeyovotwv. Ia to oxond
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Eyuo 7 Apiotepd: Aoyt tou urhox EdgeConv mou yenowonoteiton oto ParticleNet. Aeid: Apyitextovixn
Tou dixthou ParticleNet 6nwe napousidleton oto [74].

autd, 1 apyrtextovixt| ParticleNet ané to [74] éyer uhonomdel oto OrcaNet, ye eAdylotec Tpononotfoelc (Xy.
7). ‘Onwe to DynEdge, to ParticleNet yenowonotei urhox EdgeConv ye MLP 3 emmédwv yior T GUVENETN axedv
néve otoug k-NN. To ParticleNet anoteheitor and 3 diadoyixd urmhox EdgeConv, avédvovtog tov aptdud twv
Yvwptopdtov avd xouBo and 64 o 128 oe 256. Xe avtiveon pe to DynEdge, émou ol é€odol 6Awv twv pmhox
EdgeConv cuvevivovtow mpy tv ouadonoinom, to ParticleNet yenowonolel cuvdéoelc ouvtoueuong yio vo
adpoioel ta yvwplopota xouBwy otny elcodo xdde pmhox pe autd otnv €086 Tou. Metd ta pmhox EdgeConv,
extelelton plat povo pdln opadonoinone (ot avtideon pe Tic énc 4 mopdhniec Aettoupyiec oto DynEdge), n
omofa petdvel ) ddotaon e €€6dou and [n, 256] oe [1, 256]. Auth n npdin Aéyetau «global average pooling»
(avtioToym pe v opadornoinon «mean» oto DynEdge). To anotéleopa diadideton otn cuvéyeta péow evée pbvo
XPLUPEVOL EMTEBOU 256 VELupDVWLY, To oTolo TpogodoTtel To eninedo e€680ou drou napdyovto ol tpoPiédelc. Tdoo
oto ParticleNet 6co xou oto DynEdge, o apududc twv e€68wv xau 1 ouvdptnon evepyonoinong tou emmédou
e€680u emhéyovtan avdhoya Ue o exdotote TEOBANUd. XENOULOTOLOVTAS THY TOEUTAVG PYLTEXTOVLXY| OOXETEC
peAéTeEC avaxaTaoxeLnc €xouy npdogpata diegaydel oto KM3NeT:

o Avoxataoxeur) Tng xotevuvong, tTng SIUETEOL XAl TNG TOAATAGTATAS BECUWY WOVIY GTOV oV VEUTH
ORCA4 (ORCA pe 4 DU). H avaxataoxevi e xateduvone tov poviwy omodelydnxe avtoywviotxy
HE Toug xhaotxole ohyopiduouc, evd 1 Sdpetpoc tne déounc xou 1 todlhamhdtnTa (aprdude TV povieny
oTn déoun) TV Woviny avaxaTaoxeudoTnxay Yl TenTn @opd oto nelipauo KM3NeT [59, 76, 77].

o Extetapévec pehétec avaxataoxeufic (evépyela, xatevduvon) xon tadwounone (ofua/undBadpeo, tpo-
Y18/ xatanytopoc) yio tov aviyveuth ORCA6. To anoteréopato authc TN epyacioc HTov TOAAG uTooyd-
peva, xodmg T0c0 1) avaxoataoxevy e ywviag {evid 6co xan tng evépyelag mapousiacay mapduold 1
Beltuwpévn anddoon oe olYXELoN YE TNV xhaow) avaxataoxeut| [34].

o Topbuote perétes éyouv mpaypotonoimnvel yio tov aviyveuty ARCAG-8 [78]. Ta NATL nétuyav uixpdtepa
OQAAIATO Od TOV XNAGIXG AAYORLIUO OVOXATACHEVAC TNV AVOXATAOXEUT TNG EVERYELS oL TNG Ywviog
Cevid twv vetpivov t600 Yio Tpoytéc 600 xau yio xotarytopolc. Iapovoldotnxay enlone anotekéoyata
tadvéunone ofpatoc/unofddpou, xadde xar avoxataoxeuic Tne xatedtuvong xon TOAATAGTNTAS SECUGOY
ploviev.

Enopévwe, ta NAT éyouv @avel ToAG ooy OUeEVa G TEOBAAUATA AVOXATUOXEUNC YEYOVOTWY OE UXPOTERES
exdbaoelg twv aviyveutdyv KM3NeT. H napoloa epyaocta:

o Egoapuéler too NAT' oe peyohltepn exdoy| Twv oviyveutdy, xadde autol €youv miéov emnextadel, ouy-
EXPUEVOL TNV VOXUTAOXELT EVEpYELac Yo Tov aviyveuti ARCA21.
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o Aoxidlel tepoutépry v anédoaon twv NAIL oe vetplva uPnifc evépyelag, dedopévou 6Tl oL TeplocdTERES
omo TIC mapamdve epyacieg eEétacay uévo vetplva youniic evépyetag otov aviyveut; ORCA.

o Egapudlet yia tpodtn gopd to povtého NAI' DynEdge oe KM3NeT dedopéva.

o Evowpatover ta KM3NeT bedopéva oto epyareio GraphNeT, xadiotdvtag to Siodtéoiyo mpog yerorn oto
nelpopor KM3NeT.

o llpoopépel onpoavtiny BeATivom GTNY oVAXATACKELY) YEYOVOTWY GE YUUNAEG EVEQYELEC YLOL TOV OVIYVEUTH
ARCAZ2L.

Avoxataoxeun tne Evépyeiag ue Nevpwvixd Aixtua I'edgpwy

Mogypn Acdopévwy Badide Mddnong ovo Ileipapo KM3NeT

Io Ty extédeon emPrendpevmy epyaoloy BM, 6nwe n avoxataoxeuy| yeyovotwy pe NAT, anoutelton éva abvoho
EMONUACUEVWY dedopévwy, oto onolo xdde yeyovog Yo cuvodeletal amd o avtioToryn T ahidetag yio T
evépyela, TNV xatelYuvon x.AT. Tou Yo YeNoeVoEL WC TH-OTOY0S XTd TNy exnaidevor). Enouévee, avtl yio to
TEAYUOTIXE BEBOUEVO TOL AVLY VEUTH], TwV oTolwy ot Tipée ohfdetag etvon dyvwoteg, Yo yenotponondoly yeyovdta
mou mopdyovtar oe mpooopowsoels Monte Carlo. Ov npocopoudoeic Monte Carlo (MC) yenowonotobvton ot
Quowr) TPnhadv Evepyelddv yia va tpocopoldhvouy tig guolxéc Slepyaoieg evBLapEPOVTOC XL VoL LOVTENOTOLOVY
TNV andxpelon Tou aviyveuth. Xto nelpopa KM3NeT, ol mpocoyoudoeic MC napdyouy ahhniemidpdoeic vetpivey
oe ula meployn mou mepueheier Tov aviyveuty. Ilpocopoidvetar 1 axtivoforio Cherenkov and ta deutepoyevy
owpatidio, xadodg xan 1 aviyveuor e and too PMT tou aviyveutd. Aol npocououstel xau 1 cuvels@opd tou
YopUBou Yl To avticTolyo BldoTnUe GUAROYHS BEBOUEVLY, 1 TUn, TOU aviyVeutt, epapudlovtal ot akydprdiuol
oxavdoMopol xat tor oxavdahiopéva yeyovota anodnxedovial. To anotéheopa tne napaywyhc MC elvar éva
cUvoho apyeiwy, To xadéva and Ta omola nepiéyet MC yeyovota yia éva run tou aviyveutn. [ xdde yeyovog,
nepthapfdvovton 160 To cUvolo Twv hits Tou, doo xau N mpayuaTix evépyela, xatedduvor, FEon Tng oahAn-
AemlBpaone ®.AT., xad®dS xol Ol AVTICTOLYES AVOXATAOXEVACUEVES TOGOTNTES amd TOug TuTxolg alyoplduoug
avaxatooxeviic. Ta Sedouéva tou mepdpatoc KM3NeT (nepapatind xaw MC) anolnxeboviar apynd oe apyela
ROOT, wo poppn) apyeiwv mou yenolponoleiton 6o epyaleio avdiuong dedouévey ROOT mou avantiydnxe and
o CERN. Qoté0o0, xadwg to apyeio ROOT tou neipdpatog KM3NeT dev éyouv Bertiotonomlel yio epappoyég
BM, npotol yenowonomdolv urodiiovioan cuvidwg oe tpoeneepyacia ye tn yeron tou OrcaSong, To onolo
ToL UETATEENEL 6T wopyt) apyelov HDF5. Ta tehxd HDF5 apyeia éyouv ehdyioto uéyedog oc alyxplon ye to
apywd apyelon ROOT, eved mapdAAnha Tpoc@Epouy yeryopn TROCTEANCT, OTLS LERUPYIXES DOUES BEBOUEVLY TOU
nepéyovtal oe awtd. I Toug Adyoug autolg, HTav 1 pwopen dpyelwy mou emhéyUnxe yio TI¢ EXTUdEVOEC OTO
GraphNeT.

Evowpdtworn twv KM3NeT 6edouéveov BM oto GraphNeT

Ipoxewévou va yenotponondel to GraphNeT, elvon anopaltnto va evowyatwiel 1 poppr twv KM3NeT oe-
dopévwy BM oe autd, £ToL doTE Vo Umopoly Vo xenotuelcouy we elcodog oto wovtéro. To GraphNeT npoopépel
unoo thelEn yia 800 popgéc apyeiwv (Parquet & SQLite), péoa and xatdhhnhes xhdoeic Tou yelpilovton arthuota
TPOOTEAGCEWY TWV dedoPEVLY Yia xdde plo amd T dVo autég poppéc apyelwy. Ia TNy evowpdtwon Twy dp-
yetwv HDF5 oto GraphNeT dnwovpyhdnxe uio tpltn tétoio xhdom, n onola yelplleton artriuato ToooTeAdoEWY
oe apyelo HDF5.

Exnoidcsuon NAT pe to GraphNeT octov Aviyveutry ARCA21
Y 0Ovolo Sedopévemy xal npoeneiepyacio

To mpoBinuo avaxaTaoxeufc Tov avTeTwTleTol o8 aLTAY TNV gpyaoia apopd yeyovoTa Teoytds, dnAadh
yeyovéta (avt)vetpivov pioviou. To olvoro dedopévwy mou Ya yenotpwonowmdel anoteheiton ond MC dedopéva
and 90 runs tou aviyveuth). Kdde run nepiéyel nepimou 4.500 yeyovéta xdde tonov (v, / 7,), €0l (ote 10
oUvVolo Bedopévawy va avépyeton oe mepimou 800.000 YeEYOVOTA, LOOUERME XATAVEUTUEVO UETAED V), Xt Ty, ATO
autd to 90 runs, 75 Yo yenowworomdody yia exnaideuon xou 15 yio emixdpwon (~ 83% / 17%). Eva npdodeto
oUvolo 19 runs éyel deopeutel wg alvoho Soxunc Yia Ty aflordynor twv npoiédenv. H evépyela twv vetpivev
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oto ohvoro dedopévwy xupadvetar puetald [10%,108] GeV. To Zy. 8 deiyvel v xotovopr TV YEYOVOTWY OF
aUTO TO EVEPYELIXO €0POC 0TA OUVOAX BEBOUEVKY exTtaldevong, emxdpwong xou doxune. Hapatnpodue Aydtepa
yeyovota ot LYmAdTepeg evépyelec AOYW TN YoUNAAC pong VETplvov xal Tou pixpol aviyveutixol 6yxou
tou aviyveuty ARCA21, xau enfong Ayo yeyovéta oe younhéc evépyeleg, xadde o aviyveuthc elval Aydtepo
evaiodntog oty meployn Twv Aiywv TeV xou xdtw.

Kéde yeyovéc otov aviyveut) ARCA21 repiéyer xatd péoo 6po nepinou 1.000 hits. Trdpyouv, wotdco, axpaiec
TEPITTWOELS PE TOAD peyolUTepo apudud hits. Acdouévou 6Tt o mpoodlopiopds Twv k-NN yio évay oAdxhnpo
yedpo eivon o O(n?) diepyaoie, o péylotoc apdude Tov hits o éva yeyovée éxel opiotel oe 5.000. Edv
éva yeyovoe meplelye apyixd neptocdtepa and 5.000 hits, tdéte dha o hits oxoavdaiiopol Satnpolvtol, eved
xdmota amd o hits otiyplotinou nopoeinovton, wote va mapapelvouy cuvolxd wévo 5.000 hits. Kade PMT
hit oto dedouéva mepéyer ta Bl 8 yvwplopata: Yéon-z, -y, -z, xotedduvon-z, -y, -z, yeovoc t xou ToT.
Quoind, o elpn TGV TV YVLELoHdToY dlapépouy anuavtixd yetald toug. H yeron yvoploudtev ye ueydheg
xa BlopopeTinég Tiég elvan mpoPBAnuatiny, xadde unopel vo dnuiovpyrioel wa uepoindio mpog o yvweloporta
pe peyahlTepee apliuntixéc Tés, odnydvTac to dixtuo va ayvoroel ta umdroina. [o tov Adyo autd, xdde
YVOELOUO T UETACY NUATICETAL QpotpdVTAS T HEON T TOU fiz XL DLOLEMVTOC ME TNV TUTLXY) TOU OmOXALOY) O
6T0 0UVOAO TV BEBOUEVLV:

oy T @®)

Ox
Ou tpeic ouvtetaypéveg xatevduvong dev petaoynpatilovtot, xadoe opilovta €tol dote va oynpatilouvv éva

povadloto didvuoua Yo xdde hit, emopévng ol Tiée Toug elvan HoT xevTpaptopévee Yopw and to 0 xo eunintouv
oT0 amodextd ebpog [—1, 1].

Energy distribution
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Syuo 8: Evepyetoant| xotovour| twv vetpivwy oto obvola dedouévmy exnaldeuone, emxdpwong xo doxyng,

XAVOVIXOTOLNUEVT €TOL (OOTE TO EYPadOY xdtw amd xdde xopundhn va elvon 1. O d€ovag 2 elvon 0 exdétng g

evépyetag, ye xde bin vo xahintel edpog 0,1. ‘'Olot to cUvola Bedopévemv Topouctdlouy Ty (Bio evepyeloxt
XUTAVOUT).

YAonoinomn Tou woviélou

O exmoudevioelg mou mpaypatonojinxoay otnv napolvoa epyacia yenowwonolody to yovtého DynEdge. Ytnv
evoTNTaL AL TH ToEoLCLdlovTaL SLAPopes ETAOYES UTEPTUPUUETEWY oL AETTOUERELES TNE LAoTOINGNC.

Apududg tAnoEctEpwy YeELTOVLY: Evoc yeydhog apltiudc tAnciéotepny Yeltovwy k pnopel va auhoel
TNV om6d0CT TOU UOVTENOU ETUTEENOVTAS TOU VoL XAUTOYPAPEL OYECELS UETAED THO ATMOUOXPUOUEVLV XOUBWY TOU
yedpou. Qotdoo, avidvel enione oNUAvTXd TOV LTOAOYIOTXO YEOVO, xoddc auEdvel Tov aptiud Twv TEdiewmy
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xatd T ouvehifelg axpdyv. XNy mopoloa epyacia emhéyInxe n Twh k = 16 xou vy to 4 umhox EdgeConv
TOL YoVTéAOL, T Simhdola and v avtictoiyn tou mepduatog IceCube [61] xau {on pe v wuf mou yenot-
ponodnre oe nponyoluevee perétec tou aviyveuth ARCA [78]. MeyahUtepec Tyéc tou k dev eetdotnray
xadde (o) To unohoyioTind x6oTog Nty AdN VPNAG xau (B) nponyolueves exnoudeloelc oto OrcaNet pe k = 32
dev amédmoay PEATIWUEVA ATOTEAEGUATAL.

Opadoroinor: To DynEdge Swdétel 4 emhoyéc opadonoinone («mean», «maxy, «miny, «sumy ), oL onoleg
unopoly vo yenotwonomnmdolv mapdiinia. H yeron nolhamidyv emhoyov micovextel, xodoe xodiotd neplo-
obtepeg mAnpogopleg dladéoiuec oto povtéhro. ‘Etat, apynd yenowonomjdnxay xou ov 4 emhoyég. ‘Ouwg, 6tav o
oprdude TV x0uBwy otov Yedyo eivar peydhog, 1 tpdodeoy («sum») mdve oToue xouBouc Yo xdde yYvdploua
umopel vor 081N YHoeL o€ PEYAAES apLiUNTIXES TWECS, Ol OTIOlEG EVBEYOUEVIC VO XURLIPYIOOUY EVOVTL TWV GAAWY ETlL-
Aoyv opadonoinong. Auth axplBig elvan 1 nepintwon oto ARCA21, émou xdie yeyovie mepiéyet nepinou 1.000
hits otiywotinou, odnywvtac oe yYedpoug ue nepinou 1.000 xéuBouc xoutd péoo dpo. Etot, yia yetayevéotepeg
exmUdeVoELS, 1) opadonolnon «sumy opoupéinxe.

Awapodppworn eminédov £E680u: To eninedo e£66ou tou poviéhou mpénel va dlapoppudel avdloya ue
TO EXA0TOTE TEOPBANUA, EV TEOXEWEV® TNV OVOXATAOXEVY TNC EVEPYELIC TWV VETpIvwY, dnAadY| éva TedBinua
Tohvdpbunone, oto omolo To Uovtého xohelton vo mpoBiéder pla povadue T, Ty evépyela Tou opyxod
oopotdiov. Xty anholotepn nepintwon, to eninedo e£68ou amotehelton and évav ubvo veupdva, 1 €€odoc
Tou omolou elvan 1 mpoPBhemouevn T evépyetag. H ouvdptnon evepyomoinong autod Tou VEUPKOVA TEETEL Vol
OMOTEETEL U1 PUOXES TWES evEpyeLag, dpa Vo teptop(lel To medio e£68ou oe Yetinée Tiwéc. T to Adyo avto,
yenowonoleltow 1 cuvdptnoy Softplus:

1
fsoftplus(T) = 3 In (1+ €7, 9)
pe B8 = 0,05. H ouvdptnon auty elvon piar ouoAy) Tpoo€yylon Tne eupéwe dladedouévng cuvdptnong ReLU:

z, x>0

10
0, x<0. (10)

Jreru(z) = max(0,z) = {

H Softplus aipet ) pn Swgpopiowwdtnta e tehevtalag oto x = 0 xou neplopilel v €080 oe auotned Yetixég
TS,

Yuvaptroeig anwieiag: Ot 800 TpdTEC CUVIPTACEIS ATWAELIC TIOL Yenolponoliinxay oty Topodod ep-
yaoia efvar To eNdyLoto tetporywvid o@dipa (MSE) ¥ Lo xou 1 andhewo Log Cosh mov yenowonoleiton eniong
oto [61]:

1 .
L]V[SE = N Z(yz yz)27 (11)
=1
1 & .
LLog Cosh — N Z In [COSh(yi - yz)] 5 (12)

i=1

omou y; elvon 1 mpaypatx Ty Tou i-ootol delyuatog, Y; elvon 1 npoBAiedn tou dixtiou xou N elvan to péye-
Yog maptidag. O tetpaywviopds oty anwiela MSE evioylel to o@pdApata, YEYOVOS Tou Umopel vor Tpoo@épet
ToyUTEEN oUYXAoT. oTd00, cuvENdyeToL OTL Ol axpaies TUES ota dedouéva Eyouv peyalltepn enidpaon otnv
anmhela, ennpedloviac o€ OPIOUEVES TERLTTOOELS duoavdhoya to povtého. H andheta Log Cosh eivon napduola
pe TV anoiela Ly yior yixed opdhuata, oAhd potdlet ye v andieta L (Yéoo andiuto o@diue — MAE) yi
peyahbtepa opdhpato. Etot, e€acpolilel xhion e cuvdpETNoNe AMMOAELLS AVIAOYT TOU CQIAIOTOS VLot UXPES
TIEC OPANUOTOS, WOTE T UXEA CPIAUATI VO EAXYLO TOTOLOUVTAL LXAVOTIONTIXE, etvar Slapoplown oto 0, ot av-
tideon pe v L1, xou ddétel eupwotio o axpales Tiwée, oe avtiVeon pe v Lo. H tpltn cuvdptnor andAietog
nou Yo e€etaotel oty mapoloa epyaoia elvon 1 Log Normal omdhewo:
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1 N 1 _ (yi;;;i)z 1 N . (yz _ ﬂ7)2
Liog Normal = N Z —In \/ﬁe g =N Z hl(\/%) +In(6;) + T2 |- (13)
i=1 i i=1 d

H ouvdptnon avty elvar o guowds Aoydprdpog pog xovovixic xatavouns. Toéco to fi; 660 xou 1o &, elvon
TOEAUETEOL TPOCUPUOYHS, UE TO §; = fi; Vo elvon 1 extiunom Tou Bixthou Yior TNV eVEPYELX XaL TO 05 va elvan
wa extiunon afeBadroc yior Ty nedPiedn. H cuvdptnon andielag ehaytotonoelton 6to onuelo (fi;, &;) =
(yi, 0) xou elvon mopodyoto ye v anmiewr MSE, xadoe elvon tetpaywvind wc npoc to o@dhpoa. H extiunon
ofefandtnroc mparypoTonotelton we TRV TEoo¥rixn evog Seltepou veuptva 6To eminedo €680y Tou dxTiOL XoU
unopel va yenowonoindel e xplthplo EMAOYHC YEYOVOTWY TNy avdiucy dedopévwy. H anwieia Log Normal
elva 1 ouvdptnon andAelag ou yenotwonoteiton oto OrcaNet xou €tal vhomouinxe xou oto GraphNeT yia va
yenowonoundel otny topovoa epyacia.

Ynuetdvetan 6T, xadde To evepyelond elpog v vetplivev ota MC dedopéva etvon [10%, 108] GeV, xointovrog
6 tdEeic peyédoug, oL TYWES TOU UTELGEPYOVTOL OTY) CUVEPTNOY OTMAELNS TOU StxTOOL —OTola Xau oy elvon ouTh—
avTiotolyoly Tévta otov hoydptduo tne evépyewe (E — log(E)). Etol, 1o edpoc Tipdv-otoywy elvan [2, 8],
yeyovog mou odnyel oe audnuévn aptduntixy otadepdtnTa xon OYoAOTERT GUYXALON.

Aentopépeieg & mapdetpol exnaldsvong

‘Olec ol exdoyéc Tou HOVTEAOU eEXTTABEDTNXAY OE XAUTdAANAO LToAoYio T oto Ivatitodto Hupnvinhc xow Xwyo-
Toic Puoixic (ITIEP) tou EKEPE «Arnudxpitocy, eonhopévo pe do NVIDIA RTX A6000 48 GB GPU,
125 GB RAM xou 48 nuprivec CPU. Xtov unohoyioti autdy, xdde enoyh oto civoro dedopévwy twv 800.000
YeYOVOTwY dlapxoloe meplmou 250 Aemtd.

INo tic apyée exmoudevoels, yenotpornoinxe péyedoc noptidoc 32. Téoco uixpd uyeyédn noptidac mopéyouv
AY6TERO %A TPoCEYYIoN TNG CUVOAXTE Xhiong Tou cuVOLoL Bedouévwy, xadne 1 xAlon elvar o YopuPndng.
Avuto pmopel vo 0dnyrioel oe éva LovTENO oL GUYXAIVEL TLO apPYd, ARG YEVIXEVEL xahlTEpD, xardds oL BopuBidels
xAoelg umopotv va fondicouy to povtéro vo Pyet amd Tor ToTxd ENAYLOTO TOU TOPOUETELXOL YMpeou. Apydtepd,
»o1660, axohoudinxe 1 mpdTaoT TV TpoyeaupaTioTtdY Tou GraphNeT vo yenowonoieitar yeydro yéyedog
nptidag, dedopévou dti unopel va ntpoceyyloel xoAlTepa TNV Ao TOU GUVOAOL Bedopévwy, xou To uéyedog TnNg
naptidag avgrdnxe o 1.024, ywelc vo napatneniel anwiela oty xavoTnTaL YEViXeuong.

I 6hec Tic exnandedoelc otnv napovoa epyacio yenowonoinxe o akydprduoc Bektiotonoinone Adam, ye tic
TpoemheYpévee Tapapétpouc Tou (B1, B2, €) = (0,9, 0,999, 10~8). O pudude uddnone oplotnxe apyxd oe 1074,
»OTOG0, AUTY 1 T 00NY00UCE GTO QPUVOUEVO TWYV €KPNKTIKGY KAITEwY, 6Tou ol unepBolixd ueydheg xAioelg
npoxaholy actadelc evnuepdoelc ota Bden Tou poviéhov, eunodiloviac ) clyxhioy Tou. I To Adyo autd,
yenowonolinxe teploplouds xhicewyv ye tipn 0,5. Xe yetayevéotepeg exnandeloele, Yenouonoidnue Tunuatixd
Yeopuxdc pudude udinone ue teplodo npodépuavone wohc eroyhc, o onotoc Eexivoloe and 1077 ue péyioto
70 1073 xou 0oTEPA HELWVOTAY PEYPL TO 1072 éwc to téhoc e exmaidevorng, énwe neptypdpeton oto [61].

ALQLOPPHOELE EXTAUBEVCEWY

ITpotol culnmboly ta anoteréopata Twv exmadeloewy twv NAT, npénel vo napouctacstody ot axpifelc Oi-
ALOPPWOELS EXTIAUBEVOTE TOU YeNotdomotiinxay. Xe OAeg TIg exTUBEVCELS YeNooToinxe w¢ TWR-0TOYOC 1
npaypotixy evépyeta tou MC vetpivou. Ou exmaudedoelg unopolv vo ywelotody o 800 Ouddes, AVAAOY UE TO
olvoho twv hits mou yenowomoidnxay xotd v exnoidevon (hits otiywotinou ¥ oxavdahiouol).

Hits otvyptotinou: O nepiocdtepes exnaudeloelc pog adlonoinoay to hits otiypotinou (dnhadrh oxavdol-
wopéva xou W) oxavdahopévo hits). M oOvodn tov exnudeldoewy pe hits otrypotinou napouctdletar oTov
ITivaxor 1. O 800 mpwteg exmondedoelg dieliydnoay oe pol UELUEVT exB0Y T TOU TAHEOUE GUVOAOU BeBoPéVwY,
nou Teptelye poévo 200.000 yeyovédta avtivetplvev ploviou. e auTtéc TIC eXTUBENTELS, BOXIUACTNHOY OL ATWAELES
MSE xou Log Cosh. H exnoideuon no. 3 emavéhaBe tnv mponyoluevn pe to mhfpec cUvolo dedouevwy. Méypl
autod to onuelo To ToT dev nopeydTay KE PEPOC TWV YVWEIoUATWY TwV hits oTo wovtého, dedopévou 6Ti 1) €vtaon
Tou Pwtog xdde hit Yewpelton Tt ymopel va cuvarydel and tnv ntuxvoétnTa TV hits o yeitovixd PMT, 1 onola
elvon 101 Srordéoun oto poviéro. otd6c0, dedouévou 6TL To yvwplopa ToT Atav ddéowwo, npoctédnxe otig
endueveg exnoudedoels, ue Ty exnoideuon no. 4 va etvon puor emovaindn e mtponyoduevng, ahkd ye tnv tpocdnxm
tou ToT, tote 1o anoteréopata va unopody vo cuyxerdolv. To Tic undloineg exnoudetoelg, To uéyetdog tng
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noptidag auéiinxe and 32 oe 1.024, n emhoyy| opadomoinong «sumy» a@oupédnxe xou YeNnouonotinxe o Tun-
paTed yeouuwog puiude udldnong mou avagépinxe mopamdvew. H exnaldevon no. 5 xdvel ypron tne anwietag
Log Cosh, emtpénovtoc v dueon obdyxplon pe tg nponyolueves exmaudeloelc. Téhog, n exnaidevorn no. 6
yenowornolel v ondAielo Log Normal, emitpénovtoc 0 oUyxplor TeV SLAQOPETIXWY GUVIOTHCEMY ATOAELIS.

No. | I'ey /<o | Enoy. | Andiewa | Méy. ITopw. Pudw. Mado. INUELOOELS
1 200.000 20 MSE 32 10~4 Xoplc ToT, 4mhn
ouod., TEPLOPLOUOS
x\oewy
2 200.000 20 Log Cosh 32 10~14 Xoplc ToT, 4mhn
ouod., TEPLOPLOUOS
x\oewy
3 800.000 10 Log Cosh 32 10~4 Xwplg ToT, 4nAn
ouod., TEPLOPLOUOS
x\oewy
4 800.000 10 Log Cosh 32 1074 Me ToT, 4nin
ouod., TEPLOPLOUOS
x\loewy
5 800.000 30 Log Cosh 1.024 Tuny. yeopuxog Me ToT, yweic
107 - 1073 - 107° opad. «sum»
6 800.000 30 Log Normal 1.024 Tuny. yeopuxog Me ToT, yweic
1075 - 1073 - 107° Ouad. «sum»

Mivaxag 1: Awpoppioeis exnaldevone (hits otiypotinov).

Hits oxavdaiiopo: Ipayyatonoidnxay enlong exmoudevoeig uévo hits oxovdahiouol. Aedopévou 6TL Ta
hits autd elvar doa €youv emonuovdel and to chotnua oxavdaliopol we cuurintovta, to neplocdtepa hits
ontixol unoPdlpou avauéveton v €youv agorpedel amd To YEYOVOTA. LUVET®E, 1) EXTAUBEUOY TOU HOVTEAOU
uovo ue hits oxavdahiopod o unopodoe va Bektidoel v avaxataoxeur ng evépyetag. OL exmadeloelc ye to
hits oxavdoiiopol cuvolilovton atov Ilivoxa 2 xou Slopépouy w¢ Tpog Tov pLIYS udinone.

No. | Tey /o | Eroy. | Andieio | Méy. ITopT. Pudw. Md&d. YNUELDOOELS

1 800.000 15 Log Cosh 1.024 1073 Me ToT, ywelc

OUOB. «sum»,
TEPLOPLOUOS (ALoEWY

2 800.000 30 Log Cosh 1.024 Tunu. veouuixdg Me ToT, ywelc
1075 - 1073 - 107° Opad. «sum»
3 800.000 20 Log Cosh 1.024 Tunu. yeouuixoc Me ToT, ywelc
107 —2-1073 — ouod. «sumy
1073

Mivaxae 2: Awpoppioels exnaidevong (hits oxavdahopos).

Arnoteléopata xal uyxploeig Exnoudeboswy

Axohouvdel mapouciooy xou cLlATNoN TwWV ATOTEAEOUITWY TwV exmadeloewy NAI' nou mpayuatonoldnay.
Extéc and ta 800 mpdta povtéha ye hits otiypiotinou, to onola exnoudebtnroy xou a&tohoynxay ot UixpdTepo
ocUvoho dedouévwy, Oho Tar amoTeEAéopaTa Xat Ta dlarypdupota ot avth Ty evétnta Bacilovtar oto clvoho
BoxY, To onolo mepleyel 172.484 yeyovéta.

Hits otiypiotdnou

Ta anoteréopata TV exnadeloewy hits otrypotinou tou Iivaxa 1 napoucidlovtor otov Iivaxa 3. o xdde
exnaldevon, 1o MAE, to MSE xot 0 cuvieheotic tpoodlopiopol R? 4 napoucidlovton, pe Tic exnoudeloelc no. 5

4¥tatiotind uéyedoc yia To onoio LPMAETERES THIES SNAGVOLY XOAITERH TPOCUPUOCUEVO HOVTEND, UE TN WEYLOTY dUVUTH Th Vo
elvou 1.
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& 6 vo polpdlovran Tig xahdtepec petpxéc. Ta anoteréopato Tne xohlTtepnc exnaidevone (no. 6), xadde xou tne
xahOtepne exmaldevong ye to OrcaNet, aAAd xon TNG TUTIXAC OVOXATAGXEVHS, OmEXOVI{OVTaL GE Blory POt
BLOTIOPAC Xl TOCOOTNHOPIWY TNG TEOBAENOUEVNE CUVUPTACEL TNG TeaYHaTx\S evEpYelag oTa Xy. 9 xou 10
avtioTolyo.

No. MAE | MSE | R?

0,644 | 0,726 | 0,565
0,648 | 0,734 | 0,560
0,590 | 0,611 | 0,637
0,585 | 0,620 | 0,632
0,573 | 0,603 | 0,642
6 0,580 | 0,596 | 0,646

| std reco | 1,016 | 1,770 | -0,133 |
[OrcaNet | 0,577 | 0504 | 0,648 |

QU W N =

ITivoxac 3: Anoteréopata extoudevoewy (hits otrypotinov). Ot évtovee Tiéc UTodeEVOOUY To XaADTERO
anotéheopa oto GraphNeT yia xdile yetpus,. To anoteréopota yia Ty TR avoxataoxeur] («std recoy)
%ot To xahOtepo Yovtého oto OrcaNet, oto (Blo olvolo Bedouévwy, tapouctdlovton eniong yio alyxeion.

Training no. 6 Std reco OrcaNet

Epreq (GeV)
No. of events
Ereco (GeV)
No. of events
Epred (GeV)
No. of events

,_.
A
=
)

L] -.l

T T T T . J 100 102 ™ Her T T .
10 104 10° 10° 107 108 10 10 10° 10 10 10° 10° 107

Etrue (Gev) Etrue (Gev) Etrue (Gev)

10°

Eyhuor 9: Avorypduparta dlonopds e npoPhendpevng cuvaptioel Tne mpaypatixic evépyetag. H poden
Blorywviar Ypopun delyvel Ty Wovixr) avaortaoxeuy). Mio Seltepn yaden yeoupr unodetxviel T BIdUECO TG
npofAenduevng TS Yot xdde bin mporypotinic evépyetag.

Training no. 6 Std reco OrcaNet

—— median —— median —— median
1 —— 68% interval —— 68% interval 1 —— 68% interval
—— 95% interval —— 95% interval —— 95% interval

2 2 | //\/\jﬂ\ﬁi/‘«
2 3 5 6 7 8 2 3 5 7 8 2 3

4 a 6
10910 (Etrue 1 GEV) 10910 (Etrue | GeV)

~
~
~

o
o
o

IS
I

IOglO (Epred / Gev)
10910 (Ereco | GEV)
IOglO (Epred / Gev)

w
w
w

5 6 7 8

4
log10 (Etrue 1 GEV)

Yy 10: Alarypdppoato TocooTnHopiny Tng TEoBAETOUEVNC CUVIPTACEL TNG TROYUATIXAC EVEQYELNS. 2E ONL Ta

OLAYROUUATAL, 1) XOYULVY) Doty VLA Yo Y| UTTOBEXVOEL TNV Wavixy| avacatooxevy|. H diduecog xon tar Slao oo

epniotoolvne 68% & 95% twv Tpofhédewy yia xdde bin npoypatinic evépyetag anexovilovton pe padpo, UThe
o VoL Td YxpL avTioToLyo.

‘Onwe gaivetar and to Xy. 9, 10, to dixtuo napdyer tic mo axpBelc mpoBiédeic oto péoo Tou evepyelooL
e0poug, dNAadH Y10 Eypye m0U xupaiveton omé 103 éwe 108 GeV (xhipoxa TeV). Avtideta, oL younhétepec xou
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VPNAOTERES EVEPYELEC TEIVOUY VoL UTEREXTHIMVTOL Yol Vo Ttoex T vTan avtiotolya. To gavépevo autod eivor mo
EVTOVO Yo TIC YOUNAOTERES EVERYELES, TWY OTO(WV 1) EXTPOCMTNOY 010 GUVOAo dedopévmv elvar endytotn (BA.
Yy 8). T tic udnhdrepec evépyetee (xhlpoxa PeV, Eiye > 105 GeV), avopéveton unoextiunom, xodoe to
oV PnARC evépyelag Bev evamo¥ETouy ev YEVEL OAOXATPO TO EVERYELIXO TOUC TEPLEYOUEVO GTOV OVLYVEUTH),
Onhady) dev elvon 6An 1 evépyed toug opath. To yeyovic autd avixatontpileton XoL 0TO PEYEAO EVPOC TV
TpoPBAEPewy yior T yeyovota autd. Mropolue enlong va mopatnehoouge 6Tl To xahltepo poviého OrcaNet,
ToL exTUdELTNXE xou adlohoyhinxe oTa (Blot GUVOAA BeBouévev, Tapouctdlel TV (Blo cUUTERLPOEE U Tar dlxTua
mou Baoctlovtar oto GraphNeT. Téhog, n Tumxy avoxotaoxev) avagépeton oTov ahyoptiuo extiunong uéylotng
mdovogdveloc. Oa mpénel vo onuelwdel 6Tl 0 ahyopLduog AUTOC AvaXATAOXEVALEL TNV €vépyela ToU pioviov.
Emopévee, ol younhdtepeg evepyeloxés npofiédelc oe olyxpion pe ta NAT elvon avopevoueve, xadog 1 opath
evépyela Tou proviou elvan younhoTeen and TNV EVERYELX TOU TPWTOYEVOUS VETEIVOL.

Yuyxploeic exnoudedoewy: Nto cuyxpltind dorypdppata tou Uy. 11 napatidevtor to dotipata 68%
yior SlapopeTind Lelyn Slopoppioewy exnaideuong. Xtrn cUVEXEL, Ol EXTUBEVOELS avaQEPOVTIL UE TO YPAUUA
«T» axoloudolyevo and tov aptipd exnaldevone and tov Hivaxa 1 (n.y. «T1»). Ot nepiocdtepes cuynploeic
yivovtow Yetol exnoudeloewy mou Blagépouy Hovo ot plo TopdueTeo, WoTe va elvar aflohoyhowun 1 enldpacn
™me:

¢ MSE (T1) ws. Log Cosh (T2): H andieir MSE divel xahltepe petpixée, e€outiog tne YeyohlTepne
Towrg oTo UEYSha opdApaTa, 1 ool 0dNYel o8 xAAOTERN EAUYLOTOTOMNGT TWV UEYIADY TYLV CHIAIATOS.
Av xou o emdboelc elvan mapdupotes, 1 pumhe Awpldo (MSE) elvon Myo xahUtepa euduypayuiogévn ye
Blorydovio amd tny moptoxahl Awplde (Log Cosh) oto yeyahitepo uépog tou evepyelaxol ebpouc.

e 200.000 (T2) ws. 800.000 (T3) events: H yprion tou yeyahitepou cuvélou dedouévwy BeATudVeL
onuavTXd TV amédoon tou duxtlou, pe To R? va avEdveton xatd 13,8%. To peyohltepa opéhn o610
Bidypoppor ovYxplone evtonilovion oTa YEYOVOTO Younhfc xat uhniic evépyelas (UTOEXTPOCOTOVUEVES
TEPLOYES), Tol oTolal ETWPEROVVTAL TEPLOTHTERO amd TNV aEnom Tou eyédouc Tou cuVOIoU BeBoPEvey.

o Xweic ToT (T3) vs. pe ToT (T4): Av xou n tpootiun e petaintic ToT éxel ehdyioto aviixtumo
OTIC ETEIXES, TO OLdypouuo oOYXEIONG AMOXAAUTTEL OTL 1) BldpEcOC elval eENapps xoADTepa eV uYpaUULo-
pévn ue N Blorywvio Yo Ty exnoidevor mou mepthauBdver to ToT, edwd oty whipaxa TeV. I'a to Aéyo
autd, anogaciotnxe va cuveylotel 1 yerorn tou ToT.

e Batch size, learning rate, pooling (T4 vs. T5): H cOyxpion nepthopfdver tic e€hc ahharyée: agpaipeon
e opodonoinong «sumy, adEnon tou yeyédoug noptidoac oe 1.024 xou yenor TUnUoTixd Yeauuxol puituod
wéinone. Hopoatneolue pixph Bedtioon otic petpidée, e o R? va audvetan xotd 1,6%, xadire xou to
younhotepo MAE and 6ho tor povtéla avaxoataoxeuic tne evépyelog otov aviyveuti ARCA21.

e Log Cosh (T5) vs. Log Normal (T6): Kaddc n andiew Log Normal elvor andheto T0mouv La, eV
n anwieo Log Cosh anddhewa tonou Ly, edhoyo n mpwtn extonilel tn dedtepn otn yetpix MSE, eved to
avtileto toyvel yio tn pete MAE. Ot 800 cuvaptroel anwheldv emdetxviouy ToAD TopdUOLES YETEIXES,
eve oTo avtiotolyo didypopua cUyxplone ol Vo Lwveg mpoxtxd tautilovton. H ypron tng andieiog Log
Normal oto OrcaNet anodeucvieton dixonoroynuévn, xados Teocpépel TNy Bla amédoom Ye ATAOUGTERES
CLVAPTAHOELS AMWAELDY, EVE EVOWUATOVEL ot extiunom offefodtnroc otig mpofiédelc Tou dixtiou.

e GraphNeT (T6) wvs. OrcaNet, std reco: E8& ocuyxpivetow n exnaidevon T6 oto GraphNeT pe
™y xohUtepn exnaidevon oto OrcaNet oto (Blo chvoho dedopévewyv. Ta dUo dixtua Swdétouv v Bla
OCUVEETNOT] ATWAELDY, ETUTEENOVTAS TNV GUECT] SUYXELOT TwY B00 apyttexTovixwy. To yoviéha cuyxplvov-
o poll ye v oy avoxataoxeur). H Awpldo tne tumixic avaxataoxeunc Beloxeton younidtepa and
to povteha NAT, xodode avoxataoxeudlel TNy evEpYEL TOU TEOXUTTOVTOC Wloviou xou &yt TNV evépyela
Tou vetpivou. H tumuen avaxoo taoxevy| Beloxeton oe xahbtepn cudpovio Ue Tol LOVTERA OTIC YAUNAOTERES
eVEPYELES, OTIC OToleg HEYUAUTEPO UEPOC TNG EVEPYELNG TWV VETplveY YiveTton opatr. Ou Awpideg twv 0o
HOVTEAWY ETUXAAUTITOVIOL OYEDOV TANPWS, OIS UTOBNADVOUY Ol TapduoLeS UeTEWXES Toug. Katd ouvénela,
otveTtal 6TL X0l Ol 800 UPYLTEXTOVIXES £YOUV TOPOUOLES BUVATAOTNTES Xalk OTL Xou Tot 800 TAaloLol UTopoLY Vo
unootnpiZouv e emttuyla extoudetoeic NAT. Autd elvon onuavtind anotéheopa, xadde (o) empBeBaidver
Ty 0pddtnTa oTis €mA0YES draudppwons kai Ty pUluion twy vreprapaétpwy otny apxitektovikn) Par-
ticleNet ato OrcaNet, xou (8) mapéyer oo nefpapa KM3NeT éva dueoa Sadéouo evaAdaktikd epyaleio
ne eapetikés dSvvatdtnres (GraphNeT), to omoio eivar edkodo otn xprion kar unopel va gko€evijoe
omowadnimote emiuuntij AcitovpyrkdTnTa.
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MSE (T1) vs. Log Cosh (T2)

200.000 (T2) vs. 800.000 (T3) events

— MSE
1 —— Log Cosh

—— 200.000

~

Without ToT (T3) vs. with ToT (T4)

—— Without ToT

— 800.000 L

1 —— With ToT

o

10910 (Epred / GeV)
10910 (Epred / GEV)
10910 (Epred / GeV)

2 3 4 5 6 7 8 2 3 4 5 6 7 8 >3 4 5 5 7 8
l0g10 (Etrue / GEV) 10910 (Etrue / GEV) l0g10 (Etrue | GEV)

s Batch size, learning rate, pooling (T4 vs. T5) Log Cosh (T5) vs. Log Normal (T6)

GraphNeT vs. OrcaNet, std reco

Bm OrcaNet
Std reco
4 GraphNeT

- —— Log Cosh
-—— Log Normal -

10910 (Epred | GeV)

10910 (Epreq | GeV)
log10 (Epred | GeV)

2 3 a 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
log1o (Etrue | GEV) 10g10 (Etrue | GEV) log10 (Etrue / GEV)

Yyfuo 11: Yuyxploeic yetald tov dwpdpwy dlagopphoeny extaidevong tou Iivaxo 1. Xe dho tor dorypdporta
ouyxplvovton Ta Slaothpata euniotocivie 68%.

Hits oxavdaiiopmo

Tao anoteléopata twv exntudeloewy Ye hits oxavdohiopot tou Ilivaxa 2 divovtow otov Hivaxa 4. apouoidlovton
t0 MAE, o MSE xot 0 cuvteheotic mpocdiopiopol) R2. ®aiveton 611 1 exnaideuot no. 2, Ue Tov Younhétepo pu-
Yo udinong éxel Ty xahiTepn anddooT), GURPKVA UE BUO amd Tig TEELS UeTEéS. AuTo Unopel vo ogelleTol OTIG
o GToERES EVINUEPWTELS TwV Bopidv Tou Bondoldy To dixTuo Vo ano@lyel TNV UTEETAdNCT TOTUXGY eNayioTwWY.
Ta Slarypdupota SLIoTORdS X TOCOC TNHORIWY TNE TEOBAENOUEVNC CUVIPTACEL TNG TEAYUATIXAC EVERYELNS YLot
Vv xohOtepn exnaidevon (no. 2) napoucidlovia oo Ly. 12. Xto Bio Tyhue napovoldletar xou To didypouua
oOYXPLONE HETAEY TNG CUYXEXPLEVNC exTaidevone xat Tne avtiotolyme exnaldevone ye hits otiypotinou (B
dlopdppwon dxtdou). Luyxpivovtos Tic yetpixés otoug Ilivaxes 3 xoun 4, gaiveton 6Tl oL exnandevoels e hits
OXAVOANGUOU €YOUV ONUAVTIXG YELPOTERES ETUBOTELS O GUYXELON UE auTEG Ue hits otiypldTunou. Xto Sudypoauua
oUyxplone Tou Ly. 12 mopatneolue 6Tl xal ol 800 eXTUBEVCELS €YOUV TUPOUOLES ETUSOOELS GTO UECHLO XOl GTO
averTEpo TR Tou evepyelaol elpouc. Tlapdha autd, 1 TedTn éyel xatd 9% xahitepn Bodpohoyio R? and
deltepn. H Slonchpavon tne anddoone evioniletor oTic evépyetee xdtw and 10% GeV, drou 1 Ldvn tov hits otiy-
potonou Beloxetar mo xovtd ot dtarydvio. Adyw autod Tou eMelypotos anddoone oTlc YUUNAES EVEPYELES Xa
e anotuylag vo tapatnendoly Bedtidoeic ot dhho TuiuaTa Tou EVERYELONO) EVPOUC, BEV ETUBLOYUNXE TEPOUTERE
exnaldevon pe hits oxavdaiiopo.

No. | MAE | MSE | R?
1 | 0,620 | 0,604 | 0,588
2 | 0,623 | 0,687 | 0,592
3 | 0,635 | 0,705 | 0,581

IMivaxac 4: Anoteléopata exnaidevone (hits oxavdahiopon). Ot évtoves Tiwée UTOBEVOOUY T XUADTERO
anoTEAEoPA Yiot Xdde ueTEIX).
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108 Training no. 2 Training no. 2 Snapshot T5 vs. Triggered T2
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Syfua 120 Apiotepd: Aldrypaupo Slacmopds TN TEOBAETOUEVNC CUVHPTACEL TNE TEUYUOTIXNG EVEQYELNS YIdl TNV

T2. Méoov: Adypaya TOGOGTNULORIWY TNG TEOBAETOUEVNS CUVOPTACEL TNG TROYUATIXAC EVEpYELag Yo Ty T2.

Ae&id: Awdrypopua oOyxptong petald e exnaideuone TH ye hits otypiotinou xaw tne exmaidevone T2 ye hits
oxavdohiopol. Luyxelvovton to Sacthgata epmotocivig 68% yio v xdde exnoideuon.

3tdduon YEYOVOoTWY

‘Olec ov exnoudetioelc mou oulnhtnxay uéyet otypic mpaypatonoidnxay pe Ty apytxf xatavoph e MC
evépyewg (Xy. 8). Q¢ anotéheoya, 1 YEOT TOU EVERYELXOV EVPOUC UTEPEXTPOCMTEITAL, EVE TOL dxpd —XUPiS
oL younhodtepee evépyeies, £ < 103 GeV- urnoexnpocwmolvion. Auth n avopolduopyn xatavopr onuoivel 6t
T0 Yovtého dev podoivel dpxeTd XUAG TIC UTOEXTPOOWTOVUEVES TEPLOYEC TOL GUVOAOL BeBOUEVLV, AOYL NG
Ehheudng detypdtwyv. Autd elvon epgovéc oto Slorypduato SLoTopdE ol TOCOOTNUOEiWY, 6OV GYEDOY XaVEVL
YEYOVOC UE Eipye xdtw and 1 TeV dev avaxataoxevdleton otn daydvio. H un woopponnuévn xatavoph e
petoAntic-otéyou unopel enlong va mpoxoiécel yepoAndio Tou Hovtéhou mEog TNV TEOBAEP TWMV GTIC T
TIUXVOXATOXNUEVES TIEPLOYEC TOU evepYELlaxol elpous. Autéd Vo unopoloe va mopdyel YoaunhoTepes TEMXESC TUES
ATWAEWY, woTOG0 Vo 0dnyoloe oe teoPAiédelc mou dev Bacilovton uévo otny unoxeipevn Quoxy ThAnpoopla.
I toug Aéyoug autole, epapudotnxe otny exnaldeucn 1 otdduion deryudtwr, tpoxelwévou vo extoudeutel To
HOVTEAO GE Lol OUOLOUOPYT XATAVOUT EVERYELNG. LT oTdduior Beryudtwy, xdde yeyovdg @ €xel €vo oYeTIXd
Bdpoc w;, To omolo elvor avVTIOTEOPKC AVIAOYO UE TOV apLllUd TV YEYOVOTWY 0To avtioTtolyo bin tng evépyelog.
Avutd ta Bden molhamhactdlouv v anmhielo xdde yeyovdtog, €tol WoTe 1 amwieta xdde Toptidag va elvon évog
otadutopévoc péoog bpog:

Lyaten = Z w; Ly, (14)

6mov L; elvon 1 amdAeta yio To YeYovog i Me owtdv Tov tpdmo, diveton peyordtepr onuocia oto yeyovdto
TIOU TPOEPYOVTAL OO UTOEXTPOCWTOVUEVES EVERYELUXES TIERPLOYES, BEATIOVOVTAC €T0L TNV TEOBAETTIXY LXaVO TN T
TOU UOVTEANOL OE aUTEC ot avaryxdlovTde to va YEVIXEUEL xaAUTEPD o Ao To evepyetoxd evpoc. H teyvinn
e@apudoTnre oto Yovtéro Th pe hits otypotinwy, 1 exnaldeuor tou omolou emavakipinxe xo Yo avapépeTton
oto e&€nc we otaluopérn. Ta Sioypdupato BloToRdS X TOCOGTNUORIWY Yidt AUT6 To dixTuo, xo®dS XoL TO
didrypoppa cUYXELONG HE TO avtioTolyo un otaduiopévo povtéro Th, napovoidlovtar oto Xy. 13.

H e&étaon twv anotekeopdtwv e otoduiopévne exnaideuong pag odnyel oto axdrouda cuunepdouatos

(a) H Sudyecoc otn otaduiopévn exnaidevon eivon copde mo xovtd ot diorydvio and 6,1t 1 SLIUEsOC TNe
un otadplouévne exmaldeuonc oe 6ho to evpog tne evépyetag. To yovtéro telvel va mapdyel npofiédeig
yOpw and TN CWOTH TN YLot OAEC TLC EVEPYELES: elval TEPIOCOTERO EVYUYPOUIMOUEVO UE TN GUVOAXY EV-
EQPYELONT] XATAUVOUN X0k BEV HECOANTTEL TPOC TIC UTEPEXTIPOCWTOUUEVES EVERYELUXES TIEPLOYES, NTOL YEVIXEVEL
xOAOTERA.

(b) O mpoPédeic otic Younhotepe evépyelee elvor oL o BEATILUEVES, AdYw ToU peYdhou Bdpouc tou dddnxe
og aUTd To yeyovota. Autd amotedel onuavtikr) Bektioon oe oxéon ue 6Aa ta mponyolueva povtéla
kai elvair to povadiké povtélo NAIL' mov mnapovodler avtrjy tny mpoPAentikn} ikavitnta oTi§ YapnAég
€VEPYEIES.
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Syfua 13: Apiotepd: Adrypaupa Slaomopds yia Ty otaduiopévn exnoldevor. Méoov: Audypouyo
TocooTNUoplwy Yo TNy otadutopévn exnaidevon. Aelid: Awdrypoppa oOyxpione HeTald tne otaduiopévng xo
e un otaduopévne exnaidevong (hits otiypotinou T5). Buyxpeivovtan ta Sraothuota eumiotocivng 68%.

(c) Mupn Behtinon napatneeiton oTic UPNIEC eVEPYELES, Tapd TO YEYOVOS OTL EYOLY Xou AUTES owEnuéva Bdpn.
H mapatnpoluern vroektiunon twy vYnAov evepyeidy elvar aouvvémnea tng édenpng puoikans Sadéouwy
TAnpopopiby ota hilts Twy YeyovoTwy avtwy.

(d) H Swiomopd tewv tpofiédewy oto pécov tou evepyetoxold edpoug éyet auéndel. Autd elvon anotéleopa tov
UxeOTEPWY Boapddy 68 AUTY TNV TERLOYT| XA EIVAL TO XOOTOS Yidl EVOL AUEROANTITO LOVTENO.

Atigpevnon twv IlpoBAédewy Tou Movtélou

Ané ™ oulhtnon Twv anoteleoudtwy eivon Teopavég 6TL oL exnaldeuuéves dlapoppnaelg tou DynEdge, xoddde
xat To povtého OrcaNet, mopovotdlouv oplouéva Baotxd yopaxtnelotixd otic tpofiédeic Toug, xowvd yia 6ha
To povtéha. Av ywploouue to evepyelaxd ebpog Tou poc evdtapépet (102 - 108 GeV) o tpeic meployée (younhée,
peooieg xou VPNAé evépyelec), UmopolUe Vo cuvolhicoupe To EUEHUNTS oG oTG oxdhoLDES TapaTNEHOELS:

(a) Ytc yaunAés evépyeies (10% - 10 GeV) 1600 1o povtéha NAT b0 xou 1) TUTHH avaxotooxeu Topéyouy
UTEEEXTIUNOY TNC TRAYHATIXAC EVEPYELNG TwV VETpivev. Xnuavtxr Peitiworn emtebydnxe oe avth tny
neployY) Ue TN otodopévn exnaideuon), 1 omolo avgdvel T onuacio TV YEYOVOTWY YOUNAAC EVERYELXCS,
emTEENOVTOG 0TO d{xTUO Vo Tar pordodvel xahdTepa.

(b) Ytic peoates evépyeres (10% - 106 GeV) ta poviéha amodidouv BéltioTa, dedopévou 6T elvou 1 evepyelond
neploy) Ue T meplocotepa delyuota exmoidevons. O mpoPAédelc TV HOVTEAWY oE auTh TNV TEPLOYY
elvon emixevTpwUévee YUpw and N owoth Tur-0tdyo. To vetplva autdv TwV evepyewdy evanolétouy To
HEYOADTERO HEPOS TNE EVERYELAC TOUS GTOVY OVLYVEUTIXG OYXO, ETUTRENOVTUC UL OXPYBECTERT) AVIXUTUTHEVY).

(c) Stic unhéc evépyeieg (10° - 10% GeV) dha Tor povtéha mopouctdlouy EEUPETIXG TOPOPOLY CULTERLPORAL.
Kodde 1 mporypotind evépyela twv vetplvov augdveta mépay twv 108 GeV, ta povtéha apyilouv va
TNV UTOEXTILOVY Oho %o TeplocdTtepo. H anddoorn autr Bev Bedtidveton onpovtixd and ) otaduiouévn
exnaideuo), oe avtideon pe Tig youniég evépyeleg. Autd uTOBNAGOVEL OTL To HOVTENX TANGLELOUY TO PUGLXO
6plo e axplfelac e avaxoataoxevic T evépyelac. Autd Ta UPNAC evépyelac vetplva agrivouy povo
€val UEQOC TOU PWTOC GTOV OVLYVEUTH) 0dNYMVTAS €TOL 6TNV uoexTiunon tng evépyetds toug. Koo o
OVLYVEUTHG HEYOAVEL, 1] AVOXATOOXEUT TNE EVERYELOC 0TI UPNAéG evépyeteg avopéveton va Beltiwdel.

Dafveton 611 oto BU0 evepyelaxd dxpa, Tor LoVTEAX Telvouv va TEoPAETOUV TIWEC TO XOVTd OTr UECT) TOU EV-
epyelomol lpous (SNhadn uTeEpeEXTIIOUY Tol YEYOVOTO YoUNAAC EVERYELUS & UTOEXTYWOVY Ta YEYOVOTA UPNAAC
evépyewg). Autd Yo umopovoe vo UTOBNAGVEL plar Yepohndior TOU LOVTEAOU TPOGC TIC EVEPYELEC TOU TEPLEYOUV
neplocdtepa Selyparto exnoideuons, wot6co, meénel va Angdoly unddr dvo ehagppuvtixol tapdyovieg:

1. H vunepextiunon twv younhov evepyewwyv elvar napovoa t6c0 otic npoPrédec tou NAL, 600 xa otnv
Tumxy avoxataoxeut]. Emouévee, to {ftnua 8ev éyxeltal oTn Yenor eVOC CUYXEXPWEVOU GUVOAOUL
YEYOVOTWY Yo TNV exnaideuon evog povtéhou DL. Emniéov, auty 1 unepextiunon éxel pewwdel onpovtind
pe ) otodpopévn extaldevon, 1 omolo éxet e€oheidel xdde mdavy pepoindio.
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2. H vnoextiunon g vdPnirc evépyelog elvar anotéheoya Tou yeyovotog OTL Bev elvan opaty OAN 1 evépyela
xdde vetplvou otov aviyveuth. Ta yeyovota yua ta onolo to onuelo odinieniSpaone Beloxeton poxpid
TOU VY VELTXXOU 6YX0L ovoudlovTal Un ekKvovTa. e autd, (o) 1 CUVLETOON XUTUYIGUOD TN AAANAET-
dpaomne CC Bev eivon opoth xou (B) To wdvio €xel B3N ydoer pépoc tne evépyelds Tou uéypt va eloéhdel
oTov aviyveutt. Eredn) n mAeovétnta twy yeyovétwy vPnAns evépyeias aliniemdpoly uaxpid amé tov
aviyvevtn, 1oxvel enouévws 0Tt n opatn evépyeia elvar onuavtikd MIKPOTEPT) amé tny evépyeia Twv
vetpivwy. Aedopévou autod Tou YeyovdTog, Ya urnopoloe va uroostnetydel 6tL 1 anddoon tou NAL otig
vdPnAég evépyeleg elvan axdpn xoAOTERT Ad TNV AVOUEVOUEYY), 0POU 1) TAELOVOTNTO TV YEYOVOT®Y TEOR-
AETETOL OYETIXE XOVTE GTNY TEYUOTIXY T TOUG, Topd TOV Teploploldd auTo.

Aedopévou 6tL o aviyveutic ARCA mpoopiletan xupiws yior T UEAETN TV VETEiVWY UPNAGY EVERYELDY, TPOOTO-
VACUUE VO XATOVOHOOUUE xoAUTEPR TLC TPOBAEPELC TOU HovTENOU OTiC UPNAEC evépyeLleg, evTonilovTag aLTiddELG
oyéoeic UeTag) TV SeBOUEVKVY EIGHBOU XL TNS LETUBANTNG-0TOY OV, TG OTolEC YENOWLOTOLEl TO HOVTEAO YId VO
xdvel npoPAédeic. ‘Etol, ywpellouye to cbvolo dedopévwy oe evepyelonée topée edpouc 0,2 oe 10919 Errye %ot
e€etdlouvpe g mpoflAédelc Tou povtéhou oe xdde toun. lleploplléyacte oe un eXXVOVTA YEYOVOTA OTNV EV-
epyelndh nepoyh 106 - 108 GeV, dnoe gatveton oto Xy, 14. Ot topée Tne evépyelag aneovilovon Pe UTAE, EVe)
oL tpoPAédels yia o (Bl yeyovdta ye toptoxaii. I'ia xdde evepyelant| Toun,  x0pun TS XATAVOURS TLV TEOR-
Mewv Beloxeton oA xovtd oty Bl Ty topn. Autd woyler axdun xou oTic uPnidtepes evépyeleg. 2otdoo0,
xS PETOXVOVUAOTE TIREOG LYMAGTERES EVERYELES, 1 XAUTOVOUY TV TEOPBAETOUEVWY TV YIVETOL GNUAVTIXd
evplTep, Ye TOAAEC TtpoBAEdelc va elva TOAD YoUNAOTERES ANd TIC TEOYUOTIXES TUES, BLOTL, OIS TEPLUEVIE,
éva WxpdTERO T0c0aTH NG EVERYELXS elvan 0patd xatd Yéco dpo.

Energy Slice 6.0 - 6.2 (non-starting events) Energy Slice 6.4 - 6.6 (non-starting events) Energy Slice 6.8 - 7.0 (hon-starting events)
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Syfua 14: Evepyetanée topéc evpous 0,2 o€ logrg Eirue (UTAE) xou oL avtictoryes mpoPrédeic tou NAT
(ropToxall) Yo un exxavévia yeyovota otny evepyelox neptoyh 10° - 108 GeV.

Qot600, N UToEEN xoPLPWY oTic TPOBAEYELC oTIC LPNAOTERES EVEpYELOXES TOPES UTOBNADVEL TNV UTtopdn evéc N
TEPLOGOTERWY YUPUXTNELOTIXY TOU EMUTEETOLY TNV OVAYVOPELOY OUTWY TWV YEYOVOTWY WS YEYOVOTWY UPNAHS
eVépYELS, TOEd TO YEYOVOS 6TL elvan un exxavévta. ‘Eva tétolo yopoxtneliotind eivan o apidudg twy hits oe xdde
yeyovoe. H aneixdvion tou aprdpod tov hits oe oyéon pe tny evépyela Twv vetpivev Belyvel 0Tl To YEYOVOTA UE
neploodTepa omd 1.000 hits Peloxovton oyeddv amoxdelotind ot evépyetee méve ond 10° GeV, oyéon tny onola
To YoVvTélo €yel Tpoadlopioel, 6Twe palvetar oto Xy. 15. Me agopur authv Tny Tapathenoy), enavahaufdvouue
TIC EVEPYELXES TOUES, TEphaufdvovTog ovo ta un exxuvévta yeyovota pe Aydtepo and 1.000 hits (Xy. 16).
IpoywpwvTag oe VPNAOTERES EVERYELES TOUT TROG TOUT|, TAEUTNEOVUE OTL 1 XoTavouT| Twv TpofBiédewy votepel
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Yyhua 15: Aprdude hits avd yeyovoe cuvapthAoel Tng TeayUaTixhc EVERYELIS TV VETpivwY (aploTepd) xou Tne
TpoPAendpevne evépyetog and to NAL (deid). I'eyovéta pe nepioodtepa and 1.000 hits eppavilovto pe

noptoxahl ypdpo. To dixtuo to avoyvwpeiler owotd we Yeyovota LPNAc evépyelag.

ONOEVAL X0l TTEPLOGOTERO UM TIC TEAYHATIXES TWES TNG EVERYELOS, EVE Topdhhnhar otodioxd eEopahlveton. LTig
udnidtepeg evépyeleg, 1 xotavouy Twyv tpoBiédeny €xel yivel oyeddv eninedn. Me dhha Aoyia, Y oUTd TA
Yeyovéta, to povtélo vroektiud otadepd tnr evépyea atnr kAipaxa PeV (tdvw ané 105 GeV), dnwg arxpiBag
Tepiévae.

Energy Slice 6.0 - 6.2 (non-starting events, < 1.000 hits)

Energy Slice 6.4 - 6.6 (non-starting events, < 1.000 hits)

Energy Slice 6.8 - 7.0 (non-starting events, < 1.000 hits)
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Energy Slice 7.2 - 7.4 (non-starting events, < 1.000 hits)
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Energy Slice 7.6 - 7.8 (non-starting events, < 1.000 hits)
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Syua 16: Evepyetanée topéc ebpouc 0,2 o€ logrg Eirue (UThe) xou oL avticToryes mpoPrédeic tou NAT
(ropToxohl) yio un exavévia yeyovéta ue Myétepa and 1.000 hits otny evepyetoned neproyr 10° - 108 GeV.
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YuunepdopaTa

Ye auth v epyaota, e€epeuvolpe Tig duvatotntee Twv Neupwvindv Awtiwy [pdgpunv oty avtiuetdrion tou
TEOPBANUATOC AVOXATUAOXEUNG YEYOVOTWY OE TELRHUATO VETE(VWYV, CUYXEXPWEVO GTNY AVUXAUTOUCHEVT] EVERYELOC
yioo yeyovéta tpoyldc otov aviyveuth| vetpivwoy KM3NeT/ARCA21, ypnowonowwvtoc to yovtého DynEdge.
Avuté xardloTortan EPUXTO UE TNV EVOWUATWOT TNS Loppic dedouévey Bathde Mdidnone tou nelpduotoc KM3NeT
oto GraphNeT, n omola npaypatonoidnxe oto mAalolo aUTHC NG epyaciac. Suyxplvouue TiC BLdpopes dlopop-
POOCELS EXTAUDEUOTC Xl AVAPEPOUPE EXTEVS T AMOTEAECUITA. LUVOAMXY, DTG TOVOUNE 6Tl 1) Yprion Twy hits
OTYUOTOTWY 0¢ EGHBOU Yl TNV exmaldeuon uteptepel TNg exnaideuong Ye ta oxavdaiiouéva hits. H a&ioon-
pelTn avapopd e epyaciag Mo Vol 1 EVOWOUATWON NG TEYVXNAC TNG oTAOULONG BELYUAT®OY OTO UOVTENO,
péow tne omolag emTtuyydveton onpavTixy Bedtiwon e anddochc Tou ota yeyovoTa youniic evépyetag. H
TEOXUTITOUCO, OVOXATOOXEVY YOUUNATC EVERYELS EEMEPVA AL ToL TPONYOVUEVO LOVTERA, XO(OC XAl TO LOVTERO
tou OrcaNet xor Tov xhoowd ahyodprdupo avaxotooxeurc tou KM3NeT, ye yévo yétpia enintwon oto yéoo
e evepyeloxnc xhipoxag. H evowudtwon tne otddwong derypdtov e&ohelpel enlong tg yepoindieg twv mpo-
NYOUUEVWY UOVTEAWY AOYW TNG U1 OUOLOUOPYPNG EVERYELOXNG XATAVOUNS TOU GUVOLoL dedouévwy. Emmiéoy, 1
BLEPEUVNOT TNG AVOXAUTAOXEUTC YEYOVOT®WY UPNANC EVERYELIC TIOREYEL ALTIOAOYNOY TKV TEOBAEYEWY TOU LOVTEROU
OE AUTO TO EVERYELUXO EVPOC XOL UOC ETUTEETEL VAL EXTUUACOUUE TOUG PUOLXOUS TERLOPLOUOUE IOV EMNEEALOLY TNV
QVOXOTOOXELT] VTV TV veyovotwy. Téhoc, n mpwdtn auvth yenon tou miaciou GraphNeT oto KM3NeT
avaBeEYLEL TG BuvaTéTNTES auToL Tou gpyahelou Mnyavixric Mddnone, to onolo yiveton mAéov diardéoiuo oo
nelpopa KM3NeT.

MeArovTtixéc Enextdosic

Ta evprpota xou oL meploptopol mou culnTodvto oe aUTHY TNV epyacio utodetxviouv 6Tl umopel va deoy-
Vel mepantépn €peuva ue 0TéY0 TN BeATiwor TwV anoteAecudtwy avoxataoxeuic. MeAhovtixéc enextdoel Yo
unopoloay vo tepthaufdvouy:

o Anuiovpeyia LOOPPOTNUEVOL CUVOAOL SEBoUEVWY: Xe auThY TNV epyoaoia, 1 avouotopop@la Tou
GUVOAOL BEBOUEVWY avVTIUETOTIo TNXE P€ow TN oTddplong detyudtov. Autd avédvel T onuacia TV UT-
OEXTIPOCWTOVHUEVLY TEEPLOY DV EVERYELIG OTO GUVOAO JEDOUEVWV, (G TOCO 0 TEAYUATIXOC Aptduoc Betypdtwy
and QUTES TIC TEPLOYES TUPUUEVEL Yaunhog. Mo evahhaxtixy Tpooéyyiom Yo fitav 1 dnuovpyia evdg toop-
pomnuévou cuVOAOL BeBOUEVWLYV, UE ToV (Blo aptdud YeyovoTwy oe xdlde bin tng evépyelog, YENOUWOTOLOVTIS
v Thien mopaywyr MC dedopévwy yio tov aviyveut ) ARCA21. Auté Yo e&édete to povtélo oe meplo-
cotepa TopadelypaTo EXTAUBEVONE M TIC UTOEXTPOCWTOVUEVES EVERYELUXEC TEQLOYES, ETUTEENOVTAC TOU
evOEYOUEVKC Vo Ydel XUADTERES OVOTOEUC TAOELS YIo OUTEC.

o Xpnomn dapopeTixng ReTABANTAG-cToOY0oL: H petaffAnti-otdyoc yia Tic exnoudetoelg twv NAT
oc auThY TNV gpyaoia frav  MC evépyeio Tou vetpivou. Mnogel, duwe, va eivon TepLocdTERO PuUOLXA
AUTLOAOYNUEVT 1 XpNom WG ToooTNTAC TANPwS Tpocdloploung and Tig QuoxéS TAnpopopleg mou eivol
dladéolpec oe xde yeyovde, OTwe 1 opaty| EVERYELX V) 1) EVERYELYL TOU HLoViou O éva GUYXEXPLUEVO onpeio
e tpoxidc (1 onolo elvan xon 1 TocHTNTA OV EXTS O XAAGIXGS ahybpLduoc avaxotaoxeurc). Autd Yo
ATAULTOUGE TNV EVOWUATWOT TN¢ Véug petaAntic-otoyouv ota apyeia HDF5 tou KM3NeT DL.

o Xprhon véwv apyttextovixdv dixthou: apdlo mou n yeron twv NAT éyet anoderydel emtuyric
OF EPYOOIEC AVOXATUOXEUNG YLOL AVLY VEUTEG VETPIVWY, UTdpyEl auEavOUEVO EVBLAPEPOY TNV EMC TNUOVLXY
xoWOTNTA YLt TNV e€epedivnom xal dAAwY TUTKY poviéhwy. Idwaltepa, n epapuoy v Metaoynuatio toy
(Transformers), elte avtdvopa eite oe UPpIKée apyttextovixée NAT + Metooynuatiothe, €YEl TEOo-
eloel evBlagpépoy, Ye TEToloL eldoug povTéla va €youv 1on epappootel 6to GraphNeT.

e Egopuoy? o peyah\TERPES EXBOYES TOL AVLYVELTH: LNV TPEY0UCU LOPPT) TOUS, OL VLY VEUTES
tou mepduatog KM3NeT éyouv puévo éva pépog Tou mpoypapuationévou telol toug peyédous. Kadaog
OL OVLYVEUTEC EMEXTEIVOVTAL, EMEXTEIVOVTOL Xou Ol LXavOTNTEC TOUC otV aviyveuor vetplvwv, Wialtepa
600V apopd TIC TeEploYEc LYMAAC evépyetag Tou @dopatoc. H eqopuoyn poviéhomv Mnyavixic Mdidnong
oe epyaoieg avaxataoxeunc Yio UEYUAUTERES EXDOYEC TOU VLY VEUTY UTopel €TOL Vo TPOCQEREL Lol TILO
oaxEL3Y) AVOTAPAOTAGT) TV BUVATOTATMY AUTMY TWV TEXYVIXOV Xal XOAOTERN GUYXELOY TOUG HE TIC XAUCIXES
pevddoue.
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Chapter 1. Introduction

1.1 Overview and Motivations

Neutrinos are fundamental particles that play a crucial role in our understanding of the universe, yet they
are notoriously difficult to detect due to their weak interactions with matter. The study of neutrinos serves
various scientific goals, such as understanding the mechanisms behind high-energy astrophysical phenomena
and probing the fundamental properties of neutrinos themselves. Large-scale water Cherenkov detectors such
as KM3NeT/ARCA, an underwater neutrino telescope located in the Mediterranean Sea, observe neutrino
interactions by detecting the Cherenkov light produced when energetic neutrinos interact with atomic nuclei
in water.

One of the critical challenges in neutrino detectors is the accurate reconstruction of the physical properties
of each neutrino interaction, or event, such as the energy and direction of the incoming particle, based on
the pattern of optical hits in the detector photosensors. Reconstruction tasks in neutrino detectors have
traditionally been approached using classical algorithms such as maximum likelihood estimation, which rely
on well-established statistical techniques to optimize the fit between observed data and physical models of
neutrino interactions. In recent years, however, there has been growing interest within the Experimental
Neutrino Physics community around the use of Deep Learning methods to tackle event reconstruction tasks.
In particular, Graph Neural Networks (GNNs) have lately attracted attention, since the lack of grid-like
structure and the sparsity present in neutrino event data render their representation as graphs appropriate
and well-motivated. Graph Neural Networks have shown promise in improving neutrino event reconstruction
at only a fraction of the per-event computational cost and, for this reason, major experiments are proceeding
to incorporate GNNs in event reconstruction studies. To this end, KM3NeT has utilized the ParticleNet GNN
architecture, while the IceCube experiment has proposed the DynEdge model, an alternative to ParticleNet,
and developed GraphNeT, a Deep Learning framework specifically designed for use in neutrino telescope
event reconstruction tasks.

1.2 Contributions

This thesis explores the application of DynEdge, the Graph Neural Network architecture proposed by IceCube,
to the problem of energy reconstruction in the KM3NeT /ARCA neutrino detector, using the GraphNeT Deep
Learning framework. Our main contributions are as follows:

e Integration of the KM3NeT Deep Learning data format in GraphNeT, which extends the list of
GraphNeT-compatible file formats to include HDF5 files and enables the first use of GraphNeT in
the KM3NeT Collaboration. This tool thus becomes readily available for use in future KM3NeT en-
deavors.

e Evaluation of different dataset, model and training configurations with respect to their effect on the
quality of the energy reconstruction and determination of the best configuration choices.

e Direct comparison of the DynEdge architecture with ParticleNet, the Graph Neural Network architec-
ture employed in previous KM3NeT studies. The comparison validates the configuration choices and
the reconstruction capabilities of both models.

e Substantial improvement of the energy reconstruction at low neutrino energies (below 10 TeV) com-
pared to existing results, attained via the implementation of event weighting to balance the energy
distribution of the input dataset. This practice additionally eliminates any bias relating to the input
energy distribution, thus achieving a better-generalizing model.

e Investigation into the reconstruction of high-energy (PeV scale) neutrino events, providing justification
of the model predictions in this energy range and allowing better appreciation of the physical constraints
which limit the reconstruction of these events.
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1.3. Thesis Outline

1.3

Thesis Outline

This thesis is organized into the following Chapters:

Chapter 1: Introduction
Provides an overview of the motivations behind this study, as well as its contributions.

Chapter 2: Neutrino Physics
Contains a short introduction to neutrinos, including their types, sources, detection mechanism and
event topologies in underwater detectors.

Chapter 3: KM3NeT

Introduces the KM3NeT experiment, including its scientific goals and detector design. The trigger
system and background sources in the detectors are discussed. The problem of event reconstruction is
defined and the maximum likelihood event reconstruction method is then described.

Chapter 4: Deep Learning & Graph Neural Networks

Provides a brief overview of Deep Neural Networks. Graph Neural Networks are then discussed and
the graph structure, the concept of graph convolutions and the DynEdge network architecture are
introduced. A review of the use of Deep Learning and Graph Neural Networks in neutrino telescope
event reconstruction is then provided.

Chapter 5: Energy Reconstruction with Graph Neural Networks

Presents the application of the DynEdge network to the problem of energy reconstruction in
KM3NeT/ARCA21. The integration of the KM3NeT data format in GraphNeT is examined. The
dataset that was used, as well as various aspects of the training implementation are discussed. Finally,
the findings of the trainings, including analysis and interpretation of the results, are then extensively
presented, highlighting our contributions.

Chapter 6: Conclusion
Provides a summary of the thesis and its findings, as well as suggestions for future work.
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Chapter 2. Neutrino Physics

2.1 Neutrinos in the Standard Model
2.1.1 The Standard Model of Particle Physics

Much of the progress in modern physics has been driven by the quest to determine the fundamental con-
stituents of matter and their interactions. In the second half of the 20th century, this quest materialized into
a robust theoretical framework, the Standard Model (SM) of Particle Physics, which is in excellent agreement
with the vast majority of experimental data [1]. In the SM, there exist 12 matter particles with half-integer
spin, called fermions, divided into 6 quarks and 6 leptons. Quarks form composite particles, called hadrons
(e.g. the proton p(uud) or the neutron n(udd)). The 12 fermions can also be divided in three generations
of 4, each generation containing heavier but otherwise similar particles to the previous one. Furthermore,
for each particle, there exists a corresponding antiparticle, which has the same mass and spin, but opposite
charges (e.g. electric charge). The SM also incorporates three of the four known fundamental interactions, or
forces, (electromagnetic, strong & weak interactions), while gravity is not a part of the SM. Each interaction
is mediated through force-carrier particles with integer spin, called bosons. The photon is the mediator for
electromagnetism, the W* and Z bosons mediate the weak force, while the strong force is mediated by glu-
ons. The currently established SM framework is completed by the Higgs boson, whose associated quantum
field is responsible for the generation of particle masses. An overview of the SM picture of the elementary
particles of nature can be seen in Fig. 2.1.

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
I 1I III
mass  =2.16 MeV/c? =1.2730 GeV/c? =172.57 GeV/c® 0 =125.20 GeV/c?
charge | % % % 0 0
spin | %2 U % C % t 1 9 0 H
up charm top gluon higgs
=4.70 MeV/c? =93.5 MeV/c* ~4.183 GeV/c* 0
- - -% 0
» % S x (D @
down strange bottom photon

~0.5110 MeV/c? ~105.66 MeV/c? ~1776.93 MeV/c? ~91.1880 GeV/c?
-1 = =il 0
v » (. v ' &

electron muon tau m
<0.8 ev/c? <0.17 MeV/c? <18.2 Mev/c ~80.3692 GeV/c?
0 0 0 +1
» Ve % Vp w (Vg 1 \M

electron muon tau

neutrino neutrino neutrino W boson

Figure 2.1: Particles in the SM of Particle Physics. The faint lines indicate which fermions (i.e. quarks &
leptons) interact with each force-mediating boson. Antiparticles are not shown. From [2].

2.1.2 Neutrinos

Neutrinos are SM fermions of spin 1/2 that belong in the lepton family. There are three neutrino flavors, one
for each of the three fermion generations. Each neutrino flavor is associated with a corresponding charged
lepton (electron, muon or tau). Thus, the three neutrino flavors are the electron neutrino v,, the muon neutrino
v, and the tau neutrino v;. Their corresponding antiparticles are denoted by V., ¥, U, respectively. Like
all leptons, neutrinos do not interact with the strong force and, since they are electrically neutral, they
do not interact electromagnetically either. Consequently, in the SM, neutrinos only participate in the weak
interaction.
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2.2. Neutrino Sources

Neutrinos were postulated in 1930 by W. Pauli as a means to explain the continuous energy spectrum
of electrons in S-decays, while ensuring energy, linear and angular momentum conservation [3]. The term
“neutrino” was coined by E. Fermi, who in 1934 included the particle in his theory of S-decay [4]. The
existence of the neutrino was finally established by the Cowan-Reines experiment in 1956, in which electron
antineutrinos produced in a nuclear reactor were detected [5]. The muon neutrino was discovered in 1962 by
L. Lederman, M. Schwartz and J. Steinberger [6], while the tau neutrino was only discovered in 2000, by the
DONUT Collaboration at Fermilab [7]. The observation of neutrino flavor oscillations, a phenomenon where
neutrinos produced in flavour v, can later be detected in flavour vg, by the Super-Kamiokande Collaboration
in 1998 [8] and the SNO Collaboration in 2002 [9] confirmed that neutrinos possess non-zero mass. This is in
contrast to the SM, according to which neutrinos are massless. The mechanism through which neutrinos gain
mass, the neutrino oscillation parameters and the exact values of the neutrino masses are topics of active
experimental and theoretical research [10].

2.2 Neutrino Sources

Neutrinos are the most abundant known massive particles in the Universe. There exist a number of different
types of neutrino sources, producing neutrinos with energies that span many orders of magnitude, from
(possibly) sub-meV up to EeV!, as can be seen in Fig. 2.2. For the energy range of interest in this thesis
(high-energy neutrinos in the TeV /PeV regime), the most important contributions to the neutrino flux come
from atmospheric and astrophysical neutrinos.

=100 |
- - Cosmological v
=10 |
in 10m | Solarv
TE i Supernova burst (1987A)
8100
x - ) ___Reactor anti-v
210 f -
|55

Background from old supernovae

104
10® b Terrestrial anti-v

102} Atmospheric v

10°7%F ‘v from AGN
‘IO 200

Cosmogenic

10} v

107}

10 107 1 10° 10° 107 10" 10" 10
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Neutrino energy

Figure 2.2: Measured and expected neutrino fluxes from different neutrino sources as a function of neutrino
energy. From [11].

eV =1.602 x 1019
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Chapter 2. Neutrino Physics

2.2.1 Atmospheric neutrinos

Atmospheric neutrinos are produced in cosmic ray interactions with atomic nuclei in the Earth’s atmosphere.
Cosmic rays are high-energy charged particles of galactic and extragalactic origin, mainly protons and other
atomic nuclei, that constantly bombard the Earth. Their collisions with atomic nuclei in the atmosphere
result in particle cascades, as illustrated in Fig. 2.3, in which charged pions 7+ and kaons K* are produced
in large numbers. These mesons? are unstable and can decay into muons:

Kt —ut +u,,

(2.1)

T, K~ —u +7v,.
Muons are themselves unstable, decaying into electrons and two neutrinos:

+ + =

— e’ + V. +V,,
" ot (2.2)
w o —e +Vetv,.

This is the primary mechanism by which atmospheric neutrinos are created. These neutrinos constitute the
conventional neutrino flur and, as evident by the above decay chain, are expected in flavor ratio v : v, :
v; &~ 1:2:0. Since cosmic rays are positively charged nuclei, more 7, K+ than 7—, K~ are produced and
therefore the ratio of neutrinos to antineutrinos is greater than 1. The ratio v, : v, (i.e. nye”i;:‘) increases
with energy, since at higher energies more muons can reach the surface of the Earth before decaying, due to
relativistic time dilation [12, 13]|. Cosmic ray cascades also produce heavier hadrons - containing at least one
charm or bottom quark- whose decays also produce atmospheric neutrinos. These neutrinos constitute the
prompt neutrino fluz, which is expected to dominate over the conventional flux for neutrino energies greater
than 1 PeV [13, 14]. The atmospheric neutrino flux is the dominant neutrino flux in the GeV to TeV energy

range.

\
\
\ Cosmic ray

Figure 2.3: Atmospheric neutrino production in a cosmic ray cascade, caused by the interaction of the
primary cosmic ray with an atmospheric nucleus, over the underground Super-Kamiokande neutrino
detector. From [12].

2Hadrons containing one quark and one antiquark.
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2.2. Neutrino Sources

2.2.2 Astrophysical neutrinos

Cosmic rays are produced in a variety of astrophysical sources in the Universe, in which hadrons are acceler-
ated to very high energies. As a byproduct of the acceleration of hadrons at cosmic ray sources, high-energy
neutrinos (as well as y-rays) are produced, often referred to as astrophysical neutrinos. There are two main
processes contributing to neutrino production at cosmic ray sources, proto-hadronic and photo-hadronic inter-
actions. In proto-hadronic interactions, high-energy protons interact with other high-energy protons/nuclei,
resulting in the production of (among others) charged mesons, mostly pions 7%, and also kaons K*, which
eventually decay leptonically, producing neutrinos:

p+p/N — X + 75 /K*, (2.3)

KT T (2.4)
K~ —pu +7,, '

NJr —)eJFJrz/eJrﬁ“, (2.5)
uo—re +v.+vy,. '

In photo-hadronic interactions, high-energy protons interact with photons, producing At baryons®, which
decay into pions and protons/neutrons:

p+y— AT —p+a°, 26)
p+y— AT — T, '

In the second decay mode, 7T particles then decay as above, while neutrons decay into protons, thereby also
producing neutrinos:
n—p+te +7V.. (2.7)

Since pion decay is the main mechanism which produces neutrinos in cosmic ray sources, the production flavor
ratio is expected to be v, : v, : v, = 1:2: 0. However, due to neutrino oscillations, astrophysical neutrinos
are expected to reach the Earth with flavor ratio v : v, : v, &= 1:1:1 [15]. The astrophysical neutrino flux
is sub-dominant to the atmospheric neutrino flux below 100 TeV, however astrophysical neutrinos dominate
over atmospheric in the PeV scale.

Astrophysical neutrino sources can be of both galactic and extragalactic origin. Galactic sources are thought
to include supernova remnants (SNRs), pulsar wind nebulae (PWNe), binary systems such as microquasars,
as well as galactic structures like the Fermi bubbles [15, 16], while extragalactic sources, which are expected
to dominate the cosmic ray spectrum at energies above 1 PeV, are thought to include Active Galactic Nuclei
(AGNs), Gamma-ray bursts (GRBs), tidal disruption events (TDEs) and starburst galaxies [17, 18].

Unlike charged cosmic ray particles, which can be deflected by interstellar magnetic fields, and high-energy
photons, which can be absorbed by the interstellar medium, neutrinos travel virtually unobstructed and
therefore their direction of travel points to the original cosmic ray source. This property makes astrophysical
neutrinos ideal cosmic messengers and has allowed for the establishment of a new astronomy sub-field, neu-
trino astronomy. Together with the emerging field of Gravitational Wave astronomy, as well as traditional
astronomy (i.e. observations across the EM spectrum) and cosmic ray observations, they provide multiple
“messengers” for studying astrophysical objects and processes. This practice of combining observations from
different messengers in astronomy research is called multi-messenger astronomy [19-21].

3Hadrons containing three quarks or three antiquarks.
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Chapter 2. Neutrino Physics

2.3 Neutrino Detection

2.3.1 Neutrino interactions with matter

The main mechanism by which high-energy neutrinos (e.g. atmospheric and astrophysical neutrinos) interact
with matter is Deep Inelastic Scattering (DIS) between them and nucleons (i.e. protons or neutrons in atomic
nuclei). In DIS, the neutrino interacts with an individual quark of the nucleon, depositing enough energy to
the quark to cause the destruction of the original nucleon and the production of a hadronic cascade [22].

As mentioned in Sec. 2.1, neutrinos in the SM participate only in the weak interaction, which is mediated
via the W* and Z bosons. There are therefore two types of neutrino-nucleon interactions: charged current
(CC) interactions mediated by W= bosons and neutral current (NC) interactions mediated by Z bosons.
These interactions are represented below, where N refers to the nucleon and X to the hadronic cascade,
while [ = e, u, T:

wto,_
CC:yy+N—I1 +X,
cC:o+NY 0t 1 x, (2.8)
NC:Y,+N LY+ X
In general, the interaction of neutrinos with electrons has a much smaller cross section? than the neutrino-

nucleus interactions and thus can often be ignored. However, the interaction of antielectron neutrinos with

electrons to produce W~ bosons exhibits a resonance at center-of-mass energy equal to the W boson mass,
M3,

/s = My = 80.4 GeV, which, in the electron rest frame, corresponds to a neutrino energy of F, = Tl = 6.3
PeV. This is known as the Glashow resonance [23, 24]:
X ~ 67.4
Uet+e — W — _ % (2.9)
I +7 ~ 32.6% (all flavors) .

where X again refers to a decay into hadrons and [ = e, u, 7. Indicative cross sections for the neutrino-matter
interactions described above can be seen in Fig. 2.4.

10730 ; ; ;

10 100 1000 104 10° 10° 107
E, (TeV)

Figure 2.4: Neutrino-matter interaction cross sections in the TeV and PeV regime (neutrino-nucleus CC/NC
& Glashow resonance). From [25].

4In physics, the cross section of an interaction is a measure of the probability that this interaction will occur between two
particles.
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2.3. Neutrino Detection

2.3.2 Cherenkov neutrino detection

Neutrino detection in neutrino observatories relies on the phenomenon of Cherennkov radiation. Cherenkov
radiation is produced by charged particles moving through a dielectric medium faster than the phase velocity
of light in that medium [26]. This happens because charged particles will polarize the particles of the medium
nearest to them. As they return to their ground state, the medium particles emit the excess energy as photons.
If the velocity of the charged particles is greater than that of light in that medium, successive wavefronts
overlap, interfering constructively and resulting in a conical wavefront at a characteristic angle from the
particle track (Cherenkov angle):

cos(f.) = — (2.10)

where n is the refractive index of the medium and 8 = Z, v being the velocity of the charged particle. This
is illustrated in Fig. 2.5. For relativistic (8 ~ 1) charged particles in water, 0, ~ 42°.

Figure 2.5: Cherenkov radiation (in blue) emitted at Cherenkov angle # from the track of a charged particle
which is moving horizontally at velocity v = ¢ inside a medium with refractive index n. From [27].

As evident from Eqs. 2.8, 2.9, when neutrinos interact with matter, charged secondary particles are produced.
If some of these particles —or their decay products— are moving with superluminal velocities in the medium
in which they are travelling, Cherenkov radiation will be emitted, which can then be detected with arrays of
suitable photodetectors, called photomultiplier tubes (PMTS).

In order to detect these Cherenkov photons, neutrino observatories need to operate in conditions of darkness.
Furthermore, they need to be shielded against atmospheric muons, which also produce Cherenkov radiation
as they pass through matter. Lastly, one should note that (a) neutrinos have extremely small cross sections,
since they only interact via the weak interaction, and (b) the neutrino flux decreases rapidly with energy in the
high-energy regime (see e.g. Fig. 2.2). It is therefore necessary for neutrino observatories to be sufficiently large
and thus be based on an abundant dielectric medium, such as water. In order to meet the above conditions,
neutrino observatories are usually constructed underwater (KM3NeT [28], ANTARES [29], Baikal-GVD [30]),
in the Antarctic ice (IceCube [31]) or in large underground water tanks (Super-Kamiokande [32]).

2.3.3 Neutrino event topologies

The different types of neutrino-matter interactions presented in Sec. 2.3.1 lead to different particle products
and therefore different event signatures, or topologies, in neutrino detectors. There exist two basic kinds
of topologies that can be part of a neutrino event signature: tracks & showers. A track refers to a single
charged particle producing the characteristic Cherenkov radiation cone. The only particle that produces a
track topology in Cherenkov neutrino detectors is the muon, since high-energy muons can travel up to several
kilometers in water before decaying. A shower refers to a cascade of particles and can be either hadronic
or electromagnetic. Hadronic showers originate from the energy transferred to quarks and consist primarily
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Chapter 2. Neutrino Physics

of hadrons. On the other hand, electromagnetic showers originate from electrons. High-energy electrons lose
energy via the process of bremsstrahlung (German for “breaking radiation”), i.e. photon emission. These
high-energy photons then produce electron-positron® pairs, which are themselves subject to energy loss via
bremsstrahlung. This process is hence repeated several times until the energy that was carried by the original
electron has been dissipated, thus creating the cascade [33]. High-energy showers are generally cylindrically
shaped, with length of the order of 10 m and diameter of the order of 10 cm. Individual charged particles
produced in showers also emit Cherenkov radiation according to Eq. 2.10, provided they move at superluminal
speeds inside the medium. However, the collective emission pattern of all the particles in a shower is not a
cone but a spherical wavefront with increased intensity at the Cherenkov angle with respect to the cascade
axis [15].

Charged Current Neutral Current

== | == === | ==

nucleon hadronic jet | nucleon hadrenic jet nucleon hadronic jet nucleon hadronic jet

v,

‘J‘e Ul-l ‘J.l. »
\ high energy \ \ \
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jet &’ jet jet & jeto \

Figure 2.6: Overview of the event signatures produced in neutrino-nucleon CC & NC interactions. For NC
interactions, the event signature is the same for all three neutrino flavors. From [34].

"=

All neutrino-nucleon interactions (Eq. 2.8) contain a hadronic shower component, as can be seen in Fig.
2.6. This component originates from the nucleon and is a result of the energy deposited to it during the
interaction. For NC interactions, regardless of the neutrino flavor, this is the only available event signature,
since the outgoing neutrino does not interact any further. In electron (anti)neutrino interactions, the outgoing
eT will additionally produce an electromagnetic shower, with the same starting point as the hadronic shower.

In muon (anti)neutrino interactions, the outgoing uF constitutes a particle track. NC and (D)e CC events are

commonly called shower-like events or shower events, while (1;)“ CC events are commonly called track-like
events or track events.

For (ﬂ)T CC events the situation is slightly more complicated. Since taus have a much shorter lifetime than
muons, they quickly decay, having traversed only a short distance from the interaction vertex. Tau particles
decay in the following manner (shown for 7, similar for 7):

X ~ 64.8%
T — e +TU.+u,s ~ 17.8% (2.11)
T T S 7 ~17.4%,

where X represents a hadronic cascade. For the first two decay modes, a hadronic or electromagnetic shower
will be produced respectively. The overall signature of the event will therefore consist of the initial hadronic
shower associated with all neutrino-nucleon interactions, as well as a second shower, overlapping with the
first but with a different interaction vertex. This is often called a double-bang event. Given the proximity of
the two interactions vertices, double-bang events are usually difficult or even impossible to resolve. For the
case of the muon decay of the tau, the event signature is a muon track instead of a second shower, making
this a track-like event.

5Established name for the antielectron.
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2.3. Neutrino Detection

Finally, 7.e~ Glashow resonance event signatures can be inferred from Eq. 2.9. These events will usually
produce a hadronic shower. For the W~ decay into an electron, an electromagnetic shower will be produced,
while for the deacy into a muon the outcome will be a muon track. For the tau decay of the W~ the result
will depend on the decay of the tau, as described above (2.11). Therefore, the Glashow resonance produces
a track only in a little over 10% of decays.

For the remainder of this thesis, we will focus on track-like events, specifically track-like events from v u CC
interactions, since this is the main neutrino-induced track channel in neutrino detectors.
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Chapter 3. KM3NeT

3.1 The KM3NeT Experiment

The Cubic Kilometer Neutrino Telescope (KM3NeT [28]) is an international research collaboration develop-
ing next-generation neutrino telescopes in the depths of the Mediterranean Sea. KM3NeT, a successor to
ANTARES |[29], consists of two underwater Cherenkov neutrino detectors, both utilizing the same detection
principle but a different detector layout, optimised for each detector’s scientific goals. The two detectors are
KM3NeT/ARCA (Astrophysical Research with Cosmics in the Abyss) and KM3NeT/ORCA (Oscillations
Research with Cosmics in the Abyss). An overview of the KM3NeT member institutes and detector locations
can be seen in Fig. 3.1.
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Figure 3.1: Overview of the KM3NeT Collaboration member institutes’ locations (white) and detector sites
(yellow). Apart from the two detector sites for ARCA and ORCA, a third suitable site is shown off the
coast of Pylos, Greece. Courtesy of KM3NeT.

3.1.1 KM3NeT/ARCA

The ARCA detector is located approximately 100 km southeast of Capo Passero in Sicily, Italy, deployed at a
depth of 3,500 m. ARCA’s scientific objective is to contribute in neutrino astronomy, i.e. observe neutrinos of
astrophysical origin. To this end, ARCA consists of sparse photodetector arrays, forming a 1 GTon detector,
in order to be sensitive to neutrinos in the TeV /PeV energy range, where astrophysical neutrinos dominate
the neutrino flux. ARCA aims to study the diffuse astrophysical neutrino flux, initially discovered by IceCube
[35], as well as to determine astrophysical neutrino point sources of galactic and extragalactic origin. For this
reason, its location on the globe is advantageous since its field of view contains the galactic centre and most
of the galactic disk. Furthermore, its position in the Northern Hemisphere, i.e. in the opposite hemisphere
to the IceCube detector in the South Pole, means that the two telescopes have complimentary fields of view.

3.1.2 KM3NeT/ORCA

The ORCA detector is located approximately 40 km offshore Toulon, France, near the site of the decommis-
sioned ANTARES detector, at a depth of 2,450 m. ORCA’s scientific objective is related to the phenomenon
of neutrino oscillations, in which neutrinos produced in flavour v, can later be detected in flavour vz, where
o, = e pu, 7, « # (. This signifies the existence of three neutrino mass states v1, vs, v3, with masses
m1, ma, mg respectively. Using neutrino oscillations, the squared mass differences Amfj =m? — m?, where
i,j = 1,2,3,1 # j, can be determined, therefore also determining the neutrino mass hierarchy, that is the
ordering of the three neutrino masses. There exist two independent squared mass differences, say Am32, and
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AmZ2,, since Am32, = Am2;, — Am3,. While Am3, has been determined to be Am2; = 7.4-107° eV? (i.e.
positive, mg > my1), the sign of Am2; has not yet been determined, with |Am2;| = 2.5-1072 eV? [36, 37]. As
a result, there are two possible neutrino mass orderings, the normal ordering, where m; < ms < mg, and the
inverted ordering, where mz < m; < ms. ORCA aims to determine the sign of Am3, and thus the neutrino
mass hierarchy. To this end, ORCA focuses on atmospheric neutrinos in the GeV energy range, thereby using
much denser photodetector arrays than ARCA, which form a detector of about 7 MTons.

3.2 Detector Design

As previously stated, the KM3NeT detectors are water Cherenkov detectors. This means that they employ
arrays of photodetectors to capture Cherenkov radiation emitted by the neutrino interaction products, as
explained in Sec. 2.3.2. The KM3NeT detectors are modular, consisting of vertical photodetector arrays called
Detection Units (DUs). The final ARCA detector will contain 230 such DUs, arranged in two separate building
blocks of 115, while the final ORCA detector will contain 115 DUs in a single building block. Each DU consists
of 18 so-called Digital Optical Modules (DOMSs), 17-inch diameter pressure-resistant glass spheres, containing
the actual photodetectors and the readout electronics. The DOMs are the most fundamental components
of the KM3NeT detectors. Each DOM contains 31 3-inch photomultiplier tubes (PMTs) facing in different
directions, allowing Cherenkov light to be detected from almost any angle [28, 38]. A KM3NeT multi-PMT
DOM can be seen in Fig. 3.2. Apart from the DOMs, each DU also contains an electro-optical cable for power
and data transmission. The DUs are anchored to the seabed and are held upright by buoys. Note that this
design entails that the DUs can be displaced horizontally due to ocean currents and so the precise position of
the DOMSs has to be monitored. The detector is linked to the shore via the main electro-optical cable, which
transmits power to the detector and data to the shore. An artist’s impression of a KM3NeT detector can be
seen in Fig. 3.3.

=l

Figure 3.2: A KM3NeT multi-PMT Digital Optical Module (DOM). From [28].

On average, the horizontal distance between DUs is 90 m for ARCA and 20 m for ORCA, while the vertical
spacing of the DOMs in each DU is 36 m for ARCA and 9 m for ORCA. This gives ARCA DUs a total
height of about 700 m and ORCA DUs a total height of about 200 m. Each of the two ARCA building
blocks will have a radius of approximately 500 m and a volume of 0.5 km?, giving the full ARCA detector an
instrumented volume of 1 km?. The full ORCA detector will be much smaller, with a radius of only about
100 m and an effective volume 150 times smaller than ARCA. ARCA’s much larger instrumented volume
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of seawater is necessary to observe astrophysical neutrinos at a reasonable event rate, since they sit in the
high-energy, low-flux part of the neutrino energy spectrum. The detector configuration of interest for this
thesis is the ARCA detector with 21 DUs deployed, hence referred to as ARCAZ21, since this is the latest
version of ARCA for which data-taking was complete while work for this thesis was being carried out.

Figure 3.3: Artist’s impression of a KM3NeT detector on the sea floor. The DUs, consisting of a base, 18
DOMs and a buoy, can clearly be seen. Courtesy of KM3NeT.

3.3 Data Acquisition and Triggering

KM3NeT operates under an all-data-to-shore concept. For each PMT photon hit, the photon time of arrival,
the Time-over-Threshold (ToT) and a PMT identifier are recorded and sent to shore. The photon time of
arrival is defined as the moment when the amplitude of the PMT signal surpasses the predefined threshold
of 0.3 photoelectrons. Similarly, the ToT is the time interval for which the amplitude remains over the
aforementioned threshold.

The data rate for a complete building block of 115 DUs is expected to be roughly 25 Gb/s. Data reduction
using real-time on-shore event triggering is therefore required before data can be stored on disk. Triggering
refers to the process of identifying and selecting candidate events of interest from the detector data stream
using appropriate criteria. The KM3NeT trigger system uses three trigger levels:

e LO trigger: refers to the threshold for a PMT pulse to be recorded as a hit, which is applied offshore.
LO hits are therefore all the recorded hits.

e L1 trigger: refers to a local coincidence of two or more L0 hits from different PMTs in the same DOM
within a fixed time window of AT = 10 ns.

e L2 trigger: refers to more sophisticated coincidence filtering making use of the PMT orientations.

Different triggering algorithms can be applied to identify track-like and shower-like event topologies. For
ARCA, an event is triggered if at least 5 L1 hits in different DOMs are identified as causally connected by
the track or shower trigger algorithm [28]. All of the L1 hits which form an event are referred to as triggered
hits. When an event is triggered, all the L0 hits in a time window around the triggered hits (i.e. starting
before the first L1 hit and ending after the last L1 hit) are stored. These are called snapshot hits and are the
complete set of hits in the detector during and around the event.
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3.4 Background Sources

Apart from neutrino-induced signals, several background sources which can cause photon hits in the detector
PMTs exist. These background sources can be divided into noise background and physics background.

3.4.1 Noise background

Noise background refers to processes contributing optical noise to the PMTs, which is rejected by the triggering
algorithms. Noise background in the detectors stems from radioactive decays in seawater and bioluminescence.

Radioactive decays

Seawater contains trace amounts of radioactive elements, the most abundant of which is potassium-40 (“°K).
40K has a half-life of 1.25 - 10° y and decays via beta decay or electron capture [39]:

Vg 0Ca+e +7,  (89.28%),

VK +em —YAr+y+v.  (10.72%). 31
With an energy around 1 MeV, the beta decay electron can produce Cherenkov radiation. Similarly, the
gamma ray photon emitted from the excited °Ar nucleus in the electron capture process can scatter off
electrons via Compton scattering. These electrons may then also emit Cherenkov radiation. “°K decays
represent the main source of noise in the KM3NeT detectors, creating a persistent optical background capable
of producing L1 hits.

Bioluminescence

Bioluminescence is the emission of visible light by living organisms. It is highly common in the deep sea,
where little to no sunlight is present. Bioluminescent organisms in these environments exhibit remarkable
diversity, ranging from microorganisms such as bacteria to crustaceans, jellyfish and fish [40]. Larger animals
usually produce short bioluminescence events, e.g. lasting a few seconds. On the other hand, bioluminescent
microorganisms produce a more consistent, yet less intense optical background. Also, their bioluminescent
activity is subject to seasonal variations. The effect of bioluminescence on the detectors can be reduced using
a high-rate veto, where data from a PMT is vetoed if its hit count exceeds a certain threshold.

3.4.2 Physics background

Physics background refers to physical processes that produce signals similar to those of interest. These
signals fulfill the trigger conditions and are thus identified as events. Therefore, their contribution needs
to be subtracted during data analysis. The physics background of the KM3NeT detectors are atmospheric
muons. For ARCA, atmospheric neutrinos are also considered part of the background.

Atmospheric muons

As evident from Eq. 2.1, the same cosmic ray showers which produce atmospheric neutrinos in the Earth’s
atmosphere also produce large numbers of muons. These so-called atmospheric muons do not always decay
before reaching the surface and can even traverse large amounts of rock or water, gradually losing energy and
emitting Cherenkov radiation in the process. Building neutrino detectors in deep underground or underwater
locations therefore provides shielding against most of the atmospheric muons. Even so, the majority of
triggered events in the KM3NeT detectors are atmospheric muon events. Unlike neutrinos, muons cannot
pass through the Earth, meaning atmospheric muons only travel through the detector in downward angles, as
can be seen in Fig. 3.4. For this reason, it is possible to remove their contribution by rejecting downgoing tracks
during data analysis, leaving only upgoing or starting tracks (i.e. tracks that start inside the instrumented
volume, indicating a neutrino interaction occurred) to be considered as neutrino events.
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Atmospheric neutrinos (ARCA)

The ARCA detector, as described in Sec. 3.1.1, aims to detect astrophysical neutrinos. Therefore, specifically
for ARCA, atmospheric neutrinos consitute a form of irreducible background, since they are indinstiguishable
from astrophysical neutrinos in the detector. However, as discussed in Sec. 2.2.2, the astrophysical neutrino
flux dominates over the atmospheric flux above 100 TeV. Hence, even though differentiation of atmospheric
and astrophysical neutrinos is not possible on an event-by-event basis, one can study the astrophysical
neutrino flux by focusing on the higher part of the neutrino energy spectrum, where the contribution of
atmospheric neutrinos becomes negligible.
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Figure 3.4: Flux of atmospheric muons (at different water depths) and atmospheric neutrino-induced muons
(of different energies) as a function of the cosine of the zenith angle . For downward angles, i.e. cos(f) > 0,
the atmospheric muon contribution dominates the total flux. From [41].

3.5 Event Reconstruction

As explained in Sec. 3.3, once an event has been triggered, all of its snapshot hits are stored. Stored hits
contain the following information, where position refers to the PMT position, while the direction components
form a unit vector according to the PMT direction:

e position-z, -y, -z

e direction-z, -y, -z

e time of arrival ¢

e Time-over-Threshold ToT

As with any Physics experiment, data collection in KM3NeT serves to provide physicists with the necessary
data to perform analyses aimed towards achieving the Physics goals of the experiment. Such data analyses
require the use of high-level physical information characterizing each neutrino event as a whole, such as the
neutrino direction or the energy deposited in the detector as a result of the event. However, raw detector
data consist solely of the individual PMT hits which constitute each event. That is to say, they are low-level
data, from which higher-level information needs to be inferred. Therefore, before any data analysis can take
place on the stored events, it is necessary that they are reconstructed.
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Event reconstruction is the process of estimating parameters of interest for each event in question (such as
the energy or direction of a particle), given the set of hits which constitute the event. In other words, it refers
to the procedure of extracting high-level event information from low-level data recorded by the detectors.
Event reconstruction in KM3NeT is accomplished using dedicated reconstruction algortihms, which take as
input the set of PMT hits of each event and produce as output estimates of the reconstructed quantities of
that event. Separate reconstruction algorithms are applied to track and shower events, to account for their

differing topologies. The present work studies (;)u CC interactions, therefore we will focus on the case of
tracks by describing the corresponding track reconstruction algorithm.

The goal of the classical KM3NeT track reconstruction algorithm is to fit the hypothesis of a muon track
to the event data (i.e. the hits), thereby determining the trajectory and energy of the muon. The algorithm
is based on maximum likelihood estimation, i.e. it aims to maximise the likelihood that the hit pattern
corresponds to the fitted muon trajectory and energy [28]. Since both the muon position and direction are
fit parameters, the problem is non-linear and is tackled in successive steps, referred to as the reconstruction
chain. This reconstruction process is outlined in [42].

Prefit

In the first step, called the prefit, a multitude of fits is performed, each one with a different assumed direction
of the track, with a step of 1°. By assuming a track direction and ignoring the effects of photon scattering,
the problem is reduced to a linear one. The coordinate system is defined such that the muon travels along
the z-axis. The remaining parameters of the fit are then the position (xg, yo) of the muon and the time ¢
at which it crosses the z = 0 plane. The linear fit is based on the expected Cherenkov photon arrival times,
which are a function of the fit parameters (zq, yo) & to. The parameter values are obtained by minimization
of the x2, which expresses the time difference between the actual and expected photon arrival times for
given (xg, yo) & to. The fit is performed using only a subset of causally connected hits, in order to reduce
the contribution from the optical background. The process is repeated for all directions and the 12 best-fit
directions are stored to be used in the next reconstruction stage. The best-fit directions are determined by
the fit quality @, which is defined as:

X2

= NDF — 0.2
@ 0 5NDF7

(3.2)

where NDF is the number of degrees of freedom, i.e. the number of hits used in the fit. The inclusion of the
NDF in the fit quality serves to weigh fit directions with fewer used hits less favorably than directions with
a large number of hits used in the fit.

Muon trajectory fit

In the following step in the chain, the muon trajectory is reconstructed with a maximum-likelihood search,
using the best-fit directions from the prefit as a starting point. The muon direction and position are now
fitted simultaneously, by minimization of a likelihood ratio function. This function is based on semi-analytical
probability density functions (PDFs) of the photon arrival times, describing the chance of observing a PMT hit
at a relative time At with respect to the expected arrival time of a direct hit from an unscattered Cherenkov
photon. The PDFs incorporate the effects of light scattering and dispersion, as well as information such as
the optical background rate and the quantum efficiency and angular acceptance of the PMTs. These PDFs,
denoted here f, are used to construct a function £(H;) characterizing the likelihood that the observed hit
pattern was a result of the track hypothesis Hy:

L(Hy) =[] f (pir i ¢4, A1), (3.3)

hits

where p; is the distance of closest approach of the muon to PMT ¢, 6; and ¢; describe the PMT orientation
with respect to the track, and At is the difference between the expected and measured light arrival time. A
similar function £(Hy) representing the likelihood that the hit pattern was caused by the optical background
is also constructed. Track reconstruction is then performed by minimizing the likelihood ratio:
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(3.4)

This minimization identifies the track parameter values which are most compatible with the observed hit
pattern. Once those have been determined, the muon trajectory has been fitted.

Muon energy fit

Finally, the muon energy is fitted by examining photon hits in all PMTs within a cylindrical volume sur-
rounding the reconstructed track. Specifically, for each PMT in this cylinder, an estimate of the number of
hits from various sources such as *°K decays, electromagnetic showers and ionisation and radiative energy
losses of the muon is produced using the PDFs. As a result, the expected number of hits for each PMT
is calculated as a function of the muon energy and follows a Poisson distribution. The likelihood L(E,,) of
the observed hit pattern as a function of the muon energy E,, can then be determined using the hit/no-hit
probability for all PMTs within the cylinder surrounding the track. Maximisation of this likelihood yields the
reconstructed muon energy value.

The classical KM3NeT reconstruction chain described above already produces very good results. It will
therefore serve as an excellent benchmark for improvement efforts using Deep Learning techniques, which
will be discussed in the following Chapter.
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4.1 Deep Learning

Deep Learning (DL) is the subset of Machine Learning (ML) techniques using Deep Neural Networks (NNs)
to identify patterns and extract meaningful representations from raw data. Despite the origins of modern
NNs dating back to the 1940s [43, 44|, it was not until the 2010s that the use of DL methods became
widespread. This surge in popularity can be attributed to increases in computing power, brought about by
the development of powerful GPUs and TPUs, the availability of large datasets, the development of more
complex and sophisticated NN architectures and algorithmic advances [45]. These developments in the field
resulted in remarkable performance improvements in tasks such as speech recognition, computer vision and
natural language processing. During the last few years, DL has contributed in advancements in a variety
of scientific disciplines, such as Biology [46], Medicine [47] and Material Science [48]. Physics has not been
immune to this DL frenzy, with DL tools being successfully implemented in a wide range of physics tasks
[49], both in theory and experiment, while playing a crucial role in searches for new physics [50].

In the context of this thesis, we focus on supervised learning, i.e. learning tasks which utilize a labeled training
dataset, where the inputs x to the network have been paired with corresponding output target values, or labels,
y. Thus, the network is tasked to infer a function F' such that F'(x) = y. Supervised learning problems most
often fall under the categories of either classification or regression. In classification problems, the model is
tasked to assign each input to one of two or more different categories, or classes, and thus the target variables
are the discrete class labels. Conversely, in regression problems, the model aims to predict a continuous target
variable from features of the input data.

4.1.1 Architecture of Deep Neural Networks

The structure of Deep Neural Networks typically consists of an input layer, one or more hidden layers, and
an output layer. Each layer consists of a series of nodes, called neurons (see Fig. 4.1). The input layer serves
as the entry point for data, with each neuron corresponding to a specific feature x; of the input vector
x =[xy, T2, -, xn]Tﬁ. The hidden layers are where the network learns to extract features from the input
data. Connections exist between each hidden layer neuron and some or all of the neurons of the previous

layer. Each connection is characterized by a weight w. The output of hidden layer neurons can be computed
from the weighted sum of their inputs. Specifically, for a given neuron i in layer [, the output al(-l) is given by:

o = £ [ S ual 50 (11)
j=1

I o
i w;x; +b o O
(Smee) C ®
inputs output o
output
oo hidden
L3 o layers

Figure 4.1: Left: Neuron with bias b and activation function f(-) receiving inputs z; through connections
with weights w; and producing its output as in Eq. 4.1. Right: Schematic depiction of a Deep Neural
Network. From [51].

6Vectors and matrices will be denoted in bold lowercase and capital letters respectively.
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Here, ay_l) represents the output of the j-th neuron of the previous layer, wz(]l) are the relevant weights, bz(-l)

is known as the bias, a parameter which is associated with each neuron, and f(-) is the so-called activation
function. Eq. 4.1 can be rewritten to refer to all the neuron outputs a) = [agl)} of layer [, taking the simpler

form:
o) = f (Wu)a(z—l) n b(l)) , (4.2)

where of course W) = [wg)} and b = [bgl)] The activation function f(-) plays an important role by

introducing non-linearity into the model, enabling the network to learn more complex patterns. Without
non-linear activation functions, the network would be reduced to a linear transformation and would not be
able to utilize complex relationships in the data. An example of a commonly used activation function is the
Rectified Linear Unit (ReLU), defined as:

z, >0

4.3
0, x<0. (43)

Jreru(z) = max(0,x) = {

The final layer of the network is the output layer. As the name suggests, its output constitutes the network
response to a particular input. The network architecture which has been described here is often referred to
as a multi-layer perceptron (MLP).

4.1.2 Training of Deep Neural Networks

In order for the network to provide reasonable output values to its inputs, it must first be trained. During the
training process, the tunable parameters of the network, i.e. the weights and biases” are optimized. This is in
contrast to parameters such as the number and size of the network layers, which have been fixed before the
training process and are called hyperparameters. Training a deep neural network involves an iterative process
aimed at minimizing a loss function, which quantifies the difference between the network predictions and the
actual target values. Each training step is composed of two phases: the forward pass and the backpropagation.

Forward pass & loss calculation

During the forward pass, the input data is passed through the network layer by layer to generate predictions.
Each layer transforms the data according to Eq. 4.2, progressively extracting higher-level features until the
final output is produced. Once the predictions are obtained, the loss function is calculated, providing a
measure of the error in the network predictions. For regression tasks, which will be the focus of this thesis,
examples of commonly used loss functions are L; and Ly losses, i.e. the mean absolute error (MAE) and
mean squared error (MSE):

N
1 .
Lyrae = N ;ﬂ Ui — vil , (4.4)
L&
_ )2
Lyse = N -E,l(yl vi)®, (4.5)

where y; is the true label of the i-th sample, ¢; is the network prediction and N is the number of training
samples.

"From here on, unless otherwise noted, the weights and biases of the network will jointly be referred to simply as weights.
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Backpropagation

After the loss has been computed, the adjustable parameters of the network, i.e. the weights, have to be
tuned in order to decrease it. This is achieved through the process of backpropagation [52], in which the
network computes the gradient of the loss function with respect to each weight, essentially propagating the
error backward through the network. This gradient indicates how much the loss would change with a small
adjustment to the weight, guiding the network on how to modify its parameters to reduce the loss.

If we define z) = Wha (=D 4+ p®) | then Eq. 4.2 becomes

o = ¢ (z(w) , (4.6)

Defining also the error of the i-th neuron in layer [ as

oL, 50—
az(l) 0z’

)

s =

(4.7)

it can then be shown [53] that the gradients of the loss with respect to the weights and biases obey the
following equations:

oL :5,(”0455_1) — oL _ 50 {a(“l)r

owV oW
“ (4.8)
oD 0
The error term 6 is recursively calculated, starting from the output layer:
sO — |:<W(l+1)>T5(l+l):| ® f'(z0),
oL (4.9)
(L) — 1(5(L)

where ® refers to the element-wise or Hadamard product of two matrices, f/(-) is the derivative of the
activation function and (L) symbolises the output layer.

Optimization

Finally, the network weights are updated using the gradient descent iterative method. The idea behind
gradient descent is to update the weights in the direction of the steepest decrease of the loss function. Over
several training steps, this should lead the loss to converge to a local minimum in the parameter space of the
weights. If we let w be the vector of all the weights of the network, then in gradient descent the weights are
adjusted according to:

Wew—n o, (4.10)

with the components of g—i being calculated from Egs. 4.8, 4.9. The parameter 7 is the learning rate, a
hyperparameter that controls the step size of the weight updates. The choice of learning rate is important:
a small 17 means the network follows the path of steepest descent more closely, but results in slow learning,
requiring more iterations to converge, while a large 7 results in faster training, but may cause the training
process to become unstable and overshoot the local minimum.

In practice, gradient descent is not the most efficient way to optimize the network weights. Hence, different
optimization algorithms, or optimizers, are used [54]. The simplest and most well-known method is Stochastic
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Gradient Descent (SGD). In SGD, each training step does not involve the entire training dataset, but only
a limited number of samples, called a mini-batch or simply batch. The number of samples in each batch,
known as the batch size, is a hyperparameter. The loss going into Eq. 4.10 is therefore the loss for a single
batch, which is an approximation of the loss over the entire dataset. This greatly reduces the memory and
computational requirements on the GPUs. Each training step contains a new batch of samples. One complete
cycle through the entire training dataset over multiple training steps is called an epoch, with a typical training
consisting of several epochs.

A commonly used, more advanced optimization algorithm is the Adam optimizer [55], which stands for
“adaptive moment estimation”. Adam improves upon SGD by dynamically adjusting the learning rate for
each parameter, allowing it to adaptively slow down or speed up the learning process for different parameters,
leading to more efficient convergence. Defining g; = #ﬁ'l to be the gradient at training step ¢, Adam uses
moving averages to estimate the first and second moments of the gradients:

my = fimy—1 + (1 — B1)g:,

v = fovy_1 + (1 — 52)9? . (4.10)

The hyperparameters §, and 2 are exponentially decaying rate parameters with commonly used values of
0.9 and 0.999 respectively. After a bias-correction:
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my 1 t
- P
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v = 1— 5 )

the weights can finally be updated:

m
Wy = We—1 — 77\/177:_6 . (413)

t

Here, the hyperparameter € is a small constant added for numerical stability, with a common default value
of 1078. Note that the division on the last term is element-wise.

Generalization

For a Machine Learning model to be successful, it must have the ability to generalize, that is perform well
not only on its training data, but also on new, unseen data. In this context, two important phenomena which
ought to be avoided are underfitting and owverfitting. Underfitting occurs when the model cannot capture
the underlying patterns in the data, leading to poor performance on both the training and unseen datasets.
This is often a result of the model being too simplistic to represent the complex relationships in the data
or the model training time being too short. It can usually be avoided by increasing the model complexity
or training duration. On the other hand, overfitting happens when the model begins learning specific details
of the training data, including noise and outliers, essentially memorizing the training set. This results in
excellent performance on the training set but poor generalization to new data.

In order to ensure the ability of the model to generalize and avoid overfitting, the available dataset is often
split into three parts: the training set, the validation set and the test set. The training set is used to fit
the model, i.e. learn the underlying patterns and relationships in the data by adjusting its parameters to
minimize the loss function, as described in the previous sections. To guard against overfitting, the validation
set is used during the training process. The model performance is checked on the validation set at regular
intervals, typically at the end of every epoch, and the validation loss (or other appropriate performance
metric) is compared to the training loss. If the model begins performing significantly better on the training
set than on the validation set, then this can be a sign of the onset of overfitting. When this is the case, early
stopping of the training can be utilized, since the model performance is not expected to improve. Conversely,
if the model performs poorly on both the training and validation sets, it may be underfitting, indicating that
the model is too simple or insufficiently trained to capture the essential patterns in the data. Even though the
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network is never actually trained on the validation set, its repeated usage as a measure of performance can
create a bias towards models showing an improved performance on this particular set. For this reason, the
test set is reserved for evaluation of the final model, providing an unbiased assessment of its generalization
ability.

4.2 Graph Neural Networks

(Astro)particle physics experiments generate data with inherently graph-like structure. In the complex detec-
tors of these experiments, such as the KM3NeT detectors, events consist of individual measurements which
can be represented as points in space and time. These data points are sparsely scattered and lack a regular
grid structure, while their distribution and number vary on an event-by-event basis. This is true for example
in KM3NeT, where the number and location of hits varies greatly in each event, while the precise DOM
positions are constantly changing due to sea currents. Furthermore, the data points are unordered, since they
represent particle interactions, which themselves have no particular ordering. These attributes make graphs a
natural way to represent particle detector events. Fach event produces a graph, with graph nodes representing
particle interactions (e.g. detector hits) and graph edges describing relations between them.

Graph representation is thus more conceptually justified than image-based representations, employed for
example in Convolutional Neural Networks (CNNs). In images, a limited resolution in space and time has
to be chosen, meaning the loss of information on the precise location of detector hits. Additionaly, extensive
zero-padding, which creates overhead, is needed to account for the sparsity of the data as well as irregular
detector geometries. In other representations, such as sequence-based representations, e.g. Recurrent Neural
Networks (RNNs), an artificial ordering of the data points has to be introduced, which may not be optimal. It
is therefore no surprise that Graph Neural Networks (GNNs), which are not limited by these restrictions, have
recently gathered significant interest in Experimental Particle Physics, as a promising tool for DL applications.
GNNSs are already being implemented in tasks such as particle identification and reconstruction, with reviews
of their use in Particle Physics provided in [56-58]. The rest of this Section is devoted to providing an outline
of the graph structure, network architecture and software tools for the GNNs used in this thesis.

4.2.1 Graph structure

Each KM3NeT event can be represented as a directed graph G = (V, E). Each graph node v; represents a
PMT hit, with the hit information, i.e. position-x, -y, -z, direction-z, -y, -z, time ¢ and ToT, being referred
to as node or hit features. If all these features are used, each node will therefore have 8 node features. An
example of the graph representation of an event can be seen in Fig. 4.2.
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Figure 4.2: Left: Hit distribution of a KM3NeT event (position z vs. time t). Right: Graph represenation of
the same event. Each hit is now a graph node, with edges to its 8 nearest neighbors, calculated using Eq.
4.14. From [59).
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Due to the large and variable size of graphs in KM3NeT data, the use of fully connected graphs is not practical,
especially since the number of edges in a fully connected graph grows quadratically with the number of nodes.
For this reason, each node is connected to its k-nearest neighbors (kNN), where k is a hyperparameter. The
calculation of the nearest neighbors requires that an appropriate distance metric be defined. The most obvious
choice, which will be used in this work, is to use the 4D Euclidean metric in space and time:

d? = Ax? + Ay? + A2 + AL, (4.14)

where ¢ is the speed of light. Calculating the nearest neighbors is computationally expensive, since the
calculation of the distance between every pair of nodes is required, making this step O(n?), n being the
number of nodes, i.e. hits in the event.

4.2.2 Edge convolution

The fundamental component of the GNNs used in this thesis is the Edge Convolution block, or EdgeConv
block, introduced in [60] to operate on point clouds. The idea behind EdgeConv is to extend the concept of
convolutions from CNNs to GNNs. In CNN convolutional layers, a kernel of weights is slid across the image,
recording the dot product of the kernel with the image pixels at every point. In EdgeConv, the concept of the
kernel is replaced by the nearest neighbors, with the number of neighbors & of each node being equivalent to
the kernel size. The convolution is then an operation acting on the outgoing edges of each node.

After determination of the nearest neighbors, i.e. determination of the graph edges, the edge features are
defined. Edge e;; from node v; to node v; is defined to have edge features (x;,x; —;) € R2?F' with z;, T; € RF
being the node features of nodes v;, v; respectively, F' being the number of features in each node. The edge
features are then propagated through a 3-layer MLP and summed across the nearest neighbors. The result
is the updated node feature vector for each node of the graph. The new node feature vector z; € R’ " has a
different number of features than before (F’ # F'). Mathematically, the edge convolution then consists in the
following operation:

JEN()

In this expression, hg is the MLP with learnable parameters 8 and N (7) is the set of the k nearest neighbors
to node v;. In short, the EdgeConv block takes as input a graph with n nodes, each with F' node features,
and outputs a graph with the same number of nodes, each with F’ features.

4.2.3 Network architecture

The GNN architecture that will be used in this thesis is named DnyFEdge and was put forward by IceCube
in [61]. The architecture is displayed in Fig. 4.3. DynEdge consists of 4 consecutive EdgeConv blocks. At the
output of each block a graph which has the same number of nodes as the original, but 256 features per node,
is produced. The graph edges are then updated to determine the new k nearest neighbors, thus creating a new
graph in latent space. The stacking of consecutive EdgeConv blocks allows the network to learn higher-level
features of the data. The output-graph of each block, along with the original graph, are concatenated into a
[n, 4-256 + F] matrix, where n is the number of nodes and F' the number of features per node of the original
graph. The resulting matrix is feed into a 3-layer MLP which reduces its dimensionality down to [n, 256].
Pooling operations are then performed over the nodes, in up to 4 distinct ways: mean, min, mazx & sum, the
output of each operation being an array of size [1, 256]. The arrays are then concatenated and thus, should
all 4 options be used, the resulting array will have dimension [1, 4 - 256] = [1, 1,024]. This array is then
concatenated with the global statistics, a set of 5 values calculated from the original graph, characterizing it
as a whole. These are the number of PMT hits, i.e. number of nodes n in the graph, and the homophily ratios
for position-z, -y, -z and time ¢. The homophily ratio for a given node feature is the percentage of graph
edges which connect nodes that share the same value for this feature. It is thus a mesaure of the number of
pulses which occurred at the same PMT or at the same time. The final [1, 1,029] vector is passed to a final
3-layer MLP to produce the network output.
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Figure 4.3: Architecture of the DynEdge network. The input graph is assumed here to have n nodes and 6
features per node. From [61].

4.2.4 Software tools

The work for this thesis was made possible by the use of software tools designed specifically for DL tasks in
KM3NeT and other neutrino experiments. These tools are built upon popular ML libraries like PyTorch [62]
and TensorFlow [63], but are tailored to the needs of the experiment(s) in which they will be used. In this
case, the tools which are relevant are GraphNeT and the KM3NeT DL framework, OrcaSong and OrcaNet.

GraphNeT

GraphNeT [64] is an open-source PyTorch-based DL framework developed by the IceCube experiment, with
the goal of providing neutrino physicists with DL tools to perform reconstruction tasks for any neutrino
experiment. GraphNeT utilizes PyG (PyTorch Geometric) [65] and PyTorch Lightning [66] to construct and
train GNNs and to provide user-friendly end-to-end functionality. All of the GNN trainings for this thesis were
carried out using GraphNeT. The DynEdge model, presented above, has been implemented in GraphNeT by
the IceCube Collaboration.

KM3NeT DL tools

The KM3NeT DL framework consists of two Python modules, named OrcaSong [67] and OrcaNet [68]. The
former is responsible for data preprocessing, while the latter for network training:

OrcaSong

OrcaSong is used to convert KM3NeT files to a format that is efficient for DL applications. KM3NeT data are
stored in ROOT files, a commonly used file format in high-energy physics. OrcaSong converts them into the
HDFS5 file format, while also removing information that is irrelevant for the NN training and the evaluation
of the results. The resulting HDF5 files are much reduced in size and their internal structure allows for more
efficient reading operations during training. For this reason, this is the format that was used for the input
files to the GNN trainings in this work.

OrcaNet

OrcaNet is a KM3NeT-specific, TensorFlow-based module, used to carry out network trainings. The chosen
network architecture in OrcaNet is outlined in Sec. 4.3. Although it will not be used directly in this work,
results obtained with OrcaNet will be compared to those obtained in trainings with GraphNeT.
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4.3 Overview of DL & GNN Applications in Neutrino Telescope
Event Reconstruction

KM3NeT has successfully developed and used classical reconstruction algorithms, presented in [42]. As de-
scribed in Sec. 3.5, these algorithms utilize least-squares fitting for a fast, but less accurate geometric fit
and maximum likelihood approaches with more sophisticated modeling of the detector response for the final
reconstruction. Similar reconstruction techniques have also been employed by other neutrino telescopes. In
IceCube, for example, likelihood-based reconstruction algorithms adapted for both high- [69] and low-energy
[70] reconstruction have been reported.

In recent years, the major advances in Deep Learning have led to the adoption of a wide range of DL methods
in Particle Physics. An area in which this trend is prevalent is the reconstruction and classification tasks of
most Particle Physics experiments. Drawing inspiration from image processing and computer vision, image-
based methods, most notably CNNs, have been used. One of the first applications of a CNN in a neutrino
experiment was for event classification in NOvA, an accelerator neutrino experiment based in Fermilab [71].
CNNs have since been demonstrated to provide comparable or improved results to classical algorithms in
neutrino telescope reconstruction tasks, both in IceCube [72] and in KM3NeT/ORCA [73], while also offering
faster computation times.

The disadvantages of applying CNNs to Particle Physics data, discussed in Sec. 4.2, especially the information
loss associated with the transformation of detector data into images, lead to alternative approaches, namely
GNNs, to also be pursued by the community. Inspired by the paper by Wang et al. [60], which introduced
the concept of edge convolutions on point clouds (see Sec. 4.2.2), Qu and Gouskos [74] put forward a GNN
architecture named ParticleNet, in order to tackle jet tagging, a type of classification task in particle colliders
such as the LHC. Similar GNN models have since made their way to neutrino telescopes. IceCube has in-
troduced the DynEdge model, presented in Sec. 4.2.3, and applied it to the classification and reconstruction
tasks of low-energy simulated neutrino events in their detector, achieving improved results over their clas-
sical algorithms [61]. A preliminary study on the energy reconstruction of high-energy events has also been
discussed in [75].
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Figure 4.4: Left: Structure of the EdgeConv block used in ParticleNet. Right: Architecture of the
ParticleNet network as presented in [74].
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KM3NeT has also dedicated efforts to the application of GNNs to event reconstruction and classification. To
this end, the ParticleNet architecture from [74] has been implemented in OrcaNet, with minimal modifications.
This architecture is presented in Fig. 4.4. Similar to DynEdge, the fundamental block of ParticleNet is an
EdgeConv block which performs the edge convolution over the k-NN with a 3-layer MLP. The ParticleNet
architecture consists of 3 consecutive EdgeConv blocks. Each such block increases the number of features per
node from 64 to 128 to 256. Unlike DynEdge, where the outputs of all EdgeConv blocks are concatenated
before pooling (see Fig. 4.3), ParticleNet instead passes the input node features of each block through to its
output via a shortcut connection. This is achieved using a single fully connected layer in order to bring the
input node features to the dimension of the output node features, so that the two can be added. After the
EdgeConv blocks, a pooling operation is performed, which reduces the dimensionality of the output from
[n, 256] to [1, 256]. ParticleNet only has a single pooling option available, unlike the 4 different operations
which can be chosen in parallel in DynEdge. This option is “global average pooling”, which is functionally
identical to “mean” pooling in DynEdge, i.e. it averages the node features across all nodes. The output vector
is then propagated through a single hidden layer of 256 neurons, which feeds the ouput layer where the
network predictions are produced. In the OrcaNet implementation of ParticleNet, just as in DynEdge, the
number of outputs and the activation function of the output layer are chosen depending on the task at hand.

Using the network architecture described above, a number of reconstruction studies have recently been
conducted in KM3NeT. In his PhD thesis [59], S. Reck used this model for the reconstruction of muon
bundles (multiples of atmospheric muons entering the detector at the same time) in the ORCA4 detector
(ORCA with 4 DUs). In this work, the muon direction, bundle diameter and muon multiplicity (number of
muons in the bundle) were reconstructed. The muon direction reconstruction was shown to be competitive
with classical algorithms, while the bundle diameter and muon multiplicity were reconstructed for the first
time in KM3NeT |76, 77]. In another PhD thesis [34], D. Guderian performed extensive reconstruction (energy,
direction) and classification (signal/background, track/shower) studies for the ORCAG6 detector. The results
of this work were promising, with both the zenith angle and energy reconstruction showing similar or improved
performance when compared to the classical reconstruction.

In KM3NeT/ARCA, similar studies have been performed for ARCA6-8 [78]. The GNNs achieved lower errors
than the standard reconstruction algorithm in both neutrino energy and zenith angle reconstruction and for
both tracks and showers. Results on signal/background classification, as well as direction and multiplicity
reconstruction of muon bundles were also presented.

In light of these works, it is evident that GNNs have shown promise in event reconstruction tasks in smaller
versions of the KM3NeT detectors. As the detectors have since been extended, it is therefore of interest to
apply GNNs to larger detector versions. This thesis achieves this by considering energy reconstruction in
ARCA21, with the added benefit of further testing GNN performance on high-energy events, since most of
the works above only considered low-energy events in ORCA. In terms of reconstruction results, our model
achieves substantial improvement of the energy reconstruction of ARCA21 events below 10 TeV, compared
to previous reconstruction efforts. Our work also provides better appreciation of the physical constraints
which limit the reconstruction in higher energies. Further, the first application of DynEdge, an independently
developed model, to KM3NeT data has the potential to offer a valuable comparison to the GNN model
architecture already in use by the experiment, as well as highlight improvement opportunities. Lastly, the
integration of KM3NeT data in the GraphNeT framework means that a well-developed alternative to OrcaNet
is rendered available for use in the KM3NeT Collaboration.
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Chapter 5. Energy Reconstruction with Graph Neural Networks

Following the discussion of Graph Neural Networks in Chapter 4, their application to the energy reconstruc-
tion of ARCA21 track-like events is now presented. In this effort, the DynEdge model, implemented within
the GraphNeT framework, is used. Therefore, before proceeding to the examination of the GNN performance,
the KM3NeT data format and its integration in GraphNeT are outlined. Afterwards, the training configura-
tions that were used are presented, followed by a discussion of the training results, including comparisons to
the standard reconstruction algorithm and trainings performed with OrcaNet. The Chapter concludes with
an investigation on the physical justification of the model predictions, with a focus on higher energies.

5.1 The KM3NeT DL Data Format

In order to carry out supervised DL tasks, as are event reconstruction tasks with GNNs, a labeled dataset is
needed. In other words, each event in our dataset must come with a corresponding truth value for its energy,
direction, etc., which will serve as the target value during the training. It is, therefore, obvious that real
detector data, for which these truth values are unknown, cannot be used to train our DL models. Instead,
events generated in Monte Carlo simulations will be used. Monte Carlo (MC) simulations are a critical
component of high-energy physics experiments, as they simulate the physical processes of interest and model
the detector response. In this way, they can inform physicists about the expected characteristics of physics
and background signals in the detector, assist in the assessment of data analysis algorithms, help quantify
systematic uncertainties, as well as validate experimental data.

MC simulations in KM3NeT are produced via the so-called simulation chain. Initially, neutrinos are generated
in an area around the detector and then propagated in the seawater. If a neutrino interaction occurs, the
secondary particles are propagated and the Cherenkov light emission, propagation and detection by the PMTs
is also simulated. Data collection in the actual KM3NeT detectors is split into intervals of a few hours called
“runs”. In each run, the detector conditions are monitored and later used in the MC production, so that
effects like noise in the detector can be modeled on a run-by-run basis. After both the signal and the noise
contribution have been simulated, the triggering algorithms (see Sec. 3.3) are applied and the events passing
the trigger selection are stored. Finally, the reconstruction chain, presented in Sec. 3.5, is applied to the MC
events, just as it is in the experimental data. The result of the MC production is a set of files, each typically
containing generated events for one detector run. Along with the hit information, each event also contains
the true energy, direction, interaction vertex position, etc. values with which it was generated, as well as the
corresponding reconstructed quantities from the standard reconstruction algorithms. In a DL reconstruction
task, the former will serve as the necessary truth labels, while the latter can be used to compare standard
and DL reconstruction methods.

KM3NeT data (both experimental and MC) are generally stored in ROOT files, as mentioned in Sec. 4.2.4.
The ROOT file format is a file format used within the ROOT data analysis framework, developed by CERN.
ROOQOT is extensively used in high-energy physics for managing and analyzing the large amounts of data
produced by experiments. ROOT files are an efficient way to store large amounts of data. However, KM3NeT
ROOT files have not been tailored for DL applications. For this reason, KM3NeT data intended for DL
applications are usually preprocessed using OrcaSong, which converts them to the HDFS5 file format. The
KM3NeT HDFS5 files used in DL have minimal size compared to the original ROOT files, while also offering
fast random access to the hierarchical data structures within. These advantages, together with the fact that
the required HDF5 files were readily available, meant that this was the file format that was chosen for the
trainings in GraphNeT.

5.1.1 Integration of the KM3NeT DL data format in GraphNeT

In order to utilize the GraphNeT framework, it is necessary to integrate the KM3NeT DL data format in
GraphNeT, so that KM3NeT data can serve as input to the model. GraphNeT offers support for only two file
formats: Parquet & SQLite. Using GraphNeT on KM3NeT data, therefore, requires either converting HDF5
files to one of these two formats or extending GraphNeT to be able to handle HDF5 files directly. Due to the
fast random access and the storage efficiency of HDF5 files, it was decided that the latter option would be
selected. Internally, GraphNeT builds dataset objects in the following way: it contains an abstract Dataset
class, which inherits from the corresponding PyTorch Dataset class, so that when a file is read, a Dataset
object is created. In order to accomodate the two supported file formats, this abstract Dataset class serves
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as the base class for two file-type-specific classes, which contain methods that handle table queries for each
of the two supported file formats. Integrating HDF5 files into GraphNeT requires creating a third such class,
built to handle table queries for HDF5 files. Then, HDF5 files can serve as input to GraphNeT simply by
invoking instances of this class. A working demonstration of such a class had already been made by members
of the KM3NeT Collaboration and was able to serve as a starting point.

At this point it is important to note that the OrcaSong module uses a two-step process to convert ROOT
files to HDF'5 files. The first step is a conversion from ROOT to HDF5, with the resulting files hence referred
to in this text simply as “KM3NeT HDF5 files”. Then, a second conversion creates new HDFS5 files, referred
to within the Collaboration as “DL HDF5 files”, which contain a structure that is better suited for DL
applications. In both cases, the PMT hits for all the events in the file are stored together in a single table
z. Further, truth labels for all events are stored in a second table y. In KM3NeT HDFS5 files, an “id” column
is present in the hit table x, containing the event number in which each hit belongs. All of the hits for each
event are stored in the table consecutively. Therefore, in order to access the entirety of hits in a certain event,
as is often required, one must go through the table of hits x to locate the first and last hit with “id” number
equal to the event number in question. This process is of course inefficient. In contrast, in DL HDF'5 files,
the table of hits x is accompanied by an auxiliary table which contains the location of the first hit for each
event in table z, as well as the number of hits in the event, making random access in DL HDF5 files much
faster than in KM3NeT HDFS5 files.

The demonstration class which served as the starting point for HDF5 file integration in GraphNeT had been
built to work on KM3NeT HDFS5 files. Since trainings with GNNs are computationally expensive, requiring
many hours per epoch, effort was devoted to modify this class to work on DL HDF5 files, in order to make
the training process less time-consuming. Ultimately, switching from KM3NeT HDF5 to DL HDF'5 files led
to a reduction in training time of over 50%.

5.2 GNN Trainings with GraphNeT in ARCA21

This section contains a discussion on the technical details of the GNN models and the training configurations
employed in this work.

5.2.1 Dataset and data preprocessing

As mentioned previously, the reconstruction task that is tackled in this thesis concerns track-like events, i.e.
muon (anti)neutrino events. The dataset which will be used consists of MC data from 90 detector runs. Each
run contains on average about 4,500 events of each type (v, / 7,), so that the total dataset comes up to
roughly 800,000 events, equally split between muon neutrinos v,, and muon antineutrinos 7,. Of these 90
runs, 75 will be used for training and 15 for validation (~ 83% / 17% split). An additional set of 19 runs has
been kept aside for inference, i.e. as the test set for evaluation of the model predictions. The neutrino energy
of the MC events in our ARCA21 dataset is in the range of [10%,10%] GeV. Fig. 5.1 shows the distribution
of events across this energy range in the training, validation and test datasets, confirming that all datasets
follow the same curve. This energy distribution is a convolution of an assumed neutrino energy spectrum
and the detector response: we observe fewer events as we move to higher energies due to the decrease in
the neutrino energy spectrum and the small instrumented volume of ARCA21, and also few events at low
energies, since the detector is less sensitive in the sub-TeV and low-TeV region.

Each ARCA21 event contains on average roughly 1,000 hits. There exist, however, outlier events with a much
larger number of hits than others. Since identifying the k-nn for an entire graph is a O(n?) operation, the
maximum number of hits that an event can contain in the DL HDF5 files has been set to 5,000 hits. If
an event initially contains more than 5,000 hits, then all of the triggered hits are kept, while some of the
non-triggered snapshot hits are omitted during conversion to DL HDF5 files with OrcaSong, so that only
5,000 hits remain in total.

Each PMT hit in the data contains the same 8 hit features: position-z, -y, -z, direction-x, -y, -z, time
t and ToT. Naturally, the numerical values that the hit features can take vary greatly both across the
different features and across the dataset. Using features with large and differing values during the training is
problematic, as it can create a bias towards features with larger numerical values, which can dominate the
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learning process and in essence cause the network to ignore other features. For this reason, it is important
to implement a feature normalization step, ensuring that the input feature values are within an acceptable
range. In this step, each feature x is transformed by subtracting its mean u, and dividing by its standard
deviation o, across the dataset:

LT — Uz

Oz

T — (5.1)

The three direction coordinates are not transformed at all, since they are defined to form a unit vector for
each hit and thus their values are already centered around 0 and fall within the acceptable range of [—1,1].
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Figure 5.1: Neutrino energy distribution in the training, validation and test datasets, normalized so that the
area under each curve is equal to 1. The z-axis is the energy exponent, with each bin covering a 0.1 range.
All datasets exhibit the same energy distribution.

5.2.2 Model implementation

The trainings that are documented in this work utilize the DynEdge model, presented in Sec. 4.2. Various
hyperparameter choices and implementation details are presented in this Section.

Number of nearest neighbors &

The number of nearest neighbors & is an important hyperparameter of the model. A large k£ can increase the
performance of the model by allowing it to capture relationships between more distant nodes of the graph.
However, it also substantially increases the computation time, since it increases the number of operations in
the convolutional layers. For our trainings in GraphNeT, a value of k = 16 was chosen for all 4 EdgeConv
blocks of the model. This is double the value that has been used by IceCube [61], which only has a single
PMT per DOM and thus less complex data structure, and equal to the value used in previous ARCA studies
[78]. Larger values of k were not considered due to the already high computation time of the trainings and
the fact that ARCA21 trainings which had been performed in OrcaNet with k& = 32 did not yield improved
results.
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5.2. GNN Trainings with GraphNeT in ARCA21

Pooling schemes

Unlike the ParticleNet architecture, which only employs average pooling, DynEdge, as mentioned in Sec.
4.2.3, has 4 pooling options available (“mean”, “min”, “max” & “sum”), which can be used in parallel. Using
multiple pooling options is advantageous, since it renders more information available to the model to then
make the predictions. For this reason, all 4 options were used in the initial trainings. For later trainings,
however, the “sum” pooling was removed, leaving only 3 pooling operations. “Sum” pooling will perform
addition over the nodes for each feature, meaning that, when the number of nodes in the graph is large, this
option can lead to large numerical values in the corresponding output subarray, which can then dominate
over the other pooling options. This is exactly the case in ARCA21, where each event has roughly 1,000

snapshot hits, leading to graphs with about 1,000 nodes on average.

Output layer configuration

The output layer of the model needs to be configured according to the task at hand, that is the neutrino
energy reconstruction, i.e. a regression task, in which the model is called to predict a single value, the energy
of the original particle. In the simplest case, the output layer consists of a single neuron, the output of which
is the predicted energy value. The activation function of this neuron needs to prevent non-physical energy
values, i.e. restrict the output domain to positive values. For this reason, a variant of the ReLU function (Eq.
4.3), the Softplus function is used:

fSOftplus(x) = %ln (1 + 651) y (52)

with 8 = 0.05. This function is a smooth approximation of the ReLU function, avoiding the non-
differentiability of the latter at © = 0 and constraining the ouput to strictly positive values (see Fig. 5.2).

Activation functions

— RelU
Softplus

Qutput fix)
PJ

Input x

Figure 5.2: Comparison of the ReLU and Softplus activation functions.
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Loss functions

In order to carry out the trainings, a sensible loss function must be chosen. The simplest loss function that
was applied in this work is the MSE or L loss:

N

1 N
Lyse = N Z(yi —v)?, (5.3)
i=1

where y; is the true label of the i-th sample, 7; is the network prediction and N is the number of batch
samples, i.e. the batch size. The squaring operation in the MSE loss amplifies the errors, which can offer faster
convergence. However, at the same time, it entails that outliers in the data have a significantly larger impact
on the loss, which in some cases could affect the model disproportionately and compromise its performance
and generalization ability. For this reason, the Log Cosh loss, used in [61], was instead extensively used in
the trainings that were performed:

N
1 _
LLog Cosh = N § In [COSh(yi - yz)] . (54)
=1

The Log Cosh loss is similar to the Lo loss for small errors, but is akin to the L loss for larger error values.
This behavior combines the benefits of the L; and Ly losses. In the L; loss, the gradient is constant and
not proportional to the error, like it is in the Ls loss. This can cause the model to minimize small errors
less effectively, thus converging less smoothly. The Log Cosh loss alleviates this because the gradient is
proportional to the error at small error values. Also, unlike the L loss, the Log Cosh loss is differentiable at
0. At the same time, its similarity to the Lq loss for large errors provides robustness to outliers. The behavior
of the two loss functions can be seen in Fig. 5.3.

Loss functions

Loss

0+ e
— MS5E

Log Cosh
_1 T T T T T

—4 =3 -2 -1 0 1 2 3 4
Error yi— i

Figure 5.3: Comparison of the MSE and Log Cosh loss functions.
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The third loss function that will be examined in this work is the Log Normal loss function:

2
1 (i /g)
T

N N
_ l T 257 _ i / A (yi - ﬂz)2
LLog Normal — N ; In [\/We ‘| - N ; |:1n( 271—) + ln(o'z) + . (55)

~2
207

This function is the natural logarithm of a normal distribution. In this case, both fi; and &; are fit parameters,
with ¢; = ji; being the network estimate for the energy and &; being an uncertainty estimate on the energy
prediction. The loss function is minimized at (ji;,5;) = (y;,0) and, as can be seen from Eq. 5.5, it is similar
to the MSE loss in that it is quadratic with respect to the error. The uncertainty estimate is realized with the
addition of a second neuron in the output layer of the network. It serves as a measure of the reconstruction
quality of each event and is thus a helpful quantity since it can be utilized as an event selection criterion in
data analysis. The Log Normal loss function is the loss function of choice in OrcaNet trainings and was thus
also implemented in GraphNeT to be used in this work.

Finally, as it has already been mentioned, the neutrino energy range in our MC data for ARCA21 is [10%, 10%]
GeV, an extreme range spanning 6 orders of magnitude. For this reason the energy values that go into the
network loss function —whichever that is— are always log-transformed (E — log(F)), such that both the truth
and the predicted value are the logarithm of the true/predicted energy respectively. This results in a range
of target values of [2, 8], leading to increased numerical stability and smoother convergence.

5.2.3 Training details & parameters

All of the model configurations were trained on a local server at the Institute of Nuclear and Particle Physics
(INPP) of NCSR “Demokritos”. This server was equipped with two 48 GB NVIDIA RTX A6000 GPUs, 125
GB of RAM and 48 CPU cores. On this machine, each training epoch on the 800,000 event dataset needed
250 minutes, using the training parameters described below.

In each training, the training and validation datasets are used as input and the corresponding training and
validation dataloaders are created. The training dataloader needs to be shuffled after every epoch, in order to
avoid order bias, where the network starts learning patterns of the order of the data. For the initial trainings,
a batch size of 32 was used. Due to the small number of events per batch, such small batch sizes provide less
good of an approximation of the overall gradient of the dataset, i.e. the gradient is more noisy. This can lead
to a model that converges slower, but generalizes better, since the noisy gradients can help kick the model
out of local minima in its phase space. After discussion with GraphNeT developers, however, it was suggested
that a large batch size be used, since it can better approximates the gradient of the dataset. The batch size
was subsequently increased to 1,024, without observing any loss in generalization ability. Such an increase
would normally come with a substantial improvement in training speed. However, in this case, due to GPU
memory limitations, the actual batch size could not be further increased. This large batch size was therefore
set using gradient accumulation, a technique in which the actual batch remains small, but a larger effective
batch size is achieved by storing gradients and performing a gradient update once every few batches.

Another parameter which can be exploited in the training configuration is the so-called “number of workers”.
This PyTorch parameter defines the number of CPU subprocesses which load the data to the GPU(s) in
parallel. Increasing the number of workers can greatly reduce the data loading time and therefore lead to
much faster training. However, above a certain number of workers the limitations of running a large number
of parallel CPU processes, not least of which is the increasing RAM consumption, outweigh the benefits. In
our case, the number of workers was set equal to the number of CPU cores, which was 48. Larger values were
tested, however they could not be supported by the server due to memory limitations.

For all the trainings in this work, the Adam optimizer (Sec. 4.1.2) was used, with its default parameters
(B1, B2, €) = (0.9, 0.999, 10~8). The learning rate was initially set at 10~%. However, this learning rate value
would lead to the phenomenon of exploding gradients, where gradients become excessively large, causing
unstable updates to the model weights and preventing the network from converging. For this reason, gradient
clipping was employed in initial trainings with a value of 0.5. In later trainings, a piecewise linear learning
rate with a warm-up period was used. This learning rate scheduler used a warm-up period starting from 10~
and reaching the maximum of 10~3 by the middle of the first epoch, before gradually reducing the learning
rate down to 107° again until the end of the training, as described also in [61].
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5.2.4 Training configurations

Before the results of the GNN trainings can be discussed, the exact training configurations that were used
must first be presented. The trainings that were performed are outlined below. All trainings used the true
neutrino energy (i.e. the MC neutrino energy) as a true label, that is the energy of the primary neutrino
particle that caused the interaction. Trainings can be split in two groups, according to the set of hits that
were used during training, i.e. snapshot or triggered (see Sec. 3.3).

Snapshot hits

For most of the trainings in this work, all of the snapshot hits in each event (both triggered & non-triggered)
were provided to the model. A summary of the snapshot hits trainings is presented in Table 5.1. The first two
trainings were conducted on a reduced version of the full dataset, containing only 200,000 muon antineutrino
events. In these trainings, the MSE and Log Cosh loss fucntions were tested. Training no. 3 repeated the
previous training with the full dataset. Up until this point the ToT was not part of the hit features provided
to the model, since the light intensity of each hit is thought to be inferable from the hit density at neighboring
PMTs, which is already available to the model. However, since the ToT feature was available, it was added
in subsequent trainings, with training no. 4 being a repeat of the previous one, but with ToT added, so that
results could be compared. For the remaining trainings, the batch size was increased from 32 to 1,024, the
“sum” pooling option was removed and the piecewise linear learning rate from [61] was used, removing the
need for gradient clipping. Training no. 5 makes use of the Log Cosh loss, allowing direct comparison with
previous trainings. Finally, training no. 6 uses the Log Normal loss, allowing the comparison of the different
loss functions.

No. | Events | Epochs Loss Batch size Learning rate Notes

1 200,000 20 MSE 32 1074 Without ToT, all
pooling options,
gradient clipping
2 200,000 20 Log Cosh 32 1074 Without ToT, all
pooling options,
gradient clipping
3 800,000 10 Log Cosh 32 1077 Without ToT, all
pooling options,
gradient clipping
4 800,000 10 Log Cosh 32 1077 With ToT, all
pooling options,
gradient clipping

5 800,000 30 Log Cosh 1,024 Piecewise linear With ToT, no
1075 - 1073 —- 107° “sum” pooling
6 800,000 30 Log Normal 1,024 Piecewise linear With ToT, no
107° =+ 1072 = 107° “sum” pooling

Table 5.1: Training configurations (snapshot hits).

Triggered hits

Apart from trainings with all snapshot hits, trainings with only triggered hits were also performed. Since
the triggered hits are hits which have been flagged by the trigger system as coincident, optical background
hits are expected to have been removed from the events. Training the model only on the triggered hits could
therefore improve the energy reconstruction. The triggered hit trainings are summarized in Table 5.2. The
trainings differ on the learning rate. Training no. 1 used the default Adam learning rate of 103 together
with gradient clipping to avoid exploding gradients. Trainings no. 2 & 3 used the piecewise linear learning
rate, with different intermediate and final learning rate values and a different epoch budget. Both trainings
start from a learning rate of 1075, increasing until the middle of the first epoch. In training no. 2, the default
maximum of 10~ was used, with the learning rate reducing to 10~° by the end of the 30th epoch. In training
no. 3, the maximum was set to 2 - 10~3 and the learning rate was reduced to 10~2 over 20 epochs.

84



5.3. Training Results and Comparisons

No. | Events | Epochs Loss Batch size Learning rate Notes
1 800,000 15 Log Cosh 1,024 1073 With ToT, no
“sum” pooling,
gradient clipping

2 800,000 30 Log Cosh 1,024 Piecewise linear With ToT, no
107° - 1073 = 107° “sum” pooling

3 800,000 20 Log Cosh 1,024 Piecewise linear With ToT, no
107° —=2-1072 — 1073 “sum” pooling

Table 5.2: Training configurations (triggered hits).

5.3 Training Results and Comparisons

In this Section, the results of the GNN trainings that were performed are presented and discussed. Apart
from the first two snapshot hit models, which were trained and evaluated on a smaller dataset, all of the
results and plots in this Section are based on the test set, which contains 172,484 events.

5.3.1 Snapshot hits

The results of the snapshot hit trainings of Table 5.1 are documented in Table 5.3. For each training, the
MAE, MSE and the R? score® are presented, with trainings no. 5 & 6 sharing the best metrics. Further, the
results of each training are visualized in the scatter plots and quantile plots of the predicted with respect to
true energy in Fig. 5.4 and Fig. 5.5 respectively. The results are discussed in detail below.

No. MAE | MSE | RZ?

0.644 | 0.726 | 0.565
0.648 | 0.734 | 0.560
0.590 | 0.611 | 0.637
0.585 | 0.620 | 0.632
0.573 | 0.603 | 0.642
6 0.580 | 0.596 | 0.646

\ std reco \ 1.016 \ 1.770 \ -0.133 \
| OrcaNet [ 0.577 | 0.594 [ 0.648 |

QU W N =

Table 5.3: Training results (snapshot hits). Bold values indicate the best GraphNeT result for each metric.
The results for the standard reconstruction (“std reco”) and the best OrcaNet model in the same dataset are
also shown for comparison.

8The R? score, or coefficient of determination, is a statistical measure that represents the proportion of the variation in the
dependent variable that is predictable from the independent variable. It is defined as:

SS’V‘ES

R?=1- , 5.6
SStot (5.6)
where SSres and SStot are the sum of squares of residuals and the total sum of squares, defined as:
SSres = 3 (i — 9)°,
: (5.7)

SStot = Z(yl 7?)2’
i
where 7 is the mean of the data y;. The higher the R? score, the better the model explains the observed variance in the data,
with the maximum possible score being 1.
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Figure 5.4: Predicted with respect to true energy scatter plots for all entries of Table 5.3. In all plots, the
black diagonal line indicates the ideal reconstruction. A second black line indicates the median predicted
value for each true energy bin. The events are unweighted.
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Figure 5.5: Quantile plots for all entries of Table 5.3. In all plots, the red diagonal line indicates the ideal
reconstruction. The median and the 68% & 95% confidence intervals of the predictions for each true energy
bin are shown in black, blue and light gray respectively.
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As can be seen by the plots in Figs. 5.4, 5.5, there is consistency in the prediction behavior between the
trainings. The networks generally produce the most accurate predictions in the middle of the energy range,
that is for Ey.ye ranging from 103 to 10 GeV (i.e. in the TeV scale). In contrast, it is clear that lower and
higher energies tend to be over- and underestimated respectively. This effect is more pronounced for lower
energies, whose representation in the dataset is minimal (see Fig. 5.1). For the highest energies (i.e. PeV scale,
Eirue > 108 GeV), an underestimation is expected, since high-energy muons do not generally deposit their
entire energy content in the detector. In other words, not all of the muon energy is visible to the detector.
This fact is also reflected in the large range of the network predictions for these events. We can further observe
that the best OrcaNet model, trained and evaluated on the same datasets, exhibits the same behavior as
the GraphNeT-based networks. Finally, the standard reconstruction refers to the reconstruction algorithm
described in Sec. 3.5. It should be noted that the standard reconstruction algorithm reconstructs the muon
energy. Therefore, the lower energy predictions compared to the GNNs are to be expected, since the visible
energy of the muon is lower than the energy of the primary neutrino.

Training comparisons

The metrics of Table 5.3 can allow us to draw conclusions about the best training configuration. This is
further aided by the comparison plots in Fig. 5.6, in which the 68% quantiles (shown also in Fig. 5.5) are
overlayed for different pairs of training configurations. In the following, the trainings are referred to by the
letter “T” followed by their training number from Table 5.1 (e.g. “T1”). Most comparisons are drawn between
trainings that differ in only one parameter, so that the effect of each configuration parameter can be evaluated
separately:

e MSE (T1) vs. Log Cosh (T2): The first two trainings, performed on the reduced dataset of 200,000
events, offer a comparison between the MSE and Log Cosh loss functions. It can be seen that the network
trained with the MSE loss has the better metrics. This is because of the greater penalty applied to large
errors in the MSE loss, leading to a better minimization of large prediction error values. Looking at
the comparison plot in Fig. 5.6, the performances appear similar, with the MSE band (in blue) being
slightly better aligned with the diagonal than the Log Cosh band (in orange) for most of the energy
range.

e 200,000 (T2) vs. 800,000 (T3) events: As expected, utilization of the larger dataset of 800,000
events greatly improves the network performance, with the R? score increasing by 13.8%. This improve-
ment is also evident in the corresponding comparison plot in Fig. 5.6, with the greater performance
gains being observed in the most underrepresented energy regions of the dataset (low- & high-energy
events), which stand to benefit more by an increase in dataset size.

e Without ToT (T3) ws. with ToT (T4): Addition of the ToT variable as a node feature of the
graphs has minimal impact on the training metrics, which only vary by about 1% between the two
trainings, with only the MAE improving. However, the comparison plot of Fig. 5.6 reveals a median
that is slightly better aligned to the diagonal for the training which includes ToT (in orange), especially
in TeV energies. For this reason, it was decided to continue using the ToT as a feature in subsequent
trainings.

e Batch size, learning rate, pooling (T4 vs. T5): This is the sole comparison in which the compared
trainings contain more than one different parameters. These configuration changes were suggested by
GraphNeT developers for our use case of DynEdge in ARCA21. The changes (removal of “sum” pooling,
increase of the batch size to 1,024 and use of the piecewise linear learning rate) brought about a small
improvement in the regression metrics, with the R? score increasing by 1.6%. In fact, this training
features the lowest MAE of all ARCA21 energy reconstruction models. The comparison plot shows two
very similar bands for the two trainings. It is worth noting that the use of a larger batch size, i.e. fewer
weight updates, causes the network to converge more slowly. This was somewhat mitigated by the use of
the piecewise linear learning rate, however the model still required an increased epoch budget compared
to previous models. Since GNN trainings are computationally expensive, this fact, coupled with the
relatively small observed performance gains, leads to the recommendation that a smaller batch size be
used in future configuration and hyperparameter tuning tests, in order to reduce the computation time,
with a larger batch size configuration then being tested for the final model.
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Figure 5.6: Comparisons between the various training configurations of Table 5.1. In all plots, the 68%
confidence intervals for each training are compared.
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e Log Cosh (T5) vs. Log Normal (T6): The implementation of the Log Normal loss function from
OrcaNet in GraphNeT allows for a direct comparison between the loss functions of choice in the two
frameworks. The Log Normal loss is a kind of Ly loss, while the Log Cosh loss is most similar to the
L1 loss, so it is no surprise that the former oustcores the latter in the MSE metric, while the opposite
is true for the MAE metric. The Log Normal training achieves the best MSE and R? scores out of
all GraphNeT trainings, scoring effectively identical scores to the best OrcaNet model. Overall, the
two loss functions achieve very similar scores. Their closely matched performance is also evident in the
corresponding comparison plot of Fig. 5.6, where the two bands are virtually identical, with the Log
Normal network predictions (in orange) being on average slightly higher than the Log Cosh network
predictions (in blue). Use of the Log Normal loss in OrcaNet is thus proven to be justified, since it
offers the same performance as simpler loss functions, while incorporating an uncertainty estimate in
the network predictions.

This discussion on snapshot hit trainings concludes with a comparison of GraphNeT-based trainings with the
best OrcaNet-based training that was available for ARCA21 on the same dataset. Training no. 6 was chosen
for this comparison, since it has the best MSE and R? score out of all GraphNeT trainings. It also features
the same loss function as the OrcaNet model, allowing for a direct comparison of the two architectures. The
two models produce nearly identical scores for all metrics in Table 5.3. The models are also compared in
Fig. 5.7, along with the standard reconstruction. The standard reconstruction band lays lower than the GNN
models, since it reconstructs the energy of the resulting muon and not the neutrino energy. Comparing the
standard reconstruction to the GNN predictions, we can observe that the two are in better agreement in
the lower parts of the energy range. This is because, on average, a greater fraction of the neutrino energy
is deposited in the detector via the muon for low-energy events and so the two reconstructions are more
closely matched in this region. The bands of the two GNN models are almost completely overlapping, as
is suggested by their similar performance on the metrics. Consequently, it appears that both underlying
architectures have similar capabilities and both frameworks can successfully support GNN trainings. This is
an important result, since (a) it validates the configuration choices in the existing OrcaNet implementation of
the ParticleNet architecture and signifies that the relevant hyperparameters have been well tuned, and (b) it
provides the Collaboration with a readily available alternative tool of excellent capabilities (GraphNeT), which
has been developed to have a low entry barrier and be able to easily accommodate any desired functionality.

GraphNeT vs. OrcaNet, std reco

8
| Il OrcaNet
] Std reco
7 + B0 GraphNeT P
g |
QU 6 A
G |
~
e . 4
g5 4l
Ly 1 P
= -
o L
S |
O 4 A
0 4
- ]
3]
2 ] T T T T T
2 3 4 5 6 7 8

/Oglo (Etrue / GeV)

Figure 5.7: Comparison between GraphNeT training T6 and the best OrcaNet training. The standard
reconstruction is also shown. The 68% confidence intervals are compared.
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5.3.2 Triggered hits

The results of the triggered hit trainings of Table 5.2 are documented in Table 5.4. As in the case of the
snapshot hit trainings, the MAE, MSE and the R? score are presented. The scatter plots and quantile plots
of the predicted with respect to true energy for all three triggered hit trainings are also presented in Fig. 5.8
and Fig. 5.9 respectively.

No. | MAE | MSE R?

0.620 | 0.694 | 0.588
0.623 | 0.687 | 0.592
0.635 | 0.705 | 0.581

WiN| =

Table 5.4: Training results (triggered hits). Bold values indicate the best result for each metric.

Looking at the results of Table 5.4, it appears that training no. 2 is the best performing of the three trainings,
according to two of the three metrics. Interestingly, this is the training with the lowest learning rate. This
can be explained by the lower learning rate leading to more stable weight updates and helping the network
avoid overshooting and oscillating around local minima.
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Figure 5.8: Predicted with respect to true energy scatter plots for all entries of Table 5.4. In all plots, the
black diagonal line indicates the ideal reconstruction. A second black line indicates the median predicted
value for each true energy bin. The events are unweighted.
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Figure 5.9: Quantile plots for all entries of Table 5.4. In all plots, the red diagonal line indicates the ideal
reconstruction. The median and the 68% & 95% confidence intervals of the predictions for each true energy
bin are shown in black, blue and light gray respectively.

Finally, a comparison between the snapshot and triggered hit trainings can be drawn. By comparing the
training metrics in Tables 5.3 and 5.4, it can be seen that the triggered hit trainings are performing worse
compared to the snapshot hit ones by a significant margin. This comparison is best showcased using snapshot
hit training no. 5 with triggered hit training no. 2, since they share the same network configuration. We
can see that the former has a 9% better R? score than the latter. The comparison plot between these two
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trainings is shown in Fig. 5.10. Looking at this plot, we can observe that both trainings perform similar in
the middle and upper parts of the energy range. The source of the performance variation is therefore located,
in energies below 10* GeV, where the two bands detach, with the snapshot hits band being closer to the
diagonal. Due to this performance deficit of triggered hit networks in low energies and the failure to observe
improvements in other parts of the energy range, it was concluded that snasphot hits trainings are the better
choice and no further triggered hit trainings were pursued.

o Snapshot T5 vs. Triggered T2

—
—— Snapshot T

7H —— Triggered g

IOglO (Epred / GeV)
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Figure 5.10: Comparison between snapshot hits training T5 and the best triggered hits training (T2). The
68% confidence intervals for each training are compared.

5.3.3 Event weighting

All trainings using snapshot and triggered hits that were discussed so far were performed using the original MC
energy distribution, seen in Fig. 5.1. This means that the middle part of the energy range is overrepresented,
while the outer portions —primarily the lowest energies, £ < 10°> GeV- are underrepresented. This uneven
distribution means that the model learns the overrepresented areas of the dataset better, while predicting
poorly on the underrepresented ones due to the lack of training samples. This is clearly evident in the scatter
and intervals plots of Figs. 5.4, 5.5, where, for events with Fy.,. below a few hundred GeV, almost no events
are reconstructed on the diagonal. The imbalanced target distribution might also cause the model to become
biased towards predicting values in the more densely populated regions of the energy range. This might
produce lower final loss values, however it would lead to predictions that are not based on the underlying
physical information alone. For these reasons, sample or event weighting was implemented into the training,
in order to train the model on an effectively uniform energy distribution. In sample weighting, each event i
has an associated weight w;, which is inveresely proportional to the number of events in the corresponding
energy bin. During the loss calculation, these weights multiply the per-event losses, so that the loss for each
batch is a weighted mean:

LN
Lyaten = N sz’Lz’, (5.8)
i1

where L; is the loss for event i. This way, greater importance is placed on events from underrepresented
energy regions, thus improving the predictive ability of the model in those areas and forcing it to generalize
better across the entire energy range.

92



5.3. Training Results and Comparisons

Event weighting was therefore applied to a snapshot hit training (since snapshot hit trainings outperformed
the trainings using triggered hits). Apart from the application of weights to the loss function, the training
configuration is otherwise identical to snapshot hit training no. 5. For simplicity, this training will from now
on be referred to as weighted. The scatter and quantile plots for this network are presented in Fig. 5.11. The
results of this training have also been overlayed with those of snapshot hits training no. 5 in Fig. 5.12.
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Figure 5.11: Scatter and quantile plots for the weighted training. The diagonal indicates the ideal
reconstruction. The median predicted value for each true energy bin is shown in both plots in black. On the
quantile plot, the 68% & 95% confidence intervals of the predictions for each true energy bin are shown in
blue and light gray respectively.
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Figure 5.12: Comparisons between the weighted and unweighted training (snapshot hit T5). The 68%
confidence intervals for each training are compared.

Examination of the training results, as these appear in the plots above, reveals interesting observations and
allow us to reach the following conclusions:
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(a) The median for the weighted training (orange line in Fig. 5.12) is much more closely aligned to the
diagonal than the unweighted training median (blue line), an observation which holds across the entire
energy range. This signifies that the model tends to produce predictions around the correct value
for all energies: it is more aligned with the overall energy distribution and is not biased towards the
overrepresented energy regions, i.e. it generalizes better.

(b) The model predictions for the lowest energies are the most improved, owing to the large importance
placed on these events during training. This represents a substantial improvement to previous models
and is the only GNN model which exhibits this predictive ability at low energies.

(¢) Little improvement is observed in the highest energies, despite them also being associated with larger
weights. This suggests that the observed high-energy underestimation is not a result of the dataset or
the models, but rather a consequence of the physically available information in the hits of each event.
This is indeed the case, as we will discuss in the next Section.

(d) The spread of the model predictions in the middle part of the energy range has been increased. This is
a result of the smaller event weights in this region and is ultimately the cost required for an unbiased,
better generalizing model.

5.4 Investigation of Model Predictions

The discussion of the training results, which was carried out in the previous Section, highlights the funda-
mental characteristics of the model predictions. It is evident that the trained DynEdge configurations, as
well as the OrcaNet model, exhibit certain key features in their predictions, common across all models. If we
divide the energy range of interest (102 - 10% GeV) into three regions (low, middle and high energies), we can
summarize our findings in the following observations:

(a) In low energies (10 - 10* GeV) both the GNN models and the standard reconstruction provide an
overestimate to the true neutrino energy. Significant improvement was achieved in this region with the
weighted training that was previously discussed, which increases the importance of low-energy events,
allowing the network to learn those better.

(b) The middle energies (10* - 10° GeV) are the region where the models perform the best. This is unsur-
prising given the fact that it is the energy region with the most training samples. Model predictions
in this region are generally centered around the correct target value. Neutrinos in this energy range
also deposit most of the light in the instrumented volume thus allowing for a more accurate energy
reconstruction.

(c) In the high energies (10 - 10% GeV) all models exhibit extremely similar behavior. As the true neutrino
energy increases beyond 106 GeV, the models begin to increasingly underestimate it. In fact, all snapshot
and triggered hit trainings, as well as the OrcaNet model, exhibit very similar performance in this energy
region. Crucially, this performance is not significantly improved by the weighted training, contrary to
what was observed for low energies. This suggests that the models are approaching the physical limit
of the accuracy of the energy reconstruction. These highly energetic neutrinos leave only a fraction of
the light in the detector thus leading to the underestimation of their energy. As the detector is growing,
the energy reconstruction in high energies is expected to improve.

Looking at these observations, one could point out that, in the two energy extremes, the models tend to predict
values closer to the middle of the energy range (i.e. overestimate low-energy events & underestimate high-
energy events). This could potentially indicate a bias in the model predictions towards the energy region that
contains more training samples, which could limit the usability of the model. However, two already mentioned
mitigating factors need to be taken into account in relation to this argument:

1. The low-energy overestimation is present not only in the GNN predictions, but also in the standard
reconstruction (as can be seen in Fig. 5.7). The fact that both the GNNs and classical methods produce
this overestimation suggests that the issue does not lie with the use of a particular set of events to
train a DL model. Further, this low-energy overestimation has been greatly reduced by the weighted
training, which has eliminated any possible bias.
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2. The high-energy underestimation results from a physical limitation which prevents the model from
producing more accurate energy predictions. This limitation stems from the fact that not all of the
energy in each event is visible to the detector. In fact, for most of the events, the interaction vertex (i.e.
the point where the neutrino CC interaction occurs) lies outside the detector volume. We call these
non-starting events. In non-starting events, (a) the shower component of the CC interaction is not
visible and (b) the muon trajectory begins outside the instrumented volume, meaning that by the time
the muon has entered the detector it has already lost part of its energy. Consequently, the further away
the interaction vertex is from the detector, the less of the muon energy will be visible. Furthermore, not
all muon tracks stop inside the detector. If the muon carries enough energy to exit the detector, even
less of its energy will be visible. Since the majority of high-energy events interact far from the detector,
it is therefore the case that the visible energy is significantly smaller than the neutrino energy. Given
this fact, it could be argued that the GNN performance on high energies is even better than expected,
since the majority of events are predicted relatively near their truth value, despite this limitation.

The aforementioned points highlight the need to better understand how the model predictions can be inter-
preted from a physical perspective. Since ARCA is primarily intended for studying the high-energy part of
the neutrino spectrum, an investigation on the high-energy event predictions will be conducted. In this effort,
an attempt to identify key causal relations between the input data and target variable, which the model
utilizes in order to make predictions, will be made.

To better understand the model predictions at high energies, we will split the dataset into energy slices and
observe how the model predicts the events in each slice. The slices will have a width of 0.2 in log1g Ftrye-
Non-starting events in the energy ranges 10° - 106 GeV, 10° - 107 GeV & 107 - 108 GeV are displayed in Figs.
5.13, 5.14 & 5.15 respectively. The true energy bins are shown in blue, while the predicted energy bins, for the
same events, in orange. We can observe that, for each energy slice, the peak of the distribution of predicted
values lies very near (or at) that energy slice. This remains true even in the highest energy slices. However,
as we move to higher energies, the distribution of predicted values for each energy slice gets significantly
wider, with many predictions being far lower than the true values. This is consistent with the fact that, for
high-energy events, a smaller percentage of the energy is expected to be visible on average.
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Figure 5.13: Energy slices of width 0.2 in log1g Etrue (blue) and the corresponding GNN predictions
(orange) for non-starting events in the energy range 10° - 10% GeV.
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Figure 5.14: Energy slices of width 0.2 in log19 Etrye (blue) and the corresponding GNN predictions
(orange) for non-starting events in the energy range 10° - 107 GeV.
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Figure 5.15: Energy slices of width 0.2 in log1g Etrue (blue) and the corresponding GNN predictions
(orange) for non-starting events in the energy range 107 - 10% GeV.
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However, the observation of peaks in the predictions of the high-energy slices suggests the existence of one
or more features which allows the identification of these events as highly energetic, despite the fact that they
are non-starting events. One such feature was identified to be the number of hits in each event. Plotting
the number of hits with respect to the true neutrino energy (Fig. 5.16), shows that events with more than
1,000 hits are located almost exclusively in energies above 10° GeV. The model has correctly determined this
relationship, as evident from the second plot of Fig. 5.16 (number of hits with respect to predicted energy).
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Figure 5.16: Number of hits per event with respect to the true neutrino energy (left) and the GNN
predicted energy (right). Events with more than 1,000 hits are shown in orange. The network correctly
identifies these as high-energy events.

Motivated by this observation, we repeat the energy slices presented above, only including non-starting events
with fewer than 1,000 hits (Fig. 5.17, 5.18, & 5.19). Starting from 10° GeV and moving to higher energies slice
by slice, we begin to notice the distribution of predictions lagging increasingly behind the true energy values,
while also progressively flattening. Once we reach the highest energies, the distribution of predictions has
become virtually flat. In other words, for non-starting events with fewer than 1,000 hits, the model consistently
underestimates the energy in the PeV scale (above 105 GeV), in accordance with expectations.
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Figure 5.17: Energy slices of width 0.2 in log1g Etrue (blue) and the corresponding GNN predictions
(orange) for non-starting events with fewer than 1,000 hits in the energy range 105 - 105 GeV.
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Figure 5.18: Energy slices of width 0.2 in log19 Etrye (blue) and the corresponding GNN predictions
(orange) for non-starting events with fewer than 1,000 hits in the energy range 10 - 107 GeV.
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Figure 5.19: Energy slices of width 0.2 in log1g Etryue (blue) and the corresponding GNN predictions
(orange) for non-starting events with fewer than 1,000 hits in the energy range 107 - 108 GeV.
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Chapter 6. Conclusion

6.1 Summary

In this work, we explored the potential of Graph Neural Networks in tackling event reconstruction tasks in
neutrino experiments and specifically energy reconstruction of track-like events in the KM3NeT/ARCA21
neutrino detector. Before discussing the problem and the techniques used, a short introduction to Neutrino
Physics was required. This was provided in Chapter 2, where the types of neutrino particles, as well as
their sources in the TeV /PeV energy range, were presented. Further, the detection mechanism in underwater
neutrino detectors, Cherenkov neutrino detection, was described and the possible event topologies were
discussed.

The KM3NeT experiment was subsequently discussed in Chapter 3. After outlining the scientific goals of
the experiment, the detector design is introduced, followed by a discussion of the KM3NeT trigger system
and the background sources in the detectors. The Chapter concludes with the description of the problem of
event reconstruction and the presentation of classical event reconstruction algorithms employed in KM3NeT,
which are based on the maximum likelihood method.

Chapter 4 then introduces the main tools that are used in this thesis. After a description of Deep Neural
Networks, the types of Graph Neural Networks that will be used in this thesis are then presented. We
initially introduce the graph structure, followed by the concept of graph convolutions and the DynEdge
network architecture, implemented in GraphNeT. Finally, we perform a review of the use of Deep Learning
techniques in the event reconstruction tasks of neutrino telescopes, with a focus on the recent use of Graph
Neural Networks in IceCube and KM3NeT.

Finally, in Chapter 5, we apply the DynEdge network to the problem of energy reconstruction of track-like
events in the KM3NeT/ARCA21 detector. This is made possible by the integration of the KM3NeT Deep
Learning data format in GraphNeT, which was carried out as part of this work. After a discussion on the
dataset that was used, as well as various implementation details, the model configurations that were trained
are presented. We then compare various training configurations and extensively report on the results. Overall,
we find that using the snapshot hits as input for the training outperforms the trainings with triggered hits.
Most notably, by incorporating the technique of sample weighting into our model, we manage to substan-
tially enhance its performance in low-energy events. The resulting low-energy reconstruction outperforms all
previous training configurations, as well as the best OrcaNet configuration and the KM3NeT standard re-
construction algorithm, with only a moderate impact in the middle of the energy range. The incorporation of
event weighting also eliminates any biases of previous models present due to the non-uniform energy spectrum
of our dataset. Further, an investigation into the reconstruction of high-energy events provides justification
of the model predictions in this energy range and allows us to appreciate the physical constraints which limit
the reconstruction of these events. Finally, this first use of the GraphNeT framework in KM3NeT showcases
the potential of this valuable Deep Learning tool, which becomes readily available for the Collaboration to
use in future endeavors.

6.2 Future Work

The findings and limitations discussed in this thesis regarding the application of Graph Neural Networks in
KM3NeT/ARCA energy reconstruction suggest that further research in this area can be conducted, in the
quest to improve reconstruction results. Future endeavors that build on this work could include:

e Creation of a balanced dataset: In this work, the imbalance of the ARCA21 MC dataset with
respect to the target quantity was tackled through sample weighting, as has been extensively discussed.
This increases the significance of underrepresented energy regions in the dataset, however the actual
number of samples from these regions remains low. An alternative approach would be to create a
balanced dataset, with the same number of events in each energy bin, by utilizing the full ARCA21
MC production. This would expose the model to more training examples from underrepresented energy
regions, possibly allowing it to learn better representations for these regions.

e Usage of a different target quantity: The target energy for GNN trainings throughout this work
has been the true MC neutrino energy. An argument can be made, however, for the use of a quantity
which is fully inferable from the physical information present in the hits of each event, thus potentially
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enhancing our confidence in the model predictions, such as the visible energy or the muon energy at
a particular point on the track (the latter is also what the standard reconstruction estimates). This
would require the inclusion of the new target quantity in KM3NeT DL HDF5 files.

Employment of novel network architectures: Although the use of Graph Neural Networks has
proven successful in neutrino detector reconstruction tasks, there has been growing interest in the
community in exploring other types of models. Most notably, the application of Transformers, either in
standalone or in hybrid GNN + Transformer architectures, has recently attracted attention, with such
models already being implemented in GraphNeT.

Application on larger detector versions: In their current form, the KM3NeT detectors are only a
fraction of their planned final size. As the detectors are being extended, so are their neutrino detection
capabilities, especially with regards to the high-energy regions of the neutrino energy spectrum. The
application of Deep Learning models in reconstruction tasks for larger detector versions can thus provide
a more accurate representation of the potential of these techniques and their comparison to classical
methods.
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